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Abstract

Many important quantum information protocols such as quantum key distribution
require the distribution of entangled states of light over large distances. Unavoid-
able e�ects like optical loss or phase noise, however, reduce or even destroy the
entanglement during the transmission of the light modes. To restore parts of the
entanglement, iterative distillation protocols are proposed. Unfortunately, these
protocols are ine�cient in terms of success probability and experimental resources.
Appropriate quantum memories could in principle overcome these ine�ciencies,
but have not been experimentally realized yet.
Emulated entanglement distillation, proposed by Jaromír Fiurá²ek and Nicolas

Cerf, provides a novel attempt to make iterative distillation protocols feasible. The
main idea is to shift the entanglement distillation protocol to the postprocessing of
the data obtained via an appropriate measurement of the distributed states. This
emulation of the distillation protocol signi�cantly increases the success probability
and, at the same time, facilitates a compact experimental setup.
The main part of this thesis is dedicated to the experimental demonstration of

emulated entanglement distillation of non-Gaussian states that got degaussi�ed,
e.g. during the transmission over a noisy channel. To simulate such noisy trans-
mission of entangled states, a two-mode-squeezed state was prepared and then
intentionally degaussi�ed under the presence of phase noise. The distillation is
performed with eight-port homodyne measurements and subsequent postprocess-
ing of the acquired data. With this setup we are able to realize, for the �rst time,
the full iterative distillation protocol for up to three iteration steps. The data
show for each iteration step a signi�cant improvement of entanglement, purity
and Gaussianity.
In the second part of this thesis, we discuss modi�cations to the experimen-

tal implementation essential for emulated distillation of Gaussian states and
successfully realize them in a test setup. Most importantly, we implement on
the one hand stabilization techniques for squeezed-light sources and eight-port
homodyne detectors without any bright light �eld that co-propagates with the
signal �eld. On the other hand, we realize eight-port homodyne detection of the
squeezed states over a large frequency range of up to 100MHz with a �at spectrum.
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Kurzfassung

Viele wichtige Quanteninformations-Protokolle wie z.B. Quantenschlüsselverteil-
ung benötigen die Verteilung von verschränkten Licht-Zuständen über groÿe Ent-
fernungen. Unvermeidliche E�ekte wie optische Verluste oder Phasenrauschen
reduzieren die Verschränkung bei der Transmission der Lichtmoden oder zer-
stören die Verschränkung sogar komplett. Iterative Distillationsprotokolle wur-
den vorgeschlagen, um Teile der Verschränkung wiederherzustellen. Diese Pro-
tokolle sind jedoch ine�zient hinsichtlich ihrer Erfolgswahrscheinlichkeit und der
benötigten experimentellen Resourcen. Spezielle Quantenspeicher wären in der
Lage diese Ine�zienz zu kompensieren, allerdings sind solche Speicher bislang
noch nicht in geeigneter Form experimentell umgesetzt worden.
Die von Jaromír Fiurá²ek und Nicolas Cerf vorgeschlagene emulierte Ver-

schränkungsdistillation bietet einen neuen Weg, um iterative Distillationspro-
tokolle praktikabel zu machen. Die Grundidee ist die Verschiebung der Ver-
schränkungsdistillation in die Nachbearbeitung der Daten, welche man durch
geeignete Messung der verteilten Zustände erhalten hat. Die Emulation des Dis-
tillationsprotokolls erhöht die Erfolgswahrscheinlichkeit deutlich und ermöglicht
gleichzeitig einen kompakten experimentellen Aufbau.
Der Hauptteil dieser Arbeit ist der experimentellen Demonstration der

emulierten Verschränkungsdistillation von nicht-gauÿschen Zuständen gewidmet,
welche z.B. bei der Transmission durch einen verrauschten Kanal degauÿi�ziert
wurden. Für die Simulation der verrauschten Transmission von verschränk-
ten Zuständen wird ein zwei-Moden-gequetschter Zustand präpariert und dann
absichtlich durch das Aufprägen von Phasenrauschen degaussi�ziert. Die Distilla-
tion wurde umgesetzt durch Eight-Port-Homodynmessungen mit anschlieÿender
Nachbearbeitung der aufgenommenen Daten. Mithilfe dieses Aufbaus wurde zum
ersten Mal das komplette iterative Distillationsprotokoll für bis zu drei Iterations-
schritte durchgeführt. Die bearbeiteten Daten zeigen bei jedem Iterationsschritt
eine signi�kante Erhöhung der Verschränkung, der Reinheit und der Gauÿizität.
Im zweiten Teil dieser Arbeit werden Änderungen in der experimentellen Um-

setzung diskutiert, welche für die emulierte Distillation von gauÿschen Zuständen
notwendig sind, und erfolgreich mithilfe eines Testaufbaus demonstriert. Zentrale
Punkte sind hierbei zum einen die Realisierung von Stabilisationstechniken der
Quetschlicht-Quelle und des Eight-Port-Homodyndetektors, ohne dass ein helles
Lichtfeld mit dem Signalfeld propagiert. Zudem wird die Umsetzung der Eight-
Port-Homodyndetektion der gequetschten Zustände über einen weiten Frequenz-
bereich bis zu 100MHz bei einem gleichzeitig �achen Spektrum demonstriert.

SchlüsselworteSchlüsselworteSchlüsselworte: Verschränkungsdistillation, Emulation, Eight-Port-Homodyndetektion
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CHAPTER 1

Introduction

The existence of entanglement is one of the most fascinating topics in quantum
mechanics. Einstein named it 'spooky action at a distance' and saw in it a proof
that quantum mechanics is incomplete [1]. The name entanglement was coined by
Erwin Schrödinger [2] and means that the system shows correlations stronger then
classically possible. With the postulation of Bells inequality [3], a relation was
given to check this property in speci�c scenarios. Subsequent experimental tests
such as the seminal work of A.Aspect [4] have shown that quantum mechanics is
not incomplete but that the idea of local reality has to be abandoned. Nowadays,
entanglement is one of the most studied �elds in quantum mechanics. It has
application in various quantum information protocols such as quantum metrology
or quantum computation [5�12]. Realizations of entanglement on the basis of
discrete variables and continuous variables have been presented in various setups.
Entanglement can be used as an important resource, e.g. for quantum key

distribution (QKD) in quantum cryptography protocols. While also protocols
for QKD exist that do not rely on entanglement such as prepare-and-measure
schemes like [13, 14], many important QKD protocols require entangled quantum
states [8, 15�18]. The general idea is to enable secure communication between
two parties, traditionally named Alice and Bob, so they cannot be eavesdropped.
The important prerequisite, the secret key, needs to be securely distributed be-
tween the parties. The method of QKD provides the technique for such a secure
distribution. Distribution of entangled states is thus the �rst step towards such
entanglement based QKD protocols.
As the two parties in such a communication scenario are typically far away from
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each other, entanglement distribution over long distances needs to be realized.
This can be done airborne, e.g. using satellites [15, 19, 20] or via optical �bers
[21,22]. In both cases however, detrimental e�ects like optical loss due to scattering
and absorption, or decoherence e�ects like phase noise in optical �bers can occur.
Unfortunately, entangled states of lights are very susceptible to such e�ects as
they degrade or even fully destroy the nonclassical properties of the light. This
signi�cantly limits the distance on which entanglement can be distributed.
To counteract these e�ects and enable entanglement distribution even over lossy

or noisy channels, distillation protocols are proposed. These protocols are applied
after the entanglement is distributed and can be realized with local operations
and classical communication only between the distant parties.
The general idea of entanglement distillation is to restore parts of the original

entanglement by distilling a few strongly entangled states from a large amount
of weakly entangled states [23�32]. In a simple elementary two copy distillation
protocol, two copies of the input state are consumed and with some probability one
copy with improved properties is produced [27,28]. These elementary distillation
steps can be iterated to restore even stronger entangled states than possible with
a single distillation step [23, 24]. More concretely, this means that the already
distilled states serve as input states for an additional iteration of the distillation
protocol, resulting in a pyramid structure. An in�nite amount of iterations of the
distillation protocol is called asymptotic limit and would, in principle, result in
the recovery of a strongly entangled state.
However, such a concatenation soon reaches the limits of what can be exper-

imentally realized as each additional iteration doubles the amount of consumed
copies of the original state. Furthermore, for each distillation step the two in-
put states need to be available at the same time. As a consequence, this means
that all elementary two copy distillations of one iteration step have to succeed
simultaneously to provide the input states for the next iteration. Even if only
one distillation did not succeed, all other distillation results have to be discarded.
This signi�cantly decreases the success probability of the protocol and conse-
quently increases its time duration in such a way that a large amount of iterations
is typically ine�cient and unfeasible. Indeed, up to now, only two iteration steps
were experimentally demonstrated [33].
Quantum memories [34] have been proposed to overcome these problems. These

can be used to store the successful results of the elementary two copy distillations
and to release them when all states are available for the next iteration step.
Additionally, di�erent schemes for the realization of entanglement distillation,
relying on quantum memories that reduce the necessary experimental setup, were
proposed recently, e.g. [35, 36]. However, quantum memories pose their own
signi�cant challenges on experimental hardware and suitable quantum memories

2



are not realized up to date.

This work is dedicated to the experimental realization of a di�erent attempt to
overcome the ine�ciency of iterative distillation protocols. Based on theoretical
�ndings developed by Jaromír Fiurá²ek and Nicolas Cerf, a so-called emulated dis-
tillation protocol is realized. The core idea is to characterize all relevant properties
of the decohered states with an eight-port homodyne measurement and shift the
distillation protocol to the postprocessing of the acquired data [37,38]. This does
not only solve the problem of the enormous experimental e�ort, but also improves
the success rate of the distillation protocol.
The idea of emulation was originally proposed for noiseless ampli�cation [39�

41], another rather complex and experimentally demanding protocol. Indeed,
a successful experimental realization of the emulation of single-mode noiseless
ampli�cation has been reported in [42].
The emulated distillation protocol presented and realized in this thesis is based

on the iterative distillation protocol as described above. As the distillation takes
place in the postprocessing, the presented scheme allows us to create and measure
copies needed as input states for one iteration one after an other in time, without
the requirement to have all these states physically available at the same time.
Moreover, the protocol circumvents the need for storing quantum states in mem-
ories. Thus, the number of iteration steps that can be realized is solely limited by
the time duration of the measurement needed to require the necessary amount of
data. As well the emulation enables insights in the dynamics of iterative protocols
that are not accessible by a physical implementation as one can directly compare
and investigate the distillation e�ect of di�erent iteration steps.
Crucially, such an emulation is completely indistinguishable from a full physical

implementation with even ideal quantum memories to anyone outside Alice and
Bob's labs. The downside of the emulation technique is that, as the distilled states
are already detected, they are not physically available for further downstream
experiments. In the aforementioned QKD protocols, however, the states are even-
tually measured anyway, such that emulated distillation is especially interesting
for QKD experiments where subsequent distillation can improve the possible key
rate.

In this thesis we realized the emulated distillation protocol with two-mode-

squeezed states, a speci�c form of entangled states in the continuous variable (CV)
regime. Generally, two-mode-squeezed states are Gaussian states, a class of CV
states, that is well characterizable in terms of entanglement. However, e.g. phase
noise alters in such a way that they are not Gaussian anymore. We will refer
to these states as dephased two-mode-squeezed states. This distinction is impor-

3
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tant, as the so-called no-go theorem predicts, that the distillation of Gaussian
states with Gaussian methods is not possible [43�45]. Here, Gaussian operations
correspond to those operations which preserve the Gaussian character of a state.
Importantly, most operations that are usually performed in the laboratory are of
exactly this type.
The no-go theorem thus poses a signi�cant restriction to the possibility of dis-

tillation in the CV regime as it forces us to leave the Gaussian regime in order
to realize distillation. This restriction is therefore dividing the possible distilla-
tion protocols of CV states in two subgroups: Distillation of non-Gaussian states,
possible with Gaussian methods only, and distillation of Gaussian states which
requires a non-Gaussian operation to be included in the distillation process.
Since typical detrimental e�ects like phase noise degaussify the entangled state,

as stated before, there is a huge need for protocols of the �rst type. The main
part of the thesis is therefore dedicated to the experimental realization of emulated
distillation of phase di�used states. In accordance with the no-go theorem only
Gaussian methods are needed for this realization and the successful performance
of the emulated distillation is shown and investigated within this thesis.
The proposal of emulated iterative distillation and some of the experimental

results of this experiment are published in [46].

The second part of this thesis concerns optical losses, which are unavoidable
in experiments. This e�ect preserves the Gaussianity of an entangled state but
still decreases its entanglement. To counteract this problem, the distillation of
such states has been progressed in the last years. Protocols ranging from photon
subtraction to the above mentioned noiseless ampli�cation have been proposed
and experimentally realized, e.g. [30�32,39�41,47,48]. All these protocols include
a non-Gaussian operation, in most cases realized by including an avalanche photo
detector into the experimental setup. Such detectors are able to detect single
photons and can thus realize non-Gaussian operations like photon subtraction.
However, the implementation of single photon detectors requires special experi-
mental techniques as these devices are extremely sensitive to already small light
powers. Typical methods, generally used for state preparation and detection in
the presence of bright light �elds, are thus not possible for such a setup. The
second part of the thesis is therefore dedicated to investigate necessary changes
for the experimental setup of emulated distillation against optical losses. Di�erent
techniques which are already established in other �elds of research are combined to
provide a state preparation and detection scheme that is possible to be combined
with single photon detectors.

4



This thesis is structured as follows. Chapter 2 covers the theoretical basics that
are needed to understand the content of this thesis. Experimental techniques and
methods used for the realization of the experiments are presented in Chapter 3.
Speci�c experimental details are as well given in the respective chapters. The con-
cepts of general entanglement distillation and emulated entanglement distillation
are explained in Chapter 4. Chapter 5 presents the experimental realization of
the emulated distillation protocol performed on phase di�used states which in-
cludes a detailed description of the experimental setup as well as a discussion of
the results. In Chapter 6, changes to the previously presented experimental setup
are discussed which allow for distillation against optical loss. Based on this con-
siderations, we provide an experimental realization of a test setup for a stabilized
squeezed light measurement with an eight-port homodyne detector without the
need of a bright light �eld that co-propagates with the signal �eld. Chapter 7
contains the conclusion and outlook of this thesis.
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CHAPTER 2

Theoretical framework

Several properties of a light �eld that are experimentally detectable can only
be explained on the basis of a quantum mechanical description of the physical
system. In this chapter we recall the standard theoretical description of the light
�eld needed for typical quantum optics experiments. For this, the formalisms of
quantum mechanics demand us to specify three basic parts: the preparation, the
dynamics and the measurement of the light �eld. Specifying the preparation is
synonymous to determining the initial quantum mechanical state of the quantum
system. This can be thought of as the description of the properties of the light
�eld right after its generation within the laser. The preparation thus describes
the quantum mechanical source, that is e.g. the laser, itself.
Knowing the dynamics of the quantum state allows us to infer the properties

of the light �eld at later instances of time, e.g. if the light �eld traversed freely in
space or if the light �eld was changed by optical components such as, say, beam
splitting devices.
While the quantum state of the light �eld describes all its physical properties,

one does in general not access to the quantum state directly. This is why mea-
surements have to be performed. Depending on the type of the measurement,
this gives access to di�erent properties of the quantum state. Roughly speaking,
measurements provide the link to the abstract theoretical description of a light
�eld and allow us to specify the quantum state of the system.

The main contribution of this thesis, i.e. the experimental realization of emu-
lated entanglement distillation, essentially relies on quantum theory. As a con-



Chapter 2: Theoretical framework

sequence, it is essential to be familiar with the quantum mechanical description
of all experimental and theoretical constituents within this work to understand
the content of this thesis. The purpose of this chapter is therefore to set the the-
oretical basis for our discussions and results in the following chapters, in which
techniques and methods of (emulated) entanglement distillation are presented in
detail.

2.1 Quantum mechanics in a nutshell

In this section we brie�y review the abstract quantum mechanical formalism and
thereby give more precise meanings to the notions of preparation, dynamics and
measurement just introduced.
The abstract theoretical framework presented here applies to any quantum sys-

tem, not only light �elds. We provide the connection to the special case of light
�elds in the next section.

2.1.1 The preparation of a quantum system

The theory of quantum mechanics is centered around the concept of quantum
states, which encode all measurable quantities of a speci�c quantum system [49].
If we generate a light �eld in the laboratory, then what we do from a theoretical
perspective is to prepare a quantum system in a speci�c quantum state.
The space of all such states is mathematically described by a Hilbert space H,

which for the purposes of this thesis can be thought of as a complex vector space. It
should be noted that the exact mathematical de�nition of a Hilbert space is much
more involved than this, especially in the case of in�nite-dimensional quantum
systems. In this thesis however, we do not speci�cally use such de�nitions, but
rather provide an intuitive picture of the quantum mechanical framework needed
to understand the content and results of this thesis.
Interpreting the quantum space as a complex vector space means that quantum
states, i.e. the elements of the Hilbert space, are just complex vectors. We will
typically employ the Dirac notation and denote such states by the �ket� symbol,
i.e. we write for example |ψ〉 to denote a speci�c state of the quantum system.
The state of a quantum system is not necessarily completely speci�ed by a vector
|ψ〉 in Hilbert space, but can also be in a statistical mixture of two or more states
|ψi〉 ∈ H. This is mathematically phrased using the density operator formalism:
If we are given a probability distribution {Pi}, i.e. Pi ≥ 0 for all i and

∑
i Pi = 1,

where Pi denotes the probability with which the quantum system is in state |ψi〉,

8



2.1 Quantum mechanics in a nutshell

the density matrix ρ̂ of the quantum system is de�ned as [49]

ρ̂ =
∑
i

Pi|ψi〉〈ψi| . (2.1)

Here we employ the standard notation that |ψi〉〈ψi| = |ψi〉⊗ 〈ψi| where 〈ψi| is the
conjugate transpose of the vector |ψi〉. The quantity |ψi〉〈ψi| (and thus the density
matrix ρ̂) therefore corresponds to a (in general in�nite-dimensional) matrix. The
density matrix has always unit trace. To see this, note that tr[|ψi〉〈ψi|] = 1

irrespective of the vector |ψi〉 and therefore

tr[ρ̂] =
∑
i

Pi tr[|ψi〉〈ψi|] =
∑
i

Pi = 1 , (2.2)

since {Pi} is a probability distribution.
If Pi = 1 for some �xed i, all other probabilities must be zero. In this case

the density matrix is simply given as ρ̂ = |ψi〉〈ψi| which means that the state of
the quantum state is completely speci�ed by the vector |ψi〉. A quantum state is
called pure if the density matrix ρ̂ can be written in such a form, i.e. if it can be
written as ρ̂ = |ψi〉〈ψi| for some vector |ψi〉 ∈ H. A quantum state which is not
pure is called mixed.
Determining whether or not a quantum state is mixed is interesting as it allows

to infer whether an initially pure state was a�ected by detrimental e�ects. Such
e�ects will in general change the state from pure to mixed and thereby also change
the quantum properties of the initial state. There are several ways to decide
whether a quantum state is pure or mixed: The �rst is of course to employ the
de�nition above and check whether the state can be written as ρ̂ = |ψ〉〈ψ| for some
vector |ψ〉 ∈ H. This strategy however will generally require us to test an in�nite
number of possible vectors |ψ〉. Instead, the following two more feasible methods
are typically employed to quantify the mixedness of a quantum state: The �rst
method is to compute the so-called purity P of a quantum state ρ̂ de�ned via [49]

P = tr[ρ̂2] . (2.3)

This quantity can take values in [1/d , 1] with d being the dimension of the Hilbert
space H. It attains the maximal value 1 if and only if ρ̂ is a pure state and attains
the minimal value 1/d for the completely mixed state ρ̂.
The second method is to determine the von Neumann entropy S of a quantum

state ρ̂ de�ned via
S(ρ̂) = −tr[ρ̂ ln ρ̂] ,

which vanishes if and only if ρ̂ is pure.

9



Chapter 2: Theoretical framework

All these strategies to decide require us to have a description of the quantum
state on the basis of the density matrix ρ̂. Indeed the density matrix formalism
encompasses the most general quantum states possible in quantum theory. In
many situations however reconstructing the density matrix from measurement
outcomes is quite di�cult, e.g. if the density matrix is in�nite-dimensional this
can only be achieved to �nite accuracy. Fortunately, the most important quantum
states in this thesis, namely Gaussian quantum states, can be completely speci�ed
by a �nite so-called covariance matrix, although the corresponding density matrix
is in�nite-dimensional. We will introduce both, these states and the covariance
matrix, later in this chapter. The reason why we mention these states here is
that for such states the purity P from Eq. (2.3) can be expressed in simpler terms
without the density matrix ρ̂ as we present in Section 4.2.1.

2.1.2 The dynamics of a quantum system

The density matrix formalism from the previous section can be used to completely
specify the state of a quantum system immediately after its preparation. In typical
situations however the quantum system will change in time: For example, in a
quantum optical experiment a light �eld will traverse several optical components
such as beam splitting devices or optical ampli�ers. In this section we recall the
theoretical description of these dynamics of a quantum system.
The most general description of the dynamics of a quantum system is given by a

so-called quantum channel [49]. The intuition behind this concept is the following:
Since the state of a quantum system is speci�ed by a density matrix, the most
general dynamics is simply a mapping between density matrices. This just means
that any dynamics of a quantum system simply takes the density matrix ρ̂ of an
initial state of a quantum system and maps it to the density matrix ρ̂′ of the
�nal state of the quantum system. The mapping cannot be completely arbitrary
to achieve this task: Since it has to map between density matrices, it must for
example be trace-preserving since density matrices always have unit trace, c.f.
Section 2.1.1. Moreover, the mapping must be linear and completely positive �
both notions not so important for the content of this thesis and whose de�nition
can be found in [49].
A mapping which satis�es all these properties, i.e. it is trace-preserving, linear

and completely positive, is called a quantum channel. While we will detail two
examples of quantum channels which are important to describe the dynamics of
light �elds, namely phase shifts and beam splitting devices, in Section 2.2.7, let us
here provide the example of the following simple, well-known quantum channel:
Even in the case where the quantum system is isolated, for example a light �eld
propagating freely in space, the quantum state of that system will change with
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time. This free time evolution is governed by the Schrödinger equation

ρ̂(t) = ei~Ĥ/tρ̂e−i~Ĥ/t ,

where ρ̂ is the density matrix describing the initial state of the quantum system,
ρ̂(t) is the state after free evolution for time t and Ĥ is the so-called Hamiltonian

of the quantum system. One can show that this mapping between initial and �nal
quantum state satis�es all of the above three properties, which means that free
time evolution just corresponds to applying a speci�c quantum channel.

2.1.3 Measuring a quantum system

Consider a quantum mechanical system in state ρ̂. This can either be the state
right after preparing the quantum system or after the quantum system underwent
some dynamics. In order to determine the properties of this quantum state, we
need to employ measurements. For example, in a quantum optical experiment
these measurements are typically realized by speci�c photo detectors.
Theoretically, quantum mechanical measurements can be described by Hermi-

tian operators on the Hilbert space. Any such operator M̂ therefore satis�es
M̂ = M̂ † and has a spectral decomposition, which means that we can always
write [49]

M̂ =
∑
i

miM̂i (2.4)

where mi ∈ R are the eigenvalues and M̂i are the spectral projections of M̂ . The
eigenvaluesmi correspond to the possible measurement outcomes. The probability
pmi to obtain this outcome mi if the quantum system is in state ρ̂ is then given
by

pmi = tr[ρ̂M̂i]. (2.5)

The set {pmi}i of probabilities for each outcome mi is called a probability distri-

bution. Directly after the measurement, the post-measurement state ρ̂mi is given
as

ρ̂mi =
1

pmi
M̂iρ̂M̂i . (2.6)

Since this prescription is rather abstract, let us give some intuition how all
these quantities relate to experimental quantities: For this we consider a light
�eld generated in a laser, which traverses some optical components before being
detected by a photo detector. We already know that the initial generation of
the light �eld in the laser corresponds to a preparation, i.e. a speci�c density
matrix. We also know that free time evolution and the optical components induce
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a certain dynamics on this density matrix which is theoretically described by a
quantum channel. The density matrix ρ̂ appearing in Eq. (2.5) is the description
of the state immediately before the measurement happens, i.e. before the light
�eld is being detected. In contrast, the Hermitian operator M̂ (and therefore also
the spectral projections M̂i in Eq. (2.5)) corresponds to the abstract description of
the photo detector. Both descriptions together, that is the state of the light �eld
immediately before the measurement as well as the description of the measure-
ment device, then determine the outcome probabilities pmi of the measurement.

This is in principle everything we need for a quantum mechanical description:
Preparation, dynamics and measurement of a quantum system basically describe
all quantum mechanical protocols and experiments. The notions presented so far
are still very abstract but can be �lled with much more content for the quantum
system of a light �eld as we will see in Section 2.2. However, things can also
be fairly complicated when dealing with such systems: For example, measure-
ments then typically have a continuous spectrum of measurement outcomes mi.
The probability distribution {pmi} then corresponds to a list containing in�nitely
many entries, which is neither experimentally accessible nor a feasible descrip-
tion. Instead of trying to deal with these in�nitely many entries of the probability
distribution, one typically concentrates on certain characteristic properties of the
distribution. These properties are called statistical moments and allow us to qual-
itatively characterize the probability distribution without listing all its entries.
Since these statistical moments are important for the remainder of this thesis, we
dedicate the following section to their de�nition and properties.

Statistical moments

Consider a random variable M with probability distribution {pmi}i where pmi
denotes the probability that the random variable M outputs the value mi. The
statistical moment µn of order n ∈ N of M is de�ned as

µn =
∑
i

pmim
n
i . (2.7)

These moments characterize the �shape� of the probability distribution pmi . The
�rst moment µ1 is typically known as the expectation value, whereas the second
moment µ2 is related to what is known as the variance of the distribution. We
will provide the exact de�nitions below.
Note that the de�nition in Eq. (2.7) is purely classical; no quantum mechanical

notions are involved. However, the transition to quantum mechanics is simple:
The combination of quantum state ρ̂ and hermitian operator M̂ can be under-
stood as a random variable which also yields as an output the value mi, i.e.

12
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an eigenvalue of M̂ , with probability pmi . It is in this sense that we also refer
to the n-th statistical moment of the operator M̂ which also depends on the state ρ̂.

Let us now provide more details for the most important statistical moments:
the moments of order n = 1,...,4. The �rst statistical moment µ1 of M̂ is according
to Eq. (2.7) de�ned as

µ1 =
∑
i

pmimi =
∑
i

tr[ρ̂M̂i]mi = tr[ρ̂M̂ ] ≡ 〈M̂〉 , (2.8)

where we used Eq. (2.5) and the spectral decomposition Eq. (2.4) of M̂ . This
quantity 〈M̂〉 is called the expectation value (or mean value) of M̂ . The mean
value indicates around which value the probability distribution is centered.

The second statistical moment µ2 of an operator M̂ is given by

µ2 =
∑
i

pmim
2
i .

It is related to what is called the variance of M̂ which is de�ned as

Var(M̂) =
∑
i

pmi(mi − 〈M̂〉)2 .

The variance of M̂ therefore corresponds to a shifted version of µ2, where the
mean value 〈M̂〉 is subtracted from each measurement outcome mi. Conversely,
the second µ2 can be understood as the variance of an operator M̂ with mean
value 〈M̂〉 = 0. This construction where only the di�erence between outcome mi

and mean value 〈M̂〉 is accounted for is commonly referred to as the central sta-
tistical moments. Consequently, the variance corresponds to the central statistical
moment of order 2.
Intuitively, both the second moment µ2 as well as the variance Var(M̂) charac-

terize the �width� of a probability distributions and indicate how much the values
mi spread around the mean value 〈M̂〉. Hence, these notions can be used to quan-
tify our level of �uncertainty� about the random variable (in the classical case) or
the quantum state ρ̂ (in the quantum case): For example, if the variance Var(M̂)

of M̂ is zero, then we know that the measurement of the corresponding quantum
state ρ̂ always outputs the same measurement outcome mi = 〈M̂〉 determinis-
tically � there is no �uncertainty� about which measurement outcome will be
obtained next. It is this concept of uncertainty which is treated in the famous un-
certainty relations, which indeed are typically phrased using variances and which
we will discuss in Section 2.1.4. As a consequence the concept of variances is

13
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essential to understand the e�ect of some nonclassical operations on light �elds,
such as squeezing (see Section 2.2.4).
It is common to also use an equivalent de�nition of the variance obtained via

Var(M̂) =
∑
i

pmi(mi − 〈M̂〉)2

= 〈(M̂ − 〈M̂〉)2〉
= 〈M̂2 − M̂〈M̂〉 − M̂〈M̂〉+ 〈M̂〉〈M̂〉〉
= 〈M̂2〉 − 〈M̂〉〈M̂〉 − 〈M̂〉〈M̂〉+ 〈M̂〉〈M̂〉
= 〈M̂2〉 − 〈M̂〉2 .

