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Zusammenfassung

Die vorliegende Arbeit befasst sich mit Picard-Zahlen von abelschen Varietäten und
einigen verwandten arithmetischen Phänomenen. Eine Motivation hierfür bildet die
Tatsache, dass singuläre abelsche Flächen, das heißt abelsche Flächen mit maximaler
Picard-Zahl, mit einer zusätzlichen arithmetischen Struktur ausgestattet sind. Diese
Struktur ist in dem transzendentalen Gitter kodiert und überträgt sich auf singuläre
K3 Flächen mittels der Shioda-Inose Strukturen.

Zuerst konzentrieren wir uns darauf, alle möglichen Zerlegungen einer singulären
abelschen Fläche in ein Produkt von zueinander isogenen elliptischen Kurven mit
komplexer Multiplikation zu finden. Hierbei nutzen wir eine Verallgemeinerung
der Dirichlet Komposition, welche die Komposition von quadratischen Formen ver-
schiedener Diskriminante ermöglicht. Unser Resultat ist eine Verallgemeinerung einer
vorangegangenen Arbeit von Ma, der eine Formel für die Anzahl solcher Zerlegun-
gen gefunden hat. Gleichzeitig liefert unser Ansatz einen alternativen Beweis für die
Formel von Ma.

Darauf aufbauend untersuchen wir den (relativen und absoluten) Körper der Moduli
von singulären K3 Flächen. Wir verwenden eine Idee von Šafarevič, um unser Problem
auf das entsprechende Problem über singuläre abelsche Flächen zu reduzieren. Dies
ermöglicht uns die CM-Theorie von elliptischen Kurven anzuwenden, denn nach der
Arbeit von Shioda und Mitani ist jede singuläre abelsche Fläche das Produkt von zwei
solchen Kurven. Abgesehen von der abstrakten Charakterisierung sind wir in der
Lage, eine explizite Beschreibung des Körpers der Moduli zu geben, wodurch diese
mittels eines Computeralgebrasystems berechnet werden können.

Schließlich untersuchen wir die möglichen Picard-Zahlen einer komplexen abelschen
Varietät einer fixierten Dimension. Für Dimension g ist eine Einschränkung der Picard-
Zahl durch das Lefschetz Theorem von (1, 1)-Klassen gegeben. Es stellt sich die Frage,
ob alle ganzen Zahlen ρ mit 1 ≤ ρ ≤ h1,1 als Picard-Zahl einer g-dimensionalen abel-
schen Varietät auftreten können. Wir zeigen, dass dies überraschenderweise nicht
zutrifft für g ≥ 3, und berechnen die ersten zwei Folgen von Lücken in der Menge der
Picard-Zahlen für jede Dimension g.

Schlüsselwörter: Picard-Zahl, abelsche Fläche, K3 Fläche, Klassenkörper Theorie,
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Abstract

This dissertation focuses on the Picard numbers of abelian varieties and some related
arithmetic phenomena. The motivation lies in the fact that singular abelian surfaces,
i.e. abelian surfaces attaining the maximum Picard number, are equipped with extra
arithmetic structure. This structure is encoded in the transcendental lattice, and it car-
ries over to singular K3 surfaces by means of Shioda-Inose structures.

A first problem we were interested in was finding all possible decompositions of a
singular abelian surface into a product of mutually isogenous elliptic curves with
complex multiplication. A key tool is a generalization of the Dirichlet composition,
which allows one to compose quadratic forms of different discriminant. Our result is
a generalization of previous work of Ma, who found a formula for the number of such
decompositions. Incidentally, our approach also yields a new proof of Ma’s formula.

Building on this, we studied the (relative and absolute) field of moduli of singular K3
surfaces. By using an idea of Šafarevič, we reduce our problem to the corresponding
one on singular abelian surfaces. This technique enables us to use the CM theory of
elliptic curves, as every singular abelian surface is always the product of two such
curves, by results of Shioda and Mitani. Besides the abstract characterization, we were
able to give an explicit description of the field of moduli, which allows to compute it
by means of a computer algebra system.

Finally, we investigated the possible Picard numbers of a complex abelian variety of
a fixed dimension. In dimension g, a restriction on the Picard number is given by
the Lefschetz theorem of (1, 1)-classes, and the question is actually asking whether all
integers in the range 1 ≤ ρ ≤ h1,1 can appear as the Picard number of a g-dimensional
abelian variety. To our surprise, we show that this is not the case for every g ≥ 3,
and we computed the first two sequences of gaps in the set of Picard numbers in any
dimension.

Keywords: Picard number, abelian surface, K3 surface, class field theory, complex
multiplication, quadratic forms, abelian varieties.
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Introduction

Thinking of you, wherever you are.
We pray for our sorrows to end, and
hope that our hearts will blend. Now
I will step forward to realize this
wish. And who knows: Starting a
new journey may not be so hard, or
maybe it has already begun. There
are many worlds, but they share the
same sky. One sky, one destiny.

Kairi, Kingdom Hearts II

Motivation

This dissertation grew out of the investigation of certain aspects of the geometry and
the arithmetic of singular K3 surfaces, i.e. K3 surfaces with maximum Picard number
over C. The reason for this somewhat confusing name is explained, to the best of
the author’s knowledge, in a paper of Ulf Persson [26]: in Russian, the word osoby�
(osobyi) is used in the precise sense of non-smooth (e.g. a singular point), and sin-
gul�rny� (singulyarnyi), is instead used in the vaguer sense of exceptional, peculiar
(singular). Unfortunately, both terms translate into "singular" in English, and, at the
same time, the word "extremal" already described a different notion in the theory of
elliptic surfaces (see [27], [2], [22]).

Among the reasons why one should be interested in studying singular K3 surfaces, the
most natural is that they represent a possible two-dimensional analog of elliptic curves
with complex multiplication (CM). A classical result, proofs of which were given (for
instance) by Serre [32] and Serre-Tate [33], states that every elliptic curve with CM is
defined over a number field. Also, if one fixes a positive integer n ∈N, one can show
that the set {

CM elliptic curves defined over K, [K : Q] ≤ n
}/ ∼=C

is finite, i.e. that the set of isomorphism classes of CM elliptic curves with bounded
field of definition is finite.
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These results (and many others) carry over to singular K3 surfaces in a natural way.
For example, work of Shioda and Inose [38] has revealed that singular K3 surfaces
have a model over a number field, a result later refined by Inose [13] and Schütt
[28]. Moreover, Šafarevič [34] proved a finiteness result for singular K3 surfaces with
bounded field of definition, i.e. that the set{

singular K3 surfaces defined over K, [K : Q] ≤ n
}/ ∼=C

is finite. A feature of this latter result is that the proof uses a reduction to the case
of singular abelian surfaces, which in turn uses results from the theory of CM elliptic
curves. Reduction to abelian varieties and elliptic curves is a technique we will make
use of extensively in this thesis.

Having described some aspects of the arithmetic of singular K3 surfaces, we would
like to say something about their geometry, and in particular about their connection
to singular abelian surfaces. Both in the case of singular abelian and K3 surfaces,
their large Néron-Severi lattice allows one to construct arithmetically interesting mod-
uli1. This was first explored by Shioda and Mitani [39], who described the set ΣAb
of moduli of singular abelian surfaces in terms of quadratic forms. To any singular
abelian surface, one can associate its oriented transcendental lattice, which in this case
acquires the structure of a positive definite lattice, and thus it can be interpreted as a
positive definite integral binary quadratic form. If Q+ denotes the set of positive def-
inite integral binary quadratic forms, then the association above yields a one-to-one
correspondence

ΣAb ←→ Q+/ SL2(Z),

which, for us, is the bridge between the arithmetic of quadratic forms (based on class
group theory) and the geometry of singular abelian surfaces.

One can analogously build the set ΣK3 of moduli of singular K3 surfaces, and ask
for its structure. In their paper, Shioda and Mitani [39] showed that by taking the
Kummer surface of a singular abelian surface, one is able to recover all singular K3
surfaces whose transcendental lattice has primitivity index which is divisible by 2.
Later, Shioda and Inose [38] proved the surjectivity of the period map for singular K3
surfaces by means of Shioda-Inose structures (as Morrison later called them in [23]):
if A is an abelian surface, a Shioda-Inose structure associated to A is a K3 surface
X = SI(A), which is a 2:1 cover of Km(A) and has the property that T(X) = T(A).

A 2:1− − → Km(A)
2:1← − − X

It turns out that also (isomorphism classes of) singular K3 surfaces are uniquely char-
acterized by their transcendental lattice, and thus there exists a one-to-one correspon-
dence between ΣAb and ΣK3 given by Shioda-Inose structures; in particular, this im-
plies that two singular abelian surfaces are isomorphic if and only if the corresponding

1By moduli we mean C-isomorphism classes.

xii



K3 surfaces via a Shioda-Inose structure are. In the following, we will be using this
fact to reduce a problem on singular K3 surfaces to one on the conrresponding singu-
lar abelian surfaces via a Shioda-Inose structure.

At this point it should be clear to the reader that the Picard number, if large enough,
may equip a variety with extra (arithmetic) structure, and thus it is an interesting
numerical invariant to study. In general, computing the Picard number of a given
variety is a very hard task; sometimes, this can be accomplished if one adds, for
instance, (many) automorphisms, (elliptic) fibrations, etc. A somewhat easier question
may be: given a class of varieties (for instance, with specified numerical invariants),
what are the possible Picard number that can appear? However, already in relatively
easy cases, this question remains still difficult to answer. For example, a full answer is
not known in the case of smooth quintic surfaces in P3, while it is if one allows quintic
surfaces to have ADE-singularities (see [29], [30]).

Problems and results

Chapters 2 and 3 of this work are devoted to the study of certain aspects of the ge-
ometry and the arithmetic of singular abelian and K3 surface. The techniques we
use exploit the deep connections to class field theory, the theory of quadratic forms
and the CM theory of elliptic curves that we have presented above. In Chapter 2, we
study the problem of classifying all decompositions of a singular abelian surface into
a product of mutually isogenous CM elliptic curves. Let us notice that this question
perfectly makes sense in light of the results of Shioda and Mitani [39] that we have
mentioned earlier. A formula for the number of decompositions of an abelian surface
of arbitrary Picard number was found by Ma [19]; therein, he also classified the possi-
ble decompositions for abelian surfaces of Picard number ρ ≤ 3, leaving open the case
of singular abelian surfaces, which is the main object of our studies. Indeed, we suc-
cessfully classify such decompositions, by developing a tool called generalized Dirichlet
composition: it is a generalization of the usual Dirichlet composition of quadratic forms
of given discriminant to pairs of forms with possibly different discriminants. This al-
lows to exploit the reduction maps between class groups of different discriminant, as
well as results from class field theory, to explicitly compute the transcendental lattice
of an arbitrary product of mutually isogenous CM curves (Proposition 2.2.4), hence
generalizing previous work of Shioda and Mitani [39]. Afterwards, we apply this
technique to study the possible decompositions of a singular abelian surface. Our
analysis distinguishes two cases, according to the CM field K of our abelian surface: if
K 6= Q(i), Q(

√
−3), then we are able to build enough decompositions to match Ma’s

formula (Theorem 2.3.11). On the other hand, if K = Q(i) or K = Q(
√
−3), then we

have to proceed with a case-by-case argument (Theorems 2.5.1 and 2.5.2). Incidentally,
our approach turns out to be completely independent of Ma’s work [19] and, in fact,
it yields an alternative proof of the formula for the number of decompositions.
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The results accomplished in Chapter 2 allow us to study the field of moduli of singular
K3 surfaces, which is the main topic of Chapter 3. Our interest stems from the fact that
the field of moduli of a singular K3 surface (and in general, of an arbitrary variety)
is contained in every field of definition. A result of Schütt, who generalized previous
work of Shimada [35], states the following: letting K be the CM field of a singular
K3 surface X, i.e. K = Q(

√
disc T(X)), the set of C-isomorphism classes of Galois

conjugates of X under Gal(C/K) is in one-to-one correspondence with the genus of
T(X) seen as a quadratic form, i.e.

{[Xσ] | σ ∈ Gal(C/K)} ←→
(
genus of T(X)

)
.

In particular, this suggests that the field of K-moduli MK might be a degree g :=
#
(
genus of T(X)

)
extension of K. Indeed, this is the case, as we are able to prove;

moreover, MK/K is always a Galois extension (Theorem 3.4.4). The proof of this result
is divided into two steps: first, we solve the case where the transcendental lattice is
primitive, and then we use results for the theory of CM to prove some compatibility
conditions, that allow to extend the proof the general case. Our methods also enable
us to explicitly compute the field of K-moduli as a finite extension of K, in a way that
unlocks the computational side of the problem: it turns out that the field of K-moduli
is always the subfield of the ring class field H of the order of discriminant disc T(X)
in K that is fixed by the 2-torsion elements of Gal(H/K) (Proposition 3.6.5), i.e.

MK = HGal(H/K)[2].

We also study the dependence of the field of K-moduli on the index of primitivity of
the transcendental lattice, and we prove, among other things, that in fact the field of
K-moduli is independent of it (Proposition 3.6.2). Afterwards, we turn our focus to
the study of the field of Q-moduli, which is indeed a degree g extension of Q, but,
contrary to the field of K-moduli, it is not Galois in general (Theorem 3.5.3), and we
extend other results valid for the field of K-moduli to the field of Q-moduli.

The last chapter of this dissertation reports on a joint work (partly in progress) with
Klaus Hulek [10]. We focus our attention on the problem of which Picard number
can appear within a given class of varieties, and, in particular, we study the case of
varieties with (numerically) trivial canonical bundle. Let us begin with the case of
surfaces, where an answer to this problem is already known. For abelian surfaces all
possible Picard numbers between 1 (or 0 if one includes the non-algebraic case) and
4 occur. For the other surfaces with trivial canonical bundle the situation is similar:
for K3 surfaces all possibilities between 1 (respectively 0) and 20 can occur as can be
seen by the Torelli theorem for K3 surfaces and the Lefschetz (1, 1)-theorem. Enriques
surfaces and bi-elliptic surfaces have pg = 0 and their Picard number is 10 and 2 re-
spectively. Moving to higher dimension, by the Beauville-Bogomolov decomposition
theorem [4], every Kähler manifold with trivial first Chern class admits a finite cover
which is a product of tori, Calabi-Yau varieties and irreducible holomorphic symplec-
tic manifolds (IHSM), also know as hyperkähler manifolds. For higher dimensional
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Calabi-Yau varieties Y we always have ρ(Y) = b2(Y) as h2,0(Y) = h0,2(Y) = 0. For
IHSM one can use Huybrechts’ surjectivity of the period map [11] to conclude, as
in the case of K3 surfaces, that all values 1 ≤ ρ(X) ≤ b2(X) − 2 can be obtained.
This leaves us with the case of abelian varieties which is the main topic of Chapter
4. For a g-dimensional abelian variety, the Picard number must satisfy the following
restriction:

1 ≤ ρ ≤ h1,1 = g2.

Very little seems to be know about the set Rg of realizable Picard numbers of g-
dimensional abelian varieties. Our aim is to take a first step in the analysis of the
set Rg. In particular, we show that there are series of gaps for the possible Picard
numbers of abelian varieties, and we explicitly compute the first two of them. In
particular, we prove that for dimension g ≥ 7, the three largest values of the Picard
number are (g− 2)2 + 4, (g− 1)2 + 1 and g2 (Main Theorem of Chapter 4).

Structure of the dissertation

The present thesis is divided into four chapters.

Chapter 1 is merely meant for later reference, and contains some of the main ideas
and results to be used later on.

Chapter 2 is an adaption of [16], and deals with the problem of classifying the decom-
positions of a singular abelian surface into a product of elliptic curves.

Chapter 3 discusses the results obtained in [17] about the field of moduli of singular
K3 surfaces.

Chapter 4 contains a study of the possible Picard numbers for abelian varieties of
arbitrary dimension, which is part of the forthcoming paper [10] joint with Klaus
Hulek.
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Chapter 1

Preliminaries

And I’ve been telling Yuna "Let’s go
to Zanarkand together", "Let’s beat
Sin". I told her all the things...we
could...we could...and all along the
whole time, I didn’t know anything!
But Yuna, she’d...just smile.

Tidus, Final Fantasy X

The aim of this chapter, mainly meant for later reference, is to recall the basic proper-
ties of the main objects of the present treatment, together with some of the techniques
we will employ later. Unless otherwise specified, all fields are of characteristic zero.

1.1 Quadratic forms, class groups and elliptic curves

We introduce the classical class group of quadratic forms of given discriminant and
the ideal class group from algebraic number theory; also, we discuss their mutual
interplay, as well as their relation to elliptic curves. For a beautiful account on the
subject, see [8].

1.1.1 Form class group

The theory of integral binary quadratic forms began with Lagrange [18], and it was
later continued by Gauß [9], who introduced new ideas into the theory, in particular
the notion of proper equivalence of forms.

An (integral binary) quadratic form is an expression of the form

Q(x, y) = ax2 + bxy + cy2, a, b, c ∈ Z.

the quantity gcd(a, b, c) is called index of primitivity and Q is said primitive if gcd(a, b, c) =
1. Sometimes, it is convenient to extract the primitive part of a form Q: this is the

1



quadratic form Q0 such that mQ0 = Q, m being the index of primitivity of Q. A form
Q represents m ∈ Z if m = Q(x, y) for some x, y ∈ Z; if moreover gcd(x, y) = 1, then
we say that Q properly represents m ∈ Z. A quadratic form Q as above will be denoted
in short by Q = (a, b, c). Two forms Q = (a, b, c) and Q′ = (a′, b′, c′) are equivalent

(properly equivalent, respectively) if there exists
(

p q
r s

)
∈ GL2(Z) (SL2(Z), respec-

tively) such that
Q(px + qy, rx + sy) = Q′(x, y).

The following basic results give a hint on why it is important to know which numbers
a form represents.

Lemma 1.1.1 (Lemma 2.3 in [8]). A form Q properly represents m ∈ Z if and only if Q is
properly equivalent to the form (m, B, C), for some B, C ∈ Z.

Lemma 1.1.2 (Lemma 2.25 in [8]). Given a form Q and an integer M, Q represents infinitely
many numbers prime to M.

