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Kurzzusammenfassung 

Für die Erhöhung der Effizienz von photokatalytischen Wasseraufbereitungs-

prozessen mit Hilfe metall-oxidischer Halbleiter ist es unumgänglich, die 

grundlegenden Mechanismen des photokatalytischen Abbaus zu verstehen. Im 

Rahmen dieser Arbeit wurden die Oberflächeninteraktionen, die Adsorptionskinetik, 

sowie die Kinetik des photokatalytischen Abbaus des Herbizids Imazapyr mittels des 

Photokatalysators Titandioxid (TiO2) untersucht.  

Die Adsorption wurde mittels der abgeschwächte Totalreflexion – Fourier 

transformierte Infrarot (ATR-FTIR) Spektroskopie vermessen. TiO2 Filme wurden 

auf ZnSe Kristalle aufgebracht und die Oxid/Flüssigkeitsgrenzfläche wurde bei 

unterschiedlichen pH-Werten (z.B. 3, 5, 7 und 9) untersucht. Dabei konnte 

festgestellt werden, dass die Adsorption von Imazapyr auf der TiO2 Oberfläche pH-

abhängig ist und bevorzugt bei pH Werten unterhalb des pHs des Ladungsnullpunkts 

(pHzpc) abläuft. In dieser Arbeit wird gezeigt, dass bei der Adsorption die Carboxy-

Gruppe von Imazapyr an die Ti(IV)-Zentren der Oberfläche bindet, hauptsächlich als 

überbrückender Ligand bei pH < pHzpc. Steigt der pH-Wert so ist die Bindung von 

Imazapyr an die Oberfläche weniger begünstigt. Der Beitrag anderer Bindungsarten 

zur Interaktion zwischen Imazapyr und der TiO2 Oberfläche wird ebenfalls 

diskutiert.  

Des Weiteren werden die Adsorptionsisothermen, die Adsorptionskinetik und die 

Kinetik des photokatalytischen Abbaus von Imazapyr hinsichtlich ihrer Rolle bei der 

Oberflächeninteraktion des Gesamtprozesses untersucht. Die Ergebnisse zeigen, dass 

die Adsorption von Imazapyr an die TiO2 Oberfläche eine Reaktion zweiter Ordnung 

ist und die Anforderungen des Monolayer-Langmuir-Modells erfüllt. Daher wurde 

die Kinetik des photokatalytischen Abbaus mittels des Langmuir-Hinshelwood 

Modells simuliert. Es konnte jedoch gezeigt werden, dass dieses Modell aufgrund der 

großen Differenz zwischen Adsorptionskonstanten (sowohl im Dunkeln als auch 

unter Lichteinfluss) nur unzureichend zutrifft. Um einige Aspekte der Kinetik und 

der ablaufenden Mechanismen besser abbilden zu können, wurden die 

Adsorptionsraten und die photokatalytischen Abbauraten normiert und diskutiert. 

Dieser neuartige Ansatz, den photokatalytischen Abbau und die 

Adsorptionsphänomene unter Berücksichtigung des Gleichgewichts und der Kinetik 

in Verbindung zu bringen, führt zu der Schlussfolgerung, dass die Adsorption nicht 
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der hauptsächliche Faktor im photokatalytischen Prozess ist. Der Mechanismus des 

photokatalytischen Abbaus von Imazapyr beinhaltet eine Kombination aus beidem, 

sowohl dem direkten (komplette Oxidation) als auch dem indirekten (OH-Radikale) 

Mechanismus. Die normierten Raten der photokatalytischen Reaktion sind in etwa 

dreimal höher als die Adsorptionsraten. Daher überwiegt der indirekte Mechanismus 

beim TiO2-photokatalysierten Abbau von Imazapyr.  

Die mesoporöse Struktur, die Morphologie, das Kristallwachstum, die 

Phasenumwandlung und die Oberfläche der Materialien beeinflussen den 

Mechanismus ebenso wie die Kinetik der photokatalytischen Reaktion. Die 

synthetisierten mesoporösen TiO2 Photokatalysatoren sind photokatalytisch aktiv und 

weisen eine höhere Aktivität bei der Zersetzung von Imazapyr und Phenol im 

Vergleich zu kommerziell erhältlichem Aeroxid TiO2 P-25 auf. Darüber hinaus ist 

die Anfangsabbaurate bei dem photokatalytischen Abbau von Imazapyr durch die 

neu synthetisierten TiO2-Materialien bis zu dreimal höher als die für TiO2 P-25. 

Verschiedene Aspekte hinsichtlich der Rolle der beschriebenen Parameter der 

Aktivität der synthetisierten Materialen sind in dieser Arbeit dargelegt.  

Diese Arbeit stellt fundamentale Betrachtungen des grundsätzlichen Mechanismus 

an, die sowohl in der Adsorption als auch in der photokatalytischen Oxidation von 

Imazapyr beteiligt sind. Außerdem wird die Rolle der kristallinen Phase, der 

Struktur, der Oberfläche und anderer Parameter, die für die Synthese von 

mesoprösem TiO2 wesentlich sind, in Betracht gezogen. Diese Erkenntnisse könnten 

die Grundlage für ein tieferes Verständnis und zukünftige Forschung bilden, die dazu 

beiträgt den Prozess der photokatalytischen Wasseraufbereitung weiterhin zu 

verbessern.  

 

Keywords: Attenuated Total Reflection - Fourier Transform Infrarot (ATR-FTIR), 

Adsorption, Kristallphase, Kinetik, Langmuir-Hinshelwood, Mesoporöses TiO2, 

Oberflächeninteraktion. 
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Abstract  

In order to improve the efficiency of the photocatalytic water treatment process using 

metal-oxide semiconductors, an understanding of the fundamental mechanisms of 

photocatalytic processes is essential. In this thesis the surface interactions and the 

kinetics of the adsorption of the herbicide imazapyr on the catalyst surface, as well as 

the kinetics of the photocatalytic degradation of imazapyr have been investigated 

using titanium dioxide (TiO2) as photocatalyst.  

The adsorption study was performed using films of TiO2 deposited on a ZnSe crystal 

with help of the attenuated total reflection – Fourier transformed infrared (ATR-

FTIR) spectroscopy. The oxide/solution interface study was performed at different 

pH values, i.e., at pH 3, 5, 7, and 9. Our results show that the adsorption of imazapyr 

onto the TiO2 surface is pH dependent and favored at pH values below the point of 

zero charge (pHzpc) of TiO2. This work also revealed that upon adsorption, the 

carboxylic acid group of imazapyr is bound at the surface Ti(IV) centers mainly as a 

bridging ligand at pH < pHzpc. With increasing pH values, the binding of imazapyr to 

the surface becomes less favorable. The contribution of other binding modes in the 

interaction between imazapyr and the TiO2 surface is also discussed in the thesis. 

Furthermore, investigations concerning the adsorption isotherms, the kinetics of 

adsorption, as well as the photocatalytic degradation of imazapyr revealed the role of 

the surface interactions for the overall process. The results of our study show that the 

adsorption of imazapyr onto the TiO2 surface is a second-order reaction and satisfies 

the criteria required by the monolayer Langmuir model. Consequently, the kinetics of 

the photocatalytic degradation of imazapyr have been modeled using the 

Langmuir-Hinshelwood model. It is demonstrated that this model cannot be 

sufficiently applied due to the huge difference between the adsorption constants 

obtained in the dark and under illumination. In order to reveal some aspects of the 

kinetics and the mechanism involved in the degradation of imazapyr, the rates of 

adsorption and of the photocatalytic degradation were normalized and discussed. 

Based upon this new approach to correlate the photocatalytic degradation with the 

adsorption phenomena, taking both the equilibrium and the kinetics into 

consideration, it is concluded that the adsorption does not play a major role for the 

photocatalytic process. However, the mechanism of the photocatalytic degradation of 

imazapyr involves a combination of both, the direct (hole oxidation) and the indirect 
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(OH radical) mechanism. The normalized rates of the photocatalytic reaction are 

found to be approximately three times higher than the rates of adsorption. Thus, the 

indirect mechanism appears to be predominant for the TiO2 photocatalyzed 

degradation of imazapyr. 

Our investigations also revealed that the mesoporous structure, the morphology, the 

crystal growth, the phase transformation, and the surface area of the materials 

influence the mechanism as well as the kinetics of the photocatalytic reaction. Newly 

synthetized mesoporous TiO2 photocatalysts were found to be photoactive and show 

a higher activity for the decomposition of imazapyr and phenol compared to the 

commercially available Aeroxide TiO2 P-25. Moreover, the initial degradation rate 

using the newly synthetized TiO2 materials is up to three times higher than that of P-

25 for the photodegradation of imazapyr. The aspects concerning the role of different 

parameters on the activity of the thus synthetized materials have been discussed. 

The work out-lined in this thesis highlights the fundamental understanding of the 

basic mechanisms involved in the adsorption as well as in the photocatalytic 

oxidation of imazapyr. Moreover, it draws attention to the role of the crystalline 

phase, the structure, the surface area, and other parameters that are intrinsic to the 

photocatalyst for the degradation of organic pollutants. These studies will be helpful 

for a deeper understanding and for future investigations regarding further 

improvement of the photocatalytic water treatment process. 

 

 

Keywords: Attenuated total reflection - Fourier transformed infrared (ATR-FTIR), 

Adsorption, Crystal phase, Imazapyr herbicide, Kinetics, Langmuir-Hinshelwood, 

Mesoporous TiO2, Photodegradation, Surface interactions. 
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Foreword  

Worldwide drinking water is becoming increasingly scarce because of the high 

pollution caused by different organic pollutants such as surfactants, herbicides, and 

dyes. The number of investigations concerning water decontamination and 

purification is constantly growing. Advanced oxidation processes (AOPs) involving 

the in situ generation of highly reactive intermediate species (i.e., H2O2, OH•, O2
•–) 

are considered to be promising methods for water treatment due to their effectiveness 

and safety in comparison with other traditional methods. As a result, intensive 

research activities concerning the degradation of recalcitrant organic compounds into 

readily biodegradable compounds or their complete mineralization into harmless 

products such as carbon dioxide and water employing AOPs have been promoted. 

Among various AOPs, heterogeneous photocatalysis -which employs different 

semiconductors as photocatalysts- is believed to be most promising due to its low 

cost and negligible production of by-products. The successful application of 

photocatalysis in different areas such as environmental purification, renewable 

energy production, and the design of “self cleaning” surfaces coated with metal oxide 

materials, increased the interest in research concerning this topic during the last few 

decades. Until today titanium dioxide (TiO2) is considered to be the most reliable 

photocatalyst considering its high activity under irradiation with UV (A) photons 

with wavelengths λ < 390 nm and its stability during repeated catalytic cycles. 

Moreover, the multi-faceted functional properties of TiO2, such as its chemical, 

thermal, and mechanical stability have further promoted its application for 

photocatalytic water treatment. 

During the last few decades a broad fundamental understanding of the mechanisms 

involved in the photocatalytic process has been obtained. However, there are still 

several fundamental issues, and even mechanistic details in the field of 

photocatalysis that remain unclear. Additionally, several reaction mechanisms and 

kinetic models have been proposed for the interpretation of a large number of 

experimental data concerning TiO2-assisted photooxidation reactions. Despite the 

huge progress reached in the fundamental knowledge of these topics, several 

assumptions taken as “truths” by the scientific community have been challenged by 

the findings of surface science studies on TiO
2 reported during the first decade of this 

century. Specifically, the new insights into the surface chemistry of TiO
2
 highlighted 
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the utmost role of the adsorption of molecules onto the TiO2 surface for the 

photocatalytic process. Furthermore, it has been demonstrated that the kinetics and 

mechanisms of photocatalytic reactions are affected by several intrinsic and extrinsic 

parameters of the photocatalytic material.  

This PhD thesis aims to elucidate the kinetics and mechanisms of photocatalytic 

oxidation reactions taking into account the aforementioned new insights.  

This task has been approached by, first of all, carrying out an experimental study 

comprising TiO
2
–surface/substrate interactions. Secondly, by establishing the 

relationship of these surface/substrate interactions with the kinetics of the 

photocatalytic oxidation reactions of selected model compound. Furthermore, the 

design and synthesis of new photocatalysts as well as the interpretation of their 

photocatalytic activity are presented.  

The topics of this doctoral dissertation are discussed in detail in the following six 

chapters comprising three peer-reviewed published articles.  

Chapter 1: Introduction 

Because each article has its own particular introduction and reference sections, the 

objective of this chapter is not to present an exhaustive review of all topics covered 

in this thesis. Rather, this section presents a general overview on TiO2 photocatalysis. 

Additionally, a book chapter is presented aiming to show the importance of TiO2 

surface science for photocatalysis with a particular focus on the relevance of the 

ATR-FTIR spectroscopy for the comprehension of the TiO2–surface/substrate 

interactions during the photocatalytic process. 

Scope of the thesis. The aims and objectives of this investigation are also presented 

in this section.  

Chapter 2: TiO2-surface/substrate interaction. This section includes the following 

article:  

• M. Faycal Atitar, Ralf Dillert, and Detlef W. Bahnemann. Surface 

Interactions between Imazapyr and the TiO2 Surface: An in Situ ATR-FTIR 

Study. J Phys Chem C 121(2017): 4293–4303. 
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Chapter 3: Kinetics, adsorption and photocatalytic reactions. This section includes 

the following article:  

• M. Faycal Atitar, Asmae Bouziani, Ralf Dillert, Mohamed El Azzouzi, Detlef 

W. Bahnemann. Photocatalytic Degradation of the Herbicide Imazapyr: Do 

the Initial Degradation Rates Correlate with the Adsorption Kinetics and 

Isotherms? Catal. Sci. Technol. 8 (2018): 985-995. 

Chapter 4: Mesoporous TiO2 nanocrystals as efficient photocatalysts. This section 

includes the following article: 

• M. Faycal Atitar, Adel A. Ismail, S.A. Al-Sayari, Detlef Bahnemann, D. 

Afanasev, A.V. Emeline. Mesoporous TiO2 Nanocrystals as Efficient 

Photocatalysts: Impact of Calcination Temperature and Phase Transformation 

on Photocatalytic Performance. Chem Eng J 264 (2015): 417–424. 

  

Chapter 5: Summarizing discussion. Discussion of the results presented in the 

previous chapters. 

Chapter 6: Conclusions and outlook. General conclusions and perspectives of the 

work are reviewed in this section. 
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Chapter 1 

Introduction 

The demand for the earth´s limited supply of freshwater has increased over the past 

decade, due to the exponential growth of the human population and the economic 

development. Thus, clean and sustainable energy production along with 

environmental concerns have emerged as top issues and challenges for the humanity. 

In this context, protection of natural water resources and development of new 

technologies for water purification and wastewater treatment became a key 

environmental concern of the 21st century. 

Two major types of pollutants derived from technological and agricultural sources 

could be identified to encompass all others sources of pollutants. Technological 

pollutants are produced from human made sources, i.e., industrial, chemical, etc.  

The compounds derived from these sources usually exhibit low solubility in water. 

Therefore, a separate layer of these compounds is formed on the surface that 

negatively affects the physical properties of the water (oxygen uptake, surface 

tension), which in turn also hampers living organism, which are in contact with the 

surface. The second major type of pollutants is produced by the high concentrations 

of nutrients that leach into the soil and drain into water sources mainly from 

agriculture. 

Both organic and inorganic chemicals come into contact with ground and surface 

water sources. These inorganic chemicals include heavy metals, nitrates, and 

organometallics (especially tin compounds) [1]. General classes of organic 

compounds of environmental concern include: solvents, volatile organics, 

chlorinated volatile organics, dioxins, pesticides, chlorophenols, asbestos, and a 

plethora of aromatics from sewage [1]. Although this is not an exhaustive list, 

nevertheless it highlights the fact that many of these compounds are mildly soluble in 

water and are toxic to all forms of life. 

In order to overcome this problem, the research and industrial community is 

challenged to develop advanced analytical, biochemical, and physicochemical 

methods for water purification. This challenge called for new technologies and made 

the use of sunlight a very attractive route that considers semiconductor photocatalysis 
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as one of the most promising advanced oxidation processes, as well as an alternative 

to the conventional processes. 

Semiconductor photocatalysis has proved in the last decade to be a powerful tool for 

the destruction and remediation of highly toxic pollutants, for the purification of 

polluted water and air, for self-cleaning surfaces coated with metal oxide materials, 

and for the production of energy by splitting water into molecular hydrogen and 

molecular oxygen [1–3]. This technology relies on the use of metal chalcogenides or 

oxides to generate oxidizing holes, which directly react with the molecules adsorbed 

on the surface of the photocatalyst. 

Many semiconductor materials have been used as photocatalysts for the 

photocatalytic degradation of organic molecules. The most commonly studied 

semiconductors include titanium dioxide (TiO2), zinc oxide (ZnO), tungsten trioxide 

(WO3), hematite (Fe2O3), and zinc sulphide (ZnS) [4]. Nevertheless, TiO2 due to its 

low cost, abundance, high activity, and stability under a variety of conditions is the 

most reliable and widely used material today [5,6]. 

1.1. Titanium dioxide (TiO2) 

Titanium dioxide exists as three different polymorphs: anatase, rutile, and brookite as 

shown in Figure 1.1. Rutile is thermodynamically the most stable form of TiO2. The 

metastable anatase and brookite phases convert irreversibly to the rutile phase upon 

calcination at temperatures exceeding 600 °C [7]. Anatase and rutile exhibit a 

tetragonal unit-cell structure, while brookite crystalizes in a more complex 

orthorhombic cell as shown in Figure 1.1. In all three forms, titanium (Ti4+) atoms 

are coordinated to six oxygen (O2-) atoms, forming TiO6 octahedra [7,8]. 

 

Figure 1.1. Crystallographic structure of TiO2 (a) anatase (tetragonal), (b) rutile 
(tetragonal), and (c) brookite (orthorhombic). (Reprinted with permission from 
Katsuhiro Nomura (nomura-k@aist.go.jp; http://staff.aist.go.jp/nomura-k/english/itsc
gallary-e.htm) Copyright (2002)). 
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The rutile form of TiO2 is widely used as pigment in paints, plastics, cosmetics, and 

other products [7]. In 1972, Honda and Fujishima discovered the photosensitization 

effect of a TiO2 electrode for the water splitting [9]. Since then, enormous efforts 

have been devoted to the use of TiO2 for many promising applications in areas 

ranging from photovoltaics and photocatalysis to photo-electrochromics and sensors 

[1,5,10]. The wide applications of TiO2 can be practically divided into two categories 

such as “energy” and “environmental”. These applications depend not only on the 

properties of the employed TiO2, but also on the type and modifications of TiO2, as 

well as on the interactions of TiO2 with the surrounding environment [7,8]. 

Similar to several semiconductors, TiO2 is considered to be a wide band gap 

semiconductor comprising a conduction band (CB) and a valence band (VB) with a 

rather broad band gap energy (Eg ≥ 3.0 eV). Furthermore, it is also known that the 

CB and VB of TiO2 are respectively made up of Ti 3d and O 2p orbitals [11,12]. The 

electronic structures of the three TiO2 polymorphs are different due to the different 

local crystal environments of the Ti and O atoms in the unit cells of each crystalline 

phase. The band gap energy is reported to be 3.0 eV for rutile [8], 3.2 eV for anatase 

[8], and 3.31 eV for brookite [13]. 

In the present work, the commercial photocatalyst powder Evonik Degussa Aeroxide 

TiO2 P25 was used. The material contains a unique combination of anatase 80% and 

rutile 20% crystal structure (the band gap energy of Aeroxide TiO2 P25 is reported as 

3.2 eV) [14]. This material is frequently used as a standard material for many 

applications. The present work also deals with the preparation of photocatalytically 

active TiO2 nanomaterials with different porosity and mixed crystal phases. The 

activity of the newly synthetized material is compared with that of Aeroxide TiO2 

P25.  

TiO2 can be prepared both in the form of powder or as thin films. There are various 

synthetic routes reported in the literature that provide particles with the desired 

characteristics (i.e., crystallite phase & size, morphology, and uniformity), and also 

with a concern to their cost and yield. The most important ones used for the large 

scale production of commercial products are flame pyrolysis, and processes such as 

sol-gel, hydrothermal, or solvothermal [7]. A prominent example of a commercial 

product synthesized using flame pyrolysis is Evonik Degussa Aeroxide TiO2 P25 

where highly crystalline TiO2 nanoparticles are obtained through the reaction of 
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vaporized titanium tetrachloride (TiCl4) with oxygen and hydrogen in the gas phase 

at high temperatures exceeding 1000 °C [15]. 

Wet-chemical approaches are popular and convenient to obtain homogeneous TiO2 

materials with controlled stoichiometry and/or complex morphology. They are based 

on the combination of hydrolysis and condensation reactions of metal halide or 

alkoxide precursors in water or oxygen-containing organic solvents. Depending on 

the degree of condensation, these reactions can lead to molecular nanoclusters, 

nanoparticles, or polymer-like metal oxides. This sequence of reactions is known as 

the sol-gel method [16]. In a typical sol-gel synthesis, an inorganic precursor TiR4 is 

dissolved in water or a mixture of solvents. This precursor is rapidly hydrolyzed to 

yield Ti(OH)xR4-x, which then undergoes condensation through either substitution or 

addition reactions to give titanium dioxide [16].  

The preparation of mesoporous materials is mainly concerned with the building of 

monodispersed and mesosized pore spaces (2−50 nm) [17]. Such materials are 

characterized by their huge surface area and good accessibility of the pores. The 

synthesis of mesoporous TiO2 materials has been extensively studied with or without 

the use of organic surfactant templates such as amphiphilic poly(alkyleneoxide) 

block copolymers [7,17,18], which act as the structure directing agents. 

 1.2. TiO2 Photocatalysis 

The photocatalytic process involves several oxidation and reduction reactions in 

which light is used to activate a substance (the photocatalyst) thus accelerating the 

rate of the chemical reactions without being involved in the reactions. 

TiO2 is a photocatalyst with a band gap of ≈3.2 eV that absorbs light in the UV range 

(λ<390nm). This light energy is used to excite electrons from the filled valence band 

to the conduction band. The charge carriers thus generated, i.e., the electron (e-) in 

the conduction band (a reducing agent) and the hole (h+) in the valence band (an 

oxidizing agent), migrate to the surface. If an organic molecule is adsorbed on the 

surface of the photocatalyst, it may undergo an oxidation reaction either directly by 

the photogenerated conduction band holes or indirectly via hydroxyl radicals, •OH, 

produced from the oxidation of water or via a reductive pathway, or through the 

reaction of superoxide radicals generated by trapping of the photo-generated 

electrons by molecular oxygen. Additionally, the generated hydroxyl radical may 
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also diffuse into the bulk solution resulting in the oxidation of organic molecules 

even if they are not adsorbed. The whole process can be represented by the following 

Figure 1.2. and the chemical equations (1.1) to (1.7) [1,19]. 

 

Figure 1.2. Mechanism of the heterogeneous photocatalytic process 

         (1.1) 

Oxidative reaction: 

     (1.2) 

        (1.3) 

Reductive reaction: 

         (1.4) 

         (1.5) 
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The role and the importance of each of these steps for the photocatalytic degradation 

of organic pollutants is still not completely clear. The hydroxyl radical (•OH) 

generated in (1.3) and (1.7) is considered to be the primary oxidant, while the 

presence of molecular oxygen (O2) can prevent the recombination of the electron-

hole pair. The •OH radical may react with organic compounds resulting in the 
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formation of various reaction intermediates depending on the nature of the compound 

[1,20]. These intermediates may further react with •OH radicals to produce the final 

degradation products such as CO2 and H2O. However, several publications have 

shown that the direct oxidation of organic molecules with trapped holes is also 

possible and sometimes the dominant process [21,22]. 

In spite of several contributions by different research groups concerning the 

understanding of the mechanisms involved in the photocatalytic process [2,21–25], 

there are still several fundamental issues, approaches, and mechanisms that remain 

unclear in this field. 

The photocatalytic process for the degradation of organic pollutants on irradiated 

TiO2 is highly complex. The complexity of the process derives from the different 

reaction steps, intermediate by-products, and the diversity of reaction pathways 

involved in the process. For various specific cases, the relative role of holes, radicals, 

and surface charge are still under debate. On the other hand, like most heterogeneous 

reactions, it is assumed that the reaction occurs in the adsorbed phase. The task of 

developing a reliable rate law, which could be generally applicable to different 

pollutants and conditions, is therefore very difficult. 

A complete kinetic analysis involves the study of reaction rates which requires the 

understanding of the mechanisms by which the reactants are converted to the 

products. Kinetic experiments are usually performed to study the photo-degradation 

of the target compounds. The results of such measurements show that reaction rates 

depend on the concentration of the reactants (and products) in a way that can be 

expressed in terms of differential equations known as rate laws. A common way to 

express the reaction rate is to use the power law as shown in equation (1.8) [26]. 

𝑟 =
!"

!"
=  −𝑘𝐶

!         (1.8) 

where k is the rate constant and n is the order of the reaction. 

Some photocatalytic reactions obey a zero-order rate law and therefore exhibit a rate 

that is independent of the concentration of the reactant. However, first and second 

order reactions are more common in photocatalysis [26]. 

Heterogeneous catalysis is an important research area for the chemical industry due 

to its wide application. Photocatalytic reactions depend on the fact that at least one 

reactant is adsorbed (usually chemisorbed) on the surface of the catalyst [26]. For 

this reason, adsorption-desorption phenomena and interfacial reactions are usually of 
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major importance for the understanding of the mechanisms involved in 

photocatalysis [27]. Since the rate of a photocatalytic reaction depends on the 

adsorbed amount of the reactant, the adsorption equilibrium is usually described by a 

simple but plausible Langmuir isotherm, based on the following assumptions [26]: 

1. The surface is uniform and all sites are equivalent. 

2. There is no interaction between adsorbed molecules. 

3. The ability to adsorb at a given site is independent of the occupation of the 

neighbouring sites. 

4. The extent of adsorption is not beyond one complete monolayer coverage. 

The dynamic equilibrium of the adsorption of a molecule A is: 

𝐴 + 𝑆
!!

𝐴 − 𝑆         (1.9) 

The rate of adsorption (ra) is given by: 

𝑟! =  𝑘!(𝑛!" − 𝑛!")𝐶        (1.10) 

For the desorption: 

𝐴 − 𝑆
!!

