The 3-Oxidopyridinium [5+2] Cycloaddition in the Total Synthesis of Alkaloids and Development of a Diazo Insertion based Strategy for the Formation of Hexahydrocyclohepta[b]indoles

Von der Naturwissenschaftlichen Fakultät der
Gottfried Wilhelm Leibniz Universität Hannover
zur Erlangung des Grades
Doktor der Naturwissenschaften (Dr. rer. nat.)

genehmigte Dissertation
von
M. Sc. Sebastian Krüger
geboren am 26.12.1985 in Schongau

Referentin: Prof. Dr. rer. nat. Tanja Gaich

Korreferent: Prof. Dr. rer. nat. Markus Kalesse

Tag der Promotion: 29.02.2016

Scientific contributions from 03/2013 to 11/2015

Publications

S. Krüger, T. Gaich, "Enantioselective, Protecting-Group-Free Total Synthesis of Sarpagine Alkaloids—A Generalized Approach", Angew. Chem. Int. Ed. 2014, 54 (1), 315-317. Mentioned in Synfacts: "Synthesis of Sarpagine Alkaloids", Synfacts 2015, 11 (1), 7.
S. Krüger, T. Gaich, "Recent applications of the divinylcyclopropane-cycloheptadiene rearrangement in organic synthesis", Beilstein J. Org. Chem. 2014, 10, 163-193.

Posters \& Talks

NOS-Meeting 2015, 02.07.2015, University of Maryland, MA, USA,
Poster: "A Unified, Protecting Group Free Enantioselective Access to the Sarpagine Alkaloids"

Winterfeldt Preis 2015, 26.06.2015, Leibniz Universität Hannover
Talk: "The 3-Oxidopyridinium [5+2] Cycloaddition in Total Synthesis - Access to Several Sarpagine Alkaloids and Parvineostemonine -"

MINAS Kolleg 2014, 19.06.2014, Burg Warberg, Warberg
Talk: "Synthetic Access to the Sarpagine Alkaloids - Enantioselective Total Synthesis of Vellosimine -"

Leibniz Symposium 2014, 14.02.2014, Leibnizhaus, Hannover
Poster: "Enantioselective, Protecting Group Free Total Synthesis of Sarpagine Alkaloids."
"I am Sebastian, or Sebastian is I, or perhaps we both are someone whom neither of us knows."
V. Nabokov

Abstract

I The enantioselective, protecting group free total syntheses of the sarpagine alkaloids vellosimine, N -methylvellosimine and 10-methoxyvellosimine were achieved via a joint synthetic sequence. Furthermore, the flexibility of the synthetic route was showcased by the formal synthesis of 16 -epinormacusine B, thereby expanding the synthetic access to both the 16 -regular and the 16 -epi subgroup of sarpagine alkaloids. The key steps include a 3 -oxidopyridinium [5+2] cycloaddition, a diazomediated ring expansion and a late stage product differentiation using the Fischer indole synthesis.

II The enantiodivergent, protecting group free total synthesis of the stemona alkaloid parvineostemonine was achieved. Our synthetic strategy includes a 3-oxidopyridinium [5+2] cycloaddition and differentiation of the obtained regioisomers into both antipodes of the natural product. Both enantiomers of the natural product can be obtained in only nine steps from literature known starting materials.

III A new methodology for the construction of hexahydrocyclohepta[$b]$ indoles has been established. This methodology relies on the diazo insertion of 1-(diazomethyl)-2nitrobenzene with cyclic, six-membered ketones mediated by trimethylaluminium and subsequent reduction. To demonstrate the synthetic potential of this methodology, the formal synthesis of an A-FABP (adipocyte fatty acid binding protein) inhibitor was concluded.

keywords: total synthesis, alkaloid, cycloaddition.

Kurzzusammenfassung

I Die enantioselektive, schutzgruppenfreie Totalsynthese der Sarpagine Alkaloide Vellosimine, N-Methylvellosimine und $10-$ Methoxyvellosimine wurde erreicht. Des Weiteren wurde die Flexibilität der Syntheseroute durch die zusätzliche Formalsynthese von 16-Epinormacusine B unterstrichen. Somit konnte der synthetische Zugang von der 16 -regular-Untergruppe der Sarpagine Alkaloide auch auf die 16 -epiUntergruppe der Sarpagine Alkaloide ausgeweitet werden. Als Schlüsselschritte wurden eine 3-Oxidopyridinium [5+2] Cycloaddition und eine Ringerweiterung verwendet. Mittels einer abschließenden Fischer Indole Synthese konnten die verschiedenen Naturstoffe erhalten werden.

II Die enantiodivergente, schutzgruppenfreie Totalsynthese des Stemona Alkaloids Parvineostemonine wurde durchgeführt. Beide Enantiomere des Naturstoffes können in nur neun Stufen von bekannten synthetischen Zwischenstufen ausgehend hergestellt werden. Als Schlüsselschritt diente hier ebenfalls die 3-Oxidopyridinium [5+2] Cycloaddition.

III Eine neue Methode zur Synthese von Hexahydrocyclohepta[b]indolen wurde gefunden. Grundlage dieser Methode ist die Insertion von 1-(Diazomethyl)-2-nitrobenzol in sechsgliedrige, zyklische Ketone unter Einwirkung von Trimethylaluminium und anschließender Reduktion. Zudem wurde die Formalsynthese eines A FABP (adipocyte fatty acid binding protein) Hemmstoffes abgeschlossen.

Schlagwörter: Totalsynthese, Alkaloid, Cycloaddition.

Graphical Abstract

III

Table of Contents

1 Introduction 1
1.1 Introduction with Graphs 2
1.2 A Synthetic Introduction 3
1.3 References 7
2 The Sarpagine Project 8
2.1 Occurence 9
2.2 Structures 10
2.3 Biosynthesis 15
2.4 Synthetic Efforts 31
2.5 Bioactivities 36
2.6 Synthetic Planning 37
2.7 The 3-0xidopyridinium [5+2] Cyloaddition 39
2.8 Results 40
2.9 Summary and Outlook 48
2.10 Experimentals 50
2.11 Spectra 77
2.12 References 103
3 The Parvineostemonine Project 107
3.1 Occurence 108
3.2 Structures 108
3.3 Biosynthesis 113
3.4 Synthetic Efforts 118
3.5 Bioactivities. 120
3.6 Enantiodivergent Total Synthesis 122
3.7 Synthetic Planning 123
3.8 Results 126
3.9 Summary and Outlook 132
3.10 Experimentals 134
3.11 Spectra 158
3.12 References 176
4 The DMNB Project 178
4.1 Introduction 179
4.2 Diazo Insertion and Alpha Arylation 181
4.3 DMNB 183
4.4 Indole Forming Reactions 186
4.5 Adipocyte Fatty Acid Binding Protein (A FABP) 188
4.6 Results 189
4.7 Summary and Outlook 196
4.8 Experimentals 198
4.9 Spectra 216
4.10 References 244
5 Summary and Outlook. 247
6 List of Schemes 255
7 List of Figures 259
8 List of Tables 262
9 List of Abbreviations 264
10 Acknowledgements 268
11 CV 271

1 Introduction

"The only real number is one, the rest are mere repetition"
V. Nabokov

1.1 Introduction with Graphs

Alkaloids have been extensively used by mankind throughout the past thousands of years, due to their unique effects on the human body. Early stimulants including coffee and tea rely on alkaloids to stimulate the heart rate, most illegal drugs are based on alkaloids due to their severe interaction with the human body. ${ }^{[1.1]} \mathrm{A}$ lot of commercially available drugs against various diseases have been developed from isolated natural products. Newman and Cragg ${ }^{[1.1]}$ state that about a third of all small molecule new chemical entities from 1981-2006 are either natural products or derived from natural products in 2007 (see figure 1, graph 1). According to Cordell and co-workers ${ }^{[1.2]}$ in 2001 roughly 50% of the natural product derived drugs were based on alkaloids (graph 2), much in contrast to the low percentage of known alkaloids compared to the overall known natural products (graph 3). Further astonishing is the percentage of alkaloids that have never been subject to any bioactivity studies, roughly three quarters of every alkaloid ever isolated (graph 4). In fact only about two percent of all alkaloids have been seriously evaluated, and have contributed largely to the list of new chemical entities.

Figure 1: Facts about small chemical entities, natural products and alkaloids as graphs. Graph 1: Small molecule new chemical entities, $\mathrm{N}=974$. Explanation: $\mathrm{N}=$ natural products, $\mathrm{ND}=$ natural product derived, $\mathrm{S}=$ totally synthetic, $\mathrm{S} / \mathrm{NM}=$ synthetic/natural product mimic, $\mathrm{S}^{*}=$ synthetic with a pharmacophore from a natural product, $\mathrm{S}^{*} / \mathrm{NM}=$ synthetic with a pharmacophore from a natural product/natural product mimetic. Graph 2: Source of a pharmaceutical or biological significant natural product. Graph 3: Known natural products and their classification. Graph 4: Percentage of the bioassay evaluation of alkaloids, $\mathrm{N}=21120$. The numbers indicate the amount of bioassays performed for the percentage of alkaloids.

It can therefore be surmised, that alkaloids have contributed in the most significant way to the development of new drugs, and have thereby greatly improved human life. Alkaloids seem to be the ideal starting point concerning bioactive molecules, and with a large variety of unevaluated alkaloid natural products there is a huge chance of finding interesting properties in any targeted molecule. Within the natural product classes (sarpagine and stemona alkaloids), which will be part of the following chapters, bioactive molecules against leukemia
cells and human KB (cancer-)cells ${ }^{[1.3]}$ have been found. As all molecules that will be discussed are obtained from trees or bushes, the vast majority of bioactivities is focused on the defense against herbivores. Several molecules have been isolated that fend of worms, insects ${ }^{[1.4]}$ or rats. ${ }^{[1.3]}$ The alkaloid-containing extracts of those trees can furthermore be used as an effective anticough treatment. ${ }^{[1.4]}$

This work is focused on the development of a unified synthetic strategy towards several alkaloids of different biosynthetic origin (different trees or bushes), from different alkaloid families, isolated in a large variety of countries on several continents. The aim is to pave the way to the evaluation of several very different natural products, which most likely will have interesting biological properties. Independent of any possible findings regarding the bioactivity of the synthesized molecules (which is not part of this work) there is a variety of synthetic knowledge that is readily obtained by working in the field of alkaloid total synthesis.

1.2 A Synthetic Introduction

As a total synthetic chemist there is an incredible pool of natural products awaiting a synthetic access. There is also a very limited time frame. In order to achieve a maximum of successfull syntheses in as short a period of time as possible, there is no way but to display a very high synthetic efficiency. In other words, the quest is to achieve as much as possible with the minimal amount of effort necessary. An efficient, up to date total synthesis needs to fullfill several aspects:

- short (below 20 steps)
- protecting group free (reduces the step count)
- asymmetric
- targets multiple natural products
- convergent synthesis of several building blocks.

The concept of an ideal synthesis has been addressed by Hendrickson ${ }^{[1.5]}$ in 1975 (and later by Baran and co-worker ${ }^{[1.6]}$) and resulted in the following guideline:
"Ideally, the [ideal] synthesis would start from available small molecules so functionalized as to allow constructions linking them together directly, in a sequence only of successive construction reactions involving no intermediary refunctionalizations, and leading directly to the
structure of the target, not only its skeleton but also its correctly placed functionality. If available, such a synthesis would be the most economical, and it would contain only construction reactions."

Fourty years later, we intended to stretch this description of a total synthesis further towards a common intermediate based synthetic acces towards several alkaloids from different families (see figure 2). Instead of the classical concept of total synthesis, which converts a massive amount of starting material to a barely existing amount of one single natural product in a very long linear synthesis, we intended to prepare a common intermediate (?) in a convergent fashion. From this intermediate we will be able to access different natural products of different biosynthetic origins. The mutual building block (?) should be placed roughly in the middle of the synthesis. This would allow a significant amount of chemical complexity of the common intermediate, while being still shapable enough to access very different alkaloids. The steps from the starting materials to the privileged intermediate (?) will not have to optimized for the second total synthesis via the synthetic route.

old fashioned total synthesis

common intermediate based total synthesis

Figure 2: Two concepts of total synthesis.
This synthetic concept is demonstrated with the alkaloids that we intended to target in figure 3. The three alkaloids vellosimine ($\mathbf{1}$, a sarpagine alkaloid), parvineostemonine ($\mathbf{2}$, isolated from a stemona species) and alstonerine (3, an alstonia alkaloid) ${ }^{[1.7]}$ should be traced back to an unknown, common intermediate (?).

Figure 3: The quest for a common synthetic precursor.

In order to decipher the identity of this mutual building block, a common structural motive has to be found. In all the natural products from figure 3 (note that the other enantiomer of parvineostemonine $\mathbf{2}$ is used for simplicity in figure 4) the piperidine moiety (highlighted in red) is the most obvious common feature. All of those piperidine units differ in the substitution at the nitrogen atom. They also have an all-carbon bridge (from position (ps) 2 to ps 6) in common, as well as substitution (albeit very different substitution) on the positions 3 and 4. The postion 5 is unsubstituted in compound $\mathbf{1}$ and compound $\mathbf{3}$, but is part of another four carbon atom-containing bridge in compound 2. Redrawn without any distracting moieties (compounds 4 to 6) a much more unperturbed picture emerges, ultimately resulting in the recognition of compound $\mathbf{7}$ as the ultimate mutual precursor.

All those very different substitutions can be implemented using a dihydropyridinone core (ketone moiety at ps3, double bond ps 4-5, different nitrogen-substitution at ps 1). A further requirement is a bride from ps 2 to ps 6 , which will be containing two carbon atoms. To successfully synthesize compounds 1-3 this bridge will be subject to a C1-homologation.

Figure 4: Comparison of the substitution pattern of the central piperidine core and explanation of the thought progress behind a common intermediate based synthetic strategy. Note that parvineostemonine (2) is displayed in this figure alone as the opposing antipode due to simplicity.

We furthermore aim to develop a rapid, enantioselective, protecting group free synthetic access to a vast variety of alkaloids, which are isolated from a variety of different plants in various countries. These plants and the resulting alkaloids do not need to share the same biosynthetic origin, but are synthesized based on the same chemistry. The establishment of a common intermediate with late stage product differentiation will enable us to produce large quantities of a variety of natural occurring and unnatural alkaloids for biological evaluation. Figure 5 highlightes the overall synthetic concept in a colourfull and easily remembered way. The total synthesis of parvineostemonine (2) should be carried out in an enantiodivergent fashion. For this synthetic concept see chapter 3 . For an introduction to the methodology part of this thesis see chapter 4.

Figure 5: Synthetic concept (with colours) and the common intermediate.

1.3 References

[1.1] D. J. Newmann, G. M. Cragg, J. Nat. Prod. 2007, 70, 461-477.
[1.2] G. A. Cordell, M. L. Quinn-Beattie, N. R. Farnsworth, Phytother. Res. 2001, 15, 183205.
[1.3] for a closer look on the bioactivities of the sarpagine alkaloids see chapter 2.5.
[1.4] for a closer look on the bioactivities of the stemona alkaloids see chapter 3.5.
[1.5] J. B. Hendrickson, J. Am. Chem. Soc. 1975, 97, 5784-5800.
[1.6] T. Gaich, P. S. Baran, J. Org. Chem. 2010, 75, 4657-4673.
[1.5] for the isolation of alstononerine see: J. M. Cook, P.W. LeQuesne, Chem. Commun. 1969, 1306-1307.

2 The Sarpagine Project

This chapter covers the occurance and biosynthesis of the sarpagine alkaloids, the already accomplished synthetic approaches, our synthetic concept and its results. Large parts of this chapter have been published previously.

2.1 Occurence

The sarpagine family of alkaloids has mostly been isolated from a variety of Apocynaceae genera. Due to the sheer amount of plants and locations, from which sarpagine alkaloids have been isolated, this discussion is limited to the occurance of the synthesized molecules. Vellosimine (1) was isolated from:

- Alstonia yunnanensis (Apocycnaceae) found on the West Mountain of Kunming, Yunnan Province, China in 1983. 3.95 kg of roots led to the isolation of 350 mg vellosimine (1). ${ }^{[2.1]}$
- Cabucala erythrocarpa var. erythrocarpa found in Madagascar in 1974. One kilogram of leaves yielded 15 mg of vellosimine (1). ${ }^{[2.2]}$
- Geissospermum velosii found in brazil in 1958.6 .87 kg of bark yielded about 900 mg of vellosimine (1). ${ }^{[2.3]}$
- Rauvolfia caffra found in Pretoria, South Africa in 1977.6 kg of stem bark yielded 20 mg of vellosimine (1). ${ }^{[2.4]}$
- Rauvolfia macrophylla found in Ibadan, Nigeria in 1974. 2.1 kg stem bark yielded 10 mg of vellosimine (1). ${ }^{[2.5]}$
- Rauvolfia nitida found in Jamaica in 1960. 2 kg of roots gave rise to 10 mg of vellosimine (1). ${ }^{[2.6]}$
- Rauvolfia salicifolia found in Rio Maravi, Cuba. Vellosimine (1) was isolated from the stem bark extracts, but not from the leaf or root extracts. ${ }^{[2.7]}$
- Rauvolfia cubana, found in the province of la Habana, Cuba in 1978. Vellosimine (1) was isolated from the leaves of this tree, but not from the roots. ${ }^{[2.8]}$
- Rauvolfia verticillata found in Hong Kong. ${ }^{[2.9]}$
- Vinca difformis. ${ }^{[2.10]}$
- Rauvolfia reflexa, Rauvolfia vomitoria, Rauvolfia yunnanensis, Strychnos divaricans (Loganiaceae). ${ }^{[2.11]}$
N-Methylvellosimine (8) was isolated from:
- Rauvolfia nitida found in Jamaica in 1960. 2 kg of roots yielded 15 mg of N -methylvellosimine (8). ${ }^{[2.6]}$

10-Methoxyvellosimine (9) was isolated from:

- Vinca major found in the department of Gers in the south of France. ${ }^{[2.11]} 280 \mathrm{~g}$ of roots provided 57 mg of 10-methoxyvellosimine (9).

16-Epinormacusine (10) was isolated from:

- Ervatamia hirta found in Malaysia in 1984.3 .3 kg of root bark yielded 188 mg of 16 epinormacusine B(10). ${ }^{[2.12]}$

2.2 Structures

The sarpagine class of alkaloids consists of over one hundred members. 89 have been summarized previously. ${ }^{[2.11]}$ A corrected version of this collection of molecules and newly isolated members starting from 1999 can be found on the following pages. For a detailed understanding see the carbon-atom numbering in figure 6.

Figure 6: Carbon atom numbering for the parent compound sarpagine.

For a comprehensive overview of the sarpagine alkaloids, all known structures are listed in the following figures. For compounds 1, 16-89 (figures 7-10) see reference 2.11 and the references cited therein. Three dihydydroperaksine congeners (96-98, figure 10) have been isolated by Stöckigt and coworkers. ${ }^{[2.13]}$ Rauvotetraphyllines B\&C (99-100) have been isolated by the Liu group. ${ }^{[2.14]}$ Z-Affinisine (101) has been isolated by the group of Kam. ${ }^{[2.15]} \mathrm{A}$ methylated talpinine derivative (102) has been isolated by Kinghorn and coworkers. ${ }^{[2.16]}$ The group of Takayama isolated an oxidated koumidine derivative (103). ${ }^{[2.17]}$ Both double bond
isomers of the alkaloid 16 -epivoacarpine (104\&105) have been isolated by Takayama. ${ }^{[2.18]}$ The group of Kam isolated two more sarpagine-macroline dimers called lumitinine C\&D (106\&107). ${ }^{[2.19]}$ The group of Kam isolated the first eburnane-sarpagine bisindole alkaloid leuconoline (108). ${ }^{[2.20]}$ Gelsochalotine (109) was suggested to be a sarpagine decomposition product. ${ }^{[2.21]}$ Gardquinolone (110) was suggested to be derived from gardnerine. ${ }^{[2.22]}$

sarpagine (11)

N_{a}-methylvellosimine (8)

10-methoxyvellosimine (9)

dehydro-16-epiaffinisine (13)

affinisine (14)

O-methyInormacusine $B(15)$

10-epiaffinisine (16)

macusine B (17)

normacusine $B(18)$

pericyclivine (24)

peraksine (19)

ervincidine (20)

deoxyperaksine (25)

gardnutine (26)

panarine (27)

16-epipanarine (28)

O-methylmacusine B(29)

N_{a}-methylsarpagine (33)

O-methyl-16-epimacusine B (30)

lochnerine (31)

gardnerine (32)

Figure 7: Isolated sarpagine alkaloids, part 1.

verticillatine (56)

polyneuridine aldehyde (57)
$\mathrm{O}^{\text {O-acetyl-16-epiaffinisine (58) }}$
E-akuammidine (59)

Z-akuammidine (63)

19,20-dihydropolyneuridine (67)

O-acetylsarpagine (62)

10-hydroxy- N_{a}-methylpericyclivine (64)

dehydrovoachalotine (68)

voachalotinal (69)

19,20-dihydroakuammidine (66)

Figure 8: Isolated sarpagine alkaloids, part 2.

Figure 9: Isolated sarpagine alkaloids, part 3.

desformundulatine (94)
undulatine (95)

Figure 10: Isolated sarpagine alkaloids, part 4.

For information on alkaloid $Q_{3}(\mathbf{1 8 7})$ see page 33.

2.3 Biosynthesis

Sarpagine alkaloids are built up from two main building blocks, secologanin 120 and tryptophane. The biosynthesis of secologanin (120, see scheme 1) starts with head-to-tail connection of two molecules of dimethylallyl pyrophosphate (DMAPP, 111) to form geraniol (112) after dephosphorylation. Subsequent oxidation at the 10-position furnishes 113 and further oxidation leads to bisaldehyde 114, which undergoes ring closure to give 115. Tautomerism and cyclization leads to enolhemiacetal 116. Another oxidation occurs to yield iridotrial 117. Further oxidation and esterification furnished the ester moiety of 118, the remaining alcohol of iridotrial is then subject to glycosylation to give 118. Hydroxylation occurs to give loganin 119, which is then transformed to secologanin (120) via the secologanin synthase. ${ }^{[2.23]}$

In the next step, secologanin 120 and tryptamine 121 (see scheme 2, from decarboxylated tryptophane) are joined in a Pictet-Spengler reaction catalyzed by the strictosidine synthase to yield strictosidine 122. Next, deglucosidation occurs to give hemiacetal 123, which in turn undergoes acetal cleavage, imminium ion formation and double bond shift to furnish tetracycle 124. After translocalization of the imminium ion (see 125) attack from the β-carboxyester sets up the cage structure of polyneuridine aldehyde 57. Decarboxylation
gives rise to 16 -epivellosimine ($\mathbf{1 2 6}$, not isolated as a natural product), which tautomerizes to the thermodynamically more stable natural product vellosimine $1^{[2.24-2.27]}$ The identification of the diterpene unit in the cage structure of vellosmine ($\mathbf{1}$, highlighted in red in scheme 2, compare to geraniol (112) in scheme 1) is not easily accomplished, as the C3-C5 carbon bond has been cleaved by the secologanin synthase, and C10 has been subject to decarboxylation.

Scheme 2: Biosynthesis of vellosimine (1) from secologanin 120 and tryptamine 121. The carbon atoms stemming from the diterpene moiety are highlighted in red for vellosimine. For the numbering see scheme 1.

The cyclization event from strictosidine $\mathbf{1 2 2}$ to polyneuridine aldehyde $\mathbf{5 7}$ has been subject to different hypothesis. The initial hypothesis from van Tamelen ${ }^{[2.28-2.31]}$ suggests the cage structure formation from immium ion 125 to polyneuridine aldehyde 57 (see scheme 3). Lounasmaa and Hanhinen argued that the shortest bond-forming distance in this cyclization would be $2.70 \AA$, which is no reasonable range for C-C bond formation. Instead they put forward an opposing proposal, in which the bond-forming step between C5 and C16 takes place directly after fragmentation of strictosidine 122. ${ }^{[2.11,2.32]}$ The bond forming distance between C5 and C16 for compound $\mathbf{1 2 7}$ is approximately $1.50 \AA$, which is much better suited for C-Cbond formation. Tetracycle $\mathbf{1 2 8}$ is then transformed to polyneuridine aldehyde $\mathbf{5 7}$ in 3 steps. Nevertheless, this proposal adds one oxidation step in the beginning and one reduction step
in the end of the cage structure formation, whereas the van Tamelen hypothesis proceeds redoxneutral. So far, no experimental evidence has been provided for either hypothesis.

van Tamelen hypothesis

polyneuridine aldehyde (57)
imminium ion formation, double bond migration, reduction

\downarrow

Scheme 3: Comparison of the van Tamelen ring-closing hypothesis and the Lounasmaa and Hanhinen proposal.

A variety of natural products are closely related to intermediates in the vellosimine biosynthesis. After the fragmentation of strictosidine (122, see scheme 4) to give aldehyde 129 3-isocorreantine A (130) can be obtained by conjugation of the skipped vinylogous aldehyde and subsequent nucleophilic attack of the enolate-oxygen, followed by attack of the indole nitrogen onto the aldehyde moiety (see red arrows).

Tetrahydroalstoninine $\mathbf{1 3 1}$ is derived from conjugated imminium ion $\mathbf{1 2 4}$ and attack of the enolate oxygen onto the vinylogous imminium ion. Yohimbine 134 is obtained after the formation of vinylogous enamine 132 and its attack onto the aldehyde. 16-Epivellosimine 126 can be transformed into vinorine (133) by attack of the indole onto the nearby aldehyde followed by acetalization of the resulting alcohol. ${ }^{[2.23]}$

Scheme 4: Major compounds (highlighted in green) in the biosynthesis of sarpagine alkaloids and related natural prdoucts.

Apart from different natural products from various alkaloid families which arise from different reactions with sarpagine biosynthetis intermediates (like in scheme 4), the late stage modification of polyneuridine aldehyde 57 forms about one hundred congeners (see figures 7-10 for details) of the sarpagine alkaloid family. A simple classification can be achieved by dividing these alkaloids in two major subgroups (see figure 11), depending on a possible decarboxylation at the C16 β-carboxyester. If this decarboxylation took place, the corresponding alkaloid is part of the "decarboxylation" subgroup, which comprises 71 congeners. If this decarboxylation event has not occurred, the alkaloid is part of the "no decarboxylation" subgroup, which consists of 28 members.

Each major subgroup can be devided further, depending on the orientation of the highest oxidated substituent R at C 16 . If this moiety is pointing up, the alkaloid is part of the "C16epi" class, if it is pointing down, the alkaloid can be assigned to the "C16-regular" group. For both major subgroups, the "C16-regular" subgroup comprises approximately twice the number of congeners as the "C-16-epi" subgroup. Each subgroup can now be further devided according to the late stage additional cyclization events ("additional rings" or "no additional rings") or if dimerization has occurred.

Figure 11: Classification of sarpagine alkaloids. $n=n u m b e r ~ o f ~ n a t u r a l ~ p r o d u c t s . ~$
The alkaloids gelsochaltoine $\mathbf{1 0 9}$ and gardquinolone $\mathbf{1 1 0}$ are not part of this summary, as they are decomposition products of already known alkaloids. Note that rauvotetraphylline B (99) is the only alkaloid with a pyridine as the additional ring. been observed via oxidative ring closure of the C16-epi-carbalcohol into the 6 -position. This ring-forming event has been observed for the compounds below, for both the "decarboxylated" or the "no decarboxylation" subgroup (see figure 12).

No Decarboxylation

dehydrovoachalotine (68)

17-hydroxydehydrovoachalotine (75)

Decarboxylation

Figure 12: Sarpagine alkaloids with an additional ring in the C16-epi series.

For the decarboxylated C16-regular congeners the formation of a tetrahydropyrane ring is observed, as the oxidative cyclization into the 6-position is impossible. Two different compound classes can be observed, either possessing a methyl group at the piperidine moiety, or a methyl group at the tetrahydropyrane moiety (see figure 13).

Methyl group at piperidine

peraksine (19)

macrosalhine (52)

deoxyperaksine (25)

verticillatine (56)

Methyl group at tetrahydropyrane

venecurine (41)

trinervine (22)

21-hydroxycyclolochnerine (54)

talpinine (34)
($+N_{\mathrm{b}}$-methyltalpinine (102))

Figure 13: Alkaloids with additional ring systems in the decarboxylated C16-regular series.

An explanation for the different position of the methyl group can be found within the biosynthesis of the sarpagine alkaloids (see scheme 5). The skipped unsaturated aldehyde $\mathbf{1 2 9}$ is converted to the more stable conjugated aldehyde $\mathbf{1 3 5}$, followed by the attack of the secondary amine either onto the aldehyde (red arrows) or in a conjugated fashion (green arrows). Following the red arrows, imminium ion $\mathbf{1 2 4}$ is formed, and in the known fashion
normacusine B (18). Trinervine (22) can then be obtained after oxidative tetrahydropyrane formation. Follwing the green arrows, aldehyde 136 is formed first, followed by oxidative cyclization to give intermediate 137. Decarboxylation and epimerization at C16 leads to bisaldehyde 138, which then forms peraksine (19) in a reductice cyclization.

Scheme 5: Plausible biosynthesis of additional ring systems in the sarpagine biosynthesis.

For the compounds without decarboxylation, two different ring formation events can be observed. Voacoline (76, see figure 14) is formed in a similar fashion as trinervine (22) via a late stage oxidative cyclization. Eburnaphylline (74) is most likely derived from a C18oxidized polyneuridine aldehyde derivative, which then forms a tetrahydrofurane ring upon addition of the alcohol onto the former double bond.

voacoline (76)

eburnaphylline (74)

Figure 14: Non Decarboxylated alkaloids with an additional ring formation

Rauvotetraphylline (99, figure 9) is the only compound with an additional pyridine moiety as an additional ring, its formation is unknown.

Aromatic Substitution
Heteroatomsubstitution is limited to three positions on the indole core and two different substituents, methoxy and hydroxy. N-Methylation at the in-dole-nitrogen $\left(N_{\mathrm{a}}\right)$ is frequently observed. Some dimers form an additional carbon-carbon bond at C9, C10 or C11.

Substitution on the C12 is rarely observed, and has been reported only with a methoxy substituent. All alkaloids bearing this substitution pattern have been N_{a}-methylated as well (see figure 15).

Figure 15: Aromatic substitution at C12 within the sarpagine alkaloids.

C11 is more prone to oxidative substitution. Both possible substituents (methoxy, hydroxy) are encountered. Further oxidation processes are encountered within these alkaloids, as 18-hydroxygardnerine is further oxidized at the allylic position, and gardnutine has been subject to oxidative ring formation with C6 (see figure 16).

18-hydroxygardnerine (53)

$\mathbf{R}^{\mathbf{1}}=\mathrm{CH}_{2} \mathrm{OH} \mathbf{R}^{\mathbf{2}}=\mathrm{CO}_{2} \mathrm{Me}^{\mathbf{2}}=\mathrm{H} \mathbf{R}^{4}=\mathrm{OMe}$
11-methoxymacusine A (82)
$\mathrm{R}^{\mathbf{1}}=\mathrm{CH}_{2} \mathrm{OH} \mathrm{R}^{2}=\mathrm{CO}_{2} \mathrm{Me} \mathrm{R}^{\mathbf{3}}=\mathrm{Me} \mathrm{R}=\mathrm{OH}$
11-hydroxy- N_{a}-methylmacusine A (81)

$\mathbf{R}^{1}=\mathrm{H}$
gardnutine (26)
$\mathbf{R}^{1}=\mathrm{OH}$

18-hydroxygardnutine (48)

Figure 16: Aromatic substitution at C 11 within the sarpagine alkaloids.

Substitution at C10 is observed most often. Both possible substituents are encountered, as well as methylation at the indole nitrogen N_{a}. Further oxidation at the allylic position has been observed as well in the case of 18-hydroxylochnerine (see figure 17).

Figure 17: Aromatic substitution at C10 within the sarpagine alkaloids.

Further alkaloids have been isolated with substitution at C10. All of those compounds have been subject to N_{b}-methylation, in most cases without N_{a}-methylation. For two compounds additional oxidative ring formation is observed (see scheme 18). A peraksine congener (98) was isolated with hydroxy substituent at C10.

+ 10-hydroxy-19(S),20(R)-dihydroperaksine (98), not displayed here

Figure 18: Aromatic substitution at C 10 within the sarpagine alkaloids, metho salts and additional rings.

Variation at the quinuclidine core Variation at the quinuclidine core is frequently observed and occurs both reductively and oxidativly. For four examples reduction of the double bond has been observed, leading to an ethyl group with defined stereochemistry (see figure 19).

$$
\begin{gathered}
\mathbf{R}^{1}=\mathrm{CO}_{2} \mathrm{Me} \mathbf{R}^{2}=\mathrm{CH}_{2} \mathrm{OH} \mathbf{R}^{3}=\mathrm{H} \\
19,20 \text {-dihydroakuammidine (66) } \\
\mathbf{R}^{\mathbf{1}}=\mathrm{CH}_{2} \mathrm{OAc} \mathbf{R}^{2}=\mathrm{CO}_{2} \mathrm{Me}^{\mathbf{3}}=\mathrm{Me} \\
\text { 17-O-acetyl-19,20- } \\
\text { didehydrovoachalotine (84) } \\
\mathbf{R}^{1}=\mathrm{CH}_{2} \mathrm{OH} \mathbf{R}^{2}=\mathrm{CO}_{2} \mathrm{Me} \mathbf{R}^{3}=\mathrm{H} \\
19,20 \text {-didehydropolyneuridine }(\mathbf{6 7})
\end{gathered}
$$

$\mathbf{R}^{1}=\mathrm{H} \mathbf{R}^{\mathbf{2}}=\mathrm{CH}_{2} \mathrm{OMe} \mathbf{R}^{\mathbf{3}}=\mathrm{H}$
19,20-dihydro-O-methylmacusine B (42)

Figure 19: Reduction of the double bond within the sarpagine alkaloids.

A rather uncommon variation at the quinuclidine core is the observation of a Z-configured double bond. Five examples of this variation have been isolated (see figure 20). Gelsochalotine (109) has been suggested to arrive from Z-akkuamidine and bears the Z-configured double bond as well. Oxidation in the allylic position leading to 18 -hydroxy-affinisine, -lochnerine, -gardnerine and -gardnutine can be observed in four cases.

$\mathbf{R}^{\mathbf{1}}=\mathrm{CO}_{2} \mathrm{Me}, \mathbf{R}^{\mathbf{2}}=\mathrm{CH}_{2} \mathrm{OH}, \mathbf{R}^{\mathbf{3}}=\mathrm{H}, \mathbf{R}^{4}=\mathrm{H}$
Z-akuammidine (63)
$\mathbf{R}^{\mathbf{1}}=\mathrm{H}, \mathbf{R}^{\mathbf{2}}=\mathrm{CH}_{2} \mathrm{OH}, \mathbf{R}^{\mathbf{3}}=\mathrm{H}, \mathbf{R}^{4}=\mathrm{H}$
koumidine (12)
$\mathbf{R}^{1}=\mathrm{H}, \mathbf{R}^{\mathbf{2}}=\mathrm{CH}_{2} \mathrm{OH}, \mathbf{R}^{\mathbf{3}}=\mathrm{H}, \mathbf{R}^{\mathbf{4}}=\mathrm{Me}$
(19,20)-Z-affinisine (101)
$\mathbf{R}^{1}=\mathrm{CH}_{2} \mathrm{OH}, \mathbf{R}^{\mathbf{2}}=\mathrm{H}, \mathbf{R}^{3}=\mathrm{OH}, \mathbf{R}^{4}=\mathrm{H}$
3-hydroxykoumidine (103)
$\mathbf{R}^{1}=\mathrm{CH}_{2} \mathrm{OH}, \mathbf{R}^{\mathbf{2}}=\mathrm{CO}_{2} \mathrm{Me}, \mathbf{R}^{3}=\mathrm{OH}, \mathbf{R}^{4}=\mathrm{H}$
19,20-Z-16-epivoacarpine (104)

$\mathbf{R}^{1}=\mathrm{H}^{\mathbf{2}}=\mathrm{CH}_{2} \mathrm{OH} \mathbf{R}^{\mathbf{3}}=\mathrm{Me} \mathbf{R}^{4}=\mathrm{H} \mathbf{R}^{\mathbf{5}}=\mathrm{H}$ 18-hydroxyaffinisine (39) $\mathbf{R}^{1}=H \mathbf{R}^{2}=\mathrm{CH}_{2} \mathrm{OH} \mathbf{R}^{\mathbf{3}}=\mathrm{H} \mathbf{R}^{\mathbf{4}}=\mathrm{H} \mathbf{R}^{5}=\mathrm{OMe}$ 18-hydroxylochnerine (55) $\mathbf{R}^{1}=\mathrm{CH}_{2} \mathrm{OH} \mathbf{R}^{2}=\mathrm{H}^{3}=\mathrm{H} \mathrm{R}^{4}=\mathrm{OMe} \mathbf{R}^{5}=\mathrm{H}$ 18-hydroxygardnerine (53)
+hydroxygardnutine (48, not displayed here)

Figure 20: Variation in the double bond configuration and allylic oxidation within the sarpagine alkaloids.

Furthermore, N_{b}-oxidation has been reported twice, forming affinisine derivative 37 and normacusine congener 36 (see figure 21). Alstoumerine (38) displays a double bond within the quinuclidine core (part of an allyl alcohol), probably due to conjugate addition of water to the vinylogous imminium ion 124 (see scheme 2). The alstoumerine core is also found in two dimers, lumitinine C (106) and lumitinine D (107). Oxidation in the pseudo-benzylic indole position (C6) forming an alcohol has been observed in the case of ervincidine (20). This type of oxidation is more frequently observed within the 16 -epi series to oxidativley form a five-membered ring (see figure 11). Oxidation next to the N_{b}-nitrogen (or addition of water to an intermediate imminium ion) leads to the formation of 21-hydroxyvoachalotine (77). Two similar analogues were isolated (rauvotetraphylline B (99) and rauvotetraphylline C (100)), which are unique concerning the glucosidated hydroxy-group at C21. They furthermore contain two unique moieties at C 16 , which are stated to be artefacts from the isolation process. ${ }^{[2.14]}$ Within the sarpagine alkaloids emerges a certain different subgroup after the isolation of compounds $96-98 .{ }^{[2.13]}$ The peraksine skeleton (for the biosynthesis see scheme 5) displays a characteristic methyl substituent at C21, resulting from a deviation in
the sarpagine biosynthesis. This subgroup contains nine members, including compounds 23,
51, 96-98 and four oxidized congeners (see figure 12).

$\mathbf{R}^{\mathbf{1}}=\mathrm{CH}_{2} \mathrm{OH}, \mathbf{R}^{\mathbf{2}}=\mathrm{Me}$ affinisine N_{b}-oxide (37) $\mathbf{R}^{1}=\mathrm{CH}_{2} \mathrm{OMe}, \mathbf{R}^{2}=\mathrm{H}$
O-methylnormacusine $\mathrm{B} \mathrm{N}_{\mathrm{b}}$-oxide (36)

O-acetylpreperakine (51)

alstoumerine (38)

$\mathbf{R}^{\mathbf{1}}=\mathrm{CH}_{2} \mathrm{OH}, \mathbf{R}^{\mathbf{2}}=\mathrm{H}, \mathbf{R}^{\mathbf{3}}=\mathrm{Me}, \mathbf{R}^{\mathbf{4}}=\mathrm{CH}_{2} \mathrm{OH}, \mathbf{R}^{\mathbf{5}}=\mathrm{H}, \mathbf{R}^{\mathbf{6}}=\mathrm{H}$ dihydroperaksine (23)
$\mathbf{R}^{1}=\mathrm{CH}_{2} \mathrm{OH}, \mathbf{R}^{\mathbf{2}}=\mathrm{Me}, \mathbf{R}^{3}=\mathrm{H}, \mathbf{R}^{4}=\mathrm{H}, \mathbf{R}^{5}=\mathrm{CH}_{2} \mathrm{OH}, \mathbf{R}^{6}=\mathrm{H}$ 19(S),20(R)-dihydroperaksine (96) $\mathbf{R}^{1}=\mathrm{CHO}, \mathbf{R}^{\mathbf{2}}=\mathrm{H}, \mathbf{R}^{\mathbf{3}}=\mathrm{Me}, \mathbf{R}^{4}=\mathrm{CHO}, \mathbf{R}^{5}=\mathrm{H}, \mathbf{R}^{6}=\mathrm{H}$ 19(S),20(R)-dihydroperaksine-17-al (97)
$\mathbf{R}^{\mathbf{1}}=\mathrm{CH}_{2} \mathrm{OH}, \mathbf{R}^{\mathbf{2}}=\mathrm{H}, \mathbf{R}^{\mathbf{3}}=\mathrm{Me}, \mathbf{R}^{\mathbf{4}}=\mathrm{CHO}, \mathbf{R}^{\mathbf{5}}=\mathrm{H}, \mathbf{R}^{6}=\mathrm{OH}$ 10-hydroxy-19(S),20(R)-dihydroperaksine (98)

ervincidine (20)

$\mathbf{R}^{\mathbf{1}}=\mathrm{CH}_{2} \mathrm{OH}, \mathbf{R}^{\mathbf{2}}=\mathrm{CO}^{2} \mathrm{Me}, \mathbf{R}^{\mathbf{3}}=\mathrm{OH}$ 21-hydroxyvoachalotine (77)
$\mathbf{R}^{1}=\mathrm{H}, \mathrm{R}^{\mathbf{2}}=139, \mathrm{R}^{3}=$ OGluc
rauvotetraphylline B (99) $\mathbf{R}^{\mathbf{1}}=\mathrm{H}, \mathbf{R}^{\mathbf{2}}=\mathbf{1 4 0}, \mathbf{R}^{\mathbf{3}}=$ OGluc

Figure 21: Various other oxidations and rearranged sarpagine alkaloids of the peraksine subgroup.
Dimerization Within the family of dimeric sarpagine alkaloids exist both homo- and heterodimers. The most understandable dimer dispegatrine (93) is furnished via oxidative phenol coupling of spegatrine (40 , see scheme 6). The phenolic hydroxygroup is oxidized to phenoxyradical 141, which is in conjugation with α-keto radical 142. This radical can now undergo dimerization to give dimer 143, which can tautomerize to dispegatrine 93.

Accedinsine 92 and its nor-methyl equivalent N^{\prime}-demethylaccedinsine 90 (see scheme 7) are assembled from two different sarpagine alkaloids, affinisine (14) and pericyclivine (24). In the first biosynthetic step, N_{b}-quaternization occurs, followed by ring opening assisted by the indole core to give intermediate 144. The indole core of affininsine 14 attacks at C3, resulting in rearomatization of the former pericyclivine moiety. Rearomatization of the affinisine part leads to accedinsine $\mathbf{9 2}$ and its nor-methyl equivalent N^{\prime}-demethylaccedinsine $\mathbf{9 0}$.

Scheme 7: Dimerization of accedisine 92 and its nor-methyl equivalent N^{\prime}-demethylaccedinsine $\mathbf{9 0}$.

A similar dimerization can be stated for the formation of undulatine 95 and desformundulatine 94 (see scheme 8). Oxidation of compound 145 leads to the formation of delocalized imminium ion 146, which is attacked by the indole core of the ajmaline type compound 147. Rearomatization leads to the two discussed dimers.

Scheme 8: Formation of undulatine 95 and its congener 94.

The two dimeric compounds divaricine 88 and geissolosimine 87 (see scheme 9) stem from two different alkaloid families. The northern part of both molecules originates from the strychnine biosynthesis. ${ }^{[2.33]}$ Norfluorocurarine 148 is reduced to to either aldehyde 149 or alcohol 150. These two compounds undergo condensation with either vellosimine 1 or 16epivellosimine $\mathbf{1 2 6}$ to give divaricine $\mathbf{8 8}$ or geissolosimine $\mathbf{8 7}$.

norfuorocurarine (148)

150

Scheme 9: Biosynthesis of divaricine 88 and geissolosimine 87.

The hetereodimer macralstonidine 91 (see scheme 10) is formed from the addition of sarpagine (11) onto macroline 151. The activated C9 of the indole nucleus of sarpagine (11)
attacks macroline's Michael acceptor in a conjugated fashion. Next in line follows the condensation of the phenolic C10-hydroxy group of sarpagine (11) and the primary alcohol of macroline (151) onto macroline's ketone under the loss of water.

Scheme 10: Formation of macralstonidine 91.
Another dimerization product of spegatrine 40 was isolated and called macrospegatrine (89, see scheme 11). Interestingly, the second alkaloid in this heterodimer is the unkown macroline type compound 152.

This compound bears an unusual ketone functionality. The activated C9 of the indole nucleus of spegatrine (40) attacks the Michael acceptor in a conjugated fashion. Next in line follows the condensation of the phenolic C10-hydroxy group of spegatrine (40) and the enolate form of the ketone from 152 onto the aldehyde of former spegatrine (40) under the loss of water to form macrospegtarine 89.

Scheme 11: Formation of macrospegatrine 89.

The two heterodimers lumitinine C (106) and lumitinine D (107, see scheme 12) are formed via two different modes of attack of the unisolated N-methyl-10-hydroxyalstoumerine (153) and known macroline 151. If the C9-position of 153 attacks the Michael acceptor, and subsequent condensation occurs with the phenolic C10-hydroxy group and the carbalcohol of macroline $\mathbf{1 5 1}$, lumitinine $C(\mathbf{1 0 6})$ is formed. If the initial attack occurs from the 11-position of 152 and subsequent condensation is carried out in a similar fashion, lumitinine $D(107)$ is formed.

Scheme 12: Hetereodimerization yielding lumitinine C 106 and lumitinine D 107.
Finally, leuconoline (108, see scheme 13) is formed by condensation of unknown 10-hydroxypolyneuridine 154 and polycyclic compound 155 via the formation of a very reactive imminium ion (dearomatization because of the participation of the N_{a}-lone pair) and subsequent nucleophilic attack of the activated C9-position of 10-hydroxypolyneuridine 154.

10-hydroxypolyneuridine (154)

leuconoline (109)

Scheme 13: Formation of leuconoline 109.

Degradation

Two degradation products have been isolated, both resulting from oxidation of the indole core. Gardquinolone $110^{[2.22]}$ has been suggested to arise from gardnerine 26, probably via Witkop-Winterfeldt oxidation of the indole moiety to give peroxyintermediate $\mathbf{1 5 6}$, which collapses to form 157. This 10 -membered macrocycle is then converted to the quinolone core of gardquinolone 110 via intramolecular aldol condensation This kind of oxidative rearrangement has been experimentally observed on similar systems. ${ }^{[2.34,2.35]}$

Gelsochalotine 109 has been coisolated with 19-(Z)-akuammidine 63 (see scheme 14). It has been suggested that gelsochalotine arises from this compound, but the authors provide a rather sluggish biosynthetic pathway. ${ }^{[2.21]}$ Instead it is more likely, that (Z)-akkuamidine 63 is oxidized in the same fashion as gardnutine, leading to the similar quinolone derivative 158. Final epoxidation of the quinolone double bond, followed by Meinwald-like rearrangement leads to gelsochalotine 109 under the netto loss of 2-aminobenzoic acid 159.

It seems likely, that the authors did isolate either gardnutine $\mathbf{2 6}$ or 19-(Z)-akuammidine 63, and the obtained degradation products formed during the isolation process.

Scheme 14: Degradadtion of sarpagine alkaloids, leading to gardquinolone 110 and gelsochalotine 109.

2.4 Synthetic Efforts

For a comprehensive and complete summary of the synthetic efforts on sarpagine synthesis see the review from Lewis. ${ }^{[2.36]}$

The group of Magnus has pioneered in the synthesis of sarpagine alkaloids by assembling E-koumidine (12, see scheme 15). ${ }^{[2.37]}$ Starting from tryptophane derivative 160 (obtained in four steps from (S)-tryptophane) they were able to obtain tricycle $\mathbf{1 6 2}$ after reductive PictetSpengler reaction using acid 161 and subsequent esterification using diazomethane. Subjection to basic conditions led to the formation of β-ketoester 163. Selective N_{b}-debenzylation followed by acid-catalyzed decarboxylation yielded ketone 164. Propargylation was achieved next, followed by silyl-enol ether formation and attachment of an ester moiety to the propargylic position, yielding ester 165. Next followed deprotection of the ketone by LiBF $_{4}$, which set the stage for the pyrrolidine catalyzed ring closure to obtain compound 166. Both double bond isomers were obtained, heavily favouring the undesired E-isomer. Exomethylene formation was achieved next, followed by hydroboration/oxidation yielding alcohol 167. The redundant ester moiety was then removed using a two step reduction protocol. This synthesis is able to form the antipode of koumidine 12 in 18 steps total.

Scheme 15: Magnus total synthesis of koumidine 12.

