Feature Regression for Continuous Pose
Estimation of Object Categories

Von der Fakultat fiir Elektrotechnik und Informatik
der Gottfried Wilhelm Leibniz Universitat Hannover
zur Erlangung des akademischen Grades
Doktor-Ingenieur
(abgekiirzt: Dr.-Ing.)
genehmigte

Dissertation

von
M.Sc. Michele Fenzi
geboren am 13. November 1982

in Prato, Italien

2016

1. Referent:

Prof. Dr.-Ing. Jérn Ostermann
Gottfried Wilhelm Leibniz Universitat Hannover, Germany

2. Referent:

Prof. Dr. Tinne Tuytelaars
Katholieke Universiteit Leuven, Belgium

Tag der Promotion:

20.11.2015

Abstract

Continuous pose estimation of object categories has recently become very popular
thanks to its application in fields like autonomous driving and robotics. When
the number of objects becomes large or not all objects are known in advance, it
becomes necessary to develop methods to solve the pose estimation problem for a
generic object of a given class. However, the generality of the problem makes this
task much more challenging, as difficulties related to the variability in appearance
and geometry arise. Many works propose solutions that rely on 3D information,
with the underlying assumption that only the 3D geometry of the class allows
for a continuous estimation of the pose. However, 3D-based methods depend on
the availability of 3D training data or the feasibility of 3D reconstruction. Other
authors have proposed methods based only on 2D training information. However,
the price to pay to avoid an explicit 3D class representation is very often an
estimation of the pose limited to a few discrete viewpoints. In this thesis, we
propose a solution that bridges this gap by devising an innovative method that
provides a real-valued pose by relying only on a 2D-based class model.

The key intuition behind the method proposed in this thesis is that the variation
in the components of a feature descriptor is smooth as a function of the viewpoint
change. On this basis, we first introduce our basic block, the generative feature
model (GFM), i.e., a regression function that predicts the appearance of a patch
under a given viewpoint. We show how to aggregate the large amount of gener-
ative feature models that results when many training objects are considered. As
each cluster is a collection of GFMs, we illustrate how to combine them to build a
generative cluster model (GCM). Finally, we embed our class representation based
on GCMs in a probabilistic framework in order to compute the posterior distri-
bution of the object pose in a single image. Secondly, we propose to enrich our
approach by introducing geometry into the matching process. We reformulate the
matching step as a graph matching problem, where the spatial arrangement be-
tween matching features is taken into account. We show that this is beneficial for
the accuracy of the proposed method. Finally, we illustrate how to extend our
algorithm to video sequences in order to apply temporal constraints. We build a
graph by sampling from the posterior distributions estimated at each frame and
we find the pose trajectory that best explains the pose observations by solving a
linear program.

Overall, we show that the innovative concept of generative feature models and
the way we propose to use them permits to tackle the problem of continuous pose
estimation of object categories without resorting to 3D information.

Keywords: pose, features, regression

Zusammenfassung

Kontinuierliche Posenschatzung von Objektkategorien hat in jiingster Zeit auf-
grund der Anwendbarkeit etwa im Autonomen Fahren und der Robotik weite Ver-
breitung gefunden. Wenn hierbei die Anzahl der Objekte grofl wird oder nicht alle
Objekte im Voraus bekannt sind, werden Verfahren nétig, die die Pose eines gener-
ischen Objekts einer gegebenen Klasse zu schétzen in der Lage sind. Allerdings
wird das Problem der Posenschétzung durch die hohe Variabilitdt von Aussehen
und Geometrie sehr anspruchsvoll.

Viele in der Literatur vorgeschlagene Ansétze basieren auf 3D-Informationen. Die
Grundannahme ist hierbei, dass allein die 3D-Geometrie einer Klasse eine kon-
tinuierliche Posenschatzung ermoglicht. 3D-basierte Methoden koénnen jedoch
nur zum Einsatz kommen, wenn 3D-Trainingsdaten verfiighar sind oder eine 3D-
Rekonstruktion moglich ist. Andere Ansédtze kommen mit 2D-Trainingsdaten
aus. Der Nachteil bei der Vermeidung einer expliziten 3D-Klassendarstellung
ist dann jedoch meist, dass die Schéitzung auf wenige diskrete Posen limitiert
ist. In dieser Dissertationsschrift wird hingegen ein innovatives, auf einem 2D-
Klassenmodell basierendes Verfahren vorgeschlagen, das einen kontinuierlichen
Posenwinkel liefert.

Die Grundprinzip hinter dem vorgeschlagenen Verfahren ist, dass sich die Kom-
ponenten des Merkmalsdeskriptors bei einer Verdnderung des Blickwinkels stetig
andern. Darauf aufbauend wird erstens ein Funktionsbaustein, das generative fea-
ture model (GFM), eingebracht. Hierbei handelt es sich um eine Regressionsfunk-
tion, die das Aussehen eines Patchs bei einem gegebenen Blickwinkel berechnet.
Es wird dabei gezeigt, wie sich die GFMs, die sich aus mehreren Trainingsobjek-
ten ergeben, aggregieren lassen. Da jedes entstandene Cluster eine Menge von
GFMs ist, ist es moglich, diese in einem generative cluster model (GCM) zu kom-
binieren. Schlieflich betten wir unsere auf GCMs basierte Klassendarstellung in
ein Wahrscheinlichkeits-Framework ein, um die A-posteriori-Verteilung der Objek-
tposen in einem Einzelbild zu berechnen.

Zweitens wird dieser Ansatz modifiziert, indem die Geometrie in den Matching-
Prozess eingebracht wird. Dieser Matching-Schritt wird dann als ein Graph-
Matching-Problem umformuliert, bei dem die rdumliche Anordnung zwischen den
Merkmalen berticksichtigt wird. Es wird gezeigt, dass so die Leistungsfahigkeit des
vorgeschlagenen Verfahrens gesteigert wird. Schliefllich wird der vorgestellte Al-
gorithmus auf Videosequenzen erweitert, indem zeitliche Randbedingungen einge-
fithrt werden. Dabei wird durch Sampling der A-posteriori-Verteilungen jedes
Bildes ein Graph konstruiert. Mit einem Simplex-Verfahren wird dann diejenige
Posentrajektorie gefunden, die die Posenbeobachtungen am besten erklért.
Zusammenfassend wird gezeigt, dass das vorgeschlagene innovative Konzept der
GFMs und ihre Anwendung das Problem der kontinuierlichen Posenschatzung von
Objektkategorien ohne 3D-Information 16st.

Schlagworte: Pose, Merkmalen, Regression

Contents

[List of Symbols| vii
[List of Abbreviations X
(1__Introductionl 1
(1.1 Contributions and Organization| 4

[2 Feature-based pose estimation| 7
[2.1 Historical perspective| 7
[2.2 Appearance-based Pose Estimation| 11
[2.3 Pose Estimation for Single Objects| 13
[2.4 Pose Estimation for Object Classes| 19
[2.5 Comparison to our method|. 26

[3~ Appearance-based features| 29
3.1 SIFT - Scale Invariant Feature Iranstorml. 30
[3.2 SUREF - Speeded Up Robust Features| 34

[4 Pose Estimation with Feature Regression| 37
[4.1 Feature Regression and Generative Feature Models| 37
4.2 Generative Feature Models 39
4.2.1 Generative Feature Model as Radial Basis Function Networkl 41

[4.3 Estimate the Pose of a Single Object Instance] 43
[4.3.1 Introductory Experiment|. 47

[4.4 From Single Instance Prediction to Object Class Prediction|. 50
4.4.1 Dynamic Time Warping for Track Similarity) 51

4.4.2 Spectral Clustering for Track Grouping/ 54

4.5 Class Probabilistic Formulationl 57
[4.6 Experimental Evaluation| 62
4.6.1 EPFL Multi-view Car Datasetl 62

[5 Enforcing Geometrical Constraints| 69
[>.1 Graph Matching Fundamentals| 71
1.1 Related works 72

612 Formulation] 73

vi

Contents

[5.3 Graph Matching Integration in Our Probabilistic Formulation| . . .

[b.4 Experimental Results|

I;i.4.1]11 I IJ In!l“l—ylf:&y (:231 Slﬂli!{if:“

[>.4.2 Single Instance Pose Estimation|

b.4.3 FEPFL multi-view car datasetl

[6 Enforcing Temporal Constraints|

[6.1 Linear Programming|

(6.2 LP Interpretation tor Our Problem|

[6.3 Experimental Results|

[6.3.1

Preliminary experiment|

79
80
80
81
81
83

85
38
92
95
95
96
98

101
105

List of Symbols vii

List of Symbols

A Attribute matrix

a Viewpoint

a* Estimated viewpoint
a8 Ground-truth viewpoint

x Convolution operator

C Cost matrix for dynamic time warping

c Representative feature of a generative cluster model
C(a) Generative Cluster Model

Cin Entrance cost in Linear Programming

Cout Exit cost in Linear Programming

Csc Score cost in Linear Programming

C¢ Transition cost in Linear Programming

D Degree matrix

dinn Euclidean distance to the first nearest neighbor feature
donn Euclidean distance to the second nearest neighbor feature
Af Frame distance

DTW (T*, T7) Cost of aligning feature tracks 7% and T” using dynamic time warp-
ing

D, Second derivative of D with respect to x

D(z,y,o0) Difference-of-Gaussian image

E Edge set

e Regression error

f Feature descriptor

viii List of Symbols

F(a) Generative Feature Model

F Set of Generative Feature Models

fin Entrance flag in Linear Programming
four Exit flag in Linear Programming

fsc Score flag in Linear Programming

ft Transition flag in Linear Programming
F Ideal fundamental matrix

F Estimated fundamental matrix

G Matrix of the Gaussian-weighted distances
G(a', a’) Gaussian-weighted distance between two viewpoints

~ Distance weight between a test feature descriptor and a representative feature
model

G Connected graph

G(z,y,0) Gaussian kernel with width o
H Hessian matrix

I Identity matrix
T Set of images

I(z,y) Image

K Cluster of generative feature models

IC Set of clustered generative feature models

L Normalized Laplacian matrix
A Regularization parameter
L, Unnormalized Laplacian matrix

L(z,y,0) Image filtered with a Gaussian kernel of width o

List of Symbols

ix

M Affinity matrix in graph matching

o Object
o Pose observation

O Set of objects
P Matching set resulting from graph matching

Q Set of test feature descriptors extracted from an image

q Test feature descriptor

R Covariance matrix of a generative feature model

r Representative feature of a generative feature model
R Set of representative features r

p Length of an oriented segment

S Pairwise similarity matrix between two sets of tracks

T Augmented feature track

7 Feature distance threshold

T Matrix of the normalized rows of U
T Set of augmented feature tracks

0 Angle between z-axis and oriented segment

U Matrix of the eigenvectors of the Laplacian matrix

u Eigenvector of the Laplacian matrix
V' Vertex set

W Matrix of coefficient vectors of the Radial Basis Function Network

w Coefficient vector of the Radial Basis Function Network
x 2D point in homogeneous coordinates

Z Matrix of features

List of Abbreviations

List of Abbreviations

INN First Nearest Neighbor
2D Two-Dimensional

2NN Second Nearest Neighbor
3D Three-Dimensional

4D Four-Dimensional

5NN Five Nearest Neighbors
Adaboost Adaptive Boosting
BRIEF Binary Robust Independent Elementary Features
CAD Computer-Aided Design

DLT Direct Linear Transform
DoF Degrees of Freedom
DoG Difference of Gaussians
DPM Deformable Part Model

DTW Dynamic Time Warping

FH Fast Hessian

GT Ground Truth

HOG Histogram of Oriented Gradients
IQP Integer Quadratic Problem

KDE Kernel Density Estimation

KL Kullback—Leibler

LoG Laplacian of Gaussian

List of Abbreviations

LOO Leave One Out

LP Linear Programming

MAE Mean Absolute Error

MAP Maximum A Posteriori

N3M Natural 3D Marker
NB Naive Bayes

NN Nearest Neighbor
OCR Optical Character Recognition

PnP Perspective-n-Point

PCA Principal Component Analysis

RANSAC RANdom SAmple Consensus
RBF Radial Basis Function
RGB Red Green Blue

SfM Structure from Motion

SIFT Scale-Invariant Feature Transform
SURF Speeded Up Robust Feature
SVM Support Vector Machine

Chapter 1

Introduction

Object pose estimation is the task of determining the orientation and location of
an object in an image or a video sequence with respect to some fixed coordinate
system. The need for pose estimation methods comes as a natural consequence
of the loss of depth information when a three-dimensional scene is projected on
the two-dimensional image plane. While the inherent ambiguity is exploited by
artistic techniques like optical illusions and trompe-l’eeil, recovering the pose of an
object by removing the projection uncertainty is actually an important challenge
for the computer vision researcher.

More importantly, pose recovery is a key ingredient required by complex visual
systems for the accomplishment of highly advanced tasks. Scene understanding
and augmented reality applications as well as robotic and autonomous driving sys-
tems all benefit from an accurate knowledge of the pose of the objects in the scene.
For example, the orientation of other vehicles is a strong cue for autonomous driv-
ing systems to make correct and safe decisions, likewise the knowledge of spatial
object orientation is necessary for a robotic arm to perform precise manipulation.
Although pose estimation is one of the most studied problems in computer vision,
recovering the pose of an object in an image or a video is still an open problem.
This is also confirmed by the plethora of different methods that have been proposed
in the literature. The complexity of application requirements and scenarios as well
as the availability of training data play an important role in the development of a
pose estimation algorithm. Aspects such as

o Availability of a 3D model
e Discreteness or continuity of the required pose
o Knowledge of the object identity or class

are crucial in the development of a pose estimation algorithm, as solutions devised
for simpler situations are not easily applicable to harder cases.

A 3D object model turns out to be extremely advantageous when coping with two-
dimensional ambiguities due to the loss of depth information. The registration of

2 Chapter 1 Introduction

3

Figure 1.1: (a) A 3D sparse model reconstructed with a multi-view geometry
method. The position of the training views is also estimated and in-
dicated by sketched cameras. (b) Dense CAD models for two types of
cars and bicycles, respectively. (Pictures taken from [102, [72].)

the model on the image data, in terms of individual landmarks, silhouette, inner
surfaces or a combination of the above, leads directly to the estimation of the
object pose. As illustrated in Figure different kinds of model may be available.
3D sparse models are the result of a reconstruction based on multi-view geometry,
while 3D dense models are the output of computer-assisted design (CAD) systems.
Nonetheless, the availability of 3D training models cannot be given for granted.
The capability of 3D reconstruction methods depends strongly on the amount of
object texture and training data, while CAD models are often expensive and may
not be available for the specific object at hand.

Now, let us consider an application where a discrete value for the returned pose is
sufficient, such as scene understanding. Given an image of a domestic environment,
the estimation of surface normals simplifies to a classification problem, because
walls and furniture surfaces usually share three orthogonal directions. But the
same algorithm cannot be used for augmented reality applications, as an accurate
estimation of the surface orientation is needed for a correct and realistic placement
of virtual objects. Examples of these two applications are depicted in Figure [1.2

While the aforementioned aspects are related to practical or applicative issues,
one aspect that is intrinsically related to the pose estimation problem is the object
identity. The knowledge of the object identity is advantageous from many points
of view, such as the possibility to create a precise model of the object. However,
for all the applications we have mentioned above and for many others, this is
practically not feasible. The number of different object types combined with their
potential variation in appearance and geometry becomes so large that storing all
the models in a database is unfeasible, as an enormous amount of memory would

Figure 1.2: (a) Image of a bedroom (left), and surface normal estimation (right).
Surface colors identify the normal orientations. (b) In a digital book
application, virtual animated characters must be realistically placed.
For this purpose, it is necessary to estimate the book surface with high
accuracy. (Pictures taken from [104], 58].)

be needed independently of the adopted model format. Furthermore, the database
should be updated every time a new object becomes available and this might not
be possible.

As a consequence, the capability of recovering the pose of an unknown object,
when the class membership is the only available information, is of large interest.
However, the generality of the problem makes the task more challenging, as the
method must cope with difficulties such as:

e definition and construction of a 3D class model
 intra-class variability in both appearance and geometry
e pose mapping from model to instance.

Whereas the construction of a precise 3D model is theoretically possible for in-
dividual objects, building a 3D class representative model is a harder challenge,
as class instances, from which the model should be learned, differ in appearance
and geometry. Although the range of variations depends on the extent of the
class at hand so that fine- and coarse-grained problems have recently started to
be addressed separately, a 3D class model must be built upon different exem-
plars. Therefore, the algorithm must identify and aggregate similar patterns in
the training data to construct a model that is characteristic of that class without
overlooking the generality-vs.-distinctiveness trade-off. That is, the method must
be general enough to accommodate for variations in appearance and geometry,
so that the pose of unseen objects can be correctly recovered. But, at the same
time, it must be discriminative enough to differentiate between the poses. Finally,
the pose transformation mapping the model to the instance must be defined in

4 Chapter 1 Introduction

agreement with the model itself, and this becomes non-trivial when the model is
not geometrically well-defined.

Some works have shown how to generate and use plausible 3D class models for
pose estimation, but they still rely on CAD design and multi-view geometry, thus
presenting the same issues highlighted before. In this thesis, we present an innova-
tive method for pose recovery that relies only on a 2D sparse class model learned
from image data.

The underlying motivation behind the usage of 3D training data is that it is needed
to provide a real-valued pose. According to this, the use of only two-dimensional
training information seems to restrict the performance of pose estimation algo-
rithms to the mere recovery of a discrete pose. In this thesis, we counter this
claim by showing that our method provides a real-valued pose without relying on
any 3D information. The key ingredient is a new and interesting way to exploit a
standard tool used for pose estimation, appearance-based features.

1.1 Contributions and Organization

As we have explained above, methods that rely on 3D class models overcome the
lack of a well-defined three-dimensional class geometry by resorting to synthetic or
reconstructed models. In this thesis, we show that this assumption is not necessary
as 2D training data can be sufficient to correctly infer three-dimensional informa-
tion. Moreover, the pose returned by our method is continuous, thus countering
the underlying assumption of these methods, where 3D training data is considered
necessary to provide a real-valued pose. We now detail the organization of the
thesis as well as the main contributions.

Chapter 2 We start by introducing the general paradigm adopted by feature-
based methods to solve the pose estimation problem. We present the advantages
and disadvantages of using features in recovering the pose of an individual, specific
object as well as of an unknown object belonging to a known class. Then, we
provide a comprehensive illustration of related works for both situations, with
more emphasis on the class case, as it is the one addressed in the present thesis.

Chapter 3 In this chapter, we first introduce appearance-based features from
a historical perspective highlighting the reasons behind their success. Then, we
explain in depth the two different features that are extensively used in this thesis.

Chapter 4 Here, the core of the method proposed in this thesis is detailed [29].
We first show that appearance-based features are not invariant to out-of-plane ro-
tations, and then we explain how to exploit this apparent weakness for our benefit.

1.1 Contributions and Organization 5

The key insight is that the variation in the components of feature descriptors is
smooth as a function of the viewpoint change. Therefore, we build a prediction
function, the so-called generative feature model, that predicts the descriptor com-
ponents given an unknown viewpoint. We then demonstrate how to use generative
feature models to solve the pose estimation problem in a maximum a posteriori
fashion. We show through experiments that our method is effective in the single
object case.

We then move to the class case, and we show how to aggregate generative feature
models that have been collected from different training instances of the same class.
We define a pairwise distance and, on this basis, we find groups of similar feature
models. Given a test image of an unknown object of a certain class, we match
the test features against the clustered set of generative models and we recover the
object pose by extending in a straightforward manner the formulation developed
for the single case. We show that the application of our method to the class case
is also effective, thus supporting the thesis’ claim that a correct real-valued pose
can be estimated without resorting to any 3D model.

Chapter 5 By analyzing the results of the previous chapter, we show that our
algorithm strongly depends on the correctness of the matches established between
test and model features. The approach detailed in Chapter 4 is purely based on
appearance, as generative feature models predict only the descriptor components
and the matching step does not take feature location into account. However,
spatial information is an extremely important cue that should not be neglected.
In this chapter, we explain how to improve the quality of the matches by introduc-
ing geometry into the process [28]. More specifically, we reformulate the matching
step as a graph matching problem, where the spatial relation between matching
features is taking into account. As a result, we enforce that pairs of matching fea-
tures share geometrical consistency in their respective spatial locations. We show
that the introduction of geometrical cues in the matching step is beneficial for the
accuracy of the proposed method.

Chapter 6 First, we show the results obtained when our method is applied on
a frame-by-frame fashion to a video sequence. We show that the algorithm per-
formance mainly alternates between bursts of good and wrong estimations. Fur-
thermore, we demonstrate that even in the case of wrong estimations the posterior
distribution contains a strong evidence of the correct pose.

Therefore, we extend our algorithm to videos in order to apply temporal constraints
on the sequence of estimated poses [30]. More specifically, we assume that the pose
of an object can only have a small and smooth change over consecutive frames.
We build a graph by sampling from the posterior distributions estimated in each

6 Chapter 1 Introduction

frame and we find the pose trajectory that best explains the pose observations.
We show that the embedding of spatial and temporal constraints permits to the
proposed method to provide a much more accurate pose when video sequences are
at hand.

Chapter 7 Our final chapter is dedicated to the conclusions of the thesis, and it
is closed by a presentation of future research directions.

Chapter 2

Feature-based pose estimation

In this chapter, we describe in detail how pose estimation can be solved by means
of appearance-based features. We start with a brief overview of representative
pose estimation methods that have been presented over the years. We first illus-
trate some early methods that addressed the pose estimation problem for simple
volumetric shapes as well as for free-form objects. Then, we move to intermediate
approaches based on the decomposition in 2D views and on geometric invariants.
At the end of this overview, a discussion over the unifying thread among these ap-
proaches motivates the introduction of pose estimation methods using appearance-
based features. We first explain the reasons behind their development, and then
we illustrate a general paradigm alongside related works of pose estimation meth-
ods for single objects. In the last part of the chapter, we discuss the difficulties
that occur when appearance-based features are used to handle the pose estimation
problem for object classes. To conclude, we provide a comprehensive overview of
related works highlighting similarities and differences with respect to the method
proposed in this thesis.

2.1 Historical perspective

At the very beginning of the computer vision era, pose estimation algorithms were
purposely developed for simplified situations, where primitive untextured polyhe-
drons were to be detected over an empty background, as shown in Figure 2.1l The
establishment of rigorous mathematical foundations for the treatment of simpli-
fied problems was deemed necessary before moving to more difficult situations.
A famous example is the work proposed in [100], where simple polyhedrons, the
so-called block models, are fit to the test image to estimate the object pose. More
specifically, the pose is determined by finding the transformation that best aligns
the junction points detected in the edge image and those of a CAD model.

While these early methods worked well for objects with simple shapes, the pos-
sibility of recovering the pose for free-form objects was first achieved with the
introduction of generalized cylinders [3]. The key insight is that any arbitrary ob-

8 Chapter 2 Feature-based pose estimation

Figure 2.1: (a) A picture with block models. (b) Edge extraction. (c) Correct
matching of polyhedrons. (d) The scene is depicted from a different
point of view to show accurate pose estimation. (Pictures taken from
[100].)

(a)

Figure 2.2: (a) Range image of a doll. (b) Representation based on generalized
cylinders. Several cylinders are traced in the image representing dif-
ferent body parts. (Pictures taken from [3].)

ject can be represented by a combination of curved axes and cross-section functions
defined on these axes, as illustrated in Figure 2.2l These algorithms try to deter-
mine the object’s medial axis and several secondary axes by growing cylinders with
varying cross-sections around them. The pose was determined by matching the
current axial structure against a set of models stored in a database, with the po-
tential usage of further cues like spatial arrangement and lengths of the secondary
parts.

The 3D models employed by many of these early methods were often built by means
of computer-aided design (CAD) systems used by professional drawers. The time
consumption and the money cost to have such models available was proportional to
the complexity of the objects to be modeled. In addition, each model was tailored
to a single, specific object, thus limiting the availability and applicability of the
developed frameworks.

2.1 Historical perspective 9

Figure 2.3: (a) The representation of a wedge as an aspect graph. (b) Test view of
the object. (c) Its pose identified by the sub-graph in red in the aspect
graph. (Pictures taken from [23].)

Figure 2.4: (a) Profile of a surface of revolution and convergence of corresponding
points to vanishing point under projective transformation. (b) Picture
with several surfaces of revolution. (c) Extracted profiles with axes
computed automatically (Pictures taken from [132].)

This difficulty was circumvented by the introduction of aspect graphs [121]. The
key idea is that a 3D model can be represented by a decomposition into several 2D
views that are related to each other in a graph structure, where edges represent
boundaries shared between surfaces. The pose of an object view can be estimated
by matching test and model surfaces in terms of number of edges, edge orientations
and neighboring surfaces in the graph, as shown in Figure [2.3

While methods based on aspect graphs and alike were inherently two-dimensional,
a return to a full 3D point of view was marked by the introduction and investigation
of geometric invariants [17]. The key idea was to define and study geometric
properties that do not vary with respect to the viewpoint. For example, measures
that are based on the collinearity of three points or the cross-ratio of four points are
invariant under perspective transformations. The object pose is recovered by first
computing invariants from extracted edges, then by finding matches with model
invariants and by computing the projective transformation that best aligns the
corresponding locations, as illustrated in Figure [2.4]

10 Chapter 2 Feature-based pose estimation

In this short perspective, we can see that all these methods share a common thread.
That is, they are all based on some sort of primitive feature in order to solve the
recognition and pose estimation problems, e.g., junction points, cylinders, surfaces,
and geometric invariants. As a matter of fact, this is strongly supported by what
neuroscientists affirm about our understanding of the 3D world on the basis of
the images impressed on the retina. Since the introduction of the Gestalt theory,
visual perception studies have confirmed that the human visual understanding of
the world is based on the organization and grouping of small primitives extracted
from the perceived data [80]. Computer vision researchers have, directly or not,
followed this paradigm by developing top-down/bottom-up algorithms that could
solve visual tasks by building upon low-level primitives, also known as features.
The term features is generally used to indicate relatively small, “interesting” image
structures, that can be extracted and re-detected in other images of the same scene.

The other aspect that can be traced in this overview is the increasing importance
given to the development of robust methods. Whereas early approaches were con-
cerned about reliable algorithms for simplified situations, later research moved
to the analysis of increasingly real scenarios by including viewpoint changes, oc-
clusions and background clutter. As a consequence of this shift, the demand of
features, that could be robust or even invariant to typical image transformations
and external factors, led eventually to the introduction of geometric invariants
[132]. While approaches based on invariants were elegant and theoretically cor-
rect, their performance was often unreliable and their application was limited to
few categories of objects, e.g., revolution surfaces, prisms and canals. The reason
is that geometric invariants were computed on the basis of edge and ridge infor-
mation extracted from images, which is imprecise and undistinctive. The large
employment of pre- and post-processing, such as edge grouping and chaining, was
useful yet not decisive in coping with the inherent weaknesses and ambiguities of
edge extraction.

At the end of the 1990’s, the introduction of appearance-based features permitted
to simultaneously get rid of all the extra processing and dramatically improve
recognition and pose estimation results [I09]. The key idea was to apply the
“invariance philosophy” to a cue which was so far considered unreliable and non-
representative, i.e., object texture. The result was the development of features
that were much more distinctive and robust than edge-based features to a large
set of image transformations and external factors. The far-reaching importance of
appearance-based features is also proven by their current role as a standard tool
for many visual tasks, including pose estimation.

As features are at the basis of the method proposed in this thesis, we detail their
implications and usage in the following sections. We illustrate how pose estimation
can be solved by means of texture-based features as well as the advantages and

2.2 Appearance-based Pose Estimation 11

disadvantages of using features for recovering the pose of single objects and object
categories, respectively. In Chapter [3, we will explain the algorithmic details of
the features that are used in this thesis.

2.2 Appearance-based Pose Estimation

Unlike earlier features, appearance-based features are texture-based descriptions
of localized structures of interest in the image. In general, they result from the
combination of two tools:

« an interest point detector to find characteristic object structures

e a discriminative descriptor of the interest point neighborhood to re-identify
the same structure in a new image.