𝐴 + 𝑆         (1.11) 

and the rate of desorption is: 

𝑟! = 𝑘!𝑛!"          (1.12) 

Where S is the sorption site, nts is the total amount of surface sorption sites, C is the 

concentration of molecule A, nos is the fraction of occupied sorption sites and ka and 

kd are the kinetic constants. 

The Langmuir isotherm can be derived by looking on the amount of occupied sites at 

the photocatalyst surface under equilibrium conditions where the rates of adsorption 

and desorption are equal: 

dn
os

dt
= +k

a
n
ts
− n

os( )C − kdnos = 0
        

(1.13) 

+k
a
n
ts
C − k

a
n
os
C − k

d
n
os
= 0

        
(1.14) 

n
os
k
a
C + k

d( ) = kantsC          (1.15) 
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n
os
=
k
a
n
ts
C

k
a
C + k

d

= n
ts

k
a

k
d

C

1+
k
a

k
d

C

         

(1.16) 

This can be written as: 

n
os
= n

ts

K
L
C

1+K
L
C

         (1.17) 

or as the fractional coverage: 

θ =
n
os

n
ts

=
K
L
C

1+K
L
C          

(1.18) 

with 
d

a

L

k

k
K =  

Nomenclature 

C mol L-1 amount concentration of the dissolved (non-adsorbed) probe 
molecule in the suspension 

ka L mol-1 s-1 rate constant of adsorption 

kd s-1  rate constant of desorption 

k′r mol-1 s-1 rate constant of the photocatalytic reaction 

kr mol L-1 s-

1 
maximum rate of the photocatalytic reaction 

KL mol-1 Langmuir adsorption constant 

KLH mol-1 constant in Langmuir-Hinshelwood rate law 

nos mol amount of occupied sites 

nox mol amount of oxidizing species at the photocatalyst surface 

nts mol total amount of surface sites 

t min time 

V L total volume of suspension 

 

The Langmuir-Hinshelwood model was developed using the Langmuir isotherm, 

assuming that a slow step reaction takes place after the adsorption equilibrium. This 

model was applied to interpret the kinetic data of heterogeneous photoreactions 

[1,24,28]. The rate of a unimolecular surface reaction is proportional to the surface 

coverage [29], and can be expressed as follows: 

V

nnk

t

C
osoxr

'

d

d
=          (1.19) 

The Langmuir-Hinshelwood rate law is derived employing the amount balance of 
sites at the photocatalyst surface occupied by the probe molecule during the 
photocatalytic reaction: 
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dn
os

dt
= +k

a
n
ts
− n

os( )C − kdnos − k 'r noxnos      (1.20) 

Under steady state conditions, i.e., 0
d

d
os =
t

n
, it can be written 

+k
a
n
ts
C − k

a
n
os
C − k

d
n
os
− k '

r
n
ox
n
os
= k

a
n
ts
C − n

os
k
a
C + k

d
+ k '

r
n
ox( ) = 0  (1.21) 

and after rearrangement 

n
os
=

k
a
n
ts
C

k
a
C + k

d
+ k '

r
n
ox

         (1.22) 

Inserting Equation (1.22) into the Equation (1.19) yields 

dC

dt
=
k '
r
n
ox
n
ts

V
×

k
a
C

k
a
C + k

d
+ k '

r
n
ox

=
k '
r
n
ox
n
ts

V
×

k
a

k
d
+ k '

r
n
ox

C

1+
k
a

k
d
+ k '

r
n
ox

C

  (1.23) 

With the abbreviations 
V

nnk
k

tsoxr

r

'
=  and 

oxrd

a

LH

' nkk

k
K

+
=  Equation (1.24) yields 

Equation (1.25). 

 

CK

CK
k

t

C

LH

LH

r

1d

d

+
=          (1.25) 

As mentioned before, the interpretation of the results of kinetic studies concerning 

TiO2 photocatalytic reactions for water treatment, as well as the elucidation of the 

underlying mechanisms today rely largely on the kinetic adsorption model of 

Langmuir−Hinshelwood (LH) including classical or modified rate forms 

[1,24,28,30–32]. However, the values of KL (obtained from the Langmuir adsorption 

isotherm) and those of KLH (obtained from the photocatalytic reaction) may differ 

from each other. This is usually explained by the fact that the photocatalytic reaction 

is influenced by several parameters such as the absence or presence of 

chemisorption, the reaction mechanisms (through direct hole transfer or via the 

intermediate formation of OH radicals), the formation of intermediates, the presence 

and/or absence of molecular oxygen in the system, the photon flux, the total number 

of adsorption sites, and the overall properties of the photocatalyst [28,30–37]. 

It is important to point out that the photocatalytic process proceeds efficiently only 

under aerated conditions, and molecular oxygen (O2) may therfore enhance the 

photocatalytic reaction induced by photoexcited e- and positive hole h+. A plausible 

mechanism by which O2 participates is the capture of e− to produce the relatively 

stable superoxide anion radical O2
� −, and retards the charge carrier recombination 
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[38,39]. The dependence of the photocatalytic reaction rate from the concentration of 

molecular oxygen present in the suspension has been explained by O2 adsorption and 

depletion, both in the dark and during illumination, at the photocatalyst surface [4]. 

The Langmuir-Hinshelwood model assumes that the adsorption of the reactant has to 

occur before oxidation takes place. Furthermore, it is considered that only one 

substrate molecule may bind at each surface site without competition with other 

organic and/or inorganic compounds present in the suspension. On the other hand, 

the classical Langmuir-Hinshelwood model of catalysis specifies a bimolecular 

reaction between reactants both being in an adsorption equilibrium. The Eley-Rideal 

model has been used as an alternative mechanism to interpret the kinetics of 

photocatalytic reactions in gaseous or liquid phase. This model assumes a reaction 

between one non-adsorbed reactant and one adsorbed reactant [40]. 
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1.3.1. Abstract 

Attenuated total reflection Fourier-transform infrared (ATR-FTIR) spectroscopy has 

a high potential for investigating a wide range of samples and systems.  In 

photocatalysis, various interfacial phenomena can be studied using this technique, 

including pH-dependent adsorption and photodegradation of probe molecules. The 

analysis of the processes occurring at the interface of thin particle films deposited on 

the surface of an ATR crystal, either in the liquid or the gas phase, is perhaps the best 

way to elucidate the mechanism of adsorption and heterogeneous photocatalytic 

reactions. This chapter summarizes the recent advances and applications of ATR-

FTIR techniques in semiconductor photocatalysis. A brief outlook at some of the 

possible investigations in this area is provided and the different proposed adsorption 

and photocatalytic degradation mechanisms are discussed. 

Keywords: Adsorption, attenuated total reflection Fourier-transform infrared (ATR-

FTIR), photocatalysis, semiconductor, spectroscopy, thin films, TiO2 

 

1.3.2 Introduction 

The expanding interest in environmental and energy issues led to the consideration of 

heterogeneous photocatalysis as one of the most promising advanced oxidation 

processes. The interest in this scientific field has increased in the last decade since 

photocatalysis is assumed to be a powerful tool for the destruction and remediation 

of highly toxic pollutants, the purification of polluted water and air, the development 

of self-cleaning surfaces coated with semiconducting metal oxide materials, and the 

conversion of solar energy into chemical energy [1–3]. Many semiconductor 

materials have been tested as photocatalysts, nevertheless, due to its low cost, 

abundance, high activity, and stability under a variety of conditions. Titanium 

dioxide (TiO2) is the most reliable and widely used material [4, 5]. Accordingly, 

there has been a tremendous amount of research on diverse aspects of TiO2 

(nano)materials, ranging from their synthesis, characterization, and applications to 

atomic scale, to experimental and theoretical investigations of their fundamental 

physical and chemical properties [1, 5–7]. Despite these investigations, there remains 

a need to better understand the reaction mechanisms of the transformation of organic 

molecules occurring during TiO2 photocatalysis.  
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Surface science plays a prominent role in mechanistic investigations concerning the 

photocatalytic process, providing a unique approach to understand bulk, surface, and 

interfacial phenomena occurring at the TiO2 surface [6, 8, 9]. According to several 

proposed photocatalytic mechanisms [10, 11], an important point for the conversion 

of the molecules on TiO2 is the physical and electronic structure of the adsorbed state 

of the molecules. How a molecule binds onto the TiO2 surface influences its 

electronic structure, as well as its redox properties. Inter alia, coverage, thermal 

stability, and reactivity, adsorption structure and site, are all important factors [8]. 

The interest in surface techniques to investigate liquid-solid and gas-solid interfacial 

chemistry has grown due to the importance of the information they provide. Few 

surface spectroscopic techniques are adequate to perform in situ analyses of 

interfacial interactions. For example, sum-frequency vibrational spectroscopy is 

restricted to planar solid-solution interfaces [12], infrared ellipsometry is considered 

mainly as a technique for the analysis of thin solid films rather than of interfacial 

species [13], and surface enhanced Raman spectroscopy (SERS) requires the 

presence of metals on the surface. Thus, this complicates the more widespread 

applicability of SERS [14, 15]. 

IR spectroscopy is the oldest and most commonly used method for identifying both 

organic and inorganic chemicals, as well as for providing specific information on 

molecular structure, chemical bonding, and molecular environment. Being a 

powerful tool for qualitative and quantitative studies, it can be applied to study 

solids, liquids, or gaseous samples [16]. Recently, IR spectroscopy has been applied 

in situ to study surface reactions on immersed solids such as oxides. This has been 

achieved with particle films via internal reflection or attenuated total reflection 

(ATR-FTIR) methods. Investigating several metal oxide solid particles in 

suspensions or deposited as thin films on ATR crystals, these developments have led 

to in situ ATR-FTIR studies of adsorption and chemical reactions on a variety of 

solid-liquid and/or solid-gas interfaces in the photocatalysis context [17–24]. The 

ATR-FTIR technique has proved to be a powerful tool for probing binding 

mechanisms and for characterizing the adsorption of organic molecules onto metal 

oxide surfaces in liquid media. 

This book chapter focuses on the application of this technique in the above-

mentioned context. An overview of the investigations that have been performed to 

date will be given, analyzing the different experimental procedures, and summarizing 
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the performed investigation of surface interactions. An in-depth analysis of the 

different proposed adsorption and photocatalytic reaction mechanisms on TiO2, as 

well as on other metal oxides also employed in photocatalysis will be given. To 

complement this overview, results and interpretations of quantum chemical 

calculations will also be presented.  

1.3.2.1. History and brief overview of ATR-FTIR spectroscopy 

Infrared absorption spectroscopy (IR) has contributed for more than fifty years to the 

molecular view on a wide variety of systems. The selection rule for a vibrational 

mode of a molecule to be IR active is that there is a change of the electric dipole 

moment of the molecule upon absorption of light. The absorption of infrared light 

due to the excitation from the ground vibrational energy level to a higher energy 

level provides information concerning molecular structure and molecular interactions 

[15, 25, 26]. Due to the existence of the wide absorption spectra database in the mid-

infrared region (4000–400 cm-1), infrared spectroscopy is considered as a universal 

technique since many molecules have strong absorbances in this region [27]. 

Fourier-transform infrared (FTIR) spectroscopy is a well-established technique based 

on the idea of the interference of radiation between two beams to yield an 

interferogram. The latter is a signal produced as a function of the change of path 

length between the two beams. The two domains of distance and frequency are 

interconvertible by the mathematical Fourier transformation method. 

ATR spectroscopy was introduced simultaneously by Harrik [28] and Fahrenfort [29] 

based upon the total internal reflection phenomena. In this approach, IR spectra are 

recorded for a sample material that is in contact with an internal reflection element 

(IRE). The IR beam is focused onto the edge of the IRE, reflected through the IRE, 

and then directed to the detector (cf. Figure 1.3.) [26, 27]. In this case, all the light 

reflects off the internal surface of the IRE, hence explaining the term total internal 

reflection [27]. The internal reflection element (IRE) or ATR crystal has, in most 

cases, a higher refractive index (n1) as compared to the sample (n2). Another 

important parameter is the incidence angle Ɵ that can be determined from the 

refractive indexes of the sample (n2) and the IRE (n1): 

1 2

1

sin ( )
n

n
θ −
=          (1.26) 
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Figure 1.3. Schematic diagram of a horizontal ATR sampling accessory illustrating 

the important parameters [16]. 

The major applications of the ATR method are in the mid-IR region. However, the 

range has been extended to the near-IR, the far-IR, as well as to the UV and visible 

spectral regions. Therefore, it is of great importance to choose a suitable ATR crystal 

for a given application. The most common ATR crystals with their respective 

refractive indexes and some other relevant properties are summarized in Table 1.1. 

Since the IR beam should penetrate the sample, the penetration depth (dp) is one of 

the important parameters in ATR-FTIR spectroscopy. The measure of the depth that 

the infrared beam enters into the sample is defined by equation (1.27): 

1

2 2 2
1 21

1

[2 (sin ) ]

pd

Wn nπ θ

=

−

       (1.27) 

where dp is the depth of penetration, W the wavenumber, n1 the refractive index of 

the ATR crystal, Ɵ the angle of incidence, and n21 the fraction 2

1

n

n

. 

Each of the parameters mentioned above has important messages to teach us about 

the ATR technique and its application. Readers interested in details of the theory of 

ATR should consult the respective literature [16, 25, 27]. 
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Material 
Refractive 

index 

Wavenumber  

range (cm-1) 
dp (µm) References 

Diamond 2.4 45000–2500 
1.35–

1.66 
[30][31][32] 

Germanium (Ge) 4 5500–870 
0.65–

0.73 
[30][31][32] 

Zinc Selenide (ZnSe) 2.41 20000–650 
1.22–

1.66 
[30][31][32] 

AMTIR (As/Ge/Se glass) 2.5 11000–750 1.46 [30] 

Silicon (Si) 3.4 - 
0.84–

1.17 
[30][32] 

Thallium bromoiodide (KRS-

5) 
2.37 20000–250 

1.22–

1.73 
[30][32] 

Cd telluride (CdTe) 2.67 10000–450 - [31] 

Saphire (Al2O3) 1.74 25000–1800 - [31] 

Zinc Sulfide (ZnS) 2.2 17000– 950 2.34 [31][32] 

Cubic Zirconia (ZrO2) 2.15 25000–1800 - [31] 

Table 1.1. Relevant properties of some common ATR crystals. 

1.3.2.2. Experimental processing 

One of the advantages of the ATR-FTIR technique is that an experiment can be 

easily conducted to study the interactions between a chosen probe molecule and the 

surface of different metal oxides. The whole procedure consists in the preparation of 

a thin film of nanoparticles of the chosen metal oxide on the ATR crystal. This thin 

film should be stable, at least during the experiment, and its thickness should allow 

the penetration of the IR beam to reach the interface, e.g., the sample solution above 

the oxide layer. A thin homogeneous layer of the nanoparticles on the ATR crystal is 

generally produced from their suspension in an adequate solvent. This suspension is 

carefully drop-casted on the IRE material. Examples of the preparation of these thin 

layers, especially those made of TiO2, can be found elsewhere [18, 19, 23, 33]. 

It is worth noting that the contact between the probe molecule and the layer can lead 

to a change in some operational parameters such as pH, temperature, and ionic 
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strength of the supernatant solution. Therefore, studies on adsorption phenomena are 

better carried out employing flow cell reactors either in the liquid or the gas phase 

(see Figure 1.4a) where the solution or the dispersant circulate continuously over the 

layer. This allows the control of the above-mentioned parameters and the monitoring 

of the evolution in time of the system under different conditions. As an alternative, a 

sample batch system can also be employed where the inlet and outlet are closed 

(Figure 1.4b) [23]. 

 

 

Figure 1.4. Flow cell reactor for ATR-FTIR spectroscopic studies (Reproduced from 
[23] with permission of the PCCP Owner Societies). 

 

Prior to coating the ATR crystal, a spectrum of the blank ATR crystal is collected for 

spectral processing. Mainly, two different approaches can be used for the spectral 

processing. The first one is the normalization of the spectra of the ligand to that of 

the matrix (solvent at the pH of interest in the liquid phase or dispersant in the gas 

phase) from which a spectrum is collected. The probe molecule is then introduced 

and the corresponding spectrum is collected. The spectrum of the probe molecule is 

then referenced to the background spectrum (solvent/dispersant). The second 

approach is as follows: after preparing the thin film, a spectrum of the solvent at the 

pH of interest (or of the dispersant in the gas phase) is collected; the probe molecule 

is introduced and a spectrum is collected; the single beam spectrum of both 

solvent/dispersant and of the probe molecule in the solvent/dispersant is referenced 
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to the blank ATR crystal to obtain the absorbance spectra of each. Subsequently, the 

absorbance spectrum of the solvent/dispersant is subtracted from the spectrum of the 

probe molecule. To collect spectra for the probe molecule alone the same 

experimental process is used but without the nanoparticle thin layer [30]. 

 

1.3.3. Probing interfacial reactions by ATR-FTIR investigations 

1.3.3.1. Metal oxide-water interface 

Considering its relevance to semiconductor photocatalysis, water splitting, and other 

important applications, the interaction of water with metal oxide surfaces, especially 

TiO2, has been the focus of several experimental and theoretical investigations over 

the last decades [3, 4, 6, 8, 34–36]. Molecular, dissociated, and undissociated states 

of water adsorbed at a solid surface have been suggested. In addition to that, a 

mixture of these adsorption states is possible. 

ATR-FTIR spectroscopy is one of the suitable techniques to investigate the 

adsorption of water molecules on a metal oxide surface under a wide range of 

conditions [37–39]. From many perspectives, numerous experimental and theoretical 

water adsorption studies have been conducted by means of ATR-FTIR spectroscopy 

[17, 37, 40, 41]. 

Figure 1.5. depicts the typical spectra of water adsorbed on TiO2 (anatase/rutile 

Evonik-Degussa Aeroxide TiO2 P25) [38]. The broad absorption band at around 

3600–2800 cm-1 and the small peak at 3696 cm-1 are well-known to be the stretching 

vibration modes of the H2O molecules, which have complex interactions through 

hydrogen bonds, and the end part of polymerically chained H2O molecules without 

hydrogen bonds, respectively. The broad band contains not only the components of 

the H2O molecules with different numbers of hydrogen bonds but also the Fermi 

resonance attributed to the overtone absorption of the bending mode δ (H2O) at 1637 

cm-1. Therefore, it is difficult to analyze the detailed adsorption state of the 

polymerically chained H2O molecules on metal oxide surfaces only from FTIR (mid-

infrared) measurements [38]. However, based on the information obtained from such 

IR spectra, ATR-FTIR spectroscopy has been used for the characterization and 

identification of intermediate mechanisms involved in environmental interfaces [42], 

mainly during photocatalytic oxidation processes induced at the TiO2-water interface 

[37,40]. 
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Figure 1.5. FT-IR (MIR) absorption spectra of TiO2 (Evonik-Degussa Aeroxide 
TiO2 P25) in air (a) and after evacuation at room temperature for 1 h (b) (Reprinted 
with permission from Takeuchi M, Martra G, Coluccia S, Anpo M. Investigations of 
the Structure of H2O Clusters Adsorbed on TiO2 Surfaces by Near-Infrared 
Absorption Spectroscopy. Journal of Physical Chemistry B; 109(15):7387–91. 
Copyright (2005) American Chemical Society). 

 

Starting from the hypothesis that adsorbed H2O changes its conformation due to the 

co-adsorption of cyclohexane on TiO2 (anatase, Sachtleben Hombikat UV100), 

Almeida et al. [40] have shown with the help of additional DFT (Density Functional 

Theory) calculations, yielding the adsorption energy and the structure of the water 

molecule at different hydration levels (Figure 1.6.), that at least three layers of water 

are formed during the adsorption process. The first layer includes only chemisorbed 

H2O molecules. The second hydration level includes physisorbed (H-bonded) H2O 

molecules on surface OH sites, and the highest hydration level contains an additional 

adsorbed water layer. The dissociative chemisorption of water is assumed to be 

energetically favored. In addition to that, dissociative chemisorption of water 

generates at least two different Ti-OH groups. At least one of these two new OH sites 

contains an oxygen atom originally originating from the TiO2 lattice structure [40]. 

This finding allowed the authors to provide a spectral and structural interpretation of 

the mode of adsorption of cyclohexanone on the hydrated TiO2 surface [40]. 



Chapter 1: Introduction   
 
 

 23 

 

Figure 1.6. Adsorption energies and structures of H2O on TiO2 (100), (101), and 
(001) facets, at different hydration levels (Reprinted with permission from Almeida 
A, Calatayud M. Combined ATR-FTIR and DFT Study of Cyclohexanone 
Adsorption on Hydrated TiO2 Anatase Surfaces. Journal of Physical Chemistry C; 
115(29):14164–14172. Copyright (2011) American Chemical Society). 
 

Besides of that, several research reports have identified and specified the different 

bending modes and structures of water on the TiO2 surface during, before, and after 

UV light irradiation. It has been reported that UV irradiation induces a structural 

ordering of the adsorbed water layer [43], or results in an increase in the amount of 

surface OH groups, thus increasing the hydrophilicity of the TiO2 surface [44]. 

Mendive et al. [37] have revealed by ATR-FTIR studies that the disaggregation of 

particle agglomerates plays an important role in UV illuminated aqueous TiO2 

nanoparticulate systems.  

However, it should be noted here that the exact nature of the adsorption of water is 

still a matter of discussion in the field of metal oxide (especially of TiO2) 

photocatalysis. This is a consequence of the diverse possibilities of interpretation 

arising from the combination of experimental results obtained by ATR-FTIR 

spectroscopy and by other techniques. Obviously, there is not yet a general 

consensus on the mechanism of adsorption of water on TiO2. 
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1.3.3.2. Interactions of probe molecules with the metal oxide surface 

ATR-FTIR spectroscopy yields important insight into the surface speciation of probe 

molecules adsorbed on nanomaterials [30]. Chemical or inner sphere adsorption is 

generally studied when it is expected that the probe molecule is able to coordinate 

with the metal ions of the substrate covering the ATR crystal [15]. 

Investigations of the interaction of a large number of ligands on metal oxide, metal 

hydroxide, and metal oxyhydroxide systems have been performed employing ATR-

FTIR spectroscopy [26]. The objective of these investigations is to obtain an insight 

into the chemical nature of these interactions, being either qualitative such as the 

mode of adsorption and the surface speciation, or quantitative such as the kinetics 

and the surface coverage. 

It is worth to note that TiO2 nanoparticles are much more extensively used as 

substrates as compared with other metal oxides. The adsorption of organic 

compounds bearing common functional groups such as acids [23, 45, 46], amino 

acids [47], phenolic compounds [11, 48], and a few complex heteroaromatic 

compounds [49–52] has been studied in detail (cf. Table 1.3.). 

As an example, a typical ATR-FTIR spectrum of an aqueous solution of the 

herbicide imazapyr in the absence and presence of a TiO2 layer is presented in 

Figure 1.7. The reliability of information obtained from the IR spectra is dependent 

mainly upon the correct assignment of the vibrational modes by comparison with 

published spectroscopic data [15, 30]. Mudunkotuwa et al. have presented a 

summary of several common IR absorption band frequencies (Table 1.2.) [30]. 

Furthermore, the infrared spectral data collected for coordination compounds [53] are 

very useful when interpreting the spectra of adsorbates, which mostly resemble those 

of ligands of coordination compounds [15]. In addition to that, the interpretation of 

the increase in the intensities of the bands of functional groups, as well as the shifting 

of these bands either to the blue or to the red spectral regions also provide important 

information concerning the type of interaction between adsorbate and surface. The 

interpretation of IR bands is very helpful for a qualitative analysis, e.g., concerning 

the points of interactions, the modes of adsorption, and the molecular speciation, 

respectively. 
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Figure 1.7. ATR-FTIR spectra of 8×10-3 mol L-1 imazapyr aqueous solution at pH 3 
(dashed lines); and 2×10-3 mol L-1 imazapyr aqueous solution in contact with a TiO2 
film (solid lines). Reference spectra were of water in contact with the bare ZnSe 
prism and of the bare TiO2 film respectively [54].  
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As mentioned above, the complexity of the obtained IR spectra usually requires the 

combination of different techniques to enable their interpretation. Generally, the 

deductions resulting from the analysis of the IR spectra have to be supported by the 

results of other experimental techniques and/or by theoretical calculations. Several 

experimental and theoretical studies on the adsorption of aliphatic mono- and di-

carboxylic acids on metal oxide surfaces have been performed [46]. It is assumed 

that the binding of carboxylates at the solid metal oxide surface occurs in several 

ways such as physisorption through electrostatic attraction and hydrogen bonding, 

and chemisorption in different modes including monodentate, bridged bidentate, and 

chelating bidentate adsorbed structures [55–57]. These different binding modes can 

be distinguished in an infrared spectrum by the difference Δνa-s of the frequencies of 

the asymmetric and the symmetric mode of the carboxylate stretching vibration. By 

comparing the Δνa-s of free aqueous carboxylate, Δνa-s (free), to the Δνa-s (adsorbed) 

values measured in transition metal complexes, the following correlations were 

found [46, 56, 58]: 

Δνa-s (adsorbed) > Δνa-s (free): monodentate coordination 

Δνa-s (adsorbed) < Δνa-s (free): bidentate chelating or bridging 

Δνa-s (adsorbed) << Δνa-s (free): bidentate chelating, unless short metal-metal bonds 

are present   

DFT calculations have been performed by Vittadini et al. for several possible 

adsorption conformations of formic acid and sodium formate on the anatase surface 

to support the interpretation of ATR-FTIR spectra measured of formic acid adsorbed 

on the TiO2 surface [59]. The comparison of the calculated results with this 

experimental information enabled the identification of seven different surface species 

(see Figure 1.8.). On the hydrated surface, both HCOOH and HCOONa 

preferentially form inner-sphere adsorption complexes. HCOOH as monodentate 

adsorbate dissociates due to the interaction with a nearby water molecule, while 

HCOONa prefers a bridging bidentate structure [59].  

Mono-carboxylic acids, i.e., formic and acetic acid, were found to bind on ZrO2 and 

Ta2O5 surfaces in both protonated and deprotonated carboxylic acid forms indicating 

a bridging bidentate adsorption. Under the experimental conditions of this work no 

adsorption of formic acid onto TiO2 and Al2O3 was observed [46]. 
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Figure 1.8.  Possible configurations for HCOOH and HCOO- species bound to metal 
cations (Reprinted with permission from Vittadini A, Selloni A, Rotzinger FP, 
Grätzel M. Formic Acid Adsorption on Dry and Hydrated TiO2 Anatase (101) 
Surfaces by DFT Calculations. Journal of Physical Chemistry B; 104(101):1300–
1306. Copyright (2000) American Chemical Society). 

