
Connectivity of Boolean Satisfiability

Von der

Fakultät für Elektrotechnik und Informatik

der Gottfried Wilhelm Leibniz Universität Hannover

zur Erlangung des Grades

Doktor der Naturwissenschaften

Dr. rer. nat.

genehmigte Dissertation

von

Dipl.-Physiker Konrad W. Schwerdtfeger

geboren am 6. August 1985 in Hildesheim

2016

Referent: Heribert Vollmer, Leibniz Universität Hannover

Korrefferent: Olaf Beyersdorff, University of Leeds

Tag der Promotion: 17.06.2016

Für meinen Vater
Gerhard Schwerdtfeger

1926 - 2014

Mein herzlicher Dank gilt meinem Doktorvater Heribert Vollmer
für seine Unterstützung bei der Arbeit an dieser Dissertation.

The first principle is that you must not fool yourself,
and you are the easiest person to fool.

Richard Feynman

Zusammenfassung

In dieser Dissertation befassen wir uns mit der Lösungsraum-Struktur Boolescher
Erfüllbarkeits-Probleme, aus Sicht der theoretischen Informatik, insbesondere der Kom-
plexitätstheorie.

Wir betrachten den Lösungs-Graphen Boolescher Formeln; dieser Graph hat als Kno-
ten die Lösungen der Formel, und zwei Lösungen sind verbunden wenn sie sich in der
Belegung genau einer Variablen unterscheiden. Für diesen implizit definierten Graphen
untersuchen wir dann das Erreichbarkeitsproblem und das Zusammenhangsproblem.

Die erste systematische Untersuchung der Lösungs-Graphen Boolescher Constraint-
Satisfaction-Probleme wurde 2006 von Gopalan et al. durchgeführt, motiviert haupt-
sächlich von Forschung für Erfüllbarkeits-Algorithmen. Insbesondere untersuchten sie
CNFC(S)-Formeln, d.h. Konjunktionen von Bedingungen, welche sich aus dem Einset-
zen von Variablen und Konstanten in Boolesche Relationen einer endlichen Menge S
ergeben.

Gopalan et al. bewiesen eine Dichotomie für die Komplexität des Erreichbarkeitspro-
blems: Entweder ist es in Polynomialzeit lösbar oder PSPACE-vollständig, Damit über-
einstimmend fanden sie auch eine strukturelle Dichotomie: Der maximale Durchmesser
der Zusammenhangskomponenten ist entweder linear in der Zahl der Variablen, oder
er kann exponentiell sein, Weiterhin vermuteten sie eine Trichotomie für das Zusam-
menhangsproblem: entweder ist es in P, coNP-vollständig oder PSPACE-vollständig.
Zusammen mit Makino et al. bewiesen sie schon Teile dieser Trichotomie.

Auf diesen Arbeiten aufbauend vervollständigen wir hier den Beweis der Trichotomie,
und korrigieren auch einen kleineren Fehler von Gopalan et al, was in einer leichten
Verschiebung der Grenzen resultiert.

Anschließend untersuchen wir zwei wichtige Varianten: CNF(S)-Formeln ohne Kon-
stanten, und partiell quantifizierte Formeln. In beiden Fällen beweisen wir für das
Erreichbarkeitsproblem und den Durchmesser Dichotomien analog jener für CNFC(S)-
Formeln. Für das Zusammenhangsproblem zeigen wir eine Trichotomie im Fall quanti-
fizierter Formeln, während wir im Fall der Formeln ohne Konstanten Fragmente iden-
tifizieren in denen das Problem in P, coNP-vollständig, und PSPACE-vollständig ist.

Schließlich betrachten wir die Zusammenhangs-Fragen für B-Formeln, d.h. geschach-
telte Formeln, aufgebaut aus Junktoren einer endlichen Menge B, und für B-Circuits,
d.h. Boolesche Schaltkreise, aufgebaut aus Gattern einer festen Menge B. Hier nut-
zen wir Emil Post’s Klassifikation aller geschlossener Klassen Boolescher Funktionen.
Wir beweisen eine gemeinsame Dichotomie für das Erreichbarkeitsproblem, das Zusam-
menhangsproblem und den Durchmesser: Auf der einen Seite sind beide Probleme in P
und der Durchmesser ist linear, während auf der anderen Seite die Probleme PSPACE-
vollständig sind und der Durchmesser exponentiell sein kann. Für partiell quantifizierte
B-Formeln zeigen wir eine analoge Dichotomie.

Schlagworte Komplexität · Erfüllbarkeit · Zusammenhang in Graphen · Boolesche
CSPs · Boolesche Schaltkreise · Post’scher Verband · Dichotomien

Abstract

In this thesis we are concerned with the solution-space structure of Boolean satisfiability
problems, from the view of theoretical computer science, especially complexity theory.

We consider the solution graph of Boolean formulas; this is the graph where the
vertices are the solutions of the formula, and two solutions are connected iff they differ
in the assignment of exactly one variable. For this implicitly defined graph, we then
study the st-connectivity and connectivity problems.

The first systematic study of the solution graphs of Boolean constraint satisfac-
tion problems was done in 2006 by Gopalan et al., motivated mainly by research for
satisfiability algorithms. In particular, they considered CNFC(S)-formulas, which are
conjunctions of constraints that arise from inserting variables and constants in relations
of some finite set S.

Gopalan et al. proved a computational dichotomy for the st-connectivity problem,
asserting that it is either solvable in polynomial time or PSPACE-complete, and an
aligned structural dichotomy, asserting that the maximal diameter of connected com-
ponents is either linear in the number of variables, or can be exponential. Further, they
conjectured a trichotomy for the connectivity problem: That it is either in P, coNP-
complete, or PSPACE-complete. Together with Makino et al., they already proved
parts of this trichotomy.

Building on this work, we here complete the proof of the trichotomy, and also correct
a minor mistake of Gopalan et al., which leads to slight shifts of the boundaries.

We then investigate two important variants: CNF(S)-formulas without constants,
and partially quantified formulas. In both cases, we prove dichotomies for st-connectivity
and the diameter analogous to the ones for CNFC(S)-formulas. For for the connectivity
problem, we show a trichotomy in the case of quantified formulas, while in the case of
formulas without constants, we identify fragments where the problem is in P, where it
is coNP-complete, and where it is PSPACE-complete.

Finally, we consider the connectivity issues for B-formulas, which are arbitrarily
nested formulas built from some fixed set B of connectives, and for B-circuits, which
are Boolean circuits where the gates are from some finite set B. Here, we make use
of Emil Post’s classification of all closed classes of Boolean functions. We prove a
common dichotomy for both connectivity problems and the diameter: on one side,
both problems are in P and the diameter is linear, while on the other, the problems
are PSPACE-complete and the diameter can be exponential. For partially quantified
B-formulas, we show an analogous dichotomy.

Keywords Computational complexity· Boolean satisfiability · Graph connectivity ·
Boolean CSPs · Boolean circuits · Post’s lattice · Dichotomy theorems

Contents

1 Introduction 1

1.1 Boolean Satisfiability and Solution Space Connectivity 1
1.2 Relevance of Solution Space Connectivity 2
1.3 Related Work, Prior Publications, and this Thesis 3
1.4 Associated Software . 4
1.5 General Preliminaries . 4

2 Connectivity of Constraints 7

2.1 Preliminaries . 7
2.1.1 CNF-Formulas and Schaefer’s Framework 7
2.1.2 Classes of Relations . 8
2.1.3 Classes of Sets of Relations . 9

2.2 Results . 11
2.3 The General Case: Reduction from a Turing Machine 12
2.4 Extension of PSPACE-Completeness: Structural Expressibility 12
2.5 Safely Tight Sets of Relations: Structure and Algorithms 20
2.6 CPSS Sets of Relations: A Simple Algorithm for Connectivity 22
2.7 The Last Piece: coNP-Hardness for Connectivity 24

2.7.1 Connectivity of Horn Formulas 25
2.7.2 Reduction from Satisfiability . 27
2.7.3 Expressing M . 28

2.8 Further Results about Constraint-Projection Separation 32

3 No-Constants and Quantified Variants 35

3.1 No-Constants . 35
3.1.1 st-Connectivity and Diameter 36
3.1.2 Deciding Connectivity via Constraint-Projection Separation . . 39
3.1.3 Deciding Connectivity via Self-Implication 41
3.1.4 coNP-Completeness for Connectivity within Schaefer 42
3.1.5 Reductions for Connectivity . 46

3.2 Quantified Constraints . 48
3.2.1 Properties that Persist . 49
3.2.2 coNP-Completeness for Connectivity 50
3.2.3 Deciding Connectivity in Polynomial Time 52

4 Connectivity of Nested Formulas and Circuits 55

4.1 Preliminaries: B-Circuits, B-Formulas, and Post’s Lattice 55
4.2 Results . 59
4.3 The Easy Side of the Dichotomy . 59
4.4 The Hard Side of the Dichotomy . 60
4.5 Quantified Formulas . 65

5 Future Directions 69

Bibliography 70

List of Figures

1.1.1 Depictions of the subgraph of the 5-dimensional hypercube graph in-
duced by a typical random Boolean relation with 12 elements. 1

1.1.2 Subgraphs of the 8-dimensional hypercube graph induced by typical ran-
dom relations . 2

2.4.1 Proof of Step 1 of Lemma 2.4.6, and an example 15
2.7.1 An example for the proof of Lemma 2.7.9, illustrating the idea 28
2.7.2 A more complex example for the proof of Lemma 2.7.9 29

3.1.1 Producing a 1-isolating relation from every 3-ary relation R satisfying
110 ∈ R and 010 /∈ R for the proof of Lemma 3.1.4 38

4.1.1 Post’s lattice with our results . 57
4.4.1 An example for the transformation in the proof of Lemma 4.4.5 63

List of Tables

2.1 Our classifications for CNFC(S)-formulas, in comparison to Sat 11

3.1 The classifications for CNF(S)-formulas without constants 35
3.2 The classifications for Q-CNFC(S)-formulas 48

4.1 List of all closed classes of Boolean functions with definitions and bases 58

1 Introduction

1.1 Boolean Satisfiability

and Solution Space Connectivity

The Boolean satisfiability problem (SAT) asks for a propositional formula if there is an
assignment to the variables such that it evaluates to true. It is of great importance in
many areas of theoretical and applied computer science: In complexity theory, it was
one of the first problems proven to be NP-complete, and still is the most important
standard problem for reductions. In propositional logic, many important reasoning
problems can be reduced to SAT, e.g. checking entailment: For any two sentences
α and β, α |= β if and only if α ∧ β is unsatisfiable. These connections are used
for example in artificial intelligence for reasoning, planning, and automated theorem
proving, and in electronic design automation (EDA) for formal equivalence checking.

SAT is only the most basic version of a multitude of related problems, asking ques-
tions about a relation given by some short description. In one direction, one may look
at constraint satisfaction problems over higher domains, or at multi-valued logics. In
another direction, one may consider other tasks like enumerating all solutions, counting
the solutions, checking the equivalence of formulas or circuits, or finding the optimal
solution according to some measure. In this thesis, we follow the second direction and
focus on the solution-space structure: For a formula φ, we consider the solution graph
G(φ), where the vertices are the solutions, and two solutions are connected iff they
differ in the assignment of exactly one variable. For this implicitly defined graph, we
then study the connectivity and st-connectivity problems.

Since any propositional formula over n variables defines an n-ary Boolean relation
R, i.e. a subset of {0, 1}n, another way to think of the solution graph is the subgraph
of the n-dimensional hypercube graph induced by the vectors in R. The figures below
give an impression of how solution graphs may look like.

Figure 1.1.1 Depictions of the subgraph of the 5-dimensional hypercube graph
induced by a typical random Boolean relation with 12 elements. Left: highlighted
on an orthographic hypercube projection by our SatConn-tool. Center: highlighted
on a “Spectral Embedding” of the hypercube graph by Mathematica. Right: the
sole subgraph, arranged by Mathematica.

2 1.2 Relevance of Solution Space Connectivity

Figure 1.1.2 Subgraphs of the 8-dimensional hypercube graph (with 256 vertices)
induced by typical random relations with 40, 60 and 80 elements, arranged by
Mathematica.

Our perspective is mainly from complexity theory: As it was done for SAT and many
of the related problems, we classify restrictions of the connectivity problems by their
worst-case complexity. Along the way, we will also examine structural properties of the
solution graph, and devise efficient algorithms for solving the connectivity problems.

Besides the usual propositional formulas with the connectives ∧, ∨ and ¬, there are
many alternative representations of Boolean relations; we will consider the following:

• Boolean constraint satisfaction problems (Boolean CSPs, here CSPs for short),
specifically

– CNFC(S)-formulas, i.e. conjunctions of constraints that arise from inserting
variables and constants in relations of some finite set S,

– CNF(S)-formulas, where no constants may be used,

• B-formulas, i.e. arbitrarily nested formulas built from some finite set B of connec-
tives,

• B-circuits, i.e. Boolean circuits where the gates are from some finite set B.

For CNFC(S)-formulas and B-formulas, we also consider versions with quantifiers.

1.2 Relevance of Solution Space Connectivity

A direct application of st-connectivity in solution graphs are reconfiguration problems,
that arise when we wish to find a step-by-step transformation between two feasible
solutions of a problem, such that all intermediate results are also feasible. Recently,
the reconfiguration versions of many problems such as Independent-Set, Vertex-
Cover, Set-Cover Graph-k-Coloring, Shortest-Path have been studied (see
e.g. [IDH+11, KMM11]).

The connectivity properties of solution graphs are also of relevance to the problem
of structure identification, where one is given a relation explicitly and seeks a short
representation of some kind (see e.g. [CKZ08]); this problem is important especially
for learning in artificial intelligence.

Further, a better understanding of the solution space structure promises advance-
ment of SAT algorithms: It has been discovered that the solution space connectivity is

1 Introduction 3

strongly correlated to the performance of standard satisfiability algorithms like Walk-
SAT and DPLL on random instances: As one approaches the satisfiability threshold (the
ratio of constraints to variables at which random k-CNF-formulas become unsatisfiable
for k ≥ 3) from below, the solution space (with the connectivity defined as above) frac-
tures, and the performance of the algorithms deteriorates [MMZ05, MMW07]. These
insights mainly came from statistical physics, and lead to the development of the survey
propagation algorithm, which has superior performance on random instances [MMW07].

While current SAT solvers normally accept only CNF-formulas as input, in EDA the
instances mostly derive from digital circuit descriptions [WLLH07], and although many
such instances can easily be encoded in CNF, the original structural information, such
as signal ordering, gate orientation and logic paths, is lost, or at least obscured. Since
exactly this information can be very helpful for solving these instances, considerable
effort has been made recently to develop satisfiability solvers that work with the circuit
description directly [WLLH07], which have far better performance in EDA applications,
or to restore the circuit structure from CNF [FM07]. This is a reason for us to study
the solution space also for Boolean circuits.

1.3 Related Work, Prior Publications, and this Thesis

Research has focused on the solution space structure only quite recently: Complexity
results for the connectivity problems in the solution graphs of CSPs have first been
obtained in 2006 by P. Gopalan, P. G. Kolaitis, E. Maneva, and C. H. Papadimitriou
[GKMP06, GKMP09]. In particular, they investigated CNFC(S)-formulas and studied

• the st-connectivity problem st-ConnC(S), that asks for a CNFC(S)-formula φ
and two solutions s and t whether there a path from s to t in G(φ),

• the connectivity problem ConnC(S), that asks for a CNFC(S)-formula φ whether
G(φ) is connected,

and

• the maximal diameter of any connected component ofG(φ) for a CNFC(S)-formula
φ, where the diameter of a component is the maximal shortest-path distance be-
tween any two vectors in that component.

They found a common structural and computational dichotomy: On one side, the
maximal diameter is linear in the number of variables, st-connectivity is in P and
connectivity is in coNP, while on the other side, the diameter can be exponential, and
both problems are PSPACE-complete. Moreover, they conjectured a trichotomy for
connectivity: That it is in P, coNP-complete, or PSPACE-complete. Together with
Makino et al. [MTY07], they already proved parts of this trichotomy.

In [Sch13], we completed the proof of the trichotomy, and also corrected minor
mistakes in [GKMP09], which lead to a slight shift of the boundaries towards the
hard side. So for CNFC(S)-formulas, we now have a quite complete picture, which we
present in Chapter 2. In [Sch13], we explained in detail the mistakes of Gopalan et al.
and their implications, here we just give the correct statement and proofs.

In Chapter 3, we investigate two important variants: CNF(S)-formulas without
constants, and partially quantified CNFC(S)-formulas. In both cases, we prove a

4 1.4 Associated Software

dichotomy for st-connectivity and the diameter analogous to the one for CNFC(S)-
formulas. For for the connectivity problem, we prove a trichotomy in the case of quan-
tified formulas, while in the case of formulas without constants, we have no complete
classification, but identify fragments where the problem is in P, where it is coNP-
complete, and where it is PSPACE-complete. Of this chapter, only a preprint with
preliminary results appeared on ArXiv [Sch14b].

Finally, in Chapter 4, we look at B-formulas and B-circuits. Here, we find a common
dichotomy for the diameter and both connectivity problems: on one side, the diameter
is linear and both problems are in P, while on the other, the diameter can be exponen-
tial, and the problems are PSPACE-complete. For quantified B-formulas, we prove an
analogous dichotomy. The work in this chapter has been published in [Sch14a].

1.4 Associated Software

As part of the research for this thesis, several programs were written, some of which may
be useful for future work on related problems. All software is written in Java (version
8) and provided in the SatConn package at https://github.com/konradws/SatConn,
including a graphical tool to draw the solution graphs on hypercube projections, used
for several graphics in this thesis.

After downloading the complete repository, the folder can be opened resp. imported
in Netbeans or Eclipse as a project. The graphical tool is also provided as executable
(SatConnTool.jar).

The most useful functions are declared public and equipped with Javadoc comments,
where helpful. The main-functions provide usage examples and can be executed by
running the respective file.

1.5 General Preliminaries

Prerequisites We assume familiarity with some basic concepts from theoretical com-
puter science, especially complexity theory, and its mathematical foundations:

• From mathematics, we require propositional logic, and basics about graphs, hy-
pergraphs, and lattices,

• From theoretical computer science, we require Turing machines, the common com-
plexity classes P, NP, coNP, PSPACE, and polynomial-time reductions.

Notation We use a, b, . . . or a1,a2, . . . to denote vectors of Boolean values and
x,y, . . . or x1,x2, . . . to denote vectors of variables, a = (a1, a2, . . .) and x = (x1, x2, . . .).
φ[xi/a] denotes the formula resulting from φ by substituting the constants aj for the

variables xij.
The symbol ≤p

m is used for polynomial-time many-one reductions.

Central concepts In the following definition, we formally introduce some concepts
related to solution space connectivity in general. At the beginning of the next chapter,
we define notions specific to CSPs. A reader only interested in B-formulas and B-
circuits may read Section 2.3 after the next definition, and then skip to Chapter 4.

https://github.com/konradws/SatConn

1 Introduction 5

Definition 1.5.1 An n-ary Boolean relation (or logical relation, relation for short) is
a subset of {0, 1}n for some integer n ≥ 1.

The set of solutions of a propositional formula φ over n variables defines in a natural
way an n-ary relation [φ], where the variables are taken in lexicographic order. We will
often identify the formula φ with the relation it defines and omit the brackets.

The solution graph G(φ) of φ then is the subgraph of the n-dimensional hypercube
graph induced by the vectors in [φ]. We will also refer to G(R) for any logical relation
R (not necessarily defined by a formula).

The Hamming weight |a| of a Boolean vector a is the number of 1’s in a. For two
vectors a and b, the Hamming distance |a− b| is is the number of positions in which
they differ.

If a and b are solutions of φ and lie in the same connected component (component
for short) of G(φ), we write dφ(a, b) to denote the shortest-path distance between a
and b. The diameter of a component is the maximal shortest-path distance between
any two vectors in that component. The diameter of G(φ) is the maximal diameter of
any of its connected components.

2 Connectivity of Constraints

We start our investigation with constraint satisfaction problems. A constraint is a
tuple of variables together with a Boolean relation, restricting the assignment of the
variables. A CSP then is the question whether there is an assignment to all variables
of a set of constraints such that all constraints are satisfied.

2.1 Preliminaries

2.1.1 CNF-Formulas and Schaefer’s Framework

In line with Gopalan et al., we define CSPs by CNF(S)-formulas, which were introduced
in 1978 by Thomas Schaefer as a generalization of CNF (conjunctive normal form)
formulas [Sch78].

Definition 2.1.1 A CNF-formula is a propositional formula of the form C1 ∧ · · · ∧Cm
(1 ≤ m < ∞), where each Ci is a clause, that is, a finite disjunction of literals (variables
or negated variables). A k-CNF-formula (k ≥ 1) is a CNF-formula where each Ci has
at most k literals. A Horn (dual Horn) formula is a CNF-formula where each Ci has
at most one positive (negative) literal.

Definition 2.1.2 For a finite set of relations S, a CNFC(S)-formula over a set of
variables V is a finite conjunction C1∧· · ·∧Cm, where each Ci is a constraint application
(constraint for short), i.e., an expression of the form R(ξ1, . . . , ξk), with a k-ary relation
R ∈ S, and each ξj is a variable from V or one of the constants {0, 1}. A CNF(S)-
formula is a CNFC(S)-formula where each ξj is a variable in V , not a constant.

By Var(Ci), we denote the set of variables occurring in ξ1, . . . , ξk. With the relation
corresponding to Ci we mean the relation [R(ξ1, . . . , ξk)] (that may be different from R
by substitution of constants, and identification and permutation of variables).

A k-clause is a disjunction of k variables or negated variables. For 0 ≤ i ≤ k,
let Di be the corresponding to the k-clause whose first i literals are negated, and let
Sk = {D0, . . . , Dk}, e.g., S3 = {[x ∨ y ∨ z], [x ∨ y ∨ z], [x ∨ y ∨ z], [x ∨ y ∨ z]}. Thus,
CNF(Sk) is the collection of k-CNF-formulas.

Thomas Schaefer introduced CNF(S)-formulas for expressing variants of Boolean
satisfiability; in his dichotomy theorem, Schaefer then classified the complexity of the
satisfiability problem for CNFC(S)- and CNF(S)-formulas [Sch78]; we will do so here
for the connectivity problems. We use the following notation:

• Sat(S) for the satisfiability problem: Given a CNF(S)-formula φ, is φ satisfiable?

• st-Conn(S) for the st-connectivity problem: Given a CNF(S)-formula φ and two
solutions s and t, is there a path from s to t in G(φ)?

• Conn(S) for the connectivity problem: Given a CNF(S)-formula φ, is G(φ) con-
nected? (if φ is unsatisfiable, we consider G(φ) connected)

8 2.1 Preliminaries

The respective problems for CNFC(S)-formulas are marked with the subscript C. Note
that Gopalan et al. considered the case with constants, but omitted the C.

2.1.2 Classes of Relations

In the following definition, we introduce the types of relations needed for the classi-
fications. Some are already familiar from Schaefer’s dichotomy theorem, some were
introduced by Gopalan et al., and the ones starting with “safely” we defined in [Sch13]
to account for the shift of the boundaries resulting from Gopalan et al.’s mistake; IHSB
stands for “implicative hitting set-bounded” and was introduced in [CKS01].

Definition 2.1.3 Let R be an n-ary logical relation.

• R is 0-valid (1-valid) if 0n ∈ R (1n ∈ R).

• R is complementive if for every vector (a1, . . . , an) ∈ R, also (a1⊕1, . . . , an⊕1) ∈ R.

• R is bijunctive if it is the set of solutions of a 2-CNF-formula.

• R is Horn (dual Horn) if it is the set of solutions of a Horn (dual Horn) formula.

• R is affine if it is the set of solutions of a formula xi1 ⊕. . .⊕xim ⊕c with i1, . . . , im ∈
{1, . . . , n} and c ∈ {0, 1}.

• R is componentwise bijunctive if every connected component ofG(R) is a bijunctive
relation. R is safely componentwise bijunctive if R and every relation R′ obtained
from R by identification of variables is componentwise bijunctive.

• R is OR-free (NAND-free) if the relation OR = {01, 10, 11} (NAND = {00, 01, 10})
cannot be obtained from R by substitution of constants. R is safely OR-free
(safely NAND-free) if R and every relation R′ obtained from R by identification
of variables is OR-free (NAND-free).

• R is IHSB− (IHSB+) if it is the set of solutions of a Horn (dual Horn) formula in
which all clauses with more than 2 literals have only negative literals (only positive
literals).

• R is componentwise IHSB− (componentwise IHSB+) if every connected compo-
nent of G(R) is IHSB− (IHSB+). R is safely componentwise IHSB− (safely com-
ponentwise IHSB+) if R and every relation R′ obtained from R by identification
of variables is componentwise IHSB− (componentwise IHSB+).

If one is given the relation explicitly (as a set of vectors), the properties 0-valid, 1-
valid, complementive, OR-free and NAND-free can be checked straightforward, while
bijunctive, Horn, dual Horn, affine, IHSB− and IHSB+ can be checked by closure
properties:

Definition 2.1.4 A relation R is closed under some n-ary operation f iff the vector
obtained by the coordinate-wise application of f to any m vectors from R is again in
R, i.e., if

a1, . . . ,am ∈ R =⇒
(

f(a1
1, . . . , a

m
1), . . . , f(a1

n, . . . , a
m
n)

)

∈ R.

