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Abstract

Ultracold gases in optical lattices constitute one of the most active research fields
in both quantum optics and condensed matter physics, since they open interes-
ting possibilities for the controlled study of the properties of strongly-correlated
many-body systems. Nowadays, due to a variety of experimental and theoretical
advances the quantum simulation of frustrated quantum magnetism and synthetic
gauge fields has come into experimental reach. In this thesis we examine properties
and scenarios of strongly correlated quantum gases in optical lattices by means of
numerical and analytical techniques.

Inspired by recent lattice shaking experiments [1], we investigate the quantum
groundstate phases of ultracold bosonic particles in frustrated zig-zag optical latti-
ces. The interplay between geometric frustration and contact-, long range dipolar or
three body interactions is shown to give rise to a rich manifold of quantum phases,
including chiral and two-component superfluids, exotic chiral Mott-insulators, su-
persolids or topological Haldane-insulator phases. We demonstrate a general ana-
lytical technique for the study of frustrated systems in the dilute limit.

The recent experimental realization of synthetic magnetic fields [2] in ultracold
gases has attracted a lot of interest. In this context we study the properties of the
simple paradigm of bosons in two-leg ladders. For the first time we are able to
show the stability of conjectured groundstate phases such as vortex-lattice phases
and the biased ladder phase in a numerical unbiased approach. Furthermore we
observe and explain a counter-intuitive current-reversal effect.

The realization of the effective models in experiments often relies on the fast
modulation of external parameters. We review recent proposals for the generation
of non-linear hopping amplitudes by means of a fast modulation of interactions.
We further demonstrate how the coherent modulation of interactions and lattice
position allows for the emulation of a large class of correlated hopping Hubbard
models.

In the context of current attempts for the quantum simulation of dynamical lat-
tice gauge theories, we investigate different schemes for the preparation of density
dependent magnetism in optical lattices, which includes a dynamical back-action of
the particles on the field. Density dependent gauge fields result in anyon Hubbard
models in 1D lattices, including unconventional two-component superfluid pha-
ses and statistically driven phase transitions, and a non-trivial interplay between
density modulations and effective magnetic fluxes in 2D square lattices.

Finally we examine the groundstate phase diagram of fermionic alkali spinor
gases in the presence of strong magnetic fields. By quasi-adiabatically lowering the
field strength starting from a high field low entropy band insulator different Mott-
insulator phases, including dimer, Néel and Haldane phases, may be prepared.

Keywords: ultracold quantum gases, frustrated quantum magnetism, synthetic
gauge fields





Kurzzusammenfassung

Ultrakalte Quantengase sind eines der aktivsten Forschungsfelder in der Quan-
tenoptik wie auch in der Physik der kondensierten Materie, da sie faszinierende
Möglichkeiten der kontrollierten Untersuchung stark korrelierter Systeme eröffnen.
Heutzutage ist aufgrund vieler experimenteller und theoretische Fortschritte die
Quantensimulation von frustriertem Magnetismus und synthetischen Eichfeldern
in greifbare Nähe gerückt. In dieser Arbeit untersuchen wir Szenarien für solche
stark korrelierten Quantengase mittels analytischer und numerischer Methoden.

Inspiriert von aktuellen Experimenten zur Modulation optischer Gitter [1] ana-
lysieren wir die Grundzustandsphasen von Bosonen in frustrierten Zick-Zack-Git-
tern. Das Wechselspiel von geometrischer Frustration und Kontakt-, langreichwei-
tiger Dipol-Dipol-, oder 3-Körper Wechselwirkung führt zu einer Mannigfaltigkeit
verschiedener Quantenphasen, welche chirale und 2-komponentige Supraflüssig-
keiten, exotische chirale Mott-Isolatoren, Supersolids sowie topologische Haldane-
Isolatoren beinhalten. Wir demonstrieren zudem eine analytische Methode zur Un-
tersuchung frustrierter Systeme im Limes kleiner Dichten.

Die kürzliche experimentelle Realisierung künstlicher Magnetfelder [2] in ul-
trakalten Gasen hat großes Interesse hervorgerufen. Wir untersuchen hierzu die Ei-
genschaften eines einfachen Modells von Bosonen in leiterartigen Gittern mit zwei
Holmen. Erstmalig zeigen wir mit einer unverzerrten numerischen Methode die
Stabilität von Vortexgittern und Biased-ladder-Phasen in diesem Modell. Darüber
hinaus beobachten und erklären wir einen ungewöhnlichen Strom-Umkehr Effekt.

Die Realisierung effektiver Modelle im Experiment wird oft durch eine schnel-
le Modulation äußerer Kontrollparameter möglich. Nach einer Rekapitulation ver-
schiedener Vorschläge für die Erzeugung nicht-linearer Tunnelamplituden durch
modulierte Wechselwirkungen zeigen wir, wie durch kohärente Modulation von
Wechselwirkung und Gitter eine große Klasse von Hubbard-Modellen mit korre-
lierten Hüpfamplituden emuliert werden kann.

Im Zusammenhang mit aktuellen Bestrebungen zur Quantensimulation dyna-
mischer Gittereichtheorien, studieren wir verschiedene Schemata für die Erzeu-
gung eines dichteabhängigen Magnetismus in optischen Gittern. Der Effekt dich-
teabhängiger Eichfelder beinhaltet Anyon-Hubbard-Modelle mit unkonventionel-
len 2-komponentigen Phasen in 1D sowie einem nicht-trivialen Wechselspiel von
Dichtemodulationen mit einem effektiven magnetischem Fluss und verblüffender
Dynamik in zweidimensionalen Gittern.

Schließlich untersuchen wir das Grundzustandsphasendiagramm für fermio-
nische Alkali-Spinor-Gase in einem starken Magnetfeld. Durch eine quasi-adiaba-
tische Verringerung der Feldstärke können ausgehend von einem Band-Isolator-
Zustand niedriger Entropie verschiedene Mott-Isolatoren, welche Néel und Halda-
ne Phasen beinhalten, präpariert werden.

Schlagwörter: ultrakalte Quantengase, frustrierter Quantenmagnetismus, syn-
thetische Eichfelder
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Chapter 1

Introduction

Scientists typically try (and luckily are able) to describe a large part of our physical
world from the reductionists viewpoint, treating phenomena on a single particle
level. This has been very successful to explain physical phenomena ranging from
planetary motions to chemistry or elementary particle physics (eventually intro-
ducing perturbative corrections). However, there are physical conditions in which
this situation substantially changes. Such strongly correlated many body systems
may develop completely new phenomena and be governed by their own funda-
mental physical laws, or as summarized by Anderson [3]: ”More is different“.

Twenty years after the first experimental preparation and observation of Bose-
Einstein condensates (BEC) in dilute weakly interacting atomic gases [4–6] the field
of ultracold quantum gases has entered and made important progress in the stud-
ies of strongly correlated systems. Important beginnings were made by the seminal
proposal of the observability of the Mott to superfluid quantum phase transition in
cold atoms with optical lattices by Jaksch et al. [7] and its experimental realization
few years later by Greiner et al. [8]. During the recent years further important
milestones of strongly-correlated gases have been reached, among them the obser-
vation of the Tonks–Girardeau gas [9], fermionic Mott insulators [10, 11] or An-
derson localization [12]. Nowadays many other strongly correlated quantum gas
experiments are being performed including frustrated magnetism [1], gauge fields
[13, 14], quantum magnetism with dipolar quantum gases [15, 16] or many-body
localization [17].

A deeper theoretical understanding and experimental control of interacting sys-
tems apart from being of fundamental interest on its own, may have enormous ef-
fects in applications or devices ranging from high temperature superconductors [18],
precision metrology [19, 20] to quantum computing [21].

Nowadays, probably the latter point, the engineering of universal quantum
computers or specific quantum simulators constitutes one of the most prominent
objectives and motivations in the field of ultracold quantum gases. In typical con-
densed matter systems theoretical ambitions are to describe the (low energy) be-
havior of the real complex material by an effective model. Unfortunately many
such effective - though often simplistic - models are very demanding to tackle the-
oretically. Even numerically the simulation of complex many body models with
classical computers often becomes a hard problem: Quantum Monte Carlo (QMC)
simulations suffer from the so called negative sign problem for typical fermionic or
frustrated systems [22]. Other approaches such as the density matrix renormaliza-
tion group (DMRG) techniques [23] are mainly restricted to one dimensional sys-
tems. Hence, typically not even groundstate properties can be efficiently simulated
let alone non-equilibrium or open systems. Here the idea of quantum simulation
as proposed already by Feynman in 1982 [24] offers a possible solution and funda-
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mentally changes the relation between theory and experiments.
Quantum simulators may substantially help answering fundamental questions

of interacting many body systems such as unveiling the nature of high-temperature
superconductivity or the search for spin liquid groundstates in quantum magnetism.
But the scope goes far beyond the simulation of traditional solid state or con-
densed matter systems as one can see in established experimental realizations of
high spinor quantum gases [25] or proposed schemes for the emulation of exotic
dimensions [26] or lattice gauge theories [27, 28] of high energy physics.

Due to the amazing degree of control, cleanness and observability [29] exper-
iments with ultracold quantum gases could offer the amazing possibility for the
quantum engineering of a multitude of further many body models [30], highly cor-
related states or the simulation of dynamical properties. Compared to alternative
approaches such as trapped ions, for which very successfully the control and quan-
tum simulation and the implementation of universal quantum gate operations was
proven[31–33], optically trapped neutral particles offer a large degree of scalability
ranging from few [34] to many particle systems.

Even though there has been enormous progress, the field may still be consid-
ered in its infancy and many open problems have to be answered both by exper-
iment and theory. In this thesis we will both address questions being of a more
general interest for strongly correlated systems and various physical effective mod-
els and in particular search for possible realizations of those systems with ultra-
cold quantum gases in optical lattices. We will lay a particular focus on one- or
quasi one-dimensional systems for which interactions are strongly enhanced but
also powerful analytical and numerical techniques are at hand [35].

1.1 Outline

This thesis is structured as follows. After a brief introduction to the physics of
ultracold quantum gases trying to review parts of the current experimental sit-
uation (chapter 2), we give a short overview of the numerical algorithms, exact-
diagonalization and DMRG methods employed in this work (chapter 3). The clas-
sical simulation of quantum many body systems such as the considered cold-atom
scenarios, during the recent years has received much input from the quantum in-
formation community. In chapter 4 we will further introduce some concepts such
as entanglement or quantum fidelity that we will employ as useful tools in nu-
merical simulation for the description of in particular quantum phases and phase
transitions. Here we will as well present a more specific study of the scaling prop-
erties of the so called fidelity susceptibility in certain situations and its connection
to conductivity [36].

In the chapters 5 and 10 we will discuss two different many-body systems with
ultracold bosons which have been both recently started being studied in experi-
ments in different regimes. Chapter 5 discusses the so called frustrated zig-zag
ladder in the context of modulated lattice systems [1]. We will present a careful
analysis of quantum phases and phase transitions for many different scenarios and
extensions including dipolar and three body interactions or variations in the ladder
geometry [37–41].

Chapter 10 is dedicated to the square ladder in which a frustration is introduced
by a rectified flux induced by synthetic magnetic fields penetrating the ladder as
seen recently in Ref.[2]. We present detailed phase diagrams for ultracold bosons
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in such a system, proving the stability of conjectured vortex-lattice and biased lad-
der phases as well as describe a very surprising counter intuitive current reversal
effect [42, 43].

Nowadays the fast modulation of certain degrees of freedom in experiments
has been established as a useful tool for the engineering of effective lattice models
such as the ones mentioned before. In chapter 7 we focus on the case of a mod-
ulated magnetic field which translates to modulated interactions. After a review
of the resulting effective models for bosons and fermions[44, 45] we focus on the
particular case of a combined periodic modulation of lattice and interactions[46].

So far the realized synthetic gauge fields are static, without dynamical feed-
back of the particles on the field. In chapter 8 we discuss density depended gauge
fields, which may be generated by modulated interactions[47] or laser-assisted
hoppings[48, 49]. We will in detail discuss the experimental proposals and the
resulting physical consequences, which includes statistically induced phase tran-
sitions, exotic quantum phases in one dimensional anyon-models, or intriguing
properties of the doublon and holon dynamics.

Chapter 9 extends the viewpoint to a different class of systems. Motivated by
recent experiments such as [25] we study dynamics and quantum phases for spin-
3/2 fermions [50].





Chapter 2

Ultracold Quantum Gases in Opti-
cal Lattices

In this introductory chapter we briefly discuss basic concepts of the description,
experimental preparation and observation of ultracold quantum gases in optical
lattices. We will explain basic paradigms such as the Bose-Hubbard model and
indicate various extensions such as dipolar interactions, dissipation or spinor gases.
A particular focus is laid on the emulation of various effective Hamiltonians by fast
periodic modulations of system parameters.

2.1 Trapping and cooling of atomic gases

2.1.1 Atom-light interaction

The interaction of neutral atoms with a coherent laser field forms the basis for
atomic cooling, manipulation and trapping. Within the electric dipole approxima-
tion we may express the light-force induced by a laser driving an atomic transition
with a detuning δ by a dissipative and a conservative part [29, 51]. The dissipative
part, the radiation pressure force is caused by absorption and subsequent sponta-
neous emission processes. A spatially inhomogeneous intensity profile gives rise
to the conservative optical dipole force FD(R) ∼ δ∇Ω(R)

Ω(R) with the Rabi-frequency
Ω(R) proportional to the intensity of the field Ω(R)2 ∝ ∣EL∣2. For a large detuning
∣δ∣ ≫ Γ and a weak intensity one may approximate the potential by

Vdip(x) ≈ Ω(R)2

4δ
(2.1)

Interestingly, the sign of the force depends on the detuning δ. Hence, for a blue
detuning of the laser with respect to the atomic transition δ > 0 the regions of high-
est intensity act like a repulsive potential for the atoms. Contrary to that, for a red
detuning δ < 0 an attractive potential is realized. This way ultracold neutral atoms
can be trapped in optical dipole traps.

2.1.2 Atom-atom interaction

In typical experiments we may describe the interactions by the two-particle scatter-
ing properties. For this binary collision problem we have to solve the time indepen-
dent Schrödinger equation of the relative coordinate r(− h̵2

2µ +V(r))Ψ(r) = EΨ(r),
where generally the precise short range form of the interparticle potential is not
known and the long range part shows the asymptotic 1/r6 behavior of the van-der-
Waals interactions. For the spherical symmetric scattering problem the wave func-
tion may be split into scattered partial waves with conserved angular momentum l.
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Due to symmetry considerations if the scattered particles are identical bosons only
even momenta l = 0, 2, .. and for identical fermions only odd l = 1, 3... contribute.
Due to the presence of the centrifugal barrier for ultracold gases the scattering to
channels l ≠ 0 is frozen out. This s-wave scattering for low energy may be com-
pletely characterized by the s-wave scattering length a which typically has to be
determined in experiments [29].

So ultracold one component fermionic atoms are well described by a free Fermi
gas. For ultracold bosons in conventional conditions is justified to substitute the
actual scattering potential by a contact interaction fully described by the s-wave
scattering length a

V(x) → 4πa
m

δ(x) (2.2)

In 1D the δ-interacting bosons model (Lieb-Liniger-model) may be solved analyti-
cally using Bethe-ansatz [52, 53].

The presence of nearby bound states may significantly change the scattering
properties. For a model of two scattering channels corresponding e.g. to two in-
ternal states of the colliding particles, the admixture of the closed channel can lead
to a typical resonant behavior in the scattering cross section. Such Feshbach reso-
nances have been first discussed for nuclear physics [54] and applied to collisions
of cold atoms where, remarkably, the scattering length may be changed by mag-
netically shifting the bound state due to its different Zeeman effect [55]. Typically
a Feshbach resonance can be described by its width ∆B and position Br by

a(B) = abg (1− ∆B
B − Br

) (2.3)

where abg is the off-resonant background scattering length [29]. Feshbach reso-
nances are extensively employed in current cold atom experiments to tune the in-
teraction strength [56, 57]. It is also possible to induce Feshbach resonances opti-
cally via one- or two-photon transitions [58, 59].

2.1.3 Cooling of neutral atoms

The radiation pressure force may be exploited to dissipatively trap and cool neu-
tral atoms within Doppler cooling schemes. Temperatures down to the Doppler-
temperature TD = h̵Γ

2kB
can be realized (Γ is the spontaneous emission rate). For

typical Alkali experiments TD is of order of 100µK [60]. In a magneto optical trap
(MOT) a superimposed inhomogeneous magnetic field may be employed to realize
trapping potential for neutral atoms.

Sub-Doppler cooling schemes such as the Sisyphus cooling or sub-recoil cooling
have been invented to realize ∼ µK temperatures. Such laser cooling techniques,
honored by the Nobel prize to S. Chu, C. Cohen-Tannoudji and W.D. Phillips in
1997, offered an essential step on the way to the first BEC. Due to the photon re-
absorption of spontaneously emitted photons such laser cooling schemes cannot be
used for reaching lowest temperatures and quantum degeneracy [60].

The groundbreaking realization of a Bose-Einstein condensation [4–6] in alkali
atoms was achieved by the so called evaporative cooling technique. Atoms are
magnetically trapped. By adiabatically lowering the trap-height atoms with the
largest kinetic energy are evaporated from the trap, such that the average temper-
ature after rethermalization has lowered. Since the necessary ingredient for this
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(a) (b)

Fig. 2.1: Examples for optical lattice potentials. (a) A 2D square lattice generated
by the superposition of two standing waves. (b) Triangular lattice as described in
Ref. [66]. The intensity of the shading means lower lattice potential.

is the reaching of a thermal equilibrium through particle scattering processes, this
cooling technique is not available to identical fermions with contact interactions.

Fermionic atoms may be cooled sympathetically by another species of atoms.
This way Fermi-degeneracy could be reached experimentally [61]. In the presence
of strong dipole-dipole interactions low energy elastic collisions between fermions
are allowed and this way recently a direct evaporative cooling of fermions was
observed[62].

Even though in BEC-experiments incredibly low temperatures have been re-
ported [63], reaching sufficiently low temperatures or entropies per particle for
the observation of certain strongly correlated many body phenomena in particu-
lar in optical lattice experiments remains challenging. Further schemes in partic-
ular for the cooling of quantum many body systems in optical lattices have been
proposed[64] an are being actively explored[65].

2.1.4 Optical lattices

In the seminal proposal of Ref.[7] optical lattices have been introduced as a key el-
ement for the realization of strongly correlated systems in cold atom experiments
without the need to increase the scattering lengths which also affects the conden-
sate lifetime due to inelastic collisions.

The coherent superposition of counter-propagating lasers is used to create a
periodic trapping potential for ultracold atoms. Two retro-reflected lasers E =
e sin(kx +ωt) may form according to Eq.(2.1) a standing wave potential

Vlat = −Vx sin2(kx) . (2.4)

It is favorable to introduce the lattice depth Vx given in units of recoil energies
ER = h̵k2/2m. The period of the lattice is d = π/k, half the laser-wavelength λ. Two
and three dimensional square-lattices (Fig. 2.1 (a)) may be generated by superim-
posing different pairs of standing waves with orthogonal polarization such that no
interference terms appear[29]. While in the one or two dimensional lattices the ra-
dial or axial confinement is given by the overall Gaussian profile of the laser beams,
which may be considered as an external (harmonic) trapping potential, for a three
dimensional lattice the particles are strongly confined in all three spacial directions

Vlat(x, y, z) = −Vx sin2(kx) −Vy sin2(ky) −Vz sin2(kz). (2.5)
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Fig. 2.2: Scheme of the Bose-Hubbard model Eq.(2.10). Particles tunnel with a tun-
neling rate J. The occupation of two particles per lattice site results in an energy
offset U.

In most cases of this work we will consider such situations. The different strengths
of the lattice depths Vx,y,z may be tuned separately allowing for the emulation of
strongly correlated gases in effectively one, two or three dimensions.

Ref. [66] discusses the creation of triangular optical lattices

Vtriang(r ≡ (x, y)) = V0 [sin2 (b1 ⋅ r/2) + sin2 (b2 ⋅ r/2) + sin2 ((b1 + b2) ⋅ r/2)] , (2.6)

by superposition of three lasers with the wavevectors b1 =
√

3key, b2 =
√

3k(
√

3ex/2−
ey/2) and b3 =

√
3k(

√
3ex/2+ ey/2) forming angles of 2π/3 with each other. Choos-

ing a different polarization also hexagonal lattices can be created [66].
Nowadays various further geometries are at hands of the experimentalists. By

the incoherent superposition of a blue detuned triangular lattice with wavelength
λ and a red detuned triangular lattice with half the wavelength a Kagome lattice
has been prepared[67]. In [68] three retro-reflected laser beams where employed for
generation of a very tunable lattice configuration including square and honeycomb
geometries.

In the future even more flexible lattice configurations and manipulation possi-
bilities might become available using holographic-projection techniques [69].

2.2 The Bose-Hubbard model

2.2.1 Single particle eigenfunctions

Bloch’s theorem states that eigenstates of a periodic potential, i.e. the eigenstates of

Ĥ = p2

2m +V(x) with V(x) = V(x + d) may be chosen as eigenstates of the translation

operator Td ∶ x → x + d. Hence they are periodic functions u(n)
q (x) = eiqxu(n)

q (x + a),

with a quasi momentum q defined in the Brillouin-zone −π
a < q < π

a . u(n)
q is the

Bloch-wavefunction of the n-th band of the system. For a finite lattice depth one
typically observes a finite energy-gap between the different bands.

While Bloch wavefunctions are completely delocalized over the whole lattice it
is favorable to introduce a basis-set of wave-functions, the Wannier-functions w(x),
which are strictly localized to a given lattice site [7],

w(x) = ∑
q

eiqxu(n)
q . (2.7)

For deep lattices we may approximate the lowest Wannier-function by the Gaus-
sian groundstate wharm(x) = e−(x/l)2/2/

√√
πl of a harmonic oscillator potential with

frequency ω0 =
√

4ERVx/h̵ and l = dV−
x 1/4/π. In the limit of deep lattices the band

gap is of the order ω0.++
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2.2.2 Tight binding approximation

The second quantized form of the Hamiltonian for interacting bosonic particles in
a trapping potential is given by

Ĥ =∫ dx3Ψ̂†(x)(− h̵2

2m
∇2 +V(x)) Ψ̂(x) + (2.8)

+ 2πash̵2

m ∫ dx3Ψ̂†(x)Ψ̂†(x)Ψ̂(x)Ψ̂(x) (2.9)

Following Ref. [7] one may expand bosonic field operator in basis of Wannier-
functions Ψ̂(x) = ∑i âiw(x − xi) and obtain a tight-binding approximation of the
model

ĤBH = −∑
⟨ij⟩

Jij â†
i âj +∑

i
(εi − µ)n̂i +∑

i

U
2

n̂i(n̂i − 1) . (2.10)

This is the Bose Hubbard (BH) Hamiltonian with effective parameters for hopping
Jij, interaction U and chemical potential µ. Here the basic assumption is that all of
the physics is sufficiently described by the lowest Bloch-band, which is valid for a
sufficiently deep lattice depth.

The effective model parameters are given by

U = aS
4πh̵2

m ∫ dx3 ∣∣w(x)∣∣4 (2.11)

and

Jij = −∫ w∗(x − xi) [−
h̵2

2m
∇2 +VL(x)]w(x − xj) . (2.12)

Units are typically given by the recoil energy ER = h̵2k2

2m . For the one dimensional
tunneling an accurate description is given by Mathieu characteristics a and b [29]

J = ER

4
(b1 (

vx

4
) − a0 (

vx

4
)) ≈ 4√

π
v3/4

x e−2
√

vx ER . (2.13)

For an optical lattice potential of the form VL = ER∑3
j=1 vj sin2(k xj) the Wannier-

functions separate to w(x, y, z) = wx(x)wy(y)wz(z) and J does not depend on the
lattice-dimension. Within the harmonic approximation we find

Uharm =
√

8π(vxvyvz)1/4(kaS) ER . (2.14)

In Fig. 2.3 we display J and U for a square lattice as obtained by a numerical cal-
culation of the Wannier-functions in a square lattice. The harmonic approximation
yields reasonable results.

2.2.3 Mott to superfluid transitions

Contrary to the Fermi-Hubbard model the Bose-Hubbard model (2.10) is not ana-
lytically solvable in general. Exceptions are the trivial limits U → 0

Ĥtun = −∑
⟨ij⟩

Jâ†
i âj + µ∑

i
n̂i = ∑

k
(−2J cos(k) − µ)â†

k âk, (2.15)
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Fig. 2.3: Tight binding model parameters for a typical Alkali lattice gas (here 40K
with as ≈ 160aB, λ = 1030nm, vy = vz = 35ER and ER ≈ 4.9kHz, see chapter 9). The
picture shows U and J from numerically calculated Wannier functions (solid lines).
The dotted lines denote the approximations Eq. (2.13) and (2.14).

in which the groundstate is given by a fully delocalized state with a quasi-momentum
k = 0, and the limit J → 0

ĤJ=0 = ∑
i

U
2

n̂i(n̂i − 1) − µni. (2.16)

In the latter case the groundstate is completely localized with an integer number
of n particles at each site for n − 1 < µ/U < n, i.e. a pure Fock state ∣n⟩MI = ∏x ∣n⟩x.
These two groundstates are connected to different quantum phases, the superfluid
(SF) and the Mott-insulator (MI) phase.

We obtain an intuitive understanding of the phase diagram by some simple
mean field treatment. Starting from the MI-groundstate of Eq. (2.16) with energy
E(0)

n = U
2 n(n−1)−µn we calculate the energy correction of the perturbation by Ĥtun

which, introducing the condensate density ψ = ⟨a†
i ⟩ = ⟨ai⟩ may be written as

Ĥtun ≈ −ψ(a†
j + aj) (2.17)

Up to second order in ψ the groundstate energy is given by

En ≈ E(0)
n + rnψ2 + . . . (2.18)

with rn = 1 + n+1
µ−Un +

n
U(n−1)−µ . For rn > 0 a vanishing condensate density ψ = 0

minimizes this energy corresponding to the MI phase, for rn < 0 we find ψ ≠ 0 and
the SF phase. From the condition rn = 0 we obtain the second order phase boundary
within this Landau paradigm depicted as a dotted line in Fig. 2.4.

Due to the Mermin-Wagner theorem [70] in 1D not even at zero temperature
continuous symmetries may be broken spontaneously. Contrary to the mean field
statement, hence, there cannot be an ordered phase with a true long range order.
In one dimension critical phases are described by conformal field theories. Here all
correlations decay algebraically and in the one-dimensional SF phase hence a quasi-
long-range order is seen by the slow power-lay decay of single particle correlation
functions ⟨b†

i bi⟩. In the MI phase this correlation function decays exponentially. The
MI phase is characterized by the hidden parity order

O2
P ≡ lim

∣i−j∣→∞
⟨exp[iπ ∑

i<l<j
δnl]⟩ (2.19)
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with δn = n̄ − n̂.
For one-dimensional systems the groundstate phase diagram obtained by nu-

merical (DMRG) calculations is shown in Fig. 2.4. An accurate description of the
phase boundary has been obtained as well by means of higher order perturbation
theory [71]. The phase transition at unit filling has been estimated numerically to
U/J ≈ 3.37 [72] using DMRG. This value substantially deviates from the mean-field
prediction U/J ≈ 11.7. For higher dimensions the MI-SF transition has been calcu-
lated using QMC techniques (e.g. [73]) and, as expected, both shape and extend of
the Mott-lobes are much better reproduced by the mean field treatment.

2.2.4 Bosonization

A more detailed description of the one-dimensional quantum phases may be ob-
tained by means of bosonization techniques, which we will briefly introduce in
this subsection. Following [35] and [52] we identify bosonic operators with their
collective fields, density ρ(x) and phase fluctuations θ(x),

b†
j → ρ(xj)1/2e−iθ(xj) (2.20)

with ρ(x) ≃ ρ0 − 1
π ∂xφ neglecting the contribution of higher harmonics. ρ0 is the

average density and xj = j ⋅ a the position of site j (in the following we typically set
a = 1 and, for convenience, h̵ = 1). Phase and density fluctuations θ and ∂xφ fulfill
the commutation relations [θ(x), ∂yφ] = iδ(x − y).

With this one finds for the BH model assuming a weak coupling U ≪ J

Ĥ = v
2π ∫ dx [π2

K
(∂xφ)2 +K(∂xθ)2] , (2.21)

with vK ≈ ρ0/2m and v/K ≈ U/π2. The low energy description Eq. (2.25) generally
even holds for the description of the strong coupling superfluid regime, or more
generally, any one dimensional critical Luttinger liquid phase. Here, however, the
simple identification of sound velocity v and Luttinger liquid parameter K with
the microscopic parameters has to be renormalized. For completeness we mention
that for few cases v and K may be calculated analytically such as for the (extended)

0 0.1 0.2 0.3 0.4

J / U

0

1

2

3

µ
 /

 U

ρ = 3

ρ = 2

ρ = 1
J

c
 = 0.305

ρ = 0

J
c
 = 0.180

SF

1D Bose Hubbard

Fig. 2.4: 1D phase diagram of the BH model (2.10) with the SF-phase and Mott-
lobes at filling ρ = 1, 2 and 3 obtained from DMRG calculations (solid lines) and
mean field approach (2.17) (dotted line).
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hardcore (U → ∞) Bose-Hubbard model (2.36) restricted to nearest neighbor inter-
actions

K = π

2 arccos (− V
2J)

, v =
Jπ

√
1− V2

(2J)2

2 arccos ( V
2J)

, (2.22)

Hence, for the limit V → 0 we obtain K = 1, which corresponds to the case of free
spinless fermions.

From model (2.25) we may evaluate correlation functions [35]. For the single-
particle one obtains

⟨b̂†
i b̂j⟩ ∼ ∣i − j∣−1/2K . (2.23)

For the density density correlations the result is

⟨ninj⟩ = ρ2
0 −

K
2π2∣i − j∣2 +⋯ (2.24)

where the ellipsis includes subleading corrections, including the oscillatory term
∼ cos(2πρ0r)∣i − j∣−2K.

In the presence of a lattice the so called Umklapp-processes in which particles
are scattered to states with an integer number of reciprocal lattice vectors difference
introduce additional terms such as

ĤUmklapp ∼ ∫ dx cos (2pφ(x) + δx) . (2.25)

δ describes the doping away from a commensurate particle filling of an integer
number of n bosons every p sites. Renormalization group methods for this sine-
Gordon models show that for a commensurate density δ = 0 for K < 2/p2 the
cos-term dominates and fluctuations of φ become strongly suppressed. This case
corresponding to a strong localization of the particles is the MI phase. The continu-
ous transition between MI and SF phase is of Berezinskii-Kosterlitz-Thouless (BKT)
type [74, 75]. Here universally K = 2/p2 and the gap opens exponentially slow.

Introducing a finite doping δ ≠ 0 oscillations in the cos-term annihilate its effect
at large distances and the system in the low energy limit returns to a LL/SF phase.
The phase transition is of commensurate-incommensurate (C-IC) type which may
be analyzed using refermionization techniques. The critical Luttinger-liquid-parameter
takes the universal value K = 1/p2.

Conformal field theory offers a powerful tool for the description of Luttinger-
liquids in finite size system and finite temperatures. For open boundary condition
of a chain of size L the result Eq. 2.23 becomes [76]

⟨b̂†
i b̂j⟩ ∼

⎡⎢⎢⎢⎣

√
d(2i, 2L)d(2j, 2L)

d(i + j, 2L)d(i − j, 2L)
⎤⎥⎥⎥⎦

1/2K

+⋯ , (2.26)

with the cord-function d(x, L) = L∣ sin(πx/L)∣/π.

2.2.5 External potential

In typical optical lattice experiments the Gaussian-shape laser-beams introduce an
external confinement to the finite size system that in most cases may be assumed
to be harmonic

Vtrap(x) = ω2
trap(x − L/2)2 . (2.27)
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Fig. 2.5: (a) Density profile ⟨ni⟩ of the BH model in an external harmonic confine-
ment (2.27) at different values of the hopping strength J/U = 0.02 and 0.16 (L = 60
sites). The observed wedding cake structure for strong U/J can be understood
within the local density approximation (b).

The external trap has a severe impact on the observability of quantum phases. For
a spatial slowly varying trapping potential we may employ the local density ap-
proximation assuming a locally homogeneous system with a chemical potential

µ(x) → µ −Vtrap(x) (2.28)

Hence, we observe the so called wedding-cake structure, with different regions
and plateaus corresponding to the (gapped and gapless) quantum phases realized
at µ(x) in an homogeneous system (see Fig.2.5).

2.2.6 Observability

Ultracold quantum gases offer fascinating possibilities for the experimental detec-
tion and analysis of quantum states and phases prepared in the lattice. Contrary
to traditional condensed-matter experiments, it is possible the directly observe the
quasi-momentum distribution or even in-situ occupation.

The time of flight (TOF) imaging has become to one of the standard methods
for the analysis of quantum gases. After a sudden turning off of the confining and
lattice potential a contact interacting gas expands freely according to its initial mo-
mentum distribution. The density of atoms of the atomic cloud may be measured
using light absorption imaging. The real space density of atoms at position X after
a long time of flight is given by the initial momentum distribution [77]

n(r) ≈ m
t

n(Q) (2.29)

where Q = mx
t . This can be related to the lattice quasi momentum distribution via

n(Q) = ∣w̃(Q)∣2n(k) (2.30)

Here k = dQ mod 2π corresponds to the quasi-momentum in the lattice and w̃ is
the Fourier transform of Wannier-function of the lattice. The whole TOF picture
hence contains several copies of the initial momentum distribution with an overall
envelope ∣w̃(Q)∣2. Similarly, an adiabatic switching off of the lattice depth leads to
a conservation of the quasi-momentum k and allows for the direct imaging of the
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occupations of different Brillouin-zones. This band mapping technique has been
applied to measure the population of higher excited bands and Fermi-surfaces [78,
79]. A detailed analysis of TOF images allows for the detection of higher order
correlations [77].

During the recent years the realization of “quantum gas microscopes” [69, 80]
has opened the amazing possibility to directly observe on-site particle densities in
an optical lattice. The experimental scheme relies on the implementation of a high-
resolution optical imaging system. After the state-preparation or experimental se-
quence a sudden ramping up of lattice depth pins the atoms to fixed lattice sites and
projects the many-body wavefunction to a certain Fock-space snapshot. Shining in
resonant light causes a fluorescence of the atoms which allows for a cooling and
imaging of their positions but also causes strong inelastic light induced collisions
and two-body losses. Hence, within this technique it is possible to image precisely
the atom number modulo two. This allowed for example for a direct observation of
the wedding cake-structure [80] or measurements of complicated correlations such
as parity order in MI phases[81] in groundstates or time dependent evolutions [82]
by averaging over several snapshots of the quantum phases.

2.3 Extensions

Several extensions or generalizations to the previously introduced scenario of (Bose)
Hubbard models have received a large interest in both theory and experiment. In
the following we will present few of them including multicomponent Hubbard
models, dipolar-quantum gases and models with 3-body interactions.

2.3.1 Spinor gases

Spinor gases, i.e. quantum gases with an additional internal spin degree of free-
dom, in optical lattices [7, 83] offer a fascinating possibility to study quantum mag-
netism and lattice models which resemble electronic degrees of freedom in solid
state systems but may as well, for more that two internal states, go substantially
beyond the standard condensed matter paradigms.

Generically spin S particles in an optical lattice can be described by the Hamil-
tonian

Ĥ = J∑
σ
∑
⟨i,j⟩

c†
σicσj + ĤI (2.31)

where the interaction part is

ĤI = ∑
i

∑
{σ1,σ2,σ4,σ3}

Vσ1,σ2,σ4,σ3 c†
σ1ic

†
σ2icσ3icσ4i . (2.32)

Here c†
σ1i (cσ1i) creates (annihilates) a particle with spin σ1 at site i. Since s-wave

contact interactions do not break rotational symmetry the total spin F of the two
colliding particles is a good quantum number such that σ1 + σ2 = σ3 + σ4 and the
contact interaction potential of two spin S particles may be decomposed as [84, 85]

Vσ1,σ2,σ4,σ3 = ∑
F=0..2S

gF

2
∑

M=−F...F
⟨M, F∣σ1σ2⟩⟨σ3σ4∣F, M⟩ . (2.33)
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Here gF = U aF4πh̵2

m denotes the coupling strength of the F-channel, aF the corre-
sponding scattering length and U = ∫ dx3 ∣∣w(x)∣∣4 accounts for the lattice on-site
wavefunction. Due to the symmetry of the Clebsch-Gordon coefficients ⟨σ3σ4∣F, M⟩
only certain scattering channels are allowed depending on the statistics of the atoms:
For fermions since orbital wavefunction has to be symmetric to allow s-wave scat-
tering, the total spin state has to be antisymmetric. Thus only channels contribute
if F + 2S is odd. Analogously for bosons F + 2S has to be even.

Thus the simplest nontrivial interaction Hamiltonians only contain density-
density interactions

• Spin 1/2 fermions: ĤI = g0n− 1
2
n 1

2

• Spin 1/2 bosons: ĤI = g1
2 (n 1

2
n 1

2
+ n− 1

2
n− 1

2
) + g1n− 1

2
n 1

2

• Spin 1 fermions: ĤI = −g1 (n0n1 + n−1n0 + n−1n1)

However as soon as more components come into play there is also the possibility
for spin-changing collisions. For spin-1 bosons the Hamiltonian is given by

ĤI =
g0 + 2g2

6
n0n0 +

g2

2
(n1n1 + n−1n−1) + g2 (n0n1 + n−1n0) +

2g0 + g2

3
n−1n1

+ g2 − g0

3
(c†

0c†
0c1c−1 + c†

−1c†
1c0c0) (2.34)

For some typical experimentally accessible alkali-species, such as the F = 1 man-
ifold of 87Rb both g0 ≈ g2. This case looks - accidentally - like a SU(N)-symmetric
like spinor gas. In this context recently alkali-earth and similar (e.g. ytterbium)
quantum gases have received a lot of attention[86]. Due to their closed shell spin-
orbit coupling does not lead to a hyperfine splitting and an almost perfect SU(N)-
symmetry is realized.

In chapter 9 we will discuss in detail physical properties of spin 3/2 alkali
fermions at half filling.

2.3.2 Dipolar quantum gases

Nowadays active research is focused on the understanding and experimental pro-
duction of dipolar quantum gases [87, 88]. The dipolar interaction due to its anisotropy
and long range character decaying as 1/r3 adds radically new features to the quan-
tum gas. The interaction potential between two externally aligned dipoles with
angle θ between the polarization direction and their position, is given by [87]

Udd(r) = Cdd

4π

1− 3 cos2 θ

r3 . (2.35)

Today various realizations of dipolar gases are being explored in experiments.
Several ultracold atom-species with a strong magnetic dipole moment have been
brought to quantum degeneracy, such as chromium [89], dysprosium [90] or er-
bium [91]. Metastable Rydberg–dressed atomic gases [92, 93] exhibit a huge elec-
tric dipole moment however present difficulties due to their short lifetime. Recently
also ultracold lattice gases of polar molecules have been realized in several experi-
ments [15, 94]. Dipolar interactions give rise to exotic phenomena such as roton-like
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dispersion minima [95], d-wave symmetric collapse [96] or Rosenzweig instability
in ferrofluids [97].

In one-dimensional lattice systems we are in particular interested in the long
range character of the dipole-dipole interactions, which is described by the ex-
tended (Bose-)Hubbard model

ĤeBH = −∑
i

Jâ†
i âi+1 + H.c.+∑

i

U
2

n̂i(n̂i − 1) +∑
i≠j

V
∣i − j∣3 n̂in̂j . (2.36)

Recently this model has been realized with erbium atoms [16].
Let us briefly review the quantum phases that may be found in a one-dimensional

realization of the extended Bose-Hubbard model at unit filling. This model has
been extensively studied for repulsive interactions in Refs.[98–100], which may be
understood from an approximate mapping of the model to a spin-1 system [101]
by identification of ∣0⟩ → ∣−⟩, ∣1⟩ → ∣0⟩ and ∣2⟩ → ∣+⟩ . For the limit J → 0 we
may immediately understand the emergence of two regimes depending on the ra-
tio U/V. For dominant on-site interactions a usual MI phase is found, for dominant
nearest-neighbor interactions a (charge) density wave (DW or CDW) . . . ∣2020⟩ . . .
with a spontaneously broken translational symmetry is stabilized. The latter, corre-
sponding to a Néel phase in the spin-1 system, is characterized by the CDW-order
parameter

OCDW ≡ lim
j→∞

(−1)j⟨nini+j⟩ (2.37)

The transition between CDW and MI is of first order. Interestingly, for a finite
hopping J > 0 a gapped intermediate phase with a hidden string order[99]

O2
S ≡ lim

∣i−j∣→∞
⟨δni exp[iπ ∑

i<l<j
δnl]δnj⟩ (2.38)

emerges. This so called Haldane-insulator (HI) phase can be understood as a kind
of diluted CDW-phase in which the alternating sequence 0 and 2 may be inter-
rupted by a sequence of 1. Parity order O2

P vanishes in the HI. In section 3.2.1 we
will review a simple archetype of the Haldane phase.

Many other unconventional quantum phases are expected in such kind of mod-
els such as supersolids, a devil’s staircase of coulomb crystals [88]. Interestingly
for non-local interactions the Mermin-Wagner theorem does not hold and contin-
uous symmetry breaking phases may be found in models with long-range interac-
tions [102].

In Ref. [103] creation of exotic effective models with dominant three body inter-
actions between neighboring sites by microwave-dressing of polar molecules was
proposed. In chapter 5 we study this possibilities in the context of frustrated lattice
models.

2.3.3 Dissipation and the Zeno-effect

Sources of loss or decoherence in cold atom experiments due to the interaction of
a quantum system with its environment have been thought to be a severe obstacle
in the precise experimental study of quantum states. However, they may be even
exploited for the preparation of certain interesting quantum systems [104, 105].

In particular three-body losses, ubiquitous in cold gas experiments, have re-
cently been suggested to allow for the engineering of a three body on-site hard
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Fig. 2.6: (a) Quantum optical scheme for the loss process. (b) Master equation ap-
proach for losses in a 2-site Bose-Hubbard-model (t = 1, U = 0). The inset shows
change of particle number for the 3-body-loss for different values for γ3 = 0, 1, 10.
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core constraint: Central result of the seminal work by Daley et al. [106] is that a
large three body loss processes with decay rate γ3 ≫ ∣J∣ will give rise to an effective
strong three body repulsion

(b†
i )3 = 0 . (2.39)

The underlying principle may be understood from the quantum Zeno-effect: A
large loss rate, acting as observer of the quantum state, will dynamically suppress
the generation of three-body occupation on a given site.

The suppression of three-body occupation has been hinted in recent experi-
ments [107]. Analogously it was shown for a cold gas of Feshbach-molecules [108]
that strong two-body losses lead to an effective (two-body) hardcore constraint.

In Fig. 2.6 (a) we sketch a simplified quantum optical picture of the system: Two
discrete states are coupled via a process Ω which corresponds the hopping t of one
particle. The second state is coupled to the continuum via a loss mechanism - e.g.
inelastic 3-body collisions. The effective loss-rate Γe f f has to take into account the
probability density of ∣3, 0⟩ in the new continuum of states, which has a Lorentzian-
shape [109]. So for γ3 ≫ 1 one finds Γe f f ∼ Ω2

γ3
[108].

As pointed out in [106] one may formally express three-body losses in the lattice
system in the following form of a Lindblad-type master equation

∂tρ = −i (Ĥe f f ρ − ρĤe f f ) +
γ3

12
∑

i
2b3

i ρ(b†
i )3 (2.40)

with Ĥe f f = Ĥ− i γ3
12 ∑i b3

i (b†
i )3. In Fig. 2.6 (b) the master-equation (2.40) is integrated

for a given time starting from a pure state ∣2, 1⟩ (from ∣1, 1⟩ for the case of two-body-
losses) and we display the change in particle number over that period. For small
loss-rates we find a steep increase of particle losses with γ3 ≪ 1. For sufficiently
big γ3 ≫ 1, however, the losses are strongly suppressed.

The three-body constraint opens exciting novel scenarios for Bose-gases with
attractive interactions, including color superfluids in spinor Bose gases [110] and
pair-superfluid phases [106, 111, 112].

Different proposals [113, 114] involving additional laser-couplings could allow
for the generation of fully tunable on-site three-body interactions.



32 2.4. Real time control

2.4 Real time control

One of the most interesting features of experiments with cold quantum gases is
the possibility to almost arbitrarily study and manipulate the behavior of quan-
tum systems in real time [29] which offers unique possibilities for the study of out-
of-equilibrium systems. Contrary to the relatively broad understanding of equi-
librium properties, the physics of non-equilibrium quantum systems is much less
clear [115], since theoretical approaches are often restricted and also numerical sim-
ulations can only deal with short time evolutions.

One of the most interesting questions which is subject of a long-standing contro-
versy is how and whether isolated quantum systems once driven out of equilibrium
may reach stationary state, i.e. may be described by an thermal equilibrium canoni-
cal (Gibbs) ensemble. Cold atom experiments such as [116, 117], which are to a large
extent isolated form their environment, help in understanding these fundamental
properties of quantum manybody systems. The particular case of integrable mod-
els does not reach thermal equilibrium [116], but should rather be described by a
generalized Gibbs ensemble including further conservation laws[118]. It has been
conjectured that non-integrable systems could first reach a intermediate prether-
malized state, described by a generalized Gibbs ensemble [117, 118] and then at
larger timescales reach full thermalization.

The breaking of ergodicity in disordered systems due to Anderson–localization [119]
has been observed in cold atom systems with random laser potentials in 1D [120],
2D [121] and 3D [12]. Recently many-body localization, i.e. localization in excited
states on an interacting many-body system, has turned into the focus of active re-
search [17, 122].

The dynamics and defect creation of a driving through a continuous phase tran-
sition between a disordered and an ordered phase is described by the classical
Kibble-Zurek mechanism [123, 124] which may be generalized to quantum systems
[125]. Among many other experiments e.g. in superfluid Helium [126] the Kibble-
Zurek like scaling has been hinted in several experiments in ion crystals [127] or
BECs [128, 129].

The observability of single lattice sites [69, 80, 130] has opened the possibility
to directly image light-cone like spreading of correlations in a lattice system [82],
which allows for example for the possibility of studying open questions of Lieb-
Robinson bounds in bosonic quantum systems.

In the chapters 7, 8, and 9 we explicitly study the non-equilibrium properties
of some aspects of lattice models implying quasi-adiabatic processes and sudden
quench scenarios, relevant for experiments [131, 132].

2.5 Fast periodic modulations

The fast periodic modulation of certain degrees of is an ubiquitous tool in many ar-
eas of physics for the engineering and probing of various systems ranging from
NMR probes in solid state physics to atom-light interactions or Raman-dressed
states. During the recent years lattice shaking techniques have established them-
selves as toolbox for the creation of effective Hamiltonians in cold atom systems.
The idea of Floquet-engineering is based on the effective averaging of fast periodic
drivings to obtain a effective time-independent Hamiltonian description with dif-
ferent novel properties. Below we will briefly present the underlying principles for
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(a) (b)

Fig. 2.7: (a) Lattice shaking scheme for the generation of an effective tunneling
Je f f = J0(K0). (b) Experimentally observed reduction of the modulus of the effec-
tive tunneling. Figs. are adapted from Ref. [133].

the resulting effective time independent Hamiltonians and discuss several related
properties.