Moreover, the standard deviation σM̂ of an operator M̂ is de�ned as the square
root of the variance Var(M̂), i.e.

σM̂ =

√
Var(M̂) .

Similarly to the second statistical moment µ2 and the more prominent variance,
the third statistical moment µ3 is less known than a quantity very much related
to it: the so-called skewness. The skewness Skew(M̂) of an operator M̂ is de�ned
as

Skew(M̂) =
〈(M̂ − 〈M̂〉)3〉

(σM̂)3
. (2.9)

It therefore corresponds to the third central moment 〈(M̂ − 〈M̂〉)3〉 of M̂ divided
by the third power of the standard deviation σM̂ . This normalization, i.e. the
division by the corresponding power of the standard deviation, is known as �stan-
dardization�. The skewness is hence the standardized statistical moment of order
3.
The skewness is a marker for the �lopsidedness� of the distribution. For a

symmetric distribution it is zero. Whereas a symmetric distribution is a su�cient
criterion for vanishing skewness, it is not necessary. A positive skewness indicates
a stronger �tail� on the right side of the distribution while a negative skewness
indicates a stronger �tail� on the left side.

The last statistical moment which is important for the content of this thesis is
the fourth standardized moment, the so-called kurtosis. The kurtosis is a measure
for the 'tailedness' of a distribution and is de�ned by

Kurt(M̂) =
〈(M̂ − 〈M̂〉)4〉

(σM̂)4
.

14



2.2 Quantum mechanics for light fields

Note again the similarity between this quantity and the statistical moment µ4.
Due to the fact that the kurtosis is a moment of fourth power, it can only have
positive values. A normal distribution has a kurtosis of exactly 3. To obtain a
measure which becomes zero for a normal distribution one typically de�nes the
so-called excess kurtosis ExKurt of an operator M̂ via

ExKurt(M̂) =
〈(M̂ − 〈M̂〉)4〉

(σM̂)4
− 3 . (2.10)

2.1.4 Uncertainty relation

In quantum mechanics it is not possible to measure two observables simultane-
ously and precisely if the operators do not commute. Mathematically this can be
expressed using the variances introduced above to quantify the �precision� of the
measurements. More concretely, one can show that for any two hermitian opera-
tors Â and B̂ (i.e. for any two measurements) the following inequality holds [50,51]:

Var(Â)Var(B̂) ≥ 1

4
|〈[Â, B̂]〉|2 , (2.11)

where [Â, B̂] = ÂB̂ − B̂Â is the commutator of Â and B̂. If the two operators do
not commute, i.e. [Â, B̂] 6= 0, then the product of the variances Var(Â) and Var(B̂)

is lower bounded by a positive quantity. This implies that for such operators, it
is impossible to �nd a state ρ̂ such that both variances vanish. There will hence
always be some amount of uncertainty in the two measurements. The inequality
Eq. (2.11) is therefore known as an uncertainty relation.
Uncertainty relations lie at the heart of quantum mechanics as they express

a fundamental di�erence between quantum and classical physics. We did how-
ever not introduce these relations for this reason, but rather as an easy-to-check
criterion for the �physicality� of a quantum state. What we mean by this is the
following: For any �xed two operators Â and B̂, Eq. (2.11) is satis�ed for all quan-
tum states. If we however obtain variances Var(Â) and Var(B̂) whose product is
below the threshold given in Eq. (2.11), then this implies that the corresponding
description of the state was unphysical. We will see in Section 2.3.2 how this
notion of �physicality� will help in witnessing a purely-quantum feature known as
entanglement.

2.2 Quantum mechanics for light �elds

In the previous section, we explained the quantum mechanical approach to de-
scribe general physical systems. Now, we focus on the quantum mechanical de-
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scription of a light �eld which belongs to a special class of physical systems, namely
so-called bosonic systems.

2.2.1 The Fock space

The physical system of a light �eld typically consists of a varying amount of
identical bosonic particles (the photons). The appropriate Hilbert space of a light
�eld, known as Fock space, was �rst introduced by V.A. Fock in 1932 and is
constructed as follows: Denote by H the Hilbert space of a single particle. The
elements of this space are the (pure) quantum states |ψ〉 that the single particle
can be prepared in.
The corresponding two particle Hilbert space is then given as H⊗H, where ⊗ is

the tensor product. In this thesis we only deal with bosonic particles which means
that the particles are indistinguishable from each other. A state of two bosonic
particles should thus be symmetric with respect to swapping of the particles, such
as e.g. the state |ψ〉 ⊗ |ψ〉, where |ψ〉 ∈ H. The two particle Hilbert space H⊗H
however also contains states which are not symmetric in this sense such as e.g.
|ψ1〉 ⊗ |ψ2〉 with |ψ1〉 6= |ψ2〉. In order to �get rid� of these dissymmetric states,
a symmetrization operator O is typically employed such that the corresponding
space O(H⊗H) only contains the symmetric two particle states. Employing the
exact same procedure also yields the bosonic three particle Hilbert space O(H⊗
H ⊗ H), the bosonic four particle Hilbert space O(H ⊗ H ⊗ H ⊗ H) and so on
and so forth. Since we do not know the exact number of particles emitted by the
laser, the Hilbert space F (H) of the complete light �eld is given by the direct sum
of all possible bosonic n-particle Hilbert spaces, where n ∈ N is the number of
particles, i.e.

F (H) =
∞⊕
n=0

O(H⊗n) = C⊕H⊕ (O(H⊗H))⊕ (O(H⊗H⊗H))⊕ . . . .

Note that both the single particle Hilbert space H as well as the one-dimensional
�zero particle� Hilbert space C only contain symmetric states and hence do not
need to be symmetrized by the operator O.
The space F (H) is called the Fock space and is in�nite-dimensional. This makes

a mathematically rigorous treatment typically rather involved. In this thesis we
will not deal with the mathematical intricacies of such a treatment and rather
provide a conceptual quantum mechanical picture which grants the intuition to
understand the content of this thesis.
A convenient basis of the Fock space is the so-called Fock basis (also called the

number state basis) denoted by {|n〉}∞n=0. The fact that {|n〉} is a basis of Fock
space simply means that any vector |φ〉 ∈ F (H) can be written as a superposition
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of the basis vectors, i.e. |φ〉 =
∑

n αn|n〉 with αn some complex coe�cients.
Physically, an element |n〉 of the Fock basis can be understood as the state of a
light �eld which contains exactly n identical particles.
Consecutive basis elements are linked by the so-called creation operator â† and

the annihilation operator â through [52]

â†|n〉 =
√
n+ 1|n+ 1〉 (for n ≥ 0) . (2.12)

and
â|n〉 =

√
n|n− 1〉 (for n ≥ 1) . (2.13)

In addition to that the annihilation operator â acts trivially on the so-called
vacuum state |0〉, i.e. â|0〉 = 0.
The e�ect of these two operators on the Fock states explains their name as they

create or annihilate a photon and thereby raise or lower the photon number in the
respective state. The annihilation and creation operators obey the commutation
relation

[â,â†] = 1 .

Note that â and â† are both not hermitian, hence they do not correspond to
measurements (see Section 2.1.3). It is however possible to construct hermitian
operators from â and â†. One possibility to consider the product n̂ = â†â, which
indeed is hermitian and satis�es

n̂|n〉 = n|n〉

for any Fock state |n〉. This means that the operator n̂ measures the number n of
photons in a Fock state |n〉, which is why this operator is typically referred to as
the number operator.
The so-called quadrature operators which we introduce in the next section cor-

respond to another possibility to obtain hermitian operators from â and â†.

2.2.2 The Wigner function

There are many equivalent ways to specify the state of a quantum mechanical sys-
tem, one being the density matrix formalism introduced in Section 2.1.1. Another
speci�cation of the quantum state is provided by the Wigner function, named
after E.P. Wigner. The de�nition of this function is based on so-called quadrature

operators X̂ and P̂ . These operators are de�ned as [7]

X̂ = â+ â† ,

P̂ = i(â† − â) .
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The operator X̂ is typically called the amplitude quadrature, whereas P̂ is called
the phase quadrature.
The quadrature operators X̂ and P̂ originate from the position and momentum

operators x̂ =
√

~
2ω

(â+ â†) and p̂ = i
√

~ω
2

(â† − â) which satisfy the commutation

relation [x̂,p̂] = i~ [53]. The quadrature operators are obtained by a normalization
of x̂ and p̂ to dimensionless variables. This normalization will result in a variance
of the vacuum noise of unity [7] which is used throughout this thesis. In the
literature there exists no general consensus about the normalization and one can
also �nd normalizations corresponding to a vacuum noise variance of 1/2 or 1/4.
In contrast to the annihilation and creation operator â and â† (see Eqs. (2.12)

and (2.13)), the quadrature operators are hermitian. Hence, they correspond
to speci�c measurements of the light �eld: The hermiticity of the quadrature
operators implies that they have a spectral decomposition, i.e. they can be written
as [7]

X̂ =
+∞∑

X=−∞

X|X〉〈X|

with eigenvalues X and eigenvectors |X〉 for the amplitude quadrature X̂, and
analogously for the phase quadrature P̂ (with eigenvalues P and eigenvectors
|P 〉).
The probability to obtain measurement outcome X if we measure X̂ on the

state ρ̂ is therefore given as

pX = tr[ρ̂|X〉〈X|] ≡ prd(X) (2.14)

and analogously we obtain the probability prd(P ) to obtain outcome X for the
measurement of the phase quadrature P̂ .
Later on, it will be convenient to also introduce the generic quadrature operator

X̂(ϑ) de�ned as

X̂(ϑ) = âe−iϑ + â†eiϑ = X̂ cosϑ+ P̂ sinϑ , (2.15)

where ϑ ∈ [0,2π]. Clearly, the generic quadrature operator X̂(ϑ) includes the
amplitude and phase quadrature X̂ and P̂ , respectively, for speci�c values of ϑ.
More concretely, we have X̂(0) = X̂ and X̂(π/2) = P̂ .

The Wigner function W (X,P ) of a quantum system in state ρ̂ is then de�ned
as

W (X,P ) =
1

4π

∫ ∞
−∞

dxeiPx/2
〈
X − x

2

∣∣∣ ρ̂ ∣∣∣X +
x

2

〉
. (2.16)

Just as the density matrix ρ̂, this function contains all information about the state
of the quantum system. An advantage of this description is that it allows us to
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visualize the quantum state: Consider the two-dimensional plane (X,P ) spanned
by the eigenvalues of the quadrature operators X̂ and P̂ . This plane is also referred
to as the phase space. By construction, the Wigner functionW (X,P ) is just a real-
valued function on this plane. The quantum state corresponding to the Wigner
function W (X,P ) can therefore be visualized by a three-dimensional plot � in
contrast to the rather unpractical density matrix ρ, which is in�nite-dimensional.
We will provide such visualizations of some prominent quantum states, which are
important for this thesis, in the Section 2.2.4.
The Wigner function W (X,P ) of a quantum system is normalized, i.e. [54]∫ ∫

W (X,P )dXdP = 1 .

Moreover, it can be used to directly compute the probability distributions prd(X)

and prd(P ) of the quadrature measurements of the light �eld via

prd(X) =

∫ ∞
−∞

W (X,P )dP , (2.17)

prd(P ) =

∫ ∞
−∞

W (X,P )dX .

The Wigner function provides as well a handy tool for calculations such as the
overlap formula [54]

tr[Â1Â2] = 2π

∫ ∫
W1(X,P )W2(X,P )dXdP

where the Wigner functions W1 and W2 are given in form of Eq. (2.16) but with
the operators Â1 and Â2 replacing the density matrix ρ. This equation can be
used e.g. to calculate the purity P of the state, Eq. (2.3), by the Wigner function
via

P = tr[ρ̂2] = 2π

∫ ∫
W (X,P )2dXdP , (2.18)

or for a representation of the mean value µ1, Eq. (2.8), given by

µ1 = tr[ρ̂Â] = 2π

∫ ∫
W (X,P )WA(X,P )dXdP . (2.19)

2.2.3 Covariance matrix

Another useful representation of a quantum state is given by the covariance matrix.
Although it does for most states not capture all its properties (in contrast to the
density matrix or the Wigner function), the covariance matrix is handy to employ
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the �physicality� criterion on the basis of the uncertainty relation as we explain
in this section. Moreover, for a special class of states, the Gaussian states (see
Section 2.2.4), the speci�cation of the covariance matrix is su�cient to describe
the state completely.
The covariance matrix is based on the de�nition of the so-called covariance,

which is a correlation measure for two random variables (which follow some joint
probability distribution): For two operators Â and B̂, the covariance Cov(Â,B̂)

is de�ned as

Cov(Â,B̂) :=
1

2

(
〈ÂB̂〉+ 〈B̂Â〉

)
− 〈Â〉〈B̂〉 .

From the de�nition it is clear that the covariance is symmetric in its arguments.
Moreover, if Â = B̂, the covariance of Â and B̂ simply reduces to the variance, i.e.
Cov(Â,B̂) = Var(Â) = Var(B̂). Based on this de�nition the covariance matrix γ
for the two operators Â and B̂ is de�ned as

γ =

(
Var(Â) Cov(Â,B̂)

Cov(Â,B̂) Var(B̂)

)
. (2.20)

The covariance matrix is real (γ = γ∗), symmetric (γi,j = γj,i) and positive
semi-de�nite (γ ≥ 0). The inequality γ ≥ 0 means that all eigenvalues of the
matrix γ must be non-negative, i.e. min{eig(γ)} ≥ 0.

The uncertainty relation from Section 2.1.4 takes a very speci�c form if the
operators Â and B̂ are chosen to be the amplitude quadrature X̂ and the phase
quadrature P̂ , respectively: Since [X̂,P̂ ] = 2i, the uncertainty relation reads [52]

Var(X̂)Var(P̂ ) ≥ 1

4
|〈[X̂,P̂ ]〉|2 = 1 . (2.21)

This uncertainty relation can be rewritten with the help of the covariance matrix.
Indeed, de�ning

J =

(
0 1

−1 0

)
one can show that the uncertainty relation in Eq. (2.21) is equivalent to the in-
equality

γ + iJ ≥ 0 . (2.22)

We will use this inequality to distinguish between so-called entangled and separa-
ble quantum states (see Section 2.3.2).

More generally, one can formulate such uncertainty relations for any two or-
thogonal quadrature operators: If X̂(ϑ) denotes the generic quadrature operator
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2.2 Quantum mechanics for light fields

from Eq. (2.15), we can �rst compute

[X̂(ϑ),X̂(ϑ+
π

2
)] = [X̂,P̂ ] = 2i

to �nd the uncertainty relation

Var(X̂(ϑ))Var(X̂(ϑ+
π

2
)) ≥ 1 (2.23)

in complete analogy to Eq. (2.21).

2.2.4 Gaussian quantum states

Let us now introduce a special class of quantum states, called Gaussian states,
which includes e.g. the vacuum state, coherent states and thermal states and all of
them play an essential role for the remainder of this thesis. The de�ning property
of a Gaussian state is that its Wigner function corresponds to a Gaussian function.
More concretely, a Gaussian function is a function f : R→ R of the form

f(x) =
1√

2πV
exp

(
−1

2

(x− x̄)2

V

)
, (2.24)

where x̄ ∈ R and V ∈ R. One can show that x̄ corresponds to the mean value
of the function f , whereas V is the variance of f . Gaussian distributions as in
Eq. (2.24) are hence completely described by the �rst and the second moment.

The Wigner function of a Gaussian state is then given by [7]

W (xxx) =
1

2π
√

detγ
exp

{
−1

2
(xxx− x̄̄x̄x)γ−1(xxx− x̄̄x̄x)T

}
, (2.25)

where γ is the covariance matrix from Eq. (2.20) and where we introduce the
following notation: We call

xxx = (X̂, P̂ )T (2.26)

the state vector and
x̄̄x̄x = (〈X̂〉, 〈P̂ 〉)T

the displacement vector. The fact that the Wigner function of a Gaussian state
is Gaussian implies that such states are completely speci�ed by the �rst two
moments. Let us now present some important classes of Gaussian states which
were frequently used in this thesis.
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Vacuum state

The vacuum state is a state that contains no photons. Although the expectation
value is zero for any generic quadrature (see Eq. (2.15)) [7]

〈0|X̂(ϑ)|0〉 = 0 , x̄̄x̄x =

(
0

0

)
, (2.27)

the variance is non-zero

Var(X̂(ϑ)) = 1 , γ =

(
1 0

0 1

)
. (2.28)

The variance is the same in all quadratures and equal to 1. Hence, the vacuum
state minimizes the uncertainty relation in Eq. (2.21). Intuitively, one may think
that the vacuum state therefore possesses the smallest amount of noise possible,
which even exists without the presence of photons. However, we will see shortly
that it is possible to go below this amount of noise, also known as �shot noise�, at
least in one quadrature as long as the noise in the orthogonal quadrature increases
as required by the uncertainty relation Eq. (2.21).
The Wigner function W0(X,P ) of a vacuum state is given by [54]

W0(X,P ) =
1

2π
exp

(
−X

2

2
− P 2

2

)
(2.29)

and a visualization for the Wigner function of a vacuum state is shown in �gure
2.1.
It is common to quantify the amount of noise of all other states relative to the

noise of the vacuum state. The variance is then written in units of so-called decibel
via

VardB(X) = 10 log10

(
VX
Vvac

)
.

The vacuum variance thus corresponds to 0 dB, states with a higher variance yield
positive dB values while states with smaller variances are given by negative values.

Thermal state

A thermal state with average photon number n̄ ∈ R is de�ned as a state with
density matrix [55]

ρ̂th(n̄) =
∞∑
n=0

n̄n

(n̄+ 1)n+1
|n〉〈n| .
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(b) thermal state

Figure 2.1: Wigner representation of a vacuum state (a) and a thermal state (b). The

probability distributions of the amplitude quadrature X̂ and of the phase

quadrature P̂ are given by the black graphs. (a) The vacuum state yields

a Gaussian distribution with a variance of 1 for both quadratures. (b)

The probability distributions of the thermal state have equal but larger

variances than the probability distributions of a vacuum state. For com-

parison the probability distributions of a vacuum state are marked by the

red curves.

The Wigner function of such a state can be shown to be given by

Wth(X,P ) =
1

2π(2n̄+ 1)
exp

(
− X2

2(2n̄+ 1)
− P 2

2(2n̄+ 1)

)
,

as depicted in Figure 2.1. Hence, any thermal state is Gaussian and its �rst and
second moment are given by [7]

x̄̄x̄x =

(
0

0

)
, γ =

(
2n̄+ 1 0

0 2n̄+ 1

)
. (2.30)

From this it is clear that the variances in both amplitude and phase quadrature
are the same, but also larger than 1 if n̄ 6= 0. A thermal state with n̄ = 0

simply corresponds to the vacuum state |0〉 in Section 2.2.4. Thermal states
do not minimize the uncertainty relation Eq. (2.21). The shape of the Wigner
function looks very similar to that of a vacuum state, but is, roughly speaking,
symmetrically broadened with the average number n̄ of photons.
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Coherent state

Coherent states are another group of Gaussian states and are typically used to
describe the light prepared by a laser. These states are therefore essential for the
content of this thesis.
A state |α〉 is called a coherent state [56] if it is an eigenstate of the annihilation

operator â, i.e.
â|α〉 = α|α〉 , α ∈ C .

Any coherent state can be created by applying the so-called displacement operator
D̂(α) de�ned by

D̂(α) := exp(αâ† − α∗â) (2.31)

on a vacuum state |0〉, i.e. |α〉 = D̂(α)|0〉. The number α is called the complex
amplitude of the corresponding coherent state |α〉 and can be expressed as α =

(Xα + iPα)/2 with Xα = 〈α|X̂|α〉 and Pα = 〈α|P̂ |α〉.
The displacement vector and covariance matrix of the coherent states are given
by [7]

x̄̄x̄x =

(
Xα

Pα

)
, γ =

(
1 0

0 1

)
. (2.32)

The mean value of the numbers of photons in a coherent state is given by

〈α|n̂|α〉 = 〈α|â†â|α〉 = α∗α = |α|2 .

The Wigner function of a coherent state |α〉 is again Gaussian as it is given
by [54]

Wα(X,P ) =
1

2π
exp

(
−(X −Xα)2

2
− (P − Pα)2

2

)
, (2.33)

which can be seen as a displacement of the vacuum Wigner function by |α|. The
Wigner representation of a coherent state is visualized in Fig. 2.2.

Squeezed state

All Gaussian states presented so far possess the same variance in all quadratures.
This is however not a necessarily the case. So-called squeezed states can have
di�erent variances in orthogonal quadratures. Moreover, for certain quadratures
X̂(ϑ) the variance Var(X̂(ϑ)) can even be below the shot noise value of 1. The
variance in the orthogonal quadrature X̂(ϑ + π) is then necessarily increased so
that the uncertainty relation Eq. (2.23) is still satis�ed. Squeezed states have
a Gaussian Wigner function, however the variance of the marginal distributions
depends on the considered quadrature. These properties also explain the name of
these states: The Wigner function appears to be squeezed when compared to the
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(b) Squeezed state

Figure 2.2: Wigner representation of a coherent state (a) and a squeezed state (b).

The probability distributions of the amplitude quadrature X̂ and of the

phase quadrature P̂ are given by the black graphs. (a): The Wigner rep-

resentation of a coherent state with x̄̄x̄x = (2,2)T . The variances of the

probability distributions are identical to those of the vacuum state (red

graphs). (b): The Wigner representation of a phase squeezed vacuum state

with Vsq = 0.4. The probability distribution of the phase quadrature has

smaller variance in comparison to the probability distribution of a vacuum

state. As well is the probability distribution of the amplitude quadrature

broadened in comparison to those of a vacuum state.

symmetric Wigner function of, say, a vacuum state, as is shown in �gure 2.2.

Mathematically, a squeezed state is de�ned via the so-called squeezing operator

[55]

Ŝ(ζ) = exp
(1

2
(ζâ†2 − ζ∗â2)

)
. (2.34)

Acting with this operator on a vacuum state |0〉, generates so-called squeezed vac-
uum Ŝ(ζ)|0〉. Similarly, the generation of a squeezed coherent state or a squeezed
thermal state is possible. The parameter ζ in the squeezing operator is a complex
number and can therefore always be written as

ζ = re−iφ , r ∈ R+ . (2.35)

Here, r is called the squeezing parameter which determines the �strength� of the
squeezing and φ is the angle that de�nes which quadrature is squeezed. For φ = 0

we get a state with reduced variance in the amplitude quadrature, a so-called
amplitude squeezed state. The phase quadrature, whose variance is larger than
the shot noise limit of 1, is then said to be anti-squeezed. Analogously, choosing
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φ = π/2 results in a phase squeezed state. In the following we denote the variance
of the squeezed quadrature by Vsq and the variance of the anti-squeezed quadrature
by Vanti.
The �rst two moments for an amplitude squeezed vacuum state are given by

x̄̄x̄x =

(
0

0

)
, γ =

(
e−2r 0

0 e2r

)
=

(
Vsq 0

0 Vanti

)
. (2.36)

The Wigner function of this squeezed state is then given by

Wr(X,P ) =
1

2π
√
VsqVanti

exp

(
− X2

2Vsq

− P 2

2Vanti

)
. (2.37)

2.2.5 The Q-function

Let us introduce another phase space representation of quantum states, the so-
called Q-function. This phase space representation is important since it corre-
sponds to what is typically directly measured in the laboratory by a so-called
eight-port homodyne detector (see Section 3.2.3). We did not introduce this rep-
resentation directly after the other representations, i.e. the density matrix formal-
ism (see Section 2.1.1), the Wigner function (see Section 2.2.2), and the covariance
matrix (see Section 2.2.3), because the de�nition of the Q-function requires the
notion of vacuum and coherent states which we just introduced in the previous
section.
Given a quantum state with Wigner function W (X,P ), the Q-function Q(X,P )

is de�ned via the convolution of the Wigner function W (X,P ) with the vacuum
distribution W0(X,P ) from Eq. (2.29) [54], i.e.

Q(X,P ) =

∫ ∫
W (X ′,P ′)W0(X −X ′,P − P ′)dX ′dP ′

=
1

2π

∫ ∫
W (X ′,P ′) exp

(
−(X −X ′)2

2
− (P − P ′)2

2

)
dX ′dP ′ .

By comparison with the Wigner function Wα(X,P ) of a coherent state |α〉 (see
Eq. (2.33)), the Q-function of a state with density matrix ρ̂ can be rewritten as

Q(X,P ) =

∫ ∫
W (X ′,P ′)Wα(X ′,P ′)dX ′dP ′

=
1

2π
tr[ρ̂|α〉〈α|]

=
1

2π
〈α|ρ̂|α〉 .
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Here we employed the overlap formula Eq. (2.19) in the second step and denote
as usual with X and P the real and imaginary part of α, respectively. Roughly
speaking, the Q-function therefore corresponds to a �projection� of the state ρ̂
onto the coherent state |α〉.

2.2.6 Extension from single-mode to multi-mode states

All of the notions presented so far apply for the case where we consider only a
single mode, i.e. a single bosonic system. However, consider the situation where
several light �elds (e.g. with di�erent intensity and/or frequency) are superposed
on a beam splitter. Our current formulation is only capable of describing one of
these light �elds. Fortunately, the extension of our current description to multi-
mode �elds is straightforward: As usual for quantum mechanics, the Hilbert space
of two bosonic systems is given by the tensor product of the individual Hilbert
spaces of the single bosonic systems. This means that the state space of the two
light �elds is simply given by F (H)⊗ F (H).
In the following we will denote di�erent physical systems by either capital letters

such as A, B, ..., or by natural numbers.
Quantum states of a two mode �eld with modes A and B are described by

density matrices on the space F (H)⊗ F (H). The covariance matrix γ of the two
mode �eld is then simply given by

γ =


Var(X̂A) Cov(X̂A,P̂A) Cov(X̂A,X̂B) Cov(X̂A,P̂B)

Cov(X̂A,P̂A) Var(P̂A) Cov(P̂A,X̂B) Cov(P̂A,P̂B)

Cov(X̂A,X̂B) Cov(P̂A,X̂B) Var(X̂B) Cov(X̂B,P̂B)

Cov(X̂A,P̂B) Cov(P̂A,P̂B) Cov(X̂B,P̂B) Var(P̂B)

 , (2.38)

which is the straightforward extension of the covariance matrix for one mode as
given in Eq. (2.20). Indeed, the 2× 2 matrices in the upper left and bottom right
directly correspond to the single mode covariance matrices of mode A and B,
respectively.
We already mentioned that the covariance quanti�es correlations between two

random variables like for example the measurements of amplitude and phase
quadrature on a single mode. For multi-mode systems the covariance matrix also
captures correlations between quadrature measurements of di�erent modes via
the 2 × 2 matrices in the upper right and bottom left of γ. For example, the
quantity Cov(X̂A,P̂B) quanti�es the correlations between an X̂ measurement on
mode A and a P̂ measurement on mode B.