The discriminant of a form Q = (a, b, c) is the integer D := b2 − 4ac. The set of proper
equivalence classes of primitive forms of discriminant D is called the (form) class group
of discriminant D, and it is denoted by C(D); we will denote the class of a form Q by
[Q], or simply by Q if there is no risk of confusion arising.

1.1.2 Dirichlet composition

The class group is equipped with the Dirichlet composition of forms: by [8, Lemma 3.2],
if Q = (a, b, c) and Q′ = (a′, b′, c′) are primitive forms of discriminant D such that

gcd
(

a, a′,
b + b′

2

)
= 1, (?)

then the composition Q ∗ Q′ is the form (aa′, B, C), where C = B2−D
4aa′ and B is the

integer, unique modulo 2aa′, such that
B ≡ b mod 2a,
B ≡ b′ mod 2a′,
B2 ≡ D mod 4aa′.

Naturally, we put [Q] ∗ [Q′] := [Q ∗ Q′]. Notice that two arbitrary primitive forms
of the same discriminant are not always composable, as they might not satisfy the
condition (?). However, by considering their classes, we can use Lemma 1.1.2 to change
the representative and ensure that condition (?) be fulfilled.
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1.1.3 Elliptic curves

An elliptic curve E over a field k is a complete smooth genus 1 curve with the choice
of a k-rational point O ∈ E(k). One readily sees that the canonical sheaf of E is
trivial, i.e. ωE ∼= OE. Moreover, E comes equipped with a group law on its k-rational
points for which O is the neutral element (see, for example, [41, Ch. 3]). Among other
features, elliptic curves are always projective, as one can use Riemann-Roch theorem
to embed them into P2 as smooth cubics. Their equation in P2 is called the Weierstraß
model of E, and it can be written in the form

y2 = x3 + Ax + B,

for A, B ∈ k such that the discriminant

∆E := −16(4A3 + 27B2)

is non-zero. Over an algebraically closed field k, elliptic curves are classified by the
j-invariant

jE := −1728
(4A)3

∆
,

and their moduli spaceM1,1 is isomorphic to A1
k . An elliptic curve has many automor-

phisms, due to the presence of translations by a point. However, if we are interested in
the group Aut0(E) of those automorphisms preserving the group structure (i.e. those
sending O 7−→ O), then there are very few:

(i) Aut0(E) = Z/2Z, for j 6= 0, 1728;
(ii) Aut0(E) = Z/4Z, for j = 1728;

(iii) Aut0(E) = Z/6Z, for j = 0.
Turning to endomorphism (as a group variety), the situation is much richer. Recall
that, fixed a quadratic imaginary field K, an order O is a subring of K containing the
unity of K which has also the structure of a rank-two free Z-module. There are two
cases:

(i) End(E) = Z, generated by the multiplication-by-n maps [n] : E −→ E, for n ∈ Z;
(ii) End(E) = O, where O is an order in a quadratic imaginary field K.

In the second case, we will say that E has complex multiplication (CM) by O. This
terminology stems from the fact that all elements in O \Z are genuinely complex, and
it is best understood by looking at an elliptic curve as a complex torus of dimension
one. We will see that, for us, the most arithmetically interesting elliptic curves are
those having CM. For example, the j-invariant of a CM elliptic curve is always an
algebraic integer (see [40, Ch. 2]).

1.1.4 Ideal class group

Every order O can be written in a unique way as

O = Z + f wKZ, wK :=
dK +

√
dK

2
, dK := discOK, f ∈ Z+.
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The integer f is called the conductor of O, and it characterizes O in a unique way;
we will denote the order of conductor f in OK by OK, f . Similarly, a module M in K
is a rank-two Z-submodule of K (no condition on the unity). Two modules M1 and
M2 are equivalent (M1 ∼ M2) if they are homothetic, i.e. there exists λ ∈ K such that
λM1 = M2. To any module M, we can associate its complex multiplication (CM) ring1

OM := {x ∈ K | xM ⊆ M}.

Notice that OM is an order in K, and that equivalent modules in K have the same CM
ring. The product module M1M2 is defined in a natural way, and if fi is the conductor
of Mi (i = 1, 2), then OM1 M2 = OK,( f1, f2), the latter being the order of conductor ( f1, f2)
in K.

Given an order OK, f , one can define the (ideal) class group C(OK, f ) (see [8, Chapter I,
§7]). Letting I(OK, f ) be the group of proper fractional ideals, and letting P(OK, f ) be
the subgroup generated by the principal ones, we set C(OK, f ) := I(OK, f )/P(OK, f ).
The connection to form class groups is made explicit by the following:

Theorem 1.1.3 (Theorem 7.7 in [8]). Let OK, f be an order in a quadratic imaginary field K,
and let D := f 2dK. Then, there exists a one-to-one correspondence

C(D) −→ C(OK, f )

Q = (a, b, c) 7−→
[

a,
−b +

√
D

2

]
.

The order of the class group C(OK, f ) is called the class number ofOK, f , and it is denoted
by h(OK, f ) or h(D), by virtue of Theorem 1.1.3. There is a beautiful formula that
describes the order of the class group of an order in terms of its conductor and the
maximal order that contains it.

Theorem 1.1.4 (Theorem 7.24 in [8]). Let OK, f be the order of conductor f in OK. Then

h(OK, f ) =
h(OK) · f
[O×K : O×K, f ]

∏
p| f

(
1−

(
dK

p

)
1
p

)
,

where p runs over the primes dividing the conductor f .

1.1.5 Elliptic curves vs. quadratic forms vs. ideal classes

Over C, an elliptic curve E can be seen as E = C/Λ, Λ being a rank-two lattice in C.
Suppose that E has complex multiplication, that is End(E) = EndZ(Λ) = OK, f , for
some order OK, f . Then, Λ is a proper fractional OK, f -ideal, hence it yields an element
[Λ] ∈ C(OK, f ). Conversely, every proper fractional OK, f -ideal is a lattice having OK, f
as its ring of endomorphisms. Furthermore, two proper fractional OK, f -ideals are
homotetic as lattices if and only if they determine the same class in C(OK, f ) (see [8,
Exercise 10.15]). This results in the following

1The name CM ring refers to the property OM = End(C/M).
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Proposition 1.1.5 (Corollary 10.20 of [8]). There is a one-to-one correspondence between the
ideal class group C(OK, f ) and the set E ll(OK, f ) of isomorphism classes of elliptic curves with
complex multiplication by OK, f .

As a consequence of Theorem 1.1.3 and Proposition 1.1.5, we have the following iden-
tifications

E ll(OK, f )←→ C(OK, f )←→ C(D),

where D := f 2dK. This means that we can switch between elliptic curves, ideals classes
and quadratic forms to our content. In light of this, we will use the following notation:
for Q ∈ C(D), set

τ(Q) :=
−b +

√
D

2a
,

and define EQ := Eτ(Q), where Eτ denotes the elliptic curve C/Λτ, Λτ being the lattice
Z + τZ.

1.2 Singular abelian surfaces and singular K3 surfaces

1.2.1 Higher dimensional analogs of elliptic curves

If one wishes to generalize elliptic curves to dimension two, there are at least three
ways to do so: K3 surfaces, abelian surfaces and elliptic surfaces. We briefly recall
their definitions and properties, and we also point out some useful references.

K3 surfaces

One way to generalize elliptic curves to dimension two is to require (at least) that the
canonical sheaf be trivial. This being said, one defines a K3 surface as a complex or
algebraic smooth minimal complete surface that is simply connected and has trivial
canonical bundle. K3 surfaces have been extensively studied both from a geometric
and an arithmetic point of view: for a beautiful account, see [12]. Over the complex
numbers, lattice polarized K3 surfaces and their moduli spaces are still a very active
research areas: for an introduction, see [3].

Abelian surfaces

If it is the group law that we wish to preserve when passing to dimension two, then we
obtain the so-called abelian surfaces. An abelian surface A over k is a two-dimensional
complete connected group variety over k. Notice that abelian surfaces have trivial
canonical bundle. Abelian surfaces, and in general abelian varieties, over C have a
richer structure as they can be seen as complex tori. In particular, this allows one to
study them by means of linear algebra and lattice theory. These approaches have been
exploited particularly in the study of their moduli spaces. For a classical reference
on the general theory, see [24]; for the theory over the complex numbers, an excellent
reference is [7].
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Elliptic surfaces

One further way to proceed in generalizing elliptic curves is to consider them in fam-
ilies: this leads to the notion of elliptic surface. An elliptic surface is a flat morphism
f : S −→ C such that the general fiber is a smooth curve of genus 1 (not necessarily an
elliptic curve, as there is no choice of a point), and no fiber contains (−1)-curves (so
it is relatively minimal). If we want to require that the general fiber of f be an elliptic
curve, we need to coherently choose a point in each fiber: this amounts to giving a
section of f , i.e. a morphism σ : C −→ S such that f ◦ σ = idC. A basic but fundamental
fact is that the existence of a section equips an elliptic fibration with a (local) Weier-
straß model, thanks to which one is able to see such a surface as an elliptic curve over
the function field k(C), k being the ground field. According to the Enriques-Kodaira
classification, elliptic surfaces can have Kodaira dimension κ ∈ {−∞, 0, 1}; in particu-
lar, some of them will be K3 surfaces, and these are usually called elliptic K3 surfaces.
For a reference see [22], or the more recent [31].

1.2.2 Singular surfaces in general

We now recall some basics on singular surfaces, and, to this end, let us work over the
field C of complex numbers. If X is a smooth algebraic surface, we can define the
Néron-Severi lattice of X: it is the group of divisors on X, modulo algebraic equiva-
lence, namely

NS(X) := Div(X)/ ∼alg,

together with the restriction of the intersection form on H2(X, Z). Its rank ρ(X) :=
rank NS(X) is called Picard number of X; the Picard number measures how many
different curves lie on a surface. By the Lefschetz theorem on (1, 1)-classes, we have
the bound

ρ(X) ≤ h1,1(X) = b2(X)− 2pg(X),

where b2(X) := rank H2(X, Z) and pg(X) := dimC H0(X, ωX). We can consider the
lattice

H2(X, Z)free := H2(X, Z)/(torsion),

and since NS(X) ⊂ H2(X, Z), also NS(X)free ⊂ H2(X, Z)free. The lattice NS(X)free has
signature (1, ρ(X)− 1); its orthogonal complement T(X) ⊂ H2(X, Z)free is called the
transcendental lattice of X, and it has signature

(2pg(X), h1,1(X)− ρ(X)).

A smooth algebraic surface with maximum Picard number, i.e. ρ(X) = h1,1(X), is
called a singular surface. In this case, the transcendental lattice acquires the structure of
a positive definite lattice of rank 2pg(X). Both in the case of singular abelian surfaces
and singular K3 surfaces, T(X) is a positive definite rank-two lattice. For further
interesting properties of singular surfaces and their generalizations, we refer the reader
to [5].
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1.2.3 Periods of abelian surfaces

We now recall the notion of period of an abelian surface A (not necessarily singular);
details can be found in [37]. The morphism Z −→ OA yields in cohomology a map

pA : H2(A, Z) −→ H2(A,OA) ∼= C,

since pg(A) = 1; the map pA is called the period of A. By using the structure of complex
torus of A = C2/Λ (Λ ∈ M2×4(C)), we make this more explicit: since

H2(A, Z) ∼=
2∧

H1(A, Z) and H1(A, Z) = H1(A, Z)∨,

we can take a basis {v1, v2, v3, v4} of Λ ∼= H1(A, Z) (typically, the columns of the
period matrix Λ of A) and the corresponding dual basis {u1, u2, u3, u4} of H1(A, Z).
Then, setting uij := ui ∧ uj, we get a basis of H2(A, Z) by considering

{uij | 1 ≤ i < j ≤ 4},

which also gives a basis of H2(A, C). As an element of H2(A, C) ∼= Hom(H2(A, Z), C),
the period has the following description:

pA = ∑
i<j

det(vi|vj)uij,

where the notation (vi|vj) ∈ M2×2(C) indicates the matrix whose columns are vi and
vj (seen as vectors). Upon using Poincaré duality, pA can be seen as

pA : H2(A, Z) −→ C.

Notice that, since NS(A) = ker(pA) and T(A) = (ker(pA))
⊥, this allows us to explicit

compute the Néron-Severi and the transcendental lattices. Also, the period satisfies
the period relations

(pA, pA) = 0 and (pA, pA) > 0.

1.2.4 Two interesting spaces of singular surfaces

Let ΣAb be the set moduli of singular abelian surfaces, i.e. the set of isomorphism
classes of singular abelian surfaces; in [39], Shioda and Mitani described ΣAb by means
of the transcendental lattice T(A) associated to any singular abelian surface A. We say
that an ordered basis {t1, t2} of T(A) is positive if

Im(pA(t1)/pA(t2)) > 0,

and T(A) with a choice of a positive basis is said to be positively oriented. Notice that
the transcendental lattice T(A) is an even lattice, and after choosing a basis one has
that

T(A) ∼=
(

2a b
b 2c

)
, a, c > 0, b2 − 4ac < 0.
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Thus we can always associate to it the quadratic form (a, b, c), and therefore we can
naturally see the transcendental lattice as a integral binary quadratic form (after choos-
ing a basis). We can associate to any quadratic form Q = (a, b, c) an abelian surface
AQ. In order to describe the correspondence, we set

τ(Q) :=
−b +

√
D

2a
, D := disc Q = b2 − 4ac,

and we will denote by Eτ the elliptic curve C/Λτ, Λτ being the lattice Z + τZ. The
abelian surface associated to a form Q is then defined as the product surface

AQ := Eτ × Eaτ+b,

where τ = τ(Q). The mapping Q 7→ AQ realizes a 1:1 correspondence between
SL2(Z)-conjugacy classes of binary forms and isomorphism classes of singular abelian
surfaces, namely

ΣAb ←→ Q+/ SL2(Z),

Q+ being the set of positive definite integral binary quadratic forms. By forgetting
the orientation, we get a 2:1 map ΣAb −→ Q+/ GL2(Z), which is just taking the
transcendental lattice of an abelian surface:

ΣAb 3 [A] 7−→ [T(A)] ∈ GL2(Z).

As a consequence, we get that every singular abelian surface A is isomorphic to the
product of two isogenous elliptic curves with complex multiplication.

Via the Kummer construction, a singular abelian surface naturally gives rise to a sin-
gular K3 surface. If ΣK3 denotes the moduli space of singular K3 surfaces, Shioda and
Mitani [39] proved that there exists a natural map

Km : ΣAb −→ ΣK3, [A] 7−→ [Km(A)].

Unfortunately, this map is not surjective, and in fact the image of Km consists of the
isomorphism classes of singular K3 surfaces with 2-divisible transcendental lattice.
More precisely, if

T : ΣAb −→ Q+/ SL2(Z) and T : ΣK3 −→ Q+/ SL2(Z)

are the period maps associating to a singular abelian or K3 surface its transcendental
lattice seen as a quadratic form, one has the following commutative diagram

ΣAb T //

Km
��

Q+/ SL2(Z)

[2]
��

ΣK3 T // Q+/ SL2(Z)
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where [2] : Q+/ SL2(Z) −→ Q+/ SL2(Z) is the map that multiplies a quadratic form
by 2. In other words, T(Km(A)) = T(A)[2] (lattice-theoretical notation), or equiva-
lently T(Km(A)) = 2 · T(A) (number-theoretic notation).

In order to recover the whole ΣK3, and thus prove the surjectivity of the period map
for singular K3 surfaces, Shioda and Inose [38] came up with a new construction that
later acquired the name of Shioda-Inose structure (following the notation of Morrison
[23]). A Shioda-Inose structure for A is a K3 surface X with a Nikulin involution
σ : X −→ X (i.e. an involution that preserves the 2-form on X) such that the quotient
X/σ is birationally equivalent to Km(A). One has a diagram

A

2:1 ))

X

2:1uu

Km(A) ∼= X/σ

where the map on the left-hand side comes from the classical Kummer construction,
and the one on the right-hand side is an explicit (rational) 2:1 covering of Km(A), with
the additional property that T(A) = T(X). As a consequence, ΣAb ∼= ΣK3, so that, in
particular, this implies that two singular abelian surfaces are isomorphic if and only
if the corresponding K3 surfaces via a Shioda-Inose structure are. Therefore, Shioda-
Inose structures allow to reduce certain problems on K3 surfaces to the analogous ones
on abelian surfaces.

1.3 Class field theory and complex multiplication

1.3.1 The Artin map

For later reference, we need to state a couple of facts from class field theory; see [8] for
an account on the subject. Let K be a number field, and let m be a modulus in K, i.e. a
formal product

m = ∏
p

pnp

over all primes p of K, finite or infinite, where the exponents satisfy
1. np ≥ 0, and at most finitely many are nonzero;
2. np = 0, for p a complex infinite prime;
3. np ≤ 1, for p a real infinite prime.

Consequently, any modulus m can be written as m = m0m∞, where m0 is an OK-
ideal and m∞ is a product of distinct real infinite primes of K. We define IK(m) to be
the group of fractional ideals of K that are coprime to m, and we let PK,1(m) be the
subgroup of IK(m) generated by the principal ideals αOK, where α ∈ OK satisfies

α ≡ 1 mod m0, σ(α) > 0 for every real infinite prime σ|m∞.
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One sees that PK,1(m) is of finite index in IK(m). A subgroup H ⊆ IK(m) is called a
congruence subgroup for m if

PK,1(m) ⊆ H ⊆ IK(m),

and the quotient Ik(m)/H is called a generalized class group of m. Let now L be an
abelian extension of K, and assume that m is divisible by all primes of K that ramify
in L. Then, for a given prime p in K, one can define the Frobenius element associated
to p by means of the Artin symbol

( L/K
p

)
∈ Gal(L/K), thus defining a map

ΦL/K
m : IK(m) −→ Gal(L/K),

called the Artin map for L/K and m.

