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Abstract
In this thesis electronic transport through a lateral triple quantum dot with
triangular geometry and two double-dot transport paths sharing one dot is
investigated. The work combines experimental and theoretical approaches
to transport in this complex multi-dot network. In order to enable path-
resolved measurements and a thorough study of interactions between the
transport paths two source contacts are used to apply AC voltages with
different frequencies to the paths. The system is characterized by means
of charge detection using a nearby quantum point contact and transport
spectroscopy investigating linear and non-linear transport through the two
double dot paths of the device simultaneously but separately. The tunability
of the triple quantum dot into double and triple dot resonances is shown
in both charge and transport measurements. If the device is tuned into a
serial dot configuration two different charging mechanisms of the central
dot arise which are analyzed by detector measurements. Interference effects
between electrons coming from the two different paths of the dot system are
observed in the total transport through the system. Path-resolved transport
measurements show an inter-channel blockade effect induced by Coulomb
correlations in the shared quantum dot leading to non-linear transport
even around zero bias voltage. Second-order cotunneling is discussed as
an intra-channel double dot transport property which combines with these
inter-channel effects. Making use of the two-path setup, the formation of
hybridized states in one double dot path is detected within the same device
by probing the states with a more localized single dot level in the other path.
The characterization of the device and the analysis of its special transport
properties are supported by a simulation of transport through the system
using a quantum mechanical model.

Keywords: triple quantum dots, path-resolved transport, Coulomb corre-
lations
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Kurzzusammenfassung
In dieser Arbeit wird der elektronische Transport durch ein laterales Drei-
fachquantenpunktsystem mit triangularer Geometrie und zwei Transport-
pfaden untersucht. Die Transportpfade bestehen jeweils aus einem seriellen
Doppelquantenpunkt und sind über einen gemeinsamen Quantenpunkt
gekoppelt. Die Arbeit umfasst Transportuntersuchungen dieses komplexen
Mehrfachquantenpunktsystems mittels experimenteller und theoretischer
Analysen. Zwei Source Zuleitungen mit angelegten AC Spannungen unter-
schiedlicher Frequenzen ermöglichen pfadaufgelöste Transportmessungen
und die Untersuchung von Wechselwirkungen zwischen den Pfaden im
Transport. Das System wird charakterisiert mittels Ladungsdetektion mit
einem naheliegenden Quantenpunktkontakt und Transportspektroskopie,
welche den Transport durch das System pfadaufgelöst im (nicht-)linearen
Regime untersucht. Es zeigen sich Doppel- und Dreifachquantenpunkt-
resonanzen sowohl in Detektor- als auch in Transportmessungen. Bei Trans-
formation in eine serielle Quantenpunktkonfiguration ergeben sich zwei
unterschiedliche Ladungsmechanismen für den mittleren Quantenpunkt,
die mittels Ladungsmessung analysiert werden. Interferenzeffekte zwischen
Elektronen aus verschiedenen Pfaden zeigen sich in den Transportmessungen
des Gesamtsystems. Pfadaufgelöste Transportmessungen zeigen den Effekt
einer Pfadblockade im Transport als Resultat der Coulomb-Wechselwirkung
zwischen den Elektronen verschiedener Transportpfade. Dies führt zu
nicht-linearem Transportverhalten des Systems. Im Zuge der Analyse der
Transporteigenschaften der einzelnen Pfade werden Effekte aufgrund von
Tunnelprozessen höherer Ordnung und ihre Kombination mit Pfadkorrela-
tionseffekten untersucht. Durch den Doppelpfadaufbau können hybridisierte
Zustände der Quantenpunkte in einem Pfad im Transport durch den anderen
Pfad mittels Abtastung mit einem lokalisierteren Quantenpunktzustand de-
tektiert werden. Die Charakterisierung der Probe und die Untersuchung der
speziellen Transporteigenschaften werden unterstützt durch eine Simulation
des Systems mittels eines quantenmechanischen Modells.

Schlagworte: Dreifachquantenpunkte, pfadaufgelöster Transport, Coulomb-
Korrelationen
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Nomenclature
C Capacitance

CΣX Sum capacitance of dot X, X ∈ {A,B,C}

CGX,Y Capacitive coupling between gate GX with X ∈ {1,...,4} and
dot Y ∈ {A,B,C}

CL,X Capacitive coupling between lead L ∈ {S1,S2,D} and dot
X ∈ {A,B,C}

CXY Inter-dot capacitive coupling XY ∈ {AB,AC,BA,BC}

D Drain lead

DxD(E) Electronic density of states for an n-dimensional system n ∈
{0,...,3} in dependence of energy E

E Energy

E∗N Total energy of a quantum dot with N electrons with excited
electrons

EC (EC,i) Charging energy of a quantum dot (of quantum dot i, i ∈ {A,B,C})

EN Total energy of a quantum dot with N electrons, all electrons
in ground state

Eel Electrostatic energy

G Differential conductance in (e2/h)

GX Gate X ∈ {1,..,4,QPC}

I Current

IAC AC current
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Contents

IDC DC current

L Length

Q Charge

QX Charge on quantum dot X, X ∈ {A,B,C}

SX Source lead X ∈ {1,2}

T Temperature

U Voltage

UGX Voltage applied at gate X ∈ {1,...,4,QPC}

USX Bias voltage applied at source lead X ∈ {1,2,QPC}

~ h/(2π)

H Hilbert space

H Hamilton operator

a∗ Complex conjugate of complex number a

e Elementary charge (1.602 · 10−19 C)

f(E) Fermi distribution function

h Planck constant (4.136 · 10−15 eV · s)

kB Boltzmann constant (8.617 · 10−5 eV/K)

m∗ Effective electron mass

ne Electron concentration

∆XY Energy level detuning between the on-site states of dot X and
Y

ΓX Tunnel coupling between dot X ∈ {A,B,C} and neighboring
lead

Φ Coherent state wave function (for one electron in the system)
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Contents

Ψ Coherent state wave function

Θ Heaviside function

〈Ψ | Bra-vector, element of the dual Hilbert space H∗ (Dirac nota-
tion)

〈Ψ |A |Ψ〉 Expectation value of the operator A

ρ̇ Partial time derivative of the density operator

εi Eigenenergies of a single electron in a quantum dot

|Ψ〉 Ket-vector, element of a given Hilbert space H (Dirac notation)

λi Eigenenergies corresponding to coherent states of coupled quan-
tum dots

I Identity matrix

G Conductance

L Liouvillian superoperator

µ∗N Chemical potential of an excited state of the dot

µN Chemical potential of a dot for the transition N-1→ N electrons

µX Chemical potential of lead X, X ∈ {S,D}

µe Electron mobility

∇ Nabla operator ( ∂
∂x1

,..., ∂
∂xn

)

ω0 Radial frequency

φ Electronic wave function of localized single quantum dot states

ρ Density operator

τXY Inter-dot tunnel coupling XY ∈ {AB,AC}

Tr Trace

2DEG Two-dimensional electron gas

11



Contents

AC Active current

AFM Atomic force microscope

DAC Digital-to-analog converter

DC Direct current

DOS Electronic density of states

LAO Local anodic oxidation

QCA Quantum cellular automata

QP Quadruple point

QPC Quantum point contact

TP Triple point

TQD Triple quantum dot

UHV Ultra high vacuum
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1 Introduction
The quest for a continuous miniaturization of classical transistors as com-
ponents of integrated circuits drives modern microtechnology. The expo-
nentially increasing chip complexity was early on described by Moore’s
law [1] and inevitably leads to a fundamental quantum limit. This in turn
ultimately limits the processing power of classical computers. Even before
reaching this fundamental limit the miniaturization causes major issues.
The increasingly high packing density of the integrated circuits leads to
quantum mechanical leakage currents resulting in high energy loss and heat
production. The revolutionary idea of developing a quantum computer [2–4]
circumvents these problems and leads to exponentially increasing computa-
tional power with the system size. This can be achieved by exploiting the
axioms of quantum mechanics such as superposition and entanglement.

A classical bit as the basic information unit in a classical computer can only
be in either of two different states, 0 or 1 and is typically represented by
voltage or current pulses. The quantum mechanical analogon, a quantum
bit or qubit, instead, is based on a quantum mechanical state and represents
all possible superpositions of these two states. The advantages emerge when
coupling several qubits obtaining a qubit register. While a classical register
containing N bits stores only one of N possible numbers, a register of N
qubits simultaneously stores 2N numbers, the wave function amplitudes of
the basis states in the superposition, so the information stored increases ex-
ponentially with the register size. The growing field of quantum information
processing is focusing on the utilization of this information in a quantum
computer with qubits as basic information units. A promising candidate
for the physical realization of a qubit register are coupled quantum dots [5–7].

Quantum dots are artificial structures in the nanometer to micrometer
range containing only a small number of electrons. These electrons are
confined in all spatial directions to a region of the order of their wavelength
in size which results in a discrete electronic density of states [8, 9]. Thus,
quantum dots can be seen as artificial mesoscopic atoms [10], or molecules in
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1 Introduction

case of multiple quantum dots, with controllable physical properties. These
structures allow the realization of experiments like spectroscopy known from
atomic physics in a mesoscopic regime. In the realization of qubits based
on quantum dots the charge state or the electron spin state serves as the
quantum two-level system [6, 11]. Triple quantum dots (TQDs) are a step
towards more complex quantum architectures as they are the smallest pos-
sible qubit chain. They have been proposed to work as exchange-controlled
spin qubits [12–14] and current rectifiers [15–17], for instance. As a charac-
teristic feature TQDs provide the possibility to implement quantum cellular
automata processes, which are both a charging and reconfiguration process
and a crucial element in quantum information processing [18, 19]. Further
advantages of TQDs compared to double quantum dots are the purely
electrical implementation of all quantum gates without using a magnetic
field and the reduction of decoherence originating from charge fluctuations
(decoherence free subspace) [13, 20].

On a general level the realization of quantum dots opened up a new chapter
in both fundamental physics and the development of new devices with novel
properties due to their tunability and versatility. Other prominent research
applications aside from qubits are single electron transistors and quantum
dot solar cells. A double quantum dot setup can serve as a single-electron
ammeter for metrology applications [21]. Current commercial applications
are quantum dot lasers and the implementation in display technology (QD
LED).

For the purpose of electronic transport investigations in fundamental re-
search quantum dots are most commonly fabricated as lateral structures
defined by metallic top gates with electron beam lithography or by oxide
lines with an atomic force microscope. The basis is a two-dimensional
electron gas in a semiconductor heterostructure. The preparation of TQDs,
especially of fully tunable lateral few-electron TQDs, has been made possible
only a few years ago [15, 22–24] due to significant improvement in these
fabrication methods.

TQDs offer the possibility of analyzing new fascinating properties [25]
which are not present in double quantum dot systems. A TQD is the
smallest molecule where different topologies are possible [25]. It can serve as
a model system to study correlated electrons and three-level systems. TQDs
show interference between different transport channels causing dark states
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in triangular [26–29] and linear [30] dot distributions and long-distance
coherent states [30–34]. Establishing a deep understanding of quantum
interference is crucial for the coherent control of quantum states in quantum
computation [25, 28, 35]. The triangular dot configuration in particular
brings the opportunity to study the combination of quantum interference
and electron-electron interaction [25, 36]. This configuration furthermore
allows the exploration and utilization of a great variety of unique phenom-
ena, such as entanglement and spin properties like spin frustration and
chirality [25, 37]. For the investigation of properties manifesting themselves
in electronic transport the flexibility of this setup is beneficial. Both charge
detection by quantum point contacts (QPCs) and transport spectroscopy
serve as essential tools for the characterization of system parameters and
investigation of the described fundamental properties [22, 23].

In this thesis the electronic transport properties of such a triangular-shaped
TQD are investigated in order to explore the electronic interactions between
the two transport paths in this complex system. The device is a multi-
terminal lateral TQD defined by oxide lines and with one lead attached to
each dot. Two of the leads are used as sources and the remaining lead as
a drain. This configuration has not been implemented before and enables
both the simultaneous but separate investigation of transport through the
two different double dot paths and the analysis of transport through the
whole TQD system by measuring the total transport through the system
or by a combination of the path-resolved measurements. By applying two
different AC voltages to the sources a thorough study of electronic inter-
actions between the electrons flowing through the two paths is allowed. It
manifests itself in the path-resolved transport measurements. The transport
is furthermore investigated with regard to interference effects between the
electrons from different paths. These studies are based on a characterization
of transport through the double dot paths separately, as well as of transport
through the whole TQD system by a combination of the path-resolved
measurements. The two-path setup allows the investigation of transitions
from triple to quadruple points in transport. Charge measurements by using
a quantum point contact as a charge sensor support the system characteri-
zation and are used to analyze the tunability of the charging properties of
the device.

The experimental results are supported by a numerical simulation of elec-
tronic transport on the basis of a quantum mechanical model of the system.
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1 Introduction

Within a collaboration with the working group Theoretical Group on Quan-
tum Transport on the Nanoscale from the Instituto de Ciencias de Materiales
de Madrid, CSIC, Spain, F. Gallego-Marcos under supervision of Professor
Gloria Platero provided the model and its implementation in a Mathematica
simulation code. The model includes the quantum mechanical dynamics
within the system and includes all quantum correlations. It treats the on-site
states of all three dots coherently coupled so that the simulated transport
involves quantum coherences. A first characterization of basic transport
properties and fundamental tunability of this TQD sample combined with
an electrostatic model can be found in [19, 24, 38–41].

This thesis gives an introduction into theoretical and experimental ap-
proaches and covers a thorough analysis of the transport properties in a
triangular-shaped TQD by combining both. In the following the content of
each chapter will be introduced in more detail.

The presentation of results is preceded by two introductory chapters. Chap-
ter 2 describes the theoretical background including an electrostatic and a
quantum mechanical model of transport through single and multiple quan-
tum dots. In Chapter 3 the experimental techniques regarding the sample
fabrication process are explained. These comprise optical lithography and
local anodic oxidation by atomic force microscope. The measurement tech-
niques for the conducted charge and transport measurements are described
and the experimental setup is presented. The latter includes the cryogenic
setup as all measurements were performed at a temperature of a few mK
to enable the observation of quantum mechanical effects and the electrical
measurement setup used for measuring electronic transport and for charge
detection.

In the following chapters results obtained within this thesis are presented
and discussed. Chapter 4 covers the basic sample characterization by
charge measurements showing modification possibilities of the charging
properties by the tuning of tunneling barriers. In addition, linear and
non-linear transport of the two paths separately is analyzed and discussed
regarding the basic properties of a two-path device.

Chapter 5 focuses on the transport properties arising from the inter-
action between the two transport channels of the sample in greater detail.
A numerical simulation of the electronic transport using a master equation
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ansatz enables the determination of system parameters and supports the
interpretation of the observed channel blockade effect in transport which
substantially defines the transport characteristics of the device. Non-linear
transport properties are revealed and discussed. The tunability of the device
is utilized to form a double dot molecule in one path and a single dot in
the other, giving rise to the possibility of probing hybridized states in one
path with localized states in the other. Additionally, effects in transport
concerning the separate double dot paths only, like elastic and inelastic
cotunneling, are discussed.

Chapter 6 highlights the obtained results and presents conclusions which
can been drawn from this work.
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2 Theoretical background
The transport through an array of quantum dots as a spectroscopic char-
acterization method is based on the knowledge of the electronic density of
states of such low-dimensional systems. Therefore the spectrum of electronic
states of quantum dots is introduced in this chapter. Controlling parame-
ters which enable transport spectroscopy by tuning of a quantum dot are
introduced within the framework of an electrostatic capacitance model of
the dot. This model is also used to explain basic quantum dot transport
properties like Coulomb blockade and to predict the charging properties of
a dot system by a calculation of the stability diagram.

2.1 Electronic density of states
The electronic density of states (DOS) is a key parameter in the determi-
nation of electronic and optical properties of a material. It is defined as
the number of electronic states in an energy interval [E, E+dE] and per
unit volume V . It is used for determination of the carrier concentration and
energy distribution of carriers within a material, for instance a semiconduc-
tor. Applying the simplified model of a free electron gas for the electrons
in a semiconductor, the DOS of a three-, two-, one- and zero-dimensional
electron system can be derived by modeling the crystal as a potential well
with infinite walls (energy barriers).

2.1.1 Density of states in three dimensions
Solving the Schrödinger equation for electrons in three dimensions in a box
with edge length L, the possible energy states

E
(
~k
)

=
∑

i∈{x,y,z}

Ei (ki) = ~2k2
x

2m∗x
+

~2k2
y

2m∗y
+ ~2k2

z
2m∗z

(2.1)

with wavevector ~k and effective electron mass m∗ for each spatial direction
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2 Theoretical background

x,y,z are obtained.

The density of states in energy space is derived from the density of states
in k-space via this dispersion relation E(~k). The states are evenly spaced
in k-space with π/L, resulting from the restriction for the wave number
ki = π/L · ni, with ni ∈ {1,2,...,∞}, i = x,y,z which follows from the fixed
boundary conditions for the potential box with infinite walls. One state
then occupies a volume of Vk = (π/L)3 in k-space. We get sphere-surfaces
of constant energy in k-space. As all values of k are positive, the states
occupy only the positive octant of the Fermi sphere, thus a volume of
Vk,sum = 1/8 · 4/3πk3. This leads to a number of states at energy E of

N = 2 · Vk,sum

Vk
= 2 · 1

8 ·
4/3πk3

(π/L)3 . (2.2)

The factor 2 takes account of the two possible spin states of an electron.

We obtain by derivation

dN∗ = 2 4πk2dk

(2π/L)3 = L3 (2m)(3/2)

2π2~3

√
EdE (2.3)

with the transformation dE =
(
~2k/m

)
dk given by the dispersion relation

Eq.(2.1).

After normalization to the volume of the cube L3 it follows

dN = (2m)(3/2)

2π2~3

√
EdE, (2.4)

with dN∗ = L3dN . Thus, the density of states in 3D is

D3D(E) = dN
dE = (2m)(3/2)

2π2~3

√
E. (2.5)

The DOS is continuous in energy and proportional to
√
E (Fig. 2.1 (a)).

2.1.2 Density of states in low dimensions
For lower dimensional systems the density of states is calculated analogously
to the situation in three dimensions above in section 2.1.1. The DOS for
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2.1 Electronic density of states

two, one and zero dimensions will be presented with a short derivation in
the following.

2.1.2.1 Density of states in two dimensions

Application of a potential confining the electrons of the order of their
wavelength in z-direction leads to energy quantization in this direction. The
eigenenergies are

E2D (kx,ky,nz) = ~2k2
x

2m∗x
+

~2k2
y

2m∗y
+ Ez(nz). (2.6)

n ∈ {1,2,...,∞} is the number of occupied states. We write Ez(nz) = Enz
in the following. With one state occupying a volume of Vk = (π/L)2 in
k-space we calculate the 2D density of states analogously to the 3D case.
We get N ∝ E and the density of states is

D2D(E) = m∗

π~2 , (2.7)

which is energy independent.

In real systems electrons are always not ideally confined. They are confined
of the order of their wavelength by a confinement potential. When the
electrons are confined in this way in z-direction we get a quantum well
with discrete energies Enz , so called subbands, with E1

z > 0 for the lowest
subband. The low dimensionality comes per subband. Systems with more
then one occupied subband are called quasi-low-dimensional. When only
the lowest subband is occupied the system is low-dimensional. For a system
with several occupied subbands we have to use the Heaviside function Θ
to introduce a stepfunction for the total occupation of the subbands. The
DOS is

D2D(E) = m∗

π~2

∑
n

Θ (E − Enz ). (2.8)

The DOS with respect to energy is depicted in Fig. 2.1 (b). A step in the
DOS for each quantized state ni is obtained.
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2 Theoretical background

2.1.2.2 Density of states in one dimension

One-dimensional systems are described analogously. We get the energy-
eigenstates

E1D (kx,ny,nz) = ~2k2
x

2m∗x
+ Ey(ny) + Ez(nz). (2.9)

One state occupies a volume of Vk = π/L in k-space. On this basis the DOS
in one dimension is expressed by

D1D(E) =
√

2m∗
π~

1√
E
. (2.10)

In the case of a quasi-one-dimensional system with a confinement potential
in y- and z-direction subbands Emy and Enz , with n,m ∈ {1,2,...,∞} arise
and the DOS is given by

D1D(E) =
√

2m∗
π~

∑
m,n

√
~2

2m∗
(
E − Emy − Enz

)Θ (E − Emy − Enz ). (2.11)

The DOS with respect to energy is depicted in Fig. 2.1 (c). A peak is
obtained at each quantized state ni.

2.1.2.3 Density of states in zero dimensions

If the electron motion is confined in x-, y- and z-direction, we get energy
quantization in all spacial directions. The energy-eigenstates are

E0D (nx,ny,nz) = Ex(nx) + Ey(ny) + Ez(nz). (2.12)

For parabolic confinement potentials the energy is

E0D (nx,ny,nz) = ~ωx

(
nx + 1

2

)
+~ωy

(
ny + 1

2

)
+~ωz

(
nz + 1

2

)
. (2.13)

The DOS for a quasi-zero-dimensional system is fully discretized and can
be written as a summation over Dirac δ-functions
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2.2 Electronic states in quantum dots

D0D(E) = 2
∑

nx,ny,nz

δ (E − E (nx,ny,nz)) (2.14)

with the factor of 2 coming from the spin degeneracy of the energy levels.
The fully discretized DOS is depicted in Fig. 2.1 (d).

The energetic structure of a quasi-zero-dimensional system, named quantum
dot, is a sequence of discrete energy states E (nx,ny,nz), comparable to the
energy quantization in an atom. This is why quantum dots are also called
artificial atoms.

E

D
(E

)
3
D

D
(E

)
1
D

D
(E

)
2
D

D
(E

)
0
D

E

E En1 n2 n1 n2

n1 n2

Figure 2.1: Electronic density of states in 3D, 2D, 1D and 0D systems.
While the DOS in 3D is continous in energy (a), it exhibits quantized states,
so called subbands, in lower dimensions, which leads to a step (2D) (b)
or a peak (1D) (c) in the DOS for each quantized state. In case of a 0D
system, the electronic states only exist at discrete energies (d). The first two
quantized states n1 and n2 are shown for each case.

2.2 Electronic states in quantum dots
As described above a quantum dot is a quasi-zero-dimensional system and
exhibits a discrete energy spectrum (Fig. 2.1 (d)). This energy spectrum will
be explained in detail in the following. Within the scope of this work lateral
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2 Theoretical background

quantum dots are discussed. These are artificially defined quantum dots
created by lateral patterning of a two-dimensional electron gas (2DEG). A
confining potential is introduced by means of electrical gates on the surface
of the heterostructure including the 2DEG. It confines the electrons in the
remaining two dimensions. A zero-dimensional electron system is formed.
Other types of quantum dots, like self-organized dots, are fabricated and
controlled in a different way but exhibit the same discrete energy spectrum.

2.2.1 Excitation spectrum
The energy spectrum of a quantum dot is obtained by solving the Schrödinger
equation. We consider the confinement potential V (x,y) of a circular shaped
quantum dot to be of parabolic form

V (x,y) = 1
2m
∗w2

0 |~r|
2 (2.15)

with the radial frequency ω0 and the dot radius
∣∣~r2
∣∣ = x2 + y2. In a

lateral quantum dot defined on the basis of a 2DEG electrons are already
confined in z-direction. They are further confined by a gate structure in
a parabolic potential, which is considered a good approximation for the
common gate geometries [42, 43]. Therefore, the Hamilton operator H of
the two dimensional harmonical oscillator

H = − ~2

2m∇
2 + V (~r) (2.16)

is used. We obtain the eigenenergies

εn,l = ~ω0(2n+ |l|+ 1) (2.17)

with the radial quantum number n ∈ {1,2,...,∞} and the orbital quantum
number l = 0,± 1,± 2 and 2n+ |l| = nx + ny = j being the shell number j.
Thus, equidistant energy levels are located at (j+1)~ω0 = ((nx +ny)+1)~ω0
with distance ~ω0. In this notation the eigenenergies are

εnx,ny = ~ω0((nx + ny) + 1) (2.18)

This is the energy spectrum of a single electron in a 2D harmonic potential.

24



2.2 Electronic states in quantum dots

The 2DEG which is used as a basis to define the quantum dot is a real two-
dimensional system. Only the first subband E1

z is occupied in z-direction.
This first subband energy adds up to the energy spectrum 2.18. The energies
of an electron in a quantum dot are therefore

εnx,ny = ~ω0((nx + ny) + 1) + E1
z (2.19)

2.2.2 Addition spectrum
While the electron spectrum discussed above refers to a dot occupied by
a single electron, the following section considers the energy spectrum of a
dot occupied by several electrons. This is the addition spectrum of the dot.
If a dot is charged with more than one electron we have to consider the
electron-electron interaction in form of the Coulomb repulsion between the
electrons. The constant interaction model considers the Coulomb repulsion
which has to be overcome when adding one more electron to the system
to be independent of the number of electrons on the dot. This model
disregards other effects, like screening, exchange and correlation effects
between electrons. The Coulomb repulsion is taken into account by a
constant charging energy EC. The electrostatic part of the total energy of
a quantum dot with N electrons is expressed by

Eel = 1
2N(N − 1)EC. (2.20)

The electrons added to the dot will successively occupy the Fock-Darwin
states (Eq.(2.18)), their respective ground state energy. The total energy of
the dot is the sum of these quantum-mechanical energies of the electrons in
the dot and their electrostatic energies (Eq.(2.20))

EN = 1
2N(N − 1)EC +

N∑
i=1

εi. (2.21)

E1 is the energy of the ground state εi of the Fock-Darwin spectrum. When
for instance the N -th electron occupies not its ground state εN, but a higher
state, say εN+1, the dot is in an excited state, denoted as E∗N, with E∗N > EN.
Thus, the system has a higher total energy.

The energy which has to be spent to raise the electron number by one
from N -1 to N is the chemical potential
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µN = EN − EN−1 = (N − 1)EC + εN (2.22)

for the transition N − 1→ N electrons on the dot. For consecutive electron
numbers the respective chemical potentials have an energy distance of

µN+1 − µN = EC + εN+1 − εN. (2.23)

Especially lateral quantum dots are relatively large, so most commonly the
charging energy EC is much larger than the energy distance between the
quantum mechanical states of the dot. Consequently the dot has equally
spaced chemical potentials in distance EC. Thus, in good approximation
the charging energy EC is the energy which is necessary to load one electron
on the dot.

2.3 Electronic transport through quantum dots
Transport spectroscopy is used for the characterization and further analysis
of a lateral quantum dot system. For spectroscopy of a system, the electronic
structure of the system under investigation is scanned with a testing energy
that is applied to the system and the reaction of the system is measured. In
transport spectroscopy of a quantum dot this testing energy is the kinetic
energy of electrons which are fed into the dot by the leads of the system.
The reaction of the system is then reflected by the observed current through
the system flowing one lead (source) to the other (drain).

The energies of electrons coming from the leads are given by the popu-
lation of the two-dimensional density of states of the leads. When their
energy equals µN, the addition energy to add one more electron to the
system, the energy can be absorbed by the dot. Thus, the dot can be
charged with the N -th electron, if one of the chemical potentials of the
leads, µS (chemical potential of the source lead) or µD (chemical potential
of the drain lead), is higher than the energy to add the N -th electron to
the dot, the potential µN: µS ≥ µN or µD ≥ µN. The difference of the
chemical potentials µS and µD defines a so-called transport window. If the
chemical potential of the dot µN is located inside this transport window,
transport through the dot from lead to lead is possible and a current I flows.
This requires that the tunneling barriers between the dot and the leads are
transparent enough to allow transport. The chemical potential of the source
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2.3 Electronic transport through quantum dots

lead is tuned by applying a voltage US to the source. The drain lead is
usually grounded. Therefore the size of the transport window is controlled
by US applied to the source. This voltage is also called bias voltage. In
order to measure the energy spectrum of the quantum dot, parameters
which control the positions of µS,D and µN relative to each other have to be
varied.

In lateral quantum dots these parameters are the voltage US applied to
the source lead, which directly varies its chemical potential, and the gate
voltage UG controlling the potential of the dot itself, which is applied at
gates coupling capacitively to the dot. The electrical control of the quan-
tum dot by gates is a characteristic property of structured quantum dots.
These dependencies are explained in an electrostatic capacitance model of
the quantum dot and its environment, namely the leads and gates, in the
following section.

2.3.1 Electrostatic model
The electrostatic model of a quantum dot system is able to explain Coulomb
blockade phenomena observed in electronic transport through the dot. It
completely neglects the spacial quantization effects of the quantum dots
and only takes into account the capacitive couplings in the system. Figure
2.2 shows a schematic of the electrostatic model for a single quantum dot.
The source and drain leads are tunnel coupled to the dot, which leads to
the resistance RS and RD, respectively, between the dot and the leads. In
addition, the voltage US applied to the source is affecting the potential
of the dot by a capacitive coupling CS. Thus, the source voltage US also
has a gate effect on the dot. Analogously the drain lead is capacitively
coupled to the dot by CD. The gate is only capacitively coupled by CG
as it is electrically isolated from the dot. The capacitive coupling raises
linearly with the inverse distance between dot and gate. An applied gate
voltage UG is influencing the dot potential by the capacitance CG. The
total capacitance CΣ between dot and its environment then is

CΣ = CS + CD + CG (2.24)

and the corresponding charging energy EC of the dot is

EC = e2

CΣ
. (2.25)
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gate

source drainQD

R ,CS S R ,CD D
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Q , U0 0

Q , UD DQ , US S

Q , UG G

Figure 2.2: Electrostatic model for a single dot coupled capacitively to a
gate, a source- and drain lead by CG, CS and CD, respectively. RS and RD
denote, only for the sake of completeness, the additional tunnel resistance
between the dot and the leads. The system can be handled as a network of
metallic discs with charges Q and voltages U connected by capacitors.

With behalf of the electrostatic capacitance model of a dot the charging
energy of the dot can be derived. The dot can be described as a small
metallic island of radius r with a self-capacitance of C = 8εrε0r with rel-
ative dielectric constant εr and the vacuum permittivity ε0, which is the
capacitance against the infinity and as such marks the upper limit of the
disc capacitance. This disc is connected by capacitors to a network of other
metallic discs. The metallic discs are electrodes, voltage sources, modeling
the dot and the capacitive coupled leads and gates (Fig. 2.2).

The charge state of the system is expressed in terms of the electrostatic
potentials of the electrodes (dot, gates and leads) by [44]

~Q = C~U (2.26)

with the elements Qi of the charge vector ~Q being the charge on electrode i.
C is the capacitance matrix. A diagonal element Cii is the total capacitance
of electrode i and a non-diagonal element Cij is the negative capacitance
between electrode i and j. The voltage vector ~U = (U0,US,UG,UD) consists
of elements Uj , with j ∈ {0,S,G,D} being the electrostatic potential of
electrode j. The electrostatic potential of the dot, U0, in dependence of the
electrostatic potentials of the gates and leads is
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2.3 Electronic transport through quantum dots

U0 = Q0

CΣ
+
∑
j

C0j

C
Uj (2.27)

with C0j being the capacitance between lead/gate j (j ∈ {G,S,D}) and the
dot. Uj is the voltage on electrode (lead/gate) j. The sum capacitance of the
dot is given by the sum over the capacitances of all leads CΣ =

∑n
j=1 C0j

(Eq. (2.24)). The electrostatic energy of the dot charged with N electrons is

EN =
Ne∫
0

U0(Q0)dQ0 = N2e2

2CΣ
+Ne

∑
j

C0j

CΣ
Uj . (2.28)

The summand Ne
∑
j=1(C0j/CΣ) · Uj is the electrostatic potential of the

dot charged with N electrons and (N2e2)/(2CΣ) is the energy needed to
charge the dot with N electrons. The chemical potential µN of the dot is
its change in electrostatic energy with its charge:

µN = δEN

δN
= N

e2

CΣ
+ e

∑
j

C0j

CΣ
Uj (2.29)

and the difference in chemical potentials equals the charging energy EC (Eq.
(2.25)) of the dot, the energy needed to load one electron on the dot

EC = µN+1 − µN = e2

CΣ
. (2.30)

A voltage U coupling to the system by a capacitance C is not only affecting
the potential of the dot, it is also varying the tunnel couplings RS, RD in
the system. This fact is ignored in the introduced capacitive model. The
influence of a voltage U on the chemical potentials µN of the dot is

∆µN = −eU C

CΣ
. (2.31)

In this way a gate voltage UG controls the chemical potentials µN of the
dot via CG, while it is not affecting the chemical potentials µS and µD of
the leads. Thus their relative position can be tuned by UG which enables a
change in the electron number on the dot. The chemical potentials of the
dot are also changed by US via CS in the same manner (Eq. (2.31)). In
addition, US influences the chemical potential µS of the source lead by

29



2 Theoretical background

∆µS = −eUS. (2.32)

The drain lead is grounded. This opens a transport window which enables
transport through more than one transport channel. All chemical potentials
of the dot located within the transport window spanned by µS and µD:
µS ≥ µN ≥ µD or µS ≤ µN ≤ µD participate in transport. To sum up, the
relation between the change of the chemical potential of the dots and the
control parameters UG and US is

∆µN = −eUG
CG

CΣ
− eUS

CS

CΣ
. (2.33)

source drainQD

µN

µN+1

µS

µD

-eUS

-eU C /CG G S
eU C /CS S S

-

Figure 2.3: Model of a quantum dot connected to source and drain by
tunneling barriers. It shows, how the control parameters UG and US change
the relation between the chemical potentials µN of the dot and the chemical
potentials µS and µD of the source and drain lead. US additionally opens a
transport window.

Fig. 2.3 shows how these control parameters tune the chemical potentials
of the dot and of the leads. The source voltage shifts the chemical potential
of the source lead according to Eq. (2.32) opening a transport window and
both the gate and the source voltage control the chemical potentials of the
dot according to Eq. (2.33). This way the transport through the dot is
controlled.

With Eq. (2.33) and Eq. (2.25) a conversion from gate voltages to en-
ergy scales is obtained by
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E = eUG
CG

CΣ
= eUGCG

EC

e2 . (2.34)

This capacitive model can easily be extended for the description of multiple
quantum dots. Besides the described relations for each of the single dots,
two different coupling effects between the dots have to be taken into account
in a system consisting of multiple quantum dots. These are the inter-dot
tunnel coupling and the inter-dot capacitive coupling. As we focus on capaci-
tive models in this section, only the capacitive coupling is taken into account.

We consider the example of a triple quantum dot in triangle configura-
tion with each dot capacitively coupled to the other two in advance of
the measurement setup discussed later. For spectroscopy of the electronic
structure of one dot one gate was sufficient. For a multiple quantum dot
system a gate number equaling the number of dots is needed when we
want to control each of the dots independently and shift their potentials
with respect to each other. Thus, each dot has its specific gate. In this
example of a triple quantum dot system each dot is additionally coupled
to a lead. Cross-capacitances are neglected for better clarity in this ideal
model. This means that each dot is capacitively coupled to only one specific
gate. Capacitive couplings to the other gates are neglected. However, in
real systems cross-capacitances are always relevant and the model has to
be expanded in a straight forward manner. A schematic of the considered
system setup based on a capacitive model is shown in Figure 2.4. It includes
the inter-dot capacitances Cij (i,j ∈ {A,B,C} and i 6= j), the dot-gate
capacitances CGi,j (i = j), the dot-lead capacitances CS1,B, CS2,C, CD,A,
and the voltages UGi and US1, US2, UD applied to the gates Gi and leads
S1, S2, D, respectively. Additionally, there are the cross-capacitances CGi,j
(i 6= j), which are CS1,A, CS2,A, CS2,B, CD,B, CS1,C, CD,C. They are not
marked in the figure.

The total energies for zero up to one electron on each dot according to
the energy needed to charge an empty dot with one electron (Eq. (2.31))
without considering cross-capacitances and the capacitive influence of the
leads, are
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Figure 2.4: Schematic of a triple quantum dot described within the capaci-
tive model including inter-dot capacitances Cij (i,j = A,B,C,i 6= j), dot-gate
capacitances CGi,j (i = j), dot-lead capacitances CD,A, CS1,B, CS2,C and
voltages UGi, US1, US2, UD.