By construction, measurements on di�erent modes commute with one another,
i.e. for example [X̂A,P̂B] = 0. Employing the state vector notation from Eq. (2.26)
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this can be more generally expressed via [7]

[xxxi,xxxj] = 2iΩij , i,j = 1,...,2N , (2.39)

where N is the total number of modes such that e.g. xxx1 = X̂A, xxx2 = P̂A and so on
and so forth. The quantity Ω in Eq. (2.39) is the so-called symplectic form and is
de�ned via [7]

Ω =
N⊕
i=1

J , J =

(
0 1

−1 0

)
.

Using this notation the extension of the uncertainty relation from Eq. (2.22) for
a single mode to N modes is given by [7]

γ + iΩ ≥ 0 . (2.40)

2.2.7 Gaussian channels

We have seen that several important states, which are typically prepared in a
quantum optics experiment, belong to the class of Gaussian states. As discussed
in Section 2.1.2, such states are typically a�ected by optical components before
being detected. We also argued in Section 2.1.2 why such components are most
generally modeled by so-called quantum channels. Here, we consider a speci�c
subclass of such channels. A channel in this subclass has the de�ning property
that it always outputs a Gaussian state if the input state was Gaussian as well.
Such a channel therefore preserves the Gaussianity of the quantum state and
is hence called a Gaussian channel [7]. A speci�c type of Gaussian channels
which are of particular importance are the so-called Gaussian unitaries. These
are Gaussian channels which transform a density matrix ρ̂ unitarily, i.e. the state
after the channel is given as ρ̂′ = Uρ̂U † for some unitary U .
One can show that a Gaussian unitary acts on the level of covariance matri-

ces as a so-called symplectic transformation. A symplectic transformation S is
a transformation that leaves the commutation relation Eq. (2.39) invariant, i.e.
SΩST = Ω. A Gaussian unitary then transforms a Gaussian state, described by
the displacement vector x̄̄x̄x and the covariance matrix γ, into a Gaussian state with
displacement vector

x̄̄x̄x′ = Sx̄̄x̄x+ ddd

and covariance matrix
γ′ = SγST .

Here, ddd is a vector of length 2N just as the displacement vector x̄̄x̄x.
We have already seen two operations that correspond to Gaussian unitaries,

namely the displacement operator D̂ from Eq. (2.31) and the squeezing operator
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Ŝ from Eq. (2.34). For the displacement operator D̂, for example, we �nd the
following quantities S and d: We know from Section 2.2.4 that the displacement
operator can be used to create a coherent state |α〉 from a vacuum state |0〉, i.e.
|α〉 = D̂(α)|0〉, therefore it transforms Gaussian states into Gaussian states. By
comparing the displacement vector x̄̄x̄x from Eq. (2.27) and the covariance matrix γ
from Eq. (2.28) for the vacuum state |0〉 with the corresponding quantities from
Eq. (2.32) for a coherent state |α〉 we obtain

ddd =

(
Xα

Pα

)
, S =

(
1 0

0 1

)
.

We will exemplify other important Gaussian unitaries together with the cor-
responding symplectic transformation S in the following. Before coming to that
however, let us quickly state another relevant property of symplectic transforma-
tions.

According to Williamson's theorem [57] there exists, for every covariance ma-
trix γ, a speci�c symplectic transformation Sγ which diagonalizes the covariance
matrix, i.e.

SγγS
T
γ =

N⊕
i=1

si12 , (2.41)

where 12 denotes the 2x2 identity matrix and si are the so-called symplectic eigen-
values of γ. The diagonalized matrix SγγSTγ is called the Williamson form of the
covariance matrix γ [7].
As symplectic transformations transform between covariance matrices, the

Williamson form Eq. (2.41) is also a covariance matrix. Moreover, if we com-
pare its form with Eq. (2.30), we see that SγγSTγ corresponds to the covariance
matrix of a multi mode system where each system is in a thermal state with mean
photon number n̄ = si−1

2
. This observation leads to the following physical inter-

pretation of Williamson's theorem: Think of a light �eld in an actual quantum
optical experiment. Suppose the Gaussian state of the light �eld at some instance
of time is described by the covariance matrix γ in Eq. (2.41). Then Sγ can be
interpreted as the collection of all e�ects that acted on the light �eld in the past.
The intuition is that the physical system of the light �eld was initially in a ther-
mal state described by the Williamson form of γ, before it was manipulated by
the optical devices in the laboratory. For example, the laser can be thought of as
a device which applied some symplectic transformation on this thermal state to
change it into a coherent state. The squeezing device then applied some symplectic
transformation and changed the coherent state into a squeezed state. Similarly,
all optical components can be thought of as symplectic transformations on the
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state of the light �eld and all these transformations are jointly described by the
single symplectic transformation Sγ.
The fact that SγγSTγ is again a covariance matrix also implies that the uncer-

tainty relation in Eq. (2.40) applies. More concretely, consider the symplectic
eigenvalues si of γ, which can be obtained by computing the eigenvalues of the
matrix iΩγ, i.e.

{si}Ni=1 = |eig{iΩγ}| .
The uncertainty relation in Eq. (2.40) can then be written as

min{si} ≥ 1 .

This will be our �nal form of the uncertainty relation, which we employ later in
this thesis. Due to its simple structure (we only need to compute the eigenvalues
of a �nite-dimensional matrix and check whether these eigenvalues are greater
than or equal to 1), it is not di�cult to use this uncertainty relation to check for
�physicality� of a quantum state.
Let us now provide some important examples of Gaussian channels.

Phase shift

The phase is a typical property of a wave and is only reasonably de�ned if a
reference is provided. A phase shift is a rotation of the state in phase space by
the angle θ with respect to this reference system and can be described by the
symplectic transformation [7]

d =

(
0

0

)
, Srot(θ) =

(
cos(θ) sin(θ)

− sin(θ) cos(θ)

)
. (2.42)

The rotation changes as well the Wigner function and causes a mixture between
the quadratures, resulting in

Wrot(X,P,θ) = W (X cos θ + P sin θ,−X sin θ + P cos θ) = W (Xθ, Pθ) . (2.43)

The two expressions for Wrot can here seen as di�erent interpretations of the rota-
tion. The �rst term express the rotated Wigner function in the original quadrature
axes X and P , revealing how the terms get mixed. The second expression gives
the Wigner function in terms of two rotated axes, namely Xθ and Pθ. Regarding
the rotated axes, the rotated Wigner function Wrot is given in the same form as
the initial Wigner function W . For example the Wigner function of a rotated
squeezed state, i.e. Eq. (2.37), is given by

Wrot,r(Xθ,Pθ) =
1

2π
√
VsqVanti

exp

(
− X2

θ

2Vsq

− P 2
θ

2Vanti

)
.
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A phase shift is a Gaussian operation, however we will see in Section 2.4.2 that
so called phase noise, which is a statistical average of phase shifts applied to the
state, can degaussify the state.

Beam splitter

The beam splitter is one of the most important passive components in quantum
optics. On this device, two incident beams interfere and create two output beams.
The splitting is de�ned by the power transmissivity t ∈ [0,1] of the beam splitter.
However, for a shorter notation, we will write the beam splitter with the amplitude
transmissivity τ =

√
t. For a lossless beam splitter, the amplitude re�ectivity is

then given by % =
√

1− t and τ and % su�ce

%2 + τ 2 = 1 .

The beam splitter is described by the symplectic transformation

SBS(t) :=


τ 0 −% 0

0 τ 0 −%
% 0 τ 0

0 % 0 τ

 . (2.44)

It is important to be aware of the fact, that it is not su�cient to regard only
one input port of the beam splitter. A beam splitter is always a four-port object
consisting two inputs and two outputs. Even if the signal is just split with a beam
splitter, a vacuum mode couples in the other input port and generates a mixed
state at the output ports.
The state vector of two arbitrary input states ξin,A and ξin,B is therefore trans-
formed according to

Xout,A

Pout,A

Xout,B

Pout,B

 = SBS


Xin,A

Pin,A

Xin,B

Pin,B

 =


τXin,A − %Xin,B

τPin,A − %Pin,B

%Xin,A + τXin,B

%Pin,A + τPin,B

 .

The Wigner function changes in the same way, given by

Wout(Xin,1, Pin,1,Xin,2,Pin,2) = Win(Xout,1, Pout,1,Xout,2,Pout,2) .

31



Chapter 2: Theoretical framework

2.3 Entangled states of light

The existence of entanglement is one of the most important features of quantum
mechanics and is a central part of many quantum information protocols [5�12].
Generally, the state of a two-mode system is said to be separable, if the density
matrix ρ̂AB can be written as convex combination of product states, [58]

ρ̂AB =
∑
i

piρ̂
A
i ⊗ ρ̂Bi . (2.45)

A system, which cannot be described by Eq. (2.45) is called entangled.
In this thesis, the terms �entangled states� or �entanglement� will always refer to
so-called two-mode-squeezed vacuum states. The name originates from the gener-
ation process, where two squeezed vacuum states are overlapped on a balanced
beam splitter [11, 12]. Due to the fact, that both the input states as well as the
beam splitter operation is Gaussian, it is clear that a two-mode-squeezed state
is as well a Gaussian state. Therefore, the entanglement criteria, which we will
present in the following, are formulated for the covariance matrix of the two-mode
state. Applying the same criteria on states which are not Gaussian will not prop-
erly clarify whether the state is entangled or not. In such cases entanglement can
sometimes only be present in the higher order moments.
In this section, we will �rst present a method to prepare two-mode entangled states
and discuss their representation via the covariance matrix. Then an entanglement
criterion is presented which can witness the presence of Gaussian entanglement.

2.3.1 Preparation of two-mode-squeezed states

Two-mode-squeezed states are generated by superimposing two squeezed light
�elds, denoted by A and B, on a beam splitter. The state vector xxx, Eq. (2.26), of
the input two-mode state reads

xxx = (X̂A,in,P̂A,in,X̂B,in,P̂B,in)T .

The covariance matrix of the input state is given by

γ =

(
γA 0

0 γB

)
=


e2r 0 0 0

0 e−2r 0 0

0 0 e−2s 0

0 0 0 e2s

 ,

where mode A is phase squeezed with the squeezing parameter r and mode B is
amplitude squeezed with the squeezing parameter s. Interfering these modes on a
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Figure 2.3: Generation of two-mode-squeezed states. The blue shaded ellipses symbol-

ize the squeezed states by their variances. The output ports of the beam

splitter present the two-mode-squeezed state and are entangled. Regarded

separately, each mode of the entangled state is in a thermal state, indi-

cated by the blue shaded circle. However, the modes show correlations and

anti-correlations, indicated with the white plus and cross [60].

balanced beam splitter, i.e. a beam splitter with t = 0.5 (c.f. Eq. (2.44)), leads to

x′x′x′ = SBS(0.5 )ξξξ =


1√
2
(X̂A,in − X̂B,in)

1√
2
(P̂A,in − P̂B,in)

1√
2
(X̂A,in + X̂B,in)

1√
2
(P̂A,in + P̂B,in)


and the covariance matrix changes according to

γ′ = γAB = SBS(0.5 ) γ′ SBS(0.5 )T

=


1
2
(e2r + e−2s) 0 1

2
(e2r − e−2s) 0

0 1
2
(e−2r + e2s) 0 1

2
(e−2r − e2s)

1
2
(e2r − e−2s) 0 1

2
(e2r + e−2s) 0

0 1
2
(e−2r − e2s) 0 1

2
(e−2r + e2s)

 . (2.46)

We have chosen orthogonal squeezed quadratures and a balanced beam splitter
for simplicity, but any squeezed input states (as long as they are not orientated
along the exact same direction) and any value of t for the beam splitter will result
in a two-mode-squeezed state. It is also possible to set one squeezing parameter to
zero and interfere a squeezed state with vacuum, thereby creating so-called v-class
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entanglement [59]. The generation of two-mode-squeezed states is depicted in
Fig. 2.3.

If the squeezing parameters r and s of the input states are chosen to be the
same, the covariance matrix simpli�es to

γAB =


a 0 b 0

0 a 0 −b
b 0 a 0

0 −b 0 a

 , (2.47)

with a = cosh(2r) and b = sinh(2r). Taking only into account the covariance
matrix of one mode, each state by itself appears to be in a thermal state, see
Eq. (2.30), with a mean photon number n̄ of

n̄ =
cosh(2r)− 1

2
.

Entanglement can be seen in the covariance matrix γAB from the correlation terms
between the modes: if b > 0 then there exist correlations between the amplitude
quadratures and anti-correlations between the phase quadratures of the modes A
and B and we know that A and B are entangled.
However, in typical experiments two-mode-squeezed states do not have this ideal-
ized shape. Asymmetries of the squeezing parameters require us to work with the
lengthy expression from Eq. (2.46) instead of the simple expression with the pa-
rameters a and b from Eq. (2.47). Also, if the squeezing ellipses are not orientated
along the amplitude and phase quadrature axis in phase space, the covariance
terms Cov(X̂iP̂i) become non-zero as the probability distributions of amplitude
and phase quadrature are partly correlated or anti-correlated.

2.3.2 Entanglement witnesses

An entanglement witness is a certain computable value which can be used to
certify if a state is entangled. This means that if the value is, say, below a certain
threshold, then we can be sure that the corresponding state is entangled.
There exist various di�erent entanglement witnesses, each suitable for di�erent

situations. Here, we present two such witnesses, namely one based on the so-called
PPT criterion and one based on the squeezing variance Vsq.

PPT criterion

For bipartite systems, the PPT criterion is a su�cient criterion to detect entan-
glement; for Gaussian states it is even necessary [61]. The term �PPT � is an
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2.3 Entangled states of light

acronym for positive partial transpose. Originally, the criterion was formulated by
A. Peres and P. Horodecki [62], [63] for density matrices and uses the separability
condition of Eq. (2.45). The idea behind the criterion is the following: If a state
is separable, then the density matrix of the partially transposed state, given by

ρ̂TAAB =
∑
i

piρ̂
A,T
i ⊗ ρ̂Bi ,

must be again a density matrix of a physical state. This implies that tr[ρ̂TA ] = 1

and that all eigenvalues must be greater or equal to zero as they provide the
probabilities, see Eqs. (2.1) and (2.2). If this is not the case, the state ρ̂TA ,
created by partial transposition, is not physical and therefore the state ρ̂ is not
separable. Simon transferred this to continuous-variable (CV) systems [61], using
the fact that the partial transpose is equivalent to a mirror re�ection of the phase
quadrature in phase space, i.e.

ρ̂→ ρ̂T ⇔ W (X,P )→ W (X,− P ) .

In terms of the covariance matrix, the partial transpose is given by

γ → γ(Ti) := RiγR
T
i ,

where i denotes which mode is transposed and e.g. RB is de�ned as

RB =


1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 −1

 .

If the transposed state with γ(Ti) still describes a physical state, it must also satisfy
the uncertainty relation from Eq. 2.2.7

µ := min{|eig(iΩγ(Ti)|} ≥ 1 . (2.48)

If this is the case, we know that the two-mode system is separable.
Therefore, the smallest symplectic eigenvalue, denoted by µ corresponds to an
entanglement witness: If µ < 1, the state is entangled, whereas µ ≥ 1 implies
separability (at least for Gaussian states).

Entanglement witness via squeezing variance

Recalling Eq. (2.47), the covariance matrix of a pure symmetric Gaussian two-
mode-squeezed state is given by

γ =


a 0 b 0

0 a 0 −b
b 0 a 0

0 −b 0 a
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with a = cosh(2r), b = sinh(2r), where r denotes the squeezing parameter of the
incident squeezed light �elds. The symplectic eigenvalues of such a matrix are
given by a − b and a + b, thus the smallest symplectic eigenvalue is µ = a − |b|.
Writing this in terms of the squeezing parameter, we get [64]

µ = a− |b| = cosh(2r)− sinh(2r) = e−2r = Vsq , (2.49)

where we used the de�nition of the squeezing variance Vsq from Eq. (2.36). Thus
for pure symmetric squeezed states, the presence of initial squeezing implies en-
tanglement and vice versa. The squeezing variance Vsq therefore corresponds to
an entanglement witness.

2.4 Detrimental e�ects for the nonclassical properties of

light

The nonclassical properties of light, such as entanglement, are highly susceptible
to certain e�ects, which are common in quantum optical experiments. Two of
the main such detrimental e�ects, which we have to consider for the experiments
presented in Chapter 5 and Chapter 6 are optical loss and decoherence e�ects like
phase noise.
In the following we provide the theoretical description of these e�ects.

2.4.1 Optical loss

In quantum optical experiments, the transmission of light is always a�ected by
optical loss which occurs if photons get lost on the way due to stray e�ects, absorp-
tion or imperfect alignment. Mathematically, this optical loss is described by a
speci�c quantum channel, which we call lossy channel in the following. Intuitively,
this channel can be understood with a model, where optical loss is represented by
a virtual beam splitter in the path of the light �eld. We denote by ε the power
re�ectivity of the beam splitter, which corresponds to the amount of �loss� due
the lossy channel. Conversely, we call η = 1− ε the optical e�ciency of the beam
splitter. The open port of the beam splitter causes the light �eld to be mixed with
vacuum with a factor of the loss ε. The covariance matrix of a state a�ected by
loss ε is therefore given by

γη = ηγsig + (1− η)γvac . (2.50)

If we consider a two-mode state, where each mode is a�ected independently by
lossy channels with e�ciencies ηA and ηB, respectively, then Eq. (2.50) reads [64]

γAB,η = SηγABS
T
η +Gη, (2.51)
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η

(a) Lossy channel

Φ(θ)

(b) Noisy channel

Figure 2.4: Visualization of a lossy and a noisy channel by its e�ect on a squeezed

vacuum state. (a): The lossy channel acts like a virtual beam splitter in

the path of the light �eld, causing an admixture of vacuum. (b): The noisy

channel leads to a statistical mixture of rotated squeezed states.

where

Sη =


√
ηA 0 0 0

0
√
ηA 0 0

0 0
√
ηB 0

0 0 0
√
ηB

 , Gη =


1− ηA 0 0 0

0 1− ηA 0 0

0 0 1− ηB 0

0 0 0 1− ηB

 .

2.4.2 Phase noise

As introduced in Section 2.2.7, a phase shift corresponds to a Gaussian operation
that causes a rotation of the state in phase space by the angle θ. The Wigner
function of the rotated state is then given by Wrot(X,P,θ) as in Eq. (2.43).
Now, consider the situation where not only a single, but multiple phase shifts

a�ect our state. We assume that the distribution of angles θ of these phase shifts
is most generally given by a function Φ(θ). This situation is what we refer to as
phase noise or a noisy channel.

Phase-di�used squeezed states

Let us �rst consider phase noise acting on a squeezed state. The phase shifts then
di�use the state and lead to a statistical mixture of the rotated squeezed states.
More concretely, the Wigner function of the phase di�used state is given by [65]

WPN(X,P ) =

∫
Wrot(X,P,θ)Φ(θ)dθ .

The marginal probability distributions are a�ected in a similar way: For example,
we can use Eq. (2.17) to �nd that the marginal distribution of the amplitude
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〈p
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(X
,θ

)〉
Φ

Amplitude quadrature X

Figure 2.5: Probability distribution of a dephased amplitude squeezed state. The prob-

ability distribution prd(X,θ) is given in blue for a phase di�used amplitude

squeezed state with an original squeezing variance of Vsq = 0.1 without

phase noise. The added phase noise yields a Gaussian distribution with a

variance of Vφ = 0.9 and is symmetric around zero. It is clear to see that

the distribution of the phase di�used state is not longer Gaussian. For

comparison, a Gaussian distribution is given by the red line.

quadrature for the phase di�used state is given by

〈prd(X,θ)〉Φ =

∫
WPN(X,P )dP

=

∫ ∫
Wrot(X,P,θ)Φ(θ)dθdP . (2.52)

From this, it is possible to see that phase di�usion causes a degaussi�cation of the
state as shown in calculations from B. Hage and A. Franzen, i.e. [66], [67]. Indeed,
assuming symmetric, Gaussian distributed phase noise, i.e.

Φ(θ) =
1√

2πVΦ

e
− θ2

2VΦ

where VΦ denotes the variance of the Gaussian distribution and can therefore
be interpreted as the phase noise strength, it is possible to solve the integral
in Eq. (2.52) explicitly. The resulting probability distribution of the amplitude
quadrature is depicted in �gure 2.5 and clearly shows the degaussi�cation of the
initial state.
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Phase-di�used two-mode-squeezed vacuum states

Let us now consider a two-mode-squeezed state a�ected by phase noise. For this
we �rst recall the action of a single phase shift on such a state. If both modes
are rotated by the angles θA and θB respectively, then the covariance matrix is
transformed according to

γAB → RγABR
T ,

with R = Srot(θA)⊕ Srot(θB).
Phase noise now corresponds to multiple phase shifts where the angles are dis-

tributed according to some function Φ(θA,θB). The angles can be correlated,
partially correlated or completely uncorrelated. The phase di�used state is again
given by the average over these phase shifts.
For simplicity, let us �rst assume that the dephasing of both modes is indepen-
dent and symmetric around zero. Moreover, we assume a pure and symmetric
two-mode-squeezed state such that the covariance matrix before the phase noise
is given as in Eq. (2.47). Then the covariance matrix of the phase di�used two-
mode-squeezed vacuum state is given by [64]

γPN = 〈RγABRT 〉Φ =


a 0 qb 0

0 a 0 −qb
qb 0 a 0

0 −qb 0 a

 (2.53)

where 〈. . .〉Φ denotes the statistical averaging over the phase shifts as in Eq. (2.52)
and q denotes the dephasing parameter de�ned as

q = 〈cos θA cos θB〉Φ.

The dephasing parameter q can take values between 0 and 1 and is related to the
strength of the phase noise, as we explain in the following. The detailed calculation
to obtain Eq. (2.53) is given in the Appendix A.1, and assumes a vanishing mean
value which is legitimate as only vacuum states are used throughout this thesis.
From Eq. (2.53) we see that the individual modes are not a�ected by the phase

noise. This is plausible since they are each in a thermal state and thus rotation-
ally invariant. However, the phase noise reduces the correlations between the
modes which is seen by the suppression of b due to the dephasing parameter q. If
q = 1, which corresponds to �no phase noise�, then the covariance matrix remains
una�ected as expected. However, if the strength of the phase noise is maximal,
i.e. if q = 0, then all correlations between modes A and B are suppressed. Indeed,
we will see this e�ect explicitly in Chapter 4.
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Let us now consider the more general case, where the covariance matrix is not in
the highly symmetric form of Eq. (2.47). Additionally, we also drop the assumption
that the phase noise needs to be independent and symmetric. The calculation of
the phase di�used covariance matrix then becomes much more involved and we
�nd that, instead of one parameter (the dephasing parameter q from above), a set
of eight parameters is needed to fully describe the dephasing of the initial state γ,
namely

{〈cos2 θA〉Φ ,〈cos θA sin θA〉Φ , 〈cos θA cos θB〉Φ ,〈cos θA sin θB〉Φ ,

〈cos2 θB〉Φ , 〈cos θB sin θB〉Φ ,〈sin θA sin θB〉Φ ,〈sin θA cos θB〉Φ} .

Details on how these parameters appear in the dephased covariance matrix are
shown in Appendix A.2. The experimental method to obtain these parameters is
described in Section 3.3.

In the theoretical analysis of entanglement distillation, presented in Chapter 4,
we will restrict ourselves to the idealized case, where the phase noise is charac-
terized by the dephasing parameter q. Our presentation and discussion of the
experimental results however is based on the completely general case, where the
e�ect of the phase noise is characterized by the above eight parameters.
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CHAPTER 3

Experimental methods

The experimental methods for generation and detection of squeezed and entangled
states of light have been developed and sophisticated in the last decades [60].
Depending on the focus, the designs emerged in di�erent directions but started all
from the same basics. In this chapter, some of these basic techniques and setups
are presented.
The chapter starts with an overview of the generation of squeezed states, fo-

cusing on the parts which are equal in the experiments. Detailed information on
the particular devices are given in the respective chapters. The second part is a
discussion about di�erent devices for light detection. As the most important tool
for detection of light in this thesis, the principle of the balanced homodyne detector
(BHD) is discussed in detail, including techniques to stabilize on amplitude and
phase quadrature measurement. Based on that, the principle of eight-port homo-
dyne detection (EHD) is introduced. Then with a focus on the �rst experiment,
the experimental realization of phase noise and the determination of the dephasing
parameters out of the experimental data is explained.

3.1 Squeezed-light source

The squeezed vacuum states produced for this thesis are created by the process of
degenerated optical parametric down-conversion [52]. For this process, a nonlinear
medium with a second-order dielectric susceptibility χ(2) is placed inside an optical
cavity. A pump �eld with frequency 2ω, here 532 nm, is coupled into the medium,
where one photon of the pump �eld decays into two photons with ωpump = ω1 +ω2.
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Pump field @ 532 nm

Squeezed field @ 1064 nm

DBS

Figure 3.1: Schematic setup of a squeezed-light source: The highly re�ective curved

back of the nonlinear crystal forms a hemilithic cavity with the coupling

mirror. The pump �eld enters the cavity through the mirror and the gen-

erated squeezed light �eld can be separated from the pump �eld with

a dichroic beam splitter (DBS). The stabilization on the optimal phase

matching temperature is realized with Peltier elements.

In the degenerate case, these created �elds have identical frequencies ω = 1064 nm

and form the so-called signal �eld. The time-dependent Hamiltonian describing
this process can be identi�ed as the squeezing operator [52], i.e. Eq. (2.34) and
the pair-wise created photons form the squeezed vacuum �eld.
A schematic of this setup is shown in Fig. 3.1. The curved and highly re�ective

end surface of the nonlinear crystal forms a standing wave cavity together with a
curved mirror which is attached to a piezoelectric transducer (PZT). This cavity
de�nes the spatial mode of the signal �eld and guarantees as well the overlap with
the pump �eld for the nonlinear process. The hemilithic setup has proven to o�er
a good trade-o� between low losses and �exibility. Due to the movable coupling
mirror, the cavity length can be varied easily to match the resonance condition
for the signal �eld. Using the crystal itself as a back mirror reduces the amount
of surfaces which needs to be passed in the cavity as this causes additional loss
for the created squeezing.
First the pump �eld propagates through a dichroic beam splitter (DBS), which

transmits 532 nm and re�ects 1064 nm, and couples in the cavity through the
mirror. The squeezed-light �eld leaves the cavity through the coupling mirror,
gets re�ected at the DBS and is available for downstream experiments.
To ensure constructive interference of the created signal photons, pump and

signal �eld need to propagate with the same speed which means that the beams
need to be phase matched [60].
For most materials, the refractive index depends on the frequency (normal disper-
sion), which would make the phase matching of pump and signal �eld impossible.
To overcome this problem, di�erent solutions exist that are based on temperature
control of the crystal. The techniques are just brie�y explained here, a detailed
description can be found in [68].
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To control and stabilize the temperature, the crystal is placed on a copper
element that is heated by a Peltier element. A resistor with negative temperature
coe�cient attached to the copper element serves as a temperature sensor for the
control loop.

Type I phase matching For this technique, the nonlinear crystal needs to show
birefringence. These materials show di�erent refractive indices, depending on the
polarization of the optical light �eld. This e�ect can be used to compensate for
the di�erence of the refractive indices caused by the frequency di�erence. The
polarization of the pump �eld is chosen to �t the axis with lower refractive in-
dex while the polarization of the signal �eld is chosen to be perpendicular to the
pump. As the refractive index is temperature dependent, the temperature can be
optimized to achieve the same index for both light �elds. This results in a per-
fect phase matching and the corresponding temperature is called phase matching
temperature. This method is used for the squeezing source in Chapter 5.

