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Kurzfassung
In interferometrischen Gravitationswellen (GW)-Detektoren werden hohe Laserleistun-
gen von bis zu 100 kW verwendet um differentielle Armlängenänderungen in der Größen-
ordnung von 10−20 m/

√
Hz zu messen. Aufgrund der hohen Laserleistung ist Streulicht in

den Detektoren unvermeidbar. Kleinste ungewollte Reflexionen (wenige zurückgestreute
Photonen pro Sekunde) können die Sensitivität des Detektors beeinträchtigen wenn sie
von vibrierenden Oberflächen in der Umgebung in die Interferometer Mode zurück-
gestreut werden. Um dies zu verhindern gibt es zwei wesentliche Ansätze (i) das Streulicht
durch Verwendung von Optiken mit hoher Oberflächenqualität und Installation von
Strahlfallen zu minimieren und (ii) die Isolation potenzieller Quellen für Rückstreuung
von der Umgebung, um ihre Bewegung zu verringern.

In dieser Arbeit schlage ich ein neues Verfahren vor, um Streulicht induzierte Störun-
gen in GW-Detektoren zu reduzieren. Das Verfahren ergänzt die bisherigen Ansätze und
beruht auf der Modellierung und Subtraktion eines Streulichtstörsignals in der Daten-
nachbearbeitung. Ein zusätzliches Auslesen der Phasenquadratur des Ausgangsfeldes
eines Interferometers liefert einen Referenzkanal für Streulicht induzierte Störungen der
keine Signale aus differentiellen Armlängenänderungen enthält. In dem hier vorgeschla-
genen Verfahren wird dieser Kanal zur Modellierung von Streulichtstörsignalen verwen-
det. Die Projektion des Streulichtstörsignals in der wissenschaftlich relevanten Ampli-
tudenmessung wird bestimmt und von den Messdaten abgezogen um die Sensitivität
der Messung zu verbessern. Das Verfahren wurde im Verlauf dieser Arbeit in einem
Tischexperiment demonstriert.

Eine weitere wichtige Rauschquelle in GW-Detektoren ist das Quanten-Schrotrauschen,
welches heutige fortgeschrittene GW-Detektoren im hohen Frequenzbereich (&150 Hz)
limitiert. Wie im GEO 600 Detektor demonstriert wurde, kann die Sensitivität in diesem
Bereich durch die Verwendung von gequetschtem Licht verbessert werden. Diese relativ
neue Technik hat sich bewährt und ist fester Bestandteil der geplanten Aufrüstung der
gegenwärtigen Detektorgeneration und von Vorschlägen für zukünftige Detektoren wie
z.B. das Einstein Teleskop (ET).

Im zweiten Teil meiner Arbeit demonstriere ich, dass das vorgeschlagene Verfahren
zur Reduzierung von Streulichtstörsignalen vollständig kompatibel mit der Sensitivitäts-
steigerung eines Interferometers durch gequetschtes Licht ist. Um das gleichzeitige Ausle-
sen beider Quadraturen unter dem Quanten-Schrotrauschen zu ermöglichen, und damit
das Regime einer quantendichten Messung zu erreichen, werden zwei-Moden-gequetschte
Zustände benötigt. Durch das Abziehen eines Streulichtstörsignals wird die Sensitivität
einer Messung unterhalb des Quanten-Schrotrauschens erreicht, obwohl die Messung ur-
sprünglich durch starkes klassisches Rauschen limitiert wurde.

Schlüsselbegriffe: Gravitationswellen-Detektion, gequetschtes Licht, Streulicht, zwei-
Moden-gequetschtes Licht, quantendichte Messung

iii





Abstract
Gravitational-wave detectors employ high laser powers of up to 100 kW in advanced
Michelson interferometer topologies to sense differential arm length changes with strain
sensitivities in the order of 10−23/

√
Hz. With such high light powers, stray light in the

detectors is inevitable. Small unintended reflections can cause severe problems if they
are back-scattered into the interferometer mode from moving surfaces in the environ-
ment. Just a few back-scattered photons per second produce measurable disturbances
in the gravitational-wave strain channel. Standard mitigation techniques against back-
scattering are (i) to reduce the amount of stray light by employing high surface quality
optics and the installation of beam dumps and baffles in the setup and (ii) the isolation
of potential back-scatter sources from the environment to reduce their motion.

In this work, I propose and demonstrate a new approach for the mitigation of back-
scatter disturbances which is complementary to the existing mitigation techniques. The
approach is based on the subtraction of disturbances in data post-processing and relies
on the existence of a mathematical model for the back-scatter disturbance. In a proof
of principle setup, I employ a split interferometer readout with balanced homodyne
detection to achieve an additional readout of the orthogonal phase quadrature of the
interferometer output field. The phase quadrature does not contain any strain infor-
mation but provides a reference channel for back-scatter disturbances. The additional
information from the phase quadrature measurement is used to fit an analytical model
to the disturbance signal. From this model, the projection of the disturbance into the
‘scientific’ amplitude measurement is inferred and subtracted from the data to improve
the sensitivity of the measurement.

Another important noise source in gravitational-wave detectors is quantum noise. Cur-
rent advanced detectors are limited by quantum shot noise in the high frequency regime
above about 150 Hz. As first demonstrated in the GEO 600 detector, the sensitivity in
this regime can be further increased using squeezed states of light. This relatively novel
technique has proven its use and is an inherent part of future upgrades and proposals for
next generation gravitational-wave observatories such as the Einstein Telescope (ET).

In the second part of my work, I demonstrate that the proposed (back-scatter mitiga-
tion) concept is fully compatible with a squeezed light enhancement of an interferometer.
Two-mode-squeezed states of light are required to enable simultaneous sub-shot-noise
performance in both quadrature readouts, thereby entering the regime of quantum-dense
metrology. Through the subtraction of a back-scatter disturbance, sub-shot-noise sen-
sitivity is achieved in a measurement which was previously limited by strong classical
excess noise.

Key words: Gravitational-wave detection, squeezed light, scattered light, two-mode-
squeezing, quantum-dense metrology
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1. Introduction

In this thesis I present a new concept to improve the sensitivity of gravitational-wave
(GW) detectors, employing a quantum-dense readout scheme. This Introduction gives
a short overview on GW detection in general and describes two special noise sources
in GW detectors which are targeted by the new scheme: quantum noise in the form of
optical shot noise and stray light induced disturbances. The last section introduces the
scope and structure of this thesis.

1.1. Gravitational-wave detection

In his revolutionary theory of general relativity (GR) Einstein introduced a completely
new view on the gravitational force [1]. In his theory, gravity manifests as a property
of space-time itself, namely its curvature. The basic idea of Einsteins theory was sum-
marized by Wheeler with the following sentence: “Matter tells space-time how to curve;
space-time tells matter how to move.” [2].

Gravitational waves were first predicted by Einstein in 1916 [3, 4]. They constitute
a special solution of his field equations in the linearized, weak-field regime. Gravita-
tional waves are quadrupole waves which describe periodic length changes, orthogonal
to their direction of propagation. They are produced by accelerated masses, i.e. changes
in the mass quadrupole moment of a source, and propagate at the speed of light. How-
ever, space-time is ‘stiff’, and only massive objects with high accelerations from cosmic
events can produce measurable length changes on Earth. Since the interaction of gra-
vitational waves with matter is extremely weak, they propagate through space nearly
unattenuated. On one hand, this is advantageous because the information about the
gravitational-wave source is nearly undisturbed. On the other hand, it makes their di-
rect detection extremely challenging. Performing astronomy with gravitational waves
opens up a completely new window into the universe, as previously almost all our infor-
mation about cosmic events came to us through electromagnetic radiation.

The first indirect proof for the existence of gravitational waves was initiated by Hulse
and Taylor through their discovery of a binary pulsar system [5]. Further analysis
by Taylor and Weisberg showed that the system lost rotational energy in a manner
consistent with energy loss through the radiation of gravitational waves as predicted by
GR [6].

A century after the prediction of gravitational waves, their first direct detection was
achieved by the advanced LIGO detectors in 2015 [7]. They observed the inspiral and
merger of a binary black hole system, the first time such a system was detected.
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The advanced LIGO detectors are part of a global network of interferometric gravita-
tional-wave detectors [8–11]. All of these detectors employ advanced Michelson inter-
ferometer topologies to measure tiny changes in the differential arm length. When a
gravitational wave passes the detector, it periodically changes the lengths of the two de-
tector arms. This produces a phase modulation of the light in each of the interferometer
arms, which is exactly out of phase with respect to each other. By recombination of
the laser light at the interferometer beam splitter, this phase modulation is turned into
an amplitude modulation of the residual light in the interferometer output port which
is then detected. The currently operating detectors reach relative strain sensitivities in
the order of 10−23/

√
Hz in a broad frequency range from about 30 Hz up to 2 kHz [12].

1.2. Quantum noise and squeezed light enhancement

When current GW detectors reach their design sensitivities, they will be close to being
completely quantum noise limited [8]. Already, their sensitivity is limited by quantum
shot noise above frequencies of about 150 Hz [12].

Quantum noise has its origin in the zero point fluctuations of the electromagnetic field
and contributes to the detector noise in two different ways. A schematic of the typical
advanced detector topology is depicted in Figure 1.1. As GW detectors are operated
at, or at least close to, a dark fringe, all noise entering the interferometer from the laser
input side is back-reflected towards the laser source. The interferometer acts as a highly-
reflective mirror in this case. The quantum noise that couples into a measurement at
the interferometer output can be attributed to the vacuum fluctuations which enter the
interferometer through its dark port [13]. Inside the interferometer arms the vacuum
fluctuations beat with the high power interferometer beam and lead to phase and am-
plitude fluctuations of the interferometer field. When the light returns from the end
mirrors, the phase fluctuations of the field constructively interfere at the interferometer
beam splitter and lead to amplitude fluctuations of the residual interferometer output
light. The resulting statistical fluctuation of the output power is referred to as quantum

Figure 1.1: Schematic of a gravitational-
wave detector. The schematic shows the
typical advanced gravitational-wave detector
topology with power recycling, signal recy-
cling and arm cavities enclosed in a vacuum
tank. Vacuum fluctuations enter the interfero-
meter through its dark output port and con-
tribute to the interferometer’s strain sensitiv-
ity through quantum shot noise and radiation
pressure noise. PRM: power recycling mirror,
SRM: signal recycling mirror.

PRM

SRM

50/5
0

vacuum
�uctuations

vacuum tank

laser
input
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shot noise.
Considering a simple Michelson interferometer without any additional cavities, the

shot noise (SN) is frequency independent (white) noise which contributes to the linear
strain sensitivity via [14]

hSN =
1

L

√
~cλ
4πP

. (1.1)

Here, λ denotes the laser wavelength, L denotes the arm length of the interferometer
and P denotes the circulating light power. The shot noise contribution for two different
powers is depicted by the dashed lines in Figure 1.2. The parameters used for this plot
are those of the advanced LIGO interferometers: λ = 1064 nm, L = 4 km, m = 40 kg
and P = 100 kW. The shot noise scales with 1/

√
P which means that an increase in

power lowers the relative shot noise contribution.
The second way in which quantum noise couples into the interferometric measurements

is through quantum radiation pressure noise (RPN). The amplitude fluctuations of the
interferometer field cause a statistical momentum transfer from the laser beam to the
interferometer end mirrors of mass M . This in turn produces a statistical phase shift for
the reflected light and therefore an additional amplitude fluctuation at the interferometer
output. The amplitude fluctuations hitting the mirrors are white in frequency but the
transfer function of the mirrors is that of a harmonic oscillator. Above its resonance
frequency this results in a frequency dependent contribution of [14]

hRPN(f) =
1

mf 2L

√
~P
π3cλ

(1.2)

for the linear strain sensitivity of the interferometer. Here, m=M/2 denotes the reduced
mass of the mirrors. The contribution of radiation pressure noise is depicted by the
dotted lines in Figure 1.2. It scales with

√
P and falls off with 1/f 2 due to the transfer

functions of the suspended mirrors.
The overall quantum noise is given by the uncorrelated sum of the two contributions

hQN(f) =
√
h2

SN(f) + h2
RPN(f) (1.3)

and is shown by the solid red and blue lines in Figure 1.2. The shot noise dominates the
high frequency regime and the radiation pressure noise is dominant at lower frequencies.
For each frequency there is an optimal power where both contributions are of the same
size. Combining these points leads to the so-called standard quantum limit (SQL) given
in black [14]

hSQL(f) =
1

πfL

√
~
m

. (1.4)

The sensitivity of currently operating gravitational-wave detectors is not yet limited
by radiation pressure noise as other technical noise sources are still dominant in the low
frequency regime [15]. An increase in light power is therefore still beneficial, in fact, the
advanced detectors have not yet reached their design input power. Operating at such
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Figure 1.2.: Quantum noise in a gravitational-wave detector. The plot shows the
shot noise (SN, dashed), radiation pressure noise (RPN, dotted) and the overall quantum
noise contribution (solid) to the linear strain sensitivity of a Michelson interferometer for
two different light powers. The parameters used here are those of the advanced LIGO
detectors: λ = 1064 nm, L = 4 km, m = 40 kg and P = 100 kW. The resulting standard
quantum limit (SQL) is shown in black.

high light powers is challenging and introduces problems, for example, thermal lensing
in the substrates of transmissive optics or increased stray light in the detector.

An alternative approach for lowering the quantum shot noise in a GW detector was
proposed by Caves in the early 1980’s [16]. The vacuum state entering the interferometer
dark port can be replaced by a so-called squeezed state. These states possess reduced
(squeezed) quantum fluctuations in either their amplitude or their phase quadrature, at
the cost of increased (anti-squeezed) fluctuations in the respective other quantity. Such
states will be described in more detail in Section 2.3. The injection of a 10 dB squeezed
state, which is aligned to decrease the phase fluctuations of the interferometer field, has
the same effect on the interferometer’s strain sensitivity as a tenfold increase in light
power.

The application of squeezed states of light in a gravitational-wave detector was first
demonstrated in the GEO 600 detector [17]. Stable long-term operation with a sensitivity
improvement below the quantum shot noise was achieved in the frequency regime above
≈ 400 Hz [18]. Squeezing enhancement has also been successfully tested in the short
term in the advanced LIGO detector in Hanford [19]. The technique has been intensively
investigated and is intended as one of the next major upgrades for the advanced LIGO
detectors [20, 21]. Squeezed light enhancement is also an inherent part of proposals for
third generation GW observatories such as the Einstein Telescope (ET) [22].
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1.3. Scattered light in gravitational-wave detectors

Scattered light is a longstanding problem in interferometric gravitational-wave detectors.
The issue was already discovered in the first prototypes [23], and disturbances from
back-scattered light were observed in all first generation detectors [24]. An overview of
this topic is given in [25]. A possible scenario for the generation of such disturbances is
schematically depicted in Figure 1.3. The typical detector topology is shown, with power
recycling, signal recycling and arm cavities, enclosed in a vacuum tank. Light can be
scattered out of the main interferometer beam, for example, due to micro roughness of
mirror surfaces or imperfect anti-reflection coatings of transmissive optics. If such light
interacts with vibrating surfaces in the environment, such as the walls of the vacuum
tank, and is then back-scattered into the interferometer mode, it produced a spurious
signal at the interferometer output. This spurious signal can not be distinguished from a
signal generated by a differential arm length change with the DC-readout that is currently
used.

f(t)PRM

SRM

50/5
0

signal
output

disturbances 
from environment

vacuum tank

laser
input

Figure 1.3: Scattered light in
gravitational-wave detectors. The
schematic shows the typical advanced
gravitational-wave detector topology with
power recycling, signal recycling and arm
cavities, enclosed in a vacuum tank. Light
is scattered out of the interferometer mode
and becomes phase modulated by interaction
with vibrating surfaces in the environment.
Back-scattering into the interferometer mode
produces a disturbance signal at the interfero-
meter output.

There are two different types of back-scatter disturbances which play a role in gravita-
tional-wave detectors [26]. Sources with small amplitude motion (much smaller than
the laser wavelength) can produce disturbance signals if they move at frequencies that
lie directly in the detectors sensitive band. The disturbance signal is then produced
at the same frequency as the motion of the source. The second type originates from
back-scatter sources with large amplitude motion of several wavelengths which typically
move at much lower frequencies. In this case, fringe wrapping leads to frequency up-
conversion and can produce very broadband disturbances, so-called ‘scatter shoulders’
or ‘scattering shelves’, which spoil the detectors sensitivity in the most interesting (low)
frequency band.

The main approach for mitigation against back-scattering is of course to reduce the
amount of stray light as far as possible. Optics with high surface qualities are employed
and numerous beam dumps and baffles have been installed in the detectors to catch
unintended reflections. Another mitigation technique is to reduce the motion of potential
scatter sources by isolating them from the environment or actively damping their motion
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to prevent any nonlinear coupling. An overview of these mitigation techniques can be
found in [25]. A different approach for avoiding back-scatter disturbances from external
optical benches was demonstrated in GEO 600 [27, 28]. Here, an optical phase shifter
was applied to shift the frequency of the external beam, and therefore also the frequency
of the back-scattered beam, out of the detectors sensitive band. A noise reduction of
one order of magnitude was achieved with this technique.

Despite these extensive provisions, back-scatter disturbances have been a recurring
issue in gravitational-wave detectors. For example, scattering shelves were observed in
Virgo’s second science run during times with intense micro-seismic activity [29]. Here,
light was back-scattered from an optical bench behind one of the interferometer end
mirrors (WEB). These external benches are critical elements since they can directly back-
scatter into the interferometer mode with only one scattering process. Back-scattering
from such sources has been investigated in reference [30], for example. Also in advanced
LIGO, increased noise was observed for frequencies below 20 Hz during high micro-
seismic motion. Those disturbances originated from frequency up-conversion of back-
scattered light from the output mode cleaner [15,31].

With a future increase of the light power in GW detectors, the amount of stray
light will also increase. Investigations showed that significantly improved mitigation
schemes against back-scattered light will be required to extend the sensitive band of
third generation GW detectors towards lower frequencies (< 10 Hz) [26].

1.4. Scope of the thesis

In the work presented here, I propose and demonstrate a new approach for the mitiga-
tion of back-scatter disturbances. This approach is concerned with the subtraction of
back-scatter disturbances in data post-processing and is complementary to the existing
mitigation techniques described in the last section.

The concept proposed here relies on the existence of an analytical model that de-
scribes the scatter disturbance. Through an additional readout of the phase quadrature
of the interferometer signal, a GW signal free reference channel is obtained which con-
tains information about the back-scatter disturbance. The additional information from
the phase quadrature was already employed to identify back-scatter disturbances and
discard corrupted measurement data (vetoing) [32, 33]. Here, this monitor for scatter
disturbances is used to fit an analytical model to the disturbance signal. From the
model, the projection of the disturbance into the ‘scientific’ amplitude measurement is
inferred and subtracted from the amplitude quadrature data. This leads to an actual
sensitivity improvement of the measurement. The approach is described in more detail
in Chapter 3.

When applying this concept to gravitational wave detectors, an alternative to the ex-
isting DC-readout scheme is required in order to allow the additional phase quadrature
measurement. In this work, I propose a split interferometer output with balanced ho-
modyne readout as described in Section 3.3, this is denoted as dual (homodyne) readout
throughout this thesis. A short description of balanced homodyne detection is given in
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Section 2.4.
As squeezed light enhancement will be an inherent part of future gravitational-wave

detection, it is important that a new readout scheme is compatible. A quantum-dense
readout of a split interferometer output was shown to fulfill this requirement [33–35].
The readout relies on the application of so-called ‘two-mode-squeezed’ states of light.
Chapter 2 introduces the basic background in quantum optics necessary for understand-
ing squeezing and describes the relevant properties of the two-mode-squeezed states.
Quantum-dense metrology is reviewed in Chapter 4, and an analysis of the scheme with
consideration of optical loss in the interferometer is given in Section 4.2.

I performed several experiments to demonstrate the subtraction of back-scatter distur-
bances for different types of scatter sources, as well as the sub-shot noise enhancement of
the readout in a proof of principle setup. The main parts of the experimental setup are
described in Chapter 5. Chapter 6 summarizes the experiments which were carried out
without the enhancement through two-mode-squeezed states and presents the results
for the subtraction of the different back-scatter disturbances. The experiment described
in Chapter 7 employed the quantum-dense readout for the subtraction of a broadband
scatter shoulder. A sensitivity improvement of the scattered light limited measurement
below the quantum shot noise was demonstrated. A nonclassical noise suppression of
about 5 dB in both quadrature readouts was achieved over the whole measured spectrum.

A summary of my work and a conclusion can be found in Chapter 8. The LabView
program and some key Matlab scripts I used in this work are given in Appendices A and
B. In addition to my work on the subtraction of back-scatter disturbances, I performed
an experiment on the cancellation of lateral displacement noise for 3-port gratings. The
results of this experiment were published in Optics Letters [36] and the paper is included
in Appendix C.
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2. Basic quantum optics

This chapter provides the quantum mechanical background for the two-mode-squeezed
states that were used in this work to achieve sub-shot-noise sensitivity in the interfero-
meter readout. I will introduce the coherent states, the quadrature operators and the
phasor picture which can be used to describe the electromagnetic field and the effect of
squeezing. I will also briefly describe the principle of balanced homodyne detectors which
where used throughout this work to perform the measurements of the amplitude and
phase quadratures of the interferometer output field. The descriptions in this chapter
are based on the treatment by Gerry and Knight [37].

2.1. Coherent states

In quantum optics, coherent states are used to describe the classical oscillatory behavior
of the electromagnetic (EM) field, for example, of a single mode (monochromatic) laser
beam as it is used in the experiments of this work. They can be derived by specifically
searching for quantum mechanical states for which the expectation value of the electric
field operator takes the form of the classical fields. The description of a single mode
field is formally equivalent to the description of a harmonic oscillator where the electric
and magnetic field amplitudes (q̂ and p̂) play the roles of the canonical position and
momentum. The corresponding Hamiltonian is given by

Ĥ = 1
2

(
p̂2 + ω2q̂2

)
(2.1)

and describes the energy contained in a single mode of the field at an angular frequency
ω. For further descriptions it is useful to introduce the annihilation â and creation â†

operators of the harmonic oscillator

â =
1√
2~ω

(ωq̂ + ip̂)

â† =
1√
2~ω

(ωq̂ − ip̂)
(2.2)

with the commutator [â, â†] = 1. The time dependency of an arbitrary, not explicitly
time dependent operator Ô is determined by Heisenberg’s equation

dÔ

dt
=
i

~

[
Ĥ, Ô

]
. (2.3)
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For the annihilation and creation operators follows

â(t) = â(0) e−iωt

â†(t) = â†(0) eiωt .
(2.4)

With these operators the Hamiltonian can be rewritten as

Ĥ = ~ω
(
â†â+ 1

2

)
. (2.5)

The term â†â is called the number operator n̂ and can be associated with the number of
photons with energy ~ω in the mode.

The electric field operator can also be expressed in terms of the annihilation and
creation operators. For a single mode field at a frequency ω which propagates along the
z-axis and is linearly polarized perpendicular to this axis it is given by

Ê = i
2
E0

(
âe−ikz − â†eikz

)
with E0 =

(
~ω
ε0V

) 1
2

. (2.6)

Here, k = ω
c

denotes the wave number, ε0 is the vacuum permittivity and V denotes
the effective volume in which the field is enclosed. From Equation (2.6) it is obvious
that the expectation value of the electric field operator describes a classical field for the
eigenstates of the annihilation operator. These are called the coherent states which are
commonly denoted

â |α〉 = α |α〉 with α = |α| e−iϕ . (2.7)

The eigenvalues of these states are allowed to be complex since â is not a Hermitian
operator, i.e. [â 6= â†]. The ground state is given for |α=0〉 and is called vacuum state.
For the coherent states, the expectation value of the electric field operator takes the
form

〈Ê〉 = i
2
E0

(
|α| e−i(kz+ωt+ϕ) − |α| ei(kz+ωt+ϕ)

)
(2.8)

= E0 |α| sin(kz + ωt+ ϕ) (2.9)

which clearly describes the classical oscillatory behavior. Hereby, E0 can be associated
with the electric field ‘per photon’ and α describes the coherent excitation. In contrast
to the classical description, the electric field possesses an uncertainty which can be
quantified by the variance of the field operator for a coherent state

∆2Ê = 〈Ê2〉 − 〈Ê〉2 = 1
2
E2

0 . (2.10)

The uncertainty is independent of the coherent excitation α and is therefore the same
for all coherent states, even for the vacuum state. This uncertainty of the ground state
corresponds to the so-called vacuum fluctuations of the field.

The power of the field, as measured by a photo detector, is proportional to the mean
number of photons in the mode, i.e. to the expectation value of the number operator

〈n̂〉 ≡ 〈â†â〉 = |α|2 ≡ n̄ with variance ∆2n̂ = n̄ . (2.11)
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Comparing the fluctuation of the photon number with its mean value yields the fractional
uncertainty

∆n̂

n̄
=

1√
n̄

(2.12)

which decreases with increasing n̄. This means that for large photon numbers the relative
uncertainty becomes smaller and smaller, approaching the classical scenario where the
field is exactly defined.

2.2. Quadrature operators and the phasor picture

For further considerations, it is useful to introduce the so-called quadrature operators

X̂ = 1
2

(
â+ â†

)
P̂ = 1

2i

(
â− â†

) (2.13)

and with â ≡ â(0) and â† ≡ â†(0), to describe the EM field. They are dimensionless
operators and their commutator is given by [X̂, P̂ ] = i

2
. In the literature, these operators

are also commonly denoted with X̂1 and X̂2 or X̂ and Ŷ . In terms of the quadrature
operators, the electric field operator can be expressed as

Êx = 2E0 sin(kz)
(
X̂ cos(ωt) + P̂ sin(ωt)

)
. (2.14)

X̂ and P̂ are Hermitian operators and therefore correspond to measurable quantities.
They can be associated with the field’s amplitude quadrature and phase quadrature.
Their expectation values for a coherent state correspond to the real and imaginary parts
of the coherent excitation α

〈X̂〉 = Re (α)

〈P̂ 〉 = Im (α) .
(2.15)

According to Heisenberg’s uncertainty relation for two arbitrary operators Â and B̂

∆2Â ·∆2B̂ > 1
4

〈
i
[
Â, B̂

]〉2

(2.16)

the variances of the two quadratures have to obey

∆2X̂ ·∆2P̂ > 1
16
. (2.17)

For a coherent state their variances are given by

∆2X̂ = ∆2P̂ = 1
4
. (2.18)
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Figure 2.1.: Phasor representation of a coherent state. (a) A coherent state
with excitation α = |α|eiϕ can be represented in (co-rotating) quadrature space by an
arrow or phasor of length |α| at an angle of ϕ to the X-axis. The inherent uncertainty
of the coherent state is depicted by a circle whose diameter is given by the standard
deviations ∆X = ∆P of the quadrature operators. (b) The expectation value of the
electric field for a coherent state is given by the projection of the phasor onto the X-axis.
The uncertainty of the state in quadrature space leads to an uncertainty of the electric
field which equally affects its amplitude and phase.