The group of Liu has accomplished a synthesis of the sarpagine alkaloid derivative N_{a}-methyl- Δ^{18}-isokoumidine (175, see scheme 16). ${ }^{[2.38]}$ They started from L-tryptophane 168 , which was transformed into its methyl ester derivative, followed by the formation of the corresponding amide using acid chloride 169. Generation of the chloroiminium ion led to a Pictet-Spengler reaction, the resulting imine was reduced to the corresponding amine using $\mathrm{H}_{2} / \mathrm{PtO}_{2}$. Next in line was alkylation and protection of the indole nitrogen to yield tricycle 171. This compound was then subjected to basic conditions at elevated temperatures, which led to the formation of tetracycle 172. Radical cyclization was initiated using $\mathrm{Mn}(\mathrm{OAc})_{3}$, which led to the formation of the quinuclidine core. The indole protecting group was cleaved under acidic conditions to give 173. The surplus ester moiety was saponificated and decarboxylated using Barton conditions, furnishing ketone 174. Finally the remaining C1homoloagtion was achieved via Corey-Tschaikowsky epoxidation (with concomitant N_{a}-methylation). The resulting epoxide was then opened under reducing conditions using Lewis-acidic AlClH_{2} to give 175. The Liu group was able to generate a non-natural sarpagine alkaloid in 14 steps.

1. $\mathrm{SOCl}_{2}, \mathrm{MeOH}$

へ \sim_{170}

2. $\mathrm{KOH}, \mathrm{MeOH}$, $60^{\circ} \mathrm{C}$
3. N-hydroxy-2-

174

173

Scheme 16: Liu's total synthesis of N_{a}-methyl- Δ^{18}-isokoumidine 175.

The group of James Cook accomplished numerous total syntheses of sarpagine congeners. Their syntheses are short and straight forward, as long as the starting carboxylic acid is commercially available. For substituted indole cores a large number of additional steps has to be added.

The Cook total synthesis of 10 -methoxyvellosimine (9 , see scheme 17$)^{[2.39]}$ starts with paramethoxyaniline 176, which is Boc-protected and iodinated using ortho-lithiation to yield
aniline 177. Larock indole synthesis with Schöllkopf-auxilliary 178 (obtained in 5 steps from valine) furnished Boc-protected indole 179. Both the Schöllkopf auxiliary and the Bocprotecting group are removed to obtain tryptophane derivative 180. Reductive amination followed by Pictet-Spengler cyclization with aldehyde $\mathbf{1 8 1}$ yields tricycle 182. Treatment with basic conditions furnished β-ketoester 183, which can be decarboxylated to give ketone 184. Removal of the benzyl protecting group followed by allylation using $\mathbf{1 8 5}$ yields vinyliodide 186. This compound is then submitted to the α-vinylation conditions developed by the Bonjoch group, followed by MOM-Wittig elongation and enol ether equilibration to the thermodynamically more stable aldehyde of 10-methoxyvellosimine (9). The total step count for this total synthesis is 20 steps, including the steps that are necessary to obtain the Schöllkopfauxilliary and the vinyliodide. For N -methylvellosimine (10) the synthesis can be carried out in almost the same manner, but requiring only 16 steps for completion, starting from the commercially available amino acid tryptophane. Vellosimine (1) can be obtained by similar chemistry in 15 steps, also starting from tryptophane.

Scheme 17: Cook's synthesis of 10-methoxyvellosimine (9), N-methylvellosimine (8) and vellosimine (1).

Vellosimine ($\mathbf{1}, \mathrm{R}=\mathrm{H}$) was used as a platform for the Cook group to access several different sarpagine alkaloids via further chemistry (see scheme 18). ${ }^{[2.40 \mathrm{a}]}$ Reduction of vellosimine (1) with sodium borohydride yields normacusine $B(18)$ in good yield. Oxidation followed by methylation and anion exchange leads to the formation of alkaloid $\mathrm{Q}_{3}(187)$, which can be transformed into panarine (27) by saponification. Note that alkaloid $\mathrm{Q}_{3}(\mathbf{1 8 7})$ was not considered to be a sarpagine alkaloid by Lounasmaa\&Hanhinen ${ }^{[2.11]}$ due to the lack of rigorous proof. As it has been prepared by Cook and coworkers, ${ }^{[2.40 a]}$ and matches the previously sluggish data, ${ }^{[2.40 b]}$ it can now be considered to be part of the sarpagine alkaloids.

Access to the non decarboxylated subclass of sarpagine alkaloids can be obtained via quarternization of C16. ${ }^{[2.41]}$ Boc-protection of the indole-nitrogen of vellosimine (1) is followed by the addition of formaldehyde. Next in line is deprotection under acidic conditions and oxidation at C6 (sarpagine numbering) using DDQ to differentiate both alcohols and obtain compound 189. Esterification of the free alcohol followed by reduction opening of the hydrofurane moiety yields polyneuridine 60. Macusine $A(72)$ can be accessed from this compound via N_{b}-methylation. Polyneuridine aldehyde 57 can be obtained after Corey-Kim oxidation of the free alcohol of compound 60.

They were further able to demonstrate that N-methylvellosimine (8) could be converted to macroline (151) ${ }^{[2.42]}$ and alstonerine (3) (two alkaloids which are not part of the sarpagine alkaloids). ${ }^{[2.43]}$ This reaction sequence commenced with reduction of the aldehyde moiety of N-methylvellosimine (9) and subsequent protection of the free alcohol to give an intermediate silyl enol ether. Next followed the hydroboration/oxidation of the double bond to the corresponding alcohol, which was obtained as the tert. amine $/ \mathrm{BH}_{3}$ adduct. The alcohol was oxidized using Swern conditions to obtain ketone 188 still as the BH_{3}-adduct. Acidic cleavage of the amine/borane adduct under reflux conditions followed next. Macroline 151 could readily be obtained via Hoffmann-elimination and deprotection of the alcohol.

Alstonerine (3) can be obtained via the same Hoffmann-elimination process. After the formation of an intermediate enone the alcohol is deprotected under acidic conditions, resulting in its conjugated attack onto the enone. Final oxidation under palladium catalysis yields alstonerine (3). ${ }^{[2.43]}$

Scheme 18: Accessing different alkaloids from vellosimine (1) or N-methylvellosimine (9), according to J. M. Cook.

They were furthermore able to convert 10-methoxyvellosimine (9) to spegatrine (40) in three steps (see scheme 19). Reduction of the aldehyde using sodium borohydride was followed by demethylation with tribromoborane, liberating the phenolic hydroxygroup. N_{b}-methylation occurred next using methyliodide, followed by ion exchange with silver(I) chloride to obtain the desired chloride counter ion of spegatrine (40). After considerable experimentation they were able to achieve the desired homodimerization to yield dispegatrine 93 using thallium(III) catalysis in the presence of the Lewis acid boron trifluoride. ${ }^{[2.44]}$ The overall conversation starting from 10-methoxyvellosimine (9) proceeds in overall good yield. The yield for the homodimerization to give dispegatrine $\mathbf{9 3}$ is impressive.

Scheme 19: Cook's total synthesis of dispegatrine 93.

2.5 Bioactivities

Only a few bioactivity studies have been conducted in case of the sarpagine alkaloids, despite the fact that sarpagine alkaloids have been supposed to be the active ingredients in chinese traditional medicine. Of the few tested examples, pericyclivine (24, see figure 22) exhibits moderate activity against the P388 leukemia cell line. ${ }^{[2.45]}$ 11-Methoxymacusine (82) has shown to posses muscle relaxant effects in rats, ${ }^{[2.46]}$ whereas gardnerine (32) displayed the best inhibition in ganglionic transmission from six different gardneria alkaloids. ${ }^{[2.47]}$ Leuconoline (108, see figure 9) displays weak cyctotoxyity against human KB cells. ${ }^{[2.20]}$

pericyclivine (24), $E D_{50}: 13$
$\mu \mathrm{g} / \mathrm{mL}$
active against $P 388$ leukemia
cells

11-methoxymacusine A (82),
muscle relaxant effect at $0.27 \mathrm{mg} / \mathrm{kg}$

gardnerine (32),
inhibits ganglionic transmission

Figure 22: Three sarpagine alkaloids and their bioactivities.
Waldmann and coworkers investigated the use of sarpagine substructures as protein tyrosine phosphatase B inhibitors. ${ }^{[2.48]}$ These phospotases are used by mycobacterium tuberculo-
sis to render the host's defense mechanism ineffective. As inhibition of these enzymes might hinder the bacterial growth, this compound class has gained attention due to the development of antibiotic resistant strains. After the formation of a solid-phase based compoundlibrary, thex were able to identify compounds 190-192 (see figure 23) as very potent MptpB inhibitors, which selectively only inhibit the desired phosphatase.

190
 at $8.26 \pm 4.52 \mu \mathrm{~mol}$

MptpB inhibition at $9.64 \pm 0.93 \mu \mathrm{~mol}$

192

Figure 23: Waldmann's protein tyrosine phosphatase B inhibitors 190-192.

2.6 Synthetic Planning

We started our synthetic planning by detailed analysis of the isolated sarpagine congeners. As the most sarpagine congeners are part of the "decarboxylated" subclass of sarpagine alkaloids (see figure 11), we decided to start our synthetic studies targeting this subclass exclusively. As within this subgroups most alkaloids do not have additional ring systems and have not suffered from dimerization, we aimed for a unified total synthetic access towards these two subclasses (16-epi \& 16-regular of the "decarboxylated" sarpagine alkaloids), comprising a total of 48 alkaloids out of 99 alkaloids isolated (including alkaloid Q_{3}).

As the alkaloids we are targeting (vellosimine (1), N-methylvellosimine (8), 10-methoxyvellosmine (9) and 16-epinormacusine B(10)) mostly defer in the substitution pattern at the indole core, we decided that a unified, late stage diversification strategy could be best carried out by late stage indolization (see scheme 20). Keeping this strategy in mind, we aimed for a late stage Fischer indolization, as a large number of the necessary phenylhydrazines would be commercially available. In this manner, we would even be able to obtain a vast library of unnatural vellosimine analogues. As we were targeting both the 16 -epi and the 16 -regular group, we traced those alkaloids back to intermediate 193. If we are targeting a 16 -epi alkaloid, the X-group is a simple proton, as late stage hydroboration/oxidation will
install the desired stereochemistry. If we intend to access a 16 -regular compound, we need a methoxygroup for last stage thermodynamically favoured liberation of the desired aldehyde.

The late stage mutual precursor 193 should be build up via C1-homologation from dithiolane 194 after liberation of the masked ketone. The cage structure of compound 194 is obtained after palladium-catalyzed enolate coupling of vinyliodide 195 according to the Bonjoch protocol. ${ }^{[2.49,2.50]}$ Compound 195 is the reduced version of the common intermediate that has been introduced in the introduction (compound 7, figure 5). Tricycle 195 should be readily obtained from a [5+2] oxidopyridinium cycloaddition with Aggarwal's chiral ketene equivalent (+)-196 and 3-hydroxypyridinium salt 197. ${ }^{[2.51]}$ In order to establish a modern, state of the art synthetic approach we focused on a low step count (maximum 15 steps as in the Cook benchmark synthesis), a late stage diversification strategy targeting a variety of sarpagine alkaloids and a complete dismissal of protecting groups. If we could demonstrate the access to both the 16 -epi and the 16 -regular subgroup, we will have access to a large part of all sarpagine alkaloids that have been isolated.

Scheme 20: Retrosynthetic analysis for the desired alkaloids.
The following section briefly summarizes the occurrence of the key step (the [5+2] oxidopyridinium cycloaddition) in total synthesis.

2.7 The 3-Oxidopyridnium [5+2] Cyloaddition

Although the 3-oxidopyridinium [5+2] cycloaddition allows rapid access to the tropane skeleton, it has only been used scarcely in the total synthesis of complex natural products. ${ }^{[2.52,2.53]}$ Jung, Longmei and co-workers achieved the total synthesis of racemic Bao Gong Teng A (198, see figure 24) via the cycloaddition between pyridinium salt 199a and acrylonitrile 200a. ${ }^{[2.54 a]}$ The same compound 198 was synthesized by Liebeskind and co-worker using a molyb-denum-mediated [5+2] cycloaddition between organometallic chiron 199b and methylvinyl ketone 200b. ${ }^{[2.54 b]}$ The intramolecular cycloaddition of oxidoisoquinoline betaine (202) has been published by Gin and co-worker in their synthesis of nominine (201). ${ }^{[2.55]}$ Stoltz and coworkers ${ }^{[2.56]}$ have used oxidopyrazinium betaine 204 and chiral Michael acceptor 205 in their total synthesis of lemonomycin (203). Kozikowski and coworkers utilized the tropane skeleton arising from the 3 -oxidopyridinium [5+2] cycloaddition for the investigation of cocaine congeners. ${ }^{[2.57,2.58]}$ Cha et al. synthesized the tricyclic core of sarain A using a 3 -oxidopyridinium betaine cycloaddition approach. ${ }^{[2.59]}$

Figure 24: Application of the 3-oxidopyridinium [5+2] cycloaddition in total synthesis. Tp=hydridotris(pyrazoly)borate

2.8 Results

Bissulfoxide 196
The synthetic work on the sarpagine alkaloids started with the quest for a fast and feasible access to Aggarwal's chiral ketene equivalent (\pm)-196 ${ }^{[2.51]}$ in a racemic fashion (see scheme 21). In contrast to the originally published procedure, iodine was employed in the generation of dithiolane $\mathbf{2 0 7}$ from commercially available dimethylacetal 206. m CPBA can then be used to generate bissulfoxide 207 in a racemic fashion. Subjection of bissulfoxide $\mathbf{2 0 7}$ to dimethylamine leads to the formation of amine $\mathbf{2 0 8}$ in a very rapid fashion (less then five minutes reaction time). Aggarwal's ketene equivalent 196 can then be obtained by treating amine $\mathbf{2 0 8}$ with methyl iodide under basic conditions. In order to carry out the 3-oxidopyridnium [5+2] cyloaddition on large scale, the access to compound (\pm)-196 needs to be as easy as possible. Therefore, the purification of intermediates is mostly carried out via crystallization. The final vinyl bissulfoxide can be used crude in the cycloaddition, cutting the amount of purifications via column chromatograhpy down to a single one at the very beginning of the synthesis.

Scheme 21: Synthesis of racemic vinylbissulfoxide 196.

Pyridinium salt 197 The necessary vinyliodide 210 (see scheme 22) can be easily obtained in decagramm quantities from crotonaldehyde according to literature procedures. ${ }^{[2.41]}$ Pyridinium salt 197 can be obtained in good yield and can be purified via crystallization.

Scheme 22: Access to pyridinium salt 197.
[5+2] Cycloaddition Carrying out the desired 3-oxidopyridnium [5+2] cyloaddition with pyridinium salt 197 and vinyl bissulfoxide (+)-196 leads to a regioisomeric mixture of compounds 211 and 212 (see scheme 23). Those two regioisomers arise from the the two possible transition states TS $\mathbf{1}$ and TS 2, with TS $\mathbf{1}$ being the more stabilized early transition state. The larger amount of matched charge interactions leads to a higher amount of the desired regioisomer. ${ }^{[2.51 b]}$ The less favoured trasition state TS $\mathbf{2}$ is not as well stabilized as TS 1, thererfore a lesser amount of regioisomer $\mathbf{2 1 2}$ is formed. Note that the interaction between the pyridnium oxygen and the positively charge sulfur in TS $\mathbf{2}$ does occur as well, but results in the steric clash of the S-lone pair and the indicated proton. The stereoinduction of the chiral sulfoxides is considered to be complete. ${ }^{[2.51 \mathrm{~b}]}$

Scheme 23: The 3-oxidopyridinium [5+2] cyloaddition and its transition state.

Towards the quinuclidine core As the two regioisomers (211/212, see scheme 24) that are obtained after the cycloaddition are difficult to separate they are processed as a mixture to the next step. Deoxygenation is achieved next using a mixture of TFAA/NaI. ${ }^{[2.51 \mathrm{~b}]}$ Attempts to use tribromophosphine remained unsuccessfull. After the separation of the regioisomers 213 and 214, only the desired isomer 213 is carried on through the synthesis, as separation
can now be easily achieved. Next in line is the conjugate reduction of enone 213 using L-selectride. This reaction is highly dependent on the amount of equivalents of added L-selectride, as overreduction easily occurs. Using a diluted (0.1 M) and cooled $\left(-78^{\circ} \mathrm{C}\right)$ solution of L-selectride for a short time (about 5 minutes) gives the best yields of ketone 195. Palladium catalyzed enolate coupling between the vinyl iodide moiety of 195 and the enolate resulting from high temperature deprotonation with the in situ formed very weak base PhOK can be achieved in the next steps using the conditions developed by the Bonjoch group ${ }^{[2.49,2.50]}$ and gives compound 194. No decomposition of the vinyliodie moiety to either an alkyne or an allene has been observed. As enone $\mathbf{2 1 3}$ and ketone 195 cannot be separated via chromatography, the complete conjugate reduction of enone $\mathbf{2 1 3}$ has to be ensured, as remaining $\mathbf{2 1 3}$ lowers the reaction rate with which 194 is formed.

Scheme 24: Deoxygenation, conjugate reduction and enolate coupling.

This result can be explained by the formation of byproduct 219 (see scheme 25), which can be obtained by treating enone $\mathbf{2 1 3}$ with the enolate coupling conditions employed earlier. After initial oxidative insertion yielding $\mathbf{2 1 5}$ compound $\mathbf{2 1 6}$ is formed after carbo-palladation. The α-palladium species 216 then undergoes another carbo-palladation, furnishing cyclopropane 218, as the other possible α-palladium species 217 cannot undergo β-hydride elimination. Final β-hydride elimination of $\mathbf{2 1 8}$ results in the observed vinylcyclopropane moitey of compound 219. Similar cyclizations have rarely been observed. ${ }^{[2.60-2.62]}$ As the formation of the cyclopropane moiety is accompanied by a penalty in formation energy, the overall reac-
tion rate is slowed down. Furthermore the palladium catalyst decomposes faster due to the longer residence in less stable stages of the catalytic cycle.

Scheme 25: Pd-catalyzed vinylcyclopropane formation.
If the other regioisomer 214 (see scheme 26) is used for the same reaction, a much diminished yield (10%) of the desired vinylcyclopropane $\mathbf{2 2 0}$ is obtained. Instead, the competitive formation of five membered cyclic $\mathbf{2 2 1}$ can be observed. The occurrence of compound $\mathbf{2 2 1}$ can be explained by a reductive depalladation from $\mathbf{2 2 2}$ under the formation of iodine.

Scheme 26: Heck cascade and reductive cyclization using enone 214.
Differentiation In order to gain access to both the 16 -epi and the 16-regular subgroup of sarpagine alkaloids, the synthetic route had to differ at some point. With the introduction of different substituents at the position of the ketone moiety a point of differentiation was installed, leading to a first late stage intermediate in the synthesis of sarpagine alkaloids (see scheme $20, \mathrm{cp} .193$). The synthetic access to the 16 -epi group of sarpagine alkaloid is discussed first.

16-epi With racemic compound 194 in hands (see scheme 27) we carried out a Wittig olefination of the ketone functional group, which proceeded smoothly using KHMDS as base to deliver olefin $\mathbf{2 2 3}$ in good yields. Next, the liberation of the masked ketone in $\mathbf{2 2 3}$ proved to be troublesome due to the high basicity of the conformationally fixed nitrogen lone pair. After extensive screening of methods for dithiolane removal, ${ }^{[2.63-2.66]}$ which only resulted in decomposition of starting material 223, we came across the methodology developed by Oishi et al. ${ }^{[2.67,2.68]}$ This constitutes an alkylation of sulfur in the presence of acid to prevent N-alkylation. The combination of TFA/Meerwein's salt led exclusively to S-alkylation, yielding intermediate 224. Direct treatment of this species with base resulted in the formation of vinyl sulfide 225. Addition of CuSO_{4}-solution to compound $\mathbf{2 2 4}$ instead formed copper-complex 226. In this complex the positive charge is delocalized over both sulfur atoms and the copper atom, resulting in an overall decreased acidity of the α-sulfenic proton of $\mathbf{2 2 6}$ compared to the α-sulfenic proton of $\mathbf{2 2 4}$. Using this procedure, ketone $\mathbf{2 2 7}$ can be obtained in high yield after the addition of ammonia solution.

Scheme 27: Wittig olefination and ketone liberation.

We then turned our attention towards the homologation of ketone 227 (scheme 28). Thereby we faced the challenge of regioselectivity in the course of the ring enlargement process. In principle the two regioisomers $\mathbf{2 3 2}$ and $\mathbf{2 3 3}$ can be formed. The protocol from the Lee group ${ }^{[2.69]}$ proved to be applicable to our system, and cleanly afforded homologated ketone 232 as a single regioisomer. This reaction proceeds via nucleophilic attack of TMSdiazomethane to ketone $\mathbf{2 2 7}$ to give alkoxy species $\mathbf{2 2 8}$ and silyl enol ether $\mathbf{2 2 9}$ via Brook rearrangement. The reaction mixture was then quenched with methanol at $-78^{\circ} \mathrm{C}$ to ensure
selective C-protonation. At this stage ring enlargement took place after diazo-decomposition induced by the addition of silica. The regioselectivity can be explained by conformations $\mathbf{2 3 0}$ and 231. The highlighted bond in each conformer will undergo the enlargement, since it is antiperiplanar to the diazo-group and thus two regioisomers $\mathbf{2 3 2}$ and $\mathbf{2 3 3}$ can in principle be formed.

Fortunately, we exclusively observed the formation of desired compound $\mathbf{2 3 2}$ and surmise, that conformation 230 is the reactive conformation due to improved molecular overlap caused by higher flexibility (scheme 30). The transient silyl enol ether that is formed during the reaction is cleaved during the acidic workup.

Scheme 28: Ring enlargement and possible side reactions.

While screening for the desired ring expansion, two side reactions could be identified and the reason for failed reactivity was detected (see scheme 29). In most cases the Lewis acid was complexed between the oxygen of the ketone and the nitrogen lone pair, thus blocking the more accessible face of the ketone and preventing the desired reaction.

Using trimethylaluminium as Lewis acid led to methylation of the ketone yielding alcohol 234, whereas $\mathrm{Sc}(\mathrm{OTf})_{3}$ in combination with $\mathbf{2 3 5}^{[2.70]}$ led to fragmentation via betaine $\mathbf{2 3 6}$ to give enone 237. ${ }^{[2.71]}$

Scheme 29: Side reactions during the investigation of the necessary ring enlargement.
With the desired ketone 232 in hands, we performed the final Fischer indole synthesis. After considerable experimentation we found that conditions similar to those published by the Bonjoch group (scheme 30) led to the desired product 4238 in moderate yields. ${ }^{[2.72]}$ This synthetic intermediate $\mathbf{2 3 8}$ was used by Cook et al. in a hydroboration reaction to conclude the total synthesis of 16 -epinormacusine $B(1) .{ }^{[2.40 a]}$ We have thus established a protecting group free access to 16-epinormacusine $B(1)$ via the 3-oxidopyridinium [5+2] cycloaddition.

Scheme 30: Formal synthesis of 16-epinormacusine B (10)
In order to gain enantioselective access to the 16 -regular group members of the sarpagine alakaloids we then set out to investigate the synthetic strategy mentioned earlier starting from enantioselective ketone 194. Subjection of compound 194 to MOM-Wittig conditions led to a regioisomeric mixture of enol ethers 240 (see scheme 31). The same conditions for unmasking the ketone moiety (sees scheme 27) and ring enlargement (see scheme 28) were then applied. Much to our enlightenment, the enol ether moiety remained untouched under these reaction conditions, yielding ketones 240 and 241.

Scheme 31: Ketone liberation, MOM-Wittig and ring enlargement.

To finally showcase the versatility of our synthetic route, we decided to prepare three different members of the 16 -regular group of the sarpagine alkaloids. Condensation of commercially available phenylhadryzines 242-244 with mutual precursor $\mathbf{2 4 1}$ in EtOH led to hydrazone formation, subjection of the evaporated hydrazones to AcCl in MeOH led to Fischerindole formation to afford indoles 245 (see scheme 32).

The enol ether moiety was shown to equilibrate to acetal 246, which can be converted to the desired natural products vellosimine (1,58\%), N-methylvellosimine ($8,52 \%$) and 10 -methoxyvellosmine $(9,62 \%)$ after the addition of water and prolonged heating. ${ }^{[2.73]}$

241

Scheme 32: Access to vellosimine 1, N-methylvellosimine 8 and 10-methoxyvellosimine 9.

2.9 Summary and Outlook

With a synthetic access to several natural products from the 16-epi group of sarpagine alkaloids and the 16 -regular subgroup, a unified strategy towards these alkaloids has been achieved. As most sarpagine alkaloids differ by the substitution pattern on the indole core, which can be most conveniently installed at the end of the presented synthesis, our strategy is able to furnish a vast variety of sarpagine alkaloids on demand.

With the possibility to attach indole derivatives with unnatural substituents, we are able to finetune natural product derived compounds in any desired way. The presented synthetic access provides an ideal scaffold for a total synthesis derived screening of a great number of individually substituted alkaloids via late stage differentiation.

From a synthetic point of view, we have achieved a concise, protecting group free access to several alkaloids. Regarding the stepcount, our synthetic route matches the traditional synthesis for sarpagine alkaloids with an unsubstituted indole moiety (for vellosimine 1: nine steps from known compounds, 16 steps total, for 16 -epinormacusine B: ten steps from known compounds, 17 steps total). In regard of sarpagine alkaloids with substitution at the indole core (for both N-methylvellosimine (8) and 10-methoxyvellosmine (9): nine steps from known compounds, 16 steps total) our access is superior to all other synthesis.

Future work will be focused on accessing further sarpagine alkaloids, such as homo- and heterodimers, members of the peraksine subgroup or alkaloids wich have not been subject to decarboxylation at C16. Nevertheless, we have by now established a rapid access to the two biggest subgroups known.

Current synthetic investigations are focused on the synthesis of dispegatrine 93 from ketone 241 and bisaryl compound 247 (see scheme 33). Interesting future studies can be aimed at the incorperation of compound $\mathbf{2 1 9}$ into the sarpagine skeleton, and biological evaluation of the vinylcycolopropane derived sarpagine alkaloids like 248.

A biosynthetic investigation for the formations of gardquinolone $\mathbf{1 1 0}$ from gardnutine 26 (which is within reach) can be carried out as well.

Scheme 33: Possible future synthetic work on the sarpagine alkaloids.

2.10 Experimentals

The following experimental data are from: S. Krüger, T. Gaich, Angew. Chem. Int. Ed. 2014, 54 (1), 315-317.

General

All reactions were performed under an inert atmosphere using Argon as the inert gas, using oven-dried glassware unless stated otherwise. Chemicals were used as bought from chemical suppliers. Solvents were used as bought from chemical suppliers or obtained from a dispensory system. THF was used dry after being distilled from $\mathrm{Na} /$ benzophenone or as bought from Acros Organics, 99,5 \% over molsieves, stabilized. DCM was used after distillation over CaH_{2} or as bought from chemical suppliers. Acetonitrile was used as bought from Acros Organics 99.9\% over molsieves. Acetone was used as bought from Acetone: VMR, technical grade. NEt_{3} was used after distillation over CaH_{2} or as bought from chemical suppliers. No difference in reactivities/yields was observed using different solvent sources. THF for Pdcatalyzed enolate coupling was used after sparging the solvent with argon for 30 minutes under ultrasonication. TLC was carried out using Macherey-Nagel, ALUGRAM Xtra SIL $\mathrm{G} / \mathrm{UV}_{254}$, Aluminium plates, silica 60 . Silica gel-chromatography was carried out using Ma-cherey-Nagel, Silica 60M, 0.04-0.083 mm mesh. Preparative thin layer chromatography was carried out using Macherey-Nagel, ADAMANT UV ${ }_{254}$, Glass plates, silica 60. NMRmeasurements were carried out using Bruker DPX 200 MHz , Bruker AV 400 MHz , Bruker DPX 400 MHz and Bruker DRX 500 MHz . All NMR-spectra are referenced to $7.26 \mathrm{ppm}\left(\mathrm{CDCl}_{3},{ }^{1} \mathrm{H}\right.$) and $77.16 \mathrm{ppm}\left(\mathrm{CDCl}_{3},{ }^{13} \mathrm{C}\right), 3.31 \mathrm{ppm}\left(\right.$ methanol $\left.-\mathrm{d}_{4},{ }^{1} \mathrm{H}\right)$ and 49.00 ppm (methanol $-\mathrm{d}_{4},{ }^{13} \mathrm{C}$) or $2.50 \mathrm{ppm}\left(\mathrm{DMSO}-\mathrm{d}_{6},{ }^{1} \mathrm{H}\right.$) and 39.52 (DMSO- $\mathrm{d}_{6},{ }^{13} \mathrm{C}$). IR measurements were carried out using Bruker Vector 22 or Shimadzu IRAffinity-1S. UPLC-MS Spectra were recorded using Waters QTOF-Premier (Waters Aquity Ultra Performance, electron spray ionization). HR-EI-MS were obtained using Micromass GCT. Optical rotations were measured using Perkin Elmer Polarimeter 341.

Graphical Overview I

Procedures

(Z)-3-hydroxy-1-(2-iodobut-2-en-1-yl)pyridin-1-ium 197

(Z)-1-bromo-2-iodobut-2-ene 210 ($14.91 \mathrm{~g}, 57.15 \mathrm{mmol}, 1.2 \mathrm{eq}$.) was dissolved in acetone ($108 \mathrm{~mL}, 0.5 \mathrm{M}$) and hydroxypyridine ($5.18 \mathrm{~g}, 54.43 \mathrm{mmol}, 1.0 \mathrm{eq}$.) was added at rt . The reaction mixture was stirred at ambient temperature for 24 hours. After one hour a white precipitate formed. This precipitate was filtered off after 24 hours, and was washed with PE to yield $15.1 \mathrm{~g}(78 \%)$ of the desired compound. The solvent of the mother lye was removed under reduced pressure, and the resulting crude mixture was recrystallized from acetone to yield further $2.40 \mathrm{~g}(12 \%)$ of the pyridinium salt 197.
${ }^{1} \mathrm{H}$-NMR (400 MHz , methanol-d d_{4}): $\delta=8.50-8.45(\mathrm{~m}, 2 \mathrm{H}), 8.05-7.94(\mathrm{~m}, 2 \mathrm{H}), 6.59(\mathrm{q}, \mathrm{J}=6.5$ $\mathrm{Hz}, 1 \mathrm{H}), 5.53(\mathrm{~s}, 2 \mathrm{H}), 1.89(\mathrm{~d}, \mathrm{~J}=6.1 \mathrm{~Hz}) \mathrm{ppm} .^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}\right.$, methanol- $\left.\mathrm{d}_{4}\right): \delta=159.2$, 143.1, 137.0, 133.9, 133.6, 129.9, 99.0, 72.7, 22.3 ppm. IR (neat sample): 3035, 2851, 2734, 2629, 2510, 1634, 1578, 1486, 1434, 1298, 1251, 1139, 1029, $997,908,861,814 \mathrm{~cm}^{-1}$. MS: calc. for $\mathrm{C}_{9} \mathrm{H}_{11} \mathrm{INO}^{+}: 275.9880$, found, $275.9881, \mathrm{MP}: 180-185^{\circ} \mathrm{C}$.
(1S,5S)-8-((Z)-2-iodobut-2-en-1-yl)-8-azaspiro[bicyclo[3.2.1]oct[3]ene-6,-(1S,3R)-2'-[1,3]dithiolane-1,3-dioxide]-2-one 211 and 212

(+)-Bissulfoxide 196 ($410 \mathrm{mg}, 2.74 \mathrm{mmol}, 0.9$ eq.) was dispersed in DCM (6.0 mL) under an inert atmosphere, followed by the addition of solid pyridinium salt 197 ($1.08 \mathrm{~g}, 3.04 \mathrm{mmol}$, 1.0 eq.) and $\mathrm{NEt}_{3}(0.42 \mathrm{~mL}, 3.04 \mathrm{mmol}, 1.0$ eq.). The pyridinium salt dissolved during the addition of the base. The reaction vessel was wrapped in aluminium foil and the reaction mixture was stirred at rt for 36 hours. The remaining solvent was then removed under reduced pressure and the crude remains were loaded onto a silica gel column eluting with acetone to yield 900 mg (77\%) of regioisomeric tricycles 211 and 212 as a yellow solid. The mixture of regioisomers was used directly in the next step without separation. Analytically pure samples of both regioisomers can be prepared using multiple column chromatograph or multiple preparative thin layer chromatography (4\% MeOH-DCM).

Desired regioisomer 211

${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.03(\mathrm{dd}, J=9.9,5.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.33(\mathrm{dd}, J=9.9,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.84$ ($q, J=4.8 \mathrm{~Hz}, 1 \mathrm{H}$), $4.29(\mathrm{~d}, J=5.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.01(\mathrm{td}, J=14.0,4.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.80(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H})$ $3.63-3.57(\mathrm{~m}, 2 \mathrm{H}), 3.56-3.37(\mathrm{~m}, 3 \mathrm{H}), 2.59(\mathrm{~d}, \mathrm{~J}=15.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.24$ (dd, $J=15.4,7.9 \mathrm{~Hz}, 1 \mathrm{H}$), 1.78 (d, J=6.5 Hz, 3H) ppm. ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=196.1,143.8,134.1,131.0,105.0$, 99.9, 66.7, $59.4,56.4,52.2,48.4,26.7,21.9 \mathrm{ppm}$. IR (neat sample): 2920, 2850, 1687, 1648, $1443,1398,1370,1337,1306,1235,1143,1094,1063,1039,999,952,911,850,803 \mathrm{~cm}^{-1}$. $[\alpha]_{\mathrm{D}}{ }^{20}:+27\left(\mathrm{c}=0.2 ; \mathrm{CHCl}_{3}\right)$.

Undesired regioisomer 212

${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.14(\mathrm{dd}, J=9.7,5.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.22(\mathrm{dd}, \mathrm{J}=9.7,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.87$ ($q, J=6.5 \mathrm{~Hz}, 1 \mathrm{H}$), 4.11 (br.s, 1H), $4.04(\mathrm{t}, \mathrm{J}=5.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.87-3.78(\mathrm{~m}, 1 \mathrm{H}), 3.64-3.55(\mathrm{~m}, 2 \mathrm{H})$, $3.53-3.45$ ($\mathrm{m}, 3 \mathrm{H}$), 2.73 (d, $J=14.3 \mathrm{~Hz}, 1 \mathrm{H}$), 2.38 (dd, $J=14.0,6.5 \mathrm{~Hz}, 1 \mathrm{H}$), 1.79 (d, J=6.1, 3H) ppm. ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=193.6,150.1,133.9,128.8,105.4,94.2,68.3,60.0,57.5$, 52.5, 49.7, 31.9, 21.9 ppm . IR (neat sample): 2970, 2920, 1682, 1441, 1397, 1374, 1340, 1305, 1230, 1146, 1094, 1041, 911, $853 \mathrm{~cm}^{-1}$. MS: (mixture of regioisomers) calc. for [$\mathrm{C}_{13} \mathrm{H}_{16} \mathrm{INO}_{3} \mathrm{~S}_{2}+\mathrm{Na}$]: 447.9514, found: 447.9511 .
\mathbf{R}_{f} : undesired regioisomer 0.70 (acetone), 0.56 ($4 \% \mathrm{MeOH}-\mathrm{DCM}$), desired regioisomer 0.64 (acetone), 0.51 ($4 \% \mathrm{MeOH}-\mathrm{DCM}$).
(1S,5S)-8-((Z)-2-iodobut-2-en-1-yl)-8-azaspiro[bicyclo[3.2.1]oct[3]ene-6,2'-[1,3]dithiolan]-2one 213 and 214

Regiosiomeric mixture of bissulfoxides 211/212 (2:1 mixture of desired/undesired by NMR, $900 \mathrm{mg}, 2.11 \mathrm{mmol}, 1.0$ eq.) was dissolved in actetonitrile (42 mL) and the solution was cooled to $0^{\circ} \mathrm{C}$. Nal ($951 \mathrm{mg}, 6.35 \mathrm{mmol}, 3.0 \mathrm{eq}$.) was added in one portion, followed by the dropwise addition of TFAA ($0.89 \mathrm{~mL}, 6.35 \mathrm{mmol}, 3.0$ eq.). The reaction mixture was stirred at $0{ }^{\circ} \mathrm{C}$ for 2 hours before the addition of sat. $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$ solution followed by the addition of 2 M NaOH solution quenched the reaction. The mixture was diluted with DCM and transferred to a separation funnel. The phases were separated, and the aqueous layer was extracted two more times with DCM. The combined organic layers were dried over MgSO_{4} and the solvent was removed under reduced pressure. The crude mixture was purified via silica gel chromatography using 6:1 (PE:EtOAc) as eluent to give 563 mg (68%, 2.1:1 ratio of regioisomers $213 / 214$) as a yellow oil.

Desired regioisomer 213
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$: $\delta=6.93$ (dd, J=9.7, $\left.5.0 \mathrm{~Hz}, 1 \mathrm{H}\right), 6.06(\mathrm{dd}, \mathrm{J}=9.9,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.89-$ $5.82(\mathrm{~m}, 1 \mathrm{H}), 3.76(\mathrm{~d}, J=4.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.53(\mathrm{~d}, \mathrm{~J}=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.50-3.40(\mathrm{~m}, 2 \mathrm{H}), 3.40-3.31(\mathrm{~m}$, 2H, 3.28-3.17 (m, 2H), 3.10 (dd, J=14.7, 8.2 Hz, 1H), 2.36-2.30 (m, 1H), 1.75-1.71 (m, 3H) ppm. ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=198.1,147.6,132.6,127.5,106.1,70.8,69.1,67.3,60.2$, 45.4, 40.6, 40.3, 21.8 ppm . IR (neat sample): 2919, 2821, 1684, 1440, 1370, 1331, 1303, $1278,1251,1140,1102,1051,976,957,908,846,804 \mathrm{~cm}^{-1} .[\alpha]_{\mathrm{D}}{ }^{20}:+51\left(\mathrm{c}=0.16 ; \mathrm{CHCl}_{3}\right)$.

Undesired regioisomer 214
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=6.93$ (dd, J=9.7, $5.0 \mathrm{~Hz}, 1 \mathrm{H}$), 6.00 (dd, J=9.7, 1.5 Hz, 1H), 5.90$5.82(\mathrm{~m}, 1 \mathrm{H}), 3.78(\mathrm{t}, \mathrm{J}=5.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.64-3.60(\mathrm{~m}, 1 \mathrm{H}), 3.53-3.46(\mathrm{~m}, 2 \mathrm{H}), 3.44-3.32(\mathrm{~m}, 2 \mathrm{H})$, 3.29-3.20 (m, 1H), 3.17-3.09 (m, 1H), 2.93 (dd, J=13.7, 6.5 Hz, 1H), $2.42(\mathrm{~d}, \mathrm{~J}=13.3 \mathrm{~Hz}, 1 \mathrm{H})$,
$1.76(\mathrm{dt}, \mathrm{J}=6.3,1.3 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=195.3,149.0,132.9,127.8$, 106.4, 83.3, 65.5, $60.8,57.9,46.1,41.1,39.0,21.8 \mathrm{ppm}$. IR (neat sample): 2924, 2822, 1682, $13438,1373,1337,1304,1242,1145,1050,1019,970,913,882,855 \mathrm{~cm}^{-1}$.

MS: (mixture of regioisomers) calc. for $\left[\mathrm{C}_{13} \mathrm{H}_{16}\right.$ INOS $\left.{ }_{2}+\mathrm{H}\right]$: 393.9796, found: 393.9796, \mathbf{R}_{f} : desired: 0.52 , undesired: 0.41 (both $4: 1 \mathrm{PE} / E t O A c$).
(1S,5S)-8-((Z)-2-iodobut-2-en-1-yl)-8-azaspiro[bicyclo[3.2.1]octane-6,2'-[1,3]dithiolan]-2-one 195

Unsaturated ketone 213 ($430 \mathrm{mg}, 1.09 \mathrm{mmol}, 1.0 \mathrm{eq}$.$) was dissolved in THF (12 \mathrm{~mL}$) and the solution was cooled to $-78{ }^{\circ} \mathrm{C}$. L-selectride $(1.09 \mathrm{~mL}$ of a 1 M solution in THF, $1.09 \mathrm{mmol}, 1.0$ eq.) was diluted to a 0.1 M solution in THF, which was then cooled to $-78{ }^{\circ} \mathrm{C}$. The diluted solution was then added slowly along the inner flask walls to the cooled unsaturated ketone via syringe. Immediately after the addition of the reducing agent the reaction mixture was quenched by the addition of 2 M NaOH solution at $-78^{\circ} \mathrm{C}$. The resulting mixture was diluted with EtOAc and was then allowed to warm to room temperature. The mixture was transferred to a separation funnel, followed by the addition of solid NaCl . The phases were separated and the aqueous phase was extracted two more times with EtOAc. The combined organic layers were dried over MgSO_{4} and the solvent was removed under reduced pressure. The crude mixture was purified via silica gel chromatography using 6:1 (PE:EtOAc) as eluent to yield 405 mg (94\%) of desired ketone 195 as a colorless oil.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=6.00-5.88(\mathrm{~m}, 1 \mathrm{H}), 3.56-3.49(\mathrm{~m}, 2 \mathrm{H}), 3.47-3.34(\mathrm{~m}, 4 \mathrm{H})$, 3.33-3.20 (m, 2H), 3.07 (dd, J=15.2, 8.0 Hz, 1H), 2.66-2.46 (m, 2H), 2.42 (d, J=15.0 Hz, 1H), 2.31-2.12 (m, 2H), 1.79 (dt, J=6.5, 1.2 Hz, 3H) ppm. ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=210.0$, 132.8, 106.6, $70.1,67.7,60.8,47.7,40.5,40.4,33.5,26.6,21.9 \mathrm{ppm}$. IR (neat sample): 2939, 2870, 2817, 1716, 1647, 1444, 1420, 1363, 1306, 1276, 1258, 1235, 1198, 1143, 1064, 1010,

975, 919, $881,852,816 \mathrm{~cm}^{-1}$. MS: calc. for $\left[\mathrm{C}_{13} \mathrm{H}_{18} / \mathrm{NOS}_{2}+\mathrm{H}\right]: 395.9953$, found: 395.9951, $[\alpha]_{\mathrm{D}}{ }^{20}:+79\left(\mathrm{c}=0.18 ; \mathrm{CHCl}_{3}\right), \mathbf{R}_{\mathrm{f}}: 0.47$ (5:1 PE/EtOAc).
(3S,8aS,E)-6-ethylidenehexahydro-2H-spiro[3,7-methanoindolizine-1,2'-[1,3]dithiolan]-9-one 194

Vinyliodide 195 ($405 \mathrm{mg}, 1.03 \mathrm{mmol}, 1.0$ eq.) was dissolved in degassed THF (40 mL , overall concentration 0.05) followed by the addition of $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(88.0 \mathrm{mg}, 77.0 \mu \mathrm{~mol}, 7.5 \mathrm{~mol} \%)$ in THF (5 mL) and a mixture of KOtBu ($172 \mathrm{mg}, 1.54 \mathrm{mmol}, 1.5 \mathrm{eq}$.) and $\mathrm{PhOH}(193 \mathrm{mg}, 2.05$ $\mathrm{mmol}, 2.0$ eq.) in THF (5 mL). The resulting mixture was heated to reflux for 6 hours, before being cooled down to ambient temperature. The cold mixture was diluted with ice-water and EtOAc as well as solid NaCl and 2 M NaOH solution. The phases were separated and the aqueous phase was extracted two more times with EtOAc. The solvent was removed under reduced pressure, and the remains were redissolved in EtOAc $(20 \mathrm{~mL})$. The organic layer was extracted three times with 1 M HCl solution (25 mL total). The organic phase containing the non-aminic remains was then discarded. The aqueous acidic phase was then adjusted to basic pH with 2 M NaOH solution (40 mL) and solid NaCl was added. The now basic phase was extracted three times with EtOAc (250 mL total). The combined organic layers were dried over MgSO_{4} and the solvent was removed under reduced pressure to yield 240 mg (88%) of α-vinylated ketone 194 as a clear oil without significant impurities by ${ }^{1} \mathrm{H}$-NMR. An analytically pure sample can be obtained using preparative thin-layer chromatography using 3:1 PE:EtOAc as eluent.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=5.46-5.34(\mathrm{~m}, 1 \mathrm{H}), 3.77-3.58(\mathrm{~m}, 2 \mathrm{H}), 3.52(\mathrm{~d}, \mathrm{~J}=9.2 \mathrm{~Hz}, 1 \mathrm{H})$, $3.44-3.31(\mathrm{~m}, 4 \mathrm{H}), 3.26-3.17(\mathrm{~m}, 2 \mathrm{H}), 3.08-2.97(\mathrm{~m}, 1 \mathrm{H}), 2.38-2.25(\mathrm{~m}, 2 \mathrm{H}), 2.09$ (ddd, $J=14.6,9.6,2.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.63(\mathrm{dt}, \mathrm{J}=6.9,2.2 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=$ 216.1, 134.6, 120.1, $72.1,68.3,67.3,49.2,45.9,44.1,40.2,40.1,28.1,12.7 \mathrm{ppm}$. IR (neat sample): 2971, 2923, 1734, 1440, 1368, 1279, 1216, 1122, 1001, $940,888,818 \mathrm{~cm}^{-1}$. Ms:
calc. for $\left[\mathrm{C}_{13} \mathrm{H}_{17} \mathrm{NOS}_{2}+\mathrm{H}\right]: 268.0830$, found: 268.0827, $[\alpha]_{\mathrm{D}}{ }^{20}:+5\left(\mathrm{c}=1.2 ; \mathrm{CHCl}_{3}\right), \mathrm{R}_{\mathrm{f}}: 0.31$ (3:1 PE:EtOAc).
(3S,6E,8aS)-6-ethylidene-9-(methoxymethylene)hexahydro-2H-spiro[3,7-methanoindolizine-1,2'-[1,3]dithiolane] 239

(Methoxymethyl)triphenylphosphonium chloride ($1.09 \mathrm{~g}, 5.54 \mathrm{mmol}, 3.5 \mathrm{eq}$) was dispensed in THF ($15.0 \mathrm{~mL}, 0.3 \mathrm{M}$) under an inert atmosphere, and the mixture was cooled to $-78{ }^{\circ} \mathrm{C}$. KHMDS (7.92 mL of a 0.7 M solution in toluene, $570 \mathrm{mmol}, 3.5 \mathrm{eq}$.) was then added, and the mixture was warmed to $0^{\circ} \mathrm{C}$ for 40 minutes. The dark red solution was then cooled back to $-78{ }^{\circ} \mathrm{C}$, followed by the addition of ketone 194 ($423 \mathrm{mg}, 1.58 \mathrm{mmol}, 1.0 \mathrm{eq}$.) in THF (5.0 mL , $3 \mathrm{M})$. The reaction mixture was allowed to warm to ambient temperature and was stirred at that temperature for 5 hours. The reaction mixture was then diluted with 2 M NaOH solution and EtOAc. The mixture was transferred to a separation funnel, and water and solid NaCl was added. The phases were separated, and the aqueous layer was extracted two more times with EtOAc. The combined organic layers were dried over MgSO_{4}, the solvent was removed under reduced pressure. The crude product was purified via column chromatography using 5:1 PE:EtOAc as eluent to yield 364 mg (78%) of the corresponding enol ether $\mathbf{2 3 9}$ as a white solid. An analytically pure sample of the major double bond isomer was prepared via multiple column chromatography. Both isomers were used as a mixture in the following reactions.

