
In this thesis, a homogenized constitutive contact model representing the thermomechanical
contact interaction of a tire’s tread rubber cap with the road surface has been developed
with a focus on tire rolling resistance computations in frameworks using Arbitrary La-
grangian Eulerian kinematics. This constitutive model describes the statistically averaged
thermo-viscoelastic response of a single tread block in unilateral frictionless contact with a
rough road surface and the subsequent internal dissipation in an energy consistent way.

The homogenization of this contact interaction is based on the identification of an equivalent
uniaxial compression test of the tread’s bulk material, which allows for a one-dimensional
representation of the constitutive material law. In the course of the thesis, the homogeniza-
tion approach is applied to simple contact scenarios in order to investigate its accuracy.
In a next step, the stochastic average thermo-viscoelastic contact behavior of tread blocks
on measured smooth and rough asphalt surfaces are identified with Monte Carlo simulations.

Based on these results, the rolling resistance of simple rubber wheels and air inflated
tires is computed in coupled thermo-viscoelastic, tractive rolling contact simulations, where
the homogenized unilateral tread-road contact response is represented by the developed
constitutive contact law. Herein, the temperature and frequency dependency of rubber
friction is taken into account via a phenomenological friction model. With this framework
the stationary thermomechanical response of novel tire designs can be calculated at a higher
level of detail compared to previous approaches, which is a crucial aspect in the development
process of low rolling resistance tires.
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Abstract

In this thesis, a homogenized constitutive contact model representing the thermomechan-

ical contact interaction of tire tread blocks with the road surface was developed with a

focus on tire rolling resistance computations in frameworks using Arbitrary Lagrangian

Eulerian kinematics. This one-dimensional constitutive contact model describes the sta-

tistically averaged thermo-viscoelastic response of a single three-dimensional tread block

in unilateral frictionless contact with a rough road surface and the subsequent internal

dissipation in an energy-consistent way.

The homogenization of this contact interaction is based on the identi�cation of an

equivalent uniaxial compression test, which allows for a one-dimensional representation of

the constitutive material model that describes the tread rubber. In the course of the thesis,

the accuracy of the homogenization approach is investigated for the contact interaction

with a spherical asperity �rst. In a next step, the stochastic average thermo-viscoelastic

contact behavior of tread blocks on measured smooth and rough asphalt surfaces are

identi�ed with Monte Carlo simulations and transferred into constitutive contact models.

Based on these results, the rolling resistance of solid rubber wheels and air-in�ated radial

tires is computed in coupled thermo-viscoelastic tractive rolling contact simulations, where

the homogenized unilateral tread-road contact response is represented by the developed

constitutive contact model. Herein, the temperature and frequency dependence of rubber

friction is taken into account via a phenomenological friction model. With this framework

the stationary thermomechanical response of novel tire designs can be calculated at a

higher level of detail compared to previous approaches, which is a crucial aspect in the

development process of low rolling resistance tires.

Keywords Rough surface contact; Contact homogenization; Thermomechanical cou-

pling; Arbitrary Lagrangian Eulerian kinematics (ALE-kinematics); Rolling contact;

Rolling resistance; Finite element method (FEM); Time discontinuous Galerkin method

(TDG-method)
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Zusammenfassung

In der vorliegenden Arbeit wurde ein homogenisiertes konstitutives Kontaktmodell zur

Beschreibung der thermomechanischen Kontaktinteraktion von Reifenpro�lblöcken mit

der Fahrbahnober�äche entwickelt, wobei der Fokus auf Rollwiderstandsberechnungen im

Rahmen einer gemischten Euler-Lagrange Kinematik lag. Dieses eindimensionale konstitu-

tive Kontaktmodell beschreibt das statistisch gemittelte, thermo-viskoelastische Verhalten

eines einzelnen dreidimensionalen Pro�lblocks im unilateralen, reibungsfreien Kontakt mit

einer rauhen Fahrbahnober�äche, sowie die resultierende interne Dissipation in energiekon-

sistenter Form.

Die Homogenisierung der Kontaktinteraktion basiert auf der Identi�zierung eines äquiv-

alenten unilateralen Druckversuchs, was eine eindimensionale Darstellung des konstitu-

tiven Materialmodells erlaubt welches das Pro�lgummi beschreibt. Die Genauigkeit des

Homogenisierungsansatzes wird zunächst am Beispielt der Kontaktinteraktion mit einer

Kugel untersucht. Im Anschluss daran wird unter Anwendung von Monte Carlo Simulatio-

nen das statistisch gemittelte thermo-viskoelastische Kontaktverhalten von Pro�lblöcken

auf gemessenen glatten und rauen Fahrbahnober�ächen bestimmt und in konstitutive Kon-

taktmodelle überführt.

Aufbauend auf diesen Ergebnissen wird der Rollwiderstand von Vollgummirädern und

luftgefüllten Reifen mit gekoppelten thermo-viskoelastischen traktiven Rollkontaktberech-

nungen ermittelt, wobei der homogenisierte unilaterale Pro�l-Fahrbahnkontakt mittels des

entwickelten konstitutiven Kontaktgesetzes dargestellt wird. Hierbei wird die Temperatur-

und Frequenzabhängigkeit der Gummi-Reibung durch ein phänomenologisches Reibgesetz

berücksichtigt. Mit Hilfe dieser Modellierung kann das stationäre thermomechanische Ver-

halten neuer Reifendesigns mit einem gröÿeren Detaillierungsgrad berechnet werden als

dies bisher möglich war, was bei der Entwicklung von Reifen mit geringem Rollwiderstand

eine wichtige Rolle spielt.

Stichworte Kontakt mit rauer Ober�äche; Kontakthomogenisierung; thermomechanis-

che Kopplung, gemischte Euler-Lagrange Kinematik (ALE-Kinematik); Rollkontakt; Roll-

widerstand; Finite Elemente Methode (FEM); Zeit-diskontinuierliche Galerkin Methode

(TDG-Methode)
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1 Introduction

Motivation

In modern economy an increasing percentage of the transport of goods relies on trucks.

For this reason, it is of high economical relevance to maximize the energy e�ciency of

these means of transport and to minimize their consumption of resources. Recent studies

of [Cullen et al., 2011; Holmberg et al., 2012] on the energy consumption of cars and trucks

give an overview of the percentile energy loss for di�erent truck parts and their energy

saving potentials. Among other factors of in�uence, e.g. aerodynamics, weight reduction,

and combustion e�ciency, large energy saving potentials were found in the optimization of

tires. For this reason, current research initiatives aim for the development of sustainable

tire designs with improved energy e�ciency, e.g. the Lorry project (www.lorryproject.eu;

funded by the European Union from 2011 to 2016). The goal of this interdisciplinary

project is a reduction of resource consumption by developing new tire rubber compounds

and optimized tread patterns. These novel compounds shall contain a higher percentage

of natural rubber and also possess increased durability. The expected gain of these im-

provements is a reduction of the tire's rolling resistance by at least 20%. According to the

studies [Holmberg et al., 2012; van Haaster et al., 2015] a reduction of rolling resistance

by 10% results in approximately 2− 2.5% less fuel consumption.

The achievement of these goals requires detailed knowledge of the processes causing

rolling resistance and of the quanti�cation of their contributions, see ISO 18164:2005

and ISO 28580:2009 for standard procedures of measurement. The main cause of rolling

resistance is the viscoelastic material behavior of the di�erent rubber compounds in the

material layers that make up the tire carcass. In addition to a �bre-reinforcement for

higher tensile strength of the rubber layers, a modern radial tire also possesses a steel

belt, which increases the bending sti�ness below the tread cap and gives the tire its

characteristic �at shape. During rolling motion the tire is �exed by the contact with the

road, which also bends the steel belt. Due to the large di�erence in sti�ness between

belt and rubber, the connected rubber layer is subjected to large strains at high shear

rates, which result in a large amount of viscous dissipation. The dissipated mechanical

energy is transferred into heat and thereby signi�cantly increases the tire's temperature.

This change of temperature severely a�ects the material properties of rubber compounds,

especially damage and aging e�ects are more pronounced at high temperatures. For this
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reason, detailed tire calculations require a thermomechanically coupled framework so that

these material phenomena can be take into account.

A further important contribution to rolling resistance is the thermomechanical contact

interaction of the tread cap with the road. Both the tread pattern and the road surface

roughness signi�cantly in�uence rolling resistance. [van Haaster et al., 2015] measured a

di�erence of 8-10% in rolling resistance between coarse and smooth asphalt textures, which

is in accordance with the extensive literature review recently presented in [Willis et al.,

2014]. In the above context, the term 'coarse' refers to the optically visible mesoscale

asperity size (mm) rather than to the macroscopic waviness of the road (cm; m) or to

the microscopic surface topology of each asperity (µm). Consequently, potential starting

points for the optimization of the tire-road interface towards reduced rolling resistance

can be found in the tire (e.g. adaptations of the tread rubber compound and the tread

pattern) as well as on the road surface (surface characteristics in road building projects).

However, the potential reduction of rolling resistance by smoothing the road surface is

obviously limited by the necessity to ensure the transmission of traction and braking in

the tread-road interface, as particularly a good wet grip behavior is a crucial safety factor.

Note that suboptimal transmission of tractions (slip) is also a source of rolling resistance.

The optimal tire design depends on the particular conditions in the desired application.

For instance, trucks transporting goods on motorways bridge large distances at nearly

constant speeds and on similar road pro�les to which the tire's steady state behavior can

be optimized. In this context, numerical simulations that take into account the di�erent

dissipative e�ects (rolling resistance contributions) can yield detailed insight into the tire's

thermomechanical behavior, which is di�cult to directly access by experiments. These sim-

ulations enable numerical testing and rapid optimization of new tire designs for speci�c

rolling conditions. Accordingly, numerical simulations in conjunction with optimized pro-

totype testing can signi�cantly reduce costs of tire development. And yet, experimental

testing is of course still inevitable for the validation of mathematical modeling.

A review on rolling resistance calculations including the effects of
tread-road interaction

Di�erent theoretical approaches to calculate rolling resistance can be found in literature.

The most common technique is the �nite element method (FEM), which has been

successfully applied for the past three decades and is available in di�erent commercial as

well as open source software distributions. Apart from standard FEM-approaches there

are di�erent mathematical frameworks such as the waveguide-FEM (see e.g. [Hoever,

2012]) or semi-analytical models (see e.g. [Louhghalam et al., 2015]). Both approaches
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allow for an estimation of rolling resistance and noise radiation that can be applied e.g.

for the optimization of road surface textures. However, these models do not provide as

detailed insight into the complex thermomechanical behavior of the tire's bulk material as

can be obtained with the FEM, which is of crucial importance for the tire manufacturer

in order to calculate phenomena such as grip, wear, damage, and failure. For further

details on the development of tire simulation techniques the reader is referred to the

review by [Ghoreishy, 2008].

E�ective kinematic description

The �rst numerical framework enabling a detailed and e�cient �nite element (FE) solution

of stationary rolling contact problems was introduced in [Oden and Lin, 1986]. In this

contribution, rolling motion and relative deformation were decoupled using a a relative

kinematic description, which forms the theoretical basis for most present FE-frameworks

for rolling resistance calculations. Due to this separation, the material rotates within

the reference con�guration so that material particles are no longer �xed to the FE-mesh.

Due to this fact, standard algorithms for the treatment of frictional contact and inelastic

material behavior cannot be directly applied. However, �rst approaches to overcome these

issues were already developed in this �rst contribution. A successive paper of the same

research group [Oden et al., 1988] extended the formulation to the three-dimensional case.

In addition, rough surface contact interaction was accounted for by an experimentally

evaluated nonlinear contact compliance. The further elaboration by [Faria et al., 1992] also

considered anisotropic �ber-reinforced rubber materials, which enabled the simulation of

air-in�ated tires. This framework provided a �rst attempt to compute tractive (accelerated,

braking, and cornering) steady state rolling contact scenarios considering dominant sources

of rolling resistance.

The parallels of a relative kinematic description to Arbitrary Lagrangian Eulerian

kinematics (ALE-kinematics), which is applied e.g. in �uid structure interaction

problems, were �rst recognized in [Nackenhorst, 1993]. The further elaboration of this

framework resulted in a sound mathematical basis of ALE-kinematics for the rolling

contact problem, see [Nackenhorst, 2000, 2004]. In the absence of friction, this formu-

lation achieved a symmetric sti�ness matrix even for C0-continuous linear shape functions.

Tractive rolling contact

In [Oden and Lin, 1986] the authors also suggested a �rst approach to solve the tractive

rolling contact problem, based on a penalization of slip velocities so that contact tractions

can be calculated analogous to viscous damping. It can be regarded as a weak point of this

approach that small penalty parameters result in a drift of material points in the contact
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and therefore the stick condition cannot be ful�lled precisely. However, in the context

of rubber friction, the friction coe�cient tends to zero on nominally �at rough surfaces

for small sliding speeds (see [Moore, 1972]). Due to this fact, the penalization of sliding

velocities only serves for the calculation of the sliding direction (predictor step), the actual

contact traction is calculated by the friction law, which results in a good approximation

for practical tire simulations.

The �rst mathematically precise calculation of the stick-slip transition in frictional

contact interaction was presented in [Nackenhorst, 2004]. This formulation can be veri�ed

by analytical reference solutions assuming Hertzian contact, see e.g. [Johnson, 1985]. A

weak point of this approach was that only linear convergence rates of the solution were

achieved. Both de�ciencies have been overcome by the solution presented by [Zie�e,

2007; Zie�e and Nackenhorst, 2008], who de�ned the slip as an additional degree of

freedom. This modi�cation allows the stick condition to be directly enforced by standard

algorithms for frictional contact, and yields quadratic convergence of the solution. The

application of this framework also allows a direct application of arbitrary friction models

formulated in Lagrangian kinematics, as will be demonstrated in the course of this thesis.

Inelastic material behavior in rolling tires

The e�cient treatment of inelastic material behavior, especially of viscoelastic e�ects, in

ALE-kinematic frameworks is still an open topic of research. In this context, the evolution

equation for internal material history variables possesses both local and convective parts.

[Oden and Lin, 1986] suggested an integration of the material history along spatially �xed

streamlines in the reference con�guration, which however su�ered from accuracy issues

and required several revolutions in order to obtain convergence. A �rst fully coupled

treatment of this problem was presented by [Faria et al., 1992], who introduced a Fourier

series expansion of the evolution equation along these stream lines. This expansion allowed

for a direct calculation of the viscoelastic steady state response at the cost of introducing

the Fourier coe�cients as additional degrees of freedom, which results in a large non-

symmetric system of equations, see [Nasdala et al., 1998; Nasdala, 2000] for further details

and applications. Note that this method su�ered considerably from its mesh dependence,

requiring a post-error analysis as measure of ensuring mesh adaptivity.

Following established methods in ALE-kinematic frameworks (see [Donea et al., 2004]),

[Zie�e, 2007; Zie�e and Nackenhorst, 2008] introduced a staggered algorithm to separate

the treatment of the material history evolution into a local part and an advective transport

of the internal variable. In order to solve this transport problem with minimal numeri-

cal di�usion and without limitations on the integration step size by stability criteria, the

time discontinuous Galerkin method (TDG-method) was applied in this study. However,
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a disadvantage of this staggered treatment was that even though the TDG-method is un-

conditionally stable, the size of the integration steps (angular increments) is limited by

the governing problem. In order to gather all local sources of inelastic e�ects above the

contact zone and their relaxation in the non-contact areas, the element sizes as well as

the angular increments must be chosen su�ciently small, which causes the solution to be

numerically expensive. A comparison of the TDG-method with a simpli�ed unsplit stream-

line update procedure published in [Wollny and Kaliske, 2013] showed a good agreement

of the computational results at reduced computational e�ort. This result is in accordance

with the theoretical observations of [Govindjee and Mihalic, 1998], who stated that the

in�uence of advection on the material history evolution is negligible if the cycle dura-

tion is large compared to the relaxation time. The unsplit streamline update procedure

presented in [Wollny and Kaliske, 2013] was later used in [Behnke and Kaliske, 2015] to

perform thermomechanical rolling resistance calculations. The obtained numerical results

were validated with experimental measurements also presented in that contribution and a

good agreement of both was found.

Recently, [Govindjee et al., 2014b] published a fully coupled framework that overcomes

the mathematical issues of prior coupled approaches. The key idea lies in transferring

the material history evolution into a spatial minimization problem, which has been

presented �rst in [Le Tallec et al., 1994]. But instead of solving this problem using an

upwind scheme, [Govindjee et al., 2014b] reformulated the material history evolution in

terms of linearized dynamics. By means of this framework, the viscoelastic steady state

response is obtained directly from a spatial minimization problem. In the present form,

this treatment requires the introduction of tensor valued over-stresses as additional state

variables, which results in a large non-symmetric sti�ness matrix.

