
 

 

 

 

Impact of induced summer drought and nitrogen 

fertilizer application method on net exchange of 

nitrous oxide and methane in arable soils 

 

 

 

 

Von der Naturwissenschaftlichen Fakultät der  

Gottfried Wilhelm Leibniz Universität Hannover 

 

zur Erlangung des Grades 

Doktorin der Naturwissenschaften (Dr. rer. nat.) 

 

genehmigte Dissertation 

 

von 

Dipl.-Geoökologin Univ. Marianna Deppe 

 

geboren am 11.08.1983 in Northeim 

 

 

 

2016 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Referent: Prof. Dr. sc. agr. Jürgen Böttcher 

Korreferent: Prof. Dr. agr. Heinz Flessa 

Tag der Promotion: 02.09.2015 

 

 



i 
 

 

Summary 

In wide parts of Europe, a higher frequency of summer drought is expected with global climate 

change from the increase in greenhouse gases. Formation and uptake of N2O and CH4 are regulated 

by soil climatic conditions (e.g. water content, temperature) and affected by soil texture, plant cover 

and fertilizer management. In this context, agriculture faces multiple challenges: It needs to feed a 

growing world population, cope with climatic extremes while being committed to reduce its 

contribution to greenhouse gas emissions.  

To address the impact of enhanced summer drought, a field experiment was conducted at a sandy 

soil. N2O and CH4 fluxes were measured during 18 months, including two summer periods. Dry 

treatment plots were covered with transparent shields during rain events and compared to well-

watered wet control treatments. To assess the effect of different crops, maize and sorghum 

cropping was compared. While the effect of drought treatment on N2O emissions was small, with 

only insignificantly lower annual N2O emissions at dry treatments, CH4 uptake was significantly 

enhanced with drought. There was no significant impact of plant type on annual N2O or CH4 fluxes, 

but yield-scaled N2O emissions were higher from sorghum than maize due to lower biomass yields.  

In a second 2-year field experiment, the impact of CULTAN (Controlled Uptake Long Term 

Ammonium Nutrition) fertilization on N2O emissions from two sites cropped with winter wheat 

(loam and sandy loam soils) was assessed. Lower N2O emissions compared to broadcast surface 

application were expected to result from the injection of ammonium sulfate solution (130 kg N ha-1) 

in CULTAN treatments due to reduced nitrification rates at high NH4+ salt concentration in fertilizer 

depots. However, no substantial stabilization of NH4+ fertilizer could be detected. N2O emissions 

were higher at the loam than the sandy loam site, and the difference was most pronounced in the 

CULTAN treatment. N2O emission factors were low (< 0.6% of applied fertilizer N) and did not 

depend on treatments. Fertilizer-derived emission measured from 15N tracing at a CULTAN plot 

revealed the importance of soil N for N2O emissions at the sandy loam site, as only 1% - 17% of 

annual N2O emission were directly derived from the fertilizer.  

A laboratory study was conducted to gain further insight into nitrification and N2O emission at high 

NH4+ concentrations as occurring in fertilizer depots. Since inhibition of nitrification was expected 

to increase with N content, N2O emission was measured at five N levels from 0 to 

5000 µg NH4+-N g-1 soil, in sandy loam soil at 50% water filled pore space. Acetylene inhibition was 

used to determine the contribution of autotrophic nitrification and 15N tracing to distinguish 

between nitrate and NH4
+ derived N2O, both showing the dominance (≥ 70% of total N2O emission) 

of nitrification. With an isotopomer approach, nitrifier denitrification was estimated to contribute 

10% - 40% of total N2O emission at these conditions. Nitrification was increasingly inhibited with 

increasing N content in soil, but there was no evidence for increasing contribution of denitrification. 

Results from 15N tracing revealed that the 15N-labeling was highly heterogeneous, indicating that 

nitrification and denitrification were spatially separated, which might affect source-partitioning 

results if neglected.  

It was shown that investigated climate and fertilizing effects have potential impact on N2O, but due 

to spatial heterogeneity as well as low site and year-specific fluxes, effects were not significant. This 

indicates a need for long-term measurements at more sites. The small direct impacts of drought 

and fertilizer injection on area-based greenhouse gas fluxes and the clear impact on biomass and 

grain yields indicate that greenhouse gas mitigation strategies in agriculture should be yield rather 

than area based. 

Keywords: N2O emission, CULTAN, nitrification 
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Zusammenfassung 

Für weite Teile Europas werden im Zuge des Klimawandels häufiger sommerliche Dürreperioden 

zu erwarten sein. Die Freisetzung und Aufnahme der Treibhausgase Lachgas (N2O) und Methan 

(CH4) wird von bodenklimatischen Bedingungen gesteuert (z.B. Wassergehalt, Temperatur) und 

von Bodentextur, Pflanzenbedeckung und Düngermanagement beeinflusst. Die Landwirtschaft 

steht dabei vor der komplexen Herausforderung, eine wachsende Weltbevölkerung ernähren und 

gleichzeitig die Freisetzung von Treibhausgasemissionen reduzieren zu müssen. 

Der Einfluss von durch Regenausschluss induzierter Sommertrockenheit auf N2O- und CH4-Flüsse 

aus einem lehmigen Sandboden wurde in einem 18-monatigen Feldexperiment untersucht. Die 

annuellen N2O-Emissionen wurden durch die verstärkte Sommertrockenheit nur geringfügig 

reduziert, wobei diese Reduktion vor allem auf geringeren Winteremissionen beruht. Die CH4-

Aufnahme hingegen war im Vergleich zur Kontrollvariante signifikant erhöht. 

Emissionsunterschiede zwischen Mais und Hirse, einer dürreresistenteren Frucht, konnten nur bei 

ertragsbezogener Berechnung festgestellt werden und sind vor allem auf die niedrigeren 

Biomasseerträge der Hirsepflanzen zurückzuführen.  

In einem weiteren zweijährigen Feldexperiment wurde untersucht, ob mit der CULTAN-Düngung 

(Controlled Uptake Long-Term Ammonium Nutrition) von Weizen die N2O-Emission reduziert 

werden kann. Dazu wurden auf 2 Standorten (Lehm und sandiger Lehm) N2O-Flüsse nach 

Punktinjektion (CULTAN) im Vergleich zur oberflächlichen Düngerapplikation 

(Ammoniumsulfatlösung, 130 kg N ha-1) gemessen. Erwartet wurden geringere N2O-Emissionen 

nach CULTAN-Düngung durch die nitrifikationshemmende Wirkung von hohen Ammonium 

(NH4+)-Konzentrationen in den Düngerdepots. Eine deutliche Stabilisierung des NH4+ in den Depots 

konnte allerdings nicht beobachtet werden. Die N2O-Emissionen waren am Lehm- höher als am 

sandigen Standort, vor allem durch (wenn auch nicht signifikant) höhere Emissionen der CULTAN-

Variante. Die N2O-Emissionsfaktoren waren generell niedrig (< 0.6% des ausgebrachten 

Stickstoffs), und die Art der Düngerapplikation hatte keinen signifikanten Einfluss. Ein 15N-

Tracerversuch in der CULTAN-Variante am Standort mit sandigem Lehmboden zeigte nur einen 

geringen direkten Anteil des Düngerstickstoff (1% - 17%) an der annuellen N2O-Emission.  

Um den Einfluss hoher NH4+-Konzentrationen bei der CULTAN-Düngung auf die Nitrifikation und 

N2O-Emissionen besser zu verstehen, wurde außerdem ein Laborversuch durchgeführt. Sandiger 

Lehmboden wurde mit NH4+ in Konzentrationen von 0 bis 5000 µg NH4+-N g-1 inkubiert. Mit der 

Acetylen-Inhibitionsmethode wurde der Anteil der Nitrifikation, und mit 15N-Markierung der 

Anteil von nitratbürtigem N2O gemessen. Es zeigte sich eine deutliche Hemmung der Nitrifikation 

und der N2O Freisetzung mit steigender NH4
+-Konzentration; der Anteil der Nitrifikation, der einen 

Großteil (≥70%) der N2O Bildung ausmachte, war aber kaum beeinflusst. Ein Isotopomeransatz 

zeigte, dass die Nitrifizierer-Denitrifikation zwischen 10% und 40% zur Gesamt-N2O-Bildung 

beitrug. Aus den Ergebnissen des 15N-Traceransatzes kann abgeleitet werden, dass die 15N-

Markierung im Boden inhomogen verteilt, und Nitrifikation und Denitrifikation räumlich getrennt 

waren. Durch Nichtbeachten dieses Effekts kann die Quellenzuordnung von N2O-Emissionen 

deutlich beeinflusst werden.  

Es wurde gezeigt, dass die untersuchten Klima- und Düngereffekte die N2O-Emission beeinflussen 

könnten, die Unterschiede allerdings aufgrund hoher räumlicher Heterogenität sowie niedriger 

standort- und jahresspezifischer Flüsse nicht signifikant waren. Dies verdeutlicht den Bedarf an 

Langzeituntersuchungen. Die geringen direkten Effekte von Sommertrockenheit und 

Düngerinjektion auf flächenbasierte Flüsse und der deutlichere Effekt auf Biomasse- und 

Kornerträge deuten an, dass Emissionsminderungsstrategien eher auf ertrags- als auf flächen-

basierte Emissionen abzielen sollten.  
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General introduction 

1. General Introduction 

 The N cycle and its changes under human influence 

The vast majority of nitrogen (N) on earth is unreactive, gaseous, molecular dinitrogen (N2). High 

energy input is needed to break the stable bond between the two N atoms. All life depends on 

processes that convert this N2 into reactive N species (Nr). In the natural N cycle, nitrogen fixing 

prokaryotes (bacteria and archaea) containing the enzyme nitrogenase, that converts N2 to 

ammonia (NH3), are the main source of Nr, and the only one apart from lightning that produces NOx 

(Fowler et al. 2013). 

N is comprised in all living cells: in proteins, enzymes, DNA, and many others. Plant growth depends 

on sufficient supply with Nr, mostly in the form of inorganic ammonium (NH4
+) and nitrate (NO3

-). 

With the domestication of plants and animals, humans began to interfere with the natural N cycle, 

and did so deliberately at least since the time they realized that returning dung/feces and food 

residues and growing leguminous plants helped to maintain or increase the soils fertility (Galloway 

et al. 2013). The transition from a hunters and gatherers society to husbandry was the prelude of a 

comprehensive reshaping of the land surface.  

In the 19th century, nitrogen was recognized as a crucial compound of fertilizer to increase crop 

production (Galloway et al. 2013). With the invention of the Haber-Bosch process in the early 20th 

century, large-scale production of anthropogenic Nr started, not exclusively but with growing 

contribution for synthetic fertilizers (Galloway et al. 2008). Compared to pre-industrial times, the 

amount of Nr that circulated through soils, waters and the atmosphere increased drastically, and 

feeding a growing world population of 7.16 billion people in the year 2013 (UN 2015) would not 

have been possible without the supply with cheap synthetic fertilizer (Erisman et al. 2008). 

Industrialization, the usage of fossil fuels, and application of synthetic (N) fertilizers all supply Nr 

to the environment. Consequently, the global N cycle changed enormously, and nowadays the 

anthropogenic (from agricultural symbiotic N2 fixation and synthetic Nr from the Haber-Bosch 

process) equals the biological N fixation (Fowler et al. 2013).  

Such an extensive intervention in the N cycle causes complex side effects that are still difficult to 

predict, including eutrophication of rivers, lakes and ocean water, acidification of surface water 

bodies, a decline in species richness in formerly low-N ecosystems and photochemical processes in 

the atmosphere leading to high ozone levels in the troposphere while destroying the ozone layer in 

the stratosphere (Erisman et al. 2013; Robertson & Vitousek 2009).  

The increase of reactive carbon and nitrogen compounds in the atmosphere causes furthermore a 

change in the greenhouse effect that is inherently a prerequisite for life on earth. The most 

important contributors to the natural greenhouse effect are water vapor, carbon dioxide (CO2) and 

ozone (O3); minor contribution comes from methane (CH4) and nitrogen oxides (NOx), including 

nitrous oxide (N2O). With fossil fuel burning and intensification of agriculture since the industrial 

revolution, the contribution of anthropogenic emissions of these gases increased. The 

concentration of N2O in the atmosphere rose from preindustrial 270 ppb (i.e. in 1750) to 326 ppb  

in 2013, at a growth rate of 0.82 ppb yr–1 within the last decade (WMO 2014). Direct and indirect 

emissions from agriculture have a share of 79% on this anthropogenic increase (Ciais et al. 2013). 

In the stratosphere, N2O furthermore participates in photochemical reactions leading to the 

transformation of ozone (O3) to O2. Since emission of chlorofluorocarbons drastically declined after 
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their restriction by the Montreal Protocol, N2O is the dominant O3 depleting substance 

(Ravishankara et al. 2009).  

Methane (CH4) has an even greater share on the radiative forcing in the stratosphere, and about 

60% of its emission to the atmosphere comes from anthropogenic sources as fossil fuel 

exploitation, biomass burning, rice cultivation and ruminants. Aerobic soils, however, are CH4 sinks 

compensating roughly 5% of total CH4 emissions to the atmosphere (Ciais et al. 2013).  

The increase in greenhouse gases leads to increased trapping of solar energy in the atmosphere, 

increasing global mean temperatures. Likely consequences are the increase in extreme weather 

events, as flooding, storms or droughts (Seneviratne et al. 2012). Globally, the area prone to 

drought periods is expected to increase, and drought periods to extend (Burke et al. 2006). 

Summer precipitation and soil moisture are expected to decrease in large parts of Southern and 

Central Europe (Bindi & Olesen 2011; Calanca et al. 2006), with increasing risk of extreme events 

as summer drought and heavy rain (Christensen et al. 2013; Feyen & Dankers 2009; Seneviratne et 

al. 2012). These changes will and already do affect agriculture. The growing season lengthens, and 

cereal and seed crop cultivation could become possible further north (Bindi & Olesen 2011; Gornall 

et al. 2010). Crop growth, however, will be negatively affected by the resulting drought stress 

(Gornall et al. 2010).  

With the increased need for food for a growing global population (UN 2015) and for bioenergy 

crops (e.g., due to the compliant binding target of the European Union to increase the renewable-

based share of total gross final energy consumption to 20% by 2020 (Directive 2009/28/EC)), 

there is a need to increase the knowledge of how to cope with extreme events, as summer drought. 

Furthermore, feedback mechanisms between changes in the environmental parameters (e.g., soil 

moisture, plants, temperature, fertilization) and greenhouse gas fluxes are not conclusively 

understood. Therefore, more insight into the underlying processes is needed.   

The international community acknowledges its responsibility for the global climate change, and 

192 parties ratified the Kyoto Protocol to decrease the emission of CO2 and other greenhouse gases 

(UNFCCC 2014). Whether we will be able to counteract the ongoing increase in N2O concentration 

in the atmosphere will depend on reduction of Nr input to the environment and the implementation 

of strategies to mitigate N2O formation in anthropogenic systems as agricultural soils (Schreiber et 

al. 2012).  

Much is already known about how N2O production is regulated in soil, and a short summary of the 

processes and some major control parameters is given in the next chapter. Interactions between 

these control parameters, climatic and weather conditions and the anthropogenic intervention 

from field management add further complexity. For conceiving and implementing management 

strategies for the mitigation of N2O emissions and adaptation to changing climate conditions, 

further insight is needed.  
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 N2O production in soil 

In soil, the majority of N2O is produced during enzymatically mediated processes. Firestone and 

Davidson (1989) described the production of N2O in soil with their ‘hole-in-the-pipe’ theory. N2O is 

thereby no target product for the organisms producing it, but it is emitted as a side- or intermediate 

product and leaks out (Figure 1-1). Although the model is a simplification, reducing N2O producing 

processes to nitrification and denitrification, it is vivid. Microorganisms capable of producing N2O 

are found in various microbial groups, e.g. ammonia oxidizing bacteria (AOB) and archaea (AOA), 

denitrifying bacteria and fungi (Braker & Conrad 2011). While denitrification is the main source of 

N2O under anaerobic conditions, nitrification and, with an often indefinite fraction, nitrifier 

denitrification are considered the main N2O producing processes in aerobic compartments 

(Bouwman et al. 2010; Butterbach-Bahl et al. 2013). 

 

 
Figure 1-1: Conceptual ‘hole-in-the-pipe’ model, adapted after Davidson et al. (2000). N2O is leaked from 
‘holes’ in the processes of nitrification and denitrification, with the size of holes determined by controlling 
factors as the water content. NO emissions may occur from the same processes as N2O emissions and are 
omitted for clarity. 

 

Denitrification is a form of heterotrophic respiration, an anaerobic process where NO3- is used as 

alternative electron acceptor by heterotrophic organisms in the absence of oxygen (Knowles 1982), 

which can also occur in anaerobic micro-sites in aerobic soils (Parkin 1987). During denitrification, 

NO3- is stepwise reduced, the intermediates and products being nitrite (NO2-), nitric oxide (NO), 

N2O, and N2. Each of these reaction steps is catalyzed by a specific enzyme. A broad range of 

microorganisms are capable of denitrification, including fungi and archaea. Their relative 

contribution has only seldom been studied. Due to high fungal biomass in soil, and the lack of N2O 

reductase, this contribution may be large (Braker & Conrad 2011).  

Also many AOB are capable to reduce NO2- to NO and N2O, with the pathway and related enzymes 

resembling those in denitrifiers. This nitrifier denitrification (Wrage et al. 2001) may also be a 

means of detoxification, when NO2- accumulates (Beaumont et al. 2004; Beaumont et al. 2002; 

Schreiber et al. 2012).  

Nitrification, in the proper sense, is the oxidative production of nitrate from reduced N species. 

Autotrophic nitrification is a two-step process, generating the energy for CO2 fixation: Ammonia is 

first reduced via hydroxylamine (NH2OH) to NO2- by AOB or AOA. The second step, reduction of 

NO2- to NO3- is mediated by a separate group, the nitrite oxidizing bacteria (NOB). In both steps, O2 

is the terminal electron acceptor. The oxidation of NH3 to NH2OH is catalyzed by ammonia 

monooxygenase (AMO), a membrane-bound enzyme. The further oxidation of NH2OH to NO2- is 
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catalyzed by the periplasmic hydroxylamine oxidoreductase (HAO). The nitrite oxidoreductase in 

NOB is also a membrane-bound enzyme; 2 electrons are released by the oxidation, which are again 

used to reduce O2 in a terminal oxidase to induce a proton gradient for ATP production. N2O is no 

primary intermediate in these reactions but a side-product from chemical decomposition of 

intermediates as NH2OH or NO2
- (Schreiber et al. 2012; Wrage et al. 2001).  

While nitrifier denitrification describes NH4+ oxidation and NO2- reduction within the same 

microbes, in coupled nitrification denitrification these processes proceed in separate microbial 

groups. Coupled nitrification denitrification can occur in micro environments where conditions are 

suboptimal for both nitrification and denitrification, or nitrifying and denitrifying microsites are in 

close proximity. The NO2- or NO3- produced during nitrification can then be used by other 

organisms to be denitrified (Wrage et al. 2001). In Figure 1-2, a depiction of the main N2O producing 

pathways is given.  

 

 

Figure 1-2: Depiction of major pathways of N2O production. (Adapted from:Kool et al. 2011; Wrage et al. 
2001; Zhu et al. 2013)  

 

While nitrification (including nitrifier denitrification) and denitrification (including coupled 

nitrification and denitrification as well as fertilizer denitrification) are generally considered the 

major N2O generating processes in soil (Butterbach-Bahl et al. 2013), others do certainly exist. 

Under certain circumstances (e.g. low pH), N2O can be formed by chemical reactions between 

intermediates of NH4
+ oxidation to NO2

-, or between NO2
- and organic or inorganic substances. This 

chemodenitrification can hardly be differentiated from nitrification, as they are closely linked 

(Schreiber et al. 2012; Van Cleemput & Baert 1984; Wrage et al. 2001). 

Heterotrophic nitrification is similar to autotrophic nitrification in that it also oxidizes NH4+ to NO2- 

and NO3-, with the same intermediates, but it can also oxidize organic N compounds. The enzymes 

(AMO and HAO), though catalyzing the same reaction, are different. Heterotrophic nitrifiers use 

organic compounds for their energy gain and are often capable of denitrification, even under 

aerobic conditions. Heterotrophic nitrification is more common among fungi than bacteria. 

Heterotrophic nitrification is generally thought to be of minor importance for N2O production, but 

it may become important under low pH, high O2 and high organic C conditions (Guo et al. 2013; 

Wrage et al. 2001). From the results of a 15N tracing model, Müller et al. (2014)  concluded that 
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organic nitrogen compounds might have contributed as much as 50% to total N2O emission from 

grassland soil. 

Furthermore, other processes as dissimilatory nitrate reduction to ammonium (DNRA) or co-

denitrification of NO or N2O with another N compound can build N2O in soil (Butterbach-Bahl et al. 

2013), but their contribution to N2O production under normal conditions in soil is thought to be 

low.  

 Methane production and oxidation in terrestrial soil 

CH4 is produced by archaea during methanogenesis from fermentation products. There are mainly 

two pathways; either is acetic acid converted to CH4 and CO2 or CO2 is reduced to CH4 with H2. The 

production of CH4 in soil is thermodynamically limited to anaerobic conditions, and CH4 emission 

from mineral soils is mostly confined to waterlogged conditions or the presence of anaerobic 

microsites at high C contents (Conrad 1996). Under aerobic conditions CH4 fluxes are dominated 

by CH4 uptake and oxidation (Smith et al. 2000). CH4 oxidation depends on availability of O2 and 

CH4, and is thus controlled by diffusive transport of these gases into the soil. Soil texture and soil 

water content affect CH4 uptake rates, with increasing CH4 uptake at drier conditions. Extreme 

drought, however, may limit methanotrophic activity (Dobbie & Smith 1996). CH4 oxidizers are 

autotrophs, using CH4 as their sole energy and carbon source, and they are structurally very similar 

to NH4+ oxidizers. Although they depend on N for growth, CH4 oxidation may be competitively 

inhibited by NH4+ in soil (Kravchenko et al. 2002; Nyerges & Stein 2009). This effect is, however, 

apparently of minor importance in agricultural soil with a history of N fertilization (Dobbie & Smith 

1996; Hartmann et al. 2011) 

 Ecological and environmental factors affecting N2O production  

Both process rates of nitrification and denitrification and their relative importance for N2O 

production in soil are affected by a range of environmental conditions, including soil temperature, 

soil humidity, the availability of O2, organic carbon and the respective N substrates, pH and the 

availability of other nutrients.  

Furthermore, the diverse processes may be differently regulated by the same parameter. 

Relationships between the physiological and environmental factors can furthermore not be 

examined separately, as they are often interrelated. Still, some relevant environmental controls are 

presented here. 

1.4.1. Water content 

Water is essential for all organisms living in soil, being the main component of cell plasma and 

intercellular fluids. At very low water contents in soil, microorganisms as well as plants suffer 

drought stress (Bennett et al. 1989; Manzoni et al. 2011). The importance for N2O and CH4 

production and consumption in soil is furthermore based on the influence of water content on gas 

and solute transport in the soil matrix. Both NO3- and NH4+ are mobile in soil only in the water 

phase; transport to the sites of microbial activity and thus availability for microorganisms depends 

on water films or water filled pores, and on the soil texture defining the length of transport paths. 

While mobility of NO3- and NH4+ increases with increasing water content, O2 diffusion is drastically 

reduced, as the diffusion in water is by a factor of 104 lower in water than in the gas phase (Lerman 
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1988). Via its control on O2 availability, the water content affects which processes prevail in soil 

and the N2O product ratio of the processes. With increasing water content, or decreasing O2 

availability, N2O production from NH4+ oxidation increases (Goreau et al. 1980; Khalil et al. 2004; 

Maag & Vinther 1996; Zhu et al. 2013). Increasing aerobicity, on the other hand, increases the 

N2O/N2 product ratio during denitrification (Betlach & Tiedje 1981; Knowles 1982). However, 

emission rates of N2O generally increase with increasing soil moisture (Bateman & Baggs 2005; 

Dobbie et al. 1999; Maag & Vinther 1996). A maximum has often been found around 70% - 90% 

water filled pore space (WFPS) or higher (del Prado et al. 2006; Skiba & Smith 2000). Decreasing 

N2O emission above this maximum can be explained by reduced diffusion and thus less outgassing 

of N2O, which is instead more completely reduced to N2 (Butterbach-Bahl et al. 2013; Smith et al. 

1998).  

1.4.2. pH 

Per NH4+ that is oxidized, 4H+ are released, leading to acidification in soil by nitrification. 

Conversely, the soil pH is also affecting N turnover processes in soil. Nitrification is affected by pH 

via the substrate availability: since NH3 rather than NH4+ is the substrate of the AMO, at low pH 

(~pH 4) nitrifiers may starve from NH4+ limitation (Mørkved et al. 2007; Subbarao et al. 2006). The 

N2O/(NO2-+NO3-) product ratio of nitrification has been reported to be higher in soils with pH 4 

than pH > 5, possibly due to chemodenitrification of NO2- under acid conditions (Mørkved et al. 

2007). The N2O/(N2O+N2) product ratio of denitrification is also negatively correlated with pH (in 

a range of pH 5-8), due to a higher sensitivity of N2O reductase compared to other denitrification 

enzymes or the inhibition of N2O reductase formation at low pH (Baggs et al. 2010; Bakken et al. 

2012). While the N2O/(N2O+N2) ratio decreases with increasing pH, total denitrification rates are 

usually highest at high pH (Focht & Verstraete 1977; Müller & Clough 2013). Acidification of soil 

with a pH of 7 to pH 5.6 and 4.3, however, has led to a decrease in N2O emission and a shift in the 

predominant N2O source from denitrification to nitrification (Baggs et al. 2010).  

1.4.3. Temperature  

The temperature is an important factor for biological processes. Chemical reactions are faster with 

increasing temperature and enzymatically mediated processes generally have an optimum curve 

(e.g. 25-35°C as optimum temperature for nitrification; Focht and Verstraete (1977)). Respiration, 

nitrification and denitrification rates increase with increasing temperature and often there is a 

positive correlation between soil temperature and N2O emission (Smith et al. 1998). Higher 

respiration at warmer temperature furthermore accelerates O2 consumption, thus leading to more 

anaerobic conditions that promote denitrification (Linn & Doran 1984; Mathieu et al. 2006). Some 

nitrification and denitrification is, however, found under temperatures as low as 0°C, and N2O 

emissions peaks during frost/thaw cycles or during the winter period (Flessa et al. 1995; Kaiser et 

al. 1998) may contribute substantially to annual N2O emissions, thus averting a linear correlation 

between N2O emission and temperature.  

1.4.4. Nitrogen substrate availability 

N2O emissions generally increase with increasing N input, be it from atmospheric deposition or 

from direct fertilization (e.g. Bouwman 1996; Breitenbeck & Bremner 1986; Stehfest & Bouwman 

2006). In contrast to natural systems, substrate availability in agricultural systems is both in the 

amount and the chemical form controlled by fertilizer application. Application of NO3
- stimulates 
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denitrification rates, and both N2O production and the N2O/N2 ratio (Blackmer & Bremner 1978) 

increase with increasing NO3
- content in soil. Application of NH4

+ fertilizer promotes nitrification 

rates, and the produced NO2- and NO3- may subsequently be denitrified. Some studies indicate 

higher emission from ammonium-based than nitrate-based fertilizers, and still higher emissions 

from urea (Bouwman et al. 2002; Snyder et al. 2009). Organic fertilizers supply not only N but also 

easily available carbon to the soil and thus promote mineralization and N immobilization and the 

formation of anaerobic microsites. While initial N2O formation may be low after organic fertilizer 

addition as a result of NO3- limitation and consequently low N2O/N2 ratios from denitrification 

(Senbayram et al. 2009), N2O emissions were often higher after organic than mineral fertilization, 

especially in soils with low carbon content (Kaiser & Ruser 2000; Köster et al. 2011; Pelster et al. 

2012) 

1.4.5. Soil texture 

The soil texture affects nitrification and denitrification and resulting N2O production in several 

ways. The pore distribution is directly affected by the soil texture, and thus is the connectivity of 

pores, the aeration and the diffusive transport of gases and solutes. The clay content furthermore 

determines the abundance of binding sites for NH4+ cations, and by adsorption of NH4+ at the cation 

exchange sites of clay minerals nitrification is supported as this is also the place where 

microorganisms are located in soils (Powell & Prosser 1991; Subbarao et al. 2006). Higher N2O 

emission has been found in heavy than light textured soils (Bouwman 1996; Subbarao et al. 2006), 

and higher water filled pore spaces (WFPS) and often higher organic carbon contents were 

proposed as the reason for higher N2O emission from loamy than sandy soil (Pelster et al. 2012) 

1.4.6. Plants 

Plants affect N2O production in soil in several ways. They extract mineral nitrogen compounds from 

the soil to meet their N demand, thus lowering the amount of N available for microbial turnover 

and N2O producing processes. Their demand for water affects soil water content, and the crop type 

with its corresponding rooting depth influences the distribution of water within the soil (Singh & 

Singh 1995; Zegada-Lizarazu et al. 2012). Dense plant stands (dense foliage) affect the 

microclimate at the soil surface. Furthermore, plants supply organic material to the soil, as root 

exudates and plant litter during the growing season or as crop residues after harvest. The easily 

mineralizable carbon can serve as electron donor for denitrification. At sufficient NO3- availability, 

denitrification rates increase in the rhizosphere (Philippot et al. 2009); the N2O/N2 ratio of 

denitrification decreases with the availability of organic carbon and increasing C/N ratios (Knowles 

1982).  

Although the influence of the mentioned control parameters on N2O emission have been studied in 

numerous experiments, we still do not completely understand N2O turnover and the corresponding 

production processes at the field scale, where all the parameters vary concurrently, especially 

under transient conditions (Butterbach-Bahl et al. 2013).  

 Fertilization-effects on N2O production 

Nitrogen fertilization, including the production of nitrogen fertilizer, is responsible for a great part 

of the increase in N2O emission. It is thus straightforward to look at nitrogen fertilization when 

trying to mitigate anthropogenic N2O emission. As maintenance of crop yields depends on sufficient 
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nitrogen supply, complete abandonment of fertilization is no option. Optimum fertilization 

strategies thus aim at increasing nitrogen use efficiency and yields, while simultaneously avoiding 

N losses (Dinnes et al. 2002; Robertson & Vitousek 2009).    

1.5.1. Fertilizer application method 

Placement of fertilizer within the soil, in bands, nests or as granules, may improve N efficiency and 

crop yields (Hou & Tsuruta 2003; Ladha et al. 2005; Malhi & Nyborg 1985; Stecker et al. 1993; 

Yadvinder et al. 1994) by reduction of N losses, e.g. from NH3 volatilization, nitrification, 

denitrification and NO3- leaching. Passioura and Wetselaar (1972) suggested ammonium fertilizer 

placement to avoid NO3- leaching. 

As N2O fluxes are concerned, results from fertilizer placement studies are contradictory, though. 

Fertilizer placement often led to higher N2O emissions as compared to broadcast application when 

urea ammonium nitrate (Smith et al. 2012), urea (Cheng et al. 2002; Chu et al. 2007; Engel et al. 

2010), or ammonium nitrate sulfate (one year in Pfab et al. (2012)) were applied. Deep (≥10 cm) 

injection or banding of fertilizer, however, has also caused a reduction in N2O emission in some 

studies (Liu et al. 2006; van Kessel et al. 2013). High ammonium concentrations have been found 

to inhibit nitrification (Harada & Kai 1968), decelerating or preventing the accumulation of NO3- 

after fertilizer banding (Petersen et al. 2004; Wetselaar et al. 1972). With highly concentrated NH4+ 

nests in soil, N2O production from nitrification should thus be limited, as well as N2O production 

from denitrification without NO3- accumulation. 

Nitrification rates have been shown to be effectively reduced at NH4+ contents as high as 2000 ppm, 

although it is not completely clear, whether this toxic effect is a result of ammonium specific toxicity 

or mainly due to high osmotic pressure due to the high salt content (Harada & Kai 1968; Wetselaar 

et al. 1972). 

1.5.2. CULTAN 

The CULTAN fertilization technique (an abbreviation of Controlled-uptake long-term ammonium 

nutrition) is a form of fertilizer management with ammonium-rich, mainly nitrate-free fertilizers, 

aiming at improving N nutrition of plants by supplying them with NH4+ as the dominant N form 

(Sommer 2005). Uptake of N in the form of NH4+ is less energy consuming for the plant, as it is 

directly incorporated into organic compounds in the root tissue. This incorporation depends on the 

proper supply of carbohydrates within roots, and thus on the photosynthesis and transport via the 

phloem. Nitrate, by contrast, can be transported via the transpirational flow to the upper plant 

parts (leafs, stems) and then stored in vacuoles or be reduced to NH4+ before incorporation into 

organic substances. This difference alters the sink-source relationships and the phyto-hormone 

balance within the plant. Ammonium nutrition leads to less N being transported and stored in older 

leaves and to better supply of young plant tissue and roots with N. Sommer (2005) refers to root-

dominant growth under NH4+ nutrition and shoot-dominated growth under urea or NO3- nutrition.  

Pure ammonium nutrition has been shown to have several negative effects on plants, when grown 

in uniformly fertilized soil or hydrocultures (Bloom 1997; Gerendás et al. 1997). Furthermore, 

plants compete with microorganisms in soil for the NH4
+ from fertilizer (Inselsbacher et al. 2010), 

and nitrification could lead to N losses via NO3- leaching and thus counteract the strategy of 

ammonium nutrition with CULTAN. Thus, the N fertilizer is not supplied via broadcast surface 

application but in depots of high NH4
+ concentration. Fertilizer injection with spoke wheels is 
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common, creating depots of some cm diameter within the soil. The fertilizer depots thus comprise 

only a small portion of the complete soil (usually < 5 - 10%). Negative effects on plants, e.g. from 

NH4+ antagonisms with potassium (K+) or acidification, are thus avoided. Passioura and Wetselaar 

(1972) observed higher root density around ammonium sulfate bands, and lower NO3- contents as 

compared to urea banding.   

Some studies showed positive yield effects of CULTAN fertilization (Richter 2010; Weber et al. 

2008), and only seldom did CULTAN treatments lead to lower crop yields. The majority of studies 

showed only small effects (Flisch et al. 2013; Kozlovsky et al. 2010).  

The high ammonium concentration in the fertilizer depots is thought to have similar effects on 

nitrification as chemical nitrification inhibitors. Nitrate leaching could be reduced with CULTAN 

fertilization in some field studies in Germany (Maier et al. 2011). Analogously, inhibition of 

nitrification should also lead to lower N2O emission from nitrification. Studies on N2O emission 

after fertilizer application according or similar to the CULTAN strategy often used different 

fertilizer types for broadcast surface application and CULTAN. While this helps to distinguish 

between management systems, it is not suitable to decide on whether the method of application is 

effective in preventing N2O emission.  
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2. Research questions and hypotheses 

 

Summer drought field experiment (Chapter 4) 

Facing possible changes in summer climate in Europe and the growing demand for bioenergy crops, 

further knowledge is needed about the reaction of greenhouse gas fluxes to more extreme weather 

conditions during the growing period and about possible feedbacks with the crop type. Specifically, 

we measured N2O fluxes from a sandy loam soil under maize and sorghum cultivation facing 

increased summer drought that was induced by rain exclusion.  

The questions were:  

 Are soil mineral N dynamics significantly changed by the induced drought? 

Mineralization and nitrification are reduced at very dry soil conditions, but also plant N uptake 

could be reduced due to drought stress. We thus hypothesized higher mineral nitrogen content in 

soil under dry conditions.  

 Does rain exclusion in summer significantly affect N2O and CH4 fluxes from soil? 

Due to reduced soil moisture, less anaerobic microsites in soil are available where CH4 could be 

produced. Additionally, diffusion of CH4 into the soil is eased. Therefore, higher CH4 uptake rates in 

the dry treatments were expected.  

With the exclusion of rain events, the probability for conditions suitable for denitrification is lower 

in the dry treatments. As also N2O emissions from NH4+ oxidation decrease with decreasing soil 

moisture, N2O emission are expected to be lower during the period of rain exclusion in the dry 

treatments.  

 Do effects during the rain exclusion period transfer into changes in annual fluxes? 

If differences in the growing period are strong enough, they will have an effect on annual fluxes. 

However, if nitrogen contents in soil shows distinctively higher values after the growing period in 

dry treatments, higher N2O emissions from denitrification of the surplus N could be expected, 

counterbalancing low fluxes from the growing season. Last, if drier conditions in the soil persist 

during fall, lower N2O emission will occur.  

 Does sorghum, that is better adapted to dry conditions, affect total and yield-related N2O / 

CH4 fluxes from the soil compared to maize? 

Sorghum has been shown to be able to withdraw water from deeper soil depths than maize, and it 

is more resistant to drought conditions. It may thus affect both the soil water content and the 

mineral nitrogen content in soil. If sorghum yields are less affected by drought than maize yields, 

yield related fluxes may decrease in comparison to maize.  