1.3.2 Main theorems of class field theory

We now recall some of the main theorems of class field theory. The first result we
would like to mention tells us that Gal(L/K) is a generalized ideal class group for
some modulus m:

Theorem 1.3.1 (Artin reciprocity theorem). Let K ⊂ L be an abelian extension, and let m
be a modulus divisible by all primes, finite or infinite, of K that ramify in L. Then,

(i) the Artin map ΦL/K
m is surjective;

(ii) if the exponents of the finite primes m are sufficiently large, then ker ΦL/K
m is a congru-

ence subgroup for m.

The modulus m for which Gal(L/K) is a generalized class group is not unique. In fact,
if n is any modulus divisible by m, then Gal(L/K) is also a generalized class group for
n. This shows that Gal(L/K) is a generalized class group for infinitely many moduli.
However, there is one that is better that the others:

Theorem 1.3.2 (Conductor theorem). Let K ⊂ L be an abelian extension. There exists a
unique modulus f, called the conductor, such that

(i) a prime of K, finite or infinite, ramifies in L if and only if it divides f;
(ii) if m is modulus divisible by all primes of K that ramify in L, then ker ΦL/K

m is a congru-
ence subgroup for m if and only if f|m.

Finally, we want to mention one further result in class field theory, known as the
Existence theorem, saying that every generalized class group is the Galois group of
some abelian extension K ⊂ L.

Theorem 1.3.3 (Existence theorem). Let m be a modulus of K, and let H be a congruence
subgroup for m, i.e.

PK,1 ⊂ H ⊂ IK(m).

Then, there exists a unique abelian extension L/K, all of whose ramified primes (finite or
infinite) divide m, such that if ker ΦL/K

m = H.
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This latter result is a powerful tool that allows one to construct abelian extensions of
K with specified Galois group and restricted ramification. The field L constructed in
the Existence Theorem above is called the ring class field of m over K.

1.3.3 CM theory of elliptic curves

We recall a couple of elementary facts about the CM theory of elliptic curves; for a
reference, see [41, Ch. 2] or [36]. Let E ll(O) be the set of isomorphism classes of
elliptic curves with CM by the order O ⊂ K. Since a proper O-ideal is also a lattice,
quotienting by O-ideals induces a map

C(O) −→ E ll(O), [a] 7−→ [C/a],

which is an isomorphism. Multiplication of ideal classes and lattices gives an action

∗ : C(O)× E ll(O) −→ E ll(O), ([a], [C/Λ]) 7−→ [a] ∗ [C/Λ] := [C/a−1Λ].

This action is simply transitive. Another action on E ll(O) is given by conjugation by
elements of the absolute Galois group Gal(K̄/K):

conj : Gal(K̄/K)× E ll(O) −→ E ll(O), (σ, [E]) 7−→ [Eσ].

Now, let us fix [E] ∈ E ll(O); given σ ∈ Gal(K̄/K), we can form [Eσ], and, by using
the action of C(O), there exists a unique [a] ∈ C(O) such that [a] ∗ [E] = [Eσ]. This
correspondence defines a surjective homomorphism

F : Gal(K̄/K) −→ C(O), σ 7−→ F(σ) : F(σ) ∗ [E] = [Eσ].

The map F is independent of the curve [E] chosen to define it, and thus we have that
F(σ) ∗ [E] = [Eσ], ∀σ ∈ Gal(K̄/K) and ∀[E] ∈ E ll(O).

1.3.4 The Main Theorem of CM

Given a number field K, we denote by IK = I(OK) the group of fractional ideals in K.
We can define the so-called group of idéles by setting

IK :=
{
(av) ∈∏

v
K×v
∣∣∣ av ∈ O×v for all but finitely many v

}
,

where Kv denote the completion of K at the place v. There is a canonical surjective
homomorphism associating to every idéle an element of IK, namely

id : IK −→ IK, (av) 7−→ ∏
v finite

pordpv (av)
v ,

where pv is the prime corresponding to the finite place v, and ordpv(av) is the valuation
of av at the place v. There is also a canonical injective (diagonal) homomorphism

K× −→ IK, a 7−→ (a, a, a, . . . ),
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with discrete image. The statement of the main theorems of class field theory in
terms of ideals is very explicit. However, it has the big disadvantage of working for
a fixed modulus m at the time, and so it describes only the abelian extensions whose
conductor divides m. On the other hand, the statements in terms of idéles allow
one to consider infinite abelian extensions, or equivalently all finite abelian extensions
simultaneously. It also relates local and global class field theory, namely the global
Artin map to its local components.

Proposition 1.3.4. There exists a unique continuous surjective homomorphism

φK : IK −→ Gal(Kab/K)

with the following property: for any L ⊂ Kab finite over K and any prime w of L lying over a
prime v of K, the diagram

K×v

��

φv
// Gal(Lw/Kv)

��

IK
φL/K

// Gal(L/K)

where the bottom map sends a ∈ IK to φK(a)|L. Here, φv is the local component of the Artin
map at the place v.

In particular, for any finite extension L of K which is contained in Kab, φK gives rise to
a commutative diagram

IK
φK

//

φL/K ((

Gal(Kab/K)

|L
��

Gal(L/K)

We recall that the Main Theorem of Complex Multiplication makes use of the group
of idéles IK to control the Galois conjugates of an elliptic curve with CM in K. Let K
be an imaginary quadratic field and E an elliptic curve with CM in K; then, there exist
an order O ⊂ K and a fractional ideal a ⊂ O such that E ∼= C/a, and thus E has CM
in the order O.

Theorem 1.3.5 (Main Theorem of Complex Multiplication, Theorem 5.4 of [36]). Let
E = C/Λ be an elliptic curve with CM by an order in K. Let σ ∈ Gal(K̄/K) and s ∈ IK such
that σ = φK(s) on Kab. Then, there exists an isomorphism

Eσ ∼= C/s−1Λ.
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Chapter 2

Decompositions of singular abelian
surfaces

Right and wrong are not what
separate us and our enemies. It’s our
different standpoints, our
perspectives that separate us. Both
sides blame one another. There’s no
good or bad side. Just two sides
holding different views.

Squall, Final Fantasy VIII

2.1 Introduction

2.1.1 Decompositions of abelian surfaces

A decomposition of an abelian surface A is a pair of elliptic curves (E1, E2) such that
A ∼= E1 × E2. Two decompositions (E1, E2) and (F1, F2) of A are equivalent if E1

∼= F1
and E2 ∼= F2, or E1

∼= F2 and E2 ∼= F1. Analogously, two decompositions (E1, E2) and
(F1, F2) of A are strictly equivalent if E1

∼= F1 and E2 ∼= F2. Let Dec(A) be the set of
isomorphism classes of decompositions of A, and similarly let D̃ec(A) be the set of
strict isomorphism classes of decompositions of A. Also, define δ(A) := #Dec(A) and
δ̃(A) := #D̃ec(A). The quantities δ(A) and δ̃(A) are obviously related by

δ̃(A) = 2δ(A)− δ0(A),

where δ0(A) is the number of decompositions of A into a self-product. Finally, for
n > 1, let τ(n) be the number prime factors of n, and set τ(1) = 1.

Given a singular abelian surface A, Ma [19] was able to find formulae for δ̃(A). These
formulae depend on the arithmetic of the transcendental lattice T(A), and in particular
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on the order of the discriminant group AT(A). However, in case the primitive part
of T(A) has determinant D0 /∈ {3, 4}, Ma gives a formula which only depends on
h(disc T(A)) and the index of primitivity of T(A). For later use, we mention the latter:

Corollary 2.1.1 (Corollary 5.12 in [19]). Let A be a singular abelian surface of transcendental
lattice T(A) = Q = nQ0, Q0 ∈ C(D0) (in particular Q0 is primitive). If disc Q0 6= −3,−4,
then

δ̃(A) = 2τ(n) · h(disc Q).

The proof given by Ma builds on lattice theoretical methods, and it works for abelian
surfaces of arbitrary Picard number. Also, he is able to classify all the decompositions
of a given abelian surface of Picard number ρ ≤ 3. However, there is no mention of
the possible decompositions that can appear in the case of singular abelian surfaces,
which is the main topic of this chapter.

2.1.2 Results and organization the chapter

The present chapter consists of two parts: in the first one, we develop the general-
ized Dirichlet composition, a notion that generalizes the usual Dirichlet composition of
quadratic forms. This notion is crucial for fully understanding how to compute the
transcendental lattice of an arbitrary product of two elliptic curves which are mutually
isogenous and have complex multiplication (Proposition 2.2.4). We would like to stress
that the results of this part are of interest on their own, as they provide generalizations
of previous results of Shioda and Mitani [39] about the geometry of abelian surfaces,
and also of Gauß and Dirichlet in the theory of quadratic forms.

The second part of this chapter is concerned with the problem of classifying all the pos-
sible decompositions of a given singular abelian surface, and it is the real motivation
behind our studies. In doing so, we have tried to highlight the connection between
the geometry of singular abelian surfaces and the arithmetic of quadratic forms as
much as possible. In our analysis, we distinguish two cases, according to the complex
multiplication field K of the singular abelian surface A. If K 6= Q(i), Q(

√
−3), then we

are able to explicitly construct enough decompositions of A by using the generalized
Dirichlet composition to match Ma’s formula (Theorem 2.3.11). With this method, we
are also able to give a new proof of Ma’s result: the idea is to consider all singular
abelian surfaces of fixed discriminant and index of primitivity at once, and to reduce
the statement to a number-theoretical problem of class numbers. The cases K = Q(i)
or K = Q(

√
−3) require a little more care to handle, but nevertheless we are able

to find all decompositions and to give new formulae for the number of decomposi-
tions. These formulae, unlike Ma’s, do not depend on the discriminant group of the
transcendental lattice of A, but only on its discriminant and its index of primitivity.
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2.2 Transcendental lattices of arbitrary singular abelian sur-
faces

2.2.1 Generalized Dirichlet composition

The idea behind Dirichlet composition is that two binary quadratic forms Q1 and Q2,
of the same discriminant D, give rise to a new form F, itself of discriminant D, with
the property

Q1(x, y) ·Q2(z, w) = F(B1(x, y, z, w), B2(x, y, z, w)),

for Bi(x, y, z, w) ∈ Z[xz, xw, yz, yw]. In particular, the products of numbers represented
by Q1 and Q2 are represented by F. We would like to generalize this technique in a
way that allows one to compose form of (possibly) different discriminants.
This can be done as follows: if Q1 and Q2 are not of the same discriminant, we can
multiply them by positive integers to obtain two new forms (necessarily not primitive)
having the same discriminant. Namely, suppose we are given [Q1] ∈ C(D1) and
[Q2] ∈ C(D2), with D1 = f 2

1 dK and D2 = f 2
2 dK (dK here denotes the fundamental

discriminant of a quadratic imaginary field K), set f := lcm( f1, f2). Then, putting

D := f 2dK, d1 := f / f1, d2 := f / f2,

one readily sees that the forms d1Q1 and d2Q2 have discriminant D. Therefore, after
possibly replacing Q1 and Q2 with suitable properly equivalent forms, we can assume
that d1Q1 and d2Q2 have coprime leading coefficients (here, we use [8, Lemma 2.25]
and gcd(d1, d2) = 1), hence composition is well-defined: indeed, it works exactly as
in the case of primitive forms (for an account, see [8, Theorem 3.8]). It is not hard to
check the following:

Lemma 2.2.1. Assume that Q = (a, b, c) and Q′ = (a′, b′, c′) are primitive, and suppose that

n2 disc Q = m2 disc Q′, gcd(n, m) = 1.

Then, the form (nQ) ∗ (mQ′) has primitivity index nm (if the composition exists).

Proof. This follows from repeating the construction of the usual composition of binary
quadratic forms in this more general setup; the interested reader will find a detailed
account in [8, Ch. 1, Sect. 3].

In particular, the above lemma shows that the form d1Q1 ∗ d2Q2 has index of primitiv-
ity d1d2. Also,

D = disc(d1Q1 ∗ d2Q2) = (d1d2)
2 gcd( f1, f2)

2dK,

and therefore the primitive part of d1Q1 ∗ d2Q2 is a form in C(OK, f0), where f0 :=
gcd( f1, f2). This means that composing forms of discriminants D1 and D2 gives forms
of discriminant D := lcm(D1, D2), having index of primitivity d1d2, where d1 = f / f1
and d2 = f / f2. Dropping the primitivity index, we get a new form, denoted by
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Q1 ~Q2, which we call the generalized Dirichlet composition of Q1 and Q2. At the level
of equivalence classes, we get a map of class groups

C(D1)× C(D2)
~−→ C(D0),

where D0 := f 2
0 dK. More concretely, given [Q1] ∈ C(D1) and [Q2] ∈ C(D2), Q1~Q2 is

the form of discriminant D0 with the property that

d1d2[Q1~Q2] = [d1Q1] ∗ [d2Q2].

Remark 2.2.2. By using the 1:1 correspondence between ideal class group and form
class group, one sees that the generalized Dirichlet composition corresponds to the
usual multiplication between ideal classes

C(OK, f1)× C(OK, f2)
~−→ C(OK, f0).

We now establish some elementary properties of ~.

Proposition 2.2.3. Let Qi ∈ C(Di) (i = 0, 1, 2), R ∈ C(D), and let P be the principal form
of discriminant D. The composition ~ satisfies:

(i) Q0~ P = Q0;
(ii) (Q0~ R)~ R−1 = Q0;

(iii) (Q1~ R)~ (R−1~Q2) = Q1~Q2;

Proof. Making use of the isomorphism between form class group and ideal class group,
the proof follows easily from the corresponding properties for fractional ideals.

2.2.2 Explicit computation of transcendental lattices

We will now explicitly compute the transcendental lattice of a singular abelian surface.

Proposition 2.2.4. Let D0 = f 2
0 dK and D′0 = ( f ′0)

2dK, where K is a quadratic imaginary field
K. Let Q0 = (a0, b0, c0) ∈ C(D0) and Q′0 = (a′0, b′0, c′0) ∈ C(D′0); moreover, let

f := lcm( f0, f ′0), d := f / f0, d′ := f / f ′0, D := f 2dK.

Then,
[T(EQ0 × EQ′0

)] = dd′[Q0~Q′0] = (d[Q0]) ∗ (d′[Q′0]).

Proof. Recall that EQ0 := Eτ(Q0), and observe that

τ1 := τ(Q0) =
−b0 +

√
D0

2a0
=
−b +

√
D

2a
,

where (a, b, c) = d · (a0, b0, c0). Similarly,

τ2 := τ(Q′0) =
−b′0 +

√
D′0

2a′0
=
−b′ +

√
D

2a′
,
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where (a′, b′, c′) = d′ · (a′0, b′0, c′0). Let B be the key element in the Dirichlet composition,
which is described in [8, Lemma 3.2]. By SL2(Z)-invariance of the j-invariant, we can
replace b and b′ by B without changing the isomorphism classes of E and E′. Therefore,
we can assume that

τ1 =
−B +

√
D

2a
, τ2 =

−B +
√

D
2a′

.

By [39],
pA = u12 + τ2u14 + τ1u23 − τ1τ2u34,

and NS(A) = ker(pA). Letting

v = ∑
1≤i<j≤4

Aijuij ∈ NS(A)Q,

from pA(v) = 0, we see that

NS(A)Q = Q
〈

u12 − B
a

u23 +
D− B2

4aa′
u34, u14 − a′

a
u23, u13, u24

〉
.

Similarly, if v ∈ T(A) = NS(A)⊥, then

A24 = A13 = 0, (2.1)

A34 −
B
a

A14 +
D− B2

4aa′
A12 = 0, (2.2)

A23 −
a′

a
A14 = 0. (2.3)

Condition (7) gives
da0A23 = d′a′0A14;

now we can assume that (d, a′0) = 1 and then also that (a0, a′) = 1 (use [8, Lemma 2.3]
and [8, Lemma 2.25]). Under these assumptions, we see that

A14 = a0A′14 = a0dA′′14 and A23 = a′0d′A′′14;

substituting in (6) yields
A34 = BA′′14 + CA12,

and therefore we deduce

T(A) = Z
〈

au14 + a′u23 + Bu34, u12 + Cu34
〉
=

(
2aa′ B

B 2C

)
.

17



2.3 Decompositions for K 6= Q(i), Q(
√
−3)

2.3.1 Cooking up decompositions from a given one

Let K be a quadratic imaginary field, K 6= Q(i), Q(
√
−3). Let A be a singular abelian

surface of transcendental lattice Q = nQ0 of discriminant D = f 2dK, and let D0 :=
disc Q0 = f 2

0 dK. We can use Proposition 2.2.4 to cook up new decompositions starting
from a given one. To this end, suppose A decomposes as A ∼= EQ1 × EQ2 , with Q1 ∈
C(D1), Q2 ∈ C(D2), gcd(D1, D2) = D0 and lcm(D1, D2) = D. Then, as C(D) acts on
both C(D1) and C(D2) by means of~, we get new decompositions of A by considering
the following product surfaces

EQ1~R × EQ2~R−1 , R ∈ C(D).

Remark 2.3.1. Notice that, given A as above, we can always cook up a decomposition
into a product of elliptic curves E1 and E2 such that

E1 ∈ C(D1), E2 ∈ C(D2), lcm(D1, D2) = D, gcd(D1, D2) = D0.

Indeed, consider a form Q0 and the principal form P0, both of discriminant D0, and
let s, t ∈ Z be coprime nonnegative integers. Consider the abelian surface given by

Esτ(Q0) × Etτ(P0).

Then, similar computations to the ones in Theorem 2.2.4 show that Esτ(Q0) × Etτ(P0)

gives indeed a decomposition of A, for a suitable choice of s and t. Notice that, if
Q0 = (a0, b0, c0), then sτ(Q0) corresponds to the form

a0x2 + (b0s)xy + (c0s2)y2,

which is primitive, hence it lies in C(s2D0), and similar considerations hold for tτ(P0).
Therefore, in order to get the desired decomposition, it is enough to set s := f1/ f0 and
t := f2/ f0 (or viceversa).

2.3.2 Action of a class group on class groups of smaller discriminant

Recall that the class group C(D) acts on C(D0) by means of ~ whenever D0 divides
D. Therefore, we might ask whether this action is transitive. We first notice that a
form Q0 ∈ C(D0) can be lifted to a primitive form Q ∈ C(D) in such a way that
Q~ P0 = Q0, as stated in the following:

Lemma 2.3.2. For every form Q0 ∈ C(D0) there exists a form Q ∈ C(D) which is the lift of
Q0 in the following sense: Q~ P0 = Q0.