Quasi phase matching Another possibility is the usage of a periodically poled
medium which enables the technique of quasi phase matching. To understand this
technique, we consider �rst what happens in a normal medium without periodical
poling. If the process starts with perfect phase matching, the phases of pump and
signal �eld drift apart while propagating in the medium due to mismatch of the
wave vectors. This reduces the e�ciency of the conversion process and after some
distance, namely the so-called coherence length lc, the phases are so far apart
that the process is inverted and the power gets converted back to the pump. To
counteract this e�ect, a periodically poled medium is composed of di�erent areas
which show inverted susceptibility relative to each other and the width of these
areas is chosen to match the coherence length lc. The �elds propagate through this
medium but instead of the back conversion of the �eld after lc, the phase mismatch
is decreasing again due to the inverted susceptibility in the subsequent area. This
leads to a continuous increase of the signal �eld. As the medium expands with
temperature, this method has as well a �phase matching temperature�, where the
length of the sections �ts exactly the coherence length and guarantees thus optimal
conversion. The squeezing source in chapter 6 utilizes the method of quasi phase
matching.
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3.2 Detection of light

3.2.1 Detection with a single photo diode

The detection of light is usually realized with photo diodes, using the photoelectric
e�ect. In the optimal case one photon is hitting the photosensitive area of the
semiconductor and creates thereby one photo electron. With this process, the
optical �eld is converted into an electronic signal which can be analyzed.
The standard type is a PIN photo diode, where the letters stand for the doping of

the semiconductor material, being P(osivitely) doped, I(ntrinsic) and N(egatively)
doped [54]. The created photo current is proportional to the power of the input
light �eld. This proportionality is usually given by the responsivity in the unit
A/W. A very common characteristic of photo diodes is the so-called quantum
e�ciency which gives the probability for a successfully created photo electron
per incident photon. Photo diodes with quantum e�ciencies of up to 99 % are
available for the standard wavelengths in the near-infrared regime. However, PIN
photo diodes are not optimal if the light �eld is very weak. At some point the
dark current, created by the electronic noise of the detector and of the photo diode
itself, covers the signal and thus limits the resolution for small intensities.
To detect even single photons, so called avalanche photo diodes (APD) are

available. In the Geiger mode, a created photo electron is causing an avalanche
which generates a distinct event or �click� at the detector [54].
The signal of an APD is not linear to the intensity of the optical light �eld as

the same avalanche is created, regardless of the presence of one or several photons.
As electrons can be created without the presence of a photon, there is as well the
possibility that the detector gives a false signal. This e�ect is called dark clicks of
the APD, analogous to the dark current of the PIN photo diodes.
APDs are used to detect single photon events of a �eld where the probability

of several photons at the same time is low. In the continuous-variable regime,
a possible application is the heralding of a single photon in a dim light �eld,
e.g. [69,70].
APDs do not provide a frequency resolved signal, as they do not distinguish

between electrons created by photons of di�erent frequencies. Therefore careful
frequency �ltering of the signal �eld before the APD is mandatory.
However in most cases it is not enough to detect and characterize the intensity of

a light �eld. As shown in Chapter 2, several properties of the quantum mechanical
systems are expressed in terms of the quadratures, like e.g. nonclassical noise
statistics.
Since there is a signi�cant di�erence between the intensity of a light �eld, cor-

responding to the photon number n̂ = â†â, and its �eld amplitude quadrature,
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Figure 3.2: Schematic of a balanced homodyne detector: The signal �eld gets super-

imposed with a strong local oscillator on a balanced beam splitter. The

two outputs are detected with photo detectors and the photo currents get

subtracted. The relative phase ϑ between the two incident light �elds de-

termine the observed quadrature of the signal �eld.

meaning X̂ = â + â† [54], there exists no simple relationship between photon
statistics and quadrature distributions. Hence, individual measurement devices
are needed to access one or the other. While we already presented devices to ac-
cess the �rst, homodyne detection is the method of choice to access the quadrature
distributions.

3.2.2 Homodyne detection

The method of balanced homodyne detection (BHD) can be used to access the
probability distributions prd(X) and prd(P ) of the quadratures, introduced in
Section 2.2.2, see Eq. (2.14). The schematic setup of a homodyne detector is
depicted in Fig. 3.2. For the detection, our signal �eld of interest, denoted by âsig,
is superimposed on a balanced beam splitter with a strong coherent �eld, called
the local oscillator (LO). The local oscillator �eld has the same frequency and
spatial mode form as the signal �eld and is given by âLOe

iϑ where ϑ denotes the
relative phase between the LO and the signal �eld. The vectorial form is given by

x̂̂x̂x = (âsig, â
†
sig, âLOe

iϑ, â†LOe
−iϑ) .

Note, that we assume a �xed phase relation between the two �elds which is ensured
by the fact, that both light �elds are generated from the same laser.
After interference on the balanced BS, given by the symplectic transformation
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from section 2.2.7 we obtain for the output

SBS(0.5)x̂̂x̂x =


1√
2
(âsig − âLOe

iϑ)
1√
2
(â†sig − â†LOe

−iϑ)
1√
2
(âsig + âLOe

iϑ)
1√
2
(â†sig + â†LOe

−iϑ)

 .

These �elds are then detected by standard photo diodes, giving photo currents
proportional to the number of photons in the �eld

î1 ∝ n̂1 = â†1â1

=
1

2
(â†sig − â†LOe

−iϑ)(âsig − âLOe
iϑ)

=
1

2
(â†sigâsig − â†LOâsige

−iϑ − â†sigâLOe
iϑ + â†LOâLO)

and analogous

î2 ∝ n̂2 = â†2â2

=
1

2
(â†sigâsig + â†LOâsige

−iϑ + â†sigâLOe
iϑ + â†LOâLO) .

These photo currents are then electronically subtracted, yielding only the inter-
ference terms

î2 − î1 ∝ â†LOâsige
−iϑ + â†sigâLOe

iϑ .

We now linearize the input �elds as

âsig = |αsig|+ δâsig, âLO = |αLO|+ δâLO

where |αsig| and |αLO| denote the coherent excitations and δâsig and δâLO the noise
contributions. The latter are supposed to be small and are only taken into account
in �rst order.
The subtraction of the photo currents can be rewritten as

î2 − î1 ∝ 2|αsig||αLO| cos(ϑ) + |αLO|(δâsige
−iϑ + δâ†sige

iϑ)

+ |αsig|(δâLOe
iϑ + δâ†LOe

−iϑ)

= 2|αsig||αLO| cos(ϑ) + |αLO|X̂δasig
(ϑ) + |αsig|X̂δaLO

(−ϑ) . (3.1)

In the second lines the noise terms are expressed by the generic quadrature oper-
ator, introduced in Eq. (2.15).
The �rst term describes the interference between the DC parts of both light

�elds. The second term presents the quadrature of the signal �eld scaled with
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the power of the LO �eld while the last term gives the quadrature of the LO �eld
scaled with the power of the signal �eld. Since we are interested in the properties
of the signal �eld, it is common to choose |αLO| � |αsig| in order to make the
contribution of the last term negligible. For squeezed vacuum, |αsig| = 0 anyway,
however in some experiments, a coherent �eld with amplitude |α| is co-propagating
with the squeezed �eld for which this condition needs to hold as well. Depending
on the relative phase between signal and LO �eld, we can then inspect the di�erent
quadratures of the signal �eld.
If only vacuum enters the signal port, the variance of the quadrature operator

is equal for all quadrature angles and the subtraction is linear to the LO power.
Twice the LO power should then result in an increase of the variance by 3 dB.
This is a good way to test if the experimental setup is shot noise limited and the
homodyne detector is working properly [60].
For a data stream measured with a constant LO power and a �xed phase re-

lation ϑ, the probability distribution is then exactly given by Eq. (2.14). This
measurement is used to de�ne the vacuum reference at this LO power.
A squeezed �eld as a signal �eld shows a change of the variance depending on

the relative phase. The squeezed quadrature will yield a lower variance compared
to the vacuum variance at the same LO power.
The homodyne detector is not only a measurement tool for the di�erent quadra-

tures but serves as well as an ampli�er for very weak signals like squeezed vacuum
�elds, consisting only of a few photons for low squeezing values. Even though the
�eld intensities can be too small to be detected with a PIN photo diode, the BHD
gives access the quadratures of this state.
The homodyne detector enables a frequency resolved measurement, which

means that the noise properties of the signal �eld can be analyzed at di�erent
sideband frequencies.

Stabilization to phase quadrature measurement

If we recall the generic quadrature operator of Eq. (2.15), we �nd that the phase
quadrature is given for ϑ = 90 ◦. Therefore the �rst term in Eq. (3.1) can be used
to stabilize the homodyne detector on the phase quadrature. For ϑ = 90 ◦, the
light �elds interfere in a way that both photo detectors see the same DC power.
The subtraction is then zero and this term vanishes. Tuning ϑ will change the
interference in a way that either the �rst or the second detector sees more of the
light, resulting in a proper change of the sign for the subtracted current. It is
important to note that the phase relation is then �xed between the LO and the
bright light �eld that caused the interference in the �rst term. As this method
is depending on the intereference, it is not working if the input consists only of
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e.g. squeezed vacuum. Therefore we need a light �eld co-propagating with the
squeezed light which enables this technique. In any case it should be clear that
the LO is stabilized to a �xed phase relation to this �eld and not necessarily to
the squeezed light �eld. A stable phase relation between the squeezed �eld and
the auxiliary �eld is therefore mandatory.

Stabilization to amplitude quadrature measurement

To lock the BHD to the amplitude quadrature of the signal beam, a phase modula-
tion imprinted on the auxiliary �eld is required. The phase modulation only van-
ishes in the homodyne detector signal, when the detector measures the amplitude
quadrature and gets maximized in the phase quadrature. Therefore, demodulation
of the homodyne detector signal with an electronic LO at the phase modulation
frequency provides a sinusoidal error signal with a zero crossing exactly when the
amplitude quadrature is measured.

Reconstruction of a covariance matrix with homodyne detection

Homodyne detection gives insight to only one quadrature of the state. As the pho-
tons are measured and thus destroyed, no other information can be obtained after
a homodyne measurement. For characterization of the state just with homodyne
measurements, a valid way is as follows. Assuming that the source is preparing
exact copies of the state with same properties, one can perform di�erent measure-
ments on di�erent copies to characterize the state. E.g. for a squeezed-light �eld,
�rst the quadrature yielding the squeezing variance can be measured, followed by
a measurement of the orthogonal quadrature to obtain the variance of the anti-
squeezing. For a Gaussian squeezed vacuum state these two measurements are
already su�cient to characterize the state.
However, to reconstruct the covariance matrix of the state, these two measure-

ments are not su�cient as they do not provide information about correlations
between the quadratures. This is especially important for the multi-mode case
where the covariance between quadratures of di�erent modes can e.g. be used to
witness entanglement in a two-mode-squeezed state.A workaround is to measure
additionally a quadrature between amplitude and phase quadrature to get infor-
mation about the correlations. This technique is proposed and explained in [59].
With a combination of the pure quadrature measurements and e.g. a 45 ◦ mea-
surement, the covariance between the two quadratures can be calculated. This
procedure enables to reconstruct the full covariance matrix of a squeezed light
mode with only one homodyne detector and the reconstruction of the covariance
matrix of a two-mode-squeezed state with only two balanced homodyne detectors.
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Figure 3.3: Schematic setup of an eight-port homodyne detector: Four incident �elds

are involved, namely the signal �eld, the local oscillator and two vacuum

�elds. The signal �eld and the local oscillator are mixed with vacuum

on beam splitters, respectively. The �copies� of the signal �eld with the

admixed vacuum are send to two balanced homodyne detectors. One de-

tector measures the amplitude quadrature while the other �eld measures

the phase quadrature. With this results, the full information about the

signal �eld can be gained. For the sake of simplicity we leave out the beam

splitter of the LO in schematics for the rest of this thesis.

3.2.3 Eight-port homodyne detection

A di�erent method to access the full covariance matrix of a state is eight-port
homodyne detection (EHD). This section will just sketch the idea of EHD, reduc-
ing on the necessary points needed for this work. A detailed description of the
technique is given in [54].
The uncertainty relation Eq. (2.21) tells us, that it is not possible to measure

both quadratures simultaneously and precisely at the same time. However, that
means simply, that a simultaneous measurement need to be paid with some loss
of the precision of the measurement. At the cost of some extra noise coupling,
the following detector scheme, depicted in Fig. 3.3, o�ers these simultaneous mea-
surements without violation of the uncertainty relation.
To measure both quadratures at the same time, the signal �eld, denotes by its

annihilation operator âsig is split on a beam splitter, given by the symplectic trans-
formation SBS as introduced in Eq. (2.44). A vacuum mode enters at the other
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input port of the beam splitter and interferes with the signal �eld. The outputs
â1 and â2, which are now mixtures of the signal with vacuum are then directed
to two balanced homodyne detectors. For the homodyne detection, the local os-
cillator �eld is divided on a beam splitter, which causes as well an admixture of
vacuum to the local oscillator �elds. However, as the LO is a strong coherent �eld,
the vacuum admixture can be neglected for the LO. The detector in the output
port 1 is measuring the amplitude quadrature X̂1 of the mixed mode while the
other detector measures the phase quadrature P̂2 of the second output. This is
realized by choosing the LO phase ϑ for detector 1 accordingly and shift the phase
of LO for detector 2 by 90 ◦ relative to the �rst. In terms of the input signal the
measured quadratures are given by

X̂1 = τX̂sig − %X̂vac , P̂2 = %P̂sig + τ P̂vac , (3.2)

with τ and % denoting the amplitude transmissivity and re�ectivity of the beam
splitter. A quick calculation of the commutator with usage of Eq. (3.2) shows
that these two operators commute and can thus be measured simultaneously,

[X̂1,P̂2] = X̂1P̂2 − P̂2X̂1

= τX̂sig%P̂sig − %X̂vac%P̂sig + τX̂sigτ P̂vac − %X̂vacτ P̂vac

− %P̂sigτX̂sig − τ P̂vacτX̂sig + %P̂sig%X̂vac + τ P̂vac%X̂vac

= %τ [(X̂sigP̂sig − P̂sigX̂sig)− (X̂vacP̂vac − P̂vacX̂vac)]

= %τ([X̂sig,P̂sig]− [X̂vac,P̂vac])

= 0 .

Note, that for this calculation the fact was used that the signal and the incoupling
vacuum are independent from each other and thus their quadrature operators
commute with each other.
To summarize this, eight �elds are involved in this detector scheme, four input
�elds and four output �elds. Due to this reason the scheme is named eight-port

homodyne detector (EHD). To make the schematic more handy, we leave out the
beam-splitting of the LO for the rest of this thesis.
As the EHD enables the simultaneous measurement of amplitude and phase

quadrature of the new modes that are mixed with vacuum, the covariance matrix
γEHD of the detected state can directly be reconstructed. However, as we are
interested in the covariance matrix of the signal �eld, we recall from the section
2.4.1 how a beam splitter operation acts on the covariance matrix, given by [64]

γEHD = τγsig + %γvac .
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The most common case with a balanced signal splitting at the eight-port homo-
dyne detector simpli�es this to

γEHD =
1

2
(γsig + γvac) .

This equation gives us the possibility to get the covariance matrix of the signal
�eld from the reconstructed covariance matrix γEHD. Recalling from Section 2.2.4
that the covariance matrix of the vacuum state is given by the identity matrix 1,
the covariance matrix of the signal �eld before the EHD beam splitter is calculated
by

γsig = 2γEHD − γvac = 2γEHD − 1 . (3.3)

By calculating the probability distribution prd(XA,PB) of the eight-port homo-
dyne detector measurement, one can show that the probability distribution is
given by [54]

prd(XA,PB) = Q(Xsig,Psig) ,

so the eight-port homodyne detector measures the Q-function, see section 2.2.5.
As discussed in Section 2.2.5 such a measurement corresponds to a projection of
the state onto a coherent state α. The complex amplitude α = X1+iP2

2
of this

coherent state is determined by the measurement outcomes X1 and P2.

3.3 Experimental realization of phase noise

3.3.1 Implementation of the phase noise

To investigate the distillation protocol, a noisy channel has to be implemented,
which exposes the entangled states to phase noise in a controlled way. The tech-
nique, as depicted in Fig. 3.4, is analoque to the one used in [65] and [28].
Here, the phase noise is realized by changing the relative phase of the entangled

light �eld to the LO of the homodyne detector which causes a rotation in the
phase space. Experimentally this is done by a steerable mirror in the signal path
that is driven by a piezoelectric transducer (PZT). The voltage applied to the PZT
is changing the position of the mirror and thus the optical path length. Driving
the PZT with a voltage that follows the statistic of the phase noise causes then a
di�usion in the phase of the light �eld.
The frequency of the phase noise had to be high enough that it is outside the

frequency range of the homodyne detector stabilization. Otherwise the control
loop of the homodyne detector quadrature phase would be able to follow these
phase changes and thus compensate for the phase noise. To ensure, that the
imprinted noise is mirroring the noise introduced to the PZT, the transfer function
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Amplifier

PZT

Output ± 5 V

Figure 3.4: Experimental realization of phase noise: The noise is created on the com-

puter which produces an output voltage via the computer soundcard. A

linear ampli�cation stage is used to control the strength of the noise. The

noise is shifted to positive voltages, ampli�ed with an high voltage ampli�er

and send to a PZT in the signal path. The optical path length and thus

the phase of the signal �eld is therefore modulated by the noise, mimicking

a noisy channel.

of the PZT needs to be �at in this area, which excludes frequencies higher then
about 10 kHz as the PZT show resonances in this regime. All these considerations
result in a frequency interval between 1 kHz and 5 kHz. The noise was chosen to be
white in this range and Gaussian distributed for each frequency. We want to note
that, from the theoretical side, there are no restrictions on the noise distribution
for a successful distillation. Therefore the chosen experimental realization is solely
based on technical considerations to ease the implementation. As the phase noise
on the two entangled modes are planned to be independent, two independent
phase noise generations are required.
The noise was created with a LabView program and saved in an audio �le of

approximately 37 minutes. The two independent noise traces were saved to the
di�erent stereo outputs. With this sound�le, the phase noise can be exported
by the computer sound card as a symmetric voltage around zero with a maximal
output power of ±5 V. Selfmade electronics are used to implement a linear gain
stage, shift the signal to positive voltages (the PZT can only handle positive
voltages) and amplify it.

3.3.2 Estimation of the dephasing parameters

As the experimental implementation of the phase distribution is likely not be
perfect, we can not rely on an optimal transfer of the phase noise properties to the
light. For this reason, the eight dephasing parameters, introduced in section 2.4.2
are estimated from the data as follows. Additionally to the measurement of a

52



3.3 Experimental realization of phase noise

phase di�used state, a measurement without the implementation of phase noise
was performed and used to reconstruct the undi�used covariance matrix. The
elements of the covariance matrix are already introduced in Eq. (2.38). If we
assume states without any coherent displacement (〈Â〉 = 〈B̂〉 = 0), which is the
case for squeezed vacuum states, the covariance can be shortened to

Cov(Â,B̂) =
1

2

(
〈ÂB̂〉+ 〈B̂Â〉

)
− 〈Â〉〈B̂〉 =

1

2

(
〈ÂB̂〉+ 〈B̂Â〉

)
.

Having this as the only assumption, the covariance matrix is given by the general
form

γ =


〈X̂2

A〉 1/2(〈X̂AP̂A〉+ 〈P̂AX̂A〉) 〈X̂AX̂B〉 〈X̂AP̂B〉
〈P̂ 2

A〉 〈P̂AX̂B〉 〈P̂AP̂B〉
〈X̂2

B〉 1/2(〈X̂BP̂B〉+ 〈P̂BX̂B〉)
〈P̂ 2

B〉

 .

The matrix is here for simplicity just presented by the upper half which is legit-
imate due to the symmetry of the covariance matrix. Note, that the quadrature
operators of di�erent modes do commute and the covariance can thus be written in
a shorter way for these entries. Analogously, the phase di�used covariance matrix
is given by

γPN = 〈SγST 〉Φ

=


〈〈X̂2

A〉〉Φ 1/2〈〈{X̂A,P̂A}〉〉Φ 〈〈X̂AX̂B〉〉Φ 〈〈X̂AP̂B〉〉Φ
〈〈P̂ 2

A〉〉Φ 〈〈P̂AX̂B〉〉Φ 〈〈P̂AP̂B〉〉Φ
〈〈X̂2

B〉〉Φ 1/2〈〈{X̂B,P̂B}〉〉Φ
〈〈P̂ 2

B〉〉Φ

 ,

where Φ(θA,θB) denotes the phase distribution of the phase shifts θA and θB for
the two modes A and B, and {X̂A,P̂A} = X̂AP̂A+ P̂AX̂A. The terms for the phase
di�used covariance matrix can also be written explicitly by the original undi�used
variances, e.g.

〈〈X̂2
A〉〉Φ = 〈X̂2

A〉〈cos2 θA〉Φ + 2〈X̂AP̂A〉〈cos θA sin θA〉Φ + 〈P̂ 2
A〉〈sin2 θA〉Φ .

The full set of ten equations is calculated in the appendix, see A.2.
As the variances of the undi�used covariance matrix are known due to the

measurement of the undi�used state, these equations can be used to obtain a
system of linear equations [64]. From this, the eight dephasing parameters can be
estimated without requiring knowledge about the exact phase distribution.
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CHAPTER 4

Emulated entanglement distillation of non-Gaussian

states: Theory

All experimental implementations of quantum information protocols su�er from
optical loss and decoherence e�ects during the transmission, which reduce the non-
classical properties of the state. To counteract these e�ects the idea of distillation
protocols has been widely exploited in the last years. Many ideas for distillation
protocols in the discrete variable regime were proposed and realized [23,24,26,27]
as well as protocols for continuous variables [28,47,71,72]. In this work the focus
is on the distillation of continuous-variable entangled states and mainly the distil-
lation against phase noise. Nevertheless, distillation protocols work similarly for
other nonclassical states like squeezed states which as well su�er from the e�ect
of decoherence and optical loss as well.
The general idea of a distillation protocol is to start with a large amount of

weakly entangled states which are originally strongly entangled but lost their
nonclassical properties due to noisy or lossy channels. The distillation protocols
recover parts of the entanglement for the price of a smaller amount of states.

This chapter starts with the no-go-theorem which predicts the impossibility
to distill Gaussian states with Gaussian operations. Focusing on the case where
the state is already degaussi�ed, a general protocol for Gaussi�cation and dis-
tillation is introduced and the extension to an iterative distillation protocol is
described. Based on the iterative protocol, a new approach is presented where
the distillation is performed in the postprocessing. This idea was developed by
Jaromír Fiurá²ek and Nicolas Cerf and published in the joint paper together with
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some results of this work [46]. As this technique allows any number of iteration
steps, we will present some analysis in the asymptotic limit, derived by Jaromír
Fiurá²ek. To make clear which �ndings and calculations are from him, they will
be complemented with the reference [64]. Although experimentally not accessible,
the limit gives insight to the performance of the protocol performed in this work
and presents a benchmark for the measurement results presented in Chapter 5.

4.1 Restrictions to distillation in the Gaussian regime

Distillation protocols are usually executed in a way that the states are distributed
between the parties, which can then perform local operations on their part of
the state to perform the distillation, followed by classical communication between
the parties. This is generally known under the term LOCC (local operations
and classical communication). In 2002 it has been mathematically proven by
three independent groups that it is not possible to distill Gaussian states with
Gaussian methods [43�45]. This restriction is called no-go-theorem and reduces
the possibilities for distillation in the Gaussian regime. The loophole is to leave
the Gaussian regime either with the state which should be distilled or with a
non-Gaussian operation in the distillation apparatus. An obvious application is
thus the distillation of phase-di�used states which were originally Gaussian states
but got di�used in a noisy channel during the transmission. The phase noise
reduces the original entanglement in the second moments as shown in Section 2.4.2
and possibly ruins the state for following quantum information protocols. The
distillation of phase-di�used states is the main focus of this chapter and will be
extensively discussed.
Not covered by this protocol is the group of Gaussian states which show reduced

entanglement due to optical loss. Since optical loss can be mimicked by a beam
splitter operation and thus maintain the Gaussianity of the state, a non-Gaussian
process needs to be included to the distillation in order to recover the entanglement
from these states. This can be realized with photon subtraction [30�32,47] or with
the idea of noiseless ampli�cation [39�41, 48]. We will focus on this problem in
Chapter 6 and investigate some of the prerequisites which these protocols give to
the experimental realization.

4.2 Entanglement distillation of degaussi�ed states

4.2.1 Measures for the success of the distillation protocol

The protocols in this section are Gaussi�cation protocols [32, 47, 73, 74] as they
drive a degaussi�ed state back to the Gaussian regime. The original state is e.g.
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degaussi�ed by transmission through a noisy channel which exposes the modes to
phase noise. The degaussi�cation has as a consequence that the state is no longer
fully described by the �rst and second statistical moments, see Section 2.2.4.
Intuitively this can be understand in such a way, that the original Gaussian
entanglement is shifted to higher moments and consequently the entanglement
in the second moments is reduced. Since most quantum information protocols
for continuous variables are based on Gaussian states the entanglement therefore
seems to be reduced or even lost. As the state is no longer fully described by
a Gaussian state, the phase noise also leads to reduced Gaussian purity of the
state. In the Gaussi�cation protocol, the nonclassical properties are so to speak
shifted back to the second moments, entailing thus a distillation e�ect and enable
following Gaussian information protocols.

The success of the distillation protocol can thus be quanti�ed by an increase
of the following three characteristics:

• Gaussi�cation: The protocol increases the Gaussianity as the state is
driven again to the Gaussian regime. To have an indicator for the Gaussi�-
cation in the experiment, let us recall that Gaussian states have vanishing
higher moments and are completely described by the �rst and second mo-
ment. Monitoring the higher moments of the state before and after the
distillation gives therefore a marker for the Gaussi�cation. The undistilled
degaussi�ed state will show non-zero higher moments. The distillation pro-
tocol will lead to a decrease of these contributions as the state becomes more
Gaussian.

• Distillation: Under the term �distillation�, we want to summarize the im-
provement of the nonclassical properties like entanglement or squeezing that
are increased during the distillation process and thus witness the success of
the protocol. To monitor the distillation e�ect of the protocol, the PPT
value µ is given as an entanglement witness, see Eq. (2.48). The squeezing
variance of the two-mode-squeezed state show as well the distillation e�ect.

• Puri�cation: Distillation protocols increase the purity of the state, leading
to a puri�cation. A general expression for the purity of the state was given
by Eq. 2.3. For Gaussian states, a simpler equation can be provided. Com-
bining the expression of the purity via the Wigner function with the Wigner
function expression via the covariance matrix, Eqs. (2.25) and (2.18), lead
to the following purity equation:

PG =
1√

detγ
. (4.1)
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Figure 4.1: Elementary two-copy distillation (E2CD): Two copies A1, B1 and A2, B2

of an entangled state are prepared and sent to the parties Alice and Bob.

The parties superimpose the modes locally on a balanced beam splitter

and perform a projective measurement on one output port. The outcome

of these measurements give a trigger signal for accepting or rejecting the

other output ports. This is classically communicated and the corresponding

modes are only accepted if both measurements yield a positive trigger. The

accepted modes A+ and B+ are a distilled copy of the input modes and

show improved properties.

As only Gaussian states are fully described by the �rst two moments this
equation is correct if the state is Gaussian. However, even for non-Gaussian
states this equation can be seen as an indicator for the Gaussian purity.

4.2.2 Elementary step of entanglement distillation

A typical start for quantum information protocols is that two parties called Alice
and Bob want to share an entangled state. The entanglement is created locally by
one of the parties or by an external party and then distributed to Alice and Bob.
During this transmission, the entangled modes can pass a noisy channel and su�er
from phase noise. To recover parts of the entanglement, a distillation protocol can
be performed.
For an elementary step of the distillation protocol, as depicted in Fig. 4.1, two

copies of the entangled state are needed. We name the modes for Alice Ai and the
modes for Bob Bi, with complex amplitudes αi and βi respectively. The index i
is denoting the number of the copy.
Alice and Bob locally interfere their parts of the state on balanced beam split-
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ters. The outputs are then given by

α+ =
1√
2

(α1 + α2), β+ =
1√
2

(β1 + β2)

α− =
1√
2

(α1 − α2), β− =
1√
2

(β1 − β2) ,

where the plus and minus signs denote the phase �ip on the beam splitter.
Alice and Bob locally detect the �minus modes�, performing a projective mea-

surement and therefore reduce the state again to a two-mode state. On the mea-
surement result, a distillation condition is applied. There are several distillation
conditions possible which are separately discussed in section 4.4. Alice and Bob
then communicate over a classical channel the results of their conditioning mea-
surement. Only if the distillation condition is satis�ed for the measurement of
both parties, the corresponding modes α+ and β+ are accepted. All states, for
which the condition fails for one or both parties are discarded.