 

An additional focus lay on the control parameters of N2O emission and CH4 oxidation and their 

interaction, to gain further insight into dependencies at the prevailing conditions. 
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CULTAN field experiment (Chapter 5) 

At a similar site, a CULTAN experiment had been established in 2007. Here, measurements of N2O 

fluxes were performed for a period of two full years to study the impact of pure ammonium 

injection fertilization in contrast to broadcast application of the same fertilizer (ammonium 

sulfate). As soil texture is an important parameter for both nitrification and N2O emissions, the 

experiment was also newly established at a second site, with higher clay content.  

With a 15N tracer experiment, the contribution of the applied fertilizer-N to total N2O fluxes was 

measured. Thereby, more insight into the relative importance of fertilizer and soil N for N2O fluxes 

was sought.  

The questions addressed with this experiment were:  

 Is nitrification of the applied ammonium fertilizer inhibited by fertilizer injection in depots of 

high ammonium concentration?  

Fertilizer nitrogen is expected to remain in the ammonium form for longer when applied by point-

injection compared to broadcast spraying. Correspondingly, lower nitrate contents in soil are 

expected at the CULTAN plots during the growing period.  

 Is N2O emission lower from CULTAN than surface application? 

As inhibition of nitrification is expected, and thus also less nitrate for denitrification is available in 

the CULTAN plots, lower N2O emission are expected during the growing period. If nitrogen uptake 

is equal or even higher at CULTAN plots, lower emission can also be expected on annual base.  

 How large is the contribution of fertilizer-N to N2O emission?  

As the fertilizer is confined to a small part of the soil only, and nitrification of NH4+ in the CULTAN 

depots is expected to be inhibited, the contribution of fertilizer to N2O emission may be low. 

 Is there a difference between sites regarding total fluxes and the impact of fertilizer 

application method on N2O emissions? 

Soil moisture and N2O emission is expected to be higher at the loamy than the sandy site. Therefore, 

we also assume a higher mitigation potential at this site by inhibition of nitrification.   
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Laboratory experiment (Chapter 6) 

To analyze the effect of high NH4+ concentrations as they may occur in CULTAN depots, an 

incubation study was performed. Here, the sandy loam soil of the field experiment was used and 

different concentrations of NH4+ were installed. The water content was installed at 50% WFPS, 

which was comparable to field conditions after fertilization. Different methods were used to 

distinguish between sources of N2O production, and the product ratio of nitrification (N2O/NO3-) 

was determined.  

The following questions were addressed:  

 Are concentrations of NH4+ after CULTAN injection of (NH4)2SO4 fertilizer appropriate to 

inhibit nitrification?  

Increasing inhibition is expected with increasing NH4+ contents. Highest concentrations used (5000 

µg/g) represent conditions in the depot centers and are well above the concentrations that had 

been found to inhibit nitrification in earlier studies. Complete inhibition of nitrification is thus 

expected.  

 Is the N2O yield of nitrification dependent on the NH4+ concentration in soil? 

Increases in N2O yield of nitrification were reported under suboptimal conditions. As high NH4+ 

concentration likely affects oxidation of NO2- and thus may cause accumulation of hydroxylamine 

or NO2-, an increase in N2O yield is expected with increasing NH4+ content.  

 Which process dominates the N2O production under high NH4+ conditions? 

In general, NH4+ oxidation is expected to dominate N2O production, as the water content is too low 

for intense denitrification. With increasing initial NH4+ content, the contribution of NO3- derived 

N2O is expected to increase. With increasing NO3- content from nitrification under low or moderate 

initial NH4+ content, the contribution of NO3- is also expected to rise.  
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3. Flux measurements with the closed chamber technique  

In both field studies included in this thesis, N2O fluxes (and CH4 in the summer drought study) were 

measured with static chambers. As methodological considerations are not addressed in the 

individual research papers, an overview and some considerations regarding the method are given 

here.  

The principle behind static chamber measurements is to trap the gas that diffuses across the soil 

surface within a certain time, to measure the increase in its concentration in the chamber, and to 

calculate a flux rate from the increase in concentration over time, taking into account the air 

temperature and pressure. Closed chamber methods are the most widely used measurement 

technique for the quantification of N2O fluxes from field experiments (Butterbach-Bahl et al. 2013). 

They are relatively cheap and easy to build, and allow measurement of fluxes at a small spatial scale 

without interference from neighboring plots (Hensen et al. 2013).  

The static closed chamber method has several severe shortcomings, though. One source of several 

different errors is that chamber measurements interfere with the processes they shall measure, 

thus affecting the flux while measuring it.  

Firstly, N2O and CH4 fluxes in soil are mainly due to diffusion, and according to Fick’s first law, the 

gas flux is dependent on the concentration gradient, in this case between the soil air and the 

overlying atmosphere. In static chambers, the concentration in the chamber must change during 

the measurement period (increase in the case of efflux, decrease in the case of net flux into the soil), 

and thereby the concentration gradient between the soil and chamber atmosphere is lowered. It 

has been shown that also in the soil atmosphere below the chamber the concentration may increase 

during measurements, further affecting the flux and leading to underestimation in the case of linear 

flux calculation (Conen & Smith 2000; Davidson et al. 2002). Especially at high fluxes, the 

assumption of linear fluxes was estimated to cause 20% - 40% underestimation of CO2 fluxes 

(Kutzbach et al. 2007). There is still a debate about whether linear or non-linear calculation of 

fluxes is more appropriate for CH4 and N2O measurements, with a clear trend towards non-linear 

in the last years (Kroon et al. 2008; Pedersen et al. 2010), although especially at low flux conditions, 

non-linear calculation has a higher uncertainty (Pihlatie et al. 2013). For calculation of CH4 and N2O 

fluxes in the field studies comprised here, a mixed approach was thus used (Leiber-Sauheitl et al. 

2014).  

Secondly, chamber installation on the chamber bases/collar induces pressure differences that 

could affect the concentration in the chamber and thus the calculated fluxes (Davidson et al. 2002; 

Pihlatie et al. 2013). To avoid high pressure during chamber closure (and thus pushing air into the 

soil and altering the flux), a vent tube was installed (in both chambers for the summer drought and 

the CULTAN experiment) and in the chambers used in the CULTAN experiment sampling valves 

were left open during chamber closure. The vent tubes were installed at each chamber to avoid 

pressure differences between inside and outside atmosphere during the chamber closure, as 

reduced pressure in the chamber (e.g. due to sampling), or overpressure due to temperature 

differences, would lead to over- or underestimation of fluxes, respectively (Davidson et al. 2002). 

To avoid a possible Venturi effect that would suck air out of the chamber and induce reduced 

pressure (Conen & Smith 1998), the vent outlets were placed near the soil surface.  

Thirdly, due to the covering of the soil surface with the chamber, microclimatic conditions in the 

chamber atmosphere are affected. Exclusion of turbulence can alter the concentration (gradient) 

in the chamber, especially at large chamber volumes, and Christiansen et al. (2011) report 
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underestimation of 36% for CH4 fluxes without a fan (in an unvented chamber, however). To 

account for this issue, fans were placed in one corner of the large chambers used in the CULTAN 

study, also because of high plants in the chambers during the growing season that were assumed 

to prevent proper mixing by diffusion.  

Besides the effects during flux measurement itself, other problems may derive from installation of 

the chamber bases: To avoid effects of root cutting by insertion of chamber bases (collars) on gas 

fluxes, they remained in the soil as long as management was possible without removing. For soil 

tillage, seeding, fertilizer injection and the first surface application (to avoid “spray shadows”) in 

the CULTAN experiment, as well as for planting, fertilizing and tillage in the summer drought study, 

however, chamber bases had to be removed. After tillage, the soil matrix was disturbed anyway, so 

that disturbance by collar insertion was regarded negligible. 

Due to the relatively small dimensions of the chambers, spatial heterogeneity of the study area may 

not be covered. Soil processes, also denitrification and N2O emission, are highly heterogeneous on 

both spatial and temporal scales, characterized by hotspots (Mathieu et al. 2006). Mathieu et al. 

(2006) found N2O emission to be highly variable, but spatially independent, at a grid of 3m x 3m. 

They suggest heterogeneity to occur at the microscale level. Spatial heterogeneity of fluxes is often 

driven by heterogeneity in underlying environmental parameters, as soil moisture, or nutrient 

availability (Butterbach-Bahl et al. 2013). To account for the spatial heterogeneity in the CULTAN 

experiment, chamber bases were in their dimension (including 8 injection spots each, and thus 

covering the area above and between injections spots in representative ratio) and in their 

placement (e.g. avoiding tire tracks) adjusted to the experimental setup.  

The high temporal variability of N2O fluxes is also not covered if manual sampling is performed 

only weekly (plus additional measurements at certain events) and therefore peak emissions may 

be missed despite proper planning and adjustment of measurement days/periods according to 

management and weather conditions. The low temporal resolution of weekly measurement has 

caused annual fluxes to differ by up to 50% from near-continuous measurements (Flessa et al. 

2002; Kroon et al. 2008), and Thornton et al. (1996) reported N2O fluxes to differ by a factor of 2.5 

if calculated from weekly instead of daily measurements after anhydrous ammonia injection to a 

loess soil. The deviation of annual emissions calculated from weekly measurements could, 

however, be substantially reduced by extending the measurement scheme to additional 

measurements after fertilization and strong rain events (Flessa et al. 2002). To account for 

fertilization peaks, in addition to weekly measurement we sampled in higher frequency after 

fertilization and irrigation.  

Alternatives for measuring gas fluxes in field experiments with multiple treatments are scarce. 

Micrometeorological methods like eddy covariance supply much higher time resolution but are far 

more expensive and not applicable at stable atmospheric conditions. They furthermore require 

large homogeneous surfaces, thus not allowing simultaneous measurement of different treatments 

within a crop field. For research questions with several different treatments, aiming to improve the 

process understanding, chamber flux measurement are thus still the method of choice (Hensen et 

al. 2013).  

It has to be mentioned, that although annual fluxes are measured and discussed in the studies 

presented, the main focus is the comparison of different treatments.  
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4. Small effects of reduced summer precipitation on net exchange of CH4 and 
N2O fluxes on a sandy soil under maize and sorghum1 

 Abstract 

For most of Central Europe climate change is expected to lead to higher frequencies of extreme 

weather events with hotter and drier summers. The resulting lower soil water content directly 

affects turnover rates of nitrogen and carbon and, consequently, production rates and fluxes of the 

greenhouse gases nitrous oxide (N2O) and methane (CH4) from soil. Type and mass of plant 

coverage can modify the degree of desiccation. Over a time period of 18 months, we measured the 

net exchange of these greenhouse gases and nitrogen dynamics on an experimental field site on a 

sandy loam soil in Northern Germany, which was planted with sorghum and maize. The 

measurement period included two periods of experimental drought: During spring and summer, 

plants on ambient wet control plots were irrigated to keep water content above 50% water filled 

pore space (WFPS), whereas on dry plots rain was excluded by transparent rain shelters. Soil water 

content and nitrogen dynamics were measured from soil samples, and fluxes of N2O and CH4 were 

measured between plant rows using static chambers.  

N2O emission was generally low, with a mean annual emission over all treatments of 

1.8 ± 0.5 kg N ha-1 yr-1. There was a trend to higher emissions (20% – 25% lower on annual base, 

driven by winter emission) from wet than dry plots, but the difference was not significant. Uptake 

of atmospheric CH4 averaged 1.9 ± 0.3 kg C ha-1 yr-1, and was significantly higher (by 46%) at dry 

than wet maize plots when cumulated over the whole experiment (18 months) and during one of 

the drought periods at both maize and sorghum plots. Linear mixed effect models showed 

correlation between N2O fluxes and WFPS and nitrate content in the upper 10 cm of soil and soil 

temperature; CH4 fluxes were correlated with WFPS and nitrate content in soil, and their 

interaction. There was no consistent plant impact on greenhouse gas fluxes, but due to higher maize 

than sorghum aboveground biomass yields, yield-scaled emissions were approx. 35% higher from 

sorghum than maize plots. Yield-scaled N2O emission was similar for dry and wet conditions 

because both yields and N2O emission were lower at dry plots. 

Summer drought thus affected yield-scaled N2O emission by changing both emission dynamics and 

crop yield. The results suggest that reduced precipitation during summer months will have only 

minor effects on N2O emission at this site but will increase the uptake of atmospheric CH4. 

  

                                                             
1 This chapter is in preparation for submission with the following authors: Marianna Deppe, Reinhard Well, 

Remigius Manderscheid Roland Fuß, Hans-Joachim Weigel, Heinz Flessa 
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 Introduction 

Nitrous oxide (N2O) is a potent greenhouse gas contributing 6% of the radiative forcing to the 

anthropogenic greenhouse effect (Myhre et al. 2013) and its decomposition currently is the main 

process depleting ozone in the stratosphere (Ravishankara et al. 2009). The concentration of N2O 

in the atmosphere increased since industrialization from 270 ppb in 1750 to 325 ppb in 2012 

(WMO 2013). Agriculture is one of the most important anthropogenic sources of N2O, emitting 

approx. 2.8 (1.7 - 4.8) Tg N yr-1 (Denman et al. 2007). Besides carbon dioxide (CO2) and N2O, 

methane (CH4) is one of the earth’s most important greenhouse gases, and CH4 concentration in the 

atmosphere more than doubled from pre-industrial values (WMO 2013). 

Biogeochemical processes involved in both N2O production and CH4 uptake in soils are controlled, 

among other factors, by the soil water content (e.g. Ruser et al. 2006; Smith et al. 1998). N2O is 

mainly produced biologically in soils as intermediate or by-product during nitrification and 

denitrification. N2O production is often dependent on soil water filled pore space (WFPS), and peak 

emission of N2O are expected when WFPS increases to > 60% (Linn & Doran 1984; Skiba & Smith 

2000), and after disturbances as fertilization or rewetting of dry soil (Ruser et al. 2006). CH4 is 

produced in soil under anaerobic conditions and it is oxidized under aerobic conditions. Aerobic 

terrestrial soils have a sink function for atmospheric CH4 of ~ 30 Tg yr-1, counterbalancing roughly 

5% of total CH4 emissions (Ciais et al. 2013). 

Changes in precipitation and temperature, as they are likely to occur in the next decades, will affect 

biogeochemical processes in soils. For Europe, the Intergovernmental Panel on Climate Change 

(IPCC) predicted warmer summers and for some regions decreasing precipitation, with increasing 

risk of extreme events as summer drought and heavy rain events (Christensen et al. 2013; 

Seneviratne et al. 2012). Nitrogen availability in soil is another factor controlling production of N2O 

(Conrad 1996; Mosier 1994), and its dynamics in soil might change with changing climatic 

conditions. Drier summers may affect soil nitrogen dynamics by several processes such as reduced 

plant N uptake, slower nitrate leaching to deeper soil layers, and lower N mineralization rates 

(Bimüller et al. 2014; Borken & Matzner 2009; Larsen et al. 2011; Rimski-Korsakov et al. 2009). 

One of the most important crops produced worldwide is maize and its production is increasing to 

meet global need for food and, still more, feed and energy plants for the growing global population 

(Alexandratos & Bruinsma 2012; FAO 2008; Ray et al. 2013; USDA 2013). Sorghum is more drought 

resistant than maize due to a higher ability of extracting water from deeper soil layers (e.g. Singh 

& Singh 1995; Zegada-Lizarazu et al. 2012) thus sustaining biomass production under drier 

conditions, and might have a higher potential for energy production on marginal-yield sites (Farré 

& Faci 2006; Yuan et al. 2008). In view of the risk of more frequent summer drought and increasing 

temperatures, sorghum might become an advantageous alternative to growing maize in Central 

Europe. 

There have been several experiments regarding the impact and feedbacks of changing climate on 

N2O and CH4 fluxes. Simulation of future climate by rain exclusion experiments were performed e.g. 

in peatlands, pastures, forests and shrubland, with inhomogeneous results: Carter et al. (2012) 

report reduced N2O efflux caused by induced drought at several European shrubland sites and 

Carter et al. (2011) no effect of experimentally increased summer drought as a single factor on N2O 

and CH4 emissions from a heathland. For forest floor, Borken et al. (2000) and Borken et al. (2006) 

showed small to important increases in CH4 oxidation, Goldberg et al. (2010) a reduction in N2O 

emission and Muhr et al. (2010) reduced nitrogen mineralization with increased summer drought. 

Hartmann and Niklaus (2012) found a large reduction of N2O emission from fertilized but not from 
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unfertilized alpine pastures. We are not aware of studies regarding the effect of experimentally 

reduced summer precipitation in sandy cropland soils on N2O and CH4 exchange.  

Taking into account earlier drought studies and controlling environmental parameters, we 

hypothesize that (1) drier soil conditions due to rain exclusion during summer lead to an increase 

in CH4 uptake; and (2) N2O emission during the drought period is reduced because of low 

denitrification activity at low soil moisture. At the annual scale, drought may either reduce N2O 

emission due to lowering of denitrification with decreasing soil moisture, or N2O emission may be 

increased because of higher nitrogen (N) content resulting from reduced plant N-uptake during 

drought periods. Furthermore, (3) the impact of crop type on yield-scaled N2O emission is 

supposed to be controlled by better adaptation to dry conditions of sorghum compared to maize. 

To test these hypotheses, a field experiment was conducted on a sandy soil planted with maize and 

sorghum. Rain exclusion was used to intensify summer drought during the growing season. 

Measuring CH4 and N2O fluxes and mineral in soil, the reaction of greenhouse gas fluxes and N 

turnover to enhanced drought conditions was studied.  

 Materials/Methods 

4.3.1. Research Site 

The experimental field site was located at the Johann Heinrich von Thünen-Institute in 

Braunschweig, Germany (52°18’ N, 10°26’ E, 79 m a.s.l.). The soil is a luvisol with sandy loam 

texture (69% sand, 24% silt, 7% clay), a pH of 6.5 and an organic carbon content of 1%, total N 

content of 0.09% (C/N = 10.7). Bulk density was 1.54 ± 0.10 g cm-3 in uncompacted soil and 1.63 ± 

0.07 g cm-3 in plant rows after harvest. Mean annual temperature at the site is 8.8 °C, annual 

precipitation is 618 mm. A more detailed site description is given in Manderscheid et al. (2014). 

 

 

Figure 4-1: Scheme showing one of three replicate plots with subplots. Shaded areas mark subplots used 
for gas and soil measurements in this study 

4.3.2. Treatments  

This study took place as part of a more complex experiment on the impact of climate change on 

maize and different sorghum species (Manderscheid et al. 2012). Sowing of plants was done timely 
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in 2011 (18th of May) but was delayed in 2010 (10th of June) due to cool weather conditions in May. 

Measurements were performed on 3 replicate plots (5 x 5 m, within larger plots of the main 

experiment, see Figure 4-1) in both years. The experiment was two-factorial with different crops 

(maize and sorghum) and experimental drought (dry) vs. control (wet). Two out of 4 subplots per 

plot were planted with maize (Zea mays, cultivar Simao, 8 plants m-2, 0.75 m row distance) and 

sorghum (Sorghum bicolor, cultivar Bulldozer, 20 plants m-2, 0.75 m row distance), respectively. 

The preceding crop at the site was ryegrass that was mulched and incorporated. One subplot for 

each crop type was under a tent that was manually covered with transparent shields at days with 

> 10 mm day-1 precipitation forecast (dry treatments) during the period with rain exclusion 

(7/21 – 9/9/2010 and 7/22 - 10/4/2011). The other subplots, designated as well-watered control 

plots (wet), were drip irrigated to keep water content above 50% water filled pore space during 

the growing season (see Erbs et al. 2012 for detailed description of field installations). Fertilizer 

was applied according to local fertilization practices (N fertilization: calcium ammonium nitrate, 

150 kg N ha-1, in May 2010 and 2011) and weed control was performed manually in experimental 

plots in June 2010 and 2011, and chemically with bromoxynil in May 2011. Maize and sorghum 

plants were harvested at the end of October (10/4/10 and 10/4/11 for biomass and N yield 

samples, 10/25/2010 and 10/28/2011 total fields) and the field was ploughed before seedbed 

preparation. After ploughing in October 2011, winter wheat was sown.  

4.3.3. Measurement of plant biomass yield and nitrogen uptake 

Aboveground biomass of maize and sorghum plants was harvested at the beginning of October (4th 

- 5th October) from a ground area of 3 m2 in each of the 12 subplots.  After drying (105°C) to constant 

weight, total dry weight was determined. Total N concentration was measured in ground sample 

material of the total aboveground biomass using an element analyzer (TruSpec CNS, Leco). Total N 

in aboveground biomass was calculated from biomass yield data and N concentration of the 

biomass.  

4.3.4. Flux measurements 

Fluxes of N2O and CH4 at the soil surface were measured between plant rows of maize and sorghum 

with closed chambers at weekly intervals, with some larger intervals due to field management. As 

bases for the chambers, PVC rings (30 cm diameter, 15 cm height) were permanently installed 

approx. 10 cm deep into the soil. PVC chambers (30 cm diameter, 20 cm height) were placed on 

these rings and sealed with rubber collars at the start of each flux measurement. Vent tubes 

permitted equilibration of air pressure. Four samples of chamber atmosphere were taken after 

chamber closure in intervals of 12 to 30 min in 50 ml evacuated glass bottles equipped with teflon 

stop-cocks. Concentrations of N2O and CH4 in gas samples were analyzed with a gas chromatograph 

(GC 2014, Shimadzu, Duisburg, Germany) equipped with an automated rack and an 63Ni electron-

capture detector for N2O and an FID for CH4 (Loftfield et al. 1997). Gas fluxes were calculated from 

measured concentrations, air pressure and temperature inside the chamber using either linear 

regression, robust linear regression (Huber, 1981) or the Hutchinson-Mosier non-linear regression 

(HMR, Pedersen et al. 2010). The method used for further analysis was chosen as described by 

Leiber-Sauheitl et al. (2013). In short, we applied the following criteria: robust linear regression 

was used as default. If only three data points for a flux measurement were available, linear 

regression was used. HMR was used if HMR flux could be fitted, had a smaller value of Akaike’s 

information criterion (AIC) and a lower p-value than the linear flux and its absolute value was not 

more than 4 times that calculated using robust regression. This reproducible method avoids severe 
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overestimation of fluxes (Leiber-Sauheitl et al. 2013) and potential bias due to personal decision-

making when analyzing concentration trends. Reported flux rates represent net emission to the 

atmosphere when values are positive and net uptake into soil when negative. Cumulated fluxes per 

period and per year were calculated by linear interpolation between measurement dates. 

4.3.5. Climatic condition and water content 

The two growing seasons 2010 and 2011 were considerably different regarding precipitation 

(Figure 4-2). 2010 was a rather wet year with 750 mm annual precipitation and highest 

precipitation of 195 mm in August (see also Erbs et al. 2012). 2011 was a relatively dry year 

(488 mm annual precipitation) and both precipitation and irrigation were more evenly distributed 

in summer. During the periods between start of rain exclusion and harvest (subsequently referred 

to as drought periods) in 2010/2011, precipitation was 334/170 mm, of which 176/53 mm were 

excluded by rain shelters on dry plots, and irrigation on wet plots was 20 mm in 2010 and 108 mm 

(sorghum)/118 mm (maize) in 2011 (DWD, Erbs et al. 2012, Figure 2). This results in total water 

inputs during the drought period of 158 (2010) and 117 mm (2011) on dry plots, 354 mm on wet 

plots 2010 and 288 (sorghum)/ 298 mm (maize) on wet plots in 2011. 

Soil moisture was measured on composite soil samples taken on five spots halfway between plant 

rows in 0 – 10 cm and 10 – 30 cm depth. Gravimetric water content was obtained by weighing 

before and after drying at 105°C; WFPS was calculated from gravimetric soil water content and soil 

bulk density.  

4.3.6. Mineral nitrogen in soil 

Content of ammonium (NH4+) and nitrate (NO3-) in 0 – 10 cm and 10 – 30 cm soil depth were 

determined weekly unless soil was completely frozen. Field-fresh soil samples for N analyses were 

stored at 5 °C for up to 24 h until extraction. Contents of NH4+-N and NO3--N were analyzed 

photometrically (SA 5000, Skalar Analytical B.V., Netherlands) in filtrates from 40 g field fresh soil 

with 200 ml 0.01 M CaCl2 solution shaken for 1 h (according to ISO 14255; MN614 ¼ filters, 

Macherey & Nagel, Düren, Germany). Extracts were stored frozen until analyses.  

4.3.7. Statistics 

Data analyses were performed with the software R (version 3.0.2, R Core Team 2013). To test for 

treatment and environmental parameter impact on measured N2O and CH4 flux rates, we conducted 

regression analysis with linear mixed effects models using the nlme package in R (Pinheiro et al. 

2013). This was necessary, as flux measurements were repeatedly performed at the same positions 

and the resulting time series thus violate the assumption of independence needed for ordinary least 

square regression. The recommendations in Zuur et al. (2009) were followed to develop 

appropriate model structures. Data transformation was performed when necessary. The dataset 

was divided into 6 periods (Figure 4-3) to see whether the expected effects occurred over the whole 

year or differed between periods. Logit transformation was applied to WFPS (log(WFPS/(1-

WFPS)); Warton & Hui 2010) when used as dependent variable but not when used as an 

independent variable in models describing N2O fluxes. N2O fluxes were log-transformed before 

further analyses because residual plots showed strong deviation from normal distribution when 

untransformed flux rates were used. An offset of 10 µg N m-2h-1 was used to keep most of the 

negative fluxes in the dataset, as they most likely represent variation around zero resulting from 
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measurement uncertainty. However, the 12 lowest measurements of N2O fluxes were excluded 

from statistical analyses, as they might represent real N2O uptake that we did not want to address 

with the models applied. A nested random intercept was included in all models to account for the 

experimental setup with one subplot per treatment in three different plots. Standard error of flux 

measurements was used as variance covariate; this allows stronger deviation of less precisely 

measured fluxes from the model and improved the homogeneity of residual variance. 

Autocorrelation of measured fluxes was considered by applying first or second order 

autoregressive correlation structures.  

Different plant type, water regime and period were included as fixed effects with interactions in 

the models for WFPS, N2O and CH4; and models were fitted based on maximum likelihood. AIC was 

used to identify the best model fit. Interactions and fixed effects without significant influence 

(p > 0.05) were then step-wise excluded from the model to find the optimal model structure, which 

was then fitted using restricted maximum likelihood (REML) to get the final estimates. Mean fluxes 

were additionally tested for significant differences between periods within treatments and 

between treatments within periods using the glht function from the multcomp package in R 

(Hothorn et al. 2008) and the fdr correction (Benjamini & Hochberg 1995) for multiple 

comparisons. To test for correlation between gas fluxes and environmental parameters, additional 

mixed effects models were fitted. To account for substrates of both nitrification and denitrification, 

NO3--N and NH4+-N content in soil (sum of 0 – 10 cm and 10 – 30 cm), each of them with interaction 

with WFPS, soil temperature and plant type (for its possible impact on carbon availability for 

denitrification), were chosen as relevant parameters and thus used as fixed effects with 

interactions (starting with ((NH4 + NO3) * WFPS * soil temperature * plant type) in the full model). 

For CH4 fluxes, NO3--N and NH4+-N content were included again, both in interaction with WFPS and 

soil temperature (WFPS * soil temperature * (NH4 + NO3) as full model fixed effects), as ammonium 

oxidation may compete with methane oxidation in soil (Bédard & Knowles 1989) and thus N 

content can affect CH4 uptake rates in soil (e.g. Acton & Baggs 2011; Tlustos et al. 1998). Here again, 

step-wise exclusion of insignificant (p > 0.05) interactions and parameters led to final models. 

Cumulated fluxes per year were additionally tested for significant differences between treatments 

using analysis of variance (ANOVA) and Tukey’s HSD test for pair-wise comparisons. 
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 Results 

4.4.1. Treatment effect on soil water content 

Drought treatment led to significant lowering of WFPS (p < 0.001) in dry plots during both drought 

periods in 0 – 10 cm and 10 – 30 cm depth. The magnitude of desiccation during drought was 

slightly greater in 2011 than 2010, which corresponds to the fact that water input during the 

drought period was 16%/19% (wet sorghum/maize treatment) and 26% (dry treatment) lower in 

2011 than 2010. Summing the effect of rain exclusion at dry and additional irrigation at wet plots 

resulted in 180 mm total difference in precipitation between treatments until early September 

2010, and 171 mm in early October 2011, when lower WFPS occurred at dry plots. A quarter of this 

difference (~40 mm) was visible in the soil at the end of the drought period as a difference in soil 

moisture.  

At the beginning of the drought period 2010, WFPS was between 20% and 45% in all treatments. 

While precipitation and irrigation led to an increase in WFPS to > 60% in wet plots, rain exclusion 

on dry plots resulted in drying to < 20% WFPS until September 2010 (Figure 4-2). Increasing WFPS 

on dry plots at the end of September 2010 resulted from lateral inflow (amount not quantifiable) 

from outside the plots due to an extreme precipitation event of 38 mm (9/27/10). Highest water 

contents were measured in winter 2010/2011. As the soil is well-drained, water-saturation 

occurred only when soil was frozen in December 2010 (Figure 4-2). In 2011, desiccation in summer 

was faster on plots under maize than under sorghum, but at the end of the drought period there 

was no significant effect of plant type on WFPS. Lowest water contents reached during the drought 

periods were 13 – 14% in 10-30 cm and 10% in 0–10 cm on dry plots. While WFPS in the first 

winter season was almost equal in both treatments, values trended 9% and 10% lower in ‘dry’ 

treatments at 0-10 cm and 10-30 cm soil depth, respectively. Mean values and Tukey’s test results 

of significant differences of logit-transformed WFPS between wet and dry treatments are shown in 

the appendix (Table A 1 and A 2). Differences between the treatments were significant (no overlap 

of confidence intervals (p > 0.95), see Appendix, Figure A 1) at several dates in November and 

December of the second winter season. 

4.4.2. Plant growth and nitrogen uptake  

Biomass yields were higher in 2011 than in 2010, and total maize biomass yields were generally 

higher than sorghum biomass yields (Figure 4-4). However, yield reduction in dry plots relative to 

wet plots was stronger for maize (33%) than for sorghum (24%) in 2011. 

Crop N content in harvested aboveground biomass (N yield; shown in Figure 4-4) was between 177 

and 258 kg N ha-1, and lower at dry than wet plots in both years. Reduction was stronger on 

sorghum plots in 2010 (18%, 6% on maize plots) and on maize plots in 2011 (12%, 5% on sorghum 

plots). 

4.4.3. Dynamics of mineral soil N and N2O emission 

Measured nitrate (NO3-) content in the upper 10 cm of soil was high at the beginning of 

measurements, with concentrations of up to 420 µg NO3--N cm-3 and total mineral N in the plough 

horizon reaching 400 - 500 kg N ha-1 in late July/early August (fertilization was 150 kg NO3
--N ha-1 

in May, Figure 4-5). It sharply decreased in wet maize and sorghum at the end of July/ early August 
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2010, with a subsequent increase in the 10 - 30 cm depth increment. Up to 148 ± 91 µg NO3
- N cm-

3 were measured on wet maize plots in the second half of August 2010 in 10 – 30 cm depth; on dry 

plots, NO3- content increased more slowly, with highest amounts reached in September (Figure 4-5). 

These dynamics are attributed to transport with the seepage water resulting from high amounts of 

precipitation (Figure 4-2). In 2011, when sowing was successful in May, N content after fertilization 

was lower than 2010, despite equal amounts of fertilizer added. NO3
- content decreased to < 

9 µg NO3
--N cm-3 before the drought treatment began. An increase in NO3

- content in 10 – 30 cm 

occurred in all treatments in early August 2011 when the soil became drier (WFPS decreasing to 

< 40%). At dry maize plots, NO3- content remained relatively high during the following drought 

period (WFPS < 30% for 9 weeks; Figure 4-2 and 4-5), and NO3- content was significantly higher in 

dry than wet plots during drought 2011.  

 

 

Figure 4-2: (a) Soil temperature in 10 cm depth (mean of all plots) and air temperature in 2 m;  
(b) Weekly precipitation/irrigation over time. White bars show water supplied to dry plots (precipitation 
– rain exclusion) per week, grey plots show precipitation excluded on dry plots and thus only available on 
wet plots and black bars represent irrigation on wet plots. (c) Water filled pore space (WFPS) in soil at 0–
10 cm and (d) 10–30 cm depth in all treatments. Symbols show means of 3 replicates; error bars represent 
standard deviation. White fields highlight drought periods from beginning of rain exclusion/irrigation until 
harvest. 
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Figure 4-3: Scheme of periods used for statistical analyses and calculation of cumulative fluxes of N2O 
and CH4. 

 

 

Figure 4-4: Biomass yield (dry matter, left) and nitrogen (N) content of aboveground biomass (right) 
of maize and sorghum with (white bars) and without (black bars) rain exclusion in 2010 (plain bars) and 
2011 (shaded bars). Means (n=3); error bars represent standard deviation of replicate plots.  

 

Ammonium (NH4+) concentration on all plots was mostly low (< 10 kg NH4+-N ha-1), except for 

some weeks after fertilization with calcium ammonium nitrate (Figure 4-5). At the beginning of 

rain exclusion, approx. 10 – 30 µg NH4+-N cm-3 (10 - 30 kg N ha-1) were available in 0-10 cm depth 

in 2010 and only < 0.4 µg NH4
+-N cm-3 in 2011 (Figure 4-5). NH4

+ content in 10-30 cm soil depth 

was always < 10 µg NH4
+-N cm-3 and did not show any distinct dynamics (data not shown). 

Calculated N2O fluxes ranged from -41 to 920 µg N m-2 h-1, with a mean flux over all treatments of 

20 ± 11 µg N m-2 h-1 (median: 8.99 µg N m-2 h-1). The automatic decision scheme of the used flux 

calculation led to 12% of fluxes being calculated with the HMR procedure, 86% were calculated 

with robust linear regression and 2% by linear regression due to only 3 concentration 

measurements per flux. Relatively high N2O fluxes occurred: 

(1) in summer 2010, before and shortly after beginning of the drought treatment (up to 

150 µg N m-2 h-1);  

(2) after harvest and precipitation in November 2010, when WFPS reached > 50% also in dry 

treatments (up to 250 µg N m-2 h-1);  

(3) mostly on wet plots in winter 2010/2011, when temperatures increased while or shortly after 

soil was frozen (up to 920 µg N m-2 h-1); and  
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 (4) on sorghum plots in June 2011 when soil moisture increased to > 60% WFPS at high mineral N 

content some weeks after fertilization (up to 112 µg N m-2 h-1, Figure 4-6). 

Rates declined in both dry and wet treatments during drought 2010 to 8 ± 12 µg N m-2 h-1 before 

harvest and were continuously low (< 20 µg N m-2 h-1) during drought 2011 in all plots (Figure 4-6). 

Net uptake of N2O into the soil was measured at some dates, especially in September 2010 when 

WFPS increased to > 55% after the drier summer in both wet and dry plots.  

 

Figure 4-5: Mineral nitrogen content in soil under maize (left) and sorghum (right column). a) Nitrate 
(NO3-) content in 0-10 cm and b) 10-30 cm depth and c) ammonium (NH4+) content in 0-10 cm depth. 
Symbols show means of 3 replicates (open: dry treatment, filled: wet treatment); error bars represent 
standard deviation. White fields mark drought periods from beginning of rain exclusion/irrigation until 
harvest; the arrows mark the time of fertilization in 2011; fertilization in 2010 was conducted in May. 

 

Linear mixed effect models of treatment impact show significant impact of the interaction between 

water treatment and period, as well as between plant type and period. The model explained 26% 

of the variance in log-transformed N2O fluxes. Total annual N2O emission exhibited a trend to be 

lower by 20% under sorghum and 25% under maize in drought treated plots; however, differences 

between wet and dry plots were not significant, neither over the whole year, nor when mean fluxes 

of all periods were compared (see Table 4-1). During the early summer 2011 period before the rain 

exclusion was started, mean N2O fluxes from soil under dry sorghum were significantly higher than 

from dry maize plots. Neither in the other periods nor on an annual scale, did the plant effect 

translate into significantly different cumulated fluxes between maize and sorghum. 

Regarding linear mixed effect models with driving parameters of N2O fluxes, log-transformed N2O 

fluxes were significantly correlated with WFPS and NO3- content in soil, and soil temperature 
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(p < 0.005). Although these effects are highly significant, the total linear mixed effects model 

explains only 13% of the variance in log-transformed fluxes.  

N2O emission from harvest 2010 to harvest 2011 accounted for between 0.9% (dry maize) and 

1.6% (wet sorghum) of N applied as fertilizer per year. However, real emission factors for N 

fertilization cannot be derived, as the study design did not include unfertilized plots. Due to higher 

yields and slightly lower N2O emission, yield-scaled emissions were 0.08 and 0.13 kg N2O-N t-1 d.w. 

maize and sorghum in the wet treatments and 0.07 and 0.11 kg N2O-N t-1 d.w. in the dry treatments, 

respectively. Yield-scaled N2O emissions in dry and wet treatments were thus by 36 and 35% (but 

insignificantly) lower, respectively, in the maize compared to the sorghum plots due to lower 

sorghum yields. Based on N content in aboveground biomass, N yield-scaled emissions amounted 

to 8 ± 3 g N2O-N kg-1 N in plants, without correlation or visible pattern to plant or water treatment.  