 

Dicarboxylic acids adsorb much more strongly to oxide surfaces than mono-

carboxylic acids due to both electrostatic and chemical interactions.  

Oxalic acid is one of the most investigated molecules in this regard [18, 45, 58, 60, 

61]. Based on a series of spectra recorded at varying different experimental 

parameters (concentration, pH, and ionic strength), and supported by the comparison 

of these spectra with those of the aqueous [Fe(Ox)y]z complex, Hug et al. [18] 

described several surface complexes formed during the adsorption of oxalic acid at 

the TiO2 P25 surface. The obtained data strongly support the assumption that oxalate 

forms specific inner-sphere coordination complexes with surface Ti4+ sites. These 

complexes are formed through bidentate bridging or monodentate bending modes.  

Mendive et al. have published several papers presenting experimental results of their 

investigation of the TiO2-oxalic acid system using both pure anatase and rutile 

phases. In addition to that, data of quantum chemical calculations using Modified 

Symmetrically Orthogonalized Intermediate Neglect of Differential Overlap 

(MSINDO) have been presented to yield a complete insight into the TiO2-oxalate 

system [23, 24, 62, 63]. A detailed analysis of the experimental ATR-FTIR data and 

the data obtained from theoretical calculations (IR spectra (Figure 1.9.) and 
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calculated bending energies) has led to the suggestion of different adsorbate 

structures of oxalic acid either on anatase or on rutile nanoparticles (Figure 1.10.). 

By comparison between both TiO2 phases (anatase and rutile), the difference as well 

as the similarity in the adsorption of oxalate can be explained either by the mode of 

adsorption, the structure of the surface complexes, the surface speciation of either 

TiO2 phases, or the adsorption energies.  

Young et al. [45] have published the results of an ATR-FTIR study focused on the 

adsorption-desorption kinetics of oxalic acid on the anatase TiO2 surface. The 

measured spectra were not found to be well resolved. However, based on the 

absorbance versus time behavior, the authors were able to extract the pseudo-first-

order rate constants corresponding to the three expected adsorbed species of oxalic 

acid at the TiO2 surface. 

Furthermore, Mendive et al. [61] have proposed the mechanism of the photocatalytic 

degradation of oxalic acid with the help of the above mentioned experimental and 

theoretical investigations [24, 63]. The possible pathways for the formation of oxalic 

acid photoproducts, as well as the role of the TiO2 surface as active surface have 

been discussed in detail [61]. An example of the proposed degradation pathways of 

the oxalic acid surface complexes is depicted in Figure 1.11. 

 

Figure 1.9. Experimental and calculated FTIR spectra of oxalic acid on anatase 
(Reproduced from [23] with permission of the PCCP Owner Societies).  
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Figure 1.10. Adsorbed structures of oxalic acid on anatase (A) (Reproduced from 
[24] with permission of the PCCP Owner Societies) and Rutile (B) (Reproduced 
from [63] with permission of the PCCP owner Societies) in equilibrium in the dark. 
A scheme of every structure is provided. Ti, O, H and C atoms are represented by 
large light, dark, small light and dark-dashed spheres respectively. 

 

 

Figure 1.11. Possible photocatalytic degradation pathways of species adsorbed on 
anatase (Reprinted from Oxalic Acid at the TiO2/Water Interface under UV(A) 
Illumination: Surface Reaction Mechanisms, Cecilia B. Mendive, Thomas Bredow, 
Jenny Schneider, Miguel Blesa, Detlef Bahnemann. Journal of Catalysis 2015, 
322:60-72, Copyright (2015), with permission from Elsevier). 
 
As mentioned in the introduction of this chapter, the direct evidence for the 

formation of structurally different surface complexes is an important step in the 
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understanding of metal oxide photocatalysis, especially of TiO2 photocatalysis. This 

is due to the fact that the reactivity and the pathways for product formation are 

determined by the structures of the formed surface species during the dark 

adsorption. Recently, Montoya et al. [11] have investigated the interaction of the 

TiO2 surface with three probe molecules, e.g., formic acid, benzene, and phenol 

employing ATR-FTIR spectroscopy. Based upon the analysis of the IR spectra 

(Figure 1.12.), assumptions have been made concerning the physisorption of benzene 

(no changes have been observed in the spectra with and without the TiO2 layer), the 

strong chemisorption of formic acid, and also the role of the solvent (water or 

acetonitrile) for the adsorption mode of phenol. Based on these results, the authors 

provided an insight into the mode of interaction of the probe molecules with the TiO2 

surface (chemisorption or physisorption) (Figure 1.13.). In addition to that, they 

discussed the photocatalytic oxidation mechanism induced either by the reaction of 

surface trapped holes with the adsorbate (direct pathway) or the reaction of 

photocatalytically generated ˙OH radicals with the physisorbed molecules (indirect 

pathway). The authors concluded that formic acid is directly oxidized due to its 

strong chemisorption onto the TiO2 surface, while physisorbed benzene is indirectly 

oxidized. For phenol the authors suggested a combination of both pathways [10, 11]. 
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Figure 1.12. ATR-FTIR spectra of: A) a 100 mM solution of acetonitrile dissolved 
phenol, in the absence (a) and in the presence of an anatase film under different 
TiO2-Phenol contact times (b-d); B) a 100 mM solution of water dissolved phenol 
(pH 3) in the absence (a) and in the presence of a TiO2 anatase film, under different 
TiO2-Phenol contact times (b-d); C) a 3365 mM solution of acetonitrile dissolved 
benzene in absence (a) and presence of a TiO2 anatase film under different TiO2-
Benzene contact times (b-c) (Reprinted with permission from Montoya JF, Atitar 
FM, Bahnemann DW, Peral J, Salvador P. Comprehensive Kinetic and Mechanistic 
Analysis of TiO2 Photocatalytic Reactions According to the Direct-Indirect (DI) 
Model: II) Experimental Validation. Journal of Physical Chemistry C; 
28(118):14276–14290. Copyright (2014) American Chemical Society). 
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Figure 1.13. Interaction modes of benzene, formic acid and phenol, model organic 
compounds with the TiO2 surface (Reprinted with permission from Montoya JF, 
Atitar FM, Bahnemann DW, Peral J, Salvador P. Comprehensive Kinetic and 
Mechanistic Analysis of TiO2 Photocatalytic Reactions According to the Direct-
Indirect (DI) Model: II) Experimental Validation. Journal of Physical Chemistry C; 
28(118):14276–90. Copyright (2014) American Chemical Society). 

 

In addition to the presented examples, several experimental and theoretical studies 

have been performed concerning the adsorption and various photocatalytic reactions 

by means of the ATR-FTIR technique. Table 1.3. presents a survey of published data 

on the adsorption as well as the photooxidation of aqueous organic compounds on 

metal oxide surfaces studied by means of ATR-FTIR spectroscopy.  

 

Adsorbate or reactant Material Study Ref 

Acetic acid Rutile Adsorption [64] 

Acetate Rutile  Adsorption [65] 

Acrylic acid P25 Adsorption [66] 

Poly(Acrylic acid) Hematite Adsorption [67] 

L-α-alanine P25 Adsorption [68] 

Amino acid 
P25 

Au/TiO2  

Photo-

Oxidation 
[69] 

p-Arsanilic acid Iron-(Oxyhydr)Oxides Adsorption [70],[71] 

Aspartic acid TiO2 (synthesis) Adsorption [72] 

Benzoic acid / benzoate Aluminum Hydroxide Adsorption [73] 

Boric acid Hydrous Ferric Oxide Adsorption [74] 
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Adsorbate or reactant Material Study Ref 

Catechol 

P25 

Photo-

Oxidation 

Adsorption 

[75] 

[76] 

TiO2 (synthesis) 

Cr2O3 

MnO2 

Fe2O3 

Adsorption 

Adsorption 

Adsorption 

Adsorption 

[48]  

4-Chlorocatechol P25 Adsorption [77] 

Citric acid 
Rutile 

Anatase 
Adsorption 

[64] 

[78] 

m-Cresol  

o-Cresol 
P25 Adsorption [76] 

Cyclohexane UV100 

Adsorption 

Photo-

Oxidation 

[33],[79] 

Cyclohexanone TiO2 (synthesis) Adsorption [80] 

Cysteine P25 Adsorption [47] 

Dextrin Anatase  Adsorption [22] 

Dicarboxylates 

α-hydroxydicarboxylates 
Fe(III)(hydr)oxides 

Photo-

Oxidation 
[81] 

Dihydroxyphenylalanine Rutile Adsorption [82] 

Dimethylarsinic acid Iron-(Oxyhydr)Oxides Adsorption [70] 

E. Coli P25 
Photo-

Oxidation 
[83] 

Ethanol TiO2 (synthesis) 
Photo-

Oxidation 
[84] 

Formic acid 
Rutile 

TiO2 (synthesis) 
Adsorption 

[64] 

[55] 
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Adsorbate or reactant Material Study Ref 

Formate Rutile Adsorption [65] 

Fumaric acid Hematite Adsorption [85] 

Gallic acid P25 
Photo-

Oxidation 
[86] 

Glutamic acid TiO2 (synthesis) Adsorption [72] 

Glyoxylic acid P25 Adsorption [87] 

Isopropyl 

Methylphosphonofluoridate 
P25 

Adsorption 

Photo-

Oxidation 

[88] 

Lactic acid P25 Adsorption [66] 

Maleic acid Hematite Adsorption [85] 

Malonate 
Rutile 

Anatase 
Adsorption [58] 

Malonic acid 
Au/TiO2 (synthesis) 

P25 

Photo-

Oxidation 

[89] 

[90] 

Nicotinic acid TiO2 (synthesis) Adsorption [51] 

Nitrate Al2O3 Adsorption [91] 

o-Phthalic acid Hematite Adsorption [92] 

Oxalate 
Anatase 

Rutile 
Adsorption [58] 

Oxalic acid 

Anatase 

Rutile 

Anatase 

Photo-

Oxidation 

 

Adsorption 

[61] 

 

[45] 

Phenol 
Anatase 

P25 

Adsorption 

Photo-

Oxidation 

[11] 

[93] 

4,4‘-Bis(2- Rutile Photo- [94] 
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Adsorbate or reactant Material Study Ref 

sulfostyryl)biphenyl Anatase 

Hematite 

δ-Alumina 

Lepidocrocite 

Oxidation 

β-Picoline TiO2 (synthesis) Adsorption [51] 

Polyacrylates Hematite Adsorption [95] 

1,2-propylene glycol P25 
Photo-

Oxidation 
[93] 

Pyridine P25 Adsorption [96] 

Pyruvic Acid P25 Adsorption [66] 

Pyridine-3-carbaldehyde TiO2 (synthesis) adsorption 
[97] 

[51] 

Ru-bpy 

 
TiO2 (synthesis) Adsorption [98] 

Succinate 

Rutile 

Anatase 

Lepidocrocite 

Adsorption [58] 

Succinic acid 
Hematite 

P25 

Adsorption 

Photo-

Oxidation 

[85] 

[90] 

Toluene 
TiO2 (synthesis) 

P25-TiO2 

Photo-

Oxidation 

[99] 

[100] 

Table 1.3. Selection of previously published ATR-FTIR studies concerning the 
adsorption and photooxidation of common ligands on metal oxides surfaces. 

 

1.3.4. Concluding remarks 

The ATR-FTIR technique offers the chance to obtain novel information concerning 

interfacial processes in situ. This information can be used to explain surface reaction 

mechanisms. Hence, ATR-FTIR studies are becoming increasingly popular as an 
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investigative technique and may now be considered as one tool of choice in the field 

of interfacial chemistry when compared to other techniques, particularly in obtaining 

data under ambient conditions. This is due to the major advantages of ATR-FTIR 

spectroscopy such as the in situ data collection, as well as the high sensitivity, 

simplicity, and rapidity of the measurements.  

The use of ATR-FTIR in the area of photocatalysis is of great importance since it 

provides both qualitative and quantitative molecular insight into interfacial processes 

occurring in the dark (adsorption) and under UV illumination (adsorption/desorption 

and chemical reactions). The information obtained will often be the key for a deeper 

understanding of the mechanisms occurring in metal oxide photocatalysis. 
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1.4. Scope of the Thesis 

The introduction section contains only few examples of the topics under debate in the 

field of photocatalysis. However, many additional issues related to these topics still 

remain unclear or are matter of discussion. 

The aim of this PhD thesis is to elucidate some relevant features of the photocatalytic 

degradation mechanism of organic pollutants in water. Although this topic has been 

widely studied, there is still space for new fundamental interpretations. 

The main objective is to shed some light on the important process occurring at solid-

liquid interfaces because interactions at these interfaces are considered to be the main 

key for the photocatalytic process. These interactions are influenced by several 

parameters. From the mechanistic point of view, the type and mode of the 

adsorption, the semiconductor surface charges, as well as the intermediate species 

(i.e., surface complexes) play a major role in the adsorption and the photocatalytic 

degradation. Here, the goal is to draw attention to the fact that understanding the 

surface interactions between the photocatalyst surface and the model organic 

compound is a primary step for the understanding of the overall process either in the 

dark or under illumination. 

On the other hand, and from the kinetic point of view, the role of the adsorption in 

the kinetics of the photocatalytic degradation is also still a matter of discussion. The 

Langmuir-Hinshelwood model, when it applies, gives insight into the mechanism of 

the photocatalytic process. However, to the best of our knowledge, this model takes 

only the adsorption isotherms of the two adsorbates involved into account. The 

kinetics of the adsorption and their correlation with the kinetics of the photocatalytic 

reaction occurring either at/or near the surface of the semiconductor are still unclear. 

Hence, the objective of this work is to study the kinetics of the adsorption as well as 

the photocatalytic reaction to figure out whether they correlate. Furthermore, this 

knowledge should provide an insight on the role of the adsorption process on the 

photocatalytic degradation mechanism of the organic pollutants. 

The photocatalytic performance is also influenced by the photocatalyst. Besides the 

understanding of the mechanism, one of the aims of this thesis is to synthetize 

mesoporous TiO2 materials as well as to focus on the relationship between the effect 

of the calcination temperature, the phase transformation, and the surface area of the 

synthesized mesoporous photocatalyst. 
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The above-mentioned issues will contribute to a new understanding of photocatalytic 

reactions using alternative approaches and interpretations as compared with the 

conventional kinetic models. All these issues have been studied at the TiO2/Water 

interfaces. The model organic pollutant chosen for these issues is a herbicide from 

the imidazolinone family (i.e., Imazapyr). Furthermore the commercial type Evonik 

Degussa Aeroxide TiO2 P25 was used as the photocatalyst. 
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2.1. Abstract 

Herein we present a detailed report concerning the mode of surface interactions 

between imazapyr, 2-(4-methyl-5-oxo-4-propan-2-yl-1H-imidazol-2-yl)pyridine-3-

carboxylic acid, and the TiO2 surface. Adsorption of imazapyr onto a TiO2 film has 

been investigated in situ using attenuated total reflection Fourier transform infrared 

(ATR-FTIR) spectroscopy. The adsorption of imazapyr is pH dependent and occurs 

through electrostatic interactions and chemical bonding between the probe molecule 

and the charged TiO2 surface involving different functional groups of imazapyr 

species present in solution. Based upon the ATR-FTIR spectra of imazapyr recorded 

at different pH values, it is concluded that the adsorption of imazapyr onto the TiO2 

surface is favored at pH values below the TiO2’s point of zero charge. Upon 

adsorption, the carboxylic acid group of imazapyr binds at surface Ti(IV) centers 

mainly as a bridging ligand at pH<pHzpc. With increasing pH values, the binding of 

imazapyr to the surface becomes less favorable. Furthermore, evidence is presented 

for additional contributions of other binding modes. Attempting to understand the 

influence of these interactions on the initial photocatalytic degradation rate of 

imazapyr, the results of this study confirm experimentally the aspects of the 

photocatalytic oxidation mechanism of imazapyr discussed previously on the basis of 

semiempirical calculations [Osajima et al. Monatshefte für Chemie - Chem. Mon. 

2007, 139, 7–11, and Carrier et al. Appl. Catal. B Environ. 2006, 65, 11–20]. 

 

2.2. Introduction 

According to several proposed photocatalytic mechanisms, the binding mode of 

specific molecules to the photocatalyst surface is affecting their light-induced 

transformation.1–4 The interaction of the target molecule, acting as either electron 

donor or acceptor, with the surface of a semiconducting nanomaterial is determined 

by the surface chemistry intrinsic to the respective class of compounds.5 The effect 

of the adsorption of organic substrate molecules onto the photocatalyst surface on the 

former’s photocatalytic degradation rate was the topic of several publications.6–8 

Kormann et al. determined the photocatalytic degradation rates of trichloroacetic 

acid and chloroethylammonium in the presence of anatase TiO2, being the 

photocatalyst, and varied the pH of the aqueous suspensions. Supported by the 

results of theoretical calculations these authors discussed the influence of the binding 
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mode as well as of the concentration of the surface complexes on the photocatalytic 

degradation rates as a function of the pH. They concluded that the pH-dependent 

adsorption of the probe molecules onto the TiO2 particles determines their 

photoreactivity.9  

It is well-known that the surface of TiO2 is positively charged at pH values below 

the point of zero charge (pHpzc) of the TiO2 sample, neutral at the pHpzc, and 

negatively charged at pH values above the pHpzc. The pHpzc of the widely used 

photocatalyst Evonik Aeroxide TiO2 P25 is reported to be in the range of 6.25 to 

6.9.5,10 Furthermore, in both the anatase and the rutile structure, the Ti4+ cation is 

surrounded by four O2− anions at the surface.  

Imazapyr, 2-(4-methyl-5-oxo-4-propan-2-yl-1H-imidazol-2-yl)pyridine-3-carbo-

xylic acid, being a heteroaromatic molecule, is a nonselective herbicide which 

belongs to the imidazolinone family.11 The photocatalytic oxidation of imazapyr has 

been studied previously using commercial TiO2 
12–15 as well as newly synthesized 

mesoporous TiO2 materials.16,17 

Imazapyr dissolved in water presents five distinct species depending on the pH of 

the solution (Scheme 2.1.).15 According to this scheme depending on the pH of the 

suspension, different types of interactions between the probe molecule and the 

charged TiO2 surface are expected. 

 

Scheme 2.1. Different Forms of Imazapyr As a Function of the pH. 

 

 

At 1.9 < pH < 3.6 the neutral form of imazapyr (III in Scheme 2.1.) will be the 

main species interacting with the positively charged TiO2 surface. At 3.6 < pH < 

pHpzc (TiO2) the deprotonated and thus negatively charged imazapyr (IV) is 

interacting with the positive TiO2 surface, while at pHpzc (TiO2) < pH < 10.8 the 

negatively charged imazapyr molecule (IV) is interacting with a TiO2 surface which 

is also negatively charged. Therefore, strong electrostatic attraction or repulsion, 

respectively, is expected to affect the amount of imazapyr adsorbed onto the TiO2 

surface, as well as the binding mode between this organic probe molecule and the 

oxide surface, resulting in pH-dependent photocatalytic reaction rates during the 

UV(A) irradiation of the suspension. 
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The characterization of the adsorption mode of organic molecules onto metal 

oxide surfaces in liquid media is often performed in situ by means of attenuated total 

reflectance Fourier transform infrared (ATR-FTIR) spectroscopy.18,19 This technique 

has been extensively used to investigate the adsorption of several probe molecules at 

the TiO2 surface.2,20–26 The molecular information acquired from this technique 

allows the determination of the adsorption mode, including conformational and 

structural changes of the coordinated adsorbate.18,27 

The interactions of the different functional groups of imazapyr with the TiO2 

surface as well as varying amounts of adsorbed imazapyr species are expected to 

depend on the pH of the suspension being in contact with the TiO2 layer. 

Furthermore, the occurrence of both chemical and electrostatic interactions between 

the TiO2 surface and the probe molecule is possible. Hence, the aim of the current 

work is to elucidate the mode of interaction between imazapyr and the TiO2 surface 

in the dark using ATR-FTIR spectroscopy. The information obtained from this 

technique will provide a deeper understanding of the mechanism of the 

photocatalytic oxidation of imazapyr. Hence, photocatalytic experiments and an in 

situ ATR-FTIR investigation of the imazapyr adsorption on Evonik Aeroxide TiO2–

P25 have been performed varying the pH of the suspension. 

 

2.3. Materials and Methods 

Materials. The photocatalyst employed in this work was Evonik Aeroxide TiO2 P25 

(mainly anatase with a rutile content of ca. 20%, a primary particle size of around 21 

nm, and a BET surface area of 50 m2 g−1). It was used as received. All other reagents 

were of analytical grade and were used without any previous purification. The water 

used in all experiments was deionized water (resistivity = 18.2 MΩ cm) collected 

from a Sartorius Arium 611 deionizer. 

 

Photocatalytic Degradation Experiments. An amount of 625 mg of the TiO2 

powder was dispersed in 250 mL of an aqueous KClO4 solution (10 mmol L−1, 

KClO4 was added to keep the ionic strength of the solution constant throughout the 

experimental run28) by sonication and shaking in an ultrasonic bath for 15 min 

resulting in a catalyst concentration Ccat = 2.5 g L−1 which has been found to yield 

the highest photocatalytic degradation rates (details will be published elsewhere). 
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Subsequently, an aliquot from an aqueous stock solution of imazapyr (7.65 

mmol L−1) was added to reach the desired initial imazapyr concentration of 0.08 

mmol L−1. The pH value of the suspension was adjusted either using HNO3 or KOH 

standard solutions. The suspensions were stirred overnight in a borosilicate glass 

beaker at 300 rpm to attain adsorption equilibrium. Photocatalytic degradation 

experiments were conducted in the “blackbody reactor” described by Emeline et al.
29 

This reactor consists of a beaker containing the mechanically stirred TiO2 

suspension. The light beam is directed by an optical fiber from the light source (365 

nm LED OEM module from OMICRON Laserage) through a small area inlet into an 

inner quartz cavity located in the center of the beaker.  

 

HPLC Analysis. Sample analysis from the study of the photocatalytic degradation of 

imazapyr was carried out employing a high performance liquid chromatography 

(HPLC) system composed of a LCP 4100 ECOM Tech Lab pump and a LCD 2084 

ECOM Techlab UV Detector adjusted to 254 nm. A Kinetex 2.6 µm C18 100 Å 

column from Phenomenex (150 × 4.6 mm) working at room temperature was the 

stationary phase, and a mixture of acetonitrile and water (40:60 %v/v) adjusted to pH 

3 by adding H3PO4 was used as a mobile phase. With the flow rate kept constant at 

0.8 mL min−1 the peak of imazapyr was observed at a retention time of 4.60 min. A 

calibration curve (R2=0.999) was obtained by measuring 6 different imazapyr 

concentrations in the range between 0 and 0.08 mmol L−1. Before illumination, 1 mL 

of the previously equilibrated suspension was analyzed by HPLC to determine the 

initial equilibrium concentration of the probe molecule. During illumination samples 

were taken at regular time intervals and were analyzed after filtration through a 

Millipore syringe filter. 

 

ATR-FTIR Measurements. The spectrometer used in this study was a Bruker IFS 

66 infrared spectrometer equipped with a deuterated triglycine sulfate (DTGS) 

detector. The ATR accessory used was a Pike Technologies horizontal unit with 

demountable plate containing a removable ZnSe ATR crystal set at 45° angle of 

incidence, thus allowing nine upper face reflections. The dimensions of the ZnSe 

ATR element were 6.8 × 72 mm² on the horizontal probe face with a thickness of 

4 mm. The wavenumber range was 4000–800 cm−1 with a spectral resolution of 

4 cm−1. 
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To avoid spectral interferences due to material degradation, polyoxymethylene 

(POM) and borosilicate glass, which both are chemically resistant to the employed 

solutions, were employed to construct the solution compartment and the reactor 

windows, respectively. 

The closed solution compartment is attached to the upper part of the ZnSe ATR 

crystal to ensure continuous flow of the solution across the surface of the TiO2-

coated crystal. This setup allows the control of experimental parameters such as pH 

and ionic strength of the bulk adsorbent during the experiment (Supporting 

Information Figure S2.1.). More details are given in ref 25.  

The TiO2 layer on the ATR crystal was prepared according to a coating procedure 

previously published by Hug and Sulzberger.26 Specifically, an aliquot of 400 µL of 

an aqueous 5.75 g L−1 TiO2 suspension was placed on the surface of the ZnSe ATR 

crystal. This small volume was simply spread by manually balancing the unit. This 

thin suspension layer was dried at ambient temperature in a desiccator. The thus 

obtained coverage of the final dry particle layer was 2.3 g m−2, and the layer 

appeared homogeneous under visual inspection. In the original preparation by Hug 

and Sulzberger,26 atomic force microscopy (AFM) measurements of the layers with a 

coverage of 2.3 g m−2 were reported to exhibit a thickness of 1.7 ± 0.3 µm. 

The interferometer and the infrared light path were constantly purged with argon 

and the sampling chamber with nitrogen. The final spectra represent the average of 

325 scans. To minimize spectral interference resulting from the presence of a varying 

amount of water vapor and carbon dioxide present in the main body of the instrument 

“reference spectra” have been subtracted from the sample single-channel spectra 

(atmospheric compensation). After measuring the ATR-FTIR spectrum of the TiO2-

coated ATR crystal (as background spectrum) the surface was equilibrated with an 

aqueous solution free of imazapyr (blank solution). The pH of the blank solution was 

fixed and carefully kept constant at the desired pH value with a programmed dosing 

unit. The ionic strength of the aqueous phase was adjusted by adding KClO4 to 

obtain a concentration of 10 mmol L−1. The solution compartment was filled with 

10 mL of the blank solution, and then a background spectrum was collected. 

Afterward the solvent was substituted by 10 mL of the solution containing the probe 

molecule imazapyr. Spectra were collected in 10–30 min intervals over a total period 

of 180 min. In preliminary studies, solution phase spectra were collected in the 

absence of TiO2 film at different concentrations, with peaks only being observed at 



Chapter 2: TiO2-Surface/Substrate Interaction   
 

 55 

imazapyr concentrations above 4 mmol L−1. To avoid any solution phase 

contribution toward the spectral intensity for the adsorbed species, the imazapyr 

concentration was chosen to be 2 mmol L−1 for the adsorption study. Before data 

analysis the background spectra were subtracted from the spectrum obtained in the 

presence of imazapyr. 