E000 = 0

Ei = − e

CΣi
(CGi,iUGi)

Ei,j = Ei + Ej + e2 Cij
CΣiCΣj

Ei,j,k = Ei,j + Ei,k + Ej,k − Ei − Ej − Ek.

(2.35)

with i,j,k ∈ {A,B,C}, i 6= j 6= k and Ei denoting the electrostatic energy
for one electron on dot i. Ei,j is the electrostatic energy for two electrons
in the system, one on dot i and one on dot j. Analogously, Ei,j,k is the
electrostatic energy for three electrons in the system. CGA,i, CGB,i, CGC,i
is the capacitive coupling between dot i to gate GA, GB, GC, respectively,
and Cij is the capacitive inter-dot coupling between dot i and j. CΣi is the
total capacitance of dot i.

Considering cross-capacitances, which means taking into account the capac-
itive coupling of the dots to each gate and lead, Ei becomes

32



2.3 Electronic transport through quantum dots

Ei =− e

CΣi
(CGA,iUGA + CGB,iUGB + CGC,iUGC

+ CS1,iUS1 + CS2,iUS2 + CD,iUD).
(2.36)

When a certain set of gate voltages UGA, UGB, UGB is applied, the system
favors the charge configuration (i,j,k) with the smallest energy Ei,j,k. The
charge configuration of the system is tunable by varying the gate voltages. A
parameter area for which the charge configuration is fixed is called stability
region. At the borders of these stability regions charge transitions take
place. For a fully tunable system of N quantum dots N gates are needed, as
the N dot system consists of N linearly independent energy spectra. Thus,
for a system of N quantum dots a full stability diagram is N -dimensional
[22]. On basis of this electrostatic model the three-dimensional stability
diagram of the dot system can be calculated [19].

Another possible way to plot a stability diagram of a quantum dot system
is the evaluation of the chemical potential of each dot. In the following this
is discussed for the triple quantum dot system shown in Fig. 2.4. However,
cross-capacitances are neglected for reasons of clarity. They are a natural
extension of the described model and can easily be included. The relevant
capacitances are only CGi,i (in the following in short written as CGi), as
in Eq. (2.35). In the following the approach of van der Wiel et al. [44] is
followed and extended to a three dot system [45].

The electrostatic energy Eel of the system is

Eel = 1
2
~UC~U (2.37)

with the capacitance matrix C of the system and the voltage vector ~U . ~U is
calculated on the basis of Eq. (2.26). The voltages on the gates and leads
are known and the voltages on the dots UA, UB, UC have to be determined
only. Thus, with the partition of ~Q and ~U into two parts referring to the
dots and gates/leads, marked with indices c and v, respectively(

~Qc
~Qv

)
=
(
Ccc Ccv
Cvc Cvv

)(
~Uc
~Uv

)
(2.38)

Eq. (2.26) can thus be written as
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~Qc = Ccc ~Uc + Ccv ~Uv (2.39)

with ~Qc = (QA,QB,QC) and ~Uc being the charge and the voltage on the
dots, respectively, and ~Uv being the voltage on the gates/leads. ~Uc then is

~Uc = C−1
cc

(
~Qc − Ccv~Uv

)
. (2.40)

The elements of ~Qc are

QA =QD +QGA +QAB +QAC = CD (UA − UD)
+ CGA (UA − UGA) + CAB (UA − UB) + CCA (UA − UC)

(2.41)

QB =QS1 +QGB +QAB +QBC = CS1 (UB − US1)
+ CGB (UB − UGB) + CAB (UB − UA) + CBC (UB − UC)

(2.42)

and

QC =QS2 +QGC +QAC +QBC = CS2 (UC − US2)
+ CGC (UC − UGC) + CAC (UC − UA) + CBC (UC − UB) .

(2.43)

The matrix form isQA
QB
QC

 =

 CA −CAB −CCA
−CAB CB −CBC
−CAC −CBC CC

UA
UB
UC

 (2.44)

with CA = CD + CGA + CAB + CAC, CB = CS1 + CGB + CAB + CBC and
CC = CS2 + CGC + CBC + CAC. The matrix corresponds to Ccc. The
electrostatic energy Eel can be calculated using Eq. (2.37). It can now be
reduced to

Eel = 1
2
~UcCcc~Uc. (2.45)

The chemical potentials µA, µB, µC of dots A, B, C, respectively, are
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µA (n,m,l) = Eel (n,m,l)− Eel (n− 1,m,l)
µB (n,m,l) = Eel (n,m,l)− Eel (n,m− 1,l)
µC (n,m,l) = Eel (n,m,l)− Eel (n,m,l − 1) ,

(2.46)

with n, m, l being the number of electrons on dot A, B, C, respectively.
Inserting the respective electrostatic energies Eel we obtain

µA (n,m,l) = |e|2 CDAA

(
n− 1

2 − TUC,A

)
+DAB (m− TUC,B) +DAC (l − TUC,C)

(2.47)

µB (n,m,l) = |e|2 CDAB (n− TUC,A)

+DBB

(
m− 1

2 − TUC,B

)
+DBC (l − TUC,C)

(2.48)

µC (n,m,l) = |e|2 CDAC (n− TUC,A)

+DBC (m− TUC,B) +DCC

(
l − 1

2 − TUC,C

) (2.49)

with D = C−1
cc and Dij being the elements of D with i,j ∈ {A,B,C}. The

terms TUC,A, TUC,B, TUC,C stand for

TUC,A = CDUD + CGAUGA,

TUC,B = CS1US1 + CGBUGC,

TUC,C = CS2US2 + CGCUGC,

(2.50)

respectively. The charge on the dots is substituted by the electron number
by using the factor |e|2. The voltages are consequently given by U/ |e|.
When the capacitances between the dots, between dot and its respective
gate and lead, and the voltages applied to the gates and leads are known,
the chemical potential of the dots can be calculated with these formulas
[45].
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In order to calculate the three-dimensional stability diagram of the triple dot
system in dependence of the three gate voltages we want to know the stable
charge configuration of the system for a certain gate-voltage-domain. The
chemical potentials of the leads are µS1 = µS2 = µD = 0 for the no bias case.
The charge on the dots in equilibrium is the solution of µS1, µS2, µD ≤ 0
with maximum N1, N2, N3. The borders of the stable regions, the charging
lines, are the solutions of the equations µi (n,m,l) = 0, (i ∈ {A,B,C}) in
terms of gate voltages. Appropriate border conditions determine which
solution to take and where the charging lines are supposed to start and end.
In this way the stability diagram can be computed. [44, 45] As an example
a two-dimensional cut through the stability diagram of a triple quantum dot
system is shown in Fig. 2.5 which is computed according to the instructions
above. The lines with different slopes marked with A, B and C correspond
to the charging lines of dots A, B and C, respectively. They are connected
by charge reconfiguration lines at the dot resonances of which two (A-B and
B-C) are seen in this section of the diagram. In the charge stability regions
the number of electrons on the dots is denoted.

Figure 2.5: Calculated 2D cut of the stability diagram of a triple quantum
dot system in dependence of UGA and UGB. The charging lines of dots A, B
and C are marked with A, B, C, respectively.
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A problem by calculating the chemical potentials following van der Wiel is,
that the discretness of charge is not kept to full extent when substituting
the charges Q by the voltages U in Eq. (2.41)-(2.43). This becomes evident
when looking exemplarly at the expression for UA (solving Eq.(2.41) by
UA):

UA = QA + CAB · UB + CCA · UC + CGA · UGA. (2.51)

The voltage on dot A, UA, depends continuously on the voltage at the
gate coupled capacitively to the dot, UGA. UB is included via CAB · UB.
UB depends linearly on UGB. Consequently, UA depends linearly on UGB
as well. However, UA should only depend on QB, which does not depend
continuously on UGB. Using the continuous dot-voltages Ui (i ∈ {A,B,C})
to calculate the other dot-voltages thus leads to the loss of discretness of
charge, while there is no problem when directly calculating the energy. This
problem becomes obvious for a system without cross-capacitances. While we
expect the charging lines of a dot in a measured 2D cut through the stability
diagram to be parallel to the axis where the gate voltage is varied the dot
is not coupled to, we always obtain a finite slope in this model. One has to
make sure that Ui does not follow the outer voltages UGj with j ∈ {A,B,C}
and j 6= i, continuously, but in a quantized manner because with continuous
voltages there is an influence between the dots via CAB, CAC, CBC even
though the electron numbers on the dots do not change.

2.3.2 Transport properties
The conductance through the system oscillates in dependence of the relation
between the chemical potentials µi of the dot to the chemical potentials
of the leads µS, µD. If µN ≤ µS or µN ≤ µD, there are electrons in the
population of the 2D density of states of the source or of the drain which
provide enough energy, µN, to populate the dot with N electrons. Transport
through the dot is only possible if there is a chemical potential µN of the
dot with µN ≤ µS, µN ≥ µD, or µN ≥ µS, µN ≤ µD, meaning when µN lies
in the so-called transport window spanned by µS and µD. Otherwise, the
transport is blocked as there are no electrons in the leads with enough energy
to overcome the charging energy of the dot and no non-occupied states in
the other lead. The Coulomb repulsion between the electrons leads to a
restriction of tunneling onto the dot due to energy conservation and thus is
responsible for the charging energy. This is why this blockade of transport is
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known as Coulomb blockade. Consequently, for increasing detuning between
µS and µD the energy levels of the dot successively enter the transport
window. The current through the system in dependence of the detuning
between µS and µD exhibits a step whenever a new dot energy level enters.
The detuning of the chemical potentials of the leads is controlled by a bias
voltage US. Another possibility to tune the conductance through the system
is the variation of a gate voltage shifting the energy levels of the dot. It
results in a current through the dot whenever an energy level of the dot is in
the transport window. The differential conductance G = dISD/dUS exhibits
a peak whenever an energy level of the dot comes into resonance with the
source or drain chemical potential, µN = µS or µN = µD. This makes the
differential conductance G (in e2/h) a good measurand to detect resonances
in transport. At T = 0 K this peak in the differential conductance is a
delta peak. The conductivity G of one transport channel does not exceed
G0 = e2/h, where G0 is the conductance quantum.

The transport properties of a system are significantly affected by charging
effects if the charging energy of the system is large compared to the thermal
energy. [46] Consequently, for transport spectroscopy the thermal energy
kBT has to be smaller than the energy level spacing of the dot, which is the
charging energy EC, in order to resolve the quantized states of the dot

kBT << EC = e2/CΣ . (2.52)

Thus, for a good resolution at an achievable temperature small dots with
a small sum capacitance CΣ are necessary. When the temperature is very
high, EC << kBT , the differential conductance through the system, GhighT,
is simply given by the sum of the differential conductances across the two
barriers (1,2) of the dot to the leads, 1/GhighT = 1/G1 + 1/G2, independent
of the dot size. Mesoscopic systems are sufficiently small to observe charging
effects but also large enough to be easily coupled to macroscopic probes for
application of voltages and current measurement of the system. For tunnel
junctions with capacitances of the order of 10−15 F, which can easily be
fabricated today, the charging energy of the system is around EC = 0.1 meV,
which corresponds to an energy scale of EC/kB = 1 K. Consequently, for
structures of such size charging effects are significant in the transport prop-
erties for temperatures in the sub-kelvin regime. In case of quantum dots
typical capacitances even reach values of the order of aF.
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Additionally, the energy uncertainty has to be much smaller than the
charging energy of the dot to observe effects showing the quantization of
charge. With the Heisenberg uncertainty relation

∆E∆t = (e2/CΣ)RtC > h (2.53)

with the typical (dis-)charging time ∆t = RtCΣ of the dot it follows that
the tunnel resistance Rt of the barriers between the dot and the leads has
to be much larger than the resistance quantum,

Rt >> h/e2 ∼= 25.81 kΩ, (2.54)

in order to meet this criterion. [47] This can be fulfilled by coupling the dot
weakly to the leads, so that weak tunneling through the system is obtained.
If both Eq. 2.52 and 2.54 are fulfilled single electron effects, meaning effects
regarding the quantization of charge, can be observed. Sequential tunneling
through the system and Coulomb blockade are observed. This transport is
described by the so-called orthodox theory which was developed by Averin
and Likharev [48]. It treats electron tunneling in the first-order perturbation
theory, where the transition rates in the system are described by Fermi’s
Golden rule. This transition rate for an electron from an energy state l on
the dot to the state i in the leads in general form is

Γi←l = 2π/~| 〈i|H′ |l〉 |2ρ (2.55)

with | 〈i|H′ |l〉 | being the matrix element of the perturbation H′ between
final and initial state and ρ being the density of the final states. [49] Fermi’s
Golden rule gives the transition rate from an energy eigenstate of a system
into a continuum of other energy eigenstates, caused by pertubation of the
system. For the derivation of Fermi’s Golden rule second-order perturbation
in the tunnel Hamiltonian describing the electron tunneling between dot
system and leads is taken into account. This results in first-order perturba-
tion in the tunneling rates. The coupling to the leads is the perturbation of
the system. The current through the dot arising from this single electron
tunneling is then derived by a master equation ansatz taking into account
the tunneling rates obtained by this first-order perturbation theory, which
is described in sections 2.3.3.2 and 2.3.3.3.

Sequential tunneling is a non-coherent process, where the phase memory of
the transmitted electron is lost due to inelastic scattering events inside the
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quantum well during the transport. It can be described as a process where
an electron tunnels from a lead into a quantum well, where it is scattered
inelastically and possibly changes its energy, and then tunnels out through
the lead on the other side. The tunneling events through the two barriers
are considered as uncorrelated events. The conductance peak at resonance
is decreased and broadened in case of inelastic scattering. [50] Resonant
tunneling is present if the electron tunnels coherently from one lead across
the quantum well to the other lead. [51, 52] The transmission peak is
higher compared to sequential tunneling, as the back and forth propagating
electron wave inside the quantum well can interfere constructively as it
is coherent and forms the transmission peak (Fabry-Perot Interferometer
analogon). When the time constant for this process τ0 is smaller than the
scattering time τ , and consequently the intrinsic resonance width Γ0 = ~/τ0
being larger than the broadening due to the scattering, Γ = ~/τ , as for
instance with thin tunneling barriers, the condition for coherent tunneling
is fulfilled. [50]

For T > 0 K a broadened peak in the differential conductance instead
of a delta peak is obtained. The reason is that the Fermi function of the
leads is smeared out and the electronic states of the dot are broadened
due to temperature. One can distinguish between two different trans-
port regimes, the weak (~Γ << kBT ) and the strong coupling regime
(kBT . ~Γ ), with the dot-lead tunnel rate Γ . In the weak coupling regime
the dot energy levels can be treated as delta peaks in the density of states.
Two regimes can be distinguished, the classical Coulomb blockade regime,
where ∆E << kBT << EC and the quantum Coulomb blockade regime,
where kBT << ∆E < EC , with ∆E being the excitation energy of the
dot and EC the dot charging energy. [47] While in the classical regime
several energy levels can participate in transport due to thermal electron
excitations, in the quantum regime only one energy level of the dot par-
ticipates in transport. In the quantum regime the Coulomb peak has the
form G ∝ cosh−2(δE/2kBT ), with δE being the energy level detuning. [47]
Reason is that for high temperatures the temperature broadening of the
leads is large compared to the intrinsic width of the electronic states of the
dot. Consequently, by performing transport spectroscopy the well defined
dot state scans the density of states of the leads and the Coulomb peak has
the form of the derivation of the Fermi function at temperature T . At very
low temperatures the Fermi function of the leads is approximately a step
function. Now the intrinsic width of the energy state with finite lifetime τ
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of the dot becomes important, as kBT . ~Γ . The chemical potentials of
the leads serve well as a testing energy for the broadened dot level. The
Coulomb peak can be described by a Lorentzian function (Breit-Wigner
distribution) of the form

G = 2e2

h
(~Γ )2/((~Γ )2 + (δE)2) (2.56)

with Γ = 1/τ and the intrinsic half-width of the Lorentz peak 2~Γ and a
peak height at the resonance (δE = 0) of 2e2/h, the conductance quantum.
[47] This formula applies for the case of T = 0 K. As a consequence for
transport spectroscopy of the quantum dot energy levels low temperatures
are used.

We distinguish between two different transport regimes defined by the
current-voltage characteristic the dot exhibits. They are the linear and the
non-linear transport regime and are described in the following.

2.3.2.1 Linear transport

The linear transport regime is defined as the parameter area in which the
measured current is proportional to the applied bias voltage. This is ful-
filled when the bias voltage is small compared to the thermal energy of
the electrons ∆µSD << kBT [53, 54]. Then the conductance G of a dot is
independent of the voltage so the current I = G · US is linear.

For typical quantum dots EC is in the order of some 100 µeV (≡ 1.16 K).
Thus ∆µSD has to be well below 100 µeV to achieve linear transport.

Figure 2.6 shows a schematic of linear transport through a quantum dot.
The differential conductance G = dISD/dUS is plotted in dependence of
a gate voltage UG1 and shows an equidistant sequence of the described
Lorentzian shaped Coulomb peaks. For µS = µD G equals the conductance
through the dot. The distance between them is the constant charging
energy of the dot. From the distance in gate voltage ∆UG between the
charging lines the capacitive coupling CG between the dot and the gate can
be calculated by

CG = e

∆UG
. (2.57)
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If the dot is coupled to more than one gate, the Coulomb peaks can be
displayed in a 2D-charging diagram (Fig. 2.6). The peaks become parallel
charging lines. Their slope m can be expressed by

m = ∆UG2

∆UG1
= CG1

CG2
. (2.58)

It is the ratio between the two capacitive dot-gate couplings.
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Figure 2.6: Schematic of linear transport through a single dot. If an energy
level of the dot comes into resonance with the chemical potential of the
leads, a Lorentz-peak in the conductance G of the system is obtained, which
becomes a charging line in 2D. The slope given by the ratio between the
respective dot-gate capacitive couplings.

2.3.2.2 Non-linear transport

Transport measurements with higher applied bias voltage US between source
and drain exhibit a non-linear current-voltage characteristic. The reason is
that excited states of the dot, and for a larger transport window even more
than one ground state of the dot, play a role in transport. A staircase-like
behavior in the current through the dot with a step for every new state
entering the transport window is obtained. This step in current corresponds
to a peak in differential conductance. If a dot energy level comes into
resonance with the chemical potential of one of the leads a peak in the
differential conductance is observed. In a diagram showing the differential
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2.3 Electronic transport through quantum dots

conductance in dependence of US and UG straight resonance lines of high
differential conductance for µN = µS and µN = µD are obtained. This
results in a Coulomb-diamond-pattern as seen in Figure 2.7.

Figure 2.7: Schematic of non-linear transport through a single dot. Coulomb
diamonds are formed by the charging lines of the resonances between leads
and dot µS = µN and µD = µN. Between the diamonds the electron number
on the dot changes by one. Resonances between chemical potentials of
the leads and excited states of the dot µS = µ∗N and µD = µ∗N appear as
parallel lines to these. Via e∆US = EC the charging energy of the dot can
be calculated from half the width of the Coulomb diamonds.

A cut at US = 0 shows the known resonances of the dot chemical potentials
with the identical chemical potentials of source and drain. The resonances
for each µN split into two for |US| > 0, a resonance with source and a
resonance with drain. Thus, a sequence of diamonds for consecutive electron
numbers N,N + 1, N + 2,... is observed in direction of varied gate voltage.
The slopes of the resonance lines with source result from the effect of US on
the source potential and the capacitive influence of US on the dot energy
levels, the slopes of the resonance lines with drain result from the capacitive
influence of US on the dot energy levels only. The slopes of the resonance
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line µN = µS is

m = (CΣ − CS)/CG (2.59)

and the slope for µN = µD is

m = −CS/CG. (2.60)

Inside the Coulomb diamonds the transport window is smaller than the
charging energy and no transport takes place. The dot is in Coulomb
blockade. At the corners of the diamonds are the crossing points of the
resonances µN = µS and µN = µD. For the ones lying at US = 0 mV we
have µS = µD = µN, as explained before. At the other two corners we have
the condition µS − µD = µN+1 − µN and thus

e∆US = EC. (2.61)

In these points and in the dark gray marked area in Fig. 2.7 two ground
states lie in the transport window and participate in transport. Half the
width of a Coulomb diamond corresponds to the charging energy EC of the
dot. Outside the Coulomb diamonds, in the light grey regions in Fig. 2.7,
there is one ground state energy level of the dot inside the transport window.

In the non-Coulomb-blocked regions excited states of the dot can par-
ticipate in transport as well. The resonances of source and drain with the
excited state µ∗N lead to the same crossing pattern as for the ground states.
However, they are only visible when µN lies inside the transport window.
As the distance between the ground state µN and its excited state µ∗N is
the quantum mechanical level spacing ∆εN, the resonances of µ∗N with the
leads occur as a parallel line in distance of ∆εN from the resonances of the
ground state µN. In the region where eUS < EC ground and corresponding
excited state can not be occupied simultaneously. This leads to a small
resonance peak for the excited state.

A stability diagram with constant US > 0 in dependence of two gate voltages
is a cut through the Coulomb diamond diagram for a certain US > 0. Con-
sequently, it shows parallel double lines. Each double line originates from
a charging line at zero bias split into two lines, one line for resonance µN
with the source lead, the other with the drain lead. The distance between
them depends on the bias voltage.
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2.3 Electronic transport through quantum dots

2.3.2.3 Cotunneling

In single electron tunneling as treated before the tunnel rate is derived
from first order perturbation theory and given by Fermi’s Golden rule Eq.
(2.55). In the Coulomb blockade regime of a dot single electron tunneling
is exponentially suppressed, as the first-order tunnel current decreases ex-
ponentially with the detuning [55, 56]. In this regime higher order tunnel
processes gain relevance. They become especially important if the tunneling
barriers are so small that their tunnel resistance lies in the order of h/e2.
In this case the requirement Rt >> h/e2 (Eq. (2.54)) for single electron
tunneling and charge quantization effects is not satisfied anymore. When
Rt is approaching the value of h/e2 quantum fluctuations cause broad-
ening of the energy levels which leads to more charge transfer channels.
Higher order tunneling gains importance, called cotunneling [46, 57]. Due to
these quantum fluctuations in macroscopic charge a finite tunneling current
can flow although the dot is in Coulomb blockade and first order tunnel
processes are forbidden due to the energy conservation law. Taking into
account second-order perturbation theory results in a transition rate Γco
for cotunneling electrons. The underlying tunnel process can be considered
as tunneling through the Coulomb energy barrier. As this barrier stems
from the interaction of a macroscopically large number of electrons, the
tunneling through the barrier is sometimes also referred to as macroscopic
quantum tunneling of charge [55, 56, 58]. The tunneling process leads to a
decay of the Coulomb blockade energy barrier. The cotunneling process is
described in general as follows. The electron virtually tunnels through a
charge state which is energetically forbidden as it lies at a certain energy E
above the chemical potentials of the leads. The tunneling process occurs
on a short time scale allowed by the time-energy uncertainty relation (Eq.
(2.53)). For instance, for a forbidden charge state at energy E = e2/(2CΣ)
in the middle between two Coulomb peaks the maximum allowed time scale
for the virtual process is t = h/E. E decreases to zero towards the Coulomb
peaks.

One distinguishes between elastic and inelastic cotunneling. In the elas-
tic tunneling process only one electron tunnels and the inelastic process
is described as two different electrons involved in the tunneling sequence.
Sometimes the term co-tunneling is only used for the inelastic tunneling, as
it refers to two tunneling electrons.
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An elastic tunneling process can be described as one electron tunneling in
and out of a virtual state of the quantum dot. This process is possible while
first-order single-electron tunneling over a non-virtual state of the dot is
forbidden due to Coulomb blockade. These processes already take place
close to equilibrium where the bias voltage is arbitrarily low and does not
exceed the energy difference between ground and excited state ∆E of the
dot (e |US| < ∆E) and small temperatures (kBT < EC). Elastic cotunneling
is always occurring. It manifests itself in the tails of lifetime-broadened
Coulomb peaks and is thus also responsible for the residual conductance
between the peaks [46, 59]. An electron from a state below the chemical
potentials of the leads tunnels to the drain lead, leaving the dot in a virtual
state (N -1). It is immediately replaced by an electron from the source lead.
This is called the hole-like process. Another possible process is that an
electron tunnels from the source lead to a state of the dot lying above the
chemical potentials of the lead and immediately tunnels out to the drain
lead. During this process the dot is in a virtual (N+1)-state. It is called
the electron-like process. Initial and final state of the system have the same
energy. This is why the tunneling process is called elastic. The process is
shown schematically in Fig. 2.8. Elastic cotunneling is a coherent process,
where at least two tunneling processes are coherent, so that coherent trans-
port from source lead to drain lead is possible. It only dominates for small
temperatures and small bias voltages.

S D S D S D

(a) (b) (c)

mS mD

mN

mN+1

Figure 2.8: Schematic showing the elastic tunneling process via the virtual
(N -1)-state of the dot. The process using the virtual (N+1)-state is analogous
with the dot energy level detuned above the chemical potentials of the leads.

Inelastic cotunneling appears if the dot is driven out of equilibrium by a
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bias voltage equal to or larger than the energy difference between ground
state and excited state of the dot, e |US| ≥ ∆E. It also dominates for
kBT > ∆E. Two different electrons are involved in the process. There are
two cotunneling channels, a hole-like process and an electron-like process
which both contribute to the cotunneling current. An electron tunnels from
a ground state of the dot which is located below the chemical potentials
of the leads to the drain lead and within a very short time scale another
electron tunnels from the source lead to the excited state of the dot. As
the first electron tunnels out of the dot, violating the energy conservation
law for a very short time allowed by the Heisenberg uncertainity principle
another one tunnels into the dot, so that the energy is conserved for the
whole process (hole-like process). For a short time interval the QD is in an
intermediate virtual state with an energy which lies outside the classically
allowed range. The virtual intermediate state of the dot is an (N -1)-state.
The energy difference µD−µN is called blockade energy for this process. [59]
This tunneling sequence can be switched which results in the electron-like
process. In this case an electron tunnels first from the source lead to a
ground state of the dot located above the chemical potentials of the leads
and another electron tunnels from an excited state of the dot to the drain
lead. The virtual intermediate state of the dot is then an (N+1)-state. The
blockade energy is µN+1−µS. [59] Both processes are depicted schematically
in Fig. 2.9. These two cotunneling processes are called inelastic as they
leave the dot in an excited state.

The dot relaxes into ground state by sequential tunneling, photon emission,
or another cotunneling process. In contrast to elastic tunneling processes
inelastic cotunneling is an incoherent process. Inelastic cotunneling is seen in
transport through the quantum dot as a finite current onset at e |US| ≥ ∆E
inside the Coulomb diamond, a current step parallel to the US = 0 mV axis.
At the diamond boundary it intersects the line corresponding to first-order
tunneling at the resonance of a lead with an excited state of the dot inside
the single-electron tunneling region. This becomes obvious considering the
energy configurations.

The cotunneling rate Γinel-co for the inelastic cotunneling process can be
derived analogously to the tunneling rate for sequential tunneling, and start-
ing with Fermi’s Golden rule describing first-order sequential tunneling (Eq.
(2.55)). The total matrix element for the two-electron tunneling process
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Figure 2.9: Schematic showing the inelastic tunneling process over the
virtual dot state (N -1) (b1) (hole-like process) and the virtual dot state (N+1)
(b2) (electron-like process). Both contribute to the inelastic cotunneling
current.

〈i|H′ |l〉 = T (1)T (2)
(

1
∆E1

1
∆E2

)
(2.62)

consists of the matrix elements T (1) and T (2) for the tunneling through the
first and the second barrier, respectively, and a factor taking into account
the energy difference between the initial and the virtual state ∆E. The
electron can go via two different virtual states, as described above, one with
the energy difference ∆E1 referring to the electron tunneling into the dot
first (electron-like process), and the other one described by ∆E2 referring to
the electron tunneling out of the dot first (hole-like process). Following Eq.
(2.55) one obtains for the cotunneling rate between two states l and i [55]

Γ inel-co
i←l = 2π

~

∣∣∣T (1)
∣∣∣2 ∣∣∣T (2)

∣∣∣2( 1
∆E1

+ 1
∆E2

)2
δ (Ei − El) . (2.63)
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Inelastic cotunneling is an incoherent process, so the total tunneling rate
Γ inel-co

total through the dot is obtained by summing up the rates for the tunneling
processes, weighted by the Fermi function, over all possible initial and final
states afterwards. The cotunneling current for T 6= 0 is derived from the
total tunneling rate Γ inel-co

total by a summation of the currents induced by the
forward (+) and backward total tunneling rate (-)

Iinel-co = e
(
Γ

inel-co,(+)
total − Γ inel-co,(−)

total

)
. (2.64)

Consequently, the inelastic cotunneling conductance (Iinel-co/US) is ex-
pressed by [56]

Ginel-co = ~G1G2

12πe2

(
1
E1

+ 1
E2

)2 [
(eUS)2 + (2πkBT )2

]
(2.65)

with E1 (E2) being the energy associated with adding (removing) an elec-
tron to (from) the dot (E1 + E2 ≈ EC) and G1 (G2) is the conductance
through the left (right) tunneling barrier of the dot. The inelastic cotun-
neling current thus rises linearly with the inverse energies for tunneling
in and out of the dot and with the product of conductances through the
tunneling barriers. It additionally strongly depends on the bias voltage and
temperature and vanishes for US → 0 and T → 0, as there is no energy
available for excitations of the dot.

The tunneling rate for elastic cotunneling has to be derived by pertur-
bation theory in the tunnel Hamiltonians describing the electron tunneling
across the barriers [55], as it is a coherent process where the approach for
the derivation of the inelastic current, where the rates corresponding to
different energy states are summed up incoherently, is not applicable. Fourth
order perturbation in the tunnel Hamiltonian results in a second-order per-
turbation in the tunneling rate. One obtains for the elastic cotunneling
conductance (Iel-co/US) [56]

Gel-co = ~G1G2∆

4πe2

(
1
E1

+ 1
E2

)
. (2.66)

The parameter ∆−1 is the electronic denisity of states of the leads. The
formula is valid for small dots where the electrons go through a virtual state
of the dot, as the time the electron classically needs to cross the dot is small
compared to the time the electron stays in the virtual state (t = h/E). The
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elastic cotunneling current thus also rises linearly with the inverse energies
for tunneling in and out of the dot and with the product of the conductances
through the tunneling barriers.

In general, the detuning between dot and leads determines the strength of
the cotunneling current. The appearance of cotunneling itself is independent
of the detuning.

2.3.2.4 Multiple quantum dots

A multiple quantum dot system consists of N > 1 quantum dots in close
proximity to one another, so that coupling effects between the dots play
a role. There are various arrangement and coupling possibilities in a mul-
tiple quantum dot system, as seen in Fig. 2.10. The most basic coupling
possibility between the dots is the pure capacitive coupling which is caused
by the classical electrostatic repulsion, the Coulomb repulsion, between the
dots. Additionally, the dots can be tunnel coupled. The tunnel coupling
between the dots is caused by an inter-dot finite overlap of the electronic
wave functions of the electrons. The arrangement of the dots in transport
can thus be a parallel circuit, a series circuit, or combinations of both.

S D S D S D

Figure 2.10: Examples of different dot configurations: linear, parallel and a
combination of both, where two tunnel coupled dots are in series configuration
and another dot is capacitively coupled to these dots. The inter-dot- and
dot-lead capacitive coupling is present due to the small spacial range in the
setups. The additional tunnel coupling between the dots and between dots
and leads is depicted as a line between the dots.

The appearance of the stability diagram of a multiple quantum dot system
depends on this coupling between the dots. A system of n quantum dots
has an n-dimensional charging diagram. Analogously to a gate voltage
influencing the potential of a quantum dot capacitively, the potential is also
influenced capacitively by the potential of a nearby dot. The capacitive
coupling raises linearly with the inverse distance between the dots. The
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potential of a quantum dot (2) gives rise to the shift of the chemical potentials
of a capacitive coupled other dot (1). With a capacitive coupling of C12
between the dots the chemical potential µ1 of dot (1) shift by

∆µ1 = −eQ2
C12

CΣ1CΣ2
(2.67)

according to Eq. (2.31). The difference between the potential of a gate and
the potential of a quantum dot is that the potential of the gate is varied
continuously with applied voltage, whereas the potential of a quantum dot
depends on the electron number on the dot. The potential of the dot is the
sum of the potentials of each electron on the dot and as the dot is charged
in a quantized manner, the potential is quantized, too. So only when the
charging energy is overcome and dot 2 is charged, the potential of dot 2 is
changed and this shifts the potential of dot 1.

For the described double dot system the stability diagram is two-dimensional.
It shows the differential conductance through the system in dependence of
two gate voltages. For a parallel dot configuration the charging of each dot
is marked by a line of finite differential conductance. The slope of the lines
depend on the ratio between the respective dot-gate capacitive couplings.
As the lines have different slopes they cross each other, meaning there are
points in the stability diagram where more than one dot is in resonance with
source and drain. At theses points the dots themselves are in resonance.
Both dots are charged at this point. At the resonance between two dots
the resulting shift in the chemical potential of dot 1 due to the capacitive
coupling of dot 2 is Eq. (2.67) with Q2 = e:

∆µ1 = −e (±e) C12

CΣ1CΣ2
(2.68)

The factor ±e denotes the charging and decharging of dot 2 with one electron.
Analogously ∆µ2 for dot 2 is calculated. Consequently, the gate voltages at
which the dot level is in resonance with the leads shift, so we obtain a shift in
the charging lines of both dots with respect to the gate voltages. Altogether
a hexagonal pattern of charging lines is obtained. This shift due to the
capacitive coupling between the dots is depicted schematically in Figure 2.11.
As the charging lines of both dots shift due to this interaction, we obtain
a splitting with two crossing points which connect three different charging
configurations. These two points are thus called triple points. Across the
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connection line between the triple points, named charge reconfiguration
line, the total charge of the system is constant and there is charge transfer
between the quantum dots only. Along this line the dots are in resonance
with each other. In a system with two serial dots being negligibly tunnel
coupled, there is finite conductance through the system only at these two
points. For purely capacitively coupled parallel dots coupled to the same
leads the stability diagram shows transport in the full hexagonal pattern.
When only one dot (1) is connected to both leads and the other one (2) is
capacitively coupled to it and only tunnel coupled to source so it can be
charged, the stability diagram shows the full charging lines of the single dot
(1), but with shifts in gate voltage marking the charging of dot (2). The
charging of dot (2) is not directly seen as no transport through the dot is
possible.

Using Eq. (2.31) with inserted Eq. (2.68) the shift of the charging line of
dot 1 in gate voltage UG1 due to ∆µ1 can be calculated by

∆UG1,1 = ±e C12

CG1,1CΣ2
, (2.69)

where CG1,1 is the capacitive coupling between gate G1 and dot (1). The
shift of the charging line regarding other gate voltages (e.g. ∆UG2,2 in Fig.
2.11) is calculated analogously, as well as the shifting of the charging lines of
the other dot. Thus, in this example the inter-dot capacitive coupling C12
can be calculated by reading the shift ∆UG1,1 from the stability diagram
and knowing CG1,1 and CΣ2.

In the non-linear transport regime, we get an overlay, a combination of the
Coulomb diamonds of the different dots depending on the coupling arrange-
ment of the dots for varying bias voltage and a gate voltage. For serial
multiple dots, as there is only transport when all three dots are in resonance,
the smallest Coulomb diamonds, which are the ones of of the biggest dot,
are modulated by the bigger Coulomb diamonds. A sawtooth-like pattern
emerges. In case of quantum dots in a parallel circuit the Coulomb diamond
of the dots are lying on top of each other without interacting. Transport
inside a diamond of one Coulomb blockaded dot is still possible when an
energy level of another dot is inside the transport window.