 

Figure 4-6: Fluxes of nitrous oxide (N2O, a) and methane (CH4, b) between plant rows of maize (left) 
and sorghum (right column). Symbols show means of 3 replicates (open: dry treatment, filled: wet 
treatment); error bars represent standard deviation. Negative flux rates represent uptake into the soil. White 
fields mark drought periods from beginning of rain exclusion/irrigation until harvest; the arrow marks time 
of fertilization; fertilization in 2010 was conducted in May. 

4.4.4. Dynamics and total amounts of atmospheric CH4 consumption in soil 

Measured CH4 fluxes ranged from –91 to +32 µg C m-2 h-1, with a mean rate of -14 ± 3 µg C m-2 h-1 

over all treatments and periods. At the beginning of measurements in July 2010, mean CH4 flux was 

-15 ± 5 µg C m-2 h-1. With increasing WFPS on wet plots, less CH4 was consumed in wet than in dry 

treatments. In winter 2010/2011, when soil was wettest and partly saturated (Figure 4-2), CH4 

emission occurred at some days, with highest emission of 20 – 30 µg C m-2 h-1 from wet maize and 

dry sorghum plots (Figure 4-6).  
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Fluxes were highly variable in early summer and during drought 2011, and uptake increased 

during April/May 2011, when WFPS decreased to < 60%. Uptake decreased again with increasing 

WFPS after fertilization in June 2011, and was higher under dry than wet maize in August and under 

dry than wet sorghum in September 2011, when WFPS decreased to < 30% in the respective dry 

plots (Figure 4-2 and 4-6). 

Linear mixed effect models of CH4 fluxes show significant impact of drought treatment, plant type 

and period, and interaction between both plant type and drought treatment with period. During 

drought 2011, CH4 uptake was significantly higher in dry than wet plots under both maize and 

sorghum; and in the following winter period, uptake in wet maize still differed from that in dry 

maize and sorghum. The difference was smaller during drought 2010 and significant only between 

wet maize and dry sorghum. Over the whole experiment, significant effects of treatments on 

cumulated fluxes were detectable between wet and dry maize plots (p<0.05, see Table 4-1). 

Linear mixed effect models of CH4 fluxes in dependence of control parameters additionally showed 

that CH4 uptake significantly correlates with WFPS and NO3
--N content in soil, with higher uptake 

rates at low WFPS and NO3
--N content. The interaction of WFPS and NO3

--N modifies the impact of 

these parameters, with lower CH4 uptake with increasing NO3--N content below 60.1% WFPS, and 

higher CH4 uptake with increasing NO3--N content at higher water content. This model explains 

34% of total flux variance. Although the impact of NO3--N and its interaction with WFPS on CH4 

uptake is highly significant (p < 0.001 for NO3- and p = 0.012 for the interaction), only a small part 

of CH4 fluxes is explained with NO3--N. Excluding NO3--N and its interaction with WFPS leads to still 

33% of variation in fluxes being explained by the model.  
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Table 4-1: Mean fluxes of N2O and CH4 for different periods, cumulated fluxes over the experiment and per year and calculated emission factors (EF) for yield 
based and fertilizer based emissions. Error terms are standard deviations (n=3). Results of posthoc pairwise comparisons of mean fluxes between treatments (within 
periods) are given in capital letters, and between periods (within treatments) in lower case letters. fdr correction (Benjamini & Hochberg 1995) was used to correct for 
multiple comparisons. Mean fluxes differ significantly (p<0.05) when they do not share the same letter. For fluxes cumulated over the whole experiment (sum), over a 
complete year (harvest 2010 - harvest 2011) and for yield-scaled fluxes, separate tests were performed. 

                      

  crop treatment Pre- 
drought 

2010 

  drought            
2010 

  winter 
2010/ 
2011 

  early 
summer 

2011 

  drought   
2011 

  winter            
2011 

  Sum    harvest 2010 
– harvest 

2011 

  fertilizer 
based 

emissions 

Yield-scaled 
emissions 

 

   6.7.-21.7.2010  22.7.-
1.11.2010 

 2.11.2010-
27.4.2011 

 28.4.-
24.7.2011 

 25.7.-
2.11.2011 

 3.11.-
31.12.2011 

     N2O-N/ 
fertilizer N 

g N2O-N/              
t d.w. biomass 

 

       16d   102d   177d   88d   101d   59d   543d   365d   365d 365d  

N2O emission gN m-2 d-1             N2O emission kgN ha-1     
 

 sorghum wet 
7.5 ± 5.8 

A ac 

2.2 ± 0.8 
A bc 

11.4 ± 3.8 
A a 

3.8 ± 1.2 
AB cd 

1.2 ± 0.3 
A b 

2.8 ± 0.7 
A bcd 

2.94 ± 0.70 
A 

2.43 ± 0.69 
A 

1.6% 131 ± 47 
A 

dry 
11.1 ± 3.3 

A ab 

3.5 ± 0.6 
A ac 

4.8 ± 1.2 
A c 

9.1 ± 7.7 
A   a 

0.8 ± 0.5 
A b 

3.6 ± 1 
A c 

2.35 ± 0.72 
A 

1.61 ± 0.71 
A 

1.1% 113 ± 56 
AB 

  

maize wet 
11.6 ± 10.1 

A a 
3.9 ± 0.6 

A b 
10.3 ± 4.3 

A a 
3.5 ± 1.4 

AB b 
1.2 ± 0.1 

A c 
3 ± 0.7 

A b 
2.95 ± 0.80 

A 
2.19 ± 0.78 

A 
1.5% 78 ± 29 

AB 

dry 
20.3 ± 17 

A a 

4.2 ± 2.5 
A b 

5.4 ± 3 
A b 

2.8 ± 0.6 
B   b 

1.3 ± 0.9 
A c 

2.7 ± 1.8 
A bc 

2.20 ± 0.66 
A 

1.29 ± 0.54 
A 

0.9% 75 ± 38 
B 

                      

CH4 uptake gC m-2 d-1  

 

 

 

 

 

 

 

 

 

 

 

CH4 uptake kgC ha-1    
g CH4-C/              

t d.w. biomass 
 

  sorghum wet 
-4.9 ± 0.5 

A a 

-3.4 ± 0.8 
AB a 

-1.3 ± 0.4 
Ab 

-4.5 ± 2.0 
A a 

-3.6 ± 0.5 
A a 

-4.9 ± 1.0 
AB a 

-1.70 ± 0.22 
AB 

-0.99 ± 0.19 
A 

- -58 ± 12 
A 

dry 
-3.3 ± 0.3 

AB a 

-4.4 ± 0.7 
A ab 

-0.6 ± 0.5 
A c 

-5.2 ± 1.1 
A b 

-5.8 ± 0.5 
B b 

-5.6 ± 0.5 
A b 

-1.99 ± 0.16 
AB 

-1.16 ± 0.11 
A 

- -85 ± 9 
B 

  

maize wet  
-2.7 ± 0.4 

B ab 

-2.0 ± 0.6 
B bc 

-0.9 ± 0.2 
A c 

-5.0 ± 0.8 
A d 

-3.8 ± 0.9 
A ad 

-3.8 ± 1.8 
B ad 

-1.45 ± 0.17 
B 

-0.98 ± 0.15 
A 

- -41 ± 3 
A 

dry 
-2.9 ± 0.5 

B a 

-3.3 ± 0.5 
AB a 

-1.7 ± 0.4 
A a 

-5.8 ± 1.0 
A b 

-5.6 ± 1.0 
B b 

-5.8 ± 2.2 
A b 

-2.11 ± 0.20 
A 

-1.39 ± 0.18 
A 

- -81 ± 11 
B 
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 Discussion  

4.5.1. Calculation of gas fluxes – linear vs. non-linear 

Calculation of N2O and CH4 fluxes using the routine to select the most suitable regression approach 

(see 4.3) yielded higher fluxes compared to default linear calculation (Appendix, Table A 3 and 

Figure A 2). The sequence of treatments, when ordered according to their total fluxes per period or 

year, remained the same, though. Peak N2O emissions were approx. 25% and annual fluxes thereby 

10–20% lower when calculated purely linearly than with the protocol including HMR. Moreover, 

results of statistical analyses differ slightly. N2O emission would be reduced by 27% in sorghum 

and 42% in maize due to drought treatment (dry) compared to non-drought treatment (wet), 

respectively. For CH4, there were significant differences between wet and dry maize during drought 

2010 but not during drought 2011 with linear fluxes.  

Due to relatively low flux rates in our experiment, HMR was less often used as in datasets analyzed 

by Pedersen et al. (2010), where 47% of fluxes were calculated non-linearly and gave approx. 50% 

higher fluxes. Systematic underestimation of CH4 fluxes when calculated with linear regression 

were also shown in a chamber comparison campaign by Pihlatie et al. (2013). Difference between 

partly HMR and purely linear calculation of fluxes led to discrepancies comparable to ours in a 

study by Schelde et al. (2012). Different methods of flux calculation result in different annual fluxes, 

and this adds to the impreciseness of upscaled emission rates. However, in our case, discrepancy is 

not extraordinarily high. 

4.5.2. Range of gas fluxes  

Annual N2O emission in this study was between 1.29 and 2.4 kg N ha-1 yr-1 and thus within the 

range of N2O fluxes from cropland with mineral fertilization in Germany (Kaiser & Ruser 2000). As 

often reported elsewhere, high fluxes were measured after typical events as fertilization, harvest, 

heavy rainfall and during frost-thaw-cycles (Hellebrand et al. 2003; Kavdir et al. 2008; Sehy et al. 

2003). That a great part of the N2O emission occurred during winter (53-83% in our study for 

winter 2010/2011) is a common phenomenon under temperate climate with frost periods during 

winter (Flessa et al. 1995; Kaiser et al. 1998; Teepe et al. 2000). 

With approx. 0.9–1.6% of applied N, measured fertilizer-based emissions were in the lower range 

of values given in the literature for arable soils in Germany (Jungkunst et al. 2006; Kaiser & Ruser 

2000; Skiba & Smith 2000). While it is common to calculate fertilizer-based emissions by dividing 

total emissions by total N input from fertilizer (Dobbie et al. 1999; Kaiser & Ruser 2000), this 

procedure neglects background emissions. Subtracting these, fertilizer-induced emission might be 

substantially smaller (Jungkunst et al. 2006).  

Measured annual methane fluxes of -1 to -1.4 kg C ha-1 yr-1 were also in the range given for 

northern European arable soils (Dobbie et al. 1996; Smith et al. 2000). Annual uptake was slightly 

higher than in a study by Hellebrand et al. (2003) on loamy sand soil under energy plants, where 

annual precipitation was comparable to our dry treatments. Flux dynamics showed a typical 

seasonal pattern, with highest uptake rates of methane during summer and considerably lower 

uptake activity and single events of net CH4 emission during and after winter, when soil was 

wettest. 
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4.5.3. Effect of drought and other environmental parameters  

Our hypothesis of higher N content under drought due to lower crop N uptake was supported by 

the observation of nitrate content being higher in dry than wet treatments in 2011. Nitrate content 

in soil increased during drought 2011, and N content in plant biomass was indeed higher at wet 

than dry plots (by 5-18%).  

In 2010, possible drought effects were interfered with extremely high nitrate contents, probably 

attributable to high mineralization rates in soil caused by high amounts of organic material from 

the incorporated ryegrass. Also the appearance of relevant amounts of NH4+ in July 2010 points to 

high mineralization rates. Additionally, late sowing (3 weeks delay) might have caused lower root 

density between plant rows and reduced N uptake in plants during the first weeks of measurements 

compared to 2011. Time courses show depth translocation of NO3
- in soil during drought 2010 that 

started earlier in wet than dry plots. If the NO3
- was not completely taken up by plant roots in 

deeper depths, this implies considerable nitrate leaching. In the dry plots, more than 200 kg NO3
--

N were still available at the end of rain exclusion (9/9/2010) and more than 100 kg N after harvest 

2010 in the plough layer. In the wet plots, the amount of available NO3- in the plough layer was 

much smaller at that time (20 - 30 kg N); the NO3
- that was presumably translocated might, 

however, still have been present and available for N2O production in deeper depths.  

We furthermore hypothesized that increased summer drought reduces N2O fluxes during the 

drought phase. Although the drought effect on water content itself was strong, and there was a 

positive correlation between WFPS and N2O flux, this did not result in differences in N2O fluxes 

between treatments due to low water content even in well-watered wet plots. Fluxes during 

summer drought periods (101 days = 28% of the year) itself were low and contributed only 2% – 

26% to annual fluxes. There was a weak trend towards higher fluxes from wet than dry treated 

plots in winter 2010/2011 with a significant difference between wet sorghum and dry maize only 

when purely linearly calculated fluxes are regarded (Appendix, Table A 3).  

Analyzing the conditions associated with observed peak fluxes of N2O might identify situations 

which would generally lead to a substantial increase of annual N2O losses. No distinct N2O peak 

fluxes occurred with initial rewetting after rain exclusion, but emission rates > 200 µg N m-2h-1 

occurred in the winter 2010/2011 period directly after harvest in November and when WFPS was 

> 80% after the soil had been frozen, with higher peaks at wet than dry treated plots. Peak emission 

during frost-thaw cycles may be attributed to release of physically stored N2O produced in deeper 

soil layers during frost and/or conditions favorable for denitrification after thawing; i.e. high water 

content and high carbon availability due to breaking down of plant material and microbial residues 

into microbiologically usable forms (Goodroad & Keeney 1984a; Mørkved et al. 2006; Risk et al. 

2013). N2O emission during frost/thaw cycles was found to be affected by incorporation of crop 

residues (Pelster et al. 2013). In particular, residues with high N contents can increase N2O 

emission after harvest and over winter (Kaiser et al. 1998). High soil moisture and frost intensity 

are further factors that affect N2O losses over winter (Koponen & Martikainen 2004; Öquist et al. 

2004; Risk et al. 2013). In our study, the water content in 0 – 10 cm depth did not differ visibly 

between wet and dry treatments throughout the winter 2010/2011 period. In 10 – 30 cm depth, 

however, desiccation in dry plots lasted somewhat longer, with small differences visible until 

December (Figure 4-2 and Figure A 1 in the Appendix). Higher N2O peaks from wet than dry plots 

during winter 2010/2011 might thus be accredited to N2O produced in or below 10 – 30 cm soil 

depth, with higher water content before freezing and higher organic matter input from plant 

residues and belowground biomass.  
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Another peak flux > 200 µg N m-2 h-1 was detected following heavy precipitation at high WFPS after 

fertilization 2011 in dry sorghum. It is well-known that N2O emission depends on the water content 

(Dobbie et al. 1999; Ruser et al. 2006), and the threshold for high N2O emission is generally given 

at somewhere between 60% – 80% WFPS (Laville et al. 2011; Linn & Doran 1984; Ruser et al. 

2006). Several studies (e.g. Dobbie et al. 1999; Sehy et al. 2003; Smith et al. 1998) showed a 

significant effect of WFPS only when N substrates were not limiting. Statistical analysis of our data 

with mixed linear effect models partly supports this finding, with a significant effect of both WFPS 

and NO3- on N2O fluxes. Distinct peaks in N2O emission occurred when soil nitrate content was high 

after fertilization in both 2010 and 2011, and WFPS above 40%. Overall, N2O flux of peak events 

(> 200 µg N m-2h-1) contributed approx. 30% to total cumulated fluxes.  

Regarding CH4 fluxes, the assumed increase in methane uptake under experimental drought 

occurred, with approx. 20% – 40% higher annual CH4 uptake with increased summer drought. This 

is in accordance with results from forest and alpine grassland sites that showed increased annual 

CH4 uptake under drought conditions (Borken et al. 2000; Borken et al. 2006; Hartmann et al. 

2011). CH4 uptake is controlled by diffusivity of CH4 and O2 into the soil, which depends on soil 

physical parameters such as bulk density and WFPS (e.g. Le Mer & Roger 2001; Smith et al. 2000). 

Thus expectedly, mixed linear effect models showed a correlation between WFPS and CH4 emission, 

with higher uptake at lower water content. This impact is well-known (e.g. Carter et al. 2011; Smith 

et al. 2000); however, it was not clear in how far it would translate into significantly different 

seasonal or annual emissions between treatments. 

There was also a correlation between CH4 fluxes and NO3- content in soil and its interaction with 

WFPS. This interaction implies lower net CH4 uptake with increasing NO3- content at WFPS < 60% 

and with decreasing NO3- content at WFPS > 60%. It has to be kept in mind that net CH4 uptake into 

the soil is the consequence of uptake of CH4 from the atmosphere into the soil as a result of CH4 

oxidation and emission of CH4 from soil after methanogenesis in anaerobic soil compartments. 

Several studies showed a negative correlation between N content or NH4
+ oxidation and CH4 

oxidation in soil (e.g. Acton & Baggs 2011; Dobbie & Smith 1996; Flessa et al. 1996); and for 

thermodynamical reasons, methanogenesis generally takes place only after other electron 

acceptors (e.g. O2, nitrate or sulfate) have been largely depleted. Ammonium contents in our plots 

were low except for some weeks after fertilization, but nitrate as the product of nitrification might 

be another proxy for ammonium oxidation. CH4 uptake in the experiment reported here was higher 

during drought 2011 than 2010 while NO3
- contents in soil were lower (Figure 4-5 and 4-6). 

However, the effect of N content on CH4 fluxes was small and might be driven by parameters not 

included in the model or even result from coincidence of low NO3--N content with CH4 emission 

(positive fluxes) occurring during winter, when high WFPS and low temperature limited CH4 

oxidation.  

To summarize the effect of summer drought treatment on N2O and CH4 fluxes, CO2-equivalents can 

be calculated. As the GWP (global warming potential) of CH4 (34) is much smaller than that of N2O 

(298; Myhre et al. 2013), the reduction in annual N2O emission (0.8/0.9 kg N2O-N; or 1.3/1.4 kg 

N2O for sorghum and maize) has a much higher share on total greenhouse gas potential reduction 

than the increase in annual CH4 uptake (0.17/0.41 kg CH4-C; or 0.23/0.55 kg CH4). Together, they 

amount to approx. 0.4 t CO2-equivalents ha-1 yr-1. The reduction in N2O emission due to summer 

drought is in a range comparable to reduced N2O emission after a 15% reduction of N input or with 

the use of nitrification inhibitors (Eagle et al. 2012). 
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4.5.4. Plant impact on N2O and CH4 fluxes  

As the effect of plants on WFPS and NO3- content was not statistically significant, great impact on 

gas exchange rates could not be expected. Consequently, there were only faint impacts of plant 

types in interaction with periods on both CH4 and N2O fluxes – CH4 uptake trended to be higher 

under sorghum in summer 2010, and N2O emission was higher from dry sorghum than maize in 

early summer 2011 - but cumulated fluxes per year or over the experiment did not differ 

significantly between plant types. 

Regarding the contribution of agriculture to greenhouse gas exchange and the global need for food 

production, not only area-based emissions, as mostly reported, but also emissions scaled to dry 

weight or N yield should be given (Van Groenigen et al. 2010). A range of 0.13 - 0.48 kg N2O - N t-1 

d.w. maize yield-scaled N2O emissions can be calculated from N2O emissions and biomass yields 

reported in studies on loamy soils (Liu et al. 2013; Sehy et al. 2003; Zebarth et al. 2008). The 0.07 - 

0.08 kg N2O - N t-1 d.w. maize biomass yield measured here are slightly below this range, 

presumably because of drier conditions in our sandy soil. As both yields and N2O emissions were 

higher on wet than on dry plots, yield-scaled emissions did not change with drought treatment. 

Higher yield-scaled N2O emissions with sorghum than maize result from lower biomass yields. N 

yield-scaled emissions based on aboveground plant N uptake were shown to be relatively constant 

with fertilizer addition in the range of 0 to 190 kg N ha-1 and increased at higher fertilization rates 

in a review that summarized datasets where both N2O and N yields were reported (Van Groenigen 

et al. 2010). For total N2O emissions, Bouwman et al. (2002) also report increasing N2O emission 

above a threshold of 100 kg N ha-1yr-1 N fertilization. Our finding of increased yield–scaled 

emissions due to lower yields in sorghum illustrates the general need to optimize the adaptation of 

fertilization to expected yield in order to keep yield-scaled N2O emission as low as possible. 

 Conclusions 

Sandy soils and climatic conditions as present during this study represent a wide range of northern 

Germany and Central Europe. Although conditions on the sandy soil were relatively dry even in the 

wet control treatment during treatment phases, small effects of increased summer drought were 

detectable. We showed that increased summer drought led to higher uptake rates of atmospheric 

methane during summer. A reduction of N2O emission in the drought treatment during the period 

of rain exclusion did not occur. In both treatments, highest N2O emission peaks occurred during the 

winter. While water contents of ambient wet control plots were higher than in the dry plots during 

early winter, there was only a weak trend towards higher cumulated N2O emission during the 

entire winter season. Taken together, this indicates that effects of summer climate changes on 

greenhouse gas fluxes in crop production have to be evaluated on the basis of long-term 

measurements covering at least a whole year. Increased CH4 uptake and the small difference in N2O 

emission under increased summer drought together reduced the area related greenhouse gas 

balance by approx. 0.4 t CO2-equiv. ha-1 yr-1 compared to ambient wet control plots. However, N2O 

fluxes of this sandy soil were relatively low and the generally good drainage rarely leads to strong 

inhibition of diffusive CH4 uptake even under wet conditions. Drought effects on the greenhouse 

gas balance might thus be more pronounced in soils with lower sand content where changes in soil 

moisture during drought can be much larger.  

Regarding sorghum as an alternative to maize for energy plant production, there was no impact on 

greenhouse gas exchange detectable in our study on an annual base. As yields were lower and 

biomass yield-scaled emissions higher from sorghum than from maize plots, sorghum does not 
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seem to be a worthwhile substitute for energy plant production at the selected site under the 

present conditions. With changing climatic conditions, strategies to limit yield-scaled greenhouse 

gas emissions must thus take specific crop responses into account. 
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5.  Impact of CULTAN fertilization with ammonium sulfate on field emissions 
of nitrous oxide2 

 Abstract 

Agricultural soils have a great share on global nitrous oxide (N2O) emissions. The method of 

nitrogen fertilization is a manageable control parameter of N2O production in soil. Controlled 

uptake long-term ammonium nutrition (CULTAN) intends to aliment field growing crops mainly 

with ammonium instead of nitrate, aiming at a better N use efficiency and less N leaching by placing 

ammonium-based N fertilizer in highly concentrated depots in the soil. In this two years field study, 

we analyzed N2O flux rates and dynamics of mineral N in soils after injection of ammonium sulfate 

solution (CULTAN) and conventional surface application of the same fertilizer type (ammonium 

sulfate at a rate of 130 kg N ha-1) to winter wheat at two sites with different soil texture. Using 15N-

NH4+ as a tracer, we additionally measured fertilizer-derived emissions and fertilizer N uptake at 

one CULTAN plot.  

Grain yields were higher after CULTAN fertilization than after surface application of N fertilizer; 

significantly so in one year at each site. Neither N uptake nor N use efficiency were consistently 

different between fertilization methods. Nitrate accumulation in CULTAN treated plots occurred 

after fertilizer injection, showing that the concentrated NH4+ depots did not sufficiently inhibit 

nitrification. Total annual N2O emission ranged from 0.29 to 1.9 kg N ha-1 yr-1, with higher emissions 

from fertilized than unfertilized plots, but no significant difference between fertilizer application 

methods. N2O emission was higher at the loam than the sandy loam site, with twice as high annual 

emission at the loam site (1.2 ± 0.5 kg N ha-1 yr-1) compared to the sandy loam site (0.6 ± 0.2 kg N 

ha-1 yr-1) after CULTAN fertilization. Temporal N2O emission dynamics were influenced by weather 

conditions (i.e. thawing of soil) and irrigation and could partly be explained by changes in soil 

moisture and soil mineral N. With only 1% - 17% of total annual fluxes at the 15N CULTAN plot, 

fertilizer-derived emissions were small, highlighting the dominance of soil N for N2O emission.  

In terms of N2O emission, CULTAN fertilization did thus not proof beneficial over surface 

application of the same fertilizer. Without effective inhibition of nitrification, and with the high 

concentration of fertilizer N in small zones within soil, there is even the possibility of increased N2O 

emission from CULTAN fertilization at fine textured soils.  

  

                                                             
2 This chapter is a modified form of an article, which was in the reviewing process of the journal Agriculture, 

Ecosystems & Environment when the thesis was submitted. After submission of the thesis the article was 

published in a revised version (DOI: 10.1016/j.agee.2015.12.015).  

Marianna Deppe, Reinhard Well, Martin Kücke Roland Fuß, Anette Giesemann, Heinz Flessa (2016). Impact 

of CULTAN fertilization with ammonium sulfate on field emissions of nitrous oxide 
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 Introduction 

Nitrogen (N) management is an integral part of agriculture. It offers the potential to maintain and 

increase crop yields necessary for feeding a growing world population, but carries the burden of 

responsibility that comes along with intervening in biogeochemical cycles. Negative effects of 

increased N input to ecosystems include nitrate leaching, changes in biodiversity, and the increase 

in nitrous oxide (N2O) emissions (Erisman et al. 2013; Vitousek et al. 1997). In fact, agriculture is 

an important source of N2O, contributing 79% (59% from direct and another 20% from indirect 

emissions) to global anthropogenic emissions (Ciais et al. 2013); thereby it contributes 

substantially to global climate change and the destruction of the stratospheric ozone layer (Myhre 

et al. 2013; Ravishankara et al. 2009). Besides the amount of N applied, the chemical speciation of 

N fertilizer, and timing and method of N application are key parameters in N management 

(Cameron et al. 2013).  

The application method determines the fertilizer distribution within soil and it also influences the 

contact between fertilizer and plant roots. After surface application, N is leached to the rooting zone 

with precipitation or irrigation and is thus broadly dispersed in soil. In contrast, banding within the 

soil or point-injection of fertilizer supplies N directly to the rooting zone. These application 

methods were developed to improve N efficiency and reduce N leaching (Dinnes et al. 2002; Janzen 

et al. 1990; Petersen et al. 2004).  

The CULTAN (Controlled Uptake Long-Term Ammonium Nutrition) fertilization strategy according 

to (Sommer 2005) combines ammonium-rich/nitrate free nitrogen fertilizers with fertilizer 

placement techniques such as point injection or banding. Point injection of concentrated fertilizer 

solution by spoke-wheels is common, creating fertilizer depots of small volume and high NH4+ 

concentration in the soil. The CULTAN method primarily aims at a more beneficial nutrition of 

plants using NH4+-N as the dominant nitrogen form (Sommer 2005). The fertilization strategy is 

assumed to result in a more efficient N assimilation within the plant: Whereas NH4+ assimilation 

occurs mostly in the roots directly after uptake, NO3- needs to be reduced prior to assimilation, 

which is requiring more energy than NH4+ assimilation. Negative effects of pure ammonium 

nutrition, such as potassium antagonism, are assumed to be negligible, since fertilizer depots are 

confined to a small part of the soil, leaving the remaining space for uptake of other nutrients 

(Sommer 2005).  

Higher grain yields and higher N uptake have indeed been observed after NH4+ injection compared 

to broadcast NO3- fertilization in pot experiments with barley (Schittenhelm & Menge-Hartmann 

2006), however, similar yields on winter wheat, barley and oilseed rape fields have been reported 

comparing CULTAN with conventional fertilization by surface application (Flisch et al. 2013; 

Kozlovsky et al. 2010; Peklova et al. 2012; Sedlář et al. 2011). Higher yields from point-injected 

urea ammonium sulfate than from surface applied fertilizers have been observed on winter wheat 

fields in a study by Weber et al. (2008). 

The long-term nutrition of plants with ammonium in CULTAN treatments is assumed to be ensured 

by high concentrations of ammonium that inhibit nitrification (Harada & Kai 1968; Petersen et al. 

2004; Wetselaar et al. 1972). Due to inhibition of nitrification and thus slower build-up of nitrate 

and due to the high concentration of root-tips in the proximity to nitrate formation at the margins 

of NH4
+ depots, it has been suggested that nitrate leaching could be reduced by ammonium fertilizer 

placement (Passioura & Wetselaar 1972; Petersen et al. 2004). Analogously, CULTAN fertilization 

might help to reduce both nitrification- and denitrification- derived N2O emission.  
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Earlier studies that report N2O emissions after fertilizer injection have often used urea or nitrate 

containing fertilizer or even organic fertilizers. Band injection of ammonium sulfate nitrate 

resulted in reduced nitrification rates but not in lower N2O emission on an annual scale in vegetable 

production (Pfab et al. 2012), and both urea-ammonium nitrate and poultry litter banding 

increased N2O emissions in corn fields (Smith et al. 2012). Subsurface-banding of urea has often 

increased N2O emission in the growing period as compared to broadcast application (e.g. Cheng et 

al. 2002; Engel et al. 2010; Maharjan & Venterea 2013), likely because of higher NO2
- accumulation 

(Maharjan & Venterea 2013). Organic fertilizers (e.g. animal manure) do not contain  suitable 

concentrations of ammonium to build highly concentrated depots, and they add a substantial C 

source that might promote denitrification and thus N2O emission (Kaiser & Ruser 2000). We are 

not aware of studies that report on N2O fluxes measured over whole years after point injection of 

pure ammonium fertilizer according to the CULTAN method.  

To investigate the effect of CULTAN fertilization with ammonium sulfate on N2O fluxes, we 

conducted field experiments at two sites differing in soil texture: a loam and a sandy loam site, both 

planted with winter wheat. N2O fluxes from broadcast surface application and point-injected 

ammonium sulfate (CULTAN) fertilized plots were measured over a two years period. As after 

fertilizer placement in depots only a small portion of the soil is in contact with the fertilizer N, we 

used 15N tracing to distinguish between N2O originating directly from the turnover of 15N labeled 

fertilizer-N from CULTAN depots and N2O from turnover of soil N.  

We hypothesized that inhibition of nitrification in fertilizer depots of CULTAN treated plots would 

lead to a) lower built-up of NO3- in soil, b) lower total and fertilization-induced N2O emission, and 

c) lower yield related N2O emission compared to broadcast surface application at both sites. We 

further hypothesized that soil moisture and N2O emission activity would be higher in the loamy 

than in the sandy soil and that the expected N2O mitigating effect of point NH4+ injection (CULTAN) 

would be larger in the loamy soil. 

 Materials and methods 

5.3.1. Field sites and management  

Both field sites are located near Braunschweig in Lower Saxony, Germany (loam site: 52°12’N 

10°36’E, sandy loam site: 52°18’N 10°26’E), and were managed according to local farm practice 

except for fertilization. The main soil properties of the two sites are summarized in Table 5-1. The 

mean annual temperature is 9.1°C, with an annual precipitation of 617 mm (German climate 

service, nearby weather station Braunschweig). Whenever possible and reasonable, management 

was performed at the same or subsequent days at both sites. Winter wheat was sawn in fall 2010 

and 2011 at both sites and at the sandy loam site in 2012; at the loam soil, barley was sawn in fall 

2012. Plants were harvested the last week of July or the first week of August in both years. The 

sandy loam site was ploughed (to a depth of 30cm) after harvest and a field cultivator was used 

approx. 5 and 10 weeks later; tillage at the loam site was performed only once in late September. 

The sandy loam site is commonly irrigated during the growing season and irrigation was performed 

in both years (2011 and 2012). In May/June 2011 a total of 45 mm irrigation water was applied via 

a sprinkler irrigation gun (split in two applications), higher amounts of water were supplied in May 

2012 (three applications of 30 mm each) to achieve wetter conditions after fertilization and to 

increase N uptake rates.  
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Table 5-1: Soil properties in 0- 30cm soil depth (means ± standard deviation) of the two experimental 
sites 

site soil type clay 
% 

silt 
% 

sand 
% 

bulk density pH  
(CaCl2) 

Ctot 

g kg-1 
 

Ntot 

g kg-1 
 

sandy loam 

 

haplic Luvisol 9* 23* 68* 1.51 ± 0.07 

 

5.9 ± 0.3 11 ± 1 1.0 ± 0.1 

loam  

 

stagnic Luvisol 26 ± 2 41 ± 1 33 ± 2 1.49 ± 0.11 

 

7.3 ± 0.0 13 ± 1 1.2 ± 0.1 

*source of soil texture for the sandy loam site: (Sauerbeck 2005) 

 

5.3.2. Fertilization treatments 

The following fertilization treatments were established with three replicates in spring 2011 at both 

experimental sites: point-injection of NH4+-N (CULTAN), surface application of NH4+-N, and no 

fertilizer application (control).  Ammonium sulfate ((NH4)2SO4) solution (100 g NH4
+-N L-1) was 

used as nitrogen fertilizer. Fertilizer was either applied by injection (CULTAN method: single 

application, 130 kg N ha-1) or as split application by spraying (60, 30, 40 kg N ha-1) at intervals of 6 

and 4 weeks in 2011 and 3 weeks in 2012, respectively. Unfertilized plots served as control. As at 

the sandy loam site a long-term experiment has been established in 2004, unfertilized plots had 

not received any N fertilizer for 7 years in 2011. The injection was conducted using a 3 m spoke 

wheel fluid fertilizer injector (distance between depots was 17 cm in line and 25 cm perpendicular 

to crop rows, and approx. 5.5 ml were applied per depot). For spraying, a commercial field sprayer 

was used. At the sandy loam site, one plot of the CULTAN and the surface application treatment 

each was fertilized with 15N-enriched (NH4)2SO4 (target enrichment: 5 at%15N) to enable the 

determination of fertilizer-derived N2O fluxes. The 15N-fertilizer-solution was prepared from 

(15NH4)2SO4 and deionized water to a concentration of 100 g N L-1, equivalent to the concentration 

in the commercial N fertilizer. Fertilization at 15N plots was performed at the same day as on the 

other plots; tanks and hoses of the fertilizer application devices were rinsed with water before 

filling with the 15N labeled fertilizer solution.  

Samples of 15N labeled fertilizer solution were taken from the tank of the fertilizer distributors after 

fertilizer application to check N concentration and 15N label. The analyses revealed that there were 

severe problems with dilution of the 15N tracer solution by residual water and nitrogen which was 

not completely removed from the tubing system of the application devices by our rinsing 

procedure. In consequence, the 15N treated plot of each treatment unfortunately received N 

amounts differing from their unlabeled equivalents and results cannot be compared. This 

shortcoming was taken into account when analyzing our data. At the sandy loam site, only the two 

non-labeled replicated plots per fertilized treatment received an identical amount of fertilizer and 

could be used for statistical analysis. Consequently, we could not analyze the impact of application 

methods on total fluxes per year and per site with ANOVA of cumulated fluxes. Instead, we 

combined both sites and analyzed the time series of fluxes with regression analysis.  

Emission of N2O from the fertilizer N pool was calculated from labeled fertilizer at the CULTAN 

treated plots of the sandy loam site. Here, we had three chambers on the labeled plot that received 

the target fertilization rate of 130 kg N ha-1 in 2011, whereas the rate was only 90 kg N ha-1 in 2012. 

Actual 15N abundance of applied fertilizer was 2.88 at%15N in 2011 and 4.25 at%15N in 2012. 

Results from the plot with surface application of 15N labeled fertilizer were excluded. 
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5.3.3. Mineral soil N 

Soil samples (0-10 cm and 10-30 cm soil depth) were taken in weekly to biweekly intervals from 

March 2011 to March 2013 to determine dynamics of mineral nitrogen. Soil mineral nitrogen (Nmin 

= NO3-N + NH4-N) was measured photometrically (continuous flow autoanalyzer SKALAR; DIN ISO 

14255) in soil sample extracts (200 ml 1 M KCl, 50 g field fresh soil, shaken for 1 h, MN614 ¼ filters, 

Macherey & Nagel, Düren, Germany). At CULTAN plots, soil was sampled separately at injection 

spots (3 depth segments of 5 cm with a radius of 3.5 cm and an outer segment with a radius of 8 cm 

and 15 cm depths around the injection channel) and between injection spots to calculate area based 

N contents. Total sample material was used for Nmin extraction of the 3 inner depot samples (approx. 

500 g wet soil and 600 ml KCl solution).  