Major DB-regioisomer

${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=5.75(\mathrm{~d}, \mathrm{~J}=1.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.06-5.00(\mathrm{~m}, 1 \mathrm{H}), 3.97(\mathrm{~d}, \mathrm{~J}=7.5 \mathrm{~Hz}$, $1 \mathrm{H}), 3.64-3.54(\mathrm{~m}, 2 \mathrm{H}), 3.52(\mathrm{~s}, 3 \mathrm{H}), 3.37-3.28(\mathrm{~m}, 2 \mathrm{H}), 3.23-3.11(\mathrm{~m}, 3 \mathrm{H}), 3.05-2.99(\mathrm{~m}, 2 \mathrm{H})$, $2.27-2.21(\mathrm{~m}, 1 \mathrm{H}), 2.08(\mathrm{dt}, \mathrm{J}=13.5,3.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.87-1.85(\mathrm{~m}, 1 \mathrm{H}), 1.57(\mathrm{dt}, J=6.8,2.0,3 \mathrm{H})$ ppm. ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$: $\delta=140.5,138.9,123.5,111.3,72.9,69.0,59.7,57.4,50.8$, $50.0,39.98,39.95,33.5,30.2,12.4 \mathrm{ppm}$. IR (neat sample): 2922, 2835, 1688, 1446, 1277,

1231, 1192, 1123, $982,952,882,809 \mathrm{~cm}^{-1}$. MS: calc. for $\left[\mathrm{C}_{15} \mathrm{H}_{21} \mathrm{NOS}_{2}+\mathrm{H}\right]$: 296.1143, found: 296.1140, $[\alpha]_{\mathrm{D}}{ }^{20}:-52\left(\mathrm{c}=0.8 ; \mathrm{CHCl}_{3}\right), \mathbf{R}_{\mathrm{f}}: 0.28$ (5:1 PE:EtOAc).
(3S,6E,8aS)-6-ethylidene-9-(methoxymethylene)hexahydro-3,7-methanoindolizin-1(5H)-one 240

Meerwein salt ($147.9 \mathrm{mg}, 2.94 \mathrm{mmol}, 4.0$ eq.) was weighed out in a glovebox. Dithiolane $\mathbf{2 3 9}$ ($217 \mathrm{mg}, 735 \mu \mathrm{~mol}, 1.0 \mathrm{eq}$) was dissolved in a solution of TFA in DCM (7.4 mL of a solution of 0.23 mL TFA in 15 mL DCM, 1.0 eq .). The protonated amine solution was then added to the neat Meerwein salt, and the reaction mixture was stirred at room temperature for 16 hours. The reaction mixture was then cooled to $0^{\circ} \mathrm{C}$, before $3 \% \mathrm{CuSO}_{4}$ solution was added. The reaction mixture was stirred at $0{ }^{\circ} \mathrm{C}$ for 30 minutes and was then allowed to warm to room temperature. A yellow-green precipitate formed upon warming to room temperature. After 3 hours at ambient temperature 25% ammonia solution was added, causing a deep blue color and leading to dissolving of the precipitate. The reaction mixture was then transferred to a separation funnel and was diluted with EtOAc. 2 M NaOH solution was added, as well as solid NaCl . The phases weres separated, and the aqueous layers was extracted two more times with EtOAc. The combined organic layers were dried over MgSO_{4} and the solvent was removed under reduced pressure. The crude product was purified via column chromatography using 2:1 PE:EtOAc to yield 119 mg (74%) of ketone $\mathbf{2 4 0}$ as a colorless oil.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=5.86(\mathrm{~d}, \mathrm{~J}=2.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.08(\mathrm{qt}, \mathrm{J}=6.7,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.16(\mathrm{~d}$, $J=6.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.74-3.56(\mathrm{~m}, 2 \mathrm{H}), 3.55(\mathrm{~s}, 3 \mathrm{H}), 3.37-3.35(\mathrm{~m}, 1 \mathrm{H}), 3.09(\mathrm{~d}, \mathrm{~J}=2.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.62$ (dd, J=17.5, 6.6 Hz, 1H), 2.33 (d, J=17.5 Hz, 1H), 2.02-1.95 (m, 1H), 1.80-1.75 (m, 1H), 1.57 (dt, J=6.9, $2.1 \mathrm{~Hz}, 3 \mathrm{H}$) ppm. ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=217.8,140.8,139.1,120.1,112.3$, $62.2,59.8,57.5,49.7,44.0,33.0,30.8,12.3$ ppm. IR (neat sample): 2928, 1752, 1681, 1453,

1288, 1229, 1185, 1120, 1074, 1054, 982, $940,876,838 \mathrm{~cm}^{-1}$. MS: calc. for $\left[\mathrm{C}_{13} \mathrm{H}_{17} \mathrm{NO}_{2}+\mathrm{H}\right]$: 220.1338, found: 220.1340, $[\alpha]_{D}{ }^{20}:-103$ ($c=0.4 ; \mathrm{CHCl}_{3}$), Rf: 0.23 (2:1 PE:EtOAc).
(3E,6S,9aS)-3-ethylidene-1-(methoxymethylene)hexahydro-1H-2,6-methanoquinolizin-7(2H)one 241

n BuLi ($67.0 \mu \mathrm{LmL}$ of a 2.5 M solution in hexanes, $168 \mu \mathrm{~mol}$, 1.5 eq.) was added to $\mathrm{Et}_{2} \mathrm{O}$ (2 $\mathrm{mL})$ at $-78{ }^{\circ} \mathrm{C}$, followed by the addition of $\mathrm{TMSCHN}_{2}(84.0 \mu \mathrm{~L}$ of a 2.0 M solution in hexanes, $168 \mu \mathrm{~mol}, 1.5$ eq.). The mixture was stirred for 15 minutes, before ketone $\mathbf{2 4 0}$ ($26.0 \mathrm{mg}, 112$ $\mu \mathrm{mol}, 1.0$ eq.) was added in THF (4.0 mL). The reaction mixture was stirred for 45 minutes at $-78^{\circ} \mathrm{C}$, before the addition of $\mathrm{MeOH}\left(1 \mathrm{~mL} \mathrm{MeOH}\right.$ in 1 mL THF) at $-78^{\circ} \mathrm{C}$ quenched the reaction by C -protonation. The reaction mixture was diluted with EtOAc and 1 M NaOH . The layers were separated, and the aqueous layer was extracted two more times with EtOAc. The combined organic layers were dried over MgSO_{4} and silica gel (2.0 g) was added to the solution. The mixture was stirred for 30 minutes, leading to homologation and resulting in a mixture of homologated ketone $\mathbf{1 0}$ and its enol-ether derivative. The solvent was removed under reduced pressure. The remains were redissolved in EtOAc (20 mL). The organic layer was extracted three times with 1 M HCl solution (25 mL total). The organic phase containing the non-aminic remains was then discarded. The acidic phase was then adjusted to basic pH with 2 M NaOH solution (40 mL) and solid NaCl was added. The now basic phase was extracted three times with EtOAc (250 mL total). The combined organic layers were dried over MgSO_{4} and the solvent was removed under reduced pressure. The crude product was purified via column chromatography using 1:1 PE:EtOAc to yield $21.0 \mathrm{mg}(80 \%)$ of ketone 241 as a crystalline white solid.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=5.94(\mathrm{~d}, \mathrm{~J}=2.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.16-5.10(\mathrm{~m}, 1 \mathrm{H}), 3.79-3.75(\mathrm{~m}, 1 \mathrm{H})$, $3.58(\mathrm{~s}, 3 \mathrm{H}), 3.56-3.50(\mathrm{~m}, 1 \mathrm{H}), 3.45-3.39(\mathrm{~m}, 2 \mathrm{H}), 3.16(\mathrm{t}, \mathrm{J}=2.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.67$ (ddd, J=15.8, $13.1,7.3 \mathrm{~Hz}, 1 \mathrm{H}$), 2.55-2.49 (m, 1H), $2.23(\mathrm{dd}, \mathrm{J}=15.8,5.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.02-1.94(\mathrm{~m}, 2 \mathrm{H}), 1.60(\mathrm{~m}$, 4H) ppm. ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$): $\delta=209.5,140.4,138.7,117.8,113.4,63.9$, 59.9, 55.8,
54.3, $32.1,31.5,30.9,26.3,12.5 \mathrm{ppm}$. IR (neat sample): $3035,1722,1643,1420$, , 1229, 1171, 1120, $987,940,838 \mathrm{~cm}^{-1}$. MS: calc. for [$\left.\mathrm{C}_{14} \mathrm{H}_{19} \mathrm{NO}_{2}+\mathrm{H}\right]$: 233.1416, found: 233.1420. $[\alpha]_{\mathrm{D}}{ }^{20}:-55\left(\mathrm{c}=0.64 ; \mathrm{CHCl}_{3}\right), \mathbf{R}_{\mathrm{f}}: 0.15$ (1:1 PE:EtOAc).
(+)-Vellosimine 1

Ketone 241 ($4.0 \mathrm{mg}, 17.0 \mu \mathrm{~mol}, 1.0$ eq.) was dissolved in $\mathrm{EtOH}(1 \mathrm{~mL})$ under an inert atmosphere, and $44 \mu \mathrm{~L}$ of a 0.5 M solution of phenylhydrazine (242) in EtOH ($24.0 \mathrm{mg}, 22 \mu \mathrm{~mol}, 1.3$ eq.) was added. The reaction mixture was heated to reflux for two hours, before the solvent was removed under reduced pressure. The crude remains were redissolved in 1.2 mL of a 2.5 M solution of HCl in $\mathrm{MeOH}(0.17 \mathrm{~mL} \mathrm{AcCl}$ in 2.5 mL MeOH$)$, and the reaction mixture was heated to reflux for six hours. The mixture was then concentrated under reduced pressure and the remains were redissolved in THF. 1 mL of a 2 M solution of HCl in water was then added and the mixture was refluxed for another three hours. The reaction was then cooled to ambient temperature and was diluted with 2 M HCl and was extracted with $\mathrm{Et}_{2} \mathrm{O}$. The protonated amine in the aqueous phase was then liberated by basifying with 2.0 M NaOH , addition of solid NaCl and extraction with EtOAc. The combined EtOAc layers were dried over MgSO_{4}, and the solvent was removed under reduced pressure. The crude product was purified via column chromatography using 9:1 EtOAc: $: \mathrm{PrOH}$ with 1% triethylamine as solvent system to yield $2.9 \mathrm{mg}(58 \%)$ of (+)-vellosimine 1 as a white crystalline solid.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=9.64(\mathrm{~d}, \mathrm{~J}=0.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.91$ (br.s, 1 H), 7.46 (d, $J=7.7 \mathrm{~Hz}, 1 \mathrm{H}$), 7.32 (d, J=8.0 Hz, 1H), 7.18-7.13 (m, 1H), 7.12-7.07 (m, 1H), 5.34 (q, J=6.7 Hz, 1H), 4.20 (d, $J=9.5 \mathrm{~Hz}, 1 \mathrm{H}$), $3.66(\mathrm{t}, \mathrm{J}=6.4 \mathrm{~Hz}, 1 \mathrm{H}$), 3.57 (d, $\mathrm{J}=16.7 \mathrm{~Hz}, 2 \mathrm{H}$), $3.22-3.20(\mathrm{~m}, 1 \mathrm{H}), 3.17$ (dd, $J=15.5,5.0 \mathrm{~Hz}, 1 \mathrm{H}$), $2.61(\mathrm{~d}, \mathrm{~J}=15.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.53(\mathrm{~d}, \mathrm{~J}=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.08-2.01(\mathrm{~m}, 1 \mathrm{H}), 1.83$ (ddd, J=12.9, 3.3, 3.0 Hz, 1H), 1.60 (dt, J=6.7, $1.8 \mathrm{~Hz}, 3 \mathrm{H}$) ppm. ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$:
$\delta=202.5,137.5,136.5,133.7,127.6,121.9,119.8,118.4,117.5,111.2,104.4,55.9,55.0$, $50.7,50.6,33.0,27.2,26.9,12.8 \mathrm{ppm}$. IR (neat sample): 3056, 2920, 2361, 2169, 2063, 2022, 1715, 1449, 1348, 1230, 1167, 1081, 847, $807 \mathrm{~cm}^{-1}$. MS: calc. for [$\mathrm{C}_{19} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}+\mathrm{H}$]: 293.1654, found: 293.1650. $[\alpha]_{\mathrm{D}}{ }^{20}:+41$ ($c=0.04 ; \mathrm{MeOH}$), \mathbf{R}_{f} : 0.15 (1:9 iPrOH:EtOAc, $1 \% \mathrm{NEt}_{3}$).

(+)-N-Methylvellosimine 8

Ketone 241 ($10 \mathrm{mg}, 43.0 \mu \mathrm{~mol}, 1.0$ eq.) was dissolved in EtOH (0.5 mL) under an inert atmosphere, and N-methyl-phenylhydrazine $\mathbf{2 4 3}$ in EtOH ($6 \mathrm{mg}, 51 \mu \mathrm{~mol}, 1.2$ eq.) was added. The reaction mixture was heated to reflux for two hours, before the solvent was removed under reduced pressure. The crude remains were redissolved in 3.0 mL of a 2.5 M solution of HCl in $\mathrm{MeOH}(0.34 \mathrm{~mL} \mathrm{AcCl}$ in 5.0 mL MeOH$)$, and the reaction mixture was heated to reflux for four hours. The mixture was then concentrated under reduced pressure and the remains were redissolved in THF (1 mL). 1 mL of a 2 M solution of HCl in water was then added and the mixture was refluxed for another three hours. The reaction was then cooled to ambient temperature and was diluted with 2 M HCl and was extracted with $\mathrm{Et}_{2} \mathrm{O}$. The protonated amine in the aqueous phase was then liberated by basifying with 2.0 M NaOH , addition of solid NaCl and extraction with EtOAc. The combined EtOAc layers were dried over MgSO_{4}, and the solvent was removed under reduced pressure. The crude product was purified via column chromatography using 9:1 EtOAc:iPrOH with 1% triethylamine as solvent system to yield $6.0 \mathrm{mg}(52 \%)$ of (+)- N -methylvellosimine $\mathbf{8}$ as a white amorphous solid.

[^0]$1 \mathrm{H}), 2.62$ (dd, J=15.5, $0.8 \mathrm{~Hz}, 1 \mathrm{H}$), 2.50 (d, J=7.5 Hz, 1H), 2.14 (ddd, J=11.3, 10.1, $1.9 \mathrm{~Hz}, 1 \mathrm{H}$), 1.78 (ddd, $J=12.6,3.6,2.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.62(\mathrm{~d}, \mathrm{~J}=6.7 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=$ 202.7, 139.1, 137.5, 134.2, 127.3, 121.3, 119.2, 118.4, 117.4, 109.0, 103.3, 56.3, 55.0, 50.8, 49.6, $32.5,29.6,27.3,26.7,12.8 \mathrm{ppm}$. IR (neat sample): 3056, 2920, 2361, 2169, 2034, 1727, 1147, $847 \mathrm{~cm}^{-1}$. MS: calc. for [$\left.\mathrm{C}_{20} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}+\mathrm{H}\right]$: 307.4015, found: 307.1935, $[\alpha]_{\mathrm{D}}{ }^{20}:+78$ (c=0.12; CHCl_{3}), $\mathbf{R f}_{\mathbf{f}} 0.15$ (1:9 iPrOH:EtOAc, 1\%NEt ${ }_{3}$).
(+)-10-Methoxyvellosimine 9

Ketone 241 ($10 \mathrm{mg}, 43.0 \mu \mathrm{~mol}, 1.0 \mathrm{eq}$.) was dissolved in $\mathrm{EtOH}(0.5 \mathrm{~mL})$ under an inert atmosphere, and 4-methoxyphenylhydrazine $\mathbf{2 4 4}$ in EtOH ($7 \mathrm{mg}, 51 \mu \mathrm{~mol}, 1.2 \mathrm{eq}$.) was added. The reaction mixture was heated to reflux for one hour, before the solvent was removed under reduced pressure. The crude remains were redissolved in 3.0 mL of a 2.5 M solution of HCl in $\mathrm{MeOH}(0.34 \mathrm{~mL} \mathrm{AcCl}$ in 5.0 mL MeOH$)$, and the reaction mixture was heated to reflux for three hours. The mixture was then concentrated under reduced pressure and the remains were redissolved in THF (1 mL). 1 mL of a 2 M solution of HCl in water was then added and the mixture was refluxed for another 90 minutes. The reaction was then cooled to ambient temperature and was diluted with 2 M HCl and was extracted with $\mathrm{Et}_{2} \mathrm{O}$. The protonated amine in the aqueous phase was then liberated by basifying with 2.0 M NaOH , addition of solid NaCl and extraction with EtOAc. The combined EtOAc layers were dried over MgSO_{4}, and the solvent was removed under reduced pressure. The crude product was purified via column chromatography using 9:1 EtOAc:iPrOH with 1% triethylamine as solvent system to yield $8.0 \mathrm{mg}(63 \%)$ of (+)-10-methoxyvellosimine 9 as a white amorphous solid.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}\right.$, DMSO- d_{6}): $\delta=10.60$ (br.s., 1 H), $9.57(\mathrm{~s}, 1 \mathrm{H}), 7.18(\mathrm{~d}, \mathrm{~J}=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.88$ (d, J=2.3 Hz, 1H), 6.68 (dd, J=8.8, 2.6 Hz, 1H), 5.28 (q, J=6.8 Hz, 1H), 4.18 (br.s., 1H), 3.74 (s,

3H), 3.60-3.46 (m, 3H), 3.23 (br. s., 1H), 2.92 (dd, J=15.2, $4.6 \mathrm{~Hz}, 1 \mathrm{H}$), 2.52 (d, J=4.2 Hz, 1H), 2.47 (bs, 1H), $2.01(\mathrm{dd}, \mathrm{J}=11.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.74(\mathrm{~d}, \mathrm{~J}=12.8,1 \mathrm{H}), 1.57(\mathrm{dt}, \mathrm{J}=7.0,1.3 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm}$. ${ }^{13}$ C-NMR (125 MHz, DMSO- d_{6}): $\delta=203.5,153.1,140.8,135.6,131.2,127.3,111.7,110.4$, 102.1, $99.9,55.3,55.0,54.2,50.0,49.8,32.6,26.7,26.2,12.4 \mathrm{ppm}$. (neat sample): 3056, 2920, 1731, 1147, $847 \mathrm{~cm}^{-1}$. MS: calc. for [$\left.\mathrm{C}_{20} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}_{2}+\mathrm{H}\right]$: 323.1760, found: 323.1765, $[\alpha]_{\mathrm{D}}{ }^{20}$: +64 ($\mathrm{c}=0.16 ; \mathrm{CHCl}_{3}$), $\mathrm{R}_{\mathrm{f}} \mathrm{O} 0.15$ (1:9 iPrOH:EtOAc, $1 \% \mathrm{NEt}_{3}$).

(+)-vellosimine 1

${ }^{1} \mathrm{H}$-NMR-data

Nr.	$\begin{gathered} \text { Isolation material }{ }^{1,2} \\ {[\mathrm{ppm}]} \\ \left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \end{gathered}$	Literature: Synthetic material ${ }^{3}$ [ppm] $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$	This work: Synthetic material Gaich [ppm] ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$)
17	9.67 (d, J= $51 \mathrm{~Hz}, 1 \mathrm{H}$)	9.56 (s, 1H)	9.64 (d, J=0.7 Hz, 1H)
1	7.81 (bs, 1H)	9.16 (bs, 1H)	7.91 (bs, 1H)
12	7.48 (d, J= $7 \mathrm{~Hz}, 1 \mathrm{H}$)	7.41 (d, J= $7.7 \mathrm{~Hz}, 1 \mathrm{H}$)	7.46 (d, J= $7.7 \mathrm{~Hz}, 1 \mathrm{H})$
9	7.35 (d, J=7 Hz, 1H)	7.35 (d, J=7.8 Hz, 1H)	7.32 (d, J=8.0 Hz, 1H)
11	7.19 (t, J=7 Hz, 1H)	7.16-7.04 (m, 2H)	7.18-7.13 (m, 1H)
10	7.11 (t, J=7 Hz, 1H)	7.16-7.04 (m, 2H)	7.12-7.07 (m, 1H)
19	$\begin{gathered} 5.38(q, J=7 \mathrm{~Hz}, \approx 1 \mathrm{~Hz}, \\ 1 \mathrm{H}) \end{gathered}$	5.25 (q, J= $6.9 \mathrm{~Hz}, 1 \mathrm{H})$	$5.34(\mathrm{q}, J=6.7 \mathrm{~Hz}, 1 \mathrm{H})$
3	$\begin{gathered} 4.22(\mathrm{dd}, \mathrm{~J}=10 \mathrm{~Hz}, 2 \\ \mathrm{Hz}, 1 \mathrm{H}) \end{gathered}$	4.44 (d, J= $9.4 \mathrm{~Hz}, 1 \mathrm{H})$	4.20 (d, J= 9.5, 1H)
5	$n r^{\text {a }}$	3.80 (t, J=6.0 Hz, 1H)	3.66 (t, J=6.4 Hz, 1H)
21ab	nr	3.58 (d, J=16.5 Hz, 1H)	3.57 (d, J=16.7 Hz, 2H)
15	nr	3.36-3.25 (m, 1H)	3.22-3.20 (m, 1H)
6 a	nr	3.22 (s, 1H)	$\begin{gathered} 3.17(\mathrm{dd}, J=15.5,5.0 \mathrm{~Hz}, \\ 1 \mathrm{H}) \end{gathered}$
6b	nr	2.63 (d, J= $9.2 \mathrm{~Hz}, 2 \mathrm{H})$	2.61 (d, J= $15.5 \mathrm{~Hz}, 1 \mathrm{H})$
16	nr	2.59 (s, 1H)	2.53 (d, J=7.4 Hz, 1H)
14a	nr	2.16 (t, J= 10.4 Hz, 1H)	2.08-2.01 (m, 1H)
14b	nr	1.93 (d, J= 13.3 Hz, 1H)	$\begin{gathered} 1.83(\mathrm{ddd}, \mathrm{~J}=12.9,3.3, \\ 3.0 \mathrm{~Hz}, 1 \mathrm{H}) \end{gathered}$
18	$\begin{gathered} 1.65(\mathrm{dt}, \mathrm{~J}=7 \mathrm{~Hz}, 2 \mathrm{~Hz}, \\ 3 \mathrm{H}) \end{gathered}$	1.56 (d, J=6.8 Hz, 3H)	$\begin{gathered} 1.60(\mathrm{dt}, \mathrm{~J}=6.7,1.8 \mathrm{~Hz}, \\ 3 \mathrm{H}) \end{gathered}$

${ }^{13}$ C-NMR-data:
$\left.\left.\begin{array}{|c|c|c|c|}\hline \mathrm{Nr.} & \begin{array}{c}\text { Isolation material }{ }^{1,2} \\ \text { [ppm] } \\ \left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)\end{array} & \begin{array}{c}\text { Literature: } \\ \text { Synthetic material }\end{array} \\ \text { [ppm] } \\ \left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)\end{array}\right] \begin{array}{c}\begin{array}{c}\text { This work: } \\ \text { Synthetic materi- } \\ \text { al }\end{array} \\ \text { Gaich [ppm] } \\ \left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)\end{array}\right]$
${ }^{1}$ A. Pfitzner, J. Stöckigt, Planta Medica, 1983, 48, 221-227.
${ }^{2}$ J. Banerji, B. Das, R. Chakrabarti, J. N. Shoolery, Indian J. Chem. 26B, 709, 1987.
${ }^{3}$ J. Yu, T. Wang, X. Liu, J. Deschamps, J. Flippen-Anderson, X. Liao, J. M. Cook, JOC, 2003, 68, 7565-7581.
(+)-N-Methylvellosimine 8:

${ }^{1} \mathrm{H}$-NMR-data

Nr	```Literature: Synthetic materi- al}\mp@subsup{}{}{4 [ppm] (60 MHz, DMSO- d```	Literature: Synthetic material ${ }^{5}$ [ppm] $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$	This work: Synthetic material Gaich [ppm] ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$)
17	9.52 (s, 1H)	9.64 (d, J=1 Hz, 1H)	9.64 (s, 1H)
12		7.47 (ddd, J=7.7, 1.0, 1.0, Hz, 1H	7.47 (d, J=7.7 Hz, 1H)
9	7.65-7.01 (m, 4H)	7.30 (d, J=8.0 Hz, 1H)	7.29 (d, J= 8.0 Hz, 1H)
11	7.65-7.01 (m, 4H)	7.21 (ddd, $J=8.0,7.0,1.0 \mathrm{~Hz}, 1 \mathrm{H})$	7.20 (ddd, $=$ = $7.9,7.4,0.6 \mathrm{~Hz}, 1 \mathrm{H})$
10		7.09 (ddd, $J=7.5,7.0,1 \mathrm{~Hz}, 1 \mathrm{H}$)	7.09 (ddd, J=7.7, 7.2, 0.6 Hz, 1H)
19	5.45 (q, 1H)	5.37 (q, J=7.0 Hz, 1H)	5.37 (q, J=7.4 Hz, 1H)
3	nr	4.27 (dd, J=10.0, 2.5 Hz, 1H)	4.30 (d, J= 8.2 Hz, 1H)
21;5	nr	3.67-3.60 (m, 3H)	3.68-3.61 (m, 3H)
$\mathrm{N}-\mathrm{Me}$	3.52 (s, 3H)	3.65 (s, 3H)	3.65 (s, 3H)
15	nr	3.21-3.19 (m, 1H)	3.22-3.20 (m, 1H)
6b	nr	3.14 (dd, J=15.5, 5.0 Hz, 1H)	3.17 (dd, J=15.5, 5.2 Hz, 1H)
6 a	nr	2.62 (dd, $J=15.5,1.5 \mathrm{~Hz}, 1 \mathrm{H})$	2.62 (dd, J=15.5, $0.8 \mathrm{~Hz}, 1 \mathrm{H}$)
16	nr	2.49 (d, J=7.5 Hz, 1H)	2.50 (d, J= $7.5 \mathrm{~Hz}, 1 \mathrm{H}$)
14a	$n \mathrm{r}$	$\begin{gathered} 2.13 \text { (ddd, J= } 12.5,9.5,2.0 \mathrm{~Hz}, \\ 1 \mathrm{H}) \end{gathered}$	2.14 (ddd, J= 11.3, 10.1, 1.9 Hz, 1H)
14b	nr	$\begin{gathered} 1.77 \text { (ddd, J= } 12.54 .0,2.5 \mathrm{~Hz}, \\ 1 \mathrm{H}) \end{gathered}$	1.78 (ddd, $J=12.6,3.6,2.8 \mathrm{~Hz}, 1 \mathrm{H})$
18	1.65 (d, 3H)	1.62 (dt, J=7.0, 2.0 Hz, 3H)	1.62 (d, J=6.7 Hz, 3H)

${ }^{13}$ C-NMR-data:
$\left.\begin{array}{|c|c|c|c|}\hline \mathrm{Nr.} & \begin{array}{c}\text { Isolation material } \\ \text { [ppm] } \\ \left(60 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)\end{array} & \begin{array}{c}\text { Literature: } \\ \text { Synthetic material } \\ \text { [ppm] }\end{array} \\ \left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)\end{array} \begin{array}{c}\text { This work: } \\ \text { Synthetic material } \\ \text { Gaich [ppm] } \\ \left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)\end{array}\right]$
${ }^{5}$ D. Alexander, C. Kevin, E. C. Todd, S. F. Martin, J. Am. Chem. Soc., 2003, 125, 15, 4541-4550.

(+)-10-Methoxyvellosimine 9:

MeO

${ }^{1}$ H-NMR-data

Nr	Isolation material ${ }^{6}$ [ppm] ${ }^{\text {a }}$	Literature: Synthetic material ${ }^{7}$ [ppm] $\left(300 \mathrm{MHz}, \mathrm{DMSO}-d_{6}\right)$	This work: Synthetic material Gaich [ppm] ($500 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$)
17	$n r^{\text {b }}$	10.66 (s, 1H)	10.60 (bs, 1H)
	9.00 (s, 1H)	9.57 (s, 1H)	9.57 (s, 1H)
19	nr	7.17 (d, J=8.7 Hz, 1H)	7.18 (d, J=8.7 Hz, 1H)
	nr	6.87 (d, J= $2.4 \mathrm{~Hz}, 1 \mathrm{H})$	6.88 (d, $J=2.3 \mathrm{~Hz}, 1 \mathrm{H})$
	nr	6.66 (dd, J= 8.7, 2.4 Hz, 1H)	6.68 (dd, J= $8.8,2.6 \mathrm{~Hz}, 1 \mathrm{H})$
19	5.00 (q, J= $7 \mathrm{~Hz}, 1 \mathrm{H}$)	5.24 (q, J=6.6 Hz, 1H)	5.28 (q, J=6.8 Hz, 1H)
	nr	4.10 (d, J=8.3 Hz, 1H)	4.18 (bs, 1H)
Ar -OMe	3.58 (s, 3H)	3.73 (s, 3H)	3.74 (s, 3H)
	nr	3.53-3.40 (m, 3H)	3.60-3.46 (m, 3H)
	nr	3.20 (t, J=2.0 Hz, 1H)	3.23 (bs, 1H)
	nr	2.88 (dd, $\mathrm{J}=15.1,5.0 \mathrm{~Hz}, 1 \mathrm{H})$	2.92 (dd, J= 15.2, 4.6 Hz, 1H)
	nr	2.45 (d, J=5.5 Hz, 1H)	2.52 (d, J= 4.2, Hz, 1H)
	nr	2.41 (bs, 1H)	2.47 (bs, 1H)
	nr	1.97 (ddd, $J=22.3,11.0,1.3 \mathrm{~Hz}, 1 \mathrm{H})$	2.01 (dd, J= 11.0 Hz, 1H)
	nr	1.69 (dt, J= 12.4, 2.9 Hz, 1H)	1.74 (d, J=12.8 Hz, 1H)
18	1.50 (d, J= $7.0 \mathrm{~Hz}, 3 \mathrm{H}$)	1.56 (d, J=6.7 Hz, 3H)	1.57 (dt, J= 7.0, 1.3 Hz, 3H)

${ }^{6}$ M. Plat, R. Lemay, J. Levren, M. M. Janot, C. Djerassi, H. Budzikiewicz, Bull. Soc. Chem. Fr., 1965, 2497-2501.
${ }^{7}$ C. R., Edwankar, R. V., Edwankar, J. R., Dechamps, J. M., Cook, Angew. Chem. Int. Ed. 2012, 51, 11762-11765.
${ }^{13}$ C-NMR-data:

Nr	NOT REPORTED	Literature: Synthetic material ${ }^{7}$ [ppm] ($75 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$)	This work: Synthetic material Gaich [ppm] $\left(500 \mathrm{MHz}, \mathrm{DMSO}-d_{6}\right)$
17		204.0	203.54
		153.4	153.12
19		140.3	140.85
		136.4	135.64
		131.5	131.22
19		127.8	127.31
		115.6	- ${ }^{\text {b }}$
$\mathrm{Ar}-\mathrm{OMe}$		112.0	111.75
		110.5	110.37
		102.5	102.07
		100.2	99.94
		55.7	55.34
		55.6	54.99
		54.8	54.20
		50.2	50.02
		50.0	49.78
		33.2	32.63
		27.3	26.70
		26.7	26.16
		12.7	12.41
		MR-data reported	

Graphical Overview II

Experiments

E-6-ethylidene-9-methylenehexahydro-2H-spiro[3,7-methanoindolizine-1,2'-[1,3]dithiolane] (223)

Methyltriphenylphosphonium bromide ($204 \mathrm{mg}, 571 \mu \mathrm{~mol}, 1.1 \mathrm{eq}$) was dispensed in THF (5.2 $\mathrm{mL})$ under an inert atmosphere, and the mixture was cooled to $-78^{\circ} \mathrm{C}$. NaHMDS $(0.29 \mathrm{~mL}$ of a 2.0 M solution in THF, $580 \mu \mathrm{~mol}$, 1.1 eq.) was then added, and the mixture was stirred for 15 minutes at $-78{ }^{\circ} \mathrm{C}$, before being warmed to $0{ }^{\circ} \mathrm{C}$ for 15 minutes. The yellow solution was then cooled back to $-78{ }^{\circ} \mathrm{C}$, followed by the addition of ketone $194(139 \mathrm{mg}, 520 \mu \mathrm{~mol}, 1.0$ eq.) in THF (5.2 mL). The reaction mixture was stirred at $-78^{\circ} \mathrm{C}$ for one hour, before being warmed to ambient temperature for 6 hours. The reaction mixture was then diluted with 2 M NaOH solution and EtOAc. The mixture was transferred to a separation funnel, and water and solid NaCl were added. The phases were separated, and the aqueous layer was extracted two more times with EtOAc. The combined organic layers were dried over MgSO_{4}, the solvent was removed under reduced pressure and the remains were redissolved in EtOAc/DCM (10 mL/10 mL). The organic layer was extracted three times with 1 M HCl solution (25 mL total). The organic phase containing the non-aminic remains was then discarded. The acidic phase was adjusted to basic pH with 2 M NaOH solution (40 mL) and solid NaCl was added. The now basic phase was extracted three times with EtOAc (250 mL total). The combined organic layers were dried over MgSO_{4} and the solvent was removed under reduced pressure to yield 132 mg (96\%) of olefin 223 as a pale oil without significant impurities by ${ }^{1} \mathrm{H}-\mathrm{NMR}$. An analytically pure sample can be obtained using preparative thin-layer chromatography using 3:1 PE:EtOAc as eluent.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=5.13-5.05(\mathrm{qt}, \mathrm{J}=6.8,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.80-4.76(\mathrm{~m}, 1 \mathrm{H}), 4.64-4.62$ (m, 1H), 3.79 (d, J=8.0 Hz, 1H), 3.66-3.53 (m, 2H), 3.38-3.12 (m, 6H), 3.09 (ddd, J=14.3, 8.2. $0.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.22$ (dd, J=14.3, 1.4 Hz, 1H), 2.06 (dt, J=13.7, 3.4 Hz, 1H), 1.86 (ddd, J=13.8, 9.7, $2.3 \mathrm{~Hz}, 1 \mathrm{H}$), $1.61(\mathrm{dt}, \mathrm{J}=6.8,2.1 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=155.8,140.1$,
112.6, $105.8,72.6,68.2,61.5,52.3,49.9,40.0,39.9,35.9,31.9,12.4 \mathrm{ppm}$. IR (neat sample): $3064,2918,2859,1740,1653,1437,1376,1315,1270,1218,1125,1078,1053,1006,953$, $885,812 \mathrm{~cm}^{-1}$. MS: calc. for $\left[\mathrm{C}_{14} \mathrm{H}_{19} \mathrm{NS}_{2}+\mathrm{H}\right]$: 266.1037, found: 266.1037, $\mathbf{R}_{\mathrm{f}}: 0.30$ (5:1 PE:EtOAc).

E-6-ethylidene-9-methylenehexahydro-3,7-methanoindolizin-1(5H)-one (227)

$\mathrm{Me}_{3} \mathrm{OBF}_{4}$ ($89.2 \mathrm{mg}, 603 \mu \mathrm{~mol}, 4.0$ eq.) was weighed out in a glovebox. Olefin 223 (40.0 mg , $151 \mu \mathrm{~mol}, 1.0 \mathrm{eq}$.) was dissolved in a solution of TFA in DCM (1.5 mL of a solution of 0.23 mL TFA in 15 mL DCM, 2.0 eq.). The protonated amine solution was then added to the neat Meerwein salt, and the reaction mixture was stirred at ambient temperature for 16 hours. The reaction mixture was cooled to $0{ }^{\circ} \mathrm{C}$, before $3 \% \mathrm{CuSO}_{4}$ solution (5 mL) was added. The reaction mixture was stirred at $0^{\circ} \mathrm{C}$ for 30 minutes and was then allowed to warm to room temperature. A yellow precipitate formed upon warming to room temperature. After 1.5 hours at ambient temperature 25% ammonia solution (3 mL) was added, causing a deep blue color and leading to dissolving of the precipitate. The reaction mixture was then transferred to a separation funnel and was diluted with EtOAc. 2 M NaOH solution was added, as well as solid NaCl . The phases were separated, and the aqueous layers was extracted two more times with EtOAc. The combined organic layers were dried over MgSO_{4} and the solvent was removed under reduced pressure. The remains were redissolved in EtOAc (20 mL). The organic layer was extracted three times with 1 M HCl solution (25 mL total). The organic phase containing the non-aminic remains was then discarded. The acidic phase was adjusted to basic pH with 2 M NaOH solution (40 mL) and solid NaCl was added. The now basic phase was extracted three times with EtOAc (250 mL total). The combined organic layers were dried over MgSO_{4} and the solvent was removed under reduced pressure. The crude product was purified via preparative thin-layer chromatography using 4:1 PE:EtOAc (aluminium oxide) to yield 21 mg (74\%) of ketone 227 as a colorless oil.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=5.18(\mathrm{qt}, \mathrm{J}=6.8,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.95(\mathrm{~d}, \mathrm{~J}=2.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.73(\mathrm{~d}$, $J=1.7 \mathrm{~Hz}, 1 \mathrm{H}$), 4.08 ($\mathrm{dd}, J=6.9,1.4 \mathrm{~Hz}, 1 \mathrm{H}$), 3.77-3.56 (m, 2H), 3.42-3.37 (m, 1H), 3.35 (dd, $J=4.0,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.80-2.72(\mathrm{~m}, 1 \mathrm{H}), 2.22(\mathrm{~d}, \mathrm{~J}=17.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.04-1.96(\mathrm{~m}, 1 \mathrm{H}), 1.76$ (ddd, $J=13.5,4.0,2.5 \mathrm{~Hz}, 1 \mathrm{H}$), $1.61(\mathrm{dt}, \mathrm{J}=6.8,2.2 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=$ $216.7,152.5,138.2,114.0,108.4,61.5,60.9,49.5,46.5,36.5,30.4,12.3 \mathrm{ppm}$. IR (neat sample): 2925, 2863, 1757, 1652, 1236, 1268, 1293, 1217, 1167, 1107, 1075, 1055, 992, 959, $893,867,841,814 \mathrm{~cm}^{-1}$. MS: calc. for [$\left.\mathrm{C}_{12} \mathrm{H}_{15} \mathrm{NO}+\mathrm{H}\right]: 190.1232$, found: 190.1228, $\mathbf{R f}_{\mathrm{f}}: 0.33$ (EtOAc, silica).
E-3-ethylidene-1-methylenehexahydro-1H-2,6-methano-quinolizin-7(2H)-one (232)

n BuLi ($30 \mu \mathrm{~L}$ of a 2.5 M solution in hexanes, $75 \mu \mathrm{~mol}, 1.8$ eq.) was added to $\mathrm{Et}_{2} \mathrm{O}(1 \mathrm{~mL})$ at $-78{ }^{\circ} \mathrm{C}$, followed by the addition of $\mathrm{TMSCHN}_{2}(40 \mu \mathrm{~L}$ of a 2 M solution, $80 \mu \mathrm{~mol}, 1.9 \mathrm{eq}$.). The mixture was stirred for 15 minutes, before ketone $\mathbf{2 2 7}(8.0 \mathrm{mg}, 42.3 \mu \mathrm{~mol}, 1.0$ eq.) was added in THF (2.0 mL). The reaction mixture was stirred for 45 minutes at $-78^{\circ} \mathrm{C}$, before the addition of $\mathrm{MeOH}(1 \mathrm{~mL} \mathrm{MeOH}$ in 1 mL THF$)$ at $-78^{\circ} \mathrm{C}$ quenched the reaction by C -protonation. The reaction mixture was diluted with $\mathrm{EtOAc} / \mathrm{Et}_{2} \mathrm{O}$ and water, and solid NaCl was added. The layers were separated, and the aqueous layer was extracted two more times with EtOAc. The combined organic layers were dried over MgSO_{4} and silica gel (0.5 g) was added to the solution. The mixture was stirred for 30 minutes, leading to homologation and resulting in a mixture of homologated ketone 41 and its enol-ether derivative. The solvent was removed under reduced pressure. The remains were redissolved in EtOAc (20 mL). The organic layer was extracted three times with 1 M HCl solution (25 mL total). The organic phase containing the non-aminic remains was then discarded. The acidic phase was adjusted to basic pH with 2 M NaOH solution (40 mL) and solid NaCl was added. The now basic phase was extracted three times with EtOAc (250 mL total). The combined organic layers were dried over MgSO_{4} and the solvent was removed under reduced pressure. The crude product was purified via
preparative thin-layer chromatography using 4:1 $\mathrm{PE}: E t O A c$ as eluent (aluminium oxide plates) to yield 7.6 mg (88%) of ketone $\mathbf{2 3 2}$ as a colorless oil.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=5.24$ (qt, J=6.8, $2.0 \mathrm{~Hz}, 1 \mathrm{H}$), $5.05(\mathrm{~d}, J=2.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.85(\mathrm{~d}$, $J=2.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.66(\mathrm{brs}, 1 \mathrm{H}), 3.60-3.51(\mathrm{~m}, 1 \mathrm{H}), 3.51-3.40(\mathrm{~m}, 3 \mathrm{H}), 2.74-2.63(\mathrm{~m}, 1 \mathrm{H}), 2.30-$ $2.03(\mathrm{~m}, 4 \mathrm{H}), 1.70-1.61(\mathrm{~m}, 4 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=208.9,151.2,136.8$, 115.5, 106.6, 63.8, 56.7, 55.7, $36.6,31.6,31.1,28.6,12.5 \mathrm{ppm}$. IR (neat sample): 2924, 2859, 1715, 1653, 1435, 1319, 1290, 1267, 1242, 1126, 1098, 1063, $949,883,812 \mathrm{~cm}^{-1}$. MS: calc. for [$\left.\mathrm{C}_{13} \mathrm{H}_{17} \mathrm{NO}+\mathrm{H}\right]$: 204.1388, found: 204.1390, $\mathrm{R}_{\mathrm{f}}: 0.30$ (EtOAc, silica).

E-9-ethylidene-11-methylene-5,6,8,9,10,11,11a,12-octahydro-6,10-methanoindolo[3,2-b]quinolizine (238)

Ketone 232 ($15.8 \mathrm{mg}, 77.7 \mu \mathrm{~mol}, 1.0$ eq.) was dissolved in EtOH (0.5 mL) under an inert atmosphere, and 0.5 mL of a stock solution of phenylhydrazine ($10.1 \mathrm{mg}, 93.4 \mu \mathrm{~mol}, 1.2 \mathrm{eq}$.) in EtOH was added. The reaction mixture was heated to reflux for two hours, before the solvent was removed under reduced pressure. The crude remains were redissolved in a 2.5 M solution of HCl in $\mathrm{MeOH}(1.0 \mathrm{~mL})$, and the reaction mixture was heated to reflux for one hour. The mixture was diluted with 2 M NaOH solution and EtOAc and was then transferred to a separation funnel, to which solid NaCl was added. The phases were separated, and the aqueous layers was extracted two more times with EtOAc. The combined organic layers were dried over MgSO_{4} and the solvent was removed under reduced pressure. The crude product was purified via preparative thin-layer chromatography using $5 \% \mathrm{MeOH}: \mathrm{DCM}$ as eluent to yield 9.0 mg (42\%) of indole 238 as a brown solid.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=8.38(\mathrm{brs}, 1 \mathrm{H}), 7.49-7.44(\mathrm{~m}, 1 \mathrm{H}), 7.22-7.18(\mathrm{~m}, 1 \mathrm{H}), 7.13-$ $7.08(\mathrm{~m}, 2 \mathrm{H}), 5.24(\mathrm{q}, \mathrm{J}=6.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.82(\mathrm{dd}, \mathrm{J}=3.8,2.6 \mathrm{~Hz}, 2 \mathrm{H}), 3.93-3.83(\mathrm{~m}, 2 \mathrm{H}), 3.68-3.53$ ($\mathrm{m}, 2 \mathrm{H}$), 3.27 (dd, J=4.0, 1.5 Hz, 1H), 3.16 (dd, J=15.4, $5.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.98$ (dd, J=15.5, 1.4, 1H),
2.00 ($\mathrm{ddd}, \mathrm{J}=12.0,10.1,1.6 \mathrm{~Hz}, 1 \mathrm{H}$), $1.85-1.77(\mathrm{~m}, 1 \mathrm{H}), 1.63(\mathrm{dt}, \mathrm{J}=6.8,1.9 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}-$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=152.2,137.6,137.0,136.5,127.7,121.5,119.4,118.2,115.1$, 111.2, 105.5, 104.9, $56.8,55.7,50.4,36.8,36.2,26.4,12.5 \mathrm{ppm}$. IR (neat sample): 2053, 2924, 1707, 1647, 1570, 1452, 1383, 1341, 1321, 1302, 1169, 1121, 1009, 883, $854 \mathrm{~cm}^{-1}$. MS: calc. for $\left[\mathrm{C}_{19} \mathrm{H}_{20} \mathrm{~N}_{2}+\mathrm{H}\right]$: 277.1705 , found: 277.1702, $\mathrm{R}_{\mathrm{f}}: 0.24$ (25:1 DCM:MeOH).

1a-vinylhexahydro-1H-spiro[1,4-methanocyclo-propa[a]-pyrrolizine-6,2'-[1,3]dithiolan]-7one (219)

219

Enone 213 ($87.0 \mathrm{mg}, 221 \mu \mathrm{~mol}, 1.0$ eq.) was dissolved in THF (8.0 mL) under an inert atmosphere, followed by the addition of $\operatorname{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(25.0 \mathrm{mg}, 21.6 \mu \mathrm{~mol}, 0.1 \mathrm{eq}$.$) in THF (1.0 \mathrm{~mL}$) and PhOK (prepared in another flask from $\mathrm{PhOH}(41.0 \mathrm{mg}, 436 \mu \mathrm{~mol}, 2.0$ eq.) and $t \mathrm{BuOK}$ ($33.0 \mathrm{mg}, 294 \mu \mathrm{mmol}, 1.3 \mathrm{eq}$.) in THF (2.0 mL)). The resulting mixture was heated to reflux for 5 hours, before being cooled down to ambient temperature. The cold mixture was diluted with ice-water and EtOAc as well as solid NaCl and 2 M NaOH solution. The phases were separated and the aqueous phase was extracted two more times with EtOAc. The combined organic layers were dried over MgSO_{4} and the solvent was removed under reduced pressure. The crude remains were purified via flash column chromatography using 1:1 EtOAc:PE as eluent to yield 35.0 mg (60\%) of vinylcyclopropane $\mathbf{2 1 9}$ as a clear oil.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=5.76-5.68(\mathrm{~m}, 1 \mathrm{H}), 5.17-5.10(\mathrm{~m}, 2 \mathrm{H}), 4.04(\mathrm{~d}, J=2.3 \mathrm{~Hz}, 1 \mathrm{H})$, 3.45 (dt, J=11.3, 4.2 Hz, 1H), 3.40-3.27 (m, 4H), 3.25-3.17 (m, 1H), 3.15 (d, J=12.6 Hz, 1H), 2.89 ($\mathrm{dd}, \mathrm{J}=14.6,8.5 \mathrm{~Hz}, 1 \mathrm{H}$), 2.47 (d, J=14.6 Hz, 1H), 2.36 ($\mathrm{dd}, J=7.2,2.4 \mathrm{~Hz}, 1 \mathrm{H}$), 2.17 (d, $J=7.1 \mathrm{~Hz}, 1 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=206.3,134.4,115.8,78.0,69.3,67.3,52.6$, 48.9, 42.4, 40.9, 37.7, 32.0 ppm . IR (neat sample): 2924, 1701, 1632, 1429, 1298, 1279, 1234, 1173, 1140, 1109, 1076, 1038, 1022, $988,897,854 \mathrm{~cm}^{-1}$. MS: calc. for $\left[\mathrm{C}_{13} \mathrm{H}_{15} \mathrm{NOS}_{2}+\mathrm{H}\right]$: 266.0673, found: 266.0669, $\mathbf{R}_{\mathbf{f}}: 0.34$ ($1: 1$ EtOAc:PE).

Graphical Overview III

$\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}, \mathrm{PhOH}$, $\xrightarrow{t \mathrm{BuOK}, \mathrm{THF}, \mathrm{rfx}}$

221, 17\%

2-(Phenoxymethyl)-1,3-dithiolane (207)

Acetal 206 ($10.0 \mathrm{~g}, 54.88 \mathrm{mmol}, 1.0$ eq.) was dissolved in $\mathrm{DCM}(100 \mathrm{~mL})$, followed by the addition of 1,2-ethanedithiol ($4.8 \mathrm{~mL}, 5.2 \mathrm{~g}, 54.88 \mathrm{mmol}, 1.0 \mathrm{eq}$.$) . Iodine (1.4 \mathrm{~g}, 5.5 \mathrm{mmol}$, 0.1 eq.) was added and the reaction mixture was stirred at ambient temperature. After four hours and incomplete consumption of starting material another 0.2 eq of ethanedithiol (0.96 $\mathrm{mL}, 1.04 \mathrm{~g}, 10.98 \mathrm{mmol}, 0.2 \mathrm{eq})$ was added. The reaction mixture was stirred at ambient temperature for another 16 hours, followed by the addition of sat. sodium thiosulfate solution and 0.1 M sodium hydroxide solution. The phases were separated, and the aqueous phase was extracted two more times with DCM. The combined organic layers were dried
over MgSO_{4} and the solvent was removed under reduced pressure. The crude product was purified via flash chromatography using 30:1 to 15:1 PE:EtOAc as eluent to give 10.1 g (87\%) of desired dithiolane 207 as a clear oil.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.34-7.27(\mathrm{~m}, 2 \mathrm{H}), 7.01-6.96(\mathrm{~m}, 1 \mathrm{H}), 6.96-6.91(\mathrm{~m}, 2 \mathrm{H}), 4.81$ ($\mathrm{t}, \mathrm{J}=7.0 \mathrm{~Hz}, 1 \mathrm{H}$) , $4.07(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.28(\mathrm{~s}, 4 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$: $\delta=158.4,129.6(2 C), 121.4,115.0(2 C), 73.0,51.2,38.3 \mathrm{ppm}$. IR (neat sample): 3036, 2923, 2860, 1598, 1492, 1453, 1291, 1235, 1206, 1172, 1078, 1034, $843 \mathrm{~cm}^{-1} . \mathbf{R}_{\mathrm{f}}: 0.66$ (9:1 PE:EtOAc).