2.4. Results and Discussion 

The influence of the pH on the photocatalytic degradation of imazapyr in aqueous 

TiO2 suspensions was studied at the same pH values (pH 3, 5, 7, and 9) employed in 

the ATR-FTIR study. These pH values were chosen above (pH 3 and 5) and below 

(pH 7 and 9) the point of zero charge of the employed photocatalyst, i.e., ∼pHpzc=6.9 

for Evonik Aeroxide TiO2 P25.10 To gain an overview concerning the photocatalytic 

degradation of imazapyr molecules in the presence of TiO2 the analysis of the results 

will focus mainly on the pH values 3 and 9. In the entire investigated pH range 

imazapyr is mainly present as neutral or deprotonated species, respectively (III and 

IV in Scheme 2.1.), according to the calculated distribution of the different imazapyr 

species using reported15 acid–base dissociation constants. 

 

Photocatalytic Degradation Experiments. The photocatalytic degradation 

experiments have been conducted following two different experimental protocols. In 

the first procedure the initial pH was adjusted to the desired pH value, with the 

concentration of imazapyr and the variation of the pH value being monitored during 

the subsequent UV (A) irradiation. A second set of experiments has been performed 

under the same experimental conditions (initial imazapyr concentration, optimal 

catalyst concentration, and pH) but keeping the pH constant employing the so-called 

pH stat method 30 during the UV (A) irradiation. 

In all experimental runs the imazapyr concentration was found to decrease with 

irradiation time. A first-order kinetics fitting (R2 ≥ 0.994) of the thus obtained 

concentration vs time plots (Supporting Information Figure S2.2) enables the 

calculation of the respective first-order rate constants; the resulting initial 

degradation rates were calculated by multiplying these rate constants with the 

corresponding initial imazapyr concentration and allow the comparison of the 

imazapyr degradation under different pH conditions. 
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Figure 2.1a shows the dependence of the initial degradation rate of imazapyr on 

the initial pH of the suspension; the inset shows the variation of pH during the 

experimental runs. Only a small change of approximately 0.1 pH units is observed 

during UV(A) irradiation at pH 3. However, a significant variation of the pH is 

observed at the initial pH values 5, 7, and 9.  

Figure 2.1b shows the pH-dependence of the initial degradation rate in experimental 

runs performed at constant pH using the pH stat method. As can be seen from these 

figures the initial photocatalytic degradation rate of imazapyr decreases with 

increasing pH value.  

 

 

 

Figure 2.1. (a) Initial imazapyr degradation rate as a function of the pH of the 
suspension and the variation of the pH value during the UV illumination (inset). (b) 
Initial imazapyr degradation rate as a function of the pH of the suspension at constant 
pH (pH stat method). 
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Similar results have been reported by Carrier et al.
15 and by Osajima et al.

14 These 

authors have concluded that the observed dependence of the degradation rate on the 

pH of the suspension is due to the interactions between the ionizable functional 

groups of imazapyr and the titania surface.  

The imazapyr adsorption isotherms obtained between pH 3 and pH 9 revealed 

decreasing amounts of imazapyr adsorbed onto the TiO2 surface with increasing pH 

(data not shown). Note that imazapyr is an ionic species with three pKa values (1.88, 

3.60, and 10.80) and that the TiO2 surface is positively charged in acidic media and 

negatively charged in alkaline media. Since adsorption of the probe molecule at the 

TiO2 surface is considered to be a prerequisite for a photocatalytic reaction, the 

experimental results presented in Figure 2.1. consequently indicate that at pH 9 a 

fraction of the negatively charged imazapyr ions present in the suspension is 

adsorbed at the negatively charged TiO2 surface. 

ATR-FTIR Investigations. IR spectra of imazapyr in solution as well as adsorbed 

onto the Aeroxide TiO2 P25 surface have been collected at the before mentioned pH 

values (Figures 2.2–2.5). Meaningful IR bands were observed in the wavenumber 

range from 1800 to 950 cm−1. In this range strong overlapping peaks associated with 

CO, COO, CC, and CN vibrations as well as CH, NH, and OH vibrations can be 

expected to occur. Due to the superposition of these peaks a tentative assignment of 

the observed bands was made consulting several published references 2,18,31–35 as well 

as papers discussing the IR spectra of adsorbed molecules having similar functional 

groups as imazapyr (i.e., a pyridine ring with a carboxylic acid, an imidazole ring, 

and an oxo group) such as nicotinic acid,36–40 pyridine,41–45 carboxylate and 

carboxylic acids,20,21,26,46,47 as well as several amino acids.48–51 

Spectra of Homogeneous Imazapyr Solutions. Figure 2.2. shows the IR spectra of 

homogeneous aqueous solutions of imazapyr at pH 3 and pH 9 in the wavenumber 

range from 1800 to 950 cm−1. The results shown in this figure demonstrate that the 

positions as well as the intensity of some peaks are strongly affected by the pH of the 

solution as expected considering the pH-dependent protonation and deprotonation of 

the probe molecule. It can be readily calculated from the respective pKa values (vide 

supra) that approximately 75% of the imazapyr is present in its neutral form (species 

III in Scheme 2.1.) at pH 3. On the other hand, at pH 9 almost 100% of the imazapyr 

is deprotonated resulting in the negatively charged molecule ion (species IV in 
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Scheme 2.1.) (calculated distribution of imazapyr species as a function of the pH 

value is shown in Supporting Information Table S2.1). 

 

Figure 2.2. ATR-FTIR spectra of 12 mmol L−1 solution of imazapyr in the absence 
of TiO2 film at pH 3 (black line) and pH 9 (red line). 
 

The presence of imazapyr in its protonated form in the solution at pH 3 is 

characterized by two main absorption features corresponding to the protonated 

carboxylic group of the probe molecule: the absorption band corresponding to a 

carbonyl stretch ν(C=O) at 1776 cm−1 and ν(C–O–H) at 1251 cm−1 (comprised of a 

mixture of C–O stretch and C–O–H bend that often yields a single, broad absorption 

band).52,53 Imazapyr consists of a pyridine ring with a carboxylic group and an 

imidazole ring. This increases the structural complexity of imazapyr when compared 

to other amino acids. Mudunkotuwa et al.
48 have analyzed the solution phase spectra 

of histidine (imidazol ring, amine, and carboxylic group) and have assigned the 

broad band in the region 1627-1590 cm−1 to the ring breathing ν(CC)+ ν(CN) and to 

the bending mode of the amine group. Furthermore, the contribution of the 

asymmetric carboxylate stretch has been observed as a shoulder at 1600 cm−1. 

Additionally, Wang et al.
39 have performed an ATR-FTIR study concerning the 

crystallization of nicotinic acid (that is a pyridine ring with a carboxylic group). The 

latter was present in both protonated and deprotonated form. The authors have 

observed a broad band in the region 1650-1550 cm−1 and have assigned the peaks at 
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1640, 1605, and 1556 cm−1 to ring deformation, NH bending mode, and asymmetric 

stretching of the COO group, respectively. Kokaislova et al.
40 have presented 

surface-enhanced infrared absorption spectra (SEIRA), as well as theoretically 

calculated spectra of nicotinic acid. The authors have assigned the bands at 1595 and 

1583 cm−1 to the ring breathing ν(CC) and to the νa(COO) coupled to the in-plane 

CH deformation, respectively. From the theoretical results, two additional bands at 

1662 and 1635 cm−1 have been assigned to the ν(CC)+ ν(CN) vibration modes.40 This 

comparison allows the assignment of the broad band in the imazapyr spectrum at 

1579–1564 cm−1 to the ring breathing ν(CC) and the antisymmetrical stretching 

mode of the carboxylate ion (νa(COO)) coupled to the in-plane CH deformation. The 

bands at 1654, 1635 and 1614 cm−1 to the overlapping stretching modes ν(CC) and 

ν(CN) are coupled with the bending vibration of the NH group, respectively. Similar 

assignments have been reported elsewhere for dextrin, nicotinic acid, histidine, and 

lysine.35,37,38,40,48,50 The symmetric stretching of the COO group (νs(COO)) is 

observed at 1380 cm−1.38–40 

As can be seen in Figure 2.2. the band centered at 1776 cm−1 assigned to the 

carbonyl stretch of the carboxylic acid disappears as the pH is raised to pH 9. The 

peak at 1704 cm−1 present at pH 9 is assigned to the carbonyl stretch of the imidazole 

ring. The intensity of the peak at 1251 cm−1, which has been assigned to vibrations of 

the protonated carboxyl group at pH 3, is decreased, as the pH is increased to pH 9. 

Hay et al.
52 have argued that the identification of the peak of ν(C–O–H) is difficult 

due to the overlap of bending and stretching modes, the strong H-bonding with 

solvent molecules, and the vibrational coupling with the C–C stretching mode. The 

weak bands, at 1251, and 1216 cm−1, observed at pH 9 are therefore assigned to ring 

vibrations (i.e., C–H deformation in plane).40,48 

The position of the peaks at 1564 and 1388 cm−1, assigned to be, respectively, the 

antisymmetrical and symmetrical stretching mode of the carboxylate ion, remains 

unaffected by the change of pH. 

The positions of the peaks at 1654, 1635, and 1625 cm−1 as well as those centered 

at 1471, 1446, 1095, and 1047 cm−1 are also found to be unaffected by the increase 

of the pH from pH 3 to pH 9, while the intensities of some bands have increased (i.e, 

1579, 1471, 1388, and 1095 cm−1). Such an increase is indicative for functional 

groups involved in the deprotonation of the carboxylic acid group and the probable 

presence of the imazapyr molecule with a deprotonated imidazole ring (species V in 



Chapter 2: TiO2-Surface/Substrate Interaction   
 
 

60 

Scheme 2.1.) at pH 9. Barth et al.
54 have reported that CC and CN vibrations 

(especially in the region 1094-1113 cm−1) are sensitive to the imidazole ring 

deprotonation and are marker bands for the histidine deprotonation. 

The comparison of our data with these previously published data 40,48,54 allows the 

assignment of the bands at 1654, 1635 and 1625 cm−1 to the overlapping stretching 

modes ν(CC) and ν(CN) coupled with the bending vibration of the NH group, while 

the band at 1471 cm−1 is assigned to ν(CN) and/or δ(C–H) ring vibrations. However, 

the bands with maxima at 1095 and 1047 cm−1 cannot be ambiguously assigned to 

any simple vibrational mode but they rather correspond to coupled vibrations, i.e., 

ν(CC), ν(CN), δ(CO), and γ(CH), and other ring vibrations.32,33,35,40,48,53,55–57 All 

assignments of the bands in the range from 1800 to 950 cm−1 related to imazapyr 

functional groups are summarized in Table1. 

Spectra of Imazapyr Adsorbed at the TiO2 Surface. An ATR-FTIR TiO2–

substrate interaction study was performed to reveal the nature of the binding mode of 

imazapyr at the TiO2 surface. Independent from the pH of the aqueous solution, the 

adsorption equilibrium was reached within 180 min since no further spectral changes 

are noted after this contact time. This spectroscopic result is confirmed by the 

investigation of the imazapyr adsorption kinetics in TiO2 containing suspensions 

showing a constant imazapyr concentration in the supernatant liquid after 180 min 

(data not shown). 

Upon contact of the imazapyr solution with the surface of the TiO2 film at pH 3, a 

continuous increase of the absorbance within a contact time of 180 min is observed 

(Figure 2.3.). When compared to the spectrum of the homogeneous solution, small 

shifts of the position of the absorption maxima as well as changes in the relative 

intensity are noted (Figures 2.2. and 2.3.). Both phenomena are obviously related to 

the interaction between the TiO2 surface and specific functionalities in the probe 

molecule. 

After a contact time of 180 min between the aqueous solution and the TiO2-coated 

ATR crystal, the adsorption equilibrium is established. The bands centered at 

1706 cm−1, 1568 cm−1, and at 1376 cm−1 (cf. Figure 2.3. and the data presented in 

Table 2.1.) are the bands assigned to the different vibration modes of the carbonyl 

and the carboxyl groups of the probe molecule in homogeneous solution at pH 3. The 

ν(C=O) broad band at 1706 cm−1 indicates that even the carbonyl group of the 

imidazole ring contributes to the overall interaction of imazapyr molecules with the 
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TiO2 surface. The band at 1776 cm−1 which corresponds to the stretching vibrational 

mode of the C=O in COOH (in the spectrum of imazapyr solution at pH 3) 

disappears in the spectrum of adsorbed imazapyr at pH 3. This could be explained by 

the hypothesis that the carboxylic group of imazapyr adsorbs predominately in its 

deprotonated form, and the double character of the C=O bond is lost.40 The presence 

of two forms of molecularly adsorbed imazapyr is not excluded. Chesalov et al.
36 

have studied the adsorption of nicotinic acid at the TiO2 surface. They have 

identified two ν(C=O) bands at 1740 and 1660 cm−1 for adsorbed nicotinic acid and 

thus concluded the formation of two different surface species. Furthermore, 

Kokaislova et al.
40 have shown that the C=O in COOH of nicotinic acid maintains its 

double bond character, and the frequency of the corresponding band is downshifted 

in the spectrum of nicotinic acid. In the case of imazapyr, the band at 1706 cm−1 

characterizes an imazapyr complex that is bound to the TiO2 surface mainly via the 

carboxyl group of the pyridine ring with the involvement of the carbonyl group of 

the imidazole ring in the interaction. The same band is indicative of the carboxyl 

group of the pyridine ring, forming a strong hydrogen bond with the TiO2 surface.36 

The peaks at 1568 and 1376 cm−1 are assigned to the asymmetric and symmetric 

mode of the carboxylate stretching vibration, νa(COO) and νs(COO), 

respectively.38,40,49 The peak positions of the overlapping ν(CC), ν(CN), and δ(NH) 

vibrations of the pyridine and imidazole rings 36,40,41,43,48 observed at 1654, 1635, and 

1614 cm−1 in homogeneous solution are located in the presence of TiO2 at 1654 (very 

weak), 1627, 1612, and 1598 cm−1, respectively.  

In the homogeneous solution, at pH 3, two broad overlapping peaks centered at 

1095 and 1047 cm−1 are observed between 1200 and 1000 cm−1. These bands 

assigned to coupled ν(CO), δ(CH), ν(CC), ν(CN), γ(CH), δ(CO), and ring 

vibrations 32,33 are slightly shifted in the presence of TiO2 and appear now in the 

range of 1200–850 cm−1 with maxima at 1143 and 1103 cm−1. 

Analogously to the temporal change of the spectra recorded at pH 3, shifts of the 

peak positions as well as very weak absorption bands are observed at pH 9 until the 

adsorption equilibrium is established (Figure 2.4.). The spectrum shows strong 

absorption bands between 1100 and 850 cm−1 which are assigned to ν(CC), ν(CN), 

γ(CH), and other ring vibrations as concluded from the spectra obtained in the 

homogeneous aqueous solution. 
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Figure 2.3. (a) ATR-FTIR spectra of an aqueous 2 mmol L−1 solution of imazapyr in 
the presence of a TiO2 film after different contact times at pH 3 and (b) spectra of 
imazapyr at pH 3 in the absence (black line) and in the presence of TiO2 after 
equilibrium (red line). 
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adsorption of imazapyr with the contribution of the carbonyl group of the imidazole 

ring. Furthermore, it is also assigned to the hydrogen bonding of the carboxyl group 

to the surface. The peaks at 1640, 1639, and 1488 cm−1 are a superposition of ν(CN), 

δ(NH), and ν(CC) ring vibrations, and the weak contributions of the asymmetric 

COO stretch is not excluded.48,58 The symmetric COO stretch band is observed as a 

very weak absorption at 1368 cm−1. Furthermore, the peak with an absorbance 

maximum at 1238 cm−1 results from a superposition of CC, CN, and CO 

vibrations.48,55,56 

Table 2.1. Band Assignments for the Main IR Absorption Bands of an Aqueous 
Imazapyr Solution in the Absence and in the Presence of the TiO2 Layer at pH 3 
and 9.  

Mode of Vibration* Peak position / cm-1 Ref 

solution pH 3 solution pH 9 adsorbed pH 3 adsorbed pH 9 

ν(C=O) 

 

1776 

1704 

- 

1704 

1706 

 

1699 

 

23,36,40,52 

ν(CN)+ν(CC) 1654 1654 1654 1640 18,40,43 

δ(H2O),ν(CN,CC) 

δ(NH), 

 ν(C=C) 

1635 

1614 

1579 

1635 

1625 

1579 

1635 

1610 

1598 

1639 

 

33,35,37,38,40,48,50,53  

νa(COO), δ(CH) 1564 1564 1568  35,38–40 

[νs(CN), δ(CH)]ring 1471 1471 1481 1488 32,33,40,48 

ν(C=C)N,δ(CH2) 

νs(C=N)+νs(CN)ring + 

δ(CH) 

1446 

1415 

1446 

 

1448 

1419 

 35,37 
37,48 

νs(COO) 1380 1388 1376  38,39 

ν(CO) , δ(O-H), δ(CH) 1251 

 

1251 

1216 

1269 

1240 

 

1238 

40,52,53 

ν(CN), δ(CH), ν(CO) , 

δ(CO), γ(CH), 

 ring vibrations 

1095 

1047 

1095 

1047 

1143 

1103 

 

1008 

958 

32,33,35,48,53,55–57 

* νs/a symmetric/asymmetric stretching vibration; δ deformation/bending; γ twisting 

vibration.Note: The resolution is 4 cm-1. 
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Figure 2.4. (a) ATR-FTIR Spectra of an aqueous 2 mmol L−1 solution of imazapyr in 
the presence of the TiO2 film after different contact times at pH 9 and (b) spectra of 
imazapyr at pH 9 in the absence (black line) and in the presence of TiO2 after 
equilibrium (red line). 
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wavenumbers; (b) the intensities of all peaks with wavenumbers >1100 cm−1 are 

decreased; and (c) the intensity of the broad band between 1100 and 800 cm−1 is 

increased. The observed shifts in position and the changes in the peak intensities 

indicate the pH-dependent presence of different surface complexes formed during the 

contact between the aqueous imazapyr solution and the TiO2 film. At pH 3 neutral as 

well as the negatively charged imazapyr molecules are present in the solution, and 

both are prone to interact with the positively charged TiO2 surface via the carboxy 

group attached to the pyridine moiety of the molecule. The strong electrostatic 

attraction between the organic anion and the oxide surface results in the formation of 

carboxylate surface complexes with strong IR peaks centered at 1568 and 1376 cm−1. 

  

 

Figure 2.5. ATR-FTIR spectra of aqueous 2 mmol L−1 imazapyr solutions measured 

at four different pH values in the presence of TiO2 films after a contact time of 

180 min. 

 

At pH 9 the negatively charged imazapyr ion is the dominant organic species 

present in the solution. Since at this pH the TiO2 surface is negatively charged as 

well, electrostatic repulsion prevents the formation of significant amounts of 

carboxylate surface complexes.15  
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hand, the intensity of the broad bands between 1200 and 850 cm−1 which have been 

assigned inter alia to superposed ring and CN vibrations is high, thus indicating an 

interaction between the TiO2 surface and one of the heterocyclic rings present in the 

probe molecule. Since the N–C=O moiety of the imidazole ring facilitates the 

formation of a ring structure upon adsorption, the preferential formation of a surface 

complex having this structural element seems likely.59  

The intensity of the broad band between 1200 and 850 cm−1 is decreasing with 

decreasing pH, while the intensities of the peaks related to the COO group are 

increasing. The obvious explanation for this observation is a decreasing amount of 

the surface complex involving atoms present in the heterocyclic ring and an 

increasing amount of the carboxylate surface complex. These statements are not 

contradicting the results obtained by Osajima et al.,14 who calculated the partial 

atomic charges (at the semiempirical AM1 level) of the imazapyr molecule and its 

ionized species.14 Taking into account the charge of the TiO2 surface, they have 

concluded that increasing the pH value of the suspension hinders the approach of the 

imazapyr molecules to the TiO2 surface due to their electrostatic repulsion, thus 

inhibiting the intermit herbicide adsorption at the TiO2 surface. 

The interaction between the semiconductor surface and the imazapyr species is 

affected not only by the pH value but also by the ionic strength of the electrolyte. 

The Debye length determines length scale at which electrostatic interactions between 

charged particles are screened.60 Furthermore, it has been suggested that the charging 

behavior of nanostructured surfaces may have important consequences for adsorption 

processes, as for the surface interactions. An incoming species, at a given distance 

from the surface of the order of one or two Debye lengths, will feel a reduced electric 

field compared to the case of interaction with a smooth surface. Iwafuji et al.
61 have 

studied the effect of adding different types of salts, in different concentrations, on the 

formation of the Langmuir monolayer of TiO2. The authors have concluded that 

increasing the concentration of ions causes the screening of a charged surface to 

increase, resulting in a decreased Debye length. Additionally the authors61 have 

discussed two distinct effects of the salt, the structure making and structure breaking 

ions, which cause the interfacial water structure to increase or to be destroyed, 

respectively, by the promotion or destruction of hydrogen bonding. This result 

suggests that the formation of H-bonds in the subphase by the structure determining 

ions enhances the stability of the TiO2.
61  
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Here the Debye lengths have been calculated to be 3.1 nm at pH 5 and 7 and 

2.9 nm at pH 3 and 9. Since the present data have been obtained at nearly constant 

Debye lengths, the possible effect of the ionic strength cannot be considered in the 

context of the interpretation of the pH effect presented here. However, the 

probability of the screening of the before mentioned electrostatic repulsions between 

the negatively charged imazapyr and the negatively charged TiO2 surface, or the 

formation of surface species due to the adsorption of the electrolyte, cannot be 

excluded. In view of the above, we consider that this critical issue should be further 

investigated. 

Interactions between the COOH group of the probe molecule and the TiO2 surface 

may occur in several ways such as physisorption through electrostatic attraction, 

hydrogen bonding, or chemisorption resulting in different types of surface 

complexes, e.g., monodentate, bidentate, and bridging type complexes.21,33,46,62  

It has been shown that these different types of surface complexes can be 

distinguished by the comparison of the difference in wavenumber  

between the asymmetric and the symmetric mode of the carboxylate stretching 

vibration in homogeneous solution (Δνa-s(free)) and after adsorption at the oxide 

surface (Δνa-s(adsorbed)).8 

The respective analysis of the spectra (Figures 2.2–2.4) revealed that 

Δνa-s(adsorbed) < Δνa-s(free), indicating that imazapyr is covering the TiO2 surface as 

a bidentate and/or bridging ligand over the pH range investigated here. Additional 

information concerning the structure of the adsorbates has been given by 

Osajima et al.
14 Based upon the calculated charge densities of the different imazapyr 

species in the aqueous phase, the dihedral angle equivalent to N3(imidazol)–

C2(imidazol)–C2(pyridine)–N1(pyridine) is given as 212°. The authors have 

concluded that the adsorption occurs through the carboxylic oxygen. Furthermore, 

the interaction is more favorable between the deprotonated imazapyr molecule 

(species IV in scheme 2.1.) and the protonated TiO2 surface as TiOH2
+. 

Kokaislova et al.40 have reported that even in the preferred adsorption geometry of 

nicotinic acid, the π-electronic pyridine ring does not significantly contribute to the 

overall interaction of nicotinic acid (the π-π intermolecular interactions are proposed 

to contribute to the arrangement of adsorbed molecular layer). It is worth to note that 

the preferred geometry of adsorbed nicotinic acid has been reported to be where the 

a-s a
=

s
ν ν νΔ −
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ring is almost perpendicularly oriented to the surface and the carboxylic acid to its 

proximity.40 

Hence, the adsorption of imazapyr at the TiO2 surface results in different surface-

adsorbed species as depicted in Scheme 2.2. The predominant adsorbed structure at 

acidic pH is the one formed through the bridging mode (Species VI in Scheme 2.2.). 

However, it must be emphasized that the presence of the bidentate surface complex 

(species VII in Scheme 2.2.) as well as that of other surface complexes cannot be 

unequivocally excluded by this investigation.  

As mentioned before, spectral evidence has been assigned to the contribution of 

the carboxyl group in the overall adsorption process. Species VI and VII (Scheme 

2.2.) present possible structures where the adsorption of imazapyr takes place 

through the carboxylic group without any contribution of the carbonyl group of the 

imidazole ring. Furthermore, species VIII (Scheme 2.2.) represents the case where 

the carboxylic acid and/or the carbonyl group are linked to the TiO2 surface via 

hydrogen bonds. The contribution of the carbonyl group of the imidazole ring in the 

overall interaction is not excluded. 

It was mentioned before that the adsorption of imazapyr at the TiO2 surface is 

hindered in alkaline media. Presumably, imazapyr adsorbs dissociatively through the 

contribution of the pyridine ring and the N–C=O moiety of the imidazole ring 

yielding species IX and X in Scheme 2.2. The presence of the adsorbates VI, VII, 

and VIII (Scheme 2.2.) proposed for acidic pH is not excluded in alkaline media. 

Furthermore, the presence of hydrogen-bonded and inner- or outer-sphere surface 

species (not proposed here) is not excluded in the overall interaction. 

Usually, adsorption of the probe molecule is assumed to be a prerequisite for its 

photocatalytic conversion, and the photocatalytic reaction rate is assumed to be 

proportional to the coverage of the photocatalyst surface. With increasing pH the 

adsorption of imazapyr is inhibited; the surface coverage is decreased; and as 

expected the photocatalytic degradation rate of imazapyr is also found to decrease. 

Carrier et al.
15 who have studied the photocatalytic degradation of imazapyr, 

concluded from their experimental results in combination with electronic density 

calculations that the structure of the adsorbate affects the kinetics. 
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Scheme 2.2. Proposed Structures of Adsorbed Imazapyr Species on the TiO2 Surface 
at Different pH Values. 

 

 

Theoretical calculations performed by Osajima et al.
14 and by Carrier et al.

15 have 

shown that the preferential mode of adsorption of imazapyr is the bridging binding of 

the carboxylic group to the TiO2 surface (VI scheme 2.2.). This has been confirmed 

experimentally in this work. Carrier et al.
15 have reported that the main product of 

the photocatalytic imazapyr degradation is formed by the direct hole oxidation of the 

carboxyl moiety attached to the pyridine ring followed by subsequent 

decarboxylation (Photo–Kolbe reaction).  