4.2.3 Extending to an iterative protocol

An elementary step of the distillation protocol is not capable of restoring every
amount of the original Gaussianity and entanglement. To increase the distillation
e�ect further, the elementary distillation steps can be concatenated and the
already distilled states serve as input states for the next elementary distillation
step [32, 47]. However it should be noted, that even the iterative protocol can
not restore all of the original entanglement as we will discuss later. This has
been theoretically proposed in [71] and as well experimentally realized by [33]
and [75]. In Fig. 4.2, a canonical iterative entanglement distillation protocol with
three iteration steps is presented. At the �rst stage, eight copies of the state are
consumed as input states. The four elementary distillation steps are performed
simultaneously and the successful distilled states serve as input states for the next
stage. With each additional distillation, the purity, Gaussianity and entanglement
properties of the state are increased.

Despite their advantages, iterative protocols have some severe problems. One
problem is the enormous experimental overhead for the realization of these pro-
tocols. Every additional iteration stage is doubling the numbers of copies which
need to be provided simultaneously in the beginning. Simply the realization of
identical prepared entanglement sources will thus limit the number of iteration
steps that can be experimentally realized.
The other problem is the drastically decreasing success probability of the pro-

tocol with additional iteration steps. All input states need to be available at
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Figure 4.2: Iterative entanglement distillation: At each iteration step, several elemen-

tary two-copy distillations (E2CD) are performed. The successful outcomes

serve as input states for the elementary two-copy distillations in the next

iteration step. Entanglement and purity is increased with each additional

iteration step. The di�erent copies of the entangled states {Ai,Bi} are

here denoted by their density matrices ρ(i) with i giving the number of the

copy. As all states at one iteration step need to be available at the same

time, all elementary two-copy distillations in one iteration stage need to be

performed at the same time t0.

the same time to perform the elementary distillations in parallel. However, this
requires that for the second iteration stage, all previous elementary distillation
steps need to succeed. If just one elementary distillation fails, the results from all
parallel elementary distillation steps have to be discarded. The same is required
for further iteration steps, decreasing the success probability even further.
Assuming an elementary distillation steps succeed with a probability of P1, we

can calculate the success probability PN to create one copy after N iterations. 2N

input states are needed in this case and all 2N − 1 elementary distillation steps
need to succeed. Therefore the probability that one copy is created in the end is
given by PN = P 2N−1

1 . On average one thus need 2N/P 2N−1
1 input states for one

successfully distilled copy. For the continuous-variable protocol, a certain number
of distilled states need to be obtained to get statistically relevant results. A
decreasing success probability is therefore vastly increasing the measurement time
of the experiment as the acquisition of the same amount of data takes signi�cantly
longer.
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It should be mentioned, that there exist several proposals to use quantum mem-
ories [34] in order to make iterative distillation protocols feasible. In the most
simple scenario, a quantum memory is used after each elementary two-copy distil-
lation to store the successful result until all parallel stages have succeeded. Ideally
this implementation would reduce the number of required input states for one dis-
tilled copy to 2N/PN . The development of quantum memories is ongoing, however
suited quantum memories are not realized to date.

4.3 New approach: Emulated iterative distillation

A strategy to implement an iterative distillation protocol in an e�cient way with-
out quantum memories was proposed by Jaromír Fiurá²ek and Nicolas Cerf. The
core idea here is to shift the experimentally demanding and ine�cient part of
the distillation to the postprocessing and emulate the distillation. The result of
this emulated protocol is identical to the measurement result of a distilled state.
In other words, an experimentally performed distillation where the distilled state
gets measured afterwards would show exactly the same data.
For this measurement, an eight-port homodyne detector (EHD) as introduced

in Section 3.2.3 is needed. The fact that a standard BHD is not su�cient can be
understand by the following considerations. The crucial part of the emulation is
a correct and unconditional prediction of the beam splitter outputs used for the
distillation. Using BHD, which measure for example the amplitude quadratures
X1, X2 of both input �elds, a perfect prediction of the amplitude quadratures
X+ = 1√

2
(X1 + X2) and X− = 1√

2
(X1 −X2) of the output �elds is possible. The

same is true for a measurement of the phase quadrature.
However, this is no longer working if we want to predict the outcomes of di�erent

quadratures for the two output ports, for example the amplitude quadrature of
the �plus� port and the phase quadrature of the �minus� port. A prediction of the
amplitude quadrature of the �plus� port, given by X+ = 1√

2
(X1 + X2), requires

knowledge of the amplitude quadratures of the input states. At the same time the
prediction of the result of the phase quadrature measurement P− = 1√

2
(P1 − P2)

would require a measurement of the phase quadratures of the input states. The
homodyne detector measurement provides only the quadrature value of one chosen
quadrature. Since a measurement destroys the state, no information about the
orthogonal quadrature can be obtained afterwards. In contrast, the EHD provides
the complex amplitude α = X+iP

2
of the state and thus enables the postprocessing

and emulation of the distillation.
It should be mentioned that emulated distillation is in principle possible with

BHDs, in which case one is restricted to one quadrature measurement. This
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Figure 4.3: Emulation of the distillation protocol: Alice and Bob measure the degaussi-

�ed entangled states directly and perform the distillation protocol including

the beam splitter operation in the postprocessing. The measurement de-

vices are eight-port homodyne detectors, here for simplicity depicted with

a single photo detector. As both copies are distributed and detected indi-

vidually, they do not need to be present at the same time. This is indicated

by the transparent second entanglement source. The result of the emulated

distillation is identical to the measurement result of a physically performed

distillation protocol.

quadrature will thereafter show an improved statistics. However, the full infor-
mation about the distilled state is not accessible with this device.

The shift of the distillation part to the postprocessing is depicted in Fig. 4.3.
For convenience the eight-port homodyne detectors are here simply depicted with
a single photo detector. The gray parts are performed in the postprocessing.
Since the interaction between the copies happens solely in the postprocessing,
the distribution and detection of the two copies is completely independent of
each other. This means as well that there is no longer a need for the copies
to be present at the same time. As both sources are completely identical, this
enables a further simpli�cation of the setup, see Fig. 4.4. Only one entanglement
source is necessary to distribute the states to Alice and Bob, measuring their
part of the state with an eight-port homodyne detector, respectively. With the
measurement results they are able to reconstruct the complex amplitudes α and
β of the entangled subsystems. They continuously measure the phase-di�used
copies provided by the entanglement source until they have su�ciently large data
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Figure 4.4: New setup for emulated iterative distillation: One entanglement source pro-

vides the entangled states which gets degaussi�ed during the transmission.

Alice and Bob measure the modes locally with an eight-port homodyne

detector and continue this procedure until they share a su�ciently large

data set of copies. The iterative distillation protocol is performed in the

postprocessing as described in the previous section. In the end, Alice and

Bob share a shorter data set with improved properties which is equivalent

to the measurement result of a physical implementation of a distillation

protocol.

sets {αj} and {βj}. In the postprocessing they combine their measurement results
in pairs to emulate the interference beam splitter:

αn,+ = 1√
2
(α2n + α2n+1), αn,− = 1√

2
(α2n − α2n+1),

βn,+ = 1√
2
(β2n + β2n+1), βn,− = 1√

2
(β2n − β2n+1) .

On these states, the distillation protocol is exactly performed like it would
have been done in a physical implementation. αn,− and βn,− are identical to the
measurement results of a projective measurement in the minus ports. On these
results, the distillation condition is applied. If the distillation condition is not
satis�ed for both sides, the corresponding set {αn,+, βn,+} is discarded. After
the conditioning, we obtain a reduced data set from the plus ports, given by
α

(1)
j = αnj ,+ and β

(1)
j = βnj ,+ where nj gives the surviving data of n. The pair

α
(1)
j and β

(1)
j represents the output of the �rst distillation round and can serve

as an input for a next iteration of the distillation protocol. After repeating the
distillation procedure k times, the outputs will be the shortened data set α(k)

j and

β
(k)
j of the kth iteration step. With this procedure, any number of iteration steps

can be realized. The only limiting factor is the length of the initial data stream as
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the �nal data set still needs to be large enough to provide an appropriate statistic.
The outcome of the protocol is identical to the measurement result of a distilled
state. It can for example be used to obtain a secret key from a data set, which
would not yield a positive key rate without the distillation.
It should be explicitly mentioned that the emulated distillation is as e�cient as

a realization of the iterative protocol with even perfect quantum memories. As
the distillation is performed in the postprocessing all successful distillation results
can be kept for subsequent iterations. This makes the emulated distillation not
only appealing due to the simpli�ed experimental setup but especially due to the
improved success rate.

4.4 Projective measurement and distillation conditions

For the elementary two-copy distillation, which is the core element of the itera-
tive protocol, we did not specify the distillation condition and the corresponding
measurement device and just claimed it to be some kind of projective measure-
ment. Recalling Eq. (2.6), a state is projected by the projector Mi, if we obtain
the corresponding measurement outcome mi. Although we do not obtain a post-
measurement state in our measurements, the fact that we measure this state alters
the corresponding state in the other port. By postselecting on speci�c measure-
ment outcomes which means successful projection on certain eigenstates, this leads
to a distillation e�ect.
The original proposal is a projective measurement on vacuum, which will conse-

quently lead to a Gaussi�cation of the state and thus to a distillation [32]. Only if
the state in the condition path is successfully projected onto vacuum, it heralds a
success for the distillation path. For the realization of such a projective measure-
ment in the regime of continuous variables, several approaches are possible which
are presented in this section. These distillation conditions do not necessarily have
to be realized with an eight-port homodyne detector but include as well proposals
employing other measurement devices that were successfully demonstrated in the
past already.
It should be mentioned that the underlying process, causing that this condition-

ing leads to a distillation of the state is not trivial. Therefore no intuitive picture
can be presented in this thesis and the reader is referred to the theoretical papers
for a more detailed theoretical analysis [32, 47,71,76].

4.4.1 Conditioning on projection onto vacuum with photon detectors

The most obvious way to realize a projection on vacuum is the usage of a photon
detector, which can distinguish between presence or absence of photons. The
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success is heralded if the detector measures no photons, which means a projection
on |0〉〈0|. The measurements with a projection on any other number of photons,
given by I−|0〉〈0| herald a failure and the corresponding state gets discarded. Thus
for this measurement an APD which clicks if it measures any number of photons
is suitable and the click of the photon gives a veto signal for the distillation. This
procedure is proposed in the paper by Browne et al. in [32] and Eisert et al. [47].
However, single photon detectors are not available with high quantum e�cien-

cies for all wavelengths yet. This results in a projection on vacuum although
a photon was present which alters the distillation result and depending on the
quantum e�ciency can even ruin the protocol. Furthermore, dark counts of the
detector will decrease the success rate of the protocol additionally since successful
vacuum projections are discarded in this case.

4.4.2 Conditioning on outcomes of quadrature measurements

A di�erent approach has been proposed by Jaromír Fiurá²ek in [71]. Instead of
utilizing APDs, this protocol relies on standard homodyne detection which has
the advantage of high quality PIN photo diodes. In this protocol, the minus
ports are measured with balanced homodyne detectors. This detectors are set
to amplitude quadrature measurement and project the states on the amplitude
quadratures with the eigenstates |XA,−〉 and |XB,−〉. Alice and Bob communicate
their measurement results and combine their measurement results to a joint value
δX = 1√

2
(XA,−−XB,−). The distillation is successful if the absolute value of |δX|

is smaller than a tunable threshold Tacc:

|δX| < Tacc .

This protocol has been experimentally demonstrated in [65] for squeezed states
and [28] for entangled states. The distillation condition is visualized in Fig. 4.5,
where an the acceptance probability is given in dependence of the joint quadrature
result |δX|.

4.4.3 Conditioning on projection onto coherent states

As the emulated distillation uses eight-port homodyne detectors, these measure-
ment devices should as well be taken into account for the condition measure-
ments in the minus port. The distillation conditions described here are used to
perform the distillation for this thesis. As these devices project the modes on
coherent states, the measurement results are given by the complex amplitudes
α− = XA+iPA

2
and β− = XB+iPB

2
. XA/B and PA/B denotes here the amplitude and
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Figure 4.5: Distillation conditioning on outcomes of quadrature measurements: For

entanglement distillation, the modes A− and B− are measured with bal-

anced homodyne detectors, both measuring the amplitude quadrature of

their mode. The measurement results are communicated between the par-

ties, giving the joint quadrature value δX. Alice and Bob accept only the

corresponding modes A+ and B+ if the absolute value of δX is below a

certain threshold Tacc.

phase quadrature measurements of the eight-port homodyne detector measure-
ment, respectively.
If only states are accepted where

α− = 0 and β− = 0 ,

then this would exactly correspond to a conditioning on successful projection onto
vacuum states equivalent to the measurement with the single photon detectors [76].
However, as the outcomes for these measurements are continuous the probability of
measuring exactly zero is vanishing. To make this protocol thus feasible, we need
to allow some kind of acceptance area, similar to the conditioning on quadrature
outcomes.
In analogy to the conditioning on quadrature outcomes, a distillation condition

like [64]
|α−| < Tacc and |β−| < Tacc

can be used. As visualized in Fig. 4.6a, this can be seen as a cylindric acceptance
area around the origin which we will name the top-hat condition for the rest
of this thesis. For very small Tacc, it converges to a conditioning on successful
projection onto vacuum. From a theoretical point of view, this conditioning is not
very appealing as it does not lead to a Gaussian state. For a non-zero Tacc the
distilled state will still have some residual non-Gaussianity even after an in�nite
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Figure 4.6: Conditioning on the complex amplitudes α− and β−: (a) Simple condi-

tioning: The threshold Tacc gives an acceptance window around the origin.

Measurements with a coherent amplitude inside this area are accepted. (b)

Conditioning on thermal states: The acceptance condition is given by a

Gaussian function of a thermal state with n̄ denoting the mean number of

photons. The complex amplitude is accepted or rejected with a probability

given by the distribution.

amount of iteration steps.

Another possible distillation condition that could be realized with an eight-port
homodyne detector is a Gaussian acceptance probability, given by

Pacc(α−, β−) = exp

(
−|α−|

2

n̄

)
exp

(
−|β−|

2

n̄

)
. (4.2)

In terms of the acceptance function, this can be interpreted as follows. Instead
of the cylindric acceptance probability area, the acceptance probability is now
given by a Gaussian function Pacc(α−, β−) of the complex amplitudes. The state
with the measurement results α− and β− is then accepted with the probability
given by the acceptance probability Pacc(α−, β−). The acceptance probability
function is visualized in Fig. 4.6b. The Gaussian character of the acceptance
probability guarantees the convergence to Gaussian states in the asymptotic limit
of the iterative distillation protocol [47,76].
Physically, this condition can be understand as a projection of the modes A−

and B− on thermal states with a mean photon number given by n̄. Instead of
projecting onto vacuum states, which yield a vanishing success probability, the
condition is loosened in such a way that a successful projection on a state with
a higher mean photon number n̄ counts also as a success. For larger n̄, the
distillation condition becomes less strict. Using n̄ as a tunable variable for the
protocol is therefore comparable to the acceptance parameter Tacc.
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Comparison of the top-hat condition and the Gaussian condition

The Gaussian acceptance probability has a clear physical picture and leads to
Gaussian states in the asymptotic limit. This enables calculations of the state in
the asymptotic limit and is used for the theoretical analysis of the protocol. Per-
fect Gaussi�cation, however, is only achieved in the asymptotic limit. If we leave
the theoretical view and consider experimental details, this condition has some
drawbacks. The additional randomness of the acceptance probability will cause
scattering of the data which will increase the amount of data needed for a smooth
statistic. And since in an experimental realization only a �nite and most likely
small number of iterations will be performed, the �nal data will show some resid-
ual non-Gaussianity in both schemes. As the simple distillation approaches the
conditioning on projection onto vacuum in the limit of small acceptance threshold
Tacc a good performance of the protocol can be expected.
In Chapter 5, distillation results for both distillation conditions are presented

and it turns out, that the simple threshold is completely suitable for the experi-
mental realization of the distillation.
To make the di�erent distillation conditions comparable, we can try to relate

n̄ and Tacc by equating the variances of the acceptance functions. The Gaussian
distribution has a variance of Vgaussian = n̄/2 while the simple condition with the
cylindric acceptance has a variance of Vcylindric = T 2

acc/3. Hence, both acceptance
functions are comparable, i.e. accept the same states, if Tacc ∼

√
n̄ [64]. E.g. if Tacc

is squared, the corresponding value for the other distillation condition would be
given by the quadruple of n̄. This correspondence will be used later in Section 5.6,
when the distillation results for the di�erent distillation conditions are compared.

4.5 Theoretical analysis of the limits of the protocol

4.5.1 Entanglement in the asymptotic limit

For analyzing the quality of the iterative distillation protocol Jaromír Fiurá²ek
derived, based on the theory from [76], a formula for the covariance matrix of the
distilled state in the asymptotic limit of the iterative distillation protocol. The
formula is derived for the Gaussian distillation condition with a mean photon
number of n̄, i.e. Eq. (4.2). The covariance matrix in the asymptotic limit then
evolves to [46]

γAB,∞ =
〈
Srot(θ)[γAB + (2n̄+ 1)1]−1STrot(θ)

〉−1

φ
− (2n̄+ 1)1 , (4.3)

where 1 denotes the identity matrix and Srot(θ) the rotation transformation,
i.e. Eq. (2.42). 〈. . .〉φ denotes the statistical averaging over the random phase
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Figure 4.7: Performance of the distillation protocol in the asymptotic limit: The en-

tanglement witness µ is plotted for the dephased state (blue line) and for

the distilled state in the asymptotic limit for di�erent n̄ (red lines). De-

tails are discussed in the main text. The input state for this calculation

is a symmetric pure two-mode-squeezed state with a squeezing variance of

Vsq = 0.158. The corresponding entries of the covariance matrix are thus

a = 3.234 and b = 3.076, denoting the diagonal elements and the cross

correlations of the matrix.

di�usion, see Section 2.4.2.

The performance of the protocol can be quanti�ed if we compare the be-
havior of the entanglement under phase noise with the restored entanglement in
the asymptotic limit of the distillation protocol. In Fig. 4.7, a theoretical analysis
for this is shown for which we assume a pure symmetric two-mode-squeezed state
and quantify the entanglement by the PPT value µ. For a pure and symmetric
state this is identical with the squeezing variance Vsq, c.f. Section 2.3.2. The
entanglement witness is shown in dependence of the dephasing parameter q,
which quanti�es the strength of the phase noise, see Section 2.4.2. We assume
here for simplicity symmetric and uncorrelated phase noise on both states so that
the phase noise strength is completely given by this one parameter. In the �gure,
the blue solid line shows the behavior of the undistilled state after transmission
through the noisy channel. The stronger the phase noise, which corresponds to a
smaller q-value, the less entanglement is available in the second moments and for
a certain q the state is no longer entangled on the level of the second moments
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(µ ≥ 1). The exact q that is needed to demolish the entanglement in the second
moments is depending on the strength of the initial state. For the exemplary
state in Fig. 4.7 this is the case for q = 0.73. The red lines give the entanglement
witness of the state with covariance matrix γAB,∞ in the asymptotic limit of the
iterative distillation protocol for di�erently tight distillation conditions. The red
solid line is calculated for the ideal case with conditioning on a thermal state
with mean photon number n̄ = 0, which corresponds to projection onto vacuum.
As stated before, this condition leads to a vanishing acceptance probability and
is therefore not experimentally accessible. However, it denotes the maximum
achievable entanglement which can be recovered for a given dephasing parameter
q. The dashed and the dotted lines are calculated for a more realistic scenario
with di�erent non-zero n̄. It is clearly visible that the choice of a smaller n̄
results in better distillation e�ect. The distillation protocol can as well recover
entanglement (µ < 1), even if the dephased state does not show any entanglement
in the second moments (µ ≥ 1). This statement is not only true for the ideal case
of projecting onto vacuum but as well for a acceptance conditions with n̄ > 0.

4.5.2 Maximum tolerable phase noise for pure states

For conditionings with di�erent n̄, the red lines in Fig. 4.7 cross the �entanglement
border�, meaning µ ≥ 1, for di�erent dephasing parameters q. Therefore, there
exists a maximum tolerable phase noise (minimum |q|) for which it is still possible
to distill entanglement from a given two-mode-squeezed state. Higher phase noise
values disturb the state in a way, that no entanglement can be restored.
Entanglement is only visible in the asymptotic limit if

µ∞ = Vsq,∞ = a∞ − |b∞| < 1 , (4.4)

with µ∞ and Vsq,∞ denoting the entanglement witness and squeezing variance of
the asymptotic distilled state and a∞ and b∞ giving the entries of the covariance
matrix γ∞. For Eq. (4.4), we assumed again a pure and symmetric Gaussian two-
mode-squeezed state and used the identity given by Eq. (2.49). With Eq. (4.3)
and Eq. (4.4) a formula for the maximum tolerable phase noise can be determined
to [46,64]

|q| > n̄

n̄+ 1
tanh r . (4.5)

The maximum tolerable phase noise is thus depending on the mean photon num-
ber n̄ of the state onto which is projected and on the initial squeezing, given by the
squeezing parameter r. The dependence on n̄ is already con�rmed and discussed
in the analysis of Fig. 4.7. If the distillation condition is given for successful pro-
jection onto vacuum, meaning n̄ = 0, it is possible to distill entanglement for any
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Figure 4.8: Minimal tolerable dephasing parameter q for pure states: This is an il-

lustration of Eq. (4.5) and shows the dependence of the minimal tolera-

ble dephasing parameter q of the mean photon number n̄ of the state we

project onto and the initial squeezing variance Vsq which corresponds to

the squeezing parameter by exp[−2r] = Vsq, see Eq. (2.36).

phase noise strength |q| > 0 and any strength of the entanglement or squeezing.
For n̄ > 0, the maximum tolerable phase noise is as well depending on the squeez-
ing parameter r. Eq. (4.5) is visualized in Fig. 4.8. Here, the minimal tolerable q
is shown in dependence of the mean photon number n̄ from the distillation con-
dition and the squeezing variance Vsq of the initial state. The formula reveals as
well, that states with higher squeezing values and thus stronger entanglement are
more sensitive to phase noise because the minimum tolerable |q| is higher for high
squeezing strength.

4.5.3 Maximum tolerable phase noise for mixed states

For mixed states, which have a2− b2 < 1, which is usually the case in real life, the
whole situation looks even more critical. Eq. (4.5) changes to [64]

(a+ 2n̄+ 1)2 − b2

a+ 2n+ 1 + qb
< 2(n̄+ 1) .

If we now check the limit for n̄ = 0, we get

(a+ 1)2 − b2

a+ 1 + qb
< 2 .

Even for the conditioning on vacuum it is no longer possible to distill entanglement
for all phase noise strengths q. This e�ect is shown in Fig. 4.9. A initial two-mode-
squeezed state with squeezing variance Vsq = 0.158 is e�ected by di�erent losses ε.

71



Chapter 4: Emulated entanglement distillation of non-Gaussian

states: Theory

 0

 0.5

 1

 1.5

 2

 0 0.2 0.4 0.6 0.8 1

E
n
ta

n
g
le

m
en

t 
w

it
n
es

s 
µ
 (

=
V

sq
)

Dephasing parameter q

ε = 0.1
ε = 0.5

no losses

Entangled

Figure 4.9: Asymptotic limit of distilled mixed states: The entanglement witness µ for

an asymptotic distilled state with n̄ = 0 is shown for di�erent initial states.

Identical to Fig. 4.7, the red line gives the limit for a symmetric pure two-

mode-squeezed state with a squeezing variance of Vsq = 0.158. The orange

curve is calculated for the same mode after a lossy channel with a loss of

ε = 0.1 and the magenta curve for a loss of ε = 0.5.

Even for projecting on vacuum, entanglement can no longer be distilled for a non-
zero q and higher losses shift the crossing point to larger dephasing parameters.
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CHAPTER 5

Emulated entanglement distillation of non-Gaussian

states: Experimental realization

This chapter is dedicated to the experimental realization of emulated entanglement
distillation. The chapter starts with a detailed explanation of the experimental
setup, including the locking schemes and technical details. In particular, the
generation of the two-mode-squeezed state and the imprinting of the phase noise
on this state is brie�y recalled from Chapter 3. This is followed by a presentation
of the data preparation for the emulated entanglement distillation protocol. As
described in Section 4.3, the protocol for emulated distillation is performed and
the distillation results for up to three iteration steps are shown. The chapter
concludes with an investigation of the Gaussi�cation and puri�cation e�ect of the
distillation protocol and with a comparison of two di�erent distillation conditions,
namely the top-hat condition and the Gaussian condition presented in Section 4.4.

5.1 Experimental setup

In this section the experimental setup for this experiment is presented. The full
optical setup is depicted in Fig. 5.1. Details of the individual stages are explained
in the corresponding sections.
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Figure 5.1: Setup for emulated entanglement distillation of phase-di�used states: Here

the complete optical setup is depicted. The setup is divided in subparts:

light preparation (gray box), squeezing generation (green box), entangle-

ment generation (yellow box), noisy channel (orange box) and the eight-

port homodyne detectors of the two parties (red and blue box). All stages

are explicitly explained in the following sections, including description of

the locking schemes and technical details.
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Figure 5.2: Preparation of the light �elds: The Laser provides the fundamental �eld

at 1064 nm and as well the frequency doubled light at 532 nm. The light

gets spatial and polarization cleaned in a �lter resonator, providing a clean

mode for control �elds and local oscillators for the homodyne detectors.

The explanation of locking scheme and details of the resonator are given

in the main text.

5.1.1 Laser preparation and generation of squeezed states of light

Preparation of the light �elds

The light source used for the experiments presented in this thesis is a Nd:YAG
laser from the company Innolight. The continuous-wave light �eld (fundamental
beam) at a wavelength of 1064 nm has a maximum power of about 350mW. The
laser includes a frequency doubling stage (second harmonic generation, SHG) for
the generation of light at 532 nm of about 800mW which serves as a pump beam
for the squeezer resonators. Further information about the laser unit and the SHG
can be found in [66].
The �rst stage on the optical table is the spatial and polarization cleaning of

the laser beam, shown in Figure 5.2. For this purpose, the fundamental beam is
sent through a ring cavity which serves as a mode cleaner (MC). The MC ensures
that the beam is in a pure TEM00 mode and suppresses noise from the laser
source. In this experiment, the MC has a linewidth of 1.56MHz ('full width at

half maximum', FWHM) which ensures that the beam is shot-noise limited for
su�ciently small powers at the measurement frequency. The Pound-Drever-Hall
(PDH) stabilization scheme is used to stabilize the resonator [77]. Therefor the
light is phase modulated by an electro-optical modulator (EOM) at 30MHz. The
re�ected light is detected with a photo detector. The alternating current (AC) is
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converted to a voltage, demodulated at 30 MHz and lowpass �ltered. This error
signal is sent to a servo controller (PID), ampli�ed by a high voltage ampli�er

(HV) and fed back to a PZT that stabilizes the length of the MC.
With a combination of a half-wave plate (HWP) and a polarizing beam splitter

(PBS), the output �eld is split up. Two beams are used as control beams for
the squeezed-light resonators. The other part is again divided by balanced beam
splitters to provide the four local oscillator �elds for the homodyne detectors with
about 3mW per beam.
The control �elds pass another EOM, respectively, that imprints a phase mod-

ulation at 10.65 MHz/16 MHz on the respective light �eld. These modulations
are used to stabilize the length of the squeezing resonators. As the modulated
control �eld is partly transmitted through the squeezer, the phase modulations
are as well used to lock the homodyne detectors on the amplitude quadrature, see
Section 3.2.2.

