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Zusammenfassung 

Blumenkohl (Brassica oleracea var. botrytis) ist eine bedeutende Gemüsekultur, geerntet 

wird der aus weißen  Infloreszenzmeristemen bestehende Kopf. Die Kopfbildung wird 

hauptsächlich durch die Temperatur beeinflusst und diese Arbeit soll die genetischen 

Hintergründe dieses Prozesses erklären. Zur Identifikation von quantitative trait loci (QTL), 

welche den Zeitpunkt der Kopfanlage und zugehörige Merkmale im Temperaturbereich von 

12 - 27 °C steuern, wurde eine doppelhaploide (DH) Population erzeugt, die in dem Merkmal 

„Dauer der Kopfbildung“ spaltet. An Individuen dieser Population wurden die Tage bis zur 

Kopfanlage (DCI), die Blatterscheinungsrate (LAR) und die finale Anzahl Blätter (FLN) 

bestimmt. Composite interval mapping (CIM) zeigte QTL hotspot Regionen für DCI auf 

Chromosom sechs und neun. Einzelne QTL konnten 11 bis 41 % der phänotypischen 

Variation erklären, wobei derer geschätzte additive Effekt bei hohen Temperaturen größer 

ausfiel. Signifikante QTL × Umwelt-Interaktionen (Q×E) für FLN und DCI auf den 

Chromosomen sechs und neun deuten darauf hin, dass die hotspot-Regionen einen 

wesentlichen Einfluss auf die temperaturbedingte Kopfanlage hat. Rund 25 % der DH-Linien 

bildeten keinen Kopf bei Temperaturen über 22 °C. Die Verwendung eines binären Modells 

zeigte einen QTL mit LOD > 15 auf dem Chromosom sechs. Nahezu alle Linien, welche das 

Allel der früh reifenden Elternlinie (PL) an diesem Locus trugen, induzierten eine 

Kopfbildung bei hohen Temperaturen, während nur rund die Hälfte der DH-Linien, die das 

Allel der nicht-kopfinduzierenden PL trugen, die generative Phase erreichten. Die LAR 

wiesen eine hohe Variation aufund die QTL-Hotspots für LAR wurden auf chromosom eins, 

vier und sechs ermittelt. Die LAR QTL erklären 11 bis 29 % der phänotypischen Variation. 

Negative Korrelationen zwischen LAR und DCI sowie eine gemeinsame QTL-Lokalisation 

auf chromosom vier und sechs deuten darauf hin, dass die LAR einen Einfluss auf die 

Initiierung der Kopfanlage hat. Durch die Verwendung der Daten zur Kopfbildung von 151 
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DH-Linien, welche zuvor unter sechs verschiedenen Temperaturbedingungen im 

Gewächshaus evaluiert wurden, konnte ein lineares Modell mit zwei Phasen parametrisiert 

werden, welches die Kopfbildungsrate in Abhängigkeit zur Temperatur beschreibt. Die QTL-

Analyse mittels CIM wurde auf die Modellparameter übertragen: SL parametrisiert die 

Empfindlichkeit gegenüber Temperaturen unter dem Optimum, SR die Empfindlichkeit 

gegenüber Temperaturen über dem Optimum, BP beschreibt den Wendepunkt und Rmax 

beschreibt die maximale Entwicklungsrate bei optimaler Temperatur. Insgesamt wurden 20 

QTLs für alle Parameter entdeckt. Ein entscheidener QTL wurde auf dem Chromosom sechs 

identifiziert, er macht 6,3 %, 6,1 % und 27 % der jeweiligen phänotypischen Variation von 

BP, SL und SR aus. Dieses QTL wurde in niedrigen sowie hohen Temperaturbereichen 

nachgewiesen, wobei das SR QTL einen fünfmal so hohen Effekt wie das SL QTL bei sehr 

hohem LOD score (LOD=11) aufwies, was darauf hindeutet, dass die Bedeutung dieser 

Region bei hohem Temperaturen zunimmt. In dieser Region konnte zudem kein QTL für Rmax 

gefunden werden, was die zentrale Rolle des QTL für den Einfluss von suboptimalen 

Temperaturen weiter untermauert. Fünf QTL für Frühzeitigkeit konnten speziell für Rmax 

detektiert werden. Durch das Schätzen von marker-basierten Werten für die phenologischen 

Modellparameter entsprechend der additiven Alleleffekte der identifizierten QTL, wurde ein 

QTL-basiertes Modell entwickelt, um die Kopfbildung zu simulieren. Dieses kombinierte 

Model erklärt 46 % der phänotypischen Variation des Merkmals Kopfbildung. Die 

Vorhersagequalität des Modells wurde in sechs Feldversuchen auf vier Standorten mittels 

unabhängigen Daten von DH-Linien validiert. Dabei war das QLT-basierte Modell in der 

Lage den Zeitpunkt der Kopfanlage mit einer Abweichung von drei bis acht Tagen 

vorherzusagen und 28 bis 65 % der Variation im Zeitpunkt der Kopfanlage zu erklären. Das 

QTL-basierte Modell konnte zudem in vier weiteren Experimenten auf zwei Standorten 

ähnliche Ergebnisse erzielen, wobei es die Kopfanlage mit einer Fehlergenauigkeit von drei 

bis neun Tagen vorhersagte und 24 bis 41 % der genetischen Variation des Zeitpunktes der 
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Kopfanlage erklärte. Diese Ergebnisse zeigen, dass QTL-basierte Modelle ein 

vielversprechendes Werkzeug für die Züchtung sein können, um die Zuchtprogramme zu 

beschleunigen, verschiedene züchterische Strategien zu testen und die Züchtung auf spezielle 

Umweltbedingungen hin zu optimieren. 

Schlagworte: Blüteninduktion von Blumenkohl, QTL kartierung, Kopplung von 

pflanzenbaulicher Modellierung und QTL Kartierung  
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Abstract 

Cauliflower (Brassica oleracea var. botrytis) is an important vegetable crop. It is grown for 

its arrested inflorescence meristem forming the curd. Temperature is a key environmental 

factor influencing curding time of cauliflower. To identify quantitative trait loci (QTL) 

controlling curding time and its related traits in a range of different temperature regimes from 

12-27 °C, a doubled haploid (DH) mapping population segregating for curding time was 

developed and days to curd initiation (DCI), leaf appearance rate (LAR), and final leaf 

number (FLN) were measured. Composite interval mapping (CIM) revealed QTL hotspot 

regions for DCI on C06 and C09. Individual QTL explained between 11 and 41% of the 

phenotypic variation. The estimated additive effect was higher at high temperatures. 

Significant QTL × environment interactions (Q×E) for FLN and DCI on C06 and C09 suggest 

that these hotspot regions have a major influence on temperature mediated curd induction. 25 

% of the DH-lines did not induce a curd at temperatures higher than 22 °C. Applying a binary 

model revealed a QTL with LOD >15 on chromosome C06. Nearly all lines carrying the 

allele of the early maturing parental line (PL) on that locus induced curds at high temperatures 

while only half of the DH-lines carrying the allele of the non-curd inducing PL reached the 

generative phase during the experiment. Large variation in LAR was observed. Main QTL 

hotspots for LAR were detected on C01, C04 and C06. LAR QTL explained between 11 and 

29% of phenotypic variation. Negative correlations between LAR and DCI as well as QTL 

co-localizations on C04 and C06 suggest that LAR has also effects on development towards 

curd induction. Using the curding per se data for 151 DH lines which were previously 

evaluated under six different temperature regimes in greenhouse, two phase linear phenology 

model, describing curding rate to temperature was parameterized. QTL analysis by composite 

interval mapping was carried out on model parameters: SL which parameterizes the 

sensitivity to temperature below optimum, SR parameterizes the sensitivity to temperature 

above optimum, BP describe the point of rate change and also the computed Rmax describe the 
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maximum development rate at optimum temperature. A total of twenty QTLs were detected 

for all parameters. A major QTL was identified on C06 accounted for 6.3 %, 6.1 % and 28.5 

% of the phenotypic variation in BP, SL and SR respectively. Although this QTL was 

detected for both SL and SR, the SR QTL have five times the effect of SL QTL with very 

high lod score (LOD=11) which indicate that high temperatures enhance the role of this 

genomic region. At this genomic region no QTL for Rmax was detected which further support 

the central role in suboptimal high temperature effect. Six QTLs were specific for Rmax 

indicating earliness per se. A QTL based model was developed by estimating the marker-

based value of each phenology model parameter from the additive allele effects of QTLs 

detected and incorporating into the original phenology model to simulate curding time. The 

combined QTL and crop model explained 46 % of the phenotypic variation in curding time of 

the parameterization set. The predictive quality of the model was validated in field trials on 

independent validation data set of DH lines at four locations in six experiments. In this set, the 

QTL-based model was able to predict the curding time with a root mean square error (RMSE) 

of prediction of 3 to 8 days explaining 28 to 65 % of the variation in curding time. The QTL 

based model was further used to predict the performance of a test cross at two locations in 

four experiments. The QTL-based model could predict the curding time with RMSE of 3 to 9 

days and explain 24 to 41% of the genetic variation in curding time. This suggests that the 

QTL based model is a promising tool for plant breeders to accelerate their breeding programs, 

test different plant breeding strategies and to design ideotypes for contrasting target 

environments. 

Keywords: Cauliflower floral induction, QTL mapping, coupling of crop modeling and QTL 

mapping 
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CHAPTER 1  

General Introduction 

1.1 The family Brassicaceae 

Brassicaceae contains 338 genera and 3709 species (Warwick et al. 2006b). In this family, the 

genus Brassica comprises six cultivated species: three diploid species of Brassica rapa (AA 

genome, 2n=20), Brassica oleracea (CC genome, 2n=18) and Brassica nigra (BB genome, 

2n=16), and three amphidiploids species: Brassica juncea (AABB, 2n=36), Brassica napus 

(AACC, 2n=38) and Brassica carinata (BBCC, 2n=34), which were formed through 

hybridization of their diploid genome counterparts (U, 1935).   

Brassica oleracea includes most economic important cultivated vegetable Brassica species 

which are morphologically highly diverse with different crop forms such as the enlarged 

hypocotyls of kohlrabi, the floral meristem of cauliflower and broccoli, and the fresh leaves of 

kales and cabbages (Dixon, 2007 and Liu et al. 2013).   

1.2 Cauliflower development and temperature effect 

Cauliflower (Brassica oleracea L. var. botrytis L. 2n=2x=18) is an important vegetable crop. 

It is grown for its arrested inflorescence meristem forming the curd. This arrested stage 

precedes flowering (Dixon, 2007). It is cultivated worldwide and adapted to a wide range of 

environments ranging from tropic to temperate zone during most growing seasons (Sharma et 

al. 2004).  

The development of cauliflower between emergence and curding is characterized by three 

distinct development phases: the juvenile phase during which plants are insensitive to 

vernalizing temperature, and vernalization sensitive stage in which plants require relatively 

cool temperatures for induction and finally the curd growth phase (Dixon, 2007).  
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Many Brassicas such as brussels sprouts (B. oleracea var. gemmifera) (Thomas 1980), 

cabbage (B. oleracea var. capitata) (Lin et al. 2005) and cauliflower (B. oleracea var. 

botrytis) (Hand and Atherton 1987; Booij and Struik 1990; Wurr et al. 1993) must pass 

through a juvenile phase before they become competent to perceive the vernalization 

stimulus. In cauliflower, the length of the juvenile phase is defined as the number of initiated 

leaves (Hand and Atherton 1987; Booij and Struik 1990; Wurr et al. 1993). Considerable 

genetic variation has been observed in the lengths of juvenile phase across a range of 

cauliflower genotypes (Hand and Atherton 1987; Booij and Struik 1990; Wurr et al. 1993; 

Wurr et al. 1994). Wiebe (1972a) found that the length of the juvenile phase was 4 and 8 

leaves for cultivars Aristokrat and Sesam, respectively. Hand and Atherton (1987) reported 

that the ends of juvenile phase after the initiation of 13 to 15 leaves in cultivar Perfection and 

17 to 19 leaves in cultivar White Fox. Similarly, Boiij and Struik (1990) found the length of 

juvenile phase to be 17 and 19 for cultivars Delira and Elgon, respectively.  

Following the end of juvenility and during the vernalization sensitive stage, temperature is the 

main environmental factor influencing B. oleracea curding time (Salter 1969; Sadik 1967; 

Hand and Atherton 1987). The relatively cool temperatures which promote curd initiation are 

termed as vernalization. Frequent high temperature occurrence during the vernalization 

sensitive stage delays curd initiation and increases the total number of leaves produced (Booij 

and Struik 1990; Fujime and Okuda 1996; Fellows et al. 1999).  

Genetic variation in cardinal temperatures for vernalization has been observed across a range 

of cauliflower genotypes. Pearson et al. (1994) reported that the rate towards curd initiation in 

cauliflower increased up to a mean temperature of 14 °C but declined thereafter. Wurr et al. 

(1995) reported maximum vernalization rate in the range 9 to 9.5 °C which declined to zero 

below 9 °C and above 21 °C for the cultivar White Fox. Wurr and Fellows (1998) indicated 

an optimum temperature of 14 °C in winter cauliflower. Wurr and Fellows (2000) reported 
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that under UK conditions, the optimum temperature for curd initiation of all maturity types 

ranged between 9 °C and 14 °C. Temperature optimum of most spring and summer cultivars 

of the temperate region ranges between 10 to 16 °C (Wiebe 1972abc; Hand and Atherton 

1987; Wurr et al. 1990; Booij and Struik 1990). However, temperatures above 23 °C are 

assumed inhibitory for curd initiation (Nieuwhof  1969; Fellows et al. 1999; Kage and Stützel 

1999; Guo et al. 2004).  

Temperature is also the reason for two morphological abnormalities that can attribute to 

cauliflower curd quality defects “bractiness” and “riciness”. High temperature enhances the 

development of the bracts in the axis of the inflorescence primordium through the curd 

surface (Fujime and Okuda 1996; Grevsen et al. 2003). Riciness which refers to the 

development of small flower buds on the curd surface in plants which exposed to low 

temperature at curd initiation representing a kind of over vernalization (Wiebe, 1973).  

After curd initiation, the rate of curd growth is influenced by temperature (Wiebe 1975; Wurr 

et al. 1990). Rahman et al. (2007a) studied the effect of temperature on growth and 

development of cauliflower after curd initiation and found that cauliflower curds increased in 

size with the increase in mean growing temperature after curd initiation and the optimum 

temperature for curd growth was 21-22 °C.  

1.3 Flowering time, Brassica genus and Arabidopsis  

Flowering time is a major development switch that is controlled by complex regulatory 

pathways which integrates endogenous and environmental cues (Koornneef et al. 2004). Six 

main flowering pathways have been described in Arabidopsis: the photoperiod pathway, 

vernalization pathway, the autonomous pathway, the gibberellin pathway (Simpson and Dean 

2002) age pathway, and ambient temperature pathway (Fornara et al. 2010).  



4 

 

Molecular bases of flowering time have been extensively studied in Arabidopsis. More than 

180 genes have been identified which play a role in flowering time (Fornara et al. 2010). 

Comparative genomics studies have shown substantial genomic collinearity and conservation 

between Brassica and Arabidopsis genomes (Lagercrantz et al. 1996; Parkin et al. 2005) 

which can facilitate the utilization of Arabidopsis genomic tools in Brassica research 

(Lagercrantz et al. 1996; Parkin et al. 2005).  

In both genera, FLOWERING LOCUS C (FLC) is a major determinant of vernalization 

requirement. FLC acts as repressor of flowering (Michaels and Amasino 1999) and is 

downregulated during vernalization. Five copies were described in B. rapa  and B. oleracea, 

and nine copies in B. napus (Lagercrantz et al.1996; Tadege et al. 2001; Schranz et al. 2002; 

Okazaki et al. 2007; Yuan et al. 2009; Zhao et al. 2010). 

 In Arabidopsis, FRIGIDA (FRI) locus is also a repressor of flowering by up regulating FLC. 

Variation in flowering time in Arapidopsis was shown to be associated with (FRI) alleles 

(Clarke and Dean 1994). Plants with dominant allelic genotype at (FRI) locus confer late 

flowering, and change into early flowering by vernalization (Johanson et al. 2000). Two FRI 

homologs in B. oleracea have been mapped to regions on C03 and C09. Four FRI homologs 

were described in B. napus and one gene co-localized to a major flowering time QTL (Wang 

et al. 2011a).  

Interactions between meristem identity genes (MIGs) and temperature effects have been 

studied in Arabidopsis (Bowman et al. 1993) and B. oleracea (Anthony et al. 1996). Two 

functional and one non-functional APETALA1 (AP1) orthologs were isolated in the Brassica 

genome: BoAP1-a (Anthony et al. 1996), BoAP1-c (Smith and King 2000), and BoAP1-b 

(Lowman and Purugganan 1999), respectively. The expression of BoAP1 in cauliflower plants 

which were grown at temperatures higher than 25 °C was switched off during the vegetative  

reversion (Anthony et al. 1996). Kop et al. (2003) suggested that BoAP1-a involved in 
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controlling bract development, which essentially occurs at high temperatures during curd 

development.  

Quantitative trait loci for flowering time were detected in different Brassica mapping 

populations and some QTL hotspots overlapped with FLC orthologs (Lagercrantz et al. 1996; 

Osborn et al. 1997; Bohuon et al. 1998; Rae et al. 1999; Sebastian et al. 2002; Schranz et al. 

2002; Brown et al. 2007; Long et al. 2007; Zhao et al. 2010; Uptmoor et al. 2012). However, 

it was also shown that several of the flowering time QTL did not co-segregate with the FLC 

loci in B. oleracea (Razi et al. 2008) or that the underlying FLC gene was not functional 

(Okazaki et al. 2007).  

1.4 QTL mapping  

1.4.1 Molecular markers and genetic mapping  

Molecular markers reveal polymorphism at the DNA sequence level (Jones et al. 1997). 

Different molecular detection techniques are used to reveal the variation in DNA sequence. 

These techniques can be grouped into three major classes: (1) low throughput, hybridization 

based markers such as restriction fragment length polymorphism (RFLP); (2) medium 

throughput, PCR based markers such as random amplified polymorphic DNA (RAPD), 

amplified length polymorphism (AFLP) and simple sequence repeat or microsatellite (SSR) 

(3) high throughput sequence based markers such as single nucleotide polymorphism (SNP) 

(Collard et al. 2005; Mammadov, 2012). In this study SNPs were used to detect the 

polymorphisms on the DNA level. SNPs are individual nucleotide differences between DNA 

sequences which allow the detection of variation between individuals or within populations. 

