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Abstract

With artificial teeth implants the mechanical stimulation of the jawbone is re-
versed because the natural ligament fixation of teeth is destroyed. This study
aims for the development of active implants which provide additional electri-
cal stimulation for bone adaption. A computational framework is presented in
order to optimize new developments for activating dental implants with piezo-
electric coatings. An electromechanical driven bone remodeling theory is de-
veloped and implemented into a finite element program. The osseointegration
of bone implants is simulated by means of bio-active interface theory. Detailed
numerical studies are performed based on a 3D model of lower mandible which
has been reconstructed from high resolution CT-data. Initial relative motion,
called micromotion, is limited as an important parameter for the osseointegra-
tion because excessive micromotion causes apposition of fibrous tissue.

A modeling approach is introduced considering both electrically and mechani-
cally stimulated time dependent ingrowths with regard to simultaneous assess-
ment of the micromotion threshold violation under dynamic chewing loads. In
this context, the combined Drucker-Prager with von Mises yield criterion is
introduced for the simulation of osseointegration process based on robust and
established methods of plasticity theory. The linear theory of piezoelasticity
is implemented into the finite element program for coupled electro-mechanical
modeling.

Furthermore, the influence of an additional piezoelectric coating of the implant
is investigated. In this case, the electric field strength produced by piezoelec-
tric coating due to normal chewing conditions is of significant importance, as
rather low field intensity doesn’t affect on bone cell proliferation while quite
excessive fields might cause cell necrosis. Therefore, a parametric study has
been carried out in order to achieve suitable material properties of piezoelec-
tric coating to provide an electric field in tolerable domain. With these results
conclusions can be made on the goal oriented electromechanical stimulation to
accelerate bone formation and enhance faster healing after surgery.

Keywords Osseointegration, Electromechanical stimulation, Micromotion,
Dental implants, Finite element simulation.





Kurzfassung

Beim Einsatz künstlicher Zahnimplantate wird die mechanische Stimulation
des Kieferknochens invertiert, weil die natürliche Ligamentfixierung der Zähne
zerstört ist. Diese Studie zielt auf die Entwicklung aktiver Implantate ab, die
zusätzliche elektrische Stimulation für den Knochenaufbau bieten. Es wird
eine theoritische Ausarbeitung präsentiert, um neue Entwicklungen für ak-
tivierende Zahnimplantate mit einer piezoelektrischen Beschichtung vorzustellen.
Eine elektomechanisch getriebene Knochenumbau-Therorie wurde entwickelt
und in ein Finite Element Programm implementiert. Die Osseointegration
von Knochenimplantaten wird in einer bioaktiven Interface-Schicht simuliert.
Detaillierte Studien werden auf der Basis eines 3D-Modells des Unterkiefers
durchgeführt, das aus hochaufgelösten CT-Bilddaten rekonstruiert wurde. Rel-
ative Bewegungen, auch Micromotion genannt, sind in begrenzender Faktor
für den Osseointegration, denn übermäßige Micromotion verursacht Apposi-
tion von Knochengewebe.

Es wird ein Modell vorstellt, das mit elektrischer und mechanischer Stimula-
tion zeitabhängiges Einwachsen unter Berücksichtigung einer gleichzeitige Be-
wertung der Micromotions-Schwellenwert unter dynamischen Kaubewegungen
simuliert. Für die Osseointegration wird in Anlehnung an die Plastizitätstheo-
rie ein Drucker-Prager-Modell für das bioaktive Interface angenommen, das in
Abhängigkeit vom Ossifikationsgrad in ein von Mises Modell übergeht. Somit
wird ausgehend von reibungsbehafteten Normalkontakt eine feste Verbindung
zwischen Implantat und Knochen hergestellt.

Weiterführende Studien werden zum Einfluss der piezoelektrischen Beschich-
tung des Implantats durchgeführt. Ist die elektrische Feldstärke, die durch
piezoelektrische Beschichtung beim normalen Kauprozess erzeugt wird, zu
geringe, haben diese keinen Effekt auf den Knochenaufbau, während zu hohe
Feldstärken Zellnekrose verursachen könnten. Dafür wurde eine parametrische
Studie durchgeführt, um geeignete Materialeigenschaften von piezoelektrischen
Materialien zu finden, die ein elektrisches Feld in tolerierbaren Größenordnun-
gen zu erzeugen. Mit diesen Resultaten können Schlussforderungen für zielo-
rientierte elektomechanische Stimulation gezogen werden, um die Knochen-
bildung zu beschleunigen und einen Heilungsprozess nach Operationen zu
verbessern.

Stichworte: Finite-Elemente-Methode; Knochenumbau; Osseointegration;
Zahnimplantate; Elektromechanische Stimulation; Knochen-Implantat-Interface.
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1

1 Introduction

1.1 Motivation

In orthodontology, dental implants are introduced as artificial replacements of
natural teeth which are surgically placed into the jawbone. Since the 1960s,
titanium prostheses are commonly used for many biomechanical applications
including dentistry because of its biocompatible properties. Aseptic loosening
of implant can occur 10 to 20 years after replacement surgery because of poor
quantity and quality of bone surrounding dental prosthesis. In order to pre-
vent implant failure, finding out the answer of these two questions is crucial:
(1) how is the bone connected to implant?, and (2) how is the structure of
the bone remodeled?. Therefore, surgeons and implant manufacturers are re-
searching to develop an effective assessment and prediction protocol in order
to reach more compatible implant systems.

For the first time, Fukada and Yasuda [1957] have demonstrated that bone
exhibits piezoelectric behavior. Bone tissues are nanocomposites of collagen
fibrils reinforced by the mineral crystals (mainly hydroxyapatite) that exhibit
bioelectrogenic properties such as piezoelectricity and electrokinetic poten-
tials. These electrical properties depend on age, gender and anatomical loca-
tion. This phenomenon occurs by producing gradients in electrical potentials
called stress generated potential (SGP) along the collagen fibrils following the
mechanical deformation of the tissue, which provides a local stimulus for bone-
generating cell proliferation.

In recent years, the advantage of using electrostimulation techniques, partic-
ularly for the healing of bone fracture, cartilage and ligament diseases, have
been investigated in order to identify the electrical attributes of biological
tissue. Despite the fact that electrical stimulation can enhance bone forma-
tion a technical solution on using electricity for bone formation in a controlled
manner remains still complicated. Electrical stimulation has been investigated
widely in different animal and clinical studies.

This research is based on the hypothesis, that dental implants with piezoelec-
tric coatings could be beneficial for their osseointegration. Useful electrical
energy can be produced during normal physiological activity using piezoelec-
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tric materials within orthopedic implants. In order to achieve an optimized
implant design, the role of primal osseointegration is under discussion. After
insertion of an implant, stromal bone marrow stem cells initiate a stable and
long-lasting connection between the bone and the implant, a process called
osseointegration. Initial relative motion, called micromotion, must be limited
as an important parameter for the stimulation of osseointegration, because
excessive micromotion causes apposition of fibrous tissue.

Finite element analysis (FEA) is used extensively in various fields of medi-
cal applications such as predicting bone loss and ingrowth surrounding dental
implants. Most FEA models assume a perfect bonding between bone and im-
plant, while this does not take place identically in clinical conditions. Thus,
an imperfect interface layer between bone and implant need to be modelled.
Therefore, mathematical and computational modeling approaches for the pre-
diction of osseointegration process are necessary. The numerical studies allow
to quantify the improvement of bone formation in the presence of electrical
stimulation.

1.2 State of the Art

Computational modeling approach and simulation of dental prosthesis in or-
der to achieve better biocompatibility of the material and stability inside of
the jawbone have been increasingly addressed by research groups in the past
decades. Bones are living tissues that are capable to adapt their internal
structure to the mechanical demand. This statement is known as the Wolff’s
law, Wolff [1892]. Bone remodeling theories have been developed to predict
bone growth from internal mechanical loads in terms of stress and strain, e.g.
Frost [1988]; Pauwels [1965]; Kummer [1972]; Cowin [1986]; Cowin and Hege-
dus [1976]; Cowin and Nachlinger [1978]; Hegedus and Cowin [1975]. Since
a couple of years sophisticated studies have been carried out for the consti-
tutive modeling of stress adaptive bone remodeling phenomena considering
anisotropic behavior of bone as well as large deformation theory which can
be found in e.g. Jacobs et al. [1997]; Krstin et al. [2000]; Doblaré and García
[2002]. Furthermore, the effects of initial cellular remodeling units (BMU, Ba-
sic multicellular units) during tissue replacement was investigated by Martin
[2007] and Hernandez et al. [1999].

With this significant advances in bone remodeling theories, investigations of
other biophysical stimuli which can affect this process remains under contro-
versy discussions. Most mathematical models have not taken account of the
multiphysics phenomena of bone tissue. Ramtani [2008] established a new
mathematical model considering piezoelectric and electrokinetic behavior of
the bone. Qu and Yu [2011] developed a mathematical model (one spatial
dimension) of the remodeling process under the influence of both mechanical
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loads and electric charges.

Clinical studies demonstrated that the piezoelectric behavior of bone tissues
produce electric potentials, see Aschero et al. [1996]; Beck et al. [1997]; Gross
and Williams [1982]; Johnson et al. [1982]. Piezoelectricity is a fundamental
characteristic of bone which can raise great interest in understanding bone
physiology. In the following, electrical stimulation has been studied to im-
prove fast and stable bony ingrowth and to reduce the time of healing process
after bone surgery which can be found in Park and Kenner [1975]; Park et al.
[1978]; Salman et al. [1978]; Weinstein et al. [1976]. Giannunzio et al. [2008]
and Shayesteh et al. [2007] investigated the effect of electrical stimulation on
healing processes specifically for bone-dental implants. However, an open ques-
tion still remains on how exactly an electrical stimulus affects the biological
entities.

To date, three main theories have been suggested for electrical stimulation of
bone tissue using: i) electric current ii) electromagnetic field and iii) electric
field. In electric current stimulation through direct contact the magnitude of
constant current is important for the osteogenesis effect. Brighton et al. [1981]
reported that currents less than 5 µA and greater than 20 µA indicated no
effect and cell necrosis, respectively. In addition, electric current with direct
contact electrodes is not a viable method, since electrodes inside the body are
a source for infections and other long term problems. Therefore, the weakness
of this method lead to the investigation of alternative, non-invasive methods.
The study of Brighton et al. [1992] revealed that the electric field intensity is
a considerable parameter in bone cells proliferation. They observed that an
electric field strength of 0.1-10 mV/cm enhances the cell proliferation while
fields less than 0.1 mV/cm did not affect the proliferation.

Some studies have focused on using electrically charged materials and piezo-
electric materials as artificial bone grafts. Callegari and Belangero [2004]
demonstrated that the piezoelectric polyvinylidene fluoride (PVDF) tube can
improve new bone formation when it was implanted into an artificial defect of
a rat femur. Basic knowledge on that subject has been obtained from exper-
imental investigations, mathematical models and computational simulations,
see Ambard and Swider [2006] and Moreo et al. [2009]. However, mathematical
models that justify bone remodeling based on bone piezoelectricity are rather
sparse, Qin and Ye [2004a]; Qu et al. [2006]; Ramtani [2008].

Bone healing at the interface of bone and implant is a complex biological
process which is roughly partitioned in four subsequent steps. The process
initiates with bleeding as a consequence of the implant insertion for couple
of hours (stage 1). Bleeding is reduced by formation of fibrillated structures
which detains blood loss during several days (stage 2), Polimeni et al. [2006];
Davies [2003]. Bone cells start to move towards the injured zone over a period



4 1. Introduction

of some weeks (stage 3), Davies [2003]. Finally, bone cells start the formation
of a new bone matrix for several months (stage 4). The process of osseointegra-
tion and stress shielding have to be distinguished, as they happen at different
time scales. Stress shielding refers to the reduction in bone density because
of the strong implant the surrounding bone is not stressed in a physiological
manner, see Weinans et al. [1992]. The stress shielding process takes place in
the late stage 4, while the process of osseointegration happens at stage 3.

A sufficient osseointegration describes the acceptance of the prosthesis by bone
tissue which depends on several parameters, as mentioned in Albrektsson and
Johansson [2001]. One of the most important issues is the initial relative
motion in the gap between the bone and implant, referred to as micromo-
tion. Pilliar et al. [1986] reported that bony ingrowth has been attained at 28
µm micromotion, whereas a formation of strong fibrous tissue was achieved
at micromotions of 150 µm one year after. To this date a specific threshold
on micromotion for the osseointegration remains unknown. Szmukler-Moncler
et al. [1998] concluded that the micromotion threshold for osseointegration can
be somewhere between 50 and 150 µm.

Since a couple of years computational simulation of mechanical conditions in
the bone-implant interface is an open field of research. Papavasiliou et al.
[1997] investigated the stability of dental implant and determined degrees of
osseointegration using an interface layer approach. A multi-scale computa-
tional approach has been introduced for the optimization of teeth implant
coatings by Rungsiyakull et al. [2010]. They compared osseointegration and
bone remodeling on the micro-scale using a model with discrete coating pores.
Lutz and Nackenhorst [2011] introduced a new model refinement in terms
of bioactive interface theory in order to simulate osseointegration in rough
coated non-cemented hip-joint implants. In the aforementioned work, the ini-
tial constitutive behavior of bone-implant interface layer was introduced by a
Drucker-Prager like plasticity model and the osseointegration process has been
considered by an artificial hardening rule.

In conclusion of this quite brief review, besides introducing electrical proper-
ties of bone tissue and electrostimulation techniques, computational modeling
approaches for the prediction of osseointegration processes of bone-implants
have been summarized. In the majority of previous publications mainly static
loading and mechanically stimulated ingrowth behavior have been studied.
This gives rise to much further research on electro-mechanical stimulation of
bone matrix under dynamic loads.

1.3 Aims and Scope

In this work, an effective approach for the numerical simulation of dental im-
plants is presented, which can be applied to other types of medical implants.
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The simplicity of the isotropic model bone remodeling is intentionally consid-
ered in order to reduce the parameters which are under investigation. Many
advanced models have the disadvantage that they require a lot of unknown
parameters which are neither measurable nor somehow clinically applicable.
The finite element studies show that the differences between isotropic and
orthotropic modeling differ significantly only in few number of bones models
from one system in the continuum mechanics.

This by begins with the geometric modeling. Here methods are presented
which patient-specific finite element models can be created from computer to-
mography data. The boundary conditions for the finite element simulation
are discussed in detail. This aspect plays an important role for practical ap-
plications which is neglected in many work in this area. In this context, the
adaptive bone remodeling is investigated under the influence of both electrical
and mechanical stimulation. The method presented for the calculation of the
equivalent dynamic load collectives is computationally efficient. Along with
the highly efficient implementation a considerable computational speed advan-
tage is gained thereby. The osseointegration simulation approach is developed
which can describe and predict the effect of electrical stimulation on bone-
implant interface. The proposed methods can be applied to clinical problems
based on clinical trial data.

In this work, computational simulation has been carried out in order to evalu-
ate the influence of electro-mechanical stimulation on the ingrowth behaviour
in bio-active interface layer. Thus, electro-mechanical bone remodeling theory
has been combined with a Drucker-Prager interface model considering electro-
mechanical behavior of the interface. A soft, thin bone-implant interface layer
has been modeled in order to simulate osseointegration, consisting of a mix-
ture of liquid phase and bony fragments which appears immediately after the
surgery. This layer has the ability to adopt electrical properties of bone cells for
electro-mechanical stimulation. Furthermore, additional piezoelectric coating
was modeled surrounding dental implants which provide a surface electrical
charge in order to electrical interactions with the physiological environment.

