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Zusammenfassung

Gegenstand der vorliegenden Arbeit ist die mathematische Untersuchung von Systemen gekoppelter
partieller Differentialgleichungen, die von der Modellierung elektrostatisch betriebener mikroelek-
tromechanischer Systeme mit allgemeiner Permittivität herrühren. Eine Herleitung verschiedener
Modelle wird vorgestellt, die es dem Leser ermöglicht, eine Einsicht in die diversen physikalischen As-
pekte zu erlangen, die entsprechend der jeweiligen Anwendung in Betracht gezogen werden können.
In jedem Fall koppeln alle adäquaten Systeme ein entweder semi- oder quasilineares hyperbolisches
oder parabolisches Evolutionsproblem für die Auslenkung einer elastischen Membran mit einem el-
liptischen freien Randwertproblem, das das elektrostatische Potential in dem Gebiet zwischen der
elastischen Membran und einer starren Bodenplatte determiniert.

In der Folge wird das qualitative Verhalten der Lösungen zweier verschiedener gekoppelter Probleme
studiert. Genauer beinhalten beide betrachteten Systeme das elliptische freie Randwertproblem zur
Bestimmung des elektrostatischen Potentials, das lediglich entsprechend der Wahl des Permittiv-
itätsprofils variiert. Eher kleine oder große Auslenkungen der Membran beschreibend, kommt ein
entweder semi- oder quasilineares parabolisches Evolutionsproblem hinzu. Für beide Systeme wird
gezeigt, dass sie für alle beliebigen positiven Werte λ der angelegten Spannung lokal bezüglich Zeit
wohlgestellt sind. Kleine Werte λ der angelegten Spannung, die einen gewissen kritischen Wert
λ∗ nicht überschreiten, lassen sogar global in der Zeit existierende Lösungen zu. Im semilinearen
Fall wird für ein gegen Null konvergierendes Längenverhältnis des Geräts Konvergenz der Lösungen
des vollen gekoppelten Problems gegen diejenigen des entkoppelten sogenannten Small-Aspect Ratio
Models nachgewiesen.

Des Weiteren wird ein Thema behandelt, das erst mit der Berücksichtigung nicht-konstanter Permit-
tivitätsprofile Bedeutung erlangt – die Richtung der Membranauslenkung oder, in mathematischer
Ausdrucksweise, das Vorzeichen der Lösung des Evolutionsproblems. Mit Hilfe des parabolischen
Vergleichsprinzips werden strukturelle Bedingungen an das Potential sowie das Permittivitätsprofil
spezifiziert, die Nicht-Positivität der Membranauslenkung garantieren. Für gewisse Permittivitäts-
profile wird schließlich bewiesen, dass Singularitäten nach endlicher Zeit auftreten können, sobald
die angelegte Spannung einen bestimmten kritischen Wert λ∗ überschreitet. Die Arbeit schließt mit
einer numerischen Analyse des semilinearen Problems, die insbesondere die Betrachtung des vollen
gekoppelten Problems rechtfertigt, indem sie wesentliche qualitative Unterschiede zwischen den Lö-
sungen des weitverbreiteten Small-Aspect Ratio Models und denen des vollen gekoppelten Modells
aufzeigt.

Schlüsselwörter: Mikroelektromechanische Systeme (MEMS), Permittivität, partielle Differ-
entialgleichungen, freie Randwertprobleme, nichtlineare Evolutionsgleichungen, Singularitäten nach
endlicher Zeit
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Abstract

Of concern is the mathematical investigation of systems of coupled partial differential equations
arising from the modelling of electrostatically actuated microelectromechanical systems with gen-
eral permittivity profile. A derivation of different models is presented that enables the reader to
establish an understanding of the various physical modelling aspects that might be taken into ac-
count according to the particular application. Howsoever, all suitable systems couple an either semi-
or quasilinear hyperbolic or parabolic evolution problem for the displacement of an elastic membrane
with an elliptic moving boundary problem that determines the electrostatic potential in the region
between the elastic membrane and a rigid ground plate.

Subsequently the qualitative behaviour of the solutions of two different coupled problems is studied.
More precisely, both systems under consideration consist of the elliptic free boundary problem for
the determination of the electrostatic potential, which varies solely according to the choice of the
permittivity profile. Describing rather small or large deflections of the membrane, an either semi- or
quasilinear parabolic evolution problem is added. Both systems are shown to be well-posed locally in
time for all arbitrary positive values λ of the applied voltage. Small values λ of the applied voltage,
that do not exceed a certain critical value λ∗, do even allow globally in time existing solutions. For
the semilinear case we establish the convergence of solutions to the full coupled problem towards
those of the decoupled so-called small-aspect ratio model, as the aspect ratio of the device tends to
zero.

Furthermore, a topic is addressed that is of note not till non-constant permittivity profiles are
taken into account – the direction of the membrane’s deflection or, in mathematical parlance, the
sign of the solution to the evolution problem. By means of the parabolic comparison principle
structural conditions on the potential and on the permittivity profile are specified which guarantee
non-positivity of the membrane’s displacement. For certain permittivity profiles we finally prove
that finite-time singularities may occur as soon as the applied voltage exceeds a certain critical
value λ∗. We complete the work by a numerical analysis of the semilinear problem that in particular
justifies the consideration of the full coupled problem by revealing substantial qualitative differences
of the solutions to the widely-used small-aspect ratio model and the full coupled problem.

Keywords: Microelectromechanical systems (MEMS), permittivity, partial differential equations,
free boundary value problem, nonlinear evolution equations, finite-time singularities
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Résumé

La thèse concerne l’investigation mathématique des systèmes d’équations aux dérivées partielles cou-
plées, qui découlent de la modélisation des microsystèmes électromécaniques avec une permittivité
générale. Une dérivation des différents modèles est présentée, ce qui permet au lecteur d’acquérir
une compréhension des nombreux aspects physiques qui peuvent être pris en considération confor-
mément à l’application visée. Quoi qu’il en soit, tous les systèmes appropriés couplent une équation
d’évolution semi- ou quasilinéaire qui est soit hyperbolique soit parabolique pour modéliser la défor-
mation d’une membrane élastique et un problème elliptique à frontière libre. Ce dernier détermine
le potentiel électrique dans la région située entre la membrane élastique et une plaque à la masse.
Ci-après le comportement qualitatif des solutions de deux différents problèmes couplés est étudié.
Plus précisément, les deux systèmes considérés se composent d’un problème elliptique à frontière
libre pour la détermination du potentiel électrique, qui varie exclusivement en fonction du choix du
profil de permittivité. Un problème d’évolution parabolique semilinéaire ou quasilinéaire est ajouté,
décrivant respectivement des petites ou des grandes déformations de la membrane.

Il est montré que les deux systèmes sont localement bien posés dans le temps pour n’importe quelle
valeur λ > 0 de la tension électrique appliquée. Pour de petites valeurs λ de la tension électrique
appliquée, n’excédant pas une certaine valeur critique λ∗, permettent même une solution unique
qui existe globalement et pas que localement. Pour le cas semilinéaire la convergence des solutions
du problème couplé vers celles du modèle élancé (small-aspect ratio model) est établie, lorsque le
rapport hauteur/largeur tend vers zéro.

De plus, l’utilisation de profils de permittivité non-constants rend non-triviale l’étude du signe de la
solution du problème d’évolution ou en termes mécaniques l’étude de la direction de la déformation
de la membrane. En employant le principe du maximum parabolique des conditions structurelles au
potentiel et au profil de permittivité sont spécifiées pour garantir la non-positivité de la déformation
de la membrane. Enfin, la formation de singularités en temps fini pour certains profils de permit-
tivité du moment que la tension électrique excède une certaine valeur critique λ∗ est prouvée. Le
travail est terminé par une analyse numérique du problème semilinéaire, qui en particulier justifie la
considération du problème entier couplé en démontrant des différences qualitatives entre les solutions
du small-aspect ratio model communément utilisé et celles du problème couplé.

Mots clés: Microsystèmes électromécaniques (MEMS), permittivité, équations aux dérivées
partielles, problème à frontière libre, équation d’évolution nonlinéaire, singularités en temps fini
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1 | Introduction

Moving boundary problems or synonymously free boundary value problems frequently arise in a
natural way when describing complex physical or chemical phenomena in nature and technique. They
denote systems of partial differential equations which are in particular characterised by the fact that
they are to be solved for a domain whose boundary is not known a priori and thus itself constitutes
a part of the solution. Due to this coupling between the components of the full solution moving
boundary problems are inherently nonlinear, making their analytical and numerical investigation
evidently rather involved. On the other hand their intricate and nonlinear nature provides a more
accurate description of complex processes than linear or nonlinear models on fixed domains. As
a consequence in the last decades the investigation of moving boundary problems has received
remarkable attention in applied mathematics. In this spirit, the present thesis is devoted to an
analysis of free boundary value problems describing the dynamic behaviour ofmicroelectromechanical
systems.

Microelectromechanical systems (MEMS) constitute a technology of miniaturised devices whose
dimensions range between some micrometres and one millimetre. Being typically made up of a
sensor, a transistor as well as a mechanical actuator, MEMS sense the environment and act on
it by combining microelectronics with non-electronic activities from micromechanics, fluidics or
optics. Whereas the component of microsensors is already well developed, the understanding and
construction of microactuators still pose a challenge and thus also deserve study in different fields
of science [9]. The underlying technology is based on the approach of generating mechanical motion
by for instance electrostatic, thermal, hydraulic, magnetic or other forces which act by reason of a
perception of the environment by a sensor.

Due to their low manufacturing costs, their low demand for energy, their high reliability and in
particular their tremendous versatility, MEMS have found their way into numerous branches of
industry and science. The automotive industry, telecommunications or the biomedical industry
shall be instanced here in order to provide an insight into the enormous range of applications. As
inertial sensors MEMS are used for the activation of airbags [6] and for the protection of hard disks
or for mechanical image stabilisation in optic devices, to mention only few examples. Furthermore,

1



Chapter 1. Introduction 2

MEMS are applied as micro pumps [11] and micro valves [20] in micro fluidics.

As mentioned above there are various different microactuation principles, each having advantages
for particular requirements. For instance micromagentic actuation exhibits remarkable advantages
such as high forces, large deflections, low input impedances and thus, the involvement of only low
voltages [9], once it is integrated in MEMS devices. However, since key components for micromag-
netic actuation are three-dimensional, other microactuation principles are still favoured in general,
but nonetheless, micromagnetic actuators are for instance beneficial in the context of MEMS devices
with high aspect ratio. In the framework of this thesis MEMS devices are studied which perform
mechanical motion by electrostatic actuation. Being initially in a configuration in which the me-
chanical components are separate, a voltage is applied across the device such that the components
are at different electric potentials/electric charges. This imbalance of potentials/charges acting on
each other induces attractive or repulsive forces which are described by Coulomb’s law.

More precisely, a certain type of an idealised electrostatically actuated MEMS device is investigated
which consists of a rigid ground plate and an elastic membrane that is suspended above the former
and held fixed at its boundary. Moreover, the deformable elastic membrane is assumed to be of
infinitely small thickness and features a certain dielectric permittivity profile. In order to cause a
mechanical deflection of the latter, a voltage is applied across the device such that the ground plate
and the membrane are at different electric potentials which induces a Coulomb force and thus gives
rise to a deformation of the membrane. A sketch of such a MEMS device is offered in Figure 1.1.
A necessity in order to understand the mode of operation of the device is to gain knowledge about
the membrane’s deformation on the one hand and about the electrostatic potential in the region
occupied by the ground plate and the membrane on the other hand.

In fact, in the mathematical modelling of the dynamics of electrostatically actuated MEMS devices a
strong coupling between those two quantities becomes apparent. More precisely, an elliptic problem
is to be solved for the electrostatic potential in a domain whose boundary evolves with time as
the membrane deflects with time. To describe the dynamics of the free boundary a further partial
differential equation is to be specified.

In order to avoid the handling of the resultant difficulties, researchers have heretofore exploited the
fact that in a multitude of applications the aspect ratio of the device, i.e. the ratio of height and
length of the device, is rather small. More precisely, the assumption of a negligibly small aspect
ratio allows an explicit expression for the electrostatic potential, whereby the coupled problem is
reduced to a single evolution equation whose right-hand side features a singularity in the moment
the membrane touches down on the ground plate. However, it is worthwhile to mention that the
assumption of a vanishing aspect ratio is not reasonable in all applications [1]. As examples for
MEMS devices high aspect ratio turbines and micromotors may be mentioned.



3

Figure 1.1: Sketch of the investigated idealised MEMS device.

Hitherto, various theoretical contributions in engineering science, physics and mathematics have
been dedicated to the investigation of MEMS devices in order to better understand their behaviour
and thus to advance the corresponding technology. Whereas a multitude of them treats the case of a
vanishing aspect ratio (see for instance [18, 20, 21, 25, 26, 27, 29, 33, 39]), pioneering results on the
coupled problem go back to Escher, Laurençot and Walker. In their recent contributions the authors
take different physical modelling aspects into account but always assume the permittivity profile f
to be constant. The work [32] deals with stationary solutions in the semilinear regime, whereas
in [14] the semilinear evolution problem is investigated. Moreover, the reader shall be referred to
the works [13, 15, 34, 35], each of them again assuming the permittivity to be constant but taking
other different physical aspects, such as large deflections or bending effects, into account. Further
investigations of qualitative properties of MEMS systems may be found in [36, 37, 38]. However,
none of the above mentioned works is concerned with a coupled system, including the additional
feature of a general permittivity profile f = f(x,u(t,x)). To the best of the author’s knowledge,
this thesis together with the related papers [41, 40, 17, 16, 12] constitute the first contribution in
that direction.

It is the intention of this thesis to analyse different coupled systems of partial differential equations
characterising the dynamic behaviour of MEMS devices constructed as described above. In order
to specify the different components of the analysis, the introduction is closed by outlining the
organisation of this thesis.

The purpose of Chapter 2 is to provide an overview of the various mathematical models describing
the dynamic behaviour of electrostatically actuated MEMS devices according to their appearance
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in applications. We end up with two coupled systems consisting of an either semi- or quasilinear
parabolic evolution problem for the membrane’s displacement and an elliptic moving boundary
problem determining the electrostatic potential in the region between the deformable membrane
and the rigid ground plate.

Chapters 3–5 are then devoted to a qualitative analysis of these two coupled problems. More
precisely, in Chapter 3 both problems are shown to be well-posed locally in time for all arbitrarily
large values λ of the applied voltage. Moreover, it is proved that the solutions exists even globally
in time, provided that the applied voltage does not exceed a critical value λ∗; see also [40] for the
results on the semilinear case.

Chapter 4 is restricted to the case of a semilinear evolution problem describing the membrane’s
displacement. The convergence of solutions to the coupled problem towards those of the widely-
used reduced small-aspect ratio model is established, as the aspect ratio tends to zero [40].

The direction of the membrane’s deflection as well as finite-time singularities are the subjects teated
in Chapter 5, c.f. also the works [41, 17, 16]. Structural conditions are specified for different classes of
permittivity profiles which ensure that the membrane deflects towards the ground plate. In addition,
these non-positive solutions are shown to cease to exist after a finite time of existence under certain
additional assumptions.

The thesis is completed by a numerical investigation of the semilinear coupled problem. Finite
elements and the Crank–Nicolson method are introduced as they are used to serve the purpose of
numerically computing approximate solutions to the full coupled problem. The results reveal in
particular considerable differences in the qualitative behaviour of solutions to the semilinear coupled
problem and its decoupled counterpart [12].



2 | The Modelling

In this chapter the equations governing the dynamic behaviour of an idealised electrostatically
actuated MEMS device with general permittivity profile are derived.

The investigated type of MEMS devices consists of two quadrilateral components – a flat rigid
ground plate and an elastic membrane that is suspended above the former. The elastic membrane is
coated with a thin conducting film on its upper surface and it features in addition a certain dielectric
permittivity profile.

In our investigations all ingredients of the system are assumed to be homogeneous in one lateral
direction so that we may in fact restrict the analysis to a cross section of the device. Denoting by x̃
and z̃ the horizontal and vertical direction, respectively, we consider the ground plate to be located
at height z̃ = −h and the undeflected membrane at z̃ = 0, both having the length 2l. Moreover,
the length 2l of the device is assumed to be large compared to the gap size h of the undeformed
configuration, which means that we are in the regime of a small aspect ratio ε = h

l � 1.

x = −1

z = −1

x = 1

z = 0

ψ = (1 + z)fψ = (1 + z)f

ψ = 0

ψ = f

u(t,x)

Ω (u)

Figure 2.1: Cross section of the investigated idealised MEMS device.

An application of a voltage V to the conducting film on the membrane, such that the grounded
plate and the membrane are at different electric potentials, induces a deformation of the elastic
membrane assumed to be only in z̃-direction. We denote the deformation at time t̃ ≥ 0 and position
x̃ ∈ L := (−l, l) by ũ = ũ(t̃, x̃). The second quantity of general interest, the electrostatic potential

5



Chapter 2. The Modelling 6

at time t̃ ≥ 0 and a certain position (x̃, z̃) in the region between the ground plate and the elastic
membrane is denoted by ψ̃ = ψ̃(t̃, x̃, z̃). It is worthwhile to mention again that the shape of this
region changes with time as the membrane deflects with time. Finally we denote the permittivity
profile of the membrane by f = f

(
x̃, ũ(t̃, x̃)

)
.

2.1 | A Nonlinear Elasticity Model

For the nonce the time variable t̃ appears as a parameter, whence it is temporarily suppressed in
the notation.

Governing Equations for the Electrostatic Potential. Pursuant to Gauß’
law of electrodynamics the electrostatic potential is harmonic in the region

Ω̃(ũ) := {(x̃, z̃);−l < x̃ < l,−h < z̃ < ũ(x̃)}

between the rigid ground plate and the membrane, that is

ψ̃x̃x̃ + ψ̃z̃z̃ = 0, (x̃, z̃) ∈ Ω̃(ũ).

Furthermore, the fixed plate at z̃ = −h is grounded, i.e. at zero potential, whereas the membrane
is at potential V f

(
x̃, ũ(x̃)

)
. These boundary conditions are expressed by the equations

ψ̃(x̃,−h) = 0, ψ̃
(
x̃, ũ(x̃)

)
= V f

(
x̃, ũ(x̃)

)
, x̃ ∈ L.

Governing Equations for the Membrane’s Deformation. By means of
nonlinear elasticity theory we first derive the governing equations for the case of static plate defor-
mations under the hypotheses of Love–Kirchhoff. In particular this includes the assumption that
vectors normal to the middle surface remain normal to the middle surface after deformation. We
refer the reader for instance to [8] for a detailed view on these hypotheses. Finally we assume the
elastic plate to be of infinitely small thickness which reduces the more general model for plate de-
formations to one describing deformations of elastic membranes. If no ambiguity is to be feared we
use both expressions suitably.

The total potential energy Ep of the configuration, which is generated due to the deformation of the
elastic plate, is constituted by the pointwise sum of stretching energy Es, bending energy Eb and



7 2.1. A Nonlinear Elasticity Model

electrostatic energy Ee, i.e. it holds

Ep(ũ) = Es(ũ) + Eb(ũ) + Ee(ũ).

Denoting by τ > 0 the tension constant of the plate, the stretching energy is given by

Es(ũ) = τ

∫ l

−l

(√
1 +

(
ũx̃(x̃)

)2 − 1

)
dx̃. (2.1)

The integral describes the variation of the plate’s length from 2l, i.e. from the situation in which
deformation is absent.

The likewise involved bending energy is proportional to the L2-norm of the plate’s curvature. More
precisely, it is given by

Eb(ũ) =
b

2

∫ l

−l

(
∂x

(
ũx̃(x̃)√

1 + (ũx̃(x̃))2

))2√
1 + (ũx̃(x̃))2 dx̃,

where the coefficient b, describing the flexural rigidity of the plate, is defined as

b =
2α3Y

3(1− ν)2
.

The parameters in this ratio denote the thickness α of the plate, the Young modulus Y and the
Poisson ratio ν.

Finally, the electrostatic energy is given by

Ee(ũ) = −ε0

2

∫ l

−l

∫ ũ(x̃)

−h

(
∇ψ̃(x̃, z̃)

)2
dz̃ dx̃ = −ε0

2

∫
Ω̃(ũ)

(
∇ψ̃(x̃, z̃)

)2
d(x̃, z̃),

with ε0 being the permittivity of free space. The variation of Ee corresponds to the work of the
force on the elastic plate that is induced by the electric field with potential ψ̃(x̃, z̃).

Consequently, the total potential energy of the system is given by

Ep(ũ) = τ

∫ l

−l

(√
1 + (ũx̃(x̃))2 − 1

)
dx̃ +

b

2

∫ l

−l

(
∂x̃

(
ũx̃(x̃)√

1 + (ũx̃(x̃))2

))2√
1 + (ũx̃(x̃))2dx̃

− ε0

2

∫
Ω̃(ũ)

(
∇ψ̃(x̃, z̃)

)2
d(x̃, z̃).
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Derivation of the Euler-Lagrange Equation. Due to Hamilton’s principle of
least action the partial differential equation describing the dynamics of the plate’s deformation is
the Euler–Lagrange equation which is obtained by minimising a suitable energy functional.

The time dependent part of the problem is considered in a second step, whereas in a first step
we derive the Euler–Lagrange equation in terms of static deflections. To this end we define the
Lagrangian

L : L×W 4
2 (L) −→ R

by

L(x̃, ũ) = − τ
(√

1 + (ũx̃)2 − 1
)
− b

2
∂x̃

(
ũx̃√

1 + (ũx̃)2

)2√
1 + (ũx̃)2

+
ε0

2

∫ ũ

−h

(
ψ̃x̃(x̃, z̃)

)2
+
(
ψ̃z̃(x̃, z̃)

)2
dz̃

=− τ
(√

1 + (ũx̃)2 − 1
)
− b

2

ũx̃x̃

(1 + (ũx̃)2)5/2
+
ε0

2

∫ ũ

−h

(
ψ̃x̃(x̃, z̃)

)2
+
(
ψ̃z̃(x̃, z̃)

)2
dz̃

and minimise the according energy functional∫ l

−l
L(x̃, ũ) dx̃ (2.2)

by means of calculus of variations. The problem of minimising an integral over an infinite dimen-
sional function space is then treated as the problem of minimising a function of a single real-valued
variable.1

In order to accomplish the latter problem assume that ũ = ũ(x̃) is the current minimiser of (2.2),
satisfying

ũ ∈W 4
2,D(L), ũ(x̃) > −h, x̃ ∈ [−l, l]. (2.3)

Then, given σ ∈ R and a function v ∈ C∞c (L), we introduce the notation

w(σ)(x̃) := ũ(x̃) + σv(x̃), x̃ ∈ [−l, l],

and derive the necessary condition for ũ being a minimiser of (2.2) by computing the first variation

δEp(ũ; v) =
d

dσ
Ep(ũ+ σv)|σ=0 = δ

(
Es(ũ; v) + Eb(ũ; v) + Ee(ũ; v)

)
|σ=0 (2.4)

1In physics and engineering it is common to consider regularity assumptions as physically given and thus to presume
the validity of the Euler–Lagrange equations. Mathematically speaking we therefore just verify the necessary condition
for the existence of an extremum of the functional.
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and finally checking the condition δEp(ũ; v) = 0. For the stretching term one obtains

d

dσ
Es(ũ+ σv) =

d

dσ

(
τ

∫ l

−l

√
1 + (wx̃)2 − 1 dx̃

)
= τ

∫ l

−l

ũx̃ vx̃ + σ(vx̃)2√
1 + (ũx̃)2 + 2σũx̃ vx̃ + σ2(vx̃)2

dx̃

and therefore, using the fact that v is compactly supported in the interval L,

δEs(ũ; v) = τ

∫ l

−l

ũx̃vx̃√
1 + (ũx̃)2

= −τ
∫ l

−l
v∂x̃

(
ũx̃√

1 + (ũx̃)2

)
dx̃. (2.5)

For the bending term, note that

∂x̃

(
wx̃√

1 + (wx̃)2

)
=

wx̃x̃

(1 + (w̃x̃)2)3/2
,

whence we may write

d

dσ
Eb(ũ+ σv) =

d

dσ

 b

2

∫ l

−l

(
∂x̃

(
wx̃√

1 + (wx̃)2

))2√
1 + (wx̃)2 dx̃


=

d

dσ

(
b

2

∫ l

−l

(wx̃x̃)2

(1 + (wx̃)2)5/2
dx̃

)
= b

∫ l

−l

(ũx̃x̃ + σvx̃x̃)vx̃x̃

(1 + (ũx̃)2 + 2σũx̃vx̃ + σ2(vx̃)2)5/2
dx̃− 5b

2

∫ l

−l

(
ũx̃vx̃ + σ(vx̃)2

)(
ũx̃x̃ + σ(vx̃x̃)

)2(
1 + ũ2

x̃ + 2σũx̃vx̃ + σ2(vx̃)2
)7/2 dx̃

and again using that v(±l) = 0 we obtain

δEb(ũ; v) = b

∫ l

−l

ũx̃x̃

(1 + (ũx̃)2)5/2
vx̃x̃ dx̃−

5b

2

∫ l

−l

ũx̃(ũx̃x̃)2

(1 + (ũx̃)2)7/2
vx̃ dx̃

= b

∫ l

−l
∂2
x̃

(
ũx̃x̃

(1 + (ũx̃)2)5/2

)
v dx̃+

5b

2

∫ l

−l
∂x̃

(
ũx̃(ũx̃x̃)2

(1 + (ũx̃)2)7/2

)
v dx̃.

(2.6)

It finally remains to take the electrostatic energy into account and to calculate δEe(ũ+ σv). In the
sequel this is done by an application of the transport theorem, c.f. [4, XII, Theorem 2.11] or [28,
Theorem 5.2.2] for instance. To this end, given σ ∈ R, v ∈ C∞c (L) and w(σ)(x̃) = ũ(x̃) + σv(x̃)

as above, we pick σ0 > 0 such that the choice of ũ as in (2.3) implies that w(σ)(x̃) > −h for all
x̃ ∈ [−l, l] and all σ ∈ [−σ0,σ0] and such that we may introduce the well-defined and connected
open set

Ω̃σ := {(x̃, z̃) ∈ L× (−h,∞);−h < z̃ < w(σ)(x̃)} , σ ∈ [−σ0,σ0].

In addition, there exists a representation

Ω̃σ = φ
(
σ; Ω̃(ũ)

)
,
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of Ω̃σ via the (global) diffeomorphism

φ(σ; x̃, z̃) :=

(
x̃, z̃ + σv(x̃)

h+ z̃

h+ ũ(x̃)

)
, (x̃, z̃) ∈ Ω̃(ũ) = Ω̃0.

In order to be able to handle the electrostatic energy with a variational approach it is necessary to
investigate the problem for ψ̃ corresponding to the variation w of the minimiser ũ in direction v.
For this purpose denote by ψ̃(σ; ũ, v) ∈W 2

2 (Ω̃σ) the solution to

ψ̃x̃x̃(σ; ũ, v) + ψ̃z̃z̃(σ; ũ, v) = 0, (x̃, z̃) ∈ Ω̃σ, (2.7)

ψ̃(σ; ũ, v) =
h+ z̃

h+ w(σ)(x̃)
V f
(
x̃,w(σ)(x̃)

)
, (x̃, z̃) ∈ ∂Ω̃σ. (2.8)

Moreover, we introduce the velocity V of the path {ψ̃(σ; ũ, v);σ ∈ (−σ0,σ0)}, defined as2

V :=
d

dσ
ψ(σ; ũ, v)|σ=0, (x̃, z̃) ∈ Ω̃(ũ). (2.9)

and show that also V satisfies (2.7)–(2.8) in the limit σ = 0. To this end, observe that (2.7) is
equivalent to3

ψ̃x̃x̃

(
σ; x̃, z̃ + σv(x̃)

h+ z̃

h+ ũ(x̃)

)
+ ψ̃z̃z̃

(
σ; x̃, z̃ + σv(x̃)

h+ z̃

h+ ũ(x̃)

)
= 0, (x̃, z̃) ∈ Ω̃(ũ),

whence a differentiation of this equation with respect to σ yields

ψ̃x̃x̃σ

(
σ; x̃, z̃ + σv(x̃)

h+ z̃

h+ ũ(x̃)

)
+ ψ̃x̃x̃z̃

(
σ; x̃, z̃ + σv(x̃)

h+ z̃

h+ ũ(x̃)

)
v(x̃)

h+ z̃

h+ ũ(x̃)

+ ψ̃z̃z̃σ

(
σ; x̃, z̃ + σv(x̃)

h+ z̃

h+ ũ(x̃)

)
+ ψ̃z̃z̃z̃

(
σ; x̃, z̃ + σv(x̃)

h+ z̃

h+ ũ(x̃)

)
v(x̃)

h+ z̃

h+ ũ(x̃)
= 0,

(2.10)

for all (x̃, z̃) ∈ Ω̃(ũ). Then, letting σ → 0 in (2.10), we first find that

Vx̃x̃(x̃, z̃) + Vz̃z̃(x̃, z̃) + v(x̃)
h+ z̃

h+ ũ(x̃)

(
ψ̃x̃x̃z̃(x̃, z̃) + ψ̃z̃z̃z̃(x̃, z̃)

)
= 0, (x̃, z̃) ∈ Ω̃(ũ),

whence by (2.7)
Vx̃x̃(x̃, z̃) + Vz̃z̃(x̃, z̃) = 0, (x̃, z̃) ∈ Ω̃(ũ).

2Note that in fact V is a function of the variables x̃ and z̃ in the sense that

V(x̃, z̃) =
d

dσ
ψ(σ; ũ, v)|σ=0(x̃, z̃).

3In fact ψ̃
(
σ; ũ, v

)
is a function of the variables x̃ and z̃. For the sake of simplicity we suppress the dependence of

ψ̃ of ũ and v and use the notation ψ̃
(
σ; x̃, z̃

)
.
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In addition, one can infer from the boundary condition (2.8) that

ψ̃

(
σ; x̃, z̃ + σv(x̃)

h+ z̃

h+ ũ(x̃)

)
=

h+ z̃

h+ ũ(x̃)
V f
(
x̃, ũ(x̃) + σv(x̃)

)
, (x̃, z̃) ∈ ∂Ω̃(ũ),

and differentiating this identity with respect to σ yields

ψ̃σ

(
σ; x̃, z̃ + σv(x̃)

h+ z̃

h+ ũ(x̃)

)
+ ψ̃z̃

(
σ; x̃, z̃ + σv(x̃)

h+ z̃

h+ ũ(x̃)

)
v(x̃)

h+ z̃

h+ ũ(x̃)

=
h+ z̃

h+ ũ(x̃)
V fũ

(
x̃, ũ(x̃) + σv(x̃)

)
v(x̃)

for (x̃, z̃) ∈ ∂Ω̃(ũ). Finally, as σ → 0 we find that

V(x̃, z̃) = v(x̃)
h+ z̃

h+ ũ(x̃)

(
V fũ

(
x̃, ũ(x̃)

)
− ψ̃z̃(x̃, z̃)

)
, (x̃, z̃) ∈ ∂Ω̃(ũ). (2.11)

Since v ∈ C∞c (L) and h+ z̃ = 0 for z̃ = −h, one may in particular extract from equation (2.11) the
identities

V(±l, z̃) = 0, z̃ ∈ (−h, 0),

V(x̃,−h) = 0, x̃ ∈ L, (2.12)

V(x̃, ũ(x̃)) = v(x̃)
(
V fũ

(
x̃, ũ(x̃)

)
− ψ̃z̃

(
x̃, ũ(x̃)

))
, x̃ ∈ L.

Having this preliminary knowledge at hand, we are finally prepared to consider the energy

Ee(ũ+ σv) = −ε0

2

∫
Ω̃σ

(
ψ̃x̃(σ; x̃, z̃)

)2
+
(
ψ̃z̃(σ; x̃, z̃)

)2
d(x̃, z̃)

or, more precisely, its derivative with respect to σ at σ = 0. Firstly, invoking [28, Thm. 5.2.2] yields
the identity

δEe(ũ; v) = − ε0

∫
Ω̃(ũ)

ψ̃x̃(x̃, z̃)Vx̃(x̃, z̃) + ψ̃z̃(x̃, z̃)Vz̃(x̃, z̃) d(x̃, z̃)

− ε0

∫
Ω̃(ũ)

div

((
ψ̃x̃(x̃, z̃)

)2
+
(
ψ̃z̃(x̃, z̃)

)2
2

φσ(0, x̃, z̃)

)
d(x̃, z̃)

(2.13)

and using (2.7) one can readily see that

div
(
V
(
ψ̃x̃, ψ̃z̃

))
= Vx̃ψ̃x̃ + Vψ̃x̃x̃ + Vz̃ψ̃z̃ + Vψ̃z̃z̃

= Vx̃ψ̃x̃ + Vz̃ψ̃z̃ + V
(
ψ̃x̃x̃ + ψ̃z̃z̃

)
= Vx̃ψ̃x̃ + Vz̃ψ̃z̃

(2.14)
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holds true for all (x̃, z̃) ∈ Ω̃(ũ). Then, fusing the findings (2.13) and (2.14) leads to the equation

δEe(ũ; v) = − ε0

∫
Ω̃(ũ)

div
(
V(x̃, z̃)

(
ψ̃x̃(x̃, z̃), ψ̃z̃(x̃, z̃)

))
d(x̃, z̃)

− ε0

∫
Ω̃(ũ)

div

((
ψ̃x̃(x̃, z̃)

)2
+
(
ψ̃z̃(x̃, z̃)

)2
2

φσ(0, x̃, z̃)

)
d(x̃, z̃).

Allowing for the identity

φσ(0; x̃, z̃) =

(
0, v(x̃)

h+ z̃

h+ ũ(x̃)

)
, (x̃, z̃) ∈ Ω̃(ũ),

an application of the Green–Riemann integration theorem reveals

δEe(ũ; v) = − ε0

∫
∂Ω̃(ũ)

V(x̃, z̃)ψ̃x̃(x̃, z̃) dz̃ + ε0

∫
∂Ω̃(ũ)

V(x̃, z̃)ψ̃z̃(x̃, z̃) dz̃

+
ε0

2

∫
∂Ω̃(ũ)

v(x̃)
h+ z̃

h+ ũ(x̃)

((
ψ̃x̃(x̃, z̃)

)2
+
(
ψ̃z̃(x̃, z̃)

)2)
dx̃.

Then, exploiting the relations v(±l) = 0, h+ z̃ = 0 for z̃ = −h, and the boundary conditions (2.12)
for V, the above integrals vanish at the lateral boundaries and on the ground plate at z̃ = −h,
whereby we obtain

δEe(ũ; v) = ε0V

∫ l

−l
v(x̃)fũ

(
x̃, ũ(x̃)

) (
ψ̃x̃
(
x̃, ũ(x̃)

)
ũx̃(x̃)− ψ̃z̃

(
x̃, ũ(x̃)

))
dx̃

− ε0

∫ l

−l
v(x̃)

(
ψ̃x̃
(
x̃, ũ(x̃)

)
ψ̃z̃
(
x̃, ũ(x̃)

)
ũx̃(x̃)−

(
ψ̃z̃(x̃, ũ(x̃))

)2)
dx̃

− ε0

2

∫ l

−l
v(x̃)

((
ψ̃x̃(x̃, ũ(x̃))

)2
+
(
ψ̃z̃(x̃, ũ(x̃))

)2)
dx̃.

From the boundary condition ψ̃
(
x̃, ũ(x̃)

)
= V f

(
x̃, ũ(x̃)

)
, x̃ ∈ L, we may deduce the equality

ψ̃z̃
(
x̃, ũ(x̃)

)
ũx̃(x̃) = V

(
fx̃
(
x̃, ũ(x̃)

)
+ fũ

(
x̃, ũ(x̃)

)
ũx̃(x̃)

)
− ψ̃x̃

(
x̃, ũ(x̃)

)
,

and it follows that

δEe(ũ; v) = ε0V

∫ l

−l
v(x̃)fũ

(
x̃, ũ(x̃)

)(
ψ̃x̃
(
x̃, ũ(x̃)

)
ũx̃(x̃)− ψ̃z̃

(
x̃, ũ(x̃)

))
dx̃

− ε0V

∫ l

−l
v(x̃)ψ̃x̃

(
x̃, ũ(x̃)

)(
fx̃
(
x̃, ũ(x̃)

)
+ fũ

(
x̃, ũ(x̃)

)
ũx̃(x̃)

)
dx̃

+
ε0

2

∫ l

−l
v(x̃)

((
ψ̃x̃(x̃, ũ(x̃))

)2
+
(
ψ̃z̃(x̃,u(x̃))

)2)
dx̃.
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This equation may finally be rewritten as

δEe(ũ; v) =
ε0

2

∫ l

−l
v(x̃)

((
ψ̃x̃(x̃, ũ(x̃))

)2
+
(
ψ̃z̃(x̃, ũ(x̃))

)2)
dx̃

− ε0V

∫ l

−l
v(x̃)

(
ψ̃x̃
(
x̃, ũ(x̃)

)
fx̃
(
x̃, ũ(x̃)

)
+ ψ̃z̃

(
x̃, ũ(x̃)

)
fũ
(
x̃, ũ(x̃)

))
dx̃.

(2.15)

Recalling (2.4) as well as the equality

δEp(ũ; v) = δ
(
Es(ũ; v) + Eb(ũ; v) + Ee(ũ; v)

)
= 0

as a necessary condition for ũ being a minimiser of the energy functional (2.2), we may see by (2.5),
(2.6) and (2.15) that this is satisfied for all suitable functions v, if and only if ũ complies with the
Euler–Lagrange equation

0 = τ∂x̃

(
ũx̃√

1 + (ũx̃)2

)
− b∂2

x̃

(
ũx̃x̃

(1 + (ũx̃)2)5/2

)
− 5b

2
∂x̃

(
ũx̃(ũx̃x̃)2

(1 + (ũx̃)2)7/2

)
− ε0

2

((
ψ̃x̃(x̃, ũ(x̃))

)2
+
(
ψ̃z̃(x̃, ũ(x̃))

)2)
+ ε0V

(
ψ̃x̃
(
x̃, ũ(x̃)

)
fx̃
(
x̃, ũ(x̃)

)
+ ψ̃z̃

(
x̃, ũ(x̃)

)
fũ
(
x̃, ũ(x̃)

))
.

Heretofore, static deflections of the elastic plate are discussed and it remains to take the dynamics
into account. This means that from now on the time variable t̃ explicitly returns to the notation.
More precisely, denoting by ρ the mass density per unit volume of the plate and recalling that α
denotes its thickness, due to Newton’s Second Law the sum of all forces is equal to ραũt̃t̃(t̃, x̃) and
we get

ραũt̃t̃(t̃, x̃)− τ∂x̃

(
ũx̃√

1 + (ũx̃)2

)
+ b∂2

x̃

(
ũx̃x̃

(1 + (ũx̃)2)5/2

)
+

5b

2
∂x̃

(
ũx̃(ũx̃x̃)2

(1 + (ũx̃)2)7/2

)
= −ε0

2

((
ψ̃x̃(x̃, ũ(x̃))

)2
+
(
ψ̃z̃(x̃, ũ(x̃))

)2)
+ ε0V

(
ψ̃x̃
(
x̃, ũ(x̃)

)
fx̃
(
x̃, ũ(x̃)

)
+ ψ̃z̃

(
x̃, ũ(x̃)

)
fũ
(
x̃, ũ(x̃)

))
.