2 Connectivity of Constraints 9

Lemma 2.1.5 A relation R is

1. bijunctive, iff it is closed under the ternary majority operation
maj(x, y, z)=(x ∨ y) ∧ (y ∨ z) ∧ (z ∨ x),

2. Horn (dual Horn), iff it is closed under ∧ (under ∨, resp.),

3. affine, iff it is closed under x⊕ y ⊕ z,

4. IHSB− (IHSB+), iff it is closed under x ∧ (y ∨ z) (under x ∨ (y ∧ z), resp.).

Proof. 1. See [CKS01, Lemma 4.9].
2. See [CKS01, Lemma 4.8].
3. See [CKS01, Lemma 4.10].
4. This can be verified using the Galois correspondence between closed sets of rela-

tions and closed sets of Boolean functions (see [BRSV05]): From the table (Fig. 1) in
[BRSV05], we find that the IHSB− relations are a base of the co-clone INV(S10), and
the IHSB+ ones a base of INV(S00), and from the table (Figure 1) in [BCRV03], we
see that x ∧ (y ∨ z) and x ∨ (y ∧ z) are bases of the clones S10 and S00, resp.

Remark 2.1.6. The class Check of SatConn provides functions to check the properties
of Definition 2.1.3, and the class Clones provides functions to calculate the clone and
co-clone of a relation.

The closure properties carry over from a relation to its connected components, as
shown by Gopalan et al.:

Lemma 2.1.7 [GKMP09, Lemma 4.1] If a logical relation R is closed under an
operation α : {0, 1}k → {0, 1} such that α(1, . . . , 1) = 1 and α(0, . . . , 0) = 0 (a.k.a. an
idempotent operation), then every connected component of G(R) is closed under α.

2.1.3 Classes of Sets of Relations

The classes in the following definition demarcate the structural and computational
boundaries for the solution graphs of CNFC(S)-formulas.

Definition 2.1.8 A set S of logical relations is safely tight if at least one of the
following conditions holds:

1. Every relation in S is safely componentwise bijunctive.

2. Every relation in S is safely OR-free .

3. Every relation in S is safely NAND-free.

A set S of logical relations is Schaefer if at least one of the following conditions holds:

1. Every relation in S is bijunctive.

2. Every relation in S is Horn.

3. Every relation in S is dual Horn.

4. Every relation in S is affine.

10 2.1 Preliminaries

A set S of logical relations is CPSS if at least one of the following conditions holds:

1. Every relation in S is bijunctive.

2. Every relation in S is Horn and safely componentwise IHSB−.

3. Every relation in S is dual Horn and safely componentwise IHSB+.

4. Every relation in S is affine.

A single logical relation R is safely tight, Schaefer, or CPSS, if {R} has that property.
Vice versa, we say that a set S of logical relations has one of the properties from
Definition 2.1.3 if every relation in S has that property, e.g., S is 0-valid if every
relation in S is 0-valid.

The term tight was introduced by Gopalan et al. because of the structural properties
of the formulas built from tight (actually, only safely tight) relations, see Lemma
2.5.1 and Lemma 2.5.4. We introduced the CPSS class in [Sch13]; CPSS stands for
“constraint-projection separating Schaefer”, which will become clear in Section 2.6 from
Definition 2.6.1, Lemma 2.6.4 and Lemma 2.8.1.

From the definition we see that every CPSS set of relations is also Schaefer, and
we can show that it also holds that every Schaefer set is safely tight, by modifying a
lemma of Gopalan et al.:

Lemma 2.1.9 [modified from GKMP09, Lemma 4.2] Let R be a logical relation.

1. If R is bijunctive, then it is safely componentwise bijunctive.

2. If R is Horn, then it is safely OR-free.

3. If R is dual Horn, then it is safely NAND-free.

4. If R is affine, then it is safely componentwise bijunctive, safely OR-free, and safely
NAND-free.

Proof. We first note that

(*) any relation obtained from a bijunctive (Horn, dual Horn, affine) one by identifi-
cation of variables is itself bijunctive (Horn, dual Horn, affine),

which is obvious from the definitions.
If R is bijunctive, it is closed under maj, which is idempotent, so by Lemma 2.1.7,

R is also componentwise bijunctive, and by (*), it is safely componentwise bijunctive
as well.

The cases of Horn and dual Horn are symmetric. Suppose a r-ary Horn relation R
is not OR-free. Then there exist i, j ∈ {1, . . . , r} and constants t1, . . . , tr ∈ {0, 1} such
that the relation R(t1, . . . , ti−1, x, ti+1, . . . , tj−1, y, tj+1, . . . , tr) on variables x and y is
equivalent to x ∨ y, i.e.

R(t1, . . . , ti−1, x, ti+1, . . . , tj−1, y, tj+1, . . . , tr) = {01, 11, 10}.

Thus the tuples t00, t01t10, t11 defined by (tabi , t
ab
j) = (a, b) and tabk = tk for every

k 6∈ {i, j}, where a, b,∈ {0, 1} satisfy t10, t11, t01 ∈ R and t00 6∈ R. However, since

2 Connectivity of Constraints 11

every Horn relation is closed under ∧, it follows that t01 ∧ t10 = t00 must be in R,
which is a contradiction. So R is OR-free, and again by (*), it must be safely OR-free
as well.

For the affine case, a small modification of the last step of the above argument
shows that an affine relation also is OR-free; therefore, dually, it is also NAND-free.
Namely, since a relation R is affine if and only if it is closed under ternary ⊕, it
follows that t01 ⊕ t11 ⊕ t10 = t00 must be in R. Since the connected components of
an affine relation are both OR-free and NAND-free the subgraphs that they induce
are hypercubes, which are also bijunctive relations. Therefore an affine relation is also
componentwise bijunctive. With this, it must also be safely OR-free, safely OR-free
and safely componentwise bijunctive by (*).

2.2 Results

We are now ready to state the results for CNFC(S)-formulas; in the subsequent sections
we will prove them. The following two theorems give complete classifications up to
polynomial-time isomorphisms. They are summarized in the table below.

S SatC(S) ConnC(S) st-ConnC(S) Diameter

not safely tight
NP-complete

PSPACE-complete PSPACE-complete 2Ω(
√
n)

safely tight, not Schaefer
coNP-complete

in P O(n)Schaefer, not CPSS
in P

CPSS in P

Table 2.1 Our classifications for CNFC(S)-formulas, in comparison to Sat.

Theorem 2.2.1 (Dichotomy theorem for st-ConnC(S) and the diameter) Let S be
a finite set of logical relations.

1. If S is safely tight, st-ConnC(S) is in P, and for every CNFC(S)-formula φ, the
diameter of G(φ) is linear in the number of variables.

2. Otherwise, st-ConnC(S) is PSPACE-complete, and there are CNFC(S)-formulas
φ, such that the diameter of G(φ) is exponential in the number of variables.

Proof. 1. See Lemma 2.5.6.
2. See Corollary 2.4.9.

Theorem 2.2.2 (Trichotomy theorem for ConnC(S)) Let S be a finite set of logical
relations.

1. If S is CPSS, ConnC(S) is in P.

2. Else if S is safely tight, ConnC(S) is coNP-complete.

3. Else, ConnC(S) is PSPACE-complete.

Proof. 1. See Corollary 2.6.6.
2. See Corollary 2.7.11.
3. See Corollary 2.4.9.

12 2.3 The General Case: Reduction from a Turing Machine

2.3 The General Case:

Reduction from a Turing Machine

We start with the general case. Gopalan et al. showed that for 3-CNF-formulas, st-
ConnC and ConnC are PSPACE-complete, and the diameter can be exponential:

Lemma 2.3.1 [GKMP09, Lemma 3.6] For general CNF-formulas, as well as for
3-CNF-formulas, st-ConnC and ConnC are PSPACE-complete.

Showing that the problems are in PSPACE is straightforward: Given a CNF-formula
φ and two solutions s and t, we can guess a path of length at most 2n between them
and verify that each vertex along the path is indeed a solution. Hence st-Conn is in
NPSPACE, which equals PSPACE by Savitch’s theorem. For Conn, by reusing space
we can check for all pairs of vectors whether they are satisfying, and, if they both are,
whether they are connected in G(φ).

The hardness-proof is quite intricate: it consists of a direct reduction from the
computation of a space-bounded Turing machine M . The input-string w of M is
mapped to a 3-CNF-formula φ and two satisfying assignments s and t, corresponding
to the initial and accepting configuration of a Turing machine M ′ constructed from
M and w, s.t. s and t are connected in G(φ) iff M accepts w. Further, all satisfying
assignments of φ are connected to either s or t, so that G(φ) is connected iff M accepts.

Lemma 2.3.2 [GKMP09, Lemma 3.7] For n even, there is a 3-CNF-formula φn with
n variables and O(n2) clauses, s.t. G(φn) is a path of length greater than 2

n
2 .

The proof of this lemma is by direct construction of such a formula.

2.4 Extension of PSPACE-Completeness:

Structural Expressibility

To show that PSPACE-hardness and exponential diameter extend to all not (safely)
tight sets of relations, Gopalan et al. used the concept of structural expressibility,
which is a modification of Schaefer’s “representability” that he used for his dichotomy
theorem1, so let us have a quick look at this first:

Theorem 2.4.1 (Schaefer’s dichotomy theorem [Sch78]) Let S be a finite set of logical
relations.

1. If S is Schaefer, then SatC(S) is in P; otherwise, SatC(S) is NP-complete.

2. If S is 0-valid, 1-valid, or Schaefer, then Sat(S) is in P; otherwise, Sat(S) is
NP-complete.2

1While Schaefer’s dichotomy theorem and many related complexity classifications can also be proved
using Post’s classification of all closed classes of Boolean functions and a Galois correspondence
(see e.g. [CKV08]), this seems not possible for our connectivity problems: The boundaries here
“cut across Boolean clones” (more exactly: co-clones), as already Gopalan et al. noted [GKMP09].
For example, the co-clone of both R = {100, 010, 001} and R′ = {100, 010, 001, 110, 101} is I2, but
R is safely OR-free and thus tight, while R′ is not safely tight.

2Here we assume that S contains no empty relations, see Section 3.1.

2 Connectivity of Constraints 13

Schaefer first proved statement 1, and from that derived the no-constants version;
we here discuss only the proof statement 1.

Schaefer used a reduction from satisfiability of 3-CNF-formulas, i.e. CNFC(S3)-
formulas (see Definition 2.1.2), which was already known to be NP-complete by the
Cook–Levin theorem. Therefor, he exploited that any existentially quantified formula
is satisfiability-equivalent to the formula with the quantifiers removed, and introduced
the notion of representability, that became also know as expressibility:

Definition 2.4.2 A relation R is expressible from a set of relations S if there is a
CNFC(S)-formula φ(x,y) such that R = {a|∃yφ(a,y)}.

He then showed that every Boolean relation is expressible from any set of relations
that is not Schaefer, and that this expression can efficiently be constructed.

With this, it is easy to see that for every non-Schaefer set S, satisfiability of any
CNFC(S3)-formula ψ can be reduced to satisfiability of a CNFC(S)-formula, con-
structed as follows: Replace in ψ every constraint R(ξ) by φ(ξ,y) with φ from Defini-
tion 2.4.2, and new variables y, distinct for each constraint.

As Gopalan et al. explain in section 3.1 of [GKMP09], for the connectivity problems,
expressibility is not sufficient; therefore, they introduced structural expressibility:

Definition 2.4.3 A relation R is structurally expressible from a set of relations S if
there is a CNFC(S)-formula φ such that the following conditions hold:

1. R = {a|∃yφ(a,y)}.

2. For every a ∈ R, the graph G(φ(a,y)) is connected.

3. For a, b ∈ R with |a−b| = 1, there exists a witness w such that (a,w) and (b,w)
are solutions of φ.

Gopalan et al. now argued that connectivity were retained when replacing every
constraint R with a structural expression of R in a CNFC(S)-formula. In fact, this
is only true for CNFC(S)-formulas where no variable is used more than once in any
constraint, and their proof is only correct for such formulas that also use no constants:

Lemma 2.4.4 [corrected from GKMP09, Lemma 3.2] Let S and S ′ be sets of relations
such that every R ∈ S ′ is structurally expressible from S. Given a CNF(S ′)-formula
ψ(x) (without constants), where no variable is used more than once in any constraint,
one can efficiently construct a CNFC(S)-formula ϕ(x,y) such that

1. ψ(x) = ∃yϕ(x,y);

2. if (s, ws), (t,wt) are connected in G(ϕ) by a path of length d, then there is a path
from s to t in G(ψ) of length at most d;

3. if s, t ∈ ψ are connected in G(ψ), then for every witness ws of s, and every
witness wt of t, there is a path from (s, ws) to (t,wt) in G(ϕ).

In Gopalan et al.’s proof, we only clarify the notation a little:

14 2.4 Extension of PSPACE-Completeness: Structural Expressibility

Proof. Let ψ(x) = C1 ∧ · · · ∧ Cm with Cj = Rj(xj), where Rj is some relation from
S ′, and xj is the vector of variables to which Rj is applied. Let ϕj be the structural
expression for Rj from S, so that Rj(xj) ≡ ∃yj ϕj(xj,yj). Let y be the vector
(y1, . . . ,ym) and let ϕ(x,y) be the formula ∧m

j=1ϕj(xj,yj). Then ψ(x) ≡ ∃y ϕ(x,y).
Statement 2 follows from 1 by projection of the path on the coordinates of x. For

statement 3, consider s, t ∈ ψ that are connected in G(ψ) via a path s = u0 → u1 →
· · · → ur = t . For every ui,ui+1, and clause Cj, there exists an assignment wi

j

to yj such that both (ui
j
,wi

j
) and (ui+1

j ,wi
j
) are solutions of ϕj, by condition 3 of

structural expressibility. Thus (ui,wi) and (ui+1,wi) are both solutions of ϕ, where
wi = (wi

1
, . . . ,wi

m
). Further, for every ui, the space of solutions of ϕ(ui,y) is the

product space of the solutions of ϕj(u
i
j
,yj) over j = 1, . . . ,m. Since these are all

connected by condition 2 of structural expressibility, G(ϕ(ui,y)) is connected. The
following describes a path from (s,ws) to (t,wt) in G(ϕ): (s,ws) (s,w0) →
(u1,w0) (u1,w1) → · · · (ur−1,wr−1) → (t,wr−1) (t,wt). Here indicates
a path in G(ϕ(ui,y)).

It is easy to show that the statement of Lemma 2.4.4 is also correct if we allow
constants in ψ; however, we don’t need this result. In [Sch13], we explain in detail the
problem with repeated variables in constraint applications.

We have to change Gopalan et al.’s corollary accordingly; we denote the connectivity
problems for CNF(S)-formulas without repeated variables in constraints (and without
constants) by the subscript ni:

Corollary 2.4.5 [corrected from GKMP09, Corollary 3.3] Suppose S and S ′ are sets
of relations such that every R ∈ S ′ is structurally expressible from S.

1. There are polynomial-time reductions from Connni(S’) to ConnC(S), and from
st-Connni(S’) to st-ConnC(S).

2. If there exists a CNFni(S’)-formula ψ(x) with n variables, m clauses and diameter
d, then there exists a CNFC(S)-formula φ(x,y), where y is a vector of O(m)
variables, such that the diameter of G(φ) is at least d.

Since 3-CNF-fomulas are CNFni(S1 ∪ S2 ∪ S3)-formulas, for the reductions to work it
now remains to prove that S1 ∪ S2 ∪ S3 is structurally expressible from any not safely
tight set. As Theorem 2.4.8 below shows, in fact every Boolean relation is structurally
expressible from any such set. The long proof of the next lemma contains only minor
modifications from [GKMP09].

Lemma 2.4.6 [modified from GKMP09, Lemma 3.4] If a set S of relations is not
safely tight, S3 is structurally expressible from S.

Proof. First, observe that all 2-clauses are structurally expressible from S. There exists
R ∈ S which is not safely OR-free, so we can express (x1 ∨x2) by substituting constants
and identifying variables in R. Similarly, we can express (x̄1∨x̄2) using a relation that is
not safely NAND-free. The last 2-clause (x1 ∨ x̄2) can be obtained from OR and NAND
by a technique that corresponds to reverse resolution. (x1 ∨ x̄2) = ∃y (x1 ∨y)∧ (ȳ∨ x̄2).
It is easy to see that this gives a structural expression. From here onwards we assume
that S contains all 2-clauses. The proof now proceeds in four steps. First, we will

2 Connectivity of Constraints 15

express a relation in which there exist two elements that are at graph distance larger
than their Hamming distance. Second, we will express a relation that is just a single
path between such elements. Third, we will express a relation which is a path of length
4 between elements at Hamming distance 2. Finally, we will express the 3-clauses.

Step 1. Structurally expressing a relation in which some distance expands.
For a relation R, we say that the distance between a and b expands if a and b are con-
nected in G(R), but dR(a, b) > |a−b|. Later on, we will show that no distance expands
in safely componentwise bijunctive relations. The same also holds true for the relation
RNAE = {0, 1}3 \ {000, 111}, which is not safely componentwise bijunctive. Nonethe-
less, we show here that if R is not safely componentwise bijunctive, then, by adding
2-clauses, we can structurally express a relation Q in which some distance expands. For
instance, when R = RNAE, then we can take Q(x1, x2, x3) = RNAE(x1, x2, x3)∧(x̄1 ∨x̄3).
The distance between a = 100 and b = 001 in Q expands. Similarly, in the general
construction, we identify a and b on a cycle, and add 2-clauses that eliminate all the
vertices along the shorter arc between a and b.

U ∩ V

U

b

V

c

W

a

V ∩W

U ∩W

V ∩ UW ∩ U

W ∩ V

010

011

100 100

110

100 101 001

011

010

110

RNAE(x1, x2, x3) RNAE(x1, x2, x3) ∧ (x̄1 ∨ x̄2)

Figure 2.4.1 Proof of Step 1, and an example.

Since S is not safely tight, it contains a relation which is not safely componentwise
bijunctive, from which we can obtain a not componentwise bijunctive relation R. If R
contains a, b where the distance between them expands, we are done. So assume that
for all a, b ∈ G(R), dR(a, b) = |a− b|. Since R is not componentwise bijunctive, there

16 2.4 Extension of PSPACE-Completeness: Structural Expressibility

exists a triple of assignments a, b, c lying in the same component such that Maj(a, b, c)
is not in that component (which also easily implies it is not in R). Choose the triple
such that the sum of pairwise distances dR(a, b) + dR(b, c) + dR(c,a) is minimized.
Let U = {i|ai 6= bi}, V = {i|bi 6= ci}, and W = {i|ci 6= ai}. Since dR(a, b) = |a − b|,
a shortest path does not flip variables outside of U , and each variable in U is flipped
exactly once. The same holds for V and W . We note some useful properties of the sets
U, V,W .

1. Every index i ∈ U ∪ V ∪W occurs in exactly two of U, V,W .
Consider going by a shortest path from a to b to c and back to a. Every i ∈
U ∪ V ∪W is seen an even number of times along this path since we return to a.
It is seen at least once, and at most thrice, so in fact it occurs twice.

2. Every pairwise intersection U ∩ V, V ∩W and W ∩ U is non-empty.
Suppose the sets U and V are disjoint. From Property 1, we must have W = U∪V .
But then it is easy to see that Maj(a, b, c) = b which is in R. This contradicts
the choice of a, b, c.

3. The sets U ∩ V and U ∩W partition the set U .
By Property 1, each index of U occurs in one of V and W as well. Also since no
index occurs in all three sets U, V,W this is in fact a disjoint partition.

4. For each index i ∈ U ∩W , it holds that a⊕ ei 6∈ R.
Assume for the sake of contradiction that a′ = a⊕ei ∈ R. Since i ∈ U∩W we have
simultaneously moved closer to both b and c. Hence we have dR(a′, b)+dR(b, c)+
dR(c,a′) < dR(a, b) + dR(b, c) + dR(c,a). Also Maj(a′, b, c) = Maj(a, b, c) 6∈ R.
But this contradicts our choice of a, b, c.

Property 4 implies that the shortest paths to b and c diverge at a, since for any shortest
path to b the first variable flipped is from U ∩ V whereas for a shortest path to c it is
from W ∩V . Similar statements hold for the vertices b and c. Thus along the shortest
path from a to b the first bit flipped is from U ∩ V and the last bit flipped is from
U ∩W . On the other hand, if we go from a to c and then to b, all the bits from U ∩W
are flipped before the bits from U ∩ V . We use this crucially to define Q. We will add
a set of 2-clauses that enforce the following rule on paths starting at a: Flip variables
from U ∩W before variables from U ∩ V . This will eliminate all shortest paths from a

to b since they begin by flipping a variable in U ∩ V and end with U ∩W . The paths
from a to b via c survive since they flip U ∩ W while going from a to c and U ∩ V
while going from c to b. However all remaining paths have length at least |a− b| + 2
since they flip twice some variables not in U .

Take all pairs of indices {(i, j)|i ∈ U ∩ W, j ∈ U ∩ V }. The following conditions
hold from the definition of U, V,W : ai = c̄i = b̄i and aj = cj = b̄j. Add the 2-clause
Cij asserting that the pair of variables xixj must take values in {aiaj, cicj, bibj} =
{aiaj, āiaj, āiāj}. The new relation is Q = R∧i,j Cij. Note that Q ⊂ R. We verify that
the distance between a and b in Q expands. It is easy to see that for any j ∈ U , the
assignment a ⊕ ej 6∈ Q. Hence there are no shortest paths left from a to b. On the
other hand, it is easy to see that a and b are still connected, since the vertex c is still
reachable from both.

Step 2. Isolating a pair of assignments whose distance expands.
The relation Q obtained in Step 1 may have several disconnected components. This

2 Connectivity of Constraints 17

cleanup step isolates a single pair of assignments whose distance expands. By adding
2-clauses, we show that one can express a path of length r+ 2 between assignments at
distance r.

Take a, b ∈ Q whose distance expands in Q and dQ(a, b) is minimized. Let U =
{i|ai 6= bi}, and |U | = r. Shortest paths between a and b have certain useful properties:

1. Each shortest path flips every variable from U exactly once.
Observe that each index j ∈ U is flipped an odd number of times along any path
from a to b. Suppose it is flipped thrice along a shortest path. Starting at a and
going along this path, let b′ be the assignment reached after flipping j twice. Then
the distance between a and b′ expands, since j is flipped twice along a shortest
path between them in Q. Also dQ(a, b′) < dQ(a, b), contradicting the choice of a
and b.

2. Every shortest path flips exactly one variable i 6∈ U .
Since the distance between a and b expands, every shortest path must flip some
variable i 6∈ U . Suppose it flips more than one such variable. Since a and b agree
on these variables, each of them is flipped an even number of times. Let i be the
first variable to be flipped twice. Let b′ be the assignment reached after flipping
i the second time. It is easy to verify that the distance between a and b′ also
expands, but dQ(a, b′) < dQ(a, b).

3. The variable i 6∈ U is the first and last variable to be flipped along the path.
Assume the first variable flipped is not i. Let a′ be the assignment reached along
the path before we flip i the first time. Then dQ(a′, b) < dQ(a, b). The distance
between a′ and b expands since the shortest path between them flips the variables
i twice. This contradicts the choice of a and b. Assume j ∈ U is flipped twice.
Then as before we get a pair a′, b′ that contradict the choice of a, b.

Every shortest path between a and b has the following structure: first a variable i 6∈ U
is flipped to āi, then the variables from U are flipped in some order, finally the variable
i is flipped back to ai.

Different shortest paths may vary in the choice of i 6∈ U in the first step and in the
order in which the variables from U are flipped. Fix one such path T ⊆ Q. Assume
that U = {1, . . . , r} and the variables are flipped in this order, and the additional
variable flipped twice is r + 1. Denote the path by a → u0 → u1 → · · · → ur → b.
Next we prove that we cannot flip the r+ 1th variable at an intermediate vertex along
the path.

4. For 1 ≤ j ≤ r − 1 the assignment uj ⊕ er+1 6∈ Q. Suppose that for some j,
we have c = uj ⊕ er+1 ∈ Q. Then c differs from a on {1, . . . , i} and from b on
{i + 1, . . . , r}. The distance from c to at least one of a or b must expand, else
we get a path from a to b through c of length |a− b| which contradicts the fact
that this distance expands. However dQ(a, c) and dQ(b, c) are strictly less than
dQ(a, b) so we get a contradiction to the choice of a, b.

We now construct the path of length r + 2. For all i ≥ r + 2 we set xi = ai to get a
relation on r + 1 variables. Note that b = ā1 . . . ārar+1. Take i < j ∈ U . Along the
path T the variable i is flipped before j so the variables xixj take one of three values

18 2.4 Extension of PSPACE-Completeness: Structural Expressibility

{aiaj, āiaj, āiāj}. So we add a 2-clause Cij that requires xixj to take one of these
values and take T = Q∧i,j Cij. Clearly, every assignment along the path lies in T . We
claim that these are the only solutions. To show this, take an arbitrary assignment c
satisfying the added constraints. If for some i < j ≤ r we have ci = ai but cj = āj, this
would violate Cij. Hence the first r variables of c are of the form ā1 . . . āiai+1 . . . ar for
0 ≤ i ≤ r. If cr+1 = ār+1 then c = ui. If cr+1 = ar+1 then c = ui ⊕ er+1. By property
4 above, such a vector satisfies Q if and only if i = 0 or i = r, which correspond to
c = a and c = b respectively.