5.3.4. Gas fluxes 

Fluxes of N2O and CO2 at the soil surface were measured with closed chambers, generally at weekly 

intervals, but with higher frequency after fertilization and with some larger intervals due to field 

management especially in fall/winter 2012. Both chambers and chamber bases consisted of white 

PVC. Chambers were 30 cm high and covered 64 x 48 cm of the soil surface. These dimensions were 

chosen to include 8 injection spots each at the CULTAN plots, so that the ratio of injection spots to 

unfertilized soil within the area covered by the chamber was identical to the total plot. Chamber 

bases were permanently installed approx. 10 cm deep into the soil and only removed for 

fertilization, harvest and tillage. The chambers were ventilated with small fans to ensure complete 

mixing of the gas phase even with plants in the chamber. Vent tubes permitted equilibration of air 

pressure. At times when wheat plants were too high to be enclosed in the 30 cm high chamber, 

extensions of the same dimensions as the chambers were installed between chamber bases and 

chambers. Four air samples of chamber atmosphere were taken after chamber closure over a time 

period of 60 minutes, which was extended to 120 minutes during low-flux conditions, in 50 ml 

evacuated glass bottles equipped with Teflon stop-cocks. With each flux measurement, soil and 

chamber temperature were measured. Additionally, at the sandy loam site, gas samples were taken 

in 100 ml crimp vials with butyl septa for 15N analyses in N2O. 

For analysis of CO2 and N2O concentration in gas samples, a gas chromatograph (GC 2014, 

Shimadzu, Duisburg, Germany) equipped with an automated rack and an 63Ni electron-capture 

detector was used (Loftfield et al. 1997). The GC was calibrated for each sample run with 4 

standards ranging from 1 to 10 times ambient concentration. The performance of the GC system 

was checked weekly by measuring a standard of ambient concentration 10 times consecutively. 

The peak area’s coefficient of variation was always better than 3%. 

Gas fluxes were calculated in R (version 3.0.2, R Core Team 2013) with an automated procedure 

using either linear regression, robust linear regression with a Huber-M estimator or the 

Hutchinson-Mosier non-linear function as implemented in the HMR package (HMR, Pedersen et al. 

2010). The flux calculation used for further calculation and modeling was chosen as described by 

Leiber-Sauheitl et al. (2014) according to the following criteria: robust linear regression was used 

as default; HMR was only used if it could be fitted, had a smaller Akaike’s Information Criterion 

(AIC, Burnham & Anderson 2004) and a lower p-value than that calculated for the linear flux and 

was not more than 4 times the robust regression flux. If only three data points for a flux 

measurement were available, linear regression was used. CO2 concentrations were used to control 

flux measurements – N2O fluxes were removed from the dataset when no increase in CO2 was 

measureable, unless soil was snow-covered. The median of the resulting N2O fluxes’ standard 
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errors was 2.16 µg N m-2 h-1 and 95% of the fluxes had a standard error smaller than 7.35 

µg N m-2 h-1. Cumulated fluxes per year were calculated based on linear interpolation between 

measurement dates. 

5.3.5. Isotope analyses   

Gas samples taken at the end of flux measurements were analyzed for 15N content of N2O by isotope 

ratio mass spectrometry (IRMS) as described previously (Brand 1995; Lewicka-Szczebak et al. 

2014). Briefly, a pre-concentrator and gas chromatograph (PreCon+ Trace GC Isolink, 

ThermoFinnigan, Bremen, Germany) were connected to a Delta V isotope ratio mass spectrometer 

(Thermo Fisher Scientific, Bremen, Germany) where N2O was pre-concentrated, separated, purified 

and analyzed for m/z 44, 45 and 46 of intact N2O molecules. Analytical precision, determined as the 

standard deviation of internal standards, was typically 3.7∙ 10-5 at%15N. 

Fertilizer-derived emissions were then calculated with Equation 5-1. 
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  Equation 5-1 

 

with: 

nfertilizer =  amount of fertilizer-derived N2O, 

nmix =   amount of N2O in the chamber at the end of a flux measurement,  

nair =   amount of air N2O at the start of the flux measurement,  

at%15Nmix =  15N content in chamber atmosphere at the end of the measurement,  

at%15Nair =  15N content in air measured above the field site.  

at%15Nsoil =  15N content in soil-derived mineral N (0.3627 at%15N), calculated as the mean of 

values derived from flux measurement at unfertilized plots.  

 

The 15N content in plant biomass was measured after grinding of dried samples. Samples were 

transferred to zinc capsules and then analyzed for at%15N using an elemental analyzer coupled to 

a Delta Plus IRMS (ThermoFinnigan, Bremen, Germany). 

5.3.6. Statistical analyses 

Statistical analyses were performed with R (version 3.0.2, R Core Team 2013). Both single and 

cumulative fluxes of N2O were log-transformed before further analysis, as residual plots showed 

strong deviation from normal distribution when untransformed flux rates were used. An offset of 

20 µg N m-2 h-1 was added to N2O fluxes for transformation. Thus, negative fluxes were kept in the 

dataset, except for the 2 most negative fluxes measured, assuming they mainly represent 

fluctuation around zero due to measurement uncertainty. To test for significant treatment and site 

effects on cumulated fluxes, WFPS and Nmin, linear mixed effects models were analyzed using the 

nlme (Pinheiro et al. 2013) package in R. The recommendations in Zuur et al. (2009) were followed 

to develop appropriate model structures. A random intercept grouped by chamber was included in 

all models to account for the experimental setup. Pairwise comparisons of cumulated fluxes were 

performed with post-hoc tests using the multcomp package (Hothorn et al. 2008) in R.  
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To test for the impact of measured environmental parameters on N2O fluxes, a generalized additive 

mixed model (gamm) was applied on log-transformed N2O fluxes using the mgcv (Wood 2006) 

package. The model relates N2O fluxes to a linear combination of predictor variables, which are 

estimates from parametric or smoother functions of explaining parameters. The degree of 

smoothing is estimated during fitting with a penalized maximum likelihood approach. Parameters 

used were NO3
- and NH4

+ content in 0- 30 cm soil depth, the WFPS in 10-30 cm soil depth and the 

CO2 flux as a proxy for microbial activity. As Nmin samples were not always taken at the days of flux 

measurements, values were linearly interpolated between measurement dates for statistical 

analyses. Missing values (7 of 675 at the loam site) were filled with the average of the 2 available 

replicates of the respective treatment and date. Including WFPS in 0-10 cm soil depth or soil 

temperature did not improve the model fit. Treatment and site were included to analyze whether 

the impact of environmental parameters differed according to fertilizer application or soil types.  

 Results 

5.4.1. Precipitation, WFPS and soil temperature 

Rainfall pattern was similar at both sites (Figure 5-1 and 5-2), with relatively dry conditions in 

spring and early summer in both years. Precipitation was 518 mm from the first fertilization in 

2011 to March 2012 and 549 mm between March 2012 and March 2013 at the sandy loam site. 

640 mm were precipitated at the loam site between March 2011 and March 2012 and 616 mm from 

March 2012 until March 2013.  

Water content in soil followed a seasonal pattern, with lowest water contents in May, June and 

September, and highest in winter (Figure 5-1 and 5-2). Mean WFPS at the loam site ranged from 

29% to 100% (mean = 58%) in 0-10 cm depth and from 29% to 87% (mean: 68%) in 10-30 cm 

depth. At the sandy loam site, mean WFPS was in the range of 10% to 86% in the upper 10 cm 

(mean: 50% WFPS) and between 13% and 69% in 10-30 cm depth (mean: 48% WFPS). In 10-30 cm 

depth, there was a trend to lower WFPS in the fertilized than unfertilized plots, most distinctively 

so in May 2011 and July 2012 at the sandy loam site. There was no significant difference of soil 

WFPS between treatments with point injection (CULTAN) and surface application of fertilizer. 

Soil temperature at both sites showed a typical seasonal pattern with highest values of 25 to 30 °C 

in summer 2011 at the sandy loam site and about 23°C at the loam site (Figure 5-1 and 5-2). Soil 

frost occurred at several dates in winter; in December 2011 and in February/March of both 2012 

and 2013. Differences between treatments are small and fall in the range of standard deviations; 

however, during summer, temperatures at unfertilized control plots trended to be slightly higher 

at the sandy loam site.  
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Figure 5-1: Dates of management (a), temperatures and precipitation (b), water filled pore space 
(WFPS) (c and d) and Nmin content (e and f, 0-30 cm) at the loam site during the experiment. 
Management dates were the same at all plots. Fertilization dates are marked with pink (surface application) 
and green (CULTAN) lines. Pink stars at the ammonium plot denote dates when single samples were removed 
as outliers. 
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Figure 5-2: Dates of management (a), temperatures and precipitation/irrigation (b), water filled pore 
space (WFPS) (c and d) and Nmin content (e and f, 0-30 cm) at the sandy loam site during the 
experiment. Management dates were the same for all plots. Fertilization dates and soil properties are shown 
for the three fertilization treatments. Values of the unfertilized control represent means with standard 
deviation (n=3). For the fertilized treatments in results of the 2 non-labeled replicates per treatment were 
shown. 
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5.4.2. Ammonium and nitrate dynamics 

Within two weeks after fertilizer injection at the CULTAN treatment, 73 ± 27 kg NH4+-N ha-1 (2011) 

and 147 ± 52 kg NH4+-N ha-1 (2012) were measured at the loam site, and 76-130 kg NH4+-N ha-1 

(2011) and 112-125 kg N ha-1 (2012) at the sandy loam site, respectively (Figure 5-1 and 5-2). The 

NH4
+ content strongly decreased within one month, and depots were completely depleted in NH4

+ 

at the end of May in both years at the sandy loam, and in 2012 at the loam site. The decline was 

slower at the loam site in 2011, with complete depletion of depots at the end of June. At the surface 

application treatment, NH4+ content was more variable during the growing season, which can be 

attributed to split application with three fertilization dates. After fertilization events, mean values 

of up to 120 kg N ha-1 (loam) and 170 kg N ha-1 (sandy loam) in 2011 and 240 kg N ha-1 (both sites) 

in 2012 were measured. These unexpectedly high NH4+ contents are attributed to sampling artifacts 

and inhomogeneous distribution of fertilizer applied on top of the plant stand. From June (sandy 

loam) and July (loam) until fertilization in the following spring, NH4+ contents remained below 10 

kg N ha-1. Soil ammonium contents were generally low (< 10 kg NH4
+-N ha-1 in 98% of the sampling 

dates) in the unfertilized control treatments. Despite higher temporal variability at the surface 

application plots, dynamics of mean soil NH4+ did not differ strongly from CULTAN plots. After 

fertilizer injection at CULTAN treatments, however, NH4+ content was much higher within the 8.5 

cm radius sampled separately, than between depots (data not shown). While after surface 

application the NH4+ concentration in soil was at most 180 µg NH4+-N g-1 soil, the highest NH4+ 

concentration in samples from CULTAN depots was 2000 µg NH4+ g-1 soil. The spatial distribution 

of fertilizer within soil was thus different between treatments.  

Temporal dynamics of soil NO3- content showed a similar pattern in all treatments (Figure 5-1 and 

5-2). Periods of NO3- accumulation occurred in early spring until mid-March in both years, followed 

by low NO3- contents during the growing period. After harvest, soil nitrate contents increased again 

and highest values were reached in autumn 2012 in all treatments. Nitrate contents in 0-30 cm 

decreased during periods of precipitation events in September and November 2011 and they 

generally declined over winter. Fertilized plots showed a similar seasonal pattern as unfertilized 

plots, with the exception of NO3- accumulation after fertilization. Accumulation of soil NO3- in the 

CULTAN treatments occurred already in the first two weeks after NH4+ injection. Since fertilizer 

injection at CULTAN plots lagged two weeks behind the first surface application at the sandy loam 

site (both years) and in 2011 at the loam site, the accumulation of NO3
- started later at CULTAN 

plots. Peaks in NO3- content occurred 2-6 weeks after fertilizer injection, corresponding to the 

decrease in NH4+ contents.  

At CULTAN plots of the sandy loam site, mean NO3- content was smaller than at the loam site, with 

8.5 ± 2.5 kg NO3
--N ha-1 measured in April 2011 and 13 kg NO3

--N ha-1 in March and May 2012. At 

the loam site, the variability was high during the growing season 2011, with values of 26 ± 7 kg N 

ha-1 two weeks after injection without a clear decrease in the following weeks. In 2012, by contrast, 

NO3- content steadily declined from 35 ± 2 kg N ha-1 two weeks after fertilization to 2.1 ± 1.8 kg N 

ha-1 in late July. Nitrate dynamics differed between sites insofar as NO3- accumulation at the sandy 

loam site was lower during the growing season but higher in fall compared to the loam site (Figure 

5-1 and 5-2). Mean NO3- contents were not significantly lower after point injection (CULTAN 

treatment) than surface application, except for the 2 weeks that lay between the first surface 

application and CULTAN fertilization. However, as for NH4
+ contents, soil NO3

- was very 

heterogeneously distributed in the CULTAN treatment. While NO3- content was low between 

depots, NO3- concentrations of up to 180 µg NO3- N g-1 soil were measured in depots, compared to 

at most 30 µg NO3
- N g-1 soil in single samples after surface application.  
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5.4.3. N2O emission rates 

Mean emission rates of N2O from the analyzed treatments were 12.2 ± 23.0 (median 5.0) 

µg N m-2 h-1, 10.2 ± 15.8 (median 5.6) µg N m-2 h-1 and 5.7 ± 9.8 (median 3.1) µg N m-2 h-1 in the 

CULTAN, surface application and unfertilized treatments, respectively. The majority of fluxes were 

calculated by robust linear regression, and only 6% (sandy loam) and 15% (loam) were calculated 

with the HMR procedure. Most fluxes measured (90% at the sandy loam site and 95% at loam site) 

were below 30 µg N m-2 h-1. Higher fluxes occurred mostly during freeze-thawing events (stronger 

in February/March 2012 than in 2011), after fertilization (stronger in the wetter season 2012 than 

in 2011) and after tillage in fall. The 5-10% of all fluxes that were >30 µg N m-2 h-1 accounted for 

> 40% (sandy loam) and > 60% (loam) of total annual emissions.  

At the sandy loam site, highest N2O emission rates occurred in all treatments in February/March 

2012 after thawing (Figure 5-3). Besides this peak, emission from unfertilized plots was low 

throughout the experiment. At fertilized plots, elevated fluxes were measured after the first (60 kg 

N) and third (40 kg N) fertilizer application of surface application plots in both years, directly after 

injection at CULTAN plots in 2011, and following harvest and tillage at both fertilid treatments. 

These peaks were small (<40 µg N m-2 h-1), however, in comparison to the thaw peak in 2012. 

Emission peaks at the sandy loam site were higher in 2012 than in 2011 at both CULTAN and 

surface application plots. N2O emission was increased at the surface application plots from the first 

application in 2012, with a further increase after irrigation in May. On the contrary, CULTAN plots 

exhibited no increase directly after injection in 2012, but a sharp peak after the first irrigation, 

which occurred 7 weeks after fertilization. Emissions reverted to background level at the CULTAN 

plots shortly after this peak.  

At the loam site, N2O emission exhibited much higher variability, especially at CULTAN plots. 

Emissions attributable to freeze-thawing events were much smaller compared to the sandy loam 

site (Figure 5-3 and 5-4). Peak fluxes occurred at CULTAN and surface application plots after the 

respective fertilization in both years, and in fall 2011 after tillage. Higher fluxes from CULTAN than 

surface application plots were measured especially in spring 2012 within 5 weeks after 

fertilization.  

Cumulated emission rates per plot and site (Figure 5-5) were between 0.26 kg N ha-1 yr-1 (at control 

plots 2012) and 1.9 kg N ha-1 yr-1 (at CULTAN plots 2011). There was no significant effect of 

experimental year, and after considering the AIC, it was removed from the statistical model. Annual 

emissions of both years were then treated as replicates in the model, thus allowing pair-wise 

comparisons within treatments and sites. Both treatment and site significantly affected annual N2O 

emission, with higher emissions from fertilized than unfertilized plots and from the loam than the 

sandy loam site. Pair-wise comparisons revealed significant differences between CULTAN and 

control plots at the loam site (p<0.01) and between surface application and control plots at the 

sandy loam site (p < 0.05) (Table 5-2). The difference between sites within the CULTAN treatment 

was not significant (p=0.055), despite twice as high mean emissions from CULTAN at the loam site. 

On both sites, there was no effect of the fertilizer application technique (surface application versus 

injection) on the annual emission of N2O.  
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Figure 5-3: N2O emission rates at the sandy loam site over time at a) unfertilized control plots, b) 
surface application of NH4+ plots, and c) NH4+ injection (CULTAN) plots. Values are mean fluxes with 
standard deviation (n=3) for the unfertilized plots in a. For the fertilized treatments in b) and c) single flux 
measurements of the 2 non-labeled replicates per treatment were shown. Management dates, as marked 
above a) with blue (irrigation), black (harvest) and grey lines (tillage), and days with soil temperature below 
zero (5 – 10 cm depth, stars), were the same at all plots. Fertilization dates are marked with colored lines 
above b) and c). 
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Figure 5-4: N2O flux rates at the loam site at a) unfertilized control plots, b) surface application of 
NH4+ plots, and c) NH4+ injection (CULTAN) plots. Values and error bars show mean fluxes (n=3) with 
standard deviation. Management dates, as marked above a) with black (harvest) and grey lines (tillage), and 
days with soil temperature below zero (measured in 5-10cm depth, stars), were the same at all plots. 
Fertilization dates are marked with colored lines above b) and c). 
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Table 5-2: Mean annual fluxes of fertilization treatments at the loam and the sandy loam site. Groups 
sharing the same letter are not significantly different. Only plots without 15N labeling were included (n=4 for 
surface application and CULTAN at the sandy loam site, n=6 for all other treatments). As fluxed did not differ 
significantly between years, both years were pooled 

treatment kg N2O-N ha-1 

Sandy loam  Loam Sandy loam 

 A 
 

B 

Control                                         A 0.55 ± 0.28 ab 0.36 ± 0.09 a 

Surface application of NH4+    B 0.82 ± 0.31 bc 0.77 ± 0.07 bc 

Injection of NH4+ (CULTAN)  B 1.22 ± 0.47 c 0.56 ± 0.02 ac 

 

The contribution of fertilizer-induced emission to total annual emission was calculated from the 

increase in N2O flux at the fertilized in comparison to the unfertilized treatment ((N2Ofertilized – 

N2Ounfertilized)/N2Ofertilized). At the sandy loam site, 25% and 46% of total annual emission of the 

CULTAN treatment and 45% and 61% of the surface application treatment were attributed to 

fertilization in 2011 and 2012, respectively. At the loam site, fertilizer-induced N2O emissions 

amounted to 49% ± 26% and 59% ± 12% at CULTAN and 7% ± 22% and 51% ± 11% at surface 

application treatment in 2011 and 2012, respectively. 

Emission factors of fertilization were calculated by relating these emissions to the applied amount 

of N fertilizer ((N2Ofertilized – N2Ounfertilized)/Napplied; Bouwman (1996)). They amount to between 0.03 

and 0.54% of the applied fertilizer N (Table 5-3). Without subtraction of background emissions 

from unfertilized plots, as calculated by Jungkunst et al. (2006) for N2O emission studies in 

Germany, emission factor would range from 0.3% to 1.4% of applied fertilizer.  

5.4.4. Dependence of N2O fluxes on explaining variables 

The applied gamm (model output see supplementary material) explains 23% of the variance in log-

scaled N2O fluxes. It shows highly significant effects of treatment (p < 10-4) and site (p < 10-14), with 

higher fluxes from fertilized than unfertilized plots. The model did not identify significant 

difference between fertilizer application methods. If differences between treatments existed, they 

were explained by the predictor variables included in the model. The interaction between WFPS 

and NH4+ content in soil affects N2O fluxes (p < 10-9) in all treatments, with highest emission rates 

at WFPS of approx. 80% and NH4
+ content of 100 kg N ha-1 and relatively lower fluxes at drier 

conditions and lower NH4
+ content. At unfertilized plots the interaction between WFPS and NH4

+ 

represents mainly an increase in N2O fluxes with increasing WFPS at low NH4+ contents. High NH4+ 

contents at these plots were rare and resulted in mean (log-scaled) N2O fluxes regardless of 

moisture conditions. The relationship of log-scaled N2O fluxes with NO3- is weaker than the impact 

of WFPS and NH4+ but still highly significant (p < 10-7). CO2 was included in the model as a proxy of 

plant and microbial activity and the model indicates an increase in N2O fluxes with increasing CO2 

at low values that levels off at increasing CO2 fluxes.  
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5.4.5. Grain Yields, N use efficiency and N content in aboveground biomass 

Grain yields at the fertilized plots were 28% - 300% (surface application) and 28% - 440% 

(CULTAN) higher compared to unfertilized plots. Yields were higher at the loam than the sandy 

loam site. Highest yields were found at the CULTAN plots and the difference between CULTAN and 

surface application was significant at the loam soil in 2011 and at the sandy loam soil in 2012, 

respectively (Table 5-3). The amount of N in the aboveground biomass measured at harvest was 

approx. 30 kg N ha-1 (sandy loam) and 55 kg N ha-1 (loam) in unfertilized treatments, and amounted 

to 100–120 kg N ha-1 (sandy loam) and 90-170 kg N ha-1 (loam) in fertilized treatments. The N use 

efficiency (calculated as the difference in aboveground N content in plants at harvest between 

fertilized and unfertilized plots, divided by the amount of fertilizer N applied) showed a range of 

26% - 89% after surface application and 51% - 75% after CULTAN (Table 5-3), without consistent 

pattern.  

Grain yield-scaled emissions calculated as the ratio of annual N2O-N emission to dry weight grain 

yield accounted to between 8.8 and 29.6 g N2O-N dt-1 d.w.-1 biomass, with a higher variation at the 

sandy loam site (Table 5-3). Grain yield-scaled N2O emissions did not differ significantly between 

fertilizer application methods, but there was a tendency towards higher grain yield scaled N2O 

emission from unfertilized than fertilized plots at the sandy loam site where also yields were much 

higher with than without fertilization. 

 

 

 

 

Figure 5-5: Cumulative N2O emission at the loam (grey) and sandy loam sites (black/white) 

in 2011 (left) and 2012 (right). Each bar represents cumulative fluxes of one plot. Cumulative 

emissions from the 15N labeled CULTAN plots are represented by hatched bars. The N application 

rate was 130 kg N ha-1 yr-1 except for the 15N CULTAN plots in 2012 where 90 kg N ha-1 yr-1 were 

applied. 
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Table 5-3: N2O emission factors and yield scaled emissions. Emission factors are calculated as the difference in N2O emission between fertilized and unfertilized plots, divided by the 
amount of fertilizer N applied. N uptake is the amount of N in aboveground plant biomass (grains and straw) at harvest. Nitrogen use efficiency (NUE) was calculated as the difference in N 
uptake between fertilized and non-fertilized plots in relation to the total amount of fertilizer N applied. Values given are means ± 1 standard deviation. Values marked with *were derived 
from fluxes of two chambers only instead of three; n=3 for all other values. 

 treatment emission factor  grain yield  grain yield scaled emission  N uptake  NUE 

 
 %   dt d.w. ha-1  g N2O-N dt-1   kg N ha-1  % 

  2011 2012  2011 2012  2011 2012  2011 2012  2011 2012 

Loam site               
 unfertilized    34.7 ± 3.4 bc 42.1 ± 5.5 bc  16.8 ±   3.0 11.7 ± 2.3    54.1 ±   5.3 ab   55.3 ±   6.5 ab    
 Surface application 0.03 ± 0.20 0.40 ± 0.12  44.3 ± 10.6 bc 70.6 ± 4.9 de  14.1 ±   2.3 14.3 ± 0.8    87.3 ± 23.1 bc 170.5 ± 22.7 e  26 ± 18 89 ± 18 
 CULTAN 0.43 ± 0.58 0.54 ± 0.20  61.2 ±   8.3 d 73.2 ± 2.5 e  18.7 ±   4.2 16.3 ± 1.2  120.9 ± 26.6 cd 145.7 ± 30.2 de  51 ± 21 70 ± 23 
                
Sandy loam site               
 unfertilized    13.8 ± 6.3 a 11.7 ± 1.1 a  29.6 ±   5.2 26.4 ± 1.0     31.3 ±   6.2 a    24.8 ± 2.8 a    
 Surface application 0.22 * 0.37 *  33.9 ± 6.4 b 48.6 ± 5.6 c  22.4 * 15.7 *  110.6 ± 17.8 cd    98.3 ± 8.5 bc  61 ± 14 57 ± 7 
 CULTAN 0.10 * 0.18 *  42.0 ± 3.8 bc 63.4 ± 3.4 de  12.4 *   8.8 *  116.9 ± 15.4 cd  122.5 ± 8.5 cd  70 ±  7 75 ± 7 
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5.4.6. 15N fertilizer-derived N in N2O fluxes and plant biomass  

With the 15N tracer technique, we were able to calculate the percentage of N2O fluxes originating 

directly from the applied fertilizer N. The share of these fertilizer-derived fluxes to total N2O fluxes 

varied over time (Figure 5-6). During the first weeks after fertilization, 3% - 36% of the N2O emitted 

from CULTAN plots were derived from fertilizer N in 2011; values were lower afterwards, with a 

maximum of fertilizer N on total fluxes of 3% in August. Despite lower fertilizer N addition to the 
15N labeled plot in 2012 than in 2011 (i.e. 130 kg N ha-1 in 2011 and 90 kg N ha-1 in 2012), fertilizer-

derived fluxes were higher in 2012; 12% - 60% of total N2O flux was derived from fertilizer after 

fertilization until May 2012. Again, the share of fertilizer N on total N2O fluxes was lower after 

harvest, with 1% - 10% of fluxes at single dates from August 2012 to February 2013.  

On an annual base, the fertilizer-derived fluxes (i.e. calculated from the 15N signature of added NH4+ 

and emitted N2O) accounted for only 1.16% ± 0.57% of total cumulated N2O fluxes at the CULTAN 

plot in 2011. This percentage is equal to a fertilizer-derived emission of 0.006 kg N2O-N ha-1 yr-1 

and represents 0.005% of the total amount of fertilizer N added. In 2012, 0.5% of the N2O emissions 

from this plot were still derived from fertilizer applied in 2011. The CULTAN plot that was fertilized 

with 15N labeled fertilizer in 2012 received only 90 kg N ha-1 and results can thus not directly be 

compared. In 2012 17.0% ± 2.5% of the total N2O emission of 0.47 kg N2O-N ha-1 emitted from the 

CULTAN plot originated directly from the labeled fertilizer N. This percentage is equal to a 

fertilizer-derived emission of 0.09 kg N2O-N ha-1 yr-1 and represents 0.1% of the total amount of 

fertilizer N added. 

The fertilizer-induced N2O emission calculated from the difference in annual emission between the 
15N CULTAN plot and unfertilized plots was much higher, with 21% ± 14% of the total annual 

emission in 2011 and 43% ± 10% in 2012.  

The contribution of fertilizer N to N uptake into aboveground crop biomass was calculated from 

the 15N abundance in straw and grain nitrogen at harvest. The 15N abundance in grains was 1.0 ± 

0.03 at%15N in 2011 and 2.2 ± 0.03 at%15N in 2012. In straw the 15N abundance was slightly lower 

(0.6 ± 0.01 at%15N in 2011 and 2.1 ± 0.03 at%15N in 2012, respectively). Considering the 15N 

enrichment of the applied fertilizer (2.88 at%15N in 2011 and 4.25 at%15N in 2012), the 

contribution of fertilizer N to total aboveground crop N was 35% (i.e. 40 kg N of the total biomass 

N of 115 kg N ha-1) in 2011 and 52% (i.e. 46 kg N of the total biomass N of 89 kg N ha-1) in 2012. 

Recovery of fertilizer N in aboveground plant biomass was 31% and 51% of the applied 15N 

fertilizer, respectively. 
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Figure 5-6: Total and fertilizer-derived N2O emission rates  after NH4+ injection (CULTAN) at the sandy 
loam site (upper figures of each year) and percentage of fertilizer-derived fluxes on total N2O fluxes 
(lower figure of each year). Fertilizer-derived fluxes were calculated from at%15N in gas samples of flux 
measurements and the 15N signature of the applied NH4+-N. Note the logarithmic scale of N2O fluxes.  
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 Discussion 

This study presents the first year-round measurements of N2O fluxes after real CULTAN 

fertilization (NH4
+ point injection) in comparison to broadcast application of the same fertilizer 

(ammonium sulfate). Earlier studies showed the inhibiting effect of ammonium sulfate banding on 

nitrification (Petersen et al. 2004) without measured N2O fluxes, or the impact of fertilizer injection 

or banding on N2O emission, but with fertilizers containing nitrate or urea (Maharjan & Venterea 

2013; Pfab et al. 2012; Smith et al. 2012). 

Emissions from the two unfertilized treatments were relatively, but not particularly, low when 

compared to background emissions from cropland soils (1.1 ± 1.6 kg N2O-N ha-1 yr-1, median: 

0.6 kg N ha-1 yr-1) summarized by Kim et al. (2013). Emissions from fertilized plots and emission 

factors are also in the lower range of emissions summarized by Jungkunst et al. (2006) for cropland 

soils in Germany, even compared to measurements at similar clay, C or N contents,  and well in the 

range of N2O fluxes measured worldwide (supporting information in Shcherbak et al. 2014). 

5.5.1. Environmental controls of N2O emission 

N2O emission from soils to the atmosphere depends mainly on the availability of substrates of N2O 

forming processes and environmental conditions controlling their transformation rates. Under 

aerobic conditions, nitrification is the main source of N2O, depending on NH4+ as substrate. When 

O2 availability decreases because of increasing O2 consumption and/or decreasing gas diffusion 

rates, other processes come into effect. Some nitrifiers can use the nitrite (NO2-) produced from 

ammonium oxidation as an electron acceptor and reduce it to NO and N2O. This nitrifier 

denitrification can contribute significantly to N2O production when conditions are suboptimal for 

both nitrification and denitrifier denitrification (Kool et al. 2011; Wrage et al. 2001). Peak fluxes of 

N2O, however, often occur under denitrifying conditions at high soil water content, i.e. after rain 

events, further supported by high nitrate contents after fertilization and/or high organic matter 

contents after harvest (Drury et al. 2006; Pelster et al. 2012; Sehy et al. 2003). The aeration status, 

which is affected by climatic conditions as well as soil texture and microbial O2 consumption, thus 

exercises control over predominant N2O producing processes and the amount of N2O emitted. Both 

nitrification and denitrification, however, depend also and particularly on the availability of NH4
+ 

and NO3
- or nitrite (NO2

-), respectively. The relationship between N input to and N2O emission from 

ecosystems has often been described (e.g. Liu & Greaver 2009; Stehfest & Bouwman 2006). For 

agricultural systems, an increase in N2O flux rates with increasing N fertilization has often (e.g. 

Acton & Baggs 2011; Breitenbeck & Bremner 1986; Kaiser et al. 1998; Mulvaney et al. 1997) 

although not always (high yielding areas in Sehy et al. 2003; Zebarth et al. 2008) been observed in 

both field and laboratory studies.  

The generalized additive mixed model applied to our data confirms the importance of WFPS, NH4
+ 

and NO3-, as well as the microbial activity (represented by CO2 emission) for N2O emission. The 

interaction of NH4+ with WFPS shows that high mineral nitrogen content alone was not sufficient 

to cause peak events of N2O emission. Besides after frost, peaks in N2O fluxes at both sites 

particularly occurred when nitrogen content as well as WFPS were relatively high. These flux 

dynamics are in accordance with the literature (Cannavo et al. 2004; Fuß et al. 2011; Hellebrand et 

al. 2003; Laville et al. 2011; Sehy et al. 2003). Substantial increase in N2O fluxes may be expected at 

WFPS above 60 to 70% (Linn & Doran 1984; Ruser et al. 2006; Sehy et al. 2003) and the applied 

gamm (see Appendix A2) showed a similar trend. At the sandy loam site, such high WFPS values 
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were only reached in winter. Substantial peak fluxes after irrigation in 2012, however, show the 

potential for higher annual fluxes under wetter conditions after fertilization.  

5.5.2. Impact of fertilizer application technique  

Soil mineral N dynamics did not show distinctly different behavior between fertilized treatments. 

Accumulation of NO3
- in or around CULTAN depots started within 2 weeks, and the soil NO3

- content 

was not significantly lower than on surface application plots, except shortly after CULTAN injection. 

Hence, nitrification was not effectively inhibited. This is in agreement with earlier studies that 

reported mixed N nutrition after CULTAN fertilization with diammonium phosphate in pot 

experiments (Menge-Hartmann & Schittenhelm 2008; Schittenhelm & Menge-Hartmann 2006) or 

showing that nitrification was not inhibited after ammonium sulfate banding in 10 cm depth (Pfab 

2011). On an annual scale, soil NO3- dynamics were largely dominated by turnover of the native soil 

N pool, as shown by similar NO3- contents and dynamics at fertilized and unfertilized plots. In 

accordance with the small differences in Nmin contents between fertilizer treatments, there was no 

consistent effect of fertilizer application technique on N uptake and N use efficiency.  

Despite the relatively low rate of N fertilization, annual N2O emission roughly doubled with 

fertilization as compared to unfertilized plots. Fertilizer application method, however, did not have 

a significant effect on annual N2O emission. There was only a weak trend to lower emission from 

CULTAN at the sandy loam and from surface application at the loam site. Analogously, N2O emission 

factors and grain-yield based emissions did not differ significantly. Our results thus resemble 

earlier findings of no change or even enhanced N2O emission after subsurface fertilizer banding of 

nitrate-containing fertilizers compared to broadcast application (Pfab et al. 2012; Smith et al. 

2012). Given the observed accumulation of NO3-, differences between pure ammonium-fertilizer 

and nitrate containing fertilizer might be negligible, at least as N2O production is concerned. 

Significantly higher grain yields, however, on CULTAN than surface application plots (significantly 

so in 2011 at the loam site and in 2012 at the sandy loam site) indicate an advantage for plant 

cultivation. However, available studies on specific yield effects of CULTAN fertilization provide no 

consistent results. While Weber et al. (2008) and Richter (2010) reported higher yield of various 

cereals from CULTAN compared to broadcast application of different fertilizers in Germany, other 

studies showed no significant yield effects (Flisch et al. 2013; Kozlovsky et al. 2010).  

The temporal pattern of N2O fluxes was primarily influenced by weather-dependent peaks. N2O 

emission from fertilized plots was higher than from unfertilized plots after irrigation or abundant 

rain during the vegetation period, when also NO3- content was higher. Despite similar NO3- content 

and WFPS, higher peak fluxes occurred on CULTAN than on surface application plots after irrigation 

at the sandy loam site in 2012, and N2O fluxes were more variable at CULTAN plots at the loam site. 

The Nmin data shown do not provide information about spatial distribution of NO3
- in soil. However, 

nitrification in or at the margins of depots might have formed patches with high NO3
- contents. 

Together with high WFPS and possibly high organic carbon contents from exudates at the margins 

of depots, where high root density is assumed (Passioura & Wetselaar 1972), this may have led to 

conditions favorable for denitrification. Peaks of N2O emission were broader, with lower amplitude, 

after surface application. Different spatial distribution of N2O production zones may be the reason, 

with more homogeneous distribution in surface application plots and more heterogeneous 

conditions with spots of temporal mineral N surplus at CULTAN plots, allowing the formation of 

N2O hotspots.  
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5.5.3. Site effect 

Higher nitrification rates and N2O emissions have been observed from loamy than from sandy soils 

in incubation studies (Maag & Vinther 1996). Pelster et al. (2012) proposed that higher N2O rates 

from silty clay than sandy loam soil resulted from higher WFPS, greater organic content and finer 

texture (and thus higher restrictions to O2 diffusion and more anaerobic microsites). Our 

hypothesis of higher emissions from the loam than the sandy loam site has been confirmed, but 

mainly for the CULTAN treatment. That the difference between sites was not significant after 

surface application and without fertilizer may be the result of dry conditions during summer and 

the low emission level at both sites. While WFPS was indeed higher at the loam site during most of 

the year, it was below 60% at both sites after fertilization when highest fluxes were expected. Nmin 

dynamics were also similar at both sites, except for the higher NO3- accumulation at the sandy loam 

site during winter. Differences in dynamics of environmental factors controlling N2O production 

were thus less severe than expected. Although pairwise comparisons revealed no significant 

difference between sites within treatments, annual N2O emission at the loam was twice as high as 

at the sandy loam site after fertilizer injection (CULTAN). Especially after CULTAN fertilization, the 

loam site showed also much higher temporal and spatial variability of N2O flux rates then the sandy 

loam soil which might be a result of higher nitrification and denitrification activity in the fine-

grained soil. Adsorption of added NH4+ to clay minerals can affect nitrification by its influence on 

the contact of NH4+ with nitrifying microorganisms present on clay surfaces (Powell & Prosser 

1991; Subbarao et al. 2006). In addition, soil texture also affects the inhibitory effect of high NH4+ 

concentration on nitrification (Abbès et al. 1994) and may thus lead to faster nitrification after 

point injection at the loam site. NO3- contents at the loam site were indeed twice as high as at the 

sandy loam site in the first weeks after fertilization. The formation of O2 depleted microniches, 

where (nitrifier) denitrification may occur, is more likely in the finer textured loam soil (Pelster et 

al. 2012). We found no evidence of our hypothesis that NH4+ point injection (CULTAN) is able to 

reduce N2O emission, particularly in a fine-grained soil. In contrast, the CULTAN induced 

accumulation of mineral N and roots in small areas within the soil might even promote local N 

surplus and N2O emission by coupled nitrification denitrification, in particular at higher soil 

moisture in fine-grained soils. 