Lastly, the superposition of the elastic and electrostatic forces is combined with a damping force
−aũt̃ which is linearly proportional to the velocity ũt̃ with damping constant a. That is, we obtain

ραũt̃t̃(t̃, x̃) + aũt̃ − τ∂x̃

(
ũx̃√

1 + (ũx̃)2

)
+ b∂2

x̃

(
ũx̃x̃

(1 + (ũx̃)2)5/2

)
+

5b

2
∂x̃

(
ũx̃(ũx̃x̃)2

(1 + (ũx̃)2)7/2

)
= −ε0

2

((
ψ̃x̃(x̃, ũ(x̃))

)2
+
(
ψ̃z̃(x̃, ũ(x̃))

)2)
+ ε0V

(
ψ̃x̃
(
x̃, ũ(x̃)

)
fx̃
(
x̃, ũ(x̃)

)
+ ψ̃z̃

(
x̃, ũ(x̃)

)
fũ
(
x̃, ũ(x̃)

))
.

Fusing the above considerations we end up with the following coupled system of partial differential
equations. The elliptic free boundary value problem for the electrostatic potential in the region
determined by the grounded plate at z̃ = −h and the membrane at z̃ = ũ(t̃, x̃), both of length 2l,
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reads

ψ̃x̃x̃ + ψ̃z̃z̃ = 0, t̃ > 0, (x̃, z̃) ∈ Ω̃(ũ), (2.16)

ψ̃(t̃, x̃, z̃) =
h+ z̃

h+ ũ(t̃, x̃)
f
(
x̃, ũ(t̃, x̃)

)
, t̃ > 0, (x̃, z̃) ∈ ∂Ω̃(ũ), (2.17)

where the conditions ψ̃ = 0 and ψ̃ = V f
(
x̃, ũ(t̃, x̃)

)
on the ground plate and the membrane, respec-

tively, are continuously extended to the lateral boundaries (±l, z̃), z̃ ∈ (−h, 0). The dynamics of the
deflection ũ is thus described by the fourth-order equation

ραũt̃t̃ + aũt̃ + Ã1(ũ) = − ε0

2

((
ψ̃x̃(x̃, ũ(x̃))

)2
+
(
ψ̃z̃(x̃, ũ(x̃))

)2)
+ ε0V

(
ψ̃x̃
(
x̃, ũ(x̃)

)
fx̃
(
x̃, ũ(x̃)

)
+ ψ̃z̃

(
x̃, ũ(x̃)

)
fũ
(
x̃, ũ(x̃)

))
,

(2.18)

where Ã1(ũ) is the quasilinear fourth-order differential operator defined by

Ã1(ũ) := −τ∂x̃

(
ũx̃√

1 + (ũx̃)2

)
+ b∂2

x̃

(
ũx̃x̃

(1 + (ũx̃)2)5/2

)
+

5b

2
∂x̃

(
ũx̃(ũx̃x̃)2

(1 + (ũx̃)2)7/2

)
.

Furthermore, we assume the membrane to be clamped at its boundary (±l, 0) and to have a certain
initial deflection ũ∗(x̃) at time t̃ = 0. This is expressed by the clamped boundary conditions

ũ(t̃,±l) = ũx̃(t̃,±l) = 0, t̃ > 0,

and the initial conditions

ũ(0, x̃) = ũ∗(x̃), ũt̃(0, x̃) = ũ∗∗(x̃), x̃ ∈ L,

respectively.

2.1.1 Remark
We briefly discuss two variants of the above modelling by distinguishing energy conserving and
energy dissipating systems. Whereas the first occurs when damping effects are neglected, the latter
corresponds to the case of no inertial effects.

(1) We assume to be in an energy conserving Hamiltonian regime in which damping is not taken
into account. The total energy of the system is defined as the pointwise difference of kinetic
energy Ek and potential energy Ep. The kinetic energy at any instant in time is described by
the functional

Ek(ũ) =
ρα

2

∫ l

−l

(
ũt̃
)2
dx̃.

Immediately taking dynamics into account, given 0 < t1 < t2 <∞, Hamilton’s principle means
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to minimise the action of the system, i.e. the double integral∫ t2

t1

∫ l

−l
L(t̃, x̃, ũ) dx̃ dt̃,

where the Lagrangian L is now given by4 L : (t1, t2)× L×W 2,4
2

(
(t1, t2)× L

)
→ R,

L(t̃, x̃, ũ) =
ρα

2
ũ2
t̃
− τ

(√
1 + (ũx̃)2 − 1

)
− b

2

ũx̃x̃

(1 + (ũx̃)2)5/2

+
ε0

2

∫ ũ

−h

(
ψ̃x̃(x̃, z̃)

)2
+
(
ψ̃z̃(x̃, z̃)

)2
dz̃,

and the corresponding Euler–Lagrange equation, obtained by a straightforward adaption of
the above calculations, reads

ραũt̃t̃ + Ã1(ũ) = − ε0

2

((
ψ̃x̃(x̃, ũ(x̃))

)2
+
(
ψ̃z̃(x̃, ũ(x̃))

)2)
+ ε0V

(
ψ̃x̃
(
x̃, ũ(x̃)

)
fx̃
(
x̃, ũ(x̃)

)
+ ψ̃z̃

(
x̃, ũ(x̃)

)
fũ
(
x̃, ũ(x̃)

))
.

(2) Being in the energy dissipating regime where inertial effects are neglected, we shall see in the
following that the corresponding evolution equation may formally be perceived as a gradient
flow system.

(i) Let H be a Hilbert space over R with inner product (·, ·)H and let E ∈ C(H,R) denote
a continuous functional on H. Given v ∈ H, assume that

δE(v;w) :=
d

dσ
E(v + σw)|σ=0

exists in H for all w ∈ H. Under this hypothesis assume in addition that there is a
z(v) ∈ H such that (

z(v),w
)
H

= δE(v;w), w ∈ H.

Note that z(v) is uniquely determined if it exists. We call z(v) the generalised gradient
of E at v and use the notation

∇E(v) := z(v).

If E ∈ C1(H,R) then ∇E(v) exists for all v ∈ H with

DE(v)w =
(
∇E(v),w

)
H

, w ∈ H.

(ii) Given T > 0, consider v ∈ C1
(
(0,T ),H

)
and assume that ∇E

(
v(t)

)
exists in H for all

4Note that W 2,4
2

(
(t1, t2)× L

)
denotes the usual anisotropic Sobolev space with respect to t̃ and x̃.
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t ∈ (0,T ). If v complies with the equation

v′(t) = −∇E
(
v(t)

)
, t ∈ (0,T ), (2.19)

then we say that v is a solution to the gradient flow system associated to E on (0,T ).

(iii) Suppose that E is contained in C1(H,R) and v ∈ C1
(
(0,T ),H

)
is a solution to (2.19)

on (0,T ). Then E
(
v(t)

)
is decreasing on (0,T ). Indeed E

(
v(·)
)
is differentiable on (0,T )

and the chain rule yields

d

dt
E
(
v(t)

)
=
(
∇E(v(t)), v′(t)

)
H

= −‖∇E
(
v(t)

)
‖2H , t ∈ (0,T ). (2.20)

Interpreting E as an energy the last equation reveals the energy dissipation of the system.
Moreover, if the path v(t) avoids any critical point of E the dissipation is strict.

(iv) Taking H = L2(L) and E(ũ) = Ep(ũ) with ũ ∈W 4
2,D(L) we deduce from (2.5), (2.6) and

(2.15) that formally

∇Ep(ũ) = −A1(ũ)− ε0

2

((
ψ̃x̃(x̃, ũ(x̃))

)2
+
(
ψ̃z̃(x̃, ũ(x̃))

)2)
+ ε0V

(
ψ̃x̃
(
x̃, ũ(x̃)

)
fx̃
(
x̃, ũ(x̃)

)
+ ψ̃z̃

(
x̃, ũ(x̃)

)
fũ
(
x̃, ũ(x̃)

))
.

This means that if ρ = 0 and a = 1 equation (2.18) may be perceived as the gradient flow
system associated to Ep in L2(L).

Scaling – Introduction of Dimensionless Variables. Now dimensionless variables are
introduced and the above terms and equations are rewritten in dimensionless form. To that effect,
the electrostatic potential is scaled with the applied voltage,

ψ =
ψ̃

V
,

the time is scaled with a damping timescale of the system,

t =
τ

al2
t̃,

and the variables x̃ and z̃ as well as ũ are scaled with the length l and the gap size h of the undeflected
configuration, respectively,

x =
x̃

l
, z =

z̃

h
, u =

ũ

h
. (2.21)

Furthermore, the aspect ratio of the device is denoted by ε = h/l. The rescaled dimensionless
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problem for the electrostatic potential thus reads

ε2ψxx + ψzz = 0, t > 0, (x, z) ∈ Ω(u(t)),

ψ(t,x, z) =
1 + z

1 + u(t,x)
f
(
x,u(t,x)

)
, t > 0, (x, z) ∈ ∂Ω(u(t)),

where the region Ω(u(t)) is now given by

Ω(u(t)) = {(x, z) ∈ (−1, 1)× (−1,∞);−1 < z < u(t,x)} .

In dimensionless form the evolution of the membrane’s deflection is specified by the equation

ρα
hτ2

a2l4
utt +

hτ

l2
ut +A1(u) = −ε0V

2

2

(
1

l2
(
ψx(x,u(x))

)2
+

1

h2

(
ψz(x,u(x))

)2)
+ ε0V

2

(
1

l2
ψx
(
x,u(x)

)
fx
(
x,u(x)

)
+

1

h2
ψz
(
x,u(x)

)
fu
(
x,u(x)

))
,

(2.22)

with A1(u) given by

A1(u) = −τε
l
∂x

(
ux√

1 + ε2(ux)2

)
+
bε

l3
∂2
x

(
uxx

(1 + ε2(ux)2)5/2

)
+

5bε3

2l3
∂x

(
ux(uxx)2

(1 + ε2(ux)2)7/2

)
.

Multiplying (2.22) by l2/hτ and using the definition of ε then leads to the equation

ρατ

a2l2
utt + ut +A(u) = − ε0V

2

2ε2hτ

(
ε2
(
ψx(x,u(x))

)2
+
(
ψz(x,u(x))

)2)
+
ε0V

ε2hτ

(
ε2ψx

(
x,u(x)

)
fx
(
x,u(x)

)
+ ψz

(
x,u(x)

)
fu
(
x,u(x)

))
,

with the rescaled quasilinear fourth-order differential operator

A(u) :=
l2

hτ
A1(u) = −∂x

(
ux√

1 + ε2(ux)2

)
+

b

l2τ
∂2
x

(
uxx

(1 + ε2(ux)2)5/2

)
+

5bε2

2l2τ
∂x

(
ux(uxx)2

(1 + ε2(ux)2)7/2

)
.

Lastly, by introduction of the parameters

γ :=

√
ρατ

al
, β :=

b

τ l2
, λ = λ(ε) :=

ε0V
2

2ε2hτ
,

the deflection of the thin elastic plate in terms of nonlinear elasticity may be determined by the
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evolution equation

γ2utt + ut +A(u) = −λ
(
ε2
(
ψx(x,u(x))

)2
+
(
ψz(x,u(x))

)2)
+ 2λ

(
ε2ψx

(
x,u(x)

)
fx
(
x,u(x)

)
+ ψz

(
x,u(x)

)
fu
(
x,u(x)

))
,

with

A(u) = −∂x

(
ux√

1 + ε2(ux)2

)
+ β∂2

x

(
uxx

(1 + ε2(ux)2)5/2

)
+

5

2
βε2∂x

(
ux(uxx)2

(1 + ε2(ux)2)7/2

)
and the according boundary and initial conditions

u(t,±1) = ux(t,±1) = 0, t > 0,

u(0,x) = u∗(x), ut(0,x) = u∗∗(x), x ∈ (−1, 1).

Here, γ is the systems quality factor5, β measures the relative importance of tension and rigidity
and λ is a ratio of a reference electrostatic force to a reference elastic force. It is proportional to the
square of the applied voltage and serves as a tuning parameter for the system.

2.2 | A Simplified Linear Elasticity Model

In the previous section, a general model for the dynamic behaviour of an electrostatically actuated
MEMS device has been derived by means of nonlinear elasticity theory. Allowing also for large
deflections of the membrane, it is the characteristic of the governing elasticity terms to be nonlinear.
However, in many engineering applications it is reasonable to only require the device to feature
small membrane deflections and thus to restrict the mathematical investigations to a linear elasticity
model. It is the purpose of this section to derive the analgon of the above model by means of linear
elasticity theory.

Starting from the unscaled regime, in a first step, we assume (ũx̃)2 to be small, i.e. (ũx̃)2 � 1, and
consider the Taylor series expansion

√
1 + (ũx̃)2 ' 1 +

1

2
(ũx̃)2 + . . .

of the term
√

1 + (ũx̃)2 around (ũx̃)2 = 0, ignoring all but the first two terms.6 The linearised

5Recall that γ =
√
ρατ/al is a measure for the damping of an oscillating system. Small values γ refer to strongly

damped systems and thus indicate a large rate of decay of oscillations.
6Note that the constant first term in the Taylor series expansion just voids the constant length in the stretching

energy, whence we include the second term (ũx̃)2/2 as well.
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stretching energy may then be written as

Es(ũ) =
τ

2

∫ l

−l
(ũx̃
(
x̃)
)2
dx̃.

As before, given σ ∈ R and a function v ∈ C∞c (L), we introduce for x̃ ∈ [−l, l] the variation
w(σ)(x̃) = ũ(x̃) + σv(x̃) of ũ(x̃) in the direction of v. We then find that

d

dσ
Es(ũ+ σv) =

d

dσ

(
τ

2

∫ l

−l
(wx̃)2 dx̃

)
= τ

∫ l

−l
ũx̃vx̃ + σ(vx̃)2 dx̃

whence, using that v is compactly supported in L,

δEs(ũ; v) = τ

∫ l

−l
ũx̃vx̃ dx̃ = −τ

∫ l

−l
ũx̃x̃v dx̃.

We proceed similarly in order to obtain the a linearised version of the bending term. Again requiring
(ũx̃)2 � 1 to be small, we consider the Taylor series expansion(

∂x̃

(
ũx̃√

1 + (ũx̃)2

))2√
1 + (ũx̃)2 =

(ũx̃x̃)2

(1 + (ũx̃)2)5/2
' (ũx̃x̃)2 + . . .

around (ũx̃)2 = 0, whence the linearised bending energy reads

Eb(ũ) =
b

2

∫ l

−l

(
ũx̃x̃(x̃)

)2
dx̃.

Therefore, we find that

d

dσ
Eb(ũ+ σv) =

d

dσ

(
b

2

∫ l

−l
(wx̃x̃)2 dx̃

)
= b

∫ l

−l
ũx̃x̃vx̃x̃ + σ(vx̃x̃)2 dx̃

and thus finally

δEb(ũ; v) = b

∫ l

−l
ũx̃x̃vx̃x̃ dx̃ = b

∫ l

−l
ũx̃x̃x̃x̃v dx̃.

With the same scaling as above, the Euler–Lagrange equation in the regime of linear elasticity reads

γ2utt + ut − uxx + βuxxxx = −λ
(
ε2
(
ψx(x,u(x))

)2
+
(
ψz(x,u(x))

)2)
+ 2λ

(
ε2ψx

(
x,u(x)

)
fx
(
x,u(x)

)
+ ψz

(
x,u(x)

)
fu
(
x,u(x)

)) (2.23)

for t > 0 and x ∈ (−1, 1).
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2.3 | The Mathematical Models Under Study

Based on the previous two sections, it is the purpose of the present one to give a brief overview of
the different variants of the very general nonlinear and linear elasticity models, respectively, which
reflect different physical assumptions, as they are adequate for different applications. Even if there
are more variants conceivable, the presented elaboration is restricted to those models which are
investigated more detailed in the subsequent chapters.

To this end, denoting by u = u(t,x), t > 0, x ∈ I := (−1, 1), the membrane’s deformation, the
elliptic problem governing the electrostatic potential of the system at any instant t ≥ 0 of time
always reads

ψxx + ψzz = 0, t > 0, (x, z) ∈ Ω(u), (2.24)

ψ(t,x, z) =
1 + z

1 + u(t,x)
f
(
x,u(t,x)

)
, t > 0, (x, z) ∈ ∂Ω(u), (2.25)

where the region Ω(u(t)) between the rigid ground plate at z = −1 and the elastic membrane at
z = u(t,x) at any instant of time is given by

Ω(u) = {(x, z) ∈ (−1, 1)× (−1,∞); −1 < z < u(t,x)}.

Depending on the choice of the evolution equation for the membrane’s displacement, only the per-
mittivity profile might vary, being either a function f = f(x), f = f

(
u(t,x)

)
or f = f

(
x,u(t,x)

)
. In

the above elliptic moving boundary value problem this does only influence the boundary condition
accordingly.

The situation is more involved for the choice of an appropriate model describing the dynamics of
the thin elastic plate’s displacement. Within the scope of both approaches – the linear and the
nonlinear elasticity theory – in the following analysis we make two physical assumptions which have
significant effects on the mathematical classification of the resulting equations.

First of all, we restrict the further investigations to viscosity-dominated systems, i.e. to a setting in
which damping effects dominate over inertial effects. More precisely, this means that the parameter
γ appearing in front of the inertial term is assumed to be very small, i.e.

γ =

√
ρατ

al
� 1,

and thus that we ignore the inertial term γ2utt in the equations. Note that the highest-order time
derivative thus appears in the shape of the damping term ut which is of first order. This restriction
is of course not relevant for all possible MEMS devices but for instance to model the dynamic
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behaviour of micro pumps [48] or micro grippers [49].

One may furthermore act on the assumption that membranes or infinitely thin plates do not resist
bending, i.e. they have no flexural rigidity. This is the case if

b =
2α3Y

3(1− ν)2
= 0 =⇒ β =

b

τ l2
= 0,

and thus the spatial higher-oder terms

β∂2
x

(
uxx

(1 + ε2(ux)2)5/2

)
+

5

2
βε2∂x

(
ux(uxx)2

(1 + ε2(ux)2)7/2

)
or βuxxxx,

in the nonlinear or linear elasticity regime, respectively, are eliminated. Deformations due to bending
are thus neglected, which means that the governing equations are reduced from fourth-order to
second-order (spatial) equations. Representatives for MEMS devices for which the suppression of
bending effects is reasonable are certain micro pumps or the Grating Light Valve, respectively [45,
p. 239].

Combining the above two physical assumptions we end up with a model influenced by stretching,
damping and electrostatic forces. Note that those models are not admissible for all kinds of appli-
cations, but that on the other hand there exist applications for which a negligence of inertial and
bending effects is reasonable.

It finally remains to take different varying permittivity profiles into account. The simplest case of a
constant permittivity f ≡ 1 has extensively been studied in the recent time and is thus not a subject
in the present study. It is rather the main objective of this thesis to consider the case in which the
membrane exhibits a certain varying dielectric permittivity profile, itself depending either on the
spatial variable x ∈ I, the membrane’s displacement u = u(t,x), or even both. More precisely, the
permittivity profile is given by a function of one of the three following types:

• [x 7→ f(x)] : I → R;

• [u 7→ f(u)] : (−1,∞)→ R;

• [(x,u) 7→ f(x,u)] : I × (−1,∞)→ R.

Depending on the choice of the dielectric permittivity profile, also the right-hand side of the evolution
equation differs. Denoting the right-hand side in any case by gε,λ(u), if f = f(x), it is given by

gε,λ(u) := −λ
(
ε2
(
ψx(x,u)

)2
+
(
ψz(x,u)

)2)
+ 2λε2ψx(x,u)f ′(x), (2.26)

where f ′ denotes the derivative of f with respect to x. In the case f = f(u), the right-hand side
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reads
gε,λ(u) := −λ

(
ε2
(
ψx(x,u)

)2
+
(
ψz(x,u)

)2)
+ 2λψz(x,u)f ′(u), (2.27)

f ′ denoting the derivative of f with respect to u, and finally in the case f = f(x,u) we have

gε,λ(u) := −λ
(
ε2
(
ψx(x,u)

)2
+
(
ψz(x,u)

)2)
+ 2λ

(
ε2ψx(x,u)fx(x,u) + ψz(x,u)fu(x,u)

)
, (2.28)

fx and fu denoting the partial derivatives of f with respect to its first and second variable, respec-
tively.

Reviewing the above considerations as a whole, we end up with the quasilinear parabolic initial-
boundary value problem

ut − ∂x

(
ux√

1 + ε2(ux)2

)
= gε,λ(u) t > 0, x ∈ I, (2.29)

u(t,±1) = 0, t > 0, (2.30)

u(0,x) = u∗(x), x ∈ I, (2.31)

in the regime of nonlinear elasticity, whence in the linear elasticity setting the analogue problem is
a semilinear parabolic initial-boundary value problem which reads

ut − uxx = gε,λ(u) t > 0, x ∈ I, (2.32)

u(t,±1) = 0, t > 0, (2.33)

u(0,x) = u∗(x), x ∈ I, (2.34)

with a right-hand side according to the choice of the dielectric permittivity profile f .

2.3.1 Remark (1) Note that in both cases, (2.29)–(2.31) and (2.32)–(2.34), the evolution problem
for the membrane’s displacement is strongly coupled to the elliptic moving boundary problem
(2.24)–(2.25) in the following way. On the one hand the solution to the elliptic free boundary
value problem is to be determined in the domain Ω(u(t)) which changes its shape with time as
the membrane deflects with time. The coupling is thus observably in the boundary conditions
for ψ. On the other hand, the right-hand side of the evolution equation for the membrane’s
deformation u exhibits a nonlinear and nonlocal dependence of the gradient of the potential
ψ.

(2) Observe that the above reasoning is formal in the sense that several regularity properties are
used which are not verified rigorously, e.g.

– the Gâteaux-differentiability of Ep at ũ in (2.4);
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– the differentiability of the path {ψ(σ;u);σ ∈ (−σ0,σ0)} with respect to σ, c.f. (2.9),

– the additional spatial regularity of ψ used to derive (2.10)

(3) In the mathematical and numerical analysis in this thesis the main attention is devoted to the
linear elasticity model (2.32)–(2.34) with the most general permittivity profile f = f(x,u), as
far as possible. Nonetheless, the nonlinear elasticity model (2.29)–(2.31) is analysed precisely.
It should be mentioned that for the latter model the presented results are partly based on joint
works with Joachim Escher.





3 | Local Well-Posedness and Global
Existence

As a first aspect in the mathematical analysis of the coupled systems derived in Chapter 2 we address
the questions of existence and uniqueness of solutions. Both when the membrane’s displacement is
determined in the semilinear regime (2.32)–(2.34) as well as when it is described by the quasilinear
problem (2.29)–(2.31), it turns out that the answers to those questions strongly depend on the
applied voltage. More precisely, we show that the systems possess locally in time existing unique
solutions for all arbitrarily large values λ of the applied voltage, and that solutions exist even globally
in time, provided that the applied voltage does not exceed a certain critical value λ∗.

Section 3.1 deals with the semilinear problem (2.32)–(2.34) arising from linear elasticity theory,
whereas Section 3.2 is addressed to its quasilinear counterpart (2.29)–(2.31) arising from nonlinear
elasticity theory.

3.1 | On the Semilinear Case

Based on the work [40] this section is devoted to results on local well-posedness and global existence of
solutions to the coupled system of partial differential equations consisting of the semilinear parabolic
initial boundary value problem

ut − uxx = −λ
(
ε2
(
ψx(x,u)

)2
+
(
ψz(x,u)

)2)
+ 2λ

(
ε2ψx(x,u)fx(x,u) + ψz(x,u)fu(x,u)

)
, t > 0, x ∈ I, (3.1)

u(t,±1) = 0, t > 0, (3.2)

u(0,x) = u∗(x), x ∈ I, (3.3)

25
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describing the time evolution of the displacement u = u(t,x) of the membrane, and the elliptic free
boundary value problem

ε2ψxx + ψzz = 0, t > 0, (x, z) ∈ Ω(u(t)), (3.4)

ψ(t,x, z) =
1 + z

1 + u(t,x)
f
(
x,u(t,x)

)
, t > 0, (x, z) ∈ ∂Ω(u(t)), (3.5)

characterising the electrostatic potential ψ = ψ(t,x, z) in the region

Ω(u(t)) = {(x, z) ∈ (−1, 1)× (−1,∞);−1 < z < u(t,x)},

determined by the rigid ground plate at z = −1 and the elastic membrane at z = u(t,x). It is
worthwhile to mention again the meaning of the two parameters ε and λ occurring in the above
equations. The first one, ε = h/l > 0, denotes the aspect ratio of the device, i.e. the ratio of the
gap size h between the two plates in the undeformed configuration, to the half l of the device length
before scaling. The second parameter λ > 0 is proportional to the square of the applied voltage
and is shown to have a considerable influence on the behaviour of the solution to (3.1)–(3.5). In
particular, the system (3.1)–(3.5) is shown to be locally well-posed for all arbitrarily large values
λ > 0 of the applied voltage. Moreover, we prove that the solution might even exist forever, provided
that the applied voltage is small enough, i.e. smaller than a certain critical value λ∗.

Before going into detail, it is valuable to briefly outline the general ideas of the proof. As already
performed in [40] we follow the lines of [14], where the authors study the above system with constant
permittivity f ≡ 1. According to that the problems (3.1)–(3.3) and (3.4)–(3.5) are considered
separately. In a first step the moving boundary problem (3.4)–(3.5) for ψ is transformed into an
elliptic boundary problem on the fixed rectangle Ω := I × (−1, 0). Indeed, to stand to benefit from
the fixed geometry is not totally free of cost as we now have to deal with an elliptic differential
operator of second order with non-constant coefficients, depending on u, ux and uxx. However, the
latter problem is shown to be well-posed for a given function u (see Theorem 3.1.3 below). Having
the solution of the transformed elliptic problem at hand, the second step consists in investigating the
evolution problem (3.1)–(3.3) for the membrane’s displacement u. This problem can be characterised
as a nonlocal semilinear heat equation, whereby one may reformulate it as an abstract parameter
dependent Cauchy problem and finally apply a fixed-point argument in order to infer that also the
evolution problem is well-posed.

Although one may basically apply the methods used in [14, Theorem1 & 2], the reasoning requires
additional endeavour for handling a general varying permittivity profile f = f

(
x,u(t,x)

)
. Revealing

of that are the following two lemmas on the regularity of the Nemitskii operator induced by the
function f : [−1, 1]× [−1,∞)→ R.
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3.1.1 Lemma (Global Lipschitz Continuity of the Nemitskii Operator, [40, Lemma 3.1])
Given f ∈ C3

(
[−1, 1]× R,R

)
and S ⊂W 2

2 (I), consider the Nemitskii operator

Nf : S −→W 2
2 (I), v 7−→ f(·, v(·))

induced by f . If S is bounded in W 2
2 (I) then Nf is globally Lipschitz continuous. That is, there

exists a constant cf ,L = cf ,L(S) > 0 such that

‖Nf (v1)−Nf (v2)‖W 2
2 (I) ≤ cf ,L ‖v1 − v2‖W 2

2 (I)

for all v1, v2 ∈ S.

The proof is an immediate consequence of the mean value theorem in integral form applied to
Nf (v1)−Nf (v2) and its derivatives of first and second order in the L2(I)-norm.

3.1.2 Corollary (Boundedness of Nf , [40, Corollary 3.2])
Under the assumptions of Lemma 3.1.1 the operator Nf is uniformly bounded, i.e. there exists a
constant cf ,B = cf ,B(S) > 0 such that

‖Nf (v)‖W 2
2 (I) ≤ cf ,B

for all v ∈ S.

If no ambiguity is to be feared both, the function f : [−1, 1] × [−1,∞) → R and the Nemitskii
operator Nf are subsequently denoted by f , i.e. we write Nf (v) = f(v) for v ∈W 2

2 (I).

Following the lines of [14] we now realise the above introduced concept for the proof of local well-
posedness of the coupled system (3.1)–(3.5) and transform the moving boundary problem (3.4)–(3.5)
to the fixed rectangle Ω := I × (0, 1).

Given q ∈ (2,∞) and an arbitrary function v ∈ W 2
q (I) taking values in (−1,∞), we define the

diffeomorphism

Tv : Ω(v) −→ Ω, Tv(x, z) :=

(
x,

1 + z

1 + v(x)

)
. (3.6)

The according inverse is given by

T−1
v (x, η) = (x, (1 + v(x)) η − 1) , (x, η) ∈ Ω. (3.7)

Introducing the function ϕ : Ω → R, defined as the composition ϕ := ψ ◦ T−1
u(t), the membrane’s
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deformation u = u(t,x) may be determined according to the transformed evolution problem

ut − uxx =− λ

(
ε2
(
−
(
fx(x,u)

)2
+
(
(fu(x,u)ux

)2)
− 2

1 + ε2(ux)2

1 + u
fu(x,u)ϕη(t,x, 1) +

1 + ε2(ux)2

(1 + u)2

(
ϕη(t,x, 1)

)2)
, t > 0, x ∈ I, (3.8)

u(t,±1) = 0, t > 0, (3.9)

u(0,x) = u∗(x), x ∈ I. (3.10)

The equivalent formulation of (3.4)–(3.5) on the fixed rectangle Ω reads

(
Lu(t)ϕ

)
(t,x, η) = 0, t > 0, (x, η) ∈ Ω, (3.11)

ϕ(t,x, η) = ηf(x,u), t > 0, (x, η) ∈ ∂Ω, (3.12)

with the transformed v-dependent elliptic differential operator

Lvw := ε2wxx − 2ε2η
vx

1 + v
wxη +

1 + ε2η2(vx)2

(1 + v)2
wηη + ε2η

(
2

(
vx

1 + v

)2

− vxx
1 + v

)
wη (3.13)

of second order. Finally, (c.f. [14]) for q ∈ [2,∞) and κ ∈ (0, 1) the set

Sq(κ) :=
{
u ∈W 2

q,D(I); ‖u‖W 2
q,D(I) < 1/κ and − 1 + κ < u(x) for x ∈ I

}
,

with

W 2α
q,D(I) :=

W 2α
q (I), 2α ∈ [0, 1/q){
u ∈W 2α

q (I); u(±1) = 0
}

, 2α ∈ (1/q, 2]

is introduced.

We are now in a position to prove that for a given membrane’s displacement u the transformed
elliptic boundary value problem (3.11)–(3.12) on Ω possesses a unique solution.

3.1.3 Theorem (Solution to the Elliptic Problem on Ω, [40, Theorem 3.3])
Let κ ∈ (0, 1), ε > 0, and q > 2. Given v ∈ Sq(κ) and f ∈ C3

(
[−1, 1]× [−1,∞),R

)
there is a unique

solution ϕv ∈W 2
2 (Ω) to the problem

(Lvϕv) (x, η) = 0, (x, η) ∈ Ω, (3.14)

ϕv(x, η) = ηf(x, v), (x, η) ∈ ∂Ω. (3.15)
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In addition, defining the function ṽ by ṽ(x) := v(−x) for x ∈ I and assuming that f
(
x, v(x)

)
=

f
(
−x, v(x)

)
for x ∈ I, one obtains

ϕṽ(x, η) = ϕv(−x, η), (x, η) ∈ Ω.

Proof. (i) Given v ∈ Sq(κ), for (x, η) ∈ Ω define the function

Fv(x, η) := Lv
(
ηf(x, v)

)
= ε2η

(
fxx(x, v) + 2fxv(x, v)vx + fvv(x, v)(vx)2 + fv(x, v)vxx

)
− 2ε2η

vx
1 + v

(
fx(x, v) + fv(x, v)vx

)
+ ε2η

(
2

(
vx

1 + v

)2

− vxx
1 + v

)
f(x, v).

(3.16)

Since v ∈ Sq(κ) and f(v) ∈ W 2
2 (I) thanks to Corollary 3.1.2, one may verify that Fv belongs to

L2(Ω) with
‖Fv‖L2(Ω) ≤ c(κ, ε). (3.17)

Therefore the assumptions of [14, Lemma 6] are fulfilled,1 whence there exists a unique solution
φv ∈W 2

2,D(Ω) to the problem

−Lvφv = Fv, (x, η) ∈ Ω, (3.18)

φv = 0, (x, η) ∈ ∂Ω, (3.19)

with homogenised boundary conditions, satisfying

‖φv‖W 2
2 (Ω) ≤ c(κ, ε) ‖Fv‖L2(Ω) . (3.20)

The function ϕv, defined by

ϕv(x, η) := φv(x, η) + ηf(x, v), (x, η) ∈ Ω,

then obviously solves (3.11)–(3.12). Furthermore, combining (3.17) and (3.20) with the fact that
‖f(v)‖W 2

2 (I) ≤ cf ,B, one obtains

‖ϕv‖W 2
2 (Ω) ≤ ‖φv‖W 2

2 (Ω) + ‖ηf(x, v)‖W 2
2 (Ω) ≤ c(κ, ε). (3.21)

Eventually, the uniqueness of φv ∈ W 2
2,D(Ω) implies that ϕv ∈ W 2

2 (Ω) is the unique solution to
(3.11)–(3.12).

(ii) It remains to prove that ϕv is even with respect to x ∈ I. Given v ∈ Sq(κ), the function ṽ defined

1The proof of [14, Lemma 6] is based on [22, Theorem. 8.3] and [31, Theorem. 9.1].
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by ṽ(x) := v(−x) for x ∈ I, obviously belongs to Sq(κ). The properties of Lṽ and Fṽ together with
the assumption f

(
x, v(x)

)
= f

(
−x, v(x)

)
, x ∈ I, ensure that the function (x, η) 7→ φv(−x, η) =:

φ̃(x, η) solves (3.18)–(3.19) with ṽ instead of v:

−Lṽφ̃(x, η) = − ε2φ̃xx(x, η) + 2ε2η
ṽx(x)

1 + ṽ(x)
φ̃xη(x, η)−

1 + ε2η2
(
ṽx(x)

)2
(1 + ṽ(x))2 φ̃ηη(x, η)

− ε2η

(
2

(
ṽx(x)

1 + ṽ(x)

)2

− ṽxx(x)

1 + ṽ(x)

)
φ̃η(x, η)

= − Lvφv(−x, η)

= Fv(−x, η)

= ε2η
(
fxx
(
−x, v(−x)

)
+ 2fxv

(
−x, v(−x)

)
vx(−x)

+ fvv
(
−x, v(−x)

)(
vx(−x)

)2
+ fv

(
−x, v(−x)

)
vxx(−x)

)
− 2ε2η

vx(−x)

1 + v(−x)

(
fx
(
−x, v(−x)

)
+ fv

(
−x, v(−x)

)
vx(−x)

)
+ ε2η

(
2

(
vx(−x)

1 + v(−x)

)2

− vxx(−x)

1 + v(−x)

)
f
(
−x, v(−x)

)
= Fṽ(x, η).

Consequently, φ̃(x, η) = φv(−x, η) solves (3.18)–(3.19) with ṽ instead of v and the uniqueness of the
solution to (3.18)–(3.19) implies that

φṽ(x, η) = φv(−x, η), (x, η) ∈ Ω.

The definition of ϕv(x, η) = φv(x, η) + ηf(x, v) together with the fact that f is even with respect to
x ∈ I then readily yields

ϕṽ(x, η) = ϕv(−x, η), (x, η) ∈ Ω.

This completes the proof.

Having solved the transformed elliptic boundary problem (3.11)–(3.12) on the fixed rectangle Ω for
a given displacement u, in pursuance of the introductory words on the concept of this section we
are now left with handling the evolution problem (3.8)–(3.10). For this purpose we prove in the
subsequent lemma that the right-hand side of (3.8) is globally Lipschitz continuous and bounded as
a function gε : Sq(κ) → W 2σ

2,D(I), where σ ∈ [0, 1/2). Those two properties do then give rise to the
fact that the evolution problem for the membrane’s displacement may be solved by methods of the
semigroup theory.
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3.1.4 Lemma (Properties of gε, [40, Lemma 3.4])
Let κ ∈ (0, 1), ε > 0 and q > 2. Moreover, let f ∈ C3

(
[−1, 1]× [−1,∞),R

)
. Then, with ϕv ∈W 2

2 (Ω)

denoting the unique solution to (3.14)–(3.15), for 2σ ∈ [0, 1/2) the mapping

gε : Sq(κ) −→ W 2σ
2,D(I),

v 7−→ ε2
(
−
(
fx(x, v)

)2
+
(
fv(x, v)

)2
(vx)2

)
− 2

1 + ε2(vx)2

1 + v
fv(x, v)∂ηϕv(·, 1) +

1 + ε2(vx)2

(1 + v)2

(
∂ηϕv(·, 1)

)2
has the following properties:

(i) gε is globally Lipschitz continuous. That is, there is a constant cL = cL(κ, ε) > 0 such that

‖gε(v1)− gε(v2)‖W 2σ
2,D(I) ≤ cL(κ, ε) ‖v1 − v2‖W 2

q (I)

for all v1, v2 ∈ Sq(κ).

(ii) gε is uniformly bounded. That is, there exists a constant cB = cB(κ, ε) > 0 such that

‖gε(v)‖W 2σ
2,D(I) ≤ cB(κ, ε)

for every v ∈ Sq(κ).

Proof. (i) Given v ∈ Sq(κ), define the bounded linear operator

A(v) ∈ L
(
W 2

2,D(Ω),L2(Ω)
)
, A(v)φ := −Lvφ.