They minimize the uncertainty relation of Equation (2.17) and the uncertainty is equally
distributed into the two quadratures. Furthermore, the variances are again independent
of the coherent excitation α, i.e. they are the same as for the vacuum state.

The two quadratures of the field span a phase space in which a coherent state can be
depicted as shown in Figure 2.1 (a). The coherent amplitude α = |α|eiϕ is represented

by an arrow or phasor with length |α| =
√
〈X̂〉2 + 〈P̂ 〉2 at an angle of ϕ = arctan( 〈P̂ 〉〈X̂〉)

to the X-axis. The uncertainty of the state in the two quadratures is indicated by a
circle whose diameter is given by the standard deviations ∆X = ∆P of the two the
quadratures. A vacuum state with α = 0 would be represented by an uncertainty circle
at the origin in this picture.

The electric field of the state is proportional to the projection of the phasor onto the
X-axis as shown in Figure 2.1 (b). The time evolution of the state corresponds to a
rotation of the phasor with an angular frequency ω. The amplitude of the electric field
is given by |α| and its phase shift is determined by the angle ϕ.

The phasor picture can be very useful to illustrate interferences between different
fields or modulations of the field as depicted in Figure 2.2. It is convenient to display
the phasor in a frame which is co-rotating at the carrier frequency ω of the mode such
that only phase shifts and modulations of the field cause a rotation (or length change)
of the phasors. Most of the time, the coordinate system is omitted completely since
only relative phase shifts between different fields are relevant. The uncertainties have
also been omitted in Figure 2.2 for more clarity. Note, that following Equation (2.12),
the uncertainty circle is negligible compared to the length of the phasor anyways, for a
strongly exited state. As depicted in Figure 2.2, phasors of different fields add like vectors
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Figure 2.2: The phasor picture. Phasors of dif-
ferent fields (orange) add like vectors. A modulation
of the length of the phasor corresponds to an am-
plitude modulation (AM) and a modulation of the
direction corresponds to a phase modulation (PM) of
the field. Modulations are often depicted by double
arrows which indicate the change of the phasor.

(orange phasors) and modulations of the field cause changes of the length (amplidue
modulation) or direction (phase modulation) of the phasor, which are commonly indicated
by double arrows. For a small modulation index, i.e. the change of the arrow tip is small
compared to the length of the phasor, a phase modulation can be approximated by an
excitation of the phase quadrature, to first order.

2.3. Squeezed states of light

For a coherent state the uncertainty in the two orthogonal quadratures X̂ and P̂ is
the same and it minimizes the uncertainty relation of Equation (2.17). A simultaneous
reduction of the uncertainty in both quadratures is not possible. However, at the expense
of an increased uncertainty in one quadrature a noise reduction along the orthogonal
quadrature below the vacuum level is possible. This is exactly the case for the so-called
squeezed states.

The squeezed states can be generated from the coherent states by applying the squeez-
ing operator

Ŝ(ξ) = e
1
2

(ξ∗â2−ξâ†2) with ξ ≡ reiθ (2.19)

and with the squeezing parameter 0 6 r < ∞ and the squeezing angle 0 6 θ 6 2π. To
compute the quadrature variances for a squeezed state |ξ, α〉 = Ŝ(ξ) |α〉 it is convenient
to introduce the quadratures of the squeezed mode

X̂sqz ≡ Ŝ†(ξ) X̂ Ŝ(ξ)

P̂sqz ≡ Ŝ†(ξ) P̂ Ŝ(ξ)
(2.20)

and a generalized quadrature operator

X̂ϑ ≡ 1
2

(
âe−iϑ + â†eiϑ

)
= X̂ cosϑ+ P̂ sinϑ

(2.21)

with X̂ ≡ X̂0 and P̂ ≡ X̂π
2
. Using the Baker-Campbell-Hausdorff lemma the quadratures

of the squeezed mode can be rewritten as

X̂sqz = X̂ cosh r − X̂θ sinh r

P̂sqz = P̂ cosh r − X̂θ+π
2

sinh r .
(2.22)
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For the special case of θ = 0 these expressions further simplify

X̂sqz = X̂ e−r

P̂sqz = P̂ e+r
(2.23)

and the variances of the squeezed quadratures are given by

∆2X̂sqz = 1
4
e−2r

∆2P̂sqz = 1
4
e+2r .

(2.24)

This case (θ = 0) corresponds to an amplitude squeezed state since the amplitude
quadrature shows a reduced uncertainty, below that of a coherent state. The uncertainty
in the orthogonal quadrature is increased by the same factor, such that the uncertainty
relation of Equation (2.17) holds and is minimized for the squeezed states. The quadra-
ture with the increased uncertainty is said to be anti-squeezed. For θ = π the situation
is inverted and the state is called phase squeezed. The strength of the squeezing is
determined by the squeezing parameter r.

Figure 2.3: Squeezed fields. The
plots show the time evolution of the
electric field for (a) an amplitude
squeezed state, (b) a phase squeezed
state and (c) a squeezed vacuum
state. The squeezed uncertainties
are given by the ellipses on top of the
phasors and their projection onto
the X-axis leads to phase dependent
noise for the electric field.
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The effect on the electric field is illustrated in Figure 2.3. Since the uncertainty
is no longer equally distributed in the two quadratures, the squeezing is indicated by
ellipses whose widths and lengths are given by the standard deviation of the quadratures.
The plots show the time evolution of the electric field as the projection of the rotating
phasor into the amplitude quadrature X for (a) an amplitude squeezed state, (b) a
phase squeezed state and (c) a squeezed vacuum state. The squeezing ellipse has a
fixed orientation with respect to the phasor and its rotation leads to a phase dependent
uncertainty of the electric field. For an amplitude squeezed state the length of the phasor
has a reduced uncertainty and for a phase squeezed state the angle of the phasor is more
precisely defined. Also for a squeezed vacuum state the uncertainty is phase dependent.
The notion of amplitude or phase squeezing, however, only makes sense with respect to
some bright reference field.

2.4. Balanced homodyne detection

A standard method to detect squeezed states of light is by employing balanced homodyne
detectors. These detectors mix the squeezed state, or in general a weak signal field, with
a strong local oscillator beam. A schematic of such a detector is shown in Figure 2.4.
The local oscillator field interferes with the weak signal beam at a 50/50 beam splitter
and both beam splitter outputs are being detected with photo detectors. The difference
of the two photo currents yields the homodyne signal.

Let us assume a signal field ŝ and a strong local oscillator field b̂ which can be ap-
proximated by its expectation value 〈b̂〉 = |β|eiψ. The difference of the intensities at the
two photo detectors is then given by

Idiff = |β|〈ŝe−iψ + ŝ†eiψ〉 (2.25)

or in terms of the generalized quadrature operator of Equation (2.21) and with ϑ ≡ ψ+ π
2

Idiff = 2|β|〈X̂ϑ〉 with variance ∆2Idiff = 4|β|2∆2X̂ϑ . (2.26)

The local oscillator field amplifies the signal and enables a direct measurement of an
arbitrary quadrature and its variance. For an angle of ϑ = 0 and ϑ = π

2
a measurement

of the amplitude and phase quadrature is realized, respectively.

LO

signal 50/50

Figure 2.4: Balanced homodyne detector. A
weak signal field is overlapped with a strong local os-
cillator field at a 50/50 beam splitter. Two photo
detectors measure both beam splitter outputs and the
difference of their photo currents yields the homodyne
signal. The local oscillator amplifies the weak sig-
nal and enables a direct detection of the amplitude
or phase quadrature of the signal beam.
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2.5. Two-mode-squeezing

Two-mode-squeezed states were employed in this work to enhance the sensitivity of a
split interferometer output. They can be generated experimentally by overlapping two
squeezed states on a beam splitter with a relative phase shift of 90◦, as illustrated in
Figure 2.5. After the phase shift, one state is squeezed in the amplitude quadrature and
the second one is squeezed in the phase quadrature. The resulting states in the two
beam splitter outputs, individually, have an uncertainty larger than that of a vacuum
state. With respect to each other, however, the two states are well defined in both
quadratures, with an uncertainty smaller than that of a vacuum state.

Figure 2.5: Generation of two-
mode-squeezed states. Two-mode-
squeezed states can be generated by
overlapping two squeezed modes on a
50/50 beam splitter with a relative
phase shift of 90◦. The output states
show increased noise in both quadra-
tures but are entangled in the sense of
the EPR-paradox.

50/50

)aΘ,ar(

90°
180°

)bΘ,br(

A

B

The two states are entangled in the sense of the Einstein-Podolsky-Rosen (EPR) para-
dox [38,39]. EPR postulated the existence of quantum mechanical systems where a mea-
surement on a subsystem A allows a precise prediction of two orthogonal observables of
a spatially separated subsystem B without disturbing system B. This means that with
respect to each other the two subsystems can be arbitrarily well defined, which seemed
to contradict Heisenberg’s uncertainty principle. This is in fact not the case and it has
been shown for a variety of different systems that these entangled states do exist [40,41].

A criterion to verify and to some extent quantify such entanglement in the continuous
variable regime was established by Reid [42]. Considering two subsystems A and B with
orthogonal observables X̂A,B and P̂A,B, one can introduce so-called conditional variances

∆2
condX̂ ≡ ∆2X̂B −

CoV(X̂B, X̂A)2

∆2X̂A

∆2
condP̂ ≡ ∆2P̂B −

CoV(P̂B, P̂A)2

∆2P̂A

(2.27)

with the covariance defined as CoV(Ô1, Ô2) ≡ 〈Ô1Ô2〉 − 〈Ô1〉〈Ô2〉. These variances cor-
respond to the uncertainties with which the observables X̂B and P̂B can be predicted
conditioned on a measurement outcome for X̂A and P̂A, respectively. If the product of
the conditional variances is smaller than the limit which would be given by Heisenberg’s
uncertainty relation for the variances of subsystem A alone (∆2X̂A ·∆2P̂A > 1

16
), subsys-

tems A and B are said to be entangled according to the EPR paradox. The EPR-Reid
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criterion thus reads

E2 ≡ ∆2
condX̂ ·∆2

condP̂ <
1

16
. (2.28)

The exact value of E2 is hereby used to quantify the strength of the entanglement.

For the above described two-mode-squeezed states, let us consider two squeezed input
modes a and b at the beam splitter. For an amplitude squeezed mode a and a phase
squeezed mode b, the variances in the two quadratures are given by

∆2X̂a,b = 1
4
e∓2ra,b and ∆2P̂a,b = 1

4
e±2ra,b (2.29)

with the respective squeezing parameters ra,b. Combination of the two modes at the
beam splitter leads to the two output modes A and B with quadrature components

X̂A,B =
1√
2

(
X̂a ± X̂b

)
and P̂A,B =

1√
2

(
P̂a ± P̂b

)
. (2.30)

The variances at the two systems A and B are given by

∆2X̂A = ∆2X̂B =
1

2

(
∆2X̂a + ∆2X̂b

)
∆2P̂A = ∆2P̂B =

1

2

(
∆2P̂a + ∆2P̂b

) (2.31)

and the covariances reduce to

CoV
(
X̂B, X̂A

)
=

1

2

(
∆2X̂a −∆2X̂b

)
CoV

(
P̂B, P̂A

)
=

1

2

(
∆2P̂a −∆2P̂b

)
.

(2.32)

According to Equation (2.27) and with the variances of the initial squeezed states of
Equation (2.29) the conditional variances take the form

∆2
condX̂ =

e−ra+rb

4 cosh(ra + rb)

∆2
condP̂ =

e+ra−rb

4 cosh(ra + rb)

(2.33)

and their product is given by

∆2
condX̂ · ∆2

condP̂ =
1

16 cosh2(ra + rb)
<

1

16
. (2.34)

In this idealized case, without considering any optical loss, two-mode-squeezed states
fulfill the EPR-Reid criterion for all ra,b > 0. They even show entanglement if only one
of the input states is squeezed and the other one is a vacuum state, i.e. ra or rb is equal
to zero.

In quantum-dense metrology we make use of this entanglement by sending one part of
the two-mode-squeezed states into the interferometer and performing all our measure-
ments with respect to the entangled reference state. The setup for this will be explained
in more detail in Chapter 4.
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3. Back-scatter disturbances and the
approach for their subtraction

In this work, I employed a dual readout, i.e. a simultaneous readout of the phase and
amplitude quadrature of an interferometer’s output signal, to remove back-scatter dis-
turbances from the scientifically interesting amplitude quadrature measurement data.
The first two sections of this chapter are concerned with the relevant properties of back-
scatter disturbances that allow us to distinguish them from GW signals and subtract
them from the measurement data. The basic concept of the subtraction and two special
types of back-scatter disturbances will be introduced in Section 3.2. Section 3.3 will give
a short overview on the proof of principle setup which was used for the experimental
demonstration of the new concept.

3.1. Distinguishing back-scatter disturbances from GW
signals

In this section, I will illustrate how back-scatter disturbances can be distinguished from
GW signals, or in general, signals from differential arm length changes in an interfero-
metric GW detector. An easy way to see the difference between both types of signals is
by looking at their representation in the phasor picture as shown in Figure 3.1.

A gravitational wave changes the lengths of the interferometer arms and only the
phase of the light returning from the end mirrors is modulated. In Figure 3.1 (a), the
red phasors depict the resulting modulated field in one interferometer arm. For a GW
signal, the direction of the phasor changes at the modulation frequency, about a tiny
angle, and its length remains approximately the same.

For the scatter disturbance the situation is different. In the scatter signal part of
Figure 3.1 (a) the phasor on the left side shows again the resulting modulated field in the
interferometer arm and the orange phasors on the right side illustrate how it is generated.
As already described in the Introduction, back-scatter disturbances in GW detectors
arise from unwanted reflections in the interferometric setup which interact with moving
components in the environment, become phase modulated and are then back-scattered
into the interferometer mode. Due to the additional path outside of the interferometer
the back-scattered beam accumulates a phase shift ϕ with respect to the interferometer
light and its phasor is therefore rotated by that angle. Coherently combining the back-
scattered beam (short orange phasor) with the residual interferometer light (long orange
phasor) leads to the resulting modulated field given by red phasor. Its phase is shifted by
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Figure 3.1.: GW signal and scatter disturbance in the phasor picture. (a)
Generation of a scatter disturbance signal compared to a GW signal. The red phasors
depict the resulting field in one interferometer arm. The orange phasors describe the
situation where some light is scattered out of the interferometer mode, becomes phase
modulated and is afterwards back-scattered into the interferometer mode. An additional
phase shift ϕ for the back-scattered light leads to a rotation of the modulation in phase
space. (b) Comparison of the GW signal and the scatter disturbance in the (dark)
interferometer output. The dashed lines indicate the projection of the scatter signal into
the amplitude (X) and phase (P ) quadratures. In an amplitude quadrature measurement
both signals would look the same but a phase quadrature measurement would reveal the
scatter disturbance.

a constant angle ε that depends on the phase shift ϕ of the back-scattered light and the
respective amplitudes of the residual interferometer light and the back-scattered beam.
Note that the drawing is not to scale and the amplitude of the back-scattered light is
strongly exaggerated. For a realistic GW detector scenario ε should always be negligible
compared to ϕ. This constant rotation itself does not constitute a problem since it only
causes a small dc-offset at the interferometer output. The disturbance signal is due to
the resulting modulation (indicated in dashed black) of the recombined red phasor which
is also rotated by an angle of approximately ϕ (because ε is tiny). The illustration on the
left side in the scatter signal part of Figure 3.1 (a) shows that the modulation no longer
constitutes a pure phase modulation of the recombined beam. Not only the direction of
the phasor changes at the modulation frequency but also its length, which corresponds
to an additional amplitude modulation.

In Figure 3.1 (b) the GW signal and the scatter disturbance are depicted as they
appear in the interferometer output. Since GW detectors are normally operated at a
dark fringe (or at least close to it), the carrier fields from the two arms cancel each other
and only the tiny modulation signals remain. Throughout this thesis, the quadrature
in which the GW signal (red) lies at the interferometer output is denoted the amplitude
quadrature X because amplitude modulations are the measured quantity in all current
GW detectors. The scatter signal (orange) is rotated in phase space with respect to the
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GW signal. In an amplitude measurement, i.e. measuring the projection of the signals
onto the X-axis, both signals shown here look exactly the same. However, an additional
measurement of the phase quadrature (projection onto the P -axis) would solely show
the scatter disturbance (dashed orange) and would therefore reveal the different origin
of the two signals.

3.2. Modeling back-scatter disturbances for their
subtraction

As discussed in Section 1.4, the additional information from a phase quadrature measure-
ment has already been used to identify and discard corrupted measurement data [32,33].
In this work, I went one step further and used the phase quadrature data to find an an-
alytical description for the scatter disturbance signal. The phase quadrature data is
optimally suited for this purpose since it offers a reference measurement for the scat-
ter disturbance which is free of any ‘scientific’ signals from real differential arm length
changes. The model deduced in this way could then be subtracted from the ampli-
tude measurement data to actually improve the measurement sensitivity in the affected
frequency range.

If ϕ(t) describes the relative phase shift of a back-scattered beam with respect to the
interferometer mode in the respective arm, the projections of the resulting disturbance
signal in the phase quadrature p and the amplitude quadrature x at the interferometer
output are given by

psc(t) = A · cosϕ(t) (3.1)

xsc(t) = A · sinϕ(t) (3.2)

with some signal amplitude A which depends on the interferometer transfer function and
the intensity of the back-scattered beam. A was assumed to be constant and frequency
independent throughout this work. The back-scatter signal is not exactly the same in
both quadrature projections but it depends on the same parameters. If A and ϕ(t) can
be determined from the phase quadrature measurement, the projection of the scatter
disturbance in the amplitude quadrature can easily be computed via Equation (3.2).

My approach to determine ϕ(t) was to fit an analytical model to the phase quadrature
measurement data which described the time dependent phase shift of the back-scattered
light due to a certain motion of the scatter source.

The simplest example for an analytical description one can probably think of is a
sinusoidal motion of the scatter source with constant parameters. The time dependent
phase shift of the back-scattered light can then be modeled by

ϕ(t) = ϕ0 +m sin(2πfmt+ φm) (3.3)

with constant modulation depth m, frequency fm and phase φm and a constant overall
phase shift ϕ0 which accounts for the total mean path length that the back-scattered
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beam traveled outside the interferometer. Though this model is rather elementary, a
scatter source like this can already lead to quite complex disturbance signals. In fact, it
provides the basis for the description of all scatter disturbances that were investigated
in this work. Two important examples will be introduced in the next subsections.

3.2.1. The case of small amplitude motion

For small amplitude motion of the scatter source, i.e. a modulation depth m � 1, the
scattered light beam becomes modulated in its phase quadrature as depicted in the
phasor diagram of Figure 3.1. To first order approximation Equations (3.1)-(3.2) with
the time dependent phase shift of Equation (3.3) reduce to

psc(t) ≈ A m sinϕ0︸ ︷︷ ︸
Ap

· sin(2πfmt+ φm) (3.4)

xsc(t) ≈ A m cosϕ0︸ ︷︷ ︸
Ax

· sin(2πfmt+ φm) (3.5)

where the dc parts have been left out. The projection of the scatter disturbance into the
two quadrature measurements, in this case, leads to a simple sinusoidal signal. It has the
same ‘shape’ in both projections and the two are either in phase or exactly out of phase.
The signal amplitudes Ap and Ax differ for the two quadrature projections and the
angle under which the signal appears in phase space at the output of the interferometer
depends on the total mean phase shift ϕ0 of the back-scattered beam with respect to the
interferometer mode. In a spectrum, such a disturbance shows up as a monochromatic
peak for both quadrature measurements. Disturbances of this type will be investigated
in Section 6.1.

3.2.2. A broadband scatter shoulder from frequency up-conversion

This section is concerned with the case of a so-called ‘scatter shoulder’ that is produced
by back-scatter sources with large amplitude motion (m > 1), as already mentioned
in the Introduction and described, for example, in [23–25, 29]. Such a broadband dis-
turbance can be generated via frequency up-conversion from a single source which is
moving sinusoidally with constant parameters. Using the phase shift of Equation (3.3)
in Equations (3.1) and (3.2) we obtain the analytical model for the projection of the
scatter disturbance in the phase and amplitude quadratures

psc(t) = A · cos(ϕ0 +m sin(2πfmt+ φm)) (3.6)

xsc(t) = A · sin(ϕ0 +m sin(2πfmt+ φm)︸ ︷︷ ︸
≡ϕ(t)

) . (3.7)

For large amplitude motion of the scatter source, we have to consider the case of
deep modulation m > 1, where so-called ‘fringe wrapping’ occurs and upconverts low
frequency motion to higher frequencies.
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The model of Equations (3.6)-(3.7) is displayed in Figure 3.2 for a parameter set of
ϕ0 = 0◦, m = 32.7, fm = 5 Hz, φm = 0◦ and some arbitrary amplitude A. These param-
eters were chosen to be comparable to later measurement results. The used modulation
depth corresponds to a total path length change of mλ/π = 10.4λ for the scattered
light. Figure 3.2 (a) shows the modeled projections of the disturbance in the two or-
thogonal quadratures psc (blue) and xsc (red) in time domain. To illustrate the effect of
fringe wrapping, the motion of the scatter source itself is also plotted in dashed gray, for
comparison. The time domain plot shows that in this case, the shape of the disturbance
signal is different in the two quadratures while the signal amplitude is the same in both
projections. This is the exact opposite of the case described in Section 3.2.2.

A good way to understand the resulting disturbance signal is via the Doppler shift of
the back-scattered light. The frequency shift of the back-scattered light is proportional
to the instantaneous velocity of the scatter source in the direction of beam propagation.
In terms of ϕ(t) it is given by fds(t) = ϕ̇(t)/2π, which results in

fds(t) = mfm cos(2π fm t+ φm) . (3.8)

The frequency shift is small around the turning points of the motion and the maximal
frequency shift is reached when source passes the center of its motion. According to
Equation (3.8), the maximum frequency component of the disturbance signal is given by
fmax

ds = mfm and for a modulation depth m > 1, this represents frequency up-conversion.
Figure 3.2 (b) shows the time-frequency behavior of the scatter model in a spectrogram.
Due to the limited resolution both quadrature projections look the same in this plot and
only the phase quadrature projection is shown here. The scatter disturbance appears as
‘arches’ that directly describe the time dependent frequency shift of the back-scattered
light, as observed in a single-sided spectrum. The absolute value of the Doppler shift in
Equation (3.8) is overlaid in gray.

In Figure 3.2 (c) the (averaged) power spectral density (PSD) of the disturbance is
shown in both quadrature projections. Here, the disturbance appears as the name-
giving broadband shoulder. The averaged PSD was computed with Matlab’s ’pwelch’
function, using a Hanning window spanning half the oscillation period of the scatter
source (∆t = 1/(2fm)) and an overlap of 50%. These settings were chosen to get a
sufficient frequency resolution without reducing the shoulder to the harmonics of fm

by temporal averaging. The bump structure of the scatter shoulder results from the
projection into the orthogonal quadratures because the different frequency components
are being generated at different total distances from the interferometer. The clarity of
this structure strongly depends on the length of the windowed data segments and their
alignment with respect to the oscillation of the scatter source. Scatter disturbances of
this type were used in all other experiments of Chapters 6 and 7.

Although the model described here is quite simple, it already reproduces the basic
structure of typical disturbance signals as observed in GW detectors [23–25,29].
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Figure 3.2.: A scatter shoulder from frequency up-conversion. The plots show
a modeled disturbance signal from a sinusoidally moving scatter source with a large
amplitude motion of several wavelengths. psc and xsc denote the projections of the
disturbance signal in the phase quadrature and amplitude quadrature. (a) Model in
time domain illustrating the effect of fringe wrapping. (b) Spectrogram of the modeled
disturbance. The ‘arches’ describe the time dependent Doppler shift fds for the back-
scattered light as it appears in a single-sided spectrum. |fds(t)| is overlaid in gray. (c)
Averaged power spectral density (PSD) showing the name-giving broadband shoulder
with the overlaid bump structure.
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3.3. Proof of principle setup

For a proof of principle of the subtraction of back-scatter disturbances, I used a sim-
plified optical setup as depicted in Figure 3.3. The setup in this form was employed in
all experiments of Chapter 6. The sub-shot-noise enhancement of the readout will be
explained in Chapter 4 and was applied in the experiment of Chapter 7.

I used a simple table-top Michelson interferometer to generate different test signals.
For each setup (i) a GW like signal, due to a differential arm length change was produced
by modulating one of the interferometer end mirrors and (ii) a back-scatter disturbance
was injected through the other interferometer end mirror. The injected disturbances var-
ied from a simple monochromatic peak in the spectrum (m� 1) to a broadband scatter
shoulder with multiple round-trips for the back-scattered beam (m > 1). These signals
and their experimental generation will be described in more detail in the respective sec-
tions of Chapter 6. In all experiments presented here, the interferometer was operated
at a dark fringe and its output field was split at a 50/50 beam splitter to allow for a
simultaneous measurement of the two quadratures. Two balanced homodyne detectors
(BHD1&2) were used to measure the split output signal. As described in Section 2.4,
these detectors employed strong external local oscillator fields which enabled a direct
readout of the amplitude and phase quadratures. The readout quadratures were deter-
mined by the phases of the local oscillator beams with respect to the signal beams. Here,
‘0◦’ corresponded to an optimal readout of the GW-like signal. The readout scheme in
this form will be denoted as dual (homodyne) readout throughout this thesis.

amplitude readout

laser

50/50

50/50

90°

0°

phase readout

interferometer

GW-signal

 x(t)
@ BHD2

 p(t)
@ BHD1

50/5
0

50/50

scatter 
injection

φ

 (m<<            1)

φ

(m>1)

Figure 3.3: Dual readout for subtrac-
tion of back-scatter disturbances. In
a Michelson interferometer we distinguish
two different types of signals (i) a GW-
like signal due to a differential arm length
change and (ii) a back-scatter disturbance
from interference of a modulated exter-
nal beam with the interferometer mode.
The angle ϕ describes the relative phase
shift between the back-scattered beam and
the interferometer mode in the respective
arm. For the dual readout, the interfero-
meter output is (equally) split into two
parts. Two balanced homodyne detectors
(BHD1&2) read out the orthogonal am-
plitude x(t) and phase quadrature p(t) of
the interferometer signal. The amplitude
quadrature readout contains the GW-like
signal and the phase quadrature readout
provides a reference measurement of the
back-scatter disturbance.
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Note, that the balanced splitting of the interferometer output field in the setup pre-
sented here has the consequence that the signal power in the scientifically relevant am-
plitude quadrature readout is halved. In a regime where an interferometer is limited by
classical excess noise, this is not a problem because the noise power is also halved at the
respective detector. In the shot noise limited regime, however, the signal-to-noise-ratio is
decreased by a factor of 2 due to the splitting. In general other splitting ratios could be
considered for implementation in gravitational-wave detectors, compromising between
loss for the scientific signal and signal-to-shot-noise-ratio in the scatter monitor.
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4. Quantum-dense metrology

In this chapter I will show how the dual readout can be enhanced to sub-shot-noise
performance in both quadrature measurements, thereby entering the regime of quantum-
dense metrology (QDM) [33]. The simultaneous readout of the two signal quadratures
in the proposed setup requires splitting of the interferometer’s output light and thus
reduces the signal-to-(squeezed-)shot-noise ratio in the ‘scientific’ amplitude quadrature
readout. In QDM this can be partially compensated for because the optical loss for the
respective squeezed state is also reduced. This effect will be discussed in Section 4.2.

