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Abstract: Special integrated photonic surface structures composed of a dielectric semicircle ridge
and a dielectric block placed on a metal substrate are proposed for the investigation of surface
plasmon polariton (SPP) reflection and transmission effects. A fabrication method called microscope
projection photolithography was employed for the preparation of the structures. Leakage radiation
microscopy was applied for the excitation and observation of surface plasmon polaritons (SPPs).
It was observed that SPPs exhibit a remarkable decrease in intensity when impinging onto the
rectangular dielectric block. Nevertheless, the transmitted wave out of the dielectric block was always
observable. The propagation behavior of both the reflected waves at two boundaries (air/dielectric
and dielectric/air) and the transmitted wave inside the dielectric block were demonstrated for
different SPP incident conditions. The variation of the angles of reflection and transmission with
respect to the incident angle was analytically and experimentally investigated. An agreement between
the calculated results and the experimental results was obtained. Our findings might allow for novel
applications in sensing and analytics once the structures will be functionalized.

Keywords: surface plasmon polaritons; surface waves manipulation; microscope projection
photolithography; plasmon leakage radiation; plasmonic sensing

1. Introduction

Surface plasmon polaritons (SPPs) are highly confined electromagnetic surface waves that
propagate along the interface of a dielectric and a metal [1], with an electric field component
parallel to the propagation direction and exponential decay in the direction perpendicular to the
interface [2,3]. This type of propagating surface electromagnetic waves can be generated by means of
prism coupling configuration [4,5], near-field excitation [6,7], surface grating coupling [8–10], surface
roughness [1], surface defects [11] or sharp edges [12], among others. The propagation of SPPs
along the interface is a complex phenomenon that combines the micro-electric and macro-optical
properties. This provides the opportunity of interfacing with high-speed photonic elements and
small-sized electric circuits [13–15]. Additionally, SPPs possess the unique properties of strong surface
field enhancement and large light localization at the nanoscale. These features have fostered the
research interest on plasmonics-based applications in fields like information technology [14], imaging

Sensors 2019, 19, 4633; doi:10.3390/s19214633 www.mdpi.com/journal/sensors

http://www.mdpi.com/journal/sensors
http://www.mdpi.com
https://orcid.org/0000-0002-0717-4180
https://orcid.org/0000-0001-9389-7125
http://dx.doi.org/10.3390/s19214633
http://www.mdpi.com/journal/sensors
https://www.mdpi.com/1424-8220/19/21/4633?type=check_update&version=2


Sensors 2019, 19, 4633 2 of 10

and sensing [16–19], optoelectronics [20–22] and nanophotolithography [23–28]. Various optical
devices, such as light concentrators [29–32], waveguides [33–36], lenses [37–39], photodetectors [40–44],
heterostructures [45–47], metamaterials [48–52], reflectors [53,54] and deflectors [55,56], have been
proposed and demonstrated to realize various functionalities through the control of SPP propagation at
the subwavelength scale [57,58]. Consequently, the manipulation of SPPs plays an essential role in the
performance of plasmonic devices. One fundamental research issue concerning the manipulation is the
tuning of the propagation behavior of SPPs at the boundary between two media with different dielectric
constants [3]. This behavior mainly includes reflection, transmission, scattering and diffraction. To date,
a variety of analytical studies on this issue has been extensively carried out [2,3,13,59–64]. However,
only a few experiments were performed for investigation of the reflection, scattering and refraction of
SPPs, which were mainly realized based on structures such as plane mirrors [65], metal wedges [66]
and nanoparticle arrays [67]. Further experimental investigations are still desirable for deeper insight
into the complicated propagation behaviors of SPPs at different boundaries, as well as the exploration
of potential applications such as sensing.

In this paper, a novel integrated photonic surface structure (Figure 1a) was created with the
purpose of investigating the reflection and transmission effects of propagating SPPs at the interface
on two different media. The proposed structure, which was placed on a metal film, is composed of
a dielectric semicircle ridge and a dielectric block as illustrated in Figure 1a. The ridge was used as
a surface defect to excite SPPs by focusing a laser beam onto it and controlling the incident angle of
the SPPs. The dielectric block was used to generate a space with a different dielectric constant from
the surrounding air. The commonly used metals for the generation of surface plasmons are silver
and gold. In this experiment, silver was used due to its longer SPP propagation length than gold [11].
The reflection and transmission of SPPs take place at the boundary between the air and the dielectric
block as illustrated in Figure 1b. Additionally, SPPs can also be scattered into light waves propagating
away from the metal surface, which decreases the intensity of the reflected and transmitted SPPs.