Proof. If Q0 = [a0, b0, c0] is represented by the ideal [a0, −b0+
√

D0
2 ], then let Q corre-

spond to the ideal class [a0, −db0+
√

D
2 ]; moreover, let dP0 correspond to the ideal class
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[d, −dp0+
√

D
2 ], where p0 = 0, 1 according to the parity of the discriminant D. It follows

that [
a0,
−db0 +

√
D

2

]
·
[
d,
−dp0 +

√
D

2

]
= [a0d, ∆] = [a0, ∆/d],

where ∆ = −B+
√

D
2 , and B is integer introduced in the Dirichlet composition. Since

[a0, ∆/d] corresponds exactly to Q0, we are done.

As a consequence, we have the following:

Corollary 2.3.3. The action of C(D) on C(D0) is transitive.

This means that the factors of the decompositions

EQ1~R × EQ2~R−1 , R ∈ C(D)

cover the whole class groups C(D1) and C(D2), i.e.

{Q1~ R | R ∈ C(D)} = C(D1),

and similarly for C(D2). In the following, we will be investigating whether we get
h(D) distinct decompositions under this action, i.e. whether(

EQ1~R, EQ2~R−1

)
6=
(
EQ1~S, EQ2~S−1

)
for R 6= S ∈ C(D).

2.3.3 Distinct decompositions

We now come to the issue of whether the action of C(D) on the factors of a given
decomposition delivers h(D) distinct decompositions. Let D = f 2dK, and consider
D1 := f 2

1 dK and D2 := f 2
2 dK such that gcd( f1, f2) = f0 and lcm( f1, f2) = f . Let us

assume Q1 ∈ C(D1), Q2 ∈ C(D2) and R, S ∈ C(D). Moreover, suppose that

Q1~ R = Q1~ S, Q2~ R−1 = Q2~ S−1,

which is equivalent to assuming that a decomposition be realized by two distinct
elements R, S ∈ C(D). This, in turn, is equivalent to the existence of an element
U ∈ C(D) such that

U~Q1 = Q1, U~Q2 = Q2.

So we are to understand the elements U ∈ C(D) that fix Qi, i = 1, 2.

Let C(D) act on C(D0) (having D0 divide D), and let U be an element fixing some
Q0 ∈ C(D0); notice that U would actually fix the whole class groups C(D0). We
call the group of such U’s the stabilizer of C(D0) in C(D), and it will be denoted by
Stab C(D0); clearly, its order is h(D)/h(D0). In the situation of interest to us, we want
to study Stab C(D1)∩ Stab C(D2): this intersection describes the elements in C(D) that
represent an obstruction to C(D) delivering h(D) distinct decompositions via its action
on the factors of a given decomposition. In other words, we would like to answer the
following:
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Question 2.3.4. When is Stab C(OK, f1) ∩ Stab C(OK, f2) trivial?

Whenever the answer is affirmative, the action of C(D) on a given decomposition
yields exactly h(D) distinct decompositions.

2.3.4 Interlude: ring class fields and their compositum fields

Suppose we have the diagrams of orders

K OK, f1
mM

{{

OK
?�

OO

OK, f0_?
oo OK, f

Q1

bb

mM

||

OK, f2

Q1

cc

where f1, f2 ≥ 1, f0 = gcd( f1, f2) and f = lcm( f1, f2). Let i = 0, 1, 2, ∅; since

PK,1( fiOK) ⊆ PK,Z( fi) ⊆ IK( fi) = IK( fiOK),

by Theorem 1.3.3, there exists a unique abelian extension Li/K all of whose ramified
primes divide fiOK, such that ker(ΦLi/K

fiOk
) = PK,Z( fi), i.e. Gal(Li/K) ∼= C(OK, fi). This

extension is the ring class field of OK, fi , and it is sometimes denoted by H(OK, fi); at
the level of ring class fields, we get an induced diagram of field extensions,

L1 � p

""

HK
� � // L0

/ �

>>

� o

  

L1L2
� � // L

L2
. �

<<

where HK is the Hilbert class field of K, i.e. the ring class field of OK. By Galois theory,
we get the following induced diagram of class groups.

C(OK, f1)

yy

C(OK) C(OK, f0)
oo C(OK, f )

ee

yy

C(OK, f2)

ee

20



In most cases the field L is precisely the compositum of L1 and L2, as it is stated in the
following

Proposition 2.3.5 (Proposition 3.1 in [1]). Assume all conditions above are satisfied.
1. If dK 6= −3,−4, then L = L1L2.
2. Assume dK ∈ {−3,−4}.

(a) If f1 or f2 is equal to 1, or f0 > 1, then L = L1L2.
(b) If f1, f2 > 1 and f0 = 1, then L1L2 $ L; moreover, the extension L/L1L2 has

degree 2 if dK = −4, and degree 3 if dK = −3.

2.3.5 Interlude: numbers represented by the principal form

For two sets S and T, we say that S ⊂̇ T if S ⊆ T∪Σ, where Σ is a finite set; analogously,
S .
= T means that both S ⊂̇ T and T ⊂̇ S hold. Suppose we are now given a quadratic

form Q; then, we can ask about the primes represented by Q, i.e. about the set

PQ := {p prime | p is represented by Q}.

It turns out that

PQ
.
=
{

p prime
∣∣∣ p unramified in L,

(L/Q

p

)
= 〈σ〉

}
=: P̂Q,

where 〈σ〉 is the conjugacy class of the element σ ∈ Gal(L/K) corresponding to the
ideal associated to the form Q, K is the quadratic imaginary field of discriminant
disc Q, and L is the ring class field of the order O of discriminant disc Q. Notice that
in case Q = P, the principal form, then P̂P = Spl(L/Q), Spl(L/Q) being the set of
primes in Q that split completely in L. For later reference, we mention the following

Lemma 2.3.6 (Exercise 8.14 in [8]). Let L and M be two finite extension of K, and let P be a
prime in K that splits completely in both L and M; then P splits completely in the composite
LM. Consequently, Spl(LM/K) = Spl(L/K) ∩ Spl(M/K).

2.3.6 Answer to Question 2.3.4

Let Pi be the principal form of the order OK, fi , i = 1, 2, ∅. Also, let Li be the ring class
field of the order OK, fi , i = 1, 2, ∅. The key tool we will use is the fact that the principal
form represents all but finitely many unramified primes which split completely in the
ring class field.

Lemma 2.3.7. Let PPi be the set of primes of represented by Pi, for i = 1, 2,. Then, PP
.
=

PP1 ∩ PP2 .

Proof. By using Lemma 2.3.6, we see that

PP
.
= Spl(L/K) = Spl(L1/K) ∩ Spl(L2/K) .

= PP1 ∩ PP2 .
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By the Čebotarev Density Theorem, we can reason with the set PPi rather than Spl(Li/Q),
for i = 1, 2, ∅: in fact, they both have positive Dirichlet density (thus they are infinite),
and they are the same up to a finite set (which has Dirichlet density 0).

Proposition 2.3.8. The principal form is characterized by representing almost all primes that
split completely in the ring class field.

Proof. Suppose Q is a form such that PQ
.
= Spl(L/Q). Then, we would have{

p prime
∣∣∣ p unramified,

(L/Q

p

)
= 〈σ〉

} .
=
{

p prime
∣∣∣ (L/Q

p

)
= 〈1〉

}
,

and since both sets have infinitely many elements it must necessarily be σ = 1 ∈
Gal(L/K), which corresponds to the class of the principal form. Since equivalent
forms represent the same numbers, we are done.

We can now answer Question 2.3.4:

Proposition 2.3.9. Unless dK ∈ {−3,−4}, f1, f2 > 1 and f0 = 1, we have

Stab C(OK, f1) ∩ Stab C(OK, f2) = (0).

Proof. Let Q ∈ Stab C(D1) ∩ Stab C(D2), i.e. Q is such that

Q~ P1 = P1, Q~ P2 = P2.

Now, for i = 1, 2, the primes represented by Pi are, up to a finite set, those p that split
completely in the ring class field Li. In the same fashion, the primes represented by Q
are, up to a finite set, the ones splitting completely in the ring class field L. Notice that,
by the assumption, it follows that all primes represented by Q are also represented by
P1 and P2. Moreover, by Proposition 2.3.5, L = L1L2, and Lemma 2.3.7 and Proposition
2.3.8 imply that Q is in fact the principal form.

Remark 2.3.10. With the aid of a computer algebra system, it is not difficult to find ex-
amples of Stab C(OK, f1)∩ Stab C(OK, f2) being non-trivial, if K = Q(i) or K = Q(

√
−3).

2.3.7 Classification result for K 6= Q(i), Q(
√
−3)

As an immediate consequence of Proposition 2.3.9, we have constructed all possible
decompositions of a given singular abelian surface in case K 6= Q(i), Q(

√
−3). More

precisely,

Theorem 2.3.11. Let A be a singular abelian surface having transcendental lattice Q = nQ0,
and let D = f 2dK = disc Q, D0 = f 2

0 dK = disc Q0, K 6= Q(i), Q(
√
−3) (in particular,

n = f / f0). Then, all decompositions of A into a product of two mutually isogenous elliptic
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curves with complex multiplication are obtained as follows: choose a pair ( f1, f2) of positive
integers such that

gcd( f1, f2) = f0 and f1 f2 = n f 2
0 ,

and pick an arbitrary decomposition A = EQ1 × EQ2 , with Q1 ∈ C(D1) and Q2 ∈ C(D2).
Then, A ∼= EQ1~R × EQ2~R−1 , for all R ∈ C(D).

Proof. Choose a pair ( f1, f2) as in the statement, and use Remark 2.3.1 to obtain a
decomposition A ∼= E1 × E2 with Ei ∈ C(Di), Di = f 2

i dK (i = 1, 2). Then, the action
of C(D) on the factors of E1 × E2 gives us h(D) distinct decompositions (by means of
Proposition 2.3.9). As there are 2τ(n) choices of pairs ( f1, f2) as above, we have found

2τ(n)h(D) = 2τ(n)h(OK, f ),

distinct decompositions of A. This matches Ma’s formula (Proposition 2.1.1) for the
number of decompositions in case K 6= Q(i), Q(

√
−3). Therefore, we have indeed

found all possible decompositions of A.

2.4 Alternative proof of Ma’s formula for K 6= Q(i), Q(
√
−3)

The classification of decompositions of singular abelian surfaces has been obtained
by producing enough distinct decompositions to match Ma’s formula. However, our
construction incidentally provides the reader with an alternative and simpler proof of
Ma’s formula for the number of decompositions in the case K 6= Q(i), Q(

√
−3).

Let ΣAb(D, n) be the space of singular abelian surfaces of discriminant D and primitiv-
ity index n, i.e. the space of surfaces A such that T(A) = nQ0, for a primitive form Q0,
and disc T(A) = D. If we consider all the elements of ΣAb(D, n) at once, Proposition
2.3.9 says that we have constructed a total of

2τ(n)h(OK, f0)h(OK, f )

distinct product surfaces. However, the number of distinct product surfaces within
ΣAb(D, n) is

∑
A∈ΣAb(D,n)

δ̃(A) = ∑
( f1, f2)= f0
f1 f2=n f 2

0

h(OK, f1)h(OK, f2).

The following result will allow us to give a new proof of Ma’s formula for the number
of decompositions of a singular abelian surface (Proposition 2.1.1).

Proposition 2.4.1. Unless dK ∈ {−3,−4} and f0 = 1, we have

2τ(n)h(OK, f )h(OK, f0) = ∑
( f1, f2)= f0
f1 f2=n f 2

0

h(OK, f1)h(OK, f2).
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Proof. We notice that

∑
( f1, f2)= f0
f1 f2=n f 2

0

h(OK, f1)h(OK, f2) = 2 ∑
( f1, f2)= f0
f1 f2=n f 2

0
f1< f2

h(OK, f1)h(OK, f2)

= 2 ∑
( f1, f2)= f0
f1 f2=n f 2

0
f0 6= f1< f2

h(OK, f1)h(OK, f2) + 2h(OK, f0)h(OK, f ),

and so it is enough to prove that

(2τ(n)−1 − 1)h(OK, f ) = ∑
( f1, f2)= f0
f1 f2=n f 2

0
1 6= f1< f2

h(OK, f1)h(OK, f2)

h(OK, f0)
;

since the number of summands on the right-hand side is precisely 2τ(n)−1 − 1, we are
left to prove that

h(OK, f1)h(OK, f2)

h(OK, f0)
= h(OK, f ).

But this comes as a consequence of class field theory: by the assumptions, one has

[O×K : O×K, fi
] =

1
2

#O×K , i = 0, 1, 2, ∅.

Setting

Πi := ∏
p| fi

(
1−

(
dK

p

)
1
p

)
, i = 0, 1, 2, ∅

[8, Theorem 7.24] yields

h(OK, f1)h(OK, f2)

h(OK, f0)
=

h(OK) f
#O×K /2

· Π1Π2

Π0
,

since f = n f0 and f1 f2 = n f 2
0 = f f0. However, it is not hard to see that

Π1Π2

Π0
= Π,

and therefore the proof is complete.

Proof of Corollary 2.1.1. Our construction of decompositions of a given singular abelian
surface A shows that δ̃(A) ≥ 2τ(n)h(OK, f ). Summing over all A ∈ ΣAb(D, n), we get

∑
A∈ΣAb(D,n)

δ̃(A) ≥ 2τ(n)h(OK, f )h(OK, f0)

= ∑
( f1, f2)= f0
f1 f2=n f 2

0

h(OK, f1)h(OK, f2) = ∑
A∈ΣAb(D,n)

δ̃(A).
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Therefore, ∑A∈ΣAb(D,n) δ̃(A) = 2τ(n)h(OK, f )h(OK, f0), and all A ∈ ΣAb(D, n) have the
same number of decompositions, in particular δ̃(A) = 2τ(n)h(OK, f ).

2.5 Decompositions in the remaining cases

The techniques employed thus far cannot be employed when K = Q(i) or K =
Q(
√
−3). However, we are still able to completely solve the classification problem,

and also to give an alternative formula for the number of decompositions of a sin-
gular abelian surface. Let A be a singular abelian surface with transcendental lattice
Q = nQ0, and let D = f 2dK = disc Q, D0 = f 2

0 dK = disc Q0, K ∈ {Q(i), Q(
√
−3)}. We

will divide the analysis into two cases, depending on f0.

2.5.1 Case f0 > 1

Under these hypotheses, we can still use Proposition 2.3.9 to get h(D) distinct de-
compositions starting from a given one. By combining this with Proposition 2.4.1,
and reasoning as in the alternative proof of [19, Corollary 5.12] given above, we find
that the number of decompositions of A is again δ̃(A) = 2τ(n)h(D). Moreover, all
decompositions are obtained exactly as in the proof of Theorem 2.3.11.

2.5.2 Case f0 = 1

In this case, we will proceed with a direct analysis case by case. We will consider
pairs ( f1, f2) as above, which now will have the additional property that f1 and f2 are
relatively prime (because f0 = 1), and thus we will also have f = n.

Theorem 2.5.1. In the above setting, the number of decompositions of A into the product of
two mutually isogenous elliptic curves with complex multiplication (up to isomorphism of the
factors) is

δ̃(A) = (1 + 2τ(n)−1)h(OK,n),

if n > 1, and δ̃(A) = 1 otherwise. The surface A is isomorphic to any of the products (E1, E2),
where [Ei] ∈ E ll(OK, fi) (i = 1, 2), gcd( f1, f2) = 1 and f1 f2 = n.

Proof. If n = 1, there is nothing to prove; therefore, we can assume n > 1. Since
h(OK) = 1, a formula for the number of decompositions of A can be obtained just by
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a counting argument, and thus we see that

δ̃(A) = ∑
( f1, f2)=1

f1 f2=n

h(OK, f1)h(OK, f2)

= 2 ∑
( f1, f2)=1

f1 f2=n
f1< f2

h(OK, f1)h(OK, f2)

= 2 ∑
( f1, f2)=1

f1 f2=n
1 6= f1< f2

h(OK, f1)h(OK, f2) + 2h(OK,n).

Following the notation from earlier, since #O×K = 4, [8, Theorem 7.24] implies that
h(OK, fi) = fiΠi/2. Therefore, h(OK, f1)h(OK, f2) = nΠ/4, and thus

δ̃(A) = (2τ(n)−1 − 1)nΠ/2 + nΠ

=
1
2

nΠ(1 + 2τ(n)−1) = (1 + 2τ(n)−1)h(OK,n).

So we are able to exhibit a formula for the number of decompositions of such a singular
abelian surface. Also, the classification problem is solved, as we can just take all pairs
(E1, E2) (since h(OK) = 1).

The case K = Q(
√
−3) is analogous, and thus the proof of Theorem 2.5.2 is the same,

except for the fact that #O×K = 6. We omit the proof for sake of brevity.

Theorem 2.5.2. Let A be a singular abelian surface having transcendental lattice Q = nQ0,
and let D = f 2dK = disc Q, D0 = f 2

0 dK = disc Q0, K = Q(
√
−3). The number of

decompositions of A into the product of two mutually isogenous elliptic curves with complex
multiplication (up to isomorphism of the factors) is

δ̃(A) =
2
3
(2 + 2τ(n)−1)h(OK,n),

if n > 1, and δ̃(A) = 1 otherwise. The surface A is isomorphic to any of the products (E1, E2),
where [Ei] ∈ E ll(OK, fi) (i = 1, 2), gcd( f1, f2) = 1 and f1 f2 = n.

2.5.3 Application: Shioda-Inose models of singular K3 surfaces

Let X be a singular K3 surface, i.e. a K3 surface of maximum Picard number, and let
T(X) denote its transcendental lattice. By results of Shioda and Inose [38], there exists
a singular abelian surface A = E1 × E2 such that T(A) = T(X); moreover, there is a
model of X which is given in terms of the j-invariants of E1 and E2. Inose first found

26



a model for it [13], and later Schütt exhibited a finer model for such a K3 surface as an
elliptic fibration defined over Q(j1, j2), namely

X : y2 = x3 − 3αβt4x + αβt5(βt2 − 2βt + 1),

where α = j1 j2 and β = (1− j1)(1− j2), jk being the j-invariant of Ek (k = 1, 2). It
follows that our classification of the decompositions of a singular abelian surface gives
all the possible Shioda-Inose models of X, i.e. all the possible models of X which are
realizable via a Shioda-Inose structure.