4.1. The quantum-dense readout

The dual readout of Section 3.3 can be enhanced to sub-shot-noise sensitivity in both
quadrature readouts by using two-mode-squeezed states of light. A single quadrature
squeezed scheme [16–18] as described in Section 1.2, is not applicable with the split
interferometer output described in Section 3.3. The situation is depicted in Figure 4.1.
The beam splitter in the interferometer output opens an additional vacuum port and
therefore reduces the squeezing at the amplitude readout (BHD2). For balanced splitting
the maximally achievable non-classical noise suppression in the amplitude readout is a
factor of 2, corresponding to about 3 dB of squeezing. Additionally, the orthogonal
quadrature of the interferometer output is anti-squeezed, which significantly reduces the
extractable information about the disturbance.

squeezed
interferometer

output

vacuum

50/50

BHD1:

+ 1)r2e(2
1=p̂2∆

BHD2:
+ 1)r2−e(2

1=x̂2∆

Figure 4.1: Split single quadrature
squeezed readout. For a single (amplitude)
quadrature squeezed interferometer readout,
splitting the output field introduces an addi-
tional vacuum port. For balanced splitting
and the variance of a vacuum state being
normalized to unity, the minimal variance
achievable in the amplitude quadrature readout
becomes ∆2x̂ = 1/2. This corresponds to
about 3 dB of squeezing. The variance in
the phase quadrature readout is dominated
by anti-squeezing, which significantly reduces
the extractable information about potential
disturbance signals.
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The scheme I am going to discuss here was experimentally demonstrated in [33–35]
and constitutes a case of so-called ‘quantum-dense metrology’ (QDM). The term QDM
refers to the increased measurement information from the second quadrature readout and
indicates the close analogy to quantum-dense coding in quantum information science.
QDM employs entangled, two-mode-squeezed states of light (see Section 2.5) in a Mach-
Zehnder configuration with the Michelson interferometer in one of its arms, as depicted
in Figure 4.2 . Two squeezed states are being overlapped at a 50/50 beam splitter with
a relative phase shift of 90◦ to create the entanglement. One part of the resulting two-
mode-squeezed state is being reflected at the interferometer dark port and picks up the
interferometer signal. A GW signal and a scatter disturbance signal are indicated in the
drawing by the red and orange phasors, corresponding to their representation in Figure
3.1.

The second part of the two-mode squeezed state serves as a reference and is sent di-
rectly to the 50/50 beam splitter in the interferometer output. Recombination of the
two entangled parts with the right phase relation brings the initial squeezed states back.
In the two beam splitter outputs, two balanced homodyne detectors (BHD1&2) measure
the phase and amplitude quadratures of the interferometer signal. The measurements
correspond to a projection of the respective fields onto the indicated axes. Neglecting
optical loss, the variances of the phase and amplitude quadratures at the respective
detectors (BHD1&2) correspond exactly to the squeezed variances of the two squeezed

50/5050/50

Michelson 
interferometer

BHD1:
ar2−e=p̂2∆

BHD2:
br2−e=x̂2∆

)◦= 0aΘ,ar(

90°

)◦= 0bΘ,br(

Figure 4.2.: Schematic setup for quantum-dense metrology. Two squeezed states
are being overlapped at a 50/50 beam splitter with a relative phase shift of 90◦, thereby
creating entanglement. One output state is being reflected at the dark port of a Michel-
son interferometer while the other one is sent directly to a second 50/50 beam splitter
in the interferometer output. Recombination of the two entangled states enables simul-
taneous sub-shot-noise measurement of the amplitude x and phase quadrature p of an
interferometer signal (indicated by the red double-headed arrows). ra,b and Θa,b denote
the squeezing parameters and squeezing angles of the respective states.
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input states and a sub-shot-noise measurement of both orthogonal signal quadratures
can be realized.

4.2. Considering optical loss in quantum-dense
metrology

As discussed in the last section, in QDM the shot noise reduction in the amplitude
measurement does not degrade due to the 50/50 splitting of the interferometer output.
Interestingly, if we take into account optical losses in the interferometer path, we can even
gain squeezing strength with respect to a single quadrature squeezed readout as proposed
by Caves and used in GEO 600 [16–18]. This effect can partly compensate for the halved
signal power in the amplitude detector of the dual readout which was discussed in Section
3.3. The considerations in this section were published in a paper which presents the
results of Chapter 7 [43]. They were not further investigated experimentally in this
work. As discussed in the last section, in QDM the shot noise reduction in the amplitude
measurement does not degrade due to the 50/50 splitting of the interferometer output.
Interestingly, if we take into account optical losses in the interferometer path, we can even
gain squeezing strength with respect to a single quadrature squeezed readout as proposed
by Caves and used in GEO 600 [16–18]. This effect can partly compensate for the halved
signal power in the amplitude detector of the dual readout which was discussed in Section
3.3. The considerations in this section were published in a paper which presents the
results of Chapter 7 [43]. They were not further investigated experimentally in this
work.

The advantage in QDM is that only one of the entangled beams suffers from loss
inside the interferometer path while the loss in the second path can be kept relatively
low. Depending on the initial squeezing strength available, for a certain range of optical
loss, the signal-to-(squeezed-)shot-noise ratio is reduced by less than a factor of 2 (down
to a factor of 1.5) due to the splitting of the interferometer signal. For high optical loss,
however, the imperfect cancellation of anti-squeezing dominates, leading to even larger
factors.

In the GEO 600 scenario with a single quadrature squeezed state and no splitting of
the interferometer output [16] the squeezed variance of the amplitude quadrature at the
photo detector is given by

∆2x̂SQZ(r, ηifo) = 1− ηifo + e−2rηifo (4.1)

with the squeezing parameter r, the path efficiency ηifo and the variance of a vacuum
state being normalized to unity. For QDM, let us consider again the setup given in
Figure 4.2 and assume an idealized case where the squeezed input states are pure and
the loss in the second path outside the interferometer can be neglected. The variance of
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Figure 4.3.: Comparison of QDM with a single quadrature squeezed readout.
The plot shows the ratio of the quantum noise variances for the amplitude measurements
in the respective scenarios, depending on the loss inside of the interferometer path and
the input squeezing strength. The ratio was scaled with a factor of two, accounting
for the halved signal power in QDM. For QDM we assumed the idealized case with
pure squeezed states as input at the first beam splitter and no loss in the path of the
second entangled state, outside the interferometer. The region where the variance in
QDM (∆2x̂BHD2

QDM ) becomes larger than the one for the single quadrature squeezed readout
(∆2x̂SQZ) has been cut off for clarity. This plot was taken from the publication in [43].

the amplitude quadrature at the amplitude detector BHD2 then reads

∆2x̂BHD2

QDM (r, ηifo) = 1
2
(1− ηifo) + 1

4
e−2r(

√
ηifo + 1)2

+ 1
4
e+2r(

√
ηifo − 1)2 .

(4.2)

The plot in Figure 4.3 shows the ratio of the two variances depending on the optical loss
inside the interferometer path (100 · (1 − ηifo)) and the input squeezing strength in dB
(10 · log10(e2r)). The ratio is scaled with a factor of 2, accounting for the splitting of the
signal power in QDM. The blue colored region shows the regime where we gain squeezing
strength in QDM with respect to the single quadrature squeezed case, i.e. we lose less
than a factor of 2 in signal-to-(squeezed-)shot-noise ratio. The region where the anti-
squeezing dominates the variance has been cut off because it is practically not relevant.
In the presence of high optical loss, high squeezing values are only disadvantageous since
they increase the influence of phase noise [44–46]. This is true for a single quadrature
squeezed readout, as well as for QDM.

The plot shows that optical loss needs to be considered when we want to quantify
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Figure 4.4.: Optimal input squeezing in QDM. The plot shows the regime in which
sub-shot-noise sensitivity is achieved at the amplitude quadrature detector (BHD2) in
QDM, depending on the optical loss inside the interferometer path. Overlaid in black is
the optimal value for the input squeezing strength according to Equation (4.3).

the signal-to-(squeezed-)shot-noise ratio in QDM with respect to a single quadrature
squeezed readout. For realistic detector scenarios, like for example 10 dB of input squeez-
ing and 25% loss [20, 47], it will most likely decrease by less than a factor of 2. For the
idealized case considered here, these parameters would lead to a factor of about 1.58.

Another point that might be interesting for an actual implementation of QDM in
gravitational-wave detectors is the following. For the single quadrature readout, ignoring
phase noise, higher squeezing values are always better, i.e. lead to a lower variance at
the photo detector, independently of optical loss. In QDM however, depending on the
optical loss (in the interferometer path) there is always an optimal value for the input
squeezing strength

ropt
QDM(ηifo) = 1

4
ln

(
(
√
ηifo + 1)2

(
√
ηifo − 1)2

)
, (4.3)

due to the imperfect cancellation of the anti-squeezing. This can easily be derived by
setting the derivative of Equation (4.2) with respect to r to zero. Note that this still
refers to the idealized case which considers pure input states and no loss in the reference
path. The colored contour plot in Figure 4.4 shows the regime in which sub-shot-noise
sensitivity is achieved at the amplitude detector (BHD2) in QDM. Overlaid in black is
the optimal value for the input squeezing strength according to Equation (4.3).
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5. Main parts of the experimental
setup

In this chapter I will describe the main parts of the experimental setup. Parts that
were specific for the different experiments will be described in the respective sections
of Chapters 6 & 7. A simplified schematic of the complete setup is shown in Figure
5.1. I employed a continuous wave Nd:YAG laser source at 1064 nm with an output
power of 2 W. The light was split to supply the different parts of the experiment. A
table-top Michelson interferometer was used to generate different test signals and will

Figure 5.1: Schematic of the
overall experimental setup. A
continuous wave Nd:YAG laser
source at 1046 nm with an output
power 2 W was split to supply the
different parts of the experiment. A
Michelson interferometer was used
to generate different test signals.
Its output was equally split and
two balanced homodyne detectors
(BHD1&2) were used to simulta-
neously measure the orthogonal
amplitude x(t) and phase quadra-
tures p(t) of the interferometer’s
output field. In the experiment of
Chapter 7 the readout was enhanced
with two-mode-squeezed states of
light to reach the sub-shot-noise
regime of quantum-dense metrology.
DAQ: data acquisition system.
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be described in Section 5.1, as well as the dual readout of the orthogonal signal quadra-
tures. The source for the two-mode-squeezed states will be discussed in Section 5.2
and their implementation in a quantum-dense readout is presented in Section 5.3. A
data acquisition system was implemented to allow for data post-processing and will be
described in Section 5.4.

5.1. Michelson interferometer with dual homodyne
readout

A photograph of the table-top Michelson interferometer with the dual readout is shown
in Figure 5.2. The paths of the relevant beams for this section are highlighted in red,
the dashed parts show paths where no bright carrier field was present (except for control
beams). First of all, the light coming from the laser (upper right corner) was spa-

Figure 5.2.: Photo of the table-top Michelson interferometer with dual ho-
modyne readout. MC: mode cleaner, EOM: electro-optic modulator, PM: phase mo-
dulation, PD: photo detector, MI: Michelson interferometer, BHD: balanced homodyne
detector, DMC: diagnostic mode cleaner.
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tially filtered to get a clean TEM00 mode, using a three mirror ‘mode cleaning cavity’
(MC 1064). Behind the mode cleaning cavity, the beam was split to provide the input
field of the Michelson interferometer (MI) and the local oscillators for the two balanced
homodyne detectors (BHD1&2) of the dual readout.

The Michelson interferometer, in the bottom part of the picture, had an arm length
of about 7 cm and an input power of about 10 mW. The transfer function of the inter-
ferometer was white over the relevant frequency range of about 5 kHz around 5.2 MHz.
Apart from the intentionally introduced scatter disturbances, optical shot noise was
limiting the measurement sensitivity. One arm of the interferometer was slightly longer
than the other arm (∆L ≈ 1.5 cm) to allow for locking the interferometer to a dark fringe
via the Schnupp modulation technique [48]. This technique requires a phase modulation
(PM) on the interferometer input field which is partly converted into an amplitude mo-
dulation by recombination of the beams at the interferometer beam splitter, due to the
macroscopic arm length difference. A phase modulation at 141.6 MHz was imprinted on
the input beam with a resonant electro-optic modulator (EOM). The error signal was
acquired with a resonant photo detector (PD) in reflection of the interferometer and
used to adjust the position of one of the interferometer end mirrors (south arm in the
photo) with a piezoelectric element.

With the interferometer I was able to produce different test signals. GW-like signals,
due to a differential arm length change, could be generated by modulating the same
interferometer end mirror that was also used for locking the interferometer. These
signals were used as references that should stay unaffected by the post-processing of
the data. The scatter disturbance signals were produced in the second interferometer
arm by injecting a modulated beam in different ways through the partially transmissive
(R ≈ 98%) second end mirror. I used audio band test signals that were shifted to the
MHz regime before injection into the interferometer and demodulated again before data
acquisition. This was done mainly because there was no squeezing measurable in the used
setup for sideband frequencies below about 3 MHz due to the employed control scheme
(see Section 5.2). Additionally, acoustic disturbances from the environment could be
avoided by operating in this frequency regime. The exact generation of the different test
signals will be described in more detail in the respective sections of Chapters 6 & 7.

The output field of the interferometer was split at a 50/50 beam splitter and two
balanced homodyne detectors (BHD1&2) with local oscillator powers of about 10 mW
measured its amplitude and phase quadratures (8 mW for the experiments of Sections 6.2
and 6.3). Both detectors used custom made photo diodes with high quantum efficiencies
&99% that were aligned close to the Brewster angle to minimize reflections and maximize
detection efficiency. The readout quadratures were determined by the phases of the local
oscillator with respect to the interferometer signal beam as described in Section 2.4. For
stabilization of the two detectors to the respective quadratures some additional control
fields were required. The locking scheme for the full quantum-dense readout will be
explained in Section 5.3. The experiments in Chapter 6 used simplified control schemes
which will be described in the corresponding sections.

To achieve good visibilities at the beam splitters of BHD1&2, all beams could be
directed via flip mirrors to a so-called ‘diagnostic mode cleaner’ (DMC), a three mirror
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ring cavity shown in the upper left corner of the photograph in Figure 5.2. By optimally
aligning all beams to the cavity mode also the mode overlap of the different beams with
respect to each other was optimized. The paths are depicted slightly transparent to
indicate that they were not in use when measurements were being performed.

The setup in this configuration, without sub-shot-noise enhancement, was used in the
experiments of Chapter 6.

5.2. Source for the two-mode-squeezed states

For the transition to quantum-dense metrology we need entangled, two-mode-squeezed
states. The source for these states, used in this work, was described and characterized in
reference [49]. The setup of the source was part of the PhD theses of S. Steinlechner and
J. Bauchrowitz [35, 50]. A photograph of the experimental setup is depicted in Figure
5.3. The laser source is shown in the bottom left corner of the photo. After isolation
against back-reflections, a phase modulation at 124.1 MHz was imprinted on the beam
with an electro-optic modulator (EOM1). The modulation was used to stabilize the
lengths of the two mode cleaning cavities MC 1064 and MC 532 and the cavity used for
second harmonic generation (SHG) via the Pound-Drever-Hall (PDH) technique [51].

The beam was then split in three parts. The first one was directed to the mode
cleaning cavity MC 1064 which was already mentioned in the last section and provided
the local oscillators for the Michelson interferometer and the dual readout. The sec-

Figure 5.3.: Photo of the two-mode-squeezed light source. EOM: electro-optic
modulator, PD: photo detector, MZ: Mach-Zehnder interferometer, SHG: second har-
monic generation, MC: mode cleaner, OPA: optical parametric amplifier, DMC: diag-
nostic mode cleaner
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ond one was sent to the SHG to produce the pump field at 532 nm, required for the
squeezed light generation. The SHG used a magnesium oxide doped lithium niobate
crystal (MgO:LiNbO3) as non-linear medium and its temperature was stabilized by
peltier elements to maintain phase matching conditions. The power of the 532 nm beam
(green in the picture) was stabilized with a small Mach-Zehnder interferometer (MZ)
and its spatial mode was cleaned, using another three mirror filter cavity (MC 532),
before it was split and sent to the two squeezed light sources OPA1&2. The pump fields
each had a power of about 60 mW and were injected from the back sides, through the
out-coupling mirrors of the respective cavity.

The squeezed states were generated via optical parametric down-conversion in a non-
linear crystal [47,52,53]. OPA1&2 used periodically poled potassium titanyl phosphate
(PPKTP) as non-linear medium which has a higher effective non-linearity than lithium
niobate and allows for more stable phase matching at lower temperatures due to its peri-
odic poling (quasi-phasematching) [54–56]. Both crystals were temperature stabilized as
well to ensure optimal conversion between the pump and the fundamental fields. OPA1
was a ‘monolithic’ source where the cavity was formed directly by the coated surfaces of
the crystal and OPA2 was ‘hemilithic’ which means that the cavity was formed by one
crystal surface and a separate out-coupling mirror. The monolithic design generally al-
lows for lower intracavity loss, and therefore higher squeezing values, but the hemilithic
design was useful to achieve simultaneous resonance for the two OPA cavities. In both
OPAs one crystal surface had a highly-reflective (HR) coating for both wavelengths and
the out-coupling surface/mirror had a reflectivity of 90% for the fundamental wavelength
(1064 nm) and 20% for the second harmonic field (532 nm).

The third part of the initial, split field was split again and served as control beams
for OPA1&2. Both beams were phase modulated with two electro-optic modulators
(EOM2&3) at 47.8 MHz and 32.5 MHz, respectively. They had a power of about 1 mW
and were injected into OPA1&2 from the front sides, through the HR coatings. The
PDH error signals for stabilizing OPA1&2 on resonance were detected in reflection with
the photo detectors PD3&4. For the monolithic source (OPA1) the laser frequency
was actuated to resonate in the cavity and the cavity length of the hemilithic source
(OPA2) was adjusted with its piezo actuated out-coupling mirror to obtain simultaneous
resonance. Error signals for the stabilization of the pump fields’ phases with respect to
the control beams at the fundamental wavelength were obtained by shifting the phases
of the electronic demodulation at PD3&4 by 90◦. The pump phases were stabilized
on deamplification for the fundamental field by adjusting the (microscopic) position of
piezo actuated mirrors in the respective pump fields’ paths. Due to technical noise
from the laser source that coupled in through the control beams of OPA1&2, there
was no squeezing detectable for sideband frequencies below about 3 MHz in this setup.
Therefore, all measurements in this work were performed in a higher frequency regime
around 5 MHz where the measurements were shot-noise limited. Implementation of a
quantum-dense readout in GW detectors would require a coherent control scheme, as
it is used in GEO 600 [57, 58], to avoid the coupling of technical laser noise into the
squeezed beam at frequencies in the detectors’ sensitive band.

The squeezed output fields at 1064 nm (dashed paths) were separated from the re-
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flected pump fields via dichroic beam splitters (DBS) and sent to a 50/50 beam splitter
to generate the entangled, two-mode-squeezed fields. To optimize the contrast between
the two fields, one beam splitter output could be directed via a flip mirror to another
diagnostic mode cleaner (DMC) shown in the upper right corner of the picture. The
stabilization of the relative phase shift between the two squeezed states and the imple-
mentation of the entangled output beams in the dual readout will be described in the
next section.

The setup was shown to produce strong entanglement with an EPR-value of E2 = 0.039
according to Equation (2.28) [49]. For this measurement, both squeezed light sources
were stably operated with detected squeezing values of about 10 dB and the two-mode-
squeezed states were measured with two balanced homodyne detectors closely behind
the 50/50 beam splitter that created the entanglement.

5.3. Quantum-dense readout

To reach the sub-shot-noise regime of quantum-dense metrology (QDM), the two-mode-
squeezing was implemented in the dual readout of Section 5.1 as depicted in the photo-
graph of Figure 5.4. The squeezed beams from OPA1&2 (dashed red) enter the picture
from the right side together with a single sideband (SSB) at 80 MHz (light blue). Note
that the photo of the two-mode-squeezed light source in Figure 5.3 was taken from the
opposite side of the table. To describe the locking procedure, the whole setup is also
schematically depicted in Figure 5.5.

The two squeezed fields were overlapped on a 50/50 beam splitter to create the en-
tangled, two-mode-squeezed states. In each output of the beam splitter 1% of power
was picked off and detected with a combined photo detector 1©. The difference of the
two photo currents provided an error signal for stabilization of the relative phase shift
between the two squeezed fields to the required 90◦. The phase shift was adjusted with
a piezo actuated mirror in the path of OPA1.

One of the entangled beams was sent to the Michelson interferometer (MI) and re-
flected at its dark port via a combination of a Faraday isolator and a polarizing beam
splitter (PBS). The second entangled state was sent directly to the 50/50 beam splitter
in the output of the interferometer.

For stabilization of the relative phase shift for the recombination of the two entangled
beams, a single-sideband (SSB) at 80 MHz was used. The SSB was produced with an
acousto-optic modulator (AOM) and a pick-off from the laser’s main beam. It was
overlapped with the first entangled state through an HR mirror, before it entered the
interferometer. The beat note at 80 MHz between the SSB and the combined control
fields from the squeezed light sources was measured in reflection of the HR mirror,
using a resonant photo detector 2©. After demodulation at 80 MHz it served as an
error signal to stabilize the relative phase between the SSB and the first entangled state
to an arbitrary angle. The two fields recombined with the second entangled state at
the 50/50 beam splitter in the interferometer output. A pick-off of 1% was taken at
each beam splitter output again and detected with another combined photo detector
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Figure 5.4.: Photo of the table-top Michelson interferometer with quantum-
dense readout. MC: mode cleaner, AOM: acousto-optic modulator, OPA: optical
parametric amplifier, R: power reflectivity, PD: photo detector, MI: Michelson interfero-
meter, BHD: balanced homodyne detector, DMC: diagnostic mode cleaner.

3©. By taking the difference of the two photo currents, the beat note between the SSB
and the control beams of the first entangled state canceled out and only the beat note
between the SSB and the second entangled state remained. Electronic demodulation at
80 MHz led to an error signal for stabilization of the relative phase shift between the
two entangled states. Depending on the phase of the demodulation, their relative phase
shift could be stabilized to an arbitrary value. After locking the balanced homodyne
detectors (BHD1&2) to measure the orthogonal quadratures, the phase of the electronic
local oscillator was tuned to recover optimal squeezing at both detectors.

The quadrature angle of the two BHDs was stabilized with the help of the two phase
modulated control beams of OPA1&2. Since the OPAs were locked on deamplifica-
tion, they produced amplitude squeezing related to their respective control fields and
the squeezed quadratures were exactly aligned with the direction where the phase mo-
dulation vanished. Demodulation of the homodyne signals at the respective frequen-
cies allowed for locking the readout quadratures to the initial squeezed quadratures of
OPA1&2 using phase shifters in the paths of the optical local oscillators 4©.

At last, the orthogonal quadratures measured at BHD1&2 needed to be aligned with
respect to the interferometer signal such that GW-like signals from differential arm
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Figure 5.5: Schematic of the
locking procedure for the
quantum-dense readout. The
quantum-dense readout was sta-
bilized with the help of a SSB at
80 MHz and the two phase mod-
ulated control beams of OPA1&2
at 47.8 MHz and 32.5 MHz, re-
spectively. The four steps of the
locking procedure are described
in the main text. Step five
shows a possibility to stabilize
the readout quadratures with re-
spect to the interferometer sig-
nal. MI: Michelson interferome-
ter, PBS: polarizing beam split-
ter, HR: high-reflectivity mirror,
OPA: optical parametric ampli-
fier, SSB: single sideband, PM
phase modulation, BHD: bal-
anced homodyne detector.

length changes were optimally aligned in the amplitude detector (BHD2) and vanished
in measurements at the phase quadrature detector (BHD1) accordingly. This part was
not electronically stabilized but adjusted by shifting the phase of the first entangled
beam to minimize a marker peak in the spectrum of BHD1. The marker peak was
generated by modulating one interferometer end mirror with a piezo actuator.

In principle this last degree of freedom could also be stabilized using the 80 MHz
SSB like it was done in the QDM setup of [33–35]. Its beat note with the bright
interferometer mode is much stronger than the one with the weak control beams coming
from the squeezed light sources and can be detected behind one of the interferometer
end mirrors 5©. This lock was omitted here for practical reasons.

5.4. Data acquisition

Figure 5.6.: Schematic sequence of data acquisition and processing.

For the post-processing of the measurement data from the two orthogonal quadratures
I implemented a data acquisition system (DAQ) as it is schematically depicted in Figure
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5.6. As already explained before, all measurements in this work have been performed in
the MHz range due to technical noise at low frequencies. Therefore, as a first step for
the data acquisition, the measurement data from the two balanced homodyne detectors
were electronically mixed down at a frequency of about 5 MHz and filtered with a 9-pole
low pass filter at a passband frequency of 3 kHz to avoid aliasing. The resulting audio
band signals were acquired with a PCIe-6259 card from National Instruments (NI).

