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We present a general theoretical framework for treating particle beams as time-
stationary limits of many particle systems. Due to stationarity, the total particle
number diverges, and a description in Fock space is no longer possible. Nevertheless,
we show that when describing the particle detection via second quantized arrival
time observables, such beams exhibit a well-defined “local” counting statistics, that
is, full counting statistics of all clicks falling into any given finite time interval. We
also treat in detail a realization of such a beam via the long time limit of a source
creating particles in a fixed initial state from which they then evolve freely. From
the mathematical point of view, the beam is described by a quasi-free state which, in
the one-particle level, is locally trace class with respect to the operator valued measure
describing the time observable; this ensures the existence of a Fredholm determinant
defining the characteristic function of the counting statistics. C© 2013 AIP Publishing
LLC. [http://dx.doi.org/10.1063/1.4801780]

I. INTRODUCTION

The statistical interpretation of quantum mechanics asserts that all predictions of the theory are
about probabilities estimated as relative frequencies in repeated measurements. In each “single shot”
of such a run of repeated experiments just one quantum system will be prepared and then measured
on. However, this scenario is rarely realized in real experiments: It is much more common to prepare
a stream of systems by some source, and to use detectors, which are continuously active and may
click whenever a particle triggers them in the right way. The final result of such an experiment is then
not a probability but a count rate, normalized to the production rate of the source. It is obvious that
these two pictures (see Fig. 1) are closely related, and often the normalized count rates are simply
identified with probabilities.

While the theoretical concepts needed to account for repeated single particle experiments
are well established, the tools for describing beams, especially stationary beams, are not so well
developed. It is the aim of this paper to close this gap, and to provide a clear conceptual and
mathematical framework for beams. We believe that this may help to clarify some issues like the
controversy about the correct quantum state describing a propagating laser beam.1–3 By focusing on
the full time resolved counting statistics it may also help to give a systematic background to timing
issues in cryptography4 or foundational experiments.5 We were led to this problem in the course
of a project on the tomography of single photon sources. Clearly, in this case it is relatively easy
to get beam-type data, in which, for example, the antibunching dip in the g(2)-correlation function
indicates single particle emission.6, 7 On the other hand, the emission time of individual particles is
not controlled in beam mode, so absolute click times are meaningless. Hence it is impossible to get
a full tomography of the single particle state created by such a source on demand; beam data and
single-particle statistics have to be combined. But this requires a coherent structure in which both
make sense.

The comparison of mathematical structures for single-particle theory and theory of beams is
summarized in Table I. As an intermediate column we added many-particle systems, which also
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FIG. 1. Schematical comparison between (a) the single-particle scenario and (b) the beam scenario (right).

reflects our construction procedure. From the single-particle description one gets to this level by the
formalism of “Second Quantization.” This is then adequate for beams of finite duration, which have
a finite total number of particles. Implicitly, at this level one is forced to describe the initial and
final transients, which are, however, irrelevant for the practical description of stationary beams. The
purpose of this paper is to go to the third column, the stationary limit, in which one gets a simplified
description without transients.

In the standard framework of quantum mechanics each type of systems is assigned a Hilbert
space H, and a Hamiltonian H. This setting will be kept on all levels. For the many-particle systems
this becomes Fock space with the corresponding second quantized Hamiltonian of non-interacting
systems. The statistical character of the systems (Bosons or Fermions), which is irrelevant at the single
particle level, plays a crucial role here. The Hilbert space of the infinite beam is not explicitly used,
because we carry out the stationary limit on the level of expectation values. It could be constructed
as the Gelfand–Naimark–Segal (GNS) Hilbert space of the stationary state in a certain quantum
field theory over the time axis, but for the present paper we found no advantage in introducing these
structures. The key element of our construction are arrival time observables, which are covariant
with respect to the given time evolution. In second quantization this becomes an observable whose
output space consists of click sequences or, more formally, counting measures, which assign to
any time interval the number of clicks in that interval. The expectation of such an observable in
any state is thus a point process.8 Of course, its statistical properties depend on the state. Here we
make a very special assumption, which we do intend to lift in future work, namely, that the beam
particles are as uncorrelated as possible under the Bose/Fermi constraint. Technically this means
that we consider quasi-free states. This assumption is very natural if not canonical, when we look
at beam experiments as analogs of single-shot measurements: The successive shots are assumed to
be independent in any estimation of probabilities, so quasi-freeness is the appropriate formulation
of this standing assumption in the beam setting. One could go even further and require that the
beam is so thin that the statistical character of the particles becomes irrelevant, but we found this
unnecessary.

On the other hand there are many interesting beams which do not satisfy this independence
assumption, and for which the inter-particle correlations contain the relevant information sought by

TABLE I. Comparison of mathematical structures for three settings described in the text.

Single particle Many particles Beam

Hilbert space H Fock space over H Not explicitly used
State Density operator Quasi-free density operator Non-normal quasi-free state
Measurement Arrival time POVM 2nd quantized arrival time POVM
Outcome Click time Finite Infinite

Sequence of click times
Statistics Global Local
1st moment Expectation Count rate
2nd moment Variance Correlation functions
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the experiment. A typical example is the light from continuously driven “single photon sources.”
Here the successive photons are correlated because the emitting atom or vacancy center needs time
to recover after each emission. There are several formalisms for dealing with such correlations,
such as the cavity input-output formalism,6 quantum stochastic integration,9 or a continuous time
version of matrix-product states.10, 11 In these approaches, however, the emitted particles usually do
not undergo their own intrinsic time evolution, which creates some problems in combining these
approaches with the framework of the current paper, which is explicitly built on the time evolution
of the beam particles. We intend to resolve these problems in the future.

Our paper is organized as follows. In Sec. II we describe the detection side of the scheme,
i.e., arrival time observables and their second quantization. In order to make the paper reasonably
self-contained, we begin in with brief statements of some relevant prerequisites from the theory
of counting processes.8, 12, 13 In Sec. III we come to the preparation side, describing the class of
quasi-free states in Fock space, and compute the full counting statistics for such states. Prerequisites
comprise Fredholm determinants,14 which are needed to give an explicit description of the full
counting statistics. Point processes rather similar to the ones we find have been discussed in the
mathematical literature under the heading of “determinantal processes.”15 However, to the best of
our knowledge, these were always considered to be stationary in space16, 17 rather than in time, and
so do not involve the machinery of arrival time positive operator valued measures (POVMs) needed
in our case. Section IV contains the main result of the paper: we extend the counting statistics for
quasi-free states to the time-local counting statistics of stationary beams. In particular, Sec. IV B
is devoted to a concrete way of going to the stationary limit starting from an explicit dynamical
description of particle creation. In Secs. IV C and IV D we give a general scheme for describing
local counting statistics for quasi-free stationary beams; in particular, we get explicit formulas for
correlation functions. Finally, Sec. V is devoted to some examples: We apply the results to compute
the second order correlation function for a quasi-free beam stationary for the free Hamiltonian,
measured using the simplest time-covariant observable. We also look at plane waves viewed as
many-particle states. Often enough such an interpretation is suggested in textbook treatments of
scattering solutions of the stationary Schrödinger equation for one-particle potential scattering. Here
we take it literally, and as a bonus get correlations and waiting time distributions in such a beam.

II. COUNTING OBSERVABLES

Let us fix some notation. Throughout, H will be the Hilbert space of a single particle. By �s(H)
we denote the Fock space over H, with s = + 1 for Bosons and s = − 1 for Fermions. When it is
irrelevant, or clear from the context, the index s will be omitted. For an operator A on H, we will
denote by �s(A) the operator, which on N-particle wave functions acts like the N-fold tensor power
A⊗N. Clearly, �s(AB) = �s(A)�s(B).