Step 3. Structurally expressing paths of length 4.
Let P denote the set of all ternary relations whose graph is a path of length 4 between
two assignments at Hamming distance 2. Up to permutations of coordinates, there
are 6 such relations. Each of them is the conjunction of a 3-clause and a 2-clause.
For instance, the relation M = {100, 110, 010, 011, 001} can be written as (x1 ∨ x2 ∨
x3) ∧ (x̄1 ∨ x̄3). (It is named so, because its graph looks like the letter ’M’ on the
cube.) These relations are “minimal" examples of relations that are not componentwise
bijunctive. By projecting out intermediate variables from the path T obtained in Step
2, we structurally express one of the relations in P . We structurally express other
relations in P using this relation.

We will write all relations in P in terms of M(x1, x2, x3) = (x1 ∨ x2 ∨ x3) ∧ (x̄1 ∨ x̄3),
by negating variables. For example M(x̄1, x2, x3) = (x̄1 ∨ x2 ∨ x3) ∧ (x1 ∨ x̄3) =
{000, 010, 110, 111, 101}.

Define the relation P (x1, xr+1, x2) = ∃x3 . . . xr T (x1, . . . , xr+1). The table below
listing all tuples in P and their witnesses, shows that the conditions for structural
expressibility are satisfied, and P ∈ P.

x1, x2, xr+1 x3, . . . , xr
a1a2ar+1 a3 . . . ar
a1a2ār+1 a3 . . . ar
ā1a2ār+1 a3 . . . ar
ā1ā2ār+1 a3 . . . ak, ā3a4 . . . ar, ā3ā4a5 . . . ar . . . ā3ā4 . . . ār
ā1ā2ar+1 ā3ā4 . . . ār

Let P (x1, x2, x3) = M(l1, l2, l3), where li is one of {xi, x̄i}. We can now use P and
2-clauses to express every other relation in P . Given M(l1, l2, l3) every relation in P
can be obtained by negating some subset of the variables. Hence it suffices to show
that we can express structurally M(l̄1, l2, l3) and M(l1, l̄2, l3) (M is symmetric in x1

and x3). In the following let λ denote one of the literals {y, ȳ}, such that it is ȳ if and
only if l1 is x̄1.

M(l̄1, l2, l3) = (l̄1 ∨ l2 ∨ l3) ∧ (l1 ∨ l̄3)

= ∃y (l̄1 ∨ λ̄) ∧ (λ ∨ l2 ∨ l3) ∧ (l1 ∨ l̄3)

= ∃y (l̄1 ∨ λ̄) ∧ (λ ∨ l2 ∨ l3) ∧ (l1 ∨ l̄3) ∧ (λ̄ ∨ l̄3)

= ∃y (l̄1 ∨ λ̄) ∧ (l1 ∨ l̄3) ∧M(λ, l2, l3)

= ∃y (l̄1 ∨ λ̄) ∧ (l1 ∨ l̄3) ∧ P (y, x2, x3)

In the second step the clause (λ̄ ∨ l̄3) is implied by the resolution of the clauses (l̄1 ∨
λ̄) ∧ (l1 ∨ l̄3).

For the next expression let λ denote one of the literals {y, ȳ}, such that it is negated

2 Connectivity of Constraints 19

if and only if l2 is x̄2.

M(l1, l̄2, l3) = (l1 ∨ l̄2 ∨ l3) ∧ (l̄1 ∨ l̄3)

= ∃y (l1 ∨ l3 ∨ λ) ∧ (λ̄ ∨ l̄2) ∧ (l̄1 ∨ l̄3)

= ∃y (λ̄ ∨ l̄2) ∧M(l1, λ, l3)

= ∃y (λ̄ ∨ l̄2) ∧ P (x1, y, x3)

The above expressions are both based on resolution and it is easy to check that they
satisfy the properties of structural expressibility.

Step 4. Structurally expressing S3.
We structurally express (x1 ∨ x2 ∨ x3) from M using a formula derived from a gadget
in [HD02]. This gadget expresses (x1 ∨ x2 ∨ x3) in terms of “Protected OR”, which
corresponds to our relation M .

(x1 ∨ x2 ∨ x3) = ∃y1 . . . y5 (x1 ∨ ȳ1) ∧ (x2 ∨ ȳ2) ∧ (x3 ∨ ȳ3) ∧ (x3 ∨ ȳ4)

∧M(y1, y5, y3) ∧M(y2, ȳ5, y4) (2.4.1)

The table below listing the witnesses of each assignment for (x1, x2, x3), shows that the
conditions for structural expressibility are satisfied.

x1, x2, x3 y1 . . . y5

111 00011 00111 00110 00100 01100 01101 01001 11001 11000 10000 10010 10011
110 01001 11001 11000 10000
100 10000
101 00011 00111 00110 00100 10000 10010 10011
001 00011 00111 00110 00100
011 00011 00111 00110 00100 01100 01101 01001
010 01001

From the relation (x1 ∨ x2 ∨ x3) we derive the other 3-clauses by reverse resolution, for
instance

(x̄1 ∨ x2 ∨ x3) = ∃y (x̄1 ∨ ȳ) ∧ (y ∨ x2 ∨ x3)

Lemma 2.4.7 [GKMP09, Lemma 3.5] Let R ⊆ {0, 1}k be any relation of arity k ≥ 1.
R is structurally expressible from S3.

The next theorem follows from the last two lemmas:

Theorem 2.4.8 (Structural expressibility theorem, modified from [GKMP09, Theorem
2.7]) Let S be a finite set of logical relations. If S is not safely tight, then every logical
relation is structurally expressible from S.

With Lemma 2.3.1, Corollary 2.4.5 and the preceding theorem, we can now complete
the proofs for PSPACE-completeness and the exponential diameter:

Corollary 2.4.9 If a finite set S of logical relations is not safely tight, then st-
ConnC(S) and ConnC(S) are PSPACE-complete, and there exist CNFC(S)-formulas
φ, such that the diameter of G(φ) is exponential in the number of variables.

20 2.5 Safely Tight Sets of Relations: Structure and Algorithms

2.5 Safely Tight Sets of Relations:

Structure and Algorithms

For safely tight sets of relations, the solution graphs possess certain structural prop-
erties that guarantee a linear diameter, and allow for P-algorithms for st-connectivity,
and coNP-algorithms for connectivity. We start with safely componentwise bijunctive
relations.

Lemma 2.5.1 [corrected from GKMP09, Lemma 4.3] Let S be a set of safely compo-
nentwise bijunctive relations and ϕ a CNFC(S)-formula. If a and b are two solutions
of ϕ that lie in the same component of G(ϕ), then dϕ(a, b) = |a− b|, i.e., no distance
expands.

Proof. Consider first the special case in which every relation in S is bijunctive. In this
case, ϕ is equivalent to a 2-CNF-formula and so the space of solutions of ϕ is closed
under majority. We show that there is a path in G(ϕ) from a to b such that along
the path only the assignments on variables with indices from the set D = {i|ai 6= bi}
change. This implies that the shortest path is of length |D| by induction on |D|.
Consider any path a → u1 → · · · → ur → b in G(ϕ). We construct another path
by replacing ui by vi = maj(a, ui, b) for i = 1, . . . , r and removing repetitions. This
is a path because for any i vi and vi+1 differ in at most one variable. Furthermore,
vi agrees with a and b for every i for which ai = bi. Therefore, along this path only
variables in D are flipped.

For the general case, we show that every component F of G(ϕ) is the solution space
of a 2-CNF-formula ϕ. Let R ∈ S be a safely componentwise bijunctive relation.
Then any relation corresponding to a clause in ϕ (see Definition 2.1.2) of the form
R(x1, . . . , xk) consists of bijunctive components R1, . . . , Rm. The projection of F onto
x1, . . . , xk is itself connected and must satisfy R. Hence it lies within one of the com-
ponents R1, . . . , Rm; assume it is R1. We replace R(x1, . . . , xk) by R1(x1, . . . , xk). Call
this new formula ϕ1. G(ϕ1) consists of all components of G(ϕ) whose projection on
x1, . . . , xk lies in R1. We repeat this for every clause. Finally we are left with a formula
ϕ′ over a set of bijunctive relations. Hence ϕ′ is bijunctive and G(ϕ′) is a component
of G(ϕ). So the claim follows from the bijunctive case.

Corollary 2.5.2 [corrected from GKMP09, Corollary 4.4] Let S be set of safely
componentwise bijunctive relations. Then

1. for every φ ∈CNFC(S) with n variables, the diameter of each component of G(φ)
is bounded by n.

2. st-ConnC(S) is in P.

3. ConnC(S) is in coNP.

The proof of this corollary in [GKMP09] is correct.
We now turn to safely OR-free relations; we need the following definition:

Definition 2.5.3 We define the coordinate-wise partial order ≤ on Boolean vectors
as follows: a ≤ b if ai ≤ bi, ∀i. A monotone path between two solutions a and b is a

2 Connectivity of Constraints 21

path a → u1 → · · · → ur → b in the solution graph such that a ≤ u1 ≤ · · · ≤ ur ≤ b.
A solution is locally minimal if it has no neighboring solution that is smaller than it.

Lemma 2.5.4 [corrected from GKMP09, Lemma 4.5] Let S be a set of safely OR-free
relations and ϕ a CNFC(S)-formula. Every component of G(ϕ) contains a minimum
solution with respect to the coordinatewise order; moreover, every solution is connected
to the minimum solution in the same component via a monotone path.

Proof. We will show that there is exactly one such assignment in each component of
G(ϕ). Suppose there are two distinct locally minimal assignments u and u′ in some
component of G(ϕ). Consider the path between them where the maximum Hamming
weight of assignments on the path is minimized. If there are many such paths, pick
one where the smallest number of assignments have the maximum Hamming weight.
Denote this path by u = u1 → u2 → · · · → ur = u′. Let ui be an assignment of
largest Hamming weight in the path. Then ui 6= u and ui 6= u′, since u and u′ are
locally minimal. The assignments ui−1 and ui+1 differ in exactly 2 variables, say, in x1

and x2. So {ui−1
1 ui−1

2 , ui1u
i
2, u

i+1
1 ui+1

2 } = {01, 11, 10}. Let û be such that û1 = û2 = 0,
and ûi = ui for i > 2. If û is a solution, then the path u1 → u2 → · · · → ui → û →
ui+1 → · · · → ur contradicts the way we chose the original path. Therefore, û is not
a solution. This means that there is a clause that is violated by it, but is satisfied by
ui−1, ui, and ui+1. So the relation corresponding to that clause is not OR-free, thus
S must have contained some not safely OR-free relation.

The unique locally minimal solution in a component is its minimum solution, because
starting from any other assignment in the component, it is possible to keep moving
to neighbors that are smaller, and the only time it becomes impossible to find such a
neighbor is when the locally minimal solution is reached. Therefore, there is a monotone
path from any satisfying assignment to the minimum in that component.

Corollary 2.5.5 [corrected from GKMP09, Corollary 4.6] Let S be a set of safely
OR-free relations. Then

1. for every CNFC(S)-formula φ with n variables, the diameter of each component
of G(φ) is bounded by 2n.

2. st-ConnC(S) is in P.

3. ConnC(S) is in coNP.

The proof of this corollary in [GKMP09] is correct. Safely NAND-free relations are
symmetric to safely OR-free relations, so that we have the following corollary which
completes the proof of the dichotomy (Theorem 2.2.1).

Corollary 2.5.6 [corrected from GKMP09, Corollary 4.7] Let S be a safely tight set
of relations. Then

1. for every φ ∈CNFC(S) with n variables, the diameter of each component of G(φ)
is bounded by 2n.

2. st-ConnC(S) is in P.

3. ConnC(S) is in coNP.

22 2.6 CPSS Sets of Relations: A Simple Algorithm for Connectivity

2.6 CPSS Sets of Relations:

A Simple Algorithm for Connectivity

The rest of this chapter is devoted to the complexity of ConnC(S). In this section
we cover the tractable case; we show that for CPSS sets S of relations, for every
CNFC(S)-formula whose solution graph is disconnected, already the projection to the
variables of some constraint is disconnected. We then use this property to derive a
simple algorithm for ConnC(S) (Gopalan et al. had given much more complicated
algorithms in Lemmas 4.9, 4.10 and 4.13 of [GKMP09]).

Definition 2.6.1 A set S of logical relations is constraint-projection separating (CPS),
if every CNFC(S)-formula φ whose solution graph G(φ) is disconnected contains a
constraint Ci s.t. G(φi) is disconnected, where φi is the projection of φ to Var(Ci).

For example, S = {x∨ y} is CPS (for the proof see Lemma
2.6.4); so, e.g. for the CNFC(S)-formula (x ∨ y) ∧ (y ∨ z) ∧
(z ∨ x) , the projections to {x, y}, {y, z} and {z, x} are all
disconnected.

In contrast, S ′ = {x ∨ y ∨ z} is not CPS: For example, the
CNFC(S ′)-formula

(x ∨ y ∨ z) ∧ (y ∨ z ∨ w) ∧ (z ∨ w ∨ x) ∧ (w ∨ x ∨ y)

is disconnected (see the graph on the right), but the projection to any three variables
is connected.

We cannot provide an algorithm to decide for an arbitrary set of relations if it is CPS,
but we will determine exactly which Schaefer sets are CPS, and also exhibit classes of
non-Schaefer sets that are CPS.

For IHSB−, IHSB+ and bijunctive sets of relations we can prove even stronger
properties in the next two lemmas:

Lemma 2.6.2 Let S be a set of IHSB− (IHSB+) relations and φ a CNFC(S)-formula.
Then for any two components of G(φ), there is some constraint Ci of φ s.t. their images
in the projection φi of φ to Var(Ci) are disconnected in G(φi).

Proof. We prove the IHSB− case, the IHSB+ case is analogous. Consider any two
components A and B of φ. Since every IHSB− relation is safely OR-free, there is a
locally minimal solution a in A and a locally minimal solution b in B by Lemma 2.5.4.
Let U and V be the sets of variables that are assigned 1 in a and b, resp. At least one
of the sets U ′ = U \ V or V ′ = V \ U is not empty, assume it is U ′. Then for every
x1 ∈ U ′ there must be a clause x1 ∨x2 with x2 ∈ U since a is locally minimal, and also
x2 must be from U ′, else b would not be satisfying.

But then for x2 there must be also some variable x3 ∈ U ′ and a clause x2 ∨ x3, and
we can add the clause x1 ∨x3 to φ without changing its value. Continuing this way, we
will find a cycle, i.e. a clause xi ∨xi+1 with xi+1 = xj, j < i. But then we already have
xj ∨ xi added, thus (si, sj) ∈ {(0, 0), (1, 1)} for any solution s of φ, and there must be
some constraint Ci with both xi and xj occurring in it (the Ci in which the original
xi ∨ xj appeared), and thus the projections of A and B to Var(Ci) are disconnected in

2 Connectivity of Constraints 23

G(φi).

Lemma 2.6.3 Let S be a set of bijunctive relations and φ a CNFC(S)-formula. Then
for any two components of G(φ), there is some constraint Ci of φ s.t. their images in
the projection φi of φ to Var(Ci) are disconnected in G(φi).

Proof. The proof is similar to the last one. Consider any two components A and B of
φ and two solutions a in A and b in B that are at minimum Hamming distance. Let
L be the set of literals that are assigned 1 in a, but assigned 0 in b. Then for every
l1 ∈ L that is assigned 1 in a, there must be a clause equivalent to l1 ∨ l2 in φ s.t. l2
is also assigned 1 in a, else the variable corresponding to l1 could be flipped in a, and
the resulting vector would be closer to b, contradicting our choice of a and b. Also, l2
must be assigned 0 in b, i.e. l2 ∈ L, else b would not be satisfying.

But then for l2 there must be also some literal l3 ∈ L that is assigned 1 in a and a
clause equivalent to l2 ∨ l3 in φ, and we can add the clause l1 ∨ l3 to φ without changing
its value. Continuing this way, we will find a cycle, i.e. a clause equivalent to ln ∨ ln+1

with ln+1 = lm, m < n. But then we already have lm ∨ ln added, thus if xi and xj are
the variables corresponding to ln resp. lm, then (si, sj) ∈ {(0, 1), (1, 0)} (if ln and lm
were both positive or both negative), or (si, sj) ∈ {(0, 0), (1, 1)} (otherwise), for any
solution s of φ. Also, there must be some constraint Ci with both xi and xj occurring
in it (the constraint in which the clause equivalent to ln ∨ lm appeared), and thus the
projections of A and B to Var(Ci) are disconnected in G(φi).

Lemma 2.6.4 Every set S of safely componentwise bijunctive (safely componentwise
IHSB−, safely componentwise IHSB+, affine) relations is constraint-projection sepa-
rating.

Proof. The affine case follows from the safely componentwise bijunctive case since every
affine relation is safely componentwise bijunctive by Lemma 2.1.9.

If the relation corresponding to some Ci is disconnected, and there is more than one
component of this relation for which φ has solutions with the variables of Ci assigned
values in that component, the projection of φ to Var(Ci) must be disconnected in G(φi).

So assume that for every constraint Ci, φ only has solutions in which the variables
of Ci are assigned values in one component Pi of the relation corresponding to Ci.
Then we can replace every Ci with Pi to obtain an equivalent formula φ′. Since S is
safely componentwise bijunctive (safely componentwise IHSB−, safely componentwise
IHSB+), each Pi is bijunctive (IHSB−, IHSB−), and thus so is φ′, and the statement
follows from Lemmas Lemma 2.6.2 and Lemma 2.6.3.

We are now ready to show how connectivity can be solved in polynomial time for
CPSS sets of relations:

Lemma 2.6.5 If a finite set S of relations is constraint-projection separating, ConnC(S)
is in PNP.3 If S is also Schaefer, ConnC(S) is in P.

Proof. For any CNFC(S)-formula φ, connectivity of G(φ) can be decided as follows:

3PNP = PSAT is the class of languages decidable by a deterministic polynomial-time Turing machine
with oracle-access to an NP-complete problem, e.g. Sat.

24 2.7 The Last Piece: coNP-Hardness for Connectivity

For every constraint Ci of φ, obtain the projection φi of φ to the variables xi occur-
ring in Ci by checking for every assignment a of xi whether φ[xi/a] is satisfiable.
Then G(φ) is connected iff for no φi, G(φi) is disconnected.

If S is Schaefer, every projection can be computed in polynomial time, else we use a
Sat-oracle. Connectivity of every G(φi) can be checked in constant time.

If G(φ) is disconnected, some G(φi) is disconnected since φ is CPS by Lemma 2.6.4
below. If some G(φi) is disconnected, G(φ) clearly is also disconnected.

Corollary 2.6.6 If a finite set S of relations is CPSS, ConnC(S) is polynomial-time
solvable.

2.7 The Last Piece: coNP-Hardness for Connectivity

It remains to determine the complexity of ConnC for safely tight sets of relations that
are not CPSS. For non-Schaefer sets this was done already by Gopalan et al.:

Lemma 2.7.1 [corrected from GKMP09, Lemma 4.8] For S safely tight, but not
Schaefer, ConnC(S) is coNP-complete.

Proof. The problem Another-Sat(S) is: given a formula ϕ in CNFC(S) and a solu-
tion s, does there exist a solution t 6= s? Juban ([?], Theorem 2) shows that if S is
not Schaefer, then Another-Sat is NP-complete. He also shows ([?], Corollary 1)
that if S is not Schaefer, then the relation x 6= y is expressible as a CNFC(S)-formula.

Since S is not Schaefer, Another-Sat(S) is NP-complete. Let ϕ, s be an instance
of Another-Sat on variables x1, . . . , xn. We define a CNFC(S) formula ψ on the
variables x1, . . . , xn, y1, . . . , yn as

ψ(x1, . . . , xn, y1, . . . , yn) = ϕ(x1, . . . , xn) ∧i (xi 6= yi)

It is easy to see that G(ψ) is connected if and only if s is the unique solution to ϕ.

We are now left with the case of Horn (dual Horn) sets of relations containing at
least one relation that is not safely componentwise IHSB− (not safely componentwise
IHSB+).

For one such set, namely {x∨y∨z}, Makino, Tamaki, and Yamamoto showed in 2007
that ConnC is coNP-complete [MTY07]. Consequently, Gopalan et al. conjectured that
ConnC is coNP-complete for any such set, and already suggested a way for proving
that: One had to show that ConnC({M}) for the relation M = (x ∨ y ∨ z) ∧ (x ∨ z)
is coNP-hard [GKMP09]. We will prove this in Lemma 2.7.9 by a reduction from the
complement of a satisfiability problem.

Gopalan et al. stated (without giving the proof) that they could show that M is
structurally expressible from every such set, using a similar reasoning as in the proof of
their structural expressibility theorem (Lemma 3.4 in [GKMP09]). We give a quite dif-
ferent proof in Lemma 2.7.10, that shows that M actually is expressible as a CNFC(S)-
formula, which is of course a structural expression.

The proofs of Lemma 2.7.9 and Lemma 2.7.10 are arguably the most intricate part
of this thesis and will be adapted for the no-constants and quantified cases in the next
chapter.

2 Connectivity of Constraints 25

2.7.1 Connectivity of Horn Formulas

In this subsection, we introduce terminology and develop tools we will need for the
proofs of Lemma 2.7.9 and Lemma 2.7.10.

Definition 2.7.2 Clauses with only one literal are called unit clauses (positive if the
literal is positive, negative otherwise). Clauses with only negative literals are restraint
clauses, and the sets of variables occurring in restraint clauses are restraint sets. Clauses
having one positive and one or more negative literals are implication clauses. Implica-
tion clauses with two or more negative literals are multi-implication clauses.

A variable x is implied by a set of variables U , if setting all variables from U to 1
forces x to be 1 in any satisfying assignment. We write Imp(U) for the set of variables
implied by U , we abbreviate Imp({x}) as Imp(x). We simply say that x is implied, if
x ∈ Imp(U \ {x}) for some U . Note that U ⊆ Imp(U) for all sets U .

U is self-implicating if every x ∈ U is implied by U \ {x}. U is maximal self-
implicating, if further U = Imp(U).

Remark 2.7.3. A Horn formula can be represented by a directed hypergraph with
hyperedges of head-size one as follows: For every variable, there is a node, for every
implication clause y ∨ x1 ∨ · · · ∨ xk, there is a directed hyperedge from x1, . . . , xk to y,
for every restraint clause x1 ∨ · · · ∨ xk, there is a directed hyperedge from x1, . . . , xk to
a special node labeled “false”, and for every positive unit clause x, there is a directed
hyperedge from a special node labeled “true” to x.

We draw the directed hyperedges as joining lines, e.g., x ∨ y ∨ z = x y z .

For simplicity, we omit the “false” and “true” nodes in the drawings and let the corre-
sponding hyperedges end, resp. begin, in the void.

For an introduction to directed hypergraphs see e.g. [GLPN93]. General CNF-
formulas can be represented by general directed hypergraphs, see e.g. [AP01].

Lemma 2.7.4 The solution graph of a Horn formula φ without positive unit clauses
is disconnected iff φ has a locally minimal nonzero solution.

Proof. This follows from Lemma 2.5.4 since the all-zero vector is a solution of every
Horn formula without positive unit clauses, and Horn formulas are safely OR-free by
Lemma 2.1.9.

Lemma 2.7.5 For every Horn formula φ without positive unit clauses, there is a
bijection correlating each connected component φi with a maximal self-implicating set
Ui containing no restraint set; Ui consists of the variables assigned 1 in the minimum
solution of φi (the “lowest” component is correlated with the empty set).

Proof. Let φi be a connected component of φ with minimum solution s, and let U be the
set of variables assigned 1 in s. Since s is locally minimal, flipping any variable xi from
U to 0 results in a vector that is no solution, so there must be a clause in φ prohibiting
that xi is flipped. Since φ contains no positive unit-clauses, each xi ∈ U must appear
as the positive literal in an implication clause with also all negated variables from U .
It follows that U is self-implicating. Also, U must be maximal self-implicating and can
contain no restraint set, else s were no solution.

26 2.7 The Last Piece: coNP-Hardness for Connectivity

Conversely, let U be a maximal self-implicating set containing no restraint set. Then
the vector s with all variables from U assigned 1, and all others 0, is a locally minimal
solution: All implication clauses y1 ∨ · · · ∨ yk ∨ x with some yi /∈ U are satisfied since
yi = 0, and for the ones with all yi ∈ U , also x ∈ U holds because U is maximal, so
these are satisfied since x = 1. All restraint clauses are satisfied since U contains no
restraint set. s is locally minimal since every variable assigned 1 is implied by U , so
that any vector with one such variable flipped to 0 is no solution. By Lemma 4.5 of
[GKMP09], every connected component has a unique locally minimal solution, so s is
the minimum solution of some component.

Corollary 2.7.6 The solution graph of a Horn formula φ without positive unit clauses
is disconnected iff φ has a non-empty maximal self-implicating set containing no re-
straint set.

Lemma 2.7.7 Let R1 and R2 be two connected components of a Horn relation R with
minimum solutions u and v, resp., and let U and V be the sets of variables assigned 1
in u and v, resp. If then U (V , no vector a ∈ R1 has all variables from V assigned
1.

Proof. For the sake of contradiction, assume a ∈ R1 has all variables from V assigned
1. Then a ∧ v = v, where ∧ is applied coordinate-wise. Consider a path from u to
a, u → w1 → · · · → wk → a. Since U (V , we have u ∧ v = u, so we can construct
a path from u to v by replacing each wi by wi ∧ v in the above path, and removing
repetitions. Since R is Horn, it is closed under ∧ (see Lemma 2.1.5), so all vectors
of the constructed path are in R. But u and v are not connected in R, which is a
contradiction.

