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Kurzfassung

Andreas Wienke

Regenerative Verstärkung von ultrakurzen Laserpulsen mit Thulium- und Holmium-dotierten

Materialien

Das Thema dieser Arbeit sind hochenergetische Ultrakurzpulslaserstrahlquellen bei einer

Wellenlänge von 2 µm, die für viele Anwendungen im Bereich der Materialbearbeitung,

zum Beispiel von Polymeren, interessant sind. Mit dem Konzept der regenerativen Ver-

stärkung sollten hohe Pulsenergien im µJ-Bereich bei gleichzeitig ultrakurzen Pulsen erreicht

werden. Das zunächst beschriebene System basierte vollständig auf Thulium-dotierten

Materialien, die in einem Wellenlängenbereich von 1,9 µm bis 2,0 µm emittieren. Ein

Thulium-dotierter Ultrakurzpulsfaseroszillator erzeugte Pulsdauern von 112 fs bei einer

Wellenlänge von 1935 nm. Die Pulse wurden zeitlich in einer passiven Faser gestreckt,

in einem Thulium-dotierten Faserverstärker auf nJ-Pulsenergien verstärkt und in einen

regenerativen Verstärker eingekoppelt, der erstmalig mit Thulium-dotierten Materialien

demonstriert wurde. Mit Hilfe eines Thulium:YAlO-Kristalls wurden Pulsenergien von mehr

als 700 µJ erzeugt, einzig limitiert durch die Zerstörschwelle des Lasermaterials. Die Pulse

konnten zu Dauern von weniger als 400 fs komprimiert werden. Der regenerative Verstärker

wurde mit Stickstofgas gespült, um die bei der Wellenlänge auftretende atmosphärische

Absorption zu reduzieren. Weitere Untersuchungen bezüglich des Skalierungspotentials

durch Variation der unterschiedlichen Betriebsparameter wurden durchgeführt. Ein weit-

eres vielversprechendes Lasermaterial sind Holmium-dotierte Fasern und Kristalle, deren

Hauptemissionswellenlänge um 2,1 µm liegt. Der bisher bestehende Aufbau wurde zu

einem vollständig auf Holmium basierenden System umgebaut und selbst entwickelte

Thulium-dotierte Faserlaser wurden als Pumplaser verwendet. Der Holmium-dotierte

Ultrakurzpulsfaseroszillator emittierte Pulsdauern von 463 fs bei einer Zentralwellenlänge

von 2,1 µm, die mit einem Gitterstrecker zeitlich gestreckt und anschließend in einem

Holmium-Faserverstärker auf nJ-Pulsenergie verstärkt wurden. Der nachfolgende regener-

ative Verstärker basierte auf einem Holmium:YAG-Kristall und verstärkte die Pulse auf

ähnliche Energien von mehr als 700 µJ wie bei dem Thulium-Lasersystem, ebenfalls limitiert

durch die Zerstörschwelle des Laserkristalls. Durch spektrale Formung der Seedpulse konnte

eine komprimierte Pulsdauer von weniger als 1,2 ps erreicht werden. Weiterhin wurde das

Skalierungsverhalten und die Verstärkungsdynamik des regenerativen Verstärkers durch

Variation von unterschiedlichen Betriebsparametern untersucht. Beide Materialien liefern

im direkten Vergleich fundamentale Erkenntnisse zur Auswahl des Verstärkungsmaterials

in diesem Wellenlängenbereich.



Key words: <Laserverstärker, Faserlaser, Ultrakurzpulslaser, modengekoppelte Laser,

regenerative Verstärker>



Abstract

Andreas Wienke

Regenerative amplification of ultrashort laser pulses with thulium- and holmium-doped

materials

The subject of this thesis are high energy ultrafast laser sources, which operate in the

2 µm wavelength range and are highly interesting for applications in material processing

for example of polymers. By applying the concept of regenerative ampliĄcation, pulse

energies in the µJ range should be reached with sub-ps pulse durations. The Ąrst system

described was completely based on thulium-doped laser materials, which operate in the

wavelength region between 1.9 µm and 2.0 µm. An ultrashort pulse thulium-doped Ąber

oscillator was developed, which generated pulses with durations of 112 fs at 1935 nm

wavelength. Subsequent temporal stretching in a passive Ąber and ampliĄcation in a

thulium-doped Ąber led to pulse energies in the nJ-range to seed a regenerative ampliĄer,

which was demonstrated for the Ąrst time to operate with thulium-doped materials.

By the use of a thulium:YAlO-crystal, output pulse energies of more than 700 µJ were

generated. The maximum pulse energy was limited only by the damage threshold of the

laser crystal. The pulses could be compressed to a duration of less than 400 fs. Purging

of the regenerative ampliĄer cavity with nitrogen gas was necessary to reduce the strong

atmospheric absorption that is present at this wavelength. Further investigations of the

scaling potential in variation of round trip numbers, repetition rate, and seed energy were

carried out. Another promising laser material are holmium-doped Ąbers and crystals,

which emit wavelengths around 2.1 µm. The existing setup was changed to an entirely

holmium-based system and self-developed thulium-doped Ąber lasers were used as pump

sources. The ultrashort pulse oscillator based on a holmium-doped Ąber and delivered

pulses with a duration of 463 fs at a central wavelength of 2.1 µm. The pulses were stretched

in a grating stretcher and ampliĄed in a subsequent holmium-doped Ąber ampliĄer to the

nJ energy range. After seeding the regenerative ampliĄer based on a holmium:YAG-crystal,

similar pulse energies compared to the thulium-system of more than 700 µJ were reached,

which were also limited by the damage threshold of the laser crystal. By spectrally shaping

the seed pulses, a compressed pulse duration of less than 1.2 ps was achieved. The scaling

behaviour and gain dynamics of the regenerative ampliĄer were investigated by a variation

of round trip numbers, repetition rate, and seed energy. Both materials deliver in a direct

comparison a fundamental understanding for the choice of the amplifying material in this

wavelength range.



Key words: <laser ampliĄers, Ąber lasers, ultrafast lasers, mode-locked lasers, regener-

ative ampliĄers>
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CHAPTER 1

Introduction

Ultrafast lasers operating at a wavelength around 2 µm have gained an increased interest

in recent years because of their wide Ąeld of application in material processing, microma-

chining, texturing, but also applications in biology, medicine, and fundamental research

technology beneĄt from these laser sources. Lasers operating in this wavelength region

enable applications that were not addressed by commonly used 1 µm laser systems. In the

important Ąeld of industrial applications like material processing, 2 µm lasers are used to

directly process polymers without further preparation because the absorption at this wave-

length is much higher than at 1 µm [Sch10]. A novel regime for processing of semiconductor

materials like silicon and gallium arsenide is enabled by utilizing their transparency range

at 2 µm wavelength. By focusing at the back surface of semiconductor wafers, material

processing can be accomplished there without modiĄcation of the front surface [Geh14;

Min15]. Furthermore, two- and three-photon absorption in the mid-infrared in semiconduc-

tor materials enables even in-volume processing with pulse durations around 100 fs [Hur07].

Also extension of the cutof energy in high harmonic generation [Kra92], atmospheric

sensing [Kad11], and frequency conversion to longer wavelengths [Lei12; Mal15a; Pet01]

are attractive topics in nowadays scientiĄc research, which need high energy ultrashort

pulses in the 2 µm wavelength range. Especially the latter named frequency conversion is

an interesting topic for resonant infrared ablation of polymers [Nai14; Nai13]. By optical

parametric processes, the wavelength region above 3 µm can be reached in which polymers

have distinct absorption features. For example, the polymer PEDOT:PSS strongly absorbs

at 3.03 µm, 3.40 µm and 3.50 µm while PET has absorption lines at 2.91 µm, 3.37 µm and

3.43 µm. This can be exploited by selective patterning of a thin organic Ąlm in a combined

structure of both polymers without damaging the other Ąlm. By this method, organic solar

cells can be manufactured with very high eiciencies [Nai14].
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2 1 Introduction

High energy and ultrashort pulses in the wavelength region around 2 µm were not directly

generated by a laser material in the past years but by several frequency conversion stages

pumped with classical ŞworkhorseŤ laser systems based on titanium:sapphire. The pump

power to reach certain energy levels increases rapidly because several conversion stages

are needed, which result in high acquisition costs, low optical-to-optical eiciencies, and

complex and spacious setups.

In recent years, ultrashort Ąber lasers based on rare-earth-doped optical Ąbers have

superseded titanium:sapphire lasers in many terms. Especially the gain material ytterbium

ofers high pulse energies in the nJ-range directly from a compact, all-Ąber oscillator and

simultaneously a broad bandwidth to support comparable pulse durations (less than 30 fs).

Such laser systems are much cheaper, because cost-efective pump diodes are used. For

higher pulse energy levels, the ampliĄcation with laser crystals is inevitable and was realized

by single- and multipass ampliĄers or regenerative ampliĄers generating several hundreds

of µJ or even mJ pulse energy with excellent beam quality and pulse durations as short as

200 fs. However, frequency conversion stages are still needed to reach the 2 µm wavelength

region and the setup becomes unwieldy.

The aim of this work was therefore the development of new ultrafast laser sources

operating directly in the 2 µm wavelength region with µJ pulse energies. Two diferent

high energy ultrashort pulse laser systems were set up at 1.94 µm and 2.1 µm wavelength,

respectively. The laser system operating at 1.94 µm was completely based on thulium-

doped materials and demonstrated for the Ąrst time. It consisted of a compact and

straightforward solution: a self-developed ultrashort pulse seed oscillator, stretching unit,

Ąber preampliĄer, and regenerative ampliĄer. The laser system was then modiĄed to

operate at 2.1 µm wavelength by changing the several stages to gain materials doped with

holmium. Furthermore, special pump lasers to address the optimum absorption wavelength

of the holmium-doped materials were developed.

This thesis is organized as follows: Chapter 2 gives a brief introduction into the fundamen-

tal theoretical understanding that is relevant for this work. This includes the description

of pulse propagation in Ąbers by the nonlinear Schrödinger equation, chromatic dispersion

and several nonlinear efects, as well as the generation of ultrashort pulses in Ąber lasers

and corresponding numerical simulations. Furthermore, the concepts of chirped-pulse

ampliĄcation and especially regenerative ampliĄcation are described here. Chapter 3 gives

an overview of the existing state of the art about high energy, ultrashort pulse laser systems

at 2 µm.

The developed laser system at 1.94 µm wavelength is part of Chapter 4, which includes

the basic properties of thulium-doped Ąbers and crystals, the development of an ultrashort
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pulse oscillator with Ąber based dispersion management and subsequent chirped-pulse

ampliĄcation to the nJ-level in thulium-doped Ąbers. Several experiments in continuous

wave and q-switched operation were carried out to determine the general behaviour

of the laser cavity based on thulium-doped YAP, which was designed for regenerative

ampliĄcation operation. Furthermore, the Ąrst demonstration of a regenerative ampliĄer

based on Tm:YAP is presented. Output energies of hundreds of µJ are generated with

sub-ps pulse durations. Purging of the regenerative ampliĄer cavity was necessary to

suppress strong atmospheric absorptions. Further investigations on scaling potential of the

regenerative ampliĄer were carried out when varying the numbers of round trips inside the

regenerative ampliĄer cavity, the repetition rate and the input seed energy.

Chapter 5 focuses on the modiĄcation of the existing laser system to the 2.1 µm wavelength

range with holmium-doped materials. The general properties of holmium-doped Ąbers

and crystals are given and an ultrashort pulse holmium-Ąber oscillator is described both

experimentally and numerically. In another part of this chapter the grating stretcher and

Ąber preampliĄer with holmium-doped Ąbers to generate nJ-pulses are described. For further

ampliĄcation, the existing regenerative cavity was altered by changing the laser crystal to

holmium-doped YAG. Proper pump lasers to address the optimum absorption wavelengths of

the used holmium-doped media were developed. Continuous wave and q-switch experiments

with the Ho:YAG laser cavity were performed to explore the characteristics of the laser

material. When operating the laser cavity as regenerative ampliĄer, similar output energies

compared to Tm:YAP were found. Spectral precompensation of the seed pulses was

necessary to compensate the strong gain shaping inside the regenerative ampliĄer. The

scaling behaviour and dynamics of the Ho:YAG regenerative ampliĄer were investigated by

changing the round trip numbers, repetition rate and seed energy.

Finally, the results of this thesis are summarized and discussed in Chapter 6. Chapter 7

gives an outlook on possible further investigations.





CHAPTER 2

Fundamentals

In this chapter, the theoretical base will be addressed in the context of this thesis. Section 2.1

deals with the pulse propagation in Ąbers including chromatic dispersion and nonlinear

efects. The ultrashort pulse generation in Ąber lasers is emphasized in Section 2.2 while the

basics of the corresponding numerical simulations are given in Section 2.3. The concept of

chirped-pulse ampliĄcation will be explained in Section 2.4 and regenerative ampliĄcation

of ultrashort pulses in Section 2.5.

2.1 Pulse propagation in fibers

An optical pulse is typically treated in the time domain as an electric Ąeld � (�) of an

electromagnetic wave, which undergoes a fast oscillation with a central frequency æ0 under

its pulse envelope with the amplitude � (�):

� (�) =
1
2

︀

� (�) �iω0t + �.�.
︀

. (2.1)

The pulse envelope � (�) varies only slowly compared to the electric Ąeld (s. Fig. 2.1

(a)) and is normalized such that its squared absolute value represents the average power

� = ♣�♣2. The slowly-varying envelope approximation is an appropriate simpliĄcation for

pulses with many cycles of the electric Ąeld [Ild04]. In this thesis, the pulse durations were

in the range of 100 fs to 100 ps, therefore this approximation is highly applicable here. The

equation to describe the propagation of such a Ąeld in a Ąber with negligible higher order

dispersion and nonlinear efects except for self-phase modulation (SPM) is given by the

nonlinear pulse propagation equation [Agr07]:

��

��
+ Ñ1

��

��
+

�Ñ2

2
�2�

��2
+

Ð

2
� = Ò (æ0) ♣�♣2 �, (2.2)
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Figure 2.1: (a) Electrical Ąeld � (�) of an optical pulse with envelope � (�) and (b) visualized
chirp on an optical pulse.

with the nonlinear parameter Ò

Ò (æ0) =
�2æ0

��eff
, (2.3)

Ð is the loss inside the Ąber, � the velocity of light in vacuum and �eff the efective mode

area. The origin of the chromatic dispersion terms Ñ1,2, which afect the pulse in time,

are explained in the following Subsection 2.1.1. The factor �2 represents the nonlinear

refractive index, which arises from the intensity � dependent Kerr efect (written here in

its simplest form):

ñ = � (æ) + �2�. (2.4)

This nonlinear efect is a third-order susceptibility ä3 efect, which is dominant in Ąbers

because the ä2 tensor vanishes in isotropic media (e.g. fused silica Ąbers). The Kerr efect

leads to other nonlinear efects like SPM and nonlinear polarization rotation (NPR), which

are described in Subsection 2.1.2.

If Equation (2.2) is transformed into the reference frame of the propagating pulse by

� ⊃ � ⊗ �/�G (with �G = 1/Ñ1 group velocity; velocity of the pulse envelope), the following

simpliĄed equation can be attained:

�
��

��
+ �

Ð

2
� ⊗

Ñ2

2
�2�

�� 2
+ Ò ♣�♣2 � = 0. (2.5)

When losses are neglected (Ð = 0), Equation (2.5) represents the nonlinear Schrödinger

equation including second order dispersion and SPM. For this equation, the analytic solution
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in terms of a soliton was found. Anyway, if the pulse duration approaches 100 fs and the

pulse intensity gets higher, other nonlinear efects like Raman scattering, self-steepening,

and higher order dispersion have to be included. This extended nonlinear Schrödinger

equation can be solved by the split-step Fourier method (s. Section 2.3).

2.1.1 Chromatic dispersion

In general, chromatic dispersion describes the frequency dependent refractive index � (æ) of

a (transparent) material. In the context of ultrashort pulses, this leads to a temporal pulse

broadening (also called: chirping), when the various propagating frequencies experience

each a diferent time delay (s. Fig. 2.1 (b)). It can be described by a Taylor expansion of

the wave number Ñ (æ) around the center frequency æ0

Ñ (æ) = � (æ)
æ

�
= Ñ0 + Ñ1 (æ ⊗ æ0) +

1
2

Ñ2 (æ ⊗ æ0)2 +
1
6

Ñ3 (æ ⊗ æ0)3 + . . . , (2.6)

with Ñ0 describing a constant phase shift, which has no further consequence on the pulse.

The Ąrst order term Ñ1 is the inverse group velocity, which represents an overall time delay

but has no inĆuence on the pulse shape. Higher order terms contribute to temporal pulse

broadening with typically strongest impact at lowest order. The second order term Ñ2 is

called group velocity dispersion (GVD), given in �2/�. The third order dispersion (TOD)

Ñ3 will be important when pulse durations less than 100 fs are considered or in the absence

of Ñ2.
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Figure 2.2: Dispersion values of SMF28e and fused silica.
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The dispersion value Ñ2 of a standard Ąber (SMF28e) in comparison to bulk fused

silica in the wavelength range from 1.0 µm to 2.2 µm is shown in Fig. 2.2. The dispersion

below 1.27 µm wavelength is positive, so called normal dispersion, and changes to negative

(anomalous) dispersion above 1.27 µm. Around 2.0 µm, this value is around ⊗85 ��2/��.

In comparison to fused silica, this value is higher because additionally to the material

dispersion also waveguide dispersion has to be taken into account. This dispersion type is

normal in a standard step-index single-mode Ąber and can be calculated by the core radius

and numerical apertur (NA) [Mit05].