2.5.4 Open problems

In this chapter, we have dealt with decompositions of singular abelian surfaces, but
one might want to investigate the possible decompositions in the case of singular
abelian varieties of higher dimension. It was proven by Katsura [14] that such a vari-
ety is isomorphic to the product of mutually isogenous elliptic curves with complex
multiplication.

Problem 2.5.3. Given a singular abelian variety A,
1. find a formula for the number of decompositions of A into a product of mutually

isogenous elliptic curves with complex multiplication;
2. classify all such decompositions explicitly.
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Chapter 3

The field of moduli of singular K3
surfaces

Why do people insist on creating
things that will inevitably be
destroyed? Why do people cling to
life, knowing that they must
someday die? Knowing that none of
it will have meant anything once
they do?

Kefka, Final Fantasy VI

3.1 Introduction

3.1.1 Field of definition vs. field of moduli

The arithmetic data of a singular abelian surface is encoded in its transcendental lat-
tice, and a Shioda-Inose structure associates to it a singular K3 surface with the same
transcendental lattice, thus preserving the arithmetic information. This has been em-
ployed, for instance, by Schütt in the study of the field of definition of singular K3 sur-
faces [28]: he proved that a singular K3 surface X always admits a model over a ring
class field H/K, K being the field K = Q(disc T(X)), generalizing previous results of
Inose [13]. Morever, Schütt [28], generalizing previous work of Shimada [35], describes
the conjugate varieties of X (modulo C-isomorphism) under the action of Gal(C/K):
this is done by looking at the corresponding transcendental lattices, and it is best un-
derstood in the language of genus theory of quadratic forms. As a by-product, given a
good notion of field of moduli, one should expect its degree to be exactly the number
of Galois conjugates of X. However, apart from the aforementioned result, nothing is
known in general for the field of moduli of singular K3 surfaces, which is indeed a
good candidate for an object to be studied, as every field of definition must contain
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the field of moduli itself. This chapter aims at describing the field of moduli of singu-
lar K3 surfaces. This is achieved by using tools such as Galois theory, CM theory of
elliptic curves, the theory of quadratic forms and the results in Chapter 2.

3.1.2 Results and organization of the chapter

We first give a new notion of relative field of moduli, a notion that was first introduced
by Matsusaka in [20], and later refined by Koizumi [15]. Then, we study the relative
field of moduli with respect to the CM field of our singular K3 surface; in the follow-
ing, this will also be called the field of K-moduli, K being the CM field. Using an idea
of Šafarevič [34], we reduce the problem of studying the field of moduli of a singular
K3 surface X to the study of the analogous field for a singular abelian surface A with
transcendental lattice T(A) = T(X) (this condition can always be achieved by means
of a Shioda-Inose structure). We obtain that the field of moduli of a singular K3 sur-
face X is a Galois extension of K, of degree the order of the genus of the (primitive
part of the) transcendental lattice of X seen as a quadratic form, and we characterize
it as the subfield of K̄ which is fixed by a certain subgroup of Gal(K̄/K) (Theorem
3.4.4). Having this result as a starting point, we are able to study the absolute field of
moduli, i.e. the field of Q-moduli. Here the analysis is slightly more subtle, as we have
to distinguish two cases, according to whether the primitive part of the transcendental
lattice is 2-torsion or not: in fact, this condition reflects the behaviour of the modulus
[X] under the Galois action of the complex conjugation automorphism. Finally we are
able to recover almost the same result as in the case of the relative field of moduli
(Theorem 3.5.3). The exception lies in the fact that this field is not a Galois extension
of Q in general: as a counterexample, it is enough to consider a certain singular K3
surface of class number three (Example 3.5.4). One last section is devoted to further
questions on singular K3 surfaces and their field of moduli: we study non-finiteness
with respect to the degree of the field of moduli, we provide an explicit description of
the field of K-moduli that can be implemented on a computer algebra system, and fi-
nally we investigate how the field of moduli varies within the moduli space of singular
K3 surfaces.

3.2 The field of K-moduli

3.2.1 A new definition

We define the field of K-moduli MK of a variety X, where K is a given field. This field
was first introduced by Matsusaka [20] as the relative field of moduli (or field of moduli
over K), and it was defined to be the intersection of all fields of definition of X which
contain K, in other words

MK :=
⋂

X defined over L
L⊃K

L.
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Later, Koizumi [15] adjusted the definition to positive characteristic geometry by adding
the extra condition that for an automorphism σ ∈ Aut(Ω/K), where Ω is a fixed uni-
versal domain1,

σ ∈ G := {σ ∈ Aut(Ω/K) |Xσ ∈ [X]} ⇐⇒ σ|MK
= idMK ,

where by [X] we denote the isomorphism class of X. For our purposes, it is best to
introduce the following

Definition 3.2.1. The field of K-moduli of X is the subfield of C fixed by the group

G := {σ ∈ Aut(C/K) |Xσ ∈ [X]}.

In practice, we are dropping Matsusaka’s condition and keeping the one Koizumi in-
troduced. Notice that, unlike in the case of Koizumi’s definition [15], our field of
moduli always exists and it is unique by Galois theory. Following [15], if the charac-
teristic of the ground field is zero, then MK is contained in any field of definition for
X which contains K, and thus we have the following extension

MK ⊂
⋂

X defined over L
L⊃K

L,

which in fact is algebraic and Galois. We remark that the right-hand side of this inclu-
sion is quite a mysterious object in general.

If X is a variety, by the absolute field of moduli of X we will mean the field of Q-moduli,
i.e. the field MQ such that for all automorphisms σ ∈ Aut(C/Q),

Xσ ∈ [X]⇐⇒ σ acts trivially on MQ;

equivalently, it is defined as the fixed field of the group

G := {σ ∈ Aut(C/Q) |Xσ ∈ [X]}.

Galois theory once again guarantees that this field is unique for a given variety X.

If X is a variety and τ ∈ Gal(C/Q), let Xτ denote the variety obtained by conjugating
X by τ. Suppose we want to study the field of L-moduli, for some number field L, and
denote by G(X) (respectively, G(Xτ)) the group fixing the modulus of X (respectively,
Xτ) and by M(X) (respectively, M(Xτ)) the field of L-moduli. Then, one can show
that:

1. G(X) only depends on the isomorphism class of X;
2. G(Xτ) = τ · G(X) · τ−1;
3. M(Xτ) = τ(M(X)).
1Given a field K, a universal domain Ω is an extension of K with infinite transcendence degree over

K. Universal domains were the fundamental object algebraic geometry was based on before the advent
of Grothendieck. More details can be found in the fundational book of Weil [42]; this uses notions very
much different from the modern language of schemes and it is quite hard to read at times.
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3.2.2 A little motivation

Let X be a singular K3 surface, and let

T(X) ∼=
(

2a b
b 2c

)
= (a, b, c)

be its transcendental lattice, where the right-hand side equality identifies T(X) with
the corresponding quadratic form. To T(X), one can associate two gadgets: the first
one is det T(X), and the second one is disc T(X), when T(X) is regarded as a quadratic
form. Clearly,

det T(X) = −disc T(X) < 0,

and thus K := Q(
√

det T(X)) is a quadratic imaginary field. We will call K the CM
field2 of X. If X is the K3 surface associated to a singular abelian surface A via a
Shioda-Inose structure (so that, in particular, T(A) = T(X)), we will say that K is the
CM field of A as well. Generalizing a previous result of Shimada [35], Schütt was able
to prove the following result

Theorem 3.2.2 (Theorem 5.2 in [28]). Let X be a singular K3 surface, and let T(X) be its
transcendental lattice. Assume that X is defined over a Galois extension L/K. Then, the action
of the Galois group Gal(L/K) spans the genus of T(X), i.e.(

genus of T(X)
)
=
{
[T(Xσ)] : σ ∈ Gal(L/K)

}
.

Here, as the genus is defined for primitive quadratic forms only, we mean the follow-
ing: consider the primitive part of T(X), so that T(X) = mT(X)0, m being the index of
primitivity of T(X). Then,(

genus of T(X)
)
=
{

m[T] : [T] lies in the genus of T(X)0
}

.

Set L := H(disc T(X)) in Theorem 3.2.2, where H(D) denotes the ring class field of
the order in K of discriminant D, for D < 0. Galois theory tells tells us that

Gal(L/Q) ∼= Gal(L/K)oGal(K/Q),

where Gal(K/Q) accounts for the complex conjugation (for a reference, see [8, Ch. 9]).
But complex conjugation has the effect of sending a singular K3 surface of transcen-
dental lattice (a, b, c) to the singular K3 surface with transcendental lattice (a,−b, c), so
it acts as inversion on the corresponding class group (see [39] and [28]). By observing
that a form and its inverse lie in the same genus, we conclude that

(genus of T(X)) ={[T(Xσ)] | σ ∈ Gal(L/K)} =
={[T(Xσ)] | σ ∈ Gal(L/Q)}.

2There are other notions of CM field currently in use. For example, a number field K is a CM field if
it is a totally imaginary quadratic extension of a totally real field. In fact, the CM field of a singular K3
surface is also a CM field in the latter sense.
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This observation suggests a connection between the field of moduli of a singular K3
surface and the genus of its transcendental lattice, even in the case of the field of Q-
moduli.

The classification of decompositions of a singular abelian surface (Chapter 2) allows
us to tell something more about the field of moduli of X containing K. Recall that
MK is contained in the intersection of all possible fields of definition for X. Then, by
means of Shioda-Inose structures, we can study X by means of those abelian surfaces
A whose transcendental lattice equals T(X). Let A be such a surface, and consider all
product surfaces E1 × E2 isomorphic to A (which we know explicitly by Chapter 2); if
jk := j(Ek), by work of Schütt [28], X admits a model over Q(j1 j2, j1 + j2). Therefore,
considering all admissible pairs (E1, E2) as above, we see that

MK ⊆
⋂

X defined over L

L ⊆
⋂

j1, j2 as above

Q(j1 j2, j1 + j2).

We deduce a slightly clearer picture of what MK looks like, as we know where it
has to sit as an extension of Q. Namely, MK lies in right-hand side above, which
is theoretically clear. In practice, describing it is a hard task, as this involves the
computation of j-invariants.

3.2.3 The case of elliptic curves

Our toy example is the case of an elliptic curve E, for which one always has a Weier-
straß model

y2 = x3 + Ax + B,

for some A, B ∈ C. It can be proven (see [40, Ch. 1]) that an elliptic curve E can be
defined over the field Q(jE); moreover, the field of Q-moduli of E is again Q(jE). Let
now E be a CM elliptic curve. The theory of complex multiplication tells us (see [40,
Ch. 2]) that jE ∈ Q, i.e. the j-invariant of a CM elliptic curve is always an algebraic
number. Suppose that E has CM by an order O in K = Q(

√
D). Then, by means

of class field theory, one can show that there exists a commutative diagram of field
extensions,

H = K(jE)

K Q(jE)

Q

where H := H(D) is the ring class field corresponding to the order O (for details,
consult [36]). We would like to let the reader notice that K(jE) is indeed the field of K-
moduli of E. Our study of the field of moduli in the rest of the chapter will reveal that
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this very picture carries over to singular K3 surfaces (and singular abelian surfaces).
This provides more evidence to the fact that singular K3 surfaces can be regarded as a
two-dimensional analog of CM elliptic curves.

3.2.4 An alternative definition of MK

As a singular K3 surface is defined over a number field by a result of Inose [13], when
studying the field of moduli one would like to consider the field

K̄G′ , G′ := {σ ∈ Aut(K̄/K) |Xσ ∈ [X]},

rather than CG, as we defined it above. In fact, one has that CG = K̄G′ ; also this is
independent of the fact that we are working on a singular K3 surface, as the following
more general result shows.

Proposition 3.2.3. Let X be a variety defined over a number field K. Then the fields CG and
K̄G′ coincide.

Proof. Suppose X is defined over a number field L containing K. As L is a number
field, K̄ ⊃ L ⊇ K; therefore Gal(C/K̄) ⊆ G, and thus CG ⊆ CGal(C/K̄) = K̄ (see [21,
Theorem 9.29]). We have a diagram of exact sequences

0 // Gal(C/K̄) // G
|K

//� _

��

G′ //� _

��

0

0 // Gal(C/K̄) // Gal(C/K)
|K
// Gal(K̄/K) // 0

and by surjectivity of the map G −→ G′ plus the fact that CG ⊆ K̄, one sees that
CG = K̄G′ .

As every singular K3 surface can be defined over a number field, we can define the
field of K-moduli of a singular K3 surface to be the field

MK := K̄GK , GK := {σ ∈ Aut(K̄/K) |Xσ ∈ [X]}.

In the following, we will be concerned with finding explicitly the group GK, as it
characterizes uniquely, thanks to Galois theory, the field of moduli.

3.3 Characterization in the primitive case

3.3.1 Statement of the result

Let X be a singular K3 surface, with transcendental lattice T(X) = Q = mQ0 (Q0 being
the primitive part of T(X)), and discriminant disc T(X) = D = m2D0 (D0 being the
discriminant of Q0). Recall that we can always find a singular abelian surface A such
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that X is obtained from A by means of the Shioda-Inose structure, and in particular
such that T(A) = T(X). In light of this, notice that determining the field of moduli
of X is equivalent to determining the field of moduli of any such A, so that we can
reduce to considering the problem for singular abelian surfaces.

We will now proceed in giving a different characterization of GK. In what follows,
let us assume additionally that m = 1, which is to say that the transcendental lattice
T(X) is primitive. Under this assumption, for any decomposition A ∼= E1 × E2, the
quadratic forms Q1 and Q2 corresponding to the elliptic curves E1 and E2 both lie
in C(D) ∼= C(O), O being the order of discriminant D. Observe that, if we fix a
decomposition of A ∼= E1 × E2, then

Xσ ∈ [X]⇐⇒ Aσ ∈ [A]⇐⇒ Eσ
1 × Eσ

2
∼= E1 × E2.

We will prove the following

Theorem 3.3.1. Let X be a singular K3 surface with primitive transcendental lattice, and let
H be the ring class field of O, the order of discriminant disc T(X). Then the field of K-moduli
is

MK = K̄GK , GK = (|H)−1 Gal(H/K)[2];

it is a Galois extension of K of degree g, g being the order of the genus of the transcendental
lattice of X.

The proof is divided into two steps. First, we will prove that GK restricts to the sub-
group of 2-torsion elements of Gal(H/K), and thus it is a closed and normal subgroup
of Gal(K̄/K) with respect to the Krull topology. Afterwards, we will use these facts to
study the field extension MK/K, hence to prove Theorem 3.3.1.

3.3.2 Interlude: CM elliptic curves vs. quadratic forms

Let us recall the reader of the action

∗ : C(O)× E ll(O) −→ E ll(O), ([a], [C/Λ]) 7−→ [a] ∗ [C/Λ] := [C/a−1Λ],

which can be interpreted in terms of ideal classes, as we will now show. Indeed, to
any [E] ∈ E ll(O), one can associate a quadratic form Q such that j(τ(Q)) = j(E).
Therefore, by Proposition 1.1.5, the action ∗ is isomorphic to the action

C(O)× C(O) −→ C(O), ([a], [b]) 7−→ [a]−1[b],

which we again denote by ∗. Also, by Theorem 1.1.3, we can phrase everything in
terms of the corresponding classes of quadratic forms, where now multiplication of
ideal classes corresponds to the Dirichlet composition. Indeed, let [Q] ∈ C(O) corre-
spond to [E] ∈ E ll(O); then, the map

F : Gal(K̄/K) −→ C(O), σ 7−→ F(σ),
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associates to σ the element F(σ) such that

[Eσ] = F(σ) ∗ [E] = F(σ) ∗ [C/a] = [C/F(σ)−1a] = [F(σ)]−1 ∗ [Q].

Furthermore, if [Qσ] corresponds to [Eσ], then F(σ) has the property

[Qσ] = F(σ)−1 ∗ [Q].

We will make use of this formula extensively in the rest of this chapter.

3.3.3 The group GK

By the previous discussions, it follows that

GK = {σ ∈ Gal(K̄/K) |Xσ ∈ [X]}
= {σ ∈ Gal(K̄/K) | Eσ

1 × Eσ
2
∼= E1 × E2}.

We will now proceed in giving a different characterization of GK.

Proposition 3.3.2. GK = F−1(C(O)[2]).
Proof. Let Qi be the form corresponding to Ei (i = 1, 2), and let Qσ

i be the one corre-
sponding to Eσ

i (i = 1, 2). By use of the map

F : Gal(K̄/K) −→ C(O),

we get that

[Qσ
1 ] = [F(σ)]−1 ∗ [Q1] and [Qσ

2 ] = [F(σ)]−1 ∗ [Q2],

where here we make use of the fact that F is independent of the elliptic curve (and
thus of the quadratic form) we use to define it. By Proposition 2.2.4, we see that

Eσ
1 × Eσ

2
∼= E1 × E2 ⇐⇒ Qσ

1 ∗Qσ
2 = Q1 ∗Q2

⇐⇒ F(σ)2 = 1.

There is a commutative diagram

Gal(K̄/K) F // //

|H
����

C(O)

Gal(H/K)

∼=

99
(†)

where H := H(O), which follows from class group theory and says that F is an
isomorphism on the restriction of the elements of Gal(K̄/K) to H. In particular,
C(O)[2] ∼= Gal(H/K)[2], and thus

GK = {σ ∈ Gal(K̄/K) : (σ|H)2 = idH}.

This implies the following
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Corollary 3.3.3. GK = (|H)−1(Gal(H/K)[2]).

We now turn to describing GK as a topological subgroup of Gal(K̄/K).

Proposition 3.3.4. GK is a closed normal subgroup of Gal(K̄/K) with respect to the Krull
topology.