A prominent example is the modulation of the spacial position of optical lat-
tices [134], lattice shaking. By for example direct micro-mechanical modulation of
the position of a retro-reflecting mirror of the lattice lasers it is possible to shake the
lattice periodically in time

Vlat(t) = Vlat(x − r(t)) (2.41)

with e.g. r(t) = A cos(ωt). As shown in [133, 135] for a fast modulation this sit-
uation may effectively be described by a lattice model with a modified hopping
rate

J → Je f f = JJ0(K/h̵ω) , . (2.42)

with the amplitude K = md2A/h̵ and the zeroth order Bessel-function J0. Inter-
estingly tunneling may be strongly reduced or even completely suppressed which
allows to drive a superfluid (SF) to Mott insulator (MI) transition [136]. A changing
of sign of the hopping rate was successfully shown to emulate frustrated classical
magnetism [1] in a 2D-system of bosonic atoms. Experimentally it is possible to
modify the shaking function almost at will and a different shaking scheme than a
pure sinusoidal modulation Eq. (2.41) may lead to complex effective hopping am-
plitudes. This way tunable gauge potentials [137] have been demonstrated. We will
explore these ideas in chapter 5. In Ref. [138] the coupling of different Bloch-bands
via lattice-shaking techniques was exploited for the generation of strong interac-
tion between different spin-components. This particular methods opens interesting
properties to create tunable band structures in optical lattices.

Recently, these ideas have been extended to fast periodically modulated inter-
actions [44, 45, 139]. We will discuss these concepts more in detail in chapter 7.

2.5.1 Floquet analysis

The action of time periodic Hamiltonians

Ĥ(t) = Ĥ(t + T) (2.43)

with period T = 2π/ω may be formalized employing the Floquet theory. Analog to
Bloch-wave functions for a spatially periodic Hamiltonian, the Floquet-theorem [140,
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Fig. 2.8: Quasi-momentum distribution for lattice-shaking as demonstrated in [134]
for bosons in a L = 5 site lattice using Eq.(2.49) with a quasi-adiabatic ramping of
the shaking amplitude over 100 cycles (U/J = 3, ω/J = 14, unit filling). (a) SF to MI
transition for a ramp to K

h̵ω = 2.4 (b) Inversion of the sign of the tunneling element
for K

h̵ω = 3.8.

141] ensures the existence of a set of solution to the time dependent Schrödinger-
equation of the form

Ψn(t) = un(t)eiεnt/h̵. (2.44)

with time-periodic functions un(t) = un(t + T) being the eigenstates of H(t) − ih̵∂t.
The real quasi-energies εn are just defined up to a multiple of a photon-energy
mh̵ω. Following [134, 142] it is useful to choose a Floquet basis in a composite
Hilbert space of the original lattice problem and time-periodic functions

∣{nj}, m⟩ = ∣{nj}⟩ eimωt (2.45)

One may introduce a scalar product on the composite space which includes a time-
averaging

⟪⋅∣⋅⟫ = 1
T ∫

T

0
dt⟨⋅∣⋅⟩. (2.46)

The basis is (ideally) chosen in such a way that the resulting Hamiltonian ⟪{n′j}, m′∣H(t)−
ih̵∂t∣{nj}, m⟫ becomes time-independent. The matrix consists of several blocks,
with the diagonal blocks m = m′ corresponding to one Floquet-sector, coupled by
off-diagonal blocks. For a fast modulation, if block separation h̵ω is larger than
any other energy scale of the system, we may neglect the coupling between dif-
ferent Floquet-sectors and describe the system with the time-independent effective
Hamiltonian given by ⟪{n′j}, m∣H(t) − ih̵∂t∣{nj}, m⟫.

2.5.2 Lattice shaking

For the case of a lattice shaking (2.41), we employ a unitary transformation [143]

Ũ = e−
i
h̵ ∫

t
0 dt′ mr̈(t′)

2 − i
h̵ ṙ(t)xe

i
h̵ ṙ(t)p (2.47)

to the comoving frame

Ĥ → ŨĤŨ† − ih̵Ũ∂tŨ† = p2

2m
+Vlat(x) −mr̈(t)x (2.48)
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Hence, reintroducing the tight binding approximation and interaction terms in this
frame the lattice shaking maps to a force described by a modulation of a lattice tilt

Ĥ = ĤBH +K(t)∑
j

jn̂j . (2.49)

Note that, since r(t) is time periodic and unbiased this is as well true for its deriva-
tives r̈. For this reason initial phases do not play a role in the creation of complex
hopping amplitudes as we will discuss in chapter 7.

We now may employ another unitary transformation

Û = e−
i
h̵ V(t)∑j jn̂j (2.50)

with V(t) = ∫ t
0 K(t′)dt′ and arrive at a time-dependent tunneling phase

Ĥ → −J∑
i

â†
i e−iV(t) âi+1 +∑

i

U
2

n̂i(n̂i − 1) (2.51)

Now we may use the Floquet-formalism as shown above and obtain the Floquet-
matrix[134]

⟪{n′j}, m′∣H(t) − ih̵∂t∣{nj}, m⟫ = δm,m′ [⟨{n′j}∣Hint∣{nj}∣⟩ + h̵ωm]+

+
⎛
⎝∑j

j(n′j − nj)
⎞
⎠

m′−m

Jm′−m ( K
h̵ω

) ⟨{n′j}∣Htun∣{nj}∣⟩

(2.52)

Hence, for a high frequency behavior we effectively yield a usual Bose-Hubbard
model Hamiltonian Eq.(2.10) with an effective tunneling rate given as in Eq. (2.42).

In Fig. 2.8 we demonstrate the validity and properties of the effective model
Hamiltonian for a small system. Following Ref. [134] starting from a SF-groundstate
we quasi-adiabatically ramp up the shaking amplitude to a particular value of K

h̵ω .
After keeping the amplitude constant for some cycles and monitoring the momen-
tum distribution of this state we slowly lower the shaking amplitude in order to
prove that coherence of the state has not been lost during this scheme. Initially the
momentum distribution exhibits a peak at 0 modulo 2π. For K

h̵ω = 2.4, the first root
of the Bessel-function, the momentum distribution becomes flat corresponding to
a MI-state with localized particles (see Fig. 2.8 (a)). In Fig. 2.8 (b) we show that the
sign of the effective hopping may even be inverted for J0 ( K

h̵ω
) < 0. Here we find

peaks of the momentum-distribution at π.

2.5.3 Lattice depth modulation

We will discuss some further aspects of effective modulated Hamiltonians for the
example of lattice depth modulations, as demonstrated in Ref. [144]. The weak
modulation of the intensity of the lattice lasers may result in a strong modulation
of the tunneling matrix element J + δJ(t) due to its exponential dependence of the
lattice depth. The interaction strength U will basically remain unaffected for typ-
ical modulations amplitudes (in [144] the modulation strength around 15% of the
original intensity is employed). The model Hamiltonian is given by

Ĥ = (J + δJ(t)) Ĥtun + Ĥint . (2.53)
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Fig. 2.9: Comparison of the full time evolution (2.53) and the effective model (2.60)
for lattice depth modulation (δJ = 0.8J, U = 4, L = 6 unit filling, ω = 80) for different
initial phases.

For a sinusoidal modulation δJ(t) = δJ sin(ωt+φ) we obtain the Floquet-Hamiltonian

⟪{n′j}, m′∣Ĥ(t) − ih̵∂t∣{nj}, m⟫ = δm,m′ [⟨{n′j}∣JĤtun + Ĥint∣{nj}∣⟩ + h̵ωm]+

+ δm′,m+1i
δJ
2

eiφ⟨{n′j}∣Ĥtun∣{nj}∣⟩+

− δm′,m−1i
δJ
2

e−iφ⟨{n′j}∣Ĥtun∣{nj}∣⟩ . (2.54)

2.5.4 Higher order corrections

So far (and in the remaining part of this work) we have restricted the analysis to
one Floquet sector neglecting couplings between the blocks. One may include this
influence in a perturbative sense including higher order corrections in 1/ω. These
higher order terms may play an important role in the model. E.g. they have been
employed for the simulation of the next nearest neighbor hopping in the Haldane
model[145].

Following the presentation of [145–148] we can express the effective Hamilto-
nian as a series in 1/ω

Ĥe f f = Ĥ(0)
e f f + Ĥ

(1)
e f f +O( 1

ω2 ) (2.55)

The terms of the average effective Hamiltonian employing Magnus expansion[149]
may be written as

Ĥ(0)
e f f =

1
T ∫

T

0
dt1Ĥ(t1) (2.56)

Ĥ(1)
e f f =

−i
2T ∫

T

0
dt2∫

t2

0
dt1[Ĥ(t2), Ĥ(t1)] (2.57)

Expressing the time dependent Hamiltonian as a Fourier series

Ĥ(t) = Ĥ0 +∑V(k)eikωt (2.58)
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one yields

Ĥ(0)
e f f = Ĥ0 (2.59)

Ĥ(1)
e f f =

1
ω
∑

k

1
k
([Vk, V−k] − [Vk, Ĥ0] + [V−k, Ĥ0]) (2.60)

Convergence of this expansion may be given far away from low lying resonances.
An alternative derivation of effective higher order Hamiltonians is presented in
Ref. [146] where the initial phases are treated separately.

We illustrate the influence of these corrections for the case of lattice depths
modulation. For a sinusoidal modulation obviously V(1) = i/2eiφĤtun and V(−1) =
−i/2e−iφĤtun and

Ĥ(1)
e f f =

iUδJ
ω

cos φ∑
i

b†
i bi+1 − nib†

i bi+1 + H.c. (2.61)

In Fig. 2.9 we show the time evolution of the occupation with odd numbers of par-
ticles per site nodd, as can be studied in lattice microscopes for a system initially
prepared in a MI state. At time t = 0 the lattice depth modulation is immediately
turned on and we compare the results obtained by the full time dependent Hamil-
tonian (2.53) and the effective model (2.60). Note that this setting implies that the
zeroth order effective model would not show any time dependence. Interestingly
the effective model depends strongly on the initial phase of the modulation. For a
cosine-modulation the first order corrections vanish as shown in Fig. 2.9.

2.5.5 Resonances

In the presence of resonances the Magnus expansion (2.60) breaks down. The effec-
tive Hamiltonian may be described by the off-diagonal blocks of Floquet-Hamiltonian.
A typical scenario is to exploit such resonance conditions to restore a coherent tun-
neling behavior in initially tilted lattices. As described e.g. in [150] due to static
tilt ∆∑j jnj the tunneling is strongly suppressed. For the specific choice of a lat-
tice shaking with h̵ω = ∆ it may be restored due to the off-diagonal couplings of
different Floquet sectors (corresponding to a rotating wave approximation). The
effective tunneling is given by

J → JJ1 (
K

h̵ω
) (2.62)



38 2.5. Fast periodic modulations

and the tilt is eliminated due to absorption of emission of photons h̵ω. We will em-
ploy this idea extensively for the generation of synthetic gauge fields in the chapters
10 and 8.

A detailed numerical study of effective and resonant behavior for the case of lat-
tice shaking has been performed in [151] where (multi)photon resonances to par-
ticle hole excitations have been identified. In Ref. [144] different resonances are
mapped out by the observation of the doublon-occupation in the presence of an
additional strong tilt. In Fig. 2.10 we simulate such an scenario using the full time
evolution of Eq. (2.53) for a small system. One may clearly observe several reso-
nances in the number of produced doublons.



Chapter 3

Numerical Principles

Main aspects of this work to a large extent rely on numerical simulations. For the
study of ground-state physics we will employ exact diagonalization (ED) and den-
sity matrix renormalization group (DMRG) techniques in 1D or ladder-like systems
with open and periodic boundary conditions. In some cases dynamical properties
and quench simulations will be performed using both exact digitalization and the
time evolving block decimation (TEBD or tDMRG) algorithm. DMRG and TEBD
methods can be readily applied to the simulation of systems in the thermodynamic
limit (iDMRG/iTEBD). Connections to two dimensional systems will be made by
means of cluster mean field (CMF) techniques.

3.1 Exact diagonalization

One of the main numerical tasks in this work reduces to the solution of the time-
independent Schrödinger-equation, i.e. the eigenvalue problem Ĥ ∣Ψ⟩ = E ∣Ψ⟩. Suf-
ficiently small systems may be diagonalized exactly.

For cases in which we may write down the complete matrix-representation of
Ĥ in a given basis it is possible to calculate the full energy spectrum with different
numerical techniques such as the QR-method [152]. For such full diagonalization
problems various highly optimized program libraries such as LAPACK [153] exist.
The computational complexity for the full diagonalization of a large D × D matrix
scales typically as ∝ D3. However, the fundamental problem of computational
many particle quantum physics lies in the exponential growth of Hilbert-space D
dimension with the system size L. In Tab. 3.1 we illustrate this property for the
simple example of a spin-1/2 system. Without further reductions of Hilbert space
dimensions due to symmetries (see below), a full diagonalization of a spin-1/2 sys-
tem with more than L = 14 sites becomes very demanding on modern desktop-
computers.

Since we are mainly interested in low energy properties of the ultracold quan-
tum gases, the knowledge of the lowest eigenstate and its first excitations is often
sufficient. Iterative methods offer a computationally cheaper way for the approxi-
mation of certain parts of the spectrum. In particular Lanczos- or Arnoldi-methods
allow for the calculation of eigenstates with the largest or lowest eigenenergy. The
underlying principle of the Lanczos-algorithm is the generation of a set of orthonor-
mal basis vectors, similar to a Gram-Schmidt-method, of the Krylov-space belong-
ing to Ĥ [154], i.e. the vector-space build from

{v, Ĥv, Ĥ2v, ...} ,

where v is an (arbitrary) initial state. In this basis Ĥ acquires a tridiagonal form
H̃. If we stop this process after few iterations #it ≪ D the eigenvalues of H̃ ap-



40 3.1. Exact diagonalization

proximate the largest amplitude eigenvalues of Ĥ with high precision. The rest of
the spectrum is approached with less accuracy, one difficulty being that the multi-
plicity of eigenvalues is typically not correct. It turns out to be favorable in many
cases not to keep the (typically sparse) matrixH in memory but to evaluate matrix-
elements just in time when the matrix-vector multiplication is performed. For such
an iterative diagonalization procedure it is sufficient to keep three vectors of full
Hilbert-space dimension in computer memory.

Exact-diagonalization techniques can readily be applied to simulate dynami-
cal problems or thermodynamic properties. For a time-independent Hamiltonian
we obtain the time evolution operator U = eiĤt/h̵ solving the Schrödinger-equation
ih̵ ∣Ψ(t)⟩ = Ĥ ∣Ψ(t)⟩, which is given in its diagonal matrix form after a full diag-
onalization. For an iterative Lanczos process a good approximation is given by
U ≈ eiH̃t/h̵ using the initial state of the Lanczos sequence v = Ψ(0). Time-dependent
situations can be solved by an approximate integration scheme, such as Crank-
Nicholson or Runge-Kutta methods [152].

3.1.1 Symmetries

As illustrated in Tab. 3.1 further symmetries of the underlying Hamiltonian should
be exploited to substantially reduce the amount of memory and CPU-time needed
for the simulation. With the use of symmetries the Hilbert-space can be restricted
to a smaller subspace corresponding to a given (set of) quantum-numbers and the
Hamiltonian will acquire a block-diagonal form. Central and possibly involved
part of an exact diagonalization algorithm is, hence, the construction of the appro-
priate set of symmetric basis vectors [154]

Apart form a reduction of computational complexity calculating excited states
corresponding to certain quantum-numbers has been exploited as tool for the pre-
cise location of phase transitions and properties [155]. This so called level spec-
troscopy is based on the observation that a quantum phase transition often can be
related to a fundamental change in symmetry of ground and excited states. Using
exact diagonalization methods we may precisely locate crossing points for several
finite system sizes (see chapter 5) and try to extrapolate to the thermodynamic limit.

The (Bose-)Hubbard or spin-chain models discussed in this work typically con-
serve the total number of particles

N = ∑
i

ni (3.1)

L D = 2L double-vector DN=L/2 = ( L
N) DN=L/2,k=0

4 16 128 B 6 2
8 256 2 kB 70 10
16 65 536 512 kB 12 870 810
24 16 777 216 128 MB 2 704 156 112 720
30 1 073 741 824 8 GB 155 117 520 5 170 604

Table 3.1: Full Hilbert-space dimension d and amount of memory needed for the
storage of one vector of type ”double“ for spin-1/2 chains of different length L.
DN=L/2 and DN=L/2,k=0 denote the dimensions of blocks with conserved particle
number N = L/2, and conserved linear momentum k = 0, resp.
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or the total magnetization Sz and for periodic boundary conditions a quasi momen-
tum, corresponding to the translational invariance

T ∶ b(†)
i → b(†)

i+l (3.2)

with l being the periodicity of the unit-cell. In most cases a spacial inversion sym-
metry is given

I ∶ b(†)
i → b(†)

L−i, (3.3)

which allows to group the eigenstate into symmetric and antisymmetric states with
respect to I. Another example of a discrete symmetry group which is important for
fermionic Hubbard models is the particle hole transformation

Q ∶ c†
i,σ → (−1)ici,σ̄, ci,σ → (−1)ic†

i,σ̄. (3.4)

Many spin or spinor-gas models exhibit higher symmetries and Ĥ is invariant un-
der rotational SU(2) or SU(N) operations. Computationally the representation of
the Hamiltonian in such non-abelian symmetric forms becomes very involved but
allows for the simulation of large and complex systems (e.g. [156]).

3.2 Matrix product states

Even though utilizing symmetries and employing iterative methods the computa-
tional complexity still scales exponentially with the system size which defines fun-
damental limits of these approaches. A way out of this dependence of exploding
Hilbert-space dimensions is based on the variational principle. A good approxima-
tion of the ground state ∣Ψ0⟩ may be found by minimization of the energy over an
appropriate choice of a variational manifold,

E0 =
⟨Ψ0∣ H ∣Ψ0⟩
⟨Ψ0∣Ψ0⟩

≤ ⟨Ψ∣ H ∣Ψ⟩
⟨Ψ∣Ψ⟩ ∀Ψ ∈ H. (3.5)

The variational principle has turned out to be very powerful in the description
of various problems ranging from quantum chemistry [157] to fractional quantum
Hall physics [158].

A trivial class of ansatz-states for a variational manifold of a lattice problem are
product states. E.g. for a Hilbert-space of local dimension d per lattice site a general
product state is given by

∣P⟩ = ∑
σ1...σL

c[1]σ1 ⋅ c[2]σ2 ⋅ ... ⋅ c[L]σL ∣σ1...σL⟩ = ∣α1⟩ ∣α2⟩ ... ∣αL⟩ (3.6)

Here we need d complex numbers c[i]σi ∈ C for each site, where ∣αi⟩ = ∑σi
ci

σi
∣σ1⟩

where we should employ a normalization condition ∑σi
∣c[i]σi ∣2 = 1. Obviously we

just need L ⋅ d ≪ dL coefficients to describe this manifold completely. This simple
variational class also known as Gutzwiller mean-field approach has been applied
to describe the Bose-Hubbard model [7, 159]. Since these states are not entangled in
particular their capability for the description of one-dimensional systems is ques-
tionable.
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A much more general class of ansatz-functions is obtained by choosing the co-
efficients c[i]σi to be matrices instead of complex numbers.

∣MPS⟩ = ∑
σ1...σL

C[1]σ1 C[2]σ2 ...C[L]σL ∣σ1...σL⟩ . (3.7)

Here C[1]σ1 and C[L]σL are column- or row-vectors resp. such that the total matrix-
product is a (complex) number. DMRG and related methods rely on these so called
matrix product states (MPS) which have been developed to an important tool of
theoretical physics and led to important progress in the fields of quantum informa-
tion theory and strongly correlated matter during the past decades [23].

Indeed, MPS are the most general variational class on a lattice system with finite
local Hilbert-space dimension d [160]. Choosing the matrix-dimension M to be
large enough we may recast any arbitrary state

∣Ψ⟩ = ∑
σ1...σL

cσ1...σN ∣σ1...σL⟩ .

in from of an MPS. Following Ref. [23] we interpret the coefficients as a matrix
cσ1,(σ2...σL) = cσ1...σN which may be decomposed by a singular value decomposition
(SVD)

cσ1,(σ2...σL) = (USV†)σ1,(σ2...σN) = ∑
α

Uσ1,αSα,αV†
α,(σ2...σN) . (3.8)

Here U and V are orthogonal matrices of dimensions (d × d) and (dN−1 × dN−1). S is
diagonal (but not quadratic) and contains the so called singular values that can be
chosen to be real and positive. The SVD of the coefficient matrix corresponds to a
Schmidt-decomposition of the state in a left and right part with

∣Ψ⟩ = ∑
α

Sα ∣ΦL
α⟩ ⊗ ∣ΦR

α ⟩ , (3.9)

with ∣ΦL
α⟩ ∈ U and ∣ΦR

α ⟩ ∈ V†. Renaming the column vectors of U as Γ[1]σi and
expressing the product V as new coefficients ca1,σ2...σL we obtain

∣Ψ⟩ = ∑
σ1,(σ2...σL),a1

Γσ1
a1

S[1]
a1 ca1,σ2...σL ∣σ1...σL⟩ . (3.10)

We may now continue with this process by decomposing the new coefficient matrix
c(a1,σ2),(σ...σL). Finally we yield a MPS-form of ∣Ψ⟩

∣Ψ⟩ = ∑
σ1,σ2...σL ,

a1,a2,...aL

Γ[1]σ1
a1 S[1]

a1 Γ[1]σ2
a1,a2 S[2]

a2 ...S[L−1]
aL Γ[L]σL

aL ∣σ1...σL⟩ (3.11)

Obviously this representation is exact and generally the matrix dimension M
would show the same exponential scaling as the Hilbert-space dimension. If we
restrict the matrix dimension M to a finite number M ≪ D we still have a very
accurate approximation ∣Ψ̃⟩ of ∣Ψ⟩ if we keep the Schmidt-vectors ∣ΦL

α⟩ correspond-
ing to the largest M singular values Sα. In fact, as shown in [23], this procedure
minimizes the functional

∣∣∣Ψ⟩ − ∣Ψ̃⟩∣∣2 =
RRRRRRRRRRR

RRRRRRRRRRR
∑
a,b

(Ψa,b − Ψ̃a,b) ∣Ψa
L⟩ ∣Ψb

R⟩
RRRRRRRRRRR

RRRRRRRRRRR

2

= Tr ((Ψ − Ψ̃)†(Ψ − Ψ̃)) , (3.12)
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where Ψ̃a,b should a matrix of rank M. Generally such a truncated SVD can be
shown [152] that be the best approximation of a matrix A with a matrix AM of rank
M with respect to the spectral norm ∣∣A − AM∣∣ = inf B∈Rm×n ,

rank(B)=M
∣∣A − B∣∣. For weakly

entangled states, in particular describing one dimensional gapped quantum sys-
tems, this procedure is highly efficient (see chapter 4). Here it can be shown [160])
that the Schmidt-values decay exponentially with their spectral position α,

λα ∝ e−χα , χ > 0 . (3.13)

Different to a simple product-state an MPS may obviously be entangled and
correlated. Overlaps or expectation values of two MPS may be efficiently evaluated
by contracting iteratively the tensors from the boundary [23]

⟨Ψ̄∣Ψ⟩ = ∑
σL

C̄[L]σL†( . . .(∑
σ2

C̄[2]σ2†(∑
σ1

C̄[1]σ1†C[1]σ1)C[2]σ2) . . .)C[L]σL , (3.14)

In DMRG we will typically use a sightly different MPS representation, the mixed
canonical form

∣Ψ⟩ = ∑
σ1...σN

A[1]σ1 ...A[l]σl Cl B[l+1]σl+1 ...B[N]σN ∣σ1...σN⟩ . (3.15)

The matrices fulfill a normalization condition

∑
σi

A[i]σi
†
A[i]σi = 1 , ∑

σi

B[i]σi B[i]σi
† = 1 , and Tr (C†C) = 1 . (3.16)

During the last years there has been intense activity generalizing MPS to higher
dimensional systems [161], operator-products[162, 163], continuum systems[164]
and many more [23]. Apart from providing a very general variational class of quan-
tum states that may be used for the approximation of a given state by a product of
local matrices, for certain models MPS may describe an analytical ground-state so-
lution. While this can be generalized very much in detail [165], in the following we
will just present two simple very common examples.

3.2.1 AKLT

Ian Affleck, Tom Kennedy, Elliott Lieb und Hal Tasaki [166] describe the construc-
tion of an analytical ground state to the bilinear-biquadratic spin-1 Hamiltonian

HAKLT = J∑
n

SnSn+1 −
1
3
(SnSn+1)2 , (3.17)

expressed by an MPS (or valence-bond-state) of matrix dimension M = 2. The
AKLT state is given by

C+ = 1
2

σ+ , C0 = 1
2

σ− , C− = 1
2

σz , (3.18)

S=1 S=0 S=0 S=1 1/2 1/2

Fig. 3.1: Scheme of AKLT-state.
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where σ± and σz denote the spin-1/2 Pauli-matrices. This state is a paradigm of
the ground states of the Haldane-phase. The spectrum of model (3.17) is gapped
and the AKLT state exhibits a finite string-order (2.38), that corresponds to a hidden
diluted antiferromagnetic order. Indeed one may easily see that the AKLT state just
contains non-zero contribution of states like ∣. . . 00+ 00− 0+−000+ . . .⟩ in which the
states ∣+⟩ are followed directly by ∣−⟩ with an intermediate string of an arbitrary
number of ∣0⟩.

In its original interpretation Eq.(3.18) may be understood as follows. Each spin-
1 is expressed in form of two symmetrized internal spin-1/2 states (see Fig. 3.1).
Due to the antiferromagnetic interaction the spin-1/2 states on neighboring sites
prefer to form a singlet state ∣↑1↓2⟩ − ∣↓1↑2⟩. Hamiltonian (3.17) can be written in
terms of local projectors to the subspace of total spin Ji = Si + Si+1 = 2. Since always
two internal spins form a singlet the total spin cannot be 2 and, hence, the AKLT
state is ground state of (3.17) with energy 2JL

3 . Interestingly, in this construction the
two boundary spin-1/2 remain ungrouped in an open boundary system and lead
to a 4-fold degeneracy of the AKLT state. With periodic boundaries all spin-1/2 are
grouped and the degeneracy is lifted which illustrates the topological character of
the Haldane phase.

3.2.2 Majumdar-Gosh

A very early example of an exact MPS ground-state is the Majumdar-Gosh-state [167]
given by

C↑ =
⎛
⎜
⎝

0 1 0
0 0 −1
0 0 0

⎞
⎟
⎠

, C↓ =
⎛
⎜
⎝

0 0 0
1 0 0
0 1 0

⎞
⎟
⎠

(3.19)

which is ground state of the isotropic spin-1/2 chain with next-nearest neighbor
coupling

ĤMG = ∑
i

SiSi+1 +
1
2

SiSi+2 . (3.20)

This state belongs to a gapped dimerized phase build from paired singlets between
neighboring sites ∣...(↑↓ − ↓↑)i,i+1(↑↓ − ↓↑)i+2,i+3...⟩.

3.3 DMRG

DMRG in its basic idea is an algorithm for the variational approximation of a quan-
tum (ground-)state by an MPS via the relaxation of the problem to local optimiza-
tions. It was invented in 1992 by Steve White [168] as an improvement of the nu-
merical renormalization group. Later it was interpreted as a variational approach
for MPS [169] and afterwards it has received important contributions and improve-
ments from the quantum information theory. Today, DMRG has established itself
as a quasi-standard for the analysis of low-dimensional systems allowing for the
calculation of results with in principle numerical precision.

Through the years DMRG has provided important insight in an enormous class
of one-dimensional systems, e.g. spin-chains [170], bosons and fermion Hubbard
models, spinor gases [50] and quasi-1D systems e.g. square [42] and triangular
ladders [38] with two or more legs [171]. DMRG provides in a natural way in-
formation on entanglement properties which have been shown to offer important
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Fig. 3.2: Scheme of the 2-site DMRG algorithm. (a) iDMRG or warmup process.
(b) Sweeping through the finite lattice back and forth iteratively the variational
ground-state solution is improved.

insight in the properties of a given quantum states and phases [172–174] and will
be discussed in chapter 4.

Although with MPS we have an excellent variational class at hand, the min-
imization of the energy functional (3.5) with respect to the entries of the tensors
C[i]σi

ai−1,ai generally results in a high dimensional non-linear problem. The DMRG al-
gorithm searches a solution to this problem by a minimization of the tensors in
one or two local sites. For the so called two-site DMRG algorithm we rewrite the
Hamiltonian as

H = ∑
k

Hk
L ⊗ Hk

i,j ⊗ Hk
R , (3.21)

separated into a left, right and so called system part. Now we can express the local
minimization as an eigenvalue problem

H̃
a′σ′i σ′j b′

aσiσjb
Xaσiσjb = EXa′σ′i σ′j b′ (3.22)

Here the operator H̃

H̃
a′σ′i σ′j b′

aσiσjb
= ∑

k
(H̃k

R)
a′

a
(H̃k

L)
b′

b
(Hk

i,j)
σ′1,σ′2

σ1,σ2
(3.23)

contains the left and right contractions of the MPS H̃R and H̃L (which may be ob-
tained from the previous step) and Xa′σ′i σ′j b′ denotes the local wavefunction. The
eigenvalue problem is typically solved using a Lanczos algorithm and may be dras-
tically sped up taking into account an initial guess from previous iterations [175].
As described above we may now use a truncated SVD procedure on Xaσiσjb to re-
cover an updated MPS representation of this state.

Fig. 3.2 (a) illustrates the first part of a traditional finite system size DMRG
procedure that iteratively builds up a mixed canonical MPS representation for an
increasing system size. This infinite DRMG (iDMRG) procedure may be employed
to approximate bulk-properties of an infinite chain [176]. Alternatively we may
start from a randomly chosen initial state. After this initialization we iteratively
sweep through the system as illustrated in Fig. 3.2 (b) to obtain a very accurate
MPS description of the finite system.

The errors of a DMRG calculation stem from mainly three sources[176]: the
iterative numerical diagonalization, a lack of convergence within the class of MPS
states and, most importantly, the restriction to a finite matrix dimension M. This,
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so called truncation error depends on the weight of the discarded singular values
during the DMRG procedure

p =
D
∑

α=M+1
S2

α = 1−
M
∑
α=1

S2
α . (3.24)

It can be shown [176]), that the error of the ground-state energy is proportional to
p.

Although being known to be best implemented in one-dimensional open bound-
ary systems DMRG has been extended to systems with periodic boundaries[177]
and infinite systems for calculations in the thermodynamic limit[175, 178]. In two
dimensional lattices DMRG-calculations being performed along a one dimensional
path covering the lattice introduce fictitious long range interactions and become
extremely costly. However, recently DMRG has been providing important insight
into two dimensional frustrated models where QMC-simulations suffer from the
”negative-sign problem“ for example deciding the longstanding question of the
spin-liquid ground state of the Heisenberg antiferromagnet in Kagome lattices by
simulation of large-scale cylinders[179, 180].

As for exact-diagonalization procedures, in DMRG the use of appropriate sym-
metries plays an important role. In the DMRG calculations performed in this work
we will typically restrict to additive abelian quantum numbers [176], as well as
parity and inversion symmetries [181]. During the recent years DMRG has been
extended to SU(2)-symmetries [182, 183] and the possibility to obtain momentum
eigenstates [184] has been shown.

3.4 Time dependent simulations

Within the MPS-framework the simulation of dynamics may be treated in vari-
ous ways. As long as dynamics is restricted to Hamiltonians with a local sup-
port the adaptive time-evolution methods like the time evolving block decima-
tion (TEBD) [160, 185] algorithm, or the adaptive t-DMRG [186] method, allow for
the simulation of real and imaginary time evolutions by application of a Suzuki-
Trotter-decomposed time-evolution operator to a given MPS.

Following the breakthrough work by Vidal [160, 185] an efficient time-evolution
of an MPS may be implemented for Hamiltonians which may be decomposed
to operators acting only locally on neighboring sites (or single sites). Hence the
Hamiltonian may be recast as

Ĥ = ∑
i
Ĥ2i,2i+1 + Ĥ2i+1,2i+2 = Ĥeven + Ĥodd (3.25)

Using a Suzuki-Trotter decomposition of the time-evolution operator UĤ(t) = e−iĤt

we may write a time propagation for a short time step δ as

∣Ψ(t + δ)⟩ = UĤeven
(δ)UĤodd

(δ) ∣Ψ(t)⟩ , (3.26)

or using a second order decomposition

∣Ψ(t + δ)⟩ = UĤeven
(δ/2)UĤodd

(δ)UĤeven
(δ/2) ∣Ψ(t)⟩ . (3.27)
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Fig. 3.3: Scheme of the iTBED algorithm for a time-evolution decomposed in 3 site
operators. The MPS is represented by circles (for the tensors Γ[i],σi

ai−1,ai ) and diamonds
(representing S[i]

ai−1,ai ). Obviously here the (first order) Trotter decomposition has
to be applied consecutively in three steps such that all bonds are covered. The
arrows indicate the ordering of the (set of) additive quantum numbers. For an
iTEBD variant at the edge of an unit cell a shift Qtot has to be introduced.

Since even and odd terms commute the two-site time-evolution operators UĤi,i+1
(δ) =

e−iĤi,i+1t may be applied independent from each other, which allows for a paral-
lelization of the program-code. After the application of one two-site operator we
have to restore an MPS representation which is possible using a single SVD as de-
scribed above (3.10). In practice again the finite matrix dimension M is (compared
to the error resulting from the Trotter-decomposition) the main source of errors.
The accessible timescale, hence, strongly depends on the amount of entanglement
created during the evolution which the variational class has to be able to capture:
Thus in this framework sudden quench simulations are typically restricted to small
timescales while e.g. slow quasi-adiabatic preparations may be studied for very
long times [47]. It is straight forward to apply the TEBD algorithm to more than
two site operators allowing for example for the simulation of next-nearest neigh-
bor coupling Hamiltonians [187]. This situation is sketched in Fig. 3.3.

TEBD offers a simple alternative for the calculation of ground states by applica-
tion of an imaginary time evolution to an arbitrary initial state ∣Ψ0⟩

∣Ψgr⟩ = lim
τ→∞

e−Ĥτ ∣Ψ0⟩
∣∣e−Ĥτ ∣Ψ0⟩ ∣∣

. (3.28)

Ref. [178] introduces an extension of this algorithm to an infinite system with
the MPS representing a finite size unit-cell of the system which in this approach
should be at least two sites. This technique allows for the calculation of ground-
state properties, similar to iDMRG, and time evolutions directly in the thermody-
namic limit.

As for the DMRG algorithm we allow for conserved additive quantum numbers
in the iTEBD algorithm. As sketched in Fig. 3.3 the quantum numbers q are defined
as average per unit-cell, such as Qtot-particles per l sites. The arrows in Fig. 3.3
indicate the monotonic growth of q. As described in [175] we have to introduce at
the last site of a unit-cell a shift relating q +Qtot → q.
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Fig. 3.4: (a) Parity-, (b) string- and (c) CDW order parameters of the extended Bose-
Hubbard model the presence a weakly coupled 2D environment (U = 4, L = 80) for
an attractive inter chain coupling δV.

3.4.1 Mixed states

These before mentioned algorithms are generally designed for pure quantum states.
However, mixed states may be treated by the so called purification trick [162, 188]:
Any mixed quantum state, a density matrix describing an e.g. equilibrium finite
temperature system, may be expressed by a pure state in a - by an auxillary sys-
tem - enlarged Hilbert space. Taking the partial trace over the auxiliary, which
may be a copy of the original system, one recovers the original density matrix. The
real or imaginary time evolution algorithms for pure states may now be employed:
Starting from an infinite temperature state, where the purification is known to be
a maximally entangled state of original and auxiliary system, an imaginary time
evolution applied to this initial MPS allows for the preparation and study of sys-
tems at lower temperatures[189]. Subsequent real time evolutions may be applied
to simulate finite temperature dynamical properties, which has been successfully
used in 1D and ladder spin systems [190, 191].

3.5 Cluster mean field

In order to study cross dimensional effects and the extension to two and higher
dimensional lattice systems beyond the exact study of multiple leg ladder systems
one may employ CMF techniques [192]. These approximate methods offer a simple
and inexpensive treatment of strongly correlated lattice systems in two or higher
dimensions.

The CMF idea describing degrees of freedom by a mean field treatment of an
effective cluster of a certain size goes beyond a standard mean field approach in-
cluding effects of local correlations. Implementing the algorithm we decompose
the model Hamiltonian Ĥ to clusters of connected sites C parqueting the (possibly
infinite) lattice, with the effective Hamiltonian of a cluster being described by

ĤC = Ĥexact + Ĥm f . (3.29)

Here, Ĥexact is the exact Hamiltonian of the cluster and Ĥm f describes the mean-
field decoupled terms connecting the cluster to its neighbors. We iteratively calcu-
late the ground state of ĤC using e.g. exact diagonalization techniques in order to
obain a self consistent solution for the system.

Among many others CMF has been successfully applied to frustrated spin [193]
and boson systems [194], Fermions [195] or square lattices with (possibly den-
sity dependent) magnetic fields [49]. CMF may be combined with the DMRG
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method [196] as a solver, which allows for the treatment of very large clusters. In
particular this opens the - for current optical lattice experiments important - pos-
sibility of simulating arrays of weakly coupled low dimensional systems, which
themselves may be treated in an numerical exact way.

3.5.1 Weakly coupled 1D chains

As an example we study the effect of inter chain coupling in an array of one dimen-
sional chains of dipolar (see chapter 2) particles extending the study of Ref. [99]
in which the analysis was restricted to two leg-ladders and bosonization. For the
CMF method in combination with DMRG it is favorable to neglect a tunneling cou-
pling between the chains. We assume the dipoles to be oriented in such a way that
an attractive inter-chain interaction and a repulsive in-chain interaction is realized.
The total Hamiltonian is given by

Ĥ = Ĥchain + Ĥinterchain (3.30)

with

Ĥchain = ∑
i,j

a†
i,jai+1,j + H.c.+ U

2
ni,j(ni,j − 1) +Vni,jni+1,j (3.31)

Ĥinterchain = ∑
i,j
−δVni,jni,j+1 (3.32)

In order to perform the CMF technique we decompose the inter chain Hamiltonian
as Eq. (3.29)

Ĥm f ≈ ∑
i
−δVni⟨ni⟩ (3.33)

introducing L mean fields {⟨ni⟩}.
As shown in Ref. [99] the marginal inter chain coupling does not immediately

destroy the HI phase. Up to a coupling of δV ≈ 0.3 we observe a region of vanish-
ing parity but non-vanishing string-order as shown in Fig. 3.4. For a stronger inter
chain coupling the HI-phase vanishes and a direct apparently first order transition
between the MI and CDW phase is found. The effect of repulsive inter-chain in-
teractions is expected to be similar. Further studies have to clarify the robustness
of this approach concerning the increase of cluster size (e.g. the simulation on an
array of ladders) and map out the complete phase diagram.





Chapter 4

Measurables from Quantum Infor-
mation Theory

During the recent years important advances in the physics of strongly correlated
systems have been obtained by insights originating from quantum information
theory. In particular the understanding of quantum entanglement which is the
fundamental property of any quantum mechanical system, led to important devel-
opments and new algorithms, such as MPS- or PEPS-techniques, suitable for the
simulation and understanding of interacting many body systems.

Here, we will concentrate on some quantities relevant for this work: the entan-
glement entropy and entanglement spectrum as well as the ground-state fidelity-
susceptibility. Other ideas which are subject to active research include multi-partite
entanglement measures, (pair) concurrence [197], or experimentally relevant as-
pects such as the quantum Fisher information [198].

4.1 Entanglement spectrum

If we consider a quantum state ρ on subregion A of a quantum (lattice) system the
reduced state obtained by tracing out the other sites B of the system

ρA = TrBρ (4.1)

is in general not a pure state even if this was the case for ρ. The spectrum of eigen-
values S2

i (l) of the reduced density matrix ρA has hence in general more that one
non-vanishing value.

It is possible to obtain the eigenvalues Sα(l) by means of the so called Schmidt
decomposition as described in Eq. (3.9). For a product state all Schmidt-values
except for one vanish. In all other cases the state is defined to be entangled. It
is one of the most remarkable properties of quantum mechanics that even a pure
quantum state exhibits a non-vanishing entanglement entropy, while in classical
systems a finite entropy characterizes the lack of knowledge about the state [199].

The so called entanglement spectrum Sα(l) - has been shown to offer a sensitive
probe for quantum phases and quantum phase transitions [173, 174, 200–202]. We
compute in particular the gap in the entanglement spectrum,

∆es(l) = ∑
α

(−)αSα(l) . (4.2)

The entanglement spectrum may offer a sensitive probe for the degeneracy of
a ground state in certain cases. In chapter 5 we will observe this property for the
example of the chiral superfluid phase which is characterized by the spontaneous
symmetry breaking of the Z2 symmetry apparent from the vanishing of ∆es.
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4.1.1 Symmetry protected topological phases

In one dimensional systems topological phases may only exist if they are protected
by certain symmetries of the model. Ref. [173] shows that for example the Haldane
phase is stabilized by different symmetries, such as a space inversion, rotation and
time reflection symmetry. As long as not all of these symmetries are broken the
Haldane phase is separate from the large-D (or MI) phase. The degeneracy of the
topological phase is characterized by its twofold degenerate entanglement spec-
trum. We may recover this property from the MPS-representaion of the AKLT state
Eq. (3.18) where we find S1,2 = 1

2 . Similarly a Majorana-fermion phase [203] is char-
acterized by the doubly degenerate entanglement spectrum [204].

4.2 Entanglement entropy

We may quantify the amount of entanglement by the von-Neumann entropy of the
reduced density matrix

SvN = −TrρA log ρA. (4.3)

It has been conjectured that the ground-state entanglement-entropy of gapped local
systems satisfies a so called area law, i.e. that the entanglement growth of the a
given area is proportional to the length of the boundary of the area [199]. Generally
the entanglement entropy of an arbitrary quantum state will grow with the size of
the volume of the considered partition of the state [199].

For one dimensional systems the properties of entanglement entropies are to
a large extend settled analytically. The area law strictly holds for ground states
of local, gapped Hamiltonians. Here the entanglement entropy is bounded by a
constant, independent of the system size [205].

In two dimensions the entanglement entropy has received growing interest
for the identification of topological quantum phases, which can be characterized
by calculation of the non-divergent constant part γ of the entanglement-entropy
S(L) = αL − γ + . . . [206, 207].

4.2.1 Critical phases

For one dimensional gapless phases the area law does not hold. The entanglement
entropy here diverges logarithmically as has been shown using conformal field the-
ory [208]

SvN(L) ∼ c + c̄
6

log L (4.4)

where L is the partition size. Here c and c̄ are central charges for the so called holo-
morphic and anti-holomorphic sectors of the conformal field theory. In the models
studied in this work we always have c = c̄. The central charge depends on basic
properties of the underlying microscopic model, such as the number of effective
degrees of freedom [209]. In Fig. 4.1 (a) we show the logarithmic divergence for a
free fermion model, where c = 1. Eq. (4.4) has been generalized to finite open and
periodic systems [172]

SvN = c
3

log [ L
π

sin
πl
L

] + g . (4.5)
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Fig. 4.1: Entanglement entropy for different free fermion models on a ladder (see
chapter 10) with central charge c = 1 and c = 2 (φ/π = 0.2 and 0.8, J⊥ = 1, ρ = 1/4 as
defined in Eq. (6.14)). (a) Logarithmic entanglement growth with the system size
L. The data are fitted to Eq. (4.4) with c = 0.94 and c = 2.07. (b) SvN for different
partitions of an OBC system with L = 400 rungs. (c) Dependence of the finite-size
oscillations in the OBC data for different systems sizes (c = 1-phase, φ/π = 0.2).

For periodic boundary condition the prefactor has to be replaced by c
6 .

In this work we will frequently calculate the central charge of the system for a
detailed characterization of the ground-state phases and phase transitions. In exact
diagonalization approaches c may be estimated from the scaling of the ground-state
energy

Eg(L)
L

≃ ε∞ − πcv
6L2 (4.6)

which requires the additional calculation of the velocity of sound v. In the age
of DMRG Eq. 4.5 offers a a very accurate tool for the extraction of c. We study
this behavior for the free fermion models, for which we can obtain quasi-analytical
results for SvN [209], in Fig. 4.1 (b) and (c). As seen in Fig. 4.1 (b) one may clearly
distinguish phases with a c = 1 and c = 2 from this approach. For OBC SvN(l)
exhibits small Friedel-like-oscillation due to the proximity of the boundary. With
increasing system size these effects vanish (see Fig. 4.1 (c)).

Interestingly we may also study the entanglement properties directly in the
thermodynamic limit using iDMRG or iTEBD approaches. Here the finite system
size L of the system is replaced by the matrix-dimension M of the MPS representa-
tion which defines an effective correlation length ξ ∝ Mκ with κ = 6/c√

12/c+1
depends

on the central charge c [210]. As shown in [211] we may hence extract c directly
from the scaling of the entanglement entropy

SvN = 1√
12/c + 1

log M . (4.7)

4.3 The ground-state fidelity-susceptibility

The ground state fidelity susceptibility (FS) has established itself as a useful com-
putational tool for locating quantum phase transitions in many-body systems [212,
213]. For a general Hamiltonian Ĥ(λ) = Ĥ0 + λŴ the fidelity susceptibility χW is
a measure for the change of the wavefunctions respect to the “perturbation” Ŵ. If
we expand the overlap or fidelity of a ground state as F = ⟨Ψ0(λ)∣Ψ0(λ + δλ)⟩ we
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find

F = 1+ δλ⟨Ψ0(λ)∣ ∂

∂λ
Ψ0(λ + δλ)⟩ + (δλ)2⟨Ψ0(λ)∣ ∂

2

∂2
λ

Ψ0(λ + δλ)⟩

From the normalization of the wavefunction follows that its absolute values only
contains terms in leading order δλ2

∣F∣ = 1− (δλ)2

2
χW

with the ground state fidelity susceptibility χW and thus [214]

χW(λ) = lim
δλ→0

2(1− ∣F∣2)
δλ2 = lim

δλ→0

−2 ln ∣F∣
(δλ)2

Within second order perturbation theory one may express χW in terms of Matrix-
elements of the unperturbed Hamiltonian

χW = ∑
n≠0

∣⟨Ψn(λ)∣W∣Ψ0(λ)⟩∣2
(En(λ) − E0(λ))2

The FS has been extended to finite temperatures [215] and the thermodynamic
limit [215].