2.1.2 Nonlinear effects

An ultrashort pulse propagating in a Ąber with length � experiences an intensity-dependent

phase shift in the presence of high peak power in combination with the nonlinear response

of a material. This nonlinear phase change is called self-phase modulation (SPM) [Sto78], if

it is induced by the pulse with the intensity � (�) = ♣� (�)♣2 ≍ ♣� (�)♣2 itself. When another

pulse is involved, one would speak of cross-phase modulation (XPM). The nonlinear phase

change generated by SPM is then given by [Agr07]:

ãnl (�) = �2
2Þ

Ú
�� (�) . (2.7)

SPM generates a change of the instantaneous frequency, which is given by the derivative

of the Equation (2.7):

Óæ (�) = ⊗
�

��
ãnl (�) = ⊗

2Þ�

Ú
�2

�� (�)
��

. (2.8)

This change is proportional to the negative derivative of the temporal pulse shape:

the instantaneous frequency decreases at the leading edge of the pulse and increases at

its trailing edge, respectively. Therefore, new spectral components are generated for an

initially transform-limited or positively chirped pulse so that the pulse spectrum broadens.

If the initial pulse is negatively chirped, these components will be annihilated and the

spectrum becomes compressed.

Another consequence of the Kerr efect is the nonlinear polarization rotation (NPR). A

pulse propagating through a Kerr medium (e.g. a Ąber) experiences an intensity dependent

change of its polarization state. At suiciently high peak power (or long interaction length),

the polarization at the peak of the pulse is rotated by a larger angle than its wings. If

a polarizing element is placed behind the Kerr medium, the wings of the pulse can be

discriminated. This acts as a fast artiĄcial saturable absorber, which enables mode-locking
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(named earlier polarization additive-pulse mode-locking) [Tam92]. Mode-locking by NPR

was solely used for the Ąber oscillators in this thesis.

For ultrashort pulses, the Kerr efect has a further impact on the pulse shape: as the

refractive index becomes intensity dependent, the group velocity represented by the Ąrst

term Ñ1 in the Taylor expansion of Equation (2.6) also becomes intensity dependent. The

self-steepening causes the high intensity center of the pulse to travel at lower speed than

the low intensity pulse wings. In consequence, the temporal pulse shape gets asymmetric

with a longer leading edge of the pulse. Simultaneously, the optical spectrum of the pulse

will become also asymmetric owing to the prevailing SPM.

Besides Kerr induced efects, Raman scattering is one of the nonlinear efects that needs

to be considered when an ultrashort pulse with high peak power propagates in Ąbers.

The photons of the pulse are scattered by optical phonons, which are associated to the

vibrations of the glass matrix. During the process, the photon converts parts of its energy

to a phonon so that the frequency of the photon is red-shifted. As these vibrations are not

discrete in the amorphous glass matrix of a silica Ąber, the resulting broadband Raman

spectrum is located at a lower frequency of 13.1 THz in comparison to the central frequency

of the pulse [Agr07].

2.2 Ultrashort pulse generation in fiber lasers

One possible solution of the nonlinear Schrödinger equation in case of no gain (Ð = 0) and

anomalous dispersion (Ñ2 < 0) is the soliton. In terms of ultrashort pulse generation, this

optical soliton is generated by balancing anomalous dispersion and SPM [Mol80]. Under

certain circumstances, these efects can cancel each other so that the pulse propagates with

a constant temporal and spectral shape. The pulse evolution scheme of a soliton inside a

Ąber laser is depicted in Fig. 2.3 (a). The achievable pulse energy �P and pulse duration

á are related to the soliton area theorem [Agr07] in which the nonlinear coeicient Ò and

the dispersion Ñ2 of the cavity are the contributing factors: �P ≤ á = 2 ≤ ♣Ñ2♣ /Ò. Typical

output energies of a soliton Ąber laser at 2 µm are in the order of 0.1 Ű 0.5 nJ with pulse

durations around 500 fs Ű 1 ps [Kie09; Kiv07; Nel95]. As the pulse is always close to the

Fourier-limit, the tolerated accumulated nonlinear phase (B-Integral) is very low (in the

order of ⪯ Þ) before the pulse is destabilized [Wis08].

This constraint can be overcome by applying a dispersion compensation inside the cavity,

which uses temporal breathing of the pulse to lower the average pulse intensity during

one round trip [Nel97]. In an all-Ąber laser, segments with alternating dispersion signs

were incorporated into the cavity, which sums to an overall cavity dispersion close to

zero [Tam93]. In general, the circulating pulse undergoes twofold temporal stretching
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and compression during one round trip (s. Fig. 2.3 (b)), so that it reaches the minimum

pulse duration in every dispersion segment. These lasers are named stretched-pulse or

dispersion-managed soliton lasers. Because the pulse is chirped most of the time, the

accumulated nonlinear phase is much lower than in the case of the soliton. Or other

way around, the pulse can tolerate a higher nonlinear phase shift (≍ Þ) before it gets

destabilized. Limitations arise again from nonlinearities during propagation inside the

cavity: the achieved pulse duration gets quite short (⪯ 100 fs) at the pulse minimum

positions, so high peak powers are present. In Ąber lasers with Ąber based dispersion

managements, the achieved pulse energies are quite low (≍ 100 pJ) [Nel97; Tam93; Wie12].

Much higher pulse energies of more than 1 nJ and less than 100 fs pulses can be achieved

by applying bulk optics (gratings, prisms, etc.) for dispersion management [Hax08; Ild03],

which also makes the setup more complex.

In general, further pulse propagation schemes exist (self-similar and all-normal), which

require normal dispersion. This is contrary to the typical anomalous material dispersion at

2 µm in silica Ąbers. Therefore, these schemes are hardly realizable at this wavelength but

were accomplished by Haxsen et al. [Hax12] and Tang et al. [Tan15]. However, these

schemes are not used in this work, but a good overview can be found in [Wis08].

Figure 2.3: Pulse duration, dispersion, and chirp during cavity propagation [Wis08].

2.3 Numerical simulations

The numerical simulations were an essential part in this thesis when developing the Ąber

oscillators to Ąnd the optimal Ąber lengths. The oscillators were modeled using the

commercial software Fiberdesk [Sch15], which based on solving the extended nonlinear
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Schrödinger equation by the split-step Fourier method. The nonlinear Schrödinger equation

(2.5) is extended by the aforementioned nonlinear efects mentioned in Subsection 2.1.2:
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︂

. (2.9)

In Equation (2.9), the colored parts are losses (red), gain (green), dispersion (blue),

SPM (yellow), self-steepening (orange), and Raman-response (violet). The terms for

self-steepening and Raman response can be found in [Kib05]. For a numerical solution, the

equation can be splitted into a linear part (dispersion and losses) and a nonlinear part.

By only applying a small step, the dispersive and nonlinear part can be assumed to act

independently while both parts as standalone have an analytical solution either in the

frequency domain (dispersion) or the time domain (nonlinearity) [Agr07]. The switching

between both parts after one step is carried out by the Fourier transformation until the

solution for the whole Ąber length was calculated. By following this method, a complete

resonator can be modeled, which is typically set up by the scheme depicted in Fig. 2.4.

Figure 2.4: Numerical setup with alternating dispersion segments (green and red) and a
active Ąber (blue).

The mode-locking of the oscillator is initiated by a saturable absorber (SA), which

enables and stabilizes mode-locking (white). The Ąber section consists of Ąber segments

with alternating dispersion segments (e.g. green and red) and is terminated by an active

Ąber, which provides the gain (blue). The saturable absorber (SA) was based on the

model developed by Kärtner et al. [Kär98] and modeled by a transfer function shown in

Equation (2.10):

� = �0 + �� ⊗
��

1 + ♣A(t)♣2

PSat

. (2.10)

The parameter R0 corresponds to the unsaturable reĆectivity, �R is the saturable reĆectivity

and Psat is the saturation power. Equation (2.10) describes a fast saturable absorber,
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which shows no temporal limitation by a recovery time as in the case of a slow saturable

absorber (e.g. semiconductor saturable absorber (SESAM)). This is a valid assumption for

NPR mode-locked oscillators because the Kerr efect occurs instantaneously. The losses

occurring at the SA are simultaneously the output coupling of the laser. The simulations

were carried out from noise until steady state was reached, which is typically the case after

several hundreds of round trips.

2.4 Chirped-pulse amplification

As already mentioned in Section 2.2, a pulse experiences strong nonlinearities if the peak

power / intensity of the pulse is very high during propagation in a medium. When higher

pulse energies are desired than oscillators can deliver, the pulse needs to be ampliĄed

in a scheme that avoids these nonlinearities. One way to achieve this, is the scheme of

chirped-pulse ampliĄcation (CPA). The peak power is highly reduced by stretching the

pulse in time before ampliĄcation. After ampliĄcation, the pulse is compressed to gain

ultrashort pulses again (s. Fig. 2.5). The Ąrst realization of this concept was performed by

Strickland et al. [Str85] by using a 1.4 km single-mode Ąber as dispersive Ąber stretcher

and a grating compressor to generate 2 ps, mJ-pulses.

Figure 2.5: Scheme of chirped-pulse ampliĄcation.

A single pass ampliĄer (bulk or Ąber) would be the typical example of a CPA stage,

when the provided gain of the ampliĄer material is high (e.g. Ąber ampliĄer with more

than 20 dB gain). Besides that, multipass schemes in crystals are often applied, when the

gain factor is moderate (in the order of 2 Ű 4) [Ise02]. With multiple passes (2 Ű 10) through

the pumped area of a crystal, the pulse can be eiciently ampliĄed and extracts most of

the energy stored in the crystal. The multiple passes are realized by a set of mirrors in

a geometric order to redirect the laser beam in the crystal. This can lead to a complex

and space consuming setup. If the gain of the laser material is as low as 1.1 per pass (e.g.

colquiriite materials, thin-disks), much more passes through the material are needed, which

can exceed 100 easily. To avoid such an overwhelming multipass setup, the concept of the

regenerative ampliĄer (former: injection mode-locking) was developed by Bélanger et al.

[Bél76] already in 1976 (s. Section 2.5).
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2.5 Regenerative amplification of ultrashort pulses

For an eicient extraction of the stored energy inside the ampliĄer gain material, a speciĄc

input (seed) energy is needed. This saturation energy �Sat represents the seed energy

required to reduce the gain to 1/e (≍ 37 %) of its initial value. It can be calculated

by the saturation Ćuence �Sat multiplied with the mode Ąeld area �MF D of the beam.

The saturation Ćuence is based on the ampliĄer material’s emission and absorption cross

sections àem,abs (for a 4-level gain medium àabs can be neglected) and the photon energy

ℎÜ with Planck’s constant ℎ at the signal frequency Ü [Die06]:

�Sat = �MF D ≤ �Sat = �MF D
ℎÜ

àem + àabs
. (2.11)

This value can be particularly much higher than the pulse energy reached by oscillators or

simple ampliĄers and can even outreach the damage threshold of a material. By arranging

multiple passes through this medium, a much lower efective saturation is deĄned by

�Sat/� , so most of the stored energy can be extracted even with a low energy seed.

Figure 2.6: Scheme of regenerative ampliĄcation.

The number of passes through the ampliĄer material can be easily controlled and varied

by the use of the regenerative ampliĄcation scheme because the cavity setup needs no

further adjustment. By controlling the round trip numbers electro-optically, up to several

hundreds of round trips and even more are possible. The scheme of a regenerative ampliĄer

is depicted in Fig. 2.6. The cavity is similar to a standard laser cavity with highly reĆective

(HR) mirrors at both ends. Inside the cavity, the pulse is coupled in and out by changing

its polarization state using a Pockels cell (PC), a quarter-wave plate (QWP) and a thin

Ąlm polarizer (TFP). The electro-optic efect induced by high voltage (HV) applied to the

PC crystals generates a change from linear polarization to circular polarization (Ú/4). An

incoming pulse with s-polarization is reĆected at the TFP, passes twice the QWP and

PC with 0 V applied, so that the polarization state is changed to linear p-polarization

(s. Fig. 2.6 (a)). It passes the TFP in transmission and, in the meantime in which the

pulse travels through the remaining part of the cavity where it is ampliĄed, high voltage is
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applied, so that the PC state is switched to Ú/4-operation (s. Fig. 2.6 (b)). In combination

with the QWP this results in an efective Ú/2 change of polarization state which the pulse

experiences when it returns. In consequence, the pulse is sent back to the laser crystal

where it is ampliĄed in several round trips. If the desired ampliĄcation level is achieved, the

pulse can be coupled out of the cavity by the same concept: the high voltage is switched

of when the pulse is in the second arm of the cavity (in which no PC is). Typically, the

rise time of the PC is in the few ns-range, so a following pulse needs to be timely spaced

at least by this value. Furthermore, the second arm of the cavity needs to be long enough

to enable switching within return of the pulse.

Time

Input

l/2l/4 l/4

Trigger

Polarization state PC

Pulse inside RA

Output

I = I x 10 -100

4 6

A B

Figure 2.7: Temporal evolution during regenerative ampliĄcation with I0: input intensity
and I: output intensity (from [Ise02]).

The temporal evolution during switching of the PC is depicted schematically in Fig.

2.7. A pulse train enters the input of the regenerative ampliĄer. A trigger signal A sent

to the PC sets the polarization state from Ú/4 to Ú/2 and a single pulse of the train is

trapped inside the regenerative ampliĄer cavity. This state is maintained until the pulse is

suiciently ampliĄed and a second trigger signal B reverses the polarization state of the

PC to Ú/4. Consequently, the high energy pulse is coupled out of the cavity and separated

from the seed signal for example by an optical diode consisting of a Faraday rotator (FR),

a half-wave plate (HWP) and a polarizer.

2.5.1 Frantz-Nodvik equations for pulse amplification

The ampliĄcation of a short pulse with a pulse duration well below the upper-state lifetime

can be described by the Frantz-Nodvik equations [Fra63]:

�out = �sat ≤ ln
︁

1 + �g0

︁

�Fin/Fsat ⊗ 1
︁︁

, (2.12)

with �in,out the input / output Ćuence of the pulse and �sat the saturation Ćuence of

Equation (2.11). As already indicated in Equation (2.11), the input / output pulse Ćuence
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can be calculated by dividing the pulse energy �P by the beam area �MF D. The small

signal gain �0 can be calculated by �0 = �Sto/�Sat. It has to be mentioned that for

Equation (2.12) a square pulse shape is assumed [Koe06]. The stored energy Ćuence �Sto

is derived from the stored pump energy �abs, the mode Ąeld of the pumped area �MF D

and the laser and pump wavelengths Úl,p [Ise02]:

�Sto =
�abs

�MF D

Úp

Úl
. (2.13)

Equation (2.12) describes the single pass ampliĄcation by an ampliĄer medium. By

calculating the output Ćuence after multiple passes, the output Ćuence of the previous

run is the input of the following one. The stored energy is reduced by the amount of the

extracted energy from the previous run, so the small signal gain needs to be recalculated

for every pass.

The Frantz-Nodvik equations can be used for calculating the accumulated nonlinear

phase shift (also called B-Integral) which a pulse with intensity � (�) experiences during

propagation through the regenerative ampliĄer:

� =
ˆ L

0
�2 (�) � (�) ��. (2.14)

As the pulse intensity changes with every round trip number, this equation has to

be applied with the speciĄc intensity for each round trip. A spatially varying nonlinear

refractive index �2 (�) of every optical element which the pulse passes has to be taken

into account. With increasing round trip number and intensity during ampliĄcation, high

B-Integral values in the order of Þ Ű 2Þ result [Ise02].





CHAPTER 3

State of the art

In recent years, the number of laser systems operating at 2 µm wavelength has increased.

This is due to the aforementioned wide range of applications for which these systems are

used (s. Section 1). Until now, only few systems were published at 2 µm wavelength that

produce high energies in the µJ region with sub-ps pulse durations. Generally, there are two

approaches to generate such ultrashort pulses: Ąrstly, high power Titanium:Sapphire CPA

systems exist which use nonlinear diference frequency and optical parametric processes

to generate multi-µJ, few-cycle pulses. But these systems lack eiciency, low costs, and

compactness [Gu09; Hau07]. In addition, further scaling of the output pulse energy in

parametric processes is mainly limited by the available pump power for the nonlinear

processes.

The second approach is the direct use of thulium- and holmium-doped Ąbers and crystals,

which have broad emission bandwidths at 2.0 µm and 2.1µm, respectively. Although

compact seed sources for direct ampliĄcation were demonstrated quite early [Nel95], the

demand for high energy ultrashort pulses at 2 µm has increased only in the last years. A

detailed state of the art concerning low pulse energy (sub-nJ) seed sources is given in the

Subsections 4.2 and 5.2 respectively, in which the ultrashort pulse oscillators are described.

Singlepass ampliĄer architectures with thulium (Tm)-doped large mode area (LMA)-Ąber

ampliĄers were realized already in 2010 with an output energy of 151 nJ at a repetition rate

of 37.6 MHz with a pulse duration of 256 fs [Hax10]. A further increase can be achieved by

using ampliĄer chains to reach the µJ energy level. In 2013, such a system was presented,

which could deliver up to 36.7 µJ at 100 kHz repetition rate with a compressed pulse

duration of 910 fs [Wan13]. Both systems utilized commercially available standard LMA

Ąbers for reaching these high output values. In terms of high average power, Stutzki et al.

[Stu14] demonstrated a Tm-doped photonic crystal Ąber (PCF) approach to achieve up to

17
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152 W of compressed average output power with 690 fs pulse duration. However, the pulse

energy is as low as 3.1 µJ because the full repetition rate of the seed oscillator of 49.1 MHz

was used. Just recently, a Ąber-based Tm-doped, sub-ps CPA system operating at 1910 nm

was demonstrated with up to 120 µJ of compressed pulse energy at 200 kHz, generating

200 MW peak power with a pulse duration of 360 fs [Stu15]. This was attained by the use

of customized Tm-doped large-pitch Ąbers and highly eicient dielectric gratings. Further

power scaling with the used Ąber is quite challenging as nonlinearities have a high impact

at this peak power level and the high average power leads to unwanted thermal degradation

of the beam proĄle [Geb15b; Stu15].