The main objective of this work is to evaluate the feasibility of using piezoelec-
tric coating (PVDF) to generate in vivo electrical energy surrounding dental
implants. In this study, a modeling approach considering both electrically and
mechanically stimulated time dependent ingrowth with regard to simultane-
ous assessment of the micromotion threshold violation under dynamic chewing
loads is investigated. A solid interface element with bio-active constitutive
properties is utilized for modeling the bone-implant interface incorporating
piezoelastic characteristics. The derived equations of piezoelectric material
are solved using finite element methods in order to simulate a thin piezoelec-
tric layer surrounding a dental implant. A three dimensional finite element
model of the lower mandible is reconstructed from a CT data set of a 63 years
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old male patient using segmentation techniques.

The present thesis is composed of six chapters, including this introduction and
a further chapter dedicated to conclusions and future work.

The bone biology and medical applications are provided in chapter two, which
are necessary to understand this work. This chapter provides a brief descrip-
tion about biomechanics of bone tissue, electrical properties of bone cells, bone
remodeling and osseointegration process.

Chapter three contains the theoretical foundations that are necessary for mod-
eling in the context of continuum mechanics. A brief review of the fundamental
concepts of continuum mechanics is given in this chapter. Starting with the
kinematics of an arbitrary deformation process and electrostatics laws. A de-
scription of stress measures and the electric displacement follows. Then the
balance equations within each kinematic framework are introduced. The devel-
oped interface model for the description of the mechanically regulated osseoin-
tegration is presented based on established methods of continuum plasticity
theory. Afterwards, a brief and basic information about crystalline structure
of piezoelectric materials such as piezoelectric effects are given based on me-
chanical loading and polarization direction. The constitutive equations for
isotropic materials are outlined. In the end, linear theory of piezoelectricity
used for coupled electromechanical modeling is presented.

Chapter four contains the numerical implementation in the finite element mod-
eling. First, the basic concept of the finite element method is reviewed which
is used in this work. Then the finite element discretization for the electrostatic
and mechanical fields are introduced. In the following a piezoelastic patch test
is investigated in order to verify numerical results.

A brief review on the procedure for the reconstruction of geometrical models
from CT data is outlined in chapter five. In the following, projection of CT
data to finite element model is reviewed. Finally, boundary conditions and
simulation approach are presented.

The results of a comparative study are presented in chapter six, to evaluate
the effect of electromechanical stimulation on implant osseointegration based
on electrical properties of bone cells. In addition, the variation of micromotion
limit is investigated as a remarkable factor which can affect on osseointegra-
tion. This is followed by a parametric study in order to achieve the best value
of piezoelastic constants to provide the electric field in a tolerable domain.
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2 Basic and Applied Bone Biology

Bone is a rigid connective tissue with complex anatomy that forms the skeleton
of the body. From the structural aspect, bone is a dynamic structure which
has ability for self-repair and responding to external mechanical forces with
continuous remodeling. The bone remodeling is a natural life-long process that
bone is renewed through the bone resorption and formation in interaction with
mechanical environment.

In addition, bone is a source of electric potential when it is mechanically
stressed or injured, which it has been demonstrated by Salzstein and Pollack
[1987]; Friedenberg and Brighton [1966]; Friedenberg and Smith [1969]. Fur-
thermore, bone formation and repair can be affected by electrical stimulation,
see Basset and Becker [1964]; Brighton [1981]; Yonemori et al. [1996].

Hence, an understanding of biomechanical behavior of bone tissue in response
to electrical and mechanical stimulations is necessary. The following chapter
covers biology, anatomy and remodeling of bone.

2.1 Jawbone Anatomy

The mandible and maxilla are the largest and strongest bones in the face which
hold the lower and upper teeth in place. The masticatory muscles provide the
loads for chewing of food with repetitive cycles of opening and closing the
space between the mandible and maxilla. The basic anatomy and function of
the mandible is indicated in Fig. 2.1 for the purpose of the present research.
The structure of mandible consists of the following area:

• Body, curved horizontal portion

• Ramus, positioned vertically at the rear of the mandible

• Angel formed at the junction of body and ramus

• Mental foramen, allows the entrance of the mental nerve and blood ves-
sels into the mandibular canal
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Figure 2.1: Basic anatomy of the mandible, adapted from Medscape Mandibu-
lar Fracture Imaging 1.

• Alveolar process, the tooth bearing area of the mandible which is located
at the upper part of the body;

• Condyle, the upper part of the ramus which articulates with the tem-
poromandibular joint in the temporal bone;

• Coronoid process, located above the ramus and the temporalis muscle
attaches at this location.

2.2 Bone Biology

The major functions of bones are structural support for the body, transmis-
sion of muscle forces, protection of vital organs, to provide an environment for
marrow (where blood cells are produced) and a storage area for minerals (such
as calcium). Bone tissue consists of the bone cells, extracellular fluid and the
solid extracellular material which is called the bone matrix. This bone matrix,
which is surrounded by the extracellular fluid, is in contact with blood plasma.
The plasma contains bone cells to regulate the chemical reactions which cause
a change in the porosity of bone matrix. These cells, which are described in
the following, are osteoblasts, osteoclasts and osteocytes.

Bones are generally classified in two types of tissue, cortical (compact) and
cancellous (spongy). Cortical bone is a strong, dense and tough outer layer,
which contributes to about 80% of the weight of a human skeleton. Cortical

1http://emedicine.medscape.com/article/391549-overview
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Figure 2.2: Schematic diagram from a portion of long bone, de Pepp [2011].

bone is made by cylindrical structures, the so called osteons, as illustrated in
Fig. 2.2.

Haversian canals are located in the center of each osteon which contain blood
and nerve vessels. Osteocytes are placed in between the lamellae which are
responsible for nutrient supply and communication. Cancellous bone is a in-
ternal spongy layer which is lighter and less dense than compact bone, the
so called trabecular. The spaces between the trabecular is occupied by bone
marrow and blood vessels. The external and internal surfaces are coverd by
periosteum and endosteum, respectively, Shore et al. [1998].

Three different types of bone cells can be categorized as osteoblasts, osteo-
cytes and osteoclasts. These cells play fundamental roles in bone formation,
maintenance, and remodelling. Bone extracellular matrix (ECM) is secreted
and deposited by osteoblasts which are responsible for bone formation and
manufacture of hormones. The ECM of mature bone tissue contain 30-40 %
of organic matrix and 60-70 % (dry weight) of mineral substances. The or-
ganic material mainly includes collagen fibrils 85-90 % (type I) and inorganic
material consists mainly of calcium phosphate crystals in the form of hydrox-
yapatite (HA).

Osteoclasts are responsible in the resorption of mineralized tissue by remov-
ing its mineralized matrix and breaking up the organic bone. Osteocytes are
mature bone cells, generated from osteoblasts, which have been surrounded by
bone matrix, Behari [2009].



10 2. Basic and Applied Bone Biology

Figure 2.3: Schematic diagram from the structural concept, Rho et al. [1998].

As highlighted in the previous paragraph, bone has a complex and hierarchical
structure with different physical and solid-state properties. In order to intro-
duce a computational approach for the explanation of the mechanosensation
and related adaption, identification of different length scales of bone is neces-
sary. The hierarchical structure of bone makes the bone a highly anisotropic
and inhomogeneous material. Under this circumstance, bone can be classified
into five different length scales with particular mechanical properties. Only
the macroscale is the focus of this thesis, as indicated in Fig. 2.3 (Rho et al.
[1998]; An and Draughn [1999]).

• Macroscale, consisting of trabecular and cortical bone

• Microscale (10-500 µm), containing single osteons or trabeculae

• Sub-microscale (1-10 µm), lamellar level

• Nanoscale, including collagen fibril and mineral components of bone

• Sub-nanoscale, molecular level including collagen and non-collagen pro-
tein molecules and mineral crystals

2.2.1 Electrical Properties of Bone

Bone tissues are nanocomposites of collagen fibrils reinforced by the mineral
crystals (mainly hydroxyapatite) reveal some special bioelectrogenic events
such as piezoelectricity and electrokinetic potential. These electrical proper-
ties, which depend on age, gender, anatomical location and hydration (Singh
and Saha [1984]), are strongly associated with applied mechanical loading
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Load Load
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Figure 2.4: Strain generated potential (SGP) phenomenon on a femur under
mechanical loading, Olsson [2005].

which can mediate the biological processes like bone remodeling. This leads
to the idea that electrical signals can affect bone formation process.

This phenomenon occurs by producing electrical potential differences called
stress generated potential (SGP) along the collagen fibrils following the me-
chanical deformation of the tissue which provides a local stimulus for bone-
generating cells proliferation, Ahn and Grodzinsky [2009]. This indicates the
close cooperation between bone cells and extracellular constituents. Behari
[2009] and Ahn and Grodzinsky [2009] introduced two main mechanisms for
stress generated potential in bone: piezoelectricity and streaming potential.
However, some other researchers revealed that migration of inorganic ions
within the bone cause induced electrical potential in bones, see Mycielska and
Djamgoz [2004]; Theodore [1968].

The electric charge production in living and nonliving bone tissue are different
and this latter mechanism act as a secondary origin of the electric generated
potential in the living tissue, Ciombor and Aaron [2005]. The piezoelectric
effect is the production of electric potential in bone while undergoing a me-
chanical deformation. This process is introduced as main factor for SGP in dry
bone because of a displacement of the centre of symmetry in collagen fibrils
structures.

The movement of positive and negative charges under mechanical deformation
of bone is demonstrated in Fig. 2.4. When mechanical loads are applied on
human femurs, electrical potential can be produced. The areas of bone that
are compressed generate negative polarity and positive polarity is produced in
tensed areas. Ramtani [2008] reported that electrical properties of bone not
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only are considered as a hypothesised feedback mechanism for bone remod-
eling but also external electrical stimulation of bone can accelerate healing
and repair process. The interest in using exogenous electrical stimulation to
induce bone formation has arisen after observation the effect of endogenous
electrical signals on bone growth and healing process. Therefore, understand-
ing the piezoelectric behaviour of bone and its impact in bone remodelling is
necessary.

a) b)

c)

Figure 2.5: Schematics of different
electrical stimulation
techniques: a) Direct
current (DC), b) Ca-
pacitive coupling (CC)
and c) Inductive cou-
pling (IC), Aaron RK.
[1991].

Electrical stimulation techniques can be classified into three main groups.
These three different techniques of bone stimulation with electric and elec-
tromagnetic fields are depicted in Fig. 2.5. First, an invasive method in where
direct current (DC) is applied through surgically implanted electrods into the
region of bone repair(Fig. 2.5 (a)). Song et al. [2009] developed such device
inside of a dental implant to supply electrical stimulation for a canine mandibu-
lar bone. DC current generator can be implantable or external.

In a second method capacitive coupling (CC) is applied by means of electrods
which are placed externally on opposite sides of the area to be stimulated
(Fig. 2.5 (b)). In this method electric fields are produced noninvasively. Ca-
pacitive stimulation is more beneficial in comparison with DC stimulation
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because it is non-invasive, and the effect of capacitive stimulation on bone
formation is demonstrated for both vitro and vivo in Brighton et al. [2001];
Wang et al. [2001]; Brighton et al. [1985].

In a thirth noninvasive method, electrical fields are produced in bone by in-
ductive coupling (IC) with an external time varying or pulsed electromagnetic
field (PEMF), which is illustrated in Fig. 2.5 (c). Taking into account what
has been known about electrical stimulation methods, improvements in heal-
ing process and bone growth can be obtained through different pathways, such
as application of piezoelectric materials surrounding implants.

2.3 Bone Remodeling

Bone undergoes continuous reformation throughout lifetime and demonstrates
regeneration properties after injury. Bone remodeling is the consequence of
the complex interaction between osteoclasts and osteoblasts in order to bone
resorption and deposition which is regulated with biochemical and biophys-
ical stimuli, Fernandez-Tresguerres-Hernandez-Gil et al. [2006]. The process
of remodeling not only take place for treatment of bone fractures, but also
is essential for the maintenance of a normal healthy bone and adaptation
to external stress and loading. Cortical and trabecular bone are renewed 5
and 20 % every year, respectively, Fernandez-Tresguerres-Hernandez-Gil et al.
[2006]. The main cause leading to osteoporosis is unbalancing in bone forma-
tion/resorption activity. Many authors tried to propose mathematical models
of bone remodeling process which is briefly introduced.

Bone remodeling simulations using numerical modeling are aimed on the pre-
diction of the structure of bone and its development after some particular
mathematical remodeling rules. Simulation of bone remodeling with phe-
nomenological approaches within a continuum framework cannot model for-
mation and resorption on a cellular level. However, analyzing such models
helps to evaluate the stability and an optimising characteristics which affect
on the remodelling process.

Cowin and Hegedus [1976] proposed the first continuous mathematical formu-
lation of bone remodeling. The bone matrix was considered as a porous elastic
solid surrounded by extracellular fluid. In this model, the theory of adaptive
elasticity is introduced in order to describe the remodeling process of cortical
bone. In this primarily theory it is assumed that the cortical bone tissue has
a homeostatic strain state to which the rate of adaptation is related to the
difference between the homeostatic and actual strain rates. This theory tries
to explain the adaptive nature of the bone from one loading configuration to
another.

The bone remodelling process is simulated by combination of mathematical
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descriptions and finite element models (FEM) in order to assess the influence
of local tissue response on the overall structure, see Fyhrie and Carter [1986];
Hart and Heiple [1984]. Most of these approaches are focused on local me-
chanical signal which can stimulate bone adaption process, Carter et al. [1987,
1989]. The influence of mechanical stimulation on bone density distribution
has been predicted in a qualitative sense using the models developed so far.

After that, many authors attempt to develop more comprehensive models to
reproduce the behavior of bone tissue. In these models, the mechanical be-
havior of the bone is determined using the aparent density. Huiskes et al.
[1967] proposed strain energy density (SED)-based theory as the remodelling
objective. The SED is described as strain energy function per unit volume at
any region inside a stress field.

In recent years, the simulating of bone piezoelectricity which is related to
mechanical environment is a common interest. In the subsequent theories cor-
responding to bone remodeling, only a limited number of studies have been
undertaken to explore the effect of electromechanical stimulation on bone re-
modeling process. Qu and Yu [2011] and Demiray [1983] developed a mathe-
matical models including the effect of electromagnetic fields on bone remodel-
ing. Gjelsvik [1973a,b] attempts to numerically investigate the effect of elec-
trical charges on bone formation and resorption in bone surfaces. Rebeca
[2010] developed a numerical analysis based on a new bone remodeling model
considering piezoelectric behavior of bone.

2.4 Dental Implant Osseointegration

The modern dental prosthesis is a biocompatible device, usually made of tita-
nium, which act as a secure anchor for artificial replacement teeth to replace
a missing tooth. Dental implants typically consist of three main parts which
are depicted in Fig. 2.6. The conical screw shaped part is anchored into the
jawbone as an artificial root of teeth, is called implant fixture. Abutment is
placed over the conical part in order to connect the implant fixture and the
crown. The crown is attached over the abutment which is made to look like a
natural tooth.

Worldwide statistics indicate 95% success rate over a 5 years period if the
implants are well designed, manufactured and inserted. The successful treat-
ment rate reachs 90% after 15 years if appropriate and professinal care is
taken. However, there are still several reasons that can cause implant failure.
One of the main reasons is a lack of function of periodontal ligament (PDL).
Since periodontal ligament is a soft tissue, it could be a supportive function
to absorb the impact force and uniformly transfer the occlusal loads into the
surrounding bone. This function is destroyed during the surgery which causes
a non-uniform stress transfers in to the bone. This might induce biomechani-
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Figure 2.6: The main parts of dental implant, adapted from The Dental Im-
plant Experts 2.

cal overloading failures in implant and bone, Rangert et al. [1995].

Hansson [2003] reported that overloading can cause the microdamage accu-
mulation at bone and results in primary marginal bone loss. Consequently,
the infection might occur in that region of bone loss and cause bone resorp-
tion. Therefore, the long-term success of a dental prosthesis strongly depends
on the reliability and the stability of bone-implant interface. This interaction
between bone and implant is initiated immediately after surgery. In order to
reduce the number of implants failures, the healing process need to be fully
understood.