In case of constant bias voltage the stability diagram shows lines along
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Figure 2.11: Schematic stablity diagram for capacitively coupled quantum
dots. The shift of the charging lines of dot 1 and 2 in gate voltage by ∆UG1,1,
∆UG2,1 and ∆UG1,2, ∆UG2,2, respectively due to the capacitive coupling
between the dots leads to two triple points TP-1 and TP-2. They connect
three charge configurations of the system.

which the chemical potentials of dot (1) and (2) are aligned, µN,1 = µN,2,
instead of triple points (see Fig. 2.12). They span the rhombic feature which
arises where the described double lines for the single dots with µN,1 = µS,
µN,1 = µD and µN,2 = µS, µN,2 = µD cross each other. These two lines
with µN,1 = µN,2 are the only lines where transport over ground states of
the dot is possible in serial dot configuration. Adjacent triangular regions
above and below these triple lines are formed where µN,1 and µN,2 lie inside
the transport window. In the upper triangle µN,1 ≤ µN,2 and in the lower
triangle µN,1 ≥ µN,2. In these regions inelastic tunneling processes are
possible, giving rise to transport. Transport is visible in the upper triangle
for US > 0 (gray marked areas in Fig. 2.12) and in the lower triangle for
US < 0. Resonances between the dots involving excited states are visible
inside the triangles as lines parallel to the triple lines.
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Figure 2.12: Schematic stablity diagram for capacitively coupled double
quantum dots showing the influence of an applied bias voltage US > 0.
Ground state resonances of dots 1 and 2 with the source (marked in blue)
and the drain lead (marked in green) result in twice as many resonance lines
than for US = 0 (see Fig. 2.11). The triplepoints have evolved to triple
lines (marked in red) along which µN,1 ≥ µN,2. Above and below these
lines triangular regions are formed. Inside these regions µN,1 and µN,2 lie
inside the transport window. For US > 0 transport is possible inside the
upper triangles (grey colored areas) due to inelastic processes. In this area
resonances involving excited states of the dots can be seen in transport as
lines parallel to the triple lines.

For a system of three quantum dots the stability diagram is three-dimensional.
A model of such a stability diagram calculated by the electrostatic model
described in section 2.3.1 is shown in Figure 2.13. In order to measure the
full stability diagram three gate voltages have to be varied, one for each
dot. Instead of charging lines, we have charging planes and at their crossing
line the respective two dots are in resonance. In the middle of the stability
diagram, where all three planes cross, we get a plane (yellow in Fig. 2.13)
along which all three dots are in resonance. In a triple dot system we have
quadruple points, where four charge configurations meet. In a general case
six quadruple points exist at a triple dot resonance. Four of them span a
plane of rhomboidal shape and two points lie above and below (Fig. 2.13,
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insert). This plane separates two charge states of the system. Across the
plane the system is charged by one electron and the electron number of each
of the dots changes by one. This internal charge rearrangement combined
with the charging of the whole system by one electron is only possible across
this plane and unique for a quantum dot system with N ≥ 3 dots. In a
triple quantum dot system the states connected by the plane are (1,0,0) and
(0,1,1), (0,1,0) and (1,0,1), or (0,0,1) and (1,1,0), depending on the capaci-
tive arrangement of the dots [19]. The process is called quantum cellular
automata (QCA) process and is a crucial element in quantum information
processing.

UG1

UG2

UG3

Figure 2.13: Model of the three-dimensional stability diagram of a TQD
in dependence of three different gate voltages UG1, UG2, UG3. Each plane
marks the charging of one of the dots. At the crossing line of two planes the
respective two dots are in resonance, and where in the center of the model all
three planes meet, a plane (yellow) is formed, across which QCA processes
are possible. The insert shows the central region with the QCA plane and
the location of the six quadruple points QP-1 - QP-6. [19]

For reasons of clarity and to simplify data presentation and analysis, usually
a two dimensional cut through the three-dimensional stability diagram is
measured. Thus, to show the development of a triple dot resonance as
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the joining of two double dot resonances, one spacial direction has to be
quantized by measuring several cuts at different gate voltages, scanning the
three-dimensional space. In such a stability diagram the resonance between
all three dots is reflected by the crossing of all three charging lines.

In Figure 2.14 schemes of parallel two-dimensional cuts through the stability
diagram of a TQD system are shown measured for different gate voltages.
Figure 2.14 (a) shows the anticrossings of three double dot resonances. With
varying the third gate voltage the double dot resonances shift with respect
to each other until they align, as shown in Fig. 2.14 (b). Here, all three
dots are in resonance. The triple points have developed into quadruple
points. In principle, four quadruple points can be seen in such a cut by
choosing a measurement plane with the appropriate cutting angle, as they
lie in one plane. The total number of quadruple points is marked in the full
3D stability diagram (Fig. 2.13) for comparison. However, in general not
all of these four quadruple points are perfectly crossed by a measurement
plane. In this case they are not or poorly seen in the stability diagram. The
stability regions (1,0,1) and (0,1,0) only coexist at a triple dot resonance,
otherwise only one of them is visible. The transition between these two
regions is a QCA process. In case of larger gate voltage the triple dot
resonance splits up again into three double dot resonances, see Fig. 2.14 (c).

Tunnel coupling
The described transport between the dots is only allowed by a finite tunnel
coupling between two dots in the first place. The tunnel coupling results
from a finite overlap between the electron wave functions of the different
dots lying close to each other. The electrons of the dots are moving in
the dots’ joint potential, comparable to the electronic bonding situation of
atoms in molecules. This is why multiple tunnel coupled quantum dots are
also called artificial molecules in extension to artificial atoms for single dots.
The wave function overlap allows the electron transfer between the dots.

Starting from a double dot system with two separate dots (1) and (2),
described by a Hamiltonian H0. The eigenstates of these two non-coupled
dots are |φ1〉 and |φ2〉 with eigenenergies E1 and E2. When a tunnel coupling
is introduced between the dots described by a tunnel matrix T, with
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(0,1,0)(0,0,0)

(0,0,1)

(1,0,1)

(0,1,1)

(1,1,1)

(1,1,0)
(0,1,0)(0,0,0)

(0,0,1)

(1,0,1) (1,1,1)

(1,1,0)

(0,1,1)

(1,0,0)

(0,1,0)

(0,0,0)

(0,0,1)
(1,0,1) (1,1,1)

(1,1,0)
(1,0,0)

QP-2 QP-6

QP-1 QP-5

TP-2

TP-1

(a) (b) (c)

Figure 2.14: Schematics of a 2D cut through the stability diagram in
dependence of two gate voltages. From (a) to (c) a third gate voltage is swept
in steps and the double dot resonances are shifted with respect to each other.
(a) Three double dot resonances and the stability region (0,1,1) are visible.
(b) The double dot resonances align to a triple dot resonance. Only then both
stability regions (0,1,1) and (1,0,0) are visible. Four quadruplepoints QP-1,
QP-2, QP-5, QP-6 are depicted here, corresponding to the ones marked in
Fig. 2.13. Only four of them can be measured simultaneously by choosing
the appropriate 2D measurement plane. (c) For further sweeping of the third
gate voltage we again have three double dot resonances, this time with the
stability region (1,0,0).

T =
(

0 t
t 0

)
(2.70)

and the tunnel amplitude t, the system is described by the Hamiltonian
H = H0 + T with the two delocalized eigenstates |ΨA〉 and |ΨB〉 with
eigenvalues EA and EB. These two wave functions of the electron in the
joint potential of the two dots are the superposition of the single electron
wave function φ1 and φ2, so there is an symmetric superposition state, |ΨA〉,
and an anti-symmetric superposition state, |ΨB〉:

ΨA = c1 · (φ1 + φ2)
ΨB = c2 · (φ1 − φ2)

(2.71)

with the coefficients c1, c2 resulting from normalization. The corresponding
eigenenergies EA and EB described in terms of the two single dot eigenvalues
E1 and E2 are [44, 57]
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EA = E1 + E2

2 +
√

1
4 (E1 − E2)2 + t2

EB = E1 + E2

2 −
√

1
4 (E1 − E2)2 + t2

(2.72)

with the separation between them being

∆E =
√

(E1 − E2)2 + (2t)2
. (2.73)

The state with lower energy is called bonding state and the one with higher
energy anti-bonding state. It follows, that in case of resonance (E1 = E2)
the distance between the atomic states and the molecular states is the
tunnel amplitude t and the distance between the bonding and anti-bonding
state is the tunnel splitting 2t. Thus, the stronger the tunnel coupling
between the dots, the larger the splitting. For decreasing tunnel coupling
the distance between the two molecular states decreases and they more and
more resemble localized states. In resonance both wave functions have the
same weight and the wave function is delocalized over both dot potentials in
equal measure. By detuning the states by energy δE = E1 − E2 one of the
single dots becomes more weight then the other. The bigger the detuning
δE between E1 and E2, the better the molecular states approximate the
atomic states as the overlap of the wave functions is decreasing. In this case
the coupling between them is only weakly affecting the two systems. [57]
Figure 2.15 shows a schematic of the original single-dot wave function and
the resulting bonding and anti-bonding states for two resonant states.

The new energies for the molecular states Ψ0 for zero electrons on the
molecule, ΨA, ΨB and Ψ2 for two electrons on the molecule, lead to different
chemical potentials. The transition Ψ0 → ΨB is described by µ0→B and the
transition ΨB → Ψ2 by µB→2. The same applies for the same transitions
involving the anti-bonding state. The chemical potentials for the atomic
and the molecular states in comparison in dependence of the detuning δ
between the dots are depicted in Figure 2.16. The chemical potentials µ0→B
and µB→2 for the bonding state are represented by the lower and upper
black solid line, respectively, and the chemical potentials µ0→A and µA→2
for the anti-bonding state are represented by the lower and upper black
dashed line, respectively.
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2.3 Electronic transport through quantum dots

Figure 2.15: Schematic of the superposition of two electronic wave func-
tions and the resulting bonding (left) and anti-bonding (right) states. One
superposition case leads to a finite electron probability density in the middle
of the two potentials, a bonding state. The probability is zero in the other
superposition case, the anti-bonding state.

For a non-zero tunnel coupling an additional energy splitting of t at each of
the triple points at the resonance between the states appears. Therefore the
total tunnel splitting is 2t. Far from the resonance the additional tunnel
coupling is not affecting the energies of the states. As a consequence a
rounding of the meeting charging lines at the triple points is occurring in
the stability diagram for a tunnel coupled dot system. This is shown in
the schematic of the stability diagram of a tunnel coupled double quantum
dot in Figure 2.17 (a). For increasing tunnel coupling the energy spectrum
of the states approaches the spectrum of one big single dot formed out of
the two dots. For decreasing tunnel coupling the energy spectrum of the
double dot approaches the spectrum of two single dots. Hence the stability
diagrams for very big and very small inter-dot tunnel coupling resemble
the ones for one big single dot and two capacitively coupled single dots,
respectively.

Figure 2.17 (b) shows the stability diagram for a tunnel coupled double
dot with applied bias voltage US > 0 mV. The resonances of the dot states
with the leads split into two resonances, one with the source and one with
the drain lead, analogously to the case for a purely capaitively coupled dot
system (Fig. 2.12). If the bias voltage is large enough, not only the ground
state resonances µ0→B = µS , µ0→B = µD, and µB→2 = µS , µB→2 = µD are
visible in transport, but the resonances of the excited state of the molecule,
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Figure 2.16: Chemical potentials for a double dot system (dot (1), dot (2))
at a resonance for pure capacitive inter-dot-coupling (grey; µS,1 ≡ µS = µ1
and µS,2 ≡ µS = µ2) and with additional tunnel coupling between the dots
(solid black) in dependence of the detuning between the dots. The solid black
lines are the symmetric superposition binding states, the ground states of
the double dot molecule. The dashed grey lines (µ̃) are excited states of the
single dots, where the electron is on one dot, although the other would be
energetic more favourable, dashed black lines are the antisymmetric states,
which are also excited. At resonance the additional splitting caused by the
tunnel coupling reaches its maximum 2t.

the anti-bonding state, with the leads appear as well. They become visible
in transport as differential conductance lines being roughly parallel to the
ground state resonance lines and thus transversely to the axis of the charge
reconfiguration line.
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2.3 Electronic transport through quantum dots

Figure 2.17: (a) Schematic stability diagram for tunnel coupled double
quantum dots. The charging lines of the dots are represented by solid lines
for the case of a non-zero tunnel coupling and by dotted lines for the case of
no tunnel coupling for comparison. The crossing points of the charging lines
obtain a rounded shape due to the additional tunnel splitting which has its
maximum value of 2t at the triple points. (b) Schematic stablity diagram for
tunnel coupled double quantum dots with a bias voltage US > 0 mV. The
ground state resonances with the leads split into two separate resonances with
source (blue lines) and drain (green lines). Resonances of the anti-bonding
excited state of the double dot molecule with source and drain are also seen
in transport if the bias voltage is large enough for them to lie inside the
transport window as well.
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2.3.3 Quantum mechanical model
2.3.3.1 Introduction to density matrix formalism and master equation

The Master equation is a first order differential equation which describes the
time evolution of probabilities of random events as a stochastic evolution.
It is intrinsic for quantum systems. Thus, for the time evolution of a system
described by a statistical mixture of states the determining equation is the
Master equation. [60]

Often, and also within the scope of this work, the considered problems
involve a small system S of interest which is in contact with a larger environ-
ment R, e.g. a reservoir (Fig. 2.18). This setup is the general description
used for treating open quantum systems.

H
S

H
R

H
I

Figure 2.18: Schematic of a small system S (with Hamiltonian HS) coupled
to a larger reservoir R (with Hamiltonian HR). The interaction is described
by the Hamiltonian HI.

We consider a system S, which is described by the Hamiltonian HS, coupled
to a reservoir R, which is described by the Hamiltonian HR. The interaction
between the systems, considered by the Hamiltonian HI, is assumed to be
weak. The Hamiltonian H for the whole system is

H = HS ⊗ I + I⊗HR + HI. (2.74)

The system Hamiltonian HS ∈ HS only acts on the system Hilbert space HS
and the reservoir Hamiltonian HR ∈ HS only acts on the reservoir Hilbert
space HR. The interaction Hamiltonian HI ∈ HS⊗HR acts on both Hilbert
spaces and can be decomposed as
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2.3 Electronic transport through quantum dots

HI =
∑
α

Aα ⊗Bα (2.75)

with the coupling operators Aα ∈ HS and Bα ∈ HR.

We introduce the total density operator ρ(t) of the whole system, with
an ensemble of eigenstates |ψn〉 of H. pn is the probability of the whole
system to be in state |ψn〉, with 0 ≤ pn ≤ 1 and

∑
n pn = 1. The density

operator is

ρ =
∑
n

pn |ψn〉 〈ψn| . (2.76)

It describes the system as a statistical mixture of states {ψn}. For instance,
mixed superpositions of states are formed if the system of interest is cou-
pled to an environment like in measurement problems and transport. The
diagonal elements of the density matrix fulfill the normalization condition
Trρ = ΣnpnTr {|ψn〉 〈ψn|} = 1. If the system is in a pure state ρ2 = ρ and
Trρ2 = 1 and if the system is in a mixed state ρ2 6= ρ and Trρ2 < 1.

The diagonal elements for an orthonormal basis {|φi〉} are

ρii = 〈φi|ρ|φi〉 =
∑
n

pn 〈φi|ψn〉 〈ψn|φi〉 =
∑
n

pn |cni|2 (2.77)

with cni = 〈ψn|φi〉. They represent the occupations, which are the probabil-
ity of finding the system in the state |φi〉.

The off-diagonal elements

〈φj |ρ|φi〉 =
∑
n

pn 〈φj |ψn〉 〈ψn|φi〉 =
∑
n

pnc
∗
njcni (2.78)

are the coherences. |ψn〉 is a coherent superposition of |φi〉, thus ρij is in
general non-zero. Consequently, their time evolution describes the coherent
dynamics and interference effects in the system. The equation of motion
(von-Neumann equation) [61] for the total density operator is

∂ρ(t)
∂t

= − i
~

[HS ⊗ I + I⊗HR + HI,ρ] . (2.79)

The von-Neumann equation describes the time evolution of the density
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matrix. It is convenient to consider the interaction picture which treats the
interaction as a pertubation of the Hamiltonian H0 = HS⊗ I+ I⊗HR. After
transformation to the interaction picture it follows with the interaction
Hamiltonian

HI(t) = e+i(HS+HR)tHIe
−i(HS+HR)t

= e+iHStAαe
−iHSt ⊗ e+iHRtBαe

−iHRt
(2.80)

and with the density matrix

ρI(t) = e+i(HS+HR)tρ(t)e−i(HS+HR)t (2.81)

the von-Neumann equation

∂ρI(t)
∂t

= − i
~

[HI(t),ρI(t)] . (2.82)

As we will stay in the interaction picture we will identify ρI ≡ ρ for reasons
of notation simplification.

The time-dependent Schrödinger equation

i~
∂

∂t
|ψn(t)〉 = H(t) |ψn(t)〉 (2.83)

describes the special case of the time evolution of a system being in a pure
state ψn at an initial time t0. It can be derived from the time evolution of
the corresponding density operator.

In case of composed systems one often wants to study the evolution of
only one of the systems. In these cases it is not necessary to have the
information of the total system in the density matrix but the information on
the particular subsystem only, in our example system S. A density matrix
which encodes the information on one subsystem is called the reduced density
matrix. We introduce the reduced density operator ρS(t) for the system S
by

ρS(t) = TrR [ρ(t)] (2.84)

where TrR means that we trace over the reservoir variables.
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2.3 Electronic transport through quantum dots

In order to find the equation of motion for the reduced density matrix
analogous to Eq. (2.82), we perform the partial trace over the reservoir
variables and obtain from Eq. (2.82)

∂ρS(t)
∂t

=− iTrR {[HI(t),ρ0]}

−
0∫
t

TrR {[HI(t), [HI(t′),ρ(t′)]] dt′} .
(2.85)

When S and R are initially uncorrelated at time t = 0, we can factorize the
initial total density matrix ρ(0)

ρ(0) = ρS(0)⊗ ρR (2.86)

with ρR being the density operator of the reservoir. When the reservoir R
is large it is negligibly affected by the presence of the system S. Hence only
S is affected by the interaction and R remains in equilibrium. This means
there will be no or negligible reaction of R on S. With HI(t) = O {λ}, while
λ is a small dimensionless pertubation parameter we obtain

ρ(t) = ρS(t)⊗ ρR +O {λ} . (2.87)

All higher orders in perturbation theory are neglected as they have a smaller
effect. This approximation is called Born-approximation and accounts
for the irreversibility of the interaction process. Inserting Eq. (2.87) in the
equation of motion for the reduced density matrix Eq. (2.85) we obatain

∂ρS(t)
∂t

=− iTrR {[HI(t),ρ0]}

−
0∫
t

TrR {[HI(t), [HI(t′),ρS(t′)⊗ ρR]] dt′}+O
{
λ3} . (2.88)

With the interaction Hamiltonian HI decomposed as Eq. (2.75) we get
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∂ρS(t)
∂t

=− i
∑
α

Aα(t)ρS(0)Tr {Bα(t)ρR}

+ i
∑
α

ρS(0)Aα(t)Tr {ρRBα(t)}

−
∑
αβ

t∫
0

[Aα(t)Aβ(t′)ρS(t′)Tr {Bα(t)Bβ(t′)ρR}

−Aα(t)ρS(t′)Aβ(t′)Tr {Bα(t)ρRBβ(t′)}
−Aβ(t′)ρS(t′)Aα(t)Tr {Bβ(t′)ρRBα(t)}
+ρS(t′)Aβ(t′)Aα(t)Tr {ρRBβ(t′)Bα(t)}] dt′.

(2.89)

Without loss of generality the expectation value of a single coupling operator
is zero

Tr {Bα(t)ρR} = 0 (2.90)

and we define the reservoir correlation function Cαβ by

Cαβ = Tr {Bα(t1)Bβ(t2)ρB} . (2.91)

Consequently we obtain from for the equation of motion for the reduced
density matrix

∂ρS(t)
∂t

=−
∑
αβ

t∫
0

dt′ [Cαβ(t,t′) [Aα(t),Aβ(t′)ρS(t′)]

+Cβα(t′,t) [ρS(t′)Aβ(t′),Aα(t)]] .

(2.92)

In order to solve this equation for a general case further approximations
have to be made. We assume that the correlation time is much shorter
in the reservoir than the time in which system S is significantly damped
due to the interaction with the reservoir, so that the reservoir correlation
functions decay much quicker than the density matrix varies. Thus, there is
no influence of the past time on the evolution of the system. Memory is not
preserved and consequently the time derivative of the density matrix only
depends on its present value and not on former times t′:

66



2.3 Electronic transport through quantum dots

ρS(t′) ≈ ρS(t) (2.93)

For the same reason we can furthermore extend the upper integration bound
in the equation of motion to infinity to remove time dependence. With the
substitution τ = t− t′ we obtain from Eq. (2.88) with including Eq. (2.90)

∂ρS(t)
∂t

= −
∞∫

0

TrB {[HI(t), [HI(t− τ),ρS(t)⊗ ρR]]} dτ. (2.94)

This is the Markovian master equation. Equation (2.93) and the exten-
tion of the intergration bound are called the first and second Markov-
approximation, respectively. In the Schrödinger picture the Markovian
master equation reads

∂ρS(t)
∂t

=− i [HS,ρS(t)]

−
∑
αβ

∞∫
0

Cαβ(τ)
[
Aα,e

−iHSτAβe
+iHSτρS(t)

]
dτ

−
∑
αβ

∞∫
0

Cβα(−τ)
[
ρS(t)e−iHSτAβe

+iHSτ ,Aα
]
dτ

=− i [HS,ρS(t)] +MΓ .

(2.95)

The Master equation of Lindblad form can be written as

∂ρS(t)
∂t

= Lρ(t) (2.96)

with L being the Liouvillian superoperator containing all information about
the system. In order to obtain a Lindblad type master equation from Eq.
(2.95) for the general case, the secular approximation has to be applied,
meaning to perform a long-time average so that terms that are quickly
oscillating in time are neglected.
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2.3.3.2 Example of a single quantum dot

In order to demonstrate how the Liouvillian is set up and the current through
the system are calculated, we consider a system consisting of one single
quantum dot. For transport through a single dot classical rate equations
are used. First we consider the dot coupled to one fermionic lead with a
tunnel rate Γ as the simplest example. The quantum dot has one single
level at energy ε. The energy level can be occupied by one electron only
due to strong Coulomb repulsion, so no spin is considered in the following.
The occupation of the dot varies depending on the Fermi energy of the lead.
The Fermi function of the lead at energy ε is f(ε). The system is depicted
schematically in Fig. 2.19.

Figure 2.19: Schematic of a single dot coupled to one tunnel junction by Γ .
The occupation of the lead is described by the Fermi distribution function f
at temperature T . µ denotes the chemical potential of the lead and the dot
level is at energy ε.

The transition rate Γ+ for electrons tunneling from lead to dot is the
tunneling rate Γ weighted by the probability to have an electron of the
required energy in the lead which can tunnel onto the dot, Γ+ = Γf(ε). The
inverse transition rate for electrons leaving the state is Γ− = Γ (1− f(ε)),
so one has to multiply the tunneling rate with the the probability to have a
corresponding hole in the lead. The transition rate between dot and lead
is given by Fermi’s Golden rule, which is for incoming electrons to the dot
system

Γ (+) = 2π/~|γ|2f(µ− ε) (2.97)

and electrons leaving the dot to the lead
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Γ (−) = 2π/~|γ|2 [1− f(µ− ε)] (2.98)

Thus, it is Γ = 2π/~ |γ|2 with the hopping parameter γ. The probability
that the dot is occupied with one electron at time t+∆t is Γ∆tf(ε).

The classical master equations are classical rate equations for the two
states of the dot, |0〉 and |1〉. They are

ρ̇00 = −Γf(ε)ρ00 + Γ (1− f(ε))ρ11

ρ̇11 = +Γf(ε)ρ00 − Γ (1− f(ε))ρ11,
(2.99)

with the occupation probabilities ρ00 and ρ11 of the dot being empty or
charged by one electron, respectively.
The Liouvillian becomes

L =
(
−Γf +Γ (1− f)
+Γf −Γ (1− f)

)
. (2.100)

In case of a single level of a quantum dot coupled to two leads with dif-
ferent Fermi distribution functions due to different chemical potentials
or temperature the Liouvillian has to be extended. The energy level of
the dot lies at an energy ε in the transport window between the chem-
ical potentials of the leads. We have Γ+ = Γ+

0←L + Γ+
0←R for electron

transitions onto the dot containing the rates Γ+
0←i = Γifi(ε), with lead

i ∈ {L,R}, and Γ− = Γ−L←0 + Γ−R←0 for electron transitions off the dot with
the rates Γ−i←0 = Γi(1 − fi(ε)). The tunnel rates are ΓL = 2π/~ |γL| and
ΓR = 2π/~ |γR| for the coupling to the left and right lead, respectively, and
the Fermi functions fL(ε) = fL(µL − ε) and fR(ε) = fR(µR − ε) for the left
and right lead, respectively. µL and µR are the chemical potentials of the
left and right lead, respectively. We get for the equations of motion for the
two states of the dot, |0〉 and |1〉, expressed with the rates ΓL and ΓR

ρ̇00 =(−ΓLfL(ε)− ΓRfR(ε))ρ00

+ (ΓL(1− fL(ε)) + ΓR(1− fR(ε)))ρ11

ρ̇11 =(+ΓLfL(ε) + ΓRfR(ε))ρ00

− (ΓL(1− fR(ε)) + ΓR(1− fR(ε)))ρ11.

(2.101)
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and consequently for the Liouvillian

L =
(
−ΓLfL(ε)− ΓRfR(ε) +ΓL(1− fL(ε)) + ΓR(1− fR(ε))
+ΓLfL(ε) + ΓRfR(ε) −ΓL(1− fR(ε))− ΓR(1− fR(ε))

)
.

The stationary current is calculated with ρ̇ij(t) = 0. Consequently ρ̇00 =
ρ̇11. Solving the equation for ρ11 and using the normalization condition
ρ00 + ρ11 = 1 results in

ρ11 = ΓLfL + ΓRfR

ΓL + ΓR
(2.102)

The current through the system is proportional to the occupation of the
dot, in case of a multiple dot system of the dot coupled to the drain. Thus
we have in this case

I = eΓRρ11 (2.103)

With Eq. (2.102) this gives for the stationary current

I = e
ΓRΓLfL + Γ 2

RfR

ΓL + ΓR
(2.104)

In case of a high bias voltage µL >> ε >> µR driving the electron current
from left to right lead we have Γ0L = ΓR0 = 0, as the Fermi functions for
a large (infinite) bias voltage are fL = 1 and fR = 0. The only non-zero
tunneling rates are the ones for electrons tunneling from left to right. With
these values for the Fermi functions we obtain from Eq. (2.104) for the
current through a system with infinite bias

Iinf.bias = e
ΓRΓL

ΓL + ΓR
. (2.105)

2.3.3.3 Example of serial double quantum dots

Transport through a tunnel coupled multiple quantum dot system can
be approximated with classical master equations if the tunnel coupling is
very low. For strong tunnel coupling compared to the inter-dot energy
level detuning the electrons are delocalized over the dot system and the
states resemble molecular states rather than localized atomic states and a
bonding and anti-bonding state results with distance 2t between them, with
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t being the tunneling amplitude between the dots (see section 2.3.2.4). Thus,
in case of appreciable tunnel coupling between the dots, phase-coherent
tunneling through the dot system is dominating. These coherent effects
from the inter-dot tunneling have then to be taken into account in the
master equations. The larger the detuning between the energy levels of
the dots, the less the electrons occupying the states are delocalized. The
inter-dot tunneling rate is exponentially suppressed. For a large energy level
detuning compared to the inter-dot tunnel coupling the energy states can be
approximated as localized states. The distance ∆ between the hybridized
states in dependence of energy level detuning ∆AC and inter-dot tunnel
coupling τAC is (see Eq. (2.73))

∆ =
√
∆2

AC + 4τ2
AC. (2.106)

The transport through a multiple quantum dot is described by a quantum
master equation instead of a classical rate equation, where the superposition
between the states of the two dots are included. The system is conveniently
described in a molecular (delocalized) basis, which is derived from the atomic
(localized) one by basis transformation. For a double dot system instead of
the basis states |L〉 and |R〉 describing the occupation of the left and right
dot with one electron, respectively, the basis states now are the molecular
states named Ψ1 and Ψ2 in the following for the electron being delocalized
between the dots. The density matrix is then diagonal, as the basis states
now contain the coherences between the dot states. [62]

In the following two examples are presented showing how to derivate and
solve a Master equation for a double dot system with infinite and small bias
voltage.

Infinite bias voltage
In case of infinite bias, or a weak coupling between the dots and the leads
compared to the inter-dot coupling, Γ < τ , however, the system can be
treated in a localized basis and the transport can be reduced to the de-
scription by classical rate equations. An approximation of the transport
in the localized basis of the system is also applicable for a large energy
level detuning between the dots, as the molecular states resemble atomic
states for a large level detuning. If the bias voltage is finite, one has to take
into account the energy difference between the localized dot states and the
delocalized molecular states coupling to the density of states of the leads.
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The Fermi function then can not be regarded as 1 for the source and 0 for
the drain (for non-zero temperature) and the exact energetic position of the
dot states plays a role.

For a double quantum dot in the infinite bias regime with a tunnel coupling
tLR between the dots and a lead coupled to the left dot with ΓL and a lead
coupled to the right dot with ΓR the master equations in the localized basis
are [63]

ρ̇00 = −ΓLρ00 + ΓRρRR

ρ̇LL = ΓLρ00 − itLRρRL + itLRρLR

ρ̇RR = −ΓRρRR − itLRρLR + itLRρRL

ρ̇LR = iερLR −
1
2ΓRρLR − itLRρRR + itLRρLL

(2.107)

where ρLL (ρRR) is the probability of the left (right) dot being occupied
by one electron, ε is the detuning between the dot energy levels. With
ρ̇00 = ρ̇LL = ρ̇RR = 0 the stationary state is calculated by the normalization
condition ρ00 + ρRR + ρLL = 1. From this the stationary current is obtained
by I = eΓRρRR. This gives the Lorentzian resonance current peak of the
form [63]

I = I0W
2

W 2 + ε2 (2.108)

and the height of the peak

I0 = eΓLΓR
4t2LR

4t2LR(ΓR + 2ΓL) + ΓLΓ 2
R

(2.109)

and the half width at half maximum

W 2 = 4t2LR(ΓR + 2ΓL) + ΓLΓ
2
R

4ΓL
. (2.110)

Small bias voltage
As a short example of derivating and solving such a Master equation for a
specific open quantum system, the case of two tunnel-coupled serial quantum
dots with one lead attached to each dot will be written down in detail. Up
to two electrons are allowed in the system. The system is studied in the
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regime of small bias analogous to the triple dot experiment discussed in this
thesis. A schematic of this system is shown in Fig. 2.20.

Figure 2.20: Schematic of a serial double dot with the left and right
dot coupled each to a tunnel junction with the tunneling rates ΓL and ΓR,
respectively and an inter-dot tunnel coupling τLR. The occupation of the lead
is described by the Fermi function f at temperature T . µL and µR denote
the chemical potentials of the leads and λ1 and λ2 denote the eigenenergies
of the coherent states Ψ1 and Ψ2, respectively. |L〉 and |R〉 are the single dot
states.

The left and right dot have a tunnel junction to their lead with the tunneling
rate ΓL and ΓR, respectively. The electronic occupation of the lead is well
described by the Fermi distribution function f at a certain temperature T .
The leads have the chemical potential µL and µR which lie close to each
other due to very small bias.

Due to the tunneling rate Γ to the leads, the occupation of the dots will
fluctuate depending on the chemical potential of the lead. The transition
rate between dot i ∈ {L,R} and lead l ∈ {L,R} is calculated by Fermi’s
Golden rule, analogously to the single dot example Eq. (2.97)

Γ
(+)
i←l = 2π/~|γl|2f(µl − εi) (2.111)

for incoming electrons to the dot system, with the Fermi distribution function
f(α) = 1/(e−α/(kBT ) +1) and the hopping parameter γl with 2π/~ |γl|2 = Γl.
The hopping parameter γl is given in energy units. So, we have for the
transition rate Γ+ = Γf(ε). The tunneling rate Γ is weighted by the
probability to have an electron of the required energy in the lead which can
tunnel onto the dot. The inverse transition rate for electrons leaving the
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state is Γ− = Γ (1 − f(ε)). This corresponds to Fermi’s Golden rule (Eq.
(2.97))

Γ
(−)
l←i = 2π/~|γl|2[1− f(µl − εi)]. (2.112)

The dot system Hamiltonian H0 reads

H0 =


0 0 0 0
0 εL τ 0
0 τ εR 0
0 0 0 εL + εR + V

 (2.113)

containing the energies εL and εR of the left and right dot, respectively,
the tunnel coupling between the dots τ and the inter-dot electron Coulomb
interaction V . As we want to analyze the system in the vicinity of zero bias,
we have to work in the delocalized basis. Thus, the Hamiltonian needs to
be diagonalized. The middle section of H0 is not diagonal yet and has to be
diagonalized by HΨ = DH0D

+ so that we can work in the coherent basis.
For the case of the dots being in resonance one has εL = εR = ε in H0 and
we obtain the coherent states

λ1 : |Ψ1〉 = |00〉

λ2 : |Ψ2〉 = 1√
2

(|L〉+ |R〉)

λ3 : |Ψ3〉 = 1√
2

(|L〉 − |R〉)

λ4 : |Ψ4〉 = |11〉

(2.114)

with |L〉 ≡ |10〉, |R〉 ≡ |01〉 and the eigenenergies λi corresponding to the
respective coherent states.

The dot system density matrix

ρS =


ρ|00〉 ρ|00〉,|L〉 ρ|00〉,|R〉 ρ|00〉,|11〉
ρ|L〉,|00〉 ρ|L〉 ρ|L〉,|R〉 ρ|L〉,|11〉
ρ|R〉,|00〉 ρ|R〉,|L〉 ρ|R〉 ρ|R〉,|11〉
ρ|11〉,|00〉 ρ|11〉,|L〉 ρ|11〉,|R〉 ρ|11〉

 (2.115)

contains the population of the states as diagonal elements and the coherences
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between the states as off-diagonal elements. ρS undergoes the same basis
transformation as H0 and we obtain ρ̃ = DρSD

+. The equation to solve is
the von-Neumann equation with Born-Markov approximation

∂ρ̃(t)
∂t

= − i
~

[HΨ ,ρ̃(t)] +MΓ (2.116)

with the dot system Hamiltonian H0 and MΓ , which contains the tunnel
couplings Γ of the dot system to the leads.

We can map to the matrix - vector notation

∂ρ̃(t)
∂t

= Lρ̃(t) (2.117)

with ρ̃ now being a vector. Its dimension mostly is dimension d2, with
d being the dimension of the system Hilbert space. L is the Liouvillian
superoperator which is a square matrix of dimension d2× d2 which contains
all the information of the system. In general, the density matrix is mapped
to a density vector containing all the entries from the matrix. These are
d populations and d(d − 1) coherences. If one is only interested in the
occupations of the states, one can use the decomposability of the Liovillian
superoperator. L can be separated in blocks and one takes the block, which
is of dimension d× d, which corresponds to the diagonal elements ρii, which
is a vector of dimension d. We obtain

˙̃ρ|Ψ1〉
˙̃ρ|Ψ2〉
˙̃ρ|Ψ3〉
˙̃ρ|Ψ4〉

 =


L11 L12 L13 L14
L21 L22 L23 L24
L31 L32 L33 L34
L41 L42 L43 L44

 ·

ρ̃|Ψ1〉
ρ̃|Ψ2〉
ρ̃|Ψ3〉
ρ̃|Ψ4〉

 (2.118)

where Lij describes how the probability of the system being in a certain
state j will change depending on the probability of the system being in a
certain state i with the electron on state i being able to leave the state with
a certain rate Γ . It contains the transition rates Γ+ = Γf(ε), with the
Fermi energy f(ε), and the inverse transition rates Γ− = Γ (1− f(ε)) for
the electrons multiplied by the probability of an electron going from state
Ψi to state Ψj , |〈Ψi|J |Ψj〉|2. Here J is a 4x4 matrix containing the tunnel
rates of the dots to the leads γL, γR, with Γ = 2π

~ |γ|
2. The entries Lij are
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Lij = f(εij)
∣∣∣〈Ψi ∣∣∣J̃ (+)

∣∣∣Ψj〉∣∣∣2 + (1− f(εij))
∣∣∣〈Ψi ∣∣∣J̃ (−)

∣∣∣Ψj〉∣∣∣2 (2.119)

with εij = |λi − λj | being the energy difference between state |Ψi〉 and
|Ψj〉 and J̃ (+) = DJ (+)D+. The expression for J (−) follows analogously.
Additionally, it is

∑4
i=1 Li,j = 0, j ∈ {1,...4}.