Texture information is used in both detection and description steps, i.e., to extract
stable points from the image and to describe the point neighborhood. Detection is
usually performed by finding locally spatial maxima of first or second order image
derivatives convolved with a Gaussian filter at multiple scales [48| [75]. According
to the operator used, interest points located at a corner or in the center of a blob-
like region are returned. The description is usually a summary of the neighboring
texture information computed in terms of histograms of gradients. That is, a
feature is a localized vector generated by the concatenation of the (x,y) location
of the interest point, of the gradient-based histograms computed on neighboring
sub-regions, and possibly additional information. The reason why objects can be
well described by spatial distributions of gradients is that gradients are highly
informative, as also motivated by neuroscience studies, and spatial aggregation
reduces sensitivity to small variations.

Before explaining how appearance-based features are used for pose estimation, we
first illustrate the two reasons for their huge success. First of all, both detection
and description can be designed to be robust to many specific transformations and
factors. More specifically, features may be directly invariant towards scale changes
by applying the detector at several scales, and towards translation, in-plane rota-
tion and illumination changes by properly designing the descriptor. In addition,
the influence of background clutter and occlusions is limited by the discriminative
description of the features as well as their local nature. Finally, the transformation
of images into a large collection of spatially localized feature vectors is beneficial.
Spatial information can be used to enforce a geometrical context in the process
and the vectorial structure allows for a straightforward application of algebraic
methods.

Appearance-based features have been first introduced as a tool for solving object
recognition problems with a typical two-step paradigm. First, a feature-based

12 Chapter 2 Feature-based pose estimation

description of the object, which acts as an object model, is gathered from one
or more pictures. At test time, features are extracted from the query image and
compared with the object description. These are very fast procedures, as feature
extraction can be implemented in hardware and matching amounts to finding
the feature nearest neighbor, for which fast approximate techniques can be used.
The consistency of the matches is finally evaluated in terms of their number and
geometrical arrangement by estimating the transformation that best maps the
model features on the query features. As a result, a decision on the presence of
the object in the scene is taken.

The application of appearance-based features to pose estimation problems fol-
lows the tight connection between this task and object recognition. Since objects
change their appearance with respect to viewpoint, algorithms that have been de-
veloped for object recognition can be easily transferred to pose estimation and
automatically benefit from the same advantages. As a matter of fact, the object
recognition paradigm already contains the recovering of the object pose. When
correspondences are checked for their geometric consistency, a registration of the
model features to the image features is performed, and the underlying transfor-
mation is nothing but the pose of the object. Therefore, the paradigm outlined
above can be directly adopted by changing the focus from finding the object to
estimating its pose.

The use of appearance-based features for pose estimation presents additional ad-
vantages from those highlighted before. First of all, model building and pose
estimation techniques are performed on the basis of the same features. This favors
the cascading or joint coupling with other tasks that are also performed with the
same features. Additionally, a system architecture based on appearance features is
transparent in the choice of the specific feature, as most of them have a point-like
nature with vectorial description. Finally, feature detection and description are
two completely independent steps, so that different detectors and descriptors can
be combined according to necessity.

Since appearance-based features are point-like entities, they can be arranged either
in planar or volumetric structures depending on the object at hand. While the
planar arrangement results directly from feature extraction, the 3D case involves a
volumetric object reconstruction from training images. For this purpose, methods
based on projective and multi-view geometry are used, whose introduction in the
computer vision community traces back to the time of geometric invariants. In Fig-
ure [2.5], we summarize the two algorithmic paradigms used for model construction
and pose estimation according to the object dimensionality.

While 3D pose estimation algorithms are needed whenever the object depth cannot
be neglected, their two-dimensional counterparts find application in several tasks,
such as target tracking or augmented reality. In the former, a planar object, like

2.3 Pose Estimation for Single Objects 13

2D Pose Estimation:

Model A set of features extracted from a picture of the object can
be taken as model representation. Additional descriptions from
different viewpoints may be aggregated in order to be robust
to viewpoint changes.

Matching Test and model features are set in correspondence ac-
cording to descriptor distance.

Pose The object pose is given by the homography transformation
that best maps the model features onto the corresponding query
features.

3D Pose Estimation:

Model Features collected from several views of the object are used
to create a 3D object reconstruction.

Matching Test and representative model features are set in corre-
spondence according to the descriptor distance.

Pose A projective transformation is estimated, such that 3D feature
points are best mapped onto the 2D query features.

Figure 2.5: 2D and 3D paradigms for the pose estimation of single objects.

a logo or a checkerboard pattern, must be found and tracked in a video, while
in the latter a virtual (possibly 3D) object is to be placed upon a surface, whose
precise orientation must be estimated. In the following section, we provide a broad
overview of methods for 2D and 3D pose estimation in the case of single objects
that have been recently proposed.

2.3 Pose Estimation for Single Objects

According to the paradigm outlined in Figure pose estimation for single ob-
jects amounts to one off-line task, model creation, and two on-line tasks, feature
matching and pose computation. This general paradigm encompasses several dif-
ficulties, such as finding correct matches and guaranteeing real-time performance,
so we have opted to present the related works according to the difficulties they
address.

14 Chapter 2 Feature-based pose estimation

&
04y
150 YEARS
ON SALT

Figure 2.6: (Left) Test image. (Right) Objects have been recognized and the mod-
els are reprojected on the image with the estimated pose. (Pictures
taken from [102].)

Figure 2.7: According to the estimated pose of the textured mug, a teapot is placed
above it. (Pictures taken from [41].)

3D Models While 2D models are simply a set of features extracted from an
object view, 3D models need a proper construction procedure, which is generally
borrowed from multi-view geometry methods [49]. These methods deliver a 3D
reconstruction of the object starting from a set of pictures that fully cover the
object in the view space. The difficulty lies mainly in the reconstruction procedure
and how to handle the multiple features that describe the same 3D point from
different viewpoints. In [I01],[102], the authors build a model off-line using features
extracted by an affine-invariant detector and described using a SIF'T descriptor.
The model is built by iteratively merging partial models constructed from pairs
of views. At test time, image and model features are set in correspondence on
the basis of color histograms and SIFT features. Finally, the pose is recovered by
taking the projection matrix computed from the minimal subset of matches that
has the largest consensus, as represented in Figure [2.6]

In [77], the model is constructed by clustering training images in a small num-
ber of model views according to the number of matching features and by linking
them on the basis of the shared features. Given a test image, features are ex-
tracted and matched in a probabilistic fashion by taking into account location,
scale and orientation of each matching feature. If the overall matching probability

2.3 Pose Estimation for Single Objects 15

Figure 2.8: The method of [53] applied to images where the object is deformed or
strongly occluded. (Picture taken from [53].)

exceeds a predefined threshold, the object is considered found and the best match-
ing model view is returned as the estimate of its pose. In [40, 41], the authors
propose a method for placing a virtual object on top of another one for augmented
reality applications, as illustrated in Figure First, they build a 3D model
using multiple-view geometry techniques applied to features collected from a set
of training images. Then, they extract features from the test image and match
the descriptors to the model in order to find correspondences. The pose of the
object is obtained by finding the best projective transformation using model fit-
ting techniques and non-linear optimization to remove the influence of spurious
matches.

An alternative method that does not rely on 3D reconstruction, but it exploits
CAD models is proposed in [5I]. Giving a 3D textured model of the object,
features are detected by rendering the model from different viewpoints. So-called
N3M’s (Natural 3D Markers) are identified as quadruplets of points with high
repeatability and equal spatial distribution over the object. For each point inside
a N3M, a classifier is learned using randomized trees. At run time, test points are
matched to N3M’s using the corresponding classifiers, and a local pose is computed.
Each local pose is eventually verified, and consistent N3M’s are used for the final
estimation.

Feature Matching When the amount of clutter is high, many erroneous corre-
spondences can be established, thus leading to a wrong pose estimation regardless
of the robustness of the method used to compute the pose. Therefore, effective
matching techniques must be introduced to replace nearest neighbor matching,
which is easily prone to errors. In this regard, [68] interprets matching as a classi-
fication problem. A known 2D model is learned in terms of PCA-reduced features
and for each feature a classifier is trained by randomly warping the original patch.
At test time, the feature identity of the query patches is found by means of the
model classifiers. Then, the homography is computed by solving a linear least
squares problem. A variation on the previous method is proposed by the same
authors in [69], where randomized trees are used instead of classifiers based on

16 Chapter 2 Feature-based pose estimation

Figure 2.9: Three different scenes with repeated objects. The pose of the object is
depicted by the three colored axes. (Pictures taken from [14].)

(a)

Figure 2.10: (a) and (b) Images of the four sides of a juice carton. Please note that
two sides are only differentiated by the presence of the red lid. (c)
Two instances of the same object are detected in a cluttered image
and opposite sides are correctly identified. (Pictures taken from [55].)

K-means, and the decision thresholds are learned on the basis of the difference
between pixel values. By following the same direction, [53] proposes a method
based on two feature classifiers. A first classifier based on Ferns is learned for each
feature identity. A second classifier is learned for each feature orientation from
descriptors computed on synthetically warped patches. The output of the pair of
classifiers is the feature identity and an initial guess for the pose of the patch. The
final pose is estimated by recursively refining the initial guess by means of a cas-
cade of linear predictors, as shown in Figure 2.8 In the follow-up of this method
[52], the authors propose to learn only one linear classifier that combines keypoint
identity and pose, instead of two cascaded classifiers. In a second follow-up [54],
they replace the linear classifier with a set of mean patches. By decomposing all
patches into a set of PCA components and warping them, the method can perform
in real time.

2.3 Pose Estimation for Single Objects 17

Repetition of objects and structures An important problem closely related to
matching is the presence of multiple object instances and repetitive structures.
The repetition of objects in the scene and of patterns on the object surface re-
quires a careful handling of the resulting matching ambiguities. A solution for
the problem of multiple instances is addressed in [14], where a 3D point cloud
is reconstructed from a set of training views of the object. Then, SIF'T features
are extracted from the test image and matched against the model features. In
this case, test features are clustered with mean shift and each cluster undergoes
an individual pose estimation procedure, as shown in Figure [2.9] The repetitive
structure problem is addressed in [55], where features are enriched with synthetic
versions obtained through patch warping and then clustered in a hierarchical way.
At test time, features are extracted from the test image and matched against each
hierarchical level of model features without discarding ambiguous matches. The
pose is finally estimated using RANSAC and a view constraint based on point
co-visibility, as illustrated in Figure 2.10] In this way, the ambiguity is retained
and solved only in the last part of the pose estimation paradigm, where geometry
provides useful cues.

Real Time Applications such as on-line tracking and augmented reality have
usually strong real-time requirements, thus calling for the introduction of efficient
techniques. These techniques must be tailored upon the type of feature used
and the average amount of features extracted from the scene. In [58] and [85],
two methods for real-time performance of augmented reality applications, such as
digital books and board games, are proposed. In [58], multi-threading is introduced
to provide real-time performance, where one thread is dedicated to frame-to-frame
tracking, while the other has the task to recognize the book illustrations and
produce 3D animation effects. In [85], the playing board is recognized and the
homography transformation is estimated using BRIEF, which is a fast feature
descriptor. Then, pawns are detected by looking only at specific board positions
for additional time saving. Eventually, pawns can be moved on the board and their
position is tracked over time. In [122][123], the authors propose a real-time tracking
method based on the usage of keyframes as well as frame-by-frame matching, thus
achieving high speed and avoiding both drifting and jitter problems. In [92] [59],
methods for augumented reality are proposed for a high number of objects. The
idea is to distribute object detection over consecutive frames. Each newly detected
object is dedicated a frame-by-frame tracking as soon as computational resources
are available. For this purpose, tracking is only performed on so-called “temporal
keypoints”, instead of the typical tracking-by-detection approach, which is more
time consuming. In the remaining time, detection is still performed to prevent
tracking losses and drift.

18 Chapter 2 Feature-based pose estimation

(a) (b)

Figure 2.11: The current position of the camera is found in a given 3D point-based
reconstruction of a large object like a square (a) or a monument (b).

(Pictures taken from [56, [105].)

Model dimensions Another hard challenge occurs when the dimensionality of
the model grows from few hundreds to millions of features, as in the case of image
localization tasks. Given a 3D model of a large object, like a monument or even
a city area, the goal is to relocate a test image with respect to the model, as
represented in Figure [2.11] Several works have proposed heuristic methods to
speed up the re-localization performance. In [56], the approach is inspired by
document retrieval as a vocabulary tree is built from all the descriptors. Given
a query image, SIFT features are extracted and dropped down the tree. Each
set of 3D points or “document” is given a score. Once the best documents are
recovered, pose verification is performed by creating 2D-3D matches between the
query features and the 3D points of the set and then solving the Perspective-n-
Point (PnP) problem. In [71], image localization is sped up by using priority
matching. For each connected component of the reconstruction, a set of most
representative 3D points is computed by solving an image coverage problem. For
the localization, model features are matched against the image by giving high
priority to points with high visibility, co-visibility and spatial distance in the model.
Once 3D-2D correspondences are available, pose is estimated using a direct linear
transform (DLT). In [I05], location recognition is accelerated by using direct 2D-
to-3D matching, feature quantization and prioritized search. More specifically,
visual words are obtained by clustering the 3D points of a given reconstructed city
scene. At test time, features are extracted from the query image and assigned to
the nearest visual word. Correspondences in which the visual word contains few
model features are analyzed first. The search stops after N correspondences are
found and the pose estimation is performed by solving the PnP problem.

2.4 Pose Estimation for Object Classes 19

2.4 Pose Estimation for Object Classes

Up to now, our discussion has described how features can be employed to solve the
pose estimation problem for the case of individual objects. When we address the
pose estimation problem for object classes, where only the category membership
of the object is known, like in this thesis, specific difficulties arise, as already
highlighted in Chapter

The first problem comes from a design property of features that is generally advan-
tageous in object recognition tasks, i.e., distinctiveness. Feature descriptors are
designed to be as discriminative as possible, so that false positive detections are
kept to a minimum. However, when we have to estimate the pose of an unknown
object, this property is not advantageous anymore, as the difference between a
query descriptor and the descriptors of analogous structures in the training set
is possibly large. Therefore, countermeasures must be taken to reduce feature
specificity by aggregating descriptors of similar parts, so that a more general de-
scription of each structure is created. Since feature generality and distinctiveness
are in contrast, the clustering algorithm must be carefully chosen in order to find
a satisfactory trade-off.

The second difficulty is related to the point-like nature of appearance features.
While the feature spatial arrangement is used in the single object case to build a
precise model, this cannot be done directly in the class case, as feature clusters
do not have a precise spatial location. Therefore, when a 3D class model is of
interest, 3D locations for feature clusters must be defined. For example, a spatial
distribution of parts can be fit to individual 3D reconstructed models or feature
clusters can be manually linked to the 3D points of a CAD model.

The third problem is related to the transformation that aligns the model features
to the test features. Irrespective of the dimensionality of the class model, this
problem is not trivial to solve. On the one hand, if the class model is three-
dimensional, the different arrangement between model points and query points
must be taken into account when computing the mapping transformation. On
the other hand, if the model is defined as a view classifier, no model-to-instance
mapping is actually possible, and thus the pose is just given by the label of the
classifier with the highest score.

While the first problem is treated by all methods in the literature with a feature
clustering step, the last two problems turn out to be more critical. In this regard,
two different trends can be identified in the literature according to the dimension-
ality of the model employed. Methods that opt for a 3D model have a large price
to pay in terms of complexity and availability of suitable training data, not to
mention ambiguities in model construction and in the alignment transformation.
The important advantage deriving from full 3D geometry is that the pose can
be estimated as a continuous value. On the contrary, methods that rely on 2D

20 Chapter 2 Feature-based pose estimation

Off-line
¢ 2D Class
71 Model
ST —
‘ 3D Class
. Model

J
- 1
Estimationf.

N —— -

N ———

(.

Figure 2.12: Paradigm for pose estimation of object categories. In the off-line step,
a class model (2D/3D) is trained or built according to a set of training
images or videos. In the on-line step, the class model is employed by
the estimation algorithm to determine the pose of the object in the
query image. The pose is either discrete or continuous according to
the model dimensionality.

models are intrinsically simpler to build and to handle, often amounting to a set
of view classifiers. However, they have the strong disadvantage of providing only
a discrete, often coarse, value for the pose. Like for pose estimation methods for
single objects, those addressing the case of object classes can be also framed in
one paradigm, yet more general, as illustrated in Figure 2.12]

As highlighted before, both strategies suffer from strong limitations. 3D models
can be hard to build and are complex to treat, while strategies providing a discrete
pose may not be suitable for many applications. In very recent years, several
methods have been proposed to bridge this gap, i.e., to provide a continuous pose
estimation on the basis of only 2D training information. Part of these works
propose a solution based on a discrete-to-continuous strategy. That is, they first
estimate a rough viewpoint, usually by means of view classifiers, and then refine

2.4 Pose Estimation for Object Classes 21

Figure 2.13: 3D textured CAD models for cars and motorbikes. (Pictures taken
from [73].)

the pose with continuous precision. On the contrary, other approaches, like the
one proposed in this thesis, directly estimate a real value for the pose without
going through any rough intermediate estimation. The important advantage is
that they do not have to rely on a hard decision. That is, they avoid the problem
of an initially wrong viewpoint estimation that would irrecoverably undermine the
correctness of the final pose.

In the following, we provide a comprehensive discussion of related works for pose
estimation of object classes. We structured this discussion according to the three
different strategies that we have highlighted above. At the end of this overview, we
will provide a comparison between the method we propose in this thesis and the
most similar approaches available in the literature. We will motivate our technical
choices and discuss the advantages of our approach.

3D Model When approaches rely on 3D models, two alternatives are of common
usage. On the one hand, one or more CAD models of objects from the class at
hand are designed privately or acquired from Internet repositories [I]. CAD mod-
els are appealing for several reasons: they have a precise geometry, they give the
possibility of texture renderings, they contain no noise. The two main disadvan-
tages are related to availability and cost. On the other hand, 3D models can be
reconstructed by employing Structure-from-Motion techniques, which revert the
pros and cons of using CAD models. Annotated image databases are ubiquitous
in computer vision and they are free and extremely varied. However, 3D modeling
suffers from errors in the geometric reconstruction as well as from the introduction
of spurious information in the model. However, irrespective of the model chosen,
the knowledge of the 3D geometry allows to compute a projective mapping from
the model to the query instance, and thus permits to deliver a continuous value for
the pose. In the following, we will illustrate different strategies where 3D models
are used to compute the pose of an unknown object of a given class.

In [73], a general class model is learned from accurate 3D CAD models, like those
shown in Figure 2.13] More specifically, the authors render a set of images from

22 Chapter 2 Feature-based pose estimation

3D CAD models by sampling the pose space in terms of azimuth, elevation and
distance. SURF features are extracted from the rendered images and labeled with
class, viewpoint and 3D position. Features are clustered in a codebook using k-
means in order to cope with intra-class variability. At test time, query features are
matched against the codebook, and each entry cast a vote in a Hough space. All the
maxima are eventually verified by computing a projection matrix on the basis of the
2D-3D matches. The matrix, and thus the viewpoint, with the highest consensus
is returned. In their follow-up paper [72], the authors use 3D CAD models with
a different spirit, by using appearance to estimate a coarse viewpoint and then
geometry for continuous refinement. In details, they rely on a spatial pyramid
of DAISY histograms to describe each object. For each discrete viewpoint and
each part, a SVM classifier is learned. A geometric model is built out of 3D CAD
models by learning a distribution for the location of the 3D points belonging to
each part. The probability is defined in terms of an adaptive mixture of Gaussians.
At test time, in a sliding window fashion, parts are detected and a coarse vote in
the Hough space is collected. Finally, the continuous pose is found by maximizing
the projection of the image to the 3D parts of the model.

A recent work in which CAD models are used in training is that of [126], where a
method for viewpoint and part layout is proposed. Given a set of 3D CAD models,
training is performed by learning a set of aspect parts, so that each part is repre-
sented as a 3D rectangle with a center location and a HOG feature representation.
Given an image, the probability that the object is depicted from a certain view-
point is expressed through an energy-based formulation. The formulation takes
into account both unary potentials for the appearance of the individual parts and
pairwise potentials for the reciprocal positions of pairs of parts. By training a
Structured SVM [120], the pose is found as the one that maximizes the output of
the classifier. The layout of the parts comes automatically from the estimation of
the viewpoint and the 3D model. The authors have also proposed an extension
for this method in [4], where detection and pose estimation is performed simul-
taneously on a set of images depicting the object. In this case, individual parts
with low scores can benefit from two different evidences. One given by the other
parts of the model that are simultaneously visible in the same image, and the other
given by the same part in other images to which a strong match can be found.

In [128], a method for 3D object detection and pose estimation based on visual
words and SfM reconstruction is described. On the basis of a set of images of
different class instances, SIFT features are extracted and clustered in visual words.
For each instance, a visual model is created by using SfM techniques, so that a
correspondence between 3D coordinates and visual words can be determined. At
test time, SIFT features are extracted from the query image and matched against
several models of each class. Through over-segmentation, small regions of the

2.4 Pose Estimation for Object Classes 23

instance #1

ay

instance #2

=

)

instance #3

/N

s

Figure 2.14: (Left) Instances of a hypothetical object, where the colored parts
represent sets of small neighboring features. Parts with the same
color across different instances are found to be in correspondence.
(Right) The model of the object category is a graph where the nodes
are the object parts P; and the edges are the connecting homographies
(H;j). (Pictures taken from [106].)

image can be matched to the model and 2D-3D correspondences are considered to
compute a projection matrix. Eventually, the model is reprojected on the image
and each projection matrix is ranked according to its consensus. The matrix with
the highest consensus is returned as the estimated pose.

As in the previous work, the authors in [39] collects individual 3D models from a
set of training pictures. In this case, models are merged during training by simply
aggregating all the features in one large, redundant 3D class model. Given a test
image, HOG features are extracted and multiple matches to the 3D model features
are found. Now, for each match, the authors assume that the query feature shares
the same viewpoint and scale as the matching model feature. Thus, the projective
transformation amounts to a simple shift in the 2D location of the feature, which is
cast as a vote in a dimensionality-reduced Hough space. Finally, a 6 DoF projective
transformation that fits all the features that cast a vote in the neighborhood of
the Hough maximum is returned.

2D Model - Discrete estimation In [106, 107, [108], the authors propose a
method for pose estimation of object classes, where the model is constituted by 2D
parts linked through homographies, as illustrated in Figure [2.14 Model parts are
selected from a larger pool of training parts, where each part is defined by a set of
quantized SIFT features and a bounding box. The linkage structure between two
model parts relies on the homography that projects one part in the best view of the

24 Chapter 2 Feature-based pose estimation

[SsVM
Classifier
h L Vlewp'omt 1)
Classifier 1 SVM)
[[Lg/ ESRE 2 A Classifier
@y
LT DD Viewpoint N

Figure 2.15: DAISY dense features are extracted from the given window and quan-
tized. A histogram pyramid is built by computing histograms over
smaller spatial cells. The concatenated histograms are input to a
NB classifier and the viewpoint with the highest score is determined.
The histogram is then input to the corresponding SVM classifier for
a binary decision about the object and the viewpoint. (Picture taken
from [90].)

other. At test time, each model part is compared against the test features and the
five best matches per part are retained. Part matches are eventually evaluated by
scoring their pairwise location and appearance according to a view synthesis cri-
terion. The combination of parts with the highest score simultaneously identifies
the object location and the object pose in terms of the nearest model view.
While the previous approaches rely on 2D parts connected by two-dimensional
transformations, many others bluntly interpret the pose estimation problem as a
classification problem. In these works, the model has no real dimensionality and
the accuracy of the provided pose depends on the number of views on which the
classifier is trained.

One work in this direction has been presented in [90], where the main idea is to
consider different views of an object as different objects. In order to estimate the
pose, the authors train two types of classifiers: one Naive Bayes (NB) classifier and
N SVM classifiers, where N is the number of possible output viewpoints. The NB
classifier is trained with a pyramid of spatial histograms that are computed on the
basis of quantized DAISY features, as illustrated in Figure 2.15] The NB classifier
is used to learn a mapping from the spatial histograms to the probability of each
viewpoint. At test time, as illustrated in Figure 2.15 histograms are extracted
from the given bounding box and the viewpoint with the highest probability is
determined by the NB classifier. On the basis of the chosen viewpoint, the cor-
responding SVM classifier is run. If the classification is positive, the viewpoint is
returned as the estimated pose.

In [98], the choice of the classifier falls upon the recently introduced Hough Forests
[36]. The authors leverage the single-view object detector described in [35] and

2.4 Pose Estimation for Object Classes 25

provide a multi-view extension. For each view, a Hough forest is trained using
RGB patches taken from view-labelled training images. At run-time, each test
patch is dropped down the forest and a set of 4D votes is cast, where the four
dimensions are: 2D location, scale, and viewpoint. The Hough image results by
considering the average for each tree and the contribution of each patch. The view
component of the maxima detected in the Hough image provides the estimation
of the object pose.

The previous approach indirectly relies on the concept of feature sharing, as differ-
ent features can be present in multiple views and vote for similar center locations.
A work that is focused on feature sharing for multi-view detection is presented in
[I19]. In this paper, the authors propose a method based on a variation of Ad-
aboost [33], called “gentleboost” [34], to perform view classification of cars. The
idea is to learn a classifier based on feature{] that simultaneously classifies a patch
with respect to multiple views. Each set of multiple views is chosen in a greedy
fashion as the one that minimizes the current misclassification error. The view for
which the accumulated score over all shared classifiers is the highest is returned
as the estimated pose of the object.

2D Model - Continuous estimation In this paragraph, we describe approaches
that rely on 2D training information, yet are able to provide a continuous pose,
like the method proposed in this thesis. In this way, they take advantage of the
simplicity of creating and handling a 2D model, without losing the capability of
outputting a real-valued pose. This is obtained by employing different strategies,
like regression, Taylor expansion or kernel density estimation.

The authors in [I18] leverage the approach presented in [I16], T17] and provide
an extension for continuous pose estimation using regression. The two original
works presented a method for object classification based on projecting training
SIFT features on a lower dimensional manifold. In [I1§], the embedding of training
features from different instances is constrained not only by the intra-image location
distance and inter-image feature distance, but also by the viewpoint distance.
Regression is performed with a radial basis function network, where the centers
are a subset of the training images. The regression coefficients are learned by
solving a linear least-squares problem where the interpolation matrix has entries
in terms of the percentile-based Hausdorft distance between two projected center
images. At test time, test features are embedded on the manifold using a previously
learned out-of-sample mapping function. Linear regression in the embedded image
space is performed to output a continuous estimate for the pose.

The work in [47] proposes the usage of K-ary regression forests to perform pose

Tn boosting literature, the term feature commonly identifies a binary test to be applied to the
image patch

26 Chapter 2 Feature-based pose estimation

estimation. Instead of a typical binary regression forest, the authors provide a
mechanism to train an adaptive K-ary regression forest, where the value of K is
chosen at every splitting node. More specifically, K is found by minimizing the
Bayesian Information Content at each splitting node with respect to the number
of clusters. In this way, the partition of the training HOG features is performed
in the optimal way according to the labels that reach every node. At test time, a
test patch is dropped down the forest, and the reached leaves provide a regressed
value for the pose that is finally averaged over all forest trees.

In [44] the authors extend the object detector in [26], 27] to provide a continuous
pose. The idea is to train a set of part-based SVM classifiers with HOG features
extracted from positive and negative training images, where each classifier is dedi-
cated to a certain discrete viewpoint. Then, the optimization function is modified
by making the classifier templates dependent on a pose offset through a Taylor
expansion. The sum of the coarse viewpoint and the offset maximizing the new
optimization function is returned as the continuously estimated pose.

Another work that follows the same strategy of first providing coarse pose candi-
dates and then refining the estimation can be found in [50]. Here, object local-
ization and pose estimation are coupled in a single classifier. As the search space
is huge and the objective function is non-convex, the key idea proposed by the
authors is to parameterize the classifier with respect to the pose variable. In this
way, it is possible to instantiate an arbitrary amount of sub-classifiers, where each
classifier is dedicated to a specific pose. First, this set of classifiers is used to select
several location candidates with an associated coarse pose. Then, the proposals
are evaluated on the original objective function in a continuous way, but on a re-
duced search space. The maximum of the objective function is finally returned as
the estimated pose.