As to the preparation of samples, a silver film with the thickness of 60 nm was first spin-coated
on a clean glass substrate. For the fabrication of proposed structures, the smoothness of the semicircle
ridge and the lateral surface of the dielectric block has to be guaranteed in order to reduce the scattering
of SPPs and thus improve the performance of the structure. With this consideration, a technique called
microscope projection photolithography (MPP) [68], which is able to implement a fast fabrication
process and achieve high structuring quality, was employed for the preparation of the proposed surface
structure. Afterwards, leakage radiation microscopy (LRM) [69], which visualizes the propagating
SPPs by collecting the waves leaked out of the substrate, was applied to excite and observe SPPs
on the fabricated structures. A schematic diagram illustrating the principle of LRM for generating
and visualizing SPPs is presented in Figure 1c. A detailed introduction of the system can be found
in ref [69]. When the laser beam (the wavelength λ = 800 nm) is focused onto the ridge of the
proposed structure, SPPs are excited and propagate to both the outer and inner radial directions of the
ridge. Along the inner direction, SPPs propagate towards to the dielectric block. The reflection and
transmission of SPPs at the boundaries between the air and the dielectric block can be observed using
the LRM setup. By moving the laser focus along the semicircle ridge, the incident angle of SPPs striking
onto the dielectric block can be varied. The dependence of the angles of reflection and transmission on
the incident angle of SPPs is investigated and discussed both analytically and experimentally.
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Figure 1. Geometrical illustrations. (a) Geometrical representation of the proposed structure.
(b) Schematic illustration of reflection and transmission of surface plasmon polaritons (SPPs) at the
interface of two different homogeneous dielectrics. (c) Schematic illustration of generating SPPs by
surface defects and visualization principle of propagating SPPs through leakage radiation microscopy
(LRM). A detailed description of LRM can be found in ref [69].

2. Theoretical Model

It is known that when a plane wave impinges onto a boundary between two homogeneous
media with different dielectric constants, the plane wave can be split into a reflected wave and a
transmitted wave, with the reflected wave propagating back to the first medium and the transmitted
wave proceeding into the second medium [70]. The propagation directions of the reflected wave and
the transmitted wave can be expressed using θr = θi (the law of reflection) and kt sin θt = ki sin θi
(Snell’s law) [70], with θi indicating the angle of incidence, θr the angle of reflection and θt the angle of
transmission, ki the wave number of the incident light and kt the wave number of the transmitted light.
Both laws are deduced from the boundary conditions, which have to be satisfied for the existence of
the reflected and transmitted waves. Therefore, the reflection and transmission of surface plasmon
polaritons (SPPs) have to fulfil the boundary conditions at the interface between isotropic media with
different dielectric constants.

A geometrical illustration of the reflection and transmission of SPPs at the boundary of two
homogeneous media with the dielectric constants ε1 and ε2 is presented in Figure 1b. In this work,
the dielectric block is made of ma-N 1405, which is a commercially available photoresist from
micro resist technology GmbH and has a dielectric constant ε2 = 2.64 at the wavelength of 800 nm.
The dielectric constant of air is ε1 = 1. With electromagnetic radiation at the wavelength λ = 800 nm,
silver has the complex dielectric function εAg = −30.33 + 0.81i, which is calculated using the formula
in the ref [11]. Here, we assume that the dielectric medium and Ag are in the region z > 0 and z < 0,
respectively. At boundary 1 (see Figure 1a), x = 0. When SPPs propagate along the interface of Ag and
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a dielectric, the field of SPPs has a component ∝ e−iωt+i(kx x+kyy) in the interface plane and exhibits
exponential decay away from the interface. The dispersion relations of SPPs can be expressed as [1,11]:

kspp1 =
ω

c

√
ε1εAg

ε1 + εAg
(1)

kspp2 =
ω

c

√
ε2εAg

ε2 + εAg
(2)

where kspp1 and kspp2 represent the wave number of SPPs at the interface of Ag/air and Ag/ma-N
1405, ω indicates the angular laser frequency and c is the light velocity in vacuum. The angles of
reflection and transmission are more related to the real component of the wave vector rather than its
imaginary part, therefore only the real component of kspp is considered for the following calculation and
discussion. Combining the above equations with the law of reflection and Snell’s law [70], the angles
of reflection (θr1 and θr2) and transmission (θt1 and θt2) at boundaries 1 and 2 (see Figure 1a) can be
written as:

At boundary 1 (ε1 → ε2),

θr1 = θi1, (3)

θt1 = arcsin

(√
ε1(ε2 + εAg)

ε2(ε1 + εAg)
sin θi1

)
. (4)

At boundary 2 (ε2 → ε1),

θr2 = arcsin

(√
ε1
(
ε2 + εAg

)
ε2
(
ε1 + εAg

) sin θi1

)
, (5)

θt2 = arcsin

(√
ε2
(
ε1 + εAg

)
ε1
(
ε2 + εAg

) sin θi2

)
= θi1. (6)

3. Results and Discussion

The proposed structures were fabricated by microscope projection photolithography (MPP).
The commercial material ma-N 1405 (microresist technology GmbH) was employed for the fabrication.
The refractive index of this material is approximately 1.625 at the wavelength of 800 nm. Figure 2
shows SEM images of fabricated structures obtained with an exposure time of 1000 ms. Structures
with radii of r = 20, 25, 30 and 40µm (see Figure 2) were fabricated, respectively. Smooth semicircle
ridges and good surface quality dielectric blocks can be observed on each structure. With the exposure
duration of 1000 ms, the height of the dielectric block is approximately 700 nm (Figure 2f).

When excited in the ridge, SPPs propagate along the radial direction at the boundary between
Ag and air, with the wave vector kspp1 = ω

c

√
ε1εAg

ε1+εAg
. When striking onto the dielectric block,

the transmitted wave proceeding into the dielectric then propagates at the interface between Ag
and the dielectric, with kspp2 ≈ ω

c

√
ε2εAg

ε2+εAg
. The propagation lengths of SPPs along the interfaces of

Ag/air and Ag/dielectric were calculated using Lspp = 1
2k′′spp

[11]. They are approximately 140µm

and 30µm at the wavelength of 800 nm, respectively. The length of 140µm is much greater than the
obtained maximum radius of the semicircle (40µm), and 30µm is larger than the width of the dielectric
block (10µm). Therefore, all the structures could be used for the investigation of the SPP propagation
behavior. In this work, the structure with r = 40µm was employed for the experimental investigation
for the purpose of ensuring better observation of SPPs in a relatively large space. By installing
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the sample into the leakage radiation microscopy (LRM) setup and focusing the laser beam onto
the semicircle ridge, SPPs can be excited and propagate along the radial direction of the semicircle.
Figure 3a is the LRM image of SPPs excited using the proposed structure. Surface plasmon polaritons
are split into reflected wave and transmitted wave, when impinging onto the boundary between air and
dielectric. The transmitted wave proceeds into the dielectric block and strikes onto boundary 2, where
the wave propagates from a dense medium (dielectric) to a thin medium (air). In this case, the wave

will be totally reflected when the incident angle θi2 > θc, with θc = arcsin
(

kspp1
kspp2

)
= 36.73◦ indicating

the critical angle of total reflection. However, the total reflection does not occur at boundary 2, since
the incident wave is exactly the transmitted wave at boundary 1, where SPPs proceed from air into
the dielectric block. Based on Snell’s law, the angle of transmission θt1, which equals the incident
angle θi2, can not exceed θc. In the image plane (Figure 3a), the transmitted wave out of boundary 2
is visible, while the reflected wave and transmitted wave at boundary 1 are only weakly observable.
Consequently, an observation of propagating SPPs in the Fourier plane (Figure 3b) was performed,
on which the propagation directions of the waves can be more explicitly visualized.

Figure 2. SEM images of the structures fabricated by MPP. (a,b) SEM images of four structures with
different dimensions. (c) SEM image of the structure with the radius of curvature r = 20µm. (d) SEM
image of the structure with r = 30µm. (e) SEM image of the structure with r = 40µm. (f) The magnified
SEM image of the dielectric block.

Figure 3. LRM images of the reflection and transmission of SPPs at the boundary of air and the
dielectric. The angles of incidence, reflection and transmission, respectively, are indicated by θi1, θr1,
θt1 at boundary 1 and θi2 (θi2 = θt1), θr2, θt2 at boundary 2. (a) Observed image in the image plane.
(b) Observed image in the Fourier plane.

By moving the laser focus onto different positions on the semicircle ridge, the incident angle of
SPPs impinging onto boundary 1 can be controlled. Here the reflection and transmission of SPPs with
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the variation of the incident angle θi1 (in the range of 0–90◦) at both boundaries 1 and 2 were observed.
Figure 4 presents the images (in the image plane) of SPP propagation with different incident angles.
The intensity of SPPs is greatly reduced when the waves hit onto the dielectric block. The reflected
waves at those two boundaries and the transmitted wave into the dielectric block are weakly visible.
Their existence can only be identified in the Fourier plane. Nevertheless, the transmitted waves out of
boundary 2 are always observable in the image plane. Also, an intensity variation of the transmitted
wave with respect to θi1 can be seen. The angles of incidence (θi1) and transmission (θt1 and θt2) can be
measured in the figures obtained in the image plane. Additionally, observations of propagating SPPs
in the Fourier plane were also performed, from where the angles of reflection (θr1) for different incident
angles are measurable. Here, the angle of reflection at boundary 2 (θr2) is not taken into consideration
due to the invisibility of the corresponding reflected waves within most of the incident angle range.
For the purpose of improving the measurement accuracy of those angles, multiple measurements
of each single angle (θi1, θr1, θt1 and θt2) under a fixed wave propagation direction were performed.
An average of the multiply measured data for the same angle is taken as the experimental data point
(see measured data in Figure 5). The measured data is presented together with an error bar, which
is obtained based on the calculated standard deviation. Moreover, the variation of the angles of
reflection and transmission with respect to the incident angle was also calculated analytically using
Equations (3)–(6). The analytical and measured dependence of the angles of reflection and transmission
on the incident angle is presented in Figure 5a indicating the results at boundary 1 and Figure 5b
representing the results at boundary 2. Agreement between the analytical results and the experimental
results is obtained. It has to be noted that the measurement error mainly results from the irregular
form of the propagating SPP waves. Additionally, the weak light intensity for some directions might
also affect the measurement results. Furthermore, it will be of significance to simulate and develop
an effective approach to quantitatively characterize the intensity variation of propagating SPPs in the
proposed structures for better control and optimization of their performance.

Figure 4. LRM images of the reflection and transmission of SPP waves at the air/dielectric boundary
depending on the angle of incidence. The range of the angle of incidence is between 0◦ and 90◦.



Sensors 2019, 19, 4633 7 of 10

Figure 5. Calculation and experimental measurement of the angles of transmission and reflection
with respect to the incident angle. The measurement error of incident angles is within ±2.5◦.
(a) The calculated and measured angles of transmission and reflection at boundary 1. The indications,
the blue line (−): calculated θr1, the blue symbol (•): measured θr1, the red line (−): calculated θt1,
the red symbol (‚): measured θt1. (b) The calculated and measured angle of transmission at boundary 2.
The indications, the red line (−): calculated θt2, the red symbol (‚): measured θt2.

4. Conclusions

In conclusion, the reflection and transmission effects of SPPs at the boundaries between two
different dielectrics are investigated. A special surface metallic structure with micrometer- and partially
also nanometer-sized dimensions, which is composed of a dielectric semicircle ridge and a dielectric
block, was designed and realized for this investigation. A microscope projection photolithography
technique was applied for the fabrication of the proposed structures. The excitation of SPPs and
experimental observations of their propagation behavior were realized using leakage radiation
microscopy. The variation of the angles of reflection and transmission with respect to the angle
of incidence was analytically estimated and experimentally measured. The validity of the law of
reflection and Snell’s law in surface plasmon polaritons (SPPs) is confirmed. The integrated structures
reported in this work might lay the foundations for novel applications in sensing when functionalized.
This will be part of our future work which will aim at measuring the dependence of the SPP behaviors
depending on the environmental conditions.
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