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Abstract

We study the Dirichlet to Neumann operator N acting on distributions over a manifold

B with conical singularities. B itself is the boundary of a singular manifold D. N assigns

to a given boundary datum f in the weighted cone Besov space B
s− 1

p
, 1
2

p (B), the exterior

normal derivative of the solution to the associated Dirichlet problem:

∆cu = 0 in D, γ0(u) = f on B. (1)

Here, ∆c denotes the Laplace Beltrami operator with respect to a conical metric g on

D. Hence, denoting by γ0 the restriction to the boundary ∂D = B of D, and by Dn the

derivative in the exterior normal direction on D, N is defined by:

N : B
s− 1

p
, 1
2

p (∂D) → B
s−1− 1

p
,− 1

2
p (∂D),

f 7→ γ0(x−1Dnu). (2)

We show that the solution to the Dirichlet problem exists, which shows that N is well

defined. Further, we use the entries of the Calderon projector to construct N as an

operator which we show to be contained in Schulze’s cone calculus.

We show that N is parameter elliptic, which guarantees the existence of the resolvent

(N − λ)−1.

We can identify operators in Schulze’s cone algebra with operators of the b-calculus,

which is developed by Melrose. Building on a resolvent construction for operators in the

small b-calculus, we outline a generalization of this construction to operators of the full

b-calculus in which N is contained.

This construction allows us to analyze the asymptotic structure of resolvents for cone

pseudodifferential operators, which we use to to prove the existence of a bounded H∞

functional calculus for this class.

Therefore, we can conclude that Dirichlet to Neumann map on manifolds with conical

singularities admits a bounded H∞ calculus.

Keywords: Dirichlet to Neumann Operator, Functional Calculus, Conical Singularities.
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Zusammenfassung

Wir untersuchen die Wirkung des Dirichlet zu Neumann OperatorsN auf Distributionen

über einer Mannigfaltigkeit B mit konischen Singularitäten. Hierbei ist B der Rand

einer singulären Mannigfaltigkeit D. N weist einem gegebenen Randwert f in einem

gewichteten Konus Besov Raum B
s− 1

p
, 1
2

p (B) die äußere Normalenableitung der Lösung

des zugehörigen Dirichletproblems zu:

∆cu = 0 in D, γ0(u) = f auf B. (3)

Hierbei bezeichnet ∆c den Laplace Beltrami Operator unter der konischen Metrik g auf

D. Ist also γ0 die Einschränkungsabbildung auf den Rand ∂D = B von D und Dn die

Ableitung in die äußere Normalenrichtung, so ist N definiert durch:

N : B
s− 1

p
, 1
2

p (∂D) → B
s−1− 1

p
,− 1

2
p (∂D),

f 7→ γ0(x−1Dnu). (4)

Wir zeigen dass eine Lösung des Dirichlet Problems existiert was zeigt, dass N wohl-

definiert ist. Ferner benutzen wir die Einträge des Calderonprojektors um N als einen

Operator innerhalb von Schulze’s Konusalgebra zu konstruieren.

Ferner zeigen wir dass N parameter elliptisch ist, was die Existenz einer Resolvente,

also von (N − λ)−1, garantiert.

Wir können Operatoren aus Schulze’s Konusalgebra mit Operatoren des b Kalküls iden-

tifizieren das von Melrose entwickelt wurde. Wir skizzieren eine Erweiterung einer exis-

tierenden Resolventenkonstruktion für das kleine b Kalkül auf das volle B Kalkül, in

welchem N enthalten ist.

Diese Konstruktion erlaubt es uns die Struktur der Resolvente von Konuspseudodiffe-

rentialoperatoren zu untersuchen, was es uns erlaubt die Existenz eines beschränkten

H∞ Funktionalkalküls für diese Klasse zu beweisen.

Damit können wir folgern dass der Dirichlet zu Neumann Operator auf Mannigfaltigkeiten

mit konischen Singularitäten ein beschränktes H∞ Kalkül besitzt.

Schlüsselwörter: Dirichlet zu Neumann Operator, Funktionalkalkül, Konische Singu-

laritäten.
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Chapter 1

Introduction

The Dirichlet problem on a Riemannian manifold M with boundary ∂M for a given

boundary datum f , which is defined on ∂M , consists in finding a solution u to:

∆gu = 0, γ0(u) = f, (1.1)

where ∆g is the Laplace Beltrami operator on M with respect to the Riemannian metric

g on M.

Having established the existence of solutions for the Dirichlet problem for a class of

boundary data f of a certain regularity, one can define the Dirichlet to Neumann map

N as the mapping which takes the boundary data f and assigns to it the Neumann data

N f = (∂νu)|∂M . Here ∂ν denotes the exterior normal derivative on M .

For the case that M is a Riemannian manifold admitting a smooth boundary, it is a well

known result that the Dirichlet to Neumann map can be expressed as a pseudodifferential

operator, see e.g. [38].

Having an (n + 1) dimensional manifold D with boundary and conical singularity, we

blow up D near the conical point. By this, we obtain a smooth manifold D0 with

boundary to which a cylinder C ∼= [0, 1) × Y is glued. Here Y is an n dimensional

manifold with boundary and the blow-down of {0} × Y is the conical point. On D the

conical singularity is modelled by a singular Riemannian metric, which near C takes the

form: g = dx2 + x2hY , where hY denotes a Riemannian metric on Y .

B = ∂D is a manifold with a conical singularity without boundary. Our interest lies in

the situation where the Dirichlet to Neumann operator N is defined for the data on such

a manifold B. In this context, the Laplace Beltrami operator to the associated Dirichlet

problem on D assumes, due to the conical metric, the form of a Fuchs type operator.

1



Introduction. 2

That is an operator which, in local coordinates on an n+1 dimensional manifold D,

can be written in the form x−ν
∑µ

k=0Ak(x)(x∂x)k for a smooth family of differential

operators Ak(x) of order µ − k acting on the cross section Y . These type of operators

have been introduced independently by Melrose [24] and Schulze [32], [33].

The natural domains for Fuchs type operators are weighted Sobolev spaces Hs,γp (D). The

restriction of the weighted Sobolev spaces from D to its boundary B gives weighted Besov

spaces Bs,γp (B), the natural domains for the boundary data of the Dirichlet problem. In

fact, we have that γ0 : Hs,γp (D)→ Bs−1/p,γ−1/2
p (B). For details see [8].

While there exists an extensive treatment of the Dirichlet problem in bounded domains

with point singularities, see e.g. [21], [16], [15], the specific type of conical manifold and

weighted Sobolev respective Besov spaces which is of interest in our case, has so far not

been treated in the literature. Therefore, a first problem which arises in the framework

of the analysis of the Dirichlet to Neumann operator on B which is solved in this thesis,

is to guarantee the existence of solutions to the associated Dirichlet problem on D.

In the case of manifolds with conical singularities there exists a pseudodifferential cal-

culus which is due to Schulze, [32], [33]. The majority of problems which are treated

in the context of singular analysis consider the case of Fuchs type differential operators.

Imposing certain ellipticity conditions on those operators allows for the construction of

parametrices which are pseudodifferential operators in Schulze’s cone calculus. In our

case, the underlying operator N is no longer a Fuchs type differential operator, but

already a pseudodifferential operator which turns out to be an operator contained in the

cone algebra.

Having established the existence of solutions to the Dirichlet problem on D for data in

weighted Sobolev spaces Bs,γp (B) over B, allows us to define the Dirichlet to Neumann

map N as a mapping between weighted Besov spaces.

Let A : D(A) ⊂ Y → Y be a closed and densely defined operator on a Banach space Y
and Λ = Λ(θ) a sector in the complex plane:

Λ(θ) = {λ ∈ C | | arg λ| ≥ θ},

with 0 < θ < π. Further we assume that A has no spectrum in Λ.

Then, if ‖λ(λ − A)−1‖L(Y) is uniformly bounded for large λ ∈ Λ, and for functions

f ∈ H, where we denote by H = H(θ) the space of all holomorphic functions C\Λ→ C
for which ‖f(λ)‖ ≤ c(|λ|δ + |λ|−δ)−1 for some δ > 0 and c > 0, we can define f(A) by:

f(A) :=
1

2πi

∫
C
f(λ)(A− λ)−1dλ,
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with C = ∂Λ.

Having an sectorial operator A, we say that A admits a bounded H∞ calculus, if f(A)

defines a bounded operator, satisfying the following estimate for its operator norm:

‖f(A)‖L(Y) ≤ cp ‖f‖∞ ∀f ∈ H. (1.2)

We establish in this thesis a bounded H∞ calculus for a class of cone pseudodifferen-

tial operators on manifolds with conical singularities which includes the Dirichlet to

Neumann operator N .

The proof of the H∞ calculus requires a good understanding of the asymptotic properties

of the resolvents of cone pseudodifferential operators. For cone differential operators a

resolvent construction exists [6], as well as a proof of H∞ calculus, even for operators

on conical manifolds with boundary [7].

It is only in the language of b-calculus, which is due to Melrose [24], in which a resolvent

has been constructed for cone pseudodifferential operators by Gil and Loya, see [10].

It has been shown by Lauter and Seiler in [18], that we can identify certain elements

of Schulze’s cone algebra with elements of the b-calculus and vise versa. However, the

resolvent construction of Gil and Loya is limited to operators of the ”small b-calculus”,

which is not enough to cover the case of the Dirichlet to Neumann operator. This

is why we generalize the existing resolvent construction from Gil and Loya to sectorial

operators which are contained in Schulze’s cone algebra, making use of the identifications

from Lauter and Seiler.

The motivation to study the bounded H∞ calculus of operators is due to its strong

applications in parabolic evolution equations, see [17] for an extensive treatise. In par-

ticular, the choice of f(λ) = λit for t ∈ R, implies the boundedness of imaginary powers

for A, that is Ait ∈ L(Y) and ‖Ait‖ ≤Metθ.

Having Banach spaces D(A) ↪→ Y, and A : D(A)→ Y a closed densely defined operator.

Assume that −A generates an analytic semigroup. Then the operator A is said to

have maximal regularity for the pair (D(A),Y) and 1 ≤ q ≤ ∞, if for every v0 in the

interpolation space Yq = (D(A),Y)1−1/q,q, and for every g ∈ Lq(0, T ;Y) there exists a

unique solution v ∈ Lq(0, T ;D(A)) ∩W 1(0, T ;Y) ∩ C(0, T ;Yq) of the equation

v̇ +Av = g, t ∈ (0, T ), v(0) = v0,

depending continuously on the data v0 and g.
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It is due to a theorem of Dore and Venni, see Theorem 3.2. of [9], that the property of

bounded imaginary powers of angle > π
2 of an operator implies maximal regularity.

The maximal regularity of A allows to establish short time existence of solutions quasi-

linear equations of the form:∂tu(t) +A(u(t))u(t) = f(t, u(t)) + g(t)

u(0) = u0.
(1.3)

Theorem 1.0.1. (Clement and Li,[5], Theorem 2.1) Assume that there exists an open

neighborhood U of u0 in Xq, such that A(u0) has maximal regularity for (D(A),Y) and

q, and that

1. A ∈ C1−(U,L(D(A),Y)),

2. f ∈ C1−,1−([0, T0]× U,Y),

3. g ∈ Lq([0, T0],Y).

Then there exists a T > 0 and a unique u ∈ Lq(0, T ;D(A))∩W 1
q (0, T ;Y)∩X([0, 1];Yq)

solving the equation (1.3) on ]0, T [.

The thesis is organized as follows:

• In Chapter 2 we introduce the precise notion of a manifold with boundary and

conical singularities. Further, we introduce certain weighted function spaces on

which our cone operators turn out to operate continuously.

• In Chapter 3 we give a short introduction of the operators of Schulze’s cone alge-

bra, which is a pseudodifferential calculus for manifolds with conical singularities.

We explain basic notions like cone ellipticity, which is the ellipticity condition on

cone pseudodifferential operators which allows for the construction of Fredholm

inverses of cone pseudodifferential operators.

• In Chapter 4 we prove the solvability of the Dirichlet problem for spaces of distri-

butions on which the calculus of cone pseudodifferential operators is established.

We do this by establishing solutions in the setup of weighted Lp-Sobolev spaces

Hs,
1
2

p (D), first for the case of p = 2. Then we prove an imbedding theorem on

weighted spaces which allows to generalize the solvability for arbitrary 1 < p <∞.

• Having established the solvability of the Dirichlet problem in Chapter 4, we can

introduce in Chapter 5 the Dirichlet to Neumann map N on weighted Besov

spaces, that is

N : B
s− 1

p
, 1
2

p (B)→ B
s−1− 1

p
,− 1

2
p (B).
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We show that the Calderón projector is well defined on conical spaces and further

that the entries of the Calderón projector are pseudodifferential operators which

are contained in Schulze’s cone calculus. Further, we use the mapping properties

of the Calderón projector to construct, up to regularizing terms, the Dirichlet to

Neumann operator N out of the entries of the Calderón projector. Finally we

prove cone ellipticity of N .

• We introduce in Chapter 6 the notion of parameter ellipticity and show that N
meets the stated requirements of parameter ellipticity.

• In Chapter 7 we give a short introduction to the b-calculus and an extended

resolvent calculus which is due to Loya [19].

• Gil and Loya construct in [10] the resolvents for cone pseudodifferential operators

in the small b-calculus. In Chapter 8 we give an (incomplete) sketch about the

generalization of resolvents to the case of the full b-calculus. Out motivation to

do this is to obtain a resolvent for the Dirichlet to Neumann operator N , which

can be identified with an operator in the full b-calculus.

• Finally, in Chapter 9, we use the asymptotic structure of the resolvent of cone

pseudodifferential operators to show that they admit an H∞ functional calculus.





Chapter 2

Preliminaries

All material from this chapter is well known and can be found e.g. in [8]

2.1 Notation

Definition 2.1.1. Let D be an (n+ 1)-dimensional manifold with boundary and conical

singularities. Here we assume that n > 1. As usual, we blow up D near the coni-

cal points. We obtain an object D consisting of a smooth manifold D0 with boundary

to which finitely many cylinders Cj ∼= [0, 1) × Yj are glued. Here, Yj is a smooth –

not necessarily connected – n-dimensional manifold with boundary and the blow-down

of {0} × Yj is the j-th conical point. In order to simplify the notation, we will assume

that there is only one conical point and correspondingly only one cylinder C ∼= [0, 1)×Y .

x

Y D

∂D = B

yn

It is on D that we will perform the analysis. We model the conical singularity by endowing

D with a Riemannian metric which, near C takes the form

g = dx2 + x2hY , (2.1)

7



Chapter 2. Preliminaries 8

where hY is a (fixed) Riemannian metric on Y . This corresponds to the case of a straight

conical singularity. More generally, we can consider the situation, where

g = dx2 + x2hY (x), (2.2)

where x 7→ hY (x) is a smooth family of metrics on Y , 0 ≤ x < 1, resulting in the

structure of a warped cone.

Choosing an atlas (Uα, κα) of Y , with κα : Uα → Vα ⊂ Rn homeomorphisms, we use

local coordinates y = κα(p) for p ∈ Y , with y = (y1, ..., yn) ∈ Rn for a fixed chart κα.

Further, we will assume that y ∈ Rn is of the form y = (y′, yn) with y′ = (y1, . . . , yn−1) ∈
Rn−1 and yn ∈ R such that yn ≥ 0 is a boundary defining function on Y .

Definition 2.1.2. We denote by Ω a smooth n-dimensional manifold without boundary

in which Y is contained. The above structures induce a topology on D; we assume D to

be compact. By Σ we denote a smooth (n+ 1)-dimensional manifold without boundary,

in which D is contained.

The boundary B = ∂D of D is a (boundaryless) manifold with conical singularities. It

is modeled by the boundary B = ∂D of D; here the boundary is defined to be of the form

[0, 1)× ∂Y ∪ ∂D0 along the blow-up of the conical singularity.

2.2 Function Spaces

We begin with the definition of Sobolev spaces on a compact n-dimensional manifold Ω

without boundary.

First we define the cylinder Ω∧ over Ω as the Cartesian product with R+:

Ω∧ = R+ × Ω. (2.3)

Now we consider the space of smooth functions with compact support on Ω∧, namely

C∞c (Ω∧).

We introduce a norm, first on C∞c (Ω∧):

Definition 2.2.1. We use the following mapping:

Sγ : C∞c (R1+n)→ C∞c (R1+n), v(s, x) 7→ e( 1+n
2
−γ)sv(e−s, x). (2.4)
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Moreover, let κj : Uj ⊆ Ω→ Rn, j = 1, ..., n, be a covering of Ω by coordinate charts and

{ϕj} a subordinate partition of unity. Then we define ‖v‖Hs,γp (Ω∧) for v ∈ C∞c (Ω∧) by:

‖v‖Hs,γp (Ω∧) =
n∑
j=1

‖Sγ(1⊗ κj)∗(ϕjv)‖Hs
p(R1+n). (2.5)

This allows us to define the space Hs,γp (Ω∧) as the closure of C∞c (Ω∧) with respect to the

norm ‖ · ‖Hs,γp (Ω∧)

We remember that the manifold D is diffeomorphic to [0, 1) × Y close to the conical

singularity, where Y is a manifold with boundary which is assumed to be embedded in

a compact manifold Ω without boundary.

Definition 2.2.2. We define two different weighted Sobolev spaces on R+ × Y :

• Let r+ denote the restriction of Ω to Y , and let:

Hs,γp (Y ∧) = {r+f : f ∈ Hs,γp (Ω∧)}. (2.6)

The space Hs,γp (Y ∧) carries the quotient norm:

‖u‖Hs,γp (Y ∧) = inf{‖f‖Hs,γp (Ω∧) : f ∈ Hs,γp (Ω∧), r+f = u}. (2.7)

• The second space is defined as the closure of C∞c (intY ∧) in Hs,γ(Ω∧) with respect

to the norm ‖ · ‖Hs,γp (Ω∧) and is denoted by Ḣs,γp (Ω∧).

To define the space Hs,γp (D) on D, we first define ordinary Sobolev spaces Hs
p(X) on a

manifold X with boundary:

Definition 2.2.3. Let X be a manifold with boundary which imbeds into the double of X,

2X, which is a manifold without boundary. Denoting by r+ the restriction r+ : 2X → X

from 2X to X we define:

Hs
p(X) = {r+v|v ∈ Hs

p(2X)}. (2.8)

Further:

Ḣs
p(X) = C∞c (intX)Hs

p(2X), (2.9)

the closure of the smooth functions with compact support in the interior intX of X with

respect to the norm on Hs
p(2X).

Then we can define Hs,γp (D) with the help of a cut-off function ω:

Definition 2.2.4.

Hs,γp (D) = {u ∈ D′(intD) |ωu ∈ Hs,γp (Y ∧) and (1− ω)u ∈ Hs
p(2D)}. (2.10)



Chapter 2. Preliminaries 10

We also define Ḣs,γp (D) as:

Ḣs,γp (D) = {u ∈ D′(intD) |ωu ∈ Ḣs,γp (Y ∧) and (1− ω)u ∈ Ḣs
p(2D)}. (2.11)

We are also interested in function spaces on the boundary B of D:

Definition 2.2.5. The boundary B of D is an n-dimensional compact manifold with

boundary ∂Y . Hence, we can define the norm ‖ · ‖Hs,γp (Y ∧) by choosing Ω = ∂Y in

Definition 2.2.1. Now, we can define Hs,γp (∂Y ∧) simply as the closure of C∞c (∂Y ∧) with

respect to ‖ · ‖Hs,γp (∂Y ∧). Finally, we define the space Hs,γp (B) in analogy to (2.10).

The restriction of weighted Sobolev spaces on D to the boundary B results for arbitrary

1 < p <∞ in distributions which are contained in weighted Besov spaces:

Definition 2.2.6. Using the Besov spaces Bs
p(R×∂Y ∧) := Bs

p,p(R×∂Y ∧) on the cylinder

and the transformation:

(S′γu)(x, y′) := x−
n
2

+γu(log x, y′), γ ∈ R, (2.12)

we introduce the Banach spaces:

Bs,γp (B) = {u ∈ D′(intB)|ωu ∈ Bs,γp (R+ × ∂Y ∧) and (1− ω)u ∈ Bs
p(2B)}. (2.13)

We denote by γj the usual boundary operator γ0 ◦ ∂jν , where γ0 denotes the restriction

to the boundary.

We have:

Lemma 2.2.7. For any 1 < p < ∞ and s > 1
p + j the boundary operator induces

continuous maps

γj : Hs,γp (D)→ B
s−j− 1

p
,γ− 1

2
p (B). (2.14)

2.3 Dual Spaces

The space H0,0
2 (B) coincides with the ordinary L2 space on B. In general we have the

following duality result:

Theorem 2.3.1. The dual space of Hs,γp (B) is isomorphic to H−s,−γp′ (B). The L2 scalar

product gives rise to a dual pairing:

〈·, ·〉 : Hs,γp (B)×H−s,−γp′ (B)→ C. (2.15)

Regarding the duality of the spaces over D, we have the following result:
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Theorem 2.3.2. The dual Ḣs,γp (D)∗ of Ḣs,γp (D) is given by H−s,−γp′ (D). Again, the

duality between Ḣs,γp (D) and H−s,−γp′ (D) is given by the L2 scalar product.

2.4 Fuchs-type Operators, Definition and Basic Proper-

ties, Cone Laplacian

First, we define:

D0 = −i x∂x, Dj = −i ∂yj for j = 1, ..., n. (2.16)

The conical structure of the metric g as defined in (2.1) gives rise to a certain class of

differential operators, the so called Fuchs-type operators:

Definition 2.4.1. Diffµ,ν(D) is the class of operators which can be written in the form:

x−ν
µ∑
k=0

AkD
k, (2.17)

where Ak ∈ Diffµ−k(Y ), the class of ordinary differential operators of order µ− k acting

on Y .

Example 2.4.2. In local coordinates near x=0:

g = dx2 + x2
n∑

i,j=1

hijdy
i dyj . (2.18)

This yields the cone Laplacian:

∆c =
1

x2
((x∂x)2 + (n− 1)(x∂x) + ∆∂), (2.19)

with the Laplacian on the boundary ∆∂ given by

∆∂ =
1√
h

n∑
i,j=1

∂yi(
√
hhij)∂yj , (2.20)

with h = det (hij), (hij) = (hij)
−1.





Chapter 3

The Cone Algebra

We give in this chapter a short introduction to Schulze’s cone algebra. Everything in

this chapter is well known material, which can be found e.g. in [36], [8], [34] or [33].

3.1 Mellin Operators

The first thing we will need to treat Mellin symbols is the so called Mellin transform:

Definition 3.1.1. The Mellin transform Mu of a complex-valued C∞c (R+)-function u

is given by

(Mu)(z) =

∫ ∞
0

xz−1u(x)dx, z ∈ C. (3.1)

We let R+ = {r ∈ R : r > 0} and write Γβ, β ∈ R, for the vertical line {z ∈ C : Re z = β}.

We summarize some properties of the Mellin transform which reveal their analogy to

the Fourier transform when ∂x is replaced by x∂x:

Lemma 3.1.2. (a) The Mellin transform of u ∈ C∞c (R+) is holomorphic on C.

(b) M(xγu)(z) = (Mu)(z + γ).

(c) M(ln (x)u(z)) = (∂zMu)(z).

(d) M(−x∂xu)(z) = zMu(z).

(e) M extends to an isomorphism M : L2(R+)→ L2(Γ 1
2
).

Proof. (e) simply follows from Plancherel’s theorem, using that

(Mu)(z) = Fu(e−x)(−iz). (3.2)

13
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where F denotes the Fourier transform.

The rest is easy to check.

Lemma 3.1.3. For u ∈ C∞c (R+), the Mellin transform Mu is rapidly decreasing on

each line Γβ, uniformly for β in finite intervals.

Further, we introduce the weighted Mellin transform:

Definition 3.1.4.

Mγu =Mu|dimB
2
−γ , (3.3)

which has the inverse:

(M−1
γ g)(x) =

1

2πi

∫
ΓdimB

2 −γ

x−zg(z)dz. (3.4)

Definition 3.1.5. By Ψµ
cl(∂Y,Γω) we denote the space of classical pseudodifferential

operators acting on the compact manifold ∂Y with parameter dependence in Γω. That

means, that we have in local coordinates symbols p ∈ Sµ(Rn × Rn; Γω), such that the

following estimate holds:

|Dα
xD

β
ξ ∂

γ
λp(x, ξ;ω + iλ)| ≤ Cα,β,γ〈(ξ, λ)〉µ−|β|−γ , (3.5)

for multi-indices α, β, γ and λ ∈ R.

Definition 3.1.6. Let γ ∈ R and h ∈ C∞(R+,Ψ
µ
cl(∂Y,ΓdimB

2
−γ)). We define the Mellin

operator with Mellin symbol h(x, z) with x ∈ R+ and z ∈ ΓdimB
2
−γ:

opγM (h) : C∞c (R+ × ∂Y )→ C∞(R+ × ∂Y ),

as:

opγM(h)u(x) =
1

2πi

∫
ΓdimB

2 −γ

x−zh(x, z)Mγ u(z) dz. (3.6)

Definition 3.1.7. We call a function ω(x) ∈ C∞(R+) a cut-off function if supp ω is

bounded and ω ≡ 1 near x = 0.

The following result can be derived from the standard theory of pseudodifferential op-

erators, for details see [1]:

Lemma 3.1.8. Choosing cut-off functions ω1, ω2, s ∈ R the operator opγM(h) extends

to a bounded operator:

ω1 opγM(h)ω2 : Hs,γp (B)→ Hs−µ,γp (B). (3.7)

Further we introduce the notion of holomorphic Mellin symbols:
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Definition 3.1.9. By Mµ
O(∂Y ) we denote the space of all holomorphic functions A :

C → Ψµ
cl(∂Y ) such that, for each β ∈ R, the restriction a|Γβ is a parameter-dependent

pseudodifferential operator with parameter-space Γβ:

a|Γβ ∈ Ψµ
cl(∂Y ; Γβ), uniformly for β in compact intervals. (3.8)

3.2 Meromorphic Mellin Symbols

We want to obtain a full calculus of Mellin pseudodifferential operators which involves

holomorphic Mellin symbols. It is reasonable that there will appear singularities in the

construction of parametrices of holomorphic pseudodifferential operators. Hence, we

have to include meromorphic Mellin symbols in our calculus.

Definition 3.2.1. A set P is called a discrete asymptotic type for Mellin symbols if

P = {(pj , nj , Nj)|Re pj → ±∞ for j → ∓∞, nj ∈ N0, j ∈ Z}, (3.9)

with finite dimensional subspaces Nj ⊂ Ψ−∞(∂Y ) of finite rank operators. We also allow

P to be a finite set. Let πCP = {pj |j ∈ Z} and O the empty asymptotic type.

We write P ∈ As(∂Y ).

The asymptotic types are used to describe the behavior of the meromorphic Mellin

symbols close to the singularities. Meromorphic Mellin symbols are defined as:

Definition 3.2.2. Given a Mellin asymptotic type P ∈ As(∂Y ) as defined in 3.2.1, we

write Mµ
P (∂Y ) for the space of all meromorphic functions a on C\πCP with values in

Ψµ
cl(∂Y ).

In a neighborhood of each pj, a is supposed to be of the form:

a(z) ≡
mj∑
k=0

Rjk(z − pj)−k−1, (3.10)

modulo a function which is holomorphic near pj, with Rjk ∈ Ψ−∞(∂Y ), k = 0, ...,mj.

Further, we need a analogous condition as in (3.8). This is formulated with the help of

an excision function χ for the poles pj (i.e. χ ∈ C∞(C), χ ≡ 1 outside a neighborhood

of πCP , and χ ≡ 0 near each pj). We need that:

χa|Γβ ∈ Ψµ
cl(∂Y ; Γβ), uniformly for β in compact intervals. (3.11)

A meromorphic Mellin symbol with asymptotic type P of order µ is a function h ∈
C∞(R+,M

µ
P (∂Y )).
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We define M−∞P (∂Y ) = ∩µMµ
P (∂Y ).