Squeezing Generation

In this experiment two identical squeezed-light sources were operated to gener-
ate the vacuum squeezed states for the two-mode-squeezed state. As they were
already built up and used during other experiments, detailed informations can
be found in [66]. Each optical parametric ampli�er (OPA) contains a 7% mag-
nesium oxide doped lithium niobate (MgO:LiNbO3) crystal with the dimensions
2.5×5×6.5 mm3 as nonlinear medium. The back of the crystal is highly re�ective
(HR) for the fundamental wavelength 1064 nm and as well for the pump �eld at
532 nm and spherically curved with r = 8 mm. The opposite crystal surface is �at
and anti-re�ective (AR) coated for both wavelengths. The curved side of the crys-
tal forms the hemilithic cavity together with the coupling mirror, see Section 3.1.
This mirror has 25mm radius of curvature and is coated with a re�ectivity of 94%
for 1064 nm and 25% for 532 nm. Therefore, the cavity has a �nesse of 100 for
the fundamental beam and a �nesse of 4.3 for the pump �eld. The squeezer has
a linewidth of about 40MHz. The coupling mirror back is AR coated for both
wavelength and curved with r = 20 mm. The curvature provides a lens e�ect and
therefore reduces the divergence of the squeezed light �eld.
A stabilization on the phase matching temperature was achieved with peltier

elements which kept the crystal at a temperature of about 60 ◦C.

Stabilization of a squeezed-light source with control �eld

In this cavity design, the length of the cavity is stabilized using a control �eld at
1064 nm with an imprinted phase modulation. The setup, including the control
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Figure 5.3: Stabilization scheme of a squeezing resonator with a control �eld. The

control �eld, that couples in from the back is used to stabilize the length of

the cavity. The same photo detector signal, demodulated with 90 ◦ phase

shift to the other signal, as well is used to stabilize the pump phase.

loops, is depicted in Fig. 5.3. A PBS which re�ects vertical polarized light (s-
polarized) and transmits horizontal polarized light (p-polarized) is re�ecting the
control �eld that is tuned to s-polarization. The light �eld is passing a combination
of HWP and faraday rotator (FR) and enters in s-polarization through the curved
crystal side in the cavity. The re�ected control �eld gets rotated to p-polarization
while passing the HWP/FR combination. The �eld is therefore transmitted at the
PBS and can be detected by a resonant photo detector. The stabilization of the
cavity length is realized with the PDH technique, analogue to the �lter resonator.
The control �eld is co-propagating with the squeezed vacuum �eld. However as
this �eld is shot noise limited above a frequency of about 5 MHz, the una�ected
measurement of the squeezed light �eld is given.
The generated squeezed light �eld causes ampli�cation or deampli�cation of the

control �eld, depending on the relative pump phase. Ampli�cation corresponds
to a phase-squeezed state in relation to the control �eld while deampli�cation
corresponds to an amplitude-squeezed state. We can thus say that the relative
pump phase de�nes the squeezing angle φ, c.f. Eq. (2.35).
The pump phase is stabilized with the same photo detector which is used for the

cavity length stabilization. The AC signal gets therefor mixed with an electronic
LO phase that is 90 ◦ shifted to the LO used for the length stabilization. This
demodulated signal provides the error signal for the pump phase which is sent to
a steering mirror in the pump beam path.
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Figure 5.4: Generation of two-mode-squeezed vacuum states: Two amplitude-squeezed

states are superimposed on a balanced beam splitter with 90 ◦ phase shift.

The relative phase of the light �elds at the beam splitter is controlled with a

PZT mounted mirror in one of the squeezed light paths. The error signal for

the control loop is obtained analogously to the stabilization of a balanced

homodyne detector. For this method, a fraction of both outputs is tapped

of to generate the error signal.

5.1.2 Entanglement generation and experimental realization of

dephasing in a noisy channel

Preparation of two-mode-squeezed states

To achieve maximum entanglement, the squeezed light �elds are superimposed
on a balanced beam splitter in such a way that the squeezing ellipses are aligned
perpendicular to each other. In the experiment both squeezed-light sources are
operated to produce amplitude-squeezing in comparison to their control �elds.
Maximal entanglement is therefore achieved with 90 ◦ phase shift to generate a
two-mode-squeezed state as explained in Section 2.2.7. With respect to the control
�eld 1, the squeezing �eld 2 is then phase-squeezed.
As the control �elds need to be orthogonal to each other for this scheme, the

relative phase can be stabilized identically to the phase-quadrature stabilization
of a homodyne detector, see Section 3.2.2. For this reason, a small amount of
light is tapped o� from both output ports of the beam splitter. In one output it
is possible to measure a fraction of the light behind an HR mirror, in the other
output port a beam splitter was used which re�ects 1 % of the light to a photo
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Figure 5.5: Imprinting of the phase noise to the entangled modes. PZT mounted mir-

rors in the entanglement paths are moved according to the phase noise

distribution. This causes a path length change and thus a change in the

phase of the entangled light �elds. Both modes of the two-mode-squeezed

states are di�used individually and independently.

detector. The two photo detector signals are subtracted and provide then the
error signal for the beam splitter phase which is controlled with a PZT mounted
mirror in one of the squeezing paths.

Simulation of a noisy channel

The experimental realization of the noisy channel is performed as described in
Section 3.3 and depicted in Fig. 5.5. The strength of the imprinted phase noise on
the PZT mounted mirrors is tunable with the linear ampli�cation stage. The phase
noise can be individually set for both modes and was chosen to be uncorrelated.
For the experimental results, we performed measurements with di�erent phase
noise strengths.

5.1.3 Detection and data acquisition

Detection with eight-port homodyne detectors

The phase-di�used states are sent to the eight-port homodyne detectors. The
EHDs including their locking scheme and the data acquisition are shown in
Fig. 5.6. The phases of the balanced homodyne detectors are chosen in a way,
that the detectors in one arm measure the amplitude quadratures with respect to
control beam 1 and the phase quadratures in the other arm. With respect to the
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Figure 5.6: Stabilization scheme of eight-port homodyne detection and schematic of

the data acquisition. The individual BHDs of the EHD are stabilized or-

thogonally to each other to the phase quadratures of the control �elds, co-

propagating with the two-mode-squeezed state. The AC signals are mixed

at the measurement frequency of 6.4MHZ, lowpass �ltered and acquired

with a data acquisition card at the computer.

control beam 2, the quadratures would be exactly the opposite.
This e�ect was indeed used in the stabilization method of the detectors. The
DC-Lock, which was planned to stabilize one detector in the phase quadrature
has turned out to be less stable in time then the lock in the amplitude quadra-
ture. The problem was bypassed as one detector in each arm is stabilized in the
amplitude quadrature of one control �eld, while the other detector got stabilized
in the amplitude quadrature of the orthogonal �eld. The subtraction signal of one
homodyne detector of the EHD on each side is thus demodulated at the phase
modulation frequency 10.6MHz of control �eld 1 while the other subtraction sig-
nal is demodulated at the phase modulation frequency of 16MHz of control �eld 2.
The created error signals are fed back to phase shifters which are positioned in
the paths of the corresponding optical local oscillator.
The control loops of the homodyne detectors are implemented in such a way

that they only compensate for disturbances below frequencies of about 200Hz
which ensures that the control loops are not capable to follow the phase noise.

Data acquisition

The measurements are performed at a sideband frequency of 6.4MHz, which is
inside the squeezer linewidth and high enough to guarantee a shot-noise limited
control �eld.
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To prepare the signals for the data acquisition card, the subtracted signals of the
homodyne detector are �rst bandpass �ltered at 6.4MHz and then mixed with an
electronic LO at this frequency. The demodulated signals are then sent to a sixth
order lowpass �lter with a corner frequency of 400 kHz. The analog signals are
converted to digital samples with a 14-bit analog-to-digital conversion card PCI-

6133 from National Instruments. All four signals are simultaneously measured
with a sample rate of 1MHz.
The monitoring and data acquisition was performed with a LabView program,
based on a program written by Aiko Samblowski [78].

5.1.4 Preparation of the data

The data acquisition system saves the directly obtained voltages from the detec-
tors. To normalize the data to vacuum, an additional vacuum measurement for
each BHD is performed. From these results, the vacuum variances are calculated
and used to normalize all data samples.
The normalized data is then prepared for the distillation protocol as explained

in section 4.3. For this purpose, the complex amplitudes αj = 1√
2
(XA,j+iPA,j) and

βj = 1√
2
(XB,j+iPB,j) are calculated for the whole data set. This is �nally the data

set on which the distillation protocol is performed. Note that the di�erent pref-
actors compared to the form given in Section 2.2.5 result from the normalization
process of the data.
Additionally, the data can be used to reconstruct the covariance matrix γAB

before distillation. As the full set {XA, PA, XB, PB} is measured at the EHDs, the
covariance matrix γEHD can be obtained. From this, the covariance matrix γAB

before the EHD can be calculated by Eq. (3.3).

5.1.5 Estimation of the dephasing parameter and investigation of an

additional loss channel

From comparison of the undi�used covariance matrix γAB and the di�used co-
variance matrix γAB,PN an estimation for the phase noise in terms of the eight
dephasing parameters is possible, i.e. Section 3.3 for the method. For this reason,
an additional measurement without application of phase noise has been performed.
It turned out that the noisy channels impose as well losses to the states [64]. This
becomes obvious by a decreased trace of the covariance matrix which suggests a
reduction of the mean number of photons. The additional loss can be explained
by the technique that is used to implement the phase noise, i.e. Section 3.3. The
phase noise is implemented by a PZT that moves a mirror in the optical path and
thus changes the optical path length of the light �eld. This movement can cause
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Figure 5.7: Visualization of the lossy and noisy channel applied to the entangled state.

The implementation of the phase noise imposes as well losses to the entan-

gled modes which is visualized with an additional loss channel.

slight changes in the spatial orientation which results directly in a reduction of the
BHD visibility. This theory is strongly supported by the fact, that we observed
higher losses by stronger phase noise implementations.
The e�ciencies of these lossy channels can be estimated by [64]

ηA =
Tr(γA,PN)− 1

Tr(γA)− 1
, ηB =

Tr(γB,PN)− 1

Tr(γB)− 1
, (5.1)

with γA and γB denoting the covariance matrices of the single modes A and B
respectively.
The strength of the applied phase noise is obtained by comparison of the di�used

and undi�used covariance matrix as explained in Section 3.3. With the knowledge
of the dephasing parameter and the undi�used covariance matrix, the covariance
matrix γAB,∞ in the asymptotic limit for the distillation protocol can be calculated,
i.e. Eq. (4.3). The calculation, however, gets biased by this additional optical loss
which as well alters the covariance matrix. To avoid this problem the two e�ects
can be divided into a lossy channel and a noisy channel. Since pure loss and
phase noise are commuting operations this is possible without any restrictions.
The concept is illustrated in Fig. 5.7.
Assuming that the state is �rst passing the lossy channel, the covariance matrix

γAB transforms according to Eq. (2.51) to γAB,η. In this picture, this covariance
matrix is then exposed to the noisy channel. Therefore, γAB,η is used to calculate
the asymptotic limit via Eq. (4.3).
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5.2 The e�ect of phase noise on entanglement and the

possible recovery regime of the iterative distillation

protocol

For �rst investigations, 107 samples at each detector are acquired with di�erent
noise strength applied. The original (undi�used) state had a two-mode-squeezing
variance of Vsq = 0.41 and the PPT value, which serves as an entanglement wit-
ness, of µ = 0.46. The discrepancy between these values indicates that the original
state was not symmetric.
Phase noise is imprinted to this state which degaussi�es the state and reduces

the nonclassical properties. The full set of dephasing parameters is estimated
for each applied phase noise strength. In the following the phase noise is only
quanti�ed by the dephasing parameter q which, even if the other parameters
are not exactly zero, still provides a good marker for the phase noise strength.
However, for completeness the full set of parameters is for each measurement listed
in the appendix, see B.1. The estimated losses of the additional lossy channel are
given there as well.
In Fig. 5.8, the entanglement witness µ under the presence of phase noise is

shown by the blue dots. With increasing phase noise, the value of µ is increasing.
For µ > 1, which is here the case for approximately q ≤ 0.90, no entanglement is
visible in the second moments.
For each phase noise strength, the covariance matrix and thus the entanglement

witness µ in the asymptotic limit can be calculated with Eq. (4.3). The resulting
entanglement witnesses µ for conditioning on projection onto vacuum (n̄ = 0) are
shown with the red squares. The asymptotic limit gives the properties of the state
after an in�nite amount of iterations of the distillation protocol. The conditioning
on projection onto vacuum is the optimal conditioning, i.e. Section 4.4. Thus,
the red squares mark the absolute bound for entanglement recovery that can
be achieved by iterative distillation. Although this bound can never be reached
experimentally, the area between these two curves marks the regime in which
the distillation results for the entanglement witness µ are expected. The most
interesting part is the area, where for the undistilled state entanglement is no
longer available in the second moments but the distillation protocol is capable
of recovering this entanglement (∼ 0.90 > q > 0.35). For higher phase noise
strengths, the distillation protocol is not able to restore the entanglement. This
can be explained by the fact, that the initial state is mixed due to optical losses,
which sets a lower bound to the minimal tolerable dephasing parameter q, see
Section 4.5.3.
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Figure 5.8: Reduction of entanglement due to phase noise and theoretical analysis of

the asymptotic limit. The blue dots indicate the value of the entanglement

witness µ for a given dephasing parameter q. The red squares denotes

the minimal achievable µ value which can be achieved with entanglement

distillation. They are calculated with Eq. (4.3) for the asymptotic limit

of the distillation protocol with optimal, but experimentally not accessible

distillation threshold n̄ = 0.

5.3 Results for entanglement distillation on 107 data points

To investigate the improvement of the nonclassical properties due to the distil-
lation protocol, one iteration step is performed by splitting the samples in two
data sets that serve as inputs for the emulated distillation protocol. The distil-
lation is successful if |α−| < Tacc and |β−| < Tacc is ful�lled, which is the top-hat
condition from Section 4.4. From the reduced data set the covariance matrix of
the state before the EHD is calculated as explained in Section 5.1.4. In Fig. 5.9
the improvement for the entanglement witness µ is shown in dependence of the
condition threshold Tacc for di�erent strength of the dephasing parameter q.
It is clear to see that the undi�used Gaussian state (black crosses) is com-

pletely una�ected by the distillation process as Gaussian entanglement cannot be
distilled. For stronger phase noise (decreasing q), the distillation e�ect becomes
more signi�cant. For small dephasing parameters q, no entanglement is witnessed
in the second moments (µ > 1) for the undistilled state. For the state presented

84



5.3 Results for entanglement distillation on 107 data points

q=1     

q=0.55

 0

 0.5

 1

 1.5

 2

 2.5

 3

 0.5  1  1.5  2  2.5  3  3.5  4

E
n
ta

n
gl

em
en

t 
w

it
n
es

s 
µ

Acceptance threshold Tacc

Entangled

q=0.79
q=0.83
q=0.93

Figure 5.9: Entanglement witness µ in dependence of the acceptance threshold Tacc

after one iteration of the emulated distillation protocol. The distillation

is performed on di�erent data sets that were obtained by the detection

of states exposed to phase noise quanti�ed by the dephasing parameter q.

From the reduced data set after the distillation, the covariance matrix is

reconstructed and the PPT value µ is calculated to provide an entanglement

witness.

in Fig. 5.9 this is the case for q = 0.83 (purple squares), q = 0.79 (blue triangles)
and q = 0.55 (red diamonds). For the magenta data set the distillation protocol is
capable to restore entanglement for a distillation threshold below Tacc = 1.2. How-
ever, one iteration step is not able to restore entanglement for strongly di�used
states, e.g. for q = 0.83 and q = 0.55.
In Fig. 5.10, the improvement by performing two iterations of the distillation

protocol is shown. The successfully distilled data set from the previous section
is here again divided into half and the emulated distillation is performed. The
second iteration step increases the distillation e�ect further and the data set for
q = 0.83, which did not show entanglement after the �rst iteration of the protocol
now has an entanglement witness µ < 1 for thresholds below Tacc = 1.4.
The results for the entanglement witness µ start to scatter for small thresholds.

This can easily be understood if we recall that for two iteration steps the data
was divided in half, distilled, again divided in half and distilled again. For small
thresholds, which correspond to a lower success probability of the protocol, this
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Figure 5.10: Entanglement witness µ for di�erent dephasing parameters q after two it-

erations of the distillation protocol. The distillation protocol is performed

iteratively with the same acceptance threshold Tacc in both iteration steps.

results in small data sets that do not have enough data points for adequate statis-
tics. It is therefore natural to investigate the distillation protocol as well in terms
of the success probability. The success probability is given by

psucc =
number of successfully distilled samples

number of input samples
(5.2)

and can be seen as the �survivor rate� of the data after the execution of the
protocol. Lower success probability will result in smaller data sets and depending
on the size of the original data set, one should not distill with too small success
probability as the statistical relevance is then no longer given.
It is unlikely that a third iteration of the distillation protocol will provide enough

data for statistically relevant results. Therefore, the amount of data points taken
for one phase noise strength was increased for further analysis in the next section.

5.4 Results for entanglement distillation on 5 · 108 data

points

To investigate the e�ect of the distillation protocol for more iteration steps, a larger
data set of 5 · 108 samples was measured. As the data acquisition time increases
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Figure 5.11: Dependence of (a) the entanglement witness µ and (b) the squeezing vari-

ance Vsq for one (red, circle), two (blue, square) and three (green, triangle)

iterations of the emulated distillation protocol on the threshold Tacc. The

short fading lines give the asymptotic limit of the corresponding variable

for conditioning on vacuum n̄ = 0. The di�erence between the two values

is given by the asymmetry of the entangled state.

signi�cantly for larger data sets, this was only performed for three di�erent phase
noise strength. The distillation protocol performs qualitatively similar on each of
these data sets. Therefore only the results for one phase noise strength will be
shown in the next session.
The undi�used data is again used to reconstruct the covariance matrix before

the BS with Eq. (3.3). From this data, the entanglement witness is calculated to
µ = 0.49 and the two-mode-squeezing variance is calculated to Vsq = 0.49 for the
undi�used state. The phase noise applied to this state is calculated to q = 0.78.
Like in the previous measurement, the noise application adds as well losses to the
entangled states and according to Eq. (5.1) the e�ciencies of the lossy channels
are calculated to ηA = 0.87 and ηB = 0.95. For calculations of the properties
in the asymptotic limit the covariance matrix γAB,η of the state after the lossy
channel are used as described in Section 5.1.5.
Three iteration steps of the distillation protocol were performed on the data

set with the top-hat distillation condition |α−| < Tacc and |β−| < Tacc. The e�ect
on the PPT value µ and the squeezing variance Vsq is shown in Fig. 5.11 for the
three iteration steps. An improvement of these properties with every additional
iteration is visible. For small acceptance thresholds Tacc and increasing iterations,
the values for µ and Vsq of the distilled state start to look scattered again. The
uncertainty of the distillation results due to these statistical e�ects is quanti�ed by
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Figure 5.12: Dependence of (a) the entanglement witness µ and (b) the squeezing vari-

ance Vsq for one (red, circle), two (blue, square) and three (green, triangle)

iterations of the emulated distillation protocol on the success probability

psucc. The short fading lines give the asymptotic limit of the correspond-

ing variable for conditioning on vacuum n̄ = 0.

error bars. Therefore, a bootstrapping method is applied to give a 2σ-con�dence
interval. This method is brie�y explained in Appendix B.2.
The short fading lines in the bottom give the calculated values for µ and Vsq

in the asymptotic limit with conditioning on vacuum. It is quite remarkable how
close the distilled properties approach to this limit after the third iteration step.
The true strength of the emulated iterative protocol gets revealed if the results
of the iteration steps are analyzed regarding their success rate as it is done in
Fig. 5.12. The results from Fig. 5.11 are here presented in dependence of their
success probability psucc, see Eq. (5.2). It is clear to see that the curve for the
�rst iteration step is crossing the curve for two iteration steps in the range for
10−2 < psucc < 10−1. The crossing points mean that from this point on a higher
entanglement witness can be achieved with the same success probability if two
iterations of the protocol are performed instead of one. Thinking in costs for the
experimentalist, one looses less data points for the same distillation result. The
crossing point between two and three iterations can be seen for 10−4 < psucc < 10−3

although the data is there already quite a�ected by statistic uncertainties.
This result is remarkable as one would �rst intuitively question if the iterative

protocol is e�cient in terms of success probability. The decision for an additional
iteration step reduces the amount of data by default to half as the data needs
to be split for the protocol. However, a higher entanglement recovery for less
iterations needs a stricter threshold which also decreases the success probability.
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Figure 5.13: Dependence of the Gaussian purity PG for one (red, circle), two (blue,

square) and three (green, triangle) iterations. (a) Dependence on the

threshold Tacc. (b) Dependence on the success probability psucc. The

short fading lines give the asymptotic limit for conditioning on vacuum

n̄ = 0. The error bars are obtained by a bootstrapping technique, i.e.

Appendix B.2.

The optimal way is therefore always a trade-o� between these two processes which
can be explored and tested with the emulated distillation protocol.

5.5 Further veri�cations for the success of the distillation

Increase of purity

As discussed in Section 4.2.1, a successful distillation will also increase the purity
PG of the state, see Eq. (4.1). In Fig. 5.13, the Gaussian purity PG is plotted
for the distilled states depending on the distillation threshold Tacc (a) and the
success probability psucc (b). The increase of this parameter strongly suggests an
improvement of the state purity. The short fading line presents the optimal value
of the asymptotic limit. The general low purity of the state is caused by the
mixedness of the undi�used state due to optical losses.

Increase of Gaussianity

Since the distillation protocol presented here is mainly working as a Gaussi�cation
protocol it is also possible to monitor this Gaussi�cation process. Gaussian states
are completely determined by the �rst and second moments. As the phase noise
degaussi�es the state this results in an increase of the higher moments, i.e. Sec-
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Figure 5.14: Dependence of the skewness on the threshold Tacc for the four quadra-

tures for the undistilled state (black, cross) and the state after one (red,

circle), two (blue, square) and three (green, triangle) iteration steps. The

skewness is calculated according to Eq. (2.9).

tion 2.1.3. In Figs. 5.14 and 5.15, the skewness and the excess kurtosis are shown
for all four quadratures of the undistilled state (black crosses) and after the �rst
three iteration steps (color coding as before) in dependence of the acceptance
threshold Tacc.
The dephased state shows non-zero higher moments which indicate that the

state is non-Gaussian while the distilled states show values closer to zero with
each iteration step. The discrepancy of the excess kurtosis is hereby bigger then
the deviations of the skewness. This is clearly caused by the general form of the
applied phase noise which was designed to be symmetric on the state. As the
skewness is a marker for the lopsidedness of the distribution, a symmetric noise
does not increase the skewness signi�cantly. However, the fact that the skewness
does not stay zero shows that the phase noise was not perfectly symmetric. This
is as well seen by the other phase noise parameters, see App. B.1.
In contrast, if we recall the e�ect of phase noise on a Gaussian distribution

in Fig. 2.5, we see that it causes a clear tailedness of the distribution. This is
con�rmed by the comparable high values of the excess kurtosis for the undistilled
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Figure 5.15: Dependence of the excess kurtosis on the threshold Tacc for the undis-

tilled state (black, cross) and the state after one (red, circle), two (blue,

square) and three (green, triangle) iteration steps. The excess kurtosis is

calculated according to Eq. (2.10).

state in Fig. 5.15. Here, the improvement by the iteration steps is clearly visible.
The �uctuations for the second and third iteration step at small acceptance thresh-
olds can again be explained with the small residual data set and thus statistical
problems.

5.6 Comparison to conditioning on projections onto

thermal states

Up to now, we performed the distillation protocol with the top-hat condition in
form of a sharp threshold in phase space, i.e. Section 4.4. It is not intuitively clear,
that this condition leads to a distillation e�ect for non-zero Tacc. However, the
distillation results show clearly the success of the protocol with this threshold. For
comparison in this section the distillation results with the Gaussian conditioning
on thermal states with mean photon number n̄ are presented. The distillation is
performed on the same data set as in the previous section. To give a comparability
to the conditioning with Tacc as the tunable parameter, the distillation results are
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Figure 5.16: Dependence of (a) the entanglement witness µ and (b) the squeezing vari-

ance Vsq for one (red, circle), two (blue, square) and three (green, triangle)

iterations of the emulated distillation protocol. Here the distillation is

performed by conditioning on projections onto thermal states with mean

photon number n̄. The distillation results for µ and Vsq are given in de-

pendence of
√
n̄. The black line gives the asymptotic limit for conditioning

on a thermal state with the respective n̄. The short fading line gives the

asymptotic limit for conditioning on vacuum, n̄ = 0.

shown in dependence of
√
n̄. The explanation for this connection is given at the

end of Section 4.4.
In Fig. 5.16, the distillation results for the entanglement witness µ and the

squeezing variance Vsq for conditioning on projection onto thermal states is pre-
sented. As the asymptotic limit can be calculated for each n̄, the limit is given by
the black curve in each of these plots. It is clear to see that the distillation results
are following the slope of the asymptotic limit. As well it becomes obvious, that
the distillation results of one iteration has more or less the same distance to the
asymptotic limit, regardless the value of n̄. This underlines the good performance
of the iterative distillation protocol even after the execution of three iteration
steps. Compared to the top-hat condition, the qualitative behavior is identical
and the improvement with each iteration is visible. However, the data is more
scattered for three iteration steps already by larger thresholds. This is caused by
the additional randomness, that is introduced due to the condition.
To conclude, both methods show obvious distillation e�ects on the data which

increases with increasing number of iterations and gets better the closer the distil-
lation condition is chosen to the successful projection onto vacuum states. How-
ever, the top-hat condition showed for the same data set smoother curves which
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is caused by the additional randomness of the other protocol. This approves the
choice for the top-hat condition for the main analysis of the protocol. Neverthe-
less, the other condition showed as well satisfying distillation results and veri�es
the overall good agreement with the theoretical modeling of the asymptotic limit
as shown in Fig. 5.16.

5.7 Conclusion

In this chapter we presented the measurement, postprocessing and analysis of data,
taken for emulated entanglement distillation. The entanglement source is a two-
mode-squeezed state, created by the overlap of two squeezed vacuum states. The
noisy channel is simulated with PZT mounted mirrors in the entanglement paths,
which enables to add di�erent strength of phase noise to the modes. The entangled
di�used modes are detected with an eight-port homodyne detector respectively.
Afterwards the distillation protocol as introduced in Section 4.3 is performed in
the postprocessing.
The measurement results for di�erent phase di�usion strength are shown for

two iteration steps. For a larger data set up to three iterations of the emulated
distillation protocol are realized. The increase of nonclassical properties like en-
tanglement and two-mode squeezing is presented but as well the improvement of
purity and Gaussianity of the state is veri�ed. Especially we showed, that the pro-
tocol is capable to restore quadrature entanglement (µ < 1) from dephased states
which do not exhibit any entanglement witness in the second moments. The theo-
retically calculated asymptotic value for all properties provides a comparison how
good the protocol has performed. We made a comparison to a di�erent distilla-
tion condition and showed that the simple condition with a sharp threshold is well
suited for the distillation protocol. The plots for the properties in dependence of
the success probability psucc show the strength of the emulated distillation pro-
tocol as one can optimize the distillation parameter for a maximum amount of
surviving data.
The emulated distillation protocol presented in this chapter does not provide a

distilled state that is physically available for subsequent experiments. Thus, this
distillation protocol is not capable to improve states e.g. for quantum teleporta-
tion. However, for an external observer, the distilled data set of the emulated
distillation shows no di�erence to the result from a physical implementation of an
iterative distillation with a subsequent EHD measurement.
Consequently, this protocol is particularly well suited for all experiments that

terminate with an eight-port homodyne detector measurement. This makes this
protocol especially interesting for quantum key distribution protocols [79�81]. For
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such protocols the secret key rate can be improved by emulated distillation of the
distributed data.
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CHAPTER 6

Prerequisites for emulated entanglement distillation of

Gaussian states

This chapter is dedicated to the development of a stabilization scheme for eight-
port homodyne detection without the need of a bright light �eld co-propagating
with the squeezed vacuum �eld. To test these techniques, the stabilized detection
of a squeezed vacuum �eld with an eight-port homodyne detector (EHD) is real-
ized. In the experiment presented in Chapter 5, a control �eld with an imprinted
phase modulation is used to stabilize the length and phase of the squeezed-light
source as well as the relative phases between light �elds interfering on the beam
splitters for entanglement generation and balanced homodyne detection. The
presence of a bright light �eld however makes the usage of single photon detectors
like APDs di�cult or even impossible. These detectors are sensitive to single
photons and are quickly saturated even for low intensities.