Proof. As GK maps onto Gal(H/K)[2], and3

GK ∩Gal(K̄/H) = Gal(K̄/H),

we get the following diagram,

0 // Gal(K̄/H) // GK� _

��

// Gal(H/K)[2]� _

��

// 0

0 // Gal(K̄/H) // Gal(K̄/K)
|H
// Gal(H/K) // 0

from which we extract the short exact sequence

0→ GK → Gal(K̄/K)→ C(O)/C(O)[2]→ 0.

The group inclusions
Gal(K̄/H) ⊆ GK ⊆ Gal(K̄/K)

yield the reversed inclusions of fields

K ⊆ MK ⊆ H.

Notice that for σ ∈ GK and τ ∈ Gal(K̄/K), the element (τστ−1)2 restricts to idH, which
amounts to saying that GK is normal in Gal(K̄/K). Indeed, as H/K is Galois, σ and τ
restrict to automorphisms of H, and therefore:

(τστ−1)2 = (τ|H)(σ2|H)(τ−1|H) = idH .

As GK = (|H)−1(Gal(H/K)[2]), and the restriction map

|H : Gal(K̄/K) −→ Gal(H/K)

is a continuous surjection by Galois theory, GK is closed and we are done.
3This is independent of the fact that every singular K3 surface has a model over the ring class field.
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3.3.4 The extension MK/K

We can now use our knowledge of GK to give a proof of Theorem 3.3.1.

Proof of Theorem 3.3.1. As GK is closed and normal in Gal(K̄/K), we have that

Gal(K̄/MK) = Gal(K̄/K̄GK) = GK

and MK/K is a (finite) Galois extension. The exact sequence

0→ GK → Gal(K̄/K)→ C(O)/C(O)[2]→ 0

tells us that Gal(MK/K) ∼= C(O)/C(O)[2], from which we can now cook up the fol-
lowing short exact sequence.

0 // Gal(H/K)[2] // Gal(H/K) // Gal(MK/K) // 0

Gal(H/MK)
) 	

77

iso

By genus theory (see [8]), there is a short exact sequence

0→ C(D)[2]→ C(D)→ C(D)2 → 0,

where C(D)2 is the group of squares in the class group C(D) (in fact, it is the principal
genus). As Gal(H/K) ∼= C(D), we deduce that

Gal(MK/K) ∼= C(D)2,

and in particular that # Gal(MK/K) = g, where g = #C(D)2 is the order of the genus
of the transcendental lattice.

Example 3.3.5. Let D = −23 and K = Q(
√

D). The class group of discriminant D is

C(D) =

{(
2 1
1 12

)
,
(

4 1
1 6

)
,
(

4 −1
−1 6

)}
.

There is only one genus in C(D) (of order 3), thus we expect a field of moduli of
degree 3 over K. Let X be the singular K3 surface whose transcendental lattice is

P =

(
2 1
1 12

)
.

A Shioda-Inose structure starting from the self-product of E, E being the elliptic curve
corresponding to the principal form P in C(D), reveals that X has a model over
Q(j(P)). We now show that the field of K-moduli is MK = K(j(P)) = H(OK), which
is a degree 3 extension of K by class field theory. Indeed, as X is realized starting
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from the self-product of E, where E corresponds to the principal form P, then the
transcendental lattice of the conjugate surface by σ ∈ Gal(K̄/K) is given by

Pσ ∗ Pσ = F(σ)−2,

and this is trivial if and only if F(σ) is 2-torsion. However, as # Gal(H/K) = 3, it
follows that F(σ) is necessarily trivial, and thus GK = ker F = Gal(K̄/H). Therefore,
we have proven that MK = H.

We can also look at the K3 surface Y whose transcendental lattice is

Q :=
(

4 1
1 6

)
.

By means of a Shioda-Inose structure, Y has a model over Q(j1, j2), where j1 := j(P)
and j2 := j(Q); notice that

Q(j1, j2) = K(j1, j2) = K(j2),

as we have considered the Shioda-Mitani model of Y (plus some class field theory
considerations). It follows that H = K(j2), which is a degree 3 extension of K, and
thus we have that MK = H = K(j2).

3.4 Generalization to the imprimitive case

3.4.1 A first look at GK

We will now treat the case of a singular K3 surface X with imprimitive transcendental
lattice T(X) = Q = mQ0 (m > 1). As in the primitive case, we see that it is enough to
choose a decomposition of A, and to compute the field of moduli in that case. Thus,
we now fix a decomposition A ∼= E1 × E2.

We would like to mimic the techniques used in the primitive case to give an analogous
characterization of the field of moduli. The issue at hand is that given a decomposition
A ∼= E1 × E2, the quadratic forms Q1 and Q2 corresponding to E1 and E2 must neces-
sarily lie in class groups with different discriminant by Proposition 2.2.4. Therefore,
we need to use the Dirichlet composition in its generalized sense, as introduced in
Chapter 2, in order to compute transcendental lattices.

When dealing with decompositions, it is always useful to keep in mind the diagram
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of orders,
K OK, f1

mM

{{

OK
?�

OO

OK, f0_?
oo OK, f

Q1

bb

mM

||

OK, f2

Q1

cc

and the corresponding one of class groups,

C(OK, f1)

yy

C(OK) C(OK, f0)
oo C(OK, f )

ee

yy

C(OK, f2)

ee

where f0, f1, f2, f are such that

lcm( f1, f2) = f , gcd( f1, f2) = f0, f 2dK = disc T(A),

and also [E1] ∈ C(OK, f1) and [E2] ∈ C(OK, f2). The maps between the above class
group are the one induced by extension of ideals; in terms of quadratic forms, these
correspond to multiplication by the principal form of the target order: for instance,
the reduction map

red0 : C(OK, f ) −→ C(OK, f0)

sends [Q] to [Q]~ [P0], where ~ is the generalized Dirichlet composition (see Chapter
2 for details), and P0 is the principal form in C(OK, f0). As before, there are maps

Fi : Gal(K̄/K) −→ C(OK, fi) (i = 0, 1, 2),

such that
[Qσ

i ] = [Fi(σ)]
−1~ [Qi] (i = 0, 1, 2).

By use of the generalized Dirichlet composition ~ and the maps Fi (i = 1, 2), we see
that

Eσ
1 × Eσ

2
∼= E1 × E2 ⇐⇒ Qσ

1 ~Qσ
2 = Q1~Q2 ⇐⇒ F1(σ)~ F2(σ) = P0.

The discussion above can be rephrased as follows:

Lemma 3.4.1. GK = {σ ∈ Gal(K̄/K) | F1(σ)~ F2(σ) = P0}.

39



In order to go any further, we need to understand the interaction of the maps Fi
(i = 0, 1, 2). As the class groups are abelian groups, these maps factor through the
Galois group of Kab, the maximal abelian extension of K. We get maps (again called Fi
by abuse of notation)

Fi : Gal(Kab/K) −→ C(OK, fi).

Here is where the theory of idéles comes into play, picturing the behaviour of these
maps in their totality.

3.4.2 Compatibility condition for the maps Fi

The idea is inspired by a paper of Schütt [28]: given a singular abelian surface A,
among all decompositions that we can choose, there is one that behaves better that the
others, namely the decomposition that Shioda and Mitani used to prove the surjectiv-
ity of the period map for singular abelian surfaces [39]. To the reader’s convenience,
we briefly recall this construction. Letting A be a singular abelian surface of tran-
scendental lattice T(A) ∼= (a, b, c), Shioda and Mitani showed that A ∼= Eτ × Eaτ+b,
where

τ := τ(Q) =
−b +

√
D

2a
.

In particular, Eaτ+b always corresponds to the principal form in the class group of
discriminant D = disc T(A), and Eτ instead corresponds to the quadratic form T(A)0,
the primitive part of T(A).

Let us assume A ∼= E1 × E2 is the Shioda-Mitani decomposition: if T(A) = Q =
mQ0, then E1 corresponds to the quadratic form Q0 ∈ C(D0) and E2 corresponds
to the principal form P ∈ C(D). Notice that we also have A ∼= C/a× C/OK, f , for
a ∈ C(OK, f0), and thus the proof of [28, Theorem 5.4] shows in particular that, for
σ ∈ Gal(K̄/K)

Aσ ∼= Eσ
1 × Eσ

2
∼= C/s−1a×C/s−1OK, f

∼= C/s−2a×C/OK, f ,

where, as s varies in IK, (s−1a)2 = (s−1Q0)2 spans the whole genus of Q0 in C(D0).
This ultimately suggests that we look at elements of the form s−1O, as their squares
span the principal genus of a class group, and characterize the transcendental lattice
as it moves in its genus.

To do so, suppose we are given an order O ⊂ K, the map

F : Gal(K̄/K) −→ C(O)

factorizes through a map
F : Gal(Kab/K) −→ C(O).
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For σ ∈ Gal(Kab/K), F(σ) has the property [Eσ] = [C/F(σ)−1 · a] independently of the
chosen E = C/a ∈ E ll(O). By the Main Theorem of CM, there exists an idéle s ∈ IK
such that φK(s) = σ and

[Eσ] = [C/F(σ)−1 · a] = [C/s−1a].

As s−1a = (s−1O) · a, we can identify [sO] = [F(σ)]. Now let O0 be another order in
K, O ⊂ O0 ⊂ K, and consider the following diagram;

C(O)

red0

��

IK
φK

// Gal(Kab/K)

F
55

F0
))

C(O0)

we would like to show that the triangle on the right-hand side is indeed commutative.
For σ ∈ Kab, we have the identifications

[F(σ)] = [sO] and [F0(σ)] = [sO0],

which are a consequence of the Main Theorem of CM. Notice that this uses the fact
that the Main Theorem of CM holds for all elliptic curves with CM in any order in K
at once. By looking at every rational prime p, one checks that (sΛ) · Λ′ = s(Λ · Λ′),
for two lattices Λ and Λ′ in K (see [36]). In particular, after noticing that Λ and sΛ
have the same endomorphism ring, we get [sO]~ [O0] = [sO0]. We have proven the
following compatibily condition

Lemma 3.4.2. Under the assumptions above,

[F0(σ)] = [F(σ)]~ [P0],

or equivalently red0 ◦F = F0.

This proves the commutativity of the triangle in the diagram above, and thus we are
now ready to prove a characterization theorem for the field of K-moduli also in the
imprimitive case.

3.4.3 Completion of the proof

In Lemma 3.4.1, we showed that

Eσ
1 × Eσ

2
∼= E1 × E2 ⇐⇒ F1(σ)~ F2(σ) = P0.

Now, F1(σ) ~ F2(σ) lives in C(OK, f0) so we can multiply by the principal form P0,
and, by commutativity and Lemma 3.4.2, the last condition above is equivalent to
F0(σ)2 = P0, i.e. F0(σ) ∈ C(OK, f0)[2]. Therefore we get, in analogy to the primitive
case:
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Proposition 3.4.3. GK = F−1
0 (C(OK, f0)[2]).

Now, the same argument used in the primitive case (replacing every occurrence of
H with H0, the ring class field of OK, f0), yields the following result, which extends
Theorem 3.3.1 to the imprimitive case.

Theorem 3.4.4. Let X be a singular K3 surface with transcendental lattice T(X) = Q =
mQ0, and let H0 be the ring class field of OK, f0 , the order of discriminant disc Q0. Then the
field of K-moduli is

MK = K̄GK , GK = (|H0)
−1 Gal(H0/K)[2];

it is a Galois extension of K of degree g, g being the order of the genus of the transcendental
lattice of X.

3.5 The absolute field of moduli

So far, we have studied the field of K-moduli of a singular K3 surface X, K being the
CM field of X. Now, we want to move our attention to the absolute field of moduli MQ,
by which we mean the field of Q-moduli.

We will proceed as in the case of MK. Let us recall that the absolute field of moduli of
X is the field MQ := CGQ , where

GQ = {σ ∈ Gal(C/Q) |Xσ ∈ [X]}.

The proof of Lemma 3.2.3 shows that we can equivalently define the field of moduli
MQ to be the subfield of Q̄ which is fixed by the group

GQ = {σ ∈ Gal(Q̄/Q) |Xσ ∈ [X]}.

As GK is the subgroup of elements of GQ whose restriction to K is trivial, we have the
following commutative diagram,

0 // GK� _

��

// GQ� _

��

// C

��

// 0

0 // Gal(Q̄/K) // Gal(Q̄/Q)
|K
// Gal(K/Q) // 0

where C is simply the quotient group GQ/GK (notice that GK is normal in GQ). We
have the following:

Proposition 3.5.1. C ∼= Gal(K/Q).
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Proof. As complex conjugation acts as the inverse in the corresponding class group, we
need to distinguish two cases, according to whether the transcendental lattice of X is 2-
torsion or not. Let us consider the case of T(X) being 2-torsion first. This is equivalent
to the condition that Xι ∼= X, ι being the complex conjugation automorphism. Under
this assumption, a nontrivial element σ ∈ GQ is either contained in GK or ισ lies in
GK; this implies that C ∼= Gal(K/Q). We are left to deal with the case when T(X) is
not 2-torsion. This condition is equivalent to Xι � X. Assume there exists an element
σ ∈ GQ \ GK, thus Xσ ∼= X and σ|K 6= idK. Notice that

X ∼= Xσ−1σ ∼= (Xσ)σ−1 ∼= Xσ−1
,

so that also σ−1 ∈ GQ \ GK. If τ ∈ GQ \ GK is another such element, then στ−1 ∈ GK,
which means σ̄ = τ̄ ∈ C. This implies that C ∼= Z/2Z, and thus we can identify the
quotient group C with Gal(K/Q).

As a consequence, we have the diagram of field extensions in Figure 3.1,

Q̄

H

MK

K MQ

Q

Figure 3.1: Relative and absolute field of moduli

where all extensions are Galois, except possibly for MQ/Q. We see that MK/MQ is
Galois with group C ∼= Gal(K/Q), thus MK % MQ. By multiplicativity of degrees, the
extensions MK/K and MQ/Q have the same degree.

Remark 3.5.2. We would like to point out that Figure 3.1 recovers the picture of the
case of elliptic curves with CM in K. For an elliptic curve E with CM in an imaginary
quadratic field K, MQ = Q(j(E)) and MK = K(j(E)) = H, H being the ring class field
of the elliptic curve E (we are implicitly using the fact that elliptic curves correspond
to quadratic forms). The equality MK = H is explained by the fact that the field of
K-moduli coincides with the minimal field of definition, for every elliptic curve with
CM in K.

As a consequence of the discussion above, we have the following:
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Theorem 3.5.3. Let X be a singular K3 surface. Its absolute field of moduli MQ is a degree-two
subfield of the field of K-moduli MK. Moreover, MQ is an extension of Q of degree

[MQ : Q] = [MK : K] = g,

g being the genus of T(X). In general, it is not a Galois extension of Q.

We remark that K is not contained in MQ, and thus MQ ∩ K = Q. Indeed, if this
were the case, then we would have GQ ⊂ Gal(Q̄/K). If T(X) is 2-torsion, then ι ∈
GQ \ Gal(Q̄/K), and so we get a contradiction. If T(X) is not 2-torsion, then any
τ ∈ GQ \ GK yields the same contradiction.
The final statement of Theorem 3.5.3 is that the extension MQ/Q is not Galois in
general; the following example shows an occurrence of this phenomenon.
Example 3.5.4 (Example 3.3.5 reloaded). We compute the absolute field of moduli for
the K3 surface X. Our results tell us that MQ must be an extension of degree 3 of
Q. In this case, X has a model over Q(j(P)), which is a degree 3 extension of Q, so
it follows that the absolute field of moduli MQ is indeed Q(j(P)) itself, which agrees
with Theorem 3.5.3. Now, the class polynomial HOK(T) of the order OK has j(P), j(Q)

and j(Q−1) as roots; j(P) is real, while j(Q) = j(Q−1). It follows that the extension
Q(j(P))/Q cannot be Galois.

For a more interesting example, we look at the K3 surface Y, and we recall that

Q(j1, j2) = K(j1, j2) = K(j2), [Q(j1, j2) : Q] = 6,

if we consider a Shioda-Inose model for Y. As the field of moduli MQ in contained
in every field of definition for Y, and must have degree 3 by Theorem 3.5.3, we must
find an element α ∈ Gal(H/Q) which leaves the modulus invariant. If ι denotes
the (restriction of the) complex conjugation automorphism and σ ∈ Gal(K̄/K) is an
element such that F(σ) = Q−1, then α := σι satisfies this condition. Therefore MQ is
the subfield of H which is fixed by the group generated by α: this group has order 2,
and thus we get that MQ is an extension of Q of degree 3, as expected.

3.6 Further questions

3.6.1 Non-finiteness of singular K3 surfaces

The following discussion is inspired by the following striking result of Šafarevič on
the finiteness of singular K3 surfaces with bounded field of definition:

Theorem 3.6.1 (Theorem 1 of [34]). Let n be a positive integer. There exist finitely many
singular K3 surfaces with a model over a number field K of degree [K : Q] ≤ n.

This result says that we can use the degree of the field of definition to stratify ΣK3, and
that each stratum contains finitely many elements only: the nth stratum is defined as

ΣK3(n) := {[X] ∈ ΣK3 : X has a model over K, [K : Q] ≤ n}.
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One might wonder whether a similar result holds for the field of moduli in place of
the field of definition. We will now see that this is not the case.

Proposition 3.6.2. Let X and Y be two singular K3 surfaces such that T(X) is primitive (as
a quadratic form) and T(Y) = nT(X), for some n ∈ N. Then, X and Y have the same field of
K-moduli, K being the CM field of X and Y.

Proof. The argument used in proving Theorem 3.4.4 shows, in particular, that the ring
class field H0 only depends on the discriminant of the primitive part of the transcen-
dental lattice. In the situation at hand, X and Y would both lead to the same ring class
field, and the result is then a consequence of Theorem 3.4.4.

Proposition 3.6.3. Let X and Y be two singular K3 surfaces whose transcendental lattices are
primitive and lie in the same class group (as quadratic forms). Then, X and Y have the same
field of K-moduli, K being the CM field of X and Y.

Proof. Same as for Proposition 3.6.2.