5.5.4. Fertilizer-derived N2O emissions and crop N uptake 

For a more detailed analysis of fertilization effects on direct N2O emission it is helpful to 

differentiate between N2O emission that originates directly from the added fertilizer N (here called 

fertilizer-derived N2O emission) and a more comprehensive fertilization effect which is determined 

from the increase in total N2O emission compared with an unfertilized treatment (here called 

fertilizer-induced N2O emission). Unfortunately, it was not possible to compare fertilizer-derived 

emissions from application methods. However, the 15N signature of N2O emitted from the CULTAN 

treatment of the sandy soil indicates that only a small fraction of the added fertilizer N (0.005% in 

2011 and 0.10% in 2012) was lost as direct annual N2O-N emission within 12 months after 

application. Most of the N2O emitted thus originated from transformation of soil N. Large 

contributions from added fertilizer N (up to 65% of the measured N2O flux) were only measured in 

the first weeks after fertilization and support the above mentioned assumption that CULTAN N 

depots represent at least transient hotspots of N2O production. Annual fertilizer-induced N2O-N 

emission, calculated from difference in total N2O emission between the 15N fertilized CULTAN plots 

and the unfertilized treatments (i.e. emission factor, 0.09% - 0.26% of the total amount of fertilizer 

N added), was considerably higher than annual fertilizer-derived N2O emission. A similar 
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phenomenon has earlier been described for N turnover and was attributed to N pool substitution 

through immobilization or isotopic displacement (Jenkinson et al. 1985). Other possible reasons 

for this obvious difference are effects of fertilization on N2O production from the soil N pool and 

effects of fertilization on soil carbon availability and microbial activity (i.e. larger plant biomass at 

fertilized plots) that can stimulate N2O emission. That N2O fluxes depend on microbial activity was 

affirmed by our statistical model.  

The relative contribution of 15N fertilizer to N content in the aboveground plant biomass was much 

higher than its relative contribution to total N2O emission. With 35% and 50% of total N in 

aboveground plant biomass at harvest in 2011 and 2012, respectively, the results reflect the 

efficiency of CULTAN N in crop nutrition. Higher N use efficiency of point injection of ammonium 

based fertilizer compared to surface application has been reported earlier (Janzen et al. 1990; 

Richter 2010) and was also described as a benefit of subsurface urea banding (Yadvinder et al. 

1994). Analogously to the calculation of fertilizer-derived N2O emission we calculated the fertilizer-

derived nitrogen use efficiency from the amount of fertilizer N in the aboveground crop biomass at 

harvest and the amount of fertilizer N applied. The fertilizer-derived NUE corresponds to 31% and 

52% of the applied fertilizer N in 2011 and 2012, while NUE calculated from the difference in N 

content of aboveground crop biomass between fertilized and unfertilized plots was 64% to 72%. 

The 15N fertilizer recovery was rather high in comparison to earlier studies (Carranca et al. 1999; 

Tran & Tremblay 2000). Petersen (2001), however, found higher 15N fertilizer recovery in spring 

wheat (55% - 59%), without a significant effect of subsurface banding of ammonium sulfate 

compared to surface application.   

The 15N results show the great importance of mineralization of organic soil N for crop N uptake and 

in particular for soil N2O emission. Common methods to determine fertilization effects on NUE and 

N2O emission factors include transformation processes of soil organic N and reflect only partly 

direct transformation of fertilizer N. 

 Conclusions 

Inhibition of nitrification in fertilizer depots after CULTAN fertilization was not strong enough to 

prevent nitrate accumulation in both the loam and the sandy loam soil. In terms of N2O emission, 

this first study on CULTAN fertilization provides no evidence that this fertilization technique has 

the potential to reduce direct N2O emission from fertilizer application. Higher yields after CULTAN 

than surface application, however, indicate the potential of higher crop yields at equal N 

fertilization rates at our experimental sites.  

Higher N2O emissions from the loam than the sandy loam site especially at CULTAN plots were 

attributed to the higher soil moisture and the propensity to the formation of denitrifying microsites 

at the finer textured soil. In combination with the patchy distribution of Nmin which probably results 

in transient local Nmin surplus and possibly also root biomass in soil after CULTAN, this may cause 

N2O emission hotspots. This explanation is further supported by a higher variability of N2O fluxes 

after CULTAN fertilization compared to surface application. It also remains to be tested, whether 

results would differ under wetter conditions, on high emission sites, or at higher N application 

rates. We’d like to point out that CULTAN fertilization may also change nitrate leaching and thus 

affect indirect N2O emission. This potential effect on nitrogen leaching was not included in our 

study. 
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According to point injection of 15N-labeled NH4
+, added CULTAN N had only a small direct effect on 

annual N2O emission, with less than 20% of annual N2O emission originating from the applied 

fertilizer. The results indicate that the presence and mineralization of active organic N pools were 

decisive for annual N2O emission. The dominance of native soil N for N turnover processes was also 

apparent from Nmin dynamics and high crop N uptake in unfertilized treatments. The results stress 

the importance to optimize long-term N management in cropping systems in order to reduce N2O 

emission from agricultural soils. In addition, they indicate that measurements of N2O emissions 

with the goal to derive emission factors for different fertilizers or fertilizer application techniques 

should cover several years to include short-term and also medium term effects of specific N 

management on N2O emission.   
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6. Soil N2O fluxes and processes in laboratory incubations simulating 
ammonium fertilizer depots3 

 Abstract 

High concentrations of ammonium in soil have been shown to inhibit nitrification, and fertilizer 

injection as conducted during CULTAN management might thus have the potential to reduce N2O 

emission from arable soil. We conducted an incubation experiment with different NH4+ 

concentrations in soil that resembled concentrations as expected at and around injection spots 

(5000, 2250, 1000, 450, 0 µg NH4
+-N g-1 soil) directly after fertilization and after dilution due to 

plant uptake or precipitation. N2O emission was measured in dynamic soil mesocosms over a 

period of 21 days. Acetylene inhibition and 15N tracer approaches were used to calculate the 

relative contribution of nitrification and denitrification to N2O emission. An isotopomer approach 

was applied to gain further insight into N2O producing processes. We expected lower contribution 

of nitrification-derived N2O to total N2O emission and a higher N2O/NO3
- ratio from nitrification 

with increasing N levels. Nitrification indeed declined with increasing N level, and no nitrification 

occurred in the 5000 µg NH4
+-N g-1 soil treatment. A pool dilution approach showed that gross 

nitrification in 450 µg NH4+-N g-1 soil (nitrification rate: 4.96 mg NO3--N kg soil d-1) was by a factor 

of 2.6 and 6 higher than in 1000 and 2250 µg NH4+-N g-1 soil treatments. In the 5000 µg NH4+-N g-1 

soil treatment, gross nitrification occurred at very small rates (0.1 mg NO3--N kg soil d-1). Similarly, 

N2O emission declined with increasing N level. The N2O yield of nitrification was between 0.07% 

and 0.15% of NO3- production, but was not affected by increasing N level. Nitrification was the 

dominant source of N2O throughout the incubation at all N levels, and there was no significant 

change in the relative contribution of nitrification and denitrification with N level or time. We thus 

conclude that denitrification derived N2O emissions were similarly reduced at high N levels. 

Applying the non-equilibrium technique to our 15N tracer data revealed heterogeneous distribution 

of denitrification in soil, with at least two distinct NO3
- pools and spatial separation of NO3

- 

formation and consumption. The isotopomer approach provided reasonable results in comparison 

with the acetylene inhibition and 15N tracer approaches and indicated substantial contribution of 

nitrifier denitrification (10% - 40%) to total N2O production. 

  

                                                             
3 This chapter is in preparation for submission with the following authors: Marianna Deppe, Reinhard Well, 
Heinz Flessa, Anette Giesemann 
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 Introduction 

The CULTAN (Controlled uptake long-term ammonium nutrition) fertilization strategy as 

described by Sommer (2005) uses fertilizer placement techniques (point injection, banding) of 

ammonium-rich/nitrate free nitrogen fertilizer, aiming at a more beneficial nutrition of plants with 

ammonium (NH4
+) as the dominant nitrogen form. Point injection of concentrated fertilizer 

solution by spoke-wheels is common, creating fertilizer depots of high NH4+ concentration within 

the soil. It has been shown that both grain yields and N uptake can equal or exceed those from 

conventional surface application of fertilizer (chapter 5; Flisch et al. 2013; Kozlovsky et al. 2010; 

Peklova et al. 2012; Schittenhelm & Menge-Hartmann 2006; Sedlář et al. 2011; Weber et al. 2008). 

The relative stability of nests with high concentration of NH4+ (Wang et al. 1998) is a main aspect 

why N fertilizer injection during CULTAN management, at one dose to the root zone, may be a 

convenient method of mineral fertilizer application. This anticipated stability comes from the 

relative immobility of NH4
+ in soil as compared to nitrate (Olesen et al. 1999), preventing 

broadening of fertilizer, and the toxicity of high concentrations of NH4
+ for microbial nitrification 

(Harada & Kai 1968; Wetselaar et al. 1972). This toxicity effect is crucial for the mitigation potential 

of CULTAN fertilization; hence dynamics of nitrification and coupled denitrification processes 

under this treatment must be more thoroughly investigated.  

Nitrification is the microbially mediated oxidation of NH4+ or, more specifically, ammonia (NH3) to 

nitrate (NO3-). The first step of nitrification is performed by ammonia oxidizing bacteria (AOB) or 

archaea (AOA): The enzyme ammonia monooxygenase (AMO) catalyzes the oxidation of NH3 with 

O2 to hydroxylamine (NH2OH), which is further oxidized to nitrite (NO2-) by hydroxylamine 

oxidoreductase (HAO). Thereby, a certain fraction of the NH2OH is chemically transformed to 

nitrous oxide (N2O) as a side product (Butterbach-Bahl et al. 2013; Heil et al. 2014). The second 

step of nitrification, the oxidation of NO2- with O2 to NO3-, is catalyzed by nitrite oxidoreductase in 

nitrite oxidizing bacteria. Various AOB are furthermore capable to reduce the NO2- from ammonia 

oxidation to NO and N2O via the nitrifier denitrification pathway (Kool et al. 2011; Wrage et al. 

2001). The N2O, which is built as a side- or intermediate product during these processes, is a potent 

greenhouse gas, and international efforts are made to diminish the N2O emission from 

anthropogenic sources (to which agricultural sources contribute roughly 79%, including indirect 

emission (Ciais et al. 2013; UNFCCC 2014)). 

While nitrification is regarded as the most important N2O producing process under strictly aerobic 

conditions, several other N2O source processes exist (Butterbach-Bahl et al. 2013; Kool et al. 2011). 

Under suboxic conditions, nitrifier denitrification can substantially add to N2O production (Kool et 

al. 2011; Zhu et al. 2013). Under anaerobic conditions, N2O is built as an intermediate in 

denitrification, the stepwise reduction of NO3 to NO2-, NO-, and finally N2O and N2 (Knowles 1982). 

Besides the aforementioned processes, which are assumed to be responsible for the majority of 

N2O from terrestrial soils, other N2O producing processes exist (e.g. dissimilatory nitrate reduction 

to ammonia, heterotrophic nitrification, co-denitrification; Butterbach-Bahl et al. (2013)).  

In general, there is a positive correlation between NH4+ as a substrate and nitrification rates.  In 

incubation studies, nitrification and N2O flux from nitrification have been shown to increase with 

NH4+ contents from 0 to 400 mg NH4+-N kg-1 soil (Avrahami et al. 2002; Huang et al. 2014; 

Vermoesen et al. 1996; Well et al. 2008). After band application or point injection of NH4+ fertilizer, 

however, NH4+ content in soil can be much higher, easily exceeding 3000 mg NH4+-N kg-1 (e.g. 

Menge-Hartmann & Schittenhelm 2008; Pfab et al. 2012). Such high concentrations of NH4+ in cells 

are toxic to both plant tissue (Gerendás et al. 1997) and microorganisms (Müller et al. 2006). 
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Contents of 2000 to 20,000 mg N kg-1 as ammonium sulfate ((NH4)2SO4) have been shown to 

completely inhibit nitrification in soil (Nishio & Fujimoto 1990; Shaviv 1988; Wetselaar et al. 1972) 

for a time span of 3 – 4 weeks.  

If NH4
+ contents in soil after CULTAN injection are high enough to successfully inhibit nitrification, 

for a time span sufficient to stabilize the depot until most of the N is taken up by plants, they should 

have similar effects as the use of industrial nitrification inhibitors, which also retard NH4+ oxidation 

(Prasad & Power 1995). Studies on the effect of nitrification inhibitors were summarized by 

Akiyama et al. (2010) and showed a reduction in N2O emission of 26% - 43% (95% confidence 

interval). If depot fertilization during CULTAN management reduces N2O emission, it will thus have 

the potential to be not only beneficial to plant nutrition but also a climate friendly method of 

mineral fertilization. 

Most studies on the dissolution of fertilizer depots or inhibition of nitrification at high NH4+ content 

concentrated on NO3- or nitrite (NO2-) accumulation in soil as the parameter of interest (Menge-

Hartmann & Schittenhelm 2008; Petersen et al. 2004; Shaviv 1988; Wang et al. 1998; Wetselaar et 

al. 1972). In an incubation experiment with increasing NH4NO3 content, net nitrification and N2O 

production from nitrification decreased by one and two thirds, respectively, at an increase from 

355 to 710 mg NH4+-N kg-1 (Acton & Baggs 2011). Whether the inhibition of nitrification at high 

NH4+ content is due to NH4+ specific properties or mainly because of osmotic pressure due to high 

salt concentration has not been conclusively determined for all processes or organisms. Different 

NH4+ salts exhibited different strength in decreasing nitrification rates (Darrah et al. 1985), and 

often the effect is attributed to the increasing osmotic pressure (Darrah et al. 1986; Müller et al. 

2006).  

At conditions unfavorable for microbial turnover in one way or another, product ratios of 

nitrification (N2Onit/NO3-) or denitrification (N2Odenit/N2) have been shown to change due to varying 

sensibility of enzymes responsible for specific process steps. For instance, increasing salinity has 

an inhibiting effect on denitrification, but may concurrently increase N2O emission. This is a result 

of shifts in the N2O/N2 product ratio due to the fact that N2O reductase is the enzyme most 

vulnerable to inhibition, and hence N2O reduction to N2 is the enzymatic reaction to be mostly 

inhibited (Menyailo et al. 1998; Menyailo et al. 1997). The product ratio of N2O/N2 during 

denitrification also increases with decreasing pH values (Baggs et al. 2010; Čuhel et al. 2010; 

Knowles 1982) and increasing partial pressure of O2 (Betlach & Tiedje 1981). Lower O2 conditions, 

to the contrary, lead to higher N2O production from nitrification (Mørkved et al. 2006; Zhu et al. 

2013), supposedly due to increasing importance of nitrifier denitrification. Increasing salinity also 

slowed down gross nitrification (Low et al. 1997), as long as low NH4+ content in soil was not 

limiting. However, N2O production increased with increasing salinity, and decoupling of processes 

with NO2
- accumulation were suggested to be the reason (Low et al. 1997), since NO2

- oxidation 

may be more effectively inhibited than NH4
+ oxidation (Harada & Kai 1968). Also acid conditions 

may lead to increased N2O/NO2
- ratio of nitrification (Jiang & Bakken 1999). On the other hand, 

acidification during nitrification could be a reason for short-term decreases in N2O production, as 

growth of nitrifiers and NH4+ oxidation is affected by changes in the NH4+/NH3 equilibrium with pH 

(Baggs et al. 2010).  

The CH4 molecule is structurally similar to NH4+, and the methane monooxygenase (MMO) of 

methanotrophs is very similar to the AMO in ammonia oxidizers (Bédard & Knowles 1989). The 

addition of NH4+ to soil has the potential to inhibit CH4 oxidation, although mechanisms are complex 

and comprise a pH effect from nitrification, competitive inhibition of MMO by NH3/NH4+ and 
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inhibition by the nitrification intermediates NH2OH and NO2
- (Hütsch 1998; King & Schnell 1994; 

Nyerges & Stein 2009). Both AMO and MMO are furthermore susceptible to acetylene (C2H2) as an 

inhibitor (Bédard & Knowles 1989; Hyman & Wood 1985; Prior & Dalton 1985). Due to the close 

resemblance between the monooxygenases of methane and ammonia oxidation, factors affecting 

nitrification may also have impacts on rates of methane consumption in soil.  

Little is known about the relative importance of different processes (i.e. mainly denitrification vs. 

nitrification) under high NH4+ levels. Several methods exist to quantify their relative contributions 

to measured N2O fluxes, all having their advantages and difficulties (Baggs 2008; Decock & Six 

2013). The inhibition of NH4+ oxidation at 0.01vol% (C2H2) in the gas phase (Bollmann & Conrad 

1997; Hyman & Wood 1985; Klemedtsson et al. 1988) can be used to quantify the contribution of 

autotrophic nitrification, if N2O production is compared to a control without inhibition. This 

method may suffer from the consequences of its own mode of action, because NO3
- formation is 

inhibited and the contribution of denitrification may thus be underestimated. After addition of an 

N substrate enriched in the heavy isotope 15N, its fate can be traced in the different products, thus 

allowing to distinguish between NO3- derived and NH4+ derived N2O, but not between single 

processes. Bateman and Baggs (2005) used the combination of acetylene inhibition and the 15N 

tracer approach to distinguish between denitrification, autotrophic and heterotrophic nitrification; 

and Well et al. (2008) showed good correspondence between acetylene inhibition and the 15N 

tracer approach in source partitioning N2O production under nitrifying conditions. The natural 

abundance of the heavy isotopes 15N and 18O in N2O without tracer addition comprise information 

about the substrates and production processes of N2O (Baggs 2008). Moreover, the analysis of the 

intramolecular distribution of 15N within the N2O molecule, i.e. the 15N-site preference (SP, defined 

as difference in the abundance of isotopomers 14N15NO and 15N14NO relative to 14N14NO) is a tool to 

investigate N2O source processes at natural abundance (Decock & Six 2013; Ostrom & Ostrom 

2012). For different processes (e.g. NH2OH oxidation, NO3- or NO2- reduction), the SP has been 

measured in pure culture studies of bacteria and fungi  (Rohe et al. 2014; Sutka et al. 2008; Sutka 

et al. 2006; Sutka et al. 2003; Sutka et al. 2004; Toyoda et al. 2005) and soil incubations (Köster et 

al. 2015; Köster et al. 2013; Lewicka-Szczebak et al. 2015; Lewicka-Szczebak et al. 2014; Perez et 

al. 2006; Well & Flessa 2009). Based on the finding that SP is independent of the 15N abundance in 

precursors (Toyoda et al. 2002) but depends only on the producing process or enzymes, it can be 

used to estimate the relative contribution of different processes to N2O production. However, SP 

alone has not been specific enough to quantify the relative contribution of nitrification and 

denitrification to N2O production, as fractionation during the reduction of N2O to N2 during 

bacterial denitrification changes the SP, moving values closer to those of nitrification (Ostrom et al. 

2007; Well & Flessa 2009). As not only the SP but also the δ18O of remaining N2O increase during 

N2O reduction (Ostrom et al. 2007), taking into account also the oxygen atom of the N2O molecule 

may help to improve the estimation of source processes (Snider et al. 2013). Köster et al. (2015) 

used the SP and δ18O of N2O to distinguish between denitrification and autotrophic nitrification 

under denitrifying conditions (in a helium-oxygen atmosphere) in laboratory soil incubations, 

taking into account the reduction of N2O by measuring N2 production. 

The present laboratory study was conducted to examine the impact of concentrated NH4+ solution 

as after fertilizer injection on nitrification and associated N2O fluxes. Concentrations of NH4+ were 

chosen according to concentrations in CULTAN depots of a parallel field experiment (chapter 5) 

and earlier studies (Menge-Hartmann & Schittenhelm 2008; Pfab et al. 2012). Using N levels from 

0 to 5000 mg kg-1 soil, we aimed at a range from no to complete inhibition of nitrification. Three 

methods were used to measure nitrification rates and source partitioning of N2O fluxes in 
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laboratory incubation experiments with sandy loam soil. With the acetylene inhibition approach, 

we determined the contribution of autotrophic nitrification. Using the 15N tracer approach, we 

calculated the fraction of N2O that originated from NO3-. The pool dilution approach (Davidson et 

al. 1991) was used to calculate gross nitrification rates, which were then used to calculate the 

N2O/NO3
- yield of nitrification. An isotopomer approach was additionally used to estimate the 

relative contributions of denitrification and nitrification to the emitted N2O.  

The experiment aimed at testing whether concentrations of NH4+ after CULTAN injection of 

(NH4)2SO4 fertilizer are appropriate to successfully inhibit nitrification and associated N2O fluxes. 

Our hypotheses were that 1) Concentrations as they occur at the field sites are high enough to limit 

nitrification after fertilization; 2) N2O yield of nitrification increases with increasing initial NH4+ 

content in soil; 3) The fraction of N2O from NH4
+ oxidation predominates N2O production, with 

increasing contribution of NO3
--derived N2O with time and NO3

- accumulation.  

 Materials and methods 

6.3.1. Soil properties 

The soil used for the incubation experiment was taken from the upper 20 cm at a temperate arable 

field site at the Thünen Institute in Braunschweig, Germany (52°18’01”N, 10°26’50”E) in 

September 2012. The soil type is a Haplic Luvisol derived from glaciofluviatile sediments with sand, 

silt and clay contents of 68%, 23% and 9%, respectively. Carbon and nitrogen contents were 11 g 

C kg-1 and 1 g N kg-1, respectively, pH(CaCl2) was 5.9, and bulk density 1.5 g cm-3. The soil was rather 

dry when sampled (28% WFPS, September 2012). It was manually sieved to 4 mm, stored at 5°C, 

and preincubated at room temperature 24h prior to addition of fertilizer solutions. After 

preincubation, the soil contained 0.2 mg NH4+-N kg-1, 13 mg NO3--N kg-1 and 8.1 g water kg-1 d.w. 

soil. 

6.3.2. Experimental design 

Simulating a range of NH4+ concentrations as expectable after CULTAN fertilization, different 

amounts (N levels) of (NH4)2SO4 were applied to the soil. Treatments were named after the NH4+ 

content added, i.e. 0N (no (NH4)2SO4), 450N, 1000N, 2250N and 5000N for 450 µg NH4
+-N (g dry 

soil)-1, 1000 µg NH4
+-N (g dry soil)-1, 2250 µg NH4

+-N (g dry soil)-1 and 5000 NH4
+-N µg (g dry soil)-1, 

respectively. All treatments received the same amount of KNO3 (13 mg NO3
--N kg-1 d.w. soil).  

To achieve the respective NH4+ concentrations for different N levels, varying amounts of (NH4)2SO4 

were mixed with distilled water and potassium nitrate (KNO3) to achieve a water content of 145 g 

kg-1 in soil, which later resulted in an initial water filled pore space (WFPS) of 50%. For each N level, 

30 kg of air-dry soil were thoroughly mixed with the respective (NH4)2SO4/KNO3 solution. 3217 g 

of wet soil of the respective N level were then filled to a height of 12.5 cm in cylindrical incubation 

vessels with 14.4 cm inner diameter and 18 cm height. A bulk density of 1.5 g cm-3 was chosen 

according to field conditions. 

Three different methods were used to measure the fraction of nitrification-derived N2O to total N2O 

(fN) emissions from soil: With the 15N tracer method (Stevens et al. 1997) in combination with the 
15N pool dilution approach (Davidson et al. 1991), N2O fluxes from NO3- turnover were determined 

after adding 15N labeled KNO3 to the soil (12.5 at%15N; 15N batch). Similar batches with unlabeled 
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KNO3 were used for, the isotopomer approach (Decock & Six 2013; Ostrom & Ostrom 2012) of 

emitted N2O (using δ18O, average δ15N and 15N site preference; 14N batch), and the C2H2 inhibition 

approach (Hyman & Wood 1985; Klemedtsson et al. 1988), i.e. comparison of N2O production in 

batches 14N and 15N with C2H2-amended treatments (C2H2 batch). Soil for the 14N and C2H2 

batches was prepared in one go, as these batches differed only in the headspace flow applied 

(compressed air for 14N and 15N, compressed air with 0.01vol% acetylene added for the C2H2 

batch). Details of these methods for source partitioning are given in section 6.3.5.2.  

Preparation and installation of the 15N batch was started and finished approx. 24h later than 14N 

and C2H2 batches, respectively. Four soil cores were used per N level and batch. Four additional 

replications of each N level of the 15N batch were installed and destructively sampled for mineral 

N content (see Section 6.3.4.1) at day 10. These cores were otherwise treated identically to those 

used for flux measurements. Duration of incubation for all other soil cores was 21 days. 

After filling with the fertilized soil, incubation vessels were sealed airtight and connected to an 

automated incubation system as described by Hantschel et al. (1994) in a climate chamber (16°C) 

in darkness. The headspace of vessels was continuously flushed with compressed air at a rate of 

approx. 4ml min-1. For incubation vessels of the C2H2 batch, 100 ppm acetylene (Linde, solvent 

free) were mixed to the compressed air with a gas mixer (HovaGAS digital G8-vTI, IAS GmbH, 

Frankfurt, Germany). Due to mismatched pipes, N levels 0N and 450N of the C2H2 batch did not 

receive acetylene during the incubation period. These N levels were therefore repeated 

immediately after the end of the first incubation period with soil from the same sampling date 

which had been equally prepared and stored at 5°C. 

6.3.3. Gas sampling and analytical procedures 

Glass vials for N2O and CH4 concentration (20ml crimp vials with butyl rubber septa) and isotope 

analysis of N2O (120ml crimp vials with butyl rubber septa; and 12ml septum capped glass vials, 

Labco™, High Wycombe) were connected in line to the headspace outlet of the incubation vessels 

as described in Well et al. (2008) and sampled on each of days 1, 2, 3, 6, 10, 14, 18, 21. Before and 

after sampling, gas flow rates were additionally measured using a high precision digital flow meter 

(Alltech Associates Inc., Deerfield, IL, USA).  

 Determination of N2O and CH4 concentrations and fluxes 

Concentrations of N2O and CH4 were measured with a gas chromatograph (GC 2014, Shimadzu, 

Duisburg, Germany) equipped with an ECD detector (N2O, CO2) and FID (CH4) and an automated 

rack (P 65, Loftfields Analytical Solutions, Neu Eichenberg, Germany). Precision was checked 

weekly by repeated determination of standard gases (1810 ppb CH4, 320 ppb N2O) and was 

consistently < 3%. Gas fluxes were calculated from change in concentration in the gas stream 

between headspace inlet and outlet of the incubation vessel, the flow rate of the respective 

headspace gas, and the amount of dry soil per incubation vessel. To calculate cumulative emissions, 

flux rates were linearly interpolated between measurement dates. 

 Determination of isotopic signatures of N2O 

Isotopologue values of N2O were obtained by analyzing m/z 44, 45 and 46 of intact N2O molecules 

as well as m/z 30, 31 of NO+ fragments by isotope ratio mass spectrometry as described previously 

(Lewicka-Szczebak et al. 2014) using a DeltaV IRMS (ThermoFisher Scientific, Bremen, Germany) 

allowing simultaneous detection of m/z 30, 31, 44, 45 and 46. The IRMS was connected to a 
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modified pre-concentrator (Precon Finnigan MAT, Bremen, Germany) equipped with an 

autosampler (model Combi-PAL CTC-Analytics, Zwingen, Switzerland) as described by Casciotti et 

al. (2002). The scrambling factor reflecting the N-exchange between N2O+ and NO+ in the ion source 

of the mass spectrometer was determined as described by Röckmann et al. (2003) and was 0.08. 

The isotopologue ratios of 15Rbulk, 18R, 30R and 15Rα were determined and 15Rβ was obtained by the 

relationship of 15Rbulk = (15Rα + 15Rβ)/2, where 15Rα = [14N15N16O]/[14N14N16O], 15Rβ = 

[15N14N16O]/[14N14N16O], 18R = [14N14N18O]/[14N14N16O] and 31R = [15N16O]/[ 14N16O] (Toyoda and 

Yoshida, 1999) . Isotopologue ratios of a sample (Rsample) were expressed as ‰ deviation from 
15N/14N and 18O/16O ratios of the standard materials (Rstd), atmospheric N2 and standard mean 

ocean water (SMOW), respectively: δX = (Rsample/Rstd - 1)×1000, where X = 15Nbulk, 15Nα, 15Nβ, or 18O. 

Typical analytical precision was 0.12, 0.33, and 0.3 ‰ for δ15Nbulk, SP, and δ18O, respectively. The 

detection limit for N2O-N was 1.5 nM. The difference between the isotopomer ratios of N (15Nα - 

15Nβ) is referred to as 15N-site preference (SP, in ‰). Pure N2O (Westfalengas, Münster, Germany; 

purity > 99.995) was used as reference gas in concentrations corresponding to the expected N2O 

amounts in samples. The pure N2O was analyzed for isotopologue values by Toyoda and Yoshida in 

the laboratory of the Tokyo Institute of Technology (Toyoda & Yoshida 1999). This reference 

signature was used to correct the raw 15Nα determined by our instrumentation. 

6.3.4. Soil analyses 

 Determination of mineral soil N contents 

To measure soil mineral nitrogen (Nmin = NO3- + NH4+) content, subsamples from soil prepared for 

each N level of both 14N and 15N batches were collected at day 0 (n=5 per batch). At the end of the 

incubation (day 21) soil cores were sampled individually (n=3), as were the additional soil cores of 

the 15N batch sampled at day 10. Soil samples were mixed with CaCl2 solution (0.01M; soil to 

solution ratio of 1:10 (v/v) for control soil and N levels 0N to 1000N and 1:30 for 2250N and 5000N 

levels). After filtration (MN614 ¼ filters, Macherey & Nagel, Düren, Germany) the extracts were 

stored at -20°C until analysis of NH4+-N and (NO3- + NO2-)-N concentrations with a continuous flow 

analyzer (SA 5000, Skalar Analytical B.V., Netherlands). Water content in soil was determined 

gravimetrically by drying overnight at 105°C.  

 Determination of 15N enrichment of mineral N 

To determine the isotope ratios of Nmin in soil extracts from the 15N batch, a diffusion technique 

adapted after Goerges and Dittert (1998) was used. Aliquots of extracts containing NH4
+ and NO3

- 

were alkalized with magnesium oxide, so that NH4
+ formed NH3 gas that was trapped on fibre glass 

filters (Macherey-Nagel, MN85/90BF) which had been acidified with KHSO4. In a second step, NO3- 

was reduced to NH3 by addition of Devarda’s alloy (containing Al, Cu, Zn) to the same sample, and 

trapped on a second fiber glass filter. The filters were then analyzed for at%15N using an elemental 

analyzer coupled to a Delta Plus IRMS (ThermoFinnigan, Bremen, Germany).  

A blank correction was applied to at%15N values of NH4+ samples according to Equation 6-1 and 6-

2.  

 

𝑎𝑡%𝑁𝐻4 =
𝑎𝑡%𝑚𝑖𝑥 ∗ 𝑁𝑚𝑖𝑥 − 𝑎𝑡%𝑏𝑙𝑎𝑛𝑘 ∗ 𝑁𝑏𝑙𝑎𝑛𝑘 ∗

𝑚𝑙𝑠𝑎𝑚𝑝𝑙𝑒

𝑚𝑙𝑏𝑙𝑎𝑛𝑘
− 𝑎𝑡%𝐾𝐶𝑙 ∗ 𝑁𝐾𝐶𝑙 ∗

𝑚𝑙𝐾𝐶𝑙𝑠𝑎𝑚𝑝𝑙𝑒

𝑚𝑙𝐾𝐶𝐿

𝑁𝑁𝐻4

 Equation 6-1 
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𝑁𝑁𝐻4 = 𝑁𝑚𝑖𝑥 − 𝑁𝑏𝑙𝑎𝑛𝑘 ∗
𝑚𝑙𝑠𝑎𝑚𝑝𝑙𝑒

𝑚𝑙𝑏𝑙𝑎𝑛𝑘

− 𝑁𝐾𝐶𝑙 ∗
𝑚𝑙𝐾𝐶𝑙𝑠𝑎𝑚𝑝𝑙𝑒

𝑚𝑙𝐾𝐶𝐿

 Equation 6-2 

Incomplete outgassing of NH4
+ in the first reaction step resulted from high NH4

+ concentrations in 

the samples relative to NO3
- concentrations. Additional calculations were performed to correct the 

measured at%15N in NO3
- samples for this surplus N. Therefore, standard samples containing either 

labeled NH4+ and unlabeled NO3-, or vice versa, were used. The amount of N in the measured sample 

stemming from the NH4+ standard was calculated from mass balance and mixing equations. The 

correlation between this N surplus and the N input was used as a correction function for the 

samples (Equation 6-3). 

𝑁𝑁𝐻4 =
𝑁𝑚𝑖𝑥 ∗ (𝑎𝑡%𝑚𝑖𝑥 − 𝑎𝑡%𝑁𝑂3) − 𝑁𝑏𝑙𝑎𝑛𝑘 ∗ (𝑎𝑡%𝑏𝑙𝑎𝑛𝑘 − 𝑎𝑡%𝑁𝑂3)

(𝑎𝑡%𝑁𝐻4 − 𝑎𝑡%𝑁𝑂3)
 Equation 6-3 

Many of the Nmin samples from 2250N and 5000N levels contained much higher amounts of NH4+ 

than NO3
-. As the carryover of NH4

+ into the NO3
- sample was too high to determine the at%15N of 

the NO3
- correctly, even with the abovementioned correction, 15N abundance of NO3

- in these 

samples was measured according to the procedure described in Stange et al. (2007): NO3- was 

reduced to NO by vanadium chloride (V(III)Cl3), and NO was used as measurement gas. 

Measurements were performed with a quadrupole mass spectrometer (GAM 200, 

InProcessInstruments, Bremen, Germany). According to the measured standard solutions, 

precision was 0.05 at%15N.  

6.3.5. Quantification of N-transformation processes  

 Determination of nitrification rates 

Net nitrification was calculated as the change in NO3- content over time (difference between initial 

and final sampling). Gross nitrification (ng) rates were determined with the 15N pool dilution 

approach  and thus calculated from at%15N in NO3- of soil samples taken before filling of soil cores 

(day 0), from the additional soil cores sampled at day 10 and at the end of measurements (day 21) 

using Equation 6-4 (after Davidson et al. 1991).  

𝑛𝑔 =
𝑐1 − 𝑐2

𝑡2 − 𝑡1

∙
ln (

𝑎𝑡%1

𝑎𝑡%2
)

ln (
𝑐1

𝑐2
)

 Equation 6-4 

With c=concentration, t=time of sampling, and numbers indicating initial (1) and final (2) values. 

Assumption for the applicability of this equation are 1) constant process rates during the 

incubation, 2) negligible isotopic discrimination, 3) uniform distribution of 15N label within the soil 

and the NO3
- pool, and 4) no remineralization of the assimilated 15N (Davidson et al. 1991; Murphy 

et al. 2003). Values of at%15N of NO3
- for N2O sampling dates without soil sampling were calculated 

from the same equation solved for at%2 to allow calculation of NO3
- derived N2O for each gas 

sampling event, applying it to sampling times and NO3- contents in soil as derived from net 

nitrification rates.  

 Identification of N2O source processes  

Different approaches were used to calculate the contribution of nitrification (fN) and denitrification 

(fD = 1 - fN) to total N2O production. All eight measurement dates were used for calculation of 
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cumulated fluxes with the acetylene inhibition technique (0). For isotope-based methods (6.3.5.4 - 

6.3.5.6), only four dates were used and fN for the whole incubation period was then calculated as 

the weighted average over these sampling dates. Table 6-1 gives an overview of the methods used 

and the processes they address.  

 

 

 

Table 6-1: Overview of methods used for source partitioning of N2O and the targeted processes or N2O 
sources they can distinguish from other processes.  

 Method Distinguished process Remarks 

  Target process  Other processes  

(a) C2H2 inhibition N2O from autotrophic 
nitrification  
(and, resulting from inhibited 
NO2-/ NO3- formation: 
nitrifier denitrification and 
coupled nitrification 
denitrification) 

Other N2O production, 
including denitrification and 
heterotrophic nitrification.  