[14, Lemma 6] guarantees that A(v) is invertible with inverse operator A(v)−1 ∈ L
(
L2(Ω),W 2

2,D(Ω)
)
,

satisfying ∥∥A(v)−1
∥∥
L(L2(Ω),W 2

2,D(Ω))
≤ c(κ, ε). (3.22)

As mentioned in the proof of [14, Proposition 5], by arguments concerning the continuity of pointwise
multiplication in Sobolev spaces one obtains

‖A(v1)−A(v2)‖L(W 2
2,D(Ω),L2(Ω)) ≤ c(κ, ε) ‖v1 − v2‖W 2

q (I) (3.23)

for v1, v2 ∈ Sq(κ). Moreover, again as in the proof of [14, Proposition 5] the identity

A(v1)−1 −A(v2)−1 = A(v1)−1 [A(v2)−A(v1)]A(v2)−1
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in L
(
L2(Ω),W 2

2,D(Ω)
)
allows to infer from (3.22) and (3.23) that

∥∥A(v1)−1− A(v2)−1
∥∥
L(L2(Ω),W 2

2,D(Ω))

≤
∥∥A(v1)−1

∥∥
L(L2(Ω),W 2

2,D(Ω))
‖A(v2)−A(v1)‖L(W 2

2,D(Ω),L2(Ω))∥∥A(v2)−1
∥∥
L(L2(Ω),W 2

2,D(Ω))

≤ c(κ, ε) ‖A(v2)−A(v1)‖L(W 2
2,D(Ω),L2(Ω))

≤ c(κ, ε) ‖v1 − v2‖W 2
q (I)

(3.24)

where v1, v2 ∈ Sq(κ). Furthermore, owing to the boundedness and the Lipschitz continuity of f(v)

in W 2
2 (I) (cf. Lemma 3.1.1 and Corollary 3.1.2), for v1, v2 ∈ Sq(κ) there holds

‖Fv1 − Fv2‖L2(Ω) ≤ c(κ, ε) ‖v1 − v2‖W 2
q (I) . (3.25)

A combination of (3.24), (3.25) and (3.22) with the Lipschitz continuity of f(v) in W 2
2 (I) yields2

the existence of a constant c(κ, ε) > 0 such that

‖ϕv1 − ϕv2‖W 2
2 (Ω)

≤ ‖φv1 − φv2‖W 2
2 (Ω) + 2 ‖f(v1)− f(v2)‖W 2

2 (I)

≤
∥∥(A(v1)−1 −A(v2)−1

)
Fv1

∥∥
W 2

2,D(Ω)
+
∥∥A(v2)−1(Fv1 − Fv2)

∥∥
W 2

2,D(Ω)

+ 2 ‖f(v1)− f(v2)‖W 2
2 (I)

≤ c(κ, ε) ‖v1 − v2‖W 2
q (I) + c(κ, ε) ‖Fv1 − Fv2‖L2(Ω)

+ 2 ‖f(v1)− f(v2)‖W 2
2 (I)

≤ c(κ, ε) ‖v1 − v2‖W 2
q (I)

(3.26)

for v1, v2 ∈ Sq(κ). One may then invoke [43, Chapter 2, Theorem 5.4] to obtain

‖∂ηϕv(·, 1)‖
W

1/2
2 (I)

≤ c ‖ϕv‖W 2
2 (Ω) . (3.27)

Fusing (3.26) and (3.27) leads to

‖∂ηϕv1(·, 1)− ∂ηϕv2(·, 1)‖
W

1/2
2 (I)

≤ c(κ, ε) ‖v1 − v2‖W 2
q (I) (3.28)

for v1, v2 ∈ Sq(κ), whence the mapping

Sq(κ) −→W
1/2
2 (I), v 7−→ ∂ηϕv(·, 1) (3.29)

2Observe that ‖ηf(v)‖W2
2 (Ω) ≤

√
2‖f(v)‖W2

2 (I) ≤ 2‖f(v)‖W2
2 (I).
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is globally Lipschitz continuous. The continuity of pointwise multiplication3

W
1/2
2 (I) ·W 1/2

2 (I) ↪→W 2σ1
2 (I), 2σ1 < 1/2,

according to [2, Theorem 4.1] implies that the mapping

Sq(κ) −→W 2σ1
2 (I), v 7−→

(
∂ηϕv(·, 1)

)2 (3.30)

is globally Lipschitz continuous4. That W 2
q (I) is continuously embedded in W 1

∞(I), together with
the continuity of pointwise multiplication W 1

∞(I) ·W 1
q (I) ↪→W 1

q (I) yields that the mapping

Sq(κ) −→W 1
q (I), v 7−→ 1 + ε2(vx)2

(1 + v)2
(3.31)

is globally Lipschitz continuous. Applying the continuity of pointwise multiplication

W 1
q (I) ·W 2σ1

2 (I) ↪→W 2σ
2 (I) = W 2σ

2,D(I), 2σ < 2σ1 < 1/2,

to the Lipschitz continuous mappings (3.30) and (3.31) one may deduce the Lipschitz continuity of

Sq(κ) −→W 2σ
2,D(I), v 7−→ 1 + ε2(vx)2

(1 + v)2

(
∂ηϕv(·, 1)

)2
.

Thanks to Lemma 3.1.1 the mapping

Sq(κ) −→W 1
2 (I), v 7−→ fv(x, v) (3.32)

is globally Lipschitz continuous and using the continuity of the embeddings

W 1
q (I) ·W 1

q ↪→W 1
q (I), W 1

∞(I) ·W 1
q ↪→W 1

q (I)

one obtains the global Lipschitz continuity of the mapping

Sq(κ) −→W 1
q (I), v 7−→ 1 + ε2(vx)2

1 + v
. (3.33)

As a consequence of the continuity of pointwise multiplication W 1
q (I) ·W 1

2 (I) ↪→W 1
2 (I) and

W 1
2 (I) ·W 1/2

2 (I) ↪→W ρ
2 (I) = W ρ

2,D(I), 0 < 2σ < 2σ1 < ρ < 1/2,

3In what follows all arguments concerning the continuity of pointwise multiplication in Sobolev spaces are due to
[2].

4In the whole contribution global Lipschitz continuity means that the Lipschitz constant does not depend on
v1, v2 ∈ Sq(κ) but only on the parameters ε and κ.
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applied to the mappings (3.29), (3.32) and (3.33), their pointwise product

Sq(κ) −→W ρ
2,D(I), v 7−→ 2

1 + ε2(vx)2

1 + v
fv(x, v)∂ηϕv(·, 1)

is globally Lipschitz continuous. Moreover, one may invoke Lemma 3.1.1 as well as Corollary 3.1.2
and the continuity of pointwise multiplicationW 1

2 (I)·W 1
2 (I) ↪→W 1

2 (I) to conclude that the mapping

Sq(κ) −→W 1
2 (I), v 7−→

(
fx(x, v)

)2
is globally Lipschitz continuous. Finally, by combining some of the already mentioned arguments
one obtains that the mapping

Sq(κ) −→W 1
2 (I), v 7−→

(
fv(x, v)

)2
(vx)2

is globally Lipschitz continuous. As a sum of globally Lipschitz continuous functions, eventually the
mapping gε : Sq(κ)→W 2σ

2,D(I) is globally Lipschitz continuous. This yields the first assertion of the
lemma.

(ii) First of all, thanks to part (i) there exists a constant cL = cL(κ, ε) > 0 such that

‖gε(v1)− gε(v2)‖W 2σ
2,D(I) ≤ cL(κ, ε) ‖v1 − v2‖W 2

q (I)

for all v1, v2 ∈ Sq(κ). Furthermore, by definition of gε there holds

‖gε(0)‖W 2σ
2,D(I) ≤ ε

2‖
(
fx(x, 0)

)2‖W 2σ
2,D(I) + 2‖fv(x, 0)∂ηϕ0(x, 1)‖W 2σ

2,D(I)

+ ‖
(
∂ηϕ0(x, 1)

)2‖W 2σ
2,D(I).

(3.34)

The first term on the right-hand side of (3.34) may be estimated by means of the continuity of the
embedding W 2

2 (I) ↪→W 2σ
2,D(I), 2σ < 1/2, as in (i), and the boundedness of f(v) in W 2

2 (I), so that

ε2‖
(
fx(x, 0)

)2‖W 2σ
2,D(I) ≤ c(ε)c2

f ,B. (3.35)

To control the second term of (3.34) one can invoke the continuity of pointwise multiplication

W 1
2 (I) ·W 1/2

2 (I) ↪→W 2σ
2,D(I),

together with [43, Chapter 2, Theorem 5.4] as well as (3.21) and again the boundedness of f(v) in
W 2

2 (I). Altogether this leads to

‖fv(x, 0)∂ηϕ0(x, 1)‖W 2σ
2,D(I) ≤ cf ,Bc(κ, ε). (3.36)



35 3.1. On the Semilinear Case

As for (3.36), combining the continuity of the embedding of W 1/2
2 (I) in W 2σ

2,D(I) with [43, Chapter
2, Theorem 5.4] and (3.21) yields

‖
(
∂ηϕ0(x, 1)

)2‖W 2σ
2,D(I) ≤ c(κ, ε). (3.37)

Fusing (3.35), (3.36) and (3.37) one finally obtains

‖gε(0)‖W 2σ
2,D(I) ≤ c(κ, ε).

Therefore, observing that 0 ∈ Sq(κ), one may deduce that gε : Sq(κ) → W 2σ
2,D(I) is bounded by a

constant depending only on κ and ε:

‖gε(v)‖W 2σ
2,D(I) ≤ ‖gε(v)− gε(0)‖W 2σ

2,D(I) + ‖gε(0)‖W 2σ
2,D(I)

≤ cL(κ, ε) ‖v‖W 2
q (I) + ‖gε(0)‖W 2σ

2,D(I)

≤ cL(κ, ε)

κ
+ c(κ, ε)

=: cB(κ, ε).

This completes the proof.

Thanks to the above lemma we are now in a position to employ arguments from the semigroup theory
in order to verify the local existence of a unique solution (u,ψ) to the coupled problem (3.1)–(3.5).

3.1.5 Theorem (Local Well-Posedness, [40, Theorem 3.5])
Let q ∈ (2,∞) and ε > 0. Given an initial value u∗ ∈ W 2

q,D(I) with u∗(x) > −1 for x ∈ I, and
f ∈ C3

(
[−1, 1]× [−1,∞),R

)
, the following holds true:

(i) For each voltage value λ > 0 there exists a unique maximal solution (u,ψ) to (3.1)–(3.5) on
the maximal interval [0,T ) of existence in the sense that

u ∈ C1
(
[0,T ),Lq(I)

)
∩ C

(
[0,T ),W 2

q,D(I)
)

satisfies (3.1)–(3.3) with
u(t,x) > −1, t ∈ [0,T ), x ∈ I,

and ψ ∈W 2
2

(
Ω(u(t))

)
solves (3.4)–(3.5) on Ω(u(t)) for each t ∈ [0,T ).

(ii) If for each τ > 0 there is κ(τ) ∈ (0, 1) such that u(t) ∈ Sq(κ(τ)) for t ∈ [0,T )∩ [0, τ ], then the
solution (u,ψ) to (3.1)–(3.5) exists globally in time, which means that T =∞.

(iii) If u∗(x) = u∗(−x) and f
(
x,u(t,x)

)
= f

(
−x,u(t,x)

)
for all t ∈ [0,T ) and x ∈ I, then for every

t ∈ [0,T ), u = u(t,x) and ψ = ψ(t,x, z) are even with respect to x ∈ I as well.
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Again the proof of this result relies on the proof of [14, Theorem 1].

Proof. (i) In order to stand to benefit from arguments of the semigroup theory, (3.8) subject to the
boundary condition (3.9) and the initial condition (3.10) must be reformulated as a Cauchy problem.
For that purpose let p ∈ (1,∞) and define the differential operator5

A ∈ L
(
W 2
p,D(I),Lp(I)

)
, Av := −∂2

xv. (3.38)

Then, (3.8) subject to (3.9) and (3.10) may be perceived as the abstract parameter-dependent
semilinear Cauchy problem

u̇+Au = −λgε(u), t > 0, (3.39)

u(0) = u∗, (3.40)

with the function gε introduced in Lemma 3.1.4. The proof is now performed by employing a fixed
point argument to (3.39)–(3.40). To this end let

{
e−tA; t ≥ 0

}
denote the (analytic) heat semigroup on Lp(I) corresponding to −A. By assumption there is a
κ ∈ (0, 1/2) such that

u∗ ∈ Sq(2κ). (3.41)

Fixing 1/2 − 1/q < 2σ < 1/2 with 2σ 6= 1/q, [14, Lemma 7] guarantees the existence of constants
M ≥ 1 and ω > 0 such that6

∥∥e−tA∥∥L(W 2
q,D(I))

+ t
−σ+1+ 1

2
( 1

2
− 1
q

) ∥∥e−tA∥∥L(W 2σ
2,D(I),W 2

q,D(I))
≤Me−ωt, t ≥ 0. (3.42)

Given κ∗ := κ/M , thanks to Lemma 3.1.4 there exist positive constants cL(κ, ε) and cB(κ, ε) such
that

‖gε(v1)− gε(v2)‖W 2σ
2,D(I) ≤ cL(κ, ε) ‖v1 − v2‖W 2

q,D(I) , v1, v2 ∈ Sq(κ∗), (3.43)

and
‖gε(v)‖W 2σ

2,D(I) ≤ cB(κ, ε), v ∈ Sq(κ∗), (3.44)

respectively. For τ > 0 we now define the space

Vτ := C
(
[0, τ ],Sq(κ∗)

)
5Since for v ∈ W 2

p,D(I) it holds that Av = −∂2
xv ∈ Lp(I) ↪→ Lr(I) for r ≤ p, we write A = Ap for Ap ∈

L
(
W 2
p,D(I),Lp(I)

)
.

6The proof of [14, Lemma 7] is based on results of [3], [23] and [50].
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and subsequently for t ∈ [0, τ ] and v ∈ Vτ the operator

G(v)(t) := e−tAu∗ − λ
∫ t

0
e−(t−s)Agε

(
v(s)

)
ds. (3.45)

With the objective of establishing the existence of a fixed point of (3.45) we now verify that G
defines a contraction on Vτ for a certain τ . To this end we introduce the functional

I(τ) :=

∫ τ

0
e−ωss

σ−1− 1
2

( 1
2
− 1
q

)
ds ≤ I(∞) :=

∫ ∞
0

e−ωss
σ−1− 1

2
( 1

2
− 1
q

)
ds, (3.46)

which is finite thanks to the positivity of ω and the choice of σ. Given v ∈ Vτ and t ∈ [0, τ ] it follows
from (3.41), (3.42) and (3.44) that

‖G(v)(t)‖W 2
q,D(I) ≤

∥∥e−tAu∗∥∥W 2
q,D(I)

+ λ

∫ t

0

∥∥∥e−(t−s)Agε
(
v(s)

)∥∥∥
W 2
q,D(I)

ds

≤
∥∥e−tA∥∥L(W 2

q,D(I))
‖u∗‖W 2

q,D(I)

+ λ

∫ t

0

∥∥∥e−(t−s)A
∥∥∥
L(W 2σ

2,D(I),W 2
q,D(I))

∥∥gε(v(s)
)∥∥
W 2σ

2,D(I)
ds

≤ 1

2κ

∥∥e−tA∥∥L(W 2
q,D(I))

+ λcB(κ, ε)

∫ t

0

∥∥∥e−(t−s)A
∥∥∥
L(W 2σ

2,D(I),W 2
q,D(I))

ds

≤ 1

2κ
Me−ωt + λMcB(κ, ε)

∫ t

0
e−ω(t−s)(t− s)σ−1− 1

2
( 1

2
− 1
q

)
ds

≤ M

2κ
+ λMcB(κ, ε)I(τ).

(3.47)

Note that the heat semigroup is a positive contraction semigroup on L∞(I), whence it is additionally
submarkovian.7 Due to this fact and since W 2

q,D(I) ↪→ L∞(I) with embedding constant 2 and
u∗ > 2κ− 1, one can deduce from (3.42) and (3.44) that

G(v)(t) ≥ e−tA(2κ− 1)− λ
∫ t

0
e−(t−s)Agε

(
v(s)

)
ds

≥ 2κ− 1− λ
∫ t

0

∥∥∥e−(t−s)Agε
(
v(s)

)∥∥∥
L∞(I)

ds

≥ 2κ− 1− 2λ

∫ t

0

∥∥∥e−(t−s)A
∥∥∥
L(W 2σ

2,D(I),W 2
q,D(I))

∥∥gε(v(s)
)∥∥
W 2σ

2,D(I)
ds

≥ 2κ− 1− 2λMcB(κ, ε)

∫ t

0
e−ω(t−s)(t− s)σ−1− 1

2
( 1

2
− 1
q

)
ds

≥ −1 + 2κ− 2λMcB(κ, ε)I(τ).

(3.48)

7This follows from the parabolic maximum principle.
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Finally, (c.f. [14]) one may infer from (3.42) and (3.43) that

‖G(v1)−G(v2)‖W 2
q,D(I)

= λ

∥∥∥∥∫ t

0
e−(t−s)A [gε(v1(s)

)
− gε

(
v2(s)

)]
ds

∥∥∥∥
W 2
q,D(I)

≤ λ
∫ t

0

∥∥∥e−(t−s)A
∥∥∥
L(W 2σ

2,D(I),W 2
q,D(I))

∥∥gε(v1(s)
)
− gε

(
v2(s)

)∥∥
W 2σ

2,D(I)
ds

≤ λMcL(κ, ε)

∫ t

0
e−ω(t−s)(t− s)σ−1− 1

2
( 1

2
− 1
q

) ‖v1(s)− v2(s)‖W 2
q,D(I) ds

≤ λMcL(κ, ε)I(τ) ‖v1 − v2‖C([0,τ ],W 2
q,D(I)) .

(3.49)

Availing ourselves of the fact that I(τ)→ 0 as τ → 0, the estimates (3.47), (3.48) and (3.49) imply
that there exists τ∗ := τ∗(λ,κ, ε, q,σ) > 0 sufficiently small such that

G : Vτ∗ −→ Vτ∗

defines a contraction. Since Vτ∗ is a complete metric space one may eventually invoke Banach’s
fixed-point theorem to conclude that there exists a unique fixed point

u = G(u) ∈ Vτ∗ .

This shows that (3.39) possesses a unique mild solution on [0, τ∗] with u∗ ∈W 2
q,D(I). It follows from

general parabolic theory (c.f. [3]) that this mild solution is also a strong solution

u ∈ C1
(
[0,T ),Lq(I)

)
∩ C

(
[0,T ),W 2

q,D(I)
)
∩ C

(
(0,T )),W 2+2σ

2,D (I)
)

for some maximal time T ∈ [τ∗,∞). It satisfies

u(t,x) > −1, t ∈ [0,T ), x ∈ I.

Lastly, observe that
ψ(t) = ϕu(t) ◦ Tu(t) (3.50)

belongs to W 2
2

(
Ω(u(t))

)
and solves (3.4)–(3.5) for each t ∈ [0,T ), with Tu(t) as introduced in (3.6).

(ii) We prove the contraposition of the assertion. Assume that T <∞. Then there exist τ∗ > 0 and
t∗ ∈ [0,T ) ∩ [0, τ∗] such that u(t∗) /∈ Sq(κ(τ∗)) for all κ(τ∗) ∈ (0, 1). This means that either

lim
t→T

min
x∈[−1,1]

u(t,x) = −1 or lim
t→T
‖u(t)‖W 2

q (I) =∞.
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(iii) It remains to show that u and ψ are even with respect to x ∈ I, provided that u∗ and f are.
For that purpose suppose that u∗(x) = u∗(−x) for all x ∈ I, and denote by u be the corresponding
maximal solution to (3.39)–(3.40) with maximal time T ∈ (0,∞] of existence. Then, introducing
the function ũ defined by ũ(t,x) := u(t,−x), t ∈ [0,T ), x ∈ I, and using the additional assumption
that f

(
x,u(t,x)

)
= f

(
−x,u(t,x)

)
for t ∈ [0,T ), x ∈ I, one may infer from (3.39) that

ũt(t,x) +Aũ(t,x) = −λgε
(
−x,u(t,−x)

)
.

The definitions of gε and ũ yield

−λgε
(
−x,u(t,−x)

)
=− λ

(
ε2
(
−
(
fx(−x,u(t,−x))

)2
+
(
fu(−x,u(t,−x))ux(t,−x)

)2)
− 2

1 + ε2
(
ux(t,−x)

)2
1 + u(t,−x)

fu
(
−x,u(t,−x)

)
∂ηϕu(−x, 1)

+
1 + ε2

(
ux(t,−x)

)2(
1 + u(t,−x)

)2 (
∂ηϕu(−x, 1)

)2)
,

=− λ

(
ε2
(
−
(
fx(−x, ũ(t,x))

)2
+
(
fu(−x, ũ(t,x))ũx(t,x)

)2)
− 2

1 + ε2
(
ũx(t,x)

)2
1 + ũ(t,x)

fu
(
−x, ũ(t,x)

)
∂ηϕũ(x, 1)

+
1 + ε2

(
ũx(t,x)

)2(
1 + ũ(t,x)

)2 (
∂ηϕũ(x, 1)

)2)
.

Finally, using the assumption that f
(
x,u(t,x)

)
= f

(
−x,u(t,x)

)
for all x ∈ I one may observe that

−λgε
(
−x,u(t,−x)

)
= −λgε

(
x, ũ(t,x)

)
,

which eventually leads to
ũt(t,x) +Aũ(t,x) = −λgε

(
x, ũ(t,x)

)
.

The uniqueness of the solution to (3.39)–(3.40) therefore implies that u coincides with ũ so that
u(t, ·) is even on I for all t ∈ [0,T ). That ψ(t, ·, z) is even follows from (3.50), using the fact that
ϕu(t)(t, ·, η) is even thanks to Theorem 3.1.3. Thus, the proof is complete.

Before proving the at the outset mentioned result on global existence, it is worthwhile to make the
following observation, which is of particular relevance in further parts of this work.
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3.1.6 Corollary
Let u∗ ∈ Sq(κ) satisfy u∗(x) ≤ 0 for all x ∈ I, and assume that the implication

v ∈ Sq(κ), v(x) ≤ 0 ∀x ∈ I =⇒ gε(v) ∈ Sq(κ), gε
(
v(x)

)
≥ 0 ∀x ∈ I (3.51)

holds true. Then the solution u to (3.1)–(3.3) satisfies

u(t,x) ≤ 0, t ∈ [0,T ), x ∈ I.

Proof. Pick T∗ ∈ (0,T ) and introduce the set

S−q (κ) := {v ∈ Sq(κ); v(x) ≤ 0 for x ∈ I}.

Given u∗ ∈ S−q (κ), it then suffices to show that u(t,x) ≤ 0 for all t ∈ [0,T∗] and x ∈ I. To this end,
let τ ∈ (0,T∗] and introduce the space

V−τ := C
(
[0, τ ],S−q (κ)

)
.

The proof of Theorem 3.1.5, c.f. (3.47), (3.48) and (3.49), already provides evidence that there exists
τ∗ ≤ τ such that

G : Vτ∗ −→ Vτ∗

is a contractive self mapping. Since the semigroup {e−tA; t ≥ 0} corresponding to −A is positive,
the assumption (3.51) yields that, given v ∈ V−τ∗ , it follows that

G(v)(t) = e−tAu∗ − λ
∫ t

0
e−(t−s)Agε

(
v(s)

)
ds ≤ 0, t ∈ [0, τ∗].

Therefore also
G : V−τ∗ −→ V

−
τ∗

defines a contractive self mapping. As in the proof of Theorem 3.1.5 we can now conclude that
G possesses a unique fixed point G(u)(t) = u(t) ∈ S−q (κ) on [0, τ∗], being the unique solution
u ∈ C1

(
[0, τ∗),Lq(I)

)
∩ C

(
[0, τ∗),W

2
q (I)

)
which satisfies

u(t,x) ≤ 0, t ∈ [0, τ∗], x ∈ [−1, 1].

By a finite number of the above fixed-point iteration this reasoning may be extended to the interval
[0,T∗].

In Theorem 3.1.5 it is proved that the solution to (3.1)–(3.5) exists locally in time for all voltage
values λ. However, the next theorem is addressed to global existence. It turns out that the solution
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(u,ψ) to (3.1)–(3.5) exists even globally in time, if λ is smaller than a critical value λ∗.

3.1.7 Theorem (Global Existence, [40, Theorem 3.7])
Let q ∈ (2,∞), ε > 0 and λ > 0. Furthermore, given f ∈ C3

(
[−1, 1]×[−1,∞),R

)
and u∗ ∈W 2

q,D(I),
satisfying −1 < u∗(x) for x ∈ I, let (u,ψ) denote the corresponding solution to (3.1)–(3.5) on the
maximal interval [0,T ) of existence. Then, given κ ∈ (0, 1), there exist λ∗ := λ∗(κ, ε) > 0 and
κ∗ := κ∗(κ, ε) > 0 such that T =∞ and u(t) ∈ Sq(κ∗) for t ≥ 0, provided that λ ∈ (0,λ∗).

The proof performs exactly as the one in [14] for the case of constant permittivity. Hence, merely
the main steps of the proof are mentioned here for the sake of completeness.

Proof. Given u∗ ∈ Sq(κ), let (u,ψ) be the corresponding solution to (3.1)–(3.5) on the maximal
interval [0,T ) of existence. We pick κ∗ := κ/M with M as in (3.42) and put λ∗ := λ∗(κ, ε, q,σ) > 0

such that
λ∗M max {cL(κ, ε), cB(κ, ε)} I(∞) ≤ 1

2
<

1

2κ∗
(3.52)

and
2λ∗McB(κ, ε)I(∞) ≤ κ∗. (3.53)

Using λ ≤ λ∗ and recalling the relation (3.46), i.e. I(τ) ≤ I(∞) < ∞, one may infer from the
estimates (3.47)–(3.49) that for each τ > 0 the mapping G defines a contractive self mapping on Vτ .
More precisely, G complies with the estimates

‖G(u)(t)‖W 2
q,D(I) ≤

M

2κ
+ λ∗M max {cL(κ, ε), cB(κ, ε)} I(∞) <

1

κ∗

and

G(u)(t) ≥ −1 + 2κ− 2λ∗McB(κ, ε)I(∞) ≥ −1 + κ∗,

implying that G : Vτ → Vτ is a self mapping. In addition, it is shown in (3.49) that

‖G(v1)(t)−G(v2)(t)‖W 2
q,D(I) ≤ λMcL(κ, ε)I(τ) ‖v1 − v2‖C([0,τ ],W 2

q,D(I)) ,

where
λMcL(κ, ε)I(τ) ≤ λ∗McL(κ, ε)I(∞) < 1.

Thus, G : Vτ → Vτ is a contraction which allows of invoking Banach’s fixed-point theorem as in the
proof of Theorem 3.1.5 to deduce that

G(u)(t) = e−tAu∗ − λ
∫ t

0
e−(t−s)Agε

(
u(s)

)
ds, t ∈ [0, τ ],
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possesses a unique fixed point u ∈ Vτ . Since the above reasoning is true for all arbitrarily chosen
τ > 0, we may eventually conclude that T =∞ and u(t) ∈ Sq(κ∗) for all t ≥ 0.

3.2 | On the Quasilinear Case

It is the intention of this section to present a local well-posedness as well as a global existence result
for the coupled system consisting of the quasilinear evolution problem

ut − ∂x

(
ux√

1 + ε2(ux)2

)
= −λ

(
ε2ψ2

x(x,u) + ψ2
z(x,u)

)
+ 2λ

(
ε2ψx(x,u)fx(x,u) + ψz(x,u)fu(x,u)

)
, t > 0, x ∈ I, (3.54)

u(t,±1) = 0, t > 0, (3.55)

u(0,x) = u∗(x), x ∈ I, (3.56)

characterising the time evolution u = u(t,x) of the membrane’s displacement, and the elliptic moving
boundary problem

ε2ψxx + ψzz = 0, t > 0, (x, z) ∈ Ω(u(t)), (3.57)

ψ(t,x, z) =
1 + z

1 + u(t,x)
f
(
x,u(t,x)

)
, t > 0, (x, z) ∈ ∂Ω(u(t)), (3.58)

describing the behaviour of the electrostatic potential ψ = ψ(t,x, z) in the region

Ω(u(t)) = {(x, z) ∈ I × (−1,∞);−1 < z < u(t,x)}

between the ground plate and the elastic membrane. Similar to what is shown in the previous section
we verify local existence and uniqueness of the solution (u,ψ) to (3.54)–(3.58) for all arbitrary values
λ of the applied voltage, as well as global existence, provided that the applied voltage does not exceed
a critical value λ∗.

As in [17] for the case of a spatially varying permittivity profile f = f(x) and in [16] for f =

f
(
u(t,x)

)
, the performance of the proofs is based on the methods used in [15].

Following the lines of Section 3.1, the first step in the investigation of (3.54)–(3.58) is to observe that
for a given v ∈ Sq(κ) the transformed elliptic moving boundary problem on the fixed rectangular
domain Ω = I × (−1, 0) possesses a unique solution ϕ ∈W 2

2 (Ω). Since the statement is exactly the
same as in Theorem 3.1.3 in Section 3.1 we just replicate the result without giving the proof.

Let κ ∈ (0, 1), ε > 0, and q ∈ (2,∞). Given v ∈ Sq(κ) and f ∈ C3
(
[−1, 1]×R,R

)
, there is a unique
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solution ϕv ∈W 2
2 (Ω) to the problem

(Lvϕv)(x, η) = 0, (x, η) ∈ Ω, (3.59)

ϕv(x, η) = ηf(x, v), (x, η) ∈ ∂Ω, (3.60)

satisfying the a priori estimate
‖ϕv‖W 2

2 (Ω) ≤ c(κ, ε) (3.61)

with a positive constant c(κ, ε). In addition, defining the function ṽ by ṽ(x) := v(−x) for all x ∈ I
and assuming that f

(
x, v(x)

)
= f

(
−x, v(x)

)
, x ∈ I, one obtains that

ϕṽ(x, η) = ϕv(−x, η), (x, η) ∈ Ω.

The basic idea for handling the evolution problem (3.54)–(3.56) may be described as follows. De-
noting for the sake of better readability by ϕ ∈ W 2

2 (Ω) the unique solution to (3.59)–(3.60), the
transformed quasilinear initial boundary value problem

ut − ∂x

(
ux√

1 + ε2(ux)2

)
= −λgε(u), t > 0, x ∈ I, (3.62)

u(t,±1) = 0, t > 0, (3.63)

u(0,x) = u∗(x), x ∈ I, (3.64)

with gε given by

gε(u) = ε2
(
−
(
fx(x,u)

)2
+
(
(fu(x,u)ux

)2)
− 2

1 + ε2(ux)2

1 + u
fu(x,u)ϕη(t,x, 1) +

1 + ε2(ux)2

(1 + u)2

(
ϕη(t,x, 1)

)2
is perceived as an abstract parameter-dependent quasilinear Cauchy problem. At this point the
main two differences between the semilinear problem and its quasilinear counterpart become ap-
parent. In order to employ the instrument of semigroup theory to the latter, firstly a suitable
evolution operator UAε(w), induced by the quasilinear second-order differential operator Aε(w)v =

−vxx/
(
1 + ε2(wx)2

)3/2, has to be introduced. One can see later on that in this context the re-
sults derived in [15] may be literally adopted. As also pointed out in [15], the second differ-
ence consists in proving regularity properties of the right-hand side of (3.62). More precisely, on
the one hand, the transformed right-hand side gε(u) has to be globally bounded as a mapping
gε : Sq(κ) → W 2σ

2,D(I), 2σ ∈ [0, 1/2), as shown in Lemma 3.1.4. On the other hand, the quasilinear
nature of the evolution problem requires that the Lipschitz continuity of its right-hand side is to
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be verified in weaker norms than for the semilinear case. These explanatory notes are formalised in
Proposition 3.2.4 stated below.

The general concept for proving well-posedness of the quasilinear problem is similar to the one in
Section 3.1 for the semilinear case. We first prove a Lipschitz estimate for the Nemitskii operator
Nf induced by the permittivity profile f . It becomes clear in the course of this section that also
the Lipschitz continuity of Nf is to be proved in the above mentioned weaker norms. Having this
Lipschitz estimate at hand we may then derive some technical auxiliary results which in the end
enable us to apply the arguments of the proof of [15, Theorem 1.1] in order to proof local well-
posedness and global existence.

3.2.1 Lemma (Global Lipschitz Continuity of the Nemitskii Operator II)
Given q ∈ (2,∞) and κ ∈ (0, 1), let Sq(κ) be defined as above. Moreover, let ξ ∈ [0, (q − 1)/q).
Then the Nemitskii operator

Nf : W 2−ξ
q (I) −→W 2−ξ

q (I), v 7−→ f(·, v(·))

induced by f ∈ C3
(
[−1, 1] × R,R

)
is globally Lipschitz continuous in the following sense. There

exists a constant cf ,L > 0 such that

‖Nf (v1)−Nf (v2)‖
W 2−ξ
q (I)

≤ cf ,L‖v1 − v2‖W 2−ξ
q (I)

for all v1, v2 ∈ Sq(κ).

As usual we denote both the function f : [−1, 1]× R→ R as well as the Nemitskii operator Nf , by
f if no ambiguity is to be feared, i.e. Nf (v) = f(x, v) for v ∈ Sq(κ). Moreover, given v ∈ Sq(κ),
in the following the notation Nf (v)′ = fx(x, v) + fv(x, v)vx is used for the total derivative of Nf (v)

with respect to x, and we write v′ = vx if this is appropriate for the sake of better readability.

Proof. Given v1, v2 ∈ Sq(κ), observe that v1, v2 and hence for s ∈ [0, 1] also v1 +s[v2−v1] is bounded
in C1

(
[−1, 1],R

)
by a uniform constant depending only on κ. As a simple consequence of the mean

value theorem in integral form and the continuity of the embedding W 2−ξ
q (I) ↪→ Lq(I) we therefore
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obtain

‖f(x, v1)− f(x, v2)‖qLq(I) =

∫
I
|f(x, v1(x))− f(x, v2(x))|qdx

=

∫
I

∣∣∣∣∫ 1

0
fv
(
x, v1(x) + s[v2(x)− v1(x)]

)
(v2(x)− v1(x)) ds

∣∣∣∣q dx
≤ max

x∈[−1,1]
s∈[0,1]

(
fv
(
x, v1(x) + s[v2(x)− v1(x)]

))q ∫
I
|v2(x)− v1(x)|q dx

≤ c‖v1 − v2‖qLq(I) ≤ c‖v1 − v2‖q
W 2−ξ
q (I)

.

It remains to verify the estimates

‖fx(x, v1)− fx(x, v2)‖
W 1−ξ
q (I)

≤ c ‖v1 − v2‖W 2−ξ
q (I)

(3.65)

and
‖fv(x, v1)v′1 − fv(x, v2)v′2‖W 1−ξ

q (I)
≤ c ‖v1 − v2‖W 2−ξ

q (I)
(3.66)

for suitable constants c > 0. To this end, firstly observe that by means of the mean value theorem
in integral form one may prove Nfx ,Nfv ∈ Lip

(
W 1
q (I),W 1

q (I)
)
. Since W 2−ξ

q (I) is continuously
embedded in W 1

q (I) this implies in addition that

Nfx ,Nfv ∈ Lip
(
W 2−ξ
q (I),W 1

q (I)
)
.

The inequality (3.65) now follows immediately and we are left with proving (3.66). To this end note
that pointwise multiplication W 1

q (I) ·W 1−ξ
q (I) ↪→ W 1−ξ

q (I) is continuous (c.f. [2, Theorem 4.1]),
whereby we obtain

‖fv(x, v1)v′1 − fv(x, v2)v′2‖W 1−ξ
q (I)

≤ ‖fv(x, v1)
(
v′1 − v′2

)
‖
W 1−ξ
q (I)

+ ‖
(
fv(x, v1)− fv(x, v2)

)
v′2‖W 1−ξ

q (I)

≤ c‖fv(x, v1)‖W 1
q (I)‖v′1 − v′2‖W 1−ξ

q (I)
+ c‖fv(x, v1)− fv(x, v2)‖

W 1−ξ
q (I)

‖v′2‖W 1
q (I).

(3.67)

Using in (3.67) that fv is contained in Lip
(
W 2−ξ
q (I),W 1

q (I)
)
and that v2 ∈ Sq(κ) finally yields the

existence of a constant cf ,L = cf ,L(κ, f) > 0 such that

‖fv(x, v1)v′1 − fv(x, v2)v′2‖W 1−ξ
q (I)

≤ cf ,L‖v1 − v2‖W 2−ξ
q (I)

. (3.68)

This completes the proof.

Prior to proving Lipschitz continuity of gε in suitable norms, Lipschitz continuity of ϕv with respect
to v ∈ Sq(κ) in suitable norms is to be verified (see Lemma 3.2.3 below). The associated proof is an
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adaption of [15, Lemma 2.6] to a non-constant permittivity profile so that the following auxiliary
result on the function Fv introduced in (3.16) is indispensable.

3.2.2 Lemma
Let f ∈ C3

(
[−1, 1] × R,R

)
. Then, given ξ ∈ [0, (q − 1)/q) and α ∈ (ξ, 1), there exists a constant

c = c(κ, ε) > 0 such that

‖Fv1 − Fv2‖W−α2,D(Ω) ≤ c(κ, ε)‖v1 − v2‖W 2−ξ
q (I)

, v1, v2 ∈ Sq(κ).

Proof. Recall that, given v ∈ Sq(κ), the function Fv, defined on Ω as

Fv(x, η) = Lv
(
ηf(x, v)

)
= ε2η

(
fxx(x, v) + 2fxv(x, v)vx + fvv(x, v)(vx)2 + fv(x, v)vxx

)
− 2ε2η

v′

1 + v

(
fx(x, v) + fv(x, v)vx

)
+ ε2η

(
2

(
vx

1 + v

)2

− vxx
1 + v

)
f(x, v)

= ε2ηNf (v)′′ − 2ε2η
v′

1 + v
Nf (v)′ + ε2η

(
2

(
vx

1 + v

)2

− vxx
1 + v

)
Nf (v)

satisfies Fv ∈ L2(Ω) ↪→ W−α2,D(Ω) as stated in (3.17). Now, given v1, v2 ∈ Sq(κ), we show that there
exists a constant c > 0 such that the dual pairing 〈(Fv1 − Fv2),µ〉 of Fv1 − Fv2 ∈ W−α2,D(Ω) and
µ ∈Wα

2,D(Ω) \ {0} complies with the estimate

〈(Fv1 − Fv2),µ〉 ≤
∣∣∣∣∫

Ω
(Fv1 − Fv2)µd(x, η)

∣∣∣∣ ≤ c‖v1 − v2‖W 2−ξ
q (I)

‖µ‖Wα
2,D(Ω),

whereby one may then conclude that

‖Fv1 − Fv2‖W−α2,D(Ω) := sup
µ∈Wα

2,D(Ω)\{0}

〈Fv1 − Fv2 ,µ〉
‖µ‖Wα

2,D(Ω)
≤ c‖v1 − v2‖W 2−ξ

q (I)
.

To this end we observe firstly that∣∣∣∣∫
Ω

(Fv1 − Fv2)µd(x, η)

∣∣∣∣
≤ ε2

∣∣∣∣∫
Ω

(
Nf (v1)′′ −Nf (v2)′′

)
µd(x, η)

∣∣∣∣
+ 2ε2

∣∣∣∣∫
Ω

(
v′1

1 + v1
Nf (v1)′ − v′2

1 + v2
Nf (v2)′

)
µd(x, η)

∣∣∣∣
+ ε2

∣∣∣∣∣
∫

Ω

(
2

(
v′1

1 + v1

)2

− v′′1
1 + v1

)
Nf (v1)−

(
2

(
v′2

1 + v2

)2

− v′′2
1 + v2

)
Nf (v2)µd(x, η)

∣∣∣∣∣

(3.69)
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and estimate the terms on the right-hand side separately. For this purpose we firstly observe that
the differential operator8 D2

x : W 2
2 (Ω)→ L2(Ω), h(x, η) 7→ ∂2

xh(x, η), is linear and bounded and may
be extended such that D2

x ∈ L
(
W 2−α

2 (Ω),W−α2 (Ω)
)
. Observing that∣∣∣∣∫

Ω

(
Nf (v1)′′ −Nf (v2)′′

)
µd(x, η)

∣∣∣∣ ≤ ∥∥Nf (v1)′′ −Nf (v2)′′
∥∥
W−α2 (Ω)

‖µ‖Wα
2,D(Ω)

≤ ‖Nf (v1)−Nf (v2)‖W 2−α
2 (Ω) ‖µ‖Wα

2,D(Ω),

the continuity of the embedding W 2−ξ
q (I) ↪→W 2−α

2 (I) together with the Lipschitz continuity of the
Nemitskii operator Nf (v) = f(x, v), proved in Lemma 3.2.1, thus lead to the estimate∣∣∣∣∫

Ω

(
Nf (v1)′′ −Nf (v2)′′

)
µd(x, η)

∣∣∣∣ ≤ c ‖Nf (v1)−Nf (v2)‖
W 2−ξ
q (I)

‖µ‖Wα
2,D(Ω)

≤ c‖v1 − v2‖W 2−ξ
q (I)

‖µ‖Wα
2,D(Ω)

(3.70)

for the first term. Regarding the second term, one readily obtains∣∣∣∣∫
Ω

(
v′1

1 + v1
Nf (v1)′ − v′2

1 + v2
Nf (v2)′

)
µd(x, η)

∣∣∣∣
≤

(∥∥∥∥ v′1
1 + v1

(
Nf (v1)′ −Nf (v2)′

)∥∥∥∥
W−α2 (Ω)

+

∥∥∥∥( v′1
1 + v1

− v′2
1 + v2

)
Nf (v2)′

∥∥∥∥
W−α2 (Ω)

)
‖µ‖Wα

2,D(Ω)

so that the continuity of the pointwise multiplications

W 1
q (Ω) ·W−α2 (Ω) ↪→W−α2 (Ω) and W 1−ξ

q (I) ·W 1
q (I) ↪→W 1−ξ

q (I) ↪→W−α2 (I)

leads to the inequality∣∣∣∣∫
Ω

(
v′1

1 + v1
Nf (v1)′ − v′2

1 + v2
Nf (v2)′

)
µd(x, η)

∣∣∣∣
≤
∥∥∥∥ v′1

1 + v1

∥∥∥∥
W 1
q (I)

∥∥Nf (v1)′ −Nf (v2)′
∥∥
W−α2 (Ω)

‖µ‖Wα
2,D(Ω)

+

∥∥∥∥ v′1
1 + v1

− v′2
1 + v2

∥∥∥∥
W 1−ξ
q (I)

∥∥Nf (v2)′
∥∥
W 1
q (I)
‖µ‖Wα

2,D(Ω).