2-Benzyloxmethyl-1,3-dithiolane-1,3-dioxide (208)

Dithiolane 207 ($10.1 \mathrm{~g}, 47.43 \mathrm{mmol}, 1.0$ eq.) was dissolved in $\mathrm{Et}_{2} \mathrm{O}(95 \mathrm{~mL})$ and the solution was cooled to $0^{\circ} \mathrm{C}$. m CPBA (25.7 g of 70% purity, $104.34 \mathrm{mmol}, 2.2 \mathrm{eq}$.) was dissolved in $\mathrm{Et}_{2} \mathrm{O}$ $(140 \mathrm{~mL})$ and was added through an addition funnel over 45 minutes. After the addition of 50 mL of the m CPBA solution the reaction mixture turned cloudy as a white precipitate formed. After two more hours the precipitate was filtered off, followed by recrystallization from ethyl acetate to give 8.4 g (72\%) of desired bissulfoxide 208 as a white solid.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}\right.$, methanol- $\left.\mathrm{d}_{4}\right): \delta=7.34-7.28(\mathrm{~m}, 2 \mathrm{H}), 7.04-6.97(\mathrm{~m}, 3 \mathrm{H}), 4.68-4.62(\mathrm{~m}$, 1H), 4.61-4.51 (m, 2H), 3.99-3.92 (m, 1H), 3.88-3.75 (m, 2H) ppm. ${ }^{13} \mathrm{C}-\mathrm{NMR}(100 \mathrm{MHz}$, methanol-d ${ }_{4}$): $\delta=159.3,130.7(2 \mathrm{C}) 123.0,116.0(2 \mathrm{C}), 90.0,61.8,52.9,52.5 \mathrm{ppm}$. IR (neat sample): 2938, 1599, 1585, 1493, 1463, 1387, 1292, 1239, 1096, 1019, $841 \mathrm{~cm}^{-1}$. MS: calc. for $\left[\mathrm{C}_{10} \mathrm{H}_{12} \mathrm{O}_{3} \mathrm{~S}_{2} \mathrm{Na}^{+}\right]$: 267.0126, found: 267.0125. MP: $105-108{ }^{\circ} \mathrm{C}$. \mathbf{R}_{f} : 0.41 (10% $\mathrm{MeOH}: E t O A c)$.

2- N, N^{\prime}-dimethylaminomethyl-1,3-dithiolane-1,3-dioxide (209)

Bisulfoxide 208 ($8.4 \mathrm{~g}, 34.4 \mathrm{mmol}, 1.0 \mathrm{eq}$.) was suspended in MeCN (30 mL), followed by the addition of $\mathrm{HNMe}_{2}(18 \mathrm{~mL}, 1.05 \mathrm{eq}, 2.0 \mathrm{M}$ solution in THF). After the complete addition of the HNMe_{2} solution the reaction mixture was a clear solution and was stirred for 5 minutes. The solution was concentrated under reduced pressure to approximately 5 mL , followed by the addition of 50 mL ethylether. A white precipitate formed, and the mixture was transferred to a freezer for 3 hours to ensure complete precipitation. The white precipitate was then filtered off and was washed with 10 mL ethylether to yield $5.9 \mathrm{~g}(88 \%)$ of desired amine 209 as a white solid. The spectral data matches those reported in the literature. ${ }^{[2.51 \mathrm{a}]}$
(4'S,6a'S)-1a'-vinylhexahydro-4'H-spiro[[1,3]dithiolane-2,5'-[1,4]methanocyclopro-pa[a]pyrrolizin]-7'-one (220) and 221

Unsaturated Ketone 214 ($117 \mathrm{mg}, 0.30 \mathrm{mmol}, 1.0$ eq.) was dissolved in degassed THF (12 mL , overall concentration 0.02 M) followed by the addition of $\operatorname{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(35 \mathrm{mg}, 0.03 \mathrm{mmol}, 10$ mol\%) in THF (1 mL) and a mixture of KOtBu ($51 \mathrm{mg}, 0.45 \mathrm{mmol}, 1.5 \mathrm{eq}$.) and $\mathrm{PhOH}(56 \mathrm{mg}$, $0.60 \mathrm{mmol}, 2.0 \mathrm{eq}$.) in THF (2 mL). The resulting mixture was heated to reflux for 5 h , before being cooled down to room temperature. The cold mixture was diluted with ice-water and EtOAc as well as solid NaCl and 2 M NaOH solution. The phases were separated and the aqueous phase was extracted two more times with EtOAc. After column chromatography
(PE/EtOAc 1.5:1) cyclopropane 220 ($8.0 \mathrm{mg}, 10 \%$) and five membered 221 ($13.0 \mathrm{mg}, \mathbf{1 7 \%}$) were isolated.

Cyclopropane 220:
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=5.72(\mathrm{dd}, \mathrm{J}=17.6,10.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.17-5.11(\mathrm{~m}, 2 \mathrm{H}), 3.91(\mathrm{~d}$, $J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.42-3.23(\mathrm{~m}, 6 \mathrm{H}), 3.18$ (d, $J=12.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.91$ (ddd, $J=14.5,7.6,1.0 \mathrm{~Hz}, 1 \mathrm{H}$), 2.51 (dd, J=14.5, 2.0 Hz, 1H), 2.18 (dd, J=7.1, 2.5 Hz, 1H), 2.09-2.03 (m, 1H) ppm. ${ }^{13}$ C-NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=202.7,134.4,115.8,80.3,69.5,62.0,52.4,45.3,44.2,40.3,39.9,36.8$, 34.3 ppm. IR (neat sample): 2922, 2851, 1694, 1634, 1447, 1308, 1290, 1227, 1140, 1103, 984, $876,856 \mathrm{~cm}^{-1}$. MS: calc. for [$\left.\mathrm{C}_{13} \mathrm{H}_{15} \mathrm{NOS}_{2}+\mathrm{H}\right]$: 266.0673, found: 266.0677.

Five membered ring 221:
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=5.32-5.25(\mathrm{~m}, 1 \mathrm{H}), 3.71(\mathrm{dt}, \mathrm{J}=16.9,2.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.62-3.53(\mathrm{~m}$, $2 \mathrm{H}), 3.48-3.36(\mathrm{~m}, 3 \mathrm{H}), 3.30-3.15(\mathrm{~m}, 3 \mathrm{H}), 3.05-2.99(\mathrm{~m}, 1 \mathrm{H}), 2.85-2.77(\mathrm{~m}, 2 \mathrm{H}), 2.27(\mathrm{dq}$, $J=15.9,2.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.62(\mathrm{dt}, \mathrm{J}=6.8,2.1 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=210.0$, 143.5, 116.4, $86.7,69.2,64.8,53.6,44.7,42.8,40.6,40.2,39.9,14.9$ ppm. IR (neat sample): 2918, 2857, 1719, 1454, 1418, 1288, 1192, 1126, 1101, 1074, 975, 930, $860,812 \mathrm{~cm}^{-1}$.

2.11 Spectra

211,
$400 \mathrm{MHz}, \mathrm{CDCl}_{3}$

211
$100 \mathrm{MHz}, \mathrm{CDCl}_{3}$

214
$400 \mathrm{MHz}, \mathrm{CDCl}_{3}$

$\begin{gathered} \stackrel{\circ}{N} \\ \stackrel{N}{\circ} \\ \stackrel{N}{i} \end{gathered}$	$\begin{aligned} & \text { m } \\ & \stackrel{0}{0} \\ & \dot{\sigma} \\ & \dot{\mid} \end{aligned}$		$\begin{aligned} & \stackrel{m}{\tilde{m}} \\ & \stackrel{0}{\circ} \\ & \stackrel{1}{\mid} \end{aligned}$	$\begin{aligned} & \stackrel{\circ}{m} \\ & \underset{m}{\infty} \\ & { }_{\infty}^{\infty} \end{aligned}$		

214
$100 \mathrm{MHz}, \mathrm{CDCl}_{3}$

-210.034
-132.765
-106.619

major DB-isomer 239
$500 \mathrm{MHz}, \mathrm{CDCl}_{3}$

major DB-isomer 239 $125 \mathrm{MHz}, \mathrm{CDCl}_{3}$

$500 \mathrm{MHz}, \mathrm{CDCl}_{3}$

240 $125 \mathrm{MHz}, \mathrm{CDCl}_{3}$

$500 \mathrm{MHz}, \mathrm{CDCl}_{3}$

140.346
-138.729

-12.539

(+)- N -Methylvellosimine (8)
$500 \mathrm{MHz}, \mathrm{CDCl}_{3}$

(+)-N-Methylvellosimine (8)
$125 \mathrm{MHz}, \mathrm{CDCl}_{3}$

(+)-10-Methoxyvellosimine (9) $500 \mathrm{MHz}, \mathrm{DMSO}_{6}$ at 330 K

(+)-10-Methoxyvellosimine (9) 125 MHz ,DMSO- d_{6} at 298 K

∞	\rightarrow	\bullet	∞				
ぃ	\bigcirc	$\dot{\sim}$	is	${ }^{6}$?	$\stackrel{\sim}{n}$	¢.	
$\stackrel{\sim}{\square}$	$\stackrel{\square}{\square}$	$\stackrel{-}{-}$	-	$\stackrel{\infty}{\sim}$	\square	กั\%	¢
1	\|						

[^1]
$400 \mathrm{MHz}, \mathrm{CDCl}_{3}$

$100 \mathrm{MHz}, \mathrm{CDCl}_{3}$

[^2]

$100 \mathrm{MHz}, \mathrm{CDCl}_{3}$

[^3]

207
$400 \mathrm{MHz}, \mathrm{CDCl}_{3}$

$\begin{array}{llllllllllllllllllllllllll} & 9.5 & 9.0 & 8.5 & 8.0 & 7.5 & 7.0 & 6.5 & 6.0 & 5.5 & 5.0 & 4.5 & 4.0 & 3.5 & 3.0 & 2.5 & 2.0 & 1.5 & 1.0 & \mathrm{ppm}\end{array}$

$100 \mathrm{MHz}, \mathrm{CDCl}_{3}$

$100 \mathrm{MHz}, \mathrm{CDCl}_{3}$

2.12 References

[2.1] C. Weiming, V. Yaping, L. Xiaotian, Planta Med. 1983, 49, 62.
[2.2] L. Douzoua, M. Mansourm M. M. Debray, L. Le Men-Oliver, J. Le Men, Phytochemistry, 1974, 13, 1974-1995.
[2.3] H. Rapaport, T. Onak, N. A. Hughes, M. G. Reineke, J. Am. Chem. Soc. 1958, 80, 16011604.
[2.4] A. M. A. G. Nasser, W. E. Court, J. Ethnopharmacol. 1984, 11, 99-117.
[2.5] M. M. A. Amer, W. E. Court., Planta Med. Suppl. 1980, 8-12.
[2.6] M. A. Amer, W. E. Court, Phytochemistry, 1981, 20, 2569-2573.
[2.7] P. Sierra, L. Novotny, Z. Samek, M. Budesinsky, L. Dolejs, K. Blaha, Collect. Czech. Chem. Commun. 1982, 47, 2912-2921.
[2.8] H. L. Lastra, M. Palacios, R. Menendez, M. Larionova, F. Rodriguez, V. Fuste, Rev. Cub. Farm. 1982, 16, 316-328.
[2.9] H. R. Arthur, S. R. Johns, J. A. Lamberton, S. N. Loo. J. Austr. Chem. 1968, 21, 13991401.
[2.10] M. Ohashi, H. Budzikiewicz, J. M. Wilson, C. Djerassi, J. Levy, J. Gosset, J. Le Men, M.M. Janot, Tetrahedron, 1963, 19, 2241-2246.
[2.11] M. Lounasmaa, P. Hanhinen, M. Westersund, „The Sarpagine Group of Indole Alkaloids", in: The Alkaloids, Vol. 52, Ed.:G. A. Cordell, Academic Press, San Diego, 1999.
[2.12] P. Clivio, B. Richard, J.-R. Deverre, T. Sevenet, M. Zeches, L. Le Men-Olivier, Phytochemistry, 1991, 30, 3785-3792.
[2.13] Y. Sheludko, I. Gerasimenko, H. Kolshorn, J. Stöckigt, J. Nat. Prod. 2002, 65, 10061010.
[2.14] Y. Gao, D.-S. Zhou, L.-M. Kong, P. Hai, Y. Li, F. Wang, J.-K. Liu, Nat. Prod. Bioprospect. 2012, 2, 65-69.
[2.15] for the isolation of Z-affinisine see: S.-H. Lim, Y.-Y. Low, S. K. Sinniah, K.-T. Yong, K.-S. Sim, T.-S. Kam, Phytochemistry, 2014, 98, 204-215.
[2.16] L. Pan, C. Terrazas, U. Munoz Acuna, T. Ninh, H. Chai, E. J. Carcache de Blanco, D. D. Soejarto, A. R. Satoskar, A. D. Kinghorn, Phytochemistry Letters, 2014, 10, liv-lix.
[2.17] M. Kitajima, H. Kobayashi, N. Kogure, H. Takayama, Tetrahedron, 2010, 66, 59875992.
[2.18] N. Kogure, C. Nishiya, M. Kitajima, H. Takayama, Tetrahedron Letters, 2005, 46, 58575861.
[2.19] S.-H. Lim, S.-J. Tan, Y.-Y. Low, T.-S. Kam, J. Nat. Prod. 2011, 74, 2556-2562.
[2.20] C.-Y. Gan, Y.-Y. Low, W. T. Robinson, K. Komiyama, T.-S. Kam, Phytochemistry, 2010, 71, 1365-1370.
[2.21] S. Liang, C.-Y. He, L. F. Szabó, Y. Feng, X. Lin, Y. Wang, Tet. Lett. 2013, 54, 887-890.
[2.22] H. Takayama, W. Nitta, M. Kitajima, N. Aimi, S.-I. Sakai, J. Nat. Prod. 1994, 57, 521523.
[2.23] S. E. O’Connor, J. J. Maresh, Nat. Prod. Rep. 2006, 23, 532-547.
[2.24] L. Yang, M. Hill, M. Wang, S. Panjikar, J. Stöckigt, Angew. Chem. Int. Ed. 2009, 48, 5211-5213.
[2.25] M. Ruppert, X. Ma, J. Stöckigt, Curr. Org. Chem. 2005, 9, 1431-1444.
[2.26] A. Pfitzner, J. Stöckigt, J. Chem. Soc., Chem. Commun. 1983, 459-460.
[2.27] for a review, see: J. Stöckigt, S. Panjikar, M. Ruppert, L. Barleben, X. Ma, E. Loris, M. Hill, Phytochem. Rev. 2007, 6, 15-34.
[2.28] E. E. van Tamelen, L. K. Olivier, J. Am. Chem. Soc. 1970, 92, 2136-2137.
[2.29] E. E. van Tamelen, V. B. Haarstad, R. L. Orvis, Tetrahedron, 1968, 24, 687-704.
[2.30] E. E. van Tamelen, L. K. Olivier, Bioorg. Chem. 1976, 5, 309-326.
[2.31] E. E. van Tamelen, J. P. Yardley, M. Miyano, W. B. Hinshaw Jr., J. Am. Chem. Soc. 1969, 91, 7349-7359.
[2.32] M. Lousnamaa, P. Hanhinen, Tetrahedron, 1996, 52, 15225-15242.
[2.33] J. S. Cannon, L. E. Overman, Angew. Chem. Int. Ed. 2012, 51, 4288-4311.
[2.34] M. Mentel, M. Peters, J. Albering, R. Breinbauer, Tetrahedron, 2011, 67, 965-970.
[2.35] J. Warneke, E. Winterfeldt, Chem. Ber. 1972, 105, 2120-2125.
[2.36] S. E. Lewis, Tetrahedron, 2006, 62, 8655-8681.
[2.37] P. Magnus, B. Mugrage, M. DeLuca, G. A. Cain, J. Am. Chem. Soc. 1989, 111, 789-789.
[2.38] Z. Liu, F. Xu, Tetrahedron Lett. 1989, 30, 3457-3460.
[2.39] C. E. Edwankar, R. V. Edwankar, O. A. Namjoshi, X. Liao, J. M. Cook, J. Org. Chem. 2013, 78, 6471-6487.
[2.40] a. J. Yu, T. Wang, X. Liu, J. Deschamps, J. Flippen-Anderson, X. Liao, J. M. Cook, J. Org. Chem. 2003, 68, 7565-7581; b. M. Quaisuddin, Bangladesh J. Sci. Ind. Res. 1980, 15, 35.
[2.41] W. Yin, S. Kabir, Z. Wang, S. K. Rallapalli, J. Ma, J. M. Cook, J. Org. Chem. 2010, 75, 3339-3349.
[2.42] S. Zhao, X. Liao, T. Wang, J. Flippen-Anderson, J. M. Cook, J. Org. Chem. 2003, 68, 6279-6295.
[2.43] X. Liao, H. Zhou, J. Yu, J. M. Cook, J. Org. Chem. 2006, 71, 8884-8890.
[2.44] C. E. Edwankar, R. V. Edwankar, J. R. Deschamps, J. M. Cook, Angew. Chem. Int. Ed. 2012, 51, 11762-11765.
[2.45] D. D. I. Kingston, B. B. Gerhart, F. Ionescu, M. M. Mangino. S. M. Sami, J. Pharm. Sci. 1978, 67, 249-251.
[2.46] R. Verpoorte, L. Bohlin, D. Dwuma-Badu, W. Rolfsen, J. Strömbom, J. Nat. Prod. 1983, 46, 572-575.
[2.47] M. Harada, Y. Ozaki, Chem. Pharm. Bull. 1978, 26, 48-52.
[2.48] A. Nören-Müller, W.Wilk, K. Saxena, H. Schwalbe, M. Kaiser, H. Waldmann, Angew. Chem. Int. Ed. 2008, 47, 5973-5977.
[2.49] D. Solé, X. Urbaneja, J. Bonjoch, Adv. Synth. Catal. 2004, 346, 1646-1656.
[2.50] D. Solé, E. Peidro, J. Bonjoch, Org. Lett. 2000, 2, 2225-2228.
[2.51] a. V. K. Aggarwal, J. Drabowcz, R. S. Grainger, Z. Gultekin, M. Lightowler, P. L. Spargo, J. Org. Chem. 1995, 60, 4962-4963; b. V. K. Aggarwal, R. S. Grainger, G. K. Newton, P. L. Spargo, A. D. Hobson, H. Adams, Org. Biomol. Chem. 2003, 1, 1884-1893.
[2.52] K. V. Radhakrishnan, Top. Heterocycl. Chem. 2008, 13, 71-98.
[2.53] A. R. Katritzky, N. Dennis, Chem. Rev. 1989, 827-861.
[2.54a]M. E. Jung, Z. Longmei, P. Tangsheng, Z. Huiyan, L. Yan, S. Jingyu, J. Org. Chem. 1992, 57, 3528-3530.
[2.54b]Y. Zhang, L. S. Liebeskind, J. Am. Chem. Soc. 2006, 128, 465-472.
[2.55] K. M. Peese, D. Y. Gin, J. Am. Chem. Soc. 2006, 128, 8734-8735.
[2.56] E. R. Ashley, E. G. Cruz, B. M. Stoltz, J. Am. Chem. Soc. 2003, 125, 15000-15001.
[2.57] M. P. Smith, C. George, A. P. Kozikowski, Tet. Lett. 1998, 39, 197-200.
[2.58] A. P. Kozikowski, G. L. Araldi, R. G. Ball, J. Org. Chem. 1997, 62, 503-509.
[2.59] M. J. Sung, H. I. Lee, Y. Chong, J. K. Cha, Org. Lett. 1999, 1, 2017-2019.
[2.60] A. G. Steinig, A. de Meijere, Eur. J. Org. Chem. 1999, 1333-1344.
[2.61] Z. Owczaczyk, F. Lamaty, E. J. Vawter, E. Negishi, J. Am. Chem. Soc. 1992, 114, 10091-10092.
[2.62] F. E. Meyer, P. J. Parsons, A. de Meijere, J. Org. Chem. 1991, 56, 6487-6488.
[2.63] K. C. Nicolaou, C. J. N. Mathison, T. Montagnon, J. Am. Chem. Soc. 2004, 126, 5192-5201.
[2.64] F. F. Fleming, L. Funk, R. Altundas, Y. Tu, J. Org. Chem. 2001, 66, 6502-6504.
[2.65] N. C. Ganguly, P. Mondal, Synth. Commun. 2011, 41, 2374-2384.
[2.66] for a review see: T. E. Burghardt, J. Sulfur Chem. 2005, 26, 411-427.
[2.67] T. Oishi, H. Takechi, K. Kamemoto, Y. Ban, Tetrahedron Lett. 1974, 15, 11-14.
[2.68] T. Oishi, K. Kamemoto, Y. Ban, Tetrahedron Lett. 1972, 13, 1085-1088.
[2.69] H. Liu, C. Sun, N. Lee, R. Henry, D. Lee, Chem. Eur. J. 2012, 18, 11889-11893.
[2.70] for more information on DMNB see chapter four.
[2.71] for more information about diazo-insertion using scandium(III) triflate see chapter four.
[2.72] J. Garcia, N. Casamitjana, J. Bonjoch, J. Bosch, J. Org. Chem. 1994, 59, 3939-3951.
[2.73] S. Krüger, T. Gaich, Angew. Chem. Int. Ed. 2014, 54, 315-317.

3 The Parvineostemonine Project

3.1 Occurence

Parvineostemonine ($\mathbf{2}$, figure 25 displays the (+)-enantiomer of the natural product, see experimentals for details) has been isolated in the chinese province Hainan by Ye and co-workers from the stems and leaves of stemona parviflora in 2003. ${ }^{[3.1]}$ The rotational value and the amount of the natural product isolated was not reported. The occurrence of further stemona alkaloids is not discussed here, see references 3.2 and 3.3 for details.

Figure 25: Structure of (+)-parvineostemonine (2).

3.2 Structures

Due to the large structural variety of the stemona alkaloids there is not even a unified classification system for these alkaloids.

In the first summary of this class of alkaloid, Pilli and co-workers ${ }^{[3.2]}$ tried to classify the stemona alkaloids into eight different subgroups (see figure 26). Accoring to their classification, most stemona alkaloids bear a signature octahydro-1H-pyrrolo[1,2-a]azepine core (249, $\mathrm{n}=1$), which is present in nearly all of the isolated natural products. Pilli and co-workers tried to order the stemona alkaloids based on their skeletal features, with six subgroups (stenine group 250, stemoamide group 251, tuberostemospironine group 252, stemonamine group 253, parvistemoline group 254 and stemofoline group 255) bearing the signature pyrroloazepine $\mathbf{2 4 9}(\mathrm{n}=1)$. These six classes are differentiated according to their remaining substitution pattern, without regard of the biosynthesis of these alkaloids.

The alkaloids of the stemocurtisine group (256) have a decahydropyrido[1,2-a]azepine core (249, $n=2$) in common. All alkaloids that do not fit into one of the seven classes (like parvineosteomine 2) belong to the miscellaneous group of stemona alkaloids. In their summary they identified 68 alkaloids as part of the stemona alkaloids in 2005.

As a large number of the stemona alkaloids have been isolated after their review, their classification is outdated by now.

Figure 26: Classification of the stemona skeletons according to Pilli et al. ${ }^{[3.2]}$

As a large variety of further alkaloids belonging to the stemona alkaloids have been isolated after the review of Pilli and co-workers, a complete new summary was neccessary.

Wang and Chen classified 82 stemona alkaloids into two classes with fourteen types nine years later in 2014. ${ }^{[3.3]}$ The two classes are "hemiterpenoid pyrrolidine" (structural motives A1-A4, figure 27) and "terpenoid pyrrolidine" (structural motives B1 and B2), depending on the length of the terpene unit.

The R-moiety within these classes can be another hemiterpene rest, so a hemiterpenoid pyrrolidine stemona alkaloid can contain up to three non-connected hemiterpene subunits (in the case of $\mathbf{A 4}$ with an additional hemiterpene rest \mathbf{R}).

The classification does not include the linear carbon tether length (usually C3 (black in A1, A2, B1, B3)), but sometimes C2 (yellow) or C4 (red).

In the terpenoid pyrrolidine class B2 a rearranged terpene unit occurs (highlighted in green). The terpenoid pyrrolidine classes B1 and B2 comprise the vast majority of stemona alkaloids. Stemona alkaloids containing a decahydropyrido[1,2-a]azepine core (249, n=2, figure 23) are classified within the 14 types according to their biosynthesis. For the 14 subclasses see figures 28 and 29 .

A1

A2

A3

A4
hemiterpenoid pyrroldine

B1

B2

Figure 27: Classes of stemona alkaloids according to Wang and Chen. ${ }^{[3.3]}$

According to their differentiation into types, most stemona alkaloids are assembled from three different parts (see figure 28 and 29):

- at least one hemiterpene or terpene unit (not including the rest R in figure 27)
- a pyrrolidine moiety
- a linear carbon tether (usually C3, but C2 or C4 are possible too).

The 14 subtypes are the stemonamide type (with the three structural motives (sm) 257-259, see figure 24), the croomine type (sm 260, 261), the sessifoliamine type (sm 262), the protostemonine type (sm 263, 264), the steomamine type (sm 265, 266), the stemofoline type (sm 267), the stemocurtisine type (sm 268, 269), the cochinchistemonine type (sm 270), the stichoneurine type (sm 271-273), the stemona-amine C type (sm 274, see figure 26), the tuberostemonamide type (sm 275-278), the stenine type (sm 279-281), the seco-stenine type (sm 282-284), and the rearranged steinine type (sm 285-288). Parvineosteomine (2) is proposed to be derived from stemonamide type 258.

This classification seems lengthy and complicated with two classes, fourteen types and 32 structural motives within these types for 82 alkaloids in total, but that has to be attributed to the vast amount of structural diversity within these alkaloids. The biosynthetic machinery producing these alkaloids seems to be very flexible concerning the starting materials and the three-dimensional outcome.

Figure 28: Classification of stemona alkaloids according to Wang and Feng, part 1. ${ }^{[3.3]}$

Certain different structural elements are reoccurring, such as a C4 moiety within the azepane ring (croomine type aklakoids (260, 261), highlighted in red), shortened carbon sidechains (stemoamide type 259, stemofoline type 267, stemocurtisne type 269, conchininstemonine type 270, highlighted in turquoise), linear hemiterpene subunits (stichoneurone type 271-273, stemona-amine type 274, tuberostemonine type 275-278, stenine type 279281, seco-stenine type 282-284, rearranged stenine type 285-288, highlighted in green), and a piperidine moiety (stemoamide type 259, stemocurtisine type 268, 269, conchininstemonine type 270, rearranged stenine type 287, 288, highlighted in blue).

11. tuberostemonamide type

13. seco-stenine type

14. rearranged stenine type

Figure 29: Classification of stemona alkaloids according to Wang and Feng, part 2. ${ }^{[3.3]}$

As a complete biosynthetic discussion about the stemona alkaloids would be extremely difficult, due to the small amount of publications on the subject, and far too long for this chapter, the following discussion will focus on the biosynthesis of the common building blocks.

A biosynthesis of a stemona alkaloid will be explained in the context of the biosynthesis of parvineostemonine (2), which is suggested to be assembled via other stemona alkaloids.

3.3 Biosynthesis

The C5-building blocks originate from the terpene biosynthetic pathway via the elongation of IPP 290 and DMAPP 289 (see scheme 34). Nucleophilic displacement of the pyrophosphate of $\mathbf{2 8 9}$ by the double bond of $\mathbf{2 9 0}$ leads to carbocation 291, which undergoes protonelimination to form geraniol pyrophosphate 293.

The rearranged terpene 294 probably results from the less likely attack of the more substituted end of the double bond of $\mathbf{2 9 0}$ onto $\mathbf{2 8 9}$. The less stable carbocation $\mathbf{2 9 2}$ is formed, subsequent methyl shift results in transposition of the positive charge, final deprotonation leads to the formation of 294.

Scheme 34: Biosynthesis of 293 and 294 from DMAPP 289 and IPP 290.

The pyrrolidine moiety of the stemona alkaloids (296, see scheme 35) is most likely build up from L-ornithine (295). The piperidine moiety (299) is generated from pyrrolidine precursor 296, which is elongated with an oxidized hemiterpene to form 297. Loss of carbon diooxide leads to the formation of aziridine 298, subsequent rearrangement yields pipieridine 299. ${ }^{[3.3]}$

Scheme 35: Biosynthesis of the pyrrolidine- and the piperidine core (296-299).

The linear carbon tethers (see scheme 36) is thought to come from glutamic acid (300, three carbon atoms, A1, A2), L-ornithine (295, four carbon atom, A3) and malonyl-SCoA (301, two carbon atoms, A4). ${ }^{[3.3]}$

A1

glutamic acid (300)

A2

glutamic acid (300)

A3

A4

malonyl-SCoA (301)

Scheme 36: Biosynthetic origin of the linear starter units of stemona alkaloids.

According to these three starting units, the stemona alkaloids can be further divided into three groups, according to their biosynthetic origin:

1. L-ornithine $\mathbf{2 9 5}$ (for the construction of 296), glutamic acid $\mathbf{3 0 0}$ (as the linear tether), and at least one hemi- or monoterpene (classes A1, A2, B1, B2)
2. L-ornithine $\mathbf{2 9 5}$ ($2 x$, both for the construction of $\mathbf{2 9 6}$ and as the linear tether), and at least one hemi- or monoterpene (class A3)
3. L-ornithine $\mathbf{2 9 5}$ (for the construction of 296), malonyl-SCoA $\mathbf{3 0 1}$ (as the linear tether), and at least two hemiterpenes (class A4).

The first group comprises nearly all members of the stemona alkaloids (see scheme 25), whereas the second group comprises the croomine type $(\mathbf{2 6 0} \mathbf{2 6 1})$ of stemona alkaloids. The only member of group three is sessilifoliamine 262. ${ }^{[3.3]}$

Parvineostemonine (2) is classified to belong to class A1 according to Wang and Feng, but they describe the biosynthetic transformation involved as "extremely uncommon". ${ }^{[3.3]}$

The proposed biosynthesis of parvineostemonine (2) in this thesis would lead to a classification of the alkaloid into the $\mathbf{A 3}$ or $\mathbf{B 2}$ class.

The biosynthesis of parvineostemonine (2) is unknown, not even suggestions have been made. Scientific work on the biosynthesis of stemona alkaloids is rare, and limited to five publications only. ${ }^{[3.3-3.7]}$ In this chapter, a biosynthesis is proposed based on an intramolecular Michael addition of a croomine-derivative and subsequent reductive decarboxylation. Therefore, the suggested biosyntheses of croomine are discussed first. Greger and co-
workers ${ }^{[3.4,3.5]}$ (see scheme 37) have proposed a biosynthetic origin of croomine 308 based on the concomitant isolation of pandanamines (like 305).

Two equivalents of of glutamine (300) are connected to form linear precursor 303, followed by the addition of two equivalents of leucine (302) and oxidation to give 304. Double decarboxylation, with loss of ammonia and water followed by reduction yields pandanamine 305. 1,6-Michael addition of the secondary amine yields pandamarilactonine 306. Generation of imminium ion 307 can then yield croomine (308) after attack of the furanone enolate. The dashed double bonds are reduced somewhere during the cyclization processes.

$-2 \mathrm{CO}_{2},-2 \mathrm{NH}_{3}$,

307

Scheme 37: Possible biosynthesis of croomine 308 by Greger and co-workers. ${ }^{[3.4,3.5]}$

A closer look at the croomine type subclass of stemona alkaloids reveals a certain flexibility concerning the stereochemistry at the pyrrolidine moiety (figure 30).

In stemonidine (309) the hydrogens are cis-aligned, in dehydrocroomine (310) they are trans-aligned. During the biosynthesis of croomine (308) from pandanamine 305 several double bonds are reduced in unknown steps, in dehydrocroomine (310) a part of the former unsaturation remains in the final natural product.

stemonidine (309)

dehydrocroomine (310)

Figure 30: Variations on the croomine skeleton.

Taking into account, that the final skeleton-constructing Mannich reaction might not be stereospecific ($\mathbf{3 0 7}$ to $\mathbf{3 0 8}$, scheme 37), and a high degree of unsaturation seems to disappear during the biosynthesis, it is plausible to propose parvineostemonine's biosynthetic precursor to be "didehydrostemonidine" 311 (not an isolated natural product, see scheme 38).

Deprotonation at the only acidic center forms furanone enolate 312, which can undergo intramolecular Michael addition to give polycyclic 313. Reductive decarboxylation finally finishes the biosynthesis of parvineostemonine (2). Since no biosynthetic investigation has been carried out, this is only a proposal. Parvineostemonine (2) could also result from stichoneurine type $\mathbf{2 7 3}$ under the loss of a furanone moiety.

"didehydrostemonidine" (311)

parvineostemonine (2)

312
Michael addition

313

Scheme 38: Proposed biosynthesis of parvineosteomine (2) from the hypothetic intermediate didehydrostemonidine (311).

Wang and Chen ${ }^{[3.3]}$ have put forward a unified approach to the biosynthesis of stemona alkaloids. They proposed the biosynthesis of croomine type 261 (see scheme 39) to originate
from two equivalents of the C4-unit L-ornithine (295), and of two hemiterpene units (316 and 320). L-Ornithine 295 is first transformed into pyrrolidine 296 and into aldehyde $\mathbf{3 1 4}$ after deamination and transamination. Those two compounds are condensed to form amine 315. After attack of $\mathbf{3 1 5}$ onto keto-aldehyde $\mathbf{3 1 6}$ to yield imminium ion $\mathbf{3 1 7}$ the second ring is build up via Mannich reaction, yielding 318. Another imminium ion (319) is formed, which is trapped by olefin 320 in a Prins-type addition followed by deprotonation and elimination yielding 321. Olefin 320 is supposed to originate from DMAPP 289. Final reduction-state adjustments furnish the croomine skeleton 261. Albeit this biosynthesis seems plausible, the classification of parvineostemonine (2) as arising from stemoamide type (258) seems not. The authors indicate, that the neccessary new bond would be extremely uncommon, and a methyltransposition has to take place afterwards. It seems more reasonable to classify parvineostemonine $\mathbf{2}$ to be derived from croomine type $\mathbf{2 6 1}$ or from stichoneurine type 273.

[^4]All in all, it seems likely, that parvineostemonine (2) is build up from a croomine type $\mathbf{2 6 1}$ like unisolated intermediate or from stichoneurine type 273. Both publications ${ }^{[3.3,3.4]}$ agree on the fact that croomine seems to be build up from two C4-units, which contain the nitrogen atom and two C5 units, which build up the furanone moieties. Both approaches include a Mannich reaction as the key step to build up the azepane ring.

3.4 Synthetic Efforts

Tu and co-workers ${ }^{[3.8]}$ have accomplished the total synthesis of racemic parvineostemonine (2, see scheme 40). Starting from commercially available tropinone 322, demethylation was achieved using compound $\mathbf{3 2 3}$ and methanol under reflux conditions to yield $\mathbf{3 2 4}$ as the corresponding HCl salt.

Next in line was the formation of amide 325, with a chloride handle for later radical cyclization. A two step oxidation protocol was then utilized to install an α-hydroxy moiety, followed by oxidation to the instable corresponding bisketone.

Transformation into the corresponding vinyltriflate 326 was achieved using triflic anhydride. The ethyl side chain of parvineostemonine was then attached under Suzuki conditions, obtaining compound 327.

Transformation of the chloride moiety into iodide $\mathbf{3 2 8}$ to facilitate the upcoming radical cyclization under Finkelstein conditions. Subjection to a radical initiator in refluxing toluene yielded the desired ring closing product $\mathbf{3 2 9}$ in low yield, accompanied by the undesired epiisomer.

The missing lactone was then installed using Reformatzky conditions, followed by double bond shift under rhodium catalysis to give furanone 331. Reduction of the amide moiety was achieved via formation of the corresponding thio-amide and subsequent reduction using Raney nickel to yield the desired natural product parvineostemonine $\mathbf{2}$ after 13 steps from commercially available tropinone 322.

Scheme 40: Tu's synthesis of parvineostemonine (2) from tropinone 322. ${ }^{[3.8]}$

Hsung and co-workers ${ }^{[3.9]}$ furnished the parvineostemonine skeleton 337 based on their newly developed [4+3] cycloadditon (see scheme 41). Addition of DMDO to allene 332 produced an intermediate oxyallyl cation, which reacted with Boc-protected pyrrole to give tricycle $\mathbf{3 3 3}$ in a chiral fashion. Reduction of the double bond was then achieved, followed by removal of the Boc-protecting group to give amine 334. Allylation of the secondary amine was next to give $\mathbf{3 3 5}$, followed by allylation at the more hindered α-position of the ketone, furnishing compound 336. The final seven-membred ring was then installed via RCM using 20 mol\% Grubbs I catalyst in moderate yield to give polycylce 337.

Scheme 41: Hsung and co-worker's approach to the parvineostemonine skeleton 337 via [4+3] cycloadditon. ${ }^{[3.9]}$

3.5 Bioactivities

Parvineostemonine $\mathbf{2}$ has not been evaluated regarding any bioactivity profile.

However, tuberostemonine 348 (see figure 31) was investigated in regard of its bioactivity, and the anthelminthic activity against three worms species (Angiostrongylus catonensis, Dipylidium canium, Faciola hepatica) was determined, with glutamate inhibition being the mode of action. ${ }^{[3.2,3.10]}$ Tuberostemonine 348 was furthermore proven to possess insecticidal activities against the larvae of Spodoptera littoralis. ${ }^{[3.11]}$ In the same series of experiments, the insecticidal activities for 16,17-didehydroxy-16(E)-stemofoline 343 was assessed, which was superior to that of stemofoline (344) and 2^{\prime}-hydroxystemofoline (345). ${ }^{[3.11,3.12]}$

The insecticidal activity of several stemona alkaloids was examined by Greger and coworkers, with dehydroprotostemonine 339 and oxystemokerrin 340 showing the highest reactivities. They were furthermore able to show that the potential for insecticidal activity strongly depends on the 4-methoxy-3-methyl-2-furanone (highlighted in green), as the closely related compounds stemocochinin 341 and parvistemonine $\mathbf{3 4 2}$ showed much weaker reactivities. ${ }^{[3.2,3.33]}$

Stemofoline 344 was determined to be much more potent than stemonine $\mathbf{3 4 6}$ and stemospironine 347 in regard of their insecticidal activities against the fourth instar silk worm larvae (Bombix mori L). ${ }^{[3.2,3.14]}$

Several extracts from different stemona species have been evaluatued in regard of their insecticidal, antitumor or anticough activities. Remarkable insecticidal/larvicidal activities were observed using the leaf extraxcts of Stemona janponica ${ }^{[3.14]}$, the leaf and root extracts of Stemona curtisii, ${ }^{[3.13,3.15]}$ and Stemona cochinchinensis. ${ }^{[3.13]}$

The antitussive activities from the roots extracts of Stemona tuberosa have been observed, ${ }^{[3.16]}$ with the alkaloid neotuberostemonine (348) being the most active. Less active alkaloids were found to be isostenine (349), tuberostemonine $\mathrm{H}(\mathbf{3 5 0})$ and tuberosteomonine J (351). Stemona tuberosa showed antitumoral activity against MTC (medullary thyroid carcinoma) by enhancing apoptosis. ${ }^{[3.17]}$

tuberostemonine (338)
anthelminthic activitiy insecticidal activity

dehydroprotostemonine (339)

oxystemokerrin (340)

parvisteominine (342)
insecticidal activity, 4-methoxy-3-methyl-2-furanone is essential for strong acticity

16,17-didehydro-16(E)-stemofoline (343)

stemofoline (344)

insecticidal activities, 16,17-didehydro-16(E)-stemofoline (343) is the most reactive

stemofoline (344)

stemonine (346)

stemospironine (347)
insecticidal activities, stemofoline (344) is 100.000 times more potent than stemonine (346) or stemospironine (347)

antitussive activitv. neotuberostemonine (348) is the most reactive alkaloid tested

Figure 31: Bioactivities of stemona alkaloids.

3.6 Enantiodivergent Total Synthesis

Enantiodivergent total synthesis relies on the concept of accessing both antipodes of a natural product from one single intermediate isomer. This concept shows its full utility if one intermediate enantiomer is easily accessible, in contrast to the other. ${ }^{[3.18]}$ In case of parvineosteomine 2, an enantiodivergent total synthesis was most desirable, as no rotation values were published in the original isolation paper. ${ }^{[3.1]}$

The power of enantiodivergence has been beautifully showcased in the total synthesis of dragmacidin F (354/355) by Garg and Stoltz (see scheme 42). ${ }^{[3.19]}$ They converted commercially available (-)-quinic acid (353) into both enantiomers of dragmacidine F.

Another impressive example is the total synthesis of both antipodes of scopadulcic acid A (357/358) by Overman and co-workers ${ }^{[3.20]}$ via a divinylcyclopropane-cycloheptadiene rearrangement, through intermediate 356. ${ }^{[3.21]}$ A variety of enantiodivergent syntheses were conducted in recent years. ${ }^{[3.22-3.25]}$

(-)-scopadulcic acid A (357)
(+)-scopadulcic acid A (358)

Scheme 42: Examples for enantiodivergent total synthesis of complex natural products.

3.7 Synthetic Planning

This project has been subject to three different approaches, each based on the lessons learned from the last one. Note that the first and second attempt were carried out in a racemic fashion, and the third attempt in a chiral fashion.

First attempt In the beginning, we were eager to gain access to parvineostemonine (2) in a racemic fashion. We intended to dissect parvineosteomine (2) in a retrosyntheic fashion to ketone 359 (see scheme 43), which would serve as a handle for a Reformatzkybased furanone synthesis. Ketone $\mathbf{3 5 9}$ could be obtained via alkylation of ketone $\mathbf{3 6 0}$. Azepane $\mathbf{3 6 0}$ should be accessible via ring closing metathesis from bisolefin $\mathbf{3 6 1}$. This compound would be traced back to tricycle $\mathbf{3 6 2}$ via conjugate addition of an allyl moiety. This tricycle 362 has been earlier prepared by Aggarwal and co-workers in a chiral fashion. ${ }^{[2.51 b]}$

Problem: Unsuccessfull introduction of the ethyl side chain.

Scheme 43: First retrosynthesis and the resulting problem.

Second attempt Having realized that the ethyl side-chain proved to be cumbersome to install at a late stage via alkylation, we decided to introduce it at an earlier stage. At this point we decided to explore chemistry for both the major and the minor [5+2] cyclization product ($\mathbf{3 6 2}$ and $\mathbf{3 6 8}$, see scheme 44). Reformatzky-based furanone formation would lead us back to ketone $\mathbf{3 5 9}$ (for the major cycloaddition product), already containing the necessary ethyl side chain. The azepane moiety of 359 would again be prepared via ring-closing
metathesis arising from bisolefin $\mathbf{3 6 4}$. The allyl handle should be installed via conjugate addition to enone 365. The ethyl side chain should be installed via Suzuki coupling of the vinyl iodide derivative of enone 362. Enone $\mathbf{3 6 2}$ can again be prepared according to literature procedure. ${ }^{[2.51 b]}$ The retrosynthesis for both antipodes of parvineostemonine (2) is the same. Compounds $\mathbf{3 6 2}$ and $\mathbf{3 6 8}$ are regioisomers, which can be separated from each other. After the removal of the dithiolanes to obtain ketones $\mathbf{3 5 9}$ those compounds are enantiomers.

Problem: Low-yielding ring closing metathesis.

Scheme 44: Second retrosynthesis, employing the enantiodivergent concept.
Third Attempt As the ring closing metathesis has proven to be the synthetic bottleneck in the previous approach, we decided to fix this issue by adding a phenyl substituent to
one double bond. In this fashion, the initial Grubbs carbene is reformed after the catalytic cycle, and the RCM would not start at the allyl amine moiety. ${ }^{[3.26-3.28]}$ Furthermore, we aimed at introducing the crucial ethyl-side chain before the [5+2] cycloaddition to shorten the synthetic sequence. We used chiral bissulfoxide (-)- $\mathbf{- 1 9 6}$ (the other enantiomer as in the sarpagine synthesis) in this approach. Again, the final molecule $\mathbf{2}$ (see scheme 45) should be assembled via a Reformatzky. Ketone $\mathbf{3 5 9}$ would be obtained after ring-closing metathesis from bisolefins $369 / 373$, now containing an additional phenyl substituent. The allyl moiety of compounds 369/373 could be obtained from conjugate addition to enones 370/372. These Michael acceptors will be obtained from a [5+2] cycloadditon. Pyridinium betaine 371 can be obtained from the addition of known 4-ethylpyridin-3-ol ${ }^{[3.29,3.30]}$ to cinnamyl bromide.

minor

Scheme 45: Third retrosynthetic approach.

3.8 Results

After preparation of racemic $\mathbf{3 6 2}$ (see scheme 46), we examined the conjugate addition of an allyl substituent and found the conditions from Lipshutz ${ }^{[3.31]}$ well applicable. We obtained ketone $\mathbf{3 6 1}$ (tetramethylethylenediamine (TMEDA) and ethyl iodide were used to attempt one-pot alkylation) in acceptable yield. Inspired by Hsung and co-workers, ${ }^{[3.9]}$ we then achieved ring closing metathesis using Grubbs second generation catalyst in good yield to give olefin $\mathbf{3 6 0}$. However, we had to dismiss this synthetic route due to the failure of multiple alkylation attempts to obtain 374, including a variety of bases (LiHMDS, KHMDS, LDA), ethyl iodide and various temperatures ($-78^{\circ} \mathrm{C}$ to ambient temperature). The immediate addition of the ethyl side chain under the conjugate addition attempts failed as well.

Scheme 46: First synthetic attempts terminated by an unsucessfull alkylation.

Having realized that the ethyl side-chain proved to be cumbersome to install at a late stage via alkylation due to large steric bulk around the ketone moiety, we decided to introduce it at an earlier stage (see scheme 45 for the retrosynthesis). We commenced our studies using the major cycloaddition product $\mathbf{3 6 2}$ (see scheme 47), as its reactivity proved to be superior to the minor one using the designed synthetic sequence. Transformation of enone $\mathbf{3 6 2}$ into vinyliodide 375 was cleanly achieved using the conditions developed by Kraft and coworkers. ${ }^{[3.32]}$

The crucial ethyl side chain was then installed using Suzuki coupling conditions developed by Maulide and co-workers ${ }^{[3.33]}$ and applied on a similar system by Tu's group. ${ }^{[3.8]}$ The palladium catalyst showed remarkable selectivity, as the allyl amine moiety and the dithiolane were essentially untouched under these reaction conditions and we were able to obtain the desired coupling product $\mathbf{3 6 5}$ in excellent yield.

Scheme 47: Introdution of the ethyl side chain under palladium catalysis.

We were surprised to find differences in reactivity when we attempted the same reaction sequence with the minor regioisomer 368 (see scheme 48). The α-iodination protocol delivered almost the same yield for compound 376, but the Suzuki coupling worked to a diminished degree to give ethyl containing compound $\mathbf{3 6 7}$. Albeit this yield remains unoptimized, the initial attempts using the major regioisomer 362 were more successfull. At this point, we decided to focus our synthetic studies on the major regioisomer 362. If necessary, the Suzuki coupling can be optimized using freshly bought triethylborane and by prolonging the reaction times.

Scheme 48: Installation of the ethyl side chain on the minor regioisomer, slightly less successful.

We then attempted the conjugate addition of an allyl moiety to enone $\mathbf{3 6 5}$, which proved to be high yielding using the Lipshutz protocol (see scheme 49). ${ }^{[3.31]}$ The alternative Sakurai reaction ${ }^{[3.34]}$ was not examined, due to the expected incompatibility of the system with Lewisacids (complexation of the LA between the N / S-lone pairs, see chapter 2 for examples). Quenching the reaction mixture with 2 M NaOH solution led to an improved ratio of the desired equatorial compound $\mathbf{3 6 4}$ in favor of $\mathbf{3 7 7}$. We later established the orientation of the ethyl groups in $\mathbf{3 6 4}$ and $\mathbf{3 7 7}$ via NOeSY experiments of polycyclic $\mathbf{3 7 8}$.

Unfortunately, the desired compound 364 was used up in screening experiments for the subsequent metathesis recation. We later found that ring-closing metathesis of $\mathbf{3 7 7}$ using Grubbs second generation catalyst worked in moderate yield to give olefin 378, but unfortunately the yield dropped significantly compared to nor-ethyl compound 374.

Scheme 49: First synthetic attempts to form bisolefins 364 and 377.

The conjugate allyl addition worked less well for minor regioisomer 367 (see scheme 50), but nevertheless yielded desired $\mathbf{3 6 6}$ and undesired $\mathbf{3 7 9}$ with close to no selectivity. With a better understanding of the ethyl orientation, we conducted the subsequent ring-closing metathesis with the desired compound 366 and obtained olefin $\mathbf{3 8 0}$ in moderate yield, which could not be improved.

Scheme 50: Synthetic attempts with minor 367.

At this stage, we conducted several (probably successful, but on a exceptionally small scale) experiments with $\mathbf{3 5 9}$ towards parvineostemonine (2) and finally ran out of material. As we were keen to furnish an enantiodivergent synthesis, we decided to bring up chiral material using chiral 196 (the opposing antipode as in the sarpagine synthesis) and fix several flaws in the synthetic sequence.

As the ring-closing metathesis of $\mathbf{3 7 7}$ to $\mathbf{3 7 8}$ or from $\mathbf{3 6 6}$ to $\mathbf{3 8 0}$ did only proceed in moderate yields and could not be improved, we needed to optimize this reaction by the choice of different substituents at the double bonds. As the allyl amine could potentially undergo side reactions we added a phenyl-substituent in order to initiate metathesis at the remaining ally handle. The use of a phenyl substituent would furthermore regenerate the more reactive initial Grubbs carbene. ${ }^{[3.26-3.28]}$ Furthermore, we aimed at introducing the crucial ethyl side chain before the [5+2] cycloaddition to shorten the synthetic sequence.