Another approach to achieve much higher output energy is the use of single- or multipass

bulk ampliĄers. A long pulse, singlepass ampliĄer was demonstrated by Dergachev

[Der13], who used two 70 mm Ho:YLF crystals, which were pumped with up to 60 W pump

power. A pulse energy of more than 11 mJ was attained with a 1 mJ, 300 ps seed. Hemmer

et al. [Hem15] reached much higher output energies of 39 mJ with a pulse duration of 10 ps

by cryogenic cooling of a Ho:YLF laser rod, which was seeded by a regenerative ampliĄer

delivering up to 5.5 mJ. Coluccelli et al. [Col11] realized a multipass ampliĄer with Ąve

passes through a 50 mm long Ho:YLF crystal to achieve an output power of 1.6 W. The

input was a broadband supercontinuum generated by an Er:Ąber comb with a repetition

rate of 100 MHz so a low pulse energy of 16 nJ at 508 fs transform limited pulse duration

was reached.

As either high pulse energy or short pulses are obtained with single or multipass ampliĄers,

ultrafast regenerative ampliĄer (RA) can be used to scale nJ-pulses directly up several

hundreds of µJ or even mJ of pulse energy. This was demonstrated in 2013 for the

Ąrst time at a wavelength of 2.05 µm with a Ho:YLF RA with 300 ps pulse duration

and an output energy of 1.7 mJ at 1 kHz repetition rate [Der13]. A much shorter pulse

duration was achieved by Malevich et al. [Mal13] at 2.1 µm wavelength with a Ho:YAG

RA, producing pulse energies up to 1 mJ at 530 fs pulse duration. This system had the

aforementioned drawback of a bulky, cost-intensive and ineicient nonlinear parametric

seed source, producing ultrashort pulses at 2.1 µm. By changing the seed source to a

compact all-Ąber PM oscillator in combination with a Ąber preampliĄer, the same RA

produced a pulse energy of 712 µJ at 1 kHz repetition rate after compression [Mal15b]. The

compressed pulse duration of 1 ps was two-times larger due to the longer seed pulses. Very

recently, two publications reported Ho:YLF RAs with pulse energies of up to 7Ű9 mJ and

pulse durations in the ps-range [Gra15; Kro15b].

In general, a clear trend was observed in the last years. Thulium as gain material is

mostly used in Ąbers due to the high doping concentrations that can be applied in Ąbers.
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Furthermore, laser diodes with high average power are available for direct pumping. The

strong thermal issues, which become apparent by the high quantum defect, can be addressed

more easily in Ąbers than in crystals. Anyway, thulium-doped materials are limited in

lasing at wavelengths below 2025 nm. In the last years, optical parametric processes based

on zinc-germanium-phosphide (ZGP) pumped at 2 µm wavelength were used to generate

multi-µJ pulses in the wavelength range from 3 Ű10 µm [Hai04; Pet01; Wan14]. This region

is highly interesting for several applications (molecular Ąngerprint region, microstructuring

and general material processing of plastic materials and semiconductors etc. [Did07; Hur07;

Sch10]). ZGP is favorable for this because of its high nonlinear coeicient. Anyway, ZGP

strongly absorbs at wavelengths below 2025 nm so longer wavelengths (at higher output

energy) are desired, which are addressed by the aforementioned Ho:YLF and Ho:YAG bulk

regenerative ampliĄers. These have achieved much higher output energies in the mJ range

compared to Ąber-based ampliĄers. The holmium crystals can be pumped by high power,

continuous wave (CW) Tm-Ąber lasers with excellent beam quality. Further beneĄcial is

the small quantum defect so thermal degradation at high pump powers is low.





CHAPTER 4

Regenerative amplification with thulium-doped materials

This chapter focuses on the generation and ampliĄcation of ultrashort pulses with thulium-

doped Ąbers (TDFs) and crystals in the 2 µm wavelength region. In comparison to existing

laser systems reported in the previous Chapter 3, which typically use several stages of

optical parametric processes to approach these mid infrared (MIR) wavelengths, the system

presented here consisted of a compact and straight-forward solution: an ultrashort pulse

Ąber-based seed oscillator, a Ąber-preampliĄer, and a regenerative ampliĄer based on a

thulium-doped YAlO3 (Tm:YAP) crystal. These subsystems are explained in full detail

in the following sections, starting with the general properties of Tm-doped Ąbers and

crystals in Section 4.1. The generation of the seed pulses by the ultrashort pulse oscillator

is described in Section 4.2, while Section 4.3 focuses on the Ąber preampliĄcation before

the pulses are picked and strongly ampliĄed with a regenerative scheme (Section 4.4).

4.1 Properties of thulium-doped fibers and crystals

Thulium (Tm) is one of the lanthanides that are a sub-group of the rare earth elements.

As other classical rare earth elements such as erbium (Er), ytterbium (Yb) or neodymium

(Nd), it can be doped into a variety of host materials like crystals or amorphous silica

Ąbers for the generation and ampliĄcation of light in the 2 µm wavelength region. The

spectroscopic properties of Tm difer quite strongly depending on whether it is doped in

Ąbers or crystals. As both types are used in this work, their properties will be described in

the following subsections.

4.1.1 Silica fibers as host materials for thulium

The simpliĄed scheme of energy levels and the corresponding cross sections of Tm-doped

silica Ąbers are shown in Fig. 4.1. The strongest absorption line at 790 nm wavelength is

the 3H6 ⊃3F4 transition which has a cross section of 8 × 10⊗25 m2. This transition can be

21



22 4 Regenerative amplification with thulium-doped materials

easily addressed by high power multi-mode laser diodes, which deliver multiple Watts of

pump power. Another strong absorption to pump into the 3H5 energy level has a cross

section of 4.3 × 10⊗25 m2 at 1210 nm wavelength. High power multi-mode laser diodes can

also be used at this wavelength but the brightness of these is much lower compared to

790 nm laser diodes. The third main absorption band around 1630 nm spans broadband

from 1500 nm to 1700 nm and has a maximum absorption cross section of 4.4 × 10⊗25 m2.

This 3H6 ⊃3H4 transition can also be addressed by high power laser diodes operating at

1550 nm, but these lack also high brightness compared to 790 nm laser diodes. However,

single-mode Er-doped Ąber lasers operating at 1540 nm Ű 1580 nm can be used which enables

direct core pumping.

3
H6

3
H4

3
H5

3
F4

~1600 nm

1210 nm

790 nm

14.2 µs

0.7 ns

334.7 µs

Cross
relaxation

1700 nm -
2100 nm

non radiative
phonon decay

Figure 4.1: (a) SimpliĄed energy levels with transitions and (b) corresponding absorption
and emission cross sections of thulium-doped in Ąber (digitized data from [Jac99]).

The Gaussian-shaped spectral emission cross section of the 3H4 ⊃3H6 laser transition is

shown as red dashed line in Fig. 4.1 (b). It is centered around 1835 nm, extending from

1600 nm to 2200 nm and overlapping with the 3H6 ⊃3H4 absorption band. If an in-band

pumping scheme for example with 1575 nm as pump wavelength is used, a quantum defect

of less than 17 % ofers a high slope eiciency of 71 %, which was shown by Yamamoto

et al. [Yam94] already in 1994. A comparable slope eiciency of 68 % was found by Wu

et al. [Wu07] in 2007 when pumping with 790 nm laser diodes. The possible Stokes limit

of 42 % was exceeded by exploiting the beneĄcial cross relaxation process depicted in Fig.

4.1 (a): the energy of the non radiative decay from 3F4 ⊃3H4 can excite a second Tm ion

from the 3H6 to the 3H4 level. In this case, two photons at 2 µm are generated by one

pump photon (2-for-1 process) and a quantum eiciency of more than 1 can be achieved.

A maximum quantum eiciency of 1.84 was demonstrated by Moulton et al. [Mou09]

with a 2.9 wt. % Tm-doping concentration.
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When pumping at 790 nm into the 3F4 level, parasitic blue light emission at 470 nm

is observed, which is generated by an upconversion process. These upconverted photons

were assumed to cause photodarkening by the formation of permanent defects inside the

Ąber core, which were also observed when pumping TDFs at 1064 nm wavelength [Bro93],

but experiments in recent years did not conĄrm this when pumping at 790 nm wavelength

[Mou09].

As already mentioned, commercial grade pump laser diodes around 790 nm ofer an

output power of more than 35 W, which is delivered through a multi-mode Ąber with a

core diameter of 105 µm. Owing to the low beam quality of high power multi-mode laser

diodes, these are typically used for pumping Tm-doped crystals (s. Subsection 4.1.2) or

double clad Ąbers. The latter ones show a low pump absorption due to the limited overlap

of the pump cladding with the Tm-doped core so longer Ąbers are needed for an eicient

ampliĄcation in comparison to core-pumping. In consequence, stronger reabsorption at the

emission wavelengths takes place and causes a limitation on the short wavelength side of

the emission band. Due to the reabsorption efects in Ąbers, typical operating wavelengths

are between 1860 nm and 2090 nm with a maximum around 1940 nm [Cla02].

A higher pump absorption can either be achieved by higher doping concentrations or

core-pumping with single-mode Er-doped Ąber lasers (e.g. at 1565 nm wavelength). Typical

Ąbers, which are used at 2 µm wavelength, are still single-mode at this pump wavelength so

that a better overlap between pump and signal mode is attained and the pump saturation

is higher. Core-pumping is typically used for ultrashort pulse oscillators because the shorter

active Ąber reduces nonlinearities.

4.1.2 Thulium-doped crystals

Thulium as dopant material in crystals shows a diferent, more structured cross section

shape due to the incorporation in the crystalline lattice compared to the broadband,

Gaussian-like shape in TDFs. The emission cross sections of Tm doped in YAlO3 (YAP),

Y3Al5O12 (YAG), YLiF4 (YLF), and Lu2O3 (LuO) are shown in Fig. 4.2 (a) and the

absorption cross sections in (b), respectively. As TDFs are used in this work for the

generation and ampliĄcation of the pulses, the gain maximum of the ampliĄer crystal

should Ąt to their lasing wavelength. With a gain maximum of 1940 nm typically achieved

in TDFs (s. Subsection 4.1.1) only three materials ofer suitable emission wavelengths:

Tm:YAP, Tm:YAG, and Tm:LuO. Tm:YLF has its main emission wavelengths at less than

1925 nm and is therefore not suitable for ampliĄcation experiments in this work. Tm:LuO

shows the highest emission cross section of 1.08×10⊗20 cm2 at 1940 nm, while Tm:YAP has

an emission cross section of 0.49 × 10⊗20 cm2 and Tm:YAG a 4.5 times less cross section
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of 0.11 × 10⊗20 cm2 at 1940 nm. All three materials have an absorption cross section of

less than 0.09 × 10⊗20 cm2, which should be taken into account for calculating the efective

gain cross section with Equation (4.1). Tm:LuO was only available at the end of this

work and own measurements revealed a minimum operating wavelength of 1964 nm with

an available 3 at. %-doped crystal. This was also validated by Koopmann et al. [Koo11]

who found the spectral tuning curve of a 1 at. % doped Tm:LuO crystal under high power

pumping between 1922 nm and 2134 nm with a maximum at 2100 nm. At 1940 nm, only

30 % of the maximum output power was generated. Therefore, possible parasitic lasing at

2100 nm can be expected when it is used as ampliĄcation material. Therefore, Tm:LuO

seems less suitable for the ampliĄcation at 1940 nm. Anyway, a closer look should be taken

at the broadband emission wavelength region higher than 2050 nm of Tm:LuO, which is

not addressed by any of the other materials doped with Tm. This could possibly be useful

for further ampliĄcation in combination with holmium-doped Ąbers (HDFs), which operate

in this wavelength region (s. Chapter 5).
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Figure 4.2: Cross sections of diferent Tm-doped crystals: Tm:YAP, Tm:YAG, Tm:YLF (Þ
and à), and Tm:LuO: (a) emission and (b) absorption (digitized data from [Koo12; Pay92;
Wal98]).

In consequence, Tm:YAP was the material of choice for high power ampliĄcation at

a wavelength of 1940 nm. Additionally, Tm:YAP is the only crystal of the three that is

intrinsically birefringent. This is beneĄcial at high pump power levels because it overcomes

any thermal induced birefringence and reduces therefore depolarization losses. Table 4.1

at the end of this subsection summarizes the most important physical properties of the

diferent host crystals, which reveals a low saturation Ćuence of 18 J/cm2 for Tm:YAP.

This is also beneĄcial because a low seed pulse energy is required to extract most of the

stored energy of the ampliĄer crystal. The thermal conductivity of YAP is higher than of

YAG and YLF and comparable to LuO so that good heat removal is ensured.
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Figure 4.3: (a) SimpliĄed energy levels with transitions [Sto95] and (b) absorption coeicients
of Tm:YAP [Šul15].

Figure 4.3 shows the energy level of Tm:YAP (a) and the absorption coeicient of a

5 at. % doped Tm:YAP crystal (b). It can be efectively pumped at a wavelength of 794 nm

with an absorption coeicient of 5.7 cm⊗1 from the 3H6 level into the 3H4 level using the

same type of laser diodes as for Tm-doped Ąbers. The absorption cross section at 794 nm

is speciĄed to 0.7 × 10⊗20 cm2 according to the manufacturer Crytur [Šul15], which results

in a pump absorption of 89 % in a 4 mm long and 4 at. % doped crystal. Similar to Ąbers,

a 2-for-1 process by cross relaxation is possible so that two signal photons between 1.9 µm

and 2.0 µm are emitted from the 3F4 level. In practice, such high slope eiciencies as in

Ąbers were not attained with Tm:YAP. Only a maximum eiciency of 52 % was achieved

by Černý et al. [Čer05]. This can be explained by experimental disadvantages of bulk

materials in general like mismatch between pump and laser mode, imperfect anti reĆective

(AR)-coatings or an ineicient cooling geometry.

Figure 4.4: (a) Fluorescence spectrum of a 4 at. % doped Tm:YAP excited at 794 nm and (b)
corresponding Ćuorescence lifetime measurement.
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The Ćuorescence spectrum of a 4 at. % doped, 4 mm long Tm:YAP crystal shown in Fig.

4.4 (a) spans from 1650 nm to 2100 nm with a maximum at 1780 nm. The corresponding

Ćuorescence lifetime of 6.2 ms (s. Fig. 4.4 (b)) was measured by chopping the continuous

wave excitation beam with a mechanical chopper. This measured lifetime is longer than the

literature value of 4.4 ms [Eld97], which can be explained by other doping concentrations

and crystal lengths. Reabsorption efects by long laser crystals and closely located active

ions can lead to radiation trapping which lengthens the efective lifetime [Sum94].

Figure 4.5: (a) Singlepass gain measurement and (b) efective gain cross section of Tm:YAP.

The singlepass gain was measured at increasing pump power in the Ąnal setup (s. Section

4.4) with a seed pulse energy of 20.7 nJ in front of the crystal (24.8 nJ in front of the RA

cavity) at full repetition rate of 62.3 MHz (s. Fig. 4.5 (a)). By measuring the ampliĄed

signal power directly behind the 4 at. % doped, 4 mm long Tm:YAP crystal, a maximum

singlepass power gain of 1.22 including potential losses at the AR coating of the crystal

was achieved.

The efective gain spectrum depends on both emission and absorption cross section

àem,abs at a speciĄc inversion level Ñ:

àgain (Ú) = Ñàem (Ú) ⊗ (1 ⊗ Ñ) àabs (Ú) . (4.1)

Figure 4.5 (b) shows the calculated efective gain cross section by using Equation (4.1) at

diferent inversion levels of Ñ. At inversion levels of Ñ > 0.25, a peak at 1940 nm appears

with a full width at half maximum (FWHM) of more than 39 nm, which is suicient for

the ampliĄcation of ultrashort pulses in this wavelength region.
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Table 4.1: Physical properties of the diferent Tm-doped crystals (the transparency range of
Tm:YAP was not found in literature) [Koo12; Mat10; Pay92; Šul15; Wal98; Zen90].

Physical properties Lu2O3 Y3Al5O12 YLiF4 YAlO3

acronym LuO YAG YLF YAP
lattice cubic cubic tetragonal orthorombic
lattice constant [Å] 10.39 12.0 5.16 ‖ a 5.33 ‖ a

10.85 ‖ c 7.38 ‖ b
5.18 ‖ c

density [g/cm3] 9.42 4.56 3.99 5.35
refractive index at 2 µm 1.9 1.8 1.44 ‖ a 1.93 ‖ a
(YAP only at 1.1 µm) 1.46 ‖ c 1.92 ‖ b

1.91 ‖ c
transparency range [µm] 0.23 - 8.0 0.21 - 5.2 0.12 - 8.0 –
thermal 12.8 8.8 - 12.9 5.3 ‖ a 11.7 ‖ a
conductivity [W/(m K)] 7.2 ‖ c 10.0 ‖ b

13.3 ‖ c
fluorescence lifetime [ms] 3.85 9.85 15.0 (Þ & à) 6.2
main lasing 2100 2010 1880 ‖ à 1990 ‖ a
wavelength [nm] 1910 ‖ à 1940 ‖ c
absorption cross section 0.38 0.75 0.6 ‖ Þ 0.7
at 790 nm [10−20 cm2] 0.37 ‖ à

absorption cross section 0.06 0.01 0.02 ‖ Þ 0.08
at 1940 nm [10−20 cm2] 0.01 ‖ à

emission cross section 1.08 0.11 0.07 ‖ Þ 0.49
at 1940 nm [10−20 cm2] 0.096 ‖ à

saturation 9.0 85.3 113.8 ‖ Þ 18.0
fluence [J/cm2] 96.6 ‖ à

4.2 Ultrashort pulse oscillator

The Ąrst development of a mode-locked TDF laser was demonstrated by Nelson et al.

[Nel95] in 1995 and was based on soliton propagation. This laser was passively mode-locked

by NPR and emitted pulses with a duration between 350 fs to 500 fs. Sharp et al. [Sha96]

achieved a pulse duration of 190 fs emitted by a soliton TDF laser with a short cavity,

which resulted in a small cavity group delay dispersion (GDD).