The biological response in reference to fracture healing can be divided into
primary and secondary healing, Einhorn [1998]. Primary healing encompasses
a direct structural and functional connection between living bone tissue and
implant surface which is called osseointegration. Secondary healing is the
most common form of healing and occurs in the absence of optimal conditions
needed for primary repair and includes the formation of callus. Bone remod-
eling phase takes place with proceeding healing process which makes months
or years to complete biological reconstruction.

Since the success rate of implant remarkably depends on appropriate develop-
ment of the bone-implant interface, characteristics of the implant surface play
an important role in osseintegration process with early loading. Therefore, de-
velopment of implant surfaces encouraged new considerations to improve bone
formation at the implant surface.

The idea of using bio-active coatings surrounding implants has been developed
in order to improve the initial bounding and primary implant stability. Coat-
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ings including bioceramics, extracellular matrix proteins, biological peptides
or growth factors can affect bioactivity and biocompatibility to the surface
of orthopaedic prosthesis that promote bone ingrowth and enhance osseoin-
tegration of the implant. In addition, coatings such as silver, nitric oxide,
antibiotics, antiseptics and antimicrobial peptides with anti-microbial proper-
ties can reduce bacterial adhesion and prosthetic infections. The most common
bioactive ceramics are hydroxyapatite and certain compositions of glasses and
glass ceramics.

More recently, new generation of biomaterials have been investigated to in-
fluence healing by mimicking the electrical properties in bone, Bystrov et al.
[2014]. In this case, it is essential to explore the potential of piezoelectric
coating for tissue regeneration. Hwang et al. [2002] investigated the effect of
piezoelectric ceramics in vitro and in vivo on bone formation. Electrical field
which is produced by piezoelectric coating not only might reduce or even elim-
inate the risk of implant slackening, but also the growth of bacterial biofilms
on the tooth surface can be prevented. Jianqing et al. [1997] compared the
effects of non-piezoelectric and piezoelectric ceramics on the new bone forma-
tion in the jawbone of dogs. Bone growth was observed surrounding implants
with piezoelectric coating after one week, while after two weeks there was still
no new formation of bone around of the non-piezoelectric implants.

Three most important criteria must be satisfied for designing and manufactur-
ing process of these coatings. A first point which has to be considered is that
the coating must be biocompatible. Secondly, it must promote osteoblasts
(cells that produce bone) to adhere and grow on the surface of the implant to
make a strong bond between bone and implant. Finally, the implant coating
should be able to recruit stem cells from surrounding tissue and induce differ-
entiation into osteogenic cells, Albrektsson and Johansson [2001]. In addition,
the coating must have strong mechanical stability that can not be detached
from the implant surface under physiological stresses.

Accurate and efficient modeling of osseointegration process at the bone-implant
interface depends on various parameters such as geometry and surface struc-
ture of the implant, biomechanical properties of bone-implant interface and
boundary conditions. A few number of mathematical models have been re-
ported to introduce the mechanical environment at bone-implant interface.
Büchler et al. [2003] established a computational approach on implant ossein-
tegration considering a frictional interface model. They predicted bone in-
growth for an axisymmetric implant model considering local relative motion.
Abdul-Kadir et al. [2008] constructed a finite element model to investigate
primal implant stability based on contact mechanics approach considering a
physiologically realistic loading.

2http://www.aaid-implant.org/about-dental-implants/what-are-dental-implants
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A more sophisticated approach is suggested by Moreo et al. [2007]. They pro-
posed a computational model for the living bone-implant interface which has
been applied for non-cemented hip implants. Bone-implant interface is mod-
eled following the principles of continuum damage mechanics (CDM). The
interface elements are established in terms of the jump of displacements, con-
sidering initial relative motion, and the tractions transmitted through the
interface.
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3 Fundamentals of Continuum Mechan-
ics and Electrostatics

Continuum mechanics is an effective and powerful method to describe physical
phenomena without considering the complexity of the microstructure. For this
purpose, the description of the macroscopic behavior is essential and sufficient
for engineering problems in many cases. Macroscopic length scale is applied in
order to use continuum approach. All the materials are assumed as continuous
media which are characterized by continuous field quantities such as density,
temperature and velocity.

This chapter begins with brief and fundamental concepts in continuum me-
chanics consisting of movement and deformation for a three-dimensional body
which will be applied in numerical analysis using finite element method later
on in chapter 4. In section 3.2, the theory of electrostatics is expressed with re-
gard to continuum mechanics for electromechanical problems which is needed
in the context of this work. In section 3.3, the concepts of stress and electric
displacements are introduced. Then the physical processes are presented based
on fundamental balance equations in section 3.4. The constitutive theory of
materials, which are considered in this study, are described in section 3.5.

In the following, the characteristics of piezoelectric materials are taken into
account for the derivation of constitutive equations in the finite element ap-
plications. The chapter concludes with linear theory of piezoelasticity used
for coupled electromechanical modeling. Contents provided in this chapter is
already derived from literature. Therefore, the reader who need more detailed
information on the subject of this chapter is referred to Holzapfel [2000] and
Besson et al. [2010].

For further details on electromechanics, piezoelectricity and the derivation of
the material law from thermodynamic potentials, interested readers may con-
sult the literature such as Crowley [1986], Maugin [1988], Ikeda [1990] and
Yang [2005b].
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Figure 3.1: Reference and current configuration of a continuum body.

3.1 Kinematics

Kinematics is the branch of classical mechanics which describes the motion
of continuous body in time of each material particle without considering the
cause of deformation. In the theory of continuum mechanics, a body, denoted
by B , is defined as a closed and bounded set of material particles, which
are continuously distributed in the domain. The placement of a whole set of
material particles in an Euclidean space R

3 at a given instant of time t is
called the configuration of the body. The configuration of body at initial time
t = 0 and subsequent time t > 0 are referred to reference B 0 and current Bt

configuration, respectively, as indicated in Fig 3.1. The material point of each
configuration can be identified by the position vectors XXX and xxx relative to the
fixed basis EEEi and eeei as follows

XXX = XiEEEi ∈ B 0, (3.1)

xxx = xieeei ∈ B t. (3.2)

The mapping ϕ is considered as a one-to-one correspondence of material points
in order to describe deformation and motion from the reference configuration
B 0 to the current configuration B t. Then the relationship between XXX and xxx
can be written as

xxx = ϕ(XXX, t), (3.3)

XXX = ϕ−1(xxx, t). (3.4)

Furthermore, the motion of particles from the reference to the current con-
figuration can be described by the displacement field considering material de-
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scription (Lagrangian form)

UUU(XXX, t) = xxx(XXX, t)−XXX. (3.5)

Subsequently, the displacement field based on spatial description (Eulerian
form) is written as

uuu(xxx, t) = xxx−XXX(xxx, t). (3.6)

These two equations are related with considering the mapping introduced by
Eq. (3.4),

UUU(XXX, t) = UUU((ϕ−1(xxx, t), t)) = uuu(xxx, t). (3.7)

Hence, the displacement fields UUU and uuu have the same values with different
arguments. The deformation of a continuum body takes place with the move-
ment of reference (undeformed) to the current (deformed) configuration. Thus,
the deformation gradient is introduced by second order tensor FFF for the map-
ping of an infinitesimal line element dXXX to an equivalent one dxxx, as illustrated
in Fig. 3.2. The transformation rule is defined by

dxxx = FFF (XXX, t) · dXXX, (3.8)

dXXX = FFF−1(xxx, t) · dxxx, (3.9)

where

FFF (XXX, t) =
∂ xxx

∂XXX
=
∂ ϕ(XXX, t)

∂XXX
= Gradxxx(XXX, t), (3.10)

FFF−1(xxx, t) =
∂XXX

∂xxx
=
∂ ϕ−1(xxx, t)

∂ xxx
= gradXXX(xxx, t). (3.11)

In the following, the displacement gradient tensor in the material description
is determined with combination of Eq. (3.5) and Eq. (3.10),

GradUUU = Gradxxx(XXX, t)− GradXXX

= FFF (XXX, t)− III. (3.12)

The displacement gradient tensor in the spatial description is defined with
regard to Eq. (3.6) and Eq. (3.11)

graduuu = gradxxx− gradXXX(xxx, t)

= III −FFF−1(xxx, t). (3.13)

It has been already approved that points, curves and tangent vectors can be
mapped from the reference to the current configuration by the deformation
gradient FFF . In order to map an infinitesimal surface dA and volume dV ele-
ments from the reference to the current configuration, two constrains should
be considered: in the first place, deformation gradient FFF has to be nonsingular
matrix in order to satisfy the inverse transformation condition

J(XXX, t) = detFFF (XXX, t) 6= 0 , (3.14)
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Figure 3.2: Transformation of line, area and volume elements.

and further, the volume ratio should be greater than zero J(XXX, t) > 0. The
relationship between reference and current configuration for an infinitesimal
area and volume elements are represented as

daaa = JFFF−TdAAA. (3.15)

dvvv = JdVVV (3.16)

The time derivative of volume ratio J̇ is provided using the relation of J = detFFF
(Eq. (3.14)) and the chain rule

J̇ =
∂J

∂FFF
: ḞFF . (3.17)

Hence, the term ∂J
∂FFF

is represented by

∂J

∂FFF
= JFFF−T . (3.18)

The definitions of velocity gradients in reference and current configuration read

ḞFF =
∂vvv

∂XXX
= Gradẋxx, (3.19)

lll =
∂vvv

∂xxx
= gradẋxx, (3.20)

which are associated to each other via the relationship

lll = ḞFF ·FFF−1. (3.21)

Consequently, with equations (3.21) and (3.18), J̇ is reformulated as

J̇ = JFFF−T : lllFFF

= JFFF−TFFFT : lll = JIII : gradẋxx

= Jtr(gradẋxx) = J div ẋxx. (3.22)
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In nonlinear continuum mechanics, numerous definitions have been proposed
for strain tensors. A common definition of the strain tensor is described by
Green-Lagrange strain tensor EEE. A strain measure can be obtained using the
concept of the squared change of length of an infinitesimal line element in
reference and current configuration as follows

||dx · dx|| − ||dX · dX|| = dx · dx− dX · dX (3.23)

= dX · FT · F · dX − dX · dX (3.24)

= dX ·
(
F

T · F − 1
)
· dX (3.25)

= dX · 2E · dX, (3.26)

where

E =
1

2
(FT · F − 1), (3.27)

is Green-Lagrange strain tensor and the right Cauchy-Green deformation ten-
sor is denoted by

CCC = FFFT·FFF . (3.28)

The deformation gradient can be rewritten as

FFF =
∂ xxx

∂XXX
=
∂XXX

∂XXX
+
∂ uuu

∂XXX
= III +HHH. (3.29)

Hence, the Green-Lagrange strain tensor is expressed in terms of the displace-
ment gradient by

E =
1

2

(
H +H

T +H
T ·H

)
. (3.30)

For small strains the higher order term can be neglected. By that, the lin-
earised small strain tensor is achieved

εεε =
1

2

(
H +H

T
)
. (3.31)

In this study, small deformation theory is considered. Thus, linear theory is
applied using linear strain tensor εεε.

3.2 Electrostatics

Electrostatics is the branch of physics that encompasses phenomena dealing
with the interaction of stationary or moving electrical charges. The mathe-
matical methods of electrostatics are constructed to calculate the distributions
of the electric field, electric charge, etc.

Coulomb’s law states: the magnitude of the electrostatic force FFF c that acts
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between two point electric charges Qa and Qb depends on the magnitudes of
charges and the distance between them,

‖ Fc ‖= QaQb

4πε0‖ Xa −XXXb ‖2 . (3.32)

The constant ǫ0 = 8.854e−12 C2

Jm is called the vacuum permittivity. The re-
sulting force for more than two point charges can be determined using super-
position principle. The schematic interpretation of Coulomb’s law is indicated
in Fig. 3.3.

Figure 3.3: Charged particle in an electrical field of two point charges.

The electrical field strength EEE is defined at a position XXX from fixed basis eeei
as follows

EEE(XXX) =
Fc

Q
. (3.33)

Furthermore, the relationship between electric potential φ and electrical field
EEE is introduced with choosing XXX0 as reference position

φ =

∫ XXX1

XXX0

EEEdXXX, (3.34)

or
EEE = −gradφ. (3.35)

From a physical point of view, an electric potential in the current configuration
reads

φt =

∫ xxx1

xxx0

eeedxxx =

∫ xxx1

xxx0

EEEFFF−1dxxx. (3.36)
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3.3 Stresses and Electric Displacements

3.3.1 Stress Measures

Stress is a physical quantity which is represented as a measure of internal load
within the body. Internal forces can be identified in an arbitrary loaded area of
body. Various types of stress measures are defined in different configurations.
The most commonly used measure of stress is referred to the Cauchy stress
vector ttt described in current configuration. The Cauchy stress vector can be
computed from a traction vector dfff acting on an infinitesimal surface element
da

t =
df

da
. (3.37)

Applying Cauchy theorem that assumes a linear relationship between the trac-
tion vector ttt and the normal vector nnn of the area da, the Cauchy stress tensor
can be written as

ttt(xxx, t,nnn) = σσσ(xxx, t) ·nnn. (3.38)

Other measures of stress with respect to the undeformed state are required for
some engineering applications. Hence, the first Piola-Kirchhoff traction vector
TTT can be determined from a traction vector dfff acting on an infinitesimal
surface element of reference configuration dA

T =
df

dA
. (3.39)

The first Piola-Kirchhoff stress tensor is similarly obtained using Cauchy the-
orem

TTT (XXX, t,NNN) = PPP (XXX, t) ·NNN. (3.40)

The first Piola-Kirchhoff stress tensor can be obtained in terms of the Cauchy
stress by multiplying Eq. (3.38) with da and using Eq. (3.15)

tttda = σσσ ·nnnda = Jσσσ ·FFF−T ·NNNdA = TTTdA, (3.41)

PPP = Jσσσ ·FFF−T . (3.42)

Accordingly, the stress in one material point is described by nominal stress PPP
and the true stress σσσ.

3.3.2 The Electric Displacement

In a dielectric material the bound charges are slightly displaced in the presence
of an electric fieldEEE which induces a local electric dipole moment. The electric
displacement field DDD is defined as

DDD = ε0EEE +PPP , (3.43)
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where ε0 = 8.85×10−12F/m is the vacuum permittivity and polarization den-
sity PPP is defined as the macroscopic density of permanent and induced electric
dipole moment. In a linear, homogeneous and isotropic dielectric material
with quick response to variations in the electric field, P depends linearly on
the electric field

PPP = ε0χEEE, (3.44)

where the constant of proportionality χ is called the electric susceptibility of
the material. Thus, Eq. (3.43) can be reformulated as

DDD = ε0(1 + χ)EEE = εEEE, (3.45)

with electric permittivity ε = ε0εr and the relative permittivity εr = 1 + χ.
The contribution of the electric displacement field, which is perpendicular to
the surface, to the electric flux Ψ is defined by

Ψ =

∫

Γ
DDD ·NNNdA. (3.46)

Finally, the electric flux through a closed surface is equal to the total charge
inside of this surface

Ψ =

∮

Γ
DDD ·NNNdA =

∫

Ω
ρel0 dV = Q, (3.47)

where ρel0 represents the electric charge density.

3.4 Balance Laws

Within this chapter, fundamental physical balance laws will be summarized in
the context of continuum mechanics and thermodynamics. In the following,
these conservation laws contain conservation of mass, the momentum conser-
vation laws, the balance of energy and entropy inequality are outlined. They
are valid and applicable for all materials modeled as continuum media and
must be satisfied for all times.