Moreover, again thanks to Lemma 3.2.1 by additionally using the facts that W 1−ξ
q (I) is a multipli-

cation algebra and that each v ∈ Sq(κ) is bounded in C1
(
[−1, 1],R

)
by a uniform constant c(κ) > 0,

8If h ∈W 2
2 (Ω) depends only on x ∈ I the simplified notation D2

xh(x) = h′′(x) is used.
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we find that∣∣∣∣∫
Ω

(
v′1

1 + v1
Nf (v1)′ − v′2

1 + v2
Nf (v2)′

)
µd(x, η)

∣∣∣∣
≤ c(κ) ‖Nf (v1)−Nf (v2)‖

W 2−ξ
q (I)

‖µ‖Wα
2,D(Ω)

+ c(κ, f)‖v′1 − v′2‖W 1−ξ
q (I)

‖v1 − v2‖W 1−ξ
q (I)

‖µ‖Wα
2,D(Ω)

≤ c(κ, f)‖v1 − v2‖W 2−ξ
q (I)

‖µ‖Wα
2,D(Ω).

(3.71)

Finally, fusing the arguments used in [15, Lemma 2.5] with Lemma 3.2.1 in order to estimate the
third term, one may verify that also the inequality∣∣∣∣∣

∫
Ω

(
2

(
v′1

1 + v1

)2

− v′′1
1 + v1

)
Nf (v1)−

(
2

(
v′2

1 + v2

)2

− v′′2
1 + v2

)
Nf (v2)µd(x, η)

∣∣∣∣∣
≤ c(κ, f)‖v1 − v2‖W 2−ξ

q (I)
‖µ‖Wα

2,D(Ω)

(3.72)

holds true. A combination of the estimates (3.70)–(3.72) eventually yields∣∣∣∣∫
Ω

(Fv1 − Fv2)µd(x, η)

∣∣∣∣ ≤ c(κ, ε, f)‖v1 − v2‖W 2−ξ
q (I)

‖µ‖Wα
2,D(Ω)

and with the introductory words the proof is complete.

As a combination of the previous lemma with results from [15] we obtain Lipschitz continuity of ϕv
as formulated in the following lemma.

3.2.3 Lemma
Let f ∈ C3

(
[−1, 1] × R,R

)
. Then, given ξ ∈ [0, (q − 1)/q) and α ∈ (ξ, 1), there exists a constant

c = c(κ, ε) > 0 such that

‖ϕv1 − ϕv2‖W 2−α
2,D (Ω) ≤ c(κ, ε)‖v1 − v2‖W 2−ξ

q (I)
, v1, v2 ∈ Sq(κ).

Proof. As in [15, Section 2] we pick v ∈ Sq(κ) and introduce the bounded linear operator

A(v) ∈ L
(
W 1

2,D(Ω),W−1
2,D(Ω)

)
∩ L
(
W 2

2,D(Ω),L2(Ω)
)
,

defined as
A(v)φ := −Lvφ, φ ∈W 1

2,D(Ω).
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[15, Lemma 2.2] yields the existence of a unique solution φv ∈W 2
2,D(Ω) to the problem

−Lvφv = Fv, (x, η) ∈ Ω,

φv = 0, (x, η) ∈ ∂Ω.

This implies in particular that A(v) is invertible and that the relation φv = A(v)−1Fv holds true on
Ω. Moreover, one may check that ϕv = φv + ηFv (c.f. also the proof of Theorem 3.1.3 in Section
3.1). In addition, it is proved in [15, Lemma 2.3] that, given θ ∈ [0, 1]\{1/2}, there exists a uniform
constant c = c(κ, ε) > 0 such that

‖A(v)−1‖L(W θ−1
2,D (Ω),W θ+1

2,D (Ω)) ≤ c(κ, ε), v ∈ Sq(κ).

Finally, [15, Lemma 2.4] states that, given ξ ∈ [0, (q − 1)/q) and α ∈ (ξ, 1), there exists a further
constant c = c(κ, ε) > 0 such that A(v) is Lipschitz continuous in the following norms:

‖A(v1)−A(v2)‖L(W 2
2,D(Ω),W−α2,D(Ω)) ≤ c(κ, ε)‖v1 − v2‖W 2−ξ

q (I)
, v1, v2 ∈ Sq(κ).

Having these preliminaries at hand pick v1, v2 ∈ Sq(κ) and note that ϕv1 − ϕv2 = φv1 − φv2 ∈
W 2−α

2,D (Ω). This allows the following calculation.

‖ϕv1 − ϕv2‖W 2−α
2,D (Ω) ≤ ‖A(v1)−1

(
Fv1 − Fv2

)
‖W 2−α

2,D (Ω) + ‖
(
A(v1)−1 −A(v2)−1

)
Fv2‖W 2−α

2,D (Ω)

≤ ‖A(v1)−1‖L(W−α2,D(Ω),W 2−α
2,D (Ω))‖Fv1 − Fv2‖W−α2,D(Ω)

+ ‖A(v1)−1[A(v2)−A(v1)]A(v2)−1‖L(W−α2,D(Ω),W 2−α
2,D (Ω))‖Fv2‖W 2−α

2,D (Ω)

≤ ‖A(v1)−1‖L(W−α2,D(Ω),W 2−α
2,D (Ω))‖Fv1 − Fv2‖W−α2,D(Ω)

+ ‖A(v1)−1‖L(W−α2,D(Ω),W 2−α
2,D (Ω))‖A(v1)−A(v2)‖L(W 2

2,D(Ω),W−α2,D(Ω))

· ‖A(v2)−1‖L(L2(Ω),W 2
2,D(Ω))‖Fv2‖L2(Ω)

Now using that
‖A(v)−1‖L(W θ−1

2,D (Ω),W θ+1
2,D (Ω)) ≤ c(κ, ε), v ∈ Sq(κ),

for all θ ∈ [0, 1] \ {1/2} and that

‖A(v1)−A(v2)‖L(W 2
2,D(Ω),W−α2,D(Ω)) ≤ c(κ, ε)‖v1 − v2‖W 2−ξ

q (I)
, v1, v2 ∈ Sq(κ),

thanks to [15, Lemma 2.3 & Lemma 2.4], one may conclude that

‖ϕv1 − ϕv2‖W 2−α
2,D (Ω) ≤ c(κ, ε)‖Fv1 − Fv2‖W−α2,D(Ω) + c(κ, ε)‖Fv2‖L2(Ω)‖v1 − v2‖W 2−ξ

q (I)
.
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Finally, recalling that Fv is uniformly bounded in L2(Ω) for all v ∈ Sq(κ), we invoke Lemma 3.2.2
and end up with

‖ϕv1 − ϕv2‖W 2−α
2,D (Ω) ≤ c(κ, ε)‖v1 − v2‖W 2−ξ

q (I)
, v1, v2 ∈ Sq(κ).

This completes the proof.

Fusing the above presented results we are now able to verify that the evolution equations’s right-hand
side gε is globally Lipschitz continuous and uniformly bounded in suitable norms.

3.2.4 Proposition (Properties of gε)
Let κ ∈ (0, 1), ε > 0 and q ∈ (2,∞). Moreover, let f ∈ C3

(
[−1, 1]× R,R

)
. Then, with ϕv ∈W 2

2 (Ω)

denoting the unique solution to (3.59)–(3.60), for 2σ ∈ [0, 1/2), the mapping

gε : Sq(κ) −→W 2σ
2,D(I),

v 7−→ ε2
(
−
(
fx(x,u)

)2
+
(
(fu(x,u)ux

)2)
− 2

1 + ε2(ux)2

1 + u
fu(x,u)∂ηϕv(·, 1) +

1 + ε2(ux)2

(1 + u)2
(∂ηϕv(·, 1))2

has the following properties:

(i) gε is uniformly bounded in W 2σ
2,D(I). That is, there is a constant cB = cB(κ, ε) > 0 such that

‖gε(v)‖W 2σ
2,D(I) ≤ cB(κ, ε)

for every v ∈ Sq(κ).

(ii) Given ξ ∈ [0, 1/2) and ν ∈ [0, (1 − 2ξ)/2), gε complies with the following global Lipschitz
inequality. There exists a constant cL = cL(κ, ε) > 0 such that

‖gε(v1)− gε(v2)‖W ν
2,D(I) ≤ cL(κ, ε)‖v1 − v2‖W 2−ξ

q,D (I)

for all v1, v2 ∈ Sq(κ).

Proof. Part (i) of the proposition contains exactly the same statement as in Lemma 3.1.4 of Section
3.1. We are thus left with proving part (ii). To this end, given v ∈ Sq(κ), we introduce the notation

h1(v) := ε2
(
−
(
fx(x, v)

)2
+
(
(fv(x, v)v′

)2)
, h2(v) :=

1 + ε2(v′)2

1 + v
fv(x, v)∂ηϕv(t,x, 1)

as well as

h3(v) :=
1 + ε2(v′)2

(1 + v)2

(
∂ηϕv(t,x, 1)

)2
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and write gε(v) as
gε(v) := h1(v)− 2h2(v) + h3(v).

Having the previous Lemma 3.2.3 in mind, the Lipschitz continuity of h3 with respect to v ∈ Sq(κ)

in the corresponding topologies may be literally adopted from the proof of [15, Proposition 2.1].
Thus, there exists a constant c = c(κ, ε) > 0 such that

‖h3(v1)− h3(v2)‖W ν
2,D(I) ≤ c(κ, ε)‖v1 − v2‖W 2−ξ

q,D (I)
, v1, v2 ∈ Sq(κ), (3.73)

for ξ ∈ [0, 1/2) and ν ∈ [0, (1− 2ξ)/2). In order to verify the Lipschitz continuity of h2 we see that

‖h2(v1)− h2(v2)‖W ν
2 (I) ≤

∥∥∥∥1 + ε2(v′1)2

1 + v1
fv(x, v1)

(
∂ηϕv1(x, 1)− ∂ηϕv2(x, 1)

)∥∥∥∥
W ν

2 (I)

+

∥∥∥∥(1 + ε2(v′1)2

1 + v1
fv(x, v1)− 1 + ε2(v′2)2

1 + v2
fv(x, v2)

)
∂ηϕv2(x, 1)

∥∥∥∥
W ν

2 (I)

(3.74)

and introduce the notation

N1 :=

∥∥∥∥1 + ε2(v′1)2

1 + v1
fv(x, v1)

(
∂ηϕv1(x, 1)− ∂ηϕv2(x, 1)

)∥∥∥∥
W ν

2 (I)

,

N2 :=

∥∥∥∥(1 + ε2(v′1)2

1 + v1
fv(x, v1)− 1 + ε2(v′2)2

1 + v2
fv(x, v2)

)
∂ηϕv2(x, 1)

∥∥∥∥
W ν

2 (I)

.

Since pointwise multiplication

W 1
q (I) ·W 1

2 (I) ·W 1/2−α
2 (I) ↪→W ν

2 (I)

is continuous (c.f. [2, Theorem 4.1]) N1 complies with the estimate

N1 ≤ c
∥∥∥∥1 + ε2(v′1)2

1 + v1

∥∥∥∥
W 1
q (I)

‖fv(x, v1)‖W 1
2 (I) ‖∂ηϕv1(x, 1)− ∂ηϕv2(x, 1)‖

W
1/2−α
2 (I)

.

Moreover, using that v1 ∈ Sq(κ) and that fv(x, v1) is bounded in the sense of Corollary 3.1.2 it
follows from the properties of the trace operator as stated in [24, Theorem 1.5.1.1] that

N1 ≤ c(κ, f) ‖ϕv1 − ϕv2‖W 2−α
2 (Ω) .

Finally using the Lipschitz continuity of ϕv in the sense of Lemma 3.2.3 we end up with

N1 =

∥∥∥∥1 + ε2(v′1)2

1 + v1
fv(x, v1)

(
∂ηϕv1(x, 1)− ∂ηϕv2(x, 1)

)∥∥∥∥
W ν

2 (I)

≤ c(κ, f)‖v1 − v2‖W 2−ξ
q (I)

. (3.75)
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As for N2 observe that

N2 ≤

(∥∥∥∥1 + ε2(v′1)2

1 + v1

(
fv(x, v1)− fv(x, v2)

)∥∥∥∥
W 1−ξ
q (I)

+

∥∥∥∥(1 + ε2(v′1)2

1 + v1
− 1 + ε2(v′2)2

1 + v2

)
fv(x, v2)

∥∥∥∥
W 1−ξ
q (I)

)
‖∂ηϕv2(x, 1)‖

W
1/2
2 (I)

≤

(∥∥∥∥1 + ε2(v′1)2

1 + v1

∥∥∥∥
W 1
q (I)

‖fv(x, v1)− fv(x, v2)‖
W 1−ξ
q (I)

+

∥∥∥∥1 + ε2(v′1)2

1 + v1
− 1 + ε2(v′2)2

1 + v2

∥∥∥∥
W 1−ξ
q (I)

‖fv(x, v2)‖
W 1−ξ
q (I)

)
‖∂ηϕv2(x, 1)‖

W
1/2
2 (I)

since pointwise multiplications

W 1−ξ
q (I) ·W 1/2

2 (I) ↪→W ν
2 (I) and W 1

q (I) ·W 1−ξ
q (I) ↪→W 1−ξ

q (I)

are continuous. Again using that v2 ∈ Sq(κ) and once more invoking [24, Theorem 1.5.1.1] to see
that ‖∂ηϕv2(x, 1)‖

W
1/2
2 (I)

≤ ‖ϕv2‖W 2
2 (Ω) ≤ c leads to the estimate

N2 ≤ c(κ, f)
(
‖fv(x, v1)− fv(x, v2)‖

W 1−ξ
q (I)

+ ‖v′1 − v′2‖W 1−ξ
q (I)

)
.

In the proof of Lemma 3.2.1 it is shown that

‖fv(x, v1)− fv(x, v2)‖
W 1−ξ
q (I)

≤ c(κ, f)‖v1 − v2‖W 2−ξ
q (I)

,

whereby N2 eventually satisfies

N2 =

∥∥∥∥(1 + ε2(v′1)2

1 + v1
fv(x, v1)− 1 + ε2(v′2)2

1 + v2
fv(x, v2)

)
∂ηϕv2(x, 1)

∥∥∥∥
W ν

2 (I)

≤ c(κ, f)‖v1 − v2‖W 2−ξ
q (I)

.

(3.76)

Combining (3.75) and (3.76) proves the Lipschitz continuity of h2, i.e. the inequality

‖h2(v1)− h2(v2)‖W ν
2 (I) ≤ c(κ, f)‖v1 − v2‖W 2−ξ

q (I)
. (3.77)

We are hence left with verifying an analogue estimate for h1. For this purpose observe that continuity
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of pointwise multiplication leads to

‖h1(v1)− h1(v2)‖W ν
2 (I)

≤
∥∥∥(fx(x, v1)

)2 − (fx(x, v2)
)2∥∥∥

W ν
2 (I)

+
∥∥∥(fv(x, v1)

)2
(v′1)2 −

(
fv(x, v2)

)2
(v′2)2

∥∥∥
W ν

2 (I)
.

(3.78)

Regarding the Lipschitz continuity of the first term on the right-hand side of (3.78) observe that
pointwise multiplication W 1−ξ

q (I) ·W 1
2 (I) ↪→ W ν

2 (I) is continuous and recall that (c.f. the proof of
Lemma 3.2.1) Nfx ∈ Lip

(
W 2−ξ
q (I),W 1

q (I)
)
. This readily yields∥∥∥(fx(x, v1)

)2− (fx(x, v2)
)2∥∥∥

W ν
2 (I)

≤‖fx(x, v1)− fx(x, v2)‖
W 1−ξ
q (I)

‖fx(x, v1) + fx(x, v2)‖W 1
2 (I)

≤c(κ, f)‖v1 − v2‖W 2−ξ
q (I)

.

(3.79)

Furthermore, the second term on the right-hand side of (3.78) may be treated as follows. Using
again that pointwise multiplication W 1−ξ

q (I) · W 1
2 (I) ↪→ W ν

2 (I) is continuous and moreover that
W 1

2 (I) is a multiplication algebra, we find that∥∥∥(fv(x, v1)
)2

(v′1)2−
(
fv(x, v2)

)2
(v′2)2

∥∥∥
W ν

2 (I)

≤
∥∥fv(x, v1)v′1 − fv(x, v2)v′2

∥∥
W 1−ξ
q (I)

+
∥∥fv(x, v1)v′1 + fv(x, v2)v′2

∥∥
W 1

2 (I)

≤
∥∥fv(x, v1)v′1 − fv(x, v2)v′2

∥∥
W 1−ξ
q (I)

+
(
‖fv(x, v1)‖W 1

2 (I)‖v′1‖W 1
2 (I) + ‖fv(x, v2)‖W 1

2 (I)‖v′2‖W 1
2 (I)

)
.

We finally recall that v1, v2 ∈ Sq(κ) and that fv(x, v1) and fv(x, v2) are uniformly bounded inW 2
2 (I)

to deduce from (3.68) in Lemma 3.2.1 that

∥∥(fv(x, v1))2(v′1)2 − (fv(x, v2))2(v′2)2
∥∥
W ν

2 (I)
≤ c(κ, f)‖v1 − v2‖W 2−ξ

q (I)
. (3.80)

Fusing (3.79) and (3.80) yields the Lipschitz continuity of h1 with respect to v ∈ Sq(κ) in the sense:

‖h1(v1)− h1(v2)‖W ν
2 (I) ≤ c(κ, f)‖v1 − v2‖W 2−ξ

q (I)
, v1, v2 ∈ Sq(κ), (3.81)

whereby the assertion is proved after combining (3.73), (3.77) and (3.81).

We are now prepared to verify the following result on local existence and uniqueness of solutions to
(3.54)–(3.58). As already mentioned, the proof is performed as the one of [15, Theorem 1.1].

3.2.5 Theorem (Local Well-Posedness)
Let q ∈ (2,∞) and ε > 0. Given an initial value u∗ ∈ W 2

q,D(I) with u∗(x) > −1 for all x ∈ I, and
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f ∈ C3
(
[−1, 1]× R,R

)
, the following holds true:

(i) For each voltage value λ > 0 there exists a unique maximal solution (u,ψ) to (3.54)–(3.58) on
the maximal interval [0,T ) of existence in the sense that

u ∈ C1
(
[0,T ),Lq(I)

)
∩ C

(
[0,T ),W 2

q,D(I)
)

satisfies (3.54)–(3.56) with

u(t,x) > −1, t ∈ [0,T ),x ∈ I,

and ψ ∈W 2
2

(
Ω(u(t))

)
solves (3.57)–(3.58) for each t ∈ [0,T ).

(ii) If for each τ > 0 there is a κ(τ) ∈ (0, 1) such that u(t) ∈ Sq
(
κ(τ)

)
for t ∈ [0,T ) ∩ [0, τ ], then

the solution (u,ψ) to (3.54)–(3.58) exists globally in time, meaning that T =∞.

(iii) If u∗(x) = u∗(−x) and f
(
x,u(t,x)

)
= f

(
−x,u(t,x)

)
for all t ∈ [0,T ) and x ∈ I, then

u = u(t,x) and ψ = ψ(t,x, z) are even with respect to x ∈ I for all times t ∈ [0,T ) as well.

Proof. (i) Following [15] we fix q ∈ (2,∞),κ ∈ (0, 1) and ξ ∈ (0, (q − 1)/q) and introduce the set

Zq(κ) :=
{
w ∈W 2−ξ

q,D (I); ‖w‖
W 2−ξ
q (I)

≤ 1/κ
}

.

The identity

∂x

(
vx√

1 + ε2(vx)2

)
= − vxx(

1 + ε2(vx)2
)3/2

then serves as a motivation to define for w ∈ Zq(κ) the linear differential operator

Aε(w) ∈ L
(
W 2
q,D(I),Lq(I)

)
, Aε(w)v := − vxx(

1 + ε2(wx)2
)3/2

of second order such that (3.54)–(3.56) may be perceived as the abstract Cauchy problem

u̇+Aε(u)u = −λgε(u), t > 0, (3.82)

u(0) = u∗. (3.83)

Moreover, thanks to [15, Lemma 3.1] we know that the operator Aε(w) generates a strongly continu-
ous analytic semigroup on Lq(I).9 The Cauchy problem (3.82)–(3.83) may be solved by introducing
so-called evolution operators in the sense of [3, Section II]. To this end, fix ρ ∈ (0, 1) and τ > 0 and

9Note that the proof of [15, Lemma 3.1] uses the general statement in [3, Section I, Theorem 1.2.2].
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define the set

Wτ (κ) :=

{
w : [0, τ ]→ Zq(κ); max

0≤t,s≤τ

‖w(t)− w(s)‖
W 2−ξ
q (I)

|t− s|ρ
<∞

}
.

It is proved in [15, Proposition 3.1], that if w = w(t) is Hölder continuous in t in the sense that w is
contained in Wτ (κ), then Aε(w) generates a unique parabolic evolution operator UAε(w)(t, s), 0 ≤
s ≤ t ≤ τ , possessing W 2

q,D(I) as a regularity subspace. Furthermore, each linear operator
UAε(w)(t, s) is positive from Lq(I) to Lq(I) for all 0 ≤ s ≤ t ≤ τ . Having the boundedness and
Lipschitz continuity of gε in terms of Proposition 3.2.4 at hand one may now literally follow the lines
of the proof of [15, Theorem 1.1] to conclude that there exists a constant κ∗ ≤ κ such that10

G(v)(t) := UAε(v)(t, 0)u∗ − λ
∫ t

0
UAε(v)(t, s)gε

(
v(s)

)
ds, t ∈ [0, τ ],

defines for each v ∈ Wτ (κ) with v(t) ∈ Sq(κ∗), t ∈ [0, τ ], a contractive self mapping on the complete
metric space

Vτ :=
({
v ∈ Wτ (κ); v(t) ∈ Sq(κ∗), t ∈ [0, τ ]

}
, d
)

,

where d denotes the metric induced by C
(
[0, τ ],W 2−ξ

q (I)
)
. Therefore one may deduce from Banach’s

fixed-point theorem that there exists a unique fixed point

u = G(u) ∈ Vτ

of G. As in the semilinear case this finally proves part (i) of the theorem, as it implies that for each
λ > 0 (3.82)–(3.83) possesses a unique non-extendable solution

u ∈ C1
(
[0,T ),Lq(I)

)
∩ C

(
[0,T ),W 2

q,D(I)
)

for some T ∈ (τ ,∞], satisfying

u(t,x) > −1, t ∈ [0,T ), x ∈ I.

Parts (ii) and (iii) may be proved as in the semilinear case as well.

3.2.6 Theorem (Global Existence)
Let q ∈ (2,∞), ε > 0 and λ > 0. Furthermore, given f ∈ C3

(
[−1, 1] × R,R

)
and u∗ ∈ W 2

q,D(I)

satisfying u∗(x) > −1 for x ∈ I, let (u,ψ) denote the corresponding solution to (3.54)–(3.58) on
the maximal interval [0,T ) of existence. Then, given κ ∈ (0, 1), there exist λ∗ = λ∗(κ) > 0 and

10In fact κ∗ is given as κ∗ = κ/c∗(κ), where c∗(κ) ≥ 1 is a suitable constant related to the evolution operator UA(w);
see (3.11) in [15].
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c = c(κ) > 0 such that T = ∞ with u(t,x) ≥ −1 + κ for all t ∈ [0,∞) and x ∈ I, provided
that λ ∈ (0,λ∗) and ‖u∗‖W 2

q (I) ≤ c(κ). In that case u enjoys the following additional regularity
properties:

u ∈ BUCρ
(
[0,∞),W 2−ρ

q,D (I)
)
∩ L∞

(
[0,∞),W 2

q,D(I)
)

(3.84)

for some small ρ > 0.

3.2.7 Remark (1) The proof of Theorem 3.2.6 may be literally adopted from the one of [15,
Theorem 1.1 (iv)], where the authors demonstrate that G is a contractive self mapping on Vτ
for all τ ≥ 0, provided that the applied voltage λ > 0 is smaller than a certain critical value λ∗
and the initial value u∗ is bounded in the W 2

q (I)-norm by a certain constant c(κ) > 0. Note
that the latter condition is not required in the semilinear case.

(2) It is worthwhile to mention that temporally global solutions u do never touch down on the
ground plate, not even in infinite time. Moreover, note that they are bounded in W 2

q (I) by a
uniform constant.

(3) It follows from general parabolic theory (c.f. [3]), that the globally existing mild solution is
also a strong solution enjoying the additional regularity stated in (3.84).

The section is completed by making the observation that Corollary 3.1.6 in Section 3.1 on the sign
property of the solution u does likewise hold true in the quasilinear case. Thus, we have the following
corollary.

3.2.8 Corollary
Let u∗ ∈ Sq(κ) satisfy u∗(x) ≤ 0 for all x ∈ I and assume that the implication

v ∈ Sq(κ), v(x) ≤ 0 ∀x ∈ I =⇒ gε(v) ∈ Sq(κ), gε(v(x)) ≥ 0 ∀x ∈ I (3.85)

holds true. Then the solution u to (3.54)–(3.56) satisfies

u(t,x) ≤ 0, t ∈ [0,T ), x ∈ I.
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As mentioned in the introduction the analysis of coupled systems of partial differential equations
has only recently become part of the mathematical investigation of microelectromechanical systems.
Irrespective of the precise physical regime for an adequate choice of the governing equations de-
scribing the dynamics of the membrane’s displacement u – suppose for instance the linear elasticity
setting (2.32)–(2.34) or its nonlinear elasticity counterpart (2.29)–(2.31) – the displacement of the
elastic membrane causes a change of the shape of the domain Ω

(
u(t)

)
occupied by the ground plate

and the overlying membrane. This gives rise to a coupling between the problem for the electro-
static potential ψ and the membrane’s displacement u. On the one hand ψ is to be determined by
a free boundary value problem in the domain Ω(u(t)). On the other hand the right-hand side of
the evolution equation for u involves the partial derivatives of the potential ψ signifying a further
coupling in the system. Roughly speaking, this strong coupling between the two problems makes
their mathematical analysis rather complex, whereby it has heretofore been and it still is a quite
common approach in MEMS research to make an assumption which reduces the initial nonlocal
coupled problem to an uncoupled semilinear evolution equation for u.
For pioneering contributions to the understanding of the full coupled problem the reader is again
referred to the works [32] and [14]. It is the intention of this chapter to generalise a convergence
result on the small-aspect ratio limit obtained in [14] for f ≡ 1 to the case of a general permittivity
profile f = f

(
x,u(t,x)

)
. To this end, consider the system

ut − uxx = −λ
(
ε2
(
ψx(x,u)

)2
+
(
ψz(x,u)

)2)
+ 2λ

(
ε2ψx(x,u)fx(x,u) + ψz(x,u)fu(x,u)

)
, t > 0, x ∈ I, (4.1)

u(t,±1) = 0, t > 0, (4.2)

u(0,x) = u∗(x), x ∈ I, (4.3)

57
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arising from the linear elasticity approach for the membrane’s displacement, together with the elliptic
moving boundary problem

ε2ψxx + ψzz = 0, (x, z) ∈ Ω(u(t)), (4.4)

ψ(t,x, z) =
1 + z

1 + u(t,x)
f
(
x,u(t,x)

)
, (x, z) ∈ ∂Ω(u(t)), (4.5)

for the electrostatic potential in the region

Ω
(
u(t)

)
:= {(x, z) ∈ I × (−1,∞);−1 < z < u(t,x)}.

A common approach in order to decouple the problems (4.1)–(4.3) and (4.4)–(4.5) is to consider the
aspect ratio ε of the respective MEMS device to be fairly small, i.e. ε� 1, or in fact even ε = 0. In
this case the potential is computed as if the two plates were locally parallel and the resulting explicit
expression for ψ avoids the coupling via the right-hand side of (4.1). The full coupled problem is
then reduced to a semilinear parabolic initial boundary value problem possessing a singularity in
the instant the elastic membrane touches down on the ground plate. In detail, setting ε = 0 in (4.4)
yields the reduced problem

ψzz(t,x, z) = 0, t > 0, (x, z) ∈ Ω(u(t)), (4.6)

ψ(t,x, z) =
1 + z

1 + u(t,x)
f
(
x,u(t,x)

)
, t > 0, (x, z) ∈ ∂Ω(u(t)), (4.7)

for the electrostatic potential whose solution ψ := ψ0 may be explicitly stated as

ψ(t,x, z) =
1 + z

1 + u(t,x)
f
(
x,u(t,x)

)
, t > 0, (x, z) ∈ I × (−1, 0). (4.8)

Inserting the likewise computable partial derivative

ψz(t,x, z) =
f
(
x,u(t,x)

)
1 + u(t,x)

into the evolution equation for the membrane displacement in the case ε = 0, i.e. into the equation

ut − uxx = −λ
(
ψz(t,x,u)

)2
+ 2λψz(t,x,u)fu(x,u), t > 0, x ∈ I, (4.9)
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implies that the displacement u := u0 finally satisfies the so-called small-aspect ratio model

ut − uxx = −λ

(
f
(
x,u(t,x)

)
1 + u(t,x)

)2

+ 2λ
f
(
x,u(t,x)

)
1 + u(t,x)

fu
(
x,u(t,x)

)
, t > 0, x ∈ I, (4.10)

u(t,±1) = 0, t > 0, (4.11)

u(0,x) = u∗(x), x ∈ I. (4.12)

Problem (4.10)–(4.12) is a reduced model for the elastic behaviour of the system. It is uncoupled
from the potential equation and may be solved independently. However, note that the evolution
equation (4.10) is still nonlinear.

Denoting for ε > 0 the solution to (4.1)–(4.5) by (uε,ψε), we shall see in this section that as ε tends
to zero, the corresponding sequence (uε,ψε)ε converges in a certain sense to the solution (u0,ψ0)

of the small-aspect ratio model (4.10)–(4.12) with ψ0 given in (4.8). More precisely, we prove the
following result.

4.0.9 Theorem (Small-Aspect Ratio Limit, [40, Theorem 4.1])
Let λ > 0, q ∈ (2,∞),κ ∈ (0, 1), f ∈ C3

(
[−1, 1] × R,R

)
, and let u∗ ∈ Sq(κ) with u∗ < 1 + K0 for

x ∈ I. For ε > 0 let (uε,ψε) be the unique solution to (4.1)–(4.5) on the maximal interval [0,T ) of
existence. Then there are τ > 0, ε∗ ∈ (0, 1), and κ∗ ∈ (0, 1), depending only on q and κ, such that
T ≥ τ and uε(t) ∈ Sq(κ∗) for all t ∈ [0, τ ] and for all ε ∈ (0, ε∗). Moreover, the small-aspect ratio
problem (4.10)–(4.12) has a unique solution

u0 ∈ C1
(
[0, τ ],Lq(I)

)
∩ C

(
[0, τ ],W 2

q,D(I)
)

satisfying u0(t) ∈ Sq(κ∗) for all t ∈ [0, τ ] and such that the convergences

uε −→ u0 in C1−θ([0, τ ],W 2θ
q (I)

)
, θ ∈ (0, 1),

and
ψε(t)χΩ(uε(t)) −→ ψ0(t)χΩ(u0(t)) in L2

(
I × (−1, 0),R

)
, t ∈ [0, τ ], (4.13)

hold true as ε → 0. Here, ψ0 is the potential given in (4.8). Furthermore, there exists a Λ(κ) > 0

such that the above results hold true for each τ > 0 provided that λ ∈ (0, Λ(κ)).

In order to prove Theorem 4.0.9 first of all some preparations are done. For that purpose fix
λ > 0, q ∈ (2,∞), κ ∈ (0, 1), and let u∗ ∈ Sq(κ) with u∗(x) < 1 + K0 for x ∈ I. For ε > 0 let
(uε,ψε) denote the unique solution to (4.1)–(4.5) which is defined on the maximal interval [0,T ) of
existence. In the following, (Ki)i≥1 and K denote positive constants depending only on q and κ,
but not on ε > 0 sufficiently small.
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Set
κ∗ :=

κ

2M
< κ, (4.14)

where M ≥ 1 is the constant defined in (3.42). Moreover, define

τε := sup
{
t ∈ [0,T );uε(s) ∈ Sq(κ∗) ∀ s ∈ [0, t]

}
.

The choice of κ∗ < κ implies that if u∗ belongs to Sq(κ), then we also have u∗ ∈ Sq(κ∗). Since
by Theorem 3.1.5 the solution uε is continuous in t ∈ [0,T ) for all sufficiently small ε > 0, there
must exist t > 0 such that uε(s) ∈ Sq(κ∗) for all s ∈ [0, t]. Consequently we have that τε > 0.
Furthermore, the definition of Sq(κ∗) together with the continuity of the embedding of W 2

q (I) in
C1
(
[−1, 1],R

)
yields the existence of a constant K1 > 0 such that for all ε > 0

−1 + κ∗ ≤ uε(t,x) ≤ 1 +K0, t ∈ [0, τε], x ∈ [−1, 1], (4.15)

‖uε(t)‖W 2
q (I) + ‖uε(t)‖W 1

∞(I) ≤ K1, t ∈ [0, τε]. (4.16)

As a consequence of (4.16) and since f ∈ C3
(
[−1, 1]×R,R

)
, cf. Corollary 3.1.2, there is an ε∗ ∈ (0, 1),

depending only on q and κ, such that

ε2
∗ ‖∂xuε(t)‖

2
L∞(I) ≤ K2 < 1 (4.17)

and
ε2
∗

(∥∥fx(uε(t))∥∥2

W 1
2 (I)

+
∥∥fu(uε(t))∥∥2

W 1
2 (I)

+
∥∥fx(uε(t))∥∥2

L∞(I)

)
≤ K3 (4.18)

for t ∈ [0, τε], ε ∈ (0, ε∗]. For ε ∈ (0, ε∗) set

ϕε(t) := ϕuε(t) = ψε(t) ◦ T−1
uε(t)

, t ∈ [0, τε],

with T−1
uε(t)

given by (3.7) and

φε(t,x, η) := ϕε(t,x, η)− ηf
(
x,uε(t,x)

)
, t ∈ [0, τε], (x, η) ∈ Ω. (4.19)

The groundwork for the proof of Theorem 4.0.9 is the derivation of appropriate a priori estimates
on the family (φε)ε, implying that it converges to zero in L2(Ω) as ε → 0, c.f. (4.55). This yields
in particular the convergence stated in (4.13). It is additionally crucial for the convergence of the
according displacements (uε)ε, c.f. the proof of Theorem 4.0.9. For this purpose in Lemma 4.0.11 the
analysis of [32, Section 3] and [14, Lemma 12] is extended to the case of a nonconstant permittivity
profile. We start by giving an L∞(Ω)-bound for φu(t).
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4.0.10 Lemma ([40, Lemma 4.2])
Let κ ∈ (0, 1), ε > 0 and q ∈ (2,∞). Given f ∈ C3

(
[−1, 1]×R,R

)
and u ∈ Sq(κ), there is a constant

K4 > 0 such that
‖φu(t)‖L∞(Ω) ≤ K4

for t ∈ [0,T ).

Proof. From the Sobolev embedding theorem combined with Corollary 3.1.2 we get

‖f
(
u(t)

)
‖L∞(I) ≤ c‖f

(
u(t)

)
‖W 2

2 (I) ≤ ccf ,B := K̃4.

Defining on Ω the function w by w(x, η) := K̃4 we observe that

(Lw)(x, η) = 0, t > 0, (x, η) ∈ Ω,

w(x, η) = K̃4 ≥ η‖f
(
u(t)

)
‖L∞(I) ≥ ηf(x,u), t > 0, (x, η) ∈ ∂Ω,

whence the maximum principle yields that w is a supersolution to (3.11)–(3.12) on Ω, i.e.

w(x, η) ≥ ϕu(x, η), (x, η) ∈ Ω. (4.20)

Similarly, we define for (x, η) ∈ Ω the function w(x, η) := −K̃4, to see that

(Lw)(x, η) = 0, t > 0, (x, η) ∈ Ω,

w(x, η) = −K̃4 ≤ −η‖f
(
u(t)

)
‖L∞(I) ≤ ηf(x,u), t > 0, (x, η) ∈ ∂Ω.

Again by the maximum principle we obtain that w is a subsolution to (3.11)–(3.12) on Ω, i.e.

w(x, η) ≤ ϕu(x, η), (x, η) ∈ Ω. (4.21)

Finally, (4.20) and (4.21) may be used to conclude that

−K̃4 − ηf(x,u) ≤ ϕu(x, η)− ηf(x,u) ≤ K̃4 − ηf(x,u)

and thus
−2K̃4 ≤ φu(x, η) ≤ 2K̃4,

whence eventually
‖φu(t)‖L∞(Ω) ≤ 2K̃4 =: K4

for all t ∈ [0,T ). This proves the assertion.
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4.0.11 Lemma ([40, Lemma 4.3])
There is a constant K5 > 0 such that, for all ε ∈ (0, ε∗) and t ∈ [0, τε], there holds

‖∂xφε(t)‖L2(Ω) +
1

ε

(
‖φε(t)‖L2(Ω) + ‖∂ηφε(t)‖L2(Ω)

)
≤ K5, (4.22)

1

ε
‖∂xηφε(t)‖L2(Ω) +

1

ε2
‖∂ηηφε(t)‖L2(Ω) ≤ K5, (4.23)

1

ε
‖∂ηφε(t, ·, 1)‖

W
1/2
2 (I)

≤ K5. (4.24)

Proof. Fix ε ∈ (0, ε∗) and t ∈ [0, τε]. Then note that by Lemma 4.0.10 there exists a constant
K4 > 0 such that

‖φu(t)‖L∞(Ω) ≤ K4, t ∈ [0, τε],

and thanks to (4.15), (4.16) and the boundedness of f
(
uε(t)

)
in W 2

2 (I) the function

Fε(t,x, η) := Fuε(t)(x, η)

= ε2η
(
fxx(x,uε) + 2fxu(x,uε)∂xuε + fuu(x,uε)

(
∂xuε

)2
+ fu(x,uε)∂xxuε

)
− 2ε2η

∂xuε
1 + uε

(
fx(x,uε) + fu(x,uε)∂xuε

)
+ ε2η

(
2

(
∂xuε

1 + uε

)2

− ∂xxuε
uε

)
f(x,uε)

complies for t ∈ [0, τε] and (x, η) ∈ Ω with the estimate

‖Fε(t)‖Lq(Ω)

≤ ε2

(
‖fxx(x,uε)‖Lq(I) + 2‖fuu(x,uε)‖Lq(I)‖∂xuε‖

2
L∞(I)

+ ‖fu(x,uε)‖L∞(I)‖∂xxuε‖Lq(I) + 2

∥∥∥∥ ∂xuε
1 + uε

∥∥∥∥
L∞(I)

‖fx(x,uε)‖Lq(I)

+ 2

∥∥∥∥∥
(
∂xuε

)2
1 + uε

∥∥∥∥∥
L∞(I)

‖fu(x,uε)‖Lq(I) + 2

∥∥∥∥ ∂xuε
1 + uε

∥∥∥∥2

L∞(I)

‖f(x,uε)‖Lq(I)

+

∥∥∥∥ ∂xxuε1 + uε

∥∥∥∥
Lq(I)

‖f(x,uε)‖L∞(I)

)
≤ K6ε

2.