4.3.1 Fidelity susceptibility as indication of quantum phase transitions

The FS may show intriguing scaling behavior at a quantum phase transition as can
be seen from scaling arguments [214, 216] given that the correlation length ξ at a
phase transition diverges as ξ ∼ ∣λ − λc∣−ν for L →∞. Since the fidelity F(λ, δλ) is a
dimensionless quantity close to the phase transition it may be written as [214]

χW(λ ≃ λc) ∼ (δλ)−2 f (L/ξ) = (δλ)−2 f (L(δλ)ν) = (δλ)−2 f̃ (L1/νδλ) (4.8)

Requiring that for finite systems L there may not be singularities one finds that
f̃ (L1/νδλ) ∼ (L1/νδλ)2 and so

χW(λc) ∼ L2/ν (4.9)

Thus the scaling of χF may be used to determine the position and universality
class of some phase transitions. In particular Ising type phase transitions may be
accurately discriminated by the FS due to its divergence χF ∼ L2 with respect to
its wings. However, as will be shown in the following there are cases in which
this scaling behavior becomes unusual. A prominent counter example of a non-
diverging FS is the BKT-phase transition. Here it has been shown recently [217]
that χF/L converges logarithmically as χ/L = χ0 − χ1/ ln(L/a) + ....

4.4 Current fidelity susceptibility and conductivity

The following section is based on the publication Ref. [36] developed in collabora-
tion with A. Kolezhuk and T. Vekua. We consider properties of the FS with respect
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to particular operators such as the current or twist operator. We will observe un-
usual scaling relations of this current fidelity susceptibility (CFS). Carefully analyz-
ing the finite-size scaling of the CFS with respect to the current reveals properties
of the corresponding conductivity.

In the following a hardcore boson (spin-1/2 XXZ-) chain will be used as example

Ĥ(φ) = ∑
j

bjbj+1eiφ + H.c.+∆njnj+1 . (4.10)

For small twist angles φ this may be recast in the form of a chain with the Dzyaloshinskii-
Moriya like coupling (see chapter 5)

Ĥ(φ) = Ĥ(0) + φ Ĵ , (4.11)

with the current operator given by Ĵ = − i
2 ∑j b†

j bj+1 − b†
j+1bj.

4.4.1 Conductivity

An important experimental quantity in the context of transport and currents is the
conductivity σ defined as the linear response to an external electric field E: j(ω) =
σ(ω)E(σ). From the Kubo-formula one obtains the expression [218]

Re σ(ω) = D0δ(ω) + σ1(ω)

with

D0 =
π

L
(−⟨T⟩ − 2∑

m≠0

∣⟨m∣ Ĵ∣0⟩∣2
Em − E0

) = πL(∂2E0(φ)
∂φ2 )

φ=0
(4.12)

and

σ1(ω) = π

Lω
∑
n

∣⟨Ψn(λ)∣ Ĵ∣Ψ0(λ)⟩∣2δ [ω − (En(λ) − E0(λ))] (4.13)

As discussed in Ref. [219] the Re σ(ω) shows a very different behavior in finite
systems with open and periodic boundary conditions. In both cases the total con-
ductivity satisfies the f−sum rule [218, 220, 221]

1
π ∫

∞

0
σ(ω) dω = − 1

2L
⟨Tk⟩, (4.14)

The average kinetic energy ⟨Tk⟩ is independent of the boundary conditions.

Periodic boundary conditions

For PBC we may identify D0 with the so-called Drude-weight D. For the interact-
ing case from Bethe-Ansatz one obtains [218] D(∆) = Ku with the Luttinger-liquid
parameter K and sound-velocity u as defined in Eq.(2.22).

For non-interacting particles the regular part vanishes σ1(ω > 0) = 0 since
the current operator is a conserved quantity [Ĥ, J] = 0 and thus the right part of
Eq. (4.13) vanishes. This is not the case for finite interaction. However, for an ex-
tensive range of interactions σ1(ω > 0) is negligible compared to the Drude-weight-
contribution. Indeed, one may approximate for −1 < ∆ ≲ 1/4 the average kinetic
energy ⟨−Tk⟩ ≃ LKu/π such that already the Drude-contribution almost exhausts
the f -sum-rule (4.14).
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Fig. 4.2: (a) Sketch of the single particle excitations and their degeneracy. The
excitation of energy Em is m-fold degenerate. (b) Conductivity for the XX-model
(non-interacting fermions, L = 37) as defined in Eq. (4.17) expressing δ-functions as
Gaussian distributions.

Open boundary conditions

In the case of OBC one may always gauge out the effect of the twist in Eq. (4.10)
by a redefinition of the bosonic operators bj → bj exp−iφj. Thus D0 = 0 as in the
upper definition (4.12). At first glance this result may seem surprising since the
integrated conductivity should be independent of the boundary conditions as can
be seen by the f -sum rule. Also we expect that in the thermodynamic limit L → ∞
boundary conditions should not play any role. In fact it may be shown that now the
Drude-weight contribution is smeared among several finite frequencies [36, 219].

This may be exemplified for the conductivity of the non-interacting model,
which we calculate assuming an approximately linear spectrum of particle-hole
excitations Em − E0 ≃ uπm/L, as sketched in Fig. 4.2. For all other excitations the
matrix-element of the current operator vanishes and so does its contribution to the
conductivity

σOBC
1 = π

ωL
∑
m>0

ρ(m)∣⟨ψ0∣ Ĵ∣ψm⟩∣2δ(ω − (Em − E0)) (4.15)

The degeneracy of excitations of energy uπm/L is ρ(m) = m. Due to a parity selec-
tion rule the matrix-element is given by

∣⟨ψ0∣ Ĵ∣ψm⟩∣ =
[1− (−1)m]u

mπ
(4.16)

This yields the entire conductivity of the non-interacting case

σo
1 = D(ω) = πu2

Lω

∞
∑
k=0

4(2k + 1)
(2k + 1)2π2 δ (ω − (E2k+1 − E0))

=
∞
∑
k=0

4u
(2k + 1)2π2 δ(ω − (2k + 1)uπ

L
) . (4.17)

A bosonization calculation with open boundary conditions shows [36] that finite
interactions basically just result in a renormalization of the matrix-elements of the
current which now include the Luttinger-liquid parameter K and the renormalized
sound velocity u and, hence,

D(ω) = π

Lω

∞
∑
k=0

4Ku2

(2k + 1)π2 δ(ω − (2k + 1)uπ

L
) . (4.18)



Chapter 4. Measurables from Quantum Information Theory 57

The integrated Drude-weight for OBC coincides with the value for PBC ∫ ∞0 D(ω) dω =
∑K

4Ku
(2k+1)2π2 = Ku.

CFS via conductivity

Comparing the current fidelity susceptibility

χJ = ∑
n≠0

∣⟨Ψn(λ)∣ Ĵ∣Ψ0(λ)⟩∣2
(En(λ) − E0(λ))2 (4.19)

and real part of the conductivity

Re σ(ω)∣ω>0 =
π

Lω
∑
n

∣⟨Ψn(λ)∣ Ĵ∣Ψ0(λ)⟩∣2δ [ω − (En(λ) − E0(λ))] ≡ σ1(ω) , (4.20)

one obtains the following relation between CFS χJ and conductivity σ1

χJ =
L
π ∫

∞

0
dω

σ1(ω)
ω

. (4.21)

It is crucial to note that we may not include ω = 0 due to the lower bound En − E0 ∼
1/L > 0. For systems with periodic boundary conditions χJ is directly connected
to the low frequency behavior of the regular part of the conductivity σ1(ω). For
OBC χJ is determined by the singular part of the conductivity that is essentially the
smeared Drude peak. This leads to different scaling laws in systems with open and
periodic boundary conditions.

4.4.2 Open boundary conditions

For open boundary conditions one obtains a universal quadratic scaling of CSF
with system size. For the XXZ-model one finds generally χOBC

J ∼ L2 as can be easily
shown with the help of Eq. (4.21) and (4.18)

χOBC
J = L

π∫
∞

0
dω

D(ω)
ω

= ∑
k=0

4KL2

π4(2k + 1)3 = 7ζ(3)
2π4 KL2 . (4.22)

Here ζ denotes the Riemann-zeta-function. The equation above as in most of the
cases in this chapter describes the leading order divergence of the CFS. Subleading
orders depend on the regular part of the conductivity.

This unusual super-extensive behavior of CSF may obscure the detection of
phase transitions. We illustrate such “masking” for the example of the attrac-
tive single-component Bose-Hubbard model with an additional 3-body constraint
((b†)3 = 0) (compare chapter 5)

Ĥ = − t
2
∑

j
[b†

j bj+1 + b†
j+1bj] −

id
2
∑

j
[b†

j bj+1 − b†
j+1bj]

+ U
2
∑

j
nj(nj − 1) +U3∑

j
nj(nj − 1)(nj − 2) . (4.23)

As shown in Ref.[106] this model exhibits an Ising-type phase transition between
a gapless SF and a pair SF (PSF) phase. Fig. 4.3 depicts the fidelity susceptibility
with respect to the usual hopping and the CFS close to this Ising phase transition.



58 4.4. Current fidelity susceptibility and conductivity

(a)

0.3 0.4
t

0

1

2

χ
F
 /

 L
100

L

1

10

100

1000

χ
F

t = 0.25
t = 0.33
t = 0.5

U = -1, d = 0 (b)

1 1.5 2
d

0

1

2

3

χ
F
 /

 L

100

L

1

10

100

1000

χ
F

d = 1
d = 1.35
d = 2

U = -5, t = 1

Fig. 4.3: Different fidelity susceptibilities for the attractive Bose Hubbard
model 4.23. χt/L with respect to the hopping t (a) for different system size of (from
bottom to top) L = 16, 32, 64 and 96 sites. The inset shows the scaling of χt for differ-
ent fixed parameters of t. Only close to the phase transition point the divergence of
χt goes with L2 and thus the Ising type phase transition is nicely reveled. However,
for the current fidelity susceptibility (b) the scaling is always as L2 and thus the
divergence at the phase transition is ”masked“. Sub-leading corrections however
lead to a local maximum in χJ still indicating the phase transition point.

Due to the overall L2 scaling of the CFS the latter case does not exhibit a signifi-
cantly divergent peak with respect to the wings as a clear signature of this phase
transition.

Similar observations can be made for the polarization operator P (correspond-
ing to an external electric field for charged particles, or to tilting the optical lattice
for cold neutral atoms).

χo
tilt=

31KL4ζ(5)
8u2π6 (4.24)

Note that, interestingly, the CFS in OBC is proportional to the Luttinger-liquid
parameter K and may be used as a tool for the calculation of K. Similar the ratio of
(4.24) and (4.22) may be used to calculate the sound-velocity of the model.

CFS scaling for OBC from unitary transformation

In the following we present an alternative deviation of the unusual scaling proper-
ties of the CFS. One may eliminate the current term by means of a unitary “twist”
operator

Û[φ] = eiφP̂ , P̂ = ∑
j

jn̂j . (4.25)

Note also, that the current-operator from Eq. (4.11) may be eliminated employing
the transformation above introducing renormalized interactions ∆. With this the
CFS may be expressed in terms of expectation values of the unperturbed ground
state

χOBC
J ≃ (⟨P̂2⟩ − ⟨P̂⟩2) =

L
∑

j,j′=1

(j − j′)2

2
(⟨nj⟩⟨nj′⟩ − ⟨njnj′⟩) . (4.26)



Chapter 4. Measurables from Quantum Information Theory 59

0 0.5 1n

0.01

0.02

χ
J
 /

 L
2

Fig. 4.4: CFS of the fermionic Hubbard model with OBC for (top to bottom) U/t = 1,
2 and 6. The symbols denote the DMRG data for Hubbard chains of L = 128 sites,
solid lines correspond to the analytical expression (4.30).

Using the analytical expressions for the correlation functions [222, 223] whose smooth
part essentially decays as 1/∣j− j′∣2 one arrives at a generalized expression of Eq. (4.22)

χo
J(d, M)

L2 = 7ζ(3)
2π4(1+ d2)2 K(M, ∆̃) +⋯ . (4.27)

where K(M, ∆̃) denotes the Luttinger liquid parameter for a filling M.
Hence, the L2 dependence of the CFS is a generic feature of gapless models with

OBC with conserved n or Sz, a current term that may be eliminated with the unitary
transformation of Eq. (4.25), and correlation functions that decay as 1/∣j − j′∣2.

The repulsive Fermi-Hubbard model

We now examine the ideas from above for the Fermi-Hubbard model

Ĥ0 = −∑
j,σ

(c†
j,σcj+1,σ +H.c.) +U∑

j
n2

j , (4.28)

where cj,σ annihilates a fermion at site j with the spin σ = {↑, ↓}, and nj = ∑σ c†
j,σcj,σ

is the fermion density at the site. For OBC we study the CFS χo
J with respect to the

total current, Ĥ = Ĥ0 + λ Ĵtot, with

Ĵtot = −i∑
j,σ

(c†
j,σcj+1,σ − c†

j+1,σcj,σ) . (4.29)

With the arguments above one obtains

χo
J

L2 = 7ζ(3)
π4 Kc(ν, M) +O( 1

L
), (4.30)

Here ν denotes the lattice filling and M is the magnetization.
In Fig. 4.4 we show how expression (4.30) may be exploited to extract the Luttinger-

liquid parameter Kρ. Comparing both the theoretical values of Eq. (4.30) for differ-
ent fillings and values of the interaction U in which we make use of the analyti-
cally known results for the values of Kρ [224], with numerical results obtained by a
DMRG calculation. Without extrapolation χJ/L2 for one system size L = 128 already
reproduces very accurately the theoretical expectation.
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Fig. 4.5: (a) The finite-size scaling of the CFS χJ in the spin-1/2 XXZ chain with
PBC, for different values of ∆ (taking δd = 10−3). (b) Different fits to χJ/L for ∆ ≥ 0.8
including subleading corrections. At ∆ = 0.8 the data is fitted to Eq. (4.33), 103χJ/L =
1.57 ln L − 2.33. At ∆ = 0.9 and ∆ = 0.94 are fitted according to Eq. (4.34), with
103χJ/L = 2.46L0.33 + 0.84 ln L − 5.55 and 103χJ/L = 1.17L0.5 + 1.11 ln L − 4.44 resp.
The ∆ = 1 results are fitted to Eq. (4.35), 103χJ/L = 4.91(li(4L)/4− L/ ln(4L)) − 3.86.

4.4.3 Periodic boundary conditions

Since the Drude-part for PBC always is located at ω = 0 we do not have to include
it into the calculation of the CFS in Eq.(4.21). Thus the CFS here is determined by
the regular part of the conductivity σ1 enabling us to probe its properties.

A perturbative calculation [35] proposes the following weak coupling relation
for regular conductivity of the XXZ-model

σ1(ω) ∼ ∆2ω8K−5 . (4.31)

We may now use the CFS in PBC to survey this conjecture only performing static
ground-state simulations. From Eq. (4.21) and (4.31) we obtain the following scal-
ing relations in different regimes. The CFS has a usual extensive dependence on
the system size for K > 5/8, i.e. ∆ ≲ 0.8,

χPBC
J ∝ L +⋯, K > 5

8
. (4.32)

However, the situation becomes non-trivial for K ≤ 5/8:

χPBC
J ∝ L(ln L + const) +⋯, K = 5

8
(4.33)

and
χPBC

J ∝ L6−8K +⋯,
1
2
< K < 5

8
. (4.34)

At the BKT-point ∆ = 1 the presence of logarithmic corrections yield the following
scaling

χ
p
J = L [ li(AL)

A
− L

ln(AL) + const] +⋯ ∼ (L/ ln L)2 +⋯, ∆ = 1 (4.35)

where li is the logarithmic integral function. We perform DMRG calculations in
PBC with up to L = 100 sites keeping about m ∼ 1000 states to achieve good ac-
curacy. As shown in Fig. 4.5 the CFS per site saturates quickly for ∆ ≲ 0.8 in ac-
cordance of Eq.(4.32). For ∆ < 0.5 we observe small numerical prefactors of about
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Fig. 4.6: The CFS of a spin- 1
2 ladder defined by (4.36), with OBC, in the vicinity

of the Ising phase transition from the Néel to the rung-singlet state as obtained by
DMRG calculations (JR = 3 and ∆ = 1.5) for system sizes of L = 16, 32, 64 and 128
rungs. The inset again shows the scaling with the system-size for fixed parameters.

∼ 10−4 to 10−3, which can be related to the fact that the contribution from the reg-
ular part of the conductivity to the f -sum rule is small. Fig. 4.5 (b) presents fits
of Eq. (4.33), (4.34) and (4.35) to the numerical data. Including subleading correc-
tions the numerical data is in agreement with the scaling relations and thus nicely
confirms the result of Eq. (4.31).

4.4.4 Gapped phases

In gapped phases the Drude weight disappears. Indeed the whole conductivity
vanishes below an excitation gap ω0. Thus we expect a typical L-scaling of the
CFS as we illustrate for two gapped phases of the antiferromagnetic spin-1/2 spin
ladder defined by the Hamiltonian

ĤLad = ∑
l,α

[Sx
l,αSx

l+1,α + Sy
l,αSy

l+1,α +∆Sz
l,αSz

l+1,α]

+ JR∑
l

Sl,1 ⋅ Sl,2 + d∑
l,α

(Sl,α × Sl+1,α)z. (4.36)

Here α = 1, 2 denotes the two legs of the ladder. This model exhibits a Ising quan-
tum phase transition between the gapped Néel and rung-singlet states. As shown
in Fig. 4.6 the CFS at the phase transition exhibits quadratic scaling of the peak and
in its wings an ordinary L scaling.

4.4.5 Conclusions

In summary we have shown how the fidelity susceptibility can be exploited as a
powerful tool for the analysis of quantum phase transitions. The FS typically ex-
hibits an extensive behavior with the system size L. However, for certain pertur-
bations, in particular the current or polarization operators of a given model, these
scaling relations may become unusual. For OBC we obtain a super-extensive scal-
ing that bears the complication of a possible masking of quantum phase transitions.
We have shown how the CFS in OBC may be exploited as a tool for a direct calcula-
tion of Luttinger-liquid parameters. For PBC we obtain a usual extensive behavior,
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which for the case of the CFS may be exploited analyzing the real regular part of
the conductivity.

In this context interesting extensions are the study of the CFS in larger sys-
tems, or systems with infinite boundary conditions by means of iDMRG or iTEBD
simulations in order to further verify Eq. (4.31). For iDMRG the scaling with the
system size should be replaced by a scaling with the matrix-dimensions which can
be mapped to a correlation length [175]. Other extensions could include the study
of different models with disorder or systems in higher dimensions.



Chapter 5

Ultracold Bosons in Zig-Zag Opti-
cal Lattices

Recent experimental advance in controlling motional degrees of freedom of ultra-
cold bosonic atoms in optical lattices has opened the possibility of simulation of
classical frustrated quantum antiferromagnetism by Struck et al. [1]. Motivated by
this experiment we study the rich physics of strongly correlated triangular (zig-
zag) ladder systems with bosons. This so-called J1-J2-model is one of the simplest
paradigms for frustrated quantum systems and presents a rich physics due to the
interplay between frustrated lattice geometry and interaction.

In the context of quasi one-dimensional magnetic materials [225–227] the cor-
responding spin-model has been extensively studied during the last decades. In
the seminal work of Majumdar and Gosh [167] of the late 60s the famous analytical
solution for the isotropic spin-1/2 J1-J2-model could be given proving the presence
of a dimerized (D) ground state without magnetic field (compare chapter 3). Later
studies revealed the Ising type phase transition between the critical XY and the
D phase [228, 229]. Detailed ground-state properties in different regimes and for
higher spins S > 1/2 have been discussed both numerically and analytically [230–
233], at vanishing magnetic field [234], and with magnetic fields in the ferromag-
netic [235] as well as antiferromagnetic regime [187, 223].

In the following we will discuss the properties of ultracold one-component
bosons in different regimes keeping in mind the strong links to tradition condensed
matter physics. We will show a wealth of ground-state phases including chiral su-
perfluid (CSF) or exotic chiral Mott-insulator (CMI) phases. Various extensions
of the model are discussed, including 3-particle on- and off-site-interactions, and
strongly interacting dipolar molecules and variations of the geometry.

5.1 Frustrated classical magnetism in triangular lattices

Let us briefly review some aspects of Ref. [1] in which classical frustrated mag-
netism was simulated with bosons prepared in 2D triangular optical lattices (see
Fig. 5.1 (a)). This situation may be described by a usual Bose-Hubbard model (2.10)
where we will denote the hopping in the zig-zag directions with J1 and in the hori-
zontal direction with J2. Without additional steps this system is not frustrated since
both J1, J2 > 0.

By means of an elliptical shaking scheme one is able to manipulate the inter-site
hopping-amplitudes J1 and J2 independently. Extending the analysis of Eq. (2.41)
the fast lattice modulation is given by [236]

r(t) = ∆xc cos(ωt)ec +∆xs sin(ωt)es . (5.1)
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Fig. 5.1: (a) Triangular lattice (2.6) as described in Ref. [66]. (b) By incoherent su-
perposition of an additional lattice ∼ sin2(

√
3ky/4−π/4) stripes of zig-zag ladders

are formed. Darker Regions mean lower potential.

The effective hopping now depends on the projection of the modulation direction
on the vector connecting sites i and j, x = xi − xj:

Jij → JijJ (
Kij

h̵ω
) (5.2)

with Kij =
√

(Fcec ⋅ rij)2 + (Fses ⋅ rij)2. Hence by appropriate modulation it is possi-
ble to change the sign of the hoppings. If a plaquette contains an odd number of
antiferromagnetic bonds, hence, for J2 < 0, the system is frustrated.

In Ref. [1] each lattice site represents an elongated tube of the optical lattice
occupied by a large number of particles (ρ ∼ 250 particles per tube). Hence, we
assume that each lattice site may be described by a BEC with well defined local
phase θi and particle density ρi = ρ + δρi. The bosonic operators may be sufficiently
well approximated by classical operators b̂†

i ≈
√

ρ + δρieiθi . For weak interactions
U ≪ Jρ we may neglect density fluctuations [1, 236]. Within this approximation we
yield the following XY-model of classical spins Si = [cos θi, sin θi]

Ĥclass → 2ρ∑
ij

Jij cos(θi − θj) = 2ρ∑
ij

JijSi ⋅ Sj (5.3)

Using TOF measurements Struck et al. are able to reproduce the classical phase dia-
gram including phases with ferromagnetic and rhombic order for the non-frustrated
case, and different types of spiral phases with a spontaneously broken symmetry
for the frustrated part of the phase diagram.

The quantum phase diagram of ultracold bosons in triangular lattices for dif-
ferent values of U has been sketched in Ref. [236]. For small interactions one finds
SF ground-states with spiral or staggered Néel-order. For large interactions in the

U

Fig. 5.2: Scheme of the BH model on a triangular ladder with hopping amplitudes
J1, J2 and interaction U.
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}
Fig. 5.3: Ground-state configuration of the system of classical spins Eq.(5.5) for
J1 = 1 and J2 = −0.1 (top) and J2 = −0.5 (middle and bottom).

spin-1/2 limit it is numerically hinted [237] that at half integer filling spin liquid
phases with exponentially decaying spin-correlations may exist. For antiferromag-
netic interaction Mott-lobes are enlarged due to frustration. Note that the precise
form and properties of the strongly correlated quantum regime are very difficult to
study theoretically, and a quantitative analysis such as Ref. [236] is often restricted
to limiting or weakly interacting cases. In order to circumvent this difficulty we
focus on quasi-one dimensional triangular ladders for which a detailed theoretical
analysis is possible.

Experimentally triangular ladders may be engineered in a straight-forward way
by employing super-lattice techniques. As illustrated in Fig. 5.1 (b) the stripes of
zig-zag are separated from each other by a large potential barrier, which signifi-
cantly suppresses the inter-chain tunneling. The total Hamiltonian is given by

Ĥzz = −J1∑
i

b̂†
i b̂i+1 +H.c.− J2∑

i
b̂†

i b̂i+2 +H.c.+

+ U
2
∑

i
n̂i(n̂i − 1) − µ∑

i
n̂i . (5.4)

The elements of this model are sketched in Fig. 5.2. Within the large density weak
coupling approximation ρ ≫ 1, U ≪ J1ρ we yield the following model of classical
spins S →∞

Ĥzz,class → 2ρJ1∑
i

cos(θi − θi+1) + 2ρJ2∑
i

cos(θi − θi+2) (5.5)

For J1 > 0 the system is ferromagnetic and all spins are aligned for j = −J2/∣J1∣ < 1/4
(see Fig. 5.3). For J1 < 0 the configuration is a Néel-like antiparallel alignment of
the spins. For the classical spin system a continuous U(1) symmetry is broken,
spontaneously selecting a rotation angle. For j > 1/4 frustration leads to two de-
generate ground states: The spins rotate clockwise or counterclockwise (as shown
in Fig. 5.3). This helical or spiral phase with a broken U(1) × Z2 symmetry is char-
acterized by a finite helicity

κ =
¿
ÁÁÀ1− 1

16j2
. (5.6)
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5.2 The dilute two-component Bose gas regime

Main features of zig-zag model Eq. (5.4) may be understood from its single particle
dispersion relevant for U → 0 or ρ → 0,

ε(k) = −2J1(cos k + j cos 2k) (5.7)

with j ≡ J2/J1 (for convenience we choose J1 < 0 in the following). For j < 1/4 the
dispersion has a single minimum at k = π = −π. At the Lifshitz point, for j > 1/4,
the dispersion ε(k) presents two non-equivalent minima at k = ±Q ≡ ±arccos[−1/4j]
(see Fig. 5.4 (a)).

Due to the emergence of two degenerate minima in the single particle disper-
sion relation, the physics at finite U may become very non-trivial. In the following
we will discuss an intuitive and also quantitative picture of the emergence of vari-
ous quantum phases in the limit of vanishing particle density ρ → 0: an (ordinary)
superfluid phase (SF), a chiral superfluid phase (CSF) and a two component super-
fluid (2SF).

The ideas and methods have been developed in [37] in the context of frustrated
spin-S J1 − J2-models, for which we will present some detailed numerical analysis
below.

5.2.1 2SF and CSF phases

For a single non-degenerate dispersion minimum the system is a one-component
phase quasi-condensing in this lowest minimum; a finite U > 0 will induce a true
superfluid phase (SF).

In the presence of two non-equivalent minima at ±Q the ground state of a non-
interacting boson system is highly degenerate and the effect of interactions be-
comes crucial, selecting a particular ground state. The particles at low energies
mainly populate the two dispersion minima at Q and −Q. We can interpret them as
two different bosonic flavors and map to an effective two component model with
intraspecies-coupling between bosons of the same species and interspecies cou-
pling between different flavors. Typically two different types of superfluid ground
states may be stabilized: Either the bosons equally occupy both minima, i.e. both
flavors are present, the 2SF phase, or one of them is spontaneously selected and a
one component SF phase with a spontaneously broken symmetry is realized.

The latter is the case of the CSF, corresponding to the classical helical phase,
which exhibits a non-zero average momentum. Hence, in the CSF-phase (quasi)-
momentum distribution would show in TOF-measurements vanishing and appear-
ing peaks at Q or −Q from measurement to measurement [38]. In the thermody-
namic limit it exhibits a non-vanishing local boson current or chirality

κi =
i
2
(b†

i bi+1 −H.c.) (5.8)

In a finite system this locally defined chirality is always zero. However, the CSF is
clearly characterized by the long-range ordered chirality-chirality correlations

κ2 = lim
∣i−j∣→∞

⟨κiκj⟩ . (5.9)

The 2SF phase does not exhibit a finite chirality. A TOF-measurement would al-
ways show two distinct peaks in each experiment realization. The two component
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Fig. 5.4: (a) Single and two-particle spectrum of Bose-Hubbard model in the zigzag
ladder with an frustration of j = 0.7. Both curves are shifted against each other due
to a chemical potential. The single-particle dispersion exhibits two minima at ±Q.
Close to K = 0 the 2-particle spectrum is degenerate. (b) Bare coupling constants for
the dilute BH model on a zig-zag ladder as function of j (U/J = 10).

phase is characterized by a central charge c = 2, counting the number of gapless
modes (see chapter 4). In the CSF phase we find c = 1 (compare also Fig. 5.5).

5.2.2 Dilute limit

As shown in [37] one may gain quantitative insight in the competition between
CSF and 2SF phases from the low energy scattering properties of two bosons on
the triangular ladder. From the two particle problem we obtain different types
of scattering solutions and extract two relevant scattering lengths: one for bosons
belonging to the same single-particle minimum, a1,1 = a2,2, and other one for bosons
belonging to distinct minima a1,2. One can relate the 1D scattering length to the
amplitude of the contact interaction potential of the two-component Bose gas of
mass m as

gi,j = −2/ai,jm . (5.10)

Hence, one effectively interprets the systems as a continuum two-component Lieb-
Liniger model [53]. If the intra-component interaction is stronger than the inter-
component interaction g1,1 = g2,2 > g1,2 in the limit of vanishing density ρ → 0 the
2SF phase is favored. For a dominant inter-component interaction g1,1 = g2,2 < g1,2
the particles preferably occupy only one of the two minima that is spontaneously
chosen, and hence the system is in the CSF phase (see Fig. 5.4).

As shown in [37] in the dilute limit it is possible to obtain the renormalized
intra- and inter-component interactions analytically as an exact solution to the cor-
responding Bethe-Salpeter equation. A detailed analytical treatment can be found
in Ref. [37]. We will, however, present a more intuitive but completely equivalent
approach to obtain g1,1 and g1,2 form the two-particle scattering problem.

5.2.3 The two particle scattering problem

A general 2 particle state my be described by

∣ΨK⟩ = ∑
x

cx,x (b̂†)2 ∣0⟩ + ∑
x,y>x

cx,yb̂†
x b̂†

y ∣0⟩ (5.11)
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Fig. 5.5: Central charge (+) and chirality (◯) for L = 200, ρ = 0.1, U = 10. In spite of
larger error-bars in the estimation of central-charge one clearly observes a finite 2-
component SF region with central charge close to c = 2 separating one-component
SF and CSF phases.

Due to the conservation of total momentum K = k1 + k2 in the scattering process one
can express the amplitudes as cx,x+r = CreiK(x+ r

2 ). The Schrödinger equation Ĥ ∣Ψ⟩ =
Ω ∣Ψ⟩ for the two particle problem leads for the amplitudes Cr to the following
system of coupled equations

(Ω − 2U)C0 = −2
√

2(J1 cos(K
2
)C1 + J2 cos(K)C2)

(Ω −V1)C1 = −2J1 cos(K
2
) (

√
2C0 +C2) − 2J2 cos(K)(C3 +C1)

(Ω −V2)C2 = −2J1 cos(K
2
) (C1 +C3) − 2J2 cos(K)(

√
2C0 +C4)

ΩCr = −2J1 cos(K
2
) (Cr−1 +Cr+1) − 2J2 cos(K)(Cr−2 +Cr+2) , r ≥ 3 (5.12)

Here for the sake of completeness we have added nearest and next-nearest neigh-
bor interaction terms V1∑i nini+1 and V2∑i nini+2. In the thermodynamic limit the
energy is given by

Ω = ε(k1) + ε(k2) = −4(J1 cos(k) cos(K
2
) + J2 cos(2k) cos(K)) (5.13)

with the half relative momentum k = (k1 − k2)/2. Both single particle and 2-particle
spectra are shown in Fig. 5.4.

For the scattering of two particles in the vicinity the same minimum with mo-
mentum k1 = Q + k and k1 = Q − k, i.e. total momentum K = Q, one may solve
Eq. (5.12) with an Ansatz

Cr = cos(kr + δ11) + ve−κ0r (5.14)

The coefficients C0, δ11 and v are determined by the first three equations of (5.12)
and, hence, depend on the interactions. The scattering lengths may be extracted
from the scattering phase shift δ11

a11 = lim
k→0

cot(δ11)/k. (5.15)
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Fig. 5.6: Phase diagram of bosons on the zig-zag-ladder in the dilute limit (ρ → 0).
The straight lines are analytical results, the points indicate numerical estimates of
the 2-component-SF to CSF transition (cf. Fig. 5.5) for different finite densities.

For the case of scattering particles in the vicinity of two different dispersion
minima, i.e. total momentum K = 0, the scattering states are twofold degenerate:
One may find a p and p̃ = p +O(p2) such that the energies of the scattering states
with k1 = Q + p, k2 = −Q − p and k̃1 = Q − p̃, k̃2 = −Q + p̃ are the same. To solve the
Schrödinger equation (5.12) we use the Ansatz

Cr = cos(kr + α(k)) + v(k) sin(k̃r) (5.16)

where k = Q + p and k̃ = Q − p̃ are the half relative momenta. As shown in [37] one
may define the interspecies scattering phase shift as

δ12 = −arccos
cos(α)√

cos2 α + (v + sin α)
,

which can be seen in the limit p → 0 of Eq. (5.16).
The crossing of the scattering lengths indicates a phase transition between 2SF

and CSF phases. For ∣gαβ∣m ≪ 1 the interpretation as a continuum Lieb-Liniger
model is valid. In this limit for a negative g11 < 0 the bosons form an attractively in-
teracting model, which signals the presence of bound states. For ∣g11∣m ≫ 1 the sys-
tem may enter a super-Tonks regime with Luttinger-liquid parameter K < 1. Here
the scattering lengths may be interpreted as excluded volume of the particles [37].

5.2.4 Dilute limit phase diagram

For the Bose-Hubbard model (5.4) we calculate the bare couplings mg11 and mg12
as function of U and j. An example is shown in Fig. 5.4 (b). The intersection of two
curves signals the CSF-2SF transition, described by

U =
((4j)2 − 1)3/2

4j2(1− 8j2) .

The transition from the ordinary SF to the 2SF or CSF regions in the dilute limit
takes place at j = 1/4 where dispersion gets a second minimum. The resulting
phase diagram is shown in Fig. 5.6.
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Fig. 5.7: (a) Phase diagram of anisotropic (Jz
1/J1 = Jz

2/J2 = ∆) frustrated S = 1 chain
below the saturation field. (b) Phase diagram of the isotropic frustrated Spin-S
chain below the saturation field as function of S and β. Symbols correspond to the
transition points extracted from DMRG calculations.

We use DMRG calculations for several small but finite fillings ρ = 0.2 − 0.05 to
confirm this analytical result. Generally, there is a good agreement between numer-
ical and analytical findings. The cut through the phase diagram in Fig. 5.5 for fixed
ρ and U clearly shows a finite region where the momentum distribution shows two
peaks, but no chirality is found. Furthermore we extract the central charge c which
is consistent with this analysis. The obvious discrepancy between numerical and
analytical results may be explained by the fact that DMRG calculations have to be
performed at a finite density and proper extrapolation to ρ → 0 remains difficult.
Since the amplitude of order parameters such as κ vanishes with vanishing density
ρ → 0 this poses further restrictions to the numerical method.

5.2.5 The frustrated spin-S chain

The before-mentioned approach has been introduced and studied both analytically
and numerically in Ref.[37] in collaboration with A. Kolezhuk, F. Heidrich-Meisner
and T. Vekua in the context of the frustrated spin-S chain model

H = ∑
n

{ J1

2
(S+n S−n+1 + S−n S+n+1) + Jz

1Sz
nSz

n+1 − HSz
n

+ J2

2
(S+n S−n+2 + S−n S+n+2) + Jz

2Sz
nSz

n+2}, (5.17)

where S±n and Sz
n) are spin-S operators acting at site n. J1, Jz

1 and J2, Jz
2 are nearest-

neighbor (NN) and next-nearest neighbor (NNN) interactions. The dilute limit cor-
responds to a large external magnetic field H close below saturation magnetization.
For convenience we use the parameter β = J1/J2 = 1/j. The description and deriva-
tion of the two-component particle model is completely equivalent to the bosonic
case as discussed above. The main difference is given by the spin-commutation
relations which lead to distinct prefactors in the kinetic energy part. The 2-particle
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Fig. 5.8: (a) Chirality order parameter κ2 for frustrated antiferromagnetic S = 1
chain for ∆ = 0.7, at fixed value of the magnetization M = 9/10, as a function of
the frustration parameter β = J1/J2. (b) κ2 for frustrated isotropic antiferromagnetic
spin-S chains (M = 9/10, L = 100).

Schrödinger-equation is described by the following system of equations:

Ω0C0 = 2
√

S(2S − 1)(J1C1 cos(K
2
) + J2C2 cos(K)),

(Ω0 − Jz
1)C1 = 2J1

√
S(2S − 1)C0 cos(K

2
) + 2SJ1C2 cos(K

2
) + 2SJ2(C1 +C3) cos (K),

(Ω0 − Jz
2)C2 = 2J2

√
S(2S − 1)C0 cos (K) + 2SJ2C4 cos (K) + 2SJ1(C1 +C3) cos(K

2
),

Ω0Cr = 2SJ1 cos(K
2
) (Cr+1 +Cr−1) + 2SJ2 cos (K) (Cr+2 +Cr−2) (r ≥ 3) .

(5.18)

For the spin model we denote in the following the chiral Luttinger liquid phase
(analog to the bosonic CSF phase) as vector-chiral (VC) phase, the two(one) com-
ponent (Tomonaga-)Luttinger-liquid phase will be simply denoted TLL2 (TLL1)
corresponding to the 2SF (SF) phase.

In Fig. 5.7 (a) we present the phase diagram for model (5.17) for the S = 1 case
in both antiferromagnetic β > 0 and ferromagnetic β < 0 regimes as function of
the frustration and the anisotropy ∆ = Jz

1/J1 = Jz
2/J2 including detailed numerical

evidences for the applicability of the analytical approach. For this case the agree-
ment of analytical (straight line) and numerical results (diamonds) is very good.
Fig. 5.8 (a) shows the chirality κ2 for a cut through the phase diagram of Fig. 5.7 (a).
Interestingly the TLL2 phase strongly increases with increasing anisotropy. On the
ferromagnetic side a region of a dilute magnon-gas with and effective attraction is
found for ∆ ≳ 1. Numerically here we observe the emergence of macroscopically
large magnon bound states. In the magnetization curve M(H) this so called meta-
magnetic behavior leads to a macroscopically large jump from saturation magneti-
zation to a finite value of M (see section 5.5 for more details and examples on this
method in a different context). The pink circles in Fig 5.7 (a) depict the onset of
meta-magnetism as obtained from DMRG calculations.

While for small spin S for β > 0 one observes just one phase-transition from
the VC to the TLL2 phase around β ≃ 1.6, remarkably, for S ≥ 12 one encounters a
revival of the VC phase as shown in Fig. 5.7 (a). We verified the possibility for three
consecutive TLL2-VC transitions simulating a spin S = 12 model in the dilute limit
(cf. the chirality data shown in Fig. 5.8 (b)).
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5.3 Quantum phases of ultra-cold bosons in zig-zag optical
lattices

In the following we will discuss the physics of commensurate fillings (ρ = 1/2,
ρ = 1, ...) where one may observe additional gapped, Mott-insulators (MI) or dimer-
phases (D). We will in detail examine the possibility of exotic gapped chiral phases,
which present an excitation gap as well as non vanishing chiral currents. At unit
filling we are able to confirm the presence of a chiral Mott insulator. Finally we
present a full phase diagram for the grand canonical ensemble including a detailed
picture of the interplay of SF, 2SF and CSF phases at finite fillings.

Part of the following discussion is based on the publication [38] which was de-
veloped in collaboration with L. Santos and T. Vekua.

5.3.1 Unit filling

At the Lifshitz point the single particle dispersion relation becomes quartic close
to the single minimum at k = π, i.e. ε(k) ∼ (k −π)4 +⋯. Due to the flatness of the
dispersion-relation, the effective mass

m = (∂2ε(k)/∂k2)−1
k=π = 1

−2J1(1− 4j) (5.19)

diverges. Hence, even vanishingly small interactions become relevant at commen-
surate fillings. The effect, that a constrained mobility may largely enhance the role
of interactions, has been studied also for exactly flat bands in e.g. Kagome or saw-
tooth lattices [238] (see also section 5.7).

In Fig. 5.9 we present the phase diagram for unit filling as function of the frus-
tration parameter j and interaction U/J1 as obtained from DMRG and exact di-
agonalization simulations. The phase diagram exhibits a rich sequence of phase
transitions driven by the frustration j including SF, MI, CMI and CSF phases. Be-
low we will discuss in detail the presence of the tiny CMI phase. Consistent with
the above discussion, at small interactions U ∼ J1/2 we numerically still observe a
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Fig. 5.9: Phase diagram of model (5.4) for unit-filling as function of the interaction
strength U/J and the frustration j, with the boundary of the chiral phase (red ◻)
and SF-phases indicated by critical Luttinger parameter K = 2 (green ◯ and blue
◻). x denote the SF-MI phase transition as obtained by the level-crossings (see text).
+ denotes the Lifshitz-line.
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Fig. 5.10: Finite size scaling of the position of the crossing of the excitations ∆En
and ∆E4 and extrapolation with a linear function in 1/L2 to obtain the L → ∞ limit
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MI phase close to the Lifsitz-point j = 1/4. The MI phase splits into two regions of
commensurate and incommensurate behavior. This Lifshitz line departs from the
non-interacting value j = 1/4 and is indicated by the dotted line. Here the quasi mo-
mentum distribution acquires a double maximum. Examples will be shown below
in Fig. 5.11 (b) and (c).

Within a bosonization treatment the commensurate region may be described by
a usual sine-Gordon model (2.25). In weak coupling one finds [38] for the velocity
and Luttinger-liquid parameter

v(j) ∼
√

n̄U/mπ2 = v(0)
√

1− 4j , K(j) ∼
√

n̄π2/Um = K(0)
√

1− 4j (5.20)

where v(0) and K(0) are the values of the single chain. Remarkably, this approxi-
mation describes the SF-MI phase transition curve quite well, Uc(j) ∼ Uc(0)

√
1− 4j.

A bosonization description of the regime j > 1/4 may be done starting from the
limit of two decoupled chains J2/J1 → ∞ and perturbatively adding the zig-zag
hopping for small J1 [239]. For each subchain we introduce two pairs of bosonic
fields (θ1, φ1) and (θ2, φ2). After forming symmetric and antisymmetric combina-
tions θ± = (θ1 ± θ2)/

√
2π, φ± =

√
π(φ1 ± φ2)/

√
2 the effective low-energy model is

given by [38]

Ĥ = ∑
α=±

vα

2
[(∂xφα)2

Kα
+Kα(∂xθα)2]

+ λ∂xθ+ sin
√

2πθ− − 2M cos
√

2πφ+ cos
√

2πφ− . (5.21)

v±, K±, and M are generally phenomenological parameters. In the CSF phase
∂xθ+ sin

√
2πθ− becomes relevant introducing a gap in the anti-symmetric sector

and resulting in a finite chirality κ ∼ ⟨sin
√

2πθ−⟩ [240].
Due to the incommensurability in the j > 1/4-region the numerical analysis of

the phases and phase transitions requires the simulation of large systems. In the
commensurate region j < 1/4, however, the SF-MI boundary may be analyzed from
small system sizes in exact diagonalization calculations: Borrowing the procedure
proposed by Refs. [101, 241] we calculate the crossings of the first neutral excita-
tion ∆E1

0 and four particle excitation ∆E0
4 at a finite system with L sites and N = L

particles for periodic boundary condition in the momentum k = π sector. Here we
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Fig. 5.11: (a) The scaling of chirality κ2 ⋅ L1/4 close to MI-CMI-transition on the U = 3-
line. The inset shows the collapse of all finite system size data to one curve. So
for U = 3 one finds the MI-CMI Ising-phase-transition at j1 = 0.705 ± 0.001. (b)
Momentum distribution n(k) (U = 3, L = 100). The position of the maximum kmax
shown in (c) is practically independent of L. At j ≈ 0.3 the peak departs from π
and nk acquires two inequivalent maxima at ±kmax. (d) Scaling of n(kmax)L−3/4 for
different L. The crossing of the curves indicates the BKT-transition at j ≈ 0.717 ±
0.001.

define the excitation gaps

∆E1
0(L, N) = E0(L, N) − E1(L, N) (5.22)

and

∆E0
M(L, N) = E0(L, N + M) − 2E0(L, N) + E0(L, N − M)

2
(5.23)

with the ith energy-level Ei(L, N) of a system of L-sites and N particles. Without
any restriction of the local bosonic Hilbert space (i.e. keeping at most N particles
on each site) we are able to calculate finite system size crossings for L = 6, 8 and 10
which may be extrapolated linearly with 1/L2 to the thermodynamic limit as shown
in Fig. 5.10. The SF-MI phase boundary connects to the well known 1D BH-model
result at j = 0, U ≃ 3.3J1 as discussed in chapter 2.

The level crossing analysis is perfectly consistent with our DMRG calculations
in which we may extract the Luttinger liquid parameter K from the behavior of
single particle correlations functions, known to be K = 2 at the BKT transition point.
In the following we will discuss this method more in detail for the second BKT-type
transition in the region of incommensurate correlations.

5.3.2 The chiral Mott-insulator

Interestingly, bosonization analysis [38, 230] suggests the possible existence of a
gapped chiral phase, the chiral Mott-insulator (CMI), at the boundary between MI
and CSF phase. Due to symmetry considerations going from the MI to the CSF
phase the system may first undergo an Ising-type phase-transition where chirality
sets in but the excitation gap remains. The transition from the CMI and CSF phase
is of BKT type, where the gap closes.

Typically, gapped chiral phases are very narrow and due to the sequence of
Ising and BKT transitions very difficult to observe numerically. For spin systems
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Fig. 5.12: Phase diagram for bosons as a function of the frustration parameter j
and on-site interaction U at half filling. ◻: boundary of chiral phases characterized
long-range ordered chirality-chirality correlations ⟨κiκj⟩ , ◯: SF-phases indicated
by critical Luttinger parameter K = 0.5. + characterizes the transition between in-
commensurate and commensurate behavior.

the existence of a chiral-Haldane and a chiral-Large-D phase was indicated within
an infinite DMRG approach by Hikihara et al. [232, 233] for zig-zag spin chains.
Dhar et al. [242, 243] proved the emergence of an intermediate CMI-phase for the
fully-frustrated Bose-Hubbard-model (see chapter 10). Here we will modify the
procedure presented in the latter work, which allows for the study of the type of
the phase transitions within open-boundary finite size DMRG-calculations.

In order to study the phase transitions to the chiral phases, we extract the chiral
order parameter κ from the saturation behavior of the chirality-chirality correlation-
functions at long distances κ2 = lim∣i−j∣→∞⟨κiκj⟩. In a plot of finite system size data
κ2 ⋅ L1/4 over L(j− jc) all curves collapse to one line (cf. inset of Fig. 5.11 (a)). Hence,
the transition between chiral and non-chiral phases is unambiguously of Ising-type,
showing the correct scaling relations. The transition can be located precisely by the
intersection of κ2 ⋅ L1/4 lines.

For the definition of the subsequent BKT-transition to the CSF phase, we cal-
culate the Luttinger-Liquid-parameter K from single-particle-correlation function
G(i, j). We fit the correlations to G(r)1/2K cos(ωx + φ) with G(r) including confor-
mal corrections for finite system sizes (2.26). To get a lower bound for the transition
point a power law fit has been applied to shorter distances after dividing out incom-
mensurate oscillations. Both fitting procedures suffer from finite size corrections.