As a nucleotide base is the smallest unit of inheritance, and can occur in coding and non-

coding regions of the genome and at different frequencies in different genomic regions, SNPs 

provide the ultimate form of molecular genetic markers and have been increasingly used for 
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QTL mapping studies because they are widely distributed through the genome. Typically, 

SNP frequencies in a range of one SNP every 100-300 bp in plants, therefore, they can 

provide higher resolution of the map compared to other markers system. Moreover, they are 

co-dominant markers, amenable to automation and can be rapidly detected, with a high 

efficiency for detection of polymorphism (Edwards et al. 2007).  

Genetic map construction requires the development of an appropriate mapping population; 

screen the mapping population for marker polymorphism with suitable molecular marker 

system. Once the individuals have been genotyped with a set of molecular markers, the 

linkage map can be constructed by arranging the markers in a linear order on the basis of 

recombination frequencies and estimated genetic distance (Jones et al. 1997).  

1.4.2 Mapping populations  

Mapping populations are usually developed by crossing two inbred lines that differ in the 

target trait. Different mapping populations are used in QTL mapping studies including F2 

popualtion, backcross (BC), recombinant inbred lines (RILs), near isogenic lines (NILs) and 

double haploids (DH). Each of the above mentioned populations has its own advantages and 

disadvantages. F2 and BC are the simplest types of mapping populations because they are easy 

to construct. However, F2 and BC populations are considered to be temporary populations. In 

contrast, recombinant inbred lines (RILs), near isogenic lines (NILs) and doubled haploid 

(DHs) are immortal populations (Collard et al. 2005).  

1.4.3 Quantitative trait loci and detection methods  

The advent and use of molecular markers for the detection of DNA polymorphisms at specific 

locations in the genome enables identification of genetic loci controlling variation in 

quantitative traits. Several statistical methods have been used in QTL mapping. The most 

basic approach for detecting an association between a molecular marker and a trait is to 

conduct single marker analysis one at a time and split the progenies according to the genotype 
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at this marker, then comparing the phenotypic means of two classes of progeny using t-test or 

ANOVA to deduce the marker linked to a QTL (Doerge, 2002).  

Lander and Botstein (1989), based on the advent of complete linkage maps, proposed the 

Interval Mapping method (IM) and carried out a systematic scan of the whole genome 

through the use of flanking markers when searching for a single QTL in each map interval. 

This method is more powerful than single marker analysis. However, it has some drawbacks. 

Since it is a one QTL model, the QTL position will be biased when more than one QTL is 

located at the same chromosome (Haley and Knott 1992). To solve this problem, Zeng (1994) 

proposed a more sophisticated, precise and effective method called Composite Interval 

Mapping (CIM). The principle of this method is combining interval mapping and multiple 

regressions (Haley and Knott 1992). CIM has proved a better performance than interval 

mapping and represents the most commonly approach for mapping QTL (Li et al. 2010).  

Although QTL studies provide useful information about the genetic control of a trait, there are 

some limitations. Due to the differences in polymorphisms pattern at different sets of markers 

among the different population, the location and effect size of QTL are specific to the the 

studied population. QTL analysis detects genomic regions, not genes, controlling the trait. 

Such genomic regions encompass hundreds of genes, so it is difficult to infer the most 

influencing gene (Kearsey, 2002).  

1.4.4 Mapping populations and flowering time QTLs in Brassica oleracea 

Several mapping populations have been developed in B. oleracea using different markers 

system and QTL have been identified for a wide range of crop traits. For instances, a DH 

population of a cross between A12 (rapid cycling Chinese Kale line; B. oleracea ssp. 

alboglabra ) and GD (Calabrese; B. oleracea ssp. italica) using RFLP markers (Bohuon et al. 

1998); F2 population of a cross between cabbage (B. oleracea ssp. capitata) and broccoli (B. 
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oleracea spp. italica) using RFLP and RAPD markers (Camargo et al. 1997); DH population 

of a cross between cauliflower (B. oleracea ssp. botrytis ) and brussels sprouts (B. oleracea 

spp. gemmifera) based on RFLP, AFLP and SSR markers (Sebastian et al. 2002); F2 

population of a cross between brocooli (B. oleracea ssp. italica) and cauliflower (B. oleracea 

spp. botrytis) using 1,062 sequence-related amplified polymorphism markers (SRAP), 155 

cDNA SRAP markers, 26 SSR markers, 3 broccoli BAC end sequences and 11 known 

Brassica genes (Gao et al. 2007).   

In previous studies, many QTLs affecting flowering time in B. oleracea have been identified. 

Camargo and Osbron (1996) identified two QTLs in F3 families of a across between cabbage 

by broocoli on C07 and C08. 

 Bohuon et al. (1998) using DH mapping population provide evidence of five flowering time 

QTLs, one each on C02, C03 and C05 and two on C09. Rae et al. (1999) using substitution 

lines derived from the same parental lines used by the latter study have detected additionally 

two QTLs on C01, one on C03 and two on C09. On the same mapping population developed 

by Bohuon et al. (1998), Uptmoor et al. (2008) identified eleven QTLs for floral induction 

and flowering tow each on C02 and C05, three each on C03 and C09, and one on C06.  

Okazaki et al. (2007) in F2 population of a cross between B. oleracea var. italica and B. 

oleracea var. capitata revealed six flowering time QTLs; two on C02 and one each on C03, 

C06, C08 and C09. Sebastian et al. (2002) identified two QTLs one each on C07 and C08 in a 

cross of cauliflower and brussels sprout.  

1.4.5 Marker assisted selection  

Conventional plant breeding is typically based on phenotypic selection of individuals with 

best performance for certain trait. Although, conventional breeding methodologies have 

extensively proven successful in improvement of plant cultivars, considerable difficulties are 
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often encountered during the process. However, the efficiency of conventional plant breeding 

has been enhanced by the rapid development of molecular markers and the large number of 

quantitative trait loci (QTLs) mapping studies which allow the use of  marker assisted 

selection (MAS) in different crop species. MAS is carried out on the basis of a marker instead 

of the phenotypic trait itself (Pérez-de-Castro et al. 2012). The successful application of MAS 

relies on the tight association between the marker and the major gene or QTL responsible for 

agronomical important trait in crop plants. Markers linked to a QTL of interest can be used in 

MAS whereby desirable phenotypes are selected based on the presence of the favorable allele 

at one or more marker near the QTL.  

Compared with conventional plant breeding, MAS has significant advantages. MAS allows 

the selection for a trait to be carried out during the seedling stage and thus reduce the time 

cost. MAS is not affected by environment allowing the selection under any environment. For 

traits controlled by multiple genes; favorable alleles can be selected simultaneously and thus 

used for gene pyramiding. Selection based on molecular markers can be faster, cheaper and 

more accurate than conventional phenotypic assays. However, integration of MAS in plant 

breeding program has few successful stories for many reasons such as accuracy of detected 

QTL, reliability of marker trait association, lack of commonly valid QTL marker associations 

among different sets of breeding material, loss of linkage between marker and QTL due to the 

recombination which might occur between the marker and QTL (Jiang, 2013).  

1.5 Responses to temperature in crop models  

Many crop growth models have been developed to describe plant response to environmental 

factor, such as temperature. In modeling development rate to temperature, current models 

have adopted various functions. Both crop models, Sirius (Jamieson et al. 1998b) and 

CERES-Wheat (Ritchie and Otter, 1985) assume a simple linear relationship between 

temperature and development rate. Although of the simplicity of linear model using only two 
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parameters, it fails to account for the fact the temperatures greater than optimal delay growth 

(Yan and Hunt 1999; Parent and Tardiue 2014). To accommodate for the invalidity of linear 

function beyond optimum temperature, several crop models have adopted either bilinear 

model such as STICS (Brisson et al. 2008), and CropSyst (Stöckle et al. 2003) or three linear 

model in APSIM-maize (Hammer et al. 2010) and CropSIM (Hunt and Pararajasingham 

1995). Although, the three linear-models is more close to reality than bilinear models, the 

greater number of parameters used, results in calibration error, which renders the application 

of this function (Yan and Hunt 1999). Since the segmented linear model consists of a 

combination of linear equations, which introduces abrupt changes, curvilinear response 

temperature response functions have been introduced in several crop models such as beta 

function with four parameters in GECROS (Yan and van Laar, 2005).  

1.6 Responses to temperature in cauliflower crop models  

In cauliflower, several phenology models have been developed with major focus on 

scheduling and predicting harvest time. These models are mainly driven by temperature. 

Several studies divided the development of cauliflower from transplanting to harvest into 

three distinct phases: juvenile phase, vernalization phase and curd growth phase (Wiebe 

1972abc; Wiebe 1973; Wurr et al. 1981; Booij and Struik 1990a; Grevsen and Olsen 1994; 

Kage and Stützel 1999; Wurr et al. 2004). Different temperature response functions were used 

for the different development phases. Grevsen and Olesen (1994a) developed a model for 

cauliflower from transplanting to curd initiation. They described the duration of juvenile 

phase by a simple temperature sum model and the duration of curd induction phase by bi-

linear function of temperature which was symmetrical below and above an optimal 

temperature with three cardinal temperatures of 0, 12.5 and 25.6 °C.  Wurr et al. (1993) 

assuming the juvenility ends at 17 leaves in cultivar White Fox, they examined different 

segmented temperature response function forms to predict the time of curd initiation and 
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indicated that a three-stage linear temperature function with four cardinal temperatures of 9, 9, 

9.5 and 21 °C was appropriate for this variety. Kage and Stützel (1999) developed cauliflower 

harvest prediction model. The model is a combination of empirical relationships derived from 

field data of two varieties Fremont and Linday. The juvenile phase was described by 

expolinear function for the relation between temperature sum and leaf number. The 

vernalization process started after end of juvenile and was simulated according to Wiebe 

(1972b) using a three segmented linear model with for cardinal temperatures -2, 10, 13, and 

28 °C. On the other hand, other authors used simple models predicted the time of harvest 

based on curd samples after initiation which are used to predict the number of days that are 

required to reach a certain size using the relation between curd diameter and temperature sum 

(Salter 1996; Wurr et al. 1990ab; Jensen and Grevsen, 2005). Wurr et al. (1990b) developed a 

model using quadratic function between the logarithm of curd diameter and accumulated 

degree days to predict when a curd of specified size will be produced. Web-based forecast of 

cauliflower harvest time use a second order polynomial relationship between the natural 

logarithm of the curd diameter and temperature (Jensen and Grevsen 2005).  

Although these models have the potential to predict the phenotype of a certain genotype under 

wide range of environments, they are derived empirically (Kage and Stützel, 1999) or through 

calibration (Wurr et al. 1993) and designed specifically for limited number of genotypes on 

the basis of phenotypic observations and not the genotype in terms of genetic makeup. Thus, 

they are restricted to the environments and genotype tested (Reymond et al. 2003) and lack 

real genetic information which interact with environment to produce the phenotype 

(Baenziger et al. 2004).  
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1.7 Integration of crop modeling and QTL mapping  

In quantitative genetics a phenotype is the result of the expression of the genotype, the 

environment and the interactions between genotype and environment. Genotype by 

environment interaction (GEI) is a common phenomenon in complex agronomic trait where 

changes in the relative performance of a genotype across different environments can be 

observed. Despite the identification and the potential of numerous quantitative trait loci 

involved in the control of different plant traits in different plant species, the implementation in 

plant breeding is not straightforward and greatly hinders by GEI. The incidence of GEI effect 

influences the selection of superior genotypes for a target population of environments. Plant 

breeders traditionally take into account this effect by the use of multi-environmental trials to 

assess cultivar adaptation within a target population of environments. The performance of a 

genotype across environments determines the significance of the interaction. In the absence of 

GEI, the performance of a genotype remains stable across environments, whereas the 

presence of the GEI confirms the superiority of a particular genotype in particular 

environments. As a result, many QTLs are only detected in narrow range of environmental 

conditions and their use is restricted to the corresponding environments. To overcome this 

difficulty, a growing interest in the use of ecophysiological model (Yin et al. 2003). 

Ecophysiological model have been proved to be able to predict phenotypic trait of a genotype 

under wide range of environmental conditions, and therefore it has the potential to resolve 

genotype-by-environment interactions (Yin et al. 2003; Hammer et al. 2005). The 

physiological model describes the multi phenotypic responses of a given genotype to diverse 

environment by a set of parameters. Values of these parameters can explain the differences 

among genotypes on the basis of their genotypic specific parameters. Such parameters are 

often referred to as ‘genetic coefficient’ (Baenziger et al. 2004), indicating that the variation 

of these parameters is under genetic control (Reymond et al. 2003). However, these genetic 

coefficients are estimated from phenotypic observations designed specifically for their 
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estimation which likely include some impact of environment and lack the incorporation of 

direct genetic information (Baenziger et al. 2004). Given the potential that model parameters 

are genetically controlled, the variability in parameters values in a breeding population can be 

used to dissect the genetic basis of the model parameters (Yin and Struik, 2010). In the view 

of added value of crop modeling to classical quantitative genetics, combining 

ecophysiological model and quantitative trait loci has been suggested as an approach to 

understand and predict complex traits variation across environments (Reymond et al. 2003; 

Yin et al. 2004; Hammer et al. 2006; Collins et al. 2008). Ultimately, this approach offer in 

silico prediction of a phenotype through the genotype (Hammer et al. 2006; Bertin et al. 

2010).  

The principle of this approach is to develop a response growth curve for each individual, 

estimate curve individual-specific parameters, then treat the curve parameters estimates as 

phenotypes in QTL analysis (Wu et al. 2002), and finally incorporating the estimated effect of 

QTLs of the model parameters back to the ecophysiological crop model by replacing the 

model parameters by their QTL effect estimated value.  

Several studies have used the complementary aspects of crop modeling and QTL mapping as 

a tool to assist plant breeding and to predict the phenotype. Yin et al. (2000b) using SYP-BL 

crop growth model (Yin et al. 2000a) to assess the ability of SYP-BL model with QTL based 

estimates of physiological input parameters to predict the yield and shoot biomass of 

recombinant inbred lines of barley (Hordeum vulgare L.). The QTL based model predicted 

the yield and the shoot biomass with accuracy similar to the SYP-BL model. In maize 

Reymond et al. (2003) established response curves of leaf elongation rate to three key 

environmental variables meristem temperature, evaporative demand and soil water status. The 

parameters of these responses were estimated for 100 recombinant inbred lines (RILs) 

mapping population and identified QTLs for these parameters. The combined model was used 
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to predict the leaf elongation rate for 11 new (RILs) grown under six regimes and could 

account for 74 % of the phenotypic variability of leaf elongation rate. Nakagawa et al. (2005) 

in their attempt to quantify the thermal time and photoperiod responses of flowering time in 

rice (Oryza sativa L.) in back cross inbred lines, They used a three stage beta model which 

parameterizes the sensitivity to temperature; sensitivity to photoperiod was applied and QTLs 

for the model parameters were identified. The QTL based model could explain 81 % of the 

phenotypic variation in flowering time. Recent model developed by Uptmoor et al. (2012) 

based on earlier model (Uptmoor et al. 2008), used genotype specific parameters and QTL 

effects as inputs to a model for predicting flowering time in Brassica oleracea. The QTL 

based model explained 66 % and 56 % of the phenotypic variation for time to floral induction 

and time to flowering, respectively. In bread wheat (Triticum aestivum L.) Bogard et al. 

(2014) using two parameters of an ecophysiological model representing the vernalization 

requirements and photoperiod sensitivity proposed a QTL-based model which  explained 48 

to 63 % of the variation in heading date of an independent validation set.  

1.8 The problem 

Harvest timing of many vegetable crops, including cauliflower, plays a major role in 

determining produce prices. In temperate zone, cauliflower producers stagger plantings to 

improve crop continuity to the market. However, if high temperature occurs during the 

temperature sensitive stage a delay in curding time of some plantings will occur and does not 

mature in their scheduled expected order which results in either peaks or troughs in product 

supply which reflects in prices fluctuations.  

Understanding the genetic basis of the control of curding time and its related traits associated 

with temperature effect would help plant breeder to develop cultivars with reliable harvest 

time, and therefore improve the predictability of harvest time (Dixon, 2007). Developing 
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cultivars wide adapted to high temperature is a major breeding goal (Sharma et al. 2004; 

Farnham and Björkmann 2011; Uptmoor et al. 2012) 

1.9 Goals of the present dissertation 

The first objective of this study was to identify quantitative trait loci (QTL) in B. oleracea 

var. botrytis genome affecting curding time and its related traits with respect to temperature 

sensitivity as primary prerequisite to improve reliability in harvest time of cauliflower and 

therefore more predictable harvest time.  

The second objective was to develop a QTL based phenology model. To achieve this goal, the 

specific objectives were: First, parameterization of two phase linear phenology model 

describes the rate of development, from transplanting to curd initiation, in relation to 

temperature for each DH line of a mapping population. Second, identify the genetic basis of 

the model parameters. Third, incorporate the estimated QTL based parameters into the 

phenology model by replacing the model parameters by their estimated QTL effect. 

The third objective was to use and test the ability of the QTL based model to predict the 

curding time in cauliflower under diverse environments. 
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2.1 Abstract 

Temperature is the main environmental factor influencing curding time of cauliflower. 

Temperatures above 20-22 °C inhibit the development towards curd even in many summer 

cultivars. To identify quantitative trait loci (QTL) controlling curding time and its related 

traits in a wide range of different temperature regimes from 12-27 °C, a doubled haploid (DH) 

mapping population segregating for curding time was developed and days to curd initiation 

(DCI), leaf appearance rate (LAR), and final leaf number (FLN) were measured. The 

population was genotyped with 176 single nucleotide polymorphism (SNP) markers. 

Composite interval mapping (CIM) revealed repeatedly detected QTL for DCI on C06 and 

C09. The estimated additive effect increased at high temperatures. Significant QTL x 

environment interactions (Q x E) for FLN and DCI on C06 and C09 suggest that these hotspot 

regions have major influences on temperature mediated curd induction. 25 % of the DH-lines 

did not induce curds at temperatures higher than 22 °C. Applying a binary model revealed a 

QTL with LOD >15 on chromosome C06. Nearly all lines carrying the allele of the early 

maturing parental line (PL) on that locus induced curds at high temperatures while only half 

of the DH lines carrying the allele of the unreliable PL reached the generative phase during 

the experiment. Large variation in LAR was observed. QTL for LAR were detected 

repeatedly in several environments on C01, C04 and C06. Negative correlations between 

LAR and DCI and QTL co-localizations for both traits on C04 and C06 suggest that LAR has 

also effects on development towards curd induction. 

2.2 Introduction  

Floral transition is a major development switch that is controlled by regulatory pathways, 

which integrate endogenous and environmental cues (Koornneef et al. 2004). Four main 

regulatory pathways have been described in Arabidopsis thaliana: the photoperiodic pathway, 
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the autonomous pathway, the vernalization pathway, and the gibberellin pathway (Simpson 

and Dean 2002).  