I wrote a LabView program to process the experimental measurement data. A screen-
shot of the user interface and the corresponding block diagram are shown in Figures A.1
to A.3 of the Appendix. The program was used to save the raw time domain data of the
two input channels for BHD1&2 to text files, including information like e.g. the sample
rate in the header of the file. Also, the power spectrum of the two channels was computed
and displayed for tunable resolution bandwidth (RBW) and averaging factor. This was
employed to adjust the quadrature angle of the two homodyne detectors as mentioned
in the last section. There were two different ‘save modes’ available: (i) saving the
data length required for a given resolution bandwidth (RBW) and number of averages
(to reproduce the displayed spectrum) and (ii) saving the data length required for a
given measurement time. The program was buffering the data, so that the saved data
corresponded to what was visible in the live spectrum before hitting the stop button.
I implemented an additional feature that enabled me to play a sound file and save
the measurement data during the time while the file was playing. The sound output
of the PC (via external speakers) was fed as an external modulation into an Agilent
33500B series wave form generator and used to generate a GW-like signal in some of the
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Figure 5.7.: Performance of the data acquisition. The plot shows the power
spectral density (PSD) of vacuum noise measured at BHD2 and transferred through the
DAQ chain (blue). The noise was mixed down at 5.25 MHz and filtered against aliasing
with a low pass filter at 3 kHz. The measured vacuum noise was suppressed below the
dark noise of the PCIe card for frequencies above ≈ 10 kHz. The biggest dark noise
contribution in the measurement frequency regime was given by the dark noise of BHD2
(gray). It lay about 17 dB below the measured vacuum noise level.

40



experiments. Synchronizing the injection of the sound signal and the data taking was
important to be able to produce good reference measurements which contained only the
GW-like signal, while the scattered light was blocked in the setup. The post-processing
for subtraction of the back-scatter disturbances was done in Matlab and will be described
in the respective sections of Chapters 6 & 7.

Throughout this work, the data were sampled at a frequency of fs = 200 kHz. Figure
5.7 shows the power spectral density of a vacuum noise measurement at BHD2 (blue)
which served as a (white) signal of typical size. The vacuum noise level lay about
40 dB above the dark noise of the PCIe card in the frequency range relevant for the
measurements and it was suppressed below the dark noise of the PCIe card for frequencies
above about 10 kHz (and therefore also above the Nyquist frequency fny = 1

2
fs). The

limiting dark noise for the measurements was given by the dark noise of the balanced
homodyne detectors. It is shown in gray in Figure 5.7 and lay about 17 dB below the
measured vacuum noise level.
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6. Experimental demonstration of a
dual homodyne readout for
subtraction of back-scatter
disturbances

In this chapter I will present some experiments that I performed as a proof of principle
for the subtraction of back-scatter disturbances. The setup for all these experiments was
the one described in Section 5.1 and used no entangled-light enhancement. A schematic
is shown again in Fig. 6.1. Sections 6.1 to 6.3 describe experiments for different types of
back-scatter disturbances varying from a simple monochromatic peak in the spectrum
to broadband scatter shoulders with multiple round-trips for the scattered light beam.
Apart from the scatter disturbances, optical shot noise was the limiting noise source in
all experiments of this chapter.
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Figure 6.1: Schematic of the
experimental setup. A Michel-
son interferometer was employed
to generate two different types of
signals (i) a GW-like signal due
to a differential arm length change
and (ii) a back-scatter disturbance
from interference of a modulated
external beam with the interfero-
meter mode. The interferome-
ter output was (equally) split into
two parts. Two balanced ho-
modyne detectors (BHD1&2) read
out the orthogonal amplitude x(t)
and phase quadratures p(t) of the
interferometer signal. DAQ: data
acquisition system.
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6.1. Scatter sources with small amplitude motion

In this section I will start with the most simple example for a scatter disturbance, a
monochromatic peak in the spectrum as it was already used in the demonstration of
quantum-dense metrology [33]. In a second step, the disturbance will become slightly
more complex by imprinting an additional low frequency phase modulation on the peak.
The additional phase modulation led to a surrounding sideband structure and gave the
scatter disturbance a distinct time-frequency behavior.

The experimental generation of the test signals, including a GW-like signal as a refer-
ence, will be described in Section 6.1.1. The locking scheme for stabilization of the dual
homodyne readout in this experiment was different from the one shown in Section 5.3
and will be described in Section 6.1.2. In Section 6.1.4 I will show that both types of
disturbances could be fully subtracted using the post-processing of Section 6.1.3. The
resulting sensitivity was increased to the shot noise level over the whole frequency range.

6.1.1. Experimental generation of the test signals

As already mentioned, I employed a table-top Michelson interferometer to generate two
different types of test signals. A photo of the setup is shown in Figure 6.2 where the
interferometer beam is given in red.

A GW-like signal due to a differential arm length change was produced by modulating
one of the interferometer end mirrors with a piezo actuator (north arm in the picture).

Figure 6.2.: Experimental generation of the test signals. The photo shows the
table-top Michelson interferometer that was used to generate the test signals (red beam).
A GW-like signal, due to a differential arm length change, was produced by modulating
one piezo actuated interferometer end mirror (north arm). The scatter disturbance
was generated with an external beam (orange) that was injected through the second
interferometer end mirror, which had a reduced power reflectivity of R = 98%. PM:
phase modulation, EOM: electro-optic modulator, BHD: balanced homodyne detector.
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The piezo actuator was driven with a sinusoidal signal at 5.251 MHz. After demodulation
with 5.25 MHz during data acquisition, this resulted in a monochromatic peak at 1 kHz.
The peak was also used as a marker to adjust the quadrature angles for the measurements
at BHD1&2 with respect to the interferometer signal, as described in Section 6.1.2.

For the generation of the scatter disturbance, an external beam was used which was
picked off the main beam in front of the interferometer (orange beam). It was injected
through the second interferometer end mirror (east arm in the picture) which had a
reduced power reflectivity of R = 98%. An external beam was used because this made
it easier to produce sufficiently large disturbance signals in this table-top setup. On
its path, the beam was first modulated with an audio band disturbance signal, via a
piezo actuated mirror. As already mentioned, two different signals were used: (i) a
pure sinusoidal modulation at 500 Hz, leading to another monochromatic peak in the
spectrum and (ii) a sinusoidal 500 Hz signal whose phase was additionally modulated at
10 Hz with different modulation depths, leading to different sideband structures. The
resulting signals were shifted by 5.25 MHz with an electro-optic modulator (EOM) before
they were injected in the interferometer. The Michelson interferometer was stabilized
to a dark fringe and its (dashed) output beam was sent to the two balanced homodyne
detectors BHD1&2 of the dual readout. The data were acquired as described in Section
5.4 and the post-processing was done in Matlab, as described in Section 6.1.3.

6.1.2. Stabilization of the dual homodyne readout

This experiment used a simplified locking scheme for the stabilization of the dual homo-
dyne readout, employing solely the 80 MHz single sideband (SSB) which was introduced
in Section 5.3. The scheme is depicted in Figure 6.3. The SSB was reflected at the
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meter dark port and its phase was stabilized
with respect to the interferometer signal 1©.
Afterwards the local oscillator phases at the
two balanced homodyne detectors (BHD1&2)
were stabilized with respect to the SSB 2©. A
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interferometer dark port via a combination of a Faraday rotator and a polarizing beam
splitter and thereby overlapped with the interferometer output signal. One percent of
the output power was picked off and detected with a resonant photo detector 1©. The
beat signal from the two fields was demodulated and used to stabilize their relative
phase shift to an arbitrary value. Afterwards the beat of the SSB with the local os-
cillator beams of the two balanced homodyne detectors could be used to stabilize the
readout quadratures 2©. The homodyne signals were demodulated at 80 MHz and em-
ployed to control phase shifters in the respective local oscillator paths. The phase for the
electronic demodulation was adjusted to minimize/maximize the injected marker peak
of Section 6.1.1 in the phase/amplitude quadrature detector.

6.1.3. Post-processing

The measurement data of the two balanced homodyne detectors contained the orthog-
onal projections of the test signals in the two quadratures. The post-processing of the
data followed the description in Section 3.2. First, an analytical model for the scatter
disturbance was fitted to the phase quadrature data of BHD1. Afterwards, the projec-
tion of the disturbance into the amplitude quadrature measurement was computed and
subtracted from the data of BHD2.

As described in Section 3.2.1, for scatter sources that move sinusoidally with a small
amplitude motion, the projections of the disturbance into the orthogonal phase and
amplitude quadratures at the interferometer output reduces to

psc = Ap sin( 2πft+ φ ) (6.1)

xsc = Ax sin( 2πft+ φ ) . (6.2)

These expressions are equivalent to Equations (3.4) & (3.5), only the subscripts in the
frequency f and phase φ of the motion have been skipped and the differing amplitudes
of the quadrature components have been combined in Ap and Ax for clarity. For the
disturbance peak with sideband structure, an additional modulation term needed to be
inserted in the sine of Equations (6.1) & (6.2), leading to the analytic models

psc = Ap sin( 2πft+ φ+m sin(2πfmt+ φm) ) (6.3)

xsc = Ax sin( 2πft+ φ+m sin(2πfmt+ φm) ) . (6.4)

For fitting the model of Equation (6.1), or (6.3) respectively, to the phase quadrature
data of BHD1, all parameters were supposed to be free within reasonable ranges. To
find good start parameters and boundaries for the fitting, some analyzing of the phase
quadrature data was done in advance. First, the power spectral density (PSD) was
computed for the whole data set of 5 s length. A plot of the PSD for an exemplary
measurement with a modulated peak is shown in Figure 6.4. All frequency compo-
nents whose amplitudes exceeded a certain threshold were declared as excess noise. The
threshold was defined using the PSD of a reference shot noise measurement that was
obtained by blocking the signal port of BHD1. It was set to 1.3 times the maximum
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value of the shot noise measurement and is shown in red in Figure 6.4. The center of
the excess noise frequency range was used as a start parameter for the main frequency
f and the corresponding boundaries were set to the minimum and maximum frequency
components of the excess noise.

The excess noise frequency components were grouped into peaks by combining neigh-
boring points and taking their center frequency. The most frequently occurring distance
between two adjacent peaks (within a margin of 1 Hz) was used as starting point for the
frequency of the additional modulation fm in Equation 6.3. The boundaries were set
to the minimum possible peak distance (two times the resolution bandwidth) and the
width of the excess noise range.

The start parameters for the amplitudes Ap and Ax were determined directly from the
time domain data of the respective detectors. They were set to half of the maximum
measurement value, while the minimum and maximum values were used as boundaries.
The phases φ and φm started at 0 and were constrained by ±2π and the modulation
depth m started at a value of 1 and was not constrained, i.e. used infinite bounds.

The fitting of the models in Equation (6.1), or (6.3) respectively, to the time domain
data of BHD1 was done using Matlab’s ‘lsqcurvefit’ function. As already described in
Section 3.2.1, the amplitudes of the two quadrature components psc and xsc were differ-
ent and depended on the total extra path length for the scattered light. For this reason,
the amplitude Ax of the scatter disturbance in the amplitude quadrature measurement
needed to be determined in a separate fit. The parameters found in the first fit were
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Figure 6.4.: Analyzing the scatter disturbance in the phase quadrature data
of BHD1. The plot shows the power spectral density (PSD) of the measurement data
from BHD1, computed for the whole data set of 5 s length. A threshold was applied
to find the scatter disturbance and determine the frequency range that was polluted by
this excess noise. The excess noise was analyzed to provide reasonable start parameters
and boundaries for fitting the model of Equation (6.1), or (6.3) respectively, to the time
domain data of BHD1.
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inserted in the model for the orthogonal projection (Equation (6.2) or (6.4) respectively)
and the amplitude Ax was obtained by fitting to the time domain data of BHD2 directly.
Subtraction of the fitted models from the measurement data of BHD1&2 led to the re-
sults presented in the next section.

6.1.4. Subtraction of the scatter disturbance

The results for the subtraction of the monochromatic scatter disturbance are given in
Figure 6.5. Shown are the averaged power spectral densities (PSD) of the original
measurement data from BHD1&2 in blue and after subtraction of the fitted scatter
models in red. The measurement at BHD1 contains only the disturbance signal at
500 Hz, while the measurement at BHD2 shows the disturbance and the GW-like signal
at 1 kHz. The underlying noise floor in both measurements was set by optical shot
noise. After subtraction of the scatter model, the disturbance clearly vanished in both
measurements, while the GW-like signal and the surrounding noise floor were unaffected.
The parameters obtained in the fits are given in Table 6.1 and are consistent with the
injected disturbance signal.
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Figure 6.5.: Subtraction of the scatter disturbance – simple peak. Shown are
the averaged power spectral densities (PSD) of the original measurement data from
BHD1&2 in blue and after subtraction of the fitted scatter models in red. Note that the
frequencies on the x-axis correspond to demodulated frequencies from the MHz regime.

Ap [mV] f [Hz] φ [rad] Ax [mV]
0.9783 500.0146 3.9818 0.7212

Table 6.1.: Fitted parameters for the scatter peak.
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Figure 6.6.: Subtraction of the scatter disturbance – peak with surrounding
sideband structure. The plots show the averaged PSD of the the original measurement
data at BHD1&2 in blue and the same data after subtraction of the scatter disturbances
in red. The three different measurements were performed with different modulation
depths for the 10 Hz modulation, corresponding to a maximum phase deviation of 60◦,
120◦ and 180◦ for the 500 Hz signal. Note that the frequencies on the x-axis correspond
to demodulated frequencies from the MHz regime.
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Ap [mV] f [Hz] φ [rad] m [rad] fm [Hz] φm [rad] Ax [mV]
ph. dev. 60◦ 0.9203 500.0123 3.7171 -1.0216 10.0038 2.6035 0.7956
ph. dev. 120◦ -0.8357 500.0141 2.5619 2.0942 10.0019 3.0070 -0.7971
ph. dev. 180◦ 0.8356 500.0019 2.2331 3.0848 9.9981 2.4644 0.6156

Table 6.2.: Fitted parameters for the scatter peak with sideband structure.

The results of the subtraction for the scatter peak at 500 Hz with surrounding sideband
structure from the additional phase modulation at 10 Hz are given in Figure 6.6. The
plots show again the averaged PSD of the original measurement data at BHD1&2 in
blue and the same data after subtraction of the scatter disturbances in red. The three
different measurements were performed with different modulation depths for the 10 Hz
modulation, corresponding to a maximum phase deviation of 60◦, 120◦ and 180◦ for
the 500 Hz signal. With increasing modulation depth, the sideband structure became
broader and broader. The GW-like signal was the same in all measurements. Again, the
disturbances could be completely subtracted, leading to a shot noise limited sensitivity
over the whole frequency range. The parameters found in the fits of the respective
measurements are given in Table 6.2. The modulation frequencies f and fm, as well
as the modulation depths m for the 10 Hz modulation, are in good agreement with the
injected signal frequencies and the applied phase deviations. Note, that the modulation
depths m > 1 in this experiment do not correspond to an actual motion of the scatter
source over more than one wavelength. The 10 Hz modulation was applied to the 500 Hz
signal before it was put on the piezo actuated mirror.

6.1.5. Discussion

In the experiments of this section I investigated scatter disturbances from a source
with small amplitude motion where the motion of the source coupled linearly to the
disturbance signal. The disturbances in the phase quadrature measurements could be
sufficiently well described by the linearized models of Equations (6.1) and (6.3) and were
completely removed from the measurement data. However, using the linearized models,
the amplitude of the disturbance signals in the amplitude quadrature measurements
could not be inferred from the phase quadrature models. Only an extended description,
including (at least) the DC and 2f components could reveal the orientation of the
disturbance signals in quadrature space. Determining an exact DC offset is generally
difficult and the 2f components are supposed to be very small since they are of second
order in the modulation index (m � 1 here contained in Ax and Ap). In the given
analysis the amplitude of the projected disturbances had to be determined separately,
from the amplitude measurement data. This procedure might be suitable if a disturbance
has a distinct time-frequency behavior which can be recognized in both quadrature
measurements.
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6.2. Broadband scatter shoulder

This section is concerned with the case of a so-called ‘scatter shoulder’ that is pro-
duced by back-scatter sources with large amplitude motion. This type of disturbance
was already introduced in Section 1.3 and is described in detail in Section 3.2.2. The
experimental generation of the scatter shoulder and a GW-like reference signal with the
Michelson interferometer will be described in Section 6.2.1. In Section 6.2.3 I will discuss
the post-processing of the data and the results for the subtraction of the disturbance
will be given in Section 6.2.4. The work presented in this section has been published in
Classical and Quantum Gravity [59].

6.2.1. Experimental generation of the test signals

The experimental generation of the test signals is depicted in Figure 6.7. The optical
setup used here was the same as the one employed in Section 6.1. Again, one scatter
disturbance and one GW-like reference signal were produced in a table-top Michelson
interferometer. This time, both signals had a distinct time-frequency behavior and the
broadband scatter disturbance was supposed to conceal the GW-like signal. Both signals
were shifted to the MHz regime and demodulated again after detection at the balanced
homodyne detectors BHD1&2 in the split interferometer output. The GW-like signal

Figure 6.7.: Experimental generation of the test signals. The photo shows
the table-top Michelson interferometer that was used to generate the test signals (red
beam). A GW-like signal, due to a differential arm length change, was produced by
modulating one piezo actuated interferometer end mirror with a sound file [60]. The
scatter disturbance was generated with an external beam (orange) that was injected
through the second interferometer end mirror, which had a reduced power reflectivity of
R = 98%. The phase of the beam was modulated over several wavelengths to produce
a broadband disturbance via frequency up-conversion. PM: phase modulation, EOM:
electro-optic modulator, BHD: balanced homodyne detector.
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from Section 6.1, a narrow peak at (demodulated) 1 kHz, was still being generated with
one of the interferometer end mirrors in this experiment but served solely as a marker
to adjust the quadrature orientation of the dual homodyne readout with respect to the
interferometer signal. The data were acquired and processed as described in Section 5.4.

The scatter signal

To artificially produce a scatter shoulder according to Equations (3.6)-(3.8), an external
beam (orange) was injected through one of the interferometer end mirrors with a power
reflectivity of R = 98%. The phase of the beam was modulated with a piezo actuated
mirror that had a shifting range of 30µm at 1 kV. The piezo actuator was driven sinu-
soidally with roughly 300 Vpp at a frequency of 5 Hz to achieve a path length change of
a few wavelengths λ = 1064nm. The large shifting range led to frequency up-conversion
of the 5 Hz modulation and produced a broadband scatter shoulder that limited the
sensitivity of the interferometer over a bandwidth up to about 200 Hz (demodulated
frequency). The center of motion of the piezo actuated mirror was not stabilized but
turned out to be sufficiently constant over the measurement time. An additional phase
modulation at 5.2 MHz was imprinted by an electro-optic modulator (EOM) to shift the
scatter signal into the MHz range.

The GW-like signal

The GW-like signal was produced with the same interferometer end mirror as in Section
6.1. As already mentioned above, the signal had a distinct time-frequency dependance
in this experiment. I used a sound file containing about 4.5 seconds of a simulated
inspiral of two neutron stars with equal masses [60] that I fed into an Agilent 33500B
series waveform generator as an external modulation. The signal described a chirp that
started at about 55 Hz and increased in frequency over time up to the kHz regime. It
is depicted in Figure 6.8, once in time domain (left) and once in a spectrogram (right).
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Figure 6.8.: Injected GW signal. The sound file contained about 4.5 seconds of a
simulated inspiral of two neutron stars with equal masses [60]. The two plots show a
segment of the signal in time domain (left) and the whole signal in a spectrogram (right).
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The waveform generator shifted the audio band signal by 5.2 MHz before it was put
on the piezo actuator. A natural resonance of the piezo mounted interferometer end
mirror at about 5.2 MHz was exploited to generate a sufficiently large signal in this high
frequency regime without producing too much electronic pick-up. In the relevant kHz
range around this resonance the transfer function of the piezo was still flat, so that the
injected audio band signal was not distorted in the measurement.

6.2.2. Stabilization of the dual homodyne readout

This experiment employed a simplified version of the locking scheme for the quantum-
dense readout described in Section 5.3. The stabilization of the homodyne detectors was
done using the phase modulated control beams of the squeezed light sources OPA1&2
which were introduced in Section 5.2. Note, that there was no squeezing produced in
this experiment. As described in Section 5.3, the two control fields were overlapped on
a 50/50 beam splitter and their relative phase shift was stabilized to an angle of 90◦ 1©.
The error signal for this lock was obtained by measuring the difference of both beam
splitter outputs with a power pick-off of 1% each. One of the beam splitter outputs was
sent to the 50/50 beam splitter in the interferometer output and overlapped with the
interferometer signal while the second output was dumped in this experiment. Demodu-
lation of the homodyne signals, each at one of the phase modulation frequencies, enabled
locking the two detectors BHD1&2 into orthogonal quadratures 2©. The quadrature ori-
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x(t) @
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R=1%

Figure 6.9: Locking scheme for
the dual homodyne readout. In
this setup, the phase modulated con-
trol beams of the squeezed light sources
OPA1&2 were employed for the stabi-
lization of the dual homodyne readout
(no squeezing was generated). First
the two fields were locked 90◦ out of
phase 1© and afterwards the readout
quadratures at BHD1&2 were locked
each with respect to one of the control
beams 2©. The phase space orienta-
tion of the readout quadratures with
respect to the interferometer signal
was adjusted by minimizing a marker
peak in the spectrum of BHD1. MI:
Michelson interferometer, HR: high-
reflectivity mirror, OPA: optical para-
metric amplifier, PM: phase modula-
tion, BHD: balanced homodyne detec-
tor, LO: local oscillator.
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entation of the detectors with respect to the interferometer signal was not electronically
stabilized in this experiment but adjusted by minimizing the injected marker peak at
1 kHz in the live spectrum of BHD1.

6.2.3. Post-processing of the scatter limited measurement data

A spectrogram plot of the scatter limited measurement data from the two detectors is
shown in Figure 6.10 (a). In the phase quadrature measurement of BHD1 (left) only
the disturbance signal from the artificial scattering is visible. It shows up as the typical
arches, already discussed in Section 3.2.2. The amplitude data of BHD2 (right) shows the
scatter disturbance concealing part of the injected GW-like signal (chirp), only its ‘tail’
towards high frequencies is clearly visible. In Figure 6.10 (b) the averaged power spectral
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Figure 6.10.: Scatter limited data. (a) Spectrogram of the measurement data from
BHD1&2. The time resolved scatter shoulder (arches) is visible in both quadrature mea-
surements. In the amplitude data of BHD2 it is concealing the simulated gravitational-
wave signal (chirp) that was injected from an audio file [60]. (b) Averaged power spectral
density of the same data. The scatter shoulder is the dominant noise source for frequen-
cies below about 200 Hz. Above, the measurements were limited by optical shot noise.
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density (PSD) of the data is shown. The scatter shoulder is clearly the dominant noise
source for frequencies below about 200 Hz. Above that frequency the measurements were
limited by optical shot noise. The peak at 1 kHz in the spectrum of BHD2 shows the
earlier mentioned marker that was used to adjust the quadratures of the dual homodyne
readout. The injected GW signal can not be identified in this plot, only a slight rise of
the noise floor at the edge of the scatter shoulder of BHD2 is visible.

The post-processing was done in Matlab again. For convenience, the equations of
Section 3.2.1 which are relevant for fitting the scatter disturbance are given here again.
For a scatter source which performs a sinusoidal motion with constant parameters, the
projections of the disturbance signal in the phase and amplitude quadratures are given
by

psc(t) = A · cos(ϕ0 +m sin(2πfmt+ φm)) (6.5)

xsc(t) = A · sin(ϕ0 +m sin(2πfmt+ φm)︸ ︷︷ ︸
≡ϕ(t)

) (6.6)

with the signal amplitude A, a constant overall phase shift ϕ0 which accounts for the
total mean path length that the back-scattered beam traveled outside the interferometer
and the modulation depth m, frequency fm and phase φm of the scatter source motion.
For large amplitude motion with m > 1, the Doppler shift of the back-scattered light is
useful to describe the time-frequency behavior of the disturbance signal

fds(t) = mfm cos(2π fm t+ φm) . (6.7)

To fit the scatter model of Equation (6.5) to the phase quadrature data of BHD1, a
suitable set of start parameters was required in advance. I assumed no prior knowledge
about the parameters of the scatter source and therefore, in a first step, I tried to reduce
the set of required parameters.

The course of the arches showing up in the spectrogram of Figure 6.10 is described by
the Doppler shift of Equation (6.7) and solely depends on the frequency fm, modulation
depth m and phase φm of the scatter source motion. It could therefore be used to fit
these parameters separately. The spectrogram consists of a number of spectra, computed
for different consecutive (overlapping) data segments at different times. Finding the
frequency component with the maximal amplitude in each of these led to the black
data points in Figure 6.11. A fit of the absolute value of Equation (6.7) to the data
points is given by the blue trace in Figure 6.11. During the fitting process, at first, fm

was iterated from a trial frequency vector while m and φm were fitted using Matlab’s
’lsqcurvefit’ function in each step. The spectrogram and the corresponding maximal
frequency components (black data points in Figure 6.11) were computed separately for
each frequency fm because the resolution of the spectrogram had to be adjusted to
optimally resolve arches at a certain modulation frequency. The start parameters used
here were [m = 1 ; φm = 0] and the boundaries were set to [m = ±∞ ; φm = ±2π]. The
fit with the minimal residual was used as a first rough estimate of the three parameters
and to determine the resolution required for the spectrogram. To improve the estimate,
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Figure 6.11.: Fitting the Doppler shift of the back-scattered light. A first es-
timate for a reduced parameter set [m, fm, ϕm] was deduced from the time dependent
Doppler shift of the back-scattered light. The black dots describe the arches in the spec-
trogram data of BHD1 (see Figure 6.10 (a)) and the fitted Doppler shift fds(t) according
to Equation (6.7) is given by the solid blue trace.

m [rad] fm [Hz] φm [rad]
34.4215 4.9994 -2.5097

Table 6.3.: Fitted parameters for the time dependent Doppler shift.

another fit was performed with all three parameters free. The result of this second fit is
the one depicted in Figure 6.11 and returned the parameters given in Table 6.3.

As a next step, the full model of Equation (6.5) was fitted to the time series data of
BHD1. To improve the speed of this fit, the data was first downsampled by averaging
neighboring data points (and filtered accordingly). The reduced sample rate was set to
sufficiently resolve the maximum Doppler shift frequency fmax

ds = mfm determined from
the first fit. A segment of the averaged time data is displayed in gray in Figure 6.12 (a).
Again, Matlab’s ’lsqcurvefit’ function was used for the fitting. The parameters of Table
6.3 were used as start parameters together with half of the maximum detected amplitude
as starting point for the signal amplitude A and ϕ0 = 0. The boundaries were set to
span the whole reasonable parameter space. The result of the fit is given by the dashed
black trace in Figure 6.12 (a) and the corresponding parameters are given in Table 6.4.