Definition 2.7.8 For a Horn formula φ, let ν(φ) be the formula obtained from φ by
recursively applying the following simplification rules as long as one is applicable; it is
easy to check that the operations are equivalent transformations, and that the recursion
must terminate:

(a) The constants 0 and 1 are eliminated in the obvious way.

(b) Multiple occurrences of some variable in a clause are eliminated in the obvious
way.

(c) If for some implication clause c = x ∨ y1 ∨ · · · ∨ yk (k ≥ 1), x is already implied
by {y1, . . . , yk} via other clauses, c is removed.

E.g., if there was a clause x ∨ z1 ∨ · · · ∨ zl with {z1, . . . , zl} ⊆ {y1, . . . , yk}, or
clauses q∨z1∨· · ·∨zl and x∨q, c would be removed. Which clauses are removed by
this rule may be random; e.g., for the formula (x ∨ y) ∧ (x ∨ z) ∧ (z ∨ y) ∧ (y ∨ z),
x ∨ y or x ∨ z would be removed:

x

y z

x

y z

x

y z

⇔ ⇔

(d) If for some implication clause c = x ∨ y1 ∨ · · · ∨ yk (k ≥ 1), Imp(Var(c)) contains
a restraint set, c is replaced by y1 ∨ · · · ∨ yk.

E.g., if there is a clause r1 ∨ · · · ∨ rl with {r1, . . . , rl} ⊆ {x, y1, . . . , yk}, or if

2 Connectivity of Constraints 27

there are clauses q1 ∨ r1 ∨ · · · ∨ rl, q2 ∨ r1 ∨ · · · ∨ rl and q1 ∨ q2. E.g., in the formula
(x ∨ y ∨ z) ∧ (w ∨ y) ∧ (w ∨ x), x ∨ y ∨ z is replaced by y ∨ z:

x y zw x y zw⇔

(e) If for some multi-implication clause c = x∨y1∨· · ·∨yk (k ≥ 2), or for some restraint
clause d = y1 ∨ · · · ∨ yk, some yi ∈ {y1, . . . , yk} is implied by {y1, . . . , yk} \ {yi},
the literal yi is removed from c resp. d.

Which literals are removed by this rule may be random, as in the following
example:

x

y
1

y
2

y
3

x

y
1

y
2

y
3

x

y
1

y
2

y
3⇔ ⇔

For a Horn relation R, let ν(R) = ν(φ) with some Horn formula φ representing R.

2.7.2 Reduction from Satisfiability

Lemma 2.7.9 ConnC({M}) with M = (x ∨ y ∨ z) ∧ (x ∨ z) is coNP-hard.

Proof. We reduce the no-constants satisfiability problem Sat({P,N}) with P = x∨y∨z
and N = x ∨ y to the complement of ConnC({M}), where M = (x ∨ y ∨ z) ∧ (x ∨ z).
Sat({P,N}) is NP-hard by Schaefer’s dichotomy theorem (Theorem 2.4.1) since P is
not 0-valid, not bijunctive, not Horn and not affine, while N is not 1-valid and not
dual Horn.

Let ψ be any CNF({P,N})-formula. If ψ only contains N -constraints, it is triv-
ially satisfiable, so assume it contains at least one P -constraint. We construct a
CNFC({M})-formula φ s.t. the solution graph G(φ) is disconnected iff ψ is satisfiable.
First note that we can use the relations x ∨ y = M(0, x, y) and x ∨ y = M(x, 0, y).

For every variable xi of ψ (i = 1, . . . , n), there is the same variable xi in φ. For every
N -constraint xi ∨ xj of ψ, there is the clause xi ∨ xj in φ also. For every P -constraint
cp = xip ∨ xjp ∨ xkp

(p = 1, . . . ,m) of ψ there is an additional variable qp in φ, and
for every xl ∈ {xip , xjp , xkp

} appearing in cp, there are two more additional variables
apl and bpl in φ. Now for every cp, for each l ∈ {ip, jp, kp} the constraints qp ∨ apl,

(xl ∨ apl ∨ bpl) ∧
(

bpl ∨ xl
)

and bpl ∨ q(p+1) modm are added to φ. See the figures for
examples of the construction.

If ψ is satisfiable, there is an assignment s to the variables xi s.t. for every P -
constraint cp there is at least one xl ∈ {xip , xjp , xkp

} assigned 1, and for no N -constraint
xi ∨ xj, both xi and xj are assigned 1. We extend s to a locally minimal nonzero sat-
isfying assignment s′ for φ; then G(φ) is disconnected by Lemma 2.7.4: Let all qp = 1,
apl = 1, and all bpl = xl in s′. It is easy to check that all clauses of φ are satisfied, and
that all variables assigned 1 appear as the positive literal in an implication clause with

28 2.7 The Last Piece: coNP-Hardness for Connectivity

x1

x4

x5

x3

q1

a11 b11

q2

x2 a12 b12
a13

a36

a37

a24

a25

b13

b37

b36

b24

b25

q3

x6

x7

Figure 2.7.1 An example for the proof of Lemma 2.7.9, illustrating the idea.
Depicted here is the hypergraph representation (see Remark 2.7.3) of φ for ψ =
(x1 ∨ x2 ∨ x3) ∧ (x4 ∨ x5) ∧ (x6 ∨ x7), as constructed in the proof.

Any self-implicating set of φ must contain a “large circulatory”, passing through

each qp and at least one gadget xl apl bpl for each p; these gadgets act as

“valves”: If some xi is not allowed to be assigned 1 (due to restraints), the circulatory
may not pass through any gadget containing xi.

Every maximal self-implicating set also contains all apl; here, for example, one
maximal self-implicating set consist of the variables with the outgoing edges drawn
solid.

If we would add restraint clauses to ψ s.t. ψ would become unsatisfiable, e.g.
x4 ∨ x6, x4 ∨ x7, x5 ∨ x6, and x5 ∨ x7, each maximal self-implicating set of the
corresponding φ would contain a restraint set, so that G(φ) would be connected.

all its variables assigned 1, so that s′ is locally minimal. s′ is nonzero since ψ contains
at least one P -constraint.

Conversely, if G(φ) is disconnected, φ has a maximal self-implicating set U containing
no restraint set by Corollary 2.7.6. It is easy to see that U must contain all qp, all apl,
and for every p for at least one l ∈ {ip, jp, kp} both bpl and xl(see also Figure 2.7.1
and the explanation beneath). Thus the assignment with all xi ∈ U assigned 1 and all
other xi assigned 0 satisfies ψ.

2.7.3 Expressing M

Lemma 2.7.10 The relation M = (x ∨ y ∨ z)∧(x ∨ z) is expressible as a CNFC({R})-
formula for every Horn relation R that is not safely componentwise IHSB−.

2 Connectivity of Constraints 29

a12 b12

x2

x3 a23 b23
x4 a24 b24

a22 b22

x1

q1

q2

a11 b11

Figure 2.7.2 A more complex example, with a variable of ψ appearing twice in a
P -constraint: Depicted is φ for ψ = (x1 ∨ x2)∧(x3 ∨ x4 ∨ x2)∧(x1 ∨ x2)∧(x1 ∨ x4)∧
(x2).
ψ is satisfiable with the unique solution x1 = x3 = 1 and x2 = x4 = 0, and G(φ)

is disconnected (with exactly two components, since there is exactly one maximal
self-implicating set containing no restraint set, consisting of the variables with the
outgoing edges drawn solid).

Proof. M = (x ∨ y ∨ z) ∧ (x ∨ z) = x y z contains a multi-implication clause

where some negated variable is not implied. The only other 3-ary such relations are
(up to permutation of variables)

L = (x ∨ y ∨ z) ∧ (x ∨ y ∨ z) = x y z and K = x ∨ y ∨ z = x y z .

We show that M,L, or K is expressible from R by substitution of constants and
identification of variables. We can then express M from K or L as

M(x, y, z) ≡ K(x, y, z) ∧K(z, x, x) ≡ L(x, y, z) ∧ L(z, x, x).

We will argue with formulas simplified according to Definition 2.7.8; let φ0 = ν(R).
The following 7 numbered transformation steps generate K, L, or M from φ0. After
each transformation, we assume ν is applied again to the resulting formula; we denote
the formula resulting from the i’th transformation step in this way by φi.

In the first three steps, we ensure that the formula contains a multi-implication clause
where some variable is not implied, in the fourth step we trim the multi-implication
clause to size 3, and in the last three steps we eliminate all remaining clauses and
variables not occurring in K, L, or M . Our first goal is to produce a formula with a
connected solution graph that is not IHSB−, which will turn out helpful.

1. Obtain a not componentwise IHSB− formula φ1 from φ0 by identification of vari-
ables.

Let [φ∗
1] be a connected component of [φ1] that is not IHSB−, and let U be the set of

variables assigned 1 in the minimum solution of φ∗
1.

2. Substitute 1 for all variables from U .

30 2.7 The Last Piece: coNP-Hardness for Connectivity

The resulting formula φ2 now contains no positive unit-clauses. Further, the component
[φ∗

2] of [φ2] resulting from [φ∗
1] is still not IHSB−, and it has the all-0 vector as minimum

solution. We show that

φ∗
2 ≡ ν

(

φ2 ∧ (
∨

x∈V1
x) ∧ · · · ∧

(

∨

x∈Vk
x

))

, (2.7.1)

where V1, . . . , Vk are the sets of variables assigned 1 in the minimum solutions v1, . . . ,vk

of the other components of [φ2], and we specified the formula to be in normal form:

For any solution a in the component with minimum solution vi we have a ≥ vi

(see Definition 2.5.3), so all components other than [φ∗
2] are eliminated in the

right-hand side of (2.7.1). By Lemma 2.7.7, no vector from [φ∗
2] is removed.

By Lemma 2.7.5, V1, . . . , Vk are exactly the non-empty maximal self-implicating sets
of φ2 that contain no restraint set.

Clearly, φ∗
2 is not IHSB−. However, we have no restraint clauses at our disposal to

generate φ∗
2 from φ2; nevertheless, we can isolate a connected part of φ∗

2 that is not
IHSB−, as we will see.

Since φ∗
2 is not IHSB−, it contains a multi-implication clause c∗, and by (2.7.1) it is

clear that φ2 must contain the same clause c∗.
By simplification rule (d), Imp(Var(c∗)) contains no restraint set in φ2. Now if some

self-implicating set U∗ were implied by Var(c∗), the related maximal self-implicating
set U∗

m (which then were also implied by Var(c∗)) could contain no restraint set, thus
a restraint clause would be added for the variables from U∗

m in (2.7.1). But then c∗

would be removed by ν in (2.7.1), again due to rule (d), which is a contradiction. Thus
Imp(Var(c∗)) also contains no self-implicating set in φ2, and so the following operation
eliminates all self-implicating sets and all restraint clauses:

3. Substitute 0 for all remaining variables not implied by Var(c∗).

This operation also produces no new restraint clauses since any implication clause
with the positive literal not implied by Var(c∗) must also have some negative literal
not implied by Var(c∗), and thus vanishes.

Further, since φ2 contained no positive unit-clauses, the formula cannot have become
unsatisfiable by this operation. Also, it is easy to see that the simplification initiated by
the substitution of 0 for some variable xi can only affect clauses c with xi ∈ Imp(Var(c)),
so c∗ is retained in φ3.

Since all variables not from Var(c∗) are now implied by Var(c∗), and Imp(Var(c∗))
is not self-implicating, c∗ contains a variable that is not implied; w.l.o.g., let c∗ =
x ∨ y ∨ z1 ∨ · · · ∨ zk (k ≥ 1) s.t. y is not implied.

4. Identify z1, . . . , zk, call the resulting variable z.

This produces the clause c∼ = x ∨ y ∨ z from c∗. Clearly, y is still not implied in φ4,
and since x was not implied by any set U ({y, z1, . . . , xk} by simplification rule (e) in
φ3, and no zi was implied by y, it follows for φ4 that

(*) x /∈ Imp(y), x /∈ Imp(z), z /∈ Imp(y), y is not implied.

2 Connectivity of Constraints 31

Also, since x was implied by {y, z1, . . . , xk} only via c∗ in φ3 due to simplification rule
(c), x is implied by {y, z} only via c∼ in φ4.

In the following steps, we eliminate all variables other than x, y, z, s.t. c∼ is retained
and (*) is maintained. It follows that we are then left with K,L, or M , since the only
clauses only involving x, y, z and satisfying (*) besides c∼ are from {z ∨ x, z ∨ x ∨ y}.

5. Substitute 1 for every variable from Imp(y) \ {y} .

For the simplification initiated by this operation, note that φ4 contained no restraint
clauses. It follows that the formula cannot have become unsatisfiable by this opera-
tion. Further, it is easy to see that for a Horn formula without restraint clauses, at
a substitution of 1 for variables from a set U , only clauses c containing at least one
variable xi ∈ Imp(U) are affected by the simplification. Thus, c∼ is not affected since
x, y and z were not implied by Imp(y) \ {y}.

We must carefully check that (*) is maintained since substitutions of 1 may result in
new implications: Since Imp(y) \ {y} is empty in φ5, still x /∈ Imp(y) and z /∈ Imp(y).
It is easy to see that x could only have become implied by z as result of transformation
5 if there had been a multi-implication clause (other than c∼) in φ4 with the positive
variable implying x, and each negated variable implied by y or z; but this is not the
case since x was implied by {y, z} only via c∼ in φ4, thus still x /∈ Imp(z).

We eliminate all remaining variables besides x, y, z by identifications in the next two
steps. Since now Imp(y) \ {y} is empty, the only condition from (*) we have to care
about is that x /∈ Imp(z) remains true.

6. Identify all remaining variables from Imp(z) \ {z} with z.

Now Imp(z) \ {z} is empty, so the last step is easy:

7. Identify all remaining variables other than x, y, z with x.

This completes the coNP-completeness proof for connectivity and the proof of the
trichotomy:

Corollary 2.7.11 If a finite set S of logical relations is safely tight but not CPSS,
ConnC(S) is coNP-complete.

Proof. By Lemma 2.5.6, ConnC(S) is in coNP. If S is not Schaefer, coNP-hardness
follows from Lemma 2.7.1. If S is Schaefer and not CPSS, it must be Horn and
contain at least one relation that is not safely componentwise IHSB−, or dual Horn
and contain at least one relation that is not safely componentwise IHSB+; in the first
case, coNP-hardness follows from Lemmas 2.7.9 and 2.7.10, the second case follows by
symmetry.

32 2.8 Further Results about Constraint-Projection Separation

2.8 Further Results about Constraint-Projection

Separation

This section is not needed for the proof of the trichotomy (Theorem 2.2.2), but gives
further insights that will be useful for the investigation of formulas without constants
in the next chapter.

We start by showing that with Lemma 2.6.4, we have found all Schaefer sets of
relations that are CPS:

Lemma 2.8.1 If a set S of relations is Schaefer but not CPSS, it is not constraint-
projection separating.

Proof. Since S is Schaefer but not CPSS, it must contain some relation that is Horn but
not safely componentwise IHSB−, or dual Horn but not safely componentwise IHSB+.
Assume the first case, the second one is analogous. Then by Lemma 2.7.10, we can
express M = (x ∨ y ∨ z) ∧ (x ∨ z) as a CNFC(S)-formula. Consider the CNFC(S)-
formula

T (u, v, w, x, y, z) = M(u, v, w) ∧M(x, y, z) ∧M(w,w, y) ∧M(z, z, v)

≡ ((u ∨ v ∨ w) ∧ (u ∨ w)) ∧ ((x ∨ y ∨ z) ∧ (x ∨ z)) ∧ (y ∨ w) ∧ (v ∨ z) .

Now G(T) is disconnected by Corollary 2.7.6 since {u, v, w, x, y, z} is maximal self-
implicating, but neither the projection ∃x∃y∃zT ≡ M(u, v, w) to the variables of the
first constraint in the CNF({M})-representation of T , nor the projection ∃u∃v∃x∃zT ≡
y∨w to the variables of the third one is disconnected. The second and fourth constraints
are symmetric to the first and third ones.

Since in the CNFC(S)-representation of T every conjunct M(r, s, t) of T (r, s, t ∈
{u, v, w, x, y, z}) is a CNFC(S)-formula

∧

iRi(ξ
i) with Ri ∈ S and ξij ∈ {0, 1, r, s, t},

for every constraint Ci of T , the set Var(Ci) is a subset of {u, v, w}, {x, y, z}, {y, w}
or {v, z}, and thus also for no Ci the projection to Var(Ci) is disconnected.

By Lemma 2.6.4 we see that there are non-Schaefer sets that are CPS, e.g. {R} with
R = {100, 010, 001}, which is safely componentwise bijunctive but not Schaefer. It is
open whether there are other such sets not mentioned in Lemma 2.6.4.

While we will see in 3.1.2 that there are not safely tight sets that are no-constants
CPS (see Definition 3.1.6), it is likely that no not safely tight set is CPS, else we had
a PNP-algorithm for a PSPACE-complete problem. We can show that not safely tight
sets are at least not by Lemma 2.6.4 CPS:

Lemma 2.8.2 If a set of relations S is not safely tight, it also is not bijunctive, not
safely componentwise IHSB−, not safely componentwise IHSB+, and not affine.

Proof. By Lemma 2.1.9, S is not bijunctive and not affine. Also, S must contain a
relation R s.t. the relation OR={01, 10, 11} can be obtained from R by identification
of variables and substitution of constants. Since these operations are permutable,
we can assume that OR can be obtained by first producing an n− ary relation R′ by
identification of variables, and then w.l.o.g. setting the first n−2 variables to constants
c1 · · · cn−2. Then {c1 · · · cn−201, c1 · · · cn−210, c1 · · · cn−211} ⊂ R′, but c1 · · · cn00 /∈ R′.

2 Connectivity of Constraints 33

Since these 3 vectors from R′ are in one component of R′, already that component is
not safely OR-free, so it cannot be Horn by Lemma 2.1.9, and thus is not IHSB−. But
then R′, and hence R, was not safely componentwise IHSB−.

Remark 2.8.3. The Lemmas 2.6.2 and 2.6.3 cannot be generalized to safely compo-
nentwise bijunctive or safely componentwise IHSB− relations: For sets S of safely
componentwise bijunctive (safely componentwise IHSB−) relations that are not bi-
junctive (IHSB−), there are CNFC(S)-formulas with pairs of components that are not
disconnected in the projection to any constraint:

E.g., for the safely componentwise bijunctive relation R = ((x ∨ y) ∧ z)∨(x ∧ y ∧ z),
the CNF({R})-formula F (x, y, z, w) = R(x, y, z) ∧ R(y, x, w) has the four pairwise
disconnected solutions a=0000, b=1100, c=0110, and d=1001, but a is connected to b
in the projection to {x, y, z} as well as in the one to {x, y, w}.

It follows that for such relations there is no algorithm for st-connectivity analogous
to that of Lemma 2.6.5. In 3.1.2 we will actually see cases for no-constants formulas
where we can solve connectivity in polynomial time via constraint-projection separation
while st-connectivity is PSPACE-complete.

3 No-Constants and Quantified

Variants

3.1 No-Constants

Complexity classifications for CNF(S)-formulas without constants seem to be more
favored, but also more difficult to prove. For example, in [Sch78], Schaefer stated the
no-constants classification as the main theorem, but then first proved a classification
for formulas with constants as intermediate result. So we also will now attack the
no-constants versions of our st-connectivity and connectivity problems, denoted by
st-Conn(S) and Conn(S), respectively.

For st-connectivity and the diameter, we prove that the same dichotomy holds as for
formulas with constants (in [GKMP06], Gopalan et al. already stated that they could
extend their dichotomy theorem for st-connectivity to formulas without constants, but
didn’t show the proof).

For connectivity, we can extend the tractable class in two ways. Thereby, we get
a quite interesting result: That there are cases when connectivity is easier than st-
connectivity; namely, for some sets of relations, connectivity is in P even though st-
connectivity is PSPACE-complete. While we can in some cases show that PSPACE-
completeness and coNP-completeness carry over from the case with constants, we must
leave open the complexity in two situations.

The following two theorems and the table below summarize our results.

S Conn(S) ConnC(S) st-Conn(S) st-ConnC(S)

not safely tight, not * PSPACE-c.

PSPACE-c. PSPACE-c. PSPACE-c.not safely tight, not q.disc., * in PSPACE

not safely tight, q.disc. in P

safely tight, not *, not Schaefer

coNP-c.

coNP-c.
in P in P

Schaefer, not implicative,

not nc-CPSS

safely tight, *, not Schaefer,
in coNP

not q.disc., not nc-CPSS

safely tight, q.disc, not CPSS

in P
nc-CPSS, not CPSS

implicative, not CPSS

CPSS in P

Table 3.1 The classifications for CNF(S)-formulas without constants, in compar-
ison to the case with constants.
* = (0-valid or 1-valid or complementive) q.disc. = quasi disconnecting
The cases where the complexity (up to polynomial-time isomorphisms) is not yet
known are highlighted.

36 3.1 No-Constants

In this whole section, we assume the sets S to contain no empty relations (otherwise,
since empty relations are not 0-valid and not 1-valid, the hardness statements for
sets containing relations which are not 0-valid or not 1-valid would be wrong). This
assumption has also to be made, e.g., for Schaefer’s theorem in the no-constants case,
but is often omitted.

Theorem 3.1.1 (Dichotomy theorem for st-Conn(S) and the diameter) Let S be a
finite set of logical relations.

1. If S is safely tight, st-Conn(S) is in P, and for every CNF(S)-formula φ, the
diameter of G(φ) is linear in the number of variables.

2. Otherwise, st-Conn(S) is PSPACE-complete, and there are CNF(S)-formulas
φ such that the diameter of G(φ) is exponential in the number of variables.

Proof. See 3.1.1.

Theorem 3.1.2 (Classification for Conn(S)) Let S be a finite set of non-empty logical
relations.

1. If S is nc-CPSS, quasi disconnecting or implicative, Conn(S) is in P.

2. Else, if S is Schaefer, or if S is safely tight but not Schaefer and not 0-valid nor
1-valid nor complementive, Conn(S) is coNP-complete.

3. Else, if S is safely tight, Conn(S) is in coNP.

4. Else, if S is not 0-valid nor 1-valid nor complementive, Conn(S) is PSPACE-
complete.

5. Else, Conn(S) is in PSPACE.

Proof. 1. See Corollary 3.1.10, Corollary 3.1.14, and Lemma 3.1.19.
2. See Lemma 3.1.20 and Corollary 3.1.28.
3. This result carries over from the case with constants (Theorem 2.2.2).
4. See Corollary 3.1.29.
5. This result carries over from the case with constants (Theorem 2.2.2).

3.1.1 st-Connectivity and Diameter

The PSPACE-hardness proof for st-Conn(S) will be by reduction from st-ConnC(S).
An obvious way to reduce a problem for formulas with constants to one for formulas
without is to replace every occurrence of a constant with a new variable, and then to
add constraints for the new variables such that, with regard to the problem at hand,
the transformed formula is equivalent to the original one. This approach was already
used by Schaefer [Sch78].

For st-connectivity, we have to make sure that for every two solutions of the original
formula, there are two solutions of the transformed formula that are connected iff the
solutions of the original formula are connected. In Lemma 3.1.5 below we show how
this is possible for not safely tight sets of relations. We need the following definition
and the next lemma.

3 No-Constants and Quantified Variants 37

Definition 3.1.3 A solution a of a formula φ is isolated if a is not connected to any
other solution b in G(φ). A formula φ is 0-isolating (1-isolating) if it has an isolated
solution a 6= (1 · · · 1) (a 6= (0 · · · 0)). Similarly, we define isolated vectors for relations,
and 0-isolating and 1-isolating relations.

Lemma 3.1.4 If an n-ary logical relation R is not safely OR-free, there is a 1-isolating
CNF({R})-formula φ.

Proof. By identification of variables, we can obtain a not OR-free relation R∗ from R.
W.l.o.g., assume that OR can be obtained from R∗ by setting the last n−2 variables to
constants c3, . . . , cn (for relations that also require identification of variables to obtain
OR, the identification can be done in a prior step); then R∗(x1, x2, c3, . . . , cn) = x1 ∨x2.

If n = 2, we take φ = R∗(x, x) = x, then [φ] = {1}.

Else, if all c3, . . . , cn = 1, we define a 3-ary relation R′ by identifying the last n − 2
variables. Then R′(x1, x2, 1) = x1 ∨ x2, and it follows that identifying the first two
variables of R′ yields a 2-ary relation R′′ = R′(x1, x1, x2) with 11 ∈ R′′ and 01 /∈ R′′,
thus R′′ equals {11, 00, 10}, {11, 00}, {11, 10} or {11}. The second and fourth relation
are already 1-isolating, so we let φ = R′′(x1, x2). The first is x1 ∨ x2, and we obtain
a 1-isolating relation by taking φ = R′′(x1, x2) ∧ R′′(x2, x1) with [φ] = {11, 00}. From
the third one we obtain {1} as φ = R′′(x1, x1).

Similarly, if all c3, . . . , cn = 0, by identifying the last n − 2 variables, and then the
fist two, we get a relation R′′ with 10 ∈ R′′ and 00 /∈ R′′, thus R′′ equals {10, 01, 11},
{10, 01}, {10, 11} or {10}. Here again, the second and fourth relation are already 1-
isolating, and from the first as well as from the third we obtain {1} by identifying the
two variables.