The general expression of a balance law for a physical field measure ZZZ(x, t) in
spatial coordination is written as follows, Truesdell and Noll [1960],

d

dt

∫

Ω
Zdv =

∫

Ω

(
Ξf + Ξp

)
dv +

∫

Γ
Λda, (3.48)

where Ξf is the volumetric flow (inflow and outflow), Ξp is the volumetric
production and Λ is the surface flow (inflow and outflow).
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3.4.1 Conservation of Mass

In this work, the mass of the system under consideration is not necessarily
constant (Krstin et. al. [2000]). The quantity of density ρ varies with time t
under mechanical stimulus in the context of bone remodeling and osseointegra-
tion. Therefore, the mass of the system under consideration is not preserved
in general. The mathematical expression for the mass of a body in the current
configurations

m(t) =

∫

B t

ρ(xxx, t)dv 6= const., (3.49)

is determined by the volume integral of mass density ρ over the entire body.
Thus, the time derivative of the mass balance is not zero in contrast to a mass
invariant system

d

dt
m =

d

dt

∫

Bt

ρdv 6= 0. (3.50)

The mass change rate with respect to equation (3.16) can be expressed as

d

dt
m =

d

dt

∫

Bt

ρdv =
d

dt

∫

B0

ρJdV, (3.51)

which can be reformulated as

ṁ =
d

dt

∫

B 0

̺ J dV =

∫

B 0

d

dt
(̺ J) dV =

∫

B 0

˙̺ J + ̺ J̇ dV . (3.52)

The mass flow rate equation is rewritten using (3.22) as

ṁ =

∫

B 0

( ˙̺ J + ̺ div (vvv) J) dV =

∫

B t

(ρ̇+ ρ div ẋxx)dv. (3.53)

Moreover, the change of the mass in the system is described by

d

dt

∫

B t

ρdv =

∫

B t

ρ̂dv. (3.54)

The local form of the balance of mass for an arbitrary volume is obtaind by

ρ̇+ ρ div ẋxx = ρ̂ . (3.55)

which must be valid at every point of the body. The second term describes
the transport of mass within the system, which is not considered here. Under
this assumption, the local form of mass balance is specified

ρ̇ = ρ̂ . (3.56)
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3.4.2 Conservation of Linear and Angular Momentum

The linear momentum vector for a material body Bt is introduced as follows,

L =

∫

Bt

ρẋdv. (3.57)

The conservation of linear momentum is derived from Newton’s second law of
motion. Accordingly, the change of momentum with time is equal to the sum
of all body and external forces acting on the body. This can be written as
follows from Eq. (3.48)

d

dt

∫

Bt

ρẋdv =

∫

Bt

(ρb+ fffel)dv +

∫

∂Bt

tda, (3.58)

where ρbbb denotes the gravitational force per unit volume, fffel are the elec-
tromagnetically induced volume forces and ttt the stress vector according to
external loads. By applying Cauchy theorem Eq. (3.38) together with the
divergence theorem, the last term of Eq. (3.58) can be reformulated

∫

∂Bt

tda =

∫

∂Bt

σ · nda =

∫

B
divσdv. (3.59)

Consequently, the global form of linear momentum balance in spatial configu-
ration using the transport theorem is obtained,

∫

Bt

(ρ̇ẋxx+ ρẋxx div ẋxx+ ρẍxx)dv =

∫

Bt

(ρb+ fffel + divσ)dv. (3.60)

This can be written in the local form of the momentum balance,

ρ̇ẋxx+ ρẋxx div ẋxx+ ρẍxx = ρb+ fffel + divσ. (3.61)

In piezoelasticity, the effect of the electromagnetically induced volume forces
fffel can be neglected. The local form of the momentum balance with respect
to previous assumption of mass transport and Eq. (3.56) reduces to

ρẍxx = ρb+ divσσσ − ρ̂ẋxx. (3.62)

The angular momentum JJJ can be derived from linear momentum 3.57 with
respect to position vector xxx

J =

∫

∂B
x× ρẋdv. (3.63)

Analogeous to linear momentum, the material time derivative of angular mo-
mentum is equal to the sum of all torques which are caused from internal and
external forces

d

dt

∫

∂B
x× ρẋdv =

∫

Bt

x× ρbdv +

∫

∂Bt

x× tda. (3.64)

Which leads to the known symmetry of Cauchy stress tensor σ = σT, Balke
[2010].
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3.4.3 Conservation of Electric Charge

The overall electric charge remains constant in a balanced manner in the closed
system. The electric charge Q with respect to the electric charge density ρel0
in the reference configuration can be introduced as follows

Q =

∫

B0

ρel0 dV. (3.65)

The electric current can be described by

III =

∫

Λ

JJJel
0 dA, (3.66)

with a quantity known as the current density JJJel
0 . The temporal change of

electric charge is caused from electric current III. Accordingly, electric charge
conservation law using divergence theorem can be written

∫

B0

divJJJel
0 dV = − d

dt

∫

B0

ρel0 dV. (3.67)

The local form is
ρ̇el0 + divJJJel

0 = 0. (3.68)

3.4.4 Conservation of Energy

In the context of thermodynamics, the transformation of different types of
energy (e.g. mechanical, thermal, chemical or electrical energy) from one form
to another is considered during a deformation processes of a continuum body.
Following the first law of thermodynamics, the total energy of a body has
to be preserved during the whole process which means that energy can be
transformed from one to the other form, but cannot be created or destroyed.
Accordingly, the time derivatives of internal energy U and kinetic energy K
have to be equal to the sum of work of external forces W and heat supply Q

U̇ + K̇ = W +Q. (3.69)

These quantities can be introduced in current configuration by

U =

∫

Bt

ρudv, (3.70)

K =

∫

Bt

1

2
ρẋxx · ẋxxdv, (3.71)

W =

∫

Bt

ρbbb · ẋxxdv +
∫

∂Bt

ttt · ẋxxda, (3.72)

Q =

∫

Bt

ρrdv −
∫

∂Bt

qqq ·nnnda, (3.73)
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where uuu denotes the specific internal energy, r is specific internal heat source
and qqq the heat flux over the boundaries. The global form of the energy con-
servation using above definitions can be written as

d

dt

∫

Bt

ρ

(
u+

1

2
ρẋxx · ẋxx

)
dv =

∫

Bt

ρ (b · ẋxx+ r) dv +

∫

∂Bt

(ttt · ẋxx− qqq ·nnn) da.

(3.74)
Above equation using Cauchy and divergence theorem can be reformulated as

d

dt

∫

Bt

ρ

(
u+

1

2
ρẋxx · ẋxx

)
dv =

∫

Bt

[ρ (bbb · ẋxx+ r) + div (σσσ) · ẋxx− divqqq] dv.

(3.75)
The local form of the balance of energy with respect to transport theorem
leads to

ρ̇u+ ρu̇+ ρu div ẋxx+
1

2
ρ̇ẋxx · ẋxx+ ρẍxx · ẋxx+ ρẋxx · ẋxx div ẋxx = (3.76)

ρbbb · ẋxx+ ρr + grad(ẋxx) · ·σσσ + ẋxx · divσσσ − divqqq.

Based on previous assumptions for momentum balance Eq. (3.61) and using
Eq. (3.56), the local form reduces to

ρu̇ = grad(ẋxx) · ·σσσ + ρr − div (qqq)− ρ̂

(
u+

1

2
ẋxx · ẋxx

)
, (3.77)

which is simplified for small deformations and isothermal processes in

ρu̇ = σσσ · ·ε̇εε− ρ̂

(
u+

1

2
ẋxx · ẋxx

)
. (3.78)

3.4.5 The Second Law of Thermodynamics

Before explaining the second law of thermodynamics the concept of entropy
should be introduced. Entropy is defined as a measure of microscopic disorder
within a thermodynamic system. The entropy S is measured per unit mass η
in the region of interest, denoted by

S =

∫

Bt

ρηdv. (3.79)

The second law of thermodynamics describes the direction of energy transfer
process. It states that the rate of change of entropy is always larger or equal
than input entropy of system

d

dt

∫

Bt

ρηdv ≥
∫

Bt

1

T
ρrdv −

∫

∂Bt

1

T
qqq ·nnnda. (3.80)
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The surface integral is converted into the volume integral using divergence
theorem

∫

∂Bt

1

T
qqq ·nnnda =

∫

∂Bt

div

(
1

T
qqq

)
dv

=

∫

∂Bt

(
1

T
divqqq − 1

T 2
qqq · grad T

)
dv. (3.81)

Then, the local form can be derived as

T
d

dt
(ρη) ≥ ρr − div q + q · grad T. (3.82)

Applying the time derivative and using the energy balance, above equation is
simplified after a few transformations

T
(
ρη̇ + ρ̂η

)
− ρ̂

(
u+

1

2
ẋxx · ẋxx

)
− ρu̇+ σσσ · ·ε̇εε− qqq · gradT ≥ 0. (3.83)

Using the definition of free Helmholtz energy ψ

ψ = u− Tη, (3.84)

gives an alternative form of the second law of thermodynamics, referred to as
Clausius-Duhem inequality

T
(
ρη̇+ ρ̂η

)
− ρ̂
(
ψ + Tη +

1

2
ẋxx · ẋxx

)
−ρ
(
ψ̇+ Ṫ η+T η̇

)
+σσσ · ·ε̇εε−qqq ·grad(T )

1

T
≥ 0

(3.85)
For isothermal process and static case ẋxx = 0, Clausius-Duhem equation reduces
to

D = −ρψ̇ − ρ̂ψ + σσσ · ·ε̇εε ≥ 0. (3.86)

3.5 Constitutive Theory

The kinematic and kinetic relations of continuum mechanics presented in the
previous section are valid for all continuous system regardless of the types of
materials. However, the number of unknowns in the thermodynamical prob-
lem is higher than the number of equations which are provided by the balance
laws. Furthermore, the specific characteristic of material can not be explained
by the balance principles. Therefore, constitutive equations are formulated
based on fundamental principles of the theory of materials.

Some of the most important principles that must be fulfilled for any constitu-
tive model are outlined below.

Physical consistency: The constitutive equations have to be satisfied by the
thermodynamic balance laws summarized in section 3.4.
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Causality: Dependent and independent variables are classified in the concept
of cause and effect. For instant, motion and temperature are placed in
the independent variables category, However, stress, heat flow, entropy
and free energy are dependent variables.

Determinism: The current state of independent variables is determined from
its kinematic and temperature history.

Equipresence: The independent variables have the same presence in all con-
stitutive equations, unless this presence has a paradox with general rules
of physics.

Local effects and fading memory: The current state of particles is affected
only by its close surroundings and the history of near past, long-term
effects can be neglected.

Objective: The constitutive equations must be independent of the selected
reference system. In particular they must be invariant with respect to
rigid body motions.

Material symmetry: The materials have the same behavior under rotations
so-called groups of the material symmetry

3.5.1 Constitutive Description of Bone Remodeling

Despite the fact that the biological process for electromechanically stimulating
ingrowth of bone implants is different from long term bone remodeling, it can
be described in a similar phenomenological manner at the macroscopic length-
scale. Since bone tissue behaves as a piezoelectric material as discussed in
the literature, a difference in the electrical potential can affect a variation of
bone density. Therefore, the development of a bone remodeling theory for
the investigation of piezoelectric reaction of bones due to mechanical demands
appears straight forward.

Accordingly a novel electromechanical stimulation of bone remodeling at a
continuum level has been proposed by Garzón-Alvarado et al. [2012] using a
first order modeling approach introduced by Nackenhorst [2006] as a starting
point. Evolution equations for the bone mineral density ρ in dependency of
the mechanical and electrical stimulus can be formulated, hypothetically, as

dρ

dt
= k1(

ψmech

ψrefm

− 1) + k2(
ψelec

ψrefe

− 1) , (3.87)

where ψmech denotes the strain energy density, ψelec is the electric energy
density, k1 and k2 are time constants which have been chosen equally for sim-
plicity k1 = k2 = 1 and ψrefm and ψrefe are defined as physiological target
values for the strain and electric energy density, respectively.
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From the computational point of view, the bone mineral density is consid-
ered as an internal variable which is specified in each integration point in the
finite element analysis. The related evolution equations are integrated with
implicit Euler scheme in analogy to computational inelasticity. In this study,
the aforementioned mathematical theory is adapted for the simulation of bony
ingrowth of dental prosthesis for the investigation of their primal stability.

Since the osseointegration process and bone remodeling happen at different
time scales, only the time constants will be distinguished. However, a scaling
of the time constants is not considered in this contribution, as related clin-
ical experience is missing. In the following, the mathematical model of the
proposed phenomenonological continuum is outlined.

Mechanical Stimulus

A constitutive model for the biomechanical interaction is introduced in the
framework of continuum theory of materials. The free energy density function
is defined in dependency of strain tensor and a scalar valued internal variable,
namely the bone mineral density ρ,

ψmech = ψmech(ε, ρ) . (3.88)

The time derivative of free energy,

ψ̇mech =
∂ ψmech

∂ εεε
· ·ε̇εε+ ∂ ψmech

∂ ρ
ρ̇, (3.89)

is substituted into the Clausius-Duhem inequality 3.86

− ρ

(
∂ ψmech

∂ εεε
· ·ε̇εε+ ∂ ψmech

∂ ρ
ρ̇

)
− ρ̇ ψmech + ε̇εε · ·σσσ ≥ 0, (3.90)

which can be converted to

(
σσσ − ρ

∂ ψmech

∂ εεε

)
· ·ε̇εε− ρ

∂ ψmech

∂ ρ
ρ̇− ρ̇ψmech ≥ 0. (3.91)

Globally we solve the mechanical equilibrium equation considering body and
inertia forces to be negligible, i.e.

div(σσσ) = 0, (3.92)

with the symmetric Cauchy stress tensor σσσ = σσσT . Small deformation theory
is assumed which justifies a kinematic description by the linear strain tensor

εεε =
1

2

(
∇u+ (∇u)T

)
, (3.93)
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where u is the displacement field. The constitutive relationship is expressed
by a free energy density, i.e.

σσσ = ρ
∂ψmech

∂εεε
, (3.94)

the stress tensor is derived from a free energy density function ψmech. By
substituting stress Eq. 3.94 into Eq. 3.91, it can be found

−̺ ∂ ψmech

∂ ̺
˙̺ − ˙̺ ψmech ≥ 0, (3.95)

from which the dissipation of biomechanics is determined by

Dbio = −ρ ∂ ψmech

∂ ρ
ρ̇. (3.96)

The strain energy density function is introduced in the framework of linear
elasticity as

ψmech =
1

2ρ
ε · ·C(ρ) · ·ε , (3.97)

where C(ρ) is the isotropic linear elastic tensor which depends on local bone
mineral density. Within the framework of an isotropic first order theory,
Young’s modulus and elastic constitutive tensor can be written in dependency
of bone mineral density as

E(ρ) = E0(
ρ

ρ0
)n , i.e. C(ρ) =

E(ρ)

E0
C0, (3.98)

where C0 is the linear elastic tensor with constant coefficients E0, i.e.

C0 =
E0

(1 + ν)(1− 2ν)




1− ν ν ν 0 0 0
ν 1− ν ν 0 0 0
ν ν 1− ν 0 0 0

0 0 0 1−2ν
2 0 0

0 0 0 0 1−2ν
2 0

0 0 0 0 0 1−2ν
2



.

(3.99)
The constitutive relationship between bone mass density and modulus of elas-
ticity in bones is still a subject of research. This relationship experimentally
derived by Carter and Hayes [1977]

ECH(ρ) = 3790 ε̇εε0.06 ρ3, (3.100)

is presented in the literature. Moreover, there are several other experimentally
determined equations, e.g. Linde et al. [1991]; Keyak and Falkinstein [2003];
Snyder and Schneider [1991]; Wirtz et al. [2000]; Rho et al. [1995]. Morgan
et al. [2003] proposed the following expression, i.e.

EM (ρ) = 8920 ρ1.83, (3.101)
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Figure 3.4: Comparison of different constitutive models EM , ECH , EA and
EL for bone modulus of elasticity with respect to the density, Lutz
and Nackenhorst [2011].

where the magnitude of measured strain is underestimated. In contrast, the
magnitude of strain estimated by the expression proposed by Carter and Hayes
is overstimated. Therefore, the estimation must be between these two equa-
tions. This constitutive model suggested by Austman et al. [2008] as follows

EA(ρ) = 8346 ρ1.5. (3.102)

In the following, Lutz and Nackenhorst [2011] developed the constitutive model

EL(ρ) = 6500
N

mm2

(
ρ

ρ0

)2

, (3.103)

with ρ0 = 1g/cm3. These constitutive relationships are compared in Fig.3.4.
Furthermore, the finite element simulation results with regard to aforemen-
tioned constitutive laws have been compared with the experimental results.
The results are illustrated by means of mean square error in table 3.1. It can
be found that the equations 3.100 and 3.101 have relatively large deviations
from the experimental results.

The equation proposed by Austman is much better, but there is still higher
error compared with material law developed by Lutz and Nackenhorst. By
these assumptions the strain energy density takes the form

ψmech =
1

2ρ0
ε

(
ρ

ρ0

)(n−1)

C0ε . (3.104)
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Sample test Carter &
Hayes

Morgan u.a. Austman
u.a.

Lutz &
Nackenhorst

4 119.7 43.4 36.3 30.5
6 48.3 73.4 26.5 32.3
8 55.1 46.5 20.3 13.7

∅ 74.4 54.4 27.7 25.5

Table 3.1: Mean square error between the simulation and experimental results,
Lutz and Nackenhorst [2011].

From thermodynamic continuum constitutive theory it is concluded that equa-
tion (3.104) should be linear in ρ, hence the exponent value has to be n=2,
c.p. Krstin et al. [2000].

Electrical Stimulus

In addition to the mechanical stimulus a constitutive description has to be
provided to express the bioelectrical properties of bone tissues. Gauss and
Faraday laws for the electrostatic field are written as

div(DDD) = 0, (3.105)

EEE = −grad φ, (3.106)

where the electric displacement, the electric field and the electric potential are
denoted byDDD, EEE and φ, respectively. The electric displacement D is associated
to a free energy density function with regard to the electric field E

DDD = ρ
∂ψelec

∂EEE
. (3.107)

The free energy density function depends on the electric field and an internal
variable associated to bone mineral density

ψelec = ψelec(EEE, ρ) . (3.108)

The electrical energy density is determined in terms of an electrical stimulus
in the process of bone remodeling which can be written in dependency of
dielectric constant ǫ and the electric field E,

ψelec =
1

2ρ
ǫ(ρ, f)EEE2 . (3.109)

Dielectric constants are quantities which indicate how much charge distribu-
tion can be polarized in the presence of an electric field. Dielectric properties
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of bone tissue are described in dependency of frequency f and bone mineral
density, c.p. Sierpowska et al. [2003]. Strong frequency-dependent correlations
have been reported by Sierpowska et al. [2005]; Gabriel et al. [1996] between
the electrical characteristics and the density of trabecular bone. The electric
permittivity in function of bone mineral density and frequency is illustrated
in Fig. 3.5.

(a) Relative Permittivity
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Figure 3.5: Bone density as a function of the relative permittivity (a), relative
permittivity (dimensionless) as a function of frequency for vari-
ous densities of bone tissue (b) (FC: Femoral head; FMC: femoral
medial condyle, FLC: femoral lateral condyle and FTM: femoral
greater trochanter.), Sierpowska et al. [2003].

The linear permittivity of a homogeneous material can be written with refer-
ence to vacuum as a relative permittivity ǫr. The actual permittivity is then
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calculated by multiplying the relative permittivity with ǫ0

ǫ(ρ, f) = ǫ0ǫr(ρ, f) , (3.110)

where ǫ0 = 8.85× 10−12F/m is the vacuum permittivity. An essential ingre-
dient of electrically driven bone remodeling theories is a constitutive relation
between the bone mineral density and electrical properties. The relative per-
mittivity is written in dependecy of bone mineral density and frequency as

ǫr(ρ, f) = ǫp(
ρ

ρ0
)m + δ(f) . (3.111)

Here ǫp is a constant for the power model of relative permittivity in dependency
of bone density and δ(f) is a function of frequency which can be provided based
on experimental data reported in Sierpowska et al. [2003]. Thus, the electrical
energy density can be re-written as

ψelec =
1

2ρ0
ǫ0(ǫP (

ρ

ρ0
)m−1 + (

ρ

ρ0
)−1δ(f))E2 . (3.112)

Similarly to the arguments on the mechanical stimulation it is assumed that the
exponent takes a value m = 2, which is in good agreement with experimental
observations, e.g. Sierpowska et al. [2003].

3.5.2 Osseointegration at the Bone-dental Implant
Interface

Osseointegration is described similarly as the fracture healing process of bone
Kienapfel et al. [1999]. After surgery a thin bone-implant interface layer con-
sisting of a mixture of blood and mushy bone phase develops surrounding
dental prosthesis, which is quite soft and nearly incompressible.

Lutz and Nackenhorst [2011] introduced a modified Drucker-Prager plasticity
model based on the mechanical properties of a thin bone-implant interface
layer which has been implemented into a finite element framework. In the
limit case of vanishing layer thickness this modeling approach has been inter-
preted as a weak form of frictional contact formulation. The Drucker-Prager
yield criterion reads

f =‖ σ̃σσ ‖ −
√
2(c− αp) ≤ 0 , (3.113)

where σ̃ represents the deviatoric part of stress tensor, c is an adhesion pa-
rameter, α is the friction coefficient and p denotes the hydrostatic pressure. In
order to mimic the osseointegration process, this initial yield criterion applied
for the thin interface layer is modified as

fmod =‖ σ̃σσ ‖ −
√
2(c− αp)(1− ξ)−

√
2

3
σF ξ ≤ 0 . (3.114)
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Here, σF describes the yield strength and ξ an osseointegration variable is
introduced

ξ =
ρ− ρmin

ρmax − ρmin
∈ [0, 1], (3.115)

where ρmin and ρmax describe the minimum and maximum values of bone
mineral density. It is easily seen that this representation of the yield surface
describes a smooth transition from Drucker-Prager model to von Mises yield
surface, c.p. Figure 3.6. In addition, the radius of the yield surface in devia-
toric planes is shown in Figure 3.6 (b) for Drucker-Prager model

√
2(c − αp)

and von Mises
√

2
3σF .

Since Poisson’s ratio decreases during osseointegration process when the inter-
face layer transition from a rather liquid phase to solid bone, Poisson’s ratio
is modeled by a functional dependency of osseointegration degree as

ν = νmax − ξ(νmax − νmin) , (3.116)

where νmax and νmin represent the value of Poisson’s ratio of bone in post-
operative and osseointegrated constitution, respectively.

The evolution equation for the plastic deviatoric strain, which here should be
interpreted as relative tangential movement of host bone and implant during
dynamic loading, is determined from a non-associated flow rule, i.e.

˙̃εεεpl = λ̇
∂fmod

∂σ̃σσ
= λ̇

∂ ‖ σ̃σσ ‖
∂σ̃σσ

= λ̇nnn, (3.117)

with the plastic multiplier λ and flow direction nnn = σ̃σσ
‖σ̃σσ‖

.

Well established radial return mapping scheme is applied for the temporal inte-
gration of the plastic strains, i.e. the tangential micromotion between implant
and host bone. Following the procedure outlined in Lutz and Nackenhorst
[2011], the trial stress state or elastic predictor which implies the trial state of
yield criterion reads

σ̃σσtrn+1 = 2µ(ε̃εεn+1 − ε̃εεpln ) , (3.118)

f trn+1 =‖ σ̃σσtrn+1 ‖ −
√
2(c− αp)(1− ξ)−

√
2

3
σF ξ ≤ 0 . (3.119)

Herein µ represents shear modulus. The invalid trial stress is corrected and
projected back to the yield surface as

σ̃σσn+1 = σ̃σσtrn+1 − 2µ∆λnnnn+1 , (3.120)

‖ σ̃σσn+1 ‖=‖ σ̃σσtrn+1 ‖ −2µ∆λ . (3.121)

The plastic multiplier ∆λ is obtained by inserting equation ( 3.121) into the
yield function at step n+ 1,

fn+1 = f trn+1 − 2µ∆λ
!
= 0 , (3.122)
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a) b)

Figure 3.6: Illustration of Drucker-Prager yield surface converts into von Mises
model: (a) principal stress space and (b) deviatoric planes.

i.e.

∆λ =
f trn+1

2µ
. (3.123)

The algorithmic consistent tangent operator has been derived in order to cer-
tify the quadratic convergence of the Newton-Raphson scheme which is applied
for the solution of the linearized equilibrium equation. The deviatoric part of
the elasto-plastic tangant operator is written

C̃
ep =

∂ σ̃σσn+1

∂ ε̃εεn+1

= 2µ
∂

∂ ε̃εεn+1

(
ε̃εεn+1 − ε̃εεpln −∆λ nnnn+1

)

= 2µ

(
I− ∂∆λ

∂ ε̃εεn1
⊗nnnn+1 −∆λ

∂ nnnn+1

∂ ε̃εεn+1

)
. (3.124)

The derivative of the normal nnnn+1 can be calculated using chain rules

∂ nnnn+1

∂ ε̃εεn+1
=
∂ nnntrn+1

∂ ε̃εεn+1
=

∂ nnntrn+1

∂ σ̃σσtrn+1

∂ σ̃σσtrn+1

∂ ε̃εεn+1
(3.125)

with

∂ nnntrn+1

∂ σ̃σσtrn+1

=
∂(

σ̃σσtr

n+1

||σ̃σσtr

n+1
||
)

σ̃σσtrn+1

=
I||σ̃σσtrn+1|| −nnntrn+1σ̃σσ

tr
n+1

(||σ̃σσtrn+1||)2

=
1

||σ̃σσtrn+1||
(
I−nnntrn+1 ⊗nnntrn+1

)
, (3.126)
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and

∂ σ̃σσtrn+1

∂ ε̃εεn+1
= 2µ. (3.127)

The derivative of the normal nnnn+1 is obtained

∂ nnnn+1

∂ ε̃εεn+1
=

2µ

||σ̃σσtrn+1||
(
I−nnntrn+1 ⊗nnntrn+1

)
. (3.128)

The derivative ∆λ is calculated as

∂∆λ

∂ ε̃εεn+1
=

∂

∂ ε̃εεn+1

1

2µ

(
‖ σ̃σσtrn+1 ‖ −

√
2(c− αptr)(1− ξ)−

√
2

3
σF ξ

)

=
∂

∂ ε̃εεn+1

1

2µ

(
||σ̃σσtrn+1||+

√
2α(1− ξ)

1

3
tr(σσσtrn+1)

)

=
1

2µ

(
∂ ||σ̃σσtrn+1||
∂ σ̃σσn+1

∂ σ̃σσn+1

∂ ε̃εεn+1
+

√
2

3
α(1− ξ) 111 · ·∂ σ

σσtrn+1

∂ ε̃εεn+1

)
. (3.129)

The derivative of two more term is drived with

∂ ||σ̃σσtrn+1||
∂ σ̃σσn+1

∂ σ̃σσn+1

∂ ε̃εεn+1
=

σ̃σσtrn+1

||σ̃σσtrn+1||
· ·2µ

(
∂ ε̃εεn+1

∂ ε̃εεn+1
− ∂ ε̃εεpln
∂ ε̃εεn+1

)

= 2µ nnntrn+1 (3.130)

and

∂ σσσtrn+1

∂ ε̃εεn+1
=

∂

∂ ε̃εεn+1

[
κ
(
tr(εεεvoln+1 + ε̃εεn+1)

)
111 + 2µ

(
ε̃εεn+1 − ε̃εεpln

)]

=
∂

∂ ε̃εεn+1

[
κ (tr(ε̃εεn+1)) 111 + 2µ ε̃εεn+1

]

= κ111⊗ 111 + 2µ I = C
el , (3.131)

which κ is Bulk modulus, Cel denotes linear elastic material tensor with regard
to trial stress state and .vol represent volumetric part of the tensors. Now the
derivative ∆λ is rewritten as

∂∆λ

∂ ε̃εεn1
=

1

2µ

(
2µ nnntrn+1 +

√
2

3
α(1− ξ) 111 · ·Cel

)

= nnntrn+1 +
1

3
√
2µ

α(1− ξ) 111 · ·Cel (3.132)
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Finally, the deviatoric part of the elasto-plastic tangent operator reads

C̃
ep = 2µ

(
I−
[
nnntrn+1 +

1

3
√
2µ

α(1− ξ) 111 · ·Cel

]
⊗nnntrn+1

− 2µ∆λ

||σ̃σσtrn+1||
[
I−nnntrn+1 ⊗nnntrn+1

])
(3.133)

The complete elasto-plastic tangent operator consist of volumetric and devia-
toric part is written as

C
ep = C

el
vol + C̃

ep · ·P = κ1⊗ 1+2µ

(
C̃ep
vM

− (1− ξ)n̂⊗n
tr
n+1

)
, (3.134)

in which deviatoric von Mises elasto-plastic tangent is written as

C̃
ep
vM =

[
1−∆λ

2µ

‖ σ̃n+1 ‖

] [
P− n

tr
n+1 ⊗ n

tr
n+1

]
, (3.135)

with the projection tensor

P = I− 1

3
1⊗ 1, (3.136)

and the abbreviation

n̂ =
1

3
√
2µ
α(1− ξ)1 · ·Cel . (3.137)

In the case of detachment within the interface, the stress state is projected
onto the apex of the yield surface,

σσσapex =
1

α(1− ξ)
[c(1− ξ) +

1√
3
σF ξ]1 , (3.138)

with the second order unit tensor 1. In this case the corresponding tangent
operator is equal to zero,

C
apex
n+1 = O . (3.139)

3.6 Phenomenological Behavior of Piezoelec-
tric Materials

The purpose of this section is to present a general framework for the analy-
sis and design of engineering systems that incorporate piezoelectric materials.
Some general information about piezoelectric materials are reviewed, how do
they work?, how are they made?. The piezoelectric effect were first discovered
in 1880 by Jacques and Pierre Curie. They found out that when a mechanical
stress is applied on these materials, electricity is produced and the magnitude
of electric potential is proportional to the stress. The inverse effect was dis-
covered one year later through the mathematical aspect of the theory.
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Figure 3.7: Crystal structure of perovskite: no piezoelectric effect (T > TC),
piezoelectric effect (T < TC).

The discovery of piezoelectricity caused significant interest within the Euro-
pean scientific community. These materials were applied for the first time
during the World War I with piezoelectric ultrasonic transducers. Nowadays,
piezoelasticity is widely used in everyday life, for instance, car’s airbag sensor,
cell phones, printers and medical devices.

The nature of piezoelectric materials is connected to the substantial quantity
of electric dipoles within these materials. The dipole vector ~P has a direction
and a value in dependency with the electrical charges around. Piezoelectric
materials can be natural or man-made. The most well known natural piezo-
electric material is quartz, but manufactured piezoelectric materials are more
applicable and mostly ceramics. The phenomenon of piezoelectricity occurs
in dielectric materials, for which the unit cell is asymmetric. This commonly
introduced by crystalline structures.

There are 32 crystal classes in nature, from which only 20 of them possess
the piezoelectric requirements. A piezoelectric ceramic is a mass of perovskite
crystals which can be produced under poling process. Some typical piezoelec-
tric ceramics are made by poling, e.g. lead-zirconate-titanate (Pb(Zr,Ti)O3)
called PZT, lead-titanate (PbTiO2), lead-zirconate (PbZrO3) and barium-
titanate (BaTiO3). Electroactive polymers (EAP) are another group of piezo-
electric materials from which the most important one is polyvinylidine flouride
(PVDF). Piezo technology is extensively used in cutting edge technology such
as medical technology, mechanical and automotive engineering or semiconduc-
tor technology.