A more accurate estimate of the BKT-transition point is provided by the analysis
of the quasi-momentum distribution n(k) [242, 243]. Since Gij ∼ e−iQ(i−j)∣i − j∣−c with
c = 1/4 at the BKT-transition, n(k) has a maximum at Q and its height depends on
system size as

n(Q) ≈ ∑
i,j

eiQ(i−j)Gij ∼ ∑
i

ζ(c, i) ∼ L1−c . (5.24)

This behavior can be seen in Fig. 5.11 (d) showing a nice intersection of n(kmax) ⋅
Lc−1.
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5.3.3 Half filling

Model 5.4 reduces for the hardcore-boson limit (U → inf) at half filling to the frus-
trated spin-1/2 XY-model without external magnetic field

Ĥ = ∑
i

J [(SiSi+1)XY + j(SiSi+2)XY] . (5.25)

where (SiSi+1)XY ≡ b†
i bi +H.c. and bi being hardcore bosons, (b†

i )2 = 0. The ground-
state phase-diagram of this model [229, 234] exhibits a SF(XY)-phase for j ≲ 0.33,
a gapped dimer-phase with non-vanishing dimerization, OD = bi(b†

i+1 + b†
i−1), and

for sufficiently large j ≳ 1.32 [234] a CSF phase. Numerical studies [234] apparently
exclude the possibility of an intermediate gapped dimer-chiral phase. In the follow-
ing we study the fate of these phases at finite values of U/J1. The phase-diagram is
shown in Fig. 5.12. Interestingly, due to the quartic behavior of the single-particle
dispersion, as discussed above, all three phases survive in the limit of U → 0.

The dimer and chiral order parameters can be calculated numerically by analyz-
ing the long range behavior of dimer-dimer and chirality-chirality correlations. For
open chains also the local dimerization is non zero. Fig. 5.13 shows a cut through
the phase diagram 5.12 at U/J1 = 6 as obtained by iDMRG calculations. Dimer and
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transition (U=6).
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The red square depicts the onset of chirality. (b) Detailed results for the low filling
region. MI and dimer boundaries are extrapolated results for finite size scaling
from L = 40− 200 sites. The points at ρ = 0 are taken from analytical results.

chiral phases can be identified clearly by the corresponding order parameter. Ad-
ditionally we display the entanglement entropy which is constant with respect to
system size or matrix dimension in the gapped Dimer phase.

The SF-D phase transition may be analyzed precisely by level-spectroscopy [229].
It is characterized by the crossing of the neutral excitation ∆E1

0 and first charged ex-
citation ∆E0

1. In Fig. 5.14 we show the finite-size data with up to L = 16 sites. In
order to obtain precise results even in the limit of low interactions we do not restrict
local bosonic Hilbert space (i.e. nmax = L/2). As shown in Ref. [229] the transition
point scales like jc + α/L2 + βlog(L)/L4 + ... and the data in Fig. 5.14 (a) fits well to
this behavior.

In Fig. 5.14(b) the scaling behavior of chirality at the D-CSF is analyzed. Close
to the phase transition the scaling may be consistent with a Ising phase transition.

Assuming a scaling of the single particle correlations as G(i, j) ∼ log(∣i−j∣)1/2

x [35] at
the phase transition to the gapless chiral phase, we analyze in analogy to the pre-
vious section the scaling behavior of the peak of the quasi momentum distribution,
for which follows n(kmax) ∼ log(L)3/4 as shown in Fig. 5.14 (b). The extracted tran-
sition points are, within the error bars, consistent with the onset of chirality. Hence
our study does not indicate any hint of an intermediate dimer-chiral phase in this
regime.

5.3.4 The grand-canonical phase diagram

While up to now we have focused on the physics at a fixed number of particles,
it is in particular of experimental relevance to study the grand-canonical phase di-
agram. In Fig. 5.15 we display the phase diagram as function of j and chemical
potential µ for U = 6J1.

As shown in Fig. 5.15 (a) close to the Lifshitz point MI phases may be observed
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even for relatively high filling-factors ρ > 7, as expected due to the quartic disper-
sion relation. Note, that for j = 0 only one Mott-lobe can be observed for this value
of U (see chapter 2). We can only resolve the Dimer-gap at half integer filling for
ρ = 1/2. The onset of chirality at half filling slowly approaches the classical result
ρ →∞ at which the SF-CSF transition happens at j = 1/4.

In Fig. 5.15 (b) we display in detail the phase boundary between 2SF and CSF
phases. The SF-2SF phase here can be identified by a cusp in the µ − ρ–curve in
general characterizing a change in the number of gapless modes (see also section
5.6 for further examples). The finite density results are consistent with the phase
transition points obtained in the dilute limit ρ → 0 (see section 5.2).

5.4 Bosons with a 3-body hardcore constraint

While in traditional many-body paradigms interactions are typically of two-body
type, as discussed in chapter 2 three-particle interactions in the form of a three-body
hard-core constraint due to large three-body-losses [106], or induced finite three-
and even four-body on-site interactions [113, 114] have received a lot of attention
recently. Here we discuss the effect of three-body on-site interactions

U3∑
i

n̂i(n̂i − 1)(n̂i − 2) (5.26)

in model (5.4). The following results have been developed in collaboration with L.
Santos and T. Vekua and published in Ref. [38].

5.4.1 Emergence of HI-phase for 3-body interactions

Bosonic models with a three-body constraint (b̂†
i )3 = 0 (U3 → ∞) may to a large

extent be mapped to spin-1 systems. As shown in Ref. [244] the exact mapping
may be given as

n̂i = 1− Sz
i , b̂†

i =
2+

√
2

4
S−i −

2−
√

2
4

(Sz
i S−i + S−i Sz

i ) . (5.27)
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Fig. 5.16: Emergence of the HI phase for a finite three body repulsion U3. ◻ depicts
the SF-boundary as defined by critical exponents. The SF-HI boundary is consistent
with the result obtained by level-spectroscopy (×). The onset of chirality is shown
as ◯. + indicated the Lifshitz-line.
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Neglecting particle-hole symmetry breaking terms for model (5.4) we arrive at the
frustrated spin-1 model

ĤS ∼ ∑
i
[(Si ⋅ Si+1)XY + j(Si ⋅ Si+2)XY +D(Sz

i )2] (5.28)

where (Si ⋅Sj)XY ≡ Sx
i ⋅ Sx

j + Sy
i ⋅ S

y
j , the single-ion anisotropy D and the next-nearest

neighbor frustrating exchange j. This model has been extensively studied in Refs. [232,
233, 245]. Hence, for constraint bosons on a zig-zag lattice we expect the possibility
for a Haldane-insulating phase due to geometric frustration in the absence of long
range interactions as known from the spin-1 case. As shown in Ref. [38] the HI
phase can be described by a sine-Gordon model (5.21) with K < 2. Due toM < 0 a
hidden string order (2.38) is selected.

Our DMRG-results indicate that indeed at the Lifshitz-point, j = 1/4, a HI is
stabilized at U = 0 for arbitrarily weak U3 as presented in Fig. 5.16. As for the case
of a 2-body interaction from section 5.3 we obtain a finite region with a coexistence
of a gap, string order and chirality, the chiral Haldane-insulator (CHI). In the limit
of U3 → ∞ the results are consistent with the observation of the chiral Haldane-
phase in Ref. [233] for spin-1 case.

5.4.2 The phase diagram for 3-body constraint bosons

In the following we derive a detailed phase diagram for the limit U3 →∞ presented
in Fig. 5.17 (a). Given the correspondence to the spin-1 system this extends the
work in [230, 232, 233, 239] to the case of vanishing nearest-neighbor interactions
and negative single-ion anisotropies.

Starting from the HI phase as discussed above for U = 0, increasing U > 0
can induce a Gaussian HI-MI phase transition. This resembles the phase transition
between Haldane and large-D phases induced by single-ion anisotropy in spin-1
chains [101]. This transition is well described by the onset of parity-order (2.19) O2

P
in the MI phase and a vanishing string order (2.38)O2

S as can be seen in Fig. 5.18 (a).
The energy gap vanishes at the Gaussian transition line. For twisted boundary
conditions this transition is also characterized by ground state level crossing [246].

The SF phase which occupies a large part of the non-frustrated phase diagram
for j < 0 is separated from the MI and HI by BKT transitions. The CSF to MI and
HI boundary may host tiny CMI and CHI phases (Fig. 5.18 (b)) which are not re-
solved in Fig. 5.17. As described in section 5.3 the analysis of the energy level struc-
ture offers a precise estimate of BKT-transition lines in the commensurate regime.
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Fig. 5.18: Order parameters O2
P (◻), O2

S (△), ODW (▽), κ2 (◯) and energy gap (×) as
function of U/J for constrained bosons on the (a) j = 0.3, (b) j = 0.6 line (N = 160).
The parity, as defined in the Mott state, must get an additional oscillating factor in
the DW phase O2

P → (−1)i−jO2
P.

We again analyze the crossing between ∆E0
4 and the neutral excitation ∆E1

0; the
positions of level crossings can be extrapolated to L → ∞ with an 1/L2-law for
constraint/spin-1 case from system sizes up to 16 sites (see Fig. 5.19) and agree
well with the estimates from the calculation of Luttinger-liquid-parameters.

In Fig. 5.17 (b) we present as a comparison the phase diagram of the pure spin-1
system (5.28). The numerical-analysis suggests that the BKT-transition separating
XY-Haldane and XY2-Néel-phases is located exactly at j = 0. In the constraint BH-
model however this BKT-transition line is shifted to the positive j site. Similar
behavior has been reported by Ref. [244] for the case of a BH with next-nearest
neighbor interactions.

Pair superfluid phase

Interestingly due to 3-body constraint U3 → ∞ the bosonic model (5.4) remains
stable even for attractive 2-body interactions U < 0. Analogously to the XY1 to XY2
transition studied in a spin-1 systems [246] for sufficiently large on-site attractions
−U the bosons may form a superfluid of bound pairs. This pair superfluid phase
(PSF) is characterized by a non-vanishing parity order parameter O2

P, contrary to
the MI phase with a staggered oscillation. For the non-frustrated BH model the PSF
phase has been studied in Ref. [186].

The presence of the PSF phase may be understood from the large coupling limit
U → −∞. Here, the ground-state manifold, given by the Ĥint eigenstates U0 =
{⊗i=1...N ∣n⟩i , n = 0, 2}, is 2L-fold degenerate. We may introduce a pseudo-spin-1/2,
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Fig. 5.19: Level-crossing analysis for constraint bosons for different BKT-transition-
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(b.) PSF-DW-transition for U = −15,−10,−9,−8. (c.) DW-PSF-transition for the same
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Fig. 5.20: (a) Scaling of Parity-Order-Parameter for PSF to SF transition with Matrix-
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shows deviations from Ising-scaling exhibiting a steep jump in parity order.

identifying ∣0⟩ → ∣↓⟩, ∣2⟩ → ∣↑⟩ and define the pseudo-spin operators

τ−i → (−1)ib2
i /
√

2 ,

2τz
i → b†

i bi − 1 . (5.29)

A standard second order degenerate perturbation theory [247] lifts the degeneracy
and the system is described by an effective Hamiltonian

Ĥe f f (E) = P0HtunP0 + P0ĤtunP1
1

E − P1(Ĥtun + Ĥint)P1
P1ĤtunP0 (5.30)

where P0 is a projector to U0 and P1 = 1− P0. In terms of the spin-1/2 operators this
may be written as

Ĥ 1
2
=

J2
1

∣U∣∑i
[τiτi+1+j2(τz

i τz
i+2−τx

i τx
i+2−τ

y
i τ

y
i+2)] . (5.31)

For j = 0 we are at the SU(2)-symmetric Heisenberg point. The ferromagnetic j2 J1
terms break the symmetry down to U(1) and a gapless XY-phase of the spin-1/2
chain is expected (see Ref. [38]), which corresponds to the PSF phase.

The phase transition between the SF and the PSF at unit filling is of Ising type.
Its position can be extrapolated very precisely from level-crossing between one-
particle ∆E0

1(L) and two-particle-excitation-gap ∆E0
2(L). In Fig. 5.20 (a) we study

the scaling of O2
P at this phase transition using iDMRG calculations. As shown

in [248] the correlation length for the quantum Ising model scales like ξM = Mκ

with κ ≈ 2, where M denotes the Schmidt/Matrix-dimension. Using Ising critical-
exponents β = 1/8, ν = 1 the order parameter behaves like

O2
P = M−2βν f ((U −Uc)M

1
ν )

The collapse of the data to one curve confirms the Ising nature of the SF-PSF phase
transition.

Also for large values of j > 0 we observe a PSF phase for sufficiently attractive
values of −U. Our DMRG simulations show a narrow region where a direct, appar-
ently first-order, HI-PSF transition occurs, characterized by discontinuous jumps of
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O2
S,P (Fig. 5.21). Although one might guess an Ising character of the phase transition

between the broken discrete parity symmetry CSF phase to the restored symmetry
PSF phase, this nature cannot be confirmed from the behavior of the order param-
eters as illustrated in Fig. 5.20. An increasing discontinuity of O2

P and κ hints to a
weakly first-order nature of this phase transition.

Charge density wave phase

Increasing the density of doublons in a HI phase with a diluted charge density
wave order one should naturally expect a transition to a fully (antiferromagen-
tically) ordered CDW phase. Indeed, for small j > 0 at attractive U we observe
a CDW phase separating the two PSF regions (Fig. 5.17). Fig. 5.18 (a) shows for
U/t < −3 a region with both O2

S > 0 and OCDW > 0.
Interestingly, in the effective strong coupling model (5.31) the gapped CDW

phase may be induced by third order terms corresponding to the ring exchange
along the elementary triangle of the zig-zag chain, with amplitude jJ3

1/U2 [38].
Hence, the CDW extends all the way into the U → −∞ limit consistent with the
numerical simulations. Its width decreases as ∼ J1/∣U∣.

As shown in Fig. 5.18 (a) the energy gap vanishes at this Ising type transition
line between HI and DW phase. The PSF-DW transition is of BKT-type and can
be characterized by energy level crossing between first neutral excited and two-
particle-excitation (Fig. 5.19 (b) and (c)). At this point both density-density ⟨ninj⟩
and two-particle ⟨(b†

i )2(bj)2⟩ correlations coincide and decay as log1/2(x)/x.

5.5 Staggered fluxes and Dzyaloshinskii-Moriya interactions

Recently, lattice modulation experiments [137] have shown the possibility to gener-
ate effective complex hopping amplitudes by applying a modified shaking-scheme
that explicitly breaks certain time reversal symmetries [249]. In Ref. [137] the fol-
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lowing forcing (see also Fig. 5.22 (a)) was used

F(t) =
⎧⎪⎪⎨⎪⎪⎩

F0 sin(t/T1) for 0 < t < T1

0 if T1 < t < T
. (5.32)

The effective complex hopping matrix element is

Je f f =
T − T1

T
eiK T1

T + T1

T
J0(K)eiK T−T1

T (5.33)

with K = F0d
ω1

in a one dimensional lattice with lattice constant d. The use of a tri-
angular lattice, or any similar geometry without pairwise parallel edges, allows
for the creation of finite, but staggered, fluxes. This technique was employed in
Ref.[250] for the simulation of classical spin XY models in a triangular lattice with
tunable gauge fields. A modification as proposed by Ref. [249] with different onsite
potentials could be used to extend these schemes for uniform fluxes or non abelian
gauge fields. In the following we will show how staggered fluxes in triangular lad-
ders, which as well plays a role in traditional solid state models, have an important
effect on the properties of the ground-state phase diagram.

In general the zig-zag ladder with staggered fluxes may now be written as

Ĥ = −J∑
i

eiφ/2b̂†
i b̂i+1 − J′∑

i
b̂†

i b̂i+2 +
U
2
∑

i
n̂i(n̂i − 1) − µ∑

i
n̂i . (5.34)

We may split the complex hopping part

−iD∑
j
[b†

j bj+1 − b†
j+1bj]

with an amplitude D = IJe f f . For the case of hardcore bosons U → 0 this may be
rewritten as Dzyaloshinskii-Moriya[251, 252] (DM) like interaction

−D∑
j
(Sj × Sj+1)

z
. (5.35)

A finite staggered flux ∣D∣ > 0 breaks parity symmetry such that the ground
state acquires a finite chirality, as can be see from the single-particle dispersion

ε(k) = J cos k + J′ cos 2k +D sin(k) . (5.36)

For any finite ∣D∣ > 0 the position of the single minimum shifts to a finite momen-
tum Q ≠ 0 such that even for the non-frustrated chain κ ≠ 0 (see Fig. 5.23 (a)). For

J2 = 0 one easily finds κ = D/
√

D2 + J2
1 . For the case of j > 1/4 the degeneracy

(a) (b)

Fig. 5.22: (a) Shaking scheme for the creation of complex hoppings Eq.(5.32). (b)
A driving parallel to the legs of the triangular ladder may be employed to create a
staggered flux configuration.
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Fig. 5.23: (a) Chirality / helicity κ of model (5.4) for the limit U → 0 and (bottom
to top) D/J → 0, D/J = 0.05, 0.2 and 0.2. (b) Phase diagram of half filled hard-core
bosons (U → ∞) for finite flux D > 0. The green line at D = 0 marks the non-chiral
SF phase.

between the two minima is lifted and one one minimum of ε(k) is lowered (see
Fig. 5.24 (a)).

Hence, SF and CSF phases are expected to be adiabatically connected. Fig. 5.23 (b)
illustrates this for the case of a half filled strongly interacting bosons in the limit
U →∞. As discussed in detail in section 5.3 for D = 0 SF and CSF phases are sepa-
rated by a gapped Dimer-phase. For D > 0 this phase is destabilized and undergoes
a transition to a (C)SF phase. For a finite D > 0 we also observe a finite current or
chirality within the Dimer phase.

5.5.1 Isotropic ferromagnetic J1 − J2-model with Dzyaloshinskii-Moriya
interaction

DM-interactions play an important role in solid state systems. In particular the
isotropic J1 − J2-model spin-1/2 model with DM interactions has been considered a
one-dimensional prototype of the magnetoelectric coupling between electric polar-
ization and magnetization in multiferroic materials [253]. Multiferroics like LiCu2O2
exhibit simultaneously multiple spontaneous ferroic orderings such as ferromag-
netism, ferroelectricity or ferroelasticity [254]. They allow for the steering of the
polarization and magnetic-ordering with an external electric field [255, 256] and
hence are considered as interesting candidate for possible spintronic and quantum
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Fig. 5.24: (a) Single particle dispersion in the presence of a finite flux D/J1 = 0.14,
J1 = 1, J2 = −1 (b) Two particle scattering continuum and bound states for the same
parameters. (c) Zoom into the k ≈ π region.
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Fig. 5.25: Multi-magnon bound-states and meta-magnetism just below saturation
magnetization. The filled circles indicate that for these parameters the system expe-
riences a meta-magnetic jump in magnetization when lowering the magnetic field
from saturation magnetization. The size of the circle encodes the height of the jump
∆Sz/L (big green points indicate jumps of ∆Sz/L ≈ 0.4 to ≈ 0.05 for small red points).

information devices.
The full model Hamiltonian is given by [39]

Ĥ = J1∑
j

Sj ⋅ Sj+1 + J2∑
j

Sj ⋅ Sj+2 − B∑
j

Sj ⋅ Sj+2 + E ⋅ P . (5.37)

J1 is chosen to be ferromagnetic (< 0) and J2 antiferromagnetic (> 0) and we study
the effect of DM-coupling D for strong magnetic fields B. The coupling between
the static electric field E and the polarization P may be expressed as

E ⋅ P = D∑
j
(Sj × Sj+1)

z
(5.38)

where the strength D of the DM like interaction D ∼ E.
In the context of cold atom experiments a precise simulation of model (5.37)

would require the engineering of attractive nearest and repulsive next-nearest neigh-
bor interactions, which could be realized in the zig-zag lattice geometry as intro-
duced in section 5.1 with dipolar atoms or molecules.

The following results have been published in Ref.[39] in collaboration with M.
Azimi, L. Chotorlishvili, S. Mishra, T. Vekua, and J. Berakdar.

5.5.2 Multi-polar bound-states and meta-magnetism in large magnetic
fields

Interestingly, for the case of ferromagnetic J1 > 0 coupling a series of N-magnon
bound states evolves as function of the frustration β = J1/J2. For J1/J2 → −4 nematic
(N), incommensurate nematic (IN), triadic (T) and quartic (Q) phases are realized
for sufficiently high magnetic fields, which are Luttinger liquid phases of two-,
three- and four-body bound states. In Fig. 5.25 the D = 0 phases at saturation
magnetic field are indicated by small arrows
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Fig. 5.26: Phase diagram for (a) J1/J2 = −1.0 and (b) J1/J2 = −3.2 with spin-density-
wave/nematic (N), triadic (T), chiral (VC) and fully polarized phase (F). The big
green line marks a macroscopic jump in magnetisation profile.

The nematic phase of 2-magnon bound pairs the pair correlation ⟨S+i S+i+1S−j S−j+1⟩
shows algebraic decay while single-particle correlation ⟨S+i S−j ⟩ decays exponen-
tially. Lowering the magnetic field a crossover to a spin density wave (SDW)
phase is observed in which density correlation ⟨Sz

i Sz
j ⟩ become dominant and fi-

nally a phase transition to a CSF phase of single particles. This phase transition
may be of first order showing a meta-magnetic behavior, i.e. a macroscopic jump
in magnetization at the transition field. Close to J1/J2 the meta-magnetic region is
expected to extend up to saturation magnetization [257]. The magnetization curves
(see Fig. 5.27 (b)) exhibit steps of ∆Sz = 1, 2, 3 or 4 for VC, N/IN, T or Q phases,
resp.

For D > 0 all these phases acquire a finite chirality κ. This is illustrated in
Fig. 5.24 (b) and (c) which shows the 2-magnon bound states below the two-magnon
scattering continuum with the minimum shifted away from π. We also analyze
multi-magnon bound-states, following the approach from Ref. [258], for D > 0.
Also in the T and Q phases the lowest excitation shifts to an incommensurate value.
Interestingly, the crossings between N, T, and Q bound-states are almost not af-
fected by the presence of the DM-interaction. However, as our DMRG simulations
show, these phases are suppressed already for a small D > 0. The phase diagram
for the strong magnetic field limit is shown in Fig. 5.25.

For j ≲ −2 we find macroscopic jumps below saturation magnetization in the
magnetization-profile. The system prefers to form bound states of macroscopic
numbers of magnons suppressing the T and Q phases. The transition between the
molecular and meta-magnetic phases to the atomic (VC) fluid is for high magnetic
fields well described by the boundary between an attractive and repulsive magnon-
gas as obtained from 2-particle scattering calculations (see section 5.2). In Fig. 5.25
this boundary, shown as solid line, is consistent with the DMRG simulations.

We now analyze the DM-interaction induced phase transitions between the
multi-polar bound-state phases and the atomic vector chiral (VC) phase more in
detail. As shown in Fig. 5.25 the three- and four-body multi-polar-phases are ex-
tremely sensitive to DM anisotropy. In Fig. 5.26 we study the phase transitions in
a finite magnetic field. The T or Q phases are connected to VC via a first order
phase transition, possibly with an intermediate macroscopic jump of density (see
Fig. 5.27 (a)).



Chapter 5. Ultracold Bosons in Zig-Zag Optical Lattices 87

(a)

B [arb. units]
0

0.25

0.5

M

∆M = 2

∆M = 1

∆M = 3

macroscopic
        jump

(b)

0.12 0.16

D

0

0.6

1.2

χ
F
 /

 L
2

L = 80
L = 120
L = 160
L = 240

0 150 300L
0

1.5

χ
F

, 
m

a
x
 /

 L
2

J
1
 = -1

Fig. 5.27: (a) Magnetization curves M = M(H) for J1 = −3.2 and (from left to right)
D = 0, 0.04, 0.08 (L = 120, J2 = 1). (b) Scaling of the fidelity suszeptibility near the
nematic to chiral phase transition for J1 = −1 and M = 0.4.

Interestingly, the transition between atomic VC and nematic phase may be of
Ising type. In Fig. 5.27 (c) the scaling of the fidelity susceptibility χD with respect
to D reveals the Ising nature of the phase-transition between nematic and vector-
chiral phase due a linear scaling of the peak with system size L with respect to the
wings (see chapter 4).

5.6 Polar molecules in frustrated triangular ladders

In section 5.4 we have shown how the three-body on-site interactions in the form
of a 3-body hard-core constraint may lead to interesting new physics. Recently,
it has been proposed how finite three-body nearest-neighbor interactions may be
achieved under realistic conditions for a system of polar molecules [103]. Several
recent works have studied the effect of the role of inter-site three-body interactions
in lattice gases. E.g. in 2D supersolid and Devil’s staircase phases [259] or in 1D
systems a gapped phase with simultaneous charge-density-wave (CDW) order and
bond-order (BO) [260] have been found.

In the following we consider a system of polar molecules in a frustrated trian-
gular ladder as depicted in Fig. 5.28, characterized by the following Hamiltonian

Ĥ = −J1∑
i
(b†

i bi+1 +H.c.)−J2∑
i
(b†

i bi+2 +H.c.)

+ V∑
i

nini+1 +W∑
i

nini+1ni+2 . (5.39)

Here, we just consider the case of hard-core particles (b†
i )

2 = 0.

Fig. 5.28: Triangular ladder lattice with two- and three-body interactions, V and
W, respectively. The hopping along the rungs and the legs are J1 > 0 and J′1 < 0,
respectively.
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In particular we are interested in the appearance of different kinds of supersolid
phases in the presence of large two- and three-body interactions V and W. We
observe phases with coexisting bond- and supersolid order characterized by the
structure-factor

SBO(k) = 1
L2 ∑

i,j
eik(i−j)⟨BiBj⟩, (5.40)

where Bi = b†
i bi+1 + b†

i+1bi . The CDW presents a finite value of the density-density
structure factor

SCDW(k) = 1
L2 ∑

i,j
eik(i−j)(⟨ninj⟩ − ⟨ni⟩⟨nj⟩). (5.41)

The following results and discussion have been published in Ref.[40] in collab-
oration with T. Mishra and L. Santos. A large part of the DMRG simulations have
been performed by T. Mishra in the context of this work.

5.6.1 The ground-state phase diagram

In Fig. 5.29 we present the very rich quantum phases of model (5.39) as function of
the chemical potential and the interaction strength for strong frustration J1 = −J2.
The three-body interactions explicitly break particle-hole symmetry, which results
in a strongly asymmetric phase diagram for ρ < 1/2 and ρ > 1/2.

The low filling part of the phase diagram is dominated by the effect of the two-
particle interactions. At half filling at small V ≲ 3 the system presents a gapped
Dimer-phase , here denoted as bond ordered phase (BO) (see section 5.3). For large
V the system favors a CDW phase. The phase transition is of first order as discussed
in [261].

Due to the three body interaction for ρ = 2/3 we observe another gapped phase,
BO+CDW, that possesses both BO and CDW orders simultaneously. The SCDW(k)
has a peak at k = 2π/3. For a chain-lattice the (BO+CDW) phase has previously
been observed in [260].

For incommensurate phases we observe the typical structure of subsequent CSF
to SF transitions with a possible intermediate 2SF phase (see section 5.3). All these
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Fig. 5.30: Momentum distribution n(k) for different densities (V = W = 2.6, L = 180).
The single curves have been shifted for clarity. In the 2SF (ρ = 0.33, 0.4, 0.73, and 0.8)
and the CSF phase (ρ = 0.26), n(k) exhibits two peaks at incommensurate momenta
±k. When approaching the SS phase the momentum distribution broadens but still
shows two maxima (for ρ = 0.4, 0.43, 0.6, and 0.66), characterizing the icSS region.
However, at intermediate fillings (ρ = 0.53) only one maximum is observed (cSS
region).

phases exhibit a supersolid character, hence we denote the one component Lut-
tinger liquid phase as a supersolid (SS). Remarkably, in addition to a finite CDW
order we observe a finite coexisting bond order. Figure 5.32 and 5.33 depict the
maximum of SBO(k) and SCDW(k) as a function of ρ showing that clearly the sys-
tem exhibits simultaneous CDW and BO orders not only at the gapped BO+CDW
at ρ = 2/3, but for incommensurate fillings within the superfluid region. In Fig. 5.32
apart from estimating c we have computed the gap in the entanglement spectrum,
∆es(l).

Interestingly, the SS phase splits into two regions: In the commensurate super-
solid (cSS) we observe a single maximum of the momentum distribution n(k) at
k = 0. The incommensurate supersolid (icSS) (shown as shaded region in Fig. 5.29)
exhibits two maxima of n(k) (see Fig. 5.30). The cSS region grows slowly with
increasing V = W (e.g. we do not observe a single maximum for ρ > 2/3 for
W = V ≲ 20). However, as we show below, in the limit of strong interactions only
the cSS phase survives.

5.6.2 Dilute limit

We examine the limit of the dilute bosonic model, mapped into a spin-1/2 model
(0, 1 →↑, ↓), along the lines of the discussion in section 5.2. In the dilute limit the
Hamiltonian becomes a J1–J2 model with NN and NNN SzSz-interactions:

Ĥdilute
1/2 = J1∑

i
S+i S−i+1 + J2∑

i
S+i S−i+2 +H.c.

+ Jz
1∑

i
Sz

i Sz
i+1 + Jz

2∑
i

Sz
i Sz

i+2 (5.42)

where Sx,y,z
i denote the spin operators associated to the site i. For the low-filling

limit, the spin couplings are given by Jz
1 = V = W and Jz

2 = 0. The resulting phase di-
agram is shown in the main panel of Fig. 5.31 (a). By increasing Jz

1 one observes the
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Fig. 5.31: (a) Analytical prediction of the phase diagram for filling ρ → 0 as function
of the frustration J2/J1 and the interaction Jz
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the phase boundary for Jz
1 = 3∆ and Jz

2 = ∆ which corresponds to the particular case
of ρ → 1 of model (5.39). (b) Phase diagram of model (5.43) as a function of J2/J1
and the effective density ρ′.

transition between the CSF and the 2SF phase for J2/J1 > 1/
√

8. The estimated value
Jz
1,c/J1 ≈ 3.6 for J2 = J1 is consistent with our numerical estimates of the transition

taken at finite density.
Note that at high fillings just below saturation, ρ → 1, we may again describe the

system with the model (5.42). However, due to the broken particle-hole symmetry
of model (5.39), the effective spin model presents different spin couplings, Jz

1 = 3∆
and Jz

2 = ∆ with ∆ = V = W. As shown in the inset of Fig. 5.31 (a), the CSF to
2SF transition at large fillings would be predicted for much lower values of J2/J1.
However, in our numerical calculation we still find such a transition at J1 = J2 for
high filling, which corresponds to the discrepancy already reported in Ref. [37] for
spin- 1

2 -systems with large values of Jz
1 and Jz

2 .

5.6.3 Limit of strong interactions

Interesting insight in the properties of the system is provided by the analysis of the
strongly-interacting regime V = W ≫ J1, J2 (still assuming hardcore bosons). Let us
first consider the case of low filling ρ < 1/2, where three-body-interactions play a
negligible role. In that regime we may identify pairs of subsequent ∣01⟩ particles
as ∣1⟩e f f and the remaining empty sites ∣0⟩ as ∣0⟩e f f . In this mapping the number of
sites of the effective hardcore bosons is reduced to L′ = L−N and the total density of
the effective model ρ′ fulfills ρ = 1

1/ρ′+1 . To first order in (J1, J2)/V the effective quasi-
particle model is given by an interaction-free J1 − J2 Hamiltonian (similar models
have been studied on square lattices in Refs. [262, 263]):

Ĥe f f = J1∑
i

c†
i ci+1 + J2∑

i
c†

i (1− c†
i+1ci+1)ci+2 +H.c., (5.43)

where c† (c) are creation (annihillation) operators for the effective quasi-particles.
The correlated NNN tunnelling in Eq. (5.43) stems from the fact that a hopping to
site i + 2 is only allowed if there is no neighboring quasi-particle ∣1⟩e f f on site i + 1.
Model (5.43) also applies in the high-filling regime, ρ > 2/3. In that case, we may
identify tuples of three sites ∣011⟩ → ∣1⟩e f f and the remaining occupied sites ∣1⟩ as
∣0⟩e f f . The effective length reduces to L′ = L − 2N, and the density is mapped as
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ρ = 1 − 1
1/ρ′+2 . The phase diagram of model (5.43), depicted in Fig. 5.31 (b), shows

a SF-2SF transition for a critical J2/J1 < 2. We do not find any region with a finite
chirality. The SF phase of model (5.43) may be identified with the SS phase of the
original model due to the structure of the effective quasi-particles.

In Fig. 5.32 we depict our numerical results obtained for the original model (5.39)
in the regime of large interactions (V = W = 8 and ∣J2∣ = J1 = 1). These numerical
results agree well with those obtained from the strongly-interacting quasi-particle
model (5.43). For low and large fillings (ρ < 1/2 and ρ > 3/2) we observe a 2SF
to SF transition, clearly revealed by the central charge c and the entanglement
properties. The critical density for the SF-2SF transition obtained from the effec-
tive model matches well with the numerical estimates resulting from model (5.39).
Figures 5.32 show SF-2SF transitions at ρ1 ≈ 0.4 and ρ2 ≈ 0.72 which agrees perfectly
with ρ′c ≈ 0.64. For all incommensurate densities SCDW(k) and SBO(k) exhibit a max-
imum at k ≠ 0 which extrapolates to finite values in the thermodynamic limit (the
extrapolation has been performed with polynomials of first and second order in
1/L).

As shown in Fig. 5.31 (b), for large values of the NNN hopping J2, it is ener-
getically favorable at high densities to create pairs of holes (PSF phase), because
the correlated NNN hopping of isolated quasi-holes is suppressed at high densi-
ties. This PSF phase at large NNN-hoppings is connected to the small PSF region
shown in Fig. 5.29, and will occupy larger regions of the phase diagram with in-
creasing J2. A similar situation has been recently studied for the case of low fillings
in strongly interacting dipolar lattice gases [264].

For the particular choice of interactions V = W the region of intermediate fill-
ings 1/2 < ρ < 2/3 in the large interaction limit may be mapped to a simple model
of non interacting hardcore particles. By adding single particles on top of the per-
fect ρ = 1/2 CDW phase one creates two domain-wall excitations that behave again
as particle-pairs ∣11⟩ of two sites. However, this pair may only move by single
sites with some amplitude J1. It is precisely the large three-body interaction W
that creates an effective hard-core repulsion of these excitations. Analogously one
can start the description on the background of the perfect 2/3-crystalline phase.
Hence, the large interaction limit of the intermediate fillings is described by a sim-
ple non-interacting spinless fermion model on a chain, explaining why in the large
interaction limit all SS regions map to a one-component standard SF phase. This
phase exhibits a single maximum in the momentum distribution, broadened due
to the size of the effective quasi-particles and thus at large interactions only the cSS
phase is present.

5.7 The sawtooth ladder

A natural extension of the zig-zag ladder is to allow for difference in the tunneling
amplitude between upper and lower leg. The resulting, so called railroad trestle
models, are of the form:

Hrrt = −t∑
i
(a†

i bi + b†
i ai+1 +H.c.)

− t′∑
i
(a†

i ai+1 +H.c.) − t′′∑
i
(b†

i bi+1 +H.c.) (5.44)

Here, ai and bi bosons operate on the upper (B) and lower (A) leg resp. We will
consider the interesting case of t′′ = 0, the so called sawtooth-ladder model (see
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Fig. 5.34).

HST = −t∑
i
(a†

i bi + b†
i ai+1 +H.c.) − t′∑

i
(a†

i ai+1 +H.c.)

+ U
2
∑

ν∈{A,B},i
nν

i (nν
i − 1). (5.45)

The following results and discussion have been published in Ref.[41] in collabora-
tion with T. Mishra and L. Santos. A large part of the DMRG simulations have been
performed by T. Mishra in the context of this work.

5.7.1 Non-interacting case

Again, it is convenient to study the non-interacting regime (U = 0) for which we
find two energy bands α and β

ĤST,U→0 = 2∑
k
[εα(k)α†

kαk + εβ(k)β†
kβk] (5.46)

with the dispersion

εα,β(k) = −t′ cos 2k ∓ 2t[cos2 k + (t′/2t)2 cos2 2k]1/2 . (5.47)

Interestingly, the lowest band becomes flat at ∣t′∣ = t/
√

2. As shown in Ref. [238]
in the flat-band case a gapped valence bond crystal phase my be found at ρ = 1/4
filling. For ∣t′∣ < t/

√
2 the dispersion of the lower band εα exhibits a single minimum

in the lowest band at k = 0. For ∣t′∣ > t/
√

2 it has a single minimum at k = π/2
(which corresponds to k = −π/2 due to the doubled unit cell). As a result, for non-
interacting bosons, a transition occurs from a superfluid phase at k = 0 (SF0) to a
superfluid phase at k = π/2 (SFπ/2). In the SFπ/2 the B leg is strongly depopulated.

5.7.2 The phase diagram

In Fig. 5.35 we present the phase diagram of model (5.45) for unit filling as function
of t′ and U. As discussed above in section 5.3 the flatness of the band at ∣t′∣ = t/

√
2 is

expected to induce a MI-phase for arbitrary interaction-strength as an intermediate
phase between the SF0 and SFπ/2 phases. Interestingly, in our DMRG calculations
we observe a third superfluid phase next to the SFπ/2 phase which, remarkably,
exhibits a supersolid character, i.e. a density modulation on the A leg. Detailed
calculations show [41] that this SS-phase remains stable away from unit-filling.

t‘

t

(B, j)(B, j-1)

(A, j)

U

Fig. 5.34: Scheme of the sawtooth lattice. The V-shaped plaquettes are non-
frustrated, whereas the △-shaped plaquettes are frustrated.
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Fig. 5.35: Phase diagram of Model (5.45) for ρ = 1 as a function of ∣t′∣/t and U/t.

5.7.3 Classical limit

An intuitive insight on the emergence of the SS is obtained from the classical limit
of model (5.45). We assume each site to be in a coherent state with a well defined
density and phase, 0 or π, corresponding to the two possible minima of Eα(k). We
consider a simplified model in which bj = η, a2j = ξ, and a2j+1 = χ, such that we
allow for both a possible density imbalance between the A and B legs, and for
an even-odd asymmetry in the A leg. We may hence minimize the energy, which
without loss of generality may be calculated for a four-site unit cell:

⟨H⟩ = −4t(ξχ + χη) − 4t′ξη+
+U (ξ4 + 2χ4 + η4) − µ (ξ2 + 2χ2 + η2) (5.48)

Within this approach the phase diagram splits into three regions (Fig. 5.36(d)). For
∣t′∣/t < 1/

√
2 the three coefficients have the same sign, and the particles occupy both

A and B sites corresponding to the SF0-phase (Fig. 5.36(a)). For small U/t and ∣t′∣/t >
1/

√
2, the B sites depopulate (η = 0), the density is homogeneous in the A sites (∣χ∣ =

∣ξ∣), and sign(χ) ≠ sign(ξ), corresponding to the SFπ/2 phase (Fig. 5.36(b)). A suf-
ficiently strong repulsive interaction U/t > (U/t)c redistributes population to the
B sites. However, how the particles re-distribute in the A leg is crucially deter-
mined by the existence of frustrated and un-frustrated plaquettes in the sawtooth
lattice. In order to minimize kinetic energy particles favor the un-frustrated V-
shaped plaquettes of the sawtooth forming V-shaped dimers. As a result particles
break the translational symmetry spontaneously, preferably occupying every sec-
ond V-plaquette (Fig. 5.36 (c)), which leads to a density modulation in the A sites,
that characterizes, as mentioned above, the SS phase.

5.7.4 Roton instability

Insight on the nature of the SFπ/2-SS transition is obtained in the limit in which
U ≪ Eβ(k) − Eα(k) for all k. In that case we may project model (5.45) onto the
lowest energy band:

ĤST ≃∑
k

Eα(k)α†
kαk+

U
2
∑

q,k,k′
f k+q,k′−q
k,k′ α†

k+qα†
k′−qαk′αk, (5.49)
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Fig. 5.36: (Color online) Sketch of the SF0 (a), SFπ/2 (b) and SS (c). The circle size
is proportional to the local density, whereas ± denote the sign. (d) Phase diagram
in the weak-coupling limit as function Uρ and ∣t′∣/t for a fixed (but arbitrary) fill-
ing. The SF0 to the SS phase is shown as a solid line. The dotted and dashed lines
depict, respectively, the SFπ/2-SS transition line obtained from the variational ap-
proach (5.48) and the roton instability. At t = 0 SS-order vanishes (thick solid line)
resulting in an highly degenerate ground-state, since particles may occupy the un-
coupled B sites in an arbitrary configuration.

with f k3,k4
k1,k2

= ∏4
l=1 cos(θkl)+∏

4
l=1 sin(θkl). Note that, although the on-site interactions

are contact-like, the effective interactions are momentum dependent. Considering
the SFπ/2 phase, we may assume condensation at π/2, and evaluate the correspond-
ing Bogoliubov spectrum of excitations, ε(k)2 = (ẼA(k) + 2Uρ(1+ cos 2θk)) ẼA(k)
with ẼA(k) = EA(k) − 2t′ +Uρ(cos 2θk − 1). As usual the spectrum exhibits a linear
(phonon-like) dispersion for k close to π/2. Interestingly, for finite ρU it acquires
a local minimum at k = 0, that resembles the roton dispersion minimum of super-
fluid helium [265], and that occurs, as for dipolar condensates [266], due to the
momentum dependence of the interactions. For a critical value of ρU the roton-like
minimum reaches zero energy, becoming unstable and marking the transition to
the SS. As shown in Fig. 5.36 (d) the critical ρU for the roton instability agrees well
with the SFπ/2-SS transition line obtained by the classical model. Hence, we can
conclude that the SFπ/2 is destabilized through the roton instability that leads to
the SS phase.

5.8 Conclusions

In summary we have obtained the full phase diagram of ultracold bosons in frus-
trated zig-zag optical lattices. The system exhibits very rich ground-state physics:
Apart from CSF and 2SF phases different types of gapped phases including chi-
ral MI phases have been found. We have introduced a analytical method for the
analysis of dilute limit properties and presented detailed numerical support for its
results. These arguments will be employed in the following chapter in a different
context.

Three body on- or off-site interactions or long range repulsions give rise to topo-
logical Haldane insulator, super-solid phases or meta-magnetic behavior. Some of
these quantum phases can be naturally identified with equivalent phases and find-
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ings in corresponding spin-models. Hence, the results complement the various the-
oretical approaches to this and similar models as well as the experimental efforts in
the field of ultracold gases.

The different variations in the geometry of section 5.7 remain to be studied more
in detail. In particular the connection between chiral phases in the zig-zag ladder
and the super-solid phases discussed in the context of sawtooth models or gener-
ally rail-road-trestle models have to be understood.



Chapter 6

Artificial Magnetic Fields in Two-
leg Ladder Systems

Some of the most interesting phenomena in modern physics emerge in strongly
correlated quantum many body systems exposed to strong magnetic fields. So for
example the quantum Hall[19] or fractional quantum Hall[158] effect, whose ex-
perimental discovery also had a huge impact on theoretical models and methods.

Another very early example is the effect discovered by Meissner and Ochsen-
feld [267] that magnetic fields may be expelled from superconductors, screened
by a thin layer of superconducting currents exponentially confined to the bound-
ary. For type-II superconductors the magnetic field may penetrate the sample after
a critical field strength forming vortices of quantized flux in the configuration of
screening supercurrents [268].

Some theoretically proposed effects have remained elusive for a long time. So
the fractional band structure of non-interacting lattice-fermions, the “butterfly” dis-
covered by Hofstadter[269] (see Fig. 6.1), whose experimental observation in real
materials would demand ridiculously high magnetic field strengths.

Already in his seminal work Douglas Hofstadter proposes the engineering of a
“synthetic two-dimensional lattice of considerably greater spacing than that which
characterizes real crystals” [269]. Cold atoms in optical lattices due to their large lat-
tice constant (as compared to typical condensed matter systems) constitute a perfect
testbed for the emulation of the Hofstadter-model. The possibility to study quan-
tum Hall and fractional quantum Hall physics, topological phases and transitions

(a)

0

1

2

-4 0 4

Fl
ux

Energy

(b) (c)

Fig. 6.1: Fractal bandstructure of a square flux-lattice - the ”Hofstadter-butterfly“
(a). Black lines denote the extend of bands for a given flux. (b) Examples of the
band-structure for Φ/Φ0 = 1

3 on a torus. (c) The presence of open boundaries
leads to chiral edge states as shown for Φ/Φ0 = 2/5 on a cylinder-geometry. Solid
(dashed) lines depict left (right) moving states. The edge-state have been calculated
employing transfer matrix-techniques as introduced in [270].
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as well as anyonic excitations in a strongly correlated, highly tunable, and clean
cold atomic system attracts a huge interest in theory and experiment. An obvious
drawback is, however, that the trapped atoms are neutral and, hence, magnetic
fields have to be artificially induced.

In the following, after a brief review of some recent experimental attempts and
breakthroughs for the simulation of synthetic quantum magnetism, we will discuss
the properties of a very simple paradigm, the two leg ladder with a homogeneous
flux, which exhibits, as we will show, a very rich physics.

6.1 Magnetic fields and lattice systems

External electric and magnetic fields enter in the quantum mechanical Hamiltonian
as (c = 1)

Ĥ = (p̂ − eA)2

2m
+ eΦ , (6.1)

where the potentials Φ and A are defined up to a gauge transformation. In the
presence of a lattice within the tight-binding approximation the dependence on the
field may be absorbed into an additional phase factor of the usual hopping matrix
element, the so called Peierls phase

Jx,y → Jx,y e−i e
h ∫

Ry
Rx

dr⋅A(r,t) . (6.2)

For a homogeneous field perpendicular to our system we may choose the gauge
A = (0, B x, 0), and the transition amplitude along y gains an x-dependence, e−i(±a) e

h B x.
Figure 6.2 illustrates this situation for the case of a 2D square lattice. The total
Hamiltonian of this Hofstadter-model is given by

ĤH = − Jx∑
x,y

eixφa†
x,yax,y+1 − Jy∑

x,y
a†

x,yax+1,y + h.c. (6.3)

with φ = 2πBa2 e
h = 2πΦ/Φ0, and the magnetic flux quantum Φ0 = h

e . Hence, a
particle hopping around a plaquette picks up an additional phase proportional to
the magnetic field.

If Φ/Φ0 = p
q is a rational number the Hamiltonian (6.3) is periodic in space and

we typically expect to find q distinct energy bands in the single particle spectrum.
This leads to the astonishing fractal Hofstadter-butterfly band-structure. In Fig. 6.1
some examples are shown. It has been shown that the bands are characterized

Fig. 6.2: Fluxes on a 2D square lattice as described by Eq. (6.3).
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(a) (b)

Fig. 6.3: (a) Experimental scheme for the generation of synthetic magnetic field in
bosonic ladders. Figure adapted from Ref.[2]. (b) Synthetic gauge fields in synthetic
dimensions. Three atomic hyperfine-states are laser coupled to form the rungs of a
ladder system. Figure adapted from Ref.[273].

by nontrivial topological invariants, Chern numbers. These can be related to the
number of conducting edge states in open boundary systems (see Fig. 6.1 (d)) and
hence to a quantized conductance of each band[271].