A [mV] ϕ0 [rad] m [rad] fm [Hz] φm [rad]
-6.3174 -0.0759 34.1784 5.0001 -2.4997

Table 6.4.: Fitted parameters for the harmonic scatter model.

Although the fit already reproduced the scatter disturbance quite well it became clear

56



2 2.2 2.4 2.6 2.8 3 3.2 3.4 3.6 3.8 4
time [s]

am
pl
itu
de
[a
.u
.]

0 0.05 0.1 0.15 0.2

−0.01

0

0.01

time [s]

am
pl
itu
de
[V
]

BHD1 data
harmonic model
higher order model

(a)

(b)

residual: higher order model

residual: harmonic model

undisturbed reference

BHD1

Figure 6.12.: Fitting the phase quadrature data. (a) shows an averaged segment
of the time domain data measured at BHD1 (gray) overlaid with fits of the harmonic
model (dashed black) and the higher order model (solid blue). (b) shows the residuals
of a larger data segment after subtraction of the modeled disturbance signals (black
and blue) in comparison with an undisturbed reference measurement, taken while the
scattered light beam was blocked.

that the model was not perfectly matching the data. Especially around the turning
points of the piezo actuator, which appear at about 0.03 s and 0.13 s in the plot, there
was a quite strong deviation from the harmonic model of Equation 6.5. To account for
the nonlinear response of the piezo to the driving sine wave, I included higher harmonics
of the scatterer’s oscillation frequency fm (up to the 5th order) in the model for the time
dependent phase shift in Equations (6.5) and (6.6)

ϕ(t) = ϕ0 +
5∑

n=1

mn sin(2π fm t+ φm,n)n . (6.8)

I performed a second fit using this higher order model. For the higher order con-
tributions in ϕ(t) I provided different sets of randomly distributed starting phases
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φm,n>1 ∈ [−2π, 2π] and modulation depths mn>1 ∈ [−m1/10,m1/10] and used Mat-
lab’s ‘MultiStart’ to run the solver from multiple start points.

All boundaries were chosen to span the whole reasonable parameter space again. The
solid blue trace in Figure 6.12 (a) shows the resulting fit for the higher order model
and the corresponding parameters are given in Table 6.5. The modulation depth found
in the fit corresponds to a total path length change for the scattered light beam of
m1λ/π ≈ 11λ which is in line with the specifications of the piezo actuator for the
applied voltage. Also the modulation frequency of 5 Hz was correctly reproduced and
the higher order contributions were found to be consistent for several data sets.

A [mV] ϕ0 [rad] m1 [rad] fm [Hz] φm,1 [rad]
-7.0617 -0.3761 34.6087 5.0001 -2.4792

order n 2 3 4 5
mn [rad] 0.5772 -1.1283 0.0349 0.8284
φm,n [rad] 3.1525 -1.5956 -1.0960 2.8555

Table 6.5.: Fitted parameters for the higher order scatter model.

The residuals of the fits for the harmonic (black) and the higher order model (blue) are
shown in Figure 6.12 (b) for a larger segment of time domain data. The gray trace shows a
reference measurement that was taken while the scattered light beam was blocked. Since
the injected GW-like signal does not project into the phase quadrature measurement the
reference measurement shows solely optical shot noise.

In the residual of the harmonic model there is clearly some signal remaining, while
there is no structure recognizable in the residual of the higher order model. To quantify
the accuracy of the subtraction I computed the average powers remaining in the residuals
for the frequency range from fm to fmax

ds where the scatter disturbance was dominant and
compared them to the band power of the reference measurement. For the computation I
used Matlab’s ‘bandpower’ function. For the higher order model the difference between
the residual and the reference measurement was 2.04 · 10−8 W. This difference is well
explained by the different optical shot noise contributions in the two measurements since
the standard deviation in band power for a set of vacuum measurements at BHD1 was
determined to be 5.97 · 10−8 W. For the linear model in contrast, the difference between
the residual and the reference was 3.70 · 10−6 W which is still about a factor of 60 larger
than the standard deviation of the vacuum measurements.

At last, the projection of the disturbance into the amplitude measurement of BHD2
needed to be computed. Ideally, this would be achieved by inserting the higher order
phase shift of Equation (6.8) into the model for the amplitude quadrature of Equation
(6.6) with the obtained parameter set of Table 6.5. Though the signal amplitude of
the scatter disturbance A should be the same in both quadrature projections, this was
not the case here due to differences in the two detection paths. Also, the angle of the
measured quadratures between the two detectors turned out to be not exactly 90 ◦, which
demanded for an additional constant phase parameter in Equation (6.6).
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Figure 6.13.: Projection of the scatter model in the amplitude quadrature.
The plot shows an averaged segment of the amplitude quadrature data measured at
BHD2 (gray) overlaid with the projected, modeled disturbance signal (blue).

In contrast to the case discussed in Section 6.1, the different amplitudes of the dis-
turbance signal at the two detectors are due to differences in the experimental setup
and are not a property of the scatter disturbance. Both, the scaling and the quadra-
ture angle between the detectors, could in principle be characterized in advance or
monitored during measurements for a real GW detector. Here, the amplitude of the dis-
turbance in the amplitude quadrature projection and the quadrature offset were fitted
again using the data of BHD2 directly. All other parameters were fixed to the values
given in Table 6.5. The result of this fit was A = −5.9106 mV for the amplitude and
ϕoffset = −0.1909 rad ≡ −10.9◦ for the quadrature offset. The final model for the ampli-
tude quadrature is shown in blue in Figure 6.13 together with a segment of the averaged
measurement data from BHD2 (gray).

6.2.4. Subtraction of the scatter disturbance

A segment of the amplitude quadrature data of BHD2 after subtraction of the higher
order model for the scatter disturbance is shown in Figure 6.14 (a) (blue), together with
an undisturbed reference measurement of the amplitude quadrature (gray) that contains
solely the GW-like signal. The scattered light beam was blocked in the setup during this
reference measurement. In both traces the injected chirp signal is already discernible.

To give a measure for the purity of the residual data after subtraction of the distur-
bance I compared the band powers again. The difference of the band powers of the
residual and the reference measurement on the interval [fm, f

max
ds ] was −1.02 · 10−8 W

and lay well within the standard deviation of 6.13 · 10−8 W for the differences of a set of
vacuum measurements at BHD2.

For comparison with the scatter limited data of Figure 6.10 the data of both detec-
tors after subtraction of the disturbance is shown again in frequency domain in Figure
6.14 (b) and (c). Note, that all frequencies shown here correspond to demodulated fre-
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Figure 6.14.: Results after subtraction of the scatter model. (a) Residual of
the amplitude quadrature measurement after subtraction of the higher order model for
the scatter disturbance (blue) in comparison with an undisturbed reference measure-
ment where the scattered light beam was blocked (gray). (b) Residual data of both
quadrature measurements after subtraction of the scatter disturbance in a spectrogram.
(c) Averaged power spectral density (PSD) of the residual data (red) in comparison
with the original measurement data containing the disturbance (blue) and the undis-
turbed reference measurement (gray). Note, that all frequencies shown here correspond
to demodulated frequencies from the MHz regime.
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quencies from the MHz regime. In Figure 6.14 (b) the arches in the spectrogram data
vanished completely and the injected GW signal could be clearly recovered in the am-
plitude quadrature measurement. Figure 6.14 (c) shows the averaged power spectral
density (PSD) of the residual data after subtraction of the disturbance (red) in compar-
isons with the original measurement data containing the scatter shoulder (blue) and the
above mentioned reference measurement without the scatter disturbance (gray). Also
here, the shoulder completely vanished from the spectrum and the data after subtrac-
tion is in good agreement with the undisturbed reference measurement. In the frequency
range below 200 Hz, where the data was dominated by the scatter disturbance, a noise
reduction of more than one order of magnitude was achieved. The final sensitivity of
the measurement was limited by optical shot noise over the whole frequency range.

6.2.5. Discussion

In this section I demonstrated the subtraction of a broadband scatter shoulder, which
was generated by a scatter source performing a sinusoidal motion with a large amplitude
motion of a few wavelengths. The disturbance signal could be successfully modeled
by including higher harmonics of the scatter source motion in the sinusoidal model of
Equations (6.5) and (6.6).

The fitted parameters show that the signal amplitudes in the two quadrature mea-
surements differed quite a lot though they should in principle be the same. Their ratio
was found to be about the same for the measurements of Section 6.3 and Chapter 7. Its
mean value was Ap/Ax ≈ 1.15. As already mentioned in Section 6.2.3, this was proba-
bly attributed to differences in the two detection paths, though I was not able to clarify
where exactly the difference came from. Since the vacuum fluctuations measured at the
two detectors differed only by about 1%, differences in the local oscillator powers or in
the electronic gain of the two detectors could be ruled out as cause. A misalignment on
the beam splitter in the interferometer output might have caused an unbalanced split-
ting of the signal. The measured amplitude ratio would correspond to a splitting ratio
of about 53.5/46.5. This could not be verified due to changes in the optical setup that
were made before the results of the modeling were achieved.

Another feature revealed by the fit was a quite big quadrature offset from the aimed
at 90◦ between the two detectors. Its value was also similar for the named experiments
and its mean value was ϕoffset≈ 9.2◦. The reason for this offset might also lie in an
imperfect splitting ratio, here, at the beam splitter where the control beams for the
quadrature locks of the balanced homodyne detectors were combined (see Figure 6.9 1©).
As described in Section 6.2.2 the two control beams were supposed to be stabilized to a
relative phase shift of 90◦ with the help of the difference photo current measured in the
two beam splitter outputs. For a balanced splitting, a 90◦ phase shift corresponds to the
point where the power in both beam splitter outputs is exactly the same, independently
of the powers of the individual control beams. For an unbalanced splitting however, the
individual powers do play a role and could have caused the mentioned phase offset. The
slightly varying values of the phase offset for the different measurements could then be
attributed to small differences in the powers of the control beams.
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6.3. Scatter shoulder with multiple round trips

The measurements presented in this section were chronologically performed before the
measurements of the last two sections. They followed the QDM measurement [33] and
used a similar cavity to produce the scatter disturbance (only with a different piezo
actuator and an additional EOM in the cavity). It was my first approach to produce a
scatter shoulder but the cavity effect of multiple round trips made the scatter distur-
bance more difficult to model and I decided to start with simpler cases shown in the last
sections. The measurements were not completely optimized, the quadrature orientation
of the detectors was not ideal and they were made before the implementation of the au-
tomatized sound output with triggered measurement, so there are no GW-like reference
measurements without scattering available for comparison.

Nevertheless, the scatter shoulder with multiple round trips constitutes an interesting
and realistic case for scatter sources. During Virgo’s second science run a scatter shoulder
with a ‘double bounce’ was observed that originated from back-scattering of the optical
bench behind one of the interferometer end mirrors (WEB) during high seismic activity
[29]. This scenario is already quite close to the experiment presented here.

Figure 6.15.: Experimental generation of the test signals. The photo shows
the table-top Michelson interferometer that was used to generate the test signals. A
GW-like signal, due to a differential arm length change, was produced by modulating
one piezo actuated interferometer end mirror with a sound file [60]. The scatter distur-
bance was generated by back-reflecting part of the light that leaked through the second
interferometer end mirror, which had a reduced power reflectivity of Rend = 98%. The
back-scatter mirror had a power reflectivity of Rsc = 22% and was modulated over sev-
eral wavelengths to produce a broadband disturbance via frequency up-conversion. The
low finesse cavity formed between the end mirror and the back-scatter mirror led to mul-
tiple round trips for the back-scattered light. PM: phase modulation, EOM: electro-optic
modulator, BHD: balanced homodyne detector.
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6.3.1. Experimental generation of the test signals

Figure 6.15 shows the table-top Michelson interferometer again. A GW-like reference
signal was generated by modulating one of the interferometer end mirrors with the
same chirp signal [60] already used in Section 6.2. The marker peak for adjusting the
quadrature angles of the two balanced homodyne detectors (BHD1&2) was set to a
(demodulated) frequency of 550 Hz in this experiment.

Instead of an external beam, this time the small amount of light that leaked through
the interferometer end mirror with power reflectivity Rend = 98% was used to generate
the scatter disturbance. The beam was modulated using a piezo actuated mirror with a
power reflectivity of Rsc = 22% and partially back-reflected towards the interferometer.
Similarly to Section 6.2, a sinusoidal signal at low frequencies and with a shifting range
of a few wavelengths λ was applied to the piezo actuated mirror. Two measurements
with modulation frequencies of 2 Hz and 10 Hz respectively were performed.

The two mirrors formed a low finesse cavity (F ≈ 4) leading to multiple round trips
for the scattered light beam. A measurement of the light transmitted through this cavity

Figure 6.16.: Scatter cavity in transmission. The plot shows the output signal of
the high voltage amplifier (HV) that was used to modulate the back-scatter mirror (red)
and a measurement of the light that was transmitted through the back-scatter cavity
during one oscillation period of the scatter source (blue).
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during one oscillation period of the scatter source is shown in blue in Figure 6.16. As
a reference, the red trace shows the output signal of the high voltage amplifier (HV)
that was used to modulate the back-scatter mirror. Again, a voltage range of about
300 Vpp was employed, leading to a total shifting range of about 6λ, i.e. a total path
length change of about 12λ for the back-scattered light from the foremost to the very
back position of the back-scatter mirror.

An additional electro-optic modulator (EOM) inside the cavity shifted the scatter
disturbance to the MHz regime again. The stabilization scheme for the dual homodyne
readout was the same as described in Section 6.2.2.

6.3.2. Scatter limited measurement data

The scatter limited data measured at the two balanced homodyne detectors BHD1&2
is shown in Figures 6.17 and 6.18 for the scatter source moving at 2 Hz and 10 Hz
respectively.

In the spectrograms of Figure 6.17 (a) the scatter disturbance at 2 Hz shows up as the
typical arches again, but this time multiple rows of arches are visible. They correspond
to the different round trips inside the low finesse cavity that was formed by the scatter
source and the interferometer end mirror. The part of the light that stayed in the cavity
saw the scatter mirror at approximately the same position (or speed respectively) again
and per round trip the light was frequency shifted further and further according to the
Doppler shift of Equation (6.7). In the spectrogram of the amplitude quadrature data
measured at BHD2, also the quadrature marker at 550 Hz and parts of the injected GW-
like signal are visible. The white background noise at both detectors was again given by
optical shot noise.

In Figure 6.17 (b) the averaged power spectral density (PSD) of the data for the
2 Hz disturbance is shown (blue). Here, the different round trips appear as ‘steps’ in
the scatter shoulder. The scatter disturbance was the dominant noise source up to
a (demodulated) frequency of about 300 Hz, above that frequency the sensitivity was
limited by optical shot noise. A reference measurement for the shot noise was taken
with the signal ports of both detectors blocked and is show in gray.

For the scatter disturbance at 10 Hz in Figure 6.18 the spectrograms in (a) do not ide-
ally resolve the arches anymore since the frequency of the back-scattered light changes
too quickly over time. The steps for the different round trips in the scatter shoulder of
the averaged PSD in (b) are still visible though a slightly higher frequency resolution
was chosen in these plots in order not to smear out the quadrature marker too much.
The disturbance now covers the complete spectral range of the injected GW-like signal,
up to the kHz regime. The otherwise limiting optical shot noise of the measurement is
shown in gray again.
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Figure 6.17.: Scatter limited measurements for the 2 Hz disturbance. (a)
Spectrogram of the measurement data from BHD1&2 showing the time resolved scatter
disturbance (arches) for multiple round trips of the back-scattered light between the
scatter source and the interferometer end mirror. In the amplitude data of BHD2 the
disturbance concealed the injected gravitational-wave signal (chirp) [60]. (b) Averaged
power spectral density (PSD) of the same data (blue). The scatter shoulder was the
dominant noise source for (demodulated) frequencies below about 300Hz and the dif-
ferent round trips show up as ‘steps’ in the shoulder. Above 300 Hz the measurements
were limited by optical shot noise (gray).
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Figure 6.18.: Scatter limited measurements for the 10 Hz disturbance. (a)
Spectrogram of the measurement data from BHD1&2 showing the scatter disturbance
covering the whole spectral range of the injected gravitational-wave signal (chirp) [60].
(b) Averaged power spectral density (PSD) of the same data (blue) in comparison with
the otherwise limiting optical shot noise in the measurement (gray).
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6.3.3. Modeling and post-processing

To describe the back-scatter disturbance we are interested in the field which is back-
reflected from the cavity formed by the interferometer end mirror with amplitude reflec-
tivity ρend and the scatter mirror. All optical loss inside the cavity can be included in the

𝐴′

𝜑(𝑡)

𝜌sc
eff𝜌end

1. 𝐴′ 𝜌sc
eff 𝑒𝑖𝜑(𝑡)

2. 𝐴′ 𝜌end 𝜌sc
eff 2 𝑒 𝑖2 𝜑(𝑡)+ 𝜋

3. 𝐴′ 𝜌end
2 𝜌sc

eff 3 𝑒 𝑖3 𝜑(𝑡)+2 𝜋

𝑖

𝑖

...
Figure 6.19.: Cavity round trips.

effective reflectivity ρeff
sc of the scatter mirror. The

scenario is illustrated in Figure 6.19. The ampli-
tude of the beam that first enters the cavity is
denoted with A′ and the phase shift due to the
additional path per round trip for the scattered
light is denoted with ϕ(t) and depends on the
motion of the scatter source/mirror. The ampli-
tude of the scattered light beam is decreased by
a factor of ρeff

sc during each round trip. For all
except the first round trip, the amplitude is fur-
ther decreased by a factor ρend and an additional
constant phase shift of π needs to be considered
due to the reflection off the interferometer end mirror from the right side. Summing up
the fields and transmission through the interferometer end mirror leads to

Esc =
√

1− ρ2
end ρ

eff
sc A

′︸ ︷︷ ︸
=:A

eiϕ(t)

∞∑
n=0

( ρend ρ
eff
sc︸ ︷︷ ︸

=: g

)n ein(ϕ(t)+π) . (6.9)

Employing the geometric series for an infinite number of round trips, this simplifies to

Esc = Aeiϕ(t)/(1− g ei(ϕ(t)+π)) . (6.10)

The projections of the scatter disturbance in the phase quadrature and amplitude
quadrature measurements are then proportional to the real and imaginary parts of Esc.

In contrast to the scatter model of Equations (6.5)-(6.6), here, a shift of the mean
position of the scatter source, i.e. adding a constant phase shift in ϕ(t), is not equivalent
to a simple rotation of the scatter signal in phase space by that same angle. Therefore,
to correct for a misaligned quadrature orientation of the balanced homodyne detectors,
an additional parameter ϕ1 for an overall phase shift in Equation (6.10) was required.

One other thing that needed to be considered here was the EOM that was placed
inside the cavity and used to shift the scatter disturbance to the MHz regime. The
EOM applied a phase modulation to the scattered light beam and after demodulation
during data acquisition I effectively measured the modulation of these sidebands due to
the scatter source. Since the beat between the lower and upper sidebands is 90◦ out of
phase with the carrier light this corresponds to an additional overall phase shift of π/2 in
Equation (6.10) and effectively switches the models for the two quadrature projections.
This effect was of course also present in the previous experiments, but was automatically
compensated for by the constant part in ϕ(t). In total we arrive at

Esc = i A ei(ϕ(t)+ϕ1)/(1 + g eiϕ(t)) (6.11)
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and the models for the projection of the disturbance in the phase quadrature and am-
plitude quadrature measurements are given by

psc(t) =
−A (sin(ϕ(t) + ϕ1) + g sinϕ1)

(1 + g cosϕ(t))2 + g2 sin2 ϕ(t)
(6.12)

xsc(t) =
A (cos(ϕ(t) + ϕ1 + ϕ2) + g cos(ϕ1 + ϕ2))

(1 + g cosϕ(t))2 + g2 sin2 ϕ(t)
. (6.13)

Note that I allowed for another small overall phase shift ϕ2 in the model for the ampli-
tude quadrature to compensate for a deviation of the quadrature angle between the two
detectors from 90◦. For the time dependent phase shift ϕ(t) the higher order model of
Equation (6.8) was used.

The fitting was done following basically the same procedure as in Section 6.2.3. At
first, a reduced set of parameters was determined by fitting the time dependent Doppler
shift of Equation (6.7) to the arches (of the first round trip) in the spectrogram data of
the phase quadrature detector BHD1. This first fit yielded good start parameters for
the modulation depth m1, frequency fm and phase φm,1 of the scatter source motion in
ϕ(t).

Afterwards, the full model of Equation (6.12) was fitted to the appropriately filtered
and downsampled time series data of the phase quadrature measurement. The fit was
performed using Matlab’s ‘lsqcurvefit’ function together with ‘MultiStart’ to run the
solver from multiple start points. I provided a set of different start parameters which
were chosen similarly to the ones in Section 6.2.3 and combined with different sets of
randomly distributed starting phases φm,n>1 ∈ [−2π, 2π] and modulation depths mn>1 ∈
[−m1/10,m1/10] for the higher order contributions in ϕ(t). The two new parameters in
the model of Equation (6.12) were set to start at g = 0.5 and ϕ1 = 0. Like in Section
6.2.3 the boundaries were set to span the whole reasonable parameter space.

The results of this fit for the measurements with the 2 Hz and 10 Hz disturbances are
shown in Figure 6.20 (a) and (b) respectively. The gray traces show a segment of the
downsampled phase quadrature data measured at BHD1 and the blue traces show the
modeled scatter disturbance for the parameters obtained in the fits. Note that the mean
values of both, data and models, were subtracted to have the signals centered around
zero. This was done because the data had a small dc-offset from data acquisition and
the levels needed to be adjusted for the fitting.

In the end the projection of the scatter disturbance into the amplitude quadrature
measurement was computed by inserting the obtained parameters into the model of
Equation (6.13). Just like in Section 6.2.3 the signal amplitude A and the deviation of
the quadrature angle between the two detectors ϕ2 from 90◦ were fitted separately using
the amplitude quadrature data of BHD2. A segment of the data (gray) and the resulting
modeled disturbance (blue) are depicted in Figure 6.21 (a) and (b) for the 2 Hz and the
10 Hz disturbance respectively.
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Figure 6.20.: Projection of the scatter disturbance in the phase quadrature.
The plots show an averaged segment of the phase quadrature measurement data (gray)
overlaid with the modeled disturbance signal obtained in the fit (blue) for the 2 Hz and
10 Hz measurements respectively. Data and models have been centered around zero by
subtraction of their mean value.
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Figure 6.21.: Projection of the scatter disturbance in the amplitude quadra-
ture. The plots show an averaged segment of the amplitude quadrature measurement
data (gray) overlaid with the modeled disturbance signal obtained in the fit (blue) for
the 2 Hz and 10 Hz measurements respectively. Data and models have been centered
around zero by subtraction of their mean value.
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6.3.4. Subtraction of the scatter disturbance

The subtraction of the 2 Hz back-scatter disturbance is shown in Figure 6.22 (a) in a
spectrogram and (b) as the averaged power spectral density (PSD). In the spectrograms
of the residual, for both detectors, the disturbance is not visible anymore and the injected
GW-like signal could be recovered in the amplitude quadrature data of BHD2. There is
also some GW-like signal and quadrature marker at 550 Hz discernible in the residual of
BHD1, which shows again that the quadrature angle was not optimally aligned in this
measurement.

In the averaged PSD in (b) the residual after subtraction of the modeled disturbance
(red) is shown in comparison with the original measurement data (blue) and a shot noise
reference measurement (gray). The scatter shoulder vanished almost completely after the
subtraction. There is some residual excess noise visible in the data of BHD1 between
about 50 Hz and 150 Hz which is probably mainly due to the misaligned quadrature
angle, i.e. the small amount of GW-like signal that was present in the data (see Figure
6.22 (a)).

Similarly, the results for the 10 Hz disturbance are given in Figure 6.23. Also here the
disturbance could be removed and the GW-like signal was recovered. The quadrature
orientation of the two detectors was not optimal in this measurement either. Choosing
the same resolution as in Figure 6.22 (b) the marker peak at 550 Hz in the averaged PSD
of the residual of BHD1 (red) would actually be even larger than in the measurement
with the 2 Hz disturbance (about 3 · 10−8 W/Hz).

The corresponding parameters used in the model of the disturbance for the 2 Hz and
the 10 Hz measurements are given in Table 6.6 and 6.7 respectively. Note, that A does
not really correspond to its definition in Equation (6.9) since it also includes the scaling
due to the interferometer transfer, detection and data acquisition parts. The parameter
g describes the factor by which the amplitude of the back-scattered light changed per
round trip in the cavity. The values for g found in the fits for both measurements
were consistent but higher than one would expect for the given reflectivities of the
interferometer end mirror ρend ≈ 0.99 and the scatter mirror ρsc ≈ 0.47. With ρeff

sc < ρsc

these would result in g < 0.46. An explanation for this could be the EOM inside the
scatter cavity since it shifts more power from the carrier into the sidebands (which I
effectively measure in the end) twice during each round trip. The fitted modulation
depths for the 2 Hz and 10 Hz disturbance correspond to total path length changes of
12.5λ and 11.5λ respectively from the foremost to the very back position of the scatter
mirror. This is consistent with the measured cavity transmission over one oscillation
period shown in Figure 6.16. Also the amplitudes of the higher order contributions mn>1

in ϕ(t) were of the same order for both measurements and the modulation frequencies
fm were correctly reproduced in the fits.
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Figure 6.22.: Results after subtraction of the scatter model for the 2 Hz
disturbance. (a) Phase and amplitude quadrature data after subtraction of the scatter
disturbance in a spectrogram. (b) Averaged power spectral density (PSD) of the data
after subtraction of the disturbance (red) in comparison with the original measurement
data (blue) and a shot noise reference (gray), measured with the signal ports of the
detectors blocked.

BHD1 A [mV] g [d.u.] ϕ1 [rad] ϕ0 [rad] m1 [rad] fm [Hz] φm,1 [rad]
3.2917 0.5840 0.1159 1.6663 39.2356 2.0000 0.6154

order n 2 3 4 5
mn [rad] -0.5323 2.5655 0.1694 -0.7847
φm,n [rad] -4.8489 1.6132 -4.1450 -4.1339

BHD2 A [mV] ϕ2 [rad]
3.0033 -0.1598

Table 6.6.: Fitted parameters for the 2 Hz disturbance and the scatter model
including higher harmonics and multiple round trips.
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Figure 6.23.: Results after subtraction of the scatter model for the 10 Hz
disturbance. (a) Phase and amplitude quadrature data after subtraction of the scatter
disturbance in a spectrogram. (b) Averaged power spectral density (PSD) of the data
after subtraction of the disturbance (red) in comparison with the original measurement
data (blue) and a shot noise reference (gray), measured with the signal ports of the
detectors blocked.

