In this thesis, a homogenized constitutive contact model representing the thermomechanical
contact interaction of a tire’s tread rubber cap with the road surface has been developed
with a focus on tire rolling resistance computations in frameworks using Arbitrary La-
grangian Eulerian kinematics. This constitutive model describes the statistically averaged
thermo-viscoelastic response of a single tread block in unilateral frictionless contact with a
rough road surface and the subsequent internal dissipation in an energy consistent way.

The homogenization of this contact interaction is based on the identification of an equivalent
uniaxial compression test of the tread’s bulk material, which allows for a one-dimensional
representation of the constitutive material law. In the course of the thesis, the homogeniza-
tion approach is applied to simple contact scenarios in order to investigate its accuracy.
In a next step, the stochastic average thermo-viscoelastic contact behavior of tread blocks
on measured smooth and rough asphalt surfaces are identified with Monte Carlo simulations.

Based on these results, the rolling resistance of simple rubber wheels and air inflated
tires is computed in coupled thermo-viscoelastic, tractive rolling contact simulations, where
the homogenized unilateral tread-road contact response is represented by the developed
constitutive contact law. Herein, the temperature and frequency dependency of rubber
friction is taken into account via a phenomenological friction model. With this framework
the stationary thermomechanical response of novel tire designs can be calculated at a higher
level of detail compared to previous approaches, which is a crucial aspect in the development
process of low rolling resistance tires.
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Abstract

In this thesis, a homogenized constitutive contact model representing the thermomechan-
ical contact interaction of tire tread blocks with the road surface was developed with a
focus on tire rolling resistance computations in frameworks using Arbitrary Lagrangian
FEulerian kinematics. This one-dimensional constitutive contact model describes the sta-
tistically averaged thermo-viscoelastic response of a single three-dimensional tread block
in unilateral frictionless contact with a rough road surface and the subsequent internal
dissipation in an energy-consistent way.

The homogenization of this contact interaction is based on the identification of an
equivalent uniaxial compression test, which allows for a one-dimensional representation of
the constitutive material model that describes the tread rubber. In the course of the thesis,
the accuracy of the homogenization approach is investigated for the contact interaction
with a spherical asperity first. In a next step, the stochastic average thermo-viscoelastic
contact behavior of tread blocks on measured smooth and rough asphalt surfaces are
identified with Monte Carlo simulations and transferred into constitutive contact models.

Based on these results, the rolling resistance of solid rubber wheels and air-inflated radial
tires is computed in coupled thermo-viscoelastic tractive rolling contact simulations, where
the homogenized unilateral tread-road contact response is represented by the developed
constitutive contact model. Herein, the temperature and frequency dependence of rubber
friction is taken into account via a phenomenological friction model. With this framework
the stationary thermomechanical response of novel tire designs can be calculated at a
higher level of detail compared to previous approaches, which is a crucial aspect in the

development process of low rolling resistance tires.

Keywords Rough surface contact; Contact homogenization; Thermomechanical cou-
pling; Arbitrary Lagrangian Eulerian kinematics (ALE-kinematics); Rolling contact;

Rolling resistance; Finite element method (FEM); Time discontinuous Galerkin method
(TDG-method)






Zusammenfassung

In der vorliegenden Arbeit wurde ein homogenisiertes konstitutives Kontaktmodell zur
Beschreibung der thermomechanischen Kontaktinteraktion von Reifenprofilblocken mit
der Fahrbahnoberfliche entwickelt, wobei der Fokus auf Rollwiderstandsberechnungen im
Rahmen einer gemischten Euler-Lagrange Kinematik lag. Dieses eindimensionale konstitu-
tive Kontaktmodell beschreibt das statistisch gemittelte, thermo-viskoelastische Verhalten
eines einzelnen dreidimensionalen Profilblocks im unilateralen, reibungsfreien Kontakt mit
einer rauhen Fahrbahnoberfliche, sowie die resultierende interne Dissipation in energiekon-
sistenter Form.

Die Homogenisierung der Kontaktinteraktion basiert auf der Identifizierung eines dquiv-
alenten unilateralen Druckversuchs, was eine eindimensionale Darstellung des konstitu-
tiven Materialmodells erlaubt welches das Profilgummi beschreibt. Die Genauigkeit des
Homogenisierungsansatzes wird zundchst am Beispielt der Kontaktinteraktion mit einer
Kugel untersucht. Im Anschluss daran wird unter Anwendung von Monte Carlo Simulatio-
nen das statistisch gemittelte thermo-viskoelastische Kontaktverhalten von Profilblécken
auf gemessenen glatten und rauen Fahrbahnoberflichen bestimmt und in konstitutive Kon-
taktmodelle iiberfiihrt.

Aufbauend auf diesen Ergebnissen wird der Rollwiderstand von Vollgummirddern und
luftgefiillten Reifen mit gekoppelten thermo-viskoelastischen traktiven Rollkontaktberech-
nungen ermittelt, wobei der homogenisierte unilaterale Profil-Fahrbahnkontakt mittels des
entwickelten konstitutiven Kontaktgesetzes dargestellt wird. Hierbei wird die Temperatur-
und Frequenzabhingigkeit der Gummi-Reibung durch ein phinomenologisches Reibgesetz
beriicksichtigt. Mit Hilfe dieser Modellierung kann das stationdre thermomechanische Ver-
halten neuer Reifendesigns mit einem groferen Detaillierungsgrad berechnet werden als
dies bisher moglich war, was bei der Entwicklung von Reifen mit geringem Rollwiderstand

eine wichtige Rolle spielt.

Stichworte Kontakt mit rauer Oberfliche; Kontakthomogenisierung; thermomechanis-
che Kopplung, gemischte Euler-Lagrange Kinematik (ALE-Kinematik); Rollkontakt; Roll-
widerstand; Finite Elemente Methode (FEM); Zeit-diskontinuierliche Galerkin Methode
(TDG-Methode)
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1 Infroduction

Motivation

In modern economy an increasing percentage of the transport of goods relies on trucks.
For this reason, it is of high economical relevance to maximize the energy efficiency of
these means of transport and to minimize their consumption of resources. Recent studies
of [Cullen et al., 2011; Holmberg et al., 2012 on the energy consumption of cars and trucks
give an overview of the percentile energy loss for different truck parts and their energy
saving potentials. Among other factors of influence, e.g. aerodynamics, weight reduction,
and combustion efficiency, large energy saving potentials were found in the optimization of
tires. For this reason, current research initiatives aim for the development of sustainable
tire designs with improved energy efficiency, e.g. the Lorry project (www.lorryproject.eu;
funded by the European Union from 2011 to 2016). The goal of this interdisciplinary
project is a reduction of resource consumption by developing new tire rubber compounds
and optimized tread patterns. These novel compounds shall contain a higher percentage
of natural rubber and also possess increased durability. The expected gain of these im-
provements is a reduction of the tire’s rolling resistance by at least 20%. According to the
studies [Holmberg et al., 2012; van Haaster et al., 2015] a reduction of rolling resistance
by 10% results in approximately 2 — 2.5% less fuel consumption.

The achievement of these goals requires detailed knowledge of the processes causing
rolling resistance and of the quantification of their contributions, see ISO 18164:2005
and ISO 28580:2009 for standard procedures of measurement. The main cause of rolling
resistance is the viscoelastic material behavior of the different rubber compounds in the
material layers that make up the tire carcass. In addition to a fibre-reinforcement for
higher tensile strength of the rubber layers, a modern radial tire also possesses a steel
belt, which increases the bending stiffness below the tread cap and gives the tire its
characteristic flat shape. During rolling motion the tire is flexed by the contact with the
road, which also bends the steel belt. Due to the large difference in stiffness between
belt and rubber, the connected rubber layer is subjected to large strains at high shear
rates, which result in a large amount of viscous dissipation. The dissipated mechanical
energy is transferred into heat and thereby significantly increases the tire’s temperature.
This change of temperature severely affects the material properties of rubber compounds,

especially damage and aging effects are more pronounced at high temperatures. For this
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reason, detailed tire calculations require a thermomechanically coupled framework so that
these material phenomena can be take into account.

A further important contribution to rolling resistance is the thermomechanical contact
interaction of the tread cap with the road. Both the tread pattern and the road surface
roughness significantly influence rolling resistance. [van Haaster et al., 2015] measured a
difference of 8-10% in rolling resistance between coarse and smooth asphalt textures, which
is in accordance with the extensive literature review recently presented in [Willis et al.,
2014]. In the above context, the term ’coarse’ refers to the optically visible mesoscale
asperity size (mm) rather than to the macroscopic waviness of the road (cm; m) or to
the microscopic surface topology of each asperity (um). Consequently, potential starting
points for the optimization of the tire-road interface towards reduced rolling resistance
can be found in the tire (e.g. adaptations of the tread rubber compound and the tread
pattern) as well as on the road surface (surface characteristics in road building projects).
However, the potential reduction of rolling resistance by smoothing the road surface is
obviously limited by the necessity to ensure the transmission of traction and braking in
the tread-road interface, as particularly a good wet grip behavior is a crucial safety factor.
Note that suboptimal transmission of tractions (slip) is also a source of rolling resistance.

The optimal tire design depends on the particular conditions in the desired application.
For instance, trucks transporting goods on motorways bridge large distances at nearly
constant speeds and on similar road profiles to which the tire’s steady state behavior can
be optimized. In this context, numerical simulations that take into account the different
dissipative effects (rolling resistance contributions) can yield detailed insight into the tire’s
thermomechanical behavior, which is difficult to directly access by experiments. These sim-
ulations enable numerical testing and rapid optimization of new tire designs for specific
rolling conditions. Accordingly, numerical simulations in conjunction with optimized pro-
totype testing can significantly reduce costs of tire development. And yet, experimental

testing is of course still inevitable for the validation of mathematical modeling.

A review on rolling resistance calculations including the effects of
tread-road interaction

Different theoretical approaches to calculate rolling resistance can be found in literature.
The most common technique is the finite element method (FEM), which has been
successfully applied for the past three decades and is available in different commercial as
well as open source software distributions. Apart from standard FEM-approaches there
are different mathematical frameworks such as the waveguide-FEM (see e.g. [Hoever,

2012]) or semi-analytical models (see e.g. [Louhghalam et al., 2015]). Both approaches
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allow for an estimation of rolling resistance and noise radiation that can be applied e.g.
for the optimization of road surface textures. However, these models do not provide as
detailed insight into the complex thermomechanical behavior of the tire’s bulk material as
can be obtained with the FEM, which is of crucial importance for the tire manufacturer
in order to calculate phenomena such as grip, wear, damage, and failure. For further
details on the development of tire simulation techniques the reader is referred to the
review by |Ghoreishy, 2008|.

Effective kinematic description

The first numerical framework enabling a detailed and efficient finite element (FE) solution
of stationary rolling contact problems was introduced in [Oden and Lin, 1986]. In this
contribution, rolling motion and relative deformation were decoupled using a a relative
kinematic description, which forms the theoretical basis for most present FE-frameworks
for rolling resistance calculations. Due to this separation, the material rotates within
the reference configuration so that material particles are no longer fixed to the FE-mesh.
Due to this fact, standard algorithms for the treatment of frictional contact and inelastic
material behavior cannot be directly applied. However, first approaches to overcome these
issues were already developed in this first contribution. A successive paper of the same
research group [Oden et al., 1988] extended the formulation to the three-dimensional case.
In addition, rough surface contact interaction was accounted for by an experimentally
evaluated nonlinear contact compliance. The further elaboration by |Faria et al., 1992] also
considered anisotropic fiber-reinforced rubber materials, which enabled the simulation of
air-inflated tires. This framework provided a first attempt to compute tractive (accelerated,
braking, and cornering) steady state rolling contact scenarios considering dominant sources

of rolling resistance.

The parallels of a relative kinematic description to Arbitrary Lagrangian FEulerian
kinematics (ALE-kinematics), which is applied e.g. in fluid structure interaction
problems, were first recognized in [Nackenhorst, 1993]. The further elaboration of this
framework resulted in a sound mathematical basis of ALE-kinematics for the rolling
contact problem, see |[Nackenhorst, 2000, 2004]. In the absence of friction, this formu-

lation achieved a symmetric stiffness matrix even for C%-continuous linear shape functions.

Tractive rolling contact

In [Oden and Lin, 1986] the authors also suggested a first approach to solve the tractive
rolling contact problem, based on a penalization of slip velocities so that contact tractions
can be calculated analogous to viscous damping. It can be regarded as a weak point of this

approach that small penalty parameters result in a drift of material points in the contact
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and therefore the stick condition cannot be fulfilled precisely. However, in the context
of rubber friction, the friction coefficient tends to zero on nominally flat rough surfaces
for small sliding speeds (see [Moore, 1972|). Due to this fact, the penalization of sliding
velocities only serves for the calculation of the sliding direction (predictor step), the actual
contact traction is calculated by the friction law, which results in a good approximation

for practical tire simulations.

The first mathematically precise calculation of the stick-slip transition in frictional
contact interaction was presented in [Nackenhorst, 2004|. This formulation can be verified
by analytical reference solutions assuming Hertzian contact, see e.g. [Johnson, 1985]. A
weak point of this approach was that only linear convergence rates of the solution were
achieved. Both deficiencies have been overcome by the solution presented by |[Ziefle,
2007; Ziefle and Nackenhorst, 2008], who defined the slip as an additional degree of
freedom. This modification allows the stick condition to be directly enforced by standard
algorithms for frictional contact, and yields quadratic convergence of the solution. The
application of this framework also allows a direct application of arbitrary friction models

formulated in Lagrangian kinematics, as will be demonstrated in the course of this thesis.

Inelastic material behavior in rolling tires

The efficient treatment of inelastic material behavior, especially of viscoelastic effects, in
ALE-kinematic frameworks is still an open topic of research. In this context, the evolution
equation for internal material history variables possesses both local and convective parts.
[Oden and Lin, 1986] suggested an integration of the material history along spatially fixed
streamlines in the reference configuration, which however suffered from accuracy issues
and required several revolutions in order to obtain convergence. A first fully coupled
treatment of this problem was presented by [Faria et al., 1992], who introduced a Fourier
series expansion of the evolution equation along these stream lines. This expansion allowed
for a direct calculation of the viscoelastic steady state response at the cost of introducing
the Fourier coefficients as additional degrees of freedom, which results in a large non-
symmetric system of equations, see [Nasdala et al., 1998; Nasdala, 2000| for further details
and applications. Note that this method suffered considerably from its mesh dependence,

requiring a post-error analysis as measure of ensuring mesh adaptivity.

Following established methods in ALE-kinematic frameworks (see [Donea et al., 2004]),
|Ziefle, 2007; Ziefle and Nackenhorst, 2008| introduced a staggered algorithm to separate
the treatment of the material history evolution into a local part and an advective transport
of the internal variable. In order to solve this transport problem with minimal numeri-
cal diffusion and without limitations on the integration step size by stability criteria, the
time discontinuous Galerkin method (TDG-method) was applied in this study. However,
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a disadvantage of this staggered treatment was that even though the TDG-method is un-
conditionally stable, the size of the integration steps (angular increments) is limited by
the governing problem. In order to gather all local sources of inelastic effects above the
contact zone and their relaxation in the non-contact areas, the element sizes as well as
the angular increments must be chosen sufficiently small, which causes the solution to be
numerically expensive. A comparison of the TDG-method with a simplified unsplit stream-
line update procedure published in [Wollny and Kaliske, 2013| showed a good agreement
of the computational results at reduced computational effort. This result is in accordance
with the theoretical observations of [Govindjee and Mihalic, 1998|, who stated that the
influence of advection on the material history evolution is negligible if the cycle dura-
tion is large compared to the relaxation time. The unsplit streamline update procedure
presented in [Wollny and Kaliske, 2013| was later used in |Behnke and Kaliske, 2015| to
perform thermomechanical rolling resistance calculations. The obtained numerical results
were validated with experimental measurements also presented in that contribution and a

good agreement of both was found.

Recently, |Govindjee et al., 2014b| published a fully coupled framework that overcomes
the mathematical issues of prior coupled approaches. The key idea lies in transferring
the material history evolution into a spatial minimization problem, which has been
presented first in [Le Tallec et al., 1994]. But instead of solving this problem using an
upwind scheme, |Govindjee et al., 2014b| reformulated the material history evolution in
terms of linearized dynamics. By means of this framework, the viscoelastic steady state
response is obtained directly from a spatial minimization problem. In the present form,
this treatment requires the introduction of tensor valued over-stresses as additional state

variables, which results in a large non-symmetric stiffness matrix.

Thermomechanical coupling

In the past decades, different approaches to include thermal effects into the calculation of
stationary rolling tires have been published, see e.g. the literature review by [Ghoreishy,
2008]. The theoretical basis for the thermomechanically coupled rolling resistance
calculations in the present work was presented in [Suwannachit, 2013; Suwannachit and
Nackenhorst, 2013|. This framework allows for the application of arbitrary constitutive
material models to describe temperature dependent, viscoelastic rubber compounds. In
addition, it enables the calculation of the temperature rise by viscous dissipation yielding
the thermomechanical steady state response of frictionless rolling tires on a flat rigid
surface. In this framework, the thermomechanical coupling was treated by the isentropic
operator split scheme by [Armero and Simo, 1992|, which allows for an unconditionally

stable separation of the mechanical and the thermal subproblem.
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Tread-road interaction in ALE-kinematics

A yet unsolved limitation in ALE-kinematic frameworks is the requirement of a rotation-
symmetric mesh. Accordingly, studies are presently limited to the analysis of tires with
circumferential grooves. A recent approach by [Govindjee et al., 2014a] describing the
time periodic states of treaded rolling bodies has not yet been applied to more complex
tread structures of tires. To date, the structural behavior of real tread patterns on flat
surfaces can only be considered by using anisotropic homogenized constitutive material
models, as presented in [Kaliske and Timmel, 2005]. Note that this response depends on
service temperature, load and speed (frequency) of the tire, and of course on the random
asperity distribution of the contacting rough surface for a single tread design made
of a specific rubber compound. Therefore, the identification of the average tread-road
interaction as a basis for formulating a constitutive contact model requires either
extensive experimental testing (see e.g. [Huemer et al., 2001b]| for experimental rubber
friction evaluation) or a mathematical solution of the rough surface contact problem.
In this context, the thermomechanical behavior of the deformable asphalt surface also

influences on the obtained results. However, a rough rigid surface is assumed in this study.

Experimental rough surface contact evaluation

[Oden et al., 1988| suggested the first engineering approach to include a constitutive
contact model describing the tread-road interaction, which was derived from experimental
testing. A negative aspect of such models is that their material parameters often have no
direct physical meaning, and therefore need to be identified by solving an inverse problem.
For this reason and in order to reduce experimental costs, analytical or numerical models

are to be preferred to experimental testing.

Analytical methods for rough surface contact

An analytical solution for rough surface contact problems was first presented in [Green-
wood and Williamson, 1966]. The history of the further development of this class of models
is described in detail in [Liu et al., 1999; Zmitrowicz, 2009; Chen, 2013b,a|, and a compar-
ative study of different methods can be found in [Zavarise et al., 2004]. To date, the most
elaborated analytical solution, which describes rough surface contact as a diffusive process
over the spectral surface representation, has been presented in |[Persson, 2001]. In case of
the presented examples, this approach is highly accurate up to nearly full contact, and
has since been applied for thermomechanical contact and inelastic material behavior, see
[Persson, 2006b]. However, analytical models are based on the assumption of contacting

elastic half-spaces which restricts the solution to small deformations and simple material
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models. Consequently, analytical models cannot describe the structural response of tread
blocks contacting the rough road surface and their rolling resistance contribution, which

is dominated by large deformations and complex material behavior.

Rubber friction is a microscale phenomenon (um) in the contact interface between
tread rubber and the penetrating mesoscale asperity (mm). Therefore, rubber friction
can be approximated by analytical methods in case that only the microscale roughness is
taken into account, see [Persson, 2006b; Lorenz et al., 2011; Popov et al., 2014].

Multi-scale homogenization techniques

The restrictions on kinematics and material behavior can be overcome in detailed finite
element (FE) models, see e.g. [Bandeira et al., 2004] for an example of a unilateral
constitutive contact model development based on the evaluation of rough surface contact
scenarios. In these calculations, the contacting bodies are discretized with FE-meshes,
which allows for an evaluation of stress in the bulk material as well as the structural
response of the contact interaction. This insight comes at high numerical costs if small
length scale roughness must be captured by fine mesh resolutions. In order to minimize
these numerical costs, multi-scale methods can be introduced. Based on the assumption
of separable scales, small scale roughness can be observed in detailed sub-models, which
are subjected to admissible boundary conditions fulfilling the Hill-criterion. This method
allows for either a consistent homogenization of the average microscale material behavior,
or a direct coupling of micro- and macroscale problem in a single simulation using the
so-called FE?-method, see [Miehe, 2003; Geers et al., 2010] for further details.

Due to the contact with the rough surface, admissible boundary conditions allowing
for the volumetric first-order homogenization described above cannot be defined. For this
reason, the rough surface contact response is homogenized on an interface in order to
obtain a consistent micro-to-macro transition. Based on these assumptions, [Wriggers and
Nettingsmeier, 2007; Reinelt and Wriggers, 2010| evaluated the multi-scale homogenized
friction response of a rubber block on a rough surface by upscaling the average tractions
on relatively fine levels for a prescribed contact pressure. As a result of this study, material
parameters for a pressure, temperature, and velocity (frequency) dependent friction model
were identified. In [De Lorenzis and Wriggers, 2013] this work has been extended by
application of isogeometric shape functions and the Mortar method, which enhanced the
stability of the contact simulation. Note that the fractal character of road surfaces does

not allow for separation of scales in general.

Following the classical homogenization theory, a representative contact element (RCE)
was formulated in [Temizer and Wriggers, 2008|, enabling a direct coupling by means of

FE2. In these studies, the averaged friction response accounting for the effect of moving
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(Finite element tire modeling in ALE-kinematics|

Macroscale (mm; cm) Mesoscale (mm) Continuum microscale (um)
Structural tire response Tread deformation Friction phenomena
Tractive rolling: Anisotropic, structural -
Analytic models:
[Nackenhorst, 2004] tread response:
. . i [Persson, 2006b]
[Ziefle and Nackenhorst, 2008] [Kaliske and Timmel, 2005]
Thermo-viscoelasticity: Th?:mo-V;SCOEIaStIC FE2-Methods:
[Suwannachit and Nackenhorst, 2013] v ate?a co‘ntact. [Temizer and Wriggers, 2008]
This thesis

Figure 1.1: Relation of this thesis to the state of the art.

cylindrical third bodies in a two-dimensional contact interface was calculated. This ap-
proach was further elaborated introducing a thermodynamic consistent homogenization
of viscoelastic effects to calculate the dissipation in the contact interface, see [Temizer
and Wriggers, 2010a]. In order to estimate the average heat flux in rough surface contact
interactions, [Temizer and Wriggers, 2010b| developed a thermomechanical extension of

this contact homogenization framework.

The stochastic average tread-road contact interaction, which is required for the calcu-
lation of the stationary response, cannot be described by RCEs due to the fact that the
autocorrelation length of rough road surfaces exceeds the size of tread blocks. Therefore,

a direct coupling by means of FE? is not applicable to rolling resistance calculations.

Summarizing the outcomes of this literature review, a homogenized constitutive contact
model accounting for the mesoscale stochastic average thermo-viscoelastic response of sin-
gle tread blocks on rough road surfaces has not yet been developed. An energy-consistent
representation of this contact behavior is required in order to quantify the influence of
surface roughness on macroscale rolling resistance and is therefore highly relevant for the
optimization of tread patterns. This thesis is meant to bridge this gap by providing a ho-
mogenized constitutive contact model, which enables to account for mesoscale tread-road

interaction in macroscale rolling resistance calculations, see Figure 1.1.
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Scope and structure of the thesis

The main objective of this thesis is the development of a one-dimensional constitutive
contact model to represent the average thermomechanical contact interaction of a three-
dimensional tread block on random rough road surfaces. This new approach is based on
the tread’s bulk material model and allows for precise calculations of average contact
pressure and internal dissipation of tread blocks as a function of penetration depth, time
(resulting in a prescribed penetration velocity or frequency), service temperature and a
set of internal variables, which preserves the external energy in the load cycle (consistence
of energy). The necessary solution steps for this homogenization problem are described in
detail in this thesis. Thereby, the viscoelastic contact behavior of single tread blocks on
optically measured road surfaces is characterized by numerical solution of the underlying
stochastic contact problem. This result is obtained with a Monte Carlo simulation,
in which the surface position is the random variable. The capability of representing
viscoelastic rough surface contact interaction of tread blocks in macroscale models is
validated by numerical studies of full scale models. Finally, rolling resistance calculations
of rubber wheels and air-inflated radial tires accounting for thermomechanical tread-road
interaction are performed by use of the developed constitutive contact model. The results
of this study allow for a quantification of the influence of surface roughness on rolling

resistance for the measured road profiles.