Thermomechanical coupling

In the past decades, di�erent approaches to include thermal e�ects into the calculation of

stationary rolling tires have been published, see e.g. the literature review by [Ghoreishy,

2008]. The theoretical basis for the thermomechanically coupled rolling resistance

calculations in the present work was presented in [Suwannachit, 2013; Suwannachit and

Nackenhorst, 2013]. This framework allows for the application of arbitrary constitutive

material models to describe temperature dependent, viscoelastic rubber compounds. In

addition, it enables the calculation of the temperature rise by viscous dissipation yielding

the thermomechanical steady state response of frictionless rolling tires on a �at rigid

surface. In this framework, the thermomechanical coupling was treated by the isentropic

operator split scheme by [Armero and Simo, 1992], which allows for an unconditionally

stable separation of the mechanical and the thermal subproblem.
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Tread-road interaction in ALE-kinematics

A yet unsolved limitation in ALE-kinematic frameworks is the requirement of a rotation-

symmetric mesh. Accordingly, studies are presently limited to the analysis of tires with

circumferential grooves. A recent approach by [Govindjee et al., 2014a] describing the

time periodic states of treaded rolling bodies has not yet been applied to more complex

tread structures of tires. To date, the structural behavior of real tread patterns on �at

surfaces can only be considered by using anisotropic homogenized constitutive material

models, as presented in [Kaliske and Timmel, 2005]. Note that this response depends on

service temperature, load and speed (frequency) of the tire, and of course on the random

asperity distribution of the contacting rough surface for a single tread design made

of a speci�c rubber compound. Therefore, the identi�cation of the average tread-road

interaction as a basis for formulating a constitutive contact model requires either

extensive experimental testing (see e.g. [Huemer et al., 2001b] for experimental rubber

friction evaluation) or a mathematical solution of the rough surface contact problem.

In this context, the thermomechanical behavior of the deformable asphalt surface also

in�uences on the obtained results. However, a rough rigid surface is assumed in this study.

Experimental rough surface contact evaluation

[Oden et al., 1988] suggested the �rst engineering approach to include a constitutive

contact model describing the tread-road interaction, which was derived from experimental

testing. A negative aspect of such models is that their material parameters often have no

direct physical meaning, and therefore need to be identi�ed by solving an inverse problem.

For this reason and in order to reduce experimental costs, analytical or numerical models

are to be preferred to experimental testing.

Analytical methods for rough surface contact

An analytical solution for rough surface contact problems was �rst presented in [Green-

wood and Williamson, 1966]. The history of the further development of this class of models

is described in detail in [Liu et al., 1999; Zmitrowicz, 2009; Chen, 2013b,a], and a compar-

ative study of di�erent methods can be found in [Zavarise et al., 2004]. To date, the most

elaborated analytical solution, which describes rough surface contact as a di�usive process

over the spectral surface representation, has been presented in [Persson, 2001]. In case of

the presented examples, this approach is highly accurate up to nearly full contact, and

has since been applied for thermomechanical contact and inelastic material behavior, see

[Persson, 2006b]. However, analytical models are based on the assumption of contacting

elastic half-spaces which restricts the solution to small deformations and simple material
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models. Consequently, analytical models cannot describe the structural response of tread

blocks contacting the rough road surface and their rolling resistance contribution, which

is dominated by large deformations and complex material behavior.

Rubber friction is a microscale phenomenon (µm) in the contact interface between

tread rubber and the penetrating mesoscale asperity (mm). Therefore, rubber friction

can be approximated by analytical methods in case that only the microscale roughness is

taken into account, see [Persson, 2006b; Lorenz et al., 2011; Popov et al., 2014].

Multi-scale homogenization techniques

The restrictions on kinematics and material behavior can be overcome in detailed �nite

element (FE) models, see e.g. [Bandeira et al., 2004] for an example of a unilateral

constitutive contact model development based on the evaluation of rough surface contact

scenarios. In these calculations, the contacting bodies are discretized with FE-meshes,

which allows for an evaluation of stress in the bulk material as well as the structural

response of the contact interaction. This insight comes at high numerical costs if small

length scale roughness must be captured by �ne mesh resolutions. In order to minimize

these numerical costs, multi-scale methods can be introduced. Based on the assumption

of separable scales, small scale roughness can be observed in detailed sub-models, which

are subjected to admissible boundary conditions ful�lling the Hill-criterion. This method

allows for either a consistent homogenization of the average microscale material behavior,

or a direct coupling of micro- and macroscale problem in a single simulation using the

so-called FE2-method, see [Miehe, 2003; Geers et al., 2010] for further details.

Due to the contact with the rough surface, admissible boundary conditions allowing

for the volumetric �rst-order homogenization described above cannot be de�ned. For this

reason, the rough surface contact response is homogenized on an interface in order to

obtain a consistent micro-to-macro transition. Based on these assumptions, [Wriggers and

Nettingsmeier, 2007; Reinelt and Wriggers, 2010] evaluated the multi-scale homogenized

friction response of a rubber block on a rough surface by upscaling the average tractions

on relatively �ne levels for a prescribed contact pressure. As a result of this study, material

parameters for a pressure, temperature, and velocity (frequency) dependent friction model

were identi�ed. In [De Lorenzis and Wriggers, 2013] this work has been extended by

application of isogeometric shape functions and the Mortar method, which enhanced the

stability of the contact simulation. Note that the fractal character of road surfaces does

not allow for separation of scales in general.

Following the classical homogenization theory, a representative contact element (RCE)

was formulated in [Temizer and Wriggers, 2008], enabling a direct coupling by means of

FE2. In these studies, the averaged friction response accounting for the e�ect of moving
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Finite element tire modeling in ALE-kinematics

Macroscale (mm; cm)

Structural tire response

Tractive rolling:

[Nackenhorst, 2004]

[Zie�e and Nackenhorst, 2008]

Thermo-viscoelasticity:

[Suwannachit and Nackenhorst, 2013]

Mesoscale (mm)

Tread deformation

Anisotropic, structural

tread response:

[Kaliske and Timmel, 2005]

Thermo-viscoelastic

unilateral contact:

This thesis

Continuum microscale (µm)

Friction phenomena

Analytic models:

[Persson, 2006b]

FE2-Methods:

[Temizer and Wriggers, 2008]

Figure 1.1: Relation of this thesis to the state of the art.

cylindrical third bodies in a two-dimensional contact interface was calculated. This ap-

proach was further elaborated introducing a thermodynamic consistent homogenization

of viscoelastic e�ects to calculate the dissipation in the contact interface, see [Temizer

and Wriggers, 2010a]. In order to estimate the average heat �ux in rough surface contact

interactions, [Temizer and Wriggers, 2010b] developed a thermomechanical extension of

this contact homogenization framework.

The stochastic average tread-road contact interaction, which is required for the calcu-

lation of the stationary response, cannot be described by RCEs due to the fact that the

autocorrelation length of rough road surfaces exceeds the size of tread blocks. Therefore,

a direct coupling by means of FE2 is not applicable to rolling resistance calculations.

Summarizing the outcomes of this literature review, a homogenized constitutive contact

model accounting for the mesoscale stochastic average thermo-viscoelastic response of sin-

gle tread blocks on rough road surfaces has not yet been developed. An energy-consistent

representation of this contact behavior is required in order to quantify the in�uence of

surface roughness on macroscale rolling resistance and is therefore highly relevant for the

optimization of tread patterns. This thesis is meant to bridge this gap by providing a ho-

mogenized constitutive contact model, which enables to account for mesoscale tread-road

interaction in macroscale rolling resistance calculations, see Figure 1.1.
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Scope and structure of the thesis

The main objective of this thesis is the development of a one-dimensional constitutive

contact model to represent the average thermomechanical contact interaction of a three-

dimensional tread block on random rough road surfaces. This new approach is based on

the tread's bulk material model and allows for precise calculations of average contact

pressure and internal dissipation of tread blocks as a function of penetration depth, time

(resulting in a prescribed penetration velocity or frequency), service temperature and a

set of internal variables, which preserves the external energy in the load cycle (consistence

of energy). The necessary solution steps for this homogenization problem are described in

detail in this thesis. Thereby, the viscoelastic contact behavior of single tread blocks on

optically measured road surfaces is characterized by numerical solution of the underlying

stochastic contact problem. This result is obtained with a Monte Carlo simulation,

in which the surface position is the random variable. The capability of representing

viscoelastic rough surface contact interaction of tread blocks in macroscale models is

validated by numerical studies of full scale models. Finally, rolling resistance calculations

of rubber wheels and air-in�ated radial tires accounting for thermomechanical tread-road

interaction are performed by use of the developed constitutive contact model. The results

of this study allow for a quanti�cation of the in�uence of surface roughness on rolling

resistance for the measured road pro�les.

The basic continuum mechanics framework necessary for the de�nition of the described

problem is summarized in chapter 2. Special focus is thereby put on the formulation of

ALE-kinematics including the e�ect of thermal expansion.

The relevant material phenomena occurring in rubber materials as well as the chosen

constitutive material model to depict these phenomena are brie�y described in chapter 3.

In addition, the behavior of the material model is illustrated in several numerical tests in

order to allow for a better understanding of the subsequent results.

In chapter 4 the theoretical background for the enforcement of contact constraints and

the calculation of thermomechanical contact interaction is outlined. Here, the main issues

are consistency of energy in the contact interface, and phenomenological friction models

for rubber friction.

With these methods at hand, the homogenization of the random rough surface con-

tact problem is addressed in chapter 5: First, the basic concepts for energy-consistent

homogenization are brie�y summarized, followed by the description of the constitutive

contact model. Then, the mathematical problem for random rough surface contact is

stated. By solving this problem, the average contact behavior of tread blocks on road
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surfaces is obtained. In a next step, typical quantities for the characterization of rough

surfaces are calculated for two measured asphalt surfaces. These surfaces serve as exam-

ples for rough and smooth road surfaces throughout this thesis. It is also demonstrated

that moderate bandpass �ltering can signi�cantly reduce the numerical e�ort whilst re-

taining the mesoscopic contact behavior. In the last section of this chapter numerical

examples are presented to illustrate the capability of the one-dimensional homogenized

constitutive contact model to represent complex three-dimensional unilateral contact sce-

narios in an energy-consistent way. In addition, the results of the random rough surface

contact problem are presented for two di�erent tread geometries, and the parameters for

the constitutive contact model are evaluated.

The obtained constitutive contact models describing the homogenized tread-road inter-

action, are then applied in thermomechanical rolling resistance calculations in chapter 6.

Initially, a brief introduction on the numerical framework and its calculation algorithm

is given, which was developed mainly based on the works of [Nackenhorst, 2000; Zie�e,

2007] and [Suwannachit, 2013]. In applying this framework, the in�uence of surface rough-

ness on rolling resistance is investigated numerically for solid rubber wheels as well as for

air-in�ated radial tire models.

Finally, the results of this thesis are summarized and concluded in chapter 7. Further-

more, an outlook on further research is given.
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2 Continuum thermomechanics

The calculation of rolling resistance requires a mathematical description of the involved

coupled mechanical and thermal processes, which can be realized within the framework

of continuum thermomechanics. This concept interprets arbitrarily shaped bodies as sets

of continuously distributed media, rather than as discrete objects or sets of single atoms.

Based on this assumption, engineering problems can be solved e�ciently as it allows for a

homogenized description of complex material phenomena.

The theoretical basis of this thesis largely originates from the detailed descriptions in

the works of [Holzapfel, 2000; Nackenhorst, 2000; Liu, 2002; Haupt, 2002; Willner, 2003;

Lubliner, 2006]. This chapter provides a short summary of continuum thermomechanics

including the necessary aspects to formulate the mathematical problem and also serves to

introduce the chosen notation. The key points of this chapter are the change of thermody-

namic state, Arbitrary Lagrangian Eulerian kinematics in the realm of �nite deformations,

basic stress de�nitions, and the statement of the fundamental balance laws, which need

to be ful�lled at all times in the following simulations.

2.1 Kinematics

Kinematics describes the motion of material particles in space and time. This descriptions

is the basic requirement for a mathematical modeling of real world engineering problems.

In the context of tire mechanics, the kinematic description must be suitable to cope with

the occurring �nite deformations and the large relative motions as well as the thermal

expansion of the material. These complex phenomena can be described e�ciently using

Arbitrary Lagrangian Eulerian kinematics (ALE-kinematics), in which the body's motion

is separated into a purely rotational contribution and a superimposed relative deformation.

The ALE-kinematic description applied in this thesis is based on the ideas presented in

the work of [Nackenhorst, 2004], which have since been used in [Zie�e, 2007; Suwannachit,

2013]. In the following sections, the mathematical description of the placement and the

deformation of the material body is introduced, followed by de�nitions of strains and time

derivatives of kinematic quantities.
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Figure 2.1: Material con�guration B0, reference con�guration B, thermally expanded con-

�guration B̆ and spatial con�guration Bt of the material body.

2.1.1 Material body, configurations and motion

In continuum thermomechanics, the material body B is de�ned as a set of continuously

distributed material points. For reasons of simplicity, the body is placed in the Euclidean

space E3 in the present study, rather than using an arbitrary space de�nition. Any place-

ment of the body B(t) at a �xed time t is called a con�guration, in which each material

point has a speci�c thermodynamic state.

The body's initial placement at time t = t0 is assumed to be spatially �xed and referred

to as the initial or material con�guration B0 in the following. In this con�guration the

position of each material point is de�ned by a position vector X0 = XI
0EI(I = 1, 2, 3),

where XI
0 are called material coordinates and the orthonormal base vectors EI form a

Cartesian basis. The related initial thermodynamic state of all material points is assumed

to be stress-free and to have an initial temperature Θ0.

The motion of the body is then regarded as a continuous process or series of con�gu-

rations, which is described by a mapping Φ : [t0, t] × B0 → E3. The actual placement

at t > t0 is called current or spatial con�guration Bt. Here, the material point has the

position x = xIEI(I = 1, 2, 3), with spatial coordinates xI . Furthermore, the thermo-

dynamic state of the material point in this instant is characterized by a spatial velocity

v(x) = Φ̇(X0, t) and a temperature Θ.

The basic idea behind the description of large motions in ALE-kinematics lies in the
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Con�guration

Material Reference Thermally expanded Spatial

Symbol B0 B B̆ Bt
Variables A0 A Ă a

Vectors N 0 N N̆ n

Operators GRAD Grad GradΘ grad

Table 2.1: Notation convention [Suwannachit, 2013], modi�ed.

introduction of an intermediate reference con�guration, in which the convective material

transport is traced in Eulerian kinematics. A Lagrangian observer that is �xed to this

con�guration then only describes the relative motion of the body. In the special case

of a rolling motion the reference con�guration is de�ned by a rigid body rotation B =

φR(B0, t) of the initial con�guration, which does not induce any stresses. The position

X = XIEI(I = 1, 2, 3) of the material point in this con�guration is then de�ned by

referential coordinates XI .

In the context of thermomechanical simulations, the change of temperature ∆Θ = Θ−Θ0

is accompanied by thermal expansion. In order to separate this e�ect from the mechanical

deformation, [Lu and Pister, 1975] introduced an additional intermediate con�guration

B̆ = ϕΘ(B(t),Θ) using a multiplicative split of the deformation gradient. Here, the

thermal expansion is assumed to be an isotropic volumetric extension, which is also to be

stress-free if it is not restricted by boundary conditions. Note that the mapping ϕΘ(X,Θ)

is solely induced by the change of temperature. The remainder ϕ̆M
(
X̆, t

)
is referred to

as e�ective mechanical motion. This formulation was applied in the models of [Heimes,

2005; Höfer, 2009], from which the present notation has been adapted.

The de�nition of these con�gurations enables a separation of the mapping

Φ = ϕ ◦ φR = ϕ̆M ◦ϕΘ ◦ φR, (2.1)

which projects points from the material into the current con�guration. In this equation the

mapping ϕ : B × [t0, t] → E3 describes the superimposed relative motion to the rotating

reference con�guration B = φR(B0, t) in ALE-kinematics. The relative deformations can

be separated into a mapping ϕ̆M : B̆ × [t0, t]→ E3, which describes the purely mechanical

deformation and a thermal expansion ϕΘ : B × [Θ0,Θ]→ E3.

The relation of the di�erent con�gurations and mappings is illustrated in Figure 2.1, and

the notation of the most important quantities and operators is summarized in Table 2.1.
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2.1.2 Displacement

The material displacement �eld

u0(X0, t) = x(X0, t)−X0 (2.2)

is a vector �eld, which relates the position of a material point in the initial con�guration

to its location in the current con�guration. This displacement needs to be distinguished

from the reference displacement �eld

u(X, t) = x(X, t)−X(X0, t), (2.3)

which is a mapping based on positions in the reference con�guration. Note that if the

motion has no convective contribution, both �elds coincide.

