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Intelligent crack extraction and
analysis for tunnel structures with
terrestrial laser scanning
measurement
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Abstract
An automatic and intelligent method for crack detection is significantly important, considering the popularity of large
constructions. How to identify the cracks intelligently from massive point cloud data has become increasingly crucial.
Terrestrial laser scanning is a measurement technique for three-dimensional information acquisition which can obtain
coordinates and intensity values of the laser reflectivity of a dense point cloud quickly and accurately. In this article, we
focus on the optimal parameter of Gaussian filtering to balance the efficiency of crack identification and the accuracy of
crack analysis. The innovation of this article is that we propose a novel view of the signal-to-noise ratio gradient for
Gaussian filtering to identify and extract the cracks automatically from the point cloud data of the terrestrial laser scan-
ning measurement.
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Introduction

A three-dimensional (3D) construction model could
contribute to the construction of a powerful informa-
tion system against the background of the big data era.
The automatic feature extraction and modeling accord-
ing to the measurement data will be increasingly essen-
tial in the field of structural health monitoring.1

Among the different sensors, terrestrial laser scan-
ning (TLS) is a promising technique for the quick
acquisition of 3D spatial information of objects. It has
significant advantages when compared with traditional
measurement in structure monitoring due to the TLS
measurement being area oriented rather than point
oriented. Some other advantages of TLS are that it is,
for example, highly accurate, non contact, and non
destructive. The TLS-based measurement is even more
flexible and convenient nowadays by means of

kinematic measurement technologies and different
moving equipment.

Background

Currently, TLS is often used in various fields, such as
civil engineering or archeology, for structural health
monitoring and geographic information systems.2

Surface-based measurement of TLS is reported by
many authors. Some of the latter, such as
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Edelsbrunner,3 converted point clouds into a consistent
polygonal or mesh surface. Vertices, edges, and faces
are contained in this mesh surface. Tsakiri et al.4 used
planes fitted to point clouds when estimating the defor-
mation of a sea lock. Van Gosliga et al.5 modeled the
subject with a cylinder in a tunnel monitoring. Chang
et al.6 developed a program of structure surface analy-
sis where the degree of deformation is acquired easily
by statistic regression and polynomial function. Koch7

fitted a 3D non-uniform rational B-spline surface using
a lofting method. Deformations of all the points can be
estimated over the entire surface of object structures
since the identification of the index of representative
points is made by interpolating arbitrarily distributed
spots. Various types of deformation may result depend-
ing on the type of material, size and geometry of the
object,8 and the forces applied.9

TLS measurement and data processing

The TLS measurement is a reliable method to gain 3D
coordinate and intensive information of object surfaces.
It can reconstruct the scanned objects accurately and
builds a high-fidelity and high-precision 3D point
cloud. The development in the fields of solid-state elec-
tronics, photonics, and computer vision and graphics in
the last 50 years has made it possible to construct reli-
able, high-resolution, and accurate terrestrial laser scan-
ners.10 The main process of TLS is that the laser emits
from a sender and is reflected by objects; the reflected
laser is then received and recorded by the receiver of the
laser scanner; finally, the distance between the sender
and receiver is calculated. The TLS technology can
reconstruct the 3D model of objects rapidly and get the
information of the line, surface, volume, and other map
data. Compared with conventional measurement meth-
ods, TLS changes from point oriented to area oriented
and has a great advantage. Currently, TLS is applied in
an increasing number of fields, such as civil engineering,
3D city modeling, cultural heritage protection, disaster
assessment, and industrial measurement. The following
are typical examples of TLS application. With the
advantage of TLS, Riveiro et al.11 obtained the collapse
load value and position, as well as the hinges position,
and reaction forces of a masonry arch bridge. Abellán
et al.12 studied the geomorphological evolution of the
rock face in terms of volume and frequency of rockfall
by the comparison of sequential data sets, benefiting
from the high resolution and accuracy and the maxi-
mum range of the TLS.

The TLS-based method allows the determination of
the crack behavior by the measurement of intensity val-
ues of the structure. The changes in intensity values
between epochs indicate a change in the structure at
this position which can usually only occur due to cracks
forming.13 Recently, a method utilizing 3D point clouds

was developed to measure crack spacing and deforma-
tion, while further analysis of the structural behaviors
of concrete slabs subjected to recruiting cracks were
documented at the top of each test specimen by photo-
graphy.14 In a paper by Olsen et al.,15 cracks of speci-
men were mapped using TLS to form an intensity map
of the specimen, which was also compared with the
photos of the specimen. As terrestrial laser scanners
have become more available, their applications have
become more widespread.16–28

Unfolding and projection of the point
cloud

A framework of crack extraction and analysis is pre-
sented in Figure 1 involving five steps. First, the 3D
data of tunnel structures was collected utilizing TLS
technology; second, we obtained the point cloud projec-
tion and transferred the point cloud data to an image
file; third, we carried out image preprocessing; fourth,
the automatic crack identification was programmed;
and, finally, we analyzed the cracks of the tunnels. In
this article, we focus on the automatic crack extraction
with the optimal parameters. The crack width and posi-
tion analysis are carried out based on the automatic
crack extraction.

Unfolding and projection are carried out as a pre-
step to extract and analyze the character of the crack,
and they transform the point cloud from 3D to two-
dimensional (2D). First, the tunnel ring is unfolded
along a straight line which goes through the highest
point of the point cloud and is parallel to the central
axis. Second, projection is achieved through remapping
the point cloud in a 2D plane with the 3D information.
The computational efficiency is improved through rota-
tion of the 3D point cloud where the central axis of the
profile turns parallel to a coordinate axis (here, it is a Y

Figure 1. Framework of crack extraction and analysis.
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axis). In the projection process, the coordinate values
of each X and Z are transferred directly to the 2D coor-
dinate system, while Y becomes to zero. The intensity
values are used to color the point cloud for visualiza-
tion. Finally, the information from the 3D coordinates
and intensity are mapped to a 2D plane.

Figure 2 shows the result of the transformation,
which describes half of the point cloud on one side of
the unfolding line. The color of the point cloud repre-
sents the intensity property, which will be a key feature
used to extract cracks. It could be observed in Figure 2
that the point cloud reflects the complex constitution of
the objects, such as electricity lines, segment protruding,
and gaps. Therefore, suitable strategies are required to
separate cracks from the complex background.

The projection considers the protection of the origi-
nal information of the point cloud. Because the main
principle is to rotate the whole tunnel to be parallel to,
for example, the Y axis, and then eliminate the Y coor-
dinate of each point. Finally, the X and Z coordinate is
obtained, strictly keeping the relative-position informa-
tion of each point in the XOZ plane, and the intensity
is directly the same as the original one. The projection
method also has a low computation cost.

However, the effect of crack overlap or tensile defor-
mation is challenging. The crack overlap could happen,
for example, at the top area of the tunnel. In this case,
we can improve it by projecting segmented parts, which
is illustrated in the Figure 3. Suppose point E is the
observation position, the arrows stand for the lines of
sight, and the point cloud is distributed in angle range
(–Pi, Pi). The observation angle OA is defined as the
angle between the line of sight and the tangent of the
local point cloud (excluding the parts of rails and
ground under G1G2). The larger the OA, the better the
observation gained. Before the improvement, the lines
of sight (yellow arrows) are parallel to the top area,
which could cause the OA to approach 0 and an over-
lapping effect of the cracks. However, due to the
improvement (black arrows), the segments with angle
A (Pi/4, 3Pi/4) have a vertical line of sight and the
observation angle obviously increases. Therefore, the
crack overlapping in the top area is eliminated.

Concerning the tensile deformation, we discuss it in
detail as follows. If the crack is parallel to the XOY
plane, the length of crack detected changes to a lesser
degree, and the change ratio is related to the observa-
tion angle. Suppose the minimum observation angle is
Pi/4, according to the improved projection.
Accordingly, the maximally changed length will beffiffiffi

2
p

=2 of the real length. If the crack is vertical to the
XOY plane, the width of the crack detected will change
and become smaller, and similarly, the change ratio will
be related to the observation angle and be maximallyffiffiffi

2
p

=2 of the actual width. If the crack is tilted, both the
length and width detected will be smaller, but not less
than

ffiffiffi
2
p

=2 of the actual length and width.
We will pay more attention to the effect of crack

overlap or tensile deformation in future papers.
However, this article focuses mainly on the optimal
Gaussian filter, which is important for successful crack
detection.

Local index method

In order to extract cracks efficiently, an index method
is used for the tunnel point cloud data, whose size is
usually several gigabytes, which causes heavy computa-
tion costs. The index method could output the local
point cloud data of a tunnel section of arbitrary miles
and height. Suppose the tunnel is divided into M rings
fRig, i ł M , according to their mileages; each ring Ri is
unfolded to produce a rectangular shape Pi (length cor-
responds to the original circumference and the width
corresponds to the width of the ring) and divided into
N smaller rectangular pieces in the length direction of
Pi. The index IDXij, i ł M , j ł N denotes the index of
each smaller rectangular piece, based on which the

Figure 3. Projecting segmented parts.

Figure 2. Unfolding and projection of the tunnel section.
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crack detection is conducted. A crack in the 3D point
cloud data of the tunnel is shown in Figure 4, where
the larger red dot indicates its position in miles at the
edge of the tunnel and the larger orange dot indicates
its position in the corresponding unfolded section.

Crack detection

The crack-detection method proposed is illustrated on
a selected part of the point cloud whose area is about
60 3 30 cm2, as shown in Figure 5(a).

Based on the projected point cloud data shown in
Figure 5(a), an image is generated where each point is
projected to one pixel, which is presented in Figure
5(b). The projection is computed from equation (1),
where iIm and jIm are indexes of the pixel corresponding
to two directions of an image, X and Z are the X and Z
coordinate components of the point cloud, res is the
resolution of the image transforming, I is the pixel gray
value, and s is the intensity value. The index of the pixel
is computed by rounding the products of the coordi-
nates to the nearest integer. When the index of the pixel

is determined, the pixel will be fulfilled with gray
derived from the point intensity value

I(iIm, jIm)= s

with iIm = round
X

res

� �
, jIm = round

Z

res

� � ð1Þ

The transformation produces an image, which is
shown in Figure 5(b) with a color bar whose range is
(0, 255). An obvious texture is observed in Figure 5(b),
caused by the line-wise scanning manner of TLS mea-
surement. The texture is straight shape in the original
3D mapping but afterwards becomes curved through
the unfolding point cloud to the 2D plane. It is challen-
ging that the texture is intrinsic in the image, which will
influence the results detecting the crack significantly.
The method proposed should have a capability of noise
immunity, which could settle the texture problem and
extract the correct cracks.

Gaussian filter is a linear filter that suppresses noises
and smooths images effectively. The principle of
Gaussian filter is outputting the averaged value of ele-
ments inside the template; the template coefficients are
computed after equation (2)

Hi, j =
1

2ps2
exp � (i� k � 1)2 +(j� k � 1)2

2s2

� �
ð2Þ

whereH is the gray value of a pixel, i and j are the index
of a pixel, s is the standard deviation of Gaussian tem-
plate, and k indicates the size of template to be (2k
+ 1) 3 (2k + 1). The s is one of the most essential
parameters in Gaussian filter, where a smaller s reflects
that the coefficient of the pixels close to the template
center is large and far from the template’s center is
small; conversely, a larger s indicates similar coeffi-
cients of the elements inside the template, which
approaches an average template. Therefore, a larger s

has a more significant smooth effect on the images.
This method has a capability of noise immunity, which

Figure 5. Crack description: (a) Projection of the tunnel point cloud and (b) gray image of the tunnel point cloud.

Figure 4. Crack in the 3D point cloud data of the tunnel.
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could settle the texture problem and extract the correct
cracks.

However, an over-smooth effect undermines impor-
tant features in the image, such as cracks whose size is
very small in the crack width direction. The article
adopted a signal-to-noise ratio (SNR) which is com-
puted based on the number of pixels with the value 0
after equation (3)

SNR=
num f

num� num f
ð3Þ

where num_f is the number of 0-value pixels after filter-
ing, and num is the number of 0-value pixels before
filtering.

Data analysis

It is critical to improve the efficiency of crack identifi-
cation to extract cracks from massive 3D point cloud
data. This article proposes a novel method which com-
bined Gaussian filtering of optimal parameters and
SNR analysis. This method can increase the effective-
ness of automatic crack identification and ensure the
accuracy of the crack analysis. Gaussian filtering of
various parameters s are presented in Figure 6, where
the left corresponds to the parameters (N= 10, s = 1),
the middle (N=10, s =2), and the right (N=10,
s=3). Here, N=2k + 1 is the size of the template. It
could be observed that when s=1, it requires more
complex algorithms to identify cracks automatically,
which not only extends the computational time but also
reduces the reliability of recognition. This is unaccepta-
ble for tunnel identification of massive point clouds.

The most important parameter for generating a
Gaussian filter template is the standard deviation s of
Gaussian distribution. The standard deviation repre-
sents the degree of dispersion of the point cloud data. If
the s is small, the center coefficient of the template gen-
erated is large and the surrounding coefficients are

small, so the smoothing effect on the image is not obvi-
ous; otherwise, when the s is large, the smoothing effect
on the image is obvious.

Result

In this article, the crucial problem is how to identify
cracks more effectively while ensuring the accuracy of
crack analysis. A new method is proposed adopting the
SNR distribution to optimize the parameter s. The dis-
tribution of SNR based on Gaussian filtering is pre-
sented in Figure 7.

According to Figure 7, the relation of the SNR and
s is a reverse correlation which indicates that when the
s is increasing and the SNR is decreasing. It is hinted
that the effectiveness of automatic identification is
based on reducing the SNR. It could be observed
that after s is 2.1, which is marked as a red line in
Figure 7, the SNR tends to a fixed value.
Furthermore, it is better to take a bigger s during the
stage where the SNR is not significantly reduced.
Therefore, it necessary to analyze the optimal para-
meters during the s range from 1.1 to 2.1, which is
marked with red dotted lines in Figure 7. The gradi-
ent of the SNR is listed in Table 1.

According to the gradient of the SNR in Table 1,
the optimal parameter of s is 2.0, which corresponds to
the minimum absolute gradient 0.1 (marked in bold).
Gaussian filtering when s is 2.0 is presented in the mid-
dle of Figure 6.

Conclusion

The TLS measurements are adopted to extract crack
information for intelligent structural health monitoring
with the assurance of high-quality 3D model construc-
tion methodologies. In this article, we proposed an
SNR distribution with the parameter s of Gaussian fil-
tering method to identify cracks automatically based
on 3D point cloud data. The parameters SNR and s

are adopted to optimize the efficiency of crack extrac-
tion and accuracy of crack analysis. The following con-
clusions can be drawn:

Figure 6. Gaussian filtering of various parameters (left
corresponding to s = 1, middle s = 2, and right s = 3).

Figure 7. SNR distribution of Gaussian filtering.
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1. The optimal value s of Gaussian filtering can be
automatically extracted by finding out the maxi-
mum gradient of SNR distribution.

2. A novel method is proposed to balance the effi-
ciency of crack extraction and the accuracy of
crack analysis. The results of different s are pre-
sented and compared based on Gaussian
filtering.

3. An automatic and intelligent modeling method
for composite tunnel structures is investigated
based on Gaussian filtering.
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