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Abstract

The �rst direct observation of a gravitational wave signal by a laser in-
terferometric gravitational wave detector (GWD) impressively demon-
strates the importance and potential of high-precision metrology. The
injection of squeezed vacuum states (proposed by Caves) can increase
the sensitivity in such a GWD. This leads to a reduction of quan-
tum noise. Generally speaking, the quality of a measurement can be
increased either by enhancing the signal or by decreasing the noise.
In the context of interferometric GWD or precision spectroscopy, the
former can be achieved by using a cavity with higher �nesse or by
up-shifting the signal of interest to a regime with less in�uence of
technical noise via modulation techniques.
This thesis presents the development and implementation of a nonclas-
sical light source for fundamental research in the �elds of frequency
stabilization and high-precision spectroscopy. A novel pump-phase
locking technique that makes use of weak pump depletion (WPD) �
an unavoidable e�ect that is usually neglected � in a sub-threshold
optical parametric oscillator (OPO) is proposed and presented. The
phase di�erence between the fundamental �eld at a wavelength of
1064 nm and the second-harmonic �eld at a wavelength of 532 nm
is imprinted on both light �elds by the nonlinear interaction in the
crystal and is read out without disturbing the squeezed output. Our
new locking technique allows for the �rst experimental realization of
a pump-phase lock by reading out the pre-existing phase information
in the pump �eld. A pump phase stabilization of the OPO via WPD
locking while generating squeezed light at levels up to 2.5 dB has been
achieved in this work.
In order to utilize the generated squeezed light for downstream ex-
periments di�erent stabilization setups to control the OPO and its
pump phase are necessary. Di�erent schemes to achieve this task are
investigated.
This thesis presents the idea of an enhanced spectroscopy setup con-
sisting of up-shifted signals via a cascaded phase modulation and a
Fabry-Pérot cavity with squeezed light injection. A theoretical investi-
gation of this scheme is presented, including the theoretical derivation
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of the cavity dynamics and modeling of the expected variance of the
up-shifted signals on a reduced noise �oor, lowered by the introduced
squeezed light. The experimental realization will result in improved
high-precision phase measurements in cavity spectroscopy, with pos-
sible applications for cavity ring-down spectroscopy (CRDS), in the
�elds of optical frequency metrology or studies of light-matter inter-
actions.

Keywords:
Squeezed states, Parametric oscillators, spectroscopy
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Kurzfassung

Die erste direkte Beobachtung eines Gravitationswellensignals durch
ein laserinterferometrischen Gravitationswellendetektor (GWD) zeigt
eindrucksvoll die Bedeutung und das Potential hochpräziser Metrolo-
gie. Die Implementierung von gequetschten Vakuumszuständen (vor-
geschlagen von C. Caves) kann die Emp�ndlichkeit eines solchen
GWDs durch Reduktion von Quantenrauschen weiter steigern. Prinzip-
iell kann die Qualität einer Messung entweder durch eine Verstärkung
des Signals oder durch die Verringerung des Rauschens erhöht wer-
den. Vor dem Hintergrund einer sensitiven Spektroskopie oder der
interferometrischen Messung im GWD kann ersteres entweder durch
die Verwendung eines Resonators mit höherer Finesse erreicht werden
oder durch Verschieben des Signals mit Hilfe von Modulationstech-
niken in einen Frequenzbereich mit weniger Rauschein�üssen. Diese
Arbeit stellt die Entwicklung und Umsetzung einer nichtklassischen
Lichtquelle für die Grundlagenforschung in den Bereichen Frequen-
zstabilisierung und hochpräzise Spektroskopie vor.
Im Rahmen dieser Arbeit wird eine neue Stabilisierungstechnik der
Pumpphase eines unter dem Schwellwert betriebenen optischen para-
metrischen Oszillators (OPO) vorgestellt, die den schwachen Abbau
des Pumpfeldes (weak pump depletion, WPD) � ein omnipräsenter
E�ekt, der normalerweise vernachlässigt wird, � ausnutzt. Die Phase
zwischen dem fundamentalen Feld bei 1064 nm und dem Pumpfeld bei
532 nm wird dabei durch die nichtlineare Wechselwirkung im Kristall
auf beide Lichtfelder aufgeprägt und kann über das Pumpfeld ohne
Störung der erzeugten gequetschten Zustände im fundamentalen Feld
ausgelesen werden. Der mit dieser Technik erstmals in der Pumpphase
stabilisierte OPO erzeugte Vakuumzustände von 2,5 dB.
Um die erzeugten gequetschten Zustände für weiterführende Experi-
mente nutzen zu können, sind weitere Stabilisierungstechniken für den
OPO und die Pumpphase notwendig. Diese hierfür erforderlichen Än-
derungen im experimentellen Aufbau werden gegenübergestellt und
bewertet.
Darüber hinaus stellt diese Arbeit einen Spektroskopie-Aufbau vor,
bestehend aus einer kaskadierten Phasenmodulation zur Frequenzver-
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schiebung des Detektionssignals und einem Fabry-Pérot Resonator,
der durch die Implementierung von gequetschten Vakuumszuständen
rauschreduziert ist. In einer theoretischen Untersuchung des Res-
onatorverhaltens werden die frequenzverschobenen Signale und das
reduzierte Rauschen simuliert. Die experimentelle Realisierung wird
verbesserte hochpräzise Phasenmessungen ermöglichen und kann in
der Cavity-ring-down-Spektroskopie (CRDS) Anwendung �nden, z.B.
im Bereich der optischen Frequenzmetrologie oder der Studie von
Licht-Materie-Wechselwirkungen.

Schlagworte:
Gequetschtes Licht, Parametrischer Oszillator, Spektroskopie
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1
Chapter 1

Introduction

Over the past three decades, research on nonclassical light has come
a long way. After its theoretical conception in 1976 by Yuen [Yue76],
the �rst experimental realization by Slusher et al. [SHY+86] showed
a mere 0.3 dB of noise reduction in this groundbreaking experiment.
Nowadays, noise reduction of up to 12.7 dB below the vacuum level
can be produced [ESB+10]. In the early 1980s the theoretical work
on squeezed light was already well developed. In contrast, the exper-
imental research in this area lagged signi�cantly due to technical re-
quirements for the nonlinear material and the detection devices. This
gap between theory and experiment was aptly summarized by Marc
D. Levenson at the seventh International Laser Spectroscopy Confer-
ence (ICOLS VII) on Maui in 1985: �(Squeezed) states have eluded
experimental demonstration, at least so far. From an experimental-
ist's point of view squeezed state research can be best described as a
series of di�culties that must somehow be overcome�. He �nished by
listing �Nine di�culties� as future work proceedings [Yue83]. This list
has been slowly but surely settled.
Nonclassical-light-enhanced gravitational wave detectors have become
a cornerstone for gravitational wave astronomy [VKL+10]. The fact
that 2015 was nominated as the �International Year of Light and
Light-based Technologies� by the United Nations General Assembly
(UNGA) and the �rst direct observation of a gravitational wave signal
[CC16] by a laser interferometer emphasizes the signi�cance of light
and gravitation. This motivates a short review of the history of light
and general relativity.
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1. Introduction

�And God said, `Let there be light,' and there was light�
Genesis 1:3

In 1861 the Scottish physicist James Clerk Maxwell (1831 � 1879) pub-
lished his work �On Physical Lines of Force� [Max61] which postulates
the four well-known �Maxwell's equations�. Today we refer to this for-
malism, which is nearly 150 years old, as the �classical� framework of
electromagnetic theory. However, Albert Einstein doubted their va-
lidity and worked on alternative ideas involving quanta of light and
the concept of relativity. This approach led to his proposal of the dis-
tribution of light in discrete wave packets called photons (for which he
was awarded the Nobel Prize in Physics in 1921) and the special the-
ory of relativity (SR). A hundred years ago, in November 1915, Albert
Einstein presented his work on the general theory of relativity (GR) to
the Prussian Academy of Sciences. Solutions to his ��eld equations�
[Ein16b] describe the evolution of the universe on various scales, and
postulate the existence of black holes and gravitational waves. An
entirely new view of space and time was developed by Einstein, the
so called spacetime, which up until that point had been �guratively
considered a rigid stage of nature performing �its spectacular show�
witnessed by us. Einstein's theory with its groundbreaking insights
changed this: colloquially speaking, the performance of nature a�ects
the stage and in turn the stage itself a�ects the progress of the per-
formance.
The �eld of gravitational physics reached yet another milestone re-
cently, in February 2016. The gravitational-wave event GW1509141,
detected on September 14th 2015, is a direct con�rmation of one of
the last remaining unproven predictions of general relativity, unlock-
ing a new set of techniques for investigating the origins and evo-
lution of our universe, namely gravitational wave astronomy. This
�rst direct observation of a gravitational-wave signal was made by
the interferometric gravitational-wave detectors (GWD) LIGO (Laser
InterferometerGravitational-Wave Observatory) in Hanford and Liv-
ingston [CC16]. The particular Michelson-type interferometer topol-
ogy of gravitational-wave detectors (GWDs) allows for a tuning of
the instrument's sensitivity by the injection of nonclassical �squeezed�
light. While the detectors that measured the �rst event, leading to this
important discovery, were not equipped with squeezed-light injection,
it has been demonstrated in the past that squeezed light increases the

1The abbreviation for �Gravitational Wave detected 2015-09-14�.
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sensitivity of GWDs [MSM+02, AAA+13]. Therefore, it is a likely
option for upgrades in the near future.

�Spacetime tells matter how to move; matter tells space-
time how to curve.� John Archibald Wheeler

Albert Einstein's theory of GR [Ein16a] can be considered one of the
most important scienti�c achievements in recent times. His approach
was revolutionary in its ability to describe gravity, space, time and
geometry. In Isaac Newton's theory of universal gravitation [New87],
gravity is a force between two massive objects, which points along the
line intersecting both centers of masses. In contrast, Einstein's the-
ory describes the e�ect of gravity by the the curvature of spacetime.
Einstein's restated mathematical model describes a four-dimensional
continuum by combining the common three-dimensional Euclidean
space with the dimension of time. The curvature of spacetime leads
to geodesics as an extension of the classical rules of geometry, where
parallels never meet. Massive bodies curve the surrounding spacetime
and their movement is determined as moving on straight lines in a
now-curved spacetime. Due to this correlation, the motion of these
massive bodies and the geometry of spacetime are in permanent evo-
lution. As a consequence, Einstein predicted gravitational waves as
perturbations in spacetime propagating at the speed of light [Ein16b].
In contrast to an electromagnetic wave, which propagates through
spacetime and strongly interacts with matter, a gravitational wave is
almost unperturbed by matter.
This establishes a completely new perspective in astronomy, which is
traditionally based on electromagnetic radiation (and more recently,
neutrinos) and thus con�ned to observable types of radiation in the
electromagnetic spectrum. Therefore, it is impossible to observe the
presence of dark matter or dark energy, or to detect anything from
farther back than the time of photon decoupling in the recombination
epoch. Gravitational wave observations could o�er insight into the
very early universe that was opaque to electromagnetic radiation. As
gravitational waves interact only weakly with matter, they are long-
range but also di�cult to detect. The gravitational waves come in two
polarization states, h+ and h×. If the gravitational wave propagates
perpendicularly to the area spanned by a ring of test masses, the ring
is compressed and stretched periodically in orthogonal directions. The
amplitude of this compression and stretching is speci�ed by its induced
fractional length change, the so called strain h, given by h = ∆L/L
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with ∆L as the length change over a given length L. The more energy
per unit time the astrophysical event causing gravitational waves re-
leases2, the larger the strain h. However, the signal in the �rst direct
observation had a peak gravitational wave-strain of 1.0×10−21 [CC16].
Before the �rst direct detection was announced, there was only indi-
rect evidence for the existence of gravitational waves. In 1993 Hulse
and Taylor received the Nobel price for their studies of a pulsar in
a binary neutron star system PSR B1913+16 [HT75]. Using pulsar
timing measurements, they discovered a shift in the orbital period of
the binary system over time. This suggested that the system must
emit the predicted gravitational radiation [TW82, TW89].
Interferometric GWDs are a prominent example of ultra-high sensi-
tivity metrology. Another �eld of applications that can also bene-
�t from squeezed-light injection is spectroscopy based on laser light.
It provides excellent opportunities to measure and study atoms and
molecules. High-precision laser absorption spectroscopy, achieved by
cavity ring-down spectroscopy (CRDS), allows measurements of the
concentration of atoms and molecules in a dilute gas phase [PHS+98].
Typically, continuous wave (cw) laser light is injected into a resonator
consisting of two low-loss mirrors, and the ring-down time of the cav-
ity (the decay of the intracavity light �eld) is detected after the laser
is switched o�. If atoms or molecules are placed inside the cavity the
decay rate decreases in a characteristic manner for the concentration
or composition of the absorbing substance in the cavity. This is used
in di�erent �elds of spectroscopy, such as studies of light-matter in-
teractions [FSMA08] or optical frequency metrology [BSCH11]. The
sensitivity in phase spectroscopy is in general limited by the ratio of
the power of the detected signal of interest and the power of the noise.
This is called signal-to-noise ratio (SNR). One can increase the SNR
either by increasing the signal or by decreasing the noise. One can
increase the signal by using a cavity with higher �nesse or one can
implement modulation techniques to up-shift the signal of interest to
a regime with less in�uence of technical noise. If the desired signal
(e.g. the interference signal in a GWD due to the fractional length
change induced by a gravitational wave) is very small and cannot be
enhanced, then the other option is to reduce the noise �oor. If the
noise is already at the quantum limit the use of nonclassical light can
further increase the sensitivity of the spectroscopic measurement.

2For example, all forms of compact binaries, supernovae or rotating neutron stars
create such waves.
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Since nonclassical light o�ers a sub-shot-noise measurement by a low-
noise homodyne detector with a strong local oscillator (LO) [LPS+98]
a possible combination of techniques is imaginable. Using squeezed
light at higher free spectral ranges (FSRs) superimposed with the up-
converted signal of interest the SNR can be increased signi�cantly,
leading to higher sensitivity of the spectroscopic method.

Structure of this thesis

This thesis examines nonlinear light sources and their implementa-
tion for high-precision phase measurements. For this purpose, a sub-
threshold bow-tie optical parametric oscillator (OPO) was locked via
a completely novel stabilization scheme utilizing weak pump deple-
tion that arises from the interaction of the light �elds in the nonlinear
crystal. Besides the implementation of squeezed states of light in
future gravitational wave detectors, there are other relevant applica-
tions at the quantum noise limit including atomic force microscopy
[PDGVHG92], spectroscopy [PCK92], and cavity enhanced absorp-
tion spectroscopy [LLW+08]. In one of the experiments described in
this thesis, the squeezed light �eld was combined in a high-�nesse
Fabry-Pérot (FP) cavity with a signal of interest that was up-shifted
to higher free spectral ranges (FSR) of the OPO (and simultaneously
the FP cavity) via an electro-optical modulator (EOM). This signal
is masked by technical baseband noise and only manifests itself at
higher FSRs due to the absence of technical noise and the reduced
noise �oor, which is suppressed by the introduced squeezed light. Us-
ing a high-frequency photodetector, measurements of several FSRs of
the nonclassical light source were possible and a �squeezing comb� was
detected. Having several squeezing ports available makes multiplexed
entanglement possible, which has possible applications in quantum
communication.
Chapter 2 describes the mathematical and theoretical background of
quantum optics. The nature of light in its di�erent manifestations (or
states) is described, and di�erent visualizations are presented. Spe-
cial attention is placed on the modulation of light which is required
for error signal generation and stabilization purposes.
Chapter 3 contains the formalism of quantum optics related to the
detection of light �elds and their variances.
Chapter 4 gives a theoretical quantum optical description of cavity dy-
namics in general. Furthermore, the input-output-formalism for the
cavity dynamics is derived, following [WM07].

5



1. Introduction

In Chapter 5 the χ(2) susceptibility term for the nonlinear interaction
of light and matter is introduced to describe frequency-doubled light
and squeezed states. The cavity dynamics are expanded by the non-
linear interaction terms. Based on this, di�erent cases are considered:
cavity dynamics with and without depletion of the pump �eld and
cavity behavior o�-resonance for investigation of signals at frequen-
cies corresponding to higher free spectral ranges of the cavity.
Chapter 6 introduces di�erent schemes for stabilizing a resonator to
control the sub-threshold bow-tie OPO and its pump phase in the ex-
perimental setup for this work. Several experimental approaches are
presented and compared.
In Chapter 7 a detailed discussion of a novel locking scheme utilizing
weak pump depletion is given. The theoretical background and ex-
perimental realization are explained and the achieved squeezing level
is presented and discussed.
Chapter 8 details an advanced experimental setup with the generated
squeezed states for cavity-enhanced spectroscopy. In this representa-
tion the main components are described in detail. Particular emphasis
is placed on the theory of cavity-enhanced spectroscopy with a high
�nesse FP cavity and squeezed-light injection.
Chapter 9 concludes this thesis with a summary of the experiments
combining the simulations and the measured results. It also presents
an outlook on possible improvements and extensions for future re-
search.
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2
Chapter 2

Quantum nature of light

Initially described as an electromagnetic wave by James Clerk Maxwell,
the Hamiltonian of an electromagnetic �eld is established in this chap-
ter followed by its quantization where the operator formalism is in-
troduced. The quantization of light implies a change in paradigm.
Light is not only a continuous wave but consists of quanta, so-called
photons. This concept is called wave-particle duality. Adopting the
photon picture in the context of high precision measurements, a sta-
tistical treatment of photon counting is essential. A classic example
for the corresponding quantum noise is continuous measurement by
simple detection of the electromagnetic amplitude with a photodetec-
tor. The result is a Poissonian distribution for the number of photons
counted. This quantum noise limits the accuracy of many experiments
that rely on measurements of the electric �eld. As we shall see, the
quantum nature of light allows us, however, to redistribute the associ-
ated uncertainty between di�erent degrees of freedom of the �eld and
thus reduce the quantum noise in the domain of interest.
This chapter deals with the quantum mechanical treatment of light
and introduces the mathematical description for electromagnetic �eld
theory. Although we can purely physically motivate the quantization
of light [BBB15] this chapter examines the common, more abstract
derivation of the quantization by a vector potential in the Coulomb
gauge. The quantization of this light �eld leads to its description with
quadrature operators which are determined by the Heisenberg uncer-
tainty principle. This inequality establishes a fundamental limit of
uncertainty for measuring two non-commuting variables/quadratures.
It is possible to decrease the uncertainty (noise) in one quadrature at
the expense of increasing the noise in the other, thus preserving the
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validity of the Heisenberg uncertainty principle. These quadratures
span a vector space for a so-called phasor diagram to visualize the
amplitude and noise distribution of light. By means of that phasor
diagram di�erent states of light and their modi�cations in terms of
phase or amplitude modulations are explained.

2.1. The electromagnetic �eld

The electromagnetic interaction is one of the four fundamental forces
in addition to gravitation, and the weak and strong interactions. This
�eld is composed of an electric �eld induced by stationary charges
and a magnetic �eld induced by moving charges. The standard quan-
tum optics formalism used in this chapter can be found in text books
[WM07].

Maxwell equations and the vector potential

To investigate a light �eld freely propagating in space we start with
the classical electromagnetic �eld equations in vacuum:

∇ ·B = 0,

∇ ·Eε0 = 0,

∇×E = −∂B
∂t
,

∇×B = ε0µ0
∂E

∂t
,

(2.1)

where E is the electric �eld (a vector �eld) and B is the magnetic
�eld1 and ε0 and µ0 are the electric permittivity of free space and
magnetic permeability, which satisfy µ0ε0 = 1/c2.
The electric �eld E and the magnetic �eld B from Eq. (2.1) can be ex-
pressed in terms of a vector potential A(r,t). Due to the nature of the
equations, A(r,t) is not uniquely de�ned but allows for so called gauge
transformations, which leave the physical equations for the �elds unal-
tered, but can reasonably simplify calculations in the context of quan-
tum optics. Using the Coulomb gauge �xing condition ∇ ·A(r,t)= 0
the introduced vector potential A(r,t) de�nes the electric �eld and

1For convenience in all equations vectors are written in bold letters in the fol-
lowing work.
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2.1. The electromagnetic �eld

the magnetic �eld as follows:

B = ∇×A,

E = −∂A
∂t

.
(2.2)

By substituting Eq. (2.2) into Eq. (2.1), the Maxwell equations have
been used to obtain the wave equation in terms of this vector potential
A(r,t) of the electromagnetic �eld:

∇2
A(r, t) =

1

c2

∂2
A(r, t)

∂2t
. (2.3)

Plane waves are one such solution to Eq. (2.3) and it is customary to
use the standing waves of a cubic volume of sidelength L:

u(r) =
1

L3
hpole

ikr, (2.4)

with hpol as the polarization vector and k as the wave vector of the
electromagnetic wave. This gives us the vector potential of the elec-
tromagnetic �eld:

E(r, t) = i
∑
k

(
~ωk
2ε0

) 1
2 [
aku(r)e−iωkt − a∗ku(r)∗e+iωkt

]
, (2.5)

where ak and its complex conjugate are the dimensionless, complex
Fourier �eld amplitudes.

Paraxial approximation for Gaussian beams

According to [KL66] light that is propagating along the z-axis with
narrow amplitude distribution can be represented as a plane wave with
an envelope function

u(r, z) = e
−i

(
P+ k

2q
r2

)
e−ikz, (2.6)

where r =
√
x2 + y2 and k = 2π/λ is the magnitude of the wave

vector. This illustrates how the Gaussian fundamental beam di�ers
from regular plane waves. The complex parameters P and q describe
the beam expansion and curvature evolution of the wave front over the
distance of propagation [KL66]. Recasting the parameter q into the
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2. Quantum nature of light

two real parameters ROC (radius of curvature) and w (beam radius)
leads to the familiar de�nition of

u(r, z) =
w0

w
e−

r2

w2 e−i
kr2

2ROC e−i(kz−φ), (2.7)

where φ is called the Gouy phase and w0 is the waist of the beam (it
is the beam radius at its narrowest point).

2.2. Quantization by canonical transformation

Characterizing the single, discrete levels of energy of a light �eld by
the harmonic oscillator leads to the introduction of the creation (â†)
and annihilation operators (â). These operators decrease and increase
the energy in the light �eld by adding or subtracting single photons
from the ensemble.
The normalization factors in Eq. (2.5) have been chosen such that the
amplitudes ak and a∗k are dimensionless. In classical electromagnetic
theory these Fourier amplitudes are complex numbers. The normal-
ized complex amplitude function u(r) = u0(r)eiφ(r) contains the phase
information of the wavefront as well as the absolute phase with respect
to a reference wave. By transforming these complex amplitudes into
pairwise Hermitian adjoint operators the electromagnetic �eld reads,
in its quantized form, as:

E(r, t) = i
∑
k

(
~ωk
2ε0

) 1
2 [
âku(r)e−iωkt − â†ku(r)∗e+iωkt

]
. (2.8)

As photons are bosons the annihilation and creation operators ak and
a†k obey the bosonic commutation relations:

[âk, âk′ ] =
[
â†k, â

†
k′

]
= 0,

[
âk, â

†
k′

]
= δkk′ . (2.9)

2.2.1. The Hamiltonian of the electromagnetic �eld

The classical Hamiltonian describing the total energy of the electro-
magnetic �eld from Eq. (2.5) is given by

H =
1

2

∫
V

(
ε0E

2 +
B

2

µ0

)
d3
r, (2.10)

10



C
h
a
p
te
r
2

2.3. Quadrature operators

where ε0 is the electric permittivity of free space, µ0 is the magnetic
permeability and E and B are the amplitudes of the electric and mag-
netic �eld. Similarly the Hamiltonian can be canonically transformed
into the following form:

Ĥ =
∑
k

~ωk
(
â†kâk +

1

2

)
, (2.11)

where the product of the annihilation operator â and creation operator
â† represents the photon number operator â†kâk = n̂k. Multiplied by
the photon energy ~ωk one can �nd each energy level of the k modes
and in addition to the energy of vacuum �uctuations ~ωk/2.

2.3. Quadrature operators

The bosonic commutation relations (see Eq. (2.9)) reveal a big di�er-
ence in the classical and quantum optics approach. Since the classical
complex Fourier amplitudes in Eq. (2.5) commute they prevail as ob-
servables and consequently are detectable. In quantum mechanics
operators must be Hermitian (X̂1 = X̂†1) to describe physical observ-
ables. However, with the annihilation and creation operators (â, â†)
one can construct the Hermitian adjoint amplitude quadrature oper-
ator X̂1 and phase quadrature operator X̂2:

X̂1 = â+ â†,

X̂2 = i
(
â− â†

)
,

(2.12)

which leads to the modi�ed equation for the electromagnetic �eld:

E(r, t) = i
∑
k

(
~ωk
2ε0

) 1
2 [
X̂1 cos (ωt)− X̂2 sin (ωt)

]
. (2.13)

The inverse quadrature operator relations for the annihilation and
creation operators are:

â =
1

2

(
X̂1 − iX̂2

)
,

â† =
1

2

(
X̂1 + iX̂2

)
.

