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Kurzzusammenfassung 

Während des letzten Jahrzehnts wurde der Synthese von verschiedenen 

Photokatalysatoren viel Aufmerksamkeit gewidmet, während grundlegende 

Untersuchungen der zugrunde liegenden photokatalytischen Prozesse nur selten 

durchgeführt wurden. Die Kenntnis dieser Prozesse ist jedoch von großer Bedeutung für 

das Verständnis des Reaktionsmechanismus und damit für eine bessere Gestaltung 

photokatalytischer Systemen. Obwohl Titandioxid (TiO2) einer der am besten 

untersuchten Photokatalysatoren ist, gibt es aktuell viele offene Fragen in Bezug auf die 

Ladungsträgerthermalisierung und ihre Rekombinationskinetik. Die Laserblitzphotolyse-

Spektroskopie ist eine weit verbreitete Methode, um solche lichtinduzierten Vorgänge zu 

untersuchen. 

 In der vorliegenden Arbeit wurde die Rekombinationsdynamik der lichtinduzierten 

Ladungsträger in verschiedenen TiO2 Pulvern mittels der Nanosekunden-

Diffusreflektions-Laserblitzphotolyse-Spektroskopie untersucht. Für diese Studien 

wurden verschiedene Anatas-TiO2 und Rutil-TiO2 Proben ausgewählt. Unter gleichen 

Versuchsbedingungen und bei gleicher Kristallitgröße zeigten die im Anatas erzeugten 

Ladungsträger kürzere Lebensdauern als die im Rutil gebildeten. Neben dem Einfluss der 

Morphologie auf die Lebensdauer der Ladungsträger wurde ihre Korrelation mit der 

Partikelgröße untersucht.  

 Um den getrappten Elektronen und Löchern in den transienten Absorptionsspektren 

von TiO2 den jeweils korrekten Wellenlängenbereich zuzuordnen, wurden 

Elektronenakzeptoren und -donatoren eingesetzt. Hierdurch konnten die transienten 

Absorptionssignale im Wellenlängenbereich oberhalb von 450 nm den getrappten 

Elektronen zugeordnet werden, während die transienten Absorptionen der getrappten 

Löcher unterhalb von 450 nm detektiert wurden. 

 Der Anstieg der Laserenergie hatte einen starken Einfluss auf die optischen 

Eigenschaften der Ladungsträger. Eine detaillierte Charakterisierung der laserbestrahlten 

TiO2 Pulverproben zeigte bei diesen erhebliche strukturelle Veränderungen. Sowohl bei 

Rutil als auch bei Anatas wurde die Bildung langlebiger Ti
3+

-Zentren detektiert, und es 

wurde im Falle der reinen Anatas Proben zusätzlich ein Phasenübergang zu Rutil 

beobachtet. Zudem wurde eine signifikante Zunahme des Absorptionskoeffizienten der 

getrappten Löcher aufgrund der langlebigen Ti
3+

-Zentren festgestellt, während die 

Rekombinationskinetik unverändert blieb. Schließlich konnte ein einheitliches kinetisches 

Modell hergeleitet werden, um die Zerfallsprofile der erhaltenen transienten 

Absorptionssignale im Detail zu beschreiben. 

Stichwörter: Titandioxid, Laserblitzphotolyse, Transiente Absorptionssiganle, getrappte 

Ladungsträger, Rekombinationsdynamik.  



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

Abstract 

During the last decade great attention has been paid to the synthesis of different 

photocatalysts possessing high photocatalytic activity, whereas fundamental studies 

concerning the underlying photocatalytic processes have rarely been executed. The 

knowledge of these processes is, however, of utmost importance for the understanding of 

the reaction mechanism and thus for a better design of photocatalytic systems. Although 

titanium dioxide (TiO2) is one of the most studied photocatalysts until now many open 

questions are existing concerning charge carrier trapping and charge transfer processes. 

The Laser Flash Photolysis Spectroscopy is one widely used method to study such 

fundamental processes.  

 In the present work the recombination dynamics of the charge carriers photogenerated 

in different TiO2 powders have been investigated by means of Nanosecond Diffuse 

Reflectance Laser Flash Photolysis Spectroscopy. For these studies different 100 % 

anatase TiO2 and 100 % rutile TiO2 samples have been chosen. Provided that the same 

experimental conditions and the same crystallite size are employed shorter life-times of 

the photogenerated charge carriers have been found for anatase TiO2 as compared with 

rutile TiO2. Besides the effect of the morphology and crystallinity on the charge carrier 

life-time the correlation of the latter with the particle size has been investigated.  

 To identify the wavelength region in the transient absorption spectra of TiO2 where the 

photogenerated electrons and holes absorb, electron acceptors and donors have been 

employed. In the presence of the former the transient absorption at wavelengths above 

450 nm could be attributed to the trapped electrons, while in presence of the latter the 

transient absorption of the trapped holes below 450 nm has been identified. 

 The increase of the laser energy had a strong effect on the absorption properties of the 

charge carriers. A detailed characterization of the employed TiO2 powder samples 

following their laser exposure revealed considerable structural changes. For both rutile 

and anatase, the formation of long-lived Ti
3+

 centers was detected, and in the case of the 

pure anatase sample a phase transition to rutile occurred. Moreover, the formed Ti
3+

 

species lead to enhanced extinction coefficient of the trapped holes, while their 

recombination kinetics were not affected. Finally, a unified kinetic model could be 

derived to describe the decay profiles of the obtained transient absorption signals. 

Keywords: titanium dioxide, laser flash photolysis, transient absorption signals, trapped 

charge carriers, recombination dynamics.  
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1. Introduction and objectives 

The catastrophic consequences of increased power consumption, such as drastically 

raising CO2 levels, natural disasters, and environmental pollution have given reason, in 

particular, following the earthquake-tsunami disaster in Fukushima, to raise serious 

concerns about the supply of energy from fossil fuels and nuclear power. Being part of 

the development of environmentally clean and safe sustainable technologies 

photocatalysis is attracting increasing attention. The concept of photocatalysis, which 

includes the conversion of solar into chemical energy by means of a photocatalyst, has 

been described for the first time in the second decade of the 20th century (1910-1920).
1
 

At this time, the scientists observed the oxidative degradation of organic molecules such 

as dye pigments on the illuminated surfaces of metal oxides such as zinc oxide, ZnO, and 

titanium dioxide, TiO2. The subsequent research focused on the development of 

photocatalytic materials for the cleaning of surfaces, air, and water.
2
 After Honda and 

Fujishima discovered in 1971 the photosensitizing effect of a TiO2 electrode for the 

electrolytic splitting of water into hydrogen and oxygen, photocatalysis gained additional 

significance as a potential method for the storage of solar energy in the form of hydrogen 

gas.
3
 

 Despite years of intensive research the photocatalytic activity of the known 

photocatalysts is still not sufficient for widespread applications. The development of new 

effective photocatalysts is therefore the focal point of research in this field. At the present 

time this has prompted many research groups to employ so-called high-throughput 

methods enabling the rapid development of new compounds through a systematic and 

efficient investigation of a very complex parameter space.
4
 However, until now no real 

progress could be achieved. Hence, studies concerning the mechanisms of the underlying 

photocatalytic processes represent an alternative elegant way for the design of efficient, 

tailored photocatalysts.  

 In the present study, the laser flash photolysis spectroscopy has been applied to 

investigate fundamental photocatalytic processes. Herein, the photocatalyst is excited by a 

pulsed laser in the nanosecond range resulting in the photogeneration of the active species 

responsible for photocatalysis, that is, the electron-hole pairs, which can be monitored 

through their respective transient optical absorption signature. The decay time or rather 

the life-time of these active species varies depending on the morphological and physical 

properties of the photocatalyst thus determining its photocatalytic activity.
5
  



1. Introduction and objectives 

2 

 

TiO2, being the most investigated photocatalyst, was used in this study as a reference 

material. Although research on TiO2 has been carried out for more than 40 years, there 

are still a lot of conflicting opinions and confusion regarding the underlying 

photocatalytic reaction mechanism. Hence, it is important to fill the existing knowledge 

gaps and to use the results obtained here for the development of new photocatalytic 

materials. 

 TiO2 as a semiconductor with a band gap of 3.2 eV absorbs light in the UV range. The 

applied light energy is used to excite electrons from the filled valence band to the 

conduction band. The charge carriers thus generated, that is, the electron in the 

conduction band (a reducing species) and the hole in the valence band (an oxidizing 

species), migrate to the surface where they can undergo redox reactions with adsorbed 

molecules. The photocatalytic activity represents the ability of a photocatalyst to convert 

a certain amount of absorbed photons into the respective redox products. The 

photocatalytic activity of TiO2 is limited by the fast recombination of the photogenerated 

charge carriers, with about 90% of them being lost within a few nanoseconds. This 

means, that not even 10% "surviving" carriers are responsible for the photocatalytic 

activity. Using the nanosecond laser flash photolysis spectroscopy it is possible to trace 

the "fate" and the pathways of these charge carriers. The carriers surviving in the 

nanosecond range are mostly trapped at surface defects such as under coordinated atoms 

or at oxygen vacancies. These trap states can, on the one side, serve as recombination 

centers and thereby adversely affect the activity of the photocatalyst. On the other side, 

they can act as charge transfer agents, from which the electron transfer can proceed, in 

particular, to surface-bound molecules. Which function the trap states execute depends, in 

particular, on the morphological and physical properties of the photocatalyst. 

 Most of the previous fundamental studies on TiO2 dealing with the reaction dynamics 

of the photogenerated charge carriers have been performed employing colloidal TiO2 

suspensions or transparent films.
6-14

 By means of these studies the entire time regime of 

the photoinduced processes such as formation, trapping, recombination, and transfer of 

the charge carriers has been analyzed. Moreover, the trapped charge carriers could be 

spectroscopically characterized with the holes absorbing in the UV-vis and the electrons 

in the visible-IR spectral region. However, the charge carrier dynamics in bulk 

commercial TiO2 powders have rarely been studied, although in many reports the 

obtained photocatalytic activities have been explained in terms of the respective charge 

carrier recombination kinetics, even though the latter have not been measured. Hence, in 
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the present work different commercial TiO2 powders and self-prepared colloidal 

nanoparticles are investigated. The particular focus of the studies is directed towards the 

effect of the morphology and the particle size on the charge carrier trapping behavior and 

the recombination kinetic.  

 Moreover, possible irreversible changes of the samples following their laser exposure 

during the measurement have rarely been studied in detail, although most of the published 

transient absorption signals detected in TiO2 do not decay to the initial value observed 

before the laser pulse but rather exhibit long-lived transients within the respective time 

scales of observation.
6, 7, 9, 11, 15, 16

 For example, Serpone et al.
6
 attributed the observed 

long-lived transient absorption to deeply trapped electrons formed via so-called Auger-

processes. Another explanation for these irreversible changes of the optical properties 

might be an irreversible alteration of material's properties resulting from changes of its 

stoichiometric composition or from a phase transition. However, until now no 

experimentally based explanation for any observed permanent change of the optical 

properties of TiO2 after laser flash photolysis measurements has been given. Hence, in the 

present study the laser-induced changes of the optical and morphological properties of 

TiO2 photocatalysts are investigated by means of Raman-, EPR-, and UV-vis 

spectroscopy. 

 It is the decisive element of this thesis to derive a physical model from the above 

presented correlations between the life-time of the charge carriers and such parameters as 

morphology, particle size, number of surface defects, and carrier concentration by which 

the temporal decay of the transient absorption of active species or charge carriers can be 

accurately described. This fundamental relationship should, in the future, allow both to 

understand the properties of other photocatalyst systems and to specifically develop new 

photocatalysts with higher activities, longer life-times or other improved properties. 
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2. Theoretical background 

Chapter begins with the chemical and physical properties of TiO2 in the dark. The 

processes occurring in TiO2 under illumination such as trapping, recombination, and 

transfer of the charge carriers will be introduced in chapter 2.2. Herein, the transient 

absorption signals and spectra obtained by means of laser flash photolysis technique will 

be presented. At the end different fit models for the description of the photoinduced 

reaction kinetics obtained from the transient decays will be specified. 

2.1 TiO2 in the dark 

TiO2 occurs in the nature in three crystalline polymorphs, namely rutile, anatase, and 

brookite. Rutile is thermodynamically the most stable mineral. The metastable anatase 

and brookite phases convert irreversibly to the rutile phase at temperatures above 600 °C. 

Anatase and rutile exhibit tetragonal unit-cell structure, while brookite crystalizes in a 

more complex orthorhombic cell as shown in Figure 2.1 (upper). TiO6 octahedra in 

anatase (4 edge sharing partly distorted octahedra) and rutile (2 edge sharing nondistorted 

octahedra) result in different physicochemical properties. 

 In TiO2, as in any semiconductor, the conduction band CB is separated from the 

valence band VB by a bandgap Eg. Herein, the conduction band is mostly Ti
4+ 

3d derived, 

while the occupied states in the valence band are mostly formed by O
2- 

2p orbitals. The 

different local crystal environments of the Ti and the O atoms in the unit cells of the three 

different TiO2 phases lead to their different electronic structure. Figure 2.1 (lower) 

presents the calculated band structure of the three TiO2 polymorphs. For rutile the 

calculated bandgap of 1.78 eV is direct at Γ, the calculated minimal bandgap of 2.04 eV 

for anatase is indirect with the bottom of the CB at Γ and the top of the VB at M, while 

brookite shows a direct bandgap of 2.2 eV at Γ.
17

 The difference in the calculated 

bandgap energies between the three polymorphs is consistent with the experimental data, 

although the absolute experimental values for the bandgap energy are larger than the 

calculated ones, thus the reported experimental bandgap energy for rutile is 3.0 eV
18

, for 

anatase 3.2 eV
19

, and for brookite 3.4 eV
20

. 
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Figure 2.1: (upper) The crystallographic structure of (a) rutile (tetragonal), (b) anatase (tetragonal), and (c) 

brookite (orthorhombic), respectively with the corresponding lattice constants in Å, respectively. (lower) 

Calculated band structures of (a) rutile, (b) anatase, and (c) brookite. Adapted with permission from ref.
17

 

Copyright 1995 American Physical Society. 

The energy of the band levels in TiO2 can vary not only with the crystallite phase but also 

with the particle size, when the crystallite dimension of a semiconductor particle falls 

below a critical radius. Figure 2.2 (left) shows how the splitting of the energetic levels 

proceeds from the HOMO and LUMO orbitals of 2 molecules into a filled and an empty 

region as the number of contributing MOs increases. In large particles the ensemble of 

energetic levels becomes dense yielding the valence and the conduction band, 

respectively. Hence, the apparent bandgap decreases and the band edges ECB and EVB shift 

with increasing particle size. This so-called quantum-size effect has been quantitatively 

described by using a quantum mechanical model developed by Brus.
21

 Experimentally the 

shift of the energetic levels with increasing particle size has been monitored applying 

spectroscopic methods, where the shift of the absorption onset is detected. For example, 

Kormann et al.
22

 have reported a red-shift of the absorption onset of 1 eV in the spectra of 

colloidal TiO2 nanoparticles during their growth up to a diameter of 3 nm (see Figure 2.2 

(right)). 

(a) (b) (c) 
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Figure 2.2: (left) MO model for the particle growth of colloidal TiO2 particles. Reprinted with permission 

from ref 
23

. Copyright (1987) American Chemical Society. (right) Absorption spectra of TiO2 colloids at 

various growth stages, obtained by hydrolysis of 5mM TiCl4. Reprinted with permission from ref.
22

 

Copyright 1988 American Chemical Society. 

The band structures shown in Figure 2.1 (lower) correspond to the intrinsic TiO2 phase. 

However, at room temperature TiO2 contains a lot of different defects. This can 

drastically alter the electronic structure of the semiconductor by introducing additional 

energy levels in the middle of the bandgap as shown in Figure 2.3. Oxygen vacancies 

represent the most common defects in TiO2. Such surface defects can be understood as 

unpaired electrons, which were located initially in an O 2p orbital of the valence band and 

can then be either transferred, by the removal of the corresponding oxygen atom, into the 

conduction band under formation of Ti
3+

 centers or remain in the vacancy 


OV (see Figure 

2.3).
24, 25

 Diebold
26

 concluded from a detailed analysis of this electronic situation, that 

these extra electrons in the vacancies act as donor-like states. Since most of the defects 

are located at the particle surface an accumulation layer in the near-surface region occurs. 

In the presence of acceptor molecules at the TiO2 surface these additional electrons can be 

transferred to adsorbed molecules in order to achieve electronic equilibrium leaving 

empty energy levels in the middle of the bandgap, which can then act as possible traps for 

the photogenerated electrons.  
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Figure 2.3: Band model of rutile TiO2 showing the energy levels of intrinsic lattice defects. Reprinted with 

permission from ref.
27

 Copyright 2008 American Chemical Society. 

2.2 TiO2 upon bandgap irradiation 

The illumination of TiO2 with an energy hν greater or equal to the bandgap energy Eg 

leads to the excitation of electrons from the valence band into the conduction band. 

Excitation of TiO2 is typically thought to pass through an excitonic state (where the 

electron is bound as a quasi-particle by the hole) followed by the charge separation due to 

a low exciton binding energy of approx. 4 meV.
28

 Ultrafast laser flash photolysis 

experiments have shown that the formation of the electron-hole pairs proceeds within a 

few femtoseconds after the photon absorption (see Figure 2.4 (1)).  

 To reduce the excess energy the charge carriers migrate from the bulk to the surface. 

Enright et al.
29

 observed in nanocrystalline (nc) TiO2 (anatase) films by means of 

spectroelectrochemical techniques that the diffusion coefficient for the holes is higher 

(Dh = 4·10
-5

 m
2
 s

-1
) than that of the electrons (De < 1·10

-6
 m

2
 s

-1
). Lantz et al.

30
 reported 

similar hole mobilities in rutile. Using these values the average transit time of the 

photogenerated charge carriers from the bulk to the surface of the particle can be 

calculated by:
8
  

Dπ

r
τ

2

2

   (2.1) 

With a particle radius r of 10 nm the transit time for the holes is 250 fs and that for the 

electrons > 10 ps.  
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Once they reach the surface the charge carriers can be trapped at pre-existing defect states 

thus reducing their motion speed. Di Valentin et al.
31

 reported that holes and electrons 

populate surface sites due to the following reasons: 1. The lattice relaxation associated 

with the trapping is more feasible at the surface than in the bulk because of the possibility 

for the surface structure to relax with fewer constrains. 2. At the surface the energy levels 

calculated for the self-trapped charge carriers are deeper in the gap with respect to the 

bulk levels, confirming that there is a driving force for electrons and holes to migrate to 

the surface.  

 One of the first studies focused on the charge transfer dynamics of this systems was 

performed by Rothenberger et al.
15

 employing colloidal TiO2 nanoparticles. The required 

time for the electron transfer to their respective surface traps was found to be > 30 ps, 

while the hole trapping time was reported to be 250 ns. In more recent studies much faster 

trapping times have been obtained, thus the trapping at the shallow traps (energetically 

close to the conduction or valence band) has been found to be in the time range between 

50 to 200 fs for photogenerated electrons and holes, while the relaxation of the electrons 

into deeper traps (energetically in the middle of the bandgap) occurs within 500 ps (see 

Figure 2.4 (2)-(5)).
32-34

  

 These fast charge carrier trapping times indicate that both, the electrons and the holes 

can be rapidly localized at the surface of the semiconductor evincing efficient charge 

separation. This is one of the reasons why TiO2 exhibits relatively high reactivity for 

various photocatalytic reactions.
5, 35

  

 However, the time-resolved spectroscopic studies reveal that most of the 

photogenerated electron-hole pairs recombine rapidly, thus after a few nanoseconds only 

10 % of the initially generated charge carriers remain (see Figure 2.4 (6)-(7)). The 

surviving charge carriers can be transferred to surface adsorbed molecules initiating 

different reduction and oxidation reactions (see Figure 2.4 (8)-(12)). 

 All photoinduced processes presented in Figure 2.4 such as trapping, recombination, 

and interfacial charge transfer will be discussed in more detail in the next chapter. 
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Figure 2.4: Photoinduced reactions in TiO2 photocatalysis with the corresponding timescales. Adapted with 

permission from ref.
5
 Copyright 2014 American Chemical Society. 

2.2.1 Hole trapping 

Many studies have been performed to establish the chemical nature of the trapping sites 

for photogenerated holes in TiO2.
28

 Generally, it is assumed that holes can be trapped at 

low coordinated oxygen atoms present at the particle surface. Ti
4+

 vacancies represent 

further possible trapping sites in p-type TiO2.
36

 However, the most controversial point in 

the discussions concerning the trapping of the holes is, whether superficially adsorbed 

hydroxyl groups, or surface bound oxygen atoms can trap the photogenerated holes. Older 

reports propose the hydroxyl radical 
•
OH generation as a result of the hole trapping: 

37-39
 

  OH~TiOTiOHTiOTih 424424

VB
 (2.2) 

Recently, W. Choi and coworker reported direct observation of the generation and the 

subsequent diffusion of 
•
OH radicals from the illuminated TiO2 surface to the solution 
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bulk using a single-molecule detection method.
40

 Herein, the mobile 
•
OH is found to be 

generated on anatase but not on rutile, thus this molecular phenomenon could explain the 

different macroscopic behavior of anatase and rutile in photocatalysis. 

Other groups reported results, which clearly showed that the primary products of the hole 

trapping are not superficially bound or free hydroxyl radicals but rather oxygen radical 

anions in the TiO2 lattice:
41-44

  

  44424

VB TiOTiTiOTih
 

(2.3) 

According to the results discussed above the trapped holes are considered to be localized 

at certain surface sites. This can be the case at very low temperatures, as for example 

during the Electron Paramagnetic Resonance spectroscopy (EPR) measurements (an 

experimental technique to monitor the formation of paramagnetic species) with the 

hopping of the charge carriers being limited and thus more localized trapped states will be 

formed. Nevertheless, at room temperature the photogenerated holes will rather be 

trapped at different locations distributed over a certain radius within the surface layer, 

with this surface of the particles having a thickness that can range between 0.35 nm
45

 and 

several atomic layers.
46

 In this way the trapped holes do not remain localized at certain 

surface sites, but are rather delocalized over the surface region. Shapovalov et al.
47

 have, 

for example, suggested that the holes can be delocalized over at least two surface oxygen 

atoms, and can be transferred between surface oxygen atoms and adsorbed species, thus, 

both O
•-
 and 

•
OH species can be formed. These results are supported by theoretical DFT-

U calculations performed for the TiO2 (110) surface by Ji et al.
48

. These authors reported 

that in the presence of a water molecule the electron can be transferred from water to a 

bridging oxygen atom through the formation of a 
•
OH radical. The latter is adsorbed on 

the Ti row and shares the hole with an in-plane oxygen atom.  

 The laser flash photolysis spectroscopy (the measuring principle of which will be 

presented in chapter 3. Experimental) provides an useful technique to study reaction 

dynamics and the formation of the trapped states at the TiO2 surface. Hereby, the transient 

absorption or the luminescence of the excited states is usually detected. For example, free 

•
OH and free O

•-
 exhibit transient absorption spectra with maxima located around 

260 nm.
49

 When these free radical groups are, however, located at surficial Ti sites 

usually a substantial red shift of the transient absorption spectrum results.
39

 Figure 2.5 
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shows typical transient absorption spectra of trapped holes observed for colloidal TiO2 

modified with platinum as electron scavenger. 

 The transient spectra of the trapped holes are slightly different when comparing the 

results reported by different researchers. The absorption maxima of the trapped holes 

have been reported to lie in the wavelength region between 350 nm and 630 nm
7, 11-13, 16, 

32, 33, 39, 50-56
, indicating that apparently different trapped states for the holes coexist in 

TiO2 particles. Bahnemann et al.
16

 performed a laser flash photolysis study employing 

colloidal TiO2 suspensions and found that at least two different types of holes have to be 

considered, namely, deeply trapped holes, which are unreactive and exhibit a transient 

absorption around 450 nm, and shallowly trapped holes, which exist in a thermally 

activated equilibrium with free holes and possess a very high oxidation potential. These 

differences in the transient absorption spectra of the trapped holes can also be attributed 

to the fact that the charge carriers are delocalized over different trapping sites, with the 

charge carriers being trapped at different energetic depths resulting in broad transient 

absorption spectra. Moreover, some studies even predict that the 
•
OH radicals exhibit 

different transient absorption features as compared with O
•-
, with the former absorbing 

primarily light in the ultraviolet range, while the latter absorb photons in the visible 

range.
12, 39

 

 

Figure 2.5: (left) Transient optical absorption spectrum observed upon laser flash excitation of an aqueous 

TiO2 sol containing deposited colloidal platinum immediately after the laser flash and the corresponding 

time profile of the absorption at 472 nm (inset). Reprinted with permission from ref.
7
 Copyright 1984 

American Chemical Society. (right) Calculated and experimental optical absorption spectra of the self-

trapped holes in anatase TiO2. Absorption bands due to the surface and bulk trapping centers are marked by 

shaded curves. The experimental spectra are marked with lines: solid (time resolution 50 ns); dashed 

(measured after 5 ms); dash-dotted (measured after 20 ns); dotted (measured after 20 ms). Reprinted with 

permission from ref.
57

 Copyright 2013 American Chemical Society. 
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Although the energetic positions of the trapped states for holes have been reported to be 

in the range between 1.3 eV and 2.5 eV above the valence band,
39, 58

 the corresponding 

transition of the excited states has still not been clarified. Either this is a transition from 

the valence band to the trap state or from the trap state to the conduction band, 

respectively. Recently, and for the first time, Zawadzki calculated the transient absorption 

spectra of trapped holes in bulk anatase TiO2 and on its 001 and 101 surfaces.
57

 

According to his calculations the transient absorption can be assigned to the (O
2-

-O
-
) 

transition, called interpolaron transition. Depending on the distance between neighboring 

O atoms the transition energy will vary, with higher transition energies corresponding to 

longer distances. As the result of these calculations the absorption spectra of trapped 

holes extend from 300 to 800 nm (see Figure 2.5 (right)). Bulk trapped holes exhibit long 

wavelengths transient absorption spectra due to the fact that the energetic difference 

between the hole trapping strength at oxygen lattice sites in the bulk is zero while on the 

surface it is high, since the surface exhibits different oxygen lattice sites. 

 The analysis of the decay kinetics of the transient absorption signals allows the 

determination of the trapped charge carrier life-times. The life-time of the trapped holes 

can be increased from the ps into the ms timescale in the presence of electron acceptors 

such as Pt as shown, for example, in Figure 2.5 (left). 
6, 7, 11, 16, 33, 50, 56

 Their transient 

absorption signal at 472 nm decays (see Figure 2.5 (left)), most likely, resulting in the 

formation of surface peroxides according to: 

  OOOO ss  (2.4) 

22ss OHOHOH  

 
(2.5) 

2.2.2 Electron trapping 

Generally, it is assumed that the electrons can be trapped at Ti
4+

 cations yielding Ti
3+

 

species or at oxygen vacancies under formation of the so-called F
+
 and F-centers. Both, 

theoretical and experimental studies are predicting bulk (subsurface) trapping rather than 

surface trapping of the photogenerated electrons.
44, 59, 47, 48,60

 However, alternative studies 

also exist demonstrating that Ti
4+

OH groups located at the TiO2 surface act as trapping 

centers for the electrons.
38, 42, 61

 Hoffmann and co-workers assume that the 

photogenerated electrons can be both surface-trapped as Ti
3+

OH and bulk trapped as Ti
3+

, 

respectively:
62, 63
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OHTiOHTie 34

CB

 
 

(2.6) 

  34

CB TiTie
 

(2.7) 

 

Figure 2.6: (left) Transient optical absorption spectrum observed upon laser flash excitation of an aqueous 

5∙10
 
mM polyvinyl alcohol containing TiO2 sol immediately after the laser flash and the corresponding time 

profile of the absorption at 625 nm (inset). Reprinted with permission from ref.
7
 Copyright 1984 American 

Chemical Society. (right) Schematic diagram summarizing the experimentally observed midgap energy 

levels for the trapped electrons beneath the Fermi level EF and those for the localized states (shallow trap 

states) below the conduction band. Adapted with permission from ref.
64

 Copyright 2013 American 

Chemical Society. 

A broad transient absorption spectrum with a maximum around 625 nm has been 

observed for electrons trapped in TiO2 in the presence of polyvinyl alcohol (see Figure 

2.6 (left)).
7
 Usually, the transient absorption maxima vary in the wavelength region 

between 600 nm and 800 nm.
7, 11, 16, 32, 33, 51, 52, 54, 56

 This transient absorption is usually 

associated with the excitation of a trapped electron from its trapping site to the conduction 

band.
65

 According to the transition wavelength the trap state should be located 1.7 eV 

below the conduction band. Due to such a decrease of the one-electron reduction power 

of molecular photogenerated electrons the reduction of the oxygen molecules should not 

be possible. This contradicts with the literature reporting the peroxyl radical anion 


2O  

formation via the trapped electrons.
16

 Therefore, Bahnemann et al.
16

 proposed that the 

transient absorption is due to the excitation of a trapped electron within a surface 

molecule.  

 However, it should be noted that the transient absorption spectrum of the trapped 

electrons is very broad indicating a wide distribution of the trapped states within the 

entire bandgap (see Figure 2.6 (right)). This could be proven experimentally by 
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monitoring the transient absorption of the free electrons formed via the excitation with 

energies corresponding to certain transitions from the trapped state to the conduction 

band. 

 Some studies report an additional transient absorption in the IR range that has been 

attributed to the presence of free electrons being distributed in the bulk of the 

semiconductor particle.
11

 Such a transient absorption in the near-IR region can be 

assigned to the transition from the bottom of the conduction band to upper levels within 

the same band. 

 Peiro et al.
51

 studied the life-time of trapped electrons in nc TiO2 films employing 

transient absorption spectroscopy and reported in the absence of ethanol (being a potential 

electron donor) and O2 (being a potential electron acceptor) a halflife of its absorption 

signal of ~25 µs. The corresponding decay has been attributed to the recombination at 

trap sites: 

  2

s

4

s

3 OTiOTi
 (2.8) 

In the presence of ethanol but still in the absence of O2 the life-time of the trapped 

electrons was found to increase up to 500 ms. Principally, in the absence of electron 

acceptors, the transient absorption of the trapped electrons should not exhibit any decay 

behavior in the presence of a hole scavenger such as ethanol, since no recombination can 

proceed due to the complete removal of the holes and the remaining Ti
3+

/e
- 
do not react 

with each other. Moreover, the organic radicals formed upon the oxidation of the hole 

scavengers, such as hydroxyalkyl radicals like HOHCCH3



 can inject an additional 

electron into the conduction band forming the respective aldehyde as stable product, i.e., 

CH3CHO (this is the so-called current doubling effect, vide infra). Kuznetsov et al.
66

 

investigated the charge separation and storage in media-wet TiO2 gels (anatase) and 

observed that under UV illumination more than 14 % of the Ti
4+

 centers are converted 

into Ti
3+

. The trapped electron life-time was found to be on timescales of months in the 

absence of oxygen.  

2.2.3 Electron-hole recombination 

The photocatalytic activities of TiO2 photocatalysts are usually limited by the fast 

recombination of the photogenerated electron-hole pairs. Although this process is 
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undesirable its study provides crucial information concerning the charge carrier dynamics 

in TiO2. The recombination of the charge carriers can occur coupled with heat evolution 

via non-irradiative pathways or accompanied by light emission via irradiative routes.
6
 

Since in TiO2 the non-irradative processes dominate they will be presented below. 

 The non-radiative recombination of the photogenerated charge carriers can be studied 

by means of time-resolved absorption spectroscopy. According to the reported results, the 

electron-hole recombination can be affected by many factors such as the sample 

preparation, the reaction temperature, the charge trapping, the interfacial charge transfer, 

and the excitation light intensity. 
11, 34, 51, 65, 67-69

 Consequently, the life-time of the charge 

carrier recombination in TiO2 extends from the ps to the ms time scale. For example, 

some studies have shown that the recombination rate in rutile is slower than in           

anatase.
56, 70

 This can be explained by the fact that rutile is usually synthesized at higher 

temperatures resulting in larger particles with higher crystallinity. Murakami et al.
71

 have 

reported that the recombination rate decreases as the calcination temperature increases, 

since the number of Ti
3+ 

trapping sites is reduced acting as the recombination centers. 

Moreover, Serpone et al.
6
 found slower recombination kinetics in larger particles and 

related this fact to the greater distance between the photogenerated electron-hole pairs.  

 In many reports the transient absorption decay curve of the trapped charge carriers has 

been described by second order reaction kinetics according to the bimolecular 

recombination of the electron-hole pairs coupled by Coulombic forces. Rothenberger et 

al.
15

 proposed the recombination process involving trapped electrons and free valence 

band holes to occur on the picosecond time scale, while on the nanosecond time scale the 

incorporation of the trapped holes into the recombination process is suggested.
15

 

Accordingly, this recombination competes with the trapping of the free charge carriers by 

lattice defects at the surface or in the bulk. Using a stochastic kinetic model Rothenberger 

and co-workers showed that at high pulse energies (2 mJ), where the number of charge 

carriers in the particle is high, i.e. >60, their recombination follows second order kinetics, 

while at very low occupancy of the semiconductor particle by electron-hole pairs their 

recombination obeys first order kinetics, respectively:
15

 

tkx1

x
(t)x

r0

0


  (2.9) 

t)kexp(x(t)x r0
  (2.10) 
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where (t)x represent the average number of pairs at time t, 
0

x at time t = 0, and kr is the 

recombination rate constant. 

 The concept for the recombination process of the photogenerated charge carriers 

proposed by Rothenberger has subsequently been confirmed by other research groups 

working in this field, although equations 2.4 and 2.5 have been expanded with a further 

term f(t) to account for the long-lived absorption at the end of the decay.
6, 34, 69, 72, 73

 This 

long-lived absorption has been attributed to interstitially trapped electrons in the interior 

of the nanoclusters rather than to ejected electrons resulting from a photo electron 

emission process as has been proposed by earlier studies.  

 However, Grela and Colussi argue that bimolecular recombination never follows a 

second order kinetic rate law claiming that the apparent second order process coupled 

with a non-zero baseline may be a metaphor hiding the actual nature of the phenomena.
74

 

The authors proposed an alternative kinetic model based on a stochastic treatment of the 

charge carriers in a two-dimensional lattice with the electrons being immobilized at deep 

traps, while the holes remain mobile or shallowly trapped randomly hopping to their 

neighbors. Hence, the authors assume that the mobility of the holes determines the 

recombination process. Cavaleri et al.
75

 reported that the model proposed by Grela and 

Colussi describes the process occurring on the nanosecond time scale correctly, while it 

does account representatively for the entire recombination process, especially in the 

picosecond time regime. 

2.2.4 Electron transfer 

In most photoinduced oxidation processes employing TiO2 molecular oxygen is added 

and it is generally assumed that at the reduction site superoxide radical anions are 

generated according to: 

  22CBtr OO/ee
 

(2.11) 

The reduction of molecular oxygen by trapped electrons has been reported to occur within 

less than 100 ns
11

, while the reduction process with the free conduction band electrons is 

found to be 10-100 times slower.
51, 67

 These different reaction dynamics with molecular 

oxygen can be explained by the fact that the trapped electrons are mostly localized at the 

surface and thus can be faster transferred to the surface bound oxygen atoms than the bulk 

located free conduction band electrons, although the former exhibit a lower reduction 
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potential than the latter.
11

 Further reduction of the peroxyl radical can lead to the 

formation of hydroxyl radicals according to the following equations: 

22

H,e

2

H

2CBaq2 OHHOOe)(O  




 
(2.12) 

  OHOHTiOHTi IV

22

III
 (2.13) 

 2222 OOHOHOOH  
 (2.14) 

OH2OH eV  4 ~

22

   (2.15) 

Some research groups assume this reductive route to be the main source for the hydroxyl 

radical formation, rather than the water oxidation by the photogenerated holes. 
76,77

 

 Rabani et al.
78

 investigated the interfacial electron transfer to other inorganic 

molecules besides molecular oxygen such as nitrate, nitrite, perchlorate, and copper. The 

authors presented results which correlate very well with the predictions of the electron 

transfer theory developed by Hush and Marcus
79, 80

. According to this theory, the electron 

transfer rate constant increases with an increasing electrochemical driving force in the so-

called normal Markus-region, while in the so-called inverted Markus-region the reactivity 

decreases again with a further rise of the electrochemical driving force. Hence, Rabani 

and co-workers found a linear dependency of the electron transfer rate constant on the 

redox potential of the inorganic molecules.
78

 For both, small and large particles an 

increase of the one-electron redox potential of the scavenger, ES, leads, in most cases, to 

an improvement of the electron transfer kinetics. These results indicate that the electron 

transfer rate constant can be predetermined on the basis of the redox potential of the 

reducing species. 

 Discussing the reduction processes induced by the photogenerated electrons it is 

important to mention the electron transfer process from TiO2 to platinum, which is 

responsible for the photocatalytic generation of molecular hydrogen over platinized TiO2.  

The results from time-resolved diffuse reflectance spectroscopy experiments showed that 

trapped and free conduction band electrons migrate to the Pt contact within a time interval 

between 1.4 ps and 2.3 ps, respectively (values have been reported for 1 % Pt/TiO2).
81, 82 

As shown in Figure 2.7 (left) the decay rate of the transient absorption at 600 nm 

increases with increasing Pt-loading indicating that a larger Pt coverage on the TiO2 

surface enhances the probability of electron migration from TiO2 to Pt.
81

 These results are 
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in agreement with the results of EPR measurements evincing the transfer of electrons 

from TiO2 to Pt(0) as shown in Figure 2.7 (right).
83

 

 

Figure 2.7: (left) Dependence of the transient absorption decay curves measured at 600 nm for Pt-loaded 

TiO2 powder on the Pt-loading (wt %) following 390 nm laser excitation. Reprinted from ref 
81

. Copyright 

2003, with permission from Elsevier. (right) Growth of the EPR signal intensity of the photoformed Ti
3+

 

active sites on Pt-loaded and unloaded TiO2 catalysts (recorded at 77 K). Reprinted from ref. 
83

 Copyright 

2001, with permission from Elsevier.  

The reaction dynamics of photogenerated holes with molecules adsorbed at the TiO2 

surface have been intensively investigated by means of transient absorption spectroscopy. 

For example, Tamaki et al.
84

 investigated the reaction dynamics of the trapped holes with 

different alcohols and observed in the presence of the alcohols a rapid decay of the 

transient absorption of the trapped holes. The life-time of the trapped holes in methanol, 

ethanol, and 2-propanol was found to be 300 ps, 1000 ps, and 3000 ps, respectively. 

Generally, it is assumed that the hole induced alcohol oxidation includes the cleavage of 

the C-H bond resulting in the formation of the respective α-hydroxyalkyl radicals while 

the formation of the respective aldehyde occurs in the second step under injection of an 

electron into the conduction band of TiO2, called “current doubling”.
85-87

 

 While a fast reaction of the trapped holes with different alcohol molecules on the time 

scale of several ps has been observed, it was shown that holes which manage to survive 

until the ns time scale possess lower reactivity. These deeply trapped holes exhibiting 

characteristic transient absorption maxima around 450 nm are neither able to oxidize 

dichloroacetate, DCA
-
, nor thiocyanate, SCN

-
, anions. Bahnemann et al.

16
 concluded 

from these results that just shallowly trapped holes, being in a thermally activated 

equilibrium with free holes, are able to initiate such oxidation reactions.  
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Calculations using the Marcus electron transfer theory for adiabatic processes resulted in 

a reorientation energy γ0 = 0.64 eV suggesting that in the case of SCN
- 
the hole transfer 

should occur in the adsorbed state. Furube et al.
88

 have indeed observed an ultrafast hole 

transfer from TiO2 to surface adsorbed SCN
-
 taking place in less than 1 ps followed by a 

subsequent structural stabilization of the formed (SCN)2
•-
 within a few picoseconds. 

Moreover, it has been shown that the interfacial electron transfer from the SCN
-
 to a hole 

on the photoexcited TiO2 effectively competes with the electron-hole recombination on 

an ultrafast time scale. 
69

 

 Frequently, the decay kinetics of the photoinduced electron transfer processes are 

fitted by a multi-exponentional expression, which includes more than two adjustable 

parameters. Although this mathematical approach may describe perfectly the decay 

behavior of the transient signal, it does not entail any physical meaning. Hence, to fit the 

decay signal induced by interfacial electron transfer processes on semiconductor 

nanoparticles Albery and co-workers developed a kinetic model, which is based on the 

Gaussian distribution of the logarithm of the rate constants thus introducing only one 

additional parameter, i.e., the width of the distribution γ: 

    

 dxxexp

dx γxexp τexp xexp

c

c

2

k

2

0 













  (2.16) 

where c is the concentration of the excited species and τk is related to the rate constant k 

(τk = kt). With γ=0 the expression is converted into the simple first-order exponential 

decay. 

 For example, besides other research groups Draper and Fox successfully applied this 

model to fit experimentally observed transient decay curves and found that the kinetics in 

TiO2 powders appear to be first order with a Gaussian distribution of reaction rate 

constant reflecting the distribution of the particle radii.
89, 90
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3. Materials and experimental methods 

3.1 Materials 

Commercial TiO2 

All chemicals were of analytical grade and used as received without further purification. 

Table 2.1 summarizes the characteristics of the employed TiO2 materials. 

Table 2.1: TiO2 materials. Manufacturer, phase modifaction (polymorph), crystalline domain (particle 

size), and Brunauer–Emmet–Teller (BET) surface area. 

Sample Manufacturer Phase modification
91  

Crystalline domain
91 

/ nm 

BET
92 

/ m
2
·g

-1
 

PC10 Cristal Global 100% anatase 152 10 

PC50 Cristal Global 100% anatase 40 50 

PC105 Cristal Global 100% anatase 26 85 

PC500 Cristal Global 100% anatase 7 340 

S230 Finn-Ti Kemira 100% anatase 7 230 

UV100 Sachtleben 100 % anatase 12 - 

R15* Cristal Global 100% rutile 20 65 

R25* Cristal Global 100% rutile 27 42 

R34* Cristal Global 100% rutile 36 33 

*Development samples provided by the manufacturer. 

Colloidal TiO2 

Colloidal TiO2 was prepared according to Ref.
7
 by the dropwise addition of 1.33 ml 

titanium tetraisopropoxide dissolved in 23.11 ml 2-Propanol to 225.76 ml aqueous 

hydrochloric acid solution of pH 1.5. The total concentrations of titanium 

tetraisopropoxide and 2-propanol were 1.5∙10
-2

 and 1.2 M, respectively. The mixture was 

stirred for two days. The obtained suspension was dried by vacuum evaporation at 

30 mbar at 30°C until a white powder of TiO2 remained. 500 mg of this powder were 

resuspended in 1 L of water at pH=3. The suspension was optically transparent and 

showed a steep increase in absorption below 380 nm which is typical for colloidal TiO2 

(see Figure 3.1 (left)). From the Raman spectrum a pure anatase modification of the 

colloid was identified (see Figure 3.1 (left)). A signal at 1500 cm
-1

 could be related to the 

organic groups, which remain after the synthesis of colloidal TiO2 using tetra 

isopropoxide as the precursor. The powder received from the drying of the colloidal TiO2 

suspension has been denoted as colloidal TiO2 powder in the present study. 
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Figure 3.1: (left) UV-vis spectrum of a colloidal TiO2 suspension (1.5 g/l, pH=3) in water and (right) 

Raman spectrum of the powder obtained after evaporation of the solvent (red lines indicate reference of 

anatase phase). 

The colloidal TiO2 was modified with platinum by mixing the above acidic TiO2 

suspension with colloidal platinum in a ratio of 15:1 (%wt). Colloidal platinum was 

obtained by reducing 3∙10
-4

 M H2PtCl6 with 1.7∙10
-3 

M sodium citrate under heating for 

1 h at 100 °C. Excess ions were removed with an ion-exchange resin until a specific 

conductivity of 3-5 mS∙cm
-1

 was reached. After evaporation at 30 mbar at 30 °C a brown 

powder was obtained. 

3.2 Experimental methods 

3.2.1 Diffuse UV-Vis spectroscopy 

Diffuse reflectance spectra of the TiO2 powders were recorded on a Varian Cary 100 Scan 

UV-Vis spectrophotometer equipped with a labsphere diffuse reflectance accessory. The 

reflectance data were converted to F(R) values according to the Kubelka-Munk theory. 

3.2.2 Raman spectroscopy 

Raman spectra and micrographes were recorded with a SENTERRA Raman microscope. 

The spectral resolution of the analyzing spectrograph was 0.5 cm
-1

. A 532 nm laser was 

used as an excitation source. The power of the laser at the sample was 2.0 mW. The 

presented spectra were obtained at room temperature by averaging five spectra with an 

integration time of 10 s. 
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3.2.3 EPR spectroscopy 

EPR spectra were registered with a MiniScope MS 400 X-band EPR spectrometer at 

liquid nitrogen temperature. The device parameters during the measurements were as 

follows: microwave frequency 9.42 GHz, microwave power 5 mW, modulation frequency 

100 kHz, modulation amplitude 0.15 mT. 

3.3 Laser flash photolysis spectroscopy 

Equipment 

In 1950 Norrish and Porter showed that a very intense flash of light can initiate different 

chemical reactions, the kinetics of which can be spectroscopically monitored by the 

second flash lamp fired at a known delay after the first.
93

 For practically all chemical 

compounds the absorption of light leads to the formation of transient species via 

oxidation, reduction, isomerization, association, dissociation etc. reactions. This alters the 

optical properties of the substance, thus the transient species formed after the excitation 

can be detected by the absorption of light from a continuous or a pulsed analyzing source. 

 Figure 3.2 demonstrates the underlying processes. Since the excitation process should 

be completed before decay measurements will start, the pulse duration of the flash of light 

determines the time resolution. Due to the development of lasers the time scales of the 

measurement extend nowadays from the nanosecond to the femtosecond domain. This 

allows to study the formation kinetics of the transient species as well as the subsequent 

reaction dynamics.  

 

Figure 3.2: Scheme of the flash photolysis principle. Optical excitation hν
e
 of a substance A undergoing 

photochemical conversion to give a transient T, which may either revert to the ground state of A or decay 

into other products. The transient is detected by the excitation with the analyzing light hν
a
. Adapted with 

permission from ref.
94

  

Since this invention numerous reports have been published on the flash photolysis 

technique applied to transparent samples measuring the transmitted light before and after 
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the excitation. In Ref.
95, 96

 examples for the studies on transparent nanocrystalline 

semiconductor systems are given.  

 The first successful report of diffuse reflectance laser flash photolysis on opaque 

samples was published by Kessler and Wilkinson in 1981.
97

 The transient species were 

detected after excitation by monitoring the changes in the level of diffusely reflected 

light. The main difference to the technique used in transmission experiments is the 

geometrical arrangement of the analyzing light. Herein, the detector and the analyzing 

light are assembled to insure that no specular reflected light enters the detector and that 

the maximum amount of the diffusely reflected light is collected and analyzed as shown 

in Figure 3.3 (left), since the diffusely reflected light has penetrated a substantial portion 

of the sample and thus contains the information concerning its absorption. The area of the 

sample that receives the monitoring light should be either equal or smaller than that of the 

exciting pulse to ensure that all diffusely reflected analyzing light has been probing only 

those parts of the sample that were excited by the laser. Moreover, the specular and 

diffuse reflected exciting pulse should be prevented from entering the monochromator to 

avoid any interference with the analyzing light, the former one via this reflection at 45 ° 

(see Figure 3.3 (left)) and the later one by introducing an appropriate filter at the 

monochromator entrance. Further requirements for the arrangement of the components 

are described in detail elsewhere.
94, 98-100

 

 A typical experimental set of data obtained with a diffuse reflectance laser flash 

photolysis apparatus is depicted in Figure 3.3 (right). The baseline for transient absorption 

measurements is observed by detecting the diffusely reflected signal of the monitoring 

light from the unexcited sample, while the transient emission decay traces are monitored 

by recording the signal when only the laser falls onto the sample. The transient absorption 

decay trace is produced by the simultaneous irradiation of the sample by the laser and the 

arc lamp. 

 Figure 3.4 illustrates the time-resolved diffuse reflection laser flash photolysis set-up 

used in our laboratories. The suitable excitation of the sample proceeds with an excimer 

laser (LPX 200) provided by Lambda Physic. The pulse duration is 20 ns. Two different 

excitation wavelengths are available, namely 248 nm and 351 nm. The laser energy per 

pulse at 248 nm lies between 15-45 mJ and at 351 nm 4-16 mJ (determined with 

ferrioxalate actinometry, see 8. Appendix). In the diffuse reflectance experiments the 

laser beam entered the sample at an oblique angle. The angle of the laser beam path can 

be adjusted by rotating the Pellin-Broca prism beam steering module.  
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Figure 3.3: (left) Schematic illustration of the sample geometry used in diffuse reflectance laser flash 

photolysis and (right) a typical set of experimental traces. Adapted with permission from ref.
101

 

 

Figure 3.4: Schematic diagram of the nanosecond diffuse reflectance laser flash photolysis apparatus to 

produce and detect transient absorptions in light-scattering samples. 

The change in the reflectance is monitored with the laser flash photolysis spectrometer 

LKS 80 from Applied Photophysics. The light absorption by the photogenerated transient 

species is analyzed with a 150 W xenon arc lamp. The pulsing of the xenon lamp for 

1.5 ms by a capacitor discharge leads to 50-fold increase of the light intensity. The diffuse 

reflectance accessory is employed to steer the incoming xenon light beam (via two plane 

folding mirrors) in relation to the main optical axis. A spectrosil lens focuses the optical 
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beam onto the solid sample. The diffusely reflected light from the sample is collected by a 

second lens. The third folding mirror reflects the converging beam to the monochromator. 

Subsequently, the monochromator light falls into the photomultiplier detector 

(Hamamatsu R928 photomultiplier) where it produces a current. The photometric light 

level falling on the photomultiplier is kept at 100 mV for all measurements by applying 

the required high voltages of 550-800 V. The current output from the photomultiplier is 

terminated by the variable signal terminator (set to 100 Ω) inserted onto the signal input 

socket of the digital oscilloscope. The change in the reflectance is then recorded by the 

oscilloscope as voltage changes.  

 To avoid the overloading of the photomultiplier and any interferences with the 

analyzing light cut off filters at 370 nm for λex = 351 nm and at 310 nm by λex = 248 nm 

have been introduced in the front of the monochromator entrance. Moreover, the UV 

illumination of the analyzing light with wavelengths < 385 nm has been filtered, when the 

samples were excited with the laser at 351 nm excitation wavelength. However, the effect 

of the additional excitation with a Xenon-Lamp could be excluded, since the transients 

observed with and without the filter were identical.  

 A dry powder in a quartz cuvette has been used in all diffuse reflectance experiments. 

Herewith, the illumination area of laser beam and of the analyzing light are 0.5 cm
2
 and 

0.196 cm
2
, respectively. The laser irradiation caused the formation of a thin transparent 

TiO2 film on the cuvettes wall and the grey-blue coloration of the sample. Due to this 

undesirable effect, the powder and the cuvette have been exchanged after every 20 pulses. 

The formed TiO2 film could be removed by boiling of the cuvette in concentrated 

sulphuric acid. 

 

Figure 3.5 Schematic diagram of the sample housing of the nanosecond laser flash photolysis apparatus 

used for studies on transparent samples. 
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Figure 3.5 shows the sample housing for the studies on transparent samples. The only 

difference to the diffuse reflectance measurement set-up is that the laser beam hits the 

sample perpendicular to the analyzing light. 

Data Analysis 

For the analysis of the observed transients obtained in transmission mode the Beer-

Lambert law is normally applied. Herein, the transient absorption of the photogenerated 

species is detected as the ratio of the light transmitted by an unexcited sample, I0, and the 

light transmitted after the excitation with the laser It: 



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

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0

t

I

I
logA   (3.1) 

For an optically dense sample studied by diffuse reflectance laser flash photolysis the 

reflected light is measured. The reflectance R is defined as the quotient of the incident 

intensity of the analyzing light, I0, at a wavelength λx and the diffuse reflected light, J0: 

R0=J0/I0. If the laser excitation generates a transient species that has an absorption at a 

wavelength λx  this will result in the decrease of J0 to Jx, while I0 remains constant. Hence, 

the reflectance will be reduced to Rx. In the case that the transient species has no reaction 

partner in the system a built-up of the transient occurs, otherwise, if any reaction 

proceeds, e.g., recombination, reduction, oxidation, etc., the disappearance of the species 

will lead to an increase of Jx and the decay of the transient can be followed until the 

original level of J0 is approached. Mathematically, this can be summarized as:
98
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where x
TR  is defined as Rx/R0 and x

TJ  as Jx/J0.  

 To assign the observed change in reflection after the pulse excitation to the transient 

absorption and thus to a concentration of the excited states two limiting types of transient 

concentration profiles should be considered, namely, the homogeneous and the 

exponentially falling-off profile as depicted in Figure 3.6.  
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Figure 3.6: Schematic diagram of the (left) homogeneous and (right) exponentially falling-off 

concentration profile of the photogenerated transient species (E: exciting light; I: incident monitoring light; 

J: reflected monitoring light). Adapted with permission from Ref.
100

 

Homogeneous distribution of the transient species (see Figure 3.6 (left)) occurs at larger 

laser fluxes in diluted samples with a high ground state extinction coefficient at the 

exciting wavelength to ensure a high conversion percentage of the ground to the excited 

state.
99

 In this case the transient can be described using the Kubelka Munk approach
102

 

which relates the observed reflectance R to the absorption coefficient K and the scattering 

coefficient S:  
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as follows: 

   
S

K

2R

R1

2R

R1
ΔR t

0

2
0

x

2
x

K 





  (3.4) 

where R0 and Rx represent the reflection before and after laser excitation and Kt the 

transient absorption. In the diffuse reflectance measurement the value of R can be 

determined if the incident analyzing light intensity I0 is known. The later one can be 

calculated from the experimentally measured value of J using a powder with a known 

value of R.    

 According to the Kubelka-Munk approach the absorption coefficient exhibits a linear 

dependency on the concentration: 

εcK    (3.5) 

with ε being the extinction coefficient and c the concentration. 
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For relating the observed transient reflectance to the transient concentration cT at any time 

after the flash the extinction coefficient of the ground state absorber εG and of the 

transient species εT should be considered:
99
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However, it can be assumed that in the diffuse reflectance laser flash photolysis studies 

the exponential distribution of the excited states prevails (see Figure 3.6 (right)).
100

 This 

is due to the fact that the experiments are mostly performed at such conditions at which 

the ratio of the number of absorber units to the number of the exciting photons is high, 

thus a low conversion percentage of the ground state to the transient state is expected. 

Here, equation 3.6 cannot be applied. For the description of the exponentially falling-off 

concentration the system can be divided into a series of “thin slices” for which the 

Kubelka-Munk function is valid. Numerical solutions for this approach predict that a 

linear relationship exists between the reflectance change (1- x
TR ) and the total transient 

concentration at values of (1- x
TR ) below 0.1.

94, 103
 

  In the present work according to equation 3.2 the ΔJ value (%) has been used to 

describe the optical changes obtained in TiO2 upon laser excitation. The absolute value of 

ΔJ has been attributed to the transient absorption as explained above. 

 





4. Results 

31 

 

4. Results 

4.1 Effect of laser excitation on the physical and morphological properties of 

TiO2 

It has been observed that the illumination of all TiO2 samples studied here (colloidal TiO2 

powders and bulk TiO2 powders) by the intense laser pulses leads to colour changes from 

white to grey-blue. This effect was stable and thus no changes were observed under 

ambient condition during few months. Hence, for a better understanding of the processes 

occurring at the TiO2 surface during the laser flash photolysis experiment it was 

important to characterize the samples before and after laser excitation. For this propose 

the Hombikat UV100 powder provided by Sachtleben has been analyzed by means of 

different spectroscopic methods presented below. To quantitatively and qualitatively 

understand the effect of the laser illumination the TiO2 sample has been exposed to a 

higher laser intensity than that usually employed per pulse (10 x 50 mJ cm
-2

 pulse
-1

). 

 From the micrograph of laser illuminated TiO2 surface shown in Figure 4.1 (left) the 

nonhomogeneous distribution of the colour centers can be seen. Some areas exhibit dark 

coloration, while the majority of the sample’s surface areas remained white. The Raman 

spectra of different sample areas are presented in Figure 4.1 (right). When the analyzing 

beam is focused on a white area, the Raman spectrum shows only anatase peaks: 149, 

200, 395.5, 513 and 636.5 cm
-1

, which can be assigned to major modes of the anatase 

phase as Eg, Eg, B1g, and superpositions of A1g and B1g, and Eg, respectively.
104-107

 The 

Raman spectrum of the dark areas exhibits additional peaks with maxima at 238, 447.5 

and 610 cm
-1

. These three bands can be attributed to the two-phonon scattering, Eg, and 

A1g modes of the rutile phase, respectively.
105-108

 Moreover, the highest anatase peak at 

149 cm
-1

 has narrowed and shifted to 143.5 cm
-1

. Probably, such alteration happened due 

to an increase in particle size
104

,while the influence of the B1g mode of the rutile phase 

with a maximum at 143 cm
-1

 could be excluded for this interpretation because of its low 

line intensity
105-107

. 
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Figure 4.1: (left) Micrograph of an illuminated UV100 sample surface (50 x magnification). (right) 

Normalized Raman spectra of the illuminated UV100 sample: (black) white area and (red) dark area 

(exposed to the laser beam with a laser intensity of 10 x 50 mJ cm
-2

 pulse
-1

). 

However, the detected anatase to rutile phase transition does not explain the dark grey-

blue coloration of the UV100 TiO2 powder after the exposure to the laser. Figure 4.2 

(left) presents the diffuse reflectance UV-vis spectra of untreated and illuminated TiO2 

powder, respectively. It can be seen that the absorption of the illuminated TiO2 in the 

visible range increases continuously with the wavelength. This visible absorption 

indicates the presence of long-lived Ti
3+

-species in the TiO2 formed after the laser 

illumination.
5
 Apparently, these trap states are energetically distributed through the entire 

band gap exhibiting metallic-like character. Zhu et al.
64

 reported a wide distribution of the 

trapped states for electrons within the entire bandgap (see Figure 2.6). The presence of the 

Ti
3+

 centers in the laser treated TiO2 sample could furthermore be confirmed by means of 

electron paramagnetic resonance (EPR) spectroscopy. The initial uncolored sample does 

not show any EPR signal without UV-Vis illumination, while the laser illuminated 

sample exhibits an intense signal as shown in Figure 4.2 (right). A broad peak with giso 

=1.95 with slight asymmetry can be assigned to Ti
3+

 centers in TiO2.
109, 110

 Most 

commonly, Ti
3+

 centers have axial symmetry and show specific signals which correspond 

to this anisotropy.
109-112

 In our case the axial signals are not resolved because the sample 

temperature is still too high for this and resolved signals could only be obtained with a 

helium cryostat.
109

 Usually, similar EPR signals are assigned to Ti
3+

 in the rutile phase 

while anatase shows narrower Ti
3+ 

signals with a higher g-value (1.98-1.99).
110-112

 The 

formation of Ti
3+

 species in the laser-generated rutile phase could be confirmed by 

recording the EPR-spectra of the laser illuminated rutile phase, which exhibits the same 

EPR signal as laser illuminated anatase TiO2 (see Figure 4.2 (right)). This also 
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corresponds to the fact that rutile can be reduced much more easily than anatase. 

Moreover, it should be noted that the Ti
3+

 centers detected here are stable in the presence 

of molecular oxygen as it has also been shown for Ti
3+

 centers obtained in black TiO2 

consisting anatase/rutile phases.
113

 Hence, both the UV-vis spectra and the EPR results 

reveal that upon the laser excitation anatase/rutile TiO2 is formed exhibiting properties 

similar to those of black TiO2. 
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Figure 4.2: (left) UV-vis diffuse reflectance spectra of (solid) untreated and (dash) illuminated UV100. 

(right) EPR spectra measured at 77 K of (black) illuminated UV100 TiO2 anatase and (red) illuminated R15 

TiO2 rutile (exposed to the laser beam with laser intensity: 10 x 50 mJ cm
-2

 pulse
-1

). 

4.2 Effect of laser intensity and energy on the transient absorption signals 

The dependency of the decay kinetics on the excitation intensity is an important 

correlation to derive the rate law of the observed transient absorption decays. Upon 

variation of the excitation intensity the concentration of the photogenerated charge 

carriers changes and thus the kinetic features of the relaxation processes can be 

different.
11, 82, 114, 115

 For example, it has been shown that at low laser intensities the decay 

kinetics do not depend on the laser intensity, while at higher laser intensities, i.e., above 

160 nJ pulse
-1

, the decay rate increases as the laser intensity increases.
33

 The processes 

observed at weak excitation conditions have been explained by the relaxation of the 

bound electron-hole pairs, called geminate recombination, while at higher laser intensities 

bimolecular second order bulk recombination occurs.  
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Figure 4.3: UV-vis diffuse reflectance spectrum of bulk anatase TiO2 (UV100). Arrows indicate the 

excitation wavelengths employed in the transient absorption measurements.  

The excitation energy can also influence the transient absorption properties of the 

photogenerated species. Figure 4.3 shows the diffuse reflectance spectra of the bulk 

anatase TiO2 sample including arrows indicating the laser excitation wavelengths chosen 

in this work, i.e., 248 nm and 351 nm. At 351 nm the absorption is three times weaker 

than at 248 nm, thus at longer wavelengths the laser beam can penetrate more deeply into 

the powdered sample leading to a lower charge carrier density photogenerated per laser 

pulse in comparison to the excitation at 248 nm. According to the argument presented 

above, upon illumination with λexc= 351 nm a slower recombination is expected as 

compared with the 248 nm excitation provided that identical laser intensities or rather 

photon concentration per pulse are employed. Moreover, Tamaki et al.
13, 14

 have 

demonstrated by means of femtosecond transient absorption spectroscopy that the 

excitation with excess energy considerably exceeding the bandgap energy of the 

semiconductor can slow down the trapping process, since the electrons are excited into 

higher energy levels within the conduction band in comparison to the interband excitation 

employing 355 nm photons.  

 However, the above presented effect of laser energy and laser intensity has so far been 

mostly studied on transparent colloidal semiconductor suspensions or on transparent films 

made therefrom. The reaction dynamics of the charge carriers photogenerated in 

powdered samples, which are mostly applied in photocatalytic tests, have, however rarely 

been investigated. Moreover, for the design of new photocatalysts it is important to study 

the transient absorption properties of charge carriers photogenerated in different TiO2 

morphologies. Therefore, in the following chapter the reaction dynamics of charge 
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carriers photogenerated under inert atmosphere in colloidal anatase (powder), bulk 

anatase, and bulk rutile, will be presented.  

4.2.1 Colloidal anatase TiO2 powder 

The transient absorption spectra and decay kinetics of the charge carriers formed upon 

laser illumination in dry colloidal TiO2 particles have been studied by means of time-

resolved diffuse reflectance spectroscopy. Herewith, the change in the diffusely reflected 

light ΔJ given in percentage rather than the transmitted light is detected. As already 

specified in chapter 3.2 the ΔJ value can be correlated to the transient absorption, thus for 

the presentation of the results obtained by the detection of the diffusely reflected light the 

latter term will be employed.  

 Figure 4.4 (left) presents the transient absorption signal recorded at 450 nm for N2 

saturated bare colloidal TiO2 powder in the absence of any electron acceptor or donor at a 

laser intensity of 10 mJ cm
-2

 pulse
-1

. The chosen laser intensity is the lowest intensity at 

which evaluable transients produced in colloidal TiO2 could be detected averaging only 2 

laser pulses. As can be seen for the transient absorption signal shown in this figure, a 

strong increase in absorption is apparent immediately after the laser pulse, which 

decreases rapidly within the first ~0.3 µs, followed by a slower decay before reaching a 

long-lasting, nearly constant transient absorption with about 28 % (t = 17 µs) of the 

original intensity. This long-lived transient absorption is observed over the entire 

wavelength regime studied here, that is from 390 nm to 750 nm. Hence, for a better 

comparison of the initial decay behavior at different wavelengths, the plateau absorbance 

has been subtracted from the absorption decay, and the resulting difference has been 

normalized to the original intensity according to: 

18µs)(tΔJΔJ

18µs)(tΔJ(t)ΔJ
(t)f

λ

max

λ

λλ
λ




  (4.1) 

The modified decay signals for the transients at 390 nm, 450 nm, 550 nm, and 650 nm are 

plotted in the inset of Figure 4.4 (left). Apparently, the decay kinetics do not depend on 

the wavelength of observation in the region between 390 nm and 750 nm and exhibit a 

characteristic life-time t1/e of around 0.5 µs after which the initial change in reflection 

Jmax, that is, before the start of the linear decay, has decayed to Jmax/e . The transient 

absorption spectrum of dry colloidal TiO2 powder has already been measured by Bowman 
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and co-workers
69, 72

 in the picosecond time scale, while Durrant et al.
115

 have studied the 

decay kinetics of trapped holes and electrons in opaque TiO2 films prepared from 

colloidal TiO2 by means of µs-ms transient absoprtion spectroscopy. These authors have 

obtained slower decay kinetics with t1/e of 1 µs, which can be explained by the fact that 

the measurements have been performed at much lower laser intensities         

(0.350 mJ cm
-2

pulse
-1

). 

 The transient absorption spectra obtained at four selected times after the laser pulse are 

presented in Figure 4.4 (right). In the absence of any electron donor or acceptor broad and 

featureless transient absorption spectra are observed. During the first few microseconds 

after the laser pulse the signal intensity increases slightly with decreasing wavelength, 

while the transient spectrum taken 17 µs after the laser pulse does not follow this trend, 

instead a shapeless spectrum is observed exhibiting similar intensity values over the entire 

wavelength region studied.  

0.0 2.0x10
-6

4.0x10
-6

6.0x10
-6

8.0x10
-6

0

5

10

15

20

0.0 2.0x10
-6

4.0x10
-6

6.0x10
-6

8.0x10
-6

0.0

0.5

1.0

 


J 

/ 
%

Time / s

 

 

f 
(t

)

Time / s

400 450 500 550 600 650 700 750

0

5

10

15

20

 


J 

/ 
%

Wavelength / nm  

Figure 4.4: (left) Transient absorption signal observed at 450 nm upon laser excitation with λexc = 351 nm, 

inset: transient absorption signals normalized according to equation (4.1) observed at (pink) 390 nm, (black) 

450 nm, (blue) 550 nm, and (red) 650 nm, respectively. (right) Transient absorption spectra observed (-■-) 

0.109 µs, (-○-) 0.229 µs, (-□-) 0.8 µs, and (-▲-) 17 µs after the laser pulse. Experimental conditions: N2-

saturated colloidal TiO2 powder, laser intensity: 10 mJ cm
-2

 pulse
-1

. 

A threefold increase of the employed laser intensity leads to a 1.5 fold increase of the 

transient absorption signal at 450 nm as shown in Figure 4.5 (left). While during the first 

0.15 µs the decay kinetics remain the same as at lower excitation intensities, the 

following exponential decay accelerates, thus Jmax/e   is reached already after 0.28 µs. 

Moreover, the relative intensity of the long-lasting absorption decreases to 9 % in 

comparison to the values obtained at a laser intensity of 10 mJ cm
-2

 pulse
-1

. A similar 

decay behavior of the transient absorption signals is observed in the wavelength range 



4. Results 

37 

 

between 430 nm and 490 nm, while the decay of the transients measured at 390 nm, 410 

nm, and above 490 nm remains the same as that found upon 10 mJ cm
-2

 pulse
-1

 excitation. 

The inset of Figure 4.5 (left) shows the decays of the transients at four different 

wavelengths (390 nm, 450 nm, 550 nm, and 650 nm) representing the different region of 

the spectra from 390 nm to 410 nm, from 430 nm to 490 nm, and from 510 nm to 590 nm 

to 750 nm.  

 The increase of the laser intensity has also a drastic effect on the feature of the 

transient absorption spectra. As seen in Figure 4.5 (right) the transient absorption 

intensity measured at 0.109 µs after the laser pulse in the wavelength region between 

390 nm and 470 nm increased upon excitation with the higher laser intensity, while at 

wavelengths above 470 nm an unexpected decrease of the transient absorption intensities 

is detected. In general, a more pronounced increase of the transient absorption intensity 

upon decreasing the wavelengths is observed.  
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Figure 4.5: (left) Transient absorption signal observed at 450 nm upon laser excitation with λexc = 351 nm, 

inset: transient absorption signals normalized according to equation (4.1) observed at (pink) 390 nm, (black) 

450 nm, (blue) 550 nm, and (red) 650 nm, respectively. (right) Transient absorption spectra observed (-■-) 

0.109 µs, (-○-) 0.229 µs, (-□-) 0.8 µs, and (-▲-) 17 µs after the laser pulse. Experimental conditions: N2-

saturated colloidal TiO2 powder, laser intensity: 28 mJ cm
-2

 pulse
-1

. 

The excitation of colloidal TiO2 powder at 248 nm, that is with an energy considerably 

exceeding the bandgap energy of TiO2 leads to the disappearance of the transient 

absorption at 450 nm (see Figure 4.6 (left)). The decay of the absorption signals observed 

in the wavelength range between 330 nm and 410 nm is found to be wavelength 

dependent with the decay kinetics accelerating at longer wavelengths as illustrated in the 

inset of Figure 4.6 (left). With t1/e = 0.15 µs the decay at 390 nm is faster in comparison to 

the transients observed upon illumination with 351 nm laser pulses, t1/e of the transient at 
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370 nm is found to be 0.25 µs. In general, it should be noted here, that when the TiO2 

particles are excited with 248 nm laser pulses the density of charge carriers formed per 

particle increases drastically due to their lower penetration depth. 

 Figure 4.6 (right) shows the transient absorption spectra of the colloidal particles taken 

at different times after the 248 nm laser pulse. A transient absorption maximum located at 

370 nm is detected. To the best of our knowledge, this maximum has been observed here 

for the first time for colloidal TiO2 powder. In contrast to the transient absorption spectra 

measured upon excitation with 351 nm laser pulses no transient absorption signals are 

encountered at wavelengths longer than 410 nm. Moreover, the drastic increase of the 

laser intensity upon excitation at 248 nm leads to a decrease of the transient absorption in 

comparison to the results obtained when employing 351 nm laser light (see Figure 4.5). 
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Figure 4.6: (left) Transient absorption signal observed at 450 nm upon laser excitation with λexc = 248 nm, 

inset: transient absorption signals normalized according to equation (4.1) observed at (blue) 370 nm (pink) 

390 nm, and (green) 410 nm, respectively. (right) Transient absorption spectra observed (-■-) 0.109 µs,      

(-○-) 0.229 µs, (-□-) 0.8 µs, and (-▲-) 4 µs after the laser pulse. Experimental conditions: N2-saturated 

colloidal TiO2 powder, laser intensity: 55 mJ cm
-2

 pulse
-1

. 

4.2.2 Bulk anatase TiO2 powder (Hombikat UV100) 

As already mentioned above, most of the previous fundamental studies dealing with the 

reaction dynamics of the photogenerated charge carriers have been performed employing 

colloidal TiO2 systems. By means of these studies the entire time regime of the 

photoinduced processes such as formation, trapping, recombination, and transfer of the 

charge carriers transfer was studied. Moreover, the trapped charge carriers could be 

spectroscopically characterized with the holes absorbing in the UV and the electrons in 

the visible spectral region. However, the life-time of the charge carriers in bulk 
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commercial powders has been rarely studied, although in many publications different 

obtained photocatalytic activities have been explained in terms of different charge carrier 

recombination kinetics, even though the latter have not been measured.  

 In this work the widely used commercial powder Hombikat UV100 from Sachtleben 

has been investigated using diffuse reflectance laser flash spectroscopy. This commercial 

powder has been chosen, on the one hand, because it is a well known photocatalyst 

exhibiting relatively high photocatalytic activity and, on the other hand, due to its 

relatively small particle size with crystalline diameters of 12 nm being thus comparable 

with the colloidal TiO2. 

 Figure 4.7 shows the transient absorption properties of the charge carriers 

photogenerated in UV100 (anatase TiO2) under weak excitation conditions (i.e., 

λexc = 351 nm and 7 mJ cm
-2

 pulse
-1

) in the absence of any electron donor or acceptor. 

The transient signal observed at 450 nm decays linearly within the first 0.3 µs after the 

laser pulse followed by a slower exponential decay (see Figure 4.7 (left)). Similar to the 

colloidal particles the transient does not decay to zero and rather a long-lived component 

with 20 % of the initial absorption remains. As illustrated in the inset of Figure 4.7 (left) 

the transients observed at wavelengths higher than 410 nm decay faster with t1/e of 

0.25 µs in comparison to the transients at shorter wavelengths (t1/e = 0.5 µs).  
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Figure 4.7: (left) Transient absorption signal observed at 450 nm upon laser excitation with λexc = 351 nm, 

inset: transient absorption signals normalized according to equation (4.1) observed at (pink) 390 nm, (black) 

450 nm, (blue) 550 nm, and (red) 650 nm, respectively. (right) Transient absorption spectra observed (-■-) 

0.109 µs, (-○-) 0.229 µs, (-□-) 0.8 µs, and (-▲-) 17 µs after the laser pulse. Experimental conditions: N2-

saturated UV100 powder, laser intensity: 7 mJ cm
-2

 pulse
-1

. 

The transient absorption spectra measured in the wavelength range between 390 nm and 

750 nm are very broad and featureless at all times after the laser pulse (see Figure 4.7 
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(right)). Two relative maxima in the wavelength region studied are identified, one located 

around 520 nm and another one at 390 nm. 

 As shown in Figure 4.8, an increase of the laser intensity leads to higher initial 

transient absorption signals. Similar to the results obtained with the colloidal TiO2 

powder the intensity of the long-lived absorption relative to the initial absorption 

decreases from 20 % at 7 mJ cm
-2

 pulse
-1

 to 8 % at 23 mJ cm
-2

 pulse
-1

. The decay of the 

transient at 450 nm exhibits a similar trend as detected for the colloidal particles, namely, 

in the first 0.1 µs the decay does not change with the laser intensity, while the following 

exponential decrease of the absorption signal is accelerated, thus the characteristic time 

t1/e at which the transient absorption decays to 37 % of its initial value is found to be 

0.18 µs (see Figure 4.8 (left)), the decay kinetics remain unchanged upon increasing the 

laser intensity both, at 390 nm and at wavelengths above 490 nm.  
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Figure 4.8: (left) Transient absorption signal observed at 450 nm upon laser excitation with λexc = 351 nm, 

inset: transient absorption signals normalized according to equation (4.1) observed at (pink) 390 nm, (black) 

450 nm, and (blue) 550 nm, respectively. (right) Transient absorption spectra observed (-■-) 0.109 µs, (-○-) 

0.229 µs, and (-▲-) 17 µs after the laser excitation. Experimental conditions: N2-saturated UV100 powder, 

laser intensity: 23 mJ cm
-2

 pulse
-1

. 

The transient absorption spectra obtained after different decay times are shown in Figure 

4.8 (right). Similar to the colloidal particles a strong increase of the transient absorption 

intensity is detected between 390 nm and 450 nm at high excitation intensity. In the 

wavelength region between 450 nm and 750 nm the increase of the laser intensity causes 

only a slight increase of ΔJ of 6 %. The plot of the long-lived component measured 17 µs 

after the laser pulse as a function of the wavelength results in a featureless broad 

spectrum. In general, the shape of the transient absorption spectra does not change with 

the decay time. 
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Figure 4.9 (left) shows that the height of the initial transient absorption signals obtained at 

390 nm, 450 nm, and 550 nm increases linearly with the laser intensity. The rise of the 

transient absorption is wavelength dependent, thus at 390 nm the slope is                     

1.7 % mJ
-1

 cm
2
 pulse, at 450 nm it is 0.6 % mJ

-1
 cm

2
 pulse, and at 550 nm it is             

0.1 %∙mJ
-1

 cm
2
 pulse. The linear function does not go through the origin indicating either 

a slower increase of the transient absorption signal intensity with the laser intensity at 

weaker laser power or a nonlinear relationship of the transient absorption on the laser 

intensity at laser intensities lower than 7 mJ cm
-2

 pulse
-1

. However, the measurements 

performed in this work have all been conducted within the linear region, where neither 

nonlinear absorption nor nonlinear relaxation within the time resolution occurred. The 

long-lasting transient absorption detected 18 µs after the laser pulse exhibits almost no 

dependency on the laser intensity in the region between 6 mJ cm
-2

 pulse
-1

 and 23 mJ cm
-

2
 pulse

-1
 (see Figure 4.9 (right), while at higher excitation intensities the long-lived 

transient absorption at 390 nm increases and it decreases at longer wavelengths. 
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Figure 4.9: Height of the transient absorption signal as the function of the laser intensity observed at (■) 

390 nm, (○) 450, and (▲) at 550 nm (left) 227 ns and (right) 18 µs after the laser excitation. Red lines 

present the linear fit. Experimental conditions: N2-saturated UV100 powder. 

Similar to the observation made with the colloidal TiO2 powder the excitation of bulk 

anatase UV100 with 248 nm laser pulses leads to a drastic decrease of the transient 

absorption at 450 nm as shown in Figure 4.10 (left). The decay kinetics are wavelength 

dependent and an acceleration of the decay is observed at longer wavelengths (see the 

inset of Figure 4.10 (left)). The transients at 350 nm and at 370 nm decay to 

Jmax/e within 0.7 µs, while t1/e at 390 nm and at 410 nm is found to be 0.4 µs and 0.2 µs, 
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respectively. This characteristic decay time is smaller upon excitation at 248 nm in 

comparison to the excitation with laser pulses at 351 nm. 

 The transient absorption spectra measured at different times after the 248 nm laser 

pulse are shown together with the respective error bars in Figure 4.10 (right). Similar to 

colloidal TiO2 powder a transient maximum is detected at 370 nm, which does not change 

with the decay time. The transient absorption at wavelengths higher than 410 nm 

decreases almost by a factor of 5 in comparison to the excitation at 351 nm (see Figure 

4.8 (right)). 
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Figure 4.10: (left) Transient absorption signal observed at 450 nm upon laser excitation with λexc = 248 nm, 

inset: transient absorption signals normalized according to equation (4.1) observed at (red) 350 nm, (blue) 

370 nm, (pink) 390 nm, and (green) 410 nm, respectively. (right) Transient absorption spectra observed     

(-■-) 0.109 µs, (-○-) 0.229 µs, (-□-) 0.8 µs, and (-▲-) 4 µs after the laser pulse. Experimental conditions: 

N2-saturated UV100 powder, laser intensity: 52 mJ cm
-2

 pulse
-1

. 

4.2.3 Bulk rutile TiO2 powder (R15) 

Rutile is one the most extensively investigated TiO2 modifications. It is usually reported 

that rutile exhibits lower photocatalytic activity when illuminated with light in the UV 

region in comparison to the anatase phase.
116

 However, it should be noted here, that for 

any meaningful comparison of different phases of TiO2 other parameters such as 

crystallinity and particle size should be the same. Since, however, rutile is usually 

synthesized at higher temperatures than anatase the preparations of the former contain 

bigger particles. To enable a comparison of the reaction dynamics of the charge carriers 

photogenerated in different TiO2 phases, the commercial rutile powder R15 has been 

chosen in the present work as it contains similar particle sizes (d = 20 nm) as bulk anatase 

TiO2 UV100.  
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After excitation with a 351 nm laser pulse the bulk rutile TiO2 R15 sample exhibits a 

sharp transient absorption increase at 450 nm, which initially decays almost linearly 

within 0.5 µs followed by an exponential decay reaching a long-lived transient absorption 

with apparently 10 % of the initial value (see Figure 4.11 (left)). In comparison to the 

UV100 samples (see Figure 4.7) the photogenerated species absorbing at 450 nm exhibits 

a longer life-time with t1/e of 0.75 µs. The transients detected at 390 nm, 410 nm, 450 nm, 

and 550 nm have been normalized according to equation 4.1, that is, the long-lived 

absorption measured at 45 µs after the laser pulse has been subtracted. As seen from the 

inset of Figure 4.11 (left) the decay kinetics are different at different observation 

wavelengths, indeed, at 390 nm t1/e is found to be 3.6 µs, at 410 nm t1/e is 2.4 µs, while at 

wavelengths above 450 nm the decay occurs much faster with a t1/e of 0.4 µs. 

 The transient absorption spectra exhibit already at low excitation intensity conditions, 

in contrast to the anatase sample presented above, high absorption intensities which 

increase exponentially with decreasing observation wavelengths. The transient absorption 

in the visible region, however, is very low. (see Figure 4.11 (right)). The shape of the 

transient absorption spectra does not change with the decay time.  
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Figure 4.11: Transient absorption signal observed at 450 nm upon laser excitation with λexc = 351 nm, 

inset: transient absorption signals normalized according to equation (4.1) observed at (pink) 390 nm (black) 

450 nm, and (blue)550 nm, respectively. (right) Transient absorption spectra observed (-○-) 0.109 µs, (-□-) 

0.8 µs, and (-▲-) 45 µs after the laser pulse. Experimental conditions: N2-saturated R15 powder, laser 

intensity: 7 mJ cm
-2 

pulse
-1

. 

An increase in the laser intensity leads to a higher transient absorption signal at 450 nm, 

while the decay kinetics do not change. The ratio of the long-lived absorption to the initial 

absorption decreases to 5 % at higher laser intensity. The decay kinetics of the transients 
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recorded at 390 nm, at 410 nm, and at 550 nm remain the same as those obtained at lower 

laser intensities (see inset of Figure 4.12 (left)).  

 The increase of the laser intensity leads to a shift of the transient absorption maximum 

from 390 nm to 410 nm indicating a saturation of the states absorbing at 390 nm (Figure 

4.12 (right).). In general, the transient absorption increases with decreasing wavelength 

and the shape of the transient absorption spectrum does not depend on the decay time. In 

contrast to the results obtained with the anatase powder the initial transient absorption 

recorded for the rutile powder 0.229 µs after the laser pulse lies below 5 % at 

wavelengths higher than 500 nm. 
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Figure 4.12: (left) Transient absorption signal observed at 450 nm upon laser excitation with λexc = 351 nm, 

inset: transient absorption signals normalized according to equation (4.1) observed at (pink) 390 nm, 

(green) 410 nm, (black) 450 nm, and (blue) 550 nm, respectively. (right) Transient absorption spectra 

observed (-○-) 0.229 µs, (-□-) 0.8 µs, and (-▲-) 45 µs after the laser excitation. Experimental conditions: 

N2-saturated R15 powder, laser intensity: 30 mJ cm
-2

 pulse
-1

. 

A linear relationship is noted between the transient absorption signal intensity measured 

227 ns after the laser pulse and the laser intensity as shown in Figure 4.13 (left) for 

transients at 390 nm, 450 nm, and at 550 nm. However, the linear dependency for the 

transient at 390 nm is only given at excitation intensities between 7 mJ cm
-2

 pulse
-1

 and 

16 mJ cm
-2

 pulse
-1

, while with higher laser intensities no change in the initial transient 

absorption intensity is observed indicating a saturation of the rutile sample. Moreover, on 

contrast to UV100 the linear function crosses zero. The slope of the linear correlations is 

wavelength dependent and is found to be 2.1 % mJ
-1

 cm
2
 pulse

 
at 390 nm, 0.85 % mJ

-

1
 cm

2
 pulse

 
at 450 nm, and 0.4 % mJ

-1
 cm

2
 pulse

 
at 550 nm. In contrast to UV100 for R15 

the long-lived absorption at 390 nm recorded 45 µs after the laser pulse is proportional to 
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the laser pulse intensity, while at longer wavelengths there is no change of the signal 

height upon increasing the laser intensity (Figure 4.13 (right)).  
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Figure 4.13: Height of the transient absorption signal as a function of the laser intensity observed at (■) 

390 nm, (○) 450, and (▲) 550 nm (left) 227 ns and (right) 45 µs after the laser excitation. Red lines present 

the linear fit. Experimental conditions: N2-saturated R15 powder. 
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Figure 4.14: (left) Transient absorption signal observed at 450 nm upon laser excitation with λexc = 248 nm, 

inset: transient absorption signals normalized according to equation (4.1) observed at (pink) 390 nm, 

(green) 410 nm, (black) 450, and (blue) 510 nm, respectively. (right) Transient absorption spectra observed 

(-○-) 0.229 µs, (-□-) 0.8 µs, and (-▲-) 20 µs after the laser pulse. Experimental conditions: N2-saturated 

R15 powder, laser intensity: 50 mJ cm
-2

 pulse
-1

. 

Upon excitation of R15 with 248 nm laser pulses a slightly faster transient decay is 

observed at 450 nm with t1/e of 0.7 µs in comparison to the measurements with 351 nm 

excitation (see Figure 4.14 (left)). Similar to the anatase sample the decay kinetics depend 

on the wavelength and a faster decay is observed at longer wavelengths. The 

characteristic life-time t1/e at 390 nm is reduced from 3.6 µs to 3 µs in comparison to the 



4. Results 

46 

 

measurements with excitation at 351 nm, while at 410 nm it decreases from 2.4 µs to 

2.2 µs and at 510 nm from 0.45 µs to 0.4 µs. 

 As shown in Figure 4.14 (right) the excitation with laser energies considerably 

exceeding the bandgap energy causes time dependent shifts of the transient absorption 

spectra, thus 0.109 µs after the laser pulse a transient absorption maximum is detected at 

410 nm, while 20 µs after the excitation the maximum shifts to 390 nm. The transient 

absorption at the wavelengths above 550 nm is similar to the measurements performed at 

λexc = 351 nm. 

 

4.3 Effect of electron donor and of acceptor on the transient absorption 

signals 

From the above presented transient absorption spectra it is not possible to attribute the 

obtained transient absorption in the studied wavelength region to certain photogenerated 

transient species. Upon illumination of TiO2 both electrons and holes are generated 

altering the optical properties of TiO2. Depending at which energy levels the charge 

carriers are located the transient absorption is known to vary. 
5
 According to the literature 

dealing with this topic the transient absorption of trapped electrons and holes overlaps.
11

 

Under inert atmosphere both electrons and holes are present, thus to identify the region 

where the photogenerated electrons and holes absorb in the transient absorption spectra of 

TiO2, electron acceptors and donors have to be employed. 

 The following chapter will at first present the laser flash photolysis studies performed 

on transparent colloidal TiO2 suspensions in the presence of platinum (Pt) as electron 

acceptor and polyvinyl alcohol as electron donor, respectively. These results will then be 

used as reference for the experiments with the colloidal TiO2 powder, the bulk anatase 

UV100, and the bulk rutile R15. 

4.3.1 Colloidal anatase TiO2 suspensions 

For the investigation of the dynamics of the photoinduced charge carriers in 

semiconductor nanoparticles the first laser flash experiments have been performed on 

transparent colloidal suspensions. The advantage of transparent nanoparticle suspensions 

is that the concentration of the colloidal particles exposed to the laser light is known 
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exactly, and that the amount of the photogenerated electron-hole pairs per particle can be 

readily adjusted.  

 Figure 4.15 (left) presents the transient absorption signal at 450 nm of an air saturated 

colloidal suspension of TiO2 particles modified with Pt islands acting as electron 

scavenger. As shown in this figure a strong increase in absorption is apparent 

immediately after the laser pulse, which decreases rapidly during the first ~5 µs reaching 

a long-lasting, nearly constant transient absorption with about 28 % (t = 180 µs) of the 

initial intensity. This long-lived transient absorption is observed over the entire 

wavelength regime studied, although the residual intensity relative to the initial intensity 

is higher at shorter wavelengths with 40 % at 390 nm in comparison to the longer 

wavelengths, e.g., 20 % at 650 nm. Hence, in analogy to the treatment of the transient 

reflection signals obtained for the powder samples for a better comparison of the initial 

decay behavior at different wavelengths, the long-lived plateau absorbance is subtracted 

from the absorption decay, and the resulting difference is normalized to the original 

intensity according to: 

180µs)(tΔAΔA

180µs)(tΔA(t)ΔA
(t)f

λ

max

λ

λλ
λ




  (4.2) 

While, as can be seen from the inset in Figure 4.15 (left), the initial decay behavior for the 

different wavelengths is qualitatively similar, it is obvious from the precise analysis of the 

decay kinetics that the decay rate decreases with decreasing wavelength, thus at 390 nm 

and 400 nm the characteristic life-time after which the initial absorption Amax decays to 

Amax/e is found to be t1/e ~ 33-39 µs, while in the wavelength range from 450 nm to 

650 nm Amax/e is reached after 15-20 µs. A similar decay rate dependency on the 

wavelength has been already reported.
16

  

 Figure 4.15 (right) presents the transient absorption spectra taken 227 ns and 17 µs 

after the laser pulse. Immediately 227 ns after the laser pulse a broad transient absorption 

spectrum with a maximum centered at 450 nm is observed, similar to the spectra 

previously reported.
7, 11, 16

 This maximum shifts towards shorter wavelengths during the 

decay of the transient signal. This transient absorption can be attributed to the trapped 

holes, since the electrons are transferred to the Pt islands. However, the broadness of the 

spectra (width at half maximum 200 nm for the initial spectrum) indicates either that the 

electrochemical environment of the photogenerated hole at the TiO2 surface differs 

depending on its location thus shifting its absorption strongly into the vis range, or that 
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not all photogenerated electrons have been transferred to Pt and part of the spectrum can 

be attributed to the trapped electrons. The latter is more likely, since the decay could not 

be completely suppressed in the presence of the Pt, although the trapped holes can 

recombine via the route expressed in equations 2.4 and 2.5. Moreover, according to the 

published TRMC results, Pt is found not to be sufficient to accept all electrons generated 

during the laser pulse.
117
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Figure 4.15: (left) Transient absorption signal observed at 450 nm upon laser excitation with λexc = 351 nm, 

inset: transient absorption signals normalized according to equation (4.2) observed at (pink) 390 nm (black) 

450 nm, and (red) 650 nm, respectively. (right) Transient absorption spectrum observed (-■-) 227 ns and     

(-▲-) 150 µs after the laser excitation. Experimental conditions: 6.3 10
-3

 M colloidal TiO2 suspension 

containing 0.3 %wt deposited colloidal Pt, pH=3, laser intensity: 13.6 mJ cm
-2

 pulse
-1

. 

To observe only the trapped electrons in TiO2 different alcohols are frequently applied, 

which can react with the holes.
84

 An example reaction of the holes with methanol is given 

below: 




  HOHHCOHCHh 23VB/tr  (4.3) 

The formed α-hydroxy methyl radical can inject an electron into the conduction band 

resulting in formation of two electrons following the absorption of only one photon (this 

is well known as the so-called current doubling effect): 




 HOCHeOHHC 2CB2  (4.4) 

Figure 4.16 (left) shows the transient absorption vs. time signal obtained at 650 nm for 

N2-saturated TiO2-suspensions in the presence of an electron donor such as polyvinyl 

alcohol. This long chain alcohol has been chosen for its additional property acting as a 
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stabilizer of the TiO2 colloid. A rapid decay lasting only a few ns followed by a long-

lived absorption is observed. A similar decay behavior is observed for the entire studied 

wavelength range studied. It has been reported that 80 % of the holes can be scavenged 

by the alcohol within 1 ns.
84

 Since Ti
3+

 centers formed by the trapping of the electrons 

have no other chance than to recombine with the holes, this initial rapid decay can be 

related to the reaction of the trapped holes with alcohol, as it has been suggested by 

Yoshihara et al.
11

 as an explanation for such a decay behavior.  
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Figure 4.16: (left) Transient absorption signal observed at 650 nm upon laser excitation with λexc = 351 nm. 

(right) Transient absorption spectra observed (-○-) 269  ns  and (-▲-) 18 µs after the laser excitation. 

Experimental conditions: 6.3∙10
-3

M colloidal TiO2 suspension containing 5∙10
-3

 M PVA, pH=3, laser 

intensity: 8 mJ cm
-2

 pulse
-1

. 

The transient absorption spectra measured 269 ns and 18 µs after the laser pulse in the 

presence of polyvinyl alcohol are shifted towards longer wavelengths with a maximum at 

630 nm in comparison to the transient absorption spectrum observed in the presence of Pt 

(see Figure 4.15 (right)). Again a very broad transient absorption band (width at half 

maximum 250 nm for the spectrum measured 269 ns after the laser pulse is obtained, the 

position and the shape of which do not change with the time. The broadness of these 

spectra is most probably related to the different trapping sites for the electrons in TiO2 as 

already mentioned in chapter 2.1. 

4.3.2 Colloidal anatase TiO2 powder 

For the identification of the transient absorption regions of the trapped electrons and of 

the trapped holes, respectively, in colloidal TiO2 powder an electron acceptor such as 

molecular oxygen has been introduced into the powder. It has been reported that 
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molecular oxygen reacts with the photogenerated electrons trapped in TiO2 resulting in 

the formation of peroxyl radical anions (see Figure 2.4 eqs. 11 and 12).
111, 118

 Figure 4.17 

(left) shows the transient absorption signals recorded in this system at 450 nm. In the 

presence of O2 the decay kinetics and the absorption intensity of the transient at 450 nm 

remains unchanged in comparison to the measurements under N2-atmosphere (see Figure 

4.4 (left)). Moreover, the decay kinetics obtained in oxygen-atmosphere at other 

wavelengths do not differ from the transient decays recorded in the presence of nitrogen 

(see inset Figure 4.17 (left)). This indicates that the transfer of the trapped electrons to the 

adsorbed oxygen molecules cannot compete with the recombination process, although 

reported electron transfer times have been found to be within <100 ns.
11

 In analogy to the 

transient decays in the presence of N2, the decay behavior in O2 atmosphere does also not 

depend on the analyzing wavelengths, as can be seen in the inset of Figure 4.17 (left). The 

transient absorption spectra measured at different times after the laser pulse (shown in 

Figure 4.17 (right)) do not change with the decay time. 

 The transient spectrum observed 8 µs after the laser pulse exhibits lower intensities at 

wavelengths above 500 nm in comparison to the transient spectra obtained in nitrogen 

atmosphere (Figure 4.4 (right)). According to these changes observed in the presence of 

the electron acceptor O2 the wavelength region from 500 nm to 750 nm can be attributed 

to the transient absorption of the trapped electrons, while the transient absorption at lower 

wavelengths belongs to the trapped holes.  
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Figure 4.17: (left) Transient absorption signal observed at 450 nm upon laser excitation with λexc = 351 nm, 

inset: transient absorption signals normalized according to equation (4.1) observed at (black) 450 nm, (blue) 

550 nm, and (red) 650 nm, respectively. (right) Transient absorption spectra observed (-■-) 0.109 µs, (-○-) 

0.229 µs, (-□-) 0.8 µs, and (-▲-) 17 µs after the laser pulse. Experimental conditions: O2-saturated colloidal 

TiO2 powder, laser intensity: 10 mJ cm
-2

 pulse
-1

. 
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In contrast to the slight effect of molecular oxygen on the transient absorption features of 

the colloidal TiO2 powder, drastic changes are observed in the presence of electron 

donors such as methanol. After nitrogen saturated methanol has been added to the 

nitrogen saturated powder a build-up of the transient absorption at 650 nm is observed 

indicating an accumulation of trapped electrons as Ti
3+

 species in the system (Figure 4.18 

(left)). These photogenerated trapped electrons remain in the TiO2 particles for more than 

1 s. As mentioned above the photogenerated holes undergo a fast reaction with the 

adsorbed methanol molecules (equation 4.3) thus preventing their recombination with the 

photogenerated electrons. Since the electrons have no other chance to react, they remain 

in the TiO2 particles leading to the blue coloration of the powder.  

 The described build-up of the transient absorption is observed in the entire studied 

wavelength range from 410 nm to 800 nm, as examples the transients at 450 nm, 550 nm, 

and 650 nm are shown in the inset of Figure 4.18 (left). The reaction of the trapped holes 

with methanol apparently happens within the duration of the laser pulses since it no 

absorption build-up could be detected in the available time resolution of a few hundred 

nanoseconds. The observed two step build-up of the transients can be explained by the 

initial formation of Ti
3+

 centers during the laser pulse followed by the electron injection 

of the α-hydroxyalkyl radicals 
•
CH2OH into the conduction band according to: 

  3

CB

4 TieTi  (4.5) 

OCHTiTiOHCH 2

34

2  
 (4.6) 

In the presence of methanol the transient absorption shown in Figure 4.18 (right) 

increases with increasing wavelengths until a maximum around 700 nm is reached 

followed by a slight decrease of the height of the transient absorption is in near IR. The 

appearance of the transient absorption maximum indicates that the electrons are localized 

at certain trapping states. It should be noted here that the contribution of the trapped 

electrons to the transient absorption at wavelengths below 500 nm is very high. However, 

the above proposed assignment of absorption wavelengths to the trapped holes and 

electrons could be confirmed using methanol as the electron donor. 
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Figure 4.18: (left) Transient absorption signal observed at 650 nm upon laser excitation with λexc = 351 nm, 

inset: transient absorption signals observed at (black) 450 nm, (blue) 550 nm, and (red) 650 nm, 

respectively. (right) Transient absorption spectra observed (-■-) 0.269 µs and (-□-) 17 µs after the laser 

excitation. Experimental conditions: N2-saturated colloidal TiO2 powder in the presence of 4∙10
-3

 mol/g 

CH3OH, laser intensity: 10 mJ cm
-2

 pulse
-1

. 

4.3.3 Bulk anatase TiO2 powder (UV100) 

For the identification of the trapped holes and electrons in the commercial TiO2 powder 

Hombikat UV100 the transient absorption behavior has been measured in the presence of 

selected electron acceptors and donors. The transient spectra of the O2-saturated powder 

showed only minor differences in comparison to the transient absorption signals observed 

in inert atmosphere N2, only a slight decrease of the signal height is detected in the 

wavelength range from 450 nm to 750 nm (see 8. Appendix) Therefore, another electron 

acceptor, that is Pt has been used. As shown in Figure 4.19 (left) a faster decay is 

observed at 450 nm exhibiting t1/e = 0.18 µs with, however, a similar signal intensity in 

comparison to the bare UV100 of around 10 %. The addition of Pt, leads to the 

disappearance of the transients at wavelengths above 500 nm and to a deceleration of the 

decay kinetics in the wavelength range below 430 nm. The inset of Figure 4.19 (left) 

shows a much slower decay of the transient at 390 nm with t1/e = 0.8 µs in comparison to 

the decay at 450 nm.  

 The shape of the transient absorption spectra does not change in the presence of this 

electron acceptor, moreover, the absorption close to the UV region remains unchanged, 

while a strong decrease of the signal height in the visible region is observed (see Figure 

4.19 (right)).  
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Figure 4.19: (left) Transient absorption signal observed at 450 nm upon laser excitation with λexc = 351 nm, 

inset: transient absorption signals normalized according to equation (4.1) observed at (pink) 390 nm, and 

(black) 450 nm. (right) Transient absorption spectra observed (-■-) 0.109 µs, (○) 0.229 µs, and (-▲-) 17 µs 

after the laser excitation. Experimental conditions: UV100 powder modified with 2 %wt Pt, laser intensity: 

20 mJ cm
-2

 pulse
-1

. 
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Figure 4.20: (left) Transient absorption signals observed at (pink) 390 nm, (black) 450 nm, (blue) 550 nm, 

and (red) 650 nm, respectively, upon laser excitation with λexc = 351 nm. (right) Transient absorption 

spectra observed (-○-) 0.229 µs and (-▲-) 17 µs after the laser excitation. Experimental conditions: N2-

saturated UV100 powder in the presence of 4∙10
-3

 mol/g CH3OH, laser intensity: 20 mJ cm
-2

 pulse
-1

. 

The intensity of the transient absorption at 390 nm decreases after the addition of an 

electron donor such a methanol (see Figure 4.20 (left)). Moreover, the transient absorbing 

at 390 nm decays within a few microseconds until a plateau at 50 % of the initial intensity 

is reached. The initial decay can be related to the reaction of methanol with the trapped 

holes, while the long-lived absorption represents more deeply trapped electrons. The 

transients at higher wavelengths show a build-up similar to the transients observed for the 

colloidal particles. Figure 4.20 (right) presents the transient absorption spectra measured 

229 ns and 17 µs after the laser pulse. The former shows two transient absorption maxima 
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at 390 nm and around 700 nm with similar intensities, while 17 µs after the laser pulse the 

transient absorption continuously increases with increasig wavelength until 700 nm and 

then remains unchanged. 

4.3.4 Bulk rutile TiO2 powder (R15) 

The R15 rutile powder has been modified with Pt to observe the transient absorption of 

the trapped holes assuming that the electrons are transferred to the metal islands. Figure 

4.21 (left) demonstrates that the presence of the Pt islands leads to the deceleration of the 

decay at 390 nm with t1/e being 6 µs as compared with t1/e = 3.6 µs in absence of Pt, while 

the decay time observed at longer wavelengths is comparable to that of bare R15 10 % of 

the initial intensity of the transient absorption remains 80 µs after the laser pulse. The 

transient absorption spectra do not change after the modification with Pt indicating that 

the transient absorption observed in the wavelength range below 500 nm can be attributed 

to the trapped holes. 
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Figure 4.21: (left) Transient absorption signal observed at 450 nm upon laser excitation with λexc = 351 nm, 

respectively, inset: transient absorption signals normalized according to equation (4.1) observed at (pink) 

390 nm, and (black) 450 nm. (right) Transient absorption spectra observed (-○-) 0.229 µs and (-▲-) 17 µs 

after the laser excitation. Experimental conditions: N2-saturated R15 powder, laser intensity:                 

16 mJ cm
-2

 pulse
-1

. 

The addition of methanol to R15 leads to transient absorption signals involving two decay 

processes as shown in Figure 4.22 (left). The transient absorption observed over the 

whole studied wavelength range can be described by an initial rapid decay within 0.3 µs 

followed by a 1 µs long build-up of the transient absorption and by a final decay within 

10 µs to a long-lasting absorption amounting to 60 % of the initial signal intensity. The 

observed decay processes indicate that in the presence of methanol after the excitation 
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two different species are formed at different times after the laser pulse. Moreover, the first 

decay overlaps with the subsequent build-up, however, it can be assumed that the second 

transient species is formed after the first one has reacted. 

 The transient absorption spectra measured at the two maxima and at the two minima 

are shown in Figure 4.22 (right). Similar to the anatase sample the transient absorption 

recorded at the first maximum after the laser pulse increases with the wavelength until a 

plateau region above 700 nm is reached. For the next maximum the transient absorption 

increases continuously with the wavelength. At the two minima, namely at 0.454 µs and 

at 17 µs, respectively, after the laser pulse, the transient absorption increases continuously 

until 750 nm. 
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Figure 4.22: (left) Transient absorption signals observed at (pink) 390 nm, (black) 450 nm, (blue) 550 nm, 

and (red) 650 nm, respectively, upon laser excitation with λexc = 351 nm. (right) Transient absorption 

spectra observed (-■-) 0.109 µs, (-□-) 0.454 µs, (-Δ-) 1.6 µs, and (-▲-) 17 µs after the laser excitation. 

Experimental conditions: N2-saturated R15 powder in the presence of 4∙10
-3

 mol/g CH3OH, laser intensity: 

16 mJ cm
-2

 pulse
-1

. 

4.4 Dependency of the transient absorption signals on the particle size  

Crystallite size and crystallinity have been recognized as important parameters that 

influence the photocatalytic performance of semiconductor nanoparticles.
119

 It has been 

shown that the bigger the particle the higher is the photocatalytic activity of TiO2 anatase, 

while the cristallinity exhibits no effect.
120, 121

 However, the effect of the particle size on 

the recombination kinetics of the photogenerated charge carriers in TiO2 has rarely been 

studied. For example, Serpone et al.
122

 have observed for colloidal TiO2 sols with mean 

particle diameters of 2.1, 13.3, and 26.7 nm that the transient absorption decay for the 

2.1 nm sol is a simple first-order process, while for the bigger particles the transient 
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absorption follows second order biphasic kinetics. In general, they reported a deceleration 

of the decay upon increasing the particle size. This example clearly shows that the 

particle size does not only effect the life-time of the photogenerated charge carriers, but 

also influences their recombination route. 

 In the following chapter the results obtained with the anatase and the rutile TiO2 

phases exhibiting different particle sizes and evidently different crystallinity will be 

presented.  

4.4.1 Bulk anatase TiO2 powder 

Six commercially available TiO2 anatase samples have been chosen to study the effect of 

the particle size and the degree of crystallinity on the recombination dynamics of the 

charge carriers: PC10, PC50, PC100, PC105, PC500, and S230. The powders are well 

known, have been well characterized, and have been tested regarding their photocatalytic 

activities by Pichat et al.
123-125

 These TiO2 powders are all prepared via the hydrolysis of 

TiOSO4, though the calcination time is varied. Figure 4.23 presents the crystallite size and 

the crystallinty of these TiO2 powders. The determination of these parameters were 

performed by means of XRD-Spectroscopy as described in chapter 3. Upon increasing the 

calcination time, as expected, both the crystallite size and the crystallinity increase. The 

crystalline portion of the TiO2 samples with particle sizes of 7 nm (S230), 10 nm 

(PC500), and 12 nm (UV100) lies between 66-70 %, while for bigger particles only 10 % 

of the material is amorphous. 
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Figure 4.23: Crystallite size (particle diamter) and the crystallinity of the commercial TiO2 anatase 

powders used in the present study. 

Figure 4.24 shows the transients absorption signals recorded at 390 nm and at 450 nm for 

the different TiO2 samples upon excitation with a 351 nm laser pulse. It is obvious that 
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the decay behavior depends on the different anatase samples with a deceleration of the 

decay occuring upon increasing particle size and increasing crystallinity. The transient 

absorption intensity at 390 nm decreases one half of its initial value for PC500  within 

0.3 µs, while for PC10 ΔJ/2 is reached only after 6 µs. For the transients absorption at 

450 nm faster decay times are generally recorded, thus ΔJ/2 for PC500 is reached after 

0.15 µs and for PC10 after 1 µs. Moreover, by comparing the transients at 390 nm it is 

obvious that the long-lived absorption component is higher for the bigger particles. 
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Figure 4.24 Normalized transient absorption signals observed at (left) 390 nm and (right) 450 nm of the 

charge carriers photogenerated in (black) S230, (red) PC500, (blue) PC105, (green) PC50, and in (grey) 

PC10. Experimental conditions: N2 saturated TiO2 powders, λexc = 351 nm, laser intensity:                     

30 mJ cm
-2

 pulse
-1

. 

The transient absorption spectra recorded 0.228 µs and 4.8 µs after the laser pulse for the 

anatase samples with different particle sizes are shown in Figure 4.25. The charge carriers 

photogenerated in the bigger particles exhibit a higher transient absorption 0.228 µs after 

the laser pulse in comparison to the smaller particles, although for all TiO2 samples the 

highest transient absorption within the studied wavelength range has been detected at 

390 nm. The transient absorption at 390 nm recorded 4.8 µs after the laser pulse increases 

upon increasing the particle size.  
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Figure 4.25: Transient absorption spectra observed (left) 0.228 µs and (right) 4.8 µs after the laser pulse of 

the charge carriers photogenerated in (-■-) S230, (-○-) PC500, (-Δ-) PC105, (-□-) PC50, and in (-◊-) PC10. 

Experimental conditions: N2 saturated TiO2 powders, λexc = 351 nm, laser intensity: 30 mJ cm
-2

 pulse
-1

. 

4.4.2 Bulk rutile TiO2 powder 

The effect of particle size on the recombination kinetics has also been investigated for 

rutile samples. Herewith, three commercially available TiO2 powders exhibiting different 

crystallite sizes have been chosen. Similar to the anatase materials presented above the 

samples were provided by Millennium Performance Chemicals where they have been 

prepared via the oxidation of TiCl4. The characterization of the samples has already been 

performed by Cecilia Mendive.
126

 The TiO2 material R15 exhibits a crystallite size of 

20 nm, R25 of 27 nm and R35 of 36 nm. 

 Figure 4.26 presents the transient absorption signals measured at 390 nm and at 

410 nm for the three rutile samples. The decay of the transients at 390 nm slows down 

upon increasing the particle size from 20  to 27 nm, while a further increase of the particle 

size has no influence on the decay time. Similar to the experiments preformed at different 

laser intensities, also here a saturation is observed. In contrast to the measurements at 

390 nm, the decay of the transients at 410 nm decelerates continuously with an increase 

of the particle size. ΔJ/2 for R15 is reached after 1.6 µs and for R34 after 6.6 µs, thus the 

almost doubling of the particle size leads to a four times slower decay rate. 
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Figure 4.26: Normalized transient absorption signals observed at (left) 390 nm, and (right) 410 nm for the 

charge carriers photogenerated in (black) R15, (red) R25, and (blue) R34. Experimental conditions: N2 

saturated TiO2 powders, λexc = 351 nm, laser intensity: 30 mJ cm
-2

 pulse
-1

. 
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Figure 4.27: Transient absorption spectra observed (left) 0.229 µs and (right) 17 µs after the laser pulse of 

the charge carriers photogenerated in (-○-) R15, (-■-) R25, and in (-▲-) R34, Experimental conditions: N2 

saturated TiO2 powders, λexc = 351 nm, laser intensity per pulse: 30 mJ cm
-2

 pulse
-1

. 

As observed for the R15 sample the transient absorption maximum at higher excitation 

intensity is shifted to longer wavelengths also for the two other rutile samples (see Figure 

4.27). For better comparison of the decay signals recorded at different excitation 

wavelengths, the experiments with λexc = 351 nm have been carried out at higher 

excitation intensities. Figure 4.27 (right) presents the transient absorption signals recorded 

at different decay times, namely, 0.229 µs and 17 µs after the laser pulse. No shift of the 

transient absorption with the decay time could be detected, indicating no transformation 

of the initially detected transient species to another product, thus the recombination of the 

charge carriers apparently proceeds without the formation of additional intermediates. 

However, the formation of such intermediate species cannot be completely excluded, 
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since the latter may exhibit similar transient absorption properties as the initially formed 

transient. The transient absorption intensity varies only slightly for the different rutile 

samples. 
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5. Discussion 

This chapter will begin with the discussion of the obtained structural changes of TiO2 

upon laser excitation followed by the interpretation of the transient absorption spectra 

measured under different conditions. Hereby, the effect of the photoinduced 

reconstruction of the TiO2 particles on the transient absorption properties of the trapped 

charge carriers will be in focus of the discussion. Finally, the recombination kinetics of 

the trapped charge carriers will be described employing a second order kinetic law. The 

latter will be modified according to the thus derived correlations of the absorption 

properties with the laser intensity as well as of the recombination rate constants with the 

particle size. 

5.1 Formation of Ti
3+

 centers and anatase to rutile phase transition upon laser 

exposure 

As the Raman spectra (see Figure 4.1) revealed the excitation of the UV100 TiO2 anatase 

powder by a 351 nm laser pulse leads to an anatase to rutile phase transition. Moreover, 

the formation of long-lived Ti
3+

 species located in the rutile phase is detected by means of 

EPR- and UV-vis-Spectroscopy. These results clearly prove a laser-induced 

rearrangement of the TiO2 lattice. It is more likely that the reconstruction of the TiO2 

structure occurs at the particle surfaces rather than in the bulk, since the former 

exhibits a higher defect density und thus a higher reactivity.127 However, the question 

arises, whether the absorbed laser energy is invested into a temperature rise followed by 

a thermal anatase to rutile transition or it is directly transferred to the lattice inducing a 

bond breakage on the molecular level.  

 The laser-induced anatase to rutile phase transition has been already studied by several 

research groups, whereas some of them reported photoinduced thermal driven phase 

transitions.
128, 129

 Wilkinson and Willsher pointed out that materials exhibiting a large 

optical absorption coefficients such as TiO2 or Fe3O4 (i.e., with α > 10
4
 cm

-1
) are likely to 

experience photoinduced thermal heating.
130

 Hereby the heat is homogeneously 

distributed over the illuminated volume resulting in a large temperature rise following the 

pulsed excitation. The temperature induced in TiO2 by a single laser pulse can be 

estimated according to the following equation: 
130
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Cρ

αE
Q 0

0



  (5.1) 

Q0: Temperature (K) 

E0: Incident Energy per unit area (J cm
-2

) 

C: Specific heat capacity (J g
-1

 K
-1

) 

ρ: Density (g cm
-3

) 

α: Absorption coefficient (m
-1

) 

Accordingly, the required temperature for the anatase to rutile phase transition of 680°C 

can be achieved with a laser intensity of 40 mJ cm
-2

 pulse
-1

 (using values for the anatase 

phase, i.e., α = 1.2∙10
4
 cm

-1
, C = 0.69 J g

-1
 K

-1
, and ρ = 1 g cm

-3 
(lower density value than 

that reported for bulk TiO2 (3.9 g cm
-3

) due to the powdered samples used in the 

experiments).
131

  

 However, such a photoinduced thermal heating of the illuminated volume followed by 

a phase transition is less probable. It contradicts to the studies of Stopper and Dohrmann, 

who demonstrated by means of time-resolved optoacoustic calorimetry that 88 % of the 

released heat is dissipated in a few nanoseconds over the whole system thus no significant 

temperature increase occurs.
132

 Recently, Ricci et al.
133, 134

 have shown by a careful 

analysis of the Stokes to anti-Stokes Raman peak ratio that the local temperature of the 

nanoparticles during the laser illumination was 370 K, thus an only thermally driven 

anatase to rutile phase transition could be ruled out. Moreover, Yates et al.
135

 have found 

that the photoinduced reconstruction of the TiO2 surface was not affected by cooling the 

surface below 150 K.  

 In fact, the photoinduced desorption/adsorption of oxygen molecules on the surface of 

nanometer sized TiO2 systems is reported to play a fundamental role for the non-thermal 

phase transition induced upon laser illumination.
133, 134, 136, 137

 Hereby, the phase transition 

was attributed to surface modifications by a proper depletion of adsorbed oxygen on the 

crystal surface. The desorption of the oxygen molecules from the TiO2 lattice yielding 

oxygen vacancies leads to an enhancement of the surface chemical reactivity. 

Subsequently, stable chemical bonds are formed between the surfaces of neighboring 

anatase particles resulting in the formation of polycrystalline aggregates. The interface 

between the bound anatase particles, which are only present in the inner region of these 

agglomerated particles, provides the nucleation sites of the rutile phase.
138

 The formation 

of the rutile phase inside of the aggregate is in agreement with our results. We, 
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furthermore, detected long-lived trapped electrons in the rutile phase, the lower reactivity 

of which evinces that they are located inside the TiO2 aggregate or cluster. The 

appearance of such non-reactive subsurface trapped electrons by tempering has also been 

reported by Diebold et al.
139

. The relative number of the preferential nucleation sites for 

the anatase to rutile phase transition is found to increase as the population of oxygen 

vacancies at the particle surface increases.
133, 134

 Zhou et al.
127, 140

 reported that the rutile 

phase nucleates exactly at the twin boundaries generated by anatase 112 surfaces. If the 

direct contact between anatase particles is prevented, the phase transformation was found 

to be retarded or prohibited at all. For example, no phase transformation has been 

observed for anatase TiO2 particles functionalized with nitric groups or with a La2O3 

shell.
133, 138

  

 The long-lived Ti
3+

 centers in TiO2 detected in the present study are most likely 

produced by oxygen removal during the laser illumination of anatase TiO2 (this has also 

been detected for the rutile phase). Desorption of one oxygen molecule leaves four 

additional electrons in the lattice. These electrons can either stay in the vacancy forming 

so-called F-centers, or they are transferred to Ti
4+

 yielding Ti
3+

 species. The conversion of 

Ti
4+

 to Ti
3+

 upon laser excitation with 355 nm has already been reported by Forsgren et 

al.
141

. Concomitantly, the hydrophilicity of the surface was improved. Since we were able 

to detect such Ti
3+

centers by means of EPR- and UV-vis-Spectroscopy (see Figure 4.2), 

this evinces that the phase transition observed in the present study occurs via the 

photoinduced oxygen desorption. However, the question arises, how the formation of the 

oxygen vacancies or of the rather long-lived Ti
3+

 species proceeds.  

 For example, Serpone et al.
6, 122

 reported that during laser flash photolysis studies 

long-lived Ti
3+

 centers can be produced via the so-called Auger recombination process. 

This Auger process is found to be the predominant mechanism when the number of 

photons exceeds the number of absorbing particles by far, which is in agreement with our 

experimental conditions.
142, 143

 In the Auger process the energy released by the 

recombination of an electron-hole pair is absorbed by another electron (or hole) resulting 

in the formation of highly energetic electrons (or holes), which can dissipate the energy 

either by an electron ejection from the semiconductor nanoparticle resulting in the 

formation of solvated electrons or by a phonon emission leading to the generation of 

long-lived deeply trapped electrons. The presence of solvated electrons can be ruled out 

here since the experiments have been performed employing dry TiO2 powders instead of 

aqueous TiO2 suspensions. However, the only experimental evidence for the formation of 
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such Ti
3+

 species via an Auger process is the fact that the published transient absorption 

signals detected in TiO2 do not decay to the initial value observed before the laser pulse 

but exhibit a long-lived transient absorption signal within the time scale of observation.
6, 

7, 9, 11, 15, 16, 144
 Moreover, the Auger recombination is normally observed in heavily doped, 

direct bandgap semiconductors. In direct bandgap semiconductors the recombination 

proceeds upon releasing photons, while in indirect semiconductors in most cases phonons 

are released, the energy of which is usually not high enough to excite other charge 

carriers.
58

  

 Lisachenko et al.
145

 proposed two possible processes to explain for the 

photodesorption of oxygen molecules from the metal oxide surface:  

(1) Photothermic processes, whereby the excitation energy is transformed into phonon 

energy of the solid resulting in the excitation of the vibrational mode of the surface-atom 

bond followed by the rupture of this bond. 

(2) Photoelectronic processes, whereby the excitation energy is absorbed by the atom-

surface bond thus changing the potential energy of the bond directing it towards the 

repulsive branch of the potential curve for the atom-surface interaction. Subsequently, the 

potential energy is converted into kinetic energy of the emitted particles, thus entailing 

the nature of its desorption. This mechanism is based on the research of Terenin, who 

pointed out that the emitted particle can gain the rest of the photon energy, if the latter 

exceeds the energy necessary for bond breaking.
146

 

 Based on Time-of-Flight (TOF) spectroscopy measurements, which allow the 

determination of the temperature of the desorbed molecules, Lissachenko ruled out the 

photothermic model.
145

 In photothermic processes the average velocity of the desorbed 

molecules should correspond to the surface temperature. The detected kinetic temperature 

of the desorbed oxygen molecules, however, exceeds by far the highest surface 

temperature produced by the laser beam. The photodesoprtion of oxygen from the TiO2 

surface is rather found to proceed via photoelectronic processes induced by electronic 

transitions. Hereby, the photodesorption of preadsorbed oxygen molecules (which are 

present on the metal oxide surface partially reduced, i.e., as superoxide radical anions) is 

caused by the capture of a photogenerated hole:
147-149
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  (g)OOh 2(ads)2VB
 (5.2) 

The desorption of the oxygen molecule from the TiO2 surface lattice includes the partial 

neutralization of the oxygen anion:
135

 

  OhO2
  (5.3) 

The oxidation of further oxygen anions results in the transformation of two neighboring 

O
2-

 anions into molecular oxygen. Accordingly, two single-photon excitations are 

required for the formation of one oxygen vacancy: 

 e2O2O2hυ 2

-

s
 (5.4) 

The structural changes of the TiO2 lattice observed in the present study can only be 

induced by the removal of strongly bound species according to eqs. 5.3. and 5.4. The 

photooxidation of lattice bound oxygen via photogenerated holes resulting in the release 

of molecular oxygen has been proposed as a mechanism for O2 formation by Salvador
150

 

and for the gas phase photocatalytic oxidation of organic compounds by Pichat
151, 152

 and 

Lisachenko.
153

 

 The idea behind the mechanism of photoelectronic processes including the excitation 

energy transfer to the surface-atom bond resulting in the formation of an oxygen vacancy 

is also supported by other experimental techniques such as ion and electron 

bombardment, where the kinetic energy of the accelerated ions is transferred to the TiO2 

lattice.
154, 155

 Actually, Fukushima et al.
156

 observed the anatase to rutile transition during 

the TiO2 film formation by means of ion bombardment. Moreover, the laser induced 

phase transition of Silicon has been explained by energy transfer from optically excited 

electron-hole plasma to the crystal lattice resulting in the crystal melting. This process is 

known as non-thermal melting.
157-159

 However, the latter occurs only at femtosecond 

excitation at a laser fluency of about 0.2 J cm
-2

. 

 According to the above presented discussion, in the photoinduced processes the 

absorbed light energy is transferred to the lattice inducing bond-breaking and 

displacement of atoms involved in the reconstructive transformation from anatase to 

rutile. According to Stopper and Dohrmann 88 % of the energy absorbed by colloidal 

TiO2 after the laser pulse is dissipated in less than one nanosecond as heat over the whole 

system as the consequence of the charge-carrier recombination, while the remaining 12 % 
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can be stored for at least 2 µs.
132

 Applying a laser pulse with an excitation wavelength of 

351 nm a total energy of 347 kJ mol
-1

 can be released as heat. According to Stopper and 

Dohrmann 305 kJ mol
-1

 will be dissipated over the whole particulate system, while 

42 kJmol
-1

 can be utilized locally. Employing a laser intensity of 23 mJ cm
-2

 pulse
-1

 one 

UV100 anatase nanoparticle can absorb 522 photons (see table 5.1 below). Assuming that 

every absorbed photon is utilized as much as 21924 kJ mol
-1

 can be locally converted into 

the bond breaking. For the cleavage of one Ti-O bond an energy of 315 kJ mol
-1

 is 

required. Hence, with the one laser pulse of 23 mJ cm
-2

 up to 70 Ti-O bonds per TiO2 

anatase particle can be broken. For the transition of bulk anatase to rutile it was reported 

that 7 out of the 24 Ti-O bonds per unit cell need to be broken leading to the cooperative 

displacement of both Ti and O.
133, 137

 It is more likely, however, that most of the Ti-O 

bonds are broken at the TiO2 surface. The anatase nanoparticles of UV100 are spherical 

in shape, therefore the number of TiO2 unit cells present at the surface is estimated to be 

180. Hence, during each laser pulse 3 Ti-O bonds per unit cell can be broken. 

Subsequently, that is already after the second laser pulse, the phase transition can be 

initiated. 

 The inhomogeneous distribution of the black spots containing the rutile phase and 

long-lived Ti
3+

-centers (see Figure 4.1) observed here for the laser irradiated powder 

samples indicates different reactivities of the TiO2 clusters at the surface. Assuming a 

homogeneous distribution of the photons over the illuminated TiO2 surface all exposed 

TiO2 units should be destabilized during the laser pulse. As a result bond breaking and 

atom displacement can occur. After the laser illumination the more stable TiO2 units 

manage to return back into the initial state (this self-repair mechanism can also be 

supported by the photo adsorption of the oxygen or water molecules), thus the initial 

anatase phase remains (see Figure 4.1). However, the more reactive TiO2 clusters (most 

likely due to a higher defect density) undergo intens irreversible structural changes such 

as oxygen removal followed by the observed phase transition. The latter results in the 

reported grey-blue coloration of the TiO2 sample. As a matter of fact, the photodeposition 

of metal nanoparticles on metal oxide surfaces also results in an inhomogeneous 

distribution of metal islands on the surface.
160

 

 Summing up the above presented discussion, the following laser-induced processes 

take place in anatase TiO2 powder upon illumination with intense laser pulses: formation 

of electron-hole pairs, followed by an energy and charge transfer to the TiO2 lattice. The 

regions of the TiO2 surface with high defect density undergo irreversible changes, such as 
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removal of the lattice oxygen resulting in the formation of oxygen vacancies. This 

enhances the surface reactivity of the TiO2 particles, thus at the interfaces of the anatase 

nanoparticles the phase transition to rutile occurs. The presence of the Ti
3+

 centers in the 

illuminated powder evinces that the phase transition to rutile occurs via the oxygen 

release from the TiO2 surface induced by the electron/energy transfer(see Scheme 5.1). 

However, the major part of the TiO2 nanoparticles are able to conduct self-repair 

processes and therefore exhibit no significant morphological and structural changes. 

 

Scheme 5.1: Schematic illustration of the laser-induced processes occurring in anatase TiO2 (Hombikat 

UV100). 

The massage of the discussion presented here so far is that upon the illumination with 

pulsed laser light intense structural changes of the TiO2 photocatalyst may proceed. These 

findings are essential for the evaluation of the underlying photocatalytic reactions. 

Although there are many studies which present such structural changes of the TiO2 

nanoparticles upon illumination,
128, 151, 152, 161-165

 this effect has rarely been considered for 

the interpretation of photocatalytic processes.
166

 Based upon these possible reactions it is 

certainly highly indicated to study the role of the surface reorganization on the 

photoinduced reactions upon the illumination. The knowledge of these processes can 

most probably open new design pathway for the future photocatalysts. 

5.2 Assignment of the transient absorption spectra  

TiO2 is one of the most studied photocatalysts. In the scientific literature different laser 

flash photolysis studies are presented dealing with the reaction dynamics of the charge 

carriers photogenerated in colloidal TiO2 suspensions
6-9

, in TiO2 films
10-14

, and in dry 

TiO2 powders
94, 100, 167, 168

 as already mentioned in chapter 2.1. In all these publications 

the authors attributed the optical changes induced by laser excitation in TiO2 to the 

formation of free and trapped electrons as well as of trapped holes. The analysis of the 
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published transient absorption spectra for different TiO2-samples recorded in the absence 

of any electron donor and acceptor revealed that the feature of transient absorption 

spectra is less dependent on the sample preparation, i.e., film, powder, or colloidal 

suspension rather than on the time resolution of the respective laser study. Hence, most of 

the transient absorption spectra measured in the picoseconds time regime exhibit transient 

absorption maxima located above 600 nm.
6, 14, 15, 73

 In some studies a continuous increase 

of the transient absorption intensity with the wavelength has been reported.
33, 169, 170

 In the 

nanosecond to microsecond time scale the intensity of the transient absorption at the 

longer wavelengths decreases, while at around 500 nm no changes occur resulting in a 

spectral blue shift. The dependence of the spectral changes on the time resolution of the 

laser study is depicted in Figure 5.1 (left). Since the trapped holes absorb in the UV-vis 

and electrons in the vis-IR wavelength region, the blue shift of the transient spectra 

observed at different times after the laser pulse has been related to the fact that the surface 

trapped electrons are photogenerated immediately after the excitation and relax during the 

next 500 ps into deeper traps in the bulk (see Figure 5.1 (right)), while the holes remain at 

the TiO2 particle surface.
33

  

 

Figure 5.1: (left) Comparison between the typical initial transient absorption spectrum observed in a 

picosecond and in a nanosecond laser flash photolysis experiment, respectively. (right) Schematic diagram 

illustrating the spatial and energetic distribution of electron traps in a TiO2 particle. 

Similar to the reports published in the literature very broad transient absorption spectra 

with a maximum located around 500 nm for colloidal anatase nanoparticles (see Figure 

4.4 (right)) and for TiO2 anatase UV100 (see Figure 4.7 (right)) have been observed here 

0.1 µs after the laser pulse. Both samples show a slight increase of the initial signal 

intensities with the observation wavelength. Upon increasing the laser intensity the 

transient absorption below 450 nm drastically increases, while the transient signals in the 

visible range only exhibit slight changes (see Figure 4.5 (right) and Figure 4.8 (right)). 
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For rutile a similar transient absorption has been detected but already at lower laser 

intensities of 7 mJ cm
-2

 pulse
-1

 (see Figure 4.11 (right)). In this study the observed 

transient absorption spectrum for rutile corresponds very well to the reported one.
167

 The 

different transient absorption spectra for rutile and anatase observed at the same laser 

excitation conditions have been explained by a different trapping behavior of the 

photogenerated charge carriers in the different phases. However, the discussion presented 

below provides another explanation for the detected difference between the anatase and 

the rutile phases.  

 For a better comparison of the results obtained with different TiO2 samples it is 

important to determine the amount of the absorbed photons per TiO2 particle and per TiO2 

unit. The amount of photons absorbed per TiO2 particle (Np) or per TiO2 unit (Nu) during 

the laser pulse can be calculated according to:  

hc

αdπ1/6λI
N

3

exc
p




  (5.5) 

Zh c

αVλI
N EZexc

u



  (5.6) 

I: Laser intesity [J m
-2

 pulse
-1

] 

λex: Excitation wavelength [m] 

d: Crystallite diameter [m] 

VEZ: Volume of the unit cell [m
3
]  

Z: Number of TiO2 molecules per unit cell 

α: Absorption coefficient [m
-1

] 

c: Speed of light [m s
-1

] 

h: Planck constant [J∙s] 

These equations are developed under the assumption that the particles are spherical. The 

light penetration depth and the illuminated area determine the illuminated volume; hereby 

the former one is determined by the reciprocal value of the absorption coefficients 

representing the absorption depth. Table 5.1 summarizes the calculated number of 

absorbed photons generated at two different laser intensities for three different TiO2 

samples, namely for dry colloidal TiO2 powder, UV100, and R15. 
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Table 5.1. Number of photons per TiO2 particle and per TiO2 unit calculated according to eqs. 5.5 and 

5.6 for different TiO2 samples with the absorption coefficient at 351 nm being 1.2∙10
6
 m

-1
 for anatase and 

6∙10
6
 m

-1
 for rutile.

171 

Sample 

 

I 

/ mJ cm
-2

 pulse
-1

 

dParticle 

/ nm 

Np 

 

Nu 

 

1/Nu 

 

TiO2 Colloid 10 7 38 0.006 167 

TiO2 Colloid 28 7 106 0.019 52 

UV100 7 12.7 159 0.005 200 

UV100 23 12.7 522 0.016 62 

R15 7 20 3,107 0.023 43 

R15 30 20 13,322 0.103 10 

According to equations 5.5 and 5.6 the number of absorbed photons per particle is 

directly proportional to the absorption coefficient, which depends on the crystallographic 

phase of TiO2. Since rutile exhibits a much higher absorption coefficient at 351 nm than 

anatase, the former absorbs considerably more photons per laser pulse provided that all 

other parameters are kept constant. For example, R15 absorbs around 3,000 photons per 

particle at a laser intensity of 7 mJ cm
-2

 pulse
-1

,while UV100 absorbs by a factor of 20 

less photons at the same laser intensity conditions. Comparing the number of photons 

absorbed per TiO2 unit in case of UV100 at a laser intensity of 23 mJ cm
-2

 pulse
-1

 every 

62
nd

 TiO2 unit in a particle is excited per laser pulse, while in R15 already at lower laser 

intensities every 43
rd

 particle is absorbing a photon. These simple calculations 

demonstrate that for a "fair" comparison of the transient absorption spectra observed in 

rutile and in anatase the laser intensity should be adjusted accordingly. This explains the 

already reported difference between the transient absorption spectra of rutile and anatase. 

Since the transient absorption spectra have been recorded at the same laser intensity, but 

in rutile much more particles are excited than in anatase different absorption spectra are 

monitored. In this work the transient absorption spectra observed in rutile at a laser 

intensity of 7 mJ cm
-2

 pulse
-1

 are comparable with the spectra observed for anatase 

samples at a laser intensitiy of 23 mJ cm
-2

 pulse
-1

. Figure 5.2 shows the normalized 

transient absorption spectra taken at 0.109 µs after the laser pulse for three different TiO2 

photocatalysts: UV100, R15, and colloidal TiO2 powder. In all three materials a 

continuous increase of the transient absorption signal upon decreasing observation 

wavelength is observed until at 390 nm the highest transient absorption signal is reached. 

In contrast, the transient absorption in the visible range decreases according to the order 

colloidal TiO2 > UV100 > R15. These results clearly show that the population of the 
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photogenerated intermediates responsible for the transient absorption in the visible range 

depends on the morphological properties of TiO2.  
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Figure 5.2: Normalized transient absorption spectra observed 0.109 µs after the laser pulse for (-○-) 

UV100 powder, (-■-) R15 powder, and (-▲-) colloidal TiO2 powder. Experimental conditions: N2-saturated 

powders, laser intensity per pulse: UV100: 23 mJ cm
-2

 pulse
-1

 (Nu: 0.016), R15: 7 mJ cm
-2

 pulse
-1                 

 

(Nu: 0.023), and colloidal TiO2:28 mJ cm
-2 

pulse
-1

 (Nunit: 0.019). 

In order to identify the region in the transient absorption spectra where the 

photogenerated intermediates, i.e., trapped electrons as Ti
3+

 centers and trapped holes as 

•
OH/O

•-
, adsorbed electron acceptors or donors have been added prior to the laser flash 

experiments. A general trend for all three TiO2 samples (colloidal TiO2, UV100, and R15) 

has been observed: The modification of TiO2 with an electron acceptor such as Pt leads to 

a decrease of the transient absorption at wavelengths higher than 450 nm, while at shorter 

wavelengths no change could be observed. The addition of methanol as an electron donor 

(or rather hole acceptor) has an opposite effect. The transient absorption in the 

wavelength region between 390 nm and 450 nm decreases, while at higher wavelengths a 

continuous increase with the wavelength is monitored. According to these results the 

latter transient absorption is attributed to the trapped electrons and the former transient 

absorption to the trapped holes. However, it should be noted here, that the trapped 

electrons contribute to the transient absorption in the entire wavelength region studied 

here.  

 For a better correlation of the transient absorption to the trapped species difference 

spectra have been calculated. The transient absorption spectrum observed in the presence 

of the electron donor or acceptor has been subtracted from the transient absorption 

spectrum observed under inert atmosphere. Since for colloidal TiO2 suspension no 
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transient absorption spectrum could be detected in the absence of scavengers, the 

transient absorption spectra obtained in the presence of methanol and Pt or O2 have been 

subtracted from each other. As shown in Figure 5.3 the trapped holes photogenerated in 

colloidal TiO2 exhibit a transient absorption between 390 nm and 550 nm, while the 

trapped electrons absorb mostly above 550 nm. This outcome corresponds to the 

published results in which for colloidal particles the transient absorption recorded in the 

nanosecond time regime at around 520 nm-550 nm has been attributed to the trapped 

holes.
11, 167, 172

 Using AgNO3 as the electron scavenger, Durrant et al.
70, 168

 attributed the 

transient absorption at around 460 nm also to the trapped holes. However, their data 

analysis not been taken into account that the Ag nanoparticles formed during the 

reduction of the Ag
+
 cations exhibit a plasmon band in this region, which may strongly 

influence the transient absorption signal. Ilya et al.
9
 related the origin of the vis absorbing 

holes to the common ion impurities in colloidal TiO2. The trapped holes are more UV-

absorbing as shown by radiolysis experiments.
39, 173

 In contrast to the colloidal particles 

the trapped holes in the bulk TiO2 powders exhibit no or only a minor transient absorption 

above 450 nm (see Figure 5.4). Apparently, more trap states located within the band gap 

are available for the trapping of the holes in the colloidal particles than in the bulk TiO2 

powder.  
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Figure 5.3: (left) Difference transient absorption spectra for transparent colloidal TiO2 suspension 

(experimental conditions see Figure 4.15 and Figure 4.16) with (-○-) ΔJCH3OH - ΔJPt. (right) Difference 

transient absorption spectra for colloidal TiO2 powder (experimental conditions see Figure 4.17 and Figure 

4.18) with (-□-)ΔJN2 - ΔJCH3OH, (-○-)ΔJN2 – ΔJO2. (-■-) Transient absorption spectrum observed under inert 

atmosphere (experimental conditions see Figure 4.4). 
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Figure 5.4: Difference transient absorption spectra for (left) UV100 powder and for (right) R15 powder 

(experimental conditions see Figure 4.19, Figure 4.20, and Figure 4.21, Figure 4.22, respectively) with       

(-□-) ΔJN2 - ΔJCH3OH, (-○-)ΔJN2 – ΔJPt. (-■-) Transient absorption spectrum observed under inert atmosphere 

(experimental conditions see Figure 4.8 and Figure 4.12). 

The change of the transient absorption in the wavelength range above 450 nm in the 

presence of electron donors and acceptors, respectively, indicates that the trapped 

electrons are located close to the surface, thus they can be readily transferred to Pt. 

Moreover, in case of rutile and anatase longer life-time of the trapped holes in the 

presence of Pt have been detected, evincing its role as sufficient electron scavenger (see 

Figures (left) 4.21, and 4.22). However, the decay kinetics in the presence of O2 did not 

change due to the slower reaction of the electrons with adsorbed O2 molecules (see Figure 

4.17 (left)).
11, 51

  

 The photooxidation of methanol via the photogenerated holes leads to an accumulation 

of the remaining electrons on the TiO2 surface resulting in build-up (see Figures (left) 

4.18. 4.20, and 4.22). The formation of the additional trapped electrons proceeds through 

so-called current doubling effect (see equation 4.4). In the absence of molecular oxygen 

as effective electron scavenger, TiO2 changes its colour from white to blue indicating the 

formation of Ti
3+

 centers. The photogenerated electrons are located in the respective traps 

at the photocatalyst surface and are available now for different reduction reactions.
174, 175

 

It has even been reported that in the presence of alcohol a change from n-type to p-type 

semiconductor behavior may occur
86

.  
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5.3 Contribution of the long-lived Ti
3+

 centers to the transient absorption 

spectra upon high laser excitation density 

As shown in chapter 5.1 irreversible changes of TiO2 occur during pulse irradiation with 

high laser excitation densities. Non-reactive Ti
3+

 centers and a subsequent anatase to 

rutile phase transition for anatase TiO2 are detected under these conditions. It is important 

to mention here, that the change in the reflection observed for anatase below 450 nm at 

high laser intensities cannot only be related to the transition of the anatase to the rutile 

phase, since for rutile a similar transient absorption has been detected but already at lower 

laser intensities of 7 mJ cm
-2

 pulse
-1

(see Figure 4.11) similar to the transient absorption 

spectra reported for rutile previously.
167

 However, the laser-induced modification of all 

three TiO2 samples affects the transient absorption signals. Several observations 

presented below will support this statement. Firstly, the detected transient absorption 

signals do not decay to the initial value observed before the laser pulse but exhibit long-

lived transients within the time scale of observation. This can be explained assuming that 

the initial optical properties of TiO2 before the laser exposure are altered by changes of its 

stoichiometric composition and by a phase transition as shown in this work. Secondly, a 

linear dependency of the long-lasting transient absorption on the laser intensity has been 

found for the rutile phase (see Figure 4.13 (right)). Apparently, the number of the laser-

produced long-lived Ti
3+

 centers is higher at higher laser intensities. Moreover, zero 

intercept of the linear fit of the data suggests (see Figure 4.13 (right)) that in rutile these 

irreversible changes occur already at very low laser intensities. Also for the anatase phase 

a long-lived transient component has been detected already at low laser intensities. 

However, this long-lived transient absorption does not increase with the laser intensity 

but rather remains constant, in contrast to rutile (see Figure 4.9 (right)). This difference of 

rutile and anatase samole will be discussed in the next chapter. It is important to notice 

here, that the long-lasting transient absorption is present at all wavelengths studied. This 

correlates very well with the UV-vis spectrum of the laser treated TiO2 exhibiting visible 

light absorption (see Figure 4.2 (left)). 

 The observed changes in TiO2 are most likely complete before the measurement of the 

transient absorption starts, i.e., 100 ns after the laser pulse. For example, it has been 

shown that the phase transformation of GaAs proceeds within 200 fs, while the atomic 

displacement in silicon has been found to occur within 120 fs after the laser pulse.
158

 

Zhou et al.
127

 performed molecular simulation techniques to investigate the anatase to 
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rutile phase transition. They observed the formation of rutile nucleates with induction 

times ranging from 26 ns−47 ns. Moreover, the laser-induced darkening of TiO2 due to 

the formation of Ti
3+

 centers has been monitored employing femtosecond excitation with 

laser intensities of less than 200 nJ.
176

 According to this consideration the alteration of the 

TiO2 phase should strongly affect the transient absorption within the whole investigated 

time range. Hence, it has been found for all three phases that the transient absorption at 

390 nm increases much faster than that at above 450 nm upon increasing the laser 

intensity. It is important to mention here that for rutile and anatase a linear dependency of 

the transient absorption signal on the laser intensity has been found indicating that third 

order processes and nonlinear optical processes can be excluded, since for a two-photon 

process the transient absorption should depend on the square of the light intensity (see 

Figure 4.9 (left) and Figure 4.13 (left)). In chapter 5.2 has been shown that the detected 

transient absorption in the wavelength region between 390 nm and 450 nm results from 

the formation of trapped holes. Moreover, previous reports are supporting the 

identification of this transient absorption in mentioned wavelength region
39, 177, 178

 

However, the contribution of the photogenerated long-lived Ti
3+

 centers to the transient 

absorption of the trapped holes is obvious. The difference transient absorption spectra of 

the spectrum observed at high and low laser excitation clearly demonstrates this. The 

difference transient absorption above 450 nm is almost zero, while at shorter wavelengths 

it is still higher than 15 % (see Figure 5.5). 

400 450 500 550 600 650 700 750

0

2

4

6

8

10

12

14

16

 

 




J 
/ 

%

Wavelength / nm
 

Figure 5.5: Difference transient absorption spectrum for UV100 powder with ΔΔJ=ΔJ(23mJ cm
-2pulse-1

)- 

ΔJ(7mJ cm
-2pulse-1

), (experimental conditions see Figure 4.7 (right) and Figure 4.8 (right)). 
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Several scenarios should be considered to explain the observed spectral changes. On the 

one hand, the observed transient absorption could represent the sum of the transient 

absorption induced by the trapped charge carriers and by the long-lived Ti
3+

 centers 

formed during the laser pulse: 

  33
trtrtrtr

3
trtr TiTi/heheTi/he

cεc)ε(εAAAΔJ  (5.7) 

There are studies showing that oxygen vacancies exhibit an optical transition in the UV-

vis wavelength region.
179

 Moreover, an increase of the extinction coefficient of TiO2 in 

the discussed wavelength range has been reported after heating TiO2 at 1000 °C.
180

 This 

change in the extinction coefficient has been explained by the formation of Ti
3+

 centers in 

TiO2 upon heating. However, in this case contributions to the transient absorption spectra 

should be found in the entire spectral range rather than only at wavelengths below 

450 nm.  

 On the other hand, the presence of the long-lived Ti
3+

 centers could strongly influence 

the extinction coefficient of the trapped holes. For example, Katoh et al.
114

 have observed 

an increased transient absorption of the trapped electrons at high laser excitation density 

employing picosecond laser pulses. The authors related this change to the increased 

extinction coefficient of the trapped electrons due to the Coulomb interaction induced by 

the holes formed at high laser intensity. They supported their conclusion by the report of 

Boschloo et al.
181

 who observed an increase of the extinction coefficient of the trapped 

electrons induced by intercalating cations such as Li
+
. In the present study, it seems very 

likely that due to the Coulomb interaction between the long-lived Ti
3+

 centers and the 

trapped holes an increase of the extinction coefficient of the latter will be induced. Hence, 

in accordance with the observations made here, the initial transient absorption intensity 

should increase linearly with the laser intensity as the amount of the long-lived Ti
3+

 

centers also grows steadily. This increase of the transient absorption signal is found to be 

dependent on the wavelength which can readily be explained by the dependency of the 

absorption coefficient on the wavelength. Moreover, the influence of the long-lived Ti
3+

 

centers on the extinction coefficient of the surface trapped electrons is rather low, since 

both species are spatially separated: the former are located inside of the agglomerate, 

while the latter are trapped directly at the particle surface.  

 The contribution of the absorption of the long-lived electrons to the observed transient 

absorption spectra can also be explained considering the experiments performed for 



5. Discussion 

77 

 

colloidal and bulk TiO2 powders in the presence of the electron acceptors and donors. In 

the presence of Pt only slight changes below 450 nm have been monitored. This evinces 

that the transient absorption of the formed long-lived electrons predominates the spectrum 

in the considered wavelength region. Since such electrons are remote from the surface, 

similar to O2 they cannot be transferred to Pt. Hence, their interaction with the trapped 

holes is still relevant in the presence of Pt. In contrast to the experiments with Pt, the 

transient absorption below 450 nm decreases in the presence of methanol as electron 

donor. Here the photogenerated holes are removed, thus the photoinduced formation of 

oxygen vacancies (see chapter 5.1) or rather long-lived trapped electrons is prohibited. In 

this case neither long-lived Ti
3+

 centers nor trapped holes are present and the observed 

transient absorption consists only of contributions of the surface trapped electrons. 

 Finally, the transient absorption spectra observed at high laser energy, namely at 

248 nm, have to be discussed. Using the excitation wavelength of 248 nm a transient 

absorption maximum at 370 nm has been observed for the anatase phase (see Figure 4.6 

(right) and 4.10 (right)). This absorption maximum can predominately be explained by 

the increase of the extinction coefficient of the trapped holes resulting from the formation 

of the long-lived trapped charge carriers as described in detail above. It should also be 

mentioned here that Lawless et al.
39

 reported for 
•
OH radicals trapped at the TiO2 surface 

an absorption maximum of 350 nm. For the rutile phase at very high laser excitation 

conditions, which is also the case upon excitation with 248 nm pulses, a red shift of the 

maximum from 390 nm to 410 nm is detected (see Figure 4.14 (right)). Already at laser 

intensities above 20 mJ cm
-2

 a saturation of the transient absorption at 390 nm occurs (see 

Figure 4.13 (right)). This saturation effect can be explained by the fact that the change in 

the extinction coefficient of TiO2, which occurs due to the formation of long-lived charge 

carriers, reached its maximum since only a limited amount of the oxygen vacancies or 

rather long-lived Ti
3+

 centers can be formed in the TiO2 phase. Moreover, a decrease of 

the transient absorption above 500 nm has been observed for all three phases when 

changing the laser excitation wavelength from 351 nm to 248 nm. This reveals either that 

the number of the surfaces trapped states for the electrons is reduced upon excitation with 

248 nm due to the surface reconstruction or that due to the interaction of the reactive Ti
3+

 

with the long-lived Ti
3+

 centers the extinction coefficient of the former decreases. It has 

been shown that the absorption coefficient of Ti
3+

 embeded in silicate decreases with 

increasing basicity.
182

 Drouilly et al.
183

 reported that in ZnO the basicity increases with 

increasing the oxygen vacancy concentration. Hence, the long-lived Ti
3+

 centers detected 
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in the present study will also increase the basiscity of the TiO2 particle surfaces thus 

leading to a decrease of the extinction coefficient of the trapped electrons absorbing 

above 450 nm. This effect of the long-lived Ti
3+

 centers is more pronounced upon 

excitation with 248 nm, since under these conditions the penetration depth of the 

excitation light is shorter resulting in a much higher charge carrier density and thus a 

reduced distance between the both species. For the colloidal TiO2 powder the reduction of 

the extinction coefficient of the trapped electrons occurs already upon 351 nm excitation. 

The transient absorption above 500 nm decreases upon increasing the laser intensity (see 

Figure 4.5 (right)) in comparison to the transient observed at low laser intensities (see 

Figure 4.4 (right)). Due to the smaller particle size of the colloidal TiO2 the distance of 

the long-lived Ti
3+

 centers to the surface trapped electrons is lower, thus their interaction 

can lead to the above described reduction of the extinction coefficient. Moreover, the 

observed lower transient absorption for the rutile phase above 450 nm (see Figure 5.2) in 

comparison to the anatase TiO2 phase can also be explained by this phenomenum. Due to 

the higher extinction coefficient of rutile at 351 nm, the charge density in each particle is 

higher and thus the interaction of the long-lived Ti
3+

 with the surface trapped electrons is 

stronger.  

 However, the detailed kinetic analysis of all transients following in the next chapter 

will present more details to the correlation between the transient absorption spectra and 

the observed structural changes of the TiO2 material. 

5.4 Recombination kinetics of the photogenerated charge carriers 

5.4.1 Dependency on the laser intensity  

In this chapter the analysis of the recombination kinetics of the photogenerated charge 

carriers will be presented. In particular, the effect of the laser intensity or rather of the 

effect of the long-lived trapped electrons formed at higher laser intensities on the 

recombination rate constant will be discussed. First analysis of the transient absorption of 

the trapped charge carriers in colloidal TiO2 powder will be presented followed by the 

analysis of the transient signals obtained for UV100 and for R15.  

 As discussed in detail above the analysis of the transient absorption spectra revealed 

that two trapped species are formed 100 ns after the laser excitation. These are the holes 

trapped as oxygen centered radicals (
•
OH, O

•-
), and the trapped electrons as Ti

3+
 species. 

The former absorb in the UV region below 450 nm, while the latter absorb above 450 nm. 
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The trapped holes formed in colloidal TiO2 exhibit a broader transient absorption in the 

wavelength range between 390 nm and 530 nm. Subsequently, the observed decay of the 

transient absorption in the absence of any electron donor and acceptor can be attributed to 

the recombination of the trapped electrons with the trapped holes according to equation 

5.8. The presence of free or shallowly trapped charge carriers can be neglected, since it 

has been shown that they react in a timescale of picoseconds (see Figure 2.4). 

heathe rk

trtr    (5.8) 

Different fitting models have been developed to describe the observed decay behavior of 

the transient absorption as presented in chapter 2.2.3. The transient absorption signals 

observed for all materials studied here follow bimolecular second order kinetics 

according to equation 2.9. In contrast to equation 2.9 instead of the charge carrier number 

(t)x  the transient absorption ΔA has been measured and needs to be introduced in 

equation: 

1tkA

A
AΔJ

r0

0


   (5.9) 

Taking into account the relation given in equation 3.5 expression 5.9 can be written as: 

B
1tkc

c
AΔJ

r0

0 



 T  (5.10) 

where c0 presents the initial concentration of the formed transient species, exhibiting 

certain εT relative extinction coefficient, and B is the long-lasting transient absorption. 

The presented transient absorption signals in chapter 4 can be fitted applying the above 

presented function, although some boundary conditions have to be defined. It is assumed 

that the concentration of the trapped electrons and holes, which survive in nanosecond 

timescale and react with each other, is equal: 

0tr0tr0 c)(hc)(ec    (5.11) 

Hence, if the transient absorption observed at a certain wavelength represents the 

transition from the trapped state to the conduction band, than c0 should be wavelength 

independent. Here, c0 was set arbitrarily to 0.028 a.u., thus the value of the relative 

extinction coefficient calculated from the fit function is relative and not an absolute 
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number. The fit to second order kinetics for the transient absorption at 450 nm is shown 

in Figure 5.6 for colloidal TiO2 powder observed at two different laser pulse energies. 

 The perfect matching of the fit function with the time dependent change of the 

transient signals evinces that the bimolecular recombination of the trapped charge carriers 

(equation 5.8) with one other is the predominant process in the studied time scale region 

at different laser intensities. The exact recombination rate constant and the initial 

concentration of the transient species can only be determined if the extinction coefficient 

of the trapped species is known. It has been reported that the extinction coefficients for 

the electrons vary strongly between 800-2600 M
-1

 cm
-1 

depending on the material 

preparation. The spectroelectrochemically estimated extinction coefficient for the holes 

has been reported to be 2930 M
-1

 cm
-1

, and for the electrons 2440 M
-1

 cm
-1

.
184, 185

 The 

former deviates strongly from the reported extinction coefficient for the free 
•
OH radical 

of 540 M
-1

 cm
-1

.
49

 Due to these discrepancies and to the fact that the extinction coefficient 

of the trapped species is not known for the TiO2 powder, in the following, the results will 

be discussed employing the rate constants with the units for kr beeing s
-1

 a.u.
-1 
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Figure 5.6: Transient absorption signals observed at 450 nm upon laser excitation with λexc = 351 nm for 

colloidal TiO2 powder measured (left) at 10 mJ cm
-2

 pulse
-1

 and (right) at 28 mJ cm
-2

 pulse
-1

. The red line 

represents a fit to second order kinetics according to equation 5.10.  

In Figure 5.7 (left) thus determined recombination rate constants are plotted for different 

wavelengths. As expected the recombination rate constant is wavelength independent and 

average value of 1.2±0.2∙10
8
 s

-1
 a.u.

-1
 is found. The relative extinction coefficient depends 

on the wavelength exhibiting a slight maximum at 450 nm. The ratio of 1.2 of the 

extinction coefficient obtained at 450 nm to that obtained at 600 nm correlates very well 



5. Discussion 

81 

 

with the ratio of the spectroelectrochemically determined extinction coefficient of the 

holes to that of the electrons reported in the literature.
80
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Figure 5.7: (left) Second order rate constants kr and (right) relative extinction coefficients εT of the transient 

species obtained at different wavelengths for colloidal TiO2 powder at 10 mJ cm
-2

 pulse
-1

. 

Figure 5.8 shows the recombination rate constants and the relative extinction coefficients 

obtained at higher laser intensities. It is apparent that the rate constants obtained in the 

wavelength region between 430 nm and 500 nm are higher in comparison to the rate 

constants obtained at lower laser intensities. This correlates also with the life-times of the 

transients, namely, in the discussed wavelength range a decrease of the life-time t1/e upon 

increasing the laser intensity is observed (see Figures (left) 4.4, and 4.5). It can be 

assumed that in the present study the trapped states are already saturated at a laser 

intensity of 7 mJ cm
-2

 pulse
-1

. Moreover, the life-time of the trapped charge carriers 

exhibiting transient absorption signals between 390 nm and 430 nm, as well as those 

absorbing above 500 nm do not change upon increasing the laser intensity evincing that c0 

does not change. Since the concentration of the trapped charge carriers should be the 

same in the studied wavelength, the observed increase of the rate constant of the transient 

signals between 430 nm and 500 nm indicates that the trapped species have an additional 

route to react besides their recombination. This phenomenon is more pronounced for 

rutile TiO2 and will be discussed in more detailed later.  

 It is obvious from the results presented in Figure 5.8 (right) that at higher laser 

intensities the relative extinction coefficient below 500 nm increases strongly with the 

decrease of the wavelength, while above 500 nm similar values for the relative extinction 

coefficient are found as at lower laser intensities. Principally, the relative extinction 

coefficient should remain constant upon increasing the laser intensity. However, as 
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discussed in chapter 5.3 due to the coulombic interaction of the long-lived Ti
3+

 centers 

formed during initial pulse period with the trapped holes the relative extinction coefficient 

of the former can be enhanced. Based upon the results obtained from the kinetic data 

analysis carried out here, which are shown in Figure 5.8 (right), this effect could be 

proven. 

400 450 500 550 600
0

1x10
8

2x10
8

3x10
8

k
r 
/ 

s-1
 a

.u
.-1

Wavelength / nm

400 450 500 550 600
1

2

3

4

5

6

7

400 450 500 550 600
0

1x10
8

2x10
8

3x10
8

 

 T
 /

 a
.u

.

Wavelength / nm  

Figure 5.8: (left) Second order rate constants kr and (right) relative extinction coefficients εT of the transient 

species obtained for different wavelengths for colloidal TiO2 powder at 28 mJ cm
-2

 pulse
-1

. 

The transient absorption signals obtained for UV100 also obey second order kinetics 

according to equation 5.10 (see Figure 5.9). Similar to colloidal TiO2 powder, the 

estimated recombination rate constants are wavelength independent at lower laser 

intensities (see Figure 5.10 (left)). For kr an average value of 2.2±0.3∙10
8
 s

-1
 a.u.

-1
 is 

found. A direct comparison of the recombination rate constants of the different materials 

is not possible, since the exact concentration of the trapped species is not known. 

However, both recombination rate constants are of the same order of magnitude, in good 

correlation with the observation of similar charge carriers life-times observed for 

colloidal TiO2 powder and for UV100 (see chapter 4). It is important to mention here that 

both TiO2 materials also exhibit similar primary particle sizes.  
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Figure 5.9: Transient absorption signals observed at 450 nm upon laser excitation with λexc = 351 nm for 

UV100 (left) at 7 mJ cm
-2

 pulse
-1

 and (right) at 23 mJ cm
-2

 pulse
-1

. The red line represents a fit to second 

order kinetics according to equation 5.10.  

The wavelength dependency of the relative extinction coefficients is presented in Figure 

5.10 (right). In comparison to the colloidal TiO2 powder smaller values are found. 

Principally, the relative extinction coefficient for the trapped charge carriers should be 

constant for different TiO2 samples. The observed discrepancy can be explained by the 

fact that for both TiO2 samples the same value of 0.028 has been chosen for c0. It can be 

concluded that the concentration of the photogenerated trapped species in colloidal TiO2 

powder is higher than in bulk UV100, since the former exhibits a higher number of 

defects resulting from the sol-gel synthesis. A more detailed discussion of the dependency 

of the relative extinction coefficient on the type of TiO2 sample will be presented below.  
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Figure 5.10: (left) Second order rate constants kr and (right) relative extinction coefficients εT of the 

transient species obtained at different wavelengths for UV100 at 7 mJ cm
-2

 pulse
-1

. 

Similar to the results discussed for the colloidal particles, also for UV100 the 

recombination rate constant in the wavelength range between 430 nm and 500 nm 
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increases upon increasing the laser intensity indicating a new reaction route for the 

trapped charge carriers (see Figure 5.11 (left)). In all other wavelength regions the rate 

constant does not change, as expected. These results correlate very well with the t1/e 

values obtained at different excitation conditions (see Figures (left) 4.7, and 4.8). As 

depicted in Figure 5.11 (right) below 500 nm the relative extinction coefficient of the 

trapped holes increases drastically due to the Coulomb interaction with the long-lived Ti
3+

 

centers, which are formed at higher laser intensities during the initial pulse period.  
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Figure 5.11: (left) Second order rate constants kr and (right) relative extinction coefficients εT of the 

transient species obtained at different wavelengths for UV100 at 23 mJ cm
-2

 pulse
-1

. 

For a better understanding of the effect of the laser intensity on the recombination rate 

constants and on the relative extinction coefficients, the transient absorption signals of the 

trapped holes obtained with different laser intensities at 390 nm have been analyzed in 

detail. As shown in Figure 5.12 the recombination rate constants remain constant, while 

the relative extinction coefficients increase linearly with the laser intensity. As discussed 

in the previous chapter the electronic transition and thus the relative extinction coefficient 

of the trapped holes can be influenced by the columbic interaction with the long-lived 

trapped electrons. The Coulomb potential depends besides on the distance between the 

two charges in particular on the charge density. In the present case the charge density is 

determined by the concentration of the long-lived Ti
3+

 centers. As discussed above, upon 

increasing the laser intensity the number of the long-lived Ti
3+

 centers increases, hence 

that their interaction with the trapped holes will become stronger resulting in an 

enhancement of the relative extinction coefficients. Accordingly, the relative extinction 

coefficient can be defined as:  

Iε)nm 390(ε '

TT   (5.12) 
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where '

Tε  represents the intensity independent relative extinction coefficient [a.u./ mJ cm
-

2
pulse

-1
] and I the laser intensity. Most likely the '

Tε  value of 1.31 found for UV100 is 

also valid for other 100 % anatase particles exhibiting similar particle sizes, since as it 

will be shown below εT does not depend on the particle size. 

 Taking into the account the relationship givn in (5.12) equation 5.10 can be modified 

as follows: 

B
1tkc

Icε
AJ

r0

0

'

T 


   (5.13) 

Hereby, it is important to mention that '

Tε  is wavelength dependent and needs to be 

determined separately for each wavelength. 
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Figure 5.12: (left) Second order rate constants kr and (right) relative extinction coefficients εT of the 

transient species obtained at different laser intensities for UV100 at 390 nm. The red line represents the 

linear fit with the formula: I07.031.1)nm 390(ε
T

  

Figure 5.13 shows the perfect matching of the transient absorption signals obtained for 

rutile TiO2 R15 at two different laser intensities with a fit to second order decay kinetics. 

Since the t1/e presented in chapter 4.2.3 does not change upon the increasing the laser 

intensity, as it was observed for anatase samples, the critical conditions for rutile are 

already achieved at laser intensities of 7 mJ cm
-2

 pulse
-1

. Hence, in the following only the 

decay kinetics at the lower laser intensity will be analyzed.  
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Figure 5.13: Transient absorption signals observed at 450 nm upon laser excitation with λexc = 351 nm for 

R15 (left) at 7 mJ cm
-2

 pulse
-1

 and (right) at 30 mJ cm
-2

 pulse
-1

. The red line represents a fit to second order 

kinetics according to equation 5.10.  

The analysis of the transient absorption signals measured at different wavelengths 

revealed that the recombination rate constant at wavelengths above 470 nm is wavelength 

independent exhibiting a value for kr of 1.7±0.2∙10
8
 s

-1
 a.u.

-1
, while at shorter wavelengths 

the decay rate constants are found to be one order of magnitude lower. Apparently, in 

rutile particles the trapped electrons react faster than the trapped holes in obvious 

contradiction to the above presented model. This discrepancy can be explained by a 

model employed in conventional photolectrochemistry; that is, the energy of the lower 

edge of the conduction band of n-type semiconductors decreases with increasing distance 

from the surface resulting in the so-called upward band bending and the concomitant 

formation of a space-charge layer. Subsequently, the photogenerated charge carriers can 

be spatially separated. The electrons are forced to migrate into the bulk of the 

semiconductor particles, while the holes remain at their surface (see Scheme 5.2 (left)).  
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Figure 5.14: (left) Second order rate constants kr and (right) the relative extinction coefficients εT of the 

transient species obtained at different wavelengths for R15 at 7 mJ cm
-2

 pulse
-1

. 
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Scheme 5.2: (left) Schematic diagram of the migration of photogenerated electrons into the bulk across 

space charge layer and the accumulation of the holes at the surface of the illuminated semiconductor. (right) 

Schematic illustration of the recombination processes between the surface trapped holes and electrons 

denoted as kr(1), and the recombination between the surface trapped holes and bulk electrons kr(2). 

However, the magnitude of the band bending VBB depends on the particle size r0, the 

dopant concentration Nd, and the relative dielectric constant εr:
186

  

0r

d

2

0
BB

ε6ε

Ner
V   (5.14) 

The band bending effect becomes relevant for n-doped TiO2 nanoparticles with particle 

diameters exceeding 15 nm.
187

 An important difference between the anatase nanoparticles 

discussed above to the rutile nanoparticles is that in case of rutile a higher concentration 

of dopants, namely of the long-lived Ti
3+

 centers formed upon laser exposure, can 

expected. For example, Selloni et al.
188

 have shown that anatase is more difficult to 

reduce than rutile. Moreover, the rutile nanoparticles employed here exhibit a slightly 

bigger mean particle radius of 20 nm than UV100 (d = 12.7 nm) and colloidal TiO2 

(d < 10 nm). Accordingly, in rutile even the electrons initially formed near the particles’s 

surface migrate into the bulk from where they then undergo recombinations with the 

surface trapped holes with the recombination rate constants denoted in Scheme 5.2 (right) 

as kr(2). This increased distance between the reactants leads to the observed deceleration 

of the recombination process. Apparently, the bulk electrons do not exhibit any 

appreciable transient absorption in the studied wavelength range. The rather small number 

of the remaining surface trapped electrons recombines with surface trapped holes with 

kr(1) as denoted in Scheme 5.2 (right). The latter process shows higher recombination rate 

constants, which are, however, in the same order of magnitude as estimated for anatase 
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TiO2. Moreover, as presented in chapter 4.2.3 the long-lived transient absorption, which 

is more pronounced at shorter wavelengths, where the trapped holes absorb, than at 

longer wavelengths, where the trapped electrons absorb, can be attributed to the 

remaining transient absorption of the trapped holes, which obviously react very slowly 

with the bulk electrons. Obviously, most of the surface trapped electrons have migrated 

into the bulk, thus the remaining transient absorption at wavelengths above 450 nm is 

very low. Moreover, a linear dependency of the long-lived component of the transient 

absorption signal at 390 nm with the laser intensity has been found (see Figure 4.13 

(right)). This can be explained by the fact, that upon increasing the laser intensity the 

concentration of the long-lived Ti
3+

 centers increases leading to a stronger upward band 

bending and subsequently to a higher number of slowly reacting trapped holes absorbing 

at 390 nm. It should be mentioned here, that the constant value B (see equation 5.10) can 

be also explained by very slow recombination processes as suggested by Serpone et al.
6
  

 Similar to anatase below 500 nm the relative extinction coefficients of the trapped 

holes in rutile increase strongly, while the relative extinction coefficients of the trapped 

electrons remain unchanged as depicted in Figure 5.14 (right). However, in contrast to the 

anatase nanoparticles, in case of rutile this phenomenon is observed already at low laser 

intensities due to the higher number of the photons absorbed by the rutile nanoparticles 

per laser pulse as discussed in chapter 5.3.1.  
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Figure 5.15: (left) Second order rate constants kr and (right) relative extinction coefficients εT of the 

transient species obtained at different laser intensities for R15 at 390 nm. The red line represents the linear 

fit with a formula: I03.095.0)nm 390(ε
T

  

For the rutile powder no change of the recombination rate constant could be detected 

upon increasing the laser intensity, while the relative extinction coefficient of the trapped 



5. Discussion 

89 

 

holes increases linearly with the laser intensity (see Figure 5.15) Hence, all the arguments 

presented above for anatase are also valid for rutile and equation (5.13) can be applied for 

rutile samples with '

Tε  of 0.95 at 390 nm. 

 Finally, it is important to compare the decay kinetics observed upon excitation with 

248 nm laser pulses. As Figures 4.6, 4.10, and 4.14 show the excitation with the shorter 

wavelength leads for all three TiO2 samples to an acceleration of the decay kinetics at 

longer wavelengths, while only slight changes are observed at shorter wavelengths. These 

results can be explained using Scheme 5.2 (right). The high charge carrier density and the 

shorter penetration depth of the laser beam with λexc = 248 nm induce intense structural 

changes of the studied material surface. Hence, most likely, the surface trapped electrons 

are transferred from the surface into the bulk of the particle resulting in their shorter life-

time.  

 In summary, it can be concluded that the change of the relative extinction coefficient 

obtained for all three TiO2 samples upon increasing the laser intensity correlates very well 

with the discussion presented in chapter 5.3. The comparison of the relative extinction 

coefficients obtained for different TiO2 morphologies reveals that the concentration of the 

trapped states is the highest at colloidal anatase TiO2 particles, while it is the lowest for 

rutile particles, since in all cases the initial concentration was kept constant and it was 

assumed that the relative extinction coefficient of the trapped species does not depend on 

the structural properties of TiO2. These findings can be readily explained, since the 

colloidal particles exhibit a higher number of defects and thus trapping sites, while at the 

rutile surface due to its smaller surface area a considerably reduced number of the 

trapping sites is present. However, the effect of the long-lived Ti
3+

 centers on the relative 

extinction coefficient of the trapped holes does not depend on the TiO2 morphology. For 

both, anatase and rutile similar values for 
'

Tε  have been found.  

 Considering the charge carriers recombination kinetics a simple second order rate law 

could be applied to describe the photoinduced processes under different excitation 

conditions and for different TiO2 powders according to equation 5.13. The obsreved 

recombination rate constants -at least in the wavelength range where trapped electrons 

absorb- are similar exhibiting an order of magnitude of 10
8
 s

-1
 a.u.

-1
. Comparable values 

have been reported for the relative recombination rate constant by other research groups 

working in this field.
15, 75

 The important difference of rutile in comparison to anatase is 

that in rutile structural changes can be more easily induced upon illumination, resulting in 
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a stronger influence of the photogenerated charge carriers on the reaction dynamics. 

Subsequently, this could also be one of the reasons for the different photocatalytic 

activities of rutile and anatase. While the former is known as a good oxidant, which is 

also obvious due to the longer life-time of the trapped holes, the latter is able to reduce 

protons yielding hydrogen. This could be explained by the presence of considerably 

higher number of trapped electrons at the surface of the anatase particles, from where 

they can be transferred more easily to their reaction partners. 

5.4.2 Dependency on the particle size 

It is well established that besides the morphology of TiO2 also the particle size plays an 

important role for the photocatalytic processes. From TRMC (Time-Resolved-

Microwave-Conductivity) measurements and laser flash results employing aqueous 

colloidal TiO2 suspensions it is known that the increase of the particle sizes leads to 

longer life-times of the photogenerated charge carriers.
122, 189

 In the present study anatase 

TiO2 samples exhibiting different particle sizes have been investigated (see Figure 4.23). 

The comparison of the transient absorption signals revealed a deceleration of the decay 

kinetics upon increasing particle sizes (see Figure 4.24). The transient absorption spectra, 

on the other side, are only slightly influenced by the particle size (see Figure 4.25). For all 

anatase TiO2 samples the observed decay kinetics of the transient absorption signals 

follows second order kinetics according to equation 5.10, and a linear dependency of the 

reciprocal second order recombination rate constant on the particle size has been found. 

Figure 5.16 (left) presents the reciprocal recombination rate constant of the transient 

absorption recorded at 390 nm as a function of the particle size. Obviously, the decay rate 

constants decrease as the particle sizes increases. The relative extinction coefficient of the 

trapped holes, however, remains constant for all anatase TiO2 samples. Apparently, the 

photoinduced structural changes of the anatase TiO2 samples do not depend on the 

particle size, since the amount of the photons absorbed per TiO2 unit was the same in all 

these experiments. 

 The obtained dependency of the rate constant on the particle size can be explained 

using the band bending model described above. According to equation 5.14 the 

magnitude of the band bending is proportional the particle radius, thus in case of the 

bigger particles a stronger upward band bending is expected resulting in a better 

separation of the photogenerated charge carriers as depicted in Scheme 5.3. 
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Figure 5.16: (left) Reciprocal second order rate constants kr and (right) relative extinction coefficients εT of 

the trapped holes obtained at 390 nm as the function of the particle diameter for anatase TiO2. The red line 

represents a linear fit with a formula: 1/d06.005.1)nm 390(k
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Scheme 5.3: Schematic diagrams of the band bending in big and small particles. Reprinted with permission 

from ref.
186

 Copyright 2012 American Chemical Society. 

Upon increasing the particle size the bulk to surface ratio increases, subsequently the 

distance between the trapped holes and electrons increases. Considering the observed 

linear dependency of the reciprocal recombination rate constant on the particle diameter 

equation 5.13 can be further modified as follows: 

B
1 t/dkc

Icε
AJ

'

r0

0

'

T 


  (5.15) 

with 

1/dkk '

rr   (5.16) 
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Herein, '

rk  depends on the wavelength or rather on the region where the trapped electrons 

and trapped holes absorb. In Figure 5.17 the reciprocal rate constants and the relative 

extinction coefficients for the transient absorption signals at 450 nm are shown as 

function of the particle size. Similar to rutile in the anatase particles with diameters 

exceeding 20 nm the recombination rate constant of the trapped electrons is faster by one 

order of magnitude than that of the trapped holes. Here all arguments given for the rutile 

particles are also valid. Moreover, as shown in Figure 4.24 the long-lived transient 

absorption at 390 nm increases upon increasing the particle size. This can be explained by 

the fact that due to the band bending effect the number of the long-lived holes increases. 

As expected, the relative extinction coefficient of the trapped electrons remains constant 

for all particle sizes studied here (see Figure 5.17 (right)). 
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Figure 5.17: (left) Reciprocal second order rate constants kr and (right) relative extinction coefficients εT of 

the trapped holes obtained at 450 nm as the function of the particle diameter for anatase TiO2. The red line 

represents a linear fit with the formula: 1/d01.018.0)nm (450k
r

  

Similar to anatase also the effect of the particle size on the recombination kinetics of the 

charge carriers photogenerated in rutile has been analyzed. The comparison of the 

normalized transient absorption signals at 390 nm, and 410 nm revealed the particle size 

dependent decay kinetics (see Figure 4.26). In contrast, similar transient absorption 

spectra have been measured for all rutile samples (see Figure 4.27). The analysis of the 

recombination rate constant showed that as well as for the trapped holes absorbing at 

390 nm (see Figure 5.18 (left)), as for trapped electrons absorbing at 450 nm (see Figure 

5.19 (left)) a linear dependency has been observed. Hereby, 
'

rk  at 390 nm is found to be 

2.17, while at 450 nm a value of 0.66 is obtained. Such differences between the 
'

rk  values 

depending on the wavelength can be related to fact that at 390 nm only the recombination 



5. Discussion 

93 

 

of the trapped holes with the electrons is monitored, while at 450 nm the migration of the 

electrons from the surface into the bulk competes with this charge carriers recombination. 
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Figure 5.18: (left) Reciprocal second order rate constants kr and (right) relative extinction coefficients εT of 

the trapped holes obtained at 390 nm as a function of the particle diameter for rutile TiO2. The red line 

represents a linear fit with the formula: 1/d07.017.2)nm 390(k
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Figure 5.19: (left) Reciprocal second order rate constants kr and (right) relative extinction coefficients εT of 

the trapped holes obtained at 450 nm as a function of the particle diameter for rutile TiO2. The red line 

represents a linear fit with the formula: 1/d02.066.0)nm 390(k
r
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By comparing the values of 
'

rk  for rutile and anatase, it is notable that in case of the 

former a stronger effect of the particle size on the recombination kinetics of the 

photogenerated charge carriers is observed. The upward band bending in case of rutile is 

not only influenced by the particle size but also by the presence of the long-lived Ti
3+

 

electrons. Since rutile is easier to reduce than anatase, a stronger upward band bending of 

rutile in comparison to anatase should occur thus resulting in a better charge carrier 

separation and hence a larger difference of the recombination rate constants between two 

particles exhibiting different particle sizes. 
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 Finally, it is important to correlate the recombination rate constant obtained for the 

photocatalysts with different particle sizes to their respective photocatalytic activity. A lot 

of reports have been published explaining different photocatalytic activities in terms of 

different recombination kinetics, although the latter ones have not been measured. This 

established fact became a central point of a critical review recently written by Ohtani
190

, 

where he complains: “Thus, “recombination” has been used as an “almighty”card, but at 

the same time “ghost”, for interpretation of photocatalytic activities without leading to 

progress in an understanding of photocatalysis and/or photocatalysts, since discussion 

with the term recombination is just an alternative description of experimental results.” 

Hence, for example, Pichat et al.
125

 attributed the different photocatalytic activity of the 

anatase TiO2 samples, which have also been used in the present study, such as PC500, 

PC105, PC50, and PC10, to the different number of the defects sites, and accordingly, to 

different electron-hole recombination rates, even though, the latter ones have not been 

experimentally estimated. However, combining the results obtained by Pichat with the 

results of the present work it is now possible to correlate the photocatalytic activities and 

recombination rate constants. For the phenol degradation Pichat et al.
125

 reported reaction 

rates following the order PC500 (d = 7 nm) > PC105(d = 26 nm) > PC50(d = 40 nm) > 

PC10 (d = 157 nm). This is the order of decreasing recombination rate constants found in 

the present study. At the first sight this obtained correlation of the results amplifies that in 

the bigger particles the charge carriers exhibit longer life-time thus leading to the 

enhanced photocatalytic activities. However, Pichat et al. have observed for the pyridine 

degradation an opposite order of the reaction rates. The authors explained this by the fact 

that in case of pyridine the surface area plays the dominant role, thus particles with lower 

surface are less photocatalytically active for the pyridine degradation. These results 

clearly show that not only the recombination rates determines the photocatalytic activity, 

but numereous additional effects such as surface area, surface hydroxylation, as well as 

the pollutant itself due to different degradation mechanisms etc. 

 



6. Summary and conclusions 

95 

 

6. Summary and conclusions 

In contrast to many research reports dealing with the reaction dynamics of the charge 

carriers photogenerated in transparent films or aqueous suspensions, in the present study 

the photoinduced processes have been investigated in commercially available TiO2 

powders as well as in the colloidal TiO2 powder, which has been received from the drying 

of a self-prepared colloidal TiO2 suspension and acted as the reference material for better 

comparison with the reported results.  

 In this work for the first time, an anatase to rutile phase transition accompanied by the 

formation of new long-lived Ti
3+

centers has been experimentally observed during diffuse 

reflectance laser flash photolysis measurements employing Raman- and EPR-

spectroscopy. In case of rutile TiO2 the presence of these long-lived Ti
3+

centers has also 

been proven. The laser-induced modification of the TiO2 anatase powder involves the 

following steps: formation of electron-hole pairs followed by an energy and a charge 

transfer to the TiO2 lattice, removal of lattice oxygens forming regions at the TiO2 surface 

with high defect density thus enhancing the reactivity of the TiO2 particles and leading to 

the transition from the anatase to the rutile structure. Additionally, it has been found that 

the major part of the TiO2 nanoparticles are able to conduct self-repair processes and 

therefore exhibit no significant morphological and structural changes at the end of the 

laser pulse. However, the outcomes of the present study are essential primarily for the 

interpretation of the transient absorption spectra obtained for different semiconductors. It 

is of particular importance that the assumption that upon laser excitation no irreversible 

changes of the studied system occur is not valid anymore at least not for TiO2. Moreover, 

it cannot be excluded that such structural changes of TiO2 also occur during its long 

illumination times in photocatalytic tests or upon practical applications of photocatalytic 

materials. Based upon these possible reactions it is most certainly highly indicated to 

study the role of the surface reorganization initiated by photoinduced reactions in 

photocatalytic systems. The knowledge of these processes can most certainly open new 

design pathways for the future photocatalysts. 

The analysis of the laser flash photolyis measurements carried out in the present work 

showed that at lower laser intensities the broad transient absorption spectra of the trapped 

charge carriers occurred in good agreement with the literature. In contrast, at higher laser 

intensities and in the case of rutile already at lower laser intensities a strong transient 

absorption below 450 nm has been observed. The different transient absorption spectra 
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for rutile and anatase obtained under the same experimental conditions have been related 

to the higher number of the charge carriers photogenereted per rutile nanoparticle 

exhibiting higher absorption coefficient at the employed laser wavelength than the 

anatase phase. The respective wavelength regions, where the trapped electrons and holes 

absorb, were identified employing suitable electron donors and acceptors. Hence, it was 

possible to determine the transient absorption of which species is influenced more 

strongly by higher laser exposure that subsequently causes structural changes. In colloidal 

TiO2 suspensions as well as in colloidal TiO2 powder the transient absorption of the 

trapped holes have been identified to be in the wavelength region between 390 nm and 

550 nm, while trapped electrons exhibit the transient absorption signals mainly above 

550 nm. In commercial TiO2 powders, however, the trapped holes show transient 

absorptions only below 450 nm. This evinces that colloidal particles due to their defect 

rich surface provide more trapping sites for the photogenerated holes than well crystalline 

materials such as UV100 and R15. However, taking into account these results and the fact 

that the observed changes in TiO2 are most likely complete before the measurement of the 

transient absorption starts, it is obvious that the presence of the long-lived Ti
3+

 centers 

formed upon high laser exposure strongly influences the relative extinction coefficient of 

the trapped holes rather than of the trapped electrons. It is known that the electronic 

transition and thus the relative extinction coefficient can be influenced by the surrounding 

electrical field. Hence, the columbic interaction of the trapped holes with long-lived 

Ti
3+

centers leads to enhanced relative extinction coefficients of the trapped holes and thus 

to much higher transient absorption signals below 450 nm rather than in the wavelength 

region above where the trapped electrons absorb. The linear dependency of the transient 

absorption at 390 nm on laser intensity found for anatase and rutile supports the thus 

derived conclusions. Moreover, for the first time this study provided experimental 

evidence for the fact that the long-lived Ti
3+

 centers contribute to the long lasting 

transient absorption, as suggested years ago by researchers working in this field. 

Employing the laser excitation wavelength of 248 nm it was possible to determine the 

transient absorption maxima of the trapped holes for anatase and rutile in more detail. 

Thereby, it could be shown that the holes trapped in anatase absorb at 370 nm while those 

trapped in rutile absorb at 410 nm. Such a phase dependence of the maxima of the trapped 

holes has been shown in the present study for the first time. Moreover, due to the shorter 

penetration depth of the 248 nm laser beam into TiO2 powder surface much higher charge 

densities have been produced and thus much stronger structural changes of the thus 
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excited TiO2 particles occurred. This results in a decrease of the number of the electrons 

trapped near the particle surface with the majority of them migrating into its bulk. 

 The analysis of the decay kinetics revealed that a simple second order rate law could 

be applied to describe the recombination kinetics of the trapped charge carriers. The 

observed recombination rate constants - at least in the wavelength range where the 

trapped electrons absorb - are similar for all three phases exhibiting an order of magnitude 

of 10
8
 s

-1
 a.u.

-1
 in good agreement with respective values reported in the literature. The 

two anatase samples, that is colloidal TiO2 powder and Hombikat UV100, showed similar 

decay kinetics, while for the holes trapped in rutile the decay rate constants were found to 

be one order of magnitude smaller. This is readily explained by the fact that in rutile 

structural changes are more easily induced upon illumination, resulting in a stronger 

influence of the long-lived Ti
3+

 centers on the reaction dynamics. The thus formed Ti
3+

 

centers enhance the upward band bending of n-doped TiO2 resulting in a better charge 

separation. Hereby, the trapped holes are accumulated at the surface while even the 

electrons formed close to the surface migrate into the bulk of the particles. These subtle 

differences in their dynamic properties could also be one of the reasons for the different 

photocatalytic activities of rutile and anatase. While the former is known as a good 

oxidant, which can be explained by the longer life-time of the trapped holes, the latter is 

able to reduce protons more efficiently yielding molecular hydrogen. This could be 

explained by the presence of a considerably higher number of trapped electrons at the 

surface of the anatase particles, from where they can be transferred to their reaction 

partners more easily. 

 The relative extinction coefficients which are also obtained from the kinetic analysis of 

the transient absorption decay signals showed a linear dependency on the laser intensity, 

which is in good agreement with detected structural changes of the TiO2 materials. 

Moreover, apparently the effect of the long-lived Ti
3+

 centers on the relative extinction 

coefficient of the trapped holes does not depend on the TiO2 morphology. For both, 

anatase and rutile TiO2, a similar increase of the extinction coeficient with the employed 

laser intensity denoted as 
'

Tε  has been found. The exact value of 
'

Tε , however, depends on 

the analyzing wavelength. 

 Finally, a linear correlation between the particle size and the second order 

recombination rate constants has been established for both, anatase, and rutile. Upon 

increasing the particle diameter the recombination rate constant decreases. These results 
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are explained employing the band bending model, in which the magnitude of the upward 

band bending depends on the particle size. Subsequently, in bigger particles, due to the 

better charge carrier separation and thus due to the longer distance between the trapped 

electrons and holes, the recombination rate decelerates. The obtained dependency of the 

particle size on the charge carriers dynamics has been found to be more pronounced in 

rutile than in anatase which is explained by the stronger structural changes induced in 

rutile upon laser illumination. Moreover, the obtained relation between the particle size 

and the recombination rate constant could be successfully applied to explain the 

respective photocatalytic results reported in the literature. 

 Based upon the experimentally derived dependencies of the charge carrier dynamics 

on the laser intensity and on the particle size the following unified second order rate law 

could be derived: 

B
1 t/dkc

Icε
AJ

'

r0

0

'

T 


  

where 
'

Tε  is the laser intensity independent relative relative extinction coefficient, and 
'

rk  

is the particle size independent rate constant. While the former depends only on the 

analyzing wavelength, the later one depends on the TiO2 phase.  

 This newly established relationship should allow to describe the reaction dynamics of 

the charge carriers photogenerated in different photocatalysts and thus to understand the 

properties of different photocatalyst systems and to specifically develop new 

photocatalysts with higher activities, longer charge carrier life-times or other improved 

properties. 
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8. Appendix 

A. Determination of the laser intensity 

The number of the exciting photons reaching the sample was determined with ferrioxalate 

actinometry recommended in the ref
191

: 3 ml of 0.15 M K3Fe(C2O4) in 0.05 M H2SO4 

were exposed 40 laser pulses and 1 ml of the illuminated solution was transferred to a 

10 ml flask and 2 ml of of 0.05 % phen/0.75 M NaCH3CO2/0.2 M H2SO4 developer was 

added followed by 1 mL of 1 M KF solution plus water to 10 mL.  

The irradiation of K3Fe(C2O4) solution leads to the Fe
3+

 reduction via the following 

reactions: 
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  (A3) 

The number of the photo-generated Fe
2+

 ions ( 2Fe
n ) was calculated according to: 

lV

AVVN
n

2

51031A

Fe2    (A4) 

NA:Avogadro constant 

V1:volume of K3Fe(C2O4) in 0.05 M H2SO4 irradiated with laser (l) 

V2: volume of the aliquot taken for analysis (l) 

V3: final volume (l) 

l: path length of the spectrophotometer cell (cm) 

ɛ: molar extinction coefficient of Fe
2+

 complex (11100 l mol
-1

 cm
-1

) 

The number of the absorbed photons was obtained from: 

λ

Fe
a

φ

n
n

2



 (A5) 

The quantum yield Φ for the Fe
2+

 formation at 351 nm was taken 1.21 and at 248 nm 

1.25.
192

 Using the Planck equation the number of photons were expressed as energy 

values and following relation has been found between the relative laser energy measured 

with a photodiode and the laser energy obtained with actinometry at the excitation 

wavelengths of 351 nm and 248 nm, respectively: 

7030I    )018.0 (0.12II relrelnm 351    (A6) 

4515I      )16.0 (1.04II relrelnm 248    

 (A7) 
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B. Transient absorption spectra under O2 and N2 
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Figure B1: Normalized transient absorption spectra obtained 227 ns after the laser pulse with λexc = 351 nm 

in the presence of (■) O2 and (○) N2 for (left) UV100 and (right) R15. 
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