For operator valued or scalar valued measures μ we abbreviate the integral over a scalar function
f as

μ[ f ] =
∫

μ(dx) f (x), (1)

i.e., we use round brackets for the set function and square brackets for the integral, i.e., the expectation
value functional in the case of a probability measure.

For observables (POVMs = “positive operator valued measures”) the discrete case, in which
points have finite measure, is often used. Then F[ f ] = ∑

x f (x)Fx, where Fx are positive operators
with F[1] = ∑

x Fx ≤ 1. The projection valued special case is characterized by FxFy = δxyFx, or in
a form also valid in the continuous case: F[ fg] = F[ f ]F[g].

In most textbooks, observables are simply identified with self-adjoint operators A, which pre-
supposes that X ⊂ R and takes F as the spectral measure of A, so A = ∫

F(dx)x = F[x]. The same
measure also defines the one-parameter unitary group exp (itA) = F[eitx] generated by A. Generators
are second quantized by A �→ d�(A), where �(exp (itA)) = exp (itd�(A)) for all t. However, for the
purpose of this paper it is much more appropriate to start from POVMs on some outcome space
X, which need not be the real line. The point is that for the natural second quantization of such
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POVMs18 the outcome space also changes: where the observable F at the one-particle level gives
the probability of outcomes x ∈ X, its second quantization �F will correspond to a measurement of
F on every particle, and the result of this measurement is a distribution of points in X.

The probabilities for such measurement outcomes constitute a so-called “point process.” In the
following we will first describe the relevant facts about such processes; for a detailed theory, we refer
to Ref. 8. In this framework, we will then formulate the structure of second quantized arrival time
POVMs, which provide abstract description for the measurement of detection times for a system of
quantum particles.

A. Point processes

A point process is a probability measure on the outcome space consisting of collections of
(not necessarily distinct) points in a set X. We can think of each outcome as a possibly infinite
numbered list (x(1), x(2), . . . ) with x(i) ∈ X, with the understanding that the ordering of the elements
is irrelevant but, in contrast to the set {x(1), x(2), . . . }, we do count the number of occurrences of
each x ∈ X. A way to express this compactly is to take as the outcome of a point process the so-called
empirical measure

ξ =
∑

i

δx(i),

where δx denotes the point measure (with δ-function density) at x ∈ X. A measure ξ of this form
is also called a counting measure, and is characterized among measures by the property that the
measure of each set is an integer, namely, the number of points xi in that set. Using the bracket
notation introduced above, we then have ξ [ f ] = ∑

i f (x(i)) for an empirical measure ξ = ∑
iδx(i).

Since this bracket is linear in f, we can use it to characterize the probability distribution of a point
process by its Fourier transform, i.e., by the expectation 〈 · 〉 of the function ξ �→ exp (iξ [f]). This is
called the characteristic function

C( f ) = 〈
eiξ [ f ]

〉
(2)

of the distribution and contains the full counting statistics.
As an example, let us consider the finite case |X| < ∞. Then for a large total number of outcomes

each point x ∈ X occurs several times. The typical random variables to describe the system are thus
the occupation numbers n(x) = |{i|x(i) = x}|, which are just the weights of the empirical measure
ξ = ∑

xn(x)δx. Consider the occupation number tuples NX as |X|-tuples as tuples of real numbers.
Then the point process amounts to a probability distribution onRX concentrated on integer points. Its
Fourier transform, i.e., the characteristic function in the usual sense, is the expectation of exp (in · f)
= exp (i

∑
xn(x)f(x)) = exp (iξ [f]), where in the first expression the dot indicates the scalar product

in RX . The values of the function f(x) are thus the components of the vector valued Fourier variable.
This finite setting arises frequently from the continuous case by coarse graining, i.e., when we ask
reduced questions. Consider a partition of X into k disjoint subsets X� of X, and let χ� denote the
indicator function of X�. If we want to evaluate the joint distribution p(n1, . . . , nk) of occupation
numbers n� = |{i|x(i) ∈ X�}|, it suffices to evaluate the characteristic function on the subalgebra of
step functions f (x) = ∑k

�=1 f� χ�(x). The f� are then the components of the Fourier vector, i.e., we
get the desired joint distribution from∑

n1,...nk

p(n1, . . . nk)ei
∑

� f�n� =
〈
ei

∑
� f�ξ (X�)

〉
= C(

∑
� f�χ�) = C( f ). (3)

If the particle numbers are independent for every partition of X into sets X�, we have a Poisson
process, which is characterized by a measure μ on X, called the intensity measure of the process,
such that p(n1, . . . nk) = ∏

�μ(X�)n/(n!)exp (–μ(X�) and hence,

C( f ) = exp
∫

μ(dx)
(
ei f − 1

)
. (4)



042109-5 Kiukas, Ruschhaupt, and Werner J. Math. Phys. 54, 042109 (2013)

The kth moment of the point process is defined as the uniquely determined permutation sym-
metric measure mk on Xk, satisfying∫

mk(dx1 · · · dxk)
k∏

j=1

f (x j ) = 〈 ξ [ f ]k〉.

Using arbitrary functions f on Xk, we can equivalently give the definition as

mk[ f ] =
〈 ∑

i1,··· ,ik

f (x(i1), . . . , x(ik))

〉
. (5)

Since

C( f ) =
∑

k

i k

k!

∫
mk(dx1 · · · dxk)

k∏
j=1

f (x j ), (6)

we can extract the moments from C(λf) by differentiating with respect to λ. For a Poisson process,
the expansion of the characteristic function in powers of f is C( f ) = iμ[ f ] − 1

2 (μ
[

f 2
] + μ[ f ]2)

+ O( f 3), so the first moment is m1 = μ and the second is m2 = μ⊗μ + μ◦�− 1 with the
diagonal map �(x) = (x, x). The second moment thus has a singular part concentrated on the
diagonal. This is not a special feature of the Poisson process, but occurs for any counting process.
It is, therefore, customary to consider a modified set of moments, called factorial moments,8 or
“correlation functions,”15 which do not have such singularities. Like the moment mk, the factorial
moment of order k, which we denote by m̂k , is a permutation symmetric measure on Xk. For a
function f of k variables, the factorial moment is defined by the following expectation:

m̂k[ f ] =
〈 ∑

i1,···ik

distinct

f (x(i1), . . . , x(ik))

〉
. (7)

By comparing the expression (7) to (5) it is clear that the exclusion of multiply occurring indices
in the former just has the effect of eliminating the singular term from the second moment. For the
Poisson process one has m̂k = μ⊗k for all k.

The factorial moments are most easily obtained from the characteristic function C by observing
that the generating function

Ĉ( f ) =
∑

k

1

k!

∫
m̂k(dx1 · · · dxk)

k∏
j=1

f (x j ) (8)

is related to C just by a transformation of the argument:

C( f ) = Ĉ(ei f − 1). (9)

As an example of using (9), consider the probability pY(n) of finding exactly n particles in a
measurable region Y⊂X. By (3) and (9), we get the relation

∞∑
n=0

pY (n)zn = Ĉ((z − 1)χY ) (10)

for z = eiλ, where χY is the indicator function of Y. In particular, we get the no event probability
directly from the factorial moment generating function by analytic continuation:

pY (0) = Ĉ(−χY ) . (11)

These probabilities determine the interval statistics of a point process on the time axis X = R.
Indeed, let p0(t1, t2) = p[t1,t2)(0) denote the probability for not finding a click in the interval [t1, t2).
Then the probability of having no click on [t1, t2) and at least one click just before t1, say in the
interval [t1 − ε, t1), is the same as having no click on [t1, t2) and at least one in [t1 − ε, t2), which
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is p0(t1, t2) − p0(t1 − ε, t2). Hence the conditional probability for having no click on [t1, t2), on
the condition of having at least one in [t1 − ε, t1), is

p0(t1, t2) − p0(t1 − ε, t2)

1 − p0(t1 − ε, t1)
.