(2.14)

From Eq. (2.13) it is evident that these quadrature operators corre-
spond to oscillating �eld amplitudes with a phase shift of 90 ◦ with
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2. Quantum nature of light

respect to each other. The phase of the �eld is then de�ned as the
phase angle φ with respect to the amplitude quadrature, given by

φ = tan−1

(
X̂2

X̂1

)
. (2.15)

Because the amplitude and phase quadratures are constructed by â
and â†, they are equally non-commuting (see Eq. (2.9)). This gives rise

to the commutation relation
[
X̂1, X̂2

]
= ~i = 2i (where the Planck

constant is set to 2 due to normalization). A linear combination of
X̂1 and X̂2 is used to de�ne an operator for any quadrature angle ϑ:

X̂ϑ = X̂1 cos (ϑ) + X̂2 sin (ϑ)

= â†eiϑ + âe−iϑ.
(2.16)

2.3.1. Heisenberg's Uncertainty Principle (HUP)

In his uncertainty principle [GD08] Heisenberg determines the funda-
mental limit of the accuracy of simultaneous measurements on both
quantities of a pair of non-commuting observables A and B that obey

the commutation relation
[
Â, B̂

]
= C. Measuring one observable with

higher precision comes at the cost of a decreased precision in the other
according to the uncertainty relation:

∆Â∆B̂ ≥ |C|
2
, (2.17)

where the standard deviation of the operator Â is de�ned as

∆Â =

√〈
Â2
〉
−
〈
Â
〉2
, (2.18)

and B̂ accordingly. Applying Eq. (2.17) to the quadrature operators
of the electromagnetic �eld the HUP states that

∆X̂1∆X̂2 ≥ 1. (2.19)

For ∆X̂1 = ∆X̂2 = 1 the standard deviation of phase and amplitude
quadrature has its minimum of quantum �uctuation. States ful�lling
this limit are called minimum uncertainty states. The squeezed states
described in Sec. 2.4.5 are a special class of minimum uncertainty
states. Although the uncertainty is not equally distributed amongst
the phase and amplitude quadratures, squeezed states must also obey
the HUP.
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2.3. Quadrature operators

2.3.2. Linearization and �uctuations

With the help of the linearization formalism [Yur84] operators can be
decomposed into two parts: the steady-state component is time in-
dependent and represented by a complex number, whereas the time-
varying component is represented by a �uctuation operator. The an-
nihilation and creation operators take the form:

â(t) = α+ δâ(t),

â†(t) = α∗ + δâ†(t),
(2.20)

where the complex numbers α and α∗ are the steady state expectation
values of the �eld operators, which are equivalent to the amplitudes
of the light �eld in classical physics. For convenience the time de-
pendence of this operator is omitted in the following sections. This
approximation does not a�ect the operator relations of the quadrature
operators:

X̂1 = X1 + δX̂1

= (α+ α∗) + (δâ+ δâ†),

X̂2 = X2 + δX̂2

= i(α− α∗) + i(δâ− δâ†).

(2.21)

Determining the variance of the quadrature operators to be V =
∆2X̂o ≡ 〈|∆X̂o|2〉 − 〈|∆X̂o|〉2 Eq. (2.21) leads to the following vari-
ances of the quadrature operators:

∆2X̂1 =

〈(
δâ+ δâ†

)2
〉

=

〈(
δX̂1

)2
〉
,

∆2X̂2 =

〈(
−iδâ+ δâ†

)2
〉

=

〈(
δX̂2

)2
〉
.

(2.22)

The detection of a light �eld is directly related to the number of
photons. Therefore, the number operator needs to be linearized to
investigate its �uctuating behavior

n̂ = â†â

= α2 + α
(
δâ+ δâ†

)
+O(δ2)

= α2 + αδX̂1.

(2.23)

This shows that for a coherent light �eld the �uctuations around a
mean value scale with the mean value itself.
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2.4. States of light

The laser light �eld and its noise distribution are the basis for almost
every quantum optics experiment. For a better understanding of the
various states of light it is useful to have a picture in mind. The lin-
earized formalism of the quantum mechanical operators in Eq. (2.20)
leads to two complementary visualizations. Firstly, the quantum pha-
sor picture (so-called �ball-on-a-stick� picture) explains the di�erent
states of light with their noise contributions. It is an extended form of
the phasor diagram of an electromagnetic �eld well-known from clas-
sical physics. The ball on top of the classical steady-state �eld phasor
visualizes the Gaussian-distributed quantum noise in the phase space
formulation. The dashed contour circle represents the variance of the
Gaussian-distributed quantum noise (see [GZ04]). This representa-
tion is used in Sec. 2.4 to describe the di�erent states of light.
Secondly, the sideband picture is introduced to understand the con-
cepts of amplitude and phase modulation of a light �eld. In this
frequency domain picture the frequency of the light acts as a refer-
ence, the so-called �carrier�. By choosing the coordinate system in
such a way that it is rotating with the same frequency one obtains
a stationary picture. In this rotating frame [GC85] every other fre-
quency term (modulation, randomly noise distribution) is represented
by a sideband that rotates clockwise or counter-clockwise with respect
to the carrier frequency. This representation is used in Sec. 2.4.5 and
Sec. 2.5.3.

2.4.1. States of light in phasor diagrams

For a better understanding of the mathematical descriptions of the
di�erent states of light it is useful to illustrate the physical conditions
(see Fig. 2.1). Analogous to the phasor representation in electrical
engineering or classical �eld theory, the steady state amplitude and
the phase of a certain state of light are depicted by a vector in the
complex plane and the angle of the vector to the amplitude axis [L+98]:

α = α0e
iθ. (2.24)

The Gaussian-distributed quantum noise (quasi-probability distribu-
tion function) is often shown by a �blurry ball� on top of the arrow
with a dashed circle indicating its uncertainty �uctuations.
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2.4. States of light

(a) Coherent state (b) Vacuum state (c) Squeezed state (d) Fock state

Figure 2.1.: Di�erent states of light in the quantum phasor picture. (a) A coher-
ent state with a certain amplitude α (the classical steady-state �eld
phasor depicted by the red arrow) and a phase θ corresponding to the
angle with respect to the amplitude quadrature axis. The Gaussian
distributed quantum noise (quasi-probability distribution function) is
depicted by a blurry �ball� with a dashed circle marking its variance.
(b) Without an amplitude (arrow) only the noise distribution remains.
This is called the vacuum state. (c) If this quantum noise is not equally
distributed among the phase and amplitude quadrature, it is described
as a squeezed state. (d) One particular non-classical state of light is
the Fock state or number state. Due to the well-de�ned number of
quanta the blurry ball of the noise distribution becomes exactly the
circle of the distribution variance.

2.4.2. Vacuum State

The vacuum state (or ground state) |0〉 represents the �eld in its
photon-less state, with minimal quantum-limited �uctuations [GK05].
It has no coherent amplitude, i.e. α = α∗ = 0 (see Eq. (2.20)). In
the phasor picture, the vacuum state is just the �ball� of Gaussian-
distributed quantum noise without the �stick� (see Fig. 2.1b).
Vacuum �uctuations play a signi�cant role in every quantum optics
experiment as they couple in whenever optical loss is introduced. Be-
yond occupying an unused optical port of a beamsplitter, the vacuum
�eld replaces every part of the light �eld that is lost due to absorption
or scattering [McK08].

2.4.3. Number or Fock states

We describe the electromagnetic �eld by its Hamiltonian (Eq. (2.11))
to highlight the information of the energy level for one single mode
of k modes. Denoting |n〉 as the mode's energy eigenstate with its
energy eigenvalue En leads to the eigenvalue equation of the harmonic
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oscillator [GK05]:

Ĥ|n〉 = ~ω
(
n̂+

1

2

)
|n〉 = En|n〉. (2.25)

The same eigenstates can be expressed as eigenstates of the number
operator as follows:

n̂|n〉 = n|n〉, (2.26)

where n is a non-negative integer describing the number of photons
in that eigenstate.
The annihilation and creation operators â and â† act in the same way
on the energy eigenstate and on the number state: they decrease or
increase the photon mode number respectively by lowering or raising
the energy level of the new corresponding eigenstate

Ĥ (â|n〉) = (En − ~ω) (â|n〉) ,

Ĥ
(
â†|n〉

)
= (En + ~ω)

(
â†|n〉

)
.

(2.27)

Normalizing the new lower and higher number eigenstates leads to

â|n〉 =
√
n|n− 1〉,

â†|n〉 =
√
n+ 1|n+ 1〉.

(2.28)

With these results it becomes apparent that every arbitrary number
state can be produced by iterative application of the creation operator
â† to the ground state |0〉:

|n〉 =

(
â†
)n

√
n!
|0〉. (2.29)

These special states are called number states or Fock states. Due to
the well-de�ned number of quanta the blurry ball of the noise dis-
tribution becomes exactly the circle of the distribution variance (see
Fig. 2.1d).

2.4.4. Coherent states

While a Fock state is well suited to describe a low photon count num-
ber �eld, the coherent state more suitably represents high photon
number light �elds, such as those generated by continuous wave lasers.
Coherent states are an eigenstate of the annihilation operator â and
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2.4. States of light

have the minimal quantum limited �uctuations which are equally dis-
tributed in both amplitude and phase quadratures: ∆X1 = ∆X2 = 1.
In the phasor picture the coherent state is described by a certain am-
plitude α (the classical steady-state �eld phasor depicted by the red
arrow, see Fig. 2.1) and a phase θ corresponding to the angle of the ar-
row to the amplitude quadrature axis (see Eq. (2.24)). The Gaussian-
distributed quantum noise (quasi-probability distribution function) is
depicted by the blurry �ball� with the dashed circle marking the vari-
ance of the noise distribution (see Fig. 2.1a). The eigenvalue relation
for a coherent state |α〉 is [Gla63]:

â|α〉 = α|α〉, (2.30)

where the eigenvalue α is a complex number. By following the ap-
proach of [GK05], a coherent state can be expanded in the basis of
Fock states as follows

|α〉 = e−
|α|
2

2
∞∑
n=0

αn√
n!
|n〉. (2.31)

The coherent state as a displaced vacuum state

In addition to the previous two de�nitions there is a third way of
de�ning the coherent state. It can also be generated by letting the
displacement operator act on the vacuum state |0〉

D̂(α)|0〉 = |α〉, (2.32)

where the displacement operator is de�ned as

D̂(α) = e(αâ
†−α∗â). (2.33)

By means of the disentangling theorem [GK05] D̂(α) can be expressed
as

D̂(α) = e−
|a|2

2 eαâ
†
e−α

∗â. (2.34)
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Applying this form of the displacement operator to the vacuum state
leads to the familiar de�nition from Eq. (2.31):

|α〉 = D̂(α)|0〉

= e−
|a|2

2

∞∑
n=0

αn

n!

(
â†
)n ∞∑

l=0

(α∗â)l

l!
|0〉

= e−
|a|2

2

∞∑
n=0

αn

n!

(
â†
)n
|0〉

= e−
|a|2

2

∞∑
n=0

αn√
n!
|n〉.

(2.35)

The displacement operator therefore generates coherent states from
the vacuum state.

2.4.5. Squeezed states

There are states whose quadratures de�ned by Eq. (2.16) can be
smaller than vacuum noise. It is possible to decrease the uncertainty
noise in one quadrature at the expense of increasing the noise in the
other quadrature, preserving the validity of the HUP (see Fig. 2.1c).
To derive such a squeezed state in this section, we follow [GK05].
Based on the operator for any quadrature de�ned by its angle ϑ (see
Eq. (2.16)) a quadrature-squeezed state must satisfy:〈[

∆X̂ϑ

]2
〉
< 1. (2.36)

This squeezed quadrature has a standard deviation that is less than
the minimum �uctuation uncertainty. To preserve the validity of the
HUP the standard deviation of its associated operator must be greater
by at least the reciprocal factor xsqz:

∆X̂1 =
1

xsqz
∧ ∆X̂2 = xsqz squeezed amplitude quadrature

∆X̂1 =xsqz ∧ ∆X̂2 =
1

xsqz
squeezed phase quadrature,

(2.37)

where xsqz is a positive integer. In Sec. 2.4.5 the squeezed states are
illustrated in the frequency domain by Fig. 2.3.
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2.4. States of light

The squeeze operator

We follow the approach of the mathematical derivation in [GK05] and
introduce the squeeze operator:

Ŝ(ξ) = e
1
2(ξ∗â2−ξâ†2), (2.38)

where ξ = reiς is the squeeze parameter and r is the gain of the
squeezing de�ned as 0 ≤ r <∞. It is a measure of how elliptical the
�compressed ball� becomes. 0 ≤ ς ≤ 2π is the phase angle that de�nes
the squeezing quadrature. Examining the mechanism of the squeeze
operator acting on states, the Baker-Hausdor� lemma yields [Bak02]:

Ŝ†(ξ)âŜ(ξ) = â cosh (r)− â†eiς sinh (r),

Ŝ†(ξ)â†Ŝ(ξ) = â† cosh (r)− âe−iς sinh (r).
(2.39)

Since we are interested in how the squeeze operator a�ects the uncer-
tainties of the quadrature operators we apply the squeeze operator to
the vacuum state Ŝ(ξ)|0〉 and investigate the variances of the ampli-
tude and phase quadratures:

∆2Xξ,1 = cosh2 (r) + sinh2 (r)− 2 sinh (r) cosh (r) cos (ς)

= sin2
( ς

2

)
e2r + cos2

( ς
2

)
e−2r,

(2.40)

and

∆2Xξ,2 = cosh2 (r) + sinh2 (r) + 2 sinh (r) cosh (r) cos (ς)

= cos2
( ς

2

)
e2r + sin2

( ς
2

)
e−2r.

(2.41)

For ς = 0 the amplitude quadrature is squeezed by the factor exp(−2r)
and the phase quadrature exhibits quantum noise increased by the
inverse factor exp(2r). By steering the squeezing angle to ς = π the
situation is reversed. This is shown in Fig. 2.2.

19



2. Quantum nature of light

Figure 2.2.: Squeezed vacuum state of light. On the left the variance of the phase
quadrature ∆2X2 is squeezed by the factor exp(−2r) whereas the vari-
ance of the amplitude quadrature ∆2X1 exhibits quantum noise in-
creased by the inverse factor exp(2r). On the right the squeezing angle
is rotated by ς = π. Therefore, ∆2X1 is squeezed and ∆2X2 shows
antisqueezing of the inverse factor exp(2r).

Under the assumption that no losses are introduced the squeezed
states still obey the Heisenberg uncertainty principle (see Eq. (2.19)),
so they are minimum uncertainty states. In an experimental real-
ization it is impossible to produce or measure minimum uncertainty
squeezed states, because due to every part of induced optical loss, the
squeezed states statistics are replaced by those of the vacuum state.

Squeezed states of light in the sideband picture

Thus far we have introduced di�erent theoretical concepts and descrip-
tions of light, including quantization of the light �eld (see Sec. 2.2),
operator nomenclature (see Sec. 2.3), linearized formalism of the quan-
tum mechanical operators in Eq. (2.20), di�erent states of light and
phasor diagram representation (see Sec. 2.4.1). The sideband picture
combines all of these descriptions into an intuitive paradigm.
In the frequency domain the coherent (or vacuum) state is the car-
rier at frequency Ωc where its noise �uctuations are illustrated by the
sidebands at all frequencies randomly orientated along the frequency
axis (see Fig. 2.3a). This quantum sideband picture [Che07] is the
equivalent to the ball on the phasor-arrow.
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2.4. States of light

(a) Coherent state in frequency domain

(b) Amplitude-squeezed state in frequency domain

(c) Phase-squeezed state in frequency domain

Figure 2.3.: Squeezed states of light in the sideband picture. (a) A coherent state
in the frequency domain. The noise contribution is equally distributed
and uncorrelated (white noise). Since the sideband representation is in
the rotating frame picture the carrier can be considered as the refer-
ence in frequency and phase. This is why there is no noise contribution
on the carrier itself. (b) The amplitude-squeezed state has reduced
noise in the amplitude quadrature (due to correlated phasors where
the corresponding ones cause a decreasing of the noise level) and in-
creased noise in the phase quadrature in accordance with the HUP (see
Eq. (2.19)). (c) The phase-squeezed state shows the opposite behavior.
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2. Quantum nature of light

Squeezing in the amplitude or phase quadrature arranges all these
sidebands depending on their orientation with respect to the carrier.
This means that sidebands with a higher frequency than the carrier
(or a positive frequency as the carrier is the reference) are rotat-
ing clockwise whereas sidebands with a lower frequency are rotating
counter-clockwise. The higher the sidebands frequency di�erence is
with respect to the carrier the faster the rotation. Their orientation
to each other depends on the type of squeezing or modulation (see
Sec. 2.5); an amplitude-squeezed light �eld has its sidebands paral-
lel to the carrier. The sidebands are correlated so that their noise
distributions are almost not beating in the amplitude quadrature but
only in the phase quadrature (see Fig. 2.3b). In contrast, the side-
bands of a phase-squeezed light �eld are rotated by 90 ◦ so they are
facing in the opposite direction when they are parallel to the carrier
(see Fig. 2.3c). In order to detect a phase-modulated �eld it must be
converted into amplitude modulation. By combining it with a strong
local oscillator (LO) �eld where the carrier is rotated at 90 ◦ to be
in the plane of sidebands of the phase modulation, a detectable beat
signal is generated (see Sec. 3).

2.4.6. Coherent squeezed states

Beside the application of the squeeze operator to the vacuum state a
more general case is considered by applying the displacement operator
to a squeezed vacuum state [GK05]:

|α, ξ〉 = D̂(α)Ŝ(ξ)|0〉. (2.42)

Omitting the squeeze operator (ξ = 0) obviously leads to a coherent
state |α〉 = D̂(α)|0〉. When investigating the impact of the product
of the displacement and squeeze operator on such a state and the
operators â and â† it is necessary to identify the expectation value of
the number operator n̂:

〈α, ξ|n̂|α, ξ〉 = 〈α, ξ|â†â|α, ξ〉
= |α|2 + sinh2 (r).

(2.43)

As a sanity check we can reduce Eq. (2.43) to the coherent state
(displaced vacuum) by r → 0 or to a squeezed vacuum by α → 0.
Beyond that, Eq. (2.43) shows the in�uence of the squeezing process
since the average photon number of this state is increased by sinh2 (r).
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2.5. Modulation of light

The variance of the amplitude and phase quadrature operators for this
state are given by:

∆2Xξ,α,1 = e−2r,

∆2Xξ,α,2 = e2r,
(2.44)

which leads to exactly the same variances as the squeezed vacuum
state (see Eq. (2.40) and Eq. (2.41)), although the displaced squeezed
state undergoes a coherent excitation α.

Figure 2.4.: Displaced squeezed vacuum state of light. The squeezed states of light
in Fig. 2.2 are shifted by the displacement operator D̂(α). On top of the
arrow the elliptical shape of the noise distribution remains the same.
On the left the variance of the phase quadrature ∆2X2 is squeezed by
the factor exp(−2r), whereas the variance of the amplitude quadrature
∆2X1 exhibits increased quantum noise by the inverse factor exp(2r).
On the right the squeezing angle is rotated by ς = π. Therefore ∆2X1 is
squeezed and ∆2X2 shows antisqueezing of the inverse factor exp(2r).

2.5. Modulation of light

Laser light can be described by its electric �eld. Considering a per-
fect laser this electric �eld is monochromatic. As modulation of light
inherently implies that the electric �eld has multiple frequency com-
ponents it can be depicted by an exemplary sine wave being phase-
modulated or amplitude-modulated. The phase-modulated electric
�eld in Fig. 2.5 has a decreased amplitude maximum and minimum,
whereas the amplitude-modulated electric �eld in Fig. 2.6 is smaller
at zero crossings [FS10].
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2. Quantum nature of light

Figure 2.5.: Plot of the phase-modulated electric �eld versus time. A phase mod-
ulation corresponds to the variance of an amplitude-squeezed state,
since it mostly a�ects the zero crossings of the sine wave and has a
decreased amplitude maximum and minimum.

Figure 2.6.: Plot of the amplitude-modulated electric �eld versus time. An ampli-
tude modulation corresponds to the variance of a phase-squeezed state,
since it mostly a�ects the amplitude maximum and minimum and it
has a decreased noise distribution at zero crossings.

These plots of amplitude-modulated and phase-modulated sine waves
correspond to the variances of the squeezed states discussed in Sec. 2.4.5.

2.5.1. Phase modulation

Depending on the modulation depth the height of the generated
higher-order sidebands at multiples of the modulation frequency is
strongly decreased. For small modulation indices m it is usually safe
to neglect higher-order sidebands. Following [FS10] and with the use
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2.5. Modulation of light

of Bessel functions a phase-modulated �eld can be described and ap-
proximated with the following equation:

E = E0e
i(ωt+m cos (Ωt))

= E0e
iωt

(
1− m2

4
+ i

m

2

(
e−iΩt + eiΩt

))
=

(
1− m2

4

)
E0e

iωt + i
E0m

2
ei(ω−Ω)t + i

E0m

2
ei(ω+Ω)t.

(2.45)

It shows that energy is shifted from the carrier to the sidebands of the

modulation frequency ±Ω since the �rst factor
(

1− m2

4

)
decreases

the amplitude of the carrier. The two sidebands iE0m
2 ei(ω±Ω)t are

imaginary and hence in the phase quadrature.

2.5.2. Amplitude modulation

Compared to phase modulation with its modulation depth depen-
dent comb of sidebands, amplitude modulation generates exactly two
sidebands at frequencies ±Ω. An amplitude-modulated �eld can be
described by the following equation:

E = E0e
iωt (1 +m cos (Ωt))

= E0e
iωt
(

1 +
m

2
e−iΩt +

m

2
eiΩt

)
= E0e

iωt +
E0m

2
ei(ω−Ω)t +

E0m

2
ei(ω+Ω)t.

(2.46)

The two sidebands E0m
2 ei(ω±Ω)t are generated without reducing the

amplitude of the carrier (the �rst term).

2.5.3. Modulation in the sideband picture

The sideband picture can more generally be used to understand the
important concepts of amplitude and phase modulation of a carrier
light �eld. This concept of signal modulation is very important for
the experimental implementation of signal spectroscopy via cascaded
phase modulation (see Chap. 8). In the frequency domain any kind
of modulation generates new frequency components. These sidebands
are rotating with a certain frequency with respect to the carrier. The
sideband picture is useful to illustrate the di�erent behaviors of the
sidebands in the amplitude and phase quadratures with respect to the
di�erent modulations.
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2. Quantum nature of light

Figure 2.7.: Phase modulation of a coherent state in the sideband picture repre-
sentation. In addition to the phasor diagrams in the frequency do-
main (see Fig. 2.3) the vacuum noise distributions are added on top
of each phasor. The time evolution (t = 0, t = π/2, t = π, t = 3π/2) of
the measured quadratures of the amplitude-modulated states results
in the orientation of the carrier phasor and its summated noise con-
tribution. The obtained phase noise distribution over time is elliptical
(shown on the left). In the phase quadrature (=(E) = X2) the noise
distribution is increased for the bene�t of a decreased noise distribution
in the amplitude quadrature (<(E) = X1).
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2.5. Modulation of light

Figure 2.8.: Amplitude modulation of a coherent state in the sideband picture rep-
resentation. In addition to the phasor diagrams in the frequency do-
main (see Fig. 2.3) the vacuum noise distributions are added on top
of each phasor. The time evolution (t = 0, t = π/2, t = π, t = 3π/2) of
the measured quadratures of the amplitude-modulated states results in
the orientation of the carrier phasor and its summated noise contribu-
tion. The obtained amplitude noise distribution over time is elliptical
(shown on the left). In the amplitude quadrature (<(E) = X1) the
noise distribution is increased for the bene�t of a decreased noise dis-
tribution in the phase quadrature (=(E) = X2).
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3
Chapter 3

Detection of light

The measurements presented in this work are taken via photodetec-
tion of optical �elds, which can be expressed as observables X̂1 and
X̂2. When illuminated a photodetector produces a photocurrent pro-
portional to the intensity of the light �eld, and therefore to the number
of incident photons per unit time.
This chapter discusses the interaction of the light �eld with a pho-
tosensitive measurement device and provides an overview of di�erent
detection techniques of light �elds.