To achieve even shorter pulses, the cavity GDD has to be compensated [Hau91], which

can be accomplished by managing the dispersion inside the cavity (s. Fig. 2.3). This

concept was developed and investigated in Ąber lasers by Tamura et al. [Tam93] who

invented the Ąrst Ąber-based realization in a stretched-pulse erbium-doped Ąber laser.

Due to the lack of suitable Ąbers providing normal dispersion, the dispersion management

in TDF lasers was achieved in the past by either chirped Ąber Bragg gratings [Gum11] or
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modiĄed grating compressors [Hax08]. Although completely Ąber-based, the implementation

of chirped Ąber Bragg gratings in ring cavities is diicult whereas the assembly of a modiĄed

grating compressor is not always easy to handle. Until then, the shortest pulse duration of

173 fs was generated by Haxsen et al. [Hax08] with the use of a grating compressor inside

the laser cavity.

Recently, new Ąber types providing normal dispersion at 2 µm wavelength were used

for dispersion management. A highly germanium-doped Ąber was used by Yang et al.

[Yan12] for internal dispersion compensation, whereas Wang et al. [Wan10] applied 2 m of

normal-dispersion active Er-doped Ąber in combination with 30 m of SMF28e in the cavity

to achieve a pulse duration of 235 fs. Another approach by Haxsen et al. [Hax12] was to

generate pulses operating in the normal dispersion regime by utilizing a high NA, small

core Ąber.

SA SMF28e NDF SMF28e TDF SMF28e

SMF28e

Pump
1575 nm

WDM
SMF28e

TDF

Polarized output
coupling

NDF

/2l

Isolator

SMF28e

&l l/4 /2

TFP

BFP

TFP

Figure 4.6: (a) Experimental thulium-doped Ąber oscillator setup and (b) corresponding
numerical model (SA: saturable absorber).

For this thesis, a passively mode-locked thulium-doped Ąber laser operating in the

stretched-pulse regime using the same normal-dispersion Ąber for dispersion management

as in [Hax12] was developed. The experimental setup, which is comparable to [Wie12], and

the corresponding numerical model are shown in Fig. 4.6. The numerical simulations were

carried out by a commercially available software (s. Section 2.3). The simulations started

from noise until steady state was achieved. All following parameters of the experimental

setup were included into the simulation.
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The cavity consisted of 0.69 m of TDF as active Ąber with a mode Ąeld diameter (MFD)

of 6.1 µm at a wavelength of 1940 nm. This Ąber was chosen because of a very high

absorption, which resulted in a short active Ąber length. The TDF was core-pumped by a

1 W Er-Ąber laser operating at a wavelength of 1575 nm. The pump light was delivered via

a wavelength division multiplexer (WDM) designed to combine wavelengths at 1575 nm

and 1950 nm. It consisted of 0.57 m standard single-mode Ąber (SMF28e) with a MFD of

11.1 µm at a wavelength of 1900 nm. To achieve an optimal mode-matching from one end

of the Ąber section to the other, 3 cm of SMF28e were spliced to the free end of the active

Ąber section before the light was coupled out. The following free space section consisted of

a TFP as polarized output coupling and a combination of a 3 mm birefringent quartz-plate

(BFP) with a second TFP, which acted as a spectral Ąlter. The spectral Ąlter seemed to

stabilize and start mode-locking easier in the experiment. Further included are one HWP

at the beginning and a pair of HWP and QWP at the end of the free space section in order

to adapt the polarization state for the mode-locked operation by NPR.

A Ąber-based isolator (33 cm SMF28e Ąber) was included at the input coupling of

the Ąber section to ensure unidirectional operation. The dispersion management was

accomplished by implementing a normal dispersion Ąber (NDF) inside the cavity between

the isolator and the WDM. A high NA of 0.28 and a small core diameter of 2.7 µm

generate a high value of waveguide dispersion, which overcompensates the negative material

dispersion of the silica Ąber. The normal dispersion per length of the NDF was estimated

to be Ñ2,NDF = +45.5 fs2/mm at a wavelength of 1940 nm. The negative dispersion of

the SMF28e was Ñ2,SMF = ⊗70.0 fs2/mm and of the TDF was Ñ2,T DF = ⊗23.4 fs2/mm,

respectively, which were compensated by 1.53 m of NDF resulting in an estimated net cavity

GDD of -0.012 ps2. Due to the fact that TOD becomes an inĆuential factor at compensated

cavity GDD [Hau93], TOD was included into the simulation with an estimated net cavity

TOD of 6.8≤10⊗4 ps3. The dispersion values were calculated from the given Ąber parameters

taking both material and waveguide dispersion into account. The SA was modeled with the

following parameters: unsaturable reĆectivity R0 = 8 %, saturable reĆectivity �R = 12 %

and saturation power Psat = 10 W. These values were obtained by a parameter study to

Ąnd the optimum pulse forming mechanism inside the cavity with self-starting properties

and without multi pulsing. The loss at the SA was simultaneously used as output coupling

(OC). The TDF was further modeled by a gain-parameter of 4.4 per meter, a Gaussian

gain proĄle of 100 nm FWHM around 1923 nm wavelength while the gain saturation energy

was set to a value of 0.13 nJ.

The laser started mode-locking operation in the experimental setup at a pump power

of 357 mW but operated in the multi-pulse regime. After the pump power was reduced
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to 133 mW, single-pulse operation was attained with an average power of 9.5 mW. The

repetition rate was 62.3 MHz so that the average output power corresponded to a pulse

energy of 0.15 nJ. Higher pump power levels led either to the emission of continuous-wave

peaks or multiple pulses.

The optical spectrum and the autocorrelation (AC) trace of the passively mode-locked

laser are shown in Fig. 4.7. The power spectrum (a) ofered a FWHM of the main peak of

33 nm around a peak wavelength of 1935 nm. It ranged from 1879 nm to 1985 nm at -10 dB

level due to sideband-generation on the red-winged part of the main peak. Additionally,

the spectrum was covered with sharp dips caused by molecular resonances [Sta03], which

could be veriĄed by the high-resolution transmission molecular absorption (HITRAN)

database as molecular absorption lines (especially water) [Rot09]. These absorptions

mostly took place inside the optical Ąbers as already reported in [Wie12]. The FWHM of

the simulated optical spectrum (red dashed curve) was similar, but the spectrum showed a

less pronounced sideband on the longer wavelength side.

Figure 4.7: Experimental (black continuous curve) and numerical (red dashed curve) out-
put characteristics of the TDF oscillator: (a) optical spectrum on linear scale with inset:
magniĄcation of molecular resonances and (b) AC trace of the uncompressed pulse.

Figure 4.7 (b) shows the AC trace of the uncompressed laser pulse directly out of the

oscillator, which had an AC FWHM of 173 fs. This corresponded to a pulse duration of

112 fs assuming a squared hyperbolic secant shape (sech2). A Fourier-transformation of

the optical spectrum to determine the transform-limited pulse duration was not possible

owing to the strong absorption lines, which interrupted the spectrum. The simulation

showed a comparable FWHM spectrum, but the measured spectrum revealed more spectral

features, possibly by non compensated higher order dispersion, polarization efects or phase

distortions, which were not included into the simulation. Therefore, a compression of the

simulated pulse led to an AC trace of 196 fs, which was 13 % longer than the measured one.
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Single-pulse operation of the experimental laser was veriĄed by measuring the output

pulse train with a 12.5 GHz photodiode in combination with a 6 GHz oscilloscope and a

26.5 GHz radio-frequency (RF) spectrum analyzer (see Fig. 4.8). To observe the temporal

range up to 150 ps, a commercial autocorrelator was used. Neither the long range AC trace

nor the oscilloscope signal (a) showed any sign of satellite pulses. The temporal spacing of

16 ns of two following pulses (b) corresponded to the inverse of the fundamental beat note

in the RF spectrum of 62.3 MHz (c). Furthermore, no signs of q-switching instabilities

were visible. Figure 4.8 (d) shows the frequency comb up to 2.5 GHz, which also conĄrmed

stable mode-locked operation.

-1 0 1
0.0

0.2

0.4

0.6

0.8

1.0
(a)

In
te

ns
ity

 in
 a

rb
. u

.

Time in ns
-40 -20 0 20 40

0.0

0.2

0.4

0.6

0.8

1.0
(b)

In
te

ns
ity

 in
 a

rb
. u

.

Time in ns

16 ns

62.30 62.32 62.34 62.36 62.38
-140

-120

-100

-80

-60

-40

-20
(c)

In
te

ns
ity

 in
 d

B

Radio-frequency in MHz

Rep=62.34 MHz

0.0 0.5 1.0 1.5 2.0 2.5
-100

-80

-60

-40

-20
(d)

In
te

ns
ity

 in
 d

B

Radio-frequency in GHz

Figure 4.8: Output pulse trace and radio-frequency spectrum of the TDF oscillator: (a)
single pulse, (b) pulse train, (c) fundamental beat note, and (d) frequency comb.

In summary, a passively mode-locked, stretched-pulse operating thulium-doped Ąber

laser was presented, which generated uncompressed sub-120 fs pulses. The dispersion

management was accomplished by the use of a high NA, small core Ąber, resulting in

a cavity GDD of -0.012 ps2. The average output power of the pulse was 9.5 mW, which

corresponded to a pulse energy of 150 pJ at a repetition rate of 62.3 MHz. The uncompressed

pulses from the oscillator were nearly transform-limited with a pulse duration of 112 fs.
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The main experimental characteristics could be veriĄed by the performed simulations, but

difered in terms of sideband generation and a 13 % longer pulse duration.

4.3 Fiber preamplifier

The generated pulses from the oscillator described in the previous Section 4.2 were isolated

against back reĆections from the following preampliĄer to avoid destabilization of the

oscillator (s. Fig. 4.9 (a)). Before ampliĄcation, the pulses were stretched using a Ąber

stretcher consisting of several meters of polarization maintaining (PM) Ąber to ensure

preservation of the linear polarization state during ampliĄcation. The following ampliĄer

consisting of a pump combiner and active Ąber was designed to generate pulses at nJ-level

while simultaneously ofering compressibility to less than 500 fs.
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Figure 4.9: (a) Schematic setup of the TDF preampliĄer and (b) optical spectrum on
logarithmic scale measured at diferent Ąber lengths to validate the optimum active Ąber
length.

The ampliĄer was seeded with an input power of 4.2 mW, measured behind the pump

combiner. The cladding pumped TDF was spliced to the pump combiner and had a core

diameter of 10 µm with a NA of 0.15 and a cladding diameter of 130 µm with a NA of 0.46.

The pump absorption for cladding pumping at 793 nm was speciĄed by the manufacturer

to be 4.7 dB/m. Owing to the temperature sensitivity of thulium-doped Ąbers [Tur08], the

active Ąber was coiled around an aluminum-spool for passive cooling. The pump diode was

Ąber coupled with a multi-mode Ąber, which had a core diameter of 105 µm and through

which 35 W pump power were emitted at a central wavelength of 793 nm. This multi-mode

Ąber was spliced to the pump combiner, which coupled 89 % of the pump power into the

cladding of the passive Ąber resulting in a maximum available pump power of 31 W. The

pump combiner had a signal Ąber length of 1.88 m with the same Ąber geometry as the

active Ąber to ensure lowest splice losses.
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The optimum active Ąber length of the TDF for ampliĄcation of the broadband seed

signal was determined by the cut-back technique (s. Fig. 4.9 (b)). For this measurement,

around 11 m of PM1950 Ąber as stretching Ąber were used, which resulted in a pulse

duration of 11 ps. Starting with an active Ąber length of 2.85 m, which ensured more than

95% absorption of the pump light, the ampliĄed spectrum at a Ąxed output energy of 32 nJ

revealed a red-shift of the gain spectrum by strong reabsorption in the long Ąber. With

decreasing Ąber length in steps of less than 20 cm to 0.74 m, the ampliĄed spectrum shifted

towards the original seed spectrum with an optimum Ąber length found at 0.86 m in terms

of maximum FWHM.
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Figure 4.10: Stretched and ampliĄed pulses after the complete Ąber section consisting of 100 m
PM1950 Ąber, 1.88 m of the Ąber pump combiner and 0.95 m Tm-doped Ąber: (a) stretched
pulse measured with a sampling oscilloscope (70 GHz) and fast photodiode (12.5 GHz), (b)
ampliĄer output power vs. absorbed pump power, (c) optical spectrum at diferent pulse
energies and (d) AC traces of the compressed pulse at diferent energies.

In order to stronger mitigate expected nonlinearities at higher output energies, the

stretcher Ąber was lengthened to 100 m in the Ąnal setup. The stretched pulse duration

depicted in Fig. 4.10 (a) increased from 11 ps to 90 ps. When applying the longer

stretching Ąber, a slightly longer active Ąber of 0.95 m could be used resulting in a higher
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ampliĄcation eiciency. The pulses were ampliĄed at an incident pump power of 26 W

up to a maximum pulse energy of 61 nJ, measured behind the TFP of the pulse picker (s.

Fig. 4.10 (b)). AmpliĄcation up to this pulse energy level with a gain of 29 dB showed no

sign of nonlinearities or pulse degradation in the spectrum or the autocorrelation of the

compressed pulses. Due to the combination of anomalous dispersion and SPM mostly in

the Ąber stretcher, the FWHM of the optical spectrum was reduced from initially 33 nm

to 23 nm but remained nearly unchanged during the whole ampliĄcation as depicted in

Fig. 4.10 (c). The pulses could still be compressed to a duration of 236 fs (364 fs AC

FWHM) at 61 nJ pulse energy (s. Fig. 4.10 (d)). Parasitic lasing or ampliĄed spontaneous

emission (ASE) were not visible during the measurements. The linear polarization state

after ampliĄcation was conĄrmed to 13 dB by measuring the polarization extinction ratio

(PER). After the ampliĄcation stage, the pulse repetition rate was reduced from 62.3 MHz

to 1 kHz by the use of a PC and a TFP. For example, at a pulse energy of 24 nJ this

resulted in 24 µW of transmitted signal power to the RA, whereas the reĆected power of

1.5 W was blocked.

4.4 Regenerative amplifier

The Ąnal experimental setup including all separate stages is shown in Fig. 4.11. In this

section, only the cavity design ofering the highest output energy is described. The following

Subsection 4.4.1 deals with the general cavity design which is investigated in Subsection

4.4.2 under CW operation and in Subsection 4.4.3 under q-switched operation. The cavity

designs for continuous wave or q-switch operation difered slightly from the Ąnal one and

are described in the separate subsections but used nearly the same mode Ąeld diameters

inside the cavity.
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Figure 4.11: Experimental setup of the system. PC: Pockels cell, TFP: thin Ąlm polarizer,
FR: Faraday rotator, CCM1: concave mirror with 600 mm ROC, CCM2: concave mirror with
300 mm ROC, WDG: wedge, GR: grating.
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4.4.1 Cavity design considerations and calculations

As described in Section 4.1, the wavelength for pumping Tm:YAP is 794 nm while the

emission wavelength is 1940 nm. This results in a low quantum eiciency of 41 %, which

means that most of the absorbed pump light is transformed into heat inside the crystal.

Therefore, thermal lensing had to be included into the design of the cavity at the position

of the laser crystal. The thermal lens was measured by setting up a 80 mm plane-plane

cavity as shown in Fig. 4.12 (a), which operated in a stable regime by utilizing the thermal

lens as focusing element in the resonator. The pump diode was a multi-mode Ąber-coupled

laser diode (LD) with 35 W maximum pump power at a central wavelength of 793 nm. The

output Ąber of the pump diode had a core diameter of 105 µm and a NA of 0.22. The

collimated pump light was focused with a 100 mm lens into the 4 mm long, 4 at. % doped

Tm:YAP crystal through one of the dichroic end mirrors, which was located close to the

crystal. The crystal was wrapped in indium foil and electrically cooled down to 17◇C by

using a Peltier element. The pump mode was measured with a rotating slit camera to a

diameter of 500 µm. The measured output power (s. Fig. 4.12 (b)) dropped at a pump

power of 9.45 W, which marked the position when the focal length of the thermal lens was

shorter than the resonator length so that the resonator became unstable as described in

[Hod97]. Therefore, a thermal lens of 80 mm at this pump power of 9.45 W was assumed

for the following cavity design.

Tm:YAP

MM-Pump
793 nm

OC HR

Figure 4.12: (a) Schematic setup for measuring the thermal lens and (b) laser output power
vs. absorbed pump power.

Ultrashort pulse regenerative ampliĄer cavities have to be designed to address at least

two main issues: Ąrstly, an eicient ampliĄcation and secondly, to prevent adding strong

nonlinearities to the pulses. The Ąrst issue can be coped with by using a proper MFD in the

active material to reach an eicient ampliĄcation and keeping the losses inside the cavity
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to a minimum. The nonlinearities can be minimized by using short optical path lengths

through bulk material (crystals etc.), long stretched pulses and large MFDs. Especially

the latter means that a trade-of for the MFD has to be found for an eicient ampliĄcation

with reasonable nonlinearities. As Tm:YAP has a low single pass gain of 1.22 combined

with a low emission cross section (s. Subsection 4.1.2), the focus here was mainly shifted

to the eicient ampliĄcation part by using a small MFD inside the laser crystal. The rest

of the resonator was designed so that larger MFDs can be used, especially at the position

of the PC with its two 10 mm long crystals.

TFP
l/4

PC

ROC
-600 mm

Tm:YAP

TFP

l/2

F
R

MM-Pump
793 nm

ROC
-300 mm

Figure 4.13: (a) Schematic setup of the RA cavity, (b) evolution of the beam inside the
cavity.