As mentioned above a Φ/Φ0 ∼ 1 in traditional solid state systems would require
fields of the order 105T (assuming a ∼ Å). In order to realize larger fluxes of exper-
imentally achievable magnetic fields the lattice constant has to be enlarged. Apart
from ultracold quantum gas experiments, recently, the Hofstadter model has been
realized in graphene [272].

6.2 Synthetic magnetic fields

6.2.1 Rapidly rotating BECs

Early attempts for the generation of synthetic gauge fields focused on fast rotating
BECs [274]. Here the Coriolis force in the rotating system resembles the effects a the
Lorentz force. In fact, in a co-moving frame the Hamiltonian of a system rotating
with an angular frequency may be rewritten in the form [275]

Ĥrot =
(p̂ −A)2

2m
+V(r) +Wrot(r) (6.4)

where V(r) is an external potential and the artificial vector potential is given by
A = mΩ × r with the rotation vector Ω. Note, that the additional centrifugal po-
tential Wrot = −A2/2m repels particles form the center. Hence, fast rotations will
require a compensating strong trapping of the particles in order not to cause an
instability of the system. Experiments in rotating BECs or lattices systems have
been conducted with great success [276, 277], observing large Abrikosov vortex-
lattices [278] and occupation of the lowest Landau-level [279]. However, entering
a strongly correlated regime with rotation techniques remains challenging due to
technical difficulties for achieving sufficiently large angular momenta per particle
[275].

6.2.2 Laser assisted hopping

The seminal proposal of Jaksch and Zoller [280] provided an alternative scheme
based on laser assisted tunneling in optical lattices. The basic constituents are a
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tilted optical lattice (in one direction), which will suppress tunneling in that di-
rection and a set of Raman-lasers which effectively restore the tunneling and al-
low for the imprinting of a (spatially dependent) Peierls phase. One decade after
the Jaksch-Zoller proposal staggered [281] and rectified [13, 14] effective magnetic
fields have been realized in experiments with some simplifications [282] and modi-
fications [283]. While the original proposal relies on the trapping of two hyperfine-
states in spin-dependent shifted optical lattices the experiments in Munich and
Boston with a 87Rb gas [13, 14] just require a single component and two far de-
tuned running-wave Raman lasers.

Basic scheme

In the experiment an optical lattice is tilted in, say, x-direction with an energy-shift
∆ from site to site. Local eigenstates are described by Wannier-Stark states which
may be approximated by the Wannier-functions of the original lattice [283]

ψj(x) ≃ w(x − jd) + J
∆
[w(x − (j + 1)d) −w(x − (j − 1)d)] (6.5)

The 3D on-site wavefunction at site j is Φj(r) = ψj(x)ϕ(y, z) and for simplicity we
useϕ(y, z) ≃ w(y)w(z).

We assume the tilting to be large enough J ≪ ∆, U such that the hopping is sup-
pressed. Raman-assisted hopping is realized by two lasers with Rabi frequencies
Ω1,2, wave vectors k1,2, and frequencies ω1,2. Following Ref. [283], we evaluate the
Raman-assisted hopping, Jx from site j to site j + 1:

Jx =
VR

4 ∫ d3r Φj+1(r)∗eiδk⋅rΦj(r), (6.6)

where δk = k1 −k2, and VR = h̵∣Ωn ∣∣Ωm ∣
δ , with δ the (large) detuning to the one-photon

transitions. For Jx ≪ ∆ within the harmonic approximation we yield

Jx ≃ iJx
VR

2∆
sin(δkxd

2
) eiδkxd(j+1/2). (6.7)

Interestingly, a finite δkx ≠ 0 is necessary to establish a significant assisted hop-
ping [13, 14, 283].

Floquet analysis

Following Ref.[147, 282] we may express the two running-wave beams in the form
of a local optical potential with a spatially dependent force. In the tight-binding
approximation we obtain

Ĥ(t) = − Jx∑
x,y

b†
x,ybx+1,y − Jy∑

x,y
b†

x,ybx,y+1 + H.c.+∑
x,y

(x∆ +Vx,y(t))nx,y (6.8)

where Vx,y(t) = VR sin(ωt + φx,y) with φx,y = δk ⋅ r. As described in section 2.5 we
may apply a unitary transformation

U(t) = e−i∑x,y(xωt+Ṽx,y(t))nx,y (6.9)
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with Ṽx,y(t) = ∫ t
0 Vx,y(t′)dt′ to move the time dependence in the hopping part of the

Hamiltonian.

Ĥ(t) = − Jx∑
x,y

ei(Ṽx,y(t)−Ṽx+1,y(t)−ωt+Θ̃x,y)a†
x,yax+1,y + H.c.

− Jy∑
x,y

ei(Ṽx,y(t)−Ṽx,y+1(t)+Θ̃′
x,y)a†

x,yax,y+1 + H.c. (6.10)

After time-averaging we obtain, assuming the resonance condition ∆ = ω, the
Hofstadter-model (6.3)

Ĥe f f = − J̃x∑
y

eiΦx,y b†
x,ybx+1,y − J̃y∑

x,y
b†

x,ybx,y+1 + H.c. (6.11)

with Φx,y = (φx,y + φx+1,y)/2 and

J̃x = JxJ1 (
VR

2ω
sin(φx,y − φx+1,y))

J̃y = JyJ0 (
VR

2ω
sin(φx,y − φx,y+1)) . (6.12)

Hence, also the hopping in the y-direction gets renormalized due to the laser as-
sisted hopping. For a weak coupling VR ≪ ω we arrive at the result (6.7).

This scheme has been employed in 2D systems to study cyclotron orbits parti-
cles in the Hofstadter model [13, 14] and phases with non-trivial Chern-numbers
[148]. By superlattice-techniques in Ref. [2] arrays of square-ladders have been cre-
ated (see Fig. 6.3 (a)).

6.2.3 Synthetic gauge fields in synthetic dimensions

A different approach for the simulation of magnetic fields relies on the light assisted
coupling of different hyperfine states. Breakthrough work in this field has been
conducted in the group of Ian Spielman with the realization of synthetic unidirec-
tional spin-orbit coupling [284]. Recent extensions of these ideas combine a one
dimensional real-space lattice with a laser induced coupling of different hyperfine
states constituting a so called synthetic dimension [285]. These experiments show
the possibility to create artificial magnetic fields in multi-leg ladders with fermions
[273] and bosons [286]. The coupling of internal spin states via two-photon Raman
transition allows for a phase imprinting along the rungs (see Fig. 6.3 (b)). Due to the
sharp edge of the system and direct observability of the leg (species) resolved oc-
cupation and momentum-distribution it was possible to observe chiral edge states
and orbit skipping phenomena.

6.3 Ladders

Motivated by the recent experimental realizations by Atala et al.[2], in this chapter
we will focus on the properties of interacting bosons in a simplified geometry, the
two-leg square ladder system as sketched in Fig. 6.4. The system is described by
the following Hamiltonian

Ĥ = − J∑
r
(b†

1,rb1,r+1 + b†
2,rb2,r+1) − J⊥∑

r
eirΦb†

1,rb2,r + H.c.+ U
2
∑

r
nr(nr − 1) , (6.13)
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with the rung-coupling J⊥ and the leg-hopping J. The model exhibits a gauge-
freedom to choose different Peierls phases as long as the total flux per unit cell
stays constant, e.g. a symmetric configuration

Ĥ = − J∑
r
(ei Φ

2 b†
1,rb1,r+1 + e−i Φ

2 b†
2,rb2,r+1) − J⊥∑

r
b†

1,rb2,r + H.c.+ U
2
∑

r
nr(nr − 1) .

(6.14)

Such ladder models have also been realized with arrays of superconducting Josephson-
junctions in a magnetic field almost two decades ago [287, 288] and still are subject
to active research [289]. Here the bosonic particles are Cooper pairs of electrons.

Two-leg ladder models with magnetic field have been studied theoretically start-
ing in the mid 80s in the context of Josephson junction arrays using field theoretical
methods [290, 291] and with a mapping to classical frustrated XY-models[292, 293].
A detailed treatment of interacting bosons in two-leg ladders using bosonization
was later also elaborated in Ref.[294].

Predictions from mean field arguments or field theoretical and bosonization
analysis include very interesting phenomena such as vortex lattices [294], Mott
insulators with Meissner Currents [295, 296], Laughlin-like-states [297] or phases
with spontaneously broken leg imbalance [298, 299]. Also fermionic ladders have
been studied theoretically [300–303]. The amount of both theoretical and recent
experimental efforts in the study of the simple two-leg bosonic flux ladder model
was for a long time contrasted by the lack of a detailed numerical analysis of the
ground-state phases and properties. There have been few exact diagonalization
[304] and DMRG studies focusing on the flux φ = π case [242, 243], or the study of
the momentum distribution [305].

The following results close this gap and have been published in Ref.[42, 43] in
collaboration with M. Piraud, F. Heidrich-Meisner, I. McCulloch, U. Schollwöck,
and T. Vekua. An extensive part of the DMRG calculations has been performed by
M. Piraud employing DMRG-codes supplied by I. McCulloch.

6.3.1 Currents

An important (experimentally measurable [2, 273, 286]) observable in ladder sys-
tems are local and boundary currents. From the continuity equation

⟨dnr

dt
⟩ = i ⟨[H, nr]⟩ = −∑

⟨s⟩
j(r → s) (6.15)

(2,L)

(1,L)

U

J

J
φ

(2,r)

(1,r)(1,1)

(2,1) J

J
JJ φ

(2,r)

(1,r)(1,1)

(2,1)

Fig. 6.4: Bosons on a two-leg ladder in the presence on a homogeneous flux φ per
unit cell with a rung-hopping J⊥ and the leg-hopping J (6.14).
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Fig. 6.5: Single particle energies ε(k) as defined by Eq. (6.19) for a two leg ladder
for (a) J⊥ = 1, φ/π = 0.1, (b) J⊥ = 0, φ/π = 0.8 and (c) J⊥ = 1, φ/π = 0.8.

we can define the current j(r → s) from a site r to a neighboring site s. In particular
for model (6.14) we define

j∥`,r = i Ja (b†
`,r+1b`,r − b†

`,rb`,r+1)
j�r = i J�a (e−irφb†

1,rb2,r − eirφb†
2,rb1,r) (6.16)

Apart from the configuration of local currents the average current that circulates
through the boundary of a system may reveal important properties of the quantum
phase. This so called chiral current (also dubbed edge, screening or Meissner cur-
rent) is defined as

jc =
1
N
∑

r
⟨j∥1,r − j∥2,r⟩ (6.17)

For a two leg ladder we may obtain it from the Hellmann-Feynman theorem as
derivative of the ground state energy E0 per particle

jc = ∂φE0/N . (6.18)

6.4 Non-interacting particles

It is instructive to analyze the behavior of non-interacting particles in the flux-
ladder [2]. In the symmetric gauge the Hamiltonian is easily diagonalized Ĥ =
∑k ε−(k)α†

kαk +∑k ε+(k)β†
kβk and the single particle energy is given by

ε± = −2J cos(k) cos φ/2±
√

J2 +K2 − J2(cos φ + 2 cos 2k sin2 φ/2) (6.19)

For a finite J⊥ the energies split into two branches mixing particles on the lower
and upper leg of the two ladders. The new creation and annihilation operators αk
and βk are given by

b1
k = cos θkαk − sin θkβk, b2

k = sin θkαk + cos θkβk

with the mixing angle given by cot θk = − ε−(k)+2 cos(k−φ/2)
K .

A prominent feature of the single particle dispersion relation is that it acquires
a degenerate double minimum (see Fig. 6.5) for critical flux φ > φc, where

φc = 2 arccos
−J⊥ +

√
16+ J2

⊥
4

(6.20)

at Q = −Q = arcsin±
√

(1− cosφ)/2− J2
⊥ cot2 φ/2. The line of this Lifshitz-transition

to the frustrated regime is depicted in Fig. 6.8 (a).
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Fig. 6.6: Current configurations for non-interacting bosons on a ladder for φ/π =
0.1, 0.2, ...0.9. For φ/π ≲ 0.42 the ground state is non-degenerate and currents are
mainly confined to the legs.

As intuitively clear from the J⊥ → 0 limit the degenerate eigenstates ∣Q⟩ and
∣ −Q⟩ correspond to particles preferably occupying the upper or the lower leg of the
ladder. The particle-density on the upper or lower leg for ∣Q⟩ (the lower or upper
leg for ∣ −Q⟩) is given by N1 = N cos2 θk and N2 = N sin2 θk (shown in Fig. 6.7 (a)).

For non-interacting bosons the ground state for φ > φc is highly degenerate in
thermodynamic limit or for periodic boundary conditions: From the total number
of N particles, M may occupy the minimum ∣Q⟩, while N − M particles remain in
∣ −Q⟩. Open boundary conditions on a finite system will result in a unique ground
state, corresponding to an equal occupation of both minima since one does not ob-
serve any particle density imbalance. Remarkably, in spite of the highly degenerate
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Fig. 6.7: (a) Particle-density on the upper or lower leg N1/N and N2/N as a function
of the flux. (b) Equation of state ρ(µ) = µ for non-interacting fermions on a ladder
for J⊥ = J and φ/π = 0, 0.5, 1. The C-IC transition from the M to the V phase is
characterized by a cusp signaling the change in number of Fermi-surfaces.
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Fig. 6.8: Phase diagram for free particles. (a) The M and V-phases of non-interacting
bosons on an two leg ladder. The lower panel depicts the chiral current for J⊥ = 1
and 2. (b) The phase diagram of free fermions as function of the filling ρ and flux
φ. The lower panel shows the chiral-current jc for ρ = 0.1 and 0.7.

ground state, the chiral current for all possible configurations is identical, since it is
given by the ground-state energy derivative (6.18). For φ > φc we find

jc =
J2
� sin φ

8J sin4 φ
2

√
1+ (J�/2J sin φ

2 )2
. (6.21)

while for the non-degenerate regime it saturates to jc = J sin φ
2 . This behavior of

jc, as shown in the lower panel of Fig. 6.8 (a), resembles the behavior of screening-
currents of type-II superconductors. In fact this similarity is established by compar-
ing typical current configurations as calculated for open systems in Fig. 6.6. In the
non-degenerate regime φ < φc, which we will name Meissner (M) phase, the cur-
rents are preferably on the system-boundary, i.e. the legs, and strongly suppressed
on the rungs. In the frustrated vortex (V) regime, φ > φc, vortices enter the system
diminishing the chiral ”screening“ current. The density of vortices in the system
ρV , describing the inverse average extent of single vortices, is zero in the M-phase,
and a smooth monotonous function in the V-phase given by ρV = Q/π.

For further insight on the phase transitions we will discuss shortly the case
of non-interacting spinless fermions, since here due to Pauli-principle the non-
interacting problem has a well defined ground state for any filling. The V-phase
exhibits two separate Fermi-seas. In a low energy description there a two gapless
modes corresponding to excitations along the different Fermi-points. The V-phase
is thus characterized by a central charge c = 2, while M-phase is a c = 1 Luttinger-
liquid. Increasing the band-filling, as shown in Fig. 6.8 (b), distinct c = 2 regions
may be explored. The phase boundaries for spinless fermions are given by

n1,2
c = arccos (±J⊥ cos(φ/2) + cos φ) /(2π) (6.22)

The change in the number of Fermi-points is reflected in a cusp in the equation of
state ρ(µ) = µ as shown in Fig. 6.7. This cusp-sigularity will be used as a precise
signature of the commensurate-incommensurate transition from M- to V-phase. As
shown in Fig. 6.8 (b) the chiral current for spinless fermions may be positive or
negative. Negative currents result from the Pauli principle and the band structure.
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For example the chiral current for a single band J⊥ > 2 in the vicinity of φ = 0 is
given by

jc/φ = − J2nπ + J2 cos(nπ) sin(nπ)
J⊥

+ J sin(nπ) (6.23)

For the filling n ≳ 0.56 this function becomes negative which may be related to the
negative effective mass at the Fermi-point for n > 1

2

6.5 Vortex and Meissner phases for hardcore bosons

From the DMRG-perspective the case of hardcore bosons U → ∞ appears to be
the easiest starting point due to local Hilbert-space restrictions. Also from the ex-
perimental perspective in typical setups the limit of low particle numbers per site
demands a strong three dimensional confinement and thus would result in strong
interactions. Hence, in the following section we concentrate on this case.

6.5.1 Results from bosonization

Ref.[42, 294] derive the low energy properties of model (6.14) starting from the
limit of two weakly coupled chains hosting two independent bosonic modes. As
in chapter 5 it is favorable to re-express the bosonic fields as symmetric and anti-
symmetric combinations. The low energy properties are then determined by the
Hamiltonian density [42]

H(x) =v+
2

[(∂xφ+)2

K+
+K+(∂xθα)2] (6.24)

+ v−
2

[(∂xφ−)2

K−
+K−(∂xθ− −

φ√
2π

)2]

− cos
√

2πθ− ∑
m=0,1

λm cos [m
√

8πφ+ + 4mπnx]

 0

 0.5

 0  1

ρ

φ / π

J
⊥
 / J = 2.0

J
⊥
 / J = 1.5

J
⊥
 / J = 1.0

M-SF, c=1

V-SF, c=2

V-SF

V-MI, c=1M-MI, gapped

Fig. 6.9: Phase diagram in the ρ − φ plane for different values of J⊥. Part of the
DMRG calculations have been performed by M. Piraud employing DMRG-codes
supplied by I. McCulloch.
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Fig. 6.10: Estimate of central charge from properties of the von-Neumann-entropy
SvN as function of partition size LA/L. (a) The fit to Eq.(4.5) results in c ≈ 1.02 and
c ≈ 2.07 for M-SF and V-SF phase. In the MI phases for V-MI we find c ≈ 0.96 for
periodic boundary conditions (b). Open boundaries (c) exhibit strong oscillations,
however accurately yield a central charge c ≈ 1.03 for V-MI phase. The completely
gapped M-MI phase SvN is flat.

where φ± =
√

π(φ1 ± φ2)/
√

2, θ+ = (θ1 + θ2)/
√

2π, θ− = (θ1 − θ2 + φx/
√

π)/
√

2π, and
couplings constants λm ∼ J⊥. K± and v± are Luttinger-liquid parameters and sound
velocities corresponding to the symmetric and antisymmetric sector.

As discussed in [294] the cos
√

2πθ− term opens a gap in the antisymmetric
sector for any U and a J⊥ in the M-phase. Assuming a decoupling of “spin” (an-
tisymmetric) and “charge” (symmetric) degrees of freedom, on may describe the
two sectors as two independent sine-Gordon models and introduce a vortex den-
sity defined as the number of solitons in the antisymmetric mode [42]. Interest-
ingly the flux φ acts a a chemical potential in the antisymmetric sector. Fixing all
other parameters and increasing the flux φ the system undergoes a commensurate-
incommensurate transition at φ < φc to a V-phase, gapless in the antisymmetric
sector. The rung-current correlations decay algebraically as [294]

⟨jR(x)jR(x′)⟩ ∼ cos 2πρV(x − x′)
∣x − x′∣1/K−

. (6.25)

Reference [294] shows how for certain commensurate vortex-densities ρV = p/q,
with p vortices in q sites, the system may undergo a further C-IC transition to a
so called Vortex-lattice (VL) phase, a phase of crystallized vortices, opening a gap
in the antisymmetric sector. In this analysis, valid for J⊥ ≪ J each vortex lattice
phase is realized close to its commensurate value of flux φ = πp/q + δφ for weak

interactions, as soon as the Luttinger-liquid parameter exceeds K− > q2

4 . We will
discuss this aspect in more detail in the following section.

6.5.2 The ground-state phase diagram

In Fig. 6.9 we present an overview of the ground-state phases as function of the free
parameters density n and flux φ for different values of J⊥/J. Interestingly, as for the
case of free bosons or fermions the phase diagram basically splits into different
regions of a Meissner superfluid (M-SF) and a vortex superfluid (V-SF) phase. The
V-SF phase for larger fillings ρ > 1/4 is strongly suppressed with increasing J⊥/J;
for J⊥ ≳ 1.3J we just observe a M-SF phase for ρ > 1/4.
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Fig. 6.11: Mass and neutral excitation gap in the V-MI and M-MI phases for n = 1/2
as function of J⊥ and flux φ (L = 201 rungs). The DMRG calculations have been
performed by M. Piraud employing DMRG-codes supplied by I. McCulloch.

Dilute limit

The lower V-SF lobe just vanishes for J⊥/J → ∞. The presence of the 2-component
V-SF phase for φ > φc is best understood from the limit ρ → 0, in which φc coin-
cides with the free boson case (6.20). Here, given a two fold-degenerate dispersion
minimum for φ > φc, we may develop an effective 2-component boson theory as
introduced in chapter 5. We will come back to this point in section 6.7. The hard-
core interactions will always favor an equal population of both dispersion minima,
which corresponds to the V-SF phase, resulting in an equal population of both legs.

Numerical results

As discussed for the case of free particles, the M-SF and V-SF phases can be dis-
criminated by their local current configurations. An accurate identification is given
by the calculation of the central charge, which is c = 1 for the M-SF and c = 2 for
the V-SF phase. We extract the central charge c from scaling properties of the von-
Neumann entropy as shown in Fig. 6.10.

The C-I phase boundary of the V-SF to the M-SF phase can be determined ac-
curately from the equation of state ρ = ρ(µ), which exhibits a cusp-like behavior at
this point. In Fig. 6.12 (a) we present the ρ(µ)-curve for several cuts through the
phase diagram 6.9.

As expected we do not observe VL phases for the hardcore boson case, since
these states are most stable for the weakly interacting case

Commensurate densities

Contrary to spinless fermions [300] at half filling hardcore bosons ρ = 1/2 on a
ladder always exhibit a Mott-insulating state with a finite mass gap ∆M = (2E0

N=L/2−
E0

N=L/2−1 − E0
N=L/2+1)/2, with Em

n being the energy of the mth state in the sector of n
particles. For a finite flux the MI-phase as the SF phases may split into two different
regimes of a M-MI and a V-MI. While the M-MI phase is completely gaped, the V-
MI phase exhibits still one gapless mode in the antisymmetric sector, i.e. the neutral
excitation ∆ex = E0

N=L/2 − E1
N=L/2 vanishes while ∆M > 0. In Fig. 6.11 we show the

energy gap for the V-MI and M-MI phases as a function of J⊥ and φ. This property
is reflected by the central charge, which is c = 1 for the V-MI phase, as depicted in
Fig. 6.10 (b) and (c). The totally gapped M-MI phase exhibits a flat SvN(x) curve.
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Fig. 6.12: (a) µ − ρ-profiles at J⊥ = 1.5J (L = 100) for different values of φ. The MI-
VSF transition can be identified by the kink in the curve. (b) µ − ρ-profiles at Φ = π
flux for large values J⊥/J and the effective model (6.27). The widths of the extended
plateau at quarter filling increases with J⊥/J. For high fillings the system exhibits a
macroscopic - meta-magnetic - jump to the half filled state. The chemical potential
µ has been rescaled and shifted such that all curves fit in one figure.

The M-SF to V-SF boundary exhibits an unusual shape with a cusp around
ρ = 1/4. This property can be related to the proximity of a gapped CDW phase
at density ρ = 1/4 for J⊥ > 1.7J. A detailed picture of this phase can be obtained
from large rung-coupling limit in the following subsection.

6.5.3 The strong-rung coupling limit J⊥ ≫ J

An interesting limit amenable to analytical treatment is the case of strong interchain
tunneling J⊥ →∞. In that regime we may introduce a pseudo-spin-1/2, identifying
on rung j, (∣1, 0⟩j + ∣0, 1⟩j)/

√
2 → ∣ ↓⟩j, ∣0, 0⟩j → ∣ ↑⟩j. Then the effective spin- 1

2 model
to the first order in 1/∣J�∣ is Ĥ 1

2
= J Ĥ0

1
2
+ J2/∣J�∣ Ĥ1

1
2
:

Ĥ0
1
2
= cos(Φ

2
) ∑

x
S+x S−x+1 + h.c.

Ĥ1
1
2
= − cos(Φ

2
)

2

∑
x

S+x(1/2+ Sz
x+1)S−x+2 + h.c.

− 1
2

sin(Φ
2
)

2

∑
x

S+x(1/2− Sz
x+1)S−x+2 + h.c.

− 1+ 3 cos (Φ)
2

∑
x

Sz
xSz

x+1 (6.26)

In this effective model zero magnetization corresponds to quarter filling ρ = 1/4
in the original ladder-model, the fully polarized states correspond to zero or half
filling. For small fluxes the first order term Ĥ0

1
2

clearly dominates and the system

behaves as a one component c = 1 Luttinger-liquid. Close to Φ = π the higher order
terms become relevant. At Φ = π one remains with the correlated hopping term
and nearest-neighbor Ising-type interactions:

Ĥ 1
2
= − J2

2∣J�∣
∑
x

S+x(
1
2
− Sz

x+1)S−x+2 +h.c.− 2Sz
xSz

x+1 (6.27)

Hence, for low fillings the system behaves as two single chains coupled only by
the repulsive Sz − Sz interaction. For large fillings due to the correlated hopping
basically all tunneling processes are strongly suppressed and only the Ising term
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Sz
xSz

x+1 remains. That is why in the vicinity of φ = π the ground state at quarter
filling (ρ = 1/4) in effective spins is a doubly degenerate Néel state, that in bosons
translates into the charge density wave state. When changing flux from π the sys-
tem at φ = φc < π undergoes a transition from a Néel state (φc < φ ≤ π) into a gapless
XY phase (φ ≤ φc) that is characterized by c = 1 (e.g. for J⊥ = 4J we find φc ≈ 0.9π).
The existence of a fully gapped state at ρ = 1/4 for strong J⊥ in the vicinity of φ = π
and a direct transition from fully gapped state to c = 1 phase with diminishing φ
explains the tendency of the c = 1 M-SF region piercing the c = 2 phase displayed
on Figs. 6.9.

The effective spin- 1
2 model (6.27) reveals an interesting feature, namely meta-

magnetic behavior just under the saturation magnetization, that corresponds to
n = 0.5 filling for bosons. The magnetization curve exhibits a macroscopic jump to
the saturation magnetization whose size increases with J⊥/J. As one can see from
Eq. (6.27), for J⊥/J → ∞ and ρ > 1/4, the ground-state energy is a linear function
of ρ, and thus in the equation of state n = n(µ) (Fig. 6.12 (b)) the whole range of
densities 1/4 < ρ < 1/2 is unstable.

6.6 The Josephson junction limit

As a limit complementary to the previously discussed hardcore bosons, we will
now revise the physics of weakly interacting bosonic particles on a two leg ladder.
This regime has been extensively studied in the context of Josephson junctions lad-
der [290–293]. Interestingly, this description of superconducting islands proximity-
coupled to its neighbors can be also applied to the more recent experimental re-
alizations [2, 286] in the context of ultracold bosonic atoms: The experiments are
realized in the regime of large fillings ρ ≫ 1 and weak but finite interactions. Since
the interactions are small U ≪ Jρ we neglect charging effects of the superconduct-
ing islands [293], however, the interactions and densities are assumed to be large
enough to suppress density fluctuations. Within the weak coupling approximation
(see chapter 5) we yield the following frustrated XY-model of classical spins

H → −2Jρ
L
∑

`=1,2;r=1
cos(θ`,r+1 − θ`,r) − 2J�ρ

L
∑
r=1

cos(θ1,r − θ2,r − rφ). (6.28)

This model has been studied using the effective potentials method [292, 306],
which will allow for a description of ground-state properties, or a transfer matrix
approach [293] at finite temperatures β = 1/kBT. Assuming periodic boundary
conditions, model (6.28) may be mapped to a one dimensional chain

H = −4Jρ
L
∑
r=1

cos((αr−1 − αr)/2+ φ) − 2J�ρ
L
∑
r=1

cos(αr), (6.29)

with αi = θ1,r − θ2,r − rφ and without loss of generality θ1,r+1 − θ1,r = θ2,r − θ2,r+1. We
may evaluate the partition function Z = tr P̂L in the thermodynamic limit by means
of the transfer matrix [293]

P̂(α, α′) = 4πeβ2J⊥(cos(α)+cos(α′))/2J0 (4βJ cos ((α − α′)/2+ φ)) (6.30)

We calculate its eigenvalues λn, n = 0, 1, 2, . . . and ∣λn∣ > ∣λn+1∣ by numerical di-
agonalization of P which determine the spacial decay and periodicity of typical



Chapter 6. Artificial Magnetic Fields in Two-leg Ladder Systems 111

(a)

0

1/5

1/4

1/3

2/5

1/2

0 0.5 1

ρ
v

φ / π

U/J=0, k
B
T/J=0

k
B
T/J=0.1

k
B
T/J=0.006

(b)

Fig. 6.13: (a) Vortex-density of the bosonic ladder in the weak coupling limit for
kBT = 0.006J (solid black line) and kBT = 0.1J (dotted blue line) for J⊥ = J/2. As a
comparison we also depict the free boson case (dashed red line). (b) Phase diagram
in the φ, J⊥ plane. The dotted lines depict the largest vortex-plateaus which remain
stable for kBT = 0.01. The shading encodes the chiral-current jc for kBT = 0.01J.
In the limit of J⊥/J → 0 the extent of the vortex-lattice phases shrinks and each
vortex-lattice is realized at a “commensurate” flux φ = pπ/q.

correlation functions. The phase of the second largest eigenvalue can be related to
the spacial periodicity of the phase fluctuations which is equal to the vortex density

ρv(φ) = Arg[λ1(φ)]/2π . (6.31)

Surprisingly, the ground state of model (6.28) is entirely different from the non-
interacting model studied in section 6.4. While in the latter situation we just ob-
serve two regimes, of a Meissner and a vortex-SF-like phase, in the high filling
weak interaction regime vortex-lattice phases are stabilized [290]: It can be shown
that for each commensurate vortex-density ρV = p/q, with p and q being coprime
integers, the vortices form regular crystals of p vortices every q plaquettes. A cut
through the phase diagram, as shown in Fig. 6.13 (a), thus resembles a complete
fractal devil’s staircase structure, while the vortex-density for the non-interacting
case (red dashed line) is a smooth curve, except for the Meissner phase. The width
of the plateaus depends on the rung-coupling J⊥ as shown in the phase diagram
Fig. 6.13 (b). In one dimension finite temperature effects immediately destroy the
vortex-crystal introducing a finite number of defects. Thus, with increasing tem-
perature the plateaus of constant vortex-density are gradually washed out. In
Fig. 6.13 (a) for kBT/J ∼ 0.006 many plateaus for small values of q plateaus are
visible (solid black line) and the vortex lattice VL1/2 may be observed even for kBT
of a few tenths of J.

References [292, 293] focused on the calculation of vortex-density and ground-
state energies. However, the experimentally relevant chiral-current was not dis-
cussed. We evaluate the chiral-current for finite temperatures kBT using the transfer
matrix approach through the generalization of Hellman-Feynman-theorem (6.18),
by the derivative of the free energy with respect to the flux,

jc(φ) = −kBT
N

∂ln Z
∂φ

. (6.32)

The shadings of the phase diagram Fig. 6.13 (b) encode the chiral current. A de-
tailed discussion is postponed to section 6.8.
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6.7 The ground-state phase diagram for moderate interac-
tions

Starting from the limit of weakly interacting bosons in the literature the effect of
quantum fluctuations has been discussed in Ref.[290, 294] showing the stability of
the vortex-lattices and vortex-liquids in the presence of finite interactions. How-
ever, bosonization is typically restricted to weak rung-coupling limits J⊥ ≪ J and
small fluxes. Other approaches such as mean-field treatments [298] remain ques-
tionable in one dimensional systems. In the following we present the first observa-
tion of several vortex-lattice phases in the microscopic BH model using DMRG. The
special case φ = π has been studied before using DMRG [242, 243]. The described
CSF-phase corresponds to the VL1/2 phase, however, this connection has not been
made.

We use large scale DMRG simulations in order to study the ground-state prop-
erties of model (6.14) in the limit of moderate interactions U ∼ J and fillings 0 <
ρ ≲ 2. The results are summarized in the representative phase diagrams Fig. 6.14 (a)
and (b), which show the wealth of quantum phases of the model. Apart from the V-
SF and M-SF phases we observe extended regions of vortex-lattice phases VL1/2 and
VL1/3 in Fig. 6.14 (a). Furthermore, interestingly, for large values of J⊥/J a phase oc-
curs with a spontaneously broken particle density imbalance between the legs, the
biased ladder phase (BLP), as conjectured before from mean field approach [298].
In Fig. 6.14 (b) we study the stability of the VL1/2 phase as a function of interactions,
U, and the density, ρ. As we expect from the weak-coupling analysis for smaller in-
teractions and larger fillings the extent of the VL region increases. This is consistent
with the bosonization analysis of Ref. [294], which also indicates that VL-phases are
a weak-coupling property.

We perform DMRG calculations for open boundary conditions and systems
with up to L = 160 rungs, using 1000 DMRG states. Since the local Hilbert space of
bosons is generally unconstrained we employ a cutoff of the maximal occupation.
We typically keep up to four bosons per site, which is justified due to the repulsive
nature of the onsite interactions U > J. By comparison with larger and smaller cut-
offs we have verified the numerical accuracy of the quantities shown here. Fig. 6.15
illustrates the dependence of the chiral current on the bosonic cutoff. For U ≳ J the
results, obtained by keeping nmax = 4 particles per site, are already well converged.
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Fig. 6.14: Representative phase diagrams of interacting bosons in a two leg ladder
subject to a magnetic field. (a) Phase diagram in the φ J⊥ plane for U = 2. (b)
Phase diagram in the U-ρ plane for φ = 0.9π and J⊥/J = 1.6. The solid horizontal
lines correspond to phases at commensurate particle density ρ = 0.5, 1, 1.5, 2 with a
MI-gap.
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Fig. 6.15: Dependence of the chiral current on the bosonic cutoff nmax. DMRG cal-
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For 0 < U ≲ J we observe and verify, increasing nmax further, the tendency of a
revival of the V-SF phase with positive chiral current for some U < Uc < J.

Close to the V-SF to VLρv -SF boundaries, the DMRG simulations tend to con-
verge to metastable excited states with larger or smaller vortex density. Here, we
have performed several calculations starting from different randomly chosen initial
states. We select the lowest energy states of the ensemble to obtain the ground-state
properties.

Vortex lattice phases

As an important part of our analysis we study the local current configurations of
the model. In Fig. 6.17 we show the local current and density structure for a cut
through the phase diagram 6.14 (a) for J⊥ = 1.6. One may directly observe certain
plateaus of vortex-densities 0, 1/3 and 1/2. In these vortex-lattice phases while
increasing the flux, the current-configuration remains stable.

Apart from identifying the vortex-lattice and Meissner phases by their char-
acteristic local current configurations, they may be clearly discriminated from the
vortex-liquid phase by calculating the central charge c extracted from entanglement-
scaling properties as shown in the previous section. In Fig. 6.16 (a) we depict the
extracted central charge for the data shown in Fig. 6.17 which is well consistent with
c = 1 in the VL and M SF phases and c = 2 in the V-SF phase. Interestingly, as shown
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entranglement entropy for the different phases for (from top to bottom) φ/π = 0.8
(V-SF), 0.74 (VL13), 0.62 (M), 0.96 (VL12) (c) Chiral current and average rung-
current for the same paramters as in Fig. 6.17.
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Fig. 6.17: Local current configurations for a cut through the phase diagram
Fig. 6.14 (a) for J⊥ = 1.6J (U = 2J and ρ = 0.8)and (in descending order) (a1)
φ = 0.95π, (a1) 0.93π, (a3) 0.9π, (b1) 0.88π, (b2) 0.86π, (b3) 0.82π, (b4) 0.79π, (c1)
0.77π, (c2) 0.75π, (c3) 0.73π, (d1) 0.71π, (d2) 0.69π, (d3) 0.68π, (e1) 0.64π, (e2) 0.6π,
and (e3) 0.56π (L = 120 rungs). We only depict the behavior for the middle rungs of
the ladder (40 ≤ r ≤ 80) in the bulk of the system. The length of the arrows encodes
the absolute value of the local currents and the size of the circles encodes the onsite
density.

in Fig. 6.16 (b), the entanglement entropy in open boundary systems exhibits small
oscillations that follow the lattice structure of the VL phases.

As for the M-SF phase the chiral-current but also the averaged rung-current
may be used as indicator for in the VL-phases. The jc exhibits a characteristic lin-
ear increase with the flux φ as presented in Fig. 6.17 (c), which we will discuss
more in detail in the section 6.8. The average rung current avg∣jR∣ exhibits a stable
large plateau in the VL-phases. The transition to the V-SF phases is indicated by a
marked drop of avg∣jR∣.

In Fig. 6.18 we present selected examples for the microscopic structures of the
vortex-lattice configurations of M-SF, VL1/3 and VL1/2. The VL phases are charac-
terized by an intermediate Meissner-like region (indicated by the dashed line in
Fig. 6.18) in which the current circulates in a counter-clockwise direction, and the
vortices with a reversed current.
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Fig. 6.18: Examples for local current (arrow-lengths) and density configurations
(shading and size of the circles) (obtained from actual DMRG calculations for U =
2J, J� = 1.6J, ρ = 0.8) of the M-SF (top, φ = 0.6π, L = 10) and VL1/3 (middle, φ = 0.8π,
L = 120) and VL1/2 (φ = 0.9π, L = 120).

The biased leg phase

Our DMRG simulations provide the first direct observation of the BLP phase and
prove its stability even for moderate interactions and small fillings (see Fig. 6.14).
The current configuration of the BLP phase is very similar to the M-phase. As
shown in Fig. 6.19, the current flows through the boundary of the ladder while the
rung currents are suppressed. The particle density, however, exhibits a marked
imbalance between the legs, which we quantify by calculating

∆n = ∑
r
(n1,r − n2,r) /N . (6.33)

In the thermodynamic limit the ground state is thus two fold degenerate, sponta-
neously breaking the Z2 mirror symmetry between the legs.

In order to numerically stabilize the simulation of the BLP phase, we add small
potentials at the boundary of the ladder explicitly breaking the symmetry of the
system. We verify by comparing to simulations with smaller or larger edge poten-
tials, that their effect does not influence the order-parameters. Interestingly, also
an unbiased not fully converged DMRG simulation will typically exhibit a finite
∆n selecting one of the two degenerate ground states depending on the initial ran-
dom configuration. The presence of explicit symmetry breaking terms, however,
significantly improves the speed of convergence of the simulation.

We identify the phase transition by a sharply increasing particle density imbal-
ance between the legs ∆n, as presented in Fig. 6.20. The data is consistent with a
second order Ising type transition between the M-SF and the BLP phase, as one
might expect from to the spontaneous symmetry breaking. However, since we can-
not exclude a weak first-order nature of the transition this aspect should be subject
to further research.

Fig. 6.19: Typical current and density configuration of the BLP phase.
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Fig. 6.20: (a) and (b) present order parameters for the BLP phase, the chiral cur-
rent jc, the averaged rung-current avg∣jR∣ and the density imbalance ∣∆n∣ for a cut
through the phase diagram 6.14 for J⊥/J = 3. (b) shows a zoom of the BLP-VL1/2
transition.

The dilute limit

We may derive an effective description of the BLP phase valid in the limit of van-
ishing particle densities from two-particle scattering properties closely following
the scheme described in chapter 5. In the V-SF phase the intra-species interaction
g11 > g12 is dominant. Both dispersion minima are equally populated. Dominant
inter-species scattering g11 < g12 results a spontaneously broken state with a dom-
inant occupation of the dispersion minimum at k = Q or k = −Q. Interestingly, the
occupation of only one minimum results in a preferential population of the parti-
cles on one leg (see Fig. 6.7 (a)). Hence, the phase realized for g11 < g12 corresponds
to the BLP phase.

In order to obtain a quantitative description we will follow the path discussed
in Refs. [37, 307]. For the cases were the single particle dispersion develops a two
particle minimum, one may derive an effective two component boson model for the
lowest occupied particle species, each corresponding to one minimum of the dis-
persion relation of the lowest band. Neglecting scattering to the excited band, one
may obtain g11 and g12 by solving the Bethe-Salpeter equation for the renormalized
two-body interaction vertex, which in general may be done by numerical integra-
tion techniques. Figure 6.21 depicts g11 and g12 for a flux φ = 0.8π and J⊥ = 3.5J.
Interestingly, for a finite range of U the interspecies coupling g12 is dominant and
thus the BLP phase is realized. As expected for larger values of U/J the systems en-
ters the V-SF phase, with a homogeneous density distribution. Unfortunately the
numerical approach suffers strongly from convergence problems close to the M-SF
boundary.

Mott phases

The previous discussion was focused on incommensurate particle densities. At
commensurate fillings ρ = 1/2, 1, 3/2, ... we observe Mott phases with a finite mass
gap ∆M at sufficiently large U/J. These phases are depicted in Fig. 6.14 (b) as
solid horizontal lines for a large flux φ = 0.9π. A detailed picture may be found
in Fig. 6.26 anticipating the discussion of the following section.

The MI-region exhibits a rich structure. At half filling, surprisingly, we find
a largely extended fully gapped VL1/2-MI phase. The BKT transitions between
VL1/2-SF and VL1/2-MI at fillings ρ = 0.5 and ρ = 1.5 shown in Fig. 6.14 are de-
termined by numerically analyzing correlation functions. At the transition from
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the VL1/2-SF to the VL1/2-MI, bosonization predicts that the single-particle correla-

tion function decays as ⟨a†
l,ral,r+x⟩ ∼ x−

1
4 (up to logarithmic corrections). The transi-

tion point can be extracted accurately from the finite-size scaling behavior of peaks
in the quasi-momentum distribution function (see chapter 5). Surprisingly, in the
hardcore limit, U/J → ∞, we expect a transition to a gapless V-MI phase from the
analysis of section 6.5.2. The position and character of this transition could not be
yet determined.

The Mott-insulating region at unit filling ρ = 1 is even richer. Besides a nar-
row VL1/2-MI region, a Meissner Mott-insulator state (M-MI) state is realized with
increasing U/J. For the BKT transition inside the vortex lattice at ρv = 1/2 the
single-particle correlation function decays as ⟨a†

l,ral,r+x⟩ ∼ x−
1
8 (up to logarithmic

corrections) [43]. Other phase transitions are estimated from the behavior of the
chiral current as well as from the local-current structure. Our simulations cannot
exclude the possibility of an intermediate V-MI phase between the VL1/2-MI and M-
MI phases at unit filling. For the special case φ = π, however, Dhar et al. [242, 243]
showed that a direct transition between the VL1/2-MI and M-MI phases is realized.

6.8 Chiral-current reversal: Swimming against the tide

6.8.1 The chiral current

In all recent experimental realizations in the context of ultra-cold gases [2, 273, 286]
a detailed focus has been laid on the observation of the chiral current. Apart from
its experimental accessibility the chiral-current is a useful tool for the characteriza-
tions and study of the different quantum phases and phase transitions in the two
leg ladder. As already shown in section 6.4 for the non-interacting case the M-SF
to V-SF transition can be identified by a cusp in the jc curve. In the following we
study properties of the chiral current as function of the rung coupling J⊥/J.

As discussed in Ref. [42] for weakly coupled chains J⊥ ≪ J and for small φ field
theoretical arguments show a general quadratic increase of jc with J⊥,

jc ∼
J2
⊥

Jφ3−1/K0
+O(J4

⊥) , (6.34)

where K0 is the LL parameter for the Bose-Hubbard model of decoupled chains
J⊥ = 0. Note that K0 ranges from K0 = ∞, for U = 0, to K0 = 1, for hardcore bosons.
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In Fig. 6.22 we depict this J2
⊥ dependence for ρ = 0.5 and different values of U

and a flux φ = π/2. In the M phase for small U the numerical data resembles the
non-interacting boson U = 0 result in which the jc-curve becomes flat and indepen-
dent of J⊥. For large U we observe, however, a 1/J⊥ decay similar to the case of free
fermions.

We can reproduce this result in the J⊥ ≫ J limit, by using second order pertur-
bation theory at ρ = 0.5. We obtain

jc =
J2(4J⊥ +U)2

2J⊥U(2J⊥ +U) sin(φ) . (6.35)

The asymptotic value of is plotted in the inset of Fig. 6.22. Interestingly only for the
hard-core limit the chiral current vanishes for J⊥ →∞.

In Fig. 6.23 we calculate the chiral-current from the transfer matrix approach in
the weak coupling regime. As expected the results obtained for high temperatures,
kBT ∼ J, and fluxes φ ∼ π/2 compare well to the results presented in [2] in a similar
regime. For small J⊥ the jc increases quadratically and saturates for large values of
the rung coupling. Around φ = π/2 the largest values of the flux may be obtained.
This situation is as well described by the physics of non-interacting bosons.

We may now examine the chiral current for lower temperatures. Already for
kBT ∼ J/10 (cf. Fig. 6.23 (b)) the picture is surprisingly different. jc apparently is no
longer a monotonous function of φ for φ > π/2. Even more surprisingly, for large
fluxes φ ∼ 0.9π the chiral current reverses its direction.

6.8.2 Flux increase in enlarged unit-cell systems

A reversed chiral current generally is a very exotic and non classical situation. The
path of particles of electric charge q subject to a magnetic field is bended by the
Lorentz force, FL = qv × B. The current of classical particles on a one dimensional
path thus acquires a definite handedness or chirality (depending on q, B). Counter-
clockwise rotating particles will produce a positive chiral current. Also non inter-
acting bosons on a single plaquette always rotate counterclockwise with respect to
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the synthetic magnetic field. The chiral-current goes like jc = sin(φ/4), φ ∈ (−π, π)
modulo 2π. If we now assemble the single plaquettes to an extensive lattice, the
current circulates counterclockwise along the boundary. All physical observablesA
on a lattice are periodic with respect to the flux A(φ) = A(φ + 2π). Since the chiral
current is an antisymmetric function jc(φ) = −jc(φ +π), an inversed magnetic field
causes an inversed circulation direction of the particles.

While, as discussed for non-interacting fermions, a current reversal may be re-
lated to a band-effect and the effective mass of the particles, here we discuss a
different mechanism for the creation of negative jc, which is inherently related to
(interaction-driven) spontaneous symmetry breaking and the wave like nature of
quantum particles. The basic idea of the mechanism is sketched in Fig. 6.24. The
relevant unit-cell of the ground state does not necessarily coincide with the ele-
mentary unit-cell of the lattice. If in a ground state with spontaneously broken
translational symmetry the effective unit-cell is doubled, due to their wave-like na-
ture quantum particles may experience a doubled flux φe f f = 2φ piercing the new
effective unit-cell. As a consequence, the effective flux may fall into a regime corre-
sponding to an effectively inverted magnetic field, i.e. for π/2 < φ < π the effective
flux falls in the domain φe f f ∈ (−π, 0) modulo 2π. Hence chiral current may be re-
versed. Analogously the same argument may be extended to tripled, quadrupled,
... unit-cells. A state with a M-fold enlarged unit-cell gives rise to an effective flux
φe f f = Mφ. Hence the chiral current may be reversed for Mφ ∈ (−π, 0) modulo 2π.

For the two-leg ladder model states with a broken translational symmetry are
vortex-lattices. In the following we will show how the effectively doubled, tripled,...
unit-cell may lead to current-reversal effects.

Fig. 6.24: Scheme of the effective flux doubling mechanism.
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6.8.3 Externally distorted lattice

Before discussing states with a spontaneously broken translational symmetry we
will consider the very intuitive case of an externally distorted lattice. For simplicity
we consider model 6.4 with U = 0 and certain rung-couplings being removed

Ĥδ = − J̃∑
i,j

eiφb†
i,jbi,j+1 − J̃⊥∑

j
δjb†

1,jb2,j + H.c. (6.36)

In Fig. 6.25 (a) we show the case of every second rung being removed (δ2j = 0 and
δ2j+1 = 1). The unit-cell is doubled and so is the effective flux; for π/2 < φ = π the
chiral current becomes negative. Note, that due to the additional site the current of
the system may differ from the case of a explicitly doubled flux jc(2φ)/2. We also
explore this property for tripled unit-cells (δj = 1 for j modulo 3 = 0 else δj = δ) as
shown in Fig. 6.25 (b). Removing every third bond (δj = δ for j modulo 3 = 0 else
δj = 1) will also result in a tripled unit-cell and a comparable behavior of the chiral
current (not shown). For the sake of completeness in Fig. 6.25 (c) we depict the case
of a three-leg ladder

Ĥ3
δ = − J̃∑

i,j
eiφb†

i,jbi,j+1 − J̃⊥∑
j

δi,jb†
i,jbi+1,j + H.c. (6.37)

The middle leg has been perturbed (δi,j = δ for i = 2 else δi,j = 1). Again, here the flux
is effectively doubled and the current reversed, which shows the generality of the
mechanism. Interestingly, in this case a phase transition from a M to a V-phase is
induced by the perturbation - the unperturbed three-leg ladder for non-interacting
bosons U = 0 just realizes a M-phase.

In fact, the idea of generating an effectively enlarged flux by applying an exter-
nal perturbation to the system has been successfully exploited for example for the
realization of the Hofstadter-model in graphene [272].

6.8.4 Moderate interactions

The main result of Ref.[43] is, however, the presence of the effective flux increase
mechanism in the absence of external perturbations. While Hamiltonian (6.14) is
translational invariant, its VL ground states in the presence of interaction break the
translational symmetry. Our DMRG results present detailed evidence for the in-
teraction driven current-reversal effect. In Fig. 6.26 we present the chiral-current jc
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Fig. 6.26: Chiral current jc as function of the interaction strength U/J in the proxim-
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(blue symbols), L = 120 (red symbols) and L = 160 (black symbols)]. For ρ = 1 we
just show points for L = 120, which agree with the data for L = 80 on the scale of the
figure.

as functions of the interactions strength U/J for several densities close to the VL1/2

phase. The exact value for U = 0 is j0c ≃ 0.08J > 0, independently of ρ and consis-
tent with our numerical simulations. With increasing interactions U/J the current-
reversal effect may be suppressed for both commensurate and incommensurate
fillings. It is always maximal for the smallest U/J within the VL-phase. This be-
havior can be explained by an decrease of the effective de-Broglie wavelength due
to a gradual localization of the particles with increasing interaction strength. Only
particles with a large wavelength may experience the effective flux of the enlarged
unit-cell. The chiral-current reversal is robust against the presence or absence of a
mass gap as shown in Fig. 6.26. Interestingly the absolute value ∣jc∣ may exceed the
U = 0 value.

In Fig. 6.26 due to the incommensurate vortex density a significant system-
size dependence is present in vortex-liquid superfluid states (V-SF) showing small
steps [308]. In vortex-lattice phases the finite size dependence is reduced. Generally
in the thermodynamic limit L → ∞ in the V-SF phases ∣jc∣ is expected to continu-
ously decrease when approaching a VL phase and show a cusp-like behavior at the
phase boundary.

In the parameter regime studied in the work we do not observe the current
reversal effect in the VL1/3 phase, since it is realized for φ > 2/3π such that 3φ ∈
(0, π) modulo 2π. However, as shown in Fig. 6.16 (b) the effective flux tripling is
still evident from the linear increase of jc with the flux resembling a copy of a mini-
Meissner phase. This idea is elaborated more in detail in the following section.

Interestingly also the bosonization analysis of [294], valid for J⊥ ≪ J, obtains the
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sign change of the chiral current. However, Ref. [294] does not discuss this effect
or its physical background.

6.8.5 Weak interactions and finite temperatures

Further evidence for the conjectured flux increase mechanism is provided in the
weak coupling regime, where the VL-phases are more stable. In fact here, at suffi-
ciently low temperatures, we observe the chiral current reversal due to an effective
flux increase in the proximity of several vortex lattice phases (for vortex-densities
ρv = 1/3, 2/5, 1/2 in Fig. 6.27 (a)). The chiral-current vanishes at the commensurate
flux φ/π = p/q, since here φe f f = 0 modulo 2π.

The self-similar structure of the jc curve may be understood as a result of the
effective flux increase mechanism. The chiral current of the vortex-lattices corre-
sponds to the chiral current of a copy of the Meissner phase at an increased ef-
fective flux. We verify this property by reconstructing the chiral current curve in
Fig. 6.28 (a) by replacing the chiral current within the region of stability of the VL
phase by the chiral current of free bosons with a M times enlarged unit cell

jc =
J

M
sin

Mφ

2
. (6.38)

Thus for the Meissner state (M = 1) which is stable for 0 < φ/π < 0.406 . . . the current
is given by jc = J sin φ

2 . For the the VL1/2 phase, stable for 0.906 ⋅ ⋅ ⋅ < φ/π <= 1,
(M = 2) it is jc = J

2 sin φ, etc.
Although for finite temperatures kBT/J > 0 (in Ł → ∞ limit) the crystalline

order of the VL phases is immediately destroyed, the chiral-current reversal may
still survive in the presence of a finite number of defects as also observed in the
previous section for the neighboring V-SF phases. In particular for the VL1/2 phase
the current reversal can survive up to temperatures T ≃ J/2 (cf. Fig. 6.28 (b)) for
J⊥ ≃ J and φ ≃ 0.9π. With such temperatures being within experimental reach
the VL phases might actually be characterized by the spontaneous chiral current
reversal.
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Fig. 6.28: (a) Construction of the self-similar structure of the jc curve via effective
flux increase mechanism. (b) Temperature dependence of the chiral current in the
weak-coupling limit. The coloring in the main panel encodes the strength of the
chiral current jc/J as a function of temperature kBT/J and rung-coupling J⊥/J for
φ = 0.92π. The curve defined as jc/J = 0 is highlighted with a dotted line. The
inset shows jc/J for J⊥/J = 1 as a function of the flux φ for several temperatures
kBT/J = 0.01 (dotted blue line), 0.1 (dashed red line) and 0.2 (solid black line).

6.9 Conclusions

In the previous sections we have presented a detailed and extensive study of the
ground-state physics of model (6.14). Besides the observation of the vortex and
Meissner-SF and MI phases, vortex-lattice phases and their microscopic structure
as well as the BLP phase have been found in an extended area. These findings
could inspire further experimental approaches in the field. We furthermore stud-
ied the properties of the chiral current in different regimes. In the proximity of
vortex-lattice phases with a spontaneously broken translational symmetry the chi-
ral current may reverse it circulation direction. We explain this exotic feature by
the effective flux of the enlarged unit-cell.

Recently, quantum phases of hardcore bosons on a three leg ladder geome-
try [309] have been studied. Interestingly, on a three leg ladder even for hard
core particles different types of VL-phases and a staggered-current phase can be
found. For the latter a current-reversal due to spontaneous flux increase has been
observed.

The microscopic model (6.14) is relevant for the experiments realized by [2, 14].
An important experimental realization are the experiments in synthetic dimensions
as discussed above [273, 286] where the presence of interactions on the rungs may
play an important role and should be included in further studies. A question nat-
urally rising from the discussion of vortex-lattices, is also the connection to the
physics studied extensively in 2D such as the connection to fractional quantum
Hall effect. Recently the presence of a Laughlin-like phase for commensurate parti-
cle and vortex densities was conjectured [297] for a two leg ladder in the presence of
strong nearest-neighbor interactions. The existence and properties of such phases
and connections should be explored further.





Chapter 7

Modulated Interactions

As elaborated in the previous chapters fast periodic modulations have been es-
tablished as a powerful element of the cold atoms toolbox for the engineering of
effective lattice models [1, 13, 14, 133–138, 144]. Inspired by these experimental
advances the periodic modulation of interparticle interactions has been proposed
as a method for the engineering of an effective non-linear hopping that depends
on the occupation differences at neighboring sites [44, 45, 139, 310]. After a brief
review of the underlying idea of periodically modulated interactions and proper-
ties of certain schemes and effective models, we show that a combined modulation
of lattice and interactions [46] allows for the engineering of a broad class of mod-
els with correlated hopping. We will show how bosonic models with exotic MI
phases that exhibit both parity and string order as well as Fermi-Hubbard models
in unconventional parameter regimes relevant for cuprate superconductors can be
simulated.

7.1 Periodically modulated interactions

The fast periodic modulation of an externally applied magnetic field, e.g. B(t) =
B0 + B1 cos ωt, in the vicinity of magnetic Feshbach resonance (2.3) will induce a
fast modulation of the scattering-length,

a(t) = abg (1− ∆B
B(t) − Br

) ≈ a0 + a1 cos ωt . (7.1)

Here ∆B and Br are the width and the position of the Feshbach resonance and the
latter approximation is valid for small B1/(B0 − Br) ≪ 1. Such a fast modulation of
the scattering length and the resulting modulation of the interparticle interactions
induce a non-linear or correlated hopping term which depends on the density dif-
ference of the different lattice sites [44].

7.1.1 The effective model

In the single band approximation the resulting Bose-Hubbard Hamiltonian is given
by

Ĥ(t) = −J∑
⟨ij⟩

b̂†
i b̂j +

U0 +U1(t)
2

∑
i

n̂i (n̂i − 1) . (7.2)

Here the modulated interactions are given by a periodic U1(t) = U1(t + T), which
we assume to be unbiased ∫ t+T

t dt′ U1(t′) = 0. We employ a unitary transformation
Û(t), with

Û(t) = ei V(t)
2 ∑j n̂j(n̂j−1) , (7.3)
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in order to transform Hamiltonian (7.2) into the comoving frame. Choosing d
dt V(t) =

U1(t), which is periodic V(t) = V(t+T) since U1(t) is unbiased, moves the time de-
pendence into the hopping term. Integrating out the fast modulation (ω = 2π/T ≫
J/h̵, U0/h̵) we obtain

Ĥeff = −∑
⟨ij⟩

b̂†
i Jeff(n̂i − n̂j)b̂j +

U0

2
∑

i
n̂i (n̂i − 1) , (7.4)

with an effective density-dependent hopping

Jeff(∆n̂) = J
T ∫

T

0
dt eiV(t)∆n̂. (7.5)

For a cosine-modulation U1(t) = cos ωt this results in an effective hopping depend-
ing on the Bessel-function

Jeff(∆n̂) = J0 (
U1

ω
∆n̂) . (7.6)

7.1.2 Complex tunneling amplitudes

In the construction of the unitary transformation (7.3) the choice of the function
V(t) is apparently well defined up to a time-independent constant which may re-
sult in a complex part of th effective hopping term. In the following we will show
how the apparent gauge freedom is be fixed and discuss properties of complex den-
sity dependent tunneling amplitudes. These results have been published in Ref.[47]
in collaboration with G. Sun, D. Poletti and L. Santos.

The momentum distribution

ρL(k, t) = 1
NL
∑
l,j

e−ik(l−j)⟨ψ(t)∣b̂†
l b̂j∣ψ(t)⟩ , (7.7)

as accessed in TOF measurements, is an important experimental observable which
is not gauge invariant but depends on the presence and form of complex Peierls
phases in the model. In Ref. [137] TOF experiments have been employed to prove
the engineering of complex Peierls phases in an one dimensional system using lat-
tice shaking techniques. Only a lattice modulation scheme explicitly breaking cer-
tain time reversal symmetries [137, 249] may realize complex hopping terms (see
section 5.5). In a one dimensional model a shift of the quasi momentum distribu-
tion due to the complex phase can be prepared and measured.

The quasi-momentum distribution for modulated interactions is affected dras-
tically. In general the single-particle correlation function for a state ∣ψ(t)⟩ in the
laboratory frame is given by

⟨ψ(t)∣b̂†
i b̂j∣ψ(t)⟩ = ⟨ψ′(t)∣b̂†

i eiV(t)(n̂i−n̂j)b̂j∣ψ′(t)⟩. (7.8)

where ∣ψ′(t)⟩ denotes the state in the comoving frame. Hence, the quasi-momentum
distribution measured in the laboratory ρL(k, t) only coincides with the one deter-
mined by the effective model

ρE(k) = 1
NL
∑
l,j

e−ik(l−j)⟨ψ′∣b̂†
l b̂j∣ψ′⟩ (7.9)
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Fig. 7.1: (a) Quasi-momentum distribution of the ground-state of (7.4) with the
effective hopping (7.10) as a function of Ω for n = 1 and U0 = J. In order to exclude
possible superfluid-to-insulator transitions we keep J/J0(Ω) constant. (b) Same as
(a) but with an on-site energy gradient, ε∑j jnj with ε = 0.2J. DMRG calculations
were performed in L = 36 sites, with a maximal site occupation of 6 bosons.

for a stroboscopic set of measurements t = nT, with n = 0, 1, . . . at which the ef-
fective model acquires a complex density dependent phase determined by V(0).
Performing the stroboscopic measurements at different discrete times nT + Tinitial
one may evaluate a different effective model with a different complex phase. How-
ever, the time evolution between t = 0 and t = Tinitial must be explicitly considered

as initial condition ∣ψ′(0)⟩ = T e−i ∫
0
−t0

Ĥ′(t′)dt′ ∣ψ(−t0)⟩, where T denotes time order-
ing.

For the particular case of a sinusoidal modulation U1(t) = Ũ1 sin(ωt) one yields
V(t) = Ũ1

ω [1− cos(ωt)] and, thus,

Jeff(∆n̂) = ∣JJ0(n̂i − n̂j)∣eiΩ(n̂i−n̂j) (7.10)

with Ω = Ũ1/h̵ω [47].
It is important to note, that a complex phase, which depends on the density

difference of adjacent sites (n̂i − n̂j) may be gauged out by defining new bosonic
operators

b̂j → e−iΩn̂j b̂j (7.11)

and, hence, does not affect the spectrum of the Hamiltonian, determining ground-
state phases or dynamics. However, as for the lattice shaking it has an effect on the
momentum distribution. Since Jeff(−∆n̂) = Jeff(∆n̂)∗ and, hence, φ(−∆n̂) = −φ(∆n̂).
In a homogeneous system where quantum fluctuations of the occupation of adja-
cent sites do not have any preferred direction, there will not be a net effective Peierls
phase and, hence, no shift of the momentum distribution. However, the quantum
fluctuations lead to a stochastic character of Peierls phase and result in an effective
coherence of the momentum distribution. This blurring of the quasi-momentum
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distribution as function of Ω for a sinusoidal shaking is shown in Fig. 7.1 (a). A
potential gradient in the model that results in a density gradient ⟨n̂j − n̂j+1⟩ ≠ 0
leads to a non-zero average effective Peierls phase. This results in a net shift and a
broadening of the momentum distribution as shown in Fig. 7.1 (b).

In the next chapter we will show how density dependent modulations and Ra-
man assisted tunneling schemes may be employed in order to realize non-gaugeable
density dependent Peierls phases resulting in a fascinating novel regime of physics.
In the subsequent part of this chapter we will focus on real effective hopping am-
plitudes Jeff = J∗eff.

7.1.3 Fermions

Analog to the case of a one component bosonic gas the interaction term of a two
component fermions described by a Fermi-Hubbard model may be modulated

ĤF = ∑
⟨i,j⟩,σ=↑,↓

(ĉ†
iσ ĉjσ+H.c.) + [U0 +U1 cos (ωt)]∑

j
n̂j↑n̂j↓. (7.12)

For the case of a spin-independent lattice, we reach for sufficiently fast modulations
the effective Hamiltonian:

ĤF
e f f = U0∑

j
n̂j↑n̂j↓ − ∑

⟨i,j⟩,σ=↑,↓
(ĉ†

iσ̄ Jeff(n̂i − n̂j)ĉjσ̄+H.c.) (7.13)

with σ̄ = −σ. We may reformulate (7.13) in a more general way

ĤF
e f f =U0∑

j
n̂j↑n̂j↓ − ∑

⟨i,j⟩,σ=↑,↓
(ĉ†

iσ̄ ĉjσ̄+H.c.)P(n̂iσ, n̂jσ). (7.14)

Here

P(n̂iσ, n̂jσ) ≡ tAA(1− n̂iσ)(1− n̂jσ) + tBBn̂iσn̂jσ + tAB [n̂iσ(1− n̂jσ) + n̂jσ(1− n̂iσ)] .
(7.15)

This corresponds to model (7.13) for tAA = tBB = Je f f (0), and tAB = Je f f (1) and,
hence, ∣tAB/tAA∣ < 1. The correlated hopping Fermi-Hubbard models (7.14) have
been studied extensively during the last decades as a model for cuprate super-
conductors [311–315]. A detailed revision of the physics in the context of ultra-
cold fermions in optical lattices with modulated interactions has been published
recently [45].

7.1.4 The Kohn-metal

Modulated interactions and the resulting effective correlated hopping models lead
to a rich physics. For both fermions and bosons in the effective correlated hopping
Hamiltonian for any modulation the decay rate of doublons into single particles
∣20⟩ ↔ ∣11⟩ (for fermions ∣1⟩ may be ∣ ↑⟩ or ∣ ↓⟩) is reduced since ∣Je f f (1)∣ ≤ J. The
tunneling of single particles is fixed ∣Je f f (0)∣ = J. Most interesting physics in this
regime may be observed at the particular point Je f f (1) = 0. For a sinusoidal modu-
lation roots of Bessel-function have to be hit J0(Ω) = 0, e.g. Ω ≃ 2.4048 . . . . In this
limit the decay of doublons ∣02⟩ ↔ ∣11⟩ is forbidden. We will in the following revise
the special physics in this limit for the case of fermions

ĤF
Je f f (1)=0=U0∑

j
n̂j↑n̂j↓ − ∑

⟨i,j⟩,σ=↑,↓
(ĉ†

iσ̄ ĉjσ̄+H.c.) (1− n̂iσ − n̂jσ + 2n̂iσn̂jσ) , (7.16)
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for which an analytical solution may be found in one dimension.
As also shown in Refs [45] model (7.16) exhibits a high symmetry due to its

both exact conservation of doublons and single particles. A MI state, which purely
consist of singly occupied sites (of a random configuration of up or down spins),
e.g.

∣MI⟩ = ⋯ ∣1⟩i ∣1⟩i+1 ∣1⟩i+2⋯ = ⋯ ∣↑⟩i ∣↑⟩i+1 ∣↓⟩i+2⋯ (7.17)

is obviously a zero-energy eigenstate of the Hamiltonian (7.16) since no further
hopping may occur. It is favorable to consider an arbitrary MI state out of this
highly degenerate ensemble as a quasi-vacuum in the following. Both the number
of doublons D and holons H = N − 2D on top of ∣MI⟩, for at most N particles on the
lattice, are conserved quantities. They may be treated as two types of impenetrable
hardcore particles. Due to the hardcore constraint the total kinetic energy of both
holon and doublon fluids equals, again fixing a given order of holons and doublons
along the chain, a single component gas of hardcore particles. Thus for a chain of L
sites, N particles and D doublons we obtain en energy

E(N, D) = −tEs f (N − 2D, L) +U ⋅D (7.18)

with Es f (N, L) = −2∑N−2D
k=1 cos kπ

L+1 the energy of a single component gas of hardcore
particles. A minimization of E(N, D) with respect to D for a given filling N/L yields
the canonical ground-state phase diagram shown in Fig. 7.2 (a). Apart from the MI-
phase at unit-filling, for sufficiently large interactions for n < 1 a SF phase of pure
holons (HSF) or for n > 1 a pure doublon metal (DSF) phase is realized [311]. For
attractive interactions U < −4J the system enters an insulating completely paired
phase I2. No single particles remain unpaired and the ground states constitute of
an, again highly degenerate, configuration of doublons and holons.

For −4 < U < −4 cos ρπ the system enters the exotic Kohn-metal phase [311, 312,
316]. Here doublons, holons as well as single particles are present. Thus, although
all particles may move locally and the phase exhibits a metallic character due to the
vanishing excitation gap, the phase is globally insulating. Holons and doublons
may not penetrate each other which leads to a vanishing Drude weight [311, 312,
316]. In a grand canonical ensemble as shown in Fig. 7.2 (b) the Kohn-metal phase,
however, occupies a single line at µ = 0. This will severely impede any experimental
study, in cold atom experiments, which typically have to deal with a finite trapping
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Fig. 7.2: Phase diagram of model (7.13) for the solvable point Je f f (1) → 0. While in
a canonical phase diagram (a) the Kohn-metal phase occupies an extended region
of the phase diagram, in a grand-canonical picture (b) it is just realized for the line
µ = 0.
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potential. In a local density approximation (2.28) one may expect a marked jump
in the density separating sharply the DSF and HSF phases.

The complete phase diagram (see e.g. left part of Fig. 7.10) accessible with a
pure modulation of interactions will be discussed more in detail in the following
section.

For the case of softcore bosons still some decay channels exist due to the forma-
tion of triplons, which, however, may be energetically unfavorable. As shown in
Ref.[44] indeed the ground-state physics for small fillings n < 2 and Je f f (1) = 0 is
given by phases with a quasi-conserved number of doublons ∣2⟩ and single parti-
cles ∣1⟩. A pure holon and a pure doublon SF phase may be realized, as well as a
defect free MI phase ∣ . . . 1111 . . . ⟩. In a trap the HSF and DSF phases are separated
by a sharp jump in density.

As shown in Ref. [44] the negative sign Je f f (1) < 0 (which may be gauged out
as discussed above) of the tunneling may lead to a crossover from a SF-phase with
dominant single particle correlations G1(i, j) = ⟨b†

i bj⟩ to a region with dominant two
particle correlations G2(i, j) = ⟨(b†

i )2(bj)2⟩. Note that in 1D both G1 and G2 decay
algebraically and thus this region is no PSF-phase.

7.2 Doubly Modulated Lattice Gases

As we have argued so far modulated interactions allow for the creation of certain
effective correlated hopping Hubbard models with a decreased doublon decay or
creation rate. In the following we will consider the combined coherent modula-
tion of interactions and lattice (shaking), which happens to present a much richer
physics than just the sum of its both parts, realizing a much broader class of corre-
lated hopping Hubbard models and asymmetric tunneling rates.

The following section is based on the publication [46] which was developed in
collaboration with L. Santos and D. Poletti.

For the case of a one component Bose gas the lattice Hamiltonian is given by

Ĥ = −J∑
⟨i,j⟩

b̂†
i b̂j +

U(t)
2
∑

j
n̂j(n̂j − 1) + F(t)∑

j
jn̂j . (7.19)

The interaction and the tilting term are unbiased and periodically modulated, U(t) =
U0 +U1 fU(t) = U0 +U1 fU(t+ T) and F(t) = F1 fF(t) = F1 fF(t+ T). Analog to the pre-
vious discussions for the case of a sufficiently fast modulation we arrive at the time
independent effective description

Ĥe f f = −J∑
⟨i,j⟩

b̂†
i F (i − j, n̂i − n̂j) b̂j +

U0

2
∑

j
n̂j(n̂j − 1) (7.20)

Fig. 7.3: Scheme of the hopping processes and effective rates.
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For the case of a sinusoidal modulation fU(t) = fF(t) = cos(ωt) we yield

F = J0 [
F1

h̵ω
(i − j) + U1

h̵ω
(n̂i − n̂j)] . (7.21)

An important consequence of the double modulation is that tunneling may now
be direction dependent. A hopping process to the left is given by

J(nj,nj+1)↔(nj+1,nj+1−1)

J
=J0 (

U1

h̵ω
(nj−nj+1+1)− F1

h̵ω
) , (7.22)

with J(ni ,nj)↔(ni+1,nj−1) denoting the hopping rate from site j with nj particles before
the hop to site i with initially ni particles. A hop to the right has the amplitude

J(nj,nj+1)↔(nj−1,nj+1+1)

J
=J0 (

U1

h̵ω
(nj+1−nj+1)+ F1

h̵ω
) . (7.23)

The effective hopping rates and processes are sketched in Fig. 7.3.

7.2.1 Asymmetric tunneling.

An important feature of such doubly modulated (DM) Hamiltonians is that in gen-
eral J(1,1)↔(2,0) ≠ J(1,1)↔(0,2) different to the standard Hubbard models. This break-
ing of mirror symmetry of DM results in unusual insulating phases.

CDW phases

A limit, quite typically encountered for doubly shaken Hamiltonians, which allows
for an quasi-analytical treatment is given for the case in which there is one dom-
inant tunneling process. Interestingly, one might explicitly engineer the situation
in which all tunneling processes except for one exactly vanish by employing a a
rectangular modulation function such that F(x) = sinc(x) and setting U1 = π and
F1 = (ν − 1)π.

Generally for a dominant hopping J(0,ν+1)↔(1,ν) (or equivalently J(ν+1,0)↔(ν,1))
for ν ∈ 2, 3, . . . a gapped CDW phase at filling ρ = n + (ν + 1)/2, n = 0, 1, . . . for ν ≠ 1
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Fig. 7.4: (a) Néel order and entanglement entropy SvN at n = 3/2 filling for
sinusoidal modulation with U1 = 6 (U = 1, iDMRG simulation with M =
100).The Luttinger-liquid parameter K is extracted from the algebraically decay-
ing correlation-functions. (b) Equation of state for sinusoidally double modulated
BH-model with U1 = 9, F1 = 18 and U = 0.2 (L = 48 sites). The inset shows single,
two and three particle correlation functions for the trimer SF phase.
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Fig. 7.5: iDMRG results for the effective model (7.20) (with 4 bosons per site, keep-
ing up to M = 200 states) for O2

P (solid), 4O2
S (dashed), and SvN (dot-dashed) as

a function of F1/h̵ω for U0/J = 1.2, unit filling, and U1/h̵ω = 3. In the shaded SF-
regions we find a logarithmic divergence of SvN with the number of kept matrix-
states M. (bottom) Relevant hopping rates.

may be stabilized. It is formed by the Ising-Néel like product state build of the local
dimers

cos φ ∣n, n + ν + 1⟩x,x+1 − sin φ ∣n + 1, n + ν⟩x,x+1 (7.24)

with φ = arctan(z −
√

z2 + 1) and z = Uν/(2J(0,ν+1)↔(1,ν)
√

n + 1
√

n + ν + 1).
In Fig. 7.4 (a) we present numerical data proving the stability of a CDW-phase

n = 3/2 filling (i.e. ν = 2, n = 0) for a sinusoidal shaking with U1 = 6 as function
of F1. Around F1 = 12 one observes a region with finite Néel order and a non-
diverging entanglement entropy SvN indicating a gapped phase. At the boundary
to the surrounding the SF-phases the Luttinger-liquid parameter K exceeds K > 1/2
as suggested for a BKT type phase transition from the SF to the CDW phase.

For low incommensurate fillings a superfluid of ν locally bound bosons can be
established: a pair superfluid for dominant J(1,1)↔(0,2), trimer superfluid for dom-
inant J(1,2)↔(0,3), etc. Fig. 7.4 (b) shows the occurrence of a trimer-superfluid for a
dominant J(1,2)↔(0,3) for a thin region in grand-canonical ensemble characterized
by steps of ∆N = 3 in the µ − ρ curve and algebraically decaying three-particle cor-
relations ⟨(b†

i )3(bj)3⟩ while one- and two particle correlations vanish exponentially
fast.

MI phases with both string and parity order

The case of unit filling is different since here for a dominant tunneling J(1,1)↔(0,2)
(i.e. ν = 1, equivalently J(1,1)↔(2,0)) no local CDW order is initially preferred. How-
ever, we still observe a gapped MI phase at unit filling as shown in Fig. 7.5 for
U1/h̵ω = 3 and a broad region of F1 (at 0.5 ≲ F1/h̵ω ≲ 6.2).

Conventional MI phases exhibit parity order O2
P (2.19) due to the pairwise ap-

pearance of holons and doublons. String order O2
S (2.38) is a characteristic fea-

ture of the (diluted) CDW order. For a direction dependent tunneling a Mott-
insulating phase may exhibit a finite string order O2

S > 0 due to the formation of
quasi bound holon doublon pairs in one preferred direction. This is consistent
with [173] showing that the absence of certain symmetries such a mirror symme-
try allows for a crossover of HI and MI phases. Fig. 7.5 presents data for this
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Fig. 7.6: Double-occupancy, string, and parity-order for model 7.25. The straight-
lines show the analytical results, the symbols denote DMRG-results (L = 72 sites).
The inset shows the energies E0 and E1 of ground- and first excited state. The
symbols depict DMRG-data (L = 36 sites) while straight lines corresponds to the
analytical results (7.28) and (7.29).

exotic property of the MI phase with both O2
P > 0 and O2

S > 0 due to the hop-
ping asymmetry. Typically we find O2

P > O2
S. At the symmetric points for which

J(1,1)↔(2,0) = J(1,1)↔(0,2) the string order vanishes (at F1/h̵ω ≃ 1.2, 5.2 and 5.5). In-
terestingly, for J(1,1)↔(2,0), J(1,1)↔(0,2) ≪ J(1,0)↔(0,1), we even obtain O2

P ≪ O2
S. Here

doublon-holon pairs are broken to a large extent but still present diluted “antifer-
romagnetic” defect order, i.e. in this region the insulator rather behaves as a HI.

Dominant J(1,1)↔(2,0)

An exemplification of above described unconventional MI phases will now be dis-
cussed for the case J(1,1)↔(0,2), J(1,0)↔(0,1) ≪ J(1,1)↔(2,0). In Fig. 7.5 we find this situ-
ation e.g. in the vicinity of F1/h̵ω ≈ 2.4. In this limit neglecting all hoppings except
for J2 ≡ J(1,1)↔(2,0) we may express Hamiltonian (7.20) as

Ĥ2 = ∑
i

J2P1
i b̂†

i P1
i+1b̂i+1 + H.c.+ U

2
∑

i
ni(ni − 1) (7.25)

where P1
i is a projector to the subspace of 1 particle on site i. At unit-filling only the

configurations ∣02⟩x,x+1 and ∣11⟩x,x+1 on adjacent sites x and x + 1 are favorable. We
will introduce the mapping to a spin model by ∣02⟩x,x+1 → ∣↑↓⟩x and ∣11⟩x,x+1 → ∣↓↓⟩x.
The configuration ∣↑↑⟩x,x+1 is forbidden. Note that in this treatment we just consider
the sub-manifold without any configuration ∣20⟩x,x+1 or any isolated doublons or
holons surrounded by single particles since this space is completely disconnected
from the rest. With these assumptions we may rewrite Eq. (7.25) as a transverse-
field Ising model

Ĥeff
2 = ∑

i
J(1,1)↔(2,0) (S+i + S−i ) +U (1

2
+ Sz

i ) +V (1
2
+ Sz

i )(1
2
+ Sz

i+1) , V →∞ (7.26)

We take V →∞ in order to project out ∣↑↑⟩x,x+1-components. This is the Ising model
with transverse and longitudinal magnetic fields in the vicinity of its tri-critical
point between ferro-, antiferro- and paramagnetic phases [317]. Since both longi-
tudinal and transverse components are present there is no simple solution of this
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U J

Jt ~

U J

Fig. 7.7: Parity-order O2
P (solid) and string-order O2

S (dashed) in a sudden-quench
situation for F1/h̵ω = 2.4, U1/h̵ω = 3 for a system initially prepared as deep Mott-
insulator. The inset shows the dynamics for U0/J = 1. The curves are obtained from
iTEBD-simulations using the effective model (7.20), whereas the crosses indicate
the results directly obtained from TEBD-simulations (L = 60 sites and N = 60 par-
ticles, h̵ω = 20π J) of Eq. (7.19). In the main figure we depict the time average of
the orders for 2 < Jt/h̵ < 6 as a function of U0 for the same F1 and U1. The shaded
regions indicate the variances of the orders, associated to the dynamics after the
quench. The TEBD-simulations of model (7.19) as shown in the inset have been
performed by Dario Poletti employing the ALPS libraries [319, 320] and the code
IVAN.

model in terms of a Jordan-Wigner-transformation. Following Ref. [317], we may
still provide a quasi-analytical solution for the bosonic model. A similar model has
been studied recently in experiments [318].

Assuming periodic boundary conditions the ground state of Eq. (7.26) lies in
the momentum k = 0 sector within the manifold {∣m⟩ , m ∈ (0, L/2)} with

∣0⟩ = ∣↓↓↓ ...⟩ ≙ ∣111...⟩

∣m⟩ = 1√
w(L, n)

(PS+)m ∣0⟩ (7.27)

and P the projector which removes ∣↑↑⟩x,x+1. Hence, m describes the number of

double-occupations. The normalization factor is given by w(L, m) = L(−1+L−m)!
(L−2m)!m! . For

open boundaries we may take the variational ansatz using the same manifold - but
here the normalization factor has to be changed to wo(L, m) = (L−m)!

(L−2m)!m! .
In the thermodynamic limit the ground state is described by a Gaussian-shaped

wavefunction in m-space sharply centered around a certain number of doublons
m0(U). After mapping to a harmonic oscillator the ground-state energy per site is
given as solution of the equation

64+ 16E0U +U2 − 44E2
0 + (10E0 −U)

√
20E2

0 − 12E0U +U2 = 0

and m0(U) = 6E0−U+
√

20E2
0−12E0U+U2

8E0
. So for U = 0 one finds m0(0) = (3−

√
5)/4 ≈ 0.19.

The average number of double-occupations are given by N2 = ⟨m⟩ = m0. N2
is small for positive interactions and in this case string and parity-order can be
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described by the following simple expression

O2
P ≈ ⟨(2m − 1)2⟩ and (7.28)

O2
S ≈ ⟨2m2(m − 2)⟩ . (7.29)

In Fig. 7.6 we show that the analytical expressions (7.28) and (7.29) compare well to
results of a DMRG calculation of model (7.25). Both string as well as parity order
are non-zero, the string-order, however, vanishes with increasing U as shown in
Fig. 7.6.

The Ising-model (7.26) (i.e. nmax = 2 bosons) exhibits a gap (even at U = 0)
as shown in [317] which opens linearly with J(1,1)↔(2,0) to the momentum k =
π sector. In the bosonic model (7.25) the lowest excitation is a single impurity
∣20⟩ which cannot decay and disconnects two parts of the chain. Hence, the gap
is given by ∆E ∝ eL − eL−1 ∝ E0/L ∝ J(1,1)↔(2,0) for U = 0. So, interestingly,
also this MI phase may persist for vanishing residual interaction strengths U → 0.
DMRG-calculations show a gap of ∆E = 0.51...J(1,1)↔(2,0) for U = 0. The inset of
Fig. 7.6 shows the ground- and excited-state-energy for different values of U from
the DMRG-calculation and the variational ansatz (7.27).

7.2.2 Time-dependent simulation.

Ground-state properties analyzed so far may be prepared experimentally in a slow
quasi-adiabatic ramping process after having prepared the system in the ground
state in the absence of any modulation. It is, however, interesting to consider the
properties of a fast switching of the double modulations. For simplicity we focus
here on the situation that a defect free MI state at large U0/J and unit filling is
initially prepared. At time t = 0 DM is abruptly switched on. Figure 7.7 shows this
sudden quench situation for a switching on of a sinusoidal DM to values U1/h̵ω = 3
and F1/h̵ω = 2.4 and different values U0/J. We monitor the evolution of string and
parity order after the quench, as shown in the inset of Fig. 7.7 for a residual final
interaction U0 = J. Initially the defect free MI state exhibits a perfect parity-order
O2

P = 1 and no string order O2
S = 0. Due to the creation of defects after the abrupt

quench O2
P decreases and O2

S increases. Interestingly, for the parameters chosen
both time averaged O2

S and O2
P remain finite after the quench. The average values

of the orders for 2 < Jt/h̵ < 6 are shown in the main panel of Fig. 7.7 as a function
of U0. They present a similar qualitative dependence on U0/J as the ground state
shown in Fig. 7.6.

The inset of Fig. 7.7 as well presents a comparison between the dynamics of the
effective model (7.20) and the full dynamical time evolution of the double mod-
ulation Eq. (7.19), showing the validity of the effective model for describing the
dynamic evolution.

7.2.3 Symmetric tunneling

In the following we will explore the case of a mirror symmetric tunneling J(1,1)↔(2,0) =
J(1,1)↔(0,2). Figure 7.8 illustrates the possibility of realizing a broad range of values
of J(1,1)↔(2,0)/J(0,1)↔(1,0) for a sinusoidal modulation with appropriately chosen U1
and F1 such that J0 [(F1 +U1)/h̵ω] = J0 [(F1 −U1)/h̵ω].
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Fig. 7.8: For appropriately chosen parameters F1 and U1 one can get almost arbi-
trary J2 ∈ [0,∞] (solid line). Shown here is an example of 1.5 < F1 < 2.4 and U1
(dashed line) accordingly between 3.8 and 4.3. The inset depicts J(1,1)↔(2,0) (red
line), J(1,1)↔(0,2) (green line) and J(0,1)↔(1,0) (solid black line) for as function of U1
for F1 = 2.2.

The correlated-hopping Fermi-Hubbard model

The DM-scheme allows for the simulation of the full parameter space of the correlated-
hopping Fermi-Hubbard model (7.14) relevant for for cuprate superconductors,
while pure modulation of interactions only permits 0 ≤ ∣tAB/tAA∣ ≤ 1 [45]. In Fig. 7.9
we present the grand-canonical phase diagram for U0 = 0. The lines tAB = tAA cor-
respond to the usual Fermi-Hubbard model. The case tAB = 0 has been discussed
in detail in section 7.1.4.

As shown in [314] for tAB < tAA the spin-sector is gapless. From calculating the
Luttinger-liquid parameter Kρ = 1, extracted from the long wavelength behavior of
the static charge structure factor [321], we may define the boundary between a gap-
less phase with dominant triplet superconducting (TS) correlations ⟨Q†

0+Qj+⟩, with
Qj± ≡ cj+1↓cj↑ ± cj+1↑c↓ and another phase with dominant spin-density wave (SDW)
correlations, (−1)j⟨n̂0−n̂j−⟩, with n̂j± ≡ n̂j↑ ± n̂j↓. For tAB < 1 along the line of unit
filling (µ/tAB = 0) the TS-correlation functions become degenerate with the spin-
bond-ordering wave (SBOW) correlations, ⟨S†

0Sj⟩ with Sj ≡ ∑σ σ(ĉ†
j+1σ ĉjσ +H.c.), as

discussed in [314].

For tAB/tAA > 1 the spin sector becomes massive and for U = 0 three different
phases may occur [314]. At unit filling n = 1 we find a totally gapped phase with
bond-ordering wave (BOW) order, ⟨B†

0Bj⟩ with Bj ≡ ∑σ(ĉ†
j+1σ ĉjσ +H.c.). In Fig. 7.9

the size for the BOW-phase corresponds to the charge gap at unit filling.

At incommensurate fillings we observe a gapless phase with dominant den-
sity wave (CDW) correlations, (−1)j⟨n̂0+n̂j+⟩, and a gapless phase with dominant
singlet-superconducting (SS) correlations, ⟨Q†

0−Qj−⟩.
From the perturbative analysis in Ref. [314] one may see that for fixed tAB, tAA

and U0 > 0, the spin gap opens at a critical µcr. Hence, for an overall confine-
ment one may observe a spatial boundary between spin-gapped and spin-gapless
phases, which may be revealed experimentally. In particular the BOW phase in
experiments will show a characteristic plateau in an external confining potential.
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Fig. 7.9: Phase diagram for the Fermi-Hubbard-model as a function of µ/tAA and
tAB/tAA for U0 = 0. This is consistent with the perturbative result from [314] for
tAA = tAB. The shaded regions denote the vacuum or the fully occupied state. All
results are extrapolated to the thermodynamic limit from open boundary DMRG-
calculations with up to L = 144 sites.

Bosons

Finally we may study the phase diagram of the Bose Hubbard model with DM
(7.20) and symmetric doublon creation rates J2 ≡ J(1,1)↔(2,0) = J(1,1)↔(0,2) (for sim-
plicity we introduce the short hand J1 ≡ J(1,1)↔(2,0)). Again the case J2 < J1 has been
studied in the context of a sole modulation of interactions [44]. So here we focus
on the interesting case J1 < J2. Since the higher tunneling processes typically will
remain asymmetric, we will study small fillings and moderate residual interactions
U.

In Fig. 7.10 (a) we present the grand-canonical phase diagram for model (7.20).
Similar to the correlated hopping FH model (7.14) for the bosonic case a large J2 > J1
will favor a gapped MI phase. The residual interaction U0 = 3 for the simulation
of Fig. 7.10 (a) is chosen to be slightly below SF-MI transition for J2 = 1. Increasing
J2 drives the system into the gapped MI-phase. A second important feature of the
regime J2 > J1 is the emergence of a PSF phase at low fillings. The single particle
correlations ⟨b†

xby⟩ decay exponentially in PSF region, while density-density and

pair-correlations ⟨(b†
x)

2 (by)
2⟩ remain algebraically (not shown). In the µ − ρ curve

we observe jumps of two particles as shown in Fig. 7.10 (b). For 1 < J2 ≲ 3 we
observe an interesting meta-magnetic transition (cf. section 5.5) to the SF-phase.
Here the µ − ρ curve exhibits a macroscopic jump as illustrated in Fig. 7.10 (b).

We may analyze the emergence of the PSF from the dilute limit examining the
two-particle problem as introduced in section 5.2. The Schrödinger equation for
two particles may be reduced to the following system of coupled equations for the
amplitudes Cr

(Ω −U)C0 = −2
√

2tJ2 cos
K
2

C1

ΩC1 = −2t cos
K
2
(
√

2J2C0 + J1C2)

ΩCr = −2tJ1 cos
K
2
(Cr−1 +Cr+1) , r ≥ 2. (7.30)
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Fig. 7.10: (a) Phase diagram for doubly-shaken bosons as function of chemical po-
tential µ and pair production rate J2 (U0 = 3) with µ0 the chemical potential of the
vacuum. The small arrows show positions of macroscopic jumps in filling. (b)
Filling ⟨n⟩ /L as function of the chemical potential for different values of J2 for the
parameters of (a). Note that J2 = 0.5 and 1 curves are for system-size of L = 32, while
J2 = 2, 4 curves are for L = 128. In the PSF-regime one observes steps of ∆N = 2 and
a macroscopic jump close to the transition to the SF regime.

In the thermodynamic limit the scattering energy continuum is given by Ω = ε(k1)+
ε(k2) = −4tJ1 cos k cos K

2 . For J2 >
√

1+U0/4 the two-particle bound state becomes
the ground state of the 2-particle problem. Note that this derivation essentially
holds as well for Fermi-Hubbard model.

7.3 Conclusions

In this chapter we have analyzed in detail the physics emerging from fast modu-
lated interactions. They allow for the realization of ”stochastic” density dependent
Peierls phases and a certain class of correlated hopping Hubbard models, includ-
ing an interesting insulating metallic phase (Kohn-metal). The double modulation
of interactions and lattice position may be used a tool for the precise control of
selected hopping processes. A mirror-asymmetric hopping will lead to exotic insu-
lating phases with both parity and string order. Furthermore an even broader class
of correlated hopping Hubbard models may be realized.

While here we focused on the effect of double modulations in one dimensional
systems, a natural extension of this work would be the application of DM to 2D-
and 3D-systems. Here, the combination of elliptical lattice shaking [137] and peri-
odically modulated interactions may lead to an even richer physics due to different
select hopping processes in different directions.

Modulated interactions are subject to current experimental research [322]. How-
ever, as all large amplitude modulation techniques, in general may suffer from a
large heating due to multi-photon transitions to higher bands [323]. Similar models
may, however, be realized driving resonant transitions between different Floquet-
sectors [144] with weak modulations, which may lead to less heating and simplified
experimental schemes.



Chapter 8

Density Dependent Artificial Mag-
netic Fields

In the previous chapters we have seen how artificial gauge fields and synthetic elec-
tromagnetism in cold neutral gases may be engineered and studied [275, 324] using
laser-assisted hopping or shaking techniques. While the gauge fields studied so far
are static and do not provide a dynamical feedback between matter and gauge
fields, in many areas of physics ranging from condensed-matter [325] to quantum
chromodynamics [326] dynamical gauge field theories have been shown to play an
important role. Hence, during the recent years there have been various attempts
and a growing interest in studying such dynamical quantum field theories in cold
atom experiments [27, 28, 327–333].

In this chapter we will present different schemes how a certain class of dynam-
ical gauge fields may be engineered, in which there is no discrimination between
particle and gauge fields degrees of freedom. The particle-density provides a back-
action on the synthetic gauge fields of the system. Such density dependent gauge
fields have been studied in the context of fractional quantum Hall effect [334], gen-
eralized statistics in one dimension [335], quantum magnetism [336], chiral soli-
tons [337] or one-dimensional anyons [338]. Recently, experimental schemes for the
realization of density dependent synthetic magnetism (DDSM) have been proposed
for Bose-Einstein condensates [339] and optical lattices [338]. The ideas presented
in this chapter extend the proposal and analysis of Ref. [338]. In particular we will
study hopping terms with density dependent Peierls phases of the form

Ĥddsm
i,j = b̂†

i eiφn̂i b̂†
j + H.c. . (8.1)

We will investigate feasible experimental set-ups and the physical effects of DDSM
in 1D and 2D lattices. We show that DDSM results in a very rich physics including
novel quantum phases or density and statistically induced quantum phase tran-
sitions in anyon Hubbard models. Moreover, we will show how effective fluxes
in 2D lattices are induced by quantum and density fluctuations and crucially af-
fect the quasi-momentum distribution or the expansions-dynamics of holons and
doublons on top of a Mott-insulator.

8.1 DDSM using periodically modulated interactions

Periodically modulated interactions and the corresponding effective Hamiltonians,
as studied in chapter 7, provide a method for the engineering of density dependent
complex phases. In section 7.1.2 we discussed that these phases, however, may be
eliminated by a simple gauge transformation. In the following section we demon-
strate, how modulated interactions in combination with Raman-assisted hopping
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may be employed for the creation of a density-dependent Peierls phase that can-
not be gauged out and, hence, result in non-trivial ground-state physics. Although
the resulting effective model is different from the anyonic Hubbard model [48, 338]
(see discussion in sections 8.2) we show that it shares its fundamental properties: A
density-dependent (drift of the) momentum distribution, gauge-induced SF to MI
transitions and a stabilization of the Hubbard model for vanishing interactions.

The following section is based on the publication [47] which was developed in
collaboration with G. Sun, D. Poletti and L. Santos. Part of the DMRG calculations
has been performed by G. Sun.

8.1.1 The AB model

The main scheme for the creation of a density dependent Peierls phase of the form
(8.1) is sketched in Fig. 8.1. It basically resembles the seminal experimental pro-
posal by Jaksch and Zoller [280].