Starting from known 4-ethylpyridin-3-ol ${ }^{[3.29,3.30]}$ (see scheme 51) we readily obtained pyridinium salt $\mathbf{3 7 1}$ after recrystallization. Subjection of this salt to basic conditions in the presence of chiral vinylbissulfoxide 196 led to a 5.6:1 mixture of regioisomeric cycloaddition products 381/382 in good yield. The mixture of 381 and 382 could not be separated. We then reduced the bisdioxodithiolane to the corresponding dithiolanes $370 / 372$ which could be easily separated, and a 5.4:1 mixture of regioisomers 370/372 was obtained.

Scheme 51: From 4-ethylpyridin-3-ol to dithiolanes 370 and 372.

The regioselectivity for this [5+2] cycloaddition (see schemes 51 and 52) increased drastically compared to the one discussed earlier in the sarpagine synthesis (see scheme 23), favouring the major isomer $\mathbf{3 8 1}$ over the minor isomer 382. Due to the position of the side chain (para to the pyridinium nitrogen) we expected the change in selectivity to be very small if occurring at all, because the ethyl side is far away from the reactive positions of the oxidopyridinium ion. As Aggarwal and coworkers ${ }^{[2.51 b]}$ have only investigated the effect of ortho- and me-
ta-substitution in the pyridinium cycloaddition, this finding comprises a new and unexpected result.

For the favoured transition state (TS 1) no additional destabilization occurs, both possible charge interactions are intact. For the less favoured TS 2 the second (usually less important) interaction between the pyridinium oxygen and the positively charged sulfur is sterically disfavoured, as the remaining S-lone pair suffers from steric clash with the ethyl chain. As TS 1 is usually favoured anyway, the additional destabilization of TS $\mathbf{2}$ leads to a large increase of selectivity for cycloaddition product 381.

Scheme 52: Regioselectivity of the [5+2] cycloaddition with an additional ethyl side chain.

After separation of regioisomer 370 (see scheme 53), we carried out the conjugate allyladdition, this time yielding the undesired axial ethyl orientation 383 exclusively in good yield. Quenching the reaction with NaOH results in the formation of $\mathbf{3 8 3}$ exclusively. Ringclosing metathesis yielded desired polycycle 378, this time in good yield due to our improvements. Reduction of dithiolane $\mathbf{3 7 8}$ with Raney nickel proceeded smoothly with concomitant reduction of the double bond to yield ketone 384. As we had selectively obtained the undesired stereochemistry of the ethyl side chain, we had to invert this stereocenter to
obtain desired ketone 359. This works in good yield and acceptable selectivity, although the selectivity proved to be inconsistent (1.3:1 to 6.0:1 (384:359)). The missing furanone moiety was then installed in a two step process. All remaining atoms were attached using Reformatzky type addition of etyhyl 2-(bromomethyl)acrylate ${ }^{[3.35]}$ to obtain 385, followed by double bond shift with $\mathrm{RhHCO}\left(\mathrm{PPh}_{3}\right)_{3}$ to finally yield (+)-parvineostemonine 2. ${ }^{[3.36]}$ Isomerization attempts using elevated temperatures ${ }^{[3.37,3.38]}$ led to decomposition of the starting material 385, probably according to the indicated decomposition pathway in scheme 54. After double bond shift yielding $\mathbf{2}$, the amine is able to form an imminium ion with concomitant formation of a furanone (386), which is then further reduced or degraded. Similar fragmentations have been suggested for the interconversion between rugulovasine A 387 and rugolovasine B 389 via a vinylogous retro-Mannich reaction to form $\mathbf{3 8 8}$ followed by vinylogous Mannich addition without stereocontrol. ${ }^{[3.39]}$

Decomposition

Scheme 53: End of the total synthesis and suggested decomposition pathway of parvineostemonine $\mathbf{2}$ along the lines of the interconversion between the rugulovasines A/B (387/389).

We then conducted the same synthetic route with the minor cycloaddition product 372 (see scheme 54). The copper mediated conjugate addition to yield compound $\mathbf{3 9 0}$ works less efficient, probably due to slightly decomposed starting material. The following ring closing metathesis yields the desired olefin 391 in a comparable fashion. Removal of the dithiolane under Raney nickel conditions works less well for the formation of 384, but was only carried out once. As compound 384 (scheme 55) is the enatiomer of compound 384 (scheme 54), we have thereby established an enantiodivergent access to parvineostemonine (2).
(-)-Parvineostemonine 2 can be obtained through the same steps as discussed earlier. Equilibration of the etyl side chain would give 359, attachment of $\mathbf{3 9 2}$ leads to $\mathbf{3 8 5}$. Final double bond shift will yield the (-)-parvineostemonine 2.

Scheme 54: Processing of the minor regioisomer into (-)-parvineostemonine (2).

3.9 Summary and Outlook

With the presented synthesis we have gained an enantiodivergent, protecting group free access to the stemona alkaloid parvineostemonine 2. The synthesis can be carried out in a very rapid fashion using both regiosomers arising from the 3-oxidopyridinium [5+2] cycloaddition as the point of enantiodivergence. Both enantiomers can be prepared in only nine steps from known starting materials.

The major drawback of the presented synthesis is the very limited amount of time in which it was conducted. High quality, publishable spectra of parvineostemonine $\mathbf{2}$ and a more accurate rotation value have still to be obtained. ${ }^{[3.40]}$ The final spectrum of parvineostemonine $\mathbf{2}$
was obtained on the very last day of synthetic work. Together with the optimization of some steps this work will be continued at the University of Konstanz.

The broadening of the synthetic utility of the 3-oxidopyridinium [5+2] cycloaddition to now the sarpagine alkaloids and the stemona alkaloids has been fulfilled. In contrast to the sarpagine alkaloids, where most members will be accessible via our synthetic approach, not every stemona alkaloid can be obtained in this fashion.

Figure 32 sums up the stemona alkaloids containing a tropanone core. These alkaloids can be accessed via the 3 -oxidopyridinium [5+2] cycloaddition. For references see [3.3]. In total, we should be able to gain synthetic access to nearly one quarter of the stemona alklaloids through further synthetic endeavours with the already developed methodology.

$R^{1}=\alpha H, R^{2}=R^{3}=H$
(11S,12R)-dihydrostemofoline (397) $\mathrm{R}^{1}=\alpha \mathrm{H}, \mathrm{R}^{2}=\mathrm{H}, \mathrm{R}^{3}=\mathrm{OH}$
(2'S)-hydroxy-(11S,12R)--dihydrostemofoline (398)

$\mathrm{R}^{1}=\mathrm{OH}, \mathrm{R}^{2}=\mathrm{H}$
6β-hydroxystemofoline (405) $\mathrm{R}^{1}=\mathrm{H}, \mathrm{R}^{2}=\mathrm{OH}$
16-hydroxystemofoline (406)

$R^{1}=H, R^{2}=O H, R^{3}=H, X=N$
(3'R)-stemofolenol (399)
$R^{1}=O H, R^{2}=H, R^{3}=H, X=N$
(3'S)-stemofolenol (400)
$R^{1}=R^{2}=H, R^{3}=$ OGluc, $X=N$ stemofolinoside (401) $R^{1}=R^{2}=R^{3}=H, X=N$
didehydrostemofoline (402) $R^{1}=R^{2}=R^{3}=H, X=N^{+} O^{-}$ didehydrostemofoline N-oxdide (403)

isostemofoline (407)

(16,17)-didehydro-isostemofoline (408)

stemoburkilline (409)

Figure 32: Further stemona alkaloids possesing the tropanone skeleton arising from the 3-oxidopyridinium [5+2] cycloaddition.

3.10 Experimentals

General

All reactions were performed under an inert atmosphere using Argon as the inert gas, using oven-dried glassware unless stated otherwise. Chemicals were used as bought from chemical suppliers. Solvents were used as bought from chemical suppliers or obtained from a dispensory system. THF was used dry after being distilled from $\mathrm{Na} /$ benzophenone or as bought from Acros Organics, $99,5 \%$ over molsieves, stabilized. DCM was used after distillation over CaH_{2} or as bought from chemical suppliers. Acetonitrile was used as bought from Acros Organics 99.9\% over molsieves. Acetone was used as bought from Acetone: VMR, technical grade. NEt_{3} was used after distillation over CaH_{2} or as bought from chemical suppliers. No difference in reactivities/yields was observed using different solvent sources. THF for Pdcatalyzed enolate coupling was used after sparging the solvent with argon for 30 minutes under ultrasonication. TLC was carried out using Macherey-Nagel, ALUGRAM Xtra SIL $\mathrm{G} / \mathrm{UV}_{254}$, Aluminium plates, silica 60 . Silica gel-chromatography was carried out using Ma-cherey-Nagel, Silica 60M, 0.04-0.083 mm mesh. Preparative thin layer chromatography was carried out using Macherey-Nagel, ADAMANT UV ${ }_{254}$, Glass plates, silica 60. NMRmeasurements were carried out using Bruker DPX 200 MHz , Bruker AV 400 MHz , Bruker DPX 400 MHz and Bruker DRX 500 MHz . All NMR-spectra are referenced to $7.26 \mathrm{ppm}\left(\mathrm{CDCl}_{3},{ }^{1} \mathrm{H}\right)$ and $77.16 \mathrm{ppm}\left(\mathrm{CDCl}_{3},{ }^{13} \mathrm{C}\right), 3.31 \mathrm{ppm}$ (methanol- $\mathrm{d}_{4},{ }^{1} \mathrm{H}$) and 49.00 ppm (methanol $-\mathrm{d}_{4},{ }^{13} \mathrm{C}$) or $2.50 \mathrm{ppm}\left(\mathrm{DMSO}-\mathrm{d}_{6},{ }^{1} \mathrm{H}\right.$) and 39.52 (DMSO- $\mathrm{d}_{6},{ }^{13} \mathrm{C}$). IR measurements were carried out using Bruker Vector 22 or Shimadzu IRAffinity-1S. UPLC-MS Spectra were recorded using Waters QTOF-Premier (Waters Aquity Ultra Performance, electron spray ionization). HR-EI-MS were obtained using Micromass GCT. Optical rotations were measured using Perkin Elmer Polarimeter 341.

Graphical Overview IV

\qquad

$\mathrm{CuBr} \cdot \mathrm{DMS}, \mathrm{LiCl}$,
allylMgBr,
$\mathrm{THF},-78^{\circ} \mathrm{C}$
$63 \%, 1.1: 1(366 / 379)$

Procedures

4,8-diallyl-8-azaspiro[bicyclo[3.2.1]octane-6,2'-[1,3]dithiolan]-2-one (361)

CuBr/DMS ($343 \mathrm{mg}, 1.67 \mathrm{mmol} \mathrm{mmol}, 1.0$ eq.) was weighed out into a schlenk flask, which was then transferred to a glove box. LiCl ($141 \mathrm{mg}, 3.34 \mathrm{mmol}, 2.0$ eq.) was added to the schlenk flask, and the flask was then transferred out of the glove box. THF (3.0 mL) was added, and the resulting mixture was cooled to $-78{ }^{\circ} \mathrm{C}$. Allyl magnesiumbromide solution (3.3 mL of a 1.0 M solution in ethyl ether, $3.34 \mu \mathrm{~mol}, 2.0$ eq.) was then added to the solution, followed by immediate dropwise addition of Michael acceptor 362 ($381 \mathrm{mg}, 1.50 \mathrm{mmol}, 0.9$ eq.). The solution was then allowed to stir for 10 minutes, followed by the addition of TMEDA ($0.25 \mathrm{~mL}, 1.67 \mathrm{mmol}, 1.0 \mathrm{eq}$.$) and \mathrm{Etl}(1.04 \mathrm{~g}, 6.68 \mathrm{mmol}, 4.0 \mathrm{eq}$.). The mixture was allowed to stir for 5 hours at $-78^{\circ} \mathrm{C}$, before 2 M NaOH was added and the mixture was stirred for one hour. EtOAc was then added, as well as water and solid NaCl . The phases were separated, and the aqueous phase was extracted two more times with EtOAc. The combined organic layers were dried over MgSO_{4}, and the solvent was removed under reduced pressure. The crude mixture was purified using 10:1 PE:EtOAc as eluent to yield 245 $\mathrm{mg}(55 \%)$ of ketone 361 as a clear oil. The desired ethylation did not occur in a significant fashion.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=5.84-5.62(\mathrm{~m}, 2 \mathrm{H}), 5.21(\mathrm{dq}, J=17.2,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.12(\mathrm{dq}$, $J=10.2,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.08-4.93(\mathrm{~m}, 2 \mathrm{H}), 3.48-3.31(\mathrm{~m}, 5 \mathrm{H}), 3.31-3.24(\mathrm{~m}, 3 \mathrm{H}), 2.98$ (dd, $J=15.2,7.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.63-2.52(\mathrm{~m}, 2 \mathrm{H}), 2.41(\mathrm{~d}, \mathrm{~J}=15.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.33-2.24(\mathrm{~m}, 1 \mathrm{H}), 2.22-2.15$ (m, 2H) ppm.

2,3,5,8,9,9a-hexahydrospiro[3,9-ethanopyrrolo[1,2-a]azepine-1,2'-[1,3]dithiolan]-11-one (360)

Bisolefin 361 ($180 \mathrm{mg}, 611 \mu \mathrm{~mol}, 1.0 \mathrm{eq}$) was dissolved in degassed DCM (15 mL) and Grubbs Il catalyst ($63 \mathrm{mg}, 74.2 \mu \mathrm{~mol}, 0.25 \mathrm{eq}$) was added in DCM (15 mL). The reaction mixture was heated to reflux for six hours. The solvent was then evaporated and the crude remains were subjected to flash column chromatography using 9:1 PE:EtOAc as eluent to give 109 mg (67\%) of olefin 360 as a white solid.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=5.84-5.71(\mathrm{~m}, 2 \mathrm{H}), 3.85-3.74(\mathrm{~m}, 1 \mathrm{H}), 3.71-3.61(\mathrm{~m}, 1 \mathrm{H})$, 3.49-3.37 (m, 2H), 3.35 (s, 1H), 3.34-3.16 (m, 3H), 3.11-3.04 (m, 1H), $2.99(d d, J=14.9,8.0$ $\mathrm{Hz}, 1 \mathrm{H}$), 2.68 (dd, J=17.1, 8.2 Hz, 1H), 2.45-2.34 (m, 1H), 2.34-2.19 (m, 2H), 1.98 (d, J=17.4 $\mathrm{Hz}, 1 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=212.2,133.0,131.0,77.1,70.9,68.2,48.3,47.7$, 40.6, $39.9,38.8,36.3,34.1 \mathrm{ppm}$. IR (neat sample): 3017, 2920, 2835, 1711, 1414, 1356, $1325,1277,1261,1234,1194,1155,1130,1082,1055,1009,968,955,937,908,874,853$, $812 \mathrm{~cm}^{-1}$.

8-allyl-3-iodo-8-azaspiro[bicyclo[3.2.1]oct[3]ene-6,2'-[1,3]dithiolan]-2-one (375)

Enone 362 ($658 \mathrm{mg}, 2.60 \mathrm{mmol}, 1.0 \mathrm{eq}$) was dissolved in a $1: 1$ mixture of water:THF (15 mL). Potassium carbonate ($431 \mathrm{mg}, 3.12 \mathrm{mmol}, 1.2 \mathrm{eq}$) was added, followed by the addition of iodine ($857 \mathrm{mg}, 3.38 \mathrm{mmol}, 1.3$ eq.) and DMAP ($63.0 \mathrm{mg}, 520 \mu \mathrm{~mol}, 0.2 \mathrm{eq}$). The reaction
mixture was allowed to stirr overnight, and was then diluted with ether. The mixture was then washed with sat. sodium thiosulfate solution, followd by separation of the organic layer. The organic layer was then washed with 0.1 M HCl . The organic layer was then dried over MgSO_{4}, and the solvent was removed under reduced pressure. The crude remains were purified via column chromatography using 5:1 PE:EtOAc as eluent to yield 860 mg (87%) of 375 as a bright yellow solid.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.69(\mathrm{~d}, \mathrm{~J}=5.3,1 \mathrm{H}), 5.90-5.68(\mathrm{~m}, 1 \mathrm{H}), 5.31-5.05(\mathrm{~m}, 2 \mathrm{H}), 3.87$ (d, J=8.0 Hz, 1H), 3.75 (d, J=5.3 Hz, 1H), 3.46-3.35 (m, 2H), 3.34-3.19 (m, 4H), 3.11 (dd, $J=15.0,8.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.37(\mathrm{~d}, \mathrm{~J}=15.0 \mathrm{~Hz}, 1 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=192.0,156.7$, 134.1, 118.3, 100.6, $72.7,70.8,67.3,51.7,45.0,40.7,40.4$ ppm. HRMS (ESI, m / z): calc. for [$\mathrm{C}_{12} \mathrm{H}_{14} \mathrm{NOS}_{2}+\mathrm{H}$]: 397.9640, found: 397.9640. IR (neat sample): 2961, 2920, 2822, 1694, 1574, 1443, 1420, 1331, 1300, 1279, 1236, 1134, 1053, 991, 928, $887 \mathrm{~cm}^{-1} . \mathbf{R}_{\mathrm{f}} \mathrm{O} 0.44$ (5:1 PE:EtOAc).

8-allyl-3-ethyl-8-azaspiro[bicyclo[3.2.1]oct[3]ene-6,2'-[1,3]dithiolan]-2-one (365)

Vinyliodide 375 ($100 \mathrm{mg}, 264$ mol, 1.0 eq.), PdCl_{2} (dppf) ($21.0 \mathrm{mg}, 26.0 \mathrm{~mol}, 0.1 \mathrm{eq}$.) and $\mathrm{K}_{3} \mathrm{PO}_{4}$ ($168 \mathrm{mg}, 791 \mu \mathrm{~mol}, 3.0$ eq.) were put in a schlenk flask and the flask was purged with argon. A 10:1 mixture of THF: $\mathrm{H}_{2} \mathrm{O}$ was then added, and the mixture was cooled to $0^{\circ} \mathrm{C}$. The addition of BEt_{3} solution (0.32 mL of a 1.0 M solution in THF, $316 \mu \mathrm{~mol}, 1.2$ eq.) occurred next and the reaction mixture was then allowed to stirr overnight while warming to ambient temperature. The mixture was then diluted with EtOAc and water. The organic layer was separated, and the aqueous layer was extracted two more times with EtOAc. The combined organic layers were then washed with brine, dried over MgSO_{4}, and the solvent was removed under reduced pressure. The crude remains were purified via flash chromatography using 5:1 PE:EtOAc as eluent to yield 70 mg (94\%) of 365 as a bright yellow oil.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(200 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=6.62(\mathrm{dt}, \mathrm{J}=5.1,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.82(\mathrm{ddt}, J=16.8,14.5,6.0 \mathrm{~Hz}$, $1 \mathrm{H}), 5.28-5.05(\mathrm{~m}, 2 \mathrm{H}), 3.80(\mathrm{~d}, \mathrm{~J}=5.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.60(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.51-3.17(\mathrm{~m}, 6 \mathrm{H}), 3.07$ (dd, J=14.8, $8.0 \mathrm{~Hz}, 1 \mathrm{H}$), 2.39-2.17 (m, 3H), 1.06 ($\mathrm{t}, \mathrm{J}=7.5 \mathrm{~Hz}, 3 \mathrm{H}$) ppm. IR (neat sample): $2963,2924,1874,1682,1445,1420,1373,1335,1277,1136,993,924,889 \mathrm{~cm}^{-1}$. HRMS (ESI, m / z): calc. for $\left[\mathrm{C}_{14} \mathrm{H}_{19} \mathrm{NOS}_{2}+\mathrm{H}\right]: 282.0986$, found: 282.0986. $\mathbf{R}_{\mathrm{f}}: 0.55$ (5:1 PE:EtOAc).

4,8-diallyl-3-ethyl-8-azaspiro[bicyclo[3.2.1]octane-6,2'-[1,3]dithiolan]-2-one (364)

CuBr/DMS (102 mg, $500 \mu \mathrm{~mol} \mathrm{mmol}, 1.0$ eq.) was weighed out into a schlenk flask, which was then transferred to a glove box. LiCl ($68 \mathrm{mg}, 1.60 \mathrm{mmol}, 3.5 \mathrm{eq}$.) was added to the schlenk flask, and the flask was then transferred out of the glove box. THF (4.0 mL) was added, and the resulting mixture was cooled to $-78{ }^{\circ} \mathrm{C}$. Allyl magnesiumbromide solution (1.00 mL of a 1.0 M solution in ethyl ether, $1.00 \mu \mathrm{~mol}, 2.0$ eq.) was then added to the solution, followed by immediate dropwise addition of Michael acceptor 365 ($126.7 \mathrm{mg}, 450 \mu \mathrm{~mol}, 0.9$ eq.). The solution was then allowed to stir for 10 minutes, before the addition of 2 M NaOH at $-78{ }^{\circ} \mathrm{C}$ quenched the reaction. The mixture was allowed to stirr for an hour at ambient temperature, before the mixture was transferred to a separation funnel. EtOAc was added, as well as neat NaCl , and the aqueous phase was extracted three times with EtOAc. The combined organic layers were then washed with brine, followed by drying over MgSO_{4}. The solvent was removed under reduced pressure, and the obtained crude oil was purified via silica flash chromatography using 10:1 PE:EtOAc as eluent to yield $115.5 \mathrm{mg}(80 \%)$ of enones 364/377 in a 1.3:1 mixture of $\mathbf{3 6 4}$ to $\mathbf{3 7 7}$ as a clear oil.

Desired isomer 364:
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=5.91-5.73(\mathrm{~m}, 2 \mathrm{H}), 5.25(\mathrm{dq}, \mathrm{J}=17.2,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.20-5.08(\mathrm{~m}$, 3 H), 3.51 (dt, J=8.2, 1.4 Hz, 1H), 3.49-3.45 (m, 1H), 3.43-3.30 (m, 3H), 3.29-3.17 (m, 3H),
2.90 (dd, J=14.7, 8.0 Hz), 2.41-2.28 (m, 2H), 2.27-2.07 (m, 3H), 1.69-1.55 (m, 2H), $0.94(\mathrm{t}$, $J=7.4 \mathrm{~Hz}, 3 \mathrm{H}$) ppm. ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=213.9,136.7,135.7,118.1,117.6,74.5$, $71.2,70.0,55.2,50.6,48.4,40.8,40.3,40.2,39.2,21.4,12.2 \mathrm{ppm}$. IR (neat sample): 2961, 2924, 2845, 1717, 1447, 1420, 1337, 1275, 1142, 1103, 1049, $995,918 \mathrm{~cm}^{-1} . \mathbf{R}_{\mathrm{f}}$: 0.67 (5:1 PE:EtOAc).

Undesired isomer 377:
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(200 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=5.93-5.78(\mathrm{~m}, 2 \mathrm{H}), 5.26-5.12(\mathrm{~m}, 4 \mathrm{H}), 3.53(\mathrm{~d}, \mathrm{~J}=4.8 \mathrm{~Hz}, 1 \mathrm{H})$, $3.47-3.08(\mathrm{~m}, 7 \mathrm{H}), 2.90(\mathrm{dd}, \mathrm{J}=14.8,1.0 \mathrm{~Hz}), 2.96-2.54(\mathrm{~m}, 3 \mathrm{H}), 2.41-2.09(\mathrm{~m}, 4 \mathrm{H}), 1.06(\mathrm{t}$, $J=7.4 \mathrm{~Hz}, 3 \mathrm{H}$) ppm. IR (neat sample): 3073, 2961, 2918, 2874, 2828, 1715, 1639, 1420, 1331, $1277,1125,1053,995,972,917,972 \mathrm{~cm}^{-1} . \mathbf{R}_{\mathrm{f}}: 0.50$ (5:1 PE:EtOAc).

10-ethyl-2,3,5,8,9,9a-hexahydrospiro[9,3-ethanopyrrolo[1,2-a]azepine-1,2'-[1,3]dithiolan]-11-one (378)

Bisolefin 377 ($10.6 \mathrm{mg}, 32.7 \mu \mathrm{~mol}, 1.0 \mathrm{eq}$) was dissolved in degassed DCM (1.5 mL) and Grubbs II catalyst ($2.8 \mathrm{mg}, 3.27 \mu \mathrm{~mol}, 0.1 \mathrm{eq}$) was added in DCM (1.5 mL). The reaction mixture was heated to reflux for six hours. The solvent was then evaporated and the crude remains were subjected to flash column chromatography using 9:1 PE:EE as eluent to give 3.2 mg (33%) of olefin 378 as a white solid.

For spectral data see page 150.

Enone 368 ($50.0 \mathrm{mg}, 197 \mu \mathrm{~mol}, 1.0 \mathrm{eq}$) was dissolved in a $1: 1$ mixture of water:THF (2.0 mL). Potassium carbonate ($33.0 \mathrm{mg}, 236 \mu \mathrm{~mol}, 1.2 \mathrm{eq}$) was added, followed by the addition of iodine ($75.0 \mathrm{mg}, 296 \mu \mathrm{~mol}, 1.5 \mathrm{eq}$.) and DMAP ($5.0 \mathrm{mg}, 39.0 \mu \mathrm{~mol}, 0.2 \mathrm{eq}$). The reaction mixture was allowed to stirr overnight, and was then diluted with ether. The mixture was then washed with sat. sodium thiosulfate solution, followed by separation of the organic layer. The organic layer was then washed with 0.1 M HCl . The organic layer was then dried over MgSO_{4}, and the solvent was removed under reduced pressure. The crude remains were purified via column chromatography using 5:1 PE:EtOAc as eluent to yield 58.0 mg (78%) of $\mathbf{3 7 6}$ as a bright yellow solid.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(200 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.58(\mathrm{~d}, \mathrm{~J}=5.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.80(\mathrm{ddt}, \mathrm{J}=17.3,10.0,6.2 \mathrm{~Hz}, 1 \mathrm{H})$, $5.27-5.11(\mathrm{~m}, 2 \mathrm{H}), 4.00(\mathrm{~d}, \mathrm{~J}=1.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.82-3.73(\mathrm{~m}, 1 \mathrm{H}), 3.50-3.33(\mathrm{~m}, 2 \mathrm{H}), 3.33-3.08$ ($\mathrm{m}, 4 \mathrm{H}$), 2.88 (dd, $J=15.6,6.3 \mathrm{Ht}, 1 \mathrm{H}$), 2.45 ($\mathrm{d}, \mathrm{J}=13.6 \mathrm{~Hz}, 1 \mathrm{H}$) ppm. $\mathbf{R}_{\mathrm{f}}: 0.36$ (5:1 PE:EtOAc).

8-allyl-3-ethyl-8-azaspiro[bicyclo[3.2.1]oct[2]ene-6,2'-[1,3]dithiolan]-4-one (367)

Vinyliodide 376 ($94.0 \mathrm{mg}, 248 \mu \mathrm{~mol}, 1.0$ eq.), PdCl_{2} (dppf) ($20.0 \mathrm{mg}, 25.0 \mathrm{~mol}, 0.1 \mathrm{eq}$.) and $\mathrm{K}_{3} \mathrm{PO}_{4}$ ($158 \mathrm{mg}, 744 \mu \mathrm{~mol}, 3.0$ eq.) were put in a schlenk flask and the flask was purged with argon. A 10:1 mixture of THF: $\mathrm{H}_{2} \mathrm{O}$ was then added, and the mixture was cooled to $0^{\circ} \mathrm{C}$. The addition of BEt_{3} solution (0.3 mL of a 1 M solution in THF, $298 \mu \mathrm{~mol}, 1.2$ eq.) occurred next
and the reaction mixture was then allowed to stirr overnight while warming to ambient temperature. The mixture was then diluted with EtOAc and water. The organic layer was separated, and the aqueous layer was extracted two more times with EtOAc. The combined organic layers were then washed with brine, dried over MgSO_{4}, and the solvent was removed under reduced pressure. The crude remains were purified via flash chromatography using 5:1 PE:EtOAc as eluent to yield 43 mg (62\%) of 367 as a bright yellow oil.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(200 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=6.55(\mathrm{dt}, J=5.3,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.81(\mathrm{ddt}, J=17.3,10.0,6.2 \mathrm{~Hz}$, 1H), 5.24-5.14 (m, 2H), 3.86-3.74 (m, 1H), 3.67 (d, J=1.3 Hz, 1H), 3.48-3.05 (m, 6H), 2.88 (dd, $J=13.4,6.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.36(\mathrm{~d}, \mathrm{~J}=13.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.22(q d, J=7.4,1.3 \mathrm{~Hz}, 2 \mathrm{H}), 1.05(\mathrm{t}, \mathrm{J}=7.4 \mathrm{~Hz}, 3 \mathrm{H})$ ppm.

2,8-diallyl-3-ethyl-8-azaspiro[bicyclo[3.2.1]octane-6,2'-[1,3]dithiolan]-4-one (366)

CuBr/DMS ($67 \mathrm{mg}, 326 \mu \mathrm{~mol}, 1.0$ eq.) was weighed out into a schlenk flask, which was then transferred to a glove box. LiCl ($28 \mathrm{mg}, 652 \mu \mathrm{~mol}, 2.0$ eq.) was added to the schlenk flask, and the flask was then transferred out of the glove box. THF (1.5 mL) was added, and the resulting mixture was cooled to $-78^{\circ} \mathrm{C}$. Allyl magnesiumbromide solution (10.65 mL of a 1.0 M solution in ethyl ether, $652 \mu \mathrm{~mol}, 2.0$ eq.) was then added to the solution, followed by immediate dropwise addition of Michael acceptor 367 ($83 \mathrm{mg}, 293 \mu \mathrm{~mol}, 0.9 \mathrm{eq}$.). The solution was then allowed to stir for 10 minutes, before the addition of 2 M NaOH at $-78^{\circ} \mathrm{C}$ quenched the reaction. The mixture was allowed to stirr for an hour at ambient temperature, before the mixture was transferred to a separation funnel. EtOAc was added, as well as neat NaCl , and the aqueous phase was extracted three times with EtOAc. The combined organic layers were then washed with brine, followed by drying over MgSO_{4}. The solvent was removed under reduced pressure, and the obtained crude oil was purified
via silica flash chromatography using 10:1 PE:EtOAc as eluent to yield $59.4 \mathrm{mg}(63 \%)$ of enones $\mathbf{3 6 6 / 3 7 9}$ in a 1.1:1 mixture of $\mathbf{3 6 6}$ to $\mathbf{3 7 9}$ as a clear oil.

Desired isomer 366:
${ }^{1} \mathrm{H}$-NMR (200 MHz, CDCl ${ }_{3}$): $\delta=5.88-5.68(\mathrm{~m}, 2 \mathrm{H}), 5.29-5.07(\mathrm{~m}, 4 \mathrm{H}), 4.77(\mathrm{~s}, 1 \mathrm{H}), 3.92(\mathrm{~d}$, $J=2.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.54-3.25(\mathrm{~m}, 6 \mathrm{H}), 2.93(\mathrm{dd}, \mathrm{J}=14.3,6.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.39-2.05(\mathrm{~m}, 5 \mathrm{H}), 1.65-1.52$ (m, 2H), $0.86(\mathrm{t}, \mathrm{J}=7.8 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm}$.

Undesired isomer 379:
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(200 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=5.91-5.64(\mathrm{~m}, 2 \mathrm{H}), 5.27-4.99(\mathrm{~m}, 4 \mathrm{H}), 3.72(\mathrm{~d}, \mathrm{~J}=1.5 \mathrm{~Hz}, 1 \mathrm{H})$, $3.53-3.24$ (m, 7H), 2.93 (dd, $J=14.8,7.3 \mathrm{~Hz}, 1 \mathrm{H}$), 2.27-1.96 (m, 4H), 1.83-1.58 (m, 2H), 1.39$1.34(\mathrm{~m}, 1 \mathrm{H}), 1.00(\mathrm{t}, \mathrm{J}=7.4 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm}$.

10-ethyl-1,3,5,8,9,9a-hexahydrospiro[9,3-ethanopyrrolo[1,2-a]azepine-2,2'-[1,3]dithiolan]-11-one (380)

Bisolefin 366 ($18 \mathrm{mg}, 55.6 \mu \mathrm{~mol}, 1.0 \mathrm{eq}$) was dissolved in degassed DCM (1.0 mL) and Grubbs II catalyst ($12.0 \mathrm{mg}, 1.41 \mu \mathrm{~mol}, 0.25 \mathrm{eq}$) was added in DCM (1.0 mL). The reaction mixture was heated to reflux for six hours. The solvent was then evaporated and the crude remains were subjected to flash column chromatography using 9:1 PE:EE as eluent to give 6.2 mg (38\%) of olefin 380 as a white solid.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=5.76(\mathrm{t}, \mathrm{J}=3.3 \mathrm{~Hz}, 2 \mathrm{H}), 3.85-3.78(\mathrm{~m}, 1 \mathrm{H}), 3.67-3.58(\mathrm{~m}, 2 \mathrm{H})$, 3.49-3.45 (m, 2H), 3.43-3.35 (m, 2H), 3.27-3.22 (m, 2H), 3.18-3.11 (m, 1H), 2.97 (dd, J=14.6, $7.3 \mathrm{~Hz}, 1 \mathrm{H}$), 2.57-2.45 (m, 2H), 2.41-2.27 (m, 1H), 2.04-1.95 (m, 1H), $0.94(\mathrm{t}, \mathrm{J}=7.4 \mathrm{~Hz}, 3 \mathrm{H})$ ppm. HRMS (ESI, m / z): calc. for [$\mathrm{C}_{15} \mathrm{H}_{21} \mathrm{NOS}_{2}+\mathrm{H}$]: 296.1143, found: 296.1144.

Graphical Overview V

major

minor

Procedures

4-ethylpyridin-3-ol (410)

3-hydroxypyridine 411 was O-benzylated using the procedure of Kozikowski and coworkers. ${ }^{[3.29]}$

4-ethylpyridin-3-ol 410 was obtained using the procedure of Commins and coworkers. ${ }^{[3.30]}$
${ }^{[3.29]}$ A. P. Kozikowski et al. J. Org. Chem. 1997, 62, 503-509.
${ }^{[3.30]}$ D. L. Commins et al. J. Heterocyclic Chem. 1985, 22, 1419-1420.

1-cinnamyl-4-ethyl-3-hydroxypyridin-1-ium bromide (371)

4-ethylpyridin-3-ol $410(3.99 \mathrm{~g}, 32.4 \mathrm{mmol}, 1.0 \mathrm{eq}$.$) was dissolved in acetone (32 \mathrm{~mL}$), followed by the addition of cinnamylbromide ($6.38 \mathrm{~g}, 32.4 \mathrm{mmol}, 1.0$ eq.) in acetone (32 mL). The solution was stirred for 3 days, after which $5.91 \mathrm{~g}(57 \%)$ of the desired product 371 was filtered off. The remaining brown oil was recrystallized from $\mathrm{EtOAc} / \mathrm{MeOH} / \mathrm{Et}_{2} \mathrm{O}$ to give another $906 \mathrm{mg}(9 \%)$ of the desired compound 371.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}\right.$, methanol- $\left.\mathrm{d}_{4}\right): \delta=8.45(\mathrm{dd}, \mathrm{J}=6.1,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.30(\mathrm{~d}, \mathrm{~J}=1.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.83$ $(\mathrm{d}, \mathrm{J}=6.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.54-7.46(\mathrm{~m}, 2 \mathrm{H}), 7.39-7.26(\mathrm{~m}, 3 \mathrm{H}), 6.99(\mathrm{~d}, \mathrm{~J}=15.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.53(\mathrm{dt}$, $J=15.8,7.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.30(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.88(\mathrm{q}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 1.31(\mathrm{t}, \mathrm{J}=7.5 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm}$. ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}\right.$, methanol-d $\left.{ }_{4}\right): \delta=156.7,152.6,139.7,136.9,136.7,130.0,129.9,128.5$, 128.1, 122.0, 63.7, 24.2, 12.4 ppm . IR (neat sample): 3339, 3026, 2974, 2936, 1626, 1582,

1528, 1474, 1373, 1310, 1281, 1134, 1059, $976,878,841 \mathrm{~cm}^{-1}$. MP: 123-125 ${ }^{\circ} \mathrm{C}$. HRMS (ESI, m / z): calc. for [$\mathrm{C}_{16} \mathrm{H}_{18} \mathrm{NO}^{+}$]: 240.1383, found: 240.1388.
(1R,5R)-8-cinnamyl-3-ethyl-8-azaspiro[bicyclo[3.2.1]oct[3]ene-6,2'-[1,3]dithiolan]-2-one 1',3'-dioxide (381) and ($1 R, 5 R$)-8-cinnamyl-3-ethyl-8-azaspiro[bicyclo[3.2.1]oct[2]ene-6,2'-[1,3]dithiolan]-4-one $1^{\prime}, 3$ '-dioxide (382)

Bissulfoxide 196 (445 mg , $2.97 \mathrm{mmol}, 1.6$ eq.) was dispersed in DCM (18 mL) under an inert atmosphere, followed by the addition of solid pyridinium salt 371 ($590 \mathrm{~g}, 1.84 \mathrm{mmol}, 1.0 \mathrm{eq}$) and $\mathrm{NEt}_{3}(0.28 \mathrm{~mL}, 2.02 \mathrm{mmol}, 1.1 \mathrm{eq}$.). The reaction vessel was wrapped in aluminium foil and the reaction mixture was stirred at ambient temperature for 24 hours. The remaining solvent was then removed under reduced pressure and the crude remains were purified using silica gel chromatography eluting with acetone to yield 626 mg (87%) of regioisomeric tricycles $\mathbf{3 8 1}$ and $\mathbf{3 8 2}$ (5.6:1 ratio $\mathbf{3 8 1 : 3 8 2}$) as a yellow solid. The mixture of regioisomers was used directly in the next step as separation could not be achieved.

Major regioisomer (381)

${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.36-7.31(\mathrm{~m}, 2 \mathrm{H}), 7.30-7.23(\mathrm{~m}, 2 \mathrm{H}), 7.22-7.16(\mathrm{~m}, 1 \mathrm{H}), 6.62$ (dt, J=5.1, 1.4 Hz, 1H), 6.47 (d, J=16.0 Hz, 1H), 6.12 (dt, J=16.0, 6.2 Hz, 1H), 4.29 (d, J=5.1 Hz, 1H), 3.91-3.82 (m, 2H), 3.54-3.46 (m, 2H), 3.42-3.31 (m, 3H), 2.45 (d, J=15.4 Hz, 1H), 2.30 (q , $J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.20(\mathrm{dd}, \mathrm{J}=15.5,7.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.07(\mathrm{t}, \mathrm{J}=7.3 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm}$.

Minor regioisomer (382)
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.36-7.31(\mathrm{~m}, 2 \mathrm{H}), 7.30-7.23(\mathrm{~m}, 2 \mathrm{H}), 7.22-7.16(\mathrm{~m}, 1 \mathrm{H}), 6.77$ (td, J=5.5, 1.4 Hz, 1H), 6.49-6.45 (m, 1H), 6.17-6.09 (m, 1H), 4.15 (br.s., 1H), 4.06 (t, J=5.5 Hz, 1H), 3.69-3.62 (m, 1H), 3.91-3.32 (m, 6H), 2.62 (d, J=14.3 Hz, 1H), 2.43-2.37 (m, 1H), 2.29$2.24(\mathrm{~m}, 2 \mathrm{H}), 1.08-1.04(\mathrm{~m}, 3 \mathrm{H}) \mathrm{ppm}$.

IR (neat sample, mixture): 2968, 2932, 2832, 1684, 1599, 1495, 1449, 1373, 1234, 1138, 1092, 1065, 1040, $968,835 \mathrm{~cm}^{-1}$. Rf: 0.78 (acetone). HRMS (mixture of regioisomers) (ESI, m / z): calc. for $\left[\mathrm{C}_{20} \mathrm{H}_{23} \mathrm{NO}_{3} \mathrm{~S}_{2}+\mathrm{H}\right]$ 390.1198, found: 390.1201.
(1R,5R)-8-cinnamyl-3-ethyl-8-azaspiro[bicyclo[3.2.1]oct[3]ene-6,2'-[1,3]dithiolan]-2-one (370) and (1R,5R)-8-cinnamyl-3-ethyl-8-azaspiro[bicyclo[3.2.1]oct[2]ene-6, 2^{\prime}-[1,3]dithiolan]-4-one (372)

Regiosiomeric mixture of bissulfoxides 381/382 (5.6:1 mixture of major/minor by NMR, 1.95 $\mathrm{g}, 5.00 \mathrm{mmol}, 1.0 \mathrm{eq}$.) was dissolved in actetonitrile (100 mL) and the solution was cooled to $0^{\circ} \mathrm{C}$. $\mathrm{NaI}(2.25 \mathrm{mg}, 15.00 \mathrm{mmol}, 3.0 \mathrm{eq}$.$) was added in one portion, followed by the dropwise$ addition of TFAA ($2.1 \mathrm{~mL}, 15.00 \mathrm{mmol}, 3.0$ eq.). The reaction mixture was stirred at $0^{\circ} \mathrm{C}$ for 2 hours before the addition of sat. $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$ solution followed by the addition of 2 M NaOH solution quenched the reaction. The mixture was diluted with DCM and transferred to a separation funnel. The phases were separated, and the aqueous layer was extracted two more times with DCM. The combined organic layers were dried over MgSO_{4} and the solvent was removed under reduced pressure. The crude mixture was purified via silica gel chromatography using 10:1 (PE:EtOAc) as eluent to give $898 \mathrm{mg}(50 \%$, isolated 5.4:1 ratio of regioisomers $370 / 372$) as a yellow oil.

Major regioisomer 370:
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.40-7.38(\mathrm{~m}, 2 \mathrm{H}), 7.34-7.28(\mathrm{~m}, 2 \mathrm{H}), 7.26-7.20(\mathrm{~m}, 1 \mathrm{H}), 6.64$ ($\mathrm{dt}, J=5.1,1.4 \mathrm{~Hz}, 1 \mathrm{H}$), $6.53(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.26-6.15(\mathrm{~m}, 1 \mathrm{H}), 3.85(\mathrm{~d}, J=5.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.65$ (d, J=8.2 Hz, 1H), 3.49-3.37 (m, 3H), 3.35-3.31 (m, 1H), 3.29-3.20 (m, 2H), 3.10 (dd, J=14.7, $7.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.37-2.22(\mathrm{~m}, 2 \mathrm{H}), 1.09(\mathrm{t}, \mathrm{J}=7.5 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=$ 198.9, 140.1, 139.9, 136.9, 132.5, 128.6, 127.7, 126.5, 126.4, 71.2, 69.8, 68.1, 50.9, 45.6,
40.5, 40.4, 21.1, 12.6 ppm. IR (neat sample): 3024, 2963, 2922, 2872, 2827, 1680, 1597, $1578,1495,1447,1371,1335,1304,1277,1206,1070,966,934,910,891,854 \mathrm{~cm}^{-1} .[\alpha]_{D}{ }^{20}$: $-59\left(c=0.61 ; \mathrm{CHCl}_{3}\right)$.