A continuous extension of the work presented in [98] is proposed in [99], as il-
lustrated in Figure 2.16] Here, Hough Forests are used to determine only the
candidate locations for the object at the maxima of the Hough voting space for
the (x,y) coordinates. The continuous extension for the pose estimation is ob-
tained by first considering all the votes in a small neighborhood around the pose
maximum. And then, a probability distribution for the pose is built by using a
Gaussian Kernel Density Estimation (KDE) centered around the pose votes. The
pose that maximizes this distribution is the returned pose.

2.5 Comparison to our method

Our method can be framed in the third category mentioned above, i.e., our class
model is built using only 2D training information and a continuous value for the
object pose is provided. Like all these approaches, we also use appearance-based

2.5 Comparison to our method 27

Figure 2.16: Each patch in the test image is dropped down a Hough Forest, whose
votes are accumulated in Hough images at multiple scales. The votes
in the neighborhood of the maxima are averaged and a KDE is fit to
the discrete distribution in order to find a continuous pose. (Picture
taken from [99].)

features, but we propose to use them in an innovative way by intentionally ex-
ploiting one of their seeming weaknesses.

Whereas features are not invariant to out-of-plane rotations, the way their de-
scriptor varies with respect to a change in viewpoint is smooth. This gives us the
inspiration for learning a regression function for each feature that can predict its
descriptor given a query pose. Each regression function, that we named genera-
tive feature model, is learned from an arbitrarily large set of features describing
the same patch under different viewpoints. Since pose estimation is ultimately
a continuous problem, any classification method providing only a discrete pose
is inherently inaccurate, and additionally, classification methods proposed so far
achieve accurate estimations only for coarse quantizations. Our motivation to rely
on regression functions to estimate a continuous value for the pose is thus a natural
choice. In this regard, our work shares some similarity to [118], as they also use
regression on local features. While they apply regression to an entire set of train-
ing features as an atomic unit, we propose in this thesis to apply it individually to
each feature. This has the advantage, confirmed by experiments, that the pose of
an unknown object can be better estimated by aggregating evidence from individ-
ual patches of different training instances, rather than combining whole instances
together.

As already mentioned, a feature clustering step is necessary to reduce discrimi-
nativeness and create a more general description of the grouped feature tracks.
We resort to spectral clustering, a technique that permits to perform grouping on
the basis of the elements connectivity instead of their geometrical proximity, like
k-means, which is the clustering method of choice of all the approaches mentioned
before. Furthermore, the use of spectral clustering is beneficial for two different

28 Chapter 2 Feature-based pose estimation

reasons. First, we do not need to assume any special arrangement for the feature
tracks to be clustered, as it can handle non-convex sets, unlike k-means. Secondly,
k-means cannot be applied to sets whose elements have a different dimensional-
ity, like our feature tracks. A feasible alternative would be k-medoids, but the
non-convexity issue would still remain. As a similarity score for clustering, we
propose to score pairs of generative feature models by using an algorithm inspired
by dynamic time warping. Dynamic time warping is a technique from audio pro-
cessing that permits to align signals of different length, and so its application in
our problem is straightforward by replacing signals with feature tracks and time
with viewpoint.

At the end of the clustering step, we learn a class representation that is based on
the grouping of generative feature models, where each cluster is analogously named
generative cluster model. Each cluster model is assigned a regression function that
is the linear combination of the regression functions belonging to the elements
of the cluster. Finally, on the basis of the generative cluster models, a posterior
distribution of the pose of the query instance is estimated. Unlike many methods
mentioned above, we treat the problem in a probabilistic fashion. In this way,
we can apply a mazimum a posteriori reasoning if we need to provide a pose
value for each single frame, but we can also combine the posterior distributions at
consecutive frames to infer more information about the variation of the pose over
time. We show this capability of our method in Chapter [f], where we sample from
the posterior distribution at each frame and we connect these samples to yield the
optimal pose trajectory over an entire video sequence.

Chapter 3

Appearance-based features

In this chapter, we first give a brief introduction of the main ideas behind feature
design by examining technical details that make features highly distinctive and
invariant to image transformations. Then, we will describe in detail the algorithms
of two specific features that are extensively used in this thesis. This deep treatment
can be considered as a prerequisite for the presentation of the fundamentals of our
method in Chapter

As mentioned in Chapter [2] standard feature design encompasses two steps: key-
point detection and keypoint description, so that each feature is characterized by
a location and a vector description. The feature detection process should iden-
tify repeatable and precise locations, so that the same features can be extracted
in another image of the same object. As edge points are hard to re-localize in
other images, the focus moves towards points that exhibit strong changes in two
directions. These points are located at the local extrema of the image response to
a Gaussian first or second order derivative filter. Gaussian filtering is performed
to smooth the image so that high frequencies are removed. The use of image
derivatives permits to identify corners and blobs, which are repeatable structures
characterized by a precise location. This operation is usually performed at differ-
ent scales, i.e., by changing the size of the Gaussian filter, so that scale invariance
is guaranteed. In addition to translation and scale invariance, features are also as-
signed a main orientation, so that invariance to in-plane rotation is also provided.
This assignment is usually based on the estimation of the main gradient orienta-
tion in the neighborhood of the point. As features must be distinctive, the feature
descriptor must be computed in such a way that features can be matched without
ambiguity. The descriptor is a vector computed on the basis of the neighborhood
information, for example by concatenating a number of histograms calculated over
a predefined set of sub-regions around the keypoint.

Actually, many fundamental concepts of this two-step design have been introduced
much earlier. For example, the idea to describe an image by a set of local interest
points can be traced back to the Moravec and Harris corner detectors [86, [4§].
Invariance to scale was studied by Lindeberg in his work [74], where the so-called

30 Chapter 3 Appearance-based features

scale-space theory was presented. The distinctiveness of a description based on
local derivatives was already pointed out in [61], where interest points are described
by partial derivatives of different orders, the so-called local jet. The first work
where this two-step design is entirely employed is the one presented in [109]. In
this paper, the authors use a corner detector with a multi-scale approach to identify
characteristic locations, at which they compute a local jet descriptor in a rotation-
invariant way. This seminal work paved the way to the active development of many
invariant features over the last fifteen years, of which SIFT and SURF features are
possibly the most famous. Since they constitute the fundamental tool behind the
approach developed in this thesis, we will provide a detailed description of these
two features in the following two sections.

3.1 SIFT - Scale Invariant Feature Transform

With the SIFT algorithm, the image is transformed into a set of features that
are invariant to translation, in-plane rotation and scaling, and they are partially
invariant to changes in illumination and viewpoint. The algorithm to compute
SIFT features can be split into four steps, each of which is described in detail in
the following. In the first two steps, candidate interest points are first identified
as extrema of the image scale space, and then are precisely localized by fitting
a quadratic model. Furthermore, the orientation of the interest point is com-
puted so that all the future operations are performed on image data that has been
transformed according to the estimated keypoint orientation, scale and location.
Finally, the descriptor is calculated by binning the gradient orientations of the
neighboring pixels.

Scale-space extrema detection

The first step of the algorithm involves searching for candidate image locations
that are stable across different scales. This is achieved by applying the scale-space
theory. More specifically, an image set is obtained by repeatedly filtering the
original image with a smoothing GaussianE] derivative kernel of increasing size.
Each Gaussian-filtered image L(x,y,o) in the scale space is the result of the
convolution between the original image I(x,y) and a Gaussian derivative kernel
G(z,y,0), that is,

L(z,y,0) = G(x,y,0) * I(x,y).

2In [60], it is shown that the scale-space representation must satisfy the heat diffusion equation.
Since the Gaussian function is the Green’s function of the heat diffusion equation on an
infinite domain, the only possible kernel for generating the scale space is a Gaussian function
or its derivatives.

3.1 SIFT - Scale Invariant Feature Transform 31

Scale
(next
octave)

A S

e

Vs

BT T T

Scale

Scale
(first
octave)

Difference of ”{Afg-z{'

Gaussian Gaussian (DOG)

Figure 3.1: (a) Scale-space pyramid (b) The extremum is found by comparison
with its neighbors at its own scale as well as the two adjacent scales.
(Pictures taken from [78].)

According to the order of derivation used, different structures can be found at
the extrema of the filtered responses. First order derivatives are used to find
corners, while second order derivatives are used to identify blobs. In [84], the
scale-normalized Laplacian of Gaussian (LoG) operator, which is a second order
derivative operator, is found to be the most stable. In SIFT, an approximation
of this operator, namely the Difference-of-Gaussian (DoG) operator, is used. The
DoG is defined as the difference of two Gaussian functions with scales differing by
a factor of k. By applying the DoG operator to the image, a band-pass filtered
version of the image D(x,y, o) is computed as

D($7y70) = (G(x,y, kg) - G(:v,y,a)) * I(I’,y)

= L(x,y, ko) — L(x,y,0) (3.1)

The choice of the DoG function benefits from two facts. First, the DoG operator is
closely related to the scale-normalized LoG function. Secondly, the DoG works by
performing a simple image subtraction instead of a more computationally demand-
ing differentiation. For greater efficiency, the DoG pyramid is built by convolving
the original image repeatedly with Gaussian filters of increasing size, where the
size factor between consecutive DoG images is k. Once a complete octave has
been processed, i.e., when the filter size has doubled its starting value, the image
is down-sampled by a factor of 2 and the process is repeated for a fixed amount
of octaves, as exemplified in Figure 3.1 In order to detect the extrema, a simple
comparison of each pixel to its 26 neighbors in a 3 x 3 x 3 cube is done, as shown

32 Chapter 3 Appearance-based features

in Figure 3.1}
Keypoint localization

The candidate locations found in the previous step suffer from errors due to the
discretization of the image domain as well as of the scale space. In order to increase
the accuracy in location and scale, a 3D quadratic function is fit to the nearby
data. This is beneficial not only because of the increased accuracy, but it also
permits to reject points that have a low contrast or that are weakly located on an
edge. More specifically, a Taylor expansion of the DoG image D(x,y,0) = D(x),
shifted so that the origin is at the candidate point location, results in

oDT 1 +0°D

ox TN e

By setting the derivative of this expansion to zero, the function extremum is located

D(x)=D+

s _ _ (8*D -1 9D
at X = o 5. - Dy substituting this value into the expansion, we obtain the
value of the function at x as D(x) = D + %%%ch.

Subsequently, points that have a low contrast are rejected by comparing D(X)
with a predefined threshold. By mimicking the Harris corner algorithm, the Hes-
sian matrix of the DoG image is computed at the candidate point to reject edge
structures. More specifically, the Hessian matrix H is defined as

D D
H= T Ty .
[Dwy Dyy}

The matrix eigenvalues a and 3 are proportional to the principal curvatures of
D. Since the goal is to reject points located on an edge, the computation of the
eigenvalue ratio r = «/f suffices. The ratio can be computed directly from the
matrix entries, according to the following formula

Tt(H) Dgp+Dy,, a+f (r+1)
Det(H) DypDyy — (Doy)? a1

where Tr and Det are the matrix trace and determinant, respectively. Therefore,
points for which this ratio is smaller than a predefined threshold are discarded. To
summarize, the candidate points that remain at the end of this step are strongly
localized at the center of blob-like structures and show a high contrast.

Orientation assignment

The third step envisages the computation of a main orientation for each candidate
point. As the final descriptor will be calculated relatively to this main orientation,

3.1 SIFT - Scale Invariant Feature Transform 33

Pl M BN
AR M A AR
__'_‘-\.-l.-ll'rt.-h-’f
| t

-

ar

N"w—.."‘i".r"‘.ry
e +

X

Image gradients Keypoint descriptor

Figure 3.2: (Left) Gradients computed in a square neighborhood of a keypoint
weighted by a Gaussian window shown in blue. (Right) Histogram
binning of gradient orientations over the four 4 x 4 sub-regions. The
number of sub-regions is reduced for ease of visualization. (Pictures

taken from [78].)

rotation invariance is guaranteed. More in detail, the scale of the keypoint is
used first to identify the closer Gaussian image L(x,y) in scale space. Then, for
each pixel L(z,y) within a circular neighborhood around the keypoint, gradient
magnitude and orientation are computed, according to

m(z,y) = /(L(z+ Ly) — Lz — 1,y))? + (L(z,y + 1) — L(z,y — 1))?

L (Llay + 1)~ Lwy 1)
0(z,y) = tan (L(Hl’y) “ I - Ly))

An orientation histogram is formed by finely binning the gradient orientations
weighted by their magnitude as well as by a circular Gaussian window, whose size
is 1.5 times the size of the keypoint scale. The peak of the orientation histogram
identifies the main keypoint orientation and it will be used in the following step to
compute the feature descriptor in a rotation-invariant manner. If the orientation
histogram envisages multiple significant peaks, a corresponding number of different
keypoints will be created.

Keypoint descriptor

Up to now, the interest point has an accurate location at (z,y, o) and is provided
with a main orientation. In this last step, a descriptor for the keypoint is assem-
bled. The key idea is to represent the information in the neighborhood of the
point in another, coarser gradient orientation histogram. More precisely, gradient

34 Chapter 3 Appearance-based features

magnitudes and orientations are collected from a 16 x 16 patch around the key-
point. The patch is rotated with respect to the main orientation and its size is
proportional to the keypoint scale. In each 4 x 4 sub-region, a 8-bin histogram
of gradient orientations is computed, as illustrated in Figure 3.2l The resulting
descriptor is formed by concatenating the 16 histograms for a total size of 128
elements. The benefit of aggregating gradient information over regions is that
the descriptor will be more robust to small image perturbation and noise in the
gradient computation.

3.2 SURF - Speeded Up Robust Features

Similar to SIFT, SURF transforms the image into a set of features that are in-
variant to translation, in-plane rotation and scaling. The SURF algorithm can
be split into the same four steps as SIFT: candidate point identification, refined
localization, computation of the main interest point orientation, and descriptor
calculation. The differences lie in the technical tools used to compute each step.
SURF uses an approximation of the Hessian matrix instead of the DoG to find
candidate points, while it uses the same algorithm to refine their location. Instead
of using local gradients for the computation of the main orientation and the fi-
nal descriptor, SURF is based on the patch responses to a set of oriented Haar
wavelets.

Scale-space extrema detection

By mimicking the LoG approximation introduced in SIFT, the keypoint detector
used in SURF employs an approximation of another blob-detector, the Hessian
matrix. This matrix is based on the responses of the image after filtering with a
Gaussian second order derivative, that is,

where L,,.(x,0) = 8262(2") x I1(x).

The approximation is performed by discretizing and cropping the Gaussian second
order derivative filters to obtain simpler box filters, as illustrated in Figure |3.3
The advantage of using box filters is that they can be coupled with integral images
for a fast computation. As defined in [124], an integral image I (x,y) is defined
as

Ie(ey) =33 10).

i=0 j=0

3.2 SURF - Speeded Up Robust Features 35

Figure 3.3: Gaussian second order partial derivative in y-direction (L,,) and zy-
direction (L,,). The corresponding box filters. Each entry in the black
regions has weight —1, in the white regions +1, and in the grey regions
has value 0. (Picture taken from [7].)

that is, the accumulation of all the pixel values in the rectangle that has the image
origin as upper left corner and the point (z,y) as bottom right corner. The advan-
tage of using integral images is that the sum of intensities over a rectangular area
of any size can be computed in only 4 additions. Therefore, its direct application
for box filtering makes SURF computationally very efficient.

The algorithm starts with a filter box of size 9 x 9 that corresponds to a discretized
Gaussian second order derivative of ¢ = 1.2. In order to keep the filter weights
balanced after discretization, the diagonal components of the Hessian matrix are
multiplied by a ratio of ;ﬁzzg;gli 1325E33I§ = 0.9. Following the scale-space theory,
increasingly filtered versions of the original image must be created. The image
is not repeatedly filtered as in SIFT, but the scale-space is obtained by simply
increasing the filter size. Again, the usage of box filters and integral images is
computationally beneficial, as the size of the filter does not affect the operation
cost. More specifically, several filtering octaves are envisaged, where now the
octave identifies an interval between two filters whose sizes are in a ratio of 2:1.
Unlike SIFT, the candidate keypoints are detected as those points at which the
determinant of the Hessian achieves a maximum in a 3 x 3 x 3 neighborhood. The
location and scale is accurately refined using the same algorithm explained in the
SIF'T section.

Orientation assignment

As in SIFT, each keypoint must be provided a reproducible orientation. The
difference is that in SIF'T gradients in the neighborhood were binned in a fine
histogram, while in SURF the main orientation is estimated using Haar wavelets
and a sliding orientation window.

More specifically, for each sampled point in a circular window around the keypoint,
the responses to z- and y-oriented Haar wavelets are computed. Then, these
responses are weighted with a Gaussian centered at the keypoint location and

36 Chapter 3 Appearance-based features

dy
T
/'/ ™~
\
// \\
/ . % |
. i 4 : - —
\ =,
\.\ Y - /
. \ /
S //

(a) (b)

Figure 3.4: (a) Haar wavelets in the x and y direction. (b) Sliding orientation win-
dow identifies the main orientation of the Gaussian weighted responses.
(Pictures taken from [7].)

represented as points in a diagram by mapping the corresponding responses with
respect to two orthogonal axes. As shown in Figure [3.4] a sliding window of
size /3 is used to compute the sum-of-responses vector. The main orientation is
chosen as the longest sum-of-responses vector.

Keypoint descriptor

A square patch around the keypoint is rotated with respect to the main orientation,
and for each sampled pixel in this patch four terms are computed: dx, dy, |dz| and
|dy|. The first two terms are the signed responses to the same two Haar wavelets,
now rotated with respect to the main orientation, while the second two are their
unsigned counterparts. The patch is divided in sixteen 4 x 4 sub-regions and the
4-dimensional vectors are accumulated. The final descriptor is the concatenation
of these accumulations for a total length of 64 elements.

Chapter 4

Pose Estimation with Feature
Regression

In this chapter, we introduce the core of the method proposed in this thesis. First,
we present the building block of our approach, the so-called generative feature
model, i.e., a regression function that predicts the feature descriptor components
as a function of the viewpoint. Then, we describe how to use generative feature
models in order to solve the pose estimation problem for a single, specific object.
In the second part of this chapter, we extend the formulation developed for the
single case to the class case, where only the object membership, but not its identity,
is known. In order to do so, we first show how to measure the similarity between
generative feature models collected from different objects and how to effectively
aggregate them into meaningful clusters. Then, we formulate the pose estimation
problem in terms of the model clusters by embedding them into a probabilistic
framework that permits to obtain a posterior distribution for the estimated pose.
Finally, we substantiate the effectiveness of our method with a set of experiments
on two publicly available datasets.

4.1 Feature Regression and Generative Feature
Models

When we have introduced appearance-based features in Chapter 2, we have high-
lighted that one of their main advantages is that they are designed to be robust to
many image transformations. In Chapter [3| we presented two specific appearance-
based features, i.e., SIFT and SURF, and we showed in technical details how these
features are made invariant towards scale changes, translation, in-plane rotation,
and illumination changes.

As a matter of fact, all appearance-based features that have been proposed in the
literature up until the time of writing are not invariant to perspective transforma-

38 Chapter 4 Pose Estimation with Feature Regression

100 100

AFH-15

80 N “ P
_ T) # DoG
g\"_ - a = Harris—Laplace
> 60 e e
= z 60 Fon O Hessian-Laplace}.........
g = B
g = ’\
o = N
2 40 3 A
@ o 40 g
o Matching location and scale 2 \5:)
20 Matching location, scale, and orientation = 1\
~ Nearest descriptor in database =« ~ | 20 o
0 i i i i X
0 10) 29 80 40 50 (.i(] 25 30 35 40 45 50 55)
Viewpoint angle (degrees) viewpoint angle

Figure 4.1: Repeatability for SIFT (left) and SURF (right) features. In the right
pictures, FH-9 and FH-15 refer to the Fast Hessian detector employed
by SURF with initial filter of size 9 x 9 and 15 x 15, respectively.
(Pictures taken from [78] and [6].)

tionsﬂ That is, when the object undergoes an out-of-plane rotation, either due to
its own motion or to a change of the camera position/orientation, the descriptors
of the corresponding features in the two images will not be equal.

In addition, the detector employed by features like SIFT or SURF can guarantee
only some small tolerance to out-of-plane rotations. This tolerance is measured in
terms of the so-called repeatability, i.e., the percentage of re-detected features as a
function of the viewpoint change. As shown in Figure [£.] repeatability decreases
to around 70-80% after a viewpoint rotation of only 20° for both features, and it
often depends on the evaluation dataset.

The fact that appearance-based features are not perspective invariant is a strong
limitation per se. However, there is an additional, experimental fact about the
way they change with respect to a perspective transformation that turns this
seeming weakness into a useful cue. Let us focus our attention to the way features
descriptors change with respect to viewpoint. As an example, Figure [4.2] shows
the behavior of the components of the SIFT descriptor of a certain patch with
respect to camera rotation. The variation in the components amplitude appears
smooth when the camera orientation changes. So, it comes natural to think about
the possibility to predict the feature descriptor components as a function of the
viewpoint, if a sufficient amount of view-labelled training descriptors for the same
patch is given. On the other hand, if we reverse the task, i.e., we want to estimate

3In the work of Koser et al. [62], the authors provide a method for the generation of 3D
perspectively invariant features on the basis of a depth map and a set of views of a planar or
panoramic scene. Nevertheless, the assumption of having a depth camera or a stereo rig is
not considered here, where only single RGB images are used.

4.2 Generative Feature Models 39

Figure 4.2: The first 15 components, each represented in a different color, of a
SIFT descriptor of the same patch undergoing a rotational motion.
The variation in the component magnitude as function of the pose
change appears to be smooth.

the viewpoint from which a certain descriptor has been observed, we can think
that the most likely viewpoint is the one that yields the smallest error between the
predicted and the current descriptor. This fundamental intuition will turn out to
be extremely advantageous for our pose estimation task and is at the basis of the
building block of our method, the generative feature model.

4.2 Generative Feature Models

The generative feature model is a regression function that models the feature
descriptor of a certain patch as a function of the viewpoint. In developing the
generative feature models, we drew inspiration from the work of [I15], where re-
gression models are learned for small, individual, grey-valued patches. In that
work, the authors consider the specific task of robot pose estimation, the so-called
visual odometry, for autonomous robot navigation. On the contrary, we propose in
this thesis to learn regression models of local features, because this is a more gen-
eral, robust, and effective way to describe and predict the appearance of a generic
object than mere raw patches. By doing so, we are able to go beyond the original
framework, as we provide a method that not only estimates the orientation of an
object by means of the learned regression models, but can also generalize to other
objects that belong to the same class.

40 Chapter 4 Pose Estimation with Feature Regression

Each generative feature model describes the appearance of a single patch, and
it is learned from a set of training pairs, where each training pair is composed
of a feature descriptor f and a viewpoint a from which the descriptor has been
extracted?]

Let T° be the augmented feature track for the 3D planar patch P?, i.e., a set of
n pairs composed by the features {f'}"_, extracted from the same patch under
different viewpoints and the viewpoint labels {a'}?; themselves, i.e.,

T = {(fﬂaﬁ),(f;,a;),,,,,(f:”a;)}’ (41)
where f; is the k-dimensional descriptor representing the neighborhood of patch
P*" when the viewpoint is .

On the basis of the smoothness that feature descriptors exhibit with respect to a
change in viewpoint, it is possible to design a vector-valued function, our generative
feature model, " : R™ — R¥, where m is the dimensionality of the pose space and
k is the dimensionality of the feature descriptor. The function F' acts as a mapping
between pose and feature descriptor space, i.e., it predicts the feature descriptor
of the corresponding patch given a viewpoint as input. Thus, by learning such
a function, we are able to yield a descriptor estimate under the viewpoint «,
Fi(a) = £, for each training track T%. In order to learn this regression function,
we turn to the Radial Basis Function (RBF) network theory [9].

Radial basis function networks are simple artificial neural networks that have been
developed for function approximation, but have also found application in other
fields like classification, time series prediction, and system control. In a nutshell,
the function approximation given by a RBF network is expressed as a weighted
linear combination of n non-linear basis functions, whose weights are learned in a
training procedure. In our case, the basis functions, also known as kernels, have a
Gaussian shape, so that the output of the RBF network for each patch P’ can be
written as

Fila) = iwéG(a,aé) (4.2)

where W; are the k-dimensional vector coefficients estimated from 7% during the
learning of the RBF network, and G : R™ x R™ — R is the Gaussian kernel of the
RBF network defined as,

i i ”a - ai'H2
Glava) = Gl —) = oxp (-1 (1.3
where ||-|| represents a suitable pose distance metric, and o is the kernel bandwidth.

In the following section, we describe in details how to train the RBF network in
order to compute the coefficients Wé- of the generative feature model.

4For sake of generality, we assume that a is a m-dimensional vector, where m € {1,2,3},
although in most of this thesis a@ will be a scalar o.

4.2 Generative Feature Models 41

4.2.1 Generative Feature Model as Radial Basis Function
Network

In the RBF network literature, training the network means to find the multidi-
mensional surface that best fits the training data and to express it as a weighted
combination of activation functions that act as the basis functions of the network.
Additionally, we impose a further training constraint that will be justified in the
following, i.e., we impose that the interpolating surface must pass through all
training data points, which leads us to a strict, multi-variable interpolation prob-
lem. Now, let us see how we can learn our generative feature model F' by training
the corresponding RBF networl{’}

On the basis of an augmented track T, we are given a set of n different training
viewpoint labels {a;}7_; C R™ and a corresponding set of n feature descriptors
{17, C R*. Training the RBF network means to find a function F : R™ — RF,
such that

Flay) = ilecxna Coyl) amd Flay) =1, (4.4)

where the known n training viewpoint labels are taken to be the centers of the
radial basis functions. We can combine the two conditions in Equation (4.4 and
express them in matrix form as

GW =7 (4.5)
where
Gu - Gin
G=|: -~ |, (4.6)
Gnl : Gnn
with Gpg = G([la, —), and
W1 wyp o Wik f; f11 flk
Wp, Wp1 - Wpk fn fnl e fnk

If G is non-singular, the matrix of training coefficients W can be found as
W=G"Z (4.8)

The non-singularity of G is guaranteed by the following theorem [83]:

5We have dropped the superscript i for sake of clarity, but everything described in this section
refers to a single generative feature model F*.

42 Chapter 4 Pose Estimation with Feature Regression

Theorem 1: Micchelli’s theorem. Let {x;}!; be a set of distinct points. Then,
the n x n interpolation matriz ® where ¢;; = ¢(||x; — x4|) is non-singular.

Many functions are covered by Micchelli’s theorem and are commonly used in RBF
networks, such as

o Multiquadrics: ¢(r) = v/12 + 2, for some ¢ > 0.

o Inverse multiquadrics: ¢(r) = ﬁ, for some ¢ > 0.

2
« Gaussian: ¢(r) = e <2, for some o > 0.

As we said in Section [4.2] we opt for a Gaussian kernel in this thesis. Therefore,
the output of the RBF network F(a) is expressed by a linear combination of the
vector weights learned in Equation and the Gaussian radial basis functions.
The plain least-square approach described above is not usually a good strategy,
because unavoidable noise in the training data increases the uncertainty in the
estimated input-output mapping. In our case, training data can be affected by
camera noise, feature descriptor quantization, imperfect pose labelling, and outliers
in the feature track 7.

A well-known countermeasure is based on the introduction of a regularization term,
whose goal is to stabilize the solution by means of an additional functional that
contains some prior information on F. A very common prior, that we also adopt in
this thesis, is that the input-output mapping is smooth. According to Tikhonov’s
regularization theory [94], the optimal values for w; can be obtained from

(G+A)W=2Z = W= (G+A)'Z (4.9)

where A is the regularization parameter and I is the n x n identity matrix.
From a different perspective, RBF networks can also be considered as fully con-
nected artificial neural networks with only three layers:

o The input layer is composed of a set of source nodes, where each node takes
the value of the corresponding input component.

e The second layer is the hidden layer in the network and it is composed by
the activation functions that apply a non-linear transformation to the input
signal.

e The third layer provides the response of the network to the input as a
weighted linear combination of the hidden node responses.

An example of a RBF network as an artificial neural network is graphically repre-
sented in Figure [£.3

4.3 Estimate the Pose of a Single Object Instance 43

Qg
Wnk

Input Layer Hidden Layer Output Layer

Figure 4.3: A 2-dimensional vector &« = («1,a) is the input of the depicted three-
layer RBE network with Gaussian kernel and n hidden nodes. The

A

RBF network output is a k-dimensional vector f= { fl, N RN (32

4.3 Estimate the Pose of a Single Object Instance

In this section, we focus on estimating the pose of a single, known object. This can
be considered as an introductory test to verify the assumption that features are
informative with respect to viewpoint and generative feature models can capture
and reproduce this informativeness. As discussed in Chapter [2| we first introduce
our training stage, where we learn the generative feature models for the object at
hand, then we proceed to estimate its pose in the testing stage.

Training stage

We assume that we are given a set of training images Z = {I;}!,, where the object
is depicted from different points of view and that we know the viewpoint of each
image. The goal of the training stage is to collect a set of augmented feature tracks
from the training images and build a generative feature model for each augmented
track.

In order to collect the augmented feature tracks, we first start by matching each
pair of images on the basis of the chosen feature. That is, we extract two sets of
features, one per image, and we find for each feature in the first set the nearest
neighbor feature in the second set. This simple matching strategy can lead to
many wrong matches as many background features will also be included in the
matching set. As suggested in [78], an empirically effective solution is to filter the
resulting matches with a ratio test based on the distance that each feature in the
first set has to its first and second nearest neighbor in the second set. That is, we

44 Chapter 4 Pose Estimation with Feature Regression

Figure 4.4: One feature track T° associated to different views of the left exhaust
pipe (green circles). T contains four feature descriptors and relative
viewpoint labels.

reject all the matches for which

leN

> T 4.10
d2NN ()

where dinn and dony are the distances to the first and the second nearest neighbor,
respectively, and 7 is a threshold that [78] suggests to set at 0.7.

In order to further reduce the number of wrong matches, we apply a geometric
filter that rejects wrong feature matches on the basis of epipolar geometry. Given
the set of matches, we compute the fundamental matrix F, that is the matrix that
verifies the following equality for each match

x{Fx; =0 (4.11)

where x; and x5 are the locations of the matching features of the first and second
image, respectively, expressed in homogeneous coordinates. Since matches are
contaminated by noise in the feature location as well as outliers, Equation
has normally no solution. We circumvent this by turning to a robust parameter
estimation method, RANSAC [31], that finds the fundamental matrix F with the
largest consensus among the matches. On the basis of this fundamental matrix,
we discard the matches whose reprojection error, xlTFXQ, is larger than a small
threshold (3 pixels).
By connecting matches that share one of the two matching features, we build a
set of feature tracks, where each feature track 7% is a set composed of matching
feature descriptors, T% = {fi,fi ... f'}. We finally obtain the set of augmented
feature tracks, by pairing each descriptor with the viewpoint of the image in which
it has been extracted, that is,

T = {(ff’azl)’(fé’alz),_“7(f;7a1)}’ (4'12)

n

as also defined Section [£.2] An example of a feature track is shown in Figure [4.4]

4.3 Estimate the Pose of a Single Object Instance 45

Generative

Feature
Model

Generative

Class Representation

Figure 4.5: The training stage in case of a single object. Features are tracked over
training images and collected in augmented feature tracks T'. For each
feature track, a generative feature model F'is computed. The whole set
of augmented feature tracks and associated generative feature models
form our class representation.

The final training step amounts to compute a generative feature model F' for
each augmented track 7°. In order to do so, we use the method explained in
Section [£.2.1] That is, we compute the following RBF network,

Flla) = éwﬁ-(}’(a,a;) (4.13)

where, again, w§- are the vector weights estimated during learning, and G is the
Gaussian kernel of the network. As mentioned in Section we use all the
training labels as centers of the radial basis function. This is motivated by the fact
that tracks have usually a short length, as feature detectors have a low repeatability
when the object undergoes an out-of-plane rotation. A block diagram of the whole
training stage is depicted in Figure

Testing stage

In the testing stage, we assume that we are given a query image I, that depicts
the object at hand in an unknown pose. According to our assumption that feature
descriptors are informative about the viewpoint of the object, we can think that if
the set of feature descriptors Q@ = {q;}Y, is found in the current query image, we
can define a probability function p(a|l,) = p(a|Q) that expresses the likelihood
of the pose a@ when Q is observed.

46 Chapter 4 Pose Estimation with Feature Regression

Applying Bayes’ Rule to p(a|Q), we obtain the following

_ p(Qaple)
M9 =""0g)

Our pose estimation problem amounts to finding a* that maximizes the expression
above,

(4.14)

p(Qla)p(cv)
p(Q)

As p(Q) does not depend on «, we obtain the following maximum a posteriori
(MAP) estimation problem

o = arg max p(a|Q) = arg max (4.15)

o = arg max 2L2100P(@)
: P(Q) N (4.16)
= arg max p(Q|a)p(a) = arg max [[lp(qila)p(a),

where we have assumed full independence between features in the rightmost equal-
ity. It is also important to note that this formulation allows to embed a prior on
the pose through the term p(c).

The likelihood term p(Q|a) = [TV, p(qs|a) in Equation can be expressed in
terms of the generative feature models. In the training stage, we have computed
the set of generative feature models F = {FY inl, that is, our representation
of the object in terms of feature regressors. If we put each query feature q; in
correspondence with a generative feature model, we can think that the likelihood
of the pose a is reflected by the norm of the regression errors e’ (a) = q; — F/(ax).
That is, if a generative model predicts the feature q; with a small error for a certain
viewpoint a, we assume that a has a high likelihood to be the query viewpoint
according to that generative feature model.

In order to put the query feature descriptor q; in correspondence with a gener-
ative model, we define a representative feature r’ for each generative model F7,
so that we can define R = {r’}} as the set of all the representative features
of the generative feature modelﬁ. Each representative feature is defined as the
feature descriptor whose viewpoint is the closest to the center of the viewpoint
interval covered by the generative model. Another possible choice could be the
average of the feature descriptors contained in the model, but the difference in

6Recall that each generative model has been built from a feature track comprising a set of
feature descriptors of the same patch extracted at different viewpoints. Therefore, we will
sometimes refer to features of the generative model, meaning the features contained in the
track from which the generative model has been built. This generates no ambiguity as feature
tracks and corresponding generative models are in a one-to-one relationship.

4.3 Estimate the Pose of a Single Object Instance 47

matching performance is negligible as the number of descriptors per track is small
and descriptors are discriminative. With this definition for the generative model
representatives, we can rewrite the probability p(q;|c) by including r’ as

plaile) = 3 plai,r’|e) (4.17)

J=1

We use the regressor function F7 of the generative model to provide an estimation
of the likelihood of the feature descriptor q; being observed from viewpoint a when
it is set in correspondence to r/. We define p(q;,r’|a) on the basis of the error
el (a) = q; — F/(a) between the query feature and the descriptor estimated by the
corresponding generative feature model as well as a compatibility term between q;
and r/. Therefore, the observation error is defined as

(@ 10) = 2 exp (=€l (@) (R) "el(ar)) (1.18)

where RY is the error covariance matrix of the j-th regressor estimated by leave-
one-out cross-validation from the training samples. In order to reduce the number
of tentative representative models, we rely on feature discriminativeness by defining

Vqri aS

(4.19)

- J1 for ¥ st ||g; — || = min, [|q; — 17|
Yaur 0 otherwise

To summarize, we find for each feature in Q@ = {q,}¥, the nearest neighbor model
representative in R = {r’ }jj\il, so that we have a correspondence between each
query feature q; and a generative model through its representative feature .

Then, we define the following maximum a posteriori estimation for the viewpoint
a* by replacing Equation (4.17)) in Equation (4.16]).
a” = arg max p(Q|a)p(a)

= argmax [[> p(qs, r’|a)p(e) = arg max [[p(qi, ¥'|a)p(cv).
@ =1j=1 > =l

A graphical interpretation of the testing stage is provided in Figure [4.6]

4.3.1 Introductory Experiment

Here, we will perform an introductory experiment in order to prove the efficacy of
the method proposed above. The main purpose of this short experiment is to show
that the trained generative feature models correctly regress feature descriptors and

48 Chapter 4 Pose Estimation with Feature Regression

Regression
Error
e'(a)

N b \
Q Siccs

: Generative

' Model Feature

' . Feature

! | Representative Track i 0 90 180
| i i Model .
: r T FI

| Generative

' Model Feature

: . Feature

. | Representative Track

' . . Model

. r/ TI -

FI

Class Representation

Figure 4.6: The testing stage in case of a single object. Query features are ex-
tracted from the test image and each query descriptor is matched to
its nearest neighbor track 7% through the model representative r’. The
corresponding generative feature model predicts through regression an
estimate of the query feature descriptor as a function of the putative
pose a. The norm of the error e’(a) between the query descriptor
and the predicted descriptor is used to build a posterior probability
distribution, whose maximum is returned as the estimated pose of the
object.

4.3 Estimate the Pose of a Single Object Instance 49

this permits to reliably estimate the pose of a single, specific object in a query
image, as described in Section [4.3]

In order to do so, we consider the EPFL multi-view car dataset [90]. This dataset
provides pose-labelled sequences of cars rotating on a floor pedestal. The sequences
are densely sampled in the pose space, so it is possible to collect several features
that represent the same patch under different viewpoints.

We consider the first 10 car sequences and, for each, we learn a set of generative
models using a 33% split, i.e., one image every three is used for learning and the
rest for testing. By doing so, we want to evaluate if the generative models that we
learn from a subset of the training images permit to evaluate the pose of the same
object in the remaining images.

As explained in Section [£.3] we extract a set of local features from the training
images and we form a set of model tracks 7 by tracking the features over the
training views. Matches are verified and filtered through epipolar geometry with
a very low threshold in order to reduce the number of outliers to a minimum.
For each track, a generative feature model is learned as described in Section 4.2]
At run-time, a set of features Q is extracted from the query image and matched
against the set of model representatives defined in Section [£.3] Finally, we return
the maximum a posteriori estimation of the pose by using Equation . In this
experiment, the pose prior is assumed to be uniformly distributed over the entire
pose space.

We evaluated the performance of our method by using two different feature de-
scriptors and detectors, SIFT [78] and SURF [6], in all four possible configurations:

(a) SIFT detector + SIFT descriptor

(b) SIFT detector + SURF descriptor
(c) SURF detector + SIFT descriptor
(d) SURF detector + SURF descriptor

In Table we present an evaluation of our method with respect to the four
configurations in terms of the mean absolute error (MAE). The MAE is defined as
the average of the absolute difference between the returned value and the ground
truth calculated on each sequence, i.e.

1 n
MAE= Y [lai - of| (a.21)
=1

where n is the number of images in the sequence, a* is the pose returned by our
algorithm, and a®' is the ground-truth pose.

50 Chapter 4 Pose Estimation with Feature Regression

Table 4.1: Performance of the proposed method with respect to four configurations
of feature detector and descriptor. The configuration SURF detector +
SIFT descriptor obtains the best mean absolute error (MAE).

Configurations
SIFT+SIFT SIFT4+SURF SURF+SIFT SURF+SURF
Sequence 1 1.09 6.30 1.01 1.33
Sequence 2 1.38 20.30 1.11 1.53
Sequence 3 0.90 3.18 0.90 1.17
Sequence 4 0.75 4.20 0.65 0.93
Sequence 5 10.12 27.70 1.82 1.95
Sequence 6 1.08 3.21 1.22 1.80
Sequence 7 0.80 8.88 0.82 1.03
Sequence 8 0.66 10.80 0.65 0.83
Sequence 9 3.94 9.55 1.07 1.24
Sequence 10 2.81 18.43 0.69 1.07
MAE 2.35 11.26 0.99 1.29

In order to put the performance of our method in perspective, we must say that
each sequence is different in length, ranging from 60 to 140 images, and thus the
distance between consecutive training samples ranges from 7.5° to 18°, approxi-
mately. As the dataset presents only a one-dimensional pose variation, we just
evaluate the mean absolute error for the azimuth component.

As we can see in Table the combination of SURF detector and SIFT descrip-
tor achieves the best performance with an average MAE over the whole set of
sequences of 0.99°. The reason for this is that the SURF detector provides more
keypoints with respect to the SIF'T counterpart, while the description of the gra-
dient distribution employed by SIFT is finer, and thus more precise than that
of SURF. In comparison to [I18], where only the result for the first sequence is
provided, we improve the pose accuracy by approximately 45% (1.01° vs. 1.84°).

4.4 From Single Instance Prediction to Object Class
Prediction

We proved in the last section that the proposed method achieves state-of-the-
art results for the pose estimation of single, specific objects. In this section, we
generalize from a single instance to a whole class, i.e., we learn a representation
that permits to compute the pose of an unknown object of a given class. We

4.4 From Single Instance Prediction to Object Class Prediction 51

assume that the features describing analogous structures of objects belonging to
the same class are similar. For example, we assume that the features describing
car wheels are sufficiently similar independently from the specific model under
consideration. This underlying assumption has been adopted and experimentally
verified by a plethora of approaches [25] [16, 112} 43, 66].

In order to be robust against intra-class variations in appearance and geometry,
we should aggregate different instances of the same class. For example, if our goal
is to estimate the pose of an unknown car, our training dataset should comprise
different car models ranging from city cars and sedans to station wagons and
sport cars. When multiple training instances are considered, the huge number of
augmented feature tracks makes the class representation described in Section
increasingly harder to handle. Therefore, a more compact class representation
becomes necessary.

For this purpose, we propose to cluster feature tracks in a consistent way, i.e., we
group feature tracks that represent similar patches under similar viewpoints. This
means that tracks in the same cluster will have similar feature descriptors as well as
a similar viewpoint interval. Consequently, we will obtain clusters that represent
local object structures in a more general way, and the clustered representation
will be more robust against intra-class variations of appearance and geometry. We
resort to spectral clustering, a technique that permits to perform grouping on the
basis of the elements connectivity instead of their geometrical proximity. Before
illustrating the clustering algorithm, we first need to define a similarity score that
measures the affinity between each pair of feature tracks. We leverage from the
dynamic time warping technique to compute a similarity score for our feature
tracks. In the following, we present a brief treatment of dynamic time warping
and how we use it to compute track similarity. Then, we will present the spectral
clustering algorithm with its theoretical fundamentals.

4.4.1 Dynamic Time Warping for Track Similarity

Dynamic time warping (DTW) is a well-known technique from time-series analysis
that allows to find an optimal alignment between two input sequences [103]. DTW
was firstly employed in applications for automatic speech recognition, as it can
cope automatically with speakers having different speeds [96]. While it has been
used since thirty years in domains such as signal and audio processing as well
as data mining, DTW has only recently become popular in the Computer Vision
community. Until now, it has been employed in several fields, such as human
behavior alignment [91), 130], human motion alignment [I31], curve alignment [I11],
handwriting recognition [97], and novelty detection [2].

Let us consider two input sequences X = (x1,...,Z,,...,2x) of length N and

Y=y, - Ym,---,yn) of length M. Let us also assume that the components

52 Chapter 4 Pose Estimation with Feature Regression

9 9 9 9

8 ! 8 8 1 8 !

7 P 7 P 7 Pu—— 7 ot

6 ‘ 6 . 6 L 6 a

5) 5 ‘ 5 5

4 1 4 ' 4 4

3 3 [3 3

2 2 2 e s 2

1[4 1 14 174
1234567 1234567 1234567 1234567

Figure 4.7: Four possible paths within the same cost matrix C that align two
sequences X of length N =9 and) of length M = 7. Each alignment
is defined by the set of index pairs (n,m), where n and m are the
corresponding coordinates of the black dots in the cost matrix.

of X and) are elements of a feature space F, i.e., T, ym € F C R¥. The best
alignment of the two input sequences is achieved when each component of the first
sequence is assigned the best corresponding component of the second sequence
according to a global alignment cost. Let us define the cost to align each pair
of components through a dissimilarity measure ¢ : F' x F — R. That is, ¢(z,y)
outputs a small value if x and y are similar to each other, otherwise c(z, y) outputs
a large value. The precise definition of the cost function ¢ is not necessary for a
general treatment of the dynamic time warping algorithm, and we will define it
later according to our application. The only property that is normally assumed
is that the cost function c is symmetric, so that, as a consequence, the alignment
does not depend on the order of the input sequences.

If we define a N x M cost matrix C, such that C(i,j) = ¢, ,, any possible sequence
alignment defines a warping path (or valley) within the cost matrix C, such as
those depicted in Figure [£.71 More formally, a warping path p is a sequence p =
(P1s- 1 -~ pp) with py = (ngmy) € {1,... N} x{1,..., M} forl e {1,...,L}.
For each warping path p, there is a corresponding alignment cost c,, defined as
follows,

CP(X7 y) = ZZ C(Jjnz?ymz)- (4.22)

The definition of warping path is very general and it allows for alignments that are
usually not acceptable, e.g., warping paths that do not match the first components
of each sequence, like the second warping path shown in Figure [4.7] In order to
enforce some consistency in the warping path, we add the following conditions to
the definition above:

Boundary condition: p; = (1,1) and p;, = (N,M), i.e., the first elements of X
and Y as well as the last elements of X and) are aligned to each other.

4.4 From Single Instance Prediction to Object Class Prediction 53

Monotonicity condition: n; < ... <n < ... <nrandm; <...<m; < ... <
my, i.e., the alignment cannot turn back on itself, as matching indexes either
stay the same or increase.

Step size condition: p,.; —p; € {(1,0),(0,1),(1,1)} for l € {1,...,L — 1}, i.e.,
no element in X and Y is left out from the alignment and all index pairs
contained in p are pairwise distinct.

The problem of finding the best alignment can thus be reformulated as the one
of finding the warping path with the minimum cost within C that respects the
aforementioned conditions. That is, the best alignment is obtained when the total
cost ¢, defined in Equation is minimized, that is,

(X, Y) = mpin (X, D). (4.23)

While testing all possible warping paths is computationally unfeasible, as the com-
plexity is exponential in the sequence lengths, dynamic time warping permits to
find the optimal warping path in O(N M) time by relying on a dynamic program-
ming formulation.

Let the prefix sequences be X'(1 : k) = (x1,...,zx) for k € {1,..., N} and Y(1
l) = (y1,...,y) for [€ {1,...,M}. We can define the optimal accumulated
cost for the index pair (k,l) as D(k,l) = c,«(X(1 : k), V(1 : 1)). Therefore, the
N x M matrix D is the full optimal accumulated cost matrix, and its bottom right
entry D(N, M) equals the optimal warping cost ¢,«(X,)). The matrix D can be
computed efficiently by using the DTW algorithmﬂ shown in Algorithm .

In our framework, temporal sequences are replaced by feature tracks, and this
implies that the temporal index is replaced by a pose index, whereas scalar values
are replaced by feature descriptors. Nonetheless, dynamic time warping can be
applied in a straightforward way. The only thing that we have to define is a
suitable cost function for assessing the dissimilarity between feature tracks.

Let two tracks be T = {(fi,a!),...,(fi,ai)} and T = {(f],ad),...,(f} .0l)},
and let us assume that we ordered the pairs in each track according to the pose
label, so that o} < ... < af and o < ... < .

In order to cluster feature tracks that are similar both in appearance and viewpoint,
we define the following cost function between two augmented feature descriptors
(fil.al) € T" and (f/ ,af) € T7 as

O(kl) = Glad,al)Y|f — £]s Vke{l,....n}le{l,....,m} (4.24)
_ Il

lz—y

where G(z,y) = 202 and || - ||2 is the L?norm. This definition of the cost
function gives a low alignment cost for tracks that represent similar patches from

"The computational complexity and the respect of the conditions given above are proven in
[87].

54 Chapter 4 Pose Estimation with Feature Regression

Algorithm 1 Dynamic Time Warping Algorithm

Require: Two sequences X = (z1,...,xx) and YV = (y1,...,ynm)
Declare D as a N x M matrix;
D(1,1) = ¢(x1,11)
for:=2— N do
D(ivl) = D(Z - Ll) + C([Ei, y1>;
end for
for) =2 — M do
D(1,j) = D(1j — 1) + c(z1,35);
end for
for:=2— N do
for j =2 — M do
D(i,j) = min(D(i — 1,j), D(ij — 1), D(i — 1,j — 1)) + c(w1,5);
end for
: end for
: return Alignment cost DTW (X,Y) = D(N,M)

— = = e
Ll A

similar viewpoints. As explained above in Algorithm [I}, the cost of aligning the two
feature tracks DTW (T, T7) is given by the last entry of the accumulation matrix
D(n,m).

If the visibility intervals of the two tracks do not overlap, we directly set

DTW (T T?) = oo. (4.25)

This will turn out to be beneficial in the clustering step, as it leads to a sparse
similarity matrix.

4.4.2 Spectral Clustering for Track Grouping

In Equation , we defined a dissimilarity measure between augmented descrip-
tors and consequently a dynamic programming algorithm that permits to find the
alignment cost for two augmented tracks. Now, we show how to use this dissimilar-
ity score to cluster the tracks so that each cluster will contain tracks representing
similar patches from overlapping viewpoints.

Regarding the clustering method, we resort to spectral clustering, a technique
that permits to perform grouping on the basis of the elements connectivity. This
is a crucial advantage of spectral clustering, as it can properly handle non-convex
sets. Since we cannot assume any special arrangement for the feature tracks, this
motivates our choice in favor of spectral clustering over other popular clustering
methods. For example, k-means clustering is based on the geometrical proximity

4.4 From Single Instance Prediction to Object Class Prediction 55

of the elements, and thus it would not work properly with non-convex sets. In
the following, we will present the spectral clustering algorithm that we use in our
approach as well as insights into the algorithm performance.

Let us consider our set of tracks 7 = {T"}"_, and let us compute the DTW distance
between each pair of tracks as defined in Section 4.4.1 Whereas DTW returns
a positive dissimilarity score, spectral clustering works with positive similarity
scores. In order to adapt to this, we transform the dissimilarity score DTW (T",T7)
into the similarity score s;; according to the following transformation,

sij = exp(—=DTW (T",T7)). (4.26)

Thus, by considering the similarity scores of all pairs of tracks, we obtain the
following similarity matrix S,

S=|: . | (4.27)

We can also represent the training tracks in the form of a weighted similarity graph
G = (V, E). Each feature track is represented by a vertex v; € V and each edge
e;; € F connecting vertexes v; and v; has a weight w;; = s;;.

The problem of clustering can now be expressed by referring to the similarity
graph. We want to partition the graph in such a way that edges between different
groups have very low weights, which means that feature tracks in different clusters
are dissimilar from each other, and edges within a group have high weights, which
means that feature tracks within the same cluster are similar to each other.

We define the weighted adjacency matrix of the graph as W = S. If the vertices
v; and v; are not connected by an edge, then w;; = 0. This happens when the
two tracks do not overlap in the pose domain (cf. Equations and (4.26)).
The degree of a vertex v; € V is defined as d; = Z?:l w;j, and the degree matrix
D is defined as the diagonal matrix with degrees dy,...,d, on the diagonal. On
the basis of the weighted adjacency matrix W and the degree matrix D, we can
define the unnormalized graph Laplacian as

L,=D-W (4.28)
and the normalized graph Laplacianﬂ L as
L=D'YL,D V2 =1-D /?WD"!/2 (4.29)

8In the literature, there is another definition of the normalized graph Laplacian. We use the
algorithm proposed in [89], where this definition for the graph Laplacian is considered. The
other well-known spectral clustering algorithm has been proposed in [I13], where the def-
inition of the normalized graph Laplacian is slightly different, and the algorithm changes
accordingly.

56 Chapter 4 Pose Estimation with Feature Regression

45 e 45
;.,i’:“i,,x"?. - o8 3
* R
Yoo x
08
04

02

02 15

-0.4

05
-0 * .

H o
o 05 1 15 2 25 3 a5 4 45 & 05 04 02] 0z 04 0.8 [1 o5 1 15 2 25 3 35 4 45 &

Figure 4.8: Results obtained with spectral clustering (left) and k-means (right)
with & = 2. As the two point sets are not convex in their original
domain k-means fails. After mapping, they form tight clusters instead,
and k-means is successful (middle). (Pictures taken from [89].)

The matrix L and its eigenvalues have a special importance with respect to the
connected components in the graph, as shown in Algorithm [2|

Algorithm 2 Spectral Clustering Algorithm

Require: Similarity matrix S € R™" number £ of clusters to construct
1: Compute the normalized Laplacian L, as defined in Equation (4.29) with W =
S
2: Compute the smallest k eigenvectors uy,...,u, of L
3: Let U € R™* be the matrix containing the eigenvectors uy, ..., u; as columns

S

. Form the matrix T € R™* by normalizing the rows of U to have unit norm
: For i = {1,...,n}, let y; € RF be the vector corresponding to the i-th row of
T

6: Cluster the points (y;)!_; with the k-means algorithm into clusters Ci, ..., Cy

(@4

7. return Clusters Ay, ..., Ay with A; = {jly; € Ci}

The advantage of spectral clustering with respect to k-means lies all in the mapping
step, i.e., steps 3 and 4 in Algorithm [2l While data samples may not form convex
sets in their original domain, the mapping to a higher dimensional domain often
reveals tight clusters that can be easily identified by a later application of k-means,
as shown in Figure [4.§

As a further insight into the performance of the algorithm, we will apply it to
an ideal case, where we have three clusters Si, S;, and S3 of sizes ni, ny and

4.5 Class Probabilistic Formulation 57

ng, respectively, and all points in different clusters are infinitely far apart. Let
us also assume that the data points are ordered according to which cluster they
are in, so that the first n; points are in cluster S;, the next ny in S5, and so
on. Since points in different clusters are infinitely far apart this means that the
corresponding element w;; is null. Therefore, W and L are block-diagonal:

Wil 0 0 L' 0 0
W=|0 W2 0| L=|0 L2 0 (4.30)
0 0 W3 0 0 L*®

We find the first 3 eigenvectors of L. Since L is block-diagonal, its eigenvalues and
eigenvectors are the union of the eigenvalues and eigenvectors of its blocks, and
we stack the latter in column order in U as

Ul 0o o
U=|[0 U2 0 (4.31)
0 0 U®

Next, we normalize each row of U to have unit norm, so that we obtain:

T = (4.32)

(=Rl
o = O
= o o

If we apply k-means to the rows of T, there are £ mutually orthogonal points on
the surface of the unit k-sphere around which the rows of T will cluster. This
exactly represents the true clustering of the original data.

4.5 Class Probabilistic Formulation

In this section, we show how to compute the pose of an unknown object of a given
class on the basis of a set of training instances. As already done in Section [4.3] we
will first present the training stage, and then we will focus on the testing part.

Training stage

We assume that we are given a set of O objects O = {0}, that comprises
different instances of the class of interest. Furthermore, we assume that for each
object o', we are given a set of N; training images Z = {I*% };-V:'il, where the object
is depicted from different viewpoints. Finally, we assume that we are also given
a set of viewpoint labels {a¥ }j\]:l for each object sequence Z?, which describe the
object orientation with respect to a common coordinate system. The goal of the
training stage is to create a class representation by clustering generative feature

58 Chapter 4 Pose Estimation with Feature Regression

models. Each generative feature model is built upon an augmented feature track
that has been extracted from one of the training instances.

We start by collecting augmented feature tracks from the training sequences. For
each object o', we collect a set of feature tracks 7 = {T% };‘il by tracking fea-
ture descriptors as described in Section 4.3l Each element 7% € T7 is a set of
pairs, where each pair is formed by a feature descriptor £ and the corresponding
viewpoint label o', i.e.,

T = {(£7.a),(E7), ... (£7,ai)}. (4.33)

Then, for each augmented track 7% we compute the corresponding generative
feature model F' as described in Section |4.2.1. That is, we compute the following
RBF network,

Fi(a Z wilG(a, af). (4.34)

Finally, we collect all the feature tracks resulting from different objects in one
single set

o)
T=UT" (4.35)

i=1
On the basis of 7, we build the similarity matrix S according to the method
explained in Section [1.4.1] Each element of this matrix represents the degree
of similarity of two feature tracks in terms of feature descriptors and viewpoint
interval. Finally, we cluster the feature tracks by applying the feature clustering
algorithm described in Section [£.4.2]
The clustering step returns a set of clusters K = {K*}L_ | where each cluster
contains a set of feature tracks,

= {1y, (436)

where Jj, is the number of feature tracks 79% grouped in cluster K*. Since gener-
ative feature models are in a one-to-one relationship with the feature tracks, we
also know that each cluster identifies a corresponding group of generative feature
models. A block diagram of the training stage is given in Figure

Testing stage

Let us assume we are given a query image I, depicting the object. We can define a
probability function p(ea|l,) that expresses the likelihood of the object being seen
under viewpoint « if the object is observed in the current query image.

By applying Bayes’ Rule to p(e|l,), we obtain the following

plalty) = 2R (437)

4.5 Class Probabilistic Formulation 59

Generative
Feature
Model
Fz’

Generative
Feature
Model
Fi

Y Y

Dynamic Time
Warping

Spectral | Sij
. <—
Clustering

Class Representation

Figure 4.9: The training stage in case of object categories. Features are tracked
over training sequences and collected in augmented feature tracks. For
each feature track T', a generative feature model F' is computed. The
similarity of each pair of augmented feature tracks is evaluated by the
DTW algorithm in a score s. On the basis of the scores, spectral
clustering is applied to create clusters of feature tracks and associated
generative feature models. Feature tracks representing similar struc-
tures, like a wheel part, will be clustered together if they occur in
overlapping viewpoint intervals.

60 Chapter 4 Pose Estimation with Feature Regression

Our pose estimation problem amounts to finding a* that maximizes the expression

above,

pUgla)p(e)
p(]q) ‘

As p(1,) is independent from «, we obtained the following maximum a posteriori

(MAP) estimation problem

(4.38)

o = argmax p(al|l,) = arg max
[e% [e%

p(|o)p(a)
p(1y)

If no prior information on the pose is available, this prior probability will be set

to a uniform distribution over the pose domain, turning the maximum a posteriori

estimation into a maximum likelihood estimation.
The conditional term p(,;|a) in Equation (4.39) can be expressed as,

p(Iyle) = pa(ly|e)py(1y|) (4.40)

o = arg max = arg max p(I,|a)p(a). (4.39)

where pg(I;|a) is a a discriminative term and py(/,|c) is a generative term. The
discriminative term was not introduced in the single object case presented in Sec-
tion [4.3] as the generative feature models were built from features belonging to
the same object. On the contrary, when the object is not part of the training set
is advisable to inject some discriminativeness into the approach in order to disam-
biguate between the viewpoints. The generative term can be expressed in terms
of the set of features Q = {q;}, extracted from I, as

py(Lle) = p(Qlex) = [] plaile). (4.41)

i=1

In the training stage, we have clustered the generative feature models into a set of
clusters K = {K*}£_,, and for each cluster K* we define a representative feature
c’ as the average feature descriptor of all the clustered descriptors. Let us now
consider a query feature q; and put it in correspondence with a cluster through
its representative feature c*. Since the cluster is composed of generative feature
models, we can think that the likelihood of the pose a is reflected by the norm
of the regression error generated by the matching cluster regressors. In order to
perform feature regression at a class level, we create a cluster regressor, known as
generative cluster model, by linearly aggregating the individual generative feature
models contained in the cluster. That is, we define the generative cluster model

C(a) for the cluster K* as

CFa) = i wi* FI* (o) (4.42)

Jj=1

4.5 Class Probabilistic Formulation 61

where J; is the number of generative feature models contained in the matching
cluster and F° 7% is an individual generative feature model in cluster K*. The
weights w? " are computed as

_ 4k
i o (4.43)
j i
where d* = ||q; — r7%|| is the distance between the query descriptor q; and each

generative feature model representativeﬂ r’%. In this way, a more similar generative
feature model has a higher contribution to the prediction error, which is defined
as
Jk
ef(a) =q; — C*a) = q; — > w!"F*(a). (4.44)
j=1

Furthermore, we decompose the overall prediction error ef(a) as a summation of

errors generated by the generative feature models forming the generative cluster
model in the following way

Jk

oFa) = 3wl (q, — F*(a)) = zw (4.45)

J=1

If a cluster predicts the feature q; with a small error for a certain viewpoint a, we
assume that o has a high likelihood to be the query viewpoint according to that
cluster. Therefore, we can write the probability p(q;|a) in terms of the cluster

representatives as
L

plasle) = > plas. c*le). (4.46)
k=1
We define p(q;, cfla) on the basis of the error between the query feature and
the descriptor estimated by the matching generative cluster model as well as a
compatibility term between q; and c*. Therefore, the observation likelihood for a
query feature q; and c* is defined as

1

plai, €*lee) = g0 exp (—2 Z(efk(a))T(Rjk)_lefk(a)) (4.47)

J=1

where R7* is the error covariance matrix of the j-the generative feature model in
the matching cluster K*. In order to reduce the number of tentative representative

9The generative feature model representative has been introduced in Section as the feature
descriptor with the most central viewpoint among those composing the generative feature
model.

62 Chapter 4 Pose Estimation with Feature Regression

models, we rely on feature discriminativeness by defining 4.+ to be

“Il

1 for ¢ s.t. ||q; — ¢'|| = ming ||q; — ¢
s { (4.48)

0 otherwise

We will see in Chapter [5| how to change the definition of ,+ in order to take into
account several model representatives for each query feature q;.

Now, let us return to the full set of features that we extracted from the query image
and the set of all the representative features of the generative models C = {c*}£_;.
We find for each feature in Q the nearest neighbor model representative in C, so
that we have a one-to-one correspondence between each query feature q; and a
generative model through its representative feature ¢'. Therefore, the maximum
a posteriori estimation of a is defined as

N L
o = arg max py(L|)p(Qla)p(e) = arg max pa(Iylex) [T 3 plai, c*le)p(e)
i=1 k=1
N

= argmax py(1,|c) [] p(as, €|a)p(c).
@ i=1

(4.49)

4.6 Experimental Evaluation

In this section, we provide an experimental evaluation of our proposed method.
In order to test it, we consider two datasets: the EPFL multi-view car dataset
[90] and the Pointing’04 face dataset [42]. The first dataset provides pose-labelled
sequences of cars rotating on a floor pedestal. Sequences are densely sampled in the
pose space, but cars are uncommonly shaped, thus making model generalization
very challenging. The second dataset contains human faces with variable yaw and
pitch values. In this case, the sampling in pose space is more sparse but there is
less variability in the exemplars.

We will first analyze the performance of our algorithm on the car dataset by
providing results as well as insight into the performance of the individual parts
of our method. Subsequently, we will show the results of our method on the face
dataset.

4.6.1 EPFL Multi-view Car Dataset

With regard to the EPFL car dataset, we use the testing framework proposed
n [90], as this is the original work where the dataset has been introduced. We
evaluated our method using two different splits of training and testing sequences:

4.6 Experimental Evaluation 63

Regression
Error
()
3
, /o
1
1
Generative !
Cluster :
Model 0 90 180 270>k Q.

«

Clc

Class Representation

Figure 4.10: The testing stage in case of object classes. Query features are ex-
tracted from the test image and each query descriptor is matched to
its nearest neighbor cluster K*. The corresponding generative cluster
model linearly combines the output of its internal regressors to predict
the query feature descriptor as a function of the putative pose . The
norm of the error e* between the query descriptor and the predicted
descriptor is used to build a posterior probability distribution, whose
maximum is returned as the estimated pose of the object.

64 Chapter 4 Pose Estimation with Feature Regression

50% split: Training is performed on all images of the first 10 sequences, and
testing is performed on all images of the second 10 sequences.

Leave One Out (LOO) split: Training is performed on all images of 19 sequences
in turn, and testing is performed on all images of the remaining one.

In order to train our class representation, we use the method described in Sec-
tion [4.5], as pictured in Fig. [4.10 We use a combination of SURF detector coupled
with a SIFT descriptor, because this combination obtained the higher accuracy
in the introductory experiment of single object pose estimation presented in Sec-
tion In order to estimate the pose of the target car in each query image, we
use the method described in Section |4.5| with a discriminative term determined by
a coarse pose classifier [76].

The authors in [76] extend and improve the Deformable Part Model (DPM) object
detector introduced by [27] for pose estimation purposes. The idea exploited in
[76] is to learn the mixture model of the DPM detector as a function of specific
viewpoint intervals. For this purpose, DPM training is modified according to a
semi-latent strategy, where only the filter components are treated as latent whereas
pose labels are fixed. The pose classifier is usually trained to return a discrete
pose estimate over 4, 8 or 16 intervals. For this experiment, we have used its 16-
interval implementation, thus receiving an initial pose interval estimation of 22.5°
in width. Therefore, the discriminative term is defined as a uniform distribution
over the interval returned by the classifier and null elsewhere.

We considered the method proposed in [90] as the baseline method. We also
compare against the work proposed in [118], as it also proposes a regression-based
pose estimation approach (cf. Section . On our side, we provide an evaluation
of our full method against two partial implementations of it. The implementation
variants were chosen to highlight the beneficial contribution of each part of our
method, as follows:

Track 5NN (w/o regression and clustering) We match each query feature with
the 5 nearest neighbors among the generative feature model representatives.
The returned pose is the mode among these viewpoints. This is a naive
implementation that provides results only in terms of the viewpoint of the
five nearest neighbor tracks. Five was chosen because it represents the most
frequent cluster size in the full method implementation.

Regression 5NN (w/o clustering) We find again the 5 nearest neighbors among
the generative feature model representatives for each query feature. The
pose is estimated by using the track regression functions as described in the
single exemplar case. This second variant shows the benefit of introducing
regression for pose estimation.

4.6 Experimental Evaluation 65

Table 4.2: Pose Estimation on the EPFL dataset. Comparison among full and
partial implementations of our method, [90] and [118].

Method MAE [] MAE] MAE []
90*™ percentile 95" percentile

Ozuysal et al. [90] (Baseline) - - 46.48
Torki et al. [I18] - 50% split 19.4 26.7 33.98
Track 5NN [29] - 50% split 15.33 23.64 32.08
Regression 5NN [29] - 50% split 15.17 23.49 31.93
Fenzi et al. [29] - 50% split 14.51 22.83 31.27
Torki et al. [ITI8] - LOO split 23.13 26.85 34.90
5NN Track [29] - Leave One Out split 15.17 23.48 31.92
Regression 5NN [29] - LOO split 15.10 23.42 31.85
Fenzi et al. [29] - LOO split 14.41 22.72 31.16

The results of each variant of our method as well as of [90] and [I18] are compared
in Table in terms of the Mean Absolute Error (MAE, cf. Section [4.3.1). In
Table [£.2] we see an improvement in pose accuracy over the state of the art of
approximately 10%. In order to explain these large estimation errors, we must
take into account an issue also present in [90] and [I18], which strongly affects
the performance of all methods. In certain orientations, mainly front and rear as
well as left and right side, cars show a strong similarity due to symmetry. This
potentially generates 180° errors that have a non-negligible effect on the overall
average.

In order to provide more insight into the “real” performance of the methods, we
also present results in terms of their 90" and 95" percentile, so that the influence
of “flipping” errors is at least partially removed. In the leftmost two columns in
Table [4.2] our method shows to perform better than state of the art, with an
improvement given by the full method in the order of 25%. Furthermore, even if
the 16-bin classifier we use for the discriminative term has a worse performance
than [118] (66% vs. 70.31% accuracy for 16 bins), we are still able to obtain smaller
errors. We want to highlight the fact that our method provides better results even
when the naive 5NN implementation is used. This can be taken as a further
confirmation of the superiority of local approaches for pose estimation over global
ones. In Figured.11], we provide visual examples of the performance of our method
on the multi-view EPFL dataset.

For a deeper insight into the performance of our method, we give in Table
the results of a side experiment performed using the ground-truth bin instead of
the actual classifier output. A very naive “baseline” can be obtained by randomly

66 Chapter 4 Pose Estimation with Feature Regression

Figure 4.11: Results of our method on the EPFL car dataset. In the top left
corner, a diagram representing the car orientation, where the car front
is labeled by 0°. For each picture, the ground truth value (green) and
the estimated one (red) are given in a box and a red arrow is overlaid
on the car. In the last row, two examples of flipped estimation are
provided. The pose of the car in the bottom left corner is hard to
guess also for a human being.

4.6 Experimental Evaluation 67

Table 4.3: Pose estimation using a ground-truthed classifier

Method MAE [°]
5NN Track - 50% split 6.87
Regression 5NN - 50% split 6.64
Our Full Method - 50% split 5.64
5NN Track - Leave One Out split 6.63

Regression 5NN - Leave One Out split 6.53
Our Full Method - Leave One Out split 5.48

guessing the viewpoint inside the correct bin, and this has a MAE of 7.5°. Our
Track 5NN implementation performs only slightly worse than the Regression 5NN
implementation as the training images are very finely sampled in pose. On the
contrary, the improvement in the accuracy given by our full method comes out
more evidently with a 20% and 15% increase, respectively. The better performance
compared to the only-regression variant is due to the use of consistent clusters
having appropriate size, instead of the m nearest neighbours.

Pointing’04 face dataset

With regard to the Pointing’04 face dataset, we use the same testing framework
proposed in [42], as this is the original work where the dataset has been introduced.
Evaluation is performed with a 5-fold cross validation, where each sample set is
tested in turn using a model trained on the remaining 80% of the samples.

For our method, we have evaluated three variants with a similar spirit and imple-
mentation as in the previous experiment on the EPFL car dataset. This time, we
used only the first nearest neighbor (INN) because samples of the same person
can be found both in training and testing. We report the results in Table [4.4]
Our method shows to have a better or comparable performance with respect to
the state of the art on this dataset. The slightly worse performance in the pitch
estimation for all methods is due to the coarser sampling of the pitch poses. Un-
like the previous experiment, the benefit of using feature regression comes out
more evidently when the pose sampling is coarser with an increase in pose accu-
racy of 42%. Again, the full method outperforms its variants by 57% and 25%,
respectively. We can think that each generative model explains the query pose
by combining the descriptors of the same person in neighbouring poses and the
descriptors belonging to other persons, potentially available at the same viewpoint
of the query image. In Figure 4.12] we provide visual examples of the performance
of our method on the Pointing’04 face dataset.

68 Chapter 4 Pose Estimation with Feature Regression

Table 4.4: Pose estimation on the Pointing’04 dataset

Method Yaw MAE [°] Pitch MAE [°]
Gourier et al. [42] 10.1 15.9
Haj et al. [46] 6.56 6.61
Track INN [29] 13.82 19.27
Regression 1NN [29] 7.89 9.43
Fenzi et al. 5.94 6.73

| (15,-15)1" R=030) 4
(11.6.-13.9) (-23.3,34.

(0,90)
' (0.4,89.1)

e AU
Figure 4.12: Results of our method on the Pointing’04 face dataset. In this case,

the returned pose value is two-dimensional, as it is given in terms of

pitch and yaw. The ground truth pose (green) and the estimated one
(red) are given in a box.

Chapter 5

Enforcing Geometrical Constraints

As shown in Section [4.6] our algorithm is an effective solution for the problem
of pose estimation for object categories, but it seems to be prone to errors due
to symmetry. When class objects present similar appearance from two different
viewpoints, e.g., the right and left view of a vehicle, one viewpoint may be mistaken
for the other. Therefore, the results of our algorithm are either very accurate or
they suffer from a so-called “flipping” error. For example, in the case of vehicles,
we often observe a flipping error of approximately 180°, that strongly affects the
results when the mean absolute error is taken as evaluation metrics. An example
of this ambiguity is shown in Figure [5.1]

After a careful analysis, we identified two different causes, both contributing to
these errors. The first cause is due to the hard decision taken by the discrete pose
estimator that we used as discriminative term. If the pose classifier decision is
wrong, our algorithm has no possibility to invert it, thus leading to an unavoidably
incorrect estimation. Since many discrete pose classifiers, like the one we used,
suffer from flipping errors themselves, our algorithm is also automatically affected.
The second cause is more general and is related to the lack of geometrical infor-
mation in our algorithm. As we have seen in Chapter [d] the feature regressors
are built on the basis of the feature descriptors alone without taking the feature
location into account. In addition, no geometrical information is used when query
features are matched against the generative cluster models.

There are two possible steps in which we can introduce geometrical information in
our method. The first one is in the feature descriptor, i.e., we could augment the
feature descriptor with the feature location, possibly normalized to take translation
effects into account. As a result, our generative feature model would perform
regression over both appearance and location. Although this choice would be
a natural solution, it has the disadvantage that features would still be treated
individually, whereas taking an approach based on the spatial arrangement of the
features would provide a stronger cue to solve the pose estimation problem.

The other step is during matching, when we find correspondences between query
features and cluster representatives. Since the precise geometry of the query ob-

70 Chapter 5 Enforcing Geometrical Constraints

(Class Representation

Figure 5.1: (Left) test image, (right) our class representation depicted as two
sketched cars with opposite views. We represented three different fea-
tures in magenta, yellow and cyan and their matching representative
models in the class representation. If the features in the left model
“view” are selected by nearest neighbor matching due to a slightly
smaller distance to the query descriptors, the pose estimated by our
algorithm would lead to a flipping error. It is clear from this picture
that the integration of geometry in the matching process would help
to solve ambiguous situations.

ject is unknown and is probably different from that of the training instances, we
cannot introduce constraints based on epipolar geometry as in the pose estimation
paradigm for single objects (see Chapter . Nonetheless, most objects of many
classes show some loose similarity in the geometric arrangement of their parts,
e.g., wheels are always located in the lower part and windows in the upper part
of any vehicle. Therefore, a technique that permits a loose mapping between the
query instance and the model would be beneficial for our method.

As a matter of fact, there are many Computer Vision tasks, such as shape matching
and 2D-3D registration, whose solution is based on determining a set of correspon-
dences between two sets of features that do not belong to the same, specific object.
Another typical example is optical character recognition (OCR) for handwritten
texts, where one has to match handwritten characters to a predefined set of digits
and letters. In many of these applications, a technique known as graph matching
is employed to solve the correspondence problem.

On the basis of their generality, graphs are commonly used to describe complex
visual concepts, like scenes or objects, by representing their parts as nodes of a
graph. While each node contains information about some local object property,
the graph is also characterized by a set of weighted edges that represent second-
order relationships between nodes. The advantage of graph matching techniques
is that they exploit both first- and second-order relationships between object parts

5.1 Graph Matching Fundamentals 71

by introducing a pairwise term in the matching problem formulation’} In simple
words, graph matching aligns two graphs in such a way that they “look most
similar” with respect to unary and binary correspondences between graph nodes.
Graph matching appears to be a very suitable solution for the matching step of
our algorithm for four different reasons:

« Loose object-to-model mapping

e Suitable for point-like entities

o Inter-relations between multiple features
« Soft matching

First of all, graph matching permits to find a loose, yet consistent mapping between
a query graph representing the query instance and a model graph representing our
class representation. Given the point-like nature of features, the interpretation
of the query instance and our class representation as graphs is straightforward.
In Section we will show how to interpret our problem in terms of the graph
matching formulation. Furthermore, graph matching permits to take into account
inter-relations between multiple features. In this way, stronger geometrical con-
straints can be introduced in place of a simpler coordinate regression. Finally,
graph matching results can be interpreted in probabilistic terms as a soft assign-
ment. We will show in Section how we easily integrate this soft matching
probability into the probabilistic framework that we presented in Section [4.4 At
the end of this Chapter, we will experimentally show how the introduction of graph
matching in our algorithm leads to a higher accuracy in the pose estimation per-
formance. This means that we have successfully and simultaneously dealt with the
two sources of error highlighted at the beginning of this Chapter: wrong decisions
due to the pose classifier and lack of geometrical information.

In the following section, we will present an introduction to graph matching along
with references to related works where graph matching is employed for Computer
Vision applications.

5.1 Graph Matching Fundamentals

Since the early days of Computer Vision [32], 5], graphs have been considered as a
useful tool to interpret many problems, where local structures, like image regions
or features, are envisaged in the problem formulation. According to the graph

10When the order of the considered relationships is greater than 2, the terms hypergraph and,
consequently, hypergraph matching are used.

72 Chapter 5 Enforcing Geometrical Constraints

framework, image structures are represented by graph nodes and the structural
relationship between each pair of structures is encoded by a graph edge. Therefore,
tasks such as object classification or recognition, where image regions or parts
described by features are to be matched, can be naturally solved by graph matching
techniques. The goal of graph matching is thus to find the best match between
the two graphs, i.e., to set the nodes of the two graphs in correspondence in such
a way that the unary information of the nodes and the pairwise information of the
edges are preserved as much as possible.

Since graph matching is a NP-hard problem, the solution becomes more compu-
tationally demanding as soon as the number of nodes increases. This is usually
the case when graph nodes represent features like in this thesis, as the number
of features extracted from an image can easily reach several thousands. For this
reason, a lot of research has focused on approximations and heuristics to reduce
the computational burden. Many different solutions have been proposed, such as
those based on spectral decomposition [67), 125, 12, [10], and relaxation labeling
[1T), [13], [70]. Since we also employ a graph matching algorithm based on spectral
decomposition, we will provide a deeper analysis of related works that are focused
on this technique.

5.1.1 Related works

In a nutshell, graph matching algorithms based on spectral decomposition perform
matching on the basis of the similarity between the spectra of the adjacency matrix
of the two graphs. Spectral graph matching algorithms have wide applicability
because they do not impose any constraint on the type of node-to-node as well
as edge-to-edge affinities. The main advantage lies in its efficiency, as the integer
constraints on the solution are dropped. This relaxation, also known as linear
relazation, makes the problem tractable when the number of nodes increases, as
the complexity of the problem is reduced from NP-hard to a low-order polynomial.
Another important aspect of spectral-based graph matching lies in the intuitive
interpretation of its solution, which is based on the structure of the affinity matrix.
In fact, the spectral formulation directly shows why correct matches, that respect
the geometric alignment of the two graphs, are favored with respect to wrong
matches that produce “random” alignments.

In [67], the authors present a spectral-based graph matching technique to solve
object recognition and object categorization problems. The spectral method pro-
posed bases its efficiency on a double relaxation, as the authors relax both the
integer constraint as well as the one-to-one matching constraint, i.e., when match-
ing should result in a bijective mapping of the nodes of the two graphs. The latter
constraint is eventually re-introduced in the solution in a later discretization step,
where a greedy algorithm selects the best assignment on the basis of the graph

5.1 Graph Matching Fundamentals 73

matching results. In [15], the authors present a spectral relaxation technique that
incorporates one-to-one or one-to-many constraints within the relaxation scheme.
On an abstract level, the proposed solution parallels that of [67], as the affine
constrains are embedded by directly modifying the affinity matrix according to
the problem at hand, and discretization is again performed as a post processing
step. More importantly, the authors propose an additional normalization for the
graph matching scoring function by transforming the original affinity matrix into
a compatibility matrix and by applying a bistochastic normalization on it.
Several works have explored hypergraph matching techniques to enforce constraints
of higher order. In [129], each feature set is modeled by a hypergraph, where
the complex relations are represented by hyper-edges. Consequently, a match
between feature sets is then modeled as a hypergraph matching problem. First, a
soft matching criterion is formalized, as opposed to previous methods where soft
matching just results from a relaxation of the hard matching problem. Second,
the authors establish an algebraic relation between the hyper-edge weight matrix
and the desired vertex-to-vertex probabilistic matching, that finally results in a
convex optimization problem. In [2I], a method for matching two sets of points
using high-order tensors and geometric constraints is proposed. The authors build
a three-dimensional tensor that capture the affinity between triplets of points.
Then, they derive an approximate solution by using a power iteration algorithm
to find the main eigenvector of the affinity matrix in a similar fashion to [67]. Very
importantly, the solution obtained is only guaranteed to converge to a stationary
point, and not to the global optimum. In [22], the authors propose a method to
match two images on the basis of an energy functional that considers both feature
matching and distance potentials. First, SIFT features are extracted from a dense
grid, concatenated on small neighbourhoods and coded through sparse coding.
Max pooling is eventually applied to larger image regions to obtain the region
descriptor. The energy functional is defined as a sum of unary terms depending
on the region descriptor and pairwise term that depends on the distance between
the regions. The energy is minimized with a variation of the Ishikawa method
[57] to accommodate for the non-convexity of the current problem. Even though
hypergraph matching-based approaches have shown to give better results, the price
to pay is a much higher computational burden due to the introduction of tensors
and a greater implementation complexity.

5.1.2 Formulation

Let us consider two fully connected graphs G and G’, representing two different
sets of elements of possibly different cardinality, where each element is a node in
the corresponding graph. Let us also define an affinity measure S(7,7’), where
i € G and i € G, that evaluates the similarity between two nodes of the two

74 Chapter 5 Enforcing Geometrical Constraints

graphs according to some criterion. The solution to a graph matching problem is
the mapping P between the two graphs, P = {(i,7)]i € G, € G'}, such that the
global similarity score

S= Y Si(,7) (5.1)
(i,i")eP

is maximized. Usually, additional constraints can be added to the problem. Typ-
ical constraints require that each element in G has one single match in G’ with or
without multiple assignments, commonly known as many-to-one and one-to-one
mapping, respectively.
In its simplest form, graph matching amounts to finding the best correspondence
for each node in the first graph only on the basis of its individual similarity to nodes
of the second graph and in accordance with the matching constraints. This problem
is also well-known under the name of bipartite graph matching. The general graph
matching paradigm extends this simple formulation by taking into account not
only matches between individual nodes but also matches between m-tuples. For
sake of simplicity, we will describe the case of m = 2, but the extension to higher
orders is straightforward by using tensors in place of two-dimensional matrices.
Let us define for each pair of assignments (i,4") and (7, j’), an additional affinity
measure Sy(i, j, i, j'), possibly different from the individual affinity measure, that
evaluates the similarity between the pair of nodes (4, 7) in the first graph and the
pair of nodes (7', 7’) in the second graph. We can summarize the individual and
pairwise affinities in a single N x N matrix M with N = n x n/, where n and
n' are the number of nodes in G and G’, respectively. Each element of the two-
dimensional matrix M will be identified by the four indexes of the corresponding
graph nodes, as follows

o M, i, i.e., a diagonal element, contains the individual node affinity S (7,7")
between node 7 € G and node ¢ € G'.

o M,y jj, i.e., a off-diagonal element, contains the pairwise affinity S5(z, 7,7, j')
of the node pair (i, 7) of the first graph and the node pair (¢, j') of the second
graph.

Furthermore, without loss of generality, we assume that M is symmetric, i.e.,
Mir i = M,jr iir, and we finally require that S; and S5 yield non-negative affinities.
On the basis of the affinity matrix M, we can consider the assignments (,4") and
(7,7') as nodes of an auxiliary undirected graph H, where the pairwise affinity
M, ;i is the weight on the edge that connects the two nodes, while the individual
score M,y ;» and M, ;i can be considered as weights of the corresponding loop
edges at the nodes. Therefore, M represents the adjacency matrix of H, and so
the graph matching problem has now a second-order formulation.

5.1 Graph Matching Fundamentals 75

In order to solve the problem, we have to find the set P of matches (i,7) that
maximizes the total score
S - Z Mii’,jj’ (52)

i jj' P
such that the mapping constraints are met. We can represent P by an indicator

vector x, such that x;; = 1 if (4,7') € P and zero otherwise. Therefore, we can
rewrite the total score as:

S = M, 50 = xT Mx such that x € {0,1}Y and Cx < b 5.3
JJ

i jj' €P

where Cx < b represents a set of constraints expressed in an affine inequality form
that can be imposed on the solution. The optimal solution x is the binary vector
x* that maximizes the score, given the mapping constraints

x* = arg max x’ Mx such that x € {0,1}" and Cx < b (5.4)

The maximization problem in Equation belongs to the family of Integer
Quadratic Problems (IQP), which are known to be NP-hard. Therefore, different
approximate solutions have been proposed according to the application at hand
and the mapping constraints [8, [79]. Here, we describe in details the relaxation
that we adopt in this thesis and that has been proposed in [67].

According to this,

e The mapping constraint is such that each node of G is mapped to only one
node in G’, but the same node in G’ can have one or more corresponding nodes
in G, i.e., a many-to-one mapping. In mathematical terms, this constraint
is expressed as [|x||* = n.

e The integral constraint is dropped. That is, we allow x to take real values
in [0, 1].

Therefore, the new graph matching problem that we need to solve is expressed as
follows,

x* = arg max x’ Mx such that x € [0,1]Y and ||x|*> =n (5.5)
As the norm is fixed, we can simply rewrite the equation above as

xT'Mx

xTx

x* = arg max such that x € [0, 1] and ||x|* =n (5.6)

thus transforming the graph matching problem into a Rayleigh’s quotient prob-
lem. The relaxation of the integer constraint implies that all the components of

76 Chapter 5 Enforcing Geometrical Constraints

the solution x* may be non-zero, i.e., the solution set P can contain up to all
candidate matches. In this case, the solution components xj;, represent the degree
of association of (7,4") with the solution set P. The larger the value of x};,, the
higher the confidence about the correctness of the match. As a further conse-
quence, the integer relaxation affects also the mapping constraint by transforming

the many-to-one mapping to a many-to-many mapping constraint with fixed norm.

As the mapping is now many-to-many with fixed norm, only the relative values
between the elements matter. Thus, we can fix the norm of x to 1 without loss of
generality:.

The solution to this problem is known to be the principal eigenvector of M, where
the principal eigenvector v., is the eigenvector that corresponds to the largest
eigenvalue A, of the square matrix M. We can show that this solution respects
the mapping constraint by means of the Perron-Frobenius theorem,

Theorem 2: Perron-Frobenius’ theorem. Let A = (a;;) be an n x n positive
matriz: a;; > 0 for 1 <i,j7 <n. Then the following statements hold

1. There is a positive real number r, called the Perron root or the Perron—Frobenius
eigenvalue, such that r is an eigenvalue of A and any other eigenvalue \ is
strictly smaller than r in absolute value, i.e., r > |\l

2. The eigenvector v of A with eigenvalue r have all positive components: v; > 0
for1<i<n

Since M has non-negative elements, the Perron-Frobenius theorem guarantees that
the principal eigenvector has all positive components. If we combine this with the
unit norm constraint, we are guaranteed that the components of x* will be in
the interval [0,1]. From an intuitive point of view, a consistently large set of
correctly matching nodes will be identified in the spectral solution by high-score
components. On the contrary, spurious matches due to random similarity will
probably end up unconnected with the main cluster, thus resulting in low-score
components.

In closing this section, we want to make some consideration on the complexity of
the solution proposed here. Since eigenvalue problems have a general complexity
of O(n3) for dense matrices, the size of M cannot be too large without making the
problem intractable. One simple solution to work with large graphs, that we will
also use, is to set thresholds on the pairwise affinity score in order to make M as
sparse as possible. This has the effect to reduce the complexity of the problem to
O(n3/ %), and is simultaneously beneficial for data storage, as sparse matrices have
compressed storage formats.

5.2 Graph Matching Interpretation of Our Problem 7

Figure 5.2: The off-diagonal attribute A;; = (6,p) on a sample image. 6 is defined
as the angle between the horizontal axis and the directed segment
connecting vertices ¢ and j, whereas p is defined as the length of the
segment.

5.2 Graph Matching Interpretation of Our Problem

In this section, we describe how we integrate graph matching into our approach
in order to favor geometrically consistent poses and simultaneously remove the
negative effect of an inaccurate discriminative term.

Let us consider two separate graphs, one for the query image and one for our
class representation defined in Chapter [dl More specifically, the two graphs are
attributed graphs defined by the triplets G = (V,E,A) and G’ = (V' E', A’),
respectively. V and V' are the sets of vertices, where each vertex in V' corresponds
to a query feature and each vertex in V’ corresponds to a generative cluster model
representative. E and E’ are the sets of edges connecting all vertices in V' and
V' respectively. The matrices A and A’ are the attribute matrices. For i # j
and ¢’ # j', each entry A;; and A, is a multi-dimensional attribute for the edges
e;j € E and ey; € E', respectively, that represents some relationship between the
corresponding vertices. For i = j and ¢/ = j, i.e., for the loops e; and ey, Ay
and A are also defined as multi-dimensional attributes with a different definition
with respect to off-diagonal attributes.

With regard to the attribute matrix A, the following assignment is considered

i for i — i
Ay =11 e (5.7)
(eijupij) for i # j

where q; is the test feature descriptor, 0;; is the angle between the z-axis and the
directed segment P;; connecting the locations of two test descriptors q; and qj;,

78 Chapter 5 Enforcing Geometrical Constraints

pij is the length of Pj;. A visualization of the off-diagonal attribute is given in
Figure 5.2

Regarding the model graph, we first define for each cluster representative its 2D
location as the average location of all the feature descriptors contained in the
cluster, and the model feature descriptor as the cluster representative c. Therefore,
the model attribute matrix A’ is defined, similarly to A, as follows

c’ for i’ = j'
A;’j’ = g (5.8)
(Osrjrpiryr) ford' # j

where 0;; is the angle between the z-axis and the directed segment Py ; that
connects the 2D location of cluster representative ¢’ and ¢’’, wheareas pij is the
length of Py

Correspondingly, each entry of the affinity matrix M is defined as follows:

exp (— %) if i = j and i = j'
(1-2)(2=2) ifp<mandl<¢<mand(i#jori+#j)
My 550 =
(1—;) (Tjj—_’ll) ifp<n and%§¢<1and(i7éjori’7éj’)
0 otherwise
(5.9)

The first line refers to the diagonal entries of the attribute matrix, and it takes only
appearance into account as in standard feature matching. Since di = ||q; — ¢ ||

is the distance in descriptor space and m = maxd;;, a high entry is assigned to
feature pairs that are close in descriptor space. The remaining three lines involve
the enforcement of the geometric structure, where § = |6;; — 6;/;/| is the absolute
angular distance and ¢ = % is the Fuclidean distance ratio. The absolute ori-
entation difference and the féngth ratio of the two segments are compared to two
thresholds, 7 and 75, and a matching score is defined accordingly. A high entry
is assigned to feature pairs whose locations are geometrically consistent, both in
orientation and length.

According to the graph matching formulation in Section [5.1, we know that the
assignment that maximizes the graph matching score x* is such that

X" = arg max x’ Mx such that x € [0,1]Y and ||x|* =1 (5.10)

and x* is the main eigenvector of M.
Given the relaxation in Section 5.1} each entry z; , of the solution x* is not integer
anymore. Even though a greedy discretization approach could be used to identify

5.3 Graph Matching Integration in Our Probabilistic Formulation 79

a set of one-to-one matches (cf. [67]), we opt to keep the real-valued entries in
view of a later probabilistic formulation. As a matter of fact, each entry z}, can
be taken to represent the degree of association of the potential match to the main
matching set, i.e., the confidence that we have on the correctness of the match.
Furthermore all entries in x* are in [0, 1], so that we can embed the graph matching
results in our probabilistic formulation in a straightforward way.

5.3 Graph Matching Integration in Our Probabilistic
Formulation

In Section .5} we set our pose estimation algorithm in a probabilistic framework
by assuming that each query descriptor q; was informative about the viewpoint a
under which the object is observed. More specifically, we considered a probability

function p(qy, c*|a), which we reformulated in Equation (4.46) and (4.47)) as

1

plaila) = Z_: p(ai, c*le) = Z:quck exp (—2 Z(egk(a))T(Rjk)_legk(a))

j=1
(5.11)
Since we matched each query descriptor q; to the closest generative cluster model
representative ¢', we set 74,z = 1 and 0 otherwise. This had the disadvantage that
potentially good clusters with a slightly greater distance to the query descriptor
were immediately discarded.
Thanks to the replacement of nearest neighbor matching with graph matching,
we can take into account multiple matches for the same query feature q; in a
consistent way, as all the matches are scored according to their compatibility. We
will show in the following how our probabilistic formulation can be changed in
order to accommodate for graph matching.
As in Chapter [4] we first extract a set of features Q = {q;}¥; from the query im-
age. Differently from Chapter 4] where we matched each query feature separately
against the set of generative cluster model representatives, we now use both sets
as input to the matching algorithm. That is, we build the query graph G from the
set of query features @ and we build the model graph G’ from the set of generative
cluster model representative C = {c*}£_;. On the basis of the two graphs, we
perform graph matching as described in Section and Section [5.2]
After the graph matching step, for each feature q; we define the probability
p(q;, cfla) in a straightforward way. The term p(q;, c*|a) is expressed as in Sec-
tion

1

plai, c*lee) = g0 exp (—2 Z(efk(a))T(Rjk)_lefk(a)) (5.12)

j=1

80 Chapter 5 Enforcing Geometrical Constraints

where J;, is the number of generative feature models in cluster K k.
e (a) = q; — F/*(a) is the prediction error made by the j-th generative feature
model in cluster k, and R7* is its covariance matrix. We derive the term Vaick

from the graph matching step.

Since ||x|| = 1 and z, € [0,1], we can interpret the square of each score as a
probability term ranking the compatibility between q; and C*
Yaier = (T5) (5.13)

In a nutshell, the graph matching step has been used to rank the compatibility of
each query feature q; with each regressor C* on the basis of the overall geometric
arrangement of the matches.

In Equation (4.40)), we introduced the discriminative term py(I,|e) to include a
pose classifier. The classifier is used to generate a searching interval that is limited
to the output bin. Given the strength of the graph matching step and the potential
errors due to the hard decision made by the pose classifier, we just let the graph
matching results drive the maximization by removing the discriminative term.
Experimentally, this proves to be beneficial, as we are able to decrease the mean
absolute error by 25%, as shown in Section

Now, the posterior distribution for a is obtained from Equation by elimi-
nating the discriminative term and introducing the graph matching term as

N L
o = argmax [[Y p(q;, c*la)p(a) (5.14)
® i=lk=1

5.4 Experimental Results

In this section, we show that the introduction of geometrical context in the algo-
rithm proposed in Chapter {4 is beneficial, as our method obtains now much more
accurate results. We test our modified approach on two car datasets: the EPFL
multi-view car dataset [90] and the PASCAL VOC 2006 dataset [24]. The EPFL
dataset has already been used in Chapter {4 for evaluation, and thus we reuse it
here to directly show that the introduction of the graph matching step is beneficial.
We use the PASCAL VOC 2006 dataset to prove that the graph matching step
permits to obtain a more accurate pose estimation even when the pose delivered
by the classifier is 100% correct.

5.4.1 EPFL multi-view car dataset

Before showing the better performance of our method in estimating the pose for
object categories, we compare it to our baseline in the same preliminary experiment

we performed in Section [4.3.1]

5.4 Experimental Results 81

Table 5.1: Performance of the new method and the method proposed in Sec-
tion with respect to the four configurations of feature detector
and descriptor (cf. Table 1.1). The configuration SURF detector +
SIFT descriptor obtains again the best mean absolute error (MAE).

Configurations
SIFT+SIFT SIFT+SURF SURF+4SIFT SURF+4SURF
Fenzi et al. (2013) [29] 2.35 11.26 0.99 1.29
Proposed [25] 2.41 10.40 0.96 1.29

5.4.2 Single Instance Pose Estimation

We test our algorithm on the first 10 car sequences of the EPFL dataset with a
33% split between training and testing, i.e., one image every three for learning and
the rest for testing. For each sequence, we track features over the training images
and we compute a regression function for each track, as described in Chapter [4
The class model in this case coincides with the exemplar model itself and no actual
clustering is performed.

For each test image, we extract a set of query features and, for each feature, we
find the two nearest neighbor tracks in the model. Then, we apply our graph
matching-based approach to score the candidate matches, as explained in Sec-
tion . Finally, we obtain the estimation from Equation ([5.14]).

We evaluate the performance of our new method using the four combinations that
we also used in Section [1.3.1] We compare the mean absolute error (MAE) in
degrees between the ground truth orientation and the result returned by each
algorithm.

In three of the four configurations considered, our new method has practically
the same performance as our old method, indicated by “Fenzi et al. (2013)”, as
reported in Table [5.I] On the contrary, the improvement for the configuration
SIFT+SURF is larger, as this configuration suffers more from flipping errors. We
show in Figure how the graph matching step is beneficial with respect to the
original method.

5.4.3 EPFL multi-view car dataset

In this section, we compare our method enriched with the graph matching step
to the method we proposed in Chapter , indicated again as “Fenzi et al. (2013)”
and to [II8, 90]. We used the same testing framework, i.e., two different splits
between training and testing

82 Chapter 5 Enforcing Geometrical Constraints

—o— Proposed [28]
25 —A— Fenzi et al. (2013) [29] ||

20 |
MAE] 15

1 2 3 4 5 6 7 8 9 10

Car Sequence

Figure 5.3: Single instance. Our new method outperforms [29] by approximately
5% on average for the configuration SIFT+SURF, with an improve-
ment of approximately 33% on the hardest sequence.

50% Split: training the model on the first 10 sequences and testing it on the
second 10;

Leave One Out (LOO): training the model on 19 sequences and testing it on the
remaining one.

We build our model according to Chapter 4] Then, we extract a set of features
Q from each query image and, for each feature, we find its five nearest neighbor
clusters in the model. Then, we use our graph matching-based approach to assign
a score to the candidate matches, as explained in Section [5.3] Finally, we estimate
the car pose as in Equation ([5.14]).

In Table 5.2, we can see that our new method outperforms all others. In partic-
ular, our absolute MAE is 25% smaller with respect to the results presented in
Chapter 4] This experimentally shows that introducing a soft geometric match is
beneficial with respect to a hard decision based on the pose classifier [76]. In the
two leftmost columns of Table [5.2] we also provide results of our method in terms
of the 90" and the 95" percentile. Even without considering most of the large
errors due to 180° flipped estimations, our method still obtains a better accuracy.
As in [I18] and in our baseline, the performance of our method with 50% and
LOO splits is similar, showing that the model relies on the first 10 sequences to

5.4 Experimental Results 83

Table 5.2: EPFL dataset. Our method compared to [90], [118] and [29].
Method MAE [] MAE [] MAE [

90*" percentile 95" percentile

Ozuysal et al. [90] - - 46.48
Torki et al. [I18] - 50% split 19.4 26.7 33.98
Fenzi et al. (2013) [29] - 50% split 14.51 22.83 31.27
Proposed [28] - 50% split 12.67 17.77 23.38
Torki et al. [I18] - LOO split 23.13 26.85 34.90
Fenzi et al. (2013) [29] - LOO split 14.41 22.72 31.16
Proposed [28] - LOO split 15.53 19.27 24.53

Table 5.3: PASCAL VOC 2006 dataset. Our extended method compared to our
original method, without and with [76].

Method MAE [°]

Fenzi et al. (2013) [29] without pose classifier ~ 28.50°
Fenzi et al. (2013) [29] with pose classifier [76] 14.70°
Proposed [28] 14.49°

estimate the final pose, while the second 10 sequences seem to introduce a small
amount of noise in the model. More precisely, we noticed in this experiment that
the estimation of the pose is usually driven by two or three training cars belonging
to the first 10 training sequences, which are more similar in appearance to the
current test object. Since the second half is mainly comprised of uncommonly
shaped cars, their inclusion in the training set is actually slightly disadvantageous.

5.4.4 PASCAL VOC 2006 dataset

In this section, we compare our extended method to the one proposed in Chap-
ter [4] in order to compare what is the real strength of the graph matching step
with respect to the pose classifier that we used before. In order to make the ex-
periment more challenging, we used the pose classifier proposed in [76] in its best
configuration, i.e., when the pose interval is divided in only 4 bins.

We consider a subset of the images available in the PASCAL VOC 2006 test
dataset. The subset comprises all the pictures where the car is in one of the
following four annotated orientations: front, rear, left side, right side. Some sample
pictures taken from this dataset are shown in Figure [5.4]

As shown in Table [5.3] our approach performs better than our old method by a

84 Chapter 5 Enforcing Geometrical Constraints

Figure 5.4: Sample images from the Pascal VOC 2006 car dataset.

factor of 2 when our baseline is used without any pose classifier. More importantly,
the performance is still better even when the classifier is used. Unlike in the EPFL
experiment, where the pose classifier has a substantial influence on the final error
of our baseline method, its performance on this dataset is almost perfect (96%
accuracy). Therefore, our method not only recovers the correct orientation over
the whole pose range (360°), instead of the smaller (90°) correct interval given
by the classifier, but it is also more accurate. We would like to highlight that
our method is trained with the first 10 sequences of the EPFL dataset. Since
the appearance of the cars for our training dataset is quite different from that of
the cars depicted in the PASCAL VOC 2006 dataset, we indirectly show that our
method can generalize and cope well with a change in domain.

Chapter 6

Enforcing Temporal Constraints

As shown in Chapter [5] the introduction of geometrical context in our algo-
rithm permits to increase its performance by reducing the overall mean error from
31.27° to 23.38°. In spite of the improvement achieved, there is still room to
enhance our algorithm in order to obtain a larger gain in performance.

For this purpose, we first analyzed how the estimation produced by our algorithm
changes with respect to the ground-truth orientation. Secondly, we investigated on
the shape of our pose posterior distribution in order to understand what happens
when the returned pose is wrong. From this analysis, we can draw the following
two important conclusions:

1. The performance of our algorithm depends on the ground truth viewpoint,
i.e., certain viewpoints are harder to estimate than others.

2. The posterior distribution always contains a strong evidence of the correct
viewpoint.

In Figure[6.1], we give a visual example of the first fact. We plot the performance of
our algorithm in terms of the mean absolute error for each frame of a test sequence,
in which the object rotates around its central axis. We can see that the algorithm
performance is very good on the great majority of the frames with the exception of
two bursts of large errors, the first from frame 35 to frame 40 and the second from
frame 46 to frame 56. This phenomenon occurs in almost all sequences where large
errors seem to be concentrated around specific viewpoints, at which our algorithm
provides a poor performance.

In Figure [6.2] we visualize the second fact by plotting the pose posterior distribu-
tion estimated by our algorithm for a single frame. As it can be seen, the posterior
distribution is multi-modal with two strong, largely separated peaks. Often, our
algorithm estimates a bi-modal distribution as a consequence of the large similar-
ity in appearance that an object class may share in different views, as we already
noted in Chapter 5] When the geometrical context is not powerful enough to dis-
ambiguate these situations, the largest mode returned by our algorithm may be

86

Chapter 6 Enforcing Temporal Constraints

180
160

140 :

—_
N
o
T
|

Absolute
Error
N LN (o]
(@] CR (@]

—_
[0} o
(@) o
T T
| 1

| [

(@]

1
0 10 20 30 40 50 60 70 80 90 100

Frames

Figure 6.1: Performance of our algorithm on a car sequence from the EPFL
dataset.

Posterior
djstribution

Figure 6.2:

Orientation

Pose posterior distribution estimated by our algorithm on a single im-
age. The ground-truth orientation is indicated by the red segment and
it corresponds to the minor mode of this bi-model distribution.

87

associated to a wrong estimation. Nonetheless, Figure clearly shows that the
minor mode is associated to the ground-truth viewpoint.

Until now, we have always assumed that the input to our method is a single image.
However, algorithms for pose estimation of object categories in video sequences are
becoming increasingly popular, as a result of the availability of large annotated
video datasets [95, O3, 37, 127]. The interest in video-based approaches is nat-
urally motivated by the fact that for many activities and applications, such as
autonomous driving or human-robot-interactions, the target object pose to be es-
timated is a variable that continuously evolves over time. As a straightforward
advantage, video-based approaches can exploit temporal information, which is a
very strong cue to enforce consistency upon pose estimation results. With this in
mind, we will extend here the algorithm we presented in Chapters [d] and [5] to deal
with the problem of pose estimation for object categories in videos. This gives
us the possibility to test our generative feature model paradigm on a different
domain. Oftentimes, video sequences are recorded “in the wild”, video frames are
affected by strong motion blur, and the resolution can be low in order to keep the
file size reasonably small. Thus, we cannot take for granted that our method will
have a similar performance on videos as on still images without any experimental
evaluation.

Before showing the last contribution of this thesis, we would like to present a short
description of related works of approaches for pose estimation of object categories
in video sequences. The categorization we used in Chapter [3| can be extended to
video-based approaches in a straightforward manner. That is, some approaches
rely only on 2D data [99], like we also do, while others use 3D CAD models for
training their algorithms [127, 8T, [82].

With regard to 2D-based approaches, the only approach known to the author
has been recently presented in [99]. It relies on a modified Hough regression
forest that estimates the pose distribution at each frame, and then fuses it with
a smoothed average of the past n distributions before determining the maximum
a posteriori pose. This approach can be prone to error accumulation in case of
consecutively wrong estimations. A broader and very interesting point of view has
been taken by [38], where pose estimation of vehicles is inserted within a traffic
scene understanding framework. Street scenes are probabilistically analyzed on
the basis of a combination of vehicle tracklets, semantic scene labeling, scene flow
and egomotion, and vanishing point estimation. Therefore, pose estimation results
are temporally consistent not only within themselves, but also with respect to the
considered environment.

Regarding 3D-based approaches, [81] learns a statistical manifold of SIFT features
from short video sequences of different class instances as a function of appearance
and viewpoint. Analogously, a test video is divided in short batches and a discrete

88 Chapter 6 Enforcing Temporal Constraints

pose is estimated as the closest in terms of KL-divergence to the set of short
training sequences. In the follow-up [82], a statistical manifold is now learned
for spatio-temporal object parts, whose selection is driven by a twofold criterion
of descriptiveness and distinctiveness, and then a discrete pose is estimated by
means of KL-divergence. These two works permit to obtain only a very coarse
viewpoint, and, more importantly, temporal information is not used to enforce
consistency in the estimation of the single video batches. On the contrary, [127]
estimates a probabilistic distribution at each frame combining the results of a pose
estimator [126] and a motion prior on the viewpoint change. The pose estimator
is based on parts learned from training images rendered from CAD models using
a structural SVM optimization. The maximum a posteriori pose is prone to error
accumulation, as it is obtained using a particle filtering framework that relies only
on the past frame information.

Similarly to [127], we also base our strategy to extend our algorithm on a paral-
lelism with tracking. In a nutshell, we create a set of pose “observations” at each
frame by sampling from the corresponding posterior distributions estimated by
our core algorithm. Then, we find the best sequence of pose observations that is
supported by the posterior distributions and, at the same time, respects a simple
temporal consistency assumption, i.e., large pose changes in nearby frames are not
admitted. As a matter of fact, this strategy can be simply viewed as an object
tracking problem, where the pose observations represent object detections and the
goal of the problem is to find the pose trajectory of the target object in the given
video sequence.

Object tracking has been commonly solved by expressing the tracking problem as
a linear program (LP), either in monocular sequences [65] or multi-view sequences
[64]. Inspired by this, we also express our pose estimation problem using an LP for-
mulation. While the aforementioned related works combine temporal information
by using suboptimal strategies [99] or computationally expensive techniques [127],
our LP formulation guarantees to achieve a global optimum and has an efficient
implementation.

In Section [6.1] we will give a very brief introduction to Linear Programming and
algorithmic solutions for linear programs. In Section [6.2] we will show how to
formulate our pose estimation problem as a linear program. Finally, we conclude
this chapter with an experimental section, where we show that our LP formulation
leads to a large improvement in the accuracy of the estimated pose on three publicly
available datasets.

6.1 Linear Programming

Linear programming is a technique for the maximization (or minimization) of
a linear objective function, subject to linear equality and inequality constraints.

6.1 Linear Programming 89

Linear programming has been applied to countless fields of study, ranging from
business and economics to engineering and computer science. Since Fourier’s work
[114], linear programming has been considered one of the most important problems
in the optimization field, so that a huge amount of works has been dedicated to
i1
In formal mathematical terms, a linear program consists of a linear objective func-
tion

C1T1 + Cog + ...+ Cpy, (6.1)

subject to linear constraints

a1 + aj9x9 + ...+ a1y, S b1

9101 + A29%o + ... + AopTy < by

| (6.2)
<:
Am1T1 + Am2T2 + ...+ AmnTn S bm
This expression can be more compactly expressed as
max{c’x : x € R", Ax < b}, (6.3)

where A € R™*" is the coefficient matrix and b € R™ is the vector that defines
the constraints on the LP. The problem constraints can be equalities and/or in-
equalities, as these can always be converted to a standard form without changing
the semantics of the problem.

A point x € R" is a feasible solution if it satisfies all linear constraints, and a
feasible solution x is optimal if cTx > ¢’y for all feasible y € R". On the other
hand, a linear program is unbounded if there exists no constant M € R such that
cI'x < M.

Let us consider a simple example represented in Figure that will help to un-
derstand the algorithmic solution to a linear program. In the leftmost plot, we
depicted the space of feasible solutions in yellow on the basis of the three linear
constraints, while in the rightmost plot we represented the optimal solution as a
yellow circle. The fact that the solution lies on a vertex of the polygon represent-
ing the space of feasible solutions is not a coincidence. As a matter of fact, the
following theorem guarantees that the solution of a linear program always lies on
a polygon vertex.

Theorem 3: If a linear program max{c’x : x € R", Ax < b} is feasible and
bounded and rank(A) = n, the LP has an optimal solution that is a verte.

e forward the reader to the following literature on linear programming for a thorough treat-
ment of the topic [114} 110} 19} 20, B8].

90 Chapter 6 Enforcing Temporal Constraints

o T

Optimal solution

Space of

/ feasible solutions /
‘ Ty

Figure 6.3: (Left) Space of feasible solutions of a linear program. (Right) Optimal
solution of the same linear program. (Picture taken from [63])

On the basis of this theorem, an LP could be solved by simply enumerating all
vertexes and picking the best one. Unfortunately, this becomes unmanageable as
soon as the number of variables and constraints becomes large. Therefore, an
algorithmic solution, the Simplex algorithm [18], has been proposed by George B.
Dantzig in 1947, which drastically reduces the number of vertexes to be checked.

The Simplex method explores the set of vertexes in an iterative and efficient way
in order to find the optimal solution. Starting from a vertex in the feasible region
x that is not optimal, the idea is to move along the edges of the polyhedron to
an adjacent vertex x’, where ¢’'x’ > ¢’x. Since each move increases the objective
function, convergence is guaranteed if the linear program is bounded. The two
important aspects of the Simplex algorithm is the optimality criterion, 7.e., how
to test if a vertex is optimal, and how to move to an adjacent vertex if the tested
vertex is not optimal.

With regards to optimality, we first define the concept of basis. Each vertex of the
feasible region lies at the intersection of n or more hyperplanes of the constraint
set. Let us define the basis B C {1,...,m} with |B| = n for a vertex x, as
the set of row indexes of A, whose corresponding hyperplanes intersect at x. If
x = A3'bg is a feasible solution, where the subscript B selects only the rows of A
indexed by B, then B is called a feasible basis. Furthermore, a basis is optimal if it
is feasible and the unique X such that A € R with A’A = ¢” and \; = 0, Vi ¢ B,
satisfies A > 0. Now, given a vertex x with corresponding basis B, we can check if
the vertex is optimal by computing the vector A such that AT = ¢ZA~!. If any of
the \; with ¢ € B is less than 0, than the basis B, and thus the vertex x associated
to it, is not optimal.

6.1 Linear Programming 91

If we know that a vertex is not optimal, than we need to move to an adjacent
vertex. If the vertex x is not optimal than there will be some \; < 0, so let us
compute a vector d € R" such that Ap\;d = 0 and a;frd = —1, where a; is the
i-th row of A.

If we move from x in the direction of d by a quantity ed, with £ > 0, we have

c(x+ed) =c"x+ec’d =cx +eA"Ad = c'x + elald > ', (6.4)

ase >0, \; < 0and ald = —1. Therefore, we are moving in the correct direction.
Now, we have to determine the right amount of movement €. We denote with K
the set of indexes of the constraints that might be hit by x + ed, that is,

K={k:1<k<m,ald>0}. (6.5)

There are two possible cases. If K is empty, this means that no vertex can be hit
by moving in the d direction, and thus the LP problem is unbounded. On the
contrary, if K is not empty, we have a set of k’s such that a} (x + xd) = by,. The
optimal £* is the smallest of all the e, as with any other £, the movement would
lead us to a vertex outside the feasible region. Therefore, we move to the vertex
x' = x +e*d, whose basis is B’ = B\ {i} U {k*}, where k* is the index associated
to e*.

We have summarized the Simplex algorithm in Algorithm [3]

Algorithm 3 Simplex Algorithm

1: Start with a feasible basis B
2: while B is not optimal do
3: Let ¢ € B the index with \; <0

4: Compute d € R" with AL, (;,d =0 and a/d = —1

5. Determine K = {k:1 <k <m,ald > 0}.

6: if K =0 then

7: Assert that LP is unbounded

8 else .

9 Let k* € K be the index where mingcx bro8,X 4o attained

al'd
10: Update B =B\ {i} U{k*} '
11: end if

12: end while

13: return x identified by B.

In the next section, we will show how the problem of finding the optimal pose
trajectory of an unknown object in a video sequence can be interpreted and solved
by means of Linear Programming and the Simplex algorithm.

92 Chapter 6 Enforcing Temporal Constraints

6.2 LP Interpretation for Our Problem

Previously, we have described a rough sketch of the strategy in order to extend
the algorithm presented in Chapters [4] and [f from still images to video sequences.
The goal of this extension is to exploit temporal information in such a way that
consistency is enforced in the pose estimation. We first stated that in each frame
the pose posterior distribution estimated by our algorithm contains a strong evi-
dence for the correct viewpoint. Then, we proposed to sample from the posterior
distribution at each frame in order to create a set of pose observations. On the
basis of this set of pose observations, we set our goal as the one to find the best
pose sequence over all frames. We can think of the best sequence as the pose
which has the best support from the posterior distribution and, at the same time,
it meets the constraints we enforce on the pose consistency.

Let O = {o}} be a set of pose observations with o}, = (ai,st), where o is a
feasible pose value and s}, is the score derived by the probability of that pose in
frame t obtained from the distribution of Equation . A path in the graph
is defined as a list of ordered pose observations T = {o}.,0p2,- - ,OZJIVV } with
t <ty <...<tn.

Our goal is thus to find the path T™ that best explains the pose observations. This
is equivalent to finding the 7' that maximizes the posterior probability given the
set of pose observations O

T* =argmax P(T0) (6.6)
T

By further assuming that the observations are conditionally independent, Equa-
tion can be rewritten as:

T* =argmax P(O|T)P(T)
T

= argmax [Plos T)P(T), (6.7)

where P(oy|T) corresponds to the score of the pose s, derived from the estimated
pose posterior distribution, and P(T') can be represented by a Markov chain:

P(T) = Pu(op,) ... P(o} |0 ") ... Pout(o,QVN). (6.8)

This formulation can be directly mapped into a minimum cost network flow prob-
lem by constructing a graph, where each node represents a pose observation. Then,
our goal becomes that of finding the best trajectory in the graph, or the minimum
cost path, which we do in an optimal way by solving a linear problem. We define a
directed graph G = (V, E') with costs C(i,7) and capacities u(i,7) associated with
every edge (i,j) € E. An example of such a network is shown in Figure [6.4] which

6.2 LP Interpretation for Our Problem 93

n—1 n n+1

Figure 6.4: Example of a graph spanning 3 frames (n—1,n,n+1), with the special
source s and sink ¢ nodes, and a total of 7 pose observations represented
by two nodes each: beginning u; and end v; nodes. The end node of
each pose observation is connected to all beginning nodes of the pose
observations in the next A f frameﬂ. The optimal path is marked by
orange arrows.

contains two special nodes, the source s and the sink ¢ that have been added to
the set of vertexes V', so that all flow that goes through the graph starts at s and
ends at ¢.

More precisely, each pose observation o; is represented with two nodes, the begin-
ning node u; € V' and the end node v; € V' (see Figure , so that the pose score
can be represented as the edge connecting u; and v;.

Finding the best path can be expressed as a Linear Program which is defined
by a linear objective function and a set of linear constraints, as we described
in Section . The linearization of the objective function of Equation is
obtained by defining a set of flow flags f(i,7) = {0, 1} which indicate if edge (,j)
is part of the optimum path solution or not. By defining the costs as negative
log-likelihoods and combining Equations and , the following objective

function is obtained

T* = argmin —log P(T) —) log P(oy,)
T k

= al"gfminz Cln(z)fln(z) + Z Ct<27.7)ft<27]) + Z Csc(z)fsc(l) + Z Cout(i)fout@)

(6.9)

subject to the constraint that the flow that enters a node is equal to the flow that

12For ease of visualization, we represented in Figure only link edges between consecutive
frames.

94 Chapter 6 Enforcing Temporal Constraints

leaves the node:
fin(i) + th(]az> - fSC(i)

6.10
Feli) = foneli) + 3 (i) (6.10)

Furthermore, we know that f(i,j) = {0,1}, a condition that we relax into 0 <
f(i,7) < 1. This tight relaxation allows us to have a linear program without losing
the optimality guarantee. Finally, the overall flow that leaves s has to be 1, as
well as the flow that enters t.

As we can see in Equation , there are four types of costs corresponding to
four types of edges as shown in Figure [6.4f The link or transition costs Ci(i,5)
corresponding to the link edges connecting a pose observation from frame ¢ to frame
t + Af. This cost represents the pose difference between the two observations.
Assuming that the object pose cannot change a lot from one frame to the next,
we define these costs to be an increasing function of the distance between pose
observations. Therefore, the cost of a link edge is defined as

HAf

Cy(i,f) = — log (1 - W) + C(A) (6.11)

where C(Af) = —log (Bjﬁf;_pl) is the cost depending on the frame difference be-
tween pose observations. For all our experiments we allow matches up to two
frames apart, which allows us to recover from pose estimation errors that occur
on isolated frames. We set the parameter Bj,., = 0.3. Edges between observa-
tions are only created if their pose distance is less than M, degrees apart. This
parameter allows us to adapt the algorithm to different frame rates and object
speeds.

The score costs Cy.(7) correspond to the pose observations and express how proba-
ble is that particular pose according to the learned distribution of Equation ({5.14]).
The cost is defined as:

Cie(i) = —log (;;) : (6.12)

where M, is a normalization factor equivalent to the maximum score of all pose
observations. The entrance cost Ci,(i) and exit cost Cou(i) are set to 0, since
we do not penalize any of the initial or last pose observations. As described in
Section [6.1], the solution can be found efficiently using the Simplex algorithm.

In the following section, we provide a large experimental evaluation on three differ-
ent publicly available datasets. These datasets envisage different difficulties, such
as high intra-class variability, occlusions, truncations, and motion blur.

6.3 Experimental Results 95

6.3 Experimental Results

In this section, we first show results of a preliminary experiment on the EPFL
multi-view car dataset [90], a dataset we have extensively used in Chapter |4 and
for experimental evaluation. Later, we test the proposed video-based algorithm
on two additional datasets, namely KITTI [37] and YouTube [I127], where we will
show that the extension we propose improves over the state of the art.

6.3.1 Preliminary experiment

The EPFL multi-view car dataset has been used for experimental evaluation in the
previous chapters of this thesis, as it is one of the few publicly available datasets at
the time of writing with ground-truth pose annotations. As the cars are just rotat-
ing on a pedestal, the change in orientation is smooth and predictable. Therefore,
we can only consider this dataset for a preliminary experiment in which to test
our method.

We compare our method to four single-frame state-of-the-art pose estimators [50),
47,118, 190], the two methods we proposed in Chapter [f]and [pindicated as “Fenzi et
al. (2013)” and “Fenzi et al. (2014)”, and one video-based approach that has been
recently proposed [99]. We used the same testing framework as in the previous
chapters, i.e., two different splits for training and testing:

50% Split: training the model on the first 10 sequences and testing it on the
second 10;

Leave-One-Out split: training the model on 19 sequences and testing it on the
remaining one.

We build our model according to Chapter |4 and we estimate the pose posterior
distribution in each frame as explained in Chapter 5] For each frame, we extract
N pose values from the posterior distribution and construct the graph over all the
frames of the sequence. The best path is found using the Gurobi library [45].

In Table [6.1, we show that our method not only outperforms all the other single-
frame pose estimators, but it also obtains more accurate results than the other
video-based approach [99]. In particular, our Mean Absolute Error (MAE) is
approximately 80% smaller with respect to the results published in [50], which is
the most accurate method on this dataset so far. As the results in the leftmost
two columns show, the overall mean is affected by very few flipping errors. Since
our method does not take a hard decision in each frame, but finds the path of
orientations that best explains the whole sequence of pose observations, we can
reduce the effect of these wrong estimations to a minimum.

96 Chapter 6 Enforcing Temporal Constraints

Table 6.1: EPFL multi-view car dataset. Mean Absolute Error (MAE) and its
90" and 95" percentiles. The two leftmost columns show a clearer
insight into the algorithms performance by removing the influence of
large errors from the overall mean.

Method MAE [] MAE [] MAE [’
90 perc. 95 perc.

50% split

Ozuysal et al. [90] - - 46.48
Torki et al. [118] 19.4 26.7 33.98
Fenzi et al. (2013) [29] 14.51 22.83 3127
Redondo-Cabrera et al. [99] - - 29.7
Hara et al. [47] 7.73 16.18 2424
Fenzi et al. (2014) [2§] 12.67 17.77 23.38
He et al. [50] - - 15.8
Proposed [30] 3.91 4.30 4.89
Leave-One-Out split

Torki et al. [118] 23.13 26.85 34.90
Fenzi et al. (2013) [29] 14.41 2272 31.16
Fenzi et al. (2014) [28] 15.53 1927 24.53
Proposed [30] 5.6 6.26 7.10

In the following sections, we test the performance of our method in real-world
scenarios on two publicly available datasets, which present occlusions, truncations,
and high motion blur.

6.3.2 KITTI dataset

The first test dataset consists of 11 sequences from the KITTI benchmark dataset
[37], which were annotated by [127]. They show real-world scenarios of busy
streets, where target cars undergo significant viewpoint changes. In some se-
quences, the car is partially or even totally occluded by other cars, pedestrians
or road signs, making the pose estimation problem very challenging. An im-
portant difficulty of this dataset is that the car size varies significantly in each
sequence, ranging from 500 pixels down to 40 pixels, as a result of the relative
motion between the moving camera and the car.

We followed the same paradigm as in the preliminary examples. We extract fea-
tures from each test image, we matched them against the model, which is learned

6.3 Experimental Results 97

Table 6.2: KITTI dataset. Viewpoint accuracy/mean absolute error (MAE) in

degrees

Proposed Proposed Xiang et al. Xiang et al. Fenzi et al.

15* GT [30] [30] 1** GT [127] [126] (2014) [28]

KITTIO1 1.00/4.04° 0.96/5.54° 0.95/6.5° 0.57/44.46° 0.35/64.87°
KITTIO2 0.81/9.74° 0.67/12.81° 1.00/5.40° 0.33/119.54° 0.22/72.45°
KITTIO3 0.81/9.75° 0.46/16.33° 0.42/15.64° 0.50/15.99° 0.13/62.81°
KITTIO4 0.72/10.55° 0.65/12.10° 0.22/27.05° 0.17/58.42° 0.24/63.11°
KITTIO5 0.93/4.35° 0.93/5.93° 0.36/23.59° 0.64/23.65° 0.76/12.82°
KITTIO6 1.00/5.02° 1.00/5.08° 0.31/21.63° 0.59/20.29° 0.71/12.72°
KITTIO7 0.78/12.78° 0.21/24.8° 0.96/6.86° 0.70/24.50° 0.09/56.80°
KITTIO8 0.70/10.74° 0.81/10.00° 0.57/15.61° 0.67/23.26° 0.52/42.00°
KITTIO9 0.90/8.23° 0.90/8.33° 0.50/21.63° 0.50/17.60° 0.33/32.85°
KITTI10 0.92/7.09° 0.92/7.18° 0.81/7.99° 0.44/56.78° 0.47/49.20°
KITTI11 0.54/16.00° 0.48/29.7° 0.88/9.33° 0.68/12.29° 0.32/76.17°
Mean 0.83/8.93° 0.73/12.53° 0.63/14.66° 0.53/37.89° 0.38/49.62°

from the first 10 sequences of the EPFL dataset, and then we obtain a pose poste-
rior distribution. Finally, we sample N pose values from the posterior distribution,
we construct the graph over all frames, and we find the pose path that best ex-
plains the pose observations over the sequence. To cope with the small size of
the targets, we up-sample the images by 2, since our approach is based on local
sparse features and we need a minimum amount of features to estimate a reliable
posterior distribution.

In order to evaluate viewpoint estimation, we report two metrics:

Viewpoint Accuracy: the ratio of estimated viewpoints whose deviation from the
ground truth viewpoint is less than 15°

Mean Absolute Error (MAE): the mean absolute difference in degrees between
the estimated and the ground truth viewpoints for the entire sequence

In Table we compare our results on each KITTI sequence and the overall mean
with [I27]. The notation “1% GT” indicates that the ground truth orientation of
the first frame is used to initialize the methods. Our method outperforms [127]
reducing the error by approximately 40% and increasing accuracy by 20 percentage
points when the ground truth of the first frame is used. Furthermore, we obtain
more accurate results even when the pose of the first frame is not given.

Additionally, we provide a visual example of our algorithm in Figure [6.5] where
we estimate the pose of the car pointed by the red arrow. The pose estimation is

98 Chapter 6 Enforcing Temporal Constraints

Figure 6.5: Visual results of our algorithm when estimating the pose of the car
pointed by the red arrow. Ground truth in red, algorithm estimation
in green. Sequence: KITTIOL.

accurate even when the car is fully occluded. As a further insight into our algorithm
we provide two frame-by-frame graphs from the KITTI dataset in Figure[6.6] where
we plot the results of the single-frame pose estimator, the pose value selected by
the video-based extension presented in this Chapter, and the ground truth. In
the first graph, thanks to the Linear Programming formulation, our algorithm can
completely recover from the spurious errors of the single-frame pose estimator, as
a correct evidence is provided in most frames. However, when correct evidence is
more counterbalanced by opposite, wrong evidence, as in the second plot around
frame 23, the LP formulation leads to a conservative solution and the pose in the
middle is just output.

6.3.3 YouTube dataset

We also perform experiments on the YouTube dataset [127], that contains 9 se-
quences where a racing car undergoes significant orientation changes. In many
sequences, pictures are strongly blurred as a result of the high speed, and often
the car is surrounded by smoke, due to the sliding of tires on the ground, making
the pose estimation problem extremely challenging.

In Table [6.3] we report the results of our experiment on this dataset in terms of
Viewpoint Accuracy and MAE. As we can see, we outperform also on this

6.3 Experimental Results

99

Table 6.3: YouTube dataset. Viewpoint accuracy/mean absolute error (MAE) in

degrees.
Proposed Proposed Xiang et al. Xiang et al. Fenzi et al.
15* GT [30] [30] 1 GT [127] [126] (2014) [28]
Racel 0.58/16.64° 0.54/18.47° 0.67/18.73° 0.52/42.62° 0.09/79.88°
Race2 0.80/9.51° 0.74/10.35° 0.77/10.83° 0.53/44.30° 0.36/54.26°
Race3 0.55/16.20° 0.55/16.29° 0.83/9.28° 0.64/46.08° 0.22/66.63°
Race4 0.69/10.87° 0.56/17.85° 0.69/15.83° 0.79/13.37° 0.20/62.47°
Raceb 0.73/11.39° 0.55/18.01° 0.71/10.75° 0.54/57.79° 0.23/45.92°
Race6 0.68/15.54° 0.47/16.93° 0.43/18.47° 0.31/37.08° 0.43/44.90°
SUV1 0.94/4.88° 0.93/5.29° 0.82/7.81° 0.47/78.38° 0.14/78.65°
SUV2 0.89/6.42° 0.61/15.14° 0.57/19.56° 0.39/63.41° 0.44/36.07°
Sedan 0.72/12.20° 0.71/12.32° 0.76/9.87° 0.79/20.84° 0.40/23.05°
Mean 0.71/12.18° 0.63/13.86° 0.69/13.46° 0.54/47.24° 0.28/54.67°

dataset, and more interestingly, we observe that the two methods are comple-
mentary. In sequences SUV2, KITTI04, KITTI05, and KITTIO06, [127] performs
poorly, while our method achieves a very high accuracy in viewpoint estimation.
On the contrary, in sequences KITTI11 or Race3, [127] outperforms our method.

100 Chapter 6 Enforcing Temporal Constraints

300 T T
—— Groundtruth

L LP 4
250 —Single—frame [\

200 *

3
3 150 i
o

1001 7

G L L L L L L L L L
0 5 10 15 20 25 30 35 40 45 50
Frame number

350

—— Groundtruth
3001 LP N
—Single-frame

2501

2001

Pose

150

100

50

L L L
0 5 10 15 20 25 30
Frame number

Figure 6.6: Ground truth pose (red), pose output by choosing the largest mode of
the pose distribution (blue), optimal solution provided by the proposed
method (green).

Chapter 7

Conclusions

In this thesis, we proposed a novel method for pose estimation of object categories,
i.e., for recovering the pose of an unknown object when the class membership is
the only available information. This problem has recently become very popular
in research as well as in the industry thanks to its application in fields such as
autonomous driving and robotics. In fact, the knowledge of the orientation of
other vehicles in the scene permits to make correct driving decisions, just as the
knowledge of the spatial orientations of objects permits to perform precise ma-
nipulation. When the number of objects is small and all objects are known in
advance, the recovery of a correct pose can be performed by single object pose
estimators. When these two assumptions are not met, it becomes necessary to
develop methods to solve the pose estimation problem for a generic object of a
given class. However, the generality of the problem makes the task much more
challenging, as difficulties such as definition and construction of a class model as
well as intra-class variability appear.

Many works in the literature have tried to solve the problem by relying on 3D
models based on CAD design or Structure from Motion techniques. The under-
lying claim behind this choice is that the knowledge of the 3D geometry of the
class permits to provide a continuous estimation of the pose. However, 3D-based
methods depend on the availability of 3D training data or the feasibility of 3D
reconstruction, which cannot always be guaranteed. Therefore, several authors
have proposed methods based only on 2D training information, counting on the
ubiquitous availability of images as well as the greater simplicity of the resulting
models. However, 2D-based methods have the strong disadvantage of providing
only a discrete, very often coarse, value for the pose. In this thesis, we proposed
a solution that bridges this gap by devising an innovative method that provides
a real-valued pose by relying only on a 2D-based class model learned from image
data.

We had the intuition for the method presented in this thesis by observing a simple
experimental fact: while features are not invariant to out-of-plane rotations, the
variation in the components of the feature descriptor is smooth as a function of

102 Chapter 7 Conclusions

the viewpoint change. This suggests that the change in the feature descriptor is
informative with respect to the viewpoint and, thus, we developed a prediction
function that could capture and reproduce this informativeness. This function,
which we called the generative feature model, is implemented as a Radial Basis
Function network and trained with descriptors of the same patch extracted from
different viewpoints. The generative feature model represents the key ingredient
of the pose estimation method for object categories presented in this thesis.

Before building our full method, we first investigated the applicability of genera-
tive feature models for the pose estimation of a single specific object. This is an
easier situation with respect to the case of object categories, as the object identity
is known in advance. Given a set of training images depicting the target object
under different viewpoints, we showed how to learn a set of generative feature
models and how to embed it in a probabilistic framework in order to provide a
posterior distribution for the pose. By experimenting on a large car dataset, we
investigated different combinations of descriptors and detectors, and we noticed
that the performance of our method is strongly dependent on the feature detector.
The higher number of features produced by the SURF detector permits to obtain
a much higher accuracy with respect to SIFT. On the contrary, the higher dimen-
sional SIFT descriptor provides more accuracy than the SURF counterpart. With
the best combination of detector and descriptor, we outperformed the state of the
art in pose estimation accuracy by 45% in this experiment.

After this preliminary investigation, we turned to the actual problem addressed in
this thesis: pose estimation for object categories. In order to have a representative
class model, we first aggregated the generative feature models deriving from many
different training instances. As the number of models becomes unmanageable, we
proposed to cluster the generative feature models by means of spectral clustering.
As similarity measure, we used dynamic time warping to evaluate the alignment
of pairs of feature tracks in terms descriptor distance and orientation overlapping.
As each cluster is a collection of generative feature models, we set its regression
function, the so-called generative cluster model, as the weighted linear combination
of the corresponding generative feature models. We evaluated the performance of
our class representation on two publicly available datasets of cars and faces. Our
experiments confirmed that clustering the generative feature models into genera-
tive cluster models is beneficial in terms of pose accuracy with respect to a more
naive application of our method, as the improvement in pose accuracy is approx-
imately 15%. These experiments permitted to highlight one important weakness
of our initial algorithm: it strongly depends on the correctness of the matches
established between test features and generative cluster models. This often led to
what is known as “flipping errors”, i.e., errors due to a strong similarity between
different views of the object. We identified the first cause of flipping errors as the

103

pose classifier that we used to reduce the pose search space. It turned out that
the hard decision taken by the pose classifier is often wrong, and it is detrimental
because the remaining part of the algorithm cannot revert it. The second and
more important cause is due to the total lack of geometry in our initial algorithm.
As a matter of fact, generative cluster models are only based on feature descriptors
and also the matching step does not take feature arrangement into account.

Therefore, we studied how to enrich our approach with geometrical context, as
spatial information is an extremely important cue for disambiguation. More specif-
ically, we reformulate the matching step as a graph matching problem, where the
spatial arrangement between matching features is taking into account. We en-
force that pairs of matching features share geometrical consistency in terms of
distance and orientation in their spatial arrangement. We show that the intro-
duction of geometrical cues in the matching step is beneficial for the accuracy of
the proposed method, as the mean absolute error is reduced by approximately
25%. More interestingly, we investigated the real strength of the graph matching
step with respect to the pose classifier that we initially used. It turned out that
graph matching permits to totally replace the pose classifier. Furthermore, this
experiment confirmed that the class representation we learned on one car dataset
is general enough to work on other car datasets, thus showing that our approach
is robust against domain changes.

In spite of the important results we obtained by adding graph matching to our
baseline algorithm, we still experienced a not negligible number of flipping er-
rors. As a matter of fact, the performance of our algorithm mainly alternates
between long sequences of correct estimations and short bursts of wrong estima-
tions. Nonetheless, we noticed that even in the case of wrong estimations the
posterior distribution that our method deliver contains a strong minor mode lo-
cated at the correct pose. Therefore, we extended our algorithm to videos in order
to apply temporal constraints on the sequence of estimated poses. We assumed
that the pose of an object can only have a small and smooth change over con-
secutive frames. On this basis, we built a graph by sampling from the posterior
distributions estimated in each frame and we found the pose trajectory that best
explains the pose observations by using a Linear Programming formulation. This
formulation permits to remove the spurious wrong observations and to deliver a
globally optimum pose trajectory. Thanks to a set of experiments on two video
datasets, we showed that the embedding of spatial and temporal constraints per-
mits to provide a much more accurate pose when video sequences are available.
More specifically, we increased the pose accuracy by 40% with respect to 3D-based
state-of-the-art methods on videos featuring low resolution, object truncations and
a large amount of motion blur.

To conclude, we provided a novel algorithm for pose estimation of object cate-

104 Chapter 7 Conclusions

gories that is based on the innovative concept of generative feature models. We
showed how to efficiently cluster generative feature models into generative cluster
models and how to estimate the pose of an unknown object of a given class in
a probabilistic fashion. Furthermore, we illustrated how to introduce geometrical
as well as temporal constraints in the formulation that are extremely helpful in
improving the pose accuracy.

In the short term, it would be interesting to investigate if the spatial aggregation
of features, e.g., by means of Fisher encoding, could be beneficial to create a more
robust regression-based method. Since our algorithm seems to be sensitive to
matching and geometry, a feature encoding into larger, spatially fixed “containers”
would remove the matching step and simultaneously permit to keep geometry into
account. From a larger perspective, the work we presented in this thesis is not
conclusive, but it can lead to a set of possible extensions. By large, the most
important direction that can be pursued is to combine pose estimation and object
detection. Whereas here we focused only on pose estimation by assuming that
the location of the object is given, it would be interesting to extend our method
so that the estimation of the pose becomes informative about the location of the
object and vice versa.

Bibliography

1]
2]

URL https://3dwarehouse.sketchup.com/.

O. Aghazadeh, J. Sullivan, and S. Carlsson. Novelty Detection from an Ego-
Centric Perspective. In IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), pages 3297-3304, 2011.

G.J. Agin and T.O. Binford. Computer Description of Curved Objects. IEEE
Transactions on Computers, 25(4):439-449, 1976.

S.Y. Bao, Y. Xiang, and S. Savarese. Object Co-detection. In IEEE Furopean
Conference on Computer Vision (ECCV), pages 86-101, 2012.

H. Barrow and R. Popplestone. Relational Descriptions in Picture Process-
ing. Machine Intelligence, 6:377-396, 1971.

H. Bay, T. Tuytelaars, and L. Van Gool. SURF: Speeded Up Robust Fea-
tures. In IEEE European Conference on Computer Vision (ECCYV), pages
404-417, 2006.

H. Bay, A. Ess, T. Tuytelaars, and L. Van Gool. SURF: Speeded Up Robust
Features. Computer Vision and Image Understanding (CVIU), 110(3):346—
359, 2008.

A. Berg, T. Berg, and J. Malik. Shape Matching and Object Recognition
using Low Distortion Correspondences. In IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), pages 26-33, 2005.

D. S. Broomhead and D. Lowe. Multivariable Functional Interpolation and
Adaptive Networks. Complex Systems, 2:321-355, 1988.

T. Caelli and S. Kosinov. An Eigenspace Projection Clustering Method
for Inexact Graph Matching. IFEE Transactions on Pattern Analysis and
Machine Intelligence (TPAMI), 26(4):515-519, 2004.

T. S. Caetano, T. Caelli, and D. A. C. Barone. Graphical Models for Graph
Matching. In IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), pages 466-473, 2004.

https://3dwarehouse.sketchup.com/

106

Bibliography

[12]

[13]

[14]

[15]

[16]

[22]

23]

M. Carcassoni and E. R. Hancock. Spectral Correspondence for Point Pat-
tern Matching. Pattern Recognition (PR), 36(1):193-204, 2003.

W. J. Christmas, J. Kittler, and M. Petrou. Structural Matching in Com-
puter Vision Using Probabilistic Relaxation. IEEFE Transactions on Pattern
Analysis and Machine Intelligence (TPAMI), 17(8):749-764, 1995.

A. Collet, D. Berenson, S.S. Srinivasa, and D. Ferguson. Object Recognition
and Full Pose Registration from a Single Image for Robotic Manipulation. In
IEEE International Conference on Robotics and Automation (ICRA), pages
48-55, 2009.

T. Cour, P. Srinivasan, and J. Shi. Balanced Graph Matching. In Advances
in Neural Information Processing Systems (NIPS), pages 313-320, 2006.

G. Csurka, C. Dance, L. Fan, J. Willamowski, and C. Bray. Visual Catego-
rization with Bags of Keypoints. In IEEE European Conference on Computer
Vision Workshops (ECCVW), pages 1-22, 2004.

F.C. Kirwan D. Mumford, J. Fogarty. Geometric Invariant Theory. Springer
Science & Business Media, 1994.

G.B. Dantzig. Origins of the Simplex Method. Technical report, Department
of Operations Research, Stanford University, 1987.

G.B. Dantzig and M.N. Thapa. Linear Programming 1: Introduction.
Springer-Verlag, Secaucus, NJ, USA, 1997.

G.B. Dantzig and M.N. Thapa. Linear Programming 2: Theory and Ezten-
sions. Springer-Verlag, Secaucus, NJ, USA, 2003.

O. Duchenne, F. Bach, I. Kweon, and J. Ponce. A Tensor-Based Algorithm
for High-Order Graph Matching. In IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), pages 1980-1987, 2009.

O. Duchenne, F. Bach, I. Kweon, and J. Ponce. A Tensor-Based Algorithm
for High-Order Graph Matching. IEEE Transactions on Pattern Analysis
and Machine Intelligence (TPAMI), 33(12):2383-2395, 2011.

D. Eggert, L. Stark, and K. Bowyer. Aspect Graphs and Their Use in Object
Recognition. Annals of Mathematics and Artificial Intelligence (AMAI), 13
(3-4):347-375, 1995.

Bibliography 107

[24]

[25]

[26]

[27]

[30]

[31]

[32]

[33]

[34]

M. Everingham, A. Zisserman, C. Williams, and L. Van Gool. The PASCAL
Visual Object Classes Challenge 2006 (VOC 2006) Results. Technical report,
University of Oxford, 2006.

L. Fei-Fei and P. Perona. A Bayesian Hierarchical Model for Learning Natu-
ral Scene Categories. In IEEFE Conference on Computer Vision and Pattern
Recognition (CVPR), pages 524-531, 2005.

P. Felzenszwalb, D. McAllester, and D. Ramanan. A Discriminatively
Trained, Multiscale, Deformable Part Model. In IEEE Conference on Com-
puter Vision and Pattern Recognition (CVPR), 2008.

P. Felzenszwalb, R. Girschick, D. McAllester, and D. Ramanan. Object De-
tection with Discriminatively Trained Part Based Model. IEEE Transactions
on Pattern Analysis and Machine Intelligence (TPAMI), 32(9):1627-1645,
2010.

M. Fenzi and J. Ostermann. Embedding Geometry in Generative Models for

Pose Estimation of Object Categories. In British Machine Vision Conference
(BMVC), 2014.

M. Fenzi, L. Leal-Taixé, B. Rosenhahn, and J. Ostermann. Class Generative
Models based on Feature Regression for Pose Estimation of Object Cate-
gories. In IEEE Conference on Computer Vision and Pattern Recognition

(CVPR), pages 755-762, 2013.

M. Fenzi, L. Leal-Taixé, K. Schindler, and J. Ostermann. Pose Estimation
of Object Categories in Videos Using Linear Programming. In IEEE Winter
Conference on Applications of Computer Vision (WACV), pages 821-828,
2015.

M. Fischler and R. Bolles. Random Sample Consensus: A Paradigm for
Model Fitting with Applications to Image Analysis and Automated Cartog-
raphy. Communications of the ACM, 24(6):381-395, 198]1.

M. A. Fischler and R. A. Elschlager. The Representation and Matching of
Pictorial Structures. IEEE Transactions on Computers, 22(1):67-92, 1973.

Y. Freund and R.E.Schapire. A Decision-Theoretic Generalization of On-line
Learning and an Application to Boosting. Journal of Computer and System

Sciences (JCSS), 55(1):119-139, 1997.

J. Friedman, T. Hastie, and R. Tibshirani. Additive Logistic Regression: a
Statistical View of Boosting. Annals of Statistics (AS), 38(2):337-407, 2001.

108

Bibliography

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

J. Gall and V. Lempitsky. Class-Specific Hough Forests for Object Detection.
In IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
pages 1022-1029, 2010.

J. Gall, N. Razavi, and L. Van Gool. An Introduction to Random Forests
for Multi-class Object Detection. In F. Dellaert, J.-M. Frahm, M. Pollefeys,
L. Leal-Taixé, and B. Rosenhahn, editors, Theoretic Foundations of Com-
puter Vision: Qutdoor and Large-Scale Real-World Scene Analysis, pages
243-263. Springer, 2012.

A. Geiger, P. Lenz, and R. Urtasun. Are We Ready for Autonomous Driving?
The KITTT Vision Benchmark Suite. In IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), pages 3354-3361, 2012.

A. Geiger, M. Lauer, C. Wojek, C. Stiller, and R. Urtasun. 3D Traffic
Scene Understanding from Movable Platforms. IEEE Transactions on Pat-
tern Analysis and Machine Intelligence (TPAMI), 36(5):1012-1025, 2014.

D. Glasner, M. Galun, S. Alpert, R. Basri, and G. Shakhnarovich. Viewpoint-
Aware Object Detection and Pose Estimation. In IFEE International Con-
ference on Computer Vision (ICCV), pages 1275-1282, 2011.

I. Gordon and D.G. Lowe. Scene Modelling, Recognition and Tracking with
Invariant Image Features. In IEEFE International Symposium on Mizxed and
Augmented Reality (ISMAR), pages 110-119, 2004.

[. Gordon and D.G. Lowe. What and Where: 3D Object Recognition with
Accurate Pose. In J. Ponce, M. Hebert, C. Schmid, and A. Zisserman, editors,
Toward Category-Level Object Recognition, volume 4170 of Lecture Notes in
Computer Science, pages 67-82. Springer-Verlag, 2006.

N. Gourier, D. Hall, and J. L. Crowley. Estimating Face Orientation from Ro-
bust Detection of Salient Facial Features. Proceedings of Pointing 2004, In-
ternational Conference on Pattern Recognition (ICPR), International Work-
shop on Visual Observation of Deictic Gestures, pages 17-25, 2004.

K. Grauman and T. Darrell. The Pyramid Match Kernel: Discriminative
Classification with Sets of Image Features. In IEEE International Conference
on Computer Vision (ICCV), pages 14581465, 2005.

C. Gu and X. Ren. Discriminative Mixture-of-Templates for Viewpoint Clas-
sification. In IEEE Furopean Conference on Computer Vision (ECCYV),
pages 408-421, 2010.

Bibliography 109

[45]

[46]

[51]

[52]

[53]

Inc. Gurobi Optimization. Gurobi Optimizer Reference Manual, 2015. URL
http://www.gurobi.com.

M. Al Haj and L.S. Davis J. Gonzalez. On Partial Least Squares in Head
Pose Estimation: How to Simultaneously Deal with Misalignment. In IEEFE
Conference on Computer Vision and Pattern Recognition (CVPR), pages
2602-2609, 2012.

K. Hara and R. Chellappa. Growing Regression Forests by Classification:
Application to Object Pose Estimation. In IEEE FEuropean Conference on
Computer Vision (ECCV), pages 552567, 2014.

C. Harris and M. Stephens. A Combined Corner and Edge Detector. In
Alvey Vision Conference, pages 23.1-23.6, 1988.

R.I. Hartley and A. Zisserman. Multiple View Geometry in Computer Vision.
Cambridge University Press, 2004.

K. He, L. Sigal, and S. Sclaroff. Parameterizing Object Detectors in the

Continuous Pose Space. In IEEE FEuropean Conference on Computer Vision
(ECCV), pages 450-465, 2014.

S. Hinterstoisser, S. Benhimane, and N. Navab. N3M: Natural 3D Markers
for Real-Time Object Detection and Pose Estimation. In IEEE International
Conference on Computer Vision (ICCV), pages 1-7, 2007.

S. Hinterstoisser, S. Benhimane, N. Navab, P. Fua, and V. Lepetit. Simul-
taneous Recognition and Homography Extraction of Local Patches with a
Simple Linear Classifier. In British Machine Vision Conference (BMVC),
pages 10.1-10.10, 2008.

S. Hinterstoisser, S. Benhimane, N. Navab, P. Fua, and V. Lepetit. Online
Learning of Patch Perspective Rectification for Efficient Object Detection.
In IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
pages 1-8, 2008.

S. Hinterstoisser, O. Kutter, N. Navab, P. Fua, and V. Lepetit. Real-Time
Learning of Accurate Patch Rectification. In IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), pages 2945-2952, 2009.

E. Hsiao, A. Collet, and M. Hebert. Making Specific Features Less Discrimi-
native to Improve Point-Based 3D Object Recognition. In IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), pages 2653-2660,
2010.

http://www.gurobi.com

110

Bibliography

[56]

[57]

[58]

[59]

A. Irschara, C. Zach, J.-M. Frahm, and H. Bischof. From Structure-from-
Motion Point Clouds to Fast Location Recognition. In IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), pages 25992606, 2009.

H. Ishikawa. Exact Optimization for Markov Random Fields with Convex
Priors. IEEFE Transactions on Pattern Analysis and Machine Intelligence
(TPAMI), 25(10):1333-1336, 2003.

K. Kim, V. Lepetit, and W. Woo. Scalable Real-Time Planar Targets Track-
ing for Digilog Book. In Computer Graphics International (CGI), pages
1145-1154, 2010.

K. Kim, V. Lepetit, and W. Woo. Keyframe-based Modeling and Tracking
of Multiple 3D Objects. In IEEE International Symposium on Mized and
Augmented Reality (ISMAR), pages 193-198, 2010.

J.J. Koenderink. The Structure of Images. Biological Cybernetics (BC), 50
(5):363-370, 1984.

J.J. Koenderink and A.J. van Doorn. Representation of Local Geometry in
the Visual System. Biological Cybernetics, 55(6):367-375, 1987.

K. Koser and R. Koch. Perspectively Invariant Normal Features. In IFEE
International Conference on Computer Vision (ICCV), pages 1-8, 2007.

L. Leal-Taixé. Multiple Object Tracking with Context Awareness. PhD thesis,
Leibniz Universitat Hannover, 2014.

L. Leal-Taixé, G. Pons-Moll, and B. Rosenhahn. Branch-and-Price Global
Optimization for Multi-view Multi-target Tracking. In IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), pages 1987-1994, 2012.

L. Leal-Taixé, M. Fenzi, A. Kuznetsova, B. Rosenhahn, and S. Savarese.
Learning an Image-Based Motion Context for Multiple People Tracking. In
IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
pages 3542-3549, 2014.

B. Leibe, A. Leonardis, and B. Schiele. Combined Object Categorization and
Segmentation with an Implicit Shape Model. In IEEE Furopean Conference
on Computer Vision Workshops (ECCVW), pages 17-32, 2004.

M. Leordeanu and M. Hebert. A Spectral Technique for Correspondence
ProblemsUsing Pairwise Constraints. In IEEFE International Conference on
Computer Vision (ICCV), pages 1482-1489, 2005.

Bibliography 111

[68]

[72]

[73]

[74]

[75]

V. Lepetit, J. Pilet, and P. Fua. Point Matching as a Classification Prob-
lem for Fast and Robust Object Pose Estimation. In IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), pages 244-250, 2004.

V. Lepetit, P. Lagger, and P. Fua. Randomized Trees for Real-Time Key-
point Recognition. In IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), pages 775-781, 2005.

S. Z. Li. A Markov Random Field Model for Object Matching Under Con-
textual Constraints. In IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), pages 866-869, 1994.

Y. Li, N. Snavely, and D. Huttenlocher. Location Recognition using Priori-
tized Feature Matching. In IEFE European Conference on Computer Vision
(ECCV), pages 791-804, 2010.

J. Liebelt and C. Schmid. Multi-View Object Class Detection with a 3D
Geometric Model. In IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), pages 1688-1695, 2010.

J. Liebelt, C. Schmid, and K. Schertler. Viewpoint-Independent Object Class
Detection using 3D Feature Maps. In IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), pages 1-8, 2008.

T. Lindeberg. Scale-space Theory: A Basic Tool for Analysing Structures at
Different Scales. Journal of Applied Statistics (JAS), 21(2):224-270, 1994.

T. Lindeberg. Feature Detection with Automatic Scale Selection. Interna-
tional Journal of Computer Vision (IJCV), 30(2):79-116, 1998.

R. J. Lépez-Sastre, T. Tuytelaars, and S. Savarese. Deformable Part Mod-
els Revisited: A Performance Evaluation for Object Category Pose Esti-
mation. In IEEE International Conference on Computer Vision Workshops

(ICCVW), pages 1052-1059, 2011.

D.G. Lowe. Local Feature View Clustering for 3D Object Recognition. In
IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
pages 682-688, 2001.

D.G. Lowe. Distinctive Image Features from Scale-Invariant Keypoints. In-
ternational Journal of Computer Vision (IJCV), 60(2):91-110, 2004.

J. Maciel and J. Costeira. A Global Solution to Sparse Correspondence
Problems. IEEFE Transactions on Pattern Analysis and Machine Intelligence
(TPAMI), 25(2):187-199, 2003.

112

Bibliography

[80]

[81]

[82]

[83]

[36]

[87]

[88]

[39]

[90]

D. Marr. Vision: A Computational Investigation into the Human Represen-
tation and Processing of Visual Information. Henry Holt and Co., Inc., New

York, NY, USA, 1982.

L. Mei, M. Sun, K. Carter, A. Hero, and S. Savarese. Unsupervised Object
Pose Classification from Short Video Sequences. In British Machine Vision
Conference (BMVC), pages 1-12, 20009.

L. Mei, J. Liu, A.O. Hero, and S. Savarese. Robust Object Pose Estimation
via Statistical Manifold Modeling. In IEEFE International Conference on
Computer Vision (ICCV), pages 967-974, 2011.

C. A. Micchelli. Interpolation of Scattered Data: Distance Matrices and
Conditionally Positive Definite Functions. Constructive Approximation, 2
(1):11-22, 1986.

K. Mikolajczyk. Detection of Local Features Invariant to Affine Transfor-
mation. PhD thesis, Institut National Polytechnique de Grenoble, 2002.

E. Molla and V. Lepetit. Augmented Reality for Board Games. In IEEFE
International Symposium on Mized and Augmented Reality (ISMAR), pages
953254, 2010.

H. Moravec. Rover Visual Obstacle Avoidance. In International Joint Con-
ference on Artificial Intelligence, pages 785790, 1981.

M. Miller. Information Retrieval for Music and Motion. Springer-Verlag
New York, 2007.

K.G. Murty. Linear Programming. John Wiley & Sons, New York, NY,
USA, 1983.

A.Y. Ng, M. Jordan, and Y. Weiss. On Spectral Clustering: Analysis and an
Algorithm. In Advances in Neural Information Processing Systems (NIPS),
pages 849-856, 2001.

M. Ozuysal, V. Lepetit, and P. Fua. Pose Estimation for Category Specific
Multiview Object Localization. In IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), pages 778-785, 2009.

Y. Panagakis, M. A. Nicolaou, S. Zafeiriou, and M. Pantic. Robust Canonical
Time Warping for the Alignment of Grossly Corrupted Sequences. In IEEFE

Conference on Computer Vision and Pattern Recognition (CVPR), pages
540-547, 2013.

Bibliography 113

[92]

[93]

[94]

[95]

[100]

[101]

[102]

Y. Park, V. Lepetit, and W. Woo. Multiple 3D Object Tracking for Aug-
mented Reality. In IEEFE International Symposium on Mixed and Augmented
Reality (ISMAR), pages 117-120, 2008.

H. Pirsiavash and D. Ramanan. Detecting Activities of Daily Living in First-
person Camera Views. In IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), pages 2847-2854, 2012.

T. Poggio and F. Girosi. Networks for Approximation and Learning. IEEFE
Proceedings, 78(9):1481-1497, 1990.

A. Prest, C. Leistner, J. Civera, C. Schmid, and V. Ferrari. Learning Object
Class Detectors from Weakly Annotated Video. In IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), pages 3282-3289, 2012.

L. R. Rabiner and B. H. Juang. Fundamentals of Speech Recognition. Pren-
tice Hall Signal Processing Series, 1993.

T. M. Rath and R. Manmatha. Word Image Matching Using Dynamic Time
Warping. In IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), pages 521-527, 2003.

N. Razavi, J. Gall, and L. Van Gool. Backprojection Revisited: Scalable
Multi-view Object Detection and Similarity Metrics for Detections. In IEEE
European Conference on Computer Vision (ECCV), pages 620-633, 2010.

C. Redondo-Cabrera, R. L’opez-Sastre, and T. Tuytelaars. All Together
Now: Simultaneous Object Detection and Continuous Pose Estimation us-
ing a Hough Forest with Probabilistic Locally Enhanced Voting. In British

Machine Vision Conference (BMVC), 2014.

L.G. Roberts. Machine Perception of Three-dimensional Solids. PhD thesis,
Massachusetts Institute of Technology, Department of Electrical Engineer-
ing, 1963.

F. Rothganger, S. Lazebnik, C. Schmid, and J. Ponce. 3D Object Model-
ing and Recognition Using Affine-Invariant Patches and Multi-View Spatial

Constraints. In IEEE Conference on Computer Vision and Pattern Recog-
nition (CVPR), pages 272-280, 2003.

F. Rothganger, S. Lazebnik, C. Schmid, and J. Ponce. 3D Object Modeling
and Recognition Using Local Affine-Invariant Image Descriptors and Multi-

View Spatial Constraints. International Journal of Computer Vision (IJCV),
66(3):231-259, 2006.

114

Bibliography

[103]

[104]

[105]

[106]

107]

108

[109]

[110]

[111]

[112]

113]

[114]

H. Sakoe and S. Chiba. Dynamic Programming Algorithm Optimization for
Spoken Word Recognition. IEEFE Transactions on Acoustics, Speech, and
Signal Processing, 26(1):43-49, 1978.

S. Satkin, J. Lin, and M. Hebert. Data-Driven Scene Understanding from 3D
Models. In British Machine Vision Conference (BMVC), pages 1-11, 2012.

T. Sattler, B. Leibe, and L. Kobbelt. Fast Image-based Localization using
Direct 2D-to-3D Matching. In IEEFE International Conference on Computer
Vision (ICCV), pages 667674, 2011.

S. Savarese and L. Fei-Fei. 3D Generic Object Categorization, Localization
and Pose Estimation. In IEEFE International Conference on Computer Vision

(ICCV), pages 1-8, 2007.

S. Savarese and L. Fei-Fei. View Synthesis for Recognizing Unseen Poses of
Object Classes. In IEEE European Conference on Computer Vision (ECCV),
pages 602-615, 2008.

S. Savarese and L. Fei-Fei. Multi-view Object Categorization and Pose Es-
timation. In R. Cipolla, S. Battiato, and G.M. Farinella, editors, Computer
Vision, volume 285 of Studies in Computational Intelligence, pages 205-231.
Springer Berlin Heidelberg, 2010.

C. Schmid and R. Mohr. Local Greyvalue Invariants for Image Retrieval.
IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI),
19(5):530-535, May 1997.

A. Schrijver. Theory of Linear and Integer Programming. John Wiley &
Sons, New York, NY, USA, 1998.

T. B. Sebastian, P. N. Klein, and B. B. Kimia. On Aligning Curves. [FEE
Transactions on Pattern Analysis and Machine Intelligence (TPAMI), 25
(1):116-125, 2003.

T. Serre, L. Wolf, and T. Poggio. Object Recognition with Features Inspired
by Visual Cortex. In IFEE Conference on Computer Vision and Pattern
Recognition (CVPR), pages 994-1000, 2005.

J. Shi and J. Malik. Normalized Cuts and Image Segmentation. I[FEE
Transactions on Pattern Analysis and Machine Intelligence (TPAMI), 22
(8):888-905, 2000.

G. Sierksma. Linear and Integer Programming: Theory and Practice, Second
Edition. Mercel Dekker, Inc., 2001.

Bibliography 115

[115]

[116]

[117]

[118]

[119]

[120]

[121]

[122]

[123]

[124]

[125]

Robert Sim and Gregory Dudek. Learning Generative Models of Scene Fea-
tures. International Journal of Computer Vision (IJCV), 60(1):45-61, 2004.

M. Torki and A. Elgammal. Putting Local Features on a Manifold. In /EEE
Conference on Computer Vision and Pattern Recognition (CVPR), pages
1743-1750, 2010.

M. Torki and A. Elgammal. One-Shot Multi-Set Non-Rigid Feature-Spatial
Matching. In IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), pages 3058-3065, 2010.

M. Torki and A. Elgammal. Regression from Local Features for Viewpoint
and Pose Estimation. In IEEFE International Conference on Computer Vision
(ICCV), pages 2603-2610, 2011.

A. Torralba, K.P. Murphy, and W.T. Freeman. Sharing Visual Features for
Multiclass and Multiview Object Detection. IEEE Transactions on Pattern
Analysis and Machine Intelligence (TPAMI), 29(5):854-869, 2007.

I. Tsochantaridis, T. Hofmann, T. Joachims, and Y. Altun. Support Vec-
tor Machine Learning for Interdependent and Structured Output Spaces.
In International Conference on Machine Learning (ICML), pages 104-112,
2004.

S.A. Underwood and C.L. Coates. Visual Learning from Multiple Views.
IEEE Transactions on Computers, 24(6):651-661, 1975.

L. Vacchetti, V. Lepetit, and P. Fua. Fusing Online and Offline Information
for Stable 3D Tracking in Real-Time. In IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), pages 241-248, 2003.

L. Vacchetti, V. Lepetit, and P. Fua. Stable Real-Time 3D Tracking using
Online and Offline Information. IEEFE Transactions on Pattern Analysis and
Machine Intelligence (TPAMI), 26(10):1385-1391, 2004.

P. Viola and M. Jones. Rapid Object Detection Using a Boosted Cascade
of Simple Features. In IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), pages 511-518, 2001.

H. Wang and E. R. Hancock. A Kernel View of Spectral Point Pattern
Matching. In Joint IAPR International Workshop on Structural, Syntactic,
and Statistical Pattern Recognition (SSPR), pages 361-369, 2004.

116

Bibliography

[126]

[127]

[128]

[129]

[130]

[131]

[132]

Y. Xiang and S. Savarese. Estimating the Aspect Layout of Object Cate-
gories. In IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), pages 3410-3417, 2012.

Y. Xiang, C. Song, R. Mottaghi, and S. Savarese. Monocular Multiview
Object Tracking with 3D Aspect Parts. In IEEE European Conference on
Computer Vision (ECCV), pages 220-235, 2014.

J. Xiao, J. Chen, D.-Y. Yeung, and L. Quan. Structuring Visual Words in
3D for Arbitrary-View Object Localization. In IEEE European Conference
on Computer Vision (ECCV), pages 725737, 2010.

R. Zass and A. Shashua. Probabilistic Graph and Hypergraph Matching.
In IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
pages 1-8, 2008.

F. Zhou and F. De la Torre. Canonical Time Warping for Alignment of
Human Behavior. In Advances in Neural Information Processing Systems
Conference (NIPS), pages 2286-2294, 2009.

F. Zhou and F. De la Torre. Generalized Time Warping for Multi-modal
Alignment of Human Motion. In IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), pages 1282-1289, 2012.

A. Zisserman, D. Forsyth, J. Mundy, C. Rothwell, J. Liu, and N. Pillow. 3D
Object Recognition using Invariance. Technical report, Oxford University,
1994.

Michele Fenzi Institut fiir Informationsverarbeitung
Leibniz Universitdt Hannover

Appelstr. 9A, 30167, Hannover, Germany
http://www.tnt.uni-hannover.de/staff/fenzi/
fenzi@tnt.uni-hannover.de

Ph.D. in Computer Vision

Education

Sep. 2010 - Nov. 2015 Ph.D. in Computer Vision, Leibniz Universitdt Hannover, Hannover, Germany
Advisor Prof. Dr.-Ing. J6rn Ostermann
Topics Pose estimation, object recognition, object classification, 3D reconstruction,
object tracking

Apr. - Oct. 2009 Master’s Thesis, SIT Fraunhofer Institute, Darmstadt, Germany
Advisor Dr.-Ing. Martin Steinbach
Topics Digital watermarking

Sep. 2001 - Dec. 2009 B.S. and M.Sc. in Telecommunications Engineering, University of Florence,
Florence, Italy
Selected courses Communication Networks, Mobile Communications, Optical Communications,
Signal Processing, Image Processing

Work Experience

Feb. 2015 - Apr. 2015 Visiting Researcher at ESAT/VISICS lab, K.U. Leuven, Belgium
Advisor Prof. Tinne Tuytelaars

Sep. 2010 - May 2015 Research Assistant at Institut fiir Informationsverarbeitung, Leibniz Universitét
Hannover

e Pose Estimation for Object Categories and Single Objects, Object Detec-
tion and Classification, Object Tracking, 3D Reconstruction

e Developer and Project coordinator for BMBF-funded project ASEV
The ASEV project involved the development of a fully automatic video
surveillance system for airport aprons. The system has been succesfully
deployed for 3 months at the Braunschweig-Wolfsburg airport.

e Teaching Assistant for Source Coding
Contents: Information theory, lossless coding, lossy coding, audio/video
coding standards

e Teaching Assistant for Laboratory for Information Processing
Contents: Implementation and application of lossless and lossy coding
methods

Jan. 2007 - May 2007 Software developer at Sicuring srl, Florence, Italy
Description E-learning applications for safety management at work

Scientific Profile

Author (Co-)author of 9 peer-reviewed publications
Reviewer Reviewer for ICCV, ECCV, CVPR, DAGM, ICIP IMAVIS, IET-CV
Achievements Selected for the Doctoral Consortium at ICCV 2015

Best Paper Award for “Markov Random Fields Pre-Warping to Prevent Collusion
in Image Transaction Watermarking”, SPPRA 2010

Technical Knowledge & Skills

Programming Languages C, C++, Matlab
Tools OpenCV, Qt, CMake, Git, LaTeX, HTML, VBA, SQL, MS Office, Libreoffice
Operating Systems Linux, Windows

Languages Italian (native), English (professional), German (intermediate)

Publications

Book Chapters

R. Dragon, M. Fenzi, W. Siberski, B. Rosenhahn, J. Ostermann

Towards Feature-Based Situation Assessment for Airport Apron Video Surveillance

Theoretic Foundations of Computer Vision: Outdoor and Large-Scale Real-World Scene Analysis, 2012
edited by E Dellaert, J.-M. Frahm, M. Pollefeys, L. Leal-Taixé, B. Rosenhahn

Conference Contributions

M. Fenzi, L. Leal-Taixé, J. Ostermann, T. Tuytelaars
Continuous Pose Estimation with a Spatial Ensemble of Fisher Regressors
IEEE International Conference on Computer Vision (ICCV) 2015, Santiago, Chile

M. Fenzi, L. Leal-Taixé, K. Schindler, J. Ostermann
Pose Estimation of Object Categories in Videos Using Linear Programming
IEEE Winter Conference on Applications of Computer Vision (WACV) 2015, HI, USA

M. Fenzi, J. Ostermann
Embedding Geometry in Generative Models for Pose Estimation of Object Categories
British Machine Vision Conference (BMVC) 2014, United Kingdom, oral

M. Fenzi, N. Mentzer, G. Paya-Vaya, H. Blume, T.N. Nguyen, T. Risse, J. Ostermann
ASEV - Automatic Situation Assessment for Event-driven Video Analysis
IEEE Conference on Advanced Video and Signal-Based Surveillance (AVSS) 2014, South Korea, oral

L. Leal-Taixé, M. Fenzi, A. Kuznetsova, B. Rosenhahn, S. Savarese
Learning an image-based motion context for multiple people tracking
IEEE Conference on Computer Vision and Pattern Recognition (CVPR) 2014, OH, USA

M. Fenzi, L. Leal-Taixé, B. Rosenhahn, J. Ostermann
Class Generative Models based on Feature Regression for Pose Estimation of Object Categories
IEEE Conference on Computer Vision and Pattern Recognition (CVPR) 2013, OR, USA

M. Fenzi, R. Dragon, L. Leal-Taixé, B. Rosenhahn, J. Ostermann

3D Object Recognition and Pose Estimation for Multiple Objects using Multi-Prioritized RANSAC

and Model Updating

Annual Symposium of the German Association for Pattern Recognition (DAGM) 2012, Austria, oral

M. Fenzi, H. Liu, M. Steinbach, R. Caldelli

Markov Random Fields Pre-Warping to Prevent Collusion in Image Transaction Watermarking

International Conference on Signal Processing, Pattern Recognition and Applications (SPPRA) 2010, Austria
Best Paper Award

	List of Symbols
	List of Abbreviations
	1 Introduction
	1.1 Contributions and Organization

	2 Feature-based pose estimation
	2.1 Historical perspective
	2.2 Appearance-based Pose Estimation
	2.3 Pose Estimation for Single Objects
	2.4 Pose Estimation for Object Classes
	2.5 Comparison to our method

	3 Appearance-based features
	3.1 SIFT - Scale Invariant Feature Transform
	3.2 SURF - Speeded Up Robust Features

	4 Pose Estimation with Feature Regression
	4.1 Feature Regression and Generative Feature Models
	4.2 Generative Feature Models
	4.2.1 Generative Feature Model as Radial Basis Function Network

	4.3 Estimate the Pose of a Single Object Instance
	4.3.1 Introductory Experiment

	4.4 From Single Instance Prediction to Object Class Prediction
	4.4.1 Dynamic Time Warping for Track Similarity
	4.4.2 Spectral Clustering for Track Grouping

	4.5 Class Probabilistic Formulation
	4.6 Experimental Evaluation
	4.6.1 EPFL Multi-view Car Dataset

	5 Enforcing Geometrical Constraints
	5.1 Graph Matching Fundamentals
	5.1.1 Related works
	5.1.2 Formulation

	5.2 Graph Matching Interpretation of Our Problem
	5.3 Graph Matching Integration in Our Probabilistic Formulation
	5.4 Experimental Results
	5.4.1 EPFL multi-view car dataset
	5.4.2 Single Instance Pose Estimation
	5.4.3 EPFL multi-view car dataset
	5.4.4 PASCAL VOC 2006 dataset

	6 Enforcing Temporal Constraints
	6.1 Linear Programming
	6.2 LP Interpretation for Our Problem
	6.3 Experimental Results
	6.3.1 Preliminary experiment
	6.3.2 KITTI dataset
	6.3.3 YouTube dataset

	7 Conclusions
	Bibliography