This 
apportionment 
was used also in 
(Zhu et al. 
2013) 

(b) 15N tracing 
with NO3- 
labeling based 
on extracted 
bulk 15NO3- 

N2O from labeled NO3-  pool 
in case bulk NO3- pool is 
identical to active 
denitrifying pool ; 
includes denitrification 
coupled to nitrification  

NH2OH oxidation,  
nitrifier denitrification; 
heterotrophic nitrification 

- 

(c) 15N tracing 
with NO3- 
labeling based 
on the non-
equilibrium 
approach 

N2O from labeled NO3-   pool 
instantaneously undergoing 
denitrification, includes 
denitrification coupled to 
nitrification only under ideal 
homogeneity of pools and 
processes 

NH2OH oxidation, nitrifier 
denitrification; heterotrophic 
nitrification 

- 

(d) isotopomers N2O from NH2OH oxidation 
(enzymatic and abiotic)/ 
fungal denitrification 

Nitrifier denitrification, 
bacterial denitrification, 
including denitrification 
coupled to nitrification(in 
case N2O reduction is low 
and has thus negligible 
impact on isotopomers) 

Unknown 
apportionment 
of heterotrophic 
nitrification 

(e) Difference 
approach 

Fertilizer induced fluxes Background flux (e.g. 
nitrification of initial or 
mineralization-derived NH4+,  
denitrification of initial and 
added tracer NO3-) 
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 Acetylene inhibition approach to determine the fraction of N2O from autotrophic 

nitrification (a) 

With C2H2 inhibition, fN (contribution of autotrophic nitrification) of N2O production was calculated 

from the difference in N2O production between soil cores of the 15N and 14N batches (no 

inhibition) and the C2H2 batch (where the AMO was inhibited by C2H2 addition to the headspace).  

 15N tracing approach using at%15N of N2O and of extracted NH4+ and NO3- (b) 

To calculate fN and fD with the 15N tracer approach of Stevens et al. (1997), we assumed that the N 

pools of these processes were NH4+ and NO3-, respectively. Therefore, the soil NO3 -pool labeled 

with 15N (KNO3) and the isotopic abundance of 15N in soil emitted N2O (aN2Osoil) were compared to 

the 15N abundance in soil NH4+ (aNH4+) and NO3- (aNO3-). If soil derived N2O was emitted into an 

enclosure initially free of N2O, fN and fD could be calculated from the mass balance using Equation 

6-5.  

𝑓𝑁 = 1 − 𝑓𝐷 =
𝑎𝑁2𝑂𝑠𝑜𝑖𝑙 − 𝑎𝑁𝑂3

𝑎𝑁𝐻4 − 𝑎𝑁𝑂3

 Equation 6-5 

As our gas flux contained background N2O, the 15N abundance in the soil derived N2O (aN2Osoil) had 

to be corrected for background N2O using with Equation 6-6.  

𝑎𝑁2𝑂𝑠𝑜𝑖𝑙 =
𝑎𝑁2𝑂𝑠𝑎𝑚𝑝𝑙𝑒 ∙ 𝑐𝑁2𝑂𝑠𝑎𝑚𝑝𝑙𝑒−𝑎𝑁2𝑂𝑏𝑔𝑑 ∙ 𝑐𝑁2𝑂𝑏𝑔𝑑

𝑐𝑁2𝑂𝑠𝑎𝑚𝑝𝑙𝑒−𝑐𝑁2𝑂𝑏𝑔𝑑

 Equation 6-6 

With the application of Equation 6-5, one assumes that the measured 15N abundance in the 

extracted NO3- represents the 15N abundance in the N pool undergoing denitrification.  

The impact of isotope fractionation during N2O formation on the estimation of fN and fD is assumed 

to be negligible, since the NO3- pool was always highly enriched compared to background N (2–5 

at%15N measured in NO3
-). Initial and final 15N abundance in NH4

+ was always at natural abundance 

(Appendix, Table A 8) and recycling of immobilized NO3- thus negligible (Mathieu et al. 2007).  

 

 15N tracing approach based on non-equilibrium distribution of N2O isotopologues 

In addition to Equation 6-5, we used the non-equilibrium approach to calculate the 15N enrichment 

of the N2O producing NO3- pool (a2) as well as the fraction of pool-derived N2O (Bergsma et al. 2001; 

Spott et al. 2006). This procedure is based on the assumption that within N2O from a single source 

of a given 15N abundance, the N2O isotopologues of distinct number of 15N substitutions (14N14NO, 

[14N15NO + 15N14NO] and 15N15NO) follow a binomial distribution. When N2O from different pools 

with different 15N abundance is mixed, the distribution deviates from the binomial. Given the 15N 

abundance in one of the pools (here background, a1) and in the resulting mixture (am), the 15N 

abundance in the second pool (a2) and the contribution of N2O originating from both pools (fD and 

fN) can be calculated. In our experiment, the 15N abundance in the background air and the N2O 

derived from NH4+ were assumed identical (i.e., with negligible deviation from natural abundance) 

and they were thus treated as one pool. Hence, the 15N abundance in the NO3- from which N2O was 

produced could be calculated (Spott et al. 2006) using Equation 6-7 and Equation 6-8.   
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𝑎2 =
𝛼𝑚 − 𝑎1 ∗ 𝑎𝑚

𝑎𝑚 − 𝑎1

 Equation 6-7 

With 

𝛼𝑚 =
𝑅30

𝑅28 + 𝑅29 + 𝑅30  Equation 6-8 

To use the previous equation for N2O isotopologues differing in the number of 15N substitution 

(14N14NO, 14N15NO+15N14NO; 15N15NO) isotope ratios representing intact N2O molecules (45R = 

(14N15N16O+15N14N16O+14N14N17O)/14N14N16O; 46R = (15N15N16O+14N14N18O)/14N14N16O)) must be 

converted to respective ratios excluding the oxygen of N2O using Equation 6-9 and Equation 6-10, 

with the assumptions that 18R = 0.0020052 and R17 = 0.0073 (Bergsma et al., 2001):  

𝑅30 = 𝑅46 − 𝑅17 ∙ 𝑅29 − 𝑅18  Equation 6-9  

𝑅29 = 𝑅45 − 𝑅17  Equation 6-10 

The fraction of NO3--derived N2O to total N2O (f*NO3) in a sample was then calculated with  

𝑓𝑁𝑂3
∗ =

𝑎𝑚 − 𝑎1

𝑎2 − 𝑎1

 Equation 6-11 

and the fraction of NO3--pool derived N2O (i.e. denitrification derived) to soil-derived N2O with  

𝑓𝐷 =
𝑓𝑁𝑂3

∗

𝑓𝑠𝑜𝑖𝑙

 Equation 6-12 

where fsoil is calculated from the difference in N2O concentration between sample and background 

air  

𝑓𝑠𝑜𝑖𝑙 =
𝑐𝑠𝑎𝑚𝑝𝑙𝑒 − 𝑐𝑏𝑎𝑐𝑘𝑔𝑟𝑜𝑢𝑛𝑑

𝑐𝑠𝑎𝑚𝑝𝑙𝑒

 Equation 6-13 

In contrast to the conventional 15N tracing approach (b) that neglects the non-random distribution 

of N2O isotopologues (3.6.3), the non-equilibrium approach (c) directly determines the 15N 

enrichment of the labeled N pool that is instantaneously undergoing denitrification. Both 

approaches must yield identical results in case of perfect pool homogeneity.  

 

 Isotopomer approach using 15N site preference and δ18O of N2O  

To estimate the fraction of N2O derived from the NH2OH-N2O pathway of nitrification (fNH2OH), we 

analyzed SP and δ18O values of gas samples and used an isotopomer mixing approach similar to, 

e.g., Zou et al. (2014) but with δ18O instead of δ15N as suggested earlier (Well et al. 2012). Input 

data, i.e. δ18O and SP in soil-derived N2O, were calculated analogously to 15N abundance with 

Equation 6-6. The isotopomer map of SP vs. δ18O (Figure 6-1) shows the calculation of fNH2OH and fD 

with this approach. Endmember areas are given for bacterial denitrification and nitrification, and 

mixing lines represent values for N2O which would result from varying contributions of the two 

processes. The mixing lines were calculated from ranges reported for SP and δ18O of bacterial 

denitrification (including nitrifier denitrification) and nitrification (hydroxylamine oxidation), 
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respectively. The values characteristic for soil incubation not influenced by N2O reduction were 

selected (bacterial denitrification: SPD  -10 to 0 (Sutka et al. 2006; Toyoda et al. 2005); δ18OD: +10 

to +20  (Lewicka-Szczebak et al. 2014; Snider et al. 2013); bacterial nitrification: SPN: +33 to +37, 

δ18ON +40 to +50 (Heil et al. 2014; Sutka et al. 2006)). Additionally, a mixing line from average 

endmember values was calculated (mean mixing line). For δ18O endmember values we used the 

range suggested by Köster et al. (2015), which excluded extreme values from pure cultures that are 

not considered to be representative for soil emitted N2O, as they showed more variable and lower 

O-exchange with water compared to soil incubations (Köster et al. 2015).  

The maximum difference in fN calculated for individual sample resulted from using minimum and 

maximum endmember values, respectively (mixing lines shown in Figure 6-1). To account for N2O 

reduction to N2, a reduction line was calculated, using the average of reported reduction slopes 

(0.35; (Jinuntuya-Nortman et al. 2008; Lewicka-Szczebak et al. 2015; Ostrom et al. 2007; Well & 

Flessa 2009) and SP and δ18O values of N2O of each sample as origin of the reduction line. The point 

of interception between the sample-specific reduction line and the mixing line gave the estimated 

initial isotope values (SP*, δ18O*) of produced N2O before reduction. If SP* was higher than the 

measured SP value of the sample, the measured value was used, since N2O reduction was assumed 

to be negligible. The fraction of nitrification-derived N2O to total N2O produced (fNH2OH in this case) 

was then calculated from SP values (or SP*) and SP values of nitrification and denitrification as 

endmembers (Equation 6-14). This calculation was done for maximum, minimum and mean mixing 

lines, respectively.  

𝑓𝑁𝐻2𝑂𝐻 = 1 − 𝑓𝐷 =
𝑆𝑃 − 𝑆𝑃𝐷

𝑆𝑃𝑁 − 𝑆𝑃𝐷

 Equation 6-14 

 

 

Figure 6-1: Isotopomer map showing the estimation of fN from SP and δ18O in N2O. Top and bottom 
boxes indicate the expected ranges for bacterial denitrification (values and references see text in section 
6.3.5.6) and nitrification. Mixing lines were drawn between minimum and maximum values for both SP and 
δ18O of the respective processes, and the reduction line was then placed through a (in this scheme fictional) 
sample value.  
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 Fertilization induced fluxes 

As all treatments received the same amount of NO3-, difference between unfertilized and 

NH4+ - fertilized treatments is another method to calculate the amount of N2O produced from added 

NH4+. Besides N2O directly produced during nitrification, also coupled nitrification-denitrification 

is included in the amount attributed to NH4+ additions. The approach is based on the assumption of 

increasing N2O emission with NH4
+ additions, which does not hold true when N2O production is 

inhibited at increasing NH4
+ content in soil and has to be kept in mind.    

6.3.6. N2O yield from nitrification 

The N2O yield of nitrification was calculated from the total N2O flux, the ratio of nitrification-derived 

N2O determined by the C2H2 inhibition approach and the gross nitrification rate (ng) of the 

respective N level.  For other methods of source partitioning, values were not available for all dates. 

As fN was measureable with these approaches mainly at days with high N2O emission but the gross 

nitrification is an average over the incubation period, N2O yields would be biased. However, as 

nitrification rates are the same irrespective to the source partitioning approach, the N2O yield 

would differ only according to differences in fN.   

𝑁2𝑂 𝑦𝑖𝑒𝑙𝑑 =
𝑓𝑁 ∙ 𝑁2𝑂𝑓𝑙𝑢𝑥

𝑛𝑔

 Equation 6-15 

6.3.7. Statistics 

Statistical analyses were performed with the software R (version 3.0.2, R Core Team 2013). To tests 

for differences in concentrations and (cumulative) emissions between treatments, analysis of 

variance (ANOVA) was performed, followed by pairwise comparisons between groups (t-tests) 

with adjustments correcting for multiple testing. Therefore, the fdr method was used (Benjamini & 

Hochberg 1995; Benjamini & Yekutieli 2001). Effects were considered significant if p < 0.05. 

Uncertainty values given represent one standard deviation for measured parameters, and standard 

errors calculated using Gauss’s error propagation for calculated values.  

 

 Results 

6.4.1. Nitrification  

Soil NO3- content was similar at all N levels and batches before incubation. In the C2H2 batch, NO3- 

content did not increase during the incubation at 0N, 450N and 5000N levels, and was only slightly 

increased in soil cores of 1000N and 2250N (Table 6-2).  

In both 15N and 14N batches, NO3
- content increased at all but the 5000N levels during the 

incubation. Highest net nitrification occurred at the 450N level, followed by the 1000N level. At 

2250N and 0N levels, the increase in NO3
- content was small (Table 6-2). Soil NO3

- contents in the 

additional cores of the 15N batch sampled at day 10 showed that nitrification was faster in the first 

half of the experiment (Table 6-2 and Table 6-3).  
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Gross nitrification was in the same range as net nitrification and highest in the 450N level of 14N 

and 15N batches as well. With increasing initial NH4
+ content, gross nitrification also decreased, 

and nitrification was faster in the first than the last 10 days of incubation (Table 6-3).   

 

Table 6-2: NO3- concentrations in soil before and after incubation. The given values represent mean and 
standard deviation per treatment. For day 10, separate soil cores in the 15N batch were used for soil analysis 
and gas sampling. Concentrations were tested for significant differences between batches and N levels within 
sampling sampling days. Treatments with the same letters within time of sampling are not significantly 
different (i.e. p > 0.05). Stars indicate significant increase in NO3- content compared to the preceding 
sampling, the star in brackets (*) denotes statistical difference between the terminal (day 21) and initial (day 
0) sampling only. (* p<0.05;***: p<0.001, p-values adjusted for multiple comparison ). The single value for 
14N batch, day 0 is the expected value calculated from initial NO3- content of soil plus added NO3- from KNO3, 
as samples were mixed up during preparation. 

 

 

Table 6-3: Nitrification rates in different batches. For 14N and C2H2 batches, only net nitrification rates 
could be calculated. For the 15N batch, gross nitrification is given for the whole incubation period (days 0-
21) and for the periods between days 0 and 10, and days 10 and 21, respectively. Values are mean ± standard 
error of gross rates (n=5 for day 0 and n=4*3 for days 10 and 21); for the period between day 0 and 10, errors 
were calculated from Gauss’ error propagation. 

N level  net nitrification  gross nitrification 

  mg N (kg soil)-1 d-1  mg N (kg soil)-1 d-1 

  15N batch 14N batch C2H2 batch  15N batch 

  days 0-21  days 0-21 days 0-10 days 10-21 

0N    0.39 ± 0.11   0.18 ± 0.03 - 0.05 ± 0.02  0.29 ± 0.04  0.37 ± 0.06 0.24 ± 0.07 

450N    5.12 ± 0.36   5.74 ± 0.24 - 0.06 ± 0.07  4.96 ± 0.51 4.87 ± 0.48 5.99 ± 1.29 

1000N   2.51 ± 0.33  2.36 ± 0.04  0.52 ± 0.27  1.96 ± 0.13 2.30 ± 0.26 1.85 ± 0.14 

2250N   0.80 ± 0.19  0.75 ± 0.07  0.38 ± 0.45  0.82 ± 0.06 1.15 ± 0.18 0.64 ± 0.08 

5000N  - 0.01 ± 0.00 - 0.21 ± 0.03 - 0.03 ± 0.04  0.10 ± 0.01 0.17 ± 0.08 0.06 ± 0.02 

 

6.4.2. pH (CaCl2) 

Values of pH measured in CaCl2 solution are given in Table 6-4. They were determined from soil 

samples of each N level before filling of incubation vessels and from each core at day 21. 

Acidification of soil was significant in 450N and 1000N levels of both 15N and 14N batches. A slight 

increase in pH was measured at the 5000N level. No change in pH occurred in the C2H2 batch.  

N level  NO3- content in soil 

  mg NO3-N (kg soil)-1  mg NO3-N (kg soil)-1  mg NO3-N (kg soil)-1 

  15N batch  14N batch  C2H2 batch 

  day 0 day 10 day 21  day 0 day 21  day 0 day 21 

0N  27.6 ± 1.4 bc 34 ± 3 ab 36 ± 3 bcd   26+ 32 ± 1 ace   27.9 ± 0.8 bc 27 ± 1 ac 

450N  24 ± 2 b 83 ± 15 d*** 134 ± 14 g ***  28 ± 7 bc 151 ± 5 h ***  32 ± 1 c 31 ± 2 acd 

1000N  22 ± 2 ab 54 ±  9 c *** 76 ± 13 f ***  26 ± 6 bc 77 ± 1 f ***  = 14N 37 ± 6 cd 

2250N  23 ± 4 ab 38 ±  2 b  40 ± 7 de (*)  28 ± 1 bc 44 ± 5 d  *  = 14N 36 ± 12 acd 

5000N  23 ± 2 ab 26 ± 1 a 23 ± 1 ab  27 ± 3 bc 23 ± 2 a  = 14N 27 ± 2 ac 
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Table 6-4: Values of pH, mean and standard deviation (n=4 per N level and batch).   

N level  pH pH 

  day 0 day 21  day 0 day 21 

  15N batch  14N+C2H2 batches 14N batch C2H2 batch 

0N  6.4 ± 0.0 6.2 ± 0.1     6.3 ± 0.1 6.2 ± 0.1 6.2 ± 0.1 

450N 
 

6.2 ± 0.0 5.3 ± 0.1***  6.2 ± 0.0 5.2 ± 0.1*** 6.2 ± 0.0 

1000N 
 

6.3 ± 0.0 5.9 ± 0.0***  6.3 ± 0.0 6.0 ± 0.1*** 6.4 ± 0.0 

2250N 
 

6.4 ± 0.0 6.5 ± 0.4***  6.5 ± 0.2 6.4 ± 0.0*** 6.5 ± 0.0 

5000N 
 

6.4 ± 0.0 6.7 ± 0.2***  6.4 ± 0.1 6.8 ± 0.3*** 6.6 ± 0.0 

 

6.4.3. N2O fluxes 

 Flux dynamics 

Fluxes of N2O from soil cores of 0N were always below 40 ng N2O-N kg-1 h-1 during the first two 

weeks and increased to 111 and 163 ng N2O-N kg-1 h-1 in single soil cores of non-acetylene addition 

batches (14N and 15N) in the third week. Lowest fluxes occurred in the 5000N level in all batches; 

fluxes in 2250N were slightly (but insignificantly when cumulated) higher. Temporal dynamics 

were also similar in 14N and 15N batches, with high fluxes at days 2 and 3, lower fluxes at days 6-

14 and higher emission again in the third week of incubations (Figure 6-2). The initial peak was 

missing in most soil cores of the C2H2 batch and single soil cores of 0N or 5000N levels of 14N and 

15N batches.  

 

Figure 6-2: N2O fluxes at different sampling dates in a) 14N batch with addition of unlabeled NO3-, b) 15N 
batch with addition of 12.5at%15N labeled NO3-, and c) C2H2 batch with unlabeled NO3- addition and 
0.01vol% acetylene in the headspace gas. Colors and symbols denote different N levels (see legend in c). Error 
bars show one standard deviation (n=4). Please note the different scale of the y-axis in c).  

 

 Total cumulative fluxes  

Cumulated fluxes of N2O are shown in Table 6-5. Highest N2O fluxes were measured in the 450N 

level of both the unlabeled (14N) and 15N-labeled (15N) batches. N2O fluxes were low and not 

statistically different between N levels in the C2H2 batch. Cumulated fluxes within N levels of the 

14N and 15N batches were comparable except for the 1000N level where fluxes of the 14N batch 

were significantly lower than those of the 15N batch. This difference was mainly due to higher 

fluxes in 15N soil cores in the third week of incubation (see also Figure 6-2).  
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Table 6-5: Cumulated N2O fluxes from soil cores over the 21 days incubation period. Values given are 
means ± standard deviation (n=4). N2O fluxes are not significantly different (p>0.05) if they share the same 
letter.  

N level  µg N2O-N kg-1 

  15N batch 14N batch C2H2 batch 

0N     9.0 ± 12.3 ab    8.6 ±   5.6 ab 1.3 ±  1.0 a 

450N  98.1 ± 12.8 d 83.9 ±   9.1 d 7.2 ±  4.1 ab 

1000N  43.1 ± 13.2 c 20.4 ±   2.4 b 5.7 ±  3.7 ab 

2250N  14.6 ± 2.6  ab 12.0 ± 1.2  ab 1.7 ± 1.1  a 

5000N    4.0  ± 1.0 ab    2.5  ± 0.1 a 0.7  ± 0.1 a 

 

 CH4 uptake and emission 

Whereas in soil cores of the 0N level without C2H2 addition 8 µg CH4-C kg-1 (15N) and 22 µg CH4-C 

kg-1 (14N) were oxidized throughout the incubation, all other treatments showed either low CH4 

uptake (at most –3 µg CH4-C kg-1) or low emission (up to 0.8 µg CH4-C kg-1). The inhibiting effect of 

both C2H2 and high NH4+ concentration on oxygenases (AMO and MMO) can also be shown by CH4 

fluxes (Figure 6-3). 

 

Figure 6-3: CH4 fluxes at different sampling dates in a) 14N batch with additions of unlabeled NO3-, b) 15N batch with 
addition of 12.5 at%15N labeled NO3-, and c) C2H2 batch with unlabeled NO3- addition and 0.01vol% acetylene in the 
headspace gas. Colors and symbols denote different N levels (see legend in c). Error bars show one standard deviation 
(n=4). Please note the different scale of the y-axis in c).  

 

6.4.4. Source partitioning  

The fractions of N2O attributed to nitrification with the different approaches applied are shown in 

Table 6-6. In the appendix, results for fN are given for each single measurement day (Table A 9). N2O 

production in the C2H2 batch was less than 30% of N2O from other batches; the C2H2 inhibition 

approach (a) thus implies that the majority of the produced N2O originated from autotrophic 

nitrification (more than 70% from all treatments). 

The 15N tracer approach using at%15N in extracted bulk NO3
- (b) indicated between 44% (1000N) 

and 79% (0N) of N2O fluxes to originate from the NO3
- pool and thus only a small contribution of 

NH4
+ oxidation in 0N and approx. 32% - 56% at N levels with NH4

+ addition (Table 6-6).  

The fraction of soil-derived N2O in samples (fsoil) was between 0.03 and 0.89. For calculations with 

the non-equilibrium approach, values with fsoil < 0.55 were discarded. This was necessary because 

by calculation of 30R from Equation 6-8 constant δ18O values are assumed. Since the major part of 
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46R was from 14N14N18O in most samples, and a minor only from 15N15N16, uncertainty in a2 resulted 

from variability in δ18O of the produced N2O. As 18R calculated from soil derived N2O ranged from 

0.002025 to 0.002126 in samples with fsoil > 0.55, the assumption of constant δ18O could have lead 

to an overestimation of up to 0.6 at%15N for a2. The inaccuracy in a2 increased at lower fsoil and 

reached up to 2 at%15N when fsoil < 0.1. The calculated 15N abundance of the NO3
- pool producing 

N2O (a2) was between 6.6 and 15 at%15N, with most values below the 15N abundance of added NO3
- 

(12.5 at%15N). The few higher values are attributed to the uncertainty in δ18O of N2O described 

above. Application of the non-equilibrium approach resulted in fN of 0.90±0.17 in 450N over the 

whole incubation period, with decreasing contribution of NO3- over time (from 0.33% ± 0.08% at 

day 2 to 5% ± 11% at day 21; Table A 9 in the appendix). For 1000N and 2250N, fsoil was high enough 

for calculation of fN only at days 2, 3, and 21 (1000N only), and fN did not substantially differ from 

values at 450N if compared for the same day of measurements.  

Values of δ18O and SP in soil derived N2O are shown in Figure 6-4. Values of δ18O were highest for 

samples of the 0N level. The shift to substantially higher δ18O in 0N samples cannot be explained 

with mixing of nitrification and denitrification derived N2O, and is considered to be indication of 

N2O reduction. Such a shift has only been observed in samples of the 0N level, where no NH4
+ was 

added. Depending on the endmember signatures used for calculations, fNH2OH varied between 44 

and 96%. Highest SP values were measured in samples of the 450N level, but all samples (except 

from 0N) were close together (Figure 6-4). Using mean values for SP and δ18O of nitrification and 

denitrifier denitrification, 77% ± 15% of N2O were produced from NH2OH oxidation at the 450N 

level. At day 21, when samples of 0N and 1000N could be compared to 450N, fNH2OH was 0.51 ± 0.14 

in 0N, 0.77 ± 0.06 in 450N and 0.60 ± 0.10 in 1000N, respectively, indicating slightly lower 

contribution of nitrification (NH2OH) to N2O production in the 0N and 1000N levels (Appendix, 

Table A 9).  

 

 

Figure 6-4: Site preference (SP) and δ18O in N2O produced at different N levels. Stars denote average 
values per N level. Concentration of N2O was too low to derive δ18O and SP in samples from the 5000N 
level.  
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6.4.5. N2O yield of nitrification  

The ratio of N2O from nitrification (calculated from C2H2 inhibition) and NO3- production from 

nitrification (N2O yield = N2Onit/NO3-nit) was between 0.07% and 0.15%. In 0N and 5000N levels, 

N2O yields were highly uncertain, as both N2O production and nitrification were low. They were 

slightly higher compared to the other N levels, but the difference was small. No trend in N2O yield 

was observed between 450N and 2250N (Table 6-7). 

  

Table 6-6: Contribution of nitrification to N2O fluxes (fN) derived from the different methods applied. 
Concentration was too small in samples from 5000N to measure isotopomers of N2O with sufficient precision. 
The number of individual samples (n) used to calculate means and standard errors, and the days they were 
taken are given above the respective values. SPmean, SPmin and SPmax denote the respective mixing lines 
in Figure 6-1 that were used for calculation. The target processes of the respective methods are given in 
brackets below the method (NN=autotrophic nitrification, ND=nitrifier denitrification, CND=coupled 
nitrification denitrification) 

 

Table 6-7: N2O yield from nitrification calculated from fN of the C2H2 inhibition approach.  

Method 
 fraction of nitrification derived N2O(fN) 

   0N 450N 1000N 2250N 5000N 

(a) 
Acetylene inhibition 
(NN, ND, CND)  

n=32 
all days 

n=32 
all days 

n=32 
all days 

n=32 
all days 

n=32 
all days 

 14N batch  0.86 ± 0.90 0.93 ± 0.09 0.87 ± 0.21 0.88 ± 0.13 0.83 ± 0.16 

 15N batch  0.85 ± 0.44 0.91 ± 0.08 0.72 ± 0.12 0.86 ± 0.08 0.73 ± 0.04 

        

(b) 

15N tracer approach 
based on extracted 
bulk NO3- (NN, ND)  

n=3 

day 21 

n=23 

days 2,3,14,18,21 

n=18  

days 2,3,6,14,21 

n=18  

days 2,3,6,14,21 

n=8 

days 2,3 

 15N batch  0.21 ± 0.20 0.53 ± 0.10 0.32 ± 0.08 0.56 ± 0.15 0.54 ± 0.10 

        

(c) 

15N tracer non-
equilibrium approach  
(NN+ND(+CND))  

n=3 
days 21 

n=23 
days 2,3,6,14,18,21 

n=12 
days 2,3,21 

n=7 
days 3 none 

 15N batch  0.71 ±  0.72 0.90 ± 0.17 0.82 ± 0.17 0.70 ± 0.14 - 
        

(d) 
Isotopomer approach 
(NN)  

n=3 
day 21 

n=19 
days 2,3,14,18,21 

n=11 
days 2,3,21 

n=4 
day 3 none 

 SPmean   14N batch  0.71 ± 0.19 0.77 ± 0.15 0.58 ± 0.12 0.54 ± 0.02 - 

 SPmin     14N batch   0.79 ± 0.21 0.81 ± 0.17 0.65 ± 0.12 0.63 ± 0.03 - 

 SPmax     14N batch  0.63 ± 0.17 0.70 ± 0.15 0.50 ± 0.11 0.45 ± 0.02  
        

(e) 
Difference approach 
(NH4+ induced N2O)  

not 
applicable 

n=32 
all days 

n=32 
all days 

n=32 
all days 

n=32 
all days 

 14N batch  - 0 0.90 0.58 0.29 

 15N batch  - 0 0.90 0.79 0.38 
 C2H2 batch  - 0 0.82 0.77 0.25 
        

   N2O yield of nitrification 

   gN2O (NO3--N)-1 *100 

   0N 450N 1000N 2250N 5000N 

   15N batch  0.12 ± 0.10 0.09 ± 0.01 0.09 ± 0.02 0.07 ± 0.01 0.15 ± 0.02 
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 Discussion 

6.5.1. Inhibition of nitrification 

 Did inhibition of nitrification take place?  

Decreasing net and gross nitrification rates with increasing N level clearly show inhibition of 

nitrification at NH4+ contents higher than 450 mg N kg-1 d.w. soil, with concurrent inhibition of N2O 

production (Table 6-3 and Figure 6-2). At the highest (5000N) level, the NO3- content even 

decreased during the incubation, and gross nitrification was negligible. This pattern is in 

accordance with earlier studies on inhibition of nitrification at high NH4+ concentrations (Harada 

& Kai 1968; Wetselaar et al. 1972). However, some N2O was still emitted at the 5000 N level. As N2O 

production was further reduced with the addition of C2H2, the majority of this small production was 

attributed to nitrification (Table 6-5 and Table 6-6). Besides incomplete inhibition from high salt 

levels, one possible explanation for these small fluxes might be the existence of microsites within 

the soil matrix that had not been fully reached by the added NH4+, possibly due to low diffusivity of 

NH4
+ in the relatively dry soil.  

The inhibiting effect of high NH4+ concentration is also reflected in the change of pH values in soil, 

with acidification in the treatments with substantial nitrification rates but only small changes in 

0N, 2250N and 5000N levels. The inhibition of CH4 oxidation in all treatments that received NH4+ 

fertilizer showed the even higher sensitivity of CH4 oxidation to factors inhibiting nitrification 

(either high NH4+ content specifically, or via salinity). Inhibition of CH4 oxidation at the 0N level in 

the C2H2 batch furthermore emphasizes the proper functioning of inhibition by C2H2 addition.  

 Gross nitrification rates 

The measured gross nitrification rates were well in the range of rates summarized by Stange and 

Neue (2009) for agricultural soils. Gross rates determined by isotope pool dilution were very 

similar to measured net nitrification rates (from change in NO3- content in soil) indicating negligible 

NO3- assimilation and denitrification losses. The difference between the first and the second half of 

incubation (day 0-10 and day 10-21, respectively), with higher rates in the first phase in all but the 

450N treatment, shows that rates weren’t constant with time. Time courses of N2O emission 

support variable nitrification rates, with high initial emission, a subsequent low emission phase 

and increasing emission again in the third week of incubation (Figure 6-2). Constant rates are, 

however, a prerequisite for applicability of the equation used, and underestimation of rates is to be 

expected when this condition is not met (Nason & Myrold 1991). Gross rates were in fact slightly 

(but insignificantly) lower than net rates in most cases in this experiment. Still, underestimation of 

gross nitrification would imply that large amounts of NO3
- were consumed by denitrification or NO3

- 

assimilation. Denitrification rates were low in this experiment, and in the absence of plants and the 

presence of high NH4
+ concentrations, large NO3

- assimilation rates seem also implausible (McCarty 

& Bremner 1992; Rice & Tiedje 1989). At low NH4
+ contents, however, Burger and Jackson (2003) 

measured NO3
- immobilization rates as high as one third of nitrification, which is in the range of 

error at our 0N level.  
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6.5.2. Sources and processes of N2O production 

There was a large discrepancy of 40% (450N, 2250N) to > 60% (0N) in the fraction of nitrification 

derived N2O between the 15N tracer method using extracted bulk NO3- (b) and the C2H2 inhibition 

approach in this study. Estimation of fNH2OH with the isotopomer approach indicated that a lower 

share of N2O was derived from nitrification (in this case NH2OH oxidation) than fN measured by the 

C2H2 inhibition approach (that includes nitrifier denitrification), but a higher share than the NH4
+ 

derived flux calculated with the 15N tracer approach using extracted bulk NO3
-. 

In contrast, a study by Well et al. (2008), which was also conducted under nitrifying conditions, 

showed good agreement between the C2H2 inhibition and a 15N tracer approach. However, they 

calculated fN for the second day of incubation only, and at this time the difference between 

approaches was also small in our incubations. To dissolve the inconsistency, it hast to be kept in 

mind that fN from different approaches comprises different sources and processes (Table 6-1). If 

autotrophic nitrification (NH2OH - N2O pathway) and denitrification of homogeneously mixed 

(initial + fertilizer) NO3- were the only processes contributing to N2O production, all three 

approaches should have given consistent results. That this is a very strong simplification of actual 

processes in soil, became clear in numerous studies over the last decade (van Groenigen et al. 

2015). 

While the two methods using 15N tracer (b and c) should yield similar results if preconditions of the 

methods are fulfilled, deviations of the C2H2 inhibition and the isotopomer approach (a and d) from 

(b) and (c) are an indication of coexistence of different pathways of N2O production from NH4+. In 

the following we will first address the difference between the two tracer approaches used, as they 

showed the highest inconsistencies (6.5.3). Then, different pathways of N2O production from NH4+ 

will be discussed (6.5.4). Finally, our findings will be converged with respect to the hypotheses of 

decreasing fN with time and N level.  

6.5.3. NO3-derived fluxes 

The conventional 15N tracer approach (b) using measured 15N abundance in extracted (bulk) NO3- 

(+NO2-), indicates a much higher contribution of NO3- derived N2O than the C2H2 inhibition approach 

(a). Results from the 15N non-equilibrium approach (c), in contrast, gave fN very similar to the C2H2 

inhibition approach. This comes from the large discrepancy between 15N abundance in NO3- from 

soil extracts (Appendix, Table A 8) and the active N2O producing NO3
- pool (a2) as calculated with 

the non-equilibrium approach (Bergsma et al. 2001; Spott et al. 2006) (Appendix, Table A 7). The 

discrepancy even increased during the experiment – while 15N in the extracted bulk NO3- pool was 

diluted by nitrification, a2 increased over time. At day 2, a2 was only slightly higher than the 15N 

abundance in the bulk NO3- pool (6.6 ± 0.5 at%15N vs. 5.3 at%15N in 450N level); at day 21 this 

difference was much higher (10.6 ± 0.9 at%15N vs. 1.3 ± 0.1 at%15N). Consequently, fN also differed 

when it was calculated from the non-equilibrium approach.  

These results imply two different NO3
- pools in soil, governed by different processes. The first pool 

is the added NO3
- (12.5 at%15N enriched KNO3) plus at least initially the old NO3

- contained in soil 

(natural abundance), the second was built up from nitrification of the unlabeled NH4
+. There are 

two, presumably concurrent, conceivable reasons for separate NO3
- pools in this experiment. First 

(1), inhomogeneities from tracer application cannot be completely ruled out, despite fine spraying 

of fertilizer solution (on approx. 1 cm soil layers) and thorough mixing of soil, which was repeated 

several times per soil until all fertilizer solution was applied. Due to the dryness of the soil before 
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mixing, the initial distribution of the fertilizer in soil may not have been well mixed, causing an 

initially low dilution of 15N from the tracer with soil NO3
- (with inhomogeneity at a small, i.e. mm, 

scale). At the same time (2), denitrification was favored in non-diluted (fertilizer-NO3--rich) 

domains due to higher water content, while nitrification caused dilution in aerobic domains but not 

in anaerobic microsites. Initially, i.e. two days after application of the tracer, a2 was very close to 

the 15N abundance of NO3
- expected from mixing of initial and fertilizer NO3

- (6 at%15N, as unlabeled 

and 12.5 at%15N labeled NO3
- mixed in approx. equal amounts). Later, a2 was more close to the 15N 

label of the applied tracer NO3-. These observations may be explained by the following scenario: 

Towards the end of incubation, denitrification was restricted to wetter parts with more or less 

undiluted NO3- from fertilizer. In the initial phase, in contrast, there was some denitrification also 

in drier parts, since labile carbon was possibly mobilized during wetting and favored denitrification 

due to enhanced O2 consumption and availability of electron donors (Bergstermann et al. 2011; 

Ruser et al. 2006). Dilution of added plus soil NO3- by NO3- from nitrification of the unlabeled NH4+, 

which is shown by the 15N abundance in extracted NO3
- at the end of incubations, on the other hand, 

occurred only in aerobic domains, as otherwise it should have mixed with the denitrifying pool.  

Both causes of inhomogeneity (1 and 2) lead to failure of the 15N tracing based on extracted bulk 
15NO3

- to quantify NO3
- -derived N2O. Hence, only the estimates of NO3

- -derived N2O based on non-

equilibrium approach (c) are considered valid. While the values for fN derived from this approach 

seem plausible, they were measurable only for a confined number of samples, as precision was low 

at a low ratio of soil-derived to background N2O fluxes. Furthermore it has to be mentioned that 

the non-equilibrium approach leads to overestimation of a2 and underestimation of fD if different 

labeled NO3- pools contribute to N2O production (Boast et al. 1988). However, in the case of a 

homogenous background, the underestimation due to multiple N2O sources should not exceed 25% 

of the fD value (Arah 1992), and thus not substantially affect our results of very low contribution of 

denitrification to total N2O production.  