We have 〈m|D+DJD+D|n〉 = 〈Ψi|J̃ |Ψj〉, with the states 〈m| and |n〉. J (+)

describes the tunneling of electrons from the leads to the dots and J (−)

the tunneling from the dots to the leads. For example, with 〈0| = (1,0,0,0),
〈L| = (0,1,0,0), 〈R| = (0,0,1,0), 〈2| = (0,0,0,1) and |0〉 = (1,0,0,0)T ,
|L〉 = (0,1,0,0)T , |R〉 = (0,0,1,0)T , |2〉 = (0,0,0,1)T , J (+) and J (−) are

J (+) =


0 0 0 0
γL 0 0 0
γR 0 0 0
0 γR γL 0



J (−) =


0 γL γR 0
0 0 0 γR
0 0 0 γL
0 0 0 0

 .

(2.120)

Thus, for instance we get 〈i|J (+)|0〉 = γi and 〈0|J (−)|i〉 = γi, with
(i ∈ {L,R}).

As an example, for L12 we obtain

L12 = (1− f(ε12))
∣∣∣〈Ψ1|J̃ (−)|Ψ2〉

∣∣∣2
=
∣∣∣∣ 1√

2
(γL + γR)

∣∣∣∣2 · (1− f(ε12))

= 1
2 |γL + γR|2 · (1− f(ε12)).

(2.121)

Thus, the entries of L can be extracted from experiment and the Master
equation Eq. (2.118) can be solved in the following to obtain the occupations.
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2.3 Electronic transport through quantum dots

The steady state occupations of the doube dot are calculated by solving the
kernel of the master equation ρss = ker [L], meaning Lρ̃(t) = 0.
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3 Experimental techniques
The experimental analysis of a TQD system requires a variety of tech-
nologies and techniques to fabricate the sample, set up the requirements
to investigate quantum mechanical phenomena and measure the sample.
The investigated lateral TQD sample was fabricated by M. C. Rogge in
the course of his PhD thesis. Within this chapter the used materials and
fabrication techniques regarding the used heterostructure wafer and the
lithography are shortly described, as these are common techniques used to
fabricate lateral quantum dots. Detector and transport measurements on
the TQD sample are performed within this work and thus the experimental
measurement setup and measurement techniques for these purposes are
explained in the following.

The following section 3.1 introduces the structure and properties of the
used heterostructure wafer and the optical and atomic force microscope
lithographic steps to structure the surface. The measurement techniques
for the detector measurements by using the quantum point contact on
the sample are presented in section 3.2 and the measurement method for
performing transport spectroscopy on the sample is shown in section 3.3.
The experimental setup including cryogenic and electrical measurement
setup are introduced in section 3.4.

3.1 Sample preparation
The fabrication of lateral quantum dots requires a 2DEG, which is struc-
tured by lithographic methods to produce quasi-zero dimensional electronic
structures with two-dimensional leads. For our sample a heterostructure
based on the well-known III-V-semiconductor GaAs is used. Si is predomi-
nantly used in industry due to many advantages, whereas GaAs is not as
commonly used. However, GaAs plays an important role in basic research
and high-frequency applications due to its higher electron mobility.
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3.1.1 Heterostructures
Semiconductor heterostructures are epitaxial grown structures consisting
of more than one semiconductor material with different band gaps. This
can be achieved by varying the chemical composition from layer to layer.
The simplest heterostructure is a heterojunction, which is an interface
within a crystal occurring between two layers of different crystalline semi-
conductors [64]. Heterostructures for basic research are commonly produced
using molecular beam epitaxy (MBE) [64]. The considered GaAs-based
heterostructure is made of epitaxial growth of combinations of layers of
GaAs and AlxGa1−xAs. The parameter x controls the ratio between Al and
Ga and in this way the band gap, which can vary between 1.424 eV (GaAs)
and 2.168 eV (AlAs) [65]. In addition to having very different band gaps,
combinations of GaAs and AlGaAs have a minimal lattice mismatch due to
very similar lattice constants of aGaAs = 5.6533Å and aAlGaAs = 5.6611Å
[65], which makes the two semiconductors perfectly suitable for realization
of various electronic structures with high crystalline quality and electron
mobility.

The band gap of AlGaAs is greater than that of GaAs, with different
electron affinities referring to the position of the band edges relative to the
vacuum energy. As a consequence, band offsets appear. The Fermi energy of
the two materials is set by doping. When the materials are brought together,
the band diagram follows the rule that the Fermi energy is constant across
the layers in equilibrium. Far from the junction the bulk properties are
maintained. In consequence, electrons flow from AlGaAs to GaAs, the
Fermi energies align and the bands bend. The band bending leads to a
triangular potential well which confines the electrons in GaAs if the width
of the potential in growth direction is of the same order of magnitude as the
electron wavelength. 2D subbands are formed within the potential well. As
the Fermi energy is controlled by doping, AlGaAs is n-doped by Si. The Si
density is chosen such that only the lowest subband of the potential well is
occupied and the electrons form a 2DEG (Fig. 3.1). Only a small percentage
of the doping electrons relax into the potential well, the rest is thermally
excited and occupies the surface states close by [43]. This makes the elec-
tronic structure very surface-sensitive. In the heterostructure considered in
the following, this modulation doping is realized via Si δ-doping. Here the
Si donor atoms are located within a single monolayer of AlGaAs several nm
separated from the potential well by a spacer layer. This separation leads
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to an enhanced electron mobility in the 2DEG as the screened Coulomb
potentials of the ionized donors influence the electron gas only weakly over
this distance, which leads to mostly small-angle scattering [43].

Figure 3.1: Schematic band diagram of GaAs and AlGaAs apart and in
contact, showing the formation of a triangle potential well. In potential well
2D subbands are formed (blue lines). The lowest subband lies below the
Fermi energy due to specific doping.

The lateral triple quantum dot sample used within the scope of this work is
made using such a GaAs/AlGaAs-heterostructure wafer as a basis. Figure
3.2 shows the layer sequence including a GaAs buffer layer separating the
structure from the bulk material, an AlGaAs spacer layer and the Si-doped
AlGaAs layer. The structure is closed at the top by a cap layer of GaAs.
The 2DEG has an electron concentration of ne = 3.47 · 1015 m−2 at 4.2 K
and is located in 33 nm depth below the surface. The electron mobility is
µe = 42.1 m2/Vs at 4.2 K.

3.1.2 Lithography
In order to fabricate zero-dimensional systems starting from the 2DEG in
the heterostructure, the wafer is structured in basically two lithographic
steps. Via optical lithography electronically separated conducting paths are
created in the 2DEG and contacted for connection to external devices. In
a second step the 0D system itself is formed using local anodic oxidation
(LAO) with an atomic force microscope (AFM). In the following the two
techniques are presented.
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Figure 3.2: Layer sequence of the used heterostructure. It was grown by
M. Bichler and G. Abstreiter, Walter Schottky Institut, TU Muenchen, and
W. Wegscheider, Universitaet Regensburg

3.1.2.1 Optical lithography

Optical lithography is used for connection of the nanoscale sample structures
to the macroscopic environment. The first step is defining the separate con-
ducting paths, the usable area of the 2DEG, called mesa. For the structuring
of the heterostructure wafer a 4.5 mm× 4.5 mm piece is cut from the wafer
to fit into the chip carrier later. It is coated with a special UV-sensitive
positive photo resist in a spin coater. The mesa structure is transferred
onto the wafer by bringing it into contact with a quartz glass mask with
UV-opaque chrome metallization in the considered geometry and using UV
light to expose the resist only under the non-metallized parts of the mask.
After developing the resist only the non-exposed parts of the structure
remain. The wafer is etched down to a few nm below the 2DEG by chemical
wet etching while the remaining resist serves as an etching mask. Thus, only
the area protected by the resist, the mesa, remains conducting. The resist
is removed by acetone afterwards. The mask used for our geometries has a
chrome metallization for 16 conduction paths arranged in a star shape. Fig-
ure 3.3 (1) shows optical microscopy of the mesa structure on the wafer piece.

In order to establish electrical contacts between the 2DEG and the surface,
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ohmic contacts are placed on the conducting paths. To do so the wafer
is again coated, but this time with a negative resist, which is resistant to
the developer only after being exposed to UV light. The sample is irradi-
ated with UV light through a mask with a chrome metallization for ohmic
contacts fitting on the mesa structure. The considered mask has a chrome
metallization for 16 ohmic contacts arranged in a ring fitting on the mesa.
After developing, the non-exposed parts of the structure are resist-free and
can be selectively processed. The wafer piece is metalized with a layer
sequence of germanium, gold and nickel in an ultra high vacuum (UHV)
evaporation chamber. Afterwards the resist is removed in an acetone bath
(lift-off process) and the metallization only remains on the resist-free areas.
Due to a gradient in the UV radiation dose on the borders of the UV-opaque
structures of the mask, the resist layer also exhibits a continuous decrease
in the completeness of its exposition towards the non-exposed areas. The
exposed resist remains after developing, showing the inverted profile, an
undercut. This ensures that the metallization applied on the wafer surface
in the next step is isolated from the metallization on the resist surface or
the resist itself. This guarantees a clean lift-off. In an annealing process
the sample is heated in several stages and the metalization melts. Gold
and germanium form an alloy and diffuse into the heterostructure. The
Germanium as an n-type dopant reduces the Schottky barrier between metal
and semiconductor, giving the contacts the ohmic behaviour. This is a
low-ohmic contact resistance and a linear I-V- curve following Ohm’s law.
Figure 3.3 (2) shows optical microscopy of the annealed ohmic contacts
on the mesa structure. The ohmic contacts are bonded with gold wires
on a chip carrier later, seen in Fig. 3.3 (3). The structure has a central
conducting region with a diameter of 30 µm for fabrication of the lateral
quantum dot structure itself (Fig. 3.4).

3.1.2.2 Local anodic oxidation

Local anodic oxidation (also: local oxidation nanolithography) is a tip-
based nanofabrication method which is a widely used approach for micro-
and nano-patterning of metal- and semiconductor surfaces [66–68]. Local
oxidation of the surface of GaAs-AlGaAs heterostructures with AFM is used
for structuring of the 2DEG of the heterostructure [69–74]. An AFM [75]
is a scanning probe microscope with a nanometer-scale tip for scanning a
surface in nanometer- or even atomic scale. Also, surface structuring can be
performed. For fabrication of the lateral quantum dot structures, an AFM
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1,6 mm

(1) (2) (3)

Figure 3.3: Optical microscopy of the described steps of sample processing:
(1) Etched mesa structure. (2) Ohmic contacts after transfer of the contact
structure, metalization and annealing. (3) Contacts bonded with gold wires
on a chip carrier.

30 µm

Figure 3.4: Optical microscopy of the central region of the sample structure.
The conductance paths meet at a central conducting region with a diameter
of 30 µm.

tip is brought into immediate proximity to the sample surface [70, 71]. A
voltage is applied between tip (cathode) and the grounded sample (anode),
which ensures a water film on the substrate under sufficiently rich water
vapor ambient conditions. This leads to the formation of a water meniscus
(electrolyte) between tip and surface. Altogether, a small electrolytic cell is
formed. The GaAs surface is locally oxidized under the tip (Fig. 3.5). The
chemical reaction of the electrolysis is [76]

2GaAs + 12H+ + 10OH→ Ga2O3 + As2O3 + 4H2O + 2H+. (3.1)

The water molecules are dissociated after applying a voltage, the OH− ions
travel to the surface and react with the GaAs to oxide. The resulting Ga2O3
reaches a few nm height and at the same time grows a few nm into the
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bulk. In this way the GaAs layer thickness is decreased there. The sample
thickness decreases and the interface moves closer to the to the 2DEG. In
GaAs the Fermi energy at the surface is pinned near the middle of the band
gap of GaAs due to a large surface state density already mentioned above.
[77] Consequently, the potential well is lifted with respect to the Fermi
energy and is ultimately located completely above it, so that the 2DEG is
depleted. Thus, by writing oxide lines on the surface of the heterostructure
the 2DEG is depleted locally underneath the oxide lines and an insulating
barrier is formed [71–73].

-

+

AFM-tip

water film

heterostructure

oxide

Figure 3.5: Functional principle of the local anodic oxidation procedure.
With the help of a water film on the sample surface a small electrolytic cell
is formed by applying a voltage between tip and sample. The heterotructure
surface is locally oxidized under the tip. The oxide reaches a few nm into
the bulk.

The size of the water bridge determines the spatial confinement for oxidation
of the surface. The small number of active ions in it allows for a good control
of the dimensions of the oxide dot. As the electrical field distribution is
strongly localized near the tip oxide dots of nanometer size can be made.
The shape of the induced potential in the 2DEG is determined by the
aspect ratio of the oxide lines, controlled by parameters like humidity, tip
geometry, applied voltage, writing speed etc. The depth of the potential
notch and thereby the tunneling barrier height for the electrons in the 2DEG
is determined by the penetration depth controlled by the height of the oxide
line. The width of the potential and thus the capacitance between the two
isolated areas is determined by the width of the oxide lines. Consequently,
a high but thin oxide line is required in order to obtain a sufficiently high
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tunneling barrier and to induce a large field effect on one side of the line
by a small voltage on the other side. This corresponds to a large capacitor.
[43]

This gate fabrication technique produces in-plane gates being part of the
semiconductor wafer material. This makes the gates robust and the sam-
ples less sensitive to electric discharges than metallic top-gate structures
fabricated by electron-beam lithography. [78] Additionally, the LAO gate
structures are simpler to extend and the oxides lines provide a confining
potential even without applied voltages so less gates are needed in general.

3.2 Charge detection with a quantum point contact
The charge configuration is an important parameter of a quantum dot. In
order to measure the change of the charge state with a non-invasive method,
quantum dots [79, 80] or quantum point contacts [81, 82] are commonly
used in transport spectroscopy. They are located near the system under
investigation.

A quantum point contact (QPC) is a short and narrow constriction in
a 2DEG, which has a variable width being comparable to the Fermi wave-
length and is much shorter than the mean free path for impurity scattering,
so that electronic transport is ballistic. Due to its width it exhibits size
quantization. [83, 84] In a 2DEG such a one-dimensional constriction can
be realized by suitable electrostatic potentials induced by top gates [81, 85]
or structures produced by LAO [39, 86, 87]. The potential of the con-
finement can be approximated with a saddle-point potential and has a
one-dimensional density of states. These one-dimensional sub-bands are
energetically separated transport channels. These are, in assumption of a
harmonic one-dimensional confinement potential, equidistant and have a
conductance of 2 e2/h each in case of perfect ballistic transport and spin
degeneracy. Hence the conductance of the one-dimensional constriction is
quantized in units of 2 e2/h [88, 89]. The confinement couples to the 2DEG
at both sides. This forms the leads of the QPC, the source SQPC and the
drain DQPC. Each transport channel which lies within the transport window
defined by the chemical potentials of the leads contributes to transport. A
gate GQPC is located next to the confinement to lower and raise the saddle
potential of the confinement and thus the potential barrier. In this way
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the number of participating transport channels is varied. As a result the
conductance through the QPC as function of the voltage UGQPC is a step
function with plateaus at 2 e2/h and steep transitions in between, see Fig.
3.6.

Figure 3.6: Schematic of the one-dimensional harmonic confinement poten-
tial of the QPC with sub-bands N=1,2,3 and the corresponding conductance
GQPC through the QPC in dependence of the gate voltage UGQPC. The steps
in conductance correspond to the contribution of an additional transport
channel.

The spatially well defined confinement potential is very sensitive to small
changes in charge in its environment as the capacitive interaction changes
the shape and strength of the confinement. Charge variations shift the
conductance of the QPC with respect to UGQPC. At the steep transitions
between the conductance plateaus the detector is most sensitive as a small
shift results in a strong variation of conductance. Thus, the optimal operat-
ing point is a steep slope in the G−UGQPC-characteristic of the detector. In
this way charge differences down to fractions of the elementary charge can be
detected, like for example the movement of an electron towards or away from
the detector by charge redistribution in the quantum dot system. These do
not necessarily cause a current between source and drain of the dot system
and consequently are not detectable by transport measurements. As the
quantum point contact just reacts to potential shifts in its surrounding while
being disconnected from transport through the dot system and carrying no
localized charge itself, the detection of a change in charge by a quantum
point contact is called non-invasive [81].
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Figure 3.7 shows the signature of a change of the charge state in a quantum
dot. The current through the QPC IQPC is measured in dependence of a gate
voltage UG. In the chosen operating point IQPC rises nearly linearly to the
change in gate voltage. At the same time UG influences the potential at the
quantum dot, so that at UG ≈ 113 mV one more electron can occupy the dot.
This additional negative charge shifts the original detector characteristic
curve to less negative values of UG by an amount proportional to the change
in charge. The change in gate potential compensates for the additional
negative potential coming from the added electron on the dot. Thus, the
shift in gate voltage is a measure for the change in charge in the system.
The shift happens over a certain range in gate voltage. The reason is that
the tunneling probability on and off the dot is non-zero for µN < µS,µD
and µN > µS,µD near the resonance due to temperature broadening of the
states. The used measuring instrument integrates over the probability of
occupancy of the quantum dot during a certain time interval.

Figure 3.7: Example measurement of the current IQPC through the QPC
in dependence of a gate voltage UG3 on a quantum dot system, where the
quantum dot is charged by one electron. IQPC acts linearly on UG3. The
charging is marked by a shift of the current curve to higher values of UG3,
compensating for the additional negative potential coming from the added
electron on the dot. With one more electron on the dot the same current
through the QPC is achieved for a higher gate voltage.
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Spectroscopy of the dot system by measuring the differential conductance
always strongly depends on the tunneling barriers in the system. The fact
that charge measurements with a detector are independent of a current
flow in the quantum dot system itself makes them a tool for extending
the measurement range to higher tunneling barriers in the system. The
measurement of the differential conductance is based on measuring the
current IAC for an applied voltage UAC. The observation of small currents is
limited by the signal-to-noise ratio. Increasing the voltage means decreasing
the energy resolution of the measurement. This is limited by the energetic
width of the Coulomb peaks 3.53kBT , which should not be undercut by the
resolution. The differential conductance through the system significantly
depends on the tunnel couplings in the system. In order to discharge the
quantum dot by sweeping the gate voltages to higher negative values in case
of a LAO structured gates, the tunnel couplings of the dot to the leads are
affected as well and are decreased. At a specific gate voltage the differential
conductance falls below the detection threshold of the current measurement
device. QPC measurements however clearly show that at larger negative
gate voltage values the dot is emptied further, as seen in the example of a
transport and detector measurement in Figure 3.8.

Instead of IQPC the differential signal dIQPC/dUG is usually plotted to
simplify or even enable the analysis of the detector signal for one- or multi-
dot systems in dependence of two gate voltages. Steps in conductance
of the QPC appear as lines of high differential conductance in this case.
Independent of the arrangement of the dots (series or parallel) in a multiple
quantum dot system the whole charging lines of each of the dots in the system
are visible. The change in charge of all of the dots can be seen even if they do
not participate in transport as it is the case for dots being only capacitively
coupled to the transport path. On the contrary, in transport measurements
of serial dots conductance is only observed at the resonances between the
dots. This can be well seen in Fig. 3.8. Thus, a QPC measurement makes
it easier to identify and characterize the dots and analyze the formation
of multiple-dot resonances. The QPC measurements can be compared to
transport measurements and support their analysis.
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Figure 3.8: Comparison of an exemplary transport and QPC measurement
on the triple quantum dot system where each transport path consists of a
tunnel coupled double quantum dot with a capacitively coupled third dot.
Insert: Transport measurement of one of the paths with dots A and B. For
gate voltages below UG3 ≈ 120 mV and UG1 ≈ 10 mV, the Coulomb peaks are
not detectable anymore as the tunnel couplings along the path have become
sufficiently small. Resonances of dots A and B are detectable. Big picture:
The QPC measurement for the same parameter region but more negative
values of UG1, UG3 shows that the quantum dots are not empty yet. Changes
in the charge of the dots even for larger negative values of UG1, UG3 are
detectable with unchanged clarity. Also, changes in charge of all three dots
of the device are seen directly by charging lines.

3.3 Transport measurements
The measurement and analysis of quantum dot spectra is a standard method
to analyze a quantum dot system. As already introduced in section 2.3.2
the differential conductance G = dISD/dUS of a quantum dot system is a
useful measurand for the investigation of such a spectrum. The differential
conductance G = IAC/UAC can be measured directly by a lock-in technique.
A small AC voltage UAC, typically of around 10 µV and with a small
frequency of the order of Hz from the internal oscillator of the lock-in is
applied to the source of the sample. The response of the system is detected
by measuring IAC by the lock-in and G is calculated and output by the
measurement program (Fig. 3.9). Thereby the outcome corresponds to the
differential conductance obtained by dIDC/dUS [40].
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Figure 3.9: Schematic showing the measurement technique of the differential
conductance. The reaction of the system to a small applied AC voltage in
form of the AC IAC is measured.

3.4 Experimental setup
This section describes the setup used to perform measurements on the
quantum dot sample. Subsection 3.4.1 describes the cryogenic setup used
for cooling down the sample to enable the observation of quantum mechanical
effects. It covers the functional principle of a 3He4He dilution refrigerator
which is used within the scope of this work. The electrical setup for transport
and QPC measurements is shown in section 3.4.2.

3.4.1 Cryogenic setup
Very low temperatures are required for the resolution of quantum dot energy
spectra, as described in section 2.3.2. Temperatures in the order of mK are
commonly produced in a dilution refrigerator. The measurements within
the scope of this work were performed in a Oxford Instruments Kelvinox
300 and a Kelvinox TLM 3He4He dilution refrigerator, which both achieve
temperatures of around 10 mK by cooling in several stages. The functional
principle of a dilution refrigerator in general and of the Kelvinox 300 in
particular will be presented here shortly. The interior of a cryostat is uncou-
pled from room temperature by several vacuum shields, a liquid nitrogen
cooling shield (77 K) in some cases and a liquid helium cooling shield (4.2 K),
the so-called main bath. The insert of the cryostat itself has basically two
cooling stages. The insert is enclosed by an inner vacuum chamber (IVC) to
minimize heat exchange with the 4He bath. Figure 3.10 shows a schematic
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of the functional principle of a dilution refrigerator. The first cooling stage
is the so-called 1K-pot. This chamber is partly filled with liquid 4He drawn
from the main bath through a flow restriction. The gaseous phase of 4He is
continuously pumped out, the vapor pressure is reduced, which in turn cools
the liquid 4He down to 1.5 K. The lowest temperatures are achieved in the
mixing chamber, the second cooling stage. It contains a 3He4He-mixture
which exists separated in a 3He-rich (concentrated) phase and a 3He-poor
(dilute) phase below 860 mK. The lower temperature is achieved by pumping.
The binding forces between 3He atoms are smaller than the binding forces
between 3He and 4He atoms because of the higher zero point energy of the
lighter 3He isotop. The kinetic energy of 3He atoms increases with their
particle number density as they follow the Fermi statistics, and thus their
effective binding energy is reduced with increasing density. At very low
temperatures their binding energy is so low that a phase separation into two
phases with different 3He-concentration is energetically preferred. Important
to mention is, that even at T = 0 K a certain solubility of 3He in 4He remains.

Due to the fact that 3He is lighter than 4He, the 3He-rich phase swims on
top of the 3He-poor phase. The cooling principle is cooling by evaporation
of 3He out of the liquid 3He-rich phase into the superfluid 3He-poor phase.
3He atoms in the 3He-poor phase have a higher enthalpy as 3He atoms in
the 3He-rich phase. An evaporation of 3He from the 3He-rich phase into the
3He-poor phase thus leads to effective cooling based on this difference in
enthalpies.

This cooling mechanism is implemented into a closed loop. By contin-
uously extracting 3He out of the 3He-poor phase osmotic pressure is induced
due to the concentration gradient. This leads to 3He atoms crossing the
phase separation line from the 3He-rich phase into the 3He-poor phase
to maintain the solution equilibrium which in turn leads to the cooling.
This extraction of 3He out of the 3He-poor phase happens in a separate
evaporation chamber, the still, connected with the 3He-poor phase in the
mixing chamber and located above the mixing chamber. The still is heated
to a temperature of around 0.7 K, where 3He has a significantly higher vapor
pressure than 4He. It works as a distillation chamber and almost pure 3He
gas can be pumped out of the still although the 3He concentration is ≤ 1%
in the 3He-poor liquid phase. After being cleaned in nitrogen and helium
cold traps and pre-cooled at the 1K-pot, the gas is condensed again by high
pressure in a flow impedance. Afterwards it passes a heat exchanger to
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use the heat exchange with the 3He-poor phase on its way from the mixing
chamber to the still. The 3He is fed back into the 3He-rich phase in the
mixing chamber. [90] In the Kelvinox 300 the sample is thermally coupled
to the mixing chamber by a cold finger while it is directly immersed in the
mixing chamber in the Kelvinox TLM.

mixing chamber

heat exchanger

still

dilute phase

concentrated phase

flow impedance

heater

heat exchanger

from condenser 1.5 K
circulation pump

(almost) pure He gas
3

dilute phase

phase boundary

Figure 3.10: Schematic setup and working principle of a dilution refrigerator
and its cooling mechanism. [90]

3.4.2 Electrical measurement setup
The measurement setup for the transport and QPC measurements is shown
in Fig. 3.11.

Automated instrument control and data collection is achieved via GPIB
(General Purpose Interface Bus) and USB. The data is automatically col-
lected and partly processed to some extend by LabView programs specific
for the respective measurement type. For the transport measurements the
DC gate voltages UG1-UG4 and also the DC voltages for the sources US1,
US2 and are generated with a homemade DAC (digital-to-analog converter)
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Figure 3.11: Schematic of the electrical measurement setup for transport
and detector measurements. The gates of the sample, G1-G4, GQPC as
well as S1, S2, SQPC are driven by DC voltages generated by a DAC. The
conductance through the two transport paths of the system S1-D and S2-D is
measured at the drain lead D via a lock-in technique by additionally applying
two different AC voltages at S1 and S2.

based on a AD5791 chip (or two iotech DAC 488HR/4). The DAC has
galvanically isolated outputs with a voltage range of ±10 V with a resolution
of 20 Bit (≡ 19.073 µV). The reference potential is given by the ground of
the signal cables. The DC source voltages US1, US2 and US,QPC are divided
by a factor of 2000 using a voltage divider between DAC output and lead.

In case of measurements with bias a small AC voltage UAC is applied
additionally to the DC voltage US at the source contacts. For the AC
voltage, the internal oscillator of an EG&G 7260 DSP Lock-In Amplifier
is used. In order to apply AC voltages with two different frequencies at
the two sources for distinguished paths at the drain we use one lock-in per
source lead. We use a frequency of f1 = 83.3 Hz at source 1 and a frequency
of f2 = 18.3 Hz at source 2 both with an amplitude of UAC = 10 µV. The
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amplitude of the AC voltage of the oscillator output is divided by a factor
of 10000 by using a voltage divider between lock-in and lead. The sum of
UAC and US is applied at the source contacts, UAC with frequency f1 and
US1 at source 1, UAC with frequency f2 and US2 at source 2.

The AC and DC current (IAC, IDC) are measured at the drain contact
D. The signal at the drain is amplified by an Ithaco DL 1211 current pream-
plifier by a factor of 107. The amplifier is also grounding the drain contact.
Thus, the drain contact is the reference potential of the sample. The DC part
of the signal, IDC, is measured by a Keithley 2000 Multimeter. The ac part
of the signal, IAC, is fed into both of the lock-ins. The measured IAC can
be directly converted into the differential conductance G by G = IAC/UAC.
For very small bias voltages USD ≈ 0 mV the differential conductance is
equal to the conductance IDC/USD.

The quantum point contact is operated by applying a DC voltage USD,QPC
at source SQPC and UG,QPC at GQPC via a DAC. At DQPC the DC IQPC is
amplified by a DL 1211 and measured by a Keithley 2000. The potential at
DQPC is the reference potential of the QPC. It is possible to use the whole
QPC as a gate for the TQD by applying a voltage at both GQPC, SQPC
and DQPC.

In the grounding concept ground loops are avoided. The cryostat itself
serves as center ground.
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4 Characterisation of the triple
quantum dot system

Within this chapter the TQD sample setup itself and its basic transport
properties are presented. The sample is characterized in outline by charge
and transport measurements of both transport paths, which are common
techniques for this purpose.

The following section 4.1 presents the setup of the TQD sample concerning
the arrangement of the dots, leads and gates as well as their couplings. It
also explains the dot and lead setup with regard to the measurement pur-
poses. In section 4.2 charge measurements are presented and analyzed as the
first step in sample characterization. The dependence of the measurement
outcome on the tunneling rates within a transport path is shown. The tunnel
barriers in one of the two transport paths are tuned asymmetric so that
the path becomes drain decoupled. The arising charging effects and their
utilization is explained. In section 4.3 the sample is investigated regarding
its basic transport properties. Stability diagrams and Coulomb diamonds
of both transport paths separately are shown, analyzed and compared.

4.1 Triple quantum dot sample
Within the scope of this work a lateral TQD sample based on a structured
2DEG within a GaAs/AlGaAs-heterostructure is investigated. Figure 4.1
shows an AFM image of the sample and Figure 4.2 a schematic of the sample
setup. The sample was manufactured by M.C. Rogge [24]. It is structured by
LAO (see section 3.1.2.2) on the GaAs/AlGaAs-heterostructure presented in
Fig. 3.2. The three dots A, B and C are arranged in a triangular geometry
with each dot situated next to the other two and one lead attached to each
dot. Dots A and B as well as A and C are capacitively and tunnel coupled,
whereas the coupling between dots B and C is only of capacitive nature, since
the channel between them is too narrow to be opened for transport [24, 38].
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The leads S1 and S2 are connected to dots B and C respectively and are
used as source contacts and the lead D is connected to dot A and used as a
drain contact. Thus, two transport paths are formed with two serial double
dots, dot A and B in path 1 and dot A and C in path 2. The sample allows
a variable measurement setup. Transport through two dots in series with a
capacitively coupled third dot can be measured separately in both paths
and can be compared or combined. Accordingly, this structure provides the
opportunity of investigating double and triple dot physics simultaneously,
whereas in serial triple dots double dot resonances can not be detected in
transport. In the given system one can thus conveniently study triple dot
physics based on the well understood double dot system by investigating
transitions from double dot to triple dot resonances in transport. Former
work on this system covers the basic transport properties and uses two of
the leads as drain contacts and the lead at dot A as a source contact [24].
In the configuration of two-path transport with two sources and one drain,
the electrons from the different paths compete for the occupation of dot A.
By applying two different frequencies at S1 and S2 and using a standard
lock-in technique to distinguish the paths at the drain, transport through
the paths can be measured simultaneously and separately. With this setup
interactions between the paths manifest themselves in transport and can
be studied for the zero bias case as well as for different bias voltages at the
sources.

The sample has four in-plane gates G1 − G4 to control the potential of
the dots and the inter-dot- and dot-lead couplings. As a result of the setup
and small distances in the sample, the dot potentials and the couplings
are tuned by a complex cooperation of gate voltages. A quantum point
contact (QPC) sensitive to all three dots is located next to dots B and C to
perform charge measurements. The QPC has its own source (SQPC) and
drain (DQPC) lead and is tunable via gate GQPC.
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4.1 Triple quantum dot sample

Figure 4.1: AFM image of the TQD sample with in-plate gates G1 −G4
and a QPC for charge measurements. The blue lines are oxide lines fabricated
by LAO (see section 3.1.2.2) and form insulating barriers. [24, 91]

S1,B S2,CB C

AD,A

Figure 4.2: Schematic of the TQD setup with dots A, B, and C. The two
source leads S1 and S2 are connected to dots B and C, respectively, and
the drain lead D is connected to dot A. The capacitive couplings between
leads and dots are denoted by CS1,B, CS2,C and CD,A, the tunneling rates by
ΓB, ΓC, ΓA. Dots A and B as well as A and C are tunnel coupled via τAB and
τAC, respectively, and capacitively coupled via CAB and CAC, respectively.
Dots B and C are capacitively coupled via CBC. This forms two transport
paths, path 1 (serial dots A and B) and path 2 (serial dots A and C).
Distinguishability between both paths in the drain signal is achieved by
different AC-voltages UAC, f1 and UAC, f2 applied to S1 and S2, respectively.
Similar schematic has been published in [91].
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4.2 Charge measurements
Charge measurements on a multiple dot system are a common tool for the
investigation of basic electrostatic properties of the system: The number of
quantum dots, the capacitive inter-dot couplings, gate capacitances as well
as the tunability in and out of dot resonances. These system properties can
even be investigated for a parameter regime where no transport through
the system is observable because of a current below the detection limit due
to too large tunneling barriers.

Since a TQD system consists of three linearly independent energy spectra
the stability diagram of a TQD is three-dimensional (see section 2.3.1).
From a two-dimensional cut through the stability diagram however one can
already deduce the electrostatic properties of the system regarding two of
the gate voltage parameters of the system.

Figure 4.3 shows an excerpt of such a cut through the three-dimensional
charging diagram of the TQD. The derivative of the detector signal
dIQPC/dUG3 is plotted as a function of gate voltages UG1 and UG3 and
shows a pattern of lines with three different slopes (see section 3.2). They
indicate charging events, where the electron number in the corresponding
dot is changed by one. The different slopes result from the different gate-dot
capacitive coupling due to their respective distance (Fig. 4.1). Based on the
different gradients of the charging lines the quantum dots can be identified.
In the charging diagram in Figure 4.3 a large gradient originates from a
small coupling of a dot to G1 and a large coupling to G3, the line is thus
attributed to dot C. Lines with a small gradient stem from a much stronger
coupling of a dot to G1 than to G3 and are consequently attributed to dot B.
The lines with intermediate slope can then be ascribed to the charging of dot
A. Where two charging lines meet, they shift due to the capacitive coupling
between the dots. These anticrossings mark resonances between two dots.
Resonances between dot A and B (red circle), A and C (yellow circle) and
B and C (blue circle) are observed. In all the charge measurements the
measurement direction goes from negative to positive gate voltage values,
sweeping UG3 and stepping UG1. In case of the charging lines of the dots
the derivative of the detector current is negative, as electrons are added
to the system in sweeping direction towards more positive UG3. The triple
points of the resonance between dots A and B are connected by a dark blue
charge reconfiguration line, a positive derived detector signal. One electron
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is moved from dot B to dot A in measurement direction, thus moving away
from the detector which then detects a decrease in charge. Analogously the
positive charge reconfiguration lines at the other double dot resonances can
be explained. A resonance condition for all three dots is achieved, where
the double dot resonances coincide (black circle). Here we can identify a
point where four charge configurations meet, a quadruple point (QP).
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Figure 4.3: Excerpt of a charge measurement using the QPC. Double dot
resonances between dots A and B (red circle), A and C (yellow circle), and B
and C (blue circle) are observed. Additionally, a triple dot resonance (black
circle) with a quadruple point (QP) being clearly visible is seen within this
measurement range.