In this chapter, we will �rst motivate why there is a need for EHD without
a bright light �eld as such a setup is necessary for emulated entanglement dis-
tillation against optical losses. Then the experimental setup is described and a
characterization of the utilized squeezed-light source and the homodyne detectors
is given. We present as well a method to stabilize the phases of the EHD without
a bright light �eld in the signal path. In the following section, a stabilized mea-
surement of a squeezed vacuum �eld with the EHD is presented and the quality
of the state measured with the EHD is compared with a direct measurement of
the squeezed state on just one BHD. The chapter concludes with the presentation
of the idea how the locking scheme for the phases can as well be used for the sta-
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bilization of �lter cavities in a single photon path. The experiment provides thus
all techniques to perform a generic emulated distillation on Gaussian squeezed or
v-class entangled states.

6.1 Motivation - Distillation against optical loss

This section gives the motivation for an experimental setup that works without
a bright light �eld and as well points out the requirements on the experimental
setup. The implementation of the single photon subtraction is brie�y sketched to
highlight the needs for the setup. For detailed information the reader is referred
to the given references.

The experiment presented in Chapter 5 shows the successful realization of
an emulated multi-copy iterative entanglement distillation protocol. The emu-
lation, based on EHD, makes the iterative protocol feasible. The distillation is
performed on degaussi�ed states which enables a distillation method only with
Gaussian operations. However, as mentioned in the theoretical treatment of
distillation, i.e. Chapter 4, the distillation protocol can as well be performed on
Gaussian states, e.g. to distill optical loss. In this case, one needs to implement
a non-Gaussian operation to the distillation protocol to circumvent the no-go
theorem, i.e. Section 4.1.
A method that is already exploited in several experiments as [30, 31] is the

subtraction of a single photon from an entangled state. This is a non-Gaussian
operation that leads to a degaussi�cation of the state. The distillation can then
be performed with the Gaussi�cation protocol analogue to the distillation of the
phase-di�used states.
Experimentally, single photon subtraction is realized by implementing a beam

splitter with a very low re�ectivity in the path of the signal �eld. For a su�ciently
low re�ectivity, only a single photon is tapped o� and the probability for re�ection
of more then one photon at the same time is small. An APD detecting the re�ected
part can herald the presence of this photon which means that the photon has been
subtracted from the signal �eld. The signal �eld itself is detected with a BHD or
an EHD. The states reaching the detector are mixtures of the una�ected Gaussian
entangled states and the degaussi�ed states where a single photon is subtracted.
Conditioning of the detector on the heralding of the APD will select only the states
which show the non-Gaussian statistic and enables the subsequent distillation.
Experiments to distill Gaussian states with conditioned photon subtraction have

already be performed by [30, 31]. In this experiments, solely the subtraction of
a single photon from each of the entangled modes was performed without a sub-
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sequent distillation protocol as this already shows an improvement in the entan-
glement witness of the state. Combined with the emulated distillation from the
previous chapter, the conditioned eight-port homodyne detection of the entangled
modes would provide a generic distillation protocol which yields the measurement
results of Gaussian puri�ed states as outcome. The reader should note that the
distillation of optical loss is only capable to counteract losses that happen before
the photon subtraction. Losses that happen afterwards are still a�ecting the state.
Therefore the subtraction should ideally happen in the last possible step and the
detection still needs to be performed with high quality photo detectors.

6.1.1 Requirements for the experimental realization

The implementation of APDs imposes several restrictions on the experimental
setup. As already mentioned, single photon detectors are designed for small in-
tensities. Any bright light �eld co-propagating with the signal �eld is also partially
re�ected and this part can saturate the detector or even destroy it. Additionally,
subtracted photons from the co-propagating �eld are as well detected by the APD
and cause a herald signal. In this case however the signal �eld is not degaussi�ed
which results in a mixed detected state that will reduce the success of the distilla-
tion. For this reason a realization without an additional bright �eld co-propagating
with the signal �eld is desirable.
The second restriction is that single photon detectors do not measure frequency

resolved. That means that, within their frequency bandwidth which is usually
quite broadband, they herald every photon arriving in the same way, regardless
of the frequency. A BHD however is limited to a frequency range given by the
photo diodes and the electronics of the detector. A heralded photon from the
APD in a frequency range where the BHD is blind will result in the measurement
of vacuum. This appears as optical loss on the state at the detector, unavoid-
ably decreasing purity and entanglement of the state. The bandwidth of the light
impinging on the APD should therefore be �ltered to match the range of the
detector. This can be realized with �lter cavities in the re�ected single photon
path as for instance demonstrated in [30, 82]. The correct choice of the detection
bandwidth is depending on several conditions that need to be considered. First,
the linewidth of the �lter cavities in front of the APDs should not be chosen too
narrow. The implementation of �lter cavities with small linewidth in comparison
to the squeezer linewidth can cause problems to correlate the single photon event
to the corresponding state on the homodyne detector due to long intra cavity
round trip times [82]. On the other hand, the two-mode-squeezed light �eld has
a limited bandwidth in which the entanglement is present. The bandwidth of the
entanglement is depending on the bandwidth of the squeezed-light sources provid-
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ing the squeezed states for the entangled state. As the detected entanglement will
be an average of the entanglement strength over the whole frequency bandwidth,
this gives an upper limit to the measurement frequency range. The BHD should
also be �at in the measurement bandwidth as its transfer function would a�ect
the detected signal �eld otherwise.
To conclude, the optimal frequency band is depending on the linewidth of the

squeezed-light source and the desired average entanglement. The homodyne detec-
tors should be capable to measure sideband frequencies in the whole measurement
frequency range and provide a �at transfer function. Within the possibilities of the
detector frequency range and the available squeezing at di�erent frequencies, the
measurement range should be chosen as high as possible to avoid problems in the
correlation between the single photon event and the detector measurement. In the
following section the experimental setup will be introduced. Keeping the consid-
erations that we just made in mind, the linewidth of the squeezed-light source will
be characterized and a suitable homodyne detector will be presented. Squeezed
light resonator and homodyne detectors will be stabilized with a method that does
not rely on a control �eld co-propagating with the squeezed vacuum �eld.

6.2 Experimental setup

In this section the complete experimental setup is presented for the stabilized
eight-port homodyne detection without bright light �eld. The setup is depicted
in Fig. 6.1 and consists of the laser light preparation, the squeezed-light source
and the eight-port homodyne detection. The stabilization schemes are explained
in detail in the respective sections. This section contains as well a presentation
and characterization of the squeezed-light source and the broadband homodyne
detectors used for this experiment.

6.2.1 Laser light preparation

The light source used in this experiment is the same as in the previous experi-
ment. As far as basic information or the stabilization techniques are identical to
the previous experiment, a detailed description is skipped here and the reader is
referred to Chapter 5.
An EOM imprints a phase modulation at 72 kHz onto the infrared light �eld at

1064 nm. This phase modulation is used for the PDH stabilization of the mode
cleaner length. In this experiment the MC has by design a linewidth of 751 kHz
for s polarized light, a �nesse of 950 and roundtrip length of 42 cm. The spatial
and frequency cleaned output light is divided by two HWP/PBS combinations.
Two �elds serve as local oscillators for the eight-port homodyne detector and one
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Figure 6.1: Setup for stabilized EHD without a bright light �eld. The setup includes

the laser preparation (grey box), the squeezed light generation (green box)

and the eight-port homodyne detector (blue box). Technical details and

the stabilization schemes are given in the following sections.

beam serves as an adjustment �eld for the squeezed-light source. This �eld is
not used for the measurements but practical to adjust the paths of the squeezed
vacuum �eld.

6.2.2 The squeezed-light source

The squeezer design presented in Chapter 5 relies on a control �eld with a phase
modulation to stabilize the length of the cavity. For this reason, a di�erent type
of squeezed-light source was used in comparison to the previous experiment.
The nonlinear medium is a periodically poled potassium titanyl phosphate (PP-

KTP) crystal with the dimensions 2.5× 5× 6.5 mm3. The curved back side of the
crystal with r = 10 mm was HR coated for the fundamental and the pump �eld.
The re�ectivities for the coupling mirror where given by 89% for the infrared and
97.5% for the frequency doubled �eld. As the re�ectivity for the pump �eld is
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Figure 6.2: Setup of doubly resonant squeezed-light source. The green pump �eld

is passing an EOM which imprints a phase modulation at 52MHz onto

the light. A balanced beam splitter divides the �eld. While one output is

directly dumped, the other part enters the squeezed-light resonator through

the coupling mirror. As the squeezed-light resonator forms as well a cavity

for the pump �eld, the re�ected light, detected at the other output of

the balanced beam splitter provides the error signal for a control loop.

The signal is fed back to the PZT of the squeezing cavity to control its

length. Careful temperature tuning ensures that the pump �eld and the

infrared �eld are resonant and phase matched at the same time, enabling

the squeezing process.

chosen signi�cantly higher then for the resonator in Section 5.1.1, the hemilithic
construction does not only form a cavity for the fundamental �eld but as well for
the second harmonic �eld. The intracavity power of the pump �eld is therefore
increased and the setup requires less incident pump power for strong squeezing
generation. This so-called doubly resonant cavity design is already successfully im-
plemented in several works, for instance in [83] where they provide a new squeezing
record of 15 dB with this design.

6.2.3 Stabilization of the squeezed-light source with the pump �eld

The doubly resonant cavity has the additional advantage that no additional control
�eld at 1064 nm is needed to stabilize the cavity length as this can be realized with
the second harmonic �eld. A phase modulation is imprinted on the pump �eld
with an EOM at 52MHz. The green light passes a balanced beam splitter, where
the transmitted port is directed into a beam dump. The re�ected part is sent to
the squeezing resonator, transmits through a DBS and enters the cavity through
the coupling mirror. The re�ected light �eld of the cavity is divided as well on
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the balanced beam splitter and the open port is used to implement a resonant
photo detector. The length of the cavity is stabilized with the PDH scheme via
the pump �eld as depicted in Fig. 6.2.
The temperature of the doubly resonant cavity needs to be chosen in such a way

that the generated squeezed light �eld at 1064 nm and the pump �eld at 532 nm is
resonant for the same cavity length. The optimal point which was closest to the
�phase matching temperature� of the resonator (e.g. Section 3.1) was determined
to be around 33 ◦C.

6.2.4 Characterization of the squeezed-light source

The squeezer is characterized with an additional path, guiding the squeezed light
�eld directly onto one of the homodyne detectors. Via this short cut, a mea-
surement of the squeezed light �eld for di�erent pump powers is performed at
a sideband frequency of 5MHz using a resolution bandwidth (RBW) of 300 kHz
and a video bandwidth (VBW) of 300Hz. As the absorption of the pump �eld
in the crystal changes its temperature signi�cantly, the temperature needs to be
optimized for every pump power to ful�ll the double resonance and phase match-
ing condition. The result is depicted in Fig. 6.3. The depicted variances are dark
noise corrected and normalized to the vacuum variance. The dark noise clearance
for this measurement was 14 dB.
The dark noise corrected values of the squeezed and anti-squeezed quadrature

are used to estimate the total losses on the squeezing. The losses are consequently
calculated to be about 7-8% for this measurement. The losses are mainly domi-
nated by the visibility between the signal �eld and the local oscillator in this path
which is about 98% and propagation losses. As some changes in the experimental
setup were done between this measurement and following measurements presented
in this section, the optical losses for the measurements are always given. The
depicted data is �tted by the theoretical model that gives the expected squeezed
and anti-squeezed variance in dependence of the optical losses and the pump
power relative to the threshold, i.e. [84]. The calculated curves are as well shown
in the �gure as solid lines. The theoretical model was used to estimate the
expected pump threshold of the squeezed-light source to be about Pth = 56 mW.
It should however be mentioned that the mode matching of the pump beam to
the squeezing resonator is only about 70% due to a bad beam quality of the green
pump. Therefore, all given pump powers need in principle to be corrected for the
mode matching and multiplied by 0.7. This gives us the threshold value for the
pump power in the correct mode to be about 39mW. However, as these are just
estimated values, the pump power values in Fig. 6.3 are the actual input powers.
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Figure 6.3: Dependence of squeezed and anti-squeezed variance in dB on the pump

power in mW: For di�erent pump powers the squeezed and anti-squeezed

variance is detected directly on a balanced homodyne detector. The data

is dark noise corrected and normalized to vacuum. The pump power is

measured with a power meter whose accuracy is quali�ed by the error bars

of 10%. The measurement is performed at a sideband frequency of 5MHz

with a RBW of 300 kHz and a VBW of 300Hz. The total losses on the

squeezed light �eld are calculated to be about 7-8%. The data shows a

good agreement with the theoretical �t.

To determine the linewidth of the squeezer, a measurement of the squeezed and
anti-squeezed variance over the frequency spectrum between 3MHz and 200MHz
is performed. For this measurement 25mW pump power entering the squeezing
resonator is used and the local oscillator beam has a power of 15mW before the
BHD beam splitter. The dark noise corrected and vacuum normalized results are
depicted in Fig. 6.4. The spectrum shows clearly the decrease of the squeezing
and anti-squeezing towards higher frequencies. The spectrum is �tted as well
with the model of the squeezed-light source, now in dependence of the sideband
frequency. The �t gives an estimation for the linewidth of the squeezed-light source
to 110MHz(FWHM). The optical losses for this measurement are calculated to be
13.9%. At a sideband frequency of 100MHz a squeezing variance of 2 dB below
vacuum variance is still visible. The measurement range up to 100MHz seems
reasonable for a squeezing or entanglement measurement.
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Figure 6.4: Vacuum normalized and dark noise corrected spectrum of the squeezed-

light source. The measurement is performed with 25mW pump power and

15mW in the local oscillator path before the beam splitter. The measure-

ment is performed over a spectrum from 3MHz to 200MHz with a RBW

of 300 kHz and a VBW of 300Hz. The spikes in the spectrum are external

disturbance frequencies, that are picked up by the detector due to antenna

e�ects. Improvements in the shielding of the cable and the BHD electron-

ics can possibly avoid these pick-ups.The curves are �tted with a model of

the squeezed-light source. The spectrum shows a good agreement with the

theoretical model.

6.2.5 Characterization of the broadband homodyne detector

The experimental realization of distillation against phase noise, presented in the
previous chapter, measures at a distinct sideband frequency of 6.4MHz. In con-
trast, the detector for this setup, which shall be used for the distillation against
optical losses, is not measuring frequency resolved but broadband over the whole
measurement range. The homodyne detector thus needs to show a �at response
and has to be su�ciently sensitive in this range. The concrete spectrum range will
�nally be de�ned by the �ltering of the APD path. Note, that the �lter cavities
will just give an upper limit to the frequency range as the �lter cavities only cut
out an area around the center frequency. As determined from the linewidth of the
squeezed-light source in the previous section, the frequency range for this exper-
iment was set to 100MHz. This ensures that enough squeezing is available over
the whole range while it is still large enough to enable appropriate �lter cavities
for a future single photon path.
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For the realization, a broadband homodyne detector design, originally designed
for gigahertz squeezing experiments, is used. The design was developed by Moritz
Mehmet and Stefan Ast, a detailed description can be found in [85,86]. To reduce
additional losses in the detection, the homodyne detectors use high e�ciency
custom made InGaAs photo diodes with design quantum e�ciencies of about
99%. The photo diodes have 500µm active area. This reduces the bandwidth
in comparison to the photo diodes of the original design, which have an active
area of 70µm, but it is still fast enough for our desired measurement range. For
the eight-port homodyne detection both homodyne detectors are assumed to be
identical as they are used to reconstruct the quantum state. Di�erences in the
performance of the detectors would disturb this reconstruction, therefore the
response of both photo detectors should be identical over the whole measurement
spectrum as well.
To conclude, the detector for this experiment is an EHD with a �at spectrum that
is sensitive up to 100MHz. The EHD consists of two BHD, that need to perform
identically over the whole frequency range to ensure a reliable reconstruction of
the state for all frequencies.

Fig. 6.5 shows the internal electronic noise (dark noise) and a vacuum measure-
ment for a local oscillator power of 15mW for a spectrum from 3MHz to 200MHz.
Up to 100MHz the spectrum has a dark noise clearance of 15 dB and is almost
�at over the whole range. Both detectors perform identically for the same LO
power of 15mW. The decrease of the vacuum noise slightly before 100MHz in-
dicates the limited bandwidth of the photo diodes. As the deviations are small,
this should still be su�cient in terms of �atness. The LO power of 15mW before
the entanglement beam splitter was chosen for all measurements shown in this
chapter.

6.2.6 Phase stabilization of the measurement

First considerations

If we recall the previous setup of Chapter 5, we see that all points in the experi-
ment, where the relative phase of two beams to each other needs to be stabilized,
are depending on the control �eld that co-propagates with the squeezed vacuum.
Here, the experiment is not feasible with bright light �elds which creates the need
to provide a di�erent stabilization scheme.
There are three phases that need to be stabilized. First, there is the phase of

the pump �eld entering the cavity which de�nes the quadrature that is squeezed.
The other two phases that need to be controlled are the relative phases between
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Figure 6.5: Comparison of the BHDs. Dark noise and vacuum noise of the two BHDs

used for the EHD are shown in the frequency range from 3MHz to 200MHz.

The curves are labeled with the number 1 and 2 corresponding to the

respective BHD. Both detectors show almost the same dark noise and equal

vacuum noises over the whole spectrum for 15mW local oscillator power

at each BHD. The peaks visible in the dark noise spectrums are electronic

pick ups from PDH frequencies on the table. RBW: 300 kHz, VBW: 300 Hz,

sweep time: 1.8 s, curves are averaged �ve times.

the LO and the signal �elds on the homodyne detectors. These phases de�ne the
quadrature that is measured on the respective detector. Visually speaking, the
pump phase causes a rotation of the ellipse in phase space while the local oscillator
phase causes a rotation of the measurement axis relative to this phase. When a
light �eld with an imprinted phase modulation is co-propagating with the squeezed
vacuum, a phase reference is provided and these e�ects can be distinguished. If just
a squeezed vacuum state is investigated the two phase shifts are indistinguishable.
Note that drifts of the pump phase are seen on both BHD in the EHD scheme
while changes in the local oscillator phase are just visible on the respective BHD.
As we need to stabilize the phases of both local oscillators independently of each

other, the idea is to control only the local oscillator phases while the pump phase
is drifting. As phase drifts are slow, the local oscillator phase can follow the phase
of the pump as the two e�ects are indistinguishable.
To ensure the correct operation of the EHD it is important that both BHDs are

stabilized orthogonally with respect to each other. This condition is satis�ed if
one BHD is stabilized to the squeezed quadrature with minimal variance while the
other one is stabilized to the anti-squeezed quadrature with maximal variance,.
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Figure 6.6: Stabilization scheme for the phases of the EHDs. The subtracted signals

of the homodyne detectors are bandpass �ltered at 5MHz, mixed with

an electronic LO at 5MHz and lowpass �ltered consequently with a 4th

order lowpass at 500 kHz. The �ltered signal is sent to a computer and

converted to a digital signal with ADCs. A LabView program generates an

error signal for both homodyne detectors to stabilize them orthogonally.

The feedback signal is ampli�ed by an HV ampli�er and directed to phase

shifters in the LO paths.

Even a rotating squeezing ellipse does not destroy the orthogonality, since the
locks ensure that the readout axis will be rotated by the same amount, resulting
in a constant 90 ◦ phase shift between the detectors.
In this section such a method to stabilize on the maximal or minimal variance

is presented.

Stabilization with digital feedback

The method for the stabilization of the phases is based on a not yet published
digital locking scheme from Axel Schönbeck and was developed in close coopera-
tion with him. The aim of this lock is to stabilize the measurement axes of the
homodyne detectors along the main axis of the squeezing ellipse.
Even though the EHD imposes 50% loss on the squeezed state, some squeezing
is still present at both detectors. An aligned squeezing ellipse means that one
detector measures anti-squeezing and the other detector measures the squeezed
quadrature. Thus, the readout phase of the LOs are stabilized to the maximal
variance on one detector and to the minimal one on the other detector.
The experimental setup is depicted in Fig. 6.6. The AC signals of the BHDs
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are directed to custom-made electronic circuits, that provide a duplicate af the
input. This duplicates each are directed to a spectrum analyzer for monitoring
of the state. As the impedance matching of these circuits is not perfect over
the whole frequency range, the dark noise of the duplicated signals are slightly
a�ected for high frequencies. The signal itself is bandpass �ltered at 5MHz. This
frequency was chosen because we expect high squeezing levels in this range due to
the previous direct measurements of the squeezed light. The signal is then mixed
with an electronic LO at 5MHz and lowpass �ltered with a 4th order lowpass at
500 kHz to get a DC signal. This signal is in principle now a voltage stream from
which the variance of the signal �eld can be calculated. The �ltered signals are
directed to an analog digital converter (ADC) and simultaneously measured by
a data acquisition card PCI 6259 from National Instruments with a sample rate
of 500 kHz. The feedback signal is converted by the AD converter to an analog
signal, ampli�ed in a HV ampli�er and feedback to the phase shifters in the local
oscillator paths.
The program that creates and processes the error signal and provides the feedback
signal is written in LabView and the single steps for the loop are shortly sketched
in the following.

Preparation of the program The program takes chunks of k samples of
the raw data from which the variance of the data set is determined. During all
measurements presented, the chunk size was chosen to be k = 3000. To give
an unbiased interface for the comparison of both detectors, the variances are
normalized to vacuum. This is realized by a preliminary measurement of vacuum
where the averaged variance is locally stored in the program. To determine the
maximal and minimal variances for the setpoints of the control loop the phases of
both homodyne detectors are shifted continuously. If all parameters are de�ned,
the control loop can be started.
Obtain variances and PI controller For the actual control loop, the phases

are no longer scanned. From the raw data set of length k the actual variance of
the squeezed vacuum �eld on the detector is calculated and vacuum normalized.
This denotes the actual value for our control loop. The actual value and the
previous obtained setpoint are fed to a PI controller which is an implemented
routine of Labview. The output signal cannot serve directly as an error signal. As
the stabilization is performed on a maximum or minimum, the sign of the error
signal needs to be determined in an additional step.
Obtain the sign for the feedback signal To determine if the voltage at

the PZT has to be increased or decreased to reach the setpoint and correct for
external disturbances, we compare the actual value of the variance of measurement
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m with the previous measured variance of measurement m− 1. If the calculated
variance of measurement m is further away from the setpoint than the variance
of measurement m − 1, the sign of the feedback signal needs to be inverted as
the voltage was corrected to the wrong direction. For the stabilization on the
anti-squeezing, this means explicitly Var(m) < Var(m − 1) and analog for the
stabilization on the squeezed quadrature Var(m) > Var(m− 1).
As one comparison would be to vulnerable to small �uctuations in the variance,

the amount of comparisons is determined to 3. Only if the variance decreased (or
increased) for the last three rounds of the control loop on the anti-squeezed (or
squeezed) quadrature, the sign of the feedback signal is inverted.
Feedback to the phase shifters in the local oscillator paths The feed-

back signals are converted with digital analog converters and ampli�ed by HV
ampli�ers. This signal is fed back to the phase shifters, controlling the phases of
the LO �elds.

Performance of the digital control loop

The digital control loop stabilizes the phases of the homodyne detectors. The
digital loop frequency is about 120Hz, which gives the maximum disturbance fre-
quency that can be compensated for by the loop. The loop frequency is mainly
limited by the speed of the data acquisition card which is 500 kHz per channel at
maximum. As 3000 samples per loop are acquired, simply the data acquisition
for the variance calculation limits the loop frequency to 500 kHz/3000 ' 166 Hz.
Additionally, disturbances that occur randomly are observed. The origin of these
disturbances has not been identi�ed yet. As the disturbances are as well present
when the locking scheme is applied on a di�erent experimental setup, the problem
needs to be in the locking scheme itself and not e.g. in the electronics of the ho-
modyne detector. Possible reasons can be problems with the conversion between
analog and digital signals either at the input or at the output side. As the dis-
turbances occur randomly, the measurements presented in this chapter could be
acquired in the disturbance free breaks. The measurement results are thus not
a�ected by this problem.

6.3 Measurement with the stabilized EHD

In this section the measurement results of a stabilized measurement of squeezed
vacuum with the eight-port homodyne detector are presented. For this measure-
ment, no control �eld is co-propagating with the squeezed vacuum and the phases
of the homodyne detectors are controlled with the digital locking scheme. The
shifts of the pump phase of the squeezed-light source are not controlled for this
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measurement but compensated for by the control loops of the homodyne detectors
which are following the slow drifts of the pump phase.
The measurement is performed in such a way that both detectors are monitored

at the same time with two di�erent spectrum analyzers. BHD1, which is stabilized
to the squeezing quadrature is measured with spectrum analyzer 1 (FS1) while
BHD2, which is measuring the anti-squeezed quadrature of the mode is readout
with spectrum analyzer 2 (FS2), both devices from R&S. This procedure enables
the simultaneous detection of both �elds but causes di�erent absolute values as
the electronic noise of the spectrum analyzers is di�erent. Thus, we indicate for
all measurements that are presented which device has been used, given by the
additional abbreviation �FS1� or �FS2� respectively.

6.3.1 Measurement at a sideband frequency of 5MHz

Both balanced homodyne detectors measured simultaneously at a sideband fre-
quency of 5 MHz. The RBW and VBW of both spectrum analyzers were set to
300 kHz and 300 Hz and the sweep time was set to 300 ms. To allow for an ex-
act comparison, both measurements are normalized to vacuum. The squeezed
quadrature shows a variance which is 2.2 dB below the vacuum variance while
the anti-squeezed quadrature shows a variance of 14.2 dB above the vacuum vari-
ance. The dark noise of the corresponding detector was 17.2 dB below vacuum
for the squeezing measurement and 17.7 dB below vacuum for the anti-squeezing
measurement. If we correct for dark noise, the squeezed variance is increased to
2.3 dB noise suppression, the anti-squeezed variance does not change under dark
noise correction due to the larger dark noise clearance. Both curves were measured
with stabilized phases.
Additionally a measurement of the scanned phases was saved, shown by the

violet graph, obtained by the detector 1 and monitored with the FS1 and the
light-blue graph, measured with detector 2 and monitored with the FS2. This
scanned measurements are as well normalized to vacuum. One can see that both
scanned variances show the same maximal and minimal variance and that these
variances are equal to the variances of the stabilized measurement. This tells us on
one hand, that the detectors were indeed stabilized to the maximal and minimal
quadratures. Moreover it indicates that the measured state is identical at both
detectors which is one of the restrictions we needed to ful�ll for the reconstruction.

6.3.2 Reconstruction of the state

The measurement presented in Fig. 6.7 shows the measurement of the state with
the eight-port homodyne detector. This measurement is a�ected by the vacuum
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Figure 6.7: Simultaneous measurement of the squeezed vacuum state with the eight-

port homodyne detector. The measurement is performed at a sideband

frequency of 5 MHz with a RBW of 300 kHz, a VBW of 300 Hz and a sweep

time of 300 ms. The squeezed variance (red) is measured with FS1 while

the anti-squeezed variance (blue) is measured with FS2. Both curves are

normalized to the vacuum variance of the detectors (black and grey). The

squeezed variance is 2.2 dB below the vacuum variance, the anti-squeezed

variance is 14.2 dB above the vacuum level. The dark noise clearance was

17.2 dB for the FS1 measurement and 17.7 dB for the FS2 measurement.