Minor regioisomer 372:
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.40-7.35(\mathrm{~m}, 2 \mathrm{H}), 7.34-7.28(\mathrm{~m}, 2 \mathrm{H}), 7.25-7.21(\mathrm{~m}, 1 \mathrm{H}), 6.59$ ($\mathrm{dt}, J=5.2,1.5 \mathrm{~Hz}, 1 \mathrm{H}$), $6.51(\mathrm{~d}, \mathrm{~J}=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.22(\mathrm{dt}, J=15.7,6.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.87(\mathrm{t}, \mathrm{J}=5.8 \mathrm{~Hz}$, $1 \mathrm{H}), 3.74(\mathrm{~d}, \mathrm{~J}=0.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.52-3.32(\mathrm{~m}, 4 \mathrm{H}), 3.29-3.21(\mathrm{~m}, 1 \mathrm{H}), 3.20-3.12(\mathrm{~m}, 1 \mathrm{H}), 2.93(\mathrm{dd}$, $J=13.5,6.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.40(\mathrm{~d}, J=13.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.26(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 1.09(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm}$.
${ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=195.8,141.1,140.3,136.9,133.1,128.7,127.8,126.6,126.2$, 83.9, 65.4, 58.6, 52.1, 45.3, 41.0, 39.0, 21.2, 12.3 ppm. IR (neat sample): 3024, 2963, 2930, $1682,1494,1449,1371,1275,1221,1134,1053,1011,968,881 \mathrm{~cm}^{-1} .[\alpha]_{D}{ }^{20}:-116$ ($c=0.61$; CHCl_{3})

HRMS (mixture of regioisomers) (ESI, m / z): calc. for $\left[\mathrm{C}_{20} \mathrm{H}_{23} \mathrm{NOS}_{2}+\mathrm{H}\right]$: 358.1299 , found: 358.1299. \mathbf{R}_{f} : major: 0.40 , minor: 0.30 (both 6:1 PE/EtOAc).

major

(1R,3R,4R,5R)-4-allyl-8-cinnamyl-3-ethyl-8-azaspiro[bicyclo[3.2.1]octane-6,2'-[1,3]dithiolan]-2-one (383)

CuBr/DMS ($301 \mathrm{mg}, 1.47 \mathrm{mmol}, 1.0$ eq.) was weighed out into a schlenk flask, which was then transferred to a glove box. LiCl (124 mg, $2.93 \mathrm{mmol}, 1.8$ eq.) was added to the schlenk flask, and the flask was then transferred out of the glove box. THF (6.5 mL) was added, and the resulting mixture was cooled to $-78^{\circ} \mathrm{C}$. Allyl magnesiumbromide solution (2.6 mL of a 1.0 M solution in ethyl ether, $2.64 \mathrm{mmol}, 1.8 \mathrm{eq}$.$) was then added to the solution, followed$ by immediate dropwise addition of Michael acceptor 370 ($470 \mathrm{mg}, 1.32 \mathrm{mmol}, 0.9 \mathrm{eq}$.). The solution was then allowed to stir for 10 minutes, before the addition of 2 M NaOH at $-78^{\circ} \mathrm{C}$ quenched the reaction. The mixture was allowed to stir for an hour at ambient temperature, before the mixture was transferred to a separation funnel. EtOAc was added, as well as neat NaCl , and the aqueous phase was extracted three times with EtOAc. The combined organic layers were then washed with brine, followed by drying over MgSO_{4}. The solvent was removed under reduced pressure, and the obtained crude oil was purified via silica flash chromatography using 10:1 PE:EtOAc as eluent to yield $405 \mathrm{mg}(77 \%)$ of 383 as a clear oil.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.43-7.35(\mathrm{~m}, 2 \mathrm{H}), 7.35-7.28(\mathrm{~m}, 2 \mathrm{H}), 7.25-7.20(\mathrm{~m}, 1 \mathrm{H}), 6.59$ (d, J=16.0 Hz, 1H), 6.23 (dt, J=15.8, $6.6 \mathrm{~Hz}, 1 \mathrm{H}$), 5.78 (dddd, J=16.5, 10.8, 8.5, 5.1 Hz, 1H), 5.08-4.91 (m, 2H), 3.61-3.38 (m, 5H), 3.33-3.24 (m, 1H), 3.24-3.17 (m, 2H), 2.96 (dd, J=14.7, $7.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.44-2.33(\mathrm{~m}, 2 \mathrm{H}), 2.30-2.18(\mathrm{~m}, 1 \mathrm{H}), 2.18-2.11(\mathrm{~m}, 2 \mathrm{H}), 1.72-1.59(\mathrm{~m}, 2 \mathrm{H}), 0.96$ ($\mathrm{t}, \mathrm{J}=7.5 \mathrm{~Hz}, 3 \mathrm{H}$) ppm. ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=213.9,137.0,136.6,133.2,128.7$ (2C), $127.7,127.1,126.5$ (2C), 117.8, $74.5,71.2,70.1,54.6,50.7,48.5,40.8,40.5,40.3,39.2,21.4$, 12.3 ppm . IR (neat sample): 3024, 2961, 2924, 2874, 1715, 1639, 1597, 1495, 1449, 1375, $1342,1275,1148,1105,1047,966,912 \mathrm{~cm}^{-1} .[\alpha]_{\mathrm{D}}{ }^{20}:-44$ ($\mathrm{c}=0.83 ; \mathrm{CHCl}_{3}$). $\mathrm{R}_{\mathrm{f}}: 0.41$ (10:1 PE/EtOAc). HRMS (ESI, m / z): calc. for [$\left.\mathrm{C}_{23} \mathrm{H}_{29} \mathrm{NOS}_{2}+\mathrm{H}\right]$: 400.1769, found: 400.1766 .
(3R,4S,9R,9aR,10R)-10-ethyl-2,3,5,8,9,9a-hexahydrospiro[9,3-ethanopyrrolo[1,2-a]azepine-1,2'-[1,3]dithiolan]-11-one (378)

Bisolefin 383 ($202 \mathrm{mg}, 505 \mu \mathrm{~mol}, 1.0 \mathrm{eq}$) was dissolved in degassed DCM (35 mL) and Grubbs II catalyst ($43 \mathrm{mg}, 51.0 \mu \mathrm{~mol}, 0.1 \mathrm{eq}$) was added in DCM (15 mL). The reaction mixture was heated to reflux for six hours. The solvent was then evaporated and the crude remains were subjected to flash column chromatography using 9:1 PE:EE as eluent to give 110 mg (74\%) of olefin $\mathbf{3 7 8}$ as a white solid.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=5.70-5.56(\mathrm{~m}, 2 \mathrm{H}), 3.98-3.89(\mathrm{~m}, 1 \mathrm{H}), 3.64-3.55(\mathrm{~m}, 1 \mathrm{H})$, 3.45-3.27 (m, 5H), 3.24-3.17 (m, 1H), 3.01-2.89 (m, 2H), 2.36-2.24 (m, 3H), 2.00-1.93 (m, $1 \mathrm{H}), 1.83-1.70(\mathrm{~m}, 2 \mathrm{H}), 1.00(\mathrm{t}, \mathrm{J}=7.2 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=214.7$, 130.6, 129.1, 76.2, 71.8, 67.8, 52.2, 49.3, 45.6, 41.1, 39.8, 38.9, 37.6, 28.7, 12.8 ppm. IR (neat sample): 2961, 2920, 1705, 1449, 1423, 1277, 1244, 1163, 1136, 972, 951, $818 \mathrm{~cm}^{-1}$. $[\alpha]_{D}{ }^{20}$: -164 ($c=0.18 ; \mathrm{CHCl}_{3}$). R \mathbf{R}_{f} : 0.50 ($6: 1 \mathrm{PE}: E t O A c$). HRMS (ESI, m / z): calc. for [$\left.\mathrm{C}_{15} \mathrm{H}_{21} \mathrm{NOS}_{2}+\mathrm{H}\right]: 296.1143$, found: 296.1145 .
(3R,4R,9R,9aS,10R)-10-ethyloctahydro-1H-9,3-ethanopyrrolo[1,2-a]azepin-11-one (384)

An aqueous dispersion of Raney nickel in water (1 pipet) was washed 3 three times with MeOH , and the waste solvent was discarded. Dithiolane 378 ($20 \mathrm{mg}, 67.7 \mu \mathrm{~mol}$) was added in $\mathrm{MeOH}(2 \mathrm{~mL})$, and the reaction mixture was stirred for 3 h at ambient temperature. Raney
nickel was then filtered off, and the solvent was removed under reduced pressure. The crude oil was subjected to flash column chromatography using 25:1 DCM:MeOH as eluent to give 8.2 mg (58\%) of amine 384 as a clear oil.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=3.50(\mathrm{~d}, \mathrm{~J}=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.47-3.41(\mathrm{~m}, 1 \mathrm{H}), 3.37(\mathrm{~d}, \mathrm{~J}=7.9 \mathrm{~Hz}$, 1H), 2.45 (td, J=12.0, $2.1 \mathrm{~Hz}, 1 \mathrm{H}$), 2.28-2.17 (m, 1H), 2.17-2.06 (m, 1H), 2.00-1.90 (m, 3H), $1.84-1.52(\mathrm{~m}, 8 \mathrm{H}), 1.51-1.38(\mathrm{~m}, 1 \mathrm{H}), 0.91(\mathrm{t}, \mathrm{J}=7.5 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$: $\delta=217.1,70.1,59.2,51.2,49.0,45.3,34.5,31.0,27.5,27.1,26.5,26.4,11.8$ ppm. IR (neat sample): 2924, 1705, 1456, 1377, 1281, 1159, 1148, 1134, 986, 816, 799, $\mathrm{cm}^{-1} .[\alpha]_{\mathrm{D}}{ }^{20}:-171$ (c= 0.22; CHCl_{3}). $\mathbf{R}_{\mathrm{f}}: 0.50$ ($25: 1 \mathrm{DCM}: \mathrm{MeOH}$). HRMS (ESI, m / z): calc. for $\left[\mathrm{C}_{13} \mathrm{H}_{21} \mathrm{NO}+\mathrm{H}\right]$: 208.1701, found: 208.1701.
($3 R, 4 R, 9 R, 9 \mathrm{aS}, 10 R$)-10-ethyloctahydro-1H-9,3-ethanopyrrolo[1,2-a]azepin-11-one (384) and (3R,4R,9R,9aS,10S)-10-ethyloctahydro-1H-9,3-ethanopyrrolo[1,2-a]azepin-11-one (359)

NaHMDS (0.08 mL , $164 \mu \mathrm{~mol}, 2.0$ eq.) was added to THF at $-78{ }^{\circ} \mathrm{C}$. Ketone 384 ($17.0 \mathrm{mg}, 82$ $\mu \mathrm{mol} 1.0$ eq.) was added to this solution in THF and was stirred for one hour, before the addition of water (0.1 mL) quenched the reaction. The mixture was dried over MgSO_{4} and the solvent was evaporated. The crude remains were purified via flash column chromatography using 50:1 DCM:MeOH as eluent to obtain 13.7 mg (81%) of a 1.3:1 mixture of $\mathbf{3 8 4}$ and $\mathbf{3 5 9}$ as colourless oil. As the desired ketone $\mathbf{3 5 9}$ decomposes rapidly, the obtained product was immediately used in the next step.
\mathbf{R}_{f} desired: 0.53 (25:1 DCM:MeOH) undesired: 0.50
(2'R,3R,4R,9R,9aS,10S)-10-ethyl-4'-methyleneoctahydro-1H,3'H-spiro[9,3-ethanopyrrolo[1,2-a]azepine-11,2'-furan]-5'(4'H)-one (385)

A stock solution (obtained via refluxing the two components in THF for 20 minutes) of Zn ($9.4 \mathrm{mg}, 144.3 \mu \mathrm{~mol}, 2.6$ eq.) and ethyl 2-(bromomethyl)acrylate ($13.9 \mathrm{mg}, 72.1 \mu \mathrm{~mol}, 1.3$ eq., in 1 mL THF) was added to neat ketone 359 ($11.5 \mathrm{mg}, 55.6 \mu \mathrm{~mol}, 1.0 \mathrm{eq}$), and the mixture was heated to reflux for one hour. After 40 minutes, another 0.2 mL of the stock solution was added. After one hour, the mixture was cooled to ambient temperature, and water was added. The mixture was stirred for one minute, followed by the addition of DCM. MgSO_{4} was added, and the mixture was filtered. The solution was evaporated to dryness, and was purified via silica gel chromatography using 25:1 DCM:MeOH as eluent to yield 8.0 mg (52\%) of $\mathbf{3 8 5}$ as a white semi-solid.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=6.32(\mathrm{t}, \mathrm{J}=3.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.76(\mathrm{t}, \mathrm{J}=2.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.39(\mathrm{~d}, \mathrm{~J}=4.0 \mathrm{~Hz}$, $1 \mathrm{H}), 4.25(\mathrm{t}, \mathrm{J}=13.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.08(\mathrm{~d}, J=6.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.85(\mathrm{~d}, J=13.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.97-2.83(\mathrm{~m}, 2 \mathrm{H})$, 2.78-2.73 (m, 2H), 2.34-2.25 (m, 1H), 2.17-2.14 (m, 2H), 2.04-1.95 (m, 3H), 1.87-1.76 (m, $4 \mathrm{H}), 1.69-1.66(\mathrm{~m}, 1 \mathrm{H}), 1.49-1.41(\mathrm{~m}, 1 \mathrm{H}), 1.38-1.30(\mathrm{~m}, 1 \mathrm{H}), 0.94(\mathrm{t}, \mathrm{J}=7.3 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}-$ NMR (100 MHz, CDCl_{3}): $\delta=168.4,131.8,124.0,83.1,67.4,60.7,47.6,42.9,38.6,37.4,25.3$, 24.0, 23.8, 23.6, 21.5, 16.7, 11.6 ppm . IR (neat sample): 2920, 2882, 2849, 1769, 1717, 1458, 1396, 1267, 1167, 1119, 1076, 1059, 1030, 1003, 984, $908 \mathrm{~cm}^{-1}$. $[\alpha]_{\mathrm{D}}{ }^{20}: 20$ ($c=0.13 ; \mathrm{CHCl}_{3}$). $\mathrm{R}_{\mathrm{f}}: 0.39$ (25:1 DCM:MeOH). HRMS (ESI, m / z): calc. for [$\left.\mathrm{C}_{17} \mathrm{H}_{25} \mathrm{NO}_{2}+\mathrm{H}\right]: 276.1964$, found: 276.1962.

(+)-parvineostemonine 2

Exo-metyhlene compound $\mathbf{3 8 5}$ ($1.9 \mathrm{mg}, 6.9 \mu \mathrm{~mol}, 1.0 \mathrm{eq}$) was put in a Schlenk flask and the flask was sparged with argon. A stock solution of $\mathrm{RhCOH}\left(\mathrm{PPh}_{3}\right)_{3}(3.2 \mathrm{mg}, 3.4 \mu \mathrm{~mol}, 0.5 \mathrm{eq})$ in dioxane (1.0 mL) was then added, and the reaction mixture was stirred for 45 minutes. The solvent was removed under reduced pressure, and the remains were purified via column chromatography using ($25: 1$ DCM:MeOH) as eluent to yield 1.2 mg (63\%) of (+)-parvineosteomine $\mathbf{2}$ as a white solid.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=6.89$ (d, $\mathrm{J}=1.6 \mathrm{~Hz}, 1 \mathrm{H}$), 3.72 (br.s, 1 H), 3.62 (br.s, 1 H), 3.12 (br.s, 1H), 2.98 (br.s, 1H), 2.03-1.95 (m, 4H), 1.93 (d, J=1.1 Hz, 3H), 1.90-1.82 (m, 3H), 1.77$1.70(\mathrm{~m}, 3 \mathrm{H}), 1.34-1.29(\mathrm{~m}, 2 \mathrm{H}), 1.03(\mathrm{br} . \mathrm{s} ., 1 \mathrm{H}), 0.81(\mathrm{t}, \mathrm{J}=7.8 \mathrm{~Hz}, 3 \mathrm{H})$ ppm. Missing peak at $1.58-1.52$ concealed by water can be seen in COSY. ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=132.2$, $66.2,57.0,46.6,38.4,38.1,29.6,29.5,25.8$ (2C), 22.8, 17.2, 11.9, 10.8 ppm (signals missing due to bad signal to noise ratio). IR (neat sample): 2961, 2920, 2862 1751, 1734, 1717, 1653, 1558, 1541, 1506, 1456, 1248, 1153, 1136, 1088, 1070, $997 \mathrm{~cm}^{-1}$. MS: calc. for $\left[\mathrm{C}_{1} \mathrm{H}_{25} \mathrm{NO}_{2}+\mathrm{H}\right]$: 276.1964, found: 276.1964 . $[\alpha]_{D}{ }^{20}: 47$ ($c=0.06 ; \mathrm{CHCl}_{3}$). $\mathbf{R}_{\mathrm{f}}: 0.46$ (25:1 DCM:MeOH).

Spectral Comparison of (+)-parvineostemonine

IR: (${ }^{1} \mathrm{Y} . \mathrm{Ye}$ et al.) $1735,1458,1248 \mathrm{~cm}^{-1}$. (${ }^{2} \mathrm{~J}$. Tu et al.) 2923, $1747,997,731 \mathrm{~cm}^{-1}$. (this work): 2961, 2920, 2862 1751, 1734, 1717, 1653, 1558, 1541, 1506, 1456, 1248, 1153, 1136, 1088, 1070, $997 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H}$-NMR-data

Nr.		Literature: ${ }^{2}$ Synthetic material [ppm] ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)	This work: Synthetic material ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$)
1	1.55, m; 2.06, m	$\begin{gathered} 1.58-1.52(\mathrm{~m}, 1 \mathrm{H}), 2.10- \\ 1.94(\mathrm{~m}, 1 \mathrm{H}) \end{gathered}$	first peak visible in COSY, $2.03-1.95(\mathrm{~m}, 1 \mathrm{H})$
2	1.67, m; 1.94, m	$\begin{gathered} 1.78-1.64(\mathrm{~m}, 1 \mathrm{H}), 2.10- \\ 1.94(\mathrm{~m}, 1 \mathrm{H}) \\ \hline \end{gathered}$	$\begin{gathered} 1.74(\mathrm{~m}, 1 \mathrm{H}), 2.03-1.95(\mathrm{~m}, \\ 1 \mathrm{H}) \end{gathered}$
3	2.97 (bd, $J=6.9)$	2.99-2.97 (d, J=6.8 Hz, 1 H)	2.98 (m, 1H)
4	-	-	-
5	3.12, m; 3.61, m	3.15-3.11 (ddd, J=12.0, 3.2, 3.2 Hz, 1H), 3.66-3.59 (dt, J=12.8, 3.6 Hz, 1 H)	3.12 (m, 1H), 3.62 (m, 1H)
6	1.75, m; 1.89, m	$\begin{gathered} 1.78-1.64(\mathrm{~m}, 1 \mathrm{H}), 1.89-1.81(\mathrm{~m}, \\ 1 \mathrm{H}), \end{gathered}$	$\begin{gathered} 1.77-1.70(\mathrm{~m}, 1 \mathrm{H}), 1.90-1.82 \\ (\mathrm{~m}, 1 \mathrm{H}) \end{gathered}$
7	1.71, m; 2.02, m	$\begin{gathered} 1.78-1.64(\mathrm{~m}, 1 \mathrm{H}), 2.10-1.94(\mathrm{~m}, \\ 1 \mathrm{H}) \end{gathered}$	$\begin{gathered} 1.77-1.70(\mathrm{~m}, 1 \mathrm{H}), 2.03-1.95 \\ (\mathrm{~m}, 1 \mathrm{H}) \end{gathered}$
8	1.34, m; 1.87, m	$\begin{gathered} 1.39-1.23(\mathrm{~m}, 1 \mathrm{H}), 1.89-1.81(\mathrm{~m}, \\ 3 \mathrm{H}), \end{gathered}$	$\begin{gathered} 1.34-1.29(\mathrm{~m}, 1 \mathrm{H}), 1.90-1.82 \\ (\mathrm{~m}, 1 \mathrm{H}) \end{gathered}$
9	1.81, m	1.89-1.81 (m, 1H)	1.90-1.82 (m, 1H)
9a	3.72 (bd, J=6.9)	3.73-3.72 (d, J=6.8 Hz, 1H),	3.72 (m, 1H)
10	1.98, m	2.10-1.94 (m, 1H)	2.03-1.95 (m, 1H)
11	-	-	-
12	6.88, (d, J=1.4)	$6.88-6.87$ (d, J=1.6 Hz, 1H)	6.89, (d, J=1.6, 1H)
13	-	-	-
14	-	-	-
15	1.92 (d, J=1.4)	$1.92-1.91$ (d, J=1.2 Hz, 3 H$)$	1.93 (d, J=1.1 Hz, 3H).
16	1.01, m; 1.26, m	$\begin{gathered} 1.04-0.98(\mathrm{~m}, 1 \mathrm{H}), 1.39-1.23(\mathrm{~m}, \\ 1 \mathrm{H}), \end{gathered}$	$\begin{gathered} 1.03 \text { (br. s., } 1 \mathrm{H}), 1.34-1.29 \\ (\mathrm{~m}, 1 \mathrm{H}) \end{gathered}$
17	0.80 (t, J = 7.4)	0.82-0.78 ppm (t, J=7.2 Hz, 3H)	0.81 (t, J=7.8 Hz, 3H)

${ }^{13}$ C-NMR-data:

Nr.	$\begin{gathered} \text { Isolation: }{ }^{1} \\ {[\mathrm{ppm}]} \\ \left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \end{gathered}$	Literature: ${ }^{2}$ Synthetic material [ppm] $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$	This work: Synthetic material $\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$
1	28.2	28.1	29.6
2	27.1	26.9	25.8
3	66.2	66.0	66.2
4	-	-	-
5	46.6	46.5	46.6
6	28.3	28.2	29.5
7	24.2	24.0	22.8
8	27.3	27.1	25.8
9	38.4	38.2	38.4
9a	57.0	56.9	57.0
10	38.1	37.9	38.1
11	89.6	89.4	to weak s/n
12	153.0	152.8	to weak s/n
13	130.6	130.6	132.2
14	174.2	174.0	to weak s/n
15	10.7	10.6	10.8
16	17.2	17.1	17.2
17	11.9	11.7	11.9

${ }^{1}$ Y. Ye et al. Chinese Chemical Letters, 2003, 14, 173-175.
${ }^{2}$ J. Tu et al. Chem. Asian J. 2012, 7, 2199-2202.

minor

(1R,2S,3S,5R)-2-allyl-8-cinnamyl-3-ethyl-8-azaspiro[bicyclo[3.2.1]octane-6,2'-[1,3]dithiolan]-4-one (390)

$\mathrm{CuBr} / \mathrm{DMS}(103 \mathrm{mg}, 502 \mu \mathrm{~mol} \mathrm{mmol}, 1.0$ eq.) was weighed out into a schlenk flask, which was then transferred to a glove box. $\mathrm{LiCl}(44 \mathrm{mg}, 1.04 \mathrm{mmol}, 2.0 \mathrm{eq}$.) was added to the schlenk flask, and the flask was then transferred out of the glove box. THF (6.5 mL) was added, and the resulting mixture was cooled to $-78^{\circ} \mathrm{C}$. Allyl magnesiumbromide solution (0.94 mL of a 1.0 M solution in ethyl ether, $936 \mu \mathrm{~mol}, 1.8 \mathrm{eq}$.$) was then added to the solution, fol-$ lowed by immediate dropwise addition of Michael acceptor 372 ($167 \mathrm{mg}, 468 \mu \mathrm{~mol}, 0.9 \mathrm{eq}$.$) .$ The solution was then allowed to stir for 10 minutes, before the addition of 2 M NaOH at $-70^{\circ} \mathrm{C}$ quenched the reaction. The mixture was allowed to stir for an hour at ambient temperature, before the mixture was transferred to a separation funnel. EtOAc was added, as well as neat NaCl , and the aqueous phase was extracted three times with EtOAc. The combined organic layers were then washed with brine, followed by drying over MgSO_{4}. The solvent was removed under reduced pressure, and the obtained crude oil was purified via silica flash chromatography using 10:1 PE:EtOAc as eluent to yield $98.6 \mathrm{mg}(53 \%)$ of 390 as a clear oil.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.40-7.35(\mathrm{~m}, 2 \mathrm{H}), 7.31(\mathrm{t}, \mathrm{J}=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.26-7.19(\mathrm{~m}, 1 \mathrm{H})$, $6.55(\mathrm{~d}, \mathrm{~J}=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.18(\mathrm{dt}, J=15.7,6.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.73$ (dddd, J=16.8, 10.4, 8.1, 6.0 Hz, 1H), 5.03-4.90 (m, 2H), 3.80-3.77 (m, 1H), 3.65-3.57 (m, 1H), 3.54-3.43 (m, 3H), 3.36-3.28 (m, $3 H), 2.98$ (dd, J=14.9, $7.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.28-2.12(\mathrm{~m}, 3 \mathrm{H}), 2.06(\mathrm{q}, \mathrm{J}=6.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.86-1.74(\mathrm{~m}$, $1 \mathrm{H}), 1.73-1.60(\mathrm{~m}, 1 \mathrm{H}), 1.39(\mathrm{dt}, J=8.1,5.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.01(\mathrm{t}, \mathrm{J}=7.5 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}-\mathrm{NMR}(100$ $\mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=207.1,137.0,136.3,133.0,128.7$ (2C), 127.6, 127.3, 126.4 (2C), 117.6, 84.7, 67.9, 62.4, 55.4, 49.9, 46.8, 43.1, 40.5, 40.4, 39.9, 25.0, 12.7 ppm. IR (neat sample): 2961,

2928, 1713, 1449, 1375, 1250, 1194, 1113, 1061, $968,917 \mathrm{~cm}^{-1} .[\alpha]_{\mathrm{D}}{ }^{20}:-16\left(\mathrm{c}=0.14 ; \mathrm{CDCl}_{3}\right)$. $R_{f}: 0.29$ (10:1 PE:EtOAc). HRMS (ESI, m / z): calc. for $\left[\mathrm{C}_{23} \mathrm{H}_{29} \mathrm{NOS}_{2}+\mathrm{H}\right]$: 400.1769, found: 400.1766.
(3R,4S,9S,9aR,10S)-10-ethyl-1,3,5,8,9,9a-hexahydrospiro[9,3-ethanopyrrolo[1,2-a]azepine-2,2'-[1,3]dithiolan]-11-one (391)

Bisolefin 390 ($100.0 \mathrm{mg}, 250 \mu \mathrm{~mol}, 1.0 \mathrm{eq}$) was dissolved in degassed DCM (15 mL) and Grubbs II catalyst ($21.0 \mathrm{mg}, 25.0 \mu \mathrm{~mol}, 0.1 \mathrm{eq}$) was added in DCM (10 mL). The reaction mixture was heated to reflux for 5.5 hours. The solvent was then evaporated and the crude remains were subjected to flash column chromatography using 10:1 to 7:1 PE:EtOAc to as eluent to give 52.0 mg (70%) of olefin 391 as a clear oil.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=5.75-5.62(\mathrm{~m}, 2 \mathrm{H}), 3.89(\mathrm{~d}, \mathrm{~J}=17.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.63(\mathrm{dd}, \mathrm{J}=17.1$, $5.8 \mathrm{~Hz}, 1 \mathrm{H}$), $3.55(\mathrm{~d}, \mathrm{~J}=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.43-3.31(\mathrm{~m}, 2 \mathrm{H}), 3.31-3.21(\mathrm{~m}, 2 \mathrm{H}), 3.19-3.10(\mathrm{~m}, 1 \mathrm{H})$, 2.98 (dd, J=14.7, 7.9 Hz, 1H), $2.45(\mathrm{~d}, \mathrm{~J}=15.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.39-2.35(\mathrm{~m}, 1 \mathrm{H}), 2.31-2.27(\mathrm{~m}, 1 \mathrm{H})$, 2.25-2.20 (m, 1H), 2.00-1.83(m,2H), 1.73-1.62(m,1H), 1.02(t, J=7.0 Hz, 3H) ppm. ${ }^{13} \mathrm{C}-\mathrm{NMR}$ ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=212.9,130.7$ (2C), 82.8, 69.2, 62.2, 53.2, 48.8, 47.0, 43.4, 40.5, 39.1, 36.2, 30.4, 13.1 ppm . IR (neat sample): 2959, 2922, 2874, 1695, 1456, 1437, 1425, 1319, $1279,1184,1163,1128,976,818 \mathrm{~cm}^{-1} .[\alpha]_{\mathrm{D}}{ }^{20}: 106$ ($\mathrm{c}=0.11 ; \mathrm{CHCl}_{3}$). $\mathbf{R}_{\mathrm{f}}: 0.23$ ($10: 1 \mathrm{PE}: \mathrm{EtOAc}$). HRMS (ESI, m / z): calc. for [$\mathrm{C}_{15} \mathrm{H}_{21} \mathrm{NOS}_{2}+\mathrm{H}$]: 296.1143, found: 296.1141.
(3S,4S,9S,9aR,10S)-10-ethyloctahydro-1H-9,3-ethanopyrrolo[1,2-a]azepin-11-one (384)

An aqueous dispersion of Raney nickel in water (3 pipets) was washed 3 three times with MeOH , and the waste solvent was discarded. Dithiolane 391 ($30 \mathrm{mg}, 101 \mu \mathrm{~mol} \mathrm{mmol}, 1.0 \mathrm{eq}$) was added in $\mathrm{MeOH}(1 \mathrm{~mL})$, and the reaction mixture was stirred for 3 h at ambient temperature. Raney nickel was then filtered off, and the solvent was removed under reduced pressure. The crude oil was subjected to flash column chromatography using 25:1 DCM:MeOH as eluent to give 7.0 mg (33%) of amine $\mathbf{3 8 4}$ as a clear oil.
$[\alpha]_{\mathrm{D}}{ }^{20}: 129\left(\mathrm{c}=0.10 ; \mathrm{CHCl}_{3}\right)$. For more data see the enantiomer at pages 150-151.

3.11 Spectra

361
$400 \mathrm{MHz}, \mathrm{CDCl}_{3}$
$\stackrel{\underset{\sim}{\sim}}{\underset{\sim}{\sim}}$
$\stackrel{\stackrel{0}{m}}{\stackrel{0}{m}} \stackrel{-}{m}$

360,
$400 \mathrm{MHz}, \mathrm{CDCl}_{3}$

375
$100 \mathrm{MHz}, \mathrm{CDCl}_{3}$

364,
$400 \mathrm{MHz}, \mathrm{CDCl}_{3}$

364 $100 \mathrm{MHz}, \mathrm{CDCl}_{3}$

৷/人

377,
$400 \mathrm{MHz}, \mathrm{CDCl}_{3}$

376,
$200 \mathrm{MHz}, \mathrm{CDCl}_{3}$

$200 \mathrm{MHz}, \mathrm{CDCl}_{3}$

379,
$200 \mathrm{MHz}, \mathrm{CDCl}_{3}$

[^5]

400 MHz , MeOD-d 4

$100 \mathrm{MHz}, \mathrm{MeOD}-\mathrm{d}_{4}$

370,
$100 \mathrm{MHz}, \mathrm{CDCl}_{3}$

370,
$100 \mathrm{MHz}, \mathrm{CDCl}_{3}$

383,
$400 \mathrm{MHz}, \mathrm{CDCl}_{3}$

383,

$100 \mathrm{MHz}, \mathrm{CDCl}_{3}$

378,
$400 \mathrm{MHz}, \mathrm{CDCl}_{3}$

378,
$100 \mathrm{MHz}, \mathrm{CDCl}_{3}$

$100 \mathrm{MHz}, \mathrm{CDCl}_{3}$

[^6]

385, $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$

1
-168.4
-131.8
-124.0 |l

385,
$100 \mathrm{MHz}, \mathrm{CDCl}_{3}$

2, $125 \mathrm{MHz}, \mathrm{CDCl}_{3}$

390,
$400 \mathrm{MHz}, \mathrm{CDCl}_{3}$

$\stackrel{+}{\stackrel{+}{+}}$

$100 \mathrm{MHz}, \mathrm{CDCl}_{3}$

[^7]

3.12 References

[3.1] C. Q. Ke, Z. S. He, Y. P. Yang, Y. Ye, Chin. Chem. Lett. 2003, 14, 173-175.
[3.2] R. A. Pilli, G. B. Rosso, M. da Conceicao F. de Oliveira, "The Stemona Alkaloids", in: The Alkaloids, Vol. 62, Ed.: G. A. Cordell, Academic Press, San Diego, 2005, 77-173.
[3.3] F.-P. Wang, Q.-H. Chen, Natural Product Communications, 2014, 9, 1809-1822.
[3.4] C. Seger, K. Mereiter, E. Kaltenegger, T. Pacher, H. Greger, O. Hofer, Chemistry\&Biodiversity, 2004, 1, 265-279.
[3.5] H. Greger, K. Schinner, S. Vajrodaya, L. Brecker, O. Hofer, J. Nat. Prod. 2009, 72, 1708-1711.
[3.6] P. Mungkorsawakul, H. Mattews, A. T. Ung, S. G. Pyne, A. Jatisatienr, W. Lie, B. W. Skelton, A. H. White, ACGC Chemical Research Communications, 2005, 19, 30-33.
[3.7] S. G. Pyne, A. T. Ung, A. Jatisatienr, P. Mungkorsawakul, Maejo International Journal of Science and Technology, 2007, 1, 157-165.
[3.8] Z.-H. Chen, J.-M. Tian, Z.-M. Chen, Y.-Q. Tu, Chem. Asian J. 2012, 7, 2199-2202.
[3.9] J. E. Antoline, R. P. Hsung, J. Huang, Z. Song, G. Li, Org. Lett. 2007, 9, 1275-1278.
[3.10] H. Shinozaki, M. Ishida, Brain Res. 1985, 334, 33-40.
[3.11] B. Brem, C. Seger, T. Pacher, O. Hofer, S. Vajrodaya, G. Greger, J. Agric. Food Chem. 2002, 50, 6383-6388.
[3.12] S. Jiwajinda, N. Hirai, K. Watanabe, V. Satisopasri, N. Chuensamarnyart, K. Koshimizu, H. Ohigashi, Phytochemistry, 2002, 56, 693-695.
[3.13] E. Kaltenegger, B. Brem, K. Mereiter, H. Kalchauser, H. Kählig, O. Hofer, S. Vajrodaya, H. Greger, Phytochemistry, 2003, 63, 803-816.
[3.14] K. Sakata, A. Aoki, C.-F. Chang, A. Sakurai, S. Tamura, S. Murakoshi, Agric. Biol. Chem. 1978, 42, 457-463.
[3.15] P. Mungkornasawakul, S. G. Pyne, A. Jatisatienr, D. Supyen, C. Jatisatienr, W. Lie, A. T. Ung, B. W. Skelton, A. H. White, J. Nat. Prod. 2004, 67, 675-677.
[3.16] H.-S. Chung, P.-M. Ho, G. Lin, P.P.-H. But, H. Dong, Planta Med. 2003, 69, 914-920.
[3.17] B. Rinner, V. Siegl, P. Pürstner, T. Efferth, B. Brem, H. Greger, R. Pfragner, Anticancer Res. 2004, 24, 495-500.
[3.18] D. D. Caspi, "Recent Advances in Enantiodivergent Strategies", https://www.organicdivision.org/ama/orig/Fellowship/2005_2006_Awardees/Essays /Caspi.pdf
[3.19] N. K. Garg, D. D. Caspi, B. M. Stoltz, J. Am. Chem. Soc. 2005, 127, 5970-5978.
[3.20] M. E. Fox, C. Li, J. P. Marino, L. E. Overman, J. Am. Chem. Soc. 1999, 121, 5467-5480.
[3.21] S. Krüger, T. Gaich, Beilstein J. Org. Chem. 2014, 10, 163-193.
[3.22] K. Nakata,T. Tokumaru, H. Iwamoto, Y. Nishigaichi, I. Shiina, Asian J. Org. Chem. 2013, 2, 920-922.
[3.23] S. Takano, M. Moriya, K. Ogasawara, J. Chem. Soc. Chem. Commun. 1993, 614-615.
[3.24] T. Hudlicky, J. D. Price, F. Rulin, T. Tsunoda, J. Am. Chem. Soc. 1990, 112, 9439-9440.
[3.25] F. J. Sardina, M. H. Howard, M. Morningstar, H. Rapoport, J. Org. Chem. 1990, 55, 5025-5033.
[3.26] P. Wipf, S. R. Rector, H. Takahash, J. Am. Chem. Soc. 2002, 124, 14848-14849.
[3.27] W. Janse van Rensburg, P. J. Steynberg, W. H. Meyer, M. M. Kirk, G. S. Forman, J. Am. Chem. Soc. 2004, 126, 14332-14333.
[3.28] B. Alcaide, P. Almendros, J. M. Alonso, M. F. Aly, Org. Lett. 2001, 3, 3781-3784.
[3.29] A. P. Kozikowski, G. L. Araldi, R. G. Ball, J. Org. Chem. 1997, 62, 503-509.
[3.30] D. L. Commins, E. D. Stroud, J. Heterocyclic Chem. 1985, 22, 1419-1420.
[3.31] B. H. Lipshutz, C. Hackmann J. Org. Chem. 1994, 59, 7437-7444.
[3.32] M. E. Krafft J. W. Cran, Synlett, 2005, 8, 1263-1266.
[3.33] F. Frébault, M. T. Oliveira, E. Wöstefeld, N. Maulide et al, J. Org. Chem., 2010, 75, 7962-7965.
[3.34] A. Hosomi, H. Sakurai, J. Am. Chem. Soc. 1977, 99, 1673-1675.
[3.35] E. Öhler, K. Reininger, U. Schmidt, Angew. Chem. Int. Ed. 1970, 6, 457-458
[3.36] T. F. Murray, E. G. Samsel, V. Varma, J. R. Norton, J. Am. Chem. Soc. 1981, 103, 75207528.
[3.37] P. Grieco, M. Ni shizawa, N. Marinovic, W. J. Ehmann, J. Am. Chem. Soc. 1976, 98, 7102 - 7104.
[3.38] Y.-A. Zhang, Q. liu, C. Wang, Y. Jia, Org. Lett. 2013, 15, 3662-3665.
[3.39] J. Rebek, Y. K. Shue, J. Am. Chem. Soc. 1980, 102,5426-5427.
[3.40] see the experimental part (chapter 3.9) for an extensive comparsion of the spectral data for parvineostemonine.

4 The DMNB Project

This project has been in part conducted within the Master Thesis of Lukas Dempwolff at the Leibniz University of Hanover under the supervision of the author of this thesis. ${ }^{[4.1]}$

4.1 Introduction

We stumbled upon the diazo-insertion based indole formation through a synthetic challenge occurring during the sarpagine total synthesis (see scheme 29). At some point, we had to achieve a one carbon homologation from ketone $\mathbf{2 2 7}$ to enlarged ketone $\mathbf{2 3 2}$ (see scheme 55). Next followed the introduction of the indole core via Fischer indole synthesis to give 238. As this proved to be a challenging task, we explored the possibility to conduct both the C1 enlargement and the introduction of the remaining atoms for the indole nucleus in one operation. We envisioned the use of 1-(diazomethyl)-2-nitrobenzene (235, from now on DMNB) to obtain α-aryl species $\mathbf{4 1 2}$ under Lewis-acid catalysis. This compound should be converted into the desired indole $\mathbf{2 3 8}$ via simple reduction of the nitro group and subsequent dehydration. This idea turned out to be a dead end for the total synthesis of sarpagine alkaloids, due to the formation of betaine 236, and subsequent fragmentation to unsaturated 237.

Scheme 55: How to stumble upon an indolization methodology.

Before we attempted this reaction on advanced ketone 227, the unknown reaction was examined on a test system consisting of cyclohexanone (see scheme 56). Cyclohexanone readily underwent the desired diazo insertion to give 413 and could easily be transformed into indole 414. When we later explored the scope of the reaction, we realized that we had acci-
dentally chosen the best test system possible, as the reaction does not occur with cyclopentanone. Therfore, compound 415 cannot be obtained in good yields.

Scheme 56: Successful test system and unsuccessfull example with cyclopentanone.

Having realized that we can easily access saturated hexahydrocyclohepta[b]indoles like 414, we focussed on the development of our new methodology towards this ring system. Cyclohepta[b]indoles and their heteroatom-substituted derivatives are frequently encountered in both natural products and biologically active molecules (see figure 33). The natural products ervatamine (416) ${ }^{[4.2,4.3]}$ and actinophyllic acid (417) ${ }^{[4.4]}$ both contain a cyclohepta[b]indole motif. Actinophyllic acid acts as a CPU inhibitor, which can be useful for the treatment of thrombotic diseases. Vincamajorine $B(418)^{[4.5]}$ and catharanthine (419) ${ }^{[4.6]}$ contain heteroa-tom-substitution within the heptacycle. Catharanthine (419) is one of the biosynthetic ${ }^{[4.7]}$ and chemical ${ }^{[4.8]}$ precursors of highly reactive vincristine. The SIRT inhibitor 1 (420) ${ }^{[4.9]}$ is heavily investigated due to its gene-silencing activities and contains the cyclohepta[b]indole core. The A FABP inhibitor (421) ${ }^{[4.10]}$ is a biologically active molecule containing this structural motif as well. Due to the inhibition of the fatty-acid-binding protein, compounds like (421) have been investigated at large due to the reduced risk to suffer from hypertriglyceridemia, type 2 diabetes and coronary heart disease. ${ }^{[4.11]}$

vincamajorine $B(418)$

SIRT 1 inhibitor (420)

A FABP inhibitor (421)

Figure 33: Natural products containing the cyclohepta[b]indole motif.

4.2 Diazo Insertion and Alpha Arylation

Although the original Tiffeneau-Demjanow rearrangement (aminoalcohol 422 was converted to diazocompound 423, which rearranged to cycloheptanone 434, scheme 57) dates back to the beginning of the $20^{\text {th }}$ century, its usefullness was limited.

A synthetically much more usefull variation was developed by Roskamp and coworkers ${ }^{[4.12,4.13]}$ by employing stabilized diazo-compounds like 425 and aldehydes (like benzaldehyde) in order to generate β-ketoesters like 426.

From thereon, the diazo mediated ring expansion was heavily investigated spearheaded by Yamamoto in 1994. ${ }^{[4.14]}$ In order to achieve the ring expansion of tert-butylcyclohexanone 427 with diazomethane they screened several aluminium based Lewis-acids, in the end favouring MAD (methylaluminum bis(2,6-di-tert-butyl-4-methylphenoxide)) as the highest yielding reagent for the preparation of cycloheptanone 428.

Metz demonstrated the TMS-diazomethane based C1-carbon enlongation using trimethylaluminium as Lewis acid. ${ }^{[4.15]}$ They could convert ketone 429 into the two enones 430/431 via diazo insertion using TMS-diazomethane. They obtained two intermediate silyl enol ethers, which were converted to the desired compounds 430/431 via Saegusa oxidation in good yield without any selectivity.

Kingsbury developed diazo insertion chemistry around the strong Lewis acid scandium(III) triflate in 2009, ${ }^{[4.16]}$ which was further developed into an asymmetric variant. In 2009 they were able to achieve the diazo insertion of a variety of substituted phenyldiazo species, including para-nitro compound 433 to yield cyclopentanone 434 from cyclobutanone 432. The use of 1-(diazomethyl)-2-nitrobenzene (DMNB) itself has not been reported by Kingsbury, probably due to the fact that DMNB decomposes rapidly in the presence of $\operatorname{Sc}(\mathrm{OTf})_{3}$.

In 2011, the same group published the insertion of phenyldiazo species like 437 with a number of different cyclic ketones like cyclohexanone 435. They again utilized scandium(III) catalysis, employing chiral trisbenzoxazole 436, to obtain α-chiral ketones like 438. ${ }^{[4.17,4.18]}$

The pioneering group of Yamamoto ${ }^{[4.19]}$ developed an asymmetric variant of their aluminium based diazo insertion chemistry, using stabilized diazocompounds like 440 to insert into cyclohexanone 435. They were able to obtain chiral cycloheptanone derivative 441 via the use of trimethylaluminium and chiral BINOL-ligand 439. For further examples of di-azo-insertion chemistry see the review from Zhang and Wang. ${ }^{[4.20]}$

Tiffeneau-Demjanov (1937)

Scheme 57: Examples of diazoinsertions from Tiffeneau-Demjanov to today.

The diazo-insertion of DMNB has not been reported, not even the (unsucessfull) use of DMNB in such reactions has been described. However, the same α-arylated cycloheptanone 413 arising from the diazo insertion of DMNB 235 to cyclohexanone $\mathbf{4 3 5}$ could be obtained by α-arylation using nitrobenzenderivative 440 and cycloheptanone 441 (see scheme 58 and 56). Indeed, a fairly close example of this reaction has been published by the Rawal group ${ }^{[4.21]}$ using hypervalent iodine reagent ortho-nitrophenylphenyliodonium fluoride 443 and silyl enol ether 442. The fluoride liberates the protected enolate, without scrambling of the enolate position, enabling the enolate to perform a nucleophilic aromatic substitution under the realease of iodobenzene. The less electron rich aryl moiety is transferred selectively in this reaction. They obtained α-arylated cyclohexanone 444, which could be converted into cyclohexa[b]indole 445 in good yield using titanium(III) chloride. They did not apply their system to cycloheptanones, but used it in the total synthesis of the aspidosperma alkaloid tabersonine. ${ }^{[4.22]}$

For further information on α-arylation using hypervalent iodine compounds the review from Olofsson and co-worker is recommended. ${ }^{[4.23]}$

Scheme 58: Comparison of diazo-insertion vs. α-arylation, and application from the Rawal group.

4.3 DMNB

DMNB 235 has been prepared in 1966 for the first time by Ritz and Ried (see scheme 59). ${ }^{[4.24]}$ They reacted ortho-nitrobenzaldehyde 446 with tosylhydrazine, obtaining hydrazone 447. The corresponding diazo compound 235 was then prepared by α-elimination in a sodium hydroxide solution. The product was dried on clay and was obtained in 73% yield.

Ikehara and coworkers ${ }^{[4.25]}$ prepared tosylhydrazone 447 by the reaction of 446 and tosylhydrazine in acetic acid in large quantities in 1981. They furnished DMNB 235 after treatment of hydrazone 447 with sodium methoxide. Although they did not isolate the product in its pure form, they state a yield of 60-70\% estimated by the reaction of DMNB with 3,5-dinitrobenzoic acid (see scheme 61).

Dudman and Reese ${ }^{[4.26]}$ prepared hydrazone 449 from ortho-nitrobenzaldehyde 446 and hydrazide 448 in good yield, and obtained DMNB 235 after α-elimination. Again, the desired compound was not isolated.

Tomioka et al. ${ }^{[4.27]}$ prepared tosylhydrazone 447 in the common fashion (hydrazone formation with aldehyde 446) and obtained DMNB 235 after subjection of hydrazone 447 to sodium in ethylene glycol in 86%.

Neither of the presented accesses to DMNB 235 was feasible enough to obtain large quantities in short time, especially the isolation of neat DMNB 235 was troublesome.

Ikehara et al., 1981

Dudman \& Reese, 1982

Tomioka et al., 1992

Scheme 59: Preparation of DMNB (235) over the years.
DMNB 235 was prepared by Ried and Ritz ${ }^{[4.24]}$ to form the corresponding phospazine 450 (see scheme 60), which could be accessed by treating 235 with triphenylphosphine in good yield. Ikehara and co-workers ${ }^{[4.25]}$ investigated the protection of the alcohol moieties of several DNA-bases, such as uridine (451), by treating the DNA bases with DMNB 235 in the presence of tin(II) chloride as a Lewis acid. They obtained compounds 452/453 in moderate yield without selectivity. Dudman and Reese ${ }^{[4.26]}$ prepared DMNB 235 and established the calibration of the DMNB purity by its near quantitative reaction with 3,5-dinitrobenzoic acid to form ester 454. Tomioka et al. ${ }^{[4.27]}$ investigated the decomposition of $\mathbf{2 3 5}$ under irradiation using matrix isolation technique. In the first step, the diazo moiety is decomposed, forming intermediate carbene 455, which is then intramolecularly trapped by one of the oxygens of the nitro group. The first isolable compound has been proven to be orthonitrosobenzaldehyde 456, which is further decomposed by irradiation. Two major compounds are formed from this intermediate via the initial formation of biradical 457. 2,1-benzisoxazol-3(1H)-one 459 is formed either from this biradical directly, or from nitrene

460, or from the other possible biradical 463. The second major compound carbonylcyclopentadieneimine 465 is formed from biradical 463 via the loss of carbon dioxide and subsequent rearrangement. As side products, oxime ketenes 458 and 461 were isolated, which can be interconverted under irradiation conditions. A remaining side product was assigned to be 3-carboxy-1-aza-1,2,4,6-cycloheptatetraene 462, which results from Buchner-like ring expansion from nitrene intermediate 460.

Ried \& Ritz, 1966

Ikehara et al., 1981

Dudman \& Reese, 1982

Tomioka et al., 1992

Scheme 60: Reactions of DMNB 235.

4.4 Indole Forming Reactions

As a huge variety of possibilities exists for the formation of indoles, ${ }^{[4.28]}$ this discussion is limited to the formation of cyclohepta[b]indoles, preferentially those occurring in this thesis.

Plain, unsubstituted hexahydrocyclohepta[b]indole 414 was recently prepared by König and co-workers (along with various other groups) via Fischer indole synthesis (see scheme 61). ${ }^{[4.29]}$ They used a tartaric acid/dimethylurea melt as solvent and proton donor and phenylhyadrazine (242) and cycloheptanone (441). Driver and coworkers ${ }^{[4.30]}$ used azide 466 under iron catalysis to form a transient indolenine, which underwent rearrangement to yield the desired product 414. Liu and co-workers ${ }^{[4.31]}$ investigated the Fischer indole synthesis of aldehydes (like 467) and subsequent indolenine/indole rearrangement, which led to 414 in a mediocre yield. Cho et al. ${ }^{[4.32]}$ used a palladium catalyzed cross coupling between vinyltriflate 469 and bis-Boc protected phenylhydrazine 468, to generate an intermediate which underwent Fischer indolization and deprotection under zinc catalysis. Eilbracht et al. ${ }^{[4.33]}$ pursued the same idea, but started with cyclohexene (470), which first undwent rhodium catalyzed hydroformylation, followed by the same reaction sequence from Liu's group. Their yield is not among the best for 414, but nonetheless impressive for the overall transformation. Messerle and co-workers ${ }^{[4.34]}$ used an advanced iridium(III) complex to generate hexahydrocyclohepta[b]indole 414 in one step from aminoalcohol 471. This reaction proceeds via hydroamination and subsequent nucleophilic ring closure. Banwell and coworkers ${ }^{[4.35]}$ coupled vinyliodide 473 and ortho-iodonitrobenzene 472 under Ullmann conditions, followed by reduction to obtain the desired compound 414 in good yield. Andrieux and co-workers ${ }^{[4.36]}$ prepared hexahydrocyclohepta[b]indole 414 via tertiary alcohol 474, which was first converted to an azide, which then decomposed and underwent ring enlargement.

Several more methodologies for the construction of the cycylohepta[b]indole core have been put forward, without the preparation of any of the relevant molecules of this thesis. Gaich and co-workers used the divinylcyclopropane-cycloheptadiene rearrangement. ${ }^{[4.37]}$ Hong and co-workers used an organocatalyzed Michael/double Friedel-Crafts alkylation strategy. ${ }^{[4.38]}$ Li and co-workers used an impressive 3-oxidopyrrilium [5+2] cycloadditon to build up the cycylohepta[b]indole core. ${ }^{[4.39]}$ Sinha and co-workers used the divinylcyclopro-pane-cycloheptadiene rearrangement as well. ${ }^{[4.40]}$

Scheme 61: Different recent synthetic appraoches towards hexahydrocyclohepta[b]indole 414.

Driver and co-workers ${ }^{[4.41]}$ were able to prepare $2,4,5,6$-tetrahydro- $1 H$-oxepino $[4,5$ - b]indole 477 via a four step sequence (see scheme 62). In the first two steps, phosphonate 475 was converted to aniline 476 via Wittig reaction/reduction of the nitro group to yield aniline 476. The formation of an intermediate azide via diazo transfer was followed by rhodiumcatalyzed isomerization to give the desired indole 477. The sulfur anologue 2,4,5,6-tetrahydro-1H-thiepino[4,5-b]indole 478 was prepared from ketone 479 via Fischer indole synthesis in 1965. ${ }^{[4.42]}$ In the same fashion, hexahydro-6,9-methanocyclo-hepta[b]indole 481 was accessed in 1972 from tricyclic precursor 482. ${ }^{[4.43]}$ The same compound 481 could be accessed by Eilbracht and co-workers ${ }^{[4.32]}$ via one-pot hydroformulation of olefin 480, Fischer indole synthesis and final indolenine-indole rearrangement in good yield. No synthetic access has been developed for the preparation of indoles 483-486. In principle all compounds, which are going to be discussed can be prepared from cyclohexanone derivatives like 487, which are first subjected to a ring expansion (using diazomethane, TMS-diazomethane or ethyl diazoacetate (followed by decarboxylation) to give 478 and subsequent Fischer indole synthesis to yield 479 and 488 . Although this route might lead to all indoles but compound 486 (OTBS is probably unstable under most Fischer indole variants), the regioselectivity in the Fischer indole synthesis remains an unsolvable issue (formation of 479 and 488). The
yield will not be above 50%. The same reaction from 487 directly to 479 via diazo-insertion circumvents this regioselectivity issue.

Driver, 2011

Eilbracht, 2006
Aksanova, 1965

Arya, Shenov, 1972

Scheme 62: Previous synthetic access to the other synthesized 8 -substituted cyclohepta[b]indoles (for the numbering see scheme 57).

4.5 Adipocyte Fatty Acid Binding Protein (A FABP)

Adipocyte fatty acid binding proteins (A FABP, FABP4 or aP2) are capable of binding and transporting endogenous fatty acids through the cell membrane. ${ }^{[4.10]}$ Spiegelmann and coworkers compared mice with null mutation of aP2 to control mice while fed with an obesity inducing diet. The knock-out mice behaved developmentally and metabolically stable, and became dietary obese like the control mice. However, they did not develop insulin resistence and diabetes like the control mice. ${ }^{[444]}$ Mice with aP2 deficient macrophages showed protec-
tion against arteriosclerosis. ${ }^{[4.45]}$ A FABP has been regarded as being important for understanding the molecular basis of the metabolic syndrome, and provides an attractive target for the prevention of ateriosclerosis. ${ }^{[445]}$

4.6 Results

DMNB 235 can be prepared most easily and in large quantities from commercially available o-nitrobenzaldehyde (446), which ins converted into hydrazone 447 and subsequent elimination. Those two steps require only one purification via crystallizaton (see scheme 63). DMNB 235 decomposes rapidly on silica gel, but only slowly and non-violent in its isolated form or in solution at ambient temperature or lower. Ried and Ritz ${ }^{[4.24]}$ reported DMNB 235 to be explosive upon heating in its pure form. First attempts on the desired diazo-insertion yielded surprising results, as only cyclobutanone (489, $n=1$) and cyclohexanone (489, $n=3$) underwent the desired ring expansion to give 490. Although the yield for cyclobutanone was only 22%, cyclopentanone and cycloheptanone failed to give any reasonable amount of insertion product. A variety of Lewis acids was screened for the diazo-insertion reaction ($\mathrm{SbCl}_{5}, \mathrm{SnCl}_{2}$, $\left.\mathrm{SnCl}_{4}, \mathrm{NiClO}_{4}, \mathrm{Sc}(\mathrm{OTf})_{3}, \mathrm{BF}_{3}\right)$ with trifluoroborate being the only Lewis acid to give any insertion product. Trimethylaluminium (in a stoichiometric fashion) proved to be the best Lewis acid for the diazo insertion, and three equivalents of DMNB 235 were usually employed to give best results. Dichloromethane gave the best yields, the reaction can be less efficiently carried out in THF and toluene. Less AlMe_{3} and fewer equivalents of DMNB led to diminished yields. Trimethylaluminium has been reported to react with diazo compounds. ${ }^{[4.46,4.47]}$

Scheme 63: Preparation of DMNB 235 and initial screening for the desired diazo insertion to give 490.