The RA consisted of a 2.2 m long, standing wave cavity with two concave mirrors, which

is depicted in Fig. 4.13 (a). The concave mirror CCM1 with a radius of curvature (ROC) of

-600 mm was placed 35.4 cm and CCM2 with an ROC = -300 mm was placed 29.5 cm apart

from the crystal. A rubidium titanyl phosphate (RTP) PC was used in combination with a

TFP and a QWP as an optical switch. The evolution of the resonator mode diameters is

shown in Figure 4.13 (b). The simulations of the cavity were performed with the commercial

software Winlase. The MFDs were 320 µm inside the laser crystal (5 x 5 mm2 aperture)

and 1.7 mm inside the PC, which had an aperture of 3.2 mm. The simulation showed that

for a 10 % decreased (stronger) thermal lens, the mode diameters inside the crystal and

at the position of the PC increased by less than 5 %. Therefore, a nearly constant mode

diameter inside the laser crystal can be assumed.

In order to understand the general operation of the designed cavity with the laser crystals,

Ąrst CW and tunability experiments were performed without the optical switch. In a

next step, q-switch experiments were carried out after implementing the optical switch to

explore the achievable pulse energies. Finally, the cavity was seeded with ultrashort pulses

for regenerative ampliĄcation.
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4.4.2 Continuous wave experiments and tunability

The CW experiments were performed in an early stage of this work, therefore a diferent

cavity design was chosen as depicted in Fig. 4.14 (a). A ROC of -800 mm was used and

the second arm of the cavity with CCM2 was replaced by a dichroic mirror located as

close to the crystal as possible. The MFD in the laser crystal was 800 µm and the pump

mode diameter was 690 µm, which resulted in a lower thermal lensing but also in a lower

eiciency due to the large MFDs. Figure 4.14 (b) shows the output power at diferent

output coupling ratios. In the case of low ratios (1.8 % Ű 6 %) a maximum output power

of more than 2 W was attained, which could not be achieved with high output coupling

ratios (higher than 11 %). Furthermore, in all cases a drop in the output power was visible,

which might be explained by a thermally induced instable resonator regime. In general,

these measurements give a good qualitative overview about the CW-characteristics of a

Tm:YAP laser.

ROC
-800/-600 mm

Tm:YAP

MM-Pump
793 nm

OCTFPBFP

Figure 4.14: (a) Schematic setup of the cavity, (b) signal power vs. absorbed pump power at
diferent output coupling ratios, and (c) wavelength tunability.

Tm:YAP shows a broad wavelength tuning range from 1887 nm to 2056 nm with a

maximum output power of 2.1 W at a wavelength of 1991 nm (s. Fig. 4.14 (c)). This

was measured by inserting a 2 mm thick BFP and a TFP in the cavity, which acted as a
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tunable spectral Ąlter. Additionally, the cavity was changed as follows: the -800 mm ROC

mirror was replaced by a -600 mm ROC mirror, which resulted in a higher eiciency due to

the smaller MFD of 310 µm in the laser crystal. Furthermore, the pump mode diameter

was changed to 500 µm. As strong water absorption takes place in the region between

1887 - 1947 nm (marked yellow), the laser was not continuously tunable there.

4.4.3 Q-switch experiments

The cavity design for the q-switch experiments was quite similar to the Ąnal one in Fig.

4.13, except for the second arm with CCM2, which was replaced by a dichroic mirror

placed as close to the laser crystal as possible and an output coupling of 3.2 %. Q-switching

was achieved by using the now inserted PC, TFP, and QWP in the cavity as optical

switch. The concept for q-switching is the same in the case of regenerative ampliĄcation

but without seed signal (s. Fig. 2.7 in Chapter 2). The q-switch pulse builds up during

the Ú/2 polarization state of the optical switch.
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Figure 4.15: Q-switch output characteristics of Tm:YAP at diferent repetition rates: (a)
average power and (b) pulse energy.

Figure 4.15 (a) shows the output power at diferent repetition rates. In case of 1 kHz

and 500 Hz, an average power of more than 457 mW with a linear slope eiciency of 10 %

was reached. A further increase of the pump power led to a saturation of the output

power. At a repetition rate of 100 Hz, 160 mW average power at a slope eiciency of 4.8 %

was attained. This resulted in the highest pulse energy of 1.6 mJ without any signs of

saturation although the pump power was limited to 7.5 W to avoid a destruction of the

laser crystal at these high pulse energies. Pulse energies of 914 µJ and 517 µJ were attained

at 500 Hz and 1 kHz, respectively.

The pulse build up time was shortest when the resonator was perfectly aligned and /

or higher pump power was applied [Ise02], because the build up time and pulse duration
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in actively q-switched lasers depend on the losses and gain inside the laser cavity [Sie86].

The build up time, which was measured at 10 % of the pulse in respect to the trigger

signal, decreased with increasing pump power for all three repetition rates. For 1 kHz

repetition rate, the rise time decreased from 28.4 µs to 14.5 µs, which was nearly half the

original value. The shortest rise time was attained at 100 Hz with 2.8 µs at highest output

energy of 1.6 mJ. In the case of 1 kHz and 500 Hz, q-switch pulse operation was achieved at

half the applied repetition rate at low pump power due to the low inversion in the active

material. Higher pump power led to a higher inversion and the pulses were generated at

the desired repetition rate. Figure 4.16 shows the representative oscilloscope trace of the

pulse evolution exemplary at 1 kHz. Simultaneously to the decreased rise time, the pulse

duration decreased for all three repetition rates from the µs-range over a factor 2-3 to

a minimum pulse duration of 500 ns in case of 100 Hz at highest output pulse energy of

1.6 mJ.
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Figure 4.16: Evolution of the q-switched pulses: (a) build up time at diferent repetition
rates and (b) oscilloscope traces of diferent pulse energies at 1 kHz.

4.4.4 Regenerative amplification with Tm:YAP

In the next step, after setting up and characterizing the seed oscillator, preampliĄer, and

the cavity of the regenerative ampliĄer (RA), the ultrashort pulses from the preampliĄer

were seeded into the RA. Parts of this chapter were already published in [Wie15a]. By

setting up a magnifying telescope with a 20 mm and 30 mm lens behind the pulse picker,

the MFDs of the preampliĄer and the regenerative ampliĄer cavity were adapted to obtain

a high seeding eiciency. The RA cavity was enclosed for purging with inert gas (argon,

nitrogen etc.) to mitigate atmospheric absorption efects in this wavelength range [Geb15a].

After ampliĄcation, the pulses were compressed with a Martinez-type compressor [Mar84],

which consisted of a single gold coated difraction grating (600 grooves per mm, Blaze
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angle: 34◇), one concave mirror with a ROC = -1000 mm and two plane mirrors. The

compressor eiciency of 50 % was mainly limited by the grating eiciency and the FR.
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Figure 4.17: Purged (black curve) vs. unpurged cavity (red curve): (a) Uncompressed
ampliĄed power / pulse energy vs. absorbed pump power and (b) optical spectrum at 700 µJ
output pulse energy.

The following experimental results were achieved with a seed pulse energy of 24.8 nJ

(in front of the RA cavity) at a repetition rate of 1 kHz and with 34 round trips unless

stated otherwise. At an absorbed pump power of 11.1 W a pulse energy of 700 µJ was

achieved (s. Fig. 4.17 (a), red curve). As the damage threshold of the laser crystal

was found during earlier experiments between a power density of 2.0 Ű 2.1 J / cm2 the

achievable pulse Ćuence was limited below 1.77 J / cm2 in all following experiments. In this

conĄguration, this corresponds to a pulse energy of 712 µJ. Figure 4.17 (b) (red line) shows

the optical spectrum of the ampliĄed pulses at a maximum pulse energy of 700 µJ. It was

centered around 1937 nm with a bandwidth of 19 nm at -10 dB. Furthermore, it was highly

structured with sharp dips, which were demonstrated in a previous publication [Wie12]

and were identiĄed by the HITRAN database [Rot09] as atmospheric absorption lines of

water vapor. When purging the cavity of the RA with nitrogen gas, the relative humidity

decreased from 20 % to less than 3 % and the absorption lines vanished at least partly, but

the optical spectrum remained structured with a FWHM of 8.4 nm (18.5 nm at -10 dB,

respectively). Additionally, the output pulse energy increased about 20 % on average at

similar pump power so that a lower absorbed pump power of 10.7 W was required to reach

an uncompressed pulse energy of 709 µJ (s. Fig 4.17 (a), black curve).

The output beam proĄle was perfectly circular at increasing pump power, but the

diameter varied from 2.44 mm to 1.98 mm due to the thermal lensing efect (s. Fig. 4.18

(a)). No signs of beam proĄle degradation in the unpurged or purged case were observed

as stated in [Geb15b]. A measurement at maximum output power in the unpurged case
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revealed a beam propagation parameter M2 in direction parallel to the optical table of

1.61 ∘ 0.04 and 1.57 ∘ 0.06 perpendicular to the optical table (s. Fig. 4.18 (b)).

unpurged

purged

5.2 W
11.1 W
10.7 W

absorbed pump power

Figure 4.18: (a) Beam proĄle at increasing pump power levels: from 5.2 W to 11.1 W in
unpurged case and 10.7 W in purged case and (b) M2-measurement in unpurged case at highest
output power of 700 µJ pulse energy.

The oscilloscope trace of the pulse during regenerative ampliĄcation with 34 round trips

is shown in Fig. 4.19 (a). This was measured behind one of the HR mirrors of the RA

cavity. The pulse ampliĄcation build up was clearly visible whereas the spacing of 14.8 ns

corresponded to the RA cavity round trip time. Only one pulse propagated inside the RA

and was ampliĄed. In Fig. 4.19 (b), the single output pulse is shown with no evidence of

further satellite pulses, which were suppressed by aligning the plane-parallel laser crystal

with a slight angle to the incident seed beam without any drop in eiciency or deterioration

of the beam proĄle.
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Figure 4.19: Oscilloscope trace of the RA pulses (a) during ampliĄcation at 34 round trips
and (b) output pulse.
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Figure 4.20 (a) shows the AC trace in a 50 ps range after pulse compression at an output

pulse energy of 700 µJ. The efect of the atmospheric absorption was clearly visible in the

broadband ps-pedestal (red curve), which vanished nearly completely after purging with

nitrogen (black curve). These pulse quality degradation efects were observed in the MIR

wavelength range between 6 µm and 8 µm at long ps pulses by Seilmeier et al. [Sei88]

already in 1988. Very recently, these efects were also investigated in the 2 µm range by

Gebhardt et al. [Geb15b]. As absorption and refractive index (and therefore dispersion)

are linked together by the Kramers-Kronig relations [Kro26], a sharp absorption line at a

speciĄc wavelength causes a Fano-shaped feature in the refractive index proĄle. This leads

to a strong spectral phase distortion across the spectrum (higher dispersion values), which

forms post-pulses and a long pulse tail (broadband ps-pedestal).
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Figure 4.20: Compressed AC traces: (a) at 700 µJ output pulse energy (black curve: purged,
red curve: unpurged), (b) at output pulse energies 5 µJ (blue), 353 µJ (red) and 709 µJ (black).

After purging, the only remain was a satellite pulse with a relative intensity of 6.2 % in

a temporal distance of 3.2 ps, which corresponded to an optical path length of 0.96 mm.

Furthermore, a second satellite pulse appeared in twice the temporal distance to the main

peak. No optical element inside the cavity corresponded to the measured path length so

etalon efects could be excluded as possible cause. In the experiment, the distances of the

satellite pulses to the main peak did not change within measurement accuracy, but the

relative intensity decreased from 19.5 % to 6.2 % with increasing pump power / pulse energy

(s. Fig. 4.20 (b)). A possible explanation for this counter-intuitive behaviour was found

in the diferent ampliĄcation levels of main and satellite pulse: if the satellite pulse was

a post-pulse following the main pulse in time, then it would be ampliĄed by the residual

fraction of gain left by the main pulse. The time between main and satellite pulse left no

time for the active material to recover despite continuous wave pumping. Therefore, the

pulses were ampliĄed diferently and the relative intensity of the satellite pulse decreased.
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For investigation of the origin of the satellite pulses, a closer look at the seed oscillator

and preampliĄer pulses was taken (s. Fig. 4.21 (a)), which revealed no evidence of satellite

pulses. Furthermore, an AC trace after a single pass through the resonator (four passes

through the PC) without regenerative ampliĄcation depicted in Fig. 4.21 (b) showed no

signs of satellite pulses. When the PC inside the RA was replaced by another RTP cell

from a diferent vendor with same crystal lengths and measured at similar output energies,

more copies of the satellite pulse appeared. The temporal distance from the Ąrst satellite

pulse to the main pulse shortened from 3.2 ps to 2.9 ps and the relative intensity increased

in the AC trace (s. Fig. 4.21 (c)). Therefore, the generation of satellite pulses could be

at least partly attributed to the PC. One possible explanation for the generation of the

satellite pulse could be uncompensated birefringence of the two 90 ◇ turned RTP crystals.

By various experiments with additional wave plates and thick birefringent quartz plates, it

was not possible to reduce the satellite pulses. However, etalon efects inside the PC could

be excluded as the two 10 mm long RTP crystals were separated by more than 5 mm from

each other. Tilting the PC to achieve a static quarter wave retardation and removing the

QWP of the RA showed no change in the AC trace. All in all, this indicates a resonant

efect during multiple round trips caused by technical imperfection of the PC.

Figure 4.21: Investigation on the origin of the satellite pulses: (a) seed oscillator, preampliĄer
and (b) single pass through the unpumped RA revealed no signs of satellite pulses. (c) Another
PC from a diferent vendor showed a distinct behaviour.

Another possible explanation is based on residual water absorption inside the dielectric

layer coatings of the RTP-crystals [Ehl04; Jen06]. As RTP itself is non-hygroscopic [Hil14],

it can be excluded as possible cause. The AR coatings on the RTP crystals, which

were manufactured by electron beam evaporation [Har06], are more porous than coatings

fabricated by ion assisted deposition or ion beam sputtering [Jen06]. These porous layers

adsorbed water from the ambient air after the coating chamber was vented and could not

be liberated. This incorporated water caused high losses, which were already measured in

the 2.9 µm water window [Ehl04]. Therefore, a change to another wavelength region (e.g.
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2.1 µm) without strong water absorption may result in a satellite-free autocorrelation trace

(s. Subsection 5.4.4).

After compression with the grating compressor, the duration of the compressed pulses

depicted in Fig. 4.20 (b) increased from 341 fs to 410 fs with increasing pulse energy

(assumed squared hyperbolic secant temporal proĄle). At the maximum output energy of

709 µJ, a fraction of 76 % was conĄned in the main peak. For this performance (34 round

trips, 709 µJ uncompressed output energy, 1 kHz repetition rate), a B-Integral of 7.01 was

estimated by the use of Equation (2.14) and the Frantz-Nodvik Equation (2.12). For the

calculations, a cavity loss of 6 % was applied after every round trip and a constant peak

power was assumed during one round trip. The parameters of the optical elements for the

calculations inside the cavity are shown in Table 4.2. A B-Integral of Þ was reached at an

output pulse energy of 429 µJ. The highest inĆuence on the B-Integral was attributed to

the Tm:YAP crystal because of the small mode radius and high nonlinear refractive index

�2. The RTP crystal contributes the second main fraction to the B-Integral owing to the

length of 20 mm. The nonlinear refractive index of RTP was not available in literature.

Therefore, the nonlinear refractive index of KTP (2.76 × 10⊗15 cm2 / W, from [Ada89]) was

chosen for the calculations because KTP is the closest isomorph to RTP in terms of optical

and chemical properties, for which data were available.

Table 4.2: Parameters of the optical elements in the thulium-doped regenerative ampliĄer for
calculating the B-Integral. *The nonlinear refractive index of KTP was used instead of RTP
[Ada89].

Parameter Tm : YAP TFP QWP RTP

Length [mm] 4 7.62 1 20

Nonlinear refractive index �2 [×10−20 m2/W] 14.6 4.91 6.12 27.6*

Mode radius [µm] 160 900 885 890

Mode area (Gaussian) [mm2] 0.04 1.27 1.23 1.24

The linear relation of output energy to cavity round trips at a Ąxed absorbed pump

power of 8.5 W is shown in Fig. 4.22 (a), starting from 24 round trips with an output

energy of 47 µJ. The maximum pulse energy of 703 µJ was achieved at a round trip number

of 44. Figure 4.22 (b) compares the compressed pulse AC traces after 34, 39 and 44 round

trips at a Ąxed output pulse energy of ca. 700 µJ, which was achieved by applying the

appropriate pump power. The pulses could still be compressed between 404 fs and 422 fs.

Due to the higher number of round trips in the RA, the amplitude of the satellite peak

increased from 6.2 % to 15.8 % and shifted slightly from 3.2 ps to 3.6 ps. This could be

either introduced by the longer round trip time (more absorptions, more complex phase
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Figure 4.22: (a) Output pulse energy in relation to the number of round trips at 8.5 W
absorbed pump power and (b) compressed AC traces at 34, 39 and 44 round trips (RT) at an
output energy of 700 µJ.

proĄle) or by higher nonlinearities (B-Integral of 11.97 at 44 round trips) inside the RA

cavity or even both.

If a RA is constantly pumped, it can be operated up to a repetition rate inverse to

the upper state life time with a constant maximum high pulse energy [Ise02]. At higher

repetition rates, the upper state level can not be pumped to full saturation, which results in

a decreasing output energy. Due to the long upper state lifetime of Tm:YAP measured to

6.2 ms, this value would be around 161 Hz. The pulse energy in dependence of the repetition

rate is depicted in Fig. 4.23 (a) at a Ąxed number of 34 round trips and an absorbed

pump power of 7.5 W. Beginning at a low repetition rate of 100 Hz with a maximum output

energy of 702 µJ, the pulse energy decreases nearly exponentially with increasing repetition

rate up to 3 kHz to a value of 111 µJ. At this point, the pulse energy starts saturating.

Higher repetition rates can not be applied to the Pockels cell to avoid strong heating of

the PC driver by fast switching.