At the limit ε → 0, this tends to 1 − the probability of having to wait at most time τ = t2 − t1 for
the next click, after a click at t1. Hence the probability density ws(τ ) for the waiting time τ ∈ [0, ∞)
given a click at s is

ws(τ ) = −
(

∂p0

∂t1
(s, s)

)−1
∂2 p0

∂t1∂t2
(s, s + τ ). (12)

Since we will eventually apply the above formalism to particle detection processes, we close
this subsection by a remark on the role of the factorial moment densities in the standard theory of
photon counting used in quantum optics. If X has a natural measure dx (typically X = Rm with the
Lebesgue measure), we can often write m̂k(dx1 . . . dxk) = h(k)(x1, . . . , xk)dx1 . . . dxk for a density
function h(k). In Glauber’s model of a photon detection process, we have

h(n)(x1, . . . , xn) = const · G(n)(x1, . . . , xn, xn, . . . , x1),

where G(n) is the usual “correlation function” defined using the field operators.6, 19 In this context,
one also typically uses the normalized correlation functions, which we define for a general point
process by

g(n)(x1, . . . , xn) = h(n)(x1, . . . , xn)

h(1)(x1) · · · h(1)(xn)
. (13)

B. Second quantization of general observables

One reason for introducing characteristic functions of point processes is that they make the
construction of the second quantized observable �F from the single particle observable F extremely
simple.18 Indeed, if we just express the idea that �F measures F on all the particles we get, restricted
to the N-particle space, the operator(

(�F)
[
eiξ [ f ]

])
N =

∫
F(dx1) ⊗ · · · ⊗ F(dxN )e

∑
i f (xi ) = (

F
[
ei f

])⊗N
.

Taking the direct sum over N, we get the fundamental formula

(�F)
[
eiξ [ f ]

] = �
(

F
[
ei f

])
. (14)

This expression makes sense on full Fock space, i.e., it does not require restriction to the Bose
or Fermi sector. Hence, for a state given by a density operator ρ on this space the full counting
statistics can be extracted from the characteristic function

C( f ) = tr ρ (�F)
[
eiξ [ f ]

] = tr ρ �(F
[
ei f

]
). (15)

Of course, for a Bose or Fermi system, the operator ρ has support in the appropriate subspace and
we can replace the � in this formula by the corresponding restriction �s.

The factorial moments can be computed from this using Eqs. (9) and (8). For a state ρ on full
Fock space we get

Ĉ( f ) = tr ρ�(1 + F[ f ]) =
∞∑

N=0

tr ρN (1 + F[ f ])⊗N =
∞∑

k=0

tr ρ̂k F[ f ]⊗k , (16)

where ρ̂k is the reduced k-particle reduced density operator

ρ̂k =
∞∑

N=k

(
N

k

)
tr[k+1,...,N ] ρN . (17)
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Hence the factorial moments are

m̂k(dx1 · · · dxk) = k! tr ρ̂k F(dx1) ⊗ · · · F(dxk). (18)

C. Arrival time observables and their dilations

Due to an old argument of Pauli, an arrival time observable cannot be a spectral measure of
a self-adjoint “time operator.” However, the generalization of the notion of observables to POVMs
immediately allows time-shift covariant observables to be constructed.20 In this subsection we
describe the general construction of observables, which measure the arrival time t and arrival
location x of a particle.21 Here location is taken in a rather broad sense, and could just be the number
of the detector which responds. We consider arbitrary observables, which are covariant for time
translations, i.e.,

exp(i Ht)F[ f ] exp(−i Ht) = F[τt f ], (19)

where H is the Hamiltonian, and τ is the time shift on functions of t and x, i.e., (τ t f )(x, t′)
= f (x, t′ − t).

As an example consider a free particle on the line, i.e., H = L2(R, dx), with Hamiltonian Hψ

= − (�2/2m)ψ ′′. Diagonalizing H is to take the Fourier transform and rewriting the Hilbert space in
the variables E = p2/2m and η = signp, so we get H ∼= L2(R+, d E) ⊗ C2 with Hamiltonian Hψ(E,
η) = Eψ(E, η). In this representation a “time operator” would be i

�

d
d E . However, this operator is

not self-adjoint, since it has one non-zero defect index arising from the boundary condition at zero.
This is just a reflection of Pauli’s argument. However, we can consider the larger Hilbert space
H̃ = L2(R, d E) ⊗ C2, i.e., we formally allow also negative energies. In this extended space the
time operator is a well-defined self-adjoint operator canonically conjugated to the multiplication
operator “energy.” We can use it to compute probability distributions of time in the usual way, with
the only modification that the states we consider all lie in the “physical subspace” with positive
energy. This gives the Kijowski distributions,20 which can be written as tr ρ F(·) for a POVM F
satisfying (19).

This example generalizes to a much wider setting. The standard method21 to build all covariant
observables (even for a general covariance group with representation g �→ Ug) involves two steps: one
first uses the Naimark dilation theorem to turn any generalized (POVM) observable into a projection
valued one, say F̃ , which lives on another Hilbert space H̃ and is connected to F by an isometry
V : H → H̃ so that F[ f ] = V ∗ F̃[ f ]V . There is also a unitary group representation Ũ on H̃, for
which F̃ is covariant, and which is intertwined by V , i.e., ŨgV = V Ug . In the second step one uses the
theory of Mackey22 who called projection valued covariant observables “systems of imprimitivity”
and showed their intimate connection to induced representations. This second part is easy for just
the time translation group R, and leads to standard Schrödinger pairs of position and momentum
operators, with some multiplicity. Thus in the dilation space “energy” is the multiplication operator
canonically conjugated to “time,” and has therefore purely absolutely continuous spectrum. Since it
is connected by an intertwining isometry V with the given Hamiltonian the covariant time observable
approach is limited to Hamiltonians H with absolutely continuous spectrum. Absolutely continuous
spectrum will therefore be our standing assumption on the Hamiltonian in the sequel. Diagonalizing
it leads to a representation of the Hilbert space in direct integral form

H =
∫ ⊕

d E HE . (20)

This is shorthand for the space of wave functions, which are functions of energy such that ψ(E)
∈ HE , the multiplicity space at E. This will, of course, be {0} when E is not in the spectrum of H
(e.g., when E < 0 for the standard kinetic energy). Scalar products are computed as

〈φ|ψ〉H =
∫

d E 〈φ(E)|ψ(E)〉HE (21)
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with the scalar product of HE . The technical (measurability) conditions on direct integral Hilbert
spaces are to ensure that this expression makes sense (see, e.g., Ref. 23). Of course, the Hamiltonian
is the multiplication operator (Hψ)(E) = Eψ(E) in this representation. More generally, a bounded
operator A commutes with H if (Aψ)(E) = AEψ(E) for some measurable family of operators
AE ∈ B(HE ). We write for this

A =
∫ ⊕

d E AE . (22)

If a space (20) allows a projection valued covariant time observable, and hence a self-adjoint
conjugate time operator, this operator generates a unitary group which shifts the energy variable. It
thus introduces a canonical unitary identification between all the spaces HE . In particular, they must
be non-zero also for negative energies, excluding all semi-bounded Hamiltonians. Nevertheless, this
structure appears as the dilation of any given time observable. The Hilbert space in that case can be
written either as the tensor product L2(R, d E) ⊗ K or, in the spirit of (20), as the space of K-valued
L2-functions on R. The key difference to the general case of (20) is that now KE = K for all E. The
time observable in this case is computed in the usual way by Fourier-transforming to L2(R, dt) ⊗ K,
and the joint measurement of t and x is realized in this tensor product. It is thus characterized by the
following data:

1. a Hilbert space K, which will be the energy-independent multiplicity space of the dilated
observable,

2. a family of isometries VE : HE → K, which together define the dilation isometry V : H →
L2(R, d E) ⊗ K via (V ψ)(E) = VEψ(E), and

3. an observable G with outcome space X in the Hilbert space K.