BHD1 A [mV] g [d.u.] ϕ1 [rad] ϕ0 [rad] m1 [rad] fm [Hz] φm,1 [rad]
3.1285 -0.5828 0.3967 -0.5945 36.1917 10.0002 1.5229

order n 2 3 4 5
mn [rad] 0.5000 2.5267 0.1059 -0.6773
φm,n [rad] 4.5646 -0.5698 0.4579 -4.0045

BHD2 A [mV] ϕ2 [rad]
2.7305 0.1386

Table 6.7.: Fitted parameters for the 10 Hz disturbance and the scatter model
including higher harmonics and multiple round trips.
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6.3.5. Discussion

The results of this section present the subtraction of a scatter shoulder with multiple
round trips for the back-scattered beam. The scatter disturbance introduced here was in
some sense more realistic than the disturbances of the last sections since it was produced
from light that actually left the interferometer mode and was back-scattered (instead of
using an external beam).

The same points discussed in Section 6.2.5 also apply for the measurements presented
here. The differing signal amplitudes in the two quadratures probably originated from
an unbalanced splitting of the interferometer signal. The quadrature offset between the
detectors (here ϕ2) can be explained by differing powers in the used control beams in
connection with an unbalanced splitting at their combination (see Figure 6.9 1©).

In this experiment also the actual quadrature offsets of the two detectors from the
amplitude and phase quadratures can be determined from the fitted parameters. ϕ1

gives the offset in the phase quadrature measurement and the amplitude quadrature
offset is determined by ϕ1 +ϕ2. The parameters in Table 6.6 show that the quadratures
were not optimally met in the 2 Hz measurement but already quite well with 6.6◦ for
the phase quadrature and −2.5◦ for the amplitude quadrature (here for convenience in
degree). According to Table 6.7, for the 10 Hz measurement the quadrature alignment
was much worse, about 22.7◦ for the phase quadrature and even 30.7◦ for the amplitude
quadrature measurement. Note again, that for the same resolution bandwidth as in
the 2 Hz measurement, the marker peak at 550 Hz in the residual of BHD1 (red) in
Figure 6.23 (b) would be larger (about 3 · 10−8 W/Hz). The quadrature orientation of
the detectors with respect to the interferometer signal was not electronically stabilized
but adjusted manually in this experiment and as already mentioned in the beginning of
this section, the measurements were not yet optimized.
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7. Application of quantum-dense
metrology for subtraction of a
back-scatter shoulder

In this chapter I will present the improvement of a scattered light limited measurement
below the quantum shot noise by employing quantum-dense metrology (QDM). These
results built on the experiences and achievements of the experiments described in Chap-
ter 6. In Section 7.1 I will give a short overview on the setup for the two-mode-squeezing
enhanced dual readout and the injected test signals. A detailed description of the com-
plete setup is given in Chapter 5 and the test signals are fully described in Sections 3.2.2
and 6.2.1. Section 7.2 summarizes the main steps of the data post-processing which
was analogous to the procedure described in Section 6.2.3. The results presented in this
chapter were published in Physical Review Letters [43].

7.1. Experimental setup

The experiment used the complete setup described in Chapter 5 and the test signals of
Section 6.2.1. As a reminder, the readout part of the setup is given again in Figure 7.1.
The squeezed light generation will not be repeated here, details on this can be found in
Section 5.2.

The solid red paths in Figure 7.1 show the interferometer input beam and the local
oscillators for the two balanced homodyne detectors BHD1&2. For more clarity, the
paths of the local oscillators were not highlighted completely but only indicated with
arrowheads. The orange beam that was picked off of the interferometer input beam was
used to generate the scatter disturbance. A broadband scatter shoulder was produced
via frequency up-conversion by modulating a piezo actuated mirror at a frequency of 5 Hz
over several wavelengths (λ = 1064 nm). For more details on the scatter disturbance
see Sections 3.2.2 and 6.2.1. The GW-like chirp signal and a quadrature marker for
stabilization of the balanced homodyne detectors were again produced by modulating
one of the interferometer end mirrors. A smaller signal amplitude was chosen in this
setup, such that the GW-like signal stood out only slightly above the measured vacuum
noise level.

Two squeezed states (white ellipses) enter the picture from the right side. They were
generated by the source described in Section 5.2 and their paths are highlighted in
dashed red. The two states were overlapped on a 50/50 beam splitter to create the
required entangled states. For the sub-shot-noise enhancement of the dual readout one
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Figure 7.1.: Setup for the quantum-dense interferometer readout. Solid red:
interferometer and local oscillators beams, dashed red: squeezed and entangled beams,
orange: scattered light beam. Control beams and alignment paths were not highlighted.
MC: mode cleaner, MI: Michelson interferometer, OPA: optical parametric amplifier,
BHD: balanced homodyne detector, DMC: diagnostic mode cleaner.

of the resulting two-mode-squeezed states was reflected at the interferometer dark port
via a combination of a polarizing beam splitter (PBS) and a Faraday rotator (FR) while
the other one was sent directly to the 50/50 beam splitter in the interferometer output.
After recombination of the two states with the right phase relation, the initial squeezed
states were recovered and enabled simultaneous sub-shot-noise measurement of the phase
quadrature and amplitude quadrature of the interferometer signal at BHD1&2.

Paths of the additional control beams are not highlighted in the picture. The full
control scheme for the quantum-dense readout is described in Section 5.3 and the data
acquisition is described in Section 5.4

7.2. Measurement and post-processing

Figure 7.2 shows the measurement data of the quantum-dense readout (blue) as an
averaged power spectral density (PSD). For comparison, a measurement using solely the
dual readout, without injection of the entangled states, is also given in the plot (black).
This corresponds to a measurement like it was performed in Section 6.2.
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The broadband scatter disturbance was the dominant noise source in both measure-
ments for frequencies below about 200 Hz. The shape of the disturbance was slightly
different for the two measurements because the center position of the scatter mirror
differed for them. Above 200 Hz, the dual readout data was limited by optical shot
noise, i.e. vacuum noise. In this frequency regime, the quantum-dense readout already
improved over the simple dual readout. The shot noise was simultaneously squeezed in
both, phase quadrature (BHD1) and amplitude quadrature (BHD2) readout, which led
to an improved signal-to-noise-ratio for the injected signals.
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Figure 7.2.: Quantum-dense measurement with back-scatter disturbance. The
plots show the averaged power spectral density (PSD) of the phase quadrature (left) and
amplitude quadrature (right) data at BHD1&2. The blue traces show a measurement
for the setup employing quantum-dense metrology (QDM). For comparison, the black
traces show a measurement without injection of the entangled states, as performed in
the experiment of Section 6.2. The shape of the disturbance slightly differed in the two
measurements because of different center positions of the scatter mirror.

The post-processing of the data from the quantum-dense measurement was performed
in the same way as described in Section 6.2.3. First, the parameters of the scatter
disturbance were determined by fitting the scatter model of Equation (6.5) with the
higher order phase shift of Equation (6.8) to the phase quadrature data of BHD1. The
model assumed a sinusoidal motion of the scatter source with constant amplitude and
frequency at a constant mean distance to the interferometer. Higher harmonics of the
oscillation frequency up to the 5th order were included to account for the nonlinear
response of the piezo actuator. The obtained fit is depicted in the upper graph in Figure
7.3 (black), together with an averaged segment of the measured time domain data of
BHD1 (blue). The projection of the scatter disturbance into the amplitude measurement
was computed via Equation (6.6) with the higher order phase shift of Equation (6.8). As
explained in Section 6.2.3, the amplitude of the scatter disturbance in that projection
and a quadrature offset ϕoffset were fitted separately from the measurement data of BHD2
to compensate for differences in the two detection paths and an imperfect quadrature
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alignment of 90◦ between the detectors. The projected model for the scatter disturbance
(black) and an averaged segment of the amplitude quadrature measurement data (blue)
are shown in the lower graph of Figure 7.3. The corresponding parameters from both fits
are given in Table 7.1 and are in good agreement with the parameters found in Section
6.2.3.

original data projected scatter modelBHD2

original data scatter model
BHD1 original data scatter modelBHD1

4 4.1 4.2 4.3 4.4 4.5 4.6
time [s]

a
m
p
lit
u
d
e
[a
.u
.]

Figure 7.3.: Time domain data with fitted scatter model. The plots show an
averaged segment of the time domain data measured at BHD1&2 (blue). The projections
of the fitted scatter model into the phase quadrature and amplitude quadrature are
overlaid in black.

BHD1 A [mV] ϕ0 [rad] m1 [rad] fm [Hz] φm,1 [rad]
-2,6507 -1.9181 34.4181 5.0001 -3.5360

order n 2 3 4 5
mn [rad] 0.6478 -1.1678 -0.1882 0.7153
φm,n [rad] 3.1937 -1.7056 -0.1195 2.7145

BHD2 A [mV] ϕoffset [rad]
3.0255 0.1502

Table 7.1.: Fitted parameters for the scatter disturbance.

7.3. Subtraction of the scatter disturbance

The results after subtraction of the scatter disturbance are depicted in Figure 7.4 in
frequency domain. Figure 7.4 (a) shows the averaged power spectral density (PSD) of
the quantum-dense measurement data before (blue) and after (red) subtraction of the
modeled scatter disturbance. Two reference measurements are also shown in the plots
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Figure 7.4.: Sensitivity improvement via QDM with data post-processing.
(a) Power spectral density of the phase and amplitude quadrature data, measured with
BHD1&2, before (blue) and after (red) subtraction of the modeled scatter disturbance. A
measurement without scatter disturbance (dark gray) and a vacuum noise measurement
(light gray) are also shown for comparison. (b) Visualization of the overall improvement
through quantum-dense metrology (QDM) with respect to earlier results using the dual
readout (DR) without entanglement enhancement.
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(i) an undisturbed reference measurement where the scattered light beam was blocked
in the setup (dark gray) and (ii) a vacuum noise reference (light gray), measured with
the signal ports of the two balanced homodyne detectors blocked.

The scatter disturbance could be completely removed from the measurement data of
both detectors, as becomes clear by comparison with the undisturbed reference mea-
surement. The GW-like signal in the amplitude quadrature data of BHD2 was clearly
recovered. Furthermore, sub-shot-noise sensitivity was achieved in both quadrature mea-
surements with a nonclassical noise suppression of about 5 dB over the whole spectrum.

Figure 7.4 (b) visualizes the overall improvement of the quantum-dense measurement
with respect to the results of Section 6.2 for the amplitude quadrature detector BHD2.
The black trace shows again the measurement of Figure 7.2 which used solely the dual
readout (DR) without injection of the entangled states. The scatter disturbance lim-
ited the sensitivity in the low-frequency regime, while the high-frequency regime was
limited by optical shot noise (vacuum noise). Post-processing of the dual readout data
according to Section 6.2.3 led to the pink trace in Figure 7.4 (b). The scatter distur-
bance could be subtracted up to the vacuum noise level and a small ’bump’ in the
resulting spectrum already indicates the injected GW-like signal. The application of
quantum-dense metrology (QDM) with the additional data post-processing (red trace)
further reduced the limiting noise floor by about 5 dB over the whole frequency range
and thereby increased the signal-to-noise-ratio for the readout of the GW-like signal by
the same amount.

7.4. Discussion

With the results of this chapter I could show that the novel approach for the subtraction
of back-scatter disturbances can be combined with a quantum dense readout. The
sensitivity for the ‘scientific’ amplitude readout, as well as for the scatter reference
measurement of the phase quadrature, could be improved to reach a nonclassical noise
suppression of about 5 dB.

In Chapter 5, I mentioned that the source for the two-mode-squeezed states was shown
to produce strong EPR entanglement which corresponded to about 10 dB of squeezing
for the initial states. The much lower values achieved here can be attributed to a much
higher loss in the optical setup. For the entanglement measurement, the two-mode-
squeezed states were detected as close as possible behind the entangling 50/50 beam
splitter, i.e. using as few optical components as possible. In the setup used here, the
paths to the detectors were much longer and contained many additional transmissive op-
tics like lenses for mode matching, in total four R = 1% beam splitters to tap off power
for the locking scheme, a polarising beam splitter (PBS), two λ/2 wave plates and a
Faraday rotator which were passed twice for coupling one of the two-mode-squeezed
states into the interferometer and 50/50 beam splitters in the interferometer and its
output. Apart from that, one of the interferometer end mirrors had a reduced reflec-
tivity of about 98% to couple in the scattered light beam. Also, if the splitting ratio
achieved at the beam splitter in the interferometer output does not exactly match the
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the splitting ratio of the entangling beam splitter, or the relative phase shift between
the two-mode-squeezed states is not optimal for their recombination, the anti-squeezing
cannot perfectly cancel and further decreases the squeezing strength. The same is true
for imbalanced loss for the two-mode-squeezed states, as already described in Section
4.2. This was definitely the case here, since the loss in the interferometer path was much
higher.
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8. Summary and conclusion

This thesis proposes a new approach for mitigation of back-scattered light induced dis-
turbances in interferometric gravitational-wave detectors. The approach makes use of
the additional information about back-scatter disturbances that is contained in the or-
thogonal observable of the interferometer signal. The information is used to find an
analytical description for the disturbance signal which can then be subtracted from the
measurement data. A new readout scheme is required to get to this additional infor-
mation. In the setup realized here, the interferometer output is equally split and the
orthogonal amplitude and phase quadratures of the signal are being detected with two
balanced homodyne detectors.

In the first part of my work, I set up a proof of principle experiment to test the
new scheme for some exemplary scatter disturbances. These were based on a sinusoidal
motion of the scatter source with constant parameters. The disturbance signals varied
from a monochromatic peak in the spectrum to a broadband scatter shoulder from
frequency up-conversion with multiple round trips for the back-scattered beam.

I showed that the experimentally produced disturbance signals could be sufficiently
described using a sinusoidal analytic model, which included some higher harmonics con-
tribution for the disturbances from sources with large amplitude motion. The projection
of the back-scatter disturbances in the scientifically relevant amplitude quadrature could
be successfully inferred from the models obtained from the phase quadrature measure-
ment data. The disturbances could be completely subtracted from the measurement
data revealing a formerly concealed artificial GW signal.

In the second part of my work, I showed that the new mitigation technique is compat-
ible with a sub-shot-noise enhancement of the interferometer readout through squeezed
states of light. Instead of a single quadrature squeezed readout as proposed by Caves [16]
and employed in GEO 600 [17, 18], two-mode-squeezed states were required to simul-
taneously enhance both quadrature readouts and enter the regime of quantum-dense
metrology (QDM) [33].

In a similar proof of principle setup, I used a scatter shoulder from frequency up-
conversion to create a scenario where the interferometric measurement was limited by
classical excess noise in the low frequency regime and by optical shot-noise at higher
frequencies. Through the injection of the two-mode-squeezed states, the measurement
sensitivity in the shot noise limited regime was increased, while the low frequency regime
was unaffected of the enhancement. Only by employing the new approach for subtrac-
tion of the back-scatter disturbance, also the low frequency regime could be improved to
sub-shot-noise sensitivity. A nonclassical noise suppression of about 5 dB was achieved
in both quadrature readouts over the whole spectrum under consideration.
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Though the disturbance signals generated here were quite elementary, they already
reproduced the basic structures of typical back-scatter disturbances as observed in
gravitational-wave detectors [25, 29]. In the LIGO data presented in Fig. 3.1 of ref-
erence [24], for example, the bump structure in the scatter shoulder is quite pronounced
which might indicate that indeed a slowly varying mechanical vibration gave rise to this
disturbance. Independent of this, the technique is not restricted to the simple sinu-
soidal model. An important next step would be to investigate how well real back-scatter
disturbances, which occurred in a gravitational-wave detector, can be modeled.

For implementation of the scheme in a gravitational-wave detector some other aspects
need to be considered. Due to the splitting of the interferometer output field, the signal-
to-shot-noise-ratio in the relevant amplitude measurement decreases by a factor of 2. In
the case of QDM, I showed that this effect can be partially compensated, leading to lower
factors of about 1.6 for a realistic detector scenario with about 10 dB input squeezing
and about 25% optical loss. Generally, the tapped power for the reference measurement
of the phase quadrature could be reduced, which would in turn go along with a reduced
quality of the scatter monitor. For the quantum-dense readout two identical unbalanced
beam splitters for the generation of the two-mode-squeezing and the readout would be
required to reduce the tapped power.

The scheme as proposed here recommends balanced homodyne detection, at least
for the additional phase quadrature readout. This technique has not been used in
gravitational-wave detectors so far, but was already suggested for future sensitivity im-
provements [61] and was shown to have some practical advantages with respect to the
currently used DC readout [62]. The balanced homodyne readout requires an optical
local oscillator. Recent investigations showed that the requirements for the amplitude
noise of the local oscillator and its path-length stability are within manageable ranges
with current technologies [63].

An implementation of the quantum-dense readout in a gravitational-wave detector
imposes similar requirements on the setup as the implementation of squeezed light en-
hancement. For example, optical loss in the setup needs to be minimized to achieve
strong nonclassical noise suppression and a coherent control scheme [57, 58] is required
to avoid technical laser noise and preserve the squeezing in the detector’s sensitive fre-
quency range. The relevant experimental techniques have already been demonstrated
successfully in the detector GEO 600 [17,18].

In conclusion, the scheme presented here offers a new way to reduce noise from back-
scattered light in gravitational-wave detectors. It allows to achieve sub-shot noise sensi-
tivity in a measurement which was initially limited by strong classical excess noise. The
implementation of the required quantum-dense readout will become technically feasible
as soon as balanced homodyne detection has been demonstrated for gravitational-wave
detectors. In future gravitational-wave detectors, the scheme could provide an essential
extension to standard mitigation techniques like beam dumping and vibration isolation
of potential sources when those reach their technical limitations.
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Appendices
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A. LabView program

Figure A.1.: LabView user interface
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Figure A.2.: LabView block diagram part 1
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Figure A.3.: LabView block diagram part 2
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B. Matlab scripts

Import LabView data

f unc t i on [ timedata , det1 , det2 , sampleFrequency ] = LabViewDataImport (
f i l eToRead )

% Imports data from fi leToRead with columns [ t imedata or empty , data1 , data2
]

% and re tu rn s timedata , data1&2 ( with removed dc−o f f s e t ) and the sample
% frequency

% open f i leToRead
f i d=fopen ( f i leToRead ) ;

% determine number o f header l i n e s
linenum = 1 ; % number o f h e ad e r l i n e s in fo rmat ion i s in f i r s t l i n e
l i n e 1=text scan ( f i d , ’%s %d ’ , 1 , ’ d e l im i t e r ’ , ’ \ t ’ , ’ h e ad e r l i n e s ’ , . . .

linenum−1) ; % re tu rn s s t r i n g and number o f h e ad e r l i n e s

% s e t d e l im i t e r and number o f header l i n e s
DELIMITER = ’ \ t ’ ;
HEADERLINES = l i n e 1 {2} ;

% import f i l eToRead
newData = importdata ( f i leToRead , DELIMITER, HEADERLINES) ;

% read sample f requency and t o t a l measurement time from header
header=newData . textdata ;
f o r l = 1 :HEADERLINES;

s r = s t r f i n d ( header { l } , ’ Sample Rate (Hz) : ’ ) ;
i f s r==1; % sample ra t e

Fs = text scan ( header { l } , ’%s %f ’ , 1 , ’ d e l im i t e r ’ , ’ \ t ’ ) ;
end
t t = s t r f i n d ( header { l } , ’ Total Time ( s ) : ’ ) ;
i f t t==1; % t o t a l measurement time

tmt = text scan ( header { l } , ’%s %f ’ , 1 , ’ d e l im i t e r ’ , ’ \ t ’ ) ;
end

end

% sample f requency
sampleFrequency = Fs {2} ;

% c r ea t e time column
timedata = [ 0 : 1 / sampleFrequency : tmt{2}−(1/ sampleFrequency ) ] ’ ;
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% timedata=newData . data ( : , 1 ) ; % i f the re i s a time column in f i l eTo r e ad

% cr ea t e data ve c t o r s with removed dc−o f f s e t
det1 = newData . data ( : , 2 )−mean(newData . data ( : , 2 ) ) ;
det2 = newData . data ( : , 3 )−mean(newData . data ( : , 3 ) ) ;

Fit and subtract (modulated) peak

%% f i t ( modulated ) peak

c l e a r a l l
c l o s e a l l

% number the f i g u r e s
figNum = 0 ;

% se t paths f o r data f i l e s and f i l e names
measdataPath = ’ path to data\ ’ ;
da taF i l e= ’ f i l ename1 . txt ’ ;

% s e t paths f o r vacuum r e f e r e n c e f i l e s and f i l e names
vacuumrefPath = ’ path to vacuum r e f e r e n c e data\ ’ ;
va cF i l e = ’ f i l ename2 . txt ’ ;

% make d i r e c t o r y to save f i g u r e s
mkdir ( [ measdataPath , ’ f i g u r e s ’ ] ) ;

%% import or load measurement data

% % import LabView text f i l e
% d i sp l ay ( ’ import measurement data ’ )
% [ timedata , det1 , det2 , sampleFrequency ] = . . .
% LabViewDataImport ( [ measdataPath , da taF i l e ] ) ;
% % save data
% save ( [ measdataPath , ’ t imedata .mat ’ ] , ’ timedata ’ ) ;
% save ( [ measdataPath , ’ det1 .mat ’ ] , ’ det1 ’ ) ;
% save ( [ measdataPath , ’ det2 .mat ’ ] , ’ det2 ’ ) ;
% save ( [ measdataPath , ’ sampleFrequency .mat ’ ] , ’ sampleFrequency ’ ) ;

% load data as c reated by LabViewDataImport .m
d i sp l ay ( ’ load measurement data ’ )

load ( [ measdataPath , ’ t imedata .mat ’ ] ) ;
load ( [ measdataPath , ’ sampleFrequency ’ ] ) ;
load ( [ measdataPath , ’ det1 .mat ’ ] ) ;
load ( [ measdataPath , ’ det2 .mat ’ ] ) ;

%% import or load vacuum r e f e r e n c e data
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% % import LabView text f i l e
% d i sp l ay ( ’ import vacuum r e f e r e n c e data ’ )
% [ ˜ , vac1 , vac2 , ˜ ] = LabViewDataImport ( [ vacuumrefPath , vacF i l e ] ) ;
% % save data
% save ( [ vacuumrefPath , ’ vac1 .mat ’ ] , ’ vac1 ’ ) ;
% save ( [ vacuumrefPath , ’ vac2 .mat ’ ] , ’ vac2 ’ ) ;

% load vacuum r e f e r e n c e data as c rea ted by LabViewDataImport .m
d i sp l ay ( ’ load vacuum r e f e r e n c e data ’ )

load ( [ vacuumrefPath , ’ vac1 .mat ’ ] ) ;
load ( [ vacuumrefPath , ’ vac2 .mat ’ ] ) ;

%% plo t time domain data
d i sp l ay ( ’ p l o t time domain data ’ )

centerTime = timedata ( c e i l ( l ength ( timedata ) /2) ) ;
lambdaSignal = 1/500; % s i g n a l wavelength ( only used here f o r p l o t t i n g )

figNum = figNum+1; f i g u r e ( figNum) ;
p l o t ( timedata , det1 , timedata , det2 ) ;
xl im ( [ centerTime−(5∗ lambdaSignal ) , centerTime+(5∗ lambdaSignal ) ] ) ;
t i t l e ( ’ time domain data ’ ) ;
x l ab e l ( ’ time [ s ] ’ ) ; y l ab e l ( ’ amplitude [V] ’ ) ;
l egend ( ’BHD1 ’ , ’BHD2 ’ ) ;

%% compute psd
d i sp l ay ( ’ compute psd ’ )

window = ones (1 , l ength ( det1 ) ) ;

[ m1aSpec ,F ] = pwelch ( det1 , window , [ ] , [ ] , sampleFrequency , ’ ones ided ’ ) ;
[ m2aSpec , ˜ ] = pwelch ( det2 , window , [ ] , [ ] , sampleFrequency , ’ ones ided ’ ) ;

%% plo t psd
d i sp l ay ( ’ p l o t psd ’ )

figNum = figNum+1; f i g u r e ( figNum) ;
semi logy (F , m1aSpec ,F , m2aSpec ) ;
xl im ( [ 1 0 , 2 0 0 0 ] ) ;
t i t l e ( ’ power s p e c t r a l dens i ty ( without windowing or averag ing ) ’ ) ;
x l ab e l ( ’ f r equency [Hz ] ’ ) ; y l ab e l ( ’PSD [W/Hz ] ’ ) ;
l egend ( ’BHD1 ’ , ’BHD2 ’ ) ;

%% f ind exce s s no i s e in BHD2 data
d i sp l ay ( ’ f i nd exce s s no i s e ’ )

% de f i n e th r e sho ld as f a c t o r ∗max o f vacuum measurement
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window = ones (1 , l ength ( det1 ) ) ;
[ v1aSpec , Fvac ] = pwelch ( vac1 , window , [ ] , [ ] , sampleFrequency , ’ ones ided ’ ) ;
th r e sho ld = 1.3∗max( v1aSpec (Fvac<2000) ) ; % cut search above 2000Hz

% f ind exce s s no i s e f r e qu en c i e s
exce s sNo i s e Ind = f i nd (m2aSpec (F<2000)>th r e sho ld ) ;
exce s sNo i s eFrequenc i e s = F( exce s sNo i s e Ind ) ;
%( op t i ona l : use smoothed ( s g o l a y f i l t ) data )
% exces sNo i s e Ind = f i nd ( s g o l a y f i l t (m2aSpec (F<2000) ,12 ,21)>th r e sho ld ) ;

% s e t exce s s no i s e f requency range f o r l a t e r bounds
freqRange = [ min ( exce s sNo i s eFrequenc i e s ) ,max( exce s sNo i s eFrequenc i e s ) ] ;
% maxLambdaSignal = 1/min ( exce s sNo i s eFrequenc i e s ) ;

% group exce s s no i s e f r e qu en c i e s to peaks by grouping ne ighbor ing po in t s :
f r eqStep = F(2)−F(1) ;
% i n i t i a l i z e some parameters
peakInd = 1 ;
% i n i t i a l i z e to maximum po s s i b l e l ength
peakFrequenc ies = ze ro s (1 , l ength ( exce s sNo i s eFrequenc i e s ) ) ;
peakFrequenc ies (1 ) = exce s sNo i s eFrequenc i e s (1 ) ;
peakWidth = ones (1 , l ength ( exce s sNo i s eFrequenc i e s ) ) ;
% group f r e qu en c i e s
f o r exNInd = 1 : l ength ( exce s sNo i s eFrequenc i e s )−1;

i f ( exce s sNo i s eFrequenc i e s ( exNInd+1) − . . .
exce s sNo i s eFrequenc i e s ( exNInd )==freqStep )

peakFrequenc ies ( peakInd ) = peakFrequenc ies ( peakInd ) + . . .
exce s sNo i s eFrequenc i e s ( exNInd+1) ;

peakWidth ( peakInd ) = peakWidth ( peakInd )+1;
e l s e

peakInd = peakInd+1;
peakFrequenc ies ( peakInd ) = exce s sNo i s eFrequenc i e s ( exNInd+1) ;

end

end

% se t cente r f r e qu en c i e s as peak f r equenc i e s , reduce l ength
peakFrequenc ies = peakFrequenc ies ( 1 : peakInd ) . / peakWidth ( 1 : peakInd ) ;

%% de f i n e cente r peak and f i nd mean most f r equent d i s t ance o f the peaks
d i sp l ay ( ’ determine cente r f requency and peak d i s t an c e s ’ )

centerFrequency = sum( peakFrequenc ies ) / l ength ( peakFrequenc ies ) ;

d i f fPeakFrequenc i e s = d i f f ( peakFrequenc ies ) ;

s t ep = 1 ; % in Hz
binVector = min ( d i f fPeakFrequenc i e s ) : s tep :max( d i f fPeakFrequenc i e s ) ;
[ counts , b ins ] = h i s t c ( d i f fPeakFrequenc i e s , b inVector ) ;
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[ ˜ , maxCountBinIndex]=max( counts ) ;
meanPeakDistance = mean( d i f fPeakFrequenc i e s ( b ins==maxCountBinIndex ) ) ;

i f i snan (meanPeakDistance ) ;
meanPeakDistance=0;

end

%% plo t PSD of BHD2 data and thre sho ld
d i sp l ay ( ’ p l o t PSD of BHD2 data and thre sho ld ’ )

figNum = figNum+1; f i g u r e ( figNum) ;
semi logy (F , m2aSpec ,F , ones (1 , l ength (F) ) ∗ thresho ld , ’ r ’ ) ;
xl im ( [ 2 5 0 , 1 2 5 0 ] ) ; yl im ( [ 1 e−9 ,0.5 e−5])
x l ab e l ( ’ f r equency [Hz ] ’ ) ;
y l ab e l ( ’PSD [W/Hz ] ’ ) ;
l egend ( ’BHD2 data ’ , ’ th r e sho ld ’ )

%% f i t BHD2 data with (modulated ) s i n e
% f i t with modulated s i n e and a l l parameters f r e e
d i sp l ay ( ’ f i t BHD2 data and subt rac t model ’ )

% s e t f i t opt i ons
opts2=opt imset ( ’ Display ’ , ’ o f f ’ , ’MaxFunEvals ’ ,10000 , ’ MaxIter ’ , 1 0 0 0 0 , . . .