Together with Hölder’s inequality this leads to

‖Fε(t)‖Lp(Ω) ≤ 2(q−p)/pq‖Fε(t)‖Lq(Ω) ≤ K7ε
2, p ∈ [1, q). (4.25)

Multiplying (3.18) by φε, integrating over Ω and using the Green–Riemann formula together with
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the boundary condition (3.19) as in [32, Lemma 11] or [14], respectively, leads to the equation∫
Ω
Fεφε d(x, η)

= ε2

∫
Ω
∂xφε − η

∂xuε
1 + uε

(
∂ηφε

)2
d(x, η) +

∫
Ω

(
∂ηφε

1 + uε

)2

d(x, η)

+ ε2

∫
Ω
η

(
2

(
∂xuε

1 + uε

)2

− ∂xxuε
1 + uε

)
φε∂ηφε d(x, η).

(4.26)

Introducing for t ∈ [0, τε] and (x, η) ∈ Ω the function

µ(t,x, η) := ε2η

(
2

(
∂xuε

1 + uε

)2

− ∂xxuε
1 + uε

)
,

(4.26) is equivalent to the identity∫
Ω
φε
(
Fε − µ∂ηφε

)
d(x, η)

= ε2

∫
Ω

(
∂xφε − η

∂xuε
1 + uε

∂ηφε

)2

d(x, η) +

∫
Ω

(
∂ηφε

1 + uε

)2

d(x, η).

(4.27)

By means of the inequality (a− b)2 ≥ a2/2− b2, as well as (4.15) and (4.17), the right-hand side of
(4.27) may be estimated from below as∫

Ω
φε
(
Fε − µ∂ηφε

)
d(x, η)

≥ ε2

2
‖∂xφε‖2L2(Ω) − ε

2‖∂xuε‖2L∞(I)

∥∥∥∥ ∂ηφε
1 + uε

∥∥∥∥2

L2(Ω)

+

∥∥∥∥ ∂ηφε
1 + uε

∥∥∥∥2

L2(Ω)

≥ ε2

2
‖∂xφε‖2L2(Ω) +K8‖∂ηφε‖2L2(Ω),

(4.28)

with K8 = (1−K2)/(1 +K0)2 < 1. Next, thanks to (4.15) we obtain the relation

‖µ‖Lq(Ω) ≤
2ε2

κ2
∗
‖∂xuε‖2L2q(I)

+
ε2

κ∗
‖∂xxuε‖Lq(I) ≤ K9ε

2. (4.29)

In addition, we clearly have∫
Ω
φε
(
Fε − µ∂ηφε

)
d(x, η) ≤ ‖φε(Fε − µ∂ηφε)‖L1(Ω).
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Together with Lemma 4.0.10, (4.25) and Hölder’s inequality this yields∫
Ω
φε
(
Fε − µ∂ηφε

)
d(x, η)

≤ c‖φε‖L∞(Ω)

(
‖Fε‖L1(Ω) + ‖µ‖L2(Ω)‖∂ηφε‖L2(Ω)

)
≤ cK4

(
K7ε

2 +K9ε
2‖∂ηφε‖L2(Ω)

)
≤ K10ε

2 +K10ε
2‖∂ηφε‖L2(Ω).

(4.30)

Fusing (4.28) and (4.30) we obtain

ε2

2
‖∂xφε‖2L2(Ω) +K8‖∂ηφε‖2L2(Ω) ≤ K10ε

2 +K10ε
2‖∂ηφε‖L2(Ω),

whence finally
ε2‖∂xφε‖2L2(Ω) + ‖∂ηφε‖2L2(Ω) ≤ K11ε

2. (4.31)

For x ∈ I there holds φε(x, 1) = 0 and therefore ‖φε‖L2(Ω) ≤
√

2‖∂ηφε‖L2(Ω). A combination of this
fact with (4.31) then readily gives

‖(φε)x‖L2(Ω) +
1

ε

(
‖φε‖L2(Ω) + ‖∂ηφε‖L2(Ω)

)
≤ K̃5,

which is (4.22), i.e. the first statement of the lemma.

In a next step (4.23) is verified. To this end we define the functions

ξε := ∂ηηφε and ωε := ∂xηφε,

multiply (3.18) by ξε, integrate over Ω and use [24, Lemma 4.3.1.2 & Lemma 4.3.1.3] to find that

−
∫

Ω

(
Fε + µ∂ηφε

)
ξε d(x, η)

=

∫
Ω
ε2∂xxφεξε − 2ε2η

∂xuε
1 + uε

ωεξε +
1 + ε2η2(∂xuε)

2

(1 + uε)2
ξ2
ε d(x, η)

=

∫
Ω

(
ξ2
ε

(1 + uε)2
+ ε2

(
ωε − η

∂xuε
1 + uε

ξε

)2
)
d(x, η).

(4.32)

In order to estimate the right-hand side of (4.32) from below we use again the inequality (a− b)2 ≥
a2/2− b2 to obtain

−
∫

Ω
(Fε + µ∂ηφε)ξε d(x, η) ≥

∫
Ω

(
ξ2
ε

(1 + uε)2
+
ε2

2
ωε − ε2η2

(
∂xuε

1 + uε

)2

ξ2
ε

)
d(x, η).



65

(4.17) and (4.15) then lead to leads to

−
∫

Ω
(Fε + µ∂ηφε)ξε d(x, η) ≥

∫
Ω

(1−K2)
ξ2
ε

(1 + uε)2
+
ε2

2
ω2
ε d(x, η)

≥ K12

(
‖ξε‖2L2(Ω) + ε2‖ωε‖2L2(Ω)

)
.

(4.33)

For the right-hand side of (4.33) we introduce the notation

Qε :=
√
‖ξε‖2L2(Ω) + ε2‖ωε‖2L2(Ω).

By means of Hölder’s inequality, (4.25) and (4.29) this term may be estimated as follows.

Q2
ε ≤

1

K12
‖(Fε + µ∂ηφε)ξε‖L1(Ω)

≤ 1

K12

(
‖Fε‖L2(Ω) + ‖µ∂ηφε‖L2(Ω)

)
‖ξε‖L2(Ω)

≤ 1

K12

(
K7ε

2 + ‖µ‖L2(Ω)‖∂ηφε‖L2q/(q−2)(Ω)

)
‖ξε‖L2(Ω)

≤ K13ε
2
(

1 + ‖∂ηφε‖L2q/(q−2)(Ω)

)
Qε.

Hence, we have
Qε ≤ K13ε

2
(

1 + ‖∂ηφε‖L2q/(q−2)(Ω)

)
. (4.34)

We now want to further estimate Qε by considering the term ‖∂ηφε‖L2q/(q−2)(Ω). For this purpose
we use the Gagliardo–Nirenberg inequality [44]

‖∂ηφε‖L2q/(q−2)(Ω) ≤ K14‖∂ηφε‖2/qW 1
2 (Ω)
‖∂ηφε‖(q−2)/q

L2(Ω)

and observe that by (4.31)
‖∂ηφε‖(q−2)/q

L2(Ω) ≤ K15ε
(q−2)/q.

Fusing the last two relations leads to the estimate

‖∂ηφε‖L2q/(q−2)(Ω) ≤ K14‖∂ηφε‖2/qW 1
2 (Ω)
‖∂ηφε‖(q−2)/q

L2(Ω)

≤ K14K15ε
(q−2)/q‖∂ηφε‖2/qW 1

2 (Ω)

= K14K15ε
(q−4)/q

(
ε2‖∂ηφε‖2L2(Ω) + ε2‖ξε‖2L2(Ω) + ε2‖ωε‖2L2(Ω)

)1/q

≤ K14K15ε
(q−4)/q

(
K11ε

4 +Q2
ε

)1/q
≤ K16

(
ε+ ε(q−4)/qQ2/q

ε

)
.

(4.35)
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Combining (4.34) and (4.35) we find that

Qε ≤ K13ε
2
(

1 + ‖∂ηφε‖L2q/(q−2)(Ω)

)
≤ K13ε

2
(

1 +K16

(
ε+ ε(q−4)/qQ2/q

ε

))
≤ K17

(
ε2 + ε(3q−4)/qQ2/q

ε

)
.

An application of Young’s inequality yields

K17ε
(3q−4)/qQ2/q

ε ≤ K18ε
(3q−4)/(q−2) +

2

q
Qε,

whence

Qε ≤ K17ε
2 +K17ε

(3q−4)/qQ2/q
ε

≤ K17ε
2 +

2

q
Qε +K18ε

(3q−4)/(q−2)

≤ K19ε
2
(

1 + εq/(q−2)
)

≤ K20ε
2.

(4.36)

Having (4.36) at hand we may conclude that

‖ξε‖L2(Ω) + ε‖ωε‖L2(Ω) ≤
√

2Qε ≤
√

2K20ε
2

and dividing both sides of this inequality by ε2 we end up with

1

ε2
‖ξε‖L2(Ω) +

1

ε
‖ωε‖L2(Ω) ≤

√
2K20,

which is (4.23), i.e. the second statement of the lemma.

Lastly, it remains to prove (4.24). For this purpose observe that as a consequence of (4.22) and
(4.23) we have

1

ε
‖∂ηφε‖W 1

2 (Ω) ≤
1

ε
‖∂ηφε‖L2(Ω) +

1

ε2
‖∂ηηφε‖L2(Ω) +

1

ε
‖∂xηφε‖L2(Ω)

≤ 1

ε
‖∂ηφε‖L2(Ω) +

√
2K20

≤ K̃5 +
√

2K20.

(4.37)

Together with [43, Chapter 2, Theorem 5.4] this implies

‖∂ηφε(·, 1)‖
W

1/2
2 (I)

≤ c‖∂ηφε‖W 1
2 (Ω) ≤ K5ε.
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This is (4.24), whence the last assertion of the lemma is verified and withK5 ≥ max{K̃5,
√

2K20,K5}
the proof is complete.

As a corollary of Lemma 4.0.11 we obtain the subsequent lemma.

4.0.12 Lemma ([40, Lemma 4.4]) (i) There is a τ > 0, depending only on q,λ and κ, such that
τε ≥ τ for all ε ∈ (0, ε∗).

(ii) There is Λ := Λ(κ) > 0 such that τε = T =∞ for all ε ∈ (0, ε∗) provided that λ ∈ (0, Λ).

In other words Lemma 4.0.12 says that for all arbitrarily small ε ∈ (0, ε∗) the maximal time T of
existence is strictly positive such that for ε ∈ (0, ε∗) the solutions (uε,ψε) to (4.1)–(4.5) have a
common interval of existence. Again the corresponding proof works as the one of [14, Lemma 13],
except that one has to handle some additional terms which come into play due to the fact that f is
not assumed to be constant.

Proof. (i) We show that uε(t) ∈ Sq(κ∗) for all t ∈ [0, τ ] ∩ [0, τε], whence the assertion follows from
the definition of τε. Using the results in [2] on pointwise multiplication in Sobolev spaces as in the
proof of Lemma 3.1.4, a combination of the relations (4.15), (4.16), (4.18), (4.24) and Corollary 3.1.2
implies that, given 2σ ∈ (1/2− 1/q, 1/2), there exists a constant K21 > 0 such that

‖gε
(
uε(t)

)
‖W 2σ

2 (I) ≤ K21. (4.38)

Having (4.38) at hand, by means of (3.42) and the fact that u∗ ∈ Sq(κ) we may deduce from the
variation-of-constant formula that (cf. (3.47)) for t ∈ [0, τε],

‖uε(t)‖W 2
q,D(I) ≤Me−ωt‖u∗‖W 2

q,D(I)

+ λ

∫ t

0
e−ω(t−s)(t− s)σ−1− 1

2
( 1

2
− 1
q

)‖gε
(
uε(t)

)
‖W 2σ

2,D(I) ds

≤ Me−ωt

κ
+ λK21M

∫ t

0
e−ω(t−s)(t− s)σ−1− 1

2
( 1

2
− 1
q

)
ds

≤ M

κ
+ λMK21I(t).

(4.39)

Furthermore, as in (3.48) by additionally using (4.38) we obtain that

uε(t) ≥ (κ− 1)− λ
∫ t

0
‖e−(t−s)Agε

(
uε(s)

)
‖L∞(I) ds

≥ (κ− 1)− 2λ

∫ t

0
e−ω(t−s)(t− s)σ−1− 1

2
( 1

2
− 1
q

)‖gε
(
uε(s)

)
‖W 2σ

2,D(I) ds

≥ −1 + κ− 2λK21MI(t).

(4.40)



Chapter 4. The Small-Aspect Ratio Limit 68

Since I(t) → 0 as t → 0 we can conclude that there exists τ > 0, depending only on q and κ, such
that

I(t) <
1

λκK21
and I(t) <

(2M − 1)κ

4λM2K21

holds true for all t ∈ [0, τ ]. Fusing the first inequality for I with (4.39) and the second one with
(4.40) leads to

‖uε(t)‖W 2
q,D(I) ≤

M

κ
+ λMK21I(t) <

2M

κ
=

1

κ∗

and
uε(t) ≥ −1 + κ− 2λK21MI(t) > −1 +

κ

2M
= −1 + κ∗,

both inequalities holding for all t ∈ [0, τ ]. Hence the first assertion of the lemma is verified.

(ii) In order to prove the second statement of the lemma we set

Λ∗(κ) :=
1

κK21I(∞)
, Λ∗∗(κ) :=

(2M − 1)κ

4M2K21I(∞)

and
Λ(κ) := min {Λ∗(κ), Λ∗∗(κ)} ,

and take λ ∈ (0, Λ(κ)). This implies that for all t > 0 we obtain the relations

1

λκK21
>

1

Λ(κ)κK21
≥ 1

Λ∗(κ)κK21
= I(∞) ≥ I(t)

and
(2M − 1)κ

4λM2K21
>

(2M − 1)κ

4Λ(κ)M2K21
≥ (2M − 1)κ

4Λ∗∗(κ)M2K21
= I(∞) ≥ I(t),

whence we conclude that, given λ ∈ (0, Λ(κ)), the inequalities

I(t) <
1

λκK21
and I(t) <

(2M − 1)κ

4λM2K21

hold true for every τ > 0. Due to (i) this implies that τε ≥ τ for every τ > 0 and therefore
τε = T =∞ for all ε ∈ (0, ε∗). This completes the proof.

With the above preparations we are now able to present the proof of Theorem 4.0.9.

Proof of Theorem 4.0.9:
In a first step we prove that the family (uε)ε converges to the solution u0 of the small-aspect ratio
model in C1−θ([0, τ ],W 2θ

q (I)
)
, as ε to zero. Since

∂tuε − ∂xxuε = −λgε
(
uε(t)

)
, t ∈ [0, τ ], x ∈ I, (4.41)
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with gε defined in Lemma 3.1.4 and τ as in Lemma 4.0.12, it follows from the definition of gε, (4.15),
(4.16), (4.17), and the continuity of the embeddings W 1/2

2 (I) ↪→ L2q(I) ↪→ Lq(I) that, for t ∈ [0, τ ],

‖∂tuε(t)‖Lq(I) ≤ ‖∂xxuε(t)‖Lq(I) + λ
∥∥gε(uε(t))∥∥Lq(I)

≤ K22 + λ

(
ε2
∥∥fx(x,uε(t)

)∥∥2

L2q(I)
+ cε2

∥∥fu(x,uε(t)
)∥∥2

L∞(I)
‖∂xuε(t)‖2L∞(I)

+ 2

∥∥∥∥∥1 + ε2
(
∂xuε(t)

)2
1 + uε(t)

∥∥∥∥∥
L∞(I)

∥∥fu(x,uε(t)
)∥∥
L∞(I)

‖∂ηϕε(t, ·, 1)‖Lq(I)

+

∥∥∥∥∥1 + ε2
(
∂xuε(t)

)2(
1 + uε(t)

)2
∥∥∥∥∥
L∞(I)

‖∂ηϕε(t, ·, 1)‖2L2q(I)

)

≤ K22 + λ

(
cε2
∥∥fx(x,uε(t)

)∥∥2

L∞(I)
+ cK2

∥∥f(x,uε(t)
)∥∥2

W 1
∞(I)

+
2c

κ∗
(1 +K2)

∥∥f(x,uε(t)
)∥∥2

W 1
∞(I)

(
‖∂ηφε(t, ·, 1)‖

W
1/2
2 (I)

+ c‖f
(
x,uε(t)

)
‖2W 2

2 (I)

)
+

c

κ2
∗
(1 +K2)

(
‖∂ηφε(t, ·, 1)‖2

W
1/2
2 (I)

+ 2c‖∂ηφε(t, ·, 1)‖
W

1/2
2 (I)

‖f
(
x,uε(t)

)
‖W 2

2 (I) + c‖f
(
x,uε(t)

)
‖2W 2

2 (I)

))
.

Finally, again using [43, Chapter 2, Theorem 5.4], the boundedness of f
(
uε(t)

)
in W 2

2 (I) due to
Corollary 3.1.2 and (4.18) we end up with

‖∂tuε(t)‖Lq(I) ≤ K22 + λ

(
cε2
∥∥fx(x,uε(t)

)∥∥2

L∞(I)
+ cK2

∥∥f(x,uε(t)
)∥∥2

W 1
∞(I)

+
2c

κ∗
(1 +K2)

∥∥f(x,uε(t)
)∥∥2

W 1
∞(I)

(
‖φε‖W 2

2 (I) + c‖f
(
x,uε(t)

)
‖2W 2

2 (I)

)
+

c

κ2
∗
(1 +K2)

(
c‖φε‖2W 2

2 (I) + 2c‖φε‖W 2
2 (I)‖f

(
x,uε(t)

)
‖W 2

2 (I)

+ c‖f
(
x,uε(t)

)
‖2W 2

2 (I)

))
≤ K(λ).

Having in mind that in addition ‖uε(t)‖W 2
q (I) ≤ K1 for t ∈ [0, τ ] by (4.16), one may observe that

the family (uε)ε∈(0,ε∗)
is bounded in

C1
(
[0, τ ],Lq(I)

)
∩ C

(
[0, τ ],W 2

q (I)
)

and thus also in C1−θ([0, τ ],W 2θ
q (I)

)
, θ ∈ (0, 1). This enables us to deduce from [51, Corollary
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4] that the sequence (uε)ε∈(0,ε∗)
is relatively compact in C

(
[0, τ ],W 2θ

q (I)
)
, whence there exists a

subsequence (εk)k≥1 of positive real numbers, εk ↘ 0, and u0 ∈ C
(
[0, τ ],W 2θ

q (I)
)
such that

uεk −→ u0 in C
(
[0, τ ],W 2θ

q (I)
)

(4.42)

as k →∞. Moreover, for θ ∈ ((q+1)/2q, 1) the embeddingW 2θ
q (I) ↪→W 1

∞(I) is continuous, whence
one may conclude that

uεk −→ u0 in C
(
[0, τ ],W 1

∞(I)
)
. (4.43)

Since with (uε)ε∈(0,ε∗) also the subsequence (uεk)k≥1 is contained in C1−θ([0, τ ],W 2θ
q (I)

)
, the con-

vergence in (4.42) implies that

‖u0(t)− u0(s)‖W 2θ
q (I) = lim

k→∞
‖uεk(t)− uεk(s)‖W 2θ

q (I) ≤ c|t− s|1−θ

for all s, t ∈ [0, τ ], s 6= t, and θ ∈ (0, 1). Eventually, we have u0 ∈ C1−θ([0, τ ],W 2θ
q (I)

)
, and as a

consequence of (4.15) and (4.43)

− 1 + κ∗ ≤ u0(t,x) ≤ 1 +K0, t ∈ [0, τ ], x ∈ [−1, 1]. (4.44)

Next, we prove that the right-hand side of the full evolution equation (4.1) converges to the right-
hand side of the small-aspect ratio model (4.10) in an appropriate sense. Using the relations (4.19)
and (4.24) leads to

lim
ε→0

sup
t∈[0,τ ]

∥∥∂ηϕε(t, ·, 1)− f
(
uε(t)

)∥∥
W

1/2
2 (I)

= lim
ε→0

sup
t∈[0,τ ]

‖∂ηφε(t, ·, 1)‖
W

1/2
2 (I)

≤ lim
ε→0

εK5 = 0.
(4.45)

Similarly, using in addition the uniform boundedness of f
(
uε(t)

)
in W 2

2 (I), as well as the continuity
of the embeddings W 1/2

2 (I) ↪→ L2q(I) ↪→ Lq(I), one obtains

lim
ε→0

sup
t∈[0,τ ]

∥∥∥(∂ηϕε(t, ·, 1)
)2 − (f(uε(t))

)2∥∥∥
Lq(I)

≤ lim
ε→0

sup
t∈[0,τ ]

(∥∥∥(∂ηφε(t, ·, 1)
)2∥∥∥

Lq(I)
+ 2

∥∥∂ηφε(t, ·, 1)f
(
uε(t)

)∥∥
Lq(I)

)
≤ lim

ε→0
sup
t∈[0,τ ]

(
‖∂ηφε(t, ·, 1)‖2L2q(I)

+ 2ccf ,B ‖∂ηφε(t, ·, 1)‖Lq(I)
)

≤ lim
ε→0

sup
t∈[0,τ ]

(
c ‖∂ηφε(t, ·, 1)‖2

W
1/2
2 (I)

+ c ‖∂ηφε(t, ·, 1)‖
W

1/2
2 (I)

)
≤ lim

ε→0

(
cε2K2

5 + cεK5

)
= 0.

(4.46)
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Furthermore, the convergence uεk → u0 in C
(
[0, τ ],W 1

∞(I)
)
implies that

lim
k→∞

sup
t∈[0,τ ]

∥∥∥∥∥ 1(
1 + uεk(t)

)2 − 1(
1 + u0(t)

)2
∥∥∥∥∥
L∞(I)

= 0. (4.47)

Finally, using (4.44), Corollary 3.1.2 and once more (4.43) one may invoke the mean value theorem
for integrals to obtain

lim
k→∞

sup
t∈[0,τ ]

∥∥∥∥∥fu
(
x,uεk(t)

)
1 + uεk(t)

−
fu
(
x,u0(t)

)
1 + u0(t)

∥∥∥∥∥
L∞(I)

≤ lim
k→∞

sup
t∈[0,τ ]

(∥∥∥∥fu(x,uεk(t)
)( 1

1 + uεk(t)
− 1

1 + u0(t)

)∥∥∥∥
L∞(I)

+

∥∥∥∥ 1

1 + u0(t)

[
fu
(
x,uεk(t)

)
− fu

(
x,u0(t)

)]∥∥∥∥
L∞(I)

)

≤ lim
k→∞

sup
t∈[0,τ ]

(
cf ,B

∥∥∥∥ 1

1 + uεk(t)
− 1

1 + u0(t)

∥∥∥∥
L∞(I)

+
1

κ∗
‖fu
(
x,uεk(t)

)
− fu

(
x,u0(t)

)
‖L∞(I)

)
≤ lim

k→∞
sup
t∈[0,τ ]

1

κ∗
sup
s∈[0,1]

‖fuu
(
x,uεk(t) + s[u0(t)− uεk(t)]

)
‖L∞(I)‖uεk(t)− u0(t)‖L∞(I)

= 0.

(4.48)

We now introduce the function

h(v) :=

(
f(x, v)

1 + v

)2

− 2
f(x, v)

1 + v
fv(x, v), v ∈W 2θ

q (I),

and show that gεk(uεk) converges to h(u0) in C
(
[0, τ ],Lq(I)

)
as k →∞. To this end, observe that

lim
k→∞

sup
t∈[0,τ ]

∥∥gεk(uεk(t)
)
− h
(
u0(t)

)∥∥
Lq(I)

≤ lim
k→∞

sup
t∈[0,τ ]

(
ε2
k

∥∥∥(fx(x,uεk(t))
)2∥∥∥

Lq(I)
+ ε2

k

∥∥∥(fu(x,uεk(t))
)2(

∂xuεk(t)
)2∥∥∥

Lq(I)

+ 2

∥∥∥∥∥1 + ε2
k

(
∂xuεk(t)

)2
1 + uεk(t)

fu
(
x,uεk(t)

)
∂ηϕεk(t, ·, 1)−

f
(
x,u0(t)

)
1 + u0(t)

fu
(
x,u0(t)

)∥∥∥∥∥
Lq(I)

+

∥∥∥∥∥∥1 + ε2
k

(
∂xuεk(t)

)2(
1 + uεk(t)

)2 (
∂ηϕεk(t, ·, 1)

)2 −(f(x,u0(t)
)

1 + u0(t)

)2
∥∥∥∥∥∥
Lq(I)

)
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and thus

lim
k→∞

sup
t∈[0,τ ]

∥∥gεk(uεk(t)
)
− h
(
u0(t)

)∥∥
Lq(I)

≤ lim
k→∞

sup
t∈[0,τ ]

(
ε2
k

∥∥fx(x,uεk(t)
)∥∥2

L∞(I)
+ ε2

kc
∥∥fu(x,uεk(t)

)∥∥2

L∞(I)
‖∂xuεk(t)‖2L∞(I)

+ 2c ‖∂ηϕεk(t, ·, 1)‖Lq(I)

∥∥∥∥∥fu
(
x,uεk(t)

)
1 + uεk(t)

−
fu
(
x,u0(t)

)
1 + u0(t)

∥∥∥∥∥
L∞(I)

+ 2c

∥∥∥∥∥fu
(
x,u0(t)

)
1 + u0(t)

∥∥∥∥∥
L∞(I)

∥∥∂ηϕεk(t, ·, 1)− f
(
x,u0(t)

)∥∥
Lq(I)

+ 2ε2
kc

∥∥∥∥∥
(
∂xuεk(t)

)2
1 + uεk(t)

∥∥∥∥∥
L∞(I)

∥∥fu(x,uεk(t)
)∥∥
L∞(I)

‖∂ηϕεk(t, ·, 1)‖Lq(I)

+ c ‖∂ηϕεk(t, ·, 1)‖2L2q(I)

∥∥∥∥∥ 1(
1 + uεk(t)

)2 − 1(
1 + u0(t)

)2
∥∥∥∥∥
L∞(I)

+ c

∥∥∥∥∥ 1(
1 + u0(t)

)2
∥∥∥∥∥
L∞(I)

∥∥∥(∂ηϕεk(t, ·, 1)
)2 − (f(x,u0(t))

)2∥∥∥
Lq(I)

+ cε2
k

∥∥∥∥ ∂xuεk(t)

1 + uεk(t)

∥∥∥∥2

L∞(I)

‖∂ηϕεk(t, ·, 1)‖2L2q(I)

)
.

Then combining (4.16) and (4.24) with the boundedness of f
(
uεk(t)

)
and f

(
u0(t)

)
in W 2

2 (I) and
with the relations (4.45)–(4.48) one ends up with

lim
k→∞

sup
t∈[0,τ ]

∥∥gεk(uεk(t)
)
− h
(
u0(t)

)∥∥
Lq(I)

≤ lim
k→∞

sup
t∈[0,τ ]

(
cε2
k + cε2

k +
(
c ‖∂ηφεk(t, ·, 1)‖

W
1/2
2 (I)

+ c
)∥∥∥∥∥fu

(
x,uεk(t)

)
1 + uεk(t)

−
fu
(
x,u0(t)

)
1 + u0(t)

∥∥∥∥∥
L∞(I)

+ c
∥∥∂ηϕεk(t, ·, 1)− f

(
x,u0(t)

)∥∥
Lq(I)

+ ε2
k

(
c
∥∥∂ηφεk(t, ·, 1) + f

(
x,uεk(t)

)∥∥
W

1/2
2 (I)

+ c
)

+
(
c ‖∂ηφεk(t, ·, 1)‖2

W
1/2
2 (I)

+ c ‖∂ηφεk(t, ·, 1)‖
W

1/2
2 (I)

+ c
)∥∥∥∥∥ 1(

1 + uεk(t)
)2 − 1(

1 + u0(t)
)2
∥∥∥∥∥
L∞(I)

+ c
∥∥∥(∂ηϕεk(t, ·, 1)

)2 − (f(x,u0(t))
)2∥∥∥

Lq(I)

+ ε2
k

(
c ‖∂ηφεk(t, ·, 1)‖2

W
1/2
2 (I)

+ c ‖∂ηφεk(t, ·, 1)‖
W

1/2
2 (I)

+ c
))

= 0,
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that is,

gεk
(
uεk(t)

)
−→ h

(
u0(t)

)
=

(
f
(
x,u0(t)

)
1 + u0(t)

)2

− 2
f
(
x,u0(t)

)
1 + u0(t)

fu
(
x,u0(t)

)
(4.49)

in C
(
[0, τ ],Lq(I)

)
.

We are now left with showing that u0 is the unique solution to the small-aspect ratio model (4.10).
Rewriting (4.10) as the abstract Cauchy problem

v̇0 +Av0 = −λh
(
v0(t)

)
, t ∈ [0, τ ],

v0(0) = u∗,
(4.50)

with the operator A as in (3.39), the unique solution to (4.50) is given by the variation-of-constant
formula

v0(t) = e−tAu∗ − λ
∫ t

0
e−(t−s)Ah

(
v0(s)

)
ds, t ∈ [0, τ ].

Furthermore, recalling the identity (4.41) the fact that (uεk)k≥1 is a subsequence of (uε)ε∈(0,ε∗)

implies that for every k ≥ 1 it holds that

u̇εk +Auεk = −λgεk
(
uεk(t)

)
, t ∈ [0, τ ],

uεk(0) = u∗,
(4.51)

with unique solution

uεk(t) = e−tAu∗ − λ
∫ t

0
e−(t−s)Agεk

(
uεk(s)

)
ds, t ∈ [0, τ ].

Let in addition w be the unique solution to the Cauchy problem

ẇ +Aw = −λh
(
u0(t)

)
, t ∈ [0, τ ],

w(0) = u∗.
(4.52)

Now defining for each k ≥ 1 the function

ϑk(t) := uεk(t)− w(t), t ∈ [0, τ ],

a combination of (4.51) and (4.52) yields

ϑ̇k +Aϑk = −λ
(
gεk
(
uεk(t)

)
− h
(
u0(t)

))
, t ∈ [0, τ ],

ϑk(0) = 0.
(4.53)

Since gεk(uεk) − h(u0) ∈ C
(
[0, τ ],Lq(I)

)
by (4.49) one may apply [42, Lemma 7.1.1] to conclude
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that ϑk ∈ C1−θ([0, τ ],W 2θ
q,D(I)

)
for θ ∈ (0, 1), k ≥ 1, and that in addition there exists a constant

C > 0, not depending on τ , gεk , and h, such that

lim
k→∞

‖uεk(t)− w(t)‖C1−θ([0,τ ],W 2θ
q (I)) ≤ lim

k→∞
Cλ ‖gεk(uεk)− h(u0)‖L∞([0,τ ],Lq(I))

= 0.

In other words,
uεk −→ w in C1−θ([0, τ ],W 2θ

q (I)
)

as k → ∞ for θ ∈ (0, 1). In view of (4.43) the uniqueness of the limit function implies that
w = u0 ∈ C1−θ([0, τ ],W 2θ

q (I)
)
so that (4.52) may be rewritten as

u̇0 +Au0 = −λh
(
u0(t)

)
, t ∈ [0, τ ],

u0(0) = u∗.
(4.54)

The uniqueness of the solution to the small-aspect ratio model (4.10) implies in addition that
the solutions v0 to (4.50) and u0 to (4.54), respectively, coincide. Thus, one may conclude that
v0 = u0 ∈ C1−θ([0, τ ],W 2θ

q (I)
)
is the unique solution to the small-aspect ratio model (4.10). Lastly,

u0 belongs to Sq(κ∗) for all t ∈ [0, τ ] thanks to (4.44) and the continuity properties of uε. This
implies in particular that not only a subsequence but the whole family (uε)ε∈(0,ε∗)

converges to u0

in C1−θ([0, τ ],W 2θ
q (I)

)
, θ ∈ (0, 1), as ε tends to 0.

Finally, we are left with verifying the convergence in (4.13). To this end, recall that for ε > 0

Tε : Ω(uε) −→ Ω, Tε(x, z) :=

(
x,

1 + z

1 + uε(x)

)
,

such that the corresponding Jacobian is given by

DTε(x, z) =

(
1 0

− (1+z)∂xuε
(1+uε)

2
1

1+uε

)

with determinant
det
(
DTε(x, z)

)
=

1

1 + uε(x)
≥ 1

1 +K0
.

Since
ϕε(t) = ϕuε(t) = ψε(t) ◦ T−1

ε and φε(t) = ϕε(t)− ηf
(
uε(t)

)
,
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the transformation formula for integrals yields

‖ϕε(t)− ηf
(
uε(t)

)
‖2L2(Ω) =

∫ 1

−1

∫ uε(t)

−1

(
ψε(t)−

1 + z

1 + uε(t)
f
(
uε(t)

))2 d(x, z)

1 + uε(t)

≥ 1

1 +K0

∥∥∥∥ψε(t)− 1 + z

1 + uε(t)
f
(
uε(t)

)∥∥∥∥2

L2(Ω(uε(t)))

.

(4.55)

Additionally observing that thanks to (4.22) in Lemma 4.0.11 there holds

lim
ε→0
‖ϕε(t)− ηf

(
uε(t)

)
‖2L2(Ω) = lim

ε→0
‖φε(t)‖2L2(Ω) ≤ lim

ε→0
ε2K2

2 = 0,

together with (4.54) this implies

lim
ε→0

∥∥∥∥ψε(t)− 1 + z

1 + uε(t)
f
(
uε(t)

)∥∥∥∥
L2(Ω(uε(t)))

= 0.

In other words,
ψε(t)χΩ(uε(t)) −→ ψ0(t)χΩ(u0(t)) in L2

(
I × (−1, 0),R

)
,

as ε→ 0, where ψ0 is given in (4.8) with u = u0. This completes the proof.
�





5 | On Some Qualitative Properties
of Solutions

In the previous parts of this work we have seen different mathematical models for the characterisation
of the dynamic behaviour of MEMS devices. In addition to choosing an either linear or nonlinear
elasticity approach, we have in particular distinguished between the small-aspect ratio model and
the full problem, coupling the moving boundary problem for the potential ψ with an either semi- or
quasilinear evolution problem for the membrane’s displacement u. Moreover, different permittivity
profiles f give rise to different equations and might thus have a certain influence on the qualitative
behaviour of solutions. It turns out, that there exist indeed qualitative differences of the solutions to
the different systems and that these differences become apparent not till non-constant permittivity
profiles are taken into account.

This chapter is divided into two sections. The first one, Section 5.1, is devoted to sign-properties
of the solution u to the evolution problem for the displacement of the elastic membrane. It deals
with the question, if the membrane always deflects towards the ground plate or if other scenarios,
such as a sign-changing or a positive deflection, are possible. Section 5.2 is concerned with the
phenomenon of the so-called pull-in instability, i.e. with the situation in which the pull-in voltage
exceeds a certain critical value and thus causes a singularity of the solution after finite time.

5.1 | Non-Positivity of the Membrane’s Displacement

Since parabolic maximum principles1 are available for both settings the semilinear as well as the
quasilinear evolution problem (see i.e. [19, 47, 30]) we do not explicitly distinguish between these
two cases. More precisely, in the regime of a positive aspect ratio ε > 0 we consider the moving

1The established literature frequently refers to the maximum principle, including in this notion in fact several
different maximum principles as well as comparison principles.
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boundary problem

ε2ψxx + ψzz = 0, t > 0, (x, z) ∈ Ω(u(t)), (5.1)

ψ(t,x, z) =
1 + z

1 + u(t,x)
f , t > 0, (x, z) ∈ ∂Ω(u(t)), (5.2)

coupled with an either semi- or quasilinear initial boundary value problem for the displacement u
of the membrane. In the sequel this evolution problem for u is rewritten as the general abstract
parameter-dependent Cauchy problem

ut +A(u)u = −λgε(u), t > 0, (5.3)

u(0) = u∗, (5.4)

where for a given v ∈ Sq(κ) the differential operator A(v) ∈ L(W 2
q,D(I),Lq(I)), q > 2, is defined as2

A(v)u := − uxx(
1 + ε2(vx)2

)3/2 , u ∈W 2
q,D(I),

in the quasilinear case arising from the nonlinear elasticity theory, whereas for the semilinear case,
arising from a linear elasticity approach, we set A(v) ≡ A(0) for all v ∈ Sq(κ) and obtain

A(0)u = −uxx, u ∈W 2
q,D(I).

As before, given v ∈ Sq(κ), we denote by {e−tA(v); t ≥ 0} the semigroup on Lq(I) corresponding to
−A(v). The exact structure of the right-hand side −λgε(u) is then determined by the choice of the
permittivity profile f . Almost the same notation is used for the small-aspect ratio model, i.e. in the
situation of a formally vanishing aspect ratio ε = 0. As we have seen in the previous chapter, given
an explicit expression for the potential ψ, the small-aspect ratio model may be rewritten as

ut +A(u)u = −λg0(u), t > 0, (5.5)

u(0) = u∗. (5.6)

In the same way as for ε > 0 the structure of the right-hand side −λg0(u) might vary, depending on
the choice of the function f . In order to be able to reveal sign-properties of the according solutions
by means of the parabolic maximum principle, the challenge is thus to investigate the respective
right-hand side −λgε(u) or −λg0(u) of the evolution equation regarding its sign. It is worthwhile
to explicitly mention again, that this challenge strongly depends on the choice of the permittivity
profile f .

2Note that as in (3.38) in Section 3.1 the subscript q for the operator Aq(v) := A(v) ∈ L
(
W 2
q,D,Lq(I)

)
is suppressed

since Aq(v)w ∈ Lq ↪→ Lp for 1 < q ≤ p <∞.
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More precisely, in the case of a constant permittivity profile f ≡ 1 the full evolution equation (5.3)
reads

ut +A(u)u = −λ
(
ε2
(
ψx(x,u)

)2
+
(
ψz(x,u)

)2)
, t > 0. (5.7)

With ψ(t,x, z) = (1 + z)/(1 + u(t,x)) for t > 0, (x, z) ∈ I × (−1, 0), the corresponding small-aspect
ratio equation (5.5) is given by

ut +A(u)u = − λ

(1 + u)2
, t > 0. (5.8)

It may be readily deduced from the parabolic maximum principle that, given a non-positive initial
value u∗ ≤ 0, both equations (5.7) and (5.8) always provide non-positive solutions u. In other words,
a constant permittivity profile f ≡ 1 immediately implies that the membrane always deflects towards
the ground plate.

The situation is rather different in the case of a spatially varying permittivity profile f = f(x).
Denoting by f ′(x) the derivative of f with respect to x, the full evolution equation (5.3) is given by

ut +A(u)u = −λ
(
ε2
(
ψx(x,u)

)2
+
(
ψz(x,u)

)2 − 2ε2ψx(x,u)f ′(x)
)

, t > 0, (5.9)

whereas the according small-aspect ratio equation (5.5) for a computed ψ(t,x, z) = f(x)(1+z)/(1+

u), t > 0, (x, z) ∈ I × (−1, 0), reads

ut +A(u)u = −λ
(
f(x)

1 + u

)2

, t > 0. (5.10)

Invoking again the parabolic maximum principle, one may observe that for f = f(x) the small-aspect
ratio model always possesses non-positive solutions, provided that the initial value u∗ is non-positive.
On the other hand, due to the additional term 2ε2ψx(x,u)f ′(x) in (5.9), this is not at all clear for
the full problem. Although the initial deflection u∗ is non-positive, after a certain time the deflection
might become positive or change its sign.