In order to utilize the piezoelectric effect in medical devices it is necessary
to gain deeper chemical insight into the piezoelectric structure. First the be-
haviour of the material on a microscopic scale should be considered. The unit
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cell transforms to different geometries depending on temperature. A critical
temperature is defined, called Curie temperature Tc. Above the Curie tem-
perature (T > Tc) the unit cell is in the cubic phase and no piezoelectric effect
is observed, as demonstrated in Fig. 3.7.

However, the electric dipole moment occurs when the temperature is lower
than the Curie temperature (T < Tc). A region of local alignment is formed
by adjoining dipoles which are called Weiss domains. It should be noted that
the direction of polarization among polar domains is random, as illustrated in
Fig. 3.8 (a). DC electric field is applied in order to align the domain, which is
referred to as the poling process (Fig. 3.8 (b)). After the poling treatment, the

Figure 3.8: (a) Random polar domain, (b) aligned polarization direction under
DC electric field, (c) removed electric field and locked dipoles.

electric field is removed and dipoles remain in line with the polarization direc-
tion (Fig. 3.8 (c)). Now a permanent polarization exists in the piezoelectric
element.

3.6.1 Piezoelectric Effects

Polarization in piezoelectric materials can be induced not only by an electric
field, but also by application of mechanical loads. Mechanical stresses on a
poled piezoelectric element can change the dipole moment which leads to the
generation of a potential difference. This effect is referred to direct or genera-
tor effect in the literature.

Properties of a poled piezoelectric element can be described with regard to
mechanical loading and polarization direction. Compression parallel to po-
larization direction, or tension in a transverse direction of the polarization,
generates an electric field EEE in parallel to polarization direction (Fig. 3.9 (a)
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Figure 3.9: Reaction of a poled piezoelectric element under compression and
tension.

and (b)). Tension parallel to polarization direction, or compression in a trans-
verse direction of the polarization, generates an electric field perpendicular to
the polarization direction (Fig. 3.9 (c) and (d)). Conversly, the application of
an electric field to a piezoelectric body leads to deformations. This effect is
called inverse piezoelectric effect which can be used for various actuator types.
Butterfly-shaped curves of the strain-electric-field diagram of piezoelectric ma-
terial (PZT) is illustrated in Fig. 3.10, which shows in the following steps:

Figure 3.10: Butterfly-shaped curves of the strain-electric-field diagram of
piezoelectric material

A: The strain increases with electric field and the nonlinear behaviour can be
observed for high intensity of the electric field EEE. Therefore, the linear
behavior of strain field takes place only for low values of EEE.
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B: The material remains in the new direction of polarization when the strain
decreases with the electric field.

C: The original orientation of dipoles is gradually reversed as the electric
field becomes negative. When they completely reverse the direction, the
material is polarized in the opposite direction. The electric field at the
point of reversed polarization is known as the coercive field.

D: The piezo material expands again, after polarization reversal, until the
physical strain limit.

E: The same hysteretic behavior along curve B takes place when the electric
field is reversed.

F: The dipoles reorient again to their original polarization as the electric field
reaches the coercive limit.

G: The strain increases with the applied electric field to its physical limit.

3.7 Piezoelectric Constitutive Equations

In this section constitutive equations are introduced which describe electrome-
chanical properties of piezoelectric materials. Piezoelectric materials behave
linearly at low electric fields and at low mechanical stress levels. However,
they may indicate nonlinearity at high electric field or high mechanical stress
level.

In this study we restrict ourselves to a linear first order modeling approach.
The total free energy for small fields is introduced in the form

W =
1

2
εijεklCijkl −

1

2
EiEkǫik − εklEieikl . (3.140)

The material constants in the constitutive matrices read, Yang [2005a]

Cijkl =
∂2W

∂εij∂εkl
=
∂σij
∂εkl

, (3.141)

eikl = − ∂2W

∂εij∂Ei
=
∂Di

∂εkl
= −(

∂σik
∂El

)T , (3.142)

ǫik = − ∂2W

∂Ei∂Ek
=
∂Dk

∂Ei
. (3.143)

The final form of linear constitutive equations for both converse and direct
piezoelectric effects are expressed by

σij = CE
ijklεkl − ekijEk (3.144)
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Di = eiklεkl + ǫsijEj , (3.145)

where CE
ijkl is the elastic stiffness tensor at constant electric field, ekij is the

piezoelectric stress constant and ǫsij is the dielectric permittivity tensor at
constant strain. The indexes i, j = 1, 2, 3 and l, k = 1, 2, 3 refer to different
directions within the material coordinate system. Due to the symmetries of
the strain and stress tensor, one can deduce

CE
ijkl = CE

jikl

CE
ijkl = CE

jilk

CE
ijkl = CE

klij

ekij = ekji

ǫsij = ǫsji (3.146)

Since the piezoelectric layer is assumed as transversely isotropic material and
is poled along the thickness, many of the parameters in the above constants
matrices will be either zero, or can be expressed in terms of other parameters.
subsequently, in matrix form, can be written as

CE =




CE
11 CE

12 CE
13 0 0 0

CE
12 CE

11 CE
13 0 0 0

CE
13 CE

13 CE
33 0 0 0

0 0 0 CE
44 0 0

0 0 0 0 CE
44 0

0 0 0 0 0 1
2 (C

E
11 − CE

12)




(3.147)

e =




0 0 0 0 e15 0
0 0 0 e15 0 0
e31 e31 e33 0 0 0


 (3.148)

ǫs =



ǫs11 0 0
0 ǫs22 0
0 0 ǫs33


 (3.149)

Here e31 represents the transversal effect when the loading direction is per-
pendicular to the polarization direction. The longitudinal effect is represented
by e33 if loading is applied parallel to polarization direction and constant e15
is related to shear effect. Thus the number of piezoelectric stress constant
reduces to three independent variables which characterize the longitudinal,
transversal and shear effects.

The constitutive equations, 3.144 and 3.145, can be rewritten in a matrix
notation

εεε = SEσσσ + dEEE (3.150)
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DDD = dσσσ + ǫσEEE. (3.151)

where SE is compliance tensor at constant electric field, d is piezoelectric strain
constant and ǫσ is dielectric permittivity tensor at constant stress. The first
equation indicates that part of a mechanical strain applied to the material
is transformed to electrical field. Likewise, the second one shows that part
of an electrical field applied to the material is transformed into mechanical
stress. The first equation in the absence of electric field EEE takes the form
εεε = SEσσσ which is Hooke’s Law. Similarly, in the absence of mechanical stress
the second equation describes the pure electrical behaviour of the material.
The effectiveness indicator of the energy conversion for both direct and convers
piezoelectric effect is described by an electromechanical coupling coefficient K

K =
Uc√
UmUe

, (3.152)

with

Um =
1

2
SEσσσ2, (3.153)

Ue =
1

2
ǫσEEE2 (3.154)

and

Uc =
1

2
σσσdEEE. (3.155)

Where Um is mechanical energy, Ue is electric energy and Uc represent coupling
energy. Electromechanical coupling coefficient can be rewritten

k2 =
d2

SEǫσ
. (3.156)

It should be noted that other formulations of the constitutive equations can
be written, e.g.

εεε = SDσσσ + gDDD (3.157)

EEE = −gσσσ + βσDDD, (3.158)

or

σσσ = CDεεε− hDDD (3.159)

EEE = −hεεε+ βsDDD, (3.160)

where C and S are matrices with elasticity constants, ǫ and β matrices with
dielectric constants, d, e, g and h are matrices with piezoelectric constants.
The relationships between dielectric, elastic, and piezoelectric constants can
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be retrieved

[CE ][SE ] = [CD][SD] (3.161)

[βs][ǫs] = [βσ][ǫσ] (3.162)

[CD] = [CE ] + [e][h] (3.163)

[SD] = [SE ]− [d][g] (3.164)

[ǫσ] = [ǫs] + [d][e] (3.165)

[βσ] = [βs]− [g][h] (3.166)

[e] = [d][CE ] (3.167)

[d] = [ǫσ][g] (3.168)

[g] = [h][SD] (3.169)

[h] = [βS ][e] (3.170)

These alternative forms for the constitutive relations of piezoelectric materials
are particularly applicable in order to estimate or measure a specific quantity
in special conditions, at zero stress or zero electric field.
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4 Finite Element Modeling of Electro-
Mechanical Coupling

From the mathematical point of view, the Finite Element Method (FEM) is
a numerical procedure in order to solve the partial differential equations of
physical systems. Since exact analytic solution due to the complexity of the
boundary conditions are only possible for limited cases, numerical methods
such as the FEM aim to provide an approximation to solve the problem.

In this chapter, the formulation of a finite element approach for the analysis
of piezoelectric materials is briefly explained. The finite element formulation
is derived consistently from virtual work principle by formulating appropriate
electrical, mechanical and coupling potentials. In a first step, variational prin-
ciple are introduced. In the following, the typical finite element discretization
for the electrostatic and mechanical field equations is outlined. The straightfor-
ward solution is considered for the linear case, while an incremental procedure
is required for the nonlinear case. In a subsequent step, a piezoelectric patch
test is investigated in order to verify numerical results.

For more detailed and in-depth expressions, the interested reader may consult
Bathe [2001]; Wriggers [2009]; Zienkiewicz et al. [2005]; Gaudenzi [2009].

4.1 Variational Principles

In order to determine a finite element formulation for a boundary value prob-
lem, a variational formulation is derived which can be interpreted as a weak
form of equilibrium. The principle of virtual work for instance provides a vari-
ational principle for displacement-based finite element formulations in struc-
tural mechanics. The principle of virtual work states that“a structure is in
equilibrium under a set of external loads if after imposing to the structure
arbitrary (virtual) displacements compatible with the boundary conditions,
the work performed by the external loads on the virtual displacements equals
the work performed by the actual stresses on the strains induced by the vir-
tual displacements”. In the context of electromechanical problems, besides to
virtual displacements δuuu the virtual potential δφφφ have to be considered. The
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total boundary value problem for a static mechanical problem is described by

divσσσ = 000 in B ,
ttt = σσσ ·nnn = t̄tt on ∂tB , (Natural B.C.)

uuu = ūuu on ∂uB , (Essential B.C.) (4.1)

with boundary conditions on the surface ∂B and neglecting volume forces.
From the conservation law of equations 3.92 and Natural boundary conditions
ttt the equation of virtual work for every possible choice of the virtual displace-
ments δuuu can be derived as follows

∫

B

div (σσσ) · δ uuu dV +

∫

∂B

(ttt− σσσ ·nnn) · δ uuu da = 0 . (4.2)

Eventually, equation 4.2 is rewritten as
∫

B

σσσ · · δεεε dV =

∫

∂B

ttt · δuuu da . (4.3)

Similarly, the total boundary value problem for an electrostatic problem is
written

divDDD = 000 in B ,
qqq = −DDD ·nnn = q̄qq on ∂qB , (Natural B.C.)

φφφ = φ̄φφ on ∂φB . (Essential B.C.) (4.4)

In analogy with the principle of virtual work an equation of virtual electric
potential is expressed using equation 3.105 and natural electrical boundary
condition for every choice of the virtual electric potential δφφφ

∫

B

div (DDD) · δ φφφ dV +

∫

∂B

(qqq −DDD ·nnn) · δ φφφ da = 0, (4.5)

which is reformulated into
∫

B

DDD · δEEE dV = −
∫

∂B

qqq · δφφφ da . (4.6)

For the piezoelectric bodies above mechanical and electrical principles are cou-
pled by means of the constitutive relations.

4.2 Finite Element Discretization

In section 3.7, continuum constitutive relations of a piezoelectric material have
been derived. Substituting equations 3.144 and 3.145 into equations 4.3 and



4.2. Finite Element Discretization 53

4.6, the following set of equations is obtained,
∫

B

εεεTCεεε dV −
∫

B

εεεTeeeEEE dV =

∫

∂B

uuuT ttt da, (4.7)

∫

B

EEETeeeεεε dV +

∫

B

EEET ǫǫǫEEE dV = −
∫

∂B

qqq φφφ da. (4.8)

The finite element method is utilized to discretize the electrostatic and me-
chanical field equations simultaneously. In first step, the body of interest is
divided into non-overlapping elements nel

B ≈ Bh =

nel⋃

e=1

Ωe, (4.9)

where Ωe represents each element domain. The position vectors of the material
points are discretized as follows

XXX(ξξξ) ≈
nn∑

I=1

NI(ξξξ)XXXI , (4.10)

where the shape functions NI are defined in terms of coordinates ξ and have
to fulfill the geometric constraint

nn∑

I=1

NI(ξξξ) = 1. (4.11)

The electric potential φ is introduced as fourth nodal degree of freedom beside
the displacement field u in the three spatial directions. For every finite element
of the considered body we assume

uuu(ξξξ) ≈
nn∑

I=1

NI(ξξξ)uuuI , δuuu(ξξξ) ≈
nn∑

I=1

NI(ξξξ) δuuuI , ∆uuu(ξξξ) ≈
nn∑

I=1

NI(ξξξ)∆uuuI ,

(4.12)

φφφ(ξξξ) ≈
nn∑

I=1

NI(ξξξ)φφφI , δφφφ(ξξξ) ≈
nn∑

I=1

NI(ξξξ) δφφφI , ∆φφφ(ξξξ) ≈
nn∑

I=1

NI(ξξξ)∆φφφI ,

(4.13)
with summation of all number of elements nn. These relationships can be
written in matrix form

uuu ≈NNNu ûuu, (4.14)

φφφ ≈NNNφ φ̂φφ. (4.15)

In the following, the expressions of the electric field and strain field, with
regard to equations 3.93 and 3.106, can be written

εεεεεεεεε = BBBu ûuu, (4.16)
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EEE = −BBBφ φ̂φφ. (4.17)

The matrices BBBu and BBBφ are the derivatives of the shape functions for the me-
chanical displacements and electric potentials, respectively, and are expressed
by

BBBu =




∂x 0 0
0 ∂x 0
0 0 ∂x
0 ∂z ∂y
∂z 0 ∂x
∂y ∂x 0




[
NNNu

]
, (4.18)

BBBφ =



∂x
∂y
∂z


[ NNNφ

]
. (4.19)

Following the classical procedure for finite element modeling and summing
over all the elements, the mechanical and electrical equilibrium equations for
linear piezoelectricity read as

nel⋃

e=1

∫

B

BBBT
uCBBBu dV ûuu+

nel⋃

e=1

∫

B

BBBT
ueeeBBBφ dV φ̂φφ =

nel⋃

e=1

∫

∂B

NNNu ttt da, (4.20)

and
nel⋃

e=1

∫

B

BBBT
φeeeBBBu dV ûuu−

nel⋃

e=1

∫

B

BBBT
φǫǫǫBBBφ dV φ̂φφ =

nel⋃

e=1

∫

∂B

NNNφ qqq da. (4.21)

The finite element expressions of the converse and the direct piezoelectric effect
can be written in the following compact form

KKKuu ûuu+KKKuφ φ̂̂φ̂φ = FFF ext (4.22)

KKKφu ûuu+KKKφφ φ̂̂φ̂φ =QQQext (4.23)

with

KKKuu =

nel⋃

e=1

∫

B

BBBT
uCBBBu dV (4.24)

KKKuφ =KKKT
φu =

nel⋃

e=1

∫

B

BBBT
ueeeBBBφ dV, (4.25)

KKKφφ = −
nel⋃

e=1

∫

B

BBBT
φǫǫǫBBBφ dV, (4.26)

FFF ext =

nel⋃

e=1

∫

∂B

NNNu ttt da, (4.27)
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and

QQQext =

nel⋃

e=1

∫

∂B

NNNφ qqq da. (4.28)

Herein KKKuu is the global elastic stiffness matrix, KKKuφ and KKKφu denote the
direct and converse piezoelectric stiffness matrices and KKKφφ is the global di-
electric matrix. FFF ext is the global nodal force loading vector, QQQext is the
surface density charge vector.

4.3 Finite Element Solution

The finite element solution is then obtained by solving the following equation

[
KKKuu KKKuφ

KKKφu KKKφφ

] [
uuu
φφφ

]
=

[
FFF ext

QQQext

]
(4.29)

Once the unknown variables, mechanical displacement uuu and electric poten-
tioal φφφ, are obtaind, the other expressions εεεεεεεεε, EEE, σσσ andDDD can also be calculated
from Eq.4.17 and 4.16 and from the constitutive equations. The approximate
solution found in this way can be improved either by using shape functions
with higher order terms or increasing the number of elements. A study of
finite element modeling for piezoelectric and adaptive structures has been un-
dertaken by Benjeddou [2000], who also developed with Trindade and Ohayon
[1999] a beam finite element for shear actuation. In some cases it is possible
to solve equations 4.22 and 4.23, separately.

Therefore, the finite element version of actuator equation is obtained by

ûuu =KKK−1
uu (FFF ext −KKKuφφ̂φφ). (4.30)

Subsequently, when the displacement field is known, the finite element version
of the sensor equation is written by

φ̂φφ =KKK−1
φφ (QQQext −KKKφuûuu). (4.31)

However, in general the full coupling between these two equations has to be
taken into account. Therefore, an iterative approach has been set up to obtain
the fully coupled solution. The procedure is briefly outlined below.

(1) Solve equation 4.30 assuming that φ̂φφ = 0, then calcute ûuu, εεε and σσσ.

(2) Substitute the obtained value of ûuu into equation 4.31, then calculate value
of φ̂φφ, EEE and DDD.

(3) Substitute again the obtained value of φ̂φφ into equation 4.30 and calculate
ûuu, εεε and σσσ.
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(4) Compare the values of uuu by evaluating the following tolerance condition:

(| û(3)û(3)û(3) − û(1)û(1)û(1) |)/ | û(1)û(1)û(1) |≤ β1, (4.32)

where β1 is tolerance parameter.

(5) Substitute again the obtained value of ûuu into equation 4.31 and calculate
the values of φ̂φφ, EEE and DDD.

(6) Compare the values of φφφ by evaluating the following tolerance condition:

(| φ̂(5)φ̂(5)φ̂(5) − φ̂(2)φ̂(2)φ̂(2) |)/ | φ̂(2)φ̂(2)φ̂(2) |≤ β2, (4.33)

where β2 is tolerance parameter.

The solution procedure will converge after reasonable number of iterations.
With this iterative approach both classic solid mechanics problems and field
problems can be solved. This approach can also be extended for both geometric
and material nonlinearity.

4.4 The Case of Nonlinear Constitutive Re-
lations

An iterative approach for the solution is implemented in order to obtain me-
chanical and electrical equilibrium at each loop over incremental load steps.
An incremental load stepping process is utilized because of the time dependent
loading conditions and the non-linear constitutive response. The non-linear
equations are solved by an iterative approach where the equilibrium condition
is computed at each time step applying Newton-Raphson method. In this sec-
tion, the incremental equilibrium equations are developed in order to establish
a general solution scheme for nonlinear problems. In order to calculate the
value of displacements at time t+∆t, the mechanical equilibrium is written
∫

B

t+∆t

εεεTCεεε dV −
∫

B

t+∆t

εεεTeeeEEE dV =

∫

∂B

t+∆t

uuuT ttt da−
∫

B

t

σσσ εεε dV. (4.34)

A similar expression can be written for the electrical equilibrium

∫

B

t+∆t

EEETeeeεεε dV +

∫

B

t+∆t

EEET ǫǫǫEEE dV = −
t+∆t∫

∂B

qqq φφφ da−
∫

B

t

DDDEEE dV. (4.35)

The general solution is determined by summing all the increments calculated
for each time step. The final form of the obtained linearized finite element
system reads

[
KKKuu KKKuφ

KKKφu KKKφφ

]t [
uuun
φφφn

]
=

[
FFF ext

QQQext

]t+∆t

−
[
FFF int

QQQint

]t
(4.36)
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with

FFF int =

nel⋃

e=1

∫

∂B

BBBT
u σσσ dV, (4.37)

and

QQQint =

nel⋃

e=1

∫

∂B

BBBT
φ DDD dV, (4.38)

where FFF int represents the internal force vector and QQQint the internal density
charge vector.

4.5 Verification of Coupled Electro-Mechanical
Model

In this section, a numerical example for piezoelectric elements is proposed to
verify the coupled electro-mechanical formulation and the related implementa-
tion. Therefore, a simple piezoelectric body is investigated as possible sensor
and actuator.

4.5.1 Sensor

A three dimensional square cube has been generated with Ansys software in
order to run the Matlab FEM code. This square cube has been discretized by
10 node tetrahedral element with 85 elements. A uniform surface load equal
to 60.0 kN/cm is applied on the nodes along one of the cube’s face. Con-
tribution of nodal force which undergoes a uniform surface load analytically
has been calculated. The polarization in z direction of the cube is assumed.
Furthermore, in order to allow for a clear derivation of analytical results, Pois-

Elastic modulus Piezoelectric Constants Electric permitivity

(N/mm2) (C/m2) (F/m2)

E = 65 e31=e32 = −6.5 ǫ11 = ǫ22 = 15.53e−9

e33 = 23.3 ǫ33 = 15.50e−9

Table 4.1: Mechanical and electrical properties of piezoelectric body

son ratio is set to zero. This simplification is admissible here, as the decisive
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a) b)

c) d)

Figure 4.1: Sensor: a) Constant strain field εεε11 b) Constant electric field E3

c) Linear displacement d) Linear electrical potential difference.

coupling effects under consideration are not dependent on Poissons effect. The
mechanical and electrical properties required for the finite element analysis are
given in table 4.1.

Since no electrical potential or electrical charge has been applied as an electri-
cal boundary conditions, all electric displacement components are set to zero.
The linear constitutive equations for the piezoelectric model in x-direction are
obtained as follows

σ11 = E ε11 − e31 E3 (4.39)

0 = e31 ε11 + ǫ33 E3 . (4.40)

Solving this system of equation leads to a constant strain ε11 = 92.8 × 10−4

and an electrical field in Z direction E3 = 4.98× 104 V/m. The same result is
obtained with the numerical model. The constant fields of electrical and strain
fields as illustrated on Fig. 4.1 (a) and (b). Furthermore, linear displacement
in the same direction of loading and linear electrical potentioal in line with the
polarization direction are illustrated in Fig. 4.1 (c) and (d). The comparison
of analytical and numerical results is shown in table 4.2. All piezoelectric
elements exactly match with the analytical result.
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u(m) φ(V ) E3(V/m) S11(N/m
2)

Analytical solution 9.28× 10−4 4.986× 103 4.986× 104 6× 106

Numerical results 9.28× 10−4 4.986× 103 4.986× 104 6× 106

Table 4.2: Sensor: Comparison of analytical and numerical results.

4.5.2 Actuator

In next step, the inverse piezoelectric effect is investigated. Therefore, an
electrical potential has been applied at the top and bottom surfaces of the
cube as boundary conditions with φt = −2.364× 103 V and φb = 2.622× 103

V. This results in an electrical field E = φb−φt

t = 4.986 × 104 V/m, where
t represents the distance between top and bottom surface. Since no external
forces are applied, the stress σ11 remains zero. Thus the governing equations
can be stated as:

0 = E ε11 − e31 E3 (4.41)

D3 = e31 ε11 + ǫ33 E3 (4.42)

Substituting the material parameters and the electric field value, one obtains
εεε11 = 0.498 × 10−4 and D3 = 6.96 × 10−6 C/m2. The longitudinal dis-
placement at the free edge is u = 4.98 × 10−6 m. The analytical result of
the displacement, strain field and electrical displacement have been compared
which is shown in table 4.3.

u(m) E11(V/m) D3(C/m
2)

Analytical solution 4.98× 10−6 0.498× 10−4 6.96× 10−6

Numerical results 4.98× 10−6 0.498× 10−4 6.96× 10−6

Table 4.3: Actuator: Comparison of analytical and numerical results.

The linear state of the electrical potential and displacement leads to a correct
representation of the constant electric and strain field, respectively, which it
can be observed in Fig. 4.2.
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a) b)

c) d)

Figure 4.2: Actuator: a) Constant strain field εεε11, b) Constant electric field
E3, c) Linear displacement d) Linear electrical potential difference.
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5 Finite Element Modeling of Teeth
Implants

The biomechanical investigation of dental implants necessarily demands the
application of three dimensional finite element models. Accordingly, a model
for the jawbone has been extracted from a high resolution CT data. In a first
step the surface geometry of a three-dimensional data is extracted. This pro-
cess is called segmentation. In second step a triangle surface mesh is generated
from the segmentation data. Afterwards, based on these data a CAD model is
created with shape reconstruction techniques. In a subsequent step the pros-
thesis which consists of a conical part with a screw thread, an abutment and a
crown is placed virtually into the mandible model. Furthermore, an interface
layer for the simulation of osseointegration is generated.

In the following, these steps and the methods which have been applied in this
work are described. Since the methods of image processing are not the goal
of this thesis, they are only described briefly for a better understand the pro-
cedure. More detailed descriptions of the methods of digital image processing
one may refere to Jähne [2005].

5.1 Segmentation

Image segmentation is the process of subdividing a digital image into its con-
stituent regions or objects. This process is started by using CT data set of a 63
years old male patient. The patient’s skull is segmented using image processing
techniques provided by MATLAB, as sketched in Fig. 5.1 (a). Subsequently,
the entire data set is converted into a three dimensional image using threshold-
ing. Thresholding describes an operation by which a binary image is generated
from a grayscale image. For this reason, a threshold value for the grayscale
is specified, which divides the image into black and white background and
foreground pixels. The threshold value can automatically be determined by
Matlab. The lower mandible depicted in Fig. 5.1 (b) was highlighted dark for
reasons of clarity. Then, the extraction of the lower jaw from the result of the
thresholding process is simple to carry out.
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a) b)

Figure 5.1: Model generation from CT-data (a), 3D thresholding a skull data
set (b).

5.2 Reconstruction of Surface and CAD Mod-
els

The next step for the generation of geometric models is the generation of sur-
face models from the segmentation data. The segmentation data are composed
of a binary and three dimensional data of the region of interest (ROI), i.e.,
the region of the mandible. With this knowledge an isosurface between the
region of interest and the surrounding areas can simply be provided using the
functionalities of Matlab. The lower mandible is reconstructed from a triangle
surface model Fig. 5.2 (a).

Afterwards, the generation of a CAD model of the mandible is necessary for
finite element simulations. The surface data is processed using a Non-Uniform
Rational B-Splines (NURBS) technique to generate CAD surfaces which en-
able for Boolean operations on virtual endoprostheses implantation. However,
the reconstructed model appears to be highly inconsistent with the physical
model because of the irregular structure of the mandible. Therefore, profes-
sional reverse engineering software is suggested to create a CAD model, as
shown in Fig. 5.2 (b).

Now the three dimensional CAD model of the dental prosthesis is created. The
implant geometry is one factor which can effect on the primary stability and
osseointegration under immediate loading. A cylindrical and threaded dental
implant is selected for this study. The dimensions of conical part, abutment
and crown have been measured based on a real sample the CAD models are
shown in Fig. 5.2 (c). The CAD model of mandible with prosthesis is depicted
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in Fig. 5.2 (d).

a) b)

c) d)

Figure 5.2: a) View of the total mandible, green color part represents the left
half of mandible, b) CAD model of mandible, c) CAD model of
the implant, d) The implant is placed virtually into the mandible
model

5.3 Finite Element Models

In this step, the 3D CAD model is discretized for the finite element model.
In order to achieve the results with high accuracy, a fine mesh is generated
surrounding dental implant. The finite element model of the mandible and
the implant consists of 16,329 nodes and 92,072 linear tetrahedral elements.
The threaded part of implant is intended to allow the postoperative osseointe-
gration. Without considering the interface layer, mandible and implant would
have a perfect osseointegration which is physiologically not correct. Therefore,
a bio-active interface layer is modeled with osseointegration capability in or-
der to simulate the physiological behavior of the interface. The interface layer
is generated fully automatically with an in-house Matlab code; it consists of
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a) b) c) d)

Figure 5.3: Finite element model: implant (a), piezoelectric coating (b), bio-
active interface layer (c) and mandible (d).

1,775 linear wedge interface elements.

An exploded view of the finite element models of implant, piezoelectric coat-
ing, interface layer and mandible is depicted in Fig. 5.3. The thin layer of
the polyvinylidene fluoride (PVDF) film coated conical part of the implant
with a thickness of 0.1 mm is shown by orange color. The bio-active interface
elements with a thickness of 0.5 mm are depicted in yellow color.

5.4 Projection of CT Intensities to the Finite
Element Model

For the computational study it is necessary to reconstruct the information of
the material properties of the real mandible from the CT-data. To do so,
the Hounsfield units from CT data set are projected on to the finite element
model. This step consists on mapping the bone mineral density distribution
information of the host bone onto the postoperative state from which the elas-
tic moduli for the mandible part of the finite element model are computed by
Eq. 3.98. The mechanical properties adopted here are specified in terms of
Young’s modulus, Poisson’s ratio, mass density and physiological target values
for all model groups are summarized in table 5.1.

Since blood and mushy bone are generated in the bone-implant interface im-
mediately after surgery, Poisson’s ratio is introduced for nearly incompressible
behavior and the simulation process is started with relatively low adhesion in
the interface. The material properties of the dental implant are chosen for
titanium.
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Table 5.1: Material parameters for different parts of the jawbone-implant in-
tractive system

Parts Elastic, Poisson’s Density, Physiological
modulus ratio target value

(N/mm2) (g/cm3) (Nm/g)

Bone E0 = 2, 000 ν = 0.29 ρ0 = 1
Implant E = 105000 ν = 0.31
Interface Estart = 1.5 νmin= 0.29 ρmin= 0.0277 ψrefm = 0.0004

νmax= 0.43 ρmax= 2.8 ψrefe = 0.000003
PVDF film E = 6000 ν = 0.29 ρ = 1780

5.5 Boundary Conditions and Simulation Ap-
proach

Homogeneous Dirichlet boundary conditions are applied to the medial and
dorsal ends of mandible. The real physiological situation is fitted and local
disturbances are omitted due to St.Venant’s principle. Physiological chewing
conditions are applied to the head to the implanted tooth. Direction and
magnitude of the loads have been adopted from literature, e.g. Canay et al.
[1996]; Ronold et al. [2003]; Meijer et al. [1993]; Merdji et al. [2012]. Barbier
et al. [1998] reported that the magnitude of the applied horizontal load was
five times smaller than that of the vertical load.

Typical load level experienced during the mastication reported in the coronal-
apical (vertical), lingualbuccal( transverse) and mesial-distal (mesiodistal) di-
rections have been reported by Richter [1998]. Dynamic loads in three afore-
mentioned directions are applied on the occlusale face of the crown at low
frequency as sketched in Fig. 5.4 (b). The loading induced by the jawbone
muscles onto implant have been neglected because of its minor meaning for
the bone-implant interface conditions.