2.1.3 Deformation gradient

The change in shape of a material body, i.e. the deformation of material lines and curves,

is often quanti�ed by the deformation gradient in continuum thermomechanics. This

second-order, two-�eld tensor is generally introduced as a mapping of an incremental line

element dX0 in the material con�guration onto the same line element dx in the current

con�guration

dx(X0, t) = F 0(X0, t)dX0. (2.4)

In the general concept of ALE-kinematics, the deformation gradient

F 0(X0, t) = F (X, t) · R̃(X0, t) (2.5)

is split multiplicatively into a convective material motion R̃ and a motion F relative to the

reference con�guration. In the special case of rolling motions, R̃ has been introduced in

[Nackenhorst, 2000] as a purely rigid body rotation with an angular velocity ω(t) around

a �xed axis. In this thesis, the rotation axis coincides with the third base vector E3 and

therefore, the rotation tensor takes the form

R̃3(ω3(t), t) =

cos (ω3(t)t) − sin (ω3(t)t) 0

sin (ω3(t)t) cos (ω3(t)t) 0

0 0 1

 . (2.6)

The Lagrangian observer, which can be regarded as �xed to the axis of rotation in this

framework, perceives the relative velocity of the ground and the deformation of the refer-

ence con�guration F . Due to the fact that only the relative part describes a deformation

of the material and all quantities are de�ned with respect to the reference con�guration in

the following, the term deformation gradient will from here on refer to the relative part.



2 Continuum thermomechanics 15

The deformation gradient F is calculated as the partial derivative of the relative motion

ϕ with respect to the coordinates of the reference con�guration X as

F =
∂ϕ(X, t)

∂X
=

∂xi
∂Xj

= Gradx. (2.7)

With the de�nition of the material displacement �eld (2.3), the deformation gradient can

also be expressed via

F = Grad(X + u) = 1 +H withH = Gradu, (2.8)

where the tensor H denotes the displacement gradient.

The introduction of a thermally expanded con�guration is realized by a further multi-

plicative decomposition of the deformation gradient

F = F̆M · FΘ =
∂x

∂X̆
· ∂X̆
∂X

, (2.9)

which allows for a distinction of the thermal expansion FΘ and the purely mechanical

deformation FM . A thorough discussion on the advantages and disadvantages of possible

sequences to introduce an intermediate thermal con�guration, namely F = F̆M · FΘ =

FΘ · F̆M , has been published in [Hartmann, 2012]. In the context of ALE-kinematics the

chosen sequence (2.9) appears to be most convenient.

Following [Höfer, 2009], the assumed isotropic thermal expansion is modeled by a scalar

function ϕΘ(Θ). This formulation was presented �rst in [Lu and Pister, 1975], in which

the thermal deformation gradient was de�ned as

FΘ = ϕ
1
3
Θ(Θ)1. (2.10)

The Jacobian determinant J = det(F ) maps an in�nitely small volume element in the

reference con�guration onto the current con�guration

dv = J dV, (2.11)

and can therefore be used as a measure for volume change. The introduction of interme-

diate con�gurations also enables a decomposition of the Jacobian determinant

J0 = J = ϕΘ JM , (2.12)

where the �rst equality results from the assumption of a rigid body motion. In the reference

con�guration the Jacobian determinant can be separated into a thermal part ϕΘ and an

e�ective mechanical part JM .



16 2.1 Kinematics

2.1.4 Strain measures

The objective calculation of stresses in terms of constitutive material models requires frame

invariant strain measures. The deformation gradient (2.7) as a two-�eld tensor is generally

non-symmetric and does not ful�ll this requirement. Therefore, the right Cauchy-Green

tensor is introduced in the rotating reference con�guration as

C = F T · F , with det(C) = J2, (2.13)

which results in a symmetric, objective deformation measure in this con�guration. Fur-

thermore, it contains information about the stretch

λ =
√
e ·C · e, where e =

dX

|dX| (2.14)

is the normalized direction of the material line element dX. For the formulation of frame

invariant constitutive material models, the invariants of the right Cauchy-Green tensor

IC = tr(C) = λ2
1 + λ2

2 + λ2
3 (2.15)

IIC =
1

2

(
tr(C)2 − tr

(
C2
))

= tr(C)−1 det(C) = λ2
1λ

2
2 + λ2

2λ
2
3 + λ2

1λ
2
3 (2.16)

IIIC = det(C) = λ2
1λ

2
2λ

2
3 (2.17)

are of particular importance. Both the tensor notation and the form using principal

stretches λi (square root of the eigenvalues of C) are valid in arbitrary coordinate systems.

In order to enable the application of constitutive material models formulated in the

regime of �nite deformations at isothermal conditions, the purely mechanical deformation

is extracted with respect to the thermally expanded intermediate con�guration. Here, the

e�ective, mechanical right Cauchy-Green tensor takes the form

C̆M = ϕ
− 2

3
Θ C. (2.18)

A further important quantity in material modeling is the Green-Lagrange strain

E =
1

2

(
F T · F − 1

)
=

1

2
(C − 1) =

1

2

(
H +HT +HT ·H

)
, (2.19)

which is de�ned in the rotating reference con�guration as a nonlinear equivalent to the

engineering strain. It follows from (2.9) that the Green-Lagrange strain can be separated

into a thermal EΘ and a mechanical contribution EM , which yields

EΘ =
1

2

(
F T

Θ · FΘ − 1
)

(2.20)

EM =
1

2

(
F T · F − F T

Θ · FΘ

)
. (2.21)

Its connection to the initial con�guration is given by

E = R̃−T ·E0 · R̃−1 = R̃ ·E0 · R̃T, (2.22)

where the second term is valid due to the orthogonality of the rotation tensor RT = R−1.
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2.1.5 Material time derivatives

In isothermal ALE-kinematics, the material time derivative of an arbitrary spatial quantity

f(x, t) = f(ϕ(X, t), t) takes the form

df(x, t)

dt

∣∣∣∣
X0

=
∂f

∂t

∣∣∣∣
X

+
∂f

∂X

∣∣∣∣
t

· dX

dt

∣∣∣∣
X0

=
∂f

∂t

∣∣∣∣
X

+ Gradf ·w (2.23)

Here, the �rst term can be interpreted as the local evolution or relative change of f , and

the second term as its convective transport in the reference con�guration.

In this thesis, this general form of the time derivative is restricted to the case of station-

ary rolling motions, for which a rigid body rotation ω(t) = ω at constant angular velocity

is assumed. Due to this assumption, a material point in the reference con�guration moves

with the guiding velocity

w =
dX

dt

∣∣∣∣
X0

= X × ω = X ·

 0 −ω3 0

ω3 0 0

0 0 0

 , (2.24)

see [Nackenhorst, 2000] for further details. Note that the local evolution or relative change

of the quantity f vanishes for any process

lim
t→∞

∂f

∂t

∣∣∣∣
X

!
= 0 (2.25)

when approaching the stationary state.

The application of (2.23) on the spatial displacement yields the velocity �eld

v(x, t) =
du0(x, t)

dt

∣∣∣∣
X0

=
∂ϕ

∂t

∣∣∣∣
X

+ Gradϕ ·w = v̂ + c, (2.26)

in which a relative v̂ and a convective velocity c can be distinguished. For stationary

motions, the relative velocity v̂ vanishes according to (2.25). This e�ect can also be

observed in experiments in which tires seem to have a constant shape whilst rolling on the

test drum. Following this assumption, the material time derivative (2.23) of the velocity

�eld v(x, t) de�nes the acceleration �eld of a body in stationary rolling motion via

a(x, t) =
dv(x, t)

dt

∣∣∣∣
X0

= Grad (Gradϕ ·w) ·w, (2.27)

see [Nackenhorst, 2000] for details.

The introduced thermally expanded con�guration allows for the direct application of

standard material models, which are formulated in the isothermal regime. The e�ective
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mechanical motion F̆M observed in this con�guration is the same as for isothermal pro-

cesses. For this purpose, the material time derivative (2.23) needs to be separated into its

thermal and its mechanical contributions, which results in

dg(x, t)

dt

∣∣∣∣
X0

=
∂g

∂t

∣∣∣∣
X̆

+
∂g

∂X̆
· dX̆

dt

∣∣∣∣∣
X0

=
∂g

∂t

∣∣∣∣
X̆

+
∂g

∂X̆
·
(
FΘ ·w +

∂ϕΘ

∂Θ
·
(
∂Θ

∂t

∣∣∣∣
X

+ GradΘ ·w
))

(2.28)

with
dX̆

dt

∣∣∣∣∣
X0

=
dϕΘ(X,Θ)

dt

∣∣∣∣
X0

=
∂ϕΘ

∂X
· dX

dt

∣∣∣∣
X0

+
∂ϕΘ

∂Θ
· dΘ

dt

∣∣∣∣
X0

(2.29)

for an arbitrary spatial quantity g(x, t) = g
(
ϕM

(
X̆, t

)
, t
)
. Here, (2.29) follows from the

assumption of isotropic thermal expansion. The contributions can be understood as the

pure convective speed in the expanded con�guration FΘ · w and the expansion velocity
∂ϕΘ

∂Θ
Θ̇. The two di�erent contributions are not distinguished in the material time derivative

(2.23) with respect to the rotating reference con�guration. For stationary motions, the

relative changes ∂g
∂t

∣∣
X̆
and ∂Θ

∂t

∣∣
X
vanish according to (2.25).

2.1.6 Deformation rates

The description of the evolution of deformation processes, which is related to mechanical

power, can be realized by introducing rates of strain tensors. In this thesis, the required

quantities to formulate balance equations in the rotating reference con�guration are the ref-

erential velocity gradient L describing the rate of change of the deformation gradient, and

the rate of Green-Lagrange strain Ė. Here, the referential velocity gradient in stationary

rolling motion is de�ned as

L =
∂v

∂X
= Gradv = Ḟ + F ·Ω (2.30)

in which Ω = ˙̃R · R̃T is a skew symmetric tensor containing the angular velocity, see

[Nackenhorst, 2000]. The rate of Green-Lagrange strain with respect to the stationary

rotating reference con�guration is introduced by

Ė =
1

2

(
Ḟ T · F + F T · Ḟ + F T · F ·Ω−Ω · F T · F

)
=

1

2

(
Ċ +C ·Ω−Ω ·C

)
. (2.31)

Analogous to the strain measures, the referential velocity gradient can also be decom-

posed into a mechanical part L̆M = L · L̆Θ
−1 and a thermal part

L̆Θ = ḞΘ · F−1
Θ =

ϕ′Θ
3ϕΘ

Θ̇1 with ϕ′Θ =
dϕΘ

dΘ
. (2.32)
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This formulation of the thermal velocity gradient is based on the assumption of isotropic

thermal expansion, see [Höfer, 2009]. By means of this de�nition, the rate of the mechan-

ical part of the right Cauchy-Green tensor can be calculated via

˙̆CM = −2ϕ′Θ
3ϕΘ

C̆M + ϕ
− 2

3
Θ Ċ. (2.33)

By using (2.18), the rate of the Green-Lagrange strain Ė can then be separated into its

mechanical and thermal contributions

Ė =
1

2
Ċ =

1

2

(
Ḟ T

Θ · C̆M · FΘ + F T
Θ · C̆M · ḞΘ + F T

Θ · ˙̆CM · FΘ

)
=

1

2
F T

Θ ·
(
L̆T

Θ · C̆M + C̆M · L̆Θ + ˙̆CM

)
· FΘ. (2.34)

2.2 Stress definitions

The traction vector t is de�ned as incremental force df per incremental area da in the

current con�guration and is related to the Cauchy stress tensor σ by the Cauchy theorem

t =
df
da

= σ · n. (2.35)

Using Nanson's formula JF−T ·N dA = nda the nominal traction vector T can be de�ned

as the incremental force df per incremental area dA in the reference con�guration, which

is related to the �rst Piola-Kirchho� stress tensor P via

T =
df
dA

= P ·N . (2.36)

In order to obtain a symmetric representation, the second Piola-Kirchho� stress tensor is

introduced as

S = F−1 · P , (2.37)

which is entirely de�ned in the reference con�guration, but has no direct physical meaning.

2.3 Balance principles

In continuum mechanics, balance principles ensure physical consistency and therefore must

be ful�lled at all times. In this section, a short overview of related balance principles is

given, with special emphasis on thermomechanical problems. For a more detailed discus-

sion the reader is referred to [Holzapfel, 2000; Willner, 2003].



20 2.3 Balance principles

2.3.1 Balance of mass

The balance of mass describes the change of mass in a body. As no wear or other abrasive

e�ects are taken into account in this work, the mass m is assumed to be constant over

time, which results in

m =

∫
B0

%0 dV =

∫
B

% dV =

∫
B̆

%̆ dV̆ =

∫
Bt

%t dv
!

= const., (2.38)

where %0, %, %̆ and %t are the mass densities within the di�erent con�gurations. Due to

the assumptions on stationary rolling motions introduced in subsection 2.1.1, the mass

densities are related via

%0(X0) = %(X, t) = ϕΘ(Θ)%̆
(
X̆, t

)
= ϕΘ(Θ)JM(x, t)%t(x, t), (2.39)

where the initial density %0 is only a�ected by thermal expansion and volume changes

resulting from mechanical deformations.

2.3.2 Balance of linear and angular momentum

The balance of linear and angular momentum relates the changes of momentum of a system

to the acting forces and torques. In the stationary rotating reference con�guration the

local form of the balance of linear momentum is de�ned as

%v̇ = DivP + %b. (2.40)

As shown e.g. in [Holzapfel, 2000], the balance of angular momentum implies the sym-

metry of the Cauchy stress tensor as well as for the second Piola-Kirchho� stress tensor

σ = σT and S = ST. (2.41)

2.3.3 Balance of energy

For the description of thermomechanical systems, the balance of energy, also known as the

�rst law of thermodynamics, relates the change of internal energy ė to the sum of acting

mechanical and thermal power. Its local form in the rotating reference con�guration reads

%ė = S : Ė −DivQ+ %r, (2.42)

where S : Ė is the mechanical stress power, Q denotes the heat �ux, and r symbolizes

internal heat sources. This equality needs to be ful�lled in all con�gurations and can be

transferred by making use of the work conjugated pairs

S : Ė = P : Ḟ = Jσ : d. (2.43)
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The general validity of these transformations is proven in [Holzapfel, 2000]. In this state-

ment d = 1
2

(
gradv + gradTv

)
is called the symmetric rate of deformation tensor.

With (2.34), the stress power P = S : Ė in the reference con�guration is separated into

a purely mechanical part PM and a thermal contribution PΘ that stems from the isotropic

thermal expansion, which yields

P = S̆M : ˙̆EM + S̆M : C̆M · L̆Θ = S̆M : ˙̆EM +
ϕ′Θ
3ϕΘ

Θ̇S̆M : C̆M = PM + PΘ, (2.44)

where the transformations S̆M = ϕ
2
3
ΘS and (2.18) were applied. By means of this equiva-

lence, the local form of balance of energy (2.42) can be reformulated as

%ė = S̆M : ˙̆EM +
ϕ′Θ
3ϕΘ

Θ̇S̆M : C̆M −DivQ+ %r. (2.45)

Note that the thermal stress power is zero in case of unrestricted thermal expansion.

2.3.4 Entropy inequality

The entropy inequality ensures that the solution of the balance of energy is physically

consistent and results in a maximum of entropy s in the system. The local form of the

entropy inequality with respect to the rotating reference con�guration takes the form

%Θṡ+ DivQ− 1

Θ
Q ·GradΘ− %r ≥ 0. (2.46)

This inequality can be related to the balance of energy (2.42) by using the mass-speci�c

Helmholtz free energy

ψ = e−Θs, where ψ̇ = ė− Θ̇s−Θṡ (2.47)

is the time derivative, which is obtained by Legendre transformation. With this de�nition,

the entropy inequality in the reference con�guration reads

S : Ė − %
(
ψ̇ + Θ̇s

)
− 1

Θ
Q ·GradΘ ≥ 0. (2.48)

With the separation of the stress power (2.44) into a mechanical and a thermal contribution,

the balance of energy (2.48) can be reformulated into a heat conduction equation

%Θṡ = Dint −DivQ+ %r,

with Dint = S̆M : ˙̆EM +
ϕ′Θ
3ϕΘ

Θ̇S̆M : C̆M − %
(
ψ̇ + Θ̇s

)
− 1

Θ
Q ·GradΘ ≥ 0.(2.49)

This inequality needs to be ful�lled by any objective constitutive material model. Its

ful�llment for the material model used in this thesis is shown in the next chapter.
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3 Constitutive modeling of rubber materials

The precise calculation of rolling resistance requires a suitable material model that depicts

the dominant nonlinear characteristics of tire rubber at steady state conditions. The

continuum modeling of these phenomena is a wide and highly active �eld of research due to

the economical importance of rubber materials. A broad overview on modeling approaches

is given in the literature reviews by [Mackerle, 1998, 2004; Puglisi and Saccomandi, 2016].