The violet and light-blue graphs show the measured variances at the de-

tectors with continuously shifted LO phases.

port of the EHD, which introduces 50% loss to each measured state. As described
in Section 3.2.3 the state in front of the beam splitter can be reconstructed by
Eq. (3.3). In this measurement we can not access the whole covariance matrix
as the spectrum analyzers directly determine the variances. For a reconstruction
of the covariance matrix the raw data is needed to calculate the cross correla-
tions. However the reconstruction of the individual quadrature variances works
just equally well and the variance before the beam splitter can be calculated by

Var(X(ϑ) )sig = 2Var(X(ϑ) )EHD − 1 . (6.1)

This procedure can be seen in such a way that it gives the squeezing before the
50% losses occur. The losses of the directly measured state can be calculated to
be 59.6% using Eq. (2.50), which corresponds to an initial lossless squeezing value
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Figure 6.8: Reconstruction of the squeezed vacuum state in front of the EHD beam

splitter. This �gure presents the original entanglement in front of the beam

splitter and is calculated from the results of the reconstruction of the data

presented in Fig. 6.7 using Eq. (6.1). The color coding is identical to the

previous �gure. With the reconstruction, a squeezed variance of 7.0 dB

below vacuum and an anti-squeezed variance of 17.2 dB was obtained.

of 18 dB. If we exclude the losses of the beam splitter we would expect

εwithoutBS = 1−
(
ηEHD

ηBS

)
= 0.1924 ,

which is an estimate for the remaining losses on the state without the 50% loss
of the EHD beam splitter.
Please note that this calculation is just a rough estimation for low squeezing pa-

rameters as the changes in the variances of squeezed and anti-squeezed quadrature
for di�erent losses are smaller for small squeezing values then for strong squeezing
values. Using Eq. (6.1), the variances in front of the beam splitter are calculated.
The result is presented in Fig. 6.8. The squeezed variance of the signal �eld was
calculated to be 7.0 dB below the vacuum reference and the anti-squeezed vari-
ance to be 17.2 dB above vacuum. Compared to Fig. 6.7, the curves for squeezing
and vacuum become more noisy while the noise in the anti-squeezed quadrature
remains nearly the same. This is related to the fact that smaller variances are
more sensible to the reconstruction than larger variances. A measurement with
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Figure 6.9: Squeezing measurement at BHD1 via shortcut. To compare the quality

of the reconstructed variances, the squeezed state is directly measured on

detector 1. The squeezed variance is 7.8 dB below vacuum, 8.3 dB if the

value is dark noise corrected. The anti-squeezed variance is 19.3 dB above

vacuum, 19.4 dB if dark noise corrected. The light-blue data showed the

variance for a scanned local oscillator phase. Sideband frequency: 5 MHz,

RBW: 300 kHz, VBW: 300 Hz, sweep time: 300 ms, dark noise clearance:

17.2 dB. The measurement is vacuum normalized.

the EHD with higher VBW would provide a higher averaging factor which would
make the graphs more smooth.
To have a benchmark for the quality of this reconstruction, a measurement

of the squeezed vacuum via the shortcut is taken where the squeezed and anti-
squeezed variance is measured one after the other on BHD1 and monitored on
the FS1. The measurements are as well stabilized with the control loop. The
result is shown in Fig. 6.9. With the direct measurement of both variances on
detector 1 without the EHD beam splitter, the squeezed variance is 7.8 dB below
vacuum and the anti-squeezed variance is 19.3 dB above vacuum. From this values,
the total loss on this squeezing measurement is calculated to be 13.9% with an
initial squeezing of 20 dB. The di�erent loss compared to the before presented
EHD measurement is explained by the di�erent propagation paths of the signal in
the shortcut compared to the signal path in the EHD measurement. As well the
mode overlap of the signal beam with the local oscillator on the BHD was slightly
di�erent for this measurement. The higher initial squeezing can be explained by
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Figure 6.10: Comparison of the directly measured spectrum with the reconstructed

spectrum. The blue and red traces give the result for the direct measure-

ment of the squeezed state on BHD 1 via the shortcut. The green and

orange traces show the reconstructed spectrum from the EHD measure-

ment, corrected for the 50% loss. Frequency range: 3− 200 MHz, RBW:

300 kHz, VBW: 300 Hz, sweep time: 1.8 s, LO power per BHD: 15mW.

The measurement is vacuum normalized but not dark noise corrected.

the fact that the measurement via the shortcut and the EHD measurement were
taken one after the other. Between this two measurement runs the squeezed light
resonator needed to be restabilized which resulted in the di�erent initial squeezing
values. Within this di�erences the reconstructed variances are quite close to the
directly measured variances. This indicates, that the reconstruction of the state
is working for the sideband frequency of 5MHz. With identical losses and initial
squeezing, the reconstruction can in principle be perfect. If the losses would be
reduced to be below 10%, e.g. by optimizing the mode overlap at the BHDs,
more then 10 dB squeezing are to be expected in the directly measured squeezed
variance and in the reconstructed squeezed variance.
To verify if the locking and reconstruction scheme is also working with di�er-

ent frequencies and not only at the lock frequency, the spectrum between 3MHz
and 200MHz was measured. The homodyne detectors are stabilized to the same
quadratures as before and as well monitored with the same spectrum analyzers.
Additionally, a direct measurement of the spectrum of the squeezed state is ob-
tained with BHD1 to have a benchmark for the performance.
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In Fig. 6.10, the comparison between the directly measured spectrum and the
spectrum of the reconstructed variances in front of the EHD is shown. The directly
measured squeezing and anti-squeezing spectrum is shown in red and blue while
the reconstructed spectrum is shown in green for the anti-squeezing and orange
for the squeezing. As this measurements are taken simultaneously to the measure-
ments at 5MHz, the losses and initial squeezing values are identical to the values
of the previous shown measurement. Thus, the directly measured anti-squeezing
is higher than the reconstructed anti-squeezing due to the higher initial squeez-
ing value. This e�ect is less visible in the squeezing spectrum due to the smaller
dark noise clearance. Equivalent to the 5MHz measurement, the reconstructed
squeezing is more noisy in comparison to the directly measured squeezing. The
good agreement of both measurements is however visible over the whole spectrum.
This result con�rms, that a reconstruction of the squeezed state is working for the
whole frequency range. This was the last step that needed to be proven to make
the setup suitable for the emulated distillation against optical loss. To conclude,
su�cient squeezing strength are available in the complete spectrum range, the
BHDs are �at and sensitive in this range and the reconstruction of the state with
the EHD works over the whole spectrum range. The whole setup is stabilized
without bright light �eld co-propagating with the squeezed vacuum �eld. All this
are necessary prerequisites for the emulated distillation where the setup includes
a non-Gaussian operation in form of single photon subtraction realized with an
APD.

6.4 Conclusion and Outlook

In this chapter the stabilized measurement of a squeezed state with an eight-port
homodyne detector is presented without the need of a bright light �eld that co-
propagates with the squeezed vacuum. We motivated why such a stabilization
scheme is necessary for a distillation protocol which is capable to distill against
optical loss. As the distillation against optical loss requires the implementation of
single photon detectors, any bright light �elds in the squeezing path have to be
avoided. We highlighted as well the need for a careful frequency range choice and
demonstrated the properties and suitability of the squeezing source and homodyne
detector used in this setup.
A stabilization scheme for the phases is presented which relies on the stabiliza-

tion to maximal or minimal variance of the measured state. Using this stabiliza-
tion scheme, a measurement at 5MHz and a spectrum measurement is performed
with the eight-port homodyne detector. The performance of this measurement
is compared with a direct measurement of the squeezed state on one homodyne
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Figure 6.11: (a) Schematic setup for digital locking of a �lter cavity on maximum APD

event rate. The �lter cavity serves to reduce the detection range of the

APD to the desired measurement range of the experiment. The lowpass

�ltered event rate of the APD, approximately given by a DC signal can

be used as an input signal for the digital locking scheme, analogous to

the digital locking on maximal or minimal variance. (b) Schematic how

the control signal can be obtained from the event rate. Each event gives

a rectangular voltage peak of de�ned height and width. Lowpass �ltering

of the data stream will result in a DC level proportional to the event rate.

detector. The measurement results show that the eight-port homodyne detector
can reconstruct the original squeezed state over the whole measurement range and
is therefore suitable for a future distillation experiment.
The stabilization scheme presented in this chapter can directly be applied

to v-class entangled states [59]. This special class of entangled states, which
is prepared by the overlap of a squeezed state with vacuum shows asymmetric
variances. The stabilization on maximal and minimal variance is thus possible
and the control loop can be easily extended to a second EHD.

The digital locking scheme can be applied as well for other stabilizations where
no bright light �eld is involved but a variable has to be stabilized to an extremal
point. This can e.g. be used in the potential single photon path. To realize the con-
ditioning on single photon subtraction, a beam splitter with very low re�ectivity
would need to be implemented in the signal path. As mentioned in Section 6.1.1,
the path for the single photon detector needs additional �ltering to match the
measurement range of the setting. This can be realized by a �lter cavity with
suitable linewidth and free spectral range. As no bright light �eld is present in

115



Chapter 6: Prerequisites for emulated entanglement distillation

of Gaussian states

this path, the PDH stabilization schemes can not be used to control the length
of this cavity. However, the cavity is on resonance if the event rate of the APD
is maximized. This can be used as the starting point for a modi�ed version of
the digital locking scheme, depicted in Fig. 6.11, which works as explained in the
following.
For every event detected by the APD, the output will be a constant voltage

peak of distinct width. Roughly spoken, the output can be seen as an rectangu-
lar function with a irregular frequency correlated to the event rate. Appropriate
lowpass �ltering of this output signal will thus give a DC voltage level which is
proportional to the event rate of the detector. Analogous to the variance stabi-
lization, the maximal level can be determined by scanning the length of the �lter
cavity. This level will de�ne the set point and the lowpass �ltered APD signal
will serve as the input of the control loop. This will provide a convenient way to
stabilize the length of the �lter cavities. In previous experiments, the �lter cavi-
ties are e.g. not stabilized but hold on resonance by hand [87] or the stabilization
is performed with an optical chopper [88]. The optical chopper works such that
the �lter cavities are stabilized with a bright light �eld, co-propagating with the
signal �eld in only parts of the time. This stabilization periods are alternating
with measurement periods in between without stabilized �lter cavity. Compared
to these methods, the proposed digital locking provides a promising stabilization
scheme that is convenient to implement and long time stable.
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CHAPTER 7

Conclusion and Outlook

Entanglement is an important resource for present quantum information protocols
and �nds usage in e.g. quantum key distribution protocols. For this, entanglement
has to be distributed between distant parties. During transmission, e.g. over �bers,
entangled states are unavoidably exposed to optical loss and phase noise which
reduce the entanglement or even completely demolish it. Iterative entanglement
distillation protocols provide a promising tool to overcome these issues. However,
iterative protocols are usually ine�cient due to small success rates and are exper-
imentally not realizable for larger numbers of iterations. Quantum memories have
been proposed to make these protocols feasible again but appropriate quantum
memories are not realized to date.
The proposal for emulated distillation by Jaromír Fiurá²ek and Nicolas Cerf

provides a di�erent solution to the problem that works without the need of quan-
tum memories. The idea of this proposal is to replace the actual physical im-
plementation of the iterative distillation process by a suitable postprocessing of
measurement data. This allows the copies to be successively measured in contrast
to standard iterative distillation protocols where all copies must be simultane-
ously available. Emulated distillation therefore facilitates a more compact setup
and at the same time increases the success probability in comparison to a direct
experimental realization without quantum memories.
The no-go theorem constitutes, that it is not possible to distill Gaussian states

with only Gaussian methods. Based on this theorem, the content of this thesis can
be separated in two parts. The �rst one covered the experimental demonstration
of emulated entanglement distillation on phase di�used states. As phase noise
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degaussi�es the states, the no-go theorem admits the distillation against phase
noise with Gaussian methods only. In the second part, we examined the necessary
changes in the experimental techniques for distillation of Gaussian states since the
implementation of a non-Gaussian operation is there required in the distillation
process.

In detail, we presented the general scheme of an iterative distillation protocol
and the proposal of Jaromír Fiurá²ek and Nicolas Cerf to perform such a protocol
in the postprocessing. We investigated the performance of the protocol in the
asymptotic limit and considered two di�erent distillation conditions that lead
both to a distillation, puri�cation and Gaussi�cation of the data.
Utilizing this theoretical approach, the full iterative protocol was experimen-

tally realized with a compact setup, consisting of a two-mode-squeezed vacuum
source and two eight-port homodyne detectors. The entangled states were inten-
tionally degaussi�ed by introducing phase noise to mimic the transmission e.g.
through a noisy �ber. We presented the experimental realization of the emulated
distillation protocol on several sets of 107 data points where the states were
exposed to di�erent phase noise strengths. Moreover we performed the iterative
distillation protocol for up to three iterations on a data set consisting of 5 · 108

data points. The improvement of the entanglement on the basis of the PPT
value µ was shown, indicating clearly the successful distillation. Furthermore we
presented the improvement of the Gaussian purity and Gaussianity of the distilled
data. We underlined the improvement through higher iterations of the distillation
protocol in terms of success probability and compared the two di�erent distillation
conditions that can be applied to the data.

To enable distillation as well on Gaussian states, e.g. to counteract the de-
crease of entanglement due to optical loss, a non-Gaussian operation needs to be
introduced into the experimental setup. Single photon detectors like APDs can
perform these non-Gaussian operations e.g. by single photon subtraction. How-
ever, APDs require the capability to measure over a broad frequency range and
pose the need to avoid all bright light �elds as they are damageable by already
small light powers.
In the second experiment, a test setup was demonstrated that addresses these

problems. In detail we presented the characterization of a suited squeezed-light
source and appropriate BHDs. The squeezed-light source showed a linewidth of
110MHz which allows squeezing of at least 2 dB up to a sideband frequency of
100MHz. The EHD provided an almost �at vacuum noise in this range and the
two individual BHD performed identically. The stabilizations of the squeezed-light
source and the phases at the EHD were realized without the need of a bright light
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�eld co-propagating with the squeezed vacuum �eld. Adressing the problem of
the bright light �elds, the whole setup was realized without the need of a bright
light �eld co-propagating with the signal �eld.
With this setup, a stabilized measurement of a squeezed vacuum state was

presented. We showed the successful reconstruction of the state with the EHD and
compared it with a direct measurement of the squeezed vacuum state on a BHD.
The reconstruction was in good agreement with the directly measured state in the
complete frequency range between 3MHz and 200MHz. As an outlook towards
the implementation of single photon detectors we provided as well a scheme to
stabilize the necessary �lter resonators in the single photon path with the digital
locking scheme.
Regarding the goal towards entanglement distillation against optical loss, the

presented setup and techniques can be easily extended to v-class entangled states.
On the data set, obtained by such a setup, the emulated distillation protocol as
presented in the other experiment can be performed which would provide the
measurement result of a distilled and highly Gaussian state.

Both experiments complement each other and explore the possibilities to im-
plement e�cient iterative distillation without the need of quantum memories.
Emulated distillation paves the way for e�cient future quantum communication
protocols.
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APPENDIX A

Theoretical supplement

A.1 Symmetric covariance matrix under phase noise

The covariance matrix of a perfect entangled two-mode-squeezed state with
squeezing parameter r is given by

γ =


cosh(2r) 0 sinh(2r) 0

0 cosh(2r) 0 − sinh(2r)

sinh(2r) 0 cosh(2r) 0

0 − sinh(2r) 0 cosh(2r)

 =


a 0 b 0

0 a 0 −b
b 0 a 0

0 −b 0 a

 .

Let us assume that mode one and mode two are rotated by the angles θ1 and θ2

respectively, given by the transformation

Srot(θ) =


cos(θ1) sin(θ1) 0 0

− sin(θ1) cos(θ1) 0 0

0 0 cos(θ2) sin(θ2)

0 0 − sin(θ2) cos(θ2)

 =


c1 s1 0 0

−s1 c1 0 0

0 0 c2 s2

0 0 −s2 c2

 .

To ease reading (and writing) of the equations, we implement here the abbreviated
form cos(θ1) = c1, cos(θ2) = c2 and so on. The rotated covariance matrix γ′ is



Appendix A: Theoretical supplement

given by

γ′ = SγST

= S


c1a −s1a c2b −s2b

s1a c1a −s2b −c2b

c1b −s1b c2a −s2a

−s1b −c1b s2a c2a



=


c2

1a+ s2
1a −s1c1a+ c1s1a c1c2b− s1s2b −c1s2b− s1c2b

−s1c1a+ s1c1a s2
1a+ c2

1a −s1c2b− c1s2b s1s2b− c1c2b

c1c2b− s1s2b −s1c2b− c1s2b c2
2a+ s2

2a −s2c2a+ c2s2a

−c1s2b− s1c2b s1s2b− c1c2b −s2c2a+ s2c2a s2
2a+ c2

2a



=


a 0 c1c2b− s1s2b −(c1s2b+ s1c2b)

0 a −(s1c2b+ c1s2b) s1s2b− c1c2b

c1c2b− s1s2b −(s1c2b+ c1s2b) a 0

−(c1s2b+ s1c2b) s1s2b− c1c2b 0 a

 .

(A.1)

From this it is clear to see that each mode by itself is invariant to rotation as it
is in a thermal state. The parameter a is not a�ected by phase noise. However
the o�-diagonal elements show signi�cant reactions. Assuming symmetric phase
noise, 〈sinφA〉Φ = 〈sinφB〉Φ = 0 is given. If we assume in addition that the phase
noise is uncorrelated, also 〈sinφA sinφB〉Φ = 0 holds. Using this, the statistical
averaging over random phase di�usions of Eq. (A.1) simpli�es to

γPN =


a 0 〈c1c2〉Φb 0

0 a 0 −〈c1c2〉Φb
〈c1c2〉Φb 0 a 0

0 −〈c1c2〉Φb 0 a

 =


a 0 qb 0

0 a 0 −qb
qb 0 a 0

0 −qb 0 a


where q = 〈cos(θ1) cos(θ2)〉Φ. This is exactly the formula provided in Section 2.4.2.

A.2 Estimation of the dephasing parameter from the

covariance matrix

Let us start with the covariance matrix of the two-mode state without coherent
displacement given by

γ =


〈X̂2

1 〉 1/2(〈X̂1P̂1〉+ 〈P̂1X̂1〉) 〈X̂1X̂2〉 〈X̂1P̂2〉
〈P̂ 2

1 〉 〈P̂1X̂2〉 〈P̂1P̂2〉
〈X̂2

2 〉 1/2(〈X̂2P̂2〉+ 〈P̂2X̂2〉)
〈P̂ 2

2 〉

 .
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A.2 Estimation of the dephasing parameter from the covariance

matrix

Due to symmetry of the covariance matrix, we display again only on the upper
half of the matrix. If we apply the phase rotation to this more general covariance
matrix we obtain rather lengthy equations. We name the elements of the rotated
and di�used covariance matrix the following:

γ′PN = 〈SγST 〉Φ

=


〈X̂2

1 〉Φ 1/2〈〈X̂1P̂1〉+ 〈P̂1X̂1〉〉Φ 〈X̂1X̂2〉Φ 〈X̂1P̂2〉Φ
〈P̂ 2

1 〉Φ 〈P̂1X̂2〉Φ 〈P̂1P̂2〉Φ
〈X̂2

2 〉Φ 1/2〈〈X̂2P̂2〉+ 〈P̂2X̂2〉〉Φ
〈P̂ 2

2 〉Φ

 .

The entries of the covariance matrix are then given for the di�used state by:

〈X̂2
1 〉Φ = 〈X̂2

1 〉〈c2
1〉Φ + 〈(X̂1P̂1 + P̂1X̂1)〉〈c1s1〉Φ + 〈P̂ 2

1 〉〈s2
1〉Φ

〈P̂ 2
1 〉Φ = 〈X̂2

1 〉〈s2
1〉Φ − 〈(X̂1P̂1 + P̂1X̂1)〉〈c1s1〉Φ + 〈P̂ 2

1 〉〈c2
1〉Φ

〈X̂2
2 〉Φ = 〈X̂2

2 〉〈c2
2〉Φ + 〈(X̂2P̂2 + P̂2X̂2)〉〈c2s2〉Φ + 〈P̂ 2

2 〉〈s2
2〉Φ

〈P̂ 2
2 〉Φ = 〈X̂2

2 〉〈s2
2〉Φ − 〈(X̂2P̂2 + P̂2X̂2)〉〈c2s2〉Φ + 〈P̂ 2

2 〉〈c2
2〉Φ

1/2〈〈X̂1P̂1〉+ 〈P̂1X̂1〉〉Φ = 〈(P̂1X̂1 + X̂1P̂1)〉〈c2
1〉Φ − 1/2〈(P̂1X̂1 + X̂1P̂1)〉

− 〈X̂2
1 〉〈c1s1〉Φ + 〈P̂ 2

1 〉〈c1s1〉Φ
〈X̂1X̂2〉Φ = 〈X̂1X̂2〉〈c1c2〉Φ + 〈P̂1X̂2〉〈s1c2〉Φ + 〈X̂1P̂2〉〈c1s2〉Φ

+ 〈P̂1P̂2〉〈s1s2〉Φ
〈X̂1P̂2〉Φ = 〈X̂1P̂2〉〈c1c2〉Φ + 〈P̂1P̂2〉〈s1c2〉Φ − 〈X̂1X̂2〉〈c1s2〉Φ

− 〈P̂1X̂2〉〈s1s2〉Φ
〈P̂1X̂2〉Φ = 〈P̂1X̂2〉〈c1c2〉Φ − 〈X̂1X̂2〉〈s1c2〉Φ + 〈P̂1P̂2〉〈c1s2〉Φ

− 〈X̂1P̂2〉〈s1s2〉Φ
〈P̂1P̂2〉Φ = 〈P̂1P̂2〉〈c1c2〉Φ − 〈X̂1P̂2〉〈s1c2〉Φ − 〈P̂1X̂2〉〈c1s2〉Φ

+ 〈X̂1X̂2〉〈s1s2〉Φ
1/2〈〈X̂2P̂2〉+ 〈P̂2X̂2〉〉Φ = 〈(P̂2X̂2 + X̂2P̂2)〉〈c2

2〉Φ − 1/2〈(P̂2X̂2 + X̂2P̂2)〉
+ P̂ 2

2 〈c2s2〉Φ − 〈X̂2
2 〉〈c2s2〉Φ

These ten equations are depending on the eight dephasing parameters and the
entries of the initial covariance matrix without dephasing.
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APPENDIX B

Experimental supplement

B.1 Phase noise values

Tabular for the calculated phase noise parameters. In Chapter 5, the state is
only classi�ed by the parameter q = 〈cos θA cos θB〉Φ. This would be su�cient if
the phase noise would have been truly symmetric and uncorrelated. However,
due to experimental imperfections, the other parameters are not exactly zero or
redundant and thus here listed for completeness. The values are experimentally
obtained by the method described in Section 2.4.2. The values are given in
dependence of the ampli�cation stage of the noise before it is applied to the piezo
driven transducer and are given for three fractional digits. The eight dephasing
parameter are

1 〈cos2 θA〉Φ 2 〈cos θA sin θA〉Φ 3 〈cos2 θB〉Φ

4 〈cos θB sin θB〉Φ 5 〈cos θA cos θB〉Φ 6 〈cos θA sin θB〉Φ

7 〈sin θA cos θB〉Φ 8 〈sin θA sin θB〉Φ



Appendix B: Experimental supplement

1 2 3 4 5 6 7 8

0.3 1.003 0.006 1.007 0.000 1.005 0.001 0.006 0.006
0.6 1.010 0.001 1.006 -0.008 1.007 -0.005 0.005 0.011
1.0 0.994 0.011 0.990 -0.003 0.990 -0.008 0.008 0.001
1.3 1.003 -0.004 1.002 -0.006 1.000 -0.003 -0.001 0.018
1.6 0.996 -0.008 0.973 -0.010 0.982 -0.009 -0.003 0.011
2.0 0.973 0.000 0.952 -0.006 0.956 -0.008 0.003 0.002
2.3 0.971 -0.006 0.949 -0.006 0.952 -0.006 -0.002 0.012
2.6 0.952 -0.012 0.931 -0.009 0.930 -0.007 -0.006 0.008
3.0 0.943 0.006 0.906 -0.001 0.908 -0.015 0.004 0.010
3.3 0.928 -0.003 0.899 -0.007 0.888 -0.014 -0.000 0.012
3.6 0.920 -0.004 0.870 0.000 0.868 -0.015 -0.003 0.014
4.0 0.896 -0.020 0.839 -0.012 0.833 -0.012 -0.008 0.012
4.3 0.887 -0.021 0.827 -0.013 0.816 -0.011 -0.005 0.021
4.6 0.875 -0.005 0.808 0.002 0.791 -0.018 -0.001 0.023
5.0 0.848 -0.018 0.777 -0.005 0.751 -0.014 -0.005 0.021
5.3 0.841 -0.036 0.761 -0.019 0.730 -0.011 -0.008 0.030
5.6 0.818 -0.030 0.737 -0.012 0.693 -0.013 -0.007 0.023
6.0 0.803 -0.003 0.714 0.020 0.656 -0.014 -0.002 0.025
6.3 0.790 -0.032 0.696 -0.008 0.630 -0.012 -0.005 0.031
6.6 0.768 -0.021 0.677 0.008 0.592 -0.013 -0.006 0.022
7.0 0.749 -0.013 0.656 0.011 0.549 -0.014 -0.004 0.021
8.0 0.714 -0.016 0.613 0.003 0.452 -0.012 -0.003 0.027
9.0 0.678 -0.006 0.580 -0.009 0.354 -0.015 0.001 0.021
10.0 0.655 -0.063 0.548 -0.080 0.270 -0.009 -0.001 0.020

5.5 0.858 0.126 0.935 0.147 0.789 -0.002 0.006 0.009

Table B.1: Dephasing parameters for dephased states. The values are given for the

setting of the linear ampli�er, which ampli�es the noise signal given by

the computer sound�le. Parameter 5 corresponds to the dephasing pa-

rameter q, given in the section. The large block in the top corresponds to

the measurements with 107 data points. The last line corresponds to the

measurement on the large data set with 5 · 108 data points.
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B.1 Phase noise values

ηA ηB

0.3 0.994 0.998
0.6 0.999 0.992
1.0 0.992 0.994
1.3 0.985 0.984
1.6 0.984 0.980
2.0 0.994 0.994
2.3 0.988 0.988
2.6 0.989 0.994
3.0 0.984 0.986
3.3 0.987 0.989
3.6 0.983 0.983
4.0 0.981 0.988
4.3 0.972 0.984
4.6 0.974 0.980
5.0 0.977 0.986
5.3 0.965 0.978
5.6 0.968 0.982
6.0 0.963 0.971
6.3 0.961 0.975
6.6 0.969 0.978
7.0 0.967 0.977
8.0 0.956 0.973
9.0 0.952 0.965
10.0 0.952 0.964

Table B.2: E�ciencies of the lossy channel that occurred during the phase noise im-

plementation
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Appendix B: Experimental supplement

B.2 Bootstrapping

For the results, a covariance matrix is reconstructed from the whole data set and
the properties of gaussian purity PG, entanglement witness µ and squeezing Vsq are
calculated. To obtain information about the statistical errors of this properties,
the bootstrap method can be applied. From the original data set of length N , here
consisting of the N quadrature value quadruples (XA, PA, XB, PB), m new data
sets are obtained by random sampling with replacement from the original data
set. For each of this m bootstrapping data sets, the entanglement value, etc. is
calculated, giving a distribution of m values around the value calculated from the
original data set. The standard deviation σ of this distribution is used to give the
2σ con�dence interval for the distillation results of the measurement with 5 · 108

data points.
For all �gures with error bars, this method was applied with m = 100.
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APPENDIX C

Material

In addition to the programs that are already mentioned in the main text, the
following programs were used:
Mode matchings for the optical setup were calculated with the program JamMT

from Nico Lastzka.
All plots are generated with Gnuplot. Schematic setups and all other �gures
are created with Illustrator CS5-CC. The pictograms for these �gures are taken
from the Component library, originally designed by Alexander Franzen and here
presented in an updated version provided by Jan Gniesmer.
The emulated distillation protocol was performed using a MatLab script, written
together with Jaromír Fiurá²ek.
The data for the probability distribution of the phase-di�used squeezed state in
Fig. 2.5 was simulated with a Python 2.7 script from Christoph Baune.
This thesis is written with LATEX using the MiKTeX distribution and the editor
TeXstudio.
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