In the setting where f depends only on the deformation u of the membrane, i.e. when f = f(u) the
full evolution equations reads

ut +A(u)u = −λ
(
ε2
(
ψx(x,u)

)2
+
(
ψz(x,u)

)2 − 2ψz(x,u)f ′(u)
)

, t > 0, (5.11)

with f ′(u) denoting the derivative of f with respect to u. With ψ(t,x, z) = f(u)(1 + z)/(1 +u), t >

0, (x, z) ∈ I × (−1, 0), the associated small-aspect ratio equation is given by

ut +A(u)u = −λ

((
f(u)

1 + u

)2

− 2
f(u)

1 + u
f ′(u)

)
, t > 0. (5.12)
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One may thus observe that in the case f = f(u) neither in the coupled setting nor in the small-
aspect ratio regime an immediate statement about the sign of the solution u is possible. Additional
information on the potential ψ and on the permittivity profile f is necessary in order to deduce a
statement from the maximum principle.

The situation is similar when the permittivity profile f depends on both x and u. The full equation
is then given by

ut +A(u)u = −λ
(
ε2
(
ψx(x,u)

)2
+
(
ψz(x,u)

)2
+ 2
(
ε2ψx(x,u)fx(x,u) + ψz(x,u)fu(x,u)

))
, t > 0,

(5.13)

whereas the small-aspect ratio equation reads

ut +A(u)u = −λ

((
f(x,u)

1 + u

)2

− 2
f(x,u)

1 + u
fu(x,u)

)
, t > 0. (5.14)

The remaining part of this section is eventually devoted to the proof of non-positivity of the mem-
brane’s displacement u, provided that the initial displacement u∗ is non-positive and the potential
ψ satisfies certain boundary conditions.

The corresponding results have already been published in [41] for the case of a spatially varying
permittivity f = f(x) and in [16] for the case in which f depends on the membrane’s displacement.
In the scope of this work the proof is in addition extended to the most general setting f = f(x,u).
To this end, pick τ ∈ (0,T ). It suffices to show that u(t) ≤ 0 on [0, τ ]. Since u is obtained by
a fixed-point iteration based on the variation-of-constant formula induced by (5.3)–(5.4), we may
assume without loss of generality3 that u is represented by the identity

u(t) = UA(u)(t, 0)u∗ − λ
∫ t

0
UA(u)(t, s)gε

(
u(s)

)
ds

in C
(
[0, τ ],W 2

q (I)
)
, where UA(u) denotes the evolution operator introduced in Section 3.2. Thanks

to the positivity of the heat semigroup it is thus enough to prove that gε(v(t,x)) ≥ 0 for a given
v ∈W 2

q (I) with v(t,x) ≤ 0 for (t,x) ∈ [0, τ ]× I. It turns out that in what follows the time variable
t ∈ [0, τ ] appears as a parameter. In order to lighten the notation, we therefore omit the time and
introduce the following general notation.

• v ∈W 2
q (I), q ∈ (2,∞), such that v(x) ≤ 0 for all x ∈ I;

• Ω(v) is the domain corresponding to v;

• ψ ∈W 2
2 (Ω(v)) is the solution to (5.1)–(5.2).

3In general, τ > 0 is obtained by a continued but finite application of Banach’s fixed point theorem.
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As a combination of the Cauchy–Schwarz inequality and the mean value theorem for integrals we
obtain the following lemma.

5.1.1 Lemma
Let f ∈ C

(
[−1, 1]× [−1, 0],R

)
. Then, given x ∈ I, there exists z0 = z0(x) ∈ [−1, v] such that

(
f(x, v(x))

1 + v(x)

)2

≤ (ψz(x, z0))2.

Proof. As in [13, Lemma 7] and [41, Lemma 4.1] we deduce from the boundary condition for the
solution ψ to (5.1)–(5.2) and the Cauchy–Schwarz inequality that(

f(x, v(x))
)2

1 + v(x)
=

(
ψ(x, v(x))− ψ(x,−1)

)2
1 + v(x)

=
1

1 + v(x)

(∫ v(x)

−1
ψz(x, z) dz

)2

≤
∫ v(x)

−1

(
ψz(x, z)

)2
dz, x ∈ I.

(5.15)

By the mean value theorem for integrals we find that given x ∈ I, there exists a z0 = z0(x) ∈
[−1, v(x)] such that ∫ v(x)

−1

(
ψz(x, z)

)2
dz =

(
v(x) + 1

)(
ψz(x, z0)

)2
. (5.16)

Combining (5.15) and (5.16), one finally obtains(
f
(
x, v(x)

)
1 + v(x)

)2

≤
(
ψz(x, z0)

)2
, x ∈ I,

and the proof is complete.

The following theorem is a generalisation of [41] and [16], where the cases f = f(x) and f = f(u)

are treated, respectively.

5.1.2 Theorem (Non-Positivity of u)
Let f ∈ C1

(
[−1, 1]× [−1, 0],R

)
be positive and assume that the boundary conditions

ψzz(x,−1) ≥ 0 and ψzz(x, v(x)) ≥ 0, x ∈ I, (5.17)
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hold true for the solution ψ to (5.1)–(5.2). Then, if

0 < ε2 ≤ min
x∈[−1,1],
r∈[−1,0]

(
f(x, r)

)2 − 4
(
fr(x, r)

)2
2
(
fx(x, r)

)2 . (5.18)

and u∗(x) ≤ 0, x ∈ I, the unique solution u to (5.3)–(5.4) satisfies

u(t,x) ≤ 0, (t,x) ∈ [0,T )× I.

Proof. Let v ∈W 2
q (I) with v(x) ≤ 0 for all x ∈ I. We prove that gε(v) ≥ 0. To this end, firstly note

that the elementary inequalities

2ψx(x, v(x))fx(x, v(x)) ≤
(
ψx(x, v(x))

)2
+
(
fx(x, v(x))

)2
, x ∈ I,

and
ψz(x, v(x))fv(x, v(x)) ≤ 1

4

(
ψz(x, v(x))

)2
+
(
fv(x, v(x))

)2
, x ∈ I,

hold true. They readily yield the estimate

gε(v) = ε2
(
ψx(x, v(x))

)2
+
(
ψz(x, v(x))

)2 − 2ε2ψx(x, v(x))fx(x, v(x))

− 2ψz(x, v(x))fv(x, v(x))

≥
(
ψz(x, v(x))

)2 − ε2
(
fx(x, v(x))

)2 − 2ψz(x, v(x))fv(x, v(x))

≥ 1

2

(
ψz(x, v(x))

)2 − ε2
(
fx(x, v(x))

)2 − 2
(
fv(x, v(x))

)2
.

Moreover, as a consequence of the non-positivity of v one obtains the inequality(
f(x, v(x))

1 + v(x)

)2

≥
(
f(x, v(x))

)2
, x ∈ I.

Together with the assumption (5.18) on ε this leads to the estimate

gε(v) ≥ 1

2

((
ψz(x, v(x))

)2 − (f(x, v(x))
)2) ≥ 1

2

((
ψz(x, v(x))

)2 − (f(x, v(x))

1 + v(x)

)2
)

. (5.19)

Fusing (5.19) with Lemma 5.1.1 eventually yields

gε(v) ≥ 1

2

((
ψz(x, v(x))

)2 − (ψz(x, z0)
)2)

,

where z0 = z0(x) ∈ [−1, v(x)]. Thanks to Hopf’s maximum principle we have that

ψz(x,−1) ≥ 0, x ∈ I. (5.20)
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Moreover, since ψ satisfies (5.1), the function η, defined by η(x, z) := ψzz(x, z) for (x, z) ∈ Ω(v), so
does as well. Additionally observing that on the lateral boundary it holds that

η(±1, z) = 0, z ∈ (−1, 0),

and by assumption
η(x,−1) ≥ 0 and η(x,u(x)) ≥ 0, x ∈ I,

an application of the elliptic maximum principle yields

ψzz(x, z) ≥ 0, (x, z) ∈ Ω(v). (5.21)

From (5.20) and (5.21) one may now infer that ψz(x, z) is non-negative on Ω(v) and increasing in
z ∈ [−1, v(x)), implying that

0 ≤ ψz(x, z0) ≤ ψz(x, v(x)), x ∈ I. (5.22)

This finally proves
gε(v) ≥ 0.

To summarise, we have shown that v ≤ 0 implies gε(v) ≥ 0 and with the introductory words of this
section the proof is complete.

It remains to discuss the above Theorem 5.1.2 for permittivity profile f depending only on the spatial
variable x ∈ I or on the membrane’s displacement u, respectively. Recall that in the general setting
f = f(x,u) the fundamental condition (c.f. (5.18)) on ε or f , respectively, reads

0 < ε2 ≤ min
x∈[−1,1],
r∈[−1,0]

(
f(x, r)

)2 − 4
(
fr(x, r)

)2
2
(
fx(x, r)

)2 . (5.23)

Thus, if f depends only on the membrane’s displacement u then condition (5.18) is modified to

min
r∈[−1,0]

f(r) ≥ 2 min
r∈[−1,0]

|f ′(r)|. (5.24)

Note that this condition does not depend on ε > 0.

In the case f = f(x) the term −4
(
fr(x, r)

)2 in (5.18) vanishes and the proof of Theorem 5.1.2
applies to the case f = f(x) if we require that (c.f. [41])

0 < ε ≤ min
x∈[−1,1]

f(x)√
2|f ′(x)|

. (5.25)
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However, one may observe that (5.25) is not sharp. Following the lines of the proof of Theorem
5.1.2, a direct calculation shows that (5.25) might be improved such that the theorem holds true
under the condition

0 < ε ≤ min
x∈[−1,1]

f(x)

|f ′(x)|
. (5.26)

The above observations are summarised in the following corollary.

5.1.3 Corollary
(i) Given a positive f ∈ C1([−1, 1],R), assume that the solution ψ to (5.1)–(5.2) complies with the
inequalities

ψzz(x,−1) ≥ 0 and ψzz(x, v(x)) ≥ 0, x ∈ I, (5.27)

Then, if the condition

0 < ε ≤ min
x∈[−1,1]

f(x)

|f ′(x)|
. (5.28)

is satisfied and u∗(x) ≤ 0 for all x ∈ I the unique solution u to (5.3)–(5.4) satisfies

u(t,x) ≤ 0, (t,x) ∈ [0,T )× I.

(ii) Let f ∈ C1
(
[−1, 0],R

)
be positive and assume that the inequalities

ψzz(x,−1) ≥ 0 and ψzz(x, v(x)) ≥ 0, x ∈ I, (5.29)

hold true for the solution ψ to (5.1)–(5.2). Then, if f complies with the condition

min
r∈[−1,0]

f(r) ≥ 2 min
r∈[−1,0]

|f ′(r)|. (5.30)

and u∗(x) ≤ 0 for all x ∈ I, the unique solution u to (5.3)–(5.4) satisfies

u(t,x) ≤ 0, (t,x) ∈ [0,T )× I.

5.2 | Non-Existence of Global Solutions

Depending on the individual application of the MEMS-based device it might be either an explicitly
desired effect to apply a voltage value that leads to a touchdown of the membrane on the ground
plate, or, in contrast, the contact of the two plates could damage the device. The understanding
of this touchdown behaviour is one of the major objectives in the mathematical investigation of
MEMS-based devices. In the present work this topic is addressed as follows. In Chapter 3 it is
shown for the semilinear as well as the quasilinear setting that there exists a critical value λ∗ > 0
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such that the unique solution (u,ψ) to the coupled problem exists forever, provided that the applied
voltage λ > 0 is smaller than λ∗. In this case we have uniform bounds on u in the W 2

q (I)-norm and
the membrane does never touch down on the ground plate, not even in infinite time. Contrariwise,
we shall see in this section that there is another critical value λ∗ ≥ λ∗ such that the solution u ceases
to exists after a finite time T of existence, provided that λ > λ∗ and ε is small enough.4 In this
case the membrane’s displacement develops a singularity in the sense that one of the following two
phenomena may be observed. Either the membrane touches down on the ground plate, i.e.

lim inf
t→T

min
x∈[−1,1]

u(t,x) = −1,

or u becomes unbounded in the W 2
q (I)-norm, i.e.

lim sup
t→T

‖u(t)‖W 2
q (I) =∞.

For a constant permittivity profile f ≡ 1 this is shown in [14, Theorem 2(ii)]. The present work covers
spatially varying permittivity profiles f = f(x), x ∈ I, for both the semilinear and the quasilinear
case (c.f. [41] and [17], respectively) and permittivity profiles f = f(u) for the quasilinear case (c.f.
[16]). Hitherto it is still an open problem to verify the existence of finite-time singularities when
f = f(x,u) depends on both x ∈ I and the displacement u of the membrane.

The general concept of the according proofs is to derive a differential inequality for a certain energy
functional and to integrate this inequality with respect to the time t in order to get an upper bound
for the maximal time T of existence. The main difference between the semilinear and the quasilinear
case consists in the choice of the functional, as we will see in the subsequent paragraphs.

5.2.1 | Finite-Time Singularities in the Semilinear Setting

Restricting the analysis to the case of spatially varying permittivity profiles, we now address the
appearance of finite-time singularities for the system consisting of the elliptic moving boundary
problem

ε2ψxx + ψzz = 0, t > 0, (x, z) ∈ Ω(u), (5.31)

ψ(t,x, z) =
1 + z

1 + u(t,x)
f(x), t > 0, (x, z) ∈ ∂Ω(u), (5.32)

4If f = f(u) the result may even be improved as in this case there is no condition on ε > 0.
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for the electrostatic potential ψ, coupled with the semilinear initial boundary value problem

ut − uxx = −λ
(
ε2
(
ψx(x,u)

)2
+
(
ψz(x,u)

)2)
+ 2λε2ψx(x,u)f ′(x), t > 0, x ∈ I, (5.33)

u(t,±1) = 0, t > 0, (5.34)

u(0,x) = u∗(x), x ∈ I. (5.35)

We shall see that there exists a voltage value λ∗ > 0 such that the solution u to (5.33)–(5.35) cannot
exist globally in time, provided that ε > 0 is small enough. More precisely, we prove the following
result.

5.2.1 Theorem (Finite-Time Singularities, [41, Theorem 5.1])
Let f ∈ C2([−1, 1],R) be positive with f(−1) = f(1) and denote by u ∈ C

(
[0,T ),W 2

q (I)
)
the

solution to (5.33)–(5.35). Assume in addition that

u(t,x) ≤ 0, (t,x) ∈ [0,T )× I.

Then there exists λ∗ > 0 such that T < ∞, provided that λ > λ∗ and ε ∈
(
0, 1/
√
λ
]
. That is, we

have either
lim sup
t→T

‖u(t)‖W 2
q (I) =∞ or lim inf

t→T
min

x∈[−1,1]
u(t,x) = −1.

Before proving the above theorem, it is convenient to provide some preliminary definitions and
results. In the subsequent argumentation we follow the lines of [14, Theorem 1.2 (ii)]. For x ∈ I
define

ϕ(x) :=
π

4
cos
(πx

2

)
and µ :=

π2

4
. (5.36)

Then µ is the principal eigenvalue of the L2(I)-realisation of −∂2
x subject to homogeneous Dirichlet

boundary conditions, i.e.
− ϕxx = µϕ in I, ϕ(±1) = 0. (5.37)

Observe in addition that ‖ϕ‖L1(I) = 1. Denoting by u be the solution to (5.33)–(5.35) on its maximal
interval [0,T ) of existence we introduce the functional

Eα(t) :=

∫
I
ϕ(x)

(
u+

α

2
u2
)

(t,x) dx, t ∈ [0,T ), (5.38)

where α ∈ (0, 1) is a free parameter to be determined later. Recall that by Theorem 3.1.5 we know
that u(t,x) > −1 and by assumption one has u(t,x) ≤ 0. In summary,

− 1 < u(t,x) ≤ 0, (t,x) ∈ [0,T )× I. (5.39)
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As a first consequence of (5.39) notice that

−1 ≤ α− 2

2
≤ Eα(t) ≤ 0, t ∈ [0,T ).

In addition to the above facts, by differentiating the boundary condition (5.32) one obtains the
identity

ψx
(
t,x,u(t,x)

)
= f ′(x)− ψz

(
t,x,u(t,x)

)
ux(t,x), (5.40)

for all (t,x) ∈ (0,T )× I. Equation (5.40) plays a crucial role in the proof of the above theorem as
it is used several times in the subsequent reasoning. To summarise, we state the following general
assumptions for the lemmas in this section:

• f ∈ C2
(
[−1, 1],R

)
with f(x) > 0 for all x ∈ I and f(−1) = f(1);

• u ∈ C
(
[0,T ),W 2

q (I)
)
, q ∈ (2,∞), is the solution to (5.33)–(5.35), satisfying (5.39);

• ψ ∈W 2
2

(
Ω(u(t))

)
is the solution to (5.31)–(5.32);

• ε,λ,α,β > 0 are parameters, being determined later;

• µ, ϕ and Eα are given as defined in (5.36) and (5.38), respectively.

The rough concept of the proof of Theorem 5.2.1 is to derive a differential inequality for the functional
Eα and to integrate this inequality with respect to t in order to get an upper bound for the maximal
time T of existence.

According to this concept, the first lemma yields a differential equation for the functional Eα, which
is the basis for the following estimates.

5.2.2 Lemma ([41, Lemma 5.2])
Given t ∈ (0,T ), there holds5

dEα
dt

+ µEα + α

∫
I
ϕ(ux)2 dx

= −λ
∫
I
ϕ(1 + αu)

(
1 + ε2(ux)2

)(
ψz(x,u)

)2
dx+ λε2

∫
I
ϕ(1 + αu)(f ′)2 dx.

Proof. Having (5.40) at hand, multiplication of the evolution equation (5.33) by ϕ(1 + αu) and

5For the sake of better readability we suppress the variables in the calculations if no ambiguity is possible.
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integration over I with respect to x leads to∫
I
ϕ(1 + αu)(ut − uxx) dx =− λ

∫
I
ϕ(1 + αu)

(
ε2
(
ψx(x,u)

)2
+
(
ψz(x,u)

)2)
dx

+ 2λε2

∫
I
ϕ(1 + αu)ψx(x,u)f ′ dx

=− λ
∫
I
ϕ(1 + αu)

(
1 + ε2(ux)2

)(
ψz(x,u)

)2
dx

+ λε2

∫
I
ϕ(1 + αu)(f ′)2 dx.

(5.41)

Moreover, using the definition of Eα, one may verify that

dEα
dt

=
d

dt

∫
I
ϕ
(
u+

α

2
u2
)
dx =

∫
I
ϕ(1 + αu)ut dx, t ∈ (0,T ). (5.42)

Next, thanks to the eigenvalue problem (5.37) and the boundary condition (5.34), twice integrating
by parts yields

µEα = µ

∫
I
ϕ
(
u+

α

2
u2
)
dx

= −
∫
I
ϕxx

(
u+

α

2
u2
)
dx

=

∫
I
ϕx(1 + αu)ux dx

= −
∫
I
ϕ(1 + αu)uxx dx− α

∫
I
ϕ(ux)2 dx, t ∈ (0,T ).

(5.43)

Combining (5.42) and (5.43), one obtains

dEα
dt

+ µEα + α

∫
I
ϕu2

x dx =

∫
I
ϕ(1 + αu)(ut − uxx) dx, t ∈ (0,T ),

and finally, fusing this equation with (5.41), we end up with

dEα
dt

+ µEα + α

∫
I
ϕ(ux)2 dx

= −λ
∫
I
ϕ(1 + αu)

(
1 + ε2(ux)2

)(
ψz(x,u)

)2
dx+ λε2

∫
I
ϕ(1 + αu)(f ′)2 dx

for t ∈ (0,T ). This is the assertion of the lemma.

As one may see later on, the following lemma serves as a useful manipulation in order to estimate
the right-hand side of the above obtained differential equation for Eα.
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5.2.3 Lemma ([41, Lemma 5.3])
Given t ∈ [0,T ), it holds∫

I
ϕf
(
1 + ε2(ux)2

)
ψz(x,u) dx

=

∫
Ω(u(t))

ϕ

(
ε2(ψx)2 + (ψz)

2 +
µε2

2
ψ2

)
d(x, z)− µε2

6
(f(1))2

− ε2

2

∫
I
ϕxf

2ux dx+ ε2

∫
I
ϕff ′ux dx.

Proof. The idea of the proof is to multiply equation (5.31) by ϕψ and to integrate over Ω(u(t)) with
respect to x and z. Thanks to the Green–Riemann integration formula as well as to the boundary
conditions for ψ and ϕ, respectively, for t ∈ [0,T ) we calculate the following:

0 = ε2

∫
Ω
ψxxϕψ d(x, z) +

∫
Ω
ψzzϕψ d(x, z)

= −
∫

Ω
ϕ
(
ε2(ψx)2 + (ψz)

2
)
d(x, z)− ε2

∫
Ω
ϕxψψx d(x, z)

+

∫
I
ϕψ(x,u)

(
−ε2ψx(x,u)ux + ψz(x,u)

)
dx

= −
∫

Ω
ϕ
(
ε2(ψx)2 + (ψz)

2
)
d(x, z)− ε2

2

∫
Ω
ϕx(ψ2)x d(x, z)

+

∫
I
ϕf
(
−ε2ψx(x,u)ux + ψz(x,u)

)
dx

= −
∫

Ω
ϕ
(
ε2(ψx)2 + (ψz)

2
)
d(x, z)− ε2

2

∫
Ω
ϕx(ψ2)x d(x, z)

+

∫
I
ϕf
(
1 + ε2(ux)2

)
ψz(x,u) dx− ε2

∫
I
ϕff ′ux dx,

where in the last step again the identity (5.40) is used. Finally, due to (5.37) and (5.32) there holds∫
Ω
ϕx(ψ2)x d(x, z) = −

∫
Ω
ϕxxψ

2 d(x, z)−
∫
I
ϕx
(
ψ(x,u)

)2
ux dx

−
∫ 0

−1
ϕx(−1)(1 + z)2

(
f(−1)

)2
dz +

∫ 0

−1
ϕx(1)(1 + z)2

(
f(1)

)2
dz

= −
∫

Ω
ϕxxψ

2 d(x, z)−
∫
I
ϕxf

2ux dx−
[
ϕx(−1)− ϕx(1)

](f(1)
)2

3

= −
∫

Ω
ϕxxψ

2 d(x, z)−
∫
I
ϕxf

2ux dx+

(
f(1)

)2
3

∫
I
ϕxx dx

= µ

∫
Ω
ϕψ2 d(x, z)−

∫
I
ϕxf

2ux dx−
µ
(
f(1)

)2
3
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for t ∈ [0,T ), whereby one obtains∫
I
ϕf
(
1 + ε2(ux)2

)
ψz(x,u) dx

=

∫
Ω
ϕ
(
ε2(ψx)2 + (ψz)

2 +
µε2

2
ψ2
)
d(x, z)− µε2

6

(
f(1)

)2
− ε2

2

∫
I
ϕxf

2ux dx+ ε2

∫
I
ϕff ′ux dx

for t ∈ [0,T ), as claimed.

The next result is an easy consequence of the Cauchy–Schwarz inequality and the boundary condition
(5.32).

5.2.4 Lemma ([41, Lemma 5.4])
Given t ∈ [0,T ), it holds ∫

I
ϕ

f2

1 + u
dx ≤

∫
Ω(u(t))

ϕ(ψz)
2 d(x, z).

Proof. As performed in (5.15) in Lemma 5.1.1 one may deduce from the boundary condition (5.32)
for ψ and from the Cauchy–Schwarz inequality that

f2

1 + u
≤
∫ u

−1
(ψz)

2 dz, (t,x) ∈ [0,T )× I.

Owing to the non-negativity of ϕ, we may multiply both sides of this inequality by ϕ and integrate
over I with respect to x to obtain∫

I
ϕ

f2

1 + u
dx ≤

∫
Ω
ϕψ2

z d(x, z), t ∈ [0,T ).

This completes the proof.

As a last auxiliary step for the proof of Theorem 5.2.1 we define for t ∈ [0,T ) the functional

Φλ(t) :=

∫
I
ϕ
(
1 + ε2(ux)2

)(
ψz(x,u)

)2
dx (5.44)

and derive a lower bound for it in the subsequent lemma.

5.2.5 Lemma ([41, Lemma 5.5])
Given t ∈ [0,T ) and β > 0, there holds

Φλ(t) ≥ 1

β

(
−µε

2M2

6
− M2

4β
− ε2cf +

m2

1 + Eα(t)

)
− M2ε2

4β2

∫
I
ϕ(ux)2 dx,
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where the constants m,M and cf are defined by

m := min
x∈[−1,1]

f(x), M := max
x∈[−1,1]

f(x), and cf :=

∫
I
ϕf |f ′′| dx. (5.45)

Proof. Fix t ∈ [0,T ). Since we have∫
I
ϕf
(
1 + ε2(ux)2

)
ψz(x,u) dx ≤ βΦλ +

1

4β

∫
I
ϕ
(
1 + ε2(ux)2

)
f2 dx, t ∈ [0,T ),

for β > 0, by the weighted Young inequality, we may apply Lemma 5.2.3 to obtain

Φλ(t) =

∫
I
ϕ
(
1 + ε2(ux)2

)(
ψz(x,u)

)2
dx

≥ 1

β

∫
I
ϕf
(
1 + ε2(ux)2

)
ψz(x,u) dx− 1

4β2

∫
I
ϕf2 dx− ε2

4β2

∫
I
ϕf2(ux)2 dx

=
1

β

(∫
Ω
ϕ(ψz)

2 d(x, z)−
µε2
(
f(1)

)2
6

− ε2

2

∫
I
ϕxf

2ux dx+ ε2

∫
I
ϕff ′ux dx

+ ε2

∫
Ω
ϕ(ψx)2 d(x, z) +

µε2

2

∫
Ω
ϕψ2 d(x, z)

)

− 1

4β2

∫
I
ϕf2 dx− ε2

4β2

∫
I
ϕf2(ux)2 dx

for t ∈ [0,T ). With the constants m,M and cf , introduced in (5.45), we may infer from Lemma
5.2.4, the non-negativity of ϕ, and the integration by parts formula that

Φλ(t) ≥ 1

β

(
m2

∫
I

ϕ

1 + u
dx− µε2M2

6
− ε2

2

∫
I
ϕxf

2ux dx+ ε2

∫
I
ϕff ′ux dx−

M2

4β

)
− ε2M2

4β2

∫
I
ϕ(ux)2 dx

=
1

β

(
m2

∫
I

ϕ

1 + u
dx− µε2M2

6
+
ε2

2

∫
I
uϕxxf

2 dx+ ε2

∫
I
uϕxff

′ dx

+ ε2

∫
I
ϕff ′ux dx−

M2

4β

)
− ε2M2

4β2

∫
I
ϕ(ux)2 dx

=
1

β

(
m2

∫
I

ϕ

1 + u
dx− µε2M2

6
+
ε2

2

∫
I
uϕxxf

2 dx− ε2

∫
I
ϕu(f ′)2 dx

− ε2

∫
I
ϕuff ′′ dx− M2

4β

)
− ε2M2

4β2

∫
I
ϕ(ux)2 dx

for t ∈ [0,T ). At this point, we may deduce from (5.37), again the non-negativity of ϕ, and the
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non-positivity of u that, given t ∈ [0,T ), it holds that

Φλ(t) ≥ 1

β

(
m2

∫
I

ϕ

1 + u
dx− µε2M2

6
− µε2

2

∫
I
ϕuf2 dx− ε2

∫
I
ϕuff ′′ dx− M2

4β

)
− ε2M2

4β2

∫
I
ϕ(ux)2 dx

≥ 1

β

(
m2

∫
I

ϕ

1 + u+ α
2u

2
dx− µε2M2

6
− ε2

∫
I
ϕuff ′′ dx− M2

4β

)
− ε2M2

4β2

∫
I
ϕ(ux)2 dx.

Observing that we may apply Jensen’s inequality with the convex function [r 7→ 1/(1 + r)] and the
probability measure ϕ(x) dx, using the definition of the constant cf and the fact that −1 < u(t,x)

for all (t,x) ∈ [0,T )× I, we finally end up with

Φλ(t) ≥ 1

β

(
−µε

2M2

6
− M2

4β
− ε2cf +

m2

1 + Eα

)
− ε2M2

4β2

∫
I
ϕ(ux)2 dx, t ∈ [0,T ).

Eventually the proof is complete.

With the preliminary material from the above lemmas we are now able to prove Theorem 5.2.1.

Proof of Theorem 5.2.1. Let α ∈ (0, 1) to be determined later. We first derive a differential
inequality for the energy functional Eα. Invoking Lemma 5.2.2, for t ∈ (0,T ) we have

dEα
dt

+ µEα + α

∫
I
ϕ(ux)2 dx

= −λ
∫
I
ϕ(1 + αu)

(
1 + ε2(ux)2

)(
ψz(x,u)

)2
dx+ λε2

∫
I
ϕ(1 + αu)(f ′)2 dx.

Using the fact that ϕ is non-negative and that 1 +αu ≥ 1−α for (t,x) ∈ (0,T )× I, c.f. (5.39), one
further obtains

dEα
dt

+ µEα + α

∫
I
ϕ(ux)2 dx

≤ −λ(1− α)Φλ(t) + λε2

∫
I
ϕ(1 + αu)(f ′)2 dx, t ∈ (0,T ),

(5.46)

with Φλ introduced in (5.44). Lemma 5.2.5 yields the following estimate for Φλ(t) on (0,T ):

Φλ(t) ≥ 1

β

(
−µε

2M2

6
− M2

4β
− ε2cf +

m2

1 + Eα

)
− M2ε2

4β2

∫
I
ϕ(ux)2 dx. (5.47)

Here, β > 0 is a further free parameter to be determined later and the constants m,M and cf are
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defined in (5.45). Fusing (5.46) and (5.47) leads to

dEα
dt

+ µEα + α

∫
I
ϕ(ux)2 dx

≤ λ(1− α)

β

(
µε2M2

6
+
M2

4β
+ ε2cf −

m2

1 + Eα

)
+
λ(1− α)M2ε2

4β2

∫
I
ϕ(ux)2 dx+ λε2

∫
I
ϕ(f ′)2 dx, t ∈ (0,T ).

Since −1 ≤ Eα(t) for all t ∈ [0,T ) by introducing the further constant

df :=

∫
I
ϕ(f ′)2 dx

one obtains

dEα
dt

+

(
α− λ(1− α)M2ε2

4β2

)∫
I
ϕ(ux)2 dx

≤ µ+
λ(1− α)

β

(
µε2M2

6
+
M2

4β
+ ε2cf −

m2

1 + Eα

)
+ λε2df , t ∈ (0,T ).

Now we use the freedom of choosing α in such a way that we are able to control the λ-dependent
term ux. More precisely, we choose

α =
λ(1− α)M2ε2

4β2
,

which is equivalent to

α =
λM2ε2

4β2 + λM2ε2
∈ (0, 1).

Consequently, we obtain the following differential inequality for Eα on (0,T ):

dEα
dt
≤ µ+ λε2df +

λ

β

(
µε2M2

6
+
M2

4β
+ ε2cf −

m2

1 + Eα

)
.

Choosing

ε ≤ 1√
λ

and β =
√
λ

then implies

dEα
dt
≤ µ+ df +

√
λ

(
µM2

6λ
+

M2

4
√
λ

+
cf
λ
− m2

1 + Eα

)
, t ∈ (0,T ).
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Denoting the right-hand side of the last inequality by Fλ(Eα), i.e. defining

Fλ(Eα) := µ+ df +
√
λ

(
µM2

6λ
+

M2

4
√
λ

+
cf
λ
− m2

1 + Eα

)
, t ∈ (0,T ),

one may observe that Fλ is increasing on (−1,∞) and that Eα is non-positive. This yields

dEα(t)

dt
≤ Fλ(Eα(t)) ≤ Fλ(0), t ∈ (0,T ). (5.48)

Since

Fλ(0) = µ+ df +
√
λ

(
µM2

6λ
+

M2

4
√
λ

+
cf
λ
−m2

)
is strictly decreasing in λ and positive for small values of λ, it follows that one may find λ∗ > 0 large
enough, such that Fλ∗(0) = 0. Integrating inequality (5.48) with respect to t then implies

T ≤ − 1

Fλ(0)
<∞,

provided that λ > λ∗, and the proof is complete.
�

5.2.6 Remark (1) Observe that λ∗ depends only on the constants

m = min
x∈[−1,1]

f(x), M = max
x∈[−1,1]

f(x),

cf =

∫
I
ϕf |f ′′| dx df =

∫
I
ϕ(f ′)2 dx,

but not on any further properties of f .

(2) Theorem 5.2.1 provides an upper bound for the maximal time T of existence for all ε ∈
(0, 1/

√
λ].

(3) Observe that Lemma 5.2.2 and Lemma 5.2.3 require only that f ∈ C1
(
[−1, 1],R

)
and Lemma

5.2.4 does even hold true for f ∈ C
(
[−1, 1],R

)
.

Finally, we complete this section by fusing some of the previous observations. In Theorem 5.1.2
conditions are specified which ensure that solutions emerging from non-positive initial values stay
non-positive for all times t of existence. For spatially varying permittivity profiles the above men-
tioned conditions are even improved in Corollary 5.1.3 (i). In addition, the non-positivity of u
appears as a crucial condition for the verification of the appearance of finite-time singularities, c.f.
Theorem 5.2.1. Thus, combining Theorem 5.1.2 with Corollary 5.1.3 and Theorem 5.2.1 advices us
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to introduce the constant
mf ,λ := min

{
min

x∈[−1,1]

f(x)

|f ′(x)|
,

1√
λ

}
and to formulate the following corollary. Note that we are still restricted to the regime of spatially
varying permittivity profiles.

5.2.7 Corollary
Let f ∈ C2

(
[−1, 1,R]

)
be positive with f(−1) = f(1) and denote by u ∈ C

(
[0,T ),W 2

q (I)
)
the

solution to (5.33)–(5.35) with corresponding initial value u∗(x) ≤ 0, x ∈ I. Assume in addition that

ψzz(x,−1) ≥ 0 and ψzz(x, v(x)) ≥ 0 (5.49)

for all x ∈ I and all v ∈W 2
q (I), satisfying v(x) ≤ 0, x ∈ I. Then there exists a critical voltage value

λ∗ > 0 such that T <∞, provided that λ > λ∗ and ε ∈ (0,mf ,λ). That is, we have either

lim sup
t→T

‖u(t)‖W 2
q (I) =∞ or lim inf

t→T
min

x∈[−1,1]
u(t,x) = −1.

5.2.2 | Finite-Time Singularities in the Quasilinear Setting

Similar to what is done in the semilinear case, we now study conditions which ensure that the
solution u to the quasilinear evolution problem develops a singularity after a finite time of existence.

For constant permittivity profiles f ≡ 1 the according result is published in [13], where the authors
study the time evolution of a certain energy functional in order to derive an upper bound for maximal
time T of existence. The same approach with even the same energy functional may be used for non-
constant permittivity profiles f = f(x) and f(u), respectively, as we will see in the following (c.f.
also [17, 16]). In order to not go beyond the scope of this work we focus here on the case in which
the permittivity profile f depends on the membrane’s displacement u. The case of spatially varying
permittivity profiles is just briefly discussed without going into details.

Spatially Varying Permittivity Profiles; f = f(x). Given a spatially varying
permittivity profile f = f(x), x ∈ I, we consider the moving boundary problem

ε2ψxx + ψzz = 0, t > 0, (x, z) ∈ Ω(u(t)), (5.50)

ψ(t,x, z) =
1 + z

1 + u(t,x)
f(x), t > 0, (x, z) ∈ ∂Ω(u(t)), (5.51)
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coupled with the quasilinear parabolic evolution problem

ut − ∂x

(
ux√

1 + ε2(ux)2

)
= −λ

(
ε2
(
ψx(x,u(t,x))

)2
+
(
ψz(x,u(t,x))

)2)
+ 2λε2ψx(x,u(t,x))f ′(x), t > 0,x ∈ I, (5.52)

u(t,±1) = 0, t > 0, (5.53)

u(0,x) = u∗(x), x ∈ I. (5.54)

The following theorem on finite-time singularities of the solution u to (5.52)–(5.54) may be verified.

5.2.8 Theorem (Finite-Time Singularity; f = f(x); [17])
Let q ∈ (2,∞), ε > 0 and λ > 0. Moreover, given a positive f ∈ C1

(
[−1, 1],R

)
and an initial datum

u∗ ∈ W 2
q,D(I), satisfying −1 < u∗(x) ≤ 0 for all x ∈ I, denote by (u,ψ) the unique solution to

(5.50)–(5.54) on the maximal interval [0,T ) of existence and assume that

(A1) maxx∈[−1,1] f(x) <
√

2 minx∈[−1,1] f(x);

(A2) minx∈[−1,1] f(x) = f(−1) = f(1);

(A3) u(t,x) ≤ 0, (t,x) ∈ [0,T )× I.

Then there exist ε∗ > 0 and λ∗ = λ∗(ε∗) > 0 such that the maximal existence time T of the unique
solution u to (5.52)–(5.54) is finite,6 provided that ε ∈ (0, ε∗) and λ > λ∗. In this case either

lim inf
t→T

min
[−1,1]

u(t,x) = −1 or lim sup
t→T

‖u(t)‖W 2
q (I) =∞.

As mentioned above we omit the according proof in order to not going beyond the scope of this
thesis and refer the reader to [17] for more detailed information. Nevertheless it is worthwhile to
mention that the non-positivity of u as stated in (A3) is crucial for the proof.

Permittivity Profiles Depending on the Membrane’s Displacement; f = f(u).
In this paragraph we study the coupled system consisting of the elliptic free boundary value problem

ε2ψxx + ψzz = 0, t > 0, (x, z) ∈ Ω(u(t)), (5.55)

ψ(t,x, z) =
1 + z

1 + u(t,x)
f
(
u(t,x)

)
, t > 0, (x, z) ∈ ∂Ω(u(t)), (5.56)

6Letting δ := 2 min(f2)−max(f2), we have in fact λ∗ = 1/(δε).
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and the quasilinear parabolic evolution problem

ut − ∂x

(
ux√

1 + ε2(ux)2

)
= −λ

(
ε2
(
ψx(x,u(t,x))

)2
+
(
ψz(x,u(t,x))

)2)
+ 2λψz(x,u(t,x))f ′

(
u(t,x)

)
, t > 0, x ∈ I, (5.57)

u(t,±1) = 0, t > 0, (5.58)

u(0,x) = u∗(x), x ∈ I. (5.59)

The permittivity profile is considered to be a function depending on the displacement u of the
membrane and f ′(u) denotes the derivative of f with respect to u. We prove that under certain
conditions the solution u to the quasilinear parabolic initial boundary value problem (5.57)–(5.59)
develops a singularity after a finite time T of existence. More precisely, as in the semilinear and the
quasilinear setting with f = f(x) either a blow-up of the W 2

q (I)-norm of u or a touchdown takes
place.