Figure 4.23 (b) shows the behaviour of the RA output while varying the seed pulse

energy by operating the preampliĄer at the highest output energy and reducing the pulse

energy subsequently with a combination of a HWP and a TFP. The output pulse energy

(black curve) increased linearly from 491 µJ at a seed energy of 12.3 nJ to a maximum pulse

energy of 700 µJ at a seed energy of 48.7 nJ. Additionally, the compressed pulse duration

(red curve) stayed nearly constant between 380 fs and 402 fs for the diferent seed pulse

energies and was shortest at the highest output power. Taking the compressor eiciency

of 50 % into account, these values resulted in a peak power of 700 MW with 76 % of the

energy conĄned in the main peak. Until now, this is the highest reported peak power of

an thulium-doped ampliĄer system. In all measurements, no bifurcation instabilities were
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Figure 4.23: Parameter variation at 34 round trips: (a) output pulse energy vs. repetition
rate at 7.5 W absorbed pump power and (b) output pulse energy and compressed pulse duration
vs. seed pulse energy at 9.8 W absorbed pump power.

observed [Dör04], which could occur at repetition rates close to the inverse of the upper

state lifetime.

In conclusion, an ultrafast RA system was presented, which was completely based on

Tm-doped materials (Ąber oscillator, Ąber preampliĄer, and bulk regenerative ampliĄer).

The system delivered more than 700 µJ of output pulse energy, only limited by the damage

threshold of the laser crystal. The compressed AC traces showed a ps-pedestal in the

unpurged case caused by atmospheric absorption. This pedestal could be reduced by

purging the cavity with nitrogen gas, whereas satellite pulses remained beside the main

pulse. These satellite pulses were generated by the Pockels cell and could not be removed.

Possible explanations for the origin of the satellite pulses were residual water absorption

inside the porous layers of the RTP coating. Dechirping the pulses with a Martinez-type

grating compressor resulted in a compressed pulse energy of 350 µJ and minimum pulse

duration of 380 fs, which were calculated to a peak power of 700 MW. By variation of the

round trip numbers, repetition rate, and seed energy, possible ways to increase the overall

output pulse energy and eiciency were discussed. Using more appropriate gratings with

higher eiciencies of more than 90 % will allow even higher output energies and peak power.

This system could be used as input for a multipass ampliĄer with Tm:YAP to further scale

the pulse energy to the multi-mJ level or as seed for an optical parametric process to gain

access to the 3 µm to 10 µm wavelength range.



CHAPTER 5

Regenerative amplification with holmium-doped materials

Besides thulium, holmium (Ho) is a good alternative as active material in lasers and

ampliĄers in the 2 µm wavelength range. Compared to thulium, its main lasing wavelength

is slightly shifted towards 2.1 µm, but it ofers a similar broad ampliĄcation band in Ąbers.

Therefore, the generation and ampliĄcation of ultrashort pulses is possible. By exchanging

the seed oscillator, preampliĄer, and laser crystal to Holmium-doped materials, the setup is

converted to operate at 2.1 µm wavelength. Furthermore, the stretching unit was adapted

and proper pump lasers were developed to address the best absorption wavelength of the

Ho-doped materials.

The properties of Ho in Ąbers and crystals are explained in the following Section 5.1

while the ultrashort pulse seed oscillator is described in Section 5.2. The stretching unit

and preampliĄer are depicted in Section 5.3 which amplify the seed pulses to the nJ-level.

In the last Section 5.4, the regenerative ampliĄcation with Ho:YAG as active material is

described.

5.1 Properties of holmium-doped fibers and crystals

Holmium is also one of the rare earth elements located in the group of the lanthanides

near to Tm in the periodic table. Its spectroscopic properties are quite similar to Tm with

a slightly redshifted emission band around 2.0 Ű 2.1µm, depending on the host material.

Subsection 5.1.1 deals with the broadband emission in HDFs while doping in crystals shows

diferent emission characteristics, which is described in Subsection 5.1.2.

5.1.1 Silica fibers as host materials for holmium

The most commonly used absorption band of HDFs corresponds to the 5I8 ⊃5I7 transition

that is depicted in the schematic energy levels in Fig. 5.1 (a). It has a strong absorption in

a broad wavelength band around 1950 nm [Jac06; Kur10]. This is easily addressed by high

47
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power TDF lasers with multiple Watts of output power [Kim09]. Only core-pumping in

the wavelength region of 2 µm was useful in the past, because coatings with conventional

low index polymers are highly absorptive at 1.95 µm [Sim13], so that the Ąber can easily

be damaged when cladding pumped. New customized Ąber geometries made it possible to

pump directly into the cladding with a pump power of more than 1 kW achieving more

than 400 W output power at 2.12 µm [Hem13]. Although the absorption and emission band,

which are depicted in Fig. 5.1 (b), of the 5I7 ⊃5I8 transition have a strong overlap, the

emission band is much broader and extends up to 2200 nm.

5
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1120-1160 nm

2000 - 2200 nm

rapid multi-
phonon decay

Figure 5.1: (a) SimpliĄed energy levels of holmium-doped Ąbers with transitions [Jac06] and
(b) corresponding absorption and emission cross sections (digitized data from [Sim13]).

Figure 5.1 (a) indicates also an excitation in the 5I6 band with 1120Ű1160 nm sources,

typically provided by high power Yb Ąber lasers. With this source, a 10 W all-Ąber HDF

laser was established, which showed a maximum slope eiciency of 30 % [Kur10]. Although

noteworthy, this pumping scheme was not established. Due the remarkably low quantum

defect of 7 % when pumping at 1950 nm, much higher pump power can be used. For this

work, only core-pumping schemes are used in the ultrashort pulse oscillator and Ąber

preampliĄer. As already mentioned in Section 4.1.1, core-pumping enables using short

Ąber lengths, which minimizes nonlinearities.

As shown in Fig. 5.1 (b), the broad absorption cross section of Ho in Ąbers reaches far

into the emission band, which has two main peaks at 1955 nm and 2014 nm wavelength.

By taking Equation (4.1) in Subsection 4.1.2 into account, the central wavelength of the

efective gain cross section shifts with increasing inversion level from 2150 nm towards

shorter wavelengths (2100 nm) by overcoming the absorption, which can be seen in Fig. 5.2

(a) for diferent inversion level Ñ. Simultaneously, the FWHM of the bandwidth broadens

up to more than 80 nm, which supports the generation of ultrashort pulses less than 100 fs

[Li14]. To determine the tuning behaviour of the later used HDF, a linear laser cavity
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incorporating one tunable refractive grating in Littrow conĄguration on one side and a

straight cleave with 4 % reĆection as output coupling on the other side of the cavity was set

up. The continuous tuning behaviour is depicted in Fig. 5.2 (b) and showed laser action

between 2050 nm and 2125 nm with a central wavelength of 2100 nm.
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Figure 5.2: (a) Efective gain cross section at diferent inversion level Ñ and (b) tuning
behaviour of HDF (original data was published in [Mie14]).

5.1.2 Holmium-doped crystals

The choice of the appropriate laser crystal in the RA is comparably critical as in the case

of Tm-doped crystals because the efective gain cross section has to Ąt to the typical lasing

wavelength of the ultrashort pulse Ąber oscillator around 2100 nm.
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Figure 5.3: Cross sections of diferent materials: Ho:YAG, Ho:YLF (Þ and à), Ho:YVO
(Þ and à) and Ho:LuO: (a) emission and (b) corresponding absorption (digitized data from
[Koo12; Kwi09; Li11; Wal98]).

Figure 5.3 (a) shows the emission cross sections of diferent Ho-doped materials. Besides

Ho:YAG, only Ho:LuO seems to be suitable for further ampliĄcation at 2100 nm wavelength.

Ho:YLF and Ho:YVO4 (YVO or Vanadate) have only signiĄcant emission less than 2075 nm
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and no digitizable data were found for Ho:YAP in literature. The absorption cross sections

shown in Fig. 5.3 (b) for Ho:LuO and Ho:YAG are as low as 0.07 × 10⊗20 cm2 and

0.15 × 10⊗20 cm2 respectively, but Ho:YAG is favorable as ampliĄer material because of its

highest emission cross section of 1.63 × 10⊗20 cm2.
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Figure 5.4: (a) Spectral cross sections of Ho:YAG (digitized data from [Kwi09]) and (b)
simpliĄed energy level with transitions of Ho:YAG (5I7 level: absorption in black, emission in
red [Sch10]).

The most commonly used wavelength to pump intraband into the Ho:YAG 5I7 level is

1908 nm, which can be addressed by high power Tm-Ąber lasers (s. Fig. 5.4 (a)). The

absorption cross section at this wavelength is 0.8 × 10⊗20 cm2, which is comparable to the

one of Tm:YAP at 793 nm. The available doping concentrations were lower, in the range

between 0.5 at. % and 1.6 at. %, than for the 4 at. % Tm:YAP crystal. Therefore, longer

crystals of 10 mm had to be used to achieve a comparable pump absorption of up to 94 %.

The corresponding emission band ranges from 2000 nm to 2150 nm but is highly structured

with multiple peaks, which can be seen in Fig. 5.4 (a). In contrast to YAP, YAG is not

intrinsically birefringent. But as the quantum defect is less than 10 % in Ho:YAG, thermal

efects will have a lower inĆuence and high power pumping schemes can be used as shown

by Malevich et al. [Mal13], who used a 70 W commercial TDF laser for pumping Ho:YAG.

However, Figure 5.4 (b) shows a non resonant upconversion process into the 5I5 or 5I6

manifold. Two closely located Ho ions are needed for this process, which are both excited

to the 5I7 level. This parasitic process has to be taken into account when high doping

concentrations or a high population density of the 5I7 level are present [Sch10]. Therefore,

this is mostly important for q-switch or regenerative operation when a large amount of

energy stored in the upper laser level is required.

Figure 5.5 (a) shows the Ćuorescence spectrum of a 0.5 at % doped Ho:YAG crystal. The

spectrum looks very similar to the emission cross section depicted in Fig. 5.4 (a). This
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is diferent from the Ćuorescence spectrum of Tm:YAP which difered strongly from the

emission cross section spectra. The Ćuorescence lifetime was measured 10.6 ms as depicted

in Fig. 5.5 (b) by the same method as explained in Section 4.1.2. This value is 1.7 times

higher than the one of Tm:YAP, therefore much more energy can be stored inside the

laser material. Compared with measured literature values of 7.8 ms, the value of 10.6 ms is

slightly higher but Ąts to the calculated radiative lifetime of 9.8 ms [Pay92].
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Figure 5.5: (a) Fluorescence spectrum and (b) lifetime measurement of Ho:YAG.

The singlepass gain of Ho:YAG was measured in the same way as in the case of Tm:YAP.

Similar seed energies (20.8 nJ before the crystal) revealed a maximum singlepass gain of

1.82, which is nearly 1.5 times higher than the one for Tm:YAP. Furthermore, this was

attained at only half the absorbed pump power compared to Tm:YAP. Due to the high

singlepass gain and the low saturation Ćuence, Ho:YAG is a possible candidate for a high

power multipass ampliĄcation scheme which could follow a regenerative ampliĄer to enable

even higher pulse energies.
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of Ho:YAG.
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The calculated efective gain cross section of Ho:YAG at diferent inversion levels Ñ is

depicted in Figure 4.5 (b). Due to the high emission and low absorption cross section of

Ho:YAG, the efective gain rises above zero already at a low inversion level of Ñ = 0.2. The

main peak at 2090 nm rises stronger with increasing inversion level than the second peak

at 2096 nm.

Table 5.1 summarizes the main physical properties of the mentioned Ho-doped crystals.

Although Ho:YAG does not beneĄt from an intrinsic birefringence to overcome any thermally

induced stress as Ho:YLF or Ho:YVO, it ofers a high thermal conductivity, which is up to

twice as large than YLF or YVO so a good heat dissipation is achieved. The saturation

Ćuence of 5.1 J/cm2 of Ho:YAG is much lower compared to Ho:LuO and Tm:YAP, so less

round trips are needed to extract most of the energy.

Table 5.1: Physical properties of the diferent Ho-doped crystals (no literature data at 2.1 µm
for c-cut YVO were found) [Koo12; Li11; Loi13; Pas15; Pay92; Ryb03; Wal98].

Physical properties Lu2O3 Y3Al5O12 YLiF4 YVO4

acronym LuO YAG YLF YVO
lattice cubic cubic tetragonal tetragonal
lattice constant [Å] 10.39 12.0 5.16 ‖ a 7.12 ‖ a,b

10.85 ‖ c 6.29 ‖ c
density [g/cm3] 9.42 4.56 3.99 4.22
refractive index 1.9 1.8 1.44 ‖ a 1.93 ‖ a,b
at 2.1 µm 1.46 ‖ c – ‖ c
transparency range [µm] 0.23 - 8.0 0.21 - 5.2 0.12 - 8.0 0.4 - 5.0
thermal 12.8 8.8 - 12.9 5.3 ‖ a 5.10 ‖ a,b
conductivity [W/(m K)] 7.2 ‖ c 5.23 ‖ c
fluorescence lifetime [ms] 10.0 10.6 14.0 4.1
main lasing 2124 2090 2050 ‖ Þ 2040 ‖ Þ

wavelength Úmain [nm] 2063 ‖ à 2007 ‖ à

absorption cross 1.24 0.84 0.99 ‖ Þ 0.9 ‖ Þ

section [10−20 cm2] at 1928 nm at 1908 nm at 1940 nm at 1914 nm
0.57 ‖ à 0.93 ‖ à

at 1945 nm at 1955 nm
absorption cross section 0.06 0.22 0.49 ‖ Þ 1.37 ‖ Þ

at Úmain [10−20 cm2] 0.23 ‖ à 0.96 ‖ à

emission cross section 0.4 1.63 1.49 ‖ Þ 2.67 ‖ Þ

at Úmain [10−20 cm2] 0.76 ‖ à 1.32 ‖ à

saturation 20.3 5.1 4.9 ‖ Þ 2.4 ‖ Þ

fluence [J/cm2] 9.7 ‖ à 4.3 ‖ à
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5.2 Ultrashort pulse oscillator

Until now, only few mode-locked HDF oscillators generating femtosecond pulses were

reported. A linear Ho-Ąber soliton oscillator mode-locked by a SESAM was demonstrated

by Chamorovskiy et al. [Cha12] generating 890 fs pulses at 2085 nm wavelength. In

2014, a stretched-pulse HDF oscillator, mode-locked by NPR was realized [Li14]. In this

laser, the dispersion management was accomplished by a normal dispersion Ąber to achieve

160 fs pulse duration and a pulse energy of 1 nJ at 2060 nm. A subsequent nonlinear

compression stage utilized by the same NDF that was already used inside the oscillator to

shorten the pulses to 98 fs. Just recently, a tunable soliton oscillator was demonstrated

by the same authors, which was similar to the latter mentioned but without dispersion

management [Li15]. The tuning range covers wavelengths between 2040 nm and 2090 nm

while maintaining pulse energies of more than 1 nJ.
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Figure 5.7: (a) Experimental oscillator setup and (b) numerical model (SA: saturable
absorber).

In this work, the pulses for ampliĄcation in the Ho:YAG RA were generated by a passively

mode-locked HDF-laser, which was comparable to the one described in Subsection 4.2. The

experimental oscillator setup is depicted in Fig. 5.7 (a). Worth mentioning is the fact, that

the here presented laser was developed simultaneously and without further knowledge to

the published paper by [Li14]. The active Ąber of the ring cavity was a 1.27 m double clad

HDF with a core diameter of 10 µm and a NA of 0.15. It was core-pumped by a home-built

1 W 1950 nm pump laser via a WDM made of 0.35 m SMF28e. The emitted light of the
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active Ąber was coupled out into the free space part, which consisted of two HWP, a TFP

for polarization output coupling and a spectral Ąlter made of a BFP and a second TFP.

The NDF was located at the input coupling of the free space section. It difered from the

one used in Subsection 4.2 because it had a core diameter of 2.4 µm and a NA of 0.35, which

resulted in a MFD of 7 µm at 2100 nm. The use of this Ąber ensured lower propagation

loss at 2.1 µm and lower splicing loss to SMF28e. The NDF length of 2.1 m was chosen to

nearly compensate the dispersion of the SMF28e and the HDF, resulting in a calculated

net cavity dispersion GDD of -0.0106 ps2. An isolator (Ąber length: 0.6 m SMF28e) was

spliced between the free end of the WDM and NDF to ensure unidirectional operation.

The numerical model to simulate the oscillator is depicted in Fig. 5.7 (b) and the following

parameters were included into the simulation model. The calculated dispersion parameters

were Ñ2,NDF = +11.3 fs2/mm, Ñ2,SMF 28 = +10.5 fs2/mm and Ñ2,HDF = +11.5 fs2/mm

at a wavelength of 2100 nm. TOD was not included into the simulations due to the

prevailing GVD. The SA was modeled with the same parameters as in the case of thulium

(s. Subsection 4.2): unsaturable reĆectivity R0 = 8 %, saturable reĆectivity �R = 12 %

and saturation power Psat = 10 W. The loss at the SA was simultaneously used as OC.

The HDF was further modeled with a gain-parameter of 3.05 per meter, a Gaussian gain

proĄle of 100 nm FWHM around a center wavelength of 2101 nm while a gain saturation

energy of 0.13 nJ was assumed.
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Figure 5.8: Experimental (black continuous curve) and numerical (red dashed curve) results
for the HDF oscillator: (a) optical spectrum on linear scale and (b) AC trace of the uncompressed
pulse.

The experimental laser operated at a central wavelength of 2100 nm with a Gaussian-

shaped spectrum (s. Fig. 5.8 (a)). The FWHM of the power spectrum of the laser

was 19.3 nm without any additional sidebands, which was conĄrmed very well by the

simulations (red dashed line in Fig. 5.8 (a)). The uncompressed AC trace is shown in
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Fig. 5.8 (b), which revealed a width of 655 fs. Assuming a Gaussian pulse shape, the

calculated pulse duration was 463 fs. A further compression of the pulses was not carried

out, as the pulses were directly used as seed for the preampliĄer (s. Section 5.3), but the

transform-limited pulse duration was calculated by the optical spectrum to 280 fs. The

uncompressed AC of the numerical simulations were slightly longer with an AC duration

of 789 fs and a corresponding pulse duration of 536 fs. Although the Ąber lengths were

accurately measured, the dispersion values were estimated by the MFD and NA, so that

the deviation in pulse durations can be explained by this uncertainty.
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Figure 5.9: Experimental results for the HDF oscillator: (a) fundamental beat note, inset:
radio frequency comb and (b) oscilloscope trace.