The basic continuum mechanics framework necessary for the definition of the described
problem is summarized in chapter 2. Special focus is thereby put on the formulation of

ALE-kinematics including the effect of thermal expansion.

The relevant material phenomena occurring in rubber materials as well as the chosen
constitutive material model to depict these phenomena are briefly described in chapter 3.
In addition, the behavior of the material model is illustrated in several numerical tests in

order to allow for a better understanding of the subsequent results.

In chapter 4 the theoretical background for the enforcement of contact constraints and
the calculation of thermomechanical contact interaction is outlined. Here, the main issues
are consistency of energy in the contact interface, and phenomenological friction models

for rubber friction.

With these methods at hand, the homogenization of the random rough surface con-
tact problem is addressed in chapter 5: First, the basic concepts for energy-consistent
homogenization are briefly summarized, followed by the description of the constitutive
contact model. Then, the mathematical problem for random rough surface contact is

stated. By solving this problem, the average contact behavior of tread blocks on road
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surfaces is obtained. In a next step, typical quantities for the characterization of rough
surfaces are calculated for two measured asphalt surfaces. These surfaces serve as exam-
ples for rough and smooth road surfaces throughout this thesis. It is also demonstrated
that moderate bandpass filtering can significantly reduce the numerical effort whilst re-
taining the mesoscopic contact behavior. In the last section of this chapter numerical
examples are presented to illustrate the capability of the one-dimensional homogenized
constitutive contact model to represent complex three-dimensional unilateral contact sce-
narios in an energy-consistent way. In addition, the results of the random rough surface
contact problem are presented for two different tread geometries, and the parameters for
the constitutive contact model are evaluated.

The obtained constitutive contact models describing the homogenized tread-road inter-
action, are then applied in thermomechanical rolling resistance calculations in chapter 6.
Initially, a brief introduction on the numerical framework and its calculation algorithm
is given, which was developed mainly based on the works of [Nackenhorst, 2000; Ziefle,
2007] and [Suwannachit, 2013|. In applying this framework, the influence of surface rough-
ness on rolling resistance is investigated numerically for solid rubber wheels as well as for
air-inflated radial tire models.

Finally, the results of this thesis are summarized and concluded in chapter 7. Further-

more, an outlook on further research is given.
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The calculation of rolling resistance requires a mathematical description of the involved
coupled mechanical and thermal processes, which can be realized within the framework
of continuum thermomechanics. This concept interprets arbitrarily shaped bodies as sets
of continuously distributed media, rather than as discrete objects or sets of single atoms.
Based on this assumption, engineering problems can be solved efficiently as it allows for a

homogenized description of complex material phenomena.

The theoretical basis of this thesis largely originates from the detailed descriptions in
the works of [Holzapfel, 2000; Nackenhorst, 2000; Liu, 2002; Haupt, 2002; Willner, 2003,;
Lubliner, 2006]. This chapter provides a short summary of continuum thermomechanics
including the necessary aspects to formulate the mathematical problem and also serves to
introduce the chosen notation. The key points of this chapter are the change of thermody-
namic state, Arbitrary Lagrangian Fulerian kinematics in the realm of finite deformations,
basic stress definitions, and the statement of the fundamental balance laws, which need

to be fulfilled at all times in the following simulations.

2.1 Kinematics

Kinematics describes the motion of material particles in space and time. This descriptions
is the basic requirement for a mathematical modeling of real world engineering problems.
In the context of tire mechanics, the kinematic description must be suitable to cope with
the occurring finite deformations and the large relative motions as well as the thermal
expansion of the material. These complex phenomena can be described efficiently using
Arbitrary Lagrangian Eulerian kinematics (ALE-kinematics), in which the body’s motion
is separated into a purely rotational contribution and a superimposed relative deformation.
The ALE-kinematic description applied in this thesis is based on the ideas presented in
the work of [Nackenhorst, 2004], which have since been used in [Ziefle, 2007; Suwannachit,
2013]. In the following sections, the mathematical description of the placement and the
deformation of the material body is introduced, followed by definitions of strains and time

derivatives of kinematic quantities.
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Figure 2.1: Material configuration By, reference configuration B, thermally expanded con-

figuration B and spatial configuration B; of the material body.

2.1.1 Material body, configurations and motion

In continuum thermomechanics, the material body B is defined as a set of continuously
distributed material points. For reasons of simplicity, the body is placed in the Fuclidean
space E? in the present study, rather than using an arbitrary space definition. Any place-
ment of the body B(t) at a fixed time t is called a configuration, in which each material
point has a specific thermodynamic state.

The body’s initial placement at time ¢ = ¢, is assumed to be spatially fixed and referred
to as the initial or material configuration By in the following. In this configuration the
position of each material point is defined by a position vector Xg = X E;(I = 1,2,3),
where X[ are called material coordinates and the orthonormal base vectors E; form a
Cartesian basis. The related initial thermodynamic state of all material points is assumed
to be stress-free and to have an initial temperature ©.

The motion of the body is then regarded as a continuous process or series of configu-
rations, which is described by a mapping ® : [to,t] x By — E3. The actual placement
at t > ty is called current or spatial configuration B;. Here, the material point has the

1

position * = x!E;(I = 1,2,3), with spatial coordinates z!. Furthermore, the thermo-

dynamic state of the material point in this instant is characterized by a spatial velocity

v(x) = ®(Xo,t) and a temperature ©.

The basic idea behind the description of large motions in ALE-kinematics lies in the
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Configuration
Material Reference Thermally expanded Spatial
Symbol By B B B,
Variables Ao A A a
Vectors Ny N N n
Operators GRAD Grad Gradg grad

Table 2.1: Notation convention [Suwannachit, 2013|, modified.

introduction of an intermediate reference configuration, in which the convective material
transport is traced in Fulerian kinematics. A Lagrangian observer that is fixed to this
configuration then only describes the relative motion of the body. In the special case
of a rolling motion the reference configuration is defined by a rigid body rotation B =
¢ r(Bo,t) of the initial configuration, which does not induce any stresses. The position
X = X!'E;(I = 1,2,3) of the material point in this configuration is then defined by

referential coordinates X?.

In the context of thermomechanical simulations, the change of temperature A©® = ©—-0),
is accompanied by thermal expansion. In order to separate this effect from the mechanical
deformation, [Lu and Pister, 1975] introduced an additional intermediate configuration
B = ¢o(B(t),0) using a multiplicative split of the deformation gradient. Here, the
thermal expansion is assumed to be an isotropic volumetric extension, which is also to be
stress-free if it is not restricted by boundary conditions. Note that the mapping g (X, ©)
is solely induced by the change of temperature. The remainder ¢,, (X' , t) is referred to
as effective mechanical motion. This formulation was applied in the models of [Heimes,
2005; Hofer, 2009], from which the present notation has been adapted.

The definition of these configurations enables a separation of the mapping

P =popr=Pry0Po° Pp, (2.1)

which projects points from the material into the current configuration. In this equation the
mapping ¢ : B x [tg,t] — E3 describes the superimposed relative motion to the rotating
reference configuration B = ¢(By,t) in ALE-kinematics. The relative deformations can
be separated into a mapping @,, : B x [to,t] — E3, which describes the purely mechanical
deformation and a thermal expansion ¢g : B X [0, 0] — E3.

The relation of the different configurations and mappings is illustrated in Figure 2.1, and

the notation of the most important quantities and operators is summarized in Table 2.1.
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2.1.2 Displacement

The material displacement field
’LLQ(X(],t) :CC(Xo,t) —Xo (22)

is a vector field, which relates the position of a material point in the initial configuration
to its location in the current configuration. This displacement needs to be distinguished

from the reference displacement field
u(X,t) =x(X,t) — X(Xo,1), (2.3)

which is a mapping based on positions in the reference configuration. Note that if the

motion has no convective contribution, both fields coincide.

2.1.3 Deformation gradient

The change in shape of a material body, i.e. the deformation of material lines and curves,
is often quantified by the deformation gradient in continuum thermomechanics. This
second-order, two-field tensor is generally introduced as a mapping of an incremental line
element d X in the material configuration onto the same line element da in the current
configuration

da(Xo,t) = Fo(Xo,t)dX,. (2.4)

In the general concept of ALE-kinematics, the deformation gradient

Fo(Xo,t) = F(X,t)- R(X,1) (2.5)
is split multiplicatively into a convective material motion R and a motion F relative to the
reference configuration. In the special case of rolling motions, R has been introduced in
[Nackenhorst, 2000] as a purely rigid body rotation with an angular velocity w(t) around
a fixed axis. In this thesis, the rotation axis coincides with the third base vector E3 and

therefore, the rotation tensor takes the form

) cos (w3(t)t) —sin (w3(t)t) 0O
Rs(ws(t),t) = | sin (w3(t)t) cos (w3(t)t) 0. (2.6)
0 0 1

The Lagrangian observer, which can be regarded as fixed to the axis of rotation in this
framework, perceives the relative velocity of the ground and the deformation of the refer-
ence configuration F'. Due to the fact that only the relative part describes a deformation
of the material and all quantities are defined with respect to the reference configuration in

the following, the term deformation gradient will from here on refer to the relative part.
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The deformation gradient F' is calculated as the partial derivative of the relative motion

(o with respect to the coordinates of the reference configuration X as

= 92X _ 0% _ reda. (2.7)

F="x ~ox,

With the definition of the material displacement field (2.3), the deformation gradient can

also be expressed via
F = Grad(X + u) = 1+ H with H = Gradu, (2.8)

where the tensor H denotes the displacement gradient.
The introduction of a thermally expanded configuration is realized by a further multi-

plicative decomposition of the deformation gradient

o or 0X
F=F, Fg=— —— 2.
w-Fo=—= 5% (2.9)

which allows for a distinction of the thermal expansion F'g and the purely mechanical
deformation F'j;. A thorough discussion on the advantages and disadvantages of possible
sequences to introduce an intermediate thermal configuration, namely F' = Fy - Fo =
Fo - F);, has been published in [Hartmann, 2012|. In the context of ALE-kinematics the
chosen sequence (2.9) appears to be most convenient.

Following [Hofer, 2009], the assumed isotropic thermal expansion is modeled by a scalar
function pg(©). This formulation was presented first in [Lu and Pister, 1975|, in which

the thermal deformation gradient was defined as
Fo = ¢ (0O)1. (2.10)

The Jacobian determinant J = det(F') maps an infinitely small volume element in the

reference configuration onto the current configuration
dv = JdV, (2.11)

and can therefore be used as a measure for volume change. The introduction of interme-

diate configurations also enables a decomposition of the Jacobian determinant
JO =.J= Ye J]W, (212)

where the first equality results from the assumption of a rigid body motion. In the reference
configuration the Jacobian determinant can be separated into a thermal part pg and an

effective mechanical part Jy;.
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2.1.4 Strain measures

The objective calculation of stresses in terms of constitutive material models requires frame
invariant strain measures. The deformation gradient (2.7) as a two-field tensor is generally
non-symmetric and does not fulfill this requirement. Therefore, the right Cauchy-Green

tensor is introduced in the rotating reference configuration as
C = F' . F, with det(C) = J?, (2.13)

which results in a symmetric, objective deformation measure in this configuration. Fur-
thermore, it contains information about the stretch
dX
A=Ve-C-e, wheree = —— (2.14)
[dX|
is the normalized direction of the material line element dX. For the formulation of frame

invariant constitutive material models, the invariants of the right Cauchy-Green tensor

Ic = tr(C) =+ )+ \; (2.15)
Il = % (tr(C)* — tr (C?)) = tr(C) " det(C) = ATAS + MA5 + ATA;  (2.16)
Il = det(C) = ANIA3A; (2.17)

are of particular importance. Both the tensor notation and the form using principal
stretches \; (square root of the eigenvalues of C') are valid in arbitrary coordinate systems.

In order to enable the application of constitutive material models formulated in the
regime of finite deformations at isothermal conditions, the purely mechanical deformation
is extracted with respect to the thermally expanded intermediate configuration. Here, the

effective, mechanical right Cauchy-Green tensor takes the form
2

é]W = gpégC (218)
A further important quantity in material modeling is the Green-Lagrange strain
1 1 1
E= (F'-F-1)=(C-1)=_(H+H"'+H" - H), (2.19)

which is defined in the rotating reference configuration as a nonlinear equivalent to the
engineering strain. It follows from (2.9) that the Green-Lagrange strain can be separated

into a thermal Fg and a mechanical contribution E,;, which yields
1

Eo = 5(Fg-F@—l) (2.20)
Ey = %(FT-F—FE)-F@). (2.21)

Its connection to the initial configuration is given by
E=R". E,R'=R-E, R", (2.22)

where the second term is valid due to the orthogonality of the rotation tensor RT = R~
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2.1.5 Material time derivatives

In isothermal ALE-kinematics, the material time derivative of an arbitrary spatial quantity
flx,t) = f(p(X,1),t) takes the form

df () of of

_of) o) ax| _of
dt |y,  Ot|x 0X

- = df - 2.2
at |y, ~ ot X—l—Graf w (2.23)

t

Here, the first term can be interpreted as the local evolution or relative change of f, and
the second term as its convective transport in the reference configuration.

In this thesis, this general form of the time derivative is restricted to the case of station-
ary rolling motions, for which a rigid body rotation w(t) = w at constant angular velocity
is assumed. Due to this assumption, a material point in the reference configuration moves

with the guiding velocity

X 0 —W3 0
w=—| =Xxw=X-|wg 0 0], (2.24)
4 lx, 0 0 0

see [Nackenhorst, 2000] for further details. Note that the local evolution or relative change

of the quantity f vanishes for any process
lm == =0 (2.25)

when approaching the stationary state.
The application of (2.23) on the spatial displacement yields the velocity field
_ O

d t
duo(, 1) = —| +Gradp - w=7v+c, (2.26)

t pr—
v(@,1) dt ’XO 0t | 5

in which a relative ¥ and a convective velocity ¢ can be distinguished. For stationary
motions, the relative velocity © vanishes according to (2.25). This effect can also be
observed in experiments in which tires seem to have a constant shape whilst rolling on the
test drum. Following this assumption, the material time derivative (2.23) of the velocity
field v(x,t) defines the acceleration field of a body in stationary rolling motion via
a(z,t) = dv(@,t) = Grad (Grade - w) - w, (2.27)
dt  [x,
see [Nackenhorst, 2000] for details.
The introduced thermally expanded configuration allows for the direct application of

standard material models, which are formulated in the isothermal regime. The effective
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mechanical motion F'y; observed in this configuration is the same as for isothermal pro-
cesses. For this purpose, the material time derivative (2.23) needs to be separated into its

thermal and its mechanical contributions, which results in

dg(:l,‘,t)‘ = @ +@g
dt |y, Ol " oX dt|
Jg g Opg [ 0O
= Y Y (Fewr 2o (2] 4 Grade 2.98
0tX+ax(®w+8® ot |, T Crade-w ) ) (2.28)
o dX  dpe(X,0)]  0pg dX dpg dO
with = . At |y, 0X di |y, 00 di|y, (2.29)

for an arbitrary spatial quantity g(x,t) = g (cpM (X', t> ,t). Here, (2.29) follows from the
assumption of isotropic thermal expansion. The contributions can be understood as the

pure convective speed in the expanded configuration F'g - w and the expansion velocity
%L@@@. The two different contributions are not distinguished in the material time derivative
(2.23) with respect to the rotating reference configuration. For stationary motions, the
dg
at

relative changes 37| 4 and vanish according to (2.25).

®
ot | X
2.1.6 Deformation rates

The description of the evolution of deformation processes, which is related to mechanical
power, can be realized by introducing rates of strain tensors. In this thesis, the required
quantities to formulate balance equations in the rotating reference configuration are the ref-
erential velocity gradient L describing the rate of change of the deformation gradient, and
the rate of Green-Lagrange strain E. Here, the referential velocity gradient in stationary

rolling motion is defined as
ov

L:a—X:Gradv:F+F-Q (2.30)

in which @ = R- R" is a skew symmetric tensor containing the angular velocity, see
[Nackenhorst, 2000]. The rate of Green-Lagrange strain with respect to the stationary
rotating reference configuration is introduced by

E - %(FT-F+FT-I3’+FT-F-Q—Q-FT-F>
- %(C’+C~Q—Q-C). (2.31)

Analogous to the strain measures, the referential velocity gradient can also be decom-
posed into a mechanical part Ly =L Lo and a thermal part

/
.. . d
Le=Fo Fg' = 3“2@1 with @l = %. (2.32)
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This formulation of the thermal velocity gradient is based on the assumption of isotropic
thermal expansion, see [Hofer, 2009]. By means of this definition, the rate of the mechan-

ical part of the right Cauchy-Green tensor can be calculated via

N 200« _2 .
CM = —39060]” +QD@3C. (233)
Yo

By using (2.18), the rate of the Green-Lagrange strain E can then be separated into its

mechanical and thermal contributions

. 1. 1 . o o . M
E=-C = 5(Fg-CM~F@+1«“5-CM.1v‘@+1rg.cM-F@)
1 v 19 9] v M
- 5Fg-(Lg-CM+CM-L@+CM>-F@. (2.34)

2.2 Stress definitions

The traction vector t is defined as incremental force df per incremental area da in the

current configuration and is related to the Cauchy stress tensor o by the Cauchy theorem

_df _

t= = n
da i

(2.35)
Using Nanson’s formula JF~T- N dA = nda the nominal traction vector T can be defined
as the incremental force d f per incremental area dA in the reference configuration, which
is related to the first Piola-Kirchhoff stress tensor P via
df
T=_-""_—-P.N. 2.36
A (2.36)
In order to obtain a symmetric representation, the second Piola-Kirchhoff stress tensor is

introduced as
S=F"'.P, (2.37)

which is entirely defined in the reference configuration, but has no direct physical meaning.

2.3 Balance principles

In continuum mechanics, balance principles ensure physical consistency and therefore must
be fulfilled at all times. In this section, a short overview of related balance principles is
given, with special emphasis on thermomechanical problems. For a more detailed discus-
sion the reader is referred to [Holzapfel, 2000; Willner, 2003|.
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2.3.1 Balance of mass

The balance of mass describes the change of mass in a body. As no wear or other abrasive
effects are taken into account in this work, the mass m is assumed to be constant over

time, which results in
m:/QOdV:/QdV:/édV:/gtdvéconst., (2.38)
Bo B B B

where g, 0, 0 and o; are the mass densities within the different configurations. Due to
the assumptions on stationary rolling motions introduced in subsection 2.1.1, the mass

densities are related via

00(Xo) = 0(X, 1) = 26(0)d (X 1) = 9o (©)Ju (@, ar(, 1), (2.39)

where the initial density og is only affected by thermal expansion and volume changes

resulting from mechanical deformations.

2.3.2 Balance of linear and angular momentum

The balance of linear and angular momentum relates the changes of momentum of a system
to the acting forces and torques. In the stationary rotating reference configuration the

local form of the balance of linear momentum is defined as
00 = DivP + gb. (2.40)

As shown e.g. in [Holzapfel, 2000], the balance of angular momentum implies the sym-

metry of the Cauchy stress tensor as well as for the second Piola-Kirchhoff stress tensor

o=0c" and §=8". (2.41)

2.3.3 Balance of energy

For the description of thermomechanical systems, the balance of energy, also known as the
first law of thermodynamics, relates the change of internal energy é to the sum of acting

mechanical and thermal power. Its local form in the rotating reference configuration reads
o6 = S:E—DivQ + or, (2.42)

where S : E is the mechanical stress power, @ denotes the heat flux, and r symbolizes
internal heat sources. This equality needs to be fulfilled in all configurations and can be

transferred by making use of the work conjugated pairs

S:E=P:F=Jo:d. (2.43)
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The general validity of these transformations is proven in [Holzapfel, 2000]. In this state-
ment d = % (gradv + gradT'v) is called the symmetric rate of deformation tensor.

With (2.34), the stress power P = S : E in the reference configuration is separated into
a purely mechanical part P, and a thermal contribution Pg that stems from the isotropic

thermal expansion, which yields

. . /
P=Sy:Ey+Sy:Cy-Lo=5Sy:Ey+ ?fp@ OSy : Cy =Py + Po, (244)
e
o 2
where the transformations Sy = ¢S and (2.18) were applied. By means of this equiva-
lence, the local form of balance of energy (2.42) can be reformulated as

. /
Q@:S’]\/IEM—F;O@ @SA[CM—DIVQ—{—QT (245)
Yo

Note that the thermal stress power is zero in case of unrestricted thermal expansion.

2.3.4 Entropy inequality

The entropy inequality ensures that the solution of the balance of energy is physically
consistent and results in a maximum of entropy s in the system. The local form of the

entropy inequality with respect to the rotating reference configuration takes the form
1
00s + DivQ — 6Q - Grad® — or > 0. (2.46)

This inequality can be related to the balance of energy (2.42) by using the mass-specific
Helmholtz free energy

Y =e—0Os, where ¢ =¢é—Os— 0§ (2.47)

is the time derivative, which is obtained by Legendre transformation. With this definition,

the entropy inequality in the reference configuration reads
. S 1
S:E—o (¢ + @s) - 5QCrad® > 0. (2.48)

With the separation of the stress power (2.44) into a mechanical and a thermal contribution,

the balance of energy (2.48) can be reformulated into a heat conduction equation

00s = D, — DivQ + or,

9 M oLy o . . 1
with Dyyy = Sar: By + 2208, : Gy — o <¢ + @s> ~ Q- Grad® > 0(2.49)
3pe e)

This inequality needs to be fulfilled by any objective constitutive material model. Its

fulfillment for the material model used in this thesis is shown in the next chapter.
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3 Constitutive modeling of rubber materials

The precise calculation of rolling resistance requires a suitable material model that depicts
the dominant nonlinear characteristics of tire rubber at steady state conditions. The
continuum modeling of these phenomena is a wide and highly active field of research due to
the economical importance of rubber materials. A broad overview on modeling approaches
is given in the literature reviews by [Mackerle, 1998, 2004; Puglisi and Saccomandi, 2016].

In this thesis, the behavior of tire rubber compounds is described by an extension of the
thermo-viscoelastic material model presented in [Suwannachit, 2013] (see chapter 6) and
|[Suwannachit and Nackenhorst, 2013|, which is mainly based on the work of [Holzapfel
and Simo, 1996a]. That model has been an extended by a strict separation of mechanical
and thermal deformation presented in [Lu and Pister, 1975], which was applied in [Heimes,
2005; Hofer, 2009]. The present material model accounts for the characteristic nonlinear
stress-strain relation, hyper-elasticity at large deformations, quasi incompressibility and
viscous dissipation under cyclic loading. Furthermore, the temperature dependence of
the elastic and the viscoelastic material properties are depicted, as well as the so-called
Gough-Joule effect. All these phenomena occur at typical tire service temperatures © €
[—30, 60]°C, whilst local temperatures may reach up to 120°C in hot spots inside the tire.
Below the minimum service temperature, the material stiffness increases, whereas the
elasticity decreases. Finally, at the so-called glass transition temperature the material
changes from its rubbery to a glassy state and becomes brittle. Above the maximum
service temperature aging mechanisms are accelerated, which soften the rubber irreversibly.
Phenomena outside the service temperature regime are not in the scope of this work.
Damage mechanisms like strain induced softening (Mullins effect) as well as wear and
residual stretches (viscoplasticity) are also neglected due to the following assumptions.
Damage effects occur within the first few revolutions of a virgin tire and do not to advance
significantly thereafter. Wear effects evolve on larger time scales and are therefore of minor
influence for the current steady state material behavior.