We have to compute the expectation operator F[h] for arbitrary functions f of (t, x) but it suffices
to do this for the product functions f(t, x) = h(t)g(x). For these the above data determine the operator

F[hg]ψ(E) =
∫

d E ′ ĥ(E − E ′) V ∗
E G[g]VE ′ψ(E ′), (23)

where ĥ denotes the Fourier transform of h, normalized as

ĥ(E) = 1

2π

∫
dt ei Et h(t). (24)

This ensures that for g = 1 and h↗1 we find F(h) ↗ 1, so the observable F is normalized. It
is convenient to allow also subnormalized observables, i.e., F(1) ≤ 1. In that case the operator
1 − F(1) measures the probability that the particle never arrives. By construction this operator will
commute with H, and the only modification in the above setup is to allow V to be a general operator
with ‖V ‖ ≤ 1, rather than an isometry.

III. QUASI-FREE STATES

A. Physical background

Let us begin with a Boltzmann statistical model of a multi-particle preparation: Suppose we
have a one-particle preparation with density operator σ 0, which we run at N random times ti. Hence,
if σ (t) = e− iHtσ 0eiHt is the time translate of σ 0, we get the state

⊗N
i=1 σ (ti ). We ignore for the

moment the symmetrization requirements, so we apply the observable F to each of these systems
separately, obtaining a point xi as a measuring result. In order to determine the characteristic function
of the counting statistics we need the distribution of the emission times, which we take to be Poisson
with intensity measure μ (i.e., with characteristic function Ctime(g) = exp

∫
μ(dt)(eig − 1), see (4)).

From this we get the characteristic function of the counts xi as

C( f ) = exp
∫

μ(dt) tr σ (t)F(ei f − 1). (25)
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This is again Poisson, and depends only on the integral σ = ∫
μ(dt)σ (t). The corresponding state on

full Fock space is
⊕

N
1

N !σ
⊗N , where the factorial is the usual correction factor for indistinguisha-

bility familiar in classical statistical mechanics.
Of course, this state is not consistent with Bose or Fermi statistics. Its closest analogue is to

replace 1
N !σ

⊗N , by Psσ
⊗NPs, where Ps denotes the projection onto the (anti-)symmetric subspace

of H⊗N . That is, we consider the quasi-free state with density operator

ρ = �s(σ )

tr �s(σ )
(26)

on �sH. Here we do not take σ to be normalized. Instead the normalization factor of σ determines
the particle number distribution. To be precise, (26) is a “gauge invariant” quasi-free state. More
general quasi-free states, which do not necessarily commute with particle number are defined in
Ref. 24, and will not be studied in this paper. Quasi-free states are plausible models for non-
interacting particle beams, because they give the same results as Boltzmannian independence in the
weak beam limit. They also describe naturally the production of a beam. Consider an oven, modeled
as an ideal gas with one-particle Hamiltonian H, at temperature T = 1/(kβ), and chemical potential
μ. Then we have the grand canonical quasi-free state with σ = exp(−β(H − μ1)). We then get a
beam by letting some particles escape through a hole, and we can also add (possibly time-dependent)
one-particle potentials, collimating filters, and the like. The important point is that as long as we
only apply one-particle operations, i.e., unitary operators of the form �(U), the quasi-free character
of the initial state will be preserved.

In the context of quantum optics this type of photon beam is usually called thermal light (see,
e.g., Ref. 6), the state appearing as a special case of “chaotic state.”19 The latter is defined in terms
of the occupation number states |{nk}〉 as

ρ =
∑
{nk }

∏
k

α
nk
k

(1 + αk)1+nk
|{nk}〉〈{nk}|, (27)

where k indexes the modes, and the αk > 0 are parameters satisfying
∑

k αk < ∞, each αk coinciding
with the expectation value of the mode k occupation number. In fact, any quasi-free state of the form
(26) for s = 1 can be written as (27) by choosing the modes according to an eigenbasis of the positive
trace class operator σ ; the parameters αk are then the eigenvalues of σ̂ = σ/(1 − σ ).

B. Characteristic functions

A crucial tool in the following is a formula for the denominator in (26). When A is trace class
(i.e., ‖A‖1 = tr

√
A† A < ∞), and, in the Bose case ‖A‖ < 1, then �s(A) is also trace class and

tr �s(A) = det(1 − s A)−s . (28)

For the theory of such infinite dimensional determinants we refer to Ref. 14. Using this formula, we
get a simple expression for the characteristic function of a counting measurement:

C( f ) = tr �(σ )�
(
F

[
ei f

])
tr �(σ )

= tr �
(
σ F

[
ei f

])
tr �(σ )

= det
(
1 − sσ F

[
ei f

])−s

det(1 − sσ )−s

= det
(
1 − s(1 − sσ )−sσ

(
F

[
ei f

] − 1
))−s

.

To summarize

C( f ) = det
(
1 − sσ̂ F

[
ei f − 1

])−s
, (29)

with σ̂ = σ

1 − sσ
, (30)

where we took the liberty to write a fraction because numerator and denominator commute, and the
expression can be evaluated in the functional calculus. It is useful to note the bounds on the operators
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σ, σ̂ in the Bose and Fermi case: Clearly both operators must be positive and have finite trace. In the
Bose case we need in addition that σ ≤ (1 − ε)1 for some ε > 0, which is equivalent to saying that
σ̂ is bounded. In the Fermi case it is the other way around: σ can be any bounded operator, which
implies that σ̂ is strictly less than the identity. The formula (29) contains the complete counting
statistics for the counting observable (compare also Ref. 25).

C. Factorial moments

From (29) and (9) we get the factorial moment generating function

Ĉ( f ) = det (1 − sσ̂ F[ f ])−s = tr �s (̂σ F[ f ]). (31)

Comparing this with (16) we see that the k-particle reduced density operators of the quasi-free state
are ρ̂k = Ps σ̂

⊗k Ps , so by (18), the factorial moments are given by

m̂k(dx1 · · · dxk) = k! tr Ps σ̂
⊗k Ps F(dx1) ⊗ · · · F(dxk). (32)

The first moment is simply m̂1(dx) = tr σ̂ F(dx); for the second moment, the expression can
be further reduced, so that traces have only to be taken in the one particle space. To this end we
write the (anti-)symmetrization projection Ps = (1 + sF )/2, where F is the unitary transposition
operator, and use tr(F A ⊗ B) = tr(AB). Then

m̂2(dx dy) = m̂1(dx)m̂1(dy) + s tr(̂σ F(dx )̂σ F(dy)). (33)

Now the trace on the right-hand side is a positive measure on X × X and is also positive definite
in the sense that it gives positive expectation to functions of the form f (x) f (y). This shows that
for Bosons we always have the bunching effect g(2) ≥ 1 and the antibunching effect g(2) ≤ 1 for
Fermions. (Recall the definition (13) of the correlation function g(2).) Clearly, there are interesting
cases of photon antibunching, but these require artfully correlated, not quasi-free sources.