’ TolFun ’ ,1 e−9, ’TolX ’ ,1 e−9) ;

i f l ength ( peakFrequenc ies )==1; % simple peak
% de f i n e model f o r s c a t t e r s i g n a l at BHD2
s i gna l 2 = @(x , xdata ) x (1 ) ∗ s i n (x (2 ) ∗2∗ pi ∗xdata+x (3) ) ;
% s e t boundar ies
p02 = [max( det2 ) /2 , centerFrequency , 0 ] ;
lb2 = [ min ( det2 ) , freqRange (1 ) ,−2∗ pi ] ;
ub2 = [max( det2 ) , freqRange (2 ) ,2∗ pi ] ;

e l s e % modulated peak
% de f i n e model f o r s c a t t e r s i g n a l at BHD2
s i gna l 2 = @(x , xdata ) x (1 ) ∗ s i n (x (2 ) ∗2∗ pi ∗xdata + x (3) + . . .

( x (4 ) ∗ s i n (x (5 ) ∗2∗ pi ∗xdata + x (6) ) ) ) ;
% s e t boundar ies ( centerFrequency , meanPeakDistance )
p02 = [max( det2 ) /2 , centerFrequency , 0 , 1 , meanPeakDistance , 0 ] ;
lb2 = [ min ( det2 ) ,0 ,−2∗ pi ,− In f , 2∗ f reqStep ,−2∗ pi ] ;
ub2 = [max( det2 ) ,2000 ,2∗ pi , In f , 2000 ,2∗ pi ] ;

end

% de f i n e opt imiza t i on problem
problem2 = createOptimProblem ( ’ l s q c u r v e f i t ’ , ’ x0 ’ , p02 , ’ o b j e c t i v e ’ , . . .

s i gna l2 , ’ xdata ’ , timedata , ’ ydata ’ , det2 , ’ lb ’ , lb2 , ’ ub ’ , ub2 , . . .
’ opt i ons ’ , opts2 ) ;

% use mu l t ip l e s t a r t po in t s to f i nd g l oba l minimum
ms = Mult iStar t ;

% run the f i t
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params2 = run (ms , problem2 , 1 ) ;
save ( [ measdataPath , ’ params2 .mat ’ ] , ’ params2 ’ ) ;

%% subt rac t f i t from Bobs measurement data

subtrData2 = det2−s i g n a l 2 ( params2 , t imedata ) ;

%% plo t time data , f i t and subt ra c t i on
d i sp l ay ( ’ p l o t subtracted BHD2 time domain data ’ )

figNum = figNum+1; f i g u r e ( figNum) ;

BHD2sub=p lo t ( timedata , det2 , timedata , subtrData2 , timedata , . . .
s i g n a l 2 ( params2 , t imedata ) ) ;

xl im ( [ 0 , 0 . 2 ] ) ;
l egend ( ’mesurement data BHD2 ’ , ’ subt racted data ’ , ’ s c a t t e r model BHD2 ’ )
t i t l e ( ’ time domain data ’ ) ;
x l ab e l ( ’ time [ s ] ’ ) ; y l ab e l ( ’ amplitude [V] ’ ) ;
l egend ( ’BHD2 data ’ , ’ data a f t e r sub t ra c t i on ’ , ’ modeled d i s turbance ’ ) ;
saveas ( gcf , [ measdataPath , ’ f i g u r e s \ ’ , ’ SubtrTimeDomainBHD2 . f i g ’ ] ) ;

%% compute spectrum of subtracted data
d i sp l ay ( ’ compute psd o f BHD2 data a f t e r sub t ra c t i on ’ )

window = hanning ( l ength ( subtrData2 ) /10) ;

[ subtrData2Spec , F1 ] = pwelch ( subtrData2 , window , [ ] , [ ] , . . .
sampleFrequency , ’ ones ided ’ ) ;

[ m2aSpec2 , ˜ ] = pwelch ( det2 , window , [ ] , [ ] , sampleFrequency , ’ ones ided ’ ) ;

%% plo t spec t ra o f measurement and subtracted data
d i sp l ay ( ’ p l o t spe c t ra o f BHD2 data a f t e r sub t ra c t i on ’ )

figNum = figNum+1; f i g u r e ( figNum) ;
semi logy (F1 , m2aSpec2 , F1 , subtrData2Spec , ’ r−− ’ ) ;
x l ab e l ( ’ f r equency [Hz ] ’ ) ; y l ab e l ( ’PSD [W/Hz ] ’ ) ;
xl im ( [ 2 5 0 , 1 2 5 0 ] ) ; yl im ( [ 1 e−9,1e−6])
l egend ( ’BHD2 data ’ , ’ data a f t e r sub t ra c t i on ’ ) ;
saveas ( gcf , [ measdataPath , ’ f i g u r e s \ ’ , ’ SubtrBHD2Spec . f i g ’ ] ) ;

%% f i t amplitude f o r A l i c e data
d i sp l ay ( ’ f i t BHD1 data and subt rac t model ’ )

% s e t f i t opt i ons
opts1=opt imset ( ’ Display ’ , ’ o f f ’ , ’MaxFunEvals ’ ,10000 , ’ MaxIter ’ , 1 0 0 0 0 , . . .

’ TolFun ’ ,1 e−9, ’TolX ’ ,1 e−9) ;
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i f l ength ( peakFrequenc ies )==1; % simple peak
% de f i n e s c a t t e r model f o r BHD1 data ( f i t amplitude (x ) and take
% frequency and phase o f BHD2 f i t (pp) )
s i g n a l 1 = @(x , xdata , pp ) x∗ s i n (pp (1 ) ∗2∗ pi ∗xdata+pp (2) ) ;
% s e t boundar ies
p01 = max( det1 ) /2 ;
lb1 = min ( det1 ) ;
ub1 = max( det1 ) ;

e l s e % modulated peak
% de f i n e s c a t t e r model f o r BHD1 data ( f i t amplitude (x ) and take
% frequency and phase o f BHD2 f i t (pp) )
s i g n a l 1 = @(x , xdata , pp ) x∗ s i n (pp (1 ) ∗2∗ pi ∗xdata + pp (2) + . . .

(pp (3 ) ∗ s i n (pp (4 ) ∗2∗ pi ∗xdata + pp (5) ) ) ) ;
% s e t boundar ies
p01 = max( det1 ) /2 ;
lb1 = min ( det1 ) ;
ub1 = max( det1 ) ;

end

% de f i n e opt imiza t i on problem
problem1 = createOptimProblem ( ’ l s q c u r v e f i t ’ , ’ x0 ’ , p01 , . . .

’ o b j e c t i v e ’ ,@(a , b) s i g n a l 1 ( a , b , params2 ( 2 : end ) ) , ’ xdata ’ , timedata , . . .
’ ydata ’ , det1 , ’ lb ’ , lb1 , ’ ub ’ , ub1 , ’ opt ions ’ , opts1 ) ;

% use mu l t ip l e s t a r t po in t s to f i nd g l oba l minimum
ms = Mult iStar t ;

% run the f i t
params1 = run (ms , problem1 , 1 ) ;
save ( [ measdataPath , ’ params1 .mat ’ ] , ’ params1 ’ ) ;

%% subt rac t f i t from Al i c e s measurement data

subtrData1 = det1−s i g n a l 1 ( params1 , timedata , params2 ( 2 : end ) ) ;

%% plo t time data , f i t and subt ra c t i on
d i sp l ay ( ’ p l o t subtracted BHD1 time domain data ’ )

figNum = figNum+1; f i g u r e ( figNum) ;
BHD1sub = p lo t ( timedata , det1 , timedata , subtrData1 , timedata , . . .

s i g n a l 1 ( params1 , timedata , params2 ( 2 : end ) ) ) ;
xl im ( [ 0 , 0 . 2 ] ) ;
l egend ( ’BHD1 data ’ , ’ data a f t e r sub t ra c t i on ’ , ’ modeled d i s turbance ’ )
saveas ( gcf , [ measdataPath , ’ f i g u r e s \ ’ , ’ SubtrTimeDomainBHD1 . f i g ’ ] ) ;

%% compute spectrum of subtracted BHD1 data
d i sp l ay ( ’ compute spec t ra o f subtracted BHD1 data ’ )

window = hanning ( l ength ( subtrData1 ) /10) ;
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[ subtrData1Spec , F1 ] = pwelch ( subtrData1 , window , [ ] , [ ] , . . .
sampleFrequency , ’ ones ided ’ ) ;

[ m1aSpec2 , ˜ ] = pwelch ( det1 , window , [ ] , [ ] , sampleFrequency , ’ ones ided ’ ) ;

%% plo t spec t ra o f measurement and subtracted data

d i sp l ay ( ’ p l o t spe c t ra o f subtracted BHD1 data ’ )

figNum = figNum+1; f i g u r e ( figNum) ;
semi logy (F1 , m1aSpec2 , F1 , subtrData1Spec , ’ r−− ’ ) ;
x l ab e l ( ’ f r equency [Hz ] ’ ) ; y l ab e l ( ’PSD [W/Hz ] ’ ) ;
xl im ( [ 2 5 0 , 1 2 5 0 ] ) ; yl im ( [ 1 e−9,1e−6])
l egend ( ’BHD2 data ’ , ’ data a f t e r sub t ra c t i on ’ ) ;

saveas ( gcf , [ measdataPath , ’ f i g u r e s \ ’ , ’ SubtrBHD1Spec . f i g ’ ] ) ;

Fit and subtract scatter shoulder (with multiple
round-trips)

% f i t s c a t t e r shou lder ( with mul t ip l e round−t r i p s )

c l e a r a l l ; c l o s e a l l ;
fignum = 0 ; % to number the f i g u r e s

measdata = ’ data f i l ename . txt ’ ;
vacuumref = ’vacuum r e f e r e n c e f i l ename . txt ’ ;

%% cr ea t e f o l d e r to save p l o t s
[ pathstr , name , ˜ ] = f i l e p a r t s (measdata ) ;
p lotpath = [ pathstr , ’ \ ’ ,name , ’ P lo t s \ ’ ] ;
mkdir ( p lotpath ) ;

%% import or load measurement data

% % import LabView text f i l e
% d i sp l ay ( ’ import measurement data ’ )
% [ timedata , det1 , det2 , sampleFrequency ] = LabViewDataImport (measdata ) ;
% % save data
% save ( [ pathstr , ’ t imedata .mat ’ ] , ’ timedata ’ ) ;
% save ( [ pathstr , ’ det1 .mat ’ ] , ’ det1 ’ ) ;
% save ( [ pathstr , ’ det2 .mat ’ ] , ’ det2 ’ ) ;
% save ( [ pathstr , ’ sampleFrequency .mat ’ ] , ’ sampleFrequency ’ ) ;

% load data as c reated by LabViewDataImport .m
d i sp l ay ( ’ load measurement data ’ )

load ( [ pathstr , ’ t imedata .mat ’ ] ) ;
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load ( [ pathstr , ’ sampleFrequency ’ ] ) ;
load ( [ pathstr , ’ det1 . mat ’ ] ) ;
load ( [ pathstr , ’ det2 . mat ’ ] ) ;

%% import or load vacuum r e f e r e n c e data

% % import LabView text f i l e
% d i sp l ay ( ’ import vacuum r e f e r e n c e data ’ )
% [ ˜ , vac1 , vac2 , ˜ ] = LabViewDataImport ( vacuumref ) ;
% % save data
% save ( [ pathstr , ’ vac1 .mat ’ ] , ’ vac1 ’ ) ;
% save ( [ pathstr , ’ vac2 .mat ’ ] , ’ vac2 ’ ) ;

% load vacuum r e f e r e n c e data as c rea ted by LabViewDataImport .m
d i sp l ay ( ’ load vacuum r e f e r e n c e data ’ )

load ( [ pathstr , ’ vac1 .mat ’ ] ) ;
load ( [ pathstr , ’ vac2 .mat ’ ] ) ;

%% provide s t a r t parameters f o r modulation depth m, f requency fm
% and phase phim

t r i a l F r q s = [ ] ; % s e t t r i a l f requency vec to r
[m, fm , phim ] = FitArches ( timedata , det2 , sampleFrequency , t r i a l F r q s ) ;

%% f i l t e r and downsample data f o r f i t t i n g

nrt=3; % number o f add i t i o na l round t r i p s to con s id e r f o r the
% back−s c a t t e r ed beam ( f o r lp− f i l t e r i n g )

% use averaged data :
% wavelength corre spond ing to max Doppler s h i f t f requency
lambdamdl = sampleFrequency /( ( nrt+1)∗m∗fm) ;
% number o f ne ighbour ing po in t s to average , chosen to be a 10 th o f the
% sho r t e s t expected wavelength
navpt = round ( lambdamdl /10) ;
% Nyquist f requency
fny = f l o o r ( 0 . 5∗ sampleFrequency/navpt ) ;

% des ign f i l t e r
l p F i l t = d e s i g n f i l t ( ’ l owpa s s i i r ’ , ’ F i l t e rOrde r ’ ,10 , . . .

’ PassbandFrequency ’ , 0 . 5∗ fny , ’ PassbandRipple ’ , 0 . 001 , . . .
’ SampleRate ’ , sampleFrequency ) ;

% th i s way more than 60dB suppre s s i on at fny=0.5∗ f s new ;
% fs new=sampleFrequency/navpt ; and PassbandFreq ˜2 .5∗ f maxDopplerShi f t ;

% f v t o o l ( l p F i l t ) ; % d i sp l ay f i l t e r

f i l t d e t 1 = f i l t f i l t ( l pF i l t , det1 ) ;
f i l t d e t 2 = f i l t f i l t ( l pF i l t , det2 ) ;
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f i l t v a c 1 = f i l t f i l t ( l pF i l t , vac1 ) ;
f i l t v a c 2 = f i l t f i l t ( l pF i l t , vac2 ) ;

data length = length ( f i l t d e t 1 ) ;
% i n i t i a l i z e averaged data ve c t o r s :
aad = ze ro s (1 , f l o o r ( data length /navpt ) ) ;
abd = ze ro s (1 , f l o o r ( data length /navpt ) ) ;
atd = ze ro s (1 , f l o o r ( data length /navpt ) ) ;
n = 0 ; % i n i t i a l i z e index

whi l e n∗navpt < datalength−navpt ; % r e s t o f data skipped
aad (n+1) = sum( f i l t d e t 1 (1+(n∗navpt ) : ( n+1)∗navpt ) ) /navpt ;
abd (n+1) = sum( f i l t d e t 2 (1+(n∗navpt ) : ( n+1)∗navpt ) ) /navpt ;
atd (n+1) = timedata (1+(n∗navpt )+round ( navpt /2) ) ;

% avac1 (n+1) = sum( f i l t v a c 1 (1+(n∗navpt ) : ( n+1)∗navpt ) ) /navpt ;
% avac2 (n+1) = sum( f i l t v a c 2 (1+(n∗navpt ) : ( n+1)∗navpt ) ) /navpt ;

n = n+1;
end

%% opt i ona l : choose sho r t e r data segment f o r f i t t i n g

t1 = 0 ; t2 = timedata ( end ) ;
I s e g = atd>t1 & atd<t2 ; % time segment to use
atdSegment = atd ( I s e g ) ;
% remove dc−o f f s e t again
dataSegmentB = abd ( I s e g )−mean( abd ( I s e g ) ) ;
dataSegmentA = aad ( I s e g )−mean( aad ( I s e g ) ) ;

%% se t parameters f o r h igher order model and mu l t i s t a r t f i t o f BHD2 data

c l e a r sparam

% de f i n e mu l t ip l e s e t s o f s t a r t parameters
% sparam = [ s i g n a l amplitude , g , phi 0 ,m, fm , phim ,m2, phim2 , . . .
% . . . ( up to 5 th order ) , quadrature o f f s e t ]
sparam = ze ro s (18 ,15) ;
% s e t f i x ed s t a r t parameters f o r a l l s e t s
sparam ( : , [ 2 , 4 , 5 , 1 5 ] ) = repmat ( [ 0 . 5 ,m, fm , 0 ] , 1 8 , 1 ) ;
% combine d i f f e r e n t s t a r t va lue s f o r A, phi0 , phim
sparam ( : , [ 1 , 3 , 6 ] ) = combvec ( [max( det2 ) /2 ,max( det2 ) /2] , [− pi /2 ,0 , p i / 2 ] , . . .

[ phim−pi , phim , phim+pi ] ) ’ ;
% s e t random phases f o r h igher o rde r s between a and b and
% random amplitudes between c and d
a = −2∗pi ; b = 2∗ pi ;
c = −0.1∗m; d = 0.1∗m;
f o r in =8 :2 : 14 ;

sparam ( : , in )=(b−a ) .∗ rand ( s i z e ( sparam , 1 ) ,1 ) + a ;
sparam ( : , in−1)=(d−c ) .∗ rand ( s i z e ( sparam , 1 ) ,1 ) + c ;

end
% cr ea t e custom s t a r t po int s e t
tpo i n t s = CustomStartPointSet ( sparam ) ;
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% se t boundar ies
lb=[min ( det2 ) ,0 ,−2∗ pi ,0 ,0 ,−2∗ pi ,− In f ,−2∗pi ,− In f ,−2∗pi ,− In f , . . .

−2∗pi ,− In f ,−2∗pi ,−pi /2,− I n f ] ;
ub=[max( det2 ) ,1 ,2∗ pi , In f , In f , 2∗ pi , In f , 2∗ pi , In f , 2∗ pi , In f , 2∗ pi , . . .

In f , 2∗ pi , p i /2 , I n f ] ;

% s e t f i t opt i ons
opts=opt imset ( ’ Display ’ , ’ o f f ’ , ’MaxFunEvals ’ , 1 0 0 0 0 0 , . . .

’ TolFun ’ ,10ˆ−11 , ’TolX ’ ,10ˆ−11) ;

%% f i t f o r h igher order model to BHD2 data , us ing mu l t i s t a r t

% c r ea t e opt imiza t i on problem
problem = createOptimProblem ( ’ l s q c u r v e f i t ’ , ’ o b j e c t i v e ’ , . . .
@(a , b) sinmodNlInf ( a , b ) , ’ xdata ’ , atdSegment , ’ ydata ’ , dataSegmentB , . . .
’ x0 ’ , sparam ( 1 , : ) , ’ lb ’ , lb , ’ ub ’ ,ub , ’ opt ions ’ , opts ) ;

% ( sinmodNlInf : model with h igher harmonics and mul t ip l e round−t r i p s )

% run f i t us ing Mult iStar t
ms = Mult iStar t ;
[ xNL, resnorm , e x i t f l a g , output , s o l u t i o n s ] = run (ms , problem , tpo i n t s ) ;
% ( s o l u t i o n s (1 , 1 ) .X0{1 ,1} = s t a r t po int f o r bes t s o l u t i o n )

% % save f i t t e d parameters to mat f i l e
% save ( [ pathstr , ’\xNL.mat ’ ] , ’ xNL ’ )

%% compute BHD2 model

bobmod = sinmodNlInf (xNL, timedata ) ;

% compute bandpower o f BHD2 data a f t e r sub t ra c t i on
bpbob = bandpower ( det2 ( timedata>t1 & timedata<t2 )−bobmod( timedata>t1 & . . .

timedata<t2 ) , sampleFrequency , [ xNL(5) ( nrt+1)∗xNL(4) ∗xNL(5) ] ) ;

%% plo t averaged BHD2 time domain data with f i t

fignum = fignum+1; f i g u r e ( fignum ) ;

td1=p lo t ( atd , abd−mean( abd ) , timedata , bobmod) ;
xlim ( [ 0 , 0 . 2 ] ) ; yl im ( [ −0 . 015 , 0 . 0 15 ] )

s e t ( td1 (1 ) , ’ Color ’ , [ 0 . 4 , 0 . 4 , 0 . 4 ] ) ;
s e t ( td1 (2 ) , ’ Color ’ , [ 0 , 8 5 , 212 ] /255 , ’ LineWidth ’ , 2 )
legend ( ’ BHD1 data ’ , ’ modeled d i s turbance ’ )

x l ab e l ( ’ time [ s ] ’ )
y l ab e l ( ’ amplitude [V] ’ ) ;
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%% plo t raw or subtracted BHD2 data in spectrogram

t imere s = 1/(4∗xNL(5) ) ;
t ime r e sd l = round ( t imere s ∗ sampleFrequency ) ;
nover lap=round (0 . 9∗ t ime r e sd l ) ;
NFFT = [ ] ;

% raw data :
% [ ˜ ,F ,T,PAmeas ] = spectrogram ( det2 , hanning ( t imere sdata l ength ) , . . .
% noverlap ,NFFT, sampleFrequency ) ;

% subtracted data :
[ ˜ ,F ,T,PAmeas ] = spectrogram ( det2−bobmod , . . .

hanning ( t ime r e sd l ) , noverlap ,NFFT, sampleFrequency ) ;

fignum = fignum+1; f i g u r e ( fignum ) ;
s u r f (T,F,10∗ l og10 (PAmeas) ) ;
xl im ( [ ( t imere s /2) , t2−( t imere s /2) ] ) ;
yl im ( [ 0 1000 ] ) ; z l im ([−180 ,−60]) ;
x l ab e l ( ’ time [ s ] ’ ) ; y l ab e l ( ’ f r equency [Hz ] ’ ) ;
% contourcmap ( ’MyColorMap ’ , [ −85 : 0 . 2 : −70 ] ) ;
% colormap ( f l i p ud ( colormap ) ) ;

w=co l o rba r ;
z lab = get (w, ’ y l ab e l ’ ) ;
s e t ( zlab , ’ S t r ing ’ , ’PSD [dBW/Hz ] ’ ) ;
shading i n t e rp
view (0 ,90 ) ;

% saveas ( gcf , [ p lotpath , ’ tspecAmeas . eps ’ ] , ’ epsc ’ ) ;
% saveas ( gcf , [ p lotpath , ’ tspecAmeas . f i g ’ ] ) ;

%% f i t h igher order model to BHD1 data

% se t s t a r t parameters [ s i g n a l amplitude , quadrature o f f s e t ]
sparam2 = [xNL(1) , 0 ] ;
% s e t boundar ies
lb2=[min ( det1 ) ,−2∗ pi ] ;
ub2=[max( det1 ) ,2∗ pi ] ;

% s e t f i t opt i ons
opts=opt imset ( ’ Display ’ , ’ o f f ’ , ’MaxFunEvals ’ , 1 0 0 0 0 0 , . . .

’ TolFun ’ ,10ˆ−11 , ’TolX ’ ,10ˆ−11) ;

% c r ea t e opt imiza t i on problem
problem = createOptimProblem ( ’ l s q c u r v e f i t ’ , ’ o b j e c t i v e ’ , . . .
@(a , b) cosmodNlInfA (xNL, b , a ) , ’ xdata ’ , atdSegment , ’ ydata ’ , dataSegmentA , . . .
’ x0 ’ , sparam2 , ’ lb ’ , lb2 , ’ ub ’ , ub2 , ’ opt ions ’ , opts ) ;

% ( cosmodNlInfA : model with h igher harmonics and mul t ip l e round−t r i p s )

% run f i t us ing Mult iStar t
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ms = Mult iStar t ;
[ xNLa , fva l2 , e x i t f l a g 2 , output2 , s o l u t i o n s 2 ] = run (ms , problem , 5 ) ;
% ( s o l u t i o n s (1 , 1 ) .X0{1 ,1} = s t a r t po int f o r bes t s o l u t i o n )

%% compute BHD1 model

al icemod = cosmodNlInfA (xNL, timedata , xNLa) ;

%% compute bandpower
bpa l i c e = bandpower ( det1 ( timedata>t1 & timedata<t2 )−al icemod . . .