Methods of detecting light and quantum noise

Since laser light can be used as a precise �ruler� for the measurement
of small di�erential length changes (for example those caused by grav-
itational waves), it is important to detect this light �eld with all its
information about phase and amplitude as precisely as possible. This
section outlines how light can be detected and how di�erent detec-
tion schemes can yield information on its physical properties. Subse-
quently, di�erent forms of photodetection are introduced. The initial
concept of a single photodetector is �rst considered and extended to
a balanced detection scheme. This leads to the polarization-based
homodyne detection scheme which plays a crucial role in obtaining
the experimental results presented in this work. The central issue of
optical loss which couples as zero point �eld �uctuations in the signal
noise variance is discussed following the approach of [BR04].
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3. Detection of light

(a) Direct
detec-
tion

(b) Balanced homodyne
detection

(c) Self-homodyne
detection

(d) Polarization-based
homodyne detection

Figure 3.1.: Overview of di�erent schemes for light detection.

3.1. Direct detection with a single photodetector

A simple photodetector produces a photocurrent that is proportional
to the power of the light �eld impinging on the photosensitive area
[FS10], speci�ed by the number of photons in the light �eld per unit
time and the photon energy ~ω. The direct detection of a laser beam
with a single photodetector (see Fig. 3.1a) generates a photocurrent
which is proportional to the number of absorbed photons, and also
proportional to the number operator (see Eq. (2.23)):

i(t) ∝ â†(t)â(t)

= n̂(t).
(3.1)

Omitting the time dependence and applying the previously introduced
linearization approximation (see Sec. 2.3.2) on the number operator
n̂, Eq. (3.1) yields the �uctuating component of the light �eld; the
detectable quantum noise in the amplitude quadrature X̂1 appears as
a correcting term with zero mean

i(t) ∼ α2 + αδX̂1(t). (3.2)

The �rst term of this result describes the direct current (DC) part
which is proportional to the intensity of the detected light �eld. This
DC part is measurable with a power meter or any DC-coupled pho-
todetector by the detection of the average photocurrent [BR04]. The
second term which describes the alternating current (AC) part is rep-
resented by the �uctuating amplitude quadrature operator δX̂1 scaled
by the mean �eld amplitude α, comparable to Eq. (2.23) [BR04]. Mea-
suring the AC term of the photocurrent with a spectrum analyzer to
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3.2. Balanced homodyne detection

obtain a power spectrum corresponds to a Fourier transformation of
the variance of the amplitude operator:

Vi(ω) ∝ α2
〈(
δX̂1(ω)

)〉
∝ α2V1(ω).

(3.3)

Since a direct detection of the light �eld with a single photodetector
exclusively measures the variance of the amplitude quadrature V1(ω)
scaled by the mean �eld amplitude α no phase information can be
obtained.
According to Eq. (2.37) either of the quadratures of a squeezed state
can be less than the minimum �uctuation uncertainty. As we are in-
terested in detecting such a squeezed state, the measurement of both
phase and amplitude quadrature variance with a spectrum analyzer
plays an important role in the investigation of the variance of an op-
tical parametric oscillator (OPO) in terms of squeezing, described in
this thesis.

3.2. Balanced homodyne detection

One method to gain phase information is a detection scheme with
two photodiodes which is called balanced homodyne detection. For a
phase-sensitive measurement of the signal �eld â an additional LO
�eld b̂ at the same laser frequency ω is introduced as a phase refer-
ence. Additionally the local oscillator amplitude ampli�es the �uctu-
ations of the signal �eld we are interested in. Since there are di�erent
kinds of homodyne detection schemes (see Fig. 3.1) we will discuss
balanced homodyne detection and two cases of self-homodyne detec-
tion separately. In the balanced homodyne detection scheme shown
in Fig. 3.1b, the signal �eld â and the LO �eld b̂ are split equally on
a 50/50 power beamsplitter, leading to the amplitude coe�cients for
transmission t = 1/

√
2 and re�ection r = 1/

√
2, respectively. The

resulting outputs ĉ and d̂ are detected with two separate photodiodes
and their photocurrents are subtracted to obtain the phase sensitive
di�erential signal. Using the matrix formalism and choosing the asym-
metric beamsplitter convention [BR04] the �elds can be calculated as(

ĉ

d̂

)
=

(
t r
−r t

)(
â

b̂

)
=

1√
2

(
1 1
−1 1

)(
â

b̂

)
,

(3.4)
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3. Detection of light

which leads to the equations for the �elds impinging on the two pho-
todiodes

ĉ =
1√
2

(
â+ b̂

)
, ĉ† =

1√
2

(
â† + b̂†

)
,

d̂ =
1√
2

(
−â+ b̂

)
, d̂† =

1√
2

(
−â† + b̂†

)
.

(3.5)

Without loss of generality, the signal of interest is assumed to be real
and can be represented by

â = αsig + δâ, (3.6)

and the LO superimposed on the signal �eld can be described as

b̂ =
[
βLO + δb̂

]
e−iθ, (3.7)

where eiθ is the relative phase di�erence between the signal �eld and
the LO �eld [BR04]. After combining the signal and the LO on the
beamsplitter (as shown in Fig. 3.1b) the signals at the two photodiodes
are composed of the following terms of �eld operators:

î1 ∝ ĉ†ĉ =
1

2

(
â† + b̂†

)(
â+ b̂

)
,

î2 ∝ d̂†d̂ =
1

2

(
−â† + b̂†

)(
−â+ b̂

)
.

(3.8)

Therefore the photocurrent on each photodiode can be expressed as:

î1 =
1

2

[
|αsig(t)|2 + |βLO(t)|2 + 2αsigβLO cos (θ)

+ αsig

(
δâ+ δâ† + δb̂e−iθ + δb̂†eiθ

)
+βLO

(
δb̂+ δb̂† + δâeiθ + δâ†e−iθ

)
+O

(
δ2
)]
,

(3.9)

and accordingly for the second photodiode. By merging the �eld op-
erators into new quadrature operators such that

δX̂+
o = δô+ δô†,

δX̂−o = i
(
δô− δô†

)
,

(3.10)

and

δX̂∓θo = δôe±iθ + δô†e∓iθ, (3.11)
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3.3. Self-homodyne detection

for an arbitrary operator (ô), Eq. (3.9) becomes clearer. The photo-
diode currents are

î1 =
1

2

[
|αsig(t)|2 + |βLO(t)|2 + 2αsigβLO cos (θ)

+αsig

(
δX̂+

sig + δX̂θ
LO

)
+ βLO

(
δX̂+

LO + δX̂−θsig

)]
,

î2 =
1

2

[
|αsig(t)|2 + |βLO(t)|2 − 2αsigβLO cos (θ)

+αsig

(
δX̂+

sig − δX̂
θ
LO

)
+ βLO

(
δX̂+

LO − δX̂
−θ
sig

)]
.

(3.12)

By subtracting the photodiode currents the steady-state amplitudes
cancel each other out, leaving the di�erential current

î− ∝ î1 − î2 = 2αsigβLO cos (θ) + αsigδX̂
θ
LO + βLOδX̂

−θ
sig . (3.13)

Under the assumption that the LO �eld has a much higher intensity
than the signal �eld (αsig � βLO) the middle term of the right hand
side of Eq. (3.13) can be neglected. This assumption is also known as
the homodyne condition, and

î− = 2αsigβLO cos (θ) + βLOδX̂
−θ
sig (3.14)

leads to the variance of the measured di�erential current:

Vî− = β2
LOV

(
δX̂−θsig

)
. (3.15)

It contains only the �uctuations of the signal �eld δX−θsig scaled by the
LO amplitude β2

LO. Due to common mode rejection the �uctuations
from the LO are canceled out, as long as αsig � βLO [YC83].
It is important to consider the in�uence of the relative phase di�erence
θ between the signal �eld and the LO �eld for the desired quadrature
in the detection scheme. A phase di�erence of θ = 90 ◦ enables the
measurement of the phase quadrature. Accordingly, if the signal and
LO �eld are in phase (θ = 0 ◦), an amplitude quadrature measurement
is possible. This result shows how the �uctuations and modulations
described by the quadrature operators can be detected, by amplifying
them with the large amplitude of the mean value of the LO, without
its �uctuations corrupting the measurement.

3.3. Self-homodyne detection

The signi�cant feature of the self-homodyne detection scheme is that
the signal �eld and LO �eld are spatially perfectly overlapped and
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3. Detection of light

form the incoming �eld â = αsig + δâ + βLO + δb̂. This �eld is split
up on the power beamsplitter and both light �elds are detected on
photodiodes (see Fig. 3.1c). Having the LO coexist in the signal �eld
enhances the �uctuating quadrature operator of the signal �eld by its
mean �eld amplitude. However, there is no external phase reference,
since the vacuum �eld v̂ = 0 + δvac, which is coupled in by the beam-
splitter, has no de�ned phase. This is why self-homodyne detection
with the signal and LO exclusively allows measurements of the am-
plitude quadrature X̂+, ampli�ed by the local oscillators amplitude.
According to Eq. (3.8) the current for each photodiode is

î1 =
1

2

(
(αsig + βLO)2 + (αsig + βLO)

(
δX̂+

sig + δX̂+
LO + δX̂+

vac

))
,

î2 =
1

2

(
(αsig + βLO)2 + (αsig + βLO)

(
δX̂+

sig + δX̂+
LO − δX̂

+
vac

))
.

(3.16)

Deriving the sum and the di�erence of the photocurrents by consid-
ering the homodyne condition introduced in Sec. 3.2 leads to

î+ ∝ (αsig + βLO)2 + (αsig + βLO) δX̂+
sig,

î− ∝ (αsig + βLO) δX̂+
vac.

(3.17)

The di�erence of the photocurrents results in the shot noise level V +
vac,

whereas the sum of the photocurrents is a measurement of the ampli-
tude quadrature �uctuation of the light �eld V +

sig with high precision.

3.4. Polarization-based homodyne detection

In the polarization-based homodyne detection scheme the signal and
LO copropagate in two perpendicular polarizations of the same light
�eld. We consider the case where the signal �eld is vertically linearly
polarized |V 〉 (in s-polarization) and the LO is horizontally linearly
polarized |H〉 (in p-polarization).

Polarization of light

Considering the propagation of light as an electromagnetic wave
along the optical axis one property is its helicity [Jac99]. There
are two possible orthogonal quantum states: right circular po-
larization |R〉 and left circular polarization |L〉. In most of the
experimental setups described in this work the light was linearly

34



C
h
a
p
te
r
3

3.5. The in�uence of optical losses and detection e�ciencies

polarized; either in vertical polarization |V 〉 = (|R〉+ |L〉)
√

2,
in horizontal polarization |H〉 = (|R〉 − |L〉)

√
2, or in a linear

combination of both polarizations called �diagonal� polarization.

In contrast to balanced homodyne detection, where the signal of in-
terest and the LO have the same polarization when they meet on the
power beamsplitter, polarization-based homodyne detection requires
a combination of a quarter-waveplate (QWP) and a polarizing beam-
splitter (PBS) to generate the superimposed signal, due to the fact
that orthogonal polarizations do not interfere. Eq. (3.4) is then mod-
i�ed via the Jones-formalism [Jon47] to:(

ĉ

d̂

)
=

1√
2

(
eiπ/4 0

0 e−iπ/4

)
1√
2

(
1 1
−1 1

)(
|H〉
|V 〉

)
, (3.18)

where |H〉 is the polarization of the LO and |V 〉 is the polarization of
the signal �eld. As we can see, this QWP creates mixed states with
equal parts of |H〉 and |V 〉 with a relative phase shift of θ = π/2 = 90 ◦.
By performing polarization spectroscopy (for example to stabilize a
cavity, see Sec. 6.1.4) the signal �eld in s-polarization gets an addi-
tional phase shift ∆φ with respect to the LO in p-polarization leading
to:

|H〉 = βLO + δb̂,

|V 〉 = αsig + δâei∆φ,
(3.19)

where ∆φ is the additional phase of the cavity picked up by the
resonant s-polarized signal �eld |V 〉. The �xed phase di�erence of
θ = π/2 = 90 ◦ leads to the con�nement of detecting the phase quadra-
ture of the signal �eld �uctuations δX−sig which modi�es Eq. (3.14) to:

î− ∝ i1 − i2 = 2αsigβLO cos
(π

2
+ ∆φ

)
+ αsigδX

+
LO + βLOδX

−
sig,

î− = −2αsigβLO sin (∆φ) + βLOδX
−
sig.

(3.20)

This particular form of homodyne detection is used in almost every
part of the experimental setup described in this work. Its implemen-
tation is discussed in detail in Sec. 6.1.4.

3.5. The in�uence of optical losses and detection
e�ciencies

Ideally, a photodiode converts every incident photon into an electron
so that the generated photocurrent is directly proportional to the in-
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3. Detection of light

tensity of the light �eld. The fraction of converted photons is called
the quantum e�ciency ηqe of a photodiode and is at best ηqe = 1.
However, the conversion from a photon to an electron by the photo-
diode experiences losses ε such as absorption and scattering [BR04].
Therefore, a photodiode has a quantum e�ciency smaller than unity.

Figure 3.2.: Schematic illustrating the detection of a light �eld with a beamsplitter
where losses are introduced. The beamsplitter has a power re�ectivity
ε and transmittance η. A direct detection with including losses can be
considered with the detection e�ciency η = 1− ε.

A mathematical consideration of introducing losses can be represented
by a partially transmissive beamsplitter with transmittance η = 1− ε
(see Fig. 3.2). Since there is no light �eld entering the unused port,
vacuum �uctuations δvac = δν̂ couple into the light �eld of interest ĉ
as follows

ĉ =
√
ηâ+

√
1− ηδν̂. (3.21)

This leads to the following photocurrent at the detector:

î ≈ ĉ†ĉ = ηα2 +
√
ηα
(√

ηδX̂+
a +

√
1− ηδX̂+

ν

)
, (3.22)

where the mean value of the �eld is scaled by the transmittance of
the beamsplitter η, which is the equivalent to the detection e�ciency
and the �uctuating term in the amplitude quadrature. Calculating
the variance yields

Vi = ηα2
[
ηV +

a + (1− η)
]
, (3.23)

which is comparable to the variance of a balanced homodyne detector
reconsidered with the same loss model. Since the spectrum analyzer
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3.5. The in�uence of optical losses and detection e�ciencies

normally measures the variance VdB in dB, the conversion to the lin-
ear variance Vlin = 10(VdB/10), taking the detection e�ciency η into
account, is:

Vη,dB = 10log10

[
η10

VdB
10 + (1− η)

]
. (3.24)

Figure 3.3.: Resulting noise variances of the light �eld as a function of the detection
e�ciency for di�erent input variances. The shot noise (black dashed
line) is the reference line at 0 dB. If the input variances experience more
losses the detection e�ciency is decreased and the resulting variances
converge to the shot noise. The squeezed variance converges faster
than the antisqueezed variance because it is more susceptible to losses.

The dependence of the resulting variance on losses a�ecting the input
variance is depicted in Fig. 3.3. If the input variances experience more
losses the detection e�ciency is decreased and the resulting variances
converge to the shot noise. The squeezed variance converges faster
because it is more susceptible to losses [BR04]. If the relative noise
of the variance is larger it decreases faster with the losses introduced.
This shows the fragile nature of squeezed states and explains the ef-
fort to minimize incoupling losses in such a measurement setup. The
vacuum state cannot be a�ected by losses since there is no change in
its variance by adding vacuum noise.

3.5.1. Homodyne mode mismatch

The essential part of balanced homodyne detection is the superimpos-
ing of the signal �eld and the LO �eld. A mismatch is equivalent to
introduced losses, therefore the experimental realization of the best
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3. Detection of light

possible interference is crucial due to many error sources such as spa-
tial mode mismatch or polarization mismatch. The fringe visibility
VIS can be used to describe the quality of the interference. It can be
determined by the maximum intensity Imax and minimum intensity
Imin of the interference fringe, by scanning the relative phase between
signal �eld and LO �eld [L+98], by

VIS =
Imax − Imin

Imax + Imin
. (3.25)

Calculating the e�ect of mode mismatch in a homodyne measurement
with the linearization of the operators leads to the same loss calcula-
tion on a beamsplitter as already seen in Sec. 3.5. The square of the
visibility results in the e�ciency factor ηh:

VIS2 = ηh. (3.26)

The best possible mode matching is especially important to mea-
sure squeezed states since they are very susceptible to losses (see
Fig. 3.3), meaning every loss introduces more vacuum �uctuations
into the squeezed state and thereby reduces the degree of squeezing.
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4
Chapter 4

Fundamentals of optical

resonators

A typical interferometer layout for current GWDs consists of a beam-
splitter that divides the incident laser beam into two perpendicular
interferometer arms where the light �eld can interact with passing
gravitational waves before it is recombined at the beamsplitter. By
using resonators in these arms the e�ective interaction time between
the light �eld and the gravitational wave is enhanced such that the
length changes can be observed with increased sensitivity.
This chapter builds the theoretical background for an understanding
of the principles of optical resonators (often called optical cavities).
The experimental setups described in this work consist of several res-
onator types. The �rst section contains general considerations of the
light �eld interacting with a linear Fabry-Pérot cavity, derived fol-
lowing the approach of [FS10]. For squeezed-state generation (see
Chap. 6 and Chap. 7) � the main part of this work � a bow-tie cav-
ity design was used. For this reason the cavity dynamics derived in
the second part are adapted to the experimental setup. Subsequently,
the equations of motion for a cavity are introduced and extended by
the input-output formalism to describe how the intracavity dynamics
a�ect the output of the cavity [WM07].

4.1. The two-mirror resonator: a linear
Fabry-Pérot cavity

In general, optical cavities are a system of mirrors between which
a closed path for light propagation exists. In the most simple case
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4. Fundamentals of optical resonators

they consist of two opposing (�at or spherical) mirrors separated by
a distance L (see Fig. 4.1). If the resonator's optical path length is
an integer multiple of half wavelengths (nλ = 2L) the light con�ned
within interferes constructively.

4.1.1. Light �eld amplitudes

Derived from Eq. (2.5) and described further in Sec. 3 the interaction
of light �elds and optical devices is mathematically described by a
beamsplitter (see Fig. 3.2). Similarly a mirror can be described with
input and output ports with amplitude coe�cients for re�ection (rj)
and transmission (tj) [FS10].

Figure 4.1.: Schematic of light �eld amplitudes interacting with a cavity consisting
of two mirrors. Both mirrors are characterized by their amplitude
coe�cients for re�ection (rj) and transmission (tj).

Light on a mirror: Re�ection, transmission and propagation

For the interaction of the light �eld with the FP cavity two processes
must be considered: propagation through a medium (vacuum, air,
mirror) and interaction with an optical surface (re�ection or trans-
mission) with a di�erent index of refraction n.
The real amplitude coe�cients for re�ection r and transmittance t are
related to the losses L, power re�ectivity R and transmittance T via
T +R+L = t2 + r2 +L = 1. If the light �eld ain couples in at mirror
1 (see Fig. 4.1) the �eld amplitudes can be expressed as

a1 = ra4 + itain,

aref = rain + ita4.
(4.1)
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4.1. The two-mirror resonator: a linear Fabry-Pérot cavity

The phase shift for the transition of the light �eld through mirror 1
into the cavity is given by the factor i. This di�ers from the phase
shift of π/2 used in the beamsplitter description of Eq. (3.4) for the
two light �elds in the homodyne detection scheme 1.
If we restrict our analysis to the on-axis �eld and neglecting the gain
of the Gouy phase we consider the light �eld as a plane wave (see
Eq. (2.6)) along the optical axis of the distance L through a medium
with the index of refraction n, which leads to

a2 = a1e
−iknL,

a4 = a3e
−iknL,

(4.2)

A complete set of equations arises by combining the interactions of
the light �eld with the two mirrors and its free propagation between
them in vacuum (n = 1):

a1 = it1ain + r1a4,

a2 = e−ikLa1,

atrans = it2a2,

a3 = r2a2,

a4 = e−ikLa3,

aref = r1ain + it1a4.

(4.3)

By successively inserting the separate equations into each other one
can describe the re�ected, transmitted and intracavity �eld as a func-
tion of the input �eld and the mirror parameters. This leads to the
equation for the �eld after one cavity round trip:

a4 = ain
ir2t1e

−i2kL

1− r1r2e−i2kL
. (4.4)

The re�ected �eld is

aref = ain
r1 − r2

(
r2

1 + t21
)
e−i2kL

1− r1r2e−i2kL
, (4.5)

1There are two indices of refraction n1 and n2 involved in the re�ection and trans-
mission of light at the boundary between the optical media. Using Fresnel's
equations [Ken08] one can derive phase relations between the individual coe�-
cients in order to satisfy the energy conservation. One possible convention for a
symmetric choice is to let each transmitted �eld (ain, a4) pick up a phase shift
of π/2 while the re�ected �elds remain at zero.
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4. Fundamentals of optical resonators

and the transmitted �eld is:

atrans = ain
−t1t2e−ikL

1− r1r2e−i2kL
. (4.6)

For investigations into the polarization-dependent di�erences in the
re�ected �elds the power re�ectivities of the mirrors for s- and p-
polarization (representative for mirror curvature or penetration depth)
are taken into account, see Sec. 8.2.2.

Coupling matrices

Instead of describing the interaction of the light �eld sequentially, cou-
pling matrices o�er a more compact system description. For various
calculations of complex resonator schemes coupling matrices are very
useful. Every single optical element of the system can be described by
a matrix and therefore, the complete resonator can be described by
the product of these matrices which can be successively multiplied,

Mcav = Mmirror ·Minside ·Mmirror. (4.7)

The two-mirror resonator from Eqs. (4.3) in matrix formalism leads
to(
ain
aref

)
=
−1

t1t2

(
eikL − r1r2e

−ikL −r2e
ikL + r1e

−ikL

−r2e
−ikL + r1e

ikL e−ikL − r1r2e
ikL

)(
atrans

0

)
.(4.8)

This formalism extends e�ortlessly to more complex or coupled cavity
mirror arrangements.

4.1.2. Properties and characteristics of a linear Fabry-Pérot
cavity

To investigate the behavior of a FP cavity some properties need to be
calculated from the cavity parameters (namely the optical path length
of the cavity L, the wavelength of the incoming light �eld λ and the
parameters of the two mirrors: re�ectivity r and transmittance t). The
transmittance of the cavity is given by its transfer function relating
the input �eld ain to the transmitted �eld atrans,

atrans
ain

=
−t1t2e−ikL

1− r1r2e−i2kL
. (4.9)

Since the wave vector k = 2πf/c is frequency dependent Eq. (4.9)
has its maximum for a certain frequency at cavity resonance kL =
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4.1. The two-mirror resonator: a linear Fabry-Pérot cavity

2πfcL/c = Nπ, where N is an integer. The spacing between two
adjacent fundamental frequencies fc = Nc/2L is the free spectral range
(FSR) which for a linear cavity is de�ned as

FSR =
c

2L
. (4.10)

The linewidth ∆ν of the cavity is a measure of the average lifetime
of the photons τ in the cavity and is determined by the re�ectivities
of the mirrors Ri = r2

i . The higher the re�ectivities the longer the
lifetime of the photons in the cavity and the smaller the cavity decay
rate. The cavity decay rate κ is de�ned by

2κ = −c/L · ln[R1 ·R2 · (1− l)]

(cf. [SH98]), where l is the intracavity loss, L the cavity length and
c the speed of light. This link between the cavity decay rate and the
linewidth can be expressed as

κ = π∆ν. (4.11)

The ratio of the FSR to the linewidth indicates the quality of the
cavity as a function of its mirror re�ectivities. This quality factor
which is called the �nesse F is

F =
FSR

∆ν
. (4.12)

It can be approximated as

F =
π
√
r1r2

1− r1r2
(4.13)

for high re�ectivities (rj > 0.7). In high-�nesse cavities the intracav-
ity �eld is enhanced signi�cantly due to the small decay rate. As an
example, a high intensity of the light �eld is useful to increase the
e�ciency of nonlinear interactions inside the cavity (see Sec. 5.1).
The linewidth of the cavity de�nes the bandwidth of the generated
squeezed light which is described in Chap. 6. Furthermore it de�nes
the characteristics of the cavity for transmittance and re�ection lead-
ing which must be considered for various locking loops (see Sec. 6.1).
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4. Fundamentals of optical resonators

Cavity impedance matching

The transmitted and directly re�ected �elds of the FP cavity vary
as a function of the mirrors' re�ectivity. This leads to three possible
scenarios [FS10]:

• Undercoupled cavity: T1 < T2

The amplitude of the directly re�ected �eld is larger than that
of the leaking cavity �eld. Since the incoming and re�ected �eld
are in phase there is constructive interference.