Distinct pools of NO2
-, separated into an added NO2

- pool and pools produced from NH4
+ and NO3

-, 

respectively, have been shown by Russow et al. (2009). They furthermore concluded that this 

rendered the application of the pool dilution method for determination of gross production rates 

problematic. Besides constant rates, which were addressed in section 6.5.1.2, another assumption 

for the calculation of gross nitrification is homogeneous distribution and equal turnover of tracer 

and background NO3
-, i.e. one homogenous NO3

- pool (Davidson et al. 1991; Herrmann et al. 2007; 

Murphy et al. 2003). From the calculation of 15N abundance in the denitrifying pool with the non-

equilibrium approach, we deduced that at least parts of the labeled pool underwent a different 

process than the non-labeled native pool, and thus this assumption is not met. Preferential use of 

the non-labeled/newly produced NO3
- pool for nitrification, and preferential consumption of the 

old/labeled pool, would result in overestimation of gross nitrification. For application of the pool 

dilution method (using 15N labeled NH4
+) to calculate mineralization rates, Davidson et al. (1991) 

estimated errors of approx. 10% if 15N tracer was supplied to less than 70% of the mineralization 

micro-sites, with errors further increasing if the bias in 15N distribution corresponded with a 

gradient in N transformation rates. The error in gross nitrification should have been analogous. As 

gross nitrification determined in this study was lower than net nitrification, this overestimation 

can hardly be large. Furthermore, anaerobic microsites, where undiluted fertilizer solution was 

dominant, were probably small and comprised only a tiny fraction of the total soil volume (Parkin 

1987). Therefore, the inhomogeneity shown by the comparison between tracer methods is not 

supposed to significantly bias the pool dilution approach used to estimates gross nitrification. 
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6.5.4.  Processes of NH4-derived N2O 

Irrespective of the method used, the majority of N2O emission stemmed from NH4+ oxidation 

processes in all our treatments. Given the high uncertainties of the isotopomer approach, 

significant distinction of fNH2OH estimates from fN of the other approaches is not possible. Still, the 

results indicate a much higher contribution of denitrification than the 15N tracer (non-equilibrium) 

and the C2H2 inhibition approach. An explanation for this difference may be the contribution of 

nitrifier denitrification to N2O production. The addition of C2H2 inhibits the formation of NH2OH, 

NO2- and NO3- concurrently to inhibition of N2O production and the NO2- reduced during nitrifier 

denitrification is derived from unlabeled NH4+ but not from labeled NO3-. The N2O produced during 

nitrifier denitrification is thus attributed to nitrification (fN) in both the C2H2 and the 15N tracer 

approaches.  

When calculating fNH2OH from the isotopomer approach using SP and δ18O in the produced N2O, we 

also assumed nitrification (NH2OH - N2O pathway) and denitrifier denitrification to be the only 

relevant processes. Both SP and δ18O of other N2O yielding processes, however, showed complete 

or partial overlap with the used ranges. As enzymes and reactions of nitrifier denitrification in NH4+ 

oxidizers are similar or identical to those of denitrifier denitrification, the produced N2O results in 

similar SP. Therefore, nitrifier denitrification is comprised in fD with the isotopomer approach.  

Neglecting the high uncertainty of fN values from the isotopomer approach (d), the contribution of 

nitrifier denitrification (fND) could be derived from the difference between fNH2OH and fN of the C2H2 

approach (fND = fN - fNH2OH) and would amount to 10% - 40% at single days and treatments, and to 

approx. 14% of total N2O in the 450N, that was measurable at most dates. This proportion would 

include also coupled nitrification denitrification, as this would also be inhibited due to a lack of NO3- 

production under C2H2 inhibition.  

The values of δ18O used for nitrification were partly derived from abiotic N2O production from 

NH2OH, and were higher than in N2O produced during NH2OH oxidation in pure culture studies 

(Heil et al. 2014; Sutka et al. 2006). There is only limited information for δ18O values specific for 

N2O produced from NO2- in nitrifiers (i.e. nitrifier denitrification), but these reported values are also 

at the lower end of values assumed for denitrification (8.8 ± 1.4 ‰ and 10.8 ± 1.4 ‰, (Sutka et al. 

2006; Sutka et al. 2004)). Besides the low fNH2OH from the isotopomer approach (SP- δ18O) compared 

to the C2H2 inhibition approach, substantial contribution of nitrifier denitrification could thus also 

explain the observation of δ18O values lower than expected from mixing lines between nitrification 

and denitrification in our samples. These suppositions cannot be validated, though, as our methods 

did not specifically target nitrifier denitrification independently. The fraction of nitrifier 

denitrification to total N2O production calculated is consistent to the literature. It has been shown 

that nitrifier denitrification can contribute as much as 37-57% to total N2O production, or 46-71% 

to NH4
+-derived N2O at 50% WFPS in sandy soil incubations (Kool et al. 2011). Under O2 deficiency 

(0.5% and 3% O2), even the majority of NH4
+-derived N2O was produced from nitrifier 

denitrification (Zhu et al. 2013). 

The contribution of other processes than autotrophic nitrification, nitrifier denitrification, and 

bacterial heterotrophic nitrification to N2O production cannot be excluded. Their occurrence could 

have affected SP and δ18O and thus the value of fNH2OH from the isotopomer approach. Fungal 

denitrification showed similar SP and lower δ18O values than nitrification (SPf: +34 to +37, δ18Of: 

+30 to +40; (Rohe et al. 2014; Sutka et al. 2008)), and would thus be included in fNH2OH with this 

approach. In both the tracer approaches (b+c) and the C2H2 inhibition approach, fungal 

denitrification is included in fD, which was very low. We thus assume fungal denitrification to be 
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negligible in this experiment. Heterotrophic nitrification is not inhibited by C2H2 addition, and the 

N2O is also built from unlabeled NH4
+ or organic N compounds. It is, however, assumed to be 

negligible under the present conditions, since fN by 15N tracing would be higher compared to fN by 

C2H2 inhibition if heterotrophic nitrification was significant (Well et al. 2008). 

6.5.5. Impact of N level on N2O source processes 

Our results support the hypothesis of nitrification as the main N2O source insofar as NH4
+ derived 

N2O dominates total N2O fluxes throughout the incubation, although the underlying process is not 

exclusively autotrophic nitrification/NH2OH oxidation. With respect to the expected changes in 

source processes with increasing N level, there is no clear result. Comparing different N levels, the 

C2H2 inhibition, the 15N tracer (non-equilibrium) and the isotopomer approaches show slightly 

higher nitrification-derived proportion of N2O in the 450N level compared to the 0N and the 1000-

5000N levels, although not significantly if averaged over time and not at all sampling times 

(Appendix, Table A 9). This may partly be caused by the limited applicability of the 15N tracer 

approach at low N2O production rates at very low (0N) and high NH4+ content, and the observation 

of heterogeneous distribution and rates of denitrification. The isotopomer approach is less affected 

by inhomogeneities as the tracer approaches. With decreasing total N2O fluxes but without 

concurrent increase in the fraction of denitrification derived N2O, we presume that also N2O 

production during denitrification must be inhibited at the high NH4+ content. This assumption is 

furthermore supported by the differences in N2O emission between N levels in the C2H2 batch, 

which indicate other N2O producing processes besides NH4+ oxidation to be inhibited by the high 

rates of NH4+ addition. As NO3- was added to all treatments and declined slightly only in the 5000N 

treatment, NO3- limitation could not have caused low denitrification-derived N2O. High salt levels, 

which we induced here by adding high rates of NH4+-salt, have been shown to affect denitrification 

(Menyailo et al. 1998; Menyailo et al. 1997), although N2O reductase was the enzyme that was most 

effectively inhibited. 

6.5.6. Temporal dynamics  

Background fluxes in the 0N level without NH4+ additions are mainly produced from nitrification, 

at least at the beginning of incubations. High SP and δ18O values (above the mixing lines) at the end 

of incubations, that indicate N2O reduction, show that denitrification-derived N2O substantially 

added to N2O emission in 0N. The background flux (from 0N) contributed less than 5% at the 

beginning of incubations but 15% and 18% at day 21 at the 450N level of 15N and 14N batches 

(Appendix, Table A 10). Increasing N2O emission with time in the 0N level show that mineralization 

fueled nitrification, and thus possibly also denitrification. While the initial peak in N2O emission 

may be explained by increased mineralization and nitrification (Borken & Matzner 2009; Davidson 

1992), as well as denitrification in microsites after wetting (Bergstermann et al. 2011), the increase 

in the last week of the incubation may be the result of adaptation or growth of nitrifiers.  

However, we did not find evidence for increasing contribution of denitrification to total N2O 

emission with time. With the C2H2 inhibition approach, this question cannot be appropriately 

addressed, as NO3- accumulation, and thus the base for increased contribution of denitrification, 

was inhibited. The 15N tracer approach (non-equilibrium, c) indicated that newly produced NO3- 

did not contribute to the denitrifying pool, at least did not homogeneously mix with it. The apparent 

problems with the conventional tracer method (b) also prevent proper conclusion. The isotopomer 

approach was less affected by inhomogeneities than the tracer approaches. Since the SP and δ18O 
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values do not distinctly change during the incubation, there is no indication for changing N2O 

sources with time (Appendix, Table A 9). 

6.5.7. N2O yield of nitrification  

The N2O/NO3- product ratio from nitrification was relatively low compared to the literature, that 

gives a range of 0.01% –1.8% (Flessa et al. 1996; Goodroad & Keeney 1984b; Well et al. 2008), with 

higher values (up to 7%) under unfavorable conditions as low O2 concentrations (Mørkved et al. 

2006; Zhu et al. 2013), or low pH (Jiang & Bakken 1999; Mørkved et al. 2007). Accumulation of NO2
- 

was proposed as the reason for reduced nitrification and N2O production under acidic conditions 

(Subbarao et al. 2006). As high salt contents are correspondingly supposed to inhibit the nitrite 

oxidase (Harada & Kai 1968; Low et al. 1997), similarly higher N2O yield from nitrification was 

expected following increasing NH4+-content in soil. Slightly higher N2O yield in the 5000N level 

occurred, but was based on very low N2O emission and highly uncertain despite low variability. As 

N2O yield was calculated from gross nitrification rates, the observed problems due to 

inhomogeneity of tracer distribution affect also these values. As gross rates, if they deviated from 

out calculated values, would have been underestimated, N2O yield only could have been 

overestimated. High N2O yield due to increasing NH4+ concentrations can thus be excluded. The 

inhibiting effect of NH4+ thus seems not to affect one enzymatic process specifically but to act more 

generally. An NH4+ ion specific toxicity as the reason for nitrification inhibition after NH4+ addition 

has earlier been challenged, and osmotic pressure or ionic strength was instead proposed as a 

reason for inhibition (Darrah et al. 1986; Müller et al. 2006). 

6.5.8. Potential for nitrification inhibition by CULTAN 

Recalculating N2O production in this laboratory study to area based emissions is difficult, as the 

fertilizer depots comprise only small portions of the surface soil. However, the mean N2O flux at the 

0N level was 17ng kg-1 h-1; with a surface area of 0.016m² and 2.8 kg soil per soil core this would 

correspond to a flux of 3 µg m-2 h-1, which is pretty similar to fluxes from unfertilized plots of the 

site the soil was taken from (chapter 5.4.3, median = 3.1 µg m-2 h-1). Measured values of gross 

nitrification of 0N and 450N levels in this study are also comparable to other incubation studies 

from arable land and we thus regard them to meet typical conditions and related N2O production.  

The strength of reduction in N2O production rates shows that no substantial N2O emission should 

be expected from depot centers during the first weeks after fertilizer placement at these high NH4
+ 

concentrations, as was expected from results of earlier studies (Wetselaar et al. 1972). The 

relatively low N2O yield also at increasing NH4+ concentrations further supports the assumption 

that low rates of N2O emission are expectable from nitrification of concentrated fertilizer depots. 

However, the time frame of this experiment was short as compared to field conditions, where 

plants need to take up nitrogen over a longer time period. In relation to the methods used, on the 

other hand, the experiment was already quite long, which is shown by inconstant gross nitrification 

rates. Plant uptake was furthermore not included in this study, but strongly affects N dynamics in 

or at the margins of fertilizer depots at the field. Due to mass flow in unsaturated soil, with stones 

and roots affecting the flow path of fertilizer after application, the NH4+ applied may be less 

concentrated, and resemble the lower 2250N or 1000N level even initially, where nitrification is 

not completely inhibited and NO3
- accumulation occurred. Our results suggest that emission peaks 

of N2O after CULTAN injection are thus likely to be dominated by nitrification under comparably 

dry soil conditions. However, in view of incomplete inhibition of nitrification, a shift towards 
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denitrification under wetter conditions can be expected due to the nitrified fertilizer at the margins 

of depots or after fertilizer dilution.  

 Conclusions 

The inhibiting effect of high NH4
+ levels on nitrification and N2O emission from soil has been 

confirmed, at N2O emission rates and nitrification rates comparable to field conditions. The N2O 

yield of nitrification was not affected by high NH4+ level, which further adds to the expectation of 

low N2O emission after fertilizer point injection. However, there was no evidence for a decreasing 

contribution of nitrification to total N2O emission with increasing N level or time. If inhibition of 

nitrification at NH4+ level was indeed mainly due to an osmotic effect, as supposed by Darrah et al. 

(1986) and supported by our results that show also denitrification to be retarded, the inhibition 

may be weaker under field conditions, where heterogeneous soil conditions affect initial fertilizer 

distribution in soil, and plant uptake and precipitation may dilute the fertilizer depots.  

This incubation study showed that inhomogeneities of 15N tracer distribution in soil due to 

incomplete initial mixing or heterogeneity of N processes may considerably affect the results of 15N 

pool-derived fluxes. It was also shown that non-homogeneity can be identified by applying different 

calculation procedures. But to which extend such an approach may be suitable for the 

quantification of non-homogeneity and the bias resulting therefrom needs to be further 

investigated.  
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7. Synthesis and General Discussion 

 The impact of water content on N2O and CH4 fluxes, and how annual 

emissions are affected by summer drought and temporal dynamics of 

irrigation and precipitation  

The water content was a key controlling factor in the summer drought experiment (Chapter 4). 

Emission of N2O from soils generally increases with increasing soil moisture (Bateman & Baggs 

2005; Dobbie et al. 1999; Maag & Vinther 1996) and a maximum has often been found around 70-

90% WFPS or even higher (del Prado et al. 2006; Skiba & Smith 2000). While denitrification 

proceeds at higher water content, N2O reduction to N2 is strongly enhanced due to limited gas 

diffusivity (Drury et al. 1992). In field studies in different ecosystems, the water content often 

explained a great part of the variability in N2O emissions (correlations of 0.27-0.54 between the 

water content and N2O emissions, e.g., in temperate deciduous forest (Berger et al. 2013), maize 

fields (Adviento-Borbe et al. 2007), grassland (Dobbie et al. 1999), and semi-arid wheat fields 

(Barton et al. 2008)). The correlation between water content and N2O was less strong in the field 

experiments on summer drought or CULTAN fertilization presented here (Chapter 5). There were 

indeed highly significant effects of WFPS on N2O emissions, but less than 25% of the variance in 

N2O fluxes could be explained with the statistical models. Even taking Nmin (in form of NH4+ or NO3-

) and temperature or microbial activity (in terms of CO2 fluxes) into account, only 13% (summer 

drought) or 23% (CULTAN) of N2O fluxes were explained.  

While the lower water content induced by rain exclusion during the growing seasons significantly 

increased the annual CH4 uptake, the effect was not correspondingly clear with respect to N2O 

emissions. In the first drought period, N2O emission even tended to be higher from dry than wet 

treatments. The direct effect of the increased summer drought was negligible in the second drought 

period, and also on annual base the drought treatment effect on N2O emission was not significant. 

Thus we had to conclude that, while the water content significantly affected the temporal dynamics 

of N2O emission of both the summer drought and the CULTAN experiments, increased summer 

drought had only a negligible effect on annual N2O emissions.  

That drought had no effect on N2O emission has earlier been reported: neither alone nor in 

combination with artificially increased CO2 concentration in the atmosphere and/or increased soil 

temperature did enhanced drought change annual or even seasonal N2O emissions in extensively 

managed grassland (Cantarel et al. 2011) or heathland (Carter et al. 2011). CH4 oxidation, in 

contrast, showed a clear reaction to increased summer drought in our study, which is in accordance 

with the effect of drought in forest ecosystems (Borken et al. 2000; Borken et al. 2006), and 

consistent with the observation of higher CH4 oxidation rates with decreasing soil moisture (Flessa 

et al. 1995; Smith et al. 2000).  

Considering the generally strong dependence of N2O emission on the water content in soil and the 

observation that temporal dynamics of N2O emission in both field experiments were mainly driven 

by climatic factors as precipitation (or irrigation) and thawing, the question remained why the 

summer drought treatment did not lead to more distinct reactions. Lower N2O fluxes from dry than 

wet plots in the summer drought study were expected to result from a lower probability for the 

existence of denitrifying microsites as compared to well-watered plots. Very low water contents in 

the both wet and dry plots at the beginning of the first drought period (< 20% in 0-10cm in 

July/August) and low water content while NO3- content was high in the second drought period 
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indicate a predominance of nitrifying conditions in both treatments. At 50% WFPS, nitrification 

was responsible for the largest proportion of N2O emission in several studies (Bateman & Baggs 

2005; Well et al. 2008), and the high fraction of nitrification-derived to total N2O emission was 

supported by the results of the laboratory experiment (Chapter 6), where 90% of N2O emission 

were derived from nitrification even though no NH4
+ but relatively high amounts of NO3

- were 

added. In the dry treatments, and in the second drought period also in the wet treatment of the 

summer drought study, 50% WFPS were seldom exceeded. There was a weak trend to even higher 

N2O emission from the dry than well-watered wet treatments in the first drought period, when 

enhanced Nmin contents persisted longer at dry than at wet plots where apparently leaching of N to 

deeper soil layers occurred with precipitation (Figure 4-5). This might be due to relatively dry soil 

conditions and low N2O emissions in our well-drained soils. Leaching of NO3- with rain events has 

been proposed as a reason for even negative correlation between water content and N2O emission 

(Hellebrand et al. 2008; Kavdir et al. 2008). However, a correlation of 44% - 55% between WFPS 

and N2O fluxes was reported by for a field cropped with wheat in semi-arid Western Australia that 

showed very low annual N2O emission (0.11 kg N ha-1 yr-1). 

In winter, on the other hand, high N2O fluxes occurred mainly from the wet treatments. We 

attributed this to higher organic matter input due to higher biomass production at wet plots, and 

to still (although insignificantly) higher water contents in 10-30cm depth, and thus higher 

propensity to denitrifying conditions at least in the winter period. High organic matter content was 

also suggested as the reason for higher N2O peak fluxes at the CULTAN than the surface application 

plots in the CULTAN experiment. It has been reported that roots formed dense nets around 

fertilizer depots or bands when urea or ammonium were placed in high concentrations (Passioura 

& Wetselaar 1972; Sommer 2005). In this way, confined spaces with high N content and high 

organic matter density may have formed surrounding the CULTAN depots. Denitrification was thus 

regarded as the process responsible for peak emission from CULTAN plots.  

With respect to N2O dynamics, water content may obviously not be regarded independently. It has 

earlier been shown that the relationship between N2O emissions and the soil water content is 

affected by the availability of N substrates (Kavdir et al. 2008). Laville et al. (2011) report N2O 

emission of > 20µg m-2 h-1 only when WFPS was > 50% and Nmin > 20 mg kg-1, and also Sehy et al. 

(2003) and Smith et al. (1998) found a correlation between WFPS and N2O only if neither NO3
- 

content nor temperature were limiting. Consistently, also N2O emission peaks in the CULTAN 

experiment occurred mainly when both water and Nmin were enhanced. This became obvious e.g. 

with the irrigation peaks in 2012 at surface application and CULTAN plots while no considerable 

emission occurred from the unfertilized treatment (Figure 5-3) and was also supported by the 

statistical model applied to the data from the CULTAN field experiment, that showed a strong 

impact of the interaction between WFPS and NH4
+ (Chapter 5) on N2O fluxes.  
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 How N2O fluxes are affected by fertilizer injection and the impact of 

fertilization on annual N2O emission 

There is a well-known and often analyzed relationship between fertilization, which contributes 

substantially to N input in agricultural systems, and N2O emission (e.g. Acton & Baggs 2011; Liu & 

Greaver 2009; Stehfest & Bouwman 2006). The type of fertilizer may have an important impact on 

N2O emission. N2O emission has been shown to be lower from NH4+- and NO3--based fertilizers than 

from urea-based or organic fertilizers by Bouwman et al. (2002) in their review summarizing > 800 

N2O emission measurements. However, the relationship is not always straightforward and in 

individual studies the relative N2O emission may differ, e.g. according to soil texture or climatic 

conditions, with higher emission from NO3--based fertilizers under wet and from NH4+-based 

fertilizers under dry soil conditions (Lebender et al. 2014; Liu & Greaver 2009). Furthermore, it 

has been shown that urea, urea-ammonium nitrate and organic fertilizers like poultry litter may 

lead to higher N2O emission when they are banded below the surface compared to broadcast 

surface application or incorporation (Cheng et al. 2002; Engel et al. 2010; e.g. Maharjan & Venterea 

2013; Smith et al. 2012). The increase in N2O emission with urea banding may be explained with 

alkalization and NO2
- accumulation (Wetselaar et al. 1972). 

Banding of ammonium sulfate or ammonium chloride, on the other hand, has been shown to slow 

down nitrification (Petersen et al. 2004), and point-injection of fertilizer should lead to even higher 

concentration of fertilizer in a smaller volume than banding, thereby entailing a still higher 

potential for inhibition of nitrification. Using NH4+ fertilizer instead of urea might have prevented 

the accumulation of high NO2- content, since instead of alkalization from urea hydrolysis NH4+ 

oxidation leads to acidification. Lower accumulation of NO2- at low pH might be the reason for the 

low N2O/NO3- ratio from nitrification. The pH in fertilizer depots of the CULTAN field experiment 

was indeed by one unit lower than between fertilizer depots and in bulk soil of the surface 

application treatment (loam: pH 6.5 in depots, pH 7.3 on unfertilized and surface application plots; 

sandy loam: pH 4.5 in depots and pH 5.5 and 6.0 on surface application plots and unfertilized plots, 

respectively; data not shown). A similar acidification has also been found in earlier studies (Menge-

Hartmann & Schittenhelm 2008; Wetselaar et al. 1972) and in the laboratory experiment, where 

pH decreased from 6.2 to 5.2 within 3 weeks (Table 6-4).  

The laboratory experiment showed clearly that nitrification in soil decreased with increasing NH4+ 

content, confirming earlier reports (Harada & Kai 1968; Wetselaar et al. 1972). N2O emission was 

also correspondingly inhibited, and we did not find an increase in N2O/NO3
- ratio (N2O yield of 

nitrification) as well. Besides N2O production from nitrification, also denitrification-derived N2O 

obviously decreased with the high NH4
+ salt addition, as could be concluded from the decrease in 

N2O emission in the acetylene amended treatments with increasing N level. Denitrification has been 

shown to be inhibited by high salinity, although generally an increase in the N2O/N2 ratio of 

denitrification occurred (Menyailo et al. 1998; Menyailo et al. 1997). From the results of the 

laboratory experiment and earlier studies, we expect that at NH4
+ concentrations as high as 5000 

µg g-1, negligible N2O formation should occur. This concentration was calculated to be present in 

the depot center directly after fertilization at the sandy loam site.  

However, under field conditions nitrification obviously occurred already within the first two weeks 

after fertilizer application. At the margins of depots there is always a diffusion zone of decreasing 

NH4+ concentration with distance from the depot center (Wang et al. 1998). In this diffusion zone, 

nitrification may occur and thus formation of both N2O and NO3-. In case of a non-spherical depot, 

the surface of the depot itself, and consequently the volume of soil with non-inhibiting NH4+ 
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concentration around the depot, increases. A test with Brilliant Blue colored water machine-

injected with the spoke wheel injector at equal rate and pressure as the fertilizer solution visualizes 

the depot geometry at the sandy loam site. The photographs in Figure 7-1 show that the fertilizer-

depot must not be considered as a perfect sphere. Additionally, dilution of the depot occurs with N 

uptake by plants which have been shown to be the better competitors for Nmin in soil compared to 

microbes (Inselsbacher et al. 2010). Plant uptake, however, reduces the N available for nitrification 

and denitrification and thus N2O formation.  

 

Figure 7-1: Simulated fertilizer depots from injection of Brilliant Blue colored water with the spoke 
wheel injector, directly after injection. Left: top view on a depot cross section, the circle denotes the 
dimension of the core sampler used for Nmin sampling of depot centers. Right: vertical section of a fertilizer 
depot, the red line showing the shape of the fertilizer depot.  

 

In consequence of the incomplete inhibition of nitrification with fertilizer injection, N2O may be 

produced. The N2O emission from the 0N treatment in the lab experiment resembled the 

background fluxes at the field site very well. The highest fluxes from the 450N treatment of 

incubations would correspond to 75 µg m-2 h-1 if upscaled, which is in the range of higher N2O field 

fluxes. However, due to the concentration of NH4+ to a confined volume, more than 90% of the soil 

volume doesn’t receive any fertilizer N. Even if it exhibited high nitrification rates, this small 

volume would not drastically increase area based N2O emission (90% ∙ 3 µg m-2 h-1 + 10% ∙ 75 µg m-

2 h-1 = 10 µg m-2 h-1). This was also reflected by the high contribution of soil-derived to total N2O 

emission in the CULTAN field experiment, where fertilizer-derived N2O emissions contributed only 

1% - 17% of total N2O emissions. Peak emissions as they occurred at the CULTAN field site are thus 

not expected to be derived from nitrification of the depot fertilizer. This was also concluded from 

the temporal pattern of N2O emissions at field experiments, where N2O peak emissions occurred 

with irrigation some weeks after fertilization, and peak emission especially at the CULTAN 

treatments were attributed to denitrifying conditions. Higher propensity for denitrifying 

conditions is also regarded as the reason for higher N2O emission from the loam than the sandy 

loam site, especially after CULTAN treatment (Chapter 5 and in correspondence to the literature 

(Bouwman et al. 2002; Pelster et al. 2013)) and indicates a potential of increased N2O emissions 

from CULTAN management. 

At well drained sandy sites and under predominantly nitrifying conditions, on the contrary, there 

might be the potential for lower N2O emissions from CULTAN fertilization. Banding of N fertilizer 

has furthermore been shown to increase N uptake and yields under early season drought 

conditions as compared to broadcast  incorporation (Hartman & Nyborg 1989), presumably by 

easing the accessibility of fertilizer to the roots by supplying it in the root zone thereby alleviating 
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the dependence of N uptake on precipitation for transport. This is of importance mainly in dry 

regions, and without irrigation. CULTAN fertilization may thus be of advantage in relatively dry and 

light soils. There was indeed a trend towards lower emission from the CULTAN than the surface 

application treatment (not statistically significant, though) at our sandy loam site (Table 5-2).  

The temporal dynamics in both field experiments and the statistical evaluation revealed the 

relationship between N2O emissions and the amount of N in soil. The N input by fertilization is a 

parameter that is relatively easy to control - and to assess. Calculation of large-scale (i.e. national) 

greenhouse gas inventories thus utilizes the amount of fertilizer N applied to estimate annual N2O 

emissions. The Tier-1 approach of the IPCC (2006) uses 1% of the applied fertilizer as an estimate 

of annual N2O emission, regardless of the crop type, soil type or fertilizer. The model of Stehfest and 

Bouwman (2006), which was derived from empirical data, considers classes for fertilizer type 

(organic vs. mineral), soil (organic C content, pH and texture), climate and vegetation/crop type, 

for the estimation of N2O emission with an exponential function of the amount of fertilizer input. 

Although none of the studies in this thesis aimed at showing the effect of increased N fertilization 

on annual N2O emissions, emission rates can be compared to the predictions of the Stehfest and 

Bouwman (2006) model. Due to unforeseen problems with the 15N tracer application method, 

different amounts of fertilizer N were applied to the respective plots at the sandy loam site of the 

CULTAN experiment. Although not presented in Chapter 5, these data show an exponential increase 

in N2O emission with increasing fertilizer N amount at the sandy loam site (Figure 7-2, R²=0.70). 

Figure 7-2 shows the annual N2O emission of the summer drought and the CULTAN experiment. 

Each data point represents the cumulative annual emission of one plot. The N amount applied at 

the surface application plot receiving 15N labeled fertilizer at the sandy loam site of the CULTAN 

experiment was roughly estimated to be 190-200 kg N from the concentration and 15N fraction of 

NH4+ in the fertilizer solution that was in the tank after application. 

According to the Stehfest and Bouwman (2006) model, much higher annual fluxes would be 

expectable for cereals grown at the sites and fertilized with N amounts applied during the CULTAN 

experiment, especially at the sandy loam soil. Well-watered control plots of the summer drought 

experiment show very high variation but are close to values as expected from the Stehfest and 

Bouwman model. Soil conditions were pretty similar between the summer drought experimental 

site and the sandy loam site of the CULTAN experiment, as were climatic conditions at the sites. The 

two sites of the CULTAN experiment were approx. 15 km apart, and the distance between the 

summer drought site and the sandy loam site of the CULTAN experiment was only 1 km. 

Measurements overlapped by one growing season (as the summer drought experiment ran from 

July 2010 to December 2011, and the CULTAN experiment from March 2011 to March 2013). 

Slightly higher N2O emission at the 120 kg N level were measured at the loam site in the CULTAN 

experiment than at the sandy loam site, which was explained by the finer texture. Higher annual 

N2O emission from the summer drought study may be explainable by the: 1) different fertilizers 

(CAN-prills broadcasted in the summer drought, (NH4)2SO4 solution in CULTAN experiment), 2) 

high additional N mineralization from the preceding crop at the summer drought site, or 3) surficial 

soil compaction between plant rows in the summer drought experiment, decreasing the gas 

diffusivity and thus increasing the propensity for denitrifying conditions (Sitaula et al. 2000). 

Besides the measured N loss as N2O, N2 fluxes from denitrification and nitric oxide (NO) fluxes from 

denitrification and nitrification add to total gaseous loss of Nr (Butterbach-Bahl et al. 2013; 

Cameron et al. 2013). The share of N2 production from denitrification depends on various factors, 

e.g. pH, soil NO3- and organic carbon contents, and the aerobicity, that may affect denitrification 

rates and the product ratio of denitrification, i.e. the N2O/(N2O+N2) ratio. A range of 1-55 for the 
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N2/N2O ratio from agricultural soils has been given by Butterbach-Bahl et al. (2013). N2 and NO 

emissions were not measured in the studies presented here; still some thought should be given to 

their importance for total gaseous N loss. While N2 is unreactive, and its production the only 

permanent Nr sink, NO is highly reactive and plays a vital role in photochemistry by contributing to 

stratospheric O3 formation. As N2O and NO are produced during the same processes, they are 

generally regulated by the same environmental control factors, although due to directly acting as a 

greenhouse gas more attention had been given to N2O (Pilegaard 2013). The ratio of NO/N2O 

emission is mainly affected by the soil water content (Figure 7-3). During denitrification (including 

nitrifier denitrification), NO is produced before being further reduced to N2O; the NO/N2O ratio 

thus declines with increasing anaerobicity.  

 

Figure 7-2: Annual N2O emission determined in summer drought and CULTAN field experiment in 
relation to the amount of fertilizer applied. For comparison, the model according to (Stehfest & Bouwman 
2006) is shown, adapted with the respective mean effect values for climatic, soil, and fertilization classes of 
this thesis’ study sites. The exponential interpolation was derived from N2O emissions of the CULTAN sandy 
loam site. 

      

The relative contribution of denitrification and nitrification was assessed in the laboratory 

experiment, taking into consideration N2O production during nitrification (hydroxylamine 

oxidation and nitrifier denitrification) and heterotrophic denitrification. Heterotrophic 

nitrification and fungal denitrification apparently had no great share on N2O emission under the 

well-aerated (50% WFPS) conditions and at high NH4+ concentrations, although they were not 

specifically targeted with the methods applied. While background N2O emissions in the field 

experiments were assumed to result from nitrification, high flux events under wetter conditions 

were attributed to denitrification.  

The exact pathway of NO production during ammonia oxidation is not known, but the sequence 

may be NH3⟶NH2OH⟶HNO⟶NO⟶NO2- (Firestone & Davidson 1989; Pilegaard 2013). Under 

dry well-aerated conditions, NO may leak out of soil before being further oxidized, and the NO/N2O 

ratio is thus also higher at drier conditions. At low pH (<5) and when NO2
- accumulates, 
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chemodenitrification of NO2
- may be a source for NO emission (Medinets et al. 2015). Pilegaard 

(2013) summarized impact factors of NO production, showing that NO emission increases linearly 

with N input or availability, exponentially with temperature, has a maximum at intermediate soil 

water content and may both increase at low (due to chemodenitrification) and high (due to 

nitrification) pH values. Due to the low water content during most of the year in both field 

experiments, NO emissions might well have been much higher than N2O emissions. 

N2 production from denitrification, on the other hand, was probably low. Dense root systems 

around CULTAN depots in the field experiment could have provided easily available organic carbon 

compounds and might have locally enhanced denitrification rates. High amounts of organic carbon 

would result in more complete reduction during denitrification and would thus have lowered the 

N2O/N2 product ratio (Focht & Verstraete 1977). High NO3
- concentrations around the CULTAN 

depots, on the other hand, would enhance the N2O/N2 ratio, as would high salt concentrations 

(Menyailo et al. 1998) and the low pH of CULTAN depots (Bakken et al. 2012). Acid conditions, 

however, also reduce total denitrification rates (Focht & Verstraete 1977) which adds to the 

assumption that N2 losses from denitrification were probably not very high.  

 

 

Figure 7-3: Proposed relative contributions of nitrification (solid grey shading) and denitrification 
(hatched shading) to gaseous N losses as a function of WFPS. Adapted from Davidson et al. (2000) as in 
Pilegaard (2013).  

 Heterogeneity at different scales and its impact on fluxes and flux 

determination 

The field experiments as well as the laboratory experiment showed the high impact of spatial as 

well as temporal heterogeneity on the determination of N2O emissions and underlying processes. 

High spatial variability, especially at the loam site, led to large differences between individual 

chambers and thus high standard errors of mean fluxes per measurement day. The coefficient of 

variation (CV) was ≤ 200% for fluxes higher than 10 µg N m-2 h-1 at single measurement days, 

≤ 300% for fluxes between 3 and 10 µg N m-2 h-1, and partly higher at fluxes close to 0. For annual 

fluxes, the CV was higher at the loam than the sandy loam site (38% - 51% and 4% - 25%, 

respectively). This high spatial variability would have prevented the detection of small differences 

(smaller than the within treatment variation) between treatments. N2O fluxes as measured with 

closed static chambers are often much higher or at least much more variable (Jones et al. 2011; 

Schäfer et al. 2012) than fluxes measured with methods integrating over a larger surface area, as 
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e.g. eddy covariance measurements or large chamber or closed tunnels (Jones et al. 2011; Schäfer 

et al. 2012). The probable explanation are hotspots (and coldspots) of N2O production in soil that 

may be caused by patchy distribution of organic matter (root systems, litter), fertilizer, water 

content or differences in soil structure (Groffman et al. 2009; Kim et al. 2012). The spatial 

heterogeneity causing environmental conditions to differ between individual chambers might be 

lower in arable compared to grassland or forest ecosystems because of tillage and uniform 

application of fertilizer and management. The distribution of N substrate in soil of arable fields is 

mainly controlled by fertilization, and thus better known than in forest or grassland ecosystems. In 

the CULTAN field experiment, the distribution of fertilizer in CULTAN depots was addressed by the 

chamber geometry. However, CVs in the CULTAN experiment were relatively high but still 

comparable to other field studies (Flessa et al. 1995; Laville et al. 2011; Mathieu et al. 2006).  

Temporal heterogeneity is another challenge: The measurement scheme – with weekly 

measurement plus additional measurements after fertilization, thawing, and precipitation after 

long dry periods – should have reduced the missing of peak events as compared to strictly weekly 

measurements and thus provide a reasonable estimate for the annual flux (Flessa et al. 2002; Pfab 

2011). However, high flux events can be very short, and while missing very short emission events 

might not even cause extreme underestimation of annual fluxes, their inclusion and extrapolation 

to a complete week could have led to substantial overestimation of annual emission (Flessa et al. 

2002). Peak fluxes (> 200 µg m-2 h-1) contributed 30% to total annual fluxes in the summer drought 

experiment, and 40% (sandy loam) and 60% (loam) of annual fluxes were attributable to the 5-

10% of measurement dates with high fluxes (> 30µg m-2 h-1) in the CULTAN experiment. Peak fluxes 

were furthermore higher in the summer drought experiment than in the CULTAN experiment, 

which also translated into higher annual emission.  That the temporal and spatial variability 

complicates the detection of small differences between treatments is a well-known problem that to 

date cannot be easily solved.  It could possibly be avoided by higher temporal and/or spatial 

resolution, which might, depending on the measurement technique of choice, result in higher 

investment costs, more labor and/or a much higher number of samples to be taken and measured, 

causing additional costs. Model-based gap filling could be another possibility, but would depend on 

the predictability of N2O fluxes from measurable parameters (Luo et al. 2011). Application of 

methods integrating over larger spatial scales would necessitate larger experimental plots, with 

the potential drawback of reduced comparability of the soil parameters underlying treatments.   