Two-components of bosonic particles ∣A⟩ and ∣B⟩ are trapped in a tilted 1D spin-
dependent lattice. Due to the tilting the natural hopping is strongly suppressed and
four Raman-beams between A and B sites as well as B and A sites are employed
to restore a laser-assisted hopping (see Fig. 8.1 (a)). In this way the lattice is split
into two sublattices A and B. The main idea of our proposal is to use the AB and
BA lasers in a pulsed way: for a time period 0 < t < T/2 Raman assisted hopping
couples an A site with the B site at their right, and for T/2 < t < T it couples an
A site with the B site at their left. We further assume that the interactions of the
A component UA(t) = UA0 +UA1(t) are modulated in time with a period T as (see
8.1 (b))

UA1(t) =
⎧⎪⎪⎨⎪⎪⎩

ŨA1 sin(ωABt) for 0 < t < T/2
−ŨA1 sin(ωABt) for T/2 < t < T

(8.2)

where ωAB = 4π/T. The total time-dependent Hamiltonian is given by

ĤAB=−∑
j
[JAB(t)b̂†

2jb̂2j+1+JBA(t)b̂†
2jb̂2j−1+h.c.]

+ UA(t)
2
∑

j
n̂2j(n̂2j−1)+UB

2
∑

j
n̂2j+1(n̂2j+1−1). (8.3)

A B A B A

(a)

0

T/2

T

U1A

(b)

Fig. 8.1: Scheme of the AB-model. (a) For 0 < t < T/2 Raman assisted hopping
couples an A site with the B site at their right; for T/2 < t < T it couples an A site
with the B site at their left. (b) Sketch of the modulation function UA1(t).
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where

JAB(t) =
⎧⎪⎪⎨⎪⎪⎩

J for 0 < t < T/2
0 for T/2 < t < T

and JBA(t) =
⎧⎪⎪⎨⎪⎪⎩

0 for 0 < t < T/2
J for T/2 < t < T

(8.4)

Even (odd) sites index the A (B) sublattice. The interactions of the B component
UB are kept constant. For simplicity we choose UA0 = UB ≡ U. Contrary to the
schemes discussed by [338] and in section 8.2, here, for an experimental realization
we assume that interaction shifts are smaller than the laser linewidth. Furthermore
the tilting has to be chosen larger than the Raman-induced hopping rate and the
interaction energy in order to avoid photon-assisted resonances.

Assuming a fast modulation (see section 2.5) we yield the following time inde-
pendent effective model

ĤAB
eff =−∑

j
[b̂†

2j J̃AB(n̂2j)b̂2j+1+b̂†
2j J̃BA(n̂2j)b̂2j−1+h.c.]

+ U
2
∑

j
n̂2j(n̂2j−1)+U

2
∑

j
n̂2j+1(n̂2j+1−1), (8.5)

with J̃AB(n̂2j) = J
T ∫

T/2
0 dt eiV(t)n̂2j/h̵, J̃BA(n̂2j) = J

T ∫
T/2

0 dt eiV(t+T/2)n̂2j/h̵, and V(t) =
∫ t

0 UA1(t′)dt′. Hence, for the above mentioned case of a piecewise sinusoidal shak-
ing Eq. (8.2) we obtain a density dependent hopping amplitude and phase

J̃AB(n̂2j) =
J
2

J0(ΩABn̂2j)eiΩAB n̂2j = J̃BA(n̂2j)∗ (8.6)

So here the phase is always strictly coupled to the modulus of the hopping. One
may choose more generally

UA1(t) =
⎧⎪⎪⎨⎪⎪⎩

ŨA1 sin(ωABt + φ1) for 0 < t < T/2
−ŨA1 sin(ωABt + φ2) for T/2 < t < T

(8.7)

Note that φ1 = 0, φ2 = π reproduces the case shown in Fig. 8.1 (b). The effective
tunneling is given by

J̃AB(n̂2j) =
J
2

J0(ΩABn̂2j)eiΩAB cos(φ1)n̂2j and

J̃BA(n̂2j) =
J
2

J0(ΩABn̂2j)eiΩAB cos(φ2)n̂2j .

A unitary gauge transformation b†
2j → b†

2je
−i(ΦAB+ΦBA)/2n̂2j may be used to obtain

J̃AB(n̂2j) =
J
2

J0(ΩABn̂2j)eiΦ/2n̂2j = J̃BA(n̂2j)∗

Hence, Φ = ΦAB −ΦBA = ΩAB[cos(φ1) − cos(φ2)] may be changed keeping the hop-
ping modulus unaffected.

The AB-model shows a striking similarity to the Anyon-Hubbard model (AHM)
introduced in Ref. [338] (see section 8.2 for a detailed discussion). We may recast it
as an anyon-like model without Peierls phases by defining â2j = eiΩAB∑l<j n̂2l b̂2j, and
â2j+1 = eiΩAB∑l≤j n̂2l b̂2j+1. Even site operators a2j fulfill anyonic commutation relations

eiΩAB â†
2j â2j′ = â2j′ â†

2j. (8.8)

Odd site operators a2j+1 act like bosons under exchange. In the following we will
show, that the AB-model and the AHM indeed share important properties.
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Fig. 8.2: (a) Ground-state quasi-momentum distribution for model (8.5) for an ho-
mogeneous distribution in 24 sites with ΩAB = π/4, U = 0.2J, and a density ⟨n̂⟩;
(b) harmonically trapped gas VT for ΩAB = π/4, U = J and 24 particles in 24 sites
(nmax = 10). DMRG-simulations have been performed by G. Sun.

8.1.2 Quasi-momentum distribution

An important feature of a one-dimensional anyonic model is the effect on the quasi-
momentum distribution as may be probed easily in TOF experiments. It has been
studied to a large extent in Refs. [338, 340, 341]. Note, that for a synthetic static
gauge field the drift of the quasi-momentum distribution in a 1D lattice gas was
experimentally studied in detail [137].

We illustrate the properties of the quasi-momentum distribution of the AB-
model in Fig. 8.2. A change in the average density ⟨n̂⟩ will induce a drift of the
momentum distribution shown in Fig. 8.2 (a) for an homogeneous system with
ΩAB = π/4 and U = 0.2J. In an harmonic trap VT∑j(j − L/2)2n̂j this effect can
be steered by compressing the gas by a larger VT. As shown in Fig. 8.2 (b) the
quasi-momentum distribution shifts with increasing VT because the central den-
sity grows. Due to the inhomogeneity of the density distribution the TOF-pictures
blurs.

8.1.3 Correlation functions in the superfluid regime

In order to obtain an understanding of the effect of the density-dependent phase
on the ground-state phase diagram, we start with an analysis valid in the in the
weakly-interacting regime. As introduced in section 2.2.4 the bosonic operators
may be expressed as b̂†

j →
√

ρ(xj)e−i(θ(xj)−ηxj), with

ρ(x) = ρ0 −
1
π
∇φ(x) + ρ0∑

p≠0
ei2p(πρ0+φ(x)) , (8.9)

with the average density ρ0, and xj the position of site j. We introduce η to account
for a global gaugeable phase shift. An expansion of Hamiltonian (8.5) yields the
following form of the Hamiltonian in terms of phase and density fluctuations φ
and θ

Ĥ = u
2π ∫ dx [K−1(∂xφ)2 +K(∂xθ)2 + 2γ(∂xφ)(∂xθ)] , (8.10)

where u is a velocity, K is the Luttinger parameter which can be introduced phe-
nomenologically. Interestingly a mixing term γ has to be added due to the density-
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Fig. 8.3: Behavior of the Luttinger parameter K as a function of ΩAB for U = J/2
for ρ0 = 1.75 (upper curves) and ρ0 = 0.75 (lower curves). Dashed lines indicate the
analytical estimation (8.11) in the weak-interaction regime, whereas the circles de-
note our results obtained from DMRG calculations of the single-particle correlation
function.

dependent Peierls phase. This term does not lead to any effect on the correlation
functions [47], which exhibit the usual power law decay as ⟨b̂†

i bj⟩ ∝ ∣i − j∣−1/2K.
In the weak-coupling regime the Luttinger parameter K is given by

K2 = π2ρ0F̃(ρ0)
2U

J −R(ρ0
d2 F̃
dρ2 (ρ0) + 2 dF̃

dρ (ρ0))
(8.11)

with R the real part, F̃(ρ) = F(ρ)e−i arg(F(ρ0)), and F(ρ) = J0(ΩABρ)eiΩABρ for the AB
model. In Fig. 8.3 we illustrate the validity of the approach in the SF regime and
for small Ω.

Eq. (8.11) shows that for the correlated hopping, both density dependent am-
plitude and phase, play the role of an effective repulsive interaction. The derived
expression is also valid for the AHM (see Eq. (8.21)).

8.1.4 Statistically-induced phase transitions

The effective repulsion induced by the density dependent Peierls phase has impor-
tant consequences on the ground-state phase diagram. A changing of the statistical
angle Φ may induce SF to MI transitions as observed in Ref. [338]. In Fig. 8.4 we
show how several MI phases are induced by varying Φ. The MI phases survive
for a broad range of U/J as can be seen in Fig. 8.4 (a) (note that at ΩAB = 0 the
MI phase at unit filling closes around J/U ≈ 0.3). Interestingly, due to the broken
AB-symmetry also gapped phases at fractional fillings 1/2, 3/2, . . . are stabilized.

The emergence of fractional filling MI phases at ρ = 1/2 can be best understood
from the limit of hardcore particles J/U ≪ 1. In this limit one can reduce the de-
scription to the manifold of 0 and 1 particles per site and introduce an effective
spin- 1

2 Hamiltonian Ĥ1/2 in perturbation theory up to second order J/U with near-
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Fig. 8.4: Mott phases at half-integer and integer fillings (a) MI-lobes for ΩAB = π/2,
Φ = π. (b) Varying the relative phase Φ may induce phase transitions in the ground
state. Here we choose ΩAB = π/2 and change Φ for J/U = 2 (dashed lines indicate a
closing gap)

est neighbor interactions and staggered correlated hopping:

Ĥ1/2 = −J∑
j
[Ŝ+j Ŝ−j+1 +h.c.]

+ Jc∑
j
[Ŝ+j (1

2
+ Ŝz

j+1) Ŝ−j+2 +h.c.]+

+ Js∑
j
(−1)j[Ŝ+j (1

2
+ Ŝz

j+1) Ŝ−j+2 +h.c.]+

+∆∑
j

Ŝz
j Ŝz

j+1 (8.12)

with coefficients Jc = J2

U
1+Γ2

2 , Js = J2

U
1−Γ2

2 and ∆ = − J2

U (1+ ∣Γ∣2) and Γ ≡ 1
2J0(ΩAB)eiΦ/2.

Using the standard bosonization dictionary [35] the continuum limit of this Hamil-
tonian may be expressed as a sine-Gordon Hamiltonian of the density and phase
fluctuations θ(x) and φ(x). It is precisely the staggered (next-nearest-neighbor)
hopping that introduces at half filling a spin-Peierls like term ∼ sin 2φ(x) which be-
comes relevant for Luttinger-liquid parameters K < 2. That is why at half filling we
observe the immediate opening of band insulator gap for arbitrarily small tunnel-
ing J/U which is consistent with our numerical simulations. The Sz −Sz-interaction
contributes with ∼ cos 4φ(x) terms, which are irrelevant for K > 1/2.

The opening of a gap may be also understood in an easier way if we just con-
sider the correlated hopping parts S+j Ŝz

j+1Ŝ−j+2 of the second order perturbation,
since this part may be analytically solved by mapping to free fermions:

Ĥsf
1/2 = −J∑

j
ĉ†

j ĉj+1 + Jc∑
j

ĉ†
j ĉj+2+

+ Js∑
j
(−1)j ĉ†

j ĉj+2 +h.c.

Here one finds the spin-Peierls like band-gap opening ∼ ∣Js∣ at half filling.

8.1.5 Vanishing on-site interaction

While the appearance of the gap at half fillings can be described nicely in large in-
teraction limit, it is remarkable that the gap survives also for very small interactions
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Fig. 8.5: Behavior of the AB-model for vanishing on-site interactions U = 0. Lines
of constant density and MI phase at n = 1/2 from DMRG (a) and a coherent state
variational approach (b). In the DMRG-calculation system size L and maximal oc-
cupation number of bosons per site nmax have been scaled carefully (up to nmax = 12
and L = 144 sites). For fillings n ≤ 1/2 the calculation already shows almost perfect
convergence for nmax = 2.

U as can be seen in Fig. 8.4 (a), without any apparent tendency to close. Indeed the
gapped phase may even survive to the limit U → 0 as shown in Fig. 8.5 as function
of Φ. While the usual Bose Hubbard model becomes unstable in the limit U → 0 in
a grand canonical ensemble (bunching of curves of constant filling for Φ = 0), the
density dependent hopping stabilizes the system such that the system effectively
behaves as a repulsively interacting Bose gas.

The stability of the AB-model (however, not the gaped phases at fractional fill-
ings) for vanishing interactions can be seen from a simple variational ansatz using
coherent states ∣α⟩ ∣β⟩. Minimizing the ground-state energy

∣α∣2 ((1+ e−2∣α∣2)
2
− 4µ2) /4µ (8.13)

as function of the chemical potential reproduces the qualitative behavior: a small
difference in occupation of A and B sites and stability for U = 0 at small fillings (here
for µ < −1/2 the filling factor ρ remains finite). The DMRG-calculation indicates
lower boundaries for the instability for certain values of Φ.

An analytical understanding away from the weak coupling regime of the be-
havior for U → 0 may be obtained by the analysis of the two particle problem.
Due to the conservation of total momentum in the scattering process one can ex-
press the amplitudes of a 2-particle scattering state (5.11) as cx,x+r = CreiQ(x+ r

2 ) for
x in one of the A sites and cx,x+r = DreiQ(x+ r

2 ) for x ∈ B. Here Q = q1 + q2, the to-
tal momentum (below we employ q = (q1 − q2)/2 as the half relative momentum).
The Schrödinger equation ĤAB

eff ∣Ψ⟩ = ε ∣Ψ⟩ for the two particle problem leads to the
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Fig. 8.6: Quasi-momentum kmax at which the quasi-momentum distribution of the B
sublattice is maximal as a function of ΩAB⟨n̂⟩ for ω = 20J and U = J. Solid (dashed)
lines denote the results obtained from the effective model (8.5) with ⟨n̂⟩ = 3/2 (1).
The error bars denote the uncertainty (time average and standard deviation for
200 < t/T < 400) of kmax(t) for the case of a linear ramp of ŨA1 with a ramp time of
τ = 200T. (inset) Solid and dash-dotted lines show kmax(t) for ⟨n̂⟩ = 3/2 with ΩAB =
0.4 and 0.8, whereas the dotted line indicates the value of kmax for the effective
model (8.5). We depict with a dashed line the ramp ŨA1(t).

following system of coupled equations for the amplitudes Cr and Dr

(ε −U)C0 = −
√

2J ∣Γ∣ (D1 ei(Q−Φ)/2 +C1 e−i(Q−Φ)/2)

(ε −U)D0 = −
√

2J ∣Γ∣ (C1 eiQ/2 +D1 e−iQ/2)

εC1 = −
√

2J ∣Γ∣ (C0 ei(Q−Φ)/2 +D0 e−iQ/2) − J/2 (C2 e−iQ/2 +D2 eiQ/2)

εD1 = −
√

2J ∣Γ∣ (C0 e−i(Q−Φ)/2 +D0 eiQ/2) − J/2 (C2 eiQ/2 +D2 e−iQ/2)

εCr≥2 = −J/2 (Cr−1 eiQ/2 +Cr+1 e−iQ/2 +Dr−1 e−iQ/2 +Dr+1 eiQ/2)

εDr≥2 = −J/2 (Dr−1 eiQ/2 +Dr+1 e−iQ/2 +Cr−1 e−iQ/2 +Cr+1 eiQ/2)

The energy of the two scattered particles is given by ε = −2J cos(q) cos(Q/2). In
order to extract scattering properties we solve this set of equations with the ansatz
Cr = e−iqr + veiqr + βαr and Dr = e−iqr + veiqr − βαr for r > 1. The equations for r > 2
can be solved by this ansatz if 2iα cos(q) cos(Q/2) = (−1+ α2) sin(Q/2). We choose
∣α∣ < 1 and solve the remaining four equations for C0, D0, v and β. Since the α part
decays exponentially fast, we can extract the scattering length a = − limq→0 ∂qδ with
v = e2iδ, which after some algebra results in

a(U → 0) = [3+ 5 cos(Φ)] ∣Γ∣2 + 2

[5+ 3 cos(Φ)] ∣Γ∣2 − 2
, (8.14)

By comparison to a 1D Bose gas of particles with mass m and contact-interaction
one may extract an effective interaction strength g = −2/(am) [37]. The scattering
length diverges for ∣Γ∣ → 1/2, Φ → 0, 2π but remains finite and negative for any
other phase Φ, which coincides with the observation that the AB-correlated hop-
ping Hubbard model behaves as a repulsively interacting system for small filling
even in the limit of U → 0.
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Fig. 8.7: Quasi-momentum distribution of the A and the B components in the labo-
ratory frame as a function of time for ⟨n̂⟩ = 3/2 and ΩAB = 0.8, and same parameters
as those of Fig. 8.6.

8.1.6 Adiabatic preparation

A typical experimental scenario as studied in the context of shaken lattices [151]
might start with the preparation of a (ground)state of the non-modulated setup
and then (quasi)adiabatically increase the modulation amplitude ŨA1. We prepare
the system at t = 0 in the ground state of the non-modulated Bose-Hubbard model
at U = 1 and then as illustrated in the inset of Fig. 8.6 we slowly linearly ramp
the modulation amplitude ŨA1(t) = t

τ ŨA1 and the pulsed tunneling for t < τ of
Eq.(8.3) in order to stay close to the ground state. For t > τ we keep the modulations
constant and monitor the evolution of the momentum distribution. An example is
shown in Fig. 8.7.

For the dynamical calculations we have used TEBD calculations for 16 sites with
up to 300 states, and a maximal site occupation of 4 bosons. As in Ref. [151], we
may simulate rather long evolution times (t ∼ 400T) due to the quasi-adiabatic
character of the dynamics. We have carried out our TEBD simulations for time
steps dt = T/400 and m = 300 matrix states, which compare well to simulations with
dt = T/600 and m = 400, showing the convergence of the results. Smaller system
sizes, with a correspondingly decreased ramping and evolution time, display very
similar behavior.

The evolution of the momentum kmax at which the momentum distribution
is maximal is shown in the inset of Fig. 8.6 (black and blue curves). The non-
adiabaticity of the finite ramping time leads to oscillations in the expectation value
of kmax after the ramping procedure. The time-average and standard deviation
are shown as points and error-bars in the main panel of Fig. 8.6 of the main text
and compare very well to the ground-state expectation. Note that the drift kmax
is only linear with ΩAB⟨n̂⟩ for a sufficiently small value of ΩAB⟨n̂⟩ and exhibits a
non-trivial density dependence.

Since atoms at sites A and B belong to different species in Stern-Gerlach like
TOF experiments it is possible to monitor the quasi-momentum distribution of
atoms in state ∣A⟩ and ∣B⟩ separately. The TOF picture of the B sublattice at any
time corresponds to that of the effective model (see Fig. 8.7). On the A sublattice
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the single particle correlations are defined by

⟨ψ(t)∣b̂†
2i b̂2j∣ψ(t)⟩ = ⟨ψ′∣b̂†

2ie
iV(t)(n̂2i−n̂2j)/h̵b̂2j∣ψ′⟩ (8.15)

with V(t) defined in the context of Eq. (8.5). Hence the momentum distribution
of A coincides with that of the effective model at stroboscopic measurement times
t = nT, for which V(t) = 0. At intermediate times we observe a blurring of the
TOF picture due to the characteristic stochastic character of the density dependent
phases (see chapter 7).

8.2 The 1D anyon Hubbard model

In this section we propose a possible experimental scheme for the realization of
a density-dependent Peierls phase Eq.(8.1) in 1D using Raman assisted tunnelings
extending the scheme of Keilmann et al. [338]. We will analyze in detail the physics
emerging due to the interplay of the anyonic quantum statistics and the inherent
3-body hardcore constraint, which is due to the experimental scheme, including
MI phases stable at attractive interactions and dimerized phases. Furthermore, at
certain fillings we observe an exotic 2-component partially paired phase (PP) with
a multi-peak momentum distribution.

The results presented in this section have been published in Ref. [48] which was
developed in collaboration with L. Santos.

8.2.1 Density dependent Peierls phases

The original scheme of Keilmann et al. [338] suffers from a serious technical is-
sue, which would basically render the idea unfeasible in experiments. With our
extended proposal we may solve this drawback.

The original proposal of Keilmann et al.

The basic scheme of Ref. [338] for the realization of the AHM and a density de-
pendent Peierls phase is, ignoring the discrimination between A and B particles,
sketched in Fig. 8.8: A (one-component) bosonic gas is loaded in a tilted one dimen-
sional optical lattice. Due to the strong tilting U, ∆ ≫ J the hopping J is strongly
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Fig. 8.8: (a) Sketch of the tilted optical lattice including the Raman-lasers L1...4. (b)
The four hopping processes relevant for the AHM.
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suppressed. We decompose the desired hopping-process of the form (8.1) to the
following events ((n, m) denote the occupation of n and m particles on adjacent
sites):

(i) (1, 0) → (0, 1) has an energy difference ∆Ei = −∆. The hopping matrix element
is ⟨0, 1∣Ĥddsm

i,i+1 ∣1, 0⟩ = 1

(ii) (1, 1) → (0, 2) with ∆Eii = −∆ +U and ⟨0, 2∣Ĥddsm
i,i+1 ∣1, 1⟩ =

√
2

(iii) (2, 0) → (1, 1) is characterized by ∆Eiii = −∆ −U and ⟨1, 1∣Ĥddsm
i,i+1 ∣2, 0⟩ =

√
2eiφ

(iv) (2, 1) → (1, 2) with ∆Eiv = −∆ and ⟨0, 2∣Ĥddsm
i,i+1 ∣1, 1⟩ = 2

√
2e−iφ

For higher fillings further processes could be included. The key idea is that these
hopping-events have to be resolved and assisted by a set Raman-lasers Li, with
Rabi frequencies Ωj = ∣Ωj∣eiφj , wave vectors kj, and frequencies ωj.

Always two lasers may induce one hopping process virtually coupling the par-
ticles in the atomic ground state to an excited state. Typically the frequencies ωi of
the Raman lasers are chosen to by far detuned (detuning in the order of δ ∼ GHz)
from the atomic transition in order to avoid large spontaneous emission losses.
Hence, it is the resonance condition of the Raman-lasers that determines which
states are coupled by the lasers. In Ref. [338] 4 lasers are proposed to build the
transition between the processes (i)-(iv), hence, ω2 − ω3 = ∆Ei, ω2 − ω4 = ∆Eii,
ω1 − ω3 = ∆Eiii, and ω1 − ω4 = ∆Eiv. The two photon-Rabi-frequencies are en-
gineered in such a way that the correct phases φ are imprinted in the tunneling
processes (i)-(iv).

The crucial issue of this idea is that processes (i) and (iv) are energetically de-
generated and, hence, may not be addressed with different lasers. As a result both
the combination of L2 and L3, and of L1 and L4 induce both (i) and (iv), preventing
the realization of the desired density-dependent Peierls phase.

Two-component system

In order to solve this issue we consider a bosonic species with two internal states,
∣A⟩ and ∣B⟩ confined to a tilted 1D optical lattice. For the specific case of 87Rb, we
may choose ∣A⟩ ≡ ∣F = 1, mF = −1⟩ and ∣B⟩ ≡ ∣F = 2, mF = −2⟩. The Hilbert-space of
a single lattice site thus constitutes of empty sites (0), single occupied sites (A) or
(B), doubly occupied sites (AA), (BB) or (AB), etc. We will consider an inter- and
intraspecies interaction Uα,β. Other atomic species and even fermionic atoms are
possible (see Ref. [48]).

Raman-assisted hopping

No direct hopping occurs since J ≪ ∆, Uα,β. Raman-assisted hopping is realized
with the set-up of Fig. 8.8 (a) formed by four lasers Lj=1,...,4, with Rabi frequencies
Ωj = ∣Ωj∣eiφj , wave vectors kj, and frequencies ωj. L1,4 have linear polarization and
L2,3 circular σ− polarization and couple states ∣A⟩ and ∣B⟩ far from resonance. ∣B⟩ is
just affected by lasers L1,4 due to selection rules. Although again both L2,3 and L1,4
couple to ∣A⟩, the coupling with L1,4 can be made much smaller than that of L2,3
due to different coupling strengths [48]. Hence we may assume below that ∣A⟩ is
just affected by L2,3.
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As discussed in section 6.2.2 we evaluate the Raman-assisted hopping, Jnm,
given by lasers Ln=1,2 and Lm=3,4, from site j to site j + 1 as

Jnm ≃ i(Vnm

2∆
) J sin(δknm

x d
2

) eiδknm
x d(j+1/2)eiφnm . (8.16)

where φnm = φn − φm, δknm = kn − km, and Vnm = h̵∣Ωn ∣∣Ωm ∣
δ and δ the (large) detuning

to the one-photon transitions.
Each laser pair couples a different Raman transition (see Fig. 8.8):

(i) J23 characterizes the hopping (A,0)→(0,A), which is accompanied by an energy
shift ∆E = −∆. We hence demand ω2 −ω3 = −∆ and the transition amplitude is
given by V23 ≃ 1

2
Ω2Ω∗

3
δ including the appropriate Clebsch-Gordan coefficients

for the specific case of 87Rb.

(ii) (A,A)→(0,AB) is given by J24, being characterized by ∆E = −∆ +UAB; we im-
pose ω2 − ω4 = −∆ + UAB + U, with U ≪ UAB, ∆ and the amplitude V24 =

1√
6

Ω2Ω∗
4

δ

(iii) J13 is linked to the hop (AB,0)→(A,A); the energy shift is ∆E = −∆ −UAB; we
demand ω1 −ω3 ≃ −δ −UAB −U. V13 = 1√

6
Ω1Ω∗

3
δ .

(iv) (AB,A)→(A,AB) is given by J14; the energy shift is ∆E = −∆; we impose ω1 −
ω4 = −∆. The transition amplitude is given by V14 = 1

3
Ω1Ω∗

4
δ .

In this frame U may be understood as an effective on-site interaction energy.

Spurious processes

Undesired spurious processes are in principle possible:

(v) (A,0) → (0,B); ∆E = −∆

(vi) (A,A)→ (0,AA): ∆E = −∆ +UAA

(vii) (AA,0)→ (A,A): ∆E = −∆ −UAA

(viii) (AB,A) → (B,AA): ∆E = −∆ + δU, with δU = (UAA −UAB)

(ix) (AA,B) → (A,AB); ∆E = −∆ − δU

Process (v) is just possible with J24 or J13. But these laser combinations are (quasi)
resonant with −∆ ± UAB. For UAB ≫ W, with W the width of the Raman reso-
nance (typically of the order of 50 Hz [283]), process (v) is far from resonance with
either J24 or J13. To neglect the (vi) and (vii) processes one needs UAA ≫ W. In
contrast, to avoid (viii) and (ix) one must demand δU ≫ W. The latter condition is
certainly more strict, but may be attained with typical experiments parameters [48].
Interestingly, choosing a fermionic species only process (v) has to be handled.
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Fig. 8.9: Phase diagram of the AHM for fixed fillings: (a) dilute limit (n → 0), (b)
incommensurate intermediate fillings (here ρ = 1/2) and (c) unit filling (ρ = 1).
The PSF-SF transition line (boxes or solid line in (a)), extracted from the crossing
of two and one particle excitations coincides with the onset of parity order. At
incommensurate fillings for small φ the system exhibits a first order transition from
SF to PSF phase through a forbidden region (shaded area). (d) Phase diagram and
lines of constant density for the AHM (U = 0) as function of chemical potential µ
and statistical angle φ. Solid lines denote the MI and PP phase, the rest of the phase
diagram is SF. Vacuum (ρ = 0) is below µ < −2; for µ > 4 the fully occupied phase
(ρ = 2) is realized.

8.2.2 Effective 1D Hamiltonian

We assume ∣Ω1∣∣Ω4∣
4 = ∣Ω2∣∣Ω3∣

3 = ∣Ω1∣∣Ω3∣
2
√

3
= ∣Ω2∣∣Ω4∣

2
√

3
= Ω2, Ω1 = ∣Ω1∣e−iφ, and Ωj=2,3,4 =

∣Ωj∣ and obtain the transition amplitudes V23 ≃ Ω2

δ , V24 =
√

2 Ω2

δ , V13 =
√

2 Ω2

δ e−iφ,
and V14 = 2 Ω2

δ e−iφ. Note that an additional factor
√

2 is used to mimic bosonic
enhancement. We denote as cj the bosonic operator corresponding to the Fock-
state manifold {∣0⟩, ∣1⟩ ≡ ∣A⟩, ∣2⟩ ≡ ∣AB⟩}. Assuming k1,2 = key, and k3,4 = kex, and
kd = π, then

H = −t∑
j
(−1)j [c†

j eiφnj cj+1 +H.c.] + U
2
∑

j
nj(nj − 1) (8.17)

with nj = c†
j cj, and t = (Ω2/δ

2∆ ) J.

Note that the factor (−1)j, which results from the x projection of δk, may be
easily eliminated by redefining the bosonic operators in the form: b4l = c4l , b4l+1 =
c4l+1, b4l+2 = −c4l+2, b4l+3 = −c4l+3, with l an integer. In this way we obtain the 1D
model:

H = −t∑
j
[b†

j eiφnj bj+1 +H.c.] + U
2
∑

j
nj(nj − 1) (8.18)

After identification of αj = eiφ∑1≤l≤j−1 nl bj this model may be mapped to the form
of

Ĥ = −t∑
j
(α†

j αj+1 +H.c.) + U
2
∑

j
nj(nj − 1) (8.19)

αj and α†
j satisfy anyonic commutation relations αjα

†
k − e−iφ sgn(j−k)α†

kαj = δjk and

αjαk − e−iφ sgn(j−k)αkαj = 0. It must be stressed that with this definition on-site the
particles behave as bosons as sgn(0) = 0.

Due to the effective implementation of the AHM in a cold atom scenario, the
bosonic particles satisfy an additional three body hardcore constraint b†

i b†
i b†

i = 0. In
the effective model the two-body interaction U may thus also be negative. Note



152 8.2. The 1D anyon Hubbard model

that important features of the ground-state physics presented here, the D and PP
phases (although the latter also realized for repulsive interactions), are properties of
the combination of the AHM and the three body hard-core constraint. That is why
they were not observed in earlier studies of the AHM [338] of similar models [47].

8.2.3 Two body physics and weak coupling

As already discussed for the AB-model in section 8.1 the AHM behaves as a repul-
sively interacting system even in the limit of U → 0 as can again be seen from the
two-particle scattering length is given by

a = t(1+ cos φ)
−2(2t +U) + 4t cos φ

. (8.20)

The scattering length diverges for Φ → 0, 2π but remains finite and negative for any
other phase Φ. The Luttinger liquid parameter K in the weak coupling limit (see
Eq.(8.11)) which for this case is given by

K2 = π2

φ2 + U
2ρt

. (8.21)

K decreases with increasing φ which qualitatively has the same effect as U creating
an effective on-site repulsion. In Figure 8.9 (a) we show the phase diagram of the
AHM in the dilute limit which exhibits an atomic SF phase and a PSF phase of
bound particle pairs. Consistent with the idea of an effective repulsion the SF-
phase expands in the negative U region as φ > 0.

8.2.4 Intermediate incommensurate fillings

In Fig. 8.9 (b) a representative phase diagram is shown for an incommensurate in-
termediate filling. The case of φ → 0 of a BH-model with a three-body hardcore con-
straint has been mentioned already in chapter 5. The system exhibits a superfluid
(SF) to Mott-insulator (MI) transition and unit filling and sufficiently strong inter-
actions U. For negative U a transition to a pair-superfluid phase (PSF) is realized.
At incommensurate fillings this transition may become first order. As discussed
in Ref. [342] for spin-1 models with negative single-ion anisotropies the transition
between so called XY and XY2 phases (i.e. SF and PSF phase in boson language)
is first-order, passing a region of macroscopic jumps in magnetization as function
of magnetic field (i.e. in the density as function of chemical potential) for small
magnetizations (i.e. close to unit filling). For other fillings the phase transition may
become second order. This forbidden region (FR) is depicted as shaded area in
phase diagram 8.9 (b). At fixed ρ the ground state is characterized by the formation
of a macroscopically bound state with a phase separation of doublons and holes.
The FR shrinks, however, fast with increasing φ.

Around 0.6 ≳ φ/π another gapless region, which we will call partially paired
(PP), may be observed between PSF and SF phases. The transition is indicated by a
sharp kink in the µ− ρ curve (see Fig. 8.10 (a)) signaling a C-IC transition between a
two- and a one-component phase as discussed in chapters 5 and 10. As depicted in
Fig. 8.10 (a) the PP-phase exhibits an complex sequence of steps of 2 and 1 particles
as a function of µ. Contrary to that, the SF and PSF-phases are characterized by a
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Fig. 8.10: Phase transitions of the AHM at incommensurate fillings for φ = π.
(Right) Equation of state, density n as function of chemical potential (L = 48). The
inset shows a detailed view on the PP-region for L = 240 sites. (Middle) Estimation
of the central charge (L = 48 and periodic boundary conditions). The inset shows
fit to the block-entanglement-entropy SvN for (from bottom to top) U = 2,−2,−1.0.
(Right) Sum of local single- Na and two-particle-correlations Nd (L = 60) as defined
in the main text.
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Fig. 8.11: Quasi-momentum distribution n(k) for ρ = 1/2 as function of U/t for (a)
φ = 0.9π and (b) φ = π. The dashed lines denote the phase transitions between PSF,
PP and SF phases.

pure sequence of steps of 1 and 2 in the µ− ρ curve respectively. The best character-
istic of a two component PP phase and corresponding phase transition is the direct
measurement of central charge, which is clearly c = 2 as shown in Fig. 8.10 (b).

Fig. 8.11 illustrates the momentum distribution for a cut through the phase di-
agram of Fig. 8.9. In the PP phase, interestingly, the peak in the momentum distri-
bution splits to a complicated multi-peak structure. The SF and PSF phases only
exhibit a single (in the PSF blurred) maximum.

8.2.5 The nature of the PP phase

The nature of the PP phase may be understood by the following simplified pic-
ture. While for larger statistical angles φ → π the two particle physics is domi-
nated by an effective strong repulsion as discussed above, for higher densities it
may be energetically favorable to form doublons or more precisely dimers ∣d⟩x =
α ∣11⟩x,x+1 + β ∣20⟩x,x+1 as may be understood from recasting the hopping term of the
Hamiltonian in the following form

b†
j eiφnj bj+1 = J1b†

j bj+1 + J2b†
j njbj+1 (8.22)
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with J1 = 1 and J2 = −1+ eiφ. For φ ≈ π the second correlated hopping term becomes
dominant, J2 = −2J1, and ∣d⟩x will gain a large binding energy −

√
2J2. However, the

hopping of the dimers is reduced compared to single particles. In first order degen-
erate perturbation theory in the manifold of bound dimers it is given by J1/

√
2. For

a certain range of small on-site interactions and fillings it will be energetically fa-
vorable to occupy the ground state with both strongly bound doublon dimers ∣d⟩x
and remaining atomic dimers ∣a⟩x = α ∣01⟩x,x+1 + β ∣10⟩x,x+1. Neglecting interactions
between these two quasi-particles, which may be reasonable for small doublon and
atom densities ρa and ρd with ρa + ρd ≪ 1, and also neglecting decay of the doublon
dimers, which is suppressed by the effective hardcore constraint, one arrives at the
following model describing two independent hardcore bosons species with differ-
ent hopping rates (for U = 0)

Ĥa,d = J1∑
x

a†
xax+1 +H.c.− J1/

√
2earg J2∑

x
d†

xdx+1 +H.c.− J1∑
x

a†
xax −

√
2J2∑

x
d†

xdx

(8.23)

where ax (a†
x) and dx (d†

x) are annihilation (creation) operators of hardcore atom and
doublon dimers on sites x, x + 1. The Hamiltonian has to be minimized under the
constraint ρa + 2ρd = ρ. Although being certainly a very crude oversimplification,
model (8.23) captures the main physical aspects of the PP phase. For U ≈ 0 at low
densities the ground state only contains species a; for higher fillings (ρ ≳ 0.3 for
U = 0) both species are present. Here the µ − n curve shows an irregular pattern of
steps of two or one particles. This mixed phase extends for values around U = 0,
for U ≫ J1 only species a is present, for U ≪ −J1 one arrives at a pure d-phase.
The a and d hopping terms contain a different phase-factor such that measuring an
a + d-momentum distribution function one will observe several peaks.

We may test the assumptions made for the justification of model (8.23) by cal-
culating the atom and doublon-dimerizations,

Na = ∑
i
⟨b†

i bi+1⟩ , Nd = ∑
i
⟨(b†

i )2(bi+1)2⟩ , (8.24)

shown in Fig. 8.10 (c), which approximately measure the densities ρa and ρd. While
the SF and PSF phase are LL-phases of almost hardcore single particles or pairs
(for φ = π) in the PP phase both “species” are present. Although doublon dimer
density is not a conserved quantity here the system exhibits many jumps to states
with approximately finite doublon density.

We may compare the PP-phase with the Kohn-metal discussed in section 7.1.4.
It is, however, important to note that as shown in Fig. 8.9 (d) the PP phase has a
finite extent in both φ and µ-space (here shown for vanishing on-site interactions
U = 0).

8.2.6 Unit filling

As studied in Refs. [47, 338], at commensurate filling, tuning of the statistical an-
gle φ may induce phase transitions between SF and MI phases. This property may
be understood on the basis of a weak coupling analysis, as presented above. In-
creasing φ induces an effective on-site repulsion that drives the system into the
MI-phase, even for vanishingly small or negative residual interactions U as can be
seen in Fig. 8.9 (c) and 8.9 (d). At fixed fillings this transition is of BKT-type and



Chapter 8. Density Dependent Artificial Magnetic Fields 155

-6 -5 -4 -3 -2

U

1

2

K

-3 -2 -1 0

U

0

0.002

χ
F

S
 /

 L
2

-3 -2 -1 0

U

0

1

O
P

2
-3 -2 -1 0

U

0

0.15

O
D

2

L = 24
L = 48

L = 96

L = 144
L = ∞

(a) (b) (c) (d)
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Fig. 8.13: Expansion dynamics of the density of the AHM with (a) φ = 0, (b) φ/π =
0.6 and (c) φ = π in a harmonic trap (V = 0.02, U = 0, L = 40 sites) initially prepared
as fully localized state (2 particles) in the center of the trap.

may be numerically resolved by extracting Luttinger-liquid parameter K = 2, as
shown in Fig. 8.12 (d), which is consistent with the opening of the energy gap.

For negative U < 0 one observes an Ising-type transition to the PSF as described
above or, for φ ≈ π, a dimerized phase D. The Ising transition line is characterized
by a crossing of single and two particle excitations and a sharp peak in the fidelity
susceptibility diverging with L2 (cf. Fig. 8.12 (c)). The D phase exhibits finite dimer-
order parameter OD = ⟨TL/2 − TL/2+1⟩ with Ti = b†

i bi+1 +H.c. as shown in Fig. 8.12 (a).
A finite size scaling of the dimer order parameter results in the correct scaling re-
lations and a collapse of data points (not shown). In all D, PSF and MI phases
the parity order O2

P (2.19) remains finite and vanishes only at the Ising-critical line
separating D and MI phase, as illustrated in Fig. 8.12 (b).

8.2.7 Dynamically probing the AHM

Quantum dynamics and quantum walks provide a possible scenario for studying
properties of the anyonic statistics of the AHM in experiment. On a two body
level this has been discussed extensively in Refs. [343–345]. In Fig. 8.13 we show
the expansion dynamics of the real space density distribution of a cloud of two
particles initially prepared on subsequent sited in the center of an harmonic trap.
While the usual BH model shows a symmetric expansion Fig. 8.13 (a), for φ ≠ 0, π
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one observes a strong asymmetry in the expansion dynamics due to the trapping
potential and the fractional statistics. For φ = π the two anyons form a bound dimer
state ∣d⟩x that decays slowly and hence the expansion is strongly inhibited.

8.3 DDSM in ladders and 2D systems

After having studied purely one dimensional realizations of density dependent
gauge fields in the previous sections we will now explore the effect of density-
dependent synthetic magnetism (DDSM) in two dimensions. In particular, we are
interested in a system described by the following Hamiltonian

H = −∑
r
[txb†

r+ex eiφrnr br + tyb†
r+ey br +H.c.]

+U
2
∑

r
nr(nr − 1) − µ∑

r
nr, (8.25)

The first term of (8.25) accounts for the hopping of bosons along the two directions
of the lattice, defined by lattice vectors ex = (1, 0) and ey = (0, 1) (see Fig. 8.14 (a)
and (b)). The density dependent Peierls phase of the hopping amplitude (eiφrnr) can
be chosen in such a way that an effective net-magnetic flux per unit-cell is created.

Model (8.25) may be engineered by inducing both the tunneling in x as well
as in y direction by Raman-lasers. We will hence consider a tilting of the optical
lattice in both directions with ∆x ≠ ∆y. Then using 6 Raman-lasers one may extend
the scheme of section 8.3 to two dimensions [49]. Interestingly, already 4 lasers are
sufficient to induce a rectified effective flux in the system, the resulting effective
Hamiltonian will, however, generally exhibit a density dependent hopping ampli-
tude [49]. For the sake of simplicity we will restrict our analysis to model (8.25).

Furthermore, we will concentrate on the case where the phases depend only on
the position in the y-direction, i.e. φr = φj. Due to the operator nature of this phase,
quantum fluctuations of the density will crucially affect the effective magnetic flux.
We demonstrate that DDSM has important consequences for bosons in two-leg lad-
ders and 2D square lattices, leading to a non-trivial interplay between chirality and
density modulations.

The following section is based on the publication [49] which was developed
in collaboration with D. Huerga, G. Sun, D. Poletti and L. Santos. The cluster-
meanfield results are contributed by D. Huerga. Main part of the time dependent
calculations have been performed by G. Sun.

(a) (b)

Fig. 8.14: Sketch of the density-dependent Peierls phases of the model (8.25) (a) on
a ladder (see also Eq. (8.26)) and (b) of the 2D-square lattice.
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Fig. 8.15: (a) and (b) Phase diagram for a ladder with ty = tx, φ1 = 0.8π, and φ2 = 0
as function of tx/U and chemical potential µ computed with the density matrix
renormalization group (DMRG). The color code indicates (a) the particle density
imbalance between the legs ∆n and (b) the chiral current jc (obtained from simula-
tions with L = 24 rungs). Solid lines mark the MI with ρ = 1, and (very narrow) with
ρ = 1/2 and 3/2 (extrapolated to the thermodynamic limit from systems with up to
L = 96 rungs). The dashed line denotes the MSF-VSF transition. (c) ∆n (dashed)
and jc (solid) for the same parameters as in (a) and (b) but U = 0 and L = 48. (d1-5)
Typical particle density and current configurations for U = 0 and (d1) ρ = 0.1, (d2)
ρ = 0.63, (d3) ρ = 1.25, (d4) ρ = 1.46, (d5) ρ = 1.77. The size of the circles is pro-
portional to the onsite-density, he arrows encode the strength of the local currents.

8.3.1 Density-dependent magnetism in ladders

Again the ladder geometry (cf. chapter 10) amenable to exact DMRG treatment
constitutes a good starting point for a detailed analysis of 2D effects. In this situa-
tion the Hamiltonian is given by (see Fig. 8.14 (a))

Ĥladder = −tx∑
i
[b†

i+1,1eiφ1ni,1 bi,1 +H.c.]

− tx∑
j
[b†

i+1,2eiφ2ni,2 bi,2 +H.c.]

− ty∑
i
[b†

i,2bi,1 +H.c.]

+ U
2
∑
i,j

ni,j(ni,j − 1), (8.26)

MSF and VSF phases with imbalanced density

In the limit of strong on site repulsion U ≫ J model (8.26) with density dependent
phases may readily be mapped onto a system of hardcore bosons without a flux
for fillings 0 < ρ < 1. For 1 < ρ < 2 we may consider doublons ∣2⟩i,j on top of a
uniform MI-background∏i,j ∣1⟩i,j as hardcore particles, which, however, now expe-
rience a finite flux φ = φ1 − φ2, such that the effective Hamiltonian in this limit may
be written as

Ĥρ>1
hardcore = −2tx∑

i,j
[c†

i+1,je
iφjci,j +H.c.] − 2ty∑

i
[c†

i,2ci,1 +H.c.] , (8.27)

with ci,j ( c†
i,j) being the creation (annihilation) operator of a doublon on site (i, j).

Thus in the strongly interacting regime U ≫ J, model (8.26) is expected to repro-
duce the physics of hardcore bosons in a magnetic static field exhibiting MSF and
VSF phases as discussed in detail in section 6.5.2.
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We may obtain a qualitative insight in the physics beyond this hardcore-limit
by a simple mean-field decoupling. Due to the effective three-body hardcore con-
straint (b†

r)3 = 0 we may write the hopping term as b†
r′e

iφnr br = b†
r′(1+ (eiφ − 1)nr)br.

Using the decoupling b†
r′nrbr ≃ 2κ(r′, r)(nr − n̄r) + 2n̄rb†

r′br we obtain the following
expression

b†
r′e

iφnr br +H.c. ≃ [(1+ 2n̄r(eiφ − 1)b†
r′br +H.c.] (8.28)

+ [2κ(r′, r)(eiφ − 1) + c.c.](nr − n̄r),

with the mean fields n̄r ≡ ⟨nr⟩, and κ(r′, r) ≡ ⟨b†
r′br⟩. The first term of Eq. (8.28) gives

rise to an effective Peierls phase coupled to the average density. Hence, particles
encircling a plaquette of model Eq.(8.26) in the presence of a homogeneous average
density will pick up an effective flux. Interestingly, the second term of Eq. (8.28)
induces a local chemical potential which in a ladder (8.26) would result in a poten-
tial gradient between the two legs for φ1 ≠ φ2. In the following we will test these
findings by means of exact numerical DMRG calculations.

As for the case of a static flux the chiral current constitutes a useful observable,
jc = j1− j2, where the leg currents are now defined by Eq. (6.15) including the density
dependent Peierls phases as

ji =
i
L
∑

j
⟨b†

i,je
−iφini,j bi+1,j −H.c.⟩ (8.29)

in units of tx/h̵. The dependence of jc on the effective flux induced by the chemical
potential µ or density ρ is illustrated in Fig. 8.15 (b) and (c) for the case for φ1 = 0.8π,
and φ2 = 0. The superfluid regime splits into a MSF and a VSF phase as studied for
the case of a static homogeneous flux in chapter 10. At the critical filling ρc the chiral
current jc presents a cusp, characteristic for the MSF-VSF transition. This transition
is as well characterized by a kink in the equation of state ρ(µ). We also verify that
the MSF and VSF phases exhibit central charge c = 1 and c = 2, respectively.