As a corollary, we get that

Corollary 3.6.4. Let X and Y be two singular K3 surfaces such that the primitive parts of
T(X) and T(Y) lie in the same class group (as quadratic forms). Then, X and Y have the same
field of K-moduli, K being the CM field of X and Y.

In particular, this shows that bounding the degree of the (relative) field of moduli is
not enough to have a stratification of ΣK3 in strata containing finitely many elements
only. In fact, we have shown that for each possible field of K-moduli, there exist
infinitely many singular K3 surfaces with that field of K-moduli. This non-finiteness
result holds true also if we replace the relative field of moduli with the absolute one:
in fact, it is enough to fix a primitive quadratic form Q such that h(disc Q) = 1; then

#{[X] ∈ ΣK3 : T(X) = mQ, m ∈N} = +∞,

and all K3 surfaces in the set above have clearly Q as absolute field of moduli.

3.6.2 Explicit fields of K-moduli

We can still ask questions such as: which fields can appear as the field of K-moduli of
a singular K3 surface? To answer such a question, Theorem 3.4.4 and its description of
the field of moduli does not help us. The ideal situation would be to describe MK as
the subfield of a finite extension of K fixed by a (finite) group. This would also allow
us to explicitly describe this field with the aid of a computer algebra system.

In consequence of Proposition 3.6.2, we can restrict ourselves to working with singular
K3 surfaces whose transcendental lattice is primitive as a quadratic form; thus, let X
be such a singular K3 surface. Consider X as obtained by a singular abelian surface
A in its Shioda-Mitani model A ∼= EQ × EP. Let us remind the reader that Q and P

45



belong to the same class group, exactly because the transcendental lattice is primitive.
Then, a result of Schütt [28] implies that X has a model4 over the ring class field

H := K(j1, j2) = K(j2), jk := j(Ek) (k = 1, 2).

This model is particularly nice as the extension H/K is Galois by class field theory. It
is clear that Gal(K̄/H) ⊆ GK, because of the existence of a model over H. Also, the
arguments in Section 3.3 yield a proof of the following result:

Proposition 3.6.5. MK = HGal(H/K)[2].

Proof. Let us consider the restriction map

|H : Gal(K̄/K) −→ Gal(H/K).

By the existence of a model over H, GK maps onto the following subgroup of Gal(H/K):

GK|H := {σ ∈ Gal(H/K) |Xσ ∼= X}.

The proof of Proposition 3.3.2 shows in particular that GK|H = Gal(H/K)[2]. There-
fore, one has the following commutative diagram of groups,

GK

|H
����

� � // Gal(K̄/K)

|H
����

Gal(H/K)[2] �
�

// Gal(H/K)

from which the proof follows after a direct check.

This last result allows us to explicitly compute the field of moduli of a given singular
K3 surface. We can have a computer algebra system run this sort of computations for
us, but in order to do so, we have to reduce to isolate a finite number of cases at the
time. To this end, Proposition 3.6.2 enables us to project ΣK3 onto

ΣK3
prim := {[X] ∈ ΣK3 : T(X) is primitive},

by forgetting the index of primitivity of the transcendental lattice. Analogously to the
situation of [39], there is a 1:1 correspondence

ΣK3
prim ←→ Q+

0 / SL2(Z),

where Q+
0 is the subset of Q+ containing primitive quadratic forms only. Class group

theory implies that

Q+
0 / SL2(Z) ∼=

⊔
K quadratic imaginary field

f∈N

C(OK, f ),

4More generally it has a model over the field Q(j1, j2), which does not always coincide with the ring
class field H.
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and thus we can bound ΣK3
prim by bounding the orders in the quadratic imaginary

fields. This can be achieved, for instance, by bounding the discriminant or the class
number. Such constraint gives a stratification of ΣK3

prim whose strata contain finitely
many elements only, and we can therefore run the computations in a finite, perhaps
long, time.

3.6.3 More on the field of Q-moduli

Let X be a singular K3 surface, and let us assume that its transcendental lattice T(X) =
Q0 is primitive. Let Y be another singular K3 surface, such that T(Y) = mT(X), for
some m > 0. From previous discussions, we know that X and Y will have the same
field of K-moduli, with K = Q(

√
disc T(X)). We would like to study the analogous

question for the field of Q-moduli. We are able to prove the following:

Proposition 3.6.6. If T(X) is 2-torsion in its class group, then MQ(X) = MQ(Y).

Proof. As T(X) is 2-torsion in its class group, T(Y) is 2-torsion as well. Otherwise
said, if ι denotes the complex conjugation automorphism, ι ∈ GQ(X) if and only if
ι ∈ GQ(Y). For X and Y as above, let us consider their Shioda-Mitani models:

X ∼= SI(A), A = EQ0 × EP0 ∈ ΣK3,

Y ∼= SI(B), B = EQ0 × EP ∈ ΣK3.

We have that

σ ∈ GK(X)⇐⇒ F0(σ)
2 = P0, F0 : Gal(K̄/K) −→ C(D0),

σ ∈ GK(Y)⇐⇒ F0(σ)~ F(σ) = P0, F : Gal(K̄/K) −→ C(D).

We would like to prove that the field of Q-moduli is independent of the index of
primitivity of a singular K3 surface, namely, in the notation above, that MQ(X) =
MQ(Y). Notice immediately that, as MK(X) = MK(Y), we have GK(X) = GK(Y)
by Galois theory. Suppose ι ∈ GQ(X), or equivalently Xι ∼= X. Then, by the above
discussion, we also have Yι ∼= Y. Let σ ∈ GQ(Y) \ GK(Y); then, we also have σ−1 ∈
GQ(Y) \ GK(Y). By composing with complex conjugation, we get ισ ∈ GK(Y), which
is equivalent to

F(ισ)~ F0(ισ) = P0.

In turn, this implies F0(σ)2 = P0, or equivalently σ ∈ GK(X) ⊆ GQ(X). Therefore,
GQ(Y) ⊆ GQ(X), hence MQ(X) ⊆ MQ(Y); as they have the same degree as extensions
of Q, it follows that MQ(X) = MQ(Y). This proves that, if T(X) is 2-torsion in its class
group, then MQ(X) = MQ(Y), and thus that the field of Q-moduli is independent of
the index of primitivity in this case.

Question 3.6.7. Is the field of Q-moduli invariant under taking multiples of the tran-
scendental lattice if T(X) is not 2-torsion in its class group?
This is currently under investigation, and we expect the answer to this question to be
affirmative.

47



Chapter 4

Non-completeness of Picard
numbers of abelian varieties

This world has been connected. Tied
to the darkness...soon to be
completely eclipsed. There is so very
much to learn. You understand so
little...A meaningless effort. One who
knows nothing can understand
nothing.

Ansem, Kingdom Hearts

4.1 Introduction

4.1.1 Computing the Picard number in general

For an algebraic variety X over the field of complex numbers the Lefschetz (1, 1)-
theorem says that the Néron-Severi group

NS(X) = H2(X, Z) ∩H1,1(X).

Consequently, the Picard number of X satisfies the inequality 1 ≤ ρ(X) ≤ h1,1(X).
Computing the Picard number is in general a difficult question, as already the case of
projective surfaces shows. For example, the Picard number of a quintic surface S in
P3 satisfies the inequality ρ(S) ≤ 45. It is known that all numbers between 1 and 45
can be obtained if one allows the surface to have ADE-singularities, but it remains an
open problem for smooth surfaces, where the maximum known is 41 [29], [30].

In this chapter we will concentrate on the Picard numbers of abelian varieties. To put
this into perspective it is worthwhile to recall the situation for surfaces. For abelian
surfaces all possible Picard numbers between 1 (or 0 if one includes the non-algebraic
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case) and 4 occur. Indeed, a very general abelian surface has ρ = 1, whereas Picard
numbers from 2 to 4 can be realized by taking a product E1× E2 of two elliptic curves.
If the two elliptic curves are not isogenous, then ρ = 2, if they are isogenous but they
do not have complex multiplication, then ρ = 3, while if they also have complex mul-
tiplication ρ = 4. For the other surfaces with trivial canonical bundle the situation is
similar: for K3 surfaces all possibilities between 1 (respectively 0) and 20 can occur as
can be seen by the Torelli theorem for K3 surfaces and the Lefschetz (1, 1)-theorem.
Enriques surfaces and bi-elliptic surfaces have pg = 0 and their Picard number is 10
and 2 respectively.

Turning to higher dimension, by the Beauville-Bogomolov decomposition theorem
[4], every Kähler manifold with trivial first Chern class admits a finite cover which is
a product of tori, Calabi-Yau varieties and irreducible holomorphic symplectic mani-
folds (IHSM), also know as hyperkähler manifolds. For higher dimensional Calabi-Yau
varieties Y we always have ρ(Y) = b2(Y) as h2,0(Y) = h0,2(Y) = 0. For IHSM one can
use Huybrechts’ surjectivity of the period map [11] to conclude, as in the case of K3
surfaces, that all values 1 ≤ ρ(X) ≤ b2(X)− 2 can be obtained. This leaves us with he
case of abelian variteies which is the main topic of this chapter.

4.1.2 Results and organization of the chapter

Let A be an abelian variety of dimension g. The cohomology of an abelian variety is
the exterior algebra over H1(A, Z) ∼= Z2g. In particular, this implies that the kth Betti
numbers are bk(A) = (2g

k ). As Hp,0(A) ∼= H0(A, Ωp
A), we get hp,0(A) = (g

p), and thus
h1,1(A) = g2. We conclude that one has the following possible Picard numbers for an
abelian variety:

1 ≤ ρ ≤ g2.

As we have already seen any number 1 ≤ ρ(A) ≤ 4 can be achieved for abelian sur-
faces. The situation, however, changes significantly in higher dimension. In principle,
the Picard number of an abelian variety A can be computed by decomposing it in its
isogeny class into a product of powers of simple abelian varieties with no non-trivial
morphisms between them, and by using a result of Murty [25] computing the Picard
number of such self-products. It is then a combinatorial question as to determine the
set Rg of possible Picard numbers of abelian varieties for a given genus g. Very little
seems to be known about this. Our aim is to take a first step in the analysis of the set
Rg. In particular, we show that there are series of gaps for the possible Picard numbers
of abelian varieties, more precisely we obtain the

Main Theorem.
1. Fix g ≥ 4. There does not exist any abelian variety of dimension g with Picard number

ρ in the following range:
(g− 1)2 + 1 < ρ < g2.
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2. Fix g ≥ 7. There does not exist any abelian variety of dimension g with Picard number
ρ in the following range:

(g− 2)2 + 4 < ρ < (g− 1)2 + 1.

We would like to remark that the conditions on the dimension g given in Part 1 and 2
of the Main Theorem are necessary. In fact, as for Part 1, for g = 2 all Picard numbers
appear, and for g = 3 there exists an abelian threefold of Picard number ρ = 6 (namely,
the product of three isogenous elliptic curves without CM). Similar considerations can
be made for Part 2 of the Main Theorem and g ≤ 6.

This chapter is organized as follows. In Section 4.2 we reduce the problem to consid-
ering self-products of simple abelian varieties in Proposition 4.2.3. This then allows us
to use a result of Murty [25], who computed the Picard numbers of such products in
terms of the endomorphism ring. This provides us with some bounds on the Picard
numbers. In Section 4.3 we give the proof of the main theorem and in Section 4.4 we
briefly discuss some computer aided calculations of the set Rg for g ≤ 30.

4.2 Preliminary work

In this section we are going to develop the tools for proving the main theorem stated
in the introduction. Some of these results are certainly of interest on their own.

4.2.1 Additivity of the Picard number for certain products

As the Picard number is invariant under isogenies [6, Ch. 1, Prop. 3.2], we can pick a
convenient representative in the isogeny class. A good choice for this is suggested by
the following result.

Theorem 4.2.1 (Poincaré’s Complete Reducibility Theorem, Thm. 5.3.7 of [7]). Given
an abelian variety A, there exists an isogeny

A −→ An1
1 × · · · × Anr

r ,

where Ai is a simple abelian variety (i = 1, . . . , r), and Ai is not isogenous to Aj if i 6= j.
Moreover, the abelian varieties Ai and the integers ni are uniquely determined up to isogeny
and permutations.

Let us now consider a product of simple abelian varieties as in Theorem 4.2.1. The fact
that Ai is not isogenous to Aj for i 6= j yields the following interesting splitting of the
Picard group:

Proposition 4.2.2. Let A1, . . . , Ar be simple abelian varieties, such that Ai is not isogenous
to Aj for i 6= j. Then, (exterior) pullback of line bundles yields an isomorphism

r

∏
i=1

Pic(An1
i ) ∼= Pic

(
r

∏
i=1

Ani
i

)
,
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Clearly, exterior pull-back of line bundles always yields an injective map, but surjec-
tivity is a special feature. In fact, if E is an elliptic curve, the abelian surface E× E has
Picard number ρ ∈ {3, 4}, depending on the presence of CM. Therefore, the exterior
pull-back map

Pic(E)× Pic(E) −→ Pic(E× E)

cannot be surjective, as otherwise we would get a surjective map of the corresponding
Néron-Severi groups, hence yielding a contradiction, since NS(E) ∼= Z.

Proof. Exterior pullback of line bundles

ψ(L1, . . . , Lr) = L1� · · ·� Lr

defines the following commutative diagram

0 // Pic0(∏r
i=1 Ani

i )
// Pic(∏r

i=1 Ani
i )

// NS(∏r
i=1 Ani

i )
// 0

0 //

OO

∏r
i=1 Pic0(Ani

i )

ψ0

OO

// ∏r
i=1 Pic(Ani

i )

ψ

OO

// ∏r
i=1 NS(Ani

i )

ψNS

OO

// 0

OO

We will show that ψ0 and ψNS are isomorphisms, thus proving the proposition. Clearly
ψ0 is injective, and since ψ0 is a homomorphism of abelian varieties of the same di-
mension it must be an isomorphism. To prove that ψNS is an isomorphism we recall
from [7, Ch. 2] that a polarization on an abelian variety A is given by a finite isogeny
f : A→ A∨ whose analytic representation is hermitian. By assumption the abelian va-
rieties Ai and Aj are not isogeneous for i 6= j. Hence Hom(Ai, Aj) = Hom(Ai, A∨j ) = 0
and every isogeny f : ∏r

i=1 Ani
i → (∏r

i=1 Ani
i )
∨ is of the form f = ( f1, . . . , fr) where

fi : Ani
i → (Ani

i )
∨ is an isogeny. Since a direct sum of endomorphisms is hermitian if

and only if all its summands are, the claim follows as any divisor is the difference of
two very ample divisors (i.e. two polarizations).

As a consequence, we get that the Picard number is additive (but not strongly additive)
for product varieties coming from the Poincaré’s Complete Reducibility Theorem.

Proposition 4.2.3. Let A1, . . . , Ar be simple abelian varieties, such that Ai is not isogenous
to Aj for i 6= j. Then,

ρ

(
r

∏
i=1

Ani
i

)
=

r

∑
i=1

ρ(Ani
i ).

4.2.2 Picard numbers of self-products

Due to additivity, we are left to see how to compute the Picard number in the case
of a self-product of a simple abelian variety. If A is a simple abelian variety, we can
consider ∆(A) := End(A) ⊗Q, i.e. the (smallest) algebra containing End(A) where
the multiplication maps [n] : A −→ A become invertible elements (n ∈ Z). We
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denote its centre by F, which comes with a natural involution. We will say that F is
of the first kind if this involution acts trivially on F, and of the second kind otherwise.
Endomorphism algebras of simple abelian varieties have been studied and classified
(see [7, Proposition 5.5.7]) into four types, where the first three are of the first kind:

1. Type I: ∆(A) = F and ∆(A) is a totally real number field;
2. Type II: ∆(A) is a totally indefinite quaternion algebra over F;
3. Type III: ∆(A) is a totally definite quaternion algebra over F;
4. Type IV: F is of the second kind.

Depending on the dimension g, some of the above cases may not occur, as there are
restrictions on the numerical invariants of ∆(A); for details, see [7, Prop. 5.5.7]. The
following result gives a complete description of the Picard number of a self-product
of a simple abelian variety.

Proposition 4.2.4 (Lemma 3.3 of [25]). Let A be a simple abelian variety, and let E be a
maximal commutative subfield of ∆(A) which is totally real for type I and a CM field in the
other cases. Set f := [F : Q], q := [E : F]. Then, for k ≥ 1, one has

ρ(Ak) =


1
2 f k(k + 1) Type I
f k(2k + 1) Type II
f k(2k− 1) Type III
1
2 q2 f k2 Type IV.

Murty’s result enables us to compute the following bound for the Picard number of a
self-product of a simple abelian variety:

Corollary 4.2.5. Let A be a simple abelian variety of dimension n, and let k ≥ 1. Then
ρ(Ak) ≤ 1

2 nk(2k + 1).

Proof. Proposition 4.2.4 applied with k = 1 allows us to compute the Picard number
of A:

ρ = ρ(A) =


f Type I
3 f Type II
f Type III
1
2 q2 f Type IV.

Now, plugging this back in Proposition 4.2.4 gives the following reformulation in
terms of the Picard number of A:

ρ(Ak) =


1
2 ρk(k + 1) Type I
1
3 ρk(2k + 1) Type II
ρk(2k− 1) Type III
ρk2 Type IV.
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The divisibility conditions for ρ given by [7, Prop. 5.5.7] imply that

ρ ≤


n Type I
3
2 n Type II
1
2 n Type III
n Type IV

and, therefore, we see that

ρ(Ak) ≤


1
2 nk(k + 1) Type I
1
2 nk(2k + 1) Type II
1
2 nk(2k− 1) Type III
nk2 Type IV

from which the result follows.

We will use this result in the proof of the Main Theorem. Notice that Corollary 4.2.5
provides us with a bound on the Picard number of Ak which is independent of the
type of the endomorphism ring of A.

4.2.3 Some bounds on the Picard number

We would like to show that there are better bounds on the Picard number, if one is
given a partition of the dimension. More precisely, letting A be an abelian variety,
we define r(A) to be the length of a decomposition according to Poincaré Complete
Reducibility Theorem. In other words, given an abelian variety A, Theorem 4.2.1 gives
an isogeny

A −→ An1
1 × · · · × Anr

r ,

and we set r(A) := r. Notice that this quantity is well-defined because the factors Ai
and the powers ni are determined up to permutations and isogenies. Then, for r ≤ g,
we define Mr,g as

Mr,g := max{ρ(A) | dim A = g, r(A) = r}.