The charge configurations are denoted as (NA, NB, NC), where the numbers
Ni are the occupations of dots A, B, C. In Ni the electrons in the core
of the dots are not taken into account, the values Ni are given relative to
(0,0,0), which is fixed individually to support the analysis. This is true for
all notations of charge configurations of the system given within the scope
of this thesis. The intensity of the charging lines of dot C decreases for
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increasing negative gate voltage UG3 and the charging lines additionally
become broader. This can also be observed in the charging diagrams in Fig.
4.4 and Fig. 4.5 covering a wider gate voltage regime. This is a hint for
an increasing coupling between dot C and its lead S2 (seen in transport in
Eq. (2.109), Eq. (2.110) and in section 3.2). By increasing the negative
potential at UG3 dot C is shifted towards the tunneling barrier to S2. This
leads to an increasing distance between dot C and the other dots which
in turn decreases the capacitive inter-dot couplings between them. This
can be observed in the decrease of the shift of the charging lines in the
resonances between dot C and A, B. For large negative gate voltages at UG3
no interaction between the charging lines of dot C and the other two dots is
observed. Additionally, the distance between the lines is reduced at the same
time, best observable in Fig. 4.4 and Fig. 4.5. Here it is clearly visible that
they have a constant but reduced spacing of ∆UG3 = 18 mV between them
for UG3 < −40 mV, while for UG3 > −40 mV the spacing is ∆UG3 = 34 mV.
A decreasing spacing between the charging lines in dependence of UG results
from a decreasing ratio CG/CΣ (Eq. (2.33)). An increasing sum capacitance
thus leads to a smaller spacing between the lines in the charging diagram.
A larger sum capacitance of the dot can originate from a shift with respect
to the other gates and leads. The increased capacitance could mainly result
from the stronger coupling of dot C to S2. This is also suggested by the
observation that the intensity decreases strongly in the transition region
where the distance between the lines is reduced.

The capacitive couplings CG1,A, CG1,B, CG1,C between the dots A, B, C
and gate G1 and the couplings CG3,A, CG3,B, CG3,C between the dots and
G3 can be directly extracted from the charging diagram by measuring the
distance between the charging lines of the respective dot in UG1 and UG3
sweeping direction using Eq. (2.57). The extracted values are listed in
table 4.1. They refer to this certain measurement range as the capacitances
change with the size of the dots, but can still be used as an approximation
in other regimes. We can deduce for the size of the dots that B > A > C in
this parameter regime.

4.2.1 Drain decoupled system
By varying the gate voltages of the device the inter-dot and dot-lead tunnel-
ing rates can be tuned into a regime where they are very asymmetric within
a transport path. For increasing negative values of UG1 and especially UG3,
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Gate Dot A Dot B Dot C
1 CG1,A = 6.5 CG1,B = 12.8 CG1,C = 2.2
3 CG3,A = 5.5 CG3,B = 4.3 CG3,C = 5.3

Table 4.1: Capacitive couplings in aF between the dots and G1 and G3
extracted from Figure 4.3.

the tunneling barrier between dot A and drain is increasing relative to the
others in the transport path. Thus, ΓA � ΓB and ΓA � τAB is obtained
for high negative values of UG1 and UG3.
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Figure 4.4: Charge stability diagram for US,QPC = 0 mV QPC bias voltage.
Starting from a condition where the dots in path 1 are approximately equally
and moderately coupled to their leads (region 1) the tunneling barriers in
path 1 are tuned high and asymmetric towards higher negative values of
UG1 and UG3. For large negative values of UG1 and UG3 the drain lead
becomes decoupled and charging line of dot A is transformed into two lines
with different slopes, exemplarly marked with a black circle (region 2). The
occurence of multiple charge reconfiguration lines of the resonance between
dots A and B is marked with grey arrows expemplarily within this circle.
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Figure 4.5: Charge stability diagram for relatively large (US,QPC = 1 mV)
QPC bias voltage. The tunneling barriers in path 1 are tuned high and
asymmetric towards higher negative values of UG1 and UG3. This results in
a change in the charging lines of dot A from normal charging lines (region 1)
towards step-like charging lines (region 2), analogously to Fig. 4.4.

The detector signal derivative is plotted as a function of UG1 and UG3 for
zero (Fig. 4.4) and relatively large (US,QPC = 1 mV) (Fig. 4.5) QPC bias
voltage. UG1 and UG3 are swept from negative to positive values. Both
measurements can be divided into two regions, region 1 for lower values of
UG1 and UG3, region 2 for higher values. They are separated by a black
dashed line in Fig. 4.4 and Fig. 4.5. In region 1 the system is in a condition
of moderate dot-lead coupling where charging events between both dots and
their leads (A ↔ D,B ↔ S1) are significantly faster than the integration
time. Typical charging lines of dot A are observed.

The charging lines of dot A become increasingly noisy with increasing
negative gate voltages UG1 and UG3. This shows that the tunneling barrier
between dot A and drain is growing very large. As a result, the tunneling
rate for charging events between dot A and the drain lead becomes compara-
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ble with the measurement integration time of 500 ms so that the statistical
nature of the tunneling processes is revealed. For even higher negative gate
voltages UG1 < −180 mV and UG3 < −20 mV (region 2 in Fig. 4.4 and Fig.
4.5) the charging lines of dot A marking the charging of A via the drain lead
completely disappear. Thus we expect the tunneling barrier between A and
drain to be closed in this regime with respect to measurement timescales.
Therefore, the drain lead D is decoupled. The system is transformed into a
serial double dot connected to one single lead, S1. Instead of the typical
charging line of dot A in a serial double dot system with two leads, now a
more complex charging behavior is obtained. A partition of the charging
line into two lines with different slopes is obtained: One line with the slope
of the charging line of dot B and one with the same slope as the charge
reconfiguration line at the resonance between dots A and B (marked in Fig.
4.4). Comparison of Fig. 4.4 and Fig. 4.5 shows that this double slope
charging line behaviour is independent of the applied QPC bias voltage. The
effect does not disappear for US,QPC = 0 mV. It is thus not to be attributed
to detector feedback effects [92–94].

Figure 4.6 shows a schematic of a charge stability diagram in this drain
decoupled region. The charging lines around an A-B resonance are de-
picted. As dot C does not contribute to the effect described above, the
charge states are only given for the double dot A-B (NA, NB) in the following.

a

b

(1,1)
(0,1)

(1,0)

(0,0)

UG1

UG3

sweeping direction

Figure 4.6: Schematic of a charging diagram in case of ΓA � ΓB, τAB. As
this effect concerns the double dot A-B only and dot C does not contribute,
the charge states are only given for the double dot (NA,NB).
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Along the charging line marked with (a) the dots A and B are in resonance,
as it is an extension of the charge reconfiguration line. To further under-
stand the charging line (a) a schematic picture is presented in Figure 4.7.
It shows the configuration of tunneling barriers and chemical potentials
in path 1 depicting the particular two-step sequential tunneling process
which leads to the charging of dot A along line (a). Dot A has an empty
energy level, which was not occupied when it was in resonance with drain
at more negative UG3 as the tunneling barrier to the drain lead is closed.
When dots A and B come into resonance below the chemical potential of the
leads, dot A can be charged via dot B. Each time one additional electron
occupies dot A the energy levels of dot B are shifted to higher energies
by ∆ = ∆µB = e2CAB/(CΣACΣB) (Eq. (2.68)) due to Coulomb repulsion
according to the capacitive coupling between the dots. The empty energy
level of dot B still being energetically below the chemical potential of the
leads, is then charged by one electron via source S1. Thus, crossing line (a),
the charge configuration of the system changes from (0,1) to (1,1) as dot A
is charged over dot B which is immediately refilled via S1.

D

Figure 4.7: Schematic of the tunneling process leading to the charging line
part (a) (Fig. 4.6). The tunneling barrier highlighted in red is assumed to
be closed within measurement timescales.

Figure 4.8 shows a schematic of the configuration of tunneling barriers and
chemical potentials in path 1 with the two-step sequential tunneling process
leading to the charging of dot A along line (b). Along the charging line
marked with (b) dot B is in resonance with the leads. Dot A, which has
an empty energy level below the chemical potential of the leads as the
tunneling barrier to drain is closed, can be charged from source S1 over
dot B. When dot A is charged by one electron, the energy levels of dot
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B are again shifted to higher energies by ∆ according to the capacitive
coupling between the dots. The energy level of dot B which was in reso-
nance with the leads before is now ∆ in energy higher than the chemical
potentials of the leads. For more positive gate voltages, when the energy
levels of dot B are shifted by −∆, a charging line parallel to line (b) ap-
pears, where the energy level of dot B is again in resonance with the leads
and dot B is charged with one electron. According to Eq. (2.69) this
distance in gate voltage is ∆UG1 = eCAB/(CG1,BCΣB) in direction of UG1
and ∆UG3 = eCAB/(CG3,BCΣB) in direction of UG3.

D

Figure 4.8: Schematic of the tunneling process leading to the charging line
part (b) (Fig. 4.6). The tunneling barrier highlighted in red is assumed to be
closed within measurement timescales. The numbers 1, 2 indicate the order
of the tunneling events.

The noisiness of the two charging lines (a) and (b) shows, that τAB is
comparable to the integration time as well.

In some regions in the drain decoupled regime multiple parallel charge
reconfiguration lines of the one separating the states (0,1) and (1,0) are
detected independent on QPC bias voltage. Figure 4.9 shows a cut through
such a region, marked in Figure 4.4. As the drain lead at dot A is basically
decoupled so that the electron can not escape through the drain within
the measurement time, back- and forth transitions of the electron between
dot A and dot B can be detected within this time. The reason can be
a rectification effect [95] due to external frequency noise in the kHz-GHz
regime [96, 97].

When increasing UG3 at constant UG1 to transfer the system from charge

107



4 Characterisation of the triple quantum dot system

-5.5x10
-10

-5.0

I Q
P

C
 (

a.
u.

)

-125 -120 -115
UG3 (mV)

Figure 4.9: Perpendicular cut across a double charge reconfiguration line
(marked in Fig. 4.4 with gray arrows). Shown is the QPC current IQPC with
respect to the gate voltage UG3. Three fast transitions between the states
(0,1) and (1,0) can be identified.

state (0,0) to (1,0), the end state (1,0) can not be achieved until the so-
called controlling voltage UG3 is sufficiently large, meaning significantly
more positive than the value expected in thermal equilibrium. In analogy
to the transitions occurring for increasing UG3 (Fig. 4.7 and Fig. 4.8), we
can deduce the transitions for decreasing UG3. A schematic of the charging
diagram for decreasing UG3 is shown in Fig. 4.10.

a

b

(1,1)

(0,1)

(1,0)(0,0)

UG1

UG3

sweeping direction

Figure 4.10: Schematic of the charging diagram in case of ΓA � ΓB, τAB
for reverse UG3-sweeping direction from positive to negative UG3.
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The corresponding tunneling processes leading to the distinct features (lines
(a) and (b)) are sketched in Fig. 4.11 and Fig. 4.12, respectively.

D

Figure 4.11: Schematic of the tunneling process leading to the charging line
part (a) (Fig. 4.10). The numbers 1, 2 indicate the order of the tunneling
events.

D

Figure 4.12: Schematic of the tunneling process leading to the charging line
part (b) (Fig. 4.10). The numbers 1, 2 indicate the order of the tunneling
events.

In contrast to the processes where UG3 is swept to more positive values and
dot A is charged (Fig. 4.7, Fig. 4.8), dot A is discharged over dot B in
this case. Note that whenever dot A is discharged, the potential of dot B
is shifted by −∆ to smaller values due to the capacitive inter-dot coupling.
The stability diagrams for the two sweeping directions of the controlling
gate voltage UG3 are different. The charge configuration of the dot system
depends on the history of its charge configuration. While the charging lines
belonging to the charging events of dot B are not affected by the direction
of the UG3 sweep, the position of the charging lines which belong to the
charging events of dot A ((a) and (b)) depends on the sweeping direction.
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This hysteretic behavior stems from the fact that dot A can only be charged
via dot B. The controlling voltage UG3 has to be reversed to an extend that
dot A can be discharged again via an energy level of dot B. Due to this effect
of Coulomb blockade in dot B and the capacitive inter-dot coupling between
dots A and B, which causes the shift of ±∆ in the chemical potentials of
dot B whenever dot A is charged (+) or discharged (-), the charging events
of dot A underlie a hysteresis. This hysteretic behaviour was previously
described by Yang et al. [98] for a double dot system for which they observed
this effect in a small region of the stability diagram.

In case of a large τAC between the dots the hysteretic effect vanishes,
since a large tunnel coupling leads to a significant probability of cotunneling
[44, 55] (see section 2.3.2.3 and Eq. (5.25) in section 5.3) between source
S1 and dot A. Cotunneling and the described sequential tunneling process
coexist, where cotunneling can become dominant [98]. Varying the gate
voltage UG1 does not only shift the energy levels but also influences the
tunnel barrier between the dots A and B. An increasing negative UG1 de-
creases the strength of the tunnel coupling between dot A and B. This in
turn decreases the probability of cotunneling events. Additionally, increas-
ing negative UG1 and especially UG3 leads to a decreasing tunnel coupling
between dot A and drain. Since tunneling rates below the measurement
speed are a necessary condition to establish the non-equilibrium initial state,
this increases the probability to observe the described sequential tunneling
processes of charging dot A via dot B. Consequently the hysteretic effect
gradually becomes more pronounced with increasing negative potential at
G1 and G3 (Fig. 4.4 and Fig. 4.5).

This hysteretic behavior regarding the electronic occupations of the dot
system can be utilized for the implementation of a single-electron Set/Reset
memory latch [98, 99]. Such a single-electron memory device typically has
two inputs, Set and Reset, and two outputs, the logic states Q and Q∗.
State Q∗ is the inverse of Q. It is operated such, that the Set input sets
Q=1, the Reset input sets Q=0.

The hysteretic charge transitions of the device can be controlled by the
controlling gate voltage UG3. This enables the implementation of these
set/reset operations, as depicted in Fig. 4.13. The memory consists of three
different states: Reset, Hold and Set. Starting in the Reset condition with
the system being in the logic state Q ≡ (0,0), by sweeping UG3 to more
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positive values, the Hold region is reached where the previous system state
is preserved, at even more positive values of UG3 the system is set into a
new state Q∗ ≡ (1,0) by entering the Set region (Fig. 4.13 (a)). To reset
the system, UG3 has to be swept back, whereby the system again keeps
the set state during the Hold region and is only reset when entering the
Reset regime (Fig. 4.13 (b)). The hysteresis of the system ensures the Hold
condition for both Set and Reset operations. In our case, by sweeping the
system between Set and Reset, the electron number on dot A changes by
one. These latch transitions are also possible for different electron numbers
on dots A and B, as given for larger values of UG1 and UG3, as long as the
described requirements for the tunneling barriers are fulfilled.

(1,1)
(0,1)

(1,0)(0,0)

UG1

UG3

sweeping direction

sweep for latch operation
Reset Set

Hold

(a)

(0,1)

sweeping direction

(0,0)
sweep for latch operation

Reset Set
Hold

(1,1)

(1,0)

UG1

UG3

(b)

Figure 4.13: Schematic of latch operations between the charge states
Q ≡ (0,0) (Reset) and Q∗ ≡ (1,0) (Set) [98]. Equivalent latch transitions are
also possible at different electron numbers in dot A and B, as long as the
requirements for the tunnel barriers are fulfilled.

4.2.2 Detector feedback effects
In order to investigate the feedback of the detector system on the TQD
system, the QPC bias voltage US,QPC is varied. For vanishing bias voltage
feedback effects are expected to vanish as well. On the other hand they are
expected to be pronounced for a large QPC bias voltage. In Fig. 4.14 the
detector current derivative is shown in dependence of UG1 and UG3 and for
different US,QPC.
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Figure 4.14: Comparison of the feedback effect for US,QPC = 124 µV,
US,QPC = 0.5 mV, US,QPC = 1 mV, US,QPC = 2 mV, and US,QPC = 3 mV.
Multiple charging lines of dot B appear for US,QPC ≥ 0.5 mV and for N and
N -1 electrons on dot B.
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For a QPC bias voltage of US,QPC = 0.5 mV a double charging line of dot
B instead of a single one is present for a certain number of electrons N
and, much less pronounced, also for N -1 electrons on dot B. One additional
line in a very small distance to the charging line of dot B appears. At
US,QPC = 124 µV this effect is not present, which indicates that it is a
feedback effect, induced by US,QPC. For US,QPC ≥ 1.0 mV multiple charging
lines appear as well, also clearly for N -1 electrons on dot B. Two additional
charging lines arise, doubling the region where multiple charging lines of
dot B are visible with respect to the measurement with US,QPC = 0.5 mV.
The regions is marked with black arrows in Fig. 4.14. For even larger
QPC bias, US,QPC = 2.0 mV and US,QPC = 3.0 mV the size of this region
is the same as for US,QPC = 1.0 mV. To sum up, the effect appears for
US,QPC & 0.5 mV, the region where multiple charging lines of dot B are
visible grows for increasing US,QPC and stays constant for US,QPC & 1.0 mV.

Coulomb interaction between fluctuating charge carriers as an exchange
mechanism in mesoscopic systems is prevalent at low temperatures [100].
In our system such a direct exchange mechanism can take place between
statistically fluctuating charge carriers in the QPC and the electrons in
the quantum dot system. The maximum energy being available from a
biased QPC as an energy source for electron excitations in the dot system is
EQPC

max = e |US,QPC|. [92, 93] The energy can be absorbed by electrons on the
quantum dots by Coulomb interaction, leading to charge fluctuations in an
otherwise Coulomb blockaded dot. The size of this charge fluctuation region
can then be identified with the energy the dot can absorb in one process,
which in turn is determined by the energy provided by the non-equilibrium
electrons in the QPC, EQPC

max .

The maximum provided energy EQPC
max and the energy Emax absorbed by the

system measured as energy differences between the ground state resonance
line of dot B and the outer parallel line (marked by black arrows in Fig.
4.14) is shown in dependence of the applied QPC bias energy, EQPC in
Figure 4.15. In Fig. 4.14 in the measurement with US,QPC = 500 µV it
is EQPC

max = 0.5 meV. After conversion from gate voltage to energy scales
(Eq. (2.34)) with CG1,B = 10.3 aF extracted for this measurement regime
(see Fig. 4.14) and the sum capacitance CΣB from table 5.1 we obtain for
the distance between the parallel lines Emax ∼= 0.5 meV, being in agree-
ment with the maximum energy being available from the QPC, EQPC

max . For
US,QPC = 1.0 mV we have EQPC

max = 1.0 meV and the energy distance between
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4 Characterisation of the triple quantum dot system

the lines is Emax ∼= 1.0 meV, which is also in agreement. A systematic error
source in the calculation of Emax is the sum capacitance used in the energy
conversion, which changes with respect of the gate voltages and was not
measured for this parameter region where the dots are quite small. It is
expected for CΣB to be slightly smaller. Consequently Emax might be a bit
underestimated. Thus, the distance between the ground state resonance line
and the outer parallel line above (marked by black arrows in Fig. 4.14) can
be identified with the energy the dot can absorb in one process, which in
turn is determined by the maximum energy provided by the non-equilibrium
electrons in the QPC, EQPC

max . Within this region ebwteen the two lines the
charge of dot B fluctuates due to the energy provided by the QPC. Dot B
is excited which enables charge fluctuations of the Coulomb blockaded dot
B over S1.

For US,QPC = 2.0 mV and US,QPC = 3.0 mV, where Emax = 2.0 meV and
Emax = 3.0 meV, respectively, are expected, no change in the size of the
charge fluctuating region is observed (Fig. 4.15). This can not be explained
in terms of a direct back-action mechanism where a linear dependence on
US,QPC is expected.
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Figure 4.15: Comparison of the relevant energies, EQPC
max , Eph

max and Emax
in dependence of the bias energy applied to the QPC, EQPC. The measured
Emax rises linearly as EQPC

max and saturates at around Eph
max.

Indirect back-action mechanisms can account for this behaviour. These
mechanisms between a biased QPC and a quantum dot system involve the re-
laxation of non-equilibrium charge carriers via emission of acoustic phonons,
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photons, 1D-plasmons, or electron-electron interaction [92, 94, 101]. A
common indirect back-action mechanism is the emission of acoustic phonons
by hot electrons in the leads of a biased QPC, which relax into ground
state via this emission [92, 93, 100, 102, 103]. The emitted phonons can
propagate through the potential barrier between the QPC and the quantum
dot system and be absorbed by electrons on the quantum dots. This can
cause charge fluctuations within the dots via excited states. The size of
the region within which charge fluctuations can take place is limited by the
energy the dot absorbs in one process, which in turn is determined by the
phonon energy in this back-action mechanism [92].

An electron of momentum ~ke can emit an interface acoustic phonon of
momentum kph . 2~ke due to energy and momentum conservation law
during the back-scattering process [100]. Consequently, the momentum an
equilibrium electron at the Fermi energy can reabsorb from an interface
acoustic phonon is also limited to 2~kF . Thus, an electron in a quantum dot
can be lifted to excited states in ∆E . 2~kF vs distance from its respective
ground state [92], with vs being the sound velocity for acoustic phonons in
the semiconductor.

In order to estimate this maximum energy Eph
max = 2~kF vs, which can

be transferred by an interface acoustic phonon in this back-action mecha-
nism for our system, kF is calculated by kF = (2πne)1/2 for a 2DEG with
the electron density of ne = 3.47 · 1015 m−2 (Fig. 3.2). With this and the
maximum sound velocity of vs = 5300 m/s for longitudinal acoustic phonons
in bulk GaAs ((110)-direction) [104] we obtain Eph

max
∼= 1.03 meV.

In the measurements Fig. 4.14 the size of the charge fluctuating region,
Emax, bounded by the outer line parallel to the usual ground state resonance
line of dot B, stays constant with increasing QPC bias for US,QPC ≥ 1.0 mV.
This maximum size of the charge fluctuating region is Emax ∼= 1.0 meV.
This corresponds very well to the maximum acoustic phonon energy of
Eph

max
∼= 1.03 meV calculated for this system, as clearly visible in Figure 4.15,

and indicates that phonon-mediated back-action can play a role in the pre-
sented charge measurements. A source of error results from the estimation
of the maximum phonon energy in this system and from the described slight
inaccuracy expected for Emax. The upper bound found for the transferred
energy Emax in the observed back-action process reflects the existence of
phononic back-action in this device and its domination. [100] The observed
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bias dependence of Emax can be explained by a domination of this indirect
back-action process. The phonon energy increases in proportion to the pro-
vided QPC energy EQPC

max [93] and has an upper bound at Emax ∼= 1.0 meV.
The excitation of dot B giving rise to the charge transfer while the dot is in
Coulomb blockade can thus be explained by an indirect energy transfer me-
diated by phonons. The observed clear bound of Emax indicates a relatively
low proportion of direct Coulombic back-action, however, the significance of
this analysis is limited by the measurement resolution. Especially at high
bias votages the indirect back-action can be dominant in relation to direct
back-action mechanisms. [105] Similar non-equilibrium charge fluctuations
in a dot system caused by energy quanta emitted from a biased QPC leading
to charge fluctuating regions have been reported in [94, 101]. For systems
where the observed back-action between QPC and dot system is attributed
to be mediated by acoustic phonons a linear increase of Emax with the bias
voltage is detected [93] and a maximum phonon energy is identified [92, 100].

In summary, the triple quantum dot system was characterized within this
section by charge measurements using a QPC as a detector. The system
is analyzed electrostatically by deriving the capacitive couplings between
the dots A, B, C and gates G1 and GG3. In dependence of gate potentials
different charging mechanisms of dot A situated at the drain contact are
observed. The system is driven into a drain-decoupled condition where
two different tunneling sequences to charge dot A over the source lead take
place which are clearly observed in a wide gate parameter region. The
capacitive coupling between dots A and B leads to a hysteretic behaviour
when reversing the sweeping direction, so a utilization of this effect in a
Set/Reset memory latch is conceivable. Observed back-action effects are
discussed regarding their energy source considering direct Coulombic and
indirect phononic back-action giving indications of a dominant indirect
phonon-mediated meachanism.
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4.3 Path-resolved transport measurements
4.3.1 Linear transport regime
To characterize the TQD system regarding its basic transport properties the
differential conductance G is measured along path 1 (Fig. 4.16) and path 2
(Figure 4.17) simultaneously but separately as a function of UG1 and UG3.
The gate voltage UG1 is mainly controlling the dot potentials and couplings
in the left path and UG3 is mainly controlling the ones in the right path.
The further course of this thesis will focus on the reaction of the system
transport on the variation of the potentials of these two gates. During
transport measurements the QPC is not in use to avoid the possibility of
backaction.

Figure 4.16: Transport through path 1. The differential conductance G is
shown in dependence of the gate voltages UG1 and UG3. Charging lines of
dots A and B (solid lines) are observed. Charging of dot C (dotted line) is
observed by a shift of the charging lines of dots A and B.

Transport features of all three dots are detected. Double dot physics are
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observed in the stability diagrams of both transport paths with additional
signatures of a capacitively coupled third dot. Transport through one path
is possible at the triple points, when the dots located in this path are in
resonance.

Figure 4.17: Transport through path 2. The differential conductance G is
shown in dependence of the gate voltages UG1 and UG3. Charging lines of
dots A and C (solid lines) are observed. Charging of dot B (dotted line) is
observed by a shift of the charging lines of dots A and C.

In path 1 we find high differential conductance at the triple points where
dots A and B are in resonance. Analogously to the charge measurement
(see section 4.2), we can identify the dots by their expected couplings to
the gates derived from their location. Dot B is coupled much stronger
to G1 than to G3 and is charged along the lines with highest slope. The
charging lines of dot A have intermediate slope and the charging lines of
dot C have the smallest gradient as the coupling between dot C and G1
is much smaller than between C and G3. As dot C is not located in this
transport path, but capacitively coupled to dot A and B, its charging is
observable by a shift of the charging lines of dot A and B where it comes
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into resonance. Analogously in path 2 resonances between dots A and C
and shifts of their charging lines marking the charging of dot B are visible.
Only one charging line of dot C is visible in this measurement. The bending
of the charging lines and the resulting change in distance between them
stems from a varying dot-gate coupling. For conditions where we have a
double dot resonance in both paths the resonance condition for all three
dots is fulfilled and a triple dot resonance is formed (marked with an arrow
in Fig. 4.16 and Fig. 4.17).

For small UG1, UG3 the differential conductance vanishes as the tunnel
rates are too small to allow detectable current through the dots. The
rounded broadened shape of the conductance region at the triple points in
both paths is a coherence effect due to a strong inter-dot tunnel coupling
(see section 2.3.2.4). The triple points in path 1 become increasingly rounded
and broadened (Fig. 4.16) as the inter-dot tunnel coupling between dot
A and B increases with increasing UG1. The same is true for the tunnel
coupling between dots A and C increasing with the gate voltage UG3 in path
2, visible in transport in Fig. 4.17. The electrons are rather delocalized
between the dots occupying molecular states. An effect also contributing
to non-zero differential conductance in the vicinity of the triple points is
temperature broadening of the dot energy levels. In path 2 strong finite
differential conductance is visible along the whole charging line of dot A.
This is a consequence of second-order tunneling, cotunneling, between S2
and dot A across the off-resonant dot C (see section 2.3.2.3). It becomes even
more pronounced for increasing UG3 as this increases the tunnel coupling
between dots A and C. For large values of UG1 high differential conductance
along the whole charging line of dot B between two triple points in path
1 can be observed as well. Analogously to path 2 cotunneling between
dot B and drain across the off-resonant dot A can contribute to this effect
in this region of strong inter-dot tunnel coupling. The cotunneling in the
double dots visible in transport, especially concerning the interplay between
the transport paths, is shown and explained in more detail within section 5.3.

The capacitive couplings UG1,A, UG3,A, UG1,B, UG3,B, UG1,C, and UG3,C
extracted from the stability diagrams (Eq. (2.57)) are shown in table 4.2.
They correspond well to the capacitances extracted from the charge measure-
ments (table 4.1). The differences stem from the variation of the couplings
caused by different gate potentials.
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capacitive couplings
CG1,A = 6.8 CG1,B = 8.0 CG1,C = 3.3
CG3,A = 6.6 CG3,B = 2.6 CG3,C = 5.1

Table 4.2: Capacitive couplings C in aF between the dots and the gates G1
and G3.

4.3.2 Non-linear transport regime
Non-linear transport is investigated separately for the two transport paths
as well. In Fig. 4.18 the differential conductance is shown for path 1 and
2 for varying bias voltage at path 1, US1, and gate voltage UG3. Since the
bias voltage is varied across transport path 1 with serial dots A and B, in
the transport of path 1 Coulomb diamonds (see section 2.3.2.2) of dots A
and B are visible.

The Coulomb diamond measurements are analyzed by comparison with
the stability diagrams measured in gate-gate space for the same param-
eter region (see Fig. 4.18 (a), bottom and (b), bottom). The diamonds
dominating the observed features can be ascribed to dot A. Where there
is high differential conductance visible in both paths at US1 = 0 mV, a
region of a quadruple point is crossed by the measurement plane, where all
three dots are in resonance. This is the case for around UG3 = 260 mV and
UG3 = 278 mV. In the region around UG3 = 210 mV the dots are very close
to a triple dot resonance as well, as visible best in the conductance features
in Fig. 4.18 (b), bottom. As there are two serial dots within a path, we
expect a sawtooth-like pattern of Coulomb diamonds (see section 2.3.2.4).
In the measurements this is observed at a rudimentary level basically in
the upper part of the transport measurement of path 1, as mostly rather
an overlay of the Coulomb diamonds of the single dots in each path is seen.
Where non-zero conductance is visible at US1 = 0 mV we expect a triple
point, where the dots in the respective path are in resonance. However, we
see small non-zero conductance whenever dot A is in resonance with the
leads, as observable at UG3 = 243 mV. This behaviour stems from coherence
effects or cotunneling due to the strong inter-dot coupling. These effects
are obvious in both stability diagrams in Fig. 4.18, where high differential
conductance along the charging lines of dots A and B are observed.
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Figure 4.18: Transport through path 1 (a) and path 2 (b). The differential
conductance G is shown in dependence of the bias voltage US1 and the gate
voltage UG3. Coulomb diamonds of the dots which can be identified in the
measurement are marked by dotted lines. In path 1 resonances of dot A and
B with the leads are seen. In path 2 signatures of resonances between dot A
and the leads can also be identified, as well as resonances between dots A, C
and the leads. For comparison the corresponding stability diagrams for path 1
((a), bottom) and 2 ((b), bottom) are shown, where all dots can be identified
due to resonances between them. The Coulomb diamond measurements are
performed at UG1 = 1.5 mV (dashed line).

This results in non-zero conductance at US1 = 0 mV also for the system
being near a triple point. Triple points are characterized by high conduc-
tance through one path only. They are observed at UG3 = 179 mV and
UG3 = 224 mV in path 1, where dots A and B are in or close to resonance,
and at UG3 = 199 mV and UG3 = 204 mV in path 2, belonging to the same
resonance of dots A and C. This latter resonance however is close to a triple
dot resonance, as explained above.
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4 Characterisation of the triple quantum dot system

Two kinds of resonance lines crossing at the triple and quadruple points
can be observed in the transport of path 1. Their slopes correspond to
the coupling between the leads and dots A and B, respectively. In this
way Coulomb diamonds of dot A and B can be identified. The Coulomb
diamonds are marked in Fig. 4.18 with dashed lines as a guide to the eye.
While the edges of the Coulomb diamonds of dot A are clearly visible due
to cotunneling via the off-resonant dot B, the resonances with dot B and
the leads are only seen in the upper part of the diagram of path 1, between
UG3 = 250 mV and UG3 = 300 mV, due to cotunneling.

Figure 4.18 (b) shows the transport through path 2 in dependence of
US1. Across path 2 the bias voltage is set to US2 = 0 mV. Thus, transport
will occur for values of UG3 where both dots A and C are in resonance with
the leads. For non-zero bias voltage at path 1 resonance lines of dot A with
the drain and the source lead S1 are visible. The non-zero slope of these
resonance lines stems from the influence of the varying potential of the
source lead S1 on the energies of dots A and C. The resonance lines of dot
A with the drain lead exhibit small positive differential conductance, the
transport originating from significant cotunneling across the off-resonant dot
C. The resonance lines of the dot with the drain lead have the same slope
as the ones seen in transport through path 1, as the slope of the resonance
lines with drain stem from the capacitive coupling between dot A and S1.
Where dot A is in resonance with the source lead S1 and transport through
path 1 is consequently strong, lines of negative differential conductance are
clearly visible. The negative differential conductance lines originate from the
interaction between the paths only, as no transport signature is supposed
to be observed in path 2 in case of resonances in path 1. This interaction
and its signature, the negative differential conductance, is analyzed in more
detail in section 5.3. The same signatures of intra-channel resonances and
inter-channel interaction is observed for investigation of the transport in
dependence of the bias voltage at path 2, US2, as seen and discussed in Fig.
5.21 in section 5.3.

The half-width of the Coulomb diamonds is identified with the charg-
ing energy of the respective dot (Eq. (2.61)). For dot A and dot B
EC ∼= 0.5 meV is obtained and thus with Eq. (2.25) a sum capacitance
of CΣA ∼= CΣB ∼= 320 aF is calculated. Dot C can not be characterized
for this measurement range as the Coulomb diamonds can not be clearly
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identified in the transport measurements of path 2 with varied bias voltage
US2. With the large positive potential at UG3 the dots are relatively large,
leading to small charging energies. The extracted charging energies are only
valid for the shown gate voltages and have to be adjusted for other values,
as the size of the dots and the couplings to the leads change with varying
potential at the gates. Additionally, from the slopes of the edges of the
Coulomb diamonds the capacitive coupling between dot and source lead
can be calculated with knowledge of the capacitive coupling between dot
and the varied gate voltage (Eq. (2.60)). The capacitances between dots
and gate G3 for this parameter regime are extracted from the height of
the Coulomb diamonds of dot A and B, respectively (Eq. (2.57)). With
CG3,A ∼= 9 aF we obtain CS1,A ∼= 109 aF and for dot B with CG3,B ∼= 5 aF
we get CS1,B ∼= 138 mV for this gate voltage regime. This corresponds well
to the location of the dots with respect to S1.

Lines of finite differential conductance parallel to the edges of the Coulomb
diamonds of dot A stem from resonances of excited states of the dot and
source (positive slope) or drain (negative slope). The distance between
ground state resonance and the excited state resonance with respect to US1
is ∆US1 ∼= 0.2 mV, corresponding to an energy difference of ∆E = 0.07 meV
(Eq. (2.33)), calculated by considering the capacitive influence of US1 on
the dot potentials. With a distance between ground state resonance and the
excited state resonance of ∆US1 ∼= 5.5 mV with respect to UG3 an energy
difference of ∆E = 0.07 meV is obtained, calculated by considering the
capacitive influence of UG3 on the dot potentials.

To sum up, the triple quantum dot system was characterized by trans-
port measurements within this section. Basic two-path transport properties
are investigated showing triple points in the transport of the paths and
the tunability of the system into triple dot resonances. The capacitive
couplings between dots A, B, C and gates G1 and G3 are derived as elec-
trostatic properties of the system. Coherence effects are detected in the
transport measurements of both paths, verifying a strong inter-dot coupling.
Additionally, indictations of cotunneling within the double dot paths are
observed. Non-linear transport is analyzed for varying the bias voltage at
path 1 showing Coulomb diamonds of dot A and B and giving insight into
capacitances and charging energies of the dots in this regime. Inter-channel
interaction manifests itself in the transport through path 2 while the bias
voltage is varied across path 1.
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5 Two-path transport
In this chapter the transport through the system is analyzed in more detail.
Hereby we focus on the properties originating from the existence of the two
different transport paths in the TQD sample.

A first basic property of the setup is that by using two source leads and
one common drain lead of the transport paths the electrons coming from
path 1 and 2 have to be distinguished at the drain to measure the current
through the two paths separately, contrary to the measurement setup with
one source lead and two drain leads implemented before [24]. Moreover,
the electrons coming from the two paths are expected to be interacting in
some way at dot A in this measurement setup. Section 5.1 describes the
properties of the system arising from the electron interaction and distinc-
tion. Measurements where the electron current through path 1 and 2 is
distinguished by applying an AC voltage with different frequencies to S1 and
S2 are compared with measurements where the electrons coming from the
two paths are not distinguished. Thereby we want to investigate whether
interferences between the paths are prevented by distinguishing the paths,
which would be detected in transport otherwise.