We then decided to develop this methodology exclusively for the formation of 8-substituted hexahydrocyclohepta[b]indoles (for the numbering see scheme 56), for which little synthetic access is known. We first examined the incorporation of heteroatoms in para-position to the ketone functionality (see table 1). Unsubstituted cyclohexanone 435 underwent the desired diazo insertion in almost quantitative yield to give 441 (entry 1), dihydropyran 491 gave compound 492 in good yield (entry 2). Dihydrothiopyran 487 underwent the desired reaction to 493 in almost the same yield as its oxygen analogue (entry 3).

Table 1: Diazo insertion using cyclohexanone 435 and its heteroatomic analogues 491 and 487.
Entry ${ }^{\text {a }}$ Starting material
a=conditions: ketone at $-78{ }^{\circ} \mathrm{C}$ in DCM, add 1.0 eq. AlMe ${ }_{3}$, then add 3.0 eq . DMNB, warm to rt over 16 h .
We then shifted our attention to substituted cyclohexanones, starting with 4 -substitution, as we should only obtain diastereomers instead of regioisomers and diastereomers (using 2- or 3-substitution). Employment of a simple methyl substituent in 494 decreased the yield of the diazo-insertion only to a small extend (see table 2 , entry 1) and gave a diastereomeric mixture of compound 495/496. The stereochemistry was not assigned in any cases, as one stereocenter will be destroyed in the upcoming reduction step, thereby rendereing the stereochemistry inconsequential. Using a larger substiuent (497, entry 2) led to both stereoisomers 498/499 in good yield. When the even bigger 3-tert-butyl-cyclohexanone 427 was subjected to the diazo insertion conditions, we were able to identify the double insertion product $\mathbf{5 0 2}$ as the main product, along with both possible diastereomers (500/501) after monoinsertion. Changing the substitution pattern from all-carbon substituents to a tert-butyl-dimethysilylprotected alcohol (503, entry 4) led to the formation of compounds 504/505 in good yield.

Table 2: Diazo insertion on 4-substituted cyclohexanones.
En- Starting
try
material

$\mathrm{a}=$ conditions: ketone $\mathrm{at}-78^{\circ} \mathrm{C}$ in DCM , add 1.0 eq. AlMe_{3}, then add 3.0 eq. DMNB, warm to rt over 16 h . $\mathrm{b}=$ stereochemistry was not assigned for any compound.

When we shifted our focus to ortho/para substituted cyclohexanones, we had to deal with the formation of regioisomers. Employment of 2-methylcyclohexanone 506 (table 3, entry 1) led to the formation of the four possible compounds 507-510 in a very moderate yield, which could not be separated any further. ${ }^{[4.48]}$ Using 3-methylcyclohexanone (511, entry 2) led to the formation of the four compounds 512-515, which could not be separated any further. Again, the yield was only moderate, but roughly treefold compared to 2-methylcyclohexanone 506. ${ }^{[4.48]}$ When 2-chlorocyclohexanone 516 was used, the outcome changed impressively (entry 3, for an explanantion see below). The yield was shown to be 47%, and only the two diastereomers 517/518 were observed. Finally, employment of cyclic normethylcamphor 519 gave tricyclic 520 in acceptable yield (entry 4). The use of camphor
itself did not yield any desired reaction products (see figure 32 for a variety of unsuccessfull starting materials for the attempted indolization).

Table 3: Diazo insertion on 2- and 3-substituted cyclohexanones.

Entry ${ }^{\text {Starting }}$| material |
| :---: |

a=conditions: ketone at $-78{ }^{\circ} \mathrm{C}$ in DCM , add 1.0 eq. AlMe_{3}, then add 3.0 eq. DMNB, warm to rt over 16 h . $\mathrm{b}=$ stereochemistry was not assigned for any compound. $\mathrm{c}=$ see reference [3.1] for further details.

The improvement in yield for 2-chlorocyclohexanone 516 to give 517/518 compared to 2methylcyclohexanone (506, yielding 507-510) can be attributed to the more reactive orbital with which the reaction occurs (see figure 34). The $\pi^{*}{ }_{C=0}$ orbital is usually employed for attack of a nucleophile onto a ketone moiety. With an adjacent heteroatom a new orbital is formed through orbital overlap of the $\sigma^{*}{ }_{c-c l}$ orbital and the $\pi^{*} \mathrm{C}=0$ orbital. The newly formed empty orbital is lower in energy, therefore more likely to be attacked by a nucleophile.

Figure 34: Explanation of the higher reactivity of 2-chlorocyclohexanone $\mathbf{5 1 6}$ compared to 2-methylcyclohexanone 506.

We then set out to investigate the cyclohepta[b]indole formation via reduction. The best reduction results were obtained using an excess of zinc in acetic acid as the solvent. Plain simple hexahydrocyclohepta[b]indole 414 can be readily obtained from compound 447 in a quantitative fashion (table 4, entry 1).

Compound 492 can be reduced in the same fashion, again yielding compound 477 quantitatively, thereby showing the tolerance of oxygen-substitution within the seven membered ring (entry 2). Reduction of sulfur containing compound 493 gave a diminished yield of indole 479, which might be attributed to the possible removal of sulfur in the presence of complexing metals and hydrogen (entry 3).

The formation of 8-methylsubstituted cyclohepta[b]indole 483 could be achieved in great yield from starting compound 495 (entry 4).

The formation of both 8-phenyl-substituted compound 485 from starting material 498 (entry 5) and 8-tert-butyl-substituted compound 484 from precursor 500 (entry 6) can be achieved in good yields. Surprisingly, the formation of 8-OTBS substituted polycycle 486 proceeded uneventfully without the removal of the protecting group from 504 (entry 7). This demonstrated nicely the mild reduction conditions for the necessary indole formation. Chlo-ro-substituted compound 517 can be converted into plain compound 514 in good yield (entry 8). This reaction proceeds via the formation of unsaturated compound 521, which is reduced further under the applied reduction conditions with prolonged reaction time. After the typical duration of the reduction (1.5 h), both compounds are usually isolated and cannot be separated. Entry 9 finally shows the formation of bridged cyclohepta[b]indole 481 arising from polycyclic $\mathbf{5 2 0}$ in good yield.

Table 4: Reductive cyclohepta[b]indole formation.
encerial
a=conditions: $\mathrm{Zn}, \mathrm{AcOH}, 50^{\circ} \mathrm{C}, 1.5 \mathrm{~h} . \mathrm{b}=$ only one isomer depicted. In order to see which isomer was used, see the experimental part. The stereochemistry is not asigned.

To showcase the applicability of our developed methodology, we chose to demonstrate the formal synthesis of A FABP inhibitor 421 (see scheme 64). ${ }^{[4.10]}$ In order to introduce the necessary carboxylic acid, we first installed an ortho-lithiation handle according to the procedure of Katritzky and co-workers. ${ }^{[4949]}$ This was easily achieved using formalin solution in the presence of pyrrolidine under refluxing conditions. Compound $\mathbf{5 2 2}$ can be obtained in this fashion in 82% yield. Ortho-lithiation was then achieved using tert-butyllithium at ambient temperature. Trapping of this Grignard-like reagent with CO_{2} resulted in the formal synthesis of A FABP inhibitor 421. The obtained compound $\mathbf{5 2 3}$ has been shown to be interconvertable into compound $\mathbf{4 2 1}$ via esterification, benzylation and saponification.

Scheme 64: Formal synthesis of A FABP inhibitor 421.

Beyond We originally intended to further stretch the scope of this methodology to form 2-substituted indoles, using aldehydes as starting materials. This approach did not proceed fruitfull, a detailed account can be found in the master thesis of L. Dempwolff. ${ }^{[4.1]}$ In order to spare future colleagues the effort of rerunning useless experiments a summary of unsucessfull insertion precursors is provided next.

Piperidones did not work in the diazo insertion reaction, neither with a methylated nitrogen (524) nor with more deactivated carbamate 525 (see figure 35). The only attempts using phosphorus substitution employed β-ketophosphonate 526, which did not give any desired reaction products.

A variety of carbon/oxygen compounds did not undergo the desired reaction, due to conjugation of the keto-functionality (like 527/531/535/536), due to steric congestion (530/532) or wrong ring size (528/529/536). In addition to that, further oxo-functionalities seem to be not tolerated in this reaction (533/534/535). The only examined lactone 537 did not undergo the desired reaction.

No failed attempt for the reduction to the corresponding indole has been observed.

Unsuccessful Precursors

Figure 35: Unsuccessful precursors for the diazo-insertion reaction with DMNB 235.

4.7 Summary and Outlook

In summary, we have developed a unique methodology for the synthesis of 8 -substituted cyclohepta[b]indoles via diazo insertion with DMNB 235 and subsequent reduction. The scope of this reaction sequence includes the incooperation of heteroatoms at the 8 -position (oxygen, sulfur), as well as aliphatic or aromatic moieties. In most cases both reactions are high yielding, and deliver fast access to previously unsynthesized molecules. The chemistry of DMNB 235 has been greatly expanded, a daunting endeavour, as DMNB is said to be an explosive compound and tends to react easily enough with itself. We furthermore succeeded in demonstrating the utility of our new methodology in the formal synthesis of A FABP inhibitor 421. The scope of the reaction can be best described by being limited to 3 -substituted cyclohexanones, if the yield is to be in an acceptable range. 2-Substituted hexanones yield only a small amount of product, with inseparable product mixtures, apart from the activating chloro-substituent. Cage structures can be generated as well using this methodology. The discussed methodology failed using nitrogen surrogates, which would be a very valuable addition to the substrate scope.

For future endeavours the implementation of other nitrogen surrogates is recommended. Because of the complexing nature of the nitrogen lone pair it has to be deactivated, probably by the formation of borate complex 539 from compound 538 (see scheme 65). Now the "real" Lewis acid trimethylaluminium can activate the carbonyl moiety and lead to successful diazo insertion to give 540. Final reduction will lead to the incoporation of nitrogen to the substrate scope, yielding 541. In order to increase the versatility of this reaction, the attachment of halides onto the to-be-formed indole core has to be achieved. Thereby
the substitution pattern can be greatly increased due to later cross coupling reactions. 1-bromo-2-(diazomethyl)-3-nitrobenzene (543) can probably be prepared from commercially available toluene derivative 542 upon oxidation ${ }^{[4.50]}$ and the well established hydrazone formation/ α-elimination sequence. Next in line, 4-bromo-2-(diazomethyl)-1-nitrobenzene (546) should be accessible from 3-bromobenzaldehyde 545 via nitration ${ }^{[4.51]}$ and the aforementioned diazo-formation sequence. 4-bromo-1-(diazomethyl)-2-nitrobenzene (549) could be accessed from 4-bromo-2-nitrobenzaldehyde 548, as this aldehyde is fairly inexpensive, via diazo formtion. Finally, 1-bromo-3-methyl-2-nitrobenzene (551) can be oxidized to the corresponding aldehyde, which should be convertible to 1-bromo-3-(diazomethyl)-2nitrobenzene (552). With an access to those diazo compounds, we could obtain all the different bromo-substituted indoles 544, 547, 550 and 553.

; a. oxidation
! b. hydrazone formation
c. α-elimination

a. nitration
b. hydrazone
formation
c. α-elimination

546

548

552

Scheme 65: Synthetic outlook towards a bigger substrate scope.

4.8 Experimentals

General

All reactions were performed under an inert atmosphere using Argon as the inert gas, using oven-dried glassware unless stated otherwise. Chemicals were used as bought from chemical suppliers. Solvents were used as bought from chemical suppliers or obtained from a dispensory system. THF was used dry after being distilled from $\mathrm{Na} /$ benzophenone or as bought from Acros Organics, 99,5\% over molsieves, stabilized. DCM was used after distillation over CaH_{2} or as bought from chemical suppliers. Acetonitrile was used as bought from Acros Organics 99.9\% over molsieves. Acetone was used as bought from Acetone: VMR, technical grade. NEt_{3} was used after distillation over CaH_{2} or as bought from chemical suppliers. No difference in reactivities/yields was observed using different solvent sources. THF for Pdcatalyzed enolate coupling was used after sparging the solvent with argon for 30 minutes under ultrasonication. TLC was carried out using Macherey-Nagel, ALUGRAM Xtra SIL $\mathrm{G} / \mathrm{UV}_{254}$, Aluminium plates, silica 60 . Silica gel-chromatography was carried out using Ma-cherey-Nagel, Silica $60 \mathrm{M}, 0.04-0.083 \mathrm{~mm}$ mesh. Preparative thin layer chromatography was carried out using Macherey-Nagel, ADAMANT UV ${ }_{254}$, Glass plates, silica 60. NMRmeasurements were carried out using Bruker DPX 200 MHz , Bruker AV 400 MHz , Bruker DPX 400 MHz and Bruker DRX 500 MHz . All NMR-spectra are referenced to $7.26 \mathrm{ppm}\left(\mathrm{CDCl}_{3},{ }^{1} \mathrm{H}\right.$) and $77.16 \mathrm{ppm}\left(\mathrm{CDCl}_{3},{ }^{13} \mathrm{C}\right), 3.31 \mathrm{ppm}$ (methanol- $\left.\mathrm{d}_{4},{ }^{1} \mathrm{H}\right)$ and 49.00 ppm (methanol- $\mathrm{d}_{4},{ }^{13} \mathrm{C}$) or $2.50 \mathrm{ppm}\left(\mathrm{DMSO}-\mathrm{d}_{6},{ }^{1} \mathrm{H}\right.$) and 39.52 (DMSO- $\mathrm{d}_{6},{ }^{13} \mathrm{C}$). IR measurements were carried out using Bruker Vector 22 or Shimadzu IRAffinity-1S. UPLC-MS Spectra were recorded using Waters QTOF-Premier (Waters Aquity Ultra Performance, electron spray ionization). HR-EI-MS were obtained using Micromass GCT. Optical rotations were measured using Perkin Elmer Polarimeter 341.

This project has been in part conducted within the Master Thesis of Lukas Dempwolff at the Leibniz University of Hanover under the supervision of the author of this thesis. ${ }^{[4.1]}$

Graphical Overview VI

DMNB-preparation

4-methyl-N'-(2-nitrobenzylidene)benzenesulfonohydrazide (447)

447
2-nitrobenzaldehyde 446 ($10.63 \mathrm{~g}, 70 \mathrm{mmol}, 1.0$ equiv.) was dissolved in $\mathrm{MeOH}(120 \mathrm{~mL})$ and p-toluenesulfonylhydrazide ($13.75 \mathrm{~g}, 74 \mathrm{mmol}, 1.1$ equiv.) was added under stirring. The solution was heated to $60^{\circ} \mathrm{C}$ for 30 minutes. The precipitate was filtered off, washed with MeOH and dried in vacuo to yield 21.8 g (97\%) of 447 as a yellow powder.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}\right.$, DMSO-d $\left.\mathrm{d}_{6}\right): \delta=10.91(\mathrm{~s}, 1 \mathrm{H}), 8.28(\mathrm{~s}, 1 \mathrm{H}), 8.02(\mathrm{dd}, \mathrm{J}=8.2,1.2 \mathrm{~Hz}, 1 \mathrm{H})$, 7.91-7.69 (m, 4H), 7.68-7.55 (m, 1H), 7.42 (d, J=8.2 Hz, 2H), $2.36(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$-NMR ($\mathbf{1 0 0}$ MHz, DMSO-d ${ }_{6}$): $\delta=147.8,143.7,142.3,136.1,133.8,130.7,129.8,128.0,127.8,127.2$, 124.6, 21.0 ppm . IR (neat sample): 3190, 1964, 1595, 1521, 1434, 1372, 1342, 1300, 1212, $1186,1169,1159,1085,1062,931,877,861,808 \mathrm{~cm}^{-1}$.

1-(diazomethyl)-2-nitrobenzene (235)

Potassium hydroxide ($1.76 \mathrm{~g}, 31 \mathrm{mmol}, 2.0$ equiv.) was dissolved in $\mathrm{MeOH}(47 \mathrm{~mL}$) and 4-methyl- N^{\prime}-(2-nitrobenzylidene)benzenesulfonohydrazide 447 ($5.00 \mathrm{~g}, 16 \mathrm{mmol}, 1.0$ equiv.) was added under stirring. The solution was heated to reflux for 30 minutes and then cooled to ambient temperature followed by dilution with ice and water. The solution was extracted with DCM, dried over MgSO_{4} and concentrated in vacuo to afford 2.38 g (93\%) of $\mathbf{2 3 5}$ as an orange oil. The product was always prepared freshly for subsequent reactions and was temporarily stored in the dark.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=8.20-8.16(\mathrm{~m}, 1 \mathrm{H}), 7.58-7.50(\mathrm{~m}, 1 \mathrm{H}), 7.14-7.05(\mathrm{~m}, 2 \mathrm{H}), 6.55$ (s, 1H) ppm. ${ }^{13} \mathrm{C}$-NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=134.0,129.0,127.1,123.2(2 \mathrm{C}), 47.2 \mathrm{ppm}$. IR (neat sample): 3130, 2056, 1603, 1562, 1508, 1479, 1436, 1366, 1331, 1304, 1263, 1202, $1163,1132,1069,1045,860,822 \mathrm{~cm}^{-1}$.

4.8.1 General procedure for diazo-insertion

The ketone was weighed out in an argon-sparged schlenk flask, followed by the addition of dichloromethane (0.5 mL) and cooling to $-78^{\circ} \mathrm{C}$. Trimethylaluminium (2 M in toluene, 1 eq .) was added dropwise, a gas outlet was attached. The diazo compound 235 (3 eq .) was then added over the course of 2 h (0.5 eq. every 20 min .) by using a 1 M solution. The reaction was finished after the gas evolution ceased, but was usually carried out overnight. Addition of water quenched the reaction, extraction with diethyl ether and drying over MgSO_{4} followed next. The solution was then concentrated in vacuo and purified via column chromatography.

2-(2-nitrophenyl)cyclopentan-1-one (490, $n=1$)

490, n=1
According to the general procedure using cyclobutanone (489, $\mathrm{n}=1$) ($96 \mathrm{mg}, 100 \mu \mathrm{~L}, 1.37$ mmol, 1 eq.) and yielding 32.0 mg (22\%) of 490 after chromatography.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=8.03-7.99(\mathrm{~m}, 1 \mathrm{H}), 7.61-7.56(\mathrm{~m}, 1 \mathrm{H}), 7.46-7.40(\mathrm{~m}, 1 \mathrm{H})$, 7.31-7.27 (m, 1H), 3.91 (dd, J=11.8, 8.2 Hz, 2H), 2.63-2.52 (m, 1H), 2.52-2.47 (m, 1H), 2.46$2.35(\mathrm{~m}, 1 \mathrm{H}), 2.29-2.14(\mathrm{~m}, 2 \mathrm{H}), 2.09-1.95(\mathrm{~m}, 1 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$: $\delta=215.6,149.4,133.7,133.5,131.7,128.2,125.5,54.1,38.0,31.5,21.1 \mathrm{ppm}$. IR (neat sample): $2928,2858,1701,1520,1347,934,853 \mathrm{~cm}^{-1}$. HRMS (ESI, m / z): calc. for $\left[\mathrm{C}_{11} \mathrm{H}_{11} \mathrm{NO}_{3} \mathrm{Na}^{+}\right]$: 228.0637, found: 228.0637 .

2-(2-nitrophenyl)cycloheptan-1-one (441)

According to the general procedure using cyclohexanone 435 ($97 \mathrm{mg}, 100 \mu \mathrm{~L}, 99 \mu \mathrm{~mol}, 1 \mathrm{eq}$. and yielding 223 mg (95\%) of 441 after chromatography.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.93(\mathrm{~d}, \mathrm{~J}=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.63(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.47(\mathrm{~d}, \mathrm{~J}=7.3 \mathrm{~Hz}$, 1 H), $7.41(\mathrm{t}, \mathrm{J}=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.43(\mathrm{~d}, \mathrm{~J}=10.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.98-2.87(\mathrm{~m}, 1 \mathrm{H}), 2.60(\mathrm{ddd}, \mathrm{J}=16.7,12.0$ $\mathrm{Hz}, 1 \mathrm{H}), 2.10-1.98(\mathrm{~m}, 5 \mathrm{H}), 1.88-1.78(\mathrm{~m}, 1 \mathrm{H}), 1.63-1.57(\mathrm{~m}, 1 \mathrm{H}), 1.40-1.30(\mathrm{~m}, 1 \mathrm{H}) \mathrm{ppm}$. ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=211.6,148.4,136.6,133.2,131.0,127.7,124.6,53.0,43.9$, 32.3, 30.3, 29.1, 23.5 ppm . IR (neat sample): 2934, 2858, 1698, 1525, 1347, $852 \mathrm{~cm}^{-1} . \mathbf{R}_{\mathrm{f}}$: 0.38 (5:1 PE:EtOAc), HRMS (ESI, m / z): calc. for $\left[\mathrm{C}_{13} \mathrm{H}_{15} \mathrm{NO}_{3} \mathrm{Na}^{+}\right]: 256.0950$, found: 256.0950.

5-(2-nitrophenyl)oxepan-4-one (492)

According to the general procedure using tetrahydro-4H-pyran-4-one 491 (105 mg, $97 \mu \mathrm{~L}$, $105 \mu \mathrm{~mol}, 1$ eq.) and yielding 210 mg (85\%) of 492 after chromatography.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=8.01-7.94(\mathrm{~m}, 1 \mathrm{H}), 7.67-7.60(\mathrm{~m}, 1 \mathrm{H}), 7.46-7.40(\mathrm{~m}, 2 \mathrm{H}), 4.66$ (dd, J=11.9, 2.0 Hz, 1H), 4.25 (dt, J=12.6, 3.4 Hz, 1H), 4.19 (ddd, J=13.3, 5.0, 3.3 Hz, 1H), 3.93$3.80(\mathrm{~m}, 1 \mathrm{H}), 3.77-3.65(\mathrm{~m}, 1 \mathrm{H}), 3.02-2.83(\mathrm{~m}, 2 \mathrm{H}), 2.42-2.26(\mathrm{~m}, 1 \mathrm{H}), 2.05-1.91(\mathrm{~m}, 1 \mathrm{H})$ ppm. ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=208.2,148.3,135.4,133.6,130.7,128.1,125.0,72.7$, 66.6, 52.9, $45.8,33.8 \mathrm{ppm}$. IR (neat sample): 2957, 2868, 1980, 1710, 1609, 1578, 1524, 1393, 1348, 1302, 1200, 1156, 1116, 1042, 994, 921, 895, 855, $821 \mathrm{~cm}^{-1} . \mathbf{R}_{\mathrm{f}}: 0.14$ (5:1 PE:EtOAc), HRMS (ESI, m / z): calc. for $\left[\mathrm{C}_{12} \mathrm{H}_{13} \mathrm{NO}_{4} \mathrm{Na}^{+}\right]$: 258.0742, found: 258.074.

According to the general procedure using tetrahydro-4H-thiopyran-4-one 487 (118 mg, 1.00 mmol, 1 eq.) and yielding 215 mg (85%) of 493 after chromatography.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.89(\mathrm{~d}, \mathrm{~J}=8.2,1 \mathrm{H}), 7.70-7.60(\mathrm{~m}, 2 \mathrm{H}), 7.45-7.38(\mathrm{~m}, 1 \mathrm{H})$, 4.54-4.45 (m, 1H), 3.38 (dt, J=15.6, 3.7 Hz, 1H), 3.07-2.99 (m, 2H), 2.96-2.78 (m, 3H), 2.392.25 (m, 2H) ppm. ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=208.5,148.2,135.3,133.3,131.04,127.9$, 124.3, $50.7,46.8,36.4,34.2,27.0 \mathrm{ppm}$. IR (neat sample): 3791, 3630, 2918, 2187, 2051, 1963, 1711, 1608, 1578, 1524, 1427, 1350, 1185, $854 \mathrm{~cm}^{-1} . \mathrm{R}_{\mathrm{f}}: 0.43$ ($5: 1 \mathrm{PE}: E t O A c$), HRMS (ESI, m / z): calc. for $\left[\mathrm{C}_{12} \mathrm{H}_{13} \mathrm{NO}_{3} \mathrm{NaS}^{+}\right]$: 274.0513, found: 274.0514.

5-methyl-2-(2-nitrophenyl)cycloheptan-1-one (495/496)

495/496
According to the general procedure using 4-methylcyclohexanone 494 ($116 \mathrm{mg}, 127 \mu \mathrm{~L}, 103$ $\mu \mathrm{mol}, 1$ eq.) and yielding 202 mg (80%) 495/496 after chromatography as a 1.7:1 (ds1:ds2) diastereomeric mixture.

Diastereomer 1:

${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.92$ (dd, J=8.2, 1.4 Hz, 1H), $7.61(\mathrm{td}, J=7.5,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.45$ (dd, J=7.9, 1.4 Hz, 1H), 7.40 (td, J=7.7, 1.4 Hz, 1H), 4.45 (dd, J=8.9, 3.8 Hz, 1H), 2.84-2.76 (m, 1H), 2.68-2.59 (m, 1H), 2.22-2.09 (m, 2H), 2.09-1.99 (m, 2H), 1.89-1.80 (m, 1H), 1.72-1.63 $(\mathrm{m}, 2 \mathrm{H}), 0.97(\mathrm{~d}, \mathrm{~J}=7.2 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=211.3,148.9,136.2$, 133.3, 130.8, 127.7, 124.7, $52.8,40.2,35.4,32.0,30.0,27.6,18.6 \mathrm{ppm}$. IR (neat sample):

2953, 2926, 2870, 1705, 1609, 1578, 1524, 1456, 1348, 1163, 1150, $852 \mathrm{~cm}^{-1} . \mathbf{R}_{\mathrm{f}}: 0.59$ (5:1 PE:EtOAc).

Diastereomer 2:
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.93(\mathrm{dd}, \mathrm{J}=8.0,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.61(\mathrm{td}, \mathrm{J}=7.7,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.44-$ $7.37(\mathrm{~m}, 2 \mathrm{H}), 4.39-4.35(\mathrm{~m}, 1 \mathrm{H}), 2.91-2.83(\mathrm{~m}, 1 \mathrm{H}), 2.71-2.61(\mathrm{~m}, 1 \mathrm{H}), 2.15-1.98(\mathrm{~m}, 3 \mathrm{H})$, $1.88-1.79(\mathrm{~m}, 1 \mathrm{H}), 1.75-1.64(\mathrm{~m}, 1 \mathrm{H}) .1 .62-1.56(\mathrm{~m}, 1 \mathrm{H}), 1.44-1.32(\mathrm{~m}, 1 \mathrm{H}), 1.04(\mathrm{~d}, \mathrm{~J}=6.8$ $\mathrm{Hz}, 3 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=211.3,148.3,136.5,133.2,130.9,127.6,124.6$, $53.4,43.0,39.0,35.9,31.7,31.5,24.3 \mathrm{ppm}$. IR (neat sample): 2949, 2924, 2868, 1701, 1609, 1578, 1522, 1454, 1346, 1165, 1149, $852 \mathrm{~cm}^{-1} . \mathbf{R}_{\mathrm{f}}: 0.54$ ($5: 1 \mathrm{PE}: E t O A c$).

HRMS (mixture of diastereomers) (ESI, m / z): calc. for $\left[\mathrm{C}_{14} \mathrm{H}_{17} \mathrm{NO}_{3} \mathrm{Na}^{+}\right] 270.1107$, found: 270.1106.

5-(tert-butyl)-2-(2-nitrophenyl)cycloheptanone (500-502)

500/501
According to the general procedure using 4-tert-butylcyclohexanone 427 ($154 \mathrm{mg}, 100 \mu \mathrm{~mol}$, 1 eq.) and yielding 89.7 mg (31\%) of 500/501 in a 1.16:1 mixture of diastereomers (ds1:ds2) and 152.8 mg (36\%) of double insertion product 502.

First Diastereomer:
${ }^{1} \mathrm{H}$-NMR (400 MHz, CDCl ${ }_{3}$): $\delta=7.96-7.87(\mathrm{~m}, 1 \mathrm{H}), 7.64-7.56(\mathrm{~m}, 1 \mathrm{H}), 7.45-7.36(\mathrm{~m}, 2 \mathrm{H}), 4.57$ $(\mathrm{t}, \mathrm{J}=6.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.81-2.69(\mathrm{~m}, 1 \mathrm{H}), 2.69-2.60(\mathrm{~m}, 1 \mathrm{H}), 2.31-2.15(\mathrm{~m}, 2 \mathrm{H}), 2.11-1.97(\mathrm{~m}, 2 \mathrm{H})$, 1.54-1.39 (m, 3H), $0.91(\mathrm{~s}, 9 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=210.6,149.7,135.4$, 132.9, 130.4, 127.7, 124.7, 51.9, 49.5, 33.8, 29.1, 27.6 (3C), 27.0, 25.7 ppm . IR (neat sample): 2955, 2866, 1707, 1609, 1578, 1522, 1479, 1443, 1396, 1346, 1302, 1234, 1213, 1109, 1088, 997, $962,927,903,852 \mathrm{~cm}^{-1} . \mathbf{R}_{\mathrm{f}}: 0.52$ (5:1 PE:EtOAc).

Second Diastereomer:
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.92(\mathrm{dd}, \mathrm{J}=8.2,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.62(\mathrm{td}, \mathrm{J}=7.7,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.48-$ $7.44(\mathrm{~m}, 1 \mathrm{H}), 7.42-7.37(\mathrm{~m}, 1 \mathrm{H}), 4.43$ (dd, J=11.6, 1.9 Hz, 1H), 2.99-2.89 (m, 1H), 2.55 (ddd, $J=16.7,12.1,4.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.23-1.94(\mathrm{~m}, 4 \mathrm{H}), 1.67-1.55(\mathrm{~m}, 1 \mathrm{H}), 1.44-1.32(\mathrm{~m}, 1 \mathrm{H}), 1.12-1.03$ $(\mathrm{m}, 1 \mathrm{H}), 0.92(\mathrm{~s}, 9 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=211.7,148.5,136.5,133.3,130.9$, 127.7, 124.6, $52.8,51.2,43.6,33.9,32.7,31.4,27.6,25.2 \mathrm{ppm}$. IR (neat sample): 2957, 2868, 1707, 1609, 1578, 1526, 1478, 1449, 1366, 1346, $853 \mathrm{~cm}^{-1} . \mathbf{R}_{\mathrm{f}}$: 0.50 (5:1 PE:EtOAc).

HRMS (mixture of diastereomers) (ESI, m / z): calc. for $\left[\mathrm{C}_{17} \mathrm{H}_{23} \mathrm{NO}_{3} \mathrm{Na}^{+}\right] 312.1576$, found: 312.1571.

Double insertion product (502):
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.84-7.78(\mathrm{~m}, 4 \mathrm{H}), 7.55(\mathrm{td}, \mathrm{J}=7.7,1.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.34(\mathrm{td}, \mathrm{J}=7.8$, $1.3 \mathrm{~Hz}, 2 \mathrm{H}$), 4.91 (dd, J=10.7, 4.2 Hz, 2H), 2.36-2.26 (m, 2H), 2.13 (ddt, J=14.0, 9.4, 4.5 Hz, 2H), 1.95-1.85 (m, 2H), 1.67-1.59 (m, 1H), 1.57-1.47 (m, 2H), $0.94(\mathrm{~s}, 9 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}-\mathrm{NMR}$ $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=213.2,149.3,134.8,132.8,130.6,127.6,124.3,51.1,45.1,35.2,34.9$, 27.5, 26.6 ppm . IR (neat sample): 2951, 1868, 1714, 1607, 1578, 1520, 1477, 1445, 1346, 1265, 1070, 1051, $856 \mathrm{~cm}^{-1}$. \mathbf{R}_{f} : 0.46 ($5: 1 \mathrm{PE}: E t O A c$). HRMS (ESI, m / z): calc. for [$\mathrm{C}_{24} \mathrm{H}_{28} \mathrm{~N}_{2} \mathrm{O}_{5} \mathrm{~N}^{+}$]: 447.1896, found: 447.1898.

2-(2-nitrophenyl)-5-phenylcycloheptanone (498/499)

498/499
According to the general procedure using 4-phenylcyclohexanone 497 ($174 \mathrm{mg}, 1.00 \mathrm{mmol}, 1$ eq.) and yielding 288 mg (93%) of 498/499 in a 2.1:1 diastereomeric mixture of ds1:ds2 after chromatography as a clear oil.

Diastereomer 1:
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.95(\mathrm{dd}, \mathrm{J}=8.2,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.65-7.59(\mathrm{~m}, 1 \mathrm{H}), 7.47-7.40(\mathrm{~m}$, 2H), 7.34-7.29 (m, 2H), 7.25-7.19 (m, 3H), 4.74 (t, J=5.8 Hz, 1H), 3.04 (tt, J=10.4, 3.8 Hz, 1H), 2.94 (ddd, $J=12.9,11.5,3.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.70$ (ddd, $J=13.0,7.5,2.7 \mathrm{~Hz}, 1 \mathrm{H}$), $2.44-2.37$ ($\mathrm{m}, 2 \mathrm{H}$), 2.26-2.09 (m, 2H), 1.99-1.87 (m, 2H) ppm. ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=210.3,149.7$, $146.4,135.2,133.0,130.4,128.8,128.7,127.8,126.9,126.5,124.8,52.4,46.3,42.1,33.4$, 32.2, 29.1 ppm. IR (neat sample): 2930, 2860, 1705, 1609, 1522, 1493, 1450, 1348, 937, 891, $854 \mathrm{~cm}^{-1} . \mathbf{R}_{\mathrm{f}}: 0.45$ (5:1 PE:EtOAc).

Diastereomer 2:
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.96$ (dd, J=8.1, $\left.1.3 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.64(\mathrm{td}, J=7.6,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.47$ (dd, J=7.9, 1.4 Hz, 1H), 7.42 (ddd, J=8.3, 7.2, 1.4 Hz, 1H), 7.35-7.30 (m, 2H), 7.24-7.21 (m, $3 \mathrm{H}), 4.52(\mathrm{dd}, \mathrm{J}=10.2,2.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.05-2.97(\mathrm{~m}, 1 \mathrm{H}), 2.81$ (ddd, J=16.9, 12.2, $4.5 \mathrm{~Hz}, 1 \mathrm{H}$), 2.72-2.67 (m, 1H), 2.30-2.09 (m,5H), 1.95-1.83 (m, 1H) ppm. ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$: $\delta=211.0,147.8,136.5,133.4,131.0,128.8,127.9,126.5$ (2C), 124.8, 53.5, 47.6, 43.3, 39.1, 32.1, 30.9 ppm . IR (neat sample): 2928, 2864, 1705, 1609, 1524, 1493, 1348, 930, 910,854 $\mathrm{cm}^{-1} . \mathbf{R}_{\mathrm{f}}: 0.42$ (5:1 PE:EtOAc).

HRMS (mixture of diastereomers) (ESI, m / z): calc. for $\left[\mathrm{C}_{19} \mathrm{H}_{19} \mathrm{NO}_{3} \mathrm{Na}^{+}\right] 332.1263$, found: 332.1264.

5-((tert-butyldimethylsilyl)oxy)-2-(2-nitrophenyl)cycloheptanone (504/505)

504/505
According to the general procedure using 4-(tert-butyldimethylsilyl)oxy)cyclohexanone 503 ($228 \mathrm{mg}, 1.00 \mathrm{mmol}, 1 \mathrm{eq}$.) and yielding $294 \mathrm{mg}(81 \%$) of 504/505 in an undeterminable diastereomeric mixture (via crude NMR) after chromatography as a colourless oil.

Diastereomer 1:
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.91$ (dd, J=8.2, 1.2 Hz, 1H), 7.60 (td $J=7.6,1.4 \mathrm{~Hz}, 1 \mathrm{H}$), 7.43 (dd, J=7.9, 1.4 Hz, 1H), 7.42-7.35 (m, 1H), 4.34-4.28 (m, 2H), 3.05-2.94 (m, 1H), $2.58(\mathrm{dt}$, $J=16.8,4.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.47-2.34(\mathrm{~m}, 1 \mathrm{H}), 2.11-1.98(\mathrm{~m}, 3 \mathrm{H}), 1.85-1.68(\mathrm{~m}, 2 \mathrm{H}), 0.91(\mathrm{~s}, 9 \mathrm{H})$, $0.08(\mathrm{~s}, 3 \mathrm{H}), 0.07(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=210.9,148.5,136.9,133.2$, 131.0, 127.6, 124.6, 67.6, 53.6, 38.0, 36.9, 30.2, 25.9, 25.6, 18.2, $-4.7,-4.8 \mathrm{ppm}$. IR (neat sample): 2951, 2928, 1855, 1705, 1524, 1472, 1348, 1252, 1074, 1049, $974,922,837 \mathrm{~cm}^{-1}$. $\mathbf{R}_{\mathrm{f}}: 0.68$ (5:1 PE:EtOAc).

Diastereomer 2:
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathbf{4 0 0} \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.95$ (dd, J=8.2, 1.4 Hz, 1H), 7.63-7.57 (m, 1H), 7.44-7.36 (m, 2 H), 4.37 (dd, J=9.8, $3.0 \mathrm{~Hz}, 1 \mathrm{H}$), 3.76 (tt, J=9.1, $3.4 \mathrm{~Hz}, 1 \mathrm{H}$), 2.88 ($\mathrm{ddd}, J=16.3,6.0,3.9 \mathrm{~Hz}$, $1 \mathrm{H}), 2.66-2.56(\mathrm{~m}, 1 \mathrm{H}), 2.16-1.95(\mathrm{~m}, 5 \mathrm{H}), 1.84-1.73(\mathrm{~m}, 1 \mathrm{H}), 0.91(\mathrm{~s}, 9 \mathrm{H}), 0.09(\mathrm{~s}, 3 \mathrm{H}), 0.08$ (s, 3H) ppm. ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$): $\delta=210.6,148.6,136.2,133.4,131.0,127.9,124.9$, 73.0, $53.7,39.3,38.7,33.2,27.7,26.0,25.9,18.3,-4.6$ (2C) ppm. IR (neat sample): 2951, 2928, 2857, 1707, 1609, 1526, 1472, 1348, 1252, 1080, 1005, 930, $837 \mathrm{~cm}^{-1} . \mathbf{R}_{\mathrm{f}}$: 0.57 (5:1 PE:EtOAc).

HRMS (mixture of diastereomers) (ESI, m / z): calc. for $\left[\mathrm{C}_{19} \mathrm{H}_{29} \mathrm{NO}_{4} \mathrm{SiNa}{ }^{+}\right]$: 386.1774 , found: 386.1770.

3-(2-nitrophenyl)bicyclo[3.2.1]octan-2-one (520)

520
According to the general procedure using norcamphor 519 ($100 \mathrm{mg}, 1.00 \mathrm{mmol}, 1 \mathrm{eq}$.) and yielding 121 mg (34\%) of 520 after chromatography.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=8.00-7.94(\mathrm{~m}, 1 \mathrm{H}), 7.62-7.54(\mathrm{~m}, 1 \mathrm{H}), 7.45-7.37(\mathrm{~m}, 1 \mathrm{H}), 7.30$ ($\mathrm{s}, 1 \mathrm{H}$), 4.25 (dd, $J=11.6,7.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.91(\mathrm{t}, \mathrm{J}=5.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.69-2.54(\mathrm{~m}, 1 \mathrm{H}), 2.29-2.19(\mathrm{~m}$, 1H), 2.15-2.04 (m, 3H), 2.02-1.86 (m, 4H) ppm. ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=210.0,149.8$,
134.0, 133.2, 131.9, 128.0, 125.2, 51.4, 48.0, 41.0, 38.2, 35.1, 28.4, 28.3 ppm. IR (neat sample): 2952, 2873, 2154, 1711, 1610, 1578, 1525, 1455, 1351, 1089, $850 \mathrm{~cm}^{-1}$. HRMS (ESI, m / z): calc. for $\left[\mathrm{C}_{14} \mathrm{H}_{15} \mathrm{NO}_{3} \mathrm{Na}+\right]$ 268.0949, found: 268.0950 .

2-chloro-7-(2-nitrophenyl)cycloheptanone (517/518)

517/518
According to the general procedure using 2-chlorocyclohexanone 519 ($133 \mathrm{mg}, 114 \mu \mathrm{~L}, 1.00$ mmol, 1 eq.) and yielding 126 mg (47\%) of 517/518 in an undeterminable diastereomeric mixture (via crude NMR) after chromatography.

First diastereomer:
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.95-7.88(\mathrm{~m}, 1 \mathrm{H}), 7.68-7.64(\mathrm{~m}, 2 \mathrm{H}), 7.61-7.59(\mathrm{~m}, 1 \mathrm{H}), 7.42$ (ddd, J=8.3, 7.1, 1.6 Hz, 1H), $5.17(\mathrm{t}, \mathrm{J}=4.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.52$ (dd, J=10.0, 3.8 Hz, 1H), 2.53-2.35 (m, $2 \mathrm{H}), 2.15-2.06(\mathrm{~m}, 2 \mathrm{H}), 2.02(\mathrm{~d}, \mathrm{~J}=4.44 \mathrm{~Hz}, 1 \mathrm{H}), 2.00-1.89(\mathrm{~m}, 1 \mathrm{H}), 1.66-1.58(\mathrm{~m}, 2 \mathrm{H}) \mathrm{ppm}$. ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=203.3,148.3,135.2,133.5,130.7,128.1,124.5,65.7,50.5$, 33.9, 32.9, 29.2, 23.4 ppm. IR (neat sample): 2933, 2863, 1730, 1609, 1524, 1451, 1348, 952, $854 \mathrm{~cm}^{-1} . \mathbf{R}_{\mathrm{f}}: 0.46$ ($5: 1 \mathrm{PE}: \mathrm{EtOAc}$).

Second diastereomer:

${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.88(\mathrm{dd}, \mathrm{J}=8.2,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.63-7.59(\mathrm{~m}, 1 \mathrm{H}), 7.56(\mathrm{td}, \mathrm{J}=7.9$, $1.2 \mathrm{~Hz}, 1 \mathrm{H}$), 7.42 (td, J=7.7, 1.7 Hz, 1H), 4.72 (dd, J=9.9, 3.8 Hz, 1H), 4.55 (dd, J=9.7, 4.6 Hz, 1H), 2.44-2.35 (m, 1H), 2.23-2.15 (m, 1H), 2.13-2.01 (m, 3H), 2.01-1.87 (m, 2H), 1.79-1.67 $(\mathrm{m}, 1 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathbf{1 0 0} \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=203.7,148.8,135.0,133.1,131.3,128.1,124.7$, $63.8,49.4,34.5,32.8,29.0,26.6 \mathrm{ppm}$. IR (neat sample): 2934, 2855, 1721, 1609, 1578, 1526, 1452, 1445, 1350, 1123, 937, $852 \mathrm{~cm}^{-1} . \mathbf{R}_{\mathrm{f}}: 0.40$ (5:1 PE:EtOAc).

HRMS (mixture of diastereomers) (ESI, m / z): calc. for $\left[\mathrm{C}_{13} \mathrm{H}_{14} \mathrm{NO}_{3} \mathrm{CINa}{ }^{+}\right]$: 290.0555, found: 290.0557.

4.8.2 General procedure for the indole formation

The ketone was dissolved in concentrated acetic acid (0.1 M) in a schlenk flask, followed by the addition of zinc powder (25 eq.) and stirring at $50^{\circ} \mathrm{C}$ for 1.5 h . The reaction was then diluted with diethyl ether and quenched upon the addition of sodium hydroxide solution (2 M) until basic conditions were achieved. After extraction with dichloromethane and drying over MgSO_{4}, the solution was then concentrated in vacuo and purified via column chromatography.

5,6,7,8,9,10-hexahydrocyclohepta[b]indole (414)

According to the general procedure, using 441 ($46 \mathrm{mg}, 20 \mu \mathrm{~mol}, 1 \mathrm{eq}$.$) and quantitatively$ yielding 37.0 mg of 441 after chromatography.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.67$ (br. s., 1 H$), 7.52-7.46(\mathrm{~m}, 1 \mathrm{H}), 7.27(\mathrm{~d}, \mathrm{~J}=8.7 \mathrm{~Hz}, 1 \mathrm{H})$, 7.14-7.06 (m, 2H), 2.90-2.77 (m, 4H), 1.97-1.87 (m, 2H), 1.83-1.77 (m, 4H) ppm. ${ }^{13} \mathrm{C}-\mathrm{NMR}$ (125 MHz, CDCl_{3}): $\delta=137.5,134.4,129.4,120.7,119.1,117.8,113.9,110.3,31.9,29.7,28.9$, 27.7, 24.8 ppm . IR (neat sample): 2923, 2853, 1738, 1706, 1525, 1464, 1348, 1240, 1046, $849 \mathrm{~cm}^{-1}$. \mathbf{R}_{f} : 0.70 (5:1 PE:EtOAc). HRMS (ESI, m / z): calc. for $\left[\mathrm{C}_{13} \mathrm{H}_{15} \mathrm{~N}+\mathrm{H}\right]$ 186.1283, found: 186.1283.

1,4,5,6-tetrahydro-2H-oxepino[4,5-b]indole (472)

According to the general procedure, using 491 ($80 \mathrm{mg}, 34 \mu \mathrm{~mol}, 1 \mathrm{eq}$.) and quantitatively yielding 66.0 mg of 472 after chromatography.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.85$ (br. s., 1 H), $7.50(\mathrm{~d}, \mathrm{~J}=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.34-7.25(\mathrm{~m}, 1 \mathrm{H})$, 7.16 (quin, J=6.7 Hz, 2H), 4.06-3.94 (m, 4H), 3.09-2.94 (m, 4H) ppm. ${ }^{13} \mathrm{C}-\mathrm{NMR}(100 \mathrm{MHz}$, CDCl_{3}): $\delta=135.6,134.8,129.0,121.3,119.4,117.8,112.4$ (2C), 110.5, 73.1, 70.7, 32.3, 27.7 ppm. IR (neat sample): 3897, 3874, 3745, 3665, 3537, 3403, 3297, 3056, 2924, 2856, 1620, 1464, 1423, 1389, 1336, 1319, 1268, 1242, 1179, 1158, 1114, 1009, $922,839 \mathrm{~cm}^{-1}$. HRMS (ESI, m / z): calc. for [$\left.\mathrm{C}_{12} \mathrm{H}_{13} \mathrm{NO}+\mathrm{H}\right]$ 188.1075, found: 188.1079.

1,4,5,6-tetrahydro-2H-thiepino[4,5-b]indole (479)

According to the general procedure, using 493 ($88 \mathrm{mg}, 35 \mu \mathrm{~mol}, 1$ eq.) and yielding 47.1 mg (66\%) of 479 after chromatography.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.71$ (br. s., 1H), 7.53-7.46(m, 1H), 7.32-7.24 (m, 1H), 7.20$7.08(\mathrm{~m}, 2 \mathrm{H}), 3.40-3.13(\mathrm{~m}, 4 \mathrm{H}), 2.98-2.74(\mathrm{~m}, 4 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$: $\delta=135.9,134.3,129.4,121.3,119.5,117.9,112.9,110.4,34.1,31.9,30.0,28.7 \mathrm{ppm} . \operatorname{IR}$ (neat sample): 3388, 3050, 2901, 1463, 1422, 1335, 1313, 1277, 1242, 1219, 1187, 1009, 885 cm^{-1}. \mathbf{R}_{f} : 0.49 (5:1 PE:EtOAc). HRMS (ESI, m / z): calc. for $\left[\mathrm{C}_{12} \mathrm{H}_{13} \mathrm{NS}+\mathrm{H}\right]$: 204.0847, found: 204.0848.

8-methyl-5,6,7,8,9,10-hexahydrocyclohepta[b]indole (483)

According to the general procedure, using the first diastereomer of $495 / 496$ only (25.5 mg , $103 \mu \mathrm{~mol}, 1.0$ eq.) and quantitatively yielding 483 as a white solid (20.5 mg) after chromatography.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.65$ (br.s., 1 H), 7.52-7.46 (m, 1H), 7.29-7.23 (m, 1H), 7.14$7.09(\mathrm{~m}, 2 \mathrm{H}), 3.03$ (ddd, J=15.5, 6.5, 2.6 Hz, 1H), 2.90-2.76 (m, 2H), 2.66-2.57 (m, 1H), 2.00$1.80(\mathrm{~m}, 3 \mathrm{H}), 1.45-1.32(\mathrm{~m}, 2 \mathrm{H}), 1.07(\mathrm{~d}, \mathrm{~J}=6.8 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$: $\delta=137.2,134.3,129.3,120.7,119.1,117.7,113.6,110.3,37.1,36.5,35.2,27.6,24.1,22.9$ ppm. IR (neat sample): 3402, 2947, 2909, 2872, 2841, 1464, 1431, 1335, 1260, 1190, 1150, 1009, $901 \mathrm{~cm}^{-1}$. $\mathbf{R}_{\mathrm{f}}: 0.76$ (5:1 PE:EtOAc). HRMS (ESI, m / z): calc. for $\left[\mathrm{C}_{14} \mathrm{H}_{17} \mathrm{~N}+\mathrm{H}\right]: 200.1439$, found: 200.1436.