In this thesis, the behavior of tire rubber compounds is described by an extension of the

thermo-viscoelastic material model presented in [Suwannachit, 2013] (see chapter 6) and

[Suwannachit and Nackenhorst, 2013], which is mainly based on the work of [Holzapfel

and Simo, 1996a]. That model has been an extended by a strict separation of mechanical

and thermal deformation presented in [Lu and Pister, 1975], which was applied in [Heimes,

2005; Höfer, 2009]. The present material model accounts for the characteristic nonlinear

stress-strain relation, hyper-elasticity at large deformations, quasi incompressibility and

viscous dissipation under cyclic loading. Furthermore, the temperature dependence of

the elastic and the viscoelastic material properties are depicted, as well as the so-called

Gough-Joule e�ect. All these phenomena occur at typical tire service temperatures Θ ∈
[−30, 60]°C, whilst local temperatures may reach up to 120°C in hot spots inside the tire.

Below the minimum service temperature, the material sti�ness increases, whereas the

elasticity decreases. Finally, at the so-called glass transition temperature the material

changes from its rubbery to a glassy state and becomes brittle. Above the maximum

service temperature aging mechanisms are accelerated, which soften the rubber irreversibly.

Phenomena outside the service temperature regime are not in the scope of this work.

Damage mechanisms like strain induced softening (Mullins e�ect) as well as wear and

residual stretches (viscoplasticity) are also neglected due to the following assumptions.

Damage e�ects occur within the �rst few revolutions of a virgin tire and do not to advance

signi�cantly thereafter. Wear e�ects evolve on larger time scales and are therefore of minor

in�uence for the current steady state material behavior.

After some general remarks on constitutive material modeling and objectivity of material

models, the model for the thermoelastic material behavior is introduced. Then, the applied

concept for linear thermo-viscoelasticity at �nite strains is summarized, followed by the

algorithmic treatment of the coupled thermomechanical problem. The chapter ends with a

numerical study illustrating the most important e�ects of the modeled thermo-viscoelastic

material behavior.
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3.1 General aspects of constitutive material modeling

Following [Holzapfel, 2000], the Helmholtz free energy for thermo-viscoelastic rubber ma-

terials is introduced as

ψ = ψ
{
E,Θ,α(i)

v

}
. (3.1)

In this thermoelastic expansion of the generalized Maxwell model the stored energy non-

linearly depends on the following state variables: the Green-Lagrange strain E, the tem-

perature Θ, and a set of strain-valued internal variables α(i)
v , which depict the elastic

deformation of each Maxwell-element. Inserting the total time derivative of (3.1)

ψ̇ =
∂ψ

∂E
: Ė +

∂ψ

∂Θ
Θ̇ +

∑
i

∂ψ

∂α
(i)
v

: α̇(i)
v , (3.2)

into the Clausius-Duhem inequaltiy (2.48) and reorganizing the terms yields(
S − % ∂ψ

∂E

)
: Ė +

(
∂ψ

∂Θ
− s
)
%Θ̇− %

∑
i

∂ψ

∂α
(i)
v

: α̇(i)
v −

1

Θ
Q ·GradΘ ≥ 0. (3.3)

In order to ensure the ful�llment of this relation for arbitrary values of Ḟ and Θ̇, each

term in brackets needs to be set to zero separately. Thus, the second Piola-Kirchho� stress

tensor is calculated by

S = %
∂ψ

∂E
=
∂Ψ

∂E
= 2

∂Ψ

∂C
, (3.4)

where Ψ = %ψ is the strain energy function describing the stored energy per unit mass

element. In conjuction with the separation of thermal and mechanical stress power (2.44),

the entropy is computed from

%s =
ϕ′Θ
3ϕΘ

S̆M : C̆M −
∂Ψ

∂Θ
. (3.5)

The viscoelastic material response is represented by a conjugate thermodynamic stress

tensor

A(i)
v = −% ∂ψ

∂α
(i)
v

. (3.6)

The ful�llment of the remainder requires a consistent material model describing the heat

�ux. This is achieved by applying the Fourier heat conduction law

Q = −kΘ(Θ)C−1 ·GradΘ, (3.7)

for heat conduction coe�cients κΘ(Θ) ≥ 0. In the present study, the heat conduction

coe�cient is modeled temperature dependent with the softening parameter ωk via

kΘ(Θ) = kΘ0(1− ωk(Θ−Θ0)). (3.8)
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The remainder results in the de�nition of internal dissipation

Dint =
∑
i

A(i)
v : α̇(i)

v ≥ 0. (3.9)

Inserting the above �ndings into the heat conduction equation (2.49) and recalling the

separation of stress power (2.44) results in the �nal form of the heat conduction equation

%Θṡ = −1

3

ϕ′Θ
ϕΘ

S̆M : C̆M +Dint −
1

Θ
Q ·GradΘ−DivQ+ %r. (3.10)

Note that the �rst term vanishes if the stress power is not separated into its mechanical

and thermal parts by (2.44).

In addition to the general statements above, it is useful to introduce some speci�c

preliminaries in the context of rubber modeling: The shear sti�ness of rubber materials in

general is much smaller than their volumetric sti�ness, which is often described as quasi-

incompressible material behavior. In order to depict this material behavior, a volumetric-

isochoric split of kinematic quantities

F = J
1
3 F̄ and C = J

2
3 C̄, with J = detF (3.11)

is de�ned, which allows for a separated treatment of the volumetric response and the

much softer isochoric parts. The thermal expansion of the material is depicted by the

exponential scalar function suggested in [Lu and Pister, 1975]

ϕΘ(Θ) = exp

(∫ Θ

Θ0

3αΘ(Θ) dΘ

)
= exp (3αΘ0(Θ−Θ0)) . (3.12)

Following [Heimes, 2005; Höfer, 2009], this function is used to compute the thermal defor-

mation gradient F (Θ) (2.10) and de�nes the thermomechanical separation of the deforma-

tion gradient (2.9). With these de�nitions, standard material models formulated in the

isothermal regime can be evaluated in terms of the e�ective mechanical quantities

JM =
J(F ,Θ)

ϕΘ(Θ)
, C̆M = ϕΘ(Θ)−

2
3C and S̆M = ϕ

2
3
ΘS. (3.13)

Note that the application of (3.11) yields ˘̄CM = J
− 2

3
M C̆M = C̄. Consequently, the invari-

ants of the isochoric response are equal in both con�gurations and can be calculated with

de�nition (2.17), where IIIC̄M = IIIC̄ = 1.

Finally, the general additive structure of the strain energy function for the thermo-

viscoelastic constitutive material model is stated as

Ψ
(
C̆M ,Θ,α

(i)
v

)
= Ψ∞

(
C̆M ,Θ

)
+

N∑
i=1

Υi

(
C̄,Θ, ᾱ(i)

v

)
. (3.14)

The �rst term Ψ∞ describes the time-invariant, thermoelastic equilibrium response of the

material for t → ∞. Each summand of the second term represents an isochoric, thermo-

viscoelastic Maxwell-element with an additional strain-valued internal variable ᾱ(i)
v .
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3.2 Thermoelastic constitutive material model for tire rubber

3.2.1 Strain energy function

This section describes the thermoelastic material model that represents the equilibrium

stress response of tire rubber assuming entropy-elasticity. This model accounts for hyper-

elastic material behavior, thermal sti�ening, and the Gough Joule e�ect. The strain energy

function for this thermoelastic constitutive material model

Ψ∞
(
C̆M ,Θ

)
= U∞ (JM ,Θ) +W∞ (C̄,Θ)+ T∞(Θ), (3.15)

consists of a volumetric penalty function enforcing incompressibility U∞, the isochoric

material response W∞ and the stored thermal energy T∞.

The volumetric penalty function enforcing incompressibility presented in [Hartmann

and Ne�, 2003] is applied in order to restrict the e�ective volumetric deformation

U∞ (JM) =
κ0

50

(
J5
M + J−5

M − 2
)
, (3.16)

where κ0 is the compression modulus at reference temperature. This penalty function

ful�lls the physical plausibility conditions

U∞(1) = 0, U∞ ′ (1) = 0, U∞ ′′ (J) ≥ 0, lim
J→0

U∞(J) =∞, lim
J→∞

U∞(J) =∞

and is convex in J. In this contribution, a superior behavior of this model compared to e.g.

widely used models such as U(J) = κ
1

(J1 − 1) was discussed.

Alternatively, the material model can be formulated in the reference con�guration, as

presented in [Suwannachit, 2013]. Here, the volumetric penalty function

U(J,Θ) =
κ0Θ

50Θ0

(
J5 + J−5 − 2

)
− %e0

Θ0

(Θ−Θ0), with ,
%e0

Θ0

= 3αΘ0κ0γ
−1
Θ (JγΘ − 1) (3.17)

is enhanced by a second term that represents the thermal expansion by a reduction of the

volumetric stress response at elevated temperatures. Here, αΘ0 is the thermal expansion

coe�cient and γΘ is a thermomechanical coupling parameter. This phenomenological

term was �rst introduced in [Chadwick, 1974], and has also been applied in the works

of [Holzapfel and Simo, 1996a,b]. Its formulation is based on the idea of an additional

potential to cope with the change of entropy induced by thermal expansion. However, this

formulation does not ensure a stress-free thermal expansion.

The isochoric thermoelastic material responseW∞ (C̄,Θ) = Θ
Θ0
W∞ (C̄,Θ0

)
is modeled

in terms of well established isothermal formulations. In order to account for the temper-

ature dependence of the elastic properties, their material parameters are linearly scaled
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by the temperature. By means of this, the thermomechanical Neo-Hooke model takes the

form

W∞ (C̄,Θ) =
Θ

Θ0

µ0

2
(IC̄ − 3), (3.18)

where µ0 is the shear modulus at reference temperature. The thermomechanical Mooney-

Rivlin model reads

W∞(C̄,Θ) =
Θ

Θ0

[c10(IC̄ − 3) + c01(IIC̄ − 3)] , (3.19)

with its material constants c10 and c01 at reference temperature.

Analogously, a linear temperature dependence for more sophisticated material models

can be introduced, such as the extended tube model presented in [Kaliske and Heinrich,

1999]

W∞ (C̄,Θ) =
Θ

Θ0

(
W topo

(
C̄,Θ0

)
+W chem

(
C̄,Θ0

))
. (3.20)

This model consists of a topological W topo and a chemical part W chem, which are de�ned

as

W topo
(
C̄,Θ0

)
=

2Ge

β2

3∑
i=1

(
λ̄−βi − 1

)
(3.21)

W chem
(
C̄,Θ0

)
=

Gc

2

{
(1− δ2)(IC̄ − 3)

1− δ2(IC̄ − 3)
+ log

[
1− δ2(IC̄ − 3)

]}
. (3.22)

Here, the shear moduli Gc and Ge result from chemical bonds and topological restraints by

�nite chain length of rubber molecules. The parameter δ accounts for the restricted stretch

of the polymer network chains, and tunes the upturn behavior of the elastic response that

occurs when then chains are fully stretched. The �tting parameter β ∈ [0, 1] depends on

the network structure and is ≈ 1 for well-connected, long polymer chains, see [Kaliske

and Heinrich, 1999] for details. Following [Zie�e, 2007], its value is assumed to be 1

in the course of this thesis. The e�ect of this term above the maximum stretch can be

characterized as a penalty function, which has a severe impact on the volumetric expansion

being restricted in the same way. The interaction of both terms is observed in section 3.5.

The formulation of the thermal potential presented by [Heimes, 2005] was designed

inversely, assuming a linear temperature dependence of the isobaric heat capacity

cp = cp0 (1− kcpΘ0) (Θ−Θ0) = − 1

%0

∂2T

∂Θ∂Θ
. (3.23)

The integration of this relation results in the thermal part of the potential

T∞(Θ) = %0cp0

[
(1− kcpΘ0)(Θ−Θ0 −Θ log

(
Θ

Θ0

)
− 1

2
kcp(Θ−Θ0)2

]
. (3.24)

[Höfer, 2009] presented an experimental validation of this potential function.
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3.2.2 Calculation of Stress

The general form of the calculation of the second Piola Kirchho� stress tensor for isotropic

materials, formulated in terms of invariants, is given in [Holzapfel, 2000] p. 216

S = 2
∂Ψ(C)

∂C
= 2

[(
∂Ψ

∂I
+ I

∂Ψ

∂II

)
I − ∂Ψ

∂II
C + III

∂Ψ

∂III
C−1

]
, (3.25)

where I is the second order unit tensor. Due to the additive de�nition of the strain energy

density (3.15), the stress response can be calculated component-wise by

S = 2
∂Ψ
(
C̆M ,Θ, αi

)
∂C

= 2
∂U∞(JM ,Θ)

∂C
+ 2

∂W∞ (C̄,Θ)
∂C

. (3.26)

Using the chain rule, the volumetric contribution of (3.16) yields

∂U∞(JM)

∂C
=
κ0

20

(
J5
M − J−5

M

)
C−1. (3.27)

Note that the implementation of this model only requires an exchange of the total volu-

metric deformation J by the e�ective mechanical measure JM . If the model presented in

[Suwannachit, 2013] (3.17) is applied, the volumetric response yields

∂U∞(J,Θ)

∂C
=

(
κ0Θ

20Θ0

(
J5 − J−5

)
− 3αΘ0κ0J

γΘ(Θ−Θ0)

)
C−1. (3.28)

The isochoric part of the second Piola-Kirchho� stress tensor in case of the Neo-Hooke

model (3.18) is calculated by

∂W∞(C̄,Θ)

∂C
=

Θ

Θ0

µ

2
J−

2
3

(
I − 1

3
ICC

−1

)
, (3.29)

and the stress response of the Mooney-Rivlin model (3.19) is computed via

∂W∞(C̄,Θ)

∂C
=

Θ

Θ0

J−
2
3

(
(c10 + c01IC)I − c01C̄ −

(
c10

3
IC +

2c01

3
IIC

)
C−1

)
. (3.30)

Finally, the derivation of the extended tube model (3.20) yields

∂W∞ (C̄,Θ)
∂C

= GcJ
− 2

3

(
1− δ2

(1− δ2 (IC̄ − 3))2 −
δ2

1− δ2 (IC̄ − 3)

)(
I − 1

3
ICC

−1

)
+ Ge

3∑
i=1

(
J

λ2
i

(
1

3

(
λ−1

1 + λ−1
2 + λ−1

3

)
− λ−1

i

))
EC̄
i ⊗EC̄

i . (3.31)

Here, EC̄
i denotes the eigenvectors of C̄ and the assumption β = 1 has already been

inserted in order to shorten the notation. See Appendix A for further details on these

derivations.
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3.2.3 Calculation of entropy

Following [Höfer, 2009], the calculation of entropy (3.5) is performed by

%0s =
3αΘ0κ0

10
(J5
M − J−5

M )− ∂U∞(J,Θ)

∂Θ
− ∂W∞ (C̄,Θ)

∂Θ
− ∂T∞(Θ)

∂Θ
, (3.32)

where the �rst term represents the mechanical energy stored in the thermal expansion
ϕ′

Θ

3ϕΘ
S̆M : C̆M . The derivative of the volumetric penalty function in terms of purely me-

chanical deformation (3.16) with respect to temperature yields ∂U∞(JM )
∂Θ

= 0. For the

unseparated formulation (3.17), the �rst term vanishes due to ϕΘ = 0, and the derivative

with respect to temperature yields

∂U∞(J,Θ)

∂Θ
=

κ0

50Θ0

(
J5 + J−5 − 2

)
− 3αΘ0κ0γ

−1

Θ0

(Jγ − 1) . (3.33)

Due to the linear scaling with temperature, the derivative of the deviatoric part simply is
∂W∞(C̄,Θ)

∂Θ
= 1

Θ0
W∞ (C̄,Θ0

)
. And �nally, the derivative of thermal potential with respect

to temperature yields

∂T∞(Θ)

Θ
= %0cp0

[
(1− kcpΘ0)

(
− log

(
Θ

Θ0

))
− kcp (Θ−Θ0)

]
. (3.34)

3.3 Linear thermo-viscoelasticity at finite strains

Following [Suwannachit, 2013], the time-dependent thermo-viscoelastic material response

is modeled by a generalized Maxwell-model in the regime of �nite deformations. For a

generalized overview, we assume a multiplicative split of the initial deformation gradient

(2.4)

F 0 = F̄ · F ref, (3.35)

into a relative isochoric motion F̄ that describes the deformation of the Maxwell-elements

and an arbitrary dilational reference motion F ref. For each Maxwell-element, an interme-

diate con�guration is introduced by multiplicative separation of the isochoric deformation

gradient

F̄ = F̄
(i)
el · F̄

(i)
v (3.36)

into an elastic F̄
(i)
el and a viscoelastic part F̄

(i)
v . This separation yields an additive decom-

position of deviatoric Green-Lagrange strain and its rate

Ē =
1

2

((
F̄

(i)
v

)
T · F̄ (i)

v − 1
)

+
1

2

(
F̄ T · F̄ −

(
F̄

(i)
v

)
T · F̄ (i)

v

)
= ᾱ(i)

v + H̄
(i)
el (3.37)

˙̄E = ˙̄α
(i)
v + ˙̄H

(i)

el , (3.38)



30 3.3 Linear thermo-viscoelasticity at finite strains

where ᾱ(i)
v is an internal variable and H̄

(i)
el is an elastic algorithmic strain variable, see

[Suwannachit, 2013]. With these kinematic de�nitions, the energy stored in the spring

element of the i-th Maxwell-element is modeled by

Υ(i)
(
C̄,Θ, ᾱ(i)

v

)
= µ(i)

v (Θ)
(
Ē − ᾱ(i)

v

)
:
(
Ē − ᾱ(i)

v

)
, (3.39)

where µ(i)
v (Θ) is the temperature dependent shear modulus. With this potential, the

thermodynamic stress conjugate to the internal variable (3.6) yields

−
∂Υ(i)

(
C̄,Θ, ᾱ

(i)
v

)
∂ᾱ

(i)
v

= Ā
(i)
v = η(i)

v (Θ) ˙̄α
(i)
v . (3.40)

Following [Johlitz et al., 2010], the shear modulus and the viscosity η(i)
v (Θ) at the current

temperature are calculated by

µ
(i)
v (Θ) = aTv (Θ)µ

(i)
v (Θ0) and η(i)

v (Θ) = aTv (Θ)η
(i)
v (Θ0),

with aTv (Θ) = exp
[
ξ

(i)
v

(
1− Θ

Θ0

)]
, (3.41)

where ξ(i)
v is a relaxation parameter, which causes a decrease of dissipation at elevated

temperatures for ξ(i)
v > 0 assuming less friction loss by the relative motion of polymer

chains. Due the same scaling of both material parameters, the relaxation time

τ (i)
v =

η
(i)
v (Θ0)

2µ
(i)
v (Θ0)

(3.42)

is temperature invariant.