For later use we note the kth order generalization of (33). The expression for tr(Vπ A1 ⊗ ·Ak),
for a permutation operator Vπ is based on the cycle decomposition of the permutation π , say
π = (i1, . . . , ir)(j1, . . . , js)···, and gives the product of the traces

tr(Ai1 · · · Air ) tr(A j1 · · · A js ) · · · .

It is convenient to introduce the measures

μ�(dx1 · · · dx�) = tr

(
k∏

α=1

σ̂ F(dxα)

)
, (34)

so that μ1(dx) = m̂1(dx), and (33) reads m̂1(dx dy) = μ1(dx)μ2(dx) + sμ2(dx dy). Then, for ex-
ample, for k = 3, we find

m̂3(dx dy dz) = μ1(dx)μ1(dy)μ1(dz) + s
(
μ2(dx dy)μ1(dz) + cyclic

)
+2 �eμ3(dx dy dz). (35)

For general k we get similar expansions into products of measures, the combinatorics of which
requires some representation theory of the permutation group, which we will not expound here.

D. “Small s” and parastatistics

We end this section with a remark on parastatistics and weak beams. If we write (29) as

Cs( f ) = exp tr

(−1

s
log(1 − sσ̂ F

[
ei f − 1

]
)

)
, (36)

the formula gives corrected Boltzmann statistics (25) for s = 0, and parafermi (resp. parabose)
statistics of order p for s = − 1/p (resp. s = 1/p). From (36) we get a rather uniform notion of weak
beams: Whenever σ is small (or in the parastatistics case: when s is small), we nearly get Poisson
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statistics. In quantitative terms, the operator norm ‖σ̂‖∞ (the largest eigenvalue) measures well the
maximal effect of statistics, in some sense the maximal phase space density:

| log Cs( f ) − log C0( f )| ≤ ‖σ̂‖1 β(|s|‖σ̂‖∞) with β(h) = −1 − log(1 − h)

h
≈ h

2
. (37)

E. For comparison: Coherent states

Quasi-free states (which are associated to, e.g., thermal light) are very different from coherent
states, which are commonly used in describing laser beams. In order to make the distinction clear, we
derive here the characteristic function and factorial moments for the latter case. The (Bose) coherent
states are given by the non-normalized vectors

eφ =
∞⊕

N=0

1√
N !

φ⊗N , (38)

in the Bose Fock space �+(H). The characteristic function (15) is now

C( f ) = 〈
eφ˜ | �+(F

[
ei f

]
)eφ

〉
/‖eφ‖2 = exp〈φ|F(ei f − 1)φ〉. (39)

This is precisely the characteristic function (4) of a Poisson random field with intensity measure

μ(dx) = 〈φ|F(dx)φ〉. (40)

It is remarkable that this holds for any second quantized observable. The factorial moments are now
simply products of μ:

m̂k(dx1 · · · dxk) = μ(dx1) · · ·μ(dxk). (41)

Comparing with (33), we see that a quasi-free state with the same first moment, i.e., with σ̂ = |φ〉〈φ|,
has larger second moment. In particular, thermal light has more variance than coherent light of same
intensity.

From (41) we also immediately see that for any coherent state and any counting observable, all
the correlation functions (13) are constant, g(n)(x1, . . . , xk) = 1, as expected.6, 19

IV. LOCAL COUNTING STATISTICS FOR STATIONARY PARTICLE BEAMS

The main aim of our paper is to establish local counting statistics even in situations where
the global particle count is infinite, as will be the case for any stationary beam, or translationally
invariant gas. We will start by proving an essential technical result needed for the “localization,”
and then we present a physically realistic particle creation model leading to a stationary beam in a
suitable long time limit. Finally, we put this together with the arrival time measurements to provide
concrete formulas (e.g., correlation functions) for the statistics of the “click” times for the particle
detection from the beam.

The idea is to use the formula (29) for the characteristic function even in situations, where
the operator σ̂ has infinite trace, but the product σ̂ F is sufficiently well behaved so the formula
makes sense as written. Actually, even more general situations can be covered, if we replace σ̂ F by√

σ̂ F
√

σ̂ . Indeed, we will show that under a “local trace class condition,” which holds in case F is
an arrival time measurement and σ̂ describes a stationary beam as considered in Sec. IV C below,
the characteristic function can be written as

C( f ) = det
(
1 − s

√
σ̂ F

[
ei f − 1

]√
σ̂
)−s

. (42)
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A. The localization lemma

The characteristic function (42) is the same as (29) when σ̂ has finite trace. Indeed, we have the
identity26 det(1 + AB) = det(1 + B A), whenever both AB and BA are both trace class. In the case
at hand this is applied to the two Hilbert-Schmidt operators A = √

σ̂ and B = F
[
ei f − 1

]√
σ̂ . The

form given in the following lemma is even slightly more general.

Lemma 1. Let F be a measure on some set X, whose values are positive operators on a Hilbert
space H1, with F(X ) ≤ 1, and consider a subset X0⊂X. Let H2 be another Hilbert space and
W : H2 → H1 a bounded operator such that

tr W ∗F(X0)W < ∞ (43)

and in the Fermi case (s = − 1) also ‖W‖ < 1. Then the formula

C( f ) = det
(
1 − sW ∗F

[
ei f − 1

]
W

)−s
, (44)

for all f vanishing outside X0 defines the characteristic function of a point process in X0.

Proof. Consider the Naimark dilation F = V ∗ F̃V . Then for f with support in X0 we can write

W ∗F[ f ]W = W ∗V ∗ F̃[ f ]V W = W ∗V ∗ F̃(X0)F̃[ f ]F̃(X0)V W = W̃ ∗ F̃[ f ]W̃ ,

where W̃ = F̃(X0)V W , and at the second equality we used the projection valuedness of F̃ . Now by
assumption (43) the operator W̃ ∗W̃ has finite trace, i.e., W̃ is a Hilbert-Schmidt operator. Moreover
(relevant only for s = − 1) ‖W‖ < 1 implies ‖W̃‖ < 1, because F̃(X0) is a projection, and the
dilation operator V satisfies V ∗V = F(X ) ≤ 1. Hence W̃ W̃ ∗ satisfies all conditions required of an
operator σ̂ to define the counting statistics of a bona fide quasi-free state, with respect to a second
quantized observable. The associated characteristic function (29) is

C( f ) = det
(
1 − sW̃ W̃ ∗ F̃

[
ei f − 1

])−s
, (45)

which has the form stated in the lemma by the same argument that gave the equality of (29) and (42)
at the beginning of this section. �

Since we can take W = √
σ̂ in the lemma, we find tr

√
σ̂ F(X0)

√
σ̂ < ∞ as a sufficient condition

to apply (42). The similar looking condition ‖σ̂ F(X0)‖1 < ∞, which is suggested by the character-
istic function (29), is actually stronger. This is implied by the estimate tr

√
AB

√
A ≤ ‖AB‖1, which

holds for arbitrary positive operators A, B. (For a proof note that the trace norm is the sum of the
singular values, which dominates the sum of the absolute values of the eigenvalues (Theorem 1.15
of Ref. 14), and that AB and

√
AB

√
A have the same nonzero eigenvalues.)