After some general remarks on constitutive material modeling and objectivity of material
models, the model for the thermoelastic material behavior is introduced. Then, the applied
concept for linear thermo-viscoelasticity at finite strains is summarized, followed by the
algorithmic treatment of the coupled thermomechanical problem. The chapter ends with a
numerical study illustrating the most important effects of the modeled thermo-viscoelastic

material behavior.
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3.1 General aspects of constitutive material modeling

Following [Holzapfel, 2000|, the Helmholtz free energy for thermo-viscoelastic rubber ma-
terials is introduced as

v=1{E,0,al}. (3.1)

In this thermoelastic expansion of the generalized Mazwell model the stored energy non-
linearly depends on the following state variables: the Green-Lagrange strain E, the tem-
perature ©, and a set of strain-valued internal variables ag), which depict the elastic

deformation of each Mazwell-element. Inserting the total time derivative of (3.1)

o 8?/1
OE - (f)av

)= &), (3.2)

into the Clausius-Duhem inequaltiy (2.48) and reorganizing the terms yields

o\ oY : oy 1
(S— ).E+(——s)g@—gzm.ag>—6Q.Grad@zo. (3.3)

In order to ensure the fulfillment of this relation for arbitrary values of F and ©, each
term in brackets needs to be set to zero separately. Thus, the second Piola-Kirchhoff stress

tensor is calculated by

8 ov ov

S = o _ v =2— (3.4)

8E oE oC
where W = p1) is the strain energy function describing the stored energy per unit mass
element. In conjuction with the separation of thermal and mechanical stress power (2.44),
the entropy is computed from

Yo ov

— C - .
0S8 = 3()095]\/1 M 8@ (3 5)

The viscoelastic material response is represented by a conjugate thermodynamic stress

A, 9

v

tensor

PO (3.6)
The fulfillment of the remainder requires a consistent material model describing the heat

flux. This is achieved by applying the Fourier heat conduction law
Q= —ko(©)C™'-Grado, (3.7)

for heat conduction coefficients kg(©) > 0. In the present study, the heat conduction

coefficient is modeled temperature dependent with the softening parameter wy via

k’@(@) = k@o(l — wk(@ — @Q)) (38)
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The remainder results in the definition of internal dissipation

D =» AP :al) >0. (3.9)

Inserting the above findings into the heat conduction equation (2.49) and recalling the

separation of stress power (2.44) results in the final form of the heat conduction equation

005 = _190_295,M : C'ays + Dint — lQ - Grad® — DivQ + or. (3.10)
3 ve ©
Note that the first term vanishes if the stress power is not separated into its mechanical
and thermal parts by (2.44).

In addition to the general statements above, it is useful to introduce some specific
preliminaries in the context of rubber modeling: The shear stiffness of rubber materials in
general is much smaller than their volumetric stiffness, which is often described as quasi-
incompressible material behavior. In order to depict this material behavior, a volumetric-

isochoric split of kinematic quantities
F=JiF and C = J:C, with J = det F (3.11)

is defined, which allows for a separated treatment of the volumetric response and the
much softer isochoric parts. The thermal expansion of the material is depicted by the

exponential scalar function suggested in [Lu and Pister, 1975]

26(0) = exp ( / * 306(0) d@) — exp (3000(0 — Op)) . (3.12)

©o
Following |Heimes, 2005; Hofer, 2009|, this function is used to compute the thermal defor-
mation gradient F'(©) (2.10) and defines the thermomechanical separation of the deforma-
tion gradient (2.9). With these definitions, standard material models formulated in the
isothermal regime can be evaluated in terms of the effective mechanical quantities
J(F,0) .« o 2
M, C]w = @@(@)_%C and S]\/j = gDé)S (313)
ve(0O)
. _2 g —
Note that the application of (3.11) yields Cy; = J,,°C )y = C. Consequently, the invari-
ants of the isochoric response are equal in both configurations and can be calculated with
definition (2.17), where 115, = 11z = 1.

Finally, the general additive structure of the strain energy function for the thermo-

I =

viscoelastic constitutive material model is stated as
N
v (éM, o, a@) — y> (éM, @) +3°71,(C.0.a). (3.14)
i=1

The first term W™ describes the time-invariant, thermoelastic equilibrium response of the

material for ¢ — oco. Each summand of the second term represents an isochoric, thermo-

viscoelastic Mazwell-element with an additional strain-valued internal variable a&i).
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3.2 Thermoelastic constitutive material model for tire rubber

3.2.1 Strain energy function

This section describes the thermoelastic material model that represents the equilibrium
stress response of tire rubber assuming entropy-elasticity. This model accounts for hyper-
elastic material behavior, thermal stiffening, and the Gough Joule effect. The strain energy

function for this thermoelastic constitutive material model
ye (C*M, @) = U™ (Ja, ©) + W (C,0) + T=(0), (3.15)

consists of a volumetric penalty function enforcing incompressibility U, the isochoric
material response W and the stored thermal energy 7.

The volumetric penalty function enforcing incompressibility presented in [Hartmann
and Neff, 2003] is applied in order to restrict the effective volumetric deformation
Ko

U= ) = 55

(Jor+ I —2), (3.16)

where kg is the compression modulus at reference temperature. This penalty function
fulfills the physical plausibility conditions
U*(1)=0,U®"(1) =0,U®"(J) > 0,lim U*(J) = oo, lim U®(J) = o0

J—0 J—o00

and is convex in J. In this contribution, a superior behavior of this model compared to e.g.
widely used models such as U(J) = £ (J' — 1) was discussed.
Alternatively, the material model can be formulated in the reference configuration, as
presented in [Suwannachit, 2013]. Here, the volumetric penalty function
/ﬁ?o@

U(J,0)=— (J°+J°-2)

— 2900 - 6y), with ,2° = 3aeekrg! (J7© —1) (3.17)
500,

SN SN
is enhanced by a second term that represents the thermal expansion by a reduction of the
volumetric stress response at elevated temperatures. Here, agg is the thermal expansion
coefficient and vg is a thermomechanical coupling parameter. This phenomenological
term was first introduced in [Chadwick, 1974|, and has also been applied in the works
of |Holzapfel and Simo, 1996a,b|. Its formulation is based on the idea of an additional
potential to cope with the change of entropy induced by thermal expansion. However, this
formulation does not ensure a stress-free thermal expansion.

The isochoric thermoelastic material response W™ ((_3’, @) = @%VVOo (C’, @0) is modeled
in terms of well established isothermal formulations. In order to account for the temper-

ature dependence of the elastic properties, their material parameters are linearly scaled
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by the temperature. By means of this, the thermomechanical Neo-Hooke model takes the
form
W (C,0) = @9%(10 —3), (3.18)
0
where p is the shear modulus at reference temperature. The thermomechanical Mooney-
Rivlin model reads
W>(C,0) = @% [ci0(Ie — 3) + con(I1s — 3)], (3.19)
with its material constants c;g and ¢y at reference temperature.
Analogously, a linear temperature dependence for more sophisticated material models
can be introduced, such as the extended tube model presented in |Kaliske and Heinrich,

1999

_ ® _ _
W (C,0) = o~ (W (C.00) + W™ (C.6)). (3.20)
0
This model consists of a topological W%P° and a chemical part W™ which are defined
as
26, o
topo [ _ e N8B
were (G, 0,) 7 ; (W7 -1) (3.21)
- G, [(1=6)(Is - 3)
chem _ e c 207
weem (C,0y) = 5 { T +log [1—6*(Is —3)] ¢ (3.22)

Here, the shear moduli G, and G, result from chemical bonds and topological restraints by
finite chain length of rubber molecules. The parameter § accounts for the restricted stretch
of the polymer network chains, and tunes the upturn behavior of the elastic response that
occurs when then chains are fully stretched. The fitting parameter § € [0, 1] depends on
the network structure and is &~ 1 for well-connected, long polymer chains, see |Kaliske
and Heinrich, 1999| for details. Following [Ziefle, 2007|, its value is assumed to be 1
in the course of this thesis. The effect of this term above the maximum stretch can be
characterized as a penalty function, which has a severe impact on the volumetric expansion
being restricted in the same way. The interaction of both terms is observed in section 3.5.

The formulation of the thermal potential presented by [Heimes, 2005] was designed

inversely, assuming a linear temperature dependence of the isobaric heat capacity

1 0°T
Cp = Cpo (1 — k?cp@o) (@ — @Q) = —gm (323)
The integration of this relation results in the thermal part of the potential
S} 1
TOO(G)) = 00Cpo (]_ — kcp@())(@ — @0 — @10g (@—0) — §kcp(@ — @0)2 . (324)

[Hofer, 2009] presented an experimental validation of this potential function.
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3.2.2 Calculation of Stress

The general form of the calculation of the second Piola Kirchhoff stress tensor for isotropic

materials, formulated in terms of invariants, is given in [Holzapfel, 2000| p. 216

_Lov(e)  _[[ov ov o o
§=2—~ 2{(61+Iﬁ) ~ 57fC HT5==C! (3.25)

where I is the second order unit tensor. Due to the additive definition of the strain energy

density (3.15), the stress response can be calculated component-wise by

o (G0, ai) JOU=(J3,0) W™ (C.6)

S=2 2
oC oC oC (3.26)
Using the chain rule, the volumetric contribution of (3.16) yields
oU>(Ju) _ Lo\ e

Note that the implementation of this model only requires an exchange of the total volu-
metric deformation J by the effective mechanical measure Jy;. If the model presented in
[Suwannachit, 2013| (3.17) is applied, the volumetric response yields

8U°°(J,@)_ Ko@
oC 200,

(J5 - J_5) — 3()[@0lﬁo<]’ye(® - @0)) C_l. (328)

The isochoric part of the second Piola-Kirchhoff stress tensor in case of the Neo-Hooke
model (3.18) is calculated by

=530

OW>=(C,0) O pu
oC O 2

. %Iccl> | (3.29)

and the stress response of the Mooney-Rivlin model (3.19) is computed via

oW>(C,0) O = c 2c
% = @—OJ ((010 + C()l[C)I — ¢ C — (%I(J + %I[c) Cc ) . (3-30)

Finally, the derivation of the extended tube model (3.20) yields

ow= (C,0) 2 1— 02 52 1
-\ G — I--1.C!
aC ((1_52(10_3))2 1—52(10—3)) ( 3¢ >

3
- Ge (AQ( AT+ AT - Af))Ef@@E?. (3.31)

Here, E? denotes the eigenvectors of C and the assumption 8 = 1 has already been
inserted in order to shorten the notation. See Appendix A for further details on these

derivations.
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3.2.3 Calculation of entropy
Following [Hofer, 2009], the calculation of entropy (3.5) is performed by

301@0%0 (J _J ) o OUOO(J,@) _ 8WOO (é, @) o GTOO(@)
10 Mo UM 00 00 00

Where the ﬁrst term represents the mechanical energy stored in the thermal expansion

(3.32)

00S =

3% The derivative of the volumetric penalty function in terms of purely me-
chanical deformation (3.16) with respect to temperature yields wo;—gm = 0. For the

unseparated formulation (3.17), the first term vanishes due to o = 0, and the derivative

with respect to temperature yields

8U°O(J, @) ko

_ 3aeokoy !
= S+ TP -2) - ———— (] —1). 3.33
Due to the linear scaling with temperature, the derivative of the deviatoric part simply is
awog—(@c',@) = @iOVVOO (C,©p). And finally, the derivative of thermal potential with respect

to temperature yields

aTOOT(@) — 00Cp0 [(1 — kep©o) (— log (g)) — kep (O — 90)} : (3.34)

0

3.3 Linear thermo-viscoelasticity at finite strains

Following [Suwannachit, 2013|, the time-dependent thermo-viscoelastic material response
is modeled by a generalized Mazwell-model in the regime of finite deformations. For a
generalized overview, we assume a multiplicative split of the initial deformation gradient
(2.4)

Fo=F - Fyy (3.35)

into a relative isochoric motion F that describes the deformation of the Mazwell-elements
and an arbitrary dilational reference motion F'... For each Mazwell-element, an interme-
diate configuration is introduced by multiplicative separation of the isochoric deformation
gradient

F=F0.F" (3.36)

(@)

) and a viscoelastic part F|

el . This separation yields an additive decom-

into an elastic F

position of deviatoric Green-Lagrange strain and its rate

I 1 ( Y 1= = = (i = (3
B G R R S

&

I
+
F
w
to
x
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where @ is an internal variable and H fj’ is an elastic algorithmic strain variable, see
[Suwannachit, 2013]. With these kinematic definitions, the energy stored in the spring

element of the i-th Mazwell-element is modeled by
1O (C,0,a) =pu©)(E-al): (E-al), (3.39)
where ,u‘(,i)(@) is the temperature dependent shear modulus. With this potential, the

thermodynamic stress conjugate to the internal variable (3.6) yields

or(c.0a) "
— o = A =n"e)a,. (3.40)
oal

Following [Johlitz et al., 2010], the shear modulus and the viscosity ny)(@) at the current

temperature are calculated by

) (0) = al(©)” (Bo) and 1t (©) = al (©)1” (E0),
_ (1) o
with a7 (©) = exp [ (1 - @0>] : (3.41)
where §§i) is a relaxation parameter, which causes a decrease of dissipation at elevated
temperatures for féi) > 0 assuming less friction loss by the relative motion of polymer

chains. Due the same scaling of both material parameters, the relaxation time

+) i)<®0)

3.42
2Mv (@0) ( )

is temperature invariant.

In order to evaluate the stress response of the Mazwell-element, the internal variable
&' that describes the relaxation needs to be calculated. In analogy to the equilibrium of
the stress within the spring and the dashpot in the uniaxial case it can be postulated that

A0 i = (%) P~ i iy (i
A) =n©)a) = 210 (©)(EB - &) = 2 (0)H, (3.43)

v v

which can be used to formulate an evolution equation

. (i 1 —u 1 _ s
&) = —HY = (E-al). (3.44)

Due to the temperature invariance of the relaxation time, this evolution equation can be

solved analytically by convolution

= (i ! l— = = (i
Hél)(t) :/ exp ( ()8) E( )ds assuming Hil)(()) =0, (3.45)

to Tv
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which significantly reduces the computational effort. This integral can be transferred into
an update formula
= (i At = At _
Ht(al)(thrl) =exp| ——5 Hil) (tn) +exp ( —o—7 | AE, (3.46)
o) 27()
in time-discrete solution schemes with a time step size At.
Finally, the deviatoric overstress response of the rate dependent Mazwell-elements in

terms of the second Piola-Kirchhoff stress tensor yields
oY (é, o, a&‘))
oC

8 (tir) = = 2u)(©)J SDEVH( (tp11) = JiDEVAY (t,11),
(3.47)

and the dissipation in each element is calculated by

i i = (i (i 1 @ ~(i
Dl (tn) = 21D (O)H (tasn) & (i) = 7 A (bs1) : A (bsr). (3.48)

7' (©)

The thermal derivative of (3.39) results in the entropy in each Mazwell-element

: ore (é’ ©, 5‘9)> &) 77 (1) 7 (0)
008 (tps1) = — 90 = @_OM\(/Z)(G)Hel (tng1) : Hy (tny1), (3.49)

which adds to the entropy of the thermoelastic model (3.32).

3.4 Algorithmic treatment of the coupled thermomechanical
problem

The calculation of the thermo-viscoelastic response of tire rubber compounds by means
of finite element methods requires the solution of both the balance of linear momentum
(2.40) and the heat conduction equation (balance of energy) (3.10), which results in a
coupled thermomechanical problem. The weak forms of the mathematical problem are

stated as follows:

Gu(u,du) = /(—gi) u+S:0E+ ob-du)dV + /T Sou dA, (3.50)
B 0B

Go(©,00) = /6@ (008© — Dipy — or) + Gradd® - Q dV + / Qn0O dA. (3.51)
B 0,8

The sought solution Gy, (u, 5u) = Go(©,50) = 0 fulfills

wX,t) =a(X,)VX €9,B N P(X,t)- N(X)=T(X,H)VX €9,B (3.52)
O(X,t) =0(X,H)VX € 9eB N Q(X,t)- N(X)=0Qn(X,t)VX € 9,8, (3.53)
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where @, © are the Dirichlet boundary conditions and T, Qy are the von Neumann bound-
ary conditions. These are applied along the mechanical 0B = 0,BU B N0 ,BN OB =
and the thermal 0B = 0o BU9,BNdeB NI, B = () boundary separation. In this statement,
the following relations have been applied: P(X,t) = F(X,t)-S(X,t) and N(X) = const.
in the reference configuration. Furthermore, the solution requires the specification of an
initial temperature field, which is assumed to be homogeneous in this thesis O(X, ty) = .
The test functions du and 0O are arbitrary, but need to fulfill

Su(X) = 0YX € 0,8 and 60(X) = 0VX € JoB. (3.54)

For the time-discrete solution of this coupled initial boundary value problem the isen-
tropic operator spit scheme by [Armero and Simo, 1992] has been applied in [Suwannachit
and Nackenhorst, 2013]. With this staggered strategy, the problem is solved for each time

slab in two subsequent solution phases:
1. Mechanical phase: solve (3.50), for As = 0 to obtain w.
2. Thermal phase: solve (3.51), for Au = 0 to obtain Ons1 and Sp41.

This results in an unconditionally stable time-integration algorithm, rather than using
the isothermal operator split by [Argyris et al., 1981]. However, this advantage inherits
the necessity to calculate an intermediate isentropic temperature C:)n+1 at each integration
point. This can be realized in a local iteration scheme, solving

S <un+17 ®£+1) Sn ~

K and ©),, = O, (3.55)
9 k
%[5 (wne1, 6% )

until the convergence criterion A© < tol is fulfilled. This iteration converges after only

Oftl —OF |+ AO with AO = —

a few steps, but still increases numerical costs. Both staggered approaches yield smaller
equation systems than monolithic schemes, which are symmetric in case of conservative
problems. Monolithic schemes a priori require the solution of large and non-symmetric
equation systems. Nonetheless, monolithic systems can be more efficient in case of strong
thermomechanical coupling and large time steps, see |Zinatbakhsh et al., 2010].
Following Suwannachit [2013], the material time derivative of the internal entropy in
(3.51) is redefined per unit volume and calculated by introducing an Euler backward time

stepping scheme
S (un+17 @nJrl) — Sp

X , (3.56)

008 = 0o

where s,, is known from the previous step.
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Both the mechanical and the thermal phase require the solution of a nonlinear problem
in each time step, which is realized with the Newton-Raphson method, see e.g. [Wriggers,
2008]. Here, the basic idea is to represent the solution of a functional F(s) at the state

Sn+1 by a Taylor series expansion

dF
f(sn—l-l) = d_ As +F(Sn), (357)
S S=Sn
where the gradient matrix % is often referred to as stiffness matrix in the context of

engineering finite element methods. This problem can then be solved iteratively, starting

0

0o _
at s, .1 =8,

dF
e As = F(sk,))— F(sn) (3.58)
and sft] = s+ As, (3.59)

until a desired convergence criterion is reached, such as for the norm of the incremental
state change [|As|| < tol or the residual norm || F (sk ;) — F (s,)|| < tol.

In order to solve the continuos problem for arbitrarily shaped bodies, an iso-parametric
finite element discretization is applied, which represents both spatial points of the body as
well as the solution fields by a finite number of so-called nodes. In between these points,
the geometry and the solution are interpolated with nodal shape functions. Each of these
shape functions is defined only on its nodal support. Here, the most common technique
is to formulate these shape functions as Lagrangian polynomials in discrete simple-shaped
integration domains (finite elements), such as triangles, quadriliterals, tetrahedrons, and
hexahedrons. As a consequence of this formulation, shape functions are C°-continuous

across the boundaries of these elements.

Note that the total differential of the second Piola-Kirchhoff stress tensor takes the form

oS 1 oS

due to temperature dependence of the material, which can be reformulated as

08 1 oS ds 1 s\ !

assuming constant entropy ds = 0. This definition results in a consistent isentropic tangent
operator K, <u, é)ﬁﬂ), see [Suwannachit, 2013].
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3.5 Numerical study of the material behavior

In this section, a short overview of the thermo-viscoelastic material behavior is given by nu-
merical experiments confirming its capability to represent the desired material phenomena.
For further details on the implementation of this constitutive material model and on the
modeling of rubber materials in continuum thermomechanics, the reader is referred to the
theses of [Heimes, 2005; Hofer, 2009; Suwannachit, 2013| and the textbook by [Holzapfel,
2000].

3.5.1 Thermoelastic response and Gough-Joule effect

295

294

Temperature (K)

293

Engineering strain (%)

Figure 3.1: Temperature evolution of a thermoelastic rubber strip in a tension test at

adiabatic conditions, representing the Gough-Joule effect.

In this study, the thermoelastic response of a rubber strip in a quasi-static, uniaxial
tensile test at adiabatic conditions is calculated by using the presented finite element
framework, in which the material behavior is depicted with the extended tube model (3.20).
Note that an equivalent shear modulus can be calculated via u = G, + G, in order
to compare the material behavior with the Neo-Hooke model. The material parameters
(see Table 3.1) used in this study are taken from [Suwannachit, 2013] and [Hofer, 2009].
The calculated system as well as the resulting temperature over stretch are illustrated in
Figure 3.1.

The temperature evolution reveals that a slight initial temperature decrease is followed
by a continuous temperature increase as the stretch evolves. This behavior matches the
experimental observations presented in [Chadwick, 1974], and is closely related to the so-
called thermoelastic inversion. As the rubber material is assumed to be entropy elastic
and as the test conditions are adiabatic, the internal energy is not altered by deformation.

For this reason, the decrease of mechanical entropy resulting from the applied stretch is
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Elastic properties Viscoelastic properties

Chemical shear modulus G, = 3.0 N/(mm?) Shear modulus s =1 N/(mm?)
Topological shear modulus G, = 1.3 N/(mm?) Viscosity ne = 0.02 Ns/(mm?)
Stretch restriction = 0.3 Relaxation time 1=0.01s

Poisson’s ratio v —=0.49 Thermal softening =10

Thermal behavior

Reference temperature 6y =293 K Heat capacity 00cpo = 1.7385 N/(mm? K),
Thermal expansion ago =2.22-107* 1/K kep = 0.0024 J/ (kg K2)
Density 00 = 800 kg/m? Thermal conductivity keo = 0.2595 - 10~* 1/K,

wy, = 0.004 1/K

Table 3.1: Material parameters for the thermo-viscoelastic extended tube model.

compensated by an increase in thermal entropy, which is observed as a temperature rise
in the specimen. Consequently, this effect is more strongly pronounced with an increasing

thermal expansion coefficient agg, see Figure 3.1.

In this context, [Suwannachit, 2013] simulated the well known demonstration experiment
for the Gough-Joule effect with this material model. In this experiment, a rubber strip is
loaded with a weight and then heated in order to raise its internal energy. This causes the

rubber strip to shorten, or in other words, the material stiffness to increase.

In Figure 3.2, this temperature dependence of the thermoelastic material behavior under
uniaxial loading is illustrated at typical service temperatures for both the Neo-Hooke
model (3.18) and the extended tube model (3.20). Within the so-called entropy-elastic
temperature range, the stiffness of rubber materials increases linearly with increasing
temperature. This behavior can be observed for both material models and agrees with
the experimental results presented in [Hofer, 2009]. Note that the Neo-Hooke model does
not reproduce the characteristic upturn of the stress response that results from the full

extension of the polymer chains in the rubber material.

In contrast, the extended tube model clearly shows this behavior, which results from its
topological part (3.21). This representation of the upturn can be understood as penalty
restriction, which comes at the cost of a high volumetric expansion at large strains, see
Figure 3.3. Here, a volumetric penalty function is not sufficient in order to represent
the quasi incompressible material behavior in the domain above 100% strain. As most
filled technical rubber materials fail before such high strains are reached, this theoretical

limitation is not of practical importance for the further simulations in this thesis.
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Figure 3.2: Temperature dependence of the elastic material behavior under uniaxial load-

ing.
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Figure 3.3: Evolution of the volume ratio J over stretch .

3.5.2 Thermo-viscoelastic behavior under cyclic loading

In order to demonstrate the stationary thermo-viscoelastic behavior of the material model,
5000 cycles of a shear test were calculated. In this test, a cubic specimen with an edge
length of 50 mm is sheared by a sinusoidal excitation with an amplitude of 25 mm at
a frequency of 100 Hz under adiabatic conditions. Due to the delayed relaxation of the
material, the stress response in the first cycle is much larger along the loading path than
along the unloading path, see Figure 3.4 (a). The area in-between the two curves serves as
a measure for the dissipated mechanical energy in the load cycle, the so-called hysteresis.
This dissipation acts as a heat source causing an increase in temperature, see Figure 3.4

(b) for the temperature evolution in the specimen. In the first cycles the temperature
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Figure 3.4: Thermo-viscoelastic material response of a rubber strip in a cyclic deformation
test at adiabatic conditions (a) stress response and (b) evolution of the average

temperature in the specimen.

increases quickly, then the slope decreases until a steady state is reached. This steady
state point is characterized by the equilibrium of the internal mechanical dissipation and
the thermal dissipation over the boundaries.

The increase in service temperature goes along with a reduction of the viscoelastic
material response, resulting in a smaller hysteresis in the load cycle, see Figure 3.4 (a).
Due to this fact, hardly any hysteresis is observed for the 500th and for the last cycle,
as the thermoelastic response becomes dominant above ~ 360 K. The physical reason for
this behavior lies in the source of the internal mechanical dissipation itself, which is the
relative sliding of the polymer chains making up the polymer network of the rubber. At
elevated temperatures, the molecules in these chains move faster due to higher entropy,
which eases their relative sliding and consequently results in less mechanical dissipation.

This behavior is modeled by the thermal softening parameter introduced in (3.41).
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4 Thermomechanical contact

In tire mechanics the performance is strongly influenced by the contact interaction of the
tire with the road surface. Due the severe temperature dependence of rubber compounds,
tire-road interaction is a thermomechanical contact problem. The solution of coupled ther-
momechanical contact problems requires the enhancement of the mechanical optimization
problem (3.50) with a geometrical non-penetration constraint of contacting surfaces. This
restriction allows for the calculation of contact tractions, but changes the mathematical
character of the problem into a variational inequality. Furthermore, the heat conduction
in the resulting contact interface extends the thermal problem (3.51). A detailed overview
on computational contact mechanics and the treatment of thermomechanical contact prob-
lems is given in the textbooks by [Laursen, 2003; Wriggers, 2006; Yastrebov, 2013|.

In order to achieve the main goal of this thesis in developing a constitutive contact
model representing mesoscale tread-road interaction, this contact behavior needs to be
characterized first. The solution of this rough surface contact problem requires a robust
contact constraint enforcement strategy. On the macroscale the contact constraints allow
for the computation of the tire’s tractive rolling contact behavior (pressure distribution in

the footprint and lateral contact tractions) and the calculation of rolling resistance.

In this chapter, the necessary theory for the formulation and solution of thermome-
chanical contact problems is summarized. This overview starts with kinematic quantities
to detect contact and to describe the relative motion of material points in the contact
interface in between two bodies. Then, the balance of energy and the Clausius-Duhem
inequality are formulated for the contact interface. The chapter ends with the description
of contact constraint enforcement strategies. Due the introduction of Arbitrary Lagrangian
Eulerian kinematics to describe the tire’s rolling motion, material particles are not fixed
to the mesh and therefore contact constraint enforcement strategies for frictional contact
that were developed in Lagrangian kinematics cannot be applied to compute the tire’s
tractive response. This problem has been solved by the approach presented by [Ziefle,
2007], which is applied in combination with the phenomenological friction law describing
rubber friction by [Huemer et al., 2001a| in this thesis.



40 4.1 Contact kinematics

4.1 Contact kinematics

Contact kinematics describes the relative motion of surface points of three-dimensional
bodies, which can come into contact. Following standard approaches, the contact pairing
of two bodies is defined by a master-slave relation, in which kinematic quantities are
evaluated on the master surface and the contact contribution to the thermomechanical
contact problem is integrated over the slave’s surface. In this thesis, the problem definition
is restricted to the contact of a deformable slave body with a rigid master surface, which
is described by an analytical continuously differentiable function X, = X /(&) in the
domain of convective surface coordinates €. At a position (£1,&) on the master surface,
contact quantities are defined using a local coordinate system consisting of the tangent

vectors A; and A, and the normal vector IN. The tangent vectors

OX (&1, &)
&

are defined as the covariant derivatives of the contravariant position vector X ;. By means

A = , with i =1,2 (4.1)

of this, the unit surface normal is then defined as
Ai X A]

N=———.
| Ai x Ay

(4.2)

With these definitions, the closest projection of the slave point onto the master surface

can be calculated by solving the minimization problem posed by

d(&,&) = argmin chs — X (é(ms)) H ,

see [Wriggers, 2006] for details.
In order to distinguish between contact and separation, the normal penetration function

is introduced
< 0 no contact

dy = — (a:s — XM) N {=0 contact , (4.3)
> ( peneration

which results in a scalar measure of the distance to the closest point. The time derivative
of the penetration yields

dy = — (a: - m) N - (z,— Xy) N. (4.4)
This penetration velocity is required for the description of viscoelastic contact problems.
Note that IV vanishes on flat surfaces.

The calculation of frictional contact reactions requires a measure of tangential relative

motion, which is defined by the tangential gap

si=(z— X)) - A (4.5)
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and its time derivative, the relative tangential velocity

5= (I-N"N) - (d,— Xu). (4.6)
With these definitions, the stick condition is stated as

Si:<$—X]V[)'AZ’:0<=>$Z':O. (47)

4.2 Balance of energy in the contact interface

The calculation of thermomechanical contact interaction accounting for viscous dissipation
of the tread rubber, frictional heating, and conductive heat transfer requires the solution
of the balance of energy in the contact interface. A detailed discussion on this topic is
presented in |Laursen, 2003; Willner, 2003; Wriggers, 2006].

In order to reformulate the balance of energy (2.42) in terms of the contact interface, the
nominal surface traction is defined by projection of the first Piola-Kirchhoff stress tensor
P along the surface normal IN, which yields

T=-P-N=PN+)» T'A, (4.8)

This traction is separated into a nominal normal pressure P and nominal tangential trac-
tions 7% in the direction of the tangent vectors A;. Furthermore, the outward nominal

heat fluxes over the contact boundaries are defined as
—Q" - N=Q" and Q" N=QF (4.9)

where QY is the heat flux from the tire into the contact interface using n, = —IN, and
QZ~ is the heat flux transferring energy from the road into the contact interface.

With these definitions the balance of energy in the contact interface reads
ée=Pdy+T -5+ Q%Y +QF. (4.10)

Furthermore, the thermodynamically consistent formulation of constitutive contact models

requires the fulfillment of the entropy inequality in the interface, which is defined as

w R
10 = GO + gEOe (4.11)

Furthermore, the total slip s and the sliding velocity $ are separated into

s =35+ s and § =354 57, (4.12)
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where the elastic components s® and $% occur only in case of regularized treatment of the
friction law (e.g. Coulomb friction), which allows for an elastic relative motion. Otherwise
only the plastic components sP?' and §” are present. This analogy to plasticity has been
recognized first in [Michalowski and Mroz, 1978]

Analogous to the continuum formulation, the Legendre transform of the strain energy

function V¥, is calculated by

v, (dN7 a\(;i)» Sela T/c) = €c— 77066 (413)

.9, . o, .. O ov .
U, = —<d Q) ¢. 89 ‘9, = é,—1.0.—n.0,, (4.14
Dy N*;@a@“v T % T e, ¢ =10 —nOc,  (4.14)

as well as its time derivative W,.. Tnserting these definitions into (4.11) results in the

Clausius-Duhem inequality

8\I/C : 3\110 . a\llc .
P T o o%e
( adN) dn + ( ase) s (”c * a@c) O

+Za\yc'<i>+T S/ —@)+Q§(@—@ > 0 (4.15)
g™ T g Ow =00 F g (00 = 0
which requires the constitutive contact model to fulfill
ov ov ov
P=_——“*°T=_--"2 dn,=——=. 4.16
ady’ T~ 0s T T 50, (4.16)
The remainder of the inequality results in the calculation of dissipation
Ve ve
prech - — ov. a4 AT >0 (4.17)
80451) Osel
QY QF
Dzherm _ ¢ (O — O,) + == (0, —Op) >0, (4.18)
Ow Or

where both the mechanical D! as well as the thermal dissipation D™ must be non-
negative.
The formulation of the strain energy function for the calculation of contact tractions is

presented in the next section. The nominal heat fluxes are modeled by
QY = kwe(Ow — 6,) and QF = kg (6, — Og), (4.19)

with the heat conduction coefficients kw. and kg.. Neglecting the heat capacity of the
trapped debris, the resulting heat flux in the contact interface yields

ov , ov
WR _ _ Y7c¢ (i) _ c
Qc = —pPD aa(i) ay pDa

v

Sel : .épl + hWR(@W - @R)7 (420)

with the effective conductivity of the contact interface kwgr and the partition coefficient
pp that describes the amount of mechanical dissipation entering the wheel. Note that

both coefficients can be functions of state variables such as pressure and temperature, see
[Wriggers and Miehe, 1994; Hofstetter, 2004].
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4.3 Contact constraint enforcement

Different standard techniques for the enforcement of contact constraints have been devel-
oped in the last decades, see [Laursen, 2003; Wriggers, 2006; Yastrebov, 2013|. Here, well
established standard methods are Penalty reqularizations, Lagrangian multipliers, and the
Augmented Lagrangian multiplier method, all of which are also available in many com-
mercial codes. The different techniques vary in computational costs, precision, effort of
implementation, and stability. Their common feature is an enhancement of the weak form

of the balance of linear momentum (3.50) Giech = Gu + Ge by the contact virtual work

Ge(u,du) = / Pédy +Tr-dsdA (4.21)

o.B

changing the boundary separation, in which boundary conditions are applied, into
OB = 0,BUIBUILBNIBNIBNIB =1, (4.22)

in which the contact area 0.B is unknown and needs to be determined by the algorithm.

4.3.1 Normal contact constraint

In this thesis an Augmented Lagrangian multiplier method is applied for the mesoscale
rough surface contact problem as well as for macroscale rolling contact simulations on
the flat surface. In these contact scenarios, the precise fulfillment of the non-penetration

condition yield the Karush-Kuhn-Tucker complementary conditions
dy <0;P >0and Pdy = 0. (4.23)
The contact pressure is hereby evaluated in terms of the Uzawa algorithm as
P = max[ay + enydy, 0], (4.24)

where ey is a penalty parameter. The Augmented Lagrange multiplier ay is held fixed
during the contact iterations and updated each time this solution reaches convergence, see
|[Laursen, 2003]. As a benefit of this update scheme, the size of the stiffness matrix is
constant and it remains symmetric for unilateral contact. In general, the desired accuracy
of the solution is reached after few augmentation steps using comparably small penalty
parameters, which avoids ill-conditioning and allows for larger load step sizes than an
equivalently accurate Penalty method. However, a weak point of the Uzawa algorithm
is the C%-continuity of its contact potential, which results in a non-smooth transition

of the contact state (change of the active set). A more robust and efficient Augmented
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Lagrangian multiplier contact constraint enforcement method based on a C'-continuous
contact potential has been presented in [Pietrzak and Curnier, 1999]. This advantage
comes at the cost of introducing the contact pressure as an additional degree of freedom
(Lagrangian multiplier), which results in a larger non-symmetric stiffness matrix.

In technical applications, the stiffness of the contact interface often cannot be assumed
to be infinite. Especially the homogenized description of rough surface interaction is often

realized using a nonlinear regularization, see [Willner, 2003].

4.3.2 Rubber friction

In order to calculate the correct pressure distribution in the tire’s footprint, the friction
response of tread rubber must be taken into account. In experimental studies such as that
presented in [Hofstetter, 2004|, the friction response of rubber materials on rough surfaces
has been observed to be highly dependent of pressure, temperature and velocity. In this
contact pairing the soft rubber material is penetrated by much stiffer surface asperities.
The relative sliding motion of the rubber material on top of these asperities in conjunction
with the thermo-viscoelastic material response presented in section 3.5 results in the so-
called plowing component of the friction behavior. This effect is also present in the absence
of adhesion on lubricated surfaces and causes the above mentioned dependence on service
conditions. Furthermore, the large local strains at high strain rates that are caused by
the plowing of surface asperities result in high local dissipation, which induce a severe
temperature increase in the contact interface.

In order to capture these phenomena, a general form of a regularized friction law is
applied

s

T = minfa 3] 1 (.18, ©) Il o (4.25)

which is suitable to account for the dominant effects in rubber friction. In this context,
the common approach of Coulomb’s friction law, which is based on a constant friction
coefficient u, cannot depict rubber friction phenomena for large variations of influence
parameters.

In this thesis, the friction model presented in [Huemer et al., 2001a|, and further elabo-

rated in [Hofstetter et al., 2006| is applied. The friction coeflicient is calculated via

. _ n—1 L c -1
2SI = (b +8) (ot o+ ) (1.26)

where the first term represents the pressure dependence, and the second term depicts the
influence of the sliding velocity. The temperature dependence is achieved by the Williams-
Landel-Ferry equation (WLF-equation), see [Williams et al., 1955]. This function relates
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Table 4.1: Modified parameters for the friction law p (P, ||$||, ©), see Hofstetter [2004].
Pressure dependent part | a, = 0.1399 3, = 0.1841 n, = 0.8680

Velocity dependent part | a =0.9203 b= —1.1188 ¢=0.9677 e =0.1672
WLF-transform dy — 43.1 dy = 509.4 Tt =20 °C T, = -50 °C

relaxation times to service temperature, which can be used to calculate the equivalent

sliding velocity (loading frequency) at reference temperature

. ao cur .
Sref = Scur (427)
aQ ref

for the sliding velocity S, at the current temperature, so that an increase in temperature
is equivalent to an increase in sliding speed. Here, the projection coefficients ag cur, @0 rer

are defined as
di1(0; — O, + 50°C)

dy + (©; — 0, + 50°C)’

with the two additional material parameters d;, d; and ©, being the glass transition tem-

loggte; = i = {cur, ref} (4.28)

perature. The friction coefficient is then evaluated for the equivalent sliding velocity at
reference temperature along the so-called master-curve, to which model parameters «, 5, n
as well as a,b,c, e are fit. See [Huemer et al., 2001a] for details on the mastering process
for experimental data.

In Figure 4.1 (a) and (b) the resulting friction coefficient for the material parameters
given in Table 4.1 is illustrated. It can be observed in both figures that the friction
coefficient first tends towards a maximum value, and then decreases with sliding speed.
This effect increases at small contact pressures, which results in a larger friction coefficient,
see Figure 4.1 (a). As a result of the WLF-equation (4.28) that depicts the temperature
dependence of rubber friction, the maximum of the master-curve is shifted towards smaller

sliding speeds for increasing service temperatures, see Figure 4.1 (b).
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Figure 4.1: Friction coefficient at varying pressures and temperatures over sliding speed.
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5 Homogenization of unilateral rough surface contact

Accounting for tread-road interaction in rolling resistance calculations is an unsolved re-
search problem of high economical relevance. As shown in the review on the state of the art
in chapter 1, there is presently no convincing approach to incorporate the nonlinear large
deformation contact interaction of tread rubber with the mesoscopic rough road surface.

In this chapter a novel approach is presented, which represents the stochastic average
contact behavior of a single three-dimensional tread block with the random rough road
surface in terms of a one-dimensional homogenized constitutive contact model. The aim
for this formulation is to approximate the average nominal contact pressure and the volume
average dissipation resulting from the thermo-viscoelastic response of the bulk material
preserving the external energy in the load cycle (consistence of energy).

In order to achieve this goal, the basic concepts of homogenization techniques are re-
viewed first in this chapter, which points out their restriction to sub-scales. Thereafter, the
special case of contact homogenization is studied, and the criteria for consistency of energy
are stated. Based on these definitions, a novel rough surface contact homogenization strat-
egy for the unilateral tread-road interaction based on a reformulation of the bulk material
model is developed. The resulting constitutive contact model preserves the characteristics
of the thermo-viscoelastic material response.

The identification of the average tread-road contact interaction behavior with random
rough road surfaces requires the solution of a stochastic contact problem, namely a random
Signorini problem. Its mathematical treatment is presented in the second section of this
chapter. After the introduction of this general basis, the statistical characterization of
rough surfaces is briefly reviewed. These characteristic quantities are then calculated and
compared for a smooth and a rough measured road surface. Later on in this chapter, the
average contact behavior on these surfaces is evaluated and approximated by constitutive
contact models. This homogenized representation finally allows for an estimation of the
influence of surface roughness on rolling resistance in section 6.2.

In the fourth part of this chapter, the numerical results for energy-consistent homog-
enization of a tread block in contact with a sphere are validated. In a next step, the
evaluation of the average rough surface contact behavior of single tread blocks on the
measured road surfaces by means of a Monte Carlo simulation is presented. The homoge-
nization of this response results in a set of material parameters for the constitutive contact

model, which are applied in the rolling resistance calculations in section 6.2.
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5.1 Contact homogenization

5.1.1 General aspects of homogenization in continuum mechanics

Computational homogenization techniques aim for the macroscopic description of micro-
scopically heterogeneous materials assuming C'-continuous Boltzmann kinematics. Fur-
thermore, these techniques are used to describe material phenomena occurring on smaller
length scales, especially damage. Their goal is to identify the effective mechanical proper-
ties, see e.g. [Miehe, 2003| and [Temizer and Zohdi, 2007], as well as effective thermome-
chanical properties, see e.g. [Ozdemir et al., 2008]. In general, these approaches are based
on the assumption that the microscopic length scale | << L is much smaller than the
macroscopic one L and therefore allows for a separation of scales. Under this assumption,
a representative volume element (RVE) B, can be found, which describes the random
heterogeneous microstructure in the vicinity of a material point on the macroscale. Con-
sistent scale transition of quantities in the RVE is then ensured by the volume averaging

operator
(o) = VL/.(X)dvm. (5.1)
Bm
In order to shorten the notation, the location of the quantity X is omitted in the following.

Within the RVE, the microscopic displacement field
Uy = U+ Uy (5.2)

is assumed to consist of small local fluctuations us of the macroscopic displacement w,
which vanish in the volume average (uy) = 0. Furthermore, the displacement field is
assumed to have no jumps ([u] = 0) on the boundary of the RVE 0B8,,. This approach is
called first order homogenization, in which only the first order term of the Taylor series

expansion of the displacement field

ox

AT =S

CAX + 0 (AX?), (5.3)

is accounted for using average first order gradients F' = g—;. Consequently, the variations

of the macroscopic fields need to be sufficiently small. Furthermore, the stress field is
assumed to be divergence free, which means that no inertia and body forces are acting on
the microscale.

The commonly used base quantity to describe the kinematics of the RVE is the average

deformation gradient

1 1
F)=— [ FaV, = — N dA,,, 5.4
(F) W/ m/¢® (5.4)
B OB,

m
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which is calculated by volume integration, and can also be expressed by a surface integral
with the divergence theorem. This fact can be used to enforce an equivalent uniform
displacement boundary condition. Based on this definition, dependent quantities are de-
fined, e.g. the right Cauchy Green tensor C = (F)T . (F) and the Green-Lagrange strain
E = L ((F)T - (F) — 1). The description of time dependent processes also requires volume
averaging of the material velocity gradient

. 1 . 1
<F>:V—m/Fde:V—m/v®NdAm, (5.5)
B OBm

which is measurable as a surface velocity v of the RVE. The material velocity gradient is
related to the spatial velocity gradient I via I = gradv = F.F

The macroscopic stress field is then defined in terms of the energy conjugate average
first Piola-Kirchhoff stress tensor

1 1
P)=— PdV, = — T® X dA,,, 5.6
(P) Vm/ vm/ ® (5.6)
B OB,

m

which can also be expressed as an integral over the tractions along the boundary of the
RVE. This quantity can also be expressed as the volume average of the partial derivative

of the elastic potential with respect to the deformation gradient

1 ov

)= / Vi, (5.7)

The material response can be split into its different contributions from the constitutive

material model by interchanging the integral and the summation
(P) = (Pyoi) + (Paev) + > (Phey) (5.8)

which later on allows for a separate identification of mapping functions and constitutive

parameters. The dependent second Piola-Kirchhoff stress tensor S is then calculated via
o (é, o, a@)

§=(F)7 - (P) =2~

(5.9)

If viscous material behavior is observed, the volume average internal dissipation (3.48)

also needs to be transmitted to the macroscale as

1 1 ) <6 . g
(Ding) = V. ;Ai) : A\(/) dVy, with Ep, , = / (Diny) dt, (5.10)
m ) 0

m
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which is the dissipated energy over a load cycle with a duration of 7. For reasons of
completeness, the calculation of the elastically stored energy in the macroscale system is

given by

W= %/OT <P : F> dt. (5.11)

With the above, the requirement of energetic consistency of homogenization is ensured

by the equivalence of macroscopic and averaged microscopic stress power

<P>:<F>=<P:F>=Vim/P;dem:Vim/t-vdAm (5.12)
Bm OB,

also known as the average work theorem and, in terms of small deformations, as the Hill
criterion. It states that fluctuations of the internal quantities do not affect the macroscopic
power response. Based on that theorem, only three types of boundary conditions can fulfill

this equality, namely:
e Uniform displacements,
e Uniform tractions,
e Periodic boundary conditions,

see e.g. |Miehe, 2003] for details on the proof. Consequently, this criterion cannot be
fulfilled a priori for the mesoscale contact problem due to the boundary conditions imposed
by the tire structure. Therefore, a stochastic homogenization is applied to represent the
contact behavior of tread block on the rough road surface.

The limitation of scale separation | << L and the necessity of vanishing oscillations of
the displacement field along the boundary ([u] = 0) in first-order homogenization methods
can be overcome by second-order homogenization techniques, see e.g. [Castafieda, 1996],
[Lopez-Pamies and Ponte Castaneda, 2003] and more recently [Kouznetsova et al., 2004].

This is achieved by accounting for the quadratic term of the Taylor series expansion
Az =F-AX +05AX -G-AX + 0 (AX?) (5.13)

of the macroscopic fields, where the third order tensor G depicts the quadratic parts of
the gradient. Obviously, the second order homogenization can only be realized with a

C'-continuous continuum description on the macroscale.

5.1.2 Homogenization of contact interface phenomena

The homogenization of surface phenomena in contact interfaces requires an adaption of

the continuum framework for heterogeneous materials, as admissible boundary conditions
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cannot be found. Therefore, it is assumed that the height A of the contact interface
is negligible compared to the system dimension H, which is equivalent to a separation of
scales h << H. Consequently, the homogenization is executed along an interface area 9.5,
rather then in a volume element. In the papers of [Temizer and Wriggers, 2008|, |Temizer
and Wriggers, 2010a] and [Temizer and Wriggers, 2010b|, a first order homogenization
framework for contact interfaces ensuring thermomechanical consistency was developed.
This framework accounts for large deformations, viscoelastic effects and also for either the
presence of third bodies or rough surfaces.

Analogous to the homogenization of the continuum, a surface average operator

3:% / o(z) dA. (5.14)

is defined in the interface 9.8,,. With this operator, the average gap vector d = u,,, — u,
and the average tangential traction ¢ are defined as basic quantities for describing the
behavior of the contact interface, which follows the concept of using the volume averages of
the deformation gradient (5.4) and the first Piola-Kirchhoff stress tensor (5.6) to describe
the microscale continuum. Both d and £ were introduced for general contact problems in

chapter 4. With these quantities an equivalent local average work rate criterion (5.12)

o=t (5.15)

S

can be derived for the contact interface, i.e. the balance of energy (4.10), where o is the
relative velocity of the surfaces. This relation can be separated by projection onto the

respective base vectors in the macroscopic configuration into

tv=pdy+7-€=pdy+ Y 76 (5.16)

where CZN = v - n is the normal penetration velocity and é = v - a; is the parametric
sliding velocity in the tangential direction .

In [Temizer and Wriggers, 2008| the effective tangential traction ¥ = ﬂﬁﬁ of a vis-
coelastic rubber block sliding on a flat surface with microscopic rolling particles in the
contact interface was studied. Due to the material properties of the rubber material the
effective friction coefficient 1 = i(p, ||0||) depends on contact pressure p and sliding speed
||lo]|. In order to evaluate this effective friction coefficient, a microscale model resolving
the interaction with single particles was simulated in that study. Here, the interface area
(top surface) of this microscale model was subjected to the macroscopic average contact
pressure p and dragged with a constant velocity o, whilst symmetric boundary conditions

were applied along the lateral sides assuming periodicity. As the traction response of this
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sliding motion is very oscillatory, the effective friction coefficient

a(p, [[8]]) = / I71 4 (5.17)

was calculated by averaging over time. In [Reinelt and Wriggers, 2010] and later in [De
Lorenzis and Wriggers, 2013] the average tangential contact response of a rubber block
sliding on a rough surface was calculated likewise.

The description of tread-road interaction results in a contact homogenization problem
with random heights of the master surface x,,. Here, the distribution of asperity shapes
results in a large autocorrelation length that determines the size of a representative contact
element (RCE). As this size exceeds the size of a single tread block, the classical first order
FE? method applied in [Temizer and Wriggers, 2010b] is not suitable, and thus stochastic
homogenization becomes necessary in order to formulate a constitutive contact model
representing the stationary response. The size and the distribution of asperities and their
rough texture are characterized by a continuous spectrum of length scales. For this reason,
standard homogenization approaches formulated under the assumption of separable scales
are not applicable, and consequently no representative contact element can be defined.
Therefore, the proposed method is based on stochastic homogenization of the contact

interaction of the single tread block with the rough road surface.

5.1.3 Constitutive contact model

In this section, a novel approach is introduced for empirical development of one-
dimensional thermomechanical constitutive contact models to represent the homogenized,
unilateral, frictionless contact behavior of a three-dimensional tread block on rough road
surfaces. The first step in this homogenization is to separate the mesoscale tread blocks
from the macroscale tire model by definition of a transition area 9€2,; in between. This al-
lows for a decoupled identification of the structural response of the tread-road interaction.
Here, the motion and the temperature of the transition area are prescribed by the tire
model, which is consistent with the contact constraint enforcement techniques presented
in section 4.3. This definition results in the application of displacement and temperature
boundary conditions to the mesoscale model pressing it onto the rough road surface.

The identified mesoscale contact behavior (average contact pressure and average heat
flux) is then be represented by a constitutive contact model. As a novel approach, the
constitutive contact model is derived directly from the tread’s bulk material model as-
suming an equivalent uniaxial compression test, see Figure 5.1. This constitutive contact
model is later used to solve the macroscale contact interaction problem (rolling resistance

calculation of tires) accounting for homogenized mesoscale rough surface contact behavior.
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Figure 5.1: Homogenization of rough surface contact interaction in the mesoscale model
(a) and the representation by a constitutive contact model assuming uniaxial

compression (b) in the transition area.

Evaluation of the homogenized mesoscale contact behavior
The first step in the present study is an investigation of the contact compliance of the
tread-road interface, the viscoelastic effects occurring in the load cycle, and the average
heat flux. This heat flux results from the heat source by internal mechanical dissipation
in the tread rubber, which is reduced by the heat conduction between tread block and
road. For this reason, a uniform displacement of the transition area is applied to the
upper surface of the tread block, which is analogous to enforcing a penetration of the
plane defined by the highest asperity below the tread block.
The mechanical quantity of interest is the average nominal contact pressure
_ 1 _
P (dn(1).0) = 1 / P (dx(1),0) dAy (5.18)
0 Joauy

in the transition area 0€2); for the present boundary conditions, namely the current pene-
tration dy(t) which prescribes a penetration rate EN, and the temperature ©. The average
nominal pressure

P=N-T (5.19)

is the normal component of the average nominal surface traction T acting on the initial

area Ag. Due to the chosen Dirichlet boundary conditions, the normal vectors
N(z) = n(x) Vo € 0Qy, (5.20)

of the initial and the current configuration coincide in the transition area. The thermal

quantity of interest is the average heat flux

Goan (An(1),0) = pp ((Dint) — Text) » (5.21)

which is defined as a portion pp of volume average dissipation in the mesoscale model
(Diny) reduced by the heat flux over external boundaries ey, €.g. convection on free

surfaces and conduction in the tread-road interface.
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The evaluation of the average external mechanical power in the transition area must is
adapted from the ideas presented in [Temizer and Wriggers, 2008|. In the present case of

unilateral contact interaction, it can be calculated via
Py = / Pdy dA = / P FdV~ ZR,-(JN)JN, (5.22)
12,9394 Qnr i

which is equal to the internal power in the tread block and can be approximated by discrete
nodal reaction forces R;(dy) and prescribed penetration velocity dy. By time integration,

the external mechanical work can be defined in the load cycle

Wi = /T Pudt Y > AR Ady (5.23)

to n i
and its also discrete approximation. Note that time increments vanish due to dvAt = Ady

in case of discrete load steps with constant velocity.

Derivation of the constitutive contact model
In this thesis, it is assumed that the mesoscale frictionless unilateral tread-road contact in-
teraction is dominated by the contact pressure, and lateral tractions vanish in the stochas-
tic average. With this assumption, the complex rough surface contact scenario can be
represented by an equivalent uniaxial compression test. The aim is to formulate of a
constitutive contact model, which accurately represents the identified average mesoscale
contact interaction as a strain energy function W depending on a set of control variables,
such as introduced in section 3.1. The application of this constitutive contact model in the
transition area then allows for macroscale calculations considering homogenized mesoscale
effects. In the following, all equivalent macroscale quantities related to the constitutive
contact model are marked by . In this sense, the equivalent macroscale nominal contact
pressure

P'° (dy(t),0,..) = NT-(P)- N = P (dx(t),0) (5.24)
must be equal to the normal projection of the volume average first Piola-Kirchhoff stress
tensor (P) of the mesoscale model and the mesoscale average nominal pressure P. The

same is required for the equivalent and the average heat flux

— ! _ —
@o,, (An(1),0,..) = Goq, (dn(t),©) . (5.25)
The central objective is to fulfill the equality of mechanical power PiP = Py, in order
to ensure that the same mechanical energy is stored in the interface. This requirement is
expressed in terms of the first law of thermodynamics
006 = <P : F> ~ DIV(Q) + 0oR

- ~T.d+g (5.26)
ho
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where the first equation represents the volume average at the mesoscale, and the second
equation is formulated in the transition area 0€),,. Here, hy denotes the initial height of

the mesoscale model. The reformulation of the balance of energy in terms of entropy
0005 = —DIVQ + (Dini) + 0o R, with Dy, = P : ' — g, (\If + @s) >0,  (5.27)

D _

clarifies the necessity of equal internal dissipation Dj;

(Dint), which only results from
viscous effects in the bulk material in the context of the isothermal, frictionless rough
surface contact problems and acts as a heat source in the tread material. In this context
the time integral of the internal dissipation is the loss of mechanical energy, which is the

source of rolling resistance. Furthermore, the rate of mechanical power,
<P§N> = PPy, (5.28)

needs to be equal to the mesoscale result in order to ensure a correct representation of
viscoelastic effects.

A typical engineering approach to solve the problem stated above could be based on a
polynomial fit of the experimental data for the elastic response and on an identification of
complex moduli to represent viscoelastic effects. In case of the large deformation problem
at hand this method however does not correspond with the definition of complex moduli
in the realm of small deformations. It can be seen as another weak point of this approach
that in analogy to experimental testing a set of combinations of control variables needs to
be simulated for approximating the response over the parametric space. Finally, this data
fitting results in an empiric function P (JN, jN, O, > where several parameters may have
no direct physical meaning. For this reason, parameter identification requires the solution
of an optimization problem, which is however no principal disadvantage.

The basic idea for the derivation of a homogenized constitutive contact model to repre-
sent rough surface contact interaction is to apply a uniaxial incompressible reformulation
Vo of the strain energy function ¥ of the quasi-incompressible material model that was
used in the mesoscale calculation. The strain energy function ¥ of most material models
in continuum mechanics is a scalar function of the invariants of the right Cauchy-Green
tensor C, as these invariants allow for a frame-invariant, objective modeling. The actual
dimensionality or generalization of this formulation first arises in the derivation of the
stress response S = g—g. In case of the assumed uniaxial compression, the invariants of
the right Cauchy-Green tensor and subsequently the material response (energy stored in
the tread deformation) only depends on the applied scalar stretch. For this reason, the
aim of this contact homogenization approach is to find an equivalent stretch-penetration
relation A'P(dy). With this reformulation, the equivalent nominal contact pressure

Oy </\1D, o, aiD“)) o (FlD, 0, P

1D (\1D 1D(4) _ _ — >
PP (AP0, 0,°") IR N S0 N(5.29)
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can calculated with a scalar equation, depending on the same control variables that were

used in the numerical experiment. By means of this, the equivalent heat flux

int

Goi (A'7,0,00°Y) = 03 (Dif — dexa) (5.30)

is calculated as a portion pi? of the equivalent macroscopic dissipation in the dash pots and
D = h'P (dy ) Grad®- N,

the penetration-dependent heat conduction in the contact area g,

see Figure 5.1 (b).

Equivalent stretch

The resulting homogenized deformation of the mesoscale model being penetrated by sur-
face asperities is described by the equivalent deformation gradient F'P. Due to the as-
sumption of uniaxial compression, the equivalent deformation gradient only depends on
the equivalent stretch A'®, which is therefore the basic kinematic quantity here. The

equivalent stretch can be extracted from the volume average deformation gradient (F') via

AP (dy ) = y/min Eigenvalue ((F)T - (F)). (5.31)

The evaluation of this definition at different prescribed penetration depths dy results in
an equivalent stretch-penetration relation that represents the homogenized compression
of the mesoscale model. Consequently, this relation depends on the model geometry, the
applied boundary conditions and the statistical characteristics of surface roughness. Note
that the discrete evaluations of (5.31) obtained from numerical experiments need to be
approximated by a continuous analytical function, e.g. a polynomial, in order to apply
the constitutive contact model in macroscale computations. This approximation results
in a minimization problem, which is discussed in section 5.4.

The upper bound for the equivalent stretch-penetration relation is defined by the contact
interaction with a flat surface, on which all normal compression results in tangential stretch.
This contact behavior can be described by A'P(dy) = 1 — dy/hg, where hq is the initial
height of the mesoscale model. This fact implies that the deformation u'® = APhq of
the assumed equivalent compression test is smaller on a rough surface than the prescribed
displacement of the mesoscale model u'™® < dy.

With the definition of the equivalent stretch A'P in (5.31), dependent equivalent kine-

matic quantities can be derived assuming incompressibility J'° = det F'P =1

Yz 00 L0 0
F'P=1 a5 0> CP=(F")T-FPlo0 <& 0 |. (532
0 0 D 0 0 (AP’

Here, F'P denotes the equivalent deformation gradient, and C'P is the equivalent right

Cauchy-Green tensor. By means of that, the equivalent Green-Lagrange strain is defined
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as E'® = 0.5 (ClD — 1). Due to the assumption of uniaxial compression with unrestricted
lateral deformation, all tensors have diagonal form. In this context, the invariants of the

right Cauchy-Green tensor take the form

2
Ie = w(C") = 355 + (AP’ (5.33)
ole  p 2

o = 2 Sy (5.34)

1 2 2 1

o = 5 (n(C™) —u((C™))) = ooy 2 (5.35)

OIlc 2

gND 2_()\1]3)3 (5.36)

[y = det(C™) = 1. (5.37)

The uniaxial form of these invariants is presented here in order to allow for a shorter
notation of the evaluation of different material models later on. The derivation of the
constitutive contact model with respect to the penetration (5.29) can then be separated

into

Y Ve O Ve 011 1D
Ve (8 Cac+a c 0 C)(?)\ (5.39)

ddy  \ Olc OND " OI1c OND ) Ddy
For the computation of mechanical power and the integration of material history the

equivalent material velocity gradient

D _ dF'® AF'P
T odat T At

and its time discrete approximation (second term) are defined. Its normal projection is

(5.39)

the equivalent normal stretch rate of the assumed uniaxial compression test
. . 1D
AMP—NT.F . N. (5.40)

Additionally, the rate of the equivalent Green-Lagrange strain is defined as

EV = ((F7)T FP 4 (F0)T B, (5.41)

which is required to calculate the evolution of the internal strain-like variables.
The postulated equality of external mechanical power in the mesoscale volume and on

the macroscale interface
c; (dn ) P'P - c; (dn) PPAID = <P : F> (5.42)

in conjunction with the exact representation of the nominal contact pressure PP ~p

result in the practical necessity to introduce a penetration dependent energy scaling factor
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c; (dN) in order to calibrate the stretch velocities
. d
¢s (dy ) AP = 2K (5.43)
ho
This results from the incapability of the applied boundary conditions to fulfill the average
work criterion (5.12). In time discrete simulations this scaling can be evaluated by
- Ady

Evaluation of contact pressure
According to (5.29), the contact pressure is calculated using an arbitrary incompressible

material. For this case, the equivalent first Piola-Kirchhoff stress tensor is defined as

o (FlD, o, aiD(“>
8F1D )

in which py, is the hydrostatic pressure, see [Holzapfel, 2000]. In the context of continuum

PP =_pP(F'?) T+ (5.45)

mechanics this internal pressure is either calculated by using a Lagrangian multiplier, or
approximated with a penalty function, see section 3.2. In the uniaxial case, the absence

of lateral tractions
Al - P™P.N =0, (5.46)
can be exploited in order to evaluate the scalar internal hydrostatic pressure

ov
aFlD

using an arbitrary tangent vector A;. As an example, the calculation of the nominal

pP=A". (F)T- N, (5.47)

pressure in terms of the Neo-Hooke model (3.18) yields

1
ID _ 1D { y1D _
PP =y ()\ (AlDf) : (5.48)

where the equivalent shear modulus u'® = cqpu is the shear modulus of the mesoscale
model 4 scaled by a constant factor cg.

The incompressible extended tube model (3.20) is evaluated by

PR = e { (1- 512(_152— 3) 1 52?; - 3)} (AID R (”1]3)2>

where GP = ¢y G. is the equivalent chemical shear modulus, G'P = ¢, G, is the equivalent

topological shear modulus, and both are scaled by the same factor as identified for the

Neo-Hooke model cg.



5 Homogenization of unilateral rough surface contact 59

PlD

Figure 5.2: Schematic diagram: Elastic PP and viscoelastic P'P(t) response of the con-
stitutive contact model. The gray tread blocks illustrate the basic contact

states: 1-no contact; 2-penetration; 3-separation.

For the calculation of viscoelastic response the evolution of the internal variables need
to be integrated in order to evaluate the resulting overstresses. Due to the additive com-

position of the mesoscale constitutive material model

Vo =We+Yy T, (5.50)

from an elastic part W and a number of viscoelastic parts Tg), the different contributions

of pressure response can be evaluated separately

o (F',0,a)"")

OFP
= max [0, Pi° (\'P,0) + PP (\'?,0,alP?)]. (5.51)

pib (AlD’@’a\llD(i)) _ (pzl —l—pz) AP NT . N >0

A sketch of the resulting contact pressure-penetration curve of a displacement driven
experiment is shown in Figure 5.2. Due to the viscoelastic behavior, the material does
not fully relax in the unloading phase of the load cycle P*P(t). For this reason, the tread
looses its contact to the road at a penetration dy > 0 (with A'P (dy ) < 1) resulting in
no contact pressure.

As the equivalent deformation is assumed to be a uniaxial compression, the internal

algorithmic variable describing the elastic strain of the i—th Mazwell-element

hPO g 0
HPY =1 o nP9 0o | with B = HPY 4 PO, (5.52)
1D(4
0 0 Ay?
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which was introduced in (3.47) has a diagonal form and depends on two scalar values

; At ; At 1
1D(3) 1D(i) i
hy,iy = exp (——i ) hy .~ +exp ( 5 Z) <O.5A>\1D)

Wt = exp (—?) hy' 4 exp (—2—7) <0.5A (AlD)2> . (5.53)

1

In this definition, h}\?(i) describes the elastic strain in normal direction, and thD(i) the elas-
tic strain in tangential direction of the i—th Mazwell-element. The possibility to integrate
a set of evolution equations depicting the material history evolution in the homogenized
contact layer directly on the macroscale is a major advantage in compared to FE*-schemes.
In FE%-schemes the material history evolution is calculated within the coupled microscale
models, requiring a much larger computational effort.

The viscoelastic contribution to the equivalent nominal pressure results in
i 1D(i 1D(i 1
PP~ 23" 06 (AthN o ) (5.54)

Due to the larger elastic strains in the Mazwell-elements, the equivalent shear modulus

of the i—th Mazxwell-element uiD(i) = cvug) is scaled by a factor c¢,. In order to keep the
i 1D(7) . . i i .
relaxation time constant T\S) = ;ﬁw, the viscosity n\l,D() — Cvns) of the i—th Mazwell-
iy

element is also scaled.
Finally, the dissipation of mechnical energy in the dashpots is calculated, presented in
short notation as
<,u1D(i)>2
Diln]? (AlD’ o, a\lfD(i)) = ey (dN ) Z T(i)I_IélD(z) : H;D(Z),
i v

which needs to be scaled by the energy scaling factor (5.43) in order to obtain consistency

(5.55)

of energy at the interface.

Summary of the homogenization approach
1. Calculation of the thermo-viscoelastic mesoscale contact interaction
2. Evaluation of the equivalent stretch-penetration relation (5.31)
3. Identification of the material scaling parameters ce and cyisco

4. Evaluation of contact pressure PP </\1D,@,aiD(i)> (5.51) and dissipation

int

Db </\1D, O, aiD(i)> (5.55) in terms of the bulk material

Note that the application of this constitutive contact model requires a C'-continuous
analytic approximation of the stretch-penetration relation, which can be realized e.g. by

polynomial least-squares fitting.
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5.2 Random rough surface contact problem

The interaction of a single tread block with the rough road surface can be regarded as
a random experiment. Each time the tread block impacts onto the road it touches a
new patch with random asperity height and shape distribution, which results in a random
displacement field and random reaction forces. Due to the thermo-viscoelastic properties of
the tread rubber, the resulting reaction forces strongly depend on the penetration velocity.
Its influence is equivalent to the loading frequency in uniaxial testing, see section 3.5. The
material parameters are considered deterministic in this thesis and therefore each impact
can be described as a deterministic process. For the description of the steady state rolling
motion, oscillations caused by single impacts hardly affect the result and therefore, the
focus is put on the time-averaged response in the present study. This assumption simplifies
the problem to a random elliptic variational inequality, the random Signorini problem see
|Ganguly and Wadhwa, 1997; Kornhuber et al., 2014].

In the classical Signorini problem, the balance of linear momentum (2.40) is solved under

the non-penetration condition of a parameterized surface x,,(§) as

gu(u,du)éo = /E[S:5E+Qb-(5u] dV—/E[T-(Su] dA

B B
- / E [T, - §(Zn(€) — x.)] dA. (5.56)
o.B

Herein, T are the applied external nominal surface tractions, T'. denotes the nominal con-
tact tractions and the closest point projection fulfills (&, (§) — xs) -7 (&) = || T (§) — x|

In the present study, the rough road surface is modeled by a spectral representation of a
measured road profile. The computation of this analytical surface description is specified
in the next section. As the tread block is smaller than the characteristic length scale of
the road surface, a random impact position is introduced in order to achieve the average
contact behavior. The impact position & = &, — ¢ is modeled by a uniformly randomly
distributed offset vector (random variable) ¢ € Z, which is an element of the sample space
Z. With this definition the solution w(&) of the Signorini problem becomes random as
well. The mathematical formalism of this problem can be found in [Ganguly and Wadhwa,
1997; Kornhuber et al., 2014].

The main interest of this computation lies in the average solution
@ (dv(1.0) = [ (dv(t).0,¢)dC (5.57)
z

across the sample space Z as a function of the current penetration dy(¢) which prescribes

a penetration rate dy, and the temperature ©. Here, penetration means the prescribed
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Figure 5.3: Evaluation of the Sobol sequence for the two-dimensional phase shift vector

in the contact domain.

violation of the plane that is defined by the highest asperity below the tread block. The
frequency dependence of the solution arises from the viscoelastic properties of the material.
Based on this average deformation state, the average nominal contact pressure response

can be defined as a reaction at the Dirichlet boundary 0,8

P (dv(1),0) = / P [ (dx(1),0)] dA, (5.58)
OuBB

Finally, the volume average internal dissipation is calculated via

D (dx(1),0) = 1> / D [a (dy(t),0)] dV. (5.59)

In this thesis, the Quasi Monte Carlo method is applied in order to evaluate the para-
metric integral (5.57). With this method, the samples of the uniformly distributed random
offset vector are generated from a low discrepancy sequence, so that the parametric space
is covered at improved computational effort. In the present study the Sobol-sequence is
applied for sample generation. The generator algorithm of this sequence is available as
open-source code as well as in commercial environments such as Matlab®. Tt hands back
a series of uniformely distributed nested samples, e.g. the two-dimensional example se-
quence illustrated in Figure 5.3. Here, the first few samples (red triangles) are already
distributed across the entire parametric domain, and following samples (yellow circles and
gray squares) successively close the empty spaces in between the previous objects without
overlapping. This characteristic is very sophisticated for numerical studies as it allows for
a truncation of the simulation when the average value has reached convergence Au < e.
Also, it allows for the generation of additional samples if this threshold e (accuracy of the

mean value) has not yet been reached.
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5.3 Statistical characterization of rough road surfaces

The solution of the random Signorini problem requires a description of the rough road
surface. In order to allow for an exact evaluation of the contact kinematics and to cal-
culate a consistent stiffness matrix, a C2-continuous surface representation is required in
case of unilateral contact. In this thesis, a C®-continuous spectral representation was
chosen, which can be obtained by the discrete Fourier transform (DFT). The raw data
is thereby transformed into a power spectrum representing the measured data by a set
of cosine functions. This allows for an efficient statistical analysis as well as for filtering,
storage, and evaluation of surface points by an inverse transformation. The procedure of
its construction is briefly described in the following subsection. Alternatively, the mea-
sured data could have been discretized with spline functions, or the height profile of the
surface could have been generated as realization of a random field description of the rough
surface with prescribed stochastic properties. The definition of the most relevant quanti-
ties and the evaluation of the measured smooth and rough road profiles and their filtered

representations are presented in the second part of this section.

5.3.1 Continuous representation

In the context of contact simulations, a continuous analytic description of measured sur-
face data that enables a continuous evaluation of surfaces derivatives is desirable. This
fact allows for a calculation of a continuous normal vector field, which is beneficial for
the convergence of the contact constraint enforcement algorithm. In this study, an ana-
lytic representation is obtained by DFT, for which the discrete spectral power density is
calculated via

i

—-1N-1 . .
21 1) = 2 (o, y ) e i) (5.60)

0 =0

B
Il

where k,u € [0, M — 1] and [,v € [0, N — 1] define a discrete set of frequencies. The upper
bound of the resolved frequencies is given by the so-called Niquist frequency fy = QLN,
where Al is the spatial sampling rate of the measurement device. The surface points
Z (z,y) € C* can then be calculated by inverse DF'T

M-1N-1
| Z (k1) | cos (27? (fEz+ fly) + ¢ kl)) , (5.61)

k=0 1=0
using the spatial frequencies f, and f,, the absolute amplitudes |Z (k,l) | and offset phase
angles ¢.r, which are the imaginary parts of log(Z). Note that this evaluation is costly

for surfaces with a large frequency spectrum and needs to be computed successively to
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Figure 5.4: Definition of cut-off frequencies in the tread-road interaction simulations,

based on the tread width w;eaq and the contact element size hy.

determine the closest point in the contact algorithm, see section 4.1. Especially for detailed
tread models these surface evaluations may by far exceed computational costs of solving
the resulting stiffness matrix.

In order to reduce the size of the frequency spectrum, a bandpass filter is applied that
removes spatial frequencies without effective contribution to the contact interaction so
that fy, fy € [fiow, fhign]). Here, the lower cut-off frequency fiow = i is defined by the
maximum wavelength .« = 2Weaq and the width of the tread block wyyeaq, all larger
L is defined

lmin

wavelengths are regarded as waviness. The upper cut-off frequency fuign =
by the minimal wave length l,;;, = 6he and the contact element size he, which ensures
that the spatial frequencies can be detected by the mesh resolution. The amplitudes of
frequencies f > fiin are small and therefore assumed to have no significant contribution
to rolling resistance, as will be shown in subsection 5.4.3.

5.3.2 Statistical characterization of rough road surfaces

The comparison of different measured road profiles requires their statistical characteriza-
tion, which is defined in the DIN EN ISO norms:

4287: Definitions and characteristic quantities of surface properties: linear

4288: Methods to determine surface properties

13473: Road surface textures

11562: Definition of admissible filter operations

13565: Surfaces having stratified functional properties
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e 25178: Definitions and characteristic quantities of surface properties: areal

The surface characteristics are evaluated for the measured height profile z(x, y)with meth-
ods known from digital image processing, see e.g. [Gonzalez et al., 2003|. In this context,
the transformation of the raw data into a power spectrum by means of the DFT allows
for the application of efficient algorithms.

Following [Brinkmeier, 2007], the surface amplitude a(z,y) = z(z,y) — m(x,y) is intro-
duced first, which describes all surface heights as variations about the mean plane m(z, y)
of the measured N, x N, points. In the following, a shorthand notation is used to describe
discrete local values by e;; = e(x;,y;). With these definitions, the basic unbiased mea-
sures for the characterization of the height distribution are the first four discrete statistical

moments of the amplitude:

1. Mean amplitude a = 5 Ny SN ZJ L @i
2. Standard deviation o = \/NzNy SV ZN“ z
3. Skewness S = 5 N = SN ZN”

4. Kurtosis K = NTNyU4 SN Z

As the distribution has been centered a = 0, the mean absolute amplitude

()2

Qabs = Z Zy: |a/zj| (562)

zl]l

is introduced as the most common measure for surface roughness about the mean plane.

Further common quantities are so-called hybrid parameters, e.g. the average slope

| ZE Tt (e e ) (g — g
M -, -y T A Ay |

and the developed area ratio

San= A=A i A:iiw (5.64)
Ad Ay i=1 j=1 v |

It defines the relation of nominal surface area Ay and real surface area A, see DIN EN
ISO 25178. Here, the area increments A; ; can be obtained e.g. by surface tessellation.

A wvaluable insight into the height distribution of asperities can be obtained by the
Abbott-Firestone or bearing-area curve, which describes the increase in real contact area
over penetration depth, see Figure 5.7. Mathematically, this curve is the cumulative
distribution function of the asperity amplitudes that are involved in the contact interaction.

Additionally, the roughness can also be described as regional or local quantity, which
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results in the formulations of uniformity and entropy of surface heights. Other common
measures for texture descriptions are spectral measures, moment invariants, and principal
components. For further details, the reader is referred to the norms cited above.

An important measure to check the surface randomness is the autocorrelation function

1

A€) = [ ataolaten + €dandyn (5.65)

which describes the correlation of surface heights with respect to the reference point x
under a certain offset £&. At zero offset A¢(0), the function has a maximum, which is the
global maximum for non-periodic surfaces. If the function contains other local maximums
representing offsets with high correlations of surface heights, a possible periodicity is indi-
cated. In case of periodic surfaces, the function takes its maximal and minimal values at
offsets that coincide with the wavelength. The indication of a periodic surface allows for

the definition of a representative surface element.

5.3.3 Comparison of the measured and filtered road profiles

In this thesis, the rolling resistance contribution of a smooth and a rough asphalt road
surface are compared. Both optically measured surfaces (sized 400x240 mm) served for
the evaluation of tire rolling noise radiation in [Brinkmeier, 2007|. The evaluation of
their autocorrelation functions yields that both surfaces are random, and therefore a
stochastic homogenization using Monte Carlo simulations is performed to evaluate the
average tread-road interaction in subsection 5.4.3. In order to reduce the numerical effort
of the surface projections within these contact calculations, the frequency spectra for
both surfaces were filtered by a bandpass filter, which severely reduced the number of
frequencies to be evaluated. This filtering also reduces the oscillation of surface normals,
which is beneficial for the convergence of the contact constraint enforcement algorithm. In
this thesis, the bounds of the bandpass filter were chosen to be [1/120, 1/4] 1/mm for the
smooth surface and [1/120, 1/5] 1/mm for the rough surface. In the following the surface

characteristics of the raw data are compared to those of the filtered spectral representation.

The smooth asphalt surface

In Figure 5.5, the measured smooth surface (a), its bandpass filtered representation (b)
and the difference plot (c) are illustrated. The removal of low-frequency contributions
hardly effects the difference area, as the measured surface was already very smooth. Only
high-frequency oscillations with relatively small amplitudes are visible. This results in the
optically very good representation of the mesoscopic surface characteristics. In contrast
to that the comparison of the statistical values given in Table 5.1 points out a severe

impact of the filtering, especially for the higher order moments S and K.
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Figure 5.5: Comparison of the unfiltered (a) with the filtered (b) smooth surface represen-
tation by inverse DFT and height difference of both surfaces (c).

Aabs | o | S | K | SAq | Saa
Measurement 0.383 mm | 0.489 mm | -0.443 | 3.423 | 0.309 | 4.375%
Bandpass filtered 0.262 mm | 0.355 mm | -1.079 | 5.180 | 0.261 | 3.256%
Absolute percentage Error | 32% 27% 144% | 51% | 16% | 26%

Table 5.1: Statistical characterization surface of the smooth asphalt and the influence of

the filtering upon it.

The rough asphalt surface

The rough surface illustrated in Figure 5.6 (a)-(c) clearly reveals that the removal of low-
frequency contributions causes a waviness in the difference plot (c¢), which is superimposed
by high-frequency oscillations. Nonetheless, the comparison of the filtered and the unfil-
tered surface representations as well as the statistical values given in Table 5.2 shows an
acceptable preservation of the mesoscopic surface characteristics. Note that the ampli-
tudes of the rough surface almost have a Gaussian distribution, which is centered around

the mean value, and for this reason, the skewness is zero and the kurtosis equals 3.

50

10—
— 10 X (mm)

(a) Measured surface (b) Filtered surface

Figure 5.6: Comparison of the unfiltered (a) with the filtered (b) smooth surface represen-
tation by inverse DFT and height difference of both surfaces (c).
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Gabs o 'S | K| Sa | Saa
Measurement 1.409 mm | 1.726 mm | 0.109 | 2.585 | 0.766 | 22.781%
Bandpass filtered 1.173 mm | 1.452 mm | 0.085 | 2.746 | 0.681 | 19.183%
Absolute percentage Error | 17% 16% 22% | 6% 11% | 16%

Table 5.2: Statistical characterization surface of the rough asphalt and the influence of
the filtering upon it.

Comparison of both surfaces

The comparison of the bearing area curves displayed in Figure 5.7 reveals that the increase
in contact area with penetration depth is much smaller on the rough asphalt surface than
on the smooth asphalt surface, which results in a smaller stiffness of the tread-road contact.
Consequently, the same applied load results in larger penetrations of the tread block by the
surface asperities, which causes larger local stretches, and finally results in a higher rolling

resistance than on the smooth asphalt surface. Furthermore, it can be concluded from the

100
g 80 |- 1
g 60| |
=
o0
£ 40 |- — Measured smooth surface
g — Measured rough surface
M2 — Filtered smooth surface

0 | | | | Filtered rough surface

0 1 2 3 4 5 6 7 8 9 10

Penetration (mm)

Figure 5.7: Bearing area over penetration for both measured asphalt surfaces and the

resulting filtered representations, see Figure 5.5 and Figure 5.6.

comparison of the filtered and the unfiltered bearing area curves that the filtering reduces
the fluctuation in surface heights, which results in steeper slopes and therefore in a stiffer
contact behavior. This effect can be observed in the results of the convergence study
on the reaction forces presented in subsection 5.4.3. Even though the filtering severely
changes the surface characteristics, the effect on the reaction-force-penetration-relation is
relatively small. The high-frequency small scale asperities basically cause a small offset
in the resulting reaction forces. Only the peak values of the local pressures are affected
by the bandpass filtering, which are damped out by the volumetric homogenization. This

finally justifies the applied filtering approach in order to reduce the numerical effort.
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5.4 Numerical examples

The following numerical examples for the homogenization of rough surface contact scenar-
ios prove the consistency of energy of the presented approach. Furthermore, the material
parameters of the constitutive contact model are identified in order to enable a represen-
tation of the average tread-road interaction. This representation is applied in the rolling
resistance simulations of the next chapter. Initially however, the workflow for the homog-

enization procedure used in the following examples is explained.

5.4.1 Homogenization procedure

The homogenization of the tread behavior first requires the definition of the transition
area 0€)y; which separates the macroscale and the mesoscale problem. This distance of
this plane to the actual contact region must be sufficiently large, so that local oscilla-
tions of the stress field are homogenized in the mesoscale model. In case of the present
tread pattern, the transition area was placed at the tread base, where the tread block is
connected to the tire structure, see Figure 5.8. According to this definition, the contact
interaction of the tread block with the rough surface is calculated with the separated
mesoscale (homogenization) model. In these simulations, the tread rubber is described by
the thermo-viscoelastic material model in the regime of finite strains (see chapter 3). Here,
the quantities of interest are:

1. Average nominal pressure P (dy(t),©)
2. Volume average power (P (dn(t),0))
3. Volume average dissipation (D (dn(t),0))

as functions of the applied macroscopic boundary conditions:

e Partial fixation of lateral displacements at the top nodes, resulting in a unilateral
deformation state

e Constant penetration increments Ady (linear increase in displacement) of the top

nodes prescribing a constant penetration rate dy

e Prescribed initial service temperature ©
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The workflow to homogenize a rough surface contact scenario is:
1. Calculate the stochastic average of the elastic response of the mesoscale model
2. Tdentify fitting polynomials for the stretch-penetration relation A\'P(dy)
3. Fit elastic response PiP(dy,©) = Py(dy,©) by scaling factor cq

4. Calculate one viscoelastic realization of a load cycle with the mesoscale model

5. Fit viscoelastic response PLP (JN(t), @) = Pisco (dN(t), G)) by scaling factor cyisco

visco

In this study, the discrete evaluations of the stretch-penetration relation A'P(dy) obtained

in the numerical experiments are fitted with a polynomial function

N

AP (dy) =3 a; (dy)". (5.66)

=0

The coefficients a; for this fitting function :\m(JN) can be calculated by solving a linear

least squares approximation

min 0.5\ (dy) — A'® (dx) (5.67)

2
|

Note that the evaluation of the constitutive contact model is very sensitive to the stretch.
Therefore, a good representation of the contact pressure response requires a high approx-
imation precision for the nonlinear stretch-penetration relation. Here, the proper polyno-
mial order depends on the problem, but higher order polynomials are often necessary. In
order to obtain consistent characteristics of the approximated stretch-penetration relation
in the interval [0, ko], the solution is restricted by

MP(0) L1, AP (dy > 0) <1, — < <X1D>' (dy) < 0V dy € [0, ho, (5.68)

1
" ho
which ensures that the stretch vanishes at zero penetration 5\1D(O) =1 and always repre-
sents a compression. Furthermore, the polynomial approximation needs to be monotoni-
cally decreasing in order to obtain a convex potential, which allows for a consistent contact
pressure calculation. Though, the slope may not be larger than for flat surface contact. In
order to solver the optimization problem (5.67), the target function and the restrictions
are rewritten in a matrix notation that can be solved e.g. with the Matlab®a1gorithm

[sqlin.
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5.4.2 Homogenization of single asperity contact

In this first example, the penetration of a tread rubber block by a single spherical asperity is
studied. The tread block has a size of 30x30x20 mm, its bedding has a height of 8 mm and
the asperity diameter is 8 mm. The aim of this example is to identify the dominating effects
in tread-road interaction and to illustrate the homogenization procedure. Furthermore,
the accuracy of the representation of this contact scenario in terms of the homogenized
constitutive contact model is validated in this investigation.

The reference solution for the contact interaction of the bedded tread on the sphere is
obtained by computing a full scale finite element model, which is depicted in Figure 5.8
(a). The model is discretized with 1204 20-node brick elements (5415 nodes) with a spatial
resolution of 1.6 x 1.6 mm above the contact zone. In this figure, the green tetrahedrons
mark the nodal Dirichlet boundary conditions on the top surface. The application of the
Dirichlet boundary is motivated by the steel belt, which is situated above the tread layer

and assumed to be rigid. This assumption is based on the fact that the steel belt has
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Figure 5.8: (a)-(c) Tread block model (size 30x30x20 mm) with bedding (height: 8 mm) on
spherical asperity (diameter = 8 mm). Green tetrahedrons represent Dirichlet
boundary conditions. (d)-(e) Deformations w, at the maximum prescribed
penetration dy.
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Elastic properties Viscoelastic properties

Chemical shear modulus G, = 3.0 N/(mm?)  Shear modulus p =1 N/(mm?)
Topological shear modulus G, = 1.3 N/(mm?)  Viscosity nt = 0.02 Ns/(mm?)
Stretch restriction 6 =20.3 Relaxation time T7i=10.01s

Poisson’s ratio v —=0.49 Thermal softening =10

Thermal behavior

Reference temperature Oy =293 K Heat capacity 00cpo = 1.7385 N/(mm? K)
Thermal expansion aego = 0.000222 1/K kep = 0.0024 J/ (kg K2)
Density 00 = 800 kg/m? Thermal conductivity keo = 0.2595-107* 1/K

wy = 0.004 1/K

Table 5.3: Material parameters for the tread material in the exztended tube model (3.20).

much larger material stiffness than the tread block. The tread rubber is represented by
the thermo-viscoelastic eztended tube model (3.20) at a constant temperature of 293 K
using the material parameters listed in Table 5.3. In this calculation, a linear loading
cycle with a prescribed penetration dy = 3 mm and a duration of impact T = 0.01 s is

calculated in 90 quasi-static load steps, whilst all lateral displacements are fixed.

This full scale tread model is then divided by the transition area 0€2); that is situated at
z = 20 mm into a mesoscale model (see Figure 5.8 (b)) and a macroscale model (Figure 5.8
(c)). The mesoscale model (864 elements, 3731 nodes) is used to identify the equivalent
stretch-penetration relation AlD(cZN) and the scaling factors cg and cyiseo for the consti-
tutive contact model (5.51) based on the bulk material. In order to realize the assumed
uniaxial compression test, the lateral displacements are held fixed only at the central axes
(upy = 0 at x=0 and u, = 0 at y=0) of this model, which excludes rigid body motions.
In the macroscale model (340 elements, 2165 nodes) only the behavior of the bedding is
approximated by finite elements. The behavior of the mesoscale tread-sphere interaction
is described by the homogenized constitutive contact model that is applied to the contact
elements. The results of the macroscale model are finally compared to those of the full

scale reference model in order to prove the accuracy of the presented approach.

The deformation u, in the central plane y = 0 mm for all three simulated models at
the maximum prescribed penetration dy = 3 mm is presented in Figure 5.8 (d)-(f). In
Figure 5.8 (d) it can be observed that the large local deformation caused by the asperity
becomes homogeneous towards the interface plane. Due to this fact, the chosen position
for the separation by the interface plane and the prescription of a uniform displacement
on the top side of the mesoscale model are plausible, as this motion precisely describes

the behavior of the interface.



5 Homogenization of unilateral rough surface contact 73
1 e ‘ ‘ ‘ 1
\‘ S Equivalent stretch \'P
0995 % . - - Polyfit 5 \!P
e \ . |--Flat surface
5 099 Y - ]
g .
T 0985 N NG
0% 05 1 15 2z 25 3

Penetration dy (mm)

Figure 5.9: Approximation of the stretch-penetration relation for tread-sphere contact.

First the elastic response of the tread-sphere interaction (Figure 5.8 (b)) is calculated
with the mesoscale model and homogenized. With the results of this step, both the
scaling factor c. for the elastic material parameters and the polynomial least squares
approximation of the stretch-penetration relation :\1D(JN) are identified for this contact
scenario. This approximation enables the evaluation of the equivalent kinematics of the
uniaxial compression test and can be performed with freely available software packages,
as described in section 5.4. The result of this approximation is depicted in Figure 5.9
and it can be observed that the the numerical results are fit well. Note that due to the
nonlinearity of the resulting stretch-penetration a fifth-order polynomial is required to
obtain a high-accuracy representation in this example. This accuracy is necessary, as the
pressure calculation using the constitutive contact model is very sensitive to the stretch.
Due to this high polynomial order, the least squares optimization must be restricted by
the conditions Equation 5.68. The fulfillment of these restrictions prevents oscillations
and non-monotonic behavior of the approximation, which is of crucial importance for the
stability of the contact algorithm in the further course of this study.

Comparing the resulting nonlinear stretch-penetration relation on the sphere with those
on a flat surface (dashed blue line) it can be observed that the slope is much smaller on
the sphere. The slope on the flat surface is known a priori and forms the upper bound.
The smaller slope on the sphere yields the conclusion that the contact behavior is also
much softer than on the flat surface.

After the homogenization of the elastic behavior, the scaling factor cis, for the vis-
coelastic material constants is evaluated based on a viscoelastic simulation. Here, the
same linear loading cycle (maximum penetration dy = 3 mm, duration of the impact 0.01
s, 90 quasi-static load steps) as used for the full scale model was applied. The scaling
factors for this example were identified as

cer = 1.023 and cyiseo = 0.801. (5.69)
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The approximation of the response of the mesoscale model (Figure 5.8 (b)) in terms of
the constitutive contact model (5.51) is shown in Figure 5.10 (a)-(d). Both, the elastic and
the viscoelastic response of the vertical reaction force R, over the prescribed penetration
dy (depicted in Figure 5.10 (a)) are represented very well. Here, the nonlinear reaction
force stems from the hyper-elastic material formulation and the continuous increase in
contact area. As expected, the time-dependent response has a hysteresis that results from
viscoelastic effects in the material. This effect can be observed also in the volume average
external power Py, which is therefore unsymmetric and finally causes a loss of external

energy

t
B, = / / P AV dt, (5.70)
to
B

see Figure 5.10 (b) and (c¢). Note that one difficulty in optimizing the viscoelastic scaling
parameter cyiso 1S the accurate representation of the uplift and separation of the tread
block. Due to the applied displacement controlled evaluation of the constitutive contact
model, the uplift effect is not properly depicted, which causes the strong increase in dissi-
pation at the end of the load cycle, see Figure 5.10 (c). As a result of this error balancing,
the internal dissipation is depicted with a maximum deviation of ~ 15% for the present
contact scenario, see Figure 5.10 (c¢). This error can be reduced by increasing the scaling
factor cyigsco, which however causes a severe reduction in the accuracy of the mechanic re-
sponse. This impaired accuracy can be regarded as a restriction of the presented approach
and requires further development in order to be overcome.

The homogenized constitutive contact model is then applied to the macroscale model
(Figure 5.8 (¢)) in order to validate the approximation quality with the results obtained
from the full scale model (Figure 5.8 (a)). In this study, both models were simulated
isothermally at different loading frequencies (1 Hz, 10 Hz and 100 Hz) and service tem-
peratures (273 K, 293 K and 333 K). The absolute percentage approximation error was
evaluated at the maximum penetration dpa.x = 3 mm and at the end of the load cycle
in each simulation. All resulting errors are depicted in Figure 5.11, which all lie below a
tolerance of 10%. It can be observed that the change in frequency positively influences
the error in the reaction force and the external energy at maximum penetration, see Fig-
ure 5.11 (a). This influence is plausible, as viscous effects are less pronounced when the
period of the load cycle is much larger or much smaller than the relaxation time. On the
other hand, the error in the energy loss at the end of the cycle increases with decreasing
frequency. This fact is based on the difficulty to capture the separation of tread block and
surface accurately. Due to the equivalence of frequency and temperature a similar behav-
ior can be observed for the influence of the service temperature, illustrated in Figure 5.11

(b). At lower temperatures viscoelastic effects are much more pronounced, see section 3.5.
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Figure 5.10: Comparison of the mechanical behavior of the mesoscale model (MS) and its

representation by the constitutive contact model (1D).

Therefore, the energy loss in the cycle is approximated better, but the resulting reaction
force and the stored external energy at maximum penetration are less accurate. This
behavior arises from the fact that the stretch-penetration relation is not affected by the
change of service temperature. Therefore, it can be concluded that for practical applica-
tions the scaling parameters need to be evaluated only at a single temperature. This fact
significantly reduces the testing effort compared to covering the entire parametric space

of penetration depth, loading frequency and temperature.

In the next step of this study, a coupled thermomechanical simulation was conducted
in order to demonstrate the extensibility of this approach. Here, the initial temperature
was set to 273 K and a loading frequency of 10 Hz was chosen. Additionally, the material
model was extended by a second Mazwell-element with p? = 0.5 N/(mm?) and n? = 0.03
Ns/(mm?) (relaxation time 72 = 0.03 s). Analogous to the previous examples, the param-

eters of the constitutive material model were scaled by the factors given in Equation 5.69,
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Figure 5.11: Resulting approximation error of the macroscale model for different loading

frequencies (a) and service temperatures (b).

which were identified at the mesoscale level model with just one Mazwell-element. The
comparison of the resulting reaction forces over penetration and the external energy over
the time of the load cycle is displayed in Figure 5.12. Even though the dissipated energy
acts as a heat source in this simulation, the increase in service temperature is restricted to
the local area of large deformation, see Figure 5.8 (d). The figure reveals that the increase
in volume average temperature is negligible, see also [Beyer and Nackenhorst, 2014]. In
this simulation, the absolute percentage error of the maximum reaction force was 4.5%,
that of the maximum stored external energy was 4.4%, and the energy loss at the end of
the cycle contained an error of 5.5%. The high quality of the macroscale representation

allows for the conclusion that the identified scaling parameters are valid for a variety of

material models.
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Figure 5.12: Representation of the thermomechanical contact behavior of a tread block
at 273 K, with a load frequency of 10 Hz and two Mazwell-elements.
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5.4.3 Stochastic homogenization of tread-road interaction

In this second example, the average viscoelastic contact interaction of tread blocks with
the rough and the smooth measured road surfaces (see subsection 5.3.2) is computed. This
stochastically averaged tread-road interaction is then represented by a homogenized consti-
tutive contact model. Analogous to the previous example, a polynomial approximation for
the equivalent uniaxial stretch XlD(JN) as well as the scaling ¢ and ¢4, for the material
parameters are identified based on this solution. The fulfillment of these goals requires
the solution of the stochastic contact problem (5.56), introduced in section 5.2, which is
obtained by a Quasi Monte Carlo simulation (QMC-simulation). In this simulation, first
the elastic and then the viscoelastic average tread-road interaction is identified on both

road surfaces. In order to demonstrate the practical relevance of the homogenization ap-
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(a) Solid tread (S1) (b) Grooved tread (G1)
6303 elements, 10938 nodes 6647 elements, 11525 nodes

Surface 2:

Smooth asphalt

(c) Solid tread (S2) (d) Grooved tread (G2)
2480 elements, 4539 nodes 3065 elements, 5493 nodes

Figure 5.13: Tread block models (solid and grooved) used in the QMC-simulations to ob-

tain their average contact behavior on the rough and on the smooth asphalt.
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Figure 5.14: Nested FE-meshes of the solid tread block models for the convergence study.
The line colors mark the level of refinement as follows: red is the first, green

is the second, and blue is the third level.

proach, the contact behavior of a solid as well a grooved tread block are calculated and
homogenized. In general, tread designs have a far more complex structure, but this simple
example proves that differences in the average structural response due to design changes
can be represented. The resulting constitutive contact models are applied in the next
chapter in order to evaluate the influence of surface roughness on rolling resistance.

The finite element models, which were used to perform the QMC-simulations, are de-
picted in Figure 5.13 together with the surface they are pressed upon. In order to resolve
the asperities of the rough asphalt a finer spatial resolution (max. edge length 1.41 mm)
than on the smooth surface (max. edge length 2.12 mm) was necessary. For the sake
of computation time a coarser mesh was used on the smooth asphalt. Analogous to the
previous example, all vertical displacements of the top nodes are prescribed, and the lat-
eral displacements are constrained only in the central axis in order to mimic a uniaxial
compression test. Furthermore, the same viscoelastic extended tube model is used with
the material parameters given in Table 5.3. In order to resemble real tread blocks and to
improve numerical stability, all edges in the contact zone were cut at an angle of 45°.

In order to approximate the accuracy of the meshes that were used in the QMC-
simulations a convergence study on the resulting reaction forces was conducted. Therefore,
a rectangular tread block was meshed with three different element size levels, in which the
longest edge of each contact element are 1: 3.54 mm; 2: 1.76 mm; and 3: 0.88 mm. The
lateral view and a magnification of the contact area of these meshes are presented in Fig-
ure 5.14 (a) and (b). It can be observed that the mesh of the first refinement level (marked

by the red lines) has a regular structure, which yields tetrahedrons with an optimal aspect
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Figure 5.15: Convergence of the maximum reaction force over mesh size using red refined
nested meshes (gray line) compared to the result of the locally fine meshes
used in the QMC-simulations (black cross) in contact with both asphalt

surfaces.

ratio. Both subsequent levels were constructed by so-called "red refinement" in order to
maintain the initial mesh quality. These nested meshes also allow for an exact projection
of the results from a coarser to a finer mesh level. As for the other models, the applied
displacement boundary conditions resemble a uniaxial compression test with a prescribed
maximum penetration of dy = 2.5 mm.

The resulting reaction forces at maximum penetration on both surfaces are depicted in
Figure 5.15 (a) and (b). As expected, the reaction forces decrease with element size and
converge to a final value that has not yet been reached. Nonetheless, it is concluded that
the accuracy of the meshes S1 and S2 (values at the black crosses) is sufficient for the
intended application in the QMC-simulations later on in this study.

In a second preliminary investigation, the influence of the applied bandpass filtering
(see subsection 5.3.3) on the reaction force was observed. Therefore, the finest mesh level
of the models used in the previous study (longest edge of each contact element 0.88 mm)
was simulated, which is most sensitive to high-frequency small asperities. The coarsest
filters used in this study are those, which were later on applied for the QMC-simulations,
with a minimal wavelength (WL-min) of 4 mm on the smooth asphalt and WL-min = 5
mm on the rough asphalt. These filters were compared to a finer filtering with WL-min
— 3 mm, and a quasi unfiltered surface with WL-min — 1 mm. The upper bound of a
maximal wavelength (WL-max) of 120 mm was not altered, as the influence of waviness

effects was not under observation here.

The resulting reaction force penetration curves for these bandpass filter levels are
shown in Figure 5.16 . When comparing the different results, a negligible softening of the
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Figure 5.16: Resulting reaction forces over penetration for different bandpass filters, which
define a wavelength range (WI) for the surface representations of (a) the

rough asphalt and (b) the smooth asphalt.

reaction forces can be observed when accounting for smaller wave-lengths (larger number
of high-frequency contributions). On the rough surface presented in subsection 5.3.3 (c),
the force penetration curve of the finest and the next coarser level with a wavelength of
3-120 mm coincide, which indicates that the filtering does not at all affect these results.
For the results obtained on the smooth surface, shown in subsection 5.3.3 (d), the filtering
has a small offset effect. Here, the block is almost in full contact, so that the contribution
of small frequencies is more strongly pronounced. Nonetheless, the gain of information is
negligible in this study of mesoscale contact interaction. Therefore, the 20 times higher
computation time to evaluate the unfiltered surface with 180000 frequencies, compared
to =~ 10000 frequencies in the filtered representation, was avoided due to the fact that it
is computed multiple times in every closest point projection at every integration point in

order to calculate the contact contribution.

The average elastic response of the tread blocks on the road surfaces is identified by solving
the random rough surface contact problem (5.56) using a QMC-simulation. Herein, 600
uniformely distributed samples were calculated, where each realization was located at a
different position ¢ on the surface that was determined from the Sobol-sequence. Prior to
each calculation, the tread block was positioned on top of the highest asperity in order to
remove unphysical offsets in the reaction force response caused by waviness effects. In this
study, the final vertical displacement dy was set to 3 mm for all models, and was applied
in 30 load steps on the rough asphalt surface and 25 load steps were used on the smooth

asphalt surface. All simulations in this study were calculated isothermally at a reference



5 Homogenization of unilateral rough surface contact 81

uz uz

-1,807e-02 -1,955e-02

—-0,74548 =-0,74511
Z1.491 —-1.4902

£22364 22353

-3,000e+00 -3,000e+00

(a) Rough asphalt (b) Smooth asphalt

Figure 5.17: Deformation of the grooved tread blocks at maximum penetration in one

exemplary realization.

temperature of 293 K using the same thermo-viscoelastic ertended tube model as in the

previous studies with the material parameters given in Table 5.3.

In each realization of this QMC-simulation, the contacting surface asperities caused local
deformations of the tread blocks. An example for the deformation of the grooved tread on
each surface is depicted in Figure 5.17. On the rough asphalt surface Figure 5.17 (a), the
large surface asperities cause a quite complex deformation of the tread block with large
local changes in curvature. In contrast to this, the deformation on the smooth surface

Figure 5.17 (b) is rather uniform and exhibits only small waves.

In view of this complex deformation, the solution for the rough surface contact problems
proves to be a challenging task, especially with respect to the robustness of the applied
contact constrained enforcement algorithm. Due to the quasi incompressible material
behavior, the penetration by an asperity is compensated by large tangential relative mo-
tions, which push integration points from peeks to gaps changing the active set. In this
context, instabilities are caused by rapid changes in the surface normal direction due to
high-frequency roughness on top of the mesoscale surface asperities. This effect can hardly
be resolved by small load steps or by reducing the penalty parameter used in the Uzawa
algorithm, and it is most pronounced when approaching full contact. The only possibility
to achieve a higher stability in the current algorithmic framework was observed in the

relaxation of the volume preservation restriction by reducing the Poisson ratio.

For these reasons, 34.7% of the solid tread samples and 45.8% of the grooved tread
samples failed on the rough asphalt surface in this QMC- simulation. The number of
completed samples in area sections sized 30x30 mm (tread block size) of the sampling
region is presented in Figure 5.18. It can be observed that the distribution of the completed
samples cover most of the surface. In case of the solid tread block model, three area sections

were not sampled, and four area sections were not covered in case of the grooved model.
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Figure 5.18: Number of completed samples per area section (30x30 mm) for both tread
models on the rough surface and magnified view of a surface region (z €
[210,240] mm, y € [90,120] mm) with no completed samples.

Furthermore, failed samples can be observed to cluster in some regions. In Figure 5.18
(c) a magnified view onto the surface of one of these failing sections is shown in order to
point out the reasons for the failure of the contact algorithm. Steeply flanked asperities
can be observed in this area, and accordingly, the material is squeezed into the valleys
causing very high local strains and relative motion. It was therefore concluded that the
obtained results are biased, but still representative. As on the smooth asphalt only 5.2%
of the solid tread samples and 12.5% of the grooved tread samples failed, this distribution
is not depicted.

The resulting average displacements for both models on the rough asphalt are presented
in Figure 5.19. As expected, the average deformation of the contact surface (bottom of the
tread block) is quite homogeneous, but due to the large distance in between the asperities
a certain variation can still be observed, which does not contradict a convergence of the
normal reaction forces. Regarding the evolution of the mean reaction forces at maximum

penetration, the results appears to change by less than 4 N (= 1%) from 80 to 100%, which
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Figure 5.19: Average deformation of the tread blocks on the rough asphalt surface.

fulfills the accuracy requirements of this study, see Figure 5.20. Furthermore, the grooved
tread block has a smaller contact stiffness than the solid tread block, as its material can
be squeezed to the sides to the block more easily. This fact generally results in larger
dissipation. Additionally, the hypothesis that the thermo-viscoelastic contact behavior
can be represented by an equivalent uni-axial compression test is validated by the fact
that the tangential reaction forces vanish in the stochastic average, which can also be
regarded as a measure for convergence.

The average deformation of the contact surface of both tread blocks on the smooth
surface is = 0 (see Figure 5.21), which results from the structure of this surface being
relatively flat except for some valleys. Due to the surface topology of the smooth surface,
the vertical deformation is much smaller than on the rough surface, where only single
asperities penetrate the tread block. This larger contact area results in a much higher
contact stiffness of the interface, see [Persson, 2006a|, which then causes less dissipation,
as the volume average stretch velocities occurring in a load cycle are smaller. This can also
be observed from the convergence behavior of the reaction forces, in which the difference of

the mean value does not exceed 15 N (= 1%) for any illustrated percentage of the samples,

460 T T T T 2
— S1 Rx
— S1 Ry
z 40 ) = —G1 Rx
= —S1 = —G1 Ry
o= 420 —G1 | =
(=) €|
400 N
| | | | | | |
20 40 60 80 100 20 40 60 80 100
Samples (%) Samples (%)

Figure 5.20: Convergence of mean reaction forces for the solid (S1) and the grooved (G1)
tread model on the rough asphalt at maximum penetration.
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Figure 5.21: Average deformation of the tread blocks on the smooth asphalt surface.

which means that only 60 samples would have been sufficient for the stochastic averaging
on this surface, see Figure 5.21.

Finally, the resulting stochastically averaged force-penetration curves and their approx-
imation by means of the homogenized constitutive contact model (5.51) is presented in
Figure 5.23. It can be observed that the resulting contact behavior of all four contact
pairings is depicted with a high accuracy.

After the identification of the average elastic response, an additional QMC-simulation
with 50 samples was conducted in order to obtain the average viscoelastic behavior. There-
fore, the viscoelastic contribution of the eztended tube model was set active again. In this
study, a complete load cycle was simulated in each realization, in which the impact dura-
tion of the tread blocks the surfaces was 0.01 s that was subdivided into 60 load steps.

The results of this study revealed that the stored volumetric energy converges after a few
cycles. According to this finding, this quantity was used to adapt the viscoelastic material
scaling factor cyisco, Where the stretch-penetration relation A'P(dy) (see Appendix B) and
the elastic scaling factor ¢, were known from the previous study.

The approximation of the visco-elastic contact behavior is presented exemplary for the
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Figure 5.22: Convergence of mean reaction forces for the solid (S2) and the grooved (G2)

tread model on the smooth asphalt at maximum penetration.
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Figure 5.23: Elastic force-penetration curves on the rough and on the smooth asphalt.

grooved tread block on the smooth asphalt surface in Figure 5.24. Here, the smaller values
of the reaction force (see Figure 5.24 (a)) and the stored volumetric energy (see Figure 5.24
(b)) compared to the homogenization model at maximum penetration result from the small
viscoelastic scaling factor cyisco. This parameter was identified to minimize the difference
of the dissipated energy at the end of the load cycle for this scenario. Note that an increase
of this factor results in a better approximation of the force penetration curve as well as

for the stored volumetric energy, but reduces the accuracy of the dissipated energy Ep.
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Figure 5.24: Approximation of visco-elastic force-penetration response (a) and stored vol-

umetric energy (b) for model G2 at 100 Hz.
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Table 5.4: Material scaling factors and absolute approximation error of the uniaxial con-

stitutive contact model.

Model Col  Cyvisco Err. R,(dmax) Err. max&eyy FErr. Ep
Surface 1: Rough asphalt

S1 1.0 0.49 5.7% 7.2% 8.6%

Gl 097 0.5 7.8% 8.4% 10.0%
Surface 2: Smooth asphalt

S2 1.045 0.75 6.0% 2.3% 9.2%

G2 1.02  0.72 8.5% 7.0% 9.0%

The scaling factors for the material parameters (see Table 5.3) as well as the approxima-
tion quality for all identified average contact behaviors are summarized in Table 5.4. In
conclusion, the obtained results give a good approximation of the stochastically averaged

tread-road interaction.
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6 Rolling resistance simulations

In this chapter, the numerical framework for the rolling resistance calculation of tires
accounting for stochastically averaged homogenized tread-road interaction is presented.
This extension of the existing institute framework is realized by means of the constitutive
contact model developed in subsection 5.1.3. In this framework, the mathematical model
is formulated in terms of Arbitrary Lagrangian FEulerian kinematics (ALE-kinematics)
presented in [Nackenhorst, 2000, 2004], which was briefly introduced in section 2.1. The
treatment for frictional contact and transport of internal variables in the isothermal regime
were developed in |Ziefle, 2007; Ziefle and Nackenhorst, 2008]. In order to account for the
temperature dependence of tire rubber compounds, a thermo-viscoelastic material model
as well as an isentropic operator split scheme to resolve the thermomechanical coupling
were introduced in [Suwannachit, 2013; Suwannachit and Nackenhorst, 2013| for frictionless
rolling contact.

The extension of this framework by the homogenized constitutive contact model (see
subsection 5.1.3) enables the quantification of the influence of surface roughness and tread
design on rolling resistance. In this context, the developments of |Ziefle, 2007] and [Suwan-
nachit, 2013| have been united, allowing for the calculation of the pressure distribution
within the tire’s footprint in tractive rolling contact. In addition, frictional heating effects
can be taken into account with the present framework, which is demonstrated in combi-
nation with sophisticated phenomenological friction law for rubber friction presented in
|Huemer et al., 2001a].

In the following, the algorithmic treatment of the different nonlinearities occurring in
the coupled thermomechanical problem of tractive rolling contact is briefly introduced.
Thereafter, numerical examples demonstrating the capability of the extended numerical
framework to quantify the influence of surface roughness on rolling resistance are presented.
The amount of increase in rolling resistance is compared to the results presented in [van
Haaster et al., 2015; Willis et al., 2014], who measured a difference of 8-10% in rolling

resistance between a coarse and a smooth asphalt.

6.1 Statement of the mathematical problem

As a consequence of the severe temperature dependence of tire rubber, the calculation of

the rolling resistance requires the solution of both the balance of linear momentum (2.40)
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and the heat conduction equation (2.49). In the context of stationary rolling contact the
choice of an ALE-kinematic formulation enables the expression of material time derivatives
(2.23) in terms of spatial gradients for both transient problems. Due to this fact, they
can be reformulated as boundary value problems without neglecting inertia effects, see
[Nackenhorst, 2000; Suwannachit, 2013|. As a result of the kinematic description, material
particles are not fixed to the mesh and therefore the evolution of the material history
describing inelastic effects, e.g. viscoelasticity (3.45), cannot be calculated with algorithms
developed in Lagrangian kinematics. The same applies for the direct enforcement of the
stick condition (4.7) in case of tractive rolling contact.

In the present framework, these difficulties are solved within a staggered scheme, in

which the material time derivative (2.23) is separated into

) [oJe" ,
a, = *I' + Grada!? - w (6.1)
ot |x
a Lagrangian contribution &, = 85;” x> assuming w = 0, and an advective Eulerian
part 0 = Bgtv x T Grada, - w. By means of this separation, the material history can be

integrated using algorithms developed in Lagrangian kinematics within the local evolution
phase. The updated material history (internal variables) is then transported about an
angular increment A¢ in the advective transport phase. The size of this angular increment
in conjunction with the angular velocity w determines the incremental time step At =
A¢/w in the local evolution phase.

In this thesis, the thermo-viscoelastic rolling contact problem is solved with a modified
version of the three-phase fractional step approach presented in [Suwannachit, 2013] in
order to enable the calculation of the tire’s rolling resistance. In this fractional step
approach, the thermomechanical coupling is treated with the isentropic operator split
scheme (see section 3.4) whilst the material history evolution is calculated in incremental

time steps, which results in the following subproblems:
1. Mechanical tractive rolling contact (6.4)
2. Stationary heat conduction in the rotating system (6.13)
3. Advective transport of material history (6.18)

The nonlinear Galerkin approximations of the mechanical and the thermal subproblem
are both obtained with the Newton-Raphson method, see section 3.4. Then, the advective
transport problem of the internal variables in the tire structure is solved using the time
discontinuous Galerkin method. In case of using the newly developed constitutive contact

model to represent the thermo-viscoelastic tread-road interaction, this transport problem
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also needs to be solved in the contact area. After the advection problem is solved, the
local internal variables are updated. Note that the transport of the internal variables
alters their contribution to the local entropy (3.49) calculated in the thermal phase. The
consistent solution of the isentropic mechanical problem in the next time step therefore
requires a recalculation of the local entropy after the transport phase has been completed.

At the end of each time step the convergence of the material history evolution

= max Z (Av)2 < tol (6.2)

v

|4

max

is checked, so that the solution fulfills the stationarity condition (2.25). The convergence
of the material history evolution depends on the ratio of relaxation time to angular velocity
and is in general reached after few revolutions. Finally, the rolling resistance as well as

the tractive response can be calculated in a post-processing step.

6.1.1 Mechanical subproblem

Following the discussion in [Nackenhorst, 2000], the direct evaluation of material accelera-
tion (2.27) requires a C'-continuous discretization of the body. Alternatively, |[Govindjee
et al., 2014b| introduced the velocity as primary variable in a C°-continuous approach.
However, both approaches result in non-symmetric system matrices.

This issue was solved in [Nackenhorst, 2000] by reformulation of the inertia term and

application of the divergence theorem, which results in

/(gGradv-w)-éudV = /Qéu-vw-NdA—/v-(SuDiv(gw)—Qv-(Gradéu-w)dV. (6.3)

B oB B
Here, the first term represents the momentum flux across the system boundary, which is
neglected assuming w - N = 0, see [Nackenhorst, 2000]. Later on, it has been shown in
|Ziefle, 2007] that this assumption is not valid for discretized structures in general and
therefore the neglect causes jumps in the inertia forces along the surface in case of varying
circumferential element size. The last term vanishes due to conservation of mass in the
rotational symmetric body Div(pw) = 0. The remaining second term can be evaluated
directly in terms of a C°-continuous discretization and results in a symmetric contribution
of the inertia term, which is characteristic for conservative systems. The mechanical weak

form of the stationary rolling contact problem then reads

Gu(u, du) =0= /—Q’U - (Graddu - w) + S : SEAV + / t'5uda+/Tc-5udA. (6.4)
B 0B, 0.5

In this study, body forces are neglected. The boundary conditions are defined as

u(X,t) =u(X,t) VX € 0,8 and o(x) n(x)=t(x) Ve € 05, (6.5)
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on the separated boundary 0B = 9, BU0;BUI.BAO,BNI:BNI.B = () using the projection
0B, = ®(0;B). Here, the surface tractions ¢ are defined in the current configuration B;

in order to account for follower loads such as the inflation pressure

tInﬂ - _plnﬂn(w)u (66)

which acts along the surface normal n(x) with the magnitude prq, see [Wriggers, 2008|.
In this thesis, the tire is assumed to be in contact with a flat and rigid surface, which
has a constant surface temperature and moves with a prescribed velocity vg. The non-
penetration condition (4.23) is enforced with the Augmented Lagrangian multiplier method
presented in section 4.3. Thus, no algorithmic changes are required as the normal contact
contribution directly constrains the relative deformation u. However, due to the fact that
material particles are not fixed to the mesh, the stick condition § = 0 cannot be enforced
using standard formulations, which are based on the direct evaluation of the relative slip.
In this thesis, the stick condition is enforced with the algorithm presented in |Ziefle, 2007].
Here, the relative slip s is introduced as an additional nodal degree of freedom in the
contact zone, which is formulated in the convective coordinates of the master surface. By

means of this, the sliding velocity is defined by
$=(c—vg) A= _Grads - w, (6.7)
so that the slip can then be calculated in a weak sense by solving

/ ((c —wvg)-A)Gradds - wdA = / (Grads - w) Gradds - w dA, (6.8)

0B 8c B

in which A = {a1, a»} is a tangent vector matrix, 08 = Gradds - w is the material time
derivative (2.23) of the variation of slip, and the left side of the equation is the local sliding
velocity in terms of the convective speed. The solution of this boundary value problem
requires Dirichlet boundary conditions s = sp, which are imposed on the leading edge of
the footprint, where material particles enter the contact zone. The global slip distribution

can be interpreted as the result of the local slip evolution

t
s = so+ / sdr (6.9)
to

of a material particle traveling through the contact zone. By means of this approach,
both the standard return mapping algorithm formulated in Lagrangian kinematics and
phenomenological friction laws can be applied. In this context, the sliding velocitys can be
used directly for the evaluation of the friction law (4.26) and the calculation of friction loss,

which causes frictional heating. Note that in case of linear shape functions in the element
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Figure 6.1: Relative kinematics of the projected integration point.

formulation the common approach to integrate the contact contribution using additional
two-dimensional membrane elements, which discretize the contact surface of the three-
dimensional body, does not allow for a consistent computation of the convective velocity c.
These linear membrane elements can only depict in-plane deformations and therefore the
required displacement gradient Gradu cannot be calculated correctly, see [Chapelle and
Bathe, 2011] for details. In this case, the integration needs to be performed on the sur-

face of the parent element, so that Gradu can be evaluated correctly and ¢ = w for u = 0.

Accounting for mesoscale tread-road interaction

In order to account for homogenized mesoscale tread road interaction in macroscale rolling
resistance calculations, the constitutive contact model (5.51), which has been developed in
subsection 5.1.3, is attached to the contact elements. This treatment results in a nonlinear,
thermo-viscoelastic regularization of the normal contact constraint, see Figure 6.1. Here,
the penetration dy is assumed to compress the tread layer with initial height ho, so that

its current height is
h(dy) = ho — dx. (6.10)
By means of this kinematic assumption, the contact contribution can be directly integrated

on the contact boundary of the tire model.

6.1.2 Thermal subproblem

In order to obtain the stationary temperature distribution the heat conduction equation
(3.10) needs to be solved. Following the argument presented in [Suwannachit, 2013|, the

calculation of the entropy rate is redefined as

ds o .
e e e , ) "
§=Setbet e =—57" @ Gl (6.11)
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which can be separated into a thermoelastic contribution $., the change of heat capacity

s. and a thermo-viscoelastic part $,.. The entropy rate was then reduced to

_ov(C,e) .
with — ~ 0 and - ~ 0,
int int

neglecting thermoelastic s, and thermo-viscoelastic s, structural heating effects caused by
mechanical deformation, which are of minor influence compared to the viscous dissipation.
The remainder is the rate at which thermal energy is stored in the material.

The weak form of the heat conduction equation then yields

Go(©,50) L 0= / (6(6)Crad® - w — Dy — or) 56 + Grads® - Q AV
B

4 / QN30 dA + / Q.00 dA, (6.13)
0,8 0.3

which is subjected to the following boundary conditions

O(X,t) =0(X,t) VX € 9B and Q(X,t) - N(X)=Qn(X,t) VX € 9,B8(6.14)
The boundary of the domain 0B is separated into a non-contact set 0,8 in which general
heat fluxes Qn are applied, and into a contact part d. with dominant heat conduction
Qc, both of which fulfill 9B = dgB U 9,B U d.B A deB N IJ,BN I.B = (). Due the applied
operator split scheme, the displacement is constant in the thermal solution phase Au = 0
and therefore the boundary separation does not change throughout a load step.

The internal heat flux in the material is calculated via
Q = —keo(©)C™! - Grad® with keo(0) = [1 — wr(© — 6y)], (6.15)

which depicts a linear temperature dependence of the thermal conductivity with a softening

parameter wy. The heat flux into the ambient air is computed with

QN - Venv(@ - 9env)a (616)

at non-contact surfaces, where 7,y is a convection coefficient and O, is the environmental
temperature. The heat flux in the contact zone Q. defined in (4.20) accounts for conductive
heat transfer over the contacting asperities, and for mechanical dissipation due to friction
loss and viscous dissipation. It is assumed that the dissipation is completely transferred
into a heat flux, of which only a fraction pp enters the tire whilst the remainder 1 — pp is
transferred into the road. In this thesis, the heat up of the road surface is neglected due
to the high traveling speed of the tire. Analogous to the convective heat transport, the

heat conduction coefficient is also assumed to be constant for the sake of simplicity.
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6.1.3 Advective transport of material history

The final step in the staggered approach for the treatment of the present thermo-
viscoelastic rolling contact problem is the advective transport of material history, see
|Ziefle, 2007|. In this phase the Fulerian part agév
rial time derivative (6.1) is computed in order to enable a time-discrete evaluation of the

x T Grada, - w = 0 of the mate-

material history evolution (3.45) in the next load step. Therefore, the current values of
the deviatoric part of Green-Lagrange strain E, which yields the stretch rate E, and the
internal variables o for each Mazwell-element are transported by an angular increment
A¢. In addition to the transport problem in the bulk material, the penetration dy and
the internal variables hg\i,) and hgf) (5.53) describing the viscoelastic material response of
the tread block in terms of the constitutive contact model have to be transported along
the contact surface as well.

Before solving the transport problem, a L2-projection onto to the nodes is performed
for all local material history quantities (e), which are calculated at the integration points

during the mechanical phase. The advective transport problem for the nodal values reads

Oe)| | O(e) Ox _ (6.17)
ot |, Ox 0Ot

Following |[Ziefle, 2007], this transport problem is treated with a time-discontinuous
Galerkin method (TDG-method). This technique is based on the idea that the trans-
ported quantity (e) can be discontinuous at the endpoints of time-intervals (temporal
nodes). In order to illustrate this approach, the integration over the current time interval
[tn, tni1], which is the successive interval of [t,_1,t,], is observed. Here, the discontinuity
at t, is described by the jump operator [e] = eT — e~ where e~ is the nodal value at
the end of the last time interval and e denotes the value at the beginning of the current
interval. Now, the aim is to calculate the integral over the current time interval whilst
minimizing the jump at ¢,,. Here, the value e~ is known from the last solution.

In order to obtain this solution, a temporal shape function 7 is introduced to discretize
the time interval. The introduction of this shape function in combination with the defini-

tion of the jump yields the weak form of the advection equation

/n /77” (% + %’2 : %) dtdV + /nnl (¢F o) dV =0, (6.18)

where 7”1 denotes the shape function value at ¢,, and the second term can be regarded
as a residual. Note that the discretization of this problem results in an equation system

sized ngpace X Mtime-
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6.2 Numerical examples

In this chapter, the application of the developed constitutive contact model, see subsec-
tion 5.1.3, is demonstrated in coupled thermo-viscoelastic rolling resistance calculations of
solid rubber wheels and air-inflated radial tires. In a first example, the convergence of the
calculated rolling resistance in dependence of angular increment size is studied for a rubber
wheel. Then, the influence of surface roughness on the rolling resistance is quantified for
this rubber wheel. In the last example, the influence of surface roughness on the rolling
resistance is investigated for a large scale radial tire model.

Before analyzing the results of these calculations, some preliminary information regard-
ing term definitions are given as well as a summary of the computation algorithm. A good
overview of basic rolling contact phenomena such as slip, traction, and rolling resistance
can be obtained from the textbook by [Johnson, 1985].

In the following tractive rolling contact simulations, a measure is required for the classifi-
cation of different driving states (acceleration, free-rolling, braking and cornering). There-

fore, the global slip factor is defined as

Ur — W XTo (6.19)

0= |w X 7|

which prescribes a percentile difference of convective velocities. Here, |w X rg| = wry is the
convective velocity in the circumferential direction a; of the undeformed tire that rotates

around a central axis. The global slip factor consists of circumferential slip

< 1, acceleration slip

vV, @) — wr , .
§o = ———— with { = 0, free rolling (6.20)
WwTo

> 1, braking slip

(6.21)
and lateral slip s; in the direction ay with
. 0, cornerin
AL . & (6.22)
Wro =0, straight rolling.

Furthermore, the road velocity vector can be expressed in terms of a slip-angle «; as
v, = v.(cos agaq + sin agag), with v, = ||lv,|. (6.23)

In order to solve the nonlinear rolling contact problem and to gain better numerical
convergence, the applied loading and displacement boundary conditions are separated
into increments, which are applied in load steps. The global solution is then obtained in

the following solution phases:
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1. Initialization phase:
e Apply inflation pressure load
e Apply angular velocity w in order to calculate inertia effects
2. Frictionless, unilateral contact phase:
Apply vertical displacement boundary conditions in n,.,; increments
3. Tangential contact phase:
e Calculate stick state

e Apply prescribed slip factor in ng;, increments

4. Material history evolution:

e Calculate advective transport of internal variables using n,q, angular incre-

ments per revolution

< tol steady state is reached

max

e Convergence check: If HAV

In every load step of these solution phases, the complete algorithm for the solution of the
mathematical problem stated in section 6.1 is executed. Therein, the advective transport

problem is treated with an angular increment size of

2
Agp = —W, with a time increment size of At = —— (6.24)

Nadv Whady

Due to this treatment, the number of load increments 7.+ and ng;, does not affect the
final solution and the rolling resistance by varying time step sizes. In case of thermoelas-
tic material behavior, this algorithm reduces to the first three phases, and no advective
transport problem needs to be solved.

Finally, the rolling resistance is calculated as a torque around the central axis

My = /P(X)X~A1 a4, (6.25)

0B

which results from the nonsymmetry of the contact pressure distribution. The rolling

resistance coefficient is then evaluated via

Mp

CrrR=""—"F "7
|70 x Fy|’

(6.26)

where r( is the initial radius, and F'y is the axial load.
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Figure 6.2: Rubber wheel boundary conditions at the central axis (green tetrahedrons).

6.2.1 Convergence study of material history evolution

The numerical convergence of the stationary solution of material history evolution (6.1)
strongly depends on the number of angular increments (time steps) n.q, per revolution.
These increments determine the angular distance over which the material history is trans-
ported using the time discontinuous Galerkin method (TDG). Further factors of influence
are the mesh size h, the order of temporal shape functions of, and the ratio of relaxation
times 7; to angular velocity w.

The focus of this study lies on the influence of the number of angular increments per
revolution, on the order of temporal shape functions used for the TDG, and on the ratio
of relaxation time to angular velocity. For this reason, the stationary rolling contact of a
solid rubber wheel is observed by varying these parameters of influence, but the mesh size

and the material parameters are the same in all calculations.

The discretized model of the solid rubber wheel is depicted in Figure 6.2. Here, the
green tetrahedrons mark the bounded nodes of the central axis, where all mechanical and
thermal degrees of freedom are held fixed in all following calculations. The wheel has a
rectangular cross section, a radius of 60 mm, a width of 30 mm, and a diameter of 40
mm rim. The model is meshed with 3520 8-node brick elements. The exterior surfaces
are covered by a total number of 1144 4-node shell elements, which serve as integration
domains for the contact interaction and the convective heat transport. All non-contacting
surfaces allow for a convective heat flux, and in the contact area (footprint) heat can be
transferred into the ground by heat conduction. The material parameters of the applied

thermo-viscoelastic material are displayed in Table 5.3.

The convergence of axial torque for the rubber wheel on the flat surface was calculated

at angular velocities of w = 5, 10, 20 and 50 rad/s, see Figure 6.3. It can be observed
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Figure 6.3: Convergence of torque for the solid rubber wheel over angular increments.
Solid line: 1st-order TDG, Colored Markers: 2nd-order TDG.

from the results of this study that the necessary number of angular increments in order
to obtain convergence increases with decreasing angular velocity here. This comes along
with an increase in axial torque for the presented results. In the present case of a single
relaxation time, the axial torque, which is related to the rolling resistance via (6.26),
has a maximum at a specific angular velocity (frequency) and tends towards zero for
w — 0 and also for w — oo. A similar behavior has been observed in the numerical
study presented in [Suwannachit, 2013]. This effect is induced by the viscous material
behavior and depends on the ratio of relaxation time 7 (0.01 s in this study) to angular
velocity w. Here, high rolling resistance is caused by a steep gradient in the internal
variable field, e.g. the distribution of a;; depicted in Figure 6.4. The precise solution
of this convective transport problem requires small time steps (angular increment). For
large angular increments implicit methods such as the TDG tend to introduce artificial
numerical diffusion, which causes a softening of the gradients in the transport phase and
results in an underestimation of the rolling resistance. The observed behavior agrees with
the findings in [Govindjee and Mihalic, 1998], where a reduced influence of the advective

transport was observed for small relaxation times.

These basic effects of the viscoelastic material response in rolling structures are pro-
nounced even more strongly in case of thermo-viscoelastic material behavior. Due to the
internal dissipation, the stationary temperature increases (see Figure 6.4 (b)) causing an

increase in elastic material stiffness and a reduction of viscous effects.

In addition to the convergence behavior with angular increment size using linear tem-
poral shape functions, the effect of quadratic temporal shape functions on the solution is

studied. In general higher order shape functions allow for higher accuracy in the advective
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Figure 6.4: Internal variable distribution «a;; at w = 5 (a) and increase in maximum

stationary temperature © over angular velocity (b).

transport of fields with steep gradients. The results of the second order TDG-solutions
for the respective angular velocity and the number of angular increments per revolution
are illustrated by the colored markers in Figure 6.3. In this example, the improvement by
higher order shape functions is rather small. This contradiction can be explained only by
the necessity to capture local sources above the contact zone. In fact, the resulting rolling
resistance for large angular increments is smaller than the solution using first order TDG
with the same increment size. No improvement of numerical effort (total number of load
steps) for obtaining the wheel’s rolling resistance could be achieved. For all angular incre-
ment sizes the solution required the same total angle, e.g. = a half revolution is required
at w = 20 [rad/s| to obtain ||AA| < 1078, This confirms the dominant dependency on
the ratio of relaxation time to angular velocity. Analogously it can be said that if the
relaxation time is larger than the period of an entire revolution, the material has not fully
relaxed when it is reloaded, which consequently requires more increments (revolutions) to

reach the steady state.

6.2.2 Rolling resistance calculation of a rubber-wheel

In this example, the presented numerical framework is applied in order to study the influ-
ence of surface roughness on the rolling resistance of a solid rubber wheel. Therefore, the
rolling resistance on a flat surface is compared to the results on the rough and the smooth
asphalt. This study also aims for the evaluation of the modeling error in this application
resulting from the assumption of a uniaxial compression. In this sense, an additional
constitutive contact model (CCM) is introduced, which represents the contact behavior

of the tread block on a flat surface. This representation is realized with the equivalent
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Figure 6.5: Stationary dissipation (mW/mm?) in the rubber wheel.

stretch-penetration relation
MP(dy) =1 — dy/ho,

in which hyg is the initial tread height of 20 mm, and the scaling factors for the material
parameters are Ce = Cyisco = 1.

For this study, the same finite element model of a solid rubber wheel with a diameter
of 60 mm is studied at an angular velocity of w = 20 rad/s, see Figure 6.2. Here, the
reference solution on the flat surface is calculated using the Uzawa algorithm with a gap-
tolerance of dy <0.001 mm. The rough surface contact interaction is represented by
adding the constitutive contact model (CCM) to the contact interface. In order to avoid
confusion of results obtained by different models the results obtained with the flat surface
representation are called CCM flat, those for the smooth asphalt surface CCM smooth
and the results on the rough surface are denoted CCM rough.

The reference model is pressed onto the flat surface with a prescribed displacement
of 4 mm, which causes a reaction force of ~ 1950 N. The displacements of the other
models were adapted so that the same normal reaction force was obtained, resulting in 6
mm for the CCM flat model, 6.7 mm for the CCM smooth model, and 8.5 mm for the
CCM rough model. Note that the larger normal displacement to enforce the axial load is
caused by the softer contact compliance of the constitutive contact models. Again, heat
can be transferred over all free surfaces as well as in the footprint of the wheel. In order
to investigate only the influence of the constitutive contact model frictionless rolling is
assumed in this study.

In Figure 6.5, the resulting dissipation for the stationary rolling reference model is
illustrated for the entire wheel and its central cross section. The highest rates in the
structure occur above the leading edge of the contact zone (left of the center). Furthermore,
the view into the cross section reveals that this effect concentrates at the lateral edges, at
which the material is squeezed outwards due to its quasi-incompressible behavior.

Due to the viscous dissipation, the temperature increases inside the wheel. The resulting

temperature distribution is quite homogeneous within the structure, reaching its maximum
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Figure 6.7: Contact pressure distribution in the center of the footprint.

value in the center of the cross section, see Figure 6.6. This fact results from the fixed
temperature at the rim and the applied flux boundary conditions on the external surfaces.

The resulting contact pressure distributions in the circumferential center line of the
footprint for the different calculations are illustrated in Figure 6.7. It can be observed
that the contact area increases due to the application of the constitutive contact model
resulting in smaller nominal pressures. The softer response of the CCM model with the
flat surface approximation compared to the reference solution results from the neglect of
shear deformations. As expected, this effect increases for larger surface roughness, due
to the reduction of contact stiffness. Furthermore, all contact pressure distributions are
unsymmetric, which results from the viscous effects in the rubber material and yields
the rolling resistance. This nonsymmetry of the contact pressure distribution is most
pronounced on the rough surface.

The resulting interface temperatures, axial torques, the percentile difference in axial
torque compared to the CCM flat model and the rolling resistance coefficient are sum-

marized in Table 6.1. It can be observed that the application of the constitutive contact
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Table 6.1: Influence of surface roughness on the stationary response, where the model

with the flat surface approximation (CCM flat) serves as base value.

Model @max (K) Mp (Nm) AMP (%) CRR

Reference 329.4 0.458 -59.3 0.0017
CCM flat 321.3 1.126 - 0.0113
CCM smooth 320.4 0.809 -28.2 0.0082
CCM rough 318.3 1.202 6,7 0.0123

model in the contact interface results in an increase in rolling resistance, which is plausi-
ble as the constitutive material model only depicts normal contact interaction. The softer
response of CCM flat model, approximating the flat surface interaction, consequently re-
sults in higher rolling resistance compared to reference solution. Furthermore, a positive
correlation of rolling resistance and surface roughness is observed in between the smooth
and the rough asphalt surface, resulting in a 48% increase of torque. But the comparison
of the results for the flat and the smooth surface yields a negative correlation, which is
not in accordance with experimental observations. This finding points out a weak point of
the current approach to depict the rolling resistance contribution of surface roughness for
rubber wheels with small radius. It is assumed that this effect is related to large curvature
of this model, which causes a lot of shear strain that is not be depicted by the present

approach.

6.2.3 Rolling resistance calculation of a tire

In this last example the rolling resistance contribution of the tread-road interaction is
quantified for detailed large scale models of radial tires. The tire model used in this
study and its cross section are depicted in Figure 6.8 (a) and (b). Analogous to the
previous example the green tetrahedrons illustrate bounded nodes with Dirichlet boundary
conditions prescribing displacements and temperature. This detailed model is discretized
by 12690 8-node brick elements and consists of 16 different material layers, including a steel
belt and a fibre-reinforced carcass. The entire model is covered with membrane elements,
which serve as integration domains for the contributions of the contact interaction, the
inflation pressure and the convective heat flux.

In this study, the inflation pressure is modeled as a perpendicular follower load with a
magnitude of 0.32 MPa. Additionally, a vertical displacement of 30 mm is applied at the
boundary nodes, which results in an axial load of ~ 10600 N. The angular velocity of the
tire is set to 50.95 rad/s, which is equivalent to a traveling speed of ~ 80 km/h. Aiming
for the calculation of the influence of surface roughness in this study, 0% global slip was
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Figure 6.8: Tire model with boundary conditions (green tetrahedrons) (a) and cross sec-

tion with the 16 different material groups (b).

prescribed assuming a free rolling trailer tire. For the solution of the thermal problem
the rim temperature was kept constant at the initial temperature of 293 K. The heat flux
into the ambient (293 K) and the contained air (313 K) was modeled with (6.16) using
the heat conduction coefficients presented in [Behnke and Kaliske, 2015], which amount
t0 Yeny = 50 W/(m? K) and 7oy = 20 W/(m? K).

The material behavior of the tire rubber was represented using the thermo-viscoelastic
material model presented in section 3.2 using the Mooney-Rivlin model (3.19) for the
thermoelastic response. The viscoelastic material parameters for the different layers were
adapted from |[Ziefle, 2007; Suwannachit, 2013]. Furthermore, this model was combined
with a fraction layer approach to account for fibre-reinforcement, where the mechanical
behavior of the fibres was modeled with the exponential law presented in [Polley, 1999],
see Appendix C for details. The material parameters for this exponential model were
obtained using the Matlab® Curve Fitting Toolboz™ approximating the stiffness of the
bilinear approach used in [Ziefle, 2007]. The thermal material parameters stem from the
works of [Hofer, 2009; Hofstetter, 2004; Suwannachit, 2013|. In this study, rubber friction
is modeled with the pressure, temperature and velocity dependent friction law (4.26)

presented in [Huemer et al., 2001a].

The calculation was executed with the algorithm described in the beginning of this
section. In a first step, the internal pressure was applied, which was followed by an
incremental increase of normal displacement and angular velocity (10 steps). Thereafter,
contact tractions were calculated using the algorithm suggested in |Ziefle, 2007]. After
the calculation of contact tractions, the steady state of the material history evolution

was iterated. In this last phase of the algorithm the mechanical and thermal subproblem
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Figure 6.9: Distribution of von Mises stress (a) and dissipation (b) depicted in the tire

cross section above the contact region.

as well as the transport of material history were solved repeatedly until the convergence
criterion was fulfilled. In the entire calculation the angular increment for material history

transport was 7.2°, which is equivalent to 50 transport steps per revolution.

In order to point out the influence of surface roughness on the thermomechanical be-
havior, the structural response of the reference model rolling on a flat surface, is observed
first. The distribution of the von Mises stress in the tire’s cross section is illustrated in
Figure 6.12 (a), where the maximum value was limited to 20 MPa in order to improve
the contrast in the contact zone. The maximum stress value of 35 MPa, which occurs in
the bead wire, was not subject of observation in this study. It can be observed that the
highest stresses occur in the central steel belt, which is much stiffer than the tire rubber.
Therefore, the belt can ensure the flat shape of the tire’s tread cap by taking up the infla-
tion pressure and resisting the bending, which results from its connection to the sidewalls
that transfer the axial load into the ground. This construction results in a larger contact
area and a more homogeneous distribution of contact pressure in the footprint compared

to a bias tire.

Due to the much higher material stiffness of the belt, the adjacent rubber layer is sub-
jected to large local strains at high strain rates, which causes a large amount of dissipated
energy in each revolution, see Figure 6.12 (b). The mechanical dissipation is transferred
into heat and thereby significantly increases the tire’s service temperature. The resulting
temperature of the tire model and the temperature distribution within the cross section
are shown in Figure 6.12. As a consequence of the high local dissipation and the low
conductivity of tire rubber compounds the maximum temperature is situated next to the

belt. On the exterior and also on the interior surfaces the temperature decreases due to
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Figure 6.10: Stationary temperature distribution (K) in the tire structure (a) and in its

cross section (b) for the free rolling reference model on a flat surface.

convective heat flux. This result is in good agreement with the combined experimental and
numerical study presented in [Behnke and Kaliske, 2015]. Note that only small frictional

heating occurs due to the calculation of free rolling.

In order to study the influence of surface roughness on the thermomechanical behavior of
the tire, the results using the constitutive contact model representing the solid tread block
on the smooth and the rough surface are compared. The smaller contact stiffness of the
homogenized contact interaction with the rough surface results in smaller local pressures,
which are distributed more homogeneously over a slightly larger footprint than for the
smooth surface, see Figure 6.11 (a) and (b). These higher local pressures result in larger
maximum circumferential tractions on the smooth asphalt surface, which can be observed
in Figure 6.11 (c) and (d). Here, the steep decrease at the trailing edge value results
from an exceed of the friction limit. In this area the sliding material causes frictional
heating, which is found to be dominant in the contact area, see Figure 6.11 (e) and (f).
It follows from the distribution of contact pressure and circumferential traction that also

the maximum value of dissipation is larger on the smooth surface.

The resulting temperature distribution in the cross section for both models is illustrated
in Figure 6.12. As a result of the additional heat source in the contact interface, the
temperature in the tread is larger than in the reference model (see Figure 6.12). In
comparison, the temperature on the rough asphalt is higher than on the smooth surface,
which results from the dissipation being integrated in the larger footprint.

The results of this comparative study are summarized in Table 6.2. As observed in the

results of the rubber wheel example, the application of the constitutive contact model

introduces an initial difference of 19.2% rolling resistance (Crg). But in this study, the



0

6 Rolling resistance simulations 105
0.6 0.6
100} 100}
50} | 0.4 50t H 0.4
ot ¥ ot !
50t ! 0.2 50t 0.2
100t 100 |
' : ; : : 0 - : : : 0
-200 -100 0 100 200 -200  -100 0 100 200
(a) Pressure distribution using CCM smooth (b) Pressure distribution using CCM rough
(MPa). (MPa).
0.2 0.2
0.2
_ 0.15 0.15
g
s 0.1
S 0.1 0.1
-200
0.05 0.05
200
z (mm)
0 0 0
200 200 y (mm) 200 200 y (mm)
(¢) Circumferential traction using CCM (d) Circumferential traction using CCM
smooth (MPa). rough(MPa).
150 150
-100 ¢ -100 ¢
507+ 100 5071 100
0r or
50 50 50 50
100t 100
‘ A 0
-200  -100 0 100 200

(e) Interface dissipation using CCM smooth
(mW /mm?).

—260 —160 0 160 260
(f) Interface dissipation using CCM rough
(mW /mm?).

Figure 6.11: Contact behavior of the free rolling tire on the smooth and the rough asphalt

surface.
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Figure 6.12: Stationary temperature distribution (K) in the cross section of the tire rolling
on the smooth (a) and on the rough asphalt (b).

Table 6.2: Influence of surface roughness on the stationary response, where the model

with the flat surface approximation (CCM flat) serves as base value.

Model Omax (K)  My(Nm) AM, (%) Cgr

Reference flat 341.7 30.8 -23.2 0.0067
CCM flat 340.2 40.1 - 0.0083
CCM smooth 341.7 41.8 4.2 0.0087
CCM smooth grooved 341.5 41.8 4.2 0.0087
CCM rough 342.1 45.9 14.5 0.0094
CCM rough grooved 342.2 46.7 16.5 0.0095

expected positive correlation of surface roughness and the tire’s rolling resistance can be
observed. Comparing the results of the smooth surface with those for the flat surface model
a small increase in rolling resistance can be observed, which results from the relatively flat
topology. The resulting difference of rolling resistance of 8% (Crgr) between the rough
and the smooth asphalt surface is in good agreement with the measured range of 8-10%
difference in rolling resistance presented in [van Haaster et al., 2015] and also with those
results published in [Willis et al., 2014]. Furthermore, an increase of rolling resistance
for the grooved tread block on the rough road surface can be observed. These results
demonstrate the capability of the developed approach to quantify the rolling resistance
contribution of the tread layer in large scale applications and also to recognize the influence
of different tread shapes.

In future research this approach can be combined with the anisotropic continuum model,
presented in [Kaliske and Timmel, 2005], in order to account also for shear deformations

of the structured tread.
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7 Conclusion and Outlook

Coupled thermomechanical finite element calculations of rolling tires can create detailed
insight into material phenomena occurring at service conditions. These findings are of
crucial importance for tire manufacturers aiming to optimize tire designs for their intended
application, especially for the reduction of rolling resistance. Frameworks formulated in
Arbitrary FEulerian Lagrangian kinematics have proven to be highly efficient for these
computations. However, this kinematic description does not allow for a direct application
of algorithms developed in Lagrangian kinematics in order to take into account inelastic
material behavior and friction. Handling these difficulties is thus a challenging task in
the development of tire computation frameworks. In this context, taking into account
the rolling resistance contribution of tread-road interaction into macroscale (mm; cm)
computations has been an unsolved issue. This contribution results from the penetration
of the tire’s tread blocks by the mesoscale (mm) asperities of the rough road surface,
causing large strains at high strain rates.

In this thesis, a one-dimensional homogenized constitutive contact model has been de-
veloped that represents the stochastic average thermo-viscoelastic structural response of
a three-dimensional tread block in unilateral frictionless contact with a mesoscale random
rough road surfaces in the context of finite deformations. Its application in coupled thermo-
viscoelastic rolling resistance calculations allows for a quantification of the influence of sur-
face roughness on rolling resistance, which is demonstrated for tractive stationary rolling
contact of solid rubber wheels and air-inflated radial tires.

The stochastic average tread-road interaction was identified for a solid rubber and a
grooved tread block model, which were brought into contact with a rough and a smooth
asphalt surface. The measured raw data sets of these road surfaces were transferred into
a spectral representation using discrete Fourier transform. A bandpass filter was then
applied to the resulting frequency spectrum in order to remove low-frequency macroscale
waviness and high-frequency microscale (um) oscillations, as the focus was put on the
rolling resistance contribution that results from mesoscale roughness. The solution of the
random rough surface contact problem was achieved by a Monte Carlo integration over
uniformely distributed surface locations. In that study the bulk material of the tread
blocks was modeled quasi-incompressible in combination with a viscoelastic extended tube
model.

The basic idea for the constitutive contact model lies in the identification of an equivalent



108 Conclusion and Outlook

kinematics based on the volume average stretch of the tread block as function of prescribed
penetration, which is dominated by uniaxial contributions. With this equivalent stretch-
penetration relation the pressure and volume average dissipation (heat flux) of the tread
block in the coupling interface can be evaluated directly from the constitutive material
model of the treads bulk material, assuming a unilateral, incompressible compression
test. The accuracy of this approach in depicting uni-lateral contact scenarios and the
preservation of external energy in the load cycle, has been verified with full scale numerical
calculations, see section 5.4.

The homogenized stochastic average interaction of the tread with the rough and the
smooth measured road surface has been included into the thermomechanical framework
for the stationary rolling contact, presented in [Suwannachit, 2013]. In order to account
for tractive rolling, this framework was enhanced with the approach presented in |Ziefle,
2007|, proving its compatibility with arbitrary phenomenological models for rubber
friction. The resulting program environment allowed for rolling resistance calculation of
rubber wheels and air-inflated radial tires accounting for thermo-viscoelastic effects in
the structure, energy dissipation in the tread-road interface, and frictional heating. A
comparison of the calculated rolling resistances for the rough and the smooth asphalt
quantified the influence of surface roughness to increase by =~ 8%, which is in good
agreement with the studies presented in [van Haaster et al., 2015|. These studies measured
an influence of surface roughness of 8 — 10%. Additionally, the softer contact response
of the grooved tread blocks lead to an increase in rolling resistance of 1% on the rough
asphalt. According to these results, the presented rolling resistance calculation approach
enables the manufacturer to evaluate and to compare different tread designs. By means
of this, the description of homogenized tread-road interaction presented in this thesis can
yield more detailed insight into the multi-scale processes occurring within the tire, which

is necessary for the optimization of future tire designs to suit their intended application.

The next step in elaborating the outcomes of this thesis is seen in the combination
with the anisotropic continuum model presented in [Kaliske and Timmel, 2005] in order to
represent both the unilateral rough surface contact as well as the shear deformation of the
tread structure. Furthermore, the efficiency of the evaluation of the rough surface contact
problem can be significantly increased by using Multi-Level Monte Carlo methods, which
optimize the cost balancing of reducing stochastic and discretization error, see [Chernov
and Bierig, 2013]. The solution of the rough surface contact problem also requires a more
robust contact constraint enforcement algorithm, such as the Augmented Lagrangian mul-
tiplier formulation presented in [Pietrzak and Curnier, 1999], which yields a C!-continuous

contact potential.
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A Calculation of tangent matrices

In this chapter the calculation of material tangent operators is presented, which are neces-
sary to solve the nonlinear mechanical problems (3.50) and (6.4) using the Newton-Raphson
method. For further information on the calculus the reader is referred to the textbook by
|[Holzapfel, 2000|, which provides detailed descriptions of the derivations and their results.

Due to the introduction of the thermally expanded intermediate configuration (see sub-
section 2.1.1), the enforcement of the quasi incompressible material behavior differs from
the formulation presented in |Suwannachit, 2013|. In the constitutive material model
presented in section 3.2, the contribution of the volumetric penalty function (3.16) is

calculated via
oU>(Jur) B OU>®(Jyr) 0y OC
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In the context of the applied isentropic operator split scheme (see section 3.4), the total
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derivative of stress (material tangent) is calculated via

08 1 08
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which results in the material tangent. In this phase, the entropy is assumed to be constant

and therefore its rate must vanish

Os 1 Js |
which yields the thermal tangent modulus
os 1 s\ !

For the presented thermo-viscoelastic material model the derivative of stress with respect
to the Cauchy-Green tensor is calculated via

oS 482U°°