• Overcoupled cavity: T1 > T2

The amplitude of the directly re�ected �eld is much weaker than
that of the leaking cavity �eld. This is why the phase between
the incoming and re�ected �elds is π.

• Impedance matched cavity: T1 = T2

The re�ected �eld vanishes due to destructive interference of the
directly re�ected �eld and the outcoupled �eld on mirror 1.

The impedance matching conditions (and their resulting phases, see
[FS10]) are important for considerations of frequency stabilization
schemes where phase-sensitive measurements are needed for gener-
ating an error signal (see Sec. 6.3.3).

Stability criteria

For the fully Gaussian beam (see Sec. 2.1) in the two-mirror resonator
not all combinations of the mirror's radii of curvature (ROC) and
distance L between the mirrors lead to a stable retrore�ection. The
stability condition relates the resonator geometry to how e�cient the
light �eld is reproduced periodically. This condition can be obtained
by ray transfer matrix analysis [KL66]:

0 6

(
1− L

ROC1

)
︸ ︷︷ ︸

g1

(
1− L

ROC2

)
︸ ︷︷ ︸

g2

6 1. (4.14)

There are only certain value ranges for ROC1, ROC2, and L that
produce stable resonators. The stability criterion from Eq. (4.14) is
shown graphically with the stability parameter gj for each mirror in
Fig. 4.2.

44



C
h
a
p
te
r
4

4.1. The two-mirror resonator: a linear Fabry-Pérot cavity

Figure 4.2.: Stability diagram for di�erent resonator con�gurations (reproduced
from [KL66]). The coordinate axes are g1 and g2. The parameters
L/ROC1 and L/ROC2 are drawn as additional coordinate axes with
dashed lines. Resonators in the areas bound by the lines g1 = 1 and
g2 = 1 and the coordinate axes are stable. Cavities on the border of
the shaded areas are marginally stable.
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4. Fundamentals of optical resonators

4.2. Cavity dynamics

The theoretical derivation of the cavity dynamics is essential for the
description and interpretation of the experimental results in generat-
ing and using squeezed states (see Chap. 6). Therefore, let us consider
a bow-tie resonator adapted to the experimental conditions. The the-
oretical derivation of the intracavity dynamics follows [WM07].

Figure 4.3.: Schematic of a bow-tie cavity for a detailed description of the di�erent
light �elds. The intracavity �eld â has a decay rate of κa and is coupled
to the driving �eld Ain via the input coupler with re�ectivity rin (or
decay rate κA) and its re�ected �eld which is simultaneously Aout.
In addition, there is a mirror representing losses due to scattering or
absorption (Aloss) and intracavity loss Al with the decay rate κl.

The single-ended cavity

The bow-tie resonator, shown in Fig. 4.3, consists of one input/output-
coupling mirror, compared to which all other mirrors have a negligi-
ble transmittance, such that the re�ected port is simultaneously the
transmitted one. As a result, when resonance is achieved the entire
power of the intracavity �eld â is coupled out to the �eld Âout with
the decay rate κa. To describe every possible port for transmission,
re�ection and loss in a generalized form one can address the mirrors
individually (see [McK08]). There is an input coupler with re�ectivity
rin (or decay rate κA) for the driving �eld Ain and its re�ected �eld
which is simultaneously Aout, and �nally a mirror representing losses
due to scattering or absorption (Aloss) and intracavity loss Al with the
decay rate κl (see Eq. (4.17)).

4.2.1. Equations of motion for light �elds

For this system the equation of motion for the cavity mode â is written

˙̂a = − (κa + iω0) â+
√

2κAÂine
−iωAt +

√
2κlÂl. (4.15)
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4.2. Cavity dynamics

Writing Eq. (4.15) in the rotating frame reference â→ âeiωAt [GC85]
with the cavity detuning ∆a = ω0 − ωA de�ned as the di�erence be-
tween the frequency of the driving �eld ωA and the resonant frequency
of the cavity ω0 leads to

˙̂a = − (κa + i∆) â+
√

2κAÂin +
√

2κlÂl, (4.16)

where κj (with j= a, in, out, l) is the total resonator decay rate for
each �eld, de�ned (in half width half maximum, HWHM) by 2κa =
−c/L · ln[R1 ·R2 ·R3 ·R4 · (1−l)] (cf. [SH98]) where l is the intracavity
loss, L the cavity length, c the speed of light and Ri is the power
re�ectivity of the mirrors forming the bow-tie cavity (see Sec. 6.3).
The sum of all decay rates results in the total decay rate

κa = κA + κl. (4.17)

Assuming that the cavity frequency is locked at the fundamental all
detuning terms with ∆ can be neglected. Taking into account that
Eq. (4.16) is complex the formulation must be expanded by its Her-
mitian conjugate:

˙̂a = −κaâ+
√

2κAÂin +
√

2κlÂl,

˙̂a† = −κaâ† +
√

2κAÂ
†
in +
√

2κlÂ
†
l .

(4.18)

Approximation via linearization (see Sec. 2.3.2) of Eq. (4.16) leads to
the equation of motion for the mean �eld amplitudes

α̇ = 0 = −κaα+
√

2κAαin +
√

2κlαl,

α̇∗ = 0 = −κaα∗ +
√

2κAα
∗
in +
√

2κlα
∗
l ,

(4.19)

and to the �uctuating terms

δ ˙̂a = −κaδâ+
√

2κAδÂin +
√

2κlδÂl, (4.20)

δ ˙̂a† = −κaδâ† +
√

2κAδÂ
†
in +
√

2κlδÂ
†
l . (4.21)

4.2.2. Input-output formalism

So far, the mathematical consideration of complex light �eld ampli-
tudes (see Sec. 4.1.1) explains the intracavity dynamics by treating
the external �elds as passive systems (a heat bath) with a coupling at
equilibrium. However, considering that there is a variable input �eld
interfering with the single input/output-coupling mirror and an addi-
tional loss �eld entering the cavity (see Fig. 4.3), these external �elds
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actively in�uence the system [WM07]. Collet and Gardiner approach
the interaction between the intracavity �eld â and external operators
Âin and Âl in terms of frequency components via the Heisenberg-
Langevin equation [GC85] to formulate the �boundary conditions�:

√
2κAâ = Âout + Âin,

√
2κAâ

† = Â†out + Â†in.
(4.22)

It represents the relation of the �elds outside the cavity to the intra-
cavity �eld. Since we are interested in measuring the outcoupled �eld
Âout we observe a contribution of the interference between the driving
�eld Âin and the intracavity �eld â. The resulting steady state �eld
αout emerges as

αout =
√

2κAα− αin (4.23)

and the complex conjugate is

α∗out =
√

2κAα
∗ − α∗in. (4.24)

Inserting these boundary conditions into Eq. (4.19) leads to the mean
�eld amplitudes at the output �elds

αout =

(√
2κA − κa

)
αin +

√
2κlαl

κa
,

α∗out =

(√
2κA − κa

)
α∗in +

√
2κlα

∗
l

κa
.

(4.25)

This describes the amplitude of the �eld that couples out of the cavity
being frequency stabilized.

Fourier transformation of the equations of motion

The result of the �uctuating part of the equation of motion (see
Eq. (4.21)) can be found by moving to the Fourier frequency do-
main FT [a(t)/dt] = −iωFT [a] (ω). The equations of motion (see
Eq. (4.18)) for the frequency �uctuating part are transformed to

iωδâ(ω) = −κaδâ(ω) +
√

2κAδÂin(ω) +
√

2κlδÂl(ω),

iωδâ†(ω) = −κaδâ†(ω) +
√

2κAδÂ
†
in(ω) +

√
2κlδÂ

†
l (ω)

(4.26)
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4.2. Cavity dynamics

By applying the boundary condition to Eq. (4.26), the �uctuating part
of the output �eld can be expressed as

δÂout(ω) =
(2κA − κa − iω) δÂin(ω) + 2

√
κAκlδÂl(ω)

κa + iω
,

δÂ†out(ω) =
(2κA − κa − iω) δÂ†in(ω) + 2

√
κAκlδÂ

†
l (ω)

κa + iω
.

(4.27)

Equations of motion in quadrature operators

The description of the equations of motion in the amplitude and phase
quadrature operators is useful as the detection setup (see Chap. 3)
with a spectrum analyzer directly measures the variances. The
quadrature operators for the steady state and the �uctuating part
of the driving �eld Âin, the loss �eld Âl and the outcoupled �eld Âout

are de�ned as

X+
j = αj + α∗j ,

X−j = i
(
αj − α∗j

)
,

(4.28)

for j = in, out and l. The quadrature operators for the �uctuating
components (see Eq. (2.12)) are

δX̂+
Aj

(ω) = δÂj(ω) + δÂ†j (ω),

δX̂−Aj
(ω) = i(δÂj(ω)− δÂ†j (ω)),

(4.29)

for j = in, out and l. This leads to the following amplitude and phase
quadratures for âout in steady state αout

X±αout =

(√
2κA − κa

)
X±αin +

√
2κlX

±
αl

κa
, (4.30)

and for the �uctuating part of the output �eld δÂout

δX̂±Aout
(ω) =

(2κA − κa − iω) δX̂±Ain
(ω) + 2

√
κAκlδX̂

±
Al

(ω)

κa + iω
. (4.31)

We use the following de�nition for the quadrature variance:

V ± ≡ 〈|δX̂±|〉2︸ ︷︷ ︸
=0

−〈|δX̂±|2〉 ≡ 〈|δX̂±|2〉,
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which leads to the corresponding variances

V ±Aout
=

(
(2κA − κa)2 + ω2

)
V ±Ain

+ 4κlκA

κ2
a + ω2

, (4.32)

assuming that the incoupled loss �eld is the vacuum state
(
V ±Al

= 1
)
.

The phase and amplitude quadrature of the outcoupled steady state
intracavity �eld â in Eq. (4.30) represent the measurable light �eld
that can be used for stabilizing the cavity. The variance of the �uc-
tuating part of the output �eld in Eq. (4.32) represents the squeezing
spectrum that is detected in the experiment (see Chap. 6 and 7).
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5
Chapter 5

Cavity dynamics with χ(2)

nonlinearities

This chapter gives a theoretical overview of the nonlinear processes
in dielectric media and how they can a�ect cavity dynamics when
placed inside an optical resonator. In particular, this is used for the
squeezed-state generation whose experimental realization is a central
part of this work.
The nonlinear medium provides an exchange of photons between
the interacting �elds resulting in the processes of parametric down-

conversion (PDC) and second-harmonic generation (SHG), described
in the �rst part of this chapter. By extending the cavity dynamics
presented in Sec. 4.2 with the nonlinear χ(2) interaction, it is possible
to investigate the variance of the output quadratures of an OPO in
terms of squeezing, described in the second part. The resulting equa-
tions are used to investigate a novel pump phase-locking technique
in Chap. 7 and to realize high-precision metrology enhanced by a FP
cavity with squeezed-light injection in Chap. 8.

5.1. Interaction with χ(2) nonlinearities

When light passes through a medium the electromagnetic �eld in-
duces a periodic displacement of the bound charges in that medium
according to its polarizability [Boy03]. As a result of these oscillating
electric charges a secondary electromagnetic �eld is emitted. If the in-
coming light �eld has low intensity the displacement is very small, the
electric charge driven by the restoring force behaves like a harmonic
oscillator far o� resonance and the emitted light possesses solely the
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5. Cavity dynamics with χ(2) nonlinearities

primary excitation frequency which de�nes a linear process. A higher
intensity causes a larger displacement such that the electric charge of
neighboring atoms interact. There is no longer a strictly linear cor-
relation between the excited displacement of the electric charge and
the restoring force. This nonlinearity implies that the emitted light
also possesses possible harmonic frequencies of varying magnitudes in
addition to the primary excitation frequency. The strengths and fre-
quencies depend on the structure and density of the transilluminated
medium. The e�ciency in generating harmonic frequencies decreases
signi�cantly with the order of the nonlinearity. The experimental
components which are typically used in a squeezing experiment are
nonlinear cavities for SHG and PDC. These devices are described in
detail in Sec. 6.2 and Sec. 6.3.
To examine the second-order optical nonlinear interaction process we
follow [Boy03] and calculate the forces resulting from the nonlinear
interactions with a mathematical vector �eld expression, the polariza-
tion density.

5.1.1. Polarization density

The starting point for the derivation of nonlinear e�ects are Maxwell's
equations (see Eq. (2.1)), where we restrict the analysis to the interac-
tion of the electric �eld with the dielectric medium. Inside the medium
the electric �eld must be replaced with the electric �ux density D, de-
�ned by the polarization density P

D = ε0E+P, (5.1)

where ε0 is the electric permittivity in vacuum and E is the electric
�eld of the light. For low intensities the polarization density P is
proportional to the electric �eld

P = ε0χE, (5.2)

where χ is the linear electric susceptibility. It is a measure of the
induced polarization by a given electric �eld. For higher electric �eld
intensities the linear relation from Eq. (5.2) is no longer a good ap-
proximation (because of I(t) ∝ E(t)2) and additional terms with P (t)
as a function of higher-order powers of E(t) are taken into account
[SH98]. The polarization density can be described by a Taylor series
expansion in terms of the electrical �eld with the coe�cients being
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5.1. Interaction with χ(2) nonlinearities

the higher-order susceptibilities:

P = ε0

∑
n

χ(n)
E
n = ε0

[
χ(1)

E+ χ(2)
E

2 + χ(3)
E

3 + . . .
]
, (5.3)

where χ(1) is referred to as the linear susceptibility, χ(2) is the second-
order susceptibility (responsible for PDC and SHG, see Fig. 5.1b), and
χ(3) is the third-order susceptibility (responsible for Kerr e�ect and
four-wave-mixing).

5.1.2. Parametric down-conversion and second harmonic
generation

The squeezed-light generation presented in this work, is achieved with
PDC, which is a quadratic nonlinear process. After establishing the
theory in 1961 [LYS61] Wu et al. succeeded in the �rst experimental
realization in 1986 [WKHW86]. In contrast to atomic (vapor) squeez-
ing via four-wave-mixing [SHY+86] or the approach of Kerr-squeezing
in a SiO2 �ber [MLS+87] using the third-order susceptibility χ(3),
PDC is based on the stronger second-order susceptibility χ(2).
The interaction of the photons of three �elds (labeled as pump, sig-
nal and idler �eld) at frequencies ωpump, ωs and ωi in the nonlin-
ear medium (see Fig. 5.1) is subject to the conservation of energy:
~ωs + ~ωi = ~ωpump. The Hamiltonian for the mixing of three waves
is [SRH+13]

Ĥ = ~ωiâ†â+ ~ωsb̂†b̂+ ~ωpumpĉ
†ĉ+ i~χ(2)

(
âb̂ĉ† + â†b̂†ĉ

)
, (5.4)

where â, b̂ and ĉ are the annihilation operators for the idler, signal
and pump �elds respectively and the Hermitian adjoint operators are
the creation operators for the �elds. The coupling strength for the
nonlinear interaction is labeled with χ(2) and the interaction terms of
operators describe the two processes of PDC and SHG. This leads to
the e�ective Hamiltonian for the nonlinear interactions under consid-
eration [SRH+13]:

Ĥe� = i~χ(2)(ĉ†âb̂︸︷︷︸
SHG

+ ĉâ†b̂†︸ ︷︷ ︸
PDC

). (5.5)

In the PDC process a high energy photon is converted into two lower
energy photons, whereas for SHG two lower energy photons are con-
verted into a high energy photon (see Fig. 5.1b).
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5. Cavity dynamics with χ(2) nonlinearities

(a) PDC in general (b) PDC (type I) (c) SHG

Figure 5.1.: PDC and SHG in the energy and momentum pictures. (a) General
representation of parametric down-conversion in energy and momen-
tum picture: the generated signal and idler �elds are distinguishable
in frequency and wave vector. (b) Parametric down-conversion (type
I) is described in the energy and momentum picture. The generated
signal and idler �elds are degenerate in frequency and polarization.
Their wave vectors have the same direction. (c) Second harmonic gen-
eration is described in the energy and momentum picture. It shows
the complementary process to PDC (type I), shown in (b).

If the two lower-energy photons are degenerate in frequency and polar-
ization the process is called type I PDC, for which 2 · ~ωs = 2 · ~ωi =
~ωpump. The complementary process to PDC is the up-conversion (or
SHG: ĉ†âb̂) of two degenerate low-energy photons into one photon with
twice the energy: ~ωs + ~ωi = 2~ ·ωs = 2~ ·ωi = ~ωSHG, commonly
called frequency doubling. In fact, frequency doubling of an infrared
solid state laser is commonly implemented in many commercial laser
systems with a wavelength of 532 nm.

5.1.3. Phase matching

As illustrated in Fig. 5.1 the conservation of energy and momentum
plays an important role for both PDC and SHG. The conservation of
momentum is achieved by phase matching. Due to dispersion both the
fundamental and pump �eld experience di�erent refractive indices of
the nonlinear medium and this causes a di�erence in the propagation
velocity of the �elds. The momentum pi = ~ki of a light �eld is given
by its wave vector k, leading to a further restriction

ks + ki = kpump. (5.6)

The wave vectors themselves are de�ned as

ki =
ωin(ωi)

c0
, (5.7)
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5.1. Interaction with χ(2) nonlinearities

where c0 is the speed of light in vacuum and n(ωi) the frequency-
dependent index of refraction. By inserting this equation into Eq. (5.6)
and considering 2 · ~ωs = 2 · ~ωi = ~ωpump it is obvious that

2n(ωi) = n(ωpump) (5.8)

must be guaranteed for e�cient conversion. Thus, the evolution of the
interacting �elds depends on how both �elds propagate with the same
velocity to ensure a constant phase relation for the optimal nonlinear
coupling. This phase matching is a function of the coherence length
of the interacting �elds in the nonlinear medium [Boy03]:

lcoh =
π

kpump − 2ki
. (5.9)

This coherence length is a measure of how far the pump light will
travel into the medium and produce the fundamental, before the pro-
cess is reversed and any power will couple back to the pump light.
For perfect phase matching (kpump = 2ki), the coherence length be-
comes arbitrarily large. A phase mismatch can decrease the e�ciency
of the process of PDC by partly reversing the process and produc-
ing a second-harmonic �eld over the length of the nonlinear medium.
The in�uence of phase matching and phase mismatch is illustrated
in Fig. 5.2 by the phasor representation, dividing the generated light
�eld into incremental components (with the vector sum constituting
an e�ective phasor). A phase mismatch after the length of lcoh (see
Fig. 5.2a) leads to a cancellation of the added incremental compo-
nents. However, given perfect phase matching all �eld components
sum up perfectly (see Fig. 5.2b). Due to dispersion being inherent
in most of the dielectric nonlinear media perfect phase matching is
usually not possible. Therefore, some methods were excogitated to
facilitate this.
In this thesis two types of phase matching are used. The �rst is
birefringent phase matching (BPM) (see [Gio62] for more details) for
a magnesium doped lithium niobate (Mg:LiNbO3) crystal in a lin-
ear cavity for SHG. The second is quasi-phase-matching (QPM) (see
[ABDP62] for more details) for the periodically-poled crystal of potas-
sium titanyl phosphate (PPKTP) in a sub-threshold bow-tie cavity for
OPO. As the frequency-dependent index of refraction is temperature
sensitive tuning of the phase matching conditions via temperature
change is possible.
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5. Cavity dynamics with χ(2) nonlinearities

(a) No phase matching (b) Perfect phase matching (c) Quasi-phase-matching

Figure 5.2.: Phase-matching conditions in phasor representation (remodeled from
[McK08]). In the case of a phase mismatch the incremental components
of the generated light �eld (black arrows) are not phase matched to the
incoming �eld (red arrow). The e�ective phase of the generated �eld
is depicted as dashed arrows. (a) After the coherence length lcoh any
power of the generated light �eld is coupled back. (b) In the phase-
matched case all incremental components sum up perfectly and the
power remains in the generated �eld. (c) In a quasi-phase-matched
case the incremental component of the generated light �eld is reversed
after each coherence length lcoh to compensate the phase mismatch.

Birefringent phase matching

The birefringence of the nonlinear medium gives rise to phase match-
ing by using one polarization for the pump �eld and the perpendicular
one for the signal and idler �eld. This is called type I birefringent
phase matching. In contrast, for type II birefringent phase matching
the fundamental �elds (signal and idler) are orthogonally polarized.
Both types of birefringent phase matching must be tuned to maintain
the match of the indices of refraction with their temperature and wave-
length dependencies described by the Sellmeier equations [ENKB91].

Quasi-phase-matching by periodic poling

The periodic poling of the crystal for QPM compensates for not op-
erating under phase-matched conditions. The successive reversion of
the sign of the second-order nonlinearity at periodic intervals (the
coherence length lcoh) inside the crystal, leads to a matching of the
interacting wave phase velocities even if they are not phase-matched
in a classical sense (see Fig. 5.2c). Compared to other phase matching
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5.1. Interaction with χ(2) nonlinearities

techniques QPM allows for crystal directions with very high nonlin-
earity factors to be utilized. Even if there are imperfections in the
domain widths QPM is still increasing the second-order nonlinear ef-
fect [FMJB92]. Therefore, a periodically-poled crystal (PPKTP) was
used for the sub-threshold OPO, described in Chap. 6.
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5. Cavity dynamics with χ(2) nonlinearities

5.2. Intracavity dynamics with interacting χ(2)

nonlinearities

By adding a nonlinear medium to the cavity dynamics derived in
Sec. 4.2 additional �eld and interaction terms between the fundamen-
tal (seed �eld) Âin and the second-harmonic (pump �eld) B̂in are
introduced. Here, the extended formalism is introduced and derived
to calculate the variance of the output �eld that corresponds to the
behavior of the OPO (see Sec. 6.3). In Chap. 7 we will use these
equations to investigate a novel pump phase-locking scheme. Again
we consider the experimental setup by describing the cavity.

Figure 5.3.: Schematic of a bow-tie cavity for a detailed description of the nonlinear
interactions. In addition to the empty cavity (see Fig. 4.3) there is the
nonlinear crystal placed between the curved mirrors and the driving
pump �eld Bin is sent through in a single pass con�guration, since
the cavity is not resonant for the pump �eld. However, due to the
nonlinear interactions in the crystal the pump �eld contributes to the
intracavity dynamics as well.

The cavity described in Fig. 5.3 is only resonant for the seed �eld
and a single pass con�guration for the pump �eld. However, due to
the nonlinear interactions in the crystal the pump �eld contributes
to the intracavity dynamics as well. Considering that there is (weak)
depletion in the pump �eld population a phase-sensitive readout for
the pump �eld can be obtained. Exploiting this weak pump depletion

(WPD) e�ect for generating a phase-sensitive error signal is the basis
of our WPD locking technique [DSW+15], a locking scheme to stabilize
the phase di�erence between the seed and pump �elds (see Chap. 7).

5.2.1. Hamiltonian and equations of motion

We investigate the case of a nonlinear crystal placed in a folded four-
mirror bow-tie cavity. The Hamiltonian describing this second-order
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5.2. Intracavity dynamics with interacting χ(2) nonlinearities

nonlinear interaction of the cavity modes at fundamental (displayed by
the annihilation and creation operators â and â†) and second-harmonic
frequency (b̂ and b̂†, respectively) is given by [WM07]

Ĥ = i~χc
(
b̂†â2 − â†2b̂

)
, (5.10)

where the coupling constant χc is proportional to the second-order
nonlinear susceptibility χ(2) and the amplitude of the pump �eld. In
combination with the cavity equations of motion this leads to the
following equations [CG84]

˙̂a = −2χcâ
†b̂− (κa + i∆a) â+

√
2κAÂin +

√
2κlÂl,

˙̂
b = χcâ

2 − (κb + i∆b) b̂+
√

2κBB̂in +
√

2κbl B̂l,
(5.11)

where κa and κb are the total resonator decay rates for each �eld (see
Eq. (4.16)). Further cavity dynamics, especially for the pump �eld,
are described in detail in Chap. 7 to derive the e�ect of WPD.

Undepleted pump �eld

It is an established simpli�cation in the theory of squeezed-light gen-
eration to ignore the depletion of the pump �eld as it generates sec-
ondary photons. In this case, applying the mean �eld approximation
and substituting q̂ = 2χc · b̂eiθb (and q̂† = 2χc · b̂†e−iθb), the cavity
�elds of interest (at a wavelength of 1064 nm) are calculated (see for
comparison Eq. (4.21)):

˙̂a = − (κa + i∆a) â− q̂ · â† +
√

2κAÂin +
√

2κlÂl,

˙̂a† = − (κa + i∆a) â
† − q̂† · â+

√
2κAÂ

†
in +
√

2κlÂ
†
l .