While A. thaliana seeds can be vernalized, B. oleracea vegetables undergo two major post-

embryonic development transitions, the juvenile–to-adult transition (vegetative phase change) 

and the adult-to-reproductive transition (floral induction). During the juvenile phase, plants 

are incompetent to initiate reproductive development even when grown under favorable 

conditions. Juvenility of cauliflower ends after a specific number of initiated leaves (Hand 

and Atheron 1987; Wurr et al. 1993). The critical number of initiated leaves is assumed to be 

genotype dependent, but might be influenced by the environment as well (Wurr et al. 1994). 

During the adult vegetative phase, curd induction is sensitive to temperature. High 

temperatures delay thermal time to curd initiation and increase the total number of initiated 

leaves (Booij and Struik 1990; Fujime and Okuda 1996; Fellows et al. 1999). While relatively 

moderate temperature conditions promote curd induction, high temperatures affect the rate of 

development towards floral induction and subsequently increase thermal time to harvest 

(Sadik 1967; Salter 1969; Duclos and Björkman 2008). 

Growers stagger cauliflower planting-dates to ensure continuous market supply. However, 

overlapping in maturity time of different plantings occurs if the temperature is high during the 

temperature sensitive stage of some of the plantings (Wiebe 1980; Wiebe 1990; Booij and 

Struik 1990; Olesen and Grevsen 2000), which frequently leads to fluctuations in availability 

and price of the product. The different cultivars of the crop have large variations in optimum 

temperatures for the development towards curd induction and are adapted to diverse climates 

from the temperate zone to the tropics. Within the temperate climate winter cultivars with 

strong vernalization requirement can be distinguished from spring and summer types with 

shorter vegetation periods and less sensitivity to temperature. It is supposed that a certain 
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vernalization requirement or at least a facultative response is causative for the temperature 

sensitivity of spring, summer and even tropical cultivars (Friend et al. 1985). 

Temperature response functions for crop development from end of juvenility to floral 

induction may have four cardinal temperatures: the minimum temperature below which no 

development occurs, the minimum and maximum optimum temperature between which 

development rate reaches its maximum and the maximum temperature above which no 

development occurs. Temperature optimum of most spring and summer cultivars of the 

temperate region ranges between 10-16°C (Wiebe 1972a, b, c; Wurr et al. 1981; Wurr et al. 

1990; Hand and Atherton 1987; Booij and Struik 1990). Nieuwhof (1969) assumed that 

temperatures above 23 °C are inhibitory for curd initiation. 

The regulation of floral induction pathways has been extensively studied in the model plant A. 

thaliana. The Brassica genus is closely related to Arabidopsis. In both genera, FLOWERING 

LOCUS C (FLC) is a primary determinant of vernalization requirement. FLC acts as dosage- 

dependent repressor of flowering (Michaels and Amasino 1999) and is downregulated during 

vernalization. FLC causes a delay in flowering by repressing the expression of the floral 

integrator FLOWERING LOCUS T (FT). Lin et al. (2005) could show that a decrease in the 

FLC transcript level was correlated with an increase in FT transcript level in the apex. While 

A. thaliana contains only one FLC gene, Brassica crops have multiple copies of FLC. Five 

copies each were described in B. rapa and B. oleracea and nine in B. napus (Lagercrantz et 

al.1996; Tadege et al. 2001; Okazaki et al. 2007; Schranz et al. 2002; Yuan et al. 2009; Zhao 

et al. 2010) Recently, it was shown that vernalization reduced the transcription levels of 

BoFLC2 and BoFLC3 and upregulated expression levels of the flowering integrator BoFT in 

cauliflower (Ridge et al. 2014). FLC expression is upregulated by FRIGIDA (FRI). In 

Arabidopsis, allelic variation at the FRI locus is a major determinant of natural variation in 

flowering time (Clarke and Dean 1994). Dominant alleles of FRI confer late flowering, which 
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is reversed to earliness by vernalization (Johanson et al. 2000). Two BoFRI loci have been 

mapped to regions on C03 and C09, which are syntenic to chromosome 5 of Arabidopsis 

(Irwin et al. 2012). Four FRI homologs were described in B. napus; at least one gene co-

localized to a major flowering time QTL cluster (Wang et al. 2011a). 

Temperature effects on meristem identity genes have been identified in Arabidopsis (Bowman 

et al. 1993) and B. oleracea (Anthony et al. 1996). Two functional and one non-functional 

APETALA1 (AP1) orthologs were isolated in the Brassica genome: BoAP1-a (Anthony et al. 

1996), BoAP1-c (Smith and King 2000), and BoAP1-b (Lowman and Purugganan, 1999). 

BoAP1 expression was switched off during vegetative reversion of cauliflower plants grown 

at temperatures above 25 °C (Anthony et al. 1996). Kop et al. (2003) suggested that BoAP1-a 

plays a role in controlling bract development, which predominantly occurs at high 

temperatures during curd development.  

Quantitative trait loci for flowering time were detected in different Brassica mapping 

populations and some QTL regions overlapped with FLC orthologs (Lagercrantz et al. 1996; 

Osborn et al. 1997; Bohuon et al. 1998; Rae et al. 1999; Sebastian et al. 2002; Schranz et al. 

2002; Brown et al. 2007; Long et al. 2007; Zhao et al. 2010; Uptmoor et al. 2012). However, 

it was also shown that several of the flowering time QTL did not co-segregate with the FLC 

loci in B. oleracea (Razi et al. 2008) or that the underlying FLC gene was not functional 

(Okazaki et al. 2007).  

Most QTL studies for abiotic stress traits are carried out in only two controlled environments 

or in multi-environment field trials. Experiments under controlled conditions have the 

advantage that one environmental factor (e.g., temperature) can be widely varied with 

precision without influencing other environmental factors (e.g., photoperiod, light intensity, 

humidity). Fiedler et al. (2014) have shown that finding optimum conditions, reflecting the 

best compromise between maximum phenotypic variance and error variance as a result of 
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environmental stress is often difficult. We used multiple controlled environments with 

different temperatures for the present study and hypothesized that loci controlling temperature 

sensitivity during cauliflower development should appear as QTL in several high temperature 

environments and that QTL for earliness per se should appear in all environments. The 

objective of the present study was to identify genomic regions influencing sensitivity to 

temperature, which are suitable to develop wide adaptation cultivars, i.e., cultivars with a 

reliable developmental time towards curd induction and harvest time under different 

temperature regimes. 

2.3 Materials and Methods 

2.3.1 Plant material and genotyping  

 

A doubled haploid (DH) population of 161 lines was derived from anther culture of a F1 cross 

between two homozygous parental lines (PLs). The material is not publicly available. The PLs 

were differing in reliability in time to curd induction. The unreliable PL (P1) produces high 

quality curds, but shows increased time to maturity and a broader harvest window (i.e., more 

harvesting passages due to higher variation in time to maturity) at unfavorable high 

temperature conditions. Harvest-time delay and variability of the reliable PL (P2) is less 

pronounced at high temperatures. The population was genotyped with 176 single nucleotide 

polymorphisms (SNP) markers. The genetic map was constructed using MapMaker 3 and the 

Haldane function. The total map length was 891.2 cM spanning over nine chromosomes. 

Average distance between SNP markers was 5.3 cM.  

2.3.2 Growing conditions and experimental setup 

Two seeds of each DH line and PLs were sown into seedling trays filled with Potgrond P 

(Klasmann-Deilmann GmbH). Seedlings were raised in a greenhouse at 22°C and a 

photoperiod of 16 h until all plants had four to five visible leaves. Plants were thinned to one 
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seedling per line at the two-leaf stage. Seedlings were then transplanted into three-liter pots 

filled with the same substrate and placed into a greenhouse in a randomized complete block 

design with four replicates. Plants were grown at a photoperiod of at least 16 h. If natural day 

length was below 16 h and/or radiation was low, 200 µmol m
-2

s
-1

 additional 

photosynthetically active radiation (PAR) at plant height was provided by 400 W Phillips 

SON-T Agro lamps. Plants were fertigated daily with 0,5 g l
-1

 Scotts Universal solution. 

Fungicides were applied if necessary. 

Air temperature was measured at the level of plant height every 10 minutes using TinyTag 

View 2 data loggers (Gemini Data Loggers Ltd., West Sussex, UK). The daily mean/min/max 

temperatures recorded inside the greenhouse for six temperature treatments were 

11.8/10.6/15.5, 15.5/13.4/18.9, 17.3/15.5/19.6, 19.0/17.0/21.1, 21.4/16.0/22.8 and 

27.0/22.2/28.6 °C. Standard deviations of daily means were 0.2, 1.4, 0.8, 1.1, 0.9 and 1.8 °C. 

An additional temperature treatment was conducted in growth chambers with two replicates 

per line. Mean/min/max temperature during this treatment was 26.5/22.5/27.6 °C with 16 h 

light with an intensity of 550 µmol m
-2 

s
-1

. All experiments were terminated 120 d after 

transplanting. 

2.3.3 Phenotypic measurements  

In every temperature treatment, days to curd initiation (DCI) were recorded twice a week. 

DCI was considered to have occurred when the diameter of the curd was ≥ 1 cm, which 

means that true time to floral induction occurred before DCI but DCI is the first visible 

indication that floral induction already took place. DH lines, which remained vegetative 120 d 

after transplanting, were considered as missing values. The number of unfolded leaves larger 

than 1 cm was counted twice a week for the duration of four weeks after transplanting. Leaf 

appearance rate (LAR) was defined as the slope of the regression of leaf number on growing 
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degree-days (GDD) with a base temperature of 0°C. Final leaf number (FLN) was counted at 

the end of each treatment. 

2.3.4 Data analysis 

Statistical analyses were conducted using SAS 9.3 (SAS Institute 1999). Analysis of variance 

was conducted using a general linear model. Variance components were used to estimate the 

broad sense heritability (h
2
) as described by Hallauer and Miranda (1988). Pearson’s 

correlation coefficients were computed between all traits in all temperatures. 

QTL were identified across environments and in each environment separately by composite 

interval mapping (Zeng 1994) using the software PLABQTL (Utz and Melchinger 1996). 

Analyses were based on multiple regressions as described by Haley and Knott (1992). Co-

factors were selected by stepwise regressions according to Miller (1990) with a default value 

for F-to-enter and F-to-delete of 3.5. Permutation tests with 1000 permutations were carried 

out in order to estimate LOD thresholds to declare the existence of a QTL at the experimental 

wise error level of α = 0.05. QTL were graphically displayed using MapChart 2.2 (Voorrips 

2002). Values of non-curding lines were replaced by 120 d for QTL analysis across 

environments. FLN was calculated as LAR (1/°Cd) × temperature (°C) × 120 d + 4 (number 

of leaves at transplanting). QTL x environment (Q x E) interactions were computed following 

the procedure of Knapp (1994). Since not all DH lines developed a curd within the first 120 d 

after transplanting, a binary model with 0 for “no curd induction during the duration of the 

experiment” and 1 for “curd induced” was applied for DCI (Broman 2003, Broman and Sen 

2009).  
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2.4 Results 

2.4.1 Phenotypic variation 

Parental line means, as well as minima, maxima, means and standard deviations for DCI, 

FLN, and LAR of the DH population in each temperature treatment are presented in Table 1. 

Significant genetic variation was found for all measured traits (Table 2). Differences between 

environments were significant as well as were genotype x environment interactions (GEI). 

Heritability was generally high while being highest for LAR and lowest for FLN. 

The parental lines used to generate the mapping population exhibited large differences in 

DCI. In all environments, P2 induced the curd earlier than P1. Differences in DCI were higher 

at temperatures above 15 °C and visible curd initiation was completely inhibited in P1 at 

temperatures above 20 °C indicating P1’s stronger sensitivity to temperature. Curding as well 

as non-curding leafy phenotypes were observed at high temperatures among the progenies. At 

21 °C, 3.7 % of the DH lines did not induce a curd. At 26 °C, the percentage of non-curding 

lines increased to 22.4 % and was 25.16 % at 27 °C. Large variation in LAR was observed. P2 

had higher LAR than P1. Apparent variation in LAR was also observed among DH lines. FLN 

did not differ much between parental lines when both were curding. DH lines showed large 

variation in FLN particularly at high temperatures (Table 1). FLN increased with increasing 

temperatures. 

Boxplots for all traits and environments are shown in Fig. 1. Substantial transgressive 

segregation in one direction was observed for all traits. Apparently, a large proportion of the 

population initiated the curd much earlier than the two parents in all environments (Fig. 1; 

Table 1). 
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Table 1 Parental lines means, DH-population minimum, maximum, means and standard 

deviation for day to curd initiation (DCI), final leaf number (FLN) and leaf appearance rate 

(LAR) across environments 

Trait Temp. (°C) Parental line DH population 

  Mean (P1) Mean (P2) Min Max Mean SD
a
 

DCI 

12 72.3 66.1 41.0 79.4 63.8 5.5 

16 55.5 47.7 31.0 55.5 44.0 4.3 

17 66.0 42.5 32.0 63.3 44.9 5.1 

19 57.2 43.5 29.3 55.0 41.6 4.6 

21 - 51.7 33.9 82.5 53.7 11.2 

26 - 42.7 26.5 63.0 40.8 7.2 

27 - 58.0 32.4 95.0 58.9 14.1 

FLN 

12 29.2 28.7 24.8 35.3 28.3 1.7 

16 27.7 27.7 22.0 35.0 27.2 2.2 

17 32.8 30.5 23.0 39.0 29.9 2.6 

19 34.3 30.3 25.0 70.0 31.6 3.0 

21 - 38.0 30.0 64.7 40.4 7.5 

26 - 37.5 29.5 56.0 39.2 6.2 

27 - 43.5 26.8 69.0 41.9 8.1 

LAR 

(1 / °Cd × 

1000) 

12 16.0 20.5 16.0 27.0 21.2 2.0 

16 16.7 20.0 14.5 27.3 21.8 2.3 

17 15.7 20.7 11.3 32.3 22.0 2.8 

19 15.7 19.2 17.3 30.0 22.8 2.5 

21 16.2 23.0 14.0 31.8 22.3 2.9 

26 16.2 22.2 13.0 30.0 20.4 2.8 

27 16.5 24.2 13.0 33.8 20.6 3.1 

a 
standard deviation 
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Table 2 Variance components and broad sense heritability for days to curd initiation (DCI), 

final leaf number (FLN) and leaf appearance rate (LAR) 

Trait Variance component Heritability 

 σ
2

G σ
2

E σ
2

GxE σ
2
ɛ h

2
 

DCI 24.43* 88.31* 23.84* 22.77 0.85 

FLN 5.90* 34.10* 11.44* 8.96 0.75 

LAR 4.12* 0.68* 1.33* 5.73 0.91 

σ
2

E environmental variance 

 σ
2

G genotypic variance 

 σ
2

GxE genotype x environment interaction variance 

 σ
2
ɛ error variance, h

2 
heritability 

 SD standard deviation  

* statistically significant differences at P < 0.001 

 

Correlation analysis showed significant negative correlations between DCI and LAR in all 

temperature treatments. R was between -0.33 and -0.73 (Table 3). There was a positive 

correlation between FLN and DCI at all temperatures. R ranged between 0.20 and 0.80 and 

increased with increasing temperatures. FLN and LAR were significantly correlated 

particularly at high temperatures, while being highest at 27 °C (R = -0.51). R between DCI 

and LAR across environments was -0.78 and 0.51 between DCI and FLN. R between LAR 

and FLN was -0.1. 
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Fig. 1 Boxplots for thermal time and days to curd induction, final leaf number and leaf appearance rate at seven temperatures. Whiskers 

give the 0.1 and 0.9 percentile, boxes the 0.25, 0.5, and 0.75 quartile. 
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Table 1 Pearson’s correlation coefficients among the traits days to curd initiation (DCI), leaf appearance rate (LAR), and final leaf number (FLN) in 

seven temperatures. 

Trait 
DCI 

12 

DCI 

16 

DCI 

17 

DCI 

19 

DCI 

21 

DCI 

26 

DCI 

27 

LAR 

12 

LAR 

16 

LAR 

17 

LAR 

19 

LAR 

21 

LAR 

26 

LAR 

27 

FLN 

12 

FLN 

16 

FLN 

17 

FLN 

19 

FLN 

21 

FLN 

26 

FLN 

27 

DCI16 
0.74 

*** 

1                    

DCI17 
0.73 

*** 

0.75 

*** 

1                   

DCI19 
0.65 

*** 

0.81 

*** 

0.74 

*** 

1                  

DCI21 
0.53 

*** 

0.57 

*** 

0.62 

*** 

0.69 

*** 

1                 

DCI26 
0.56 

*** 

0.56 

*** 

0.63 

*** 

0.55 

*** 

0.63 

*** 

1                

DCI27 
0.50 

*** 

0.46 

*** 

0.62 

*** 

0.57 

*** 

0.78 

*** 

0.69 

*** 

1               

LAR12 
-0.63 

*** 

-0.54 

*** 

-0.57 

*** 

-0.55 

*** 

-0.45 

*** 

-0.33 

*** 

-0.39 

*** 

1              

LAR16 
-0.43 

*** 

-0.67 

*** 

-0.53 

*** 

-0.66 

*** 

-0.44 

*** 

-0.42 

*** 

-0.38 

*** 

0.58 

*** 

1             

LAR17 
-0.50 

*** 

-0.57 

*** 

-0.67 

*** 

-0.57 

*** 

-0.48 

*** 

-0.53 

*** 

-0.56 

*** 

0.58 

*** 

0.59 

*** 

1            

LAR19 
-0.37 

*** 

-0.57 

*** 

-0.48 

*** 

-0.69 

*** 

-0.42 

*** 

-0.38 

*** 

-0.47 

*** 

0.59 

*** 

0.83 

*** 

0.62 

*** 

1           

LAR21 
-0.47 

*** 

-0.54 

*** 

-0.59 

*** 

-0.57 

*** 

-0.63 

*** 

-0.54 

*** 

-0.63 

*** 

0.58 

*** 

0.59 

*** 

0.66 

*** 

0.66 

*** 

1          

LAR26 
-0.33 

*** 

-0.38 

*** 

-0.44 

*** 

-0.44 

*** 

-0.43 

*** 

-0.48 

*** 

-0.49 

*** 

0.27 

*** 

0.42 

** 

0.42 

** 

0.44 

** 

0.59 

** 

1         

LAR27 
-0.51 

*** 

-0.57 

*** 

-0.60 

*** 

-0.63 

*** 

-0.65 

*** 

-0.56 

*** 

-0.73 

*** 

0.46 

*** 

0.60 

*** 

0.58 

*** 

0.65 

*** 

0.82 

*** 

0.68 

*** 

1        

FLN12 
0.36 

*** 

0.14 0.16 0.01 0.02 0.17 0.10 0.00 0.35 

*** 

0.08 0.37 

*** 

0.14 0.06 0.13 1       

FLN16 
0.57 

*** 

0.45 

*** 

0.43 

*** 

0.32 

*** 

0.30 

*** 

0.35 

*** 

0.20 

* 

-0.23 

*** 

0.09 -0.14 0.12 -0.10 -0.13 -0.11 0.72 

*** 

1      

FLN17 
0.57 

*** 

0.46 

*** 

0.57 

*** 

0.41 

*** 

0.31 

*** 

0.34 

*** 

0.23 

** 

-0.23 

** 

0.04 -0.18 0.06 -0.08 -0.10 -0.16 0.66 

*** 

0.77 

*** 

1     

FLN19 
0.55 

*** 

0.42 

*** 

0.53 

*** 

0.43 

*** 

0.34 

*** 

0.32 

*** 

0.20 

* 

-0.26 

*** 

0.06 -0.21 

** 

0.10 -0.06 -0.12 -0.10 0.61 

*** 

0.76 

*** 

0.85 

*** 

1    

FLN21 
0.48 

*** 

0.40 

*** 

0.52 

*** 

0.54 

*** 

0.79 

*** 

0.50 

*** 

0.47 

*** 

-0.32 

*** 

-0.12 -0.33 

** 

-0.14 -0.29 

*** 

-0.26 

** 

-0.32 

*** 

0.34 

*** 

0.50 

*** 

0.61 

*** 

0.69 

*** 

1   

FLN26 
0.49 

*** 

0.39 

*** 

0.52 

*** 

0.42 

*** 

0.48 

*** 

0.67 

*** 

0.39 

*** 

-0.24 

** 

-0.02 -0.32 

*** 

-0.04 -0.23 

* 

-0.20 

* 

-0.21 

* 

0.52 

*** 

0.60 

*** 

0.65 

*** 

0.70 

*** 

0.80 

*** 

1  

FLN27 
0.54 

*** 

0.42 

*** 

0.61 

*** 

0.50 

*** 

0.71 

*** 

0.63 

*** 

0.80 

*** 

-0.30 

*** 

-0.16 -0.45 

*** 

-0.24 

* 

-0.43 

** 

-0.36 

*** 

-0.51 

*** 

0.32 

*** 

0.46 

*** 

0.52 

*** 

0.54 

*** 

0.78 

*** 

0.71 

*** 
1 

Correlations between traits are statistically significant at p <0.05 (*); p <0.01 (**); p < 0.001 (***) 
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2.4.2 QTL detection 

A total of 90 QTL for the traits DCI, FLN, and LAR were identified in individual 

environments and 17 QTL were detected across environments. Tables 4, 5, 6, 7 summarize 

the estimated positions, LOD scores, phenotypic variation explained, and additive effects of 

significant QTL. 

A total of 31 significant QTL for DCI were mapped on eight linkage groups. QTL for DCI 

were detected repeatedly in several environments on C06 and C09 (Fig. 4; Table 4). Other 

interesting regions are on C04, C05, and C07. QTL were detected at three temperatures on 

C04 between markers S0292 and S0815. The phenotypic variation explained ranged from 

12.1 to 16.3 % with additive effects from -1.0 to -3.7. QTL for DCI were identified on C05 at 

12, 17, and 19 °C. The QTL detected at 12 °C had a LOD score of 16.8 and explained 38 % of 

phenotypic variation. The twelve QTL for DCI on C06 were detected in three main groups at 

0 cM, between 18 and 24 cM, and between 32 and 34 cM. All three regions were supported 

by across environment QTL, which showed significant Q x E interactions. Individual QTL on 

C06 explained between 12.2 and 40.7 % of phenotypic variation. Estimated effects of the 

QTL were large at temperatures higher than 20 °C (-4.4 to -11.3 d). On C07, QTL for DCI 

were detected in four environments. The region with three QTL was also supported by a 

across environment QTL with significant Q x E interactions. A QTL hotspot on C09 shows 

DCI QTL in all temperature regimes apart from 19 and 27 °C. Larger QTL effects (-2.5 to -

3.1 d) were observed at temperatures higher than 20 °C. QTL explained between 17.3 and 

22.1 % of the phenotypic variation. The allele of P2 accelerated curd induction in all cases 

except at one QTL locus detected at 12 °C on C03. 
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Table 4 Positions of putative QTL detected in different temperature regimes, nearest markers, 

and physical position of the nearest marker (TO1000 genome), LOD scores, additive effects 

(Add.), and variation explained (R
2
) for days to curd initiation. 

Temperature (°C) Linkage group Position  Nearest marker LOD R
2
 Add. 

(cM) (bp) 

12 

C03 30 - S1064 4.8 12.7 1.3 

C05 14 5,586,824 S0546 16.8 38.1 -2.6 

C06 0 2,396,965 S1134 4.9 13.3 -1.3 

C06 32 31,001,053 S0374 8.6 21.8 -1.9 

C07 28 31,643,632 S1081 4.3 11.6 -1.4 

C08 32 35,763,986 S0352 5.5 14.5 -1.8 

C09 54 47,737,604 S0256 8.6 21.8 -1.6 

16 

C06 0 2,396,965 S1134 4.5 12.2 -1.0 

C06 32 31,001,053 S0374 5.2 13.7 -1.2 

C07 28 31,643,632 S1081 4.6 12.2 -1.2 

C09 58 49,393,351 S0629 6.7 17.3 -1.3 

17 

C03 70 33,660,097 S1028 4.2 11.3 -1.8 

C05 30 18,578,045 S1071 7.3 18.8 -1.6 

C06 20 24,053,953 S1114 4.8 12.9 -1.7 

C06 34 32,446,947 S0509 4.9 13.1 -4.9 

C09 54 47,737,604 S0256 6.8 17.6 -1.7 

19 

C04 128 32,446,947 S1137 4.7 12.6 -1.0 

C05 38 38,138,365 S0240 5.8 15.3 -1.1 

C06 0 2,396,965 S1134 10.2 25.7 -1.7 

C06 32 31,001,053 S0374 9.1 23.0 -1.6 

21 

C01 56 16,017,838 S1098 4.1 11.6 -2.4 

C04 128 32,446,947 S1137 4.3 12.1 -2.4 

C06 22 25,595,952 S0624 5.0 13.9 -4.7 

C07 24 31,643,632 S1081 7.2 19.4 -4.1 

C09 50 46,964,041 S0533 6.7 18.2 -3.1 

26 
C06 24 31,643,632 S0603 13.7 40.7 -4.4 

C09 46 46,994,768 S0501 6.6 22.1 -2.5 

27 

C04 112 42,741,416 S0292 4.5 16.3 -3.6 

C06 18 24,053,953 S1114 11.8 37.3 -8.1 

C06 34 32,446,947 S0509 5.4 19.2 -11.3 

C07 8 11,551,682 S1077 4.7 17.9 -3.6 
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At both high temperatures, 26 and 27 °C, number of curding to non-curding genotypes 

segregated at a ratio of 3:1 (χ
2
 = 0.54 < χ

2
0.05,1 = 3.84, p = 0.46, χ

2
 = 0.002 < χ

2
0.05,1 = 3.84, p = 

0.96, respectively). The binary data analysis revealed one major QTL on C06 with LOD > 15 

at both temperatures (Fig. 2). LOD peaks were at 12 (15.5, 26 °C) and at 14 cM (17.6, 27 °C). 

The nearest marker was S1114.  While comparing phenotypes of marker allele A genotypes to 

those carrying marker allele B, it became obvious that the majority of phenotypes with allele 

B were early curd inducing while less than 50 % of allele A plants visibly induced a curd 

during the experiment (Fig. 3). Twenty-eight out of 61 allele A carrying lines did not induce a 

curd at both temperatures. Despite similar mean temperatures, there was a strong difference in 

DCI between the climate-chamber experiment (26 °C) and the greenhouse experiment (27 

°C). 

 

Fig. 2 LOD profile of a binary QTL analysis carried out on 161 B. oleracea DH lines with 1 = 

curd  induction within the first 120 d after transplanting and 0 = no curd induced until 

120d after transplanting. Experiments  were carried out at 26 (black lines) and 27°C 

(grey lines). Segregation ratio curd induced to no curd was 3:1. 
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Fig. 3 Boxplots for days to curd induction of DH lines carrying the allele A or B at marker 

position S1114 on C06 at 26 (climate-chamber experiment) and 27°C (greenhouse 

experiment). Whiskers give the 0.1 and 0.9 percentile, boxes the 0.25, 0.5 (median), 

and 0.75 quartile. Values below and above the 0.1 and 0.9 percentiles are marked as 

black dots. Curding to non-curding phenotype ratios are given below the diagram. 

 

A total of 29 significant QTL for FLN were detected on nine chromosomes (Fig. 4; Table 5). 

Seven QTL were detected in individual environments on C01, four of them were mapped at a 

hotspot near marker S0714. The other three QTL were located between 54 and 64 cM. The 

QTL on C09 explained between 12.5 and 25.1 % of the phenotypic variation. On the top of 

C04 between 0 and 12 cM, QTL for FLN were detected in six environments and explained 

between 13.7 and 25.7 % of phenotypic variation. On C06, five QTL for FLN were detected. 

They explained between 18.2 (16 and 26 °C) and 71.7 % (21 °C) of phenotypic variation. An 

across environment QTL with significant Q x E interactions was mapped at 12 cM with a 

LOD score of 42.2. A second across environment QTL with significant Q x E interactions was 

identified on C09. 
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Table 5 Positions of putative QTL detected in different temperature regimes, nearest  

markers, and physical position of the nearest marker (TO1000 genome), LOD 

scores, additive effects (Add.), and variation explained (R
2
) for final leaf number. 

Temperature 

(°C) 
Chromosome Position Nearest marker LOD R

2 Add. 

(cM) (bp) 

12 

C01 14 2,993,555 S0714 4.7 12.5 -0.4 

C01 54 16,017,838 S1098 4.3 11.6 0.4 

C03 120 63,658,940 S0568 5.0 13.4 -0.4 

C04 12 2,776,430 S0268 5.5 14.7 -0.5 

C05 2 4,487,966 S1065 9.7 24.2 -0.7 

16 

C01 14 2,993,555 S0714 6.2 16.3 -1.0 

C01 64 - S0196 4.5 12.1 1.0 

C03 52 12,722,753 S0510 4.7 12.5 -0-7 

C04 12 2,776,430 S0268 10.1 25.3 -0.9 

C06 4 7,191,194 S0697 7.0 18.2 -0.7 

C09 56 47,737,604 S0256 4.5 12.1 -1.3 

17 

C01 14 2,993,555 S1076 4.9 13.0 -1.2 

C04 12 2,776,430 S0268 7.0 18.2 -0.9 

C07 78 44,290,525 S0580 4.4 11.7 0.6 

C08 10 27,764,158 S1099 4.9 13.0 -2.5 

19 
C04 12 2,776,430 S0268 5.1 13.7 -1.3 

C07 72 44,290,525 S0580 4.4 11.8 1.2 

21 

C01 8 1,974,096 S0550 4.5 12.6 -1.4 

C04 6 2,330,145 S0932 9.2 25.7 -2.4 

C06 10 8,249,736 S1058 42.2 71.7 -6.3 

26 

C05 24 13,976,621 S0254 5.2 18.1 -1.5 

C06 24 31,643,632 S0603 5.2 18.2 -2.9 

C09 52 46,964,041 S0533 7.5 25.1 -1.9 

27 

C01 66 39,540,366 S0306 5.1 18.4 -3.1 

C02 8 4,713,842 S0567 6.2 21.8 3.4 

C04 0 2,330,145 S0932 5.9 22.8 -2.4 

C06 0 2,396,965 S1134 5.8 20.8 -3.1 

C06 18 24,053,953 S1114 8.4 28.3 -4.3 

C07 14 23,522,707 S0976 5.4 19.3 -2.1 
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A total of 30 significant QTL for LAR were mapped in individual environments on seven 

chromosomes (Fig. 4; Table 6). While seven QTL for LAR on C01 co-localized to FLN QTL, 

the five QTL on C04 and seven QTL for LAR on C06 were co-localized to QTL for DCI. The 

LAR QTL on C01 were mapped in two main regions between 14 and 24 cM and between 54 

and 58 cM. Across environment QTL were detected in both hotspot regions on C01 and at 32 

cM on C06 (Fig. 4; Table 7). 

Confidence intervals of QTL for the same trait were overlapping at many genomic regions 

and suggest a high reproducibility of results. However, at several other regions significant 

QTL were detected only at one temperature regime. For DCI, five QTL with no overlapping 

confidence intervals to QTL detected in other temperature regimes or to across environment 

QTL were identified on four chromosomes (Fig. 4). There was no region in which QTL were 

identified repeatedly only at the upper temperature extreme (26 and 27 °C). 
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Table 6 Positions of putative QTL detected in different temperature regimes, nearest markers, 

and physical position of the nearest marker (TO1000 genome), LOD scores, additive 

effects (Add.), and variation explained (R
2
) for leaf appearance rate. 

Temperature 

(°C) 
Linkage 

group 
Position Nearest 

marker 
LOD  (R

2
) Add. 

(cM) (bp) 

12 
1 22 4,137,327 S0464 4.1 11.0 -0.6 

3 92 - S1047 4.1 11.1 0.7 

16 

1 24 5,962,896 S1066 6.0 15.8 -0.7 

1 56 16,017,838 S1098 8.4 21.3 0.9 

3 32 11,335,498 S0623 5.6 14.8 -0.7 

4 128 32,446,947 S1137 6.2 16.2 0.7 

6 34 32,446,947 S0509 7.1 18.4 0.8 

8 52 35,763,986 S0352 4.8 12.9 0.9 

17 
4 116 42,805,083 S0354 5.7 15.2 1.0 

6 18 24,053,953 S1114 8.5 21.7 1.2 

19 

1 22 4,137,327 S0464 5.2 13.8 -0.7 

1 58 16,017,838 S1098 4.2 11.4 0.7 

3 62 23,340,859 S1031 4.1 11.1 -1.1 

3 122 64,912,969 S0395 4.6 13.0 -0.6 

4 118 42,805,083 S0354 12.3 29.1 1.1 

6 32 31,001,053 S0374 5.4 14.3 0.8 

21 

4 114 42,486,882 S1115 8.3 21.2 0.9 

6 20 24,053,953 S1114 4.2 11.4 0.9 

8 10 27,764,158 S1099 9.2 23.1 -1.1 

9 46 46,994,768 S0501 4.2 11.4 0.6 

26 

1 54 16,017,838 S1098 4.2 11.3 0.8 

6 6 8,249,736 S1058 4.1 11.0 0.8 

6 30 29,739,413 S0588 7.6 19.5 1.2 

27 

1 14 2,993,555 S0714 6.1 16.1 -0.7 

1 58 16,017,838 S1098 7.2 18.7 0.7 

2 96 50,748,828 S0992 8.9 22.4 -1.3 

4 128 32,446,947 S1137 4.6 12.3 0.5 

6 2 2,874,638 S0136 4.1 11.0 0.7 

6 32 31,001,053 S0374 4.6 12.4 0.9 

8 8 24,986,532 S1105 9.8 24.4 -1.0 
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Table 1 Across environment QTL and QTL x environment interactions (QxE) for days to curd induction (DCI), final leaf number (FLN), and 

leaf appearance rate (LAR). Additive effects are shown for means across environments and for individual environments.  

Trait 
Chromo-

some 

Position 
Nearest 

Marker 
LOD R

2
 

Additive effects at different temperatures (°C) Mean 

squares 

(QxE) 

Q
x
E

 

(cM) (bp) All 12 16 17 19 21 26 27 

D
C

I 
(d

) 

C04 80 10,726,862 S0655 5.6 14.7 -3.0 -1.1 -1.1 -1.1 -0.9 -4.3 -9.2 -6.7 605.2 *
 

C05 20 11,521,440 S0975 5.5 14.5 -2.7 -2.0 -1.1 -1.3 -0.8 -1.2 -0.4 -2.9 318.3 * 

C06 2 6,360,269 S1106 8.4 21.2 -4.3 -2.0 -1.7 -1.0 -1.6 -3.1 -12.6 -5.4 13635.4 * 

C06 14 24,053,953 S1114 5.6 14.9 -5.3 0.8 1.0 -0.7 0.2 -5.9 -9.1 -16.5 16946.1 * 

C06 32 31,001,053 S0509 6.1 15.9 -3.3 -1.7 -1.5 -1.2 -1.5 -4.1 -8.5 -7.0 8128.6 * 

C07 26 - S0289 6.8 17.8 -3.2 -0.5 -0.6 -0.6 -1.4 -4.7 -0.5 -5.1 1487.2 * 

C09 54 47,737,604 S0256 8.9 22.5 -3.1 -2.2 -1.7 -1.6 -1.3 -3.9 -5.6 -3.2 729.2 * 

F
L

N
 

C01 14 - S1076 6.3 16.5 -1.0 -0.3 -0.3 -0.4 -0.8 -1.4 -0.4 -1.1 8.0  

C05 18 11,521,440 S0975 6.1 16.0 -1.0 -0.7 -0.8 -0.8 -1.0 -0.2 -0.9 -1.1 10.6  

C06 12 24,053,953 S1114 42.2 70.1 -3.7 -0.2 -0.9 -1.2 -1.8 -6.1 -7.7 -9.4 1822.2 * 

C07 82 45,623,104 S0728 8.1 20.8 1.2 0.0 0.3 0.6 0.9 1.1 1.7 1.5 5.0  

C09 52 47,746,541 S0408 4.6 12.2 -0.9 -0.2 -0.5 -0.7 -0.6 -1.8 -2.4 -1.6 138.5 * 

L
A

R
 

(1
 /

 °
C

d
 x

 1
0
0
0
) C01 24 5,962,896 S1066 5.5 14.5 -0.6 -0.5 -0.8 -0.6 -0.8 -0.7 0 -0.5 12.6 * 

C01 48 12,537,551 S0729 6.3 16.4 0.7 -0.3 0.8 0.2 0.4 0.2 0.5 0.4 13.5 * 

C02 98 40,453,338 S1035 5.9 15.5 -0.9 -0.2 -0.1 -0.4 -0.4 -0.6 -0.3 -1.2 18.8 * 

C06 32 32,446,947 S0509 4.2 11.4 0.7 0.6 0.8 0.8 0.9 1.4 1.5 1.9 24.5 * 

C07 0 7,312,194 S1101 5.6 15.2 0.5 0.3 0.4 0.7 0.5 0.6 0.2 0.5 4.8  

* significant QTL x environment interactions (P < 0.05) 
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2.5 Discussion 

The present study identified 90 QTL, which individually explained between 11 and 72 % of 

the additive genetic variation of the three measured traits DCI, FLN, and LAR in single 

environments. The mean number of QTL detected per trait and environment was 4.3 on 

average. Although the 90 QTL were distributed over all nine linkage groups, a higher number 

of QTL was observed on C01, C04, and C06.  

The study revealed promising QTL regions for DCI on C04, C05, C06, C07 and C09. Many 

QTL studies on flowering time were already performed in B. oleracea. Bohuon et al. (1998) 

detected QTL for flowering time on C02, C03, C05 and C09 in a B. oleracea var. albogabra 

× var. italica cross. Eleven flowering time QTL were identified on C01, C02, C03, C05 and 

C09 in backcross substitution lines of the same cross (Rae et al. 1999). 

QTL alleles of P1 were in the present study almost always associated with increasing effects 

on DCI and FLN. However, each PL inherited alleles with both positive and negative effects 

for all traits. In accordance to that, transgression was observed for all traits. Bohuon et al. 

(1998) found that the early flowering PL of a B. oleracea cross segregating for flowering time 

inherited at least one late flowering QTL. Sebastian et al. (2002) found that an annual B. 

oleracea var. botrytis line carried an allele for vernalization while the biennial B. oleracea 

var. gemmifera line carried the opposite allele at the same position. 

Composite interval mapping revealed a major QTL region between S1058 and S0588 on C06 

associated with DCI QTL showing large additive effects especially at the three high 

temperatures 21, 26, and 27 °C (Table 4). DCI QTL did co-localize to large effect FLN QTL 

at 21 and 27 °C (Table 5). Okazaki et al. (2007) detected a QTL for flowering time on C06 in 

a F2 population derived from a broccoli (annual) x cabbage (biennial) cross and suggested 

that the QTL is equivalent to a QTL identified in F3 families also derived from a cabbage x 
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broccoli cross (Camargo and Osborn 1996). Percentage of progenies with annual vs. biennial 

habit as well as days to flowering revealed QTL on C06 in the latter study. Uptmoor et al. 

(2008) identified in a B. oleracea var. albogabra × var. italica cross a temperature response 

QTL on C06 and suggested facultative vernalization effects to be causally related to 

flowering time variation. Binary analysis on curding to non-curding phenotypes at high 

temperatures revealed a major QTL in the same region as analysis of DCI data showed. We 

mapped the binary trait as a QTL. in a DH population derived from an F1, the segregation 

ratio of a monogenic trait would be 1:1. Since the segregation ratio of the trait was 3:1, at 

least two genes must be involved, which shows the complex nature of the trait. Such binary 

traits are jointly controlled by several genes (Yi and Xu 1999) and may be influenced by 

environmental effects. Nearly all DH lines carrying the B allele induced a curd while nearly 

50 % of DH lines carrying the A allele did not induce curds, which may give hint for an 

interaction with a second locus but no significant QTL x QTL interactions were found (data 

not shown).  

However, results suggest that at least one major locus on C06 affects curding time through 

variation in sensitivity to high temperatures. Ryder et al. (2001) identified two segments on 

C06 showing co-linearity with Arabidopsis chromosome 1, which harbors key genes for 

flowering time. BoAP1-a and BoAP1-c were mapped in these two regions. The physical 

position of Boi2AP1 (Carr and Irish 1997), which is BoAP1-a, is C06: 35,676,652 according 

to the BolBase A12 sequence (Liu et al. 2014). The physical position of Boi1AP1 (BoAP1-c) 

is C06: 7,705,861. The BoAP1-a locus was suggested to be associated with curding 

phenotypes and the stage of arrest in B. oleracea (Smith and King, 2000; Gao et al. 2007). 

However, Labate et al. (2006) concluded that the fraction of phenotypic variation explained 

by BoAP1-a is low, but the locus interacts with temperature: The expression of BoAP1 in the 

shoot apex of cauliflower is switched off during vegetative reversion at high temperatures 
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(Anthony et al. 1996). High temperatures also promote formation of bracts (Booij and Struik 

1990; Grevsen et al. 2003). Kop et al. (2003) found evidence for correlations between the 

allelic state of BoAP1-a and the severity of bracting. They suggested that BoAP1-a or closely 

linked genes play a major role in controlling bract development. If involved in vegetative 

reversion and bract development, BoAP1 may have repressed curd induction and led to the 

development of leaf primordia during high temperature treatments of the present study. The 

physical position of BoAP1-c is between BLAST-hits for S1134 and S1114 and, accordingly, 

close to the QTL for binary analysis of DCI data at 26 and 27 °C. BoAP1-a maps less than 2 

Mbp apart from S0588, which is a flanking marker of the third QTL region on C06.  

Previous studies carried out on B. oleracea suggested that QTL for flowering time mapped on 

C09 may result from the variation in vernalization requirement (Bohuon et al. 1998; Rae et al. 

1999). The higher QTL effects at high temperatures observed in the present study may give 

hint that the region on C09 has an influence on variation in sensitivity to temperature. Several 

studies have identified flowering time QTL in B. napus, B. oleracea, and B. rapa 

chromosomal regions syntenic to the telomeric region of the short arm of A. thaliana 

chromosome 5. This region carries several flowering time genes including the flowering 

repressor FLC (Lagecrantz et al. 1996; Osborn et al. 1997; Bohuon et al. 1998; Schranz et al. 

2002; Okazaki et al. 2007). Synteny between the region on chromosome 5 in A. thaliana and 

C09 in B. oleracea has already been shown and the FLC paralog BoFLC1 was mapped on 

C09 (Salatheia 2003; Pires et al. 2004). FLC paralogs were considered as candidate genes for 

variation in vernalization and flowering time in B. napus, B oleracea, and B. rapa (Osborn et 

al. 1997; Schranz et al. 2002; Okazaki et al. 2007). The position of the QTL region on C09 

overlaps with the FLC paralog. In the TO1000 B. oleracea genome sequence (Parkin et al. 

2014; Wang et al. 2011b) the position of S0629 is C09: 49,393,351 and the FLC position is 

C09: 51,033,935. A FRIGIDA-LIKE (FRL) ortholog is located close to S0533. However, it 
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was also already suggested that FLC independent pathways could be responsible for 

flowering time variation (Uptmoor et al. 2012; Ridge et al. 2014). 

QTL for DCI were detected on C06 at 16 and 19°C but not at 17°C and at 19 and 27°C but 

not at 21°C and 26°C. LOD scores were high at 17, 21 and 26°C but below the threshold. A 

similar situation was observed at C09. We conclude that failure of QTL detection at specific 

temperatures is due to sample size and random errors rather than due to biological 

interactions. However, as mentioned above, large variations in QTL effects at different 

temperatures give hint that these regions are not simply temperature insensitive QTL. The 

suggestion is supported by the DCIxE QTL positions on C06 and C09. Significant QTLxE 

interactions will be observed if variance of QTL effects is large across environments. Both, 

QTLxE interactions and increasing QTL effects at higher temperatures support the 

assumption that differences in vernalization response are the main reason for differences in 

time to curd initiation. The most promising genomic region for breeding towards wide-

adaptation cauliflower is between S1058 and S1096 on C06. 

Interestingly, C04 was not described as a QTL region for floral/curd induction in B. oleracea 

before. Probably, floral induction pathways differ between different Brassica vegetables since 

the different crops differ in vernalization requirements (Wurr et al. 1995). According to 

Matschegewski et al. (2015) orthologs of FRL1 and SPL3 are located on C04. Nearest 

BLAST hits to the gene positions were the three markers on bottom C04. However, the QTL 

for DCI at 27°C mapped more than 10 cM apart from S0978 and the QTL for DCI across 

environments more than 20 cM. Another ortholog of an FRIGIDA-LIKE gene maps according 

to Bolbase on C07: 34,770,026 close to the putative position of S0782. The region on C07 is 

syntenic to Arabidopsis chromosome 5. Irwin et al. (2012) suggested a FRIGIDA ortholog to 

be involved in temperature-driven floral transition. The QTL hotspot at that region did not 
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include DCI QTL but QTL for FLN at 17 and 19 °C and across environments. FLN is highly 

correlated to DCI. 

Flowering time is highly correlated to FLN in many plant species. In cauliflower, early 

curding and low FLN indicate summer annual types, while late curding and high FLN 

indicate winter annual types (Wurr and Fellows 2000). The main difference between winter 

and summer types is that winter types have low optimum temperatures for vernalization and 

low daily vernalization rates, i.e., winter conditions are required for curd induction. The delay 

in curd initiation due to high temperatures during the adult vegetative development stage is 

correlated with an increase in FLN (Wiebe 1972b; Booij and Struik 1990; Hand and Atherton 

1987). Before floral induction takes place, the apical meristem is developing leaf primordia. 

Since leaf primordia are assumed to be developed at a constant rate during later growth stages 

(Kage and Stützel 1999), the more leaves are produced, the longer the duration of the 

vegetative-growth phase. As a result, QTL for DCI and FLN often map to the same genomic 

regions. QTL co-localization hotspots for DCI and FLN with higher effects at high 

temperatures (> 20°C) in comparison to low temperatures were observed on C06 and C09. As 

mentioned before, increasing QTL effects with increasing temperature give hint for the 

regulation of the extent of temperature sensitivity and QxE interactions were significant in 

both regions. However, it remains unclear if high temperatures lead to a delay in thermal time 

to floral induction or if curd development is repressed independently from floral induction 

pathways.  

Although, our results showed significant correlations between DCI and FLN, several QTL for 

FLN were detected independent of DCI QTL. FLN depends on the duration of the adult 

development stage, when plants are sensitive for environmental signals like temperature, and 

on the length of the juvenile phase. The durations of both development stages influence time 

to floral induction. However, FLN is also directly related to LAR and, thus, variation in FLN 
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may occur without variation in time to floral induction. A QTL hotspot for FLN and LAR 

was detected on C01. The hotspot is close to the position of a copy of miR156; a miRNA that 

controls juvenile transition (Wu et al. 2009). The position of S0714 is C01: 2,993,555; the 

position of miR156 is C01: 3,777,428. 

DCI and LAR were highly correlated and QTL for both traits were overlapping in several 

genomic regions. In all the coincidences of QTL for DCI and LAR, the additive effect had 

opposite directions. Our results suggest that the genetic architecture underlying DCI is 

strongly correlated to the genetic control of LAR. Méndez-Vigo et al. (2010) found that 

variation in A. thaliana flowering time depends also on the rate of leaf production and most 

QTL for flowering time co-localized with QTL for rate of leaf production. Wurr et al. (1981) 

found that leaf initiation rate is higher in early curding cauliflower types than in late curding 

types. The same was found in the present study. 

Since it is assumed that a certain number of leaves must be initiated before juvenile-to-adult 

phase transition, LAR may have a direct impact on the duration of juvenility. In concordance 

with our results, Thomas (1980) found that differences in the duration of the juvenile phase in 

Brussels sprouts (B. oleracea var. gemmifera L.) were exclusively due to differences in LAR 

with early cultivars having higher LARs. However, it is well known that there is high 

variability in the length of juvenile phase among different cauliflower genotypes (Hand and 

Atherton 1987; Wurr et al. 1998; Wurr et al. 1994). 

Previous studies found a change in LAR during the vegetative growth phase and hypothesized 

that the rate change may occur at juvenile-to-adult phase change (Hand and Atherton 1987; 

Booij and Struik 1990). We were not able to estimate changes in LAR precisely since the leaf 

number was counted only eight times during the first 27 d after transplanting. The 

confounding effects of both juvenile phase and vernalization requirement on curding time in 

cauliflower makes the interpretation of flowering-time QTL difficult, since variation in 
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flowering time may result from variation in length of juvenility and/or sensitivity to 

temperature. 

Evaluating the same mapping population in different environments allows the distinction 

between constitutive and adaptive QTL. A constitutive QTL is consistently detected across 

environments, while an adaptive QTL is detected only in specific environments. The highest 

probability to identify QTL for sensitivity to temperature would therefore be under sub-

optimal high temperature conditions. However, QTL on C06 and C09 were identified under 

both optimal and sub-optimal high temperature conditions. The hint for effects related to 

temperature sensitivity is the extremely high additive effect of DCI and FLN QTL at high 

temperatures. In fact it may be less straightforward to distinguish between constitutive and 

adaptive QTL (c.f. Collins et al 2008). We found several QTL regions in which QTL for at 

least one trait appeared in nearly every environment, indicating its constitutive nature. At the 

same time, QTL effects, e.g., for DCI on C06 increased with increasing temperatures, 

indicating the adaptive nature; QxE interactions turned out to be significant in that region. 

Thus, QTL effects change with changing levels of the environmental factor (Vargas et al 

2006). 

2.6 Conclusion 

A major breeding goal for summer cultivars is to establish genotypes, which develop rapidly 

also under high temperatures, i.e., which do not show a delay in harvest time at unfavorable 

weather conditions during the summer. We assumed that deep phenotyping in controlled 

environments with different temperature regimes results in the detection of QTL for 

temperature sensitivity. However, we conclude from the present study that the identification 

of such QTL is less simple, since the most interesting QTL regions showed QTL under both 

optimum and sub-optimal high temperature conditions and across environment QTL for DCI 

showed always significant Q x E interactions. The identification of QTL regulating 
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development during the adult stage probably became more complicated due to variation in the 

length of juvenility within the population. Further studies are needed to precisely estimate the 

length of the adult vegetative developmental stage starting with juvenile-to-adult phase 

change and ending with floral transition. However, a large number of DH lines showed curd 

development even at highest temperatures, suggesting that new cultivars, well adapted to high 

temperatures during the adult vegetative stage, can be established. In addition, detected QTL 

will support the development of stable genetic markers that benefit marker-assisted breeding 

strategies towards the breeding of elite and thermo-tolerant cultivars. Most promising regions 

are located on C06 and C09. Both regions showed significant QxE interactions for FLN and 

DCI QTL and increasing additive effects with increasing temperatures. Importance of one 

hotspot on C06 was supported by binary analysis of curding vs. non-curding data. Candidate 

genes in the hotspot regions need to be sequenced and sequence variations have to be 

correlated to phenotypic variation. 

Acknowledgments 

We acknowledge financial support from the German Federal Ministry of Education and 

Research (BMBF). The project is part of the AgroCluster WeGa Kompetenznetz Gartenbau 

(project no. 0315542A). 

  



46 

 

CHAPTER 3 

Predictions of curding date in cauliflower (Brassica oleraceae var. botrytis) using QTL-

based parameters of an ecophysiological model 

Yaser Hasan
1
,
 
Bill Briggs

2
, Frank Ordon

3
, Hartmut Stützel

1
, Ralf Uptmoor

4
 

1
 Institute of Horticultural Production Systems, Leibniz Universität Hannover, Herrenhäuser 

Str. 2, Hannover 30419, Germany 

2
Syngenta Seeds BV, Westeinde 62, Enkhuizen, The Netherlands 

3
Julius Kuehn-Institute, Federal Research Center for Cultivated Plants, Institute for 

Resistance Research and Stress Tolerance, Erwin-Baur-Str. 27, 06484 Quedlinburg, Germany  

4
Department of Agronomy, University of Rostock, Justus-von-Liebig-Weg 6, 18059 Rostock, 

Germany 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



47 

 

3.1 Abstract  

 

Coupling of crop modeling and QTL mapping assists in prediction of a phenotypic trait of a 

new genotype under various environmental conditions. In cauliflower (Brassica oleracea var. 

botrytis), temperature is the main environmental factor affecting the rate of development 

towards curding. The sensitivity to temperature varies among genotypes, allowing the 

developmental rates and genotype specific parameters to be estimated. Using the curding per 

se data for 151 DH lines which were previously evaluated under six different temperature 

regimes in the greenhouse, a two phase linear phenology model, describing curding rate to 

temperature was parameterized.  QTL analysis by composite interval mapping was carried out 

on model parameters: SL which parameterizes the sensitivity to temperature below optimum, 

SR parameterizes the sensitivity to temperature above optimum, BP describe the point of rate 

change and also the computed Rmax  describe the maximum development rate at optimum 

temperature. A total of twenty QTLs were detected for all parameters. A major QTL was 

identified on C06 accounted for 6.3 %, 6.1 % and 28.5 % of the phenotypic variation in BP, 

SL and SR, respectively. Although this QTL was detected for both SL and SR, the SR QTL 

has five times the additive effect of SL QTL with  very strong lod score (LOD=11) which 

indicate that high temperature enhance the role of this genomic region.  At this genomic 

region no QTL for Rmax was detected which further support the central role in suboptimal 

temperature effect. Six QTLs were specific for Rmax indicating earliness per se. A QTL based 

model was developed by estimating the marker-based value of each phenology model 

parameters from the additive allele effects of QTLs detected for each parameter, and later 

incorporate  the marker based parameter effect  values to the crop growth model to predict the 

curding time in cauliflower. The QTL based model explained 46 % of the phenotypic 

variation in curding time of the parameterization set. Prediction quality of the model was 

validated in field trials on independent validation data set of DH lines derived from the same 

parental lines at four locations in six experiments. In the validation set, the QTL-based model 
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was able to predict the curding time with a root mean square error of prediction of 3 to 8 

days, explaining 28 to 65 % of the variation in curding time. The QTL based model was 

further used to predict the performance of a test cross of each DH per se to one parent at two 

locations in four experiments. The QTL-based model could predict the curding time with 

RMSE of 3 to 9 days and explain 24 to 41 % of the genetic variation in curding time. This 

suggests that, the QTL based model is a promising tool for plant breeders to accelerate their 

breeding program, test different plant breeding strategies and to design ideotypes for 

contrasting target environments. 

3.2 Introduction  

Temperature response is a major determinant of the rate of many plant processes including 

the rate of plant development. In cauliflower, the rate of development towards curding is 

largely determined by different responses to temperature along different development phases. 

Typically, these responses are described in terms of cardinal temperatures minimum, 

optimum and maximum. Most of the models that describe curding time in cauliflower are 

temperature driven with major focus on vernalization phase. Grevsen and Olesen (1994a) 

used symmetrical linear responses of the rate of curd induction to temperatures below and 

above optimum with base, optimum and maximum temperatures of 0, 12.5 and 25.6 °C 

respectively. Similarly, Wurr and Fellows (2000) have used piecewise linear model 

describing the rate of progress towards induction in relation to temperature using three 

cardinal temperatures of 5, 13 and 27 °C. Wurr et al. (1993) in cultivar White Fox examined 

different segmented temperature response function forms to predict the time of curd initiation 

and indicated that a three-stage linear temperature function with four cardinal temperatures of 

9, 9, 9.5 and 21 °C was appropriate for this variety. Kage and Stützel (1999) developed 

cauliflower harvest prediction model by a combination of empirical relationships derived 

from field data of two varieties Fremont and Linday. The vernalization process started after 
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end of juvenile and was simulated according to Wiebe (1972b) using a three segmented linear 

model with for cardinal temperatures -2, 10, 13, and 28 °C.  These models were 

conventionally used to predict the curding time of a given genotype under different 

environmental conditions on the bases of its specific parameters using climatic data to better 

schedule the production of cauliflower and also to assist in design of high performance 

ideotypes.   

The advent of molecular markers has enabled the dissection of the variation of a phenotypic 

trait and to identify quantitative trait loci (QTL) linked to markers on a molecular map. 

Normally QTL analyses which conducted at each single environment, individually, to identify 

QTL that affect the phenotype are restricted to the environment and genotype tested (Bogard 

et al. 2014). These separate analyses do not consider the trait dynamic because it fails to 

capture the change in phenotype with changing environment. Genotype by environment 

interaction (GEI) is a common phenomenon in complex agronomic trait where changes in the 

relative performance of a genotype across different environments can be observed. Despite 

the identification and the potential of numerous quantitative trait loci involved in the control 

of different plant traits in different plant species, the implementation in plant breeding is not 

straightforward and greatly hinders by GEI. To overcome this difficulty, a growing interest in 

the use of ecophysiological models (Yin et al. 2003). These models describe the multi 

phenotypic responses of a given genotype to diverse environment by a set of parameters 

known as genetic coefficients (White and Hoogenboom 1996; Baenziger et al. 2004). Since 

physiological models have the potential to predict the performance of a genotype in diverse of 

environments, it can be powerful tool to resolve genotype-by-environment interactions (Yin 

et al. 2003; Hammer et al. 2005). On the other hand, the quantitative trait locus (QTL) models 

determine the contribution of genomic region to trait variation under a limited number of 

environments (Reymond et al., 2003). In the view of added value of crop modeling to 
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classical quantitative genetics, combining ecophysiological model and quantitative trait loci 

has been suggested as an approach to understand and predict complex traits variation across 

environments (Reymond et al. 2003; Yin et al. 2004; Hammer et al. 2006; Collins et al. 

2008). The principle of this approach is to develop a response growth curve for each 

individual and estimate curve individual-specific parameters, and then treat the curve 

parameters estimates as phenotypes in QTL analysis (Wu et al. 2002). Several studies have 

used the complementary aspects of crop modeling and QTL mapping as a tool to assist plant 

breeding. The first study coupled crop modeling and QTL mapping was conducted in barley 

using the SYP-BL crop model (Yin et al. 2000a). QTLs were detected for each of the model 

input traits used. The identified QTLs were coupled to the SYP-BL model by replacing the 

original model input parameters with those calculated from the QTL effects. Reymond et al. 

(2003) established response curves of leaf elongation rate to temperature, evaporative demand 

and soil water status. The parameters of these responses were estimated for lines of maize 

RILs mapping population and identified QTLs for this parameters. Yin et al. (2005a) 

developed a model for spring barley using ecophysiological phenology model combining crop 

models for predicting flowering time and QTL mapping have been developed. Nakagawa et 

al. (2005) used a three stage beta model to quantify the thermal and photoperiod response of 

rice (Oryza sativa L.) flowering time. Recent model developed by Uptmoor et al. (2012), 

based on earlier model (Uptmoor et al. 2008), used genotype specific parameters and QTL 

effects as inputs to a model for predicting flowering time in Brassica oleracea .  Bogard et al. 

(2014) using two parameters of an ecophysiological model representing the vernalization 

requirements and photoperiod sensitivity proposed a QTL-based model to predict heading 

date in bread wheat (Triticum aestivum L.). Gu et al. (2014) linked seven parameters of the 

ecophysiological GECROS model with quantitative genetics to support marker-assisted crop 

design to improve yields of rice (Oryza sativa) under drought stress.  
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The objective of this study were (1) the genotype-specific parameterization of two phase 

linear model describing the rate towards curding as a function of temperature, (2) conduct 

QTL analysis on the model input parameters and (3) incorporate  the marker based parameter 

effect  values to the crop growth model to predict the curding time in cauliflower.  

3.3 Material and methods  

3.3.1 Plant material  

 

A doubled haploid (DH) population of 151 lines was derived from anther culture of a F1 cross 

between two contrasted homozygous inbred parental lines (PLs). The PLs were segregating 

for reliability in time to curd induction associated with temperature sensitivity. The unreliable 

parent produces high quality curds. The population was genotyped with 176 single nucleotide 

polymorphisms (SNP) markers. The genetic map was constructed using the Haldane function. 

The total map length was 891.2 cM spanning over nine chromosomes. Average distance 

between SNP markers was 5.3 cM.  

3.3.2 Growing conditions and experimental setup 

3.3.2.1 Greenhouse (Parameterization set) 
 

Two seeds of each DH line and PLs were sown into seedling trays filled with Potgrond P 

(Klasmann-Deilmann GmbH). Seedlings were raised in a greenhouse at 22 °C and a 

photoperiod of 16 h until all plants had four or five visible leaves. Plants were thinned at the 

two-leaf stage. Seedlings were then transplanted into 3 liter pots filled with the same substrate 

and placed into a greenhouse in a randomized complete block design with four replicates. 

Plants were grown at a photoperiod of at least 16 h. If natural day length was below 16 h 

and/or radiation was low, 200 µmol m
-2

s
-1

 additional photosynthetically active radiation 

(PAR) at plant height was provided by 400 W Phillips SON-T Agro lamps. Plants were 

fertigated daily with 0,5 g l
-1

 Scotts Universal solutions. Fungicides were applied if necessary. 
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Air temperature was measured at the level of plant height every 10 minutes using TinyTag 

View 2 data loggers (Gemini Data Loggers Ltd., West Sussex, UK). The daily mean/min/max 

temperatures recorded inside the greenhouse for six temperature treatments were 

11.8/10.6/15.5, 15.5/13.4/18.9, 17.3/15.5/19.6, 19.0/17.0/21.1, 21.4/16.0/22.8 and 

27.0/22.2/28.6 °C. Standard deviations of daily means were 0.2, 1.4, 0.8, 1.1, 0.9 and 1.8 °C. 

All treatments were terminated after 120 days.  In every temperature treatment, time (d) to 

curd initiation (DCI) DCI was considered to have occurred when the diameter of the curd was 

≥ 1 cm. 

3.3.2.2 Field trials  

Germany (validation set) 

The QTL based model was validated on a set of independent DH lines derived from the same 

parental lines grown in field trials. Numbers of DH lines in each field experiment are shown 

in Table 10.  Two field trials were conducted one in Ruthe (52
°
11`N, 9

°
50`E), and the other 

one in Rostock (54
°
10`N, 12

°
4`E). Twelve seeds of each DH line were sown into seedling 

trays and raised in the greenhouse for one month. Seedlings of each DH line were 

transplanted into the field on 6
th

 of May 2013 in Rostock (54
°
10`N, 12

°
4`E) and 13

th
 of June 

2013 in Ruthe (52
°
11`N, 9

°
50`E). Each DH line plot have eight plants in  four rows of 1.2 m 

per plot, 0.40 m between rows resulting in plant density of  3.4 plants m 
-2

 . In Rostock there 

were three plots per line while in Ruthe only one plot per line. A border row was planted at 

the margin. Day to curd initiation was recorded twice a week from transplanting until the curd 

is visible. In these two experiments we used the same criteria used in the greenhouse for 

determining the curding time (diameter of the curd was ≥ 1 cm). Both experiments were 

terminated after 120 days. 

Netherlands and Hungaria (Parameterization, Validation and Test cross sets) 

In all field trials in Netherlands and Hungaria , the plot size was 3.0×3.0 m
2
 and inter-and 
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intra row spacing was 45cm. Plots were replicated three times in a randomized block design 

and plot value harvest time was recorded (plant breeder harvest time criteria). 

3.3.2.3 Data set, locations and years 

a.  Parameterization set 

The DH per se of the parameterization set which was used to parameterize the model in 

greenhouse was also grown and evaluated in two field experiments according to plant breeder 

harvest time criteria  in Zeewolde  (52
°
11`N, 9

°
50`E) ), Netherlands in 2011 and 2012. 

b. Validation set 

The same validation set of lines which were grown in field trials in Germany were also grown 

in four experiments, two in Zeewolde (52
°
11`N, 9

°
50`E ) in Netherlands and tow in Osca 

(52
°
11`N, 9

°
50`E ) in Hungaria.  

c. Test cross 

The predictive ability of the QTL based model was further tested on a set of test cross of each 

DH per se to one single tester were grown and phenotyped in field trials for day to harvest in 

Zeewolde (Netherlands) in 2012 and 2013 and in Osca (Hungaria) in 2011 and 2012. 

Genotyping data of DH per se training set serves for the test cross. The hybrids were tested in 

two locations for two years. Plot values for days from transplanting to maturity were used.  

The mean temperature and standard deviation, number of genotypes, year and transplanting 

date for each for each trial location year are presented in Table 10.  

In all experiments conducted in Netherlands or Hungaria the criteria of defining the curding 

time is the plant breeder commercial harvest time trait. This resulted in a systematic over 

estimation curding time, as compared to the criteria of visible curd used in greenhouse which 

is much less than the harvest time. Therefore the observed data was corrected by subtracting 

the same value from all lines for each data set.  
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3.3.3 Model description and parameter estimation  

3.3.3.1 The crop model, Model inputs 
 

Using two segment linear phase model, curding rate to temperature was dissected into three 

parameters slope left (SL), slope right (SR) and the breakpoint (Bp). Additional parameter 

represented the maximum developmental rate at optimum temperature was computed. The 

model parameters were estimated for each DH line. These parameters were identified for 151 

DH lines were previously grown and evaluated at six different temperatures in the green 

house. For a given set of model parameters and environmental conditions, the model predicts 

the curding rate.  The only weather input is the mean temperature. There was no observation 

in 7 lines at 21 °C and 45 lines at 27 °C were available, and the model could not be 

parameterized for that lines. For that reason the rate of development at these temperatures was 

assumed to be zero as default. This assumption is quite relevant to the physiology of 

cauliflower (Wurr and Fellows 2000). 

The model was fitted using the nls function located in the standard nls library in R program 

(Bates and Chambers, 1992). The model can be written as follows   

�� = �� +  �	 × �  for   � ≤ ��  

�� = �� +  �� × �  for   � > ��  

Where 

 �� is the rate of development (1/days to curd initiation). 

  ��, �� are the intercepts for the first and second segment respectively. 

 �	, �� are the slope of first and second segment respectively. 

 �  is the temperature and ��is the temperature at brekpoint 
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The maximum rate of development at the breakpoint was computed as follows 

 ���� =  �	 × �� + �� 

when � = ��  

�� +  �	 × � =  ��  +  �� × � 

Solve for one of the parameters in terms of the others by rearranging the equation above: 

�� =  �� +  ��	 −  ��� ×  � 

By replacing �� with the equation above, the result is a piecewise regression model that is 

continuous at � = �� 

�� = �� +  �	 × �  for   � ≤ ��  

�� =  ��� + ���	 − ���� +  �� × �   for T > �� 

Incorporating the  ���� the maximum development rate at optimum temperature into the 

final model rewritten as  

�� = ���� − ��	 × ��� − ���   for   � ≤  �� 

�� = ���� + ��� × �� − ����   for    � >  �� 

Where �� the rate of development is, ���� is the maximum development rate at optimum 

temperature, �	 is the slope left, �� is the slope right, � is the actual temperature, �� 

temperature at break point. 

3.3.4  QTL analysis on model parameters  

 

QTLs were identified for each parameter by composite interval mapping (Zeng 1994) using 

the software PLABQTL (Utz and Melchinger 1996). Analyses were based on multiple 
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regressions as described by Haley and Knott (1992). Cofactors were selected by stepwise 

regressions according to Miller (1990) with a default value for F-to-enter and F-to-delete of 

3.5. A LOD threshold of 2.0 was used to declare the putative existence of a QTL. QTL were 

graphically displayed using Map chart 2.2 (Voorrips 2002).  

The QTL based parameters estimates were calculated for each DH-line as follows: 

� !� " ∑ $%&%'              (1) 

Where �( is the predicted value of the )th DH-line, m is the estimated population mean, *( is 

the additive effect of the +th QTL in the )th DH-line, defined as 1 for P1 and -1 for the P2 

allele. For each genotype, the model parameters Bp, SL, SR and Rmax values were obtained 

from the equation (1) and then the ecophysiological model was used to predict the curding 

time using parameters which estimated by genetic markers. 

3.3.5 Validation of the QTL based model 

 

The QTL based model was validated on a set of independent data set, simulated curding rate 

were compared to measured lines and the root mean square error (RMSE) was used as 

measure of accuracy, also the coefficient of determination R
2
 of linear regression between 

simulated and observed values was used to indicate the percentage of phenotypic variation 

accounted for by the model.    

3. 4 Results 

Phenotypic variation in phenology model parameters (parameterization set) 

The DH population exhibited considerable phenotypic variation in model parameters BP, SL, 

SR and also the computed Rmax (Fig. 5 and Table 8) showing transgressive segregation. The 

SL and Rmax showed a unimodal distribution. For parameters BP and SR bimodal distribution 

was observed suggesting a major gene with large effect segregating in this population ( Fig. 5 
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and Table 8). The bimodal distribution of SR showed more transgressive segregants with less 

negative values than the one more negative. The P2 allele contributes for less negative value 

of SR which might explain the presence of phenotypic transgressive segregation. Few lines 

which showed a slope right of nearly zero (Fig. 5).  

 

Breakpoint (°C)     Left slope (1000. day
-1

. °C
-1

) 

 

Right slope (1000.day
-1

.°C
-1

)   Maximum developmental rate (1000. day
-1

.°C
-1

) 

 

       R sequare        

 Fig. 1  Frequency distributions of model parameters breakpoint (Bp), slope left (SL), slope 

right (SR) and maximum developmental rate (Rmax) and R-squared for model fit. 

P1 P2 

P1, P2 

P1 P2 P1 P2 
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Table 1  Parental lines means, DH-population minimum, maximum, means and standard 

errors for three estimated parameters of the phenology model Breakpoint (BP), 

slope left (SL), and slope right (SR) and computed maximum developmental rate 

(Rmax). Pearson's correlation coefficients between the parameters are shown. An 

asterisk indicates a significant correlation at P ≤ 0.05.  

Parameter 

Parental 

lines 
DH population 

Pearson’s correlation 

coefficient 

(P1) (P2) Min Max Mean SD
a 

SL SR Rmax 

BP (°C) 16.33 17.15 15.50 20.20 17.50 1.51 -0.74** -0.56** 0.059 

SL*1000 (day 
-1

. °C 
-1

)
 

1.49 1.49 0.70 2.90 1.55 0.19  0.42** 0.47** 

SR*1000 (day 
-1

. °C 
-1

) -1.73 -0.6 -3.70 0.20 -1.35 1.04   0.070 

Rmax*1000 (day
-1

) 23.0 23.5 19.9 32.6 24.87 4.51    

 

Correlation coefficients between BP were significantly negatively highly correlated with SL 

and SR with (R= - 0.74) and (R= - 0.56) respectively. SL was significantly positively 

correlated with SR and Rmax with (R= 0.42) and (R= 0.47) respectively. There was no 

correlation between Rmax and SR. Correlation coefficient between each model parameters and 

the curding per se for individual environments showed that Rmax is strongly negatively 

correlated with curding per se at 16, 17 and 19 °C with r in the range of - 0.80 and - 0.86 and 

reduced to - 0.61, - 0.58, - 0.46 at 12, 21, and 27 °C, respectively. The SR is negatively 

correlated with curding per se and this correlation increase with the increase of temperature 

ranged between - 0.21 at 12 °C to - 0.65 at 27 °C. SL is negatively correlated with curding per 

se at 16, 17 and 19 °C ranged between - 0.42 to - 0.58 and less correlated with 12, 21 and 27 

°C ranged between - 0.12 at 12 °C and - 0.33 at 27 °C. In all cases, weak positive correlation 

between the BP and the curding per se was observed.  
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3.4.1 QTL detected 

A total of 20 QTLs for all parameters BP, SL, SR and the computed Rmax were identified with 

one, five, four and ten QTLs respectively.  Table 9 summarizes the estimated positions, LOD 

scores, phenotypic variation explained, and additive effects of significant QTL. Single 

BPQTL was mapped on C06 with negative additive effect. This QTL explain 6 % of PV. Five 

QTLs were detected for SLQTL, three on C01, and one each on C06 and C09 explained 6 % - 

14.8 % of PV.  Four SRQTL were detected on C04, C06, C08 and C09 explained 8 % to 28.5 

% of the PV with positive additive effect except at C08. The major SRQTL on C06 explained 

28.5 % of the phenotypic variance with LOD=11.24 and large additive effect. At this QTL the 

P2 allele contributes for higher (less negative) slope. Only in one case the SR has negative 

additive effect on top of C08 indicating rapid development at high temperature in P1 

compared to P2. Ten RmaxQTLs were identified. Two of them at C01 co localized with 

SLQTLs. On top of C08 and C09 RmaxQTL explained 15.1 % and 9.5 % of PV with LOD 

score of 5.15 and 3.24 respectively. The RmaxQTL on C08 colcalized with SRQTL and on 

C09 colocalized with SLQTL .The remaining six RmaxQTLs were detected independent of SL 

or SR, one on C05 explained 15 % of the PV with  high LOD score of 5.27, two on C06, two 

on C07, one at C08 and two at top and bottom of C09 explained 15.1 % and 9 % of PV with 

LOD score of 5.15 and 3.04 respectively. The additive effect of all RmaxQTLs was positive 

with two exceptions at C01 at marker S0464 and on C07 at S0580.   
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Table 2   Linkage group, position, nearest marker, LOD scores, the percentage of phenotypic 

variation explained (R
2
) and the additive effect for QTLs detected for phenological 

model parameters in Brassica oleracea DH population 

Parameter Linkage group Position (cM) Nearest marker LOD R
2
 Add. 

BP 
6 20 1114 2.16 6.3 -0.306 

SL 

1 24 1066 3.62 10.3 -0.146 

1 52 1109 5.37 14.8 0.225 

1 78 1119 2.77 8.1 -0.15 

6 18 1114 2.09 6.1 0.099 

9 8 641 3.3 9.5 0.168 

SR 

4 56 403 2.78 8 0.209 

6 18 1114 11.24 28.5 0.57 

8 10 1099 3.02 8.6 -0.236 

9 78 1037 2.8 8.1 0.194 

Rmax 

 

1 22 464 2.5 7.4 -0.455 

1 58 1098 2.15 6.4 0.407 

5 30 1071 5.27 15 0.619 

6 2 136 3.25 9.6 0.495 

6 32 374 2.75 8.1 0.494 

7 0 1077 3.24 9.8 0.565 

7 72 580 3.47 10.2 -0.746 

8 18 1069 3.24 9.5 0.674 

9 2 1063 5.15 15.1 0.964 

9 56 256 3.04 9 0.52 
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Fig. 2  Linkage map and twenty QTLs for model parameters BP (unfilled), SL (filled), SR 

(horizontal stripe) and Rmax (vertical stripe).  
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The observed curding time across environments was compared to curding time predicted by 

physiological model as well as by QTL based model. The phenology model explained 95 % 

of the variation (Fig. 7A) while predictions with QTL based parameters model explained 

46 % of the variation (Fig. 7 B).  

The model was validated on a set of independent genotypes (validation set) at six 

experiments. Mean temperature and standard deviation, minimum, maximum, mean and 

standard deviation of curding time and the characteristics of the linear regression of the 

relation between simulated curding time QTL based and observed data are presented in Table 

10. In all the validation data sets, curding time predicted with QTL based parameters 

explained 27 % to 65 % of the variation with RMSE of 3 to 10 days (Table 10, Fig. 7). The 

QTL based model performed well in ranking genotypes for curding time in all field trials of 

the validation set, with Sperman correlation coefficient between simulated QTL based and 

observed data ranged between 0.51 to 0.78 (Table 10). The predictive quality of the QTL 

based parameters model on test cross set in four experiments explained 0.24 % to 0.41 % of 

the variation with RMSE ranged between 3 to 9 days. In test cross data set, the ability of 

ranking genotypes determined by Sperman correlation coefficient varied between 0.49 and 

0.63.
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Fig. 3 Comparison between observed days to curding and corresponding simulated days to 

curding by the model with original parameters (A) and by QTL based parameters (B) 

for the parameterization set across all environments in greenhouse. Comparison of 

observed days to curding and simulated days to curding in field trials using the QTL 

based model parameters for parameterization set, in Zeewolde 2012 and 2011 (C) and 

(D) respectively, and validation set, in Rostock 2013 (E), in Ruthe 2012 (F), in 

Zeewolde 2012a, 2012b (G) and (H) respectively, in Osca 2012 and 2011 (I) and (J) 

respectively, and for the test cross set in Zeewolde 2013, 2012 (K) and (L) respectively, 

in Osca 2012, 2011 (M) and (N) respectively. The solid line represents the linear 

regression of predicted value to the observed value. The dotted line is the 1:1 line. In 

the upper part of each plot R
2
 value is given.
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Table 3 RMSE and percentages of variance explained of the relationship between simulated QTL based and observed curding time of 

parameterization set, validation set and test cross set grown in field trials  

Data set Location Year 
Planting 

date 
N* 

Curding time 

(days) 
QTL based vs. Obs Mean 

temperature±SD 

Correlation 

Sperman 

rank Mean Min Max RMSE R
2
 Slope Intercept 

DH per se 
Zeewolde 2012 24/05/2012 161 48 30 61 4 0.41 0.49 24 15.7±2.8 0.62 

Zeewolde 2011 14/06/2011 147 45 33 57 6 0.22 0.27 33 16.2±2.3 0.48 

Validation 

Rostock 2013 06/05/2013 62 50 41 67 5.5 0.50 1.0 -3.2 17.5±4.2 0.72 

Ruthe 2012 13/06/2013 64 46 35 65 6 0.65 0.99 3.8 20.0±3.4 0.78 

Zeewolde_a 2012 24/05/2012 76 48.5 37.5 64 5 0.44 0.43 27 15.7±2.8 0.65 

Zeewolde_b 2012 24/05/2012 39 47 43 53 3 0.27 0.73 12.76 15.7±2.8 0.51 

Osca 2012 6/07/2012 29 53 42.5 62 10 0.32 1.21 -10.5 21.8±3.9 0.54 

Osca 2011 7/07/2011 28 52 45 59 9 0.40 1.66 -33.6 22.2±3.1 0.58 

Test cross 

Zeewolde 2013 26/06/2013 125 46 34 60 6 0.24 0.33 30.2 17.1±3.01 0.49 

Zeewolde 2012 13/06/2012 154 48 43 54 3 0.28 0.89 -4.89 16.2±2.84 0.53 

Osca 2012 6/07/2012 147 57 46 67 9 0.41 1.28 -16.3 21.7±3.9 0.59 

Osca 2011 7/07/2011 136 54 47 66 9 0.41 1.86 -46.29 21.6±3.3 0.63 

* N is the number of lines  
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3.5 Discussion 

Studying quantitative trait loci is complex due to genotype by environment interactions. One 

strategy to resolve this complexity is to develop a response curve for the trait of interest. This 

approach assumes that the network of genes coordinated in such a way that plant react for 

environmental conditions in a predictable way (Collins et al. 2008). In this study, two phase 

linear model describing the curding rate response to temperature was established for each DH 

line. The slope left parameter characterizes the genotype performance under suboptimal low 

and the slope right characterize the genotype performance under suboptimal high 

temperatures. Rmax parameter characterizes the genotype performance under optimum 

condition. The parameters of the response represent key characteristics of each DH line per se 

and QTL analysis carried out on these parameters. Comparing QTLs detected for the model 

input parameters SL, SR, and Rmax with hot spot QTLs for curding per se in single 

environment (Hasan et al. 2016) revealed that most  QTLs detected for curding per se were 

also detected for one of the model parameters on C05, C06, top of C07, and bottom of C09. 

Uptmoor et al. (2008) parameterize a model describes the time to flowering as a function of 

temperature in  B.oleracea DH-population and conduct QTL analysis on the model input 

parameters. Their results showed also common QTL regions using individual environment 

analysis and response curves. Similarly, Reymond et al. (2003) established response curves of 

maize leaf elongation rate to temperature, evaporative demand and soil water status and 

conducted QTL analysis on the parameter of the response curves. Most of the QTLs detected 

for the response curve were also detected in single environment analysis.  

In all genomic regions, when a co localization of SLQTLs , SRQTLs  and curding per se 

QTLs had occurred, the effect was consistent, indicating that the favorable allele for curding 

per se in single environment analysis were also favorable allele for curding rate to 

temperature. Several studies using model input parameters in QTL analysis did not identify 
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new chromosomal regions which were not identified in separate environment analysis 

(Reymond et al. 2003, Quilot et al 2005). In this study, we have identified three additional 

chromosomal regions which were specific for model parameters. Two QTLs for SL and Rmax 

on top of C01 and also for SL and Rmax  on top of C09 and for Rmax only at bottom of C07.  

A major QTL on C06 was detected for all three parameters SL, SR and Bp colocalized with 

hot spot regions for curding per se. The SRQTL explained 28.5 % of the phenotypic variation 

with a strong evidence (LOD>11) in compare to SLQTL explained 6% of the phenotypic 

variation with (LOD=2.09). This might indicate that, this genomic region is involved in 

temperature sensitivity. Furthermore, the SRQTL effect was five times the SLQTL indicating 

that, the suboptimal high temperature tended to enhance the role of this QTL. Interestingly, at 

this genomic region no RmaxQTL was detected, which further support the proposed 

suboptimal temperature sensitivity mentioned above. Using curding per se data of the same 

population, a QTL hotspot region for day to curd initiation with large additive effect 

increasing with the increase of temperature in the same region was detected. Uptmoor et al. 

(2008) identified a temperature response QTL on C06 and suggested vernalization effect to be 

casually related to flowering time variation.  Previous study in Brassica oleracea on cabbage 

x broccoli cross (Camargo and Osbron, 1996) identified three regions on linkage groups C02, 

C06 and C08 were associated with flowering time. The locus on C06 explained relatively 

large portion of the phenotypic variation (30 %) in flowering time and has been considered as 

a major locus. Temperature plays a significant role in curd development. Curd phenotype in 

cauliflower is associated with temperature effect. Gao et al.  (2007) conducted QTL analysis 

in Brassica oleracea mapping population based on visual scoring of the inflorescence 

phenotype in the greenhouse. Three QTL segments were detected. Two were on C01 and one 

on C06.  The bottom of C01 of Arabidopsis harbor key genes for flowering time such as FT, 

AP1. The homologe region was inverted and duplicated in C06 of B. oleracea in which 
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BoAP1-a (floral regulatory gene) was associated with cauliflower curd phenotype (Smith and 

King 2000). BoAP1 is the Brassica oleracea orthologue to the Arabidopsis AP1 gene, and 

was found in two copies in Brassica genomes. These two copies were referred to as BoAP1-a 

and BoAP1-b. In cauliflower heat causes a decline in the expression of BoAP1 in the shoot 

apex (Anthony et al. 1996). The development of bracts in cauliflower curds appears to be 

influenced by temperature, with plants more susceptible to bracting under temperatures 

higher than optimal ( Nieuwhof, 1969; Fujime and Okuda, 1996). Kop et al. (2003) found that 

high temperatures increased bracting with the same genotype and suggested that BoAP1-a 

plays a major role in the genetic regulatory pathway controlling bract development. In F3 

families derived from a cabbage by broccoli cross (Camargo and Osbron, 1996)  PF as a 

qualitative evaluation of  the annual/biennial habit  measuring the proportion of annual plants 

(PF) and flowering time index (FT), QTLs for both traits were detected on the top of C06 

explained 29 % of flowering time variation and have been considered as major locus.  

The Rmax value represents the maximum developmental rate at optimum temperature 

condition. In all ten RmaxQTLs,   the P2 allele increases the Rmax at all loci with two 

exceptions at top of C01 and bottom of C07. Interestingly, four RmaxQTLs were colocalized 

with four hot spot regions in single environment analyses, one each at middle of C05, top of 

C07 and at two genomic regions at C06. These QTLs were detected independent of two other  

model parameters (SL, SR) indicating that the modeling approach was able to separate the 

two individual physiological process linked to temperature sensitivity and earliness itself and 

to distinguish between QTLs that affect curding through suboptimal temperature sensitivity 

pathway and that affect curding for other aspects such as earliness per se. This would be not 

possible based on separate environment analyses. Sebastian et al. (2002) identified QTLs for 

vernalization, on C07 at (18 cM) in a cross of cauliflower and brussels sprout, and reported 
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that the QTL on C07 can account for vernalization requirement.  Several studies reported 

QTL on C05 (Bohuon et al. 1998; Uptmoor et al. 2008). 

Colocalization of RmaxQTL and SLQTL occur at three genomic regions; two on C01 and one 

at top of C09. The two SLQTLs at marker S1066 (24cM) and S1109 (52 cM) co localized 

with two RmaxQTLs at S0464 (22cM) and S1098 (58cM) on C01. In both genomic regions the 

additive effect was consistent between two parameters. However, the two genomic regions 

have opposite additive effect direction while P2 allele on the top of C01 at marker S1066 

causes late curding; it causes early curding at the other genomic region at marker S1109. The 

additive effect of SLQTL at S1109 is greater than SLQTL at S1066 whereas the RmaxQTL 

showed exactly the same absolute additive effect but different direction. Rae et al. (1999) in a 

backcross of substitution lines from a cross between Brassica oleracea var. italica and 

Brassica oleracea var. alboglabra detected two adjacent flowering time QTLs on 

chromosome 1; one late flowering between 0.0 and 30.3 cM and one early flowering between 

30.3 and 38.1 cM. In similar pattern, in previous study on the same mapping population we 

detected four LAR QTLs at each of both genomic regions with opposing direction of the 

additive effect.  The hot spot region on top of C01 is close to the position of a copy of 

miRNA 156. miRNA control the juvenile to adult transition (Wu et al. 2009).  

Combining both single environment and response curve parameters analyses allow the 

distinction between QTLs for particular environment from that QTLs interact with wider 

range of environments. Since the left and the right slope characterized the curding rate to 

temperature in winter-spring like environments and summer like environments respectively, 

selection of QTL alleles affecting the rate of development response curve parameters should 

be more effective than selection of alleles for QTLs detected in single environment analysis 

when the aim is to develop lines for winter-spring cropped or summer-cropped environments.  



69 

 

Coupling of crop model and quantitative genetics assists in prediction of genotype 

performance and improve the breeding efficiency (Reymond et al. 2003). In this study, the 

ecophysiological model was more efficient in simulating the curding time across 

environments (R
2
= 95%) compared to the QTL based model parameters (R

2
=0.46). Uptmoor 

et al. (2008) investigating the flowering time of Brasica oleracea segregating mapping 

population, the crop model showed a high precision (R
2
=0.86) while it reduced using the 

combined QTL and crop model (R
2
= 0.56). Whether the predictive capability of the QTL-

based model can be applied on independent data set which was not included in QTL analysis 

of the model input parameters, validation set was employed to investigate the prediction 

accuracy. Using the criteria of visible curd to determine the days to curding in Ruthe and 

Rostock the QTL-based model explained 0.65 % and 0.50 % with RMSE of 6 and 5.5 days 

respectively. However, using the usual plant breeder commercial harvest time trait in four 

other experiments, the QTL based model still show good capability to predict the day to 

curding explained 0.27 % to 0.43 % and RMSE  of 3 to 10 days. Bogard et al. 2014 using 

QTL based parameters of an ecophysiological model were able to predict the heading date in 

wheat of an independent data set with a root mean square error of 5 to 8.5 days, explaining 48 

to 63 % of. The correlation between observed and simulated days to curding of validation set 

ranged between 0.51 to 0.78 in all validation set experiments indicating that the QTL 

information can replace measured parameters. The above genetic panels consist of DH per se. 

In hybrid breeding program, huge number of cross combinations between inbreds lines and 

testers need to be evaluated in expensive field trials to identify the superior hybrids in the 

target environment. Thus, it is of great importance for plant breeder to identify in advance the 

most promising test cross for field experiments to reduce the phenotyping cost. In this study 

we test the prediction ability of the QTL based model using testcross data set which was 

evaluated in four field trials according to plant breeder commercial harvest time trait. The 

results showed that the QTL based model could predict the days to curding explained 0.41 % 
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of phenotypic variation with RMSE of 9 days at two high temperature environments and 0.24 

% to 0.28 % with RMSE of 3 to 6 at two low temperature environments. This indicates that 

the transferability of the marker effect estimates of previous breeding cycle used in the QTL 

based model to predict the next breeding cycle seems promising.  

3.6 Conclusion  

Describing the development rate towards curding in cauliflower using only few parameters 

which individually describe the development rate towards curding under sub optimal (SL and 

SR) as well as under optimal conditions (Rmax) appears reasonable. Coupling crop modeling 

and quantitative genetics is a useful tool allows the estimation of curding time in a new 

environment as long as temperature data and genotypic data are available.  The prediction can 

be extended for new DH lines derived from the same parental lines and still the predictive 

ability of the QTL based model on high level using the test cross data set. The QTL based 

model can assist plant breeder to accelerate and orientate their breeding program, test 

different breeding hypotheses and simulation of curding time for different allelic 

combinations under different environments.  
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CHAPTER 4 

4.1 General discussion and future aspects 

In cauliflower, stagger planting is used to improve the crop continuity to the market, but these 

do not always mature in the same expected order and overlapping between different plantings 

can occur which results in peak and toughs in availability of the product and price 

fluctuations. Temperature effect on growth and development of cauliflower considered as a 

major reason influencing the curding time. Identifying the genes involved in the regulation of 

curding time and its related traits in response to temperature would help plant breeder to 

develop cultivars with reliable harvest time, and therefore more predictable orders of maturity 

(Dixon, 2007).  

The present study identified 31 significant QTL for DCI. Individual QTL explained between 

11% and 41% of the phenotypic variation (Chapter 2, Table4). Promising QTL hot spot 

regions were mapped on C04, C05, C06, C07 and C09. QTL hotspots identified in this study 

shared similar genome location with previous studies. Both Bohuon et al. (1998) in a B. 

oleracea var. albogabra × B. oleracea var. italica cross and Rae et al. (1999) in backcross 

substitution lines of the same cross detected QTL for flowering time on C05 and C09. 

Okazaki et al. (2007) detected a QTL for flowering time on C06 in a F2 population derived 

from a broccoli (annual) × cabbage (biennial) cross and suggested that the QTL is equivalent 

to a QTL identified in F3 families which were derived from a cabbage × broccoli cross 

(Camargo and Osborn 1996). Uptmoor et al. (2008) identified in a B. oleracea var. albogabra 

× B. oleracea var. italica cross a temperature response QTL on C06 and suggested facultative 

vernalization effects to be causally related to flowering time variation. Sebastian et al. (2002) 

identified QTL on C07 in a cross of cauliflower and brussels sprout, and reported that the 

QTL at C07 can account for vernalization requirement. By contrast, the QTL hotspot region 

on C04 has not been reported previously.  
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On C04, only at three high temperatures three DCIQTLs were mapped at 19 °C, 21 °C on the 

same position and at 27 °C 16 cM apart, but there were no detected QTLs in other 

environments indicating its neutral effect at low temperatures range. In contrast, two 

DCIQTLs were detected on C05 at 17 °C and 19 °C colocalized with RmaxQTL and in 

proximity a strong DCIQTL at 12 °C explained 38 % of phenotypic variation with lod score 

of (LOD>16) indicating their association with variation in DCI at low-optimum temperature 

and its neutral effect at high temperatures. Although constitutive QTLs are the target of plant 

breeder, these QTLs which conditionally expressed are also useful to incorporate in breeding 

program as the favorable alleles for specific environments will have no negative effect on 

other environments.  

In three independent approaches a common major QTL on C06 strongly associated with high 

temperature effect was mapped. First, using curding per se data, the QTL on C06 was 

detected in three high temperatures 21 °C, 26 °C, and 27 °C explained 11 % to 40 % of the 

genetic variation with large additive effects (Chapter2, Table 4) co localized with large effect 

of FLNQTLs at 21 °C and 27 °C (Chapter 2, Table 5) and significant Q × E for both traits 

DCI and FLN (Chapter 2, Table 7). Second, in binary analysis on curding to non-curding 

phenotypes revealed a major QTL on chromosome C06 in the same genomic region 

mentioned above with high lod score (LOD>15) involved in the curding response. At this 

QTL, nearly all DH lines carrying the B allele induced a curd at temperatures higher than 21 

°C while nearly 50 % of DH lines carrying the A allele failed to induce curds (Chapter 2, Fig 

2 and 3). Third, QTL analysis on the model parameters reconfirmed the same genomic region 

on C06 for all three parameters of the phenology model SR, SL and Bp. The SRQTL 

explained 28.5 % of the phenotypic variation with strong evidence (LOD>11). The additive 

effect of SRQTL was five times the SLQTL suggesting that sub optimal high temperature 

enhances the role of this QTL. Furthermore, no Rmax QTL was detected which further indicate 
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that this QTL involved in suboptimal high temperature sensitivity (Chapter 3, Table 9; Fig 6). 

These findings indicate that the QTL on C06 is a strong candidate for high temperature 

sensitivity in cauliflower. Ryder et al. (2001) identified two segments on C06 showing co-

linearity with Arabidopsis chromosome 1. Both BoAP1-a and BoAP1-c genes were mapped in 

these two regions. The BoAP1-a locus was suggested to be associated with curding 

phenotypes and the stage of arrest in B. oleracea (Smith and King, 2000; Gao et al. 2007). 

However, Labate et al. (2006) concluded that the fraction of phenotypic variation explained 

by BoAP1-a is low, but the locus interacts with temperature. The expression of BoAP1 in the 

shoot apex of cauliflower is switched off during vegetative reversion at high temperatures 

(Anthony et al. 1996). High temperatures also promote formation of bracts (Booij and Struik 

1990; Grevsen et al. 2003). Kop et al. (2003) found evidence for correlations between the 

allelic state of BoAP1-a and the severity of bracting. The previous study suggested that 

BoAP1-a or closely linked genes play a major role in controlling bract development. The 

physical position of Boi2AP1 (Carr and Irish 1997), which is BoAP1-a, is C06: 35,676,652 

according to the BolBase A12 sequence (Liu et al. 2014). The physical position of Boi1AP1 

(BoAP1-c) is C06: 7,705,861.  

Sebastian et al. (2008) based on qualitative measure indicate a QTL on C07 at 17 cM to be 

associated with vernalization requirement. Similarly, in this study the hotspot QTLs on C07 

located at 30 cM showed higher additive effect at higher temperatures and DCIQTL×E 

suggested sensitivity to temperature.  

On chromosome 9 the hot spot region for curding per se and the higher QTL effects at high 

temperatures (Chapter 2, Table 4) co localized with RmaxQTL (Chapter 3, Table 9) and 

significant Q × E interaction for both traits DCI and FLN (Chapter 2, Table 7) indicate that 

the hotspot region on C09 has an influence on variation in sensitivity to temperature. Previous 

studies carried out on B. oleracea suggested that QTL for flowering time mapped on C09 may 
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result from the variation in vernalization requirement (Bohuon et al. 1998; Rae et al. 1999). 

Synteny between the region on chromosome 5 in A. thaliana and C09 in B. oleracea has 

already been shown and the FLC paralog BoFLC1 was mapped on C09 (Salatheia 2003; Pires 

et al. 2004). FLC paralogs were considered as candidate genes for variation in vernalization 

and flowering time in B. napus, B oleracea, and B. rapa (Osborn et al. 1997; Schranz et al. 

2002; Okazaki et al. 2007). The position of the QTL hotspot on C09 overlaps with the FLC 

paralog. In the TO1000 B. oleracea genome sequence (Parkin et al. 2014; Wang et al. 2011b) 

the position of S0629 is C09: 49,393,351 and the FLC position is C09: 51,033,935. A 

FRIGIDA-LIKE (FRL) ortholog is located close to S0533. However, it was also suggested that 

FLC independent pathways could be responsible for flowering time variation (Uptmoor et al. 

2012; Ridge et al. 2014).  

Detected QTL will assist the development of stable genetic markers that help marker-assisted 

breeding strategies towards thermo-tolerant cultivars. Most promising regions are located on 

C06 and C09. Both regions showed significant Q x E interactions for FLN and DCI QTLs and 

increasing additive effects with increasing temperatures. Importance of one hotspot on C06 

was supported by binary analysis of curding vs. non-curding data.  

High heritability was estimated for LAR (0.91). All 30 significant QTLs identified for LAR 

are novel, with no previous QTL study reported for this trait in this crop. In all environments, 

individual LARQTL showed a lod score greater than 4 and explained 11 and 29 % of the 

phenotypic variation. Main hot spot regions were detected on C01 at two genomic regions, 

C04 and C06 (Chapter 2, Table 6).  In all the coincidences of QTL for DCI and LAR, the 

additive effect had opposite directions. This result suggests that the genetic architecture 

underlying DCI is strongly correlated to the genetic control of LAR. Méndez-Vigo et al. 

(2010) found that variation in A. thaliana flowering time depends also on the rate of leaf 

production and most QTL for flowering time co-localized with QTL for rate of leaf 
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production. The strong genetic correlation between DCI and LAR may suggest potential use 

to manipulate crop duration and crop maturity time simultaneously. 

 Since it is assumed that a certain number of leaves must be initiated before juvenile-to-adult 

phase transition, LAR may have a direct impact on the duration of juvenility and subsequently 

on flowering time. Thomas (1980) found that differences in the duration of the juvenile phase 

in brussels sprouts (B. oleracea var. gemmifera L.) were exclusively due to differences in 

LAR with early cultivars having higher LARs. In this context, the three QTL hot spot regions 

for LAR may be considered as potential candidate for aspects involved in juvenile duration. 

Interestingly, the hotspot on top of C01 is close to the position of a copy of miR156; a 

miRNA that controls juvenile transition (Wu et al. 2009).  The position of S0714 is C01: 

2,993,555; the position of miR156 is C01: 3,777,428.  

In agreement with the significant genotype by environment interaction for LAR (Chapter 1, 

Table 2), three LARQTL×E were mapped on the tow hot spot regions on C01 and one on C06 

(Chapter 1, Table 7) indicating their environmental dependency. Given the potentially 

important role of LAR in the juvenility end mentioned above, the environmental dependency 

of LARQTLs might support previous studies report that the end of juvenility may vary with 

the environmental conditions (Wurr et al., 1994; Fellows et al., 1999).  

At both genomic regions on C01, in addition to LARQTLs and LARQTL×E, two RmaxQTLs 

and two SLQTLs were also mapped in both regions indicating their sensitivity to low-

optimum conditions (non-heat stress environments). In similar genomic regions on C01, Gao 

et al. (2007) in a cross of broccoli and cauliflower based on visual scoring of inflorescence 

type found two QTLs involved in the stage of arrest of reproductive development explained 

21 and 6 % of the variation. The stage of arrest is highly sensitive to temperature effect 

(Douclas and Bjöorkman, 2007). Rae et al. (1999) in a backcross of substitution lines from a 

cross between Brassica oleracea var. italica and Brassica oleracea var. alboglabra detected 



76 

 

two adjacent flowering time QTLs on chromosome 1; one late flowering between 0.0 cM and 

30.3 cM and one early flowering between 30.3 and 38.1 cM. In this study, at both genomic 

regions on C01 the additive effect of the same allele also had antagonistic QTL effect for all 

three traits LAR, Rmax and SL. Although the study of Gao et al. (2007) mapped two QTLs 

associated with curd phenotype indicating sensitivity to temperature, it is not clear whether 

the QTL effect at both genomic regions have opposite additive effect. However, the findings 

of Rae et al. (1999) and from this study might suggest that both genomic regions may act in 

antagonistic manner. RmaxQTLs at both genomic regions have similar absolute additive effect 

value indicating that at optimum temperature the effect of both QTLs on curding rate 

cancelled each other. In contrast, the SLQTL effect size at top of C01 is almost half of the 

effect size at the other genomic region indicating that in the range of low temperatures both 

QTLs are probably differentially expressed in antagonistic manner to regulate the rate of 

curding in response to low temperatures.  

Flowering time is highly correlated to FLN in many plant species. In cauliflower, the delay in 

curd initiation due to high temperatures during the adult vegetative development stage is 

correlated with an increase in FLN (Wiebe 1972b; Booij and Struik 1990; Hand and Atherton 

1987). In this study, in addition to DCI as measure of curding time, the FLN produced was 

determined as complementary measure of curding time. A total of 29 significant QTL for 

FLN were detected. At the two main hot spot regions for DCI on C06 and C09, co localization 

between DCI and FLN QTLs was observed and a significant FLNQ×E was mapped which 

highlights the value of this measure in cauliflower to support the genetic variation detected in 

curding time.  

Progress in molecular plant breeding particularly for complex traits is constrained by the 

ability to predict plant phenotype based on its genotype in relevant target environments to 

underpin crop trait improvement (Hammer et al. 2010). Crop development models have the 
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potential to bridge this predictability gap (Hammer et al. 2010). The improvement of 

phenotypic predictions through crop modeling result from its potential to deal with complex 

interactions among plant growth and development processes, environmental effects and 

genetic control (Hammer, 2012). This study showed how a simple phenology model, which 

quantifies the causality between rate of development towards curding and  temperature, can 

enhance our understanding of the phenotype complexity and assist the identification of 

quantitative trait loci (QTLs) for relevant new phenotypic traits (model parameters). Unlike 

curding per se measured at certain time point in single environment, phenology model 

described changes in the phenotypic response with the environment change in a set of 

parameters. It integrates the plant development and the interaction between plants and 

environment in a casualty interconnected way which is difficult to obtain by conventional 

phenotyping process. The model parameters represent a new phenotype with new biological 

meaning. Weather a phenotype measured as a standard agronomic trait or as a model 

parameter, plant breeder is mainly interested in the genetic basis of the phenotypic variation 

(Baenziger et al. 2004). In this study, the genetic basis underlying of the phenology model 

parameters was identified. A total of 20 QTLs were detected for all four parameters explain 6 

% to 28.5 % of the phenotypic variation (Chapter 2, Table 9). Although most of the markers 

detected for model parameters were detected for curding per se on C05, C06, top of C07, and 

bottom of C09, new conclusions have been emerged. In particular, comparing QTLs detected 

for the model parameters SL, SR, and Rmax with hot spot QTLs for curding per se in single 

environment revealed that in all genomic regions, when a co localization of SLQTLs, 

SRQTLs and curding per se QTLs had occurred, the effect was consistent, indicating that the 

favorable allele for curding per se in single environment analysis were also favorable allele 

for curding rate to temperature. Unlike QTLs detected for curding per se which are restricted 

to a particular environment, the QTLs for SL and SR are a result of wider range of 

environments. Thus, selection of QTL alleles affecting the rate of development response 
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curve parameters should be more effective than selection of alleles for QTLs detected in 

single environment analysis. Another interesting added value from modeling approach is that, 

the three RmaxQTLs were colocalized with three hot spot regions in single environment 

analysis, one each at middle of C05, and at two genomic regions at C06. These QTLs were 

detected independent from other suboptimal temperature sensitive model parameters (SL, SR) 

indicating that the modeling approach was able to distinguish between QTLs that affect 

curding through suboptimal temperature sensitivity pathway and that affect curding for other 

aspects such as earliness per se. Breeding for early maturing cultivar might be a desirable trait 

in cauliflower. However, earliness is strongly influenced by temperature. Differences among 

the DH lines in Rmax indicate the differences in the net durations of developmental transitions 

under optimum temperature for each DH line. Regardless of whether these differences 

associated with the duration of vegetative or reproductive phase, it is relevant to suggest the 

three Rmax QTLs occurred independent from the SL and SR as potential in breeding for 

earliness (early maturity). Furthermore, QTLs detected for Rmax and SR are largely 

uncorrelated. This implies that sensitivity to sub optimal high temperature and maximum 

development rate at optimum temperature seem amenable to independent genetic 

improvement.  

To develop QTL based model, the QTL effect of the identified QTLs of the model parameters 

was incorporated into the phenology model. Several recent papers illustrated the potential of 

applying genomic research to modeling (White and Hoogenboom 2003; Baenziger et al. 2004; 

Yin et al. 2004; Uptmoor et al. 2008). In this study, in the parametrization set, the observed 

curding time across environments was compared to curding time predicted by the phenology 

model and by the QTL based model. The phenology model accounted for 95% of the 

phenotypic variation while the QTL based model accounted for 46% of the phenotypic 

variation (Chapter 3, Fig. 7, and Table 10). In several studies which used this approach, the 
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QTL based model has reduced ability to predict the phenotype compared to the phenology 

model. Although the use of such approach has a considerable potential in predicting the 

phenotype through the genotype for application in plant breeding, it is still in its infancy 

(Hammer and Jordan, 2007; Parent and Tardiue, 2014) and the capability of current crop 

models remains questionable due to inadequate understanding or incomplete quantification of 

key parameters (White, 2006). Yin et al. (2005b) indicate the weakness of current crop 

models in predicting the differences in complex traits within segregating populations as a 

major constrain for applying QTL based model. In addition to the weakness of current crop 

models in simulating observed variation, the QTL based model approach shares challenges of 

QTL analyses such as population size recommended for reliable QTL detection, considering 

epistasis, and detection of false positive (White, 2006). On the other hand, the accumulation 

of different types of errors such as the experimental error, the model error, and the error of 

QTL statistics are other sources of uncertainty in such approach (Uptmoor et al. 2008). In this 

study, in addition to the simplicity of the phenology model considering only the temperature 

as driving force of curding time and model errors, the reduced accuracy in QTL based model 

may attribute to the limited number of QTLs which individually account for only  6 to 28.5 % 

of the phenotypic variation of model  parameters (Chapter 3, Table 9 ). Generally, limited 

number of QTLs might be due to small sample size or insufficient coverage of the markers.  

For predicting the curding time within an independent data set of DH lines derived from the 

same parents, the QTL based model account for 0.27 to 0.65 of the phenotypic variation with 

RMSE of 3 to 10 days (Chapter 3,  Fig. 7,Table 10).  Bogard et al. (2014) using QTL based 

parameters of ecophysiological model were able to predict the heading date in wheat in an 

independent data set with RMSE of 5 to 8.5 days and explaining 48 to 63 % of the phenotypic 

variation.  
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Most of studies used the coupling of crop modeling and QTL mapping were restricted to the 

parameterization set, however few were extended to validation set  but none of them test the 

QTL based model on hybrid lines. Prediction of hybrid performance is an attractive 

alternative to expensive field testing for identification of superior hybrids and can greatly 

accelerate hybrid breeding program (Shrag et al. 2009). In this study, the QTL based model 

could provide a satisfactory prediction of the test cross performance with low to moderate R
2
 

values ranged between 0.24 under relatively low temperature and 0.41 under relatively high 

temperature (Chapter 3 Table 10). Depending on the environment (field trials), the difference 

between the earliest and latest curding time varied from 11 to 26 days, reflecting the large 

genotypic variability among the test cross data set. However, the correlation between 

observed and predicted curding time was moderate and ranged between 0.49 to 0.63 (Chapter 

3 Table 10). This showed that genetic effects which were estimated from the DH per se 

(parameterization set) may potentially used for prediction of test cross. Hofheinz et al. (2012) 

found that, the performance of hybrid can be predicted either with effects estimated from the 

same breeding cycle or with effects estimated in a previous breeding cycle.  

Model selection can be challenging. Simple models facilitate the interpretation of the model 

coefficient and give better understanding of the physiological process. Model selection should 

be constrained on the basis of research objectives and on the understanding of the biological 

process. In this context, the bilinear model used in this study appears reasonable. The most 

important point in model selection in such kind of studies is to be able to simulate the genetic 

variability (Parent and Tardieu 2014). In this study, the bilinear model was able to simulate 

the genetic variability of curding time responses to temperature of large number of genotypes 

grown in common ranges of temperature by set of genotype specific parameters. Thus, 

identify the genetic basis of temperature response parameters. The model structure and model 

parameters characterize the phenotypic responses across environments describing the 
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maximum amount of genotype by environment interaction by differential sensitivity to 

environmental conditions in three domains: suboptimal low temperature; optimal temperature 

and high suboptimal temperature. This is in agreement with current understanding of 

cauliflower crop modelers of the rate towards curding as a function of temperature with 

minimum, optimum and maximum temperatures (Wurr et al. 1993; Grevsen and Olsen 1994; 

Kage and Stützel 1999).  

Almost all crop models used two types of inputs: environmental and physiological inputs (Yin 

et al., 2005). In this study, the only environmental input is the temperature and the only 

physiological input is the time from transplanting to curd initiation. In this context the model 

is rather simple. In several studies which use the QTL based parameters approach, the 

physiological model was restricted to only one function such as flowering time (Yin et al. 

2005; Uptmoor et al. 2008), leaf elongation rate (Reymond et al. 2003) and peach quality 

(Quilot et al. 2005). Such simple model can be easily implemented. Since the physiological 

trait used is relatively easy to measure, and it can be used by plant breeder in standard crop 

performance in practical cauliflower breeding program.  
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4.2 Future research 

Mapped QTLs represent an essential step to further use in marker assisted selection. Some 

QTLs were repeatedly mapped across a wide range of environments. However, further studies 

are needed to validate suggestive QTLs and their effect in different genetic background before 

MAS is implemented.  

The physical position of some potential candidate genes involved in flowering time, 

temperature sensitivity, inflorescence merstiem identity and juvenile to adult transition was 

inferred from Brassica reference genome and were found to be close to QTL hot spot regions 

on top of C01, bottom of C04, middle of C06, C07 and C09. Candidate genes in the hot spot 

regions need to be sequenced and sequence variation could be correlated to phenotypic 

variation.  

Juvenility can act as a confounding factor in curding time. Usually researchers use the 

reproductive competence to distinguish between adult and juvenile phase by conducting 

reciprocal transfer experiments from warm-less inducing conditions to cool-more inducing 

conditions at different plant ages (Matsoukas et al., 2013). Implementing such procedure for a 

mapping population is challenging. Although the major focus of this study is temperature 

effect on curding time and not juvenility, an attempt to explore the juvenile to adult transition 

was examined based on previous studies which indicated a change in leaf appearance rate 

during the vegetative growth phase and hypothesized that the rate change may occur at 

transition from juvenile to adult stage (Hand and Atherton 1987; Booij and Struik 1990). In 

this study, the hypothesized change in LAR could not be precisely estimated. The most 

probable reason is that, the leaf number was counted only eight times during the first 27 days 

after transplanting. Future studies may further investigate this hypothesis by including more 

data points starting from early seedling stage.   
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Considering the complexity of maturity time in cauliflower, the phenology model used in this 

study is still at early stage with respect to integration of other physiological process and their 

genetic basis. For instance, determining the length and the genetic basis of timing of juvenility 

and then incorporate these aspects by a sub model to the current model might will improve the 

model performance.  

The phenology model used in this study has some strengths points such as simplicity, low 

number of parameters, reproduces the genetic variability and describes the rate of curding to 

temperature in quite relevant way of cauliflower physiology. However, it has some weak 

points such as lack of ability to describe the range of optimum temperature due to the abrupt 

change from increasing part to decreasing part (no plateu); overestimate the minimum and 

maximum temperature in case of extrapolation beyond the data range. However, this model 

can be used as a platform for further improvement using more complex models such as three 

stage linear model or beta function. 

In this study, identification of the marker and marker effect of model parameters was done by 

using traditional QTL mapping. QTL analysis does not capture genes below the significant 

level and therefore could not be incorporated to the phenology model. Alternatively, using 

other approach to trace all marker effect instead of only significant QTL may be used. 

Mapping QTL using genomic selection can offer these properties.  
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