The fundamental beat note of 44.6 MHz in the radio frequency spectrum revealed no

signs of q-switching depicted in Fig. 5.9 (a). Furthermore, the inset shows a linear decrease

of the peaks in the frequency comb up to 2.5 GHz, which also conĄrms stable single-pulse

operation. This is also veriĄed by observation of the pulse train in the oscilloscope trace

in Fig. 5.9 (b). The emitted average power of 13 mW corresponded to a pulse energy

of 0.29 nJ. These pulses were seeded into the grating stretcher and the Ąber preampliĄer

subsequently.

5.3 Fiber preamplifier

Before the pulses were ampliĄed in the Ąber preampliĄer to pulse energies above 25 nJ, they

were temporally stretched to 90 ps. In contrast to the Ąber stretcher, which was used for the

Tm-based system and described in Subsection 4.3, the losses in the PM1950 Ąber were much

higher at 2.1 µm wavelength than for 1.94 µm. Therefore, a Martinez-type grating stretcher

was used (s. Fig. 5.10). This design had the advantage of including a focal element (focus

mirror) so that the beam proĄle was preserved in both axis, which was important for an

eicient coupling into the subsequent Ąber ampliĄer. For the stretcher design a single gold
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coated difraction grating with 600 grooves per mm (blaze angle of 34◇) and a concave

silver mirror with a focal length of 200 mm were used. The input/output eiciency of the

grating stretcher was 43.2 %, which was mainly limited by the low difraction eiciency of

the used grating. Subsequently, the stretched pulses were coupled into the SMF28e Ąber of

the WDM, which was followed by the HDF preampliĄer. By using a telescope composed of

a 100 mm and 30 mm lens, the input coupling eiciency into the Ąber was optimized.
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Figure 5.10: Schematic setup of the stretcher and preampliĄer. PC: Pockels cell, TFP: thin
Ąlm polarizer, FR: Faraday rotator, CCM: concave mirror, WDG: wedge, GR: grating, WDM:
wavelength division multiplexer.

The pump laser used for the Ho-doped Ąber preampliĄer consisted of a Fabry-Perot

laser diode with a broad emission spectrum ranging from 1900 nm to 1950 nm. The laser

diode emitted a power of 5 mW, which was ampliĄed in a single stage, double cladding

pumped TDF to more than 11.5 W (s. Fig. 5.11 (a), black squares) by the use of a 35 W

multi-mode laser diode operating at 793 nm. The residual pump light behind the TDF was

extracted by a following pump light stripper. The losses induced by the pump stripper

and the following WDM were measured 10 %, so that a maximum pump power of 10.4 W

was available for the HDF preampliĄer (port 1, black circles). The optical spectrum at

this output power is shown on a logarithmic scale in Figure 5.11 (b) in black. Although

the spectrum of the laser diode is broadband, the overlap with the absorption spectrum of

HDF (red curve) is still given. The active Ąber of the Ho-preampliĄer was the same type

that was already used for the oscillator described in Subsection 5.2 and had a length of

8.3 m. To ensure a suicient absorption of the pump light and high ampliĄcation factors,

such long Ąber length was chosen as the gain spectrum shifts into the long wavelength

part by reabsorption. Earlier measurements with shorter Ąber lengths revealed stronger

ASE and parasitic lasing in the short wavelength part (around 2050 nm), so an eicient

ampliĄcation was not achieved at longer wavelengths.
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Figure 5.11: (a) Output power vs. absorbed pump power of the pump laser (black squares),
linear Ąt (red dashed line), transmission via 1950/2100 WDM (black dots curve) and (b) optical
spectrum (black curve) and absorption cross section of Ho-Ąber (red curve).

The output characteristics of the Ho-doped Ąber preampliĄer pumped by the TDF-laser

can be seen in Figure 5.12 (a): the pulses are ampliĄed in a linear relation with a slope

eiciency of 21.1 % up to a pulse energy of more than 36.8 nJ (average power of 1.64 W) at

the maximum pump power of 10.4 W. The evolution of the optical spectrum is depicted in

Fig. 5.12 (b), which shows a slight reduction of the FWHM from the original seed spectrum

(19.3 nm) to 15.5 nm at a central wavelength of 2100 nm. The spectrum is reduced owing

to gain narrowing inside the active HDF. With increasing pump power, ASE appeared

in the spectrum around a wavelength of 2060 nm, but the integrated fraction is less than

5.2 % so that most of the energy is conĄned in the main peak. The pulses could still be

compressed to a duration of 580 fs (820 fs ACF) assuming a Gaussian pulse shape with a

slight pedestal, which can be attributed to uncompensated higher order dispersion (s. Fig.

5.12 (c)).

Although no PM-Ąber was used for the Ąber preampliĄer, the linearly polarized signal

was nearly preserved during ampliĄcation by adjustment of a HWP and QWP behind the

HDF. Therefore, a PER of more than 19.3 dB was measured at maximum output power.

After ampliĄcation, the pulses were picked with the same pulse picker used in the Tm-based

system described in Subsection 4.3 and the same telescope for MFD adaption.
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Figure 5.12: (a) Output power/pulse energy vs. absorbed pump power, (b) optical power
spectrum at diferent pulse energies and (c) AC traces of the compressed pulse at diferent
energies of the Ho-preampliĄer.

5.4 Regenerative amplifier

The overall setup with its several stages is depicted in Fig. 5.13. The seed oscillator,

stretcher unit, and preampliĄer were described in the previous sections. In principle, the

setup used for the regenerative ampliĄcation with Ho was quite similar to the one for the

Tm-based system, but the Ho:YAG laser crystal was pumped at 1908 nm by a self-developed

TDF laser. To achieve a high pump power at this wavelength, a TDF-laser was developed,

which was terminated with a HR-Ąber Bragg grating (FBG) on one end and with a 10 %

partially reĆective (PR)-FBG on the other end to generate a power of 515 mW at 1908 nm.

A following single-stage TDF-ampliĄer ampliĄed the isolated signal up to 13.6 W of output

power (s. Fig. 5.14 (a)) with a slope eiciency of more than 50.9%. The corresponding

spectrum at the maximum power is depicted in Fig. 5.14 (b). As the signal wavelength

was on the low ampliĄcation band of Tm, the generation of ASE was inevitable but was

suppressed to more than 53 dB so that the 1908 nm peak contains more than 99.9 % of the
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Figure 5.13: Experimental setup of the system. PC: Pockels cell, TFP: thin Ąlm polarizer,
FR: Faraday rotator, CCM1: concave mirror with 600 mm ROC, CCM2: concave mirror with
300 mm ROC, WDG: wedge, GR: grating.

output power. The absorption of Ho:YAG is independent of the polarization of the pump

light, therefore non-PM Ąbers were used for this pump laser, which resulted in random

polarization of the output signal.
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Figure 5.14: Pump laser for Ho:YAG: (a) signal power vs. absorbed pump power and (b)
optical power spectrum.

5.4.1 Cavity design considerations

The pump light was delivered directly out of the single-mode TDF of the aforementioned

Tm-pump laser, which is in contrast to the multi-mode Ąber output of the laser diode used

to pump Tm:YAP. Therefore, the pump coupling into the laser crystal had to be adapted

by collimating the beam with a 8 mm focal length aspheric lens and focusing with a lens

with 250 mm focal length. The generated spot had a calculated size of 320 µm in the laser

crystal, which was in perfect overlap with the targeted resonator mode diameter to achieve

highest eiciency in the later ampliĄcation process.
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Due to the low quantum defect of less than 10 % between pump and signal wavelength,

a negligible thermal lens in the 10 mm long Ho:YAG crystal was expected. This was

determined in a similar experiment with which the thermal lens of the Tm:YAP crystal

was measured. A simple 80 mm plane-plane cavity was set up with the HR mirror located

as close to the laser crystal as possible, which is depicted in Fig. 5.15 (a). Although the

pump size is 1.5 times smaller than in the case of Tm:YAP, no inĆuence on the stability by

a thermal lens was measured as shown in Figure 5.15 (b) because the output power of the

CW resonator increased nearly linear.

Ho:YAG

Single-mode
pump at 1908 nm

OC HR

Figure 5.15: Pump laser for Ho:YAG: (a) signal power vs. absorbed pump power and (b)
optical power spectrum.

The cavity design used for the regenerative ampliĄcation with Ho:YAG was only slightly

altered compared to the previous Chapter 4 (s. Fig. 4.13). It was changed owing to the

longer crystal (10 mm) and negligible thermal lens. To achieve the same MFDs inside the

cavity, the distance of the curved mirrors CCM1 and CCM2 to the laser crystal had to be

adapted (CCM1: 330 mm and CCM2: 297 mm apart from the crystal). The evolution of

the resonator mode, which was already depicted in Fig. 4.13 (b), was basically the same.

This cavity design was used for all following experiments.

5.4.2 Continuous wave experiments and tunability

To determine the most suitable Ho:YAG crystal for lasing and ampliĄcation, four doping

concentrations were tested ranging from 0.5 at. % to 1.6 at. % at a crystal length of 10 mm (s.

Fig. 5.16 (a) Ű (d)). In contrast to the measurements with Tm:YAP in Subsection 4.4.2, the

CW laser experiments with Ho:YAG were performed with the Ąnal cavity setup described

in Subsection 5.4.1, but missing out the optical switch. All doping concentrations could

achieve a maximum power (red dots) of more than 4.0 W with typically low output couplings

(3.2 % and 6 %). Furthermore, slope eiciencies of more than 66 % were achieved for all

crystals with higher output couplings (11 % to 19 %). The highest slope eiciency of 83.6 %
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was achieved with the 0.5 at. % doped Ho:YAG crystal and 11 % output coupling (a). This

laser operated at 2090 nm wavelength with a second peak at 2096 nm, which was 10 dB

below the main peak. In contrast, the highest output power was achieved with the highest

doping concentration of 1.6 at. % and an output coupling of 11 % (d). In fact, this laser

operated at a wavelength of 2121 nm with a slope eiciency of 66 %. The crystal with

1.6 at. % doping was used for all further experiments due to the highest output power and

strongest absorption.
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Figure 5.16: Comparison of diferent doping concentrations of Ho:YAG in terms of slope
eiciency and maximum achieved output power vs. output coupling: (a) 0.5 at. % Ű (d) 1.6 at. %.

The spectral tunability was tested with the same birefringent Ąlter, which was already

used for Tm:YAP in Subsection 4.4.2. All tested conĄgurations had in common, that the

laser could not be tuned continuously but showed switching between single or multiple

operating wavelength lines between 2129 nm, 2121 nm, 2096 nm, and 2090 nm, which

corresponded to the peaks in the Ćuorescence spectrum in Fig. 5.5 (a). In general, these

operating lines shifted from high wavelengths at high doping and/or low output coupling

to lower wavelengths for low doping and/or high output coupling.
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5.4.3 Q-switch experiments

As in the case of the Tm-based system, q-switch experiments were performed after insertion

of the optical switch consisting of the PC, TFP and QWP to explore the possible pulse

energies, which can be achieved in the regenerative ampliĄcation process. These experiments

were carried out with the Ąnal cavity setup using the 11 % output coupler and the

1.6 at. % doped crystal as this combination has revealed the maximum CW output power

(s. Subsection 5.4.2). Figure 5.17 (a) shows the output power at diferent repetition rates

(1 kHz, 500 Hz and 100 Hz). In comparison to Tm:YAP, Ho:YAG showed higher output

power in q-switch operation before saturation starts. For 1 kHz an output power of more

than 1 W and a slope eiciency of 29.5 % was reached, while 594 mW could be achieved

at 500 Hz with an eiciency of 21.5 %. Only the maximum output power at 100 Hz of

162 mW is comparable to Tm:YAP, because it was also limited to avoid a damage of the

laser crystal at these pulse energies (1.62 mJ). Furthermore, a maximum pulse energy of

more than 1 mJ could be found for every repetition rate (s. Fig. 5.17 (b)) with 1.6 mJ

maximum pulse energy at 100 Hz. This is diferent to Tm:YAP, which showed the onset of

saturation much earlier at repetition rates of more than 100 Hz.
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Figure 5.17: Q-switch output characteristics of Ho:YAG at diferent repetition rates: (a)
average power and (b) pulse energy.

Contrary to the q-switched operation with Tm:YAP, Ho:YAG reached build up times

(measured at 10 % in respect to the trigger signal) of less than 1 µs owing to the high gain

and eicient ampliĄcation (s. Fig. 5.18 (a)). At nearly half the needed absorbed pump

power in comparison to Tm:YAP, minimum build up times of 387 ns (100 Hz) to 652 ns

(1 kHz) were attained at an absorbed pump power of 3.47 W (5.86 W at 1 kHz, respectively).

The pulse duration decreased for all repetition rates and was lowest with 117 ns at a

maximum pulse energy of 1.6 mJ at 100 Hz repetition rate (s. Fig. 5.18 (b)). This duration

was 4.1 times lower than the minimum pulse duration achieved with Tm:YAP. In direct



5.4 Regenerative amplifier 63

comparison, both diagrams (a) and (b) have the same course with increasing pump powers

including saturation points.
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Figure 5.18: (a) Build up time and (b) pulse duration of the q-switched pulses at diferent
repetition rates.

Figure 5.19 (a) depicts the evolution of the pulses at increasing pump power measured

at a repetition rate of 1 kHz. The pulses became more asymmetric with a strong rising

edge because of its dependence on the increasing small signal gain whereas the trailing

edge only depends on the cavity photon decay time. The optical spectrum (s. Fig. 5.19

(b)) of the pulses with maximum pulse energy at 1 kHz shows one main peak at 2089.5 nm

with a second peak at 2095.5 nm, which was 11 dB below the main peak.
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Figure 5.19: (a) Evolution of the pulses at increasing pump power at 1 kHz and (b) optical
spectrum at 1 kHz and maximum output power of 1.6 mJ.

5.4.4 Regenerative amplification with Ho:YAG

Parts of this chapter were already published in [Wie15b]. The uncompressed pulses of the

preampliĄer seeded the regenerative ampliĄer with a pulse energy of 24.4 nJ. After ten
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round trips and at 4.5 W of absorbed pump power, a maximum pulse energy of 714 µJ

at 1 kHz was reached (s. Fig. 5.20 (a), blue dots). This energy was again limited by the

damage threshold of the crystal, which was found at a comparable power density as in the

case of Tm:YAP. The pulses were ampliĄed with an eiciency of 31.2 %.
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Figure 5.20: (a) Uncompressed ampliĄed power / pulse energy vs absorbed pump power and
(b) evolution of the optical spectrum with increasing pulse energy.

The optical spectrum is depicted in Fig. 5.20 (b) for three diferent pulse energies,

which were attained at distinct pump powers. The spectrum showed a strong deformation

of the Gaussian-shaped seed spectrum. Mainly visible in the spectrum were the well-

known emission peaks of Ho:YAG at 2090 nm and 2096 nm, which already appeared in the

Ćuorescence spectrum and q-switched spectrum. In here, gain narrowing was visible for

both peaks separately, which efectively reduced the overall width at -10 dB level of the

optical spectrum from 9.8 nm to 7.7 nm.

unshaped

shaped

2.5 W
4.5 W
4.6 W

absorbed pump power

Figure 5.21: (a) Beam proĄle at diferent pump power levels from 2.5 W to 4.5 W in the
unshaped case and 4.6 W in the shaped, (b) M2-measurement at highest output power of 714.
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The laser cavity had to be readjusted for every pump power step in case of Ho:YAG to

Ąnd the maximum output power. This was not induced by a transversal mode hopping but

by a slight misalignment of the crystal’s angle to the incoming pump light to avoid back

reĆections into the non-isolated pump laser. The output beam proĄle is depicted in Fig.

5.21 (a), which was perfectly circular and did not change during the increase of the pump

power as expected due to the low thermal lensing. Furthermore, the beam propagation

parameter M2 is comparably good as in the case of Tm:YAP with a value of 1.65 ∘ 0.04

parallel and 1.61 ∘ 0.05 perpendicular to the table (s. Fig. 5.21 (b)) at an output energy

of 714 µJ.

CCM

GR

ND

HR HR

Figure 5.22: (a) Side view of the setup with spectral shaping in the grating stretcher (GR:
Grating, HR: mirror, CCM: concave mirror, ND: Needles for hard cut), (b) shaped optical
spectrum after regenerative ampliĄcation.

Owing to the strong gain shaping, a mechanical shaper was included into the grating

stretcher shown in Fig. 5.22 (a) to suppress the two main emission wavelengths at 2090 nm

and 2096 nm with two pins. The shaped seed spectrum is depicted as black dashed line in

Figure 5.22 (b), which showed the two incisions. Due to this spectral precompensation, the

ampliĄed spectrum in the RA was diferent than in the unshaped case with emission bands

between the two main wavelengths at 2090 nm and 2096 nm. Additionally, it broadens up

to a width of 10.5 nm at -10 dB level at an output energy of 711 µJ. Anyway, the spectrum

is still highly structured, because the seed shaping method with two pins is rather coarse.

A better solution for this might be a spatial light modulator with which amplitude and

phase of the pulse can be modiĄed [Wei00].

The seed energy of the RA was reduced from 24.4 nJ to 22.0 nJ by inserting the mechanical

shaper, therefore slightly more absorbed pump power was required to reach the maximum

pulse energy of 711 µJ at an absorbed pump power of 4.6 W (s. Fig. 5.20 (a), black squares).