Carrier et al.
15 have reported that �OH radicals also play an important role in the 

photocatalytic degradation of imazapyr. The authors have determined the primary 

position for the �OH radical (an electrophilic species) attack (the atoms with the 

largest electron density) with the help of the calculation of electronic density of 

imazapyr. Furthermore, the authors have presented a detailed degradation pathway of 

imazapyr. 

Recently, the role of bridging oxygen atoms as traps of photo-generated valence 

band holes leading to the photogeneration of terminal oxygen radicals able to react 

with the adsorbate species at the TiO2 surface has been discussed.63,64 The presence 

of terminal oxygen radicals at the TiO2 surface offers an explanation for the 

mechanism of the photocatalytic degradation of imazapyr being adsorbed in a 

bridging form at pH 3: the TiO2 surface oxygen atom located directly underneath the 
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adsorbed imazapyr species serves as a trap for a hole generated by the absorption of 

UV light. This leads to the generation of an oxygen-centered radical in the direct 

neighborhood to the target molecule enabling a facile interfacial electron transfer 

from the carboxylate group to this hole trap (Scheme 2.3.). Charge carrier diffusion 

from the interior of a particle to the surface can occur more rapidly with charges 

localized in the surface traps (etr
− and htr

+) than the electron–hole recombination. 

With increasing pH the amount of the adsorbed bridging imazapyr species 

decreases resulting in the observed decrease in the photocatalytic degradation rate, 

especially at pH 9 where the adsorption of imazapyr is very weak and the amount of 

the adsorbate (species VI in scheme 2) present at the surface is very low. 

 

Scheme 2.3. Proposed Mechanism of the Interaction of Imazapyr with a Terminal 
Oxygen Radical Formed on the TiO2 Surface upon Light Absorption. 

 

 

2.5. Conclusions 

Herein, the adsorption of imazapyr from aqueous solution onto a TiO2 particle film 

was investigated by ATR-FTIR spectroscopy. The spectra revealed that imazapyr is 

strongly adsorbed at the TiO2 surface forming bridging carboxylate complexes and 

other surface complexes involving the heterocyclic rings of this probe molecule. The 

relative amount of these species present at the TiO2 surface is considerably affected 

by the pH. The high photocatalytic degradation rate of imazapyr observed at pH 3 in 

the presence of TiO2 is thus attributed to the close proximity between suitable trap 

states for the photogenerated holes at the photocatalyst surface and the carboxylate 

group of the probe molecule. 
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2.9. Supporting Information 

1. Distribution of imazapyr species as a function of the pH value; 2. Details of the 

experimental ATR-FTIR set-up; 3. Plots of concentration vs. time for the 

photocatalytic degradation of imazapyr; 4. Typical ATR-FTIR spectra of aqueous 

12 mmol L−1 solutions of imazapyr, view of full spectral range. 

1. The mathematical model proposed by Carrier et al.1 has been used to calculate the 

distribution of imazapyr species (Figure 1 of the manuscript). The thus derived 

species distribution is summarized in Table 1 taking into account the pH values 

employed in this study. 

Table S2.1. Distribution of Imazapyr Species as a Function of the pH Value.  

Imazapyr 

species % 

pH 3 pH 5 pH 7 pH 9 

[II] 5.72 0.02 3E-07 3E-11 

[III] 75.36 3.82 0.03 0.0003 

[IV] 18.92 96.16 99.96 99.99 

 

2. The experimental setup is described in detail in the experimental section, the 

solution compartment used in the study is depicted in (Figure S1). 

 

Figure S2.1. Details of the experimental set-up employed (ATR unit and solution 

compartment) 
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3. 

 

Figure S2.2. Plots of concentration vs. time for the photocatalytic degradation of 
imazapyr at different pH values. (Inset) first-order kinetic linear fitting of the 
photocatalytic degradation of imazapyr. 

4. 

 

Figure S2.3. Typical ATR-FTIR spectra of aqueous 12 mmol L−1 solutions of 
imazapyr in the absence of a TiO2 film at pH 3 (black line) and at pH 9 (red line). 
These data correspond to the same experimental conditions of spectra plotted in 
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Figure 2.2. but are shown here for a view of the full spectral range extending from 
4000 to 845 cm−1. 
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3.1. Abstract 

The objective of this work is to correlate the photocatalytic degradation of the 

herbicide imazapyr in aqueous suspensions of the commercially available Evonik 

Aeroxide TiO2 P25 with the dark adsorption phenomena considering both the 

equilibrium state and the kinetics of adsorption. The results of this study show that 

the adsorption of imazapyr onto the TiO2 surface is a second-order reaction and 

satisfies the criteria required by the Langmuir model. The adsorbed amount of 

imazapyr is found to be high at pH 3 and to decrease with increasing pH. The 

kinetics of the photocatalytic degradation of imazapyr were analysed taking into 

account the effect of the pH as well as of the catalyst mass concentration. However, 

special attention was focussed on the influence of the reactant concentration on the 

reaction rate. The Langmuir-Hinshelwood model fitting revealed that the apparent 

adsorption constant obtained under irradiation is significantly larger than the 

adsorption constant obtained in the dark. The initial reaction rates of the 

photocatalytic imazapyr degradation were larger than the initial adsorption rates of 

the probe molecule on the TiO2 surface. It is therefore concluded, that the 

photocatalytic imazapyr degradation does not follow necessarily a Langmuir-

Hinshelwood mechanism despite the fact that a rate law having the mathematical 

form of the Langmuir-Hinshelwood rate law was successfully used to describe the 

observed dependence of the initial reaction rates on the initial concentrations. A 

Langmuir-Hinshelwood mechanism for the photocatalytic imazapyr degradation is 

compatible only with the additional assumption that the rate constant of adsorption 

increases by irradiation with UV light. 

3.2. Introduction 

TiO2 photocatalysts in their different forms and polymorphs have attracted 

considerable attention in the past decades because they are highly photo-reactive, 

cheap, non-toxic, chemically and biologically inert, and photo-stable. These 

properties allow possible applications for the purification of polluted water and air, 

the development of self-cleaning super-hydrophilic surfaces, and the conversion of 

energy.1–3 In the past 25 years great advances have been made turning TiO2 

photocatalysis into an interesting issue not only for industrial applications but also 
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for fundamental research. However, there are still several issues, approaches, and 

mechanisms in the field of photocatalysis that remain unclear. 

The photocatalytic reaction is assumed to occur on the surface of the photocatalyst, 

and therefore a large adsorption capacity is expected to favour the reaction kinetics.4 

Both the organic compound being degraded and the TiO2 surface affect the 

adsorption process and the photocatalytic reaction. Furthermore, it was reported that 

a pre-adsorption of reactants onto the TiO2 surface in the dark preceding the 

photocatalytic reaction results in a more efficient interfacial electron transfer 

process.5,6 Bahnemann et al. have used laser flash photolysis experiments to 

investigate the kinetics of the interfacial electron transfer between an excited 

semiconductor and electron donor and/or acceptor molecules present in the 

surrounding aqueous phase. These authors found that the adsorption of the probe 

compounds dichloroacetate and thiocyanate on the TiO2 surface prior to the band gap 

excitation was a prerequisite for efficient hole scavenging.7  

Friedmann et al. have discussed the parameters affecting the kinetics and 

mechanisms of the photocatalytic process. These parameters can be subdivided into 

those that are intrinsic to the photocatalytic material and those that are extrinsic being 

influenced by the surrounding environment and conditions (e.g. pH, ionic strength, 

and the nature of the solvent). All these parameters mentioned before affect the 

adsorption rate and type, as well as the photocatalytic reaction rate. However, the 

specific mode of action of a given parameter on the photocatalytic performance of a 

TiO2 sample is difficult to characterize since many of the before mentioned 

parameters are coupled.4 

The assessment of the reaction kinetics is fundamental to evaluate and compare the 

performance of the catalyst. Furthermore, kinetic analysis can also be employed to 

prove the validity of a proposed mechanism.8,9 The interpretation of the results of the 

kinetics studies of TiO2 photocatalytic systems for water treatment and the 

elucidation of the underlying mechanisms have relied largely on the 

Langmuir−Hinshelwood (classical or modified) rate laws. Details of this kinetics 

with its underlying adsorption model (Langmuir-Hinshelwood mechanism) have 

been critically discussed in several publications.1,10–18 

It seems that most authors suppose that a heterogeneous photocatalytic reaction is a 

bimolecular reaction between two species present on the surface of the photocatalyst. 

The substrate to be oxidized, of course, is one of the surface-bound species while 
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either a valence band hole or an OH radical on the surface of the semiconductor is 

the second species. For a batch system the rate law is then to be written as
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with Ct, t, V, k'r, nox and nos being the concentration of the probe molecule dissolved 

in the aqueous phase, the irradiation time, the volume of the suspension, the reaction 

rate constant (in mol-1 s-1), the total amount of the oxidizing species in the whole 

reaction volume, and the total amount of adsorbed probe molecules (both in mol), 

respectively. Using a pseudo-steady state approach,11,12 this rate law can be written 
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and the maximum reaction rate kr, the rate constant of adsorption ka, and the rate 

constant of desorption kd (see Chapter SI-3.1 in the ESI).  

Eqn (3.2) with eqn (3.3) corresponds to the rate law as derived for a thermal catalytic 

reaction which proceeds according to the “Langmuir-Hinshelwood single-site 

mechanism”.19 At this point, it should be noted that in 1926 Hinshelwood, and later 

Schwab, interpreted this rate late in its mathematically equivalent form  

(derived for catalytic reactions of gases on surfaces) on the basis of the Langmuir 

adsorption isotherm.20–24 In 1931, Schwab also pointed out that this rate law is also 

suitable to analyse the kinetics of catalytic reactions of organic compounds in 

colloidal solutions of metals.24 In 1939, Gopala Rao expressly referred to the 

Langmuir adsorption isotherm to explain the experimentally observed photocatalytic 

oxidation kinetics of ammonia in irradiated TiO2 suspension.25 

It is usually assumed that the photocatalytic process is a two-step process comprising 

a fast adsorption/desorption equilibrium and subsequently a slow surface step, i.e., 

. Consequently, the kinetic parameter KLH becomes equal to the 

Langmuir adsorption constant KL = ka/kd, which is determined from the adsorption 

isotherms. However, eqn (3.3) shows that the parameter KLH is less than or equal to 
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KL. Accordingly, only a few authors have reported experimental KLH values being 

larger than the corresponding KL values.26–35 

It is understood that the derived equation assumes that the adsorption rate of the 

probe molecules is always larger than the the reaction rate, i.e., the reaction is not 

inhibited by mass transfer. 

Papers reporting about the correlation between the photocatalytic degradation rate of 

an organic substrate and both its adsorption isotherms and adsorption kinetics are 

rare.31,36–39 Therefore, we have carried out respective investigations with imazapyr 

[2-(4-isopropyl-4-methyl-5-oxo-2-imidazolin-2-yl) nicotinic acid] as the probe 

molecule. Imazapyr is a non-selective herbicide used for the control of weeds.40 

Many researchers have investigated the photocatalytic degradation of imazapyr 

covering the influence of several operating parameters using commercial TiO2 

powders, mainly P25. The effect of the pH of the suspension, the temperature, the 

addition of electron acceptors such as potassium persulfate and hydrogen peroxide, 

as well as the presence of heavy metals on the imazapyr degradation kinetics have 

been studied.40–43 

Recently Atitar et al. have investigated the adsorption of imazapyr onto the TiO2 

surface by means of ATR-FTIR spectroscopy. The authors have concluded that the 

favoured binding mode of imazapyr to the TiO2 surface is the bridging mode via the 

carboxylic group. Besides of that, the authors proposed that the bridging oxygen in 

the neighbourhood of the adsorbed species serves as trap for a hole generated upon 

the absorption of UV light.44 But it has been reported by Carrier et al. that also OH 

radicals play an important role in the photocatalytic degradation of imazapyr. The 

authors have determined the primary position for OH radical (being besides other 

properties an electrophilic species) attack on imazapyr by means of electron density 

calculations, and reported that this attack occurs preferrably at the atoms with the 

largest electron density. Furthermore, these authors have presented a detailed 

degradation pathway of imazapyr.42 

However, the importance of the adsorption for the overall photocatalytic process is 

still doubtful. No uniform information concerning the optimum pH for the 

photocatalytic degradation of imazapyr using TiO2 could be extracted from the 

literature. The highest degradation rates have been reported to occur at pH 344, and at 

pH 3.842; other research groups have reported a maximum value at pH 443, and at pH 

4.341, respectively. 
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The aim of this work is to find a possible correlation between the photocatalytic 

degradation rate and the adsorption behaviour of imazapyr at the TiO2 surface. 

Therefore, the kinetics of the photocatalytic oxidation of imazapyr as well as the 

kinetics of the imazapyr adsorption in the dark have been investigated at different pH 

values to reveal the role of the adsorption of imazapyr onto the TiO2 surface in the 

photocatalytic degradation process. 

3.3. Experimental section 

Materials 

Imazapyr (Pestanal, purity > 99%) was purchased from Sigma-Aldrich (Germany). 

All solvents used for HPLC (High Performance Liquid Chromatography) analysis 

were chromatography grade and were also obtained from Sigma-Aldrich (Germany); 

all other chemicals were of analytical grade and used without any further 

purification. The water used in all experimental runs was deionized water (resistivity 

= 18.2 MΩ cm) collected from a Sartorius Arium 611 deionizer. 

The commercial photocatalyst used in this study was Evonik Aeroxide P25 (mainly 

anatase with a rutile content of ca. 20%, a primary particle size of around 21 nm, and 

a BET surface area of 50 m² g-1). 

Methods 

Photocatalytic degradation. For the photocatalytic degradation studies 100 mL of 

aqueous imazapyr solutions containing varying initial concentrations of the probe 

molecule (20 ≤ C0 ≤ 200 µmol L-1) and 0.01 mol L-1 KClO4 were irradiated in the 

presence of the desired amounts of TiO2 after adjusting the initial pH by the addition 

of KOH or HNO3. Prior to the irradiation, the suspensions were shaken in the dark 

for at least 3 hours to achieve the adsorption equilibrium of the organic solute on the 

TiO2 surface resulting in equilibrium imazapyr concentrations Ce,0 < C0. 

All photocatalytic degradation experiments were performed using a Pyrex-Glass® 

cylindrical reactor irradiated from the top with an assembly of six UV-A lamps 

(Philips Cleo 15 W; emission, 300 < λ < 400 nm; λmax = 365 nm) under continuous 

stirring. A scheme of the experimental set-up is shown in Chapter SI-3.2 in the ESI. 

For the kinetic studies, samples were taken at regular time intervals and were 

analyzed after filtration by high performance liquid chromatography (HPLC). The 

temperature (21±1°C) remained constant during the experimental runs. 
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Adsorption isotherms and kinetics. Adsorption experiments were performed 

employing stock solutions of imazapyr in deionized water with the desired 

concentration of the probe molecule (100 ≤ C0 ≤ 2000 µmol L-1). Known amounts of 

these stock solutions were added to 10 mL TiO2 P25 suspensions of different TiO2 

mass concentrations Cc prepared in 0.01 mol L-1 KClO4. The suspensions were kept 

for 24 hours at constant temperature (21±1°C) in the dark under agitation. The pH of 

the suspensions was adjusted at the beginning and in regular time intervals by the 

addition of KOH or HNO3. Samples were taken in appropriate time intervals, 

centrifuged for 5 minutes (4000 rpm) and filtered with a 0.45 µm cellulose nitrate 

membrane filter (Macherey und Nagel) prior to HPLC analysis. 

Analysis 

Samples were analyzed by HPLC using an ECOM spol. S.r.o. instrument fitted with 

a LCP 4100 pump, a LCD 2084 UV spectrophotometer, and a 50 µL injection loop. 

A C-18 Inertsil ODS2 150 Å 5 µm 250 × 4.6 mm column was used with a pre-

column (10 x 4.0 mm Inertsil ODS2 100 Å 5 µm) in the cartridge holder. An 

isocratic acetonitrile/water mixture (60/40 vol. %) with phosphoric buffer (pH 3) was 

used as the mobile phase. The flow rate was adjusted at 0.8 mL min-1 and the 

detection wavelength at 254 nm. The calibration curves (R2 ≥ 0.999) were prepared 

in the concentration range from 10 to 50 µmol L-1. The detection limit for imazapyr 

was found to be 3 µmol L-1. 

All experimental runs to investigate the adsorption kinetics, the adsorption isotherms, 

and the photodegradation kinetics were performed in 2–3 replicates. This allows 

values to be obtained with an experimental error ≤ 10%. This error is considered to 

be the sum of all random experimental errors including the HPLC instrument error 

and the error intrinsic to mathematical calculations from the experimental 

concentration vs. time plots. 

3.4. Results 

Photocatalytic degradation of imazapyr 

The photocatalytic degradation of imazapyr has been studied in a series of 

experimental runs at constant reaction volume, temperature, light intensity, and 

photocatalyst mass concentration, but varying the pH and the concentration of the 

probe molecule imazapyr in the suspension (20 ≤ C0 ≤ 200 µmol L-1). The mass 

concentration of the TiO2 photocatalyst in these experimental runs was Cc = 2.5 g L-1 
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because this concentration was found in preceeding investigations to be the optimum 

catalyst mass concentration for the photocatalytic imazapyr degradation (see Chapter 

SI-3.3 in the ESI).  

Fig. 3.1 shows a typical experimental dataset of the photocatalytic decomposition of 

imazapyr. The data points of all experimental runs were well fitted using an 

exponential decay model. Thus, the reaction rate rr of the photocatalytic oxidation of 

imazapyr can obviously be described by a first order rate law, 

 𝑟r =
!!!

!"
= 𝑘!"#𝐶!       (3.4) 

where kobs is the observed first-order rate constant, t is the irradiation time, and Ct is 

the actual concentration of the probe molecule in the aqueous suspension at time t. 

For each experimental run, the rate constant was determined from the plot of the 

natural logarithm of the pollutant concentration as a function of irradiation time 

employing the equation 

 ln
!!

!e,!

= 𝑘!"#𝑡        (3.5) 

where Ce,0 is the equilibrium concentration of the probe molecule in the suspension 

at the start of the UV(A) irradiation (t = 0). The rate constants were found to decrase 

with increasing initial imazapyr concentrations Ce,0 while the initial reaction rates rr,0 

which were calculated employing 𝑟r,0 = 𝑘!"#𝐶e,0 increased (cf. Table S3.1 in the 

ESI). 

The influence of the initial concentration of the solute on the actual photocatalytic 

degradation rate of most organic compounds is usually rationalized employing a 

Langmuir–Hinshelwood type rate law 

 𝑟r = −
!!!

!"
= 𝑘!

!!"!!

!!!!"!!

       (3.6) 

where the kinetic parameter kr is the maximum photocatalytic reaction rate, and KLH 

is the apparent adsorption constant of the probe molecule onto the TiO2 surface.10,45–

47 

Inserting the eqn (3.4) in (3.6) yields with Ct = Ce,0 at t = 0  

 𝑟!,! = 𝑘!"#𝐶!,! = 𝑘!
!!" !!,!

!!!!"!!,!

      (3.7) 

which yields after rearrangement the linear equation  

 
!

!!"#

=
!

!!!!"

+
!!,!

!!

        (3.8) 

thus allowing the determination of the kinetic parameters kr and KLH from the slopes 

and the intercepts of the respective 1/kobs vs. Ce,0 plots. Based on this equation, the 
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values of kobs were plotted vs. the different initial imazapyr concentration Ce,0 (Fig. 

3.2). The kinetic parameters kr and KLH at pH 3, pH 5, and pH 7 obtained from these 

graphs are given in Table 3.1. 

From a mathematical point of view the relation 𝑘!
!!! !!

!!!!"!!

≅ 𝑘r𝐾LH𝐶t holds when the 

condition 𝐾LH𝐶t ≪ 1 is fulfilled. With this boundary condition the Langmuir-

Hinshelwood type rate law (eqn (3.6)) can be approximated by an apparent first-

order rate law as it is given in eqn (3.4). With the KLH-values given in Table 1 and 

the initial imazapyr concentrations employed in this study (Ce,0 > 15 µmol L-1) the 

product KLHCt is calculated to be always larger than 0.55 at t = 0. The imazapyr 

concentration must therefore become considerably smaller until the condition for a 

first-order kinetics is fulfilled.The first-oder kinetics observed here (Fig. 3.1) thus 

obviously do not correspond to the assumption of the limiting case of the Langmuir-

Hinshelwood kinetics. 

 

Table 3.1. Langmuir-Hinshelwood fitting parameters.  

pH 3 5 7 

kr / µmol L-1 min-1 2.97 2.95 1.24 

KLH  / 10-3 L µmol-1 56.5 38.3 129 

R
2 0.987 0.982 0.971 

Experimental conditions: 20 ≤ C0 ≤ 200 µmol L-1, TiO2 P25, Cc = 2.5 g L-1, V = 100 mL. 
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Figure 3.1. Typical plots of the imazapyr concentration Ct vs. irradiation time for the 
photocatalytic degradation at different pH values in the presence of Aeroxide TiO2 
P25. The lines have been calculated assuming first-order kinetics. Experimental 
conditions: C0 = 110 and 50 µmol L-1, Cc = 2.5 g L-1, V = 100 mL. 
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Figure 3.2. Langmuir-Hinshelwood plot of the reciprocal first order rate constant vs. 
the initial equilibrium imazapyr concentration. Experimental conditions: 20 ≤ C0 ≤ 
200 µmol L-1, TiO2 P25, Cc = 2.5 g L-1, V = 100 mL. 
 

Adsorption isotherms 

Adsorption isotherms have been measured at constant TiO2 catalyst mass 

concentration and constant suspension volume. However, the pH of the suspensions 

(pH 3, 5, and 7) and the initial concentration of imazapyr (100 ≤ C0 ≤ 2000 µmol L-1) 

has been varied. The data are presented by the equilibrium isotherm value, which 

basically indicate the amount of substrate adsorbed (adsorbate) by a known mass of 

the adsorbent, i.e., TiO2 P25, in the equilibrium. The adsorbed amount of imazapyr in 

the equilibrium was calculated employing 

 𝑞! =
!!!!!

!
𝑉         (3.9) 

where C0 is the initial concentration, Ce is the equilibrium concentration of the 

adsorbate in the suspension, m is the catalyst mass, and V is the volume of the 

suspension. The parameters C0, m, and V are known quantities while Ce is 

determined by HPLC analysis after 24 hours shaking in the dark. 

Fig. 3.3 shows the amount of imazapyr adsorbed at the TiO2 surface plotted versus 

the concentration of the probe molecule in the aqueous phase after the adsorption 

equilibrium has been established. Langmuir-Hinshelwood kinetics which has been 

employed above to describe the time course of the imazapyr concentration during 

photocatalytic degradation experiments are based on the assumption that the 
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absorption of the probe molecule can be described by the Langmuir adsorption 

isotherm 

 𝑞! = 𝑞m
!!!!

!!!!!!

        (3.10) 

qm is the maximum monolayer capacity of adsorbent (µmol g−1) and can also be 

interpreted as the total number of binding sites that are available for sorption. KL is 

the Langmuir adsorption constant (L µmol−1). Rearrangement of eqn (3.10) yields 

 
!

!!
=

!

!m!L
×

!

!!

+
!

!!
        (3.11) 

thus allowing the determination of the parameters qm and KL from the slopes and the 

intercepts of the respective 1/qe vs. 1/Ce (Fig. 3.4). The thus calculated values are 

tabulated in Table 3.2. 

 

Table 3.2. Parameters for the Langmuir adsorption of imazapyr onto TiO2 at 

different pH values, and the ratio between KLH and KL. 

pH 3 5 7 

qm / µmol g-1 30.8 40.0 22.8 

KL / 10-3 L µmol-1 4.52 2.23 1.46 

R
2 0.997 0.987 0.993 

KLH / KL 12.5 17.1 88.4 

Experimental conditions: 100 ≤ C0 ≤ 2000 µmol L-1, TiO2 P25, Cc = 5 g L-1, V = 100 mL. 

 

The analysis of the experimental data employing the Freundlich model of adsorption 

resulted also in good fitting of the experimental data (0.915≤ R2 ≤0.996, see Chapter 

SI-3.5). However, the Langmuir model was slightly better than the Freundlich model. 

The Langmuir isotherm model was found suitable to describe the imazapyr 

adsorption equilibrium (0.987≤ R
2 ≤0.997). The maximum monolayer capacity of 

adsorbent qm increased with increasing the pH value from pH 3 to pH 5, and 

decreased again at pH 7. The Langmuir adsorption constant KL is a measure for the 

affinity between adsorbate and adsorbent with its reciprocal value yielding the 

concentration at which half of the maximum adsorption capacity of the adsorbent is 

reached.48 The constant KL decreased with increasing the pH from 3 to 7, indicating 

that the adsorption density was higher at a lower pH.  

It becomes obvious that the values for KLH which have been calculated from the 

concentration vs. time plots of the photocatalytic degradation experiments 
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(Table 3.1) are larger by a factor 10−100 than the values for the adsorption constant 

KL at all pH values studied here (Table 3.2).  

 

 

 

 

Figure 3.3. Adsorption isotherms of imazapyr onto Aeroxide TiO2 P25 at different 
pH values. The lines have been calculated employing eqn (3.10) and the data given 
in Table 3.2. Experimental conditions: 100 ≤ C0 ≤ 2000 µmol L-1, TiO2 P25, Cc = 5.0 
g L-1, V = 100 mL. 
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Figure 3.4. Langmuir plot of the reciprocal equilibrium loading vs. the reciprocal 
equilibrium imazapyr concentration. Experimental conditions: 100 ≤ C0 ≤ 2000 µmol 
L-1, TiO2 P25, Cc = 5.0 g L-1, V = 100 mL. 
 

With the values for the maximum capacity of the adsorbent, qm, given in Table 2 and 

the known surface area of the photocatalyst (50 m2 g-1), the amount of adsorbed 

molecules per unit area is calculated as 0.616 µmol m-2 (0.37 molecule nm-2), 0.800 

µmol m-2 (0.48 molecule nm-2) and 0.456 µmol m-2 (0.27 molecule nm-2) at pH 3, pH 

5 and pH 7, respectively. With the surface area and the density of the photocatalyst 

(ρ = 3.8×106 g m-3 for anatase), a radius of 15.8 nm is calculated for a single 

photocatalyst particle. Consequently, a single photocatalyst particle with a surface 

area of approximately 3100 nm2 will be fully covered by 1162, 1509 and 860 

imazapyr molecules at pH 3, pH 5 and pH 7, respectively. One imazapyr molecule on 

the surface thus demands an area between 2.1 and 3.2 nm2. These values are in 

reasonable agreement with the values calculated from the geometry of an imazapyr 

molecule. 

