
Architectures for Virtualization and Performance
Evaluation in Software Defined Networks

Von der Fakultät für Elektrotechnik und Informatik
der Gottfried Wilhelm Leibniz Universität Hannover

zur Erlangung des akademischen Grades

Doktor-Ingenieur

genehmigte

Dissertation

von

Dipl.-Ing. Zdravko Bozakov
geboren am 22. März 1980 in Sofia

2016

1. Referent : Prof. Dr.-Ing. Markus Fidler

2. Referent : Prof. Dr.-Ing. Ralf Steinmetz

Tag der Promotion : 26. August 2015

Dipl.-Ing. Zdravko Bozakov: Architectures for Virtualization and Perfor-
mance Evaluation in Software Defined Networks © 2016

A B S T R A C T

Within half a century the Internet has transformed from a small scale
research project to a globally distributed communications system which
permeates all facets of modern life. A crucial factor for the success of the
Internet is its simple yet extremely versatile architecture which has re-
peatedly adapted to changing demands. This flexibility can be attributed
to the widespread use of suitable abstractions which reduce complexity
and open interfaces. Well known abstractions are the end-to-end prin-
ciple, which decouples the complexity of the Internet topology from
applications deployed at the end hosts, as well as the Internet layer
model which enables an independent development and deployment of
physical, network and application layer technologies, among others. The
concept of virtualization is another abstraction which has been success-
fully employed to facilitate the transition between legacy and emerging
network technologies. Today virtualization plays a indispensable role
for supporting elasticity and scalability in data center networks and is
viewed as an essential tool for combating the ossification of the Internet
architecture.

To ensure that networks remain well equipped to support future net-
work services with highly variable demands, the research community
has proposed the software defined networking (SDN) paradigm which
decouples the network control logic from the underlying physical de-
vices. The network forwarding plane is viewed as a collection of pro-
grammable, interconnected nodes managed by a logically centralized
network controller which maintains a global view of the network state.
Network applications use this centralized abstraction of the network sub-
strate to deploy their control logic. It is expected, that the increased level
of abstraction will enable the development of systematic methods for
deploying network services and verifying network functionality.

In this thesis we develop concepts and mechanisms required to enable
the virtualization of SDNs. The provision of isolated, programmable net-
work slices enables new business models for infrastructure providers
and virtual network operators. In addition, we derive techniques for
augmenting the global network view with statistical metrics extracted
from network measurements. Such metrics are essential for enabling ef-
fective traffic engineering in SDNs. The thesis is structured in two parts
according to these objectives.

First, we provide an analysis of the requirements for virtual software
defined network topologies and use the identified constraints to de-
rive SDN virtualization strategies. We propose a general architecture for
SDN virtualization which supports the instantiation of arbitrary, pro-
grammable virtual topologies. The architecture employs a scalable net-
work hypervisor to conceal the virtualization mechanisms from the vir-

iii

tual network tenants and to provide full isolation of the virtual resources.
We establish that optimization and resilience mechanisms in virtual soft-
ware defined networks (vSDNs) with arbitrary topologies must be han-
dled solely by the tenant. Further, we show that by offloading standard
topology objectives, such as resilience or elasticity, to the physical do-
main the complexity of virtual network topologies is significantly re-
duced. Thus, we outline a virtual network abstraction which provides
a connectivity service between multiple tenant points of presence, de-
fined by demands at the end-points. We analyze the embedding costs
for such services and show that significant gains may be achieved by
obtaining an accurate characterization of the tenant traffic requirements.
We propose a virtual router architecture as an example of a layer 3 con-
nectivity service. The platform combines open software and off-the-shelf
hardware to offer tenants virtual router instances which are functionally
and logically indistinguishable from a traditional router.

The allocation of resources in a multi-tenant environment motivates
the second part of the thesis where we focus on the extraction of traffic
characteristics and the derivation of quality of service (QoS) parameters.
As Internet traffic is known to posess long-memory, over-provisioning
is an inevitable strategy for maintaining reliable performance in com-
puter networks. As a consequence, a tight characterization of the carried
network traffic is essential for dimensioning resource reservations in the
network substrate. To this end, we evaluate approaches for extracting
flow-level traffic correlations from network observations, obtained from
packet samples or switch counter queries. We use random sampling to
reduce the monitoring load while maintaining a high resolution of the
estimate, analyze the impact of the sampling strategies on the estimates
and derive methods for reversing sampling distortions. An analytical
evaluation quantifies the effects of finite sampling durations on the auto-
covariance estimators. The autocovariance estimates are used to perform
Monte Carlo simulations with the goal of evaluating the queue length
distribution for the observed flow for arbitrary capacity assignments. To
this end, we outline approaches for synthesizing independent sample
paths which exhibit the same correlation structure as the observed traffic
flow and also match its increment distribution under certain conditions.
We demonstrate that the use of random sampling does not negatively
affect the obtained estimate of the queue length distribution.

Software-Defined Networking · Virtualization · Performance Evaluation

iv

Z U S A M M E N FA S S U N G

Innerhalb eines halben Jahrhunderts hat sich das Internet von einem
kleinen Forschungsprojekt in ein globales Kommunikationssystem en-
twickelt, welches alle Facetten des Lebens durchdringt. Ein wesentlicher
Faktor, der zum Erfolg des Internets beigetragen hat, ist seine einfache
und zugleich extrem flexible Architektur, die sich wiederholt an ver-
schiedene Anforderungen angepasst hat. Diese Flexibilität liegt an der
Nutzung von offenen Schnittstellen sowie an den umfassend verwen-
deten Abstraktionen, die wesentlich zur Reduktion der Komplexität
beitragen. Bekannte Abstraktionen im Internet sind das Ende-zu-Ende-
Prinzip, welches die Komplexität der Internettopologie von den Applika-
tionen auf Endgeräte entkoppelt, sowie das Schichten-Modell, das die
unabhängige Entwicklung und den Einsatz von Technologien beispiel-
sweise in den Physikalischen-, Netzwerk- und Applikationsschichten
ermöglicht. Das Konzept der Virtualisierung stellt eine weitere Net-
zwerkabstraktion dar, welche erfolgreich eingesetzt wurde, um einen
Übergang zwischen Legacy- und neuen Netzwerktechnologien zu er-
möglichen. Heute ist Virtualisierung unabdingbar, um Skalierbarkeit
und Elastizität in Datenzentren zu gewährleisten. Darüber hinaus wird
Virtualisierung als Schlüsseltechnologie zur Bekämpfung der sogenan-
nten “Ossifizierung” der Internetarchitektur gesehen.

Um sicherzustellen, dass Computernetzwerke auch zukünftig eine
Vielzahl von Services mit unterschiedlichen Anforderungen unter-
stützen können, hat die Forschungsgemeinschaft das Software-Defined
Networking (SDN) Paradigma konzipiert. Dieser Ansatz entkoppelt
die Kontrolllogik eines Netzwerks von der physikalischen Infrastruk-
tur. Dadurch wird der Datenpfad als eine Sammlung von program-
mierbaren Netzknoten abstrahiert, welche durch einen logisch zentrali-
sierten Controller gemanagt werden. Der Controller erstellt dabei fort-
dauernd eine globale Sicht des Netzwerks und stellt diese Netzwerkap-
plikationen zur Verfügung. Es wird erwartet, dass durch die sich da-
raus ergebende höhere Abstraktionsebene neue systematische Ansätze
für die Einführung von Netzwerkdiensten sowie die Verifikation von
Netzwerkfunktionalitäten ermöglicht werden.

Ziel dieser Arbeit ist die Entwicklung von Konzepten und Mechanis-
men, welche die Virtualisierung von SDNs ermöglichen. Die Bereitstel-
lung von isolierten, programmierbaren virtuellen Netzwerken eröffnet
neuartige Geschäftsmodelle sowohl für Netz-Provider als auch für Be-
treiber von Diensten auf Basis von virtuellen Netzen. Des Weiteren wer-
den messbasierte Methoden hergeleitet, welche die globale Netzwerk-
sicht um statische Metriken ergänzen. Solche Metriken sind essentiell,
um Traffic-Engineering in SDNs zu ermöglichen. Abgeleitet aus diesen
Zielen ist die Dissertation in zwei Abschnitte unterteilt.

v

Zunächst wird eine Analyse der Anforderungen für virtuelle SDN-
Topologien durchgeführt. Aus den identifizierten Einschränkungen wer-
den zwei SDN-Virtualisierungsstrategien hergeleitet: Erstens wird eine
allgemeine Virtualisierungsarchitektur entwickelt, welche die Instanti-
ierung von beliebigen, programmierbaren virtuellen Topologien erlaubt.
Diese Architektur verwendet einen skalierbaren Hypervisor, um die
eingesetzten Virtualisierungsmechanismen von den vSDN-Betreibern
(Kunden) zu verbergen und somit eine Isolierung der virtuellen
Ressourcen zu gewährleisten. Es wird gezeigt, dass in einer solchen
Architektur Optimierungs- und Resilienzanforderungen von den Kun-
den implementiert werden müssen. Des Weiteren wird gezeigt, dass die
Komplexität von virtuellen SDN-Topologien durch eine Auslagerung
von Funktionen wie Elastizität und Redundanz in die physikalische
Domäne deutlich reduziert wird. Daher wird zweitens eine verein-
fachte Abstraktion für virtuelle Netze vorgestellt, die einen Konnek-
tivitätsservice zwischen mehreren Kundenstandorten (PoPs) zur Ver-
fügung stellt. Dieser Service ist durch die Anforderungen an den
Netzwerk-Endpunkten definiert. Für dieses Szenario wird eine Analy-
se der Embedding-Kosten durchgeführt. Es wird gezeigt, dass diese
durch eine genaue Charakterisierung der Anforderungen von Kunden-
verkehr signifikant reduziert werden können. Als Beispiel für einen
Layer 3-Konnektivitätsservice wird die Implementierung einer Architek-
tur für virtuelle Router vorgestellt. Diese Plattform kombiniert offene
Software und kommerzielle Hardware, um Kunden virtuelle Routerin-
stanzen zur Verfügung zu stellen, die sich logisch und funktional nicht
von physikalischen Routern unterscheiden.

Die Allokation von Ressourcen in Multi-Tenant-Umgebungen mo-
tiviert den zweiten Teil der Arbeit, in dem ein Schwerpunkt auf die Ex-
traktion von Eigenschaften des Internet-Verkehrs und auf die Herleitung
von Quality-of-Service (QoS) Parametern gesetzt wird. Eine bekannte
Eigenschaft von Netzwerkverkehr ist, dass dieser über lange Zeitab-
schnitte eine starke Autokorrelation aufweist. Dieses als „Long-Memory”
bezeichnete Merkmal hat negative Auswirkungen auf die Netzwerkper-
formanz und erfordert ein Over-Provisioning der Netzwerkressourcen,
um ein zuverlässiges Serviceniveau im Netzwerk zu gewährleisten. Da-
her ist es im Kontext der Netzwerkvirtualisierung besonders wichtig,
die im Netzwerk übertragenen Flows genau zu charakterisieren, um
vorhandene Netzwerkkapazitäten effizient zuzuweisen. In dieser Arbeit
werden Methoden entwickelt, welche die Autokorrelationen von einzel-
nen Traffic-Flows aus Beobachtungen von Datenzählern in Switches
oder aus Paketsamples extrahieren. Dabei werden Zufallsstichproben
eingesetzt, um die Monitoring-Last zu minimieren und gleichzeitig eine
hoch-aufgelöste Abschätzung der Korrelationsstruktur zu gewährleisten.
Weiterhin wird der Einfluss von Samplingstrategien auf die Schätzung
evaluiert, und es werden Methoden hergeleitet, welche Sampling-
Verzerrungen ausgleichen. Eine analytische Evaluation quantifiziert die
Effekte von zeitlich begrenzten Messungen auf die Korrelationsstruktur

vi

und zeigt Möglichkeiten auf, diese Effekte unter bestimmten Umstän-
den zu eliminieren. Die extrahierte Korrelationsinformation wird ver-
wendet, um mit Hilfe von Monte Carlo-Simulationen, die Verteilung
der Puffergröße abzuschätzen, die sich für einen betrachteten Flow bei
einer bestimmten Kapazitätszuweisung ergibt. Dazu werden Ansätze
für die Generierung von statistisch unabhängigen Prozessen präsentiert,
die die gleichen Korrelationseigenschaften wie der observierte Verkehrs-
flow aufweisen. Zusätzlich, wird unter bestimmten Bedingungen auch
die Verteilung der Inkremente abgebildet. Es wird gezeigt, dass der
Einsatz von Zufallsstichproben keine negativen Auswirkungen auf die
Schätzung der Puffergröße mit sich bringen.

Software-Defined Networking · Virtualisierung · Leistungsbewertung

vii

C O N T E N T S

i dissertation 1
1 introduction 3

1.1 Thesis Contributions . 5
1.2 Thesis Structure . 6

2 background and related work 7
2.1 Software Defined Networking 7
2.2 Enabling Technologies . 10
2.3 Network Abstractions and Topology Embedding 11
2.4 Quality of Service and Network Measurements 12

3 problem statement 15
4 virtualization architectures for software defined

networking 19
4.1 Requirements for Virtual Network Architectures 19
4.2 A Framework for SDN Infrastructure Virtualization 24

4.2.1 SDN Hypervisor . 25
4.2.2 Framework Design 26
4.2.3 Context Identifiers 28
4.2.4 Resource Migration 33
4.2.5 Scalability of the SDN Hypervisor 35

4.3 Connectivity as a Service . 37
4.3.1 Connectivity Service Embedding 38
4.3.2 Rooted Tree Embedding Algorithm 42
4.3.3 Virtual Router Architecture 45
4.3.4 Flow Table Configuration 50
4.3.5 Performance and Scalability Evaluation 55

4.4 Conclusions . 60
5 performance evaluation in centralized network

architectures 63
5.1 Motivation . 63
5.2 Network Traffic Characteristics: Background and Notation 66
5.3 Performance Evaluation Strategies 72
5.4 Packet Sampling . 74

5.4.1 Estimating the Flow Autocovariance from Packet
Samples . 75

5.4.2 Impact of Finite Sample Sizes 79
5.4.3 Unbiased Hurst Parameter Estimation 84
5.4.4 Effects of Sampling on Variance-based Estimators . 87
5.4.5 Bias of the Aggregated Variance Estimator 89

5.5 Counter Sampling . 96
5.5.1 Relationship to Packet Sampling 97
5.5.2 Variance Sampling 99
5.5.3 Covariance Matrix Sampling 100

ix

x contents

5.5.4 Bias of the Covariance Matrix Estimator 101
5.5.5 Random Inter Query Times 102
5.5.6 Impact of Random Sampling 104

5.6 Sample Path Generation . 105
5.6.1 Cholesky Decomposition 106
5.6.2 Positive Definiteness of the Sample Autocovariance 106
5.6.3 Reproducing the Traffic Increment Distribution . . 107
5.6.4 Normalizing Transformations 109
5.6.5 Simulation Results 115

5.7 Centralized Monitoring of Distributed Resources 116
5.8 Conclusions . 119

6 conclusions and future work 121

ii appendix 123
a proofs and derivations 125

a.1 Covariance of the sample means 125
a.2 Aggregated Variance of an fGn Process 126
a.3 Aggregated Variance of a Sampled Process 126
a.4 Covariance of Transformed Lognormal Process 127

bibliography 129
own publications 140

L I S T O F F I G U R E S

Figure 1 SDN architecture. 8
Figure 2 Virtual topology with N:1 Mapping. 22
Figure 3 Operator substrate network hosting multiple vir-

tual SDN slices. 27
Figure 4 Mapping between tunnel identifiers and virtual

table identifiers. 29
Figure 5 Relationship between virtual context identifiers. . 30
Figure 6 Migration of a directed virtual link. 35
Figure 7 Distributed SDN hypervisor architecture. 36
Figure 8 Connectivity service between tenant points of pres-

ence. 38
Figure 9 Equivalent connectivity service embeddings. . . . 39
Figure 10 Capacity allocation for a connectivity service with

point-to-point demands. 41
Figure 11 Capacity allocation for a connectivity service with

using a hybrid embedding strategy. 42
Figure 12 OpenVRoute: a layer 3 virtual connectivity ser-

vice. 45
Figure 13 OpenVRoute architecture overview. 46
Figure 14 Flow distribution in the primary and accelerated

datapaths. 49
Figure 15 OpenVRoute Flow entry types. 50
Figure 16 Exemplary virtual router instance. 52
Figure 17 Measured throughput and delay for the DP0 and

DPX datapaths. 56
Figure 18 Experimental setup for the measurement of the

flow insertion rate. 58
Figure 19 Number of control messages processed by the dat-

apaths. 59
Figure 20 Requested and allocated capacity for a tenant vir-

tual link. 64
Figure 21 SDN monitoring scenario. 65
Figure 22 Comparison of approaches for estimating the buffer

occupancy. 71
Figure 23 Effect on sampling interval δ on the CCDF esti-

mate. Increasing the time slot length yields to a
loss of precision. 72

Figure 24 Observed and reconstructed autocovariance for
LRD traffic under geometric sampling. 76

Figure 25 Observed and reconstructed autocovariances for
LRD traffic using different sampling strategies. . . 78

Figure 26 Observation noise due to finite sampling. 80

xi

Figure 27 Autocovariance and aggregated variance estimates
of a finite length process. 86

Figure 28 Aggregated variance estimate under geometric sam-
pling. 88

Figure 29 Bias of the aggregated variance estimate of an
LRD process. 91

Figure 30 Unbiased Hurst parameter estimation. 94
Figure 31 Unbiased Hurst parameter estimates for LRD traffic. 95
Figure 32 Cumulative arrival process and corresponding ob-

servation process obtained from samples with ran-
domly distributed inter-query times. 97

Figure 33 Algorithm for random sampling of flow counters. 103
Figure 34 Effects of sampling intensity and sampling dura-

tion on the covariance matrix estimate. 105
Figure 35 Probability density functions with an identical Gaus-

sian transform. 111
Figure 36 Increment distributions of Internet traces. 112
Figure 37 Transformed (Gaussian) increment distributions

of Internet backbone traces. 113
Figure 38 Estimated autocovariances of Internet flow and

simulated sample paths. 114
Figure 39 CDF comparison between an observed traffic pro-

cess and simulated sample paths. 115
Figure 40 Estimated autocovariances of a synthetic LRD flow

and simulated sample paths. 116
Figure 41 Queue simulations for different allocated capaci-

ties (CAIDA) . 117
Figure 42 Queue simulations for different allocated capaci-

ties (MAWI) . 118
Figure 43 Controller query strategy with geometric inter sam-

ple times. 119

A C R O N Y M S

ARFIMA autoregressive fractionally integrated moving average

ASTA arrivals see time averages

BGP border gateway protocol

CBR constant bit rate

CCDF complementary cumulative distribution function

CDF cumulative distribution function

xii

acronyms xiii

CLT central limit theorem

CPX controller proxy

DiffServ differentiated services

DoS denial of service

EF expedited forwarding

FCM flow cache manager

FMP flow management proxy

FMP flow management proxy

IP Internet protocol

ISP Internet service provider

IntServ integrated services

InP infrastructure provider

LAN local area network

LRD long range dependency

MBAC measurement based admission control

MCF minimum cost flow

MC Monte Carlo

NIMASTA non-intrusive mixing arrivals see time averages

NUMA non-uniform memory access

OF OpenFlow

OS operating system

PASTA Poisson arrivals see time averages

PD positive definite

PHB per-hop behavior

PSTN public switched telephone network

PoP point of presence

RMM resource manager module

RWA routing and wavelength assignment

SDN software defined networking

xiv acronyms

SLA service level agreement

SSP successive shortest paths

TCAM ternary content-addressable memory

TEG tenant edge gateway

TUID tunnel identifier

VE virtual environment

VLAN virtual local area network

VMM virtual machine monitor

VM virtual machine

VNO virtual network operator

VN virtual network

VPN virtual private network

VRC virtual router controller

VRS virtual router service

VRaaS virtual routers as a service

vSDN virtual software defined network

VTID virtual flow table identifier

XID context identifier

fBm fractional Brownian motion

fGn fractional Gaussian noise

i.i.d. independent and identically distributed

PoP point of presence

pps packets per second

QoS quality of service

Part I

D I S S E RTAT I O N

1
I N T R O D U C T I O N

The Internet permeates all facets of modern life. Within half a century
it has undergone a phenomenal transition from a small scale DARPA
research project, the ARPANet, to a globally distributed system, pro-
viding the underpinnings of today’s society, economy and information
exchange. The success of the network is based largely on a simple and
elegant design which has enabled a continuous adaption to ever chang-
ing demands. Central to its design is the frequent use of abstractions. In
its most simple abstraction the Internet acts as a single system which
provides best effort, end-to-end connectivity between end-hosts over
arbitrarily interconnected nodes. Hiding internal complexity from end-
hosts, while exposing a minimal set of interfaces greatly simplifies the
deployment of diverse services at the end hosts. Similarly, the Internet
layer model abstracts network functions and, for instance, enables phys-
ical layer technologies to be developed independently from transport
layer mechanisms. Identifying the most suitable practical abstractions
and continuously searching for new ones to solve emerging challenges
has been a major strength of the Internet’s design and a most significant
contribution of the research community.

The concept of virtualization, i.e. the abstraction of physical resources,
such as link capacity, memory space, storage and processing units, into
purely logical entities, is another widely used type of abstraction em-
ployed throughout the Internet architecture. Originally developed as a
means for resource sharing in mainframe computers, numerous forms
of virtualization have been employed in the networking domain. While
the term virtualization has only recently come into ubiquitous use, histor-
ically the virtualization paradigm is deeply ingrained into the Internet
architecture. It has played a key role in maintaining flexibility in the
network architecture and facilitating the transition between legacy and
emerging technologies.

Eliminating the coupling between virtual and physical resources en-
ables a remapping of the virtual entities to new physical resources with-
out the need for altering logical functionality. This concept was exploited
as a migration path during the early deployment stages of the Internet,
where connectivity between Internet nodes was implemented as an over-
lay on top of the public switched telephone network (PSTN). As network
technology matured and became financially feasible connections were
migrated to dedicated network links. Virtualization techniques are re-
garded as a means to combat the ossification of the Internet architecture
in the future.

Furthermore, the virtual resource abstraction enables a concurrent op-
eration of virtual entities on a common physical substrate. As a result,

3

4 introduction

physical components spend less time idling, leading to a better utiliza-
tion of the available infrastructure. A prime example of concurrency in
the Internet architecture, is the use of packet switching as a fundamen-
tal mechanism. In the context of virtualization, packet switching may
be regarded as a mapping of multiple circuits to a single physical con-
nection, thereby providing significant multiplexing gains compared to
traditional circuit switched architectures.

An additional benefit of virtualization, is the reduction of complexity
and the mitigation of scalability issues. This is achieved by segmenting
large systems into smaller, more easily manageable logical entities. This
strategy is typically employed in large local area networks (LANs) which
are segmented into virtual local area networks (VLANs) to enforce ad-
ministrative structure and policies. As a result, the control of each VLAN
may be delegated to a different administrative domain. Moreover, lim-
iting the size of network segments mitigates the impact of broadcast
storms which cause network congestion.

In the last decade server virtualization technology has matured sig-
nificantly and has seen almost universal adoption in the data center do-
main. The virtualization of computing and storage hardware has lead
to significant reductions of operational costs by improving the utiliza-
tion of available physical resources. Moreover, the use of virtualization
in the data center offers the notion of elasticity, i.e., the ability to quickly
adapt to changing workloads by instantiating (or destroying) virtual ma-
chines (VMs) and load-balancing resources on-the-fly. As a result, oper-
ators have been able to build efficient, large scale data centers, while
offering on-demand resources at a low cost. In turn, the novel virtual-
ized data center infrastructure has spurred a wave of innovative busi-
ness models and services - colloquially referred to as cloud technologies
- which offload hardware hosting to a third party.

With the rapid developments in data centers it became evident that
the rate of innovation in networking domain is not sufficient to fulfill
the varied requirements in highly virtualized computing environments.
For instance, the migration of VMs between physical nodes requires
accurately timed redirection of associated traffic flows. Similarly, tradi-
tional routing and forwarding approaches may limit the scalability of
distributed applications running on virtualized clusters.

Today, the control logic of general purpose network equipment is
tightly integrated into the forwarding devices and is almost entirely un-
der the control of hardware vendors. This makes the addition of custom,
application specific network functionality extremely difficult, as the pro-
cess involves a time consuming design, implementation and testing loop.
For small scale projects the incentive for device vendors to implement
specific functionality is practically non-existent.

Over the last decade, the research community has worked towards
revising the traditional network architecture by evaluating both evolu-
tionary and clean-slate architectures. This development culminated in
SDN paradigm which aims to alleviate the aforementioned issues. The

1.1 thesis contributions 5

basic idea of SDN is the separation of the network forwarding and con-
trol planes through well-defined, open interfaces. Specifically, in SDN
the control functionality is outsourced to a centralized controller entity.
The data plane consists of a collection of externally programmable for-
warding elements, with arbitrary interconnections. The first widely sup-
ported SDN technology is OpenFlow. The main benefit of this approach
is that it introduces a new interface for dynamically controlling network
elements as well as a new level of abstraction for approaching network
problems. These changes are expected to speed up the innovation cycle.

1.1 thesis contributions

The aim of this work is to further the understanding of the abstractions
required to enable virtualization in software defined networking (SDN).
In addition, our goal is the development of techniques which enrich
the network view with statistical metrics, allowing SDN applications to
make better use of the available network resources. This thesis is struc-
tured in two main parts according to these objectives. Our key contri-
butions are summarized in the following. We provide an analysis of the
requirements for virtual networks and identify fundamental constraints
for virtual network topologies which stem from the corresponding appli-
cation scenario. From these requirements, we derive a general architec-
ture for SDN virtualization which supports the instantiation of arbitrary,
programmable virtual topologies. We propose a versatile classification
scheme for associating physical resources with a specific virtual context.
As a consequence the virtualization layer may be concealed from the
virtual network tenants. In addition, we outline a virtual network ab-
straction which provides a connectivity service between multiple tenant
points of presence (PoPs), defined by demands at the end-points. We
show that the embedding cost of such connectivity services may be sig-
nificantly optimized by obtaining a tight characterization of the tenant
traffic requirements.

Motivated by these findings, in the second part of the thesis we de-
velop mechanisms for extracting QoS metrics from passive network ob-
servations. The proposed methodologies may be integrated into a logi-
cally centralized controller framework in order to provide a comprehen-
sive global view of the network state. Such a representation is a funda-
mental element of the SDN paradigm, enabling operators and SDN ap-
plications to optimally utilize the available resources. Given the bursty
nature of Internet traffic we consider the characterization of the traffic
correlation structure as a key metric for the derivation of QoS bounds.
In this thesis we provide an analytical evaluation of random sampling
approaches for extracting the autocovariance of individual flows from
network observations. To this end, we consider both random packet sam-
pling as well as randomized queries of switch counters. We demonstrate
that the use of such sampling approaches enables fine grained estimates
of the traffic autocorrelation structure while reducing the monitoring

6 introduction

overhead. We prove that distortions caused by the utilized sampling
strategy may be reversed to obtain unbiased estimates of the flow auto-
correlation and quantify the effects of finite sampling durations. Finally,
we present techniques which exploit the derived estimates to extract QoS
bounds for specific switch interfaces.

1.2 thesis structure

In Chapter 2 we review the related work on virtualization, SDN and
performance evaluation. We present the research challenges addressed
in this work and highlight the significance of the presented contributions
in Chapter 3.

In Chapter 4 we identify the requirements towards virtual networks
and evaluate the feasibility of virtual network topologies. Next, we de-
fine mechanisms for mapping virtual entities to physical resources. We
use these findings to design a scalable platform for SDN virtualization,
which enables the instantiation of arbitrary virtual SDN topologies with
live-migration support. As a result, network tenants may deploy arbi-
trary, isolated SDN applications on top of a virtualized SDN substrate.
Finally, we propose connectivity service abstraction which we exemplify
through a virtual router architecture which enables infrastructure oper-
ators to offer layer 3 connectivity between tenant PoPs as a service.

In Chapter 5 we provide mechanism for performance evaluation in
SDN environments. To this end, we evaluate how the global network
view in SDNs may be augmented with QoS metrics. We propose ap-
proaches for the extraction of flow-level traffic autocorrelations from
packet samples as well as switch counter observations. These metrics
are processed by an SDN controller to derive stochastic bounds on the
backlog and delay at salient points in the network. The focus of this chap-
ter lies on the use of random sampling as a means for minimizing the
monitoring overhead without sacrificing the fidelity of QoS estimates.
We quantify the effects of the sampling strategies and demonstrate how
these may be reversed. Further, we quantify the impact of LRD traffic on
the autocovariance estimators.

We conclude the thesis and discuss future research directions in Chap-
ter 6.

2
B A C K G R O U N D A N D R E L AT E D W O R K

Today virtualization is ubiquitously employed across a wide range of do-
mains. Further, the scale over which the virtualization abstraction is en-
countered varies significantly: from virtual memory abstraction within
individual computer systems, to virtual machines hosted on shared hard-
ware, to entire data centers which process data using a highly distributed
pool of computing and networking resources. The focus of this thesis lies
on the virtualization of network infrastructure. We seek to identify suit-
able network abstractions and to develop a virtualization architecture
which efficiently makes use of the available network resources while
supporting a wide range of use-cases. The optimization of the resource
utilization in a multi-tenant environment necessitates mechanisms for
generating a detailed and up-to-date view of the system state.

In this section we provide an overview of the state of the art and re-
lated work in the areas of network virtualization, resource allocation and
network monitoring. We begin with an overview of the emerging SDN
paradigm and associated virtualization frameworks. Next, we provide
a review of the related work in network abstractions and network em-
bedding approaches. Finally, we discuss the related work in the fields of
admission control, performance evaluation, network measurements and
sampling.

2.1 software defined networking

In the last years the SDN architecture has been proposed as a means
for facilitating the deployment of network functions and services. Essen-
tially the approach relies on a clear, network-wide separation between
the network control plane and the data plane. An SDN infrastructure
consists of a pool of interconnected, programmable forwarding devices.
By itself each device contains only the minimal amount of control logic,
necessary to receive configuration commands from an external entity.
The SDN control plane is implemented as a separate, logically centra-
lized entity, e.g., running on a dedicated server (or a cluster of servers).
Each substrate switch is connected to the control plane layer over a well-
defined southbound API (e.g., OpenFlow). The SDN control plane (or
SDN controller) is responsible for calculating and deploying the appli-
cation specific forwarding logic across all forwarding devices in the sub-
strate. In addition, it performs topology discovery and maintains a con-
sistent global view of the network state. SDN applications implementing
network services are deployed on top of the controller layer using an ap-
propriate northbound interface. As a result of the global network view
the need for complex distributed algorithms is eliminated. As an exam-

7

8 background and related work

SDN controller layer

SDN Applications

control connection

programmable
substrate

southbound
interface

northbound
interface

global (virtualized) network view

Figure 1: SDN architecture.

ple, a network application may use Dijkstra’s algorithm to calculate the
shortest paths in the network rather than relying on the distance vector
algorithm.

The SDN paradigm promises a higher level of abstraction which facili-
tates the development and deployment of network services by providing
programmability over the network resources, while hiding the underly-
ing complexity of the network devices. The SDN framework enables
novel approaches, such as automated verification of network policies
[52, 7], or the development of high-level languages for programming
SDN infrastructures [58, 118].

The development of SDN based architectures is still in an early stage.
A large number of active research areas exist, which address challenges
such as ensuring the consistency of the network state [86] and the im-
plementation of distributed SDN controllers [41]. A number of works
address scalability issues in SDN platforms [154, 101].

Currently, no predominant northbound interface has emerged. For the
southbound interface OpenFlow (OF) [99], which we describe in the se-
quel, is the most widely supported and frequently used API. However,
alternative interfaces such as ForCES [43], or PCEP [143] are also feasi-
ble.

openflow Today, the most widespread southbound interface in SDN
is OpenFlow. OpenFlow is an open specification which enables a flow-
level configuration of the forwarding logic in commercial switches through
an external controller. Each OF-enabled switch maintains a flow table
which is populated over a secure control connection. The OpenFlow
specification defines a corresponding control protocol. The implemen-
tation specifics of the switch flow table are hidden from the controller,
i.e., vendors may use ternary content-addressable memorys (TCAMs) as

2.1 software defined networking 9

well as arbitrary, custom memory designs without running risk of leak-
ing intellectual property. Each flow table entry consists of a match rule
which is associated with a list of packet processing actions and, option-
ally, a data counter. Each rule defines a traffic flow based on a bit pattern
across one or more of the following packet header fields:

input
port

Ethernet
source

Ethernet
dest.

Ethernet
type

VLAN
ID

IP
source

IP
dest.

source
port

dest.
port

IP
protocol

OpenFlow header fields

These fields are supported by all devices implementing version 1.0 of
the OF specification. When using higher OpenFlow versions flows may
match additional fields, such as MPLS or IPv6, as well as optional vendor
specific headers. Unspecified header values act as wildcards (often de-
picted as ’*’), matching any bit value at the corresponding location. The
flow actions determine how a matched packet should be forwarded (e.g.,
drop, to port X, to controller) and which processing operations should
be applied (e.g., add or strip headers, rewrite header fields). Each flow
entry is assigned a priority to ensure a deterministic forwarding behavi-
or for packets matching multiple (wildcarded) rules. Depending on the
switch configuration incoming packets which do not match any flow ta-
ble rule are either forwarded to the controller for further processing, or
dropped.

controller frameworks In addition to a pure implementation of
the southbound interface, SDN controllers typically offer an extendable
software platform which provides a wide range of supporting features,
such as topology discovery, distribution, or inter module messaging
mechanisms. In addition, these so-called controller frameworks target
different deployment environments and programming languages. The
first widely available OpenFlow controller was NOX [66]. Hence, NOX
has been extensively employed by the research community for proto-
typing SDN concepts, testing new OpenFlow features and evaluating
the feasibility of new controller designs. NOX applications are imple-
mented in C or Python (POX) using an event driven model, i.e., module
functions are triggered by the arrival of specific OpenFlow protocol mes-
sages. While NOX/POX is extremely versatile it is not primarily aimed
for production use, as it is not optimized for performance and stability
and lacks resilience features.

Other controller frameworks aimed for deployment in production en-
vironments, include Beacon [50], Maestro [29], FloodLight and Open-
Daylight [90], all of which are implemented in Java. FloodLight is the
open source basis for a commercial OpenFlow controller. Other con-
trollers include Ryu [107], Trema and MUL. Currently OpenDaylight
is the youngest and probably also largest SDN controller platform. It is
backed by the Linux Foundation and developed by an industrial con-
sortium, which includes Cisco, Juniper and IBM, among many others.
OpenDayLight includes numerous functional modules which are inter-

10 background and related work

connected by a common service abstraction layer. Further, OpenDay-
Light provides a flexible northbound interface using REST APIs, and
includes support for the OpenStack cloud platform. A comparison of
the performance of key controller frameworks is provided in [142].

sdn virtualization The concepts of virtualization and SDN are
closely related as a centralized control plane which possesses a global
network view of the substrate network may be used to generate mul-
tiple concurrent, abstract representations of the underlying physical re-
sources. FlowVisor [132] was the first framework which aimed to vir-
tualize the access to the switch flow tables, enabling multiple users to
independently install flow entries. To this end, FlowVisor assigns each
user a set of header match patterns, called flowspaces, which the user is
permitted to modify. FlowVisor ensures that the assigned flowspaces are
non-overlapping and acts as an intermediate layer between the substrate
OF devices and the user controllers in order to enforce the access policy
for each flowspace.

Part of this thesis is dedicated to extending the concept of FlowVisor
to enable the deployment of fully virtualized SDN network slices, where
each network tenant is presented with a virtual SDN topology. Each
vSDN should be programmable without notable restrictions, and com-
pletely unaware of potential concurrent vSDN deployments. In addition,
we aim to identify principle abstractions necessary for implementing a
hypervisor layer for SDN.

In [30] the authors present use cases and outline a design for an SDN
hypervisor. Our work elaborates and generalizes several aspects iden-
tified in [30], such as the encoding scheme and mechanism necessary
for mapping physical resources to virtual contexts and addresses flow-
space isolation issues. In FlowN [46] database technology is used to effi-
ciently store and manipulate the mapping between physical and virtual
resources. In VeRTIGO [44] FlowVisor is extended to support virtual
topology slices, however without full flowspace isolation. A recent pro-
posal [2] for SDN topology virtualization uses layer 2/layer 3 addresses
to bind resources to a logical context.

The scalability of SDN technologies is crucial for the deployment in
production systems. Scalability issues have been identified both in the
control plane [101, 154, 70], and in the data plane where the flow table
size in OF switches may become a limiting factor [154, 130]. In Onix
[84] and [41] distributed SDN controller architectures are proposed to
improve the control plane scalability.

2.2 enabling technologies

A significant appeal of the SDN paradigm is that it facilitates the re-
use of network functions and the integration of existing technologies.
The open nature of a number of system virtualization and networking
technologies have facilitated a rapid development of new solutions.

2.3 network abstractions and topology embedding 11

In the context of network virtualization, server virtualization solutions
are frequently used to isolate network functions running on commodity
servers. Virtualization technologies can be classified into three types: full
virtualization [78], paravirtualization [8] and container-based virtualiza-
tion [108, 96]. Full (or hardware) virtualization provides a fully emu-
lated machine abstraction and offers the highest level of isolation. Par-
avirtualization solutions rely on a virtual machine monitor (VMM) to
achieve a higher performance. The VMM provides an optimized inter-
face to the host hardware but require modifications to the guest oper-
ating system (OS). Container-based virtualization employs isolated re-
source slices within the host OS without a dedicated guest OS instances.
Containers exhibit a small overhead and therefore offer high perfor-
mance.

UNIX routing packages such as XORP [69] or Quagga [117] offer a
stable and flexible basis for deploying a wide range of routing protocols
(e.g., BGP, OSPF, IS-IS). The Click Modular Router [83] provides a low
level platform for implementing arbitrary network functions in Linux
systems. So-called Click elements can be chained together to implement
high performance forwarding and custom packet processing operations,
in kernel- and user-space. A highly flexible software switching imple-
mentation which implements OpenFlow as well as various management
and monitoring interfaces is provided by OpenVSwitch [114].

2.3 network abstractions and topology embedding

The concept of using network abstractions to hide complexity of the
underlying network has been used in various contexts.

In [28] a platform for centralized inter-domain routing was developed.
The hose model presented in [47] introduced the concept of using edge
demands to define point-to-cloud virtual private networks (VPNs). In
the position paper [75] the authors advocate the platform as a service
paradigm in the context of virtual networks. Moreover, the authors pro-
pose a single router abstraction as a means for facilitating management.
In the context of SDN a single node abstraction is proposed in [44].

Given an arbitrary virtual topology the embedding problem, i.e., the
task of mapping each virtual resource to some set of physical resources,
subject to some cost metric, is known to be NP-hard. As a result a num-
ber of heuristics have been developed which approximate the optimal
solution. The problem is aggravated in the case of constrained physical
resources. Topologies consisting of a backbone path with edge nodes
attached to the nearest backbone node are evaluated in [94]. The au-
thors present an approach aiming to minimize the cost of such virtual
backbone networks, given pairwise traffic demands and unlimited net-
work capacity. For arbitrary edge demands the authors find that tree-like
backbone topologies yield lowest allocation costs. A commonly used
strategy for network embedding is to perform node and link mapping
separately. The authors of [135] present an algorithm which aims to max-

12 background and related work

imize the number of embedded virtual networks (VNs). In [156] multi-
ple arbitrary VN topology requests are mapped to the substrate network
aiming to achieve a low and balanced utilization of substrate resources
while taking link and node stress into account. Additionally, the online
mapping problem is addressed by periodically recalculating the embed-
ding. A number of VN embedding approaches [91, 32] aim to merge the
node and link mapping phases. An approach advocating link splitting
in the substrate network and the use of path migrations for periodic
re-optimizations of the embedding is presented in [152]. The proposed
heuristic takes both node and link constraints into account. An adaptive
provisioning approach is presented in [73] which can cope with network
failures.

2.4 quality of service and network measurements

Providing QoS guarantees in traditional networks has been a long-
standing challenge for the networking community. Given the best effort
nature of the Internet architecture, which contributed significantly to
its widespread success, the implementation of QoS mechanisms has at-
tracted the attention of the research community culminating in a wide
range of theoretical and practical results. In the context of virtual net-
works QoS is crucial as a means for providing isolation between virtual
networks and enabling the deployment of network services with varying
demands on a shared substrate.

In the last decades, two well studied QoS architectures have emerged:
differentiated services (DiffServ) [11] offer a coarse-grained mechanism
which classifies traffic into classes with different priorities. The classifi-
cation is typically carried out at the network edge and the DiffServ class
is encoded in the IPv4/IPv6 packet header. At each router packets are
forwarded based on their assigned class, such as default per-hop behav-
ior (PHB) (i.e., best effort) or expedited forwarding PHB (for traffic with
the highest priority). On the other hand, integrated services (IntServ)
[22] is a fine-grained architecture which operates on the level of flows.
In this scenario, applications define requirements for their traffic and
attempt to reserve the necessary resources along the desired network
path using the RSVP protocol [23]. Each router may decide whether to
accept or deny the reservation request depending on its available re-
sources. The traffic specification (TSPEC) is defined in terms of token
bucket parameters, where the token rate corresponds to the average rate
of the flow and the bucket depth indicates the maximum burst size. Ad-
ditionally, a request specification (RSPEC) defines the level of service
desired. To effectively provide end-to-end QoS guarantees both DiffServ
and IntServ require that all associated network routers support the corre-
sponding QoS architecture, making an Internet-wide deployment highly
challenging. Nevertheless, QoS mechanisms are successfully deployed
within individual Internet service provider (ISP) networks, to provide
specific network services (e.g., IPTV, VPNs).

2.4 quality of service and network measurements 13

As network resources are finite, enforcing a specific QoS policy re-
quires admission control, i.e., the ability to grant or deny traffic access
to the network subject to the current network utilization and the char-
acteristics of newly arriving flows. However, in general it is difficult for
network applications or users to accurately describe these flow charac-
teristics a priori. In addition, as Internet traffic is bursty a determin-
istic flow characterization (e.g.using token bucket parameters) yields
overly pessimistic (worst-case) bounds. To this end, a large body of work
[80, 81, 65, 25, 26, 74] deals with measurement based admission con-
trol (MBAC) where admission decisions are based on measurements of
the network utilization rather than an explicit user specification. Effec-
tively, the traffic characterization task is shifted from the application to
the network operator. In [25] the authors compare a range of MBAC al-
gorithms and find that these yield essentially equivalent results. In [65]
the performance of admission control schemes is analyzed, evaluating
the effects of measurement uncertainty and flow dynamics. The authors
identify a critical time scale over which the impact of admission deci-
sions persists.

Traffic engineering aims to optimize specific network parameters such
that the network performance is w.r.t. some given metric. Traditionally
traffic engineering has focused on tuning link weight of routing proto-
cols to minimize the maximum link load across all links [56, 57, 4]. More
recently traffic engineering with MPLS [149, 147], which facilitate the
estimation of traffic matrices [128, 138], has attracted the interest of ISPs.

internet traffic A number of measurement studies performed in
the 90s [85, 111, 37, 53] revealed that Internet traffic exhibits long range
dependency (LRD) and self-similarity. Self-similar stochastic processes
exhibit the same distribution over different time scales up to a rescaling
factor, known as the Hurst parameter. Further, LRD processes are char-
acterized by a slow decay of the autocovariance function which mani-
fests itself as traffic burstiness. In [137] it was shown that self-similar
LRD traffic emerges given an aggregation of a large number of on-off
sources with heavy tailed on and off periods. The relationship between
self-similarity and heavy-tailed distributions was recently verified exper-
imentally in [93]. The fundamental impact for strongly correlated traffic
processes on network performance is demonstrated in [85, 51]. As an ex-
ample, the inefficiency of buffering LRD is evaluated in [106], supporting
recent arguments on reducing buffer sizes [3].

More, recently the framework of probabilistic network calculus has
been applied to study the impact of traffic processes on network per-
formance [87, 54, 95]. In [61] effective envelopes motivate the use of
so-called rate-interval curves as a means for estimating the properties of
self-similar network traffic. In [87] the authors relate the notions of ef-
fective bandwidth [76] and effective envelopes. The authors of [122, 121]
derive end-to-end performance bounds for networks carrying LRD traf-
fic.

14 background and related work

sampling Estimators for extracting the Hurst parameter from conti-
guous-time series are presented in, e.g., [10, 136, 144]. However, in many
practical scenarios capturing full traffic traces for the estimation of traffic
characteristics is not feasible, e.g., due to high forwarding rates and pro-
cessing and storage limitations of the monitoring infrastructure. In such
scenarios, deterministic or random sampling approaches are frequently
used to reduce the amount of captured data.

A fundamental sampling result [148], known as Poisson arrivals see
time averages (PASTA), states that the portion of Poisson arrivals that
see a system in a certain state corresponds, in average, to the portion
of time the system spends in that state. In [100] the authors derive
general conditions for arrivals see time averages (ASTA), showing that
bias free estimates are not limited to Poisson sampling. In the context
of network measurements the authors of [5] use an argument on joint
ergodicity coining the term non-intrusive mixing arrivals see time av-
erages (NIMASTA). Theorems provided in [146, 150] show that deter-
ministically sampled, continuous-time long memory processes retain
their statistical properties after sampling. For a class of self-similar pro-
cesses [151], the authors of [150] prove that any band limited scale sta-
tionary process is determined by a sampled version, where the samples
are taken at exponentially spaced sampling intervals. Estimators for the
self-similarity parameter under deterministic, exponentially-spaced sam-
pling intervals are derived based on least squares in [150] and on maxi-
mum likelihood in [146]. The work in [146] shows that within determinis-
tic sampling techniques of continuous-time LRD processes, exponential
sample intervals yield better results than equidistant sampling.

In the context of SDN, an algorithm for identifying heavy hitters in
the switches is presented in [40]. In [141] a framework for the estimation
of traffic matrices is proposed. In [102] accuracy trade-offs in SDN mea-
surements are evaluated. The authors of [33] develop an OpenFlow API
for collecting flow statistics at different aggregation levels.

3
P R O B L E M S TAT E M E N T

In the previous sections we described the state of the art in network
virtualization and reviewed the related work in the area of performance
evaluation. Next, we outline the research problems addressed in this
thesis and present our contributions.

The notion of network virtualization encompasses a broad range of
concepts including the slicing of physical resources for concurrent use,
and conversely the abstraction of resource pools as a single virtual entity.
Furthermore, virtualization approaches may be employed at the level of
individual devices, such as switches and links, as well as at the level of
entire network topologies.

As shown in the previous section, several solutions which address
different aspects of virtualization in SDN have been proposed [132,
44, 46, 2]. Throughout these works several recurring concepts such as
packet tagging and flowspace segmentation are employed. However,
the requirements for encoding the virtual contexts within physical re-
sources and the relationship between different types of context identi-
fiers have not been analyzed systematically. Such an analysis, enables
an abstraction of the implementation of a given virtualization platform
from the underlying dataplane technology. As a consequence, the design
of a portable SDN virtualization framework with support for arbitrary
topologies and live-migration mechanisms is greatly facilitated.

Another aspect which has not been sufficiently studied is how the
choice of vSDNs topology affects optimization strategies employed in
the physical and virtual domain. In a virtualized environment which
supports arbitrary vSDN topologies simultaneous optimizations carried
out by the operator and the tenant may have a negative impact on net-
work performance. Therefore, it is crucial to identify and implement
constraints which prevent such scenarios. Insights in this area lead to a
better isolation of resources and may be used to simplify the deployment
and operation of vSDNs.

Finally, the SDN paradigm is built around the assumption that con-
trollers possess an accurate and comprehensive global view of the net-
work resources. Ideally such a network representation should encom-
pass a wide range of QoS parameters, in order to enable SDN appli-
cations to tailor their forwarding logic to the network state. While sev-
eral monitoring mechanisms have been recently proposed [153, 141, 102]
for improving the visibility in SDNs, to the best of our knowledge, the
extraction of advanced statistical metrics, such as backlog and delay
bounds, has not been addressed. Such metrics can be expected to play
an increasingly important role in upcoming network designs which rely
heavily on SDN abstractions, e.g., through automation.

15

16 problem statement

research questions In this work we revisit the concept of net-
work virtualization in the context of the increasing abstraction levels ad-
vocated by emerging networking paradigms such as SDN. We address
the following fundamental questions:

• What is the role of network topologies in the virtual domain?

• Which virtual network abstractions are feasible and what con-
straints must be enforced in order to deploy these?

Answering these questions is crucial for defining the requirements for
virtualization architectures. Insights about the differences between tra-
ditional network topologies and virtual networks provide guidelines for
the implementation of network functionality, such as provisioning of
resilience or elasticity, in the virtual and physical domains. Such consid-
erations pave the way for reducing the complexity in virtual topologies
enabling, e.g., virtual networks which are specified in terms of a connec-
tivity between a set of geographical points of presence (PoPs) with spe-
cific QoS demands. Such network abstractions facilitate the deployment
and operation of network services by reducing configuration complexity
and minimizing the likelihood of configuration errors.

Given an understanding of the requirements for virtual networks the
following questions arise:

• What are the architecture requirements for enabling the concurrent
deployment vSDNs on top of a shared infrastructure?

• Which minimal set of mechanisms is required to implement arbi-
trary virtual topologies in an SDN environment?

• Which embedding strategies minimize the capacity allocation cost
for the deployment of virtual connectivity services?

The answers to the above questions enable the development of a scalable
SDN virtualization architecture which supports both the instantiation of
arbitrary virtual SDN topologies as well as the deployment connectivity
services.

In the second part of the thesis we focus on performance evaluation
approaches which enable network operators to optimize the utilization
of the available physical network resources. A prerequisite for optimiza-
tion is a detailed and up-to-date view of the current network state. Due
to the properties of LRD Internet traffic over-provisioning is inevitable
for maintaining reliable performance in computer networks. Thus, an
accurate characterization of the traffic requirements of virtual networks,
may be used to allocate capacities and to derive bounds for the QoS ex-
perienced by a tenant. To this end, the substrate network components
must be monitored leading to the following research questions:

• Which traffic metrics enable the derivation of useful QoS parame-
ters for arbitrary network flows?

problem statement 17

• How can these metrics be efficiently extracted from observations
of the network traffic?

• What are the effects of random sampling on the considered flow
metrics?

• What is the impact of finite measurement durations on the quality
of the estimates?

The answers to these questions enable the design of a monitoring frame-
work which uses traffic observations, obtained from packet or counter
samples, to derive QoS metrics, such as stochastic delay, backlog bounds
and queue length distributions. These metrics may be exploited by net-
work operators and SDN applications to evaluate alternative resource
allocation strategies before committing changes to the network.

4
V I RT U A L I Z AT I O N A R C H I T E C T U R E S F O R S O F T WA R E
D E F I N E D N E T W O R K I N G

In this chapter we evaluate the challenges of deploying virtualization
in network environments with programmable forwarding resources. We
develop a general framework for the instantiation and operation of con-
current SDN topologies. Additionally, we develop a systematic labeling
scheme for working with resource slices in software defined network-
ings.

We begin this section with an analysis of the requirements of virtual-
ized network environments. From there we derive two main use-cases
for network virtualization: programmable tenant networks and connec-
tivity services. We develop a platform for virtualizing arbitrary SDN
topologies in Section 4.2. Next, we propose a design for deploying con-
nectivity services on top of the aforementioned platform in Section 4.3.
We exemplify this approach using routing as a service. The results pre-
sented in this chapter are based on prior work by the author [16, 17], as
well as joint work with P. Papadimitriou [18, 20, 19].

4.1 requirements for virtual network architectures

A fundamental prerequisite for the successful deployment of virtualiza-
tion in the networking domain is the design of an architecture which
leverages the benefits of logical resource abstraction without incurring
additional complexity. In fact, a well designed platform will enable op-
erators to reduce management overhead and facilitate the network oper-
ation.

In this section, we aim to identify suitable architecture abstractions.
To this end, we first consider the requirements towards a computer net-
work and evaluate how these requirement are altered in the context
of virtualization. In the following, we represent network topologies as
a set of nodes arbitrarily connected by edges, specifically as directed
graphs. Nodes perform forwarding or packet processing operations (e.g.,
switches, routers, middleboxes), while the edges represent network links
(fiber, copper, or wireless). In the sequel, we assume that the physical
network topology is managed by a network operator (or infrastructure
provider (InP)) which acts as a substrate for multiple virtual network
topologies, leased and operated by tenants (or virtual network opera-
tors (VNOs)). We assume that such virtual networks should be function-
ally indistinguishable from a physical network. To motivate the virtu-
alization approaches presented in this thesis, we define the following
requirements for traditional networks, ordered by importance:

19

20 virtualization architectures for sdn

connectivity The raison d’etre, and hence primary requirement, of
a computer network is the provision of point-to-point connectiv-
ity between geographically distributed end-systems. As a conse-
quence of the layered Internet architecture, end-hosts do not have
to deal with the implementation details of the connectivity topol-
ogy. The network path connecting two hosts may span multiple
intermediate nodes. Furthermore, the path over which data pack-
ets destined to a specific destination are transmitted, may vary over
time.

The current Internet architecture is based around the principle of
best effort connectivity. This means that no guaranties are given
about the successful delivery of the transmitted data, the arrival
time and arrival order of the data packets as well as the QoS. A
consequence of this permissive approach is a significant gain of
flexibility for the design of novel network mechanisms.

An additional key requirement for connectivity is a common, glob-
ally unique addressing scheme which is understood by all partic-
ipating end-systems, with the Internet protocol (IP) being the pre-
dominant addressing and routing mechanism in the Internet today,
while Ethernet is typically used in LANs.

resilience A prerequisite for maintaining network connectivity is
the ability to ensure a disruption-free network operation in the
case of network failures or abrupt changes in utilization. Thus,
we consider resilience as an additional requirement for computer
networks. Although the definition of connectivity is independent
from resilience, carrier grade networks typically mandate connec-
tivity with high availability requirements. To this end, large scale
network deployments must implement mechanisms which ensure
that no single segment of the network can disrupt the operation
of the entire network. Such single points of failure can be due to
hardware or software failure, as well as an overload of the network
components.

Resilience is typically implemented through redundancy, and more
specifically through the design of a suitable network topology.
Hence, network topologies typically consist of multiple ring seg-
ments in order to provide multiple disjoint paths between sources
and destinations, thereby minimizing the impact of link and node
failures or changing demands. In the case of network failure auto-
mated fallback [103, 88, 109] mechanisms are used which redirect
network traffic over alternative paths. Additionally, path redun-
dancy is also exploited to achieve a uniform utilization of the
available network resources. As a result, network operators can
avoid hot-spots which cause a degradation of the network connec-
tivity service. To this end, load-balancing techniques [140, 71, 59]
aim to utilize all available network paths.

4.1 requirements for virtual network architectures 21

manageability Computer networks may provide varying degrees of
configuration and monitoring functionality in order to support and
enforce the above mentioned requirements. Configuration refers to
a wide range of mechanisms [116, 49] for deploying, manipulating
and updating network devices and their control plane logic, while
monitoring refers to the instrumentation for querying the state of
network components. While the impact of these auxiliary require-
ments is hard to quantify it is clear that they may significantly
benefit network operation. A continuous and timely monitoring
of system components enables operators to quickly identify end
react to network problems and service degradation. Further, suit-
able configuration interfaces may be used to minimize the need for
frequent operator intervention which may be slow and prone to er-
rors. Monitoring and configuration mechanisms may be combined
to define and automate network processes.

quality of service The notion of quality of service may be regarded
as an optional class of requirements which is often desired in com-
puter networks. Due to the best effort nature of the Internet archi-
tecture today, enforcing QoS aspects on a large scale is challeng-
ing and often neglected. We consider available bandwidth guaran-
tees, as well as bounds on packet loss and queueing latencies to
be a part of this requirements subset. Note that such QoS parame-
ters rely on the connectivity and resilience requirements outlined
above.

In this work, we argue that in the context of network virtualization
the roles of the requirements described above are shifted significantly.
As a result, we must develop clear definitions of the concept of virtual
networks and outline feasible deployment scenarios for virtualized in-
frastructures. Clearly, connectivity remains the primary requirement in
the virtual domain. However, in our view in a virtual network the con-
cepts of redundancy and topology are ambiguous and are therefore un-
suitable as a means for implementing resilience. We elaborate on this
point in the sequel. On the other hand, the deployment of a wide range
of virtualized network services on top of a shared physical substrate re-
quires connectivity with well defined QoS guarantees. As a result, the
importance of topologies is reduced in the virtualized domain, while
the provision of connectivity and QoS requirements become primary re-
quirements.

Next, we identify some key properties and limitations of the topol-
ogy abstraction in the virtual domain, discuss trade-offs, and derive two
models for designing and deploying virtual networks. Consider a virtual
network topology depicted in Fig. 2 that is mapped onto a physical topol-
ogy using some virtualization technology. Note, that in the virtual topol-
ogy two disjoint paths exist between nodes A and B. In this scenario,
without the introduction of further constraints, the network embedding
algorithm may potentially map a segment of the disjoint virtual network

22 virtualization architectures for sdn

physical substrate

L

!

virtual topology

A

B
disjoint paths

Figure 2: A virtual topology with N:1 Mapping. Note that the redundancy in
the virtual topology may be negated by the mapping onto a single
link.

paths, onto a single link in the physical substrate (denoted L in Fig. 2).
Hence, if the embedding logic is not aware of the specific resilience re-
quirements of the virtual topology, any benefits from maintaining redun-
dant network paths in the virtualization layer may be rendered void. We
denote a resource embedding where one or more entities belonging to a
specific virtual network topology (e.g., link or node) may be mapped to
a single entity in the physical substrate, as an N:1 embedding. From the
example above, it follows that the use of a simple N:1 embedding is not
sufficient to implement resilience within a virtual environment without
additional constraints for the embedding algorithm.

On the other hand, an N:1 embedding does not preclude the use of
load distribution mechanisms in the virtual network topology. As long
as a strict isolation of the virtual resources is guaranteed by the sub-
strate virtualization technology, any load distribution strategy employed
by the tenant remains effective. However, the allocated resource charac-
teristics (e.g., available capacity) must remain constant. Otherwise any
optimization approach in the virtual domain may be negated by op-
timization mechanisms employed concurrently by the operator of the
physical substrate. As an example, consider the case where the substrate
operator performs a live-migration to remap a virtual network link onto
some alternative physical path (e.g., to optimize the substrate utiliza-
tion). In the virtual topology this transparent migration operation may
manifest itself, e.g., as an increase in the propagation delays, triggering
a load balancing algorithm. As a consequence, simultaneous optimiza-
tions performed by the tenant and the operator may leave the network
in an oscillating state. Hence, we conclude that resource optimization
should be performed either only in the virtual or only in the physical

4.1 requirements for virtual network architectures 23

domain. This relationship motivates the virtualization designs outlined
in the sequel.

infrastructure virtualization First, we introduce an approach,
which we denote infrastructure virtualization. Here, we formulate the re-
dundancy requirements of the virtual topology as constraints of the
topology embedding algorithm. The aim is to enable the protection of
virtual network elements from hardware failures by enforcing physical
redundancy in the substrate. To this end, any tenant wishing to deploy
a virtual topology must explicitly request that all virtual network nodes
and links should be mapped to distinct physical entities. This strat-
egy implies a 1:1 embedding between the virtual and physical network
resources: i.e., each virtual entity is mapped to exactly one physical re-
source1. Note, that it is valid to map elements from different virtual
network instances to a common physical resource. To further increase
the level of resilience the operator may also employ a 1:N embedding
where, e.g., a single virtual link is mapped to multiple paths in the
substrate network.

In addition, in order to enable the deployment of load-balancing tech-
niques in the virtual network, a VNO may request guarantees regard-
ing various metrics of the allocated resources, such as available capacity,
memory or CPU, as well as various QoS parameters. For any topology
request accepted by the substrate operator sufficient resources must be
provisioned to ensure that the characteristics of the allocated resources
will persist throughout the lifespan of the virtual topology. Any remap-
ping performed by the infrastructure operator must remain transpar-
ent with respect to the allocated QoS characteristics. A consequence of
the above approach is that the VNO maintains full control over the
employed resilience mechanisms. Hence, it is critical that sufficient re-
sources are requested before instantiating of the virtual network. We
present an architecture for infrastructure virtualization in Section 4.2.

connectivity virtualization Next we propose an alternative
approach, which is motivated by a high level abstraction of a virtual
network as a connectivity providing entity. Specifically, the implementa-
tion of resilience mechanisms, i.e., redundancy, is completely offloaded
to the physical network substrate eliminating the need for complex vir-
tual topologies. In this scenario tenants formulate VN requests as de-
mands with respect to the connectivity between of a set of nodes. Each
node represents a geographic PoP where the tenant attaches to the vir-
tual network. Each attachment point is characterized in terms of service
level agreements (SLAs) which define metrics such as capacity, QoS pa-
rameters and availability requirements. In this scenario, the InP is re-
sponsible for provisioning sufficient resources in the substrate to meet
the tenant demands, as well as for implementing adequate redundancy

1 A virtual link may span multiple physical hops if these are not used by another virtual
link from the same topology.

24 virtualization architectures for sdn

and transparent failover mechanisms in order to fulfill the negotiated
SLAs. We denote this approach connectivity virtualization and present an
corresponding architecture in detail in Section 4.3.

We highlight that an InP may simultaneously deploy virtual slices
using both virtualization approaches, depending on the requirements
of each VNO. In the following sections we present an SDN based ar-
chitecture for implementing the approaches outlined above using OF
as a salient building block. Initially, we describe a general framework
for SDN infrastructure virtualization. Subsequently, we show how this
framework may be used to implement connectivity virtualization using
routing as an exemplary connectivity service.

4.2 a framework for sdn infrastructure virtualization

In this section, we develop a framework which enables the deployment
of arbitrary virtual topologies on top of a physical SDN substrate, com-
prised of arbitrarily interconnected programmable switches. We con-
sider a scenario where VNOs may easily request and acquire VN topolo-
gies from InP on a lease basis, enabling a rapid deployment of new
services. Our goal is to enable virtual network tenants to deploy fully
customized network slices, which are adaptable to their specific applica-
tion scenario. To this end, tenants should be able to make unrestricted
use of the existing SDN mechanisms to configure the switching logic of
the allocated resources. Thus, we aim to provide virtual networks which
are indistinguishable from a physical SDN substrate from the tenant’s
point of view. In the following we use the term vSDN to denote such a
fully programmable virtual network topology.

Further, we aim to minimize the overhead associated with instantia-
tion and operation of vSDN. In order to setup a virtual topology the
infrastructure operator must allocate and map virtual resources to phys-
ical network devices, configure appropriate traffic encapsulation actions
on all relevant switches and segment the switch flowtables. To facili-
tate management and minimize the risk of human error, these steps
should be automated. All operation necessary for implementing the vir-
tual SDN abstraction are concealed from the VNO. Finally, we address
scalability challenges for the control and forwarding planes.

In the following, we assume that all SDN substrate components sup-
port the OpenFlow (OF) specification [99]. Today, OF is supported by a
large number of hardware vendors and is the predominant SDN tech-
nology. However, note that the mechanisms outlined in the following
are applicable to any flow-based SDN technology.

We define three key requirements for our SDN virtualization infras-
tructure.

data and control plane virtualization In order to implement
a true virtual SDN, tenants must be able to deploy custom con-
trollers to program the forwarding entries of the switches in their

4.2 a framework for sdn infrastructure virtualization 25

virtual topology. The virtual topology abstraction should provide
a well-defined SDN interface, such that a tenant controller cannot
distinguish the virtual SDN substrate from the physical one. More-
over, as the flow tables in physical switches are shared between
multiple tenants, mechanisms are required to ensure that the table
entries of each tenant are fully isolated and cannot be accesses or
modified by other tenants.

infrastructure instantiation Mapping an arbitrary virtual to-
pology onto a subset of the physical network graph requires a
mechanism for unambiguously mapping resources to the corre-
sponding virtual context. To this end, all tenant resources are
marked using a suitable labeling scheme. The associated network
operations (e.g., packet tagging) must be transparently carried out
by the InP. Moreover, the instantiation of virtual links spanning
multiple physical hops requires the installation of forwarding en-
tries in intermediate physical switches, which are not visible in the
vSDN topology. Finally, in order to provide isolation of the virtual
resources the substrate operator may allocate queues and config-
ure suitable schedulers across a large number of infrastructure
devices.

live-migration The virtualization platform must allow a transparent
migration of virtual nodes and links, in order to achieve versatility
in the infrastructure. Such a mechanism can be used by the op-
erator to remap virtual entities in the case of failure of physical
components, maintenance works, or to provision tenant requests
for additional virtual resources. To this end, the reconfiguration
of the necessary forwarding rules must be orchestrated in a way
which minimizes disruption.

4.2.1 SDN Hypervisor

To address the aforementioned requirements we introduce a transparent
virtualization layer, called SDN hypervisor, that coordinates the embed-
ding, deployment and management of vSDNs. The SDN hypervisor is
positioned between the physical data plane layer and the tenant con-
trollers, as depicted in Fig. 3. It exposes a number of virtual OF switch
interfaces to each VNO, while acting as a single controller instance when
communicating with the physical switches. The hypervisor performs the
following main functions:

topology embedding . vSDN requests are specified as a network
graph with a set of assigned node and edge attributes, such as back-
plane and link capacity, geographical location, flow table requirements
as well as QoS constraints. The hypervisor maps the resources of each
vSDN topology request to physical components, taking resource utiliza-
tion and VNO constraints into account. To this end, the hypervisor main-

26 virtualization architectures for sdn

tains a global view of the available resources in the substrate topology
(e.g., by periodically querying network elements) and keeps track of the
reserved resources. The resource mapping allocation is carried out using
existing virtual network embedding algorithms (e.g., [32, 152]).

vsdn setup automation. Once the resource mapping has been
computed, the hypervisor automatically generates auxiliary forwarding
and encapsulation flow entries in the substrate devices, necessary to
instantiate the virtual topology (in the sequel these are called infrastruc-
ture flows). Furthermore, for each virtual node, the hypervisor allocates
flow table space in the substrate switches. We discuss labeling schemes
which ensure the isolation of virtual links and virtual flow tables in Sec-
tion 4.2.2. Moreover, the hypervisor configures rate limiters and traffic
schedulers on associated switch ports to enforce bandwidth isolation
and QoS constraints.

control message processing . The hypervisor manages the VNO
access to the substrate forwarding elements, transparently enforcing re-
source isolation and access control. The hypervisor intercepts all control
messages generated by the tenant controllers and the substrate switches,
and performs filtering in order to limit the visibility of each vSDN topol-
ogy to its owner. Further, for each vSDN node the hypervisor exposes
a logical flowtable abstraction to which only the VNO has dedicated
access. To emulate this, the hypervisor transparently rewrites the con-
trol messages exchanged between VNO controllers and the physical
switches and replaces all references to physical switch, table, port and
queue identifiers with the corresponding virtual topology identifiers
and vice versa.

resource migration The hypervisor automates vSDN node and
link migration by coordinating the necessary switch flow table updates.
The hypervisor triggers the installation and removal of flows entries
across the substrate devices, using an order which minimizes the dis-
ruption of traffic. Further, it updates all relevant resource identifiers and
updates the mapping used for control message translation. We discuss
virtual node and link migration mechanisms in Section 4.2.4.

4.2.2 Framework Design

In this section we propose a design for implementing the aforemen-
tioned functionality on top of an SDN substrate. We consider a generic
SDN technology, analogous to OpenFlow, in which each SDN forward-
ing element, both physical or logical, possesses a single logical lookup
table populated by a remote controller entity. Each entry in this so-called
flow table contains a match rule (with wildcards) associated with a
pointer to a set of packet processing actions. The actions are applied
whenever the rule conditions are matched by an arriving packet. The

4.2 a framework for sdn infrastructure virtualization 27

SDN
hypervisor

virtual SDN
request C

virtual SDN
request B

physical SDN

virtual SDN A

virtual SDN
request A

tenant A controller

control channel

virtual control channel

Figure 3: Operator substrate network hosting multiple virtual SDN slices. Each
virtual topology is isolated and programmed by a tenant controller.

key for the table lookup is generated from the packet header bits as well
as metadata such as the input port.

Similarly, in the sequel we represent a virtual SDN node as a logical
lookup table associated with multiple virtual links (attached to virtual
ports). Initially, in Section 4.2.3 we address the question whether this
simple SDN forwarding element model, which hides the implementa-
tion complexity, is a suitable abstraction for virtualized SDNs. In order
to implement a virtualized SDN forwarding element, two main mecha-
nisms are required. First, the ability to segment the physical flow table
into multiple logical tables, which can be concurrently modified by dif-
ferent VNOs in an isolated manner. Second, a packet tagging scheme
to emulate virtual links spanning multiple physical hops. Next, in Sec-
tion 4.2.4 we consider mechanisms for live migration of virtual resources,
specifically the migration of virtual nodes and virtual links. Finally, we
discuss the scalability of the hypervisor used in our SDN virtualization
platform in Section 4.2.5.

28 virtualization architectures for sdn

4.2.3 Context Identifiers

In a virtualized environment all assets of a VNO must be unambigu-
ously associated with a single logical context, which is valid throughout
the lifetime of the virtual network instance. We use the term assets to
denote resources which are controlled solely by the tenant, i.e., flow
table entries in the switches as well as data packets which these en-
tries act upon. In the following, we utilize the concept of context identi-
fiers (XIDs) which bind tenant assets to a specific logical context. An XID
is associated with a tenant resource using a suitable encoding, which
may change depending on the asset type or the location in the network.
The logical context of each VNO is comprised of a unique set of XIDs. In
FlowVisor [132] the authors introduce the notion of flowspaces to allo-
cate segments of the flow table to a specific user. A flowspace is defined
as a bit-pattern in the flow table which matches a unique set of traffic
packets. To ensure isolation, FlowVisor assigns each user a unique (non-
overlapping) flowspace and polices the access to the flow table. Hence,
flowspaces act as XIDs for the users. In this work we extend this ap-
proach, by completely hiding the XIDs from the tenant. To this end, the
hypervisor allocates XIDs and transparently inserts these to the associ-
ated resources (e.g., through encapsulation flow actions and augmenting
the lookup keys). Furthermore, the hypervisor rewrites all control mes-
sages of the SDN protocol which target a specific virtual resource, by
appending/removing the corresponding XID such that the encoding is
not exposed to the tenant. Finally, the hypervisor only permits tenants
to access assets tagged with their own set of XIDs. As a result, each ten-
ant’s view of the virtual network is limited to their own logical context
and an unrestricted abstraction of a dedicated network is obtained.

The XID for packets traversing a physical link is encoded as a set
of bits in the packet header, which are used only by a single tenant.
This tunnel or virtual link tag is typically inserted by some encapsu-
lation/decapsulation mechanism at the ingress and egress of a switch,
respectively. Numerous tunnelling protocols exist which differ in the
header location of the tag as well as the number of used bits. Common
examples include VLAN tagging at layer 2, MPLS at layer 2.5, or VxLAN
at layer 4 [97]. However, the identifier may also be defined using existing
header fields, such as MAC headers, if the deployment scenario permits
such a restriction. More generally, the packet XID encoding may span an
arbitrary number of bits distributed across one or more header fields of
a packet. We refer to XIDs encoded inside the packet header as tunnel
identifiers (TUIDs). Note, that the virtual tunnels may be directed, i.e.,
a separate TUID is assigned for each direction, or duplex, i.e., both link
directions share the same context identifier.

Next, we consider the XID encoding of the virtual flow table. In an
SDN switch the flow entries of multiple tenants are stored in a single
physical lookup table, as depicted in Fig. 4. Each tenant may define ar-
bitrary match rules with wildcards and corresponding actions, whose

4.2 a framework for sdn infrastructure virtualization 29

VTID:A

VTID:A

VTID:A

F
TUID:2 TUID:3

TUID:5

TUID:7

TUID:8

TUID:6

F

F

F

F
F

F

F

F(2)→3

F(3)→A

F(A)→8

VTID:X

VTID:X

VTID:B

VTID:B

VTID:B

VTID:B

flow table

packet
5

Figure 4: The tunnel identifiers encoded in the headers of incoming packets
are mapped to virtual flow table identifier A. At the table egress new
TUIDs are assigned using flow actions.

scope is limited to the tenant’s logical context. For instance, within their
virtual networks two VNOs may use overlapping IP ranges with differ-
ent routing policies. In this case the hypervisor must provide isolation,
i.e., guarantee that the actions associated with a tenant’s flow entry will
not overwrite and invalidate any entries previously installed by another
VNO. To ensure that the match attributes are unique for all rows of the
physical lookup table, the hypervisor attaches an XID to each flow table
entry, by transparently modifying the attributes of the match rules gen-
erated by the tenant’s controller. We refer to XIDs encoded inside the
flow table entries as virtual flow table identifiers (VTIDs).

Match Actions

1001 1001 1010 drop
00** 10** *110 forward port 1
11*1 1010 0001 forward port 2

0110 001* 0101 forward port 4
0101 0011 1101 drop
11** 00*0 0000 forward port 3

Table 1: Flow table consisting of a 12-bit flowspace. Wildcard values are repre-
sented by ∗.

To illustrate the need for dedicated VTIDs consider the flow table ex-
ample in Table 1, where the first three flow entries are installed by tenant
Awhile the remaining flows are installed by tenant B. Clearly, in this sce-
nario all entries are unambiguous, i.e., an incoming packet will match
exactly one of the six entries. Moreover, a hypervisor could uniquely
map each flow to a specific tenant as the flowspaces defined by the

30 virtualization architectures for sdn

TUID VTID

infrastructure
provider

tenant

F

1

2

n

1 1

nn

1 1n

Figure 5: Relationship between virtual context identifiers.

match fields are non-overlapping. Specifically, the last three bits of the
flowspace may be interpreted as XIDs for each table row, as these values
compose two disjoint sets, each corresponding to a specific tenant. Note,
that this property does not hold for an XID defined over the first two bits
of the flowspace. Next, consider that the controller of tenant A is allowed
to install an additional flow entry [1111 *00* 000* → drop]. With this
entry incoming packets can no longer be unambiguously mapped to a
specific tenant, as the new entry may also match traffic belonging to ten-
ant B (entry 6). To prevent such violations of the flow table partitioning,
the hypervisor must either restrict the insertion of entries which disrupt
the XID encoding scheme, or must automatically append an addition
XID to the flowspace. As our goal is to enable fully virtualized network
slices we use the latter option which does not limit the type of entries
which may be installed by the tenants.

So far, we defined TUIDs which bind packets to specific virtual links,
and VTIDs which bind flow table entries to a specific flow table slice. We
now evaluate the relationship between these two XID types. Recall, that
each virtual node is comprised of a virtual flow table and a set of associ-
ated virtual links. Thus, the set of TUIDs connecting to a virtual switch
could potentially be used as VTIDs in order to identify the flow entries
of a specific tenant. However, such an encoding approach is only feasible
if tenants are not allowed to use the input virtual link in combination
with wildcards as an attribute in the flow match field. Consider a tenant
flow entry which matches packets on any incoming virtual link. Such
an entry effectively clears the tenant VTID and results in an ambigu-
ous partitioning of the flowspace. To deal with this issue the hypervisor
could automatically expand wildcards and generate an individual flow
for each possible input tunnel (i.e., all tenant TUIDs connected to the
virtual switch) as depicted in Table 2. However, such an approach scales
poorly: assuming n virtual tenant links, the number of tenant flow rules
may be increased by a factor of n in the worst case.

Such issues are avoided if the logical context of the flow entries is en-
coded using a VTID which is decoupled from the TUID encoded in the

4.2 a framework for sdn infrastructure virtualization 31

Match

Port/TUID Header

2 1001 1010

* 0110 0101

5 0110 0101

(a)

Match

Port/TUID Header

2 1001 1010
1
2
3
4

0110 0101

0110 0101

0110 0101

0110 0101

5 0110 0101

(b)

Table 2: Equivalent flow tables before and after wildcard expansion. Tenant A
is assigned virtual links with TUIDs={1, 2, 3, 4} and tenant B is assigned
TUIDs={5, 6}. The expansion of the wildcarded entry yields 4 flow en-
tries.

packet headers. In this case, a conversion between the XIDs encoded in
the different asset types must be carried out. To this end, we introduce
the notion of an XID translator. We define the XID translator as a func-
tion F(XID) → XID∗ which exchanges a given context identifier with a
new identifier XID∗. In practice, translator functions are implemented
as additional table lookups, or are incorporated as part of an existing
flow table. An XID translator will typically be used to map tunnel iden-
tifiers to virtual flow table identifiers, i.e., F(TUID) → VTID, and vice
versa, i.e., F(VTID) → TUID. For the example illustrated in Table 2 the
XID translator flow table depicted in Table 3a may be used to assign
a VTID for each tenant in the switch. The resulting flow table of the
physical switch are shown in Table 3b. We emphasize, that XID trans-

Match Actions
TUID

1 set_VTID 1

2 set_VTID 1

3 set VTID 1

4 set VTID 1

5 set VTID 2

6 set VTID 2

(a)

⇒

Match Actions

TUID VTID Header

2 1 1001 1010 . . .
* 1 0110 0101 . . .

5 2 0110 0101 . . .

(b)

Table 3: Table (a) implements an XID translator, which assigns each tenant a
unique VTID which is used in the lookup table (b).

lators may also be employed to exchange identifiers of the same type,
e.g., F(TUID) → TUID∗, for instance if different segments of a virtual

32 virtualization architectures for sdn

link are encoded using different TUIDs. In the naive scenario with wild-
card expansion outlined above, the hypervisor encodes the translator
function within the flow table. The relationship between the different
context identifiers is depicted in Fig. 5. Note also, that the calculation
of a hash value over some set of header fields may be regarded as an
operation performed by a XID translator.

All translator lookup table entries are instantiated and managed by
the SDN hypervisor. As the translator table lookup is performed imme-
diately before the logical flow table lookup, the translator table may ei-
ther be located inside on the penultimate intermediate switch or stored
directly on the physical host switch. In the latter case, the translator
lookup table may be mapped to additional tables exposed by the switch
hardware (e.g., through OpenFlow). Alternatively, the translator flow
entries may be stored alongside the regular tenant flow table flows. To
this end, after the translator lookup, packets are redirected back to the
ingress of the switch pipeline using a logical loopback interface2.

scope of the context identifiers Generally, a TUID may have
a scope which is global, tunnel level or link level. With a global scope,
packets traversing a specific virtual link are identifiable by a globally
unique TUID. Using a tunnel level scope, the identifier is unique across
all physical hops spanned by the virtual link. However, TUIDs may be
reused in non-overlapping segments of the network. Finally, with a link
level approach a different TUID is assigned at each physical hop. Tun-
nel and link level TUIDs have the advantage, that they may minimize
the number of header bits required for encoding. However, a significant
disadvantage is that the allocation of such non-overlapping identifiers
is NP-hard (see routing and wavelength assignment (RWA) problem).
Moreover, this constraint severely limits the flexibility of virtual link
migration approaches. Therefore, in the following we assume a global
TUIDs scheme, with encapsulation taking place at each virtual node
and simple forwarding at intermediate physical nodes. On the other
hand, VTIDs assigned by the hypervisor must be unique at least at the
physical switch level in order to ensure the isolation of the logical table.
The VTID may have a global scope, however this requires a substan-
tially larger address space, which may be expensive to implement in the
lookup tables of current SDN switches.

The encoding scheme outlined above enables the hypervisor to map
arbitrary virtual topologies to to any physical substrate with SDN for-
warding devices.

2 Version 1.0 of the OpenFlow specification supports logical interfaces as an optional
feature.

4.2 a framework for sdn infrastructure virtualization 33

4.2.4 Resource Migration

Live migration enables InPs to seamlessly remap allocated virtual net-
work elements on to different substrate resources. The ability to trans-
parently reassign network resources is a crucial element for optimizing
network utilization. Moreover, in virtual SDN environments such opti-
mizations may be automatically performed by the SDN hypervisor layer.
Migration mechanisms must maintain the logical functionality of the
virtual entity throughout the migration process. Furthermore, the mi-
gration must be carried out in a way which minimizes the disruption of
both the physical and the virtual networks.

In this section, we discuss techniques which may be implemented by
the SDN hypervisor to perform a seamless migration of virtual SDN re-
sources. In a virtualized environment migration entails two operations:
(i) virtual node migration, i.e., the transfer of the logical flow tables be-
tween physical switches, and (ii) virtual link migration.

virtual node migration. To migrate a virtual node the SDN hy-
pervisor must transfer all tenant flow table entries stored on a source
switch to the new destination. In addition, the hypervisor must update
all context identifiers associated with the migrated flow entries. The or-
der of the migration steps is crucial to avoid disruption of the traffic:
initially, all flows which make up the logical flow table are cloned to the
destination node. On the destination switch, the hypervisor updates the
VTIDs to avoid conflicts with existing entries and configures any used
queues and schedulers. Subsequently, the hypervisor temporarily main-
tains two instances of the flow table entries, i.e., any tenant modifications
to the flow entries are propagated to both the source and destination
switches, augmented by the appropriate VTIDs. As a result, the new ta-
ble is logically correct but does not yet receive any incoming traffic. Next,
each virtual link attached to the virtual node is asynchronously migrated
using one of the mechanisms outlined in the next section. While the link
migration is in progress, both switches process some part of the total vir-
tual node traffic. Finally, after the link migration process is completed,
the hypervisor deletes all relevant flow entries from the source switch.

Note, that the flow table migration may also be performed asyn-
chronously, i.e., flow by flow, if all flow table entries are mutually in-
dependent. However, generally dependencies between the flow entries
emerge whenever flow priorities and wildcard matches are used in the
flow table. To exemplify this problem, consider a scenario in which
longest prefix matching is used for IP lookup. Given two entries with
overlapping prefixes at the source switch, the packet forwarding logic
is altered if any one of the two entries is migrated individually to the
destination switch. The dependencies between flows may, however, be
diminished using appropriate transformations of the rules [119, 92].

34 virtualization architectures for sdn

virtual link migration. The migration of virtual links involves
transferring all associated tunnel context identifiers to a new set of inter-
mediate nodes. We outline two migration schemes. In the first approach
the hypervisor effectively instantiates a new virtual link between the
source and destination switches which is assigned a new TUID. To this
end, forwarding entries containing the new TUID are installed on all
intermediate nodes on the new link path. Subsequently, the hypervisor
updates all tenant entries referencing the original TUID with the new
TUID. The order of the update operations is crucial to ensure that the
migration does not generate inconsistencies in the flow table which may
result in packets loss. First, the hypervisor must augment the translator
function implementation at the destination switch to include the new
TUID. Note that the original translator entries are maintained in parallel
as long as the original virtual tunnel remains in use. Next, the hypervi-
sor begins updating all flow actions at the source switch which perform
packet tagging using the original TUID. As a result the traffic begins
traversing the new virtual link. After all actions at the source have been
updated, the translator entries at the receiver which reference the origi-
nal TUID can be discarded. Finally, the hypervisor completes the migra-
tion by removing all old forwarding entries on the intermediate nodes.
The process is carried out for both directions of the virtual link3.

In order to avoid the duplication of translator entries the virtual link
migration may be performed without introducing a new tunnel identi-
fier, if the forward and reverse directions of each virtual link are encoded
using separate context identifiers. To this end, the hypervisor migrates
each directed virtual link asynchronously. The key aspect of this migra-
tion technique is that the forwarding entries for each hop along the path
are installed by the hypervisor in the direction opposite to the traffic
flow. As a result, a valid forwarding path is maintained throughout the
migration process and no traffic is dropped. Note, that this differs from
the previous approach where the installation of the intermediate node
flow entries may be carried out without any ordering.

The migration mechanism is exemplified in the scenario depicted in
Fig. 6, where a virtual link mapped to path P with TUID=101 is migrated
to a new destination path P′. The direction of traffic flow is from node
A to node B and the intermediate nodes are denoted nk. When the
migration is initiated, a forwarding entry is first installed at intermediate
node n5. Subsequently, corresponding rules are installed at n4, n3, n2,
n1. Note that the rule at (3) overwrites the previously installed flow
entry at the intermediate node n3, redirecting traffic from port p1 to
port p2. As a result, the traffic flows now traverses the path n2,n3,n4,n5.
Subsequently, the remaining flow entries are installed (steps (4) and (5)).
In the final step (6), all flow actions entries associated with TUID=101
at node A are updated to point to the new physical port p2 and any
forwarding entries associated with the old link path are discarded.

3 Note, that both link directions may be encoded using the same TUID assuming that
input ports are encoded in the flow table.

4.2 a framework for sdn infrastructure virtualization 35

A Bn2 n3

n4 n5

n1

(1)

(5)

(3)(4)

(2)

TUID=101 p2

new link path P'
original link path P

(6) TUID=101 p2

source
node

intermediate
nodes

p1

p2

p2

p1

Figure 6: Migration of a directed virtual link with TUID=101. Numbers in
brackets indicate the flow rule installation/update order.

It is important to highlight that while the techniques outlined above
guarantee that no packets are lost during the migration process, packet
reordering may occur in cases where the destination path is longer than
the original path. Specifically, let d denote the one way delay of the
original path and let d′ denote the one way delay of the new path P′.
Neglecting queueing delays and assuming a fixed capacity CP = CP′ of
the virtual link, if d′ > d the maximum amount of data that may arrive
out of order may be approximated by 1

CP
(d′ − d).

4.2.5 Scalability of the SDN Hypervisor

In the following, we address factors which affect the scalability of the
proposed approach. As the controller traffic from all tenants must be pro-
cessed by the SDN hypervisor it is important to ensure that this module
does not become a bottleneck of the architecture. In order to cope with
large volumes of control traffic, we propose a distributed hypervisor de-
sign depicted in Fig. 7. The distributed hypervisor layer is comprised of
a central resource manager module (RMM) and multiple controller prox-
ies (CPX). The main idea behind the approach is a segmentation of the
substrate network into multiple non-overlapping SDN domains. Each
SDN domain is assigned a dedicated CPX which is responsible for all
resources located within the domain. Essentially each CPX performs the
operations described previously for the non-distributed hypervisor for
a subset of the substrate network graph, i.e., the CPX configures devices
and performs all necessary translation operations of the control traffic
exchanged between the forwarding plane and the tenant controllers. The
RMM is responsible for the allocation of substrate resources and coordi-
nation of the controller proxies.

The key functions of the hypervisor modules are summarized in Ta-
ble 4. To illustrate the functionality of the distributed hypervisor in the

36 virtualization architectures for sdn

SDN
domain

C

SDN
domain A

B

physical SDN

resource
manager

virtual SDN
request A

controller
proxy A

controller
proxy B

controller
proxy C

request
API

virtual SDN A

tenant A controller

Figure 7: Distributed SDN hypervisor architecture. Each controller proxy is re-
sponsible for an independent SDN domain.

following we outline the steps performed during the deployment and
operation of a virtual SDN.

vsdn deployment. In order to deploy a virtual SDN slice the tenant
generates a vSDN request and forwards it to the RMM. The RMM eval-
uates the resources available in the substrate network and computes an
initial mapping between the logical topology and the physical network.
The general VN embedding problem is NP-hard and therefore, a large
number of heuristics have been proposed [32, 152, 91, 39] which yield
near optimal solutions to the problem subject to various constraints (e.g.,
capacity, delay, forwarding table size). Subsequently, the RMM notifies
the relevant CPX about the newly allocated vSDN resources within their
SDN domain. Moreover, the RMM assigns globally valid XIDs for the
logical resources and distributes these to the CPX. Finally, each CPX in-
stalls the infrastructure flow entries into the relevant switches of its SDN
domain. At this point the vSDN is ready to be configured by the tenant.

vsdn operation. After the instantiation of the vSDN topology all
control traffic between a tenant controller and a specific virtual switch is
forwarded to the CPX responsible for the associated physical switch. As

4.3 connectivity as a service 37

Manager module

SDN domain segmentation

Virtual topology embedding

CPX resource assignment and coordination

Global optimization (reprovisioning/migration)

Assignment of context identifiers

Controller proxy

Infrastructure flow setup

Control message translation

SDN domain optimization

Table 4: Summary of the functions performed by the manager module and con-
troller proxy.

in the non-distributed case each CPX transparently rewrites the control
messages, inserting/removing context identifiers as necessary. Addition-
ally, each CPX performs policy control to ensure the isolation of the flow
table slices.

Each SDN domain operates independently from the remaining do-
mains. Communication between virtual resources distributed across do-
mains relies on the XIDs assigned by the RMM. Consequently, the state
information associated with any virtual node may be maintained solely
by the responsible CPX. Furthermore, each CPX may optimize the re-
source utilization within its domain by migrating logical resources. On
the other hand, the RMM may reassign substrate resources between
SDN domains in order to optimize the substrate utilization globally.

4.3 connectivity as a service

In this chapter we focus on the concept of connectivity virtualization
proposed in Section 4.1 - a collection of virtual network resources which
provide connectivity between multiple PoPs as a service to tenants based
on some requested network technology (e.g., Ethernet, IP, MPLS). From
the tenant perspective the connectivity service acts as a single logical en-
tity which mimics the behaviour of a corresponding physical device. Pos-
sible use-cases include forwarding devices such as switches and routers
as well as middle-boxes which perform specialized network function
such as firewalling or intrusion detection. We argue that such an abstrac-
tion covers a wide range of use cases for network virtualization. The
approach eliminates the need for complex virtual topologies and uses
familiar network concepts abstractions thereby significantly simplifying
the operational overhead for tenants, as well as the integration into an
existing network infrastructure. From the infrastructure provider (InP)

38 virtualization architectures for sdn

connectivity
service

tenant
PoP

substrate
network

tenant
PoP

tenant
PoP

tenant
PoP

tenant
PoP

TEG

tenant edge
gateways

TEG

TEG

TEG

TEG

Figure 8: A connectivity service between five tenant PoPs hosted on top of a
provider substrate. The tenant capacity demands for each PoP are
defined as SLAs. Each tenant PoP is attached to the infrastructure
provider (InP) network over a tenant edge gateway (TEG).

perspective the simplicity of the abstraction facilitates the embedding of
virtual resources onto the physical substrate.

A connectivity service is defined in terms of a series of demands, such
as capacity and delay, at the tenant attachment points. In addition, ten-
ants may define requirements of the service itself such as the amount of
packets which it must be able to process. The demands are formulated
as a request to the substrate operator, which in turn attempts to allocate
the necessary resources using an embedding algorithm. In the sequel
we exemplify this concept using a layer-3 connectivity service which we
refer to as virtual router service (VRS) depicted in Fig. 8. The tenant is
presented with a virtual router instance which spans an entire network
segment.

The concepts presented in this section are based partly on our previ-
ous works [16, 17] as well as joint work with P. Papadimitriou [19, 20].
The structure of the chapter is as follows: we begin by motivating a
simplified topology for connectivity services defined by edge demands
in Section 4.3.1. Next, we outline a corresponding network embedding
algorithm which yields an optimal allocation of resources in capacity
constrained substrate networks in Section 4.3.2. Finally, we present our
framework for virtual routers as a service (VRaaS) in Section 4.3.3.

4.3.1 Connectivity Service Embedding

In this section, we evaluate alternatives for virtual topologies which im-
plement connectivity between multiple tenant PoPs. Consider a tenant
request for a connectivity service between a set of N tenant attachment

4.3 connectivity as a service 39

A

E B

CD

4

2

12

6

10

9 6

5

3

(a) Fully connected topology

A

E B

CD

2

12

6

10

9 6

5

3

4

(b) Rooted tree topology

Figure 9: Equivalent embeddings for a connectivity service between five cus-
tomer PoPs. The unidirectional capacity demand for each PoP is
denoted in the corresponding box. Link labels indicate the bidirec-
tional capacity reservation costs. The total capacity allocation costs
are SK = 66 (a) and Sstar = 32 (b).

points (PoPs). Initially, assume that the tenant specifies bidirectional ca-
pacity demands bu at each u ∈ N. First, we evaluate the maximum
capacity which the substrate operator must reserve in order to satisfy
the tenant request, i.e., we examine the worst case scenario where the
tenant may transmit traffic using the maximum possible transfer rate
between any two attachment nodes, which are not known a priori.

Without loss of generality, we model the substrate network as a fully
connected graph connecting all PoPs u, where each graph edge i repre-
sents a minimum cost network path between two PoPs with respect to
some cost metric, as depicted in Fig. 9. We assume that all links are bidi-
rectional and have infinite capacity (we consider capacity constrained
topologies in the next section). Moreover, we assume that the capacity
allocated to each tenant is guaranteed (i.e., the resources are reserved
without oversubscribtion). Further, let S denote the capacity allocation
cost for a connectivity service request defined as the (weighed) sum of
capacities on each substrate path which are allocated in each direction
in order to connect all possible pairs of tenant attachment points.

The graphs depicted in Fig. 9 illustrate the two edge cases for embed-
ding the virtual topology of the connectivity service. Both topologies
offer equivalent connectivity and fulfill the tenant capacity demands. In
Fig. 9a all attachment points are interconnected directly resulting in a
complete graph. To satisfy the capacity demands between any pair of
nodes (u, v) ∈ N, min(bu,bv) units of bandwidth must be allocated
along the corresponding path i. Hence, denoting the path cost between
nodes u an v as cuv, the allocation cost for the fully connected virtual
topology SK is given as

SK = 2

n−1∑
i=1

n∑
j=i+1

min(bi,bj)cij. (1)

40 virtualization architectures for sdn

Using unit link costs and capacity demands yields SK ∼ n(n− 1) and
therefore the allocation costs increase with the number of attachment
points as O(n2). Hence, the use of a complete graph as an allocation
scheme for connectivity services may quickly become unfeasible for sce-
narios involving a large number of tenant PoPs.

Alternatively we can use a rooted tree topology to connect all ten-
ant attachment points using a central hub node as depicted in Fig. 9b.
Specifically, we may select any node k ⊂ N as a root and forward traffic
between all remaining PoPs over least cost paths connected to this node4.
As both the input and the output traffic rates at each attachment point u
are limited by bu the topology satisfies the capacity requirements if each
path connected to the root is assigned min(bu,bk) units of bandwidth.
The corresponding allocation cost Stree is given by

Stree = 2

n−1∑
i=1

min(bi,bk)cik. (2)

Clearly Stree grows linearly with the number of customer edge nodes.
Moreover, for any k ∈ N the tree topology is a subgraph of the complete
graph and therefore Stree < SK. For connectivity services which are de-
fined in terms of demands at the attachment points, tree topologies yield
the lowest capacity allocation costs. For an arbitrary substrate network,
i.e., if we consider all intermediate substrate nodes and not only least
cost paths, the position of the root node has a significant impact on the
cost of the tree topology. We address the optimal location of root nodes
in Section 4.3.2.

Next, we consider the impact of the virtual topology on network la-
tency. Assume that the costs cuk represent latency, and therefore the
edge between any two nodes (u, v) ∈ N of the substrate graph represents
the network path with the smallest latency. It follows that the complete
graph scenario yields the smallest possible delay for the connectivity ser-
vice as all attachment points are connected directly. In a tree topology,
the tenant traffic must additionally traverse the root node, resulting in a
higher delay.

Finally, we consider the memory requirements of the two approaches.
A significant benefit of implementing the connectivity service using
a tree topology is that the (virtual) flow table (e.g., for routing table
lookups) may be stored at a single, central location at the root node.
At each attachment point only a small number of forwarding entries is
sufficient to tunnel the traffic to the root node. On the other hand, the
complete graph topology requires copies of the flow table entries at each
tenant PoP.

The considerations above show that a trade-off exists between the to-
tal capacity allocation costs, the latency and the memory requirements
for the two worst case embedding approaches outlined above. Next, we

4 Note, that in general the root is not required to be one of the attachment nodes and may
be located anywhere in the substrate network

4.3 connectivity as a service 41

A

E B

CD

2

9 6

5

3

4

3
21

1

2

1

3

2

23
1

Figure 10: Capacity allocation for a connectivity service with point-to-point de-
mands. The total capacity allocation costs are SP2P = 25.

consider the ideal case where the tenant is able to exactly predict how
much bandwidth will be required between any pair of TEGs, such that
the maximum capacity demand bu at each attachment point is not ex-
ceeded. An example of such a request is given in the following connec-
tivity matrix which contains the directed capacity demands between any
two nodes:



A
(bA=3)

B
(bB=5)

C
(bC=6)

D
(bD=9)

E
(bE=2)

A(bA=3) − 2 1

B (bB=5) 1 − 1 3

C (bC=6) 2 − 4

D(bD=9) 2 3 3 − 1

E (bE=2) 2 −


A corresponding point-to-point embedding is depicted in Fig. 10. Ob-
serve that the capacity allocation cost for this scenario is given by the
total sum of the matrix elements SP2P = 25. As each pair of nodes is con-
nected using the shortest path and the required bandwidth is known
exactly, this embedding is optimal. It is clear that inserting a root node
to obtain a rooted topology will increase the cost. However, like the
complete graph embedding case, this approach requires that a signifi-
cant segment of the connectivity service forwarding table is maintained
at each attachment point (entries which are unreachable from a specific
host may be pruned). Furthermore, in practice the exact point-to-point
demands are hard to predict in advance. Therefore, we expect that ten-
ants will prefer to define the connectivity service using edge demands.

In this work we propose a hybrid approach which aims to exploit the
benefits of all aforementioned topology embedding strategies. To illus-
trate this approach we consider the rooted topology embedding from
Fig. 9b, and assume that the actual traffic being generated by the tenant
is described by the connectivity matrix above. Next, we assume that the
InP determines, e.g., through measurements, that the tenant is transfer-
ring a significant amount of traffic from nodes C to A and from B to E
(i.e., 2 capacity units for each edge). The substrate operator then reserves

42 virtualization architectures for sdn

A

E B

CD

2

2

2

8

4

9 6

5

3

4
10

Figure 11: Capacity allocation for a connectivity service using a hybrid embed-
ding strategy. The total capacity allocation costs are Shybrid = 28.

capacity along the shortest paths between the source nodes C and B and
the corresponding destination nodes A and E, and installs appropriate
forwarding entries at the source nodes in order to redirect the traffic
over the new direct paths. The operator may now free a correspond-
ing amount of capacity from the rooted tree reservation. The resulting
embedding is depicted in Fig. 11. For the given example the approach re-
duces the capacity allocation costs from 32 to 28. As the number of direct
paths is increased the allocation cost converges to the optimal value.

We expect that such a reservation strategy will be effective in envi-
ronments, where the aggregate tenant traffic is dominated by so-called
“elephant” flows, which make up a large proportion of the total carried
traffic. By forwarding such large volume flows over shortest paths the
bandwidth which must be allocated by the operator is reduced. At the
same time only a small subset of the connectivity service forwarding
tables must be exported to the attachment points. We dedicate the sec-
ond part of this thesis to methods for monitoring of traffic flows and
the estimation of resource requirements, which may be employed for
implementing the hybrid strategy outlined above. In the remainder of
this chapter we develop an algorithm for embedding connectivity ser-
vices using a rooted tree topology and provide a detailed description of
a layer 3 connectivity service implementation in Section 4.3.3.

4.3.2 Rooted Tree Embedding Algorithm

In this section, we present an algorithm which allocates substrate re-
sources for a connectivity service defined by capacity demands at the
tenant attachment points. Based on the considerations above we imple-
ment the service as a rooted tree, where a root node performs the service
logic and TEGs are connected to the root node using virtual links with
sufficiently reserved bandwidth.

If we ignore the capacity constraints of the substrate network, a min-
imum cost allocation of a tree topology rooted at node k is obtained by
reserving bandwidth along the shortest paths from r to each tenant PoP
e ∈ E. Fulfilling edge demands in uncapacitated networks is discussed

4.3 connectivity as a service 43

in [47] in the context of point-to-cloud VPNs. In the sequel, we assume
a substrate network with a finite capacity. In this case, a simple shortest
path approach is not guaranteed to minimize the allocation cost.

We divide the rooted tree embedding into two distinct operations: the
selection of an optimal root node and the allocation of optimal forward-
ing paths to the TEGs. Given a specific utilization of the substrate net-
work we aim to minimize the total allocated capacity for each incoming
connectivity service request. To this end, we formulate the path alloca-
tion task as a flow network problem where a requested amount of flow5

must be transported from a source to a sink over a network with capac-
ity constraints. First, we assume that the location of the root node k is
known.

We model the substrate network graph as a flow network G = (V ,N)

with nodes N and links V , and let E ⊆ N denote the tenant attachment
points. Further, we define the set E as a traffic sink with a flow demand
of bE =

∑
e∈E be and the root node k as a traffic source with a flow

supply of bk = −
∑
e∈E be. We seek to find the so-called minimum

cost flow (MCF) with respect to a given root node k. We may calcu-
late a set of least cost paths which satisfy the capacity constraints using
the successive shortest paths (SSP) algorithm [1]. The algorithm solves
the MCF problem in pseudo-polynomial time by iteratively adding flow
along the shortest path from arbitrary source/sink pairs until all TEG
demands are satisfied. It has the advantage that it can efficiently han-
dle edge demand changes or attachment of new TEGs. Note, that for
demands bi 6= bj for (i, j) ∈ E, the resulting optimal flow may be split
along multiple paths [6] as advocated in [152]. Approximations for the
unsplitable flow case are provided in [79, 133].

Next, we consider the choice of the root node. As the node which
yields the minimal allocation cost is not known in advance, we may
iterate over every feasible root node candidate and select the one for
which the SSP algorithm yields the lowest allocation cost. To reduce
the number of nodes which must be checked we propose the following
approach.

Consider an instance of the substrate graph G with infinite capacity,
denoted G∞. For all possible root node candidates n ∈ G∞ we can ob-
tain the path cost c(e,n) between n and each tenant attachment point
e using Dijkstra’s algorithm and calculate the allocation costs S∞(n) =∑
e∈E c(e,n)be. It follows that S∞(n) is a lower bound for the allocation

costs S(n) of the capacity constrained scenario. Next, we sort the costs
S∞ and denote the corresponding ordered set of root node candidate
as K. We iterate over the nodes in k ∈ K starting with the smallest un-
constrained allocation cost and calculate the allocation costs S(k) for the
capacity constrained case using the SSP algorithm. At each step the root
node candidate kmin is updated if a smaller cost S(k) is found.

The iteration may be terminated when the capacity constrained cost
S(kkmin) > S∞(k), as the lower bound states that no better solution

5 Here we use the term “flow” in a graph theoretical context.

44 virtualization architectures for sdn

Algorithm 1 VRS embedding

1: prune nodes with insufficient resources
2: S∞ ← 0 // initialize empty array of lower bound costs
3: for n ∈ G∞ :
4: for e ∈ E : // iterate through all CEGs
5: calculate shortest path cost c(e,n) between e and n
6: S∞(n)← S∞(n) + c(e,n)be // allocation cost with infinite

capacity

7: S∞ ← sort(S∞) // sort S∞ by descending cost
8: s∞ ← 0, smin ←∞
9: kmin = ∅

10: while s∞ < smin :
11: (k, s∞)← pop(S∞) // get next least cost (node, cost) tuple
12: s = MCF(k) // get least cost for capacity constrained case
13: if s < smin :
14: smin ← s, kmin ← k // new minimum allocation (node, cost)

tuple

15: return (kmin, smin)

can exist for the remaining nodes. The algorithm is outlined in Alg. 1.
While the algorithm might still need to iterate over all candidate nodes
times in the worst case, in practice the number of iterations is reduced
substantially.

The search space can be significantly reduced by pruning substrate
nodes and links with insufficient resources such as bandwidth, switch-
ing capacity or forwarding table space. Furthermore, latency bounds be-
tween VRS edges can be enforced by eliminating core node candidates
exceeding predefined SLAs.

We note, that the algorithm described above yields an optimal em-
bedding for the rooted tree for a given utilization of the substrate net-
work. If an operator wishes to globally optimize all allocated virtual
resources in the network, the resource reservation task may be formu-
lated as a multi commodity flow problem, which is NP-hard and may be
addressed using suitable solvers. However, in such a scenario a remap-
ping of the virtual resources may trigger a large number of migrations
resulting in a negative impact on network performance. As a simple
(suboptimal) strategy, the operator may periodically evaluate whether
sufficient resources have been freed in the substrate which warrant the
re-embedding of a randomly chosen connectivity service.

In order to react to network failures the InP must provision resources
for use by failover mechanisms. To this end, the operator may reserve
additional capacity over disjoint network paths and maintain shadow
instances of the associated flow entries. An algorithm for constructing
redundant trees is presented in [9].

4.3 connectivity as a service 45

0/1
-1

0/10-2

0/
3-
1

0/
10
-3

0/3-1

0/6-1

0
/3
-4

0/1-2

0/9
-4

0/8-2

0/8-2

0/5
-3

0
/4
-2

0/8-4

0/10-4

0/8-1

0/7-3

0/7-1

0/3-2

0
/5
-20/8-2

0/8-3

0/4-4

0
/5
-2

0
/5
-4

0/10
-1

0/4-1

0/
9-
4

0/7-4

0/
7-
1

1/1
-1

1/8-4

1/10-4

1/7-1

2/
3-
1

1/8-1

1/3-2

1/4-1

1/8-2

1/6-1

1/9
-4

1/4-4 1/5
-32/10

-1

20

21

22

23

1

0

3

2

5

4

7

6

9

8 11

10

13

12

15

14

16

19

18

b=1

b=1

b=1

b=1

b=1

S=56

S=36

S=38

S=43

S=37

S=33

S=37

S=39

S=39

S=35

S=34

S=33

S=35

S=43
S=35

S=41

S=38

S=45

S=32

S=33

S=46

S=37

S=42

S=32

CPN CPN

CPN

CPN

CPN

core node
intermediate

node

tenant
edge

gateway

programmable
forwarding

element

physical infrastructure provider view

21

0

4

8

12

network
core

tenant
PoP

tenant view

Figure 12: OpenVRoute: a layer 3 virtual connectivity service.

4.3.3 Virtual Router Architecture

In this section, we outline OpenVRoute, our architecture for a layer 3
virtual connectivity service. The architecture uses the concepts and al-
gorithms outlined in the previous section to provide tenants with a vir-
tual router instance which interconnects multiple point of presence (PoP)
with specific capacity demands. Our goal is to demonstrate the feasibil-
ity of the virtual connectivity service approach using a real world im-
plementation which provides flexibility and high performance. To this
end our platform couples the performance of commercial programmable
switches with the flexibility of software routers. We use off-the-shelf
components and open source software which results in a cost-effective
and extendable design.

Our previous work [15] has shown that software routers executed
within a virtualization environment struggle to sustain high packet for-
warding rates. Several works [42, 68] have achieved significant perfor-
mance improvements by exploiting the massive level of parallelism pro-
vided by general-purpose CPUs and GPUs. Nevertheless, dedicated for-
warding hardware is expected to continue offering significant perfor-
mance benefits for the foreseeable future. In addition, the port density
of hardware switches is typically an order of magnitude higher than
what is achievable using general purpose PC architectures. To address
these shortcomings, OpenVRoute aims to offload the packet forwarding
of software routers to low cost, programmable OpenFlow devices which
provide high performance. In addition, we address the problem of lim-
ited flow table sizes in hardware switches by introducing a secondary
datapath executed on commodity hardware.

To provide isolation between the virtual router instances of multiple
tenants, OpenVRoute uses the SDN virtualization framework described

46 virtualization architectures for sdn

O
pe

nF
lo

w

co
nt

ro
l c

ha
nn

el

datapath link

routing engine
VE1

virtualized control plane

accelerated datapath

VE2
VEn

routing table

tap0

tap1

tap2

tap3

netlink

VRC

flow access control

flow cache
manager

primary
datapath

control traffic classifier

pdpx

pdp0

forwarding plane

forwarding plane

P0 ...

co
m

m
od

it
y

se
rv

er
O

pe
nF

lo
w

sw
it

ch

P1 P2 P3 P4 P5 P6

flow management proxy

Pn

DP0

DPX

Figure 13: OpenVRoute architecture overview.

in Section 4.2. The architecture extends and elaborates on ideas pre-
sented in our previous work [16, 17] and addresses limitations identified
in [127]. A prototype implementation of the architecture was designed
within the BMBF G-LAB VirtuRAMA project [55]. Within the project a
successful test deployment connecting PoPs in several cities was carried
out in the network of a large German backbone carrier. Furthermore,
demonstrators of the platform were presented at the BITKOM Future
Internet Workshop 2012 and CeBIT 2012.

The remainder of this section is structured as follows. Next, we de-
scribe the functionality of the key architecture modules in a top down
manner. We present the employed flow-table management operations
and describe a set of exemplary packet forwarding operations in Sec-
tion 4.3.4. In Section 4.3.5, we evaluate the performance and scalability
of OpenVRoute using a prototype implementation.

openvroute overview In the following, we detail the implemen-
tation of the root node of the layer 3 connectivity service. To instantiate
the virtual links that connect the TEG with the root node, the InP in-
stalls a flow entry at each path node which encapsulate the tenant traffic
using an appropriate TUID. The root node architecture is comprised of
three main components as illustrated in Fig. 13. A virtualized control plane
hosts the control logic of all deployed virtual router instances. Each ten-
ant is assigned a dedicated control plane which is used to configure vir-
tual interfaces, execute routing daemons and processes control traffic. A
flow management proxy provides a transparent binding layer between the
virtualized control plane and the forwarding plane. It coordinates the
control traffic, performs access control and manages the available flow

4.3 connectivity as a service 47

table resources. In the forwarding plane OpenVRoute employs a dual dat-
apath design consisting of a fast, hardware-based datapath and a slower,
software-based datapath. This separation is motivated by the limited
number of entries in the TCAM tables of OpenFlow switches. However,
each control plane instance uses a single forwarding element abstraction.
The communication between the components takes place over a control
channel using the OpenFlow protocol. Therefore the components may
be distributed across multiple physical hardware. In the sequel, we de-
scribe the components in detail.

virtualized control plane . Each virtual router is assigned a vir-
tual environment (VE) which executes all control plane processes and
maintains a local routing table. The VEs provide a standard Linux en-
vironment and are hosted on a commodity server using an OS virtual-
ization technology, such as KVM [78]. As a result, a tenant may deploy
arbitrary routing daemons, such as XORP or Quagga [69], within the
virtual router instance in order to populate the routing table. Further,
each VE contains a set of user-space dummy interfaces, implemented
using TAP devices, which allow the user and routing software to config-
ure IP addressing. According to the identifier classification introduced
in Section 4.2.2, each virtual interface is associated with a tunnel identi-
fier (TUID) which uniquely maps traffic to the appropriate virtual con-
text. Moreover, each TUID is mapped to a physical port in the datapath
by the flow management proxy (FMP).

A key component executed within each VE is the virtual router con-
troller (VRC) daemon. This process is responsible for handling the com-
munication between each virtual control plane and its (virtual) flow ta-
ble in the forwarding plane. Note, that all data exchanged between the
VRC and the forwarding plane is mediated by the FMP. The VRC is
implemented as an OpenFlow (OF) controller and uses OF control mes-
sages to communicate with the other components of the system. Essen-
tially, the VRC acts as a glue between the OF protocol and the Linux
kernel, and vice versa. Specifically, the VRC processes intercept all con-
trol traffic packets (e.g., ARP, ICMP, BGP) written to a TAP interface by
the VE network stack and encapsulates these inside a PacketOut OF pro-
tocol message, instructing the datapath to transmit the packet over the
corresponding physical datapath port. Conversely, all incoming control
traffic, encapsulated in PacketIn OF messages, is extracted and injected
into the appropriate TAP interface. As a consequence, the control pack-
ets are received and processed by the network stack of the VE operating
system. In addition, the VRC transparently duplicates the routing table
computed by the VE routing daemon onto the datapath flow table. To
achieve this, the daemon monitors the Linux Netlink socket for notifi-
cations about routing table changes. Whenever a routing process adds,
deletes or modifies a routing entry the VRC generates an OF message
containing a corresponding forwarding rule and sends it to the datap-
ath.

48 virtualization architectures for sdn

flow management proxy. The FMP acts as a transparent layer
between the control plane and the forwarding plane, providing each vir-
tual router instance with an abstraction of a dedicated datapath. Specifi-
cally, the FMP functions as an OF controller for the forwarding plane and
exposes a slice of the flow table as a separate datapath to each control
plane instance. The proxy performs three key functions implemented as
modules.

1. A control traffic classifier acts as a de-multiplexer which inspects
the incoming control traffic from the forwarding plane (which is
encapsulated inside OF protocol messages) and forwards it to the
associated VE for further processing. The mapping to a specific
logical context is performed based on the TUID encoded in the
control packet.

2. A flow access control module ensures that each VRC can only ma-
nipulate datapath flow table entries which belong to its logical
context. Consequently, only valid OF insertion and deletion com-
mands are forwarded to the forwarding plane. Again, the control
is implemented using the known mapping between TUIDs and vir-
tual environments. In addition, the module monitors and limits the
rate at which control messages associated with each virtual router
instance are generated in order to ensure that the control channel
capacity is not consumed by a malicious tenant or a denial of ser-
vice (DoS) attack.

3. A flow cache manager optimizes the utilization of the available flow
table and forwarding resources in the dual datapath. To this end,
the manager aims to identify large volume flows which should
be cached in the accelerated datapath. The flow cache manager
collects flow statistics from packet counters in the two datapaths
using the OF protocol. The extraction of relevant traffic character-
istics from counter observations is the focus of Section 5.5 in this
thesis. For specific traffic offloading strategies refer to [130] and
the references therein.

forwarding plane . The forwarding plane of the OpenVRoute ar-
chitecture uses two datapaths to overcome the problem of small flow
table sizes in dedicated OpenFlow switches and the limited port density
and backplane capacity in commodity servers. To address theses limi-
tations our design, depicted in Fig. 13, consists of a primary datapath
(DP0) which is hosted on a commodity server coupled with an addi-
tional, high-performance, accelerated datapath (DPX) hosted on a ded-
icated OF switch. The datapaths are interconnected using a datapath
link which comprises one or more high-capacity Ethernet connections
that essentially act as a backplane. Both datapaths are controlled using
the OF protocol and maintain separate flow tables.

4.3 connectivity as a service 49

flow number (prefix)

fl
ow

 d
at

a
ra

te

107106105104103102101100

active
flows

in DP0

cached
flows

in DPX

Figure 14: Distribution of flows vs. data rate: a primary datapath DP0 stores
the forwarding entries of all virtual router instances, while the accel-
erated datapath DPX caches only a subset of flows with the highest
data rates. The area beneath the curve corresponds to the total traffic
rate.

The combination of the two datapath types enables us to exploit an
inherent property of network traffic, namely the observation that given
an aggregate of network flows, a small number of flows typically carry
a large share of the total traffic volume. These dominating flows are
known as “elephant” flows while the remaining low volume flows are
referred to as “mice”. This effect has been demonstrated repeatedly and
shown to follow a Zipf distribution [155].

To take advantage of this relationship we use the fact that commod-
ity servers offer abundant memory resources. Thus, a large number
of forwarding entries can be stored in a software implemented OF
flow table, at the expense of increased lookup times. Consequently, the
raw forwarding performance of software datapaths is limited. On the
other hand, dedicated OF switches which use specialized TCAM for fast
lookups can sustain high forwarding rates but can typically only accom-
modate several tens of thousands forwarding entries (in contrast: today
a full BGP routing table contains over 500 000 entries). Therefore, our
architecture stores the forwarding entries of all virtual router instances
in a software switch DP0 and caches elephant flows in the accelerated
datapath DPX. As a result, the traffic load which must be processed by
the software datapath DP0 is reduced significantly while the number of
flow table entries which must be stored DPX is minimized.

The selection of cached flows as well as the update rate is performed
by the flow cache manager (FCM). Note, that the primary datapath al-
ways maintains a full copy of the forwarding entries of all virtual routers.
Flows cached in DPX are assigned a higher priority, such that they mask
the corresponding entries in the primary datapath. The Zipf distribu-

50 virtualization architectures for sdn

TUIDVE

TUIDin TUIDout

DPX

DP0

cached flows

local control flows

input
redirection flows

routing flows

output
redirection flows

virtual
control plane

O
F

co
nt

ro
l

ch
an

ne
l

da
ta

pa
th

lin
k TUIDout

Figure 15: Flow entry types.

tion of traffic flows and the allocation to the two datapaths is illustrated
schematically in Fig. 14.

4.3.4 Flow Table Configuration

In this section, we discuss the flow-level implementation specifics of the
OpenVRoute architecture. We classify the flow table entries which imple-
ment the functionality of the platform into five distinct types. All flows
are installed into one of the two datapaths by the FMP module using
the OF protocol. Recall that the root node which performs the layer 3
forwarding decisions is connected to the TEGs using virtual links. Each
virtual link is defined by a tunnel identifier (TUID) which uniquely maps
the corresponding traffic to the logical context of a specific tenant. De-
pending on the operator setup and hardware deployed in the substrate
network a TUID may be encoded in a VLAN, an MPLS header or even
layer 2 addresses as outlined in our previous work [19]. In the following,
we denote the tunnel identifier of an input virtual link as TUIDin, and
the tunnel identifier of an egress link as TUIDout.

In each datapath flow table the forwarding entries of each tenant are
unambiguously identified by a virtual flow table identifier (VTID). In
the accelerated datapath we directly use the input TUIDs as VTIDs. In
the primary datapath we encode an intermediate TUIDVE and use this
identifier as a VTID. The motivation for this context translator function
is described in the sequel. We use the following flow entry types, illus-
trated schematically in Fig. 15, to implement the encoding and decoding
of the virtual resource identifiers:

input redirection flows These entries forward incoming traffic
from any physical port at DPX to DP0 over the datapath link.
To achieve this, each input redirection flow matches the identifier
TUIDin corresponding to a connected virtual link. Furthermore,
input redirection flows act as a XID-translator, multiplexing all

4.3 connectivity as a service 51

traffic associated with a specific virtual environment (VE) into a
single tunnel identifier denoted TUIDVE before forwarding it over
port PDP0. The new identifier acts as a virtual flow table identi-
fier (VTID) at the primary datapath, enabling the isolation of the
tenant flow table slices, while ensuring that the forwarding table
lookup for any IP prefix destination can be performed using a
single flow table entry, regardless of the input TUID.

Input redirection flows have the lowest priority providing a de-
fault/fallback “slow” path for packet forwarding at DP0 (see flow
entry A in Table 5 for an example).

routing flows (dp0) The primary datapath stores the IP forward-
ing entries for all hosted virtual routers. These routing flow en-
tries match against a packet’s destination IP, as well as the TUIDVE

which acts as a VTID and associates each entry with a specific vir-
tual router instance. Each flow table entry is assigned a priority by
the VRC, such that destination IP addresses with the longest pre-
fix are matched first. The actions associated with each flow entry
assign an output tunnel identifier TUIDout to each packet, which is
mapped to a specific physical port at DPX. Further, the source and
destination MAC addresses are updated to match the addresses of
the outgoing VE port and next-hop router, respectively (see entry
G in Table 5). Finally, each packet is forwarded to the accelerated
DPX via the datapath link connected to port PDPX.

output redirection flows These entries stored atDPX decode the
output port of the packets routed at DP0. Specifically, each entry
matches packets arriving at the datapath link port Pdp0 and uses
the output tunnel identifier TUIDVE to select the physical inter-
face over which the packet is forwarded (see flows B and C in
Table 5). The mapping between the TUIDVE and physical ports is
maintained in the FMP.

cached routing flows The flow cache manager may install routing
entries which forward “elephant” flows over the accelerated data-
path DPX. These entries use the input tunnel identifier TUIDin

as VTID and additionally match the destination IP and MAC ad-
dresses of the incoming packets. The source and destination MAC
addresses are updated analogously to the DP0 routing case. Fi-
nally the output tunnel identifier TUIDout is set and the packet is
forwarded over the associated physical port. Note, that the FMP
ensures that the logical consistency of the virtual router routing ta-
bles is not disturbed by the caching operation. To this end, the FMP
generates non-overlapping IP prefixes for the cached flow entries.

Cached flow entries are assigned a higher priority than the redirec-
tion flow entries and therefore the matched traffic does not traverse
the slow path of the system (see entry D in Table 5).

52 virtualization architectures for sdn

pa
ck

et
 3 type: ARP request

 MAC: ff:ff:ff:ff:ff:ff
VLAN: 100

pa
ck

et
 2

 type: BGP update
 dst. IP: 10.1.10.1
 MAC: 00:12:34:ab:cd:11
VLAN: 100

TAP1
10.1.10.1
00:12:34:ab:cd:11

IP:
MAC:

TAP2
10.1.20.1
00:12:34:ab:cd:22

IP:
MAC:

TAP3
10.1.30.1
00:12:34:ab:cd:33

IP:
MAC:

R
O

U
TI

N
G

10.20.4.0/24
20.33.0.0/16

destination next hop
10.1.20.123
10.1.30.45

... ...

A
R

P 10.1.20.123
10.1.30.45

00:18:de:ad:1a:22
00:12:34:ab:cd:33

IP addr. MAC addr.

... ...

forwarding
plane

10.1.20.123
00:18:de:ad:1a:22

IP:
MAC:

R1 R2
10.1.30.45
00:14:11:23:45:0a

IP:
MAC:

virtual control plane (VE3)

TU
ID

: 2
00

TU
ID

: 3
00

P34P21P10

(DP0/DPX)

pa
ck

et
 1

 type: UDP
 dst. IP: 20.33.12.20
 MAC: 00:12:34:ab:cd:11
VLAN: 100

Figure 16: Exemplary virtual router instance VE3.

local control flows These flows are responsible for forwarding
packets destined to the control plane of a virtual router, such as
routing messages and broadcast traffic, to the corresponding VE.
To this end, the entries match the input tunnel identifier TUIDin

and the destination layer 3 address belonging to a specific virtual
interface. Additionally, an entry matching the layer 2 broadcast
address is installed for each virtual interface in order to process
broadcast traffic. The matched packets are encapsulated in an OF
message and forwarded directly to the appropriate VE over the
control channel where they are injected to the corresponding TAP
by the VRC. These flows are assigned the highest priority in the
flow table. The local control flow entries may be stored in either the
accelerated or the primary datapath flow table. In the following,
we assume that the entries are installed in DPX to minimize the
processing overhead (see entries E and F in Table 5)).

We now outline a set of exemplary packet forwarding operations
which illustrate the path of a packet traversing the different stages of the
architecture. Consider a virtual router hosted within a virtual environ-
ment VE3 as depicted in Fig. 16. The router has three virtual interfaces
TAP1, TAP2, and TAP3, each connected to a virtual link with TUID 100,
200 and 300, respectively. Assume that the TUIDs are encoded in VLAN
headers. Further, the three virtual links are mapped to the physical ports
P10, P21, P34, respectively. The layer 2/3 addresses of the virtual inter-
faces and an excerpt of the routing and ARP tables are given in Fig. 16.
The virtual router is connected to two neighbor routers R1 and R2 reach-

4.3 connectivity as a service 53

able over the ports P21 and P34, respectively. Table 5 contains a set of
relevant flow table entries installed in DP0 and DPX by the FMP.

forwarding at DPX First, we consider packet 1 with destination
IP address 20.33.12.20. Assume that the packet belongs to an elephant
flow and that the corresponding forwarding entry has been copied to
the accelerated datapath (flow D in Table 5) by the FMP. According to
the virtual routing table the next hop for the packet is router R2.

When the packet arrives at the switch, it will match the cached flow
table entry D as this flow has the highest priority among all match-
ing entries in the flow table (i.e., entry A). The associated flow action
will rewrite the packet’s source and destination MAC addresses, set the
VLAN ID of the packet to 300 to correspond to the TUID of the egress
link, and forward the packet to port P34.

forwarding at DP0 Next, assume that flow entry D has been
dropped from the flow table of accelerated datapath. Consequently, the
IP lookup for packet1 must be performed in primary datapath DP0.
The packet will first match flow entry A in the accelerated datapath.
The datapath will update the VLAN ID of the packet to 1003 to indicate
that it belongs to the logical context of VE3. The packet will then be
forwarded to DP0 over the datapath link.

At the primary datapath the packet VLAN ID and destination IP ad-
dress will match entry G. Note that the packet will not match entry H
even though it contains an identical IP prefix and layer 2 address as en-
try G due to the different VLAN ID of 1004. This VTID indicates that the
flow entry belongs to a different logical context. Flow table entry G will
trigger an update of the packet’s MAC header fields. In addition packets
VLAN ID will be set to 300, corresponding to the TUID of the output
virtual link, and the packet will be sent to DPX over the datapath link.
Finally, at the accelerated datapath entry C will cause the packet to be
forwarded over port P34 on which router R2 is attached.

routing updates We now consider the processing of a border gate-
way protocol (BGP) message, denoted packet2, advertising a new route
to the virtual router hosted in VE3. We assume that the packet is associ-
ated with a pre-established BGP session with the virtual router instance.
At DPX flow entry E matches all packets with an IP destination address
corresponding to the address of the virtual interface TAP1, and the cor-
responding TUID of the virtual link. Hence, the BGP packet will be
encapsulated inside an OF message and forwarded to the FMP through
the control channel. There the message will be analyzed and forwarded
to the associated VE (VE3) by the control traffic classifier based on its
TUID. The VRC daemon in VE3 will strip the OF protocol encapsulation
and inject the contents into TAP1. Assuming that the new route is ac-
cepted by BGP, the routing daemon will generate a routing table update
in the VE. The VRC will receive a notification about the routing table

54 virtualization architectures for sdn

(a) DPX flow entries

Priority Match rule Action

input redirection flow entries
A 0 VLAN_ID: 100 SET_VLAN_ID: 1003

OUTPUT_PORT: PDP0
...
output flow entries
B 0 IN_PORT = PDP0

VLAN_ID: 200
OUTPUT_PORT: P21

C 0 IN_PORT = PDP0
VLAN_ID = 300

OUTPUT_PORT: P34

...
cached routing flow entries
D 108 VLAN_ID: 100

DST_IP = 20.33.0.0/16
SET_SRC_MAC: 00:12:34:00:00:33
SET_DST_MAC: 00:14:11:23:45:0a
SET_VLAN_ID: 300
OUTPUT_PORT: P34

...
local control flow entries
E 255 SET_VLAN_ID: 100

DST_IP = 10.1.10.1
TO_CONTROLLER

F 255 SET_VLAN_ID: 100
DST_MAC = ff:ff:ff:ff:ff:ff

TO_CONTROLLER

...

(b) DP0 flow entries

Priority Match rule Action

routing flow entries
G 108 IN_PORT = PDPX

VLAN_ID: 1003
DST_IP = 20.33.0.0/16

SET_SRC_MAC: 00:12:34:00:00:33
SET_DST_MAC: 00:14:11:23:45:0a
SET_VLAN_ID: 300
OUTPUT_PORT: PDPX

H 108 IN_PORT = PDPX
VLAN_ID: 1004
DST_IP = 20.33.0.0/16

SET_SRC_MAC: 00:12:34:00:00:33
SET_DST_MAC: 00:14:11:23:45:0a
SET_VLAN_ID: 400
OUTPUT_PORT: PDPX

...

Table 5: Exemplary flow table entries in DP0.

4.3 connectivity as a service 55

update, triggering the generation of an OF message containing a corre-
sponding flow table entry (similar to flow entry G). This OF message
will be forwarded to FMP over the control channel. Subsequently, the
flow access control module, verifies whether VE3 is permitted to install
the flow entry in DP0. Since the new flow entry contains a valid TUID
the flow table is updated.

4.3.5 Performance and Scalability Evaluation

In the following, we evaluate several key performance metrics and dis-
cuss the scalability of the proposed architecture. We implemented a pro-
totype of the root node using a commodity server with an Intel Nehalem
CPU with four 2.27 GHz cores and 4GB of RAM and a non-blocking
Pica8 3290 OF switch with 48 × 1Gbps. The virtualized control plane
is hosted using the Linux KVM virtualization infrastructure [78]. The
primary datapath (DP0) is implemented using the OpenVSwitch [114]
software. The Pica8 switch acts as the accelerated datapath (DPX) of the
system. The primary and accelerated datapaths are connected using four
1G datapath links.

We used NetFPGA [36] cards to generate the test traffic and an Endace
DAG capture card to capture packet timings with nanosecond accuracy.
First, we measured the achievable forwarding rates for traffic traversing
the fast path (DPX) and the slow path (DPX → DP0 → DPX) of the
virtual router platform. We generated 1Gbps constant bit rate traffic
with packet sizes ranging from 64B to 1500B. For each packet size we
measured the rate at the egress of DPX for 100 s. Each experiment was
executed 25 times. The averages of the obtained forwarding rates are
depicted in Fig. 17a with 99% confidence intervals.

As expected, the accelerated datapath DPX forwards traffic at line
rate regardless of the used packet size. On the other, traffic traversing
the software datapath DP0 only achieves the maximal throughput for
packets larger than 100B. For small packets the forwarding rate is lim-
ited by the number of packets per second (pps) which can be processed
by the software datapath. The measurements indicate that the maximum
processing rate for OpenVSwitch is ≈ 1× 106 pps. (in Fig. 17a this rate
is indicated by a dotted line). Our results match the findings of [125]
where several I/O techniques are proposed to improve the forwarding
rate of OpenVSwitch. The Netmap platform developed in [126] achieves
a forwarding rate of nearly 3Mpps. GPU-supported platforms such as
[68] have been shown to achieve forwarding rates of up to 15.6Gbps
with two 2.66GHz quad-core CPUs. Most recently, prototype implemen-
tations of OpenVSwitch using Intel’s DPDK platform [45] have claimed
forwarding rates of up to 10Mpps. Finally, our measurements show
that with VLAN tagging, the multiplexing/demultiplexing operations
required to encode the context identifiers do not have a notable impact
on the forwarding performance.

56 virtualization architectures for sdn

0 300 600 900 1200 1500

0.6

0.8

1

Packet size [B]

T
hr

ou
gh

pu
t

[G
bp

s]

DP0
DPX

1× 106 pps

(a) Throughput

0 300 600 900 1200 1500
0

20

40

60

Packet size [B]

D
el

ay
[µ

s]

DP0
DPX
3× ttr
ttr

(b) Delay

Figure 17: Measured performance for the DP0 and DPX datapaths (99% confi-
dence intervals).

To investigate the effect of the number of available CPUs on the
packet forwarding capability of commodity servers we replace the Open-
VSwitch datapath in the experiment above with a simple IPv4 forward-
ing module implemented using the Click Modular Router [83]. Our
measurements showed that in this case a single CPU core is able to for-
ward 1Gbps of CBR traffic with 64B packets. Moreover, we find that the
forwarding performance scales linearly with the number of cores. As
memory access latency is the main limitation of shared-memory archi-
tectures [48], the achievable throughput is expected to scale further as
the number of non-uniform memory access (NUMA) nodes, which have
dedicated memory controllers, is increased.

Finally, we measured the latency of the fast and slow paths of the
system. We generated single packets and measured the arrival times at
the ingress and egress of DPX, respectively. Sufficient time was left be-
tween runs in order to ensure that all system queues are empty. For each
packet size the experiment was repeated 1000 times. The average latency
for each packets size is depicted in Fig. 17b with 99% confidence inter-
vals. For 64B packets the forwarding operation takes approximately 4µs
over the fast path DPX. The latency increases linearly with the packet
size with a slope corresponding to the transmission delay of the DPX
port.

The minimal measured latency for a packet traversing the slow path
over DP0 is 18.6µs. Again we observe that this latency grows linearly as
the packet size is increased. However the rate of increase is greater. This
is due to the fact that, in addition to the PDX port, each packet must be
transmitted over the datapath link twice. Hence, the total transmission
delay for a packet with length l is given as ttr =

l
CDPX

+ 2l
Cdl

, where CDPX
is the port capacity of the accelerated datapath and Cdl is the capacity
of the datapath link. The theoretical transmission delays for the fast and
slow paths are indicated by dotted lines in Fig. 17b, assuming 1Gbps
links.

4.3 connectivity as a service 57

In the sequel we discuss the scalability of the OpenVRoute architec-
ture. The potential constraints of the platform are summarized below:

1. The available flow table size in the primary and accelerated data-
paths and the number of flow table entries of auxiliary flow table
entries which is installed by the FMP.

2. The rate at which new flows table entries can be generated by the
FMP and the rate with which flow table modification are processed
by the control logic of the datapaths.

3. The packet forwarding capability of the software switch at DP0
and the capacity of the datapath link.

First, we quantify the flow table space requirements. To this end we
consider a root node which hosts N virtual router instances, where each
corresponding VE n ∈ N, has Mn virtual interfaces and a routing table
containing Rn entries. Furthermore, assume that the forwarding plane
of the root node is connected to the substrate network over P physical
ports on the accelerated datapath DPX.

The primary datapath DP0 must accommodate the routing flow en-
tries (

∑N
n=1 Rn) for all virtual router instances. Given that current soft-

ware OpenFlow switches support multiple flow tables with millions of
entries each this requirement can be easily met.

The flow entries stored in DPX can be classified as static and dynamic
entries. Static entries are responsible for redirecting traffic to and from
the primary datapath over the datapath link. Such entries are created
when a virtual router is instantiated and removed when the instance
is taken offline. On the other hand, dynamic entries are comprised of
cached routing flows that have a limited lifetime which depends on the
statistical properties of the forwarded traffic.

As outlined in Section 4.3.4 the FMP installs one input and one output
redirection flow, as well as a two local control flows for each instantiated
virtual interface. Consequently the total number of static flow entries in-
stalled in DPX is 4

∑N
n=1Mn (the number is halved if the local control

flows are hosted in the primary datapath). The number of entries in-
creases linearly with the number of virtual interfaces. We expect that in a
typical deployment this number will be in the order of several hundred
entries. For the current generation of OF switches, this leaves several
thousand flow entries for the installation of dynamic flow entries.

flow insertion rate We evaluate the frequency at which flow en-
tries may be cached in the accelerated datapath. To this end, we measure
the insertion rate R at which the flow cache manager may install or mod-
ify flows in the datapaths. The measurement methodology used in the
sequel is based on joint work with Amr Rizk [21], where we use the
flow insertion rate as a metric to enable a consistent behaviour of SDN
applications in heterogeneous SDN substrates.

58 virtualization architectures for sdn

SDN
controller

through
traffic

DAG packet
capture card

OF
control
traffic

modified
through
traffic

OpenFlow datapath

Figure 18: Experimental setup for the measurement of the flow insertion rate.

Our measurement setup is depicted in Fig. 18. It consists of a con-
troller module, which mimics the functionality of the FMP, connected to
a datapath. We use a NetFPGA card to inject a constant bit rate (CBR)
traffic flow, denoted “through traffic”, into the datapath and record the
packet times at the ingress and egress of the datapath using an Endace
DAG capture card. The test traffic consists of 64B UDP packets with an
inter packet interval of 10µs. To obtain the maximum flow insertion rate
the controller generates a burst of flow modification OF messages, set to
increment a predefined header field of the through traffic. As a result, at
the egress of the switch we can measure the intervals at which the packet
header values were incremented to obtain the rate at which subsequent
flow modification messages were processed by the datapath. Before the
rate measurement is started we ensure that the TCP parameters of the
control channel have converged to a steady state by generating a prelim-
inary burst of control messages followed by a barrier request message
which guarantees that the datapath processing queue is empty.

The flow insertion rates for DP0 and DPX over a 1 s interval are
depicted in Fig. 19 with 99% confidence intervals (note that the con-
fidence intervals are very small). The message processing rate of the
software datapath is RDP0 ∼ 5700msg/s. This rate is sufficient to sup-
port multiple concurrent virtual router instances. On the other hand, the
rate of the accelerated datapath is significantly lower due to the lim-
ited processing capabilities of the switch control plane. Moreover, the
tested switch exhibits two modes of operation. For t > 0.37 s the rate
is RDPX ∼ 1950msg/s. As the number of elephant flows is expected
to be small and the associated churn rate low [130] the reduced pro-
cessing capability is sufficient for our architecture. We expect that flow
insertion rates will increase further as the next generation OF switch im-
plementations become available. We do not present measurements of the
FMP control message generation rate since it exceeds the processing rate
at the datapaths by several orders of magnitude. All major OpenFlow
frameworks (e.g., NOX, OpenDaylight, Beacon), which may be used to

4.3 connectivity as a service 59

0 0.2 0.4 0.6 0.8 1
0

1000

2000

3000

4000

5000

6000

Time [s]

N
um

be
r

of
co

nt
ro

lm
es

sa
ge

s

DP0
DPX

Figure 19: Number of control messages processed by the primary (DP0) and
accelerated datapaths (DPX) over a one second interval. Dashed lines
indicate 95% lower bounds.

implement the FMP, are capable of generating several millions of mes-
sages per second [35, 142].

Finally, we consider the scalability of the primary datapath. The per-
formance of the commodity server hosting DP0 must be sufficient to
forward the long tail of the flow distribution of aggregate Internet traf-
fic. As discussed above, recent advancements in packet I/O performance
[126, 125, 42] enable modern commodity servers to achieve throughput
rates higher than 10Gbps.

To quantify the requirements for DP0 we consider a trace captured
on a 1Gbps link of an access router of a residential ISP reported in
[130]. The authors show that 100 prefixes account for more than 50% of
the total traffic, whereas 1000 prefixes carry 80% of the total traffic. We
extrapolate from these numbers and assume that 20% of the total traffic
are “mice” flows which must be processed at DP0 while 80% of the
traffic is forwarded atDPX. Assuming that the mice traffic is transported
to DP0 over a 10Gbps datapath link leaves 40Gbps of “elephant” traffic
to be processed at the accelerated datapath. For such a scenario a current
generation OF switch with 48 1Gbps ports and capable of storing 50
thousand flow table entries (∼1000 flow entries for each physical port) is
sufficient to handle the cached flows.

In closing, we note the resource requirements for hosting a virtualized
control plane are minimal, as each VE only needs to process a relatively
modes number of control traffic messages. Thus, the number of virtual
router instances that our architecture can support depends largely on
the specific volume an flow distribution of the carried traffic.

60 virtualization architectures for sdn

4.4 conclusions

In this chapter, we evaluated the differences in the requirements for
physical and virtual network topologies. We showed that in a virtual
environment the traditional concept of a network topology is only mean-
ingful if the corresponding VN specification mandates a suitable set of
constraints. These constraints serve as guidelines for the development of
a virtual network architecture. We showed that by offloading standard
topology objectives, such as the provision of resilience or elasticity, to
the physical domain the need for complex virtual network topologies
may be eliminated. As a result, virtual networks may be specified in
terms of a connectivity service between as set of geographical PoPs with
specific QoS requirements. For scenarios where tenants desire full con-
trol of the network functionality infrastructure operators may instantiate
arbitrary, programmable virtual topologies. In such a use case all opti-
mization and resilience mechanisms are handled by the tenant, while
the InP guarantees the isolation of the allocated resources as well as 1:1
mapping between the virtual and physical resources.

We implemented an infrastructure virtualization platform which sup-
ports both of these use cases. To this end, we evaluated techniques which
enable the SDN hypervisor to bind physical resources to a correspond-
ing virtual context. Specifically, we showed that the use of tunnel iden-
tifiers, virtual flow table identifiers and translator functions serves as a
versatile mechanism for encoding context identifiers. This outline mech-
anism enables the SDN hypervisor to conceal the virtualization layer
from the virtual network tenants, while allowing the installation of arbi-
trary flow entries by tenant controllers. Additionally we discussed mech-
anisms for resource migration and addressed the scalability of the hyper-
visor layer by segmenting the SDN substrate into independent domains
managed by controller proxies.

We evaluated the capacity allocation costs for the special case of con-
nectivity services. Assuming that VN requests are formulated as capac-
ity demands at each tenant attachment point we showed that rooted
tree topologies yield the minimal capacity allocation costs. We showed
that a further reduction of the reservation is only possible if the exact
point-to-point traffic requirements are known. However, in general such
demands are difficult to specify a priori. We showed that if the traffic
demands between two tenant PoPs are known, e.g., estimated through
measurements, a hybrid embedding scheme which forwards individual
flows over the shortest paths may be applied to reduce the reservation
costs.

Finally, we presented a virtual router architecture as an example of a
layer 3 connectivity service. The proposed OpenVRoute platform com-
bines off-the-shelf components to offer tenants virtual router instances
which are functionally and logically indistinguishable from traditional
routers. We addressed the memory limitation in current generation SDN
devices, by exploiting the Zipf distribution of aggregate traffic flows.

4.4 conclusions 61

Specifically, we proposed a dual datapath approach which enables us
to take advantage of the abundant memory resources in commodity
servers and the high packet forwarding rates and port density of dedi-
cated switching hardware. The proposed architecture relies on readily
available, open technologies, and provides a template for the imple-
mentation of more specialized connectivity services. We expect that the
presented concepts are flexible enough to integrate emerging software,
hardware and protocol developments. For example a modification of
the platform to implement an OF-enabled switch abstraction is straight-
forward. Moreover, we expect that the versatility of virtual connectivity
services will be further enhanced through long term OF developments
such as support for user-defined packet matching and processing. Fi-
nally, the scalability of the architecture will benefit from the advent of
OF-enabled switches with larger flow table sizes, enabling higher levels
of resource consolidation.

The results presented in the area of topology embedding highlights
the necessity for an accurate view of the network traffic demands. A
tight characterization of the actual capacity requirements of a virtual link
enables InPs to better utilize the available physical resources. Thus, we
dedicate the following chapter to the design of techniques for extracting
relevant flow characteristics from network measurements.

5
P E R F O R M A N C E E VA L U AT I O N I N C E N T R A L I Z E D
N E T W O R K A R C H I T E C T U R E S

5.1 motivation

Software defined networks are based on the concept of a separation of
the control and data planes, wherein a logically centralized controller
instantiates the forwarding logic of a pool of forwarding devices. Con-
sequently, SDN network services operate using a global network view
generated by the controller framework. This implies that the controller
must possess a detailed and up-to-date representation of the state of the
substrate network. Given this global view, SDN enables a fine-grained,
automated optimization of network operations.

A major benefit of the SDN approach is the abundant availability of
processing resources in the centralized control plane which is typically
hosted on high performance commodity servers. We believe that these
resources should be exploited to perform complex evaluations of mon-
itoring data collected by an SDN controller, which can be beneficial to
the services deployed on top of SDN environments. To this end, we pro-
pose a monitoring framework which automates the derivation of statisti-
cal characteristics of network flows. The framework is embedded in the
SDN control plane enabling an augmented global view of the substrate
network. The extracted information may be leveraged by SDN applica-
tions to perform admission control or compute optimized forwarding
policies which improve QoS or the utilization of the available network
resources.

In the previous chapter we presented approaches for virtualizing full
topologies and network services in an SDN environment. Topology em-
bedding and optimization strategies, e.g., using live-migration, rely on
an accurate description of the tenant traffic requirements as well as a
comprehensive view of the current utilization of the physical resources.
In practice both requirements are difficult to fulfill. In the case of embed-
ding, a static allocation strategy in which fixed capacities are reserved
for each link in the virtual topology may be used to provide bandwidth
and QoS guarantees. To this end, a suitable scheduling discipline is con-
figured at the corresponding egress switch interfaces. However, such an
approach leads to a poor utilization of the substrate resources as multi-
plexing gains, which are a key benefit of packet switched networks, are
not exploited. In other words, the strategy does not scale well for sce-
narios where the substrate network must accommodate a large number
of VN requests. This problem is aggravated by the fact that tenants typ-
ically cannot accurately predict their capacity requirements in advance.
Therefore, the specified vSDN demands may exceed the actual traffic

63

64 performance evaluation in centralized network architectures

tenant capacity
demand

virtual link

allocated
substrate capacity

tenant
traffic

Figure 20: Virtual link with requested and allocated capacity. The operator is
interested to determine the probability that the tenant traffic will
exceed the allocated substrate capacity (indicated by circle above).

rate at the corresponding PoP by some over-provisioning factor. On the
other hand, an over-subscription of the infrastructure resources necessi-
tates an accurate characterization of the network utilization to avoid a
degradation of the perceived VN performance or a violation of negoti-
ated SLAs.

In this chapter we propose a monitoring framework which extracts
flow characteristics at key network points with the goal of aiding SDN
controller algorithms with the dimensioning of the resource allocation.
A conceptual illustration of one use case for our methodology is de-
picted in Fig. 20. Consider a tenant virtual link at an ingress PoP with
a requested capacity demand D. The actual traffic generated by the ten-
ant is significantly lower than the requested capacity. In the substrate,
an SDN controller may allocate a lower capacity D∗ for this virtual link,
such that the probability that the tenant flow will exceed D∗ remains
below a certain threshold. Similarly, the controller may asses the impact
of allocating a smaller virtual link capacity on the queueing delay expe-
rienced by the tenant before performing the actual allocation.

It is well known that network traffic is bursty and exhibits strong cor-
relations [85]. The adverse impact of these properties on the network per-
formance, specifically the provided quality of service, has been shown
in empirical and theoretical studies, e.g., [106, 51]. Bursty network traffic
results in the buildup of large queues on the traversed network devices
and consequently leads to large, highly variable latencies. To mitigate
the effects of LRD traffic network operators must over-provision the net-
work capacities. In modern networks (e.g., data centers) queueing delays
are emerging as a primary target for network optimization [113].

The goal of this chapter is to enable the characterization of the impact
of salient traffic flows on the network service using monitoring data col-
lected from network switches by a logically centralized controller. As a
result, the SDN control plane may generate a detailed view of the pro-
cesses occurring inside a network which may be utilized by the SDN
application layer to optimize the placement of flow routes within the
network substrate. Specifically, we aim to equip the SDN control plane

5.1 motivation 65

SDN
controller

control connections

SDN
substrate

S D
path 1

path 2

flow counters

n1

n2

Figure 21: SDN monitoring scenario: a controller queries flow counters across
a set of forwarding devices. The extracted performance metrics are
exposed to interested SDN applications.

with the ability to monitor the correlation structure of traffic flows in ad-
dition to traditional metrics such as utilization. In the sequel, we provide
the means for extracting relevant flow statistics in SDN with minimal in-
trusiveness using random sampling. In addition, we outline a suitable
performance evaluation technique which exploits the collected informa-
tion.

In the following, we assume a typical SDN architecture, depicted in
Fig. 21, comprised of a centralized controller that monitors individual
flows (or collections of flows) on all connected switches using either
packet counters or sampled packets. The controller uses the collected
data to extract per-flow performance metrics, such as traffic intensity,
variance or queueing delays. In the sequel, we assume that virtual links
are allocated a fixed capacity on all interfaces of the corresponding sub-
strate path.

The example in Fig. 21 depicts an SDN application which uses the
derived metrics to evaluate the effects of a virtual link migration between
two network paths with respect to some prescribed QoS threshold.

To reduce the amount of monitoring data which must be collected in
the network we rely on random sampling. Therefore, we require sam-
pling strategies which guarantee that the extracted traffic characteristics
are not distorted. We note, that while the presented work focuses on the
SDN use case, the techniques outlined in the following are applicable
to any centralized monitoring architecture which provides fine-grained,
randomized querying mechanisms of individual network flows.

The chapter is structured as follows: In the next section we provide
some background on key network traffic characteristics and describe the
notation used in the sequel. In Section 5.3 we review strategies used
for deriving QoS bounds from traffic traces. In Section 5.4 we present
an analytical evaluation of random packet sampling for extracting the

66 performance evaluation in centralized network architectures

traffic autocovariance as well as estimating the Hurst parameter which
characterizes LRD traffic. In Section 5.5 we provide similar results for
random sampling of flow counters, highlighting the inherent differences
between the two approaches. Section Section 5.6 presents our approach
for generating independent sample paths from the extracted autocovari-
ances. We consider traffic with both Gaussian and non-Gaussian traffic
increments and present results that verify our findings. We conclude the
chapter with a controller strategies for sampling across multiple nodes
and flows in Section 5.7.

5.2 network traffic characteristics : background and no-
tation

We begin with a review of several key statistical properties of network
flows used in the following sections and a description of the used nota-
tion.

Throughout this work we model network flows as discretized, wide
sense stationary, stochastic increment processes, i.e., the mean and auto-
correlation function of the flow are time invariant. For a given flow we
denote the intensity of the traffic increments at time t, i.e., the amount
of data within a discrete time slot with a length δ, as X(t) for t ∈ N0.
Where applicable, we represent the random process X(t) as a column
vector x = (x1, x2, . . . , xt)T with random elements denoted xt = X(t). In
the sequel, we make a distinction between the stationary increment pro-
cess X(t) and the corresponding cumulative process X(t) =

∑t
k=0 X(k)

(similarly we denote the cumulative vector process x).
A primary metric for resource allocation is the mean rate of the traf-

fic flow characterized by the expected value E[X(t)]. In the following, we
frequently use µ(·) to indicate the mean rate E[(·)] of a process. For a link
with a fixed capacity C and carrying traffic process X(t) the residual ca-
pacity C− µX is commonly referred to as the available bandwidth [134].

long range dependent traffic processes . In the last two
decades, numerous empirical measurement studies have shown that
network traffic exhibits properties of self-similar processes [85, 93]. Self-
similar stochastic processes may be strongly correlated, meaning that
the traffic load at any point in time is dependent on the traffic intensity
of a large number of previous values. Moreover, the statistical properties
of self-similar processes persist, to a degree, regardless of the time-scale
at which the process is observed. This so-called LRD, which has been
observed, e.g., in [85, 67], manifests itself in the burstiness of Internet
traffic. Network measurements and results from queueing theory have
shown that strongly correlated traffic has an adverse effect on network
performance [51, 106, 121].

As a result, a main focus of this thesis lies on the extraction of the
correlation structure of salient network flows. The autocovariance of a
stationary, stochastic process X(t) is defined as E[X(t)X(t+ τ)] − µ2X for

5.2 network traffic characteristics : background and notation 67

τ ∈ [0,∞). In the following we use the notation c(·)(τ) to denote the
autocovariance of a process (·) at lag τ, and σ2(·) = c(·)(0) to denote its
variance. In addition, we denote the square, positive definite autocovari-
ance matrix of the process as Σ(·), where each matrix element at row i

and column j is denoted as Σ(·)ij. For any stationary increment process
the covariance matrix Σ possesses a Toeplitz structure and is specified
fully by the process autocovariance as Σij = c(·)(|i− j|). We denote the
autocovariance matrix of the cumulative process X(t) as Σ.

A stochastic process is said to be LRD if its autocovariance function
exhibits a slower than exponential decay for increasing lags τ. In the
context of performance evaluation, fractional Brownian motion (fBm) is
a continuous-time stochastic process widely used to model the cumu-
lative arrivals of network traffic. The corresponding increment process,
known as fractional Gaussian noise (fGn), has Gaussian increments with
an autocovariance function

cX(τ) =
σ2

2
[(τ+ 1)2H − 2τ2H + (τ− 1)2H], (3)

where H ∈ (0.5, 1) is the so-called Hurst parameter which characterizes
the decay of the autocovariance function and σ2 is the process variance.
For large τ the relationship above is commonly approximated using a
Taylor expansion as

cX(τ) ∼ (2H− 1)Hσ2τ2H−2 ∼ τ2H−2. (4)

From Eq. (4) it follows that
∑
τ cX(τ) =∞ for H > 0.5.

A discrete time family of LRD processes with similar properties is
described by autoregressive fractionally integrated moving average (AR-
FIMA) models [85]. In the sequel, we use the term LRD traffic to refer to
flows which exhibit an autocovariance structure given by Eq. (4).

queue length distribution. In this work we consider queueing
delay as a key metric for characterizing network performance. Queueing
delays are caused by buffered data within network devices, i.e., backlog.
For any time t the backlog of a lossless system with FIFO scheduling is
defined as the difference between the cumulated data arrivals up to time
t A(t) = X(t) and departures D(t) at that system up to time t

B(t) = A(t) −D(t).

Hence, for a work conserving, buffered link with constant capacity C
the time at which the last bit at the end of the queue leaves the buffer is
given as B(t)/C. For a wide range of applications it is desirable to specify
the buffer occupancy in terms of a distribution, i.e., the probability ε that
the buffer occupancy exceeds some threshold b, or P[B(t) > b] = ε.

In this thesis, we study the estimation of backlog and delay distri-
butions at a single SDN switch. Our main objective is the derivation of
practical methods for the estimation of traffic characteristics necessary to

68 performance evaluation in centralized network architectures

quantify the impact of a given traffic mix on queueing delay. We expect
that future SDN applications seeking to optimize network performance
will build upon our findings and utilize the large body of theoretical
work dealing with performance evaluation of multi-hop systems.

In the sequel, we consider bounds [31] of the form P[B(t) > b] 6 ε(b)
on the tail decay of the backlog distributions B and as P[W > d] 6 ε(d)

for the virtual delayW. Further, we characterize the buffered links at any
substrate switch using the well-known concept of exact service curves
S(t) [31, 13]. For a given interface the function S(t) describes the relation-
ship between the cumulative traffic arrivals A(t) and departures from
the system D(t) over a time interval t. Specifically, we use a latency-rate
server model, in which incoming data is delayed by a constant latency
term T (e.g., processing delay) and subsequently processed with the out-
put rate of the link C, i.e., S(t) = C[t− T]+ with [x]+ = max{0, x}. We
assume that the switch service curve is determined through measure-
ments [24] or provided by the switch vendor.

A fundamental result from network calculus [13] states that the de-
partures D(t) from a system characterized by a service curve S(t) are
given by the min-plus convolution of the arrivals A(t) and S(t), i.e.,
D(t) > (A ⊗ S)(t) = inf06θ6t{A(θ) + S(t − θ)}. Substituting this rela-
tionship into the definition of the backlog yields

B(t) 6 A(t) − inf
06θ6t

{A(θ) + S(t− θ)}

= sup
06θ6t

{A(t) −A(θ) − S(t− θ)}.

Note, that for so-called exact service curves, such as the latency rate
model used in this work, the inequality above holds with equality [54].
As a result, a bound on the backlog distribution is given by

P[B(t) > b] = P

[
sup
06θ6t

{A(t) −A(θ) − S(t− θ)} > b

]
. (5)

Note, that given a bound P[B(t) > b] = ε(b) for Eq. (5), a correspond-
ing bound for the virtual delay P[W > d] = ε(d) follows analogously
[54] since we assume constant rate links. Extensions for more involved
link models using the notion of service curves [27, 54] are readily ob-
tained from the related work.

We highlight an alternative representation of Eq. (5) which we use in
the following sections. Consider that the event sup06θ6t{A(t) −A(θ) −
S(t− θ)} > b occurs only when at least one of the events {A(t) −A(θ) −

S(t− θ) > b} with θ ∈ [0, t] occurs. Therefore an equivalent formulation
of Eq. (5) which uses the union of these events is

P[B(t) > b] =P

 ⋃
θ∈[0,t]

{A(t) −A(θ) > S(t− θ) + b}

. (6)

5.2 network traffic characteristics : background and notation 69

Throughout this work we assume that the increment process associated
with the arrival process A(t) is stationary. Therefore, we may rearrange
P[A(t) −A(θ) 6 k] = P[A(t− θ) 6 k] and substitute η = t− θ to obtain

P[B(t) > b] =P

 ⋃
η∈[0,t]

{A(η) > S(η) + b}

 (7)

=1− P

 ⋂
η∈[0,t]

{A(η) 6 S(η) + b}

. (8)

approximations of the queue length distribution It has
been shown [12] that backlog and delay distributions for general ar-
rival traffic distributions and general service distributions are notori-
ously hard to analyze exactly. In the context of performance evaluation,
a number of works, e.g., [31, 34, 89], analyze the backlog and delay under
various assumptions. In this work we are interested in practical approx-
imations of the probability P[B(t) > b] in Eq. (5). As this probability is
difficult to evaluate analytically, a commonly applied approximation is
obtained by changing the order of the supremum and probability oper-
ators. The resulting expression

sup
06θ6t

{P[A(t) −A(θ) − S(t− θ) > b]}, (9)

is known as the max-approximation [120] of the queue length distribu-
tion. Again we use the stationarity of the increment process to rewrite
Eq. (9) as

sup
06θ6t

{P[A(θ) > S(θ) + b]}. (10)

Intuitively, the above approximation yields a point-wise violation prob-
ably, i.e., the maximum likelihood that a given sample path will exceed
the buffer threshold for some specific point in time. We denote point-
wise probability in Eq. (10) as P[B(t) > b]pw. In contrast, Eq. (5) specifies
the probability that the sample path will exceed the threshold at least
once over all points in time 0 6 θ 6 t. From the fact that the max-
approximation considers a single point in time, while Eq. (5) yields the
violation probability for the entirety of points in time, it follows that
P[B(t) > b]pw is a lower bound for P[B(t) > b], i.e.,

P[B(t) > b]pw 6 P[B(t) > b].

In other words, the resulting approximation of the buffer overflow prob-
ability is too optimistic.

gaussian increments We now consider the cumulative arrivals of
a zero mean1 random traffic process with Gaussian increments, e.g., fGn.
The corresponding cumulative arrival process, denoted A(t), is fBm.

1 Here, we assume that the expected value is known and has been subtracted from the
traffic process.

70 performance evaluation in centralized network architectures

We model A(t) as a random vector x with a multivariate normal dis-
tribution, i.e., the vector elements x = (x1, x2, . . . , xt)T are the cumula-
tive traffic increments and each element xθ for θ = [1, t] is normally
distributed with variance σ2θ. Further, let Σ denote the autocovariance
matrix of the cumulative process x with Σii = σ2θ. The density function
of the multivariate process x is given by

fx(x) = fx(x1, x2, . . . , xt) =
1√

|Σ|(2π)t
e−

1
2 xTΣ−1x. (11)

Consequently, to obtain P[B(t) > b] we define the threshold vector r
with elements rθ = S(θ) + b for θ = [1, t] and write Eq. (7) as

P[B(t) > b] = 1− P

 ⋂
θ∈[0,t]

{xθ 6 rθ}

 = 1− Fx(r),

where Fx(r) denotes the cumulative distribution function Fx(r) = Fx(r1, r2, . . . , rt)
of the arrival vector x. Therefore, for traffic processes with normally dis-
tributed increments we may express the queue length distribution as the
complementary cumulative distribution function (CCDF) of a multivari-
ate Gaussian random variable:

P[B(t) > b] = 1−
1√

|Σ|(2π)t

∫r1
−∞
∫r2
−∞ · · ·

∫rt
−∞ fx(x)dx. (12)

Unfortunately, no analytical solution is known for the relationship above.
Therefore, numerical integration approaches, e.g.[60], are used to obtain
an approximation of Eq. (12).

To obtain the point-wise violation probability in Eq. (10) we evaluate
the likelihood of the event that the arrivals A(θ) at time θ exceed the
threshold S(θ) + b.

P[A(θ) > S(θ) + b] = 1−Φ

(
S(θ) + b

σθ

)
(13)

where Φ denotes the cumulative distribution function (CDF) of the stan-
dard normal distribution. Next we seek the time θ∗ ∈ [1, t] at which this
event is most likely to occur by setting the derivative of Eq. (13) to zero
and solving for θ.

A widely used approximation of this relationship was derived in
[105, 106] using Chernoff’s bound to approximate the tail distribution
in Eq. (13) as 1−Φ(x) 6 1

2e
−x2/2. Assuming an fBm traffic process with

Hurst parameter H, variances σ2t = σ2t2H, link capacity C and a mean
rate µ and solving yields the following closed form expression [105]

P[B(t) > b]pw ≈ exp

(
−
1

2σ2

(
C− µ

H

)2H(
b

1−H

)2−2H)
. (14)

5.2 network traffic characteristics : background and notation 71

0 200 400 600 800 1000
10−5

10−4

10−3

10−2

10−1

100

Buffer length [b]

P[
B(

t)
>b

]

lower bound (max. approximation)
approximation from [105]
queue simulation
simulation

Figure 22: Comparison of approaches for estimating the complementary cumu-
lative distribution function (CCDF) of the buffer occupancy.

This formulation shows the fundamental impact of fBm traffic on the
queue violation probability. For LRD traffic with H > 0.5 it follows
from the relationship above that the queue length distribution exhibits a
Weibull tail behavior.

The differences between the approaches for estimating the queue
length distribution are depicted in Fig. 22. We generated synthetic fBm
traffic traces with Hurst parameter H = 0.8, mean rate µ = 6.6 data
units per unit time (dpt) and variance σ2 = 16. Each sample path had
a length of 4000 time units. We assumed a latency rate server with a
link capacity of C = 20 dpt and a latency of 5 time units. In Fig. 22
the curve denoted “lower bound” represents the point-wise violation
probability calculated by taking the maximum value of Eq. (13) over the
interval [1, t]. Next, the “approximation from [105]” was calculated using
Eq. (14). The curve denoted “simulation” was derived by approximating
the multivariate integral Eq. (12) using [60]. Finally the curve denoted
“queue simulation” was obtained from a packet level queue simulation.
Clearly, the two simulation approaches yield very similar results, both
of which lie above the lower bound estimate. We emphasize that both
simulation approaches converge to the true queue length distribution
only in the limit for a large number of repetitions and for t → ∞. The
approximation obtained from Eq. (14) lies above the simulation results
for buffer sizes b > 200 (note, that Eq. (14) assumes a constant rate server
with capacity C).

Finally, we highlight the importance of a sufficiently high sampling
rate for the accuracy of the CCDF estimate. Using the synthetic traces
outlined above, we evaluate the queue length distribution for increasing

72 performance evaluation in centralized network architectures

0 200 400 600 800 1000
10−4

10−3

10−2

10−1

100

Buffer length [b]

P[
B(

t)
>b

]

δ=1
δ=25
δ=50
δ=100
δ=150

Figure 23: Effect on sampling interval δ on the CCDF estimate. Increasing the
time slot length yields to a loss of precision.

time slot durations δ ∈ {1, 10, 100}. The results are depicted in Fig. 23.
Evidently, the estimate becomes increasingly distorted as the slot length
is increased. Intuitively this loss of accuracy results from the unknown
behaviour of the flows at small time scales. This example motivates the
use of random sampling in this work, which reduces the sampling inten-
sity while preserving the high resolution of the autocovariance structure.

5.3 performance evaluation strategies

The goal of this work is to provide methods for performance evaluation
and optimization of resources in SDN networks. We envision an SDN
controller component that collects fine grained flow statistics from data
counters and computes corresponding characteristic flow metrics. We
seek to enhance the controller’s ability to make decisions which affect
the performance of a given switch by including flow correlation infor-
mation in the performance evaluation procedure. As a consequence, the
controller can compute performance metrics such as backlog and virtual
delay distributions and incorporate these into optimization algorithms.
These calculations are carried out for designated switch interfaces where
salient flows are multiplexed.

In this section we aim to empirically extract an approximation of the
QoS level ε from measurements. To this end, we consider two possible
strategies, which we denote parametric approximation strategy and simula-
tion strategy, respectively.

5.3 performance evaluation strategies 73

In the first strategy we utilize the approximation Eq. (14) from [105,
106] and assume that the salient network traffic flows may be modelled
as fBm processes. Consequently, each flow may be characterized by its
mean rate, variance and Hurst parameter. Then, we obtain an approxi-
mation of the queue length distribution by estimating the flow param-
eters from measurements and substituting the estimates into Eq. (13).
The main advantage of this approach is that it is lightweight and only
requires estimates of the flow variance, mean rate and the Hurst param-
eter H. We provide approaches for estimating H in the following. How-
ever, the obtained estimate may be inaccurate due to the approximations
used in the derivation of Eq. (13). Moreover, the fBm traffic model may
not accurately capture the properties of the carried traffic.

On the other hand, the simulation strategy aims to achieve a more
accurate estimate of the queue length distribution while minimizing
the a priori assumptions about the structure of the observed traffic pro-
cess. Specifically, we assume that each traffic flow possesses an arbitrary
autocovariance structure c(τ) which is known over some range of lags
τ ∈ [0, t]. Further, we assume that the expected value and the variance
of the process exist. Initially we assume that the process increments are
normally distributed. We relax this assumption in Section 5.6.4.

For this scenario we make use of the queue length distribution as
defined in Eq. (7):

P[B(t) > b] =P

 ⋃
θ∈[0,t]

{A(θ) > S(θ) + b}

.

Intuitively the formulation above states that the buffer overflow proba-
bility is equal to the probability that a given sample path of traffic ar-
rivals A(θ) will exceed the threshold S(θ) + b at any single point in time
0 6 θ 6 t. Hence, it follows that an estimate of εmay be obtained by eval-
uating a large number of arrival sample paths and counting how many
sample paths exceeds the function S(θ) + b for some point 0 6 θ 6 t.
Note, that due to the finite length of the sample paths the approxima-
tion may underestimate the true buffer overflow probability.

In order to realize this approach our controller framework includes
a module which applies a general Monte Carlo (MC) approach to es-
timate the queue length distribution. Monte Carlo estimators utilize a
large number of independent samples to obtain an unbiased estimate
of the evaluated metric. For our use-case each sample consists of an
independent traffic arrival sample path. However, in any practical sce-
nario only a single sample path is observed for any given traffic flow.
To circumvent this limitation we extract the statistical properties of the
observed traffic process and use these to synthesize an arbitrary number
of independent sample paths exhibiting identical statistical properties
(if possible). We outline the details of the approach which is based on
matrix factorization technique in Section 5.6. For now, we highlight that
the key prerequisite for the factorization step is an estimate of the auto-

74 performance evaluation in centralized network architectures

covariance matrix of the considered traffic flow. In summary, the simu-
lation approach outlined in the sequel comprises the following steps:

1. Random sampling of packets/flow counters and estimation of the
flow autocovariance matrix.

2. Cholesky decomposition of the estimated covariance matrix and
generation of synthetic sample paths with identical covariance
properties.

3. Monte Carlo estimation of the queue length distribution based on
the generated sample paths and Eq. (6).

The main contribution of this work is the analysis of methods for
extracting the process autocovariance from (random) observations. The
covariance structure is used as a basis for deriving an estimate of the
Hurst parameter for the parametric approximation strategy, as well as to
construct the autocovariance matrix required for the simulation strategy.
In addition, we aim to reduce the amount of observations necessary to
obtain an unbiased autocovariance estimate through random sampling.
We aim to minimize the monitoring traffic load and the associated pro-
cessing overhead at the switch and the controller while maintaining a
sufficient estimation quality.

In the following section we discuss two approaches for estimating the
traffic correlation structure of salient flows using a centralized SDN con-
troller. First, we evaluate packet sampling in Section 5.4. Subsequently
Section 5.5 we extend the approach to observations of flow counters ex-
posed in SDN switches.

5.4 packet sampling

Given the continuous increase of network capacities, sampling has e-
merged as an essential technique for monitoring a wide range of traffic
metrics. The infrastructure necessary to transport, process and store un-
sampled monitoring data at a central vantage point is typically unfeasi-
ble due to the vast volume of traffic traversing a network segment.

To mitigate this issue network device vendors and network operators
rely on technologies which use some form of sampling to efficiently
capture a representative subset of the network traffic. An example of
widely deployed monitoring technology is sFlow, which uses random
sampling as a primary means for ensuring scalability. Devices which im-
plement sFlow randomly select individual packets from the aggregate
traffic flow and forward these to a central server, called an sFlow col-
lector, for further analysis2. Such an approach integrates seamlessly into
the SDN framework where the collector may be implemented as an SDN
controller component.

2 sFlow devices can also generate counter samples, which are discussed in Section 5.5.

5.4 packet sampling 75

In this section we address the question of how packet samples, col-
lected using sFlow-like technology, may be used to obtain unbiased esti-
mates of the covariance structure of a given flow. Specifically, we show
that the autocovariance of a traffic flow estimated from packet samples
differs from the true autocovariance of the traffic flow and depends on
the specific sampling strategy utilized at the switch. We demonstrate
that this “observed” covariance structure contains a systematic error,
which can be corrected under specific conditions. Furthermore, we in-
vestigate the accuracy of covariance estimates for finite sample sizes. In
addition, in Section 5.4.3 we show that for fBm traffic the Hurst param-
eter can be accurately estimated even for small sample sizes using an
aggregation of the values of the autocovariance function.

The results presented in this section are partly based on joint work
with A. Rizk and M. Fidler [123, 124].

5.4.1 Estimating the Flow Autocovariance from Packet Samples

In the following we model the packets sampled randomly from a given
flow using three stationary, discrete time processes. We consider the
monitored flow as an increment process X(t), discretized at some fixed
time slot δ with t ∈ N0. Next, we model the strategy employed by
the monitoring system to select whether a packet is sent to the central
server as a sampling process denoted A(t). The sampling process A(t) is
a point process taking the value of one whenever a sample is generated,
and zero otherwise. We assume that this process is statistically inde-
pendent from the traffic process X(t). Furthermore, we assume that the
times between subsequent samples are independent and identically dis-
tributed (i.i.d.), and are drawn from a known probability distribution FA.
We denote the mean rate, or sampling intensity, of the sampling process
A(t) by µA = E[A(t)]. Note, that µA ∈ [0, 1] because A(t) contains only
binary values.

Finally, we define the random process observed at the sample collector
as

W(t) = A(t)X(t). (15)

The process contains the values of the monitored process X(t) for all
times at which a sample was generated, and zeros otherwise.

In the following we use the observed process W(t) to infer the autoco-
variance of the underlying traffic process X which is not directly observ-
able. However, the extraction of the autocovariance of X(t) from W(t) is
not straightforward, as the distribution of the sampling process distorts
the covariance structure observed at the collector. Specifically, the impact
of the sampling process on the autocovariance of the observed process
cW(τ) is shown by the following lemma:

76 performance evaluation in centralized network architectures

100 101 102 103
10−16

10−15

10−14

10−13

10−12

10−11

H=0.9

H=0.8

H=0.7

H=0.6

τ

au
to

co
va

ri
an

ce

cX traffic
cW observed
cX estimate

Figure 24: Observed and reconstructed autocovariance of a LRD traffic pro-
cesses under geometric sampling. The observed “cW(τ)” maintains
the autocovariance structure of the traffic process. The covariance of
the original process “cX(τ) (traffic)” is exactly covered by the recon-
structed “cX(τ) (estimate)”.

Lemma 5.1. Given the stationary and independent stochastic processes, A(t),
X(t) and W(t) = A(t)X(t), the autocovariance of W(t) is comprised of the
autocovariances of the processes A(t) and X(t) with

cW(τ) =
(
cA(τ) + µ

2
A

)
cX(τ) + cA(τ)µ

2
X.

Proof. Consider the independent and stationary processes A(t) and X(t).
For W(t) = A(t)X(t) it follows that

cW(τ) = E[A(t)A(t+ τ)]E[X(t)X(t+ τ)] − µ2Aµ
2
X

=
(
cA(τ) + µ

2
A

)(
cX(τ) + µ

2
X

)
− µ2Aµ

2
X

=
(
cA(τ) + µ

2
A

)
cX(τ) + cA(τ)µ

2
X

where c(·)(τ) denotes the covariance of process (·) at lag τ.

It is evident that the distribution of the employed sampling-process,
i.e., specifically the sampling intensity µA and the inter-sample covari-
ance cA(τ), directly influence the observable covariance structure cW(τ).
Furthermore, rearranging Lemma 5.1 shows that the true covariance
structure cX(τ) of the traffic flow can be recovered from cW(τ) as

cX(τ) =
cW(τ) − cA(τ)µ

2
X

cA(τ) + µ
2
A

. (16)

In order to extract cX(τ) from the observed covariance we require knowl-
edge of the intensity and the covariance of the sampling process A(t),

5.4 packet sampling 77

as well as the mean rate of the process X(t). While the mean traffic rate
µX must be estimated from measurements, the first two properties are
typically known by the operator, or may be estimated empirically when
closed-form expressions are not available.

In this thesis we focus on the special case of a Bernoulli sampling
process, i.e., a point process with geometrically distributed sample times.
As the increments of the process are uncorrelated, its covariance is zero
for τ > 0. Substituting cA(τ) = 0 into Eq. (16) yields

cX(τ) =
cw(τ)

µ2A.
. (17)

This shows that memoryless sampling processes preserve the covariance
structure of X(t). An additional desirable property of such processes is
that knowledge of the traffic process mean µx is not required.

In general, note that in cases where the autocovariance of the sampling
process cA(τ) decays faster than cX(τ) we can use Lemma 5.1 to show
that the asymptotic tail decay of cW(τ) is the same as cX(τ) except for
a scaling factor. Dividing both sides of Lemma 5.1 by cX(τ) and taking
the limit for t→∞ yields

lim
t→∞ cW(τ)

cX(τ)
= lim
t→∞ cA(τ) + µ2A +

cA(τ)

cX(τ)
µ2X = µ2A. (18)

Examples of such sampling processes are SRD, or Markovian processes
with exponentially decaying covariances. This observation matches the
asymptotic result from [115].

In addition to Bernoulli sampling, in [124] we investigated three ad-
ditional inter-sample distributions: periodic, Gamma, and uniform. For
each case we derived analytical expressions for cA(τ) which we substi-
tute into Eq. (16) in order to recover cX(τ) from the observed covariance
cW(τ). The reconstruction results are depicted in Fig. 25 as a reference,
for the corresponding derivations refer to [124]. In the sequel we con-
sider Bernoulli sampling processes.

simulations Figures 24 and 25 demonstrate the effects of the sam-
pling distribution on the observed autocovariance, as well as the feasi-
bility of the reconstruction operation. We performed simulations using
synthetic LRD traffic traces with autocovariances cX(τ) ∼ σ2Xτ

2H−2 and
H ∈ {0.6, 0.7, 0.8, 0.9}3. We sample the traffic traces using different prob-
ing strategies setting the probing intensity to µA = 0.1 for all sim-
ulation scenarios. In Fig. 24 we see that for geometrically distributed
inter-sample intervals the structure of the observed covariance W(t)

corresponds to the true autocovariance cX(τ) of the process. The recon-
structed covariance, denoted “cX estimate”, is derived by dividing cW(τ)

by µ2A. On a logarithmic scale this corresponds to a vertical shift of the
covariance structure. Note that the estimate matches cX(τ) exactly.

3 The length of each trace was 2.5× 108 time slots. For each parameter H the simulation
was repeated 25 times.

78 performance evaluation in centralized network architectures

100 101 102 103
10−16

10−15

10−14

10−13

10−12

10−11

τ

A
ut

oc
ov

ar
ia

nc
e

cX traffic
cW observed
cX estimate

(a) Periodic sampling

100 101 102 103
10−16

10−15

10−14

10−13

10−12

10−11

τ

A
ut

oc
ov

ar
ia

nc
e

cX traffic
cW observed
cX estimate

(b) Gamma sampling

100 101 102 103
10−16

10−15

10−14

10−13

10−12

10−11

τ

A
ut

oc
ov

ar
ia

nc
e

cX traffic
cW observed
cX estimate

(c) Uniform sampling

Figure 25: Observed and reconstructed autocovariances for simulated LRD traf-
fic processes using different sampling strategies. Note that the recon-
structed “cY(τ) estimate” covers “cY(τ) traffic”.

Figure 25 depicts the effects of periodic, Gamma, and uniform sam-
pling processes, respectively. For these cases the observed covariance
is clearly distorted. Nevertheless, the covariances reconstructed using
Eq. (16) cover the original traffic autocovariances “cX traffic” exactly.
However in each of these scenarios an estimate of the mean traffic rate
µX was required. Note, that for τ→∞ the covariance structure for both
gamma and uniform sampling exhibit the same decay as the cX(τ). This
is not the case for periodic sampling, as ca(τ) does not tend to zero
for large lags. Furthermore, using periodic sampling, cX(τ) can only be
recovered at lags which correspond to a multiple of the sampling period.

Throughout the remainder of this work we focus on geometric sam-
pling due to its favorable reconstruction properties. Furthermore, the
use of memoryless sampling for network probing is advocated by the
IETF in [112].

5.4 packet sampling 79

5.4.2 Impact of Finite Sample Sizes

In any practical scenario the number of samples available for estimation
of the autocovariance is finite. Hence, we now evaluate the impact of the
sample size on the accuracy of the considered estimators. To this end,
we derive analytical margins which enable us to assess the quality of the
collected estimates. Moreover, understanding the effects of finite sample
sizes enables us to relax the stationarity assumption by assuming only a
piece-wise stationarity for the duration of a measurement.

In particular we investigate the impact of sampling duration and sam-
pling intensity on the observations. In the previous section we assumed
that for Bernoulli sampling the autocovariance cA(τ) = 0 for τ > 0. How-
ever, this relationship holds only in the limit for T → ∞ where T is the
number of elements in the finite discrete sampling process A(t).

In the following, we consider the sample autocovariance of a pro-
cess (·), denoted c̃(·), as an estimator of the population autocovariance
c(·). Analogously, we consider the sample mean µ̃(·) as an estimator of
the population mean µ(·). We examine the effects of the involved sam-
ple covariance individually. In the next section we evaluate the impact
of the sampling duration T on the visibility of the observed autocovari-
ance c̃W(τ). Subsequently, in Section 5.4.2.2 we assess the impact of the
sample duration on the bias of the autocovariance estimators.

5.4.2.1 Observation limit

For decreasing observation periods T , the sample autocovariance of the
observed traffic flow becomes increasingly noisy, making the extraction
of the true flow autocovariance difficult. In this section, we aim to iden-
tify the range of lags in which the observed autocovariance differs signif-
icantly from the “noise” which is due to the limited number of samples
available for the calculation. The sample autocovariance c̃X(τ) of a LRD
traffic process X(t) calculated from a finite sample size T is depicted in
Fig. 26a. In addition the figure contains the corresponding autocovari-
ance of Bernoulli sampled observations c̃W(τ). Clearly, in addition to
a vertical shift of c̃X(τ) the sampling operation produces an “observa-
tion noise” which becomes continuously more pronounced for increas-
ing lags τ. We seek to identify the range τ ∈ [0, τ∗] over which this noise
does not significantly obstruct the observation of the underlying auto-
covariance structure. To this end, we use a standard technique [10] and
compare the covariance of the observed process to the 0.95 confidence
limit for the autocovariance of a Bernoulli sampled i.i.d. processes with
the same mean rate and variance. We obtain a value for τ∗ at which
cW(τ) from Eq. (17) and the 0.95 confidence interval intersect. The ap-
proach is illustrated schematically in Fig. 26b, where the shaded area
indicates the 0.95 confidence interval. The upper confidence limit NA
may be interpreted as a “noise floor” which limits the visibility of the
measured autocovariance structure for values smaller thanNA. The com-

80 performance evaluation in centralized network architectures

0 1 2 3

−4

−2

0

c̃X

c̃W

log10(τ)

lo
g 1

0
(a

ut
oc

ov
ar

ia
nc

e)

(a) Sampling

0 1 2 3

−4

−2

0

c̃X

c̃W τ∗ NA

µ2
A

log10(τ)

lo
g 1

0
(a

ut
oc

ov
ar

ia
nc

e)

(b) Schematic description

Figure 26: Observation noise due to finite sampling.

parison with an i.i.d. process is motivated by the fact that for most pro-
cesses the autocovariance becomes negligible for sufficiently large lags.
Hence the observation noise can be regarded as an inherent property for
any traffic process observed using a limited number of samples.

To obtain an analytic expression for the noise floor we consider the
autocovariance function cV(τ) of an observed process V(t) = Y(t)A(t)

where Y(t) is an i.i.d. process sampled using a Bernoulli process A(t)
with sampling intensity µA. An estimator of the autocovariance is given
by

c̃V(τ) =
1

T − τ

T−τ∑
t=1

(v(t) − µV)(v(t+ τ) − µV)

= µ2V +
1

T − τ

T−τ∑
t=1

v(t)v(t+ τ) −
µV
T − τ

T−τ∑
t=1

(v(t) + v(t+ τ))

(19)

We assume that T − τ is large and use the central limit theorem (CLT)
to approximate the summations by random Gaussian variables. We
make use of the fact the elements of V(t) are independent to obtain
E[v(t)v(t+ τ)] = µ2V and Var[v(t)v(t+ τ)] = 2µ2Vσ

2
V + σ4V , as well as

E[v(t) − v(t+ τ)] = 2µV and Var[v(t) − v(t+ τ)] = 2σ2V . Applying the
CLT to Eq. (19) yields the following approximation:

c̃V(τ) ≈ µ2V +N

(
µ2V ,

2µ2Vσ
2
V + σ4V

T − τ

)
−N

(
2µ2V ,

2σ2Vµ
2
V

T − τ

)
= N

(
0,
4µ2Vσ

2
V + σ4V

T − τ

)
.

The 0.95 confidence levels for the observation noise correspond to two
times the standard deviation of the expression above, i.e.,

NA± = ±2

√
4µ2Vσ

2
V + σ4V

T − τ
.

5.4 packet sampling 81

Let µY = µX and σ2Y = σ2X denote the mean, respectively, the vari-
ance of the i.i.d. process Y(t). Further, the variance of a Bernoulli sam-
pling process is σ2A = µA − µ2A. Then using Lemma 5.1 to derive the
variance of the observation process as σ2V = σ2Aµ

2
Y + µ2Aσ

2
Y + σ2Aσ

2
Y =

µA(µ
2
Y − µ2YµA + σ2Y) and with the relationship µV = µYµA we obtain

the following upper confidence limit NA assuming T � τ:

NA =
2√
T
µA(µ

2
Y − µ

2
YµA + σ2Y)

√
4µ2YµA

µ2Y − µ
2
YµA + σ2Y

+ 1. (20)

Evidently an increase in the sampling duration T → ∞ pushes the
noise floor towards zero.

Finally, to obtain the lag τ∗ at which the confidence limit intersects
with the shifted autocovariance function of the considered LRD process
we set NA = µ2AcX(τ) with cX(τ) = Kσ2Xτ

2H−2 according to Eq. (4).
For ease of exposition we ignore the effects of the sampling duration
on the observed autocovariance Y(t) and evaluate these separately in
Section 5.4.2.2. Solving for τ yields:

τ∗ =


√
TµAKσ

2
Y

2(µ2Y − µ
2
YµA + σ2Y)

√
4µ2YµA

µ2Y−µ
2
YµA+σ

2
Y

+ 1


1

2H−2

.

The formulation above shows that for given σ2Y and µY the autoco-
variance structure of LRD processes with a larger Hurst parameter H is
more easily observable as τ∗ is shifted to the right. The results of this
section indicate that the observation noise must be taken into account to
ensure the visibility of the autocovariance structure.

5.4.2.2 Bias of the autocovariance estimators

In the previous section we assumed that the estimated autocovariance
structure of an observed traffic process is not effected by the finite mea-
surement duration. We now evaluate the bias of the sample autocovari-
ance which emerges when the number of samples available for the cal-
culation is limited. Initially we consider a direct estimation (i.e., µA = 1)
of the process autocovariance c̃X(τ) for a finite sampling duration with
T samples. The estimator is unbiased iff E[c̃X(τ)] = cX(τ). Given a sam-
ple path x(t) with sample mean µ̃X0 = 1

(T−τ)

∑T−τ
t=1 x(t) and µ̃Xτ =

1
(T−τ)

∑T−τ
t=1 x(t+ τ) we use the following autocovariance estimator:

c̃X(τ) =
1

T − τ

T−τ∑
t=1

(x(t) − µ̃X0)(x(t+ τ) − µ̃Xτ). (21)

82 performance evaluation in centralized network architectures

To estimate the bias we derive the expected value E[c̃X(τ)]

E[c̃X(τ)] =E

[
1

T − τ

T−τ∑
t=1

x(t)x(t+ τ) −
1

T − τ

T−τ∑
t=1

x(t)µ̃Xτ

−
1

T − τ

T−τ∑
t=1

x(t+ τ)µ̃X0 +
1

T − τ

T−τ∑
t=1

µ̃X0µ̃Xτ

]
(22)

and evaluate its terms separately. Using the population parameters cX(τ)
and µX we write

E

[
1

T − τ

T−τ∑
t=1

x(t)x(t+ τ)

]
= cX(τ) + µ

2
X.

Further, using 1
T−τ

∑T−τ
t=1 x(t) = µ̃X0 we obtain

E

[
1

T − τ

T−τ∑
t=1

x(t)µ̃Xτ

]
= E[µ̃X0µ̃Xτ].

Similarly, for the term x(t+ τ)µ̃X0 we get

E

[
1

T − τ

T−τ∑
t=1

x(t+ τ)µ̃X0

]
= E[µ̃Xτµ̃X0].

Plugging these results into Eq. (22) yields

E[c̃X(τ)] =cX(τ) + µ2X − E[µ̃X0µ̃Xτ]

=cX(τ) − Cov[µ̃X0 , µ̃Xτ], (23)

where we used E[µ̃X0µ̃Xτ] = Cov[µ̃X0 , µ̃Xτ] + E[µ̃X0]E[µ̃Xτ] and the un-
biased estimators E[µ̃X0] = µX and E[µ̃Xτ] = µX. Furthermore, we can
express the covariance of the sample mean in terms of the process auto-
covariance cx(τ) to obtain an expression for the bias of the estimator:

E[c̃X(τ)] =cX(τ) −
1

(T − τ)2

T−τ∑
i=1

T−τ∑
j=1

cX(i− j+ τ). (24)

The derivation of this expression is provided in Section A.1 of the ap-
pendix. Alternately, we can obtain an approximation of Eq. (23) for T �
τ by taking advantage of the fact that the samples used to calculate µ̃X0
and µ̃Xτ overlap over a range T − 2τ. Thus, if we assume that the num-
ber of available samples is much larger than the considered lag, we may
write µ̃X0 ≈ µ̃Xτ and therefore approximate Cov[µ̃X0 , µ̃Xτ] ≈ Var[µ̃X0] to
obtain

E[c̃X(τ)] ≈ cX(τ) − Var[µ̃X0]. (25)

The investigations above show that for a finite number of samples T the
autocovariance estimator exhibits a bias which corresponds to the vari-
ance of the sample mean. For LRD processes the variance of the sample

5.4 packet sampling 83

mean estimated from T − τ samples decays as Var[µ̃X0] =
σ2X

(T−τ)2−2H
. In

other words, the rate at which the bias for LRD processes diminishes
is characterized by its Hurst parameter H, i.e., higher H necessitate a
larger number of samples T to obtain a negligible bias. Nevertheless,
from Eq. (25) it also follows that the autocovariance estimator is asymp-
totically unbiased for T → ∞ and T � τ. As a consequence, the lag
range over which the sample autocovariance is evaluated must be care-
fully chosen to ensure a negligible bias.

In Section 5.4.3 we provide an approach which yields unbiased es-
timates of the Hurst parameter for finite measurement intervals. This
approach can be applied to obtain an estimate of the variance of the
sample mean.

bias of the observed sample autocovariance Next, we con-
sider the bias of the sample autocovariance c̃W(τ) of the observed pro-
cess W(t) calculated from a limited number of samples T . From Eq. (25)
and using µ̃W0

= 1
(T−τ)

∑T−τ
t=1 w(t) we get

E[c̃W(τ)] ≈ cW(τ) − Var[µ̃W0
] (26)

We rearrange the variance of the sample mean in the expression above
to obtain the following expression

Var[µ̃W0
] = 1

(T−τ)2
Var

[
T−τ∑
t=1

w(t)

]
= 1

(T−τ)2

T−τ∑
i=1

T−τ∑
j=1

cW(|i− j|)

=
cW(0)

T − τ
−

2

(T − τ)2

T−τ−1∑
t=1

(T − τ− t)cW(t),

where cW(0) denotes the variance of the observation process σ2W =

σ2Aµ
2
X + µ2Aσ

2
X + σ2Aσ

2
X. It follows that for Bernoulli sampling processes

the impact of the sampling intensity on the bias is given by the following
lemma:

Lemma 5.2. The relationship between the expected value of sample autoco-
variance E[c̃W(τ)] of the observation process W(t) obtained through Bernoulli
sampling with probing intensity µA and the expected value of the sample auto-
covariance E[c̃X(τ)] of the sampled stationary process X(t) for τ > 0 is

E[c̃X(τ)] ≈
1

µ2A
E[c̃W(τ)] +

(1µA − 1)(µ2X + σ2X)

(T − τ)
.

84 performance evaluation in centralized network architectures

Proof. Substituting cW(τ) = µ2AcX(τ) from Eq. (17) into Eq. (26) for τ > 0
and rearranging yields

E[c̃W(τ)] ≈ µ2AcX(τ) −
σ2Aµ

2
X + σ2Aσ

2
X

T − τ
+
µ2Aσ

2
X

T − τ

−
2µ2A

(T − τ)2

T−τ−1∑
t=1

(T − τ− t)cX(t)

= µ2AcX(τ) −
σ2A(µ

2
X + σ2X)

T − τ
+ µ2AVar[µ̃X0]

≈ µ2A E[c̃X(τ)] −
µA(1− µA)(µ

2
X + σ2X)

T − τ
,

where Eq. (25) was used in the last step. Solving for E[c̃X(τ)] completes
the proof.

This result shows that the additional impact of Bernoulli sampling on
the bias of the observed sample autocovariance is tractable. We empha-
size, that the bias which is due solely to the sampling process disappears
for T → ∞ and T � τ. Furthermore, the bias tends towards zero as the
sampling intensity µA → 1. Finally, we note that the sampling bias is not
dependent on the correlation structure of the observed process. Thus, it
may be corrected using unbiased estimates of the process mean µX and
variance σ2X.

We conclude this section with a brief overview of the presented find-
ings. We outlined a methodology for extracting the autocovariance of
traffic flows using randomly observed samples. In particular, it was
shown that the covariance structure of a randomly sampled observa-
tion process is distorted and that this distortion is dependent on the dis-
tribution of the inter sample times. However, these distortions may be
reversed. For Bernoulli sampled processes the covariance structure is re-
covered from the observed autocovariance by a simple scaling operation
cW(τ)/µ2A. We quantified the impact of using a limited number of sam-
ples for the autocovariance estimation, identifying two limiting factors.
Firstly, the sampling process produces a noise floor which may mask the
true covariance structure. Secondly, the bias of the covariance estimators
depends on the variance of the sample mean. For LRD processes this
variance depends on the Hurst parameter, necessitating longer measure-
ment intervals for strongly correlated processes. These observation con-
straints disappear in the limit for large measurement durations. Finally,
we showed that the contribution of the Bernoulli sampling process on
the total sample autocovariance bias may be eliminated using unbiased
estimates of the mean and variance of the observed process.

5.4.3 Unbiased Hurst Parameter Estimation

In this section we focus on the estimation of the Hurst parameter which
characterizes LRD traffic processes. This parameter is required for the

5.4 packet sampling 85

parametric approximation of the queue length distribution using Eq. (14).
Furthermore, the Hurst parameter may be used to calculate the variance
of the sample mean in order to eliminate the bias of the autocovari-
ance estimator in (25). In the following we make use of the so-called
aggregated variance estimator [136], to quantify the degree of correla-
tion of a traffic process. The method exploits the fact, that the variance
of strongly correlated processes, aggregated over increasing intervals M,
decays slower than the variance of weakly correlated processes.

Specifically, consider an LRD process X(t) segmented into consecutive
blocks of M samples. Further, let X(M) denote the aggregated process
obtained by taking the mean of each block, i.e.,

X(M)(k) =
1

M

kM∑
t=1+(k−1)M

X(t) for k ∈N. (27)

The variance of the aggregated process X(M) is given by

Var
[
X(M)

]
= σ2M2H−2, (28)

where σ denotes the variance of the non-aggregated process X(t), and
H is the Hurst parameter with H ∈ (0.5, 1). A derivation of Eq. (28) is
provided in Appendix Section A.2. An estimate of the Hurst parameter
H may be obtained by evaluating the decay of the aggregated variance
Var
[
X(M)

]
for increasing block lengths M (called aggregation intervals

hereafter). Specifically, H may be estimated by performing a regression
in the logarithmic domain and estimating the slope 2H− 2. Note, that
for uncorrelated processes with H = 0.5 we get the well known vari-
ance decay ∼M−1. Furthermore, note that for processes with Gaussian
increments the aggregated variance may be used to obtain point-wise
effective envelopes [87].

In this section we show that the aggregated variance estimator offers
several advantages for estimating the Hurst parameter compared to the
approach based on the autocovariance decay discussed in the previous
section. We evaluate the influence of stochastic sampling on the estima-
tor and derive a modification which enables us to obtain an unbiased
estimate of the process Hurst parameter, which is independent of the
observation duration (i.e., the number of available samples).

In Section 5.4.2.1 we showed that for finite sample sizes, the range over
which the covariance estimator produces useful estimates of H depends
on the Hurst parameter itself. Specifically, for cases where H is small
a significant number of samples is necessary in order to sufficiently re-
duce the noise floor which perturbs the estimate. In the following we
will demonstrate that the aggregated variance estimator performs much
better in such scenarios.

In addition to the aggregated variance estimator described above,
where the process X(t) is split into non-overlapping intervals with length
M, in the sequel we employ a second estimator which is derived directly

86 performance evaluation in centralized network architectures

100 101 102 103
10−2

100

102

Lag τ / aggregation interval M

A
ut

oc
ov

ar
ia

nc
e

100 101 102 103
10−2

100

102

A
gg

.v
ar

ia
nc

e
σ
2 M

autocovariance
agg. variance

agg. covariance

Figure 27: Autocovariance and aggregated variance estimates of an exemplary
finite length process with N = 10000 points and H = 0.7. The auto-
covariance estimate is obstructed by the noise floor. The aggregated
variance estimate exhibits less noise while the aggregated covariance
estimator produces the smoothest estimate. Dashed lines correspond
to a decay of 2H− 2.

from the autocovariance cX(τ) of the non-aggregated process X(t). We
will show that for finite length processes the estimates generated by this
estimator are less noisy compared to the traditional aggregate variance
estimate. We make use of the following relationship between the vari-
ance of the aggregated process Var

[
X(M)

]
and the covariance of X(t):

Var
[
X(M)

]
= Var

[
1

M

M∑
t=1

X(t)

]
=

1

M2

M∑
i=1

M∑
j=1

Cov[X(i),X(j)]. (29)

For stationary processes we can use the relationship Cov[X(i),X(j)] =
cx(|i− j|) to rearrange Eq. (29) yielding

Var
[
X(M)

]
=
cx(0)

M
+

2

M2

M−1∑
τ=1

(M− τ)cx(τ). (30)

It follows from Eq. (30) that the variance of the aggregated process can
be obtained by estimating the autocovariance function and suitably sum-
ming its elements. In the sequel, we refer to the two estimators as ag-
gregated variance and aggregated covariance estimators, respectively. Note,
that per definition the two variance estimators are equivalent.

We now illustrate some properties of the Hurst parameter estimators.
Consider a finite length LRD process X(t) with T = 10000 samples and
Hurst parameter H = 0.7. Figure 27 depicts the autocovariance (left Y-
axis) and the two aggregated variance estimates for this process (right

5.4 packet sampling 87

Y-axis). As expected, all estimates decay approximately with a slope of
2H− 2 on the log-log scale (the expected slope is indicated by the auxil-
iary dashed lines). It is evident that the autocovariance estimate fluctu-
ates significantly as the lag τ increases, making an accurate estimation
of the covariance decay difficult. This is a result of the noise floor dis-
cussed in the previous section. On the other hand, both variance based
estimates do not noticeably suffer from such a distortion. Moreover, the
aggregated covariance estimate is smoother than the aggregated vari-
ance estimate. This effect is explained by the smaller number of available
samples for calculating the aggregated variance at higher aggregation
levels. As the process is divided into non-overlapping segments, for an
aggregation level M we obtain bT/Mc samples. On the other hand, for
the same aggregation level M the aggregated covariance method relies
on the sample autocovariances c̃X(τ) at lags τ ∈ [1,M − 1] which are
estimated using at least T −M− 1 samples. In Section 5.4.5 we show that
for a finite number of samples both estimators exhibit an equal bias.

5.4.4 Effects of Sampling on Variance-based Estimators

We now analyze the effects of sampling on the variance based estima-
tors. In Section 5.4.1 we showed that stochastic sampling distorts the
autocovariance estimate and that the distortion can be reversed. We now
consider the effects of the sampling process on the aggregated variance
estimate and demonstrate that a corresponding reconstruction is also
possible in this case.

The impact of the sampling process A(t) on the aggregated variance
of the observed process W(t) is given by the following lemma:

Lemma 5.3. Let A(t) and X(t) denote stationary and independent stochastic
processes, and further letW(t) = A(t)X(t). The variances of the corresponding
processes A(M), W(M) and X(M) aggregated over an interval of length M are
related through

Var
[
W(M)

]
= µ2XVar

[
A(M)

]
+ µ2AVar

[
X(M)

]
+
1

M
σ2Xσ

2
A

+
2

M2

M−1∑
τ=1

(M− τ)cX(τ)cA(τ)

The proof of Lemma 5.3 is given in Section A.3 of the Appendix. The
result shows that the aggregated variance Var

[
W(M)

]
of the observed

processW(t) is comprised of the individual, scaled aggregated variances
of the traffic process and the sampling process, X(M) and A(M), as well
as a scaled summation of the autocovariances of the two processes, cX(τ)
and cA(τ).

88 performance evaluation in centralized network architectures

100 101 102 103 104
10−15

10−14

10−13

10−12

10−11

Aggregation interval M

A
gg

.v
ar

ia
nc

e
σ
2 M

X(M) traffic
W(M) observed
X(M) estimate

Figure 28: Aggregated variance estimate under geometric sampling, H = 0.8
and µA = 0.1. The aggregated variance of the process X(t) de-
noted “X(M) traffic” is exactly covered by the corresponding esti-
mate “X(M) estimate”. Shaded regions indicate 95% confidence inter-
vals.4Dashed auxiliary lines have a slope corresponding to H = 0.8.

We now consider the case of geometric sampling where cA(τ) = 0

for τ > 0, σ2A = µA(1 − µA) and Var
[
A(M)

]
= σ2AM

−1. Substituting
these values into Lemma 5.3 and rearranging, we recover Var

[
X(M)

]
as

Var
[
X(M)

]
=

1

µ2A
Var
[
W(M)

]
−

σ2A
µ2AM

(
µ2X + σ2X

)
. (31)

To estimate Var
[
X(M)

]
from observations using (31) we additionally re-

quire knowledge of the mean µX and variance σ2X of the traffic process
which are not known a priori. As E[W] = E[XA] = E[X]E[A] we estimate
µX = µW/µA. Further substituting τ = 0 into Lemma 5.1 yields the
variance of X(t) as

σ2X =
σ2W − σ2AµX

σ2A + µ2A
=
σ2W − (1− µA)µW

µA
. (32)

Figure 28 depicts the aggregated variance of the traffic process X(M)

(denoted “X(M) traffic”) with Hurst parameter H = 0.8 as a function of
the aggregation interval M. Furthermore, the figure shows the distorted
aggregated variance W(M) of the geometrically sampled process W(t)

(denoted “W(M) observed”). Finally, the aggregated variance recovered
using Eq. (31) is denoted “X(M) estimate”. Observe, that the curves of
the aggregated variance of the traffic and the corresponding estimate

4 We note, that the displayed CI regions are very narrow.

5.4 packet sampling 89

recovered from the sampled process match exactly. The Hurst parameter
H corresponds to the slope of the decay of the aggregated variance X(M)

on the log-log scale, i.e., ∼ 2H − 2 (indicated by the auxiliary lines in
Fig. 28).

For arbitrary sampling strategies Lemma 5.3 enables us to assess the
distortion of the aggregated variance estimate due to the sampling pro-
cess. For sampling processes where the covariance structure cA(τ) 6= 0

a reconstruction of X(M) is not straightforward as Lemma 5.3 contains
a summation involving the product of cA(τ) and cX(τ). However, note
that for any sampling processes, the relationship in Lemma 5.3 tends to

Var
[
W(M)

]
≈ µ2XVar

[
A(M)

]
+ µ2AVar

[
X(M)

]
for increasing aggregation intervals M → ∞. As a result, the decay of
the observed process Var

[
X(M)

]
dominates in the observed aggregated

variance Var
[
W(M)

]
for large aggregation intervals for any sampling

process which is not LRD.

5.4.5 Bias of the Aggregated Variance Estimator

In practical scenarios the interval over which a given process may be
observed is finite. Therefore, we now evaluate the behavior of the ag-
gregated variance σ2

X(M) = Var
[
X(M)

]
for measurements with a limited

duration. In the following, we quantify the bias of the estimator for a
fixed number of samples T .

Consider the sample variance σ̃2
X(M) of the aggregated process X(M)(k)

derived by aggregating the process X(k) over intervals of length M as
defined in Eq. (27). Further, let x(k) denote a sample path of the pro-
cess X(k) with T samples, and let x(M)(k) denote the corresponding
aggregated process with N = T/M samples. The sample variance of the
aggregated process is given as

σ̃2
X(M) =

1

N

N∑
k=1

(
x(M)(k) − µ̃X(M)

)2
(33)

where

µ̃X(M) =
1

N

N∑
k=1

x(M)(k) (34)

is the sample mean.
To evaluate the bias we consider the expected value of Eq. (33)

E
[
σ̃2
X(M)

]
=E

[
1

N

N∑
k=1

(
x(M)(k)2 − 2x(M)(k)µ̃X(M) + µ̃2X(M)

)]
=E
[
x(M)(k)2

]
− E
[
2x(M)(k)µ̃X(M)

]
+ E
[
µ̃2
X(M)

]
(35)

90 performance evaluation in centralized network architectures

We inspect the three terms individually. The first term yields

E
[
x(M)(k)2

]
= σ2

X(M) + µ
2
X(M)

where σ2
X(M) and µ2

X(M) are the population parameters. For the second
term we substitute Eq. (34) to calculate

E
[
2x(M)(k)µ̃X(M)

]
= 2E

[
µ̃2
X(M)

]
.

Finally, noting that for any M the expected value of the sample mean is
given by

E[µ̃X(M)] = E

[
1

N

N∑
k=1

x(M)(k)

]
= E

[
x(M)(k)

]
= E

[
1

M

k+M−1∑
t=k

x(t)

]
= µX,

we simplify the third term as

E
[
µ̃2
X(M)

]
= Var[µ̃X(M)] + E[µ̃X(M)]

2 = Var[µ̃X(M)] + µ2X.

Using these results Eq. (35) reduces to

E
[
σ̃2
X(M)

]
= σ2

X(M) − Var[µ̃X(M)]. (36)

Finally, substituting the sample path of non-overlapping intervals

x(M)(k) =
1

M

kM∑
t=1+(k−1)M

x(t)

into (34) reveals the following equality

µ̃X(M) =
1

T/M

T/M∑
k=1

1

M

kM∑
t=1+(k−1)M

x(t) =
1

T

T∑
t=1

x(t) = µ̃X.

Therefore we write Eq. (36) as

E
[
σ̃2
X(M)

]
= σ2

X(M) − Var[µ̃X]. (37)

As the variance of the sample mean of any stationary process tends to-
wards zero for T →∞ the aggregated variance estimate σ̃2

X(M) is asymp-
totically unbiased.

We obtain a similar result for the aggregated covariance estimator. To
calculate its bias we take the expected value of Eq. (29)

E
[
σ̃2
X(M)

]
=

1

M2

M∑
i=1

M∑
j=1

E[c̃x(i− j)],

5.4 packet sampling 91

100 101 102 103
10−1

100

101

Aggregation interval M [slots]

A
gg

.v
ar

ia
nc

e
σ

2 M

expected variance (unbiased)
expected variance (biased)
aggregated variance
aggregated covariance

Figure 29: Bias of the aggregated variance estimate of an LRD process with
H=0.8, calculated using 1000 and 10 000 samples, respectively.
(shaded areas indicate 0.99 confidence intervals)

and substitute the expected value of the sample autocovariance E[c̃x(τ)] ≈
cX(τ)−Var[µ̃x] from Eq. (25). Rearranging and substituting Eq. (29) yields

E
[
σ̃2
X(M)

]
≈ 1

M2

M∑
i=1

M∑
j=1

cX(i− j) −
1

M2

M∑
i=1

M∑
j=1

Var[µ̃x]

= σ2
X(M) − Var[µ̃x]. (38)

We highlight that for both estimators the bias is independent of the con-
sidered aggregation interval M. We exploit this fact in the following
section.

To illustrate the impact of a finite sampling duration T on the bias
of the estimators, we generate synthetic LRD traffic sample paths with
T1 = 1000 and T2 = 10000 samples, respectively. We evaluate the ag-
gregated variance and aggregated covariance estimates, repeating each
experiments 1000 times. The simulation results are depicted in Fig. 29.
Note, that the expected (biased) variance decay calculated using Eq. (37)
and represented by dash-dotted curves in Fig. 29 closely matches the
simulated results. In the next section we discuss these simulation results
in more detail taking the properties of LRD traffic into account.

5.4.5.1 Aggregated Variance Bias for LRD Processes

Next, we consider the estimator bias due to limited sample sizes T ,
for the special case of LRD traffic characterized by a Hurst parameter
H ∈ (0.5, 1). In the following, we omit the process index from the vari-
ances for notational brevity. Thus, unless stated otherwise, we use σ2M

92 performance evaluation in centralized network architectures

to denote the variance of a process aggregated over an interval of length
M, and write σ2 = σ21 for the variance of the non-aggregated process.

For an LRD process with Hurst parameter H, the aggregated variance
decay is given by σ2M = σ2M2H−2, where σ2 is the variance of the pro-
cess [136, 10]. A derivation of this relationship using the autocovariance
Eq. (3) is provided in Section A.2 of the appendix. Furthermore, for a
finite length process with T samples the variance of the sample mean is
known to be Var[µ̃] = σ2T2H−2 [10]. Substituting the relationships above
into Eq. (36) yields

E
[
σ̃2M
]
= σ2M2H−2 − σ2T2H−2. (39)

It is interesting to note, that the bias of the aggregated variance de-
pends only on the number of collected samples (i.e., the sampling du-
ration) an not on the aggregation interval M. Moreover, Eq. (39) shows
that the variance of the sample mean decays slowly for large Hurst
parameter values. As a result, for highly correlated processes, a larger
number of samples must be collected in order to reduce the impact
of the bias. Note, that by setting M = 1 and H = 0.5 in (39) we
recover the well known unbiased variance estimator for uncorrelated
processes, i.e., E

[
σ̃2
]
= E

[
1
T

∑T
k=1(x(k) − µ̃X)

2
]

= σ2 T−1T and hence

E
[
1
T−1

∑T
k=1(x(k) − µ̃X)

2
]
= σ2.

The impact of the sampling duration on the estimate of the aggregated
variance is depicted in Fig. 29 for synthetic LRD process with H = 0.8.
The aggregated variance decay was calculated over a range of aggrega-
tion intervals M ∈ [1, 103] using T1 = 1000 and T2 = 10000 samples,
respectively, using both estimators. Shaded areas represent 99% confi-
dence intervals. The dashed line indicates the unbiased variance decay
σ2M = σ2M2H−2. For T1 it is evident, that the aggregated variance esti-
mate (denoted “expected variance (biased)”) deviates significantly from
σ2M as predicted by Eq. (39). Note that this is an extreme case where
the number of samples corresponds to the largest aggregation interval
M = 103. Increasing the number of samples to T2 = 10000 reduces
the bias significantly. Finally, observe that both the aggregated variance
and aggregated covariance methods yield an almost indistinguishable bias,
which also closely matches the bias predicted by Eq. (39) (the curves are
covered by the estimates).

Next, we demonstrate how the influence of the finite sample size T
may be eliminated yielding an unbiased estimate of the Hurst parameter.

Lemma 5.4. Let σ̃2
X(Mk)

denote the sample variances of a stationary LRD pro-
cess X(t) with Hurst parameter H aggregated over the intervals Mk = bδk

where k is a sequence of equidistant points with k = 〈k : k ∈ N0〉, b > 1

and δ > 0. Define the metric Gk = σ̃2Mk
− σ̃2Mk+1

. An unbiased estimate of
the Hurst parameter may be inferred from the exponent 2H− 2 of the expected
value of Gk given by

E[Gk] = σ2(1− b2H−2)M2H−2
k .

5.4 packet sampling 93

Proof. Substituting Eq. (39) into E[Gk] = E
[
σ̃2
Y(Mk)

]
− E
[
σ̃2
Y(Mk+1)

]
elimi-

nates the bias term and thus the impact of the finite sample size T . Using
geometrically increasing aggregation levels Mk = bδk we calculate the
expected value E[Gk]

E[Gk] =σ2(M2H−2
k − T2H−2) − σ2(M2H−2

k+1 − T2H−2)

=σ2(bδk(2H−2) − bδ(k+1)(2H−2))

=σ2(1− b2H−2)bδk(2H−2).

Taking the logarithm on both sides of the expression yields

logb(E[Gk]) = logb(σ
2(1− b2H−2)) + (2H− 2)δk.

Thus, on a logarithmic scale an unbiased estimate of the Hurst parameter
is obtained from the slope (2H− 2) evaluated at δk.

The differencing approach outlined above has been proposed in [139]
as a means for eliminating the impact of shifting means and slowly de-
caying trends in LRD processes. However the bias due to limited sam-
pling durations is not considered and the authors assume sufficiently
large values for T and M.

The relationship given in Lemma 5.4 is depicted in Fig. 30. The fig-
ure contains the standard aggregated variance estimate for synthetic
LRD traces with Hurst parameter H = 0.8 and short sampling dura-
tion T = 10 000 samples. Note the deviation of the estimate from the
ideal decay of 2H− 2, represented by auxiliary dashed lines. In addition,
an unbiased estimate of the variance decay, derived using the metric
Gk from Lemma 5.4, was generated from the same data using the inter-
vals Mk = 2k with k = 〈0, 1, 2, 3, . . .〉 represented by circles and includ-
ing 0.99 confidence intervals. It is evident that the slope corresponds to
2H− 2.

Assume for a moment that the variances of the considered LRD pro-
cess may be aggregated over arbitrary, infinitesimally small intervals. In
such a scenario, the bias due to a finite sampling size T may be elimi-
nated by taking the derivative of the sample variance

dσ̃2M
dM

= (2H− 2)σ2M2H−3σ2M (40)

allowing for an unbiased estimation of the Hurst parameter from the
exponent 2H− 3 of Eq. (40).

However, in practice the aggregation intervals M are discrete. There-
fore, we evaluate Eq. (40) for the case of discrete values of M, with dis-
cretization interval δ. In this case we approximate the derivative by a
finite difference and define the following estimator:

ΓM =
σ̃2M − σ̃2M+δ

δ
. (41)

94 performance evaluation in centralized network architectures

20 21 22 23 24 25 26 27 28 29 210
2−3

2−2

2−1

20

21

22

23

24

Aggregation interval M [slots]

A
gg

.v
ar

ia
nc

e
σ
2 M

aggregated variance
unbiased estimate from Gk

Figure 30: Unbiased Hurst parameter estimation. For short sampling durations
(T = 104) the bias from Eq. (39) is apparent. An unbiased estimate of
the exponent 2H− 2 is derived by evaluating the variance estimate
Gk from Lemma 5.4 at the aggregation intervals Mk = 2k with k =

〈0, 1, 2, 3, . . . 〉. Dashed auxiliary lines have a slope corresponding to
2H− 2 for H = 0.8. (0.99 confidence intervals are displayed)

Per definition for δ → 0 this estimator tends towards the derivative in
Eq. (40), i.e., limδ→0 ΓM = (2H− 2)σ2M2H−3. We now quantify the error
caused by the finite difference approximation for δ � 0. We denote the
sample variance by the function f(M + δ) = σ̃2M+δ = σ2(M + δ)2H−2

and use the notation f′(·) to represent the derivative of f(·). We perform
a Taylor expansion of order n = 1 of the function f(M+ δ) about the
point δ = 0 which yields the relationship

f(M+ δ) = f(M) + f′(M)δ+
f′′(ϑ)
2
δ2,

where the variable ϑ is in the range ϑ ∈ [M,M+ δ]. Next, we substitute
f and its derivatives into the equation above and rearrange to get an
expression for the finite difference

σ2(M+ δ)2H−2 − σ2(M)2H−2

δ
= σ2(2H− 2)M2H−3

+
σ2(2H− 3)(2H− 2)(ϑ)2H−4

2
δ

=
dσ̃2M
dM

+ η(δ).

A comparison of this Taylor representation with the derivative from
Eq. (40), reveals that the approximation error due to the finite difference
is given by the term η(δ) =

σ2(2H−3)(2H−2)(ϑ)2H−4

2 δ. Again, we find that

5.4 packet sampling 95

H=0.6 H=0.7 H=0.8 H=0.9

0.5

0.6

0.7

0.8

0.9

1

Nominal H

Es
ti

m
at

ed
H

agg. var estimate
estimate from Gk

estimate from ΓM

Figure 31: Biased and unbiased Hurst parameter estimates for synthetic traffic
traces with 10 000 samples. Estimates were derived from the expo-
nents 2H− 2 in Eq. (39) and 2H− 3 in Eq. (40), respectively. (Box-plot
whiskers represent 0.95 confidence intervals)

this error tends towards zero for δ→ 0. To obtain a bound on the approx-
imation error, we observe that the error η(δ) is maximized for ϑ =M. As
a result, with ϑ =M we see that the approximation error is proportional
to σ2M2H−3

M , i.e., for increasing values of M the error term decays faster
than the derivative in Eq. (40).

Figure 31 depicts boxplots for Hurst parameter estimates derived from
the slope of the (biased) aggregated variance estimator Eq. (28), the met-
ric Gk from Lemma 5.4 as well as ΓM from Eq. (41) with δ = 1. For
each experiment we generate 2000 synthetic LRD traffic traces with H ∈
{0.6, 0.7, 0.8, 0.9} and a short sampling duration T = 104. For the consid-
ered sampling duration T the means of the standard aggregated vari-
ance estimate lies below the configured Hurst parameter. On the other
hand, the averages of the two other estimators closely correspond to the
nominal Hurst parameter. For the estimate from ΓM, it is evident, that
the approximation error has a negligible impact on the Hurst parame-
ter estimate. Further, we observe that the estimate from Gk exhibits the
smallest variation around the mean.

We conclude by summarizing that the impact of the sampling du-
ration in Eq. (28) diminishes for increasing sampling intervals T → ∞,
however, the estimators from Lemma 5.4 and Eq. (41) enable us to obtain
accurate estimates of the Hurst parameter even for short T .

96 performance evaluation in centralized network architectures

5.5 counter sampling

In the previous section we considered the estimation of the traffic co-
variance structure from packets randomly selected using a predefined
sampling strategy. Applications of this packet sampling approach include
passive packet monitoring, where individual packets are randomly for-
warded to a centralized monitoring entity for evaluation, or active prob-
ing, where special probing packets are injected into a network link, as
demonstrated in our previous work [124].

In contrast, in this section we consider the estimation of the covari-
ance structure of a given traffic flow from random samples obtained
from data counters on network devices. Traffic counters aggregate the
total amount of data forwarded by a network interface or a specific net-
work flow and are typically queried using mechanisms such as SNMP,
IPFIX, or more recently, SDN protocols such as OpenFlow. In this sec-
tion, we highlight that packet and counter sampling are inherently dif-
ferent and consequently require different techniques for estimating the
correlation structure of observed flows (we provide analytical details of
these differences in Section 5.5.1). In the sequel, we develop a strategy
for estimating the autocovariance matrix of arbitrary flows observed at
a specific forwarding device using counter queries with randomly dis-
tributed inter-query times. In addition, an analytical evaluation of our
proposed algorithm is provided.

A main advantage of counter based sampling is that corresponding
monitoring mechanisms are already integrated in modern network de-
vices. Current SDN technologies, such as OpenFlow [99], are of particu-
lar interest, as they include byte and packet counters (e.g., flow counters
and meters) which may be configured for any forwarding entry installed
in the switch flowtable. As a consequence, the techniques described in
this section enable the extraction of fine-grained, per-flow traffic correla-
tions.

Specifically, in an SDN environment a controller may, at any time, ob-
tain the total amount of traffic matched by a specific flow table entry (or
a group of entries) on any connected forwarding device by submitting
an appropriate statistic query message to the switch using the OpenFlow
protocol.

As with packet sampling, we wish to extract the time dependency
of the flow traffic processes using a sufficiently high sampling rate. In
practice, the number of queries which may be generated within a given
time interval is limited by the switch control logic, which is responsi-
ble for processing all control traffic, as well as the available bandwidth
of the control channel. Growing network speeds and the desire to mon-
itor large numbers of flows therefore necessitate the use of statistical
sampling strategies in order to ensure scalability of the monitoring ar-
chitecture.

5.5 counter sampling 97

0 2 4 6 8 10 12 14 16 18

Time slots [t]

D
at

a

aggregated traffic process x
sampling process a
observation process w

Figure 32: Cumulative arrival process and corresponding observation process
obtained from samples with randomly distributed inter-query times.

5.5.1 Relationship to Packet Sampling

We begin our analysis by describing the notation used in the this section
and outlining the relationship between the covariance structure of sta-
tionary increment processes, which we assumed in the previous section,
and cumulative processes which are observed by traffic counters.

A switch flow counter aggregates the increments of the associated traf-
fic process over time, i.e., at time t it contains the accumulated amount
of data that arrived up to t. In terms of the increment process x the el-
ements of the counter process x are given as xt =

∑t
k=1 xk, where xk

denotes the traffic increment at time slot k. In the following, we denote
this cumulative counter process using vector notation as x = ∆x, where
∆ is a lower triangular matrix containing ones for all matrix elements on
or below the matrix diagonal:

∆ =


1 0 · · · 0
1 1 · · · 0
...

...
. . .

...

1 1 · · · 1

.

Note, that xt corresponds to the cumulative arrival process A(t) in
Eq. (5). Generally, a reversal of the counter aggregation, i.e., x = ∆−1x,
is only possible if the counter values xt are sampled5 at each discrete
time slot t. However, this is not the case in out current scenario where
we consider random inter query intervals.

5 In the sequel, we use the terms counter sample, query, and observation interchangeably.

98 performance evaluation in centralized network architectures

Recall that the covariance matrix Σ of the stationary, non-aggregated
traffic increment process has a Toeplitz structure. Thus, each matrix el-
ement Σij is defined in terms of the process autocovariance as Σij =

cx(|i− j|), where cx(τ) denotes the autocovariance at lag τ. Unless stated
otherwise, in the sequel we assume zero mean increment processes, i.e.,
the expected value µx = E[xk] has been subtracted from the process. The
relationship between the covariance matrix Σ of the traffic increment
process x and the covariance matrix Σ of the corresponding cumulative
counter process x is given by

Σ = E
[
xx>

]
= ∆E

[
xx>

]
∆> = ∆Σ∆>. (42)

Next, in analogy to Eq. (15), we define an observation process w which
is obtained from the element-wise multiplication of the cumulative traf-
fic process x with a point sampling process represented by the vector a
with random inter query times:

w = a ◦ x = Ax, (43)

using the operator (◦) to denote the Hadamard product of two vec-
tors. Equivalently, w may be expressed by a matrix multiplication of
the diagonal matrix A with diag(A) = a with x. In the sequel, we as-
sume renewal sampling and that the inter query intervals are drawn
from a known probability distribution which yields a sampling inten-
sity µa = E[a] ∈ [0, 1]. We denote the covariance matrix of the observa-
tion process w as ΣW. An exemplary observation process obtained from
random samples is depicted in Fig. 32.

Next, we highlight that the counter sampling approach presented in
this section differs from the sampling procedure outlined in Section 5.4,
where we consider the effects of random sampling on non-aggregated
traffic increment processes. As a consequence the previously derived
methods are not directly applicable. We summarize the difference be-
tween the two problem formulations in the following lemma

Lemma 5.5. The autocovariance matrix ΣW of the aggregated observation
process w = Ax cannot be derived from the autocovariance matrix ΣW of
the increment observation process w = Ax using Eq. (42). Specifically the
following relationship does not hold

Σw 6= ∆Σw∆
>

Proof.

Σw = E
[
Axx>A>

]
= E

[
A∆x(A∆x)>

]
= E

[
A∆xx>∆>A>

]
6= ∆Σw∆

> = ∆E
[
Axx>A>

]
∆> = E

[
∆Axx>A>∆>

]

5.5 counter sampling 99

The relationship above shows that sampling after aggregation is struc-
turally different than aggregation after sampling. Autocovariance matrix
reconstruction of sampled traffic aggregates that are shown in this work
are more involved than the reconstruction after sampling at the incre-
ment level as in [124].

Initially, we consider a baseline scenario wherein queries to the counter
associated with some traffic flow are generated at equidistant times, i.e.,
we assume that the observation process contains only ones and is hence
represented by the identity matrix A = I. We focus on the case where
the intervals between counter queries are selected from a random distri-
bution, in Section 5.5.5.

In the following, we outline two approaches for obtaining the covari-
ance structure of an observed network flow.

5.5.2 Variance Sampling

First, we formulate an estimation approach which exploits the relation-
ship between the variance decay of a process aggregated over different
time scales and its autocovariance, given in Eq. (30).

Let the random variable xM denote an element of the aggregated vec-
tor x over some aggregation interval M > 1 as outlined in Section 5.4.3,
i.e., xM =

∑M
t=1 xt. Then the aggregated variance metric from Sec-

tion 5.4.3 may be written as σ2M = Var
[
1
MxM

]
, revealing that the scaled

aggregated variance corresponds to the diagonal values of the covari-
ance matrix Σ, i.e., M2σ2M = Var[xM] = Σii.

The aggregation interval M may be interpreted as the time between
two subsequent controller generated queries to the counters measuring
the traffic process x. For any aggregation interval length M, Eq. (30)
yields the following relationship between the variance Var[xM] = σ2xM of
the observed process and its covariance. Using matrix notation we write

σ2x1
σ2x2
σ2x3

...

σ2xM


=



1 0 0 · · · 0
2 2 0 · · · 0
3 4 2 · · · 0
...

...
...

. . .
...

M 2M− 2 2M− 4 · · · 2





c0

c1

c2
...

c(M−1)


, (44)

where cτ represents the elements of the (Toeplitz) covariance matrix
Σij = c|i−j| of the increment process x. From Eq. (44) it follows that
the autocovariance of the monitored process may be extracted from the
variances σ2xM of the monitored flow x over increasing intervals M. To

100 performance evaluation in centralized network architectures

this end, we invert the (M×M) matrix in Eq. (44) to obtain the following
expression for the autocovariance elements

c0

c1

c2
...

c(M−1)


=



1 0 0 · · · 0

−1 1/2 0 · · · 0

1/2 −1 1/2 · · · 0
...

...
...

. . .
...

0 · · · 1/2 −1 1/2





σ2x1
σ2x2
σ2x3

...

σ2xM


. (45)

In other words, the Eq. (45) enables us to extract the autocovariance struc-
ture of an arbitrary flow by monitoring the corresponding flow counters
and estimating the variances over different time intervals. The corre-
sponding aggregation intervals, i.e., the times between queries, are cho-
sen by the controller. Unfortunately in practical scenarios, where the
number of available traffic samples is limited the above approach is not
numerically stable. This limitation is due to the differencing operations
in Eq. (45) which amplify the errors of the variance estimates that neces-
sarily arise for small sample sizes. Therefore, in the following section we
consider an alternative approach, which estimates the covariance matrix
Σ directly.

5.5.3 Covariance Matrix Sampling

In order to estimate the traffic covariance matrix Σ from a finite number
of counter queries we observe the counter process x = (x1, x2, . . . , xT)>

over a finite monitoring duration of T time slots. We employ a sliding
window vector containing the Twin � T most recent counter readings
of the process x at time t ∈ [Twin, T] in order to derive the sample co-

variance matrix Σ̃ of x. We denote the sliding window vector at time t
as x[t] = (xt−Twin+1, xt−Twin+2, . . . , xt−1, xt)> − xt−Twin . At each time slot
t, xt−Twin is subtracted from the collected counter observations to obtain
the cumulative arrivals within the sliding widow interval Twin. Note, that
E[xt−Twin] = E

[∑t−Twin
i=1 xi

]
= (t− Twin)µX

Now, we obtain an estimate for each element Σ̃ij of the sample covari-

ance matrix Σ̃ as

Σ̃ij =
1

T − Twin + 1

 T∑
t=Twin

x̃
[t]

i x̃
[t]

j

− ijµ̃2X, (46)

where, x̃
[t]

n = x̃t−Twin+n represents a realization of the random variable
at the nth element of the sliding window vector x[t] and µ̃X = x̃Twin/Twin

is the sample mean of the increment process. The dimensions of the
estimated covariance matrix are determined by the window length, i.e.,

Σ̃ ∈ RTwin×Twin .

5.5 counter sampling 101

The validity of the estimator Eq. (46) follows from the stationarity
of the non-aggregated traffic process x. Using x[t] to denote vector of
Twin non-aggregated elements from x starting at time t, it follows from

Eq. (42) that ∆E
[
x[t]x[t]

>]
∆> = E

[
x[t]x[t]

>]
= Σ for any t.

5.5.4 Bias of the Covariance Matrix Estimator

We seek to find the bias of the elements Σ̃ij of the sample covariance

matrix Σ̃ for i, j ∈ [1, Twin]. To this end we take the expected value of
the estimator Eq. (46). We substitute k = t− Twin and represent the slid-
ing window vector as x[t] = (xk+1, xk+2, . . . , xk−Twin−1, xk−Twin)

> − xk.
Further, we use the following relationships between the increment and
cumulative processes: xk+1 − xk = xk+1 and xk+i − xk =

∑k+i
l=k+1 xl.

Realizations of the random variables xk and xk are denoted as x̃k and
x̃k, respectively. Thus, the expected value of the estimator is given by

E
[
Σ̃ij

]
= E

[
1

T − Twin + 1

T−Twin∑
k=0

(x̃k+i − x̃k)(x̃k+j − x̃k)

]
− ijE

[
µ̃2X
]

=
1

T − Twin + 1
E

[
T−Twin∑
k=0

(
k+i∑
l=k+1

x̃l

)(
k+j∑

m=k+1

x̃m

)]
− ijE

[
µ̃2X
]

=
1

T − Twin + 1

T−Twin∑
k=0

(
i∑
l=1

j∑
m=1

E[x̃k+lx̃k+m]

)
− ijE

[
µ̃2X
]
.

We substitute the relationship E[x̃k+lx̃k+m] = cX(l−m) + µ2X into the
equation above to obtain

E
[
Σ̃ij

]
=

i∑
l=1

j∑
m=1

[cX(l−m)] + ijµ2X − ijE
[
µ̃2X
]
. (47)

Further, we express the elements Σij of the autocovariance matrix of the
cumulative process x in terms of the autocovariance Σij of the increment
process as

Σij =

i∑
l=1

j∑
m=1

Σlm =

i∑
l=1

j∑
m=1

cX(l−m). (48)

Finally, substituting Eq. (48) and E
[
µ̃2X
]

= Var[µ̃X] + µ2X into Eq. (47)
yields the following bias for the autocovariance matrix estimator

E
[
Σ̃ij

]
= Σij − ijVar[µ̃X]. (49)

Again, we find that the bias depends on the variance of the sample
mean. As this variance tends towards zero for T → ∞ the estimator is
asymptotically unbiased6.

6 Note, that with M = i = j we recover the bias of the aggregated variance estimators

where E
[
σ̃2M

]
= E

[
Σ̃MM/M

2
]
.

102 performance evaluation in centralized network architectures

5.5.5 Random Inter Query Times

Using Eq. (46) we obtain an estimate of the traffic covariance matrix
based on flow counter values queried at equidistant times. However,
we are interested in minimizing the monitoring load on switches and
controllers by reducing the query intensity. At the same time, we wish
to avoid sacrificing the ability to capture flow characteristics at small
time scales. To this end, the controller chooses the intervals between
subsequent counter queries from a known probability distribution. In
Section 5.4 we showed that for packet sampling the distortions intro-
duced by the sampling process are reversible. In this section, we seek to
find a similar result for the case of counter sampling which we showed
to be structurally different in Lemma 5.5.

Consider the case where the cumulative counter process x is observed
at random intervals. We model the sampling strategy employed at the
controller as a random vector a, with elements ak ∈ {0, 1}, where a value
of one indicates that a counter sample was taken at time slot k. Inter
query times are independent and identically distributed (i.i.d.) accord-
ing to some distribution Fa. We define the query intensity µa as the
fraction of time slots at which counter queries were generated by the
controller. In the following, we evaluate the effects of the sampling strat-
egy on the estimated covariance matrix. We show that the resulting dis-
tortion can be reversed in the case of geometric sampling.

Analogous to the sliding window vector x[t] defined in the previous
section, let w[t] denote the sliding window vector containing Twin preced-
ing elements of the monitored traffic process at time t observed through
the sampling process a. Specifically, the elements of w[t] obtained from
counter observations are given by

w
[t]
l =

{
at−Twin+l(xt−Twin+l − xt−Twin) if at−Twin = 1

0 if at−Twin = 0,
(50)

with l ∈ [1, Twin] and t ∈ [Twin, T]. However, note that when the counter
query intervals are random, the sliding window w[t] can only be shifted
to time points at which a counter reading of the observed flow was
collected. Specifically, the sliding window vector is evaluated only when
at−Twin = 1, as the corresponding reference value xt−Twin is necessary to
obtain the cumulative traffic arrivals within the sliding window interval.
The vector elements are set to zero otherwise.

The counter sampling algorithm is represented graphically in Fig. 33.

At time t = 13 the sliding window vector w̃
[13]

is highlighted in red. Its
vector elements contain a zero whenever the cumulative data at the cor-
responding time slot is not known. The evaluated aggregation intervals
for all other positions of the sliding window are illustrated below the
time axis.

Clearly, the sampling process introduces a significant number of zero
elements into the sliding window vector w[t]. Hence, the resulting co-
variance matrix estimate is distorted and must be corrected to reverse

5.5 counter sampling 103

131 2 3 4 5 14 15 16 17 186

time

flow counter data7

17

aggregation interval

data aggregated over interval

0 1 0 0 0 1 0 1 1 0 0 1 0 0 1 1 0 11

x

a

5 3540 0 0 0 w[13]
v[t]

~

2

52

22

53

5

1

24

3

51
19

31
51

4

35

23

30

20

7

50

25

27

...

...

Twin

3 22 26 27 57 77 8479

Figure 33: Algorithm for random sampling of flow counters using a sliding
window with length Twin = 8.

the impact of sampling. Intuitively, the distortion is due to the fact that
the sampling process generates a different number of samples for each
element of the covariance matrix.

The relationship between the covariance of the monitored process x
and the covariance of the sampled process is described by the following
lemma:

Lemma 5.6. Let the random vectors x and a denote stationary and independent
traffic and sampling processes, respectively. The relationship between the traffic
covariance matrix Σ of x and the covariance matrix ΣW of the observation
process w is given as

Σw = K ◦Σ,

where the coefficient matrix K has the elements Kij = E
[
akak+iak+j

]
and ak

are the elements of the sampling process a for times k ∈ [Twin,∞]

104 performance evaluation in centralized network architectures

Proof. Let k = t−Twin then we obtain x[k+Twin]
l = xk+l−xk andw[k+Twin]

l =

ak+l(xk+l − xk) from Eq. (50).

Σwij = E
[
akw

[k+Twin]
i w

[k+Twin]
j

]
= E

[
akak+i(xk+i − xk)ak+j(xk+j − xk)

]
= E

[
akak+iak+j

]
E
[
(xk+i − xk)(xk+j − xk)

]
= E

[
akak+iak+j

]
E
[
x
[t]
i x

[t]
j

]
= KijΣij

Next, we consider a Bernoulli sampling process with geometrically
distributed inter sampling intervals with parameter p = µa ∈ [0, 1]. As
the process is memoryless we may write E

[
akak+iak+j

]
= E[ak]E[ak+i]

E
[
ak+j

]
and E[ak] = E[ak+i] = E

[
ak+j

]
= p. Consequently, we obtain

Σwij =

{
E[ak]E

[
a2k+i

]
Σii = p

2Σii : i = j

E[ak]E[ak+i]E
[
ak+j

]
Σij = p

3Σij : i 6= j.
(51)

Thus, we adapt Eq. (46) to obtain the elements of the sample autocovari-

ance matrix Σ̃ estimated from a sliding window of randomly sampled
observations over a time interval T are given as

Σ̃ij =
1

Kij
Σ̃wij =

1

Kij(T − Twin + 1)

 T∑
t=Twin

w̃
[t]

i w̃
[t]

j

− ijµ̃2w, (52)

where w̃
[t]

n denotes a realization of the random variable from Eq. (50),
i.e., the nth element of the sliding window vector w[t], and Kij is a
element-wise correction factor with Ki=j = p2 and Ki 6=j = p3 according
to Eq. (51). Further, we use µ̃w = x̃t∗/t∗ to represent the sample mean of
the increment process where t∗ denotes the time of the most recent ob-
servation. As E[t∗] = T − 1

p we approximate T ≈ t∗ for T � 1
p and hence

µ̃w ≈ µ̃X. Consequently, we may approximate the bias of the estimator
with the bias derived for the non-sampled case given in Eq. (49).

Finally, note that from Lemma 5.6 it follows that a reconstruction of
the sampled covariance matrix is not restricted to Bernoulli sampling
processes. However the analytic evaluation of the term E

[
akak+iak+j

]
is significantly simplified for memoryless sampling distributions.

5.5.6 Impact of Random Sampling

In the following, we evaluate the impact of the sampling intensity p on
the estimate of the covariance matrix, given a finite measurement dura-
tion T using simulations. To this end, we consider a synthetic random
process7 with known covariance matrix Σ. We generate sample paths

7 We generate fBm sample paths with the following parameters: H = 0.8, σ = 4, µ = 0.
We consider processes with non-Gaussian increments in Section 5.6.3.

5.6 sample path generation 105

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 10

0.5

1

1.5

2
·106

Probing intensity p

Fr
ob

en
iu

s
no

rm

N=104 samples
N=105 samples

Figure 34: Effects of sampling intensity and sampling duration on the covari-
ance matrix estimate. Deviation between the analytical and empirical
covariance matrices for synthetic traffic.

of the process and randomly sample each one using geometrically dis-
tributed inter sample intervals with sampling intensities p ∈ [0.05, 1].

Next, we estimate the empirical covariance matrix Σ̃p for each sampled
trace as outlined above. Finally, to quantify the similarity between the
analytical covariance matrix and its estimate derived with sampling we

calculate the Frobenius norm ||Σ− Σ̃p||F. For a matrix U the Frobenius

norm ||U||F is defined as
√∑

i

∑
j |Uij|

2. The experiment is repeated 50
times using different realizations of the sampling process. In Fig. 34 we
depict box plots of the calculated norms. The first insight we draw from
the figure is that for a fixed monitoring duration T random sampling as
proposed is highly beneficial. The plateaus indicate that we can save up
to 80-90% of the samples without significantly degrading the quality of
the estimate. The second effect seen in Fig. 34 is that the quality of the
estimate rises, as expected, for longer sampling intervals T .

5.6 sample path generation

The sampling approaches outlined above enable us to reverse the effects
of the sampling process and to derive an estimate of the covariance ma-
trix for any monitored flow. We now address the problem of generating
independent sample paths which possess the same correlation charac-
teristics as the observed traffic process x. We assume that the covariance
matrix Σ of the observed flow is known or has been estimated using the
techniques presented in the previous sections.

106 performance evaluation in centralized network architectures

5.6.1 Cholesky Decomposition

In order to synthesize an arbitrary number of sample paths ỹ from the
estimated covariance matrix of an observed flow, we make use of an ap-
proach based on the Cholesky decomposition [62] which is applicable to
any square, symmetric, positive definite matrix. Given an autocovariance
matrix Σ, which meets these requirements, the Cholesky decomposition
yields a unique lower triangular matrix L such that L contains only pos-
itive values and

LL> = Σ.

Next, let z = (z1, z2, . . . , zTwin)
> denote a column vector of uncorrelated

random variables zl with zero mean and unit variance, i.e., E[zl] = 0,
E
[
z2l
]
= 1 and consequently E

[
zz>

]
= I. Further, assume that the ele-

ments zt are independent and drawn from the normal distribution. We
can then generate a new process y using

y = Lz. (53)

The covariance matrix of this process is given as

E
[
yy>

]
= E

[
(Lz)(Lz)>

]
= E

[
Lzz>L>

]
= LE

[
zz>

]
L>

= LIL> = Σ. (54)

In other words, the process y possesses the same autocovariance struc-
ture as the observed flow x. As a result, we may synthesize an arbitrary
number of sample paths ỹ using different realizations z̃ of the random
variables in z.

5.6.2 Positive Definiteness of the Sample Autocovariance

A prerequisite for the Cholesky decomposition is that the factorized ma-
trix is positive-definite. A matrix is positive definite (PD)8 if it is sym-
metric and all its eigenvalues are positive.

While the (distorted) empirical covariance matrix Σ̃w is PD by con-

struction, the corrected estimate Q ◦ Σ̃w, with coefficient matrix Q =

(Qij) = (1/Kij), is only guaranteed to be PD when Q � 0 (this follows
from the Schur product theorem). Unfortunately for Bernoulli sampling
processes the coefficient matrix in Eq. (52) is not PD.

A number of approaches for finding the nearest positive definite ma-
trix have been proposed [82, 72]. In this work, we rely on semi-definite
programming in order to ensure the positive-definiteness property of
the covariance matrix estimate. Specifically we use CVX, a package for
solving convex programs [64, 63].

8 We use the notation (·) � 0 to denote that a matrix (·) is PD.

5.6 sample path generation 107

To obtain a PD autocovariance matrix we formulate the following min-
imization problem

||∆S∆> − Σ̃||F, s.t. S � 0, (55)

where the optimization variable S is a Twin× Twin symmetric Toeplitz ma-
trix. This optimization formulation has a complexity of O(T2win) where
Twin corresponds to the largest evaluated lag in the autocovariance
function. A less computationally intensive formulation (with O(Twin)

complexity) may be obtained from Eq. (44), which relates the autoco-
variance of the increment process to the variances of the cumulative
process at different aggregation intervals. These variances correspond

to the diagonal of the sample autocovariance matrix σ̃ = diag(Σ̃) =

(Σ̃11, Σ̃22, . . . , Σ̃TwinTwin)
>. Thus, instead of minimizing the Frobenius

norm in Eq. (55), we may minimize the norm of an Twin-dimensional
vector to obtain a PD estimate of the autocovariance matrix Σ. Specifi-
cally, we note that if the Toeplitz optimization variable S defined above
is an estimate of the autocovariance matrix Σ, its first column is an es-
timate of the autocovariance (cX(0), cX(1), . . . , cX(Twin))

>. Let s denote
this vector, then using U to denote the Twin × Twin matrix from Eq. (44)

U =


1 0 · · · 0

2 2 · · · 0
...

...
. . .

...

Twin 2Twin−2 · · · 2

 and V =


1 0 · · · 0

0 2−2 · · · 0
...

...
. . .

...

0 0 · · · T−2win

,

we formulate the following optimization problem:

||VUs −Vσ̃||2, s.t. S � 0. (56)

In other words, we recover S from the Toeplitz structure of the autoco-
variance matrix Σ. In both cases, in subsequent calculations we replace

the sample autocovariance Σ̃ with the positive-definite estimate ∆S∆>

from the solver.

5.6.3 Reproducing the Traffic Increment Distribution

So far we focused on the reproduction of the autocovariance structure
of the observed traffic flow. Note, that the autocovariance relationship
in Eq. (54) holds regardless of the probability distribution of the incre-
ments of the traffic process y. Thus, in order to ensure that the synthe-
sized sample paths accurately mirror the characteristics of the observed
flow, we additionally consider the increment distribution of the observed
process over different aggregations intervals. In the sequel, we evaluate
conditions under which the factorization approach outlined above yields
sample paths which simultaneously capture the autocovariance and the
increment distribution of the observed process.

108 performance evaluation in centralized network architectures

We first consider the case where the elements zl are normally dis-
tributed and independent. From Eq. (53) it follows that the elements yl
of the process y are comprised of the weighted sum yl =

∑l
s=1 Llszl,

where Lij denotes a matrix element of L. Therefore, the distribution of
the increments yl is determined by the distribution of the elements
zl of the generating random vector z. Consequently, if the vector el-
ements zl are drawn from a standard normal distribution the incre-
ments of the sample path vector y will also be normally distributed
due to the additive property of Gaussian variables. Specifically, since
Var[Llszl] = L2lsVar[zl] and Var[zl] = 1 the elements of yl will be nor-
mally distributed with

yl ∼ N

(
0,

l∑
s=1

L2ls

)
.

Thus, in order to generate sample paths with Gaussian increments, such
as fBm, it is sufficient to draw normally distributed values in z.

Since the seminal paper [85] numerous works [106, 77, 145, 38] have
tested and adopted the normal distribution as a model for Ethernet
LAN/WAN traffic. For sufficiently large aggregation intervals the dis-
tribution of the increments of any traffic flow x tends towards a normal
distribution. This behavior, which arises in its simplest form as a conse-
quence of the central limit theorem, has been examined together with
other traffic properties such as LRD under various conditions, e.g., in
[137, 110]. Hence, the use of the normal distribution is justified for cases
where the minimum time slot between counter queries is sufficiently
large or when the queried flow is an aggregate of many fine grained
flows. For very fine timescales, empirical increment distributions were
shown to deviate considerably from the Gaussian model, e.g., in [77, 67].
Hence, for traffic flows with an increment distribution which deviates
significantly from the normal distribution additional steps must be taken
to ensure that the synthesized sample paths accurately reflect the char-
acteristics of the considered flow.

Next, we consider processes x with arbitrary, non-Gaussian incre-
ments. Recall, that Eq. (53) may be rearranged to obtain a generating
vector z = L−1x with uncorrelated elements, unit variance and zero
mean, as well as an increment distribution which matches the distribu-
tion of the process increments. However, in the general case the elements
of z are not guaranteed to be independent. Thus, as the conditional prob-
abilities associated with the elements of z are typically unknown the
generation of independent sample paths is not feasible. Indeed, in the
sequel we show that the generation of sample paths with a prescribed
covariance structure from independently drawn random variables zt is
only possible if these variables are drawn from a normal distribution.
We propose a workaround for this restriction in Section 5.6.4.

Consider the random increment process vector y with covariance ma-
trix Σ =MM> and y =Mz. Clearly, the random vector z may be used

5.6 sample path generation 109

to generate y as well as the corresponding aggregated traffic process y
using

∆Mz = ∆y = y.

Next, note that due to the stationarity of the traffic increment process
y any two vector elements yr,ys are identically distributed. Hence the
following relationship must hold:

yr
d
= ys

r∑
t=1

Mrtzt
d
=

s∑
t=1

Mstzt, (57)

where Mij are the elements ofM and d
= denotes equality in distribution.

If we require that the random variables zt are independent, it follows
from Eq. (57) that the equality in Eq. (57) if fulfilled only if the elements
zt follow a stable distribution. The key property of random variables
with a stable distribution is that the weighted sum of independent real-
izations of the variable have the same distribution (up to location and
scale) as the variable itself [129, 104]. Clearly, this property is necessary
to satisfy the relationship above. Stable distributions are characterized
by four parameters: stability (α), skewness, scale and location. We note
that the stable distribution with parameter α = 2, which is the normal
distribution, is the only stable distribution with a finite variance. Hence,
it follows that in order to satisfy both Eq. (57) and ME

[
zz>

]
M> = Σ

(analogous to Eq. (54)) the elements zp must be normally distributed.
Consequently the increments of the processes y and y must also be Gaus-
sian.

5.6.4 Normalizing Transformations

Given the normality requirements presented above, in the following
we consider a class of transformations which modify the increments of
certain non-normal processes to yield a normal distribution. So-called
power transformations are a widely used analysis technique. Before
delving into the specifics of the transform we outline our proposed
methodology.

Consider a function g which transforms the elements xt of a ran-
dom vector x such that the elements g(xt) = vt of the transformed pro-
cess v are normally distributed. Further assume that g is invertible, i.e.,
g−1(g(xt)) = xt. Hence, instead of sampling the traffic process x directly
we apply the sampling approaches outlined in Section 5.5.3 to the trans-
formed process v. Specifically, we use v to estimate the elements Σvij of
the corresponding covariance matrix Σv and subsequently calculate the
Cholesky decomposition LvL

>
v = Σv.

As the increments of the transformed process v = Lvz are normally
distributed it follows that the increments of the vector z are independent

110 performance evaluation in centralized network architectures

and normally distributed with zero mean and unit variance. Therefore
we can draw an arbitrary number of realizations z̃ to generate indepen-
dent sample paths ṽ of the correlated, Gaussian increment process v.
Finally, we apply the inverse transform to all sample path elements to
obtain

g−1(v) = x. (58)

Note, that while the autocovariance matrix Σv of the transformed pro-
cess v and the autocovariance matrix Σx of the original vector x are
structurally different9 the original covariance Σx is restored through the
reverse transform of the sample path elements xt = g−1(vt). Specifically,
we may write the elements of Σx as

Σxij = E
[
g−1(vi)g

−1(vj)
]
− E
[
g−1(vi)

]
E
[
g−1(vj)

]
= E

[
xixj

]
− E[xi]E

[
xj
]
.

box-cox transform In the sequel we use a well known normaliza-
tion technique. The so-called Box-Cox transform [14], defined as

g(xt, λ) =

{
xλt−1
λ for λ 6= 0

ln(xt) for λ = 0,
(59)

aims to normalize the increment distribution of x using some param-
eter λ. The parameter λ is estimated from the process data using a
maximum likelihood approach. It can be shown using L’Hôpital’s rule

that limλ→0
xλt−1
λ = ln(xt). In Fig. 35 we depict the increment distribu-

tions for an exemplary set of processes xλ, each of which transforms
to an identically distributed Gaussian process g(x〈λ〉, λ) = v with vt ∼

N(1, 0.62) for a specific value of λ. Note, that the Box-Cox transform
of the normally distributed process x〈1〉, yields another normally dis-
tributed process. Further, x〈0〉 is a log-normal process. In the following
we will show empirically that such distributions can be found in Internet
traffic traces.

In our framework we estimate a suitable parameter λ from the col-
lected observations and apply the transform Eq. (59) to each collected
sample. Our experiments indicate that the Box-Cox transform is applica-
ble to a wide range of real-world traffic sources. We evaluate the incre-
ment distribution of several traffic flows from publicly available Internet
backbone traces. For each trace we aggregate the traffic over 10 ms inter-
vals. The probability density function estimates of the flows are depicted
in Fig. 36. In addition, the figures contain Quantile-Quantile plots (QQ-
plots) which compare the flow increment distribution of each trace to a
normal distribution - a line in the QQ plot indicates that the considered
distribution is normally distributed. In Fig. 36a we evaluate the total

9 In Section A.4 of the Appendix, we show that for g(xt) = ln(xt) it is possible to derive
an analytic relationship between the covariances Σv and Σx. However, such a derivation
is not feasible in the general case.

5.6 sample path generation 111

0 2 4 6 8 10 12 14 16 18 20
0

0.2

0.4

0.6

0.8

1

x

Pr
ob

ab
ili

ty
de

ns
it

y
f(

x)

λ=-0.5
λ=0
λ=0.5
λ=1
λ=1.5

Figure 35: Exemplary probability density functions for increment processes
which can be transformed to identically distributed Gaussian pro-
cesses using the Box-Cox transform.

traffic of a CAIDA trace [131] with a mean rate of 6.1Gbps. The QQ-plot
indicates that the distribution of the increments is close to normal. Next,
we select a dominant sub-flow from the same trace which has a mean
rate of 307Mbps. Clearly the distribution of the flow is skewed and the
QQ-plot indicates a significant deviation from normality. Finally we in-
spect the total traffic from a trace from MAWI [98] with a mean rate of
264Mbps. Again we find that the increments are non-Gaussian.

Next, we apply the Box-Cox transform to each of the traces. Using
the maximum likelihood we estimate the parameters λ̃1 = 0.12, λ̃2 =

−0.08, and λ̃3 = 0.27 corresponding to the CAIDA, CAIDA sub-flow
and MAWI traces, respectively. The corresponding QQ-plots are shown
in Fig. 37. Clearly the QQ-plots indicate that the distributions of the
transformed increments closely resemble a normal distribution for all
considered cases.

Finally, we compare the sample autocovariance Σ̃xC2 of the CAIDA
Internet flow (which we denote xC2) to the autocovariances Σ̃yC2 of in-
dependent sample paths yC2 generated using the approach outlined
above, as well as the corresponding increment distributions. Specifi-
cally, we generate 1× 105 independent sample paths yC2 using yC2 =

g−1(Lz, λ̃2) where z is a random vector with elements drawn from a
standard normal distribution and Σ̃vC2 = LL> is the sample covariance
matrix of the transformed process vC2 = g(xC2, λ̃2). Figure 38 depicts
the autocovariance structure10 of the CAIDA trace as well as the mean
of the autocovariances of the generated independent sample paths (the

10 For clarity, we plot the autocovariance functions c̃(·)(τ) associated with the autocovari-

ance matrices Σ̃(·), with elements Σ̃(·)ij = c̃(·)(i− j).

112 performance evaluation in centralized network architectures

−4 −2 0 2 4
0.6

0.7

0.8

0.9

·107

Normal quantile

Fl
ow

qu
an

ti
le

0.4 0.6 0.8 1

·107

0

2

4

6

8

·10−7

x

PD
F

es
ti

m
at

e
f̂(
x
)

(a) CAIDA Trace

−4 −2 0 2 4

0

0.5

1

·106

Normal quantile

Fl
ow

qu
an

ti
le

0 0.5 1 1.5

·106

0

2

4

·10−6

x

PD
F

es
ti

m
at

e
f̂(
x
)

(b) CAIDA Trace (sub-flow)

−4 −2 0 2 4

0

0.5

1

·106

Normal quantile

Fl
ow

qu
an

ti
le

0 0.5 1 1.5

·106

0

1

2

3

·10−6

x

PD
F

es
ti

m
at

e
f̂(
x
)

(c) MAWI Trace

Figure 36: PDFs and corresponding QQ-plots of the increment distribution of
Internet backbone traces.

5.6 sample path generation 113

−4 −2 0 2 4
46

47

48

49

Normal quantile

Fl
ow

qu
an

ti
le

(a) CAIDA Trace (λ1 = 0.12)

−4 −2 0 2 4
7.6

7.8

8

8.2

8.4

Normal quantile

Fl
ow

qu
an

ti
le

(b) CAIDA Trace (sub-flow) (λ2 = −0.08)

−4 −2 0 2 4
60

80

100

120

140

160

Normal quantile

Fl
ow

qu
an

ti
le

(c) MAWI Trace (λ3 = 0.27)

Figure 37: QQ-plots of the transformed Internet traces indicating a Gaussian
distribution of the transformed increments.

114 performance evaluation in centralized network architectures

10−2 10−1 100 101
106

107

108

109

τ [s]

A
ut

oc
ov

ar
ia

nc
e

CAIDA trace
generated sample paths

Figure 38: Autocovariance of a CAIDA Internet flow and mean autocovariance
of 1× 105 generated independent sample paths. Dotted line indi-
cates the median. Shaded area indicates the interquartile range.

shaded area represents the 25-75 percentile range, the dotted line indi-
cates the median). We observe that the mean of the sample path autoco-
variances closely follows the covariance structure of the original trace.

In addition, we evaluate the empirical CDFs Gk of the cumulative in-
crements xC2k of the CAIDA flow trace aggregated over the intervals of
k ∈ {1, 10, 100, 1000} time slots with duration δ = 10ms. We compare Gk
to the empirical CDFs of the cumulative sample path increments yC2k .
The results are depicted in Fig. 39 where the CDFs Gk are represented
using solid lines and dashed lines represent the CDFs of the cumulative
increments of all generated sample paths for the considered integration
intervals k. Evidently, the distributions match very well.

To further verify the accuracy of the covariance estimate obtained us-
ing a normalizing transform, we repeat the experiment described above
for a traffic process with known statistical properties. Specifically, we
compare the sample autocovariance Σ̃xLRD of a synthetic LRD trace xLRD
with non-Gaussian increments to the autocovariance of the correspond-
ing sample paths yLRD generated using the Cholesky decomposition. To
obtain xLRD we generated a trace x∗ with an autocovariance structure
characterized by a Hurst parameter of H = 0.8. We transformed the ele-
ments x∗t of this trace using Eq. (59) with λ̃2 to get xLRDt = (̃λ2x

∗
t +1)

1/λ̃2 .
Furthermore, the variance of xLRD is configured to match the variance of
the CAIDA flow xC2. Finally, we repeated the experiment outlined above
to obtain the autocovariances depicted in Fig. 40. Clearly, the mean of
the autocovariances of the generated sample paths matches the autoco-
variance of xLRD exactly.

5.6 sample path generation 115

−1 −0.5 0 0.5 1

·108

0

0.2

0.4

0.6

0.8

1

data

G
1
0
0
0

(d
at

a)

−2 −1 0 1 2

·107

0

0.2

0.4

0.6

0.8

1

data

G
1
0
0

(d
at

a)

−2 0 2 4

·106

0

0.2

0.4

0.6

0.8

1

data

G
1
0

(d
at

a)

−0.5 0 0.5 1

·106

0

0.2

0.4

0.6

0.8

1

data

G
1

(d
at

a)

Figure 39: Empirical CDFs of the observed traffic process (solid lines) and the
generated sample paths (dashed lines) over different aggregation in-
tervals.

5.6.5 Simulation Results

In this section we use independent sample paths generated using the
methods above to evaluate the queue length distribution for a CAIDA
and MAWI flow assuming that a fixed capacity C is allocated to the cor-
responding flows. For each experiment we generated 1e6 sample paths
and evaluated the buffer overflow probability using a Monte Carlo ap-
proach with Eq. (7). The mean rate of the evaluated CAIDA flow is
468Mbps. Hence, we simulated the queue length assuming that the
flow is allocated the following capacities C = {550, 600, 650, 700, 750,
1000} Mbps. In addition, we repeat the experiments using an autoco-
variance matrix obtained by randomly sampling the CAIDA flow with
an probing intensity µA = 0.25.

The simulation results for the CAIDA trace are depicted in Fig. 41.
Clearly, the buffer overflow probability decreases as more capacity is
assigned to the flow. The simulations indicate that assuming that the
flow is allocated a capacity of 650Mbps a queue length of 1MB will
be exceeded with a probability of less than 1e− 4. Moreover, the results
obtained from random sampling are very close to the non-sampled sim-
ulations.

Next, we repeat the experiment for a MAWI flow, which has a mean
rate of 264Mbps, evaluating the capacities C = {300, 400, 500, 600, 700,

116 performance evaluation in centralized network architectures

100 101 102 103
108

109

1010

τ

A
ut

oc
ov

ar
ia

nc
e

synthetic LRD trace
generated sample paths

Figure 40: Autocovariance of synthetic LRD traffic flow and mean autocovari-
ance of 1× 105 generated independent sample paths. Dotted line in-
dicates the median. Shaded area indicates the interquartile range.

1000}Mbps. The results are depicted in Fig. 42. Again, we observe that
the results obtained from random sampling are close to the non-sampled
simulations. Note, that even though the mean rate of this flow is signif-
icantly smaller than the previous scenario, a capacity of over 500Mbps
is required to obtain a similar overflow probability for a 1MB queue
length.

5.7 centralized monitoring of distributed resources

The sampling approach outlined in the previous section enables the esti-
mation of the covariance matrix of arbitrary flows using random packet
sampling or by querying the associated byte counters on the forwarding
device at random intervals. In this section we discuss several aspects
of random sampling in centralized monitoring infrastructures. First, we
consider the implications of monitoring multiple flows on a single de-
vice. Subsequently, we present a controller strategy for distributing the
flow queries across multiple devices while maintaining a prescribed
probing intensity at specific nodes.

monitoring multiple flows We consider the fact, that aggregate
network traffic typically contains a small number of so-called elephant
flows which contribute the largest share the overall traffic [155]. These
dominating flows are particularly interesting candidates for monitoring.
Moreover an operator may consider the aggregate traffic associated with
a specific tenant tunnel as an individual flow.

5.7 centralized monitoring of distributed resources 117

0 0.5 1 1.5 2 2.5 3
10−5

10−4

10−3

10−2

10−1

100

Buffer length b [MB]

P[
B(

t)
>

b]

C=1000Mbps
C=750Mbps
C=700Mbps
C=650Mbps
C=600Mbps
C=550Mbps

Figure 41: Queue simulations for different allocated capacities (CAIDA).
10× 106 sample paths. Dashed lines indicate estimates obtained
with random sampling.

In order to evaluate the impact of a subset of flows on a given inter-
face, e.g., the removal of a dominant flow or a the migration of virtual
link from the switch, the SDN controller should consider the total traffic
traversing the examined link.

We model the total traffic traversing a switch interface as a sum of
statistically independent flows xi, i.e., xIF =

∑
i∈S xi, where the subscript

IF denotes the examined interface and S denotes the set of all flows
traversing that interface. From the independence of the flows, it follows
that the covariance matrix of the total traffic ΣIF is given by the sum of
the covariance matrices Σi of the individual flows i ∈ S. Therefore, given
a set O of observed flows, the covariance matrix of the remaining traffic
is obtained as ΣIF −ΣO, where ΣO is the sum of the covariance matrices
Σi of flows i ∈ O, i.e., the covariance matrix of the set of observed flows.
Hence, in order to enable an evaluation of the impact of the monitored
flows on the remaining interface traffic, we let the controller query the
switch port counters in addition to the flow counters.

flow monitoring across multiple nodes . In order to main-
tain an accurate view of the substrate state an SDN controller needs to
monitor various counters across connected forwarding devices. In the
following, we describe a strategy for viable multi-counter monitoring.
We consider a controller that uses a counter sampling strategy based on
geometrically distributed inter query times.

Consider a controller that generates query messages with an allocated
maximum rate rc which is configured by the network operator. Conse-
quently, δC = 1/rc denotes the minimum time between two subsequent

118 performance evaluation in centralized network architectures

0 0.5 1 1.5 2 2.5 3
10−5

10−4

10−3

10−2

10−1

100

Buffer length b [MB]

P[
B(

t)
>b

]

C=1000Mbps
C=700Mbps
C=600Mbps
C=500Mbps
C=400Mbps
C=300Mbps

Figure 42: Queue simulations for different allocated capacities (MAWI trace).
10× 106 sample paths. Dashed lines indicate estimates obtained
with random sampling.

query messages issued by the controller (to any device). For a specific
switch S let δS denote the minimum time interval between two subse-
quent query messages, which corresponds to a maximum query rate of
rs = 1/δS at that switch. Note that δS corresponds to the discrete sam-
ple time “slot” defined in the previous sections. Typically, the rate rS
at which the switch control logic can process statistic queries is signifi-
cantly lower than the rate at which monitoring queries can be generated
at the controller which is hosted on high performance server hardware,
hence, we assume δS � δC.

In the following we outline a multi-query strategy using the example
depicted in Fig. 43. We assume that query timescales δS for switches
in the substrate network vary and are adjusted by the controller. Sim-
ilarly, each switch may be probed with a different query intensity pS.
For ease of exposition, we ignore packet overheads and assume that
each flow query is contained within a separate control message. Con-
sider the query times of three flows fR, fG, fB depicted in Fig. 43. The
controller is configured to query each of the flows every δR,G,B = 4δC
time slots, with sampling intensities pR = 1/5, pG = 1/10, pB = 2/5, re-
spectively. The controller allocates a fixed number of tokens every time
slot (10 tokens in this example) and assigns labels to the tokens such
that the fraction of tokens for one flow corresponds to its intended sam-
pling intensity. If the sum of the sampling intensities is smaller than one,
then some tokens remain unlabeled. At every time slot δC the controller
randomly selects one token, and generates a query message for the cor-
responding flow counter. The controller remains silent if an unlabeled
token is selected. As a result, the token selection can be interpreted as

5.8 conclusions 119

flow fR

to
ke

ns

controller
queries

flow fG

flow fB

flow fY

flow fP

δC

time

δY

2 3 4 65 7 8 9 10 11 12 13 14 151 16

Y
Y

B

P

Y
Y

R

G
R

R
R

R R
RR

B
B
B

B
B
B
B

B
B
B
B

B
B
B
B

G G G

G

P
P
P
P

P P

P
P
P
P
P

P
P
P
P
P

P
P
P
P
P

Y
Y

Y
Y

Y
Y

Y
Y

YY B R B

G

B

P

P

R

B

Y

P

Y

δB

Figure 43: Controller query strategy with geometric inter sample times.

a Bernoulli trial such that the inter-query intervals to the corresponding
switch counter are geometrically distributed. Therefore, a reconstruction
of the sampling distortion is possible using the framework outlined in
the previous section.

Next, the controller adds two new flows to the controller’s monitoring
list: fY with δY = 3δC and pY = 1/5 and fP with δP = 4δC and pP = 1/2.
Since not enough free tokens are available at time slot 1 the controller
periodically allocates tokens for flow xp starting at the empty time slot
311. For the considered scenario the random selection scheme is repeated
in a round robin fashion every 12δc time slots. The controller may add
further flows for monitoring until all available tokens are labeled.

5.8 conclusions

The work presented in this chapter was motivated by the need for a ex-
pressive characterization of network flows which may be used to quan-
tify the requirements in multi-tenant virtual environments. Although the
proposed mechanisms are applicable to any scenario where a flow level
monitoring of traffic autocovariances is required, in our view techniques
which enable the extraction of QoS metric are particularly relevant for
SDN environments where applications operate using a global view of
the network resources. In this context, the integration of the proposed
mechanisms into SDN controller frameworks is consistent with the SDN

11 The allocation of the starting time slot may be randomized.

120 performance evaluation in centralized network architectures

goal of enabling the reuse of low-level network functions through suit-
able abstractions.

In this chapter we focused on mechanisms for extracting the autoco-
variance of individual flows from network measurements. We showed
that the autocovariance metric may be used to exploit a number of
theoretical results which enable the derivation of QoS metrics such as
stochastic delay and backlog bounds. Specifically, we used the empiri-
cally obtained covariance structure to generate independent traffic sam-
ple paths which replicate the statistical properties of the observed flow.
Subsequently, the sample paths are to carry out a Monte Carlo simu-
lation in order to evaluate the queue length distributions which result
from forwarding the traffic over specific switch interface configurations.

To minimize the monitoring traffic load and the processing required
at the switches without sacrificing resolution we use random sampling.
Two approaches were analyzed: the use of randomly sampled pack-
ets, e.g., generated by sFlow, and the use of randomly spaced counter
queries, e.g., from flow counters in OF switches. We provided an ana-
lytical evaluation of random sampling, showing that the effects of the
sampling process may be reversed to obtain asymptotically unbiased
estimates of the flow autocovariance. In addition, we quantified the ef-
fects of finite measurement durations on the quality of the estimate. We
highlighted the relationship between the process autocovariance and the
aggregated variance metric, demonstrating that a differencing approach
may be used to obtain an unbiased estimate of the Hurst parameter,
which does not depend on the duration of the observation. Our results
highlight the relationship between the packet and counter based auto-
covariance estimators, but also indicate that the two problems are not
equivalent for the case of randomly drawn observations.

Next, we evaluated approaches for synthesizing independent sample
paths, which match the increment distribution of the process in addition
to its covariance structure. For processes with non-Gaussian increments
we used Internet traffic traces to show that a normalizing transforma-
tion of the process yields feasible results. Equipped with these results,
we used Internet traffic traces to evaluate the queue violation probabil-
ity given different capacity assignments. Our simulations confirm that
random sampling does not have a notable negative impact on the con-
sidered QoS metric.

Finally, we demonstrated how the proposed sampling strategy may
be integrated into a centralized controller framework enabling the mon-
itoring of a large number of flows across a pool of substrate switches.

6
C O N C L U S I O N S A N D F U T U R E W O R K

The goal of this thesis was to further the understanding of the abstrac-
tions necessary to implement a versatile virtualization platform for SDN
and to develop methodologies which augment the network view with
useful QoS metrics. In the first part of the thesis we proposed a scalable
architecture which enables a full virtualization of the SDN infrastruc-
ture, granting tenants unrestricted access to isolated virtual SDN topolo-
gies. To achieve this we identified mechanisms for mapping different
physical resources to specific virtual contexts. Using the notion of vir-
tual context identifiers we decoupled the resource encoding from the
underlying technology and evaluated the feasibility and limitations of
the flowspace segmentation in SDN forwarding devices. Context identi-
fiers are concealed from the tenant by the hypervisor to create an illusion
of a dedicated SDN substrate.

We demonstrated that the instantiation of arbitrary virtual network
topologies, i.e., infrastructure virtualization, requires a 1:1 mapping be-
tween the virtual and physical resources, in order to enable the deploy-
ment of resilience mechanisms in the vSDN. Moreover, the vSDN re-
sources must be allocated statically by the InP to avoid conflicts with
optimization approaches carried out in the virtual domain.

Conversely, we derived a simplified topology abstraction which fully
offloads the provision of resilience and load balancing mechanisms to
the substrate operator. As a consequence virtual topologies may be speci-
fied as a connectivity service between multiple tenant PoPs, with QoS de-
mands at each tenant attachment point. We evaluated the requirements
for embedding such a connectivity service, finding that the capacity al-
location costs are minimized for rooted tree topologies. An additional
reduction of the allocation costs is only possible if the point-to-point
traffic requirements between the tenant attachment points are known.
However, such demands are inherently difficult to predict. Finally, we
detailed a virtual router architecture as an example of a layer 3 connec-
tivity service.

The findings of the first part of our work highlight the importance of
a comprehensive view of the network state. Due to the characteristics
of long-memory Internet traffic over-provisioning is inevitable for main-
taining reliable performance in computer networks. Hence, in order to
dimension the physical resources allocated to virtual entities the SDN
hypervisor requires techniques which provide a tight characterization of
the carried network traffic. Moreover, the derived QoS metrics may be
used by SDN applications to optimize their performance. Thus, in the
second part of this thesis we focused on the extraction of traffic charac-
teristics and the derivation of associated QoS parameters. We evaluated

121

122 conclusions and future work

approaches for extracting flow-level traffic correlations from network
observations obtained from packet samples or switch counter queries.
Random sampling was used to reduce the monitoring load while main-
taining a high resolution of the autocovariance structure. We analyzed
the impact of the sampling distribution on the considered estimates and
outlined mechanisms for reversing distortions. Moreover, we carried out
an analytical evaluation of the effects of finite sampling durations on the
estimators. We showed that the autocovariance estimators are asymptot-
ically unbiased. For finite measurement durations the bias corresponds
to the variance of the sample mean. For LRD processes this variance de-
cays slowly and is characterized by the Hurst parameter. We derived an
approach for estimating the Hurst parameter, proving that the resulting
estimate is unbiased and regardless of the length of the measurement.

The autocovariance estimates were used to perform Monte Carlo simu-
lations with the goal of evaluating the queue length distribution for the
observed flow for arbitrary capacity assignments. To this end, we out-
lined approaches for synthesizing independent sample paths which ex-
hibit the same correlation structure as the observed traffic flow and also
match its increment distribution under certain conditions. We demon-
strated that the use of random sampling does not have a notable effect
on the obtained estimate of the queue length distribution.

The approaches presented in this work are in line with the concepts
defined by the SDN paradigm. The proposed connectivity service ab-
straction hides the complexity of the underlying topology design from
the tenant, requiring only the specification of QoS demands and the
configuration of the control logic. The integration of the proposed mea-
surement methodologies into a controller framework which provides a
global view of the network state enables SDN applications to benefit
from the derived QoS metrics. We expect that such derived traffic met-
rics will become increasingly important as SDN technology matures and
SDN application begin to make use of the provided abstractions, mini-
mizing the need for human interaction in deploying network services.

The results of this thesis lead to some open research questions and
possible future research directions. The proposed scheme for encoding
packet and table identifiers relies on translator lookup tables. While it
is possible to implement such lookups using current versions of the OF
specification, extensions to the specifications and switch interface may
facilitate the instantiation of virtual resources. Moreover, the monitoring
traffic load may be further reduced by partially offloading the parsing
of counter statistics to the switch control logic and transmitting flow
covariance estimates to the controller for aggregation.

In this thesis we assumed a model in which virtual links are allocated
a fixed capacity on all interfaces along the corresponding substrate path.
In future work, the monitoring framework may be extended to accom-
modate cases where switch interfaces are modeled as a stochastic ser-
vice. Finally, the derived QoS parameters may be analyzed using recent
results on end-to-end performance evaluation.

Part II

A P P E N D I X

A
P R O O F S A N D D E R I VAT I O N S

a.1 covariance of the sample means

To derive an expression for the bias of the sample autocovariance in
Eq. (23) we evaluate the expected value E[µ̃X0µ̃Xτ] with µ̃X0 =

1
(T−τ)

∑T−τ
t=1 x(t)

and µ̃Xτ =
1

(T−τ)

∑T
t=τ+1 x(t) to obtain

E[µ̃X0µ̃Xτ] =
1

(T − τ)2
E

[
T−τ∑
t=1

x(t)

T∑
t=τ+1

x(t)

]

=
1

(T − τ)2
E[(x1 + x2 + . . .+ xT−τ)(xτ+1 + xτ+2 + . . .+ xT)]

=
1

(T − τ)2

T−τ∑
i=1

T−τ∑
j=1

E
[
xixτ+j

]
.

Using the relationship E
[
xixj

]
= cx(i − j) + E[xi]E

[
xj
]

with E[xi] =

E
[
xj
]
= µx we obtain

E[µ̃X0µ̃Xτ] =
1

(T − τ)2

T−τ∑
i=1

T−τ∑
j=1

[cx(i− j+ τ) + µ
2
x]

= µ2x +
1

(T − τ)2

T−τ∑
i=1

T−τ∑
j=1

cx(i− j+ τ).

Substituting the equation above into Eq. (23) yields

E[c̃X(τ)] =cX(τ) −
1

(T − τ)2

T−τ∑
i=1

T−τ∑
j=1

cx(i− j+ τ)

125

126 proofs and derivations

a.2 aggregated variance of an fgn process

We substitute the autocovariance of an fGn process cX(τ) = σ2

2 [(τ −

1)2H − 2τ2H + (τ+ 1)2H] given in Eq. (3) into Eq. (30), which yields

σ2
X(M) =

σ2

M
+

2

M2

M−1∑
τ=1

(M− τ)cx(τ)

=
σ2

M
+
σ2

M2

M−1∑
τ=1

(M− τ)[(τ− 1)2H − 2τ2H + (τ+ 1)2H]

=
σ2

M2

[
M+

M−1∑
τ=1

(M− τ)(τ− 1)2H − 2

M−1∑
τ=1

(M− τ)τ2H

+

M−1∑
τ=1

(M− τ)(τ+ 1)2H

]

Substituting k = τ− 1, l = τ+ 1 and rearranging the summation bounds
appropriately, reveals

σ2
X(M) =

σ2

M2

[
M+

M−2∑
k=0

(M− k− 1)k2H − 2

M−1∑
τ=1

(M− τ)τ2H

+

M∑
l=2

(M− l+ 1)l2H

]

=
σ2

M2

[(
M−2∑
k=1

(M− k)k2H −

M−2∑
k=1

k2H

)
− 2

M−1∑
τ=1

(M− τ)τ2H

+

(
M−1∑
l=1

(M− l)l2H +

M∑
l=1

l2H

)]

=
σ2

M2

[(
−(M− 1)2H +

M−1∑
k=1

(M− k)k2H

)
− 2

M−1∑
τ=1

(M− τ)τ2H

+

M−1∑
l=1

(M− l)l2H + (M− 1)2H +M2H

]

=
σ2

M2

[
−(M− 1)2H + (M− 1)2H +M2H

]
=σ2M2H−2

a.3 aggregated variance of a sampled process

Proof of Lemma 5.3. The aggregated version of the process W(t) on the
aggregation level M is defined for k ∈N as

W(M)(k) =
1

M

kM∑
t=1+(k−1)M

W(t),

A.4 covariance of transformed lognormal process 127

where M is the block size that is used for averaging. The variance of
W(M) is obtained using Eq. (30) as

Var
[
W(M)

]
=
cW(0)

M
+

2

M2

M−1∑
τ=1

(M− τ)cW(τ). (60)

The same expression can be formulated for Var
[
A(M)

]
and Var

[
Y(M)

]
by

substituting cA(τ) resp. cY(τ) for cW(τ) in (60). To obtain a relationship
between Var

[
W(M)

]
and Var

[
A(M)

]
, Var

[
Y(M)

]
, cA(τ) and cY(τ), we

insert cW(τ) from Lemma 5.1 into (60). We obtain

Var
[
W(M)

]
=
1

M
cY(0)(cA(0) + µ

2
A) +

1

M
cA(0)µ

2
Y

+
2

M2

M−1∑
τ=1

(M− τ)(cY(τ)(cA(τ) + µ
2
A) + cA(τ)µ

2
Y).

After some reordering we arrive at

Var
[
W(M)

]
= µ2Y

cA(0)

M
+ µ2Y

2

M2

M−1∑
τ=1

(M− τ)cA(τ)

+µ2A
cY(0)

M
+ µ2A

2

M2

M−1∑
τ=1

(M− τ)cY(τ)

+
1

M
cY(0)cA(0) +

2

M2

M−1∑
τ=1

(M− τ)cY(τ)cA(τ)

and by application of (60) we obtain

Var
[
W(M)

]
= µ2Y Var

[
A(M)

]
+ µ2AVar

[
Y(M)

]
+
1

M
cY(0)cA(0) +

2

M2

M−1∑
τ=1

(M− τ)cY(τ)cA(τ).

Finally we substitute cY(0) = σ2Y and cA(0) = σ2A into the equation
above.

a.4 covariance of transformed lognormal process

We consider a process x with a lognormal distribution, i.e., the trans-
formed process v = ln(x) has normally distributed increments (λ = 0).
In the following we derive a relationship between the covariance matrix
Σx the process of x and the covariance Σv of the transformed process v.

Consider the definition of the elements of the covariance matrix:

Σij = Cov
[
xi, xj

]
= E

[
xixj

]
− E[xi]E

[
xj
]

(61)

where xt are the vector elements of x and the mean rate is E[xt] = µx.
We write

E[xt] = E[evt] = eµv+
1
2σ
2
v ,

128 proofs and derivations

and let wt = vi + vj

E
[
xixj

]
= E[evievj] = E

[
evi+vj

]
= E[ewt] = eµw+ 1

2σ
2
w

= e2µv+
1
2 (σ

2
v+σ

2
v+2Cov[vi,vj])

where the variance σ2w = σ2v + σ
2
v + 2Cov

[
vi, vj

]
and the mean µw =

E
[
vi + vj

]
= 2µv. Rearranging Eq. (61) we get

Cov
[
xi, xj

]
E[xi]E

[
xj
] + 1 =

E
[
xixj

]
E[xi]E

[
xj
]

=
e2µv+

1
2 (σ

2
v+σ

2
v+2Cov[vi,vj])

eµv+
1
2σ
2
veµv+

1
2σ
2
v

=
e2µv+σ

2
v+Cov[vi,vj]

e2µv+σ
2
v

= eCov[vi,vj]

Thus finally we obtain

Cov
[
xi, xj

]
= µ2x(e

Cov[vi,vj] − 1)

ln

(
Cov

[
xi, xj

]
µ2x

+ 1

)
= Cov

[
vi, vj

]
ln
(
Σxij

µ2x
+ 1

)
= Σvij.

B I B L I O G R A P H Y

[1] R. K. Ahuja, T. L. Magnati, and J. B. Orlin. Network Flows: Theory,
Algorithms, and Applications, pages 320–324. Prentice Hall, 1993.

[2] A. Al-Shabibi, M. De Leenheer, M. Gerola, A. Koshibe, G. Parulkar,
E. Salvadori, and B. Snow. Openvirtex: Make your virtual sdns
programmable. In Proc. of HotSDN, pages 25–30, 2014.

[3] G. Appenzeller, I. Keslassy, and N. McKeown. Sizing router
buffers. In Proc. of ACM SIGCOMM, pages 281–292, September
2004.

[4] D. Applegate and E. Cohen. Making intra-domain routing robust
to changing and uncertain traffic demands: Understanding funda-
mental tradeoffs. In Proc. of SIGCOMM, pages 313–324, 2003.

[5] F. Baccelli, S. Machiraju, D. Veitch, and J. Bolot. The role of
PASTA in network measurement. IEEE/ACM Trans. Networking,
17(4):1340–1353, 2009.

[6] G. Baier, E. Köhler, and M. Skutella. The k-splittable flow
problem. Algorithmica, 42(3-4):231–248, 2005. ISSN 0178-4617.
http://dx.doi.org/10.1007/s00453-005-1167-9.

[7] T. Ball, N. Bjørner, A. Gember, S. Itzhaky, A. Karbyshev, M. Sagiv,
M. Schapira, and A. Valadarsky. Vericon: Towards verifying con-
troller programs in software-defined networks. In Proc. of ACM
SIGPLAN PLDI, pages 282–293, 2014.

[8] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho,
R. Neugebauer, I. Pratt, and A. Warfield. Xen and the art of virtual-
ization. In Proc. of ACM Symposium on Operating Systems Principles,
pages 164–177, 2003.

[9] Y. Bejerano and P. V. Koppol. Link-coloring based scheme for mul-
ticast and unicast protection. In Proc. of IEEE HPSR, pages 21–28,
July 2013.

[10] J. Beran. Statistics for Long-Memory Processes. Chapman & Hal-
l/CRC, October 1994.

[11] S. Blake, D. Black, M. Carlson, E. Davies, Z. Wang, and W. Weiss.
An Architecture for Differentiated Services. RFC 2475 (Informa-
tional), December 1998. URL http://www.ietf.org/rfc/rfc2475.

txt. Updated by RFC 3260.

129

http://www.ietf.org/rfc/rfc2475.txt
http://www.ietf.org/rfc/rfc2475.txt

130 bibliography

[12] G. Bolch, S. Greiner, H. de Meer, and K. Trivedi. Queueing Net-
works and Markov Chains: Modeling and Performance Evaluation with
Computer Science Applications. WileyBlackwell, May 2006.

[13] J.-Y. L. Boudec and P. Thiran. Network Calculus: A Theory of De-
terministic Queuing Systems for the Internet, volume 2050 of Lecture
Notes in Computer Science. Springer, 2001.

[14] G. E. Box and D. R. Cox. An analysis of transformations. Journal of
the Royal Statistical Society. Series B (Methodological), pages 211–252,
1964.

[15] Z. Bozakov. Virtual software routers: A performance and mi-
gration study. In Proc. of DFN-Forum Kommunikationstechnologien,
pages 35–44, 2010.

[16] Z. Bozakov. An open router virtualization framework using a pro-
grammable forwarding plane. In Proc. of ACM SIGCOMM (Poster
Session), pages 439–440, 2010.

[17] Z. Bozakov. Architecture and algorithms for virtual routers as
a service. In Proc. of International Workshop on Quality of Service,
(IWQoS), June 2011.

[18] Z. Bozakov and P. Papadimitriou. Autoslice: Automated and
scalable slicing for software-defined networks. In Proc. of ACM
CoNEXT Student Workshop, pages 3–4, 2012.

[19] Z. Bozakov and P. Papadimitriou. OpenVRoute: An open architec-
ture for high-performance programmable virtual routers. In Proc.
of IEEE High Performance Switching and Routing (HPSR), pages 191–
196, July 2013.

[20] Z. Bozakov and P. Papadimitriou. Towards a scalable software-
defined network virtualization platform. In Proc. of IEEE Network
Operations and Management Symposium (NOMS), May 2014.

[21] Z. Bozakov and A. Rizk. Taming SDN controllers in heterogeneous
hardware environments. In Proc. of European Workshop on Software
Defined Networks (EWSDN), pages 50–55, Oct 2013.

[22] R. Braden, D. Clark, and S. Shenker. Integrated Services in the In-
ternet Architecture: an Overview. RFC 1633 (Informational), June
1994. URL http://www.ietf.org/rfc/rfc1633.txt.

[23] R. Braden, L. Zhang, S. Berson, S. Herzog, and S. Jamin. Resource
ReSerVation Protocol (RSVP) – Version 1 Functional Specification.
RFC 2205 (Proposed Standard), September 1997. URL http://www.

ietf.org/rfc/rfc2205.txt. Updated by RFCs 2750, 3936, 4495,
5946, 6437, 6780.

http://www.ietf.org/rfc/rfc1633.txt
http://www.ietf.org/rfc/rfc2205.txt
http://www.ietf.org/rfc/rfc2205.txt

bibliography 131

[24] M. Bredel, Z. Bozakov, and Y. Jiang. Analyzing router performance
using network calculus with external measurements. In Proc. of
International Workshop on Quality of Service, (IWQoS), June 2010.

[25] L. Breslau, S. Jamin, and S. Shenker. Comments on the per-
formance of measurement-based admission control algorithms.
pages 1233–1242, 2000.

[26] L. Breslau, E. W. Knightly, S. Shenker, I. Stoica, and H. Zhang. End-
point admission control: Architectural issues and performance. In
Proc. of SIGCOMM, pages 57–69, 2000.

[27] A. Burchard, J. Liebeherr, and S. Patek. A min-plus calculus for
end-to-end statistical service guarantees. IEEE Trans. Inform. The-
ory, 52(9):4105–4114, September 2006.

[28] M. Caesar, D. Caldwell, N. Feamster, J. Rexford, A. Shaikh, and
J. van der Merwe. Design and implementation of a routing control
platform. In Proc. NSDI’05, pages 15–28, 2005.

[29] Z. Cai, A. L. Cox, and T. S. E. Ng. Maestro: A system for scalable
openflow control. Technical report, Rice University, 2011.

[30] M. Casado, T. Koponen, R. Ramanathan, and S. Shenker. Virtu-
alizing the network forwarding plane. In Proc. of PRESTO, pages
8:1–8:6, 2010.

[31] C. Chang. Performance Guarantees in Communication Networks.
Springer, 2000.

[32] N. Chowdhury, M. Rahman, and R. Boutaba. Virtual network em-
bedding with coordinated node and link mapping. In Proc. of IN-
FOCOM, pages 783 –791, April 2009.

[33] S. Chowdhury, M. Bari, R. Ahmed, and R. Boutaba. Payless: A
low cost network monitoring framework for software defined net-
works. In Proc. of IEEE NOMS, pages 1–9, May 2014.

[34] F. Ciucu, A. Burchard, and J. Liebeherr. Scaling properties of statis-
tical end-to-end bounds in the network calculus. IEEE/ACM Trans.
Networking, 14(SI):2300–2312, June 2006.

[35] Controller Performance. Openflow controller performance
comparisons. www.openflow.org/wk/index.php/Controller_

Performance_Comparisons, 2012.

[36] G. Covington, G. Gibb, J. Lockwood, and N. Mckeown. A packet
generator on the netfpga platform. In Proc. of IEEE Symposium on
Field Programmable Custom Computing Machines (FCCM ’09), pages
235–238, April 2009.

www.openflow.org/wk/index.php/Controller_Performance_Comparisons
www.openflow.org/wk/index.php/Controller_Performance_Comparisons

132 bibliography

[37] M. Crovella and A. Bestavros. Self-similarity in World Wide Web
traffic: evidence and possible causes. IEEE/ACM Trans. Networking,
5(6):835–846, December 1997.

[38] R. De Schmidt, R. Sadre, and A. Pras. Gaussian traffic revisited.
In Proc. of IFIP Networking, pages 1–9, May 2013.

[39] D. Dietrich, A. Rizk, and P. Papadimitriou. Multi-domain virtual
network embedding with limited information disclosure. In Proc.
of IFIP Networking, 2013.

[40] X. Dimitropoulos, P. Hurley, and A. Kind. Probabilistic lossy
counting: An efficient algorithm for finding heavy hitters. SIG-
COMM Computer Communication Review, 38(1):5–5, January 2008.
ISSN 0146-4833.

[41] A. Dixit, F. Hao, S. Mukherjee, T. Lakshman, and R. Kompella.
Towards an elastic distributed sdn controller. In Proc. of HotSDN,
pages 7–12, 2013.

[42] M. Dobrescu, N. Egi, K. Argyraki, B.-G. Chun, K. Fall, G. Ian-
naccone, A. Knies, M. Manesh, and S. Ratnasamy. Routebricks:
Exploiting parallelism to scale software routers. In Proc. of ACM
SIGOPS, pages 15–28, 2009.

[43] A. Doria, J. H. Salim, R. Haas, H. Khosravi, W. Wang, L. Dong,
R. Gopal, and J. Halpern. Forwarding and Control Element Sepa-
ration (ForCES) Protocol Specification. RFC 5810 (Proposed Stan-
dard), March 2010. URL http://www.ietf.org/rfc/rfc5810.txt.
Updated by RFCs 7121, 7391.

[44] R. Doriguzzi Corin, M. Gerola, R. Riggio, F. De Pellegrini, and
E. Salvadori. Vertigo: Network virtualization and beyond. In Proc.
of EWSDN, pages 24–29, Oct 2012.

[45] DPDK. DPDK: Data plane development kit. http://dpdk.org/.

[46] D. Drutskoy, E. Keller, and J. Rexford. Scalable network virtualiza-
tion in software-defined networks. Internet Computing, IEEE, 17(2):
20–27, March 2013. ISSN 1089-7801.

[47] N. Duffield et. al. Resource management with hoses: point-to-
cloud services for virtual private networks. Networking, IEEE/ACM
Transactions on, 10(5):679 – 692, October 2002. ISSN 1063-6692.

[48] N. Egi, A. Greenhalgh, M. Handley, M. Hoerdt, F. Huici, and
L. Mathy. Towards high performance virtual routers on commod-
ity hardware. In Proc. of ACM CoNEXT, pages 20:1–20:12, 2008.

[49] R. Enns, M. Bjorklund, J. Schoenwaelder, and A. Bierman. Net-
work Configuration Protocol (NETCONF). RFC 6241 (Proposed
Standard), June 2011. URL http://www.ietf.org/rfc/rfc6241.

txt.

http://www.ietf.org/rfc/rfc5810.txt
http://dpdk.org/
http://www.ietf.org/rfc/rfc6241.txt
http://www.ietf.org/rfc/rfc6241.txt

bibliography 133

[50] D. Erickson. The beacon openflow controller. In Proc. of HotSDN,
pages 13–18, 2013.

[51] A. Erramilli, O. Narayan, and W. Willinger. Experimental queue-
ing analysis with long-range dependent packet traffic. IEEE/ACM
Trans. Networking, 4(2):209–223, 1996.

[52] S. K. Fayazbakhsh, V. Sekar, M. Yu, and J. C. Mogul. Flowtags:
Enforcing network-wide policies in the presence of dynamic mid-
dlebox actions. In Proc. of HotSDN, pages 19–24, 2013.

[53] A. Feldmann, A. C. Gilbert, P. Huang, and W. Willinger. Dynamics
of IP traffic: A study of the role of variability and the impact of
control. In Proc. of ACM SIGCOMM, pages 301–313, Aug. 1999.

[54] M. Fidler. A survey of deterministic and stochastic service curve
models in the network calculus. IEEE Communications Surveys and
Tutorials, 12(1), 2010.

[55] M. Fidler, Z. Bozakov, and D. Dietrich. Projekt G-Lab - phase
2, teilvorhaben: G-Lab_Virturama (leitungs- und routervirtual-
isierung): Schlussbericht. Technische Informationsbibliothek u.
Universitätsbibliothek, 2011. URL http://www.pt-it.pt-dlr.de/

de/2037.php. Berichtszeitraum: 01.09.2009 - 31.08.2011.

[56] B. Fortz and M. Thorup. Internet traffic engineering by optimizing
ospf weights. In Proc. of IEEE INFOCOM, volume 2, pages 519–528
vol.2, 2000.

[57] B. Fortz and M. Thorup. Optimizing ospf/is-is weights in a chang-
ing world. IEEE J.Sel. A. Commun., 20(4):756–767, September 2006.
ISSN 0733-8716.

[58] N. Foster, R. Harrison, M. J. Freedman, C. Monsanto, J. Rexford,
A. Story, and D. Walker. Frenetic: A network programming lan-
guage. In Proc. of ACM SIGPLAN ICFP, pages 279–291, 2011.

[59] I. Ganichev, B. Dai, P. B. Godfrey, and S. Shenker. Yamr: Yet another
multipath routing protocol. SIGCOMM Computer Communication
Review, 40(5):13–19, October 2010. ISSN 0146-4833.

[60] A. Genz. Numerical computation of multivariate normal prob-
abilities. Journal of Computational and Graphical Statistics, 1(2):pp.
141–149, 1992. ISSN 10618600.

[61] G. Giorgi and C. Narduzzi. Rate-interval curves - a tool for the
analysis and monitoring of network traffic. Perform. Eval., 65(6-7):
441–462, June 2008. ISSN 0166-5316.

[62] G. H. Golub and C. F. Van Loan. Matrix Computations, chapter 4,
page 143. JHU Press, London, third edition edition, 1996. ISBN
978-0-801-85414-9.

http://www.pt-it.pt-dlr.de/de/2037.php
http://www.pt-it.pt-dlr.de/de/2037.php

134 bibliography

[63] M. Grant and S. Boyd. Graph implementations for nonsmooth con-
vex programs. In Recent Advances in Learning and Control, Lecture
Notes in Control and Information Sciences, pages 95–110. Springer,
2008.

[64] M. Grant and S. Boyd. CVX: Matlab software for disciplined con-
vex programming, version 2.1. http://cvxr.com/cvx, March 2014.

[65] M. Grossglauser and D. N. C. Tse. A framework for robust
measurement-based admission control. IEEE/ACM Trans. Netw.,
7(3):293–309, June 1999. ISSN 1063-6692.

[66] N. Gude, T. Koponen, J. Pettit, B. Pfaff, M. Casado, N. McKe-
own, and S. Shenker. Nox: Towards an operating system for net-
works. SIGCOMM Computer Communication Review, 38(3):105–110,
July 2008. ISSN 0146-4833.

[67] H. Gupta, A. Mahanti, and V. Ribeiro. Revisiting coexistence of
poissonity and self-similarity in Internet traffic. In Proc. of MAS-
COTS, pages 1–10, September 2009.

[68] S. Han, K. Jang, K. Park, and S. Moon. Packetshader: A gpu-
accelerated software router. In Proc. of ACM SIGCOMM, pages
195–206, 2010.

[69] M. Handley, O. Hodson, and E. Kohler. Xorp: an open platform
for network research. SIGCOMM Computer Communication Review,
33(1):53–57, 2003. ISSN 0146-4833.

[70] S. Hassas Yeganeh and Y. Ganjali. Kandoo: A framework for ef-
ficient and scalable offloading of control applications. In Proc. of
HotSDN, pages 19–24, 2012.

[71] J. He and J. Rexford. Toward internet-wide multipath routing. Net-
work, IEEE, 22(2):16–21, March 2008. ISSN 0890-8044.

[72] N. J. Higham. Computing the nearest correlation matrix—a prob-
lem from finance. IMA Journal of Numerical Analysis, 22(3):329–343,
2002.

[73] I. Houidi, W. Louati, D. Zeghlache, P. Papadimitriou, and L. Mathy.
Adaptive virtual network provisioning. In Proc. of ACM SIG-
COMM VISA ’10 workshop, pages 41–48, 2010.

[74] Y. Jiang, P. J. Emstad, V. Nicola, and A. Nevin. Measurement-
based admission control: A revisit. In Seventeenth Nordic Teletraffic
Seminar, Fornebu, pages 25–27, 2004.

[75] E. Keller and J. Rexford. The "platform as a service" model for
networking. In Proc. of INM/WREN ’10, April 2010.

http://cvxr.com/cvx

bibliography 135

[76] F. P. Kelly. Notes on effective bandwidths. Number 4 in Royal Sta-
tistical Society Lecture Notes, pages 141–168. Oxford University,
1996.

[77] J. Kilpi and I. Norros. Testing the gaussian approximation of ag-
gregate traffic. In IMW ’02, pages 49–61, 2002.

[78] A. Kivity, Y. Kamay, D. Laor, U. Lublin, and A. Liguori. kvm: the
linux virtual machine monitor. In Proc. of the Linux Symposium,
June 27th–30th 2007.

[79] J. M. Kleinberg. Single-source unsplittable flow. In Proc. of the 37th
Annual Symposium on Foundations of Computer Science, pages 68–77,
1996.

[80] E. W. Knightly. Second moment resource allocation in multi-
service networks. In Proc. of ACM SIGMETRICS, pages 181–191,
1997.

[81] E. W. Knightly. Resource allocation for multimedia traffic flows
using rate variance envelopes. Multimedia Systems, 7(6):477–485,
1999. ISSN 0942-4962.

[82] D. Knol and J. ten Berge. Least-squares approximation of an im-
proper correlation matrix by a proper one. Psychometrika, 54(1):
53–61, 1989. ISSN 0033-3123.

[83] E. Kohler, R. Morris, B. Chen, J. Jannotti, and M. F. Kaashoek.
The click modular router. ACM Transactions on Computer Systems
(TOCS), 18(3):263–297, 2000.

[84] T. Koponen, M. Casado, N. Gude, et al. Onix: A distributed control
platform for large-scale production networks. In Proc. of OSDI,
2010.

[85] W. Leland, M. Taqqu, W. Willinger, and D. Wilson. On the self-
similar nature of Ethernet traffic. IEEE/ACM Trans. Networking, 2
(1):1–15, February 1994.

[86] D. Levin et al. Logically centralized?: state distribution trade-offs
in software defined networks. In Proc. of HotSDN, pages 1–6, 2012.

[87] C. Li, A. Burchard, and J. Liebeherr. A network calculus with
effective bandwidth. Networking, IEEE/ACM Transactions on, 15(6):
1442 –1453, dec 2007. ISSN 1063-6692.

[88] L. Li, M. Buddhikot, C. Chekuri, and K. Guo. Routing band-
width guaranteed paths with local restoration in label switched
networks. Selected Areas in Communications, IEEE Journal on, 23(2):
437–449, Feb 2005. ISSN 0733-8716.

136 bibliography

[89] J. Liebeherr, A. Burchard, and F. Ciucu. Delay bounds in commu-
nication networks with heavy-tailed and self-similar traffic. IEEE
Trans. Inform. Theory, 58(2):1010–1024, 2012.

[90] Linux Foundation. Opendaylight. http://www.opendaylight.org,
2014.

[91] J. Lischka and H. Karl. A virtual network mapping algorithm
based on subgraph isomorphism detection. In Proc. of ACM VISA,
pages 81–88, 2009.

[92] Y. Liu, S. O. Amin, and L. Wang. Efficient fib caching using min-
imal non-overlapping prefixes. SIGCOMM Computer Communica-
tion Review, 43(1):14–21, January 2013. ISSN 0146-4833.

[93] P. Loiseau, P. Goncalves, G. Dewaele, P. Borgnat, P. Abry, and
P. Primet. Investigating self-similarity and heavy-tailed distribu-
tions on a large-scale experimental facility. IEEE/ACM Trans. Net-
working, 18(4):1261–1274, Aug. 2010.

[94] J. Lu and J. Turner. Efficient mapping of virtual networks onto a
shared substrate. Technical report, Washington University in St.
Louis, 2006.

[95] R. Lübben, M. Fidler, and J. Liebeherr. A Foundation for Stochastic
Bandwidth Estimation of Networks with Random Service. In Proc.
of IEEE INFOCOM, pages 1817–1825, April 2011.

[96] LXC. LXC. https://linuxcontainers.org/.

[97] M. Mahalingam, D. Dutt, K. Duda, P. Agarwal, L. Kreeger, T. Srid-
har, M. Bursell, and C. Wright. Virtual eXtensible Local Area Net-
work (VXLAN): A Framework for Overlaying Virtualized Layer 2
Networks over Layer 3 Networks. RFC 7348 (Informational), Au-
gust 2014. URL http://www.ietf.org/rfc/rfc7348.txt.

[98] MAWI. MAWI working group traffic archive. samplepoint-
F - 30.03.2012 00:00, 2012. http://mawi.wide.ad.jp/mawi/ditl/

ditl2012/.

[99] N. McKeown et al. Openflow: Enabling innovation in campus
networks. SIGCOMM Computer Communication Review, 38(2):69–
74, March 2008. ISSN 0146-4833.

[100] B. Melamed and W. Whitt. On arrivals that see time averages. Oper.
Res., 38(1):156–172, Feb. 1990.

[101] J. C. Mogul et al. Devoflow: cost-effective flow management for
high performance enterprise networks. In Proc. of ACM Hotnets-
IX, pages 1:1–1:6, 2010.

https://linuxcontainers.org/
http://www.ietf.org/rfc/rfc7348.txt
http://mawi.wide.ad.jp/mawi/ditl/ditl2012/
http://mawi.wide.ad.jp/mawi/ditl/ditl2012/

bibliography 137

[102] M. Moshref, M. Yu, and R. Govindan. Resource/accuracy trade-
offs in software-defined measurement. In Proc. of HotSDN, pages
73–78, 2013.

[103] S. Nadas. Virtual Router Redundancy Protocol (VRRP) Version 3
for IPv4 and IPv6. RFC 5798 (Proposed Standard), March 2010.
URL http://www.ietf.org/rfc/rfc5798.txt.

[104] J. P. Nolan. Numerical calculation of stable densities and distribu-
tion functions. Communications in statistics. Stochastic models, 13(4):
759–774, 1997.

[105] I. Norros. A storage model with self-similar input. Queueing Sys-
tems, 16(3):387–396, September 1994.

[106] I. Norros. On the use of fractional Brownian motion in the theory
of connectionless networks. IEEE J. Select. Areas Commun., 13(6):
953–962, Aug. 1995.

[107] NTT. Ryu controller. http://osrg.github.io/ryu, 2014.

[108] OpenVZ. OpenVZ. https://openvz.org/.

[109] P. Pan, G. Swallow, and A. Atlas. Fast Reroute Extensions to RSVP-
TE for LSP Tunnels. RFC 4090 (Proposed Standard), May 2005.
URL http://www.ietf.org/rfc/rfc4090.txt.

[110] K. Park and W. Willinger. Self-Similar Network Traffic and Perfor-
mance Evaluation. John Wiley & Sons, Inc., New York, NY, USA,
1st edition, 2000.

[111] V. Paxson and S. Floyd. Wide-area traffic: The failure of Poisson
modeling. IEEE/ACM Trans. Networking, 3(3):226–244, 1995.

[112] V. Paxson, G. Almes, J. Mahdavi, and M. Mathis. Framework for IP
Performance Metrics. RFC 2330 (Informational), May 1998. URL
http://www.ietf.org/rfc/rfc2330.txt. Updated by RFC 7312.

[113] J. Perry, A. Ousterhout, H. Balakrishnan, D. Shah, and H. Fugal.
Fastpass: A centralized "zero-queue" datacenter network. In Proc.
of ACM SIGCOMM, pages 307–318, 2014.

[114] B. Pfaff, J. Pettit, T. Koponen, K. Amidon, M. Casado, and
S. Shenker. Extending networking into the virtualization layer. In
Proc. of ACM HotNets-VIII, October 2009.

[115] A. Philippe and M. Viano. Random sampling of long-memory
stationary processes. Journal of Statistical Planning and Inference,
140(5):1110–1124, 2010.

[116] R. Presuhn. Version 2 of the Protocol Operations for the Simple
Network Management Protocol (SNMP). RFC 3416 (INTERNET
STANDARD), December 2002. URL http://www.ietf.org/rfc/

rfc3416.txt.

http://www.ietf.org/rfc/rfc5798.txt
https://openvz.org/
http://www.ietf.org/rfc/rfc4090.txt
http://www.ietf.org/rfc/rfc2330.txt
http://www.ietf.org/rfc/rfc3416.txt
http://www.ietf.org/rfc/rfc3416.txt

138 bibliography

[117] Quagga. Quagga routing suite. http://www.nongnu.org/quagga/.

[118] M. Reitblatt, N. Foster, J. Rexford, C. Schlesinger, and D. Walker.
Abstractions for network update. In Proc. of ACM SIGCOMM,
pages 323–334, 2012.

[119] G. Rétvári, Z. Csernátony, A. Körösi, J. Tapolcai, A. Császár,
G. Enyedi, and G. Pongrácz. Compressing ip forwarding tables
for fun and profit. In Proc. of ACM HotNets-XI, 2012.

[120] V. Ribeiro. Multiscale queuing, sampling theory, and network probing.
PhD thesis, Rice University, May 2005.

[121] A. Rizk and M. Fidler. Non-asymptotic End-to-end Performance
Bounds for Networks with Long Range Dependent FBM Cross
Traffic. Computer Networks, 56(1):127–141, 2012.

[122] A. Rizk and M. Fidler. Statistical End-to-end Performance Bounds
for Networks under Long Memory FBM Cross Traffic. In Proc. of
IWQoS, 2010.

[123] A. Rizk, Z. Bozakov, and M. Fidler. H-Probe: Estimating traffic
correlations from sampling and active network probing. CoRR,
abs/1208.2870, July 2012.

[124] A. Rizk, Z. Bozakov, and M. Fidler. Estimating traffic correlations
from sampling and active network probing. In Proc. of IFIP Net-
working Conference, May 2013.

[125] L. Rizzo, M. Carbone, and G. Catalli. Transparent acceleration of
software packet forwarding using netmap. In Proc. of IEEE INFO-
COM, pages 2471–2479, March 2012.

[126] L. Rizzo. netmap: A novel framework for fast packet i/o. In Proc.
of USENIX Security, pages 101–112, August 2012.

[127] C. E. Rothenberg, M. R. Nascimento, M. R. Salvador, C. N. A. Cor-
rêa, S. Cunha de Lucena, and R. Raszuk. Revisiting routing control
platforms with the eyes and muscles of software-defined network-
ing. In Proc. of HotSDN, pages 13–18, 2012.

[128] M. Roughan, M. Thorup, and Y. Zhang. Traffic engineering with
estimated traffic matrices. In Proceedings of the 3rd ACM SIGCOMM
Conference on Internet Measurement, pages 248–258, 2003.

[129] G. Samoradnitsky and S. Taqqu. Stable Non-Gaussian Random Pro-
cesses: Stochastic Models with Infinite Variance. Stochastic Modeling
Series. Taylor & Francis, 1994. ISBN 9780412051715.

[130] N. Sarrar, S. Uhlig, A. Feldmann, R. Sherwood, and X. Huang.
Leveraging zipf’s law for traffic offloading. SIGCOMM Computer
Communication Review, 42(1):16–22, January 2012. ISSN 0146-4833.

http://www.nongnu.org/quagga/

bibliography 139

[131] C. Shannon, E. Aben, kc claffy, and D. E. Andersen. The CAIDA
UCSD anonymized internet traces - 16.09.2010, 2010. http://www.

caida.org/data/passive/passive_2010_dataset.xml.

[132] R. Sherwood, G. Gibb, K. Yap, G. Appenzeller, N. McKeown, and
G. Parulkar. Flowvisor: A network virtualization layer. Technical
report, Stanford University, 2009.

[133] M. Skutella. Approximating the single source unsplittable min-
cost flow problem. In Foundations of Computer Science, 2000. Pro-
ceedings. 41st Annual Symposium on, pages 136–145, 2000.

[134] J. Strauss, D. Katabi, and F. Kaashoek. A measurement study of
available bandwidth estimation tools. In Proc. of IMC, pages 39–44,
2003.

[135] W. Szeto, Y. Iraqi, and R. Boutaba. A multi-commodity flow based
approach to virtual network resource allocation. In Global Telecom-
munications Conference, 2003. GLOBECOM ’03. IEEE, volume 6,
pages 3004 – 3008 vol.6, December 2003.

[136] M. Taqqu, V. Teverovsky, and W. Willinger. Estimators for long-
range dependence: An empirical study. Fractals, 3(4):785–798, 1995.

[137] M. Taqqu, W. Willinger, and R. Sherman. Proof of a fundamental
result in self-similar traffic modeling. SIGCOMM Computer Com-
munication Review, 27(2):5–23, April 1997.

[138] R. Teixeira, N. Duffield, J. Rexford, and M. Roughan. Traffic ma-
trix reloaded: Impact of routing changes. In Passive and Active
Network Measurement, volume 3431 of Lecture Notes in Computer
Science, pages 251–264. Springer Berlin Heidelberg, 2005. ISBN
978-3-540-25520-8.

[139] V. Teverovsky and M. Taqqu. Testing for long-range dependence in
the presence of shifting means or a slowly declining trend, using
a variance-type estimator. Journal of Time Series Analysis, 18(3):279–
304, 1997. ISSN 1467-9892.

[140] D. Thaler and C. Hopps. Multipath Issues in Unicast and Multicast
Next-Hop Selection. RFC 2991 (Informational), November 2000.
URL http://www.ietf.org/rfc/rfc2991.txt.

[141] A. Tootoonchian, M. Ghobadi, and Y. Ganjali. Opentm: Traffic
matrix estimator for openflow networks. In Proc. of PAM, pages
201–210, 2010.

[142] A. Tootoonchian, S. Gorbunov, Y. Ganjali, M. Casado, and R. Sher-
wood. On controller performance in software-defined networks.
In Proc. of USENIX Hot-ICE, pages 10–10, 2012.

http://www.caida.org/data/passive/passive_2010_dataset.xml
http://www.caida.org/data/passive/passive_2010_dataset.xml
http://www.ietf.org/rfc/rfc2991.txt

140 bibliography

[143] J. Vasseur and J. L. Roux. Path Computation Element (PCE)
Communication Protocol (PCEP). RFC 5440 (Proposed Standard),
March 2009. URL http://www.ietf.org/rfc/rfc5440.txt.

[144] D. Veitch and P. Abry. A wavelet-based joint estimator of the pa-
rameters of long-range dependence. IEEE Trans. Inform. Theory, 45
(2):878–897, April 1999.

[145] D. Veitch, N. Hohn, and P. Abry. Multifractality in TCP/IP traffic:
the case against. Computer Networks, 48:293–313, 2005.

[146] A. Vidacs and J. Virtamo. Parameter estimation of geometrically
sampled fractional brownian traffic. In Proc. of INFOCOM, vol-
ume 3, pages 1791–1796 vol.3, Mar 2000.

[147] H. Wang, H. Xie, L. Qiu, Y. R. Yang, Y. Zhang, and A. Greenberg.
Cope: Traffic engineering in dynamic networks. In Proc. of SIG-
COMM, pages 99–110, 2006.

[148] R. Wolff. Poisson arrivals see time averages. Operations Research,
30(2):223–231, 1981.

[149] X. Xiao, A. Hannan, B. Bailey, and L. Ni. Traffic engineering with
mpls in the internet. Network, IEEE, 14(2):28–33, Mar 2000. ISSN
0890-8044.

[150] B. Yazici and R. Kashyap. Signal modeling and parameter estima-
tion for 1/f processes using scale stationary models. In Proc. of
ICASSP, volume 5, pages 2841–2844 vol. 5, May 1996.

[151] B. Yazici and R. Kashyap. A class of second-order stationary self-
similar processes for 1/f phenomena. IEEE Trans. on Signal Process-
ing, 45(2):396–410, Feb 1997. ISSN 1053-587X.

[152] M. Yu, Y. Yi, J. Rexford, and M. Chiang. Rethinking virtual net-
work embedding: substrate support for path splitting and migra-
tion. SIGCOMM Computer Communication Review, 38:17–29, March
2008. ISSN 0146-4833.

[153] M. Yu, L. Jose, and R. Miao. Software defined traffic measurement
with opensketch. In Proc. of USENIX NSDI, pages 29–42, 2013.

[154] M. Yu et al. Scalable flow-based networking with difane. In Proc.
of ACM SIGCOMM, pages 351–362, 2010.

[155] Y. Zhang, L. Breslau, V. Paxson, and S. Shenker. On the characteris-
tics and origins of internet flow rates. In Proc. of ACM SIGCOMM,
pages 309–322, 2002.

[156] Y. Zhu and M. Ammar. Algorithms for assigning substrate net-
work resources to virtual network components. In Proc. of INFO-
COM, pages 1 –12, April 2006.

http://www.ietf.org/rfc/rfc5440.txt

O W N P U B L I C AT I O N S

Z. Bozakov. Virtual software routers: A performance and migration
study. In Proc. of DFN-Forum Kommunikationstechnologien, pages 35–
44, 2010a.

Z. Bozakov. An open router virtualization framework using a pro-
grammable forwarding plane. In Proc. of ACM SIGCOMM (Poster Ses-
sion), pages 439–440, 2010b.

Z. Bozakov. Architecture and algorithms for virtual routers as a service.
In Proc. of International Workshop on Quality of Service, (IWQoS), June
2011.

Z. Bozakov and M. Bredel. Online estimation of available bandwidth
and fair share using Kalman filtering. In Proc. of IFIP Networking Con-
ference, pages 548–561, 2009.

Z. Bozakov and P. Papadimitriou. Autoslice: Automated and scalable
slicing for software-defined networks. In Proc. of ACM CoNEXT Stu-
dent Workshop, pages 3–4, 2012.

Z. Bozakov and P. Papadimitriou. OpenVRoute: An open architecture
for high-performance programmable virtual routers. In Proc. of IEEE
High Performance Switching and Routing (HPSR), pages 191–196, July
2013.

Z. Bozakov and P. Papadimitriou. Towards a scalable software-defined
network virtualization platform. In Proc. of IEEE Network Operations
and Management Symposium (NOMS), May 2014.

Z. Bozakov and A. Rizk. Taming SDN controllers in heterogeneous hard-
ware environments. In Proc. of European Workshop on Software Defined
Networks (EWSDN), pages 50–55, Oct 2013.

Z. Bozakov and V. Sander. Openflow: A perspective for building versa-
tile networks. In A. Clemm and R. Wolter, editors, Network-Embedded
Management and Applications, pages 217–245. Springer New York, 2013.
ISBN 978-1-4419-6768-8.

M. Bredel, Z. Bozakov, and Y. Jiang. Analyzing router performance using
network calculus with external measurements. In Proc. of International
Workshop on Quality of Service, (IWQoS), June 2010.

M. Bredel, Z. Bozakov, A. Barczyk, and H. Newman. Flow-based
load balancing in multipathed layer-2 networks using openflow and
multipath-tcp. In Proc. of Hot Topics in Software Defined Networking
(Poster), pages 213–214, August 2014.

141

142 bibliography

A. Rizk, Z. Bozakov, and M. Fidler. H-Probe: Estimating traffic
correlations from sampling and active network probing. CoRR,
abs/1208.2870, July 2012.

A. Rizk, Z. Bozakov, and M. Fidler. Estimating traffic correlations from
sampling and active network probing. In Proc. of IFIP Networking Con-
ference, May 2013.

CURRICULUM VITAE
PERSONAL INFORMATION

Name Zdravko Bozakov

Address Schaufelder Str. 9
D-30167 Hanover
Germany

Phone +49 178 9714 205

E-Mail zdravko@bozakov.de

Nationality German

WORK EXPERIENCE

03/2009 – present Institute of Communications Technology
Leibniz Universität Hannover
Research assistant / Ph.D. candidate - network performance eval-
uation, traffic analysis, virtualization of network resources,
software-defined networking

02/2008 – 02/2009 KOM - Multimedia Communications Lab
Technische Universität Darmstadt
Research assistant / Ph.D. candidate - performance evaluation of
wireless networks, active probing methods

10/2007 – 1/2008 KOM - Multimedia Communications Lab
Technische Universität Darmstadt
Student assistant - setup and automation of network experiments

07/2002 – 12/2005 Department of Mechanics
Technische Universität Darmstadt
Student assistant - system administration of faculty network

09/1999 – 02/2007 Lahmeyer International GmbH
Working student - software development and data analysis

INTERNSHIPS

11/2005 – 01/2006 Infineon Technologies, Munich. VHDL design and integration
of a SoC component

04/2001 – 05/2001 ABB Group, Hanau. Assembly and testing of gas-insulated
switchgear.

curriculum vitae 143

EDUCATION

Ph.D. Dissertation
submitted 04/2015

“Architectures for Virtualization and Performance Evaluation in Soft-
ware Defined Networks. ”, Leibniz Universität Hannover, Faculty
of Electrical Engineering and Computer Science

09/1999 – 08/2007 Diplom-Ingenieur Elektrotechnik, Technische Universität
Darmstadt,
Electrical engineering and information technology
Major field: Computer Systems and Networks.

Diploma thesis “Unsupervised Component Extraction for Design Optimization using
Feature Analysis Methods”, Honda Research Institute Europe
Designed a voxel-based image processing algorithm using
C/C++, OpenGL and MATLAB.

Student thesis “Analysis and VHDL Design of a Cellular Automata Architecture
with Hardware Support for a Genetic Algorithm”, Inst. of Microelec-
tronic Systems
Programmed and optimized FPGA for offloading CPU calcula-
tions.

1999 Abitur, Einhardschule, Seligenstadt, Germany.

1996 GCSE, MCS, Murree, Pakistan.

Hanover, April 6, 2015

144 curriculum vitae

colophon

This document was typeset using the typographical look-and-feel classicthesis
developed by André Miede. The style was inspired by Robert Bringhurst’s
seminal book on typography “The Elements of Typographic Style”. classicthesis
is available for both LATEX and LYX:

http://code.google.com/p/classicthesis/

Happy users of classicthesis usually send a real postcard to the author,
a collection of postcards received so far is featured here:

http://postcards.miede.de/

Final Version as of July 25, 2016 (classicthesis Version 1.0).

http://code.google.com/p/classicthesis/
http://postcards.miede.de/

	Titelblatt
	Abstract
	Zusammenfassung
	Contents
	List of Figures
	Acronyms

	Dissertation
	1 Introduction
	1.1 Thesis Contributions
	1.2 Thesis Structure

	2 Background and Related Work
	2.1 Software Defined Networking
	2.2 Enabling Technologies
	2.3 Network Abstractions and Topology Embedding
	2.4 Quality of Service and Network Measurements

	3 Problem Statement
	4 Virtualization Architectures for Software Defined Networking
	4.1 Requirements for Virtual Network Architectures
	4.2 A Framework for SDN Infrastructure Virtualization
	4.2.1 SDN Hypervisor
	4.2.2 Framework Design
	4.2.3 Context Identifiers
	4.2.4 Resource Migration
	4.2.5 Scalability of the SDN Hypervisor

	4.3 Connectivity as a Service
	4.3.1 Connectivity Service Embedding
	4.3.2 Rooted Tree Embedding Algorithm
	4.3.3 Virtual Router Architecture
	4.3.4 Flow Table Configuration
	4.3.5 Performance and Scalability Evaluation

	4.4 Conclusions

	5 Performance Evaluation in Centralized Network Architectures
	5.1 Motivation
	5.2 Network Traffic Characteristics: Background and Notation
	5.3 Performance Evaluation Strategies
	5.4 Packet Sampling
	5.4.1 Estimating the Flow Autocovariance from Packet Samples
	5.4.2 Impact of Finite Sample Sizes
	5.4.3 Unbiased Hurst Parameter Estimation
	5.4.4 Effects of Sampling on Variance-based Estimators
	5.4.5 Bias of the Aggregated Variance Estimator

	5.5 Counter Sampling
	5.5.1 Relationship to Packet Sampling
	5.5.2 Variance Sampling
	5.5.3 Covariance Matrix Sampling
	5.5.4 Bias of the Covariance Matrix Estimator
	5.5.5 Random Inter Query Times
	5.5.6 Impact of Random Sampling

	5.6 Sample Path Generation
	5.6.1 Cholesky Decomposition
	5.6.2 Positive Definiteness of the Sample Autocovariance
	5.6.3 Reproducing the Traffic Increment Distribution
	5.6.4 Normalizing Transformations
	5.6.5 Simulation Results

	5.7 Centralized Monitoring of Distributed Resources
	5.8 Conclusions

	6 Conclusions and Future Work

	Appendix
	A Proofs and Derivations
	A.1 Covariance of the sample means
	A.2 Aggregated Variance of an fGn Process
	A.3 Aggregated Variance of a Sampled Process
	A.4 Covariance of Transformed Lognormal Process

	Bibliography
	Own Publications
	Colophon