5.2.9 Theorem (Finite-Time Singularity; f = f
(
u(t,x)

)
, [16, Theorem 3.4])

Let q ∈ (2,∞), ε > 0 and λ > 0. Moreover, given a positive f ∈ C2
(
[−1, 0],R

)
and an initial datum

u∗(x) ≤ 0, x ∈ I, denote by (u,ψ) the unique solution to (5.55)–(5.59) on the maximal interval
[0,T ) of existence and assume that the following conditions hold true:

(A1) maxx∈[−1,0] f(r) <
√

2 minr∈[−1,0] f(r);

(A2) f ′(r) ≤ 0, r ∈ [−1, 0],

(A3) u(t,x) ≤ 0, (t,x) ∈ [0,T )× I;

(A4) ψzz(t,x,−1) ≥ 0 and ψzz
(
t,x,u(t,x)

)
≥ 0, t ∈ [0,T ), x ∈ I.

Then the maximal existence time T of the unique solution u to (5.57)–(5.59) is finite. More precisely,
there exists 7 λ∗ > 0 such that either

lim inf
t→T

min
x∈[−1,1]

u(t,x) = −1 or lim sup
t→T

‖u(t)‖W 2
q (I) =∞

for all λ > λ∗.

As already mentioned the proof of this result relies on an appropriate estimate of an energy functional
which then leads to an upper bound for the maximal time T of existence of the solution (u,ψ) to
(5.55)–(5.59). In the sequel we provide the essential steps for the estimate of the energy functional
in the form of several technical lemmas. Those auxiliary results are finally fused in a separate proof
of Theorem 5.2.9.

7Letting δ := 2 min(f2)−max(f2), we have in fact λ∗ = 1/(δε).
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As a starting point we state a representation of ψx on the membrane u

ψx(x,u(t,x)) =
(
f ′(u(t,x))− ψz(x,u(t,x))

)
ux(t,x), (t,x) ∈ (0,T )× I, (5.60)

which is of special importance as it is frequently used in the following. Furthermore, ψx vanishes on
the ground plate, i.e.

ψx(x,−1) = 0, x ∈ I. (5.61)

Note that both identities, (5.60) and (5.61) may be derived from the boundary condition (5.56).

The following lemma provides an integral identity based on the equation (5.55) for ψ.

5.2.10 Lemma ([16, Lemma 3.5])
Given f ∈ C1

(
[−1, 0],R

)
there holds

1

2

∫
I

(
1+ε2(ux)2

)(
ψz(x,u)

)2
dx

=

∫
I

(
1 + ε2(ux)2

)
ψz(x,u)f(u) dx+

1

2

∫
I

(
ψz(x,−1)

)2 − 2ψz(x,−1)f(u) dx

− ε2

∫
I
f(u)f ′(u)(ux)2 dx+

ε2

2

∫
I

(
f ′(u)ux

)2
dx− ε2

∫
Ω
ψxf

′(u)ux d(x, z).

Proof. Thanks to Fubini’s theorem and the Green–Riemann integration formula and the boundary
condition (5.61) we find that

−ε2

∫
Ω
ψx
(
ψzx − f ′(u)ux

)
d(x, z)

= −ε
2

2

∫
Ω

(
(ψx)2

)
z
d(x, z) + ε2

∫
Ω
ψxf

′(u)ux d(x, z)

= −ε
2

2

∫
I

(
ψx(x,u)

)2
dx+ ε2

∫
Ω
ψxf

′(u)ux d(x, z).

Using the identity (5.60) then leads to

−ε2

∫
Ω
ψx
(
ψzx − f ′(u)ux

)
d(x, z)

= −ε
2

2

∫
I

(
f ′(u)ux − ψz(x,u)ux

)2
dx+ ε2

∫
Ω
ψxf

′(u)ux d(x, z)

= −ε
2

2

∫
I

(
f ′(u)ux

)2
dx+ ε2

∫
I
ψz(x,u)f ′(u)(ux)2 dx

− ε2

2

∫
I

(
ψz(x,u)ux

)2
dx+ ε2

∫
Ω
ψxf

′(u)ux d(x, z).

(5.62)

As above, invoking the Green–Riemann integration formula as well as the boundary conditions (5.56)
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and (5.60), we obtain

ε2

∫
Ω
ψxx
(
ψz − f(u)

)
d(x, z)

= ε2

∫
Ω

(
ψx(ψz − f(u))

)
x
d(x, z)− ε2

∫
Ω
ψx
(
ψzx − f ′(u)ux

)
d(x, z)

= ε2

∫
∂Ω
ψx
(
ψz − f(u)

)
dz − ε2

∫
Ω
ψx
(
ψzx − f ′(u)ux

)
d(x, z)

= ε2

∫
I

(
ψz(x,u)ux

)2
dx− ε2

∫
I
ψz(x,u)f(u)(ux)2 dx

− ε2

∫
I
ψz(x,u)f ′(u)(ux)2 dx+ ε2

∫
I
f(u)f ′(u)(ux)2 dx

− ε2

∫
Ω
ψx
(
ψzx − f ′(u)ux

)
d(x, z).

(5.63)

Fusing (5.62) and (5.63) then yields

ε2

∫
Ω
ψxx
(
ψz − f(u)

)
d(x, z) = ε2

∫
Ω
ψxf

′(u)ux d(x, z)− ε2

2

∫
I

(
f ′(u)ux

)2
dx

+
ε2

2

∫
I

(
ψz(x,u)ux

)2
dx+ ε2

∫
I

(
f ′(u)− ψz(x,u)

)
f(u)(ux)2 dx.

(5.64)

Similarly, again due to Fubini’s theorem we may derive the identity∫
Ω
ψzz
(
ψz − f(u)

)
d(x, z)

= −
∫

Ω
ψzzf(u) d(x, z) +

1

2

∫
I

(
ψz(x,u)

)2 − (ψz(x,−1)
)2
dx

=

∫
I

(
ψz(x,−1)− ψz(x,u)

)
f(u) dx+

1

2

∫
I

(
ψz(x,u)

)2 − (ψz(x,−1)
)2
dx.

(5.65)

Multiplying now equation (5.50) by ψz − f(u), integrating over Ω and using the above equations
(5.64) and (5.65) we find that

0 =

∫
Ω

(
ε2ψxx + ψzz

)(
ψz − f(u)

)
d(x, z)

= ε2

∫
Ω
ψxf

′(u)ux d(x, z)− 1

2

∫
I

(
ψz(x,−1)

)2 − 2ψz(x,−1)f(u) dx

+
1

2

∫
I

(
1 + ε2(ux)2

)(
ψz(x,u)

)2
dx−

∫
I

(
1 + ε2(ux)2

)
ψz(x,u)f(u) dx

+ ε2

∫
I
f(u)f ′(u)(ux)2 dx− ε2

2

∫
I

(
f ′(u)ux

)2
dx.
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Finally, the last equation is equivalent to

1

2

∫
I

(
1 + ε2(ux)2

)(
ψz(x,u)

)2
dx

=

∫
I

(
1 + ε2(ux)2

)
ψz(x,u)f(u) dx+

1

2

∫
I

(
ψz(x,−1)

)2 − 2ψz(x,−1)f(u) dx

− ε2

∫
I
f(u)f ′(u)(ux)2 dx+

ε2

2

∫
I

(
f ′(u)ux

)2
dx− ε2

∫
Ω
ψxf

′(u)ux d(x, z),

whence the proof is complete.

Subsequently, a further manipulation of the first term of the above obtained integral equality is
verified.

5.2.11 Lemma ([16, Lemma 3.6])
Given f ∈ C1

(
[−1, 0],R

)
, the following equation holds true:∫

I

(
1 + ε2(ux)2

)
ψz(x,u)f(u) dx

=

∫
Ω
ε2(ψx)2 + (ψz)

2 d(x, z) + ε2

∫
I
f(u)f ′(u)(ux)2 dx

− f(0) ε2

∫ 0

−1
(1 + z)

(
ψx(1, z)− ψx(−1, z)

)
dz.

Proof. Using the boundary condition (5.56) for ψ it follows that∫
∂Ω
ψzψ dx = −

∫
I
ψz(x,u)f(u) dx. (5.66)

Similarly, by recalling in addition the identity (5.60), we find that∫
∂Ω
ψxψ dz = −

∫
I
ψx(x,u)f(u)ux dx+ f(0)

∫ 0

−1
(1 + z)

(
ψx(1, z)− ψx(−1, z)

)
dz

= −
∫
I

(
f ′(u)− ψz(x,u)

)
f(u)(ux)2 dx+ f(0)

∫ 0

−1
(1 + z)

(
ψx(1, z)− ψx(−1, z)

)
dz.

(5.67)

Now multiplying the equation (5.55) by ψ and integrating over Ω one obtains

0 =

∫
Ω

(
ε2ψxx + ψzz

)
ψ d(x, z)

= −
∫

Ω
ε2(ψx)2 + (ψz)

2 d(x, z) +

∫
Ω
ε2(ψxψ)x + (ψzψ)z d(x, z).

A reapplication of the Green–Riemann integration formula together with (5.66) and (5.67) finally
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yields

0 = −
∫

Ω
ε2(ψx)2 + (ψz)

2 d(x, z) + ε2

∫
∂Ω
ψxψ dz −

∫
∂Ω
ψzψ dx

= −
∫

Ω
ε2(ψx)2 + (ψz)

2 d(x, z) +

∫
I

(
1 + ε2(ux)2

)
ψz(x,u)f(u) dx

− ε2

∫
I
f(u)f ′(u)(ux)2 dx+ ε2f(0)

∫ 0

−1
(1 + z)

(
ψx(1, z)− ψx(−1, z)

)
dz.

This is equivalent to∫
I

(
1 + ε2(ux)2

)
ψz(x,u)f(u) dx

=

∫
Ω
ε2(ψx)2 + (ψz)

2 d(x, z) + ε2

∫
I
f(u)f ′(u)(ux)2 dx

− ε2f(0)

∫ 0

−1
(1 + z)

(
ψx(1, z)− ψx(−1, z)

)
dz,

whereby the proof is complete.

In the following lemma we provide a subsolution to the elliptic problem (5.55)–(5.56) for ψ.

5.2.12 Lemma ([17, Lemma 3.7])
Given a positive f ∈ C

(
[−1, 0],R

)
we introduce the notation

m := min
r∈[−1,0]

f(r)

and define η(x, z) := (1 + z)m for (x, z) ∈ Ω. Then η is a subsolution to (5.55)–(5.56), i.e. we have

η(x, z) ≤ ψ(x, z), (x, z) ∈ Ω.

Proof. It is clear that η satisfies the equation (5.55), i.e.

ε2ηxx + ηzz = 0 = ε2ψxx + ψzz, (x, z) ∈ Ω.

Moreover, on the lateral components of the boundary it holds that

η(±1, z) = (1 + z)m ≤ (1 + z)f(0) = ψ(±1, z), z ∈ (−1, 0).

Finally, we have

η(x,−1) = 0 = ψ(−1, z), x ∈ I,
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on the ground plate, as well as

η
(
x,u(x)

)
= (1 + u)m ≤ (1 + u)f

(
u(x)

)
≤ f

(
u(x)

)
= ψ

(
x,u(x)

)
, x ∈ I,

on the membrane.8 Thus, the elliptic maximum principle yields the assertion.

Using the fact that η is a subsolution to (5.55)–(5.56) now leads to the following result on the sign of
ψx on the lateral boundaries. In some sense the results is reminiscent of Hopf’s maximum principle.

5.2.13 Lemma ([16, Lemma 3.8])
Given a positive f ∈ C ([−1, 0],R) with m = f(0), the potential ψ satisfies

±ψx(±1, z) ≤ 0, z ∈ (−1, 0).

Proof. The statement readily follows from an application of Lemma 5.2.12:

ψx(1, z) = lim
h↘0

ψ(1− h, z)− ψ(1, z)

−h

= lim
h↘0

ψ(1− h, z)− (1 + z)f(0)

−h

≤ lim
h↘0

η(1− h, z)− (1 + z)f(0)

−h
= 0.

Similarly one deduces ψx(−1, z) ≥ 0 for all z ∈ (−1, 0).

5.2.14 Corollary ([16, Corollary 3.9])
Given a positive f ∈ C1

(
[−1, 0],R

)
, the inequality∫

I

(
1 + ε2(ux)2

)
ψz(x,u)f(u) dz ≥

∫
Ω
ε2(ψx)2 + (ψz)

2 d(x, z) + ε2

∫
I
f(u)f ′(u)(ux)2 dx

holds true.

Proof. From Lemma 5.2.11 we know that the identity∫
I

(
1 + ε2(ux)2

)
ψz(x,u)f(u) dx =

∫
Ω
ε2(ψx)2 + (ψz)

2 d(x, z)

+ ε2

∫
I
f(u)f ′(u)(ux)2 dx− f(0) ε2

∫ 0

−1
(1 + z)

(
ψx(1, z)− ψx(−1, z)

)
dz

8Recall that u(t,x) ≤ 0 on [0,T )× I by Theorem 5.1.2.
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holds true. Having in mind that f is positive by assumption we may invoke Lemma 5.2.13 to deduce
that

−f(0)
(
ψx(1, z)− ψx(−1, z)

)
≥ 0, z ∈ (−1, 0),

whereby the assertion immediately follows.

By simple calculations one may derive the following two auxiliary results.

5.2.15 Lemma ([16, Lemma 3.10])
The estimate ∫

I

(
ψz(x,−1)

)2 − 2ψz(x,−1)f(u) dx ≥ −
∫
I

(
f(u)

)2
dx

holds true for every f ∈ C
(
[−1, 0],R

)
.

Proof. We readily see that

(
ψz(x,−1)

)2 − 2ψz(x,−1)f(u) +
(
f(u)

)2
=
(
ψz(x,−1)− f(u)

)2 ≥ 0,

whereby (
ψz(x,−1)

)2 − 2ψz(x,−1)f(u) ≥ −
(
f(u)

)2
.

An integration over I with respect to x completes the proof.

5.2.16 Lemma ([16, Lemma 3.11])
Given an f ∈ C1

(
[−1, 0],R

)
, we obtain the inequality

−ε2

∫
Ω
ψxf

′(u)ux d(x, z) ≥ −ε
2

4

∫
Ω

(ψx)2 d(x, z)− ε2

∫
I

(
f ′(u)ux

)2
dx.

Proof. Again we use the elementary observation

0 ≤
(

1

2
ψx − f ′(u)ux

)2

=
1

4
(ψx)2 − ψxf ′(u)ux +

(
f ′(u)ux

)2
to get the inequality

−ψxf ′(u)ux ≥ −
1

4
(ψx)2 −

(
f ′(u)ux

)2
.

Integration over Ω yields

−ε2

∫
Ω
ψxf

′(u)ux d(x, z) ≥ −ε
2

4

∫
Ω

(ψx)2 d(x, z)− ε2

∫
Ω

(
f ′(u)ux

)2
d(x, z).
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Finally, using u(x) ≤ 0 for all x ∈ I, guaranteed by Theorem 5.1.2, Fubini’s theorem leads to

−ε2

∫
Ω
ψxf

′(u)ux d(x, z) ≥ −ε
2

4

∫
Ω

(ψx)2 d(x, z)− ε2

∫
I
(u+ 1)

(
f ′(u)ux

)2
dx

≥ −ε
2

4

∫
Ω

(ψx)2 d(x, z)− ε2

∫
I

(
f ′(u)ux

)2
dx

and the proof is complete.

Given t ∈ [0,T ), we introduce the Dirichlet form associated to (5.55), i.e.

Φλ(t) :=
λ

2

∫
I
ε2
(
ψx(x,u)

)2
+
(
ψz(x,u)

)2
dx (5.68)

and fuse the above lemmas to obtain a lower bound for the above introduced Dirichlet form of
(5.55)–(5.56) in terms of a weighted L2(I)-norm of the permittivity profile f . Similar as above we
use the notation

m := min
r∈[−1,0]

f(r) and M := max
r∈[−1,0]

f(r).

5.2.17 Lemma
Given f ∈ C

(
[−1, 0],R

)
, there holds

∫
Ω

3

4
ε2(ψx)2 + (ψz)

2d(x, z) ≥
∫
I

(
f(u)

)2
1 + u

dx.

Proof. Again as in (5.15) in Lemma 5.1.1 we deduce from the boundary condition (5.56) for ψ and
a trivial application of Cauchy–Schwarz’s inequality that(

f(u)
)2

1 + u
≤
∫ u

−1
(ψz)

2 dz.

Integrating this inequality with respect to x ∈ I and using Fubini’s theorem yields

∫
I

(
f(u)

)2
1 + u

dx ≤
∫

Ω
(ψz)

2 d(x, z) ≤
∫

Ω

3

4
ε2(ψx)2 + (ψz)

2 d(x, z),

which is the statement of the lemma.

5.2.18 Lemma ([16, Lemma 3.12])
Let f ∈ C1

(
[−1, 0],R

)
be positive with m = f(0). Then the functional Φλ(t), introduced in (5.68),
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complies with the inequality

Φλ(t) ≥ λ
(

2m2

1− E(t)
−M2 − ε2

∫
I
ψz(x,u)f ′(u)(ux)2 dx

)
.

Proof. First we use the identity (5.60) to find that

Φλ(t) =
λ

2

∫
I
ε2
(
ψx(x,u)

)2
+
(
ψz(x,u)

)2
dx

=
λ

2

∫
I

(
1 + ε2(ux)2

)(
ψz(x,u)

)2
dx+

λε2

2

∫
I

(
f ′(u)ux

)2
dx

− λε2

∫
I
ψz(x,u)f ′(u)(ux)2 dx.

Invoking Lemma 5.2.10 and Corollary 5.2.14 we obtain

Φλ(t) = λ

∫
I

(
1 + ε2(ux)2

)
ψz(x,u)f(u) dx+

λ

2

∫
I

(
ψz(x,−1)

)2 − 2ψz(x,−1)f(u) dx

− λε2

∫
I
f(u)f ′(u)(ux)2 dx+ λε2

∫
I

(
f ′(u)ux

)2
dx− λε2

∫
I
ψz(x,u)f ′(u)(ux)2 dx

− λε2

∫
Ω
ψxf

′(u)ux d(x, z)

≥ λ
∫

Ω
ε2(ψx)2 + (ψz)

2 d(x, z)− λε2

∫
Ω
ψxf

′(u)ux d(x, z) + λε2

∫
I

(
f ′(u)ux

)2
dx

+
λ

2

∫
I

(
ψz(x,−1)

)2 − 2ψz(x,−1)f(u) dx− λε2

∫
I
ψz(x,u)f ′(u)(ux)2 dx.

Hence, thanks to Lemma 5.2.15 and Lemma 5.2.16 we obtain the estimate

Φλ(t) ≥ λ
∫

Ω

3

4
ε2(ψx)2 + (ψz)

2 d(x, z)− λε2

∫
I
ψz(x,u)f ′(u)(ux)2 dx− λ

2

∫
I
(f(u))2 dx.

Recalling Corollary 5.2.17 and applying Jensen’s inequality to the convex function [r 7→ 1/(1 + r)]

and the probability measure dx/2 we finally end up with

Φλ(t) ≥ λ
∫
I

(
f(u)

)2
1 + u

dx− λε2

∫
I
ψz(x,u)f ′(u)(ux)2 dx− λ

2

∫
I

(
f(u)

)2
dx

≥ 2λm2

1− E(t)
− λε2

∫
I
ψz(x,u)f ′(u)(ux)2 dx− λM2,

which completes the proof.

We are finally prepared to prove Theorem 5.2.8. From now on we explicitly mention the time vari-
able t when it is requested from the context.
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Proof of Theorem 5.2.8:
Given t ∈ [0,T ), we introduce the functional

E(t) := −1

2

∫
I
u(t,x) dx.

Since we know that −1 < u(t,x) ≤ 0 for all (t,x) ∈ [0,T )× I, cf. Theorem 5.1.2, it follows that

0 ≤ E(t) < 1, t ∈ [0,T ).

Using the evolution equation (5.57) and the definition of Φλ(t) gives

dE

dt
(t) = −1

2

[
ux√

1 + ε2(ux)2

]x=1

x=−1

+
λ

2

∫
I
ε2
(
ψx(x,u)

)2
+
(
ψz(x,u)

)2
dx

− λ
∫
I
ψz(x,u)f ′(u) dx

≥ −1

ε
+ Φλ(t)− λ

∫
I
ψz(x,u)f ′(u) dx.

(5.69)

Fusing this inequality with the estimate

Φλ(t) ≥ λ
(

2m2

1− E(t)
−M2 − ε2

∫
I
ψz(x,u)f ′(u)(ux)2 dx

)
from Lemma 5.2.18 leads to

dE

dt
(t) ≥ −1

ε
+ λ

(
2m2

1− E(t)
−M2

)
− λ

∫
I

(
1 + ε2(ux)2

)
ψz(x,u)f ′(u) dx.

By a combination of the assumption (A2) with the fact that ψz(x, z) ≥ 0, cf. (5.22), we end up with
the differential inequality

dE

dt
(t) ≥ −1

ε
+ λ

(
2m2

1− E(t)
−M2

)
:= Fλ(E(t)).

Observe that Fλ is (strictly) increasing on [0, 1) which implies that

dE

dt
(t) ≥ Fλ(E(t)) ≥ Fλ(0). (5.70)

Furthermore, evaluating Fλ in E ≡ 0 yields

Fλ(0) = −1

ε
+ λ

(
2m2 −M2

)
.

By assumption we know that δ := 2m2 −M2 is positive. Thus, if λ > λ∗ := 1/(δε) it follows that
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Fλ(0) > 0. Integrating the inequality (5.70) with respect to t then implies that 1 ≥ E(0) + Fλ(0)T

and eventually

T <
1

Fλ(0)
<∞.

This completes the proof.
�

5.2.19 Remark
It is worthwhile to compare the assumptions of Theorem 5.2.9 with those of Theorem 5.2.8, where
the case f = f(x) is treated.

(1) Theorem 5.2.9 holds true for any ε > 0 (provided that λ is accordingly large enough). This is
in contrast to Theorem 5.2.8, where we have to assume that ε > 0 is small (and λ accordingly
large enough).

(2) As one may see in Section 5.1, the condition (A4) on ψzz to be non-negative on the membrane
and on the ground plate is crucial in order to prove non-positivity of the membrane’s displace-
ment u(t,x). But, moreover, in the present study, where the permittivity profile f depends
on u, this assumption on ψzz is also necessary in order to verify the occurrence of finite-time
singularities, even if we already know that u(t,x) ≤ 0.





6 | Numerical Investigations

This chapter is devoted to the numerical investigation of the system coupling the semilinear evolution
problem, arising from a linear elasticity approach, with the associated elliptic moving boundary
problem.

As performed in Chapter 3 for the analytical investigation, we first transform the elliptic moving
boundary problem for the electric potential ψ to the fixed rectangle Ω := I × (−1, 0). In the
numerical computations we may thus benefit from a relatively simple geometry. The price to pay for
this advantage is that the transformed elliptic problem has non-constant coefficients depending on
the displacement u and its spatial derivatives up to order two. However, in the subsequent sections
we consider the system coupling the evolution problem

ut − uxx = −λ

(
ε2
(
−
(
fx(x,u)

)2
+
(
fu(x,u)ux

)2)
− 2

1 + ε2(ux)2

1 + u
fu(x,u)ϕη(t,x, 1) +

1 + ε2(ux)2

(1 + u)2

(
ϕη(t,x, 1)

)2)
, t > 0, x ∈ I, (6.1)

u(t,±1) = 0, t > 0, (6.2)

u(0,x) = u∗(x), x ∈ I, (6.3)

for the membrane’s displacement with the elliptic problem

(
Lu(t)ϕ

)
= 0, t > 0, (x, η) ∈ Ω, (6.4)

ϕ(t,x, η) = ηf(x,u), t > 0, (x, η) ∈ ∂Ω, (6.5)

determining the transformed electric potential in the region Ω = I × (−1, 0). Recall that for u(t) ∈
Sq(κ), the differential operator Lu(t) is given by

Lu(t)ϕ = ε2ϕxx − 2ε2η
ux

1 + u
ϕxη +

1 + ε2η2(ux)2

(1 + u)2
ϕηη + ε2η

(
2

(
ux

1 + u

)2

− uxx
1 + u

)
ϕη.

109
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Separating the treatments of the semilinear parabolic problem for u and the the elliptic problem
for ϕ, we address in Section 6.1 the solution of the elliptic problem by means of the Finite-element
method. Section 6.2 is then concerned with the problem of numerically determining the membrane’s
displacement u using the Crank–Nicolson method. There is a wide range of literature on the men-
tioned numerical methods. Howsoever the reader is referred to the textbooks [8, 5, 7] as pertinent
references for more details on the following elaboration.

6.1 | Approximate Solution of the Elliptic Moving Bound-

ary Problem

Let u = u(t) ∈ Sq(κ) be a given membrane’s displacement at a fixed time t ≥ 0 and f ∈ C3
(
[−1, 1]×

R
)
.1 We consider the elliptic boundary value problem

(Luϕ) (t,x, η) = 0, t > 0, (x, η) ∈ Ω, (6.6)

ϕ(t,x, η) = ηf(x,u), t > 0, (x, η) ∈ ∂Ω, (6.7)

of second order in the region Ω = I × (−1, 0). From Theorem 3.1.3 we know that this problem
possesses a unique solution ϕ = ϕ(t) ∈ W 2

2 (Ω). In this section the basic concepts for a numerical
treatment of (6.6)–(6.7) are presented.

Homogenisation of the Boundary Conditions. As it is common practice
we start by reducing the above problem to one with homogeneous boundary conditions. To this end,
recall from the proof of Theorem 3.1.3 that the function φ = φ(u) ∈ H1

0 (Ω), defined by

φ(x, η) := ϕ(x, η)− ηf(x,u), (x, η) ∈ Ω,

is the unique solution to the homogeneous boundary value problem

−Luφ = Fu, (x, η) ∈ Ω, (6.8)

φ = 0, (x, η) ∈ ∂Ω, (6.9)

where Fu(x, η) := Lu
(
ηf(x,u)

)
for (x, η) ∈ Ω.

1Again the time t appears as a parameter, whence it is omitted in the notation.
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A Variational Formulation. In the following a suitable variational formulation
of the problem (6.8)–(6.9) is derived which then serves as a basis for the numerical computation of
ϕ = φ+ ηf(x,u) by means of the finite-element method. For this purpose, we consider the operator
Lu in divergence form

−Luφ = −∂x
(
a11(u)φx + a12(u)φη

)
− ∂η

(
a21(u)φx + a22(u)φη

)
− b1(u)φx − b2(u)φη,

where

a11(u) := ε2, a12(u) := −ε2η
ux

1 + u
,

a21(u) := a12(u), a22(u) :=
1 + ε2η2(ux)2

(1 + u)2
,

b1(u) := ε2 ux
1 + u

, b2(u) := −ε2η

(
ux

1 + u

)2

,

multiply the equation (6.8) by a testfunction µ ∈ H1
0 (Ω) and integrate over Ω. This leads to∫

Ω
Fu µd(x, η) = −

∫
Ω

(
Luφ

)
µd(x, η)

= −
∫

Ω
∂x

(
ε2φx − ε2η

ux
1 + u

φη

)
µd(x, η)−

∫
Ω
∂η

(
−ε2η

ux
1 + u

φx +
1 + ε2η2(ux)2

(1 + u)2
φη

)
µd(x, η)

− ε2

∫
Ω

ux
1 + u

φxµd(x, η) + ε2

∫
Ω
η

(
ux

1 + u

)2

φηµd(x, η).

Thanks to the Green–Riemann integration theorem and the fact that µ vanishes at the boundary
∂Ω we then find that∫

Ω
Fu µd(x, η)

= ε2

∫
Ω
φxµx d(x, η)− ε2

∫
Ω
η
ux

1 + u
φηµx d(x, η)− ε2

∫
Ω
η
ux

1 + u
φxµη d(x, η)

+

∫
Ω

1 + ε2η2(ux)2

(1 + u)2
φηµη d(x, η)− ε2

∫
Ω

ux
1 + u

φxµd(x, η) + ε2

∫
Ω
η

(
ux

1 + u

)2

φηµd(x, η).

(6.10)

Given φ,µ ∈ H1
0 (Ω) we now define the bilinear form

a(φ,µ) :=

∫
Ω

(∇φ)TA∇µ+ bT∇φµd(x, η), (6.11)

with the matrix A given by

A(x, η,u) :=

(
ε2 −ε2η ux

1+u

−ε2η ux
1+u

1+ε2η2(ux)2

(1+u)2

)
(6.12)
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and the vector b defined by

b(x, η,u) :=

 −ε2 ux
1+u

ε2η
(
ux

1+u

)2

 . (6.13)

6.1.1 Lemma (Continuity of a)
The bilinear form a : H1

0 (Ω)×H1
0 (Ω)→ R defined in (6.11) is continuous, i.e. there exists a constant

C > 0 such that
|a(φ,µ)| ≤ C‖φ‖H1(Ω)‖µ‖H1(Ω)

for all φ,µ ∈ H1
0 (Ω).

Proof. Since u = u(t) ∈ Sq(κ) we know that ‖u‖C1([−1,1]) ≤ c and ‖1/(1 + u)‖L∞([−1,1]) ≤ c for a
positive constant c that depends on κ. Using in addition the fact that 0 ≤ η ≤ 1 the Cauchy–Schwarz
inequality readily yields the existence of a constant C = C(ε,κ) such that

|a(φ,µ)| ≤ C‖φ‖H1(Ω)‖µ‖H1(Ω)

for all φ,µ ∈ H1
0 (Ω), which is the assertion.

Though the bilinear form a : H1
0 (Ω) × H1

0 (Ω) → R is continuous, it is in general not coercive.
Nonetheless, introducing the principal part aπ : H1

0 (Ω)×H1
0 (Ω)→ R of a, defined by

aπ(φ,µ) :=

∫
Ω

(∇φ)TA∇µd(x, η), φ, µ ∈ H1
0 (Ω)

with A as in (6.12), we may state the following results in this direction.

6.1.2 Lemma
The principal part aπ : H1

0 (Ω)×H1
0 (Ω)→ R of the bilinear form a is elliptic (uniformly in u ∈ Sq(κ)).

That is, there exists a constant C = C(ε,κ) > 0 such that

aπ(φ,φ) ≥ C‖φ‖2H1(Ω)

for all φ ∈ H1
0 (Ω).

Proof. As in [32, Lemma 5] we show that the matrix

A(x, η,u) :=

(
ε2 −ε2η ux

1+u

−ε2η ux
1+u

1+ε2η2(ux)2

(1+u)2

)
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defined in (6.12) is positive definite uniformly in u ∈ Sq(κ). To this end, denote by

t := ε2 +
1 + ε2η2(ux)2

(1 + u)2
and d :=

ε2

(1 + u)2

the trace and the determinant of A, respectively. As A is obviously symmetric both eigenvalues

µ± =
1

2

(
t±
√
t2 − 4d

)
are real-valued, which in particular implies that t2 ≥ 4d. In order to prove that A is positive definite
(uniformly in u ∈ Sq(κ)) we are thus left with showing uniform positivity of µ−. For this purpose
observe that the fact that u is contained in Sq(κ) implies that −1 + κ ≤ u for all x ∈ I and that
there exists a constant c = c(κ) > 0 such that ‖u‖C1([−1,1]) ≤ c(κ). Due to this we may deduce the
inequalities

1

c(κ)
+ ε2 ≤ t ≤ ε2 +

1 + ε2c(κ)2

κ2
and d ≥ ε2

c(κ)2
.

Together with the relation

µ− ≥
1

2

(
t−
√
t2 − 4d

)
≥ d

t
⇐⇒ t− 2

d

t
≥
√
t2 − 4d⇐⇒ 4

d2

t2
≥ 0

this yields

µ+ ≥ µ− ≥
d

t
≥ ε2

c(κ)2t
≥ ε2κ2

c(κ)2
(
ε2κ2 + 1 + ε2c(κ)2

) > 0.

Having the positive definiteness of A at hand, we may now readily infer that the principal part aπ
of a is coercive. More precisely, we have

aπ(φ,φ) =

∫
Ω

(∇φ)TA∇φd(x, η) ≥ µ−
∫

Ω
|∇φ|2d(x, η) ≥ c‖φ‖H1(Ω), φ ∈ H1

0 (Ω), (6.14)

as a consequence of the Poincaré–Friedrichs inequality.

Given the coercivity of the principal part aπ of a, it is worthwhile to discuss a condition under which
the entire bilinear form a is coercive. This is realised by the following corollary and the subsequent
remark.

6.1.3 Corollary
Given u = u(t) ∈ Sq(κ), the bilinear form a : H1

0 (Ω)×H1
0 (Ω)→ R is coercive if the inequality

inf
(x,η)∈Ω

(
µ−
cp
− div b(x, η)

2

)
=: α0 > 0 (6.15)

is satisfied, where cp denotes Poincaré constant of Ω.
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Proof. We know from (6.14) in the proof of Lemma 6.1.2 that

a(φ,φ) =

∫
Ω

(∇φ)TA∇φd(x, η) +

∫
Ω
bT∇φφd(x, η) ≥ µ−

∫
Ω
|∇φ|2d(x, η) +

∫
Ω
bT∇φφd(x, η).

Thanks to the identity∫
Ω
bT∇φφd(x, η) =

1

2

∫
Ω
bT∇(φ2)d(x, η) = −1

2

∫
Ω
div b φ2d(x, η),

together with the assumption and the definition of cp this may be further estimated as

a(φ,φ) ≥ µ−
∫

Ω
|∇φ|2d(x, η)− 1

2

∫
Ω
div b φ2d(x, η)

=

((
µ− −

α0

cp

)
+
α0

cp

)∫
Ω
|∇φ|2d(x, η)− 1

2

∫
Ω
div b φ2d(x, η)

≥ α0

cp

∫
Ω
|∇φ|2d(x, η) +

∫
Ω

((
µ−
cp
− α0

)
− div b

2

)
φ2d(x, η)

≥ α0

cp

∫
Ω
|∇φ|2d(x, η).

The equivalence of the norms ||∇φ||L2(Ω) and ||φ||H1(Ω) finally completes the proof.

6.1.4 Remark
Condition (6.15) to ensure coercivity of a is obviously true if div b is non-positive which is equivalent
to the relation

2
(ux)2

1 + u
≤ uxx

pointwise on I. However, this inequality is only meaningful if uxx is non-negative. In the stationary
case with f ≡ 1 the evolution equation becomes

−uxx = −λ
(
ε2
(
ψx(x,u)

)2
+
(
ψz(x,u)

)2)
, x ∈ I,

whence uxx is obviously non-negative. In the more general case of a varying permittivity profile
Section 5.1 provides conditions which ensure the non-positivity of the according right-hand side.

However, even if the bilinear form a is in general not coercive it is proved in Section 3.1 that the
elliptic moving boundary problems (6.6)–(6.7) and (6.8)–(6.9) possess locally in time existing unique
solutions.

Having the definition of the bilinear form a at hand and using the notation (·, ·)L2(Ω) for the L2(Ω)-
inner product, a suitable variational formulation2 of (6.8)–(6.9) reads as follows:

2Note that the above proceeding does not uniquely lead to the bilinear form a defined in (6.11). In (6.10) the
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Find φ ∈ H1
0 (Ω) such that a(φ,µ) =

(
Fu,µ

)
L2(Ω)

for all µ ∈ H1
0 (Ω).

Since a(ηf ,µ) =
(
Fu,µ

)
we may equivalently use the variational formulation

Find ϕ ∈ H1(Ω) such that a(ϕ,µ) = 0 for all µ ∈ H1
0 (Ω) and ϕ− ηf ∈ H1

0 (Ω).

Discretisation. In order to apply the finite-element method we start by partitioning
the given domain Ω into finitely many subdomains, also called elements. More precisely, we consider
the uniform and regular partition

RN := {R1,R2, . . . ,RN}

of Ω = I × (−1, 0) into N = NxNη rectangles of horizontal length hx = 2/Nx and vertical length
hη = 1/Nη.

x = −1

η = −1

x = 1

η = 0

Figure 6.1: Partition of Ω with Nx = 8 and Nη = 5.

Referring to
Pm :=

{
µ(x, η) =

∑
k,l≥0,
k+l≤m

aklx
kηl
}

as the set of polynomials of degree ≤ m in two variables, we chose the D-dimensional subspace

VN :=
{
µ ∈ C(Ω);µ|R ∈ P1(x, η) ∀R ∈ RN and µ|∂Ω = 0

}
of H1

0 (Ω) as ansatz space, with D <∞. We are now in a position to define the discrete variational
formulation of (6.8)–(6.9). It reads

Find φN ∈ VN such that a
(
φN ,µN

)
=
(
Fu,µN

)
L2(Ω)

for all µN ∈ VN .

integration by parts of the mixed term, which includes φxη, is performed with respect to the variable η. One might
as well perform the integration with respect to x.
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Given a basis {γ1, . . . , γD} of the ansatz space VN , the Galerkin approximation φN may be written
as

φN (x, η) =
D∑
i=1

φN (xi, ηi)γi(x, η)

and is characterised by the identities

a
(
φN , γj

)
=
(
Fu, γj

)
L2(Ω)

, j = 1, . . . ,D,

or equivalently by the equations

D∑
i=1

φN (xi, ηi)a
(
γi, γj

)
=
(
Fu, γj

)
L2(Ω)

, j = 1, . . . ,D.

Thus, introducing the matrix
AN := [a(γi, γj)]

D
i,j=1

as well as the vectors

ΦN := [φN (xj , ηj)]
D
j=1 and FN :=

[(
Fu, γj

)
L2(Ω)

]D
j=1

we may finally state the linear system of equations

ANΦN = FN

which is to be solved in order to determine the Galerkin approximation.

6.2 | Approximate Solution of the Parabolic Evolution Prob-

lem

For the time being we assume ϕ ∈ H2(Ω) to be given and devote this section to the computation of
an approximative solution to the semilinear parabolic initial boundary value problem

ut − uxx = −λ

(
ε2
(
−
(
fx(x,u)

)2
+
(
fu(x,u)ux

)2)
− 2

1 + ε2(ux)2

1 + u
fu(x,u)ϕη(t,x, 1) +

1 + ε2(ux)2

(1 + u)2

(
ϕη(t,x, 1)

)2)
, t > 0, x ∈ I, (6.16)

u(t,±1) = 0, t > 0, (6.17)

u(0,x) = u∗(x), x ∈ I, (6.18)
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for the membrane’s displacement u. The general approach is to firstly discretise with respect to time
which yields to an elliptic boundary problem for each discrete instant of time. This elliptic problem
is then solved by means of the Galerkin method as in Section 6.1.

For the sake of better readability we denote the right-hand side of the evolution equation by −λgε(u)

so that (6.16) may be rewritten as

ut − uxx = −λgε(u), t > 0, x ∈ I.

The Variational Formulation. In order to obtain the variational formulation of
the above problem we fix t ∈ [0,T ) and multiply the evolution equation (6.16) by a testfunction
v ∈ H1

0 (I). Integration over I with respect to x yields∫
I
(ut − uxx)v dx = −λ

∫
I
gε(u)v dx,

and via integration by parts ∫
I
utv + uxvx dx = −λ

∫
I
gε(u)v dx.

Introducing the bilinear form

a(u, v) :=

∫
I
ux(x)vx(x) dx

and the variational formulation corresponding to (6.16)–(6.18) reads

Find u : (0,T )→ H1
0 (I) such that for all t ∈ (0,T )

(ut(t), v)L2(I) + a(u(t), v) = −λ(gε(u(t)), v)L2(I) for all v ∈ H1
0 (I),

u(0) = u∗.

One-Step Time Discretisation. In order to approximately solve the above stated
variational formulation of (6.16)–(6.18) we subdivide the interval [0,T ) of existence3 into Nt equidis-
tant subintervals of length τ := T/Nt, i.e. we have

0 =: t0 < t1 < . . . < tNt−1 < tNt := T .

3If T =∞ we consider τ to be given and introduce the time levels tn := nτ for n = 0, 1, 2, . . .. That is, we formally
set Nt =∞.
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The solution is then computed by a so-called one-step procedure, i.e. the solution u(ti) ∈ H1
0 (I) at

a time level ti is computed by exploiting the knowledge about u(ti−1) ∈ H1
0 (I) at the previous time

level ti−1. More precisely, the term ut is approximated by the difference quotient

ut(t) ≈
u(ti)− u(ti−1)

τ
.

Furthermore, by introducing the parameter θ ∈ [0, 1] and using the approximations

a
(
u(ti−1 + θτ), v

)
≈ θa

(
u(ti), v

)
+ (1− θ)a

(
u(ti−1), v

)
and

(
−λgε(u(ti−1 + θτ)), v

)
L2(I)

≈ θ
(
−λgε(u(ti)), v

)
L2(I)

+ (1− θ)
(
−λgε(u(ti−1)), v

)
L2(I)

at a time ti−1+θ
(
ti−ti−1

)
= ti−1+θτ between two time levels ti−1 and ti we obtain the approximation

(
u(ti), v

)
L2(I)

−
(
u(ti−1), v

)
L2(I)

+ τ
(
θa
(
u(ti), v

)
+ (1− θ)a

(
u(ti−1), v

))
= τ

(
θ
(
−λgε(u(ti)), v

)
L2(I)

+ (1− θ)
(
−λgε(u(ti−1)), v

)
L2(I)

)
for all v ∈ H1

0 (I). Eventually, we conclude that the approximate solution to (6.16)–(6.18) is com-
puted by successively solving for each time level ti, i = 0, 1, . . . ,Nt, a sequence of variational problems
which read as follows:

Find uτ (ti) ∈ H1
0 (I) such that

(
uτ (ti), v

)
L2(I)

+ τθ
(
a
(
uτ (ti), v

)
−
(
−λgε(uτ (ti)), v

)
L2(I)

)
=
(
uτ (ti−1), v

)
L2(I)

− τ(1− θ)
(
a
(
uτ (ti−1), v

)
−
(
−λgε(uτ (ti−1)), v

)
L2(I)

)
for all v ∈ H1

0 (I).

It is worthwhile to briefly contemplate different values of the parameter θ ∈ [0, 1]. For θ = 0 the
above approach yields the explicit Euler scheme

(
uτ (ti), v

)
L2(I)

+ τa
(
uτ (ti−1), v

)
=
(
uτ (ti−1), v

)
L2(I)

+ τ
(
−λgε(uτ (ti−1)), v

)
L2(I)

,

whereas the choice θ = 1 leads to the implicit Euler scheme

(
uτ (ti), v

)
L2(I)

+ τa
(
uτ (ti), v

)
=
(
uτ (ti−1), v

)
L2(I)

+ τ
(
−λgε(uτ (ti)), v

)
L2(I)

.

The case θ = 1/2 is here of special interest as it used to obtain the numerical results presented in
Section 6.3. It leads to the Crank–Nicolson method in which the solution is determined according
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to the scheme

(
uτ (ti), v

)
L2(I)

+
τ

2
a
(
uτ (ti), v

)
=
(
uτ (ti−1), v

)
L2(I)

− τ

2
a
(
uτ (ti−1), v

)
+
τ

2

((
−λgε(uτ (ti)), v

)
L2(I)

+
(
−λgε(uτ (ti−1)), v

)
L2(I)

)
.

In order to integrate this one-step time discretisation procedure into an applicable numerical scheme
a space discretisation remains to be implemented. The corresponding relevant aspects are introduced
in the subsequent paragraph.

Space Discretisation. For the spatial discretisation again the finite-element method
is used. To this end we subdivide the interval I = (−1, 1) into Nx subintervals of equidistant length
h := hx, i.e. we have

I := {I1, I2, . . . , INx},

where each subinterval Ik = [xk−1,xk] , k = 1, . . . ,Nx, is of length h = 2/Nx. Note that for the
sake of simplification we use the same values Nx and h = hx as for the discretisation of the elliptic
problem in the previous section.

As finite-element space we chose the (Nx − 1)-dimensional subspace Vh ⊂ H1
0 (I) as

Vh :=
{
v ∈ C

(
[−1, 1]

)
; v|I ∈ P1(x) ∀I ∈ I and v(±1) = 0

}
.

We are now in a position to formulate the fully discrete variational formulation of (6.16)–(6.18) at
each time level ti, i = 0, 1, . . . ,Nt. It reads

Find uτ ,h(ti) ∈ Vh such that

(
uτ ,h(ti), vh

)
L2(I)

+
τ

2

(
a
(
uτ ,h(ti), vh

)
−
(
−λgε(uτ ,h(ti)), vh

)
L2(I)

)
=
(
uτ ,h(ti−1), vh

)
L2(I)

−
(τ

2
a
(
uτ ,h(ti−1), vh

)
−
(
−λgε(uτ ,h(ti−1)), vh

)
L2(I)

)
.

for all vh ∈ Vh.

In order to represent the Galerkin approximation and the ansatz functions we introduce the nodal
basis given by γk ∈ Vh, k = 1, . . . , d, with d := Nx − 1, such that

γk(x) =


(x− xk−1)/(xk − xk−1), xk−1 ≤ x ≤ xk,

(xk+1 − x)/(xk+1 − xk), xk ≤ x ≤ xk+1,

0, elsewise.
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The Galerkin approximation uτ ,h may then be written as

uτ ,h(x) =

d∑
k=1

uτ ,h(xk)γk(x)

and is at each time level ti characterised by the identities

(
uτ ,h(ti), γl

)
L2(I)

+
τ

2
a
(
uτ ,h(ti), γl

)
=
(
uτ ,h(ti−1), γl

)
L2(I)

− τ

2
a
(
uτ ,h(ti−1), γl

)
+
τ

2

((
−λgε(uτ ,h(ti)), γl

)
L2(I)

+
(
−λgε(uτ ,h(ti−1)), γl

)
L2(I)

)
,

for l = 1, . . . , d, or equivalently by the equations

d∑
k=1

uτ ,h(ti,xk)
(
γk, γl

)
L2(I)

+
τ

2

d∑
k=1

uτ ,h(ti,xk)a
(
γk, γl

)
=

d∑
k=1

uτ ,h(ti−1,xk)
(
γk, γl

)
L2(I)

− τ

2

d∑
k=1

uτ ,h(ti−1,xk)a
(
γk, γl

)
+
τ

2

(−λgε( d∑
k=1

uτ ,h(ti,xk)γk

)
, γl

)
L2(I)

+

(
−λgε

(
d∑

k=1

uτ ,h(ti−1,xk)γk

)
, γl

)
L2(I)

 ,

for l = 1, . . . , d.

Similar as in the previous section we now define the stiffness matrix K and the mass matrix M as

K := [a(γk, γl)]
d
k,l=1 and M :=

[
(γk, γl)L2(I)

]d
k,l=1

,

respectively, as well as the vectors

uti,h := [uτ ,h(ti,xk)]
d
k=1 and G

(
uti,h

)
:=

(−λgε( d∑
k=1

uτ ,h(ti,xk)γk

)
, γl

)
L2(I)

d
l=1

. (6.19)

We are then in a position to state the nonlinear system of equations(
M +

τ

2
K
)

uTti,h −
τ

2
G
(
uti,h

)
=
(
M− τ

2
K
)

uTti−1,h +
τ

2
G
(
uti−1,h

)
, (6.20)

which is to be solved at each time level ti in order to determine the Galerkin approximation of
(6.16)–(6.18).

Finally, a justification for using the above described Crank-Nicolson method is left open. In this
regard the following remark is formulated, c.f. for instance [5, 46].
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6.2.1 Remark
Using piecewise linear elements the fully discrete one-step θ-method complies for θ ∈ [1/2, 1] with
the estimate

‖u(ti)− uτ ,h(ti)‖H1(I) ≤ c(τ + h)

for the global truncation error if u ∈ C2
(
[0,T ],H1

0 (I)
)
∩C

(
[0,T ],H2(I)

)
. Under stronger regularity

assumptions on u the according estimate may even be improved in the case θ = 1/2, i.e. for the
Crank-Nicolson method. More precisely, it holds that

‖u(ti)− uτ ,h(ti)‖H1(I) ≤ c(τ2 + h)

if u ∈ C3
(
[0,T ],H1

0 (I)
)
∩ C

(
[0,T ],H2(I)

)
. Given θ ∈ [0, 1/2] one obtains

‖u(ti)− uτ ,h(ti)‖H1(I) ≤ ch

under the additional assumption τ ≤ c(θ)h2 if u ∈ C2
(
[0,T ],H1

0 (I)
)
∩ C

(
[0,T ],H2(I)

)
. Note that

the respective regularity assumptions on u are satisfied if the initial datum is sufficiently smooth.

Solving the Nonlinear System of Equations Via Newton’s Method.
In the context of this work the new iterate uτ ,h(ti) at each time level ti, i = 1, . . . ,Nt, is computed
by solving the above derived nonlinear system of equations (6.20) via Newton’s method. For this
purpose we rewrite (6.20) in the form

F
(
uti,h

)
:=
(
M +

τ

2
K
)

uTti,h −
τ

2
G
(
uti,h

)
−
[(

M− τ

2
K
)

uTti−1,h +
τ

2
G
(
uti−1,h

)]
= 0. (6.21)

Note that the term in the squared brackets is a known quantity from the last preceding time level
ti−1. Due to the structure of the remaining two terms in (6.21) we obtain the Jacobian matrix

F′
(
uti,h

)
=
(
M +

τ

2
K
)
− τ

2
G′
(
uti,h

)
. (6.22)

of F
(
uti,h

)
with respect to uTti,h.

Newton’s method applied to (6.21) at the time level ti thus results in the following scheme, whose
description is inspired by the notation used in MATLAB.

u0 = uti−1,h;
F0 = F(u0);
Fk = F0;
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k = 0;
while ‖Fk‖/‖F0‖ > κ

Compute Jacobian matrix F′
(
uk
)

=
(
M + τ

2K
)
− τ

2G′
(
uk
)
;

sk = F′
(
uk
)
\Fk;

uk+1 = uk − sk;

Compute potential Φ = Φ
(
uk+1

)
;

Evaluate right-hand side G
(
uk+1

)
at current Φ

(
uk+1

)
;

Evaluate nonlinear function Fk+1 = F
(
uk+1

)
at current iterate uk+1;

Replace k = k + 1;

end
uti,h = uk;

It is worthwhile to finally examine the computation of the Jacobian matrix in (6.22) carefully.
More precisely, since the first summand

(
M + τ

2K
)
is known, we may focus our attention on the

computation of G′
(
uti,h

)
. To this end, we slightly modify the notation and write gε

(
x,u,ux,ϕη(x, 1)

)
instead of gε(u) in order express the actual dependence of gε on x,ux and ϕη, where by reason of the
coupling ϕη itself depends on u. Moreover, we abstain from mentioning the time level ti explicitly
in the notation. According to (6.19) the l-th component Gl

(
uti,h

)
of the vector G

(
uti,h

)
is hence

given as

Gl

(
uti,h

)
= −λ

∫
I
gε
(
x,uτ ,h,u′τ ,h,ϕη(x, 1)

)
γl(x) dx.

Using the notation uk := uτ ,h(ti,xk) we may then compute the entry
[
G′
(
uti,h

)]
lk

= ∂Gl

(
uti,h

)
/∂uk

of the tangent matrix G′
(
uti,h

)
as follows.4

∂Gl

(
uti,h

)
∂uk

= −λ
∫
I

(
∂2gεγkγl + ∂3gεγ

′
kγl + ∂4gε

∂ϕη(x, 1)

∂uk
γl

)
dx.

It remains to consider the derivative ∂ϕη(x,1)
∂uk

. For this purpose define β(x, η) := ηf
(
x,u(t,x)

)
, (x, η) ∈

Ω, and recall that ϕ(x, η) = φ(x, η) + β(x, η) depends on u due to the coupling, whence we may
write

∂ϕ

∂uk
=

∂φ

∂uk
+

∂β

∂uk
.

Following the assumption ∂u∂ηϕ(ti,x, 1) = ∂η∂uϕ(ti,x, 1) the idea is to firstly compute the derivative
∂φ/∂uk. To this end recall that the approximate solution to the elliptic problem (6.6)–(6.7) is

4Note that ∂2gε, ∂3gε and ∂4gε denote the partial derivatives of gε with respect to its second, third and fourth
component, respectively.
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determined by the solution ΦN of the linear system

ANΦN = FN (6.23)

of equations. Thus, we have ΦN = A−1
N FN and therefore

∂ΦN

∂uk
=
∂A−1

N

∂uk
FN + A−1

N

∂FN

∂uk
= −A−1

N

∂AN

∂uk
A−1
N FN + A−1

N

∂FN

∂uk
.

Since the same discretisation with respect to x is used for both ϕ and u, at each η-discretisation
level ηn, n ∈ {1, . . . ,Nη + 1} we have the representation

φ(x, ηn) =
D∑
j=1

φ(xj , ηn)γj(x).

Therefore, the i-th component [FN ]i of the vector FN in (6.23) evaluated at η = ηn is given by

[FN ]i =

∫
I
Fu(ηn,x,u)γi(x) dx,

whence [
∂[FN ]i
∂uk

]
=

∫
I

∂Fu(ηn,x,u)

∂u
γk(x)γi(x) dx. (6.24)

Moreover, with A = A(ηn) and b = b(ηn) both evaluated at ηn,

[AN ]lm =

∫
I
γ′l(x)A

(
x,uti,h,u′ti,h

)
γ′m(x)b

(
u′ti,h

)T
γ′l(x)γm(x) dx

is the lm-th element of the matrix AN at η = ηn, whence we may compute the lmk-th element[
∂[AN ]

∂uk

]
lmk

=

∫
I
γ′l(x)

(
∂2A(x,uti,h,u′ti,h)γk(x) + ∂3A(x,uti,h,u′ti,h)γ′k(x)

)
γ′m(x)

+
∂bT

∂uk
γ′k(x)γ′l(x)γm(x) dx

of the tensor of order three as the derivative of AN with respect to uk. Thus, we have

∂ΦN

∂uk

and it remains to calculate ∂~βN/∂uk, with ~βN denoting the vector of function values of β at the
grid points, if

~ϕN := ΦN + ~βN

is considered to determine the approximate solution ϕN corresponding to ϕ. It turns out that in



Chapter 6. Numerical Investigations 124

fact ∂~βN/∂uk is already known from the computation in (6.24) as a consequence of the definition of
β.

Finally, in the implementation the derivative of ∂ϕ/∂u with respect to η, evaluated at η = 1, is
realised by the difference quotient

∂ϕη(ti,x, 1)

∂u
=

1

−hη

(
∂ϕ

∂u
(ti,xk, 1− hη)−

∂ϕ

∂u
(ti,xk, 1)

)
.

6.3 | Numerical Results

This section is devoted to the presentation of a selection of numerical results obtained by the above
described procedure. According to the analytical investigation in the previous chapters the focus
is not on the performance of the developed numerical methods but on illustrating the qualitative
behaviour of solutions. In particular differences between the full coupled problem and the small-
aspect ratio limit are revealed.

As in Chapter 2 we consider the general coupled system consisting of the semilinear evolution
problem

ut − uxx = gε,λ(u), t > 0, x ∈ I, (6.25)

u(t,±1) = 0, t > 0, (6.26)

u(0,x) = u∗(x), x ∈ I, (6.27)

together with the moving boundary problem

ε2ψxx(x,u) + ψzz(x,u) = 0, t > 0, (x, z) ∈ Ω
(
u(t)

)
, (6.28)

ψ(t,x, z) =
1 + z

1 + u(t,x)
f , t > 0, (x, z) ∈ ∂Ω

(
u(t)

)
, (6.29)

2 where the right-hand side gε,λ(u) of the evolution equation (6.25) as well as the boundary condition
(6.29) are specified corresponding to the choice of the permittivity profile f , being as usual either a
function f = f(x), f = f(u(t,x)) or f = f(x,u(t,x)).

The implementation is performed in MATLAB.5 For all subsequently presented results the discreti-
sation is implemented with Nx = 80 and Nη = 40. Furthermore, the numerical integration is realised
by a Gauß–Legendre quadrature (see e.g. [46, 10]) with two Gauß points in each direction, i.e. we
use two Gauß points per interval Ii and four Gauß points per rectangle Ri.

5Version 8.4.0.150421 (R2014b).
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Constant Permittivity. In this paragraph the coupled problem (6.25)–(6.29) is
considered for a constant permittivity f ≡ 1. In this case the right-hand side of (6.25) is given by

gε,λ(u) = −λ
(
ε2
(
ψx(x,u)

)2
+
(
ψz(x,u)

)2)
, t > 0, x ∈ I.

The solution of the coupled problem is compared to the solution of its reduced counterpart, where
the potential is given by

ψ(t,x, z) =
1 + z

1 + u(t,x)
, t ≥ 0, (x, z) ∈ Ω(u(t)),

and the membrane’s displacement satisfies the small-aspect ratio model

ut − uxx = −λ 1(
1 + u(t,x)

)2 , t > 0, x ∈ I, (6.30)

u(t,±1) = 0, t > 0, (6.31)

u(0,x) = u∗(x), x ∈ I. (6.32)

Figure 6.2, to be read top down, illustrates the time evolution of the membrane’s displacement for
the coupled as well as for the reduced problem. In both settings the initial deflection is chosen to be
u∗(x) =

(
x2 − 1

)
/5 and the value of the applied voltage amounts λ = 0.6. Although a singularity

in form of a touchdown at x = 0 seems likely, this phenomenon may not yet be observed by the
methods implemented in the framework of this thesis.

−1 −0.5 0 0.5 1

−0.6

−0.4

−0.2

0

(a) Coupled problem

−1 −0.5 0 0.5 1

−0.6

−0.4

−0.2

0

(b) Small-aspect ratio model

Figure 6.2: Comparison of the coupled problem and the small-aspect ratio model for f ≡ 1 and
λ = 0.6.

Howsoever, an improvement of the implementation is worthwhile so that the phenomenon of the
pull-in instability becomes numerically visible.
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A Permittivity Profile f = f(x,u). We consider in this paragraph the coupled
problem (6.25)–(6.29) for permittivity profiles f = f

(
x,u(t,x)

)
, whence the right-hand side of (6.25)

is given by

gε,λ(u) = −λ
(
ε2
(
ψx(x,u)

)2
+
(
ψz(x,u)

)2)
+2λ

(
ε2ψx(x,u)fx(x,u)+ψz(x,u)fu(x,u)

)
, t > 0, x ∈ I.

Figure 6.3 illustrates the evolution of the membrane’s displacement for a permittivity profile

f
(
x,u(t,x)

)
:= x2

(
1 + u(t,x)

)4
+ 0.1

and different initial data.

Reading from the bottom up we see in Figure 6.3(a) that, starting from the undeflected configuration
u∗ ≡ 0, the solution instantaneously becomes positive in all points except the boundary points
x = ±1.

In Figure 6.3(b), to be read from the bottom up, we see that even if the initial deflection is negative
(except in x = ±1), for instance if u∗ = (x2 − 1)/10 the solution u becomes positive.
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(a) u∗ ≡ 0
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(b) u∗(x) = (1 + x)2/10

Figure 6.3: Approximate solution uτ ,h for ε = 0.25,λ = 0.5, f(x,u) = x2(1 + u)4 + 0.1 and different
initial data.

Qualitative Differences Between the Coupled Problem and the Cor-
responding Small-Aspect Ratio Model for f = f(x). The reduced small-
aspect ratio model (6.33)–(6.35) is able to capture various qualitative properties of the coupled
system (6.25)–(6.29), such as evenness with respect to x ∈ I, the existence of a pull-in voltage λ∗,
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as well as global existence for small values λ < λ∗ of the applied voltage. In the case of a constant
permittivity profile even the sign property (of u) is conserved when reducing the model to the small-
aspect ratio regime. Moreover, the sequence (ψε,uε)ε of unique solutions to (6.25)–(6.29) converges
to the unique solution (ψ0,u0) of (6.33)–(6.35) as ε tends to zero. However, this paragraph serves the
purpose of providing numerical evidence which strengthens the conjecture that there are phenomena
in the coupled system which cannot be observed in the small-aspect ratio model. More precisely,
we specify permittivity profiles f = f(x) leading to positive deformations u of the membrane in the
coupled setting, whereas in stark contrast to that positivity of u0 is impossible as a consequence of
the maximum principle (c.f. the discussion in Section 5.1). The results presented in this paragraph
are based on the work [12], jointly with Joachim Escher and Pierre Gosselet.

Given spatially varying permittivity profiles f = f(x), we compare the coupled system (6.25)–(6.29),
with gε,λ(u) given by

gε,λ(u) = −λ
(
ε2
(
ψx(x,u)

)2
+
(
ψz(x,u)

)2)
+ 2λε2ψx(x,u)f ′(x), t > 0, x ∈ I,

to its reduced counterpart, where the potential may be explicitly stated as

ψ(t,x, z) =
1 + z

1 + u(t,x)
f(x), t ≥ 0, (x, z) ∈ Ω(u(t)),

and the membrane’s displacement evolves according to the small-aspect ratio model

ut − uxx = −λ
(

f(x)

1 + u(t,x)

)2

, t > 0, x ∈ I, (6.33)

u(t,±1) = 0, t > 0, (6.34)

u(0,x) = u∗(x), x ∈ I. (6.35)

Figures 6.4 and 6.5 illustrate for a permittivity profile

f(x) := x8 + 0, 1

the approximate solution to (6.25)–(6.29) at different time levels for decreasing values of the aspect
ratio ε and λ = 1. More precisely, the initial displacement is chosen to be u∗ ≡ 0 and the remaining
curves – to be read from bottom up – represent the approximate membrane’s displacement at every
tenth time level, where T = 1 and Nt = 100.

In the numerical experiments depicted in Figure 6.4 one may observe that for ε ∈ {0.4, 0.6}, starting
from u∗ ≡ 0, the solution immediately becomes positive at all interior points x ∈ I and increases
with time.
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Figure 6.4: Approximate solution uτ ,h for f(x) = x8 + 0.1 with λ = 1 and different ε > 0.

For ε = 0.2, ε = 0.15 and ε = 0.1 (c.f. Figure 6.5) the solution shows a different behaviour. Given
ε = 0.2, the temporarily increasing solution develops also negative values at small time levels before
it becomes strictly positive everywhere except in the boundary points (c.f. Figure 6.5(a)). In contrast
to that is the evolution of the approximate solution for ε = 0.1 illustrated in Figure 6.5(b). Also
starting from the zero displacement, the membrane abruptly deflects towards the ground plate in
all points x ∈ I.
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Figure 6.5: Approximate solution uτ ,h for f(x) = x8 + 0.1 with λ = 1 and ε ∈ {0.1, 0.2}.

Moreover, the value ε = 0.15 seems to be a threshold value with regard to the evolution of the
solution’s sign. Starting from the initial deflection u∗ ≡ 0, the magenta curve in Figure 6.6 illustrates
the approximate solution at time level t = 1/100, whence the blue curve represents all further iterates
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at time levels t = 10/100, 20/100, 30/100, . . . until the maximal computing time T = 2 is reached.
That is, the blue curve in Figure 6.6 might be a steady state for the aspect ratio ε = 0.15 and a
value λ = 1 of the applied voltage. Since for ε = 0.2 the deflection becomes positive after a certain
number of time steps and for ε = 0.1 the solution immediately becomes negative, it seems as if for
ε = 0.15 the solution is hesitant to decide whether it behaves according to the full coupled problem
or according to the small-aspect ratio model.
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Figure 6.6: Approximate solution uτ ,h for f(x) = x8 + 0.1 with λ = 1 and ε = 0.15.

For larger values λ of the applied voltage the situation is similar as one may see in Figures 6.7 and
6.8 that the displacement of the membrane evolves as for λ = 1 but with larger absolute function
values.
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(b) ε = 0.2

Figure 6.7: Approximate solution uτ ,h for f(x) = x8 + 0.1 with λ = 5 and different ε > 0.
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Figure 6.7, to be read from the bottom up, illustrates the time evolution of the membrane’s dis-
placement for λ = 5 and ε ∈ {0.2, 0.4}. As in the case λ = 1 Figure 6.7(a) shows that in the regime
ε = 0.4 the solution instantaneously becomes positive at all interior points x ∈ I, whereas u initially
takes also negative values when choosing ε = 0.2.

That also for λ = 5 in the setting ε = 0.1 the membrane instantaneously evolves towards to ground
plate and that there seems to be a steady state for ε = 0.15 may be observed in Figure 6.8.
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Figure 6.8: Approximate solution uτ ,h for f(x) = x8 + 0.1 with λ = 5 and different ε > 0.

A question arising from the presented results might be if though u becomes less positive as ε de-
creases, the results hypothesise that, for every fixed ε > 0, one may find a voltage value λ > 0 and
a permittivity profile f = f(x) such that the solution u always becomes positive in the course of
time. It is worthwhile to mention again that this is not possible in the small-aspect ratio regime.

In contrast to what is observed for the coupled system, Figures 6.9(a) and 6.9(b) show that the
situation is rather different in the small-aspect ratio regime. In both figures the time evolution of
the membrane’s displacement is to be read top down. Choosing the same permittivity profile and
applying voltages λ ∈ {1, 5} as in Figure 6.4, 6.5 and 6.8, respectively, one may thus observe that
in the small-aspect ratio regime the solution immediately becomes strictly negative in all interior
points x ∈ I and is decreasing in time.
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Figure 6.9: Approximate solution uτ ,h to the small-aspect ratio model with u∗ ≡ 0 for f(x) = x8+0.1

and different λ.

The above illustrated results suggest that there is a change of the qualitative behaviour of the
solution to the full coupled problem for a threshold value ε > 0 as ε tends to zero in the following
sense. Starting from the zero initial displacement, in particular for large values of ε the membrane’s
displacement immediately becomes positive and is increasing in time (c.f. Figure 6.4). However,
another interesting observation is illustrated in Figure 6.10.
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Figure 6.10: Approximate solution uτ ,h with u∗ ≡ 0 for ε = 0.85,λ = 1 and f(x) = x8 + 0.1.

It seems that not only for an aspect ratio ε tending to zero the qualitative behaviour of the solution
differs in a way that increasing positive solutions become sign-changing and finally negative decreas-
ing solutions. Figure 6.10 shows the approximate displacement of the membrane at different time
levels for ε = 0.85. One may observe that the solution is sign-changing with positive peaks near
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the boundary points x = ±1 and non-positive/negative function values in a subinterval of I around
x = 0.

6.3.1 Remark (1) Theorem 4.0.9 apparently implies that given a positive permittivity profile
f = f(x), there exists an ε0 > 0 such that u(t,x) ≤ 0 on [0,T )× [−1, 1] for all ε ∈ (0, ε0).

(2) The above presented numerical results suggest the supposition that there are ε > 0,λ > 0, and
smooth permittivity profiles f = f(x) > 0 such that u(t,x) > 0 for all x ∈ I and all t ∈ (0,T ).
If this is true in view of Theorem 5.2.1 there must be ε > 0, λ > 0, and f = f(x) such that a
touchdown of the membrane in finite time is impossible. This means in particular that either
the corresponding solution exists globally in time or a blow-up of the W 2

q (I)-norm takes place
in finite time.

(3) The phenomena observed in the above illustrations are not restricted to the permittivity profile
f(x) = x8 + 0.1. Similar results may be obtained for instance if f(x) = x2k + 0.1 with
k ∈ {1, 2, 3, . . .} or if f(x) = exp (ax2) with a ∈ [1, 3].



Bibliography

[1] Allen, M. G., Frazier, A. B.: High aspect ratio electroplated microstructures using a
photosensitive polyimide process. Proc. IEEE Micro Electro Mechanical Syst., 87–92, 1992.

[2] Amann, H.: Multiplication in Sobolev and Besov spaces. Nonlinear Analysis, Sc. Norm. Super.
di Pisa Quaderni, 27–50, 1991.

[3] Amann, H.: Linear and Quasilinear Parabolic Problems, Volume I: Abstract Linear Theory.
Birkhäuser, Basel, 1995.

[4] Amann, H., Escher, J.: Analysis III. Birkhäuser, Basel, 2008.

[5] Angermann, L. Knabner, P.: Numerical Methods for Elliptic and Parabolic Partial Differ-
ential Equations. Springer, Berlin, 2003.

[6] Baillieu, F., Berry, J. P., Caillat, P., Diem, B., Ebersohl, J. Ph., Le Hung, F.,

Renard, S., Rey, P., Zimmermann, L.: Airbag application: a microsystem including a sili-
con capacitive accelerometer, CMOS switched capacitor electronics and true self-test capability.
Sensors and Actuators A, 46–47 (1995), 190–195.

[7] Bonnet, M., Frangi, A., Rey, C.: The Finite Element Method in Solid Mechanics. McGraw-
Hill Education, New York, 2014.

[8] Braess, D.: Finite Elements: Theory, Fast Solvers and Applications in Elasticity Theory.
Cambridge University Press, Cambridge, 2007.

[9] Büttgenbach, S., Burisch, A., Hesselbach, J.: Design and Manufacturing of Active
Microsystems. Springer, Berlin, 2011.

[10] Deuflhard, P., Hohmann, A.: Numerische Mathematik I. Walter de Gruyter, Berlin, 2008.

[11] Erdem Alaca, B., Saif, M. T. A., Sehitoglu, H.: Analytical modeling of electrostatic
membrane actuator for micro pumps. IEEE Journal of Microelectromechanical Systems, 8 (1999),
335–345.

133



Bibliography 134

[12] Escher, J., Gosselet, P., Lienstromberg, C.: A note on model reduction for microelec-
tromechanical systems. Submitted, 2015.

[13] Escher, J., Laurençot, P., Walker, C.: Finite time singularity in a free boundary problem
modeling MEMS. C. R. Acad. Sci. Paris, Ser. I, 351 (2013), 807–812.

[14] Escher, J., Laurençot, P., Walker, C.: A parabolic free boundary problem modeling
electrostatic MEMS. Arch. Rational Mech. Anal., 211 (2014), 389–417.

[15] Escher, J., Laurençot, P., Walker, C.: Dynamics of a free boundary problem with
curvature modeling electrostatic MEMS. Trans. Amer. Math. Soc. (2015), doi:10.1090/S0002-
9947-2014-06320-4.

[16] Escher, J., Lienstromberg, C.: A qualitative analysis of solutions to microelectrome-
chanical systems with curvature and nonlinear permittivity profiles. Commun. Part. Diff. Eq.,
published online 03 November 2015, doi: 10.1080/03605302.2015.1105259.

[17] Escher, J., Lienstromberg, C.: Finite-time singularities of solutions to microelectrome-
chanical systems with general permittivity. Submitted, 2015.

[18] Esposito, P., Ghoussoub, N.: Uniqueness of solutions for an elliptic equation modeling
MEMS. Methods Appl. Anal., 15 (2008), 341–354.

[19] Evans, L. C.: Partial Differential Equations. American Mathematical Society, Providence,
Rhode Island, 2010.

[20] Flores, G., Mercado, G., Pelesko, J. A., Smyth, N.: Analysis of the dynamics and
touchdown in a model of electrostatic MEMS. SIAM J. Appl. Math., 67 (2007), 434–446.

[21] Ghoussoub, N., Guo, Y.: On the partial differential equations of electrostatic MEMS devices
II: dynamic case. Nonlinear Diff. Eqns. Appl., 15 (2008), 115–145.

[22] Gilbarg, D., Trudinger, N. S.: Elliptic Partial Differential Equations of Second Order.
Springer, Berlin, 2001.

[23] Grisvard, P.: Équations différentielles abstraites. Ann. Sci. École Norm. Sup., 4 (1969),
311–395.

[24] Grisvard, P.: Elliptic Problems in Nonsmooth Domains. SIAM, Philadelphia, Pennsylvania,
2011.

[25] Guo, J.-S., Souplet, P.: No touchdown at zero points of the permittivity profile for the
MEMS problem. SIAM J. Math. Anal., 47 (2014), 614–625.

[26] Guo, Y.: Global solutions of singular parabolic equations arising from electrostatic MEMS. J.
Diff. Eqns., 245 (2008), 809–844.



135 Bibliography

[27] Guo, Y., Pan, Z., Ward, M.. J.: Touchdown and pull-in voltage behavior of a MEMS device
with varying dielectric properties. SIAM J. Appl. Math., 66 (2005), 309–338.

[28] Henrot, A., Pierre, M.: Variation et Optimisation de Formes: une Analyse Géométrique.
Springer, Berlin, 2005.

[29] Hui, K. M.: The existence and dynamic properties of a parabolic nonlocal MEMS equation.
Nonlinear Analysis: TMA, 74 (2011), 298–316.

[30] Ladyz̆enskaja, O. A., Solonnikov, V. A., Ural’ceva, N. N.: Linear and Quasilinear
Equations of Parabolic Type. American Mathematical Society, Providence, Rhode Island, 1968.

[31] Ladyz̆enskaja, O. A., Ural’ceva, N. N.: Linear and Quasilinear Elliptic Equations. Aca-
demic Press, Waltham, Massachusetts, 1968, translated from the Russian.

[32] Laurençot, P., Walker, C.: A stationary free boundary problem modeling electrostatic
MEMS. Arch. Rational Mech. Anal., 207 (2013), 139–158.

[33] Laurençot, P., Walker, C.: A fourth-order model for MEMS with clamped boundary
conditions. Proc. Lond. Math. Soc. 109 (2014), 1435-1464.

[34] Laurençot, P., Walker, C.: A free boundary problem modeling electrostatic MEMS: I.
Linear bending effects. Math. Ann., 316 (2014), 307–349.

[35] Laurençot, P., Walker, C.: A free boundary problem modeling electrostatic MEMS: II.
Nonlinear bending effects. Math. Models Methods Appl. Sci., 24 (2014), 2549–2568.

[36] Laurençot, P.,Walker, C.: A time singular limit for a fourth-order damped wave equation
for MEMS. In: Springer Proceedings in Mathematics& Statistics, 233–246, Springer, Berlin,
2015.

[37] Laurençot, P., Walker, C.: A variational approach to a stationary free boundary problem
modeling MEMS. ESAIM Control Optim. Calc. Var., to appear 2015.

[38] Laurençot, P., Walker, C.: On a three-dimensional free boundary problem modeling
electrostatic MEMS. Submitted, 2015.

[39] Li, J., Liang, C.: Viscosity dominated limit of global solutions to a hyperbolic equation in
MEMS. Discrete Contin. Dyn. Syst., 36 (2016), 833–849.

[40] Lienstromberg C.: A free boundary value problem modelling microelectromechanical sys-
tems with general permittivity. Nonlinear Analysis: RWA, 25 (2015), 90–218.

[41] Lienstromberg, C.: On qualitative properties of solutions to microelectromechanical systems
with general permittivity. Monatsh. Math., published online 12 March 2015, doi:10.1007/s00605-
015-0744-5.



Bibliography 136

[42] Lunardi, A.: Analytic Semigroups and Optimal Regularity in Parabolic Problems. Birkhäuser,
Basel, 1995.

[43] Nečas, J.: Les Méthodes Directes en Théorie des Équations Elliptiques. Masson et Cie, Paris,
1967.

[44] Nirenberg, L.: On elliptic partial differential equations. Ann. Scuola Norm. Sup. Pisa, 13
(1959), 115–162.

[45] Pelesko, J. A., Bernstein, D. H.: Modeling MEMS and NEMS. Chapman & Hall/CRC,
Boca Raton, Florida, 2003.

[46] Quarteroni, A., Sacco, R., Saleri, F.: Numerical Mathematics. Springer, Berlin, 2007.

[47] Quittner, P., Souplet, P.: Superlinear Parabolic Problems. Blow-up, Global Existence and
Steady States. Birkhäuser, Basel, 2007.

[48] Saif, M. T. A., Erdem Alaca, B., Sehitoglu, H.: Analytical modeling of electrostatic
membrane actuator micro pumps. IEEE J. Microelectromech. Syst., 8 (1999), 335–344.

[49] Seeger, J. I., Boser, B. E.: Dynamics and control of parallel-plate actuators beyond
the electrostatic instability. Transducers ’99, The 10th International Conference on Solid-State
Sensors and Actuators (1999), 444–447.

[50] Seeley, R.: Interpolation in Lp with boundary conditions. Stud. Math., 44 (1972), 47–60.

[51] Simon, J.: Compact sets in the space Lp(0,T ;B). Ann. Mat. Pura Appl., CXLVI (1987),
65–96.



Curriculum Vitae

Persönliche Daten

Name Christina Lienstromberg

Geburtsdatum 06. Februar 1988

Geburtsort Tegernsee; Deutschland

Akademische Ausbildung

02/2015 – 01/2016 Forschungsaufenthalt am Laboratoire de Mécanique et Technologie der
École Normale Supérieure (ENS) de Cachan im Rahmen des IRTG 1627;
Gemeinsames Promotionsverfahren (Cotutelle) zwischen der Leibniz Uni-
versität Hannover (LUH) und der ENS Cachan
Betreuung LUH: Prof. Dr. Joachim Escher
Betreuung ENS Cachan: Dr. Pierre Gosselet

Seit 10/2013 Mitglied des internationalen Graduiertenkollegs IRTG 1627

Seit 01/2013 Doktorandin am Institut für Angewandte Mathematik der Leibniz Uni-
versität Hannover

11/2012 Master of Science Mathematik
Blow-up Phenomena for Semilinear Parabolic Equations
Betreuung: Prof. Dr. Joachim Escher

10/2010 – 11/2012 Masterstudium Mathematik; Nebenfach Betriebswirtschaftslehre; Leib-
niz Universität Hannover

12/2010 Bachelor of Science Mathematik
Ein adaptives Verfahren für elliptische Eigenwertprobleme unter Verwen-
dung des Lanczos-Verfahrens
Betreuung: Prof. Dr. Gerhard Starke

10/2007 – 12/2010 Bachelorstudium Mathematik; Nebenfach Betriebswirtschaftslehre; Leib-
niz Universität Hannover

05/2007 Abitur; Gymnasium Westerstede



Liste der Publikationen

1. On qualitative properties of solutions to microelectromechanical systems with general permit-
tivity. Monatsh. Math., published online 12 March 2015, doi:10.1007/s00605-015-0744-5.

2. A free boundary value problem modelling microelectromechanical systems with general per-
mittivity. Nonlinear Anal. Real World Appl. 25 (2015), 190–218.

3. (mit J. Escher): Finite-time singularities of solutions to microelectromechanical systems with
general permittivity. Submitted, 2015.

4. (mit J. Escher) A qualitative analysis of solutions to microelectromechanical systems with
curvature and nonlinear permittivity profiles. Commun. Part. Diff. Eq., published online 03
November 2015, doi: 10.1080/03605302.2015.1105259.

5. (mit J. Escher & P. Gosselet) A note on model reduction for microelectromechanical systems.
Submitted, 2015.


	Introduction
	The Modelling
	A Nonlinear Elasticity Model
	A Simplified Linear Elasticity Model
	The Mathematical Models Under Study

	Local Well-Posedness and Global Existence
	On the Semilinear Case
	On the Quasilinear Case

	The Small-Aspect Ratio Limit
	On Some Qualitative Properties of Solutions
	Non-Positivity of the Membrane's Displacement
	Non-Existence of Global Solutions
	Finite-Time Singularities in the Semilinear Setting
	Finite-Time Singularities in the Quasilinear Setting


	Numerical Investigations
	Approximate Solution of the Elliptic Moving Boundary Problem
	Approximate Solution of the Parabolic Evolution Problem
	Numerical Results
	Bibliography