(5.12)

The phase angle θb in the substituted forms of q̂ and q̂† represents the
phase di�erence between the pump �eld and the cavity �eld. Inves-
tigating the intracavity �eld amplitude in steady state of Eq. (5.12),
where α̇ = 0 and α̇∗ = 0, leads to

α =

√
2κAαin (κa + i∆a − q)
(κa + i∆a)

2 − |q|2
. (5.13)

This equation will be important for closer examination of the calcu-
lated squeezing spectrum V ±Aout

as a function of the frequency and the
FSR [DHHR06] (see Sec. 8.1).
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5. Cavity dynamics with χ(2) nonlinearities

5.2.2. Noise variances in quadrature operators

Analogous to the case of an empty cavity (see Eq. (4.31)) the ampli-
tude and phase quadrature for the �uctuating part of the output �eld
δÂout are described by:

δX̂±Aout
=

(2κA − κa − iω ± |q|) δX̂±Ain
+ 2
√
κAκlδX̂

±
Al

κa + iω ∓ |q|
, (5.14)

which leads to the following variances:

V ±Aout
=

(
(2κA − κa ± |q|)2 + ω2

)
V ±Ain

+ 4κlκAV
±
Al

κ2
a + ω2 ∓ |q|2

. (5.15)

Frequency dependence o� resonance

To investigate a detuning of the cavity the change in the circulating
mode amplitude during a round-trip time τ must be taken into ac-
count. Starting with the equation of motion for the mean �eld of
a nonlinear cavity assuming no pump depletion (see Eq. (5.13)) the
detuning term of the fundamental and cavity resonant frequency (fol-
lowing [DHHR06]) can be formulated as:

α =

√
2κAαin

(
κa − 1−ei∆aτ

τ − q
)

(
κa − 1−ei∆aτ

τ

)(
κa − 1−ei∆aτ

τ

)
− |q|2

. (5.16)

Deriving the variance from Eq. (5.16) we can calculate the resonant
behavior of the generated squeezing and antisqueezing variances (see
Fig. 5.4) over several FSRs for a given set of experimental parameters,
see Table 7.1. We use these parameters to show a simulation1 of the
generated squeezing of the sub-threshold OPO (see Sec. 6.3), which
is used for squeezed-state generation with a novel locking scheme (see
Chap. 7) and for high-precision metrology (see Chap. 8).

1For computing and simulating the equations we used the computer algebra pro-
gram Mathematica developed by Wolfram Research.
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5.2. Intracavity dynamics with interacting χ(2) nonlinearities

Figure 5.4.: Simulation of squeezed noise variances over several FSRs. With
Eq. (5.15) it is possible to simulate the resonant behavior of generated
squeezing and antisqueezing. These resonances show up on every FSR
so that a comb of squeezing-dips and antisqueezing-peaks is generated.

As this process and its detection is subject to losses (compare Sec. 3.5,
and see Fig. 3.3), they are included by Eq. (3.24) in a more realistic
simulation, shown in Fig. 5.5.

Figure 5.5.: Simulation of squeezed noise variances over several FSRs with intro-
duced losses. According to Eq. (3.24) the squeezed and antisqueezed
variances from Fig. 5.4 experience losses of η = 0.5 (see Table 7.1 for
all parameters).
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5. Cavity dynamics with χ(2) nonlinearities

With the consideration of Eq. (5.16) the cavity dynamics can be de-
scribed at Fourier frequencies far beyond the resonance [DHHR06] to
investigate the variance of the output �eld V ±Aout

of the OPO at several
FSRs.

Figure 5.6.: Simulation of the squeezing and antisqueezing variances of the third
FSR. The simulated plot corresponds with the measurements of the
sub-threshold OPO (see Chap. 6.3).

Its remarkable characteristic is the continuous generation of squeezed
and antisqueezed states at every FSR, solely decreased only by the
introduced losses. For example, the third FSR has a squeezing level
of −1.96 dB, which is similar to the �rst FSR (see Chap. 7), shown in
Fig. 5.6 [HWD+10].
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6
Chapter 6

Generation of squeezed

states

The existence of squeezed vacuum states was �rst considered in the
1920s by Schrödinger [Sch26], Kennard [Ken27] and Darwin [Dar27].
Discussions about the use of squeezed light led to possible applica-
tions in high-precision measurements, quantum computing and quan-
tum communication in the 1980s [Deu85]. Around that time the �rst
experiments with vacuum squeezed states were realized [SHY+86].
It was suggested that the sensitivity of laser interferometric grav-
itational wave detectors (GWDs) could be improved by injecting
squeezed vacuum states into the dark port [Cav81]. The �rst per-
manent implementation of this method was recently realized in the
GWD GEO600 in Hannover [VKL+10]. As existing GWDs use mas-
sive mirrors as macroscopic test masses and are sensitive at Fourier
frequencies of kilohertz down to hertz, the injected squeezed states
need to be stabilized on long timescales [VCDS07]. Besides the appli-
cation in the �eld of gravitational physics, squeezed states of light
are of importance in other major research areas such as continu-
ous variable quantum communication and quantum key distribution
[Eke91]. Quantum key distribution protocols, entangled states and
quantum teleportation have been demonstrated and improved over
the past twenty years [BBC+93, DLCZ01, ESB+10]. In highly com-
plex large-scale experiments such as GWDs every subsystem (e.g.
mode cleaning cavities, SHG or OPO cavities) must be stabilized in-
dividually to enable measurements. Every locking task requires a
suitable error signal, and various techniques have been demonstrated
where such an error signal is provided via either modulation sidebands
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6. Generation of squeezed states

(dither locking, Pound-Drever-Hall technique) [HKEB06, DHK+83]
or modulation-free via slight misalignment of beams (tilt locking)
[RSS+02] or polarization (Hänsch-Couillaud locking, homodyne lock-
ing) [HC80, HPJH09]. Modulation sidebands provide large error sig-
nals, but emerging higher-order modulation frequencies and resulting
beat notes can disturb measurements in that frequency range.
This chapter is divided into three parts. First, locking techniques to
stabilize the cavity length to the laser frequency of an incident laser
are introduced. The need for a pump �eld to generate squeezed light
requires that the cavity for SHG must also be stabilized. The second
part describes the implementation of the polarization-based homo-
dyne locking technique to both a linear and a bow-tie cavity with two
di�erent types of nonlinear crystals (MgO:LiNbO3 and PPKTP) and
concludes with a comparison. The third part describes the stabiliza-
tion of the OPO with the simultaneous detection of the squeezed light
by the polarization-based homodyne detection of its phase quadrature
variance. This setup is compared to a rear-coupled Pound-Drever-Hall
(PDH)-locking scheme to investigate the OPO performance.

6.1. Frequency locking techniques

Resonators must in general be stabilized to perform on resonance to
have the best possible intracavity gain (see Sec. 4.1.2). There are dif-
ferent techniques to obtain a dispersion-shaped error signal that can
be used to drive an actuator for cavity length stabilization, e.g. a mir-
ror mounted to a piezoelectric transducer (PZT) crystal for matching
the resonator length. Di�erent resonator geometries o�er several ports
for a dispersion-dependent signal.

6.1.1. Cavity length control mechanisms

To stabilize the cavity length the error signal is fed into a controller
(in the further course of this thesis named servo) that compares its
value with a desired setpoint. A servo accepts parameters that scale
proportional (P), integral (I) and derivative (D) terms, for this reason
it is often called a PID controller. Depending on the parameters of
the system, the combinations and their relative gains must be chosen
carefully to ensure an adequate performance and stability. The control
signal created by the servo is fed into a high voltage ampli�er (HV
ampli�er) to drive the actuator for cavity length stabilization.
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6.1. Frequency locking techniques

6.1.2. Pound-Drever-Hall locking

(a) Schematic of Pound-Drever-Hall-locking setup (b) Plot of PDH-locking error
signal

Figure 6.1.: Schematical setup and error signal plot of Pound-Drever-Hall locking.
the light �eld passes through an electro-optical modulator (EOM) im-
printing a phase modulation at frequency fmod. This modulation fre-
quency is not allowed to coincide with a multiple of the FSR and needs
to be far above the cavity linewidth, such that the sidebands are re-
�ected, while the carrier is transmitted. The carrier light �eld couples
into the cavity, gets enhanced and the �eld leaking out of the cavity is
recombined with the directly re�ected sidebands. A photodiode mea-
sures the light in re�ection and detects the optical beat between the
carrier �eld and the modulation sidebands.

There is a plausible principle behind the Pound-Drever-Hall (PDH)
locking technique [DHK+83]: light at a frequency that �uctuates
faster than the cavity response can be used to generate an error signal
that is not perturbed by the slower cavity length stabilization itself.
As Fig. 6.1a shows, the light �eld passes through an electro-optical
modulator (EOM) imprinting a phase modulation at the modulation
frequency fmod. In the sideband picture representation (see Sec. 2.4.5)
two counter-rotating �phasor-arrows� are appended at ±fmod from the
carrier. This modulation frequency is not allowed to coincide with a
multiple of the FSR and needs to be far above the cavity linewidth,
such that the sidebands are re�ected, while the carrier is transmit-
ted. The carrier light �eld couples into the cavity, gets enhanced and
the �eld leaking out of the cavity is recombined with the directly re-
�ected sidebands. A photodiode measures the light in re�ection and
detects the optical beat between the carrier �eld and the modulation
sidebands. Due to the cavity a phase di�erence between the carrier
and sideband �elds occurs that discriminates relative �uctuations of
carrier frequency and resonance. The detected signal is multiplied
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6. Generation of squeezed states

with an electronic LO at the same frequency fmod. After this demod-
ulation1 the signal is low-pass �ltered to remove beat notes between
higher-order mode sidebands and harmonic frequencies to obtain a
suitable error signal (see Fig. 6.1b).

6.1.3. Dither locking

Comparable to the PDH locking technique is the dither locking stabi-
lization scheme [HKEB06]. In a similar way a small phase modulation
signal is imprinted on the light �eld. The modulation frequency must
be within the cavity linewidth to ensure cavity enhancement so that
the sidebands are transmitted. Any �uctuations in the cavity lead
to a phase shift of the carrier relative to the modulation sidebands.
On resonance, this small phase disturbance produces an amplitude
modulation that is synchronously detected and demodulated by the
photodetector to generate the desired error signal.

6.1.4. Polarization-based homodyne locking

Figure 6.2.: Schematic of polarization based homodyne locking setup. For a non-
polarization-degenerate cavity the di�erent changes for the linear po-
larizations (in terms of being perpendicular (s-polarization) and par-
allel (p-polarization)) due to the cavity plane provide a dispersion-
shaped error signal. To detect the resulting ellipticity the polarization-
based homodyne detection setup with a QWP and a PBS, described
in Sec. 3.4, is used.

An approach without external modulation is to employ polariza-
tion spectroscopy of the re�ected light �eld from an anisotropic cav-
ity [HC80]. For a non-polarization-degenerate cavity the di�erent
changes for the linear polarizations (in terms of being perpendicular

1In our experimental setups we used a RIGOL DG1022 for the modulation and
demodulation of the sidebands.
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(s-polarization) and parallel (p-polarization)) due to the cavity plane
provide a dispersion-shaped error signal. To detect the resulting ellip-
ticity the polarization-based homodyne detection setup with a QWP
and a PBS, described in Sec. 3.4, is used. Having a ratio of 50:50
for both intensities of signal and LO the measured di�erential current
generates provide a signal with a steep resonant slope that can be used
for stabilization purposes. Changing the ratio of signal to LO to 1:99
leads to a cavity locking technique with the simultaneous detection of
the phase quadrature of the signal �eld �uctuations δX−sig.

(a) P-polarization (b) S-polarization

Figure 6.3.: Measurement of error signal and cavity mode scan for polarization-
based homodyne locking.

The non-degenerate resonance behavior of the cavity gives rise to an
intracavity phase shift ∆φ for one polarization component2. Consid-
ering the restriction of the polarization-based detection for θ = π/2
leads to the already derived Eq. (3.20):

i− = 2αsigβLO cos (θ + ∆φ) + βLOδX
−θ
sig , (6.1)

where the �rst term is used to stabilize the cavity. The second term
describes the possibility of detecting �uctuations of the phase quadra-
ture scaled with the large amplitude of the LO mean value:

Vi− = β2
LOV δX

−
sig. (6.2)

This leads to a restriction in detecting the phase quadrature of the
signal �eld �uctuations with the bene�t of simultaneously locking an
2This is the case for a cavity with an odd number of mirrors. In a four-mirror
cavity the phase shift is canceled out. A nonlinear medium inside the cavity
creates another phase shift due to its birefringence.
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OPO for squeezed-light generation [HPJH09] (see Sec. 6.3). The error
signals with the corresponding mode scans for both polarization are
shown in Fig. 6.3. The polarization-based homodyne locking tech-
nique is used to stabilize almost every subsystem of the experimental
setup described in this thesis. To compare two di�erent resonator ge-
ometries with two di�erent nonlinear crystals for frequency doubling
in the next section this technique is applied to both of them.
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6.2. Frequency stabilizing a cavity for frequency doubling

6.2. Frequency stabilizing a cavity for frequency
doubling

To increase the strength of nonlinear interaction provided by a crystal
(see Sec. 5.1) a cavity can be assembled around it to increase the
interacting seed �eld. The existence of such a nonlinear medium inside
a cavitiy gives rise to non-degeneracy of the two polarizations so that
a well separated and de�ned error signal is generated (see [HC80,
HPJH09]). For this reason the polarization-based homodyne locking
technique is applied to two di�erent resonator geometries with two
di�erent nonlinear crystals for frequency doubling. The linear and
bow-tie cavity for pump �eld preparation are illustrated in Fig. 6.4.

(a) Linear cavity for second-harmonic
generation with MgO:LiNbO3.

(b) Bow-tie cavity for second-harmonic
generation with PPKTP.

Figure 6.4.: Schematic of the linear and the bow-tie cavity for frequency doubling
with cavity parameters.

6.2.1. Frequency doubling in a linear cavity

To obtain the frequency conversion from 1064 nm to 532 nm a hemilithic
standing-wave resonator3 with a MgO:LiNbO3-crystal is used for type
I phase-matched SHG [Vah08]. The resonator (see Fig. 6.4a) consists

3This linear cavity for SHG was developed by the Quantum Interferometry group
led by Prof. Dr. Schnabel. In collaboration with Dr. Mehmet the cavity was
implemented and tested for the experiments described in this work.
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of a coupling mirror and the polished and coated rear surface of the
nonlinear medium itself. The crystal has dimensions 2×2.5×7.5mm3

and is 7 % magnesium oxide doped, which leads to a phase match-
ing temperature of ≈ 67 ◦C. The rear surface of the crystal has a
radius of curvature (ROC) of 10mm and a high re�ection coating
(R ≥ 99.97 %) for the fundamental and second-harmonic wavelength,
whereas the �at front surface is anti-re�ection coated (T > 99.99 %)
for both wavelengths. The cavity waist size is ω0,532 = 29µm. The
partially re�ective coupling mirror with ROC = 25mm has a re�ectiv-
ity of Rin = 92 % for the fundamental wavelength. The corresponding
�nesse of the cavity is F = 75 and its FSR is ≈ 4.9GHz based on the
distance of 30.5mm between the coupling mirror and the rear surface
of the crystal, leading to a stability parameter of g1g2 = 0.451. The
oven design is an in-house production where the crystal is enclosed
by copper plates attached to a Peltier element providing constant
temperature. In combination with a negative temperature coe�cient
thermistor (NTC) inside the lower copper plate, it is used to regu-
late the crystal temperature. By comparing the actual value of the
NTC-resistance with the value of an operating point set by the user an
electronic controller provides a feedback current to drive the Peltier
element.
The generated pump light �eld is separated from the re�ected fun-
damental �eld by a dichroic mirror. In transmission of the cavity a
photodetector is placed to monitor the cavity performance: by sweep-
ing the PZT-driven incoupling mirror a mode scan of the cavity is
possible; by locking the cavity on resonance the constant amplitude
of the transmitted light �eld serves as a con�rmation for the successful
lock.
The polarization-based homodyne locking scheme is used to stabilize
the linear cavity, although it is more common for bow-tie resonators
where the incoming and re�ected �elds are already separated. How-
ever, by using a partially transmissive mirror (R = 96 %) for steering
the fundamental �eld into the cavity, the outcoupled light �eld in the
re�ection path contains the polarization-dependent phase information
to generate an error-signal by homodyne detection.

6.2.2. Frequency doubling in a bow-tie cavity

For comparison purposes a second cavity for SHG was built as a bow-
tie resonator and investigated. This folded resonator (see Fig. 6.4b)
consists of two curved mirrors (ROC 100mm) and two �at mirrors
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6.2. Frequency stabilizing a cavity for frequency doubling

with an inclination angle of 8 ◦. One �at mirror acts as an in/out-
coupler to the cavity (power re�ectivity Rin = 96.5%), whereas the
remaining mirrors are highly re�ective (R > 99.9 %) for the fundamen-
tal light �eld. The opposite �at mirror is mounted on a PZT to adjust
the cavity length to the laser frequency. In addition, the two curved
mirrors are anti-re�ective coated for the second-harmonic wavelength
at 532 nm (R < 0.25 %) to provide the most e�cient single-pass out-
coupling for the second-harmonic �eld. These mirror re�ectivities cor-
respond to a cavity �nesse of F = 85 for 1064 nm. The length of this
folded cavity is 710mm which leads to a FSR of ≈ 422MHz, and
its stability parameter is g1g2 = 0.98. While the second-harmonic
�eld exits the cavity at the second curved mirror, the fundamental
intracavity �eld couples out of the cavity at the in/out-coupler. It is
overlapped with the directly re�ected �eld creating the polarization-
dependent phase-information for stabilizing the cavity similar to the
linear one. The PPKTP-crystal as the nonlinear χ(2)-medium for SHG
has dimensions 2× 2× 10mm3 and is placed between the two curved
mirrors. The custom-designed oven provides the QPM temperature
for second-harmonic generation of ≈ 30 ◦C. The beam waist inside the
crystal is ω0,1064 ≈ 24µm (1/e2 ).

Comparison of frequency doubling in a linear and a bow-tie cavity

Compared to MgO:LiNbO3, which was used for the hemilithic linear
SHG cavity, PPKTP has a larger nonlinear coe�cient and shows less
absorption at 1064 nm. While we observe similar conversion e�cien-
cies, the di�erence in resonator geometry leads to the question if there
is a di�erence in the SHG performance4 of the two cavities.

4The comparison of MgO:LiNbO3 and PPKTP in an optical parametric oscillator
was performed by McClelland et al. in a doubly resonant OPO [McK08].
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Table 6.1.: Comparison of frequency doubling in a linear and a bow-tie cavity.

Parameter linear SHG bow-tie SHG

Crystal χ(2) MgO:LiNbO3 PPKTP
Length l 40mm 710mm
Free spectral range FSR 4.9GHz 422MHz
Finesse F 76 85
Linewidth (FWHM) ∆ν 65MHz 4.9MHz

Incoupling mirror Rin 92.0% 96.5%

As Fig. 6.5 reveals, the performance of both cavities in generating
the second-harmonic �eld as a function of the fundamental �eld are
comparable. The decision to use the linear cavity for the pump �eld
preparation for squeezing experiments, presented in this work, is based
on its compact construction. Additionally, the free mounted bow-tie
cavity with widely separated components is bound to be more sensitive
to air �uctuations than the hemilithic resonator.

Figure 6.5.: Comparison of the performance of linear and bow-tie cavities for
second-harmonic generation.
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6.3. Frequency stabilizing a cavity for parametric down conversion

6.3. Frequency stabilizing a cavity for parametric
down conversion

The OPO is the source of the squeezed light and therefore the core
part of the experiments described in this thesis. Firstly it is needed
to demonstrate a novel pump phase locking scheme (see Chap. 7) and
secondly to enhance signal spectroscopy in a high �nesse FP cavity by
utilizing the squeezed noise �oor (see Chap. 8). The frequency stabi-
lization is accomplished by the polarization-based homodyne locking
technique that o�ers simultaneous detection of the phase amplitude
variance. Having the same device for stabilizing the cavity and detect-
ing the squeezed light �eld makes its use for downstream experiments
impossible. It is therefore necessary to consider an alternative locking
scheme from the cavity's rear side, leaving the squeezed light �eld that
couples out of the front cavity mirror undisturbed.
Changing the setup enables the comparison of the front locking
scheme with the rear locking setup. The implied ratio of signal in
s-polarization and LO in p-polarization could be a drawback, since
there is no possibility of separately controlling the LO. One cannot
measure the homodyne visibility by sweeping the LO with respect to
the signal, for example. To discover possible visibility imperfections a
comparative PDH locking scheme from the rear mirror was built up.

6.3.1. The OPO cavity design consideration

Figure 6.6.: Schematic of the bow-tie cavity for optical parametric oscillation with
cavity parameters.
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6. Generation of squeezed states

The sub-threshold bow-tie OPO in Fig. 6.6 consists of two curved mir-
rors (ROC 100mm) and two �at mirrors with an inclination angle of
4.2 ◦. One �at mirror acts as an in/out-coupler to the cavity (power
re�ectivity Rin = 90 %) whereas the remaining mirrors are highly re-
�ective (R > 99.9 % for the fundamental light �eld). One mirror is
mounted on a PZT to adjust the cavity length to the laser frequency
(see Fig. 6.6). The two curved mirrors are also anti-re�ective coated
for the second-harmonic wavelength at 532 nm (R < 0.25 %) to pro-
vide the most e�cient single-pass for the pump �eld. These mirror
re�ectivities correspond to a cavity �nesse of F = 58. The length of
this folded cavity is 1520mm which leads to a FSR of ≈ 197.4MHz.
Regarding the length and radii of curvature the empty cavity is insta-
ble (g1g2 = 1.05) but inserting the crystal brings the desired stability
(g1g2 = 0.95). The 2 × 2 × 10mm3 dimensioned PPKTP crystal is
placed between the two curved mirrors to generate squeezing. The
temperature for type I PDC with QPM between seed and pump light
of ≈ 30 ◦C is provided by a custom oven design. The beam waist
inside the crystal is ω0,1064 ≈ 24µm (1/e2 ).
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6.3. Frequency stabilizing a cavity for parametric down conversion

6.3.2. Front lock of the OPO by polarization-based
homodyne locking

Figure 6.7.: Experimental setup of OPO frequency stabilization via front lock and
rear lock to utilize the generated squeezed light �eld. The infrared
light �eld is split into the front lock (HD) �eld (for frequency stabiliza-
tion via homodyne detection, see Sec. 6.1.4) and the rear lock (PDH)
�eld (providing a frequency stabilization via PDH locking scheme, see
Sec. 6.1.2). The front lock �eld couples into the cavity by a plane in-
cident angle at the �rst mirror so that the resulting intracavity �eld is
copropagating with the pump �eld that couples in at the �rst curved
mirror. The generated squeezed �eld therefore propagates in the same
direction. Likewise, the rear lock �eld couples at the rear mirror into
the cavity resulting in a counterpropagating intracavity �eld.

In order to exploit all promising options for stabilizing and operating
the OPO the infrared light �eld is split into the front lock (HD) �eld
(for frequency stabilization via homodyne detection, see Sec. 6.1.4)
and the rear lock (PDH) �eld (providing a frequency stabilization via
PDH locking scheme, see Sec. 6.1.2) as shown in Fig. 6.7. The front
lock �eld couples into the cavity straight at the input/output-coupling
mirror and the resulting intracavity �eld is copropagating with the
pump �eld at a wavelength of 532 nm that couples in at the �rst
curved mirror. The generated squeezed �eld therefore propagates in
the same direction. To get the most precise spatial overlap, the waist
for the pump beam inside the crystal must be ω0,532 ≈ 18µm (1/e2 ).
A 532 nm mode matching cavity in transmission of the second curved
mirror diagnoses the overlap of the green pump �eld and the seed �eld
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6. Generation of squeezed states

when the bow-tie cavity acts as a frequency converter for the 1064 nm
seed �eld. The frequency upconverted seed �eld at a wavelength of
532 nm is directed into the mode matching cavity and detected via
PDMM in the same way as the pump �eld. If the detected mode scan
is exactly the same (with all intensity in the fundamental mode at
best) for both the upconverted seed �eld and the pump �eld, the best
possible mode overlap is guaranteed.
A photodetector PDdither is placed in transmission of the OPO to
monitor the transmitted light �eld or detect a mode scan of the cavity
by sweeping the PZT of the cavity mirror to change the cavity length.
If the pump phase is a�ecting the intracavity �eld via the nonlinear
interaction of the PPKTP crystal the �uctuations of the transmitted
cavity �eld are detected by PDdither as well. Using the dither locking
technique (see Sec. 6.1.3) with a modulation frequency of fdither =
52 kHz the pump phase for squeezed light generation in the OPO
is stabilized. The novel pump phase stabilization technique using
WPD is presented and compared to the more common dither locking
technique in Chap. 7.

6.3.3. Rear lock of the OPO with conventional PDH-lock

Stabilizing the OPO with the generated squeezed light �eld via
polarization-balanced homodyne locking makes it impossible to use
the squeezed light �eld for downstream experiments. It is therefore
necessary to implement an alternative locking scheme from the rear
side of the OPO, leaving the outcoupled squeezed light �eld undis-
turbed. Since the cavity mirrors remained in place (the �at front
mirror is still the in-/out-coupler with Rin = 90 % and the �at rear
mirror is highly re�ective with R > 99.9 %) a possible locking light
�eld from the rear perceives the cavity as undercoupled [FS10] (in this
case Rrear > 99.9 % > 90 % = Rin, see also 4.1.2). The resulting phase
shift of the intracavity �eld is too small for an appropriate error signal
to apply polarization-based homodyne locking from the rear side of
the OPO. For this reason a conventional PDH-stabilization scheme
was implemented.
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6.3. Frequency stabilizing a cavity for parametric down conversion

OPO rear PDH locking with counterpropagating intracavity �eld

Figure 6.8.: The experimental setup of the OPO rear locking scheme to utilize the
generated squeezed light �eld. The infrared light �eld is split into the
front lock �eld (with homodyne detection, see Sec. 6.1.4) and the rear
lock �eld (with PDH, see Sec. 6.1.2). The rear lock �eld couples with
a plane incident angle at the rear mirror into the cavity resulting in
a counterpropagating intracavity �eld with respect to the generated
squeezed light �eld. The former front lock light �eld acts in this case
as the LO for the homodyne detection of the resulting squeezed light.

In the �rst setup (see Fig. 6.8) the locking beam is coupled straight
into the rear mirror of the OPO at a plane incident angle and is coun-
terpropagating to the pump �eld to prevent any impact of the gen-
erated squeezing by a copropagating light �eld inside the nonlinear
crystal. To investigate the in�uence of the direction of the intracavity
�eld it is compared to a second rear locking setup with a copropa-
gating intracavity beam (see Fig. 6.9). However, the copropagating
�eld is necessary in order to generate an error signal to lock the pump
�eld phase to the cavity due to its interaction with the pump �eld.
Furthermore, the copropagating control �eld is needed to lock the
squeezed light �eld to the downstream setup for squeezed-light en-
hanced metrology (see Chap. 8). By omission of the front lock its
light �eld could still act as a copropagating control �eld. The pump
phase is stabilized via dither lock by detection of the transmitted in-
tracavity �eld on PDdither with demodulation5 at the dither frequency
5For the demodulation a coaxial frequency mixer ZAD-3+ from Mini-Circuits

was used.
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fdither = 52 kHz. The frequency stabilization of the OPO cavity is ac-
complished by the PDH-locking scheme. This includes the detection
of the beat between the directly re�ected sidebands imprinted by the
EOM6 and the cavity �eld on PDPDH that is demodulated with the
sideband frequency fPDH = 12MHz by the mixer of the photodetec-
tor7. If the front lock �eld is entirely in p-polarization, it is completely
re�ected at the cavity which is resonant for s-polarization. Thus, the
�eld acts as a LO for a measurement of the reduced variance in the
phase quadrature of the OPO cavity via homodyne detection. Though
this LO �eld is perfectly overlapped with the desired squeezed �eld
there is no de�ned phase relation between them. This is why an ad-
ditional stabilization scheme must be applied to ensure a �xed phase
relation. Either a further dither lock (we chose a modulation frequency
of fLO = 32 kHz) or the utilization of the interference signal at the
polarization-based homodyne detector is suitable. For the sake of con-
venience the given setup for polarization-based homodyne detection
was used.

6A broadband phase modulator 4004 from Newport was used.
7The photodetector was an onboard combination of photodetector and plug-in
frequency mixer (TUF-3+ from Mini-Circuits), made by Dr. Vahlbruch.
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6.3. Frequency stabilizing a cavity for parametric down conversion

OPO rear PDH locking with copropagating intracavity �eld

Figure 6.9.: Experimental setup of OPO frequency stabilization with changed inci-
dent angle of the incoupling rear �eld. This leads to a copropagating
intracavity �eld that is necessary in order to generate an error signal
for locking the pump �eld phase to the cavity due to its interaction
with the pump �eld. Furthermore, the copropagating control �eld is
needed to lock the squeezed light �eld to the downstream setup for
squeezed-light enhanced metrology (see Chap. 8).

Changing the incident angle of the seed �eld for the PDH rear lock
scheme results in a copropagating intracavity �eld (see Fig. 6.9). This
�eld interacts with the pump light �eld and creates a suitable error
signal for pump phase stabilization. For this purpose the light �eld is
split up on a power beamsplitter into beams to PDPDH for the cav-
ity stabilization via PDH locking and to PDdither for the pump phase
stabilization via dither locking.
There is no degradation of the generated squeezed �eld by the coprop-
agating intracavity �eld (see Sec. 2.4.6), as long as the �nal homodyne
detection is able to separate the coherent and squeezed �elds with a
strong LO. Since the p-polarized front �eld acts as the LO a PBS is
integrated for �ltering purposes to prevent leakage of s-polarization in
this LO �eld from entering the cavity and disturbing the s-polarized
error signals for stabilizing the cavity and the pump phase.

79



6. Generation of squeezed states

6.4. Comparison of OPO frequency stabilization
techniques

The advantage of the polarization-based homodyne locking scheme is
that there is no spatial separation of signal and LO due to the fact
that they are orthogonal linear polarizations in one light �eld. The
homodyne detector is used to measure the squeezed output variance
in the phase quadrature, while due to the �xed phase between s- and
p-polarization the cavity is frequency locked simultaneously. On the
other hand there is a drawback due to the restriction to only measuring
the phase quadrature variance, and the fact that one have no exclusive
access to the LO. Having signal and LO (respectively s-polarization
and p-polarization) in a certain ratio to lock the OPO and allow for
simultaneous readout of the squeezed output, the homodyne visibility
can be degraded by mode mismatch in the cavity or point defects on
the mirrors and beamsplitters for the polarization distribution.

Figure 6.10.: Comparison between front and rear lock in our experimental setup
(see Fig. 6.8). Due to the copropagating beams the variance of the
squeezed light �eld has 6−10 % of additional losses in the front locking
setup as opposed to the rear locking setup with plane incident angle.

Fig. 6.10 shows a zero span measurement of the squeezing generated
by the OPO cavity which was stabilized with the two locking schemes.
Since it was a zero span measurement at 197.4MHz (corresponding to
the �rst FSR), the swept pump phase generates a sinusoidal signal for
both locking schemes oscillating between the maximum of squeezing
and antisqueezing by sweeping the phase of the pump �eld with re-
spect to the OPO cavity phase. Without the pump �eld the detected
shot noise level determines the 0 dB base level which is reduced by the
squeezed �eld and increased by the antisqueezed �eld depending on
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6.4. Comparison of OPO frequency stabilization techniques

the corresponding phase of the pump �eld.

Table 6.2.: Comparison of squeezing values.

Lock Squeezing Antisqueezing

Front -2.35 dB 5.02 dB

Initial squeezing ±7.37 dB

Rear -2.80 dB 5.52 dB

Initial squeezing ±8.32 dB

Compared to the rear lock with a counterpropagating light �eld the
polarization-based homodyne lock with the copropagating �eld causes
6−10 % more losses. Nevertheless, a copropagating beam is necessary
in order to lock the pump phase for squeezed-state generation and to
phase lock it for further experiments as well (see Sec. 8.1).
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7
Chapter 7

Demonstration of weak

pump depletion phase

locking

The generated squeezed states of light demonstrated in this work
could o�er quantum noise reduction in interferometric measurements
or squeezed-light enhanced high-precision metrology. For these appli-
cations the squeeze angle must be controlled by stabilizing the pump
phase to the intracavity phase. If the pump �eld is in phase with
the intracavity �eld, it permits the highest e�ciency for generating
squeezed states. Accordingly, an additional stabilization scheme for
the pump phase has to be considered. Commonly used stabiliza-
tion schemes (see Sec. 6.1) are using either modulation sidebands
(dither locking, PDH technique) [HKEB06, DHK+83], modulation-
free slight misalignment of beams (tilt locking) [RSS+02] and polariza-
tion (Hänsch-Couillaud locking, homodyne locking) [HC80, HPJH09].
The necessary slight misalignments of some modulation-free schemes
are direct loss channels for squeezed light. So there is a trade-o� be-
tween additional losses and the capacity to stabilize a system.
In this chapter an e�ect called weak pump depletion (WPD) is investi-
gated regarding its usefulness for locking the pump �eld phase to the
intracavity �eld of a nonclassical light source. WPD is an omnipresent
but generally neglected side e�ect of the interaction between the seed
and pump �elds in the nonlinear medium and automatically contains
information about the phase di�erence between the two beams (see
Sec. 5.2). The e�ect of full pump depletion can be used for arbitrarily
strong entanglement between the two light �elds [GBML06].
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We show here that exploiting this unavoidable interaction it is possible
to produce and detect a fully stabilized squeezed vacuum state without
degrading the squeezed output �eld, merely by phase-sensitive detec-
tion of the transmitted pump �eld. We term this novel phase-locking
scheme weak pump depletion locking (WPD locking). As shown in our
corresponding publication [DSW+15] the phase di�erence between the
seed and pump �elds is imprinted on the pump and seed light by the
nonlinear interaction in the crystal and can be read out without dis-
turbing the squeezed output. A comparable approach to lock the
phase of a squeezed vacuum state with an omnipresent e�ect is us-
ing the asymmetry in the quadrature variances due to quantum noise
[MMG+05].
In the �rst part of this chapter the theory of WPD is derived by ex-
tending the cavity dynamics presented in Sec. 5.2 with the interacting
weak depleted pump �eld b̂in, and investigating the in�uence of WPD
on the output of the fundamental and the pump �eld with regard to
locking the pump phase. There are two di�erent schemes of pump
phase locking used in the experimental setup and presented in this
thesis: WPD locking using the green pump �eld and dither locking
utilizing the fundamental �eld. In the second part of this chapter a
detailed description is given and the two locking techniques are com-
pared in terms of e�ciency.
In the experimental setup, shown in Fig. 7.2, the input of the OPO is
0.55mW of 1064 nm and it is pumped with 67.8mW of 532 nm laser
light to observe squeezing levels of 1.96 dB, with an antisqueezing level
of 3.78 dB. This new locking technique allows the �rst experimental
realization of a pump-phase lock by read-out of the phase information
pre-existing in the pump �eld. As a result there is no degradation of
the detected squeezed states.

7.1. Theory of weak pump depletion

As the nonlinear interaction in an OPO cavity is comparatively weak
the pump �eld is typically assumed to be undepleted and hence con-
stant. In this section, the ever-present existence of pump �eld �uc-
tuations due to WPD is shown and the in�uence of WPD � both on
the error signal and on the variance of the (anti)squeezed output �
is calculated. The intracavity dynamics for this OPO, described in
Sec. 5.2, are extended to examine the in�uence of the WPD.
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7.1.1. Cavity dynamics

The Hamiltonian describing the second-order nonlinear interaction of
the cavity modes of the OPO (see Fig. 5.3) at the fundamental fre-
quency (represented by the annihilation and creation operators â and
â†, respectively) and the second-harmonic frequency (b̂ and b̂†) is given
by [WM07]:

Ĥ = i~χc
(
b̂†â2 − â†2b̂

)
, (7.1)

where χc is the nonlinear coupling parameter being proportional to
the second-order susceptibility term χ(2) and the amplitude of the
pump �eld. Having a weakly depleted pump �eld the substitution
of q̂ = 2χc · b̂ (see Eq. (5.12)) is not valid. Using the Liouville-von
Neumann equation [Sch13] and taking losses into account the resulting
equations of motion for the intracavity �elds are (according to [BR04]):

˙̂a = −2χcâ
†b̂− (κa + i∆a) â+

√
2κAÂin +

√
2κl,AÂl, (7.2a)

˙̂
b = χcâ

2 − (κb + i∆b) b̂+
√

2κBB̂in +
√

2κl,BB̂l. (7.2b)

All parameters are described in Sec. 5.2.
The phase angle θb represents the phase di�erence between the input
pump �eld (βin) and the input cavity �eld (2αin). Without loss of
generality we de�ne the input cavity �eld αin as the reference such that
βin = |βin|exp(iθb). For simplicity we will drop the `hat formalism'
indicating operators for the following calculations.
As the cavity is only resonant for 1064 nm (and not for 532 nm) we
can assume κa � κb, so the pump �eld interacts with the cavity on
a much shorter time scale than the fundamental �eld. This adiabatic
elimination of the pump �eld allows the consideration that b̂ is in
steady state. Further we only keep terms to �rst order in δ and to
second order in χc, and we consider without loss of generality that αin
is real (α∗in = αin). The steady state intracavity �eld amplitudes can
then be written as:

α =

√
2κAαin

(
κa − χeiθb

)
κ2
a − |χ|2

, (7.3a)

β =

√
2κB|βin|
κB

+
κAα

2
in|χ|√

2κB|βin| (κ2
a + |χ|2)

e−iθb . (7.3b)

In Eqs. (7.3a) and (7.3b) we have introduced the nonlinearity factor χ

by the substitution χ (θb) = 2χc

√
2
κb
βinexp(iθb). |χ| can be calculated
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from the value of maximum gain (initial squeezing), which in turn can
be calculated from a pair of measured squeezing and antisqueezing
values (see Sec. A.1).
The outcoupled light �elds αout and βout can be calculated using the
boundary conditions αout =

√
2κAα − αin and βout =

√
2κBβ − βin

(and writing the �eld quadratures asX+
q = (q+q∗) andX−q = i(q−q∗)

for q = αout, βout) [BR04]:

X+
αout =

2αin
(
2κaκA − κ2

a + |χ|2
)

κ2
a − |χ|2

− 4αinκA|χ|
κ2
a − |χ|2

cos (θb) , (7.4a)

X−αout =
4κAαin|χ|
κ2
a − |χ|2

sin (θb). (7.4b)

Eqs. (7.4a) and (7.4b) show that X±αout is a function of both αin and
|χ|, which in turn is a function of |βin|. The in�uence of the pump �eld
and the relative phase θb between the pump and seed beams appears
in the second term of the expression for X+

αout , indicated by the box.
This signal can be used as an error signal for locking purposes (see
Sec. 7.2.1). Therefore, the variance of the amplitude quadrature of the
fundamental X+

αout is processed in a dither modulation scheme to lock
the pump-seed phase angle to the maximum of the transmitted fun-
damental �eld (see Sec. 6.1.3). This angle determines the quadrature
of squeezing: locking it will additionally lock the quadrature angle
of squeezing illustrated in the quadrature variance in Sec. 7.1.2. In
contrast, the e�ect of the nonlinear interaction between pump and
seed on the output pump �eld is typically ignored (in the so-called
�no pump depletion� limit). The e�ect is indeed very small, however,
it does not vanish and can be seen in the output �eld quadratures of
the pump �eld:

X+
βout

= X+
βin

+
2α2

inκA|χ|
|βin|κ2

a

cos (θb), (7.5a)

X−βout = X−βin
2α2

in|χ|κA
|βin|κ2

a

sin (θb) . (7.5b)

Eqs. (7.5a) and (7.5b) are also functions of αin, βin, and their phase
relationship. Therefore there will be small �uctuations around the av-
erage pump �eld amplitude caused by the nonlinear interaction with
the seed �eld. Usually neglected, this term shows a sinusoidal depen-
dence on the pump-seed phase relationship θb. Under certain condi-
tions (to be examined below) the boxed term of Eq. (7.5b) can be
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7.1. Theory of weak pump depletion

used as an alternative error signal to lock the pump-seed phase angle
as well.
Polarization-based homodyne detection (see Sec. 6.1.4) of the signal
in Eq. (7.5b) will result in a large DC �eld that varies as a function of
the pump-seed phase angle θb. In the case of a singly-resonant cavity
the s-polarized pump �eld (see Eq. (7.5b)) containing the WPD signal
is mixed by a quarter-wave-plate and a PBS with the amount of the
pump �eld in p-polarization that does not interact with the crystal.
This can be treated as a general balanced homodyne detection with
signal βout and LO βLO = |βp,in|exp(i(θb + γ)). The di�erence in the
two detected intensities is

Ilock =
2α2

in|χ|κA
|βin|κ2

a

|βp,in| sin (θb + γ), (7.6)

where γ is the homodyne measurement angle. It has a �xed value of
γ = π/2 due to the polarization-based homodyne detection scheme
which is described in Sec. 3.4.

7.1.2. The e�ect of WPD on squeezing and antisqueezing

The results for the �uctuating terms (see Sec. 4.2.2 for an empty
cavity) are found by moving to the Fourier frequency domain

FT [dδa(t)/dt] = −iωFT [δa] (ω).

The variance of δX̂±Aout
gives the values for squeezing and antisqueez-

ing in the amplitude or phase quadrature, respectively. We use the
common de�nition for quadrature variance:

V ± ≡ 〈|δX̂±|2〉 − 〈|δX̂±|〉2,

where δX̂+
A = δÂ+ δÂ† and δX̂− = i(δÂ− δÂ†). As we are only in-

terested in the variance of the (squeezed) output at the fundamental
frequency we look for the phase and amplitude quadrature expressions
for the driving seed �eld operator (δÂin) at di�erent pump-seed phase
angles θb:

V +
Aout

(θb = 0) = V +
Ain

(|χ|+ κa − 2κA)2

(κa + |χ|)2 + V +
Bin

4α2
inκ

2
A|χ|2

|βin|2κ2
a (κa + |χ|)2

+ V +
Al

4κl,AκA

(κa + |χ|)2 ,

(7.7)
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7. Demonstration of weak pump depletion phase locking

V −Aout
(θb = 0) = V −Ain

(|χ| − κa + 2κA)2

(κa − |χ|)2 + V −Bin

4α2
inκ

2
A|χ|2

|βin|2κ2
a (κa − |χ|)2

+ V −Al

4κl,AκA

(κa − |χ|)2 .

(7.8)

The boxed terms show the miniscule in�uence of the pump �eld phase
on the fundamental �eld (αin � |βin|). Calculations show that there
should be no degradation of the detected quadrature variances if we
use the highlighted expression in Eq. (7.5b) as an error signal for pump
phase locking.
By neglecting intracavity losses (κl,A = 0 and κA = κa) and the
in�uence of the pump �eld, Eqs. (7.7) and (7.8) turn into the variance
of the initial squeezing:

V ±init = V ±Ain

(|χ| ∓ κa)2

(κa ± |χ|)2 . (7.9)

7.1.3. Gain and losses

We are interested in the nonlinearity factor χ related to the maximum
amount of (anti)squeezing. To calculate the initial (anti)squeezing val-
ues V ±init we assume that the measured values V ±det experience identical
optical loss ηtot. The incoupling loss can be treated like an open beam-
splitter port. In this case the variance, including losses, becomes (see
Eq. (3.23)):

V ±det = ηtotV
±
init + (1− ηtot) . (7.10)

For this reason we equate Eq. (7.10) for V +
det with V

+
init and V

−
det with

−V −init for the same loss value ηtot and obtain

V −init = −V +
init =

V −det − 1

V +
det − 1

. (7.11)

With this result the total optical loss factor ηtot = 0.5 and the value
for initial squeezing V ±init = ±5.82 dB are calculated. Fig. 7.1 shows a
plot of Eq. (7.10) for V ±init = ±5.82 dB over the loss factor ηtot.
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7.2. Experimental realization

Figure 7.1.: Plot of detected variance in the phase quadrature (Eq. (7.10)) as a func-
tion of total loss ηtot with the initial squeezing value V ±init = ±5.82 dB.

The theoretical characterization of the OPO behavior in Eqs. (7.7)
and (7.8) includes intracavity losses via the decay rate of the intra-
cavity �eld κa or κA for the input �eld, given by the escape e�ciency
ηesc. Di�erent loss factors degrade the initial squeezing to arrive at
the outcoupled squeezing and �nally the measured squeezing at the
homodyne detector:

V ±init
ηesc−−→ V ±Aout

ηpropηhηqe−−−−−−→ V ±det.

This chain of reasoning shows the connection between all loss terms
and the di�erent quadrature variances. With the knowledge of each
loss term (see Sec. 7.3.1) of ηtot = ηescηpropηhηqe and the relation of
V ±det and V

±
Aout

(see Eqs. (7.10) and (7.11)) the theoretical output V ±Aout

can be compared with the experimental data V ±det in Sec. 7.3.1 (see
Fig. 7.7).

7.2. Experimental realization

Fig. 7.2 shows a simpli�ed schematic of the experimental setup. Mode
matching optics are omitted for clarity. The laser source was a
λ = 1064 nm Nd:YAG non-planar ring oscillator (NPRO) (Innolight
Mephisto). To generate the pump light at λ = 532 nm a linear
hemilithic SHG with a 6.5mm LiNbO3-crystal (see Sec. 6.2) was used
and was frequency stabilized by polarization-based homodyne locking
[HPJH09]. The OPO cavity (described in Sec. 6.3) was also frequency
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7. Demonstration of weak pump depletion phase locking

locked with the polarization-based homodyne locking scheme which
allows detection of (anti)squeezing in the phase quadrature variance
at the same time (via the �xed homodyne measurement angle γ = π/2,
see Eq. (7.6)). The characteristic parameters of the cavity are listed
in Table 7.1.

Figure 7.2.: Schematic overview of the experimental setup. The infrared light is
sent through a mode cleaner (PMC) for spatial mode �ltering and
power stabilization and then frequency doubled in a linear SHG cav-
ity. The generated green pump light is prepared with a similar mode
cleaning cavity and sent to the bow-tie OPO cavity. For locking pur-
poses the infrared light is coupled into the OPO cavity as well. The
homodyne detector OPO is responsible for locking the OPO cavity
and simultaneously detecting the phase quadrature variance whereas
the homodyne detector WPD generates the error signal for locking the
green pump phase to the OPO cavity using WPD locking.

The OPO locking beam had a power of 9.66mW with a ratio of 3:100
between the signal (s-polarization) and LO (p-polarization). This
slight deviation from the experimental �rule of thumb� of 1:100 for
homodyne detection was chosen to guarantee adequate experimental
performance. The power of the green pump light was 67.8mW with
s/p-polarization ratio of 100:5 for the interferometric readout. The
spectroscopic signal provided a su�ciently stable lock of the pump
phase while the amount of e�ective pump power was as high as pos-
sible. Due to the highly sensitive measurement of the WPD locking

90



C
h
a
p
te
r
7

7.2. Experimental realization

signal (Eq. (7.5b)) there is a trade-o� between the amount of pump
power and attenuation with several neutral density �lters to keep the
photodiodes operational. By detecting the transmitted green pump
light with a homodyne detector its phase could be locked to the cavity.
The PZT mirror in the pump beam could be used as a phase actu-
ator and also provided the option of inducing a kHz-modulation for
dither-locking [HKEB06] of the pump phase for comparison between
the two locking schemes (WPD and dither).

Table 7.1.: Overview of the parameters characterizing the OPO.
The calculation of the parameter χ is described in Sec. 7.1.3.

Parameter Symbol Value Unit

Length l 1.52 m
Free spectral range fFSR 197.4 MHz
Finesse F 58
Linewidth (FWHM) ∆ν = fFSR/∆ν 3.9575 MHz

Cavity decay rates
(HWHM)

κa 1.2434 · 107 rad/s
κA 1.0686 · 107 rad/s
κl,A 0.1749 · 107 rad/s

Input power (seed) α2
in

0.55 mW
2.946 · 1015 Hz

Input power (pump) β2
in

64 mW
2.143 · 1017 Hz

Nonlinearity factor (HWHM) |χ| 3.45 · 106 rad/s
Initial (anti)squeezing V ±

init ±5.82 dB

Calculated squeezing V −
Aout

-4.29 dB

Calculated antisqueezing V +
Aout

5.31 dB

Detected squeezing V −
det -1.96 dB

Detected antisqueezing V +
det 3.78 dB

7.2.1. Error signals

Fig. 7.3 shows the error signal for the WPD lock from Eq. (7.6), and
in comparison X+

αout from Eq. (7.4a) (the transmitted infrared signal
of the OPO which is indicative of the behavior of the green pump
light). The intensity of the infrared light (X+

αout) was detected with
a single photodetector (red curve in Fig. 7.3) whereas the homodyne
detector acted as an interferometer to read out the phase quadrature
of the green pump light (X−βout) (black curve in Fig. 7.3). X−βout could
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7. Demonstration of weak pump depletion phase locking

be used as a locking signal to stabilize the pump phase θb, as its
gradient is maximal close to the extrema of the infrared light �eld
exiting the cavity X+

αout (deviations are due to delays in the phase
detection). Compared to the strong mean pump �eld the �uctuating
part is strong enough to yield an adequate signal-to-noise ratio (SNR)
of ≈ 12.2dB.

Figure 7.3.: Error signal of the transmitted pump light for WPD (black) and trans-
mitted cavity �eld (red) with swept pump phase (grey) versus time.
The slight phase o�set gives a strong signal for pump phase stabi-
lization. For purposes of presentation the scaling of the two signals
di�ers. The scaling on the y-axis belongs to the error signal WPD HD.
The tiny e�ect of WPD on the pump phase is low-pass �ltered and
ampli�ed by the homodyne photodetector electronics.

The asymmetry in the sine-form of the signals can be explained by the
theory of homodyne locking the OPO to the infrared light. Due to the
sinusoidal sweep of the green pump phase there is (de-)ampli�cation
of the infrared intracavity light. For this reason the ratio of directly
re�ected p-polarization and outcoupled (de-)ampli�ed s-polarization
varies, and this sinusoidal signal for locking the OPO is fed back.
This feedback in combination with the swept pump phase leads to the
deformed sinusoidal error signal with a �tted modulation of
y = a · sin2 (θ) + b · sin (θ), see Fig. 7.4.
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7.3. Results

Figure 7.4.: Simulation of the error signal of the transmitted pump light for WPD
(red) and the measured error signal (black) with swept pump phase
(grey) versus time.

7.3. Results

A multichannel oscilloscope1 is used to display the error signal de-
tected by the homodyne photodetector and for the transmitted light
detected by a single photodetector. The variance of the squeezed out-
put at the fundamental frequency is recorded on a signal analyzer2

while the system is locked. Fig. 7.5 shows the zero span measure-
ments at 197.4MHz (�rst FSR) of the variances of the (anti)squeezed
output (see Eqs. (7.7) and (7.8)) as a comparison between (a) a con-
ventional dither-locking scheme and (b) homodyne locking using weak
pump depletion. The swept variance due to the swept pump phase is
stabilized at its minimum by switching on the lock. Both stabiliza-
tion techniques are su�cient to lock the OPO and what is more the
generated levels of squeezing and antisqueezing are the same.

1In this setup we used the MSO X 2014A oscilloscope from Agilent.
2In this setup we used the MXA N9020A signal analyzer from Agilent.
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7. Demonstration of weak pump depletion phase locking

(a) OPO stabilization via dither locking

(b) OPO stabilization via WPD locking

Figure 7.5.: Zero span measurements of the shot noise levels for the two di�erent
locking schemes. (a) shows the dither lock and (b) the WPD lock. The
shot noise level without pump is shown in black (with scanned pump
phase grey), pump phase locked to antisqueezed phase quadrature in
green, pump phase locked to squeezed phase quadrature in red. The
blue line illustrates the behavior of switching the scanned pump phase
to in-lock.

Fig. 7.6 shows the (anti)squeezing spectra while the pump phase was
locked with both techniques, respectively. The observed squeezing
levels are 1.96 dB, with an antisqueezing level of 3.78 dB for both sta-
bilization schemes. So there is no degradation of the detected squeezed
states by using the e�ect of WPD for locking purposes.
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7.3. Results

(a) OPO stabilization via dither locking

(b) OPO stabilization via WPD locking

Figure 7.6.: Squeezing spectrum around 197.4MHz (�rst FSR) with squeezing level
(red) and antisqueezing level (green) versus scanned frequency. (a)
shows the dither lock and (b) the WPD lock. The spectrum analyzer
settings are: 1.5MHz resolution bandwidth and 91Hz video bandwidth
with a sweep time of 1.8 s and an internal attenuation of 6 dB. The
averaging factor is 10. The noise levels are normalized to the shot
noise (black).

The comparison between the measurements shows that the WPD and
dither locks result in the same squeezing levels for the identical setup.
This experimental result is in excellent agreement with the predicted
parameters (shown in Fig. 7.7), derived by Eqs. (7.7) and (7.8).
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7. Demonstration of weak pump depletion phase locking

7.3.1. Comparison between theory and experiment

To demonstrate the validity of the developed theoretical model the
calculated parameters are compared to the measurements. All neces-
sary parameters for the setup are given in Table 7.1.
Fig. 7.7 makes use of Eq. (7.10) to relate the calculated values for
squeezing and antisqueezing from Eqs. (7.7) and (7.8) with the mea-
sured values and shows a plot of the detected variance V ±det over the
pump power. It is obvious that our novel WPD-lock technique does
not degrade the values for squeezing and antisqueezing.

Figure 7.7.: Plot of the pump power over the detected (anti)squeezing levels which
are also calculated by the formula for outcoupled (anti)squeezing V ±Aout

(see Eqs. (7.7) and (7.8)). The loss factor of ηpropηhηqe is taken into
account (Eq. (7.10)).

Considering the losses (see Sec. 3.5), these results determine that the
propagation e�ciency is ηprop = 0.92, the homodyne visibility (or mis-
match e�ciency due to mismatches of the TEM00-modes in orthogo-
nal polarizations) ηh = VIS2 = ((1−0.11)/(1+0.11))2 = 0.64, and the
quantum e�ciency of the photodiodes ηqe = 0.98. The OPO escape
e�ciency ηesc is the ratio of the transmittance T of the input/output
coupler and the total decay of the intracavity �eld due to intracavity
losses L and the mirror transmittance T : ηesc = Tmirror/(Tmirror+L) =
0.1/(0.1 + 0.018) = 0.85, where the intracavity losses L are recalcu-
lated with [SH98] of κa inferred from the measurement of the linewidth
of the lossy cavity. The initial squeezing level in the OPO with 64mW
pump power can be calculated as V± = ±5.82 dB and the total losses
are ηtot = 0.5 (see Fig. 7.1).
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7.4. Conclusion

7.4. Conclusion

With the experimental setup described in this chapter a squeezed light
source was fully stabilized using a new pump phase stabilization tech-
nique (WPD locking) without degradation of the outcoupled squeezed
light �eld. To lock the pump phase to the OPO cavity the usually ne-
glected e�ect of the interaction of the seed and pump beams in the
nonlinear medium for squeezing generation called weak pump deple-
tion was used. The theoretical investigation shows that the e�ect of
this interaction can be detected in every possible outcoupling port of
the cavity. By using WPD for generating an error signal for locking
the detected squeezed states experience no degradation. This gives
a new option for a modulation-free stabilization of the phase angle
between the pump �eld and the seed �eld.
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8
Chapter 8

High-precision metrology

enhanced with squeezed

light

The sensitivity in phase spectroscopy is in general limited by the ratio
of the power of the detected signal of interest to the power of the noise
(the signal-to-noise-ratio, or SNR). One can increase the SNR either
by increasing the signal or by decreasing the noise. If the desired sig-
nal (e.g. the interference signal in a GWD due to the fractional length
change induced by a gravitational wave) is very small and cannot be
enhanced the noise �oor must be reduced. At frequencies in the kHz
regime the signal detection is dominated by unsuppressed technical
noise originating mainly in the electronics for the stabilization schemes
and laser noise (e.g. phase noise and intensity noise) and therefore, a
(cascaded) phase modulation can shift the signal of interest to a higher
frequency regime [FSMA08], resulting in an improved SNR. In a shot-
noise limited detection the injection of nonclassical (squeezed) light
can increase the instrument's sensitivity [MSM+02, AAA+13]. The
enhancement of high-precision measurements by nonclassical light is
not only used in GWDs. For example, high-precision phase measure-
ments via cavity ring-down spectroscopy (CRDS) can bene�t from
the reduced noise �oor by injected squeezed light, as well. Therefore,
we propose the idea of an extension of the squeezed-light generation
with an OPO (see Chap. 6 and 7) with a cascaded phase modulation
for signal up-shifting with additional squeezed-light injection in a FP
cavity. Based on the calculated parameters the experimental setup
was assembled.
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The �rst part of this chapter presents the theoretical derivation of
squeezed states and signals at microwave sideband frequencies (ac-
cording to higher FSRs of the FP cavity). The FSR (see Eq. 4.10)
of the OPO and FP cavity in both cases is ∼ 200MHz. Based on
the cavity dynamics described in Chap. 5 the theory of the transmit-
ted cavity �eld is described at Fourier frequencies far beyond those
normally considered [DHHR06] to investigate the signal and cavity
dynamics at several FSRs.
The second part of this chapter presents the complete extended ex-
periment to realize a cascaded phase modulation for signal up-shifting
with additional squeezed-light injection in a FP cavity. The main
task is the implementation and stabilization of the linear FP cavity
to show the same FSR as the OPO cavity for squeezed-light genera-
tion, and to guarantee that the cascaded phase-modulated signal �eld
and the squeezed light �eld remain in phase. To provide the detec-
tion of the generated squeezed light by the OPO and the enhanced
phase detection of the transmitted FP cavity �eld in the same setup
a second high-frequency homodyne detector is needed. Therefore a
novel homodyne detector design was developed in collaboration with
Dr. Mehmet, adapted from the Australian detector provided by the
work group of Prof. Huntington.
By utilizing a homodyne detector with a high-detection bandwidth the
high-precision phase measurements are feasible even at higher FSRs
of the FP cavity. The detection of such a squeezing comb, shown
in App. A.3.1, gives rise to a source of quantum states that can be
useful in quantum optics experiments, e.g. in the �eld of quantum
communication.
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8.1. Squeezed states and signals at sideband frequencies

8.1. Squeezed states and signals at sideband
frequencies

Unsuppressed technical noise originating in the electronics for the sta-
bilization schemes and laser noise (e.g. phase noise and intensity noise)
are dominant at frequencies in the kHz regime and can therefore cor-
rupt possible phase measurements. In order to increase the sensitivity
of phase spectroscopy we propose the use of the reduced noise distri-
bution of squeezed states provided by the sub-threshold bow-tie OPO
(see Chap. 5). Additionally, a cascaded phase modulation shifts the
low-noise signal of interest to higher frequencies (at the modulation
frequency), so that it is no longer dominated by technical noise. Ide-
ally, the modulation frequency is equivalent to the FSR of the OPO.
Using cavity-enhanced squeezed light at higher FSRs superimposed
with the up-shifted signal the SNR can be increased signi�cantly.

8.1.1. Signal modulation in the linear Fabry-Pérot cavity

To realize the detection of the up-shifted signal on the reduced noise
�oor the squeezed light from the OPO is combined on a beamsplitter
with the signal �eld to couple the combined �eld into the FP cavity. In
our case the signal of interest is a phase modulation at ±ωd = 80 kHz
on the signal �eld corresponding to a cavity length change. To shift
this small phase modulation to higher frequencies the signal �eld is
additionally phase-modulated at ±ωm = 197.4MHz to be simultane-
ously coincident with the FSRs of the FP cavity and the OPO.

101



8. High-precision metrology enhanced with squeezed light

(a) Phase modulation I (b) Phase modulation II

(c) Cascaded phase modulation (d) Intermodulation product

(e) Amplitude modulation I (f) Amplitude modulation II

Figure 8.1.: Sideband pictures of the process of cascaded signal modulations in
the linear Fabry-Pérot cavity. The intermodulation products of two
di�erent phase modulations ωd and ωm results in an e�ective amplitude
modulation at (ωm ± ωd).

As already described in Sec. 2.4.5 the sidebands of a phase-modulated
signal are out-of-phase relative to the carrier, such that in the rotating
wave picture they face opposite directions when in the plane of the
carrier. This leads to an intermodulation product of the cavity length
modulation and the incoming phase-modulated �eld. Fig. 8.1 shows
the visualization of this intermodulation product in the sideband pic-
ture where the two phase modulations are performed successively.
The sideband picture in Fig. 8.1a represents the phase-modulated side-
bands corresponding to a small change in the cavity length (±ωd) near
the carrier frequency, whereas the phase modulation via the EOM
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8.1. Squeezed states and signals at sideband frequencies

(±ωm), shown in Fig. 8.1b, is one FSR away from the carrier. By
superimposing these cascaded modulations (see Fig. 8.1c) the side-
bands of the cavity length change show up in addition as a new phase
modulation (in green) at the former sideband frequencies of the EOM
phase modulation (in blue). Considering the sidebands at the �rst
FSR at ±ωm as a new carrier, its new sidebands due to that inter-
modulation product can be represented as an amplitude modulation
(see Fig. 8.1d) with respect to the original carrier. Upon closer ex-
amination of the sidebands it appears to be two separate amplitude
modulations at ±(ωm + ωd) and ±(ωm − ωd) appearing in the span
around the �rst FSR (due to the EOM modulation ±ωm) to the car-
rier (bottom row).
In the following we give a mathematical derivation of the amplitude
modulation character of a double phase modulation. Starting with
a phase modulation from Eq. (2.45) and calculating the sidebands of
sidebands [CWBF13], a cascaded phase modulation is explicitly writ-
ten as

E = E0e
iωteim1 cos (ωdt)eim2 cos (ωmt), (8.1)

with the modulation indices mi, the carrier frequency ω and the two
phase modulation frequencies ωm for the EOM and ωd for the cavity
length change. With the same derivation as already seen in Sec. 2.5
the cascaded phase modulation may be written as:

E = E0e
i(ωt+m1 cos (ωdt)+m2 cos (ωmt))

= E0

[
eiωt +

im1

2
ei(ω±ωd)t +

im2

2
ei(ω±ωm)t

− m1m2

4

(
ei(ω+ωd±ωm)t + ei(ω−ωd±ωm)t

)]
.

(8.2)

This form clearly shows the two phase modulations with the modu-
lation indices im1/2 and im2/2 and the modulation frequencies ωd
and ωm. In addition the intermodulation product is the amplitude
modulation (with the factor -(m1m2)/4):

ei(ω±(ωm±ωd))t = ei(ω+ωd+ωm)t + ei(ω+ωd−ωm)t

ei(ω−ωd+ωm)t + ei(ω−ωd−ωm)t,
(8.3)

which can be seen in Fig. 8.1 in the lower row.
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8.1.2. Theory of squeezing and signals in Fourier space

Considering the variance of the amplitude quadrature (see Sec. 5.2),
the �uctuating terms of the intracavity �eld can be described at
Fourier frequencies far beyond those normally considered [DHHR06]
to investigate the cavity dynamics at several FSRs. By decomposing
Eq. (5.12) and solving δa(t) in the frequency domain we get:

δα(ω) =
−qδα†(−ω) +

√
2κAδAin(ω)

κa − 1−ei(ω−∆a)τ

τ

, (8.4)

given that δa†(ω) = δa†(−ω). The �uctuations from the outcoupled
�eld results from the boundary conditions (see Sec.4.2.2) and can be
expressed as

δAout(ω) =

[(
κa − 1−ei(ω−∆a)τ

τ

)(
κa + 1−ei(ω−∆a)τ

τ

)
+ q2

]
δAin(ω)(

κa − 1−ei(ω−∆a)τ

τ

)(
κa − 1−ei(ω−∆a)τ

τ

)
− |q|2

−
2κAqδA

†
in(−ω)(

κa − 1−ei(ω−∆a)τ

τ

)(
κa − 1−ei(ω−∆a)τ

τ

)
− |q|2

.

(8.5)

The output squeezing spectra for the amplitude and phase quadratures
are, according to V ± ≡ 〈|δX±|〉2 − 〈|δX±|2〉 ≡ 〈|δX±|2〉, calculated
to be

V ±out(ω) =

∣∣∣∣∣∣∣
(κa ± q)2 −

(
1−eiωτ

τ

)2

(
κa − 1−eiωτ

τ

)2
− |q|2

∣∣∣∣∣∣∣
2

V ±in (ω), (8.6)

where ω = nωFSR = n2π/τ is an integer multiple of the FSR.

Generated squeezed states by the OPO

Eq. (8.6) was used to calculate the performance of the sub-threshold
bow-tie OPO that generates the squeezed states. The cavity is stabi-
lized via PDH lock and the pump phase is locked with a dither lock
on the copropagating back-seeded locking �eld (see Sec. 6.3). Using
the cavity parameters from Table. 8.1 the simulated plot is con�rmed
by the measurements (see Fig. 8.2).
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8.1. Squeezed states and signals at sideband frequencies

(a) OPO performance measurement (see Sec. 7.3).

(b) OPO performance simulation plot from Eq. (8.6).

Figure 8.2.: Comparison between theory and measurement of OPO performance.
(a) Measurement of the OPO generated squeezing spectrum around
197.4MHz with squeezing level (red) and antisqueezing level (green)
versus scanned frequency (see Sec. 6.3). (b) Calculation of the
(anti)squeezing level over the normalized frequency according to fFSR
from Eq. (8.6). In the background the measurements are displayed
dotted for comparison.

Resulting intensity noise spectrum

The squeezed light from the OPO is combined on a partially re�ect-
ing mirror (re�ectivity of η = 0.99) with the signal �eld being phase
modulated at a frequency at ωm and with modulation depth βm. That
modulation frequency must be simultaneously coincident with an inte-
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8. High-precision metrology enhanced with squeezed light

ger multiple of each of the FSRs of the OPO and the FP cavity under
investigation so that the combined light passes through the cavity
and is measured using a homodyne detection scheme. In the result-
ing intensity noise spectrum a lossless, impedance matched cavity is
assumed for simplicity. A phase modulation of ωd=80 kHz with mod-
ulation depth βd represents a cavity length modulation as the signal
of interest:

V +
tot(ω) =

κ2
c

[
ηV −out + (1− η)

]
+
∣∣∣1−eiωτcτc

∣∣∣2∣∣∣κc (1−eiωτc
τc

)∣∣∣2 +
(1− η)β2

dβ
2
mA

2〈δl(ω)〉2

4
∣∣∣κc (1−eiωτc

τc

)∣∣∣2
=
κ2
c

[
ηV −out + (1− η)

]
+
∣∣∣1−eiωτcτc

∣∣∣2∣∣∣κc (1−eiωτc
τc

)∣∣∣2
+

(1− η)β2
dβ

2
mA

2

4
∣∣∣κc (1−eiωτc

τc

)∣∣∣2 × [πδ(ω − ωm − ωd) + πδ(ω − ωm + ωd)] ,

(8.7)

where (βdβmA/2)2 = nsb is the number of photons in each of the cas-
caded modulation sidebands [WRH06] and 〈δl(ω)〉2 is the normalized
Fourier noise spectrum due to cavity length �uctuations [DHHR06]:

〈δl(ω)〉2 = πδ(ω − ωm − ωd) + πδ(ω − ωm + ωd), (8.8)

where δ(x) is the unit impulse function.

Unit impulse function, modulation theroem and frequency shift

property

The intermodulation product of the cascaded phase modulations can
be considered as an amplitude modulation of ωd around the carrier
at the �rst FSR with ωm. The modulation theorem for the Fourier
transform [Bra99] states that, given a frequency modulation of f(t) =
cos (2πfdt), F (ω) can be expressed as

F (ω) =

∫ ∞
−∞

(
ei2πfdt + e−i2πfdt

)
e−i2πωtdt

=
1

2

∫ ∞
−∞

e−i2π(ω−ωd)tdt+
1

2

∫ ∞
−∞

e−i2π(ω+ωd)tdt

= πδ(ω − ωd) + πδ(ω + ωd),

(8.9)
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8.1. Squeezed states and signals at sideband frequencies

where δ(ω) is the frequency domain unit impulse function (see App.
A.4). Since we are interested in the amplitude modulation around
the carrier at the �rst FSR we apply a frequency shift to the signal:
f(t)ei2πfmt. The result in the Fourier space with FT [f(t)] = f(ω) is
an angular frequency shift of ωm:

FT[f(t)ei2πfmt](ω) = F (ω − ωm)

= πδ(ω − ωm − ωd) + πδ(ω − ωm + ωd).
(8.10)

This result shows the behavior of the signal peaks frequency shifted
by the cascaded phase modulation in the Fourier space. It describes
its variance in the �uctuating part of the outcoupled �eld of the FP
cavity in Eq. (8.7).
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8.1.3. Simulations of combined signal peaks and squeezed
light in the linear Fabry-Pérot cavity

To simulate the total variance of the output �eld by Eq. (8.7), with
the signal peaks frequency shifted by the cascaded phase modulation
(see Eq. (8.10)) and the superimposed squeezed variance generated
by the OPO (see Eq. (8.6)), the parameters for the FP cavity and
cascaded phase modulation must be derived. All the parameters for
the setup are given in Table 8.1.

Table 8.1.: Overview of the parameters characterizing the OPO and the frequency-
shifted signal detection in the Fabry-Pérot cavity.

Parameter Symbol Value Unit

OPO parameters

Length l 1.52 m
Free spectral range fFSR 197.4 MHz
Finesse F 58
Linewidth (FWHM) ∆ν = fFSR/F 3.96 MHz

Cavity decay rates
(HWHM)

κa = π ·∆ν 1.24 · 107 rad/s
κA 1.07 · 107 rad/s
κl,A 0.18 · 107 rad/s

Nonlinearity factor (HWHM) |χ| 0.323 ·κa rad/s
Initial (anti)squeezing V ±

init ±5.82 dB

Detected squeezing V −
det -1.96 dB

Detected antisqueezing V +
det +3.78 dB

Parameters for simulations

OPO cavity decay rate κa 1 · 10−2 · fFSR Hz
FP cavity decay rate κc 1 · 10−3 · fFSR Hz
FP cavity �nesse Fc 580
Beamsplitter re�ectivity η 0.99

Modulation depth
βm 0.04
βd 0.25

Sideband amplitude A2 0.01 W
5.35 · 1016 ph./s

Signal phase modulation (FSR) fm = fFSR 197.4 MHz
Cavity length modulation fd 2 · 10−4 · fFSR Hz

With these parameters and Eq. (8.7) we simulate the variances of the
outcoupled FP cavity �eld with the signal peaks on the squeezing-
reduced noise �oor.
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8.1. Squeezed states and signals at sideband frequencies

(a) Single signal peaks

(b) Observable signal peaks on the squeezing-reduced noise �oor

Figure 8.3.: Simulations of signal peaks with a squeezed light �eld in a linear Fabry-
Pérot cavity. (a) The variance of the single signal peaks without the
noise reduction of the squeezed light �eld from the OPO are below
the 0 dB level and therefore covered by the shot noise. (b) The same
signals can be uncovered by superimposing them with the squeezed
light �eld from the OPO so that the signals of interest can be observed
by balanced homodyne detection in transmission of the FP cavity.

Fig. 8.3a shows the variance of the single signal peaks without the
noise reduction of the squeezed light �eld from the OPO. The peaks
are below the 0 dB level and therefore hidden by the shot noise.
The same signals can be uncovered by superimposing them with the
squeezed light �eld from the OPO so that the signals of interest can
be observed by balanced homodyne detection in transmission of the
FP cavity (see Fig. 8.3b).
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8.2. The experimental setup

The major part of the subsystems in Fig. 8.4 has already been de-
scribed in this thesis, including the pump �eld preparation via the
linear SHG (see Sec. 6.2) and the sub-threshold bow-tie OPO (see
Sec. 6.3) for generating squeezed light. Within the scope of enhanced
spectroscopy the signal of interest, masked by technical baseband
noise, is up-shifted via phase modulation (see Sec. 8.1.1). Ideally, the
modulation frequency is equivalent to higher FSRs of the FP cavity
and the OPO to exploit the squeezed noise �oor to uncover the signal
of interest. Therefore, the additions to the experimental setup consist
of a phase modulator for the signal �eld, a beamsplitter for superim-
posing the signal �eld with the squeezed light �eld and the FP cavity,
and the implementation of the individual locking loops (see Fig. 8.4).
To ensure a spatially and temporally �ltered light �eld for highly sen-
sitive laser optics experiments the initial light �eld is �ltered by a
�xed-spacer ring cavity, called a mode cleaner (MC) [WUG+98]. The
half-waveplate was used to regulate the ratio of s- to p-polarization
for generating a suitable error signal for the polarization-based homo-
dyne detection (see Sec. 6.1.4) to stabilize the MC.
After this stage of preparation the laser light is split up by combi-
nations of a half-waveplate and a PBS into three paths: pump �eld
preparation, OPO stabilization/control �eld and FP cavity stabiliza-
tion/signal �eld. The path for pump �eld preparation (see Sec. 6.2)
is directed to the linear cavity for SHG. Similar to the light �eld at
1064 nm the pump �eld is �ltered by a MC for 532 nm to be �nally
coupled into the sub-threshold OPO bow-tie cavity at the �rst curved
mirror for squeezing generation (for a detailed description of the OPO
bow-tie cavity see Sec. 6.3). All detection schemes for stabilization
purposes so far are based on modulation-free polarization-based ho-
modyne detection [HPJH09].
The squeezed light �eld is directed via a ��ipping mirror� either to a
detector (labeled sqz detection) to verify squeezing levels or to the
linear FP cavity for the high-sensitivity phase spectroscopy. The
squeezed light from the OPO is combined in phase on a beamsplit-
ter with the signal light �eld. The signal �eld is phase modulated
at 197.4MHz, that is simultaneously coincident with the FSRs of the
OPO and the linear FP cavity being stabilized by PDH-locking (see
Sec. 6.1.2).
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8.2. The experimental setup

Figure 8.4.: Schematic of the complete experimental setup. The subsystems (linear
SHG cavity, OPO for squeezing generation, individual locking loops)
of the initial experimental part are individually described in the pre-
ceding chapters. The additions to the experimental setup consist of a
phase modulator for the signal �eld, a beamsplitter for superimposing
the signal �eld with the squeezed light �eld and the FP cavity, the
implementation of the individual locking loops, and the balanced ho-
modyne detection scheme for measuring squeezed states and signals at
microwave sideband frequencies.