Theorem 3.2.3. Each a ∈ Mµ
P (∂Y ) can be decomposed as a = a0 + aP , with a0 ∈

Mµ
O(∂Y ) and aP ∈M−∞P (∂Y ).

3.3 Green Operators

The Green operators are the regularizing operators in the cone calculus.

There are two weights γ, γ′ ∈ R associated with the space of Green operators, as well as

a width θ > 0. The weights are used to determine the scale of weighted Sobolev spaces

Hs,γp (B) and Ht,γ
′

p (B) between which the operators are acting (for suitable choices of s

and t).

The Green operators improve the smoothness and the weight and they also induce a

certain asymptotic behavior close to the boundary. The data which is used to specify

the asymptotic behavior is collected in the following two types of sets:

Definition 3.3.1. (a) A weight datum is a collection:

g = (γ, γ′, θ), (3.12)

with γ, γ′ ∈ R and θ > 0.

(b) Let θ > 0, γ ∈ R. An asymptotic type with respect to γ and θ is a set:

Q = {(pj ,mj , Lj) : j = 1, ..., N}, (3.13)

of triples (pj ,mj , Lj), where qj ∈ C with dimB
2 − γ − θ < Re pj <

dimB
2 − γ,mj ∈ N0,

and Lj is a finite dimensional subspace of C∞(∂Y ). We denote by As(γ, θ) the

collection of all these.

We say that Q ∈ As(γ,∞), if Q ∈ As(γ, θ) for all θ ∈ N.

The Green operators are characterized by the property of mapping to the right asymp-

totic spaces which are specified below:

Definition 3.3.2. Let θ > 0, γ ∈ R. Let Q = ((pj ,mj , Lj))j=1,...,N ∈ As(γ, θ) be a

finite asymptotic type. We denote by Hs,γp,Q(B) the space of all u ∈ Hs,γp (B) which can be

written in the form:

u(x, y) = u0(x, y) +
N∑
j=1

mj∑
k=0

cjk(y)ω(x)x−pj lnkx, (3.14)

with cjk ∈ Lj and u0 ∈ Hs,γ+θ−ε
p (B) ∀ ε > 0.
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Now we can define a Green operator as an operator with the following mapping proper-

ties:

Definition 3.3.3. Let g = (γ, γ′, θ) be a weight datum. Let Q1 ∈ As(−γ, θ) and Q2 ∈
As(γ′, θ) be two asymptotic types.

We write G ∈ CG(B,g) and call it a Green operator associated with the weight datum

g, if we have the following mapping properties for G and its formal adjoint G∗:

G : Hs,γp (B)→ H∞,γ
′

p,Q2
(B) for all s ∈ R, (3.15)

G∗ : Hs,−γ′p (B)→ H∞,−γp,Q1
(B) for all s ∈ R. (3.16)

To be able to study compositions of operators, we define two additional weight data:

g′ = (γ′, γ′′, θ) and g′′ = (γ, γ′′, θ). (3.17)

We obtain:

Lemma 3.3.4. The composition G1G2 of a Green operator G2 in CG(B,g) and a Green

operator G1 in CG(B,g′), is an element of CG(B,g′′).

3.4 Smoothing Mellin Operators

Definition 3.4.1. A smoothing Mellin operator associated with the weight datum g =

(γ, γ − µ, θ) is an operator of the form:

M = ω1(x)

θ−1∑
l=0

x−µ+lopγlM(hl)ω2(x), (3.18)

for Mellin symbols hl ∈ M−∞Pl (∂Y ), where the Pl are Mellin asymptotic types with

πC(Pl) ∩ ΓdimB
2
−γl = ∅ and γ − l ≤ γl ≤ γ.

Theorem 3.4.2. (a) Let M be as in Definition 3.4.1. Then M furnishes a continuous

map:

M : Hs,γp (B)→ H∞,γ−µp (B). (3.19)

(b) Changing one of the cut-off functions changes the smoothing Mellin operator by a

Green operator.

Theorem 3.4.2 motivates the following definition:
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Definition 3.4.3. For a weight datum g = (γ, γ′, θ), we denote by CM+G(B,g) the

space of all operators of the form:

ω1x
−µopγM(h0)ω2 +G, (3.20)

with h0 ∈M−∞P (∂Y ) for some Mellin asymptotic type P , such that Γ dimB
2
−γ ∩ πCP = ∅,

cut-off functions ω1, ω2 and G ∈ CG(∂Y,g).

Theorem 3.4.4. Let g,g′,g′′ be weight data as defined in (3.17). The composition

of elements in CM+G(B,g′) and CM+G(B,g) furnishes operators in CM+G(B,g′′). If

either of the factors is a Green operator, so is the composition.

3.5 Operators in the Cone Calculus.

Definition 3.5.1. Let g = (γ, γ′, θ). The space Cµ(B,g) consists of all operators

A = x−µω1opγM(h)ω2 +M + (1− ω1)P (1− ω3) +G, (3.21)

where

(i) ω1, ω2, ω3 are cut-off functions, such that ω1ω2 = ω1 and ω1ω3 = ω3,

(ii) h ∈ C∞(R+,M
µ
O(∂Y )),

(iii) P is a pseudodifferential operator of order µ on int B,

(iv) M as in Definition 3.4.1,

(v) G is a Green operator in CG(B,g).

Theorem 3.5.2. Given h ∈ C∞(R+,M
µ
O(∂Y )), there is a pseudodifferential operator

PM of order µ on intB such that opγM(h)− PM is regularizing on (0, 1)× ∂Y .

Conversely, given a pseudodifferential operator P of order µ on intB, there is an element

h ∈ C∞(R+,M
µ
O(∂Y )) such that opγM(h)− P is regularizing on (0, 1)× ∂Y .

We associate three different symbols to a cone pseudodifferential operator:

Definition 3.5.3. Let A ∈ Cµ(B,g). We associate three symbols with A:

• Letting PM be the pseudodifferential operator which coincides up to regularizing

operators with A close to ∂B and exists due to Theorem 3.5.2, we define:

σµψ(A) = ω1(x)x−µσµψ(PM ) + (1− ω1(x))σµψ(P ). (3.22)
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• Secondly, we have the rescaled symbol σ̃µψ(A). Writing σµψ(A) = σµψ(A)(x, y, ρ, ζ),

we define σ̃µψ(A) in a neighborhood of x = 0 by:

σ̃µψ(A) = xmσµψ(A)(x, y, x−1ρ, ζ). (3.23)

• Further, we have the conormal symbol σµM(A) defined by:

σµM(A)(z) = h(0, z) + h0(z) z ∈ C. (3.24)

This is a meromorphic function in z taking values in the pseudodifferential opera-

tors on ∂B of order at most µ. In particular σµM(A) ∈Mµ
P(∂Y ).

For compositions in the cone algebra, we have the following Theorem:

Theorem 3.5.4. Let the weight data g,g′,g′′ as defined in (3.17), assume that A0 ∈
Cµ(B,g), A1 ∈ Cµ

′
(B,g′). Then, the composition (A0, A1) 7→ A0A1 induces a continu-

ous map:

Cµ(B,g)× Cµ′(B,g′)→ Cµ+µ′(B,g′′). (3.25)

If one of the two factors belongs to the CG or CM++G class, so does the product. The

conormal symbol behaves multplicative up to a shift, we have:

σµ+µ′

M (A0A1)(z) = σµM(A0)(z + µ′) · σµ
′

M(A0)(z) (3.26)

Using the symbols from Definition 3.5.3, we can define the notion of cone-ellipticity:

Definition 3.5.5. We say that a Mellin operator A ∈ Cµ(B,g) is cone degenerate

elliptic (or simply: cone-elliptic) with respect to g, if:

• A is elliptic over the interior B◦ of B, that is, σµψ(A) is invertible and further the

rescaled symbol σ̃µψ(A) is uniformly invertible in a neighborhood of x = 0.

• The restriction of σµM(z) to the line ΓdimB
2
−γ gives a parameter dependent family of

pseudodifferential operators which is pointwise invertible as a mapping: Hs(Y )→
Hs−µ(Y ).

Theorem 3.5.6. Let A ∈ Cµ(B,g). Then the following are equivalent:

1. A is cone-elliptic.

2. There exists a parametrix to A in the cone calculus, an operator B in C−µ(B,g−1)

with BA − I ∈ CG(B,g0), and AB − I ∈ CG(B,g1). Here g−1 = (γ − µ, γ, θ),
g0 = (γ, γ, θ) and g1 = (γ − µ, γ − µ, θ).

3. A : Hs,γp (B)→ Hs−µ,γ−µp (B) is a Fredholm operator for all s ∈ R.
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4. A : Hs,γp (B)→ Hs−µ,γ−µp (B) is a Fredholm operator for some s ∈ R.

Example 3.5.7. We treat the cone Laplacian on Σ. Therefore, we replace B by Σ

and ∂Y by Ω in the definitions above. We split the cone Laplacian into a part near the

boundary and a part away from the boundary, which can be treated as a usual differential

operator:

∆c = x−2ω1 opγM(σM (∆))ω2 + (1− ω1)∆c(1− ω3) (3.27)

with cut-off functions ωi such that ω1ω2 = ω1 and ω1ω3 = ω3.

The conormal symbol of the cone Laplacian (2.19) is σM (∆c)(z) = z2 − (n− 1)z + ∆∂.

Evaluating σM (∆c)(z) on ΓdimD
2
−γ, writing zω = dimD

2 − γ+ iω with ω ∈ R and choosing

γ = 1:

σM (∆c)(zω) = −(dim D− 2)2

4
− ω2 + ∆∂ , (3.28)

which is invertible for ω ∈ R for dim D ≥ 3.

We have for the interior symbol of ∆c in the sense of (3.22):

σ2
ψ(∆c) = x−2(−x2ρ2 − i(dim D− 1)

2
xρ− ξ2), (3.29)

where ξ2 is the symbol of ∆∂. We see that σ2
ψ(∆c) is invertible on int D.

The rescaled symbol of ∆c as defined in (3.23) is:

σ̃2
ψ = −ρ2 − i(dim D− 1)

2
ρ− ξ2 (3.30)

which is uniformly invertible up to x = 0.

Therefore we can conclude that for all θ > 0, γ ∈ R, ∆c ∈ C2(B,g) with g = (γ, γ−2, θ)

is cone-elliptic. Hence, we can find a meromorphic Mellin symbol q ∈ Mµ
P(Ω), and a

parametrix Q ∈ C−2(B,g′) with g′ = (γ − 2, γ, θ) of ∆c, which admits a representation:

Q = x2 ω′1 opγM(q)ω′2 + (1− ω′1)P (1− ω′3), (3.31)

where P is a parametrix for ∆c|x>0.

Here Q acts as parametrix of ∆c up to smoothing operators and maps:

Q : Hs−2,γ−2
p (Σ)→ Hs,γp (Σ). (3.32)
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3.6 Parameter Dependent Kernel Cut-off

We focus now on the decomposition of a meromorphic Mellin symbol into the sum of a

holomorphic Mellin symbol and a smoothing meromorphic symbol. The technique which

is used for this decomposition is called kernel cut-off. We introduce in this section a

parameter dependent version of this kernel cut-off which allows to choose the seminorms

of the meromorphic symbol arbitrarily small.

Theorem 3.6.1. Let ϕ ∈ C∞c (R+) with ψ(ρ) ≡ 1 near ρ = 1. Let h ∈ C∞(R+,Ψ
µ
cl(Ω,ΓdimB

2
−γ)).

Then, for each ε > 0:

1. The operator-valued function hO,ε defined by:

hO,ε(x, z) =MdimB
2
−γ,ρ→zϕ(ρε)M−1

dimB
2
−γ,ζ→ρh(x, ζ),

is an element of C∞(R+,M
µ
O(Ω)).

2. The operator-valued function hM,ε defined by:

hM,ε(x, z) =MdimB
2
−γ,ρ→z(1− ϕ(ρε))M−1

dimB
2
−γ,ζ→ρh(x, ζ),

is an element of C∞(R+,M
−∞
P (Ω)) for a suitable asymptotic type P .

3. We have that all seminorms for hM,ε in C∞(R+,M
−∞
P (Ω)) tend to zero as ε→ 0.

This implies, that:

lim
ε→0
‖x−µopγ(hM,ε)‖L(Hs,γp (B)→Hs−µ,γ−µp (B)) = 0. (3.33)

Proof. A proof of (1) and (2) can be found e.g. in Section 2.2.2. of [34]. For (3), we

have to show that all the seminorms for hM,ε tend to zero for ε→ 0. For this, it suffices

to show that (details can be found in the proof of Theorem 2.2.8. in [34]):

lim
ε→0

πk(logM (ρ)(ρ
∂

∂ρ
)N (1− ϕ(ρε))(M−1

dimB
2
−γ,ζ→ρh(x, ζ))) = 0 ∀ k,M,N ∈ N0, (3.34)

where {πk|k ∈ N0} is a system of seminorms on Ψ−∞(Y ). This follows from the fact

that limε→0(1−ϕ(ρε)) = 0 for each ρ ≥ 0, and that for j ∈ N, j > 0 there exist constants

ck, such that: (ρ ∂
∂ρ)j(1− ϕ(ρε)) = εj

∑j
k=1 ckϕ

(k)(ρε)ρkε.





Chapter 4

The Dirichlet Problem on Ḣ1,1
p (D)

We establish in this chapter the existence of solutions for the Dirichlet problem on

conical spaces. Our motivation for solving this problem is to define the Dirichlet to

Neumann map which takes the boundary value data of the Dirichlet problem and maps

it to its corresponding Neumann data. That indeed, the mapping of the Dirichlet data

to its Neumann data admits a representation in the form of a certain operator, a cone

pseudodifferential operator in Schulze’s cone algebra C1(B,g), is a result which is treated

in the subsequent chapters.

The Dirichlet problem consists in finding solutions u ∈ H1,1
p (D) for a given boundary

data f ∈ B
1− 1

p
, 1
2

p (B), and a p ∈ N, such that:

∆cu = 0; γ0(u) = f. (4.1)

To prove the existence of solutions for all 1 < p <∞, we will first establish the existence

of solutions on Ḣ1,1
2 (D). In a second step we use this existence to prove the existence of

solutions for the Dirichlet problem for all u ∈ Ḣ1,1
p (D).

The proof of the problem on D for p = 2 makes use of the fact that Ḣs,γ2 (D), s, γ ∈ R
is a Hilbert space which allows us to apply the Theorem of Lax-Milgram to the right

bilinear form.

We denote by ‖ · ‖Ḣs,γ(D) the Hilbert space norm on Ḣs,γ2 (D) which is induced by the

scalar product.

Further, we can make use of the fact that the dual space Ḣs,γ2 (D)′ for s = γ = 1 is given

by Ḣ1,1
2 (D)′ = H−1,−1

2 (D), so that ∆c : Ḣ1,1
2 (D)→ Ḣ1,1

2 (D)′.

The Lax-Milgram Theorem deals with bilinear forms a : V × V → C on a Hilbert space

V , that are V -elliptic:

23
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Definition 4.0.2. A bilinear form a(·, ·):

a(·, ·) : V × V → C, (4.2)

on a Hilbert space V with norm ‖ · ‖ is said to be V-elliptic if there exists an α > 0, such

that:

|a(u, u)| ≥ α ‖u‖2. (4.3)

The Lax-Milgram Theorem ([40], Thm 17.9) states:

Theorem 4.0.3. (Lax-Milgram)

If a(·, ·) is a bilinear continuous complex valued form on a Hilbert space V which is V -

elliptic, and if further l(·) : V → C denotes a linear continuous functional on V , then

there exists a unique element u ∈ V , such that:

a(u, v) = l(v) ∀ v ∈ V. (4.4)

From here on, until the end of this chapter, we specify as Hilbert space V the space

V = Ḣ1,1
2 (D).

If u, v ∈ C∞c (D◦), then we define a(u, v) as:

a(u, v) = (∇Du,∇Dv)g. (4.5)

Since C∞c (D◦) is dense in Ḣ1,1
2 (D), the form a(·, ·) extends to a bilinear mapping a :

Ḣ1,1
2 (D)× Ḣ1,1

2 (D)→ C by continuity.

We choose for the linear form lf an arbitrary element f of the dual space H−1,−1
2 (D) of

Ḣ1,1
2 (D) and define:

lf (u) = 〈f, u〉 ∀u ∈ Ḣ1,1
2 (D). (4.6)

We will show that a satisfies the requirements posed on a for the Lax-Milgram theorem.

To apply Lax-Milgram to V = Ḣ1,1
2 (D), a and lf as defined above, it remains to prove

that a is V-elliptic. To prove this, we will make use of the Poincaré inequality for conical

spaces, which is Theorem 2.5 in [4]:

Theorem 4.0.4. (Poincaré inequality)

Let M = (0, 1) × Y with Y ⊂ Rn open and bounded, and 1 < p < ∞, γ ∈ R. Let

∇M = (x∂x, ∂y1 , ..., ∂yn).
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If u(x, y) ∈ Ḣ1,γ
p (M), then there exists c > 0, such that:

‖∇Mu(x, y)‖Ḣ0,γ
p (M)

≥ c‖u(x, y)‖Ḣ0,γ
p (M)

. (4.7)

The Poincaré inequality gives us the following estimate: taking into account that we

have ∇D = x−1∇M :

Corollary 4.0.5. For u ∈ Ḣ1,1
2 (D), it holds that there exists a c > 0, such that:

a(u, u) ≥ c‖u‖2Ḣ0,1
2 (D)

. (4.8)

Lemma 4.0.6. The bilinear form a as defined above is V − elliptic in the sense of

Definition 4.0.2.

Proof. We want to prove that there exists α > 0, such that:

a(u, u) ≥ α(‖u‖Ḣ1,1
2

)2, ∀u ∈ Ḣ1,1
2 (D). (4.9)

This follows from the Poincaré inequality:

a(u, u) =
1

2
(a(u, u) + a(u, u))

≥ 1

2
(c‖u‖2Ḣ0,1

2 (D)
+ c̃ ‖∇Du‖2Ḣ0,0

2 (D)
)

≥ min{c, c̃}
2

(‖u‖2Ḣ0,1
2 (D)

+ ‖∇Du‖2Ḣ0,0
2 (D)

)

=
min{c, c̃}

2
‖u‖2Ḣ1,1

2 (D)
.

Corollary 4.0.7. It follows from the theorem of Lax-Milgram, that given f ∈ H−1,−1
2 (D),

we can find u ∈ Ḣ1,1
2 (D), such that:

(∇Du,∇Dv)g = 〈f, v〉, ∀ v ∈ Ḣ1,1
2 (D). (4.10)

The solution u, which solves the problem posed in Corollary 4.0.7, is called a weak

solution of the Dirichlet problem. It turns out that every weak solution to the problem

is a solution in the following sense:

Theorem 4.0.8. (Inhomogeneous Dirichlet problem for p = 2)

Given f ∈ H−1,−1
2 (D), there exists u ∈ Ḣ1,1

2 (D) such that:

−∆cu = f γ0(u) = 0, (4.11)
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where γ0(u) denotes the restriction of u to ∂D.

Proof. Let D(D) denote functions on D which are smooth and have compact support in

intD. It is true that D(D) is dense in Ḣs,γ2 (D) for every s, γ ∈ R and 1 < p <∞.

Corollary 4.0.7 gives us the existence of u ∈ Ḣ1,1
2 (D), such that

(∇Du,∇Dϕ)g = 〈f, ϕ〉 ∀ϕ ∈ D(D). (4.12)

Here it holds in the distributional sense, that:

(∇Du,∇Dϕ)g = 〈−∆cu, ϕ〉L2 = 〈f, ϕ〉 ∀ϕ ∈ D(D). (4.13)

Hence, it holds that:

−∆cu = f, (4.14)

in the distributional sense.

Next, we want to generalize the inhomogeneous Dirichlet problem from Hs,12 (D) to

Hs,1p (D) for 1 < p < ∞. We have the following imbedding result, which we use to

generalize the existence of solutions of the Dirichlet problem on Hs,γp spaces for p 6= 2:

Lemma 4.0.9. We have for an arbitrary ε > 0 and a fixed p0 ∈ R with p0 > 1:

Ḣ∞,γ+ε
p0 (D) ↪→

⋂
p>1

Ḣ∞,γp (D). (4.15)

Proof. Let us assume that u0 ∈ Ḣ∞,γ+ε
p0 (D).

We remember that we defined the spaces Ḣ∞,γp (D) in (2.11) as:

u0 ∈ Ḣ∞,γ+ε
p (D) ⇔ ω u0 ∈ Ḣ∞,γ+ε

p (Y ∧), and (1− ω)u0 ∈ Ḣs
p(D),

for a cut-off function ω.

Hence, we have ωu0 ∈ Ḣ∞,γ+ε
p0 (Y ∧).

Let κj : Uj ⊆ Y → Rn be a finite covering by coordinate charts and let ϕj be a

subordinate partition of unity.

We take the localizations Sγ+ε(1 ⊗ κj)∗(ϕjωu0), of ωu0. We can use the continuity

of the following imbedding, which follows from [39](p.203,2.8.1(c)), since F sp,2(R1+n) =

Hs
p(R1+n) (see [39], p.169,Def. 2.3.1.c)):
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Let ∞ > q ≥ p0 > 1 and −∞ < t ≤ s <∞ with

s− n+ 1

p0
= t− n+ 1

q
, (4.16)

then:

Hs
p0(R1+n)

ı
↪→ Ht

q(R1+n). (4.17)

Choosing q0 ≥ p0 and t0 ∈ R, we can choose s0, such that the condition (4.16) holds.

Then, u ∈ H∞p0 (R1+n) ⇒ u ∈ Hs0
p0 (R1+n) and Hs0

p0 (R1+n) ↪→ Ht0
q0(R1+n) continuously.

We obtain:

ı(Sγ+ε(1⊗ κj)∗(ϕjωu0)) ∈ Ht
q(R1+n), ∀ t ∈ R, q ≥ p0,∀j. (4.18)

This gives us:

ωu0 ∈ Ḣ∞,γ+ε
q (Y ∧), ∀q ≥ p0, (4.19)

and we can conclude:

ωu0 ∈
⋂
q≥p0

Ḣ∞,γ+ε
q (Y ∧). (4.20)

A completely analogous argumentation yields the embedding for (1− ω)u0:

u0 ∈
⋂
q≥p0

Ḣ∞,γ+ε
q (D). (4.21)

Now, for the case q0 < p0, we use localizations ϕj and a subordinate partition of unity κj

for Y , this is equivalent to the convergence of Sγ+ε(1⊗ κj)∗(ϕjωu0) = e(γ+ε−n+1
2

)x(1⊗
κj)∗(ϕjωu0)(e−x, y) for all j and p ≥ p0 with respect to the standard Hs

p norm ‖ ·
‖Hs

p(R1+n) on R1+n.

Since Y is compact, we can assume that the image of Uj under κj is contained in a

compact subset Kj of Rn. We can define χj(y) as a smooth function on Rn, such that

χj(y) = 1 for y ∈ Kj , χj(y) = 0 for y ∈ Rn\(2 ·Kj). Then:

e(n+1
2
−γ+ε)x(1⊗ κj)∗(ϕjωu0)(e−x, y) = χj(y)e(n+1

2
−γ+ε)x(1⊗ κj)∗(ϕjωu0)(e−x, y).

We have e−x ∈ (0, 1) ⇔ x ∈ R>−1. Since the support of ω is contained in [0, 1) we

can define a smooth function σ(x) on R with support in R>−1, such that σ(x)ω(e−x) =

ω(e−x).
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We can first choose s = 0, and since ‖ · ‖H0
p

= ‖ · ‖p, where ‖ · ‖p denotes the standard

Lp-norm on R1+n, we can apply the following generalized Hölder inequality:

‖fg‖r ≤ ‖f‖q‖g‖p, for r =
1

1
q + 1

p

. (4.22)

We choose f = σ(x)χj(y)e−εx, g = e(γ+ε−n+1
2

)x(1⊗ κj)∗(ϕjωu0)(e−x, y), and obtain

‖σ(x)χj(y)e(γ−n+1
2

)(1⊗ κj)∗(ϕjωu0)(e−x, y)‖r ≤ ‖σ(x)χj(y)e−ε x‖q ·

·‖e(γ+ε−n+1
2

)x(1⊗ κj)∗(ϕjωu0)(e−x, y)‖p.

Since σ(x)χj(y)e−ε x ∈ Lq(R1+n), for all q ∈ N and since e(γ+ε−n+1
2

)x(1⊗κj)∗(ϕjωu0)(e−x, y) ∈
Lp(R1+n) for p ≥ p0, we obtain that e(γ+ε−n+1

2
)x(1 ⊗ κj)∗(ϕjωu0)(e−x, y) ∈ Lr(R1+n)

for all 1 < r < p0.

This implies that:

ωu0 ∈ Ḣ0,γ
p (Y ∧), ∀ p > 1. (4.23)

Now the result for the higher order spaces can be derived from applying the general-

ized Hölder inequality to derivatives of σ(x)χj(y)e(γ−n+1
2

)(1⊗κj)∗(ϕjωu0)(e−x, y), since

∂kx∂
α
y (χj(y)e−εx) is contained in Lq(R1+n) for each k ∈ N, α ∈ Nn, q ∈ N.

We obtain the imbedding:

ωu0 ∈
⋂
q>1

Ḣ∞,γ+ε
q (Y ∧). (4.24)

Again, the same considerations yield the imbedding for (1−ω)u0, which gives the imbed-

ding 4.15.

Theorem 4.0.10. (Inhomogeneous Dirichlet Problem for 1 < p <∞)

Given f ∈ H−1,−1
p (D), 1 < p <∞, there exists a unique u ∈ Ḣ1,1

p (∂D), such that:

∆cu = f. (4.25)

Proof. An equivalent formulation of Theorem 4.0.10 is to say, that:

∆c : Ḣ1,1
p (D)→ H−1,−1

p (D), (4.26)

is an isomorphism for 1 < p <∞.
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Since the Dirichlet problem AD =

(
∆

γ0

)
is elliptic on D for γ = 1 (see Example 6.1

of [8]), we can conclude that ∆c : Ḣ1,1
p (D) → H−1,−1

p (D) is Fredholm, hence has closed

range.

Therefore, saying that ∆c : Ḣ1,1
p (D) → H−1,−1

p (D) is an isomorphism for 1 < p < ∞ is

equivalent to:

ker(∆c : Ḣ1,1
p (D)→ H−1,−1

p (D)) = {0}, coker(∆c : Ḣ1,1
p (D)→ H−1,−1

p (D)) = {0}.
(4.27)

We prove ker(∆c : Ḣ1,1
p (D) → H−1,−1

p (D)) = {0} by contradiction, assuming that there

exists p0 ∈ N and a u0 ∈ Ḣ1,1
p0 , with u0 6= 0, such that:

∆cu0 = 0. (4.28)

Since 0 ∈ H∞,−1
p0 (D), we can apply a parametrix P to ∆c, such that P∆c = I + S

for a regularizing Greens operator S. Applying P to (4.28), immediately gives u0 ∈
Ḣ∞,1+ε
p0 (D).

Now, since Ḣ∞,1+ε
p0 (D) imbeds into

⋂
p Ḣ
∞,1
p (D) by Lemma 4.0.9, we can conclude that:

u0 ∈ Ḣ1,1
2 (D). (4.29)

But this contradicts Theorem 4.0.8, which says that ∆c : Ḣ1,1
2 (D) → H−1,−1

2 (D) is an

isomorphism.

Proving that coker(∆c) = {0} works completely analogous, using that coker(∆c) =

ker(∆∗c) and ∆c = ∆∗c

We use elliptic regularity to generalize Theorem 4.0.10 to Sobolev spaces of higher reg-

ularity:

Theorem 4.0.11. Let s ≥ −1 and dim(D) = n + 1 ≥ 2. Given f ∈ Hs,−1
p (D), there

exists a u ∈ Hs+2,1
p (D), such that:

−∆cu = f γ0(u) = 0, (4.30)

where γ0(u) denotes the restriction of u to ∂D.

Proof. Let f ∈ Hs,−1
p (D). Now Hs,−1

p (D) imbeds continuously into H−1,−1
p (D) as long

as s ≥ −1. Therefore, we can apply Theorem 4.0.8 to obtain a u ∈ Ḣ1,1
p (D), such that

∆cu = f .
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Considering the Dirichlet problem AD =

(
∆

γ0

)
on D, we can associate a principal

conormal symbol σ2
M(AD)(z) to AD. Then σ2

M(AD)(z) is invertible on Γn+1
2
−1, this is

Example 6.1 of [8].

Therefore, since f ∈ Hs,−1
p (D), elliptic regularity for the boundary value problem (see

e.g. [8] for details) ∆c(u) = f , γ0(u) = 0 gives us that u ∈ Hs+2,1
p (D) ⊕ E , where E

denotes a finite dimensional space of asymptotic functions as described in Definition

3.3.2; E ⊆ H∞,−1
p (D). However, we further know that u ∈ Ḣ1,1

p (D) and since (Hs+2,1
p ⊕

E) ∩ Ḣ1,1(D) = Ḣs+2,1
p (D), we can conclude that u ∈ Ḣs+2,1

p (D).

We can use the solution of the inhomogeneous Dirichlet problem to solve the homoge-

neous problem: for this we will need the following lemma, this is Lemma 3.4 of [8]:

Lemma 4.0.12. Given g ∈ B
s− 1

p
, 1
2

p (∂D) with 1 < p < ∞, there exists ug ∈ Hs,1p (D),

such that:

γ0(ug) = g. (4.31)

Theorem 4.0.13. Let dim(D) = n+ 1 ≥ 2 and s ∈ R with s ≥ 1.

Given g ∈ B
s− 1

p
, 1
2

p (∂D) with 1 < p <∞, there exists u ∈ Hs,1p (D), such that:

∆cu = 0, γ0(u) = g. (4.32)

Proof. Due to Lemma 4.0.12 there exists a ug ∈ Hs,1p (D), such that γ0(ug) = g.

Now, since ∆cug ∈ Hs−2,−1
p (D), Theorem 4.0.11 states the existence of a ũ ∈ Hs,1p (D)

with γ0(ũ) = 0, such that:

∆cũ = ∆cug. (4.33)

Now, if we define u as:

u = ug − ũ, (4.34)

we have that u ∈ Hs,1p (D), γ0(u) = γ0(ug)− γ0(ũ) = g and ∆cu = ∆cug −∆cũ = 0.



Chapter 5

The DtN Operator

Since we have shown the existence of solutions for the Dirichlet problem in the previous

chapter, we can define now for f ∈ B
s− 1

p
, 1
2

p (B) and s ≥ 1 the Dirichlet to Neumann map

as the mapping which assigns to f the restriction of the exterior normal derivative of

the solution to the boundary.

In this chapter we use the mapping properties of the Calderón projector to relate the

Dirichlet data of the Dirichlet problem to the Neumann data and to finally prove the

existence of the Dirichlet to Neumann operator as an operator in C1(B,g) for g =

(1
2 ,−

1
2 , θ) and arbitrary θ > 0.

5.1 Formal Definition of the DtN Map

We have already established in Chapter 4 the existence of solutions for the Dirichlet

Problem on Ḣs,1p (D) for boundary data f ∈ B
s− 1

p
, 1
2

p (B) and s ≥ 1. We choose the local

coordinates (y1, ..., yn) on Y in a way such that the inward pointing normal direction is

given by yn, the inward pointing normal derivative by the Fuchs type operator x−1∂yn.

By definition of Hs,γp (D), we have: x−1∂yn : Hs,γp (D)→ Hs−1,γ−1
p (D) for s, γ ∈ R.

The Dirichlet to Neumann map sends Dirichlet boundary data to its corresponding

Neumann boundary data.

Lemma 5.1.1. Let f ∈ B
s− 1

p
, 1
2

p (∂D). For s ≥ 1, Theorem 4.0.13 states that we have a

u0 ∈ Hs,1p (D) solving the homogeneous Dirichlet problem such that γ0(u0) = f .

31
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Then the Dirichlet to Neumann operator N is well defined as the following mapping:

N : B
s− 1

p
, 1
2

p (∂D) → B
s−1− 1

p
,− 1

2
p (∂D),

f 7→ γ0(x−1Dnu0). (5.1)

Proof. For s > 1 + 1
p this result is trivial by the mapping properties of γ0. For arbitrary

s ≥ 1 we can use that ∆cu0 = 0, where ∆c is elliptic. Therefore the results in [35] apply

to our situation, giving well-definedness of the trace.

5.2 The Calderón Projector on Conical Spaces

We establish in this subsection the existence of the Calderón projector C+ (A.P. Calderón

in [3]) on weighted cone Sobolev spaces.

A crucial ingredient which is used in the construction of C+ is that the operators which

are involved satisfy the transmission property. A more detailed exposition of the trans-

mission property can be found in section 1.3.5 in [13].

R.T. Seeley proved in [35] that the Calderón projection for elliptic operators is a pseu-

dodifferential projection.

We show that the entries of the operator valued matrix C+ in the case of conical mani-

fold are cone pseudodifferential operators which are contained in Schulze’s cone algebra

Cµ(B,g).

Further, we show that the upper right entry C+
01 of C+ is cone degenerate elliptic. An

important consequence of this is that the Dirichlet to Neumann map can be constructed,

up to regularizing operators, out of the entries of C+. Consequently N ∈ Cµ(B,g).

5.2.1 The Construction of the Calderón Projector

As usual, we denote the double of D along the x− direction by 2D and we imbed 2D into

an open manifold Ω without boundary. We assume D to be isomorphic to R+× Y close

to the conical singularity and imbed Y into an open manifold Σ without boundary.

Definition 5.2.1. The following operators map between spaces of distributions on D
and Ω:

• Write e+u for the the extension of distributions u ∈ Hs,γ2 (D) for s > −1
2 by zero

to a distribution e+u on Ω.

• The restriction of distributions u ∈ Hs,γ(Ω) to D is defined by r+u.
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It follows from L2 duality that the adjoint γ̃∗0 of γ̃0 acts for a given s < 0 as a map

Hs,γ(∂D)→ Hs−
1
2
,γ− 1

2 (Ω) and is given by:

γ̃∗0(u) = x−1 · (u(x′)⊗ δ(yn)). (5.2)

We know from Example 3.5.7, that ∆c ∈ C2(1,−1,∞) is cone-elliptic on H1,1
2 (Ω) for

dim(Ω) ≥ 3. As discussed in Chapter 3, it is known that there exists a parametrix

Q ∈ C−2(−1, 1,∞) which is contained in the cone calculus and inverts ∆c up to a

regularizing operator.

We collect the trace operators γ0, γ1 in a vector, which we define by:

ρ(u) =

(
γ0(u)

γ1(u)

)
, (5.3)

and in the same way, we define ρ̃ with γ0, γ1 replaced by γ̃0, γ̃1.

We pick the Greens Matrix A for ∆c, which is determined by:

〈∆cu, v〉H0,0
2 (D)

− 〈u,∆∗cv〉H0,0
2 (D)

= 〈Aρ(u), ρ(v)〉H0,0
2 (∂D)

. (5.4)

The explicit computations for the entries of A can be found in the Appendix in Section

A.1. The result is:

A =

(
a00 a01

a10 a11

)
=

(
i
xL1 i hnn

i hnn 0

)
, (5.5)

with a differential operator L1 of order 1 with smooth coefficients.

It looks tempting to define the Calderón projector by:

C+ = ρ̃ Q ρ̃∗A. (5.6)

However, a brief look at the required regularity properties for the application of γ0, γ1

and their adjoints, and taking into account that Q increases the regularity s by 2 shows

that there exists no s ∈ R, such that the composition ρ̃ Q ρ̃∗ is a priori well defined.

Our strategy to make sense of the compositions involved in C+ will be to analyze the

mapping properties of the Mellin symbols which appear in the construction of the

parametrix Q more carefully and to use an additional property which they obey, the

so called transmission property. This will allow us to show that the composition indeed

makes sense and gives a matrix with values in cone pseudodifferential operators.
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At first we introduce the transmission property, using techniques developed within

the Boutet de Monvel calculus to treat pseudodifferential operators on manifolds with

boundary. See [27] for a short introduction to Boutet de Monvels algebra and [28] and

[29] for a Boutet de Monvel calculus on conical manifolds.

5.2.2 The Transmission Property

Definition 5.2.2. Given a function f on Rn+ we take as e+f its extension by zero to a

function on Rn. e−g is the extension to of a function g on Rn− to Rn.

We let:

H+ = {(e+u)̂ : u ∈ S(R+)}, (5.7)

H−0 = {(e−u)̂ : u ∈ S(R−)}. (5.8)

The H+ and H−0 are spaces of smooth functions on R, decaying to first order near

infinity. By H ′d we denote the space of polynomials of degree ≤ d− 1. We let:

Hd = H+ ⊕H−0 ⊕H
′
d.

With this space we define the transmission property:

Definition 5.2.3. Let Ω = Ω′ × R,Ω′ ⊆ Rn−1 open. A symbol p ∈ Sµ(Ω,Rn) has the

transmission property at r = 0 if for every k ∈ N:

Dk
rp(x

′, r, ξ′, 〈ξ′〉ρ)|r=0 ∈ Sµ(Ω′x′ ,R
n−1
ξ′ )⊗̂πHd,ρ, (5.9)

where d = entier(µ) + 1. We shall also say that p has the transmission property with

respect to (r, ρ).

We write p ∈ Sµtr(Ω,Rn) for symbols p with transmission property.

Definition 5.2.4. Let Ω = Ω′×R,Ω′ ⊆ Rn−1 be open. Identifying Γβ with R by writing

z = β+ iρ for ρ ∈ R, we say that p ∈ Sµ(Ω′×Rr,Rn−1×Rρ×Rω) has the transmission

property (with parameter), if it has the transmission property with respect to (r, ρ).

Lemma 5.2.5. We have for the holomorphic Mellin symbol σ2
M(∆c) of ∆c, that σ2

M(∆c) ∈
Ψ2
tr(Σ,Γn−1

2
).

Further, we have that the inverse q(z) = (σ2
M(∆c))

−1, which is the conormal symbol

σ−2
M (Q) of the parametrix Q for ∆c, that q(z) ∈ Ψ−2

tr (Σ,Γn+3
2

).
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To introduce a general notion of pseudodifferential operators acting between Banach

spaces, we have to define group actions first:

Definition 5.2.6. A strongly continuous group action on a Banach space E is a family

κ = {κλ : λ ∈ R+} of isomorphisms in L(E) such that κλκµ = κλµ and the mapping

λ 7→ κλe is continuous for every e ∈ E. For all the above Sobolev spaces on Rn and Rn+
we shall use the group action defined on functions by:

(κλu)(x) = λq/2u(λx). (5.10)

It extends to distributions by (κλu)(ϕ) = u(κλ−1ϕ), ϕ ∈ C∞0 . On E = Cl, l ∈ N, we use

the trivial group action κλ ≡ I. Sums of spaces of the above kind will be endowed with

the sum of the group actions.

We use the group action to define of operator valued symbols which were introduced by

Schulze in [30]:

Definition 5.2.7. Let E,F be Banach spaces with strongly continuous group actions

κ and κ̃, respectively. Let a ∈ C∞(Rn,Rn,L(E,F )) and µ ∈ R. We shall write a ∈
Sµ(Rn,Rn,L(E,F )) provided that, for all multi-indices α, β, γ, there is a constant C =

C(α, β, γ) with

‖κ̃〈η〉−1Dα
ηD

β
y a(y, η)κ〈η〉‖L(E,F ) ≤ C〈η〉µ−|α|. (5.11)

If a is independent of y or ỹ we shall write a ∈ Sµ(Rn,Rn;E,F ).

Note that we recover the definition of the symbol class Sµ(Rn × Rn) for the case that

E = F = C

The following theorem is a parameter dependent version of Lemma 2.11 in [27]:

Lemma 5.2.8. Let n ∈ Sµtr(Rn × Rn × Γβ) and l ∈ N. Define:

kl(y, ξ, λ) = r+[opynq](δ
(l)
0 ). (5.12)

Then kl(y, ξ, λ) yields an operator valued symbol with parameter:

kl ∈ Sµ+l+1/2(Rn−1,Rn−1 × Γβ;C,S(R+)). (5.13)

Proof. Take a right symbol pR = pR(x′, yn, ξ, λ) for opxnp with x′ ∈ Rn−1, yn ∈ R
denoting the distance to the boundary ∂Y of Y . Fix a function ω ∈ C∞0 (R) with
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ω(t) ≡ 1 near t = 0 and write:

pR(x′, yn, ξ, λ)

=
l∑

j=0

yjn
j!
ω(yn)∂jynpR(x′, 0, ξ, λ) + yl+1

n ωynpRl(x
′, yn, ξ, λ)+

+ (1− ω(yn))pR(x′, yn, ξ, λ),

with suitable pRl. opxn is applied to a distribution with a singularity only in yn = 0.

Since pseudodifferential operators behave pseudo local we obtain a smoothing operator

valued symbol away from yn = 0. Because the second and third summand in the above

sum vanish in yn = 0, we can focus on the first one.

Since pR satisfies the transmission condition, this also holds for ∂jynpR. In our case the

transmission condition is fulfilled by pR with respect to (yn, ξn), while λ serves as an

additional covariable of the operator valued symbol. Hence we have to deal with a tuple

(ξ′, λ) of covariables.

So we have ∂jynpR(x′, 0, ξ′, λ, 〈(ξ′, λ)〉ξn) ∈ Sµ(Rn−1,Rn−1
ξ′ × Γβ)⊗̂πHd,ρ.

We can write, using the definition of the direct tensor product:

∂jynpR(x′, 0, ξ′, λ, ξn)

=

µ∑
k=0

sjk(x
′, ξ′, λ)ξkn +

∞∑
k=0

λjkbjk(x
′, ξ′, λ)hjk(ξn/〈(ξ′, λ)〉),

with sjk ∈ Sµ−k1,0 (Rn−1,Rn−1×Γβ), {λjk}k ∈ l1, and null sequences bjk ∈ Sµ1,0(Rn−1,Rn−1×
Γβ), hjk ∈ H0. Polynomials in ξn convert into Dirac delta distributions and it deriva-

tives under quantization, which have non-zero support only in yn = 0. So they don’t

contribute to the result due to the application of r+. Hence we have no contribution

from the polynomial part to (5.12).

By this, it suffices to consider a single term b(x′, ξ′)h(ξn/〈(ξ′, λ)〉) under the summation

and to show that its contribution to (5.12) is an element of Sµ(Rn−1×Rn−1;C,S(R+)),

and to check that the semi-norms for this element depend continuously on those for b

and h. Since b is of order µ and since yjnδ
(l)
0 =

∑j
k=0

(
l

k

)
δ

(l−k)
0 , it suffices that, for all

σ ∈ R2,

r+κ〈(ξ′,λ)〉−1 [opxnD
α
(ξ′,λ)h(ξn/〈(ξ′, λ)〉)]δ(l)

0 : C→ Hσ(R+),

has norm O(〈(ξ′, λ)〉−|α|+l+1/2). Now Dα
(ξ′,λ)h(ξn/〈(ξ′, λ)〉) is a linear combination of

terms of the form:

(ξn/〈(ξ′, λ)〉)kh(k′)(ξn/〈(ξ′, λ)〉)s(ξ′, λ),



Chapter 5. The DtN Operator 37

where s ∈ S−|α|1,0 (Rn−1,Rn−1 × Γβ), and 0 ≤ l ≤ k′ ≤ |α|. If we define ν := ξn/〈(ξ′, λ)〉,
the function νkhk

′
is an element in H0, so we may focus on the case α = 0. We observe

that:

κ〈(ξ′,λ)〉−1opxnh(ξn/〈(ξ′, λ)〉)δ(l)
0

= cl〈(ξ′, λ)〉−1/2F−1
ξn→xn [h(ξn/〈(ξ′, λ)〉)ξln](xn/〈(ξ′, λ)〉)

= cl〈(ξ′, λ)〉1/2+lF−1[h(ν)νl](xn),

with cl = (2π)−1/2il. Since we have that r+F−1(hνl) is a function in S(R+), this gives

the desired result.

Lemma 5.2.9. Provided that s > j + 1
2 , we can regard γj as an operator valued symbol

independent of the variables y, λ and η, then:

γj ∈ Sj+
1
2 (Rq−1,Rq−1 × Γβ;Hs(R+),C).

Definition 5.2.10. Let E, κλ as in Definition (5.2.6), n ∈ N, s ∈ R. The wedge Sobolev

space W(Rn, E) is the completion of S(Rn, E) = S(Rn)⊗̂πE in the norm:

‖u‖Ws(Rn,E) =

(∫
〈η〉2s‖κ〈η〉−1Fy→ηu(η)‖2Edη

) 1
2

, (5.14)

If we consider op(a) for a ∈ Sµ(Rn,Rn × Γβ,L(E,F )), we obtain the desired mapping

properties which are analogous to the mapping property of ordinary pseudodifferential

operators if Ws is replaced by Hs:

Theorem 5.2.11. Let E, F be Banach spaces, s, µ ∈ R, and a ∈ Sµ(Rny ,Rnη×Rlλ;E,F ).

Then for every λ ∈ Rl

op a(λ) :Ws
comp(Rn, E) −→Ws−µ

loc (Rn, F ),

is bounded.

The mapping op :′′ symbol 7→ operator′′ is continuous in the corresponding topolo-

gies.

Proof. A proof can be found in Section 3.2.1. of [32].

In the situation considered in Lemma 5.2.8 we have the spaces E = C and F = S(R+).

It follows from the definition of the wedge Sobolev spaces, thatWs
comp(Rn,C) = Hs(Rn),

using the trivial group action κλ = I on C, and Ws−µ
loc (Rn, Hs(R+)) = Hs(Rn+1

+ ). This

gives us:
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Corollary 5.2.12. We see that the quantization op kl(λ) of the operator valued symbol

defined in (5.12) is a parameter dependent operator and maps:

op kl(λ) : Hs(Rn−1) −→ Hs−µ(Rn+).

We can summarize the results of Lemma 5.2.8 and of Lemma 5.2.9 in the following

Corollary:

Corollary 5.2.13. The composition of γk and kl as defined in (5.12) defines a parameter

dependent pseudodifferential symbol γk kl ∈ Sµ+k+l+1(Rn−1 × Rn−1 × Γβ).

5.2.3 The Calderón Projector

Lemma 5.2.13 already points out the right strategy how to make sense of the composi-

tions which are involved in the definition of C+:

We take the Mellin symbols of Q which are parameter dependent pseudodifferential

operators on Ω, and build the compositions γk kl. Then we get from Lemma 5.2.13, that

we obtain parameter dependent operators acting on distributions on ∂Y , from which

we can compute the Mellin quantization to obtain Mellin pseudodifferential operators

acting on B.

We summarize these results in the following lemma:

Lemma 5.2.14. Now let Ω be a n + 1 dimensional manifold without boundary and

consider the cone algebra Cµ(Ω,g) for a weight datum g = (γ, γ − µ, θ). Assume that

Q ∈ Cµ(Ω,g) and further, that Q has the transmission property. Then, for k, l ∈ N, it

holds that:

γ̃kQγ̃
∗
l ∈ Cµ+k+l+1(B, (γ − 1

2
, γ +

1

2
− µ− k − l), θ).

Proof. Assume that we have a Mellin symbol h(z) which is either in Mµ
O(Σ) or in

M−∞P (Σ) for a certain Mellin asymptotic type P and for µ ∈ R. Taking local coor-

dinate charts for Σ, it is then straight forward from 5.2.13 above, that the composition

γkh(z)γ∗l is well defined and gives a Mellin symbol which is contained in Mµ+1
O (∂Y )

respective in M−∞P (∂Y ).

Taking an operator Q ∈ Cµ(Ω,g), which has the structure Q = x−µω1opγM(h)ω2 + (1−
ω1)P (1− ω3) +M +G as described in Definition 3.5.1, we obtain immediately:

γ̃kQ γ̃
∗
l = x−µω1γ̃k opγM(h) γ̃∗l ω2 + (1− ω1)γ̃k P γ̃

∗
l (1− ω3) + γ̃kM γ̃∗l + γ̃kG γ̃

∗
l . (5.15)

Then we obtain by Corollary 5.2.13, that x−µω1γ̃kopγM(h)γ̃∗l ω2 and γ̃kMγ̃∗l give contri-

butions to the right spaces.
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Further, (1− ω1)P (1− ω3) defines a pseudodifferential operator of the desired order on

B by the standard theory for manifold with smooth boundary as discussed e.g. in [27].

Regarding G, since G defines a smoothing operator which maps to H∞,γ−µQ (Ω) for a

certain asymptotic type Q, it is clear that the composition γ̃kG γ̃
∗
l is well defined and

gives a Greens operator in Cµ+1+k+l(B, (γ − 1
2 , γ + 1

2 − µ− k − l), θ).

Now we can define the Calderón projector:

Definition 5.2.15. We define:

K+ = −r+Q(γ̃∗0 γ̃∗1)A∆. (5.16)

Such that the Calderón projector C+ is given by:

C+ = ρK+. (5.17)

Lemma 5.2.16. The Calderón projector maps: Hs−
1
2
,γ

2 (B)×Hs−
3
2
,γ

2 (B) into itself.

Proof. The Greens matrix A obeys the following mapping properties:

A : Hs−
1
2
,γ− 1

2
2 (B)×Hs−

3
2
,γ− 3

2
2 (B),→ Hs−

3
2
,γ− 3

2
2 (B)×Hs−

1
2
,γ− 1

2
2 (B).

Now, the mapping property of C+ follows from Lemma 5.2.14.

5.2.4 The Construction of the DtN Operator

We take the Calderón projector C+ as defined in Equation (5.17) and write:

C+ =

(
C+

00 C+
01

C+
10 C+

11

)
. (5.18)

We have:

Q∆c = I +RG,

for a Greens operator RG ∈ CG(Σ, (1, 1, θ)).

We obtain from equation (20.1.6), p 235 of [14], that:

ρ u+ ρRGe
+u = ρQe+(∆cu) + ρQρ∗Aρ u, (5.19)
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for Cauchy data

ρ u =

(
γ0(u)

γ1(u)

)
, (5.20)

and u ∈ Hs,1(D).

We know that we can solve the Dirichlet problem for f ∈ Hs,
1
2 (B), using a u which

solves ∆cu = 0, we obtain:

ρ u+ ρRGe
+u = ρQρ∗Aρ u. (5.21)

Or, with C+ = ρQρ∗A:

ρ u+ ρRGe
+u = C+ρ u. (5.22)

Here, we need to relate the Cauchy data ρ(u) to the solution u of the Dirichlet problem.

However, we know, that the solution u of the Dirichlet problem exists and is uniquely

determined for γ0(u) = f ∈ Hs,
1
2 (B), and s ≥ 1

2 . Further, the solution operator KD :

Hs,
1
2 (B)→ Hs+

1
2
,1(D) is continuous.

We obtain:

ρ u+ ρRGe
+(KDγ0(u)) = C+ρ u. (5.23)

or:

(C+ − I)ρ u = ρRGe
+(KDγ0(u)) (5.24)

where we obtain that for γ0(u) = g ∈ Hs,
1
2 (B), the mapping g 7→ ρRGe

+(KDg) gives a

Greens operator due to the following considerations:

Given g ∈ Hs,
1
2 (B) with s ≥ 0, we have KDg ∈ Hs+

1
2
,1(D), therefore e+(KDg) ∈

H0,1(D). Due to the mapping properties of RG, we then have RGe
+(KDg) ∈ H∞,1P (D)

for some asymptotics type P . Then, the restriction to the boundary yields, for some

asymptotic types P ′ and P ′′:

γ0(RGe
+(KDg)) ∈ H∞,

1
2

P ′ (B) and γ1(RGe
+(KDg)) ∈ H∞,−

1
2

P ′′ (B)

We extend the mapping properties from s ≥ 1
2 to s ≥ 0 by conjugation with order

reducing operators and their inverses.

To show the mapping properties for the adjoint operators, we compute:

(ρRGe
+KD)∗ = (KD)∗r+R∗Gρ

∗. (5.25)
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First, we observe that r+R∗Gγ
∗
0 maps Hs,−

1
2 (B) → H∞,−1

Q (D) and r+R∗Gγ
∗
1 : Hs,

1
2 (B) →

H∞,−1
Q′ (D) for some asymptotic types Q and Q′.

So we compute (KD)∗:

Let u ∈ Hs,γ(B), s ≥ 1
2 , v ∈ Hs,γ(D). We can solve v = ∆w with γ0(w) = 0.

We obtain, using Green’s formula:

∫
D

KDu v dx =

∫
KDu∆w dx

=

∫
D

KDu∆w dx−
∫
D

(∆KDu)︸ ︷︷ ︸
=0

w dx

=

∫
B

γ0(u)γ1(w) dS −
∫
B

γ1(u) γ0(w)︸ ︷︷ ︸
=0

dS

=

∫
B

γ0(u)γ1(∆−1
D v) dS (5.26)

With ∆−1
D : Hs−1,−1(D) → Hs+1,1(D) being the solution operator for the Dirichlet

problem v = ∆w, γ0(w) = 0.

Hence, (KD)∗ = γ1∆−1
D : Hs−1,−1(D)→ Hs−

1
2
,− 1

2 (B).

We end up with the desired mapping properties:

(γ0RGe
+KD)∗ : Hs,−

1
2 (B)→ H∞,−1

Q̃
(B) (5.27)

(γ1RGe
+KD)∗ : Hs,

1
2 (B)→ H∞,−1

Q̃′
(B), (5.28)

for asymptotic types Q̃ and Q̃′.

Consequently the identity:

(C+ − I)ρ(u) = 0, (5.29)

is fulfilled up to regularizing Greens operators.

Here the left side of the above equation is a vector with two entries. Defining G =

γ0RGe
+KD, the upper enties give:

(C+
00 − 1)γ0(u) + C+

01γ1(u) = Gγ0(u),

with G ∈ CG(B, (1
2 ,−

1
2 , θ)).
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Therefore:

C+
01 γ1(u) = (1− C+

00)γ0(u) +Gγ0(u). (5.30)

At this point, we see that the entries C00 and C01 of C+ relate the Dirichlet and Neumann

data of the Dirichlet problem to each other. At this point we would like to apply an

inverse of C01 from the left in equation (5.30), which would give N = (C+
01)−1(1−C00),

up to regularizing Greens operators.

Since C01 ∈ C1(B,g) it is a natural question to ask for the existence of a Fredholm

inverse of C+
01.

C+
01 is explicitly given by:

C+
01 = −γ0r

+Qγ∗0a01, with a01 = i hnn. (5.31)

The crucial property for the existence of a parametrix for C01 is the invertibility of

the conormal symbol σ−1
∂M(C01) of C01. The following lemma allows us to compute the

conormal symbols of the involved cone operators:

Lemma 5.2.17. We consider the composition γ0Qγ
∗
l as described in 5.2.14. We have

seen that this defines a Mellin operator acting on distributions on B. We have the

conormal symbol σµ+l+1
∂M (γ̃0Qγ̃

∗
l ):

σµ+l+1
∂M (γ̃0Qγ̃

∗
l ) = lim

yn→0+
(r+σµM(Q)(z + 1 + l)(δ(l)(yn)⊗ I)). (5.32)

Proof. This follows directly from the definition of the conormal symbol together with

the Expression (A.27) for γ∗0 and the identity opγM(h(z))x−l = x−lopγ+l
M (h(z + l)).

Lemma 5.2.18. The element C+
01 = −γ̃0r

+Qγ̃∗0i hnn defines a cone operator which is

cone degenerate elliptic in C−1(B,g) for the weight data g = (−1
2 ,

1
2 ,∞).

Proof. We have to show that σ−1
∂M(C+

01) is invertible on Γn+1
2

.

We split the proof in three parts: First, we compute the conormal symbol and show that

it is injective. In the second part, we show that also σ−1
∂M(C+

01)∗ is injective. In the third

part, we show that σ−1
∂M(C+

01) ∈ Ψ1(∂Y,Γn−1
2

) is an elliptic pseudodifferential operator

and therefore a Fredholm operator. Consequently it has closed range and the invertibility

of σ−1
∂M(C+

01)(z) : Hs(∂Y )→ Hs+1(∂Y ) follows from the closed range theorem.

Step 1

The operator Q which is contained in the definition of C+
01 is a parametrix for ∆c which

is cone degenerate elliptic as an operator mapping H1,1
2 (Ω)→ H−1,−1

2 (Ω).
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We have, by Lemma 5.2.17:

σ−1
∂M(C+

01) = lim
yn→0+

(−r+σ−2
M (Q)(z + 1)i hnn(I⊗ δ(yn))

= lim
yn→0+

(−r+q(z + 1)i hnn(I⊗ δ(yn)), (5.33)

with q(z) = σ−2
M (Q)(z) = ((z − 2)2 − (n− 1)(z − 2) + ∆Σ)−1.

The operator C+
01 maps: Hs,−

1
2

2 (B) → Hs+1, 1
2

2 (B), therefore it is defined on Hs,−
1
2

2 (B).

This means that its conormal symbol σ−1
∂M(C+

01)(z) is evaluated on z with <z = n
2 −γ =

n+1
2 , hence on the line Γn+1

2
.

We parametrize Γn+1
2

by zω = n+1
2 + iω with ω ∈ R.

We evaluate σ−1
∂M(C+

01) on zω:

σ−1
∂M(C+

01)(zω) = −γ0r
+(−(

n− 1

2
)2 − ω2 + ∆Y )−1(i hnn(I⊗ δ(yn))). (5.34)

We assume that there is a u ∈ H−
1
2 (∂Y ), u 6= 0, such that σ−1

∂M(C+
01)(zω)u = 0 for some

ω ∈ R.

We define v := r+(− (n−1)2

4 − ω2 + ∆Y )−1(i hnn(I⊗ δ(yn)))u and observe, that:

(−(n− 1)2

4
− ω2 + ∆Y )v

=r+(−(n− 1)2

4
− ω2 + ∆Y )(−(n− 1)2

4
− ω2 + ∆Y )−1(i hnn(I⊗ δ(yn)))u

=r+γ∗0u = 0.

This shows, that v is a solution of the following Dirichlet problem:

(∆Y −
(n− 1)2

4
− ω2)v = 0, v ∈ H1

2 (Y ). (5.35)

Further, since we assumed that γ0(v) = σ−1
∂M(C+

01)u = 0, we get by the maximum

principle that v = 0.

Now, since (z2−(n−1)z+∆Y )−1 is invertible, v = 0 implies γ∗0(u) = 0, and consequently,

u = 0.

Therefore we have shown the injectivity of σ−1
∂M(C+

01) : H
1
2 (∂Y )→ H−

1
2 (∂Y ).

Step 2
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With −a01 = −i hnn, we have that:

σ−1
∂M(C+

01) = γ̃0σ
−2
M (Q)(z + 1)γ∗0a01,

and it follows that:

σ−1
∂M(C+

01)∗ = −γ̃0(σ−2
M (Q)(z + 1))∗γ∗0a01.

Now, Q defines a parametrix for the Laplacian ∆c, and it follows for u, v ∈ H1,1
2 (Ω) by

partial integration, that:

〈∆cu, v〉 = 〈u,∆cv〉. (5.36)

Hence: ∆∗c = ∆c on H1,1
2 (Ω), and consequently σ2

M(∆c) = σ2
M(∆∗c). It follows that:

σ−2
M (Q) = σ−2

M (Q∗) = σ−2
M (Q)∗.

Therefore, we have σ−1
∂M(C+

01)∗ = −σ−1
∂M(C+

01), and the injectivity of σ−1
∂M(C+

01)∗ follows

from the injectivity of σ−1
∂M(C+

01).

Step 3

We have, by equation (5.33), with q(z) = σ−2
M (Q) = ((z − 2)2 − (n− 1)(z − 2) + ∆Σ)−1:

σ−1
∂M(C+

01)(z) = lim
yn→0+

(−r+q(z + 1)i hnn(I⊗ δ(yn)) (5.37)

Using:

σ−2
ψ (q(z + 1)) =

1

−
∑n

i,j=1 hijξi ξj
, (5.38)

we obtain:

σ−1
ψ

(
σ−1
∂M(C+

01)
)

=

 lim
yn→0+

r+(2π)−n
∫
Rn

eiyξ
−i(2π)−n hnn
−
∑n

i,j=1 hijξiξj
· Fy→ξ(δ(yn)⊗ I)dξ


=

 ∫
Rn−1

eiy
′ξ′ lim

yn→0

∫
ξn

eiynξn
(2π)−ni hnn∑n
i,j=1 hijξiξj

· Fy→ξ(δ(yn)⊗ I)dξ

 .
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We close the integration along ξn in the upper complex plane in order to apply the

residue theorem and denote the integration along this path by Ωξn :

σ−1
ψ

(
σ−1
∂M(C+

01)
)

=

 ∫
Rn−1

eiy
′ξ′
∫

Ωξn

(2π)−ni hnn dξn∑n
i,j=1 hijξiξj

Fyn→ξn(δ(yn))︸ ︷︷ ︸
=1

Fy′→ξ′ I)dξ′

 .

We regard the denominator of the fraction contained in the above integral as a polyno-

mial in ξn.

We define:

v1(ξ′) =
n−1∑
i=1

(hin + hni)ξi, v2(ξ′) =
n−1∑
i,j=1

hijξiξj , (5.39)

so that we can write the denominator as:

(hnn ξ
2
n + v1(ξ′) ξn + v2(ξ′)), (5.40)

which is a polynomial of second order in ξn.

We compute the zeros of (5.40), regarded as a function in ξn:

κ1/2(ξ′, z − 1) = − v1(ξ′)

2 · hnn
± 1

2

√
v1(ξ′)2

(hnn)2
− 4

v2(ξ′)

hnn
, (5.41)

so that (5.40) factorizes in:

hnn(ξn − κ1(ξ′))(ξn − κ2(ξ′)),

and we have:

σ−1
ψ

(
σ−1
∂M(C+

00,0)
)

=

 ∫
Rn−1

eiy
′ξ′
∫

Ωξn

(2π)−ni dξn
(ξn − κ1(ξ′))(ξn − κ2(ξ′))

dξ′

 . (5.42)

Our aim is now to compute the integral:∫
Ωξn

dξn
(ξn − κ1(ξ′))(ξn − κ2(ξ′))

, (5.43)

which appears in (5.42).
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The integrator contains two singularities in ξn. To evaluate the integral with the residue

theorem we have to find out which of them are contained in the upper half plane.

We know that the metric (hij) is positive definite, which gives us that:

hnnξ
2
n + v1(ξ′)ξn + v2(ξ′) ≥ 0 and hnn > 0. (5.44)

Evaluation of the first inequality at ξn = −v1(ξ′)
2hnn

and multiplication of both sides by

(hnn)−1 gives:

−v1(ξ′)2

4(hnn)
+ v2(ξ′) > 0 and hnn > 0,

⇒ v1(ξ′)2

(hnn)2
− 4

v2(ξ′)

hnn
> 0. (5.45)

Now from (5.45) it is clear, that the term under the square root in (5.41) is positive.

We obtain:

κ1/2 ∈ C−/+, (5.46)

with C+ = {z ∈ C|im(z) > 0}, C− = {z ∈ C|im(z) < 0}.

Locating the κi in the complex plane allows us to evaluate (5.43) with help of the residue

theorem: ∫
Ωξn

dξn
(ξn − κ1(ξ′))(ξn − κ2(ξ′))

=
2π i

·(κ1 − κ2)(ξ′)
.

Hence:

σ−1
ψ

(
σ−1
∂M(C+

01)
)

= σ−1
ψ

 ∫
Rn−1

eiy
′ξ′ (2π)−(n−1)

(κ1 − κ2)(ξ′)
dξ′


=

1

(κ1 − κ2)(ξ′)
=

(√
v1(ξ′)2

(hnn)2
− 4

v2(ξ′)

hnn

)−1

. (5.47)

Therefore we see that σ−1
ψ (σ−1

∂M(C+
01)) is clearly non-zero for all ξ′ ∈ Rn−1 and z ∈

Γn+1
2

.

Theorem 5.2.19. The Dirichlet to Neumann operator N can be expressed, up to

smoothing terms, as a cone pseudodifferential operator of order 1 which is contained

in C1(B,g) with g = (1
2 ,−

1
2 , θ) for all θ > 0, as defined in Defintion 3.5.1, and maps

continuously:

N : B
s− 1

p
, 1
2

p (B)→ B
s−1− 1

p
,− 1

2
p (B). (5.48)
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Proof. We have shown in Lemma 5.2.18 that C01 is cone degenerate elliptic, therefore

we can choose a parametrix (C01)◦−1 for C01 and obtain:

γ1(u) ∼ (C01)◦−1(1− C00))γ0(u). (5.49)

If we denote by N the operator which maps Dirichlet to Neumann boundary data, we

have shown that:

N ∼ (C01)◦−1(1− C00))︸ ︷︷ ︸
=:N̄

. (5.50)

5.3 Ellipticity of the DtN Operator

We have already seen in 5.2.19, that the Dirichlet to Neumann map N is given by a

pseudodifferential operator which is contained in C1(B, (1
2 ,−

1
2 ,∞)) and is determined

up to a regularizing operator by N̄ = (C+
01)◦−1 (1− C+

00).

We denote the conormal symbol of N̄ by:

σ1
∂M(N̄ ) =: λ(z). (5.51)

Here λ(z) is a parameter dependent pseudodifferential operator which is meromorphic

in z with no poles on the line Γn−1
2

.

Now we compute the principal symbol of λ(z). This will be useful to prove the Fredholm

property of N :

Lemma 5.3.1. The principal symbol σ1
ψ(λ(z)) of λ(z) ∈ Ψ1(∂Y,Γn−1

2
) is given in local

coordinates by:

σ1
ψ(λ(z)) = κ1(ξ′),

where

κ1(ξ′) = − v1(ξ′)

2 · hnn
+

1

2

√
v1(ξ′)2

(hnn)2
− 4

v2(ξ′)

hnn
,

with:

v1(ξ′) =

n−1∑
i=1

(hin + hni)ξi, v2(ξ′) =

n−1∑
i,j=1

hijξiξj .

Proof. The entries of C+ are explicitly given by:

C+ =

(
−γ0r

+Qγ∗0a00 − γ0r
+Qγ∗1a10 −γ0r

+Qγ∗0a01

−γ1r
+Qγ∗0a00 − γ1r

+Qγ∗1a10 −γ1r
+Qγ∗0a01

)
, (5.52)
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and we go on to compute σ1
ψ(σ1
M((C+

01)−1)) and σ0
ψ(σ0
M((I − C+

00))) separately.

We write:

C+
00 = −γ̃0r

+Qγ̃∗0(
i

x
L1f)︸ ︷︷ ︸

=:C+
00,0

+ iγ̃0r
+Q(

1

x
Dn)∗γ̃∗0 i h

nn︸ ︷︷ ︸
=:C+

00,1

,

such that C+
00 = C+

00,0 + C+
00,1.

Therefore we can split the calculation of σ0
ψ(σ0

∂M(C00)) into two parts:

σ0
ψ(σ0
M(C00)+) = σ0

ψ(σ0
MC00,0)) + σ0

ψ(σ0
M(C00,1)). (5.53)

Computation of σ0
ψ(σ0
M(C00,0)))

We obtain, by Lemma 5.2.17, for the conormal symbol:

σ0
∂M(C+

00,0)(z) = σ−1
∂M(−γ̃0r

+Qγ̃∗0)(z + 1)σ1
∂M(

i

x
L1) (5.54)

= lim
yn→0+

(−r+σ−2
M (Q)(z + 2)δ(yn)⊗ I)(i L1). (5.55)

Again, we write: q(z) = σ−2
M (Q)(z) = ((z − 2)2 − (n− 1)(z − 2) + ∆Σ)−1.

Therefore, we have:

σ0
∂M(C+

00,0)(z) = lim
yn→0+

(−r+q(z + 2)(δ(yn)⊗ I))i L1. (5.56)

And we obtain for the principal symbol:

σ0
ψ(σ0

∂M(C+
00,0)) = σ−1

ψ (−(γ̃0r
+q(z + 2)(δ(yn)⊗ I)))σ1

ψ(i L1). (5.57)

We have, that:

L1 = opξ′(v1(ξ′)) +
√
h
−1

n−1∑
i=1

Di(
√
h(hin + hni)).

Therefore σ1
ψ(L1) = v1(ξ′), and we arrive at the result:

σ0
ψ(σ0

∂M(C+
00,0)) =

v1(ξ′)

hnn · (κ1 − κ2)(ξ′)
. (5.58)

Computation of σ0(σ0
∂M(C+

00,1))
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We have:

(σ0
∂M(C+

00,1))(z) = σ−1
∂M(iγ̃0r

+(Q))(z + 1)σ1
∂M(

1

x
Dn)∗γ̃∗0 i h

nn)

= iγ̃0r
+(σ−2

M (Q)(z + 2))((Dn)∗γ̃∗0 i h
nn).

The calculations for σ0
ψ(σ0

∂M(C00,1)) work analogous to the ones for σ0
ψ(σ0

∂M(C00,0)):

σ0
ψ

(
σ0
∂M(C00,1)

)
=

∫
Rn−1

eiy
′ξ′
∫

Ωξn

(2π)−ni∑n
i,j=1 hijξiξj

Fyn→ξn(δ(1)(yn))︸ ︷︷ ︸
=ξn

Fy′→ξ′(hnn)dξn dξ′

=

∫
Rn−1

eiy
′ξ′
∫

Ωξn

(2π)−ni ξn
hnn(ξn − κ1(ξ′))(ξn − κ2(ξ′))

dξnFy′→ξ′(hnn)dξ′,

where the residue theorem gives:∫
Ωξn

ξn
(ξn − κ1(ξ′))(ξn − κ2(ξ′))

dξn = 2π i
κ1(ξ′)

(κ1 − κ2)(ξ′)
,

and we obtain as expression for σ0
ψ(σ0

∂M(C00,1)):

σ0
ψ

(
σ0
∂M(C00,1)

)
=

κ1(ξ′)

(κ1 − κ2)(ξ′)
. (5.59)

Computation of σ0
ψ(σ0

∂M(C+
01)◦−1)

For the conormal symbol, it holds that:

σ1
∂M((C+

01)◦−1)(z) =
(
σ−1
∂M(C+

01))(z + 1)
)−1

. (5.60)

Therefore, we have that:

σ1
ψ(σ1

∂M(C+
01)◦−1))(ξ′) =

(
σ−1
ψ (σ−1

∂M(C+
01))(ξ′))

)−1
. (5.61)

We have already computed σ−1
ψ (σ−1

∂M(C+
01)) in (5.33), the result was:

σ−1
ψ (σ−1

∂M(C+
01))(ξ′) =

1

(κ1 − κ2)(ξ′)
.

Consequently, we obtain the result:

σ1
ψ(σ1

∂M(C+
01)◦−1))(ξ′) = (κ1 − κ2)(ξ′). (5.62)
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Computation of σ1
ψ(σ1

∂M(λ))

Since the conormal symbol of operators behaves multiplicative, we have the following

relation for σ1
M(N ):

λ(z) = σ1
M(N ) = σ1

M((C+
01)−1(I − C+

00))

= σ1
M((C+

01)−1) · σ0
M((I − C+

00)).

Consequently, we have for the principal symbol of λ(z):

σ1
ψ(λ) = σ1

ψ(σ1
M((C+

01)−1)) · σ0
ψ(σ0
M((I − C+

00))),

which gives us the result:

σ1
ψ(λ) = (κ1 − κ2)(ξ′)

(
1− κ1(ξ′)

(κ1 − κ2)(ξ′)
− v1(ξ′)

hnn(κ1 − κ2)(ξ′)

)
= (κ1 − κ2)(ξ′)− κ1(ξ′)− v1(ξ′)

hnn

= −κ2(ξ′)− v1(ξ′)

hnn
= κ1(ξ′). (5.63)

Theorem 5.3.2. The conormal symbol σ1
M(N ) of N is invertible as an operator:

σ1
M(N ) : Hs(∂Y )→ Hs−1(∂Y ), s ∈ R. (5.64)

Proof. Again, we divide the proof into three steps, establishing injectivity, injectivity of

the adjoint and the Fredholm property:

Step 1 The conormal symbol of ∆c is σ2
M(∆c) = z2−(n−1)z+∆Y : H1

2 (Y )→ H−1
2 (Y )

with z ∈ Γn−1
2

. We parametrize Γn−1
2

by zω = n−1
2 + iω for ω ∈ R, and see that:

σ2
M(∆c)(zω) = −(n− 1)2

4
− ω2 + ∆Y .

Now, if we define cω = (n−1)2

4 + ω2, it follows from the multiplicity of the conormal

symbols and Lemma 5.2.17, that the conormal symbol of N is given by:

σ1
∂M(N ) = (C̃+

01)−1(I − C̃+
00),

where C̃+
00, C̃

+
01 are the entries of the following Calderón projector:

C̃+ = ρ̃(−cω + ∆Ω)−1ρ̃∗. (5.65)
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Therefore, it is straight forward to see that σ1
∂M(N ) : H

1
2
2 (∂Y ) → H

− 1
2

2 (∂Y ) coincides

with the Dirichlet to Neumann operator for the following ”shifted” Dirichlet problem:

(D1)

 (∆− cω)u = 0 on Y,

γ0(u) = f on ∂Y.

Using Greens first identity:∫
Y

(ψ∆Y ϕ+∇ψ · ∇ϕ)dV =

∫
∂Y
ψ
∂ϕ

∂n
, (5.66)

and choosing ψ = ϕ as solutions of (D1), we obtain:

〈σ1
∂M(N )ϕ,ϕ〉 =

∫
Y

(cω|ϕ|2 + |∇ϕ|2). (5.67)

Which gives us that σ1
∂M(N ) is injective.

Step 2

We show that the conormal symbol σ1
∂M(N ) is symmetric under the dual pairing:

〈σ1
∂M(N )(u), v〉L2(∂Y ) = 〈u, σ1

∂M(N )(v)〉L2(∂Y ).

We have seen in the proof of Lemma 5.3.1, that σ1
∂M(N ) : H

1
2
2 (∂Y ) → H

− 1
2

2 (∂Y )

coincides with the Dirichlet to Neumann operator for the shifted Dirichlet problem

(D1) on Y . Therefore, we can employ Greens second identity:

∫
Y

(ψ∆cϕ− ϕ∆cψ)dV =

∫
∂Y

(ψ
∂ϕ

∂n
− ∂ψ

∂n
ϕ)dS, (5.68)

to solutions ψ,ϕ of (DP1), we obtain with u = γ0(ψ), v = γ0(ϕ):

0 =

∫
∂Y

(ψ
∂ϕ

∂n
− ∂ψ

∂n
ϕ)dS = 〈u, σ1

∂M(N )(v)〉 − 〈σ1
∂M(N )(u), v〉. (5.69)

Step 3

We have already computed σ1
ψ(σ1

∂M(N )) in Lemma 5.3.1, with the result that σ1
ψ(λ(z)) =

opξ′(κ1(ξ′, z)). Since κ1(ξ′, z) is non vanishing on Γn−1
2

, we can conclude that σ1
∂M(N )

defines a Fredholm operator, which immediately gives that it has closed range.

Hence, we can conclude that σ1
∂M(N ) : H

1
2 (∂Y )→ H−

1
2 (∂Y ) is invertible.
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5.4 Basic Properties of the DtN Operator

Lemma 5.4.1. For boundary datum f ∈ C∞c (intB), we have for the solution of the

Dirichlet problem ∆cu = 0, γ0(u) = f , that u ∈ H∞,12 (D).

Proof. Since C∞c (intB) ⊂ Hs−
1
2
, 1
2

2 (B), we know by Theorem 4.0.13, that a solution u

exists for all s ≥ 1. To show that u ∈ H∞,12 (D), we apply the left entry of K+ as defined

in 5.16 to f . Then the claim follows from the mapping properties of K+.

Remark 5.4.2. Let ψ,ϕ ∈ C2(D). Then:∫
D

(ψ∆cϕ+∇ψ · ∇ϕ)dV =

∫
∂D
ψ
∂ϕ

∂n
, (5.70)

and: ∫
D

(ψ∆cϕ− ϕ∆cψ)dV =

∫
∂D

(ψ
∂ϕ

∂n
− ∂ψ

∂n
ϕ)dS, (5.71)

This follows from Gauss theorem which holds on manifolds with conical singularities,

see [26] for a fairly general proof.

We gather a few basic results about the DtN map N :

Theorem 5.4.3. 1. The Dirichlet to Neumann operator N : H
1
2
, 1
2

2 (B)→ H−
1
2
,− 1

2
2 (B)

for p = 2 is self-adjoint with respect to the L2 scalar product.

2. The Dirichlet to Neumann operator is positive in the following sense:

Let f ∈ H1,1
2 (B), then:

〈N (f), f〉 = 〈f,N (f)〉 ≥ 0. (5.72)

Proof. 1. We can first apply Greens second identity (5.71):

We have in (5.71) for f, g ∈ C∞c (∂D) due to Lemma 5.4.1 the solutions ψ,ϕ ∈
H∞,∞(D) to the Dirichlet problem, such that γ0(ϕ) = f, γ0(ψ) = g, ∆cϕ = ∆cψ =

0. It follow that ∂ψ
∂n = N (f), ∂ϕ

∂n = N (g), and we obtain:

0 =

∫
∂D

(fN (g)−N (f)g)dS. (5.73)

We obtain with respect to the L2 dual pairing on H0,0
2 (D):

〈N (f), g〉H0,0
2 (∂D)

= 〈f,N (g)〉H0,0
2 (∂D)

. (5.74)
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Since C∞c (B) is dense in H
1
2
, 1
2

2 (B), the identity (5.74) extends to f, g ∈ H
1
2
, 1
2

2 (B)

by continuity.

Considered as a bounded operator which maps H
1
2
, 1
2

2 (B) to H−
1
2
,− 1

2
2 (B), N can be

considered as a self-adjoint operator.

2. We can prove that N has a positive spectrum with the help of Green’s first identity

5.70:

We choose f ∈ C∞c (B) such that ∆c = u0, γ0(u0) = f . Again, we have by Lemma

5.4.1, that u0 ∈ H∞,12 (D). We obtain by setting ψ = ϕ = u0 in (5.70):∫
D

(|∇u0|2)dV =

∫
∂D
fN (f)dS, (5.75)

which gives:

〈f,N (f)〉 ≥ 0 ∀f ∈ H
1
2
, 1
2

2 (∂D). (5.76)





Chapter 6

Parameter Ellipticity

We outlined in the last section the construction of the Dirichlet to Neumann operator N
on conical manifolds. Later on, our goal is to prove H∞ functional calculus for a class of

operators containing N . Defining f(A) is the first step to establish H∞ calculus, and to

do this we need the existence of the resolvent (N −λ)−1 for λ being contained in a sector

Λ of the complex plane. The conditions on N which are necessary for the existence of the

resolvent are summarized by the notion of parameter ellipticity. Therefore, we introduce

in this chapter parameter ellipticity and give a prove that N is parameter elliptic on the

right spaces.

While N was constructed in the last chapter as an operator acting on weighted Besov

spaces, we use in this chapter the constructed operator acting on weighted Sobolev

spaces which are more handsome for practical computations.

6.1 Definition of Parameter Ellipticity

6.1.1 Model Cone Operator, Kegel Spaces

We want to show that the Dirichlet to Neumann operator is parameter elliptic. The

definition of parameter ellipticity for a cone pseudodifferential operators P depends on

the invertibility of the model cone operator P∧ which is an operator which is obtained

from P as described below. P∧ acts on the so called Kegel spaces which have been

introduced and extensively studied by Schulze, see e.g. [31] or [32]:

Definition 6.1.1. Let ∂Y = U1 ∪ · · · ∪ UJ be an open covering of ∂Y ; let κj : Uj → Vj

be coordinate maps and {ϕ1, · · · , ϕJ} a subordinate partition of unity.

55
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Given a function u = u(x, y) on R×∂Y , we shall say that u ∈ Hs
p,cone(R×∂Y ) provided

that, for each j, the function:

v(x, ỹ) = ϕj(y)u(x, y), y = κ−1
j (ỹ/[x]), (6.1)

is an element of Hs
p(R × Rn−1) (we consider the right hand to be zero for x /∈ Vj). In

other words: ϕju is the pull-back of a function in Hs(Rn) under the composition of the

maps

id× κj : R×Xj 3 (x, y) 7→ (z, [x]y) ∈ Rn, (6.2)

and

ξ : R× Uj 3 (t, ỹ) 7→ (t, [t]ỹ) ∈ Rn, (6.3)

so that the definition extends to distributions in the usual way for s ∈ R, 1 < p <∞.

Ks,γp (∂Y ∧) is the space of all distributions u ∈ Hs
p,loc(R+×∂Y ) such that, for an arbitrary

cut-off function ω,

ωu ∈ Hs,γp (∂Y ) and (1− ω)u ∈ Hs
p,cone(R× ∂Y ). (6.4)

Usually, the model cone operator is defined for a certain class of differential operators,

the so called Fuchs Type operators, which are operators of the form:

A = x−µ
µ∑
j=0

aj(x)(−x∂x)j . (6.5)

For this class of operators, the model cone operator Â is obtained by freezing the coef-

ficients at the boundary, i.e. Â is expressed as the differential operator given by:

Â = x−µ
µ∑
j=0

aj(0)(−x∂x)j , (6.6)

on the infinite half-cylinder B∧ = R+ × B.

The parameter ellipticity is described by the properties of the model cone operator B∧

of a cone pseudodifferential operator B ∈ C(g, θ):

Definition 6.1.2. Let B = x−µω1opγM(h)ω2 +(1−ω1)P (1−ω3)+x−µω1opγM(h0)ω2 +G,

as defined in 3.5.1, then we can define B∧ by:

B∧ : Ks,γ(∂Y ∧)→ Ks−µ,γ−µ(∂Y ∧),

u 7→ B∧u := (x−µopγ(h(0, z) + h0(z)))u. (6.7)
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Parameter ellipticity is formulated with respect to a sector Λ in the complex plane:

Λ = Λ(θ) = {λ = r eiϕ|r ≥ 0, θ ≤ ϕ ≤ 2π − θ}.

Remark 6.1.3. The definition of B∧ in equation (6.7) is the natural generalisation of

the definition of the model cone operator of cone differential operators.

However, the cone algebra over over the stretched cone ∂Y ∧ as defined in Chapter 2.2.4.

of [32] consists of operators of the form as defined in Definition 3.5.1.

Using cut-off funtions ω, ω′, we can rewrite B∧ as:

B∧ = ωB∧ω
′ + (1− ω)B∧(1− ω′) + (1− ω)B∧ω

′ + ωB∧(1− ω′)

.

We conjecture that (1−ω)B∧(1−ω′) can be expressed, up to regularizing Green’s opera-

tors, as (1−ω)B∧(1−ω′) = (1−ω)P (1−ω′), P denoting an ordinary Pseudodifferential

operator of order µ.

Further, since their kernels are supported away from the diagonal, both (1−ω)B∧ω
′ and

ωB∧(1− ω′) should contribute as regularizing Green’s operators.

Unfortunately, we where not able to prove those two statements.

Therefore, we assume in the preceding considerations that B∧ maps continuously Ks,γp (∂Y ∧)→
Ks−µ,γ−µp (∂Y ∧). Further, we assume that B∧ as defined in (6.7) is contained in the cone

algebra over ∂Y ∧.

We define parameter-ellipticity:

Definition 6.1.4. An operator B ∈ Cµ(B, (γ, γ − µ, θ)) is said to be parameter-elliptic

on a sector Λ ⊂ C with respect to the weight γ, if and only if:

• Both the homogeneous symbol σµψ(B) and the rescaled symbol σ̃µψ(B) have no spec-

trum in Λ,

• B∧ − λ : Ks,γp (∂Y ∧) → Ks−µ,γ−µp (∂Y ∧) is invertible for every λ ∈ Λ sufficiently

large, and for some s ∈ R, 1 < p <∞.

6.1.2 Symmetry Properties

Theorem 6.1.5. For u, v ∈ K
1
2
, 1
2

2 (Y ∧), it is true that:

〈N∧u, v〉K0,0
2 (Y ∧)

= 〈u,N∧v〉K0,0
2 (Y ∧)

. (6.8)
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Proof. This is a direct consequence of the symmetry of N .

6.1.3 Positivity

Theorem 6.1.6. Let u ∈ K
1
2
, 1
2

2 (∂Y ∧). Then:

〈N∧u, u〉 ≥ 0. (6.9)

Proof. Since the Mellin symbol of N∧ coincides with the conormal symbol of N , we can

use the result of Theorem 5.3.2, which says that σ1
M(N ) coincides with the Dirichlet to

Neumann operator of the following Dirichlet problem:

Given f ∈ H
1
2 (∂Y ), find u ∈ H1(Y ), such that:

(D1)

 (∆Y (0)− (−z2 + (n− 1)z))u = 0 on Y,

γ0(u) = f on ∂Y.

We evaluate in z on the line Γn+1
2
−1. Writing for z ∈ Γn+1

2
−1, zω = n−1

2 + iω with ω ∈ R,

we see that

(−(zω)2 + (n− 1)zω) =
(n− 1)2

4
+ ω2 > 0. (6.10)

Consequently, the Mellin symbol defines a positive operator in the sense that:

〈λ∧(z)u, u〉 ≥ 0 ∀u ∈ H
1
2 (∂Y ), z ∈ Γn−1

2
. (6.11)

We compute:

〈op
1
2
M(λ∧)u, u〉L2(∂Y ∧) = 〈M−1λ∧Mu, u〉L2(∂Y ∧)

= 〈λ∧Mu,Mu〉L2(Γn−1
2
×∂Y )

=

∫
Γn−1

2

〈λ∧Mu(z),Mu(z)〉L2(∂Y ∧)dz. (6.12)

Lemma 6.1.7. N∧ : K
1
2
, 1
2

2 (∂Y ∧)→ K−
1
2
,− 1

2
2 (∂Y ∧) is a Fredholm operator.

Proof. We have to check the ellipticity condition of N∧ for the cone algebra over ∂Y ∧.

Here, as in the case for the cone algebra over B, we need the invertibility of σ1
M(N∧) and

σ1
ψ(N∧). Further, we have to introduce an additional symbol, σ0

e(N∧). Taking (x, y, τ, ξ)

as local variables on the fiber T ∗∂Y and developing the pseudodifferential symbol N∧ in



Chapter 6. Parameter Ellipticity 59

contributions which are homogeneous in (x, y), σ0
e(N∧) denotes the contribution which

is homogeneous of order 0 in y. Then, N∧ is Fredholm, if all three symbols are invertible,

this is Chapter 2.2.4., Theorem 14 of [32].

• σ1
M(N∧) is invertible on Γn−1

2
:

This follows since σ1
M(N )(z) : H

1
2 (∂Y )→ H−

1
2 (∂Y ) is the Dirichlet to Neumann

operator associated to the Dirichlet problem (D1) as described in Theorem 6.1.6.

It is well known that the Dirichlet to Neumann operator associated to (∆−c)u = 0

is invertible for c > 0.

• σ1
ψ(N∧) is invertible on T ∗∂Y ∧\{0}: In the interior of the manifold, away from

the conical singularity, the ellipticity of the principal symbol away from 0 follows

from the standard theory, of the Dirichlet to Neumann operator for the smooth

case, since here σ1
ψ(N∧) = |ξ′|.

• The invertibility of the exit symbol σ0
e(N∧) is trivial in this case, since the pseu-

dodifferential symbol of N∧ coincides, up to smoothing operators, with the part

which is homogeneous of order 0. This is due to the fact that the Mellin operator

is evaluated at x = 0, and due to the rescaling of the local coordinate charts in

6.1.

Theorem 6.1.8. Let λ ∈ C with <(λ) < 0. Then N∧−λ : K
1
2
, 1
2

2 (∂Y ∧)→ K−
1
2
,− 1

2
2 (∂Y ∧)

is invertible.

Proof. Let λ ∈ C with <(λ) < 0. Take a non-zero u ∈ K
1
2
, 1
2 (∂Y ∧). Then, using the dual

pairing 〈·, ·〉 between K
1
2
, 1
2

2 (∂Y ∧) and K−
1
2
,− 1

2
2 (∂Y ∧), we have that:

〈(N∧ − λ)u, u〉 = 〈N∧u, u〉 − λ〈u, u〉.

Therefore, the injectivity of N∧−λ follows by Theorem 6.1.6, since the above expression

has strictly positive real part, therefore (N∧ − λ)u 6= 0 for all u 6= 0.

Passing to the formal adjoint gives the injectivity of (N∧−λ)∗, since by Theorem 6.1.5,

we have (N∧ − λ)∗ = (N∧ − λ) and <(z) = <(z).

Now we observe that σ1
M(N∧−λ) = σ1

M(N∧) and σψ(N∧−λ) = σψ(N∧). Therefore, the

ellipticity of N∧ − λ can be derived from that of N∧. Hence N∧ − λ is cone degenerate

elliptic, therefore a Fredholm operator, therefore has closed range. This implies the

invertibility of N∧ − λ.
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The following theorem establishes the spectral invariance of operators in Cµ(∂Y ∧,g):

Theorem 6.1.9. If A ∈ Cµ(∂Y ∧,g) is invertible as an operator for µ ∈ R, g = (γ, δ,Θ),

γ, δ ∈ R as an operator:

A : Ks0,γp0 (∂Y ∧)→ Ks0−µ,δp0 (∂Y ∧), for some s0 ∈ R, p0 ∈ N,

it is invertible for all s ∈ R and 1 < p <∞.

Proof. An inspection of the proof of Theorem 2.4.49 in [34] shows that we can set W = 0

in the prerequisites to obtain an inverse A−1 which is contained in C−µ(∂Y ∧,g−1).

Finally, summarizing the results of Theorem 5.3.2, Theorem 6.1.8 and Theorem 6.1.9 in

the following result:

Theorem 6.1.10. The Dirichlet to Neumann operator N is parameter elliptic with

respect to the weight γ = 1
2 as an operator:

N : H
1
2
, 1
2

p (B)→ H−
1
2
,− 1

2
p (B). (6.13)



Chapter 7

Parameter Dependent b-Calculus

7.1 Why b-Calculus?

Everything which has been done so far was formulated in Schulze’s cone calculus. Now

our aim is to estimate the norm of f(A) for certain bounded functions f . If A is a cone

pseudodifferential operator, an important ingredient for the definition of f(A) is the

existence and structure of the resolvent (A − λ)−1, for λ being contained in a suitable

subset of C.

Regarding the case of A being a differential operator on conical manifolds, namely a

Fuchs type operator as defined in 2.4.1, the resolvent has been computed in the terms

of Schulze’s cone calculus by Coriasco, Schrohe and Seiler in [6].

In the case of A being a cone pseudodifferential operator, there exist only computations

in language of a different school of singular analysis, namely the b-calculus, as developed

by Melrose et al, see [22] or [23]. The resolvent is constructed in [10].

As discussed in [18] by Lauter and Seiler, certain elements of Schulze’s cone calculus can

be identified with operators in the b-calculus and vise versa. However, Gil and Loya

introduce additional classes of parameter dependent operators for the construction of the

resolvent which have so far no analogue within the language of Schulze’s cone calculus.

This is why we use in this chapter this alternative language of b-calculus in order to

estimate f(A), for A being a cone pseudodifferential operator.

We begin with a short introduction to the parts of b-calculus which are needed for our

calculations. See e.g [11] for a short introduction to the b-calculus, or also [18] for a

comparison between b-calculus and cone-algebra.

61
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The basic object on which we establish our calculus is a manifold with conical singularity

like the manifold B as defined in Chapter 2. Since we restrict our studies to the boundary

B of a manifold D, and to stay within the notation which is used in the b-calculus

language, we write here X instead of B.

7.2 Blow-up Spaces

The function spaces in b-calculus are basically the same weighted Sobolev spaces Hs,γ

as defined in chapter 2.2. Since we are working with the notation used in [10], we define

the function spaces here as:

Definition 7.2.1.

Hs,p
b (X) := Hs,

n
2

p (X). (7.1)

Further, we make use of weighted Sobolev spaces:

xαHs,p
b (X) := Hs,

n
2

+α
p (X). (7.2)

The objects which are blown up are manifolds with corners:

Definition 7.2.2. An n dimensional manifold with corners X is a paracompact topolog-

ical space with local models of the form Rn,k := [0,∞)kx×Rn−ky , where k can run between

0 and n, such that X has only finitely many boundary hypersurfaces, say {H1, ...,Hr} for

some r ∈ N0, where each Hi is embedded. The set of boundary hypersurfaces is denoted

by X1(X). A total boundary defining function is a function of the form ρ =
∏r
i=1 ρi,

where ρi is a boundary defining function for Hi.

We introduce b-densities on X:

Definition 7.2.3. The b-density bundle, Ωb, is the trivial bundle with sections m of the

form m = ρ−1µ, where µ is a smooth density on X, and where ρ is a total boundary

defining function on X.

We introduced the wedge space Ω∧ in chapter 2.2 in definition (2.3) and modeled the

function spaces over it. The wedge space Ω∧ can be thought of as a special case of a

manifold with corners for k = 1. Higher orders in k enter e.g. in the analysis of a kernel

of an operator which lives on the Cartesian product Ω∧×Ω∧ which, in local coordinates,

is a manifold with corners with k = 2.

Example 7.2.4. Let X = [0,∞)x×[0,∞)x′ and Y = (0, 0). Then we define “X blown up

at Y ” as the set [X;Y ] ≡ [0,∞)r×S1,2
θ , where S1,2 = S1∩ [0,∞)2, and where r = |(x, x′)|

and θ = tan−1(x′/x). Hence, the blow-up corresponds just to the introduction of polar

coordinates.



Chapter 7. Parameter Dependent b-Calculus 63

x′

x ∆

•
(0, 0)

β

ff

rb

lb
∆b

Figure 7.1: Blow up of X = [0, 1)× [0, 1)

Further, we define the left boundary, lb, as the set where θ = π
2 , the right boundary rb

as the set where θ = 0, and the front face ff as the face where r = 0.

This approach is generalized to a manifold X with corners and an embedded submanifold

Y of X, here one can define “X blown-up at Y ”, [X;Y ], by taking polar coordinates

about Y . The boundary face created in the blow-up is called the front face, denoted by

ff[X;Y ], and the polar coordinates map β : [X;Y ]→ X is called the blow down map.

If Z ⊆ X is a closed subset of X, then we define the lift of Z into [X;Y ], β∗Z ⊆ [X;Y ],

as β∗Z := β−1(Z) if Z ⊆ Y , or as β∗Z := β−1(Y \Z) if Z = Z\Y

7.3 The Operators of the b-Calculus

7.3.1 The Small b-Calculus

We begin with the definition of Ψµ
b (X), the algebra of b-pseudodifferential operators.

They can be identified with the elements of the so called holomorphic cone algebra,

which is a subset of all elements which are contained in the cone Algebra Cµ(X,g) as

defined in 3.5.1

Let X be the manifold specified above, such that ∂X = Y and X ∼= [0, 1) × Y close to

∂X.

The kernels of b-pseudodifferential operators are defined on the following blow-up X2
b

of X2 = X ×X:

Definition 7.3.1. We define the b-stretched product, X2
b , by X2

b := [X2;Y × Y ]. If

β : X2
b → X2 is the blow-down map, we set lb := β∗(Y × X), rb := β∗(X × Y ), and

ff := β∗(Y × Y ). The b-diagonal is defined by ∆b := β∗(∆), where ∆ is the diagonal

in X2.

Let 0 < ν ∈ C∞(X,Ωb) be any trivialization of Ωb. Let β : X2
b → X × X be the

blowdown map for X2
b . Let ν ′ be the lift of ν under π1 ◦ β : X2

b → X to X2
b .
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Now, the class Ψm
b (X) is defined as:

Definition 7.3.2. The space of b-pseudodifferential operators of order m ∈ R, Ψm
b (X),

consists of operators A on C∞(X) that have a Schwartz kernel KA satisfying the follow-

ing two conditions:

1. Given ϕ ∈ C∞c (X2
b \∆b), the kernel ϕKA is of the form kν ′, where k ∈ C∞(X2

b )

and vanishes in Taylor series at the sets lb and rb.

2. Given a coordinate patch of X2
b near ∆b of the form Uy×Rnz such that ∆b

∼= U×{0},
and given ϕ ∈ C∞c (U × Rn), we have

ϕKA =

∫
Rn
eiz·ξa(y, ξ) d̄ξ · ν ′, d̄ξ =

1

(2π)n
d̄ξ, (7.3)

where a(y, ξ) is a classical symbol of order m.

The elements of Ψµ
b (X) form an algebra which is closed under compositions. However,

elements which are contained in Ψ−∞b (X) are not necessarily compact. To be able to

construct Fredholm inverses of elements in Ψµ
b (X), we need an enlargement of the small

calculus by elements living on X2
b , which are not longer of rapid decay on the boundary

hypersurfaces lb and rb. To capture the non trivial asymptotic behavior of those terms,

we need the notion of asymptotic expansions:

7.3.2 Asymptotic Expansions

The first notion we will need, is that of an index set:

Definition 7.3.3. Let N be the set of positive integers and let N0 = N ∪ {0}. An index

set E is a discrete subset of C× {N0}, such that:

• (z, k) ∈ E ⇒ (z, l) ∈ E for all 0 ≤ l ≤ k, and

• given any N ∈ R, the set {(z, k) ∈ E|<z ≤ N} is finite.

• (z, k) ∈ E ⇒ (z + l, k) ∈ E ∀l ∈ N.

For α ∈ R and an index set E, we say that E > α iff (z, k) ∈ E ⇒ <z > α.

The index sets allow us to describe the asymptotic of functions towards the boundary

hypersurfaces. Let U = [0, 1)kx × (−1, 1)n−ky . Then for a ∈ Rk the space of symbols

Σa(U) consists of those smooth functions of the form:

u(x, y) = xa11 · · ·x
ak
k v(x, y),

where for each α and β, (x∂x)α∂βy v(x, y) is a bounded function.
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Definition 7.3.4. Given any index set E, a function u ∈ Σa(U) is said to have asymp-

totic expansion at x1 = 0 with index set E if, for each N > 0:

u(x, y) =
∑

(z,k)∈E,<z≤N

xz1(log x1)ku(z,k)(x
′, y) + xN1 uN (x, y), (7.4)

with uN (x, y) ∈
∑a(U) and uz,k(x

′, y) ∈
∑a′(U ′), where a = (a1, a

′), x = (x1, x
′), and

U ′ = [0, 1)k−1
x′ × (−1, 1)n−ky .

On a manifold with corners X one can define asymptotic expansions at a hypersurface

H with index set E by reference to local coordinates. First of all, a function u ∈ C∞(
◦
X)

is said to be in
∑0(X), if for any patch U on X and for any ϕ ∈ C∞c (U), the function ϕu

is an element of
∑0(U). Let H1, ...,Hm be the hypersurfaces of X with corresponding

boundary defining functions ρ1, ..., ρm. For a ∈ Rm we define:

a∑
(X) = {ρa11 ...ρ

am
m v|v ∈

0∑
(X)}. (7.5)

A function u ∈
∑a(X) has a partial expansion at H with index set E of order κ, if for

any patch U = [0, 1)x1 × U ′ on X with H ∩ U = {x1 = 0}, and for any ϕ ∈ C∞c (U), the

function ϕu has a partial expansion at x1 = 0 with index set E of order κ in the sense

described above.

If E is a collection of index sets E = {EH1 , ..., EHl} corresponding to some family of

hypersurfaces H1, ...,Hl of X, then we denote by AEκ(X) the space of functions u ∈∑a(X) for some a ∈ Rm such that for each H, u has a partial expansion at H with

index set EH of order κ.

Finally, we define:

AE(X) = ∩κ>0AEκ(X). (7.6)

7.3.3 The Full b-Calculus

We define two new classes of operators, the first one corresponds to the smoothing Mellin

operators of the cone calculus:

Definition 7.3.5. The class Ψ−∞,Eb (X) is described with the help of an index set E =

(Elb, Erb, Eff ). This class is characterized by integral kernels living on the blow up space

X2
b with an asymptotic behavior which is described by E. We say that:

B ∈ Ψ−∞,Eb (X)⇔ KB = kν ′, k ∈ AEphg(X2
b ). (7.7)
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Definition 7.3.6. For a collection of index sets (Elb, Erb), we define Ψ−∞,(Elb,Erb)(X)

as those operators with a Schwartz kernel of the form kν ′, where k ∈ A(Elb,Erb)
phg (X2).

Thus:

C ∈ Ψ−∞,(Elb,Erb)(X)⇔ C = kν ′ k ∈ A(Elb,Erb)
phg (X2). (7.8)

The following result relates the mapping properties of operators in Ψ̃m,E
b (X) to the

defining index set E = (Elb, Erb, Eff ).

Theorem 7.3.7. Let E = (Elb, Erb, Eff ) be an index set such that Elb > β,Erb > −α
and α+ Eff ≥ β. Then any operator A ∈ Ψ̃m,E

b (X) defines a continuous mapping:

A : xαHs
b (X)→ xβHs−m

b (X). (7.9)

Finally, the full b-calculus is defined as the following set of operators:

Ψ̃m,E
b (X) := Ψm

b (X) + Ψ−∞,Eb (X) + Ψ−∞,Elb,Erb(X). (7.10)

7.3.4 Comparison of b-Calculus and Cone Algebra

A comparison between b-calculus and cone algebra has been established in [18]. Let

Cm(X,Ωb) be the cone algebra as defined in 3.5.1. Theorem 5.17 there states that:

Theorem 7.3.8. Let γ, µ ∈ R, j ∈ N0 be arbitrary, x a boundary defining function for

Y , and suppose that the boundary ∂X of X is connected. Then we have

Cµ(X,Ωb, (γ, γ − µ,∞)) ⊂ ∪Ex−µΨ̃µ,E
b (X,Ωb)

where the union is over all index families E = (Elb, Erb, 0) satisfying:

− inf Erb < γ − n

2
< inf Elb.

7.3.5 Parameter Ellipticity in the b-Calculus

In the case that P ∈ Ψ̃m,E
b (X), Loya defines the model cone operator in [19] as follows:

Let (x, y) be local coordinates on Y ∧, define a group action on C∞c (Y ∧) by:

κρ(u(x, y)) := u(ρ x, y). (7.11)

The action extends in a natural way to the Ks,γ(Y ∧) spaces.

Definition 7.3.9. Let P ∈ x−µΨ̃µ,E
b (X) with an index set E as in Theorem 7.3.7.
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We associate to P the model cone operator P∧ by:

P∧ : Ks,γ(Y ∧)→ Ks−µ,γ−µ(Y ∧)

u 7→ lim
ρ→0

ρµ κρ ϕA(ψκ−1
ρ u),

for smooth cut-off functions ϕ,ψ supported in a collar neighborhood of ∂Y ∧.

Remark 7.3.10. For a pseudodifferential operator P which is contained in Schulze’s

cone algebra, that is P ∈ Cµ(X,g) with g = (γ, γ−µ,∞), we can find by Theorem 7.3.8

a index family E, such that P ∈ x−µΨ̃µ,E
b (X,Ωb). In this case, it is easy to check that

the Definition 7.3.9 of P∧ coincides with Definition 6.1.2.

Remark 7.3.11. If the conditions (E1) and (E2) are satisfied, they automatically hold

for a slightly larger keyhole region (by closedness of the spectrum, compactness of X,

and the homogeneity of the rescaled symbol, the homogeneous principal symbol, as well

as the conormal symbol).

The following Theorem is Theorem 4.11 from [10], where the construction of the resolvent

is carried out in detail.

7.4 b-Pseudodifferential Resolvent Calculus

In this sub chapter we cite the basic definitions and results from [10]. These result contain

a resolvent calculus which allows for the construction of resolvents of parameter-elliptic

cone pseudodifferential operators which are contained in x−µΨµ
b (X).

The resolvent calculus is based on the following class of parameter dependent symbols:

Definition 7.4.1. For µ, p ∈ R and d > 0 we define Sµ,p,d(Rn; Λ) as the space of

functions a ∈ C∞(Rn × Λ) such that

|∂αξ ∂
β
λa(ξ, λ)| ≤ Cαβ(1 + |ξ|)µ−p−|α|(1 + |ξ|+ |λ|1/d)p−d|β|. (7.12)

The space Sµ,p,dr (Rn; Λ), p/d ∈ Z, consists of elements a ∈ Sµ,p,d(Rn; Λ) such that if we

set

ã(ξ, z) := zp/da(ξ, 1/z),

then ã(ξ, z) is smooth at z = 0, and:

|∂αξ ∂βz ã(ξ, z)| ≤ Cαβ(1 + |ξ|)µ−p−|α|+d|β|(1 + |z||ξ|d)p/d−|β|, (7.13)
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uniformly for |z| ≤ 1. Further let Sµ,p,dr,cl (Rn; Λ) be the space of elements a ∈ Sµ,p,dr (Rn; Λ)

that, for every N ∈ N, admit a decomposition

a(ξ, λ) =
N−1∑
j=0

χ(ξ)aµ−j(ξ, λ) + rN (ξ, λ), (7.14)

where rN ∈ Sµ−N,p,dr (Rn; Λ), ξ ∈ C∞(Rn) with χ(ξ) = 0 for |ξ| ≤ 1
2 and χ(ξ) = 1 for

|ξ| ≥ 1, and where each aµ−j(ξ, λ) has the following properties:

• aµ−j(δξ, δdλ) = δµ−jaµ−j(ξ, λ) for every δ > 0,

• zp/daµ−j(ξ, 1/z) is smooth at z = 0.

The following class of parameter dependent operators is based on the definition of the

parameter dependent symbols introduced in 7.4.1:

Definition 7.4.2. Given µ, p, d ∈ R with p/d ∈ Z and d > 0, the space Ψµ,p,d
c (X; Λ)

consists of parameter-dependent operators A(λ) that have a Schwartz kernel KA(λ) sat-

isfying the following two conditions:

• Given ϕ ∈ C∞c (X2
b \∆b), the kernel ϕKA(λ) is of the form k(ρdλ, q) · m′, where

k(λ, q) is a smooth function of (λ, q) ∈ Λ × X2
b that vanishes to infinite order in

q at the sets lb and rb, and is such that if we define k̃(z, q) = zp/dk(1/z, q), then

k̃(z, q) is smooth at z = 0.

• Given a coordinate patch of X2
b overlapping ∆b of the form Uy × Rnξ such that

∆b ≡ U × {0}, and given ϕ ∈ C∞c (U × Rn), we have

ϕKA(λ) =

∫
eiζ·ξa(y, ξ, ρdλ) d̄ξm′, (7.15)

where y 7→ a(y, ξ, λ) is smooth with values in Sµ,p,dr,cl (Rn; Λ).

7.4.1 Residual Operators for the Resolvent Calculus

This chapter deals with the residual classes which are needed to construct Fredholm

inverses of the parameter dependent operators introduced before. The kernels of these

operators are defined on a manifold which results from a two step iterative blow-up of

X×X×Λd, where Λd denotes the one point compactification of the complex parameter

space: First, we blow up X2 along its origin, obtaining X2
b as usual.

Now, let [Λ; {0}] be the sector Λ blown up at the origin; that is, Λ with polar coordinates

taken at λ = 0, let Λ denote the stereographic compactification of [Λ; {0}] in the Riemann

sphere. Coordinates on Λ near the blown up origin are ρ0 = |λ| and θ = λ/|λ|; near
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X2
b

r∞ β
fi

rb

lb
Td

bi

ff

Figure 7.2: The blow up of Λd ×X2
b along {r∞ = 0} × ffb.

λ =∞ the coordinates are ρ∞ = |λ|−1 and θ = λ/|λ|. Let d > 0 and let Λd = {λ1/d} so

that the radial coordinates on Λd are r0 = |λ|1/d near the origin and r∞ = |λ|−1/d near

infinity.

We define:

Td(X) := [Λd ×X2
b ; {r∞ = 0} × ffb], (7.16)

the blow up of Λ×X2
b along {r∞ = 0} × ffb, where ffb is the front face of X2

b .

Then, if β : Td(X) → Λd × X2
b is the blow-down map, we set lb := β∗(Λd × lb(X2

b )),

left boundary; rb := β∗(Λd × rb(X2
b )), right boundary; ff := β∗(Λd × ff(X2

b )), front

face; fi := β∗(∂∞Λd × ff(X2
b )), face at infinity; and bi := β∗(∂∞Λd ×X2

b ), boundary at

infinity.

We introduce a class of residual operators whose integral kernels are defined as functions

on Td(X) with certain asymptotic at the boundary hypersurfaces. These operators are

needed in the construction of parametrices of parameter dependent cone pseudodiffer-

ential operators:

Definition 7.4.3. Let:

E = (Elb, Erb, Eff, Efi, ∅), (7.17)

be an index family for Td(X) associated to the faces (lb, rb,ff,fi, bi). We denote by

Ψ−∞,d,Ec (X; Λ) the space of those parameter-dependent operators A(λ) that have a Schwartz

kernel of the form

KA = k ·m′, with k ∈ AE(Td). (7.18)

Thus k defines a function on Td(X) that vanishes to infinite order at bi and have asymp-

totic expansions at the hypersurfaces lb, rb,ff and fi, determined by the index sets Elb,

Erb, Eff, and Efi, respectively.
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7.4.2 b-Calculus Resolvents

Gil and Loya construct in [10] the resolvent of an operator A ∈ x−µΨµ
b (X), µ > 0, which

is assumed to be parameter elliptic. Here, parameter ellipticity is given in Definition 4.5.

of [10]. Since the operators in x−µΨµ
b (X) can be identified with holomorphic operators

in the cone Algebra by Theorem 5.4. of [18], it is easy to see that our Definition 6.1.4

of parameter ellipticity coincides with the one given in Definition 4.5. of [10].

This is Theorem 4.11. of [10]:

Theorem 7.4.4. Let A ∈ x−µΨµ
b (X), µ > 0, be such that A−λ is parameter-elliptic on

Λ with respect to some α ∈ R. Then for λ ∈ Λ sufficiently large,

A− λ : xα−
n
2Hs

b (X)→ xα−
n
2
−µHs−µ

b (X),

is invertible for any s ∈ R, and:

(A− λ)−1 ∈ xµΨ−µ,−µ,µc (X; Λ) + xµΨ−∞,µ,E(α)
c (X; Λ), (7.19)

where E(α) = (Elb, Erb, Eff , Efi, Ebi) is an index family associated to Td such that Elb >

α− n
2 − µ,Erb > −(α− n

2 − µ), Eff > 0, Efi = N and Ebi = ∅. Moreover, for α = µ = s

we have that:

(A− λ)−1 : L2
b(X)→ xµHµ

b (X),

is uniformly bounded in λ.



Chapter 8

Resolvents in the Full b-Calculus

8.1 The Full Resolvent

Gil and Loya construct in [10] the resolvent for a cone pseudodifferential operator P ∈
x−µΨµ

b (X). We discuss here a generalization of this result to an operator which is

contained in x−µΨ̃µ,E
b (X), the full b-calculus as defined in (7.10).

We begin with a few composition results which are needed to compose operators of the

full b-calculus with operators of the parameter dependent resolvent calculus of Gil and

Loya as introduced in [10].

Lemma 8.1.1. Let E = (Elb, Erb, Eff ) be an index family for X2
b . Then:

Ψ−∞,Eb (X) ◦Ψ−µ,−µ,µc (X; Λ) ⊂ Ψ−∞,µ,Fc (X; Λ), (8.1)

where F = (Elb, Erb, Eff ,N0), as well as:

Ψ−µ,−µ,µc (X; Λ) ◦Ψ−∞,Eb (X) ⊂ Ψ−∞,µ,Fc (X; Λ). (8.2)

Proof. The composition of the operators is expressed with the help of pullbacks and

pushforwards. We let πF , πS , πC : X3 → X2 be the maps

πF (u, v, w) = (uv), πS(u, v, w) = (v, w), πC(u, v, w) = (u,w).

Further, we define the manifold X3
b by blowing up Y 3 in X3 first (“the origin”), and

then blowing up the submanifolds coming from the codimension two corners of X3, see

Figure 8.1, which is taken from [10].

Then, πF,b, πS,b, πC,b denote the maps πF , πS , πC expressed in the polar coordinates of

X3
b and X2

b . Then, we can express the composition of M and A with Schwartz kernels

71
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KM and KA by:

νKMA = (πC,b)∗(π
∗
C,bνπ

∗
F,bKMπ

∗
S,bKA) (8.3)

Figure 8.1: The blowup space X3
b

We assume A ∈ Ψ−µ,−µ,µc (X; Λ), M ∈ Ψ−∞,Eb (X). We decompose A into two parts,

A = A1 +A2 where the kernel of A1 is supported around the diagonal ∆b and the kernel

of A2 has support away from ∆b.

For the composition MA1, we choose a coordinate neighborhood, such that:

X3
b
∼= X2

b × Ru, π−1
F,b(∆b) ∼= X2

b × {0}u, (8.4)

where πC,b(p, u) = p and πS,b(p, u) = p for all (p, u) ∈ X2
b × Ru. Further, π∗F,bρ = ρρlb,

where ρlb is a boundary defining function for lb of X2
b . Let X2

b
∼= [0, 1)ρ× [−1, 1]y, where

lb = {y = −1} and rb = {y = 1}.

We begin with MA1. We obtain:

π∗C,bνπ
∗
F,bkMπ

∗
S,bkA1 = m(ρρlb, y)

∫
eiu·ξa1(ρµλ, ρ, ξ) d̄ξ|du|νν ′. (8.5)

Now, since πC,b(p, u) = p, we have:

νkMA1 = (πC,b)∗(πC,b)
∗νπ∗F,bkMπ

∗
S,bkA1) = m(ρρlb, y)a1(ρµλ, ρ, 0)|du|νν ′

= C(ρµλ, ρ, ρlb, y)νν ′,

where C(λ, ρ, ρlb, y) = m(ρρlb, y)a1(xµλ, ρ, 0)|du|. Now the asymptotic properties for

C(λ, ρ, ρlb, y) follow, since m(ρρlb, y) has asymptotic expansions at y = −1 and y = 1

with index sets Elb and Erb and at ρ = 0 with index set Eff .

For the composition MA2 we assume that π∗C,bνπ
∗
F,bkMπ

∗
Sb
kA2 is supported near the

intersection of mb, ff and Fb of X3
b . In this region of X3

b we use the coordinates

(s, t, x′′), where s = x/x′′ and t = x′/x. In these coordinates, πC,b and πSb map near lb



Chapter 8. Resolvents in the full b-Calculus 73

in X2
b and in terms of local coordinates (s, x′) near lb of X2

b , with s = x/x′, are given

by:

πS,b(s, t, x
′′) = (st, x′′); πC,b(s, t, x

′′) = (s, x′′). (8.6)

Now, πF,b maps near rb in X2
b , and in the local coordinates (x, t) with t = x′/x near rb

on X2
b , we have:

πF,b(s, t, x
′′) = (sx′′, t). (8.7)

Near rb in X2
b , we can write KM = M(x, t)|dx′/x′|, where M(x, t) admits asymptotic

expansions at x = 0 and t = 0 with index sets Eff and Erb. Near lb in X2
b , we can

write KA2 = A2(r, s, v′)|dx′/x′|, where r = λ−1/d and v′ = x′/r, and where A2(r, s, v′)

has expansions at r = 0, s = 0, v′ = 0 and v′ = ∞, with index sets Ffi = N0, flb = ∅,
Eff = N0 and Fbi = ∅. We obtain:

π∗C,bνπ
∗
F,bKMπ

∗
S,bKA2 = M(sx′′, t)A2(r, st, x′′/r)|dsdtdx

′′

stx′′
|. (8.8)

Therefore:

νKMA2 = (πC,b)∗(π
∗
C,bνπ

∗
F,bKMπ

∗
S,bKA2) =

∫
M(sx′, t)A2(r, st, x′/r)

dt

t
· |dsdx

′

sx′
|

= B(r, s, v)|dsdx
′

sx′
|,

where B(r, s, v′) =
∫
M(srv′, t)A2(r, st, v′)dt/t with v′ = x′/r. Then the asymptotic

properties of M and A2 imply that B has asymptotic expansions at r = 0, s = 0, v′ = 0

and v′ =∞ with index sets N0, Elb, Eff and ∅.

The calculations for the remaining five regions of intersections on X3
b can be computed

similarly, for further details see e.g. the proof of Proposition 4.2. of [20].

For the sake of completeness we give here the definitFion of two classes of smoothing

operators with bounds which are needed in the construction of the resolvent, they are

Definition 3.9. and Definition 3.11. of [10]:

Definition 8.1.2. Let N ∈ N and d > 0. For m ∈ N we define Ψ−∞,µm,N (X; Λ) as the

space of those parameter-dependent operators A(λ) whose Schwartz kernel KA(λ) is of

the form k(xµλ, q) ·m′ with k(λ, q) satisfying the following properties:

(a) For some ε > 0, x−Nµ−εl x−Nµ−εr k is a symbol in Σ0(Λ × X2
b ) having a partial

expansion at the face Λ× ff with index set N0 of order Nµ+ ε. Again, ρl and ρr

are boundary defining functions for lb and rb in X2
b ,
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(b) For each N ′ ≤ N ,

k(λ, q) =

N ′−1∑
j=m

λ−jfj(q) + λ−N
′
kN ′(λ, q),

where fj ∈ AE2Nµd−jd(X2
b ), with E = (∅, ∅,N0), and kN ′ satisfies (a) with Nµ

replaced by 2Nµ −N ′µ. If m ≥ N , then we disregard the summation and require

instead k(λ, q) = λ−NkN (λ, q), where kN satisfies (a).

Definition 8.1.3. Let E = (Elb, Erb, Eff , Efi) be an index family for Tµ.Then we define

Ψ−∞,µ,EN (X; Λ) as those parameter dependent operators A(λ) that have a Schwartz kernel

of the form KA(λ) = k ·m′, where k is a symbol on Tµ, of order Nµ at bi, that satisfies:

• Given ϕ ∈ C∞(Tµ) supported near fi, ϕk is in AENµ+ε for some ε > 0.

• Given ψ ∈ C∞(Tµ) supported away from fi, ψk is the kernel of a parameter

dependent operator in Ψ−∞,µN,N (X; Λ).

For the construction of resolvents in the full calculus, we assume that the following

composition result of operators in the full b-calculus with operators which are contained

in the calculus with bounds is true. However, we leave the proof of this lemma open:

Lemma 8.1.4. Let m,N ∈ N0, and E = (Elb, Erb, Eff ) be an index family for X2
b .

Ψ−∞,Eb (X) ◦Ψ−∞,µm,N (X) ⊂ Ψ−∞,µ,EN (X). (8.9)

The following Lemma is Proposition 5.5. of [19]:

Lemma 8.1.5. Let E = (Elb, Erb, Eff , Efi) and F = (Flb, Frb, Fff , Ffi) be two index

sets on Td. Provided that Erb + Flb > 0, we have

Ψ−∞,µ,Ec (X; Λ) ◦Ψ−∞,µ,Fc (X; Λ) ⊆ Ψ−∞,µ,E◦̂Fc (X; Λ).

where the index set G = E◦̂F is defined by:

Glb = Elb∪(Eff + Flb); Grb = (Erb + Fff )∪Frb;

Gff = (Eff + Fff )∪(Elb + Frb), and Gfi = Efi + Ffi.

This Lemma follows from Theorem 3.18. of [10]:

Lemma 8.1.6. Having an index set E = (Elb, Erb, Eff , Efi), the space Ψ−∞,µ,Ec (X; Λ)

is closed under composition with Ψµ,p,d
c (X; Λ), for instance,

Ψµ,p,d
c (X; Λ) ◦Ψ−∞,µ,Ec (M ; Λ) ⊂ Ψ−∞,µ,Ec (M ; Λ). (8.10)
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For the construction of resolvents of operators P ∈ x−µΨ̃µ,E
b (X), we assume that A

is parameter elliptic. From this we know that the resolvent of the model cone P∧ of

A exists. We make here an additional assumption on the structure of the model cone

operator which we were not able to prove:

Lemma 8.1.7. Let P ∈ x−µΨ̃µ,E
b (X) be parameter elliptic on a sector Λ. Then for

λ ∈ Λ sufficiently large, (P∧ − λ)−1 ∈ xµ(Ψ−µ,−µ,µc (Y ∧; Λ) + Ψ−∞,µ,Fc (Y ∧; Λ)). Here

F = (Flb, Frb, Fff , Ffi) is an index family for Td, such that Flb > (α − µ) + n
2 , Frb >

−(α− µ) + n
2 , Fff ≥ 0, Ffi = N0.

Now we come to the central result of this chapter about the existence and structure of

resolvents in the full b calculus:

Theorem 8.1.8. Let P ∈ x−µΨ̃µ,E
b (X) with E = (Elb, Erb, Eff ) with Elb > α + n

2 ,

Erb > −α− n
2 and Eff = N0 be parameter elliptic in the sense of Definition 6.1.4 with

respect to α.

Then, for λ sufficiently large in Λ, (P − λ)−1 = F + G, where F ∈ xµΨ−µ−µ,µc (X; Λ),

G ∈ xµΨ−∞,µ,Gc , with G = (Glb, Grb, Gff , Gfi). Here G is a index family for Td, such

that Glb > α− µ− n
2 , Grb > −(α− µ− n

2 ), Gff ≥ 0, Gfi = N0.

Proof. First, by the definition of Ψ̃µ,E
b (X), we can write P = A+M+G, here A ∈ Ψµ

b (X),

M ∈ Ψ−∞,Eb (X) and G ∈ Ψ−∞,(Elb,Erb)(X). Next, we can summarize N = M+G, where

N ∈ Ψ−∞,E
′

b , with E ′ = (Elb, Erb, Elb +Erb), this follows from the push forward Lemma,

see e.g. [12] for details. Therefore, we can assume that we have P = A + N , with

N ∈ x−µΨ−∞,Eb (M) with E = (Elb, Erb, Eff ) such that Elb > α + n
2 , Erb > −α − n

2 ,

Eff ≥ 0.

Gil and Loya construct in the proof of Theorem 4.11. in [10] a resolvent (A − λ)−1 for

the case that A ∈ x−µΨµ
b (M). There, they invert (A−λ) first up to a regularizing term.

Precisely, they construct an inverse B3(λ) ∈ Ψ−µ−µ,µc (M ; Λ) + Ψ−∞,µ1,N (M ; Λ), such that

(A− λ) can be inverted up to an error S3(λ) ∈ Ψ−∞,GN (M ; Λ), for G = (∅, ∅,N0,N0):

(A− λ)xµB3(λ) = I − S3(λ).

In our case, we want to invert P − λ. Since P = A + N , where N is smoothing on the

diagonal, we replace A by P = A+N in the above equation, obtaining:

(A+N − λ)xµB3(λ) = I − S′3(λ).

Here, S′3(λ) = S3(λ) +NxµB3(λ).
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To describe the composition NxµB3(λ), we first observe that for E = (Elb, Erb, Eff ),

it holds that x−µΨb(X)−∞,Exµ ⊂ Ψ−∞,E
′

b (X) with E ′ = (Elb − µ,Erb + µ,Eff ). Con-

sequently, using the composition results of Lemma 8.1.1 and Lemma 8.1.4, we obtain

that NxµB3(λ) ∈ Ψ−∞,FN (X), with F = (Elb − µ,Erb + µ,Eff , Ffi = N0). Therefore we

obtain that S′3(λ) ∈ ΨE∪GN .

Now, one can use the resolvent of the model cone operator (P∧−λ)−1, which exists on Λ

due to our assumptions on P , to obtain an error term which decays in first order λ and

can be inverted within the calculus. See the proof of Theorem 6.3. in [19] for details.

In the end one obtains as result:

(P − λ)−1 ∈ xµΨ−µ,−µ,µc (X; Λ) + xµΨ−∞,µ,Gc (X; Λ),

where G = (Glb, Grb, Gff , Gfi) is an index family for Tµ, such that Glb > α − µ + n
2 ,

Grb > −(α− µ)− n
2 , Gff ≥ 0 and Gfi = N0.



Chapter 9

H∞ Calculus

Definition 9.0.9. We denote by Λ = Λ(θ) the complex sector:

Λ(θ) = {λ ∈ C | | arg λ| ≥ θ},

with 0 < θ < π.

Let A be a closed, densely defined operator:

A : D(A) ⊂ F → F, (9.1)

in a Banach space F .

Definition 9.0.10. We call such an operator A sectorial, if

• The spectrum of A has empty intersection with Λ\{0}

Re{z}

Im{z}

C

Λ

Figure 9.1: The path of integration along the complex sector Λ
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• ‖λ(λ−A)−1‖L(F ) is uniformly bounded for large λ ∈ Λ.

By H = H(θ) we denote the space of all holomorphic functions C\Λ → C for which

|f(λ)| ≤ c(|λ|δ + |λ|−δ)−1 for some δ > 0 and c > 0.

If A is sectorial, we can define with C = ∂Λ:

f(A) =
1

2πi

∫
C

f(λ)(A− λ)−1dλ for f ∈ H. (9.2)

The second condition for sectoriality yields the absolute convergence of (9.2) with respect

to the operator norm on L(F ).

We define for an operator A acting as an unbounded operator on H0,α−µ
p (X):

Definition 9.0.11. We say that an unbounded operator A on Hs,α−µp (X) with domain

D(Hs,α−µp (X)) admits H∞ Calculus with respect to θ, if f(A) being defined by equation

(9.2) defines a bounded operator on Hs,α−µp (X), and we have, that:

‖f(A)‖L(Hs,α−µp (X)) ≤ cp ‖f‖∞ ∀f ∈ H. (9.3)

9.1 H∞ Calculus for Cone Pseudodifferential Operators

Theorem 9.1.1. Let P ∈ x−µΨ̃µ,E
b (X) be an operator in the full b-Calculus which is

parameter elliptic. Due to Theorem 8.1.8, we can use the Resolvent of P to define f(P )

using 9.2. Further, P admits H∞ Calculus in the sense of Definition 9.0.11.

It holds, that (A− λ)−1 ∈ L(L2
b(X), xµHµ

b (X)) is uniformly bounded in λ if and only if

‖(A− λ)−1‖L(L2
b(X)) = O(|λ|−1) as |λ| → ∞.

This shows, that the condition on A to be sectorial is already sufficient to define f(A)

of A via the Dunford Integral (9.2).

9.2 The Proof of Theorem 9.1.1

If we want to estimate (9.2), we can use the results of Theorem 8.1.8, to write (A−λ)−1 as

(A− λ)−1 = Q(λ) +R(λ) with Q(λ) ∈ xµΨ−µ,−µ,µc (X; Λ) and R(λ) ∈ xµΨ−∞,µ,Gc (X; Λ).

We obtain for f(A):
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f(A) =
1

2πi

∫
C

f(λ)(A− λ)−1dλ

=
1

2πi

∫
C

f(λ)Q(λ)dλ+
1

2πi

∫
C

f(λ)R(λ)dλ

=: Qf +Rf . (9.4)

If we want to obtain estimates on ‖f(A)‖Hs,α−µp (Y ∧) as defined in (9.6), we have to take

estimates on ‖(A − λ)−1‖Hs,α−µp (Y ∧). In our case of a cone elliptic pseudodifferential

operator, the structure of (A− λ)−1 is described in Theorem 8.1.8.

The following lemma helps us to simplify the estimates:

Lemma 9.2.1. Estimating ‖(A− λ)−1‖H0,α−µ
p (Y ∧)

for a cone elliptic pseudodifferential

operator, we can assume without loss of generality, that α− µ = 0.

Proof. Taking coordinates (x, y), x ∈ R+, y ∈ Y , the multiplication with xα induces an

isomorphism between Hs,γp (Y ∧) and Hs,γ+α
p (Y ∧).

Hence, we have an equivalence of the norms:

‖(A− λ)‖Hs,α−µp (Y ∧) ∼ ‖x
(α−µ)(A− λ)x−(α−µ)‖Hs,0p (Y ∧)

. (9.5)

Now we decompose f(A) into Qf and Rf as described in (9.4). We prove the Lemma

for both parts separately:

Estimates on Qf :

Let Q ∈ xµΨ−µ,−µ,µc (X; Λ). Then, if we take ϕ ∈ C∞c (X2
b \∆b), we have rapid decay

of the integral kernel ϕkQ towards lb and rb. Taking local coordinates x′, x
′

x on rb, a

look at (9.5) reveals, that a change of the weight corresponds to a multiplication of the

integral kernel with powers of ( xx′ ). This leaves the property of rapid decay towards lb

and rb invariant and is a multiplication by a bounded function away from rb and lb since

ϕ is compactly supported.

If we take ϕ ∈ C∞c (X2
b ) with compact support around the diagonal but away from lb

and rb, then the multiplication with x′

x corresponds just to the multiplication with a

compactly supported function.

Estimates on Rf :
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Having R ∈ xµΨ−∞,µ,Gc (X; Λ), we realize that the asymptotic behavior of R is described

by the index sets:

G = (Glb, Grb, Gff , Gfi, Gbi),

where Glb > α− µ− n
2 , Grb > −(α− µ) + n

2 , Gff ≥ 0, Gfi = N and Gbi = ∅.

As local coordinates near rb, we can choose the set (x, x
′

x ). Then the transition from

H0,µ−α(X) to H0,0(X) can be expressed by multiplying the kernel with (x
′

x )α−µ. While

this leaves the bounds for the index sets Gff , Gfi and Gbi invariant, it changes the

bounds on the asymptotic for Glb and Grb from Glb > α − µ − n
2 , Grb > −(α − µ) + n

2

to Glb > −n
2 , Grb >

n
2 ).

The Dunford integral (9.2) as well as the corresponding estimates for H∞ (9.3) can be

computed separately for the integrals Qf and Rf .

We consider the integral:

Qf =
1

2πi

∫
C

f(λ)Q(λ)dλ, (9.6)

where Q(λ) ∈ xµΨ−µ,−µ,µc (X; Λ).

We know that ∂X = Y and X ∼= [0, 1)× Y close to ∂X. Now let U = [0, 1)x × Rn−1
y be

a coordinate patch on X near Y . It follows that X2 ∼= [0, 1)2
(x,x′) ×Rn−1

y ×Rn−1
y′ , where

(x′, y′) are local coordinates for the right factor of U2.

It follows that locally:

X2
b
∼= [[0, 1)2; (0, 0)]× Rn−1

y × Rn−1
y′ . (9.7)

Working through the construction of the resolvent of A in the proof of Theorem 4.11

in [10], it can be seen, that only the leading order contribution of Q(λ) is an operator

contained in xµΨ−µ,−µ,µc (X; Λ), while the lower order contributions can be summarized

into an operator which is contained in xµΨ−µ−1,−2µ,µ(X; Λ).

Our strategy to prove the H∞ Calculus estimate for Qf will be to write Q(λ) as:

Q(λ) = Q1(λ) +Q2(λ), (9.8)

where Q1(λ) ∈ xµΨ−µ,−µ,µc (X; Λ), Q2(λ) ∈ xµΨ−µ−1,−2µ,µ(X; Λ).

This leads to a further decomposition of Qf being defined for Q(λ) into

Qf = Q1,f +Q2,f . (9.9)
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We will prove the desired H∞ Calculus estimate for the concrete form of Q1(λ) as

defined in the construction of the resolvent in [10], as well as for a general operator of

class Ψ−µ−1,−2µ,µ
c (X; Λ).

9.2.1 Estimates for the Terms of Lower Order

Recall that Y ∧ = R+ × Y . Using a partition of unity on Y , we can assume Y = Rn−1,

hence Y ∧ = R × Rn−1. The H∞ Calculus estimate (9.3) for Q2,f follows from the

following lemma:

Lemma 9.2.2. Let P (λ) ∈ xµΨ−µ−1,−2µ,µ
c (R+ × Rn−1; Λ).

We define the operator Pf by:

Pf =

∫
C

f(λ)P (λ)dλ. (9.10)

Then Pf acts as a bounded operator on H0,0
p (X) and its operator norm satisfies the

estimate:

‖
∫
C

f(λ)P (λ)dλ‖L(H0,0
p (X))

≤ cp‖f‖∞. (9.11)

Proof. Since X is a compact manifold, as well as X2
b , we can cover X2

b with a finite

number of coordinate patches and a subordinate partition of unity ϕi, i ∈ {1, ...k}.

We simplify the problem in several steps:

• As long as the kernel of P (λ) is supported away from ∂X2
b , there exist cut-off

functions ω1, ω2, such that P (λ) = (1− ω1)P (λ)(1− ω2). Therefore, we have that

P (λ) is just an ordinary pseudodifferential operator with parameter, the result

follows in this case by the standard theory.

• Therefore, we have reduced the proof to the case where the kernel of P (λ) is

supported in a collar neighborhood of ∂X2
b .

We distinguish here between two different cases:

1. A coordinate patch supported on X2
b \∆b,

2. A coordinate patch supported in a neighborhood of ff(X2
b ) ∩∆b, but away

from rb and lb.

We begin with a remark which applies to both cases:
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Let H0,γ
p (Y ∧) be the weighted Sobolev spaces modeled over Y ∧. Since we can assume

the kernel of P (z) to be supported close to ff(X2
b ), we can choose cut-off functions

ω1, ω2 ∈ C∞c ([0, 1)), such that P (z) = ω1P (λ)ω2. Now, the multiplication with any

cut-off function ω ∈ C∞c ([0, 1)) induces continuous operators H0,γ
p (X)→ H0,γ

p (Y ∧) and

H0,γ
p (Y ∧) → H0,γ

p (X) . Therefore it suffices to prove the corresponding estimates with

respect to the ‖ · ‖H0,γ
p (Y ∧)

norm, which we denote from here on by ‖ · ‖p.

1. Integral kernel supported away from the diagonal:

Choosing ϕ ∈ C∞c (X2
b \∆b), we have by by Definition 7.4.1, that ϕP (λ) can be

represented by a Schwartz kernel of the form k(ρµλ, q) with λ ∈ Λ, q ∈ X2
b and ρ

being a distance function for ff in X2
b .

Let us assume that we have a coordinate patch in a neighborhood of rb with

possible intersection of ff but disjoint from lb. In this case, we can choose local

coordinates (x, s, y, y′) with s = x′

x . Then a distance function for ff is given by x.

Therefore, in local coordinates, suppressing the coordinate dependence on y, y′:

m(s, x)ν ′ := xµ
∫
C
ϕKP (λ)dλ = xµ

∫
C
k(xµλ, s, x)dλ ν ′. (9.12)

We have to show that m(s, x) satisfies the properties of operators in Ψ0
b(X) as

described in 7.3.2.

By definition of Ψ−µ−1,−2µ,µ
c , the kernel k(z, s, x) is of rapid decay on rb, that is

for s→ 0, is smooth in x up to zero and is such that if we define:

k̃(z, s, x) = z−2 k(z−1, s, x),

then k̃(z, s, x) is smooth in z = 0. From this and since x varies in a bounded

subset, we can conclude that |k(xµλ, s, x)| is bounded from above by:

(1 + |xµλ|)−2 k̃(s), (9.13)

where k̃(s) is a smooth function of s and with rapid decay for s → 0. The esti-

mate (9.13) immediately implies that the defining integral for m(s, x) in (9.12) is

absolutely converging and therefore gives smoothness of m(s, x) in the interior of

X2
b as well as rapid decay for s→ 0, that is on rb.

Here, (9.13) allows us to estimate:
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|m(s, x)| ≤ xµ
∫
C
|f(λ)|(1 + |xµλ|)−2dλ k̃(s).

Integrating along C as in Figure 9.1, |m(s, x)| is trivially bounded along the inner

arch, therefore it is enough to estimate the integral along the two rays ωe±iθ, for

ω ∈ [1,∞). We treat here the case of ωe+iθ, the estimate along the second ray

works analogous.

We have to estimate:

xµ
∫ ∞

1
‖f‖∞(1 + xµω)−2dω k̃(s),

which can be evaluated explicitly, giving:

|m(s, x)| ≤ ‖f‖∞
1 + xµ

k̃(s) ≤ ‖f‖∞k̃(s). (9.14)

Therefore we can conclude that |m(s, x)| is bounded up to x → 0 and of rapid

decay in s for s→ 0.

The calculations for lb work completely analogous as the ones on rb done above,

yielding the same type of estimates.

Now we apply the integral kernel (9.12) to a distribution. Here, since the support

of ϕ is a coordinate patch which is supported around rb, it holds that m(s, x) is

supported right to the diagonal, that is x′ ≤ x on supp(m(s, x)) for s = x′

x .

Then we obtain with help of the estimate (9.14) with respect to (‖ · ‖H0,0
p

)p, using

that m is of rapid decay in (x
′

x ) for each N ∈ N0:

|
∫ ∞

0
|
∫ ∞

0
m(

x′

x
, x)u(x′)

dx′

x′
|p x

n
2
pdx

x

≤ |
∫ ∞

0
|
∫ x

0
‖f‖∞(

x′

x
)N u(x′)

dx′

x′
|p x

n
2
pdx

x

=

∫ ∞
0
|
∫ x

0
‖f‖∞(x′)N−1 u(x′) dx′|p x−1−p(N−n

2
)dx
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We use the following Hardy inequality (cf. [37], Lemma 3.14, page 196), assuming

that N > n
2 :

∞∫
0

 t∫
0

g(s)ds

p

t−1−rdt ≤ (
p

r
)p
∞∫

0

g(t)ptp−1−rdt, (9.15)

we arrive at:

|
∫ ∞

0
|
∫ ∞

0
m(

x′

x
, x)u(x′)

dx′

x′
|p x

n
2
pdx

x
≤ ‖f‖p∞

(
1

N − n
2

)p ∫ ∞
0
|u(x)|p x

n
2
pdx

x
.

(9.16)

2. Integral kernel supported around the diagonal:

We choose for a subset U ⊂ R+ × Rn−1 an explicit set of local coordinates on X2
b

around ∆b ∩ ff , but away from lb and rb by:

X2
b
∼= U × Rnw, where (x, y) ∈ U and w = (log(x′/x), y′ − y), (9.17)

with x, x′ ∈ [0, 1) and y, y′ ∈ Rn−1.

Using this set of local coordinates around ∆b ∩ ff , a possible boundary defining

function is given by ρ = x ∈ [0, 1).

On the chosen coordinate patch U and set of coordinates, we have that ∆b
∼= U×{0}

and ϕ ∈ C∞c (U × Rn), and there exists a smooth mapping (x, y) 7→ a(x, y, ξ, λ)

with values in S−µ−1,−2µ,µ
r,cl (Rn; Λ), such that:

ϕKP (λ) =

∫
eiw·ξp(x, y, ξ, xµλ) d̄ξ ·m′. (9.18)

We define:

pf (x, y, ξ) = xµ
∫
C

f(λ)p(x, y, ξ, xµλ)dλ. (9.19)

By exchanging the orders of integration in (9.10), we see that if Kpf (x, y, w) defines

the integral kernel of the operator (9.10), then it holds, that:

ϕKpf (x, y, w) =

∫
ei w·ξpf (x, y, ξ) d̄ξ. (9.20)

Our aim is now to prove that the symbol pf (x, y, ξ) is a symbol which is associated

to an operator Ψ0
b(X) as specified in Equation (7.3.2).

For this, we have to show that the mapping (x, y) 7→ pf (x, y, ξ) defines a smooth

mapping into S0(Rn). Further, to prove H∞ Calculus for ϕf(P ), we compute the
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boundedness of the corresponding seminorms, i.e. we check, that:

|∂αξ (x∂x)k∂βy pf (x, y, ξ)(‖f‖∞)−1〈ξ〉α, (9.21)

is uniformly bounded for x ∈ [0, 1), y ∈ Rn and f ∈ H(θ) and for all k, β.

Since we have that x∂x x
µ = µxµ, we obtain for an arbitrary p ∈ Ψµ,p,d

c :

x∂xp(x, y, ξ, x
µλ) = (x∂xp)(x, y, ξ, x

µλ) + µxµ (λ∂λp)(x, y, ξ, x
µλ). (9.22)

Now the first summand in the above expression for x∂xp(x, y, ξ, x
µλ) is clearly

contained in the same symbol class as p(x, y, ξ, xµλ), and since |λ| is bounded

from above by (1+ |ξ|+ |λ|
1
µ )µ, also the second summand satisfies the same symbol

estimates as p(x, y, ξ, xµλ).

Therefore, by differentiating pz under the integral, proving the estimate (9.21)

reduces to the proof in the case of β = 0, k = 0.

We obtain:

|∂αξ pf (x, y, ξ)| ≤ xµ
∫
C

|f(λ)| |∂αξ a(x, y, ξ, xµλ)|dλ

≤ xµ
∫
C

|f(λ)|Cα(1 + |ξ|)µ−1−|α|(1 + |ξ|+ x |λ|1/µ)−2µdλ

= 〈ξ〉−|α|Cαxµ
∫
C

|f(λ)| (1 + |ξ|)µ−1

(1 + |ξ|+ x |λ|1/µ)2µ
dλ.

We can use, that on the path C, |f(λ)| is bounded from above by ‖f‖∞, hence:

|∂αξ pf (y, ξ)| ≤ 〈ξ〉−|α|C̃αn ‖f‖∞xµ
∫
C

(1 + |ξ|)µ−1

(1 + |ξ|+ x |λ|1/µ|)2µ
dλ. (9.23)

At this point we substitute ω = xµλ, to obtain:

|∂αξ pf (y, ξ)| ≤ 〈ξ〉−|α|Cα ‖f‖∞
∫
C

(1 + |ξ|)µ−1

(1 + |ξ|+ |ω|1/µ)2µ
dω

≤ 〈ξ〉−|α|Cα ‖f‖∞
∫
C

(1 + |ξ|+ |ω|1/µ)−µ−1dω

≤ 〈ξ〉−|α|Cα ‖f‖∞
∫
C

(1 + |ω|1/µ)−µ−1dω. (9.24)
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Since a(x, y, ξ, xdλ) is the symbol for the integral kernel ϕKA1(λ), where ϕ is

compactly supported, we can assume without loss of generality that xµ ≤ 1 and

replace xµ C by C:

|∂αξ pf (y, ξ)| ≤ 〈ξ〉−|α|Cα ‖f‖∞
∫
C

(1 + |ω|1/µ)−µ−1dω. (9.25)

Now the desired estimate follows, since
∫
C

(1 + |ω|1/µ)−µ−1dω <∞.

9.2.2 Estimates on the Terms of Leading Order

In the proof of Theorem 4.11 in [10] it is shown that the highest order contribution to

Q(λ) arises from an operator Q1(λ), whose integral kernel is defined as follows:

First aµ is defined as:

q−µ(x, y, ξ, λ) = χ(ξ)(aµ(x, y, ξ)− xµλ)−1, (9.26)

with (x, y) ∈ U = [0, c)×Rn−1. Then choose coordinates (x, y, w) with w = (log(x′/x), y′−

y) on X2
b near ∆b. Further choose ϕ ∈ C∞c (U), ψ(w) ∈ C∞c (Rn) with ψ(w) = 1 on a

neighborhood of w = 0 and define:

KQ1(λ) = ϕ(x, y)ψ(w)

∫
eiw·ξq−µ(x, y, ξ, λ) d̄ξ ·m′, (9.27)

where m′ = |(dx/x)dy|.

Then, KQ1(λ) defines the integral kernel of Q1(λ), the highest order contribution for the

resolvent part Q(λ).

If we assign the Dunford integral to the kernel KQ1(λ) to Q1(λ) to compute (Q1)z, then

we see by exchanging the orders of integration that (Q1)z is a conormal distribution

with symbol xµ

2πi

∫
C
f(λ)ϕ(x′, y′)ψ(w)χ(ξ)(aµ(x, y, ξ)− xµλ)−1dλ.

Lemma 9.2.3. We define:

(q1)f (x, y, ξ) =
xµ

2πi

∫
C

f(λ)ϕ(x, y)ψ(w)χ(ξ)(aµ(x, y, ξ)− xµλ)−1dλ. (9.28)

Then, (q1)f defines a classical symbol of order zero and the symbol estimates for (q1)f

are uniform in ‖f‖∞. In particular:
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‖Q1,f‖L(H0,α
p (X))

≤ cp‖f‖∞. (9.29)

Proof. First we subsitute ω = xµλ in (9.28), we obtain:

(q1)f (x, y, ξ) =
1

2πi

∫
C

f(x−µω)ϕ(x, y)ψ(w)χ(ξ)(aµ(x, y, ξ)− ω)−1dω.

Now, since aµ(x, y, ξ) is the positively homogenous principal symbol of A, we have that

spec(aµ(x, y, ξ)) ⊂ Ωξ, where:

Ωξ = {λ ∈ C\Λ | c1|ξ|µ ≤ |λ| ≤ c2|ξ|µ}. (9.30)

Further we define q−µ(x, y, ξ, λ) by q−µ(x, y, ξ, λ) := χ(ξ)(aµ(x, y, ξ) − λ)−1. Then it is

easy to see that q−µ(x, y, ξ, λ) ∈ S−µ,−µ,µ(Rn; Λ). Therefore we have that:

|(∂ξ)αq−µ| ≤ cα〈ξ〉−|α|(1 + |ξ|+ |λ|
1
µ )−µ (9.31)

for each multi index α ∈ Nk0.

Now we want to estimate:

|(∂ξ)α(q1)| = |(∂ξ)α
1

2π

∫
C

f(x−µω)ϕ(x, y)ψ(w)χ(ξ)(aµ(x, y, ξ)− ω)−1dω| (9.32)

Since the integrand is holomorphic outside of Ωξ, we can change by Cauchy’s theorem

the integral path from C to Υ(ξ) = ∂Ωξ, see figure 9.2. Further, ϕ(x, y)ψ(w) is smooth

and compactly supported, hence bounded by a constant and f can be estimated on C
by ‖f‖∞. We obtain:

|(∂ξ)α(q1)| ≤ c ‖f‖∞
∫

Υ(ξ)

|(∂ξ)αq−µ(x, y, ξ)|dω (9.33)

Now, using the symbol estimates for S−µ,−µ,µ(Rn; Λ):

|(∂ξ)α(q1)| ≤ c ‖f‖∞
∫

Υ(ξ)

|Cα 〈ξ〉−α(1 + |ξ|+ |λ|
1
µ )−µ|dω. (9.34)

On Υ(ξ) we can estimate (1 + |ξ| + |λ|
1
µ )−µ ≤ (1 + |ξ| + (c1)

1
µ 〈ξ〉)−µ ≤ c′〈ξ〉−µ for a

c′ > 0.

We obtain:
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Re{z}

Im{z}

Υ(ξ)

c1|ξ|µ

c2|ξ|µ

Figure 9.2: The path Υ(ξ)

|(∂ξ)α(q1)| ≤ c ‖f‖∞
∫

Υ(ξ)

|Cα 〈ξ〉−αc′〈ξ〉−µ|dω ≤ cCα c′ ‖f‖∞〈ξ〉−α〈ξ〉−µ length(Υ(ξ)).

(9.35)

Here we can estimate length(Υ(ξ)) ≤ (2+4π)c2〈ξ〉µ, thus we arrive at the desired symbol

estimate for (q1)f , with c̃α := cCα c
′ (2 + 4π)c2:

|(∂ξ)α(q1)| ≤ c̃α ‖f‖∞〈ξ〉−α. (9.36)

9.2.3 Estimates on the Residual Operators

Let the model cone be:

Y ∧ = [0,∞)× Y, (9.37)

and choose local coordinates (x, y) on Y ∧ with x ∈ [0,∞), y ∈ Y .

We can introduce weighted Sobolev spaces ραHs,p
b (Y ∧) over Y ∧ in the same way as over

B. Choosing functions ϕ ∈ C∞c (Td), we can distinguish between two cases:

1. ϕ having disjoint support with ff: In this case, ϕR(λ) is of rapid decay for |λ| → ∞.

2. ϕ being supported in a neighborhood of ff.
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In this case there exist cut-off functions ω, ω′ ∈ C∞0 (X) such that ω, ω′ ≡ 1 near

Y = ∂X and compactly supported in a neighborhood of Y , such that

R(λ) = ωR(λ)ω′. (9.38)

Using that a cut off functions ω, ω′ with compact support in a neighborhood of

x = 0, x being a distance function for ∂X on X, multiplication with ω induces

continuous maps ω : Hs,p
b (Y ∧) → Hs,p

b (X) resp. ω′ : Hs,p
b (X) → Hs,p

b (Y ∧).

Therefore, we can estimate Rf equivalently with respect to ‖ · ‖Hs,pb (Y ∧).

Therefore it suffices to prove H∞ Calculus with respect to the H0,0
p (Y ∧) norm for a

kernel which is supported on Td(Y ∧) acting on distributions over Y ∧. Let (x, y), (x′, y′) ∈
R+×Rn−1, such that coordinates on (Y ∧)2 can be expressed locally by (x, y, x′, y′). To

shorten notation, we suppress the integration along Y, Y ′. Then, we work with residual

operators having kernels which are defined on Td, such that:

β̃ : Td → Λd × Y ∧ × Y ∧. (9.39)

We choose a cut-off function χ, such that we have the blowdown-map:

χ(x) =

{
1 if x ∈ [0, 1]

0 if x ∈ (1,∞)
, (9.40)

which is explicitly constructed in the Appendix in (B.8).

Our aim is to construct a partition of unity which is defined on Td which allows us to

treat the singular behavior of the integral kernel of B(λ) towards the boundary faces of

Td separately.

We begin with an explicit construction of a partition of unity which is defined on Λd:

id = (χ(
x

r
) + χ(

r

x
))(χ(

x′

x
) + χ(

x

x′
))

= χ(
x

r
)χ(

x′

x
)︸ ︷︷ ︸

=:κ1

+χ(
x′

r
)χ(

x

x′
)︸ ︷︷ ︸

=:κ2

+χ(
r

x
)χ(

x′

x
)︸ ︷︷ ︸

=:κ3

+χ(
r

x′
)χ(

x

x′
)︸ ︷︷ ︸

=:κ4

= κ1 + κ2 + κ3 + κ4. (9.41)

We lift the four functions κi, i ∈ N to Td:

We consider a blowdown map β, and define the lift of (9.41) to Td by:

β∗(id) = β∗(κ1) + β∗(κ2) + β∗(κ3) + β∗(κ4). (9.42)
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The index set G which is associated to R(λ) captures the asymptotic behavior of the

integral kernel KR(λ). Now, since R(λ) ∈ xµΨ−∞,µ,Gc (X; Λ), we have an integral kernel of

R(λ) which is defined on Td. Hence, the action of R(λ) on distributions can be expressed

by:

R(λ)u = π̃2b∗(π̃
∗
1b(u)π̃∗2b(ν)KR(λ)), (9.43)

where KP = km′ with k ∈ AE(Td).

In (9.43), the product π̃∗1b(u)π̃∗2b(ν)KR(λ) lives on Td, while the pull-back β∗(id) of the

identity is the identity on Td. Hence, we can insert (9.42) into (9.43), to split the action

of R(λ) on distributions into four disjoint components:

R(λ)u =
4∑
i=1

π̃2b∗(β
∗(ηi) π̃

∗
1b(u)π̃∗2b(ν)KR(λ)). (9.44)

Our strategy to prove the estimate (9.3) for Rf will be as follows: We decompose

(9.43) by inserting a partition of unity. Then we treat the four components obtained in

(9.44) separately and perform the occurring calculations in local coordinates which are

expressed by appropriate distance functions to the boundary hypersurfaces which are

contained in the regions Ωi, i ∈ {1, ..., 4}.

We denote by KR(λ) the integral kernel of R(λ). Then KR(λ) = km′ with k ∈ AE(Td),
where E = (Glb, Grb, Gff, Gfi, ∅).

Part 1:

Now, if we denote the Dunford integral of R(λ) in the sense of (9.2) with respect to f

as Rf , we can compute Rfu as:

Rfu(x) =

∫
x′

∫
C

f(λ)xµ k(r,
x

r
,
x′

x
)χ(

x

r
)χ(

x′

x
)dλu(x′)

dx′

x′
.

We use, that r = |λ|−
1
µ and substitute λ = ρµ eiθ:

∫
C

f(λ)dλ = µ eiθ
∞∫

1

f(ρµeiθ)ρµ−1dρ. (9.45)

Hence,

Rfu(x) =

∫
x′

µ eiθ
∞∫

1

f(ρµeiθ)xµ k(ρ−1, ρx,
x′

x
)χ(ρx)χ(

x′

x
)ρµ−1dρ u(x′)

dx′

x′
.
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As ρ ∈ [1,∞) it is clear, that χ(ρx) is nonzero only for x ∈ [0, 1] and further ρ ∈ [1, x−1):

Rfu(x) = χ(x)

∫
x′

µ eiθ
x−1∫
1

f(ρµeiθ)xµ k(ρ−1, ρx,
x′

x
)χ(

x′

x
)ρµ−1dρ u(x′)

dx′

x′
.

Evaluating χ(x
′

x ), we obtain:

Rfu(x) = χ(x)

x∫
0

µ eiθ
x−1∫
1

f(ρµeiθ)xµ k(ρ−1, ρx,
x′

x
)ρµ−1dρu(x′)

dx′

x′
. (9.46)

We proceed to find an estimate for (‖Rfu‖H0,0
p

)p:

(‖Rfu‖H0,0
p

)p =

∞∫
0

|Rfu(x)|p x
n
2
p dx

x
. (9.47)

We insert the expression which we obtained for Rfu:

(‖Rfu‖H0,0
p

)p =

x∫
0

|
x∫

0

µ eiθ
x−1∫
1

f(ρµeiθ)xµk(
1

ρ
, ρx,

x′

x
)ρµ−1dρ u(x′)

dx′

x′
|p x

n
2
p dx

x

≤
1∫

0

(

x∫
0

µ

x−1∫
1

‖f‖∞ ρµ−1xµ|k(
1

ρ
, ρx,

x′

x
)|dρ |u(x′)|dx

′

x′
)p x

n
2
p dx

x
.

(9.48)

At this point, we note that it follows from the fact that the integral kernel k has asymp-

totic expansions with index sets satisfying the estimates as stated in the Appendix, that

is:

|k(
1

ρ
, ρx,

x′

x
)| ≤ C1 (

x′

x
)ε+

n
2 ∀ (

1

ρ
), (ρx), (

x′

x
) ∈ (0, 1]. (9.49)

And plug this into (9.48), to arrive at:

‖Rfu‖pp ≤
1∫

0

(

x∫
0

C1 µ

x−1∫
1

‖f‖∞ρµ−1dρ xµ−ε x′
ε|u(x′)| (x′)

n
2

dx′

x′
)p

dx

x
.

Evaluating the integral along ρ, we obtain:

‖Rfu‖pp ≤ ‖f‖p∞C
p
1

1∫
0

(

x∫
0

(1− xµ)x−ε x′
ε−1|(x′)

n
2 u(x′)|dx′)pdx

x
.
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Since (1− xµ) ≤ 1, we obtain:

‖Rfu‖pp ≤ 2p‖f‖p∞C
p
1

∞∫
0

(

x∫
0

x′
ε−1|u(x′)|(x′)

n
2 dx′)px−1−pεdx. (9.50)

We can use the following Hardy inequality (cf. [37], Lemma 3.14, page 196):

∞∫
0

 t∫
0

g(s)ds

p

t−1−rdt ≤ (
p

r
)p
∞∫

0

g(t)ptp−1−rdt, (9.51)

to estimate:

‖Rfu‖pp ≤ (
p

p ε
)p‖f‖p∞C

p
1

∞∫
0

|u(x)|pxpε−pxp−1−pεxp
n
2 dx

= (
1

ε
)p‖f‖p∞C

p
1

∞∫
0

|u(x)|pxp
n
2

dx

x
. (9.52)

We obtain:

‖Rfu‖pH0,0
p
≤ ‖f‖p∞(

1

ε
)pC1‖u‖pH0,0

p
. (9.53)

Part 2:

Using the usual procedure of pull-backs and push-forwards, it is straightforward to show,

that:

Rfu(x) =

∫
x′

∫
C

f(λ)xµk(r,
x′

r
,
x

x′
)χ(

x

r
)χ(

x

x′
)dλu(x′)

dx′

x′
. (9.54)

The corresponding estimates can be obtained analogously to the estimates for Part 1.

Part 3:

Using the usual procedures of pull-backs and push-forwards, we obtain as expression for

Rfu:

Rfu(x) =

∫
x′

∫
C

f(λ) · xµ · k(x,
r

x
,
x′

x
)χ(

r

x
)χ(

x′

x
)dλu(x′)

dx′

x′
, (9.55)

with r = |λ|−
1
µ .

We use (9.45) to evaluate (9.55) along C:
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Rfu(x) =

∞∫
0

µ eiθ
∞∫

1

f(ρµ eiθ)xµ k(
1

ρ x
,
x′

x
, x)χ(

1

ρx
)χ(

x′

x
)ρµ−1dρ u(x′)

dx′

x′
(9.56)

=

x∫
0

µ eiθ
∞∫

1

f(ρµ eiθ)xµk(
1

ρ x
,
x′

x
, x)χ(

1

ρx
)ρµ−1dρ u(x′)

dx′

x′
. (9.57)

We go on to evaluate (‖Rfu‖H0,0
p

)p:

(‖Rfu‖H0,0
p

)p ≤
∞∫

0

(

x∫
1

µ

∞∫
0

‖f‖∞ρµ−1xµ |k(
1

ρ x
,
x′

x
, x)|χ(

1

ρx
)dρ u(x′)

dx′

x′
)p x

n
2
p dx

x
.

Defining:

I1 :=

1∫
0

(

x∫
0

µ

∞∫
1

‖f‖∞ρµ−1xµ |k(
1

ρ x
,
x′

x
, x)|χ(

1

ρx
)dρ u(x′)

dx′

x′
)p x

n
2
p dx

x
, (9.58)

and

I2 :=

∞∫
1

(

x∫
0

µ

∞∫
1

‖f‖∞ρµ−1xµ |k(
1

ρ x
,
x′

x
, x)|χ(

1

ρx
)dρ u(x′)

dx′

x′
)p x

n
2
p dx

x
, (9.59)

we can split the above integral in two parts, which gives us:

(‖Rfu‖H0,0
p

)p ≤ I1 + I2. (9.60)

Now, since we have that x ≤ 1 on I1 and x ≥ 1 on I2, this allows us to evaluate χ( 1
ρx)

on both integrals and two estimate them separately: in both integrals, we have the same

bound for |k( 1
ρ x ,

x′

x , x)|:

|k(
1

ρ x
,
x′

x
, x)| ≤ (

1

ρ x
)N (

x′

x
)ε+

n
2 C3 ∀( 1

ρ x
), (

x′

x
) ∈ [0, 1], N ∈ N. (9.61)

We choose N = µ in 9.61.

• Estimate for I1:

Evaluating χ( 1
ρx) in I1, we have:

1∫
0

(

x∫
0

µ

∞∫
x−1

‖f‖∞ρµ−1xµ |k(
1

ρ x
,
x′

x
, x)|dρ u(x′)

dx′

x′
)p x

n
2
p dx

x
. (9.62)
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Using the kernel estimate 9.61 gives:

I1 ≤
1∫

0

 x∫
0

µ

∞∫
x−1

‖f‖∞ρµ−1xµ (
1

ρ x
)µ+ε (

x′

x
)εC3 dρ u(x′) (x′)

n
2
dx′

x′

p

dx

x

=

1∫
0

 x∫
0

µ

∞∫
x−1

‖f‖∞ρ−1dρ x′
ε−1

x−2εC3 u(x′) (x′)
n
2 dx′

p

dx

x
.

We obtain, if we evaluate the above integral along ρ, defining κ3 := C3 µ‖f‖∞
ε :

I1 ≤ (κ3)p
1∫

0

 x∫
0

x′
ε−1

x−2ε u(x′) (x′)
n
2 dx′

p

dx

x

= (κ3)p
1∫

0

x−1−pε

 x∫
0

x′
ε−1

u(x′) (x′)
n
2 dx′

p

dx

≤ (κ3)p
∞∫

0

x−1−pε

 x∫
0

x′
ε−1

u(x′) (x′)
n
2 dx′

p

dx. (9.63)

At this point we can use the modified Hardy inequality (9.51) to obtain:

I1 ≤ (κ3)p(
p

pε
)p
∞∫

0

xpε−pu(x)pxp−1−pε x
n
2
p dx

= (
κ3

ε
)p
∞∫

0

u(x)p x
n
2
p dx

x
= (

κ3

ε
)p · ‖u‖p

H0,0
p
. (9.64)

• Estimate for I2:

Evaluating χ( 1
ρx) in I2, we have:

I2 =

∞∫
1

(

x∫
0

µ

∞∫
1

‖f‖∞ρµ−1xµ k(
1

ρ x
,
x′

x
, x)dρ |u(x′)|dx

′

x′
)p x

n
2
p dx

x
. (9.65)

Using 9.61 gives with N = µ:

I2 ≤
∞∫

1

(

x∫
0

µ

∞∫
1

‖f‖∞ρ−1−εdρ x−2ε(x′)ε−1C3u(x′) (x′)
n
2 dx′)p

dx

x
. (9.66)
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Evaluating the integral along ρ, we obtain:

I2 ≤ (κ3)p
∞∫

1

(

x∫
0

x−2ε(x′)ε−1|u(x′)|(x′)
n
2 dx′)pdx

= (κ3)p
∞∫

1

x−1−pε(

x∫
0

x−ε(x′)ε−1|u(x′)|(x′)
n
2 dx′)pdx. (9.67)

Again we can use the inequality (9.51), we obtain:

I2 ≤ (
κ3

ε
)p
∞∫

0

u(x)pxpε−pxp−pε x
n
2
pdx

x

= (
κ3

ε
)p
∞∫

0

u(x)p x
n
2
pdx

x
= (

κ3

ε
)p(‖u‖H0,0

p
)p. (9.68)

Part 4:

Using the usual procedure of pull-backs and push-forwards, we arrive as expression for

Rfu:

Rfu(x) =

∫
x′

∫
C

f(λ)xµ k(x′,
r

x′
,
x

x′
)χ(

r

x′
)χ(

x

x′
)dλu(x′)

dx′

x′
,

which is evaluated equivalently to the expression in Part 3.

9.3 H∞ Calculus for Operators Acting on Higher Order

Spaces and Besov Spaces

At first, we generalize the H∞ Calculus result of Theorem 9.1.1 to higher order Sobolev

spaces:

Theorem 9.3.1. Let As ∈ x−µΨµ
b (X), µ > 0 be an operator mapping:

As : Hs+µ,αp (X)→ Hs,α−µp (X), for s ≥ 0. (9.69)

Assume that A0 satisfies the requirements of Theorem 9.1.1. Then (As−λ) is uniformly

bounded as an operator (As − λ) : Hs+µ,αp (X) → Hs,α−µp (X). Therefore f(As) is well

defined in the sense of Equation 9.2. Further, f(As) admits H∞ Calculus as defined in

9.0.11 for s ≥ 0.

The arguments are very similar to Theorem 3.3 in [25], therefore we keep the proof short:
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Proof. We begin by proving that (As − λ)−1 is uniformly bounded in λ. For s = 0 this

is part of Theorem 4.11 in [10]. For higher orders in s, we first restrict to integer s and

begin with s = 1.

Therefore, it suffices to show uniform boundedness of ‖λx∂x(As=1 − λ)−1u‖H0,γ resp.

‖λ∂yj (As=1 − λ)−1u‖H0,γ by c ‖u‖H1,γ+µ for a c > 0.

In [10] the uniform boundedness is derived for s = 0 from the contributions to (A−λ)−1

by (A∧ − λ)−1 and B0(λ). There the boundedness of (A − λ)−1 is derived from the κ

homogeneity of (A∧ − λ)−1. Now, if (A∧ − λ)−1 is κ homogeneous, the same is true

for [x∂x, (A∧ − λ)−1] as well as [∂yj , (A∧ − λ)−1]. Therefore boundedness of (A∧ − λ)−1

follows for s = 1 and by iteration of the argument for arbitrary integer s.

The Kernel of B0(λ) from Theorem 4.11 in [10] is given by KQ1(λ) as defined in 9.27.

Again, using local coordinates around ∆b, it can be checked by direct computations

similar to the ones in the proof of Theorem 3.3 in [25], that [x∂x, B0(λ)] and [∂yj , B0(λ)]

are of the same type as B0(λ). This together with the uniform boundedness on L2 yields

uniform boundedness for s = 1 and again by iteration for integer s. Now the uniform

boundedness for s ∈ R can be obtained by interpolation theory.

Therefore (As)
z is well-defined via 9.2. We remember that (As − λ)−1 = (A0 − λ)−1

can be decomposed after equation 7.19 into contributions from xµΨ−µ,−µ,µc (X; Λ) and

xµΨ−∞,µ,Gc (X; Λ).

Here it follows from Lemma 9.2.2 and Lemma 9.2.3, that the contribution of xµΨ−µ,−µ,µc (X; Λ)

to the Dunford integral defines a b pseudodifferential operator of order zero with the

desired symbol estimates. This gives the desired H∞ Calculus bounds for this term on

Hs,γp (X).

Regarding the contribution of xµΨ−∞,µ,Gc (X; Λ) to the Dunford integral, we can again

refer to the H∞ Calculus bounds on H0,γ , since an application of x∂x resp. ∂jy to

the Schwartz kernel of an operator in xµΨ−∞,µ,Gc (X; Λ) leaves its asymptotic structure

invariant. Iteration gives integer s, arbitrary s > 0 follows by interpolation.

Lemma 9.3.2. The Besov spaces Bs,γp are obtained as real interpolation spaces of Sobolev

spaces by:

(Hs1,γp (X),Hs2,γp (X))p,θ = Bs,γp (X), s = θ s1 + (1− θ)s2, (9.70)

Proof. Using the Definition 2.2.6 of the weighted Besov spaces, we see that the lemma

follows from the following interpolation result for the standard Besov spaces, which is

part of Theorem 6.2.4 of [2]:

(Hs0
p , H

s1
p )θ,q = Bs

pq (1 ≤ p, q ≤ ∞, 0 < θ < 1), (9.71)
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for s0 6= s1, s = (1− θ)s0 + θs1.

We have the following corollary regarding the H∞-Calculus of operators acting on the

Besov spaces Bs,γp (X):

Corollary 9.3.3. We obtain by interpolation theory:

‖f(A)‖
B
1− 1

p ,
1
2

p (X)
≤ C‖f‖∞. (9.72)

Proof. We choose here p ∈ N, s1 = −1, s2 = 0, γ = 1
2 and θ = 1

p , we see that:

(H−1, 1
2

p (X),H0, 1
2

p (X))p,θ = B
1− 1

p
, 1
2

p (X).

This can be applied to Lemma A.3.4 from the appendix. We can choose X0 = Y0 =

H0,− 1
2

p , X1 = Y1 = H−1,− 1
2

p . Since we have that:

‖f(A)‖
H

0,− 1
2

p (X)
≤ c0‖f‖∞, ‖f(A)‖

H
−1,− 1

2
p (X)

≤ c1‖f‖∞,

we obtain from A.3.4:

‖f(A)‖
B
1− 1

p ,
1
2

p (X)
≤ (c0‖f‖∞)

1− 1
p (c1‖f‖∞)

1
p

= (c0)
1− 1

p (c1)
1
p︸ ︷︷ ︸

=:C

‖f‖∞.
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Appendix A - Cone Calculus

A.1 Greens Formula

We have duality between Hs,γ2 and H−s,−γ2 under the L2 scalar product for the metric

g = dx2 + x2hijdy
i dyj , which has the functional determinant det(g) = h · xn in case of

a manifold of dimension n+ 1, with h = det(hij).

Because C∞c is dense in Hs,γ for all s, γ ∈ R, we assume u, v ∈ C∞c (D) in the proof of

the following identity.

Definition A.1.1. Let D be a n+ 1 dimensional manifold with metric g. We consider

a general Differential operator P =
∑
|α|≤n aαD

α of order n with smooth, real valued

coefficient functions aα ∈ C∞(D,R). Then we define the adjoint P ∗ of P as:

P ∗u =
∑
|α|≤n

√
g−1Dα(

√
gaαu). (A.1)

We consider now a second order Differential Operator:

P2 =

n∑
i,j=0

aij(x, y)DiDj +

n∑
i=0

bi(x, y) + c(x, y), (A.2)

defined on a n + 1 dimensional manifold with local coordinates x, y1, ..., yn and metric

gij . We denote the induced boundary metric by ĝij and the functional determinants

with respect to gij , respective ĝij by g and ĝ.

Due to boundary terms the expression:

〈P2u, v〉D − 〈u, P ∗2 v〉D, (A.3)

99
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is non-vanishing. However, non vanishing terms appear only by partial integration along

the boundary directions, i.e. they enter only by terms of P2 in which Dn is involved.

This means, that if we define:

P̂2 = annDnDn +

n−1∑
i=0

(ain + ani)DiDn + bnDn, (A.4)

we have, that:

〈P2u, v〉D − 〈u, P ∗2 v〉D = 〈P̂2u, v〉D − 〈u, P̂ ∗2 v〉D. (A.5)

We compute now contributions from the relevant terms, i.e. the three summands of

P̂2. Performing the partial Integration under the scalar product, we have to evaluate

the functional determinant
√
g of g at the boundary, i.e. at yn=0. We define for this

restriction: √
g :=

√
g
∣∣
yn=0

∈ C∞(∂D). (A.6)

Further, we define the restrictions ain:

ain := ain(x, y1, ..., yn)
∣∣
yn=0

∈ C∞(∂D). (A.7)

The leading term is of second order in Dn:∫
D

(annDnDnu)v
√
gdxdy1...dyn

= −i
∫
∂D

(annDnu)v
√
gdxdy1...dyn−1 +

∫
D

(Dnu)Dn(anv
√
g)dy1...dyn

= −i
∫
∂D

(
√
ĝ
−1√

gannDnu)v
√
ĝdxdy1...dyn−1 +

−i
∫
∂D

u(
√
ĝ
−1

(vDn(ann
√
g) + ann

√
g(Dnv))

√
ĝdxdy1...dyn−1 +

+

∫
D

u
√
g−1DnDn(annv

√
g)
√
gdxdy1...dyn.

So we have:

〈annDnDnu, v〉D − 〈u, (annDnDn)∗v〉D

= −i 〈
√
ĝ
−1√

gannDnu, v〉∂D +

−i 〈u,
√
ĝ
−1

(vDn(ann
√
g) + ann

√
g(Dnv))〉∂D. (A.8)
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The next term one is:∫
D

(
n−1∑
i=0

(ain + ani)DiDnu)v
√
gdxdy1...dyn

=

∫
D

Dnu
n−1∑
i=0

Di(
√
g(ain + ani)v)dxdy1...dyn

= −i
∫
∂D

u
n−1∑
i=0

√
ĝ
−1
Di(
√
g(ain + ani)v)

√
ĝdxdy1...dyn−1 +

+

∫
D

u
n−1∑
i=0

√
g−1DiDn(

√
g(ain + ani)v)

√
gdxdy1...dyn.

We obtain:

〈
n−1∑
i=0

(ain + ani)DiDnu, v〉D − 〈u, (
n−1∑
i=0

(ain + ani)DiDn)∗v〉D

= −i 〈u, v
n−1∑
i=0

√
ĝ
−1
Di(
√
g(ain + ani))〉∂D −

−i 〈u,
n−1∑
i=0

√
ĝ
−1

(
√
g(ain + ani)Div〉∂D. (A.9)

The last term is: ∫
D

bnDnuv
√
gdxdy1...dyn

= −i
∫
∂D

ubnv
√
g
√
ĝ
−1√

ĝdxdy1...dyn−1 +

+

∫
D

u
√
g−1Dn(bnv

√
g)
√
gdxdy1...dyn,

and so:

〈bnDnu, v〉D − 〈u, (bnDn)∗v〉D = −i 〈u, bn
√
g
√
ĝ
−1
v〉∂D. (A.10)

We summarize our results in the formula:

〈P2u, v〉D − 〈u, P ∗2 v〉D = 〈Aρ(u), ρ(v)〉∂D, (A.11)

with

A =

(
a00 a01

a10 a11

)
and ρ(u) =

(
γ0(u)

γ0( 1
xDnu)

)
. (A.12)
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We obtain from (A.8), (A.9) and (A.10):

a00 = −i
n−1∑
i=0

(
√
ĝ
−1√

g(ain + ani))Di − i
√
g
√
ĝ
−1
bn+

+ i
√
ĝ
−1
Dn(ann

√
g)− i

√
ĝ
−1

n−1∑
i=0

Di(
√
g(ain + ani)), (A.13)

and

a01 = a10 = −ix ann
√
ĝ
−1√

g. (A.14)

We note that a00 is a first order differential operator with respect to x, y1, ..., yn−1with

smooth coefficients away from x = 0, while a01 and a10 are smooth functions away from

x = 0.

If we choose for the metric g = dx2+x2hY (x, y1, ..., yn), with hY =
∑n

i,j=1 hij(y1, ..., yn)dxidxj ,

then the induced metric ĝ on the boundary is given by: ĝ = dx2 +x2ĥ∂Y (x, y1, ..., yn−1),

with

ĥ∂Y =

n−1∑
i,j=1

hij(y1, ..., yn−1, 0)dxidxj =:

n−1∑
i,j=1

hij(y1, ..., yn−1)dxidxj .

Hence, we obtain: √
ĝ = xn−1

√
h. (A.15)

While it holds, that
√
g = xn

√
h, and so:

√
g = xn

√
h. (A.16)

We conclude, that
√
ĝ
−1√

g = x, and we use this to simplify the expressions for a00, a01

and a10:

a00 = −ix
n−1∑
i=0

(ain + ani)Di + ix
√
h
−1
Dn(ann

√
h)

− ix
√
h
−1

n−1∑
i=0

Di(
√
h(ain + ani))− i x bn, (A.17)

and

a01 = a10 = −i x2 ann. (A.18)

We call the matrix A defined as in (A.12) greens matrix.

We give an explicit computation for the Greens Matrix for ∆c:
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A.1.1 Greens Matrix for the Laplacian

We want to compute in this section the entries of the Green’s matrix as defined for a

general second order differential operator P2 in (A.12) for the case of P2 = ∆c.

If we take the general form of a second order differential operator in the notation used

in section A.1, we have:

P2 =
n∑

i,j=0

aij(x, y)DiDj +
n∑
i=0

bi(x, y) + c(x, y). (A.19)

To apply the results from A.1 to the Laplacian, we write ∆c in the notation of (2.16):

Using the (2.16) we have for u ∈ Hs,γ :

∆cf = − 1

x2
(D2

0f + i(n− 1)D0f +
1√
h

n∑
i,j=1

Di(
√
hhijDjf). (A.20)

It follows, that:

a00 = − 1

x2
, a0n = an0 = 0, (A.21)

aij = − 1

x2
hij for 1 ≤ i, j ≤ n, (A.22)

and:

b0 = − 1

x2
(i(n− 1)), bj = − 1

x2

1√
h

n∑
i=1

Di(
√
hhij) for 1 ≤ j ≤ n, (A.23)

as well as:

c = 0. (A.24)

While we denote the metric on Y by hy, the metric on ∂Y will be denoted by h∂Y .

We denote the functional determinants of gD respective g∂D by g and ĝ.

Lets denote the explicit expression of the Green’s matrix A as defined in (A.12) for

P2 = ∆c by A∆.

We obtain for its entries:

a00 = −i
n−1∑
i=1

(x(− 1

x2
(hin + hni))Di − ix(− 1

x2

1√
h
Dn(

√
hhnn))+

+ ix
√
h
−1
Dn(− 1

x2
hnn
√
h)− ix

√
h
−1

n−1∑
i=1

Di(
√
h(− 1

x2
(hin + hni)))

=
i

x

n−1∑
i=1

((hin + hni))Di +
i

x

√
h
−1

n−1∑
i=1

Di(
√
h((hin + hni))). (A.25)
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Note that we have used the fact a0n = an0 in the expression above, so that the sum

starts at i = 1 instead of i = 0.

We compute for a01 = a10:

a01 = a10 = −i x2(− 1

x2
hnn)

= ihnn. (A.26)

A.2 Adjoint of the Trace Operator on Weighted Sobolev

Spaces

We want to compute the adjoint of γ̃0. Again, we us the definition of h, ĥ, h, g, ĝ and

g as in section A.1.

We choose u ∈ Hs,γ(D), v ∈ Hs−
1
2
,γ− 1

2 (∂D):

〈γ̃0(u), v〉∂D =

∫
∂D

(u(x, y′, 0))v(x, y′)
√
ĝdxdy′

=

∫
∂D

(u(x, y′, 0))v(x, y′)xn−1
√
ĥdxdy′

=

∫
∂D

(u(x, y′, 0))v(x, y′)xn−1
√
hdxdy′

=

∫
D

(u(x, y′, yn))(xn−1
√
h · v(x, y′)⊗ δ(yn))dxdy′dyn

=

∫
D

(u(x, y′, yn))(x−1 · v(x, y′)⊗ δ(yn))xn
√
h︸ ︷︷ ︸

=
√
g

dxdy′dyn.

Hence, if we define the operator γ∗0 as:

γ̃∗0 : u(x′) 7→ x−1 · (u(x′)⊗ δ(yn)) for u ∈ Hs,γ(∂D), (A.27)

we have:

〈γ̃0(u), v〉∂D = 〈u, γ̃∗0(v)〉D. (A.28)

We obtain as mapping properties of γ∗0 by duality:

γ̃∗0 : Hs,γ(∂D)→ Hs−
1
2
,γ− 1

2 (D). (A.29)
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A.2.1 The Adjoint of Mellin Operators

LetY be an (n + 1) dimensional manifold. Let h ∈ Mµ
O(Ỹ ) be a Mellin symbol. It can

be checked by direct computation, using a shift in the integration variables, that the

adjoint M∗ of M = opγM(h) with respect to the L2 scalar product is given by:

M∗ = op−γM (h∗(n+ 1− z)). (A.30)

Here h∗ denotes the adjoint of the pseudodifferential operator h ∈Mµ
O(Ỹ ).

This yields for a Mellin pseudodifferential operator F of the form:

F = x−µopγM(h∗(n+ 1− z)), (A.31)

the following adjoint:

F ∗ = op−γM (h∗(n+ 1− z))x−µ

= x−µop−γ+µ
M (h∗(n+ 1− z + µ))

= x−µop−γ+µ
M (h∗(n+ 1− µ− z)). (A.32)

A.3 Interpolation of Weighted Sobolev Spaces

We give a few basic definitions and properties of real interpolation spaces. For details

see [39].

A.3.1 Basic Definitions and Results

Definition A.3.1. Let X0, X1 be Banach spaces over K. Then the pair (X0, X1) is called

admissible, if there is a Hausdorff topological vector space Z such that X0, X1 ↪→ Z with

continuous embeddings.

Let (X0, X1) be an admissible pair of Banach spaces.

Definition A.3.2. For t > 0, x ∈ X0 +X1 let:

K(t, x) ≡ K(t, x;X0, X1) = inf
x=x0+x1,x0∈X0,x1∈X1

‖x0‖X0 + t‖x1‖X1 .

Definition A.3.3. For θ ∈ (0, 1), 1 ≤ p ≤ ∞ we define the real interpolation space

(X0, X1)θ,p as:

(X0, X1)θ,p := {x ∈ X0 +X1 : Φθ,p(K(·, x)) <∞},
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where

Φθ,p(K(·, x)) = ‖t−θK(t, x)‖Lp((0,∞), dt
t

).

We endow (X0, X1)θ,p with the norm ‖x‖θ,p := Φθ,p(K(·, x)).

The following lemma can be found in 1.3.3. of [39]:

Lemma A.3.4. Let 1 ≤ p ≤ ∞, θ ∈ (0, 1) and let (X0, X1), (Y0, Y1) be admissible

Banach spaces. Let X = (X0, X1)θ,p, Y = (Y0, Y1)θ,p. Then:

T ∈ L(Xj , Yj), j = 0, 1, ⇒ T |X ∈ L(X,Y ),

and

‖T‖L(X,Y ) ≤ ‖T‖1−θL(X0,Y0)‖T‖
θ
L(X1,Y1),

for all T ∈ L(Xj , Yj), j = 0, 1.
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Appendix B - b Calculus

B.1 b-Pseudodifferential operators

B.1.1 Computations in b-Calculus in Local Coordinates

Definition B.1.1. Let f : X → Z be a smooth map between manifolds X and Z. The

pull-back f∗u of a function u on Z is then defined as:

f∗u = u ◦ f. (B.1)

The push-forward on measures is defined as an operation which assigns to a Borel mea-

sure µ on X a measure f∗µ on Z by:

Definition B.1.2. Let µ be a measure on:

f∗µ(V ) = µ(f−1(V )) V ∈ Z. (B.2)

In terms of integrals, this can be expressed by duality, using Φ ∈ C∞0 :∫
Z

(f∗µ)Φ =

∫
X

µf∗Φ. (B.3)

The action of b-Pseudo is defined using pull backs and push forwards by coordinate

projections:

Definition B.1.3. We use the coordinate projections πi, i = 1, 2, which are projections

on the first or second component of X ×X, to define:

107
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Let β : X2
b → X2 be the blow-down map. Then:

πi b := πi ◦ β for i ∈ {1, 2}. (B.4)

Now, given a b-pseudodifferential operator A ∈ Ψm
b (X) as defined in (7.3.2), we can use

the preceding definitions to define the action of A in terms of its integral kernel KA:

Definition B.1.4. We take a auxiliary density, in this case a b-density m to obtain:

(Au)(x) = π1b∗(π
∗
1bmπ

∗
2buKA). (B.5)

The definition (B.5) finally justifies to use integral kernels supported on X2
b .

Now, if we want to define the action operators contained in Ψ−∞,d,Ec (X; Λ) to distribu-

tions, we start by using the blow down map γ1 of X2
b with:

γ1 : X2
b → X ×X. (B.6)

Next, we consider the blowdown map γ2 as:

γ2 : Td → Λd ×X2
b , (B.7)

to finally introduce:

β̃ := (id× γ1) ◦ γ2,

β̃ : Td → Λd ×X ×X. (B.8)

Additionally to the projections π1, π2 introduced before, we use the projections π̃i, i ∈
{1, 2} acting on Λd ×X ×X and projecting:

π̃1 : Λd ×X ×X → Λd ×X,

(ω, x, y) 7→ (ω, x), (B.9)

respective:

π̃2 : Λd ×X ×X → Λd ×X,

(ω, x, y) 7→ (ω, y). (B.10)

Finally, we define:

π̃ib := π̃ ◦ β̃, (B.11)
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such that:

π̃ib : Td → Λd ×X, (B.12)

which allows us to define an action of an Integral Kernel living on Td on a distribution.

For this, take an auxiliary b-density dν. Then, using a distribution u and an operator

A(λ) ∈ Ψ
−∞,dE(X;Λ)
c with Kernel k ∈ AE(Td), we can define:

Au := π̃2b∗(π̃
∗
1b(u)π̃∗2b(ν) k). (B.13)

B.2 Computations on the Parameter Blow-Up Space in

Local Coordinates

We define Ωi = supp(αi). Then we have:

Ω1 = {(r, ω, x, x′, y, y′) ∈ Λd × Y ∧ × Y ∧|x′ ≤ x ≤ r},

Ω2 = {(r, ω, x, x′, y, y′) ∈ Λd × Y ∧ × Y ∧|x ≤ x′ ≤ r},

Ω3 = {(r, ω, x, x′, y, y′) ∈ Λd × Y ∧ × Y ∧|max{r, x′} ≤ x},

Ω4 = {(r, ω, x, x′, y, y′) ∈ Λd × Y ∧ × Y ∧|max{r, x} ≤ x′}.

Further, the Ωi, i ∈ {1, ..., 4} form a disjoint decomposition of Λd × Y ∧ × Y ∧.

We choose local stereographic coordinates on the regions Ωi, i ∈ {1, ..., 4} and construct

explicit blowdown maps γi : Ωi → Λd × Y ∧ × Y ∧.

We use local coordinates (x, x′, y, y′, r, ω). The integral Kernels on Td which are of

interest, are integrated along rays of constant angle in Λd. Further, the coordinates

y, y′ ∈ Y are compactly supported and remain untouched by the blow-up procedure.

Hence, for the sake of a simpler notation, we will neglect the coordinates ω, y, y′.

So, let (r, x, y′) be local coordinates on Λd × Y ∧ × Y ∧. We define:

• On β−1(Ω1):

Appropriate local coordinates on Td close to the region which is supported by

β̃∗(η1) are given by (η1, γ1, ζ1) = (r, xr ,
x′

x ).

Now, a blowdown map is given by:

β̃1 : Td → Ω1 ⊂ Λd × Y ∧ × Y ∧,

(η1, γ1, ζ1) 7→ (η1, η1 · γ1, η1 · γ1 · ζ1). (B.14)
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β−1(Ω1) intersects the hypersurfaces ff, rb and fi. Boundary defining functions for

these hypersurfaces are given by η1 for fi, γ1 for ff and ζ1 for rb.

• On β−1(Ω2):

Appropriate local coordinates on Td close to the region which is supported by

β̃−1(η2) are given by (η2, γ2, ζ2) = (r, x
′

r ,
x
x′ ). Now, a blowdown map is given by:

β̃∗ : Td → Λd × Y ∧ × Y ∧,

(η2, γ2, ζ2) 7→ (η2, , η2 · γ2 · ζ2, γ2 · ζ2). (B.15)

β−1(Ω2) intersects regions around the hypersurfaces ff, lb and fi. Boundary defining

functions for those hypersurfaces can be expressed by η2 for fi, γ2 for ff and ζ2 for

lb.

• On β−1(Ω3):

Local coordinates on Td along the region on which β−1(η3) is supported, are given

by (η3, γ3, ζ3) = ( rx , x,
x′

x ):

β : Td → Λd × Y ∧ × Y ∧,

(η3, γ3, ζ3) 7→ (η3 · γ3, γ3, γ3 · ζ3). (B.16)

Now, η3 serves as a boundary defining function for bi, γ3 as a boundary defining

function for fi, ζ3 as a boundary defining function for rb.

• On β−1(Ω4)

Local stereographic coordinates on Td close to the region on which β∗(η4) is sup-

ported are given by (η4, γ4, ζ4) = ( rx′ ,
x
x′ , x

′). Hence, the blowdown map β can be

expressed in this coordinates by:

β : Td → Λd × Y ∧ × Y ∧,

(η4, γ4, ζ4) 7→ (η4 · ζ4, ζ4, γ4 · ζ4). (B.17)

Here, η4 serves as a boundary defining function for bi, γ4 as a boundary defining

function for lb, ζ4 as a boundary defining function for fi.
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B.3 Kernel Estimates

The asymptotic behavior of the Integral Kernel towards the boundary faces is encoded in

the collection of index sets E(α) = (Elb, Erb, Eff, Efi, Ebi). It holds, that Elb > α−µ− n
2 ,

Erb > −(α− µ) + n
2 , Eff > 0, Efi = N and Ebi = ∅.

• On β−1(Ω1)

In a local neighborhood of fi, our conical manifold X is locally isomorphic to a

subset of U = [0, 1)η1 × [0, 1)γ1 × [0, 1)ζ1 × U ′. Since the integral kernels of our

residual operators are compactly supported in U ′, we suppress the dependence of

the Integral kernel KR(λ) on U ′ in the preceding discussion:

KR(λ) =
∑

(z,k)∈Efi,<z≤N

(γ1)z(log γ1)ku(z,k)(η1, ζ1, y) + (γ1)NuN (η1, γ1, ζ1), (B.18)

uN (η1, γ1, ζ1) ∈ Σa(U) and u(z,k)(η1, ζ1) ∈ Σa′([0, 1)η1 × [0, 1)ζ1).

Since Erb > −(α− µ) + n
2 , it follows that there exists an ε > 0 with:

ζ1
−(ε−(α−µ)+n

2
) ·KR(λ)(η1, γ1, ζ1), (B.19)

is a smooth and bounded function in ζ1 up to ζ1 = 0.

Further,we have that uN (η1, γ1, ζ1) ∈ Σa(U) and u(z,k)(η1, ζ1) ∈ Σa′([0, 1)η1 ×
[0, 1)ζ1).

Summarizing the remaining index sets in E ′ = (Elb, Eff, Efi, ∅), we have that

u(z,k)(η1, ζ1) ∈ AE ′ .

Applying the same argument as above to uz,k with respect to the index sets Eff and

Erb,we can conclude that the Integral kernel KR(λ), expressed in local coordinates

is bounded on Ω1 by:

|KR(λ)(η1, γ1, ζ1)| < C1 · ζ1
ε−(α−µ)+n

2 . (B.20)

• On β−1(Ω2)

We use the local coordinates (η2, γ2, ζ2) on β−1(Ω2) as defined in (B.15).

First of all, the variable ζ2 on Ω2 ranges from zero to infinity. Now, Y ∧ is not

compactified around infinity, hence there is no boundary face there. However,

since the residual operators which contribute the resolvent are multiplied with a

compactly supported cut-off function, we can assume without loss of generality
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that KR is compactly supported in ζ2. Since ζ2 → 0 corresponds to ρfi → 0 and

Efi = N, we can assume |KR(λ)(η2, γ2, ζ2)| to be bounded in ζ2.

Similar considerations as for β−1(Ω1) yield, since Eff > 0, Elb > α − µ − n
2 and

Efi = N:

|KR(λ)(η2, γ2, ζ2)| ≤ C2 · (γ2)ε · (ζ2)ε+(α−µ)−n
2 . (B.21)

• On β−1(Ω3)

Since Ebi = ∅,Efi = N, and Erb > −(α − µ) + n
2 , the integral Kernel on β−1(Ω3)

satisfies the estimates:

|KR(λ)(η3, γ3, ζ3)| ≤ C3 · (η3)N · (ζ3)ε−(α−µ)+n
2 , ∀N ∈ N. (B.22)

• On β−1(Ω4)

Since Ebi = N, Elb > (α− µ)− n
2 Efi = N:

|KR(λ)(η4, γ4, ζ4)| ≤ C4 · (η4)N · (γ4)ε+(α−µ)−n
2 , ∀N ∈ N. (B.23)

We summarize the kernel estimates:

i (ηi, γi, ζi) βi : (ηi, γi, ζi) 7→ |K(ηi, γi, ζi)| ≤ ρlb ρrb ρff ρfi ρbi

1 (r, xr ,
x′

x ) (η1, η1 γ1, η1 γ1 ζ1) C1 ζ1
ε−(α−µ)+n

2 - ζ1 γ1 η1 -

2 (r, x
′

r ,
x
x′ ) (γ2 ζ2 η2, γ2 ζ2, ζ2) C2 ζ

ε+(α−µ)−n
2

2 ζ2 - γ2 η2 -

3 ( rx , x,
x′

x ) (η3 γ3, γ3, γ3 ζ3) C3 η
N+ε
3 ζ

ε−(α−µ)+n
2

3 - ζ3 - γ3 η3

4 ( rx′ ,
x
x′ , x

′) (η4 γ4 ζ4, γ4 ζ4, ζ4) C4 η
N+ε
4 γ

ε+(α−µ)−n
2

4 γ4 - - ζ4 η4

B.4 b Calculus Computations in Local Coordinates

We use the local coordinates and blowdown map on β−1(Ω1) as defined above to give

an explicit calculation of the action of a residual operator on a function:

For this, we use that the action of Operators on functions is defined using pull-backs

and push-forwards as defined in (B.13):

R(λ)u m̃ = π2b∗(KR(λ)β̃
∗(κ1)π∗2b(u)π∗1b(m))

= π2b∗(k(η1, γ1, ζ1)χ(γ1)χ(ζ1)u(η1 γ1 ζ1)
dγ1

γ1

dζ1

ζ1
). (B.24)
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We use a test function Φ ∈ C∞(Y ∧; Λ) to compute the action of the density (B.24) on

Φ: ∫
γ1

∫
ζ1

π2b∗(k(η1, ζ1, γ1)χ(γ1)χ(ζ1)u(η1 γ1 ζ1))Φ
dγ1

γ1

dζ1

ζ1

=

∫
γ1

∫
ζ1

(k(η1, γ1, ζ1)χ(γ1)χ(ζ1)u(η1 γ1 ζ1))π∗2b(Φ)
dγ1

γ1

dζ1

ζ1

=

∫
γ1

∫
ζ1

(k(η1, γ1, ζ1)χ(γ1)χ(ζ1)u(η1 γ1 ζ1))(Φ(η1 γ1))
dγ1

γ1

dζ1

ζ1
.

Substituting x = η1 γ1 we obtain:∫
γ1

∫
ζ1

(k(η1,
x

r
, ζ1)χ(

x

r
)χ(ζ1)u(x ζ1))(Φ(x))

dx

x

dζ1

ζ1
.

Now, with x′ = x ζ1:∫
x

∫
x′

(k(r,
x

r
,
x′

x
)u(x′))χ(

x

r
)χ(

x′

x
)(Φ(x))

dx

x

dx′

x′
. (B.25)

Clearly, we can identify the resulting distributional b-density in (B.25) with a distribu-

tion, hence we obtain as result:

(R(λ)u)(r, x) =

∫
x′

(k(r,
x

r
,
x′

x
)χ(

x

r
)χ(

x′

x
)u(x′))

dx′

x′
. (B.26)
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