Fig. 8.15(a) and (c) presents evidence that the occupation-dependent Peierls
phase leads to density imbalance between the legs,

∆n = 2(n̄2 − n̄1)/(n̄2 + n̄1) . (8.30)

In general ∆n ≠ 0 for both MSF as well as VSF phases. However, as can be seen in
Fig. 8.15 (c) the MSF-VSF transition is characterized by a kink and a sharp drop of
the imbalance ∆n. Although, compared to the case of the BLP phase discussed in
chapter 10 this imbalance corresponds to an explicitly broken symmetry between
the legs, ∆n depends non-trivially on µ or ρ. It may even change it sign going
through a balanced point, ∆n = 0.

Strong rung-coupling limit.

As for the case of static magnetic fields where the MSF-VSF transition has been
explored for a fixed flux in Ref. [2] as function of ty/tx, also for the DDSM the
rung hopping strength constitutes an important degree of freedom. In Fig. 8.16 (a)
we study the phase diagram, in particular the commensurate-to-incommensurate
MSF-VSF transition, on ty for U = 0, φ1 = π, and φ2 = 0. Interestingly we basically
observe two different regimes: for small interchain couplings ty/tx ≲ 1 the MSF-VSF
boundary (dashed line) is located close to unit filling, however, as ty/tx ≳ 1 it shifts
quickly to larger densities ρ ∼ 3/2.
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Fig. 8.16: (a) Phase diagram for a ladder with U = 0, φ1 = π, and φ2 = 0 as function
of ty and µ (in units of tx = 1). As discussed in the main text for large densities a
VSF is realized, while for low densities the system is in a MSF phase, separated by
a commensurate-to-incommensurate (with respect to the vortex density ρV) phase
transition (dashed line). Dotted lines denote lines of constant particle density ρ =
1/2, 1, 3/2 and 7/4, while solid lines indicate the gapped phases. (b) Phase diagram
as function of µ/U and φ1 = −φ2 = φ for U = tx and ty = 10tx computed with
DMRG. The shaded areas denote gapped phases of ρ = 1/2, 1, 3/2 and 2 filling - the
white area correspond to MSF phases. As a characteristic feature of the density-
dependent fields one observes a sequence of direct transitions between the gapped
phases resulting in a macroscopic jump of density around φ = π, 2π/3 and π/2. All
gapped phases exhibit finite rung-string order ORSO and rung-parity order ORPO as
defined in the main text. The inset shows ORPO (solid line) and ORSO (dashed line)
for ρ = 1/2.

For φ1 − φ2 ≠ π above a critical value of ty/tx the VSF phase may vanish. In
the strong rung-coupling limit ty/tx ≫ 1 several gapped band insulating phases
at commensurate fillings ρ = 1 and 3/2 are stabilized. The extent of the MI-phases
strongly increases with ty/tx as discussed below. For the parameters of Fig. 8.16 (a) a
MI-phase at ρ = 1/2 is suppressed. Additionally one may observe a gapped charge
density wave phase at filling ρ = 7/4 (see chapter 10 for a detailed discussion of
similar phases at 1/4 filling for density-independent synthetic magnetism). Apart
from the SF-phases also the MI-phases may be of Meissner-MI (in Fig. 8.15(a) for
ρ = 1/2 and ρ = 1) and of vortex-MI (for ρ = 3/2) types.

Again, the strong rung-coupling limit of tx, U ≪ ty is an interesting limit amenable
to analytical treatment. Here we may project (8.26) to the basis of rung-singlet-
states containing Nj = 0, 1, 2, 3 and 4 particles per rung j:

∣0̃⟩ = ∣0, 0⟩
∣1̃⟩ = (∣0, 1⟩ + ∣0, 1⟩)

√
2

∣2̃⟩ = (ei φ1+φ2
2 ∣2, 0⟩ +

√
2 ∣1, 1⟩ + ∣0, 2⟩)/2

∣3̃⟩ = (ei φ1+φ2
2 ∣2, 1⟩ + ∣1, 2⟩)/

√
2

∣4̃⟩ = ∣2, 2⟩ (8.31)

with energies ε0 = 0, ε1 = −ty, ε2 = −2ty +U/2, ε3 = −2ty +U and ε4 = 2U.
At filling factors ρ = 1 and ρ = 3/2 one observes Mott-insulating phases with a

gap of the order ty and 2Jy resp. (see Fig. 8.16 (b)). The emergence of a Mott phase
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at ρ = 1/2 is determined by the interplay of ty and U: At fillings ρ < 1 the system is
well described by a correlated hopping Bose-Hubbard model retaining ∣0̃⟩,∣1̃⟩ and
∣2̃⟩ states as, we will show in the following. For higher fillings it is sufficient to
restrict the description to the manifold of {∣2̃⟩ , ∣3̃⟩} or {∣3̃⟩ , ∣4̃⟩} states recovering an
effective hardcore boson model.

The effective hopping between rung singlets depends on the particular choice
of φ1 and φ2 employed. For the symmetric configuration φ1 = −φ2 = φ the first order
hopping matrix elements are given by

⟨0̃1̃∣ Ĥx ∣1̃0̃⟩ = −tx ,

⟨2̃1̃∣ Ĥx ∣1̃2̃⟩ = −tx (1+ cos(φ)) ,

⟨3̃2̃∣ Ĥx ∣2̃3̃⟩ = −tx (1+ 2 cos(φ)) ,

⟨3̃4̃∣ Ĥx ∣4̃3̃⟩ = −2tx cos(φ) . (8.32)

Due to the broken space-inversion symmetry the doublon formation is direction
dependent, ⟨0̃2̃∣ Ĥx ∣1̃1̃⟩ = −

√
2tx and ⟨2̃0̃∣ Ĥx ∣1̃1̃⟩ − tx (1+ cos φ) /

√
2. For the sym-

metric configuration we may write the 0,1,2-particle Bose-Hubbard model in the
following simplified form

Ĥ = −tx∑
j
[B†

j (1− sin2(φ/2)Nj)Bj+1 +H.c.]

+ U
4
∑

j
Nj(Nj − 1) − (µ + ty)∑

j
Nj, (8.33)

with F[Nj] = (1 − Nj) + Nj(1 + cos φ) where Bj are bosonic operators in the space
{∣0̃⟩, ∣1̃⟩, ∣2̃⟩}, and Nj = B†

j Bj.
The hopping terms vanish for φ = π, 2π/3 and π/2. Remarkably also second

order corrections (including higher excitations, not shown) vanish (just the con-
trary than for a simple non density-dependent flux, see chapter 10) and thus one
observes a series of direct transitions between gapped phases 1/2, 1, 3/2 and 2 with
and infinite compressibility and a macroscopic jump of density (see Fig. 8.16 (b)).

For a general configuration of the phases we arrive at complex hopping terms
and, hence, departing from the symmetric phase configuration Φ1 = −Φ2 the first
order transitions (except for the one from n = 3/2 to n = 2) smoothen.

Due to the broken space-inversion symmetry all Mott insulating phases exhibit
both a finite rung-string-order ORSO = (⟨N⟩−Nj)(−)∑j<k<l⟨N⟩−Nl(⟨N⟩−Nk) as well as
rung-parity-order ORPO = (−)∑j<k<l(⟨N⟩−Nk), as may be seen in the inset of Fig. 8.16 (b)
(compare chapter 7).

Symmetries and vortex-lattice phases

Density-independent static magnetic fields are up to a gauge transformation com-
pletely defined by the net flux per unit-cell of the lattice. Due to its operator-nature
this is not true for the case of density-dependent Peierls phases. Indeed, as may be
seen in Fig. 8.17, the phase diagram may significantly depend on the values of both
phases φ1 and φ2 of model (8.26). While the MSF-VSF phase boundary mainly just
depends on the total effective flux φ1 − φ2, only in the vicinity of φ1 ≃ −φ2 ≃ π/2,
where also density imbalance ∆n vanishes, we observe a vortex-lattice phase at
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Fig. 8.17: (a) Density imbalance ∆n and (b) chiral current jc function of φ1 and φ2
for tx = ty, U = tx and ρ = 1.25 as obtained by DMRG calculations. In addition to
the MSF and VSF phases a small vortex lattice phase at vortex-density ρV = 1/2,
VL1/2-SF may be observed. Dashed lines indicate the phase boundaries from the
VSF to the MSF and VL1/2-SF phases.

vortex-density ρV = 1/2 (VL1/2 phase). Apart from the characteristic staggered pat-
tern of the currents as shown for the case of static magnetic fields e.g. in Ref. [43],
the VL1/2 phase may be discriminated from the VSF phases by the calculation of the
central-charge, which is c = 1 in vortex-lattice phases. For strong phase-imbalances
φ1 = 0, φ2 = φ as in Fig. 8.15 no vortex-lattice phases are observed.

Note that the phase diagram is symmetric with respect to inversion of the phases
I1 ∶ (φ1, φ2) → (−φ1,−φ2) and exchange of the two legs of the ladder I2 ∶ (φ1, φ2) →
(φ2, φ1) for φ1, φ2 ∈ [0, 2π). The density imbalance ∆n (Fig. 8.17 (a)) is (anti)symmetric
with respect to I1(I2). The chiral current(Fig. 8.17 (b)) is an antisymmetric quantity
under both I1 and I2.

8.3.2 Two-dimensional lattices.

We now extend the discussion of DDSM to two dimensional square lattices. Again,
we should expect a non trivial interplay between the density-dependent phases
and density modulations and the creation of an effective flux per plaquette. For
simplicity we consider the limiting case of π-phases, i.e. φr = jπ, for which the
Peierls phase in Hamiltonian (8.25) takes the simpler form,

eiφrnr = (−1)jnr . (8.34)

We numerically treat this problem by means of cluster mean-field theory as
introduced in chapter 3. Here we use clusters of size Lx × Ly = 2 × 2 and 4 × 2 as
well as 2 × 4. The results shown Fig. 8.18 remain basically stable under increasing
of the cluster size. We define different order parameters for the characterization
of different quantum phases, such as a (0, π) charge density wave (CDW) order
parameter

ρCDW = ∑
r

e−iπ j⟨nr⟩/N (8.35)

and the bond-chiral order parameter,

η = 1
Nb
∑
⟨r,r′⟩

∣⟨j(r → r′)⟩∣ . (8.36)



162 8.3. DDSM in ladders and 2D systems

Fig. 8.18: (a) and (b): Ground state phase diagram of model (8.25) in 2D with π-
phases φr = jπ and tx = 2ty computed with CBMFT with clusters of size Lx × Ly =
2 × 2 (black lines) and 4 × 2 (dotted grey lines). Solid lines mark the boundaries of
the MI, while the the onset of a finite chiral bond order parameter, η, signaling the
CSF-SF transition, is marked with dashed lines and the dashed curve marks. The
color code indicates (a) the charge density wave order parameter ρCDW and (b) the
chiral bond order parameter η.(c) Chiral bond order parameter η (solid line) and
charge density wave order parameter ρCDW (dashed line) for a cut in the phase
diagram along tx/U = 0.1. (d) Typical current and density configuration of the CSF
phase. The size of the circles is proportional to the onsite-density, the lengths and
widths of the arrows encode the strength of the local currents. Simulations have
been performed by D. Huerga.

Note, that since calculations are performed in the thermodynamic limit the local
current may be non zero for Peierls phases of (8.34). MI lobes and superfluid order
are discriminated by the (non vanishing) condensate density,

ρ0 = ⟨b†
k=0bk=0⟩/N (8.37)

Fig. 8.18 (a) and (b) illustrate the phase diagram for the case tx = 2ty. Besides the
MI phase at unit filling two different SF phases may be found. Both of them exhibit
a modulated density as shown in Fig. 8.18 (c). For a critical µ > µc a chiral SF phase
with a modulated density and vanishing bond-chiral order emerges. The typical
configuration of local densities and currents, which forms a fully stacked checker-
board pattern of vortices and anti-vortices, can be seen in Fig. 8.18 (d). The phase
transitions are in all cases found to be of second order, signaled by discontinuities
in the second order derivative of the energy with respect to the chemical potential.

8.3.3 Dynamically probing the density-dependent field.

Experimentally DDSM may be probed in particular by its intriguing dynamics. As
an exemplification we study the dynamics of a defect on top of a MI with ρ = 1 in
a two-leg ladder configuration, such as model (8.26) with φ1 = −φ2 = φ and tx = ty.
The defect, a hole or a doublon, is initially prepared in the center of the ladder at site
(1, j = 0) and we monitor the light-cone like expansion of the density-perturbation.
Similar dynamics has been studied recently in the context of Bose Hubbard models
without gauge fields [346] and may be observed in experiments with single site
resolution [82].

For the limit U ≫ tx the defect expansion corresponds to a single particle with
a hopping tx for a holon on top of the MI background or 2txe±iφ for a doublon. In
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Fig. 8.19: Expansion coefficient γ of a defect along the ladder as a function of the
effective flux φ for tx = ty, and U/tx = 50 (circles) and U/tx = 10 (diamonds). Hol-
low (filled) symbols denote the t-DMRG results for the holon (doublon) expan-
sion. Dashed (solid) curves denote single-particle (exact diagonalization) results
for holons (doublons), which match well with the t-DMRG results for large U/tx.
The inset depicts typical linear expansions of ∆j(τ) for a doublon at U → ∞ and
φ/π = 0 (solid line), 0.5 (dashed line) and 1 (dotted line). The TEBD-simulations
have been performed by G. Sun.

both cases the excitation expands ballistically along the ladder, i.e.

∆j(τ) =
√

⟨j2⟩(τ) ∼ γτ (8.38)

In the following we considering the time τ in units of h̵/tx for holons and h̵/2tx for
doublons. From the opening angle of the light cone we may define the expansion
coefficient γ. The inset of Fig. 8.19 depicts examples of ∆j(τ) for different φ for
the hardcore limit. The black lines in Fig. 8.19 present the corresponding values
of γ. In the hardcore limit holons do not experience any flux and hence the the
expansion is φ-independent γ =

√
2. Doublons, however, are subject to an effective

flux 2φ and their trajectories are diverted by cyclotron motion. Hence, their expan-
sion is slowed down significantly and γ decreases with φ. This situation has to be
contrasted with the case of density-independent magnetic fields. Here holons and
doublons will both experience the same magnetic flux 2φ and propagate - up to a
factor 2 due to bosonic enhancement - in the same way.

For lower U/tx quantum fluctuations become relevant altering the defect ex-
pansion in an intriguing way. A perturbative treatment of the role of particle-hole
fluctuations offers an instructive starting point of the study. Up to second-order
one virtual doublon-holon pair may be created and annihilated which mediate new
hoppings of the initial holon (doublon) of the form:

Ĥ(2) = −2t2
x

U
∑
i,j

[αi∣j + 2, i⟩⟨j, i∣ +H.c.]

−
2txty

U
∑
i,j

[βi∣j + 1, k ≠ i⟩⟨j, i∣ +H.c.] , (8.39)

where ∣i, j⟩ denotes a defect at site (i, j), αi ≡ eiφi (e−iφi ), βi = 1 + eiφi (1 + e−iφk≠i ) for
doublons (holons). In Fig. 8.20 we illustrate the validity of this simple perturbative
approach, which is, however, limited to small time-scales. In order to study the
influence of quantum fluctuations beyond perturbation theory we perform TEBD
calculations, with system sizes up to 100 rungs keeping up to 1000 matrix states.
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Fig. 8.20: Test of the perturbation theory for the dynamics of the particle density
at site (1, 4) of a ladder of L = 40 rungs with an initially prepared doublon. Sym-
bols correspond to TEBD data points, the continuous lines depict the results of the
second order perturbation theory (8.39).

The symbols of Fig. 8.19 depict the expansion coefficients γ as obtained from
TEBD calculations. For sufficiently large U ≫ tx, ty the results basically overlap
with the hardcore limit calculations. Lowering the interactions (but staying clearly
in the initial MI regime) we observe that for φ ≈ 0 fluctuations speed up the defect
expansion both for holons and doublons in the same way. This becomes intuitively
clear on the basis of Eq.(8.39) since due to the quantum fluctuations more expansion
processes have to be considered. The interplay between quantum fluctuations and
DDSM significantly affects this dynamics. As can be seen in Fig. 8.19 for large φ,
surprisingly, fluctuations may even slow down the doublon expansion. Eq.(8.39)
suggests that the effective magnetic flux seen by the doublons is modified and,
hence, the cyclotron motion is strengthened. For smaller U/tx also holons expe-
rience an effective flux induced by the virtual doublons created in top of the MI
substrate. Thus also their expansion is slowed down as shown in Fig. 8.19.

8.4 Conclusions

In this chapter we have analyzed several experimentally feasible scenarios for the
engineering of a certain kind of dynamical gauge fields which experience a di-
rect feedback from the particle density. This density dependent synthetic mag-
netic fields may be created by fast modulated interactions or Raman-laser assisted
hoppings in a two component atomic gas. The latter idea significantly extends
the proposal of Ref.[338] which turns out to suffer from serious experimental is-
sues. Different possibilities for the creation of DDSM have been studied recently in
Ref.[347].

In one dimensional systems DDSM results in the interesting possibility of study-
ing the anyon Hubbard model, which exhibits a density-dependent drift of the mo-
mentum distribution, statistically induced MI phases, as well as dimer and exotic
two-component phases due to the interplay with an effective 3-body hard core con-
straint. For ladders and 2D square lattices we have shown that these fields lead
to a rich ground-state physics characterized by the non-trivial interplay between
density modulations and chirality. In two-leg ladders we observe a density-driven
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Meissner- to vortex-superfluid transition. Moreover, DDSM significantly affects the
dynamics of particles in the lattice. It leads in particular to an intriguing expansion
dynamics for doublons and holons in a MI, which presents a remarkable depen-
dence on quantum fluctuations and may be employed as an experimental probe of
DDSM.

In the previous section we have investigated the properties of bosonic particles
in the presence of DDSM. From the discussion in section 8.2 is is clear that in par-
ticular fermionic species may be a useful candidate for the realization of DDSM in
cold atom experiments, since here a part of possible spurious processes mentioned
in section 8.2 identically vanishes. While in one dimensional systems this could
be exploited to study the anyon Hubbard model, in two and higher dimension a
significantly different model would be realized.





Chapter 9

Alkali-Metal Spinor Systems

Ultracold spinor gases in optical lattices provide a very versatile element of the
cold atom toolbox [30] for the study of quantum magnetism [348]. Due to the
their spin dependent interactions and spin changing collisions (see section 2.3.1)
multi-component fermionic or bosonic quantum lattice gases are expected to show
interesting ground-state properties, ranging from magnetic Néel ordering in 2-
component Mott insulators [10, 11] to spin liquids [349] or topological states in
1D [350, 351]. But also time dependent properties have attracted a lot of interest [25,
352]. In this chapter, inspired by recent experimental advance in the study of spin
mixing dynamics [25] in ultracold fermionic 40K-gases in optical lattices, we will
study ground state and dynamical properties of 1D four-component alkali-metal
fermions at half-filling in strong magnetic fields.

The ground-state properties of low dimensional properties of fermionic spinor
gases have been studied extensively. For spin 3/2 fermions by means of bosoniza-
tion techniques and large scale numerical DMRG calculations detailed phase di-
agrams have been derived for different fillings and different regimes of interac-
tions [350, 351, 353–355].

Recently, the influence of magnetic fields and in particular the effect of the
quadratic Zeeman splitting has been discussed [356] as an additional externally
tunable degree of freedom of the manipulation of many-body dynamics. Due
to their unpaired electron in the outer s-shell alkali atoms possess a hyperfine-
structure composed of two manifolds of states with total spin I ±1/2. The hyperfine
splitting may be controlled experimentally by external magnetic fields. In strong
magnetic fields as described by the Paschen-Back effect[357] the electronic spin de-
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Fig. 9.1: Zeeman-splitting of hyperfine energy levels E/∆EHFS in the in magnetic
field for 40K. The magnetic field x is given in units of x/B = (gJ − gI)µB/∆EHFS,
where gJ and gI denote the orbital and nuclear Landeé factors and µB is the Bohr-
magneton.
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couples from the nuclear spin leading to a twofold splitting of states as ∼ Bgsms.
Thus energy levels have to bend down giving an intuitive picture for the nonlinear
contributions to the energy level splitting, described as quadratic Zeeman-effect
(QZE). The full dependence of the magnetic field is described by the Breit-Rabi for-
mula [358] as shown in Fig. 9.1 for the case of fermionic Potassium 40K. In Ref.[356]
the quadratic Zeeman-effect was investigated for spin 3/2 fermions at quarter fill-
ing, where dimerized and Néel-ordered as well as gapless spin liquid phases have
been observed.

9.1 Melting of the band-insulator

We will start with a brief review of the findings of Ref. [25]. Here, Krauser et al.
show the realization of a fermionic spinor gas in an optical lattice with coherent
spin oscillations due to spin changing-collision. In this experiment different hy-
perfine components of the 9/2-manifold of 40K are trapped in an optical lattice.
The system is prepared as an equal mixture of two different spin states, e.g. as
∣9/2, 1/2⟩, at very large magnetic fields B such that the quadratic Zeeman-energy
is minimized. Due to Pauli-blocking the system here is in a band-insulating state.
For times t > 0 the magnetic field B is quenched to smaller values, which initializes
spin oscillation due to spin-changing collisions. On a single lattice site an initially
prepared ∣9/2, 1/2⟩-state can be converted due to spin-changing collisions only to
∣7/2, 3/2⟩, due to the conservation of total spin and Pauli-blocking. From Eq.(2.32)
we obtain the general interaction Hamiltonian for this situation

ĤI = ∑
α,β

Uαβnαnβ + γ (Ψ†
1
2
Ψ†

9
2
Ψ 7

2
Ψ 3

2
+Ψ†

3
2
Ψ†

7
2
Ψ 9

2
Ψ 1

2
) . (9.1)

For the moment we just take into account spin-changing collisions γ and the spin
dependent interactions U 1

2 , 9
2

and U 7
2 , 3

2
.

Hence, for the case of an infinitely deep optical lattice, i.e. tunneling J = 0, we
rewrite the quench situation, following Ref. [25], in terms of a two body problem

Ĥ =
⎛
⎝

2q +U 1
2 , 9

2
γ

γ −2q +U 7
2 , 3

2

⎞
⎠

(9.2)

including the quadratic Zeeman-energy q ∝ B2. One observes typical Rabi-oscillations
in the chirality

τ(t) = (1− γ2

2γ2 + 8q̃2 )+
γ2

γ2 + 8q̃2 cos(2
√

γ2 + 4q̃2 ⋅ t) (9.3)

with q̃ = q +
U 1

2 , 9
2
−U 7

2 , 3
2

4 . Both frequency and amplitude of the oscillation depend on
the value of the final magnetic field.

A finite tunneling ∣J∣ > 0 allows for the occupation of different states of the
manifold through second-order processes. As shown in the experiment of Ref. [25]
the dynamics of the quench situation, however, is dominated by the states of the
on-site manifold manifold {9/2, 1/2, 3/2, 7/2} even for a relatively large tunneling
J > U. For very long time scales (of several tens of ms) the occupation of the spin
states 5/2 or −1/2 is negligible.
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Fig. 9.2: Quantum quench from band-insulator (q →∞) with only ±3/2 sites popu-
lated to lower values of quadratic Zeeman energy q = 0.3 for different lattice depths,
tunneling amplitudes J/U resp.

In Fig. 9.2 we illustrate the evolution of the different particle occupations for dif-
ferent values of the tunneling J as obtained from iTEBD simulations of model (9.1).
For simplicity we assume U 1

2 , 9
2
= U 7

2 , 3
2

and vary the hopping strength J. The system
is initially prepared in the ∣9/2, 1/2⟩ manifold. At t > 0 both magnetic field and J
are quenched to the final values. The deep-lattice situation is accurately described
by Eq. (9.3). A finite tunneling leads to a strong damping of the oscillations as
well as to a shift in the frequencies that qualitatively compares to the experimental
results [25].

Inspired by this sudden quench experiments, we will explore in the follow-
ing the quantum phases that could be explored by (quasi) adiabatically lowering
the magnetic field for a system initially prepared in the practically zero entropy
band-insulating state. We will start with spin F = 3/2 fermions as could be exactly
realized for e.g. 132Cs, 9Be, 138Ba or 201Hg. In the second part we treat the case
of 40K restricting the analysis to the manifold of M ∈ {9/2, 1/2, 7/2, 3/2} and ne-
glecting transitions to other spin states, which may be reasonable within the above
mentioned scenario.

The following sections are based on the publication [50] which was developed
in collaboration with J. Jaramillo and T. Vekua.

9.2 Spin 3/2 fermions

For spin-3/2 fermions the interaction part of the Hamiltonian is given by (see sec-
tion 2.3.1)

ĤI = − g2 (n 1
2
n 3

2
+ n− 3

2
n− 1

2
+ n− 1

2
n 3

2
+ n− 3

2
n 1

2
) − g0 + g2

2
(n− 1

2
n 1

2
+ n− 3

2
n 3

2
)

+ γ (c†
− 3

2
c†

3
2
c 1

2
c− 1

2
+ c†

− 1
2
c†

1
2
c 3

2
c− 3

2
) (9.4)

We denote again the spin changing collisions γ = g0−g2
2 . Since there are no unpaired

creation or annihilation terms as usual the total number of particles N = N1/2 +
N−1/2 + N3/2 + N−3/2 is a good quantum number. Furthermore two spin-quantum
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numbers are conserved QS = N1/2 −N−1/2 +N3/2 −N−3/2 and T = N1/2 −N−1/2 −N3/2 +
N−3/2. Due to the spin-changing collision term the chirality QB = N1/2 + N−1/2 −
N3/2 − N−3/2 is not conserved in general. Generally this situation exhibits a high
SO(5) symmetry [353]. For the fine tuning γ = 0 the system is SU(4) symmetric,
and (among others) the chirality QB is conserved as well.

For large QZE q ≫ J, U the system approaches a band insulator (BI) state as
discussed above. For a finite q and γ > 0 the formation of on-site singlets becomes
favorable ∣−1/2, 1/2⟩ + α ∣−3/2, 3/2⟩. Without magnetic field, for repulsive interac-
tions the half-filled ground-state phase diagram exhibits, additionally to the (site)
singlet phase, a dimerized or spin-Peierls phase with a broken translational sym-
metry [353]. The phase diagram of the spin 3/2 fermions in the presence of a mag-
netic field is depicted in Fig. 9.3. At sufficiently large q the dimer phase, realized
for γ ≲ 0.1 at q = 0, is destabilized and an Ising phase transition to the singlet phase
is induced. The singlet and BI phase are adiabatically connected.

In Fig. 9.4 we present the chirality τ for the parameters of Fig. 9.3 for different
values of γ. τ is a monotonously increasing function of q that (quasi) saturates in
the BI phase τ ≃ 1. For the precise SU(4) point of γ = 0 the system enters a gapless
Luttinger liquid phase [50] for q > qc depicted in Fig. 9.3 as a straight line.

We calculate the local dimerization

D = ∣∑
α,j

(−1)j⟨ψ†
α,jψα,j+1⟩∣/(L − 1)

shown for γ = −0.4 in Fig. 9.4 (b). At the transition to the singlet phase this order
parameter fulfills perfect Ising scaling relations shown by the collapse of different
system-size data-points to one curve. For q = 0 this phase transition was predicted
before in Ref. [353] as a function of γ. In Fig. 9.4 (c) we also present the fidelity sus-
ceptibility χF/L for the same parameters. It exhibits a pronounced peak diverging
with the system size L at the Ising phase transition (cf. chapter 4). The crossover
(indicated as dotted line in Fig. 9.3) from the singlet to the BI phase is characterized
by a well defined local non-divergent maximum of χF.

In Ref. [356] a mapping to spin-models, established for the manifold of a fixed
particle number per site, has been shown to be successful in the limit of large in-
teraction U. For this case, however, we calculate the unrestricted problem. In nu-
merical calculations it turns out to be favorable [351] to study the system as a two
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Fig. 9.3: Ground state phase diagram for S = 3/2 alkali fermions at half filling, as
function of the quadratic zeeman energy q (in units of t) and γ = (g2 − g0)/2J for the
case of large interactions (g2 + g0)/2 = 10J.
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component Fermi-Hubbard model on a ladder with appropriate rung interactions
and pair tunneling terms. Although we may here just fix two U(1)-symmetries,
due to the smaller local Hilbert-space [359] numerical DMRG calculations may be
carried out faster. We keep in average up to 800 states and L = 60 sites.

9.3 Relevant model for 40K atoms

In the following we study the ground-state phase diagram for the experimentally
relevant situation of the multiplet {9/2, 1/2, 3/2, 7/2} out of the 9/2 hyperfine man-
ifold of 40K. Associating 9/2 → 1/2, 1/2 → −1/2, 7/2 → 3/2 and 3/2 → −3/2 all
quantities discussed above may be translated to the new situation. The Hamilto-
nian is given by Eq.(9.1). Contrary to the case of the spin 3/2 multiplet discussed
above here interactions are strongly asymmetric being different combinations of
the scattering lengths aK

2 , aK
4 , aK

6 , and aK
8 .

γ =
√
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g8 (9.5)

Explicit values for the scattering amplitudes aF can be found in Ref.[25]. The high
symmetry is broken and the system generally just retains a U(1) × U(1) × U(1)
symmetry corresponding to the particle number N and spins, as discussed above.
We study again the ground-state phase diagram for N = 2L particles and QS = QT =
0, i.e. keeping N9/2 = N1/2 and N3/2 = N7/2. The asymmetric situation now gives
rise to a wealth of quantum phases as depicted in the ground-state phase diagram
of Fig. 9.5.
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continuous lines are quantum phase transition lines, crossing at multi-critical point.

9.3.1 Large U regime

In the limit of large repulsive interactions U the ground-state properties may be
described by the behavior of a few lowest on-site eigenstates with a fixed number
of two particles per site. We perform a second-order quasi-degenerate perturbation
theory to map the full 4-component fermion model to an effective spin-5/2-model
of these states and project out states with higher or lower occupations which are
separated by a large energy scale U. The effective Hamiltonian is given by[85]

⟨n∣Ĥ(2)
e f f ∣n

′⟩ = 1
2
∑
ν

⟨n∣Ĥ∣ν⟩⟨ν∣Ĥ∣n′⟩ [ 1
En − Eν

+ 1
En′ − Eν

] (9.6)

with on-site energies En and the summation being performed over all intermediate
states ∣ν⟩ with a triply and a singly occupied site. The effective Hamiltonian has
generally a very complicated form for the considered alkali-models with doubly-
occupation. However, the 6-dimensional on-site Hilbert-space significantly reduces
computational complexity compared to the 36-dimensional full model and it may
be efficiently analyzed numerically. We perform iTEBD calculations of the effective
model (9.6). For the regime of moderate U/J ≲ 10 we complement this analysis with
DMRG calculations of the unconstrained model.

For vanishing magnetic fields q = 0 the on-site energy for J → 0 is minimized
by the pair ∣1/2, 3/2⟩. Due to the constraint QT, QS = 0 and N = 2L the degenerate
ground state manifold for J → 0 will contain as well L pairs of ∣9/2, 7/2⟩. A finite
hopping J will lift the degeneracy and stabilize a classical Neél-state formed by
pairs of ∣1/2, 3/2⟩ alternating with ∣9/2, 7/2⟩ pairs as the ground state. For a dom-
inating QZE q ≫ J, U the system enters again the BI phase formed by the on-site
singlets ∣9/2, 1/2⟩. Interestingly, an intermediate Haldane-phase with a non-local
topological string order emerges as shown in Fig. 9.5.

This sequence of phases becomes clear intuitively as we map the U ≫ J limit
with to an effective spin-1 model, associating ∣1/2, 3/2⟩ and ∣9/2, 7/2⟩ with Sz = +1
and Sz = −1 states, the on-site singlets ∣9/2, 1/2⟩ + ∣7/2, 3/2⟩ form the Sz = 0 states.



Chapter 9. Alkali-Metal Spinor Systems 173

0 0.2 0.4 0.6
q

0

0.4

0.8

o
rd

er
 p

ar
am

et
er

chirality

Néel
string order

parity order

Haldane

Néel
   Singlet /

Band Insulator

Fig. 9.6: Quadratic Zeeman coupling (measured in units of J) dependence of differ-
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Hence, with
Sz

j = (n9/2,j + n7/2,j − n3/2,j − n1/2,j)/2

we may calculate several order parameters borrowed from the typical spin-1 mod-
els: Néel order limn≫1(−1)n⟨Sz

j Sz
j+n⟩, parity order limn≫1⟨eiπ∑j<k<j+n Sz

k⟩ and string

order limn≫1⟨Sz
j eiπ∑j<k<j+n Sz

k Sz
j+n⟩, are shown in Fig. 9.6 for a cut through the phase

diagram at large U/J. The Haldane phase exhibits a antiferromagnetic-order di-
luted by defects that represent on-site singlets of the BI state that is characterized
by a finite string order. We verify the topological character of the Haldane phase
by monitoring the doubly degenerate entanglement spectrum [173].

As known from spin-1 models with a single-ion anisotropy [360] Néel- and Hal-
dane phases are separated by an Ising-type phase transition. The Haldane to singlet
transition is a Gaussian-type phase transition. At moderate U a Dimer-phase is re-
alized, as discussed for the case of the S = 3/2-multiplet. It is separated from the
Neel and singlet phases by an Gaussian and Ising-type phase transitions, respec-
tively. Interestingly the 4-phases are expected to form a multi-critical point [50] as
depicted in Fig. 9.5.

9.4 Conclusion

In summary we have shown, how a very rich phase ground-state phase diagram
can be prepared as the spin-changing processes are allowed by adiabatically low-
ering the magnetic field and different MI states may be reached starting from a low
entropy BI state. Due to interplay of spin-changing collisions and quadratic Zee-
man coupling, the ground-state physics includes dimer and singlet phases for the
symmetric S = 3/2 alkali fermion manifold and phases with antiferromagnetic and
topological order for the asymmetric manifold of 40K hyperfine states. The different
quantum phases and phase transition may be studied without the need to change
scattering lengths, just by means of controlling magnetic field and optical lattice
depths.

Interestingly, Néel ordering may be revealed in Stern-Gerlach TOF experiments.
After ramping up the lattice depth and decreasing the magnetic field, those sites
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occupied with ∣9/2, 7/2⟩ are immune to spin-changing collisions and, hence, in a
state prepared as a Néel phase their occupation should stay maximally constant.
Further studies may include the possibilities for a finite production of M = 5/2 and
M = −1/2 components and examine possible timescales of the adiabatic preparation
scheme.



Chapter 10

Conclusion and Outlook

In this thesis we have discussed various aspects and scenarios of strongly corre-
lated ultracold quantum gases in low-dimensional optical lattices. A main focus
was laid on recent developments in the quantum simulation of frustrated quantum
magnetism and synthetic static and dynamical gauge fields. We have considered
feasible setups for the experimental study of novel phenomena and analyzed the
observable properties of the underlying physical models. Chapters 2-4 were de-
voted to an introduction to the different experimental and theoretical concepts and
methods. We have first briefly introduced the main conceptual background and de-
velopments of ultracold quantum gases in chapter 2. Here we have also presented
properties of the fundamental Bose-Hubbard model in low dimensions as well as
details of the so called Floquet-engineering and the derivation of effective model
Hamiltonians. Since the main findings of this thesis rely on large scale numerical
calculations, in chapter 3 we have briefly introduced the main ideas behind exact-
diagonalization and DMRG techniques and pointed out some recent developments
and extensions. The power of DMRG is deeply connected to fundamental proper-
ties of quantum mechanical systems. Simultaneously such ideas from quantum
information theory allow for a better understanding of the physical properties of
the considered quantum states and the characterization of quantum phase transi-
tions. We have summarized a few methods and properties, entanglement spectrum
and entropy as well as the fidelity susceptibility in chapter 4. We have also studied
unusual finite size scaling properties of the fidelity susceptibility for certain pertur-
bations.

In chapter 5 we have investigated the properties of quantum emulators of frus-
trated quantum magnetism exemplified by the case of ultracold bosons in zig-zag
optical lattices. This model, also of high relevancy for solid state physics, exhibits
a very rich ground-state physics, including chiral and dimerized phases, known
from corresponding spin models that we could extend to the bosonic model. In
this context we have introduced an analytical method for the study of properties
of frustrated quantum lattice gases at low densities. In different regimes and sce-
narios our findings furthermore include topological Haldane insulators for three
body constraint gases or supersolid and metamagnetic phases for dipolar long-
range interactions. Finally we have analyzed variations in the geometry - for the
so called sawtooth ladder we found an unusual supersolid phase in the absence of
long-range interactions.

In chapter 10 focused on the study of synthetic gauge fields. We have carefully
analyzed interacting ultracold bosons in a two-leg square ladder geometry in the
presence a homogeneous (synthetic) magnetic field. We would like to stress that for
the first time we have been able to prove some previously conjectured properties
of this microscopic model by an unbiased numerical approach, such as the stability
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of several vortex-lattice phases or a biased ladder phase. We have illustrated the
wealth of quantum phases, including also Meissner and vortex phases in both the
SF and MI regime, in several representative phase diagrams for different ranges of
interactions. Finally we have found an exotic quantum phenomenon connected to
the vortex-lattice phases. For certain conditions, surprisingly, the boundary current
may revert its circulation direction due to the spontaneously broken symmetry of
the underlying quantum state.

The realization of the effective models studied in the previous chapters relies
on the integration of fast degrees of freedom employed in the quantum lattice gas
experiments. In chapter 7 we have reviewed the effective models, that could be
generated by means of a fast modulation of on-site interactions. We have shown
how the effectively generated nonlinear density dependent hopping terms allow
for the study of certain correlated hopping Hubbard models relevant for cuprate
superconductors. Furthermore, we presented a detailed analysis of the emergence
of string an parity order in unconventional MI phases due to the simultaneous
modulation of lattices and interactions.

While the gauge fields considered in chapter 5 and 10 are static, in chapter 8
we have pointed out several settings for the emulation of certain dynamical gauge
fields. We have shown how density-dependent synthetic magnetic fields studied in
this chapter could be engineered using modulated interactions or Raman assisted
hoppings. Interestingly in one dimensional lattices DDSM allows for the study
of anyon Hubbard models. In ladders and 2D square lattices DDSM leads to a
non-trivial interplay between density modulations and effective magnetic fluxes
in ground state and dynamical properties. We would like to note, that our first
experimental proposal based on modulated interactions allows for the generation
of anyon-like models without any restriction of the local particle density, while the
Raman-laser setup would impose a three body hardcore constraint.

Finally, we have studied fermionic alkali spinor gases inspired by recent ex-
perimental advances. We have shown how the interplay between spin dependent
interactions, spin changing collisions and a quadratic Zeeman coupling leads to a
very rich ground-state physics at half filling that could be explored by means of
slowly driven band- to Mott-insulator transitions. Besides of Néel and dimerized
phases we have found a topological Haldane phase available for experimentally
relevant parameters.

Let us now outline some possible further applications and extensions of the
models and setups studied in this thesis. An important class of extensions can be
summarized as variations of geometry or dimensionality. But also experimentally
relevant aspects such as different interaction regimes, temperature or dynamical
properties will provide important and non-trivial subjects of further work.

Most of the models studied in this thesis are bound to one dimensional chains
or quasi one dimensional two-leg ladder geometries. Typically a study of a full two
dimensional extensions of the models of frustrated quantum magnetism or artifi-
cial gauge fields with classical methods will remain elusive and, hence, be a task of
the upcoming quantum simulation experiments. But already the study of three- or
four- leg ladder geometries, feasible with DMRG and bosonization methods, may
involve interesting phenomena and be of high experimental relevancy as can be
seen in [273, 286]. As recently investigated in Ref.[309] bosonic atoms in three leg-
ladders exhibit already in the hardcore regime a a very rich ground-state physics.
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Generally, the possible ground-state phases of N-leg ladder bosonic systems re-
main to be explored, in particular the generalization of vortex-lattice phases and
their connection to (fractional) quantum Hall physics. An interesting starting point
could be already the weak coupling regime, which we have shown to provide an
important insight for the two-leg ladder case.

Also the fate of the BLP phase in multi-leg ladder remains unclear. It would be
useful to transfer the dilute limit analysis to N-leg ladder systems, which allowed
for a prediction of the BLP phase in the two-leg ladder. In some cases multiply
degenerate dispersion minima could result in a more complex ground-state dia-
gram in the dilute limit. Furthermore, the connection of the BLP phase in the weak
coupling regime should be analyzed. Including classical density fluctuations in the
weak-coupling analysis of chapter 10 could be useful to analyze the experimental
observability of the BLP phase, extending the study of Ref.[298].

Since synthetic dimension experiments constitute a very promising realization
of synthetic gauge fields in N-leg ladder systems, the role of inter-particle interac-
tions in strongly-correlated gases, both for bosons and fermions, has to be explored.
Both rung-interactions, or for alkali-species also the exotic spin-changing collisions,
should be considered. For the case of fermions recently interesting magnetic crystal
phases with a relationship to the quantum Hall effect have been studied[302, 303].

Inter-ladder coupling offers the interesting possibility to perform a controlled
cross-dimensional transition from a 1D to a 2D scenario. Within N-leg ladder calcu-
lations or a cluster mean-field approaches (such as shown in chapter 3) the residual
2D couplings between chains and ladders could be explored. In particular the sta-
bility with respect to residual 2D couplings of the interesting vortex-lattice phases,
but also CSF and 2SF-phases in triangular ladders, could be examined.

Geometric variations may lead to the emergence of completely new phenom-
ena. In chapter 5 we have studied this for sawtooth or generally railroad-trestle
models. The connection between the observed supersolid and chiral phases should
be analyzed in detail in this context. First numerical simulations indicate that,
weakening the t′′ > 0-bond of Eq.(5.44) the CSF phase survives almost to the saw-
tooth limit t′′ → 0, where a transition to the supersolid phase is observed. Interest-
ingly the SS phase remains stable for a large regime of an ferromagnetic upper leg
coupling t′′ < 0. In this regime also a dilute limit picture of supersolid phases might
be obtained for certain conditions.

Extensions of the study of DDSM could as well involve the analysis of gener-
alized lattices, including zig-zag lattices. As a result, we expect that as a function
of density and interactions the system will develop geometric frustration, as indi-
cated by recent results [361]. The detailed investigation of 2D systems will be very
interesting and could involve density induced topological phases, such a recently
studied in Ref.[362].

Further possible scenarios for DDSM include density-dependent non-Abelian
gauge fields, or dynamical gauge field realizations for for binary gases, e.g. two
Fermi components or even Bose-Fermi mixtures. The simulation of situations in
which e.g. the Peierls phase for the fermions depends on the density of bosons
will allow for the study of the connection between the resulting models and lattice
gauge theories relevant for high energy physics or condensed matter theory.
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[86] M. A. Cazalilla and A. M. Rey. “Ultracold Fermi gases with emergent SU (N) symmetry”. In:
Reports on Progress in Physics 77.12 (2014), p. 124401.

[87] T. Lahaye et al. “The physics of dipolar bosonic quantum gases”. In: Reports on Progress in
Physics 72.12 (2009), p. 126401.

[88] M. Baranov et al. “Condensed matter theory of dipolar quantum gases”. In: Chemical Reviews
112.9 (2012), pp. 5012–5061.

[89] A. Griesmaier et al. “Bose-Einstein condensation of chromium”. In: Physical Review Letters
94.16 (2005), p. 160401.

[90] M. Lu et al. “Strongly dipolar Bose-Einstein condensate of dysprosium”. In: Physical Review
Letters 107.19 (2011), p. 190401.

[91] K. Aikawa et al. “Bose-Einstein condensation of erbium”. In: Physical Review Letters 108.21
(2012), p. 210401.

[92] T. F. Gallagher and P. Pillet. “Dipole–dipole interactions of Rydberg atoms”. In: Advances in
Atomic, Molecular, and Optical Physics 56 (2008), pp. 161–218.

[93] J. Balewski et al. “Coupling a single electron to a Bose-Einstein condensate”. In: Nature 502.7473
(2013), pp. 664–667.

[94] A. De Paz et al. “Nonequilibrium quantum magnetism in a dipolar lattice gas”. In: Physical
Review Letters 111.18 (2013), p. 185305.

[95] L. Santos, G. Shlyapnikov, and M. Lewenstein. “Roton-maxon spectrum and stability of trapped
dipolar Bose-Einstein condensates”. In: Physical Review Letters 90.25 (2003), p. 250403.

[96] T. Lahaye et al. “d-wave collapse and explosion of a dipolar Bose-Einstein condensate”. In:
Physical Review Letters 101.8 (2008), p. 080401.

[97] H. Kadau et al. “Observing the Rosensweig instability of a quantum ferrofluid”. In: arXiv
preprint arXiv:1508.05007 (2015).



Bibliography 183

[98] E. Dalla Torre, E. Berg, and E. Altman. “Hidden order in 1D bose insulators”. In: Physical
Review Letters 97.26 (2006), p. 260401.

[99] E. Berg et al. “Rise and fall of hidden string order of lattice bosons”. In: Physical Review B 77.24
(2008), p. 245119.

[100] X. Deng et al. “Polar bosons in one-dimensional disordered optical lattices”. In: Physical Re-
view B 87.19 (2013), p. 195101.

[101] W. Chen, K. Hida, and B. Sanctuary. “Ground-state phase diagram of S= 1 XXZ chains with
uniaxial single-ion-type anisotropy”. In: Physical Review B 67.10 (2003), p. 104401.

[102] M. F. Maghrebi, Z.-X. Gong, and A. V. Gorshkov. “Continuous symmetry breaking and a
new universality class in 1D long-range interacting quantum systems”. In: arXiv preprint
arXiv:1510.01325 (2015).
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[130] P. Würtz et al. “Experimental demonstration of single-site addressability in a two-dimensional
optical lattice”. In: Physical Review Letters 103.8 (2009), p. 080404.

[131] S. Natu, K. R. Hazzard, and E. J. Mueller. “Local versus global equilibration near the bosonic
Mott-insulator–superfluid transition”. In: Physical Review Letters 106.12 (2011), p. 125301.

[132] W. Bakr et al. “Probing the superfluid–to–mott insulator transition at the single-atom level”.
In: Science 329.5991 (2010), pp. 547–550.

[133] H. Lignier et al. “Dynamical control of matter-wave tunneling in periodic potentials”. In:
Physical Review Letters 99.22 (2007), p. 220403.

[134] A. Eckardt, C. Weiss, and M. Holthaus. “Superfluid-insulator transition in a periodically
driven optical lattice”. In: Physical Review Letters 95.26 (2005), p. 260404.

[135] E. Kierig et al. “Single-particle tunneling in strongly driven double-well potentials”. In: Phys-
ical Review Letters 100.19 (2008), p. 190405.

[136] A. Zenesini et al. “Coherent control of dressed matter waves”. In: Physical Review Letters 102.10
(2009), p. 100403.

[137] J. Struck et al. “Tunable Gauge Potential for Neutral and Spinless Particles in Driven Optical
Lattices”. In: Physical Review Letters 108.22 (2012), p. 225304.

[138] C. V. Parker, L.-C. Ha, and C. Chin. “Direct observation of effective ferromagnetic domains of
cold atoms in a shaken optical lattice”. In: Nature Physics 9.12 (2013), pp. 769–774.

[139] J. Gong, L. Morales-Molina, and P. Hänggi. “Many-body coherent destruction of tunneling”.
In: Physical Review Letters 103.13 (2009), p. 133002.
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Selbständigkeitserklärung

Hiermit versichere ich, die vorliegende Doktorarbeit selbstständig und unter aus-
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