Heterogeneity at a much smaller scale was shown to be important in the laboratory experiment 

(Chapter 6). Despite thorough homogenization of fertilizer solution and soil, the formation of 

microsites with spatial separation of nitrification and denitrification became evident from the 

comparison of a standard 15N tracer approach (using 15N abundance in bulk extracted NO3
-, 

(Stevens et al. 1997)) and the non-equilibrium approach (Bergsma et al. 2001; Spott et al. 2006) 

used to calculate the fraction of NO3
- derived N2O. While the impact of heterogeneity in NO3

- pools 

on the calculation of nitrification rates by pool dilution was not too strong, the results of source 

partitioning were substantially affected. Without the application of the non-equilibrium approach, 

the high impact of this small-scale heterogeneity would not have been disclosed. The data show 

(maybe for the first time) evidence for a large discrepancy between bulk and actively denitrifying 

pools and the resulting consequences for source partitioning. Neglecting that, the contribution of 

denitrification to N2O production may be massively overestimated when the standard method is 

applied. In future studies, this discrepancy should be further addressed, as obviously homogeneous 

distribution and especially turnover cannot easily be stated even in relatively “homogeneous” 

systems as sieved and repacked sandy soil cores.  
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8. Conclusions and Implications 

Methane oxidation was significantly enhanced with induced increased summer drought in this 

study, while the effect on N2O emission was weak. This led to the conclusion that changes in N2O 

emission with increasing summer drought frequency might not be severe, which is in accordance 

to earlier studies in other ecosystems. While the increased frequency of summer drought is a 

severe problem especially for the Mediterranean and other semi-arid or arid regions, it is not the 

only change in climate we will be faced with in the next decades. While precipitation in Southern 

and Central Europe tends to decrease in summer, it is likely to increase in the winter months. 

Regarding the high contribution of winter emissions to total N2O emissions in these and other 

studies, more severe effects may be expected from higher water contents.   

The direct effect of CULTAN fertilization on N2O emission was also small and no substantial N2O 

mitigation potential could be identified. A greenhouse gas balance has not been calculated here, 

but since single fertilizer injection necessitates fewer field operations compared to broadcast split 

application, the CULTAN strategy could help reduce both the manpower and the fuel consumption 

needed for fertilization. Furthermore, although dynamics of NO3- content in the CULTAN study did 

not show substantial inhibition of nitrification, there have been indications of reduced NO3- 

leaching with CULTAN fertilization in other studies. Since higher yields were achieved with 

CULTAN in comparison to broadcast surface application, its application may be worthwhile. To 

further improve the inhibition of nitrification and to avoid N2O peaks under wet conditions, the 

combination with nitrification inhibitors may be promising. 

In the summer drought as well as in the CULTAN study, biomass yields showed a stronger reaction 

to treatment than N2O emissions. With the target being to increase crop and biomass yields while 

minimizing the negative environmental and climate impacts of agriculture, the minimization of 

greenhouse gases may not be the main focus at these sites. As yield-related N2O emissions were 

mainly affected by plant yields at similar total N2O emission, such strategies would be reasonable 

also from the greenhouse gas emission point of view. 

While there was a significant relationship between N content in soil and N2O emission, soil N 

derived N2O caused the bigger part of N2O emission, as was concluded from the low ratio of 15N-

labeled fertilizer-derived emissions in the CULTAN field experiment and more generally by the 

low fertilizer N emission factors. While N mineralization and nitrification were not directly 

addressed in the summer drought study, Nmin dynamics were affected by the treatments, with 

higher NO3- contents persisting during drought. Considering that differences in N2O emissions 

occurred mainly during the winter period, longer-term effects may be assumed to result from 

changes in precipitation pattern. Taking the possibility that the relatively high N2O emission in the 

summer drought experiment resulted from high mineralization of the incorporated preceding 

crop into account, this points to the demand of long-term measurements or monitoring of N 

dynamics. At least the consideration of fertilization and cropping history when relationships 

between greenhouse gas emissions and fertilizer input shall be derived seems to be advisable. 

Both spatial and temporal heterogeneity were high in the field studies and complicated the 

identification of treatment effects. Due to the small effects, it might be debatable whether a much 

higher effort to identify small changes would be worthwhile. However, even a reduction of N2O 

emissions by 10% (which would not have been significant at the high variability in the field 

experiments) would sum up over large scales when simple management adjustments, like using 

another method of fertilizer application, were sufficient to cause this reduction.  
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Conclusions 

The small scale heterogeneity, which has been detected in the laboratory experiment with the 

application of the non-equilibrium approach, has often been neglected in earlier 15N tracer studies. 

In cases where the magnitude of the inhomogeneity is as high as in this study, it will have severe 

impacts on the results of N2O source-partitioning in 15N tracer studies. This should be considered 

in future studies and the small-scale heterogeneity should be further addressed in field and 

laboratory studies.  
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A   Appendix 

A1. Supplementary data - summer drought study 

A1.1. Linear mixed effect models applied to fluxes of N2O and CH4 calculated with the 

automated decision scheme 

In this section, the R output of the final models applied to log transformed N2O fluxes and CH4 fluxes 

is given.  
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A1.1.1 Linear mixed effect model of N2O fluxes – Impact of treatment and period 
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Appendix 

A1.1.2. Linear mixed effect model of N2O fluxes – Impact of WFPS, NO3
- and soil 

temperature 
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A1.1.3. Linear mixed effect model of CH4 fluxes – Impact of treatment and period 
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A1.1.4. Linear mixed effect model of CH4 fluxes – Impact of WFPS and NO3
- 
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A1.2. Results of linear mixed effect models of water filled pore space 

 

Table A 1: Means and standard deviation of water filled pore space (WFPS) in soil under wet and dry 
plots in different periods in 0 – 10 cm soil depth. Capital letters below WFPS values give results of Tukey’s 
test on logit transformed WFPS performed with R; groups differ significantly in their WFPS when they do not 
share the same letter. Significant difference between wet and dry treatment thus occurred during both 
drought phases 2010 and 2011. During winter and before drought treatment, WFPS did not differ 
significantly. 

 Predrought 
2010 

Drought 
2010 

Winter 
2010/2011 

Early 
summer 
2011 

Drought 
2011 

Winter 
2011 

       
Wet plots 0.40 ± 0.13 

CD 
0.56 ± 0.09 
D  

0.77 ± 0.15 
D 

0.36 ± 0.09 
AB 

0.47 ± 0.09 
CD 

0.58 ± 0.12 
ABD 

Dry plots 0.44 ± 0.15 
D 

0.37 ± 0.12 
BC 

0.77 ± 0.14 
D 

0.38 ± 0.10  
B 

0.27 ± 0.14 
A 

0.49 ± 0.14 
ABD 

 

 

Table A 2: Means and standard deviation of water filled pore space (WFPS) in soil under wet and dry 
plots in different periods in 10 - 30 cm soil depth. Capital letters below WFPS values give results of 
Tukey’s test on logit transformed WFPS performed with R; groups differ significantly in their WFPS when 
they do not share the same letter. Significant difference between wet and dry treatment thus occurred during 
both drought phases 2010 and 2011. During winter and before drought treatment, WFPS did not differ 
significantly. 

 Predrought 
2010 

Drought 
2010 

Winter 
2010/2011 

Early 
summer 
2011 

Drought 
2011 

Winter 
2011 

       
Wet plots 0.42 ± 0.11 

C 
0.54 ± 0.10 
D 

0.65 ± 0.07 
D 

0.42 ± 0.06 
C 

0.44 ± 0.09 
C 

0.57 ± 0.09 
CD 

Dry plots 0.42 ± 0.10 
C 

0.34 ± 0.11 
B  

0.63 ± 0.07 
D 

0.44 ± 0.06 
C 

0.27 ± 0.12 
A 

0.47 ± 0.12 
BCD 
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Figure A 1: Confidence intervals of water filled pore space (WFPS) in 0 – 10 cm and 10 – 30 cm soil 
depth. Light gray areas stand for WFPS in ambient wet plots of the respective plant, dark gray areas for WFPS 
in dry plots.  
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A1.3. Results from linear calculation of flux rates 

Fluxes of CH4 and N2O were additionally calculated linearly. Resulting fluxes rates, mean fluxes per 

period and annual fluxes are presented in this section.  

 

Figure A 2: Fluxes of nitrous oxide (N2O, a) and methane (CH4, b) calculated with linear regression of 
concentration over time. Error bars represent standard deviation (n=3). 
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Table A 3: Results from purely linearly calculated fluxes: Mean fluxes of N2O and CH4 for different periods, cumulated fluxes over the experiment and per year 
and calculated emission factors (EF) for yield based and fertilizer based emissions. Error terms are standard deviations (n=3). Results of posthoc pairwise 
comparisons of mean fluxes between treatments within periods are given in capital letters, and between periods (within treatments) in lower case letters. fdr correction 

(Benjamini and Hochberg, 1995) was used to correct for multiple comparisons. Mean fluxes differ significantly (p < 0.05) when they do not share the same letter. For 
fluxes cumulated over the whole experiment (sum) and over a complete year (harvest 2010 - harvest 2011), separate tests were performed. 

 

 

                      
  crop treatment Pre- 

drought 2010 

  drought            
2010 

  winter 2010/ 
2011 

  early summer 
2011 

  drought   2011   winter            
2011 

  Sum    harvest 2010 – 
harvest 2011 

  fertilizer 
scaled 

emissions 

Yield- 
scaled emissions 

 

   6.7.-21.7.2010  22.7.-
1.11.2010 

 2.11.2010-
27.4.2011 

 28.4.-
24.7.2011 

 25.7.-
2.11.2011 

 3.11.-
31.12.2011 

     N2O-N/ 
fertilizer N 

g N2O-N/              
t d.w. biomass 

 

       16d   102d   177d   88d   101d   59d   543d   365d   365d 365d  

N2O emission kgN ha-1                   
 

 sorghum wet 
6.7 ± 4.7 

A ce 
1.9 ± 0.7 

A b 
9.2 ± 4.1 

A e 
3.7 ± 1.2 

AB cd 
0.6 ± 0.1 

A a 
2.3 ± 0.3 

A bd 
2.46 ± 0.74 

A 
2.02 ± 0.73 

A 
1.3% 110 ± 53 

A 

dry 
11.2 ± 3.2 

B d 
2.8 ± 0.3 

A b 
4.3 ± 1.1 

AB bc 
8.6 ± 7.4 

A cd 
-0.4 ± 0.8 

A a 
2.6 ± 0.6 

A b 
2.09 ± 0.69 

A 
1.47 ± 0.69 

A 
1.0% 97 ± 49 

A 

  

maize wet 
8.4 ± 4.7 

AB c 
3.4 ± 0.9 

A b 
8.1 ± 2.4 

AB c 
3 ± 1.1 

B b 
0.6 ± 0.4 

A a 
2.4 ± 0.6 

A b 
2.37 ± 0.45 

A 
1.75 ± 0.44 

A 
1.2% 62 ± 17 

A 

dry 
16.4 ± 11.4 

B d 
4.3 ± 2.5 

A bc 
4.2 ± 2.1 

B c 
2.5 ± 0.8 

B bc 
0.7 ± 0.5 

A a 
1.9 ± 0.5 

A b 
1.83 ± 0.49 

A 
1.02 ± 0.37 

A 
0.7% 60 ± 30 

A 

                      

CH4 uptake kgC ha-1  

 

 

 

 

 

 

 

 

 

 

 

     
g CH4-C/               

t d.w. biomass 

 

  sorghum wet 
-3.7 ± 0.1 

A a 
-2.5 ± 0.2 

AB b 
-1.2 ± 0.3 

A c 
-3.3 ± 1.1 

AB ab 
-3 ± 0.7 

A ab 
-3.2 ± 1.2 

A ab 
-1.31 ± 0.15 

A 
-0.81 ± 0.14 

A 
- -46 ± 7 

AB 

dry 
-3.1 ± 0.3 

AB a 
-3.6 ± 0.4 

A ac 
-0.5 ± 0.4 

A b 
-3.3 ± 0.3 

A ad 
-4.2 ± 0.5 

B cd 
-4.4 ± 0.7 

B c 
-1.47 ± 0.10 

A 
-0.79 ± 0.07 

A 
- -58 ± 4 

A 

  

maize wet  
-2.6 ± 0.5 

B ac 
-1.7 ± 0.4 

B a 
-0.7 ± 0.3 

A b 
-3.5 ± 0.6 

AB c 
-3.4 ± 0.7 

AB c 
-3 ± 1.1 

A c 
-1.17 ± 0.13 

A 
-0.77 ± 0.11 

A 
- -32 ± 4 

B 

dry 
-2.6 ± 0.3 

B a 
-3 ± 0.7 

A a 
-1 ± 0.2 

A b 
-4.4 ± 0.4 

B c 
-4.4 ± 0.7 

B c 
-4.1 ± 1 

AB c 
-1.60 ± 0.13 

A 
-1.00 ± 0.10 

A 
- -61 ± 12 

A 
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Appendix 

A2. Supplementary material – CULTAN field study 

A2.1. Results of the gamm applied to log-scaled N2O fluxes and soil parameters of the 

CULTAN field study 

 

Figure A 3: Results of the gamm applied to log-scaled N2O fluxes and soil parameters. Shown are the 
smoothers of WFPS (y axis) and NH4+ content (x axis) at the upper figures, for CULTAN injection (upper left), 
unfertilized control (upper middle) and broadcast surface application (upper right figure). The figures in the 
lower row show the smoothers for NO3- and CO2. The values given at the y axis in lower figures and in color 
or at lines in the upper figures give the values that are inserted in the equation to calculate the modeled N2O 
flux at the respective value-combinations of NH4+, WFPS, NO3-  and CO2.  
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Appendix 

 
 
 
 
 
 
 
 
 
> summary(fit$gam) 
 
Family: gaussian  
Link function: identity  
 
Formula: 
logN2O ~ te(NH4kg.ha, WFPS_U, by = treat, bs = "ts") + s(NO3kg.ha,  
    bs = "cs") + s(co2.flux, bs = "cs") + Field + treat 
 
Parametric coefficients: 
                 Estimate Std. Error t value Pr(>|t|)     
(Intercept)      1.475446   0.008697 169.658  < 2e-16 *** 
FieldS          -0.101718   0.012789  -7.954 3.15e-15 *** 
treatunfert     -0.043188   0.011912  -3.626 0.000296 *** 
treatSurfaceApp  0.009916   0.010351   0.958 0.338199     
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
 
Approximate significance of smooth terms: 
                                      edf Ref.df      F  p-value     
te(NH4kg.ha,WFPS_U):treatCULTAN     8.352 24.000  8.443  < 2e-16 *** 
te(NH4kg.ha,WFPS_U):treatunfert     2.834 19.000  4.401  < 2e-16 *** 
te(NH4kg.ha,WFPS_U):treatSurfaceApp 7.308 24.000  2.237 2.55e-10 *** 
s(NO3kg.ha)                         5.610  5.610  8.586 1.30e-08 *** 
s(co2.flux)                         5.111  5.111 46.062  < 2e-16 *** 
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
 
R-sq.(adj) =  0.213  Scale est. = 0.024715  n = 1862 

 

Figure A 4: R output of the applied gamm, showing the significance of linear terms (field and 
treatment) and smooth terms. (FieldS= loam, treatunfert = control, SurfaceApp=surface application, 
CULTAN injection and the sandy loam site are represented by the intercept due to treatment contrasts) 
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Appendix 

A3. Supplementary data - Laboratory experiment 
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Table A 4: Concentration of N2O measured in the headspace of incubation vessels at different days. Values given represent mean ± standard deviation (n=4). 
Background values were derived from incubation vessels without soil.  

batch N level N2O concentration [ppm] 

  Day 1 2 3 6 10 14 18 21 

14N 0N 353 ± 42 409 ± 60 435 ± 60 332 ± 13 358 ± 40 393 ± 60 668 ± 283 840 ± 405 

 450N 984 ± 46 2348 ± 134 2748 ± 178 1082 ± 102 1267 ± 123 1426 ± 191 3212 ± 262 3502 ± 371 

 1000N 820 ± 56 1544 ± 50 1429 ± 44 513 ± 60 465 ± 40 475 ± 48 718 ± 86 801 ± 90 

 2250N 553 ± 20 1056 ± 47 1106 ± 75 459 ± 24 420 ± 38 408 ± 26 488 ± 47 493 ± 40 

 5000N 344 ± 11 431 ± 8 456 ± 6 331 ± 15 333 ± 11 332 ± 3 352 ± 5 363 ± 6 

                          

15N 0N 334 ± 6 351 ± 31 366 ± 42 329 ± 22 374 ± 96 436 ± 158 752 ± 646 830 ± 775 

 450N 1166 ± 105 3434 ± 709 3146 ± 637 1212 ± 171 1434 ± 154 1647 ± 188 3879 ± 622 4543 ± 815 

 1000N 852 ± 50 2065 ± 138 1708 ± 255 515 ± 6 564 ± 65 741 ± 134 1879 ± 669 2441 ± 964 

 2250N 557 ± 36 1307 ± 174 1193 ± 164 455 ± 11 429 ± 25 408 ± 8 544 ± 110 626 ± 254 

 5000N 445 ± 161 504 ± 43 506 ± 37 339 ± 14 351 ± 10 335 ± 12 362 ± 14 364 ± 10 

                          

C2H2 0N 317 ± 6 314 ± 3 316 ± 7 327 ± 25 324 ± 18 343 ± 28 364 ± 39 388 ± 63 

 450N 354 ± 11 309 ± 12 319 ± 11 356 ± 31 440 ± 81 534 ± 112 577 ± 131 656 ± 167 

 1000N 441 ± 31 489 ± 148 674 ± 224 375 ± 26 356 ± 7 373 ± 43 419 ± 169 502 ± 268 

 2250N 360 ± 8 416 ± 112 376 ± 26 311 ± 16 336 ± 27 333 ± 14 336 ± 38 326 ± 9 

 5000N 325 ± 17 328 ± 5 341 ± 7 293 ± 4 310 ± 6 318 ± 7 311 ± 3 323 ± 7 

                          
background  304 ± 7 286 ± 3 306 ± 4 290 ± 9 309 ± 10 316 ± 4 299 ± 4 311 ± 2 
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Table A 5: Fraction of soil derived N2O to total N2O (fsoil) in samples 

batch N level fsoil 

  Day 1 2 3 6 10 14 18 21 

14N 0N 0.13 ± 0.10 0.29 ± 0.10 0.29 ± 0.09 0.13 ± 0.03 0.13 ± 0.09 0.18 ± 0.13 0.48 ± 0.25 0.54 ± 0.27 

 450N 0.69 ± 0.01 0.88 ± 0.01 0.89 ± 0.01 0.73 ± 0.03 0.75 ± 0.03 0.78 ± 0.03 0.91 ± 0.01 0.91 ± 0.01 

 1000N 0.63 ± 0.03 0.81 ± 0.01 0.79 ± 0.01 0.43 ± 0.06 0.33 ± 0.06 0.33 ± 0.06 0.58 ± 0.05 0.61 ± 0.04 

 2250N 0.45 ± 0.02 0.73 ± 0.01 0.72 ± 0.02 0.37 ± 0.03 0.26 ± 0.07 0.22 ± 0.05 0.38 ± 0.05 0.37 ± 0.05 

 5000N 0.12 ± 0.03 0.33 ± 0.01 0.33 ± 0.01 0.12 ± 0.04 0.07 ± 0.03 0.05 ± 0.01 0.15 ± 0.01 0.14 ± 0.01 

                          

15N 0N 0.09 ± 0.01 0.17 ± 0.10 0.15 ± 0.09 0.12 ± 0.07 0.15 ± 0.18 0.22 ± 0.22 0.41 ± 0.32 0.42 ± 0.33 

 450N 0.74 ± 0.02 0.91 ± 0.02 0.90 ± 0.02 0.76 ± 0.03 0.78 ± 0.02 0.81 ± 0.02 0.92 ± 0.01 0.93 ± 0.01 

 1000N 0.64 ± 0.02 0.86 ± 0.01 0.82 ± 0.02 0.45 ± 0.01 0.45 ± 0.07 0.57 ± 0.08 0.82 ± 0.07 0.86 ± 0.06 

 2250N 0.45 ± 0.03 0.78 ± 0.03 0.74 ± 0.03 0.37 ± 0.01 0.28 ± 0.04 0.23 ± 0.01 0.44 ± 0.10 0.46 ± 0.16 

 5000N 0.29 ± 0.23 0.43 ± 0.06 0.39 ± 0.06 0.16 ± 0.04 0.13 ± 0.01 0.07 ± 0.03 0.18 ± 0.03 0.16 ± 0.02 

                          

C2H2 0N 0.06 ± 0.02 0.03 ± 0.01 0.03 ± 0.02 0.07 ± 0.07 0.05 ± 0.05 0.09 ± 0.08 0.13 ± 0.09 0.17 ± 0.13 

 450N 0.15 ± 0.03 0.01 ± 0.04 0.04 ± 0.03 0.15 ± 0.08 0.29 ± 0.14 0.39 ± 0.14 0.43 ± 0.15 0.49 ± 0.16 

 1000N 0.31 ± 0.05 0.38 ± 0.15 0.50 ± 0.17 0.22 ± 0.05 0.13 ± 0.02 0.14 ± 0.09 0.22 ± 0.23 0.28 ± 0.25 

 2250N 0.16 ± 0.02 0.28 ± 0.15 0.18 ± 0.06 0.07 ± 0.05 0.08 ± 0.07 0.05 ± 0.04 0.10 ± 0.09 0.05 ± 0.03 

 5000N 0.08 ± 0.05 0.16 ± 0.01 0.12 ± 0.02 0.02 ± 0.01 0.01 ± 0.02 0.01 ± 0.02 0.05 ± 0.01 0.04 ± 0.02 
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Table A 6: 15N abundance in soil derived N2O (aN2Osoil), calculated from N2O concentrations and 15N abundance in sample and background N2O  

batch N level 15N abundance in soil derived N2O [at%15N] 

  Day 1 2 3 6 10 14 18 21 

15N 0N                6.03  n=1    3.74 ± 0.32 

 450N    1.66 ± 0.47 1.68 ± 0.41 1.75 ± 0.57    0.94 ± 0.11 0.84 ± 0.08 0.82 ± 0.06 

 1000N    1.84 ± 0.24 2.01 ± 0.41       2.80 ± 0.16    1.98 ± 0.21 

 2250N    2.10 ± 0.02 2.06 ± 0.02       3.87 ± 0.81    2.12 ± 0.60 

 5000N    2.71 ± 0.41 2.89 ± 0.28             (2.73 ± 0.23) 

 

Table A 7: 15N abundance in the labeled N2O producing pool (a2) calculated from the non-equilibrium approach after Spott et al. (2006) and Bergsma et 
al. (2001).  

batch N level a2 [at%15N] 

  Day 1 2 3 6 10 14 18 21 

15N 0N  -   -   -   -   -   -   -  15.4 ± 0.9 

 450N  -  6.6 ± 0.5 8.6 ± 0.8 9.7 ± 2.5  -  11.1 ± 1.4 10.9 ± 1.1 10.6 ± 0.9 

 1000N  -  7.6 ± 1.8 9.6 ± 1.7 10.3 / 12.6  -   -   -  13.0 ± 0.9 

 2250N  -  6.1 ± 0.1 6.5 ± 0.1  -   -   -   -   -  

 5000N  -   -   -   -   -   -   -   -  

 

Table A 8: 15N abundance in bulk extracted NH4+ and NO3- at different days of incubation. The initial samples were taken from 
soil before filling of incubation vessels (n=5 per N level), at days 10 and 21, individual soil cores were sampled (n=4 per N level) 

batch     N level 15N abuncance in bulk Nmin [at%15N] 

  day 0  day 10  day 21 

  NO3
-  NO3

-  NH4
+  NO3

-  NH4
+ 

15N 0N 5.30 ± 0.01  2.2  n=1   n.d.   4.42 ± 0.09  0.369 ± 0.000 

 450N 5.27 ± 0.02  4.8  n=1  0.373 ± 0.002  1.31 ± 0.11  0.368 ± 0.001 

 1000N 5.30 ± 0.01  2.98 ± 0.02  0.370 ± 0.001  2.24 ± 0.02  0.377 ± 0.003 

 2250N 5.50 ± 0.05  3.88 ± 0.03  0.370 ± 0.001  3.26 ± 0.04  0.377 ± 0.004 

 5000N 5.72 ± 0.04  5.36 ± 0.06  0.372 ± 0.001  5.23 ± 0.04  0.369 ± 0.000 

 



1
2

3
 

 
 

 

A
p

p
en

d
ix 

Table A 9: Fraction of nitrification derived N2O to total N2O (fN ) from different methods over time, and weighted mean over the whole experiment (n=3 or 4 
for mean or standard error of values). NN: (autotrophic) nitrifier nitrification; ND: nitrifier denitrification; CND: coupled nitrification denitrification 

batch N level Approach  Process fN  fN 

    Day 1 2 3 6 10 14 18 21  Ø 

14N 0N C2H2 inhibition (a) NN+ND+CND 0.71 ± 0.53 0.92 ± 0.14 0.93 ± 0.32 0.46 ± 0.31 0.68 ± 0.51 0.64 ± 0.48 0.95 ± 0.55 0.87 ± 0.53  0.85 ± 0.44 

15N 0N C2H2 inhibition (a) NN+ND+CND 0.50 ± 0.12 0.86 ± 0.39 0.84 ± 0.46 0.43 ± 0.46 0.75 ± 0.90 0.76 ± 0.82 0.96 ± 1.01 0.86 ± 0.99  0.86 ± 0.90 

15N 0N 15N tracer non-equil (c) NN+ND(+CND) - - - - - - - 0.71 ± 0.72  0.71 ± 0.72 

15N 0N 15N tracer measured (b) NN+ND - - - - - - - 0.21 ± 0.20  0.21 ± 0.20 

14N 0N Isotopomer  SPmean (d) NN (fNH2OH) - - - - - - - 0.51 ± 0.14  0.51 ± 0.14 

14N 0N Isotopomer  SPmin  (d) NN (fNH2OH) - - - - - - - 0.57 ± 0.15  0.57 ± 0.15 

14N 0N Isotopomer  SPmax  (d) NN (fNH2OH) - - - - - - - 0.46 ± 0.12  0.46 ± 0.12 

              

14N 450N C2H2 inhibition (a) NN+ND+CND 0.93 ± 0.08 1.00 ± 0.04 0.99 ± 0.04 0.93 ± 0.08 0.88 ± 0.10 0.85 ± 0.15 0.91 ± 0.08 0.89 ± 0.06  0.91 ± 0.08 

15N 450N C2H2 inhibition (a) NN+ND+CND 0.94 ± 0.07 1.00 ± 0.14 1.00 ± 0.14 0.94 ± 0.10 0.89 ± 0.08 0.87 ± 0.09 0.93 ± 0.08 0.90 ± 0.11  0.93 ± 0.09 

15N 450N 15N tracer non-equil (c) NN+ND(+CND) - 0.77 ± 0.08 0.82 ± 0.10 0.83 ± 0.09 - 0.94 ± 0.06 0.95 ± 0.07 0.95 ± 0.11  0.90 ± 0.17 

15N 450N 15N tracer measured (b) NN+ND - 0.62 ± 0.06 0.57 ± 0.06 0.36 ± 0.11 - 0.55 ± 0.04 0.55 ± 0.05 0.50 ± 0.06  0.53 ± 0.10 

14N 450N Isotopomer  SPmean (d) NN (fNH2OH) - 0.61 ± 0.02 0.60 ± 0.03   0.72 ± 0.10 0.90 ± 0.11 0.77 ± 0.06  0.77 ± 0.15 

14N 450N Isotopomer  SPmin  (d) NN (fNH2OH) - 0.69 ± 0.02 0.68 ± 0.03 - - 0.79 ± 0.14 0.96 ± 0.11 0.84 ± 0.11  0.81 ± 0.17 

14N 450N Isotopomer  SPmax  (d) NN (fNH2OH) - 0.53 ± 0.02 0.51 ± 0.03 - - 0.65 ± 0.17 0.83 ± 0.10 0.70 ± 0.06  0.70 ± 0.15 

              

14N 1000N C2H2 inhibition (a) NN+ND+CND 0.77 ± 0.17 0.87 ± 0.05 0.70 ± 0.10 0.66 ± 0.19 0.74 ± 0.18 0.63 ± 0.16 0.73 ± 0.24 0.64 ± 0.29  0.72 ± 0.12 

15N 1000N C2H2 inhibition (a) NN+ND+CND 0.78 ± 0.07 0.90 ± 0.07 0.75 ± 0.14 0.66 ± 0.05 0.82 ± 0.27 0.87 ± 0.25 0.93 ± 0.33 0.91 ± 0.34  0.87 ± 0.21 

15N 1000N 15N tracer non-equil (c) NN+ND(+CND) - 0.78 ± 0.05 0.82 ± 0.10 - - - - 0.85 ± 0.30  0.82 ± 0.17 

15N 1000N 15N tracer measured (b) NN+ND - 0.65 ± 0.03 0.60 ± 0.06 0.46 ± 0.03 - - - 0.10 ± 0.04  0.32 ± 0.08 

14N 1000N Isotopomer  SPmean (d) NN (fNH2OH) - 0.53 ± 0.02 0.67 ± 0.04 - - - - 0.60 ± 0.10  0.58 ± 0.12 

14N 1000N Isotopomer  SPmin  (d) NN (fNH2OH) - 0.62 ± 0.02 0.75 ± 0.04 - - - - 0.67 ± 0.15  0.65 ± 0.12 

14N 1000N Isotopomer  SPmax  (d) NN (fNH2OH) - 0.44 ± 0.02 0.59 ± 0.04 - - - - 0.52 ± 0.09  0.50 ± 0.13 
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Table A 9: continued  

batch N level Approach  Process fN  fN 

    Day 1 2 3 6 10 14 18 21  Ø 

14N 2250N C2H2 inhibition (a) NN+ND+CND 0.78 ± 0.03 0.84 ± 0.07 0.91 ± 0.04 0.86 ± 0.18 0.84 ± 0.20 0.82 ± 0.18 0.80 ± 0.18 0.91 ± 0.13  0.85 ± 0.44 

15N 2250N C2H2 inhibition (a) NN+ND+CND 0.78 ± 0.14 0.88 ± 0.13 0.92 ± 0.14 0.87 ± 0.07 0.85 ± 0.13 0.82 ± 0.11 0.85 ± 0.32 0.95 ± 0.54  0.86 ± 0.90 

15N 2250N 15N tracer non-equil (c) NN+ND(+CND) - 0.68 ± 0.08 0.73 ± 0.14 - - - - -  0.70 ± 0.14 

15N 2250N 15N tracer measured (b) NN+ND - 0.64 ± 0.08 0.66 ± 0.10 0.36 (n=1) - - - 0.28 ± 0.11  0.56 ± 0.15 

14N 2250N Isotopomer  SPmean (d) NN (fNH2OH) - - 0.54 ± 0.02 - - - - -  0.54 ± 0.02 

14N 2250N Isotopomer  SPmin  (d) NN (fNH2OH) - - 0.63 ± 0.03 - - - - -  0.63 ± 0.03 

14N 2250N Isotopomer  SPmax  (d) NN (fNH2OH) - - 0.45 ± 0.02 - - - - -  0.45 ± 0.02 

              

14N 5000N 
 

C2H2 inhibition (a) NN+ND+CND 0.28 ± 0.28 0.64 ± 0.07 0.74 ± 0.02 0.85 ± 0.27 0.84 ± 0.31 0.83 ± 0.23 0.72 ± 0.07 0.73 ± 0.07  0.73 ± 0.04 

15N 5000N C2H2 inhibition (a) NN+ND+CND 0.82 ± 0.73 0.78 ± 0.13 0.82 ± 0.16 0.89 ± 0.18 0.92 ± 0.16 0.88 ± 0.41 0.78 ± 0.16 0.79 ± 0.14  0.83 ± 0.16 

15N 5000N 15N tracer non-equil (c) NN+ND(+CND) - - - - - - - -  - 

15N 5000N 15N tracer measured (b) NN+ND - 0.56 ± 0.10 0.53 ± 0.09 - - - - -  0.54 ± 0.10 

14N 5000N Isotopomer  SPmean (d) NN (fNH2OH) - - - - - - - -  - 

14N 5000N Isotopomer  SPmin  (d) NN (fNH2OH) - - - - - - - -  - 

14N 5000N Isotopomer  SPmax  (d) NN (fNH2OH) - - - - - - - -  - 
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Table A 10: Ratio of fertilizer-induced fluxes, calculated from the difference in fluxes between the respective N level and the 0N level, in relation to the 
total N2O emission from the respective N level.  

batch N level Fertilizer- induced N2O emission (% of total N2O flux) 

  Day 1 2 3 6 10 14 18 21 

14N 0N                         

14N 450N 0.92 ± 0.17 0.95 ± 0.07 0.94 ± 0.09 0.94 ± 0.16 0.95 ± 0.18 0.93 ± 0.28 0.87 ± 0.18 0.82 ± 0.18 

14N 1000N 0.89 ± 0.38 0.93 ± 0.06 0.88 ± 0.10 0.80 ± 0.39 0.67 ± 0.44 0.44 ± 0.45 0.10 ± 0.76 -0.15 ± -0.93 

14N 2250N 0.79 ± 0.19 0.88 ± 0.05 0.83 ± 0.10 0.71 ± 0.33 0.52 ± 0.51 0.13 ± 0.72 -1.02 ± -1.66 -2.11 ± -2.49 

14N 5000N -0.49 ± -1.33 0.29 ± 0.19 0.06 ± 0.45 -0.06 ± -0.50 -1.38 ± -2.06 -4.25 ± -4.18 -6.10 ± -5.75 -9.97 ± -8.69 

                          

15N 0N                         

15N 450N 0.96 ± 0.14 0.98 ± 0.28 0.98 ± 0.28 0.95 ± 0.21 0.93 ± 0.16 0.90 ± 0.18 0.87 ± 0.24 0.85 ± 0.30 

15N 1000N 0.94 ± 0.14 0.97 ± 0.12 0.96 ± 0.26 0.82 ± 0.14 0.71 ± 0.66 0.70 ± 0.60 0.71 ± 0.72 0.75 ± 0.73 

15N 2250N 0.88 ± 0.30 0.94 ± 0.24 0.93 ± 0.29 0.76 ± 0.18 0.44 ± 0.82 -0.34 ± -1.75 -0.82 ± -2.74 -0.58 ± -2.55 

15N 5000N 0.79 ± 1.44 0.74 ± 0.30 0.72 ± 0.35 0.27 ± 0.56 -0.48 ± -2.12 -4.66 ± -7.86 -5.69 ± -9.90 -6.78 ± -11.8 

-

11.7
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tatkräftige Unterstützung, in der Werkstatt, auf dem Feld und im Labor, wären die Versuche nicht 

möglich gewesen. Roland Fuß danke ich besonders für die Hilfe in statistischen Fragen, aber auch 

für den sachlich-kritischen Blick auf Ergebnisse und Text, der mir sehr geholfen hat. Regina Lausch 

danke ich für die Unzahl an extrahierten Nmin-Proben. Kerstin Gilke und Andrea Oehns-Rittgerodt 

für die Messung der GC-Proben, Martina Heuer, Ute Helmstedt und Ute Rieß für die Messungen der 

Isotopenproben, Monika Zerbian und Ute Tambor für die Nmin-Analytik und Hilfe bei der 

Diffusionsmethode, Dominique Olbrich und Stefan Burkart für technische Unterstützung im 

Mikrokosmenversuch. Andrea, Dominique und Peter Braunisch danke ich auch noch besonders 

fürs Einspringen, als Not am Mann war und Ulrike Görlich für Hilfe, wenn sie nötig war. Anette 

Giesemann für viele, fachliche und private, angeregte Gespräche, die oft Mut und gute Laune 

gemacht haben. Allen Kolleginnen und Kollegen: Danke, dass ich mich immer darauf verlassen 

konnte, Hilfe zu bekommen wenn ich sie gebraucht habe. Und auch für viele anregende, lustige, 

aufmunternde Gespräche – dafür, dass ich mich immer willkommen fühlen durfte.  

Für die vielen freundschaftlichen und fachlichen Gespräche, Aufmunterung, moralische und 

tatkräftige Unterstützung danke ich auch meinen (Ex-) Mitdoktorandinnen, insbesondere Lena 

Rohe, Ulrike Wolf, Greta Roth, Katja Walter und Caroline Buchen.  

Zuletzt und ganz besonders danke ich meiner Familie, meinen Eltern und Schwestern, und meinem 

Lebensgefährten Oliver Schmid für ihren Rückhalt, ihren Glauben an und ihr Vertrauen in mich. 

Ohne Euch hätte ich das nicht geschafft! 
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