Otherwise, we define a 3-ary relation R′′ by identifying all variables xi of R∗ with ci =
0, then all with ci = 1, and then the first two, i.e., R′′(x1, x2, x3) = R(x1, x1, ξ3, . . . , ξn),
where ξi = x2 if ci = 1 and ξi = x3 if ci = 0. Then 110 ∈ R′′ and 010 /∈ R′′, and R′′ is
one of 64 possibles relations; Figure 3.1.1 shows how to produce a 1-isolating relation
from each of them by identification of variables and conjunction.

Lemma 3.1.5 If a finite set of logical relations S is not safely tight, then st-ConnC(S)
≤p
mst-Conn(S), and for every CNFC(S)-formula φ with n variables and diameter d,

there is a CNF(S)-formula φ′ with O(n) variables and diameter d′ ≥ d.

Proof. Since S is not safely tight, it must contain some relation that is not safely OR-
free, so we can construct an n-ary 1-isolating relation R1 by Lemma 3.1.4. Similarly,
we can construct a m-ary 0-isolating relation R0 from a not safely NAND-free relation.
Let a 6= (1 · · · 1) be an isolated vector of R0, and b 6= (0 · · · 0) an isolated vector of R1;
w.l.o.g. assume a1 = 0 and b1 = 1.

Now let φ(x1, . . . , xn) be any CNFC(S)-formula and s and t two solutions of φ. We
construct a CNF(S)-formula φ′ by replacing every occurrence of the constant 0 in φ
with a new variable y1, and every occurrence of the constant 1 with a new variable
z1, and appending ∧R0(y1, y2, . . . , ym) ∧ R1(z1, z2, . . . , zn) to φ (where y2, . . . , ym and
z2, . . . , zn are further new variables). Then s · a · b and t · a · b are connected in G(φ′)
iff s and t are connected in G(φ). This also shows that the maximal diameter carries
over.

38 3.1 No-Constants

{110}: already 1-isolating
{000 110}: already 1-isolating
{100 110}: identify x1,x2 -> {10}
{000 100 110}: R(x1,x2,x3) AND R(x2,x1,x3) = {000 110}
{110 001}: already 1-isolating
{000 110 001}: already 1-isolating
{100 110 001}: already 1-isolating
{000 100 110 001}: R(x1,x2,x3) AND R(x2,x1,x3) = {000 110 001}
{110 101}: already 1-isolating
{000 110 101}: already 1-isolating
{100 110 101}: identify x1,x2 -> {10}
{000 100 110 101}: R(x1,x2,x3) AND R(x2,x1,x3) = {000 110}
{110 001 101}: already 1-isolating
{000 110 001 101}: already 1-isolating
{100 110 001 101}: identify x1,x2 -> {10 01}
{000 100 110 001 101}: R(x1,x2,x3) AND R(x2,x1,x3) = {000 110 001}
{110 011}: already 1-isolating
{000 110 011}: already 1-isolating
{100 110 011}: already 1-isolating
{000 100 110 011}: already 1-isolating
{110 001 011}: already 1-isolating
{000 110 001 011}: already 1-isolating
{100 110 001 011}: identify x1,x2 -> {10 01}
{000 100 110 001 011}: R(x1,x2,x3) AND R(x1,x3,x2) = {000 100 011}
{110 101 011}: already 1-isolating
{000 110 101 011}: already 1-isolating
{100 110 101 011}: already 1-isolating
{000 100 110 101 011}: already 1-isolating
{110 001 101 011}: already 1-isolating
{000 110 001 101 011}: already 1-isolating
{100 110 001 101 011}: identify x1,x2 -> {10 01}
{000 100 110 001 101 011}: R(x1,x2,x3) AND R(x1,x3,x2) = {000 100 110 101 011}
{110 111}: identify x1,x2 -> {10 11}, then R(x1,x2) AND R(x2,x1) = {11}
{000 110 111}: identify x1,x2 -> {00 10 11}, then R(x1,x2) AND R(x2,x1) = {00 11}
{100 110 111}: identify x1,x2 -> {10 11}, then R(x1,x2) AND R(x2,x1) = {11}
{000 100 110 111}: identify x1,x2 -> {00 10 11}, then R(x1,x2) AND R(x2,x1) = {00 11}
{110 001 111}: already 1-isolating
{000 110 001 111}: identify x1,x3 -> {00 11}
{100 110 001 111}: already 1-isolating
{000 100 110 001 111}: identify x1,x3 -> {00 11}
{110 101 111}: identify x1,x2 -> {10 11}, then R(x1,x2) AND R(x2,x1) = {11}
{000 110 101 111}: identify x1,x2 -> {00 10 11}, then R(x1,x2) AND R(x2,x1) = {00 11}
{100 110 101 111}: identify x1,x2 -> {10 11}, then R(x1,x2) AND R(x2,x1) = {11}
{000 100 110 101 111}: identify x1,x2 -> {00 10 11}, then R(x1,x2) AND R(x2,x1) = {00 11}
{110 001 101 111}: identify x1,x3 -> {10 11}, then R(x1,x2) AND R(x2,x1) = {11}
{000 110 001 101 111}: identify x1,x3 -> {00 10 11}, then R(x1,x2) AND R(x2,x1) = {00 11}
{100 110 001 101 111}: identify x1,x3 -> {10 11}, then R(x1,x2) AND R(x2,x1) = {11}
{000 100 110 001 101 111}: identify x1,x3 -> {00 10 11}, then R(x1,x2) AND R(x2,x1) = {00 11}
{110 011 111}: identify x1,x2 -> {10 11}, then R(x1,x2) AND R(x2,x1) = {11}
{000 110 011 111}: identify x1,x2 -> {00 10 11}, then R(x1,x2) AND R(x2,x1) = {00 11}
{100 110 011 111}: identify x1,x2 -> {10 11}, then R(x1,x2) AND R(x2,x1) = {11}
{000 100 110 011 111}: identify x1,x2 -> {00 10 11}, then R(x1,x2) AND R(x2,x1) = {00 11}
{110 001 011 111}: identify x1,x3 -> {11}
{000 110 001 011 111}: identify x1,x3 -> {00 11}
{100 110 001 011 111}: identify x1,x3 -> {11}
{000 100 110 001 011 111}: identify x1,x3 -> {00 11}
{110 101 011 111}: identify x1,x2 -> {10 11}, then R(x1,x2) AND R(x2,x1) = {11}
{000 110 101 011 111}: identify x1,x2 -> {00 10 11}, then R(x1,x2) AND R(x2,x1) = {00 11}
{100 110 101 011 111}: identify x1,x2 -> {10 11}, then R(x1,x2) AND R(x2,x1) = {11}
{000 100 110 101 011 111}: identify x1,x2 -> {00 10 11}, then R(x1,x2) AND R(x2,x1) = {00 11}
{110 001 101 011 111}: identify x1,x3 -> {10 11}, then R(x1,x2) AND R(x2,x1) = {11}
{000 110 001 101 011 111}: identify x1,x3 -> {00 10 11}, then R(x1,x2) AND R(x2,x1) = {00 11}
{100 110 001 101 011 111}: identify x1,x3 -> {10 11}, then R(x1,x2) AND R(x2,x1) = {11}
{000 100 110 001 101 011 111}: identify x1,x3 -> {00 10 11}, then R(x1,x2) AND R(x2,x1) = {00 11}

Figure 3.1.1 Producing a 1-isolating relation from every 3-ary relationR satisfying
110 ∈ R and 010 /∈ R for the last case of the proof of Lemma 3.1.4. This list is
generated by the main-function of the class Isolating of SatConn.

3 No-Constants and Quantified Variants 39

We can now prove Theorem 3.1.1:

Proof of Theorem 3.1.1. 1. This result carries over from the case with constants (The-
orem 2.2.1).

2. This follows from Theorem 2.2.1 with Lemma 3.1.5.

3.1.2 Deciding Connectivity via Constraint-Projection Separation

We define the no-constants version of constraint-projection separation in the obvious
way:

Definition 3.1.6 A set S of logical relations is no-constants constraint-projection sepa-
rating (nc-CPS), if every CNF(S)-formula φ whose solution graph G(φ) is disconnected
contains a constraint Ci s.t. G(φi) is disconnected, where φi is the projection of φ to
Var(Ci).

Analogously to Lemma 2.6.5, and using Theorem 2.4.1, we immediately have the
following result:

Lemma 3.1.7 If a finite set S of relations is nc-CPS, Conn(S) is in PNP. If S also
is 0-valid, 1-valid, or Schaefer, Conn(S) is in P.

Remark 3.1.8. The first part of the preceding lemma may be irrelevant, since connec-
tivity is in coNP⊆ PNP for all safely tight sets of relations by Lemma 2.5.6, and all not
safely tight nc-CPS sets we know of are 0-valid and 1-valid (Lemma 3.1.13 below).

Since CPS sets of relations are also nc-CPS, using Lemma 2.6.4, we can extend the
tractable class in the no-constants setting:

Definition 3.1.9 A set S of logical relations is nc-CPSS, if S is safely componentwise
bijunctive, safely componentwise IHSB−, safely componentwise IHSB+, or affine, and
if S also is 0-valid, 1-valid, or Schaefer.

Corollary 3.1.10 If a finite set S of relations is nc-CPSS, Conn(S) is in P.

Example 3.1.11 R = (x∨y∨z)∧(x∨y∨z)∧(x∨y∨z) = ((y ∨ z) ∧ (x ∨ z) ∧ (x ∨ y))∨
(x∧y∧z) is not CPSS, but since R is 1-valid and e.g. safely componentwise bijunctive,
Conn({R}) is in P by the preceding corollary.

By Lemma 2.8.2 we see that all nc-CPSS sets of relations are also safely tight, but
we can prove the following additional classes to be nc-CPS, containing sets that are
not safely tight:

Definition 3.1.12 A set S of relations is quasi componentwise bijunctive (quasi com-
ponentwise IHSB−, quasi componentwise IHSB+, quasi affine), if the following holds
for every relation R in S:

• R is both 0-valid and 1-valid, and

• R is itself safely componentwise bijunctive (safely componentwise IHSB−, safely
componentwise IHSB+, affine), or the following two conditions hold for R:

40 3.1 No-Constants

1. The all-0-vector is disconnected from the all-1-vector in G(R).

2. the set S ′ of all relations producible from R by identification of variables (ex-
cluding R) is safely componentwise bijunctive (safely componentwise IHSB−,
safely componentwise IHSB+, affine).

S is quasi disconnecting, if it is quasi componentwise bijunctive, quasi componentwise
IHSB−, quasi componentwise IHSB+, or quasi affine.

Lemma 3.1.13 If a finite set S of relations is quasi disconnecting, it is nc-CPS.

Proof. Let φ be any CNF(S)-formula. First suppose that S contains a relation R where
the all-0-vector is disconnected from the all-1-vector in G(R), and that φ contains a
constraint R(x1, . . . , xn) with all variables distinct. Then the projection φP of φ to
x1, . . . , xn contains 0 · · · 0 and 1 · · · 1 as solutions since every constraint in φ is 0-valid
and 1-valid. But 0 · · · 0 and 1 · · · 1 are disconnected in G(R), thus 0 · · · 0 and 1 · · · 1
must also be disconnected in G(φP) (note that the solutions to φP are a subset of the
solutions to R(x1, . . . , xn)).

Otherwise, if φ contains no such constraint R(x1, . . . , xn), it is equivalent to a
CNF(S ′)-formula φ′, where each constraint Ci of φ corresponds to an equivalent con-
straint C ′

i of φ′ with Var(C ′
i) = Var(Ci). Thus since S ′ is CPS by Lemma 2.6.4, if φ is

disconnected, there must be a constraint Ci of φ s.t. the projection of φ to Var(Ci) is
disconnected.

Corollary 3.1.14 If a finite set S of relations is quasi disconnecting, there is a
polynomial-time algorithm for Conn(S).

Lemma 3.1.15 R = {0000, 0001, 0010, 1001, 1010, 1100, 0111, 1111} is not safely
tight but quasi disconnecting.

Proof. It is easy to check that R is not safely tight. But R is quasi componentwise
bijunctive: Obviously, R is 0-valid, 1-valid and the all-0 vector is disconnected from
the all-1 vector. It remains to show that the set S ′ of all relations producible from R
by identification of variables is componentwise bijunctive. By identifying each pair of
variables in turn we get all 3-ary relations in S ′:

• identifying variable 1 with 2 gives {000, 001, 010, 100, 111}.

• identifying variable 1 with 3 gives {000, 001, 100, 111}.

• identifying variable 1 with 4 gives {000, 001, 100, 111}.

• identifying variable 2 with 3 gives {000, 001, 011, 101, 111}.

• identifying variable 2 with 4 gives {000, 001, 011, 101, 111}.

• identifying variable 3 with 4 gives {000, 011, 110, 111}.

The connected components are signified; it is easy to check they are bijunctive by
verifying that they are closed under maj (see Lemma 2.1.5). All 2-ary and 1-ary
relations are automatically bijunctive.

3 No-Constants and Quantified Variants 41

Remark 3.1.16. The main-function in the class Sift of SatConn enumerates all not
safely tight relations that are quasi disconnecting. There are no 3-ary such relations,
and up to permutation of variables and duality, the above relation is the only 4-ary
one.

We now see that the complexity of connectivity and st-connectivity is “inverted” in
some cases:

Corollary 3.1.17 There are sets S of relations s.t. Conn(S) is in P while st-
Conn(S) is PSPACE-complete.

As in the case with constants, we have no algorithm to determine in general if a set
of relations is nc-CPS, so one may discover yet more nc-CPS sets and thereby cases
where connectivity is in P or in PNP.

3.1.3 Deciding Connectivity via Self-Implication

While for formulas with constants, all sets of relations with a tractable connectivity
problem are constraint-projection separating (assuming P6=coNP), without constants
this is not true anymore: In Lemma 3.1.19 below we show that for Horn sets S that
are 1-valid, there is a polynomial-time algorithm for Conn(S); now for example, M =
(x ∨ y ∨ z) ∧ (x ∨ z) is Horn and 1-valid but not CPSS, so by Lemma 2.8.1 it is not
CPS, and from the proof of that lemma we find that M is also not nc-CPS.

Definition 3.1.18 A set S of relations is implicative, if it is Horn and 1-valid or dual
Horn and 0-valid.

Horn relations that are 1-valid can contain no restraints, and without constants,
restraints also cannot be produced from such relations. This makes it possible to
decide connectivity in polynomial time:

Lemma 3.1.19 If a finite set S of relations is implicative, there is a polynomial-time
algorithm for Conn(S).

Proof. We show the proof for S being Horn and 1-valid, the dual Horn and 0-valid case
is symmetric. We can decide for any CNF(S)-formula φ whether G(φ) is connected as
follows:.

• First assign all variables in positive unit-clauses; this produces a connectivity-
equivalent formula φ′. Since S is 1-valid, φ′ contains no restraints, so G(φ′) is
disconnected iff φ′ has a non-empty self-implicating set by Corollary 2.7.6. The
following polynomial-time algorithm finds the largest self-implicating set of φ′

(which is the union of all self-implicating sets):

(*) Let U be the set of all variables of φ′. Repeat the following as long as variables
are removed:

For each x ∈ U , check if there is a clauses with x as the positive literal
and all negated variables from U ; if not, remove x from U .

• Now G(φ) is connected iff U is empty.

42 3.1 No-Constants

The correctness of algorithm (*) is easy to check by induction: At first, U includes
every self-implicating set, and if U includes every self-implicating set, no variable from
a self-implicating set is removed from U . Further, as long as U is not self-implicating,
a variable is removed from U .

It is tempting to extend this algorithm for formulas containing restraints, by checking
for every maximal self-implicating set if it contains no restraint set. However, this
seems to require checking an exponential number of possibilities to find all maximal
self-implicating sets; this presumption is strongly supported by Lemma 3.1.20 below,
which shows that connectivity is coNP-complete for such formulas.

3.1.4 coNP-Completeness for Connectivity within Schaefer

In this subsection we prove that Conn(S) is coNP-complete for all remaining Schaefer
sets of relations1:

Lemma 3.1.20 If S is a finite set of relations that is Schaefer but not nc-CPSS and
not implicative, Conn(S) is coNP-complete.

Proof. By Lemma 2.5.6, Conn(S) is in coNP. Since S is Schaefer but not nc-CPSS,
it must be Horn and contain at least one relation that is not safely componentwise
IHSB−, or dual Horn and contain at least one relation that is not safely componentwise
IHSB+; since further S is not implicative, it must in the first case also contain at least
one relation that is not 1-valid, and in the second case at least one that is not 0-valid.
Thus in the first case, the statement follows from the Lemmas 3.1.22 and 3.1.23 below,
the second case is symmetric.

We need the following lemma:

Lemma 3.1.21 If a non-empty logical relation R is Horn but not 1-valid, at least one
of the relations {0} or {01} can be obtained from R by identification and permutation
of variables.

Proof. Since R is not 1-valid, but also not empty, there must be some vector a ∈ R
with some ai = 0. If (0 · · · 0) ∈ R, we identify all variables and obtain {0}.

Otherwise, we define the relation R′ by identifying all variables i with ai = 0, and
then all with ai = 1. We show that R′ equals {01} or {10}:

Since (0 · · · 0) and (1 · · · 1) are not in R, {00} and {11} are not in R′. Further, since
R is Horn, it is closed under x∧y (see Lemma 2.1.5), and so the “to a complementary”
vector b = a ⊕ 1 is not in R, else a ∧ b = (0 · · · 0) were in R (where ⊕ and ∧ are
applied coordinate-wise). Thus if {01} ∈ R′, {10} /∈ R′, and the other way around.

The proof for coNP-hardness is by modifying the two corresponding Lemmas for
formulas with constants (Lemma 2.7.10 and Lemma 2.7.9). While we cannot express
the relation M from Lemma 2.7.10 as a CNF(S)-formula, we can assemble a CNF(S)-
formula µ which is suitable for a reduction from satisfiability similar to the one of
Lemma 2.7.9:

1Note that Schaefer sets of relations that are quasi disconnecting are also nc-CPSS or implicative.

3 No-Constants and Quantified Variants 43

Lemma 3.1.22 If S is a finite set of non-empty Horn relations that contains at least
one relation that is not 1-valid, and at least one relation that is not safely component-
wise IHSB−, then there is a CNF(S)-formula µ s.t. ν(µ) contains no restraint clauses
of size greater than 1 and no self-implicating sets, and s.t. ν(µ) contains the unit-clause
v0 and the clause x ∨ y ∨ z, s.t. y is not implied and x is implied only via the clause
x ∨ y ∨ z.

Proof. We modify the proof of Lemma 2.7.10.
Again, let φ0 = ν(R). The first transformation remains unchanged:

1. Obtain a not componentwise IHSB− formula φ∼
1 from φ0 by identification of vari-

ables.

We renamed the resulting formula since it will not directly be used as input for step 2;
namely, we insert the following step:

#. Identify all variables in negative unit-clauses and call the resulting variable v0,
then identify all variables in positive unit-clauses and call the resulting variable
v1. If there were no negative unit-clauses, add the clauses v0 or v0 ∧ v1 obtained
by Lemma 3.1.21 from a not 1-valid Horn relation.

The resulting formula φ# can be written as φ# = φ1 ∧ v0 or φ# = φ1 ∧ v0 ∧ v1, where
φ1 contains no unit-clauses, and s.t. v0 and v1 do not appear in φ1. It is clear that
φ# still is not componentwise IHSB−. The following transformations will only affect
the part of the formula without unit-clauses, and our notation will be such that the
(entire) formula resulting from step i is φi ∧ v0 resp. φi ∧ v0 ∧ v1.

We use φ1 as input for the next transformation, which replaces step 2 of the original
proof. Again, let [φ∗

1] be a connected component of [φ1] that is not IHSB−, and let U
be the set of variables assigned 1 in the minimum solution of φ∗

1.

2. Identify all variables from U .

We show that the resulting formula φ2 has the same crucial properties as the formula
φ2 in proof of Lemma 2.7.10:

W.l.o.g., assume U was not empty; then the vectorm resulting from the minimum
solution of φ∗

1 has one variable xm assigned 1 and all others 0. All vectors resulting
from φ∗

1 belong to the same component φ∗
2. In comparison to the relation φ∗

2 of the
original proof, φ∗

2 contains additional vectors, resulting from vectors of φ1 having
all variables from U assigned 0.
Since φ1 contained no unit clauses, this also holds for φ2, so φ2 contains the all-0
vector, which is connected to m. It follows that also here, φ∗

2 has the all-0 vector
as minimum solution. Further, φ∗

2 also here is not componentwise IHSB−:

Let a, b, c be vectors from [φ∗
1] s.t. a∧(b∨c) is not in [φ∗

1]. Since a, b, c all have
1 assigned to all variables from U , this also holds for a ∧ (b ∨ c), so for the
vectors a′, b′, c′ resulting from the identification in step 2, a′ ∧ (b′ ∨ c′) /∈ [φ∗

2].

With this, the reasoning can proceed as in the original proof. We can perfectly simulate
the next step (note that the entire formula after step 2 is φ2 ∧ v0 or φ2 ∧ v0 ∧ v1):

44 3.1 No-Constants

3. Identify all variables of φ2 not implied by Var(c∗) with v0.

It is clear that this has the same effect on φ2 as a substitution with 0, so as in the
original proof, we now have a clause c = x ∨ y ∨ z1 ∨ · · · ∨ zk (k ≥ 3) s.t. y is not
implied. The next step remains unchanged:

4. Identify z1, . . . , zk, call the resulting variable z.

The resulting formula φ4 ∧ v0 resp. φ4 ∧ v0 ∧ v1 now contains the clause x ∨ y ∨ z, and
y is not implied; further, it still contains no restraints of size greater than 1. However,
step 4 may have produced self-implicating sets. Before we deal with this problem we
append one more step to ensure that x is implied only via x ∨ y ∨ z.

Since x /∈ Imp(y), x /∈ Imp(z), and x is implied by {y, z} only via x ∨ y ∨ z, each
other implication clause with x as positive literal must have at least one negative literal
with a variable not implied by {y, z}, so the following step eliminates all other clauses
with x as positive literal:

5. If a variable xi /∈ Imp({y, z}) appears in a negative literal of an implication clause
having x as positive literal, identify xi with x; repeat as long as there is such a
variable.

We take into account that also step 5 may have produced self-implicating sets (although
that seems not possible).

To show how to eliminate the self-implicating sets which may have been produced
in the last two steps, we first prove that φ5 is still is not componentwise IHSB−:

By the proof of Lemma 2.7.10, we know that we can express a not componentwise
IHSB− relation (i.e., K,L, or M) from φ5 by identification of variables and sub-
stitution of constants. We prove that any formula obtained from a componentwise
IHSB− one by identification and substitution is also componentwise IHSB−; the
statement then follows by reversal:

A relation obtained from a componentwise IHSB− one by identification of
variables is componentwise IHSB− by definition. For substitution, consider
a formula ψ = ψ1 ∨ · · · ∨ ψk where ψ1, . . . , ψk are the connected components
that can be written as IHSB− formulas. Then the formula ψ′ resulting from
the substitution is equivalent to ψ′

1 ∨ · · · ∨ψ′
k, where each ψ′

i is obtained from
φi by substitution, and thus is IHSB− also (some ψ′

i may be empty). Since
any two vectors of ψ′ resulting from vectors of different components of ψ
differ in at least two variables, all ψ′

i are disconnected. Now by Lemma 2.1.7,
the connected components of each φ′

i are IHSB− since IHSB− relations are
characterized by closure under an idempotent operation (see Lemma 2.1.5).
It follows that ψ′ is componentwise IHSB−.

Now if φ5 contains self-implicating sets, we repeat steps 1 to 5 (skipping step #), with
φ5 ∧ v0 resp. φ5 ∧ v0 ∧ v1 as input to step 1, until we obtain a formula containing no
self-implicating sets. This leads to a formula with all the demanded properties since
the input to step 1 always is not safely componentwise IHSB−, and since the recursion
must terminate as variables are removed in every pass.

3 No-Constants and Quantified Variants 45

Remark: We cannot execute or simulate the next step of Lemma 2.7.10 since the
formula may contain no positive unit-clause, so we are not able to produce M .
We could simplify the formula more, but this would be quite involved, and we can
already use the formula for the reduction from satisfiability.

Lemma 3.1.23 Conn({µ}) is coNP-hard for every Horn formula µ containing no
restraint clauses of size greater than 1 and no self-implicating sets, and containing the
unit-clause v0 and the clause x ∨ y ∨ z, s.t. y is not implied and x is implied only via
the clause x ∨ y ∨ z.

Proof. We modify the proof of Lemma 2.7.9: The CNFC({M})-formula φ is replaced
by a connectivity-equivalent CNF({µ})-formula φ′; we assemble φ′ by replacing the
gadgets from which φ is built.

Clearly, µ can be written as µ = λ∧ ε, where ε contains only unit clauses (including
v0), and λ contains no unit clauses and no variables appearing in unit clauses. Let the
variables of λ be ordered such that x, y, z are the first three variables, in this order; let
r be the arity of λ.

Remark: The construction would be easy if we could structurally express M from
µ; however, we see no easy way to that. φ′ will satisfy a relation φ′ = ∃ . . . φ, but
this will be no structural expression in general.