In section 5.2 we first introduce a quantum mechanical model of the TQD for
a simulation of the system and thereby a further analysis of the properties
of the system in continuation of chapter 4.

The subsequent sections 5.3 - 5.5 discuss the transport through the system
without applied bias voltage at the source leads, where we expect linear
transport through a dot, and with applied bias voltage, where we expect the
transport to be in the non-linear regime. The described transport properties
in section 5.3 and 5.5 are unique and characteristic for a multiple quantum
dot system with two joint transport paths with two source leads.
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5 Two-path transport

5.1 Properties of path-resolved measurements
The triangular dot configuration using two source leads enables a variety
of measurement setups. As already described in section 3.4.2 the cur-
rent through the system is detected at the common drain lead of the two
transport paths. At the source leads of the system a DC voltage with an
additional AC voltage can be applied. The resulting total DC through the
system, meaning the DC through path 1 and path 2, is measured at the
drain lead. The AC is also measured (by lock-in amplifiers) at the drain
lead. The AC voltage is used to have the possibility to distinguish the
current of path 1 and path 2 by using different AC voltage frequencies at
S1 and S2, f1 and f2, respectively, and two lock-ins to filter the current
frequency-dependent at the drain (Fig. 3.11). In the following distinguishing
the paths means distinguishing the electrons coming from path 1 and path 2.

In this section the differences in the measurement outcomes of these different
measurement setups are investigated. The setups are:

a) The measurement of the DC through the whole system without applied
AC voltages to the transport paths. The paths are not distinguished.

b) The measurement of the DC through the whole system while two
different AC voltages are additionally applied to the transport paths.
The paths are not distinguished, although the electrons carry this
information.

c) The measurement of the AC of path 1 and path 2 simultaneously but
separately. Two different AC voltages are applied to the transport
paths. The measurement resolves the paths.

In both cases (a) and (b) we measure the whole system, the only difference
is, that in (a) we do not have the possibility to distinguish the paths and in
(b) we have the possibility, but do not measure this information. In case
(c) the paths are resolved. We have a case differentiation between electrons
coming from path 1 and electrons coming from path 2 by measuring the
current with AC frequency f1 and measuring the current with AC frequency
f2 simultaneously but separately at the drain. However, not the isolated
paths are measured, as the measurement outcome of the single paths in-
cludes information about whole system. The measured subsystem when
measuring the conductance through path 1 (2) separately is a double dot
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5.1 Properties of path-resolved measurements

A,B (A,C) with a capacitively coupled third dot C (B). The two subsystems
are measured simultaneously, so both of them carry electron current which
can interact at dot A.

The electrons coming from path 1 are expected to interfere at dot A with
the electrons coming from path 2. The question is, whether in these dif-
ferent measurement setups (a), (b), (c) interferences between the electrons
coming from path 1 and path 2 at the drain are possible. Interferences
between the electrons coming from the two transport paths are a unique
feature of this transport direction having two sources and one common drain.
When measuring the transport through the system using one of the leads,
in this sample design the contact at dot A, as a source lead and two of
them as drains with a respective detector, no interference effects are possible.

One important general requirement for the existence of interference is
that the particles are indistinguishable in the respective measurement setup.
Here, the consideration of the setup as a realization of a double slit ex-
periment is helpful. The transport paths, path 1 and path 2, of the TQD
setup correspond to the slits 1 and 2 in the double slit setup. The detector
in our setup corresponds to a detector in the double slit experiment [106],
which can also be simply realized with a screen in case of photons. The
experiment has also been performed with both single electrons [107] and
an electron beam [108]. The double slit experiment shows that the pattern
seen on a detector is dependent on whether the particles passing the slits
are indistinguishable or not. When measuring which slit (path) a particle
passed, the particles become distinguishable for us so the particles do not
interfere and we do not see an interference pattern according to laws of
quantum mechanics. The measurement destroys the phase coherence needed
for the interference. When the electrons are undistinguished in the mea-
surement setup we see an interference pattern at the detector behind the slits.

In mesoscopic systems the phase coherence length of the electrons ex-
ceeds the system size, meaning the typical system length scales, for low
temperatures in the sub-kelvin regime. The phase coherence length is the
length an electron can travel without loosing its phase coherence. At these
low temperatures where electron-electron and electron-phonon scattering
limiting the electron phase coherence length is low, quantum interference
effects are of significance in the system properties [47]. Phase coherence is
needed for the appearance of interference effects and leads to behaviour such
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5 Two-path transport

as the Aharonov-Bohm effect, the Quantum Hall effect, or the quantized
transport through a QPC. From the electron concentration of the 2DEG
of ne = 3.47 · 1015 m−2 and an electron mobility of µe = 42.1 m2/Vs (see
Fig. 3.2) a mean free path of le ∼= 4 µm is obtained, as a lowest estimate
for the phase coherence length in the system. With system length scales of
around 500 nm < le (see Fig. 4.1) quantum interference effects are generally
expected to be observed in this system (see also [109]). Additionally, the
electrons tunneling into the two transport paths are expected to obtain
a defined phase relation from the start. Further on, coherent inter-dot
tunneling in the paths is a condition for interference between electrons
from different paths. In the characterization of transport (section 4.3) the
stability diagrams of the two paths (Fig. 4.16 and 4.17) show signatures
of strong coherence between the on-site states of the dots due to a strong
inter-dot tunnel coupling. Indications for contributions of phase-coherent
transport to the transport through a triple quantum dot system have been
shown in [36, 110].

In the experiment we measure a current I and consequently have an av-
eraged signal. The AC frequencies applied to the source contacts are in
the Hz range and thus very small. This means, that we average over many
electrons. The number of electrons is defined by n = I · t/e and is n ≈ 7 ·106

for I = 0.2 nA and a frequency of f1 = 83.3 Hz (see section 3.4.2). A further
signal integration over tc = 500 ms leads to a measurement averaged over
n ≈ 3 · 108 electrons. For the observability of interferences the averaged
intensity is relevant. The averaging over many electrons leads to a stable
and observable signal.

In the TQD setup we have the two transport paths where we can either
measure the AC of each path and thus detect the electrons path-resolved
(setup (c)), or measure the DC which carries no information about the
paths of the electrons and thus do not distinguish the electrons by their
path (setups (a) and (b)). The measurement outcomes of setups (a) and (b)
are expected to be equivalent, as in both cases the DC through the total
system is measured. The paths are not distinguished in both measurements.
Based on the laws of quantum mechanics shown in the comparison with the
double slit experiment above we predict the measurement outcome of setup
(c) to be different from (a) and (b), as in (c) the electrons coming from the
two paths are distinguished by measuring the AC of the paths separately so
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5.1 Properties of path-resolved measurements

that coherences between the paths are destroyed and no interference effects
are observed.

Figure 5.1 (a), (b) shows the DC differentiated by US1, dIDC/dUS1, through
the system measured at the drain contact in dependence of US1 and UG3
using setup (a) and using setup (b), respectively.
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Figure 5.1: Differentiated DC of the system at the drain contact in depen-
dence of US1 and UG3 (a) for setup (a) without additional AC applied and
(b) for setup (b) with additional AC applied to the paths.

The measurements show the same situation as shown and analyzed in Fig.
4.18, where the differential conductance of the two paths measured sepa-
rately is presented. Mainly Coulomb diamonds of dot A are seen. The
measurement outcomes of setups (a) and (b) show no significant differ-
ences exceeding the noise, which is consistent with the prediction. This
is also observed in Fig. 5.6 (a), where the difference signal between the
measurement outcomes of setups (a) and (b) is shown. The few structures
which are visible can stem from noise in the resonances or a slight shift
between the measurements. A cut at US1 = −0.1 mV (Fig. 5.2) makes it
easier to compare the two measurement outcomes. A cut at a small bias
voltage is chosen for the comparison, so that we have a well defined current

129



5 Two-path transport

through the system. We see no additional features in setup (a) without
additional applied AC voltage compared to the setup (b) with additional
AC voltage applied to the paths, as in both cases only the DC without the
path-information is measured. Thus, in this sense the setups are quantum
mechanically equivalent.
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Figure 5.2: Cuts at US1 = −0.1 mV through Coulomb diamond measure-
ments of setups (a) and (b) (Fig. 5.1). The differentiated DC shows no
significant differences.

In order to analyze the interference features between the electrons expected
to be included in these DC measurements (setups (a) and (b)), we compare
their measurement outcomes with those of the single separate paths added
up afterwards. As interference effects are not included in the sum of the
conductance of path 1 and 2 recorded separately (setup (c)), as explained
above, a comparison identifies signatures of interference.

For this purpose the measurement outcome of setup (b), the DC, is com-
pared with setup (c), the sum of the AC of both paths, in the following.
As done above, we again want to compare the respective measurement out-
come in form of the differential conductance in dependence of US1 and UG3.
While the differential current for setup (b) is calculated from the DC by
dIDC/dUS1, the differential conductance for setup (c) IAC/UAC is calculated
from IAC measured by lock-in technique. The conductances derived from
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5.1 Properties of path-resolved measurements

both methods are comparable for the used small AC frequencies as explained
in section 3.3. After adding up the measurement outcomes IAC/UAC of the
two paths, we plot the sum in one graph, Fig. 5.3 (b). As this is a simple
summation of the conductance values of the two paths we can not expect
to see all physical effects of the whole TQD system. Interference effects
between the electrons from the two paths cannot be observed. If there are
interference effects seen in measurement setups (a) and (b) we expect their
measurement outcomes to be unequal to the simple calculated sum of the
conductance values of the two paths. Figure 5.3 shows this comparison.
Already at first sight differences in the transport features are visible.

-1 0 1
US1 (mV)

300

250

200

150

U
G

3 
(m

V
)

-5x10
-9

0

dIDC/dUS1 (S)

x10
-7

-1 0 1
US1 (mV)

300

250

200

150

U
G

3 
(m

V
)

0.20
G (e

2
/h)

Figure 5.3: (a) Differentiated DC of the system at the drain contact in
dependence of US1 and UG3. It corresponds to the measurement outcome
of setup (b), where the paths are not distinguished. (b) Added differential
conductance G of path 1 and path 2 in dependence of US1 and UG3. It
corresponds to the measurement outcome of setup (c), where the path-
information is included.

Figure 5.4 shows how the added measurement outcome of setup (c) is com-
posed of the conductances of the separate paths for cut at US1 = −0.1 mV.
Knowledge about the attribution of the Coulomb peaks to resonances be-
tween the dots stems from the analysis of the same Coulomb diamond
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Figure 5.4: Cuts at US1 = −0.1 mV through Coulomb diamond measure-
ment of setup (c) for transport path 1 and 2 separately, as well as their
sum.

measurement in section 4.3.2, Figure 4.18. Around UG3 = 179 mV a triple
point of a resonance of dots A and B is present in path 1, so there is high
conductance in path 1, while there is conductance in path 2 as dot C is
energetically close. The conductance of path 2 extending in a wider regime
around the resonance is a result of the strong coherence between the dots as
their tunnel coupling is strong. Analogously, at around UG3 = 200 mV the
triple points of a resonance of dots A and C and resulting high conductance
is present in path 2 and dot B is energetically close. The system is very close
to a triple dot resonance. At around UG3 = 224 mV dots A and B are in
resonance. Path 2 also shows small differential conductance, but a compari-
son with the analysis of the corresponding stability diagrams in Fig. 4.18
shows that the system is quite far away from a triple dot resonance. Second-
order tunneling tunneling processes can be significantly contributing to this
transport through path 2 far from the resonance. Around UG3 = 243 mV
dot A is in resonance with the leads and dots B and C are energetically
close, so there is conductance in both paths, and around UG3 = 260 mV and
UG3 = 278 mV quadruple points are present with resulting conductance in
path 1 and 2.

The added measurement signal of setup (c) is compared with a cut at
the same bias voltage through the measurement outcome of setup (b) in
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5.1 Properties of path-resolved measurements

Figure 5.5. For a better comparison dIDC/dUS1 is converted into a conduc-
tance in units e2/h.
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Figure 5.5: Cuts at US1 = −0.1 mV through Coulomb diamond measure-
ments of setups (b) and (c) (Fig. 5.3). Differences in the two measurement
outcomes are due to destructive interference between electrons from the two
paths visible in the measurement outcome of setup (b). At UG3 = 200 mV
and UG3 = 240 mV suppression of resonances in the measurement outcome
of setup (b) are obvious.

Clear deviations of different strength between the measurement outcomes
can be observed. The conductance measured for the total system, where the
paths are not distinguished, is suppressed for most resonance peaks of the
system. For a better analysis of the differences the difference signal of the
measurement outcomes of setups (b) and (c) is calculated by subtracting
the measurement outcome of (b), where no interferences are expected, from
the one with the peak suppression, (c). As a result the deviations between
the measurement outcomes become directly visible. The result is shown in
Figure 5.6 (b) and for the cut at US1 = −0.1 mV in Figure 5.7.

In Fig. 5.6 (b) structures reproducing the resonances in detail are clearly
visible. The differences can be analyzed conveniently in more detail in the
cut in Fig. 5.7.
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Figure 5.6: Difference signal of (a) the measurement outcomes of setups
(a) and (b) (Fig. 5.1) and (b) of the measurement outcomes of setups (b)
and (c) (Fig. 5.5).

The electrons only interfere at dot A when they are not distinguished at
the drain contact. While the electrons are distinguished when the AC
through the paths is measured simultaneously but separately, they are not
distinguished when the DC through the whole system is measured. In the
path-resolved measurement the coherences between the electrons coming
from different paths are destroyed. Thus we understand that interferences
are observed when the DC through the system is measured and do not
observe them when the AC is measured for the paths separately. The de-
tected electron interference between the paths for the measurement without
resolving the paths is an evidence of the contribution of coherent tunneling
to transport within the dot system. It indicates that the electrons are delo-
calized in the TQD and occupy coherent states involving all three on-site
states of the single dots. After normalization and subtraction of noise the
difference in the areas under the curves is around 20%. This can give a
rough measure for the strength of the interference in the system.

Strong deviations are observed around UG3 = 179 mV and UG3 = 200 mV
as well as UG3 = 243 mV and UG3 = 279 mV. In these regions the system
is close to a triple dot resonance, as explained above and also seen in the
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Figure 5.7: Difference signal of the measurement outcomes of setups (b)
and (c) (Fig. 5.5) for the cut at US1 = −0.1 mV (Fig. 5.5). Large deviations
are seen for relatively small and relatively large UG3, whereas the difference
signal is only small around UG3 = 225 mV. The mimima are marked with
black dots to highlight the peak modulation. The dashed blue line serves
as a guide to the eye to identify this additional oscillation period of around
70 mV.

full Coulomb diamond measurement (Fig. 5.3). Here, coherent transport
through the whole system takes place. Interference of the electrons from the
two paths at dot A is observed. The suppression of the resonance peaks in
the measurement of the DC through the system can be explained in terms of
destructive interference between the electronic wave functions coming from
the two paths. At medium UG3, UG3 = 224 mV, values only two dots are in
resonance with the leads, or close to a resonance where the cut is made, so
there no coherent state involving all three dots is formed. When the dots are
off-resonant first order tunneling is strongly suppressed, making higher-order
tunnel processes become significant. Especially at non-zero bias voltage
non-coherent higher-order processes gain relevance (see section 2.3.2.3).
Consequently, the absence of interference in this region can be explained by
a domination of non-coherent transport resulting from second-order tunnel-
ing processes. By varying the gate voltage UG the phase coherence in the
system is modulated from mostly coherent transport to a region where sta-
tistically less electrons tunnel coherently, to again mostly coherent transport.
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In the difference signal of setups (b) and (c) (Fig. 5.7) an oscillation
with a large period is observed. An enveloping function with a period of
around ∆VG3,meas. ∼= 70 mV is obtained. Such a behaviour can also be
explained for a system where the transport is fully coherent in the mea-
sured regime. If two waves with slightly different frequencies interfere, a
beat signal with periodically increasing and decreasing amplitudes results.
This effect might play a role in this experiment, as the electrons tunneling
coherently through path 1 and path 2 and interfering at dot A are expected
to have a changing but defined phase difference. The measurement outcome
of setup (b) indeed shows a variation in the suppression of the Coulomb
peaks. The difference signal between a beat signal and a regular oscillation
alternates between regions of suppression and strong amplitudes. Such a
behaviour is observed in the difference signal in Fig. 5.7, where small ampli-
tudes at medium UG3 and large amplitudes at low and high UG3 are observed.

Another common quantum interference effect which can be used to dis-
cuss this behaviour is Aharonov-Bohm oscillations. The Aharonov-Bohm
effect [111] is a quantum mechanical phenomenon where the wave function
of a charge gathers an additional phase by traversing through a space where
the magnetic or electric field is zero and there is consequently no classical
force. The effect is caused by the magnetic vector potential (magnetic
Aharonov-Bohm effect) or electric scalar potential (electric Aharonov-Bohm
effect) in this region of the nearby magnetic or electric field. In a quantum
ring with an enclosed magnetic flux the electrons in one arm move parallel,
the ones in the other arm anti-parallel to the magnetic vector potential. This
leads to a phase difference between the electrons in the two paths and causes
an interference pattern at the drain lead of the ring, the Aharanov-Bohm
oscillations. Analogously to this magnetic effect, the electric Aharonov-
Bohm effect in a quantum ring leads to oscillations which stem from a phase
difference due to one transport path being effected by an additional electric
potential [112–114]. Aharonov-Bohm interferometers were also investigated
experimentally with both an embedded quantum dot in one path of the ring
[115] and a quantum dot in each of the two paths [116, 117], both observ-
ing Aharonov-Bohm oscillations showing that the transport through the
quantum dot is partially coherent and that the transmittance phase shifts
by π across a Coulomb peak at the dot resonance. Going one step further,
triple quantum dot rings have been studied theoretically [118] and ring
shaped setups with three embedded quantum dots have been investigated
experimentally [36, 109, 110], where Aharanov-Bohm oscillations due to the
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presence of a magnetic field have been detected, proving coherent transport
through the system. The occurrence of Aharonov-Bohm oscillations verifies
a phase-coherent coupling of the quantum dots in the system [36]. As the
tunnel coupling between the dots in our system is large, coherent transport
through the system around the triple dot resonances is expected.

During the measurement discussed here the potential at G3 is varied, which
is located next to transport path 2. When moving across this electrostatic
potential, the electronic wave function in this path is expected to undergo
a phase shift leading to a phase difference between the paths, the electric
Aharonov-Bohm effect. As a rough estimation in order to get a feeling for
the system the period of the Aharonov-Bohm oscillations expected for a ring
without embedded quantum dots is calculated. In this case, the phase shifts
by 2π if the gate voltage is varied by ∆VG3 = hvF · (e(CG3,A/CΣ)L)(−1)

[109, 113], with the Fermi velocity vF and the length L within which the
electron experiences the electrostatic potential. Using the electron con-
centration of the 2DEG to calculate vF we obtain ∆VG3 = 70 mV when
assuming a length of around L = 160 nm within which the electron travels
through the electronic potential caused by G3. The result corresponds
well to the observed oscillation period of ∆VG3,meas = 70 mV. Within this
approximation the Fermi velocity of the electrons in the 2DEG is used,
which describes the behaviour of the electrons in the leads only. Also, the
length L can only be estimated roughly from the sample setup (Fig. 4.1).
The transport through the system has to be assumed to be coherent over
the full UG3 sweep. Consequently, this approximation can only serve as a
tool to obtain a feeling for the system, as a quantum ring with embedded
dots asks for a more complex description. However, for coherent transport
through the system, as expected in a wide region around the triple dot
resonances due to the strong inter-dot coupling, this approximation can be
useful. An observable oscillation of a period this theory predicts as well
as an expected strong coherent coupling between the dots as visible in the
stability diagrams suggest that the electric Aharonov-Bohm effect might
contribute to the observed oscillations.

The formation of dark states also leads to a suppression, ideally a cancella-
tion, of transport through a quantum system. Such quantum interference
effects are, for instance, dark states in electronic transport, where in a
three level system coherent superpositions lead to destructive interference
and block the current flow though the system. This coherent population
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trapping effect in electronic transport has been discovered and investigated
theoretically in similar triangular triple quantum dot setups [26–29] and also
linear dot arrangements [30]. Even if the dark state formation is incomplete
and a partial dark state is formed, or decoherence is present in the system,
the current can be noticeably suppressed.

To sum up, the separate transport measurements of the paths do not
contain the full information of the TQD transport when combined by a
simple summation afterwards. We do not obtain the full TQD physics in
such a measurement setup. Interferences between electrons coming from
different paths do only occur if the electrons are not distinguished by their
path at the drain. The DC signal through the system contains such inter-
ference effects. Signatures of interference between electrons coming from
the two transport paths are observed being a sign of coherent transport
throughout the triple dot system involving all three dots, indicating that
the dots are coherently coupled. The modulation of their strength with
varying gate voltage is ascribed to the modulation of the coherence in the
transport through the system. Also, it is possible that other interference
effects like the Aharonov-Bohm effect might contribute to the observed
features in regions of coherent transport.

5.2 Simulation and characterization of transport
In this section the TQD system is further analyzed in continuation of chapter
4. For this purpose, a quantum mechanical model of the TQD is used (see
basics in section 5.2.1), with which the stability diagram of the TQD with
the respective steady state occupations and the current through the two
transport paths are calculated. As an analytical expression for the current
through a triple dot system would be very complex, the current through
the system is calculated numerically. With a simulation of the TQD system
using this model the stability regions are identified in the measured stability
diagram and the inter-dot- and dot-lead tunnel couplings of the system are
calculated (see section 5.2.2). Parts of this section include experimental
and theoretical results which have been published in [91] in a collaboration
with F. Gallego-Marcos from the Instituto de Ciencia de Materiales, CSIC,
Madrid, who contributed the numerical simulation which is presented in
[91] and in this section.
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5.2.1 Quantum mechanical model of the TQD
A quantum mechanical model of the system is used to calculate the dif-
ferential conductance in order to help to explain the transport properties
[91]. The basics concerning this model are explained in section 2.3.3. We
have a system consisting of three dots A, B, C with a tunnel coupling τAB
and τAC between dots A and B and between A and C, respectively. Each
dot is coupled to one lead (S1, S2, D) with Γl (l = A,B,C). The model
distinguishes between electrons coming from S1 and S2 so that transport
through the paths can be modeled simultaneously but separately analogous
to the experimental setup. We allow zero to three electrons in the dot
system, up to one electron in each dot.

The total Hamiltonian of the system

H = H0 + Hlead + HI (5.1)

consists of three parts, the Hamiltonian for the dot system H0, the Hamilto-
nian for the reservoirs Hlead and the one describing the interaction between
the dot system and the reservoirs HI. H0 is a three-site Anderson-like
Hamiltonian [119]

H0 =
∑
i

εiĉ
†
i ĉi +

∑
i

τi,i+1ĉ
†
i ĉi+1 +

∑
i<j

Vij n̂in̂j (5.2)

with εi (i ∈ {A,B,C}) being the chemical potentials of the dots, τij being the
coherent inter-dot tunnel coupling and Vij being the Coulomb interaction
between the electrons in different dots. We do not need to consider the
intra-dot coulomb interaction term as we are just considering one electron
per dot. ĉ†i (ĉi) is the fermionic creation (annihilantion) operator for the
electrons in dot i and n̂i = ĉ†i ĉi is the particle number operator of dot i.

The Hamiltonian H0 for zero up to three electrons in the dot system in
matrix form reads
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H0 =



E|0,0,0〉 0 0 0 0 0 0 0
0 E|1,0,0〉 τAB τAC 0 0 0 0
0 τAB E|0,1,0〉 0 0 0 0 0
0 τAC 0 E|0,0,1〉 0 0 0 0
0 0 0 0 E|0,1,1〉 τAB τAC 0
0 0 0 0 τAB E|1,0,1〉 0 0
0 0 0 0 τAC 0 E|1,1,0〉 0
0 0 0 0 0 0 0 E|1,1,1〉


. (5.3)

Each box has a constant number of electrons in the system. The reservoirs
are described as a Fermi electron gas

Hlead =
∑
lk

εlkd̂
†
lkd̂lk (5.4)

having constant temperature T and a chemical potential µl (l ∈ {S1,S2,D}).
The energy continuum in the lead is denoted by the sum over εlk. d̂†lk (d̂lk)
is the fermionic creation (annihilantion) operator for the electrons in lead
l. The coupling between the dots and the reservoirs is modeled by the
interaction Hamiltonian

HI =
∑
l,i

γld̂
†
l ĉi + h.c. (5.5)

which contains the hopping parameter γl for the interaction between the
dots and the leads.

The parameters εi, τij , Vij are all tuned with the gate voltages UG1 − UG4
and µl ≡ USD analogous to the experiment. The transition rates for electrons
tunneling from the leads to the dot system (+) and vice versa (-) are given
by Fermi’s golden rule Γ (+)

i←l = 2π/~|γl|2f(µl− εi) and Γ (−)
l←i = 2π/~|γl|2[1−

f(µl − εi)], with the Fermi distribution function f(α) = 1/(e−α/(kBT ) + 1)
(see section 2.3.3). As the dot-lead tunnel coupling Γl ≡ 2π/~|γl|2 is smaller
than the inter-dot tunnel coupling τij , the Born-Markov approximation (see
section 2.3.3.1) can be applied for the interaction between the dot system
and its leads.

We obtain the master equation

∂ρ(t)
∂t

= Lρ(t) (5.6)
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5.2 Simulation and characterization of transport

for the system. The reduced density matrix ρ(t) is deduced from the Von
Neumann equation Eq. (2.82) with the time evolution of the full system by
tracing over the degrees of freedom of the baths Eq. (2.84). The elements
of ρ(t), ρi(t), are the occupation probabilities of the state i of the system.
L is the Liouvillian superoperator which comprises all information about
the dot system H0 and the dot-lead tunnel rates Γi↔l.

As we want to analyze the system in the vicinity of zero bias, we have
to work in the delocalized basis so the Hamiltonian H0 (Eq. (5.3)) needs to
be diagonalized. As a result we get three coherent states |Φi〉 (i ∈ {1,2,3})
for one electron in the system, three for two electrons in the system, |Ψj〉
(j ∈ {1,2,3}), and |0〉 and |1〉 for zero and three electrons in the system,
respectively:

|0〉 = |000〉
|Φi〉 = ai |100〉+ bi |010〉+ ci |001〉
|Ψi〉 = di |011〉+ hi |101〉+ li |110〉
|1〉 = |111〉

(5.7)

with i ∈ {1,2,3}, which are 8 states in total.

As we want to distinguish electrons coming from source S1 and source
S2, we have to take into account all the possible combinations of electrons
in the system. We label the electrons coming from S1 with B and electrons
coming from S2 with C. We obtain the following coherent states for zero,
one and two electrons in the system

|0〉 = |000〉
|ΦBi〉 = aBi |B00〉+ bBi |0B0〉+ cBi |00B〉
|ΦCi〉 = aCi |C00〉+ bCi |0C0〉+ cCi |00C〉
|ΨBBi〉 = dBBi |0BB〉+ hBBi |B0B〉+ lBBi |BB0〉
|ΨCCi〉 = dCCi |0CC〉+ hCCi |C0C〉+ lCCi |CC0〉
|ΨBCi〉 = dBCi |0BC〉+ hBCi |B0C〉+ lBCi |CB0〉
|ΨCBi〉 = dCBi |0CB〉+ hCBi |C0B〉+ lCBi |BC0〉

(5.8)
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5 Two-path transport

and for three electrons in the system

|BBB〉 , |BBC〉 , |BCB〉 , |CBB〉 , |BCC〉 , |CBC〉 , |CCB〉 , |CCC〉 . (5.9)

The total number of states is now 27.

The density vector only taking into account the occupations (diagonal
elements of the density matrix) is, analogous to section 2.3.3,

ρ̇|0〉
ρ̇|ΦBi〉
ρ̇|ΦCi〉
ρ̇|ΨBBi〉
ρ̇|ΨCCi〉
ρ̇|ΨBCi〉
ρ̇|ΨCBi〉
ρ̇|BBB〉
ρ̇|BBC〉
ρ̇|BCB〉
ρ̇|CBB〉
ρ̇|BCC〉
ρ̇|CBC〉
ρ̇|CCB〉
ρ̇|CCC〉



= L ·



ρ|0〉
ρ|ΦBi〉
ρ|ΦCi〉
ρ|ΨBBi〉
ρ|ΨCCi〉
ρ|ΨBCi〉
ρ|ΨCBi〉
ρ|BBB〉
ρ|BBC〉
ρ|BCB〉
ρ|CBB〉
ρ|BCC〉
ρ|CBC〉
ρ|CCB〉
ρ|CCC〉



(5.10)

with i ∈ {1,2,3} and L being a 27× 27 matrix with the entries Lij being

Lij = f(εij)
∣∣∣〈χi ∣∣∣J̃ (+)

∣∣∣χj〉∣∣∣2 + (1− f(εij))
∣∣∣〈χi ∣∣∣J̃ (−)

∣∣∣χj〉∣∣∣2 (5.11)

with {|χn〉} and n ∈ {1,2,...,27} being the coherent states of the system and
εij = |λi − λj | being the energy difference between state |χi〉 and |χj〉. J
is a 27× 27 matrix containing the tunnel couplings γS1, γS2 and γD from
the dots to the respective leads. Each entry Jij couples two states with the
appropriate coupling parameter γ and if there is no possibility to go directly
from one state to another, Jij = 0. J (+) describes the tunneling of electrons
from the leads to the dots and J (−) the tunneling from the dots to the leads.
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5.2 Simulation and characterization of transport

The steady state occupations ρss are calculated by solving the kernel of the
master equation

ρss = ker[L]. (5.12)

With ρss and the tunneling rates between dots and leads ΓA, ΓB, ΓC the
total current through the two paths can be calculated by

I =
1∑

i,j=0
ρss
|1,i,j〉Γ

−
|0,i,j〉←|1,i,j〉 − ρ

ss
|0,i,j〉Γ

+
|1,i,j〉←|0,i,j〉. (5.13)

In the calculation of the partial current through path 1 or path 2 one has to
distinguish between the electrons coming from source 1 and source 2. We
get

IS1 =
∑

i,j={0,B,C}

ρss
|B,i,j〉Γ

−
|0,i,j〉←|B,i,j〉 − ρ

ss
|0,i,j〉Γ

+
|B,i,j〉←|0,i,j〉 (5.14)

for the current through path 1 and

IS2 =
∑

i,j={0,B,C}

ρss
|C,i,j〉Γ

−
|0,i,j〉←|C,i,j〉 − ρ

ss
|0,i,j〉Γ

+
|C,i,j〉←|0,i,j〉 (5.15)

for the current through path 2, with I = IS1 + IS2. The indices B and C
represent an electron coming from source 1 or source 2, respectively. The
differential conductance is calculated by Gα = dIα/dV , α ∈ {B,C}.

This theoretical model considers the inter-dot coupling between the on-
site states of the dots to be fully coherent. The electrons are delocalized in
the TQD occupying coherent molecular states. The molecular states consist
of the complex weighted on-site states of the single dots. The simulation
thus includes all electronic correlations within the dot system and is able to
describe the quantum mechanical dynamics in the dot system. If the cur-
rent through path 1 and 2 is calculated separately, the coherences between
electrons coming from the different paths are broken. This is discussed in
more detail in section 5.3.
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5 Two-path transport

5.2.2 Stability diagram
In order to analyze the charge stability regions of the system we focus on a
region near a triple dot resonance in the following. Figure 5.8 shows the
differential conductance G in dependence of the gate voltages UG1 and UG3.
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Figure 5.8: Differential conductance of path 1 (a) and path 2 (b) in
dependence of the gate voltages UG1 and UG3. In path 1 resonances between
dots A and B are visible, in path 2 resonances between dots A and C. The
charging lines in path 1(2) are shifted in gate-space where dot C(B) is charged
due to capacitive coupling between the dots. The charging lines of the dots
are marked with dashed lines for clarity.

In path 1 we observe the resonances between dots A and B, in path 2
between dots A and C. In both paths the charging lines of the dots are
shifted due to charging of the respective dot in the other path, where it
comes into resonance. For both paths we see a stability diagram for a serial
double dot but broken by a shift in gate voltage where the capacitively cou-
pled third dot is charged. In path 1 negative differntial conductance values
are observed, colored in grey here for a better visibility and distinguishability.

We can combine the data in one color plot encoding the paths in dif-
ferent colors to identify them. Doing so, triple dot physics is observed.
Contributions of both transport paths can be directly compared. Figure 5.9
shows such a combined transport measurement near the triple dot resonance.
We have three double dot resonances, A and B, A and C, B and C, in close
vicinity to each other. Regions of high differential conductance are observed
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5.2 Simulation and characterization of transport

in each of the paths, but at slightly different gate voltages UG1 and UG3. In
path 1 along the B charging line one can appreciate two vertical resonance
lines where dot A is in resonance with dot B. The stability regions which
can be clearly identified in this measurement are denoted in the diagram.

(0,0,0)

(0,0,1)

(0,1,0)

(1,1,0)

(1,0,1)

(1,1,1)

Figure 5.9: Combined color plot of the differential conductance through
path 1 (red) and 2 (blue) with denoted charge configurations of the stability
regions which can be identified in the measurement. A similar combined plot
can be found in [91].

In order to obtain a more detailed understanding of the location of the
stability regions in the stability diagram in Fig. 5.9, we calculate the steady
state occupation probabilities ρss

i of each state i. It is done by solving the
kernel of the master equation of the system ρss = ker[L] (Eq. (5.12)). This
simulation of the system was implemented by Fernando Gallego-Marcos
from the Instituto de Ciencia de Materiales, CSIC, Madrid [91].

With the capacitive couplings between the dots and the gates the influence
of the gate voltages on the dot energies is calculated by Eq. (2.31). The
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5 Two-path transport

capacitive couplings
dot-lead inter-dot

CG1,A = 6.8 CG1,B = 8.0 CG1,C = 3.3 CAB = 5.5
CG2,A = 5.2 CG2,B = 3.8 CG2,C = 1.1 CAC = 19.8
CG3,A = 6.6 CG3,B = 2.6 CG3,C = 5.1 CBC = 6.3
CΣA = 69.9 CΣB = 27.0 CΣC = 53.0

Table 5.1: Capacitive couplings C in aF from the dots to the gates G1, G2,
and G3.

used capacitances are shown in table 5.1. The capacitive couplings between
the dots A, B, and C and the gates G1 and G3 are extracted from the
stability diagrams (see section 4.3, table 4.2). The coupling between the
dots and G2 is taken from former measurements [19]. It is only used to shift
the simulation outcome to overlap with the measurement outcome. The
couplings between the dots and gate G4 are not determined as they are not
used. The sum capacitances of the dots are obtained by matching them
to the experimental result to obtain the appropriate effect of the gates on
the energies, taking the ones from [19] as starting values. With these sum
capacitances charging energies of the dots of EC,A = 2 meV, EC,B = 6 meV,
and EC,C = 3 meV are obtained.

The capacitive inter-dot couplings (table 5.1) are calculated using Eq. (2.69).
We get

CAB = CG1,A · CΣB

e
·∆UG1,AB

CAC = CG1,A · CΣC

e
·∆UG1,AC

CBC = CG1,B · CΣC

e
·∆UG1,BC

(5.16)

with ∆UGi,XY (XY ∈ {AB,AC,BC}) being the shift of the charging lines of
dot X in UGi-direction when dot Y is charged by one electron, extracted from
the stability diagrams. They are converted into the electrostatic inter-dot
coupling energies by
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5.2 Simulation and characterization of transport

charging energies
EC,A = 2 EC,B = 6 EC,C = 3

Table 5.2: Charging energies EC of the dots A, B, and C in meV.

EXY = K · (CΣZCXY + CXZCYZ) (5.17)

from [23], with

K = e2

CΣACΣBCΣC − 2CABCACCBC − CΣCC2
AB − CΣBC2

AC − CΣAC2
BC
.