In order to evaluate the stress response of the Maxwell-element, the internal variable

ᾱ
(i)
v that describes the relaxation needs to be calculated. In analogy to the equilibrium of

the stress within the spring and the dashpot in the uniaxial case it can be postulated that

Ā
(i)
v = η(i)

v (Θ) ˙̄α
(i)
v = 2µ(i)

v (Θ)(Ē − ᾱ(i)
v ) = 2µ(i)

v (Θ)H̄
(i)
el , (3.43)

which can be used to formulate an evolution equation

˙̄α
(i)
v =

1

τ
(i)
v

H̄
(i)
el =

1

τ
(i)
v

(Ē − ᾱ(i)
v ). (3.44)

Due to the temperature invariance of the relaxation time, this evolution equation can be

solved analytically by convolution

H̄
(i)
el (t) =

∫ t

t0

exp

(
−t− s
τ

(i)
v

)
˙̄E(s)ds assuming H̄

(i)
el (0) = 0, (3.45)
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which signi�cantly reduces the computational e�ort. This integral can be transferred into

an update formula

H̄
(i)
el (tn+1) = exp

(
−∆t

τ
(i)
v

)
H̄

(i)
el (tn) + exp

(
− ∆t

2τ (i)

)
∆Ē, (3.46)

in time-discrete solution schemes with a time step size ∆t.

Finally, the deviatoric overstress response of the rate dependent Maxwell-elements in

terms of the second Piola-Kirchho� stress tensor yields

S̄
(i)
v (tn+1) =

∂Υ
(
C̄,Θ, ᾱ

(i)
v

)
∂C

= 2µ(i)
v (Θ)J−

2
3 DEVH̄

(i)
el (tn+1) = J−

2
3 DEVĀ

(i)
v (tn+1),

(3.47)

and the dissipation in each element is calculated by

D(i)
int(tn+1) = 2µ(i)

v (Θ)H̄
(i)
el (tn+1) : ˙̄α

(i)
v (tn+1) =

1

η
(i)
v (Θ)

Ā
(i)
v (tn+1) : Ā

(i)
v (tn+1). (3.48)

The thermal derivative of (3.39) results in the entropy in each Maxwell-element

%0s
(i)
v (tn+1) = −

∂Υ(i)
(
C̄,Θ, ᾱ

(i)
v

)
∂Θ

=
ξ

(i)
v

Θ0

µ(i)
v (Θ)H̄

(i)
el (tn+1) : H̄

(i)
el (tn+1), (3.49)

which adds to the entropy of the thermoelastic model (3.32).

3.4 Algorithmic treatment of the coupled thermomechanical
problem

The calculation of the thermo-viscoelastic response of tire rubber compounds by means

of �nite element methods requires the solution of both the balance of linear momentum

(2.40) and the heat conduction equation (balance of energy) (3.10), which results in a

coupled thermomechanical problem. The weak forms of the mathematical problem are

stated as follows:

Gu(u, δu) =

∫
B

(−%v̇ · δu+ S : δE + %b · δu) dV +

∫
∂tB

T · δu dA, (3.50)

GΘ(Θ, δΘ) =

∫
B

δΘ (%0ṡΘ−Dint − %r) + GradδΘ ·Q dV +

∫
∂qB

QNδΘ dA. (3.51)

The sought solution Gu(u, δu) = GΘ(Θ, δΘ)
!

= 0 ful�lls

u(X, t) = ū(X, t) ∀X ∈ ∂uB ∧ P (X, t) ·N (X) = T (X, t) ∀X ∈ ∂tB (3.52)

Θ(X, t) = Θ̄(X, t) ∀X ∈ ∂ΘB ∧ Q(X, t) ·N (X) = QN(X, t) ∀X ∈ ∂qB, (3.53)
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where ū, Θ̄ are the Dirichlet boundary conditions and T , QN are the von Neumann bound-

ary conditions. These are applied along the mechanical ∂B = ∂uB ∪ ∂tB ∧ ∂uB ∩ ∂tB = ∅
and the thermal ∂B = ∂ΘB∪∂qB∧∂ΘB∩∂qB = ∅ boundary separation. In this statement,

the following relations have been applied: P (X, t) = F (X, t)·S(X, t) andN (X) = const.

in the reference con�guration. Furthermore, the solution requires the speci�cation of an

initial temperature �eld, which is assumed to be homogeneous in this thesis Θ(X, t0) = Θ0.

The test functions δu and δΘ are arbitrary, but need to ful�ll

δu(X) = 0 ∀X ∈ ∂uB and δΘ(X) = 0 ∀X ∈ ∂ΘB. (3.54)

For the time-discrete solution of this coupled initial boundary value problem the isen-

tropic operator spit scheme by [Armero and Simo, 1992] has been applied in [Suwannachit

and Nackenhorst, 2013]. With this staggered strategy, the problem is solved for each time

slab in two subsequent solution phases:

1. Mechanical phase: solve (3.50), for ∆s
!

= 0 to obtain un+1

2. Thermal phase: solve (3.51), for ∆u
!

= 0 to obtain Θn+1 and sn+1.

This results in an unconditionally stable time-integration algorithm, rather than using

the isothermal operator split by [Argyris et al., 1981]. However, this advantage inherits

the necessity to calculate an intermediate isentropic temperature Θ̃n+1 at each integration

point. This can be realized in a local iteration scheme, solving

Θ̃k+1
n+1 = Θ̃k

n+1 + ∆Θ̃ with ∆Θ̃ = −
s
(
un+1, Θ̃

k
n+1

)
− sn

∂
∂Θ

[
s
(
un+1, Θ̃k

n+1

)] and Θ̃0
n+1 = Θn, (3.55)

until the convergence criterion ∆Θ̃ < tol is ful�lled. This iteration converges after only

a few steps, but still increases numerical costs. Both staggered approaches yield smaller

equation systems than monolithic schemes, which are symmetric in case of conservative

problems. Monolithic schemes a priori require the solution of large and non-symmetric

equation systems. Nonetheless, monolithic systems can be more e�cient in case of strong

thermomechanical coupling and large time steps, see [Zinatbakhsh et al., 2010].

Following Suwannachit [2013], the material time derivative of the internal entropy in

(3.51) is rede�ned per unit volume and calculated by introducing an Euler backward time

stepping scheme

%0ṡ = %0
s (un+1,Θn+1)− sn

∆t
, (3.56)

where sn is known from the previous step.
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Both the mechanical and the thermal phase require the solution of a nonlinear problem

in each time step, which is realized with the Newton-Raphson method, see e.g. [Wriggers,

2008]. Here, the basic idea is to represent the solution of a functional F(s) at the state

sn+1 by a Taylor series expansion

F(sn+1) =
dF
ds

∣∣∣∣
s=sn

∆s+ F(sn), (3.57)

where the gradient matrix dF
ds

is often referred to as sti�ness matrix in the context of

engineering �nite element methods. This problem can then be solved iteratively, starting

at s0
n+1 = s0

n

dF
ds

∣∣∣∣
s=skn

∆s = F
(
skn+1

)
−F(sn) (3.58)

and sk+1
n+1 = skn+1 + ∆s, (3.59)

until a desired convergence criterion is reached, such as for the norm of the incremental

state change ‖∆s‖ ≤ tol or the residual norm
∥∥F (skn+1

)
−F (sn)

∥∥ ≤ tol.

In order to solve the continuos problem for arbitrarily shaped bodies, an iso-parametric

�nite element discretization is applied, which represents both spatial points of the body as

well as the solution �elds by a �nite number of so-called nodes. In between these points,

the geometry and the solution are interpolated with nodal shape functions. Each of these

shape functions is de�ned only on its nodal support. Here, the most common technique

is to formulate these shape functions as Lagrangian polynomials in discrete simple-shaped

integration domains (�nite elements), such as triangles, quadriliterals, tetrahedrons, and

hexahedrons. As a consequence of this formulation, shape functions are C0-continuous

across the boundaries of these elements.

Note that the total di�erential of the second Piola-Kirchho� stress tensor takes the form

dS = 2
∂S

∂C
:

1

2
dC +

∂S

∂Θ
: dΘ, (3.60)

due to temperature dependence of the material, which can be reformulated as

dS = 2
∂S

∂C
:

1

2
dC +

∂S

∂Θ
:

(
−2

∂s

∂C
:

1

2
dC

)(
∂s

∂Θ

)−1

, (3.61)

assuming constant entropy ds = 0. This de�nition results in a consistent isentropic tangent

operator Ku

(
u, Θ̃k+1

n+1

)
, see [Suwannachit, 2013].
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3.5 Numerical study of the material behavior

In this section, a short overview of the thermo-viscoelastic material behavior is given by nu-

merical experiments con�rming its capability to represent the desired material phenomena.

For further details on the implementation of this constitutive material model and on the

modeling of rubber materials in continuum thermomechanics, the reader is referred to the

theses of [Heimes, 2005; Höfer, 2009; Suwannachit, 2013] and the textbook by [Holzapfel,

2000].

3.5.1 Thermoelastic response and Gough-Joule effect
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Figure 3.1: Temperature evolution of a thermoelastic rubber strip in a tension test at

adiabatic conditions, representing the Gough-Joule e�ect.

In this study, the thermoelastic response of a rubber strip in a quasi-static, uniaxial

tensile test at adiabatic conditions is calculated by using the presented �nite element

framework, in which the material behavior is depicted with the extended tube model (3.20).

Note that an equivalent shear modulus can be calculated via µ = Ge + Gc in order

to compare the material behavior with the Neo-Hooke model. The material parameters

(see Table 3.1) used in this study are taken from [Suwannachit, 2013] and [Höfer, 2009].

The calculated system as well as the resulting temperature over stretch are illustrated in

Figure 3.1.

The temperature evolution reveals that a slight initial temperature decrease is followed

by a continuous temperature increase as the stretch evolves. This behavior matches the

experimental observations presented in [Chadwick, 1974], and is closely related to the so-

called thermoelastic inversion. As the rubber material is assumed to be entropy elastic

and as the test conditions are adiabatic, the internal energy is not altered by deformation.

For this reason, the decrease of mechanical entropy resulting from the applied stretch is
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Elastic properties Viscoelastic properties

Chemical shear modulus Gc = 3.0 N/
(
mm2

)
Shear modulus µ1

v = 1 N/
(
mm2

)
Topological shear modulus Ge = 1.3 N/

(
mm2

)
Viscosity η1

v = 0.02 Ns/
(
mm2

)
Stretch restriction δ = 0.3 Relaxation time τ1

v= 0.01 s

Poisson's ratio ν = 0.49 Thermal softening ξ1
v = 10

Thermal behavior

Reference temperature Θ0 = 293 K Heat capacity %0cp0 = 1.7385 N/
(
mm2 K

)
,

Thermal expansion αΘ0 = 2.22 · 10−4 1/K kcp = 0.0024 J/
(
kg K2

)
Density %0 = 800 kg/m3 Thermal conductivity kΘ0 = 0.2595 · 10−4 1/K,

ωk = 0.004 1/K

Table 3.1: Material parameters for the thermo-viscoelastic extended tube model.

compensated by an increase in thermal entropy, which is observed as a temperature rise

in the specimen. Consequently, this e�ect is more strongly pronounced with an increasing

thermal expansion coe�cient αΘ0, see Figure 3.1.

In this context, [Suwannachit, 2013] simulated the well known demonstration experiment

for the Gough-Joule e�ect with this material model. In this experiment, a rubber strip is

loaded with a weight and then heated in order to raise its internal energy. This causes the

rubber strip to shorten, or in other words, the material sti�ness to increase.

In Figure 3.2, this temperature dependence of the thermoelastic material behavior under

uniaxial loading is illustrated at typical service temperatures for both the Neo-Hooke

model (3.18) and the extended tube model (3.20). Within the so-called entropy-elastic

temperature range, the sti�ness of rubber materials increases linearly with increasing

temperature. This behavior can be observed for both material models and agrees with

the experimental results presented in [Höfer, 2009]. Note that the Neo-Hooke model does

not reproduce the characteristic upturn of the stress response that results from the full

extension of the polymer chains in the rubber material.

In contrast, the extended tube model clearly shows this behavior, which results from its

topological part (3.21). This representation of the upturn can be understood as penalty

restriction, which comes at the cost of a high volumetric expansion at large strains, see

Figure 3.3. Here, a volumetric penalty function is not su�cient in order to represent

the quasi incompressible material behavior in the domain above 100% strain. As most

�lled technical rubber materials fail before such high strains are reached, this theoretical

limitation is not of practical importance for the further simulations in this thesis.
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Figure 3.2: Temperature dependence of the elastic material behavior under uniaxial load-
ing.
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Figure 3.3: Evolution of the volume ratio J over stretch λ.

3.5.2 Thermo-viscoelastic behavior under cyclic loading

In order to demonstrate the stationary thermo-viscoelastic behavior of the material model,

5000 cycles of a shear test were calculated. In this test, a cubic specimen with an edge

length of 50 mm is sheared by a sinusoidal excitation with an amplitude of 25 mm at

a frequency of 100 Hz under adiabatic conditions. Due to the delayed relaxation of the

material, the stress response in the �rst cycle is much larger along the loading path than

along the unloading path, see Figure 3.4 (a). The area in-between the two curves serves as

a measure for the dissipated mechanical energy in the load cycle, the so-called hysteresis.

This dissipation acts as a heat source causing an increase in temperature, see Figure 3.4

(b) for the temperature evolution in the specimen. In the �rst cycles the temperature
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Figure 3.4: Thermo-viscoelastic material response of a rubber strip in a cyclic deformation
test at adiabatic conditions (a) stress response and (b) evolution of the average

temperature in the specimen.

increases quickly, then the slope decreases until a steady state is reached. This steady

state point is characterized by the equilibrium of the internal mechanical dissipation and

the thermal dissipation over the boundaries.

The increase in service temperature goes along with a reduction of the viscoelastic

material response, resulting in a smaller hysteresis in the load cycle, see Figure 3.4 (a).

Due to this fact, hardly any hysteresis is observed for the 500th and for the last cycle,

as the thermoelastic response becomes dominant above ≈ 360 K. The physical reason for

this behavior lies in the source of the internal mechanical dissipation itself, which is the

relative sliding of the polymer chains making up the polymer network of the rubber. At

elevated temperatures, the molecules in these chains move faster due to higher entropy,

which eases their relative sliding and consequently results in less mechanical dissipation.