We first show how to simulate the implication clause u ∨ w:

Since λ contains no unit-clauses and no restraints, it has both the all-0- and the
all-1-vector as solution.
First assume that z is not implied by x. Starting from the all-0 vector, then setting
all variables implied by x to 1, we see that a = (1, 0, 0, a4, . . . , ar) is a solution to
λ for some constants a4, . . . , ar. By the clause x ∨ y ∨ z, the to a complementary
vector a⊕ 1 is no solution, so identifying all variables xi where ai = 0 with y,
and all where ai = 1 with x results in x ∨ y.
Now assume that z is implied by x. Since x is not implied by z by simplification
rule (c), there is some solution a with a1 = 0 and a3 = 1. Since z is implied by x,
the to a complementary vector is no solution. So again, identifying all variables
xi with ai = 0 with x, and all with ai = 1 with z results in x ∨ z.
It follows that we can in both cases express (u ∨ w) ∧ ε as a CNF({µ})-formula.

Now we construct φ′, by replacing the gadgets from which the formula φ in the proof
of Lemma 2.7.9 is built by CNF({µ})-expressions; we make sure that all clauses of φ
are entailed by the replacements, and no replacement contains a self-implicating set,
which will turn out useful:

We replace qp ∨ apl by
(

qp ∨ apl
)

∧ ε, and bpl ∨ q(p+1) modm by
(

bpl ∨ q(p+1) modm

)

∧ ε.

We replace xi ∨ xj by xi ∨ v0 if xi = xj, and otherwise by

λ(v0, xixj, wij4, . . . , wijr) ∧ ε, (3.1.1)

46 3.1 No-Constants

where for each i, j, wij4, . . . , wijr are new variables. Clearly, xi ∨ xj is entailed by the
replacement. Since no variables are identified in λ, there are no self-implicating sets in
(3.1.1).

Finally, we replace (xl ∨ apl ∨ bpl) ∧
(

bpl ∨ xl
)

by

(λ(bpl, apl, xl, zpl4, . . . , zplr) ∧ ε) ∧
((

bpl ∨ xl
)

∧ ε
)

, (3.1.2)

where for each p, l, zpl4, . . . , zplr are new variables. By definition of λ, (3.1.2) contains
the clause xl ∨ apl ∨ bpl. We show that (3.1.2) contains no self-implicating set:

Clearly, we can ignore ε. Since no variables are identified in λ(bpl, apl, xl, zpl4, . . . , zplr),
this expression contains no self-implicating set. Since apl is not implied in (3.1.2),
and bpl is implied only via xl ∨ apl ∨ bpl, bpl cannot belong to a self-implicating
set in (3.1.2). Thus proceeding from λ(bpl, apl, xl, zpl4, . . . , zplr) to the whole ex-
pression (3.1.2), it is easy to see that the clause bpl ∨ xl cannot have produced a
self-implicating set.

Now note that not only each clause xi ∨ xj of φ is entailed by its replacement, but

(*) the only restraint set of φ′ is {v0}, and a subset U of Var(φ) implies v0 in φ′ exactly
if U implies a restraint set {xi, xj} in φ.

With this, we are ready to show that φ′ is connected iff φ is connected, i.e., that φ′

contains a maximal self-implicating set U containing no restraint set iff φ does:
Since φ′ contains all implication clauses of φ, φ′ also contains all self-implicating sets

of φ. By (*), each maximal self-implicating set containing no restraint set of φ can be
extended to a maximal self-implicating set containing no restraint set of φ′.

For the converse, first recall that all used gadgets are guaranteed to contain no self-
implicating sets, and note that all additional variables of φ′ except v0 (which implies no
other variable) each appear in only one gadget, so that no “shortcuts” are introduced.
With this, a consideration analogously to the one for φ in the original proof shows that
any maximal self-implicating set U ′ of φ′ must contain all qp, all apl, and for every p
for at least one l ∈ {ip, jp, kp} both bpl and xl, so that U ′ must contain some maximal
self-implicating set U of φ as subset. By (*), if U ′ contains no restraint set, the same
holds for U .

3.1.5 Reductions for Connectivity

The CNF(S)-formula φ′ constructed from a CNFC(S)-formula φ in the proof of Lemma
3.1.5 using 0- and 1-isolating relations may contain multiple components even if φ has
only one component, so that construction cannot be used for the connectivity problem;
But if we use relations with unique solutions instead, the number of components is
retained, so that analogous to Lemma 3.1.5, a reduction is possible:

Definition 3.1.24 A formula φ is 0-unique (1-unique) if it has exactly one solution a
s.t. a 6= (1 · · · 1) (a 6= (0 · · · 0)).

Lemma 3.1.25 Let S be a finite set of logical relations. If there is a 0-unique and a
1-unique CNF(S)-formula, then ConnC(S)≤p

mConn(S).

3 No-Constants and Quantified Variants 47

Using a result from Creignou et al., we can determine exactly for which S this is the
case:

Lemma 3.1.26 Let S be a finite set of logical relations. There is a 0-unique and
a 1-unique CNF(S)-formula exactly if S contains at least one relation that is not
0-valid, at least one relation that is not 1-valid, and at least one relation that is not
complementive.

Proof. It is easy to see that if every relation in S is 0-valid, there is no 1-unique
CNF(S)-formula, if every relation is 1-valid, there is no 0-unique one, and if if every
relation in S is complementive, there is neither a 0-unique nor a 1-unique CNF(S)-
formula.

Otherwise, Lemma 4.13 of [CH96] shows that in this case, x ∧ y is expressible as a
CNF(S)-formula, which is both 0-unique and 1-unique.

Corollary 3.1.27 Let S be a finite set of logical relations. If S contains at least one
relation that is not 0-valid, at least one relation that is not 1-valid, and at least one
relation that is not complementive, then ConnC(S)≤p

mConn(S).

So for such sets S, we can transfer the hardness results for formulas with constants
(Theorem 2.2.2) to the no-constants case:

Corollary 3.1.28 If S is a finite set of relations that is safely tight but not Schaefer
and contains at least one relation that is not 0-valid, at least one relation that is not 1-
valid, and at least one relation that is not complementive, Conn(S) is coNP-complete.

Corollary 3.1.29 If S is a finite set of relations that is not safely tight and contains
at least one relation that is not 0-valid, at least one relation that is not 1-valid, and at
least one relation that is not complementive, Conn(S) is PSPACE-complete.

Here we end our investigation of no-constants formulas. It is easy to check that
thus, the complexity of Conn(S) remains open for sets S that are 0-valid, 1-valid,
or complementive, but not Schaefer, nor nc-CPSS, nor quasi disconnecting (See also
Table 3.1).

Example 3.1.30 The relation RNAE = {0, 1}3 \ {000, 111} is complementive, but not
safely tight and not quasi disconnecting, so we only know that Conn(S) is in PSPACE.

48 3.2 Quantified Constraints

3.2 Quantified Constraints

Now we look in the other direction and examine connectivity for more powerful ver-
sions of CNFC(S)-formulas by allowing quantifiers. Since it is easy to transform any
quantified formula into one in prenex normal form, we will assume all formulas to have
that form, i.e.

Q1y1 · · ·Qmymφ(y1, . . . , ym, x1, . . . , xn),

where φ is a CNFC(S)-formula, and Q1, . . . , Qm ∈ {∃,∀} are quantifiers. We call these
expressions Q-CNFC(S)-formulas and denote the corresponding connectivity resp. st-
connectivity problems by Q-ConnC(S) resp. st-Q-ConnC(S); the solution graph
only involves the free variablesx1, . . . , xn.

Here, we can present a complete classification for both connectivity problems and
the diameter, stated in the following two theorems and summarized in the table below:

S Q-ConnC(S) ConnC(S) st-Q-ConnC(S) st-ConnC(S)

not safely tight
PSPACE-c.

PSPACE-c.
PSPACE-c.

PSPACE-c.

safely tight, not Schaefer

coNP-c.

in P

Horn, not c. I− /

coNP-c.
in P

dual Horn, not c. I+

Horn, c. I−, not I− /

in Pdual Horn, c. I+, not I+

bijunctive / affine / I− / I+ in P

Table 3.2 The classifications for Q-CNFC(S)-formulas, in comparison to the case
without quantifiers.
c. = componentwise I− = IHSB− I+ = IHSB+

Theorem 3.2.1 (Dichotomy theorem for Q-CNFC(S)-formulas) Let S be a finite set
of logical relations.

1. If S is Schaefer, st-Q-ConnC(S) is in P, Q-ConnC(S) is in coNP, and for
every Q-CNFC(S)-formula φ, the diameter of G(φ) is linear in the number of free
variables.

2. Otherwise, both st-Q-ConnC(S) and Q-ConnC(S) are PSPACE-complete, and
there are Q-CNFC(S)-formulas φ, such that the diameter of G(φ) is exponential
in the number of free variables.

Proof. See 3.2.1.

Theorem 3.2.2 (Trichotomy theorem for Q-ConnC(S)) Let S be a finite set of logical
relations.

1. If S is bijunctive, IHSB−, IHSB+ or affine, Q-ConnC(S) is in P.

2. Else if S is Schaefer, Q-ConnC(S) is coNP-complete.

3. Else, Q-ConnC(S) is PSPACE-complete.

Proof. 1. See Lemmas 3.2.7, 3.2.8, and 3.2.9.
2. See Corollary 3.2.6.
3. This follows from Theorem 3.2.1.

3 No-Constants and Quantified Variants 49

3.2.1 Properties that Persist

Recall from Lemma 2.1.5 that bijunctive, Horn / dual Horn, affine, and IHSB− /
IHSB+ relations are characterized by closure properties. We begin by showing that
these properties are retained when we quantify over some variables.

Lemma 3.2.3 Let R be a logical relation that is closed under the coordinate-wise
application of some operation f .

1. The relation obtained by quantifying existentially over some variable of R is also
closed under f .

2. If f is not constant, the relation obtained by quantifying universally over some
variable of R is also closed under f .

Proof. 1. Let R be a n + 1-ary relation, consisting of m vectors (ai, bi1, . . . , b
i
n), i =

1, . . . ,m, that is closed under the coordinate-wise application of the k-ary relation f ,
i.e.

(

f(ai1 , . . . , aik), f(bi11 , . . . , b
ik
1), . . . , f(bi1n , . . . , b

ik
n)

)

∈ R

for all 1 ≤ i1, . . . , ik ≤ m. Let the relation R′ = ∃xR(x,y) be obtained, w.l.o.g.,
by quantifying existentially over the first variable. If then bi1 , . . . , bik ∈ R′, also
(

f(bi11 , . . . , b
ik
1), . . . , f(bi1n , . . . , b

ik
n)

)

∈ R′ since for each bi ∈ R′, (0, bi) ∈ R or (1, bi) ∈
R. Thus R also contains

(

0, f(bi11 , . . . , b
ik
1), . . . , f(bi1n , . . . , b

ik
n)

)

or
(

1, f(bi11 , . . . , b
ik
1), . . . , f(bi1n , . . . , b

ik
n)

)

.

2. Let R and f be as in 1., but f not constant, and let R′ = ∀xR(x,y). If

then bi1 , . . . , bik ∈ R′, also
(

f(bi11 , . . . , b
ik
1), . . . , f(bi1n , . . . , b

ik
n)

)

∈ R′: Since f is not

constant, we can chose values ai10 , . . . , a
ik
0 ∈ {0, 1} such that f(ai10 , . . . , a

ik
0) = 0, and

ai11 , . . . , a
ik
1 ∈ {0, 1} such that f(ai11 , . . . , a

ik
1) = 1. Since for each bi ∈ R′ both (0, bi) ∈ R

and (1, bi) ∈ R, R also contains both

(

f(ai10 , ..., a
ik
0), f(bi11 , ..., b

ik
1), ..., f(bi1n , ..., b

ik
n)

)

=
(

0, f(bi11 , ..., b
ik
1), ..., f(bi1n , ..., b

ik
n)

)

and
(

f(ai11 , ..., a
ik
1), f(bi11 , ..., b

ik
1), ..., f(bi1n , ..., b

ik
n)

)

=
(

1, f(bi11 , ..., b
ik
1), ..., f(bi1n , ..., b

ik
n)

)

.

Corollary 3.2.4 Any relation obtained by arbitrarily quantifying over some variables
of a bijunctive (Horn, dual Horn, affine, IHSB−, IHSB+) relation is itself bijunctive
(Horn, dual Horn, affine, IHSB−, IHSB+).

We are now ready to prove the dichotomy theorem:

Proof of Theorem 3.2.1. 1. We first show that the structural properties proved for

50 3.2 Quantified Constraints

CNFC(S)-formulas with safely tight sets S in Section 2.5 also hold for Q-CNFC(S)-
formulas if S is Schaefer.

If S is bijunctive or Horn (dual Horn), any CNFC(S)-formula φ is itself bijunctive,
resp. Horn (dual Horn), so by Corollary 3.2.4, this also holds for any Q-CNFC(S)-
formula. Now since by Lemma 2.1.9 every bijunctive relation is safely componentwise
bijunctive, and every Horn resp. dual Horn relation is safely OR-free resp. safely
NAND-free, the structural properties stated in Lemma 2.5.1 and Lemma 2.5.4 apply
to Q-CNFC(S)-formulas also, and the statement for the diameter follows as in Lemma
2.5.2 and Lemma 2.5.5.

The above reasoning does not work for affine sets S since for such S, CNFC(S)-
formula are not necessarily affine itself. But nevertheless, the relations obtained by
arbitrarily quantifying over CNFC(S)-formulas are expressible as CNFC(S ′)-formulas
for some affine set S ′: Figure 4.2 of [Bau07] shows an algorithm to transform any Q-
CNFC(S) formula φ into an equivalent system of linear equations, i.e. conjunction of
affine expressions. Now since by Lemma 2.1.9, affine relations are safely component-
wise bijunctive, safely OR-free, and safely NAND-free, the structural properties from
Lemma 2.5.1 and Lemma 2.5.4 apply to Q-CNFC(S)-formulas also for affine S.

It remains to prove that st-Q-ConnC(S) is in P and Q-ConnC(S) is in coNP.
The algorithms given in the proofs of Lemma 2.5.2 and Lemma 2.5.5 for showing that
st-ConnC(S) is in P and ConnC(S) is in coNP are by following paths in the solution
graph in a given direction. In doing so, the formula has to be evaluated for a certain
vector at each step; for Q-CNFC(S)-formulas, this means assigning the free variables
and then evaluating the fully quantified formula. Now by Theorem 6.1 in [Sch78],
the evaluation problem for quantified formulas is in P, so that the algorithms from
proofs of Lemma 2.5.2 and Lemma 2.5.5 can also be used to solve the problems for
Q-CNFC(S)-formulas in polynomial time.

2. By Schaefer’s “expressibility theorem” (Theorem 3.0 of [Sch78]), if S is not Schae-
fer, every Boolean relation is expressible from S by existentially quantifying over some
CNFC(S) formula, and thus the statements follow from Lemma 2.3.1 and Lemma
2.3.2.

3.2.2 coNP-Completeness for Connectivity

It remains to determine the complexity of Q-ConnC for Schaefer sets of relations. We
begin by showing that with quantifiers, we can extend the coNP-complete class. Since
by Lemma 2.7.9, connectivity for S = {(x ∨ y ∨ z) ∧ (x ∨ z)} is coNP-hard already for
CNFC(S)-formulas, the following lemma shows that Q-ConnC(S) is coNP-hard for
all sets of Horn relations that are not IHSB−.

Lemma 3.2.5 The relation M = (x ∨ y ∨ z)∧ (x ∨ z) is expressible as an existentially
quantified CNFC({R})-formula for every Horn relation R that is not IHSB−.

Proof. We will use quantification only at the very end. As in the proof of Lemma 2.7.10,
in the following numbered transformation steps, we use identification and substitution
to obtain one of a few simple formulas from which we can then express M as an
existentially quantified formula.

We again argue with formulas in normal form ν; let φ0 = ν(R). Since R is not
IHSB−, φ0 contains a multi-implication c = x ∨ y ∨ z1 ∨ · · · ∨ zk (k ≥ 1).

3 No-Constants and Quantified Variants 51

1. Identify z1, . . . , xk, call the resulting variable z.

This produces the clause x∨ y ∨ z from c. Since by simplicity condition (c), x was not
implied by any set U ({y, z1, . . . , xk}, and by (e), no zi was implied by y, and y was
implied by no set U ⊆ {z1, . . . , xk}, it follows that

(*) x /∈ Imp(y), x /∈ Imp(z), z /∈ Imp(y), y /∈ Imp(z).

In the following steps, we eliminate all variables other than x, y, z, s.t. (*) is maintained.

2. Substitute 1 for every variable from Imp(y) ∩ Imp(z).

By (*), the set of these variables cannot have implied x, y, or z, thus there can emerge
no unit clause on x, y or z; since by simplicity condition (d) the set of the substituted
variables contains no restraint set, φ cannot become unsatisfiable.

3. Identify all remaining variables from Imp(y) \ {y} with y.

Since none of these variables was implied by z, still y /∈ Imp(z) and it is easy to see
that the other conditions of (*) are also maintained.

4. Identify all remaining variables from Imp(z) \ {z} with z.

Analogous to step 3, (*) is maintained. Now Imp(y) \ {y} and Imp(z) \ {z} are empty,
so the last step is easy:

5. Identify all remaining variables other than x, y, z with x.

The formula now contains only the variables x, y, z, and all clauses satisfy (*). If follows
that all clauses besides c are from

{z ∨ x, z ∨ x ∨ y, y ∨ x, y ∨ x ∨ z}.

Considering all possible combinations of these clauses, we find that the the formula is
equivalent to K = x ∨ y ∨ z, L = (x ∨ y ∨ z) ∧ (x ∨ y ∨ z), M = (x ∨ y ∨ z) ∧ (x ∨ z),
M ′ = (x ∨ y ∨ z) ∧ (x ∨ y), S = (x∨ y ∨ z) ∧ (y ∨ x) ∧ (z ∨ x) or T = (x∨ y ∨ z) ∧ (y ∨
z ∨ x) ∧ (z ∨ x ∨ y).

We express M from M ′ by permutation, and L from S or T as

L = ∃wS(w, y, x) ∧ S(w, y, z) = ∃wT (w, y, x) ∧ T (w, y, z).

Finally, we express M from K or L as in the proof of Lemma 2.7.10.

Corollary 3.2.6 If a finite set S of relations is Schaefer, but not bijunctive, IHSB−,
IHSB+ or affine, Q-ConnC(S) is coNP-complete.

Proof. By Theorem 3.2.1, the problem is in coNP. From the definitions we find that
S must be Horn and contain at least one relation that is not IHSB−, or dual Horn
and contain at least one relation that is not IHSB+. In the first case, coNP-hardness
follows from Lemma 2.7.9 with Lemma 3.2.5. The second case is symmetric.

52 3.2 Quantified Constraints

3.2.3 Deciding Connectivity in Polynomial Time

We are now left with bijunctive, IHSB− / IHSB+, and affine sets of relations. We will
devise a polynomial-time algorithm for connectivity in each case.

Lemma 3.2.7 If S is a set of IHSB− or IHSB+ relations, there is a polynomial-time
algorithm for Q-ConnC(S).

Proof. The algorithm is essentially a modified version of Gopalan et al.’s algorithm
from the proof of Lemma 4.13 in [GKMP09].

Assume S is IHSB−; the IHSB+ case is symmetric. Let φ be any Q-CNFC(S)-
formula.

Since any CNFC(S)-formula is itself IHSB−, also [φ] can be expressed as an IHSB−
formula ψ without quantifiers due to Corollary 3.2.4. So if we could transform φ into
ψ in polynomial time, we could then simply use the constraint-projection algorithm
from Lemma 2.6.5 to decide connectivity. However, quantifier-elimination can lead to
an exponential increase of the formula size, even for Horn formulas [BB08], and this
seems to apply to IHSB− formulas also. Thus we need another strategy.

Fortunately, there at least exists a polynomial time algorithm to transform a quan-
tified Horn formula into an equivalent Horn formula with only existential quantifiers,
described by Bubeck et al. in Definition 8 of [BB08]; we apply this algorithm to φ to
obtain an equivalent formula φ∃ with only existential quantifiers.

Next we assign all variables in positive unit clauses (and remove the corresponding
quantifiers in the case of bound variables) to obtain a connectivity-equivalent formula
φ∃′ without positive unit clauses; let φ∃´ = ∃x1 · · · ∃xmφ0(x1, . . . , xn), where φ0 contains
no quantifiers.

We show that

(*) φ∃′ (and thus φ) is disconnected iff

(1) there are two free variables x and y of φ∃′ s.t. x ∈Impφ0
(y)2, y ∈Impφ0

(x),
and Impφ0

(x) contains no restraint set of φ0.

It is easy to see that condition (1) can be checked in polynomial time as follows:

For every free variable x of φ′∃:

If Impφ0
(x) contains no restraint set of φ0,

For each free variable y from Impφ0
(x):

If x ∈Impφ0
(y), return “disconnected”.

Return “connected”.

To prove (*), consider the formula φ∼ we would obtain from φ∃′ by eliminating all
quantifiers, and then transforming into conjunctive normal form. It is clear that also
φ∼ contains no positive unit-clauses. Further, φ∼ is again IHSB− by Corollary 3.2.4,
and thus Horn. So by Corollary 2.7.6, φ∼ (and therefore φ) is disconnected iff

2Impψ denotes implication in formula ψ

3 No-Constants and Quantified Variants 53

(2) φ∼ has a non-empty maximal self-implicating set containing no restraint set.

Since φ∼ is IHSB−, it contains no multi-implication clauses; therefore, in the hypergraph-
representation, all implication clauses of φ∼ correspond to simple edges, not hyperedges.
Thus, the implication clauses of φ∼ can be represented as an ordinary digraph, and
implication corresponds to reachability in that digraph. With this, it is easy to see
that (2) is equivalent to

(3) in φ∼, there are two variables x and y with x ∈Imp(y), y ∈Imp(x), and s.t. Imp(x)
contains no restraint set.

It remains to show that (1) is equivalent to (3). The proof will be by induction.
Therefor first note that φ∼ can be obtained from φ∃′ by eliminating the quantifiers
one by one, and always writing the resulting formula in conjunctive normal form. It
follows that if we define φk = CNF(φk−1[xk/0] ∨ φk−1[xk/1]), where CNF(ψ) denotes a
CNF-formula equivalent to ψ, then φ∼ = φm. Let

φk = c1 ∧ · · · ∧ cp ∧ d1 ∧ · · · ∧ dq,

where c1, . . . , cp resp. d1, . . . , dq are the clauses containing xk resp. not containing xk.
Then

φk−1[xk/0] ∨ φk−1[xk/1] ≡

∧

i,j

ci[yk/0] ∨ cj[yk/1]

 ∧ d1 ∧ · · · ∧ dq.

The clauses c1, . . . , cp are of the form xi∨xk, xi∨xk, or xk∨xi1 ∨· · ·∨xir ; considering all
combinations to the disjunctions ci[yk/0]∨cj[yk/1], and discarding tautological clauses,
it is then easy to see that φk may3 consist of exactly the following clauses:

1. d1, . . . dq,

2. for each pair of clauses xi ∨ xk and xj ∨ xk of φk−1 with xi 6= xj, we have xi ∨ xj
in φk,

3. for each pair of clauses xi∨xk and xk∨xi1 ∨· · ·∨xir of φk−1, we have xi∨xi1 ∨· · ·∨xir
in φk.

We can now show that for any two variables x and y with x 6= xk and y 6= xk,

(a) x ∈ Impφk
(y) iff x ∈ Impφk−1

(y),

Proof: “⇐=”: If x ∈ Impφk−1
(y), there was a chain of clauses

y ∨ xw1
, xw1

∨ xw2
, . . . , xwm

∨ x

in φk−1; now if xk /∈ {xw1
, . . . , xwk

}, all clauses of the chain are also in φk by
1., else a clause “bridging” xk is added by 2.

“=⇒”: This is clear since all implication clauses of φk are entailed by φk−1.

(b) Impφk
(x) contains a restraint set U ′ of φk iff Impφk−1

(x) contains a restraint set U
of φk−1.

3a CNF representation is not unique

54 3.2 Quantified Constraints

Proof: “⇐=”: If U did not contain xk, U is also a restraint set of φk, and by 1.,
U ⊆ Impφk

(x). Otherwise, U = {xk, xi1 , . . . , xir} with each xij ∈ Impφk−1
(x),

and there was some clause xl ∨xk with xl ∈ Impφk−1
(x), but then φk contains

the clause xl ∨ xi1 ∨ · · · ∨ xir by 3., and since also all xij ∈ Impφk
(x) and

xl ∈ Impφk
(x) by 1., U ′ = {xl, xi1 , . . . , xir} ⊆ Impφk

(x).

“=⇒”: If U ′ corresponds to one of the clauses d1, . . . dq, it was also a restraint
set of φk−1, and U ′ ⊆ Impφk−1

(x) by 1. Otherwise, it corresponds to a clause
xi ∨ xi1 ∨ · · · ∨ xir from 3.; but then φk−1 must have contained the clauses
xi ∨ xk and xk ∨ xi1 ∨ · · · ∨ xir , and U = {xk, xi1 , . . . , xir} ⊆ Impφk−1

(x) by 1.

Now (1)⇐⇒(3) follows from (a) and (b) by induction.

We can reduce the bijunctive case to the IHSB− one:

Lemma 3.2.8 If S is a bijunctive set of relations, Q-ConnC(S) is in P.

Proof. Makino, Tamaki and Yamamoto show in [MTY07] below Proposition 2 that
any bijunctive formula can be transformed in a connectivity-equivalent Horn 2-CNF
formula by “renaming” variables: We can calculate a solution a in linear time [APT79]
(w.l.o.g. we may assume that a solution exists) and then take

ψ(x) = φ(x1 ⊕ a1, x2 ⊕ a2, . . .).

Now ψ is clearly Horn since ψ(0, . . . 0) = 1, and the connectivity is retained since

|(x1 ⊕ a1, x2 ⊕ a2, . . .) − (y1 ⊕ a1, y2 ⊕ a2, . . .)| = |(x1, x2, . . .) − (y1, y2, . . .)|.

Since any CNFC(S) formula φ is itself bijunctive, given Q1y1 · · ·Qmymφ(x,y), we
can instead take Q1y1 · · ·Qmymψ(x,y), where ψ is the Horn 2-CNF formula obtained
from φ as described, and then apply the algorithm for the IHSB− case, since any Horn
2-CNF formula is also IHSB−.

Finally, for affine sets of relations, we again make use of the quantifier-elimination
algorithm from [Bau07], and then use an algorithm from Gopalan et al.:

Lemma 3.2.9 If S is an affine set of relations, Q-ConnC(S) is in P.

Proof. We can use the polynomial-time algorithm from Figure 4.2 in [Bau07] to trans-
form any quantified CNFC(S) formula into an equivalent one without any quantifiers,
and then apply the algorithm from the proof of Lemma 4.10 of [GKMP09]. Note that
although the clause-size of the formulas produced by the algorithm from [Bau07] is
unbounded (with regard to S), the algorithm from [GKMP09] decides connectivity for
these formulas in polynomial time, as is easy to see.

4 Connectivity

of Nested Formulas and Circuits

We now turn to a quite different type of representation for Boolean relations. First
observe that we can naturally identify Boolean relations with Boolean functions, i.e.
functions f : {0, 1}n → {0, 1}. To build B-formulas, we again use a fixed finite set of
Boolean relations, resp. functions, as source material, but instead of connecting them
with ∧’s, we now allow inserting them into each other arbitrarily.

In a B-formula, if some function is used repeatedly with the same arguments, it
has to be duplicated, what can make the formula large and evaluation slow. This is
remedied by B-circuits, that allow to use the result of a function any number of times,
which can lead to exponential savings of space and time.

4.1 Preliminaries:

B-Circuits, B-Formulas, and Post’s Lattice

We begin with formal definitions of B-circuits and B-formulas. Let B be a finite set
of Boolean functions.

Definition 4.1.1 A B-circuit C with input variables x1, . . . , xn is a directed acyclic
graph, augmented as follows: Each node (here also called gate) with indegree 0 is
labeled with an xi or a 0-ary function from B, each node with indegree k > 0 is labeled
with a k-ary function from B. The edges (here also called wires) pointing into a gate are
ordered. One node is designated the output gate. Given values a1, . . . , an ∈ {0, 1} to
x1, . . . , xn, C computes an n-ary function fC as follows: A gate v labeled with a variable
xi returns ai, a gate v labeled with a function f computes the value f(b1, . . . , bk), where
b1, . . . , bk are the values computed by the predecessor gates of v, ordered according to
the order of the wires.

For a detailed introduction to Boolean circuits and circuit complexity, see e.g. [Vol99].

Definition 4.1.2 A B-formula is defined inductively: A variable x is a B-formula. If
φ1, . . . , φm are B-formulas, and f is an n-ary function from B, then f(φ1, . . . , φn) is a
B-formula. In turn, any B-formula defines a Boolean function in the obvious way, and
we will identify B-formulas with the function they define.

It is easy to see that the functions computable by a B-circuit, as well as the functions
definable by a B-formula, are exactly those that can be obtained from B by superposi-
tion, together with all projections [BCRV03]. By superposition, we mean substitution
(that is, composition of functions), permutation and identification of variables, and
introduction of fictive variables (variables on which the value of the function does not
depend). This class of functions is denoted [B]. B is closed (or said to be a clone) if
[B] = B. A base of a clone F is any set B with [B] = F .

56 4.1 Preliminaries: B-Circuits, B-Formulas, and Post’s Lattice

Already in the early 1920s, Emil Post extensively studied Boolean functions [Pos41].
He identified all closed classes, found a finite base for each of them, and detected their
inclusion structure: The closed classes form a lattice, called Post’s lattice, depicted in
Figure 4.1.1. We do not use Post’s original names for the closed classes, but the modern
terminology developed by Reith and Wagner in [RW99]; the layout of the lattice is also
from [RW99].

The following clones are defined by properties of the functions they contain, all other
ones are intersections of these. Let f be an n-ary Boolean function.

• BF is the class of all Boolean functions.

• R0 (R1) is the class of all 0-reproducing (1-reproducing) functions,
f is c-reproducing, if f(c, . . . , c) = c, where c ∈ {0, 1}.

• M is is the class of all monotone functions,
f is monotone, if a1 ≤ b1, . . . , an ≤ bn implies f(a1, . . . , an) ≤ f(b1, . . . , bn).

• D is the class of all self-dual functions,
f is self-dual, if f(x1, . . . , xn) = f(x1, . . . , xn).

• L is the class of all affine (on linear) functions,
f is affine, if f(x1, . . . , xn) = xi1 ⊕ · · · ⊕ xim ⊕ c with i1, . . . , im ∈ {1, . . . , n} and
c ∈ {0, 1}.

• S0 (S1) is the class of all 0-separating (1-separating) functions,
f is c-separating, if there exists an i ∈ {1, . . . , n} s.t. ai = c for all a ∈ f−1(c),
where c ∈ {0, 1}.

• Sm0 (Sm1) is the class of all functions 0-separating (1-separating) of degree m,
f is c-separating of degree m, if for all U ⊆ f−1(c) of size |U | = m there exists an
i ∈ {1, . . . , n} s.t. ai = c for all a ∈ U (c ∈ {0, 1}, m ≥ 2).

The definitions and bases of all classes are given in Table 4.1. For an introduction to
Post’s lattice and further references see e.g. [BCRV03].

The complexity of numerous problems for B-circuits and B-formulas has been clas-
sified by the types of functions allowed in B with help of Post’s lattice (see e.g.
[RW00, Sch07]), starting with satisfiability: Analogously to Schaefer’s dichotomy for
CNF(S)-formulas from 1978, Harry R. Lewis shortly thereafter found a dichotomy for
B-formulas [Lew79]: If [B] contains the function x ∧ y, Sat is NP-complete, else it is
in P.

While for B-circuits the complexity of every decision problem solely depends on
[B] (up to AC0 isomorphisms), for B-formulas this need not be the case (though it
usually is, as for satisfiability and our connectivity problems, as we will see): The
transformation of a B-formula into a B′-formula might require an exponential increase
in the formula size even if [B] = [B′], as the B′-representation of some function from
B may need to use some input variable more than once [Tho12]. For example, let
h(x, y) = x∧ y; then (x∧y) ∈ [{h}] since x∧ y = h(x, h(x, y)), but it is easy to see that
there is no shorter {h}-representation of x ∧ y.

We denote the st-connectivity and connectivity problems for B-formulas by st-BF-
Conn(B) and BF-Conn(B), respectively, and the problems for circuits by st-Circ-
Conn(B) resp. Circ-Conn(B).

Also for a Boolean function f , we will speak of the solution graph G(f) and denote
the shortest-path distance in G(f) by df .

4 Connectivity of Nested Formulas and Circuits 57

BF

R1 R0

R2

M

M1 M0

M2

S2

1

S3

1

Sn
1

S1

S2

12

S3

12

Sn
12

S12

S2

11

S3

11

Sn
11

S11

S2

10

S3

10

Sn
10

S10

S2

0

S3

0

Sn
0

S0

S2

02

S3

02

Sn
02

S02

S2

01

S3

01

Sn
01

S01

S2

00

S3

00

Sn
00

S00

D

D1

D2

E

E1 E0

E2

V

V0V1

V2

L

L0L1 L3

L2

N

N2

I

I0I1

I2

Figure 4.1.1 Post’s lattice with our results.
The classes on the hard side of the dichotomy for the connectivity problems and the
diameter are shaded; the light shaded ones are on the hard side only for formulas
with quantifiers.

For comparison, the classes for which SAT (without quantifiers) is NP-complete
are circled bold.

58 4.1 Preliminaries: B-Circuits, B-Formulas, and Post’s Lattice

Class Definition Base

BF All Boolean functions {x ∧ y,¬x}
R0 {f ∈ BF | f is 0-reproducing} {x ∧ y, x⊕ y}
R1 {f ∈ BF | f is 1-reproducing} {x ∨ y, x ↔ y}
R2 R0 ∩ R1 {x ∨ y, x ∧ (y ↔ z)}
M {f ∈ BF | f is monotone} {x ∧ y, x ∨ y, 0, 1}
M0 M ∩ R0 {x ∧ y, x ∨ y, 0}
M1 M ∩ R1 {x ∧ y, x ∨ y, 1}
M2 M ∩ R2 {x ∧ y, x ∨ y}
S0 {f ∈ BF | f is 0-separating} {x → y}
Sn0 {f ∈ BF | f is 0-separating of degree n} {x → y, dual(Tn+1

n)}
S1 {f ∈ BF | f is 1-separating} {x9 y}
Sn1 {f ∈ BF | f is 1-separating of degree n} {x9 y,Tn+1

n }
Sn02 Sn0 ∩ R2 {x ∨ (y ∧ ¬z), dual(Tn+1

n)}
S02 S0 ∩ R2 {x ∨ (y ∧ ¬z)}
Sn01 Sn0 ∩ M {dual(Tn+1

n), 1}
S01 S0 ∩ M {x ∨ (y ∧ z), 1}
Sn00 Sn0 ∩ R2 ∩ M {x ∨ (y ∧ z), dual(Tn+1

n)}
S00 S0 ∩ R2 ∩ M {x ∨ (y ∧ z)}
Sn12 Sn1 ∩ R2 {x ∧ (y ∨ ¬z),Tn+1

n }
S12 S1 ∩ R2 {x ∧ (y ∨ ¬z)}
Sn11 Sn1 ∩ M {Tn+1

n , 0}
S11 S1 ∩ M {x ∧ (y ∨ z), 0}
Sn10 Sn1 ∩ R2 ∩ M {x ∧ (y ∨ z),Tn+1

n }
S10 S1 ∩ R2 ∩ M {x ∧ (y ∨ z)}
D {f ∈ BF | f is self-dual} {maj(x,¬y,¬z)}
D1 D ∩ R2 {maj(x, y,¬z)}
D2 D ∩ M {maj(x, y, z)}
L {f ∈ BF | f is linear} {x⊕ y, 1}
L0 L ∩ R0 {x⊕ y}
L1 L ∩ R1 {x ↔ y}
L2 L ∩ R2 {x⊕ y ⊕ z}
L3 L ∩ D {x⊕ y ⊕ z ⊕ 1}
E {f ∈ BF | f is constant or a conjunction} {x ∧ y, 0, 1}
E0 E ∩ R0 {x ∧ y, 0}
E1 E ∩ R1 {x ∧ y, 1}
E2 E ∩ R2 {x ∧ y}
V {f ∈ BF | f is constant or a disjunction} {x ∨ y, 0, 1}
V0 V ∩ R0 {x ∨ y, 0}
V1 V ∩ R1 {x ∨ y, 1}
V2 V ∩ R2 {x ∨ y}
N {f ∈ BF | f is essentially unary} {¬x, 0, 1}
N2 N ∩ D {¬x}
I {f ∈ BF | f is constant or a projection} {x, 0, 1}
I0 I ∩ R0 {x, 0}
I1 I ∩ R1 {x, 1}
I2 I ∩ R2 {x}

Table 4.1 List of all closed classes of Boolean functions with definitions and bases.
Tnk denotes the threshold function, i.e., Tnk (x1, . . . , xn) = 1 ⇐⇒

∑n
i=1 xi ≥ k,

(dual(f))(x1, . . . , xn) = f(x1, . . . , xn))

4 Connectivity of Nested Formulas and Circuits 59

4.2 Results

The following two theorems give complete classifications up to polynomial-time iso-
morphisms. See also Figure 4.1.1.

Theorem 4.2.1 Let B be a finite set of Boolean functions.

1. If B ⊆ M, B ⊆ L, or B ⊆ S0, then

a) st-Circ-Conn(B) and Circ-Conn(B) are in P,

b) st-BF-Conn(B) and BF-Conn(B) are in P,

c) for every B-formula φ, the diameter of G(φ) is linear in the number of vari-
ables.

2. Otherwise,

a) st-Circ-Conn(B) and Circ-Conn(B) are PSPACE-complete,

b) st-BF-Conn(B) and BF-Conn(B) are PSPACE-complete,

c) there are B-formulas φ such that the diameter of G(φ) is exponential in the
number of variables.

The proof follows from the lemmas in the next two sections.

4.3 The Easy Side of the Dichotomy

We will often use the following proposition to relate the complexity of B-formulas and
B-circuits:

Proposition 4.3.1 Every B-formula φ can be transformed into an equivalent B-circuit
C in polynomial time.

Proof. Any B-formula is equivalent to a special B-circuit where all function-gates have
outdegree at most one: For every variable x of φ and for every occurrence of a function
f in φ there is a gate in C, labeled with x resp. f . It is clear how to connect the
gates.

Lemma 4.3.2 If B ⊆ M, the solution graph of any n-ary function f ∈ [B] is connected,
and df (a, b) = |a− b| ≤ n for any two solutions a and b.

Proof. Table 4.1 shows that f is monotone in this case. Thus, either f = 0, or (1, . . . , 1)
must be a solution, and every other solution a is connected to (1, . . . , 1) in G(f) since
(1, . . . , 1) can be reached by flipping the variables assigned 0 in a one at a time to 1.
Further, if a and b are solutions, b can be reached from a in |a − b| steps by first
flipping all variables that are assigned 0 in a and 1 in b, and then flipping all variables
that are assigned 1 in a and 0 in b.

Lemma 4.3.3 If B ⊆ S0, the solution graph of any function f ∈ [B] is connected, and
df (a, b) ≤ |a− b| + 2 for any two solutions a and b.

60 4.4 The Hard Side of the Dichotomy

Proof. Since f is 0-separating, there is an i such that ai = 0 for every vector a with
f(a) = 0, thus every b with bi = 1 is a solution. It follows that every solution t can be
reached from any solution s in at most |s−t|+2 steps by first flipping the i-th variable
from 0 to 1 if necessary, then flipping all other variables in which s and t differ, and
finally flipping back the i-th variable if necessary.

Lemma 4.3.4 If B ⊆ L,

1. st-Circ-Conn(B) and Circ-Conn(B) are in P,

2. st-BF-Conn(B) and BF-Conn(B) are in P,

3. for any function f ∈ [B], df (a, b) = |a− b| for any two solutions a and b that lie
in the same connected component of G(φ).

Proof. Since every function f ∈ L is linear, f(x1, . . . , xn) = xi1 ⊕ . . . ⊕ xim ⊕ c, and
any two solutions s and t are connected iff they differ only in fictive variables: If s
and t differ in at least one non-fictive variable (i.e., an xi ∈ {xi1 , . . . , xim}), to reach t

from s, xi must be flipped eventually, but for every solution a, any vector b that differs
from a in exactly one non-fictive variable is no solution. If s and t differ only in fictive
variables, t can be reached from s in |s− t| steps by flipping one by one the variables
in which they differ.

Since {x⊕y, 1} is a base of L, every B-circuit C can be transformed in polynomial time
into an equivalent {x ⊕ y, 1}-circuit C ′ by replacing each gate of C with an equivalent
{x ⊕ y, 1}-circuit. Now one can decide in polynomial time whether a variable xi is
fictive by checking for C ′ whether the number of “backward paths” from the output
gate to gates labeled with xi is odd, so st-Circ-Conn(B) is in P.

G(C) is connected iff at most one variable is non-fictive, thus Circ-Conn(B) is in
P.

By Proposition 4.3.1, st-BF-Conn(B) and BF-Conn(B) are in P also.

This completes the proof of the easy side of the dichotomy.

4.4 The Hard Side of the Dichotomy

Clearly, we can transfer the upper bounds for general CNF-formulas to B-formulas and
B-circuits:

Proposition 4.4.1 st-Circ-Conn(B) and Circ-Conn(B), as well as st-BF-Conn(B)
and BF-Conn(B), are in PSPACE for any finite set B of Boolean functions.

Proof. This follows as in Lemma 3.6 of [GKMP09] (see Lemma 2.3.1).

All hardness proofs will be by reductions from the problems for 1-reproducing 3-
CNF-formulas, which are PSPACE-complete by the following proposition.

Proposition 4.4.2 For 1-reproducing 3-CNF-formulas, the problems st-Conn and
Conn are PSPACE-hard.

4 Connectivity of Nested Formulas and Circuits 61

Proof. In the PSPACE-hardness proof for general 3-CNF-formulas (Lemma 3.6 of
[GKMP09], see Lemma 2.3.1), two satisfying assignments s and t to the constructed
formula φ are known, so we can construct a connectivity-equivalent 1-reproducing 3-
CNF-formula ψ, e.g. as ψ(x) = φ(x1 ⊕ s1 ⊕ 1, . . . , xn ⊕ sn ⊕ 1), and then check
connectivity for ψ instead of φ.

An inspection of Post’s lattice shows that if B * M, B * L, and B * S0, then
[B] ⊇ S12, [B] ⊇ D1, or [B] ⊇ Sk02 ∀k ≥ 2, so we have to prove PSPACE-completeness
and show the existence of B-formulas with an exponential diameter in these cases.

Definition 4.4.3 We write x = c or x = c1 · · · cn for (x1 = c1)∧· · ·∧(xn = cn), where
c = (c1, . . . , cn) is a vector of constants; e.g.. x = 0 means x1 ∧ · · · ∧ xn, and x = 101
means x1 ∧ x2 ∧ x3. Further, we use x ∈ {a, b, . . .} for (x = a) ∨ (x = b) ∨ Also,
we write ψ(x) for ψ(x1, . . . , xn). If we have two vectors of Boolean values a and b of
length n and m resp., we write a · b for their concatenation (a1, . . . , an, b1, . . . bm).

Lemma 4.4.4 If [B] ⊇ S12,

1. st-BF-Conn(B) and BF-Conn(B) are PSPACE-complete,

2. st-Circ-Conn(B) and Circ-Conn(B) are PSPACE-complete,

3. for n ≥ 3, there is an n-ary function f ∈ [B] with diameter of at least 2⌊n−1

2
⌋.

Proof. 1. We reduce the problems for 1-reproducing 3-CNF-formulas to the ones for
B-formulas: We map a 1-reproducing 3-CNF-formula φ and two solutions s and t of
φ to a B-formula φ′ and two solutions s′ and t′ of φ′ such that s′ and t′ are connected
in G(φ′) iff s and t are connected in G(φ), and such that G(φ′) is connected iff G(φ)
is connected.

While the construction of φ′ is quite easy for this lemma, the construction for the
next two lemmas is analogous but more intricate, so we proceed carefully in two steps,
which we will adapt in the next two proofs: In the first step, we give a transformation
T that transforms any 1-reproducing formula ψ into a connectivity-equivalent formula
Tψ ∈ S12 built from the standard connectives. Since S12 ⊆ [B], we can express Tψ as
a B-formula T ∗

ψ. Now if we would apply T to φ directly, we would know that Tφ can
be expressed as a B-formula. However, this could lead to an exponential increase in
the formula size (see Section 4.1), so we have to show how to construct the B-formula
in polynomial time. For this, in the second step, we construct a B-formula φ′ directly
from φ (by applying T to the clauses and the ∧’s individually), and then show that φ′

is equivalent to Tφ; thus we know that φ′ is connectivity-equivalent to φ.
Step 1. From Table 4.1, we find that S12 = S1 ∩ R2 = S1 ∩ R0 ∩ R1, so we have to

make sure that Tψ is 1-seperating, 0-reproducing, and 1-reproducing. Let

Tψ = ψ ∧ y,

where y is a new variable.
All solutions a of Tψ(x, y) have an+1 = 1, so Tψ is 1-seperating and 0-reproducing;

also, Tψ is still 1-reproducing. Further, for any two solutions s and t of ψ(x), s′ = s · 1
and t′ = t · 1 are solutions of Tψ(x, y), and it is easy to see that they are connected

62 4.4 The Hard Side of the Dichotomy

in G(Tψ) iff s and t are connected in G(ψ), and that G(Tψ) is connected iff G(ψ) is
connected.

Step 2. The idea is to parenthesize the conjunctions of φ such that we get a tree of
∧’s of depth logarithmic in the size of φ, and then to replace each clause and each ∧
with an equivalent B-formula. This can increase the formula size by only a polynomial
in the original size even if the B-formula equivalent to ∧ uses some input variable more
than once.

Let φ = C1 ∧ · · · ∧ Cn be a 1-reproducing 3-CNF-formula. Since φ is 1-reproducing,
every clause Ci of φ is itself 1-reproducing, and we can express TCi

through a B-formula
T ∗
Ci

. Also, we can express Tu∧v through a B-formula T ∗
u∧v since ∧ is 1-reproducing; we

write T∧(ψ1, ψ2) for the formula obtained from Tu∧v by substituting the formula ψ1 for
u and ψ2 for v, and similarly write T ∗

∧(ψ1, ψ2) for the formula obtained from T ∗
u∧v in

this way. We let φ′ =Tr(φ), where Tr is the following recursive algorithm that takes
a CNF-formula as input:

Algorithm Tr(ψ1 ∧ · · · ∧ ψm)

If m = 1, return T ∗
ψ1

.

Else return T ∗
∧

(

Tr(ψ1 ∧ · · · ∧ ψ⌊m/2⌋),Tr(ψ⌊m/2⌋+1 ∧ · · · ∧ ψm)
)

.

Since the recursion terminates after a number of steps logarithmic in the number of
clauses of φ, and every step increases the total formula size by only a constant factor,
the algorithm runs in polynomial time. We show φ′ ≡ Tφ by induction on m. For
m = 1 this is clear. For the induction step, we have to show T ∗

∧(Tψ1
, Tψ2

) ≡ Tψ1∧ψ2
,

but since T∧(ψ1, ψ2) ≡ T ∗
∧(ψ1, ψ2), it suffices to show that T∧(Tψ1

, Tψ2
) ≡ Tψ1∧ψ2

:

T∧(Tψ1
, Tψ2

) = (ψ1 ∧ y) ∧ (ψ2 ∧ y) ∧ y ≡ ψ1 ∧ ψ2 ∧ y = Tψ1∧ψ2
.

2. This follows from 1. by Proposition 4.3.1.
3. By Lemma 2.3.2, there is an 1-reproducing (n− 1)-ary function f with diameter

of at least 2⌊n−1

2
⌋. Let f be represented by a formula φ; then, Tφ represents an n-ary

function of the same diameter in S12.

Lemma 4.4.5 If [B] ⊇ D1,

1. st-BF-Conn(B) and BF-Conn(B) are PSPACE-complete,

2. st-Circ-Conn(B) and Circ-Conn(B) are PSPACE-complete,

3. for n ≥ 5, there is an n-ary function f ∈ [B] with diameter of at least 2⌊n−3

2
⌋.

Proof. 1. As noted, we adapt the two steps from the previous proof.
Step 1. Since D1 = D ∩ R0 ∩ R1, Tψ must be self-dual, 0-reproducing, and 1-

reproducing. For clarity, we first construct an intermediate formula T∼
ψ ∈ D1 whose

solution graph has an additional component, then we eliminate that component.
For ψ(x), let

T∼
ψ = (ψ(x) ∧ (y = 1)) ∨

(

ψ(x) ∧ (y = 0)
)

∨ (y ∈ {100, 010, 001}) ,

where y = (y1, y2, y3) are three new variables.

4 Connectivity of Nested Formulas and Circuits 63

T∼
ψ is self-dual: for any solution ending with 111 (satisfying the first disjunct), the

inverse vector is no solution; similarly, for any solution ending with 000 (satisfying
the second disjunct), the inverse vector is no solution; finally, all vectors ending with
100, 010, or 001 are solutions and their inverses are no solutions. Also, T∼

ψ is still

1-reproducing, and it is 0-reproducing (for the second disjunct note that ψ(0 · · · 0) ≡
ψ(1 · · · 1) ≡ 0).

Further, every solution a of ψ corresponds to a solution a · 111 of T∼
ψ , and for any

two solutions s and t of ψ, s′ = s · 111 and t′ = t · 111 are connected in G(T∼
ψ) iff s

and t are connected in G(ψ): The “if” is clear, for the “only if” note that since there
are no solutions of T∼

ψ ending with 110, 101, or 011, every solution of T∼
ψ not ending

with 111 differs in at least two variables from the solutions that do.

Observe that exactly one connected component is added in G(T∼
ψ) to the components

corresponding to those of G(ψ): It consists of all solutions ending with 000, 100, 010,
or 001 (any two vectors ending with 000 are connected e.g. via those ending with
100). It follows that G(T∼

ψ) is always unconnected. To fix this, we modify T∼
ψ to Tψ

by adding 1 · · · 1 · 110 as a solution, thereby connecting 1 · · · 1 · 111 (which is always a
solution since T∼

ψ is 1-reproducing) with 1 · · · 1 · 100, and thereby with the additional
component of Tψ. To keep the function self-dual, we must in turn remove 0 · · · 0 · 001,
which does not alter the connectivity. Formally,

Tψ =
(

T∼
ψ ∨ ((x = 1) ∧ (y = 110))

)

∧ ¬ ((x = 0) ∧ (y = 001)) (4.4.1)

= (ψ(x) ∧ (y = 1)) ∨
(

ψ(x) ∧ (y = 0)
)

∨ (y ∈ {100, 010, 001} ∧ ¬((x = 0) ∧ (y = 001)))

∨((x = 1) ∧ (y = 110)).

01

1000 00 100

00 010

00 001

10 000

01 000

00 000

Figure 4.4.1 An example for the transformation. Left: ψ = (x1 ∨ x2) ∧ (x1 ∨ x2),
center: T∼

ψ , right: Tψ. The “axis vertices” are labeled in the first two graphs.

Now G(Tψ) is connected iff G(ψ) is connected.

Step 2. Again, we use the algorithm Tr from the previous proof to transform any
1-reproducing 3-CNF-formula φ into a B-formula φ′ equivalent to Tφ, but with the

64 4.4 The Hard Side of the Dichotomy

definition (4.4.1) of T . Again, we have to show T∧(Tψ1
, Tψ2

) ≡ Tψ1∧ψ2
. Here,

T∧(Tψ1
, Tψ2

) = (Tψ1
∧ Tψ2

∧ (y = 1)) ∨
(

Tψ1
∧ Tψ2

∧ (y = 0)
)

∨
(

y ∈ {100, 010, 001} ∧ ¬
(

Tψ1
∧ Tψ2

∧ (y = 001)
))

∨ (Tψ1
∧ Tψ2

∧ (y = 110)) .

We consider the parts of the formula in turn: For any formula ξ we have Tξ(xξ) ∧ (y =
1) ≡ ξ(xξ) ∧ (y = 1) and Tξ(xξ) ∧ (y = 0) ≡ ψ(xξ) ∧ (y = 0), where xξ denotes the

variables of ξ. Using Tψ1
(xψ1

) ∧ Tψ2
(xψ2

)∧ (y = 0) = (Tψ1
(xψ1

) ∨ Tψ2
(xψ2

))∧ (y = 0),
the first line becomes

(ψ1(xψ1
) ∧ ψ2(xψ2

) ∧ (y = 1)) ∨
((

ψ1(xψ1
) ∧ ψ2(xψ2

)
)

∧ (y = 0)
)

.

For the second line, we observe

Tψ(xψ) ≡
(

ψ(xψ) ∨ ¬(y = 1)
)

∧ (ψ(xψ) ∨ ¬(y = 0))

∧ (y /∈ {100, 010, 001} ∨ ((xψ = 0) ∧ (y = 001)))

∧(¬(xψ = 1) ∨ (y = 110)),

thus Tψ(xψ) ∧ (y = 001) ≡ (xψ = 0) ∧ (y = 001), and the second line becomes

∨ (y ∈ {100, 010, 001} ∧ ¬ ((xψ1
= 0) ∧ (xψ2

= 0) ∧ (y = 001))) .

Since Tψ(xψ) ∧ (y = 110) ≡ (xψ = 1) ∧ (y = 110) for any ψ, the third line becomes

∨ ((xψ1
= 1) ∧ (xψ2

= 1) ∧ (y = 110)) .

Now T∧(Tψ1
, Tψ2

) equals

Tψ1∧ψ2
= (ψ1(xψ1

) ∧ ψ2(xψ2
) ∧ (y = 1)) ∨

(

ψ1(xψ1
) ∧ ψ2(xψ2

) ∧ (y = 0)
)

∨ (y ∈ {100, 010, 001} ∧ ¬ ((xψ1
= 0) ∧ (xψ2

= 0) ∧ (y = 001)))

∨ ((xψ1
= 1) ∧ (xψ2

= 1) ∧ (y = 110)) .

2. This follows from 1. by Proposition 4.3.1.
3. By Lemma 2.3.2 there is an 1-reproducing (n − 3)-ary function f with diameter

of at least 2⌊n−3

2
⌋. Let f be represented by a formula φ; then, Tφ represents an n-ary

function of the same diameter in D1.

Lemma 4.4.6 If [B] ⊇ Sk02 for any k ≥ 2,

1. st-BF-Conn(B) and BF-Conn(B) are PSPACE-complete,

2. st-Circ-Conn(B) and Circ-Conn(B) are PSPACE-complete,

3. for n ≥ k+4, there is an n-ary function f ∈ [B] with diameter of at least 2⌊n−k−2

2
⌋.

Proof. 1. Step 1. Since Sk02 = Sk0 ∩ R0 ∩ R1, Tψ must be 0-separating of degree k, 0-
reproducing, and 1-reproducing. As in the previous proof, we construct an intermediate

4 Connectivity of Nested Formulas and Circuits 65

formula T∼
ψ . For ψ(x), let

T∼
ψ = (ψ ∧ y ∧ (z = 0)) ∨ (|z| > 1),

where y and z = (z1, . . . , zk+1) are new variables.

T∼
ψ (x, y, z) is 0-separating of degree k, since all vectors that are no solutions of T∼

ψ

have |z| ≤ 1, i.e. z ∈ {0 · · · 0, 10 · · · 0, 010 · · · 0, . . . , 0 · · · 01} ⊂ {0, 1}k+1, and thus any
k of them have at least one common variable assigned 0. Also, T∼

ψ is 0-reproducing
and still 1-reproducing.

Further, for any two solutions s and t of ψ(x), s′ = s · 1 · 0 · · · 0 and t′ = t · 1 · 0 · · · 0
are solutions of T∼

ψ (x, y, z) and are connected in G(T∼
ψ) iff s and t are connected in

G(ψ).

But again, we have produced an additional connected component (consisting of all
solutions with |z| > 1). To connect it to a component corresponding to one of ψ, we
add 1 · · · 1 · 1 · 10 · · · 0 as a solution,

Tψ = (ψ ∧ y ∧ (z = 0)) ∨ (|z| > 1) ∨ ((x = 1) ∧ y ∧ (z = 10 · · · 0)) .

Now G(Tψ) is connected iff G(ψ) is connected.

Step 2. Again we show that the algorithm Tr works in this case. Here,

T∧(Tψ1
, Tψ2

) = (Tψ1
(xψ1

) ∧ Tψ2
(xψ2

) ∧ y ∧ (z = 0)) ∨ (|z| > 1)

∨ (Tψ1
(xψ1

) ∧ Tψ2
(xψ2

) ∧ y ∧ (z = 10 · · · 0)) .

Since Tψ(xψ) ∧ y ∧ (z = 0) ≡ ψ(xψ) ∧ y ∧ (z = 0) and Tψ(xψ) ∧ y ∧ (z = 10 · · · 0) ≡
(xψ = 1) ∧ y ∧ (z = 10 · · · 0) for any ψ, this is equivalent to

Tψ1∧ψ2
= (ψ1(xψ1

) ∧ ψ2(xψ2
) ∧ y ∧ (z = 0)) ∨ (|z| > 1)

∨ (xψ1
∧ xψ2

∧ y ∧ (z = 10 · · · 0)) .

2. This follows from 1. by Proposition 4.3.1.

3. By Lemma 2.3.2 there is an 1-reproducing (n−k−2)-ary function f with diameter

of at least 2⌊n−k−2

2
⌋. Let f be represented by a formula φ; then, Tφ represents an n-ary

function of the same diameter in Sk02.

This completes the proof of Theorem 4.2.1.

4.5 Quantified Formulas

Definition 4.5.1 A quantified B-formula φ (in prenex normal form) is an expression
of the form

Q1y1 · · ·Qmymϕ(y1, . . . , ym, x1, . . . , xn),

where ϕ is a B-formula, and Q1, . . . , Qm ∈ {∃,∀} are quantifiers. We denote the
corresponding connectivity resp. st-connectivity problems by QBF-Conn(B) resp.
st-QBF-Conn(B).

Theorem 4.5.2 Let B be a finite set of Boolean functions.

66 4.5 Quantified Formulas

1. If B ⊆ M or B ⊆ L, then

a) st-QBF-Conn(B) and QBF-Conn(B) are in P,

b) the diameter of every quantified B-formula is linear in the number of free
variables.

2. Otherwise,

a) st-QBF-Conn(B) and QBF-Conn(B) are PSPACE-complete,

b) there are quantified B-formulas with at most one quantifier such that their
diameter is exponential in the number of free variables.

Proof. 1. For B ⊆ M, any quantified B-formula φ represents a monotone function:
Using ∃yψ(y,x) = ψ(0,x) ∨ ψ(1,x) and ∀yψ(y,x) = ψ(0,x) ∧ ψ(1,x) recursively, we
can transform φ into an equivalent M-formula since ∧ and ∨ are monotone. Thus as
in Lemma 4.3.2, st-QBF-Conn(B) and QBF-Conn(B) are trivial, and df (a, b) =
|a− b| for any two solutions a and b.

For a quantified B-formula φ = Q1y1 · · ·Qmymϕ with B ⊆ L, we first remove the
quantifications over all fictive variables of ϕ (and eliminate the fictive variables if
necessary). If quantifiers remain, φ is either tautological (if the rightmost quantifier is
∃) or unsatisfiable (if the rightmost quantifier is ∀), so the problems are trivial, and
df (a, b) = |a− b| for any two solutions a and b. Otherwise, we have a quantifier-free
formula and the statements follow from Lemma 4.3.4.

2. Again as in Lemma 2.3.1, it follows that st-QBF-Conn(B) and QBF-Conn(B)
are in PSPACE, since the evaluation problem for quantified B-formulas is in PSPACE
[Sch78].

An inspection of Post’s lattice shows that if B * M and B * L, then [B] ⊇ S12,
[B] ⊇ D1, or [B] ⊇ S02, so we have to prove PSPACE-completeness and show the
existence of B-formulas with an exponential diameter in these cases.

For [B] ⊇ S12 and [B] ⊇ D1, the statements for the PSPACE-hardness and the
diameter obviously carry over from Theorem 4.2.1.

For B ⊇ S02, we give a reduction from the problems for (unquantified) 3-CNF-
formulas; we proceeded again similar as in the proof of Lemma 4.4.4. We give a
transformation Tψ s.t. Tψ ∈ S02 for all formulas ψ. Since S02 = S0 ∩ R0 ∩ R1, Tψ must
be self-dual, 0-reproducing, and 1-reproducing. For ψ(x) let

Tψ = (ψ ∧ y) ∨ z,

with the two new variables y and z.
Tψ is 0-separating since all vectors that are no solutions have z = 0. Also, Tψ is

0-reproducing and 1-reproducing. Again, we use the algorithm Tr from the proof of
Lemma 4.4.4 to transform any 3-CNF-formula φ into a B-formula ϕ′ equivalent to Tφ.
Again, we show

T∧(Tψ1
, Tψ2

) = (((ψ1 ∧ y) ∨ z) ∧ ((ψ2 ∧ y) ∨ z) ∧ y) ∨ z

≡ ((ψ1 ∧ y) ∧ (ψ2 ∧ y) ∧ y) ∨ z

≡ (ψ1 ∧ ψ2 ∧ y) ∨ z = Tψ1∧ψ2
.

4 Connectivity of Nested Formulas and Circuits 67

Now let
φ′ = ∀zϕ′.

Then, for any two solutions s and t of φ(x), s′ = s · 1 and t′ = t · 1 are solutions of
φ′(x, y), and they are connected in G(φ′) iff s and t are connected in G(φ), and G(φ′)
is connected iff G(φ) is connected.

The proof of Lemma 2.3.2 shows that there is an (n−1)-ary function f with diameter

of at least 2⌊n−1

2
⌋. Let f be represented by a formula φ; then φ′ as defined above is a

quantified B-formula with n free variables and one quantifier with the same diameter.

Remark 4.5.3. An analog to Theorem 4.5.2 also holds for quantified circuits as defined
in [RW00, Section 7].

5 Future Directions

We have proved classifications in two quite different settings: In Schaefer’s framework
for constraint satisfaction problems, specifically CNFC(S)-formulas, CNF(S)-formulas
and Q-CNFC(S)-formulas, and in Post’s framework for nested formulas and circuits,
specifically B-formulas, B-circuits, and quantified B-formulas.

While we now have a quite complete picture for nested formulas and circuits, and also
for CNFC(S)-formulas and Q-CNFC(S)-formulas, the complexity of the connectivity
problem for CNF(S)-formulas without constants is still open for sets S that are 0-valid,
1-valid, or complementive, but not Schaefer, nor nc-CPSS, nor quasi disconnecting.

Recently, Scharpfenecker refined some of our complexity results for CNFC(S)-formulas
up to logarithmic-space isomorphisms and investigated the realizable solution-graphs
in more detail [Sch15].

It seems very likely that connectivity is not for all these sets in P, since there are
even Schaefer sets that are 0-valid or 1-valid, but have a coNP-complete connectivity
problem. On the other hand, it seems promising to search for more nc-CPS sets, for
which we have a P or PNP algorithm.

Also, one might further explore the connection between the connectivity of CNF-
formulas and properties of the corresponding hypergraphs (see Remark 2.7.3); while
we used this connection only for Horn formulas and thus dealt with hypergraphs of
head-size 1, there might be useful reductions between the connectivity problems for
more general CNF-formulas and problems for the corresponding hypergraphs.

There is a multitude of interesting variations of the problems investigated in this
thesis, in different directions; we close with a quick survey of some such variations.

• Other representations of Boolean relations Disjunctive normal forms with
special connectivity properties were studied by Ekin et al. already in 1997 for their
“important role in problems appearing in various areas including in particular
discrete optimization, machine learning, automated reasoning, etc.” [EHK99].

There are yet more kinds of representations for Boolean relations, such as binary
decision diagrams and Boolean neural networks, and investigating the connectivity
in these settings might be worthwhile as well.

• Related problems Other connectivity-related problems already mentioned by
Gopalan et al. are counting the number of components and approximating the
diameter. For counting the number of components, Gopalan et al. mentioned in
[GKMP06] that they could show that the problem is in P for affine, monotone and
dual-monotone relations, and #P-complete otherwise.

Further, especially with regard to reconfiguration problems, it is interesting
to find the shortest path between two solutions; this was recently investigated
by Mouawad et al. [MNPR14], who proved a computational trichotomy for this
problem. In this direction, one could also consider the optimal path according to
some other measure.

• Other definitions of connectivity Our definition of connectivity is not the only
sensible one: One could regard two solutions connected whenever their Hamming

70

distance is at most d, for some d ≥ 1; this was already considered related to
random satisfiability, see [ART06]. This generalization seems meaningful as well
as challenging.

• Higher domains Finally, a most interesting subject are CSPs over larger do-
mains; in 1993, Feder and Vardi conjectured a dichotomy for the satisfiability
problem over arbitrary finite domains [FV98], and while the conjecture was proved
for domains of size three in 2002 by Bulatov [Bul02], it remains open to date for
the general case. Close investigation of the solution space might lead to valuable
insights here.

For k-colorability, which is a special case of the general CSP over a k-element
set, the connectivity problems and the diameter were already studied by Bonsma
and Cereceda [BC09], and Cereceda, van den Heuvel, and Johnson [CvdHJ11].
They showed that for k = 3 the diameter is at most quadratic in the number of
vertices and the st-connectivity problem is in P, while for k ≥ 4, the diameter can
be exponential and st-connectivity is PSPACE-complete in general.

Bibliography

[AP01] Kim Allan Andersen and Daniele Pretolani, Easy cases of probabilistic
satisfiability, Annals of Mathematics and Artificial Intelligence 33 (2001),
no. 1, 69–91. 25

[APT79] Bengt Aspvall, Michael F. Plass, and Robert Endre Tarjan, A linear-time
algorithm for testing the truth of certain quantified boolean formulas, Inf.
Process. Lett. 8 (1979), no. 3, 121–123. 54

[ART06] Dimitris Achlioptas and Federico Ricci-Tersenghi, On the solution-space
geometry of random constraint satisfaction problems, Proceedings of the
thirty-eighth annual ACM symposium on Theory of computing, ACM,
2006, pp. 130–139. 70

[Bau07] Michael Bauland, Complexity results for boolean constraint satisfaction
problems, Ph.D. thesis, 2007. 50, 54

[BB08] Uwe Bubeck and Hans Kleine Büning, Models and quantifier elimination
for quantified horn formulas, Discrete Applied Mathematics 156 (2008),
no. 10, 1606–1622. 52

[BC09] Paul Bonsma and Luis Cereceda, Finding paths between graph colourings:
Pspace-completeness and superpolynomial distances, Theoretical Computer
Science 410 (2009), no. 50, 5215–5226. 70

[BCRV03] Elmar Böhler, Nadia Creignou, Steffen Reith, and Heribert Vollmer, Play-
ing with boolean blocks, part i: Posts lattice with applications to complexity
theory, SIGACT News, 2003. 9, 55, 56

[BRSV05] Elmar Böhler, Steffen Reith, Henning Schnoor, and Heribert Vollmer,
Bases for boolean co-clones, Information Processing Letters 96 (2005),
no. 2, 59–66. 9

[Bul02] Andrei A Bulatov, A dichotomy theorem for constraints on a three-element
set, Foundations of Computer Science, 2002. Proceedings. The 43rd Annual
IEEE Symposium on, IEEE, 2002, pp. 649–658. 70

[CH96] Nadia Creignou and Miki Hermann, Complexity of generalized satisfiability
counting problems, Information and Computation 125 (1996), no. 1, 1–12.
47

[CKS01] Nadia Creignou, Sanjeev Khanna, and Madhu Sudan, Complexity classi-
fications of boolean constraint satisfaction problems, Society for Industrial
and Applied Mathematics, Philadelphia, PA, USA, 2001. 8, 9

[CKV08] Nadia Creignou, Phokion G. Kolaitis, and Heribert Vollmer, Complexity of
constraints, 2008. 12

72 Bibliography

[CKZ08] Nadia Creignou, Phokion Kolaitis, and Bruno Zanuttini, Structure identi-
fication of boolean relations and plain bases for co-clones, Journal of Com-
puter and System Sciences 74 (2008), no. 7, 1103–1115. 2

[CvdHJ11] Luis Cereceda, Jan van den Heuvel, and Matthew Johnson, Finding paths
between 3-colorings, Journal of graph theory 67 (2011), no. 1, 69–82. 70

[EHK99] Oya Ekin, Peter L Hammer, and Alexander Kogan, On connected boolean
functions, Discrete Applied Mathematics 96 (1999), 337–362. 69

[FM07] Zhaohui Fu and Sharad Malik, Extracting logic circuit structure from con-
junctive normal form descriptions, VLSI Design, 2007. Held jointly with
6th International Conference on Embedded Systems., 20th International
Conference on, IEEE, 2007, pp. 37–42. 3

[FV98] Tomás Feder and Moshe Y Vardi, The computational structure of monotone
monadic snp and constraint satisfaction: A study through datalog and group
theory, SIAM Journal on Computing 28 (1998), no. 1, 57–104. 70

[GKMP06] Parikshit Gopalan, Phokion G. Kolaitis, Elitza N. Maneva, and Christos H.
Papadimitriou, The connectivity of boolean satisfiability: Computational
and structural dichotomies, ICALP’06, 2006, pp. 346–357. 3, 35, 69

[GKMP09] Parikshit Gopalan, Phokion G. Kolaitis, Elitza Maneva, and Christos H.
Papadimitriou, The connectivity of boolean satisfiability: Computational
and structural dichotomies, SIAM J. Comput. 38 (2009), no. 6, 2330–2355.
3, 9, 10, 12, 13, 14, 19, 20, 21, 22, 24, 26, 52, 54, 60, 61

[GLPN93] Giorgio Gallo, Giustino Longo, Stefano Pallottino, and Sang Nguyen,
Directed hypergraphs and applications, Discrete applied mathematics 42

(1993), no. 2, 177–201. 25

[HD02] Robert A Hearn and Erik D Demaine, The nondeterministic constraint
logic model of computation: Reductions and applications, Automata, Lan-
guages and Programming, Springer, 2002, pp. 401–413. 19

[IDH+11] Takehiro Ito, Erik D. Demaine, Nicholas J. A. Harvey, Christos H. Pa-
padimitriou, Martha Sideri, Ryuhei Uehara, and Yushi Uno, On the com-
plexity of reconfiguration problems, Theor. Comput. Sci. 412 (2011), no. 12-
14, 1054–1065. 2

[KMM11] Marcin Kamiński, Paul Medvedev, and Martin Milanič, Shortest paths
between shortest paths and independent sets, Combinatorial Algorithms,
Springer, 2011, pp. 56–67. 2

[Lew79] Harry R Lewis, Satisfiability problems for propositional calculi, Mathemat-
ical Systems Theory 13 (1979), no. 1, 45–53. 56

[MMW07] Elitza Maneva, Elchanan Mossel, and Martin J Wainwright, A new look at
survey propagation and its generalizations, Journal of the ACM (JACM)
54 (2007), no. 4, 17. 3

Bibliography 73

[MMZ05] Marc Mézard, Thierry Mora, and Riccardo Zecchina, Clustering of so-
lutions in the random satisfiability problem, Physical Review Letters 94

(2005), no. 19, 197205. 3

[MNPR14] Amer E Mouawad, Naomi Nishimura, Vinayak Pathak, and Venkatesh
Raman, Shortest reconfiguration paths in the solution space of boolean for-
mulas, arXiv preprint (2014). 69

[MTY07] Kazuhisa Makino, Suguru Tamaki, and Masaki Yamamoto, On the boolean
connectivity problem for horn relations, Proceedings of the 10th inter-
national conference on Theory and applications of satisfiability testing,
SAT’07, 2007, pp. 187–200. 3, 24, 54

[Pos41] Emil L Post, The two-valued iterative systems of mathematical logic.(am-
5), vol. 5, Princeton University Press, 1941. 56

[RW99] Steffen Reith and Klaus W. Wagner, The complexity of problems defined
by subclasses of boolean functions, Tech. report, 1999. 56

[RW00] Steffen Reith and Klaus W Wagner, The complexity of problems defined by
boolean circuits, 2000. 56, 67

[Sch78] Thomas J. Schaefer, The complexity of satisfiability problems, STOC ’78,
1978, pp. 216–226. 7, 12, 35, 36, 50, 66

[Sch07] Henning Schnoor, Algebraic techniques for satisfiability problems, Ph.D.
thesis, Universität Hannover, 2007. 56

[Sch13] Konrad W Schwerdtfeger, A computational trichotomy for connectivity of
boolean satisfiability, Journal on Satisfiability, Boolean Modeling and Com-
putation 8 (2013), 173–195, Corrected version at http://arxiv.org/abs/

1312.4524. 3, 8, 10, 14

[Sch14a] , The connectivity of boolean satisfiability: Dichotomies for formu-
las and circuits, Proceedings of the 9th International Computer Science
Symposium in Russia (CSR 2014) (2014), 351–364, http://arxiv.org/

abs/1312.6679. 4

[Sch14b] , The connectivity of boolean satisfiability: No-constants and quan-
tified variants, arXiv CoRR (2014), http://arxiv.org/abs/1403.6165.
4

[Sch15] Patrick Scharpfenecker, On the structure of solution-graphs for boolean for-
mulas, Fundamentals of Computation Theory, Springer International Pub-
lishing, 2015, pp. 118–130. 69

[Tho12] Michael Thomas, On the applicability of post’s lattice, Information Pro-
cessing Letters 112 (2012), no. 10, 386–391. 56

[Vol99] Heribert Vollmer, Introduction to circuit complexity: A uniform approach,
Springer-Verlag New York, Inc., 1999. 55

http://arxiv.org/abs/1312.4524
http://arxiv.org/abs/1312.4524
http://arxiv.org/abs/1312.6679
http://arxiv.org/abs/1312.6679
http://arxiv.org/abs/1403.6165

74 Bibliography

[WLLH07] Chi-An Wu, Ting-Hao Lin, Chih-Chun Lee, and Chung-Yang Ric Huang,
Qutesat: a robust circuit-based sat solver for complex circuit structure,
Proceedings of the conference on Design, automation and test in Europe,
EDA Consortium, 2007, pp. 1313–1318. 3

Lebenslauf

Name Konrad Widukind Schwerdtfeger

6. 8. 1985 in Hildesheim geboren

1992 – 1996 Grundschule Nordstemmen

1996 – 2005 Gymnasium Andreanum, Hildesheim

2005 Abitur

2005 – 2006 Wehrdienst

2005 – 2010 Studium der Physik an der Leibniz Universität Hannover

2010 Diplom in theoretischer Physik

2010 – 2015 Promotionsstudium am Institut für Theoretische Informatik der
Universität Hannover

	Introduction
	Boolean Satisfiability and Solution Space Connectivity
	Relevance of Solution Space Connectivity
	Related Work, Prior Publications, and this Thesis
	Associated Software
	General Preliminaries

	Connectivity of Constraints
	Preliminaries
	CNF-Formulas and Schaefer's Framework
	Classes of Relations
	Classes of Sets of Relations

	Results
	The General Case: Reduction from a Turing Machine
	Extension of PSPACE-Completeness: Structural Expressibility
	Safely Tight Sets of Relations: Structure and Algorithms
	CPSS Sets of Relations: A Simple Algorithm for Connectivity
	The Last Piece: coNP-Hardness for Connectivity
	Connectivity of Horn Formulas
	Reduction from Satisfiability
	Expressing M

	Further Results about Constraint-Projection Separation

	No-Constants and Quantified Variants
	No-Constants
	st-Connectivity and Diameter
	Deciding Connectivity via Constraint-Projection Separation
	Deciding Connectivity via Self-Implication
	coNP-Completeness for Connectivity within Schaefer
	Reductions for Connectivity

	Quantified Constraints
	Properties that Persist
	coNP-Completeness for Connectivity
	Deciding Connectivity in Polynomial Time

	Connectivity of Nested Formulas and Circuits
	Preliminaries: B-Circuits, B-Formulas, and Post's Lattice
	Results
	The Easy Side of the Dichotomy
	The Hard Side of the Dichotomy
	Quantified Formulas

	Future Directions
	Bibliography