( timedata>t1 & timedata<t2 ) , sampleFrequency , . . .
[ xNL(5) ( nrt+1)∗xNL(4) ∗xNL(5) ] ) ;

%% plo t averaged BHD1 time domain data with f i t

fignum = fignum+1; f i g u r e ( fignum ) ;
td2=p lo t ( atd , aad−mean( aad ) , timedata , al icemod ) ;
xlim ( [ 0 , 0 . 2 ] ) ; yl im ( [ −0 . 015 , 0 . 0 15 ] )

s e t ( td2 (1 ) , ’ Color ’ , [ 0 . 4 , 0 . 4 , 0 . 4 ] ) ;
s e t ( td2 (2 ) , ’ Color ’ , [ 0 , 8 5 , 212 ] /255 , ’ LineWidth ’ , 2 )
legend ( ’ BHD2 data ’ , ’ modeled d i s turbance ’ )

x l ab e l ( ’ time [ s ] ’ )
y l ab e l ( ’ amplitude [V] ’ ) ;

% save found f i t parameters to mat f i l e
% save ( ’ DataMatFiles \2HzFullxNLaQuadCorFilterInf . mat ’ , ’ xNLa ’ )

%% plo t raw or subtracted a l i c e data in spectrogram

t imere s = 1/(4∗xNL(5) ) ;
t ime r e sd l = round ( t imere s ∗ sampleFrequency ) ;
nover lap=round (0 . 9∗ t ime r e sd l ) ;
NFFT = [ ] ;

% raw data :
% [ ˜ ,F ,T,PAmeas ] = spectrogram ( det1 , hanning ( t imere sdata l ength ) , . . .
% noverlap ,NFFT, sampleFrequency ) ;

% subtracted data :
[ ˜ ,F ,T,PAmeas ] = spectrogram ( ( det1−mean( det1 ) )−alicemod , . . .

hanning ( t ime r e sd l ) , noverlap ,NFFT, sampleFrequency ) ;

fignum = fignum+1; f i g u r e ( fignum ) ;
s u r f (T,F,10∗ l og10 (PAmeas) ) ;
xl im ( [ ( t imere s /2) , t2−( t imere s /2) ] ) ;
yl im ( [ 0 1000 ] ) ; z l im ([−180 ,−60]) ;
x l ab e l ( ’ time [ s ] ’ ) ; y l ab e l ( ’ f r equency [Hz ] ’ ) ;
% contourcmap ( ’MyColorMap ’ , [ −85 : 0 . 2 : −70 ] ) ;
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% colormap ( f l i p ud ( colormap ) ) ;

w=co l o rba r ;
z lab = get (w, ’ y l ab e l ’ ) ;
s e t ( zlab , ’ S t r ing ’ , ’PSD [dBW/Hz ] ’ ) ;
shading i n t e rp
view (0 ,90 ) ;

% saveas ( gcf , [ p lotpath , ’ tspecAmeas . eps ’ ] , ’ epsc ’ ) ;
% saveas ( gcf , [ p lotpath , ’ tspecAmeas . f i g ’ ] ) ;

%% compute averaged spec t ra f o r the data segment used in the f i t

% s e t data length f o r r equ i r ed RBW != 2∗ f s c
lambdamdl = round ( sampleFrequency/xNL(5) ) ;
ad l = round ( lambdamdl /2) ;
nover lap = [ ] ;
NFFT= [ ] ;

% compute averaged spec t ra with pwelch func t i on
% measurement data
[ shAmeas , f sh ] = pwelch ( det1 ( timedata>t1 & timedata<t2 ) , . . .

hanning ( adl ) , noverlap ,NFFT, sampleFrequency , ’ ones ided ’ ) ;
[ shBmeas , ˜ ] = pwelch ( det2 ( timedata>t1 & timedata<t2 ) , . . .

hanning ( adl ) , noverlap ,NFFT, sampleFrequency , ’ ones ided ’ ) ;
% model
[ shAmod , ˜ ] = pwelch ( al icemod ( timedata>t1 & timedata<t2 ) , . . .

hanning ( adl ) , noverlap ,NFFT, sampleFrequency , ’ ones ided ’ ) ;
[ shBmod , ˜ ] = pwelch (bobmod( timedata>t1 & timedata<t2 ) , . . .

hanning ( adl ) , noverlap ,NFFT, sampleFrequency , ’ ones ided ’ ) ;
% measurement data with model subtracted
[ shAsub , ˜ ] = pwelch ( det1 ( timedata>t1 & timedata<t2 )−al icemod . . .

( timedata>t1 & timedata<t2 ) , hanning ( adl ) , noverlap ,NFFT, . . .
sampleFrequency , ’ ones ided ’ ) ;

[ shBsub , ˜ ] = pwelch ( det2 ( timedata>t1 & timedata<t2 )−bobmod . . .
( timedata>t1 & timedata<t2 ) , hanning ( adl ) , noverlap ,NFFT, . . .
sampleFrequency , ’ ones ided ’ ) ;

% vacuum r e f e r e n c e s
[ shAvac , ˜ ] = pwelch ( vac1 ( timedata>t1 & timedata<t2 ) , . . .

hanning ( adl ) , noverlap ,NFFT, . . .
sampleFrequency , ’ ones ided ’ ) ;

[ shBvac , ˜ ] = pwelch ( vac2 ( timedata>t1 & timedata<t2 ) , . . .
hanning ( adl ) , noverlap ,NFFT, . . .
sampleFrequency , ’ ones ided ’ ) ;

%% plo t averaged spec t ra f o r BHD1

fignum = fignum+1; f a s = f i g u r e ( fignum ) ;
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has = l o g l o g ( fsh , shAmeas , fsh , shAsub , fsh2 , smooth ( shAvac ) ) ;
s e t ( has (1 ) , ’ Color ’ , [ 0 , 8 5 , 2 12 ] /255 )
s e t ( has (2 ) , ’ Color ’ , [ 2 1 2 , 0 , 0 ] / 255 ) ;
s e t ( has (3 ) , ’ Color ’ , [ 0 . 4 , 0 . 4 , 0 . 4 ] ) ;

xl im ( [ 2∗xNL(5) 2000 ] ) ;
yl im ( [ 2 e−9 ,0.5 e−6]) ;
l egend ( ’ measurement data ’ , ’ data a f t e r sub t ra c t i on ’ , . . .

’ shot no i s e r e f e r e n c e ’ )

g r id on ; s e t ( gca , ’ Gr idLineSty le ’ , ’− ’ ) ;
x l ab e l ( ’ f r equency [Hz ] ’ )
y l ab e l ( ’PSD [W/Hz ] ’ ) ;

%% plo t averaged spec t ra f o r BHD2

fignum = fignum+1; fb s = f i g u r e ( fignum ) ;

hbs = l o g l o g ( fsh , shBmeas , fsh , shBsub , fsh2 , smooth ( shBvac ) ) ;
s e t ( hbs (1 ) , ’ Color ’ , [ 0 , 8 5 , 2 12 ] /255 )
s e t ( hbs (2 ) , ’ Color ’ , [ 2 1 2 , 0 , 0 ] / 255 ) ;
s e t ( hbs (3 ) , ’ Color ’ , [ 0 . 4 , 0 . 4 , 0 . 4 ] ) ;

xl im ( [ 2∗xNL(5) 2000 ] ) ;
s e t ( gca , ’ XTickLabel ’ , [ 1 0 0 , 1 0 00 ] ) ;
yl im ( [ 1 e−9 ,0.5 e−6]) ;
l egend ( ’ measurement data ’ , ’ data a f t e r sub t ra c t i on ’ , . . .

’ shot no i s e r e f e r e n c e ’ )

g r id on ; s e t ( gca , ’ Gr idLineSty le ’ , ’− ’ ) ;
x l ab e l ( ’ f r equency [Hz ] ’ )
y l ab e l ( ’PSD [W/Hz ] ’ ) ;

Fit Doppler shift to arches in spectrogram data

f unc t i on [m, fm , phim ] = FitArches ( timedata , det2 , sampleFrequency , t r i a l F r q s )
% determine reduced paramter s e t [m, fm , phim ] from Doppler s h i f t in
% spectrogram data

%% de f i n e Doppler s h i f t models

% model f o r the time dependent Doppler s h i f t : % y = [m, phim ] f r q=fm
modfdst=@(y , ydata , f r q ) abs (y (1 ) ∗ f r q ∗ cos (2∗ pi ∗ f r q ∗ydata+y (2) ) ) ;

% model f o r the time dependent Doppler s h i f t : % y = [m, fm , phim ]
modfdstAll=@(y , ydata ) abs (y (1 ) ∗y (2 ) ∗ cos (2∗ pi ∗y (2 ) ∗ydata+y (3) ) ) ;

%% f i t m, fm and phim from BHD2 spectrogram max frequency components
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% se t boundar ies f o r [A, phim ]
lb = [0 ,−2∗ pi ] ;
ub = [ Inf , 2∗ pi ] ;

% s e t s t a r t parameters f o r [A, phim ]
sparam = [ 1 , 0 ] ;

% s e t f i t opt i ons to suppres s output
opts=opt imset ( ’ Display ’ , ’ o f f ’ ) ;

% search f requency with minimum resnorm f o r the [A, phim ] f i t :

% i n i t i a l i z e parameters
spar=ze ro s ( l ength ( t r i a l F r q s ) , l ength ( sparam ) ) ;
meansqrResnorm=ze ro s (1 , l ength ( t r i a l F r q s ) ) ;

f o r f r i =1: l ength ( t r i a l F r q s ) ;
% s e t time/ f requency r e s o l u t i o n f o r computation o f time dependent
% spec t ra
t imere s = 1/(4∗ t r i a l F r q s ( f r i ) ) ;
t ime r e sd l = round ( t imere s ∗ sampleFrequency ) ;
nover lap = round (0 . 9∗ t ime r e sd l ) ;
[ ˜ , f , time , psbds ] = spectrogram ( det2 , hamming( t ime r e sd l ) , . . .

noverlap , [ ] , sampleFrequency ) ;
% f i nd max frequency components
[ ˜ , I ] =max( psbds , [ ] , 1 ) ;
f d s t = f ( I ) ’ ;
% f i t Doppler s h i f t to arches
[ spar ( f r i , : ) , ˜ , r e s i d u a l ] = l s q c u r v e f i t (@(a , b) . . .

modfdst ( a , b , t r i a l F r q s ( f r i ) ) , sparam , time , fds t , lb , ub , opts ) ;
meansqrResnorm ( f r i )=mean( sq r t ( r e s i d u a l . ˆ 2 ) ) ;

end

%% f ind minimum fo r meansqrResnorm ( fm)

[mi , f I ] = f indpeaks (−meansqrResnorm , ’ s o r t s t r ’ , ’ descend ’ ) ;
i f isempty (mi )

e r r o r ( ’No minimum found . Ref ine search . ’ )
end

% % plo t resnorm ( f r v ) to check the computed f requency
% f i g u r e ;
% p lo t ( t r i a lF rq s , meansqrResnorm )

%% f i t again with a l l th ree parameters f r e e

% s e t new s t a r t parameters
m = spar ( f I (1 ) , 1 ) ;
fm = t r i a l F r q s ( f I (1 ) ) ;
phim = spar ( f I (1 ) ,2 ) ;
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% compute time dependent doppler f requency again with adjusted r e s o l u t i o n
t imere s = 1/(4∗ fm) ; % in seconds
t ime r e sd l = round ( t imere s ∗ sampleFrequency ) ;
nover lap = round (0 . 9∗ t ime r e sd l ) ;
[ ˜ , f , time , psbds ] = spectrogram ( det2 , hamming( t ime r e sd l ) , noverlap , . . .

[ ] , sampleFrequency ) ;

% f i nd max frequency components
[ ˜ , I ] =max( psbds , [ ] , 1 ) ;
f d s t = f ( I ) ’ ;

% remove o u t l i e r s with more than one standard dev i a t i on /2 d i s t anc e from
% the f i t t e d model
I2 = abs (modfdst ( [m, phim ] , time , fm) − f d s t ) < 0 .5∗ std ( f d s t ) ;
f d s t 2 = exc ludedata ( time , fds t , ’ i n d i c e s ’ , I2 ) ;

% s e t boundar ies f o r [A, fm , phim ]
lb2 = [− In f ,0 .1 ,−2∗ pi ] ;
ub2 = [ Inf , In f , 2∗ pi ] ;

% f i t again with a l l th ree parameters f r e e
[ spar2 , ˜ ] = l s q c u r v e f i t (@(a , b) modfdstAll ( a , b ) , [m, fm , phim ] , . . .

time ( f d s t 2 ) , f d s t ( f d s t 2 ) , lb2 , ub2 , opts ) ;

% s e t new s t a r t parameters
m = spar2 (1 ) ;
fm = spar2 (2 ) ;
phim = spar2 (3 ) ;

%% plo t f i t

f i g u r e ;
a rches = p lo t ( timedata , modfdst ( [m, phim ] , timedata , fm) , ’− ’ , time , . . .

fd s t , ’ ∗ ’ , ’ LineWidth ’ , 2 ) ;
s e t ( arches (1 ) , ’ Color ’ , [ 0 , 8 5 , 2 12 ] /255 )
s e t ( arches (2 ) , ’ Color ’ , ’ k ’ ) ;
xl im ( [ 0 , 1 ] ) ; %ylim ( [ 0 ,max( f d s t ) +30]) ;

x l ab e l ( ’ time [ s ] ’ ) ; y l ab e l ( ’ f r equency [Hz ] ’ )
l egend ( ’ {\ i t f } {\ f o n t s i z e {8} ds }( t ) f i t ’ , ’ max data ’ ) ;
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Higher order models for infinite round-trips

f unc t i on mod=sinmodNlInf (x , xdata )

% ps i with h igher harmonics up to 5 th order
p s i = x (3) + (x (4 ) ∗ s i n (2∗ pi ∗x (5 ) ∗xdata+x (6) ) + . . .

( x (7 ) ∗ s i n (2∗ pi ∗x (5 ) ∗xdata+x (6)−(x (8 ) ) ) . ˆ 2 ) + . . .
( x (9 ) ∗ s i n (2∗ pi ∗x (5 ) ∗xdata+x (6)−(x (10) ) ) . ˆ 3 ) + . . .
( x (11) ∗ s i n (2∗ pi ∗x (5 ) ∗xdata+x (6)+x (12) ) . ˆ 4 ) + . . .
( x (13) ∗ s i n (2∗ pi ∗x (5 ) ∗xdata+x (6)+x (14) ) . ˆ 5 ) ) ;

% model f o r i n f i n i t e round−t r i p s
mod = −x (1 ) ∗( ( s i n ( p s i+x (15) )+(x (2 ) ∗ s i n (x (15) ) ) ) . / . . .

((1+(x (2 ) ∗ cos ( p s i ) ) ) .ˆ2+(x (2 ) ∗ s i n ( p s i ) ) . ˆ 2 ) ) ;

mod = mod−mean(mod) ; % cente r around zero

func t i on mod=cosmodNlInfA (x , xdata , y )
% f i t y and use x from other quadrature f i t

p s i = x (3) + (x (4 ) ∗ s i n (2∗ pi ∗x (5 ) ∗xdata+x (6) ) + . . .
( x (7 ) ∗ s i n (2∗ pi ∗x (5 ) ∗xdata+x (6)−(x (8 ) ) ) . ˆ 2 ) + . . .
( x (9 ) ∗ s i n (2∗ pi ∗x (5 ) ∗xdata+x (6)−(x (10) ) ) . ˆ 3 ) + . . .
( x (11) ∗ s i n (2∗ pi ∗x (5 ) ∗xdata+x (6)+x (12) ) . ˆ 4 ) + . . .
( x (13) ∗ s i n (2∗ pi ∗x (5 ) ∗xdata+x (6)+x (14) ) . ˆ 5 ) ) ;

% model f o r i n f i n i t e round−t r i p s
mod = y (1) ∗ ( ( ( cos ( p s i+x (15)+y (2) )+(x (2 ) ∗ cos ( x (15)+y (2) ) ) ) . / . . .

((1+(x (2 ) ∗ cos ( p s i ) ) ) .ˆ2+(x (2 ) ∗ s i n ( p s i ) ) . ˆ 2 ) ) ) ;

mod = mod−mean(mod) ; % cente r around zero
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C. Cancellation of lateral displacement
noise of three-port gratings for
coupling light to cavities

Here I present experimental results which were off topic with the rest of my work. The
content of this section corresponds to a publication in Optics Letters [36].

Abstract Reflection gratings enable light coupling to optical cavities without trans-
mission through substrates. Gratings that have three ports and are mounted in second-
order Littrow configuration even allow the coupling to high-finesse cavities using low
diffraction efficiencies. In contrast to conventional transmissive cavity couplers, how-
ever, the phase of the diffracted light depends on the lateral position of the grating,
which introduces an additional noise coupling. Here we experimentally demonstrate
that this kind of noise cancels out once both diffracted output ports of the grating are
combined. We achieve the same signal-to-shot-noise ratio as for a conventional coupler.
From this perspective, 3-port grating couplers in second-order Littrow configuration re-
main a valuable approach to reducing optical absorption of cavity coupler substrates in
future gravitational wave detectors.

C.1. Introduction

Coupling light to an optical cavity is usually realized via partially transmissive mirrors.
3-port reflection gratings represent a practical alternative, which does not require light
transmission through substrate material [64–74]. This avoids light absorption in sub-
strates and consequently even allows opaque substrates. Due to this advantage reflection
gratings were considered as optical components in gravitational-wave detectors already
20 years ago [75]. Fig. C.1 shows an example how (a) conventional couplers to arm cav-
ities in a Michelson interferometer can be replaced with (b) weak diffraction efficiency
gratings in second-order Littrow configuration [65–67, 70–74]. Unfortunately it turned
out that lateral grating displacements that are parallel to its surface and perpendicular
to the grating’s grooves cause phase shifts on the diffracted light field and thus intro-
duce a new noise coupling [72,76]. This contrasts a conventional mirror that is displaced
parallel to its surface. It thus seems that gratings need to have a better isolation from
environmental disturbances than conventional mirrors [77].

In this work we experimentally show that the unwanted lateral-displacement-to-phase
coupling in grating interferometers can be canceled by an appropriate combination of
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Figure C.1.: Michelson interferometers with arm resonators. (a) Michelson-
type laser interferometer with conventional, transmissively coupled Fabry-Perot arm
cavities. (b) Equivalent interferometer topology with arm cavities that are diffractively
coupled in second-order Littrow configuration. Here, the phase signal that is acquired
in an arm cavity couples out via two ports of the grating. We show that summing up
the photo-electric currents as shown not only recovers the full signal-to-shot-noise ratio
but also cancels out phase noise due to lateral grating motions.

detection ports. We realize a simplified setup in which a phase-modulated light beam
is sent under normal incidence to a grating, whose position is continuously changed
perpendicular to its grooves and to the optical axis of the incident light. We detect the
phase modulations in the ± first diffraction orders and demonstrate that summing up
the photo-electric currents not only retains the full signal-to-shot-noise ratio but also
cancels out phase noise due to the lateral grating motion.

C.2. Experimental setup

The schematic of the experimental setup is depicted in Fig. C.2. Our 3-port diffrac-
tion grating had a size of 10 mm x 10 mm and was realized on a quartz substrate with
a size of 1” x 1” x 0.25”. The grating was realized using electron beam lithography to
define the grating pattern into a resist layer. Afterwards this pattern was transferred by
an inductively-coupled plasma etching process (ICP) into a chromium and subsequently
into the uppermost silica layer. The first-order diffraction efficiencies at normal incidence
were measured to be about 4.8% at 1064 nm. The normal incidence light beam had a
power of 7 mW, which resulted in 0.34 mW in the m = ±1 diffraction orders. The input
light was modulated at a frequency of 710 kHz by an electro-optic modulator (EOM),
which served as a scientific phase signal corresponding to a ‘gravitational-wave’-signal.
Two balanced homodyne detectors (BHD1&2) measured the phase quadrature ampli-
tudes of the first-order diffracted outputs. Each BHD was stabilized to this quadrature
by using the difference of its photo diodes’ DC voltage as an error signal and by feeding
back to a piezo-actuated mirror in the path of the local oscillator beam (DC-lock). The
unity gain frequencies for these locks were far below the frequencies of the injected sig-
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Figure C.2.: Experimental setup. We performed a phase measurement of the
m = ±1 diffraction orders of a 3-port grating with two balanced homodyne detec-
tors (BHD1&2). The sum and difference of both signals were acquired with a spectrum
analyzer. The position of the grating was modulated in the lateral direction, using a
piezo actuator. An electro-optic modulator (EOM) periodically shifted the phase of the
incident light, serving as a reference ‘gravitational-wave’-signal. Part of the zero order
diffracted light was picked off at a 50/50 beam splitter and (optionally) detected with
BHD2 to confirm the lateral displacement of the grating.

nals and the signs for the quadratures were chosen in such a way that the radio-frequency
EOM signal added when combining the BHD photo currents. The BHDs’ local oscilla-
tor powers were 10 mW. The individual BHD photo currents, as well as their sum (or
difference) were analyzed with a spectrum analyzer. The grating was piezo actuated and
modulated in the lateral direction at a frequency of about 683 kHz in order to produce
the disturbance phase signal under investigation here. The frequency of about 683 kHz
was selected because the piezo-actuated grating including its mount showed a pure lat-
eral displacement in this case; any motion in direction of the incident laser beam was
not visible, i.e. was far below the shot-noise level of our setup.

Fig. C.3 shows the individual measurements of the m = ±1 diffraction orders at the
respective detectors BHD1&2 (solid green lines). The disturbances from the lateral
grating displacement and the scientific EOM signals are clearly visible. The broadband
noise floor in our measurements was given by optical shot-noise. The transfer functions
of the BHDs were almost identical and produced a marginal slope on the otherwise white
shot noise. To confirm that the grating signal was solely due to lateral displacement, we
also analyzed the zero order diffraction. The result is shown in Fig. C.3 (bottom, dashed
orange line). This measurement was done by picking off part of the zero order diffracted
beam at a 50/50 beam splitter in the input path, adjusting the power to the same level
as in the m = ±1 diffraction orders and detecting it with BHD2 (via flip mirror). The
measurement confirms that the grating signal vanished in zero order diffraction while the
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Figure C.3.: Individual diffraction orders. Shown are the power spectra of the
±1st diffraction orders (solid green) and the 0th order (dashed orange) as measured
by BHD1&2, respectively. During all these measurements the grating was laterally
displaced at a frequency of about 683 kHz and a phase modulation at 710 kHz was
imprinted on the input light by an electro-optic modulator (EOM). The disturbance from
the grating displacement is clearly visible in the measurements on the ±1st diffraction
orders. As expected it is not present in the 0th order. (resolution bandwidth (RBW):
300 Hz; video bandwidth (VBW): 10 Hz; averaged 16 times).

reference EOM-signal was clearly visible. As expected, the measured EOM-signal was in
fact about 6 dB larger than in the first-order diffracted outputs, because the zero order
light passed the EOM twice. The modulations during the passages were approximately
in phase because the wavelength of the kHz-signal was much larger than the optical path
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between the grating and the EOM. The modulation amplitude was therefore doubled
and in the depicted power spectrum thus resulted in a factor of 4 or 6 dB accordingly.

C.3. Measurement results

In Fig. C.4 the sum (red) and difference (blue) of the two homodyne measurements are
depicted. Since the optical shot-noise measured at the two detectors is uncorrelated, it
adds up in variance and the noise floor was increased by 3 dB in these measurements.
As expected, the phase modulation from the lateral displacement of the grating cancels
in the sum of the outputs while the amplitude of the scientific signal from the EOM
adds up.
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Figure C.4.: Combination of the ±1st diffraction orders. Shown are the spec-
tra of the sum (red) and difference (blue) of the m = ±1 diffraction orders, measured
by BHD1&2. The disturbance signal that was produced by lateral displacement of
the grating clearly vanished in the sum, corresponding to a cancellation of the lateral-
displacement-to-phase coupling of the grating. As expected, the phase modulation im-
printed on the incident beam by the EOM increased by 6 dB in this case. On the contrary,
the difference photo current shows an increase of the disturbance signal and a completely
vanished scientific phase signal. As expected for shot-noise limited measurements, the
shot-noise level increased by 3 dB in either case.

C.4. Conclusion

In conclusion, using a simplified setup, we have experimentally demonstrated the can-
cellation of interferometric disturbance signals that result from lateral displacements
of gratings. We considered the case in which a 3-port reflection grating mounted in
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second order Littrow configuration served as a cavity coupler, which corresponded to
an arrangement that is potentially interesting for future gravitational wave detectors
(Fig. C.1 (b)). When the output ports were combined in a way that optimized the
signal-to-shot-noise, the disturbance signals from lateral grating displacements canceled
completely with respect to the shot noise of our setup. Our result suggests that phase
noise from lateral displacement of 3-port gratings can be canceled to a high degree and
that no additional demands on the suspensions are required, as long as both diffracted
outputs are being detected.
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[39] E. Schrödinger, “Die gegenwärtige Situation in der Quantenmechanik,” Naturwis-
senschaften, vol. 23, pp. 807–812, 1935, 10.1007/BF01491891. [Online]. Available:
http://dx.doi.org/10.1007/BF01491891

[40] R. Horodecki, P. Horodecki, M. Horodecki, and K. Horodecki, “Quantum
entanglement,” Rev. Mod. Phys., vol. 81, pp. 865–942, Jun 2009. [Online].
Available: http://link.aps.org/doi/10.1103/RevModPhys.81.865

[41] M. D. Reid, P. D. Drummond, W. P. Bowen, E. G. Cavalcanti, P. K.
Lam, H. A. Bachor, U. L. Andersen, and G. Leuchs, “Colloquium :
The Einstein-Podolsky-Rosen paradox: From concepts to applications,” Rev.
Mod. Phys., vol. 81, pp. 1727–1751, Dec 2009. [Online]. Available: http:
//link.aps.org/doi/10.1103/RevModPhys.81.1727

[42] M. D. Reid, “Demonstration of the Einstein-Podolsky-Rosen paradox using
nondegenerate parametric amplification,” Phys. Rev. A, vol. 40, pp. 913–923, Jul
1989. [Online]. Available: http://link.aps.org/doi/10.1103/PhysRevA.40.913

[43] M. Ast, S. Steinlechner, and R. Schnabel, “Reduction of Classical Measurement
Noise via Quantum-Dense Metrology,” Phys. Rev. Lett., vol. 117, p. 180801, 2016.
[Online]. Available: arXiv:1607.00130

[44] S. Suzuki, H. Yonezawa, F. Kannari, M. Sasaki, and A. Furusawa,
“7 dB quadrature squeezing at 860 nm with periodically poled KTiOPO,”
Applied Physics Letters, vol. 89, no. 6, p. 061116, 2006. [Online]. Available:
http://scitation.aip.org/content/aip/journal/apl/89/6/10.1063/1.2335806

[45] A. Franzen, B. Hage, J. DiGuglielmo, J. Fiurášek, and R. Schnabel,
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