The transmitted light is detected by a high-frequency homodyne de-
tector that measures the squeezed shot noise and the signal peaks in
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8. High-precision metrology enhanced with squeezed light

the amplitude quadrature. To ensure that the LO �eld for the ho-
modyne detection is perfectly overlapped with the transmitted �eld
from the FP cavity a mode matcher for the HF detection is imple-
mented in transmission of the 50/50 beamsplitter. In the following
the individual subsystems are described in more detail.
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8.2. The experimental setup

8.2.1. Linear Fabry-Pérot cavity

Figure 8.5.: Experimental setup of the FP cavity for sensitive optical phase shift
measurements. To frequency stabilize the cavity a PDH locking scheme
is used (see Sec. 6.1.2). Therefore, the signal �eld is additionly phase
modulated with fPDH = 16.6MHz by the same EOM. The error sig-
nal is derived by detecting the re�ected light of the cavity transmitted
through a partially transmissive (R = 96 %) mirror for mode matching
with a similar photodetector (PDPDH, FP) we use for stabilizing the
OPO. The directly transmitted light �eld at the partially transmissive
mirror is detected by PDphase, sqz to stabilize the phase of the squeezed
light �eld with respect to the signal �eld. The signals of interest super-
imposed with the squeezed light �eld from the OPO can be observed
by a balanced homodyne detection in transmission of the FP cavity.

The linear FP cavity (see Fig. 8.5) consists of two identical curved mir-
rors (with ROC= 500mm) with an optical path length of L = 757mm
which leads to a theoretical FSR of 198.01MHz. This is in good
agreement with the measured FSR by scanning imprinted sidebands
of an EOM1 (see Sec. 8.2.3) with a broadband photodetector (see
Sec. A.2.2). With the same measurement setup the linewidth of
the resonator is determined to be ∆ν ≈ 400 kHz. Its stability pa-

1In this setup a high damage threshold phase modulator 4064 from Newport was
used.
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rameter is g1g2 = 0.25. Both mirrors have a design re�ectivity of
(98.5 % < R < 99.5 %) which corresponds to a cavity �nesse of
F = 580. The incoupling mirror is mounted on a PZT-crystal to
adjust the cavity length to the laser frequency. To frequency stabilize
the cavity a PDH locking scheme is used (see Sec. 6.1.2). Therefore,
the signal �eld is phase modulated with fPDH = 16.6MHz by the same
EOM. The error signal is derived by detecting the re�ected light of
the cavity transmitted through a partially transmissive (R = 96 %)
mirror for mode matching with a similar photodetector (PDPDH, FP)
we use for stabilizing the OPO (see Sec. 6.3). The output is multiplied
with an electronic LO from the same function generator2 driving also
the EOM that imprints the sidebands at 16.6MHz. A low-pass �lter
extracts the DC-term from the demodulated signal to get the desired
error signal. The directly transmitted light �eld at the partially trans-
missive mirror is detected by PDphase, sqz to stabilize the phase of the
squeezed light �eld with respect to the signal �eld. To ensure the
overlap of the signal of interest and the lowered noise �oor provided
by the squeezed light �eld both �elds should be in phase. Therefore,
a dither locking scheme (see Sec. 6.1.3) is required.

8.2.2. Polarization-based homodyne locking of a linear
Fabry-Pérot cavity

Figure 8.6.: Schematic of a linear Fabry-Pérot cavity stabilized via polarization
based homodyne locking.

In all of the experimental setups described in this work the laser light
that couples into the cavities is linearly polarized (either in s- or p-

2We used a RIGOL DG1022 for the modulation and demodulation of the sidebands.
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8.2. The experimental setup

polarization, or in a composition of both). Usually degenerate in a
linear cavity, both polarizations can be separated by di�erences in the
refractive index of a nonlinear medium or the penetration depth in
the mirror coating at a given angle of incidence. Having an empty
FP cavity (no nonlinear medium inside) and two mirrors where the
light impacts under zero degree, no splitting in the polarizations is
expected. However, two potential sources that cause the splitting of
the polarization eigenmodes in a FP cavity can be distinguished. The
�rst one is the birefringence of the mirror materials, usually attributed
to mechanical stress by clamping the mirror on the mount. Combined
with a �nite penetration depth, this leads to a polarization-dependent
phase shift upon re�ection. The second source is directly related to
the cavity geometry. Its existence is not evident from the usual parax-
ial resonator theory, in which the cavity �eld and its resonances are
described by a scalar mode function that is independent of the polar-
ization [UBRR15].
The polarization-dependent di�erences in the re�ected �elds give rise
to a possible locking scheme by polarization-based homodyne detec-
tion (see Sec. 6.1.4). By using the resonator equations (see Sec. 4.1.1)
for the re�ected �elds for the di�erent polarizations one can obtain
the desired error signal.

Mathematica calculations for polarization-dependent mirror

parameters

For investigations into the polarization-dependent di�erences in the
re�ected �elds the power re�ectivities of the mirrors for s- and p-
polarizations (representative of mirror curvature or penetration depth)
are taken into account. Even slight di�erences in the power re�ectiv-
ities provide an error signal. The re�ected �eld (Eq. (4.5) with the
angular (frequency) relation θ = 2ωL/c) can be expressed as a func-
tion of the mirror parameters r and t for s- and p-polarizations [Fri91]:

aref(r, t) = ain
r1 − r2

(
r2

1 + t21
)
e−iθ

1− r1r2e−iθ
, (8.11)

The re�ected �elds for both polarizations (as and ap) are slightly
di�erent, as can be seen in Fig. 8.7.
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Figure 8.7.: Plot of re�ected �elds of s- and p-polarization.

The subtle distinction in the �eld intensities for s- and p-polarization
creates a dispersion-shaped intensity gradient by subtraction of the
two intensities Ires = Ia − Ib in a homodyne detection setup [HC80].

Ia = y|1
2
aref(rp, tp) + iaref(rs, ts)|2,

Ib = y|1
2
aref(rp, tp)− iaref(rs, ts)|2,

(8.12)

where y is a normalization coe�cient.

Figure 8.8.: Simulation of the intensities on both photodiodes in a homodyne de-
tection setup from Eq. (8.12).

The subtraction of these two intensities Ires = Ia − Ib (see Fig. 8.8)
leads to a dispersion-shaped error signal (see Fig. 8.9) which can be
used for polarization-based homodyne locking.
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8.2. The experimental setup

Figure 8.9.: Simulation of the resulting error signal in a homodyne detection setup
by Ires = Ia − Ib.
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8.2.3. Tuning the free spectral range of the Fabry-Pérot
cavity

To ensure perfect overlap of the squeezed noise �oor and the intermod-
ulated sidebands around frequencies corresponding to higher FSRs of
the OPO cavity (generating the squeezed �eld) the FSR of the FP
cavity must be exactly the same; for the experimental setup described
in this work the FSR is at 197.4MHz. The accurate value of the FSR
for the OPO cavity was obtained by span measurements over a cer-
tain frequency range. The frequency where the antisqueezed noise is
maximal and the squeezed noise is minimal corresponds to the FSR.
A comparable measurement with this precision is not possible for the
FP cavity due to the absence of a frequency reference. Therefore mod-
ulation sidebands must be imprinted on the light �eld via the EOM
and detected with a broadband photodetector (see App. A.2.2). By
changing the modulation frequency, the detected sidebands move on
the frequency axis with respect to the constant carrier until �nally
a cancellation of the positive sideband and the negative one of one
higher FSR occurs. This happens when the frequency is exactly half
of the FSR.

Figure 8.10.: Simulation of scanned sideband frequencies to �nd FSR of the Fabry-
Pérot cavity. There is almost a cancellation of the sidebands at a fre-
quency of 98.5MHz (blue line). The modulation frequency of 99MHz
would lead to a complete cancellation of the sidebands.

As shown in the simulation plots in Fig. 8.10 the sidebands are de-
tected by a photodetector with high bandwidth, since the modulation
frequency is varied for tuning purposes. A photodetector with high
bandwidth (see Sec. A.2.2) o�ers the resolution of di�erent modu-
lation sidebands to measure their dynamic behavior by tuning the
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modulation frequency.

(a) Sideband frequency of 78MHz (b) Sideband frequency of 97MHz

(c) Sideband frequency of 99MHz (d) Sideband frequency of 99.9MHz

Figure 8.11.: Measurements of tuned sideband frequencies to determine the FSR
of the linear Fabry-Pérot cavity. The error signal containing the side-
bands is depicted as a black line, whereas the red line is the transmit-
ted cavity �eld. (a) The modulation frequency is 78MHz, far below
99MHz where the sidebands cancel each other out. The left and
right sideband are still separated from the corresponding neighboring
sidebands of the adjacent FSRs. (c) With the matching modulation
frequency of 99MHz, the sidebands cancel each other out completely.
There are two other cases plotted, where the modulation frequency is
slightly below (b) and slightly above the half of the FSR (d).

The measurements of this sideband dynamic by tuning the sideband
frequency are shown in Fig. 8.11. The error signal containing the side-
bands is depicted as a black line, whereas the red line is the transmit-
ted cavity �eld. The modulation frequency in Fig. 8.11a is 78MHz, far
below 99MHz where the sidebands cancel each other out. According
to the simulation there is a cancellation of the sidebands (Fig. 8.11c)
at the modulation frequency of 99MHz, whereas the FSR peaks in the
transmitted �eld of the FP cavity remain constant. With this result
the FSR of the FP cavity is determined to be 198MHz. There are two
other cases plotted, where the modulation frequency is slightly below
(Fig. 8.11b) and slightly above the half of the FSR (Fig. 8.11d).
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Further steps

At the time of writing, the �nal detection of the combined signal su-
perimposed on the squeezed noise �oor had not yet been achieved due
to problems with the stabilization of the OPO cavity for squeezed-light
generation. Drifts in room temperature led to the need for successive
re-alignment of the OPO cavity (crucial for all of the locking tasks).
The complete setup was characterized and assembled to assure a mea-
surement in the near future.
The next steps are re-aligning the OPO cavity to be su�cient to sta-
bilize it on timescales suitable for spectroscopic measurements and
to produce a suitable level of squeezing. Potentially, the optical sur-
faces and the crystal have to be cleaned to reduce additional losses.
Since the experimental setup consists of di�erent modulations (e.g.
for locking purposes and for up-shifting the signal) and stabilization
schemes for the di�erent subsystems a hierarchy of subsystem stabi-
lizations must be established. Once this is achieved the transmitted
light �eld of the FP cavity can be detected in a balanced homodyne
detection scheme. As a �rst step the amplitude-modulated signals by
the cascaded phase modulation can be detected without being super-
imposed by the squeezed light to con�rm the theoretical derivation of
squeezed states and signals at microwave sideband frequencies. Then
the squeezed light �eld can be detected in transmission of the FP cav-
ity to verify that the phase lock of the squeezed light �eld and the
signal �eld in combination with the cascaded phase modulation and
the FP cavity stabilization works. This will lead to the experimental
veri�cation of the theoretical results presented in Sec. 8.1.
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9
Chapter 9

Summary & Outlook

The focus of my experimental work was the development and im-
plementation of a nonlinear light source for fundamental research in
the �elds of frequency stabilization and high-precision spectroscopy.
A sub-threshold optical parametric oscillator (OPO) was constructed
using a bow-tie cavity for the generation of squeezed states at a wave-
length of 1064 nm at free spectral ranges (FSRs) in the MHz regime.
For the preparation stage of the pump light �eld at a wavelength of
532 nm I assembled two di�erent cavity geometries and crystals for
second-harmonic generation (SHG) and compared their e�ciency. A
modulation-free locking technique, based on polarization spectroscopy
of the re�ected light �eld from an anisotropic cavity, was used to sta-
bilize both cavities. The linear cavity using a MgO:LiNbO3-crystal
and the bow-tie cavity using a PPKTP-crystal achieved comparable
results in the conversion from 1064 nm to 532 nm with an e�ciency of
∼ 60 %. The decision to use the linear cavity for the pump �eld prepa-
ration for squeezing experiments, presented in this work, was based on
its compactness. Additionally, the free-mounted bow-tie cavity with
widely separated components was bound to be more sensitive to air
�uctuations than the hemilithic resonator of the linear SHG.
In order to design the setup for the OPO and its stabilization scheme
I performed a theoretical investigation into the cavity dynamics with
the optical parametric down-conversion process while taking into ac-
count the weak depletion of the pump �eld and of frequencies far be-
yond cavity resonance. This investigation resulted in several insights:
�rstly, the small �uctuations around the average pump �eld ampli-
tude caused by the nonlinear interaction with the seed �eld, named
weak pump depletion (WPD), can be used to lock the phase angle
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between the pump �eld and the seed �eld. This thesis reports on the
theoretical and experimental work leading to the novel WPD locking
technique. The comparison of this new scheme to a common dither
locking scheme showed that both stabilization techniques were suit-
able for locking the OPO. I achieved a pump phase stabilization of
the OPO via WPD locking while generating squeezed light at levels
up to 2.5 dB. In order to utilize the squeezed light for downstream
experiments I investigated di�erent stabilization setups to control the
OPO and its pump phase in this work. Since the WPD locking tech-
nique utilizes a very small nonlinear e�ect it is technically extremely
challenging to generate a suitable error signal by detecting the pump
�eld. Nevertheless I demonstrated that locking the pump phase by
means of the WPD locking technique is possible.
Deriving the cavity dynamics at frequencies far beyond cavity res-
onance show that the OPO generates squeezed light in every FSR,
which is detectable with a high-bandwidth homodyne detector. We
proposed the idea of an enhanced spectroscopy setup consisting of
up-shifted signals via a cascaded phase modulation and a Fabry-Pérot
cavity with squeezed-light injection. I simulated the cavity dynam-
ics for squeezed states and signals at sideband frequencies at higher
FSRs to show the possibility of detecting a small signal, which is
masked by technical baseband noise. If the signal is up-shifted to
sideband frequencies at the �rst FSR of the OPO and the FP cavity
it will re-appear due to the absence of technical noise and by virtue of
the reduced noise �oor, which is lowered by the introduced squeezed
light. In this soon-to-follow experimental realization this will result in
improved high-precision phase measurements in cavity spectroscopy,
with possible applications for cavity ring-down spectroscopy (CRDS)
in the �elds of optical frequency metrology or studies of light-matter
interactions.
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Appendix

A.1. Calculation of the nonlinearity factor with
measurement values

As we are interested in the nonlinearity factor |χ| (see Sec. 7.1.1)
related to the linear gain and the decay rate κA we calculate the
amount of gain with the detected outcoupled �eld |αout|2 divided by
the incoupling �eld |αin|2:

Gainmax =
|αout|2

|αin|2
=

(κA − |χ|)2

(κA + |χ|)2 (A.1)

Gainmax is the gain introduced by the maximum amount of (anti-
)squeezing (in dB). To calculate the initial (anti)squeezing values V ±dB
we assume that the measured values V ±η,dB experienced an optical loss
ηtotal:

V ±η,dB = 10log10

(
ηtotal10

V±
dB
10 + (1− ηtotal)

)
(A.2)

For this reason we solve Eq. (A.2) for V +
η,dB and V −η,dB with V +

dB = −V −dB
for the same loss value ηtotal and equalize it, so we get

V ±dB = log10

(
−1 + 10V

−
η,dB/10

−1 + 10V
+
η,dB/10

)
(A.3)

With the result the total optical loss factor ηtotal = 0.5 is calculated.
Taking this into account by calculating the theoretical lossless values
with Eq. (7.9) we end up with the measured values.
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A.2. High frequency (homodyne) detectors

Beside the common detection devices some special detectors were
needed in this experiment. A homodyne detector with a high fre-
quency bandwidth for the detection of squeezed states at higher FSRs
was used.
To detect and demodulate tunable modulation frequencies in order to
investigate the FSR of the FP cavity a photodetector with a broad
frequency bandwidth was used.

High frequency homodyne detector from Australia

The high frequency homodyne detector that was used in this work
was a loan of the Quantum Electronics group at the University of
New South Wales led by Prof. Huntington. Based on its charac-
teristics we developed a comparable homodyne detector to gain the
experience in high frequency electronics and detection. The research
on improvements are still in progress.

Figure A.1.: Plot of the shot noise levels of the Australian high frequency homo-
dyne detector over the full range of 2.5GHz. For the incident powers
of 5mW and 10mW the shot-noise levels are detected. It is con-
stantly 10 dB above the dark noise level over the frequency range up
to 1.2GHz.

124



A
p
p
e
n
d
ixA.2. High frequency (homodyne) detectors

High frequency homodyne detector V2

Adapted from the Australian detector provided by the work group of
Prof. Huntington a novel homodyne detector design was developed in
collaboration with Dr. Mehmet. It aims at having a large bandwidth
and a low noise contribution similar to the Australian detector (see
Fig. A.1). The circuit board (see Fig. A.3) and housing was build in
house by the electronic and mechanical workshop. The two photodi-
odes were mounted back-to-back for a direct subtraction of the current
and this current was split up into a high frequency and a low fre-
quency part. At the (low frequency) DC-port the subtracted current
is converted into a voltage via transimpedance ampli�ers to generate
a suitable error signal for locking purposes. The (high frequency) AC
path consists of microwave ampli�cation transistors1 to generate a
voltage signal with higher frequencies providing measurements of the
signal variance (see Eq. (3.15) and Eq. (4.32))at higher FSRs of the
cavity under investigation. This preampli�er features high gain, low
noise, a regulated power supply for good isolation from external noises
on the supply side and a good bandwidth. Several tests of microwave
shielding and impedance matching of di�erent components have been
done; work is still in progress.

Figure A.2.: Plot of the shot noise levels of HFHD(v2) over the full range of 2.5GHz.
For the incident powers of 5mW and 10mW the shot-noise levels are
detected. It is constantly 10 dB above the dark noise level over the
frequency range up to 1.8GHz, neglecting single peak disturbances.

1We used the monolithic ampli�er Mar-6+ from Mini Circuits, see Sec. A.2.1.
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The integrated photodiodes are high speed InGaAs photodiodes2 with
an active area of 70µm. The length of the pin contacts of the photo-
diodes and the circuit path layout cause that the photodetector forms
an antenna that contaminates a few frequency bands of the measure-
ment over the range of 2.5GHz by electromagnetic interspersion (see
Fig. A.2). To characterize this in house built homodyne detector the
dark noise (red curve) is measured and compared to the detected vac-
uum noise levels by using local oscillator powers of 5mW and 10mW
(green and blue curve). Neglecting single peak disturbances the vac-
uum noise level above dark noise is constantly above 10 dB over the
full frequency range. Above 1.8GHz the dark noise and the shot
noise experience several electronic pick-up peaks that will spoil mea-
surements. Nevertheless, the high frequency homodyne detector is
adequate for squeezing measurements with a high clearance between
dark noise and shot noise over a range of 1.8GHz.

A.2.1. Photodetector circuit

2We used FCI InGaAs-70 from OSI Optoelectronics.
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Figure A.3.: Schematic of the high frequency homodyne detector V2.
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A.2.2. High frequency bandwidth photodetector

The bene�t of a sensitive photodetection over a broad bandwidth is
the free choice of a modulation frequency for a beat signal detection in
a possible PDH-stabilization scheme. In many cases the photodiode
with its �nite capacitance is part of an inductor-capacitor-network to
utilize the resonant frequency for increasing the detection sensitivity
on resonance. However, in this experimental setup it has to perform
another task. To determine the exact frequency of the FSR of the
Fabry-Pérot cavity the optical beat between the carrier �eld and the
modulation sidebands is detected. By turning the modulation fre-
quency to the half of the FSR the detected sidebands (of adjoining
FSRs) cancel each other out. Therefore it is important to ensure the
detection of that beat signal over a broad frequency bandwidth.

Figure A.4.: Plot of the transfer function of a broadband frequency photodetector.

The low power operational ampli�ers3 provide approximately 100MHz
bandwidth and low distortion. Fig. A.4 shows a plot of the shotnoise
in its AC and DC path. At 80MHz the shotnoise level of the detector
drops down and at 105MHz the shotnoise-clearance is smaller than
10 dB.

3AD810, AD 797A from Analog Devices.
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A.3. High FSR detection for multiplexing
experiments

Having a homodyne detector with a high frequency bandwidth avail-
able the high-precision phase measurements are feasible even at higher
FSRs of the FP cavity. The detection of such a squeezing comb gives
rise to a source of quantum states for multiplexed quantum communi-
cation systems. In quantum key distribution these squeezed states of
each FSR are generating a bit code for secure data transfers between
two parties.

A.3.1. Squeezing comb detection

By using a high frequency photodetector measurements of several
FSRs are possible; a squeezing comb is detectable. This measurement
was performed by the two high frequency homodyne detectors (which
are described in Sec. A.2). In Fig. A.5 and Fig. A.6 the well de�ned
dips in the detected shotnoise belonging to the generated squeezing
at each free spectral range of the OPO cavity are observable. Hav-
ing several squeezing ports available a multiplexed entanglement for
quantum communications applications can be applied [HWD+10].

Squeezing comb with ET light

Figure A.5.: Plot of generated squeezing comb at di�erent FSRs over a broad fre-
quency range.
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Squeezing comb with HFHD V2

Figure A.6.: Plot of generated squeezing comb at di�erent FSRs over a broad fre-
quency range.

Both detectors are capable to detect squeezed states at least up to the
ninth FSR.
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A.4. Theorems for the Fourier transformation

Some basic theorems play an important role in dealing with Fourier
transforms, especially with the unit impulse function

∫∞
−∞ δ(t)dt = 1

or the frequency domain unit impulse function
∫∞
−∞ δ(ω)dω = 1. Fol-

lowing [Bra99] we establish the unity of the impulse function. There-
fore the behavior of the Gaussian function under Fourier transforma-
tion is depicted and investigated via a substitution.

A.4.1. Fourier transform of the Gaussian function

The Fourier transform theorem for the normalized Gaussian functions
f(t) = e−πt

2
and f(ω) = e−πω

2
implies the transformation pair:

FT [f(t)](ω) =

∫ ∞
−∞

f(t)e−i2πωtdt

=

∫ ∞
−∞

e−πt
2
e−i2πωtdt

=

∫ ∞
−∞

e−π(t
2+i2tω)dt

= e−πω
2

∫ ∞
−∞

e−π(t+iω)2

dt

= e−πω
2

∫ ∞
−∞

e−π(t+iω)2

d(t+ iω)

= e−πω
2
,

(A.4)

and analogous

FT [f(ω)](t) =

∫ ∞
−∞

f(ω)e−i2πωtdω

=

∫ ∞
−∞

e−πω
2
e−i2πωtdω

= e−πt
2
.

(A.5)
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A.4.2. Derivation of the unit impulse function by
substitution

Considering these results for the Gaussian function a substitution of
variables leads to:

FT [f(at)](ω) =

∫ ∞
−∞

e−π(at)2
e−i2πωtdt

=

∫ ∞
−∞

e
−π

(
t2+it ω|a|

)
dt

|a|

=
1

|a|
e−π(ω/a)2

∫ ∞
−∞

e
−π

(
t+i ω|a|

)2

d(t+ i
ω

|a|
)

=
1

|a|
e−π(ω/a)2

.

(A.6)

For the case a → 0, the upper line gives a de�ned representation for
the impulse function δ(ω) and the lower line is a Fourier transform
integral with unity in the limit.
�1 is the Fourier transform in the limit of δ(ω).� [Bra99]
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