As a byproduct we can now approximate the counting statistics of a stationary state by the
counting statistics of finite-beam ones:

Lemma 2. Suppose that W0 : H2 → H1 satisfies the conditions of Lemma 1 for a given measure
F and a set X0⊂X. Let W∞, Wα : H2 → H1 be bounded operators, such that W ∗

α → W ∗
∞ strongly,

and

WαW ∗
α ≤ W0W ∗

0 . (46)

Then W∞ and each Wα satisfy the conditions of Lemma 1, and for the associated characteristic
functions Cα , C∞ holds

C∞( f ) = lim
α

Cα( f )

uniformly for f with support in X0.

Proof. Defining W̃α for Wα as in Lemma 1, the assumption (46) gives W̃αW̃ ∗
α ≤ W̃0W̃ ∗

0 , which
implies that the conditions of Lemma 1 are valid also for each Wα and W∞, and that ‖W̃ ∗

αψ‖2

≤ ‖W̃ ∗
0 ψ‖2 for ψ ∈ H where now W̃ ∗

0 is Hilbert-Schmidt. Together with the strong convergence
W̃ ∗

α → W̃ ∗
∞, this implies convergence in the Hilbert-Schmidt norm. Hence, W̃αW̃ ∗

α → W̃∞W̃ ∗
∞ in
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the trace norm. Using (45), we get the uniform convergence of the Cα from the estimate | det(1
+ A) − det(1 + B)| ≤ ‖A − B‖1e‖A‖1+‖B‖1+1.26 �

Now, in order to approximate a stationary beam with non-trace class σ̂ , by a sequence of finite
beams with trace class σ̂α , it is sufficient to have the weak operator convergence

√
σ̂ α → √

σ̂ , and
majorization σ̂α ≤ σ̂0 by some σ̂0 with tr

√
σ̂0 F(X0)

√
σ̂0 < ∞. This will give uniform convergence

of characteristic functions for the local counting statistics.

B. Stationary limit of a particle source

We will now present a concrete way of building a stationary source starting from a particle
creation in the Fock space. To get an idea of the result we are looking for, let us briefly go back to the
Boltzmann statistical model (25). We assumed there that μ is a finite measure, so the total number
of particles had finite expectation. But we can also take μ(dt) = μ0dt as a multiple of Lebesgue
measure, where μ0 is the emission rate, i.e.,

σ = μ0

∫
dt σ (t), (47)

provided the integral is a bounded operator and, for finite intervals S, tr
√

σ F(S)
√

σ has finite trace,
as discussed in Subsection IV A. One can take this as a motivation for looking integrated trace class
operators (47) also in the case of Bose/Fermi statistics. We will now show how to arrive at such an
operator from a physically realistic description of beam generation which is consistent with statistics
from the outset.

For building a stationary source model it is best to include the particle generation in the
dynamics. In this way one can consider sources operating continuously for an arbitrarily long time.
The intuitive idea is that after being activated at time t = 0, the source creates particles with fixed
initial wave function φ, one after another, each particle subsequently evolving according to some
single particle Hamiltonian H with direct integral decomposition as discussed in Sec. II C. Formally,
this is expressed (see, e.g., the review,27,28) by evolving the many particle state ρ t according to the
master equation

d

dt
ρt = −i[d�(H ), ρt ] + λ(2aφρt a

†
φ − aφa†

φρt − ρt aφa†
φ), (48)

with the initial condition that ρ0 is the vacuum state. Here and in the rest of this section we consider
only the Bosonic case. Then λ > 0 quantifies the strength of the source, and d�(H) is the many
particle Hamiltonian corresponding to H. The time evolution t �→ ρ t is a quasi-free semigroup,27

so the Fock space state ρ t is quasi-free for each t ≥ 0. This reduces the dynamics to a one-particle
problem, which has the solution

σ̂φ(t) = 2λ

∫ t

0
ds esTφ |φ〉〈φ| (esTφ

)∗
, (49)

where Tφ = − iH + λ|φ〉〈φ| is the generator of a strongly continuous semigroup.
The integral σ̂φ(∞) is the analogue of (47). To compute it, we can formally solve the function

βψ (t) = �(t)〈etTφφ|ψ〉, in terms of γ ψ (t) = �(t)〈e− itHφ|ψ〉, where � is the Heaviside step function.
In fact, we get β̌ψ = Sφγ̌ψ , where ȟ denotes the inverse of the Fourier transform given in (24), and

Sφ(E) = (1 − λγ̌φ(E))−1. (50)

This gives 〈ψ |̂σφ(∞)ψ〉 = λπ−1
∫ ∞
−∞ |Sφ(E)γ̌ψ (E)|2 d E , corresponding to a quasi-free state which

is invariant with respect to the evolution (48) but not with respect to the free Hamiltonian H.
In order to get a state which is stationary for the free evolution, we now take another limit

σ̂ = lims→+∞ ei Hs σ̂φ(∞)e−i Hs . In the spirit of scattering theory, this amounts to translating the
state back in time with the free evolution, after having let it evolve a long time according to
the particle generating semigroup evolution. Since γe−i Hsψ (t) = γψ (t − s), we have eis E γ̌e−i Hsψ (E)
→ 2π〈φ(E)|ψ(E)〉 as s → + ∞, where φ(E) is the wave function φ in the H (energy) representation
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(20). Here we have used the fact that

〈e−i t H φ|ψ〉 =
∫

eit E 〈φ(E)|ψ(E)〉HE . (51)

Thus the final stationary limit is given by

σ̂ = 4πλ

∫ ⊕
d E |Sφ(E)|2|φE 〉〈φE |. (52)

In the 1D case with the free Hamiltonian, one can alternatively take a limit of moving the
source to − ∞ in space, which results in a similar expression but with the projection onto positive
momenta. Even in this case the denominator, which reflects the phase space density at the source,
still depends on the negative momentum components of φ.

There are, of course, some assumptions needed to make the above derivation valid. Physically,
we expect28 that the free evolution H should be fast enough compared to the strength of the source
so that the particles do not accumulate, or even condense, near the source, but move away as new
ones are created. Mathematically, the relevant assumptions can be expressed as follows: (i) The
wave function φ is bounded in the energy representation and (ii) the operator of multiplication by
Sφ(E) defines a bounded operator which keeps the Hardy class H2 − invariant. The assumption (i)
ensures that ‖γ ψ‖2/‖ψ‖ is uniformly bounded due to (51); in particular, the L2 Fourier transform γ̌φ

belongs to the Hardy class H2 − , and so can be extended to an analytic function in the open lower
half plane. Then (ii) implies that Sφγ̌ψ is square integrable, and has support on [0, ∞); hence Sφ is
well defined, the formal relation β̌ψ = Sφγ̌ψ makes sense, and (52) is bounded, the limits existing
in the weak operator topology.

The assumption (ii) can be replaced with stronger but more easily verifiable versions: for
instance, if γ φ is (absolutely) integrable, and γ̌φ(E) �= λ−1 for all E in the closed lower half plane,
then (ii) holds. Even stronger condition28 is λ

∫ ∞
0 |γφ(t)| dt < 1.

The assumption (ii) implies, in particular, that
∫ |Sφ(E)|2‖φE‖2 dE < ∞. In the next section we

will see in a more general context that this condition ensures tr
√

σ̂ F[ f ]
√

σ̂ < ∞ for any arrival
time observable F as in Sec. II C, and any f compactly supported in the time direction. By Lemma
1, the local counting statistics of � + F is therefore well-defined for the stationary state (52), and can
be obtained from (42).

In order to complete the discussion on this stationary limit, we have to check that the counting
statistics for the limit state (52) can be approximated by measuring the actual finite beam emitted
by the source. It is clear by construction that we can write σ̂s,t = ei Hs σ̂φ(t)e−i Hs = W ∗

s,t Ws,t , where
(Ws,tψ)(E) = √

λ/πeis E
∫ t

0 e−i Et ′
βφ,e−is H ψ (t ′) dt ′. Here Ws,t converge strongly when we take first

t → ∞ and then s → ∞. Moreover, σ̂s,t ≤ ‖Sφ‖2σ̂0, where σ̂0 is (52) without |Sφ(E)|2. Hence, it
follows from Lemma 2 that

lim
s→∞ lim

t→∞ Cs,t ( f ) = det(1 −
√

σ̂ F[ei f − 1]
√

σ̂ )−1, (53)

where Cs, t is the characteristic function (42) corresponding to the operator σ̂s,t .

C. General time-stationary beams

The following general scheme emerges from the above. We consider systems with Hamiltonian
H, and decompose the Hilbert space into a direct integral H = ∫ ⊕d E HE over the spectrum of H.
Stationary beams are described by an extension of quasi-free states, given in terms of a one-particle
operator

σ̂ =
∫ ⊕

d E σ̂ (E), (54)

commuting with the Hamiltonian. Here σ̂ (E) is a positive trace class operator in the multiplicity
space HE at E, which depends on the details of the source. The basic normalization condition for
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these operators is that

γ = 1

2π

∫
d E tr σ̂ (E) < ∞. (55)

We emphasize that no such operator is trace class. Indeed, a general trace class operator T
would have an integral kernel T (E, E ′) : HE ′ → HE so that (Tψ)(E) = ∫

dE′ T(E, E′)ψ(E′). The
trace of such an operator is tr T = ∫

d E tr T (E, E). In contrast, the operator (54) has the formal
integral kernel T (E, E ′) = σ̂ (E)δ(E − E ′), which is singular on the diagonal. Such operators do
arise from integration of trace class operators over time in the sense of (47): The time evolved
operator U ∗

t T Ut has integral kernel T(E, E′)exp (it(E − E′)). Integrating this with respect to time
we get the kernel 2πδ(E − E′)T(E, E). Hence the trace class condition for T turns into (55) for the
integral

∫
dt U ∗

t T Ut .
The direct integral form (54) or, in other words, the elimination of off-energy-diagonal terms in

the kernel for σ̂ is, of course, just the consequence of stationarity [̂σ , H ] = 0, and leads to a major
simplification in the computation of expectation values and rates.

D. Time-local counting statistics

We now want to combine the stationary sources given by σ̂ of the form (54), with a general
counting observable �sF, i.e., the second quantization of a general arrival time observable F, as
discussed in Sec. II C. The full local counting statistics is then contained in the characteristic function
C( f ) restricted to test functions f which have compact support in the time direction. Technically, this
approach is based on the discussion in Sec. IV A, which guarantees the existence of C( f ) in (42) for
any f with f(x, t) = 0 for t �∈[t1, t2], once we have the “local trace class condition”

tr
√

σ̂ F[χ ]
√

σ̂ < ∞, (56)

where χ (x, t) = 1 for t ∈ [t1, t2] and χ (x, t) = 0 otherwise. One of the consequences of this approach
is that we can always get a justification of the formula starting from finitely extended beams (trace
class σ̂ ) and going to a stationary limit in (42). There are many ways to do such a limit, which
corresponds to the many ways a beam which looks basically stationary during a fixed time interval
could begin in the distant past and end in the far future. The formula (42) thus captures the essence
of what we mean by “stationary beams.”

The rest of this subsection will be devoted to substantiating the above claim (56) for σ̂ of the
form (54), any time-covariant F, and any t1 < t2. We do this by showing the more general estimate

‖
√

σ̂ F[ f ]
√

σ̂‖1 ≤ ‖ f ‖∞γ |t2 − t1|, (57)

for any bounded complex (measurable) test function f such that f(t, x) = 0 for t �∈[t1, t2], where γ is
the rate constant from (55). First we apply the triangle inequality to a sum of positive operators, and
use that on positive elements the trace norm is just the trace. That is for positive operators Fα and
fα ∈ C we have ∥∥∥∑

α

fα Fα

∥∥∥
1

≤ max
α

| fα|
∑

α

tr Fα. (58)

Hence, for step functions f = ∑
αfαχα , with χ = ∑

αχα , the left-hand side of (57) is bounded by
‖ f ‖∞ tr

√
σ̂ F[χ ]

√
σ̂ . To prove (57), it is therefore sufficient to show that

tr
√

σ̂ F[χ ]
√

σ̂ ≤ γ |t2 − t1|. (59)

We do this by expressing F by its dilation F = V ∗ F̃V . Since F̃[χ ] is a projection, the trace we need
to compute is tr W ∗W with

W = F̃[χ ]V
√

σ̂ . (60)
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Since tr W ∗W = tr W W ∗ for any operator (where both sides might still be infinite), we now compute
tr W W ∗ = F̃[χ ]V σ̂ V ∗ F̃[χ ]. Note that

V σ̂ V ∗ =
∫ ⊕

d E VE σ̂ (E)V ∗
E (61)

commutes with the energy. Therefore, in the time domain it acts as a convolution operator:

(V σ̂ V ∗�)(t) =
∫

ds S(t − s)ψ(s)

with S(t) = 1

2π

∫
d E eit E VE σ̂ (E)V ∗

E . (62)

Here the integral defining S is convergent in trace norm by assumption (55), and by the Riemann-
Lebesgue lemma t �→ S(t) ∈ B(K) is a continuous function vanishing at infinity. Due to the con-
tinuity we can evaluate the trace as an integral on the diagonal of the kernel K(t, s) = S(t − s)
(Theorem 3.9 of Ref. 14):

tr F̃[χ ]V σ̂ V ∗ F̃[χ ] =
∫ t2

t1

dt trK S(0). (63)

But

trK S(0) = 1

2π

∫
d E tr σ̂ (E)V ∗

E VE ≤ γ. (64)

This completes the proof of the estimate (57).
According to Sec. IV A, in order to approximate the counting statistics of a stationary state

(described by σ̂ of the form (54)) by the counting statistics of finite-beam ones (with trace class σ̂α),
it is sufficient to find one majorizing σ̂0 of the form (54), with σ̂α ≤ σ̂0, and have

√
σ̂α → √

σ̂ at
least weakly. This will give uniform convergence of characteristic functions for the local counting
statistics.

E. Rates and correlation functions

Now that we have established well-defined counting statistics for the stationary beams con-
sidered above, we can extract the counting rates and correlation functions from the associated
characteristic function. For this we need the moments, which are best expressed in terms of the
operator valued function S(t), defined in (62). This depends both on the source via σ̂ and on the
observable chosen, via V . It also contains the required Fourier transformations, so all moments
are immediately expressed in the time domain. The idea is to reduce the factorial moments to the
measures from (34), rewritten by using the dilation:

μ�(dx1 · · · dx�) = tr
(
V σ̂ V ∗ F̃(dx1) · · · V σ̂ V ∗ F̃(dx�)

)
.

The operator under the trace has integral kernel

K (t0, t�) =
∫

dt1 · · · dt�−1S(t0 − t1)F̃(dx1)S(t1 − t2) · · · S(t�−1 − t�)F̃(dx�) .

Then the required trace is
∫

dt tr K (t, t), where the trace in the integrand is over K. In all these
expressions the argument of the measure F̃ is still the combination of time and arrival location. But
noting that with respect to time F̃ is just a multiplication operator, so for f(t, x) = h(t)g(x) we have
(F̃[hg]�)(t) = h(t)G[g]�(t). Here and in the following x stands only for the arrival location. If we
now take h and g as the indicator functions of small sets dt ⊂ R and dx⊂X, we find that

μ�(dt1 dx1, · · · , dt� dx�) = dt1 · · · dt� tr
(

S(t� − t1)G(dx1)S(t1 − t2) · · · G(dx�)
)

.

For the first (factorial) moment we thus get

m̂1(dt dx) = dt tr S(0)G(dx) . (65)
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Hence S(0) serves as a “density matrix” for count rates. It is normalized to the total particle rate
γ . For a discrete family of counters with POVM elements Gx ≥ 0,

∑
x Gx = 1 the arrival rate at

counter x is γx = tr S(0)Gx .
The second moment has a density depending only on the time difference τ = t2 − t1. For

discrete counters we also give the form of the normalized correlation function g(2):

m̂2(dt1 dx1, dt2 dx2) = dt1 dt2 Mt1−t2 (dx1, dx2) (66)

Mτ (dx1, dx2) = (tr S(0)G(dx1))(tr S(0)G(dx2))

+s tr S(τ )∗G(dx1)S(τ )G(dx2)

g(2)
xy (τ ) = 1 + s

γxγy
tr S(τ )∗Gx S(τ )G y .

Here we used the symmetry S( − τ ) = S(τ )∗ to write the expression in a more obviously positive
form.

It is not very enlightening to write down the higher moments. The third moment (35) will
contain contributions tr S(t3 − t1)Gx S(t1 − t2)G y S(t2 − t3)Gz .

F. Stationarity in time and space

In this paper we have considered quasi-free beams stationary in time, i.e., those for which
[̂σ , H ] = 0, and which consequently are of the form (54). Here we wish to briefly remark on
the extension of the formalism to encompass beams stationary also in space. Even for the free
Hamiltonian H = P2/2 in one dimension (with P the momentum), [̂σ , H ] = 0 does not imply
stationarity in space, [̂σ, P] = 0. In fact, the beam (52) produced by our source model is not
stationary in space if the source state φ has both positive and negative momentum components. Note
that such a situation cannot happen classically.

In order to get beams stationary in both time and space, we would have to replace (54) by
an operator diagonal in both P and H. In one dimension, this just means that we can equivalently
decompose σ̂ in the spectral representation of P. For the free Hamiltonian in three dimensions, we
can take

σ̂ =
∫ ⊕

d E dp1 dp2 σ̂ (E, p1, p2),

if we assume that σ̂ is supported in the subspace of positive P3, so that we can use E instead of p3.
In the detector side, we then need screen observables21 with outcomes (t, x1, x2, y) where t is the
detection time, (x1, x2) is the location on the detector screen situated in the x1x2-plane, and y is some
additional parameter. These observables are by definition covariant for time translations (generated
by H) as well as translations on the screen (generated by P1 and P2), and consequently, the above
scheme for computing rates and correlation functions works in a similar fashion also in this case.
The function in the local trace class condition must now be compactly supported in both t and (x1,
x2), corresponding to counting statistics for detections in a given bounded region of the screen (the
physical detector), occurring within a given finite time interval.

V. EXAMPLES

A. Second order correlation function

In the case of the free Hamiltonian in one dimension, we have HE = C2. Taking the source
(52), together with the simplest arrival time measurement, i.e., the one with VE = 1 for E ≥ 0 and
one detector G corresponding to the detection of right going (positive momenta) particles, we get

γ = (2π )−1χ (0), g(2)(τ ) = 1 + |χ (τ )|2χ (0)−2,

where χ (τ ) = 4πλ
∫ ∞

0 d E e−iτ E |φE,+|2 |1 − λh(E)|−2, and φE, + is the positive momentum compo-
nent of φE. In Fig. 2, g(2)(τ ) is shown for a Lorentzian |φE, + |2 ∼ (α/2)/((E − E0)2 + (α/2)2)/π and a
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FIG. 2. Second order normalized correlation function g(2)(τ ). Upper figure: Lorentzian, lower figure: Gaussian initial spectral
density. Boltzmann model (thick solid line), quasi-free state given by (52) with rates γ = 0.5, 1.0, 1.5 (bottom to top curves).

Gaussian
∣∣φE,+

∣∣2 ∼ exp
(−(E − E0)2/(2α2)

)
/(

√
2πα), with no negative momentum components.

In the case of the Lorentzian the correlation function can be approximated for E0 � α by g(2) ≈ 1
+ e− τ (α − 2λ) (see the solid lines in Fig. 2), i.e., as an exponential modified by the intensity parameter
λ, as Bose statistical effects become more relevant.

B. Plane wave beams

The energy density of the beam is tr σ̂ (E), which clearly needs to be integrable. In the Fermi
case the constraint σ̂ ≤ 1 excludes singularities in this density. However, in the Bose case, we can
also consider singular distributions. Let us assume a one-dimensional, free Hamiltonian and we
restrict to only positive momenta to simplify the notation. In this case the beam state is given by

σ̂ =
∫ ∞

0
d E α(E)|E〉〈E |,

where |E〉 are the generalized energy eigenvectors. Consider a sequence of functions αn with
αn(E)

n→∞−→ κδ(E − E0) =: α(E). The characteristic function in this case is

C( f ) = (
1 − κ〈E0|F[ei f − 1]|E0〉

)−1
.

The rate is then given by γ Q = κ〈E0|F[ f ]|E0〉. We can get the number distributions pn for a
measurement result in an interval Y from the characteristic function, see (10). This characteristic
function for α(E) = κδ(E − E0) is

C(λχY ) = 1

1 − (eiλ − 1)κ〈E0|F(Y )|E0〉 =
∞∑

n=0

qn

(1 + q)n+1
eiλn, (67)

where q = κ〈E0|F(I)|E0〉. By comparing (67) and (10), we get the number distribution for a detection
in the interval Y, namely, pQ,n = qn

(1+q)n+1 . Figure 3 shows examples of the number distribution for

an arrival-time measurement with q = √
10.

It is illustrative to compare it with the number statistics of a coherent beam given by (39) with
φ(E) = √

κδ(E − E0). The characteristic function is then

C( f ) = exp
(
κ〈E0|F[ei f − 1]|E0〉

)
and from this we get the rate γ C = κ〈E0|F[f]|E0〉 = γ Q and a Poisson number distribution pC,n

= 1
n! q

ne−q which is also shown in Fig. 3.
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FIG. 3. Particle number distribution pn with q = √
10, quasi-free beam pQ, n (blue boxes), coherent beam pC, n (red circles).

Let us now again take the specific arrival time measurement with VE = 1. In that case, we
get the rate γK = κ

2π
and qK = γ K l(Y) where l(Y) = ∫

Ydt. For a quasi-free beam we get for the
probability for no detection in an interval [t1, t2] is pQ, 0(t1, t2) = 1/(1 + γ K(t2 − t1)) and for a
coherent beam pC,0 = e−γK (t2,t1)q . The waiting time calculated by (12) is now for a quasi-free beam

wQ(τ ) = 2γK

(1 + γK τ )3
(68)

and for a coherent beam

wC (τ ) = γK e−γK τ , (69)

which is – as expected – an exponential distribution.
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