The time history of masticatory dynamic load is demonstrated in Fig. 5.4 (a)
for a time sequence of 10 s. A non-linear quasi-static finite element analysis is
performed while chewing force sequence is discretized into 10 timesteps. An
incremental load stepping process is utilized because of the time dependent
loading conditions and the non-linear constitutive response. The non-linear
equations are solved by an iterative approach where the equilibrium condition
is computed in each time step applying Newton-Raphson method. The values
of micromotion and energy density, from mechanical and electrical stimulus,
are calculated for the interface layer elements. In a subsequent step the time
dependent process of osseointegration prediction is performed with regard to
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a) b)

Figure 5.4: a) Time dependent loading for normal chewing b) loading compo-
nents in coronal-apical, lingual-buccal and mesial-distal directions.

ingrowing restriction from micromotion threshold. This procedure has been
implemented into a MATLAB-based finite element environment.
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6 Numerical Studies on Implant Os-
seointegration

The application of the methods for electromechanically stimulated osseoin-
tegration is demonstrated in this chapter. The effect of electromechanical
stimulus on the osseointegration process in the bone-implant interface is in-
vestigated.

In a first step, electromechanical stimulation is studied based on the elec-
trical characteristics of bone tissue. Subsequently, the computed results are
compared with pure mechanical stimulus. Then, the effect of variation of
micromotion threshold on the osseointegration process is studied. Further-
more, extensive parametric studies have been carried out for different values
of piezoelectric constants in order to investigate a suitable range to improve
the osseointegration capabilities of dental implants.

6.1 Electromechanically Stimulated Osseoin-
tegration

6.1.1 Electrical Properties of Bone tissue

In this study a combined electrical and mechanical stimulus was implemented
to determine osseointegration of bone-implant interface when the dental pros-
thesis system is subjected to periodic dynamic load. In a first comparative
study, electrical properties of bone cells were assigned to the bio-active in-
terface only without considering piezoelectric coating in order to evaluate the
effect of bone cell piezoelasticity on osseointegration separately.

Some authors, e.g. (see Fotiadis et al. [1999]; Gjelsvik [1973b]; Qin and Ye
[2004b]; Ramtani [2008]), reported that bones behave in the same way as a
crystal with hexagonal symmetry. The related piezoelectric constitutive tensor
is defined by four independent variables and the dielectric tensor is represented
as a diagonal matrix with two constants. The material data used here are
adopted from Fotiadis et al. [1999] are summarized in table 6.1. The entries
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Table 6.1: Electrical characteristics of Bio-active interface and PVDF film

Parts Piezoelectric Dielectric
constant, constant,

(N/Vmm)× 10−6 (N/V 2)× 10−9

Bio-active interface e31 = 1.5 ǫ11 = 88.54
e33 = 1.87 ǫ33 = 106.24
e14 = 17.88
e15 = 3.57

PVDF film e31 = 43.5 ǫ11 = 0.1
e32 = −28.5
e33 = −193.6

of piezoelectric constants and electric permitivity matrix is reperesnted

e =




0 0 0 e14 e15 0
0 0 0 e15 −e14 0
e31 e31 e33 0 0 0


 , ǫ =



ǫ11 0 0
0 ǫ11 0
0 0 ǫ33


 (6.1)

The osseointegration in the bone implant interface strongly depends on the
initial micromotion conditions as discussed in the introduction. For these prin-
ciple studies a threshold of 100 µm has been applied. The osseointegration
progress considering the electromechanical stimulus of the bio-active interface
is depicted in Fig.6.1 for five different time instant. It can be seen that with
proceeding time the bone-implant interface becomes more bony which is indi-
cated by red color. A comparison between the computed result for the osseoin-
tegration process based on electromechanical and pure mechanical stimulation
in the bone implant interface layer at the beginning, in the middle, and at the
end of the simulation process is shown in Fig. 6.2.

From these studies one observes that osseointegration augmented by electrome-
chanical stimulation started faster than with pure mechanical stimulation al-
ready from the first step. With ongoing osseointegration to middle and final
step the interface layer becomes more bony and stable. The amount of os-
seointegration for electromechanical stimulation is more pronounced than for
pure mechanical during the hole osseointegration process.

6.1.2 Micromotion Limit

In a second study the variation of the micromotion limit is investigated as a
remarkable factor which can affect the initial post surgery behavior of a dental
prosthesis. The final state of osseointegration obtained with limit values of 50,
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a) b) c) d) e)

ρ [g/cm3]

Figure 6.1: Electromechanical stimulation on the osseointegration prediction
in the interface with 100 µmmicromotion threshold from timesteps
1 (a), 3 (b), 5 (c), 7 (d) and (e) 10.

a) b) a) b) a) b)

ρ [g/cm3]

Figure 6.2: Comparison of a) electromechanical and b) mechanical stimulation
on the osseointegration prediction in the interface with 100 µm
micromotion threshold from timesteps 1, 5 and 10 (left to right).
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75 and 100 µm are shown in Fig. 6.3. With increasing micromotion threshold
varied from 50 to 100 µm the osseointegration increases considerably.

ρ [g/cm3]

Figure 6.3: Final state of the osseointegration prediction considering elec-
tromechanical stimulation with 50, 75 and 100 µm micromotion
threshold (left to right).

6.1.3 Additional Piezoelectric Coating

It has been discussed so far, that electrical stimulus within the bone itself
can improve bone growth and enhance faster healing. In this second step, the
influence of an additional piezoelectric coating of the implant is investigated.
According to Fotiadis et al. [1999] and Chopra [2014], the electrical properties
of both bone tissue and typical PVDF film are displayed in table 6.1.

Since a PVDF film is modeled under small strains, the present study proposes
an approach to adapt transversely isotropic materials. The longitudinal and
transverse effects on PVDF film have been considered where normal stresses
are applied in parallel and transverse direction to polarization. Accordingly,
piezoelectric constants reduce to three non-zero components only,

e =




0 0 0 0 0 0
0 0 0 0 0 0
e31 e32 e33 0 0 0


 , ǫ =



ǫ11 0 0
0 ǫ11 0
0 0 ǫ11


 . (6.2)

The electric field strength produced by PVDF coating due to normal chewing
conditions is of significant importance. As rather low field intensity doesn’t
affect on bone cell proliferation while quite excessive fields might cause cell
necrosis. As discussed in the introduction, a window of electric field strength



6.2. Parametric Study 71

a) b) c) d) e)

ρ [g/cm3]

Figure 6.4: The osseointegration prediction considering additional piezoelec-
tric layer with 100 µm micromotion threshold from timesteps 1
(a), 3 (b), 5 (c), 7 (d) and (e) 10.

between 10−5−10−3 V/mm has been reported by Brighton et al. [1992] to be
beneficial for cell proliferation. Piezoelectric constants of PVDF film are thus
important for the control of the magnitude of electric fields. In particular, the
value e33 is nearly five times larger than the two other constants and therefore
has the most important contribution in electric field production.

6.2 Parametric Study

A parametric study has been carried out in order to achieve a best value of
e33 to provide an electric field in the aforementioned range to improve the
osseointegration capabilities of teeth implants. The variation of the electrical
field depending on the piezoelectric constant is shown in Fig.6.5, plotted in a
dimensionless logarithmic scale.

The tolerable domain of the induced electrical field with regard to variation
of e33 is shown by green color, while less field strength (blue) does not affect
the cell activity at all and higher field strength (red) could affect apoptosis.
In comparison with the specific data for the PVDF layer (table 6.1) it is
concluded that this material would not be suitable for coating of bone dental
implants. It is concluded that new coating materials and/or novel manufactur-
ing techniques have to be developed for the improvement of osseointegration
properties of dental implants by advanced electrical stimulation.

Nonetheless, in order to demonstrate the potential of electromechanical stimu-
lation of primal osseointegration of teeth implants a comparative study suitable
piezoelectric constants has been performed. A threshold value of 100 µm and
a constant of e33 = −193.6× 10−12 N/Vmm has been applied for these prin-
ciple investigations. The results for the time sequence are depicted in Fig. 6.4
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Figure 6.5: Dimensionless induced electrical field in dependecy of e33 (Eref =

10−8 V/mm)

which have to be compared with Fig. 6.2.

The evolution of density in bio-active interface at each time instant has been
compared between pure mechanical stimulation, bio-active interface with elec-
trical properties of bone tissue and additional PVDF layer, which is illus-
trated in Fig.6.6. Two key points could be derived from this Figure. First,
as expected the density change profile goes asymptotically to a saturated and
steady state value. This could be interpreted as a complete healing process.
Second, the presence of PVDF layer enhances the osseointegration process.
It means that it leads to increased areas of osseointegration in comparison
with the case in which such a layer doesn’t exist. A comparison of average
density between electromechanical stimulation of bio-active interface and pure
mechanical stimulation at the final step indicates 14.5% more bony ingrowth.
From the additional active electrical stimulation from the PVDF layer an im-
provement of osseointegration of an amount of approximately 24.4% compared
to pure mechanical stimulation is predicted.

Since mechanical stresses play an important role in bone remodeling and the
electric field produced in piezoelectric coating, a evaluation of the stress distri-
butions in the bone, bio-active interface and PVDF layer is needed. Therefore,
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Figure 6.6: Comparison of evolution of density in bio-active interface with pure
mechanical stimulation, electrical properties of bone tissue and ad-
ditional PVDF layer from timesteps 1 to 10.

the mean and maximum von Mises stress distribution under combined dynamic
load from timesteps 1 to 10 are displayed in Fig.6.7.

From Fig.6.7 (a) one can find that there is an apparent transition in the role
of PVDF layer. In other words, at the primary timesteps the stress level in
the PVDF layer is considerable but it gradually decreases. This is due to the
larger contribution of the PVDF layer to the mechanical stiffness of the system
prior to the development of osseointegration.

Once the osseointegration progresses the mechanical load applied on PVDF
layer decreases and its role as an auxiliary mechanical structure fades out. It
can be seen that with proceeding time, the mean value of von Mises stress
in the interface layer increases. This result confirmed that the abilty of the
bio-active interface layer to carry mechanical load increases due to the ongoing
mineralization. Subsequently, the mean value of von Mises stress in the PVDF
layer decreases to reach a constant value.

The description of maximum von Mises stress at each timesteps is depicted in
Fig.6.7 (b). The highest von Mises stresses occure in the mandible structure.
A second stress peak is observed at the PVDF layer, but its value was much
lower than in the mandible bone. A third peak is observed at the bio-active
interface layer which however is not so pronounced.

Since electromechanical stimulation could simultaneously contribute to bone
formation, the mean value of both strain and electric energy density in the
bone-implant interface layer at each timesteps is illustrated in Fig.6.8. How-
ever, based on energy densities one should argue carefully. At the first glance,
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Figure 6.7: Mean (a) and maximum (b) value of Von Mises stress for Bio-active
interface, mandible bone and PVDF layer from timesteps 1 to 10.

a decrease of energy density appears unusual.

One needs to pay attention to the point that not only the stress and strain
change in the bio-active interface, but also the material tangent stiffness varies
during the osseointegration process. That’s why the energy density has a de-
scending behaviour in time. In addition, it can be observed that the mean
value of electric energy density (EED) is much less than strain energy den-
sity (SED). In other words, the electrical part of energy is not dominant in
terms of the total energy of the system. In fact, it plays the role of stimuli for
osseointegration process rather than a mechanism which absorbs and stores
the energy of the system. That is the reason why the electrical physiological
target value is distinguished from the mechanical in equation 3.87.

In the following the distribution of electric potential and electrical field with
considering suitable piezoelectric constants on the PVDF layer are discussed.
The maximum, minimum and mean values of the electric potential are dis-
played in Fig. 6.9. The oscillatory behavior of the electric potential was
expected because of masticatory dynamic loading conditions. In other words,
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Figure 6.8: The mean value of strain and electric energy density of bio-active
interface layer from timesteps 1 to 10.
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Figure 6.9: Electric potential distribution in PVDF layer from timesteps 1 to
10.

the induced voltage (electric potential) follows the dynamics of the mechani-
cal load. However, the interesting point is that such an ossilatory response is
not observed in the mechanical response, i.e. stress and energy of the system.
One can make this reasoning that the osseointegration process is of accumula-
tive ones which flattens any fluctuating input and finally results in a smooth
output. The mean value of electric potential generated in PVDF layer varies
between -0.004 and 0.004 V from timesteps 1 to 10.

As discussed before, the magnitude of the electric field which is produced by
means of the electric potential difference plays an important role on bone for-
mation, as rather low field intensity doesn’t affect on bone cell proliferation
while quite excessive fields might cause cell necrosis. Therefore, the mean value
of electric field which is produced in the PVDF layer is depicted in Fig.6.10.
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Figure 6.10: Mean value of electrical field in PVDF layer from timesteps 1 to
10.

It can be seen that the mean value of electric field is in tolerable domain dur-
ing the timesteps. It should be noted that the piezoelectric constants have
been taken in such a way that the total induced electrical field doesn’t exceed
the tolerable domain. This is an important outcome from the manufacturing
point of view. It means that a numerical study prior to manufacturing pro-
cess insures the feasibility and applicability of such a piezoelectric interface
surrounding the dental implants.
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7 Conclusion and Future Research

The primal osseointegration of dental prostheses is introduced as the most
important parameter for the long term durability of implants. Experimental
studies as discussed in literature indicate that bone formation at the bone-
implant interface can be improved using electrical stimulation. Therefore, an
electromechanical bone remodeling theory was developed in order to investi-
gate the influence of piezo-electrical stimulation on osseointegration process.
A certain amount of initial relative motion is discussed as significant factor
for the failure of initial bony ingrowth. Bone formation is prohibited when
the micromotion increases a certain threshold limit. In this study a compu-
tational simulation has been caried out in order to evaluate the influence of
electromechanical stimulation on the ingrowth behaviour in a bio-active inter-
face layer. A soft, thin bone-implant interface layer has been modeled in order
to simulate the osseointegration starting with a mixture of liquid phase and
bony fragments which appears immediately after surgery. This layer has the
ability to adopt piezoelectric properties of bone for electromechanical stim-
ulation. Therefore, the hypothesis of electromechanical bone remodeling has
been combined with a Drucker-Prager interface model which describes the me-
chanical behaviour of the interface. Furthermore, an additional piezoelectric
coating was modeled surrounding the dental implant which provides a sur-
face electrical charge in order to electrical interactions with the physiological
environment.

In the following, numerical studies have been performed based on a 3D
model of lower mandible and implant under dynamic chewing loads. A com-
parison was made between electromechanical and pure mechanical stimulation
on the osseointegration process. It was shown that an electrical stimulus can
increase cell migration speed and accelerate the osseointegration process be-
cause of natural electrical properties of bone. As still an accepted value of
micromotion threshold limit has not been reported, limit values of 50, 75 and
100 µm have been studied. It was shown that the amount of osseointegration
increases for higher micromotion threshold.

Since electrical properties of bone tissue lead to an increase in bone forma-
tion, an additional piezoelectric coating has been studied in order to recruit
a larger number of bone cells to attach to the implant surface. For this rea-
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son the PVDF film has been utilized as a biocompatible material which is
widely used in medical applications. However, the magnitude of electric field
should be controled while exessive electric field strength leads to cell necro-
sis. As e.g. Brighton et al. [1992] reported that electric field strength of
10−5 − 10−3 V/mm can increase the rate of bone formation and fields less
than 10−5V/mm don’t have affect on bone formation. The parametric study
shown in Fig. 6.5 demonstrates the range of values for e33. With green color
the tolerable domain for electrical fields is shown. Numerical results indi-
cate 24.4 % more bone formation considering additional piezoelectric coating
in comparison with pure mechanical stimulation. Consequently, electric field
which is produced by piezoelectric coating accelerates formation of new bone
tissue at the bone-dental implant interface and reduces the time of the healing
process.

Despite the fact, that a couple of unsure data and model assumptions have
been considered for these investigation, the findings should be judged quali-
tatively only. Nonetheless, by this study the potential contribution of compu-
tational mechanics simulations on the development of sophisticated bone im-
plants has been demonstrated. For quantitative answers further goal oriented
experimental investigations and perhaps probabilistic modeling approaches are
needed.
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