Adsorption kinetics. The kinetics of imazapyr adsorption onto Evonik Aeroxide 

TiO2 P25 were studied at three different pH values. The respective concentration vs. 

time  plots are presented in Fig. 3.5. The data given in this Fig. 3.5 clearly show that 

the adsorption of imazapyr reaches the equilibrium concentration in the liquid phase 

after about 120 min. The equilibrium seems to be established within 3 hours at all pH 

values investigated in this study. The highest adsorbed amount of imazapyr is 

obtained at pH 3, while this amount decreases with the increase of the pH from pH 3 

to pH 7.  
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The obtained experimental data have been analysed using a pseudo-second order 

kinetic model. The pseudo second order equation based on adsorption equilibrium 

capacity is expressed by 

 
!"!

!"
= 𝑘′a(𝑞! − 𝑞!)

!        (3.12) 

where k'a is the pseudo-second-order rate constant (g µmol-1 min-1).49–51 Integration 

with the initial condition qt = 0 at t = 0 results in 

 𝑞! =
!e
!
!′a!

!!!e!′a!
        (3.13) 

The plots of the fitted experimental data are presented in Fig. 3.6. The calculated 

values of qe and k'a as well as the correlation coefficients are summarized in 

Table 3.3. Based on the obtained correlation coefficient values, it is concluded that 

pseudo-second order model describes well the adsorption kinetics of imazapyr onto 

TiO2. The Lagergreen pseudo-first order model50,52,53 was also used for the analysis 

of the experimental data (see Chapter SI-3.6), but the best accordance between the 

experimental and the calculated values were obtained with the pseudo-second-order 

kinetic model. 

 

 

Figure 3.5. Plot of imazapyr concentration vs. time during the adsorption onto TiO2 
P25 at different pH values. Experimental conditions: C0 = 126.5 µmol L-1, Cc = 5 g 
L-1, V = 20 mL. 
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Table 3.3. Fitting parameters of the adsorption kinetics obtained at different pH 

values. 

pH 3 5 7 

qe / µmol g-1 6.52 5.41 2.41 

k'a / 10-3 g µmol-1 min-1 5.82 4.42 15.6 

R
2 0.997 0.993 0.998 

Experimental conditions: C0 = 126.5 µmol L-1, TiO2 P25, Cc = 5 g L-1, V = 20 mL. 

 

 

Figure 3.6. Plot of the amount of adsorbed species (qt) vs. contact time at different 
pH values fitted to the pseudo-second order rate law given in eqn (3.13). 
Experimental conditions: C0 = 126.5 µmol L-1, TiO2 P25, Cc = 5 g L-1, V = 20 mL. 

3.5. Discussion 

It has been assumed that the dark adsorption as well as the structure of the adsorbate 

play an important role for the photocatalytic degradation of imazapyr.42,44 The 

favoured mode of adsorption as a bridged surface complex44 followed by the direct 

hole oxidation of the carboxyl moiety by means of the photo-Kolbe reaction is one of 

the degradation pathways where adsorption is assumed to play an important role.42,44 

However, the latter is not the main pathway in the overall photocatalytic process. 

Carrier et al. have reported that OH radicals can attack the atoms directly at the 

position of the largest electron density in the imazapyr molecule.42 These species 

(i.e., OH radicals) can be generated through the oxidative pathway by the reaction of 

valence band holes with H2O/OH− being present at the photocatalyst surface, and/or 

through the reductive pathway by the reaction of conduction band electrons with 
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adsorbed molecular oxygen. The latter is usually neglected in the photocatalytic 

degradation of organic pollutants and is considered to play an important role in case 

of imazapyr photodegradation.  

In this work, the reaction rates, the adsorption rates and the adsorption isotherms 

were determined at three different pH values with the aim of obtaining further 

insights into the mechanism underlying the photocatalytic degradation of imazapyr. 

The inorganic ions H+, K+, NO3
−, and ClO4

− have been added to the aqueous TiO2 

suspensions to establish the desired pH value and to keep constant the ionic strength. 

It is known that inorganic ions might interact with the photocatalyst surface, thus, 

affecting the adsorption and the photocatalytic degradation of organic probe 

molecules.54–58 It is, therefore, understood that the quantitative results presented here 

may be particularly dependent on the kind and concentration of the added anions. 

However, it has been reported that NO3
− and ClO4

− interact only weakly with the 

TiO2 surface and have only little effect on the rate of the photocatalytic 

degradation.55–58 In the following discussion, it is therefore assumed that the 

abovementioned ions do not significantly influence the kinetics of the photocatalytic 

degradation or the adsorption kinetics and the adsorption equilibrium. 

The photodegradation kinetics of imazapyr in TiO2 suspensions have been modeled 

employing a Langmuir-Hinshelwood type rate law (eqn (3.2)) which is a 

manifestation of the general case of saturation-type kinetics. The plots of the 

reciprocal rate constants vs. the reciprocal initial equilibrium concentrations Ce,0 are 

shown in Fig. 3.2. The linear relationships indicate that the degradation kinetics 

under UV irradiation can be described by a Langmuir-Hinshelwood type rate law. 

The fitting parameters kr and KLH derived from this Fig. 3.2 are summarized in 

Table 3.1. 

The analysis of the adsorption data obtained in the dark, using the Langmuir 

adsorption isotherms, shows a good accordance between the experimental and the 

calculated data. This implies that the TiO2 and the imazapyr are strongly interacting. 

It is worth to note that the Langmuir model assumes the adsorption energy to be 

uniform over the whole surface and that there is no interaction between the adsorbed 

species. Furthermore, only chemical interactions are considered. Thus only 

monolayers of the adsorbate can be formed on the surface of the adsorbent. The 

results of the adsorption experiments indicate that the maximum monolayer capacity 
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of the adsorbent qm is 30 µmol g-1 at pH 3, and increases to reach 40 µmol g-1 at 

pH 5. Moreover, it decreases to 23 µmol g-1 at pH 7.  

With the data given in Table 3.2 and assuming an initial equilibrium imazapyr 

concentration of 100 µmol L-1 in the liquid phase it is calculated that the amount of 

imazapyr adsorbed at the TiO2 surface in the dark is decreasing from 9.6 µmol g-1 at 

pH 3 to 2.9 µmol g-1 at pH 7. If the amount of the organic molecules (imazapyr) 

adsorbed on the surface of the photocatalyst is decisive for the rate of the 

photocatalytic degradation, it is expected that the photocatalytic degradation rate as 

well as the rate of imazapyr adsorption follows the same trend: at pH 3, the rates 

should therefore be the highest and the rates should decrease with increasing pH. In 

fact, this decrease of the rates with increasing pH was observed for both, the 

photocatalytic degradation and the adsorption, in the experimental runs performed 

here (Table S3.1 and Figure S3.2).  

 

Scheme 3.1. Different forms of the herbicide imazapyr and the associated acid-base 
dissociation constants. Reprinted with permission from M. Faycal Atitar, Ralf 
Dillert, and Detlef W. Bahnemann. Surface Interactions between Imazapyr and the 
TiO2 Surface: An in Situ ATR-FTIR Study. Journal of Physical Chemistry C; 
121:4293-4303. Copyright (2017) American Chemical Society. 
 
Taking into account that the probe molecule imazapyr exhibits five distinct species 

with three pKa values (1.88, 3.60 and 10.80) (cf. Scheme 3.1) and TiO2 has a pH 

dependent surface charge, any interaction between the probe molecule and the 

photocatalyst surface can be explained assuming attractive and repulsive forces 

between these species. In the range between pH 2 and pH 4 the neutral imazapyr 

molecule is interacting with the positively charged TiO2 surface possibly via the 

COOH group by dissociative adsorption. Moderate acidic conditions between pH 4 

and pH 6 lead to a strong electrostatic interaction between the positively charged 

TiO2 surface and the organic solutes that mainly exist in their deprotonated 

negatively charged form (cf. Scheme 3.1). However, at a pH > pHzpc = 6.9 (TiO2 

P25)59 both imazapyr as well as the TiO2 surface are negatively charged resulting in 

a substantial repulsion between these species retarding adsorption which in turn will 

significantly negatively affect the photocatalytic degradation. Carrier et al. as well as 

Osajima et al. have concluded that the dependence of the degradation rate on the pH 
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of the suspension is due to these interactions between imazapyr species and the TiO2 

surface.40,42 Additionally, the interaction is found to be more favourable between the 

deprotonated imazapyr molecule IV in Scheme 1 and the protonated TiO2 surface as 

TiOH2
+.40,44  

Thus, the pH dependence of the determined rates for the adsorption and the 

photocatalytic degradation on the basis of electrostatic interactions between imazapyr 

and the TiO2 surface can be explained. This explanation does not contradict the 

assumption that the probe molecule is photocatalytically degraded by a Langmuir-

Hinshelwood mechanism. However, this mechanism presupposes that the rate of the 

photocatalytic reaction rate is smaller than or equal to the rate of imazapyr adsorption 

(rr ≤ ra, cf. eqn (3.2) in combination with eqn (3.3)). But the adsorption equilibria in 

the dark were only established after more than two hours (Fig. 3.5). 
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Figure 3.7. Initial photocatalytic degradation rate vs. initial adsorption rate of 
imazapyr at different pH values. 
 

To perform the comparison between these rates, the initial reaction rates, rr,0, of the 

imazapyr degradation have been calculated considering the concentration of the 

photocatalyst in the aqueous suspension (Table S3.4). The initial adsorption rates of 

imazapyr, ra,0, have been calculated using the pseudo-second order equation 
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(eqn (3.12)) with the initial condition qt = 0 at t = 0. The amount of the adsorbed 

substrate qe in the initial equilibrium was calculated employing eqn (3.10) and the 

parameters of the Langmuir isotherm (Table 3.2):  

  𝑟!,! = 𝑘′! 𝑞!
!!!!

!!!!!!

!

     (3.14) 

The calculation of the initial adsorption rates has been performed for different initial 

imazapyr concentrations (Chapter SI-3.8) to reveal the correlation to the initial 

degradation rate, as well as the effect of the initial concentration of imazapyr. 

However, the comparison of the initial imazapyr degradation rates with the initial 

imazapyr dark adsorption rates at different pH values (Fig. 3.7) show that the initial 

photocatalytic reactions are always faster than the dark adsorption. In other words, 

the initial photocatalytic degradation rate of imazapyr was found to be 2–3 times 

larger than its initial adsorption rate obtained in the dark.  

If one does not want to abandon the idea, that the photocatalytic degradation reaction 

occurs according to an Langmuir-Hinshelwood mechanism, one must demand that 

the rate constant of the adsorption under irradiation with UV light is drastically 

increasing. This would inevitably also result in a value for KLH determined 

experimentally under exposure to UV light being greater than the value of KL 

determined from adsorption isotherms in the dark.  

In fact, it was found here that the kinetic parameters KLH are significantly greater 

than the adsorption constants KL for all investigated pH values (KLH / KL ≥ 12.5, cf. 

Table 3.2). A ratio KLH / KL > 1 (i.e., KLH > KL) has also been observed for other 

probe molecules such as salicylic acid and other substituted benzoic acids,26,31 

phenol,27 4-chlorophenol,28,33,34 di- and tri-substituted phenols,32,34,35 acetophenone,30 

and eosin.29 

Matthews has explained the observation of KLH > KL suggesting that reactions 

between freely diffusing OH radicals and the organic substrate occur in the 

suspension in addition to the surface reaction.27 Some authors have suggested this 

discrepancy to be due to photoadsorption followed by a fast photoreaction of the 

probe molecule on the TiO2 surface.26,29 Other authors have attributed this 

observation to a redistribution of the electrons under irradiation possibly altering the 

adsorption sites and thus the substrate-surface interaction.30,35 Ollis has assumed that 

sites associated with the photocatalytic reaction are different to those where dark 

adsorption occurs. Possibly, the reactive adsorption sites are only produced under 
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irradiation.12 The possibility that these new adsorption sites are formed by 

deaggregation of titanium dioxide clusters which are known to be present in aqueous 

suspensions should not be excluded. Deaggregation is decreasing the cluster size and 

increasing the available surface area of the photocatalyst,60,61 and possibly yields new 

high-energy surfaces. It has been shown for very small particles that the dark 

adsorption constant depends on the particle diameter.62–64 This has been rationalized 

with a driving force to decrease the total free energy by adsorption of molecules from 

the surrounding environment.62 The experimental results presented here can only be 

reconciled with a Langmuir-Hinshelwood mechanism by assuming light-induced 

changes of the photocatalyst surface which have a significant effect on the adsorption 

of the probe molecule. 

3.6. Conclusion 

The adsorption kinetics and the adsorption-desorption equilibrium of imazapyr in 

TiO2 aqueous suspensions have been studied in the dark. Adsorption equilibria were 

only established after more than two hours in the dark. The dark adsorption of 

imazapyr has been successfully described by a Langmuir adsorption isotherm; the 

maximum coverage of the surface was found to be pH-dependent. The kinetics of the 

adsorption in the dark was described employing a pseudo-second order rate law.  

The rate of the photocatalytic degradation of imazapyr in the presence of TiO2 was 

also found to be pH-dependent. The observed decrease of the imazapyr concentration 

during irradiation could be described by a first-order kinetics. The dependence of the 

initial reaction rate on the initial equilibrium concentration of the probe molecule in 

the aqueous phase could be described by a Langmuir-Hinshelwood type rate law. 

However, the Langmuir adsorption constants determined from the adsorption 

isotherms of imazapyr in the presence of TiO2 in the dark were smaller than the 

adsorption constant determined from the analysis of the Langmuir-Hinshelwood type 

kinetics of the photocatalytic degradation of the probe molecule. Under the 

experimental conditions of this study the rate of the photocatalytic reactions were 

found to be always higher than the rate of the adsorption of imazapyr in the dark. In 

other words, the overall rate of the photocatalytic oxidation of imazapyr is not 

determined by the dark adsorption of the probe molecule onto the TiO2 surface. 

Consequently, it can be concluded that imazapyr degradation does not follow 

necessarily a Langmuir-Hinshelwood mechanism despite the fact that a rate law 
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having the mathematical form of the Langmuir-Hinshelwood rate law can be used 

successfully to describe the observed dependence of the initial reaction rate on the 

initial concentration. A Langmuir-Hinshelwood mechanism for the photocatalytic 

imazapyr degradation is compatible only with the additional assumption that the 

adsorption-desorption kinetics are also affected by irradiation with UV light, and in 

particular that the adsorption rate increases significantly. 
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3.9. Supporting Information 

SI-3.1 Derivation of Equation 3.2 

In the following, the derivation of the Langmuir-Hinshelwood rate law, as given by 

Ollis,1,2 is summarized. The following nomenclature is used: 

Ct mol L-1 amount concentration of the dissolved (non-adsorbed) probe 

molecule in the suspension 

ka L mol-1 s-

1 

rate constant of adsorption 

kd s-1  rate constant of desorption 

k′r mol-1 s-1 rate constant of the photocatalytic reaction 

kr mol L-1 s-

1 

maximum rate of the photocatalytic reaction 

KL mol-1 Langmuir adsorption constant 

KLH mol-1 constant in Langmuir-Hinshelwood rate law 

nos mol amount of occupied sites 

nox mol amount of oxidizing species at the photocatalyst surface 

nts mol total amount of surface sites 

t min time 

V L total volume of suspension 

 

The Langmuir-Hinshelwood rate law is derived employing the amount balance of 

sites at the photocatalyst surface occupied by the probe molecule during the 

photocatalytic reaction: 

 ( )
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and after rearrangement 
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Inserting Equation (S3.3) into the Equation (3.1) yields 
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SI-3.2 Scheme of the experimental setup used for the photocatalytic 

degradation experiments 

 

SI-3.3 Effect of the photocatalyst concentration on the photocatalytic 

degradation rate 

The photocatalytic degradation of imazapyr employing different mass concentrations 

Cc of TiO2 P25 powder was studied in order to determine the optimum concentration 

of the photocatalyst. As can be seen from the Figure S3.1, the initial 

photodegradation rate increases slowly as the photocatalyst mass concentration is 

increased from 0.5 to 2.5 g L−1, then it decreases when the catalyst concentration is 

beyond 2.5 g L−1, indicating an overload by the photocatalyst at higher 

concentrations. 

From Figure S3.1a, it can be concluded that screening effects of the irradiation, due 

to an excess of TiO2, became dominant. An important fraction of TiO2 nanoparticles 

are not excited by the photons emitted by the lamp resulting in a reduction of the 

photocatalytic activity as reported previously.3,4 It has also been reported that 

excessive photocatalyst concentration may reduce the photocatalytic efficiency by 

formation of the particle agglomerates, which produces light scattering and screening 

effect. Several works have shown that increasing the photocatalyst concentration 

beyond an optimum value is accompanied by a decrease of the photocatalytic 

degradation efficiency of the target substance.5–7 

The normalization of the initial degradation rate to the catalyst mass concentration 

and volume (Figure S3.1b) shows a different behavior than the initial rate in its 

classical form, whereas the normalized initial degradation rate decreases with the 

increase of the catalyst mass concentration, this result can also be explained by the 

fact that the normalization in this case have been performed to the increasing amount 
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of the catalyst (i.e., 0.5 to 5 g L-1) which results in the decrease of the initial 

degradation rate. Furthermore increasing the amount of photocatalyst over the so-

called optimum concentration induces the formation of particle agglomerates in the 

solution. Consequently penetration depth is reduced and the scattering of the incident 

light beam is increased.8 Similar results have been presented by Pizarro et al., who 

have also investigated the influence of the photocatalyst mass concentration in the 

range 0−2.5 g L-1 on the photodegradation of imazapyr. They have assumed that the 

maximum absorption of light is already achieved with the lowest mass of the 

photocatalyst, and that the screening effects of the irradiation due to an excess of 

TiO2 becomes dominant.4  

 

 

 

Figure S3.1. (a) Initial degradation rate of the imazapyr as a function of the 
photocatalyst mass concentration Cc using Aeroxide TiO2 P25. (b) Initial degradation 
rate of the imazapyr normalized to the catalyst mass concentration and volume. 
Experimental conditions: C0 = 80 µmol L-1, V = 100 mL, pH 5. 
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SI-3.4 Initial reaction rates 

Table S3.1. Initial equilibrium concentrations, observed photocatalytic first-order 

rate constants and calculated initial photocatalytic reaction rates. 

pH Ce,0 /  

µmol L-1 

kobs /  

min-1 

rr,0 = kobsCe,0 /  

µmol L-1 min-1 

rr,0 = krKLHCe,0/(1+ KLHCe,0) /  

µmol L-1 min-1 

3 16.9 0.098 1.66 1.45 

 42.4 0.043 1.82 2.10 

 82.6 0.030 2.48 2.45 

 88.0 0.028 2.46 2.47 

 133 0.019 2.53 2.62 

5 17.0 0.087 1.48 1.16 

 41.1 0.039 1.60 1.80 

 81.4 0.029 2.36 2.23 

 101 0.021 2.12 2.34 

 159 0.015 2.39 2.53 

7 17.7 0.054 0.96 0.86 

 43.2 0.025 1.08 1.05 

 78.9 0.017 1.34 1.13 

 92.9 0.011 1.02 1.14 

 140 0.010 1.40 1.18 

Experimental conditions: 20 ≤ C0 ≤ 200 µmol L-1, TiO2 P25, Cc = 2.5 g L-1, V = 100 mL. 

Note: The values of kr and KLH have been taken from Table (3.1). 

 

  



Chapter 3: Kinetics, Adsorption and Photocatalytic Reactions 
 
 

 110 

SI-3.5 Freundlich adsorption isotherms 

The Freundlich isotherm equation is given as  

 𝑞! = 𝑘𝐶
!

!

!         (S3.5) 

k and n are the constants of adsorption density and adsorption intensity, respectively. 

Equation S5 can be linearized: 

 ln 𝑞! = ln 𝑘 +
!

!
ln𝐶!        (S3.6) 

The value of k and n can be estimated from the intercept and slope of the linear plot 

of experimental data of ln qe versus ln Ce. The Freundlich isotherm provides no 

information on the monolayer adsorption density in comparison with the Langmuir 

model. The values of k and n from the linearized plots are shown in Table S2 

following with the regression correlation coefficients. The parameter k related to the 

adsorption density increased with increasing pH. The meaning of n > 1.0 indicates 

that imazapyr was adsorbed favorably onto the TiO2 surface at different pH values. 

 

Table S3.2. Fitting parameters of the Freundlich adsorption isotherm of imazapyr 

onto TiO2 at different pH values. 

Substrate TiO2 P 25   

pH 3 5 7 

Freundlich isotherm constants    

n 3.60 2.023 1.71 

k 323.27 367.9 553.18 

R
2 0.996 0.967 0.915 

Experimental conditions: 100 ≤ C0 ≤ 2000 µmol L-1, TiO2 P25, Cc = 5 g L-1, V = 100 mL. 

 

 

 

 

 

 

 

 

 

 



Chapter 3: Kinetics, Adsorption and Photocatalytic Reactions 
 
 

 111 

SI-3.6 Lagergren adsorption kinetics 

The Lagergren pseudo-first order model is believed to be the earliest model 

pertaining to the adsorption rate based on the adsorption capacity.9,10 It can be 

presented as follows: 

 
!"!

!"
= 𝑘!(𝑞! − 𝑞!)       (S3.7) 

where qt (in µmol/g) is the amount of adsorbate adsorbed at time t, qe (in µmol/g) is 

the adsorption capacity in the equilibrium, k1 (in min−1) is the pseudo-first-order rate 

constant, and t is the contact time (in min).11 The Lagergren equation represents the 

pseudo-first order kinetics for the whole adsorption reaction, with a one-partial order 

with respect to the free concentration sites, and a zero-partial order with respect to 

the solute in the solution. Integrating the Equation (S3.7) with the boundary 

conditions of qt=0 at t=0 and qt=qt at t=t, yields: 

 ln
!!!!!

!!
=  𝑘!𝑡        (S3.8) 

 
Table S3.3. The parameters of adsorption kinetics model fitting obtained at different 
pH values. The initial imazapyr concentration is 126.5 µmol L-1 and the catalyst 
amount is 5 g L-1. 

Substrate TiO2 P 25   

pH 3 5 7 

Lagergren kinetic constants    

qe (µmol g-1)  5.82 4.52 2.24 

k1 (min-1) 0.026 0.0241 0.0202 

R
2 0.991 0.984 0.969 

Experimental conditions: C0 = 126.5 µmol L-1, TiO2 P 25, Cc = 5 g L-1, V = 20 mL. 
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SI-3.7 Initial adsorption rate  

The initial adsorption rates (calculated employing Equation 3.12) as function of the 

pH, and as function of the mass concentration of the photocatalyst are presented in 

the Figure S3.2. 

 

 

Figure S3.2. (a) Initial adsorption rates vs. pH, and (b) initial adsorption rates vs. 
catalyst concentration. Experimental conditions: (a) C0 = 80 µmol L-1, TiO2 P25, Cc 
= 2.5 g L-1, V = 20 mL, (b) C0 = 80 µmol L-1, TiO2 P25, pH 5, V = 20 mL. 

 

The initial adsorption rate decreases with the increase of the pH value from pH 3 to 

pH 7 (Figure S3.2a). The same behavior has been observed for the initial 

photocatalytic degradation rate, and explained to be due to the interactions between 

imazapyr species and the TiO2 surface. Furthermore the Figure (S3.2b) shows the 

variation of the initial adsorption rate as function of the photocatalyst concentration. 

The initial adsorption rate decreases with the increase of the catalyst loading from 

0.5 g L-1 to 2.5 g L-1, and increases with increasing the catalyst concentration from 

2.5 g L-1 to 5 g L-1. The increase of the initial adsorption rate can be explained by the 

fact that in the presence of high catalyst amounts, more adsorption sites are available. 

However the values of the initial adsorption rate are almost comparable when taking 

the experimental error into account. 

 

 

 

 

 



Chapter 3: Kinetics, Adsorption and Photocatalytic Reactions 
 
 

 113 

SI-3.8 Comparison between the initial adsorption rates and the initial 

photocatalytic reaction rates  

 

Table S3.4. Calculated initial adsorption and reaction rates at different pH values 

and initial equilibrium concentrations. 

pH Ce,0 /  

µmol L-1 

2

e,0L

e,0Lm

aa,0
1

' = ⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛

+ CK

CKq
kr / 

µmol g-1 min-1 

 
( )

e,0LH

e,0LH

r,0
1

 = 
CKm

CKVk
r

r

+
/ 

µmol g-1 min-1 

3 16.9 0.03  0.58 

 42.4 0.14  0.84 

 82.6 0.41  0.98 

 88.0 0.45  0.99 

 133 0.79  1.05 

5 17.0 0.01  0.47 

 41.1 0.05  0.72 

 81.4 0.17  0.89 

 101 0.24  0.94 

 159 0.48  1.01 

7 17.7 0.01  0.35 

 43.2 0.03  0.42 

 78.9 0.09  0.45 

 92.9 0.12  0.46 

 140 0.23  0.47 

Note: The values of k′a, qm, KL, kr and KLH have been taken from the Table 3.2 and 
Table 3.1. V/m is the reciprocal value of the mass concentration of the photocatalyst 
in the suspension. 
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4.1. Abstract 

Mesoporous TiO2 nanocrystals have been synthesized through sol gel method in 

presence of triblock copolymer as the structure directing agent. The as-prepared TiO2 

nanocrystals have been calcined at different temperatures, i.e., at 400°C, 500°C, 

600°C, 700°C, and 800°C to demonstrate how their structural properties 

(morphology, mesoporosity, crystallite phases and sizes) affect the photocatalytic 

performance. The TEM images indicate that TiO2 nanocrystals calcined at 500 °C 

have a mesoporous structure with particle sizes of approximately 10–15 nm. 

However, the TiO2 calcined at 800 °C shows a lower mesoporosity and particle sizes 

of ~ 75 nm. The photocatalytic performance of the newly synthesized photocatalysts 

has been evaluated through the photodegradation of two different pollutants, i.e., the 

herbicide imazapyr and phenol, and has been compared to that of the commercially 

available nonporous Aeroxide TiO2 P25. For the imazapyr photodegradation, the 

newly synthesized mesoporous TiO2 nanocrystals show an initial degradation rate 

around 2 times higher than the rate observed with the non-porous Aeroxide TiO2 

P25. The highest photocatalytic activitiy is observed for the samples calcined at 

500 °C followed by those calcined at 800 °C. In contrast to that, a different behavior 

is found for the photodegradation of phenol. The results indicate that the TiO2 

samples calcined at 500 °C show the highest photocatalytic activity for phenol 

photodegradation. It is proposed that the behavior of the photocatalysts in term of 

their photocatalytic efficiency and rate constants varies based on the pollutant type. 

TiO2 calcined at 500 °C can be considered as economically more efficient by saving 

energy through the lower temperature required in the calcination process.  

Keywords: Mesoporous TiO2; Calcination temperatures; Photodegradation; 

Herbicide imazapyr; Phenol. 

4.2. Introduction 

Pesticides and phenols are considered to be the most common type of water and 

soil pollutants. Imazapyr is a herbicide belonging to the imidazolinone family, which 

has the ability to damage the plants even at low concentrations [1]. Moreover, 

imazapyr is a persistent herbicide with a high mobility in soils. The half-life of 

imazapyr is found to vary from 21 days to 49 months as observed in field studies. 

Since imazapyr is considered to be groundwater contaminant [1]. Various attempts 

have been made to remove it from the polluted water using Ozone. However, this 
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process is ineffective since an important amount of imazapyr still remains in the 

water [2]. Phenols are also highly toxic organic compounds, found in wastewater and 

effluents coming from the petroleum and chemical industries. Up to now, several 

studies on the decomposition of imazapyr and phenol using Fenton, photo-Fenton 

and electro-Fenton processes have been performed [3-6]. This has led to the 

consideration of heterogeneous photocatalysis as one of the most promising 

advanced oxidation processes. The interest in this scientific field has increased 

during the last decades, since photocatalysis is assumed to be a powerful tool for the 

degradation and remediation of highly toxic pollutants such as imazapyr and phenols.  

The photocatalytic oxidation of imazapyr has been performed in the aqueous 

phase using commercially available Aeroxide TiO2 P-25, Crystal Global PC-500 [7-

9], and PC-500 coated on natural cellulose [10]. However, experimental evidence 

indicates that mixed phases, such as anatase/rutile [11-13], brookite/rutile [14,15], 

and brookite/anatase [16-20], exhibit synergistic effects, thus enhancing the 

photocatalytic activity. The photodegradation of phenol has been extensively studied 

using TiO2 [21-23]. Therefore, it is of great importance to develop methods to 

synthesize TiO2 with particular properties such as crystal sizes and phases, 

mesoporous structures and high surface areas and study their influence on the 

photocatalytic performance. In general, the phase composition and particle size of 

TiO2 prepared by wet processes are dependent on the temperature, the pH, as well as 

on the type and the concentration of the reactants employed in the synthetic reaction 

[11,24-29]. Mesoporous TiO2 nanocrystals are promising materials for photocatalytic 

applications. They have the ability to significantly improve the photocatalytic 

performance compared to the commercially available P-25 [24-29]. In this work, we 

report about the synthesis of mesoporous TiO2 samples and the determination of their 

respective photocatalytic activity with the respect to the degradation of the two 

pollutants imazapyr and phenol. We focus on the relationship between the effect of 

calcination temperature, the phase transformation, and the surface area of the 

synthesized mesoporous photocatalysts. 

 

4.3. Experimental section 

Materials. Ti(OC(CH3)3)4 (TBOT), HCl, CH3OH, C2H5OH, CH3COOH, the block 

copolymer surfactant EO106-PO70EO106 (F-127, EO=–CH2CH2–O–,PO=–CH2(CH3) 
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CHO–, MW 12600 g/mol), phenol, and Imazapyr (C13H15N3O3 > 99%) were 

purchased from Sigma–Aldrich. Scheme 4.1. shows the chemical structure of the 

herbicide imazapyr. H3PO4 and HCl were purchased from Neva Reactifs Russia, 

KNO3 from VEKTON Russia and Methanol from Merck. Aeroxide TiO2 P-25 from 

Evonik, (mainly anatase, with a rutile content of ca. 20 %, primary particle size of 

around 30 nm, and BET surface area of this non-porous material of 50 m² g-1) was 

used as received. Water was purified in a Millipore Mill-Q system (resistivity ≥ 

18 MΩ cm). 

 

Scheme 4.1. Chemical Structure of Imazapyr 

Preparation of mesoporous TiO2. Mesoporous TiO2 nanocrystals were synthesized 

through a simple one-step sol-gel process in the presence of the F127 triblock 

copolymer as the structure directing agent [25-26,30]. In a typical synthesis 

procedure, 1.6 g of F127 was dissolved in 30 ml of ethanol for 60 min and then 

added to 2.3 ml of CH3COOH and 0.74 ml of HCl. Afterwards 3.5 ml of TBOT was 

gradually added to the mixture. The mixture was stirred vigorously for additional 

60 min and transferred into a Petri dish. Ethanol was subsequently evaporated at 

40 °C and a relative humidity of 40 % for 12 h followed by the transfer of the sample 

into a 65 °C oven, and the aging for additional 24 h. The as-made hybrid materials 

were calcined at 400 °C, 500 °C, 600 °C, 700 °C, and 800 °C in air for 4h with a 

heating rate of 1 °C/min and a cooling rate of 2 °C/min to remove the surfactant and 

to obtain mesoporous TiO2 nanocrystals denoted as T-400, T-500, T-600, T-700, and 

T-800 according to the calcination temperatures. 

Characterization. X-ray diffraction data were acquired on a Bruker AXS D4 

Endeavour X diffractometer using Cu Kα1/2, λα1=154.060 pm, λα2 = 154.439 pm 

radiation. Transmission electron microscopy (TEM) was performed at 200 kV with a 

JEOL JEM-2100F-UHR field-emission instrument equipped with a Gatan GIF 2001 

energy filter and a 1k-CCD camera in order to obtain EEL spectra. The nitrogen 
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adsorption and desorption isotherms at −196 °C were determined using a 

Quantachrome Autosorb 3B. All the samples were vacuum-dried at 200 °C overnight 

before the measurment. The Barrett-Joyner-Halenda (BJH) model with Halsey 

equation was employed to analyze the sorption data. Raman spectroscopy was 

carried out using a Bruker Senterra dispersive Raman microscope. The spectra were 

taken to the powder samples exposed to air in the range from 0 to 1555 cm−1 using a 

laser excitation wavelength of 532 nm and laser power of 2 mW. Diffuse reflectance 

spectroscopy (DRS) was employed to measure the bandgap energy of the prepared 

photocatalysts. A Varian Cary 100 Scan UV-vis system equipped with a Labsphere 

integrating sphere diffuse reflectance accessory was employed to record the 

reflectance spectra of the samples at 200–800 nm [31]. The diffuse reflectance mode 

(R) was transformed to the Kubelka-Munk function F(R) to separate the extent of 

light absorption from scattering. Furthermore, the band gap values were calculated 

based on the modified Kubelka–Munk function (F(R)E)1/2) and the energy of the 

absorbed light E as follows in Eq. (4.1) [32].  

F(R)E
1/2 = 

2
1

2

2

)1(
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
×

−
υh

R

R        (4.1) 

The band gap energy was determined from the intersection of the tangent through the 

point of inflexion in the absorption band and the photon energy axis (Fig. 5b). 

Photocatalytic activity tests. Mesoporous TiO2 nanocrystals were dispersed in 

50 ml of water (Ccat=1 g l−1) in addition to 10 mmol l−1 KNO3, by sonication and 

shaking in an ultrasonic bath for 15 min. KNO3 was added to keep the ionic strength 

of the solution constant throughout the experiment. An aliquot of a stock solution of 

the organic substrate 21.25 mmol l−1 in case of phenol, and 7.65 mmol l−1 in case of 

imazapyr was added to the suspension to establish the desired initial concentration of 

0.27 mmol l−1 phenol and 0.08 mmol l−1 imazapyr. The pH value of the suspension 

was adjusted to pH 3 using HCl standard solution. The suspensions were stirred at 

300 rpm overnight in a closed borosilicate glas beaker to reach adsorption 

equilibrium. Irradiation experiments were conducted under top illumination of a 

borosilicate glas beaker with a setup consisting of a 1000 W Hg-Xe lamp (Newport 

6295NS) equipped with a 10 cm water filter outlet and dichroic Beam Turning 

Mirror (66232 Newport Technology) (Scheme 4.2.). Before illumination, 1 ml of the 

previously equilibrated suspensions was analyzed, being considered as the initial 

equilibrium concentration. The photoreactor was filled with 50 ml of the equilibrated 
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suspension and magnetically stirred at 300 rpm while being air-bubbled. Afterward, a 

shutter was removed and the reactor was illuminated under continuous stirring. The 

temperature of the liquid phase, periodically monitored during the experiment, was 

25±1 °C. For kinetic studies, samples were taken at regular time intervals and were 

analyzed directly using the High Performance Liquid Chromatography (HPLC) 

analysis. The analysis of phenol and imazapyr concentrations was performed with a 

HPLC system from Agilent Technologies 1260 Infinity composed of a G1311C-1260 

Quat pump and a G1365D-1260 MWD UV detector adjusted to 270 nm in case of 

phenol and 254 nm in case of imazapyr. An Agilent Eclipse plus C18 column 

(100 mm Long × 4.6 mm i.d., 3.5 µm particles) working at room temperature was 

employed as the stationary phase, and a mixture of methanol and water (30:70 %v/v) 

operating at pH 3 by adding H3PO4 as the mobile phase. The flow rate was kept 

constant at 0.8 ml/min. A peak attributed to phenol was observed at a retention time 

of 4.80 min and to imazapyr at 4.60 min. Calibration curves (R2 
˃ 0.999) of aqueous 

solution of phenol and imazapyr were obtained by measuring 6 different 

concentrations in the range between 0 and 0.27 mmol l−1, and 0 and 0.08 mmol l−1, 

respectively. It is worth noting that, the photodegradation experiments and the HPLC 

analysis were performed 2-3 replicates, allowing initial reaction rates to be obtained 

with a mean experimental error of about ±5% to10%. This error is considered to be 

the sum of the HPLC instrument error and the error intrinsic to mathematical 

calculations from the experimental concentration vs. time plots. 

 

Scheme 4.2. Schematic of the experimental setup. 
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4.4. Results and Discussion 

Structural Investigations. Mesoporous TiO2 has been synthesized through a simple 

one-step sol-gel process in the presence of F127 as the structure directing agent 

followed by the calcinations of the samples at 400 °C, 500 °C, 600 °C, 700 °C, and 

800 °C. Fig. 1 shows the XRD patterns of the mesoporous TiO2 nanocrystals at 

different calcination temperatures. The diffraction patterns can be indexed to the 

anatase and rutile phases for all prepared samples. The XRD data show that a 

biphasial anatase and rutile mixture (53.86 %/46.14 %) is formed at 400 °C (Figure 

4.1. and Table 4.1). Furthermore, (73.25 %/16.75 %) anatase/rutile mixed phase is 

obtained in the sample T-500. The increase of the calcination temperature is 

accompanied with a decrease in the intensity of the peaks assigned to the anatase 

phase, whereas, the additional rutile phase is formed to reach a rutile/anatase ratio of 

(81.90%/18.10%) in the T-800 sample (Fig 4.1 and Table 4.1.). These results 

indicate that the phase transformation from anatase to rutile nanoparticles is 

associated to the increase of the calcination temperature. 

 

Figure 4.1. XRD patterns of mesoporous TiO2 calcined at 400 °C (a), 500 °C  (b), 
600 °C (c), 700 °C (d), and 800 °C (e) for 4 h. Shifted for sake of clarity. 

 

The crystallinity of the TiO2 samples and their phase transformation during 

calcination are also confirmed by Raman spectroscopy (Figure 4.2.). For the T-400 

and the T-500 samples, five of the six Raman active modes at 148 cm−1 (Eg), 

197.5 cm−1 (Eg), 396.9 cm−1 (B1g), 517.0 cm−1 (B1g), and 639.9 cm−1 (Eg) are 

assigned to correspond to the anatase phase with only a weak rutile phase 

contribution [33]. However, with increasing calcination temperatures from 500 to 
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800 °C, the peak, which is referred to the TiO2 anatase phase at 148 cm−1, is slightly 

blue shifted to 143.7 cm−1 as a result of the crystal growth and the phase 

transformation of the TiO2 nanocrystals from the anatase to the rutile phase thus 

increasing the ratio. For the T-800 sample, the rutile phase yields typical bands, with 

the three Raman active modes being assigned at 143 cm−1 (B1g), 435.7 cm−1 (Eg), 

and 611.1 cm−1 (A1g), respectively [34]. However, even at the highest calcination 

temperature employed here, i.e., at 800 °C, the anatase phase is still found to co-exist 

with the rutile phase. The Raman spectra are in good agreement with the result 

obtained from the XRD analysis. 

 

Figure 4.2. Raman spectra of mesoporous TiO2 calcined at 400 °C, 500 °C, 600 °C, 
700 °C, and 800 °C for 4 h. 

 

N2 adsorption isotherms and pore size distributions (inset) of all prepared 

photocatalysts are shown in Figure 4.3. The results show a typical type IV adsorption 

behavior and a H2 hysteresis loop of the adsorption/desorption branches as 

characteristics of the isotherms of the T-400, T-500, T-600, and T-700 samples. At 

the low calcination temperatures (400 °C and 500°C), the relative pressures p/p0 

between 0.45 and 0.9 are characteristic for the regularity and the uniformity of the 

prepared photocatalysts. The mesoporous TiO2 T-400 has a surface area of 165 m2g–1 

and pore volume of 0.441 cm3g–1. As the calcinations temperature increases from 

400 °C to 700 °C, the specific surface area and pore volume decrease, whereas the 

mean pore size increases (Table 4.1.). This is related to the transformation in the 

morphology, which is presumably driven by the growth of the nanocrystallites inside 

the pores. Some of the formed large TiO2 nanocrystals can thrust into the channels 

100 200 300 400 500 600 700

0

5000

10000

15000

20000

R
am

an
 i

n
te

n
si

ty
/ 

a.
u
.

Raman shift / cm
-1

 T-400

 T-500 

 T-600

 T-700

 T-800 



 Chapter 4: Mesoporous TiO2 Nanocrystals as Efficient Photocatalysts 
 

 123 

and block the mesopores [35]. For the T-800 sample, the absence of the hysteresis 

loop shows that this sample exhibits the behavior that the packing of rather large 

(nano)particles can be regarded as irregular voids [25]. However, some mesoporosity 

is particularly evident from the TEM images (Figure 4.4e.). 

 

Figure 4.3. N2 sorption isotherms and pore size distribution (inset) of the 
mesoporous TiO2 calcined at 400 °C (a), 500 °C  (b), 600 °C (c), 700 °C (d), and 800 
°C for 4 h. 
 

The TEM images of the mesoporous TiO2 nanocrystals calcined at 500 °C and 

800 °C are shown in Fig. 4. For the T-500 sample, an interparticulate mesoporous 

structure is clearly visible (Figure 4.4a). The TiO2 nanoparticles have a size of 

approximately 10-15 nm and form agglomerates of approximately 1-3 µm in size. 

The dark-field TEM image of the TiO2 sample calcined at 500 °C shows the 

mesoporous structure of TiO2 nanoparticles (Figure 4.4b). HRTEM images of the 

lattice fringes show the typical distances for the anatase phase, i.e., TiO2 (101) (3.52 

Å) (Figure 4.4c). The selected area electron diffraction (SAED) patterns additionally 

emphasize that the anatase nanocrystals are composed (Figures 4.4c, inset). In 

contrast to that, in the T-800 sample, the TiO2 nanoparticles have a size of 

approximately 50-75 nm and form agglomerates of approximately 1-5 µm in size 

(Figure 4.4d). The packing of TiO2 nanoparticles in agglomerates shows some 
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mesoporosity (Figure 4.4e). The high-resolution TEM micrograph (Figure 4.4f) 

shows the rutile and anatase lattice. The corresponding Fourier transform (Figure 

4.4f, Inset) confirms the orientation of the anatase and the rutile nanoparticles. Thus 

exhibit mainly (101) and (110)-type facets, respectively (Figure 4.4f). 

 

 

Figure 4.4. TEM image of mesoporous TiO2 calcined at 500 °C (a), the dark-field 
TEM image of mesoporous TiO2 calcined at 500 °C (b), HRTEM image of 
mesoporous TiO2 calcined at 500 °C (c), The insets show the SAED patterns for the 
anatase phase (c), The dark-field TEM image of mesoporous TiO2 calcined at 800 °C 
(d and e), HRTEM image of mesoporous TiO2 calcined at 800 °C. 
 

Table 4.1. Textural properties of mesoporous TiO2 calcined at 400°C, 500°C, 600°C, 
700 °C, and 800 °C and commercial P-25 and their photocatalytic performances. 
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Diffuse reflectance UV-Vis spectra of the prepared TiO2 calcined at 400 °C, 

500 °C, 600 °C, 700 °C, and 800 °C are given in Fig. 5. As shown in Fig. 5a, as the 

calcination temperature increases, the absorption edge is gradually shifted from 

398 nm to 408 nm, revealing that the band gap energy values of the obtained 

mesoporous TiO2 decrease as a result of the increase in the rutile/anatase ratio. The 

band gap energies of T-400, T-500, T-600, T-700, and T-800 photocatalysts 

estimated from the tangents are 3.06, 3.03, 3.01, 3.0 and 2.94 eV, respectively. The 

light absorption of T-800 is obviously lower than that of the prepared samples 

calcined at low temperature, in the range from 250 to 400 nm. 

Photocatalytic Degradation of Imazapyr and Phenol. The photocatalytic 

performance of the prepared mesoporous TiO2 nanocrystals calcined at the above 

mentioned temperatures for the photodegradation of both pollutants imazapyr and 

phenol were compared to that of the commercial P-25 (Figures 4.6. and 4.7.). 
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Figure 4.5. Diffuse reflectance spectra of mesoporous TiO2 calcined at 400 °C, 500 
°C, 600 °C, 700 °C, and 800 °C for 4 h (a). Plot of transferred Kubelka–Munk vs. 
energy of the light absorbed (b). 

 

At first, the discussion will focus on the photocatalytic degradation of imazapyr 

(Figure 4.6). The photodegradation of imazapyr was performed in an aqueous 

solution by photolysis using UV light without photocatalyst. The results indicate that 

the degradation of imazapyr is negligible without photocatalyst, which indicates that 

imazapyr cannot easily be degraded by UV illumination. The initial concentration of 

the imazapyr has also been calculated before and after the dark adsorption. The 

adsorbed amount of imazapyr onto the surface and pores of TiO2 nanocrystals for all 

the prepared samples is found to be around 7 %.  Figure 4.6. shows the change in the 

imazapyr concentration as a function of the illumination time using T-400, T-500, 

T-600, T-700, T-800, and P-25 photocatalysts. All the prepared photocatalysts 

exhibit a promising behavior under UV illumination. However, the synthesized 

mesoporous TiO2 nanocrystals calcined at different temperatures have shown a better 

photocatalytic activity than the commercial P-25. From the results, it is obvious that 

the imazapyr’s percentage of photodegradation using the T-500 photocatalyst is 

100 % whereas only 74 % of the photodegradation has been reached in presence of 

the commercial P-25 after 120 minutes, indicating a higher photocatalytic activity of 

the mesoporous T-500 photocatalyst in case of imazapyr (Figure 4.6a). With the help 

of a linear regression, the rate constants for the performed experiments are calculated 

on the basis of the natural logarithm (ln) of the imazapyr concentration and the 

illumination time, i.e., first-order degradation kinetics. This rate constant is employed 
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to calculate the initial photodegradation rates for the photooxidation of imazapyr 

using the formula: -d[A]/dt = kc
n where k is the rate constant, c the concentration of 

the imazapyr, and n the order of the reaction. 

 

 

 

Figure 4.6. Change of the imazapyr concentration as a function of the illumination 
time using T-400, T-500, T-600, T-700, T-800, and P-25 photocatalysts (a), 
comparison of the initial degradation rate of imazapyr in the presence of commercial 
P-25, T-400, T-500, T-600, T-700, and T-800 photocatalysts (b). Photocatalyst 
loading, 1 g l−1; 0.08 mmol l−1 aqueous solution of imazapyr (O2

 saturated, pH = 3; 
T = 25 ± 1 oC); reaction volume 50 ml. 

 

The initial degradation rate of imazapyr using the synthesized mesoporous TiO2 

increases from 0.0013 mmol l−1 min−1 to 0.0029 mmol l−1 min−1 with an increase of 

the calcination temperature from 400 to 500 °C, then a decrease to reach 0.0023 
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mmol l−1 min−1 at 600 °C.  Again, the initial rate increases with the increase of the 

calcination temperature from 700 to 800 °C. The initial photodegradation rate of 

imazapyr using both, the T-500 and the T-800 samples, is similar. The results 

indicate that the initial rate using T-500 and T-800 is around 3 times higher than in 

case of the Aeroxide P-25. 

The difference in the photocatalytic activity of the mesoporous samples prepared 

at different calcination temperatures compared to P-25 can be explained by several 

effects, such as a lower light scattering effect of the mesopores and higher 

cumulative �OH inside the pores [26, 36]. This effect can be attributed to the high 

dispersion of mesoporous TiO2 nanocrystals in aqueous solution due to the smaller 

particle size compared to the nonporous P-25. Also, the imazapyr molecule is easily 

transported and diffused to the active sites of the mesoporous TiO2. However, it is 

hindered in the case of the nonporous P-25 photocatalyst. In addition, the results 

reveal that the surface area of the material is not the reason for the enhancement of 

the photocatalytic activity in the present system. This, due to the fact that the 

activities of the T-500 and T-800 samples are almost similar, in spite of the surface 

area of the T-500 (120 m2 g−1) being 8 times higher than that of the T-800 sample 

(15 m2 g−1). It can be concluded that the phase transformation, in this case the 

anatase/rutile ratio is playing the major role for improving the photocatalytic 

performance of the prepared samples. As can be seen in Table 1 and as the results of 

the structural investigations have already shown, the percentage of the anatase phase 

increases starting from 53.86% for the T-400 to reach 73.25% for the T-500 sample, 

then it gradually decreases as result of the transformation to the rutile phase which 

itself increases in percentage to reach 81.9% for the T-800 sample. However in the 

T-800 sample, the surface area is decreased while the rutile to anatase ratio is 

increased. This crystalline rutile/anatase ratio (81.9%/18.1%) in the T-800 sample is 

the responsible for the production of reactive �OH radicals. Under such conditions, 

the probability of formation of these active species should be much higher compared 

to the results obtained using the T-600 and T-700 samples which have shown a slight 

downtrend in the photodegradation of imazapyr. This can be explained by the 

difference in the anatase/rutile ratios, implying that in this system, the appropriate 

rutile/anatase ratio is essential for a complete reaction. Based on the result above we 

suggest that the following has occurred: The T-800 sample has a lower surface area 

and lost its mesporous structure, however, due to the high crystalline rutile/anatase 
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mixed phase formation, it has a synergetic effect. This leads to a better charge 

separation, and an increase of the photocatalytic activity, by transferring the excited 

electrons from one phase to the other, which decreases the probability of the charge 

carriers recombination [37]. However, the T-500 sample must be considered as 

efficient due to its structure and ordered morphology. 

Furthermore, it was expected that the behavior of the prepared photocatalysts for 

the phenol photodegradation is similar to imazapyr features. However, the results 

indicate that the photodegradation rate of phenol significantly increases at the 

beginning, and then shows a downward trend when the calcination temperature 

increases (Figure 4.7a). The photocatalytic efficiency of phenol using the T-500 

sample is 100 % within 2 hours, however, the photocatalytic efficiency decreases to 

80% using the T-800 sample (Figure 4.7b). The initial degradation rate of the T-500 

sample is approximately twice as high compared to the rate of the commercial P-25. 

The photocatalytic degradation of phenol could be significantly increased using the 

T-500 sample (73.25 % anatse/16.75 % rutile), compared to the T-800 sample with a 

rutile/anatase ratio of (81.9%/18.1%) (Figure 4.7). The higher surface area, the 

crystallinity, and the mesoporous structure of the T-500 sample led to improve the 

adsorption capacity, indicating high active sites on the surface. This is assumed to be 

the main feature responsible for the higher photocatalytic activity of the T-500. In 

general, it is concluded that the behavior of the phototcatalyst in term of 

photocatalytic efficiency and degradation rate is different according to the type of 

pollutant. 
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Fig. 4.7. Change of the phenol concentration as a function of the illumination time 
using T-400, T-500, T-600, T-700, T-800, and P-25 photocatalysts (a), comparison 
of the initial degradation rate of phenol in the presence of commercial P-25, T-400, 
T-500, T-600, T-700, and T-800 photocatalysts (b). Photocatalyst loading, 1 g l−1; 
0.27 mmol l−1 aqueous solution of phenol (O2

 saturated, pH = 3, T = 25 ± 1 oC); 
reaction volume 50 ml. 

4.5. Conclusions 

TiO2 nanocrystals have been synthesized through a facile method using the F127 tri-

block copolymer as a template. The as-prepared hybrid meso-structures have been 

calcined at different temperatures to study their structural influence on the 

photocatalytic properties. The mesoporous TiO2 photocatalysts are photocatalytically 

active, and show a higher activity for the decomposition of both pollutants, imazapyr 

and phenol, compared to the commercially available Aeroxide TiO2 P-25. Also, the 

initial degradation rate of T-500 and T-800 is 3 times higher than P-25 for the 

photodegradation of imazapyr. In contrast to that, the initial degradation rate of T-

500 sample is approximately twice the rate of the P-25 for photodegradation of 

phenol. The mesoporous structure, the morphology, the crystal growth, the phase 

transformation, and the surface area of the synthesized materials influence on the 

photocatalytic activity. Therefore, It is concluded that the behavior of the 

phototcatalyst in term of initial degradation rate is different based on the pollutant 

type.  In addition, the low calcination temperature leads to the homogeneity, the 

regularity and the uniformity of the pores. However, higher calcination temperature 

leads to higher crystallinity of the synthesized materials. Based on the results, 

mesoporous TiO2 T-500 is an efficient material for the depollution of water from the 
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organic contaminants. Furthermore, the T-500 is considered to be a more viable 

photocatalyst as compared to the T-800 since for their preparation energy can be 

saved in the calcination process. 
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Chapter 5 

Summarizing Discussion 

This chapter begins with the discussion of the insight on the surface interactions 

between the model compound (i.e., imazapyr) and the TiO2 surface obtained by an 

ATR-FTIR adsorption study, followed by the interpretation of the formed surface 

complexes. The role that these surface complexes may specifically play under 

illumination and the role that the adsorption generally plays in the overall 

photocatalytic process will be the focus of the discussion based on the results 

obtained by ATR-FTIR and the photocatalytic degradation studies. Finally, the 

design and synthesis of new materials being efficient for the photocatalytic 

degradation of imazapyr are also discussed. 

As mentioned before, it is important to investigate the adsorption of organic 

compounds on the catalyst surface to reveal the importance of this process for the 

photocatalytic degradation. Nevertheless, the influence of diverse parameters on the 

adsorption behaviour has to be considered. Several parameters are known to 

influence the adsorption of organic molecules on TiO2 surfaces, such as, the specific 

surface area, and the reaction pH (i.e., surface charge, and ionic forms of the organic 

molecule). Moreover, the surface shape of the material (i.e., the exposed faces and 

the presence of surface defects) as well as the presence of contaminant molecules on 

the surface should also be taken into account. 

The adsorption on the TiO2 surface is affected by electrostatic interactions. The 

organic compound employed here, i.e., imazapyr dissolved in water presents five 

distinct species with different charge depending on the pH of the solution 

(Figure 5.1a). Furthermore, the TiO2 surface is predominantly positively charged at 

pH values below the pHzpc, neutral at pHzpc, and negatively charged at pH values 

above the pHzpc (Figure5.1b) (i.e., Evonik Aeroxide TiO2 P25 has pHzpc in the range 

6.25-6.9). Thus, electrostatic attraction or repulsion between the semiconductor 

surface and the organic species should be considered depending on the pH of the 

solution. When the adsorption is electro-neutral, it may proceed simply just via the 

exchange of a basic OH surface group with the corresponding organic ligand to form 

inner sphere complexes. 
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Figure 5.1. Different forms of imazapyr (a) (Reprinted with permission from M. 

Faycal Atitar, Ralf Dillert, and Detlef W. Bahnemann. Surface Interactions between 

Imazapyr and the TiO2 Surface: An in Situ ATR-FTIR Study. Journal of Physical 

Chemistry C; 121:4293-4303. Copyright (2017) American Chemical Society), and 

scheme of the protonation and deprotonation of hydroxylated TiO2 surface 

leading to positive and negative charges at the surface (b) (adapted from [1]), 

depending respectively on the pH. 

 

The adsorption of imazapyr onto a TiO2 film has been investigated in-situ using 

attenuated total reflection Fourier transform infrared spectroscopy (ATR-FTIR) to 

disclose the nature of the binding mode of imazapyr at the TiO2 surface. The change 

in spectra of imazapyr as a function of the pH indicates that this interaction is pH 

dependent. This could be attributed to the pH dependent protonation and 

deprotonation of the imazapyr molecule as is evident from the spectra of 

homogeneous imazapyr solutions. However, this pH dependency in the presence of a 

TiO2 layer is associated to different interaction modes between the imazapyr species 

present in the solution and at the TiO2 surface. 

The identification as well as the interpretation of different bands assigned to the 

main functional groups of the probe molecule was performed with the help of 

previously published works presenting IR studies of adsorbed molecules having 

similar functional groups as imazapyr. The respective analysis of the spectra 

indicated that imazapyr is covering the TiO2 surface as a bidentate and/or bridging 

ligand over the investigated pH range. Additional information concerning the 

structure of the adsorbates has been obtained from previously published work [2]. 

These are based on the calculated charge densities of the different imazapyr species 
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in the aqueous phase and a dihedral angle equivalent to N3(imidazol)−C2(imidazol)− 

C2(pyridine)−N1(pyridine) given as 212°. It has been concluded that the adsorption 

occurs mainly through the carboxylic oxygen. Furthermore, the interaction is more 

favourable between the deprotonated imazapyr molecule (Figure 5.2) and the 

protonated TiO2 surface as TiOH2+. 

 

Figure 5.2. Favored mode of interaction between deprotonated imazapyr species and 
the positively charged TiO2 surface leading to the bridging ligand. 

 

Hence, from this spectral evidence the adsorption of imazapyr at the TiO2 surface 

results in different surface-adsorbed species as depicted in Figure 5.3. The adsorption 

of imazapyr onto the TiO2 surface is favoured at pH values below the point of zero 

charge of TiO2. Upon adsorption, the carboxylic acid group of imazapyr binds at 

surface Ti(IV) centers mainly as a bridging ligand at acidic pH (i.e., pH < pHzpc). 

With increasing pH values (in alkaline medium) the binding of imazapyr to the 

surface becomes less favourable, this is due to the fact that both imazapyr as well as 

the TiO2 surface are negatively charged leading to electrostatic repulsion. 

Presumably, imazapyr dissociatively adsorbs through the contribution of the pyridine 

ring and the N−C=O moiety of the imidazole ring. 

From the above discussion, two important points should be taken into account. 

The first issue concerns the pH effects on the adsorption. The influence of 

electrostatic interactions was mentioned to be the cause of decreasing adsorption 

with increasing pH. This is not only the result of changing the pH of the solution, but 

may also be affected by the ionic strength of the electrolyte solution. The Debye 

length determines the length scale at which electrostatic interactions between 

charged particles are screened. Furthermore, it has been suggested that the charging 

behaviour of nanostructured surfaces may have important consequences for 

adsorption processes as well as for surface interactions. 
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Figure 5.3. Proposed structures of adsorbed imazapyr species on the TiO2 surface at 

different pH values. (Reprinted with permission from M. Faycal Atitar, Ralf Dillert, 

and Detlef W. Bahnemann. Surface Interactions between Imazapyr and the TiO2 

Surface: An in Situ ATR-FTIR Study. Journal of Physical Chemistry C; 121:4293-
4303. Copyright (2017) American Chemical Society). 

 

The electrolyte used in all experiments is 10 mmol L-1 (0.01 M salt) which results 

in a Debye length of 3.1 nm at pH 5 and 7 and 2.9 nm at pH 3 and 9. Since the 

presented data have been obtained at nearly constant Debye lengths, the possible 

effect of the ionic strength cannot be considered to play a significant role for the 

interpretation of the pH effect presented here. However, the probability of screening 

of electrostatic repulsions between the negatively charged imazapyr and the 

negatively charged TiO2 surface, or the formation of surface species due to the 

adsorption of the electrolyte, cannot be excluded. 

The second issue concerns the allocation of the adsorbed species onto the surface, 

the presence of the bidentate surface complex as well as that of hydrogen-bonded and 

other inner- or outer-sphere surface species (which are not proposed in the 

interpretation) is not excluded in the overall interaction. The probability that the 

different adsorbates coexist at the TiO2 surface is also concluded from the spectral 

analysis. The predominance of the above-mentioned adsorbed imazapyr species at 

acidic pH was based on the intensity of the bands assigned to these species. 

However, no specific spectral evidence exists concerning the amount of adsorbed 

species per square nanometer (nm2) at the TiO2 surface. Several studies have 

reported an adequate parameter to compare the adsorption efficiency of different 

powders, that is the number of sites per nm2 (sites/nm2). This parameter provides the 
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information required to determine the number of exchangeable OH groups at the 

surface of the TiO2 sample. Furthermore, the number of sites/nm2 is experimentally 

usually determined from the fluoride adsorption isotherm, since fluoride is 

considered to adsorb onto the TiO2 through a maximal exchange of OH groups. For 

Evonik Aeroxide TiO2 P25 the number of exchangeable OH groups has been given 

in the range [1.7-2.4]/nm2 [3,4]. However this value should be used with care when 

comparing different adsorbed molecules and/or different TiO2 samples. The values 

for the maximum capacity of the adsorbent, qm, and the known surface area of the 

photocatalyst (50 m2 g-1), have been used to calculate the amount of adsorbed 

molecules per unit area for imazapyr. This is found to be 0.616 µmol m-2 (0.37 

molecule nm-2), 0.800 µmol m-2 (0.48 molecule nm-2) and 0.456 µmol m-2 (0.27 

molecule nm-2) at pH 3, pH 5 and pH 7, respectively. With the surface area and the 

density of the photocatalyst (3.8×106 g m-3 for anatase), a radius of 15.8 nm is 

calculated for a single photocatalyst particle. Consequently, a single photocatalyst 

particle with a surface area of approximately 3100 nm2 will be fully covered by 

1162, 1509 and 860 imazapyr molecules at pH 3, pH 5 and pH 7, respectively. One 

imazapyr molecule on the surface thus demands an area between 2.1 and 3.2 nm2. 

These values are in reasonable aggreement with the values calculated from the 

geometry of an imazapyr molecule. 

The results of the ATR-FTIR investigations performed here can be taken as 

experimental confirmation for the results of semi-empirical calculations that have 

been performed earlier by another research group [2]. These researchers have 

reported that the preferential mode of adsorption of imazapyr is the bridging binding 

of the carboxylic group to the TiO2 surface. Moreover, the main product of the 

photocatalytic imazapyr degradation is formed by the direct hole oxidation of the 

carboxyl moiety attached to the pyridine ring followed by subsequent 

decarboxylation (Photo−Kolbe reaction). 

The combination of the experimental results and the theoretical calculations 

published previously allowed a better understanding of some aspects of the 

adsorption as well as of the photocatalytic degradation mechanism of imazapyr. The 

explanation for the mechanism of the photocatalytic degradation of imazapyr 

adsorbed in a bridging form at acidic pH is that the TiO2 surface oxygen atoms 

located directly underneath the adsorbed imazapyr species serve as traps for the holes 

generated by the absorption of UV light. This leads to the generation of oxygen-
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centered radicals in the direct neighbourhood to the target molecule enabling a facile 

interfacial electron transfer from the carboxylate group to these hole traps 

(Figure 5.4). 

 

 

Figure 5.4. Proposed mechanism of the interaction of imazapyr with a terminal 

oxygen radical formed on the TiO2 surface upon light absorption. (Reprinted with 

permission from M. Faycal Atitar, Ralf Dillert, and Detlef W. Bahnemann. Surface 

Interactions between Imazapyr and the TiO2 Surface: An in Situ ATR-FTIR Study. 

Journal of Physical Chemistry C; 121:4293-4303. Copyright (2017) American 
Chemical Society). 

 

The importance of the above-proposed mechanism for the overall photocatalytic 

degradation process still remains unclear. For deeper understanding of the 

mechanism, the approach is to correlate the photocatalytic degradation with the 

adsorption phenomena, taking both the equilibrium and the kinetics into 

consideration. The kinetics of the photocatalytic imazapyr degradation were analyzed 

taking into account the effect of the pH as well as the catalyst loading. However, 

special attention was given to the influence of the reactant concentration. The 

adsorption of imazapyr onto the TiO2 surface has been quantified by isotherms which 

basically indicate the mass of substrate adsorbed (adsorbate) per known mass of 

adsorbent being TiO2 P25 in our case. Furthermore, adsorption kinetics are of great 

significance to evaluate the performance of a given adsorbent and to gain insight into 

the underlying mechanisms. On the other hand, it describes the rate of adsorbate 

uptake by an adsorbent, and controls the equilibration time. 

For this purpose, The photocatalytic degradation of imazapyr was studied in a series 

of experimatal runs at constant volume, temperature, light intensity, and 

photocatalyst loading. The effect of the initial imazapyr concentration was 

investigated in the presence of 2.5 g L-1 of TiO2, being the optimum catalyst loading 

for the photocatalytic imazapyr degradation. The initial substrate (i.e., imzapyr) 

concentration was varied in the range of 15–200 µM. The photocatalytic oxidation of 
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imazapyr obeys first order rate law, and the rate constants was determined from the 

plot of natural logarithm of pollutant concentration as a function of irradiation time. 

The photodegradation kinetics of imazapyr in TiO2 P25 dispersion has been 

modelled to the simple Langmuir-Hinshelwood (L-H) model. The linear relationship 

indicate that the degradation kinetics under UV illumination apparently follow the 

L-H model which is a manifestation of the general case of saturation-type kinetics. 

The adsorption of imazapyr onto TiO2 nanoparticles (i.e., Evonik Aeroxide TiO2 

P25) was studied at different pH values. The results show that the dark adsorption of 

imazapyr is rather fast at initial times but reaches the equilibrium concentration only 

after about 120 min. The final equilibrium seems to be established within 3 hours. 

The highest adsorbed amount of imazapyr is obtained at pH 3, while this amount 

decreases with an increase of the pH value. 

The analysis of the adsorption equilibrium data, using Langmuir and Freundlich 

models, has shown good fitts to both models, and that a strong interaction between 

TiO2 and imazapyr can be expected. It is worth to note that the Langmuir model 

assumes the adsorption energy to be uniform across the entire surface without any 

interaction between the adsorbed species. Furthermore, only chemical interactions 

are considered. Thus, only monolayers of the adsorbate can be formed on the surface 

of the adsorbent. In contrast, the Freundlich model does not assume energetic 

equivalence among the adsorption centres. On the other hand, The experimental data 

of the adsorption kinetics have been analyzed using two different models. From the 

values of the correlation coefficient it has been concluded that pseudo-second order 

model describes the adsorption kinetics of imazapyr onto TiO2 rather well. 

The results of the adsorption experiments indicate that the maximum monolayer 

capacity of adsorbent is 30 µmol g-1 at pH 3, and increases to 40 µmol g-1 at pH 5, 

whereas it decreases to 23 µmol g-1 at pH 7. On the other hand, the different values 

determined for the Langmuir constant KL indicate that the adsorption density is 

higher at pH 3 because of limitations of the TiO2 adsorption capacity whereas the 

value of the Langmuir adsorption constant decreases with increasing pH. Assuming 

an initial equilibrium imazapyr concentration of 100 µmol L-1 in the liquid phase, it 

is calculated that the amount of imazapyr adsorbed at the TiO2 surface in the dark is 

decreasing from 9.6 µmol g-1 at pH 3 to 2.9 µmol g-1 at pH 7. If the amount of the 

organic molecules (imazapyr) adsorbed on the surface of the photocatalyst is decisive 

for the rate of the photocatalytic degradation, it is expected that the photocatalytic 
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degradation rate as well as the rate of imazapyr adsorption follows the same trend: at 

pH 3, the rates should therefore be the highest and the rates should decrease with 

increasing pH. In fact, this decrease of the rates with increasing pH was observed for 

both, the photocatalytic degradation and the adsorption, in the experimental runs 

performed here. The pH dependence of the determined rates for the adsorption and 

the photocatalytic degradation on the basis of electrostatic interactions between 

imazapyr and the TiO2 surface can be explained. This explanation does not contradict 

the assumption that the probe molecule is photocatalytically degraded by a 

Langmuir-Hinshelwood mechanism. However, this mechanism presupposes that the 

rate of the photocatalytic reaction rate is smaller than or equal to the rate of imazapyr 

adsorption (rr ≤ ra). But the adsorption equilibria in the dark were only established 

after more than two hours.  

To compare between these rates, the initial reaction rates, rr,0, of the imazapyr 

degradation have been calculated considering the concentration of the photocatalyst 

in the aqueous suspension. The initial adsorption rates of imazapyr, ra,0, have been 

calculated using the pseudo-second order model equation with the initial condition 

qt = 0 at t = 0. The amount of the adsorbed substrate qe in the initial equilibrium was 

calculated employing the parameters of the Langmuir isotherm.  

The calculation of the initial adsorption rates has been performed for different 

initial imazapyr concentrations to reveal the correlation to the initial degradation rate, 

as well as the effect of the initial concentration of imazapyr. However, the 

comparison of the initial imazapyr degradation rates with the initial imazapyr dark 

adsorption rates at different pH values show that the initial photocatalytic reactions 

are always faster than the dark adsorption. In other words, the initial photocatalytic 

degradation rate of imazapyr was found to be 2–3 times larger than its initial 

adsorption rate obtained in the dark.  

If it is assumed that the photocatalytic degradation reaction occurs according to an 

Langmuir-Hinshelwood mechanism, one must demand that the rate constant of the 

adsorption under irradiation with UV light is drastically increasing. This would 

inevitably also result in a value for KLH determined experimentally under exposure to 

UV light being greater than the value of KL determined from adsorption isotherms in 

the dark. In fact, it was found here that the kinetic parameters KLH are significantly 

greater than the adsorption constants KL for all investigated pH values (KLH / KL ≥ 

12.5). Such a ratio between these constants has also been observed for other probe 
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molecules as reported by several authors [5,6]. This has been explained by the fact 

that reactions between freely diffusing �OH radicals and the organic substrate occur 

in the suspension in addition to the surface reaction. Another assuption is that sites 

associated with the photocatalytic reaction are different to those where dark 

adsorption occurs. Possibly, the reactive adsorption sites are only produced under 

irradiation. The possibility that these new adsorption sites are formed by 

deaggregation of titanium dioxide clusters which are known to be present in aqueous 

suspensions should not be excluded. It has been shown for very small particles that 

the dark adsorption constant depends on the particle diameter. This has been 

rationalized with a driving force to decrease the total free energy by adsorption of 

molecules from the surrounding environment. 

The experimental results presented here can only be reconciled with a Langmuir-

Hinshelwood mechanism by assuming light-induced changes of the photocatalyst 

surface which have a significant effect on the adsorption of the probe molecule. In 

other words, a Langmuir-Hinshelwood mechanism for the photocatalytic imazapyr 

degradation is compatible only with the additional assumption that the adsorption-

desorption kinetics are also affected by irradiation with UV light, and in particular 

that the adsorption rate increases significantly 

The photocatalytic reaction of imazapyr occurs not only at the TiO2 surface 

involving adsorbed imazapyr species, but also in the aqueous suspension involving 

freely diffusing �OH radicals and the dissolved organic reactant. These species (i.e., 

�OH radicals) can be generated through the oxidative pathway by the reaction of 

valence band holes with H2O/OH- being present at the photocatalyst surface, and/or 

through the reductive pathway by the reaction of conduction band electrons with 

adsorbed molecular oxygen. Hence, it is concluded that the photocatalytic 

degradation of imazapyr involves combination of mechanisms, the direct transfer 

mechanism via holes, and the indirect transfer mechanism via •OH radicals 

(Figure 5.5). 
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Figure 5.5.  Mechanism of the photocatalytic degradation of imazapyr 

 

It has already been mentioned earlier (in the introduction) that several parameters 

affect the kinetics and mechanisms of the photocatalytic process. These parameters 

can be subdivided into those that are intrinsic to the photocatalytic material and those 

that are extrinsic being influenced by the surrounding environment and conditions 

(e.g. pH, ionic strength, and the nature of the solvent). Therefore, the synthesis of 

mesoporous TiO2 nanomaterials was expected to yield new insights into the 

photocatalytic degradation mechanism of imazapyr from the photocatalytic material 

point of view. The focus of this study was the relationship between the effect of 

calcination temperature, the phase transformation, and the surface area of the 

synthesized mesoporous TiO2 photocatalysts with respect to the photocatalytic 

activity using imazapyr as the organic model compound. 

 



Chapter 5: Summarizing Discussion  
 

 145 

 

Figure 5.6. HRTEM images of the T-800 sample calcined at 800°C 

 

Mesoporous TiO2 has been synthesized through a simple one-step sol-gel process 

in the presence of the tri-block copolymer F127 as the structure templating agent 

followed by calcination of the samples at 400 °C, 500 °C, 600 °C, 700 °C, and 

800 °C. The physical characterization of the newly prepared photocatalysts was 

carried out using X-ray diffraction (XRD), transmission electron microscopy (TEM), 

N2 adsorption isotherm, Raman spectroscopy, as well as diffuse reflectance 

spectroscopy (DRS). 

The XRD patterns as well as the Raman spectra revealed that all synthesized 

materials are mixed phase TiO2 (i.e., anatase/rutile). On the other hand, the sample 

T-400 shows very low crystallinity indicating an incomplete transition from 

amorphous to the anatase/rutile structural mixture. Calcination at low temperature 

frequently results in amorphous or poorly crystallized titania with a high surface 

area. For the other samples, the increase of the rutile content was found to be 

associated with the increase in the calcination temperature, i.e., the rutile content 

varies from 17 to 82 % when the calcination temperature is increased from 500 to 

800°C, respectively. Furthermore, the BET surface area of the thus prepared TiO2 

nanocrystals was found to be in the range from 50-165 m2 g-1 and their pore diameter 

ranging from 8.15 to 18.50 nm. For the samples calcined at 800°C the results show 

that the samples are non-porous, where the agglomeration of the large (nano) 

particles leads to irregular voids between the particles. However, some mesoporosity 

is evident from the TEM images (Figure 5.6). 

The photocatalytic performance of these newly prepared mesoporous TiO2 

nanocrystals calcined at the above mentioned temperatures for the photodegradation 

of the model pollutants imazapyr and phenol was compared to that of the commercial 

material Aeroxide TiO2 P-25. All newly prepared photocatalysts were found to be 
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photocatalytically active. Moreover, the initial degradation rate of T-500 (sample 

calcined at 500°C) and T-800 (sample calcined at 800°C) is found to be 3 times 

higher than P-25 for the photodegradation of imazapyr. This is explained by several 

effects such as lower light scattering effect of the mesopores and a higher cumulative 

�OH radical concentration inside the pores. This effect can be attributed to the high 

dispersion of mesoporous TiO2 nanocrystals in aqueous solution due to the smaller 

particle size compared to that of the nonporous P-25. Moreover, the imazapyr 

molecule can easily be transported to the active sites of the mesoporous TiO2 

whereas these processes are hindered in the case of the nonporous P-25 

photocatalyst. Additionally, the results reveal that the surface area of the material 

cannot be regarded as the main reason for the enhancement of the photocatalytic 

activity in the present system. The activities of T-500 and T-800 samples are almost 

similar, in spite of the surface area of the T-500 (120 m2 g-1) being 8 times higher 

than that of the T- 800 sample (15 m2 g-1). 

 

 

Figure 5.7. Two proposed valence and conduction band alignment mechanisms for 

the anatase/rutile interface. the arrows indicate the flow of electrons (holes) in the 

conduction band (valence band). Blue and orange dots represent electrons and holes, 

respectively. Adapted by permission from Macmillan Publishers Ltd: [Nature 

Materials] (David O. Scanlon, Charles W. Dunnill, John Buckeridge, Stephen A. 

Shevlin, Andrew J. Logsdail, Scott M. Woodley. Band alignment of rutile and 

anatase TiO2. 12(9): 798-801), copyright (2013). 

 

It could be concluded that the phase transformation, in this case the anatase/rutile 

ratio, is playing a major role for improving the photocatalytic performance of the 

prepared samples. The T- 800 sample has a lower surface area and has lost its 

mesoporous structure, however, the high crystalline rutile/anatase mixed phase 
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formation apparently leads to a better charge separation and hence an increase in 

photocatalytic activity, by transferring the excited electrons from one phase to the 

other (Figure 5.7), which decreases the probability of charge carrier recombination. 

However, the T-500 sample showed similar efficiency due to its uniform structure 

and its ordered morphology. 
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Chapter 6 

Conclusion and Outlook 

The approach to correlate surface interactions, photocatalytic degradation, and 

adsorption phenomena, taking both the adsorption equilibrium and the adsorption 

kinetics into consideration has improved the fundamental understanding of the basic 

mechanisms involved in the adsorption as well as in the photocatalytic oxidation of 

imazapyr in the presence TiO2. 

The ATR-FTIR technique providing the opportunity to obtain novel information 

concerning interfacial processes in situ has been used to identify several surface 

complexes of imazapyr on the TiO2 surface elucidating possible surface reaction 

mechanisms. Furthermore, the results can be taken as a key for a deeper 

understanding of the mechanisms occurring in the photocatalytic degradation process 

of imazapyr resulting in a newly proposed mechanistic pathway involving the 

participation of the TiO2 surface lattice oxygen as hole traps. 

Depending on the type and degree of interaction, organic species are 

photocatalytically oxidized either via the direct hole transfer mechanism, the indirect 

mechanism via �OH radical intermediates, or a combination of both mechanisms. 

The ATR-FTIR study revealed that imazapyr is strongly adsorbed at the TiO2 surface 

forming bridging carboxylate complexes and other surface complexes involving the 

heterocyclic rings of this probe molecule. The adsorption of imazapyr has been 

successfully described by the Langmuir isotherm. This implies that the TiO2 and the 

imazapyr are strongly interacting. However, the investigation of the adsorption 

kinetics of imazapyr has shown that the adsorption of imazapyr is slow, and reaches 

the equilibrium concentration in the liquid phase after about 120 min. 

the comparison of the initial rate of adsorption obtained in the dark with the initial 

rate of the photocatalytic imazapyr degradation revealed that the photocatalytic 

reaction of imazapyr is always faster than the dark adsorption rate obtained in the 

dark. 

The determined degradation rates can be explained by two different concepts: 

a) The photocatalytic degradation is a surface reaction of adsorbed imazapyr but 

the UV irradiation is not only initiating the degradation reaction but also 
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changing the structure of the photocatalyst, thus, significantly affecting the 

adsorption kinetics of the probe molecule. 

b) The photocatalytic reaction of imazapyr occurs not only at the TiO2 surface 

involving adsorbed species, but also in the aqueous suspension involving 

freely diffusing �OH radicals and the dissolved organic reactant. 

In this respect, it is pertinent to mention here that the efficiency of the charge transfer 

mechanism could also be improved via the synthesis of TiO2 materials. In this work, 

it has been shown that the mesoporous structure, the morphology, the crystal growth, 

the phase transformation, and the surface area of the material determine the 

mechanism as well as the kinetics of the photocatalytic reaction of imazapyr. 

The experimental procedure and methodological analysis presented here can be 

applied to the study of almost any photocatalytic reaction, allowing the illustration of 

the type of adsorption as well as the photooxidation mechanisms involved in this 

reaction. However one important point for future studies is to investigate the 

adsorption under light irradiation using an adequate substrate, in order to reveal light-

induced changes of the photocatalyst that affect the adsorption process. 
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