To set up the Master equation we first extract the inter-dot tunnel couplings
τAB and τAC and the dot-lead tunnel couplings ΓA, ΓB, and ΓC from the
transport measurements for the case of resonance between the dots. Fig.
5.10 shows a transport measurement in a region where double dot resonances
between dots A, B and A, C are observed. By fitting a cut through the
resonant line between the states |101〉 and |011〉 in path 1 with a Lorentzian
function we obtain τAB and Γ ≡ ΓA ≡ ΓB and by fitting a cut through the
resonant line between the states |011〉 and |110〉 in path 2 with a Lorentzian
function we obtain τAC and Γ ≡ ΓA ≡ ΓC.

We treat the system as two separate double dots as an approximation as we
analyze the current through the transport paths separately. The resonance
peaks are described with the current formula for a dot system with infinite
bias voltage (Eq. (2.108)) with weighted tunneling rates Γ between dot and
leads by the Fermi function of the respective lead to take account of the finite
bias voltage (see section 2.3.3.3). The double dot system should be described
in the delocalized basis due to the strong inter-dot coupling in comparison
with the dot-lead coupling and the small bias voltage (see section 2.3.3.3).
However, the current expression is too complicated to express it analytically
for such a system. Thus we take the current expression derived from the
description of the system in the localized basis as an approximation for the
current through a transport path. The larger the energy level detuning
between the dots, the better this approximation for the current is (see
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Figure 5.10: Transport through path 1 (a) and 2 (b) with a bias voltage
of US2 = 0.5 mV. The cut across the resonant line between the states |101〉
and |011〉 is performed on the transport measurement of path 1 and the cut
across the resonant line between the states |011〉 and |110〉 is performed on
the transport measurement of path 2.

section 2.3.3.3). We expect to obtain deviations in the conductance peak
position x0. It is sufficient to approximate the tunnel rates for the system
as they merely serve as start values for the later simulation of the system
transport. The stationary current peak has a Lorentzian shape (see Eq.
(2.108))

I(x) = I0(x)W 2(x)
W 2(x) + (x− x0)2 . (5.18)

The height of the Lorentz peak I0 (see Eq. (2.109)) is given by

I0(x) =eΓBf(x)ΓAf(x0)

∗ 4τ2
AB

4τ2
AB(ΓAf(x0) + 2ΓBf(x)) + ΓBf(x)Γ 2

Af
2(x0))

(5.19)

for path 1, and the half width at half maximum W (see Eq. (2.110)) is
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5.2 Simulation and characterization of transport

W 2(x) = 4τ2
AB(ΓAf(x0) + 2ΓBf(x)) + ΓBf(x)Γ 2

Af
2(x0)

4ΓBf(x) (5.20)

with the Fermi function

f(x) = 1
exp(x−x0

T ) + 1
. (5.21)

The parameter x0 is the peak position. For the Coulomb peaks in path 2
the same equations apply, but with the inter-dot tunnel rate τAC and the
dot-lead tunnel rate ΓC between dot C and S2. In case of infinite negative
bias f(x) = 1 and f(x0) = 0. These values are used for the measurements
with applied bias voltage (Fig. 5.10). In the case of a neglectably small
bias voltage applied to the system f(x0) = 1/2 is used for the drain lead to
account for a ratio of occupied to unoccupied states the tunneling electron
interacts with and f(x) is inserted for the source lead so that the tempera-
ture dependence is included.

The temperature T is estimated by fitting the Lorentzian function to the
charging line of dot A (Fig. 5.11) from a measurement with a bias voltage
around zero. Thus, f(x0) = 1/2 for the drain and f(x) for the source lead
is inserted. After a translation from applied gate voltage into energy by the
translation parameter α = 0.0041± 0.0001 (Eq. (2.34)) and conversion to
K by kB an electron temperature of

T = 87± 45 mK, (5.22)

is obtained, which is reasonable with regard to the cryostat bath temperature
of around 15 mK. A possible source of error is noise, which is also broadening
the Coulomb charging lines, increasing the calculated electron temperature.
The other fit parameters, the rates, obtained from these fits, averaged
from both fits and converted into energies with α, are ΓA = 1 ± 2 µeV,
ΓC = 3± 6 µeV, and τAC = 0.012± 0.006 meV.

As we have two equations, Eq. (5.19) and Eq. (5.20), we decrease the
number of parameters to two, τ and Γ , with Γ = ΓA,B = ΓA = ΓB for path
1. We get
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Figure 5.11: (a) Cut (longitudinal) through the resonant line between the
states |010〉 and |110〉, the charging line of dot A. (b) Cut (longitudinal)
through the resonant line between the states |011〉 and |111〉, the charging
line of dot A, for one more electron on dot C. Both cuts are fitted using the
Lorentzian function Eq. (5.18).

I0 = eΓA,B
4τ2

AB
12τ2

AB + Γ 2
A,B

(5.23)

and

W 2 = 3τ2
AB + 1

2Γ
2
A,B (5.24)

for path 1.

For path 2 the equations are analogous, but with the inter-dot coupling τAC
and the dot-lead coupling ΓA,C = ΓA = ΓC.

For the extraction of the tunnel rates in path 1, τAB and ΓA,B, a cut through
the resonant line between the states |101〉 and |011〉 (Fig. 5.10 (a)) is fitted
with the Lorentzian function (Eq. (5.18)). We use α = CG1,A

CΣA
− CG1,B

CΣB
with the capacitances from table 5.1 as a conversion parameter to con-
vert the gate voltage UG1 into energies in eV . From the fit (Fig. 5.12
(a)) we obtain I0 = 0.0161 ± 0.0004 e2/h, W = 0.192 ± 0.006 meV, and
x0 = −14.997± 0.004 meV.

In order to extract the tunnel rates in path 2, τAC and ΓA,C, a cut through
the resonant line between the states |011〉 and |110〉 (Fig. 5.10 (b)) is fitted
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5.2 Simulation and characterization of transport

analogously. As a conversion parameter from gate voltages to energies
we use α =

(
CG3,C
CΣC

− CG3,A
CΣA

)
· sin(π/4) +

(
CG1,C
CΣC

− CG1,A
CΣA

)
· cos(π/4) with

the capacities from table 5.1. We obtain I0 = 0.01414 ± 5 · 10−5 e2/h,
W = 0.1297± 0.0007 meV, and x0 = −2.03 meV (fixed). The fit is shown in
Figure 5.12 (b).
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Figure 5.12: (a) Cut across the resonant line between the states |101〉 and
|011〉 in path 1 in Fig. 5.10 (a) and a fit using the Lorentzian function Eq.
(5.18). (b) Cut across the resonant line between the states |011〉 and |110〉 in
path 2 in Fig. 5.10 (b) and a fit using the Lorentzian function Eq. (5.18).

From solving Eq. (5.23) and Eq. (5.24) we obtain the tunnel coupling pa-
rameters τAB = 0.11 meV and ΓA,B = 0.04 meV as well as τAC = 0.07 meV
and ΓA,C = 0.04 meV as start guide values for a first numerical calculation of
the current through the system. Then the simulation result is in detail fitted
to the experimental conductance data and we obtain the tunnel couplings
shown in table 5.3.

The tunnel couplings of path 2 are larger than of path 1, which is consistent
with Gpath1 < Gpath2 we observe in the measurements (Fig. 5.8 and Fig.
4.16, 4.17). Especially, we obtain τAB < τAC. We further get a weaker
coupling between the dots and the leads, Γ , than between the dots, τ , which
is a requirement for the master equation ansatz used later.

In order to obtain the steady state occupations the kernel of the mas-
ter equation (Eq. (5.6)) has to be solved, ρss = ker[L] (Eq. (5.12)). In
this way the steady state properties of the system are obtained. The sys-
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tunnel couplings
inter-dot dot-lead

τAB = 0.012 meV ΓB = 0.003 meV
τAC = 0.020 meV ΓC = 0.006 meV

ΓA = 0.008 meV

Table 5.3: Tunnel couplings between the dots τ and between the dots and
the leads Γ .

tem parameters in table 5.1 and table 5.3 are used as the best fit to the
experiment. In Fig. 5.13 the numerical result of ρss is shown. With this
information the location of each charge stability region of the system can be
determined. The state |0,0,0〉 is occupied for small UG1 and UG3, the state
|1,1,1〉 is occupied for large UG1 and UG3. The states with one electron
in the system are connected by the small stability region of state |1,0,0〉
and the states with two electrons in the system are connected by the small
stability region of state |0,1,1〉. State |0,0,1〉
For larger values of UG3, above the stability region of state |0,0,0〉, state
|0,0,1〉 with one more electron in dot C becomes occupied. For larger values
of UG1, on the right side of the stability region of state |0,0,0〉, state |0,1,0〉
with one more electron in dot B becomes occupied. Going to smaller values
of UG3, below the stability region of state |1,1,1〉, state |1,1,0〉 with one
less electron in dot C becomes occupied. For smaller values of UG1, on
the left side of the stability region of state |1,1,1〉, state |1,0,1〉 with one
less electron in dot B becomes occupied. These calculated stability regions
correspond very well to the regions which could already be identified in
the measurement (Fig. 5.9). Both of these regions are not really seen in
the measurement, as they are very small with lower occupation probability.
They contain two triple points of path 1 and two triple points of path 2. A
quadruple point is formed if two triple points of the system coincide.

The measured stability diagram (Fig. 5.9) is analyzed in more detail with
the help of this calculation of the steady state occupations. The degenerate
states for each of the four triple points of path 1 are determined, they
are: (|0,0,0〉, |0,1,0〉, |1,0,0〉), (|1,1,0〉, |1,0,0〉, |0,1,0〉) and (|0,0,1〉, |0,1,1〉,
|1,0,1〉), (|1,1,1〉, |1,0,1〉, |0,1,1〉). The last two triple points and the first
two are equal. The pairs differ from each other by one electron in dot C,
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Figure 5.13: Calculated steady state occupation probabilities ρss
i of each

state i of the system, implemented by F. Gallego-Marcos. The states
|1,0,0〉 and |0,1,1〉 have low occupation probability in a small region which
is situated between the charge stability regions of |0,0,1〉, |0,1,0〉 and |1,0,1〉,
|1,1,0〉, respectively. A similar diagram can be found in [91].

which shifts the energy of the degenerate states due to Coulomb interaction.
In path 2 high differential conductance is observed at the triple points
with the degenerate states (|0,0,0〉, |0,0,1〉, |1,0,0〉), (|1,0,1〉, |0,0,1〉, |1,0,0〉)
and (|0,1,0〉, |0,1,1〉, |1,1,0〉), (|1,1,1〉, |0,1,1〉, |1,1,0〉), which have one more
electron in dot B. Thus, in both paths we see resonances of the dots in
the respective path for two different electron numbers in the dot present in
the other path. The location of the triple points is marked in the stability
diagram of the total TQD system in Figure 5.14.

The triple points marked with a and a∗ correspond to the resonance A-B
with N electrons in dot C and the triple points marked with b and b∗ to
the resonance A-B with N+1 electrons in dot C. The triple points marked
with c and c∗ correspond to the resonance A-C with N electrons in dot B
and the triple points marked with d and d∗ to the resonance A-C with N+1
electrons in dot B. In path 1 (2) a splitting of the resonance between the
dots A and B (A and C) is observed due to the interaction with dot C (B).
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5 Two-path transport

Figure 5.14: Combined color plot of the differential conductance of path 1
(red) and path 2 (blue) with denoted charge configurations and location of
the triple points a, a∗ and b, b∗ in transport through path 1 and c, c∗ and
d, d∗ in transport through path 2 as extracted from the calculation of the
steady state occupation probabilities (Fig. 5.13).

The shift between the triple points a and b and between c and d is clearly
visible. The resonance between the dots in one path is shifted to higher
gate voltages when the dot in the other path is charged as it comes into
resonance. Differential conductance in an extended area along the charging
lines of the dots around the triple points and a rounded shape of the triple
points is observed due to strong coherence effects near the dot resonances
resulting from a strong inter-dot coupling. Also, temperature broadening of
the states accounts for the broadening of the triple points. Consequently,
the triple points of the resonance between dots A and B merge in transport
and and a vertical high differential conductance line is formed.

Schematics of 2D cuts through the stability diagram of the TQD are shown
in Figure 5.15 in order to give an idea of the position of the stability re-
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5.2 Simulation and characterization of transport

gions and triple points in such a configuration close to a triple dot resonance.

Figure 5.15: Schematic of the 2D stability diagram for two different cuts
through the 3D stability diagram of the TQD, so that in (a) the stability
region (1,0,0) and in (b) the stability region (0,1,1) is seen. The TP are
denoted in the same notation as in Fig. 5.14.

In the measurement we have occupation of both states (1,0,0) and (0,1,1),
which is only the case when the TQD system is near a triple dot resonance. In
Fig. 5.15 two schematic stability diagrams are shown for slightly different 2D
cuts through the 3D stability diagram, one where the stability region (1,0,0)
is visible (a), and one where stability region (0,1,1) is seen (b). This way all
triple points detected in the transport measurement can be shown in the
schematic. The triple points are denoted in the same manner as in Fig. 5.14.

Using the steady state occupations ρss
i and the tunneling rates to and

from the leads Γ , the current through path 1 is calculated by Eq. (5.14),
the current through path 2 by Eq. (5.15). The measured differential con-
ductance and the simulation of transport for the same configuration as
in the experiment is shown in Fig. 5.16 through path 1 and 2 separately.
The simulation is in very good agreement with the experimental transport
features.
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Figure 5.16: Differential conductance in experiment along path 1 (a) and
path 2 (b) and in simulation along path 1 (c) and path 2 (d) (implemented
by F. Gallego-Marcos). The dotted line indicates the cut shown in Fig. 5.17.
Similar plots can be found in [91].

In the measurement and even more pronounced in the simulation we ob-
serve negative differential conductance in path 1 where path 2 has high
conductance at the triple points. The negative differential conductance
is observed in an extended area around the triple points due to strong
coherence effects and temperature broadening of the states. The occurrence
of negative differential conductance in transport will be analyzed in detail
in the following.

To conclude, within this chapter a quantum mechanical model is presented
to numerically calculate the steady state occupations of the system and
the current through the two paths separately for a detailed analysis of the
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5.3 Channel blockade

transport properties. The system parameters such as capacitances and
rough values for the tunneling rates are extracted from the measurements.
With the help from the simulation outcome the positions of all stability
regions and triple points in the measured stability diagram are determined.
The simulated current reproduces the measurement outcome very well. The
tunneling rates used in the simulation are treated as knowledge about the
system for further investigation of its transport properties.

5.3 Channel blockade
In the following transport features of the two paths are analyzed and com-
pared in more detail. Parts of this section have been published in [91] in
collaboration with F. Gallego-Marcos.

A cut crossing the regions of triple points is taken in path 1 and 2 (dotted
line in Fig. 5.16) for experiment and simulation outcome and is shown in
Fig. 5.17.

Figure 5.17: Cut through the transport measurement and simulation
(dotted line in Figure 5.16) for path 1 and 2. The insert shows the measured
differential conductance G of path 1 in dependence of UG1 alone and for a
slightly different cut in order to clearly show the occurring negative differential
conductance. A similar diagram has been published in [91].
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5 Two-path transport

The resonance of path 2 splits into two peaks (N,�) due to the Coulombic
interaction with the third dot located in path 1 as the dots A and B come
into resonance at (H). Thus, the current through path 1 increases, which
partially blocks the transport through path 2 and decreases the conductance.
This point (H) is a quadruple point, where four states of the system are
degenerate and coexist in the same region of the stability diagram. As the
relationship between the tunneling rates of the two paths is τAC > τAB and
ΓC > ΓB, transport through path 2 is stronger than through path 1. Conse-
quently, when the quantum dot levels in path 2 are in resonance at (N,�)
transport through path 1 is fully blocked and its differential conductance is
decreased even to negative values. In the experimental data this negative
differential conductance is visible in the total stability diagram in Fig. 5.16
(a) and in the insert in Fig. 5.17. A negative differential conductance means
a decrease in transport for increasing bias voltage.

This channel blockade effect visible in both experiment and simulation
results from the Coulomb interaction between the electrons coming from
the two transport channels sharing dot A. The Coulomb interaction in
the dots is strong and does not allow double occupancy of the dot energy
levels. Thus, if an energy level is occupied by one electron the dot is in
Coulomb blockade. When the bias voltage is increased, the path with higher
conductance is responsible for the increase of the electron occupation of
dot A. This is blocking the access to dot A for the electrons of the other
path and is thus decreasing the transport through this path. This behaviour
manifests itself in the measurement of the differential conductance of this
path by negative differential conductance values.

In the quantum mechanical model of the triple quantum dot (see sec-
tion 5.2) the Hamiltonian contains coherences among all the on-site states
of the system. Only in this way the model is able to reproduce the system,
as coherences are important within such a system with strong inter-dot and
weak dot-lead coupling. The reason is, that for strong inter-dot coupling
the energies of the states with which the dot system is coupled to the leads
are not the on-site energies of the dots. Instead, they are the energies of the
eigenstates of the Hamiltonian, which contain coherences among all the dots
of the system (see section 2.3.3.3). Thus, coherent superpositions between
states containing electrons occupying dot B and C are considered as well.
However, as the electrons coming from path 1 and path 2 are distinguished,
some of the coherences are broken. We call electrons coming from S1 in
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5.3 Channel blockade

path 1 B-electrons and electrons coming from S2 path 2 C-electrons. There
are no coherences between B- and C-electrons included in the model. This
is a consequence of the fact that they are distinguished at the drain which
breaks their coherence as explained in section 5.1. We still have coherences
between the dots B and C. Consequently, states of the system with one
B-electron and states of the system with one C-electron are not coherent.
For instance, state |0,B,0〉, where one electron coming from source S1, a
B-electron, occupies dot B and state |0,0,C〉, where one electron coming
from source S2, a C-electron, occupies dot C are not coherent. The same is
true for |B,0,0〉 and |C,0,0〉. As there is no exchange interaction between
these states there is no coherence between them. The only interaction
between these two states is the Coulomb interaction, which comes from
the electrostatic repulsion between the B- and the C-electron at dot A.
The experimental results presented in section 5.1 also show that coherences
between electrons coming from different paths are broken when they are
distinguished at the drain. It directly manifests in transport where signa-
tures of interference are destroyed when distinguishing the electrons. Hence
the blockade in transport observed in simulation and experiment is ascribed
to the Coulomb blockade in dot A between electrons coming from different
paths. Besides, states of the system containing two electrons of different
type, for example |0,B,C〉, |B,0,C〉, and |C,B,0〉 are coherent among each
other. These coherences however stem from the coherence between the
electrons of the same type. The coherence between |0,B,C〉 and |B,0,C〉, for
example, results from the coherence between |0,B〉 and |B,0〉, but with one
more electron in C. The same is true for the group |0,C,B〉, |C,0,B〉, and
|B,C,0〉.

The dominating and the blocked transport channel for each of the two
transport paths and in each resonance (N,H,�) (Fig. 5.17) is identified using
the information obtained from the simulation. In this way we can find out
which transport sequences play the major role in the blockade effect. The
result is implemented in the schematic in Fig. 5.18. The involved initial
and final states connected by the two different transport paths are shown.
Transport through path 1 is illustrated by blue arrows, transport through
path 2 by red arrows. In case of the resonant configurations marked with
(N) and (�) transport through path 1 is blocked by transport through path
2. In the resonant configuration marked with (H) both paths are conducting
and the occupation of dot A is provided by the transport from both paths.
This condition corresponds to that of a quadruple point.
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Figure 5.18: Transport mechanism (tunneling sequence) for each resonance
seen in Fig. 5.17. In the peaks marked by (N,�) path 2 blocks path 1 in
transport and in the peak (H) the occupation of dot A is shared by both
paths. A similar schematic has also been published in [91].

In the first peak in conductance of path 2 (N) the transport sequence
|0,0,1〉 → |1,0,0〉 → |1,0,1〉 → |0,0,1〉 in path 2 blocks the transport se-
quence |0,0,1〉 → |0,1,1〉 → |1,0,1〉 → |0,0,1〉 of path 1. The blockade takes
place in dot A. In the dip in conductance of path 2 (H) the transport sequence
|0,1,1〉 → |1,0,1〉 → |1,1,1〉 → |0,1,1〉 in path 1 and the transport sequence
|0,1,1〉 → |1,1,0〉 → |1,1,1〉 → |0,1,1〉 in path 2 share the occupation of dot
A nearly equally. In the second peak in conductance of path 2 (�) the same
transport sequences as in the dip of path 2 (H) are involved. This time the
transport sequence in path 2, |0,1,1〉 → |1,1,0〉 → |1,1,1〉 → |0,1,1〉, blocks
the transport sequence in path 1, |0,1,1〉 → |1,0,1〉 → |1,1,1〉 → |0,1,1〉. In
comparison to the first peak in path 2, (N), in the second peak in path 2
one more electron in dot B is involved, as the splitting of the resonance into
two peaks in path 2 is due to the charging of dot B and Coulomb interaction.

Channel blockade is also observed further away from a triple dot reso-
nance in the charging lines of dot A visible in the stability diagram in Fig.
5.19. It shows the differential conductance of path 1 (a) and path 2 (b)
in dependence of the gate voltages UG1 and UG3. In path 1 we observe
resonances between dots A and B and indirect evidence of the charging of
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5.3 Channel blockade

the capacitively coupled dot C. In path 2 we see resonances between dots
A and C and indirect evidence of the charging of the capacitively coupled
dot B. In path 1 and 2 resonance lines of dot A with the leads are visible,
in path 1 with high positive differential conductance and in path 2 with
negative differential conductance. We will focus on the triple points of the
resonances between dot A and B and the resonance lines of dot A, marked
with (1) and (2) in Fig. 5.19, respectively.
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Figure 5.19: Differential conductance of path 1 (a) and path 2 (b) in
dependence of the gate voltages UG1 and UG3. Channel blockade in transport
is seen at the triple points of the resonances between dots A and B in path 1
(1), where the resonant current in path 1 decreases the differential conductance
through path 2, at some points even to negative values. Analogously, the
cotunneling current in path 2, visible along the charging line of dot A, is
blocking the transport through path 1, decreasing its differential conductance
to negative values (2).

In path 1 we observe high positive differential conductance at the triple
points, as expected, whereas in path 2 we see corresponding negative differen-
tial conductance. This can be attributed to the described channel blockade.
Along the charging line of dot A in path 2 (2) high differential conductance
exhibiting a peak in the middle of the line between two resonances of dot
A and dot B for consecutive electron numbers in dot B is observed. Be-
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5 Two-path transport

tween the triple points strong decreasing differential conductance due to
an exponential decrease of the first-order tunneling rate with the energy
level detuning between the dots is expected. We attribute the observed
behaviour of strong differential conductance along the charging line of dot
A to elastic cotunneling (see section 2.3.2.3) between dot A and source S2
in path 2, as dot C is out of resonance. The tunneling process is analog to
the one depicted in Fig. 2.8 but with cotunneling over a non-resonant state
of dot C. It is schematically depicted in Fig. 5.20 (a).

Figure 5.20: Second-order tunneling sequence leading to high differential
conductance along the charging line of dot A in path 2. Elastic cotunneling
via the virtual state (N+1) or (N -1) of dot C is followed by tunneling
via dot A to the drain lead (a). (b) shows a schematic using molecular
states to describe the probability of cotunneling via the off-resonant dot C.
The electronic occupation probability is schematically depicted in green for
the bonding and in purple for the anti-bonding state. Due to a non-zero
occupation probability on dot C in the anti-bonding state transport can take
place over the double dot.

The detected cotunneling current in path 2 is decreasing towards the triple
points of the resonance between dot A and B as it competes with the
resonant current through path 1 in this region. In some points the differential
conductance even drops to negative values (1). The cotunneling rate from
source S2 to dot A can be expressed as [55, 120]

Γco = ΓC,1
τ2

AC,1

δ2
C,1

+ ΓC,2
τ2

AC,2

δ2
C,2

(5.25)

The parameters ΓC,1 and ΓC,2 are the tunnel rates between source S1 and
the occupied and unoccupied state of dot C, respectively, τAC,1 and τAC,2
are the tunnel rates between the occupied and unoccupied state in dot C,
respectively, and the state in dot A. The energy difference between the
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5.3 Channel blockade

occupied(unoccupied) state of dot C and the state of dot A is δC,1(δC,2) The
cotunneling rate is the sum of two terms, the first (second) one describing
the cotunneling over the occupied (unoccupied) state of dot C (see section
2.3.2.3). Thereby the two tunnel processes are assumed to be indepen-
dent and interferences between them are not taken into account. Equation
(5.25) is valid for a large detuning between the dots, δC,1 >> τAC,1 and
δC,2 >> τAC,2, where the first-order tunneling is strongly suppressed. As
can be derived from this equation, the smaller the detuning between the
dots and the larger the inter-dot tunnel couplings and tunnel couplings
between dot C and source, the larger the cotunneling rate becomes. As the
inter-dot tunnel rate τAC and the dot lead tunnel rate ΓC in path 2 are
high, the cotunneling conductance through path 2 is strong. In path 1 the
inter-dot tunnel rate τAB and the dot-lead tunnel rate ΓB is smaller (table
5.3), leading to a smaller cotunneling probability. Additionally, a larger
energy level detuning of dot B than of dot C can contribute to this difference
as well. Consequently negative differential conductance is observed between
the triple points along the resonance line of dot A in path 1 due to channel
blockade. The conductance due to cotunneling in path 2 is high, blocking
the transport through path 1.

An alternative approach to this cotunneling through one dot of the se-
rial double dot system is describing the system with molecular states. For
a small detuning between the dots compared to the energy level detuning
transport through the system can be described as coherent tunneling over a
molecular state being delocalized over the two quantum dots (see section
2.3.3.3). In this description the first-order tunneling takes place over the
bonding state and the second-order tunneling is the tunneling over the
anti-bonding state [120]. This description for the cotunneling current is
valid independently of the detuning between the dots and is equivalent to Eq.
(5.25) from the localized state description for large energy level detuning.
For a non-zero energy level detuning the weight of the occupation probability
is strongly unequal between the two dots, but a small occupation probability
remains on the other dot, respectively. This is schematically depicted in
Fig. 5.20 (b). Due to this non-zero occupation probability there is a finite
overlap between the wavefunctions of the electrons in the source lead and
the anti-bonding state, leading to a small non-zero tunneling probability
from the source lead over the anti-bonding state to the drain lead. This is
equivalent to a cotunneling process over the detuned dot C in the picture of
fully localized states.
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5 Two-path transport

In the parameter regime of the stability diagram in Fig. 5.19 no cotunneling
current is observed in the paths when dot B or dot C is in resonance with
the leads and dot A is off-resonant. This can be the consequence of a
comparatively large charging energy EC = δA,1 + δA,2 of dot A, or of a small
tunnel rate ΓA between dot A and drain in this parameter regime. In the
picture of molecular states the latter means a small overlap between the
electronic wave function of the anti-bonding state with the wave function of
the drain lead.

Channel blockade is also observed in Coulomb diamond measurements
of the system. Figure 5.21 shows the differential conductance of path 1 and
2 as a function of the bias voltage at path 2, US2, and gate voltage UG3.
A cut at zero bias voltage through the Coulomb diamond measurement
corresponds to a cut at UG1 = 1 mV in the stability diagram in Fig. 5.19 for
UG3 = 185− 210 mV (green dotted line). This helps to identify the features
seen in the Coulomb diamond measurement.
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Figure 5.21: Differential conductance in dependence of the bias voltage at
path 2, US2, and gate voltage UG3 of path 1 (a) and path 2 (b). A Coulomb
diamond of dot A is visible. Channel blockade is clearly observable in path 1
for resonance of dot A with source S2 in path 2.

Comparison shows that we see a Coulomb diamond of dot A. In path 2 where
the bias voltage is varied we observe high differential conductance if dot A
is in resonance with the leads. Lines with positive slope are resonances of
dot A with source, lines with negative slope resonances of dot A with drain.
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5.3 Channel blockade

The upper and lower crossing point of the Coulomb diamond correspond to
the resonance of dot A with the leads only and a configuration close to a
quadruple point, respectively. In path 1 corresponding negative differential
conductance is observed when dot A is in resonance with the source lead S2
in path 2 and positive differential conductance for the resonance with the
drain lead.

First we will focus on the upper crossing point of the Coulomb diamond
at UG3 ≈ 208 mV, where by comparison with the stability diagram (Fig.
5.19) only dot A is in resonance with the leads. We see high differential
conductance in path 2 in both stability diagram and Coulomb diamond mea-
surement, the described cotunneling between dot A and source S2 via dot C.
The transport through path 1 is weaker and partially blocked by the strong
cotunneling conductance through path 2. Similar behavior is observed for
the resonance lines of dot A with source S2 (lines with positive slope). The
corresponding differential conductance in path 1 is very low, as the bias
across this path is zero and the dots are off-resonant with both leads, S1 and
D. It even drops to negative values, the sign of channel blockade because of
strong transport through path 2. For the resonance lines of dot A with the
common drain lead D of the two paths positive differential conductance for
both paths is observed. We obtain small but positive differential conduc-
tance in both paths. The occupation of dot A is shared by both paths as the
energy level configurations and thus tunnel probabilities are similar in both
paths. The same pattern is observed for varying bias at path 1, US1, but with
channel blockade in path 2 (see Fig. 4.18). Channel blockade is observed in
transport path i for resonance of dot A with source Sj (i,j ∈ {1,2}; i 6= j).
With applying a bias voltage in one path a strong blockade of transport in
the other path can be induced. In the lower crossing point of the Coulomb
diamond at UG3 ≈ 188 mV the system configuration is close to a quadruple
point, where all three dots are in resonance. Here the conductance is more
equally shared by both paths. In case of a quadruple point a coherent state is
formed practically uniformly between all the dots. The occupation of dot A
is shared by electrons from path 1 and 2 and no blockade in transport is seen.

Fig. 5.22 shows a cut through the Coulomb diamond at zero bias voltage. It
can be clearly observed that the conductance is shared nearly equally by both
paths when the system is tuned near a quadruple point (UG3 ≈ 188 mV).
Channel blockade is occurring when the dots are detuned and the paths have
more unequal total tunneling probabilities (UG3 ≈ 208 mV). The channel
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blockade is dependent on the energy level detuning between the dots and the
tunnel couplings. This dependence clearly manifests itself in the different
behaviour in the quadruple point and in situations of detuning in the dot
system, which is nicely seen in Fig. 5.22.
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Figure 5.22: Cut through the Coulomb diamond measurement Fig. 5.21
at US2 = 0 mV. The differential conductance is shown in dependence of UG3
for transport paths 1 and 2. Around UG3 ≈ 188 mV the transport is shared
equally between the paths (quadruple point) and around UG3 ≈ 208 mV
transport through path 2 is stronger, leading to a blockade of transport
through path 1.

5.3.1 Non-linearity in transport
The appearance of the channel blockade is dependent on the transport
direction in this TQD system, as the way the transport paths interact with
each other is transport direction dependent. The two transport directions are
depicted in Figure 5.23. For electron transport going from S1 → D, S2 → D
(Fig. 5.23 (a)), named transport in (+)-direction in the following and
corresponding to application of a small positive bias voltage, we encounter
channel blockade. For reverse transport direction electron transport is going
from S→ D1, S→ D2 (Fig. 5.23 (b)), named (-)-direction in the following
and corresponding to application of a small negative bias voltage. In this
case there is no channel blockade. The reason is, that the transport paths
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influence each other in a different way in this transport direction.
In this direction, the electron flow splits at dot A into two paths. This
distribution is determined by probabilities which depend on the tunneling
rates of path 1 (τAB, ΓB) and path 2 (τAC, ΓC). For this transport direction
no negative differential conductance occurs. Thus, for the observation of
channel blockade it is crucial to have two source leads in this system.

Figure 5.23: Schematic picture defining the (+)- transport direction as
transport from the two leads at dots B and C to the lead attached at dot A
(a), the (-)- transport direction as transport from the lead at dot A to the
leads attached to dots B and C (b).

This difference is shown in a simulation of transport for both transport
directions (Fig. 5.24). While for the (+)- transport direction negative
differential conductance occurs in path 1 due to channel blockade (Fig.
5.24, (a),(b)), for the (-)- transport direction (Fig. 5.24 (c),(d)) no negative
differential conductance is observed. In the latter case, the electrons at dot
A see two paths with different tunneling barriers resulting in a corresponding
tunneling probability. Therefore, the electron flow splits into two paths
with a probability that depends on the tunneling rates of path 1 and 2. The
conductance shown in the diagrams depends on this tunneling probability
(Eq. (5.13)).

In order to clearly show the difference between the two transport directions
and to investigate it in greater depth, the simulated differential conductance
G of path 1 and 2 as a function of the ratio between the dot-source couplings
ΓC/ΓB is analyzed for both transport directions (Fig. 5.25). The ratio is
varied by changing ΓC. The transport direction S1 → D, S2 → D is labeled
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Figure 5.24: Calculated differential conductance of path 1 and 2 in depen-
dence of UG1 and UG3 for the (+)- transport direction ((a) and (b)) and the
(-)- transport direction ((c) and (d)) (implemented by F. Gallego-Marcos).
In contrast to the (+)- direction there is no negative differential conductance
in path 1 in the (-)- direction as the transport paths influence each other in
a different way. [91]

with (+) and the transport direction S→ D1, S→ D2 is labeled with (-).
The simulation is performed for the situation around a quadruple point,
marked with (H) in Figure 5.17, where the conductance through the paths
is almost equal and the paths share the occupation of dot A. The same
coupling parameters are used (table 5.3). We observe that for both (+)- and
(-)- transport direction the effective tunnel probabilities of the two paths are
mutually dependent on each other. For high differential condcutance due to
a large tunneling rate in one path we get low differential conductance in
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Figure 5.25: Calculated differential conductance G in dependence of the
ratio ΓC/ΓB, which is varied by changing ΓC, for path 1 and path 2 and for
both transport directions (+) and (-) (implemented by F. Gallego-Marcos).
The situation (H) in Fig.5.17 is here seen at ΓC/ΓB=2 (see Table 5.3). For
(+)-transport direction we observe negative differential conductance, which
is not observed for the (-)-transport direction.

the other and vice versa.

We take a closer look at the differences between the transport directions
in the example of Fig. 5.25. First, we analyze the (-)- transport direction
(green and yellow line). For path 1 we see strong conductance for large
ΓB with respect to ΓC and conductance going to zero for large ΓC with
respect to ΓB. For path 2 it is the other way around. So depending on
the tunneling rate along the path, we measure strong or weak transport.
For very small ΓC the tunnel barrier from dot C to the drain is effectively
closed. Consequently for path 2 a steady state occupation of dot C over
dot A is achieved quickly and no further transport takes place. The system
basically behaves like a double dot consisting of path 1 with dots A and
B. The conductance of path 1 is only determined by the tunnel rates (τAB,
ΓB) in this path and saturates at the corresponding maximum value. For
increasing ΓC transport through path 2 becomes more relevant. Dot C
is depopulated over S2 with ΓC. Now an electron on dot A additionally
has the possibility to tunnel to dot C. The larger the tunneling rate of a
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dot to the drain becomes, the faster the dot is depopulated and the higher
the probability of the electron to tunnel to that dot. For rising ΓC the
probability of the electron tunneling from dot A to dot C is increasing,
decreasing the probability of the electron going to dot B. Consequently,
the conductance increases through path 2 and decreases through path 1.
When ΓC grows bigger than ΓB the depopulation of dot C is faster than the
depopulation of dot B. Consequently the electron on dot A is more likely to
tunnel to dot C than to dot B and thus the conductance of path 2 becomes
bigger than the conductance of path 1. In the extreme case of ΓC >> ΓB,
dot C is depopulated very fast and the probability of the electrons on dot
A tunneling to dot C is high. Thus, basically all the electrons will tunnel
through path 2 and the conductance of path 2 saturates at a maximum
value, determined by τAC, and the conductance of path 1 goes to zero. As
the maximum conductance of path 1 is determined by τAB and ΓB and
of path 2 determined only by τAC, as described, the maximum transport
through path 1 is smaller than the maximum transport through path 2.