In other words, Mr,g is the largest Picard number that can be realized by a g-dimensional
abelian variety that splits into a product of r non-isogenous pieces in its isogeny class.

Proposition 4.2.6. For integers r, g ∈ N such that r ≤ g, one has Mr,g = [g− (r− 1)]2 +
(r − 1). This value is attained as the Picard number of E(g−r+1) × E1 × · · · × Er−1, where
E is a CM elliptic curve not isogenous to any of the Ei’s, and Ei and Ej are not isogenous for
i 6= j.
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Proof. If A ∼ A1 × · · · × Ar, Hom(Ai, Aj) = 0 for i 6= j, then

ρ(A) ≤ k2
1 + · · ·+ k2

r ,

where ki := dim Ai (i = 1, . . . , r). Moreover, k1 + · · ·+ kr = g, and thus

ρ(A) ≤ k2
1 + · · ·+ k2

r−1 + (g− k1 − · · · − kr−1)
2.

Notice that ki ≥ 1, for 1 ≤ i ≤ r− 1, and that 1 ≤ kr = g− k1 − · · · − kr−1. Consider
the function

f (x1, . . . , xr−1) = x2
1 + · · ·+ x2

r−1 + (g− x1 − · · · − xr−1)
2

in the domain Ω, given by the conditions

x1, · · · , xr−1 ≥ 1, x1 + · · ·+ xr−1 ≤ g− 1.

The equation z = f (x1, . . . , xr−1) is a paraboloid, with a unique minimum at b =(
g/(r− 1), . . . , g/(r− 1)

)
. Notice that b is the centroid of Ω, so that the maximum of

f in Ω is at one of the vertices of Ω. Since the function f only depends on the distance
from b, the maximum is in fact attained at every vertex of Ω, hence

Mr,g ≤ f (1, . . . , 1) = [g− (r− 1)]2 + (r− 1).

By applying Proposition 4.2.2, one can see that the abelian variety

E(g−r+1) × E1 × · · · × Er−1

has Picard number [g− (r− 1)]2 + (r− 1), and we are done.

4.3 Proof of Main Theorem

4.3.1 Proof of Main Theorem (1)

Let A be an abelian variety of dimension g ≥ 4, and let ρ := ρ(A). We will divide our
analysis of the Picard number ρ in the following mutually exclusive cases:

(a) A has length at least two, i.e. r(A) ≥ 2;
(b) A is a simple abelian variety;
(c) A is a self-product of a lower dimensional abelian variety.

Case (a). Suppose that, in its isogeny class, A decomposes into a product ∏r
i=1 Ani

i
with r ≥ 2, and define

n := min{ni · dim(Ai)|1 ≤ i ≤ r}.

If n is realized by considering the jth factor, set

Bn := A
nj
j and Bg−n := ∏

i 6=j
Ani

i .
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Notice that here we use the fact that r ≥ 2, as otherwise Bg−n would be empty. In this
setting, by Corollary 4.2.3,

ρ(A) =
r

∑
i=1

ρ(Ani
i ) = ρ(A

nj
j ) + ∑

i 6=j
ρ(Ani

i ) = ρ(Bn) + ρ(Bg−n) ≤ n2 + (g− n)2.

By minimality, n ≤ g− n, i.e. g ≥ 2n. We claim that

n2 + (g− n)2 ≤ (g− 1)2 + 1.

Indeed, as 1 ≤ n ≤ g/2, we can look at the function f (x) := x2 + (g − x)2 in
the interval 1 ≤ x ≤ g/2: it is decreasing, and its maximum at x = 1 has value
f (1) = 1 + (g− 1)2, thus yielding the corresponding bound on the Picard number.

Case (b). If A is simple, then Lemma 4.2.5 implies that ρ ≤ 3
2 g. One can check that,

for g ≥ 4, it is always the case that

3
2

g ≤ (g− 1)2 + 1.

Case (c). Let B be an m-dimensional simple abelian variety, and suppose A is isoge-
nous to Bk, for k := g/m. If m = 1 (i.e. B is an elliptic curve), then

ρ(Bg) =

{
(g+1

2 ) B has no CM
g2 B has CM

.

If B has CM, then A attains the top Picard number g2; if B does not have CM, then

ρ(A) =

(
g + 1

2

)
≤ 1 + (g− 1)2,

because g ≥ 4. The case of a self-product of an elliptic curve being dealt with, we can
assume k ≤ g/2. Then,

1
2

g(2k + 1) ≤ 1
2

g(g + 1),

and we claim that
1
2

g(g + 1) ≤ (g− 1)2 + 1.

Indeed, this holds true for g ≥ 4, and we are done.

4.3.2 Proof of Main Theorem (2)

To start with observe that, for 2 ≤ r ≤ g, one has Mr,g ≤ Mr−1,g. Therefore, if A is an
abelian variety such that r(A) ≥ 3, then

ρ(A) ≤ Mr(A),g ≤ M3,g < (g− 2)2 + 4.
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In light of this, we are left to deal with the cases r(A) = 1, 2.

Suppose that A is an abelian variety with r(A) = 1, i.e. A ∼ Bk with dim B = b and
bk = g. If b = 1, then B is an elliptic curve and we have two cases according to whether
B has complex multiplication. If B does have complex multiplication, then ρ(A) = g2

(the top Picard number), otherwise ρ(A) = 1
2 g(g + 1) < (g − 2)2 + 4 (as g ≥ 7). If

b > 1, then k ≤ g/2 and thus, by Lemma 4.2.5,

ρ(Bk) ≤ 1
2

g(2k + 1) ≤ 1
2

g(g + 1) ≤ (g− 2)2 + 4,

again because g ≥ 7. The last standing case is when r(A) = 2, which we will divide
into several steps.

Step 1

We deal with abelian varieties of the form En
1 × Eg−n

2 , where E1 and E2 are elliptic
curves, and 1 ≤ n ≤ g− n. If n = 1, then, by Proposition 4.2.3,

ρ(E1 × Eg−1
2 ) = 1 + ρ(Eg−1

2 ),

which equals M2,g if E2 has complex multiplication, and 1 + 1
2 g(g− 1) otherwise. In

the CM case, we obtain the second largest attainable Picard number, in the non-CM
case instead one sees that it is always the case that 1 + 1

2 g(g − 1) ≤ (g − 2)2 + 4.
Suppose now that n ≥ 2: we have that ρ(En

1 × Eg−n
2 ) ≤ n2 + (g− n)2, and we want to

bound the right-hand side. One has that:

n2 + (g− n)2 ≤ 4 + (g− 2)2 ⇐⇒ g ≥ n2 − 4
n− 1

.

The function

f (x) :=
x2 − 4
x− 1

is increasing in [2, g− 2], with maximum f (g− 2) = g2−4g
g−2 . As g ≥ f (g− 2) (here we

use g ≥ 4), this proves the right-hand side of the above equivalence, thus showing that
(g− 2)2 + 4 bounds the Picard number in this case as well. Notice that this value is
indeed attainable, and it is realized by the product E2

1 × Eg−2
2 , with E1 and E2 elliptic

curves with complex multiplication.

Step 2

We now consider abelian varieties of the form Ek × Al , with E an elliptic curve,
dim A = a > 1, k ≥ 1, l ≥ 1 and g = k + al. Notice that, by Proposition 4.2.3
and Lemma 4.2.5, one has

ρ(Ek × Al) ≤ k2 +
1
2

al(2l + 1) ≤ k2 +
1
2
(g− k)(2l + 1).
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Consider the function
f (x, y) = x2 +

1
2
(g− x)(2y + 1),

in the domain Ω := {(x, y) ∈ R2 | x ≥ 1, y ≥ 1, x + 2y ≤ g}. We will prove that f is
bounded from above by (g− 2)2 + 4 in Ω, and in turn this will show that ρ(Ek × Al).
By looking at the partials

∂ f
∂x

(x, y) = 2x− y− 1
2

,
∂ f
∂y

(x, y) = g− x,

we see that f is increasing on the lines x = x̄, for x̄ ≤ g, and thus the maximum of f
in Ω will lie on the line x + 2y = g. Therefore, we have reduced ourselves to studying
the function

g(y) := f (g− 2y, y) = (g− 2y)2 + 2y2 + y

on [1, (g− 1)/2]. It is increasing as y grows, hence its maximum is at ymax = (g− 1)/2,
with value

g(ymax) = (g− 2)2 + 3 < (g− 2)2 + 4.

Step 3

The last case is that of products of the form Ak × Bl , with dim A = a > 1, dim B = b >
1, k ≥ l ≥ 1 and g = ak + bl. One has,

ρ(Ak × Bl) ≤ 1
2

ak(2k + 1) +
1
2

bl(2l + 1)

=
1
2

ak(2k + 1) +
1
2
(g− ak)(2l + 1)

= ak(k− l) + gl +
1
2

.

Let f be the function defined by

f (x, y, z) = xy(y− z) + gz +
1
2

g,

in the domain

Ω := {(x, y, z) ∈ R3 | x ≥ 2, y ≥ 1, z ≥ 1, xy + 2z ≤ g}.

The partials are

∂ f
∂x

(x, y, z) = y(y− z),
∂ f
∂y

(x, y, z) = x(2y− z),
∂ f
∂z

(x, y, z) = −xy + g.

If we look at the lines of the form

Lȳ,z̄ : y− ȳ = z− z̄ = 0,

we see that f |Lȳ,z̄(x) is increasing if ȳ > z̄, decreasing if ȳ < z̄, and constant if ȳ = z̄.
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Case ȳ = z̄

In this case, one readily sees that f |Lȳ,z̄(x) ≡ gz̄ + 1
2 g ≤ 1

4 g2 + 1
2 g.

Case ȳ > z̄

The maximum on the line Lȳ,z̄ is attained for the largest values of x. As xȳ + 2z̄ ≤ g
and all quantities are positive, we get x ≤ g−2z̄

ȳ , and thus

f |Lȳ,z̄

( g− 2z̄
ȳ

)
= (g− 2z̄)(ȳ− z̄) + gz̄ +

1
2

g.

Now, we need to maximize this quantity, i.e. we need to find the maximum of the
function

h(y, z) := (g− 2z)(y− z) + gz +
1
2

g,

in D := {(y, z) | 1 ≤ y ≤ g−2
2 , z ≥ 1, y > z}. On the lines z = z̄, the function h is

increasing (in D), so that its maximum in D has to be looked for on the line given by
y = g−2

2 . Restricting h this line, we get

h
( g− 2

2
, z
)
= 2z2 − (g− 2)z + (g2/2− g/2),

whose maximum is 1
2 g(g− 1) < (g− 2)2 + 4.

Case ȳ < z̄

The proof is analogous to the latter case.

4.4 Some experimental data

Let us denote by Rg the set of realizable Picard numbers of g-dimensional abelian
varieties. One can write down a computer program to compute all the Picard numbers
of given dimension g. We briefly explain how to do this: first of all, we fix a positive
integer G such that we are interested in computing RG. In fact, the program will
have to compute all Rg’s, for g ≤ G. After assigning R1 and R2, which we know by
the discussion at the beginning of this note, for all g ≥ 3, the program will do the
following:
• compute all possible Picard numbers of simple abelian varieties of dimension g

using [7, Proposition 5.5.7];
• for all k such that 0 < k < g, use the additivity of the Picard number (Proposition

4.2.2) to compute the possible Picard numbers of products Ak × Ag−k, where Ak
(respectively, Ag−k) is an abelian variety of dimension k (respectively, g− k) and
End(Ak, Ag−k) = 0 (here we need the knowledge of Rh, for h < g);
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• for all d such that 1 ≤ d < g and d|g, set k := g/d and use the proof of Corollary
4.2.5 to compute the possible Picard numbers of self-products Ak

d, where Ad is a
simple abelian variety of dimension d.

In the following, we report the result of this computation for g ≤ 30.
R3 = {1, . . . , 6, 9}
R4 = {1, . . . , 8, 10, 16}
R5 = {1, . . . , 13, 15, 17, 25}
R6 = {1, . . . , 21, 26, 36}
R7 = {1, . . . , 22, 25, . . . , 29, 37, 49}
R8 = {1, . . . , 32, 34, 36, . . . , 40, 50, 64}
R9 = {1, . . . , 33, 35, 37, . . . , 42, 45, 50, . . . , 53, 65, 81}

R10 = {1, . . . , 46, 50, . . . , 55, 58, 65, . . . , 68, 82, 100}
R11 = {1, . . . , 57, 59, 61, 65, . . . , 70, 73, 82, . . . , 85, 101, 121}
R12 = {1, . . . , 72, 74, 78, 80, 82, . . . , 87, 90, 101, . . . , 104, 122, 144}
R13 = {1, . . . , 77, 79, 81, . . . , 89, 91, 97, 101, . . . , 106, 109, 122, . . . , 125, 145, 169}
R14 = {1, . . . , 94, 96, 98, 100, . . . , 108, 110, 116, 122, . . . , 127, 130, 145, . . . , 148, 170, 196}
R15 = {1, . . . , 113, 115, 117, 120, 122, . . . , 129, 131, 137, 145, . . . , 150, 153, 170, . . . , 173, 197,

225}
R16 = {1, . . . , 134, 136, 138, 145, . . . , 152, 154, 160, 170, . . . , 175, 178, 197, . . . , 200, 226, 256}
R17 = {1, . . . , 142, 145, . . . , 157, 159, 161, 169, . . . , 177, 179, 185, 197, . . . , 202, 205, 226, . . . , 229,

257, 289}
R18 = {1, . . . , 165, 170, . . . , 182, 184, 186, 194, 197, . . . , 204, 206, 212, 226, . . . , 231, 234,

257, . . . , 260, 290, 324}
R19 = {1, . . . , 190, 193, 195, 197, . . . , 209, 211, 213, 221, 226, . . . , 233, 235, 241, 257, . . . , 262,

265, 290, . . . , 295, 325, 361}
R20 = {1, . . . , 218, 222, 226, . . . , 238, 240, 242, 250, 257, . . . , 264, 266, 272, 290, . . . , 295, 298,

325, . . . , 328, 362, 400}
R21 = {1, . . . , 219, 221, . . . , 246, 251, 257, . . . , 269, 271, 273, 281, 290, . . . , 297, 299, 305,

325, . . . , 330, 333, 362, . . . , 365, 401, 441}
R22 = {1, . . . , 247, 250, . . . , 254, 257, . . . , 277, 282, 290, . . . , 302, 304, 306, 314, 325, . . . , 332,

334, 340, 362, . . . , 267, 370, 401, . . . , 404, 442, 484}
R23 = {1, . . . , 278, 281, . . . , 285, 289, . . . , 310, 315, 325, . . . , 337, 339, 341, 349, 362, . . . , 369,

371, 377, 401, . . . , 406, 409, 442, . . . , 445, 485, 529}
R24 = {1, . . . , 288, 290, . . . , 311, 314, . . . , 318, 320, 325, . . . , 345, 350, 360, 362, . . . , 376, 378,

386, 401, . . . , 4908, 410, 416, 442, . . . , 447, 450, 485, . . . , 488, 530, 576}
R25 = {1, . . . , 321, 323, 325, . . . , 346, 349, . . . , 353, 361, . . . , 382, 387, 397, 401, . . . , 413, 415,

417, 425, 442, . . . , 449, 451, 457, 485, . . . , 490, 493, 530, 531, 532, 533, 577, 625}
R26 = {1, . . . , 356, 358, 360, . . . , 383, 386, . . . , 390, 398, 401, . . . , 421, 426, 436, 442, . . . , 454,

456, 458, 466, 485, 486, . . . , 492, 494, 500, 530, 531, . . . , 535, 538, 577, . . . , 580, 626, 676}
R27 = {1 . . . , 393, 395, 397, . . . , 422, 425, . . . , 429, 437, 442, . . . , 462, 467, 477, 485, . . . , 497,

499, 501, 509, 530, . . . , 537, 539, 545, 577, . . . , 582, 585, 626, . . . , 629, 677, 729}
R28 = {1, . . . , 396, 398, . . . , 432, 434, 436, . . . , 440, 442, . . . , 470, 478, 485, . . . , 505, 510, 520,

530, . . . , 542, 544, 546, 554, 577, . . . , 584, 586, 592, 626, . . . , 631, 634, 677, . . . , 680, 730,
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784}
R29 = {1 . . . , 433, 435, 437, . . . , 473, 475, 477, . . . , 481, 485, . . . , 506, 509, . . . , 513, 521,

530, . . . , 550, 555, 565, 577, . . . , 589, 591, 593, 601, 626, . . . , 633, 635, 641, 677, . . . , 682,
685, 730, . . . , 733, 785, 841}

R30 = {1 . . . , 474, 476, 478, . . . , 483, 485, . . . , 516, 518, 520, . . . , 524, 530, . . . , 551,
554, . . . , 558, 566, 577, . . . , 597, 602, 612, 626, . . . , 638, 640, 642, 650, 677, . . . , 684,
686, 692, 730, . . . , 735, 738, 785, . . . , 788, 842, 900}

A few comments on these numerical data are worth making. To start with, let us no-
tice that Part 1 of the Main Theorem is as best as it can be. More precisely, for g = 2
all Picard numbers occur, and for g = 3 we have 6 ∈ R3. Similar considerations hold
for Part 2 of the Main Theorem and every g ≤ 6.
Moreover, by looking at these data, one may guess a few more gaps in the Picard num-
bers of abelian varieties, for g � 0. However, the computations get out of hand very
quickly, so that applying the methods that we have used for proving the Main Thereom
seems inadequate. On the opposite side of the problem, one might be interested in
investigating the following

Problem 4.4.1. For given g, find a positive integer r = r(g) such that

{1, . . . , r} ⊂ Rg.

At a first glance, this problem appears to be combinatorial in nature, and by combining
Proposition 4.2.3 and the knownledge of Rh for h < g, one should be able to find such
r. This problem is currently under investigation.
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