8-(tert-butyl)-5,6,7,8,9,10-hexahydrocyclohepta[b]indole (484)

484
According to the general procedure, using both diastereomers of $\mathbf{5 0 0} / \mathbf{5 0 1}$ ($21.5 \mathrm{mg}, 74.3$ $\mu \mathrm{mol}, 1.0 \mathrm{eq}$.) and yielding $14.9 \mathrm{mg}(83 \%)$ of 484 as a white solid after chromatography.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.66$ (br. s., 1 H), $7.51-7.46(\mathrm{~m}, 1 \mathrm{H}), 7.28-7.23(\mathrm{~m}, 1 \mathrm{H}), 7.13-$ 7.05 (m, 2H), 3.13 (ddd, J=15.6, 5.9, 2.4 Hz, 1H), 2.96-2.87 (m, 1H), 2.82-2.71 (m, 1H), 2.58$2.48(\mathrm{~m}, 1 \mathrm{H}), 2.23-2.10(\mathrm{~m}, 2 \mathrm{H}), 1.43-1.27(\mathrm{~m}, 3 \mathrm{H}), 0.95(\mathrm{~s}, 9 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}-\mathrm{NMR}(100 \mathrm{MHz}$, CDCl_{3}): $\delta=137.0,134.5,129.3,120.8,119.1,117.7,113.3,110.3,52.8,34.3,29.7,28.8,28.4$, 27.9 (3C), 24.3 ppm. IR (neat sample): 3389, 2949, 2916, 2859, 1464, 1335, 1262, 1190, 1153, 1007, $908 \mathrm{~cm}^{-1}$. \mathbf{R}_{f} : 0.82 (5:1 PE:EtOAc). HRMS (ESI, m / z): calc. for $\left[\mathrm{C}_{17} \mathrm{H}_{23} \mathrm{~N}+\mathrm{H}\right]$: 242.1909, found: 242.1914

8-phenyl-5,6,7,8,9,10-hexahydrocyclohepta[b]indole (485)

485

According to the general procedure, using only the first diastereomer of 498/499 (3.0 mg, $9.7 \mu \mathrm{~mol}, 1.0$ eq.) and yielding $2.2 \mathrm{mg}(96 \%)$ of 295 as a white solid after chromatography.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.76$ (br.s., 1 H), $7.54-7.46(\mathrm{~m}, 1 \mathrm{H}), 7.34-7.28(\mathrm{~m}, 3 \mathrm{H}), 7.24-$ 7.17 (m, 3H), 7.15-7.06 (m, 2H), 3.19 (ddd, J=15.6, 5.6, 2.4 Hz, 1H), 3.07-2.96 (m, 1H), 2.95$2.84(\mathrm{~m}, 2 \mathrm{H}), 2.71(\mathrm{t}, \mathrm{J}=13.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.23-2.08(\mathrm{~m}, 2 \mathrm{H}), 1.92-1.74(\mathrm{~m}, 2 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}-\mathrm{NMR}$ ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=149.5,137.0,134.3,129.2,128.7,126.8,126.1,120.9,119.3,117.8$, 113.5, 110.4, $50.1,36.4,35.1,28.7,24.0 \mathrm{ppm}$. IR (neat sample): 3402, 2920, 2851, 1493, 1464, 1335, 1258, 1234, 1153, $1011 \mathrm{~cm}^{-1} . \mathbf{R}_{\mathrm{f}}$: 0.82 (5:1 PE:EtOAc). HRMS (EI, m / z): calc. for [$\mathrm{C}_{19} \mathrm{H}_{19} \mathrm{~N}+$]: 261.1517, found: 261.1518.

8-((tert-butyldimethylsilyl)oxy)-5,6,7,8,9,10-hexahydrocyclohepta[b]indole (486)

According to the general procedure, using both diastereomers of $504 / 505$ ($14.9 \mathrm{mg}, 40.9$ $\mu \mathrm{mol}, 1.0 \mathrm{eq}$.) and yielding 12.8 mg (99%) of 486 as a white solid after chromatopgraphy.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.70(\mathrm{br} . \mathrm{s}, 1 \mathrm{H}), 7.50-7.41(\mathrm{~m}, 1 \mathrm{H}), 7.28-7.24(\mathrm{~m}, 1 \mathrm{H}), 7.13-$ 7.05 (m, 2H), 4.13 (tt, J=7.7, 2.7 Hz, 1H), 3.11-2.98 (m, 2H), 2.61 (ddd, J=15.5, 8.8, 2.7 Hz, $2 \mathrm{H}), 1.99-1.90(\mathrm{~m}, 2 \mathrm{H}), 1.90-1.80(\mathrm{~m}, 2 \mathrm{H}), 0.93(\mathrm{~s}, 9 \mathrm{H}), 0.12(\mathrm{~s}, 3 \mathrm{H}), 0.11(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm}$.
${ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$: $\delta=137.0,134.3,129.2,120.8,119.2,117.7,113.4,110.3,73.0$, 37.0, 35.7, 26.1 (3C), 23.3, 18.6, 18.4, -4.5 (2C) ppm. IR (neat sample): 3404, 2951, 2926, $2855,1464,1431,1360,1252,1078,1005,947,835 \mathrm{~cm}^{-1} . \mathbf{R}_{\mathrm{f}}: 0.84$ (5:1 PE:EtOAc). HRMS (ESI, $\mathrm{m} / \mathrm{z})$: calc. for $\left[\mathrm{C}_{19} \mathrm{H}_{29} \mathrm{NOSi}+\mathrm{H}\right]$: 316.2097, found: 316.2093.

1,4,5,6-tetrahydro-2H-thiepino[4,5-b]indole (481)

481

According to the general procedure, using $\mathbf{5 2 0}$ ($50 \mathrm{mg}, 20.0 \mu \mathrm{~mol}, 1.0 \mathrm{eq}$.) and yielding 25.2 mg (64\%) of 481 after chromatography.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.84$ (br. s., 1 H), 7.64-7.57 (m, 1H), 7.50-7.42 (m, 1H), 7.317.22 (m, 2H), 3.23 (br. s., 1H), 3.17 (dd, J=15.2, $4.1 \mathrm{~Hz}, 1 \mathrm{H}$), $2.90(\mathrm{~d}, \mathrm{~J}=5.0 \mathrm{~Hz}, 1 \mathrm{H}$), $2.75-2.68$ (m, 1H), 2.05-1.97 (m, 1H), 1.95-1.90 (m, 3H), 1.82-1.77 (m, 1H), 2.02-1.91 (m, 1H) ppm. ${ }^{13} \mathrm{C}$-NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=141.6,135.5,128.4,120.6,119.3,117.8,110.8,105.5,37.1$, $36.2,35.5,33.8,31.5,29.8 \mathrm{ppm}$. IR (neat sample): 3398, 3052, 2942, 2862, 2255, 2862, $2255,2172,2103,1939,1678,1620,1469,1449,1363,1318,1283,1239,1171,1012 \mathrm{~cm}^{-1}$. HRMS (EI, m / z): calc. for [$\left.\mathrm{C}_{14} \mathrm{H}_{15} \mathrm{~N}+\right]$: 197.1204, found: 197.1206.

5,6,7,8,9,10-hexahydrocyclohepta[b]indole (414)

According to the general procedure, using 517/518 ($2.6 \mathrm{mg}, 9.71 \mu \mathrm{~mol}, 1 \mathrm{eq}$.) and yielding $1.5 \mathrm{mg}(83 \%)$ of 414 after 16 hours reaction time. After 1.5 hours olefin 521 and reduced 414 can be obtained in an inseparable mixture.

NMR-Values for 521:
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.68$ (br. s., 1H), 7.55-7.45 (m, 1H), 7.31-7.22 (m, 1H), 7.20$7.04(\mathrm{~m}, 2 \mathrm{H}), 6.27(\mathrm{~d}, \mathrm{~J}=11.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.00-5.86(\mathrm{~m}, 1 \mathrm{H}), 3.09-3.01(\mathrm{~m}, 2 \mathrm{H}), 2.57(\mathrm{q}, \mathrm{J}=5.1 \mathrm{~Hz}$, 2H), 2.11-2.03 (m, 2H) ppm. IR (neat sample): 3405, 3053, 2917, 2839, 1971, 1620, 1464, $1334,1247,1168,1010 \mathrm{~cm}^{-1}$. $\mathbf{R}_{\mathrm{f}}: 0.70$ (5:1 PE:EtOAc). HRMS (ESI, m / z): calc. for $\left[\mathrm{C}_{13} \mathrm{H}_{13} \mathrm{~N}+\mathrm{H}\right]$: 184.1126, found: 184.1126.

A FABP-inhibitor

5-(pyrrolidin-1-ylmethyl)-5,6,7,8,9,10-hexahydrocyclohepta[b]indole (522)

Cyclohepta[b]indole 414 ($300 \mathrm{mg}, 1.62 \mathrm{mmol}, 1.0$ eq.) was put in a sealed tube and EtOH $(4 \mathrm{~mL})$, formaldehyde (0.5 mL of a 37% solution in water) and pyrrolidine ($0.5 \mathrm{~mL}, 6.09$ mmol, 3.75 eq.) were added. The mixture was heated to reflux for 16 hours. The solvent was then evaporated, and the remaining oil was purified via column chromatography using 5:1 PE:EtOAc as eluent. The desired compound 522 was obtained as a clear oil in 82% yield (355 mg).
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$: $\delta=7.58-7.51(\mathrm{~m}, 1 \mathrm{H}), 7.47-7.33(\mathrm{~m}, 1 \mathrm{H}), 7.21-7.10(\mathrm{~m}, 2 \mathrm{H}), 4.98$ $(\mathrm{s}, 2 \mathrm{H}), 3.05-2.95(\mathrm{~m}, 2 \mathrm{H}), 2.95-2.86(\mathrm{~m}, 2 \mathrm{H}), 2.72-2.61(\mathrm{~m}, 4 \mathrm{H}), 2.03-1.93(\mathrm{~m}, 2 \mathrm{H}), 1.87-$ 1.77 (m, 8H) ppm. ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=139.7,136.5,128.0,120.4,118.9,117.5$, 114.2, 109.5, 61.0 51.3, $32.1,28.4,27.4,26.7,24.5,23.6$ ppm. IR (neat sample): 2916, 2843, 1464, 1344, 1314, 1234, 1180, 1134, 1012, 878, $820 \mathrm{~cm}^{-1}$. Rf: 0.53 (5:1 PE:EtOAc). HRMS (ESI, m / z): calc. for [$\left.\mathrm{C}_{18} \mathrm{H}_{23} \mathrm{~N}_{2}+\mathrm{H}\right]$: 269.2018, found: 269.2020.

5,6,7,8,9,10-hexahydrocyclohepta[b]indole-4-carboxylic acid (523)

Amine 522 ($197 \mathrm{mg}, 734 \mu \mathrm{~mol}, 1.0 \mathrm{eq}$) was dispersed in hexane (15 mL), and the mixture was cooled to $-78{ }^{\circ} \mathrm{C}$, followed by the addition of $t \mathrm{BuLi}(0.58 \mathrm{~mL}$ of a 1.9 M solution in pentane, 1.5 eq.). The solution was allowed to warm to ambient temperature over 16 hours and was then cooled back to $-78^{\circ} \mathrm{C}$. THF (1 mL) was then added, the cooling bad was removed and a stream of CO_{2} was passed through the reaction. After 30 minutes $1 \mathrm{M} \mathrm{HCl}(6 \mathrm{~mL})$ was added, and the mixture was heated to $85^{\circ} \mathrm{C}$ for 30 minutes. EtOAc was then added, as well as solid
brine. The phases were separated, and the aqueous phase was extracted two more times with EtOAc. The combined organic layers were then washed with brine, dried over MgSO_{4}, and the solvent was removed under reduced pressure. The remaining crude solid was the purified via flash colun chromatography using 1:1 PE:EtOAc to pure EtOAc to yield 57.3 mg (34\%) of compound 523 as a white solid.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=9.33$ (br.s., 1 H), 7.86 (dd, J=7.5, $0.9 \mathrm{~Hz}, 1 \mathrm{H}$), 7.74 (d, J=7.7 Hz, $1 \mathrm{H}), 7.13(\mathrm{t}, \mathrm{J}=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.97-2.80(\mathrm{~m}, 4 \mathrm{H}), 2.00-1.78(\mathrm{~m}, 6 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}-\mathrm{NMR}(100 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right): \delta=171.7,139.0,134.7,130.7,124.3,124.0,118.5,114.0,110.5,31.9,29.8,29.6$, 28.8, 27.5, 24.8 ppm . IR (neat sample): 3455, 2920, 2849, 1672, 1614, 1572, 1464, 1441, 1368, 1331, 1306, 1258, 1229, 1200, 1150, $1061 \mathrm{~cm}^{-1}$. Rf: $_{\mathrm{f}} 0.64$ (EtOAc). HRMS (ESI, m / z): calcd. for $\left[\mathrm{C}_{14} \mathrm{H}_{15} \mathrm{NO}_{2}+\mathrm{H}\right]:$ 230.1181; found: 230.1181, calcd. for $\left[\mathrm{C}_{14} \mathrm{H}_{15} \mathrm{NO}_{2}-\mathrm{H}\right]:$ 228.1025; found: 228.1026.

4.9 Spectra

447, 400 MHz , MeOD- d_{4}

$\stackrel{\circ}{\stackrel{\circ}{\pi}}$

447, 100 MHz , MeOD- d_{4}

$235,400 \mathrm{MHz}, \mathrm{CDCl}_{3}$

$235,100 \mathrm{MHz}, \mathrm{CDCl}_{3}$
\qquad

490 ($\mathrm{n}=1$), $\mathbf{4 0 0 \mathrm { MHz } , \mathrm { CDCl } _ { 3 }}$

$490(\mathrm{n}=1), 100 \mathrm{MHz}, \mathrm{CDCl}_{3}$

$441,400 \mathrm{MHz}, \mathrm{CDCl}_{3}$

$441,100 \mathrm{MHz}, \mathrm{CDCl}_{3}$

493, $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$

493, $100 \mathrm{MHz}, \mathrm{CDCl}_{3}$

 $\left.\right|_{\text {․ }} ^{\text {n }}$

495/496,
$100 \mathrm{MHz}, \mathrm{CDCl}_{3}$
second diastereomer

$400 \mathrm{MHz}, \mathrm{CDCl}_{3}$,
first diastereomer

$400 \mathrm{MHz}, \mathrm{CDCl}_{3}$,
second diastereomer

- 211.738

500/501,
$100 \mathrm{MHz}, \mathrm{CDCl}_{3}$,
second diastereomer

	210	200	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30

502,
$400 \mathrm{MHz}, \mathrm{CDCl}_{3}$

502,

$100 \mathrm{MHz}, \mathrm{CDCl}_{3}$

ppm

$400 \mathrm{MHz}, \mathrm{CDCl}_{3}$,
first diastereomer

$\stackrel{\infty}{i}$
i
i
i
i

504/505,
$100 \mathrm{MHz}, \mathrm{CDCl}_{3}$,
first diastereomer

$400 \mathrm{MHz}, \mathrm{CDCl}_{3}$,
second diastereomer

6
$\dot{7} \%$
i

$100 \mathrm{MHz}, \mathrm{CDCl}_{3}$,
second diastereomer

$400 \mathrm{MHz}, \mathrm{CDCl}_{3}$,
second diastereomer

-211.0

-53.5
-47.6
-43.3
-39.1
-32.1
-30.9

498/499,
$100 \mathrm{MHz}, \mathrm{CDCl}_{3}$,
second diastereomer

517/518,
$400 \mathrm{MHz}, \mathrm{CDCl}_{3}$,
second diastereomer

520,
$400 \mathrm{MHz}, \mathrm{CDCl}_{3}$

$\stackrel{N}{\sim}$	$\xrightarrow{-1}$	
$\stackrel{\text { ® }}{ }$	$\stackrel{\text { - }}{\text { - }}$	
\sim		

520,
$100 \mathrm{MHz}, \mathrm{CDCl}_{3}$

$414,400 \mathrm{MHz}, \mathrm{CDCl}_{3}$

ウゥ $\underset{\sim}{\infty} \underset{\sim}{\infty} \underset{\sim}{\sim}$
$414,100 \mathrm{MHz}, \mathrm{CDCl}_{3}$

$472,400 \mathrm{MHz}, \mathrm{CDCl}_{3}$

$472,100 \mathrm{MHz}, \mathrm{CDCl}_{3}$

479, $100 \mathrm{MHz}, \mathrm{CDCl}_{3}$

$\begin{array}{llllllllllllllllllllllllll}190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & & \text { ppm }\end{array}$

$483,400 \mathrm{MHz}, \mathrm{CDCl}_{3}$

483, $100 \mathrm{MHz}, \mathrm{CDCl}_{3}$

$484,400 \mathrm{MHz}, \mathrm{CDCl}_{3}$

$484,100 \mathrm{MHz}, \mathrm{CDCl}_{3}$

[^8]

485, $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$

485, $100 \mathrm{MHz}, \mathrm{CDCl}_{3}$

$486,400 \mathrm{MHz}, \mathrm{CDCl}_{3}$

$486,100 \mathrm{MHz}, \mathrm{CDCl}_{3}$

$481,400 \mathrm{MHz}, \mathrm{CDCl}_{3}$

481, $100 \mathrm{MHz}, \mathrm{CDCl}_{3}$

522, $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$

$522,100 \mathrm{MHz}, \mathrm{CDCl}_{3}$

$523,400 \mathrm{MHz}, \mathrm{CDCl}_{3}$

$523,100 \mathrm{MHz}, \mathrm{CDCl}_{3}$

4.10 References

[4.1] L. Dempwolff, "Development of a diazo-mediated indole synthesis", Master Thesis at the Gottfried Wilhelm Leibniz Universität Hannover, 2015
[4.2] J. R. Knox, J. Slobbe, Tetrahedron Letters, 1971, 24, 2149-2151.
[4.3] P. C. Riche, Acta. Christ. B. 1974, 30, 610-616.
[4.4] A. R. Carroll, E. Hyde, J. Smith, R. J. Quinn, G. Guymer, P. I. Forster, J. Org. Chem. 2005, 70, 1096-1099.
[4.5] Z.-J. Zhang, J. Yang, J. He, X.-D. Wu, L.-D. Shao, Y. Li, S.-X. Huang, R.-T. Li, Q.-S. Zhao, Tetrahedron Letters, 2014, 55, 6490-6494.
[4.6] M. Gorman, N. Neuss, N. J. Cone, J. Am. Chem. Soc. 1965, 87, 93-99.
[4.7] S. Serte, Y. Fu, Y. Zu, B. Rebacz, B. Konkimalla, P. K. Plinkert, A. Kramer, J. Gertsch, T. Efferth, Biochemical Pharmacology, 2011, 81, 723-735.
[4.8] H. Ishikawa, D. A. Colby, S. Seto, P. Va, A. Tam, K. Kakei, T. J. Rayl, I. Hwang, D. L. Boger, J. Am. Chem. Soc. 2009, 131, 4904-4916.
[4.9] A. D. Napper, J. Hixon, T. McDonagh, K. Keavey, J.-F. Pons, J. Barker, W. Yau, P. Amouzegh, A. Flegg, E. Hamelin, R. J. Thomas, M. Kates, S. Jones, M. A. Navia, J. O. Saunders, P. S. DiStefano, R. Curtis, J. Med. Chem. 2005, 48, 8045-8054.
[4.10] T. Barf, F. Lehmann, K. Hammer, S. Haile, E. Axen, C. Medina, J. Uppenberg, S. Svensson, L. Rondahl, T. Lundbäck, Bioorganic \& Medicinal Chemistry Letters, 2009, 19, 1745-1748.
[4.11] G. Tuncman, E. Erbay, I. De Vivo, H. Campos, E. B. Rimm, G. S. Hotamisligil, PNAS, 2006, 103, 6970-6975.
[4.12] C. E. Holmquist, J. Roskamp, J. Org. Chem. 1989, 54, 3528-3560.
[4.13] C. E. Holmquist, J. Roskamp, Tetrahedron. Lett. 1992, 33, 1131-1134.
[4.14] K. Maruoka, A. B. Concepcion, H. Yamamoto, Synthesis, 1994, 1283-1290.
[4.15] S. Yang, B. Hungerhoff, P. Metz, Tetrahedron Lett. 1998, 2097-2098.
[4.16] D. C. Moebius, J. S. Kingsbury, J. Am. Chem. Soc. 2009, 131, 878-879.
[4.17] V. L. Rendina, D. C. Moebius, J. S. Kingsbury, Org. Lett. 2011, 13, 2004-2007.
[4.18] V. L. Rendina, H. Z. Kaplan, J. S. Kingsbury, Synthesis, 2012, 686-693.
[4.19] T. Hashimoto, Y. Naganawa, K. Maruoka, J. Am. Chem. Soc. 2011, 133, 8834-8837.
[4.20] Y. Zhang, J. Wang, Chem. Commun. 2009, 5350-5361.
[4.21] T. Iwama, V. B. Birman, S. A. Kozmin, V. H. Rawal, Org Lett. 1999, 1, 673-676.
[4.22] S. A. Kozmin, V. H. Rawal, J. Am. Chem. Soc. 1998, 120, 13523-13524.
[4.23] E. Merritt, B. Olofsson, Synthesis, 2011, 4, 517-538
[4.24] W. Ried, M. Ritz, Liebigs Ann. Chem. 1966, 691, 50-54.
[4.25] E. Ohtsuka, T. Wakabayashi, S. Tanaka, T. Tanaka, K. Oshie, A. Hasegawa, M. Ikehara, Chem. Pharm. Bull. 1981, 29, 318-324.
[4.26] C. C. Dudman, C. B. Reese, Synthesis, 1982, 419-421.
[4.27] K. Tomioka, N. Iochikawa, K. Komatsu, J. Am. Chem. Soc. 1992, 144, 8045-8053.
[4.28] for a review see: D. F. Taber, P. K. Tirunahari, Tetrahedron, 2011, 67, 7195-7210.
[4.29] S. Gore, S. Baskaran, B. König, Org. Lett. 2012, 14, 4568-4571.
[4.30] Q. Nguyen, T. Nguyen, T. G. Driver, J. Am. Chem. Soc. 2013, 135, 620-623.
[4.31] K. G. Liu, A. J. Robichaud, J. R. Lo, J. F. Mattes, Y. Cai, Org. Lett. 2006, 8, 5769-5771.
[4.32] B.-Y. Lim, B.-E. Jung, C.-G. Cho, Org. Lett. 2014, 16, 4492-4495.
[4.33] P. Linnepe, A. M. Schmidt, P. Eilbracht, Org. Biomol. Chem. 2006, 4, 302-313.
[4.34] C. Min Wong, K. Q. Vuong, M. R. D. Gatus, C. Hua, M. Bhadbhade, B. A. Messerle, Organometallics, 2012, 31, 7500-7510.
[4.35] M. G. Banwell, B. D. Kelly, O. J. Kokas, D. W. Lupton, Org. Lett. 2003, 5, 2497-2500.
[4.36] G. Adam, J. Andrieux, M. Plat, Tetrahedron, 1985, 41, 399-407.
[4.37] P. J. Gritsch, E. Stempel, T. Gaich, Org. Lett. 2013, 15, 5472-5475.
[4.38] N. S. Dange, B.-C. Hong, C.-C. Lee, G.-H. Lee, Org. Lett. 2013, 15, 3914-3917.
[4.39] G. Mei, H. Yuan, Y. Gu, W. Chen, L. W. Chung, C.-C. Li, Angew. Chem. Int. Ed. 2014, 53, 11051-11055.
[4.40] A. Chakraborty, K. Goswami, A. Adiyala, S. Sinha, Eur. J. Org. Chem. 2013, 7117-7127.
[4.41] K. Sun, S. Liu, P. M. Bec, T. G. Driver, Angew. Chem. Int. Ed. 2011, 50, 1702-1706.
[4.42] L. A. Aksanova, Journal of Organic Chemistry USSR (English Translation), 1965, 1, 2254-2257.
[4.43] V. P. Arya, S. J. Shenoy, Indian Journal of Chemistry, 1972, 10, 815-819.
[4.44] G. S. Hotamisligil, R. S. Johnson, R. J. Distel, R. Ellis, V. E. Papaioannou, B. M. Spiegelman, Science, 1996, 274, 1377-1379.
[4.45] L. Makowski, J. B. Boord, K. Maeda, V. R. Babaev, K. T. Uysal, M. A. Morgan, R. A. Parker, J. Suttles, S. Fazio, G. S. Hotamisligil, M. F. Linton, Nat. Med. 2001, 7, 699-705.
[4.46] H. Hoberg, Angew. Chem. Int. Ed. 1966, 5, 513-514.
[4.47] H. Hoberg, Liebigs Ann. Chem. 1962, 656, 1-14.
[4.48] for experimentals for those reactions see reference 4.1
[4.49] A. R. Katritzky, G. W. Rewcastle, L. M. Vazquez de Miguel, J. Org. Chem. 1988, 53, 794-799.
[4.50] B. O. Ashburn, R. G. Carter, Angew. Chem. Int. Ed. 2006, 45, 6737-6741.
[4.51] C. L. Diedrich, D. Haase, J. Cristoffers, Synthesis, 2008, 14, 2199-2210.
[4.52] F. Bischoff, D. Berthelot, M. De Cleyn, G. Macdonald, G. Minne, D. Oehlrich, S. Pieters, M. Surkyn, A. A. Trabanco, G. Tresadern, S. Van Brandt, I. Velter, M. Zaja, H. Borghys, C. Masungi, M. Mercken, H. J. M. Gijsen, J. Med. Chem. 2012, 55, 9089-9106.

5 Summary and Outlook

In the first project within this thesis, we were able to demonstrate the access towards four members of the sarpagine alkaloids in 15-16 steps in overall good yield. Our synthesis is carried out in an enantioselective, protecting group free fashion and targets multiple alkaloids via a late stage diversification strategy (see figure 36). As the key step we employed the 3-oxidopyridinium [5+2] cycloaddition of vinylbissulfoxide 196 and pyridinium ion 197.

For sarpagine alkaloids bearing substitution at the indole core (like 8 or 9) our synthesis is by far the shortest access. We should now be able to produce nearly all members of the 16-epi and the 16 -regular subgroup of sarpagine alkaloids which have not suffered from dimerization or additional ring formation. This amounts to 48 of the 99 alkaloids isolated so far.

16-epinormacusine B (10)
$R^{1}=H, R^{2}=H$

Figure 36: Summary of the sarpagine project.
The key synthetic challenges of vellosimine (1) and our synthetic solutions are summarized in figure 37. Vellosimine contains five contiguous stereocenters, four at carbon atoms and one being the N_{b}-nitrogen, as no inversion can occur with the nitrogen lone pair. Stereocenters 1 and 3 arise from the stereochemistry that is introduced during the asymmetric 3 -oxidopyridinium [5+2] cycloaddition. Stereocenters 4 and 5 are generated during the Pdcatalyzed enolate coupling. Stereocenter 3 is generated during the Fischer indole synthesis at the very end of the synthesis, as the resulting aldehyde is stereoselectivly equilibrated to the desired stereochemistry. In the synthesis of 16 -epinormacusine $B(10)$ stereocenter 3 results from less steric interactions during the final hydroboration reaction.

The sarpagine skeleton in general contains two cis-quinolizidine systems, both of them are installed in our synthetic access during the Pd-catalyzed enolate coupling. Vellosimine's signature quinuclidine core is assembled in the same Pd-catalyzed reaction. The azabicyclo[3.3.1]nonane core is assembled through two key steps in the synthesis, the 3 -oxidopyridinium [5+2] cycloaddition and the diazo ring expansion.

5 contiguous stereocenters, one at nitrogen

cis-quinolizidine systems

quinuclidine core

azabicyclo[3.3.1]nonane core

our solutions

stereocenters 1 and 3 :
3-oxidopyridinium [5+2] cycloaddition, stereocenters 2 and 4 :
Pd-catalyzed enolate coupling
stereocenter 5 :
thermodynamic equilibration

quinuclidine core: from the Pd-catalyzed enolate coupling

cis-quinolizidine systems
both arising after the
Pd-catalyzed enolate coupling

azabicyclo[3.3.1]nonane core: from the 3 -oxidopyridinium [5+2] cycloaddition and ring expansion

Figure 37: Key synthetic challenges of vellosimine (1) and our synthetic solutions.

Further progress within the sarpagine alkaloids will be achieved by the synthesis of dimers, which is currently investigated. Unnatural sarpagine alkaloids will be prepared using our late stage diversification strategy with unnatural phenylhydrazine derivatives and will be tested for their bioactivities (see scheme 33 for details). We can furthermore expand our synthetic strategy towards the peraksine subgroup of sarpagine alkaloids (see figure 21 for details).

II In the second project within this thesis, we have established an enantiodivergent, protecting group free access to the stemona alkaloid parvineostemonine (2). We are able to prepare each antipode of the natural product in only nine steps from known starting materi-
als. Our synthesis is carried out in an enantiodivergent, protecting group free fashion with the 3-oxidopyridinium [5+2] cycloaddition between vinylbissulfoxide 196 and pyridinium ion 371 as the key step.

Figure 38: Summary of the parvineostemonine project.

The biggest challenge in the synthesis of parvineostemonine (2) is the central piperidine moiety which is substituted at every position, resulting in six contiguous stereocenters (see figure 39). We were able to install stereocenters 2 and 6 in a stereoselective fashion during the course of the 3 -oxidopyridinium [5+2] cycloaddition. The conjugate addition of an allyl moiety from the opposite side as the C2 bridge results in the formation of stereocenter 5 . Stereocenter 1 at the piperidine nitrogen is fixed after the ring closing metathesis to form the azepane ring. The α-stereocenter is installed via equilibration of this position and separation of the two diastereomers. Stereocenter 3 is installed in a stereoselective fashion during the Reformatzky based spirofuranone synthesis.

The azabicyclo[3.2.1]octane core is installed in the key 3-oxidopyridinium [5+2] cycloaddition enantioselectively.

The azabicyclo[4.3.1]decane substructure is assembled via a Michael addition and later ring closing metathesis to form the azepane moiety. The piperidine moiety in this substructure results from reduction of the starting material 3-hydroxypyridine.

Most stemona alkaloids bear a signature pyrrolo[1,2-a]azepane motife, which is assembled in our synthesis through a mixture of the 3-oxidopyridinium [5+2] cycloaddition, a Michael addition and later ring closing metathesis.

In the last steps of the synthesis, we installed the spirofuranone moiety of parvineostemonine (2) via a two step process consisting of a Reformatzky reaction and a rhodium-catalyzed double bond isomerization.

parvineostemonine's synthetic challenges

our solutions

Figure 39: Key synthetic challenges of parvineostmonine (2) and our synthetic solutions.

As parvineostemonine (2) bears a unique skeleton within the stemona alkaloids, we will have to make slight alterations in oder to apply our synthetic concept towards further members of this alkaloid family.

Nearly one quarter of the stemona alkaloids include a substituted tropanone skeleton, which arises from the 3 -oxidopyridinium [5+2] cycloaddition, and may therefore be synthetically accessible based on work in this thesis (see figure 32).

Our initial goal was to establish the common intermediate based total synthesis of several alkaloids from different natural product classes. We have achieved this aim by synthesizing four sarpagine alkaloids and one stemona alkaloid (see figure 40).

common intermediate based total synthesis

Figure 40: Summary of the synthetic achievements via a common intermediate.

As this synthetic endeavour is aimed at three different alkaloid classes in total, the synthetic access to the alstonia alkaloids remains an open challenge to future members of the Gaich group (see figure 41). First synthetic attempts have already been carried out, but are not part of this thesis.

Sarpagine Alkaloids (accomplished)

Figure 41: Synthetic concept and the common intermediate.

III In the third project we were able to demonstrate a new access to the hexahydrocyclohepta[b]indole skeleton. The substrate scope includes heteroaromtic substitution at C8, as well as aliphatic and aromatic substituents. As several of the newly accessed compounds have never been synthesized previously, we have enlarged the variety of available substituted cyclohepta[b]indoles to a good extend.

So far, we have found nine examples of the diazo mediated ring expansion using DMNB 235 with yields ranging from 47-100\% (see figure 42). The subsequent reduction step has been demonstrated to work efficiently with nine examples as well, with yields ranging from 66$100 \%$.

To showcase the versatility of the developed indolization strategy, the formal synthesis of A FABP inhibitor 421 was carried out. Future work will be directed at the introduction of substituents at the indole core, which will greatly increase the utility of our reaction due to later cross coupling. This project demonstrates the creative influence of total synthesis towards other areas of organic chemistry, as it was initially developed to overcome a synthetic problem arising during the sarpagine project.

Figure 42: Summary of the DMNB project.

6 List of Schemes
Scheme 1: Biosynthesis of secologanin starting from DMAPP 15
Scheme 2: Biosynthesis of vellosimine (1) from secologanin 120 and tryptamine 121 16
Scheme 3: Comparison of the van Tamelen ring-closing hypothesis and the Lounasmaa and Hanhinen proposal 17
Scheme 4: Major compounds (highlighted in green) in the biosynthesis of sarpagine alkaloids and related natural prdoucts. 18
Scheme 5: Plausible biosynthesis of additional ring systems in the sarpagine biosynthesis. 21
Scheme 7: Dimerization of accedisine 92 and its nor-methyl equivalent N^{\prime}-demethylaccedin- sine 90. 26
Scheme 9: Biosynthesis of divaricine 88 and geissolosimine 87 27
Scheme 10: Formation of macralstonidine 91 28
Scheme 11: Formation of macrospegatrine 89 28
Scheme 12: Hetereodimerization yielding lumitinine C 106 and lumitinine D 107 29
Scheme 13: Formation of leuconoline 109 29
Scheme 14: Degradadtion of sarpagine alkaloids, leading to gardquinolone 110 and gelso- chalotine 109 30
Scheme 15: Magnus total synthesis of koumidine 12 31
Scheme 16: Liu's total synthesis of N_{a}-methyl- Δ^{18}-isokoumidine 175 32
Scheme 18: Accessing different alkaloids from vellosimine (1) or N-methylvellosimine (9), according to J. M. Cook 35
Scheme 19: Cook's total synthesis of dispegatrine 93. 36
Scheme 20: Retrosynthetic analysis for the desired alkaloids. 38
Scheme 21: Synthesis of racemic vinylbissulfoxide 196 40
Scheme 22: Access to pyridinium salt 197 40
Scheme 23: The 3-oxidopyridnium [5+2] cyloaddition and its transition state. 41
Scheme 24: Deoxygenation, conjugate reduction and enolate coupling. 42
Scheme 25: Pd-catalyzed vinylcyclopropane formation 43
Scheme 26: Heck cascade and reductive cyclization using enone 214. 43
Scheme 27: Wittig olefination and ketone liberation. 44
Scheme 28: Ring enlargement and possible side reactions. 45
Scheme 29: Side reactions during the investigation of the necessary ring enlargement 46
Scheme 30: Formal synthesis of 16-epinormacusine B (10) 46
Scheme 31: Ketone liberation, MOM-Wittig and ring enlargement. 46
Scheme 32: Access to vellosimine 1, N-methylvellosimine 8 and 10-methoxyvellosimine 9. 47
Scheme 33: Possible future synthetic work on the sarpagine alkaloids. 49
Scheme 34: Biosynthesis of 293 and 294 from DMAPP 289 and IPP 290. 113
Scheme 35: Biosynthesis of the pyrrolidine- and the piperidine core (296-299) 113
Scheme 36: Biosynthetic origin of the linear starter units of stemona alkaloids. 114
Scheme 37: Possible biosynthesis of croomine $\mathbf{3 0 8}$ by Greger and co-workers. ${ }^{[3.4,3.5]}$ 115
Scheme 38: Proposed biosynthesis of parvineosteomine (2) from the hypothetic interme- diate didehydrostemonidine (311). 116
Scheme 39: Biosynthesis of croomine type 261, stemoamide typ 258 and comment on the possible biosynthesis of parvineostemonine 2. 117
Scheme 40: Tu's synthesis of parvineostemonine (2) from tropinone 322. ${ }^{[3.8]}$ 119
Scheme 41: Hsung and co-worker's approach to the parvineosteomine skeleton 337 via
[4+3] cycloadditon. ${ }^{[3.9]}$ 119
Scheme 42: Examples for enantiodivergent total synthesis of complex natural products... 122
Scheme 43: First retrosynthesis and the resulting problem 123
Scheme 44: Second restrosynthesis, employing the enantiodivergent concept. 124
Scheme 45: Third retrosynthetic approach. 125
Scheme 46: First synthetic attempts terminated by an unsucessfull alkylation. 126
Scheme 47: Introdution of the ethyl side chain under palladium catalysis. 127
Scheme 48: Installation of the ethyl side chain on the minor regioisomer, slightly less succ- essful. 127
Scheme 49: First synthetic attempts to form bisolefins 364 and 377. 128
Scheme 50: Synthetic attempts with minor 367 128
Scheme 51: From 4-ethylpyridin-3-ol to dithiolanes 370 and 372. 129
Scheme 52: Regioselectivity of the [5+2] cycloaddition with an additional ethyl side chain.130
Scheme 53: End of the total synthesis and suggested decomposition pathway of parvineostemonine $\mathbf{2}$ along the lines of the interconversion between the rugulovasines A / B (387/389). 131
Scheme 54: Processing of the minor regioisomer into (-)-parvineostemonine (2). 132
Scheme 55: How to stumble upon an indolization methodology 179
Scheme 56: Successful test system and unsuccessfull example with cyclopentanone. 180
Scheme 57: Examples of diazoinsertions from Tiffeneau-Demjanov to today 182
Scheme 58: Comparison of diazo-insertion vs. α-arylation, and application from the Rawalgroup.183
Scheme 59: Preparation of DMNB (235) over the years. 184
Scheme 60: Reactions of DMNB 235. 185
Scheme 61: Different recent synthetic appraoches towards hexahydrocyclohepta[b]indole 414 187
Scheme 62: Previous synthetic access to the other synthesized 8-substituted cyclo- hepta[b]indoles (for the numbering see scheme 57). 188
Scheme 63: Preparation of DMNB 235 and initial screening for the desired diazo insertion to give 490. 189
Scheme 64: Formal synthesis of A FABP inhibitor 421 195
Scheme 65: Synthetic outlook towards a bigger substrate scope 197

7 List of Figures

Figure 1: Facts about small chemical entities, natural products and alkaloids as graphs. Graph 1: Small molecule new chemical entities, $N=974$. Explanation: N=natural products, ND=natural product derived, S=totally synthetic, $\mathrm{S} / \mathrm{NM}=$ synthetic/natural product mimic, S*=synthetic with a pharmacophore from a natural product, $\mathrm{S}^{*} / \mathrm{NM}=$ synthetic with a pharmacophore from a natural product/natural product mimetic. Graph 2: Source of a pharmaceutical or biological significant natural product. Graph 3: Known natural products and their classification. Graph 4: Percentage of the bioassay evaluation of alkaloids, $N=21120$. The numbers indicate the amount of bioassays performed for the percentage of alkaloids.

2
Figure 2: Two concepts of total synthesis.. 4
Figure 3: The quest for a common synthetic precursor. .. 5
Figure 4: Comparison of the substitution pattern of the central piperidine core and explanation of the thought progress behind a common intermediate based synthetic strategy. Note that parvineostemonine (2) is displayed in this figure alone as the opposing antipode due to simplicity... 6

Figure 5: Synthetic concept (with colours) and the common intermediate. 7
Figure 6: Carbon atom numbering for the parent compound sarpagine............................... 10
Figure 7: Isolated sarpagine alkaloids, part 1. ... 11
Figure 8: Isolated sarpagine alkaloids, part 2. ... 12
Figure 9: Isolated sarpagine alkaloids, part 3. ... 13
Figure 10: Isolated sarpagine alkaloids, part 4.. 14
Figure 11: Classification of sarpagine alkaloids. .. 19
Figure 12: Sarpagine alkaloids with an additional ring in the C16-epi series......................... 20
Figure 13: Alkaloids with additional ring systems in the decarboxylated C16-regular series. 20
Figure 14: Non Decarboxylated alkaloids with an additional ring formation.......................... 21
Figure 15: Aromatic substitution at C12 within the sarpagine alkaloids................................ 22
Figure 16: Aromatic substitution at C11 within the sarpagine alkaloids................................ 22
Figure 17: Aromatic substitution at C10 within the sarpagine alkaloids................................ 23
Figure 18: Aromatic substitution at C10 within the sarpagine alkaloids, metho salts and additional rings.. 23

Figure 19: Reduction of the double bond within the sarpagine alkaloids. 23

Abstract

Figure 20: Variation in the double bond configuration and allylic oxidation within the sarpagine alkaloids.. 24

Figure 21: Various other oxidations and rearranged sarpagine alkaloids of the peraksine subgroup 25
Figure 22: Three sarpagine alkaloids and their bioactivities 36
Figure 23: Waldmann's protein tyrosine phosphatase B inhibitors 190-192 37
Figure 24: Application of the 3-oxidopyridinium [5+2] cycloaddition in total synthesis. Tp=hy- dridotris(pyrazolyl)borate 39
Figure 25: Structure of (+)-parvineostemonine (2) 108
Figure 26: Classification of the stemona skeletons according to Pilli et al. ${ }^{[3.2]}$ 109
Figure 27: Classes of stemona alkaloids according to Wang and Chen. ${ }^{[3.3]}$ 110
Figure 28: Classification of stemona alkaloids according to Wang and Feng, part 1. ${ }^{[3.3]}$ 111
Figure 29: Classification of stemona alkaloids according to Wang and Feng, part 2. ${ }^{[3.3]}$ 112
Figure 30: Variations on the croomine skeleton 116
Figure 31: Bioactivities of stemona alkaloids 121
Figure 32: Further stemona alkaloids possesing the tropanone skeleton arising from the 3- oxidopyridinium [5+2] cycloaddition. 133
Figure 33: Natural products containing the cyclohepta[b]indole motif 180
Figure 34: Explanation of the higher reactivity of 2-chlorocyclohexanone 516 compared to 2- methylcyclohexanone 506 193
Figure 35: Unsuccessful precursors for the diazo-insertion reaction with DMNB 235 196
Figure 36: Summary of the sarpagine project. 248
Figure 37: Key synthetic challenges of vellosimine (1) and our synthetic solutions 249
Figure 38: Summary of the parvineostemonine project 250
Figure 39: Key synthetic challenges of parvineostmonine (2) and our synthetic solutions 251
Figure 40: Summary of the synthetic achievements via a common intermediate. 252
Figure 41: Synthetic concept with colours and the common intermediate. 253
Figure 42: Summary of the DMNB project 254

8 List of Tables
Table 1: Diazo insertion using cyclohexanone 435 and its heteroatomic analogues 491 and
487. 190
Table 2: Diazo insertion on 4-substituted cyclohexanones 191
Table 3: Diazo insertion on 2- and 3-substituted cyclohexanones 192
Table 4: Reductive cyclohepta[b]indole formation. 194

9 List of Abbreviations

A FABP	adipocyte fatty acid binding proteins (A FABP, FABP4 or aP2)
Ac	acetyl
acac	acetylacetonate
ACN	1,1'-Azobis-1-cyclohexanenitrile
BINOL	1,1'-bi-2-naphthol
$B n$	benzyl
Boc	tert-butyloxycarbonyl
Cbz	carboxybenzyl
CoA	coenzyme A
CPU	carboxypeptidase U
DCC	N, N-dicyclohexylcarbodiimide
DCM	dichloromethane
DDQ	2,3-dichloro-5,6-dicyano-1,4-benzoquinone
DIPEA	N,N-diisopropylethylamine
DMAP	4-dimethylaminopyridine
DMAPP	dimethylallyl pyrophosphate
DMDO	dimethyldioxirane
DME	dimethoxyethane
DMF	dimethyl formamide
DMNB	1-(diazomethyl)-2-nitrobenzene
DMP	Dess-Martin periodinane
DMS	dimethylsuldide
DMSO	dimethyl sulfoxide
dppf	1,1'-bis(diphenylphosphino)ferrocene
Et	ethyl

G II	Grubbs second generation catalyst
HMPA	hexamethylphosphoramide
IPP	isopentenyl pyrophosphate
KHMDS	potassium bis(trimethylsilyl)amide
LDA	lithium diisopropylamide
LiHMDS	lithium bis(trimethylsilyl)amide
L-selectride	lithium tri-sec-butyl(hydrido)borate
MAD	methylaluminum bis(2,6-di-tert-butyl-4-methylphenoxide)
mCPBA	meta-chloroperoxybenzoic acid
MeCN	acetonitrile
MptpB	mycobacterium tuberculosis protein tyrosine phosphatase B
MTC	medullary thyroid carcinoma
NaHMDS	sodium bis(trimethylsilyl)amide
NMR	nuclear magnetic resonance
NOeSY	Nuclear Overhauser effect spectroscopy
PE	petrol ether
Ph	phenyl
PPTS	pyridinium p-toluenesulfonate
RaNi	Raney nickel
RCM	ring closing metathesis
rfx	reflux
SIRT	sirtuin
sm	structural motif
TBAF	tetra-n-butylammonium fluoride
TBS	tert-butyldimethylsilyl

tBu	tert-butyl
Tf	triflate
TFA	trifluoroacetic acid
TFAA	trifluoroacetic anhydride
THF	tetrahydrofuran
TIPS	triisopropylsilyl
TMEDA	trimethyl silyl
TMS	hydridotris(pyrazolyl)borate
Tp	tosyl
Ts	transition state

10 Acknowledgements

Prof. Dr. Tanja Gaich, for the possibility of letting me work on whatever I fancied most. I repay trust with results.

Prof. Dr. Markus Kalesse, for being the second examiner and inviting me to play soccer in Otze with free barbecue afterwards. And for welcoming me in his working group for three months.

Prof. Dr. Jürgen Caro and Prof. Dr. Siegfried Blechert for completing the examination board.

Magnus Pfaffenbach for the long companionship. I remember whale watching in the Bay area as well as our last time on the soccer pitch, separated by nearly three years. 235 for life.

Erik Stempel for the friendship and the help with apple computers over the years. Right now I hear you whistling completely off tune to a piano song.

Darius, Kostja, Christian, Phillip, Ruben and Birte for the support and the nice group activities over the years.

Lukas Dempwollf for the incredible amount of work on the DMNB project. It has been a pleasure to have you in our lab, I learned several interesting facts about the internet. Plus, you provided the laboratory anthem.

Timo Hoffmann for additional experiments towards the synthesis of 16 -epinormacusine B .

The finnish motivation wizard for her help during the last days in lab.
The working group of Prof. Dr. Kalesse for countless breaks and beers.

Dr. Maria Moreno for the translational help with Spanish manuscripts.
Prof. Dr. Barry M. Trost, for accepting me into his group at a very early stage of my academic career and letting me experience a deep insight into organic chemistry within one of the world's leading working groups.

Dr. Maxim Osipov, for providing me with a total synthetic skill set, that lacked close to nothing.

Sergej, Thea, Dawid and Franzi for the Wednesday lunch club. Which transformed wednesday into the best day of the week.

The inorganic institute for welcoming me into their soccer team for the last six years. Which made Wednesday the best day ever. Each week.

My family for supporting me over the previous eight years. You valued my education more than spending. A lot to be repaid.

Inga. My very own lady luck.

11 CV

[^0]: ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=9.64(\mathrm{~s}, 1 \mathrm{H}), 7.47(\mathrm{~d}, \mathrm{~J}=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.29(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.20$ (ddd, J=7.9, 7.4, 0.6 Hz, 1H), 7.09 (ddd, J=7.7, 7.2, $0.6 \mathrm{~Hz}, 1 \mathrm{H}$), 5.37 (q, J=7.4 Hz, 1H), 4.30 (d, $J=8.2 \mathrm{~Hz}, 1 \mathrm{H}$), 3.68-3.61 (m, 3H), $3.65(\mathrm{~s}, 3 \mathrm{H}), 3.22-3.20(\mathrm{~m}, 1 \mathrm{H}), 3.17(\mathrm{dd}, \mathrm{J}=15.5,5.2 \mathrm{~Hz}$,

[^1]: $\left.\begin{array}{lllllllllllllllllll}210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30\end{array}\right) 20$
 ppm

[^2]: $\begin{array}{llllllllllllllllllll}210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20\end{array}$

[^3]: $\begin{array}{llllllllllllllllllllll}210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & \text { ppm }\end{array}$

[^4]: Scheme 39: Biosynthesis of croomine type 261, stemoamide typ 258 and comment on the possible biosynthesis of parvineostemonine 2.

[^5]: $\begin{array}{llllllllllllllllllllll}9.5 & 9.0 & 8.5 & 8.0 & 7.5 & 7.0 & 6.5 & 6.0 & 5.5 & 5.0 & 4.5 & 4.0 & 3.5 & 3.0 & 2.5 & 2.0 & 1.5 & 1.0 & \mathrm{ppm}\end{array}$

[^6]:

[^7]: $\begin{array}{llllllllllllllllllll}210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20\end{array}$

[^8]: $\begin{array}{lllllllllllllllllllll}210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20\end{array}$
 ppm