This behavior is modeled by the thermal softening parameter introduced in (3.41).
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4 Thermomechanical contact

In tire mechanics the performance is strongly in�uenced by the contact interaction of the

tire with the road surface. Due the severe temperature dependence of rubber compounds,

tire-road interaction is a thermomechanical contact problem. The solution of coupled ther-

momechanical contact problems requires the enhancement of the mechanical optimization

problem (3.50) with a geometrical non-penetration constraint of contacting surfaces. This

restriction allows for the calculation of contact tractions, but changes the mathematical

character of the problem into a variational inequality. Furthermore, the heat conduction

in the resulting contact interface extends the thermal problem (3.51). A detailed overview

on computational contact mechanics and the treatment of thermomechanical contact prob-

lems is given in the textbooks by [Laursen, 2003; Wriggers, 2006; Yastrebov, 2013].

In order to achieve the main goal of this thesis in developing a constitutive contact

model representing mesoscale tread-road interaction, this contact behavior needs to be

characterized �rst. The solution of this rough surface contact problem requires a robust

contact constraint enforcement strategy. On the macroscale the contact constraints allow

for the computation of the tire's tractive rolling contact behavior (pressure distribution in

the footprint and lateral contact tractions) and the calculation of rolling resistance.

In this chapter, the necessary theory for the formulation and solution of thermome-

chanical contact problems is summarized. This overview starts with kinematic quantities

to detect contact and to describe the relative motion of material points in the contact

interface in between two bodies. Then, the balance of energy and the Clausius-Duhem

inequality are formulated for the contact interface. The chapter ends with the description

of contact constraint enforcement strategies. Due the introduction of Arbitrary Lagrangian

Eulerian kinematics to describe the tire's rolling motion, material particles are not �xed

to the mesh and therefore contact constraint enforcement strategies for frictional contact

that were developed in Lagrangian kinematics cannot be applied to compute the tire's

tractive response. This problem has been solved by the approach presented by [Zie�e,

2007], which is applied in combination with the phenomenological friction law describing

rubber friction by [Huemer et al., 2001a] in this thesis.
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4.1 Contact kinematics

Contact kinematics describes the relative motion of surface points of three-dimensional

bodies, which can come into contact. Following standard approaches, the contact pairing

of two bodies is de�ned by a master-slave relation, in which kinematic quantities are

evaluated on the master surface and the contact contribution to the thermomechanical

contact problem is integrated over the slave's surface. In this thesis, the problem de�nition

is restricted to the contact of a deformable slave body with a rigid master surface, which

is described by an analytical continuously di�erentiable function XM = XM(ξ) in the

domain of convective surface coordinates ξ. At a position (ξ1, ξ2) on the master surface,

contact quantities are de�ned using a local coordinate system consisting of the tangent

vectors A1 and A2 and the normal vector N . The tangent vectors

Ai =
∂XM(ξ1, ξ2)

∂ξi
, with i = 1, 2 (4.1)

are de�ned as the covariant derivatives of the contravariant position vectorXM . By means

of this, the unit surface normal is then de�ned as

N =
Ai ×Aj

‖Ai ×Aj‖
. (4.2)

With these de�nitions, the closest projection of the slave point onto the master surface

can be calculated by solving the minimization problem posed by

d(ξ1, ξ2) = arg min
∥∥xs − X̄M

(
ξ̄(xs)

)∥∥ ,
see [Wriggers, 2006] for details.

In order to distinguish between contact and separation, the normal penetration function

is introduced

dN = −
(
xs − X̄M

)
· N̄


< 0 no contact

= 0 contact

> 0 peneration

, (4.3)

which results in a scalar measure of the distance to the closest point. The time derivative

of the penetration yields

ḋN = −
(
ẋs − ˙̄XM

)
· N̄ −

(
xs − X̄M

)
· ˙̄N . (4.4)

This penetration velocity is required for the description of viscoelastic contact problems.

Note that Ṅ vanishes on �at surfaces.

The calculation of frictional contact reactions requires a measure of tangential relative

motion, which is de�ned by the tangential gap

si =
(
x− X̄M

)
· Āi (4.5)
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and its time derivative, the relative tangential velocity

ṡ =
(
I − N̄TN̄

)
·
(
ẋs − ˙̄XM

)
. (4.6)

With these de�nitions, the stick condition is stated as

si =
(
x− X̄M

)
· Āi = 0⇔ ṡi = 0. (4.7)

4.2 Balance of energy in the contact interface

The calculation of thermomechanical contact interaction accounting for viscous dissipation

of the tread rubber, frictional heating, and conductive heat transfer requires the solution

of the balance of energy in the contact interface. A detailed discussion on this topic is

presented in [Laursen, 2003; Willner, 2003; Wriggers, 2006].

In order to reformulate the balance of energy (2.42) in terms of the contact interface, the

nominal surface traction is de�ned by projection of the �rst Piola-Kirchho� stress tensor

P along the surface normal N , which yields

T = −P ·N = PN +
∑
i

T iAi. (4.8)

This traction is separated into a nominal normal pressure P and nominal tangential trac-

tions T i in the direction of the tangent vectors Ai. Furthermore, the outward nominal

heat �uxes over the contact boundaries are de�ned as

−QW ·N = QW
c and QR ·N = QR

c (4.9)

where QW
c is the heat �ux from the tire into the contact interface using ns = −N , and

QR
c is the heat �ux transferring energy from the road into the contact interface.

With these de�nitions the balance of energy in the contact interface reads

ėc = P ḋN + T · ṡ+QW
c +QR

c . (4.10)

Furthermore, the thermodynamically consistent formulation of constitutive contact models

requires the ful�llment of the entropy inequality in the interface, which is de�ned as

η̇cΘc ≥
QW
c

ΘW
Θc +

QR
c

ΘR
Θc. (4.11)

Furthermore, the total slip s and the sliding velocity ṡ are separated into

s = sel + spl and ṡ = ṡel + ṡpl, (4.12)
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where the elastic components sel and ṡel occur only in case of regularized treatment of the

friction law (e.g. Coulomb friction), which allows for an elastic relative motion. Otherwise

only the plastic components spl and ṡpl are present. This analogy to plasticity has been

recognized �rst in [Michalowski and Mroz, 1978]

Analogous to the continuum formulation, the Legendre transform of the strain energy

function Ψc is calculated by

Ψc

(
dN , α

(i)
v , s

el, ηc
)

= ec − ηcΘc (4.13)

Ψ̇c =
∂Ψc

∂dN
ḋN +

∑
i

∂Ψc

∂α
(i)
v

α̇(i)
v +

∂Ψc

∂se
· ṡel +

∂Ψc

∂Θc

Θc = ėc − η̇cΘc − ηcΘ̇c, (4.14)

as well as its time derivative Ψ̇c. Inserting these de�nitions into (4.11) results in the

Clausius-Duhem inequality(
P − ∂Ψc

∂dN

)
ḋN +

(
T − ∂Ψc

∂se

)
· ṡe −

(
ηc +

∂Ψc

∂Θc

)
Θ̇c

+
∑
i

∂Ψc

∂α
(i)
v

α̇(i)
v + T · ṡpl +

QW
c

ΘW
(ΘW −Θc) +

QR
c

ΘR
(Θc −ΘR) ≥ 0, (4.15)

which requires the constitutive contact model to ful�ll

P =
∂Ψc

∂dN
, T =

∂Ψc

∂sel
, and ηc = −∂Ψc

∂Θc

. (4.16)

The remainder of the inequality results in the calculation of dissipation

Dmech
c =

∂Ψc

∂α
(i)
v

α̇(i)
v +

∂Ψc

∂sel
· ṡpl ≥ 0 (4.17)

Dtherm
c =

QW
c

ΘW

(ΘW −Θc) +
QR
c

ΘR

(Θc −ΘR) ≥ 0, (4.18)

where both the mechanical Dmech
c as well as the thermal dissipation Dtherm

c must be non-

negative.

The formulation of the strain energy function for the calculation of contact tractions is

presented in the next section. The nominal heat �uxes are modeled by

QW
c = kWc(ΘW −Θc) and Q

R
c = kRc(Θc −ΘR), (4.19)

with the heat conduction coe�cients kWc and kRc. Neglecting the heat capacity of the

trapped debris, the resulting heat �ux in the contact interface yields

QWR
c = −ρD

∂Ψc

∂α
(i)
v

α̇(i)
v − ρD

∂Ψc

∂sel
: ṡpl + hWR(ΘW −ΘR), (4.20)

with the e�ective conductivity of the contact interface kWR and the partition coe�cient

ρD that describes the amount of mechanical dissipation entering the wheel. Note that

both coe�cients can be functions of state variables such as pressure and temperature, see

[Wriggers and Miehe, 1994; Hofstetter, 2004].
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4.3 Contact constraint enforcement

Di�erent standard techniques for the enforcement of contact constraints have been devel-

oped in the last decades, see [Laursen, 2003; Wriggers, 2006; Yastrebov, 2013]. Here, well

established standard methods are Penalty regularizations, Lagrangian multipliers, and the

Augmented Lagrangian multiplier method, all of which are also available in many com-

mercial codes. The di�erent techniques vary in computational costs, precision, e�ort of

implementation, and stability. Their common feature is an enhancement of the weak form

of the balance of linear momentum (3.50) Gmech = Gu + Gc by the contact virtual work

Gc(u, δu) =

∫
∂cB

PδdN + T T · δs dA (4.21)

changing the boundary separation, in which boundary conditions are applied, into

∂B = ∂uB ∪ ∂tB ∪ ∂cB ∧ ∂uB ∩ ∂tB ∩ ∂cB = ∅, (4.22)

in which the contact area ∂cB is unknown and needs to be determined by the algorithm.

4.3.1 Normal contact constraint

In this thesis an Augmented Lagrangian multiplier method is applied for the mesoscale

rough surface contact problem as well as for macroscale rolling contact simulations on

the �at surface. In these contact scenarios, the precise ful�llment of the non-penetration

condition yield the Karush-Kuhn-Tucker complementary conditions

dN ≤ 0;P ≥ 0 and PdN = 0. (4.23)

The contact pressure is hereby evaluated in terms of the Uzawa algorithm as

P = max[αN + εNdN , 0], (4.24)

where εN is a penalty parameter. The Augmented Lagrange multiplier αN is held �xed

during the contact iterations and updated each time this solution reaches convergence, see

[Laursen, 2003]. As a bene�t of this update scheme, the size of the sti�ness matrix is

constant and it remains symmetric for unilateral contact. In general, the desired accuracy

of the solution is reached after few augmentation steps using comparably small penalty

parameters, which avoids ill-conditioning and allows for larger load step sizes than an

equivalently accurate Penalty method. However, a weak point of the Uzawa algorithm

is the C0-continuity of its contact potential, which results in a non-smooth transition

of the contact state (change of the active set). A more robust and e�cient Augmented
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Lagrangian multiplier contact constraint enforcement method based on a C1-continuous

contact potential has been presented in [Pietrzak and Curnier, 1999]. This advantage

comes at the cost of introducing the contact pressure as an additional degree of freedom

(Lagrangian multiplier), which results in a larger non-symmetric sti�ness matrix.

In technical applications, the sti�ness of the contact interface often cannot be assumed

to be in�nite. Especially the homogenized description of rough surface interaction is often

realized using a nonlinear regularization, see [Willner, 2003].

4.3.2 Rubber friction

In order to calculate the correct pressure distribution in the tire's footprint, the friction

response of tread rubber must be taken into account. In experimental studies such as that

presented in [Hofstetter, 2004], the friction response of rubber materials on rough surfaces

has been observed to be highly dependent of pressure, temperature and velocity. In this

contact pairing the soft rubber material is penetrated by much sti�er surface asperities.

The relative sliding motion of the rubber material on top of these asperities in conjunction

with the thermo-viscoelastic material response presented in section 3.5 results in the so-

called plowing component of the friction behavior. This e�ect is also present in the absence

of adhesion on lubricated surfaces and causes the above mentioned dependence on service

conditions. Furthermore, the large local strains at high strain rates that are caused by

the plowing of surface asperities result in high local dissipation, which induce a severe

temperature increase in the contact interface.

In order to capture these phenomena, a general form of a regularized friction law is

applied

T T = min [αT‖s‖, µ (p, ‖ṡ‖,Θ) |p|] s

‖s‖ , (4.25)

which is suitable to account for the dominant e�ects in rubber friction. In this context,

the common approach of Coulomb's friction law, which is based on a constant friction

coe�cient µ, cannot depict rubber friction phenomena for large variations of in�uence

parameters.

In this thesis, the friction model presented in [Huemer et al., 2001a], and further elabo-

rated in [Hofstetter et al., 2006] is applied. The friction coe�cient is calculated via

µ (P, ‖ṡ‖) =
(
α|p|n−1 + β

)(
a+

b

‖ṡ‖e +
c

‖ṡ‖2e

)
−1, (4.26)

where the �rst term represents the pressure dependence, and the second term depicts the

in�uence of the sliding velocity. The temperature dependence is achieved by the Williams-

Landel-Ferry equation (WLF-equation), see [Williams et al., 1955]. This function relates
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Table 4.1: Modi�ed parameters for the friction law µ (P, ‖ṡ‖,Θ), see Hofstetter [2004].

Pressure dependent part αh = 0.1399 βh = 0.1841 nh = 0.8680

Velocity dependent part a = 0.9203 b = −1.1188 c = 0.9677 e = 0.1672

WLF-transform d1 = 43.1 d2 = 509.4 Tref =20 °C Tg = -50 °C

relaxation times to service temperature, which can be used to calculate the equivalent

sliding velocity (loading frequency) at reference temperature

ṡref =
aΘ,cur

aΘ,ref

ṡcur (4.27)

for the sliding velocity ṡcur at the current temperature, so that an increase in temperature

is equivalent to an increase in sliding speed. Here, the projection coe�cients aΘ,cur, aΘ,ref

are de�ned as

log10aΘ,i =
d1(Θi −Θg + 50°C)

d2 + (Θi −Θg + 50°C)
, i = {cur, ref} (4.28)

with the two additional material parameters d1, d2 and Θg being the glass transition tem-

perature. The friction coe�cient is then evaluated for the equivalent sliding velocity at

reference temperature along the so-called master-curve, to which model parameters α, β, n

as well as a, b, c, e are �t. See [Huemer et al., 2001a] for details on the mastering process

for experimental data.

In Figure 4.1 (a) and (b) the resulting friction coe�cient for the material parameters

given in Table 4.1 is illustrated. It can be observed in both �gures that the friction

coe�cient �rst tends towards a maximum value, and then decreases with sliding speed.

This e�ect increases at small contact pressures, which results in a larger friction coe�cient,

see Figure 4.1 (a). As a result of the WLF-equation (4.28) that depicts the temperature

dependence of rubber friction, the maximum of the master-curve is shifted towards smaller

sliding speeds for increasing service temperatures, see Figure 4.1 (b).
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(a) Pressure dependence at reference temperature Θ = 20 °C.
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Figure 4.1: Friction coe�cient at varying pressures and temperatures over sliding speed.
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5 Homogenization of unilateral rough surface contact

Accounting for tread-road interaction in rolling resistance calculations is an unsolved re-

search problem of high economical relevance. As shown in the review on the state of the art

in chapter 1, there is presently no convincing approach to incorporate the nonlinear large

deformation contact interaction of tread rubber with the mesoscopic rough road surface.

In this chapter a novel approach is presented, which represents the stochastic average

contact behavior of a single three-dimensional tread block with the random rough road

surface in terms of a one-dimensional homogenized constitutive contact model. The aim

for this formulation is to approximate the average nominal contact pressure and the volume

average dissipation resulting from the thermo-viscoelastic response of the bulk material

preserving the external energy in the load cycle (consistence of energy).

In order to achieve this goal, the basic concepts of homogenization techniques are re-

viewed �rst in this chapter, which points out their restriction to sub-scales. Thereafter, the

special case of contact homogenization is studied, and the criteria for consistency of energy

are stated. Based on these de�nitions, a novel rough surface contact homogenization strat-

egy for the unilateral tread-road interaction based on a reformulation of the bulk material

model is developed. The resulting constitutive contact model preserves the characteristics

of the thermo-viscoelastic material response.

The identi�cation of the average tread-road contact interaction behavior with random

rough road surfaces requires the solution of a stochastic contact problem, namely a random

Signorini problem. Its mathematical treatment is presented in the second section of this

chapter. After the introduction of this general basis, the statistical characterization of

rough surfaces is brie�y reviewed. These characteristic quantities are then calculated and

compared for a smooth and a rough measured road surface. Later on in this chapter, the

average contact behavior on these surfaces is evaluated and approximated by constitutive

contact models. This homogenized representation �nally allows for an estimation of the

in�uence of surface roughness on rolling resistance in section 6.2.

In the fourth part of this chapter, the numerical results for energy-consistent homog-

enization of a tread block in contact with a sphere are validated. In a next step, the

evaluation of the average rough surface contact behavior of single tread blocks on the

measured road surfaces by means of a Monte Carlo simulation is presented. The homoge-

nization of this response results in a set of material parameters for the constitutive contact

model, which are applied in the rolling resistance calculations in section 6.2.
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5.1 Contact homogenization

5.1.1 General aspects of homogenization in continuum mechanics

Computational homogenization techniques aim for the macroscopic description of micro-

scopically heterogeneous materials assuming C1-continuous Boltzmann kinematics. Fur-

thermore, these techniques are used to describe material phenomena occurring on smaller

length scales, especially damage. Their goal is to identify the e�ective mechanical proper-

ties, see e.g. [Miehe, 2003] and [Temizer and Zohdi, 2007], as well as e�ective thermome-

chanical properties, see e.g. [Özdemir et al., 2008]. In general, these approaches are based

on the assumption that the microscopic length scale l << L is much smaller than the

macroscopic one L and therefore allows for a separation of scales. Under this assumption,

a representative volume element (RVE) Bm can be found, which describes the random

heterogeneous microstructure in the vicinity of a material point on the macroscale. Con-

sistent scale transition of quantities in the RVE is then ensured by the volume averaging

operator

〈•〉 =
1

Vm

∫
Bm

•(X) dVm. (5.1)

In order to shorten the notation, the location of the quantityX is omitted in the following.

Within the RVE, the microscopic displacement �eld

um = u+ uf (5.2)

is assumed to consist of small local �uctuations uf of the macroscopic displacement u,

which vanish in the volume average 〈uf〉 = 0. Furthermore, the displacement �eld is

assumed to have no jumps ([[u]] = 0) on the boundary of the RVE ∂Bm. This approach is

called �rst order homogenization, in which only the �rst order term of the Taylor series

expansion of the displacement �eld

∆x =
∂x

∂X
·∆X +O

(
∆X2

)
, (5.3)

is accounted for using average �rst order gradients F = ∂x
∂X

. Consequently, the variations

of the macroscopic �elds need to be su�ciently small. Furthermore, the stress �eld is

assumed to be divergence free, which means that no inertia and body forces are acting on

the microscale.

The commonly used base quantity to describe the kinematics of the RVE is the average

deformation gradient

〈F 〉 =
1

Vm

∫
Bm

F dVm =
1

Vm

∫
∂Bm

ϕ⊗N dAm, (5.4)
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which is calculated by volume integration, and can also be expressed by a surface integral

with the divergence theorem. This fact can be used to enforce an equivalent uniform

displacement boundary condition. Based on this de�nition, dependent quantities are de-

�ned, e.g. the right Cauchy Green tensor C̃ = 〈F 〉T · 〈F 〉 and the Green-Lagrange strain

Ẽ = 1
2

(
〈F 〉T · 〈F 〉 − 1

)
. The description of time dependent processes also requires volume

averaging of the material velocity gradient〈
Ḟ
〉

=
1

Vm

∫
Bm

Ḟ dVm =
1

Vm

∫
∂Bm

v ⊗N dAm, (5.5)

which is measurable as a surface velocity v of the RVE. The material velocity gradient is

related to the spatial velocity gradient l via l = gradv = Ḟ · F−1.

The macroscopic stress �eld is then de�ned in terms of the energy conjugate average

�rst Piola-Kirchho� stress tensor

〈P 〉 =
1

Vm

∫
Bm

P dVm =
1

Vm

∫
∂Bm

T ⊗X dAm, (5.6)

which can also be expressed as an integral over the tractions along the boundary of the

RVE. This quantity can also be expressed as the volume average of the partial derivative

of the elastic potential with respect to the deformation gradient

〈P 〉 =
1

Vm

∫
Bm

∂Ψ

∂F
dVm. (5.7)

The material response can be split into its di�erent contributions from the constitutive

material model by interchanging the integral and the summation

〈P 〉 = 〈P vol〉+ 〈P dev〉+
∑
i

〈
P i

neq

〉
, (5.8)

which later on allows for a separate identi�cation of mapping functions and constitutive

parameters. The dependent second Piola-Kirchho� stress tensor S̃ is then calculated via

S̃ = 〈F 〉−1 · 〈P 〉 = 2
∂Ψ̄
(
C̃,Θ, α̃(i)

v

)
∂C̃

. (5.9)

If viscous material behavior is observed, the volume average internal dissipation (3.48)

also needs to be transmitted to the macroscale as

〈Dint〉 =
1

Vm

∫
Bm

1

ηi
Ā

(i)
v : Ā

(i)
v dVm with EDint =

∫ T

0

〈Dint〉 dt, (5.10)
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which is the dissipated energy over a load cycle with a duration of T . For reasons of

completeness, the calculation of the elastically stored energy in the macroscale system is

given by

W =
1

V

∫ T

0

〈
P : Ḟ

〉
dt. (5.11)

With the above, the requirement of energetic consistency of homogenization is ensured

by the equivalence of macroscopic and averaged microscopic stress power

〈P 〉 :
〈
Ḟ
〉

=
〈
P : Ḟ

〉
=

1

Vm

∫
Bm

P : Ḟ dVm =
1

Vm

∫
∂Bm

t · v dAm (5.12)

also known as the average work theorem and, in terms of small deformations, as the Hill

criterion. It states that �uctuations of the internal quantities do not a�ect the macroscopic

power response. Based on that theorem, only three types of boundary conditions can ful�ll

this equality, namely:

� Uniform displacements,

� Uniform tractions,

� Periodic boundary conditions,

see e.g. [Miehe, 2003] for details on the proof. Consequently, this criterion cannot be

ful�lled a priori for the mesoscale contact problem due to the boundary conditions imposed

by the tire structure. Therefore, a stochastic homogenization is applied to represent the

contact behavior of tread block on the rough road surface.

The limitation of scale separation l << L and the necessity of vanishing oscillations of

the displacement �eld along the boundary ([[u]] = 0) in �rst-order homogenization methods

can be overcome by second-order homogenization techniques, see e.g. [Castañeda, 1996],

[Lopez-Pamies and Ponte Castañeda, 2003] and more recently [Kouznetsova et al., 2004].

This is achieved by accounting for the quadratic term of the Taylor series expansion

∆x = F ·∆X + 0.5∆X ·G ·∆X +O
(
∆X3

)
(5.13)

of the macroscopic �elds, where the third order tensor G depicts the quadratic parts of

the gradient. Obviously, the second order homogenization can only be realized with a

C1-continuous continuum description on the macroscale.

5.1.2 Homogenization of contact interface phenomena

The homogenization of surface phenomena in contact interfaces requires an adaption of

the continuum framework for heterogeneous materials, as admissible boundary conditions
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cannot be found. Therefore, it is assumed that the height h of the contact interface

is negligible compared to the system dimension H, which is equivalent to a separation of

scales h << H. Consequently, the homogenization is executed along an interface area ∂cBm
rather then in a volume element. In the papers of [Temizer and Wriggers, 2008], [Temizer

and Wriggers, 2010a] and [Temizer and Wriggers, 2010b], a �rst order homogenization

framework for contact interfaces ensuring thermomechanical consistency was developed.

This framework accounts for large deformations, viscoelastic e�ects and also for either the

presence of third bodies or rough surfaces.

Analogous to the homogenization of the continuum, a surface average operator

•̄ =
1

A

∫
∂cBm

•(x) dA. (5.14)

is de�ned in the interface ∂cBm. With this operator, the average gap vector d̄ = um − us
and the average tangential traction t̄ are de�ned as basic quantities for describing the

behavior of the contact interface, which follows the concept of using the volume averages of

the deformation gradient (5.4) and the �rst Piola-Kirchho� stress tensor (5.6) to describe

the microscale continuum. Both d̄ and t̄ were introduced for general contact problems in

chapter 4. With these quantities an equivalent local average work rate criterion (5.12)

t · v = t̄ · v̄ (5.15)

can be derived for the contact interface, i.e. the balance of energy (4.10), where v̄ is the

relative velocity of the surfaces. This relation can be separated by projection onto the

respective base vectors in the macroscopic con�guration into

t · v = p ḋN + τ · ξ̇α = p̄ ˙̄dN +
∑
i

τ̄α ˙̄ξi, (5.16)

where ˙̄dN = v · n is the normal penetration velocity and ˙̄ξi = v · ai is the parametric

sliding velocity in the tangential direction i.

In [Temizer and Wriggers, 2008] the e�ective tangential traction τ̄ = µ̄p̄ v̄
‖v̄‖ of a vis-

coelastic rubber block sliding on a �at surface with microscopic rolling particles in the

contact interface was studied. Due to the material properties of the rubber material the

e�ective friction coe�cient µ̄ = µ̄(p̄, ‖v̄‖) depends on contact pressure p̄ and sliding speed

‖v̄‖. In order to evaluate this e�ective friction coe�cient, a microscale model resolving

the interaction with single particles was simulated in that study. Here, the interface area

(top surface) of this microscale model was subjected to the macroscopic average contact

pressure p̄ and dragged with a constant velocity v̄, whilst symmetric boundary conditions

were applied along the lateral sides assuming periodicity. As the traction response of this
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sliding motion is very oscillatory, the e�ective friction coe�cient

µ̄(p̄, ‖v̄‖) =
1

t

∫ t

t0

‖τ̄‖
p̄

dt (5.17)

was calculated by averaging over time. In [Reinelt and Wriggers, 2010] and later in [De

Lorenzis and Wriggers, 2013] the average tangential contact response of a rubber block

sliding on a rough surface was calculated likewise.

The description of tread-road interaction results in a contact homogenization problem

with random heights of the master surface xM . Here, the distribution of asperity shapes

results in a large autocorrelation length that determines the size of a representative contact

element (RCE). As this size exceeds the size of a single tread block, the classical �rst order

FE2 method applied in [Temizer and Wriggers, 2010b] is not suitable, and thus stochastic

homogenization becomes necessary in order to formulate a constitutive contact model

representing the stationary response. The size and the distribution of asperities and their

rough texture are characterized by a continuous spectrum of length scales. For this reason,

standard homogenization approaches formulated under the assumption of separable scales

are not applicable, and consequently no representative contact element can be de�ned.

Therefore, the proposed method is based on stochastic homogenization of the contact

interaction of the single tread block with the rough road surface.

5.1.3 Constitutive contact model

In this section, a novel approach is introduced for empirical development of one-

dimensional thermomechanical constitutive contact models to represent the homogenized,

unilateral, frictionless contact behavior of a three-dimensional tread block on rough road

surfaces. The �rst step in this homogenization is to separate the mesoscale tread blocks

from the macroscale tire model by de�nition of a transition area ∂ΩM in between. This al-

lows for a decoupled identi�cation of the structural response of the tread-road interaction.

Here, the motion and the temperature of the transition area are prescribed by the tire

model, which is consistent with the contact constraint enforcement techniques presented

in section 4.3. This de�nition results in the application of displacement and temperature

boundary conditions to the mesoscale model pressing it onto the rough road surface.

The identi�ed mesoscale contact behavior (average contact pressure and average heat

�ux) is then be represented by a constitutive contact model. As a novel approach, the

constitutive contact model is derived directly from the tread's bulk material model as-

suming an equivalent uniaxial compression test, see Figure 5.1. This constitutive contact

model is later used to solve the macroscale contact interaction problem (rolling resistance

calculation of tires) accounting for homogenized mesoscale rough surface contact behavior.



5 Homogenization of unilateral rough surface contact 53
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Figure 5.1: Homogenization of rough surface contact interaction in the mesoscale model

(a) and the representation by a constitutive contact model assuming uniaxial

compression (b) in the transition area.

Evaluation of the homogenized mesoscale contact behavior

The �rst step in the present study is an investigation of the contact compliance of the

tread-road interface, the viscoelastic e�ects occurring in the load cycle, and the average

heat �ux. This heat �ux results from the heat source by internal mechanical dissipation

in the tread rubber, which is reduced by the heat conduction between tread block and

road. For this reason, a uniform displacement of the transition area is applied to the

upper surface of the tread block, which is analogous to enforcing a penetration of the

plane de�ned by the highest asperity below the tread block.

The mechanical quantity of interest is the average nominal contact pressure

P̄
(
d̄N(t),Θ

)
=

1

A0

∫
∂ΩM

P
(
d̄N(t),Θ

)
dAM (5.18)

in the transition area ∂ΩM for the present boundary conditions, namely the current pene-

tration d̄N(t) which prescribes a penetration rate ˙̄dN , and the temperature Θ. The average

nominal pressure

P̄ = N · T̄ (5.19)

is the normal component of the average nominal surface traction T̄ acting on the initial

area A0. Due to the chosen Dirichlet boundary conditions, the normal vectors

N (x) = n(x) ∀x ∈ ∂ΩM , (5.20)

of the initial and the current con�guration coincide in the transition area. The thermal

quantity of interest is the average heat �ux

q̄∂ΩM

(
d̄N(t),Θ

)
= ρD (〈Dint〉 − q̄ext) , (5.21)

which is de�ned as a portion ρD of volume average dissipation in the mesoscale model

〈Dint〉 reduced by the heat �ux over external boundaries q̄ext, e.g. convection on free

surfaces and conduction in the tread-road interface.
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The evaluation of the average external mechanical power in the transition area must is

adapted from the ideas presented in [Temizer and Wriggers, 2008]. In the present case of

unilateral contact interaction, it can be calculated via

PM =

∫
∂ΩM

P ˙̄dN dA =

∫
ΩM

P : Ḟ dV ≈
∑
i

Ri(d̄N) ˙̄dN , (5.22)

which is equal to the internal power in the tread block and can be approximated by discrete

nodal reaction forces Ri(d̄N) and prescribed penetration velocity ˙̄dN . By time integration,

the external mechanical work can be de�ned in the load cycle

WM =

∫ T

t0

PM dt ≈
∑
n

∑
i

∆Ri∆d̄N (5.23)

and its also discrete approximation. Note that time increments vanish due to ḋN∆t = ∆dN

in case of discrete load steps with constant velocity.

Derivation of the constitutive contact model

In this thesis, it is assumed that the mesoscale frictionless unilateral tread-road contact in-

teraction is dominated by the contact pressure, and lateral tractions vanish in the stochas-

tic average. With this assumption, the complex rough surface contact scenario can be

represented by an equivalent uniaxial compression test. The aim is to formulate of a

constitutive contact model, which accurately represents the identi�ed average mesoscale

contact interaction as a strain energy function ΨC depending on a set of control variables,

such as introduced in section 3.1. The application of this constitutive contact model in the

transition area then allows for macroscale calculations considering homogenized mesoscale

e�ects. In the following, all equivalent macroscale quantities related to the constitutive

contact model are marked by •1D. In this sense, the equivalent macroscale nominal contact

pressure

P 1D
(
d̄N(t),Θ, ...

) !
= NT · 〈P 〉 ·N = P̄

(
d̄N(t),Θ

)
(5.24)

must be equal to the normal projection of the volume average �rst Piola-Kirchho� stress

tensor 〈P 〉 of the mesoscale model and the mesoscale average nominal pressure P̄ . The

same is required for the equivalent and the average heat �ux

q1D
∂ΩM

(
d̄N(t),Θ, ...

) !
= q̄∂ΩM

(
d̄N(t),Θ

)
. (5.25)

The central objective is to ful�ll the equality of mechanical power P1D
M = PM in order

to ensure that the same mechanical energy is stored in the interface. This requirement is

expressed in terms of the �rst law of thermodynamics

%0ė =
〈
P : Ḟ

〉
−DIV〈Q〉+ %0R

=
1

h0

T · ˙̄d+ q̄, (5.26)
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where the �rst equation represents the volume average at the mesoscale, and the second

equation is formulated in the transition area ∂ΩM . Here, h0 denotes the initial height of

the mesoscale model. The reformulation of the balance of energy in terms of entropy

%0Θṡ = −DIVQ+ 〈Dint〉+ %0R, with Dint = P : Ḟ − %0

(
Ψ̇ + Θ̇s

)
≥ 0, (5.27)

clari�es the necessity of equal internal dissipation D1D
int = 〈Dint〉, which only results from

viscous e�ects in the bulk material in the context of the isothermal, frictionless rough

surface contact problems and acts as a heat source in the tread material. In this context

the time integral of the internal dissipation is the loss of mechanical energy, which is the

source of rolling resistance. Furthermore, the rate of mechanical power,〈
Ṗ ˙̄dN

〉
= Ṗ 1D ˙̄dN , (5.28)

needs to be equal to the mesoscale result in order to ensure a correct representation of

viscoelastic e�ects.

A typical engineering approach to solve the problem stated above could be based on a

polynomial �t of the experimental data for the elastic response and on an identi�cation of

complex moduli to represent viscoelastic e�ects. In case of the large deformation problem

at hand this method however does not correspond with the de�nition of complex moduli

in the realm of small deformations. It can be seen as another weak point of this approach

that in analogy to experimental testing a set of combinations of control variables needs to

be simulated for approximating the response over the parametric space. Finally, this data

�tting results in an empiric function P
(
d̄N ,

˙̄dN ,Θ, ...
)
where several parameters may have

no direct physical meaning. For this reason, parameter identi�cation requires the solution

of an optimization problem, which is however no principal disadvantage.

The basic idea for the derivation of a homogenized constitutive contact model to repre-

sent rough surface contact interaction is to apply a uniaxial incompressible reformulation

ΨC of the strain energy function Ψ of the quasi-incompressible material model that was

used in the mesoscale calculation. The strain energy function Ψ of most material models

in continuum mechanics is a scalar function of the invariants of the right Cauchy-Green

tensor C, as these invariants allow for a frame-invariant, objective modeling. The actual

dimensionality or generalization of this formulation �rst arises in the derivation of the

stress response S = ∂Ψ
∂C

. In case of the assumed uniaxial compression, the invariants of

the right Cauchy-Green tensor and subsequently the material response (energy stored in

the tread deformation) only depends on the applied scalar stretch. For this reason, the

aim of this contact homogenization approach is to �nd an equivalent stretch-penetration

relation λ1D(d̄N). With this reformulation, the equivalent nominal contact pressure

P 1D
(
λ1D,Θ, α1D(i)

v

)
=

∂ΨC

(
λ1D,Θ, α

1D(i)
v

)
∂d̄N

= N ·
∂Ψ
(
F 1D,Θ,α

1D(i)
v

)
∂F 1D

·N(5.29)
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can calculated with a scalar equation, depending on the same control variables that were

used in the numerical experiment. By means of this, the equivalent heat �ux

q1D
∂ΩM

(
λ1D,Θ, α1D(i)

v

)
= ρ1D

M

(
D1D

int − q1D
ext

)
(5.30)

is calculated as a portion ρ1D
M of the equivalent macroscopic dissipation in the dash pots and

the penetration-dependent heat conduction in the contact area q1D
ext = h1D

(
d̄N
)

GradΘ·N ,

see Figure 5.1 (b).

Equivalent stretch

The resulting homogenized deformation of the mesoscale model being penetrated by sur-

face asperities is described by the equivalent deformation gradient F 1D. Due to the as-

sumption of uniaxial compression, the equivalent deformation gradient only depends on

the equivalent stretch λ1D, which is therefore the basic kinematic quantity here. The

equivalent stretch can be extracted from the volume average deformation gradient 〈F 〉 via

λ1D
(
d̄N
)

=
√
min Eigenvalue (〈F 〉T · 〈F 〉). (5.31)

The evaluation of this de�nition at di�erent prescribed penetration depths d̄N results in

an equivalent stretch-penetration relation that represents the homogenized compression

of the mesoscale model. Consequently, this relation depends on the model geometry, the

applied boundary conditions and the statistical characteristics of surface roughness. Note

that the discrete evaluations of (5.31) obtained from numerical experiments need to be

approximated by a continuous analytical function, e.g. a polynomial, in order to apply

the constitutive contact model in macroscale computations. This approximation results

in a minimization problem, which is discussed in section 5.4.

The upper bound for the equivalent stretch-penetration relation is de�ned by the contact

interaction with a �at surface, on which all normal compression results in tangential stretch.

This contact behavior can be described by λ1D(d̄N) = 1 − d̄N/h0, where h0 is the initial

height of the mesoscale model. This fact implies that the deformation u1D = λ1Dh0 of

the assumed equivalent compression test is smaller on a rough surface than the prescribed

displacement of the mesoscale model u1D ≤ d̄N .

With the de�nition of the equivalent stretch λ1D in (5.31), dependent equivalent kine-

matic quantities can be derived assuming incompressibility J1D = detF 1D = 1

F 1D =


√

1
λ1D 0 0

0
√

1
λ1D 0

0 0 λ1D

 , C1D =
(
F 1D

)
T · F 1D


1
λ1D 0 0

0 1
λ1D 0

0 0
(
λ1D
)2

 . (5.32)

Here, F 1D denotes the equivalent deformation gradient, and C1D is the equivalent right

Cauchy-Green tensor. By means of that, the equivalent Green-Lagrange strain is de�ned
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as E1D = 0.5
(
C1D − 1

)
. Due to the assumption of uniaxial compression with unrestricted

lateral deformation, all tensors have diagonal form. In this context, the invariants of the

right Cauchy-Green tensor take the form

IC = tr(C1D) =
2

λ1D
+
(
λ1D
)2

(5.33)

∂IC
∂λ1D

= 2λ1D − 2

(λ1D)2 (5.34)

IIC =
1

2

(
tr
(
C1D

)2 − tr
((
C1D

)2
))

=
1

(λ1D)2
+ 2λ1D (5.35)

∂IIC
∂λ1D

= 2− 2

(λ1D)3
(5.36)

IIIC = det
(
C1D

) !
= 1. (5.37)

The uniaxial form of these invariants is presented here in order to allow for a shorter

notation of the evaluation of di�erent material models later on. The derivation of the

constitutive contact model with respect to the penetration (5.29) can then be separated

into
∂ΨC

∂d̄N
=

(
∂ΨC

∂IC

∂IC
∂λ1D

+
∂ΨC

∂IIC

∂IIC
∂λ1D

)
∂λ1D

∂d̄N
. (5.38)

For the computation of mechanical power and the integration of material history the

equivalent material velocity gradient

Ḟ
1D

=
dF 1D

dt
≈ ∆F 1D

∆t
(5.39)

and its time discrete approximation (second term) are de�ned. Its normal projection is

the equivalent normal stretch rate of the assumed uniaxial compression test

λ̇1D = NT · Ḟ 1D ·N . (5.40)

Additionally, the rate of the equivalent Green-Lagrange strain is de�ned as

Ė
1D

=
1

2

((
Ḟ

1D
)

T · F 1D +
(
F 1D

)
T · Ḟ 1D

)
, (5.41)

which is required to calculate the evolution of the internal strain-like variables.

The postulated equality of external mechanical power in the mesoscale volume and on

the macroscale interface

cλ̇
(
d̄N
)
P 1D : Ḟ

1D
= cλ̇

(
d̄N
)
P 1Dλ̇1D !

=
〈
P : Ḟ

〉
(5.42)

in conjunction with the exact representation of the nominal contact pressure P 1D !
= P̄

result in the practical necessity to introduce a penetration dependent energy scaling factor



58 5.1 Contact homogenization

cλ̇
(
d̄N
)
in order to calibrate the stretch velocities

cλ̇
(
d̄N
)
λ̇1D !

=
˙̄dN
h0

. (5.43)

This results from the incapability of the applied boundary conditions to ful�ll the average

work criterion (5.12). In time discrete simulations this scaling can be evaluated by

cλ̇
(
d̄N
)

=
∆d̄N

∆λ1Dh0

. (5.44)

Evaluation of contact pressure

According to (5.29), the contact pressure is calculated using an arbitrary incompressible

material. For this case, the equivalent �rst Piola-Kirchho� stress tensor is de�ned as

P 1D = −p1D
h

(
F 1D

) −T +
∂Ψ
(
F 1D,Θ,α

1D(i)
v

)
∂F 1D

, (5.45)

in which ph is the hydrostatic pressure, see [Holzapfel, 2000]. In the context of continuum

mechanics this internal pressure is either calculated by using a Lagrangian multiplier, or

approximated with a penalty function, see section 3.2. In the uniaxial case, the absence

of lateral tractions

AT
i · P 1D ·N = 0, (5.46)

can be exploited in order to evaluate the scalar internal hydrostatic pressure

p1D
h = AT

i ·
∂Ψ

∂F 1D
·
(
F 1D

)
T ·N , (5.47)

using an arbitrary tangent vector Ai. As an example, the calculation of the nominal

pressure in terms of the Neo-Hooke model (3.18) yields

P 1D = µ1D

(
λ1D − 1

(λ1D)2

)
, (5.48)

where the equivalent shear modulus µ1D = celµ is the shear modulus of the mesoscale

model µ scaled by a constant factor cel.

The incompressible extended tube model (3.20) is evaluated by

P 1D = G1D
c

{
1− δ2

(1− δ2(IC − 3))2
− δ2

1− δ2(IC − 3)

}(
λ1D − 1

(λ1D)2

)
+

2G1D
e

β(λ1D)β+1

((
λ1D
) 3β

2 − 1

)
, (5.49)

where G1D
c = celGc is the equivalent chemical shear modulus, G1D

e = celGe is the equivalent

topological shear modulus, and both are scaled by the same factor as identi�ed for the

Neo-Hooke model cel.
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P 1D

d̄

P 1D(t)

P 1D
el

3

2

1

Figure 5.2: Schematic diagram: Elastic P 1D
el and viscoelastic P 1D(t) response of the con-

stitutive contact model. The gray tread blocks illustrate the basic contact

states: 1-no contact; 2-penetration; 3-separation.

For the calculation of viscoelastic response the evolution of the internal variables need

to be integrated in order to evaluate the resulting overstresses. Due to the additive com-

position of the mesoscale constitutive material model

ΨC = WC +
∑
i

Υ
(i)
C , (5.50)

from an elastic partWC and a number of viscoelastic parts Υ
(i)
C , the di�erent contributions

of pressure response can be evaluated separately

P 1D
(
λ1D,Θ,α1D(i)

v

)
= −

(
pel
h + pv

h

)
λ1D +NT ·

∂Ψ
(
F 1D,Θ,α

1D(i)
v

)
∂F 1D

·N ≥ 0

= max
[
0, P 1D

el

(
λ1D,Θ

)
+ P 1D

v

(
λ1D,Θ,α1D(i)

v

)]
. (5.51)

A sketch of the resulting contact pressure-penetration curve of a displacement driven

experiment is shown in Figure 5.2. Due to the viscoelastic behavior, the material does

not fully relax in the unloading phase of the load cycle P 1D(t). For this reason, the tread

looses its contact to the road at a penetration d̄N > 0 (with λ1D
(
d̄N
)
< 1) resulting in

no contact pressure.

As the equivalent deformation is assumed to be a uniaxial compression, the internal

algorithmic variable describing the elastic strain of the i−th Maxwell-element

H
1D(i)
el =

h
1D(i)
T 0 0

0 h
1D(i)
T 0

0 0 h
1D(i)
N

 with E1D = H
1D(i)
el +α1D(i)

v , (5.52)
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which was introduced in (3.47) has a diagonal form and depends on two scalar values

h
1D(i)
T n+1 = exp

(
−∆t

τi

)
h

1D(i)
T n + exp

(
−∆t

2τi

)(
0.5∆

1

λ1D

)
h

1D(i)
N n+1 = exp

(
−∆t

τi

)
h

1D(i)
N n + exp

(
−∆t

2τi

)(
0.5∆

(
λ1D
)2
)
. (5.53)

In this de�nition, h1D(i)
N describes the elastic strain in normal direction, and h1D(i)

T the elas-

tic strain in tangential direction of the i−th Maxwell-element. The possibility to integrate

a set of evolution equations depicting the material history evolution in the homogenized

contact layer directly on the macroscale is a major advantage in compared to FE2-schemes.

In FE2-schemes the material history evolution is calculated within the coupled microscale

models, requiring a much larger computational e�ort.

The viscoelastic contribution to the equivalent nominal pressure results in

P 1D
v = 2

∑
i

µ1D(i)
v

(
λ1Dh

1D(i)
N n+1 − h

1D(i)
T n+1

1

(λ1D)2

)
. (5.54)

Due to the larger elastic strains in the Maxwell-elements, the equivalent shear modulus

of the i−th Maxwell-element µ
1D(i)
v = cvµ

(i)
v is scaled by a factor cv. In order to keep the

relaxation time constant τ (i)
v = η

1D(i)
v

2µ
1D(i)
v

, the viscosity η1D(i)
v = cvη

(i)
v of the i−th Maxwell-

element is also scaled.

Finally, the dissipation of mechnical energy in the dashpots is calculated, presented in

short notation as

D1D
int

(
λ1D,Θ,α1D(i)

v

)
= 4cλ̇

(
d̄N
)∑

i

(
µ

1D(i)
v

)2

η
1D(i)
v

H
1D(i)
el : H

1D(i)
el , (5.55)

which needs to be scaled by the energy scaling factor (5.43) in order to obtain consistency

of energy at the interface.

Summary of the homogenization approach

1. Calculation of the thermo-viscoelastic mesoscale contact interaction

2. Evaluation of the equivalent stretch-penetration relation (5.31)

3. Identi�cation of the material scaling parameters cel and cvisco

4. Evaluation of contact pressure P 1D
(
λ1D,Θ,α

1D(i)
v

)
(5.51) and dissipation

D1D
int

(
λ1D,Θ,α

1D(i)
v

)
(5.55) in terms of the bulk material

Note that the application of this constitutive contact model requires a C1-continuous

analytic approximation of the stretch-penetration relation, which can be realized e.g. by

polynomial least-squares �tting.
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5.2 Random rough surface contact problem

The interaction of a single tread block with the rough road surface can be regarded as

a random experiment. Each time the tread block impacts onto the road it touches a

new patch with random asperity height and shape distribution, which results in a random

displacement �eld and random reaction forces. Due to the thermo-viscoelastic properties of

the tread rubber, the resulting reaction forces strongly depend on the penetration velocity.

Its in�uence is equivalent to the loading frequency in uniaxial testing, see section 3.5. The

material parameters are considered deterministic in this thesis and therefore each impact

can be described as a deterministic process. For the description of the steady state rolling

motion, oscillations caused by single impacts hardly a�ect the result and therefore, the

focus is put on the time-averaged response in the present study. This assumption simpli�es

the problem to a random elliptic variational inequality, the random Signorini problem see

[Ganguly and Wadhwa, 1997; Kornhuber et al., 2014].

In the classical Signorini problem, the balance of linear momentum (2.40) is solved under

the non-penetration condition of a parameterized surface xm(ξ) as

Gu (u, δu)
!

= 0 =

∫
B

E [S : δE + %b · δu] dV −
∫
∂tB

E [T · δu] dA

−
∫
∂cB

E [T c · δ(x̄m(ξ)− xs)] dA. (5.56)

Herein, T are the applied external nominal surface tractions, T c denotes the nominal con-

tact tractions and the closest point projection ful�lls (x̄m (ξ)− xs)·n̄ (ξ) = ‖x̄m (ξ)− xs‖.
In the present study, the rough road surface is modeled by a spectral representation of a

measured road pro�le. The computation of this analytical surface description is speci�ed

in the next section. As the tread block is smaller than the characteristic length scale of

the road surface, a random impact position is introduced in order to achieve the average

contact behavior. The impact position ξ = ξ0 − ζ is modeled by a uniformly randomly

distributed o�set vector (random variable) ζ ∈ Z, which is an element of the sample space
Z. With this de�nition the solution u(ξ) of the Signorini problem becomes random as

well. The mathematical formalism of this problem can be found in [Ganguly and Wadhwa,

1997; Kornhuber et al., 2014].

The main interest of this computation lies in the average solution

ū
(
d̄N(t),Θ

)
=

∫
Z

(
d̄N(t),Θ, ζ

)
dζ (5.57)

across the sample space Z as a function of the current penetration d̄N(t) which prescribes

a penetration rate ˙̄dN , and the temperature Θ. Here, penetration means the prescribed
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Figure 5.3: Evaluation of the Sobol sequence for the two-dimensional phase shift vector

in the contact domain.

violation of the plane that is de�ned by the highest asperity below the tread block. The

frequency dependence of the solution arises from the viscoelastic properties of the material.

Based on this average deformation state, the average nominal contact pressure response

can be de�ned as a reaction at the Dirichlet boundary ∂uB

P̄
(
d̄N(t),Θ

)
=

1

A

∫
∂uB

P
[
ū
(
d̄N(t),Θ

)]
dA, (5.58)

Finally, the volume average internal dissipation is calculated via

D̄
(
d̄N(t),Θ

)
=

1

V

∫
B

D
[
ū
(
d̄N(t),Θ

)]
dV. (5.59)

In this thesis, the Quasi Monte Carlo method is applied in order to evaluate the para-

metric integral (5.57). With this method, the samples of the uniformly distributed random

o�set vector are generated from a low discrepancy sequence, so that the parametric space

is covered at improved computational e�ort. In the present study the Sobol-sequence is

applied for sample generation. The generator algorithm of this sequence is available as

open-source code as well as in commercial environments such as Matlab®. It hands back

a series of uniformely distributed nested samples, e.g. the two-dimensional example se-

quence illustrated in Figure 5.3. Here, the �rst few samples (red triangles) are already

distributed across the entire parametric domain, and following samples (yellow circles and

gray squares) successively close the empty spaces in between the previous objects without

overlapping. This characteristic is very sophisticated for numerical studies as it allows for

a truncation of the simulation when the average value has reached convergence ