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ABSTRACT

The first description of quantum steering goes back to Schrodinger. In
1935 he named it a necessary and indispensable feature of quantum
mechanics in response to Einstein’s concerns about the completeness
of quantum theory. In recent years investigations of the effect have ex-
perienced a revival, as it turned out that steering is a distinct subclass
of entanglement. It is strictly stronger than genuine entanglement,
meaning that all steerable states are entangled but not vice versa, and
strictly weaker than the violation of Bell inequalities. Additionally,
the violation of a steering inequality has an intrinsic asymmetry due
to the directional construction. One party seemingly steers the other
and their roles are in general not interchangeable. The first direct ob-
servation of this asymmetry is presented in this thesis. It was demon-
strated that certain Gaussian quantum optical states show steering
from one party to the other but not in the opposite direction. This is
a profound result, as the experiment proves that the class of steerable
states itself divides into distinct subclasses.

Furthermore, steering found major applications in quantum infor-
mation. For example in the field of quantum key distribution (QKD)
the non-classical correlations can be exploited to establish a secret,
cryptographic key. Thereby, steering allows one-sided device inde-
pendent security, since it violates a description with certain classical
models. This thesis reports on the final results of the QKD project at
the Leibniz University Hannover that aimed at the generation of a
secure quantum key based on mutually entangled conjugate pairs of
continuous variables. The protocol of a recent security proof was im-
plemented in a table-top setup and nearly 100 MBit of usable key with
composable and one-sided device independent security against coher-
ent attacks were generated. The security analysis included finite size
effects, and a newly developed hybrid reconciliation algorithm was
used for efficient error correction. Furthermore, a loss study on the
entanglement distribution showed that separation of the two detec-
tors by a 5km optical fibre would be possible. Therefore, the results
of this work are a major step towards continuous variable QKD with
state-of-the-art security in local area networks.
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KURZFASSUNG

Die erste Beschreibung von Quanten-Steering (z.dt. Quantenlenkung)

geht auf Schrodinger zuriick. Im Jahr 1935 nannte er es ein notwendi-
ges und unverzichtbares Merkmal der Quantenmechanik in Antwort

auf Einsteins Bedenken beziiglich der Vollstindigkeit der Quanten-
theorie. In den letzten Jahren erlebten die Untersuchungen des Ef-
fekts einen Aufschwung, da es sich herausstellte, dass Steering eine

ausgepragte Unterklasse der Verschrankung darstellt. Es ist strikt

starker als origindre Verschrankung, d.h. alle Steering Zustande sind

verschrankt aber nicht umgekehrt, und strinkt schwécher als die Ver-
letzung Bellscher Ungleichungen. Zusétzlich hat die Verletzung einer

Steering Ungleichung eine intrinsische Asymmetrie aufgrund der rich-
tungsabhdngigen Konstruktion. Eine Partei lenkt scheinbar die an-
dere und ihre Rollen sind im Allgemeinen nicht vertauschbar. In

dieser Arbeit wird die erste direkte Beobachtung dieser Asymmetrie

prasentiert. Es wurde gezeigt, dass bestimmte Gaufssche Zustande in

der Quantenoptik Steering von einer Partei zur anderen aufweisen,
aber nicht in umgekehrter Richtung. Dies ist ein tiefgreifendes Re-
sultat, da das Experiment beweist, dass sich die Klasse der Steering

Zustande selbst in unterscheidbare Unterklassen aufteilt.

Dariiber hinaus hat Steering wichtige Anwendungen in der Quan-
teninformation gefunden. Zum Beispiel konnen im Bereich der Quan-
tenschliisselverteilung (QKD) die nicht-klassischen Korrelationen aus-
genutzt werden um einen geheimen, kryptographischen Schliissel zu
erzeugen. Dabei erlaubt Steering die einseitige Gerdateunabhdngigkeit
der Sicherheit, da es die Beschreibung durch bestimmte klassische
Modelle verletzt. In dieser Arbeit werden die finalen Ergebnisse des
QKD Projekts an der Leibniz Universitit Hannover vorgestellt, wel-
ches die Erzeugung eines sicheren Quantenschliissels auf Basis ge-
meinsam verschréankter, konjugierter Paare kontinuierlicher Variablen
zum Ziel hatte. Das Protokoll eines aktuellen Sicherheitsbeweises wur-
de in einem Tischaufbau umgesetzt und fast 100 MBit verwendbarer
Schliissel mit zusammensetzbarer und einseitig gerdteunabhédngiger
Sicherheit gegen kohédrente Angriffe wurden erzeugt. Die Sicherheits-
analyse schloss Effekte der endlichen Grofie des Schliissels mit ein
und ein neu entwickelter, hybrider Abgleichalgorithmus wurde zur
effizienten Fehlerkorrektur verwendet. Des Weiteren zeigte eine Ver-
luststudie an der Verschrankungsverteilung, dass eine Separierung
der beiden Detektoren durch 5km Glasfaserkabel moglich wire. Die
Ergebnisse dieser Arbeit sind daher ein bedeutender Schritt fiir die
Anwendung von QKD mit kontinuierlichen Variablen und modern-
ster Sicherheit in lokalen Netzwerken.

Schlagworte: Quantenlenkung, gequetschtes Licht, Quantenschliissel-
verteilung
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INTRODUCTION

Quantum mechanics is one of the most successful physical theories.
Established in the 1920s, it paved the way for many technological de-
velopments throughout the 20th century. At the root of many quan-
tum effects is a phenomenon called entanglement. Roughly speaking
it concerns correlations between two or more subsystems that are
stronger than the statistical description of the measurements would
allow. Where in the early days this paradox gave the leading develop-
ers of quantum theory quite a headache and lead to intense philo-
sophical discussion, nowadays it is experimentally proven and ac-
cepted and seen as resource for quantum technologies.

On the one hand, entanglement finds applications in the field of
quantum metrology, the measurement of observables at the quan-
tum limit given by the Heisenberg Uncertainty Principle. Here, the
sophisticated usage of entangled states can allow a higher precision
in the determination of the desired observable than Heisenberg’s un-
certainty would allow. A famous example is the enhancement of the
sensitivity of gravitational wave (GW) detectors with squeezed states
of laser light (these are states with entangled upper and lower side-
bands). Proposed already in 1981 [Cav81], it was successfully imple-
mented in 2010 at GEO60o, the km scale Michelson-type laser in-
terferometer near Hannover/Germany [LSC11]. The sensitivity was
significantly increased and squeezing became a key resource for all
future upgrades and new developments of ground based GW detec-
tors [Sna1o, LSC13, Oel14]. Furthermore, many applications were de-
veloped in recent years, from the use of quadrature-entangled light
as a veto channel for stray light signals in interferometers (quantum
dense metrology) to the enhancement of the tracking of lipid gran-
ules in living yeast cells [Ste13, Tay13]. And with future technological
developments, like efficient cryogenic cooling or low-loss optical com-
ponents, the versatility of entanglement as a measurement enhancer
will most likely even grow further.

On the other hand, the non-classical correlations cry out for an
application in quantum information [Braos]. The most prominent ex-
ample might be the field of quantum key distribution (QKD), which
aims at the establishment of secure communication based on quan-
tum physical principles [vAso6]. Here, the application of entangled
states initiated a series of new security proofs and protocols [Ekeg1,
Ursoy, Suog, Mad12, Furi2]. Thereby, not only the correlations can be
used to generate a secure and symmetric key but the non-classicality
of these correlations also allow the security to be independent of the
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implementation with macroscopic (hence classical) devices. Roughly
speaking, an adversary trying to exploit implementation side chan-
nels would fail, as they could not forge the non-classical statistics.
Furthermore, entanglement is also a key resource to solve problems
arising from real world implementation of QKD, as it finds applica-
tions in quantum memories [Kozoo, Julo4], quantum repeaters [Brig8,
Duao1] or the super-activation of communication channels [Horgg,
Smi11]. Related to these, but not restricted to QKD applications, are
the areas of quantum teleportation [Beng3, Vaigy, Bougy, Brag8], en-
tanglement swapping [Tangg, Jiao4] and distillation [Fiuoy, Hago8,
Dono8]. And last but not least, the quantum computer relies on en-
tanglement [Brigg]. This machine, its development currently making
large progress, operates with only a few quanta well-shielded from
the environment, which enables the formation of a multiply entan-
gled state containing the computation. With its successful implemen-
tation it will open a whole new universe to computer science.

From the various and demanding applications of entangled states
the field of quantum engineering emerged. The states do not only have
to be generated and verified by an appropriate measurement, but
they have to be producible on demand, they have to be controllable
on fairly arbitrary time scales, and all processes necessary for their
generation have to be thoroughly understood to allow the flawless
implementation in connection with other technologies. Therefore, the
generation and stable control of specific quantum states is not only of
fundamental physical interest but also has implications for possible
future applications and technologies.

In this thesis entanglement engineering was performed in two dif-
ferent but connected experiments. In the first one, the existence of
a new class of entanglement, the one-way steering, could be experi-
mentally demonstrated. Steering occurs in certain entangled states
where a measurement on one subsystem seemingly steers the other
subsystem (or in the multi-mode case several other subsystems) into
a specific (pure) state. The one-way steerable states now show this ef-
fect only from one subsystem to the other but not vice versa, thereby
demonstrating a new counterintuitive feature of entanglement. The
effect was demonstrated with high statistical significance and in accor-
dance with the theoretical description. In the second experiment, two-
way steering was generated and applied for QKD with continuous
variables in a table top experiment. The strong non-classical correla-
tions enabled composable security against the most general coherent
attacks. The security analysis also included effects emerging from the
finite precision of the measurement statistics due to a finite number
of measurement samples. Therefore, the system incorporated state-
of-the-art quantum information theory and demonstrated the highest
level of security that is currently possible with continuous variables.
Furthermore, the presence of steering allowed the demonstration of
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one-sided device independent security. This means the security of the
key distribution protocol is robust against implementation side chan-
nel attacks on the remote party, if we define the local party as the
one that possesses the steering source. Additionally, a loss study on
the system was conducted. The results suggest that a separation of
the two parties by approximately 5km standard optical fiber would
be possible and with the inclusion of reverse reconciliation the range
could be extended to 16 km. Thus, it demonstrates that entanglement
based continuous variable QKD in local area networks is feasible. Fi-
nally, experimental investigations on the implementation of such a
fiber link were made. The distribution of squeezed and entangled
states through 1 km single mode fiber was successfully demonstrated.
Nevertheless, the achieved level on non-classicality was not sufficient
to employ it in the QKD protocol. The observed problems were stud-
ied in detail and found to be based on technical limitations that
should be overcome by future developments.

STRUCTURE OF THIS THESIS

This thesis is divided into seven chapters: Following the introduction,
Chapter 2 gives an overview of quantum mechanics and in partic-
ular of quantum optics. Chapter 3 is dedicated to the detection of
continuous variable quantum systems with homodyne detection and
explains what signals can be expected from the most important states
used in this thesis. Chapter 4 provides a thorough description of en-
tanglement and gives the theoretical background of one-way steering.
Chapter 5 then introduces the key components of the experiments
conducted in the framework of this thesis and presents the results of
the one-way steering generation. In Chapter 6 the results of the QKD
experiments are presented together with the required technical en-
hancements of the setup and the studies on the fiber transmission. All
results are summarized in Chapter 7 together with future prospects
of the findings.






QUANTUM OPTICS

2.1 FOUNDATIONS OF QUANTUM MECHANICS
2.1.1  Planck’s Law and the Photo-Electric Effect

By the end of the 19th century an unsolved problem in physics was
a consistent description of the so-called blackbody radiation. A black-
body can in good approximation be described by a tiny hole in a box
that is blackened inside. On the one hand the walls then perfectly ab-
sorb any electromagnetic radiation contained in the box. On the other
hand the walls will emit radiation depending on their absolute tem-
perature. After giving the system enough time, the field in the cavity
formed by the box will have reached thermal equilibrium. The theory
of classical statistical mechanics demands that on the one hand the
energy in each mode will follow the exponential Boltzmann distribu-
tion depending on the temperature. But on the other hand it follows
from the equipartition theorem that in each mode the same amount of
energy is contained. As no upper limit to the frequency of the modes
is given this would result in an infinite amount of energy in the box,
if summing over all modes, which is known as the ultraviolet catastro-
phe. Obviously this can not be true as the energy in the box should
always be bounded.

The situation was resolved in 1900 in a publication by Max Planck
[Plaoo]. He suggested that the energy of the electromagnetic field in
each mode was quantized, i.e. only discrete portions of energy could
be absorbed or emitted at a time. The connection he proposed was
simply linear, E = hw, where w is the angular frequency and h a
fairly small but non-zero constant, which is the same for any mode
and is nowadays known as the quantum of action or simply Planck’s
constant. The resulting distribution of energy over the frequencies of
the modes showed the same behavior for low frequencies as the clas-
sical theory but predicted a rapid drop-off at high frequencies. By
choosing the value for Planck’s constant appropriately it was possi-
ble to actually match the theoretical spectral distribution of energy
to the experimental observations. It can even be generalized to large
scales and the spectrum of our sun can (up to some tiny quantum ef-
fects) perfectly be described by Planck’s radiation formula if a surface
temperature of about 5500 K is assumed.

While it seems that Planck himself thought the quantization was an
effect of the atoms that form the walls of the box, in 1905 Albert Ein-
stein gave the story a new twist and showed that the quantization was
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inherent to the electromagnetic field itself. By using Planck’s quanti-
zation postulate he was able to explain the hitherto mysterious pho-
toelectric effect [Einos]. In this experiment, light was shone at a metal
plate and the energy of the liberated electrons was investigated. With
the classical theory of light one would have expected that the energy
of the electrons increases if the intensity of the light was increased.
But on the contrary it was observed that the energy of each electron
stayed exactly the same no matter how much light was used and
only the number of electrons that were liberated was changed. This
becomes immediately reasonable if we assume the light to be quan-
tized in what we nowadays call photons. Each photon has a certain
probability of liberating an electron, thereby transmitting its energy.
Some of the energy will be required to ionize the electron from its
atom, the rest will be kinetic energy that can be experimentally mea-
sured. If now the intensity of the light is increased, more photons
will hit the metal plate and the overall probability of electrons being
liberated will increase. But each single electron still only absorbs the
energy of one photon. The effect can be shown even more dramati-
cally if monochromatic light is used. If the frequency of the light is
small such that hw is smaller than the ionization energy for a single
electron, no electrons will be liberated at all, no matter how intense
the light is made.

Although from a classical point of view this was completely unintu-
itive and maybe even unreasonable, the seminal success in explaining
these fundamental effects gave the theory of quantum mechanics its
foundation and was soon accepted as the only possible way to de-
scribe the universe at the smallest scale. Nevertheless, it came with
great controversy especially in its (philosophical) interpretation. To
point this out let us have a look at what is called wave-particle duality.
The findings by Planck and Einstein proposed that light actually con-
sists of particles. This is in great contrast to the classical theory of light
being a wave, as manifested in many interference experiments. Now
one might think of conceiving such an experiment with no more than
one photon at a time. Under the classical assumption of a particle the
interference pattern (or whatever is observed with a classical wave)
would have to vanish. But on the contrary the pattern still arises, it
just takes quite a while as only one photon at a time hits the screen or
the detector. Hence, one might say “each photon is interfering with
itself”, or even “light is simultaneously both, wave AND particle”.
The same is true with what is classically considered a particle, for
example an electron. It will behave like a wave if we just look closely
enough but still a single electron will always be detected as a single
electron and never be “smeared” over the range of an interference
pattern.

To solve this duality Erwin Schrédinger introduced the wave func-
tion to describe the evolution of a quantum system, although he
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might not have thought of it this way himself. This function \ is a
solution to the Schrédinger equation

dp 1.

T %pr, (2.1)
where H is the Hamilton operator of the system (see next section).
This equation has similarities to a classical wave equation which ex-
plains the wave character of its solutions. The particle aspect on the
other hand arises from the interpretation of the wave function as a
probability amplitude for the state of the system. This means the ab-
solute square of 1 will describe the probability density for finding
the system in any of its possible states, thereby, loosing all wave-like
aspects contained in its complex argument. Hence, the wave function
does not give an explicit description of the system of the form “at time
t it will be at position x” but it contains all possible results of a mea-
surement with its respective probabilities. By measuring a property
of a quantum system one of these possibilities will be realized and
only by repeating the experiment with many systems all prepared in
the same way the probability distribution will be regained. This can
be summarized in the statement that quantum mechanics is a statisti-
cal theory. It makes no predictions for the single measurement, since
there is no way of predicting it.

2.1.2  Description and Interpretation of Quantum States

Before we can go into detailed descriptions of quantum optics we will
revisit some fundamental mathematical definitions and propositions.
We will just state the most relevant properties, a very good introduc-
tion including the mathematical subtleties can be found in [Hal13].

In classical analytic mechanics the state of a physical system is de-
scribed by vectors on a phase space, for example (x, p) being the po-
sition and the momentum of a particle. In quantum mechanics the
state is described by a unit vector \p) on a Hilbert space J{. The states
are actually rays on ¥, as (') = chp) for some ¢ € C represents
the same physical state. Even the restriction to normalized vectors
(Ic]* = 1) leaves an infinite number of possible representations. Fur-
thermore, the Hilbert space will normally be the space of square in-
tegrable functions on R, L?(IR). But in many cases it does not have
to be specified, just the commutation relations of the observables of
interest (see further down) will be given and 7 is assumed to be an
irreducible representation of those relations.

The state vector p) can be related to the previously mentioned
wave function 1 by taking the inner product of it with an eigenstate
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of the desired variable of the wave function, and thus we will use
them interchangeably. For example for the position we have

$(x) = (x).

Here, the brackets denote the sesquilinear inner product of the Hilbert
space of the ket vector b)) and an adjoint bra vector (|,

(@A) = ANohp),
Aphh) = A" (o).

If a system can be fully described by a state [\p) it is called a pure
state. To investigate physical properties of such a state we define ob-
servables to be operators on the associated Hilbert space in analogy
to functions on the classical phase space. These operators act on the
states similar to matrices on vectors. For each operator A there is a
unique adjoint operator AT,

(@A) = (AT o).

The expectation value of A with respect to the state [\b) is given by
Exp(A) = (WAD) = (A)y,

and similarly all higher moments of A
Exp(A™) = (A™)y,.

As we will see in Section 2.4.2, these moments completely define the
statistical properties of ) under measurement of A.

Now suppose [ib) is an eigenvector of A (we will call this an eigen-
state). Then we have

Alp) = Ah),

with A the corresponding eigenvalue. Hence, if \p) is normalized, that
is (Y[p) = 1, we obtain for the expectation value

(WIAD) = A(php)
=A

As this eigenvalue describes a physically measurable quantity, it should
be real. Therefore, to represent a meaningful observable, A is required
to be self-adjoint or Hermitian [Hal13],

~

Al = A.
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Using the eigenvalue relation we can write an arbitrary vector |¢)
in the eigenbasis {[\x)} of an operator A,

0) =Y arhbi).
K

Note that the basis can, in principle, contain infinitely many elements,
so the expansion can be an infinite series. The factors ay are the prob-
ability amplitudes to find |¢) in the state [\py ), or in other terms, the
probability to measure the classical observable A to be Ay is

P(A =A) = lay)?.

A more general description of a quantum state is in terms of the
density operator,

o =) larl*hb) (il
K

=) i)er(Wil.

k,l

Here py; is the density matrix with the probabilities lax|? on the di-
agonal. Hence, for consistency we have the requirement

tr(p) = 1.

Furthermore, it can be proven that tr(p?) < tr(p) and that the density
operator describes a pure state if and only if tr(p2) = 1 [Nieoo]. With
the density operator we can describe mixed states and rewrite the
expectation value of the operator A as

N

(A)p = tr(peA).

We know from classical Hamilton mechanics that the Hamiltonian
contains all physically relevant features to describe the evolution of
a system. In analogy to this we define the Hamilton operator H to
develop the evolution of quantum systems. As the Hamiltonian gives
the energy of the system the eigenstates of the Hamilton operator are
energy eigenstates, i.e. states with a definite energy,

Hp) = Ey ).

This is also known as the time-independent Schrodinger equation. We
will now give a rough idea of the time evolution of quantum systems.
As we assume the state to have a wave-like behavior we will multi-
ply it by a complex phase exp(—iwt). Furthermore, we have seen in
the previous section that the energy is connected to the temporal fre-
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quency w via h. Therefore, if o) is an energy eigen state it should
evolve in time like

P(t) = e Vo = e T M.

Note that we have decided to take the temporal exponent with a neg-
ative sign. We will, therefore, later choose the spatial exponent with a
positive sign. This has the nice consequence that the solutions of our
differential equations will move to the right in a standard coordinate
system. Taking the time derivative of this equation we find

dp(t)
dt

E

and together with the time-independent Schrodinger equation and
the conservation of energy we get

dp(t)

ih
AT

= Ay (t).

This is the time-dependent Schrodinger equation, as we have seen
it in the previous section in Equation (2.1). The statement is that all
states of any quantum system have to evolve in time following this
equation.

With the Schrodinger equation we can have a look at the time evo-
lution of expectation values. If we take the time derivative of (A)y,
we find

d . S dd(t)] 4 3 dw(t)
dt<¢(t)|Aw(t)>—< it All)(t)>+<11’(”A dt >
/P A oy
_< - Alb(t)>+<1b(t)A T >
1 A aa
= o (W) AR = AA (1)
1 PN
= = (W) [A A w(),

where in the last line we have introduced the commutator of two
operators,

[A,B] = AB — BA.

In comparison to classical Hamilton mechanics the commutator can
be seen, as taking the role of the Poisson bracket. It is interesting to
note that the time derivative vanishes if the operator A commutes
with the Hamilton operator. Slightly informally, we could say that
things change in time (so something is happening at all) because
some observables do NOT commute with the Hamilton operator.
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The previous derivation of the time evolution is called the Schrodin-
ger picture. It assumes that the time evolution takes place only in the
quantum states and the operators are constant. An alternative way is
to use the so-called Heisenberg picture. Let us replace the energy in
the time evolution of the state by the Hamilton operator,

e B/, — o it/

That we may do so can be proven by the spectral theorem of operator
algebra and also by the fact that the right hand side obviously is a
solution of the Schrodinger equation (at least as long as H is well
behaved enough). Now starting from the time dependent expectation
value we find

WIAB(D) = (e HMpo | Afe /Mg )
<lbo eiﬂt/hAe—iﬂt/h‘wo>

~

= <A(t)>ll)o'

Hence, we have found the time dependence of an operator to be
A(t) _ eiﬂt/hAe—th/h,

Furthermore, we have defined a unitary time evolution operator,
Ut) = e tHO/m,

where unitarity means that U(t)Ut(t) = 1. For the time derivative of
the now time dependent operator A we find by a similar calculation
as for the expectation value in the Schrodinger picture

dA) T . .
= mAmH,

which is a very similar result. Note that the Hamilton operator will
always commute with itself, hence, also in the Heisenberg picture it
does not become time dependent. Thus, both pictures have proven to
be possible descriptions of the time evolution of quantum states and
we can make use of one or the other depending on which is more
convenient in the respective case.

2.1.3 Heisenberg’s Uncertainty Principle

Another consequence of the non-commutativity of certain operators
is that the associated observables can not be simultaneously deter-
mined with arbitrary precision. The uncertainty of a measurement

11
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observable with respect to a quantum state is defined as the square
root of the centralized second moment (see Section 2.4.2),

ApA = \/<(A— (A)p)?),,-

Let us define the operators A’ := A — ({|A) and B’ := B — (¥[B).
Now we take a look at the product of the squared uncertainties of the
operators A and B,

~

= (P|A"? ><1blf3’21b>
= (A"YIA" ) (B"PIB D)
(A"PIB" )2
Tm(A" 1B p)

= < [(ADIB D) — (B WIA D)

A

(A, By,

2
A} AAZB

VoWV

-m—a-w—a

where in the second line we have used that A’ and B’ are Hermitian,
in the third line we applied the Cauchy-Schwarz inequality, |al?|b|*> >
labl?, and in the fourth line we made use of the fact that the absolute
value of a number is definitely larger than or equal to the absolute
value of its imaginary part. The commutator of A’ and B’ in the last
line can be evaluated to

A, B = (A—(A)y)(B—(B)y) = (B—(B)y)(A—(A)y)
=AB—A(B)y — (A)yB + (A)y(B)y,
—BA+B(A)y, + (B)yA—(B)y(A)y
= AB — BA,

because the expectation values of Hermitian operators commute with
all operators. Hence, it is identical to the commutator of A and B and
by taking the square root the uncertainty product becomes

AyAA,B *|< [A, Bl)y |- (22)

Note that Equation (2.2) only holds in general if 1 is not only an
element of the domains of A and B, but also that Ay is an element
of the domain of B and B is an element of the domain of A. Other-
wise there are states which actually violate the relation [Hal13]. It can,
nevertheless, be shown that the relation holds in general for canon-
ically conjugate observables, hence, operators with a commutator of
the form

[X,P] =ih1,
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In this case we end up with the Heisenberg Uncertainty Relation

ApXAyP > %
A more general way to define uncertainties is via the entropy of
the states, as the standard deviation is only a very specific example
for a measure of the spread of a distribution and, furthermore, also
depends on the state in respect to which it is determined. Especially
in the context of quantum information theory the entropic approach
is useful, as the entropy can be seen as a measure of the information
contained in a state. Thereby, the specific scenario under consider-
ation has to be taken into account to define a meaningful entropic
measure. In the very general case of a set of measurements {Oi}on a
quantum state with density operator p, an entropic uncertainty rela-
tion has the form

N

1 A

N E : H(Oilp) > ¢,
1=

where c is a constant that solely depends on the measurement choice
but not on the state p. Thereby, H(Oilp) is the entropy of the state
under measurement of O;. It could for example be the (comparably
simple) Shannon entropy,

H(Oslp) =— ) tr(Oip)log, tr(0:p),
X

where x are the possible outcomes of the measurement. The uncer-
tainty relation of important relevance for this thesis is based on smooth
min- and max-entropies. For a pure state with density operator pagc €
Ha ® Hg ® Hc it reads

Hiin (XIB) + Hyoy (YIC) > —log, c. (2.3)
The min-entropy HS, (X|B) can be seen as the logarithmic guessing
probability of the outcome of a measurement X on subsystem A by
performing the optimal measurement on subsystem B [Fur12Th] and,
correspondingly, for a measurement Y and subsystem C. The constant

c describes the overlap between the measurements X and Y. The max-
entropy is dual to the min-entropy [Ebe13Th],

Hﬁnax(ﬁAdC) = _Hrsnin(f)AB|B)~

Here, pap and pac are the density operators of the (generally im-
pure) corresponding subsystems. The term smooth refers to the fact
that for the calculation of the entropies all states that are e-close to
the actual state are taken into account. This is nothing more but rea-
sonable for real world implementations of quantum systems, as the

13
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precision of our statistics is always limited due to a finite number
of measurements. We refrain from going further into detail, as the
matter is mathematically quite complex and would go far beyond the
scope of this chapter. A good introduction to entropic uncertainty
relations can be found in [Wehi1o] and the references therein and
an application of them to quantum information tasks is explained
in [Fra12Th] and [Fur12Th].

2.2 QUANTIZATION OF THE ELECTROMAGNETIC FIELD

In classical physics the electromagnetic interaction is described by the
four Maxwell equations, their solutions being electromagnetic waves.
In quantum mechanics we find that this description is not sufficient.
We will, therefore, in this section derive the quantum-mechanical the-
ory of light and show some of its consequences.

2.2.1 The Classical Electromagnetic Field

The solutions of the Maxwell equations [Louoo] for the electric and
the magnetic field in vacuum can be written as derivatives of a vector
potential A,

B=VxA,
0A

E=——.
ot

Here we have assumed the Coulomb gauge condition V-A =0, i.e.
the vector potential is free of sources. Using these relations and re-
placing them in the fourth Maxwell equation we find [Louoo]

1 9%A(r,t)
2 _ 7
where c is the speed of light in vacuum. For now it is convenient to
investigate the problem in a finite volume V = L3 to get the Fourier

expansion

Ar,t)=) ) emAm(rt) +he,
k A

where ey, is a unit vector that has to be perpendicular to the wave
vector k to fulfill the Coulomb gauge. Therefore, A denotes the index
for the two possible polarizations of the vector potential which is
summed over by the second sum. The first sum is over k which is
discretized due to the finite volume and its Cartesian components
take the values

27y K = 21y, _ 2mmn,

— k, = ,
“ L

kx p ,
L Y L

{nx,ny,n.}teZ.
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We now can solve the wave equation for the amplitude of each
mode separately, as they are independent for different k and A, by
splitting the function in one part depending only on space and one
part depending only on time, Ay (1,t) = uka (r)Axa(t). We then find
from Equation (2.4) that the spatial mode functions have to fulfill the
Helmholtz equation

(V2 + %) ura(r) =0, (2.5)

with k? = k- k, whereas the time dependent parts have to fulfill the
differential equation of the harmonic oscillator,

aZ
(a‘tz + wﬁ) Axa(t) =0. (2.6)

Here we have made use of the dispersion relation for the angular
frequency

Wy = Ck,

with k = |K|.
Equation (2.6) is obviously solved by

Axa(t) = Agne Tkt

The solutions of Equation (2.5) will be investigated in more detail in
Section 3.1. For the moment let us assume the case of a plane wave,
which is also a good approximation in many cases. Thus, we find

UKA (r) = eik~1”

and finally get the result for the vector potential,

Ar,t) = Z Z ek)\AkAei(k'riwkt) +h.c.
k A

With this result we find the following expressions for the electric and
the magnetic field,

E(T, t) = IZ Z wkek;\AkAei(k'r_wkt) - h.C., (27)
k A

B(r,t) = iZ Z(k X ek)\)Ak)\ei(k’riwkt) —h.c.
k A

The total energy of the electromagnetic field is given by the classical
Hamilton function

H(r, t) = % deS [eoE(r,t) -E(r,t) + ;OB(r,t) -B(r,t)] .
%
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Here ¢ is the electric permittivity and o is the magnetic permeabil-
ity of the vacuum, which fulfill egup =1/ c?. Using the fact that the
spatial mode functions and the polarization vectors are orthonormal
for different k and A, we get

H=eV) ) wilAAfs +AfaArl. (2.8)
k A

Anticipating the next section, we have not used the fact that the am-
plitude Ay, commutes with its complex conjugate for clarification,
because this will no longer be the case when we replace them by
operators in the next section.

2.2.2  The Quantum-Mechanical Harmonic Oscillator

So far our description was purely classical and the coefficients Axx
could be seen as the complex amplitudes of independent harmonic
oscillators. We will now introduce the canonical quantization for each
of these oscillators individually to get the quantum mechanical de-
scription of the electromagnetic field. The Hamilton function of the
harmonic oscillator is therefor replaced by the Hamilton operator

~N

wi 4
2

N‘;,i,

Hy = + (2.9)
Here §y is the position operator and px = ihdg, is the momentum

operator of mode k that obey the commutation relation

[qu/ pll\d] = ihékk'/

where 8y denotes the Kronecker delta. Furthermore, we have set
the mass of the oscillator to 1 and omitted the subscript A, i.e. restrict
ourselves to just one polarization for simplicity. By comparing Equa-
tions (2.9) and (2.8) we see that it is convenient to define amplitude
operators,

k = K (wqx +ipx),

o>
|

2.10
fo=k(wgx —ipx). (z10)

o>

As each set of two such operators describes an individual mode of
the harmonic oscillator, we will also call them mode operators. With
these we can express the Hamilton operator as,

. 1
Ay = — (akaq< + aLak) : (2.11)
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The constant « is so far undefined but we will fix this immediately
by taking a look at the commutation relation of the mode operators,

= Zwthzékk/,

where in the last line we have used the fact that the frequency fac-
tor only contributes if k = k’. We want the commutator to equal
unity which is then called the standard bosonic commutation rela-

-1/2

tions. Therefore, we set k = (2w h) to get the fully dimension-

less mode operators and the Hamilton operator becomes
~ hw
Flie = =2 (axal +alax)

This definition of the mode operators becomes immediately natural
if we take a look at the eigenstates of the Hamilton operator. These
states will be energy eigenstates which relates them to the number
of photons in mode k. Therefore, we will denote them by |[n) with
n € N and their energy by E,,,

Am) = Enn), (2.12)

where we will leave out the index k for simplicity. Now we will mul-

tiply this equation from the left by dL to get

hoat(aaf +afa)m) =Enafn)
& D ((aaf—1af+af(aaf —1))In) =Enaln)
& M (aafal +afaal) In) —hwaln) =E,dln)
& Aafn) = (En +hw) dafn),

where we have made use of the commutation relation in the second
line. The state d'ln) is again an energy eigenstate whose energy is
increased by hw. A comparison with Section 2.1.1 shows that this
corresponds to the energy of one photon with frequency w. The cor-
responding calculation for @ gives an energy that is decreased by the
energy of one photon. This gives rise to the names creation and annihi-
lation operator for the mode operators, as they act on the energy eigen-
states by creating and annihilating a photon in the mode of frequency
w. Another common name is ladder operators as the application of af
and d acts like going one step up or down on the ladder of Harmonic
Oscillator energy eigenstates.

Now that we have fixed the normalization and the energies turned
out to be consistent with the quantization results postulated by Planck

17
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we can associate the classical amplitudes with the mode operators by
comparing Equations (2.8) and (2.11),

[ h
Ax = (| ——0x,
x Zwkﬁovak
h
Ax — HiAT.
k ZwkSOVak

With these replacements we get the final result for the quantized elec-
tric and magnetic field,

T 't _ IZ ex / hwk ( e i(k-r—wyt) aLefi(kwfwkt)) , (2‘13)
[ h fi(kT—wit) At —i(kT—wit)
(r,t) —1Z k x ex) ZwksoV (ake —ae k ),

where we again are leaving out the sum over A for simplicity.

2.3 HILBERT SPACES FOR THE DESCRIPTION OF LIGHT

We will now use our quantum mechanical description of the electro-
magnetic interaction to find sets of states that can act as a basis for
the description of arbitrary states. The three sets that we are going
to investigate in detail are the number states, the coherent states and
the squeezed states. Particularly the squeezed states take a major role
throughout this thesis but also the coherent states are of great impor-
tance for the generation and detection of the desired quantum states.

2.3.1  Number States

We have introduced the so-called number states already in the previ-
ous section as the eigenstates of the Harmonic Oscillator’s Hamilton
operator. They represent the number of photons in the field mode.
To make them a meaningful basis for the quantum optical Harmonic
Oscillator, we need a further definition, namely, that of the vacuum
state,

alo) =0. (2.14)

The existence of the state |0) and its property that it is destroyed by
the annihilation operator is important, because otherwise states with
negative eigenvalues and, therefore, negative energy could exist. The
difference between 0 and [0) is that 0 is actually nothing, whereas
|0) means there are no photons but there still is a vacuum field. The
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explicit position-dependent eigenfunction of H for the vacuum state
is [Hal13]

W(q) = (ql0) = [ Z2e R, (2.15)

where |q) is a position eigenstate, i.e. §|q) = qlq). With the property
from Equation (2.14) it is easy to see that

(0[F|0) = %hw £ 0.
We will comment on this so-called ground state energy in more detail
further down. For the moment let us just accept that the energy of an
empty mode is not vanishing.
We have also seen that the ladder operators increase and decrease
the number of photons by one. One can furthermore show that the
corresponding eigenfunction are given by

n) = Hal0),

where H, are up to some normalizations the Hermite polynomi-
als [Hal13]. From these we could calculate the eigen-energies but we
can also deduce them already from Equation (2.12) and find

1
En =hwn+3).
2
As the Hamilton operator is proportional to a'4, it should give the
number n when applied to a number state. To fulfill this we define
the action of the ladder operators on the number states as

an) =vnn—1), am=vn+in+1). (2.16)

Using this and the vacuum state we can define the normalized num-
ber states as
(@)"

n) = —(0). (2.17)
n.

These states are orthonormal to each other, i.e.
<n|m> - 6nm/

and form a complete set of basis vectors
Z In)(n| = 1. (2.18)
n

Hence, they form an orthonormal basis for our Hilbert space.

19



20

QUANTUM OPTICS

The number states are very useful to describe states that contain
only a few photons. In this case they give an accurate description
of experimental observations where only the number of photons is
counted. In contrast, the description becomes inappropriate for ex-
periments that should also show wavelike features. Let us take a
look at the expectation value of the electric field operator from Equa-
tion (2.13),

h ; .
(n|E(r, t)n) =ie Zewv <<n|a|n>el(k'1‘7wkt) _ <n|aT|n>e*l(k-T7wkt))
0

=0,

where we have used Equation (2.16) and orthogonality. This result
does not meet our expectation of a wave evolving in space and time
and we will need another set of states that give us a phase dependent
expectation value to describe the various wavelike properties of light.
We will introduce such states in the next section.

An intuitive understanding of the vanishing expectation value can
be that the number states contain only information on the energy of
a state but not on the phase. We can see this by taking a look at the
variance of the field,

hw . (Kor— A A
(nl(E(r, 1) ) = —5 3 ({nla?mye <7t — (nlaafn)
—(nlatamn) + (nIdTZIn>e_2“k'r_wkt))
hw
= 1
Zsov(n+ +n)
1
=—E,.
Eov "

The variance of the field contains two terms without a complex phase,
that are exactly those which contribute.

Furthermore, we note that even for the vacuum state there is some
non-vanishing uncertainty,

_ hw
N 260\/.

(0l (E(r, t))*|0)

This uncertainty of the field can not be circumvented and, although
the expectation value is zero, we can not expect the field to be exactly
zero but have to assume a Gaussian distribution concentrated around
zero. Since this distribution has the smallest standard deviation for
the vacuum, this is also called a minimum uncertainty state. We will
see below that at least for some specific observables we can circum-
vent this uncertainty at the expense of increasing it for the conjugate
observable. For the moment we have to accept that there is nothing
less “noisy” than the vacuum. Finally, we also see that the variance is
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where the ground state energy ended up and that there is no problem
with the vanishing expectation value in terms of energy conservation.

2.3.2  Coherent States

We want a set of states for which the electric field operator has non-
vanishing expectation values. A natural approach is to demand them
to be eigenstates of the annihilation operator,

alo) = o), (2.19)

where « is some complex number. Furthermore, we want these states
to be normalized,

(o) = 1. (2.20)

With this it is easy to see that the expectation value of the electric field
operator becomes

(«E(r, D)) = ie

w i(ker—wyt) * 7i(k~r7wkt)>
e — e ,
280\/ (
which is obviously a wave in space and time. A comparison with
Equation (2.7) shows, that o takes the role of a complex amplitude. It

is therefore sometimes also called the coherent excitation.
Calculating the variance of the field we find

(o (E (1,1))% o) — («[E(T, 1)| )2 =

__ho ((xzeZi(k-rfwkt) _(‘odz_i_])_|(X|2+(x*2672i(k-r7wkt))
Ziov

. . 2
+ (Xel(k-T*wkt) o (X*ef1(k-rfwkt})
ZEOV (

_ hw
N 280\/’

where we have once more used the commutator of & and af. Hence,
the coherent states have minimum uncertainty like the vacuum, in-
dependent of the magnitude and the phase of the excitation «. This
makes them very useful to describe an almost classical wave like a
laser beam and gives rise to the name semi-classical state.

To investigate the properties of |«) in more detail, we are interested
in the solution of Equation (2.19) in terms of the number states. We
find a recursive solution by multiplying the equation with (n — 1|
from the left. It follows

n

R

(nlo) = —=(Olov),

n!

21
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which gives a Poisson distribution in photon numbers [Walg4]
2 o 2
P(n) = I(nlel = 2 [(0l) .

(2.21)

Now we can find the expansion of |«) in terms of the number states

= Z n) (nle)

= (Oloc) ; \/T (2.22)
= (0]x) Z 61

where we have used Equation (2.18) in the first line and Equation (2.17)
in the last line. Using the second line we can easily fix the value for

(Olx) by using the normalization condition (2.20) and the orthogonal-
ity of the number states,

el = 0 3 Ll

= I(0|oc>|2e“"|

!

=1.
From this we infer

<0|0(> — e_\odz/zl

and find together with the last line from Equation (2.22)

o) = e 1x*/2eal |0y,

We see that the two exponentials act like an operator creating a
coherent state from the vacuum. But in the current state this operator

is not unitary. To see this, we need the Baker-Campbell-Hausdorff
theorem,

AB _ oA +BIABI2

which holds for any operators A and B with c-numbered commutator

(TA, B] € C). Using this we see the non-unitarity of the operator
eflodz/ZeocﬁTef\odz/Z oc*a ef\oclzecxﬁTnLoc*de[ocﬁT,oc* al/2

e—3|oc|2/Zeoch+oc* a

£1.
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The solution to this is the introduction of an operator that acts as an
identity on the vacuum state,

ef(cx)ﬁ|0> — |O>,

This is due the fact, that in the series expansion of the exponential
only the first term contributes a one and all others vanish when ap-
plied to |0). Here, f(«x) is an undefined function so far. We now can
replace our vacuum state in equation (2.22) without changing any-
thing

o) = e—loclz/zeocafef(oc)a|o>,

and take another look at the unitarity of our new operator. By succes-
sive application of the BCH theorem, and keeping in mind that we
have to change the order of the operators in the hermitian conjugate,
we find

Ll xat a f(a)al oara
e Jox| exa ef(oc)aef (x)a eXa —

—|oc|ze(xaT+f(o¢)a [xaf,f(a)al/2

=e e

7|cx|27%(ocf(<x)+f*(oc)oc*) aaf+f(a)a+1* (o) at+a*a

= e e

. e[ocawf(oc)a,f*(oc)awoc*a]/z

— efloclzfj(ocf(oc)ntf*(oc)oc*Jrch\fo(oc)f*(oc))eocﬁJUrf(oc)ﬁJrf*(oc)dTJroc*ﬁ

The only solution to this equation is to set
flo) = —a*.
Therefore, we end up with

el o —otd
o) = e~ 117/ 2gxaTg—a" )0

_ eoch—oc*d|O>

= D()[0).

The operator D(a) is called displacement operator, as it shifts the vac-
uum state by a complex amplitude « without changing its variance.

To check the set of coherent states for completeness we have to take
the integral over o [Walg4]. The calculation is straightforward but a
bit lengthy. Therefore, we will just give the result,

JIa)(ocldzoc: T
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The factor 7 stems from the integration over the complex plain. Hence,
it is actually correct that we do not get 1 as the result.
Taking a look at the orthogonality we calculate [Walg4]

1
(o'l = lexpl— (Jod” + loc'I?) + oxax™ |2

= exp[—|a — a/|*]

#0.
Hence, two different coherent states are not orthogonal but only get
close to orthogonality for |x — «’| >> 1. Therefore, they form an over-
complete set and are not an actual basis for our Hilbert space. Never-
theless, we can use superpositions of them to represent other states,

we just have to keep in mind that the representation might not be
unambiguous due to the over-completeness.

2.3.3 Squeezed States

For the coherent states we have used the simplest approach and re-
quired them to be eigenstates of the annihilation operator. We can
also make a more general consideration and investigate a linear com-
bination of the annihilation and creation operator,

(2.23)

The commutation relation then reads
[6,67 = ul?[a, a1 + [v*[af, a] = |w? —vI?,
from which we deduce the requirement
> = v> =1, (2.24)

to have the standard bosonic commutator again.
Now we consider an eigenstate of this new mode operator,

6|Bs> = B‘Bs% (2-25)

where the subscript denotes, in foresight of the following results, that
|Bs) is a squeezed coherent state.

To investigate the expectation value of the electric field we have to
re-express d and af,
*b —vbT,
b —v*b.

—
Il
o>

u
u

>
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Inserting this in Equation (2.13) we find

(B[E(T, VIB) = e, ;‘ ol (1 Bex — vble

—ubfe X + V*Be*ix> Bs)

=ie d ((wre™ +v*e ™X)B — (ue X + veX)p*),

280\/
with x = k- r— wyt, which gives again a wave in space and time. But
now the amplitude and the phase do not only depend on 3 but also
on the magnitude and relative phase of p and v. We regain the result
for the coherent state by setting u =1 and v = 0.
Analogously, the calculation for the variance yields

(BIEZ (1, t)IBs) — (Bs[E(r, 1)|Bs)? =

hw

TR [0+ 1vI? 4 i ve?X 4 pvre 2X]

hw 2 2 * * crox £ .

= JeaV [Iul® + V17 4+ (v + pv*) cos(2x) 4+ i(n*v — pv*) sin(2x)] -

In order to get a more insightful result we now have to make an
assumption on p and v that has to fulfill Equation (2.24). We can do
so by setting

i = cosh(r) , v = €' sinh(r)

2.26
reR", ¢ €[0,2n), (2.26)

which is unambiguous up to an overall phase. Then the variance
reads

(BSIEZ (1, 1)IBs) — (BS[E(r, 1)|Bs)* =
[Coshz(r) + sinh? (1) +

_ hw

- ZSOV
2 cosh(r) sinh(r) (cos(¢) cos(2x) — sin(¢) sin(Zx))]

_ hw 1 2r —2r 2r _ —2r

= V2 [(e”"+e ") + (e —e *") cos(@ + 2x)]

hw

- 2£oV

—2r

[e?" cos?(@/2+x) +e *Tsin*(@/2+X)] .

Obviously the variance does not only depend on the parameters r
and ¢ but also on the optical phase x. We can find two distinct phase
settings for which the variance gets minimal and maximal, respec-
tively. For ¢/2 +x =nm,n € IN, we obtain

2 2 hw o,
<BS|E (rrt)|Bs>_<Bs|E(r/t)|Bs> _280Ve ’
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whereas for ¢/2+x = (2n+ 1)7t/2 we obtain

2 2 hw _or
(Bs/E=(1,t)IBs) — (Bs|E(r, t)IBs)” = me

Hence, the variance is periodically increased and decreased by a fac-
tor exp(2r) compared to the vacuum or a coherent state. This gives
rise to the name squeezed state, and the parameter r is called the
squeezing factor. Furthermore, the parameter ¢ defines at which op-
tical phases the squeezing occurs and is therefore called squeezing
angle.

The transformation in Equation (2.23) can be written with a unitary
operator,

Ualf = 6. (2.27)
From equation (2.26) we also know
b = cosh(r)a — ¢! sinh(r)a’.

Now we can expand the hyperbolic functions in an exponential series,

. 1 o 1
b=a n iQ AT 2n+1
a) it el ) Gy
n n
1 1 : 1 . 1 .
=a-+ 7 ar? + ﬂdr“ +..+afrel® + ngrSe“p + derSe“" + ...

Let { = rel®. It follows,

1

N 1
— A at T2 D ag-2 Al 714 ATl 714
b=a+a C+2aIC| +6a|CI C+24a\C| +7120a|6| CH ..

sola Car2| U laty G 2] 1 (a2 Cat2

a+[a,2 + 55 a'e, 50+ aICI,Za +
Caalabatr_Caal L (g Carz_Saz| Catz_ G2
—a+[a,2 2a +2! a,za 7 ,2a 2a +

Il
:I\/]
2=
(@)
g

with the recursively defined operator sequence

~ . ~ CATz - £2 A~ ~
Any1 = an,ia — 7(1 , Qo = a.

We make use of the following operator theorem [Louoo],

e BAel = A1 [A,B] + 2 [[A,B],8] +..

to find
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Thus, we have found a unitary squeezing operator,

S(¢) = exp [Cz*ﬁz — ;’dTZ} . (2.28)

From Equation (2.27) we can deduce

bl =Ua
< bUlp) =Ualp)
< bUlp) = pUIB),

where |3) is a coherent state, and find by comparison with Equa-

A

C
tion (2.25) U = $(¢) and
1Bs) = §(5)|f3>- (2.29)

Hence, the squeezed coherent states are generated from coherent
states by application of the squeeze operator. As a special case we
see that there is also a squeezed vacuum state,

10s) = $(0)10).

Starting from the eigenvalue Equation (2.25) we can make the same
approach as for the coherent states from Equation (2.22) onward.
Here we have to take the squeezed number states [ngy,) = ﬂln} to
make the calculation straight forward. We find an equivalent displace-
ment relation

IBs) = Ds(B)I0s), (2.30)

with the displacement operator

N

Ds(B) = eBbT=B"b _ (B —p*v)al—(pru—pvi)a _ D(Bu* —B*v).
Taking the relation for the squeezed vacuum and associating « =
Bu* — B*v we get

1Bs) = D()S(0)I0) =: |, 7). (2.31)

Hence, a squeezed coherent state |«, () is generated from the vacuum
by first squeezing it with ¢ and then displacing it by a coherent ex-
citation «. Alternatively we can derive from Equation (2.29) that the
squeezed coherent state can be generated by first displacing the vac-
uum by (3 and then squeezing with ¢,

IBs) = S(Q)D(R)I0).

This state is the same as |x, () if @ and (3 are associated as above. It
is also the original version of the squeezed states first derived under
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the name two-photon coherent state by H. P. Yuen in 1976 [Yue76]. As in
this definition the squeezing operator changes the previously applied
excitation f it is less intuitive and we will stick to the definition from
Equation (2.31) which was published by C. Caves in 1981 [Cav81].

For the derivation of the displacement operator Dsg, () in Equa-
tion (2.30) we have calculated scalar products with squeezed number
states that do not represent photon numbers anymore. If we are in-
terested in the actual photon number distribution we have to take the
unsqueezed number states. This calculation is more involved and we
will therefore just cite the results from [Yue76]. The basic idea of the
proof is to take the scalar product of the squeezed coherent state with
a coherent state and expand this in the number states,

(s) = ) (adn)(niBs). (2.32)

Using

o B2 vor? —v7p? 20

1
:\/ﬁeXp[ 2 2 2u

and the identity

(odlBs)

Hn (z)
42 — n 4n
exp [—t* + 2tz] ; ot (2.33)
where
t= [ at
=\ 2
. B xtov/p

V2w vk

and H, (z) are the Hermite polynomials, we find by comparing the
coefficients in Equation (2.32)

() B o i

With the definitions for pu and v from Equation (2.26) we get the pho-
ton number probability distribution

P(n) = |(nlps)I?
1 tanh™ (1) > o2 nh() (2 i o 2e—ie
- H | (‘X e'P+ae )
cosh(r)-n! 2n [Hn(z)%e ) /
where

o+ o* tanh(r)el®
2tanh(r)ei®
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This is clearly not a Poissonian distribution. Depending on «, r and
@ it can be either sub- or superpoissonian. Note that the argument of
the Hermite polynomials diverges for zero squeezing. It is therefore
not easy to see the reduction to the distribution of a coherent state.
Equation (2.33) simply is not satisfied for r = 0. This means that we
must make this substitution earlier, in Equation (2.32), and develop it
from that point in order to find the distribution of a coherent state, as
given in Equation (2.21). In contrast to that we can set « to zero with-
out any issues. With the series expansion of the Hermite polynomials,
we therefore obtain for a squeezed vacuum state’s photon statistics

1 tanh™ (1)

— 2
Pln) = cosh(r)n! 2n Hn(0)
2
1 tanh™ (7) n! K1tk f vk
= LY C (Ol
cosh(rjn! 2n K4 2a=n kq'lky!

Here, the sum only gives a non-zero term for k; = 0, from which
follows that . has to be even, i.e.

n! tanh™ (1)
cosh(r)((m/2)H)2 2m

, L even
P(n) =
0 ,n odd
We see that in a squeezed vacuum state only even photon numbers

are excited. This is in perfect accordance with the application of the
squeeze operator to the vacuum,

N

a2 — %aTZ)TL

S(Q)lo) =Z(

n

n! 00,

where only even powers of @' can give a non-zero contribution. It
is also the reason why the process of parametric down-conversion,
in which photon pairs are created, yields a squeezed state, as we will
show in Section 5.1.1.

Finally, we can show the completeness of the squeezed coherent
states in the same way as for the coherent states, i.e.

J|rss><ﬁs|d2rs 1.

1

y
It is also obvious that the squeezed coherent states have the same
orthogonality relation,

[(BsIBOI> = (BITLTCURY? = 1(BIB")I* = expl—IB — B'I?],
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and are normalized,

(BsIBs) = (BIUTULIR) = 1.

Hence, the squeezed coherent states form a third basis for the de-
scription of our Hilbert space. They will especially be useful for the
description of quadrature entangled states, as we will see in Section 4.

2.4 THE QUADRATURE PHASE SPACE

So far we have only investigated the properties of the electric field op-
erator. This yields insight into the physical principles. But in an exper-
imental implementation we will never resolve the optical frequency
and, therefore, never directly observe the actual field. Furthermore,
the annihilation and creation operators are not Hermitian and can
not act as observables. Therefore, we will introduce a new set of Her-
mitian operators that span a phase space.

2.4.1  Quadrature Operators

Taking the electric field operator from Equation (2.13) we can split
this into a real and an imaginary part,

E(r,t) =i hw [@ei(kr—wt) _ dTe—i(kn‘—wt)}
’ 2£o

<

_ hw [ i(ker—wt+7m/2) AT —i(k-r—wt+7/2)

= 260V _ae +d'e }
hw [ . .. At ..

= a(cos(x) —isin(x)) + a'(cos(x) + 1sm(x))}
260\/ L
h -

= \/E _(aT +a)cos(x) +i(a" —a) sin(x)} ,

with x = wt — k- r —m/2. That way we have chosen the excitation to
rotate with increasing time in a mathematically positive sense in the
complex plane. The advantage of this splitting is that the cosine and
the sine part of the electric field operator now are both Hermitian
operators. We will define them as

Xi=(at+a) =X,

Pi=i(al—a) 239

pr,

from which follows the commutation relation

lnv

X, P] = 2i. (2.35)
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The names X and P are chosen in comparison with the definition of
the mode operators from the position and the momentum operators
of the Harmonic Oscillator in Equation (2.10). They can be seen as
a dimensionless version of position and momentum and are called
quadrature operators as they represent the quadrature components of
the electric field. X is sometimes called the amplitude quadrature and
P the phase quadrature. These names should not be confused with an
amplitude and a phase operator but merely refer to amplitude and
phase modulations of a wave that appear as sidebands in the accord-
ing quadrature.

If we take a look at the expectation value and the variance of the
quadrature operators with respect to a coherent state we get

(ofX|o) = &* + ot = 2Re (),

)
Var(X) = a2 + 2> + 1+ o? — o*? = 2]a)> — o =1,
(oclPIoc>: i(a* — ) = 2Im(),
Var(P) = —a? + 2o +1— o + o*2 — 2 + o = 1,

where we have used the bosonic commutation relation. Hence, the
quadrature operators actually give the real and imaginary part of the
coherent excitation up to a factor of two and their variance is normal-
ized. This is due to our definition. An alternative way of defining the
quadrature operators contains an additional factor of 1/2. In that case
the expectation values give directly the real and imaginary part, but
the variance would be 1/4. Both definitions are equivalent and the
particular context will determine which is more convenient to use.
As in this thesis in many cases variances will be compared with the
vacuum variance, we will stick to the first definition giving a 1 for the
latter.

We can visualize the electric field of a coherent state in the complex
plane spanned by X and P (see Figure 2.1). The coherent excitation is
a phasor from the origin to the point 2. The angle between the vector
and the X-axis is the initial phase 0, & = loc/et®. With increasing time
this vector will rotate counterclockwise with the optical frequency w.
The projection to the X-axis then gives a cosine wave shifted by 0 in
phase. These visualizations of the optical phase give rise to the name
quadrature phase space for the described complex plane. For most of
the remainder of this thesis we will deal with this phase space and
functions defined on it.

Furthermore, the picture does not only show the wave behavior, but
also the quantum noise we have found in the previous section can be
visualized. The tip of the vector is uncertain and has a distribution
around the mean value. This is stated by the variance being non-zero.
We can indicate this by adding a circle with radius 1 around the tip.
The border of this circle is thereby not a limit for the distribution but
gives the distance at which the probability has dropped to 1/e. The
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o

X

Figure 2.1: Coherent state in the quadrature phase space. A coherent state
can be visualized as a phasor in the complex plane spanned by the quadra-
tures X and P. The length « and the angle 8 define the amplitude and the
phase of the appertaining electromagnetic wave. Additionally, the vacuum
uncertainty of the state can by depicted by a circle around the tip of the
phasor.

actual distribution is spread about the whole space. In the projection
to the quadratures this distribution gives some noise with standard
deviation o = 1 on the wave.

Having this picture in mind it is now easy to see what happens if
we replace the coherent state with a squeezed one (see Figure 2.2).
The wave behavior obviously stays the same but the noise on it de-
pends on the optical phase and changes periodically. For example, if
we set @ = 0 and @ = 0 the noise is squeezed by e 2" each time the co-
herent excitation is coaligned with the X-axis, so it is squeezed in the
amplitude quadrature. At the same moment it is anti-squeezed by e?"
in the phase quadrature. Setting ¢ = 71/2 we get exactly the converse.
This could already define the names amplitude and phase squeezing but
there is an even better explanation. Given that the squeezing ellipse is
rotating with the coherent excitation in phase space, we see that for
@ = 0 at any time the uncertainty of the length of the vector (the am-
plitude) is reduced, whereas it is increased in the angle (the phase).
For ¢ = m/2 it is obviously the other way around.

The setting of 6 = 0 is of course a very strong restriction which
can not hold in general. Nevertheless, the calculations prove to be
universal if we define a rotated quadrature phase space. If |x’) is
shifted in phase by some arbitrary 6 in respect to |x) we see by using
the eigenvalue equation of the coherent states

|O(/> — ‘o(ei9>
& alo) = el®alu)

& ade 9’y = ofa).
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&

f),\@\ Lt

X

Figure 2.2: Squeezed state in the quadrature phase space. A squeezed co-
herent state can be visualized in the same way as a coherent state in Fig-
ure 2.1. Here, the vacuum noise at the tip of the phasor is squeezed by a
factor exp(2r]. The direction of the squeezing is determined by the angle ¢.

Hence, we have to rotate the mode operator by —6 to regain the result
. Re-expressing the mode operators with the quadrature operators
we find

—_—

1

ﬁe_ie:§(>A(+iA)e_ie:E()A(C056+lssin6+ilscosﬁ—if(sin6)
o 1o avio 1o X A .
dTeleZE(X—iP)ele:E(Xcose+Psin9—iPcose+iXsin9),

and taking the sum and the difference of the two equations (compare
Equation (2.34)),
Xo := afel® + ae @ = Xcos 0 + Psin O

. ) ) R R 2.36
Po ::i(d*ela —ae—le) = Pcos® —Xsin®, (230

which is equivalent to

Xe _ cos® sin6
159 —sin® cosO p )

The phase space spanned by Xg and Pg has the same properties
and may by used for an equivalent description. Depending on the
field under investigation we may use the standard phase space or the
rotated one wherever it seems more useful.

>
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2.4.2 Statistical Moments and the Covariance Matrix

We have to deal a bit with statistics to understand how we can de-
scribe the uncertainty features of quantum states in the quadrature
phase space. We will just give a brief overview to derive the basic
description needed for this thesis. A good introduction to the statis-
tical description of stochastic processes can for example be found in
[Midg6] and [Jaco3]. The statements derived in this section will be
used throughout this thesis for the description of quantum states and
measurement results.

PROBABILITY MEASURES AND DENSITIES Assume we have some
random variable X. Then measuring X will give some random value
x according to some distribution function. An infinite repetition of the
measurement of identically prepared states should thereby reproduce
the distribution. Thus, the distribution can be defined as [Midg6]

where P(X < x) is the probability measure to find a value smaller than
x when measuring X. Obviously the following hold:

D(x) > 0 Vx,

D(x) <1Vx,
D(—o0) =0,

D(o0) =1

Accordingly, the probability to find X between a and b is
P(a <X <b)=D(b)—D(a).

Taking this to the infinite limit we construct the probability density as
the first derivative of the distribution, if it exists,

. D(x+h)—D(x) dD(x)
lim =

h—0 h x wix)

Conversely we find

Together with the properties of the distribution we get

w(x) > 1V,

w(x)dx = P(x < X < x+dx).
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The integration over the whole space giving 1 is a necessary and suf-
ficient condition for w(x) to be a probability density and completely
defines the probability measure of X [Jaco3]. The quantity w(x)dx
is also called the probability element and represents the probability to
find X in an infinitely small element dx [Midg6].

CHARACTERISTIC FUNCTION AND STATISTICAL MOMENTS An
insightful way to investigate the statistical properties of a random
variable X is to define the characteristic function

Flu) = Jeiuxw(x)dx,

which is the (non-unitary) Fourier transform of the probability den-
sity. Consequently, we have

w(x) = Jei“XF(u)du.

Expanding the exponential in the definition of the characteristic func-
tion we find

n

Flu) = JZ (“Z‘!) wi(x)dx

n

— Z (iijn Jx"w(x)dx,

n

where we can interchange the integral and the sum due to the uni-
form convergence of the series. With the definition

U i= J x"Mw(x)dx

we get a Taylor series in the complex argument iu,

Fu) = 3 97 (2:37)

n!

The coefficients w,, are called the statistical moments of X. By taking
the definition of the Taylor series for F(u) and comparing it to Equa-
tion (2.37) we see

4dn
Hn = (="

dun

F(u)

u=0

Hence, the nth statistical moment of X is proportional to the nth
derivative of its characteristic function.
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The moments are of special interest as they characterize the statis-
tics of the random variable. In particular we have the first moment
being the expectation value (or mean)

(X) = wa(x)dx,
and the second moment being the mean square
(X?) = szw(x)dx.

In case the mean vanishes (as, for example, in all vacuum states) the
mean square is identical to the variance,

Var(X) := ((X— (X))?) = (X*) = (X)? = (X?). (2.38)

For all other instances we can define the so-called central moments,
i =[x = () i)

Furthermore, the third moment is known as the skewness, charac-
terizing whether the density is “leaning” to the right (positive skew)
or the left (negative skew), and the fourth moment is known as the
kurtosis, characterizing the curvature of the density, i.e. whether it is
“slim and tall with long tails” (high kurtosis) or “broad, low and com-
pact” (low kurtosis). Also the higher moments can be of interest in a
specific random process.

CONDITIONAL DENSITIES AND COVARIANCES We can general-
ize the statements we have made so far to a n-dimensional space, i.e.
to a vector of random variables X = (X, ..., X;,). Then we define the
distribution function [Jaco3, Midg6]

D(x) =P (H(xi < xi)> = r] ...r" w(x")dx]...dx/,.

i —00

This distribution function can be difficult to interpret in higher di-
mensions, but the probability density (if it exists) is actually straight-
forwardly extended from the one-dimensional case. We will restrict
ourselves to two dimensions to keep the calculations clear, but all of
them immediately apply to the general case of n dimensions.

The 2-dimensional density can be reduced to the previous one-
dimensional case, the so-called marginal distributions, via

o0

wx, (x1) =J wix')dxs,

—00

wx, (x2) =J w(x')dx,

—0o0
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from which it is easy to see

J J w(x)dx]dx) = 1.

—00 J—00

Again it can be shown that w(x) is a probability density if and only
if this equation holds [Jaco3].

Of special interest is the question of whether X; and X; are statisti-
cally independent. If and only if they are, it holds [Jaco3]

w(x) = w(x)w(xz).

Hence, the overall density factorizes into the marginal distributions.
Furthermore, we can (especially if X; and X, are not independent)
define the conditional density

Wi, X, (X2) = Wx,=x, (x2) = (239)

w(xq)’
which is the probability density of X, given X; = x1. We see imme-
diately that wx,|x, (x2) = wx, (x2) if and only if X; and X; are inde-
pendent. This definition of the conditional density should be handled
with care, as for a continuous distribution the probability of finding
Xy at exactly x1 is zero. It should, therefore, be understood as a frac-
tion of probability elements representing the probability of finding
X7 between x7 and x7 + dxq,

P(x7 < X7 <x1+dx1,x2 < X3 < x2 +dx))
P(x1 < X7 <x7 +dxq) '

WX] =X1 (XZ)dXZ =

We define the covariance of two random variables as
Cov(X7,X2) = (X1 X2) — (X1)(X2),

which is a measure of how X; and X; “co-vary” around their re-
spective expectation value. If they are correlated this will result in a
positive covariance, whereas if they are anti-correlated it will be neg-
ative. We say X7 and X; are uncorrelated if the covariance vanishes.
With the definition of the statistical moments it is easy to see that X;
and X; are uncorrelated if they are independent [Jaco3]. The converse
is not true: if they are uncorrelated we can only say that they are lin-
early independent, stating that they are independent up to their first
joint moment, but might not be for higher moments. A comparison
with Equation (2.38) also shows

Cov(X, X) = Var(X).
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Extending this to n dimensions, we can define the covariance matrix
v with entries

vij = Cov(Xi, Xj).

In the special case of pairwise uncorrelated X; this matrix takes a
diagonal form where the ith diagonal element is the variance of X;.
More generally we can say: Assume Y®Z = X € R™, with Y €
R¥ and Z € RY, R*UR! = R™, RENR! = {0}. Then Y and Z are
uncorrelated if and only if

YX =Yy DYvZ.

The covariance matrix takes a block form with the upper left block
containing the intrinsic covariances of Y and the lower right block
those of Z [Jacos].

THE NORMAL DISTRIBUTION We will now specialize the above
results to the most important probability density that we will deal
with in this thesis, namely the normal distribution. As it goes back
to Carl Friedrich Gauf$ it is often also called Gaussian distribution or
simply Gaussian. It is defined by

1 (x—w)?
e 202 (2.40)

B V2o ’

with 0 = /Var(X) the standard deviation and pu = (X) the expecta-
tion value. This function is of course a density and not a distribution.
So the statement “X is Gaussian” is a bit sloppy and actually means
“X follows a normal distribution and has a Gaussian probability den-
sity”. We will use these terms synonymously, as the meaning should
always be clear from the context.

The importance of this function is due to the fact that the most im-
portant state we will deal with, the ground state of the Harmonic Os-
cillator, has a Gaussian probability density (compare Equation (2.15)),

(xI0) o e, (2.41)

Thus, the statistics of our measurements will always converge to a
normal distribution if we take enough data points.

The characteristic function appertaining to the Gaussian distribu-
tion is given by

o212

Flu) = e'“H "2
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Generalizing this to n dimensions, we find that the random variables

X are Gaussian if and only if the characteristic function takes the

form [Jaco3s]
Flu) = e 8T

where u is the n-dimensional vector of means and v is the covariance

matrix from above. If and only if all X; in X are independent, vy is
diagonal and F(u) factors,

F(u) = ] [ Flw).

Even more generally it can be proven [Jacos3] that if Y and Z are
Gaussian and, if they are independent, then X = Y & Z is Gaussian
and we have

Fx(ux) = Fy(uy)Fz(uz),

and the covariance matrix takes block form, hence, Cov(Y,Z) = 0
and Y and Z are uncorrelated. This is of course a reproduction of the
previous result for general distributions, but in addition to this it can
be proven that in the case of Gaussian random variables Y and Z are
independent if and only if they are uncorrelated. This is a very strong
statement, as it implies that independence and uncorrelatedness are
equivalent for Gaussian random variables. Furthermore, any vector
X of Gaussian random variables can be reduced to a vector Y with
pairwise independent Y;, where the number of Yj is strictly less than
the number of X; [Jaco3].

Finally, these results can be used to prove that a Gaussian X has a
density on R™ if and only if the covariance matrix is non-degenerate,
i.e. dety # 0 and it is found to be [Jaco3]

1
2/ dety

This summarizes our findings that for any set of Gaussian random
variables, all statistical properties are described by the first and sec-
ond moment, pu and y. Therefore, in the experiments we can check
the measurement data for Gaussianity to make use of these profound
results.

wn(x) = e*%(X*H)T'Yq'(X*u)‘ (2.42)

2.4.3 Properties of the Covariance Matrix for Physical States

The fact that a Gaussian distribution is fully described by its covari-
ance matrix makes it reasonable to summarize some of its properties.
Throughout this thesis we will deal with states that have n modes,
each described by a pair of quadrature operators. Therefore, the co-
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variance matrix will be a 2n x 2n-matrix and we will use a pairwise
ordering of the operators in a vector & = (X1,P1, ..., Xn, Pr). Then
the function wn (&) from Equation (2.42) becomes the Wigner func-
tion [Wig32] that describes the phase space probability density of the
quantum state with covariance matrix y. Note that we may interpret
the Wigner function as probability density only for Gaussian states.
With this ordering of the quadrature operators we find a condition
for the physicality of the state [Kriio6Th],

Y +io = 0. (2.43)

Here, o is the symplectic form

=85 0)

The relation for the covariance matrix has to be understood as an
eigenvalue condition stating that all eigenvalues of the matrix y +
io are positive semidefinite. It is actually a generalized version of
the Heisenberg Uncertainty Relation which becomes clear from the
following argument. Suppose 7 is diagonal, so it has the eigenvalues
Y1,--,Y2n- Then the relation requires that the eigenvalues y; + 1 of
Y +io are larger than 0, which means that the eigenvalues of gamma
have to be larger than 1. By definition of the covariance matrix we
then find

Yaic1v2i = ((XF) — (X0)?) ((PF) — (P1)?)
>1

7

which is equivalent to (compare Equations (2.2) and (2.35))
NP DU (RN
A*RA?P > (X PT) 2.

It can furthermore be shown that any covariance matrix can be diag-
onalized which makes the argument hold in general [Kriio6Th].

On the other hand, if in Equation (2.43) equality holds y describes
a minimum uncertainty state and its eigenvalues are 1. Now we can
make use of the Parseval theorem to connect the density operator of
a quantum state to the characteristic function [Kriio6Th]

]
t(pype) = o JduFfb(u)F@(u)
to find
PANE 1 2
tr(p?) = (2ﬂ)njdu|F(u)| .
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For a Gaussian state the integrand on the right hand side evaluates
to

2 T
)l =e ™ 7Y,

hence, if all eigenvalues of v are 1 the integral yields (27r)™ and we
have shown that a minimum uncertainty Gaussian state is also a pure
state. If we now multiply the physicality condition by ic we find

ioy+1 =0,

where we have used 62 = —1. And by taking the square we get a
condition for Gaussian states to be pure,

(oy)? =—1.

We would like to make a final comment on symplectic transforma-
tion and symplectic invariants. A symplectic transformation S is a
basis change of the phase space that keeps the scalar product invari-
ant. The scalar product for two n-mode vectors & and ( is defined via
the symplectic form,

(£,0) =& ot

A symplectic transformation will now act on the vectors like

£T60=(S-£)T0(S Q)
=&".ST0S ¢,

from which follows that it must not change the symplectic form,
SToS =o.

As o is connected to the physicality condition in Equation (2.43), this
means that physical states are transformed into physical states under
symplectic transformations. We will make use of this in the theoreti-
cal description of the beam splitter in Section 3.2.3. Also many other
optical implementations can be described by symplectic transforma-
tions in an elegant way, for example the generation of squeezing from
the vacuum [Ebe13Th]. Furthermore, the symplectic invariants are
of special interest. These are quantities that are independent of the
phase space under consideration, as they do not change under sym-
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plectic transformation. For example for a two-mode covariance matrix
v we find these four invariants [Buo1o]:

I; = detA,
I, = detB,
I = detC, (2-44)
I4 = detvy.

Here, we have defined the covariance matrix in block form consisting
of four 2 x 2-matrices,

Y_AC
cT B /)

This block form as well as the symplectic invariants will be very use-
ful to describe entangled states with two modes (see Chapters 4 and
5). The blocks A and B can be seen as the local descriptions of the
two modes whereas the block C contains the information about any
correlations between the modes.
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Following the epistemological foundations of modern natural science,
the theoretical description of a process must precisely define and
predict the observation of an experiment and the experiment must
precisely implement the description to test nature under controlled
circumstances and to prove or disprove the theory [Kang8]. In quan-
tum mechanics we establish a theory that describes the processes of
elementary particles and single quanta. Therefore, a meaningful ex-
periment that tests quantum theory has to operate at the level of a
single or very few quanta in a specific single (or sufficiently singular-
ized) mode. The mode is here the space-time element in which the
interaction we are interested in takes place, and we do not want this
interaction to be disturbed by any other modes because that would
render our measurement result useless to test the theory. In this chap-
ter we will explain how we can make sure to detect a single mode
with a sensitivity that allows a resolution at the level of the quantum
of action h.

3.1 GAUSSIAN OPTICS
3.1.1 Fundamental Solution of the Helmholtz Equation

In Section 2.2.1 we have found that the spatial modes of the electro-
magnetic field obey the Helmholtz Equation (2.5). For the derivation
of the fundamental quantum optical principles it was sufficient to
solve this with a plane wave. But such a wave is unrealistic in exper-
imental circumstances, as it would imply infinite extension perpen-
dicular to the propagation direction. We will now assume the light to
propagate in a beam in z-direction, i.e. to have a small extent in the x-
y-plane. This allows us to restrict the optical wave to the propagation
direction, uy (r) = ¥(x,y,z) exp (ikz), and to paraxially approximate
the Helmholtz equation,
2 2

% gylf + Zik% =0. (3.1)
We have, hereby, made the assumption that ¥ changes so slowly with
z that we can neglect the second derivative. The fundamental solution
to this equation is [Kog66]

1 ik

_Wo (w22 (1 1k
Yoolx,y,2) = &P [1(1) (x“+y )<w2+2R>]'
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Here w is the beam radius, R is the radius of curvature of the wave
front and @ is the Gouy phase and all are functions of z given by

2
w(z) =woyt/1+ <ZZ> ,

2
kwg

kw? 2
1 >0
(55

2
®(z) = arctan k—zz

Wo

R(z) =z

The constant wy describes the minimum beam radius at position z =
0 and is called the waist. This is also one of the three points where the
wave front is flat. The other two are at z = +00 where the wave front
approaches that of a spherical wave with infinite radius. The Gouy
phase at these two points is ® = £7/2, hence, the beam collects an
extra phase of 7t as it travels from the negative infinity through the
waist to the positive infinity.
Taking a look at the intensity we find

b [_Z(XZ —l—yz)} .

2
2 Wo

Ioo o< [Wool” = ( ) 5

w w

The exponential describes a Gaussian intensity profile with respect
to the distance from the z-axis, that has a standard deviation of w/2.
As w grows with increasing absolute value of z the beam profile gets
broader. For |z| >> 1, it approaches a beam with fixed opening angle
0 = arctan (2/kwy ), hence, it only depends on the waist size and the
optical frequency. This far-field relation explains why a big beam di-
ameter is necessary to achieve a very small waist and why an actual
point focus can never be achieved. The factor wy/w takes into ac-
count that the overall intensity should be the same at any point and
decreases the maximum of the Gaussian distribution for increasing
absolute value of z.

3.1.2  Higher Order Transversal Modes

The function ¥y¢ is only the fundamental solution of the differential
equation (3.1). It can in general be multiplied by some functions that
only depend on x and vy, thereby gaining a whole set of possible
transversal modes. There are two principle ways to do this, one in
Cartesian coordinates and one in cylindrical coordinates. The first
one delivers solutions of the form [Kog66]

‘i’mn(x,y,l) =Hm <\/V€X> Hn <\ﬁy> WOO(X/UrZ)r

w

O(m,n,z)=(m+n+1)0(z),
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where H,,, are the Hermite polynomials and m,n € IN. For this rea-
son these modes are called Hermite-Gaussian. They show a rectilinear
pattern in the intensity profile, where m gives the number of inten-
sity minima in the x-direction, and n in the y-direction. An exemplary
Y1, Hermite-Gaussian mode is displayed in Figure 3.1.

Figure 3.1: Intensity distribution of a ¥, Hermite-Gaussian mode. The
intensity shows 1 minimum in x-direction and 2 minima in y-direction.

The second possibility gives modes with radial symmetry. The so-
lutions are of the form [Kog66]

1
V2r 212\ .
lypl(r/ ®, Z) = (W L}) <VV2) ell(p\POO(‘r/ P, Z)/

O(p,Lz)=2p+1+1)D(z2),
where 12 = x? +y?, ¢ = arctanly/x] and LL are the generalized
Laguerre polynomials with p,1 € IN. Thus, these modes are referred
to as Laguerre-Gaussian. The intensity profile shows p minima in the
radial direction and 21 minima on the circle around the beam axis. An
exemplary ¥, Laguerre-Gaussian mode is displayed in Figure 3.2.

3.1.3 Implications for Experiments

The difference of the Gouy phase from the fundamental mode is
the reason why in a cavity different transversal modes have differ-
ent resonance frequencies, as they will normally collect a different
phase in one round trip. Therefore, when scanning the length of a
cavity a spectrum becomes visible where each peak belongs to a
different transversal mode. Thereby, both sets of modes occur. The
Hermite-Gaussian modes stem from a tilt-shift of the incident beam
with respect to the fundamental eigenmode of the cavity, whereas
the Laguerre-Gaussian modes stem from an offset of the waist size
and the waist position in beam direction. This can be used to adjust
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Figure 3.2: Intensity distribution of a ¥, Laguerre-Gaussian mode. The
intensity shows 2 minimum in radial direction and 4 minima on the full
circle.

a beam to a cavity. In Figure 3.3 a generic optical configuration of
a three mirror ring cavity is shown. By sending the incident beam
to two mirrors, each tiltable around the x- and the y-axis, the beam
direction and position can be adjusted. Positioning an appropriate
set of lenses in the path, the waist size and position can be matched
to the eigenmode of the cavity. The beam is then said to be mode
matched. The adjustment of the tilt-shift is normally quite intuitive
and can be done by simply observing the mode spectrum while scan-
ning the length of the cavity, and iteratively adjusting the mirrors un-
til all higher Hermite-Gaussian modes are minimized. On the other
hand, the correct combination and position of lenses can be difficult
to find, since in many cases only a specific combination of a concave
and a convex lens leads to the desired waist. Therefore, for almost
all mode matchings in this thesis the Java script JamMT by N. Latzka
was used to numerically calculate an initial mode matching [Lat10].
Starting from this result, an iterative fine positioning of the lenses was
performed similar to the adjustment of the mirrors. With this proce-
dure mode matchings close to 100% were achieved in all cases, which
means almost all light was in the ¥o mode of the respective cavity.
The question arises why one would actually care about the transver-
sal modes. As both sets of solutions form a complete and orthogonal
set, the scalar product of two different modes, which in this case has
integral form, would yield 0. Note that the mode functions already
contain appropriate weighting functions to make the Hermite and
the Laguerre polynomials orthogonal. Therefore, when superimpos-
ing two different modes no interference should occur. Especially in
the case of homodyne detection (see Section 3.3), the local oscillator
in Yoo mode will select the Yoo mode of the signal and all other
modes will not be detected. Hence, the signal could have an arbi-
trary beam shape. Now this is only a quarter of the story. First of
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PD

o)<

PZT

Figure 3.3: Schematic of a generic mode matching setup. The beam can be
adjusted to the fundamental eigenmode of the three mirror ring cavity (RC)
via a system of lenses and mirrors. The mode matching can be observed
by scanning the length of the cavity with the piezo-mounted rear mirror
(PZT). Due to the different Gouy phases of the different modes, a spectrum
becomes visible at the photo diode (PD).

all, the scalar product only vanishes in the infinite integration. But an
actual photo diode has a small diameter, and one can certainly not
assume that the whole x-y-plane is detected. Surely the spot size on
the photo diode of a beam in ¥po mode can be made small such that
a high detection efficiency is achieved. But this is not necessarily true
for higher order transversal mode. Secondly, the orthogonality is only
fulfilled if the superimposed modes have the same beam radius. But
the best way to define the beam radius is by having a defined waist
in a cavity somewhere along the beam axis. This gives rise to the ap-
plication of an analyzing ring cavity. This is a cavity like in Figure 3.3
with good non-degeneracy properties that is reached via a flip mir-
ror after the superposition of two beams at a beam splitter. If both
beams have perfect mode matching to the analyzing cavity they are
also mode matched at the beam splitter. Thirdly, it turns out that the
best way to generate continuous-wave squeezed light is in a cavity.
And to achieve a high efficiency, all beams required in this process
have to be perfectly mode matched to this cavity. So throughout this
thesis good mode matchings were required, be it for the efficiency of
quantum processes or the contrast at a superposition or the optical
detection efficiency. Therefore, all auxiliary beams like the local oscil-
lator or the pump for the squeezed light sources were sent through
a so-called mode cleaner cavity. This resonator is structurally identical
to the analyzing cavity but in addition to the scanning ability it has
a Pound-Drever-Hall lock [Blao1] to stabilize it to the fundamental
cavity eigenmode. That way all higher order transversal modes were
reflected at the cavity and it was made sure that in the experiment
the beams are as close as possible to a Yoo mode.
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3.2 MIXING OF DIFFERENT MODES
3.2.1  The Classical Beam Splitter

The key ingredient for any interference experiment is the beam split-
ter, an optical device with two inputs and two outputs that, due to a
non-zero transmissivity for the inputs, enables a superposition of dif-
ferent modes. The classical beam splitter can be described by a matrix
relation [Louoo],

(2)-(re)(n)

Here we have assumed all electric fields to be of the same polariza-
tion and monochromatic frequency. The reflection and transmission
amplitudes r and t are in general complex but energy conservation
gives some constraints. The fact that

[E1l? +[E2l? = [E3)* + B4l
is required, delivers [Louoo]

T2+ [t9]2 = 2l + [t =1,

T]’[E + 15t =0.
Investigating the magnitudes and arguments separately we find

ril=r2l =1, [l =lt2l =1,

arg(ry) +arg(r2) —arg(ty) —arg(ty) = £

The first line states that the beam splitter has to be symmetric to fulfill
energy conservation. The second line leaves some arbitrariness. For
example, we can choose to set arg(r,) = m and all others to zero. This
means that only at the reflection of one port a phase flip of 7t occurs.
In general, many other conventions are possible but the chosen one
has the advantage that the beam splitter matrix becomes completely

T

With this it becomes most obvious that the real parameters r and t
are reflection and transmission amplitudes. For example, for a 50:50
beam splitter which mixes the two input fields equally we have r =

t=1/V2.
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3.2.2  The Quantum Optical Beam Splitter

To get a description within quantum optics we have to replace the
electric fields by the mode operators according to Equation (2.13).
The rest stays basically the same and we find

(2)-()(8)

The same holds for the adjoint operators, note that the beam splitter
matrix is unitary. Using this relation it can be shown that the output
mode operators fulfill the same bosonic commutation relation as the
input mode operators. Hence, we do not have to change anything
in our description. The only real difference from the classical beam
splitter happens, if one input port is left open. In the classical picture
the corresponding field would simply be zero and not contribute at
all. In contrast to this, the mode operators do have a non-vanishing
action on the vacuum state which we have to assume, if no input
field is present. Therefore, at least the vacuum will always contribute
to the output states.

This fact enables us to describe optical loss with the beam splitter. If
a quantum optical state experiences some loss we can think of this as
some part of it vanishing (into the thermal bath of the universe) and
being replaced by a corresponding amount of vacuum. Hence, we
can use a beam splitter with one input port open whose reflectivity
amplitude is the square root of the optical loss we want to model,

(dout>:<\/1_n \/ﬁ )(dvac>

Qlost \/ﬁ —/1—n Qin

Here n is the optical detection efficiency. The mode Gqg; is lost, which
is why it is called optical loss. We only can keep the mode Gout =

VMin + /1 —ndyac and the difference between a beam splitter and
optical loss is that in the latter case we have just one output mode.

3.2.3 Symplectic Beam Splitter Transformations

We can generalize the beam splitter relation to the description of
Gaussian state by the covariance matrix and define a unitary, symplec-
tic beam splitter operator (see Section 2.4.3) acting on the quadrature
phase space with N modes,

(uk,l (t)) _ ) O+ t(8ak—i21-5 —d21-i2k—j) LiEM
BS54 5 ; i,j € [1,2N\M
(3-2)
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Here, 8;; is the Kronecker delta and r = /1 — [t|? as previously. The
domain M = {2k — 1,2k, 21 — 1, 21} are the indices of the four quadra-
tures describing the two modes k and 1 that get mixed by the beam
splitter. For all other modes the operator acts as an identity. The ap-
plication to the covariance matrix then reads

Ymix(k1) = Us (OyUs(t)T. (3-3)

Note that UL s = ULS, due to the convention of non-imaginary entries
in the matrix.

The application to optical loss is straightforward by replacing t
with the square root of the detection efficiency and by expanding the
covariance matrix with an individual vacuum mode for each mode
that a loss should by applied to. Hence, for each mode that suffers
from optical loss the dimension of the covariance matrix has to be
increased by 2 and is then embedded in the Hilbert space Hjss =
H & Hyac.

3.3 BALANCED HOMODYNE DETECTION

The detection of quadrature amplitudes is normally realized by bal-
anced homodyne detection (BHD). As shown in Fig. 3.4, the signal is
superimposed at a balanced beam splitter with a strong field, called
the local oscillator (LO). The two outputs are measured by PIN photo
diodes and the photocurrents are subtracted and filtered appropri-
ately. We will now show that this leads to the desired measurement
of arbitrary quadrature amplitudes.

Signal

PD

PD

Figure 3.4: Schematic of a balanced homodyne detector. The signal is su-
perimposed at a 50:50 beam splitter with a strong local oscillator (LO). The
two outputs are detected by PIN photo diodes (PD) and the resulting photo
currents are subtracted. The detected quadrature can by changed by the
relative phase .
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3.3.1 Description of the Fields at the Homodyne Beam Splitter

Let as assume the LO to be strong enough so we can fairly approxi-
mate it by a classical field,

Ero(t) = |afe!®ot™?,

with a so far arbitrary phase 0. Here we neglect any additional noise
accompanying the LO which might also be present at other frequen-
cies. We can do so because these amplitudes will be amplified by the
coherent excitation at the second beam splitter input port, which is as-
sumed to be negligibly small compared to . A rule of thumb is that a
ratio of about 30 is sufficient for this assumption, and in experiments
often even ratios of several orders of magnitude are realized.

Now let us consider the second beam splitter port. Here, we can
not restrict the description to the single frequency w, as at least a
vacuum state at all possible frequencies has to be taken into account.
In the general Fourier expansion of the electromagnetic field

Esig (t) = Z
k

we have quantized the field in a finite volume V = AL and the spac-
ing between different frequencies is Aw = 27c/L. Here we have left
out the spatial mode functions as we will select one specific spatial
mode in the detection by the overlap with the spatial mode of the LO.
This will define the finite cross sectional area A of our quantization
volume.

As we assume the second beam splitter port to be in general com-
pletely open, we have to let the length L of the quantization volume
go to infinity. The discrete sum will thereby change to a continuous
integral [Louoo],

hwk

dre i wrt 4 he
2e0V < +

Furthermore, the mode operators from Section 2.2.2 change as
ax — VAwa(w), al - VAwa'(w),

with the new commutation relation

A A

a(w), aT(w')] =5(w—w’),

where 6 denotes the Dirac delta distribution. Hence, the modes for
different frequencies are orthonormal to each other.
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With these replacements we find the continuous expansion of the

field
T hw . i
Esig(t) = J'dw\/; [a(w)e™ " +h.c.]
0

T h(wo + Q)
= dQy/ ———
J 41teoCcA

[a(wo + Qe '®ote 2t thel,

—wy

where in the second step we have changed the integration variable to
sideband frequencies of the LO, QO = w — wy.

3.3.2 Detection of Quadrature Amplitudes

The detected photocurrents in the two output ports are proportional
to the intensities of the superimposed fields,

2 2

Ero+ Esig)

. 1
, 1y ’ﬁ(ELO — Esig)

7

i “(
10(\@

which gives, after some algebra

e, T [(wo + Q)
11,2—7“04 + |« J dQ W

—wy

. (aQefiQt(efZiwotefie +ei) +he)],

The + refers to i;, the — refers to i,, 4o = 4(wo + Q) and €’ is
some constant depending on the electronics. Furthermore, we have
omitted all terms that are just quadratic in @ and do not contain an
«, as these are negligible compared to the coherent amplitude «. We
see that there are terms oscillating at the doubled frequency of the
LO. As these are not directly observable optical frequencies, but are
averaged over to yield 0, we can also omit all terms of the form e?i®o.
Now we take the difference of the two currents,

lgir =1 —12

h(wo + Q)

Y (dge*igteie +h.c),

= /|« J dQ
wo

and, thereby, double the amplitude and remove the constant term
from the LO.

As we are interested in the signal amplitude at a specific sideband
frequency Qy, we will demodulate this photo current difference with
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an electronic oscillator. The mathematical equivalent of this operation
is the multiplication of the signal with a cosine,

Xa,,0(t) :=cos(Qot) - igif

:e’|(X| J do w(dge i(Q— Qot19+hc)

2 4megcA
—we
, o
N C/l el J 40 h(wo + Q) (dQe 1(Q+00)t 1e+hc)
2 4megcA
—wo

(3-4)

Now we restrict our observation to a certain range of resolution band-
width Qg, which is usually done by some electronic filters,

/« Qo+Qgr/2 : :
o Cle hlwo+ Q) /.
Kagalt) =537 | a0y HERCE (aae 00t he)
Qp—Qr/2
, —Qo+Qr/2
+e|0(| do M(ﬁge i(Q+Q)t 19+hc)
2 4megcA
—Qp—Qr/2

In the second integral we change the integration direction by swap-
ping the upper and lower bound and change the integration variable
QO — —0. As both operations give a minus sign, the overall sign does
not change,

Q,
— '/ Y A o)t 19
Xa,e(t) =€ ’/mmocA J do [(age +hc)
Q

n (ﬁ,Qe i(—Q4+Qp)t le+hc):|

with Q4+ = Qy + Qr/2. Here we have used the scaled narrow band
approximation ) << w to get the square root factor out of the in-
tegral. Comparing the two integrands to the definition of a rotated
quadrature in Equation (2.36) we see immediately

Q,

A

Ry o(t) = € J dQ (Ro_ (Q) + Koy (—Q)),
Q- (3-5)

16megcA’

with x = (Q —Qp)t. So the detected amplitude is proportional to
the sum of the quadrature amplitudes of the upper and lower side-
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band. Note, that the quadrature angle for frequencies QO # Q, is time
dependent and opposite for the two sidebands. Hence, here we take
the sum of quadratures rotating against each other in time. But actu-
ally this does not make any difference in the measured variances as
a calculation in the Appendix A.1 shows. Apart from this we can for
simplicity make the assumption that the detected frequencies follow
a d-distribution at (o which gives

X0ap6(t) =€ (Xe(Qo) +Xo(—Q0)) - (3.6)

We can think of the actual distribution as an infinite sum over such
d-distributions, each with an appropriate IR-valued coefficient.

3.4 EXPECTATION VALUES AND VARIANCES OF HOMODYNE SIG-
NALS

The result of the previous section was that the homodyne signals are
proportional to the quadrature amplitude at a selectable quadrature
angle and sideband frequency. We are now interested in the expec-
tation values and variances of these signals for the states that were
used in the framework of this thesis.

3.4.1 Measurement on the Vacuum State

We take a look at the time series of the operator Xq, ¢(t) from Equa-
tion (3.5). This will of course depend on the input state at the second
beam splitter port, and a natural starting point is to assume a vacuum
state. So we are interested in the magnitudes

(0Xp,0(1)10)

and

Varyac(Ra,,0(t)) = (0 (Rage (1) 10) — (01X 0,6 (£)]0)2.

Remembering that the quadrature operators are the sum of the mode
operator and its hermitian conjugate, and that these are orthonormal
for different frequencies, it is easy to see that the expectation value
vanishes immediately as expected.

For the variance we have to take the square of the integral, which
in general is not equal to the integral over the square. But as we
know that modes of different frequencies commute, we can neglect
all cross terms and actually restrict to the integral over the square.
Nevertheless, the calculation gets a bit lengthy, but with the same
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arguments as for the expectation value, and using al0) = 0, we find
that only two terms contribute in the case of a vacuum state,

Q4
Varyac(Xa,,0(t)) = (0]€2 J do (agagm,gdig) 0)

Here we see that the detected vacuum noise level is proportional to
the resolution bandwidth. Note that we have taken the simple case
of a rectangular distribution in frequency. The actual distribution of
the filter might be a different function of (), nevertheless, there will
be proportionality between bandwidth and noise level. This is intu-
itively reasonable, as in a broader distribution more frequency modes
contribute to the noise. Hence, if we want to compare the variance of
some other state to that of the vacuum, we have to make sure that we
take the same resolution bandwidth.

3.4.2 Measurement on the Squeezed Vacuum State

Now we would like to investigate the result of such a measurement
if we take a squeezed vacuum as signal input. As we have seen in
Section 2.3.3, there are states that exhibit a squeezed noise compared
to the vacuum in one quadrature. Where in the previous description
we considered the idealized case of a degenerate parametric amplifier,
we now want to look at the actual situation in the experiment. In this
case the down-conversion (see Section 5.1.1) is non-degenerate, and
there are photon pairs created with frequencies w +Q and w —Q,
where for energy conservation w is half the pump frequency. Hence,
we get the squeezing operator

$(0 =exp |C"arad o —cal gal ],

with 41 as above and ( = re!®. Note that r in general can be a
function of Q, hence, the squeezing factor can be frequency depen-
dent. Furthermore, ¢ can also be a function of (O, which leads to a
frequency dependent squeezed quadrature. For simplicity, and as we
will later on only use squeezing at one sideband frequency, we will
assume both of them to be constant.

Using the identity

$T(0)a+aS(¢) = d+q cosh(r) — diFQei“’ sinh(r)
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we find the following expectation values [Walg4]

(a+ra)sq: = (018(2)TaraS()I0) =0,
<diQaiQ>qu =Y
<a:|:Qd:FQ>qu = —el® sinh(r) cosh(r),
<aT:|:QaiQ>sqz = sinhz(r)

With these on hand we can calculate the expectation values for the
sideband quadratures )A(qux(jzf).),

(Xogx (£Q))sqz = (0 (Xogx (£Q) cosh(r) — X_g 1y (FQ) sinh(r)) 0)

(R (£Q))sqz = (015 Koy (£0) 55 Ko 45 (£Q)S[0)
= (0] (Rox (£Q) cosh(r) — X_py— o (FQ) sinh (1)) [0)
= cosh?(r) + sinh?(r),
(Xogx (EQ) KXoty (FQ))sqz =
= (0] (Xoxy (£Q) cosh(r) — X_g1y—¢ (FQ) sinh(r))
()A(gix($Q) cosh(r) — )A(_ejFx_q, (£Q) sinh(r)) |0)
= —2¢0s(20 + @) cosh(r) sinh(r),

This makes it easy to see the expectation value and the variance of
the measured amplitude Xq, o(t),

<>2_()_0,9>qu =C J dQ <<)A(9_X(.Q) + X9+X(—Q))>
Q_

= O,

Q.
Var(Rg,,0) = €2 J d0 (o x(Q)+Xo1x(-0))") ()

Q_
Qy

_ 2 J 402 [2cosh? () + 2sinh? (1)
Q_

—4cos(20 + @) cosh(r) sinh(r)]
= 2C@%2 Qg [cosh(2r) — 2 cos(26 + @) sinh(2r)] .

As expected for a vacuum state, the mean vanishes. Furthermore,
we see that there are two distinct settings of interest for the angle 0
for which the variance becomes extremal. By differentiating for 6 and
setting the result to 0 we find the corresponding quadrature angles
20+ @ = m/2 F /2 where the cosine becomes +1. The difference
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between the two solutions for 0 is exactly 7t/2, hence, the two extremal
quadratures are orthogonal. Their variances are

Var(Xq,,_o/2(t) =2C*Qre™ ",
Var()A(QO,ﬂ/Z,(P/z(t)) = ZGZQRG+2r.

Note that the vacuum noise is 2C2Qg, thus, the noise in one quadra-
ture is squeezed by a factor e 2" whereas in the other it is anti-
squeezed by a factor e ™27,

This result is in perfect accordance with the previous one in Sec-
tion 2.3.3. But in contrast to the idealized situation of squeezing at DC
(0Hz sideband frequency) we now have understood where squeezed
variances at non-zero sideband frequencies stem from. It can actually
be understood as an entanglement of the upper and lower sideband.
If we would measure the amplitudes Xg(+Q) independently, both
would have zero expectation value and the same variance of

Var(Xo(£Q)) = C2Qg cosh(2r).

This variance is independent of the quadrature angle 0 as well as of
the squeezing angle ¢ and increases monotonically with increasing
squeezing factor r. Note that for r = 0 the variance is a factor of 2
smaller than the vacuum noise because we measured just one of the
two sidebands. But as we have seen, the variance is squeezed, if we
take the sum of the two sideband quadrature amplitudes for a certain
0. Hence, for this quadrature the amplitudes of the two sidebands
are anti-correlated, and the strength of the correlation is determined
by the squeezing factor. For the orthogonal quadrature we would
also see an equivalently squeezed variance if we could measure the
difference of the upper and lower sideband quadrature amplitudes.
This can be seen in Equation (3.7), where in this case the sign of
the cosine would change. Hence, in this quadrature the amplitudes
are correlated correspondingly. This is an entanglement of the upper
and lower sideband in their quadrature amplitudes and it has been
demonstrated in [Samoy] by splitting the two sideband and sending
them to different homodyne detectors. To measure the difference of
the phase quadratures amplitudes and prove this entanglement with
just one homodyne detector, the only possibility would be to intro-
duce a phase flip of 7t between the two sidebands already before the
homodyne beam splitter. While this would in general be possible, in
the case of the homodyne detection this would, apart from an irrele-
vant overall phase, just result in swapping the squeezed and the anti-
squeezed quadratures. We are left with also measuring the sum of
the correlated quadratures which of course results in anti-squeezed
noise. Note that due to the entanglement of the two sidebands the
anti-squeezed variance is not just the sum of the two independent
variances but a bit smaller, where the deviation vanishes for r — oo.
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3.4.3 Measurement on the Coherent State

So far we have only investigated scalar products in the basis sets of
the number states and the squeezed states. Now let as consider the
third possible basis of our Hilbert space spanned by the coherent
states. First of all we will have a look at a single coherent excitation
at, say, +Q¢. Such a state is called a single sideband (SSB) for obvious
reasons and we assume it to have an infinitely narrow bandwidth.
Remembering that a coherent state is an eigenstate of the annihilation
operator, dlx) = ofx), we see immediately that the expectation value
can no longer vanish in general,

Q,

(Rago(t)sss = Clag,] J d0 (Ro_ (Q) + Roox (—Q)) lery)
Q_
QL
=0 J dQ(ocQOIﬁQei(e_X) +h.clag,)
Q_
= CQOg (chOeie + 0(506719)

= 2COR|xn,lcos(0 —arg(xn,)),

where in the second line we have used the fact that only the quadra-
ture amplitude of the upper sideband contributes, in the third line
that only a single frequency contributes and in the fourth line that
xo, = lxg,lexp(—iarg(xqn,)). Assuming the phase arg(xn,) to be
constant, we see that the expectation value only depends on the phase
0 of the LO in a sinusoidal way. This behavior enables us to use the de-
tected quadrature amplitude as an error signal for the LO phase (see
Section 6.2.2). Note that we have chosen the coherent excitation to be
exactly at the demodulation frequency Q. If we would have chosen
it to be at a different frequency (but within the detected bandwidth)
the signal would furthermore oscillate with the difference frequency
in time.

When calculating the variance of X, ¢(t) we have to take into ac-
count that the lower sideband without coherent excitation does not
contribute to the expectation value but it will contribute a vacuum
uncertainty to the variance. With this in mind, we find that the vari-
ance is actually equal to that of pure vacuum, as we would expect for
a coherent state.

Note that we can set the sideband frequency to 0 without any is-
sues. The SSB then describes a coherent excitation at DC. This hap-
pens for example with the control field that is used for the squeezed
light generation and that co-propagates with the squeezed vacuum.
It is easy to see that the incident of this beam on the signal port of
the homodyne detector results in a cosine signal only depending on
the relative phase of the LO. The control field defines the amplitude
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quadrature in the direction of «y, i.e. arg(xp) = 0 by definition. There-
fore, the resulting signal can only be used to stabilize the homodyne
detector to the phase quadrature (6 = £7/2), where the cosine crosses
zero. Since there is no sideband frequency, there is no demodulation
phase that could shift this crossing to other quadrature angles. Nev-
ertheless, this technique was used for the experiments in Chapter 5
as a phase quadrature lock.

Now let us consider two coherent excitations placed symmetrically
around the LO frequency wy. For simplicity we will again assume
them to be exactly at the demodulation frequency with infinitely
small bandwidth. Then we find

(Xay0(t))moa = Cloa,, x|
QL

|| 40 [Ro-p(Q) 4 Rarrp (- Q)] laay, x-a)
Q_

= COg [ocgoei(e_m + oy e 0h)
o, OB o e—i(9+B]}
—=*%0
= 2CQR [, cos(0 — p —arg(an,))
+o_n,lcos(0+ B —arg(x_n,))].
where we also have taken the demodulation phase 3 from Appen-

dix A.1 into account. Let us assume the two excitations to have the
same amplitude, |xq,| = [x_q,|. Then

Rowo(6)mod = 2600, |cos (6 _arg(ao,) %—zarg(oc_oo)>

- Cos <[3 + arg(xq,) —zarg(oc_go)> )

Again we get a signal that is sinusoidally dependent on 0 but now
the amplitude of it is a function of the demodulation phase and the
phase relation between the two sidebands. Hence, for optimal sig-
nal amplitude B has to be adapted with respect to this phase re-
lation. Furthermore, for the phase relation between the sidebands
there are two distinct possibilities, arg(xg,) —arg(ax_o,) = 0 and
arg(xn,) —arg(a_qn,) = m With the first relation we get an ampli-
tude modulation and with the second one a phase modulation of the
signal input of the homodyne detector. If we also set arg(xq,) = 0 or
arg(xq,) = 7 the signal becomes equivalent to an amplitude mod-
ulation or a phase modulation of the LO. This was used for the
experiments in Chapter 5 to complement the previously mentioned
phase quadrature lock based on the DC control field with an ampli-
tude quadrature lock based on the phase modulation on the control
field. This modulation was initially used to stabilize the squeezed-
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light source to resonance with a PDH technique [Blao1]. But it also
delivered a sine signal at the homodyne detector for the quadrature
angle 6,

<XQ0,9(t)>mod X COS (e + TZ[) . Cos <f5 + g)
o +sin (0) - sin (B).

Therefore, it could be used as a second feedback for the phase of the
LO, since the sine vanishes precisely for the angles of the amplitude
quadrature. A switching between these two locks allowed to select
the detected quadrature.

3.5 RECONSTRUCTION OF THE COVARIANCE MATRIX

With the detection of arbitrary quadrature angles and amplitudes we
can now reconstruct the covariance matrix of the signal input at the
homodyne detector. This is of special interest in the case of multi-
mode Gaussian states for which the covariance matrix describes all
statistical properties. The following protocol for reconstruction is de-
scribed in [DGuioTh] for two modes A and B. An extension to n
modes is straightforward.

RECONSTRUCTION PROTOCOL

I A and B simultaneously measure the amplitude quadrature. This
allows to calculate (XA Xg) as well as (X3 ) and (X3) from a series
of such measurements.

IT A and B simultaneously measure the phase quadrature. This al-
lows to calculate (PAPg) as well as (P4) and (P3).

III A measures the amplitude quadrature and B simultaneously the
phase quadrature. This allows to calculate (X Pg).

IV A measures the phase quadrature and B simultaneously the am-
plitude quadrature. This allows to calculate (PaXg).

V Both A and B measure a linear combination of amplitude and
phase quadrature, for example at 45°. Via the connection [Sam12]

(R2,0) = 5 ((%2) + (RP 4 PX) + ()

this allows to calculate (XoPA) and (XgPg).

With the calculated values the covariance matrix is fully reconstruc-
ted and allows to investigate the properties of the state based on .
Note that the fifth step is not mandatory in all circumstances. As long
as X and P are measured perfectly orthogonal to each other, the co-
variance for the two operators of the same mode vanish identically
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anyway for all vacuum states. Therefore, in the application of this
protocol in Chapter 5 a partial tomography was performed and step
V was omitted. Note furthermore that the reconstruction of the co-
variance matrix is not allowed in quantum key distribution (QKD)
protocols with security against arbitrary attacks, as these do not al-
low to assume the Gaussianity of the distributed state. Therefore, the
reconstruction was not performed in Chapter 6.
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THE NOTION OF ENTANGLEMENT

4.1 THE EINSTEIN-PODOLSKY-ROSEN PARADOX

In a seminal publication in 1935 A. Einstein, B. Podolsky and N. Rosen
(EPR) considered the question of whether the quantum mechanical
description of reality could be complete or whether some underly-
ing process explains the statistics by hitherto hidden variables [Ein3s].
As we have seen in Section 2.1.3 canonically conjugate variables have
to fulfill the Heisenberg uncertainty relation, hence, no simultaneous
exact description of the appertaining observables is possible. Now
EPR invented a sophisticated gedanken experiment accompanied by
a philosophical argumentation to show that under certain circum-
stances the relation is violated and an exact description might be
hidden under the quantum noise.

Suppose two quantum particles that interacted at a certain point
in space and time, are sent to two observers, Alice and Bob, with-
out further interaction. Then we cannot describe the states of the
two subsystems individually after the interaction [Ein35] which is
what E.Schrodinger named entanglement in response to EPR’s pa-
per [Sr635]. Such an individual or local description only becomes pos-
sible if a measurement is performed that reduces the wave functions,
i.e. projects the whole system onto a specific (pure) state correspond-
ing to the outcome of the measurement. Then the state can be written
as a superposition of all outcomes weighted with their probability,

|‘{/> = Z Cnm)n>A & |un>B-

Here [)a is a basis of the eigenstates of an operator O; applied
to Alice’s subsystem, while |un)p is a corresponding normalized (not
necessarily orthogonal) set of states at Bob’s subsystem [Cacog]. But
Alice is not restricted to measuring O and the state can also be writ-
ten as

W) =) cilos)a®vs)s,
S

for |@s)a being a basis of eigenstates of an operator 0O, and corre-
sponding |vs)g. This means that, depending on which measurement
Alice performs, the state is reduced to one of the [pj)A ® [u;)p states
or one of the [py)a ® [vk)p states.

Now EPR assumed O; = % and O, = P, the position and the mo-
mentum operator. The canonical conjugation of the operators guar-
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antees that Bob’s set of states for every possible outcome x on Al-
ice’s side is different from those for every possible outcome p at Al-
ice [Cacog]. This is because non-commuting operators do not have
an orthonormal basis of simultaneous eigenvectors [Hal13]. Thus, de-
pending on the measurement on Alice’s subsystem the state at Bob’s
side has different wave functions.

Furthermore, EPR made the following argument. A physical quan-
tity is considered to be an element of reality if it can be predicted
with certainty. A physical theory is considered to be complete if it
contains all elements of reality. Additionally, they implied but did
not explicitly state, as it probably seemed just natural to them, that
a description of physical quantities is local if the quantities are not
changed by some remote operation via superluminal signaling. Now
if Alice performs a measurement on her subsystem then, due to local-
ity, there is no way Bob’s subsystem can know which measurement
was performed. Therefore, as Alice chooses her measurement at ran-
dom, both states Bob would obtain must have been elements of reality
beforehand, of which one gives a precise value for the position and
the other a precise value for the momentum. On the other hand the
local quantum mechanical descriptions of Alice and Bob always obey
the uncertainty relation for position and momentum. Thus, it contra-
dicts a simultaneous reality of both states because they are not pre-
dictable with certainty. Therefore, EPR concluded that the quantum
mechanical description can not be considered complete.

The effect of the projection on different states of Bob’s subsystem
was later named steering by E. Schrodinger [Sr635]. He believed in the
completeness of quantum mechanics but neither could he find a flaw
in EPR’s argumentation. This is why he named the phenomenon a
paradox [Sr635]. Moreover he examined the process of entanglement
(see Section 4.2.1) showing that the steering effect is caused by the
disentanglement by measurement (see Section 4.2.3). Although the en-
tanglement present in the system described by EPR could have been
explained by local hidden variables, carrying the “true” information
about the measurement outcomes, Schrédinger rejected this possibil-
ity (maybe by intuition [Cacog]) and named steering “a necessary and
indispensable feature” [Sr636] of quantum mechanics.

Nowadays the steering effect has been demonstrated in a variety of
experiments [Oug2, Zhaoo, Silo1, Soroz, Bowo3a, Lauos, Tako6, Kelo8,
DAuog, Sauio, Hag11, Ebe11, Hani2, Smi12, Witi2, Ebe13b]. Most
of these experiments used continuous variable two-mode squeezed
states and certified the presence of steering through a violation of
the EPR-Reid criterion. This inequality was developed by M. Reid to
adapt the original argumentation by EPR for position and momentum
to the field quadratures of an electromagnetic wave as their quantum
optical counter parts [Rei89]. Its applicability to quantum optical ex-
periments made it one of the most important criteria to certify the
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presence of entanglement. In more recent publications by H. Wiseman
and co-workers it was shown that any steering criterion can by de-
rived from fundamental Heisenberg uncertainty-like constraints on
the statistical description of the measurement results [Wisoy, Cacog].
In this context the EPR-Reid criterion is a special case which gives
a tight bound for the variables Reid had under consideration in her
original publication.

In this chapter we will give an introduction to the theoretical de-
scription of entanglement based on references [Wisoy] and [Cacog].
We will then give a thorough examination of EPR steering in the
Gaussian regime and show that the directionality of this class of en-
tanglement leads to the existence of one-way steering.

4.2 CLASSIFICATION OF ENTANGLEMENT
4.2.1  Genuine Entanglement

A state with density operator p on a Hilbert space 3 = H(A) @ 3((B)
is called separable if the density operator can be written as a convex
combination

A A(A (B
p=2 proy @p\).
A

The probabilities p) for the preparation of state A have to sum up to
unity and the density operators ﬁ;\A’B) describe the state of the sub-
system on the respective Hilbert subspace. If it can not be separated
like this the state is called entangled.

We can rewrite this condition in terms of a probability description
for the measurement outcomes [Cacog]. The probability to find the
state ();A) in [x) when measuring X is given by the expectation value
of a projector TTX = |x)(x|, where |x) is an eigen state of X with eigen-

value x,
Po(x|X, A) = tr (ﬂ§< @;A)) )

and similar for y and @;\B). Here the subscript Q denotes a probability
that conforms with quantum mechanics, as it was derived from a
density operator. In particular, it obeys the uncertainty relation. With
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this the probability to find x and y when measuring X and Y on the
respective subsystem becomes

Plx,ylX,Y) = tr (( et Y poyt e ﬁ&“)
A

(A A(B
= patr (l’[;‘(p; Jomyp! )>

= ) PaPQ(XIX, A)Pq(ylY, 7).
A

We see that A takes the role of a hidden variable that explains any
correlations between the measurements. A state is called entangled
exactly if we cannot find such a description of the occurring probabil-
ities that can be determined by a statistical analysis of repeated mea-
surements on identically prepared states. An entanglement criterion is
any constraint that can be derived from this probability description.
For example the Duan criterion [Duaoo]

N 14 . 1. 1
Var(aXa — EXB) +Var(aPa + EPB) >2 <a2 + az> ,  a€R" (41)

is a necessary and sufficient condition for two-mode states to be en-
tangled in their field quadratures, if it is violated.

4.2.2 Violation of a Bell Inequality

We can relax the condition for the local probabilities to be derivable
from a density operator and try to describe the occurring probabilities
for the measurement results with any distribution,

P(x,ylX,Y) = > paP(xIX, \)P(y|Y,A).
A

This is a purely classical description, i.e. we try to explain the corre-
lations that are observed with a classical model. In this case A is an
actual hidden variable. It contains all information that predetermines
the measurement results which would be hidden in a quantum me-
chanical description. Hence, this is what EPR assumed to be under-
lying the entanglement they described, as they stated that quantum
mechanics is incomplete. For example a two-mode squeezed state
that violates the criterion (4.1) and, therefore, is not describable by a
quantum model, is describable by a classical model, at least as far as
quadrature measurements are concerned. This is because the Wigner
function of such a state is positive semi-definite and can be seen as
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probability distribution in phase space, therefore acting as a classical
model.

Any state whose correlations cannot be explained by a classical
model violates at least one so-called Bell inequality. These inequalities
were introduced by John Bell in 1964 to clarify the discussion on the
EPR argument [Bel64]. He showed that for any classically correlated
system certain bounds on the probabilities for joint measurement re-
sults can be found. For example the probability that a sock survives
a washing at 0°C but not at 45°C plus the probability that a sock sur-
vives a washing at 45°C but not at 90°C is not less than the probability
that a sock survives a washing at 0°C but not at 90°C [Bel81]. This
is obvious as all socks from the third group are at least in the first
or the second group. With a similar idea inequalities for quantum
systems can be constructed, for example for Stern-Gerlach measure-
ments on entangled electron spins under different angles [Bel81] or,
similarly, projections of entangled photon pairs onto orthogonal po-
larizations. To date such inequalities have been violated in a variety
of experiments [Asp81, Titg8, Weizo] which proves that there cannot
be any classical description underlying that explains the correlations.
Of course these experiments are subject to many subtleties as, for
example, one has to make sure that the observers/measurement de-
vices are space like separated and the random choice of the measure-
ment is made after the state was generated. But very recently the
tirst violation of a Bell inequality without any loopholes was demon-
strated [Hen15] which finally rules out the possibility of hidden vari-
ables explaining quantum mechanics.

Bell also concluded the following possibilities for the nature of re-
ality [Bel81]:

I Following EPR, quantum mechanics may be in-complete and there
should be an underlying description for specific experimental sit-
uations that would make the theory complete. But since the Bell
inequality can convincingly be violated in experiments, we know
that at least for these situations there cannot be such a descrip-
tion. Note that quantum theory can very well reproduce all ex-
perimental data and predict the occurring correlations which we
will call the empiricality of the theory. Hence, abandoning the Ein-
steinian point of view, we could very well say: of course quantum
mechanical description of reality is complete.

II There may be causal influences going faster than light. But this
would violate the theory of special relativity which has been ex-
perimentally verified many times and is also very successful in
connection to other physical theories. Therefore, it is reasonable
to assume what we will call the local causality of the theory, i.e.
the fact that we can describe a system without knowing anything
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about remote (and maybe entangled) systems and operations on
those.

III Following N. Bohr, quantum mechanics may be non-realistic, i.e.
there is “no reality below some classical, macroscopic level” [Bel81].
But this obviously contradicts what we will call the classicality of
the theory, i.e. the existence of a list of properties containing all
information on a system or subsystem.

The three premises empiricality, local causality and classicality were
contrasted in [Duh1o] (note that they are not equivalent to the possi-
bilities I-III), and it was shown that they cannot be fulfilled simulta-
neously in a fundamental physical theory. Since the empiricality and
the local causality have hitherto never been contradicted, we are left
with abandoning the classicality. Therefore, the personal opinion of
the author is that we should go with possibility III, without claiming
completeness of the discussion. This does not mean that there is no
reality at all but that a quantum state has no reality in the classical
sense before we measured it to be a certain state. The different states
of quantum systems described in the wave function are nothing more
but possibilities. Especially, they do not have simultaneous reality.

4.2.3 Einstein-Podolsky-Rosen Steering

The third class of entanglement we will describe is sort of interme-
diate between the previous two. Instead of describing both local sys-
tems with classical distribution we can do this for just one of the two
parties,

P(x,ylX,Y) = > paPxIX,\)Pq(ylY, ). (4-2)
A

This could for example refer to a situation where Bob on his end
“trusts” quantum mechanics, i.e. he knows that the quantum mechan-
ical description is complete and he also knows that he is performing
a correct measurement and not “cheating” in any way. On the other
hand he does not know whether Alice is actually honest and pre-
pares a correct quantum state or whether she is trying to generate
the entanglement-like correlations by some classical process. There-
fore, we describe Alice’s probability classically and Bob’s probability
quantum mechanically [Cacog].

The joint probability of x and y given that X and Y are measured
can again be written as the expectation value of a projector TT}, de-
fined as before,

P(x,ylX,Y) = tr (n%;‘f;) .
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Here

Brix = 2 P(xIX, A)papy (43)
A

is the reduced state Bob receives if Alice obtained x by measuring
X. As we allow Alice’s probabilities to be classically described, Equa-
tion (4.3) means that Bob’s state can be locally decomposed into some
quantum states defined by A,

A (B
P =3 pavy -
A

In comparison to the hidden variable model we have seen previously,
this can be called a hidden state model describing the probabilities of
Bob’s measurement results [Wiso7]. If and only if a state does not
allow such a decomposition is it called a steerable state [Cacog]. In
that case it seems like Alice’s measurement steered Bob’s subsystem
into a specific state that is defined more precisely than a quantum
mechanical decomposition would allow. We will explain this in more
detail for the specific case of two-mode squeezed states in the next
section.

Any constraint that can be derived from Equation (4.2) is called
a steering inequality. For example we can take a look at the condi-
tional probability of Bob finding y given Alice has found x (compare
Equation (2.39) and Reference [Cacog])

P(xty) = 3 P20 Pty
A

— ZP(?\IX)PQ(y|7\),

A

where we have left out the measurement settings for simplicity. Now
suppose Bob’s observables have a non-vanishing commutator, i.e. his
results must fulfill the Heisenberg uncertainty relation. Then, by a
similar calculation as in Section 2.1.3, we can find a lower bound on
the conditional uncertainties [Cacog],

1 N
AcondylAcondyz Z E ;p}\K[Y]/YZD}\L

where

Aoonay = ) P(x)A(ylx)
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is the variance of the conditional distribution. If we now replace Y;
and Y, by the quadrature operators we find the uncertainty relation

1
AcondX(B)AcondP(B) > E ;px -2

=1

Note that the expectation value is independent of Alice’s measure-
ment choice and, therefore, independent of A. By taking the square of
this equation we write this in the more common way in terms of the
conditional variances,

Varg|a (X)Varg|a (P) > 1. (4-4)

Here the subscript of the variances explicitly states that Bob condi-
tions on Alice. This means Varga (X) is the variance of Bob’s mea-
surement result X(B) given that Alice’s result was X(A). This inequal-
ity is the EPR-Reid criterion as we will show in Section 4.4. If it is
violated the state shows steering from Alice to Bob.

Obviously the conditional variances can be defined vice versa which
would interchange the roles ob Alice and Bob. If the similar constrain
obtained for this situation is violated the state also shows steering
from Bob to Alice. But the question arises whether there are states
that show steering only in one direction [Wisoy]. We will, therefore,
investigate this situation now in more detail for Gaussian states.

4.3 DIRECTIONALITY OF GAUSSIAN STEERING

In the following we will present the description of Gaussian steering
that was developed in this thesis and published in [Hén12]. As we
have seen in Section 4.2, steering is strictly stronger than entangle-
ment and strictly weaker than the violation of a Bell inequality, i.e.
steering does not imply the violation of any Bell inequality, while the
violation of at least one Bell inequality immediately implies steering
in both directions [Wer89] as shown in Fig. 4.1. In contrast to entan-
glement and Bell tests, Alice and Bob have certain roles in the steer-
ing scenario which are not interchangeable. This intrinsic asymmetry
raises the question [Wisoy] whether there are physical states certi-
tying steering only in one direction for arbitrary observables. This
one-way steering would lead to the peculiar situation that two experi-
menters measuring the same observables on their subsystems would
describe the same shared state in qualitatively different ways. For
the Gaussian regime, i.e. for Gaussian state preparation and Gaus-
sian measurements, we can answer this question positively. In a pi-
oneering paper by H.-A.Bachor and co-workers, two-way steering
with an asymmetry in the steering strengths was observed [Wago8].
Their theoretical analysis proposes a possible extension of their setup
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towards observing one-way steering. And in a theoretical work, an
intra-cavity nonlinear coupler was proposed to generate Gaussian
one-way steering [Mil10]. We will now show that the generation of
one-way steering in the Gaussian regime is possible with two-mode
squeezed states.

At least one Bell inequality violated

% Ny

A steers B i= =2 B steers A

AY %

State entangled

Figure 4.1: Implications of inseparability criteria. A violation of at least one
Bell inequality implies steering in both directions. If steering is only present
in one direction, no Bell inequality can be violated. But any certification of
steering implies that the state is entangled. The converse implications are
not true: Entangled states are not necessarily steerable states and steering
does not imply the violation of a Bell inequality. A similar figure was pub-
lished in [Fra12Th].

To analyze the steering scenario, we start with the bipartite sit-
uation in which Alice sends quantum states to Bob. If Bob locally
observes a mixed state, this can be decomposed into convex combi-
nations of purer states. These decompositions can be seen as more
precise descriptions of his system. Indeed, any information that Alice
has about the state will give a decomposition into conditional states
which are purer than Bob’s mixed state. This can be seen in the up-
per panels of Fig. 4.2 for the case of a Gaussian system and quadra-
ture measurements. Two exemplary measurement results X; and P
which Alice obtains on her system are depicted by the green and
blue line. The related conditional states on Bob’s side are shown by
the accordingly colored ellipses. These are states of the form in Equa-
tion (4.3), i.e. the reduced state that Bob receives after Alice obtained
X7 and Py, respectively. Note that we can describe them as squeezed
coherent states (see Section 2.3.3) with a reduced purity due to optical
loss. For all measurement results Alice can obtain, these ellipses will
have the same shape and just their position in phase space will be dif-
ferent. So Alice’s X- and P-results give two different decompositions
of Bob’s system.

The argument by EPR and Schrodinger is now, that measurements
on Alice’s side should not influence Bob’s system. So the decomposi-
tion of Bob’s state should be independent of Alice’s choice of observ-
able. This implies that the conditional decompositions, which depend
on Alice’s choice, should have a common finer-grained decomposi-
tion, which does not depend on Alice’s choice. Such a refinement
should show an X-uncertainty that is at most as large as the one of
Bob’s X-conditional state (green arrow). At the same time, it should
show a P-uncertainty that is at most as large as the one of Bob’s
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Figure 4.2: Gaussian one-way EPR steering visualized in phase space. The
local Wigner functions of a bipartite quantum state are represented by the
gray ellipses as well as by the background clouds. In the upper panels steer-
ing from Alice to Bob is shown. Two exemplary measurement results X
and Py are depicted by the green and blue line. The appertaining condi-
tional states at Bob’s system are depicted by the accordingly colored el-
lipses, with their uncertainties in the respective quadratures given by the
arrows. Any hypothetical common refinement, depicted by the red ellipse
in the inset, may not exceed these uncertainties. Otherwise, it would violate
the Heisenberg Uncertainty Relation, shown in black. In the lower panels a
non-steering situation from Bob to Alice is shown. In this case a common
refinement is possible, i.e. the uncertainty relation is not violated.

P-conditional state (blue arrow). We have depicted this hypothetical
state in the inset as a red ellipse. But this state would clearly vio-
late the Heisenberg uncertainty relation, depicted by the black dotted
ellipse, and is therefore forbidden within quantum mechanics.

The absence of a common refinement leads to the conclusion that
Alice’s choice of observable somehow changes the states of Bob’s sys-
tem, which Schrodinger called steering. More formally, we define a
bipartite state to be steerable with respect to Alice’s observables, if
the resulting conditional state decompositions of Bob’s state do not
allow a common refinement. We say that the state is steerable from
Alice to Bob, if there are some observables for which it is steerable.
This description of steering is close to Schrodinger’s original presen-
tation and is equivalent to the definition based on the existence of
certain classical models as given in Section 4.2.3.

The converse scenario is shown in the lower panels of Fig. 4.2 for
the same quantum state as in the upper panels. The two measurement
results obtained by Bob give related conditional states on Alice’s side
and permit two different decompositions. But this time these condi-
tional decompositions do have a common refinement that does not vi-
olate the uncertainty relation. So, in terms of Schrodinger, Bob’s mea-
surements do not steer Alice’s system, as an underlying description
with pure states is possible. Therefore, the state analyzed in Fig. 4.2
shows one-way steering. In Section 5.2 we will show that such a state
can actually be experimentally generated. The criteria to certify one-
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way steering are given in Equation (4.7) and (4.8) and will be derived
in the following.

4.4 TWO-MODE SQUEEZED STATES AND THE EPR-REID CRITE-
RION

Since we consider the Gaussian regime, our vivid description of steer-
ing is equivalent to the desciption by Reid [Rei89]. Her definition is
based on Heisenberg Uncertainty Relations for conditional measure-
ments of the amplitude and phase quadrature X and P of light fields
which give a constraint for a state to show steering, as shown in Sec-
tion 4.2.3. Reid originally formulated steering as an information the-
oretical task for Alice to infer Bobs measurement result based on her
own result. As for the vacuum states under consideration the expec-
tation values vanish, a good estimation for Alice is to multiply her X
value by some real factor g and her P value by some factor h. With
this we can define the inferred variances

Varine(Xg) := Var(Xg +g-Xa),

Vary(Pg) := Var(Pg + h - Pa). (4-5)

By choosing the factor g and h appropriately Alice can minimize
these variances. Now Reid showed that steering from Alice to Bob is
present if the product of these optimally inferred variances violates
the uncertainty relation for Xg and Pg, i.e. the EPR-Reid criterion that
has to be violated reads

Varinf,min(XB ) : Varinf,min (PB ) > 1.

A violation of this inequality is exactly what is shown in the upper
inset of Fig. 4.2 where the red ellipse is smaller than the black. Con-
versely, Bob can try to infer Alice’s measurement result which give a
similar criterion

Varinf,min(XA) : Varinf,min(PA) Z 1.

If this is violated steering from Bob to Alice is certified.

Now Wiseman and co-workers showed that the inferred variances
have a lower bound given by the conditional variances [Wiso7, Cacog].
Hence, the conditioning of Bob’s measurements on Alice’s gives the
minimal variance for the inference Alice performs and vice versa.
With this we end up precisely with the multiplicative steering con-
dition from Equation (4.4). Although in general the conditional vari-
ances might not be accessible in an experiment for the case of two-
mode squeezed states we can explicitly give them in terms of the
covariance matrix, as the latter fully describes the state.
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A two-mode squeezed state is generally produced by superimpos-
ing two orthogonally squeezed states at a 50:50 beam splitter. Assum-
ing identical squeezing factors for both input states and a perfect
alignment of the squeezing angles with the amplitude and the phase
quadrature, respectively, the covariance matrix of such a state reads

cosh 2r 0 sinh 2r 0

0 cosh 2r 0 —sinh 2r
Y=1 . : (4.6)
sinh 2r 0 cosh 2r 0

0 —sinh 2r 0 cosh 2r

Let us for a moment forget about the actual values of the entries
and just observe that the matrix contains a lot of zeros. Therefore, its
inverse is easy to determine,

(X3) (XaXs)
-1 _ o <%> (;\1 _U%fB)
B
0 _<]3%)\\f8> 0 %ﬁ]ﬁ
with
A= (XR)(X§) — (XaXs)?,
A2 = (PR)(PE) — (PaPy)?

From this we can calculate the probability density of the state. For
simplicity we will restrict to the amplitude quadratures, the calcula-
tion for the phase quadratures goes analogously. We can do so, be-
cause the X- and P-measurements are uncorrelated and the descrip-
tion can be split up. The Gaussian distribution we find is

1

W(XA,XB) = ﬁ exp

1 5 N .
[ (R8P~ 2%k XaXs + (R3]

To get the conditional density wg|a (Xg) we have to divide this by the
marginal distribution for Alice (compare Section 2.4.2),

%) 1 XZ
wa(Xa) —J w(Xa, Xp)dXg = ———=exp [—f;
e 27(X2) 2(XA)
With this we find
w(Xa, Xg)
w Xg) = —— 227
B|A (XB) or D)

~ A A 2
1 (XA) [ (XaXs)
= ——=eX — — = Xa +Xp .
T T { o\ R
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By comparing the conditional density with the definition of a Gaus-
sian distribution in Equation (2.40) we see that the mean and the
standard deviation are

XaX
:<AB>X

\/X >

Taking the square of the standard deviation and turning back to our
previous notation we get the conditional variance (the variance of the
conditional density) for Bob’s amplitude measurements,

(Cov(Xa,Xg))?

Varg A (Xg) = Var(Xg) —

Var(Xa)
Correspondingly for Pg we get
1 (P3) (_(PaPo) ’
wgia(PB) = ﬁexp T, (— ) PA+PB> ,

and

(Cov(Pa, Pp))?
Var(Pa)

Varg|a (Pg) = Var(Pg) —

Furthermore, the conversely conditioned variances are simply given
by interchanging all A and B in the equations.

To find the optimally inferred variances from Equation (4.5) we
can differentiate them by g and h, respectively, and find that they
are minimized precisely by the conditional variances. The conditional
variance product can be given in an even simpler fashion, namely in
terms of the symplectic invariants of the covariance matrix (compare
Equations (2.44)). The criterion that has to be violated to certify steer-
ability from Alice to Bob then reads [Frai2Th]

I
Varg|a (Xg) - Varg|a (Pg) = f >1, (4.7)

and correspondingly for steerability from Bob to Alice

Iy
Varp g (Xa) - Varp g (Pa) = L > 1. (4.8)
Since the symplectic invariants are the determinants and sub-determi-
nants of the covariance matrix and as these are inversely connected
to the purity of the described system or subsystem, we can interpret
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the violation of these criteria as the statement that the subsystem of
Alice and Bob, respectively, is less pure than the complete state.

Finally, we can plug in the values from the covariance matrix in
Equation (4.6) and find

sinh? 2r
V. Xg) - V. Pg) = h2r— —————
arg|a (Xg) - Varg|a (Pg) (COS T COSth)

1
cosh? 2r

= Varp|g(Xa) - Varag(Pa)

Hence, a perfect two mode squeezed state shows steering with equal
strength in both directions for any non-zero squeezing.

Now we can go away from the idealized experimental scenario and
change the parameters. For example in the experiment we will nor-
mally not have identical squeezing from both sources, so we have to
introduce a second, independent squeezing factor. These two squeez-
ing factors can be very different and the state will still show two-
way steering. In fact we can even go to the extreme case and set one
squeezing factor to 0, as we will do in the experiments in Chapter 5.
Furthermore, the detection efficiencies of Alice and Bob will never
be 1. Therefore, our analysis should include individual optical loss
for both modes. Note that optical loss before the superposition at the
beam splitter acts as symmetric loss on both modes, i.e. we do not
have to model it individually but just include it in both detection ef-
ficiencies. A general derivation of the covariance matrix as well as of
the left-hand sides of the EPR-Reid criteria is given in Appendix A.2,
here we will just give some results for specific scenarios. A detailed
description of the construction of covariance matrices can be found
in [Duh15Th].

An exemplary covariance matrix under experimental conditions
could look like

21.84 0 21.65 0

0 2551 0 —2592
Y= : (4.9)
2165 0 2166 O

0 =2592 0 26.54

The experimental parameters are approximately squeezing factors
of 2.02 and 1.93, respectively, an optical loss of 9.5% for Alice and
8% for Bob and a beam splitter reflectivity of 0.506. This matrix can
be reconstructed from measurements on a two-mode squeezed state
following the protocol in Section 3.5. A summary of such measure-
ments is shown as an example in the phase space plots in Figure 4.3.
The four plots depict the correlation block of the covariance matrix.
The correlation in the X-quadrature and the anti-correlation in the P-
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quadrature are clearly visible in the upper left and the lower right,
respectively. Roughly speaking the value of the covariance is deter-
mined by the difference of the semi-major and the semi-minor axis
of the ellipses. For comparison a vacuum state is shown in black.
The two plots in the upper right and lower left do not show any
correlation, as the distribution is symmetric in all quadratures. They
just show parametrically amplified vacuum noise. All distribution are
Gaussian, as we would expect in comparison with Equation (2.41).

PBob

Alice

XBob
PBob

P P

Alice Alice

Figure 4.3: Quadrature correlations of a two-mode squeezed state. The cor-
relations in the X-quadrature and the anti-correlation in the P-quadrature
are visible in the two plots in the upper left and the lower right. The other
two plots show the uncorrelatedness of the orthogonal quadratures. A vac-
uum state is shown in black as reference.

If we calculate the Reid criteria from this covariance matrix, we find

1—4 =0.0448 <« 1,
1
1—4 =0.0434 <« 1,
I

and see that the state significantly shows steering in both directions.
We also see that the criterion values are slightly different for Alice
and Bob. A detailed investigation shows that this is due to the slightly
asymmetric optical loss.

To see the direct connection between a one-sided optical loss and
the steerability for the two parties, let as go back to a setting of equal
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squeezing factors and a perfect 50:50 beam splitter. Furthermore, we
assume Alice to have 100% detection efficiency and just introduce a
variable loss € on Bob’s side. Then the covariance matrix reads

c 0 V1—¢s 0

0 c 0 —v1—e¢s
V1—c¢s 0 (1—¢)c+e 0

0 —/1T—¢s 0 (1—¢)c+e

with

¢ = cosh2r,

s = sinh 2r.

We see that the optical loss on Bob’s mode will only change 14 and I,
but not I;. Therefore, the left hand sides of the two steering criteria
develop differently for increasing loss,

Iy 1+4e sinh? r + 4¢2 sinh* r

I, cosh? 2r
Iy 1+ 4esinh? r +4e? sinh* r

E  cosh? 2r — 4¢ sinh? r cosh 2r +4e2sinh*r

4

The interesting question is now at which optical loss the criteria are
no longer violated. By solving the inequalities for ¢ we find

cosh 2r — 1
> 5 =1
2sinh” v
as the threshold for no steering from Alice to Bob. Hence, Alice will
only lose her steerability when the loss on Bob’s mode approaches

unity and he obtains a pure vacuum. On the other hand, the threshold
for no steering from Bob to Alice is found to be

e> sinh? 2r 1
~ 4sinh?r(1+cosh2r) 2

We see that only 50% optical loss on Bob’s mode is required till he
loses his steerability. Therefore, for ¢ € [0.5,1) the state shows steering
from Alice to Bob but no steering from Bob to Alice. This is precisely
what we call a one-way steerable state. Note that the thresholds for ¢
are completely independent of the squeezing factors as long as r > 0.
For r — 0 the equations for the thresholds are no longer defined but
obviously in this case no threshold can be defined, as there is anyway
no steering.

In conclusion we have seen that two-mode squeezed states show
EPR steering and that we can verify this by a violation of the Reid
criteria. Thereby, the squeezing factor determines the strength of the
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violation but not whether the criteria are violated at all (except for
the trivial case of r = 0). Furthermore, we have found that asymmet-
ric optical loss will result in asymmetric violations of the criteria for
the different directions. We can find settings where actually one cri-
terion is violated while the other is not. In the next chapter we will
present an experimental implementation of these findings and show
that Gaussian one-way steering can be observed by homodyne mea-
surements on specifically designed two-mode squeezed states.
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DEMONSTRATION OF ONE-WAY
EINSTEIN-PODOLSKY-ROSEN STEERING

In Chapter 4 we have seen that certain Gaussian states show the effect
of one-way steering. In this chapter we will present an experimental
realization of these states. To this end two-mode squeezed states were
generated which generally are two-way steerable states as long as the
detection efficiencies of both parties are sufficiently high. Therefore,
one of the entangled modes (say Bob’s mode) had to be decohered
via a Gaussian channel, thereby lowering Bob’s effective detection ef-
ficiency of the original entanglement, to generate the specific state
depicted in Figure 4.2. The amount of decoherence had to be con-
trollable, as it had to be large enough to forbid steering from Bob
to Alice but small enough to still allow steering from Alice to Bob.
The presence of steering was verified by the EPR-Reid criteria from
Equations (4.7) and (4.8) and matched the theoretical results.

5.1 EXPERIMENTAL PRELIMINARIES

Before going into the details of the experiments we have to summa-
rize some of the experimental techniques used for the implementa-
tion. As all experiments in this thesis required continuous-wave (cw)
non-classical states carrying continuous variable (CV) entanglement
the generation of squeezing and two-mode squeezing was a crucial
part common to all experiments.

5.1.1 Generation of Squeezed States

Squeezed states are normally generated by parametric down-conver-
sion in a second order non-linear medium (x (%) # 0). The medium is
pumped with a strong light field at the second harmonic frequency. A
schematic of the process is shown in Figure (5.1). It can be understood
as one photon of the pump frequency w, exciting the parametric os-
cillator. This can spontaneously relax by emitting two photons of the
fundamental frequency w = wy, /2. More precisely the two photons
do not necessarily have to be at the exact fundamental frequency but
can have an offset to an upper and lower sideband, where energy
conservation requires w, + w_ = wy. As we have seen in section 3.4
these two photons are entangled in the frequency domain and yield
exactly a squeezed state at the respective sideband frequency. The
strength of the squeezing (i.e. the noise reduction below vacuum) de-
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pends on the power in the pump field. We will see a direct connection
in Equation (5.1).

1550nm
775nm

1550nm

non-linear crystal

Figure 5.1: Energy levels of parametric down-conversion. The photons of
the pump field (775nm) excite the parametric oscillator in the non-linear
crystal. In the relaxation a spontaneous emission of two photons of the
fundamental frequency (1550nm) can happen. This output field is then
squeezed due to the correlations between the two photons.

We can describe the process of non-degenerate parametric down
conversion by the interaction Hamiltonian [Gero8],

A

Hine = ihx? (a,a 67 —alal5).

Here a4 are the mode operators of the upper and lower sideband and
b of the pump field. Now we can assume that the pump is a strong
coherent excitation such that its depletion by the process is negligible.
Then we can approximate b by a complex number B. Using this and
the definition of the unitary time evolution from Section 2.1.2, we find

A

uint(t) = exp [_i]:lintt/h]
— exp [B*X(z)td+d_ - Bx(z)tﬁlﬁq ,

where we have exploited the previously defined frequency relations.
By associating ¢ = 2fx(?)t we see that U, becomes the squeezing op-
erator from Equation 2.28. Thereby, we have shown that parametric
down conversion produces squeezing. Recalling ¢ = re'® we further-
more see that the amplitude of the pump field 3| together with the
non-linearity x(?) and the interaction time t defines the squeezing
factor r, and that the argument of {3 (i.e. the relative phase of the
pump field) defines the squeezing angle ¢. Hence, by choosing {3 the
squeezing parameters of the generated state can be controlled.

So far we just have a non-linear medium emitting a squeezed state
at a random sideband frequency. To achieve squeezing in a specific
spatial and temporal mode we have to put the medium in a cavity.
A schematic of the resonators used in this thesis is shown in Fig-
ure (5.2). The cavity is formed on the one end by the curved end face
of the medium, in this case crystalline periodically-poled potassium
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titanyl phosphate (PPKTP). The spherical polishing has a radius of
curvature (roc) of 12.5mm and a high reflectivity (HR) coating for
775nm as well as 1550 nm with a transmission below 300 ppm. The
other end of the cavity is formed by an external mirror mounted
on a piezo-electric transducer (PZT) to actuate the length of the cav-
ity. This mirror is meniscus shaped with an inner roc of 25 mm and
90% reflectivity coating for 1550 nm. For 775nm it is anti-reflection
(AR) coated, so the pump field just takes one round trip in the cavity
without getting enhanced. The mirror reflectivities together with the
crystal length and the air gap between crystal and coupling mirror
define the properties of the resonator for the fundamental frequency,
yielding approximately 60 MHz linewidth and a free spectral range
(FSR) of about 3.8 GHz. To minimize the intra-cavity damping the
second end face of the crystal is AR coated for both wavelengths. Fur-
thermore, it is plane, so that the waist of the intra-cavity field should
be in close proximity to it to avoid diffraction of the mode shape.
The waist size and position of the cavity can be tuned by the air gap
between crystal and meniscus. Stable configurations are found ap-
proximately between 21 mm and 25 mm. Fine tuning of the air gap in
the sub tenth millimeter regime can dramatically enhance the conver-
sion efficiency. One reason is that by lengthening the cavity the waist
gets smaller and a higher power density in the non-linear medium
is achieved. The other reason is mode degeneracy of the ¥y mode
and higher order transversal modes, that can counteract the desired
process. Finding a good spot without any degeneracies is actually
a matter of luck, as a full mode-spectral description of the cavity is
hardly possible. In this experiment a good air gap was found slightly
below 24 mm yielding a waist of 48.5 um just inside the crystal at the

plane end face.

I l AR HR

== 1550nm r=90% 1550nm
775nm AR 775nm

Figure 5.2: Schematic of a squeezed-light source. A strong pump field
(775nm) is coupled into the non-linear crystal (PPKTP). Inside the crystal a
squeezed state (1550 nm) is generated. The rear side of the crystal is curved
and high reflective (HR) coated while the plane side is anti-reflection (AR)
coated for both wavelengths each. The meniscus shaped coupling mirror
that closes the resonator has a reflectivity of 0% for the fundamental wave-
length. It is AR coated for the pump field such that it just takes one round
trip through the crystal.
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In the case of the described squeezed light source the achieved
reduction of the variance compared to the vacuum can be described
by the following formula [Tkno7],

44/P/Pin
(1 —/P/Pen)2 +4K(Q)2

Here, 1 is the detection efficiency of the setup and vy = T/(T+ L) is
the escape efficiency of the cavity, with T the transmissivity of the cou-
pling mirror and L the intra-cavity loss. K(Q) = 2mQ)/k is the normal-
ized sideband frequency at which we measure, where k = c¢(T +1L)/1
is the cavity decay rate with c the speed of light in vacuum and 1 the
optical cavity round trip length. Note that the speed of light varies be-
tween the air gap and the crystal. Therefore, the crystal length has to
be multiplied by its index of refraction before calculating 1. The most
important thing is the dependence on the pump power P. This power
has to be normalized by the so-called threshold power Pyy,. This is the
light power at which the medium starts to lase for itself, i.e. the con-
version from the pump to the fundamental field gets strong enough
that a coherent state at the fundamental frequency emerges and in-
duced emission starts. The threshold is, therefore, strongly depen-
dent on the medium parameters, the intra-cavity loss and the mode
matching. For the squeezed light source used for the experiments in
this chapter a threshold power of 440 mW was achieved.

Finally, the conversion efficiency is also tuned by the phase match-
ing of the fundamental and the second harmonic frequency. As these
normally experience a different index of refraction they tend to get
out of phase, thereby decreasing the desired conversion effect. In
bulk media as for example Mg doped LiNbO3 the birefringence can
be used to find a temperature where the effect cancels out over the
length of the crystal. In this thesis PPKTP was used, where the pe-
riodic poling changes the sign of the second order non-linearity ev-
ery time the phase shift has reached 7. That way an effective phase
matching of 67% can optimally be achieved. The disadvantage of a
limited optimal phase matching is compensated by a higher non-
linearity of KTP compared to LiNbO3, yielding a 2.5 times higher
effective non-linearity. Furthermore, the phase matching is less sensi-
tive to temperature fluctuation, making it easier to keep the crystal at
the right working point. In this work an optimal phase matching was
achieved at about 60°C. At this optimal working point a squeezing
of 10dB below shot noise was measured. A series of squeezing mea-
surements for varying pump power is shown in Figure 5.3 together
with the function from Equation (5.1) with the following parameters:
l=66.6mm, T =0.1, L =0.056, Q =5MHz and ny = 0.91.

The pump field for the squeezed light source was produced by
second harmonic generation (SHG). This process can be seen as an
inversion of the down-conversion. More specifically, it is parametric

Varasqz,sqz =1+ ny (51)
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Figure 5.3: Measurement of squeezing for varying pump power. The pump
power was varied from 12.5mW to 342 mW and each time the squeezed and
anti-squeezed noise was measured and normalized to the vacuum noise
level. The theoretical curve is the function from Equation (5.1), the parame-
ters are given in the text.

up-conversion above threshold. Therefore, the setup for SHG is iden-
tical to the squeezed-light source and the cavity has the same param-
eters. The only difference is that it is pumped with a strong coherent
field at the fundamental frequency. By tuning the temperature to ac-
curate phase matching of the periodic poling a maximum conversion
efficiency of 84% could be achieved at the maximum pump power of
570 mW of 1550 nm light.

5.1.2 Generation of Two-Mode Squeezed States

The easiest way to generate cw two-mode squeezing is so-called v-
class entanglement. By superimposing a squeezed state with a vacuum
at a 50:50 beam splitter, i.e. blocking the second input port of the
beam splitter, two entangled output modes are generated [DGu1oTh].
A schematic of this experimental setup is shown in Figure 5.4. The
advantage of this method is, apart from needing less resources, that
no mode matching at the beam splitter has to be found, since the vac-
uum is matching in any possible mode. This comes with the draw-
back of a limitation in the achievable non-classicality. For example for
an amplitude-squeezed state the correlations in the phase quadrature
of the two output fields are at most as good as twice the vacuum noise.
On the other hand, in the amplitude quadrature the correlations are
only limited by the input squeezing and can in principle be infinitely
strong. Now depending on the entanglement criterion under investi-
gation, different situations can arise in comparison to a setup using
two squeezed-light sources, also known as s-class entanglement. For
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Figure 5.4: Schematic of the experimental setup for the generation of v-
class entanglement. The 1550 nm laser field is mode filters in a ring cavity
(MC 1550). Most of the power is then coupled into the second harmonic gen-
eration (SHG), the rest is used for the control beam and the local oscillator
(LO). The frequency doubled field is separated from the fundamental field
at a dichroic beam splitter (DBS) and also mode filtered (MC 775). Via a
phase shifter (PS) and another DBS it is coupled into the optical parametric
amplifier (OPA) where a squeezed state is generated in the crystal (PPKTP).
The squeezed field is superimposed with vacuum at a 50:50 beam splitter.
The two output modes are then entangled.

the Duan criterion there will be entanglement, no matter how much
loss is present in the measurement. But the criterion value will al-
ways be limited to —3 dB compared to the vacuum which rules out
the application for quantum teleportation protocols [Fusg8, Bowo3b].
For the EPR-Reid criterion (see Section (4.4)) on the other hand the
criterion value is not limited at all and can approach zero for infinite
squeezing. But it is strongly dependent on the optical loss and for
an overall detection efficiency smaller than 2/3 no EPR violation is
possible for v-class states. A summary of these statements is plotted
in Figure 5.5.

The strongest possible entanglement for v-class states is, therefore,
the EPR-Reid violation. The remarkable result is that for 0 optical
loss no fundamental limit to the entanglement strength is present.
This makes them useful to demonstrate fundamental quantum optical
properties due to their lower resource requirement. In the presented
setup a significant violation could be demonstrated with 0.39+0.01 <
1 [Ebe11]. Furthermore, even an applicability to quantum key dis-
tribution could theoretically be shown, although the achievable key
rates are significantly smaller than for s-class entanglement [Ebe13a,
Ebe13Th]. In this thesis we used the v-class states to demonstrate the
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Figure 5.5: Comparison of the EPR-Reid criterion for s-class and v-class
entanglement. The EPR-Reid criterion from Equation (4.7) is plotted versus
the squeezing factor. The violation of a s-class entangled state (full) is al-
ways stronger than for a v-class state (dashed). The violation strength also
depends on the optical loss. With no loss (blue) it is more significant than
with 20% symmetric loss for both modes (red). We also see that this loss has
a significantly stronger influence on the v-class state and limits the achiev-
able criterion value to about 0.65 instead of 0.18 for the s-class state.

one-way steering effect (see Sections 4.3 and 4.4 for a theoretical in-
troduction).

5.2 DEMONSTRATION OF ONE-WAY STEERING

The experimental setup for the generation of one-way steering states
was developed in this thesis and published in [Hdn12]. A schematic
of the setup is shown in Fig. 5.6. The 10.2dB squeezed state at 1550
nm was generated by type I parametric down conversion in a half-
monolithic cavity. After the superposition with vacuum on a first bal-
anced beam splitter, output mode B was sent through a half-wave
plate and a polarizing beam splitter. This setup allowed the prepara-
tion of mode B with an adjustable contribution of a second vacuum
mode. The measurements at A and B were performed by balanced
homodyne detection. Both detectors could independently choose the
measured quadrature by adjusting the phase of their local oscillators.
The signals of the homodyne detectors were simultaneously recorded
with a data acquisition system consisting of a mixer and an anti-
aliasing filter for each channel and a data acquisition card in a lab-
oratory computer. The mixers demodulated the signals at 8.3 MHz
sideband frequency. The data acquisition card recorded the resulting
values as a time series on the hard drive of the computer. It had a
data depth of 16Bit and maximum sampling rate of 500 kHz, since
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the two signals had to share one analogue-to-digital converter with
1MHz sampling rate. Following the Nyquist theorem [Nyq28], no
signals at frequencies above half the discretization frequency may be
detected to avoid aliasing. Therefore, from the data depth it was cal-
culated that signals above 250 kHz had to be suppressed by 84 dB.
This was realized by two identical ninth order Bessel lowpass filters
at 35kHz as anti-aliasing filters for the two channels.

/ State preparation \
R

Figure 5.6: Schematic of the experimental setup for the demonstration of
one-way steering. A squeezed-light field at 1550 nm, produced by a squeez-
ing cavity (SC), is superimposed at a balanced beam splitter with a vacuum
mode. A variable beam splitter (vBS) is implemented in one output mode to
change the contribution of a second vacuum mode. Measurements are per-
formed by balanced homodyne detection where the measured quadrature
is chosen by the phase @ o of the local oscillator (LO).

The setup can mathematically be described by taking the initial
covariance matrix of a squeezed state and successively applying the
symplectic beam splitter formalism from Equation (3.3) for the entan-
glement beam splitter, the detection efficiencies of Alice and Bob and
the contribution of the second vacuum mode. A full derivation of the
analytic description can be found in Appendix A.2. Here, we will just
give the result for a v-class entangled state with 16.3 dB initial pure
squeezing and detection efficiencies of N5 = 0.884 and ng = 0.937 for
Alice and Bob, respectively. With these values the conditional vari-
ance product from the left hand side of Equation (4.7), which certifies
steering from Alice to Bob if smaller than one, reads

%4 =0.391 4+ 1.419¢ —0.81¢2, (5-2)
1
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where ¢ is the contribution of the second vacuum mode, i.e. the reflec-
tivity of the second beam splitter. Note, that we have to replace Bob’s
optical loss by 1 —np + eng to correctly model the influence of the
second beam splitter. The function for the converse steering direction
from Equation (4.8) is given by

Iy 4.34+ 15766 —8.99¢ )
L 11.20—121e—8.99¢2° 53

Figure 5.7 shows the result of this experiment. The conditional vari-
ance products from inequalities (4.7) and (4.8) for Alice’s ability to
steer Bob (lower line, red crosses) and Bob’s ability to steer Alice
(upper line, blue crosses) are plotted against the contribution of the
second vacuum mode. For values between 0% and 95% a partial to-
mographic measurement was performed to reconstruct the relevant
entries of the covariance matrix (see Section 3.5). The uncertainties of
the contributed vacuum result from the adjustment accuracy of the
half-wave plate. In order to determine the means and standard devi-
ations of the conditional variance products a bootstrapping method
was used [DGu11]. One million data points were randomly chosen
out of the set of 5-10°. This was repeated 10% times. From these the
two conditional variance products were calculated for each data set.
A histogram of these values for 50% vacuum contribution is shown
in the small boxes in Fig. 5.7. This is the setting where the observed
one-way steering effect becomes most obvious. For Alice (left box)
the mean of 0.908 is 31 standard deviations below 1 whereas for Bob
(right box) the mean of 1.206 is 53 standard deviations above 1. Fur-
thermore, the Gaussianity of the states was verified using a Q-Q-plot
method as in [DGu11] to make sure that the covariance matrix is an
exhaustive description of the state (compare Section 2.4.2).

The two solid lines in Fig. 5.7 are the theory curves from Equa-
tion (5.2) and (5.3), respectively. For a vacuum contribution smaller
than 39%, both Alice and Bob can steer the respective remote sub-
system, whereas for a contribution larger than 70% neither of them
can. These values arise from the overall optical loss in the setup and
would for a perfectly lossless experiment be 50% and 100%, respec-
tively. One-way steering is observed precisely between these two val-
ues in the white region in Fig. 5.7.

5.3 CONNECTION TO OTHER ENTANGLEMENT APPLICATIONS
5.3.1 Tripartite and Multipartite Steering

While for the presented experiment one of the output modes of the
variable beam splitter was dumped, a tripartite situation arises when

instead a third party, Charlie, receives this mode. For symmetry rea-
sons Alice would then also be able to steer Charlie, in fact, simulta-
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Figure 5.7: Certification of one-way steering. Shown are measurement re-
sults of the conditional variance products according to the criteria (4.7) and
(4.8) versus an increasing contribution of the second vacuum mode in mode
B. One-way steering is observed if the value for one steering direction is
below unity, whereas the value for the other steering direction is above the
unity benchmark. This is fulfilled in the white region and most significantly
at a vacuum contribution of 50%, as shown by the measurement histograms.

neously to Bob. We can further say, that neither Bob can steer Charlie
nor conversely since the input of the second beam splitter already
has a vacuum mode contribution of 50% due to the first beam splitter.
Steering in the presence of just one squeezed mode is only possible
for vacuum contributions less than 33% [Ebe11].

The situation can become arbitrarily complex by introducing more
beam splitters, hence, generating more entangled modes. Consider
a four-partite scenario with Alice, Bob, Charlie and Domenica. Now
steering can not only be investigated for each individual combina-
tion but also for composite parties. For example we could summarize
the measurements of Alice and Bob by adding them with an appro-
priate scaling factor and try to steer the measurements of Charlie
or Domenica or even the composite of Charlie and Domenica. De-
pending on the respective optical detection efficiency there will arise
many different situations showing all possible combinations of two-
way, one-way and “no-way” steering. In a recent publication an eight-
partite network was realized [Arm15] with variable beam splitters
dividing the modes (which is equivalent to the situation of adding
optical loss [Wag14]). The steering properties were mapped for the
space of reflectivities and could be shown to be in accordance with
the theoretical description. To simplify, we can understand these re-
sults in the following way: Whether a party (or a composite of parties)
can or cannot steer another party depends on the amount of the initial
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squeezed state the respective parties obtain after a network of beam
splitters. If the amount is to small the steering inequality can not be
violated.

5.3.2 Entanglement Distribution by Separable States

The question of whether entanglement can be distributed between
two parties by only sending separable modes from one to the other
was answered positively in [Vol13]. As we have seen before, a two-
mode squeezed state can not be dis-entangled (i.e. made separable)
just by adding optical loss. Therefore, to the initial v-class state in the
experiment thermal noise was added in both quadratures. After dis-
tributing these separable auxiliary modes to the receiving party the
noise could be removed in a simple beam splitter operation and en-
tanglement was regained if the phase relation between the auxiliaries
was chosen correctly. In this thesis we have only investigated the in-
fluence of optical loss to steering states but the application of thermal
noise is straightforward. And a detailed analysis showed that to make
the protocol work the initial entangled state must not show two-way
steering [Fra12Th]. It can at most be a one-way steerable state from
the sender to the receiver. The reason is that a state showing steering
from the receiver to the sender can never be dis-entangled by adding
Gaussian noise. Hence, the border between one-way and two-way
steering also is a boundary for the applicability of the EDS protocol.

5.3.3 Data Reconciliation in Quantum Key Distribution

There is a heuristic connection of one-way steering to the reconcil-
iation procedure in quantum key distribution (QKD) protocols (see
Chapter 6). In this classical post-processing step the communicating
parties exchange data to correct for errors in their bit strings. Now
there are in priciple two possibilities: Either Alice gives information
on her measurement results to Bob (direct reconciliation) or Bob gives
information to Alice (reverse reconciliation). In each case the receiving
party will rescale its data according to the occuring variances. Only
if the resulting average distance between the data strings is smaller
than a predefined threshold, a positive key rate is achieved (see Sec-
tion 6.2.1). Therefore, the algorithm is similar to the calculation of
the inferred variances in the EPR-Reid criterion in Section 4.4 and
the scaling factors correspond to parameters g and h. This is then a
weaker version of the EPR-Reid criterion based on conditional vari-
ances and successful direct reconciliation would correspond to steer-
ing from Bob to Alice, while successful reverse reconciliation would
correspond to steering from Alice to Bob.

Now in a perfect setup the direct reconciliation will only succeed
up to 50% transmission loss, whereas the key rate for reverse recon-
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ciliation only drops to zero in the limit of 100% loss [Grooz]. These
boundaries coincide precisely with the boundaries for one-way and
two-way steering in an otherwise perfectly loss-free setup. This co-
incidence is of course not a proof but it just gives a hint that there
might be a connection. The link between steering and QKD scenarios
is subject to ongoing theoretical investigations. We will make further
comments on this topic in the discussion of the QKD results in Sec-
tion 6.2.3.



APPLICATION OF TWO-MODE SQUEEZED STATES
FOR QUANTUM KEY DISTRIBUTION

6.1 A BRIEF INTRODUCTION TO QKD

The development of the computer and efficient communication pro-
tocols using radio frequencies laid the foundation for our modern
information society. Where the original inventions were designed to
fulfill very specific tasks, their universal applicability became obvi-
ous very soon. The 21st century will be the age of information, ac-
cessible and publishable by anyone, anywhere and anytime, which
will most likely fundamentally change our way of living and think-
ing. Apart from economical, sociological and ethical challenges, the
networking of our world demands the everyday application of cryp-
tography to keep sensitive information secret during communication.
A security breach of data transfers can lead to serious threats to in-
dividuals as well as to companies or even whole societies. And the
risk will become even higher when our machines will start exchang-
ing data based on their logical (and at a certain point maybe even
intelligent) programming without any human control. This will ren-
der us completely helpless to control what information is exposed to
eavesdropping threats.

These circumstances gave the field of cryptography a significant
boost throughout the last decades. A variety of encryption protocols
were developed, based on fundamental mathematical research and
exploiting the fact that even computers fail at solving problems with
high complexity in a reasonable time. In the current day we can as-
sume protocols like RSA or AES [Rivy8, Deaoz] in their latest versions
to be secure against cryptoanalytic attacks. To the best knowledge of
the author all security breaches that were reported in the last years
(be it by hackers or by intelligence agencies) were caused by flaws
or back doors in the implementation or by incorrect use of the tech-
niques and protocols.

Nevertheless, the fact that our communication security is based on
computational hardness to break the encryption is a severe drawback,
as this will not be save in the future. The processing speed of CPUs
increases every year and the development of the quantum computer
will open a door to algorithms that can overcome the complexity of
classical computational problems. On the one hand, this will reduce
the amount of required time to break encryptions so significantly that
we can not assume our current cryptography to be secure anymore.
On the other hand, it will also give the possibility to retroactively gain
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access to encrypted messages, a severe threat to all current informa-
tions that are not outdated in a few years.

A solution to this problem could be to use the one-time pad en-
cryption that is mathematically provable absolutely secure [Ver26].
This protocol uses a symmetric key for encryption with the follow-
ing properties: It is as long as the message; It is independent and
identically distributed over the key alphabet (i.e. it is truly random);
It is only known to the two communicating parties; It is used only
once. The security of this protocol is obvious. A truly random key
that contains no repetitions generates a cipher text with a uniform
and truly random distribution of symbols. Such a text cannot be at-
tacked in a meaningful cryptoanalytic way. However, the drawback
of the one-time pad protocol is, apart from the technical problem of
generating true randomness, the absolutely secure (i.e. secret and cor-
rect) distribution of the key to the communicating parties. For this
reason the one-time pad never gained significance in cryptography
and is nowadays only used in circumstances where the demand of
secrecy justifies the effort of using pre-distributed code books.

This is where quantum key distribution (QKD) comes into play.
The distribution of the one-time pad key can be made secure based
on quantum physical principles [Giso2, Scaoo] like the no-cloning the-
orem for quantum states [Die82, Woo82]. This also overcomes the
problem of retroactive access even if a specific QKD protocol should
be compromised by future technologies (see for example References
[Lydio] and [Jor15] for successful attacks on single photon based sys-
tems). As any quantum state is altered or annihilated during the re-
quired measurement process for the key generation, a security breach
of a specific protocol would not compromise the keys that were gen-
erated with it previously. The resource for the key would simply no
longer be accessible and only the protocol would be outdated.

The idea of state-of-the-art quantum key distribution is based on
the fact that two non-commuting observables cannot be measured
with arbitrary precision simultaneously, which manifests itself in the
Heisenberg Uncertainty Principle. Suppose now two parties, Alice
and Bob, each have a measurement device that can measure two such
observables and that allows for each individual measurement an in-
dependent random choice of which observable is measured. Further-
more, suppose a (two-mode) quantum state is distributed to the two
parties that exhibits some sort of correlation if both measure the same
observable. Then Alice and Bob can generate a shared secret by per-
forming a series of such randomly chosen measurements and after-
wards excluding all results where they measured different observ-
ables (on average 50%) by communicating their measurement choices
but not their results. By comparing a random subset of their measure-
ment results they can verify not only the correctness but also the se-
crecy of their protocol. Assuming the measured quantum state has to
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obey quantum mechanics, they can calculate the amount of informa-
tion that dissipated to the universe (and thereby to a hypothetical and
omnipotent eavesdropper) by comparing it to an entropic uncertainty
relation based on a mathematical proof. Depending on the result of
these calculations they can either exclude the respective amount of
information or, if too much information might have been revealed to
the universe, abort the protocol and start all over. If the protocol is not
aborted they can perform classical post-processing of the data and es-
tablish a completely random, secret and symmetric key. This can be
used in further cryptographic protocols and ensures absolute security
based on quantum physical principles and mathematical proofs.

6.1.1 Classification of QKD Schemes

Since the first protocol for QKD by C. Bennet and G. Brassard in 1984
[Ben84] many different systems were proposed and realized using a
variety of quantum observables and channels and numerous mathe-
matical security proofs. These systems can be classified by their tech-
nical implementation as well as by the security they achieve.

The technical implementations of QKD systems can by divided
into four main classes. The first distinction concerns the observables,
whether the measured variables have a discrete or a continuous spec-
trum. Where for the first class a mapping to discrete bits (0s and
1s) is obviously directly delivered by the measurement result, for
the second class an artificial discretization step is required after the
measurements were performed. This has crucial influence on the er-
ror reconciliation in the classical post-processing. In general this part
of the protocol is more demanding for continuous variables. Due to
the continuous distribution, there will always be a finite probability
of a strong mismatch between the measurement results of the two
parties. The second distinction concerns the source of the quantum
states, whether the states are generated by one party and sent to the
other party for measurement (a prepare-and-measure scheme) [Ben84,
Jou13a, Dia15] or whether an entanglement source provides them for
both parties for measurement (an entanglement-based scheme) [Ekeg1,
Bengz2, Acioy, Furi2, Gehis]. The first class of implementations has
the advantage that the preparing party does not have to measure any-
thing but actually generates the raw key and keeps it for post process-
ing. This comes with the drawback that a source of true randomness
is required. True randomness is fairly difficult to prove [Ebe13Th].
The second class provides the required randomness directly out of
the source. For example two-mode squeezed states consist of paramet-
rically amplified vacuum fluctuation that are truly random by their
quantum nature. The disadvantage is that entanglement generation
is in general experimentally more challenging than the generation
of specific states with classical modulators. Furthermore, entangled
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states are more sensitive to transmission loss which can drastically
reduce the achievable key rates in real world applications.

The classification of the security actually is a classification of the as-
sumptions that are made on a potential eavesdropper Eve. The com-
mon assumption for all classes is that Eve has access to all classical
communication between Alice and Bob, that she can measure any-
thing that dissipates from the quantum channel to the environment
with 100% efficiency and that she has unlimited computational power.
Furthermore specific assumptions on the attack power are made. In
the simplest case of individual attacks it is assumed that Eve can not
store the distributed quantum states and has to attack each signal
individually. This simplifies the security analysis as the information
Eve can access can be described directly on the density operator of a
single distributed quantum state. A more sophisticated class are the
collective attacks [Cero1, Lodoy, Wee12]. In this case Eve has a quan-
tum memory and can store all distributed signals. This enables here
to wait for Alice and Bob to perform the protocol, to listen to their
classical communication and to use this additional information to col-
lectively attack all signals in an appropriate way which increases her
success probability. Finally there is the class of the most general coher-
ent attacks where we make no assumptions at all that would restrict
Eve’s power of attack [Renog, Furi2, Levi3]. There is no actual de-
scription of what a coherent attack could look like because it would
require technology we have not even thought about to date. Never-
theless, the absolute security aspiration of quantum key distribution
makes it desirable to provide security against any sophisticated attack
whatsoever which is exactly covered by the security against coherent
attacks.

Furthermore, there is the class of device independent (DI) security
which does not necessarily depend on the assumed strength of at-
tack. The idea is to make no assumptions on the devices of Alice and
Bob, the source of the quantum states and the transmission channel
in the security proof by implementation of an adequate scheme. That
way Eve can tamper with the devices without compromising the secu-
rity of the protocol. Schemes providing device independent security
are in general experimentally more demanding. For example, a fully
device independent protocol requires the violation of a Bell inequal-
ity [Acio7]. As we have seen in Chapter 4 a Bell inequality violation
means that a prediction of the measurement results is never possible.
This implies that at no point in the experiment could the measure-
ment statistics have been forged by a classical algorithm. Therefore, a
Bell inequality violation guarantees maximum security, as not one of
the devices in use has to be trusted. Where the experimental violation
of a Bell inequality is difficult, a weaker version can be achieved in
measurement device independent schemes [Brai2, Lo12, Pir15]. Here
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the source has to be trusted but no assumptions on the measurement
devices of Alice and Bob are required.

An important sub-class are one-sided device independent schemes
(1sDI) [Wan13, Wal14]. In this case only the devices of one party do
not appear in the security proof which requires that the statistics of
this party could not have been forged. Since steerable states rule out
the existence of a classical model for one party (see Chapter 4), they
fulfill exactly this requirement and enable security proofs for one-
sided device independence [Tom11, Brci2, Tom13]. We can take the
intuitive understanding that if the state is not steerable from Bob to
Alice and if Bob’s devices are untrusted then Eve could gain full con-
trol of them, since there is a classical model describing Bob’s sub-
system [Frai2Th]. By certifying steering from Bob to Alice this pos-
sibility can be ruled out. The QKD protocol is then secure against
side-channel attacks on Bob’s devices, like attacks on the local os-
cillator [Ma13a, Ma14] or the shot noise calibration [Jou13b, Kun1s],
wavelength attacks on the homodyne beam splitter [Ma13b, Hua13]
or saturation attacks on the electronic circuits in the detectors [Qin13].
In contrast to states violating a Bell inequality, steerable states are sig-
nificantly easier to generate and to certify. Furthermore, they enable
QKD with security against coherent attacks [Furi2] and provide secu-
rity against Trojan-horse attacks on the source [Logg, Jai14]. Therefore,
if the trusted Alice possesses the quantum source and her laboratory
is secured against the outside, the security of such a system is com-
parable to a fully device independent scheme.

Finally, the QKD protocol should provide composable security and
the calculation of the secret key length should include finite-size ef-
fect. The composable security means that the QKD protocol can be
combined with other secure protocols, for example the one-time pad
encryption, and remains secure [Beoos, Renos]. The finite-size effects
emerge, since in any real world implementation only a finite number
of samples will be recorded which reduces the accuracy of the statisti-
cal description [Lev1o, Fur12]. Therefore, the inclusion of these effects
generally reduces the secret key rate significantly and it is said to be
e-secure. Roughly speaking, if ¢ = 10719 then out of 10'° distributed
samples Eve will on average achieve a successful attack on only one
of them.

6.1.2 The Continuous Variable QKD Project at the Leibniz University
Hannover

The aim of the project was to demonstrate the feasibility of entan-
glement based continuous variable quantum key distribution in lo-
cal area fiber networks. To this end a cooperation between theoreti-
cal and experimental physicists at the Leibniz University Hannover
was established within the QUEST cluster of excellence. The theo-
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retical background as well as the mathematical proofs, analyses and
simulations were provided by the Quantum Information group of
R.FE. Werner at the Institute for Theoretical Physics. The experimental
implementations, the development of the necessary technology and
all measurements were performed in the Quantum Interferometry
group of R.Schnabel at the Institute for Gravitational Physics. Fur-
thermore, in the later course of the project a cooperation with the
Austrian Institute of Technologies (AIT) was started, that developed
and contributed the classical post processing software required for
the generation of a usable key. Thus, the project unified the whole
process of the implementation of a QKD system from the first ideas
of a security proof to the final secure bits.

Up to date, four PhD theses have been written in the context of
the project. The first one by F. Furrer contributed the security proof
which demonstrated that security against coherent attacks was pos-
sible with the experimentally feasible parameters [Fur12Th]. The sec-
ond one by T. Franz contributed a general analysis of the QKD tasks
especially in the context of EPR steering [Fra12Th]. The third one by
T. Gehring demonstrated the experimental feasibility of the demands
by the security proof and contributed the first usable key, at that
point with security against collective attacks [Ebe13Th]. The fourth
one by J. Duhme contributed a complete numerical simulation of all
relevant parts of the experimental setup and an efficient post process-
ing algorithm that was developed together with C. Pacher from the
AIT [Duh15Th]. The thesis at hand marks the final step in the project
and contributes the worldwide first usable key with composable se-
curity against coherent attacks generated from entangled continuous
variables. Furthermore, it provides a study on the influence of trans-
mission loss and demonstrates the feasibility of the scheme in local
area fiber networks with up to 5km transmission length. Together
with F. Furrer’s extensions of his security proof it also demonstrates
the one-sided device independence of the implementation and, in
the prospect of reverse reconciliation, the feasibility of transmission
lengths of up to 16 km [Furi4].

6.2 CONTINUOUS VARIABLE QUANTUM KEY DISTRIBUTION WITH
COMPOSABLE AND ONE-SIDED DEVICE INDEPENDENT SECU-
RITY AGAINST COHERENT ATTACKS

In this section we will present the experimental techniques and re-
sults of the entanglement-based QKD system. The results of a study
on possible fiber transmission are presented in Section 6.3. An intro-
duction to Gaussian quantum information theory that lays the foun-
dation of the system can be found in [Frai2Th, Ebe13Th, Duh15Th].
The security proof for the protocol is given in [Furi2] and is based on
entropic uncertainty relations.



6.2 CV-QKD WITH 1SDI SECURITY AGAINST COHERENT ATTACKS

6.2.1 The QKD Protocol

The protocol implemented in this experiment is based on the one
developed in [Furi2] and used in [Ebe13Th]. It only differs in the
formula for the key length, that here also takes imperfections of the
X and P measurements into account, and a slightly different binning
of the measurement space. For completeness and because it is a good
example of a generic QKD protocol, we will present the full protocol
here directly following our publication [Geh15] and complement it
with some explanatory comments.

PRELIMINARIES Alice and Bob use a pre-shared key to authenti-
cate the classical communication channel for post-processing [Stig4].
This can in principle be performed with classical algorithms, as long
as the security can be guaranteed for the time required to execute the
protocol. After a first successful run all future authentication can be
based on a part of the quantum key from a previous run. Further-
more, Alice and Bob negotiate all parameters needed during the pro-
tocol run and Alice performs a shot-noise calibration measurement
by blocking the signal beam input of her homodyne detector.

MEASUREMENT PHASE Alice prepares an entangled state using
her EPR source and sends one of the output modes to Bob along with
a local oscillator beam. The one-sided device independence guaran-
tees that Bob’s local oscillator may be altered by Eve without com-
promising security. Both Alice and Bob choose, randomly and inde-
pendently from each other, a quadrature X or P, which they simulta-
neously measure by homodyne detection of their light field. The ran-
dom number for the choice is generated from a measurement of the
fluctuations of a vacuum field with an additional homodyne detector,
similar to the scheme in [Gab1o]. The outcome of a measurement on
the entangled beams is called a sample. This step is repeated until 2N
samples have been obtained.

SIFTING Alice and Bob announce their measurement bases and dis-
card all samples measured in different quadratures. This leaves them
on average with N samples for the remaining protocol. The aspiration
of security against arbitrary attacks forbids the reconstruction of the
covariance matrix, since this would require strong additional assump-
tions. Therefore, the discarded samples can not be used for channel
estimation like in protocols with security against collective attacks.

DISCRETIZATION The continuous spectrum of the measurement
outcomes is discretized by the analogue-to-digital converter used to
record the measurement (see Section 6.2.2). During the discretization
step, Alice and Bob map the fine-grained discretization of their re-
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maining samples caused by the analogue-to-digital converter to a
coarser one consisting of 24 consecutive bins. In the interval [—a, o
a binning with equal length & is used, which is complemented by
two bins (—oo, —«) and (&, 00). The parameter « is used to include
the finite range of the homodyne detectors into the security proof. If
one of Alice’s measurement’s absolute value exceeds « the protocol
is aborted.

CHANNEL PARAMETER ESTIMATION The secret key length is cal-
culated using the average distance between Alice’s and Bob’s samples.
To estimate it, the two parties randomly choose a common subset of
length k from the sifted and discretized data X}° and X§°, which they
communicate over the public channel. Using these, they calculate

k
dpe (X5, XE°) = + Z |(XE) e — (XE%)

?T‘

and abort if it exceeds a threshold dge agreed on in the preliminary
step. This is a calculation of the correlation strength present in the
distributed quantum state. Note, that it is not a steering criterion,
although the equation looks similar to the additive convex steering
criterion in [Cacog]. There is no simple connection of the two crite-
ria, since for QKD with security against coherent attacks we are not
allowed to make any assumption on the statistical distribution of the
measurement results. Especially, we may not assume Gaussianity and
cannot use the covariance matrix for a full description of the correla-
tions.

ERROR RECONCILIATION Bob corrects the errors in his data to
match Alice’s using the hybrid error reconciliation algorithm intro-
duced in [Geh15]. The algorithm divides into two stages that exploit
the Gaussian character of the correlations. The first stage corrects the
dy least significant bits of each sample by directly communicating
them to Bob. In the second stage the remaining errors in the d,, most
significant bits (d = d + d.,) are corrected with a non-binary low
density parity check (LDPC) algorithm. Later, Alice and Bob confirm
that the reconciliation was successful.

CALCULATION OF SECRET KEY LENGTH Using the results from
the channel parameter estimation and considering the number of pub-
lished bits during error reconciliation lyk, Alice and Bob calculate the
secret key length | according to the formula

1 Vx + Vp 0 1
n <10g2 ¢c5) " 2In2 —logzy(dpe)) —Lk—0O <log2 €> . (6.1)
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If the secret key length is negative, they abort the protocol. Here,
n = N —k is the number of samples used for key generation. The
first term in the bracket is the lower bound of the entropic uncer-
tainty relation from Equation (2.3). It is used to replace the smooth
min-entropy of the state after Alice’s measurement and conditioned
on Eve under the assumption that Eve holds the subsystem purifying
the overall state. Therefore, the functions c(d) refers to the overlap
of the discretized X and P measurements of Alice. The entropic un-
certainty relation introduces the smooth max-entropy of Alice’s state
conditioned on Bob into the formula. This is lower bounded in the
third term where the function vy is calculated for an upper bound
on the average distance between Alice’s and Bob’s measurement out-
comes, taking into account the probability of not a single measure-
ment laying outside of the x-interval. The second term takes an im-
perfect measurement of X and P into account. Vx and Vp describe
the variances of the measured basis around the exact quadrature un-
der the assumption of a Gaussian distribution due to phase noise.
Hence, the first three terms describe the maximum information that
can be securely extracted from the quantum part of the protocol. The
leakage term 1y of the classical post processing has to be subtracted
from this information. Furthermore, the last term is an upper bound
for the finite size effects that also has to be subtracted. Roughly speak-
ing, ¢ is the remaining uncertainty in the measurement statistics due
to the finite number of samples. A detailed derivation of the secret
key length can be found in [Furi2Th] and [Ebe13Th]. The proof for
the phase noise term is given in [Geh15]. Note that the formula only
depends on Alice’s devices and that Bob’s devices do not appear at
all. This proves the one-sided device independence of the security.

PRIVACY AMPLIFICATION Alice and Bob apply a hash function
that is randomly chosen from a two universal family [Cary9] to their
corrected strings to produce the secret key of length 1. A hash func-
tion can be seen as a trap door. After its application there is no way to
reconstruct the raw key from the reduced string. Therefore, any infor-
mation that exceeds the secret key length is definitely removed from
the final key and any knowledge of Eve about it becomes impossible.

REMAINING ASSUMPTIONS  There are five assumptions remaining
to make the protocol secure against arbitrary attacks [Geh15].

I Alice’s station is a private space [Brai2] and from Bob’s station
neither his measurement choice nor his measurement outcomes
are leaking. This assumption is natural to (almost) all QKD im-
plementations and can be fulfilled by locking their stations to the
outside.
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IT The energy of Alice’s mode of the EPR state is bounded, which
allows her to determine the probability for measuring a quadra-
ture amplitude absolute value exceeding . This can be assured
by placing the source into Alice’s private station.

III Alice switches randomly between the X- and P-quadrature with
50% probability. This can be implemented by the use of a quan-
tum random number generator (see Section 6.2.2).

IV Bob chooses randomly between two (not necessarily orthogonal)
measurements that are assumed memoryless. Here, memoryless
means that a measurement result does not depend on any pre-
vious result. By choosing the frequencies of the data acquisition
system appropriately this can be excluded [Ebe13Th]. The ran-
domness can again be guaranteed by a quantum random number
generator.

V The phase noise in Alice’s measurements is Gaussian to allow an
inclusion in the secret key length formula in the presented way.
To assure the Gaussianity a separate measurement of the phase
noise at Alice’s detector can be performed (see Section 6.2.2).

6.2.2 Implementation of the Protocol

GENERATION OF S-CLASS ENTANGLEMENT  The second squeezed-
light source required for the full two-mode squeezing setup was built
identically to the first one. It delivered a maximum of 10.9 dB noise re-
duction at a pump power of 180 mW. This resulted in a total of more
than 500 mW pump power required, which was hardly achievable in
the setup. Therefore, the first squeezed-light source from Chapter 5
was replaced, as all attempts to change its pump threshold to a lower
value were unsuccessful. This was probably due to optical loss in
the crystal but maybe also due to unfortunate mode degeneracy or
even a lower non-linearity of the crystal material. The new squeezed-
light source was originally established by M. Mehmet [Meh11] and
was adapted to the existing setup with slightly different wavelengths
by carefully changing the cavity’s air gap. After successfully increas-
ing the conversion efficiency it achieved a pump threshold compara-
ble to the second one and delivered 11.7dB of squeezing at 150 mW
pump power. With these values a simultaneous stable operation of
both squeezed-light sources became possible.

The next step was to establish a phase lock between the squeezed
fields at the entanglement beam splitter. For perfect two-mode squeez-
ing the one field should contribute squeezing in the amplitude qua-
drature and the other in the phase quadrature. As both fields con-
tribute vacuum squeezing there is no definite amplitude and phase
quadrature. Therefore, the orthogonal-squeezing requirement was re-
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Figure 6.1: Schematic of the squeezed-light source stabilization. The con-
trol beam carried a phase modulation from an electro-optical modulator
(EOM) of 33.9 MHz (35.5 MHz for the second source). Using a Pound-Drever-
Hall locking scheme the length of the cavity was stabilized to resonance for
the 1550 nm field. By demodulating the signal in the orthogonal quadrature
a signal for the stabilization of the pump phase could be generated at the
same photo diode (PD33.9). The SSB was generated by an acousto-optical
modulator (AOM), superimposed with the control beam before entering the
cavity and phase locked to it. Thereby it became a phase reference for the
squeezing angle, as locked phases are transitive. FI: Faraday isolator, PS:
phase shifter, DBS: dichroic beam splitter. A similar figure was published
in [Ebe13Th].

alized by locking the fields 90° out of phase. To this end a single side-
band (SSB) technique was used. Two tap-offs from the main laser of
a few pW were shifted with acousto-optic modulators (AOMs) in fre-
quency, the one by 78 MHz, the other by 82 MHz. Each of these fields
was superimposed with one of the control beams of the squeezed-
light sources at a 50:50 beam splitter before entering the cavity. The
second output was detected by a photo diode and demodulated at the
corresponding sideband frequency. With this sinusoidal error signal
a phase lock between the SSB and the control beam was established
using a PZT-mounted mirror as phase shifter (PS) for the SSB. Since
the phase of the pump field (and thereby the squeezing angle) was
locked to the control beam as well, this lock immediately established
a fixed phase relation between the SSB and the squeezed quadrature.
A schematic of this setup is shown in Figure 6.1

After superimposing the two squeezed fields (now each accompa-
nied by a SSB) at a 50:50 beam splitter (for obvious reasons we will
call it the entanglement beam splitter), a small tap-off of about 1% was
taken from one of the output ports to generate an error signal for
phase locking the two squeezed fields as shown in Figure 6.2. Since
this field was very weak it was superimposed with about 5mW of
local oscillator power at a 50:50 beam splitter. One port was demodu-
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Figure 6.2: Schematic of the entanglement phase lock. After superimposing
the two squeezed fields at a 50:50 beam splitter 1% was tapped of from
one of the output modes, superimposed with an auxiliary local oscillator
to enhance the signal and detected by two photo diodes (PD7g and PDs;).
One signal was demodulated at 82 MHz to establish a phase lock for this
superposition while the other was demodulated at 78 MHz to generate an
error signal for the entanglement phase lock. The latter was fed back to the
phase shifter (PS) in the path of the 78 MHz SSB to avoid cross talk of the
two locks. A similar figure was published in [Ebe13Th].

lated at 82 MHZz to establish a phase lock between the auxiliary local
oscillator while the other was demodulated at 78 MHz delivering the
desired phase lock signal for the superposition at the entanglement
beam splitter. The error signal was fed back to a phase shifter in the
path of 78 MHz SSB to avoid unnecessary cross talk with the phase
lock of the auxiliary local oscillator.

PHASE LOCKED HOMODYNE DETECTION At the homodyne de-
tectors the signal was demodulated at 82 MHz to get an error signal
for the quadrature phase lock as depicted in Figure 6.3. To this end,
the electronics of the detector had to be redesigned to avoid the SSB
frequency entering the AC signal output port. The signal for demod-
ulation was tapped of and buffered by an additional operational am-
plifier and a cascade of passive notch filters yielding a suppression of
more than 80 dB was integrated to suppress the SSB frequency in the
AC port below the noise level of the subsequent data acquisition sys-
tem. The notch filters were centered at 80 MHz to have the freedom
of changing the lock from the 78 MHz SSB to the 82 MHz SSB and
achieve a comparably good suppression for both.

RANDOM SWITCHING The protocol by Furrer et al. requires a ran-
dom choice of the detected quadrature at the homodyne detectors for
each recorded signal. Since the phase lock of the local oscillator with a
PZT-mounted mirror reaches unity gain frequencies of only the order
of a few kHz (resulting in about 1000 quadrature switchings per sec-
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Figure 6.3: Schematic of the homodyne detection.The two entangled
modes were detected on separate homodyne detectors each consisting of
two photo diodes (PD). In both cases the signal was demodulated at 832 MHz
and fed back to the phase shifter (PS) of the local oscillator. A similar figure
was published in [Ebe13Th].

ond) the time for measuring the required 108 samples would exceed
days. This is obviously not desirable and an additional fast phase
shifting was implemented. The local oscillator was sent through a
fiber-coupled electro-optical modulator (fcEOM) which allows band-
widths of hundreds of MHz (see Figure 6.4). By applying voltage
shifts to the fcEOM a fast switching of the detected quadrature be-
came possible. This technique was developed and implemented in
[Ebe13Th] in cooperation with the author and used for this study
without any changes.

Since the original phase lock of the homodyne detector should keep
working to compensate for slow drifts of the phase while the fcEOM
processes a fast switching, a sophisticated voltage pattern was im-
plemented [Ebe13Th]. Before applying the voltage for the desired
quadrature the voltage for the orthogonal quadrature is applied. This
ensures that maximally for twice the inverted switching frequency the
same voltage is applied. Therefore, if the frequency is significantly
higher than the unity gain of the PZT phase lock, the latter always
sees the average of both phases. Hence, even if for a longer time, say,
100 measurements the same quadrature is detected, the slow phase
lock will not start to follow to compensate the offset.

Using this scheme a switching frequency of 200 kHz was achieved
resulting in a signal frequency of 100 kHz. This leads to a measure-
ment time of 16 min and 40sec for 10% samples. The switching fre-
quency was limited by high frequency components of the steep edge
of the applied voltage. Although these are in principle not in the
detected frequency band they tend to saturate the operational ampli-
fiers of the signal path in the homodyne detectors electronic circuit
and corrupt the signal.
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Figure 6.4: Schematic of the QKD setup. The two entangled modes were
transmitted to Alice and Bob and measured by balanced homodyne detec-
tors (BHD) each consisting of two photo diodes (PD). Apart from a slow
phase control of the local oscillator with a PZT mounted mirror (PS) a fast,
fiber-coupled electro-optical modulator (EOM) was implemented for switch-
ing of the quadratures. In the transmission line to Bob a half-wave plate and
a polarizing beam splitter (PBS) were implemented to serve as a variable
attenuator simulating long distance transmission loss.

QUANTUM RANDOM NUMBER GENERATION The random num-
bers for the switching were generated with an additional indepen-
dent homodyne detector measuring vacuum noise. The second port
of the homodyne beam splitter was mechanically blocked to ensure
no parasitic signal could enter. The vacuum noise was flattened over
the recorded bandwidth of 2 MHz using a whitening filter matching
the electronic properties of the detector. Each measurement point was
than mapped to a 0 or 1 depending on the values sign. A total of 10'°
samples was recorded and standardized random number tests were
performed on the data. After the tests were passed the random num-
bers were saved to a look-up table. For each QKD run a new set
from this table was chosen for the random switching of the homo-
dyne detectors. Although these random numbers were generated in
advance for experimental convenience, in principle the process could
be automatized to generate them on the fly during the QKD run
to ensure they can not be compromised. For a detailed description
see [Ebe13Th] where the system was implemented and analyzed.

SIMULATION OF LONG DISTANCE TRANSMISSION The two ho-
modyne detectors of Alice and Bob were situated on the same table
with a distance of about 50 cm, hence, the transmission line was rather
short. To simulate the optical transmission loss of a more realistic
scenario with several km of distance between the two parties a vari-
able beam splitter was implemented in the path to Bob’s detector as
shown in Figure 6.4. Assuming 0.2dB/km suppression of standard
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telecommunication fibers and an additional 0.22dB for coupling in
and out of a fiber the set optical transmissivity could be mapped to
fiber length. Though this setup does not include all possible flaws of
a transmission through optical fibers (see Section 6.3) it gives a good
first approximation to test the robustness of the protocol.

DATA ACQUISITION AND POST PROCESSING  The data acquisition
system was developed, implemented and analyzed in [Ebe13Th] and
only minor changes to some parameters were conducted in this thesis.
It employed a two channel Signatec PX14400A PCI Express card with
a 256 MHz analogue-to-digital converter. The AC signals of the homo-
dyne detectors were lowpass filtered at 50 MHz before entering the
signal inputs of the card to avoid aliasing. The sampling of the card
was triggered by the pattern generator that provided the signal for
the random switching. This assured that the samples were recorded
precisely in the time interval described in the switching process. At
each trigger event the signal was recorded with 256 MHz sampling
frequency for 1 ps yielding 256 samples. These were digitally mixed
with a signal between 7 MHz and 9 MHz. Due to a mysterious peak
in the noise spectra of the homodyne detectors (see Figure 6.11) that
occurred on a daily basis with different center frequencies between
approximately 5MHz and 7.5MHz, the demodulation frequency of
the data acquisition had to be adapted before each measurement run
to avoid spurious signals. The demodulated samples were lowpass
filtered at 200 kHz with a 200-tap FIR filter and down sampled by tak-
ing only the 200th sample yielding precisely the single sample that
we referred to in the description of the protocol. All samples of Alice
and Bob for one run of the protocol were saved to a single hdfs-file
together with their appertaining quadrature choice.

The classical post processing was implemented using the software
package of the AIT and the newly developed hybrid error reconcili-
ation [Gehi1s]. To this end the files containing the samples were up-
loaded to the server of the AIT and processed by C. Pacher. This of
course compromised the security of the final key. But for a proof
of principle study with the unrealistic scenario of both raw keys
recorded on the same computer and with no actual cryptographic ap-
plication of the key we refrained from implementing the software on
the laboratory computer. In principle this could be done and by fur-
thermore implementing a parallelization of the post processing to sev-
eral CPU cores the algorithm could run in real time on the recorded
samples. In the current configuration on a single core the processing
took approximately 2.5 hours for 2 - 103 samples which is about five
times as long as the measurement phase. A detailed description of
the software and the algorithms can be found at [AQS15].
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Figure 6.5: Estimation of phase noise at Alice’s detector. The DC voltage of
the beat between LO and control beam was recorded for 10° samples and
fitted with a Gaussian distribution in a histogram. A standard deviation of
(0.46 £ 0.01)° was calculated.

PHASE NOISE ESTIMATION To estimate the phase noise of Alice’s
quadrature choice the DC signal of the beat between local oscillator
and control beam was investigated. The output voltage of the homo-
dyne detectors DC amplifier was calibrated to the relative phase of
the signal and the LO by scanning the PZT mounted mirror for the
low frequency phase lock. Afterwards a random switching was ap-
plied to the fiber-coupled EOM and the resulting voltage pattern was
observed on an oscilloscope. For 10° switching processes a sample
of the voltage was acquired in the same time interval used for data
acquisition. Figure 6.5 shows a histogram of theses samples for the
phase quadrature together with a fit of a Gaussian distribution plot-
ted in red. The standard deviation of the distribution is 0.46° with an
error of 0.01° determined by bootstrapping the data. This is a fairly
low value considering the switching procedure [Meh11]. Since the
switching was random the phase noise was identical for amplitude
and phase quadrature, i.e. Vx = Vp.

6.2.3 Secret Key Distribution Results

DEPENDENCE OF THE KEY LENGTH ON THE NUMBER OF SIGNALS
With the squeezed light sources delivering 10dB and 10, 9 dB of noise
reduction to the homodyne detectors, the protocol was performed
and a total of 2- 10% signals were recorded. The transmission loss to
Bob was set to zero for this measurement. Using the reconciliation
software by C.Pacher a total of 97.5 MBit of secret key could be ex-
tracted and actual bits were generated. By bootstrapping the data a
reduced amount of samples was generated to investigate the perfor-
mance of the protocol for fewer signals. The result for the length
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of generated key is shown in Figure 6.6 together with a numeri-
cal simulation fitted to the experimental data points. The simulation
was conducted by T. Gehring and is based on the models developed
in [Ebe13Th]. A minimum of 6-10° is required to achieve any key
at all. For more than 10 signals the key rate approaches saturation,
as expected for large numbers of samples. The maximum key rate of
0.4875Bit/sample is achieved for the maximum recorded number of
2-108 samples.
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Figure 6.6: Secret key rate versus number of recorded samples. A min-
imum of 6-10° samples is required to achieve any key at all. For
more than 10% samples the key rate starts to saturate. The maximum of
0.4875 Bit/sample is achieved for 2 - 108 samples. The black curve is a nu-
merical simulation fitted to the experimental data points.

DEPENDENCE OF THE KEY LENGTH ON THE TRANSMISSION LOSS
The transmission loss to Bob was step wise increased by 3% points
and 2 - 103 signals were recorded each time. The maximum possible
loss was 16% or 0.76 dB, corresponding to 2.7 km optical fiber when
assuming an attenuation of 0.2dB/km and 95% coupling efficiency.
Beyond this value the entanglement and homodyne phase locks be-
came unstable due to a high suppression of the classical signals, mak-
ing a QKD measurement impossible. Although this was not a fun-
damental limitation, a successive chain of locks were to be changed
to circumvent this problem and no working point could be found to
operate the experiment at 0% loss as well as at 30%. Nevertheless,
the main goal of this analysis was achieved and the result is shown
in Figure 6.7. Also for this measurement a numerical simulation was
conducted by T. Gehring and fitted to the experimental data. The key
rate decreases for increasing attenuation and drops to approximately
0.1Bit/sample for 16% loss. This is still a reasonable amount and
already demonstrates the applicability to local area networks. Addi-
tionally, the numerical simulations indicates a maximum attenuation
of 1.19dB would be possible, corresponding to 4.85km. This is an
unprecedented distance for CV QKD with security against coherent
attacks and marks a milestone on the road to its application. Further-
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more, in a recent extension of the security proof it was shown that the
protocol is compatible with reverse reconciliation [Furi4], i.e. Alice
corrects here data on Bob’s measurement outcomes. With an inclusion
of this in the classical post-processing a transmission length of even
16 km would become possible. Note that, in contrast to other CV-QKD
implementation achieving several tens of kilometers [Lev1o, Jou13a],
in this realization the finite key length was taken into account, the se-
curity could not be compromised in any way by tampering with Bob’s
devices and no restrictions on the attack strength of an eavesdropper
were made.
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Figure 6.7: Secret key length versus transmission loss.For each attenua-
tion 2 - 10% samples were recorded. The key rate decreases significantly with
increasing loss. A maximum of 0.76 dB could be tolerated by the experimen-
tal setup for stable operation of the locks. The black curve is a numerical
simulation fitted to the experimental data and indicates a maximum attenu-
ation of 1.19 dB would be possible. This corresponds to 4.85 km of standard
optical fiber including the coupling efficiencies.

Furthermore, we can investigate the steerability of the distributed
state and extend the discussion from Section 5.3.3. The two-mode
squeezed state in the experiment can in good approximation be de-
scribed by the covariance matrix from Equation (4.9) to which an
additional optical loss on Bob’s mode has to be applied (see Ap-
pendix A.2 for a general description of the calculation). The steering
criterion that we try to violate has to be the additive convex criterion
from Reference [Cacog] since the security proof is based on the av-
erage distance between the data strings (see Section 6.2.1). Although
there is no direct connection of this steering criterion and the channel
parameter estimation, this approach gives a qualitative insight. The
scaling factors in the reconciliation are chosen such that Alice and
Bob observe the same variance in their X and P measurements, re-
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spectively [Geh15]. We can express this with the parameters g and h
in the inferred variances (see Section 4.4), by setting them to

[ Var(Xa)
9= Var(Xg)’
- lV&I’(PA)
h= Var(PB)

for direct reconciliation and to the inverse values for reverse recon-
ciliation, respectively. Calculating the additive steering criterion from
these inferred variances, we find the maximally tolerable transmis-
sion loss to be 46% for steering from Bob to Alice and 90% for steering
from Alice to Bob. Qualitatively, this corresponds to the maximum
transmission lengths of 5km and 16 km. But the actual transmission
losses in these cases are 24% and 54%, respectively, which shows a
large gap between the theoretical analysis of steering and the achiev-
able positive key rates in the QKD application. One reason is that the
key length formula in Equation (6.1) does not assume the Gaussianity
of the state and the measurements, in contrast to the derivation of the
steering criterion. Therefore, the bounds for the relevant amounts of
information have to be chosen more generally which reduces the key
length drastically. Another reason is that the key length formula also
includes imperfections of the measurements, the leakage of the error
correction and the finite-size effects. But in [Brci2] a smaller but still
significant gap between the tolerable optical losses (50% for steering
and 33% for a positive key rate) was observed for a 1sDI DV QKD
protocol, although none of these corrections was implemented in the
corresponding key length formula. Furthermore, the authors noted
that a similar gap occurs in the comparison of the violation of Bell in-
equalities (17%) and fully DI QKD protocols (9%) and that the effect
is worth further theoretical investigation.

Finally we note that with 16km transmission length (correspond-
ing to 54% optical loss) the two-mode squeezed state under consid-
eration is one-way steerable. Therefore, the analysis in [Furi4] shows
that one-way steering enables 1sDI security if reverse reconciliation
is employed in the protocol.

63 IMPLEMENTATION OF A 1 KM FIBER BASED QUANTUM CHAN-
NEL

In the last part of this chapter we will present experiments that were
made to achieve an actual fiber transmission of one of the entan-
gled modes. In particular we will review concepts for an independent
remote homodyne detector and some preliminary experimental test
that were performed in the lab with a 1km single mode fiber.
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6.3.1  Concepts for a Remote Homodyne Detector

To set up an independent remote homodyne detector for Bob several
experimental challenges have to be addressed. The homodyne detec-
tion requires an intense local oscillator that needs to be phase locked
to the main laser source. This can either be realized by sending the
local oscillator from the main laser through the fiber as well, or by
taking a second laser at Bob’s site. In the second case a phase lock of
the local laser on some auxiliary field propagating trough the fiber
is required. For example a small tap off from the control beam, that
accompanies the distributed entangled field, could be used as phase
reference. Also the influence of the fiber itself on the distributed field
has to be addressed. Polarization stabilization is required to compen-
sate for stress-induced birefringence and noise sources have to be
investigated and suppressed if possible. Furthermore, the detector re-
quires radio frequency signals that need to be phase locked to the
ones of Alice’s site to establish a working quadrature phase lock. Ad-
ditionally, a timing signal is required to ensure that Alice and Bob
will perform their measurements at the correct time, as otherwise the
correlations would be spoiled.
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Figure 6.8: Concept for a remote detector with copropagating local oscilla-
tor. The signal and the local oscillator enter the remote detection site in or-
thogonal polarizations. A dynamic polarization controller ensures a stable
output polarization. The auxiliary field at 1310 nm for timing and frequency
locking is split from the main field at a dichroic beam splitter (DBS) and
detected on a photo diode (PD). From the transmitted 1550 nm field 1% is
tapped off for the lock of the polarization controller. At a polarizing beam
splitter (PBS) signal and local oscillator are separated again and the local
oscillator (LO) is coupled into a fast fiber-coupled electro-optical modula-
tor (EOM) to apply the switching phases before it reaches the homodyne
detector.

Figure 6.8 shows a schematic of a detector concept with copropa-
gating local oscillator. Before entering the fiber, the entangled field



63 IMPLEMENTATION OF A 1 KM FIBER BASED QUANTUM CHANNEL

and the local oscillator are superimposed at a polarizing beam split-
ter in orthogonal polarizations, hence, they do not interfere. This is
called polarization multiplexing. After transmission the fields can be
separated again at another polarizing beam splitter and the local os-
cillator is send through a fiber coupled EOM to enable fast switching
of the quadratures. The fields are then brought back together at the
homodyne detector, that now can be identical to the ones used in
the table-top setup of the experiment. To ensure a good splitting of
signal and locals oscillator a dynamic polarization controller is imple-
mented directly after the km-fiber. For details of the principle and
the polarization controller see Section 6.3.2. In particular a 1% tap-
off has to be taken from the 1550nm field to lock the polarization.
Furthermore, a 1310 nm field is copropagating through fiber carrying
frequency and timing information. This field is split off at a dichroic
beam splitter and the detected signals are given to Bob’s computer to
establish synchronous locks and measurements.
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Figure 6.9: Concept for a remote detector with local oscillator from a lo-
cal laser. In contrast to the previous scheme no polarization multiplexing is
performed. However, the polarization of the transmitted signal has still to
be controlled and a second tap-off is required to phase lock the local laser
to the signal. This is done with a phase locking loop (PLL) by actuating on
the lasers cavity as well as on an external fiber-coupled EOM to achieve a
high bandwidth. The rest of the setup is identical to the previous concept in
Figure 6.8.

Figure 6.9 shows a schematic with a second laser serving as local
oscillator. In contrast to the previous scheme no polarization multi-
plexing is performed. Nevertheless, a polarization control is required
to ensure a high contrast at the homodyne detector which again needs
some tap-off from the signal beam for locking purposes. Furthermore,
a second tap-off is required to establish a phase lock between the sig-
nal and the local laser source. To this end a control of the laser source
itself (namely the temperature and the cavity length of the resonator)
as well as an external phase control by a fast EOM is required to
achieve a high unity gain frequency and, thereby, a high phase sta-
bilized bandwidth. Otherwise the reasonably detectable bandwidth
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of the homodyne detector would be limited by phase noise of the
local laser source against Alice’s main laser. As in the scheme with
copropagating local oscillator, a fiber-coupled EOM is used to apply
the switching phases and also the 1310 nm field serves the same aux-
iliary purpose.

In comparison the second setup is technically more demanding.
Not only does it require the phase locking of a fiber amplified laser
source but also the signals gained for locking are rather small, as from
the already weak copropagating control beams only a small fraction
can be split off to not unnecessarily attenuate the signal. Therefore,
in the framework of this thesis only the first concept was realized
and investigated. Furthermore, the remote detector was for testing
purposes set up in the same lab as Alice’s site and no optical link for
frequency and timing synchronization was required, since this could
still be realized with longer cables.

6.3.2  Scheme for Dynamic Polarization Control

When light is transmitted through a single mode fiber its polariza-
tion will in general not be maintained. Stress on the fiber induces
birefringence, i.e. pressure and bending will lead to a static change of
the polarization and temperature fluctuations and acoustic vibrations
will dynamically change it. Where the static changes can be compen-
sated by waveplates the dynamic changes have to be actively con-
trolled. Therefore, an all-fiber dynamic polarization controller (DPC)
from General Photonics was used. The light is coupled into a single
mode fiber that is placed under four PZTs. The first and the third ex-
ert pressure under 90° in respect to the table plane while the second
and fourth are acting under 45°. By changing the voltage on the PZTs
the induced birefringence can be controlled, while the angles under
which these forces are applied stay fixed. Hence, the device can be
seen as four variable waveplates with fixed angle of the slow axis.

To understand the control scheme of the DPC we first have to get
some background on the description of polarization. We will use the
Jones vector formalism where an arbitrary state of polarization of a
light field propagating in z-direction can be written as

Exeilbx
E’ — Eyeiﬂ"d ei(szwt)‘

0

Here E, , are the amplitudes of the field in x- and y-direction and
P,y their corresponding phases. Normalizing this vector, omitting
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the zero z-component and neglecting the overall phase we can reduce
this to

e cos @
sin(¢p)et? ’

where 1 is the difference of \x and . Thus, for } = 0 or integer
multiples of 7 the state is linearly polarized and ¢ gives the angle of
polarization with respect to the x-axis.

The action of optics on the state of polarization can now be de-
scribed by matrices. For example a polarizer (or one output port of a
PBS) becomes a 2D-projector,

p_ 10 o= (00,
0 0 0 1

A half waveplate with slow axis rotated by 6 with respect to the x-
direction becomes an improper rotation (a rotation including a reflec-
tion),

AL (0) = cos20 sin26 .
2 sin20 —cos20

And a quarter waveplate with corresponding 0 becomes a rotation in
the complex plane,

1 . .
A (0) = i ( cos 20 —1i sin 20 )

1
i 2 sin20  —cos20—i

All these objects can be rotated by arbitrary angles in the x-y-plane
with the standard rotations of linear algebra. The actuators of the
DPC have fixed angles and can therefore be described by

A3 = ( et 0 ) , A24 ! ( e?KM ! e%KM - >,
0 1 2\ effas —1 el 41
where k723 4 are the phases introduced by the birefringence and de-
pend on the voltages applied to the PZTs.

To determine the state of polarization the polarimeter depicted in
Figure 6.10 was implemented. A small fraction of the light from the
fiber was taken for detection and split at a 50:50 beam splitter to two
detectors that consist of a PBS and a photo diode in each port whose
photo currents are subtracted. In a simplified manner one could say
that one detector measures the angle of polarization while the other
measures the ellipticity. In the path to one detector a quarter wave-
plate was implemented under 45° while in the other a half waveplate
was set up under 22.5°. Taking the imperfection of the PBS into ac-
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count these angles had to be adjusted with a known state of perfect
linear polarization so that an actual 50:50 splitting at the PBS occurred.
Doing the math for an arbitrary input state of polarization €, with the
algebra from above we find for the two output signals

[Px - Ay (m/4) - &% — [Py - Ay (/4) - &
=(=,1)- & —1(1, i) - &?

= —2sin 2@ sin,

and
[P Ay (71/8) - &2 — [Py - Ay (71/8) - &2

(1,1)-&*—=(1,-1)-&?

1 1

=l 4

= sin 2¢ cosp.
Hence, both signals depend on the the polarization angle ¢ and the
ellipticity 1 and we see that the angle has to be stabilized to an un-
even integer multiple of 7t/4 to obtain maximum signal amplitude.

A
Signal 99:1
( eV
S
A4 PBS 3
50:50 <‘(’
e
A2 a
/e0\
PBS

to Actuator 1

A

||';i

Figure 6.10: Schematic of the polarimeter. A 1% tap-off from the signal is
used to analyze the state of polarization. The tap-off is split up at a 50:50
beam splitter. One output is send through a A/2-waveplate under 22.5°
to a polarizing beam splitter (PBS) while the other is sent through a A/4-
waveplate under 45°. The intensities of the two outputs of each PBS are
subtracted which gives two error signals for the polarization controller.
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Now the first three actuators of the DPC are used to change the
state of polarization. The fourth is just needed for polarization scram-
bling. The calculation for the signals from the actuated state get a bit
lengthy and have been performed in a Mathematica script. A com-
mented version of the script can be found in appendix A.3 and we
will just state the result here. The signals from the two detectors read

S1i=I(=i,1)-As-Az-Ay-e? —[(1,-1) - Az - Az - Ay - &
o sin 2@ [sin k3 cos (k1 — 1) + cos kK, cos k3 sin (k1 — )]

—cos 2 [sin Kk, cos k3],

and
=1
2=
o sin 2@ [cos k3 cos (k1 — ) — cos k3 sin k3 sin (k1 — V)]

1
S |(1,1)-A3-A2'A1'az—ZHL—U'AyAz-AI'é’lZ

+ cos2¢ [sin k; sin k3] .

By plotting these signals in Mathematica and investigating their
behavior for changing offsets of the phases k; to k3, a configuration
could be found where independent sinusoidal error signals for ¢ and
1 are obtained. A detailed description can be found in the comment
of the script. One solution is obtained for the offsets k1 = k; = k3 =
7t/2. The signals than read

S1 x sin 2@ sin,
Sy o cos2¢.

By feeding back signal S; to actuator A; and signal S, to actuator
A with a PID controller, the PZTs were controlled in such a way
that both signals vanished. Hence, 1 is stabilized to 0 while ¢ is
stabilized to 7t/4. The resulting output state is the input state with
these values to which the three actuations with the given offsets of
the PZT induced phases have been applied,

As(m/2) - Ag(m/2) - As (n/z)-jﬁ ( : ) _ ( :) )

We see that it is linearly polarized in x-direction. Note that no actua-
tion is given to k3 because it only acts as a compensation for the initial
offset of k. All the “magic” is happening with the first two actuators
and the third one is only needed to achieve usable error signals. The
reader might want to take a look at the mentioned description in the
appendix.
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6.3.3 Distribution of a Squeezed Field Through a 1 km Fiber

With the polarization controller operational, a homodyne detector
was set up at the remote site, which was identical to the detectors
at the local site except that the fiber coupled EOM was not imple-
mented for the first test. As all classical signals were copropagating
through the fiber as well, all electronics for the quadrature lock could
simply be copied from the local detector of Bob. Using this setup a
preliminary test was made by measuring the vacuum noise at the
remote detector. No signal was coupled into the fiber to solely inves-
tigate the influence of the fiber transmission, the polarization control
and the polarization splitting on a pure coherent state. The result is
shown in Figure 6.11. The power of the transmitted local oscillator
beam was tuned from 5mW down to 100 uW and for each setting the
noise level was measured with the signal port of the homodyne de-
tector once open and once blocked. These two corresponding curves
are depicted in the same color. Additionally, the dark noise of the de-
tector is shown in black. The noise level was observed from 2 MHz
to T00 MHz sideband frequency. A significant difference in the noise
levels is visible for all powers with the higher noise level always be-
longing to the measurement with the open signal port. This would
make a squeezing measurement impossible because it would com-
pletely be covered by noise that obviously stems from the local oscil-
lator. But the additional noise diminishes for lower powers and for
100 uW the two curves are pretty close to each other at least in the
targeted detection band at about 8 MHz.

The characteristic power dependence and the pattern of the peaks
in the noise spectra with open signal port indicated that the addi-
tional noise stems from guided acoustic wave Brillouin scattering
[She85]. Brillouin scattering is the process of a photon being scat-
tered by a phonon while transmitting through a solid body like a
glass fiber. The effect strongly depends on the power of the transmit-
ted field, since the scattering gets more likely when more photons are
present. The scattered photons get a frequency shift and typically the
tirst peak from a transmission through an optical fiber arises around
20MHz. Furthermore the scattered photons are also shifted in their
polarization. Therefore, even though the polarization controller sta-
bilized the local oscillators polarization to reflection at the PBS, the
scattered photons also occurred in the orthogonal polarization and
were transmitted through the PBS. This resulted in a signal at the
homodyne detector and spoiled the vacuum noise. Furthermore, the
aforementioned mysterious peak in the dark noise spectrum of the
homodyne detectors is visible in the figure at about 6.5 MHz.

To circumvent this problem the measurements of the squeezing
transmission were performed with as low locals oscillator power as
possible. As visible in Figure 6.11 the dark noise clearance for 100 uW
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Figure 6.11: Noise measurement at the remote detector for different LO
powers. For each power of local oscillator the noise power at the homodyne
detector was measured with the signal port once open and once closed,
depicted for each power in the same color. The significant and power depen-
dent difference of the noise levels could be traced back to Brillouin scatter-
ing and made a squeezing measurement with higher local oscillator powers
impossible. See the main text for details.

local oscillator was only about 5dB at 8 MHz. By reducing the power
to 60 uW the clearance was even further decreased to only 3 dB. There-
fore, from all noise measurements the dark noise level was subtracted
to obtain meaningful results. By doing so the linearity of the homo-
dyne power could be proven as visible in Figure 6.12. Decreasing the
power by a factor of two resulted in a drop of the noise power by
3dB and the squeezing measurement could be performed with only
60 uW of local oscillator power.

The result of the squeezing transmission is shown in Figure 6.13
together with a theoretical model following Equation (5.1) with the
parameter settings QO = 8MHz, | = 64.6mm, T = 0.1 and L = 0.043.
The pump power was varied from 25mW to 225mW and each time
the squeezed and the anti-squeezed noise level was measured. The
theoretical description was fitted to the data points using the detec-
tion efficiency 1 and the pump threshold Pn and were found to be
n = 0.515 and Py, = 250 mW.

The overall detection efficiency consists of several contributing fac-
tors. The squeezed light source has an outcoupling efficiency of Neoup =
0.965. Four mirrors of a periscope in the path to fiber were hit in
p-polarization for which they are not optimized and each contribut-
ing an efficiency of nm; = 0.99. A Faraday isolator was implemented
before the fiber incoupling to prevent access to the squeezed-light
source from the quantum channel in prospect of the QKD applica-
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Figure 6.12: Investigation of the linearity of the homodyne detector at low
LO powers. The vacuum noise at the homodyne detector was measured at
three different powers of the local oscillator (LO), each time decreased by a
factor of two. The dark noise level was subtracted and each time a decrease
by 3dB was observed which proved the homodyne detector to be linear
even at very low local oscillator powers.

tion and contributed a transmission efficiency of ngr = 0.95. The fiber
itself had a transmission efficiency of ng = 0.656 including the in-
and outcoupling efficiency. The DPC had a measured transmission
efficiency of nppc = 0.92. Further propagation loss was estimated to
result in Nprop = 0.98 and the homodyne detector contributed with a
contrast of N¢on = 0.995 and a quantum efficiency of the photo diodes
of npp = 0.99. Hence, the total detection efficiency is calculated to be
N = Ncoup * Nini * NIFL* T * IDPC * Tprop * Non - P = 0.515 in accordance
with the fitted value. Of all the values only the transmissivity of the
fiber link was unexpectedly high in comparison to usual values of
0.97 per coupling and 0.95 per kilometer. Since also the LO beam ex-
perienced the high damping, a problem with coupling the beam from
a squeezed-light source into a fiber could be excluded. Furthermore,
a direct coupling of a light field via a fiber-fiber coupler from the re-
mote (Bob’s) end of the fiber showed that the channel itself did not
exceed the expected 5% loss per kilometer. Therefore, only the cou-
pler at Alice’s end of the fiber could have caused the loss, probably
due to a production fault of the connector. Thus, only a replacement
of the fiber would have overcome the problem, but a second kilometer
scale fiber was not available for this study.

Where in the case of the local oscillator the high loss could be com-
pensated by increasing the power, for the squeezed field, the low
transmissivity meant a drastic limitation of the achievable noise re-
duction at the remote homodyne detector. Nevertheless, a maximum



63 IMPLEMENTATION OF A 1 KM FIBER BASED QUANTUM CHANNEL

20 ! ! !

squeezing +——*—
L e R anti-squeezing —x— |

14

-
o

relative noise power in dB

»® A M O N A O ®

0 50 100 150 200 250
pump power in mW

Figure 6.13: Measurement of squeezing after 1km of fiber for varying
pump power. The pump power was changed between 25 mW and 225 mW
in steps of 25mW and each time the squeezed and the anti-squeezed noise
was measured and normalized to the vacuum noise level. The theoretical
model fitted to the data is described in the text.

of 3dB squeezing could be achieved which still is a very convincing
level of non-classicality considering 1km optical path length.

6.3.4 Distribution of Entanglement Through a 1 km Fiber

As a final test, one mode of an entangled state was distributed through
the fiber. In contrast to the squeezing measurement no dark noise sub-
traction is possible in an entanglement measurement, since the deter-
mination of the correlations has to happen on the raw measurements
before any noise levels can be calculated. So the expected amount of
entanglement was ultimately limited by the dark noise clearance of
the homodyne detector. Note that uncorrelated electronic dark noise
has the same influence as optical loss, i.e. the approximately 3 dB
dark noise clearance resulted in an additional 50% loss. Furthermore,
in the data acquisition system a delay had to be implemented for
the recorded data stream of Bob’s channel. This had to compensate
the travel time of about 5 us of the light trough the fiber, as the cor-
relations from entanglement only are observed on fields that were
at the same time at the entanglement beam splitter. This time delay
had also to be tunable to change it from time to time, as temperature
fluctuations changed the exact travel time of the light.
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The measurement was performed with v-class states as well as with
s-class states. In each case a partial tomographic measurement was
performed and the covariance matrices were reconstructed, yielding

058 (0) 022 (0)
0) 11.01 (0) —5.80

Yedss = 500 (0) 089 (0)
(0) —580 (0) 4.27
and
1794 (0) 9.68 (0)
| @ s sz

968 (0) 6.08 (0)
0) —812 (0) 523

The values in brackets were not reconstructed. The v-class measure-
ment showed a violation of the Duan criterion from Equation (4.1)
by —1.09dB with the optimal scaling parameter chosen as a = 0.758.
This is a significant demonstration of entanglement being distributed.
Furthermore, the state violated the EPR-Reid criterion for Bob con-
ditioning his measurements on Alice’s (Equation (4.7)) with a value
of 0.98, i.e. it was concisely showing steering from Alice and Bob.
On the other hand steering from Bob to Alice was not present as
expected and the state delivered a value of 1.65 from the criterion
in Equation (4.8). The s-class measurement showed with —1.72dB a
stronger violation of the Duan criterion. In Figure 6.14 a time series of
the difference variance of the amplitude quadratures (blue) and the
sum variance of the phase quadratures (red) is shown. Both traces
are normalized to the vacuum (black). The optimal scaling parameter
was a = 0.74. The steering from Alice to Bob was also more signif-
icant and the criterion was violated with a value of 0.76. Also with
the s-class state no steering from Bob to Alice could be observed and
a value of 6.51 was obtained from the criterion. Therefore, this is a
demonstration of one-way EPR-steering with s-class entanglement.
The results of the measurements show that the distribution of en-
tanglement through 1 km of optical fiber is in principle possible. Nev-
ertheless, the comparably weak violations of the entanglement crite-
ria suggest that an application to QKD with the current achievements
is not possible. The limited strength of the correlations would, on
the one hand, give a large lower bound on the distance parameter
dge. On the other hand, it would increase the overlap of independent
measurements and the bin size 6 would have to be increased. Also
the leakage term would probably increase, as the weaker correlations
would lead to more errors in Bob’s bit string. Therefore the protocol,
if not aborted anyway, would give a negative key length due to the
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Figure 6.14: Measurement of s-class entanglement after 1km of fiber. The
difference variance of the amplitude quadrature (blue) and the sum vari-
ance of the phase quadratures (red) are plotted versus measurement time.
The optimal scaling parameter was a = 0.74. The average variances are
—1.82 dB for the amplitude quadratures and —1.62 dB for the phase quadra-
tures, resulting in a violation of the Duan criterion from Equation (4.1) by
—1.724dB.

monotonic increase of ¢ and 7y in the relevant range of their argu-
ments in Equation (6.1). Finally, the one-sided device independence
of the security would also not be possible, because the distributed
state only showed one-way steering but two-way steering is required
to allow this feature in the current protocol.

We would like to point out that these limitations were not of fun-
damental quantum physical origin. The achieved values of the Duan
and the EPR-Reid criterion, respectively, are completely explainable
with the mentioned problems of the low LO power and the high trans-
mission loss. From this we conclude that the limitations were purely
technical and can be overcome with future developments. For exam-
ple the results imply that a local laser has to be used as LO at Bob’s
remote station. Furthermore, the fiber should be replaced or a new
connector should be spliced to it to achieve a high incoupling effi-
ciency that should allow about 15% transmission loss over a 1km
distance. With these improvements a secure distribution of a quan-
tum key should become feasible, as the loss analysis in Figure 6.7
shows.

123






CONCLUSION AND PROSPECT

Quantum key distribution is probably one of the most promising fu-
ture communication technologies. It will allow secure information
exchange based on quantum physical principles and mathematical
proofs. Thereby, the security of the key is not only guaranteed dur-
ing the distribution phase but also for all future times. Since the key
is based on quantum measurements, it can never be accessed retroac-
tively and anything encoded with it stays secret forever. This is maybe
the biggest advantage of quantum key distribution over classical en-
cryption algorithms. To enable such protocols a deep understanding
of the quantum theoretical background as well as of the experimental
realizations and technologies is necessary. The aim of this thesis was
to examine Einstein-Podolsky-Rosen steering and to investigate its
application for quantum key distribution with Gaussian continuous
variables.

In Chapter 4 we have applied a thorough theory of entanglement
on two-mode squeezed states and shown that certain states exhibit
one-way steering. These states lead to the situation that two experi-
menters measuring the same observables on the same state would de-
scribe it in qualitatively different ways, as one of them would observe
steering while the other does not. In Chapter 5 these findings were
experimentally verified for the first time. The existence of Gaussian
one-way steering was demonstrated with high statistical significance.
The criterion (4.7) for steering from Alice to Bob was violated by more
than 30 standard deviations whereas criterion (4.8) for steering from
Bob to Alice was not violated with a significance of more than 50 stan-
dard deviations. Hence, depending on whether Alice tries to steer
Bob’s system, or Bob tries to steer Alice’s system, the prepared state
provided two opposing answers.

Furthermore, a detailed analysis of the states for varying exper-
imental parameters showed an almost perfect accordance with the
theoretical description. On the one hand, this means that the the-
ory is thoroughly describing the states under consideration and pre-
dicts the measurement results with greatest possible accuracy. On
the other hand, it shows that the experimental generation and con-
trol of Gaussian quantum optical states with very specific proper-
ties is well understood and achievable with current technology. The
experimental result itself is of fundamental importance for our un-
derstanding of continuous variable entanglement. It does not only
prove that the class of steerable states has to be divided into sub-
classes for the different steering directions but it also has implica-
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tions on other entanglement applications and quantum information
theory. By today the effect has already triggered a series of theoret-
ical developments [Buo12, Che13, Quiis, He1s] and is known in a
variety of systems with continuous variables as well as with discrete
variables [Lee13, Bolosb, Tan1s, Ols15, Yanis]. Furthermore, the nec-
essary absence of two-way steering for entanglement distribution by
separable states can be proven. Also the connection between steering
and one-sided device independent security of quantum key distribu-
tion has been known a couple of years. Here, the absence of two-way
steering spoils the necessary conditions for the currently employed
protocol. Only with the inclusion of reverse reconciliation one-way
steering would enable one-sided device independence. This connec-
tion of one-way steering and data reconciliation was only presented
in a heuristic way in this thesis. The coincidence in the description
suggests a common foundation of both effects and is a topic of ongo-
ing theoretical research.

In the second experiment presented in this work an application of
steering for continuous variable quantum key distribution was suc-
cessfully implemented. The measurement results presented in Chap-
ter 6 demonstrate the generation of a usable quantum key from ho-
modyne measurements on strongly entangled two-mode squeezed
states. The maximum key length of 97.5MBit is an unprecedented
result for entanglement-based continuous variable quantum key dis-
tribution. The thorough implementation of the protocol was enabled
by newly developed techniques for the stabilization of the squeezed
light sources and the random switching of the homodyne measure-
ments. It allowed composable and one-sided device independent se-
curity against the most general coherent attacks. This means the se-
crecy of the key was achieved without any assumptions on the eaves-
dropper and the devices of the remote party can be untrusted with-
out compromising this security. The inclusion of finite size effects
in the security proof also made the result directly applicable to real
world implementations that will always be limited in the number
of recorded samples. These real world implementations were further
supported by a loss study on the entangled mode sent to Bob. The
results suggest that a maximum transmission length of about 5km
through standard telecommunication fiber would be possible. With
reverse reconciliation that, based on a recent extension of the security
proof, can be implemented in the protocol, distances of about 16 km
should become feasible. Therefore, the results of these experiments
are a major step towards the application of entanglement-based con-
tinuous variable quantum key distribution with state-of-the-art secu-
rity in local area fiber networks and demonstrate the relevance of
steering for quantum information applications.

In further experiments the distribution of non-classical states with
optical fibers was investigated. Technical problems were found to be
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a major obstacle for the generation of sufficiently strong correlations
between the remote measurement outcomes after a 1km fiber. Due
to optical loss of 48.5%, the achievable non-classicality was ultimately
limited. This high value was caused by a connector of the fiber which
could not be replaced. Additionally, Brillouin scattering of the polar-
ization multiplexed copropagating local oscillator required a drastic
reduction of its power, which also resulted in a significant reduction
of the dark noise clearance of the homodyne detection. Although
these influence were purely technical limitation, they could not be
overcome within the framework of this thesis. Nevertheless, with a
local oscillator power of only 60 uW and a dark noise clearance of no
more than 3 dB the distribution of a 3 dB squeezed vacuum state and
a 1.7dB two-mode squeezed vacuum state could be demonstrated.
Where this was not sufficient for the generation of a secret quantum
key, it still fundamentally demonstrates the feasibility of entangle-
ment distribution through optical fibers. Especially since the achieved
entanglement strength was in accordance with the observed level of
decoherence in the setup, it shows that the distribution of reasonably
strong entanglement should become possible by overcoming the tech-
nical issues.

The last results suggest that for future developments a local laser
should be used as local oscillator at the remote detector and a signifi-
cant reduction of the transmission loss should be achieved to allow a
stronger non-classicality of the distributed state. In the table-top setup
a change of the locking scheme for the squeezed light sources to the
one used in [Vaho8Th] could be an upgrade. Alternatively, double-
resonant squeezed-light sources could be used which stabilize the
cavity length via the pump beam. Both options would spare the con-
trol beam that produces spurious signal at the homodyne detectors
during switching. Therefore, an inclusion of such a scheme should
allow a significant increase of the switching frequency, since in the
current setup it was only limited by the settling time of the spuri-
ous signals. Furthermore, a future project could be to experimentally
test other quantum communication tasks like the recently proposed
protocols for oblivious transfer and bit commitment [Furis]. On the
theoretical side a further development of the mathematical techniques
used in the security proofs would be desirable. On the one hand, the
gap between the secret key rates for collective attacks and for coher-
ent attacks could be closed. This would enable much longer keys with
security against coherent attacks from the same number of samples
and also increase the achievable transmission distances. On the other
hand, a theoretical investigation could maybe even show that no EPR
source is required but that the same level of security is achievable
with Gaussian modulations. This would not only reduce the required
experimental resources but also again increase the achievable trans-
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mission distance, since classical modulations are less sensitive to op-
tical loss than entanglement.



MATHEMATICAL AND COMPUTATIONAL DETAILS

A.1 INFLUENCE OF THE ELECTRONIC DEMODULATION PHASE ON
THE HOMODYNE SIGNALS

We would like to make a comment on the electronic demodulation
phase that we have set to zero in Section 3.3. If we shift the cosine in
Equation (3.4) by an arbitrary phase 3 Equation (3.6) gives

Xag,0,8(t) = € (Xo—p(Qo) + Xo4p(—Q0)) - (A.1)

Hence, the measured signal amplitude is no longer the sum of the
same quadrature amplitudes of the two sidebands but of those quadra-
tures tilted opposing by the angle (3. Nevertheless, the resulting vari-
ance of this signal amplitude is still the same. This is because the an-
gle 3 contributes in the variance only in terms of the form 4o, ﬁJ:rF o3
that obtain a phase eT2#. And these combinations of mode opera-
tors have a vanishing expectation value with respect to a squeezed
vacuum,

(ar0,al o )eqz = (018(8)Ta10,8(8)S(&) el S(£))0)
= (0] (ﬁigo cosh(r) — aIFQ eti® ginh(r )
- (@l cosh(r) — a10,e ¥ sinh(1)) [0)
= (01 (@20, cosh? (1) — @l %1% sinh(r) cosh(r) )

(ai eTi® sinh(r) cosh(r) — d;QO a1 o, sinhz(r)> 0)

=0.
(A.2)

We see that the detected quadrature variance will be completely in-
dependent of the demodulation phase (3. This is in perfect accordance
with the previous result, as we will see in the following argument.
Suppose we have squeezing at the quadrature phase 6, and corre-
spondingly anti-correlations in the sideband quadratures Xg(+Qy).
Then, setting $ to /2 will give the sum of the orthogonal, corre-
lated sideband quadratures but with opposing signs, as they were
rotated in opposing directions. So we actually get the difference of
the aligned quadratures which has, as we have seen above, again a
squeezed variance. This result shows that the demodulation phase at
the homodyne detector is irrelevant for a squeezing measurement. It
does not contradict our statement above, that there is no possibility
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to measure the difference of the sideband quadratures with a homo-
dyne detector, but merely shows that there is no ab initio definition of
which quadrature is the squeezed one and which the anti-squeezed.
This arbitrariness in phase is only removed as soon as there is a LO
as phase reference.

Furthermore, if we compare equation (A.1) with equation (3.5) we
see that the demodulation phase 3 acts similar to the time-dependent
quadrature angle . So proving that the demodulation phase does not
change the variance also proves that the oppositely rotating quadra-
tures at () # Qg have the same combined variance as the quadrature
at exactly Qo with a fixed quadrature angle. So for number states
and squeezed vacua we can actually restrict our description to equa-
tion (3.6).

A.2 DERIVATION OF ANALYTIC FUNCTIONS FOR GAUSSIAN STEER-
ING

We will derive the left-hand sides of EPR-Reid criteria from Equa-
tions (4.7) and (4.8) as analytic functions of the experimental parame-
ters. A detailed mathematical background can be found in [Frai12Th].
We start with two squeezed states described by the squeezing param-
eters (7 and (; from Section 2.3.3. For simplicity let us make the
assumption that ¢; =1 and (; = —7, hence, the first state is ampli-
tude squeezed and the second is phase squeezed. Than the covariance
matrix in our standard basis of not rotated quadrature operators is di-
agonal and reads

e 0 0 0
Yin = : (A-3)
0 0 0 e?m

Now we apply the beam splitter formalism from Equation (3.2) to en-
tangle the two squeezed modes at a beam splitter with transmissivity
t,

Yent = Ups (t)yinUps(t) . (A.4)

Next we have to take into account the optical loss e = 1 —ma in the
path to Alice and for Bob eg = 1 —ng, respectively. To this end we
have to expand the covariance matrix by two independent vacuum
modes and embed it in a larger Hilbert space H ® Hyac,aA ©@ HyacB,

Yent,vac = < Yent ) . (A5)
My



A3 MATHEMATICA NOTEBOOK TO INVESTIGATE THE DPC

By applying a beam splitter operation that mixes Alice’s mode with
the first vacuum and Bob’s with the second we can then simulate the
optical loss,

Yentloss = Ugs (VA UZe (vAB) YentvacUge (vB) TUgs (vna) . (A6)

Finally we have to take out the upper left 4 x 4 block which is the
part that we can actually measure,

, (A7)

Yent,loss

oS o © =
o O = O
o = O O
—_- O O O
o O O O
o O O O
o O O O
o O O O

O O O O O o o =
O O O O © © — O
o O O O O = O O
o O O O = O O o

to get the covariance matrix y that describes the detected two-mode
squeezed state. From this we can determine the symplectic invariants
from Equation (2.44) to find the conditional variance products

2 2
I 2ty 1121 (A.8)
I] g1 (EA,t)gz(SA,t)
and
I4 2(r1+712) f% _f%
— = 7 A.
IZ g1 (EBI] _tJQZ(EB/] _t) ( 9)
with

f1 =sinh (r1 +12)(eg —ea)(1 —2t) +sinh (r1 —12)(1 —ea —€B),
fy = coshry coshry; —sinhrysinhr(1—2e4)(1—2¢R),

g1(e,t) = ee?™ + (1 —¢) [(1 —t)e2(mr2) +t} ,

g2(e,t) = —ee?™ — (1 —¢) [tez(”“Z) + (1 —t)} )
(A.10)

A.3 MATHEMATICA NOTEBOOK TO INVESTIGATE THE LOCKING
SCHEME FOR THE DYNAMIC POLARIZATION CONTROLLER

As the calculation for the dynamic polarization controller (DPC) get
rather involved, a Mathematica notebook was used to simulated the
states of polarization as well as the error signals. All details are given
in the comments between the code lines.
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In[1]:=

out[2]=

Qut[3]=

out[4]=

QOut[5]=

Qut[6]=

In[7]:=

out[7]=

In[8]:=

out[gl=

Qdear [¢, ¥, k1, k2, k3]

(xDefinition of the three actuators )

Al = {{Exp[l k1], 0}, {0, 1}}

A2=1/2%{{Exp[l *k2]+ 1, Exp[l *k2] -1}, {Exp[l *k2] -1, Exp[l *k2] + 1}}
A3 = {{Exp[l k3], 0}, {0, 1}}

(xDefinition of the input state )
X={{Cos[¢]}, {SN[d]*Exp[l »¥1}}

(*Definition of the actuated state x)
y = A3. A2. AL. X

{{e***, 0}, (0, 13}
1 , 1 , 1 .
{E (1+et*2), " (-1+etk2)], {; (-1+e'*?),

{ (1+e )}
{{e"*? 0}, (0, 13}

{

{

N -

{Cos[¢]}, {e' ¥ Sin[s]}}

1
el kl+ik3 (l+<ej k2> Cos[p] + — el K3+i ¥ (_1+el k2) Si n[(b]},
2

{
{

NiR NI Q

1
el  (14e'k?) Cos[p] + — 'V (1+el*?) si n[(b}}}
2

(*Substracted photo current from the detector wth quater waveplate x)
Full S nplify [Full S nplify [Gonpl exExpand [Conj ugate [{{-], 1}}.y1]* Conpl exBxpand [{{-], 1}}.y1] -
Ful' | S npl i fy [Conpl exBxpand [Conj ugate [{{1, -I}}. y]1] » Conpl exExpand [{{1, -1 }}. y1]1]

{{2 (Cos[k1- ] Sin[k3] Sin[2 ¢]+ Cos[k3] (-Cos[2 ¢] Si n[k2] + Cos[k2] Sin[2 ¢] Sin[kl- y]1))}}

(*Substracted photo current from the detector with half waveplate )

FullSnplify[

Ful I S npl i fy [Conpl exExpand [Conj ugate [1/2 % {{1, 1}}.y]1] » Conpl exExpand [1/2 » {{1, 1}}.y1] -
Ful Il S nplify [Conpl exBxpand [Conjugate [1/2 % {{1, -1}}. y]] %= Conpl exBxpand [1/2 % {{1, -1}}.y]11]

1
{{— (Cos[2 ¢] Sin[k2] Sin[k3] +Sin[2 ¢] (Cos[k3] Cos[kl- ] - Cos[k2] Si n[k3] Si n[k1- wm}}
2



2| DPC_HM_Polarimeter_short_and_simple.nb

In[9]:=
(xDefinition of the error signals as functions
of the input state and the actuation phase anplitudes %)
Si[¢_, ¢, k1_, k2_, k3 _]1:=

2 (Cos[kl -] Sin[k3] Sin[2 ¢]+ Cos[k3] (-s[2 ¢] Sin[k2]+ Cos[k2] Sin[2 ¢] Sn[kl-y]))
(e, ¥, k1, k2_, k3_71:=

1
— (Qos[2 ¢] Sn[k2] Sn[k3]+Sn[2¢] (Cos[k3] Cos[kl -] - Cs[k2] Sin[k3] Sn[kl-¥]))
2

(xDefinition of the actuated state of pollarization as function of all variablesx)

ylre , v, k1, k2_, k3_]:={{é el KL+i k3 (1+ei k2) Cbs[¢]+i el K3+i v (—1+e"‘ k2) Sn[qs]},

{i et (-14et ) @swhi et (140" %) Snio1}}

(*Qaphical investigation of the error
signals: animating the plot gives to possiblity to easily try different settings for the
offset of the actuation signals and emmdiately see the effect on the error signalsx)
Animate [Column [{Plot [{-1/2 %SL[¢, ¥, k1, k2, k31, 2+ [¢, ¥, k1, k2, k31},
{¢, 0, 2 A}, PotRange » {-1.1, 1.1},
PotSyle » {Orective [Thick, Darker [Bue]], Drective [Thick, Darker [Red]]1},
AxeslLabel - {"y", "Sl(blue) and X (red)"}], Pot [
{-1/2%SL[¢, ¥, k1, k2, k3], 2% S2[¢, ¥, k1, k2, k31}, {¢, O, 2 P}, PotRange » {-1.1, 1.1},
PotSyle » {Drective [Thick, Darker [Blue]], Drective [Thick, Darker [Red]]},
AxeslLabel - {"¢", "Sl(blue) and 2 (red)"}],
Set Accuracy [Abs [yl[¢, ¢, k1, k2, k3]1, 3] // MatrixForm}],
{¢, 0, P /2} {¥, 0, 3P 72}, {k1, O, B}, {k2, 0, A},
{k3, -Pi 72, B /2},
Ani nat i onRunni ng - Fal se ]

(*The first plot shows the two error signals in depence of the elipticity ¢

while second shows them in dependence of ¢. Below the two plots the output state

of polarization is given. Let us define the feedback to be negative, hence,

the PID will stabilized the angles to a decreasing slope crossing of 0. The two plots
have to be consistent. So if the angles are changed the actuation signals have to
be changed according to the direction of error signal change and the the resulting
intersection of the signals with O should coincide with the new values of the
angles. For all consistent settings the output state should be the sane to proof the
lock stabel. For exanple: If we set ¢=n/4 and ¢¥=0 we have to set kl=k2=k3=x/2,

as shown in the first plots. The output state is then (1,0) which neans it is s-
polarized if we define the x-axis to be perpendicular to the table plane. For

these settings signal Sl depends only on ¢ and vanishes in the second plot,

while signal S2 behaves wise versa. Changing k1 results in a phase

shift of Sl in the upper plot, while S stays unchanged. Hence,

Sl should give feedback to kl. The sane is true for S2 in the lower plot if k2

is changed. Snce the feedback is negative, S1 wll control k1 such that =0,

vwhile &2 wll control k2 such that ¢=x/4 (or ¢=5x/4 which is equivalent). Hence,

the setting is consistent wth the input state and =0,

¢=n/4 is the point of operation of our lock for now. %)
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Aninmate [
Qlum [{Plot [{-1/2%xS1[¢, ¥, k1, k2, k3], 2%*2[¢, ¥, k1, k2, k31}, {¢, O, 2 A}, PotRange -
{-1.1, 1.1}, PotSyle -» {Drective [Thick, Darker [Blue]], Drective [Thick, Darker [Red]]},

AxeslLabel - {"y", "Sl(blue) and 2 (red)"}], Pot [

(-1/2%SL[é, ¥, k1, k2, k3], 2% S2[o, ¥, K1, k2, k3]1}, {6, 0, 2 A }, PlotRange » {-1.1, 1.1},

PotSyle -» {Drective [Thick, Darker [Blue]], Drective [Thick, Darker [Red]]},
AxeslLabel - {"¢", "Sl(blue) and 2 (red)"}],
Set Accuracy [Abs [y1[¢, ¥, k1, k2, k3]1, 31 // MatrixForm}],

{¢, 0, P /2} {¢,0, 3%xP 72}, {k1, 0, R}, {k2, 0, P},

{k3, -A /2, B /2},

Ani nat i onRunni ng - Fal se ]

(» If ¢ now increases, say, to 3x/8,

S in the upper plott becones significantly negative at ¢=

0 and the output state is drastically changed. The PID will now increase k2 to a
value where S2 becones 0 at ¢=0 again, which is due to our scaling at exactly k2=

3n/8 the case. Taking a look at the lower plot we see that the negative slope
intersection of 0 was shifted to ¢=3x/8, hence, the plots are consistent. And even

better: the output state is again (1,0) which nmeans it was naintained by this operation.

*)
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Aninmate [

Qlum [{Plot [{-1/2%xS1[¢, ¥, k1, k2, k3], 2%*2[¢, ¥, k1, k2, k31}, {¢, O, 2 A}, PotRange -
{-1.1, 1.1}, PotSyle -» {Drective [Thick, Darker [Blue]], Drective [Thick, Darker [Red]]},
AxeslLabel - {"y", "Sl(blue) and 2 (red)"}], Pot [

{-1/2%S1[¢, ¥, k1, k2, k3], 2+x2[¢, ¥, k1, k2, k31}, {¢, O, 2 A}, PotRange » {-1.1, 1.1},
PotSyle -» {Drective [Thick, Darker [Blue]], Drective [Thick, Darker [Red]]},

AxeslLabel - {"¢", "Sl(blue) and 2 (red)"}],

Set Accuracy [Abs [y1[¢, ¥, k1, k2, k3]1, 31 // MatrixForm}],

{¢, 0, P /2} {¢,0, 3%xP 72}, {k1, 0, R}, {k2, 0, P},

{k3, -F /2, B /2},

Ani nat i onRunni ng - Fal se ]

(* On the other hand if ¢ is increased to, say,
/4 signal Sl in the lower plot becones negative at ¢=
3n/8 (if we leave the settings from the previous operation). Hence,
the PID will increase k1 to 3x/8 were the signal becones O again. Looking
at the upper plot we see that the negative slope intersetion of Sl was
shifted to n/4 by this operation and the plots are consistent again. And
also here the output state was nmaintained and is again perfectly s-
polarized. So the result is that the locking scheme wll be operational
and stabilize the output state of polarization if the offsets of ki1,
k2 and k3 are all tuned to n/2. Note that k3 allways stays at this value and
is not actuated. It is nore like a conpensation for the required offset of
k1. Qne last tricky thing happens if ¢=0 or any integer multiple of x/2. In
this case Sl vanishes identical for all possible settings of the other variable,
hence, there wll not be any error signal for kl. But,
apart from the PID drifting around a bit,
this is not actually a problem because in this case no elipticity has to be conpensated
for. A change of ¢ in wll result only in an overall phase change of the |ight
field but not influence the polarization. S2 wll still give a correct error
signal for k2 and the output state wll still be stabilized to s-polarization. %)
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In[15]:=

Qut[15]=

Qut[16]=

we take a lock at the error signals for the found settings of k1, k2 and k3,

(xFinally,
As

where we have chosen the prefactors accordingly to natch the description from above.

we see SL will now give an error signal for ¢ and its anplitude depends on ¢,

while S2 gives an error signal for ¢ which is shifted by x/4
due to the Cosine and the factor of 2 in the argunent x)
-1/2+Sl[¢, ¥, B /2, B /2, A /2]

2+2[¢, ¥, A /2, B /2, B /2]

-Sin[2 ¢] Sin[y]

Cos[2 ¢]
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