Now we analyze the (+)- transport direction (blue and red line). We
see a qualitatively similar behaviour as in the (-)- transport direction. For
decreasing ΓC the conductance through path 2 decreases and the conduc-
tance through path 1 increases and for increasing ΓC vice versa. However,
for small values of ΓC the differential conductance even becomes negative
for path 2 in this transport direction. For very large ΓC the differential
conductance of path 1 saturates at a small but finite and positive value. In
this transport direction the path with stronger transport due to higher total
tunneling probability blocks the transport through the other path in the
shared dot A. The blockade is caused by Coulomb interaction between the
electrons coming from the two paths competing for the occupation of dot A.
The differential conductance becomes negative. As in this simulation the
tunnel coupling ΓC in path 2 is varied, the conductance in path 2 can be
driven sufficiently low, so that the transport through this path can be fully
blocked. Consequently, only the differential conductance in path 2 becomes
negative. For very big values of ΓC the transport through path 2 becomes
strong, but the tunneling probability through path 1 determined by τAB
and ΓB is high enough for the transport not to be totally blocked.

To sum up, in (+)-transport direction we encounter channel blockade and
resulting negative differential conductance in the path with a small total
tunneling rate due to a high total tunneling rate in the other path, whereas
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5.3 Channel blockade

in the (-)-transport direction the electron current splits according to the
tunneling probabilities through the two paths and no negative differential
conductance is possible.

This shows that the two transport directions are in general not equiva-
lent. The channel blockade depends on the strengths of the tunnel couplings
and on the detuning between the energy levels which both determine the
tunneling probability through the path. Only if the tunneling probabilities
of the two paths are equal, there is no channel blockade and the transport
directions through the sample are equal. Otherwise the transport direc-
tions are non-equivalent and the transport characteristics are non-linear,
mediated by inter-channel Coulomb interaction. The total current (Eq.
(5.14)) through the system is a function of the tunneling rates between
dots and leads Γ and the inter-dot tunneling rates τ which we do not have
analytically. The current through one path mainly depends on the tunnel
rates to the leads and the inter-dot tunnel rates of the dots in this path.
Consequently, in case of a non-equal tunneling probability in the paths we
observe non-linear transport even around zero bias voltage. The tunneling
probabilities of the paths are equal in the case of a quadruple point if the
tunnel couplings in the paths are equal. The transport then is linear around
zero bias voltage. In all other cases deviations are obtained. In our system
we do not have linear transport through the dot arrangement even when
we are at a quadruple point due to the asymmetry in the tunnel couplings
within the transport paths. This will be discussed in the following for the
example of the resonance condition (H) (Fig. 5.17). This situation is seen
at ΓC/ΓB=2 in Fig. 5.25.

We consider the case where all three dots are in resonance, a quadru-
ple point. The conductance values GB and GC of path 1 and 2, respectively,
are equal for the (-)-transport direction, G−B = G−C , if the tunneling prob-
abilities in the paths are equal. The same is true for the (+)-transport
direction. In our case τAB < τAC, this is why the point where the conduc-
tance is equal in both paths as expected in the situation of a quadruple
point lies at a value ΓC/ΓB = 0.089 < 1 for the (-)-transport direction.
Here, G−B = G−C = 0.0106 e2/h. The point where G+

B = G+
C = 0.0112 e2/h is

shifted to higher values ΓC/ΓB = 1.042 > 1. This deviation stems from the
fact that dots A and C in path 2 are slightly detuned in this considered case
((H) in Fig. 5.17, dotted line in Fig. 5.16). This decreases the tunneling
probability in path 2 and also adds to the difference in the conductance of
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the transport directions of a path. As dot C is slightly out of resonance the
transport directions are not equal across the tunneling barrier between the
dots and across the tunneling barrier between dot C and source S2. The
detuning is such that G+

C < G−C , so the transport through path 2 in the
(+)-direction is smaller. Consequently, the crossing point where G+

B = G+
C is

shifted to larger values of ΓC/ΓB with respect to the point where G−B = G−C .

Around zero bias voltage we would expect the system to be in the lin-
ear transport regime (see section 2.3.2.1). For small bias voltages compared
to the thermal energy ∆µSD << kBT the conductance G of a dot is inde-
pendent of applied voltage so the current I = G · V is linear. According
to an estimation of the electron temperature of T ≈ 100 mK (Eq. (5.22)),
we would expect this system to be in the linear regime for only small
bias voltages ∆µSD << 9 µeV. However, as the slope of the current-bias
voltage-characteristic is different for positive and negative bias voltage, as
explained, the transport is not in the linear regime around zero bias voltage.
Consequently, the transport is non-linear independent of bias voltage. In
general, this behaviour is characteristic for a triangular setup of quantum
dots where two transport paths share one dot and lead.

The presented measurements (Fig. 5.16 (a),(b)) and also the former ones
performed by Rogge et al. [24] with one source at A and two drains at B
and C, are all AC measurements, meaning an AC voltage UAC is applied to
the source. This is done to measure the differential conductance directly
and also, in case of our setup with two sources and only one drain, to allow a
distinction between the electrons coming from the two paths at the drain by
using two different frequencies. By doing so, interactions between the paths
manifest themselves in the transport measurements. In AC measurements
we always measure an averaging of the two transport directions. We have
to distinguish between the two configurations, the one with one source and
the one with two sources and two different applied AC voltage frequencies.

With one source S at dot A and two drains, D1 at dot B and D2 at dot
C, only one frequency (at S) is applied to directly measure the differential
conductance. The electrons move alternately from source to the drains
and from the drains to source simultaneously for the two paths. For one
source and thus one AC voltage, we get transport from source to the drains
((-)-direction) for the negative half-wave of the sinusoidal AC voltage, and
transport from the drains to source ((+)-direction) for the positive half-wave

172



5.3 Channel blockade

in both transport paths. In (-)-transport direction the electrons do not
encounter a blockade in the common dot A. In the (+)-transport direction
one path can be blocked in transport in dot A due to a higher conductance
in the other path with higher electron tunneling probability: the described
channel blockade. Thus negative differential conductance is possible in this
direction. Consequently, when applying an AC voltage UAC to the source
the average IAC we measure at the drain is smaller than it would be without
the blockade, but always positive. The measurements presented in [24] use
this setup. No negative differential conductance is observed, as expected. In-
teractions between the paths do not clearly manifest themselves in this setup.

In our case, where the system has two source leads S1 and S2 and one
drain lead D, the possibility is opened up to apply source voltages with
different frequencies. If two different AC frequencies are applied to the paths,
we have alternating transport from source to drain in both paths, but with a
different frequency. Consequently, the transport directions of the two paths
are out of phase, so there are more superposition cases of electron current
at dot A over time as not always the same half-waves from path 1 and path
2 are superposed at dot A like it is the case with one applied frequency. In
all superposition cases the electrons can encounter channel blockade except
in the case of superposition of two negative half-waves of the sinusoidal AC
voltages from the two paths (transport from the drain to the sources in
both paths, (-)- transport direction). Thus, we expect the channel blockade
to be more distinct when applying two different frequencies to the paths.
Only in this case the interaction between the paths manifests itself clearly
in transport via the occurrence of negative differential conductance. To
sum up, the setup used within the scope of this work makes the non-linear
transport characteristics of the system detectable in the two-path stability
diagrams.

The non-linear behavior of transport at zero bias voltage becomes directly
apparent in the conductance through the system in dependence of bias
voltage. Figure 5.26 shows a Coulomb diamond measurement where the
differential conductance is measured in dependence of the bias voltage at
source S1, US1, and the gate voltage UG3. A Coulomb diamond of dot A is
observed. At UG3 = 180.2 mV and US1 = 0 mV we see conductance in both
path 1 and path 2 and hence are at a region near a quadruple point. Around
the region of a quadruple point we have transport in both paths and can
thus observe the paths influencing each other in transport by competing for
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5 Two-path transport

occupation of dot A. Here we have a similar situation as in the stability
diagram measurements around a triple dot resonance (Fig. 5.17). A cut
through the area of the quadruple point is shown in Figure 5.27 for path 1,
where the bias voltage is varied.
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Figure 5.26: Differential conductance of path 1 (a) and path 2 (b) in
dependence of bias voltage at S1 and UG3. At UG3 = 180.2 mV the system is
close to a quadruple point with high conductance in both path 1 and path 2.

In the linear transport regime at zero bias voltage the current, which is the
integrated differential conductance signal, is linear around this point and
the differential conductance is a peak at zero bias being symmetric in a
small range for positive and negative bias voltage. In path 1 where the bias
voltage is varied we see an asymmetric Coulomb peak in the relevant regime
of ∆µSD << kBT around zero bias voltage (bounded by solid lines in Fig.
5.27). This shows that the transport is highly non-linear around zero bias
voltage.

Charge transport blockade phenomena of other kinds have been studied
theoretically in different other dot setups. It was found in a three-terminal
single dot where the interaction between two different spin channels was
studied, showing the modulation of one channel by the other [121]. Channel
blockade effects involving Coulomb correlations were investigated theoreti-
cally for two parallel transport channels with single or double dots in each
path and a capacitive coupling between the dots belonging to different paths

174



5.3 Channel blockade

0.06

0.04

0.02

0.00

G
B
 (

e2 /h
)

-0.2 0.0 0.2
US1 (mV)

Figure 5.27: Cut across the region near a quadruple point (dotted line in
Fig. 5.26) in path 1. It shows a highly non-symmetric Coulomb peak referring
to non-linear transport around zero bias voltage. The thermal energy kBT
for T ≈ 100 mK is marked with solid lines around zero bias voltage.

[122–124]. In our system we have two double dot paths which are connected
by one common dot. The dots are coherently coupled forming molecular
states involving the on-site states of all three dots so that the electrons are
delocalized throughout the TQD. To understand the full transport charac-
teristics in the double path structure it has to be described by quantum
mechanical dynamics.

To sum up, the interaction between the paths causes a channel block-
ade leading to a non-linear transport behaviour of the dot system. Coulomb
correlations in the shared dot A between electrons of different paths lead to
a blockade of current through one path if the conductance through the other
is high. The interaction between the paths gives rise to the possibility to
detect current through one path by investigation of transport through the
other. The channel blockade manifests itself in the occurrence of negative
differential conductance of the blocked path. It is an inherent phenomenon
in triangular dot setups with two transport paths and a shared dot and
drain lead and occurs for situations where the tunneling probabilities of
the transport paths are unequal. The strength of the blockade can thus be
modulated by varying the inter-dot detuning. The non-linearity of transport
arising from the transport direction dependence of the channel blockade is
additionally observed in Coulomb diamond measurements around zero bias
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voltage.

5.4 Inelastic cotunneling
Within this chapter a closer analysis of the Coulomb diamonds of dot A is
performed. In Figure 5.28 a Coulomb diamond measurement of transport
path 1 with dots A and B is presented. The differential conductance G
in dependence of bias voltage US1 and gate voltage UG3 is shown. Two
Coulomb diamonds of dot A are seen right above a triple dot resonance.
The left edge of both diamonds at negative bias voltage is filled out with
high differential conductance, best seen in the lower diamond, where the
dot is in Coulomb blockade.
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Figure 5.28: Differential conductance of path 1 in dependence of US1 and
UG3. Coulomb diamonds of dots A and B are observed, the resonances of
the dots with the leads being exemplarily marked with dashed black lines as
a guide to the eye. In the edges of both Coulomb diamonds of dot A there is
an onset of non-zero differential conductance at negative bias voltage.

If the energy difference of the chemical potential of the leads is equal
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5.4 Inelastic cotunneling

or larger than the difference in charging energy EC of the involved dots,
e |US1| ≥ ∆EC, simultaneous tunneling from source S1 to dot B and from
dot A to drain D is possible. This is a non-coherent and inelastic cotunneling
process as two electrons are involved and the double dot is left in a state of
higher energy than before the tunnel process (see section 2.3.2.3). This onset
of inelastic cotunneling results in a current through the otherwise Coulomb
blockaded double dot. In the differential conductance to first approximation
a step is expected [125], occurring at e |US1| = ∆EC . This behaviour is
different than the one originating from elastic cotunneling through the dots,
where residual low constant differential conductance inside the Coulomb
diamond is observed. The tunneling process is depicted schematically in
Figure 5.29.

Figure 5.29: Inelastic tunneling process leading to the onset of high differ-
ential conductance inside the Coulomb blockaded region of the double dot
inside the Coulomb diamond. For e |US1| ≥ ∆EC energy conservation allows
a tunnel current through the double dot by the depicted tunnel sequence of
two electrons. The double quantum dot remains in an excited state after this
process.

Dots A and B are in Coulomb blockade. In case of e |US1| ≤ ∆EC no
first-order tunneling process through the double dot is possible due the
energy conservation law. As the bias voltage at S1 is increased, the chem-
ical potential of source S1 is raised above the next energy level of dot B.
When e |US1| ≤ ∆EC the Coulomb blockade is lifted. The half width of the
Coulomb diamond belonging to dot A is ∆A = 0.7 mV and the half width of
the Coulomb diamond belonging to dot B is ∆B = 1.0 mV, extracted from
this measurement. Thus it is ∆EC = ∆B −∆A = 0.3 mV. In the shown
Coulomb diamond measurement the finite differential conductance step
inside the Coulomb diamond of dot A is observed at |US1| = 0.3 mV. Thus,
it is ∆EC = |US1| at this point. Consequently, the inelastic cotunneling
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process can be responsible for the overcome Coulomb blockade. The non-
zero differential conductance fills out the corner of the Coulomb diamond
as the probability for the cotunneling process increases with increasing bias
voltage. Additionally, the line marking the onset of the inelastic cotunneling
connects with a line of first-order tunneling via an excited state, clearly
seen for the lower Coulomb diamond, as expected (see section 2.3.2.3).
Inelastic cotunneling is only appearing on one side of the Coulomb diamond,
for US1<0. This asymmetry stems from the strong inequality of the two
transport directions of a detuned double dot system [126]. For the same
energy level detuning between the dots the tunneling probability in case of
US1>0mV is very low. This can be deduced from Fig. 5.29 by exchanging
the chemical potentials of the leads. The tunneling process then involves
a quantum dot acting as a tunneling barrier for both tunneling electrons,
which strongly decreases the probability of this process.

Similar cotunneling effect has been frequently observed in a single dot,
reported in [127–130], but also in a vertical double dot sample, described in
[126].

5.5 Hybridized states
In this section the transport through the system is analyzed for different
constant bias voltages applied at the two transport paths. The differ-
ential conductance for US1 = 0 mV (Fig. 5.30) and for bias voltages of
US1 = −1.0 mV and US1 = −1.5 mV at S1 (Fig. 5.31) is measured as a
function of UG1 and UG3. The bias voltage across the other path is zero,
US2 = 0 mV. The device is in a regime where the inter-dot tunnel rates are
asymmetric, τAC > τAB (see table 5.3).

For US1 = 0 mV the stability diagram is the same as shown in Fig. 5.8, but
for slightly different gate voltage values, so that the weight of the stability
regions is slightly different. The stability regions are identified according to
Fig. 5.15. If a bias voltage is applied at S1, a second line parallel to the
charge reconfiguration line is observed at the resonances of dots A and B for
both N and N+1 electrons on dot C. The lines separate the states |1,0,0〉
and |0,1,0〉 as well as |1,0,1〉 and |0,1,1〉 with one more electron in dot C. A
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Figure 5.30: Differential conductance of path 1 as a function of gate voltages
UG1 and UG3 for US1 = 0 mV in the region of a triple dot resonance. The
stability regions are denoted in the diagram.

cut at UG3 = 84.3 mV and at UG3 = 91.5 mV across the lines separating the
states |1,0,0〉 and |0,1,0〉 as well as |1,0,1〉 and |0,1,1〉, respectively, is shown
in Figure 5.32 for the different bias voltages. For the lines separating the
states |1,0,0〉 and |0,1,0〉 (lower A-B resonance) an additional peak appears
at smaller UG1 at the left side of the zero bias peak. For the lines separating
the states |1,0,1〉 and |0,1,1〉 (upper A-B resonance) the additional peak
appears at larger UG1 at the right side of the zero bias peak. The distance
between the double lines is increasing with increasing bias voltage US1. The
distance between the double lines in UG1-direction is ∆UG1 = 2.0 mV for
US1 = −1.0 mV. For US1 = −1.5 mV it is ∆UG1 = 2.4 mV. The same values
of ∆UG1 are observed for the distance between the parallel lines separating
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Figure 5.31: Differential conductance of path 1 as a function of gate voltages
UG1 and UG3 for (a) US1 = −1 mV and (b) US1 = −1.5 mV. The stability
regions are denoted in the diagram. The data is shifted to compensate the
potential shift due to the bias voltage.

the states |1,0,0〉 and |0,1,0〉 for the two bias voltages.

In order to find the origin of the double charge reconfiguration lines emerging
with non-zero bias voltage, the transport through path 1 is simulated for
different values of US1 using the same tunneling rates and capacitances as
in the simulations for the stability diagrams in section 5.2.2 (see table 5.3).
Figure 5.33 shows the simulated differential conductance of path 1 for bias
at path 1 of µS1 = 0 meV (a) µS1 = −0.1 meV (b) and for µS1 = −0.2 meV
(c). For zero bias only one charge reconfiguration line is clearly visible. A
second parallel line is very faintly visible for larger UG1 for the upper and
for smaller UG1 for the lower A-B resonance. For increasing bias the second
parallel line in the lower A-B resonance increases in intensity and becomes
clearly visible in the lower A-B resonance. This behaviour of an appearing
double charge reconfiguration line for US1 > 0 and its location in the lower
and upper A-B resonance corresponds to the observation in the experiment.
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Figure 5.32: Cuts at UG3 = 91.5 mV (a) and at UG3 = 84.3 mV (b) through
the transport measurements for US1 = 0 mV, US1 = −1 mV and US1 =
−1.5 mV.
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Figure 5.33: Simulated differential conductance of path 1 as a function of
gate voltages UG1 and UG3 for (a) µS1 = 0 meV, (b) µS1 = −0.1 meV and (c)
µS1 = −0.2 meV. The simulation is implemented by F. Gallego-Marcos.

Figure 5.34 shows the variation of the inter-dot tunnel coupling in path 2,
τAC, from the original value of 0.020 meV down to 0.002 meV in the simula-
tion of the differential conductance of path 1 for a cut at UG3 = 95.0 mV
and for US1 = 0 mV. The cut crosses the double peak in the lower A-B
resonance. For τAC = 0.020 meV a distinct peak at UG1 = 84.5 mV is visible,
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corresponding to the distinct charge reconfiguration line in the 2D stability
diagram (Fig. 5.33 (a)). Additionally, a second peak with very low intensity
is visible at around UG1 = 83.4 mV. Due to its small peak height is it
not appreciable in the 2D plot. For decreasing τAC the the second peak
increases in height and the distance between the two peaks decreases, so
that they nearly completely merge for τAC = 0.002 meV. An increase of
the separation between the peaks with an increasing A-C inter-dot tunnel
coupling suggests that the hybridization between dots A and C is the origin
of the double peaks.
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Figure 5.34: Simulated differential conductance of path 1 as a function of
UG1 for UG3 = 95.0 meV and µS1 = 0 meV for different tunnel rates τAC. For
increasing τAC the separation between the two resonance peaks increases and
the peak height of the peak at around UG1 = 83.4 mV decreases rapidly. The
simulation is implemented by F. Gallego-Marcos.

The separation between the lines is studied by considering a simplified
Hamiltonian only taking into account the hybridization between the dots A
and C (see Eq. 2.72):

H =
[
EA τAC
τAC EC

]
⇒ E± = 1

2

[
(EA + EC)±

√
∆2

AC + 4τ2
AC

]
(5.26)
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with ∆ =
√
∆2

AC + 4τ2
AC (see Eq. (2.106)) describing the separation be-

tween the hybridized states. ∆AC = EA−EC describes the energy difference
of the localized states of dot A and C. A comparison between the numerical
result of the distance between the double lines and the result from equation
Eq. (2.106) for different couplings τAC shows, that ∆ perfectly describes
the value of the separation between the lines. Consequently, we deduce
that the origin of the double charge reconfiguration lines at the resonances
between the dots A and B appearing in the numerical transport simulation
is a hybridization between dot A and C. An electron which tunnels from
dot B to dot A interacts with the two hybrid states of the molecule formed
of dot A and C instead of the localized states of dot A. The hybrid states
of the A-C molecule consist of the bonding state which is the lower energy
state and the anti-bonding state which is the higher energy state. The
peak around UG1 = 84.5 mV corresponds to the resonance between a single
dot energy level of dot B and the anti-symmetric superposition state of
the molecule A-C, while the second peak with smaller peak height around
UG1 = 83.4 mV corresponds to the resonance between a single dot energy
level of dot B and the symmetric superposition state of the molecule A-C.
The anti-symmetric state is the ground state (bonding state), the symmetric
state is the excited state (anti-bonding state) of the molecule. Consequently,
the smaller resonance peak corresponds to transport over the excited state.
The larger τAC, the bigger the energy difference of the two hybridized states
of dot A and C. The ratio between the inter-dot tunnel couplings in the two
transport paths, τAC/τAB, has to be large to resolve the hybrid states.

Figure 5.35 shows the variation of the inter-dot tunnel coupling in path 1
from τAB = 0.020 meV down to τAB = 0.002 meV in the simulation of the
differential conductance of path 1 for a cut at UG3 = 95.0 mV where the
double peak arises. The A-B inter-dot coupling expected for the system
and used in the 2D stability diagram (Fig. 5.33) is τAB = 0.012 meV. For
decreasing τAB the peak width of the two peaks decreases and the peaks be-
come more defined. Additionally, the second peak at around UG1 = 83.4 mV
which is clearly seen for τAB = 0.002 meV is almost vanishing for large τAB.
By reducing the A-B inter-dot coupling the energy levels of dot B more and
more resemble single dot states. These localized states probe the hybridized
states of the molecule A-C which leads to their visibility in transport. The
more localized the state of dot B, the more distinct the resonance peaks
with the hybridized states of A-C.
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Figure 5.35: Simulated differential conductance of path 1 as a function of
UG1 for UG3 = 95.0 meV and µS1 = 0 meV for different tunnel rates τAB. For
increasing τAB the peak at around UG1 = 83.4 mV decreases strongly and
vanishes for large τAB. (implemented by F. Gallego-Marcos)

The situation in the experiment for US1 = 0 mV corresponds to the transport
curve for τAB = 0.012 meV and τAC = 0.020 meV in Fig. 5.35. The main
resonance peaks at around UG1 = 77.0 mV (Fig. 5.32 (a)) for N+1 electrons
on dot C and at around UG1 = 78.5 mV (Fig. 5.32 (b)) for N electrons on
dot C consequently correspond to the resonance between a localized energy
level of dot B and the anti-symmetric hybridized state of the molecule A-C.
At the lower A-B resonance for N electrons on dot C the state |010〉 is in
resonance with the anti-symmetric state of the hybridization |001〉 ± |100〉
(Fig. 5.30). At the upper A-B resonance for N+1 electrons on dot C the
state |101〉 is in resonance with the anti-symmetric state of the hybridization
|011〉 ± |110〉 (Fig. 5.30). The second line arising for US1 > 0 mV (Fig. 5.32
and Fig. 5.31) is the resonance between a localized energy level of dot B
and the symmetric hybridized state of the molecule A-C. At the lower A-B
resonance for N electrons on dot C it is the resonance of state |010〉 with the
symmetric state of the hybridization |001〉 ± |100〉. It is located at smaller
UG1 than the resonance with the anti-symmetric hybridized state as the
state |010〉 decreases faster in energy for increasing UG1 than the hybridized
states |001〉±|100〉. This originates from the location of G1 nearest to dot B.
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5.5 Hybridized states

At the upper A-B resonance for N+1 electrons on dot C the state |101〉 is in
resonance with the symmetric state of the hybridization |011〉 ± |110〉. It is
located at larger UG1 than the resonance with the anti-symmetric hybridized
state as the state |011〉 decreases slower in energy for increasing UG1 than
the hybridized states |011〉 ± |110〉. These locations of the resonance lines
relative to each other are observed in simulation and experimental result.

As shown in Fig. 5.34 and Fig. 5.35 an increase in τAC and a decrease in
τAB leads to an increasing resolution of the double charge reconfiguration
line and thus enhanced visibility of the second resonance peak. In the
experiment a strong influence of an applied bias voltage of US1 = −1 mV
on the inter-dot tunnel couplings τAB and τAC is not expected and also not
observable in the transport measurements of path 1 and path 2. As can
be deduced from Eq. (2.106), a large ratio between the dot detunings in
the paths, ∆AC/∆AB leads to a large distance between the hybrid states as
well and can thus lead to their resolution in transport. An applied potential
at S1 affects the detuning between the dots A and B. A negative potential
at S1 detunes the dots A and B from their resonance along the charge
reconfiguration line, so that a potential difference at UG3 is needed to com-
pensate this influence. This effect is observed in a shift of the conductance
features in UG3 in dependence of S1, well seen when comparing the Fig.
5.30 and Fig. 5.31). The increased positive potential at UG3 for non-zero
US1 mostly influences dots A and C as the gate is situated between them. It
is expected to change the detuning of their energy levels as well as slightly
increase their inter-dot tunnel coupling τAC. Consequently, this effect can
lead to an increase of the resolution of the molecular states of A-C with
the bias voltage US1. However, in the simulation of transport the included
influence of the potential change at S1 on the dot system mediated by the
capacitive coupling between S1 and dots A and B is basically only shifting
the measurement outcome in gate-gate space. Excluding this capacitive
coupling from the simulation does not change the observed behaviour to the
observed extend. The effect of level detuning with the bias voltage is too
small to explain the bias dependence of the splitting in experiment alone.
The coherent states of the triple dot determine the transport, which remain
mostly unaffected. The slight increase in distance between the resonance
lines between US1 = −1.0 mV and US1 = −1.5 mV (Fig. 5.32) can result
from the described capacitive influence of US1 on the energy levels of the
dots affecting ∆AC and τAC.
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5 Two-path transport

The same analysis of transport in dependence of the inter-dot tunnel cou-
plings τAC (Fig. 5.36) and τAB (Fig. 5.37) is conducted for non-zero bias
at path 1, µB = −0.1 meV. It is clearly visible in both diagrams that the
second peak at around UG1 = 83.4 mV is larger in height than for zero
bias voltage. For increasing τAC the peak height of the second peak is not
decreasing as rapidly as in case of zero bias. The peak height is obviously
more robust against changes of the inter-dot couplings. This is most clearly
observable for large τAC, where the second peak is still clearly observable
for non-zero bias voltage at S1. For small τAB the peak height of the second
peak is clearly larger for non-zero bias (Fig. 5.37) than for zero bias voltage.
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Figure 5.36: Simulated differential conductance of path 1 as a function of
UG1 for UG3 = 95.0 meV and µS1 = −0.1 meV for different tunnel rates τAC.
The peak at around UG1 = 83.4 mV is more appreciable than for zero bias
voltage (Fig. 5.34). (implemented by F. Gallego-Marcos)

A comparison between the transport curves for µB = 0 meV and µB =
−0.1 meV for the system parameters τAB = 0.012 meV and τAC = 0.020 meV
(Fig. 5.35) reflecting the situation in the experiment shows that while
for µB = 0 meV only one resonance peak (resonance with anti-symmetric
molecular state) is clearly visible, for µB = −0.1 meV also a second distinct
resonance peak (resonance with symmetric molecular state) is observed.
The simulation reproduces the experimental result concerning the visibility
of only one charge reconfiguration line at US1 = 0 mV and the appearance
of the second parallel line for US1 > 0 mV. It can also be appreciated in
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Figure 5.37: Simulated differential conductance of path 1 as a function of
UG1 for UG3 = 95.0 meV and µS1 = −0.1 meV for different tunnel rates τAB.
The peak at around UG1 = 83.4 mV is more appreciable than for zero bias
voltage (Fig. 5.35). (implemented by F. Gallego-Marcos)

Fig. 5.33 where the corresponding 2D stability diagrams are shown. While
for zero bias voltage only one coherent state of the system contributes to
transport around UG1 = 83.5 mV in the simulation, for non-zero bias voltage
a second coherent state enters the transport window and contributes to the
transport. The contribution of this additional coherent state to transport
leads to the distinct second peak appearing for US1 = −1.0 mV in the ex-
periment. A non-zero bias voltage allows for transport via the symmetric
(excited) state of the molecule A-C. The resonance of an energy level of
dot B with the symmetric state of the A-C molecule results in the second
parallel charge reconfiguration line in transport.

The hybridization is also observed in the differential conductance of path 1
measured in dependence of the bias voltage US1 (Fig. 5.38). UG1 and UG3
are varied to perform a cut through the stability diagram across the charge
reconfiguration line between the states |1,0,1〉 and |0,1,1〉. UG3 is varied
from 85 mV to 91 mV and UG1 from 73.5 mV to 82.6 mV.

A single peak for zero bias voltage is seen, which splits into two peaks
with increasing separation while the negative bias voltage is increased. For
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Figure 5.38: Differential conductance of path 1 as a function of the bias
voltage US1 and gate voltages UG1 and UG3.

US1 & 1.8 mV a line parallel to the one with negative slope inside the
spanned triangle appears. The line with positive slope corresponds to the
resonance of an energy level of dot B with the source lead S1, the two parallel
lines with negative slope correspond to the resonances of the two hybrid
states of the A-C molecule with the drain lead. The resonance lines with
the drain lead show a non-zero slope due to the influence of the bias voltage
US1 on the dot potentials via CS1,i, i ∈ {A,B,C}. The capacitive influence
of US1 leads to a shift of the cut with respect to the stability diagram of the
TQD. A shift in UG3-direction contributes to the visibility of a single peak
at zero bias voltage only and the emergence of the double line for US1 > 0 mV.

To sum up, the hybridization of electronic states in path 2 is observed
in transport through path 1. In the chosen parameter regime dots A and C
are strongly tunnel coupled while dot B in the other path is less coupled
to them (τAC > τAB). The anti-symmetric and symmetric hybrid states
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5.5 Hybridized states

of the A-C molecule are then probed by the localized dot states of dot B.
In transport of path 1 instead of one charge reconfiguration line at the
A-B resonance, two resonance lines are seen when an energy level of dot
B comes into resonance with the A-C hybrid states. The resolution of the
molecular states in one path by transport measurements through the other
is dependent on the ratio between the inter-dot tunnel couplings in the
paths. The impact of this ratio on the resolution of the corresponding
resonance peaks is investigated with the help of the numerical simulation
of transport through the paths where the resolution is modulated. At zero
bias voltage, US1 = 0 mV, the resonance with the anti-symmetric hybrid
state, the lower energy state (bonding state) of the A-C molecule, is visible
only. For US1 > 0 mV the resonance with the symmetric hybrid state, the
excited state (anti-bonding state), becomes visble. The distance between
the resonance lines grows for increasing bias voltage. A reason can be the
capacitive influence of US1 on the dot energy levels slightly increasing the
separation of the hybrid states and their resolution in transport. The main
contribution to the visibility of the peak of the anti-bonding state resonance
is provided by the opening of the transport window, allowing transport
via the anti-bonding state, the excited state of the A-C molecule. The
experimental result demonstrates the formation of molecular states in this
dot setup and shows their detection by probing them with more localized
states within the same device. Making use of the triangular dot setup
transport through path 1 thereby serves as a detector for the hybridization
in path 2.
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6 Summary
This thesis covers an experimental and supportive theoretical approach to
electron transport through a triangular-shaped lateral triple quantum dot
with two transport paths. The transport through the system was analyzed
in detail in a path-resolved manner and it was shown that electronic inter-
channel interaction strongly determines the transport properties of such
complex multi-dot systems. The results provide a better understanding of
the transport properties and coherences and their control in complex dot
networks.

The transport properties of a triangular dot distribution were analyzed
in a novel configuration using two source contacts and one drain. By apply-
ing two different AC voltages to the two sources of the double dot transport
paths path-resolved transport measurements are possible and interactions
between the paths become observable and can be thoroughly studied in
transport.

The TQD sample was characterized by charge measurements using a quan-
tum point contact as a charge detector and by linear and non-linear transport
measurements of both paths separately (Chapter 4). Electrostatic proper-
ties were extracted and the tunability into double and triple dot resonances
were shown. With this TQD setup transitions from double to triple dot
resonances are observable even in transport measurements. In a regime
where the system is in a drain-decoupled condition a serial dot system is
formed and two different charging mechanisms of the central dot arise which
are clearly observable in a wide gate voltage regime in the charge measure-
ments. This charging behaviour is hysteretic and of particular interest for
utilization in a one-bit memory device. In addition, signatures indicating an
indirect phononic back-action mechanism between QPC and the dot system
have been observed in the detector signal.

The characterization of the sample was complemented and extended by
results obtained by a numerical simulation which was implemented by F.
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6 Summary

Gallego-Marcos (working group Theoretical Group on Quantum Transport
on the Nanoscale, Instituto de Ciencias de Materiales de Madrid, CSIC,
Spain). Calculations of the charge stability regions of the system and the
path-resolved transport were performed, based on a quantum mechanical
model of the system (Chapter 5). It was shown that a model which treats
the on-site states of the dots coherently coupled is able to reproduce the
transport properties of this device in detail. Besides the possibility of in-
vestigating the transport through the system in a path-resolved manner,
the setup provides the possibility of measuring the total transport through
the TQD without distinguishing the paths. In this way signatures of inter-
ference occur at the common drain lead of the paths which vanish when
distinguishing the electrons by their path. The presence of interference
effects in transport verifies coherent transport throughout the dot system. A
modulation of the coherent contribution to the tunneling current by tuning
the system in and off resonances is reflected in a modulation of the strength
of the interference features. Possible other contributions to these features
in terms of interference effects were discussed.

Interactions between both paths were further investigated performing path-
resolved transport measurements by applying two different AC voltages to
the paths. It was found that the transport is substantially influenced by
Coulomb correlations in the shared dot. Coulombic interaction between the
electrons coming from different paths leads to a blockade of current flow
through one path when the current through the other path is strong. Via
this inter-channel interaction the transport behaviour of one path can serve
as a current detector for the other path within the same dot system. As the
channel blockade occurs when the electrons coming from different paths com-
pete for occupation of the shared dot the effect is dependent on the transport
direction. This leads to non-linear transport characteristics of the device
even around zero bias voltage. The observed properties are inherent and
characteristic for triangular dot distributions with two transport paths with
a shared dot and drain lead. The experimental findings and interpretations
were supported by the simulation of path-resolved transport reproducing
the experimental outcome very nicely. The strength of the channel blockade
was shown to be dependent on the ratio of the tunneling probabilities of the
transport paths and thus is modulated by the resonance condition within
the dot system. In addition, combinations of this inter-channel blockade
with intra-channel higher-order tunneling effects are found. Elastic and
inelastic cotunneling effects are modifying the transport properties of the
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device as transport characteristics of the separate double dot paths.

In the last section the detection of hybridized states in one transport
path by transport measurements through the other path is discussed. The
triple dot system was tuned such that the molecular states of a strongly
coupled double dot molecule formed in one path can be probed by a more
localized single dot level of the dot in the other path. The experimental
results are analyzed with the help of the simulation which reproduces the
experimental outcome and shows the dependence of the resolution of the
molecular states on the ratio between the inter-dot tunnel couplings. The
results give insight into the formation of molecular states in a multi-dot
system and show the variability of the device. The triangular setup allows
the spectroscopy of coherent states by a more localized states of a quantum
dot within the same device.

Further analysis of this triangular TQD system could aim towards the
investigation of theoretically proposed quantum interference effects, like the
formation of dark states, and different current rectification effects. A re-
quirement for the realization of these ideas is the tunability of the tunneling
barriers of the device into the desired configuration. Thus, the realization
of these ideas should be supported by an optimization of sample design and
tunability of the tunneling barriers and electron numbers on the dots. Addi-
tionally, a slightly modified sample setup with a tunnel coupling between all
of the dots resulting in a ring geometry with an embedded triple quantum
dot molecule would be of high interest for the investigation of coherence
and quantum interference effects. This investigation is aiming towards a
deeper understanding of significant properties of quantum circuits for an
implementation of quantum devices.
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