The slope eiciency in the shaped case was measured to 36.6 % without taking into account
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the two datapoints at 3.93 W and 4.11 W of absorbed pump power, which were assumed to

be outliers due to the readjustment of the cavity at every pump power step. However, the

calculated B-Integral for this measurement was only 2.51 whereas the parameters of the

optical elements in Table 5.2 were used. Although the laser crystal was 2.5 times longer

than in the case of Tm:YAP, the lower B-Integral can be explained by the 3.4 times lower

number of round trips (B-Integral of 7.01 in the Tm:YAP case). The small mode radius

and high nonlinear refractive index of Ho:YAG were the main attributing factors to the

B-Integral.

Table 5.2: Parameters of the optical elements in the holmium-doped regenerative ampliĄer
for calculating the B-Integral. *The nonlinear refractive index of KTP was used instead of
RTP [Ada89].

Parameter Ho : YAG TFP QWP RTP

Length [mm] 10 7.62 1 20

Nonlinear refractive index �2 [×10−20 m2/W] 12.7 4.91 6.12 27.6*

Mode radius [µm] 160 910 890 895

Mode area (Gaussian) [mm2] 0.04 1.3 1.26 1.24
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Figure 5.23: Autocorrelation traces of the compressed pulse at diferent pulse energies in the
unshaped case (a) and in the shaped case (b).

The advantage of the spectral shaping is clearly visible in the AC traces in Fig. 5.23. The

multi-pulse like structure (a) disappeared in the shaped case and a single pulse appeared in

the AC trace (b) with a slight pedestal below the main pulse. The duration of the compressed

pulses at a maximum energy of 711 µJ was 1.19 ps, which was constant over ampliĄcation.

This pulse duration was nearly a factor of 3 higher than for Tm:YAP. Obviously, the narrow

gain spectrum of Ho:YAG was responsible for the longer compressed pulse duration of

Ho:YAG despite spectral precompensation. However, no atmospheric absorption lines are



5.4 Regenerative amplifier 67

present at 2.1 µm, therefore purging was not necessary. Worth mentionable is the fact, that

no visible satellite pulse occurred at this wavelength although the same Pockels cell was

used as in the case of Tm:YAP (s. Subsection 4.4.4). This fact supports the explanation

of adsorbed water in the coating of the RTP crystal as a cause for satellite pulses, as no

discrete absorption lines of water are present at 2.1 µm wavelength. Therefore, no strong

phase distortions occurred, which could generate post-pulses [Geb15b; Sei88].

The oscilloscope trace of the pulse during regenerative ampliĄcation at 10 round trips is

shown in Fig. 5.24 (a). Due to the slightly difered cavity design mentioned before, the

round trip time is now 14.5 ns corresponding to a cavity length shortened by 45 mm in

comparison to the case of thulium. Only one pulse propagated inside the RA and was

ampliĄed. Figure 5.24 (b) shows the single-pulse output of the RA revealing no evidence

of pre- or post pulses.
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Figure 5.24: Oscilloscope trace of the RA pulses (a) during ampliĄcation at 10 round trips
and (b) temporal signal of the output pulse behind the RA.

Although the spectral precompensation has worked out for regenerative ampliĄcation

with Ho:YAG to clean the AC trace, the following measurements were carried out without

spectral precompensation as it had no inĆuence on the maximum achievable pulse energy.

To verify the dynamics of the RA operating in the linear regime, the cavity round trips

were varied between 6 and 16 round trips (s. Fig. 5.25 (a)). At a pump intensity of

83.1 MW/m2, which corresponds to an absorbed pump power of 3.34 W, the RA output

energy increased linearly up to 14 round trips and saturated after 15 round trips with a

maximum single-pulse energy of 492 µJ (black curve). A further increase of round trips led

to bifurcation instabilities, which were suppressed by applying a higher pump intensity

of 98.2 MW/m2 (3.95 W of absorbed pump power, red curve). This also resulted in a

higher pulse energy of 686 µJ after 14 round trips. When more round trips were applied,

bifurcation instabilities did not occur, but the pulse energy saturated.
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Figure 5.25: (a) Pulse energy vs. diferent round trip numbers, (b) pulse energy vs. repetition
rate (RT: round trips).

Figure 5.25 (b) shows the variation of repetition rate at a pump intensity of 76.7 MW/m2

(black squares), which corresponded to 3.08 W absorbed pump power. When a repetition

rate of 100 Hz was applied to the RA, the maximum achievable pulse energy of 699 µJ was

reached. Reducing it to a repetition rate of 3 kHz resulted in a pulse energy of 100 µJ. As

already pointed out in Subsection 4.4.4, a regenerative ampliĄer can be operated with a

constant maximum pulse energy up to the inverse of the upper state laser level. With

the upper state lifetime of 10.6 ms, this corresponds to a value of 94 Hz. The following

decrease in pulse energy was clearly visible. In direct comparison to the Tm:YAP system

(blue dots), which was operated at nearly the same pump intensity of 75.7 MW/m2, both

systems performed identically, although the number of round trips to achieve similar pulse

energies was diferent.

The variation of the seed energy was performed with a slightly diferent oscillator

operating at 2090 nm with a Gaussian-like spectral shape and a FWHM of 17.3 nm. The

results of regenerative ampliĄcation after ten round trips and at 1 kHz repetition rate are

depicted in Fig. 5.26 (a). The output pulse energy (black curve) increased nearly linear

from 526 µJ at a seed energy of 7.1 nJ to a maximum pulse energy of 705 µJ at a seed

energy of 31.2 nJ. The duration of the compressed pulses (red curve) varied between 1.20 ps

and 1.12 ps for the diferent seed pulse energies and was shortest at 20.6 nJ pulse energy.

Due to the diferent seed oscillator with distinct spectral precompensation, the AC traces of

the compressed pulses shown in Fig. 5.26 (b) difered in shape from the ones presented in

Fig. 5.23 (b). Although showing similar compressed pulse durations, higher sidelobes were

visible in the AC trace, which were not suppressed by stronger Ąltering. One explanation

for this behaviour could be a diferent spectral phase occurring inside the grating stretcher
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and Ąber preampliĄer due to the changed seed oscillator: as the oscillator used before was

operated at a wavelength of 2100 nm, the spectral shaping occurred mostly in the wings of

the pulse to suppress the highest peak at 2090 nm. The oscillator operating at 2090 nm was

shaped in the center of its emission spectrum. Therefore, the following Ąber preampliĄer

induced a stronger phase change on the stretched pulses, which could not be compensated

by the grating compressor. A spatial light modulator inside the stretcher could help to

further suppress the sidelobes.
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Figure 5.26: Ho:YAG RA: variation of seed energy after 10 round trips. (a) output pulse
energy and compressed pulse duration at 4.5 W absorbed pump power and (b) AC traces of
the compressed pulse at diferent seed energy.

In conclusion, the ultrafast regenerative ampliĄer system presented here was completely

based on holmium-doped materials. The complete setup consisted of a HDF ultrashort

pulse seed oscillator operating at 2100 nm, a grating stretcher, HDF-preampliĄer, and a

RA based on a Ho:YAG crystal. Appropriate TDF pump lasers were developed to address

the optimum absorption wavelengths of the Ho-doped materials. The RA system showed a

similar limitation of the pulse energy in terms of the damage threshold of the ampliĄer

crystal compared to Tm:YAP. The achieved output pulse energy exceeded 700 µJ, but the

gain spectrum of Ho:YAG caused a strong deformation of the seed signal. In consequence,

a multipulse-like structure was visible in the AC trace. This issue could be resolved by

hard-cut spectral Ąltering inside the grating stretcher to achieve compressed pulse durations

of 1.2 ps at a compressor eiciency of 50 %. Due to the narrow gain spectrum, these pulses

are 3 times longer than in the case of Tm:YAP. Anyway, no satellite pulses are visible

in the AC trace although the same RA cavity was used to amplify the pulses, which can

be explained by the absence of strong atmospheric absorption lines at 2.1 µm. During

variation of round trip numbers, the RA system showed bifurcation instabilities at low

pump powers. Higher pump power led to suppression of the bifurcation instabilities but
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also to the onset of gain saturation. The variation of repetition rate revealed a nearly

exponential increase of output pulse energy with decreasing repetition rate. Furthermore,

a variation of the seed energy showed a linear increase of the output energy.



CHAPTER 6

Conclusion

In this thesis, two diferent regenerative ampliĄer systems were presented, which were based

on thulium- and holmium-doped materials and operated at 1.94 µm and 2.1 µm wavelength,

respectively. For both systems, individual ultrashort pulse Ąber oscillators, stretching units,

Ąber preampliĄers, and pump lasers were developed. Similar seed pulses for the subsequent

regenerative ampliĄers in terms of pulse energy, pulse duration, and optical spectrum were

used for a feasible comparison between both regenerative ampliĄer materials.

At 1.94 µm, the ultrashort pulse seed oscillator was based on a thulium-doped Ąber and

utilized the concept of stretched-pulse operation by the use of a normal dispersion Ąber.

The laser emitted low energy pulses with an uncompressed duration of 112 fs at a peak

wavelength of 1935 nm. The output characteristics were conĄrmed by numerical simulations

and showed good agreement. After stretching the pulses in a Ąber stretcher, they were

ampliĄed in a subsequent thulium-doped Ąber ampliĄer to a maximum pulse energy of 61 nJ.

A pulse picker consisting of a Pockels cell and a TFP reduced the repetition rate from MHz

to kHz range. The achieved pulse duration is one of the shortest compared with existing

passively mode-locked ultrashort pulse TDF oscillators [Hax08; Wan10]. Only Jiang et al.

[Jia12] demonstrated a much lower pulse duration of 58 fs directly out of the oscillator by

the use of a very short Ąber section, but the high repetition rate of 500 MHz makes pulse

picking nearly unfeasible and therefore unsuitable for regenerative ampliĄcation.

For the design of the regenerative ampliĄer, several issues had to be considered like the

targeted mode Ąeld diameters and the strong thermal lens in the Tm:YAP crystal. The

designed cavity of the regenerative ampliĄer was Ąrstly investigated in terms of continuous

wave operation and tunability. Secondly, experiments in q-switch operation were performed

to explore the possibly achievable pulse energies for the regenerative ampliĄcation operation

which were found up to the mJ-range.
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Finally, regenerative ampliĄcation was demonstrated for the Ąrst time with thulium-

doped materials. The regenerative ampliĄer based on the Tm:YAP crystal was seeded

with the pulses of the thulium-preampliĄer at a pulse energy of around 25 nJ and 1 kHz

repetition rate. The laser system delivered more than 700 µJ output pulse energy, which

was limited by the damage threshold of the laser crystal. Strong atmospheric absorption

lines were present at the wavelength of 1937 nm of the pulses, which imposed the optical

spectrum strongly and caused post-pulses and a long ps-pedestal in the autocorrelation

trace of the compressed pulses. Purging the regenerative ampliĄer cavity with nitrogen gas

reduced these atmospheric absorption and the pedestal in the autocorrelation trace, whereas

satellite pulses remained beside the main pulse. These satellite pulses were generated

possibly by residual water absorption in the porous e-beam coatings of the RTP crystals of

the PC. However, the pulses could be dechirped in a Martinez grating compressor to a

minimum pulse duration of 410 fs with an eiciency of 50 %. The variation of round trip

numbers for scalability revealed a linear behaviour of the output energy without any signs

of gain saturation or bifurcation instabilities. By increasing the repetition rate from 100 Hz

to 3 kHz, an exponential decrease of output energy was revealed, which was explained by

the long lifetime of Tm:YAP. When varying the seed energy, the output energy of the

regenerative ampliĄer increased linearly up to 700 µJ. The compressed pulse duration was

shortest with 380 fs at this highest output energy which resulted in a maximum peak power

of 700 MW after compression. Until now, this was the highest peak power demonstrated

at this wavelength with thulium-doped materials. Comparable pulse duration but lower

pulse energy of 120 µJ was achieved by Stutzki et al. [Stu15] by the use of Tm-doped

large-pitch Ąbers.

The overall system was then modiĄed to operate at 2.1 µm wavelength with holmium-

doped materials. The seed oscillator was changed to an ultrashort pulse holmium-doped

Ąber oscillator, which based on the same pulse evolution scheme as the thulium-doped

oscillator. The emitted duration of the low energy, single pulses was 463 fs at a central

wavelength of 2100 nm, which was supported by numerical simulations. As the propagation

losses in silica Ąbers are higher at 2.1 µm in comparison to 1.94 µm, a grating stretcher

was used before the holmium-doped Ąber preampliĄer, which ampliĄed the pulses up to a

pulse energy of 36.8 nJ. The following pulse picking and mode Ąeld adaption scheme was

the same that was already applied in the thulium-doped system. Shorter pulse durations

of less than 160 fs were attained in ultrashort pulse HDF oscillators with an optimized

dispersion management [Hoo13; Li14].

The cavity of the following regenerative ampliĄer based on Ho:YAG was the same which

was already used for Tm:YAP with only few changes to ensure a good comparability
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between both systems. Four diferent doping concentrations were tested in continuous wave

experiments for maximum output power which was found at the 1.6 at. % doped crystal.

Q-switch experiments revealed pulse energies of more than 1 mJ for various repetition rates.

Although the optical seed spectrum was slightly narrower, the pulse parameters used for

seeding the Ho:YAG regenerative ampliĄer were comparable to the case of Tm:YAP. The

spectral shape, pulse energy, stretched pulse duration, and chirp-sign were similar, which

enabled a good comparison between both regenerative ampliĄer laser materials. Ho:YAG

showed a higher ampliĄcation eiciency compared to Tm:YAP, so less round trips were

used. At seed parameters similar to Tm:YAP, a comparable output energy of more than

700 µJ was attained of the regenerative ampliĄer based on the Ho:YAG crystal before it

was limited by the crystal’s damage threshold. The gain spectrum of Ho:YAG caused a

strong gain shaping of the input pulses which induced a multipulse-like structure in the AC

trace. This was mitigated by spectral precompensation of the seed pulses and the resulting

duration was 1.2 ps without any signs of multiple pulses or long-term background. The

achieved pulse duration was three times longer than in the case of Tm:YAP because of

the narrower gain spectrum of Ho:YAG. When varying the round trip numbers to scale

the output energy, limitations arose, which were in contrast to the linear relation found in

Tm:YAP. Bifurcation instabilities appeared at low pump power which could be suppressed

at higher pump power, but the maximum output energy saturated. The variation of

repetition rate revealed the same course of lines at similar pump intensity as in the case

of Tm:YAP during an increase from 100 Hz to 3 kHz. The variation of the seed energy

was performed with a slightly diferent seed oscillator and showed a linear relation of the

output energy.

In general, both systems delivered comparable experimental results in terms of output

energy but Ho:YAG performed more eiciently. Higher output energy was demonstrated

with Ho:YLF regenerative ampliĄers with multiple mJ output energy by the use of much

higher pump power [Der13; Gra15; Kro15b], but the pulse durations were in range of few

to hundreds of ps. Only Malevich et al. [Mal13] demonstrated a Ho:YAG regenerative

ampliĄer with mJ output energy and a pulse duration of 530 fs by the use of a broadband

seed source and spectral precompensation. In terms of pulse duration, this was surpassed

by the here described Tm:YAP regenerative ampliĄer, which was demonstrated for the Ąrst

time and ofered a duration less than 410 fs because of the generally broader gain spectrum

in Thulium-doped crystals.





CHAPTER 7

Outlook

The developed laser systems described in this thesis represent the next generation of

high energy ultrashort pulse lasers. SigniĄcant progress was achieved in understanding of

thulium- and holmium-based regenerative ampliĄer systems. The achieved results show that

pulse energies of hundreds of µJ can easily be reached at 2 µm wavelength by overcoming

the technical diiculties and physical efects arising at this wavelength. The compressed

pulse durations are comparable to existing ytterbium ampliĄer systems operating at 1 µm

wavelength [Bal11; Bue09; Chi09; Liu02; Ric10; Say09]. However, there are some aspects

for further research, which could be considered.

Further scaling of the pulse energy can be accomplished by subsequent singlepass crystal

ampliĄer stages to boost the pulse energy into the multi-mJ region. Dergachev [Der13]

showed this in principle with hundreds of ps pulse duration in Ho:YLF crystals at a

wavelength of 2.05 µm, which supports only a small spectral bandwidth. The transfer

to femtosecond ampliĄer systems was not demonstrated yet and must be clariĄed, also

with regard to the strong structured gain spectrum of holmium-doped crystals, which is a

basic problem in those crystals. The here demonstrated spectral shaping of the seed signal

to overcome the spectral gain deformation is rather course and should be optimized, for

example by the use of spatial light modulators to afect amplitude and phase independently.

Anyway, high power pump sources for these holmium ampliĄers are commercially

available. The drawback of these sources are mainly the costs as well as noise inĆuences by

atmospheric absorptions at this wavelength. These can have a strong impact on the beam

proĄle and the whole beam line for the pump laser needs to be purged as consequence.

Bifurcation instabilities in regenerative ampliĄers are a general problem [Dör04], but

Kroetz et al. [Kro15a] showed just recently that with a detailed numerical analysis speciĄc

stability points can be obtained, which ofer a higher pulse energy and very low noise
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operation while simultaneously suppressing bifurcation instabilities.

Further improvement in terms of shorter pulses can be attained by the use of a nonlinear

compression stage in a gas-Ąlled hollow-core photonic crystal Ąber, which was demonstrated

by Balciunas et al. [Bal15] and Gebhardt et al. [Geb15a] at 2 µm wavelength. The optical

spectrum of a high energy pulse (tens of µJ) can be broadened to support tens of fs or even

sub-cycle pulse duration. The attained intensity is in the order of ionization (≍1014 W/cm2),

which is suicient for strong-Ąeld applications like high harmonics generation.

In terms of application, the presented laser systems are suitable as front-end for frequency

conversion stages to longer wavelengths [Der08; Lei12; Mal15a; Pet01]. Optical parametric

processes based on nonlinear crystals like ZGP, AGS, AGSe etc. to generate multi-µJ,

wavelength tunable pulses in the range from 3 Ű10 µm are important features for further

studies. As already mentioned, this region is highly interesting for several applications like

resonant infrared ablation of polymers, microstructuring and general material processing

of semiconductors [Did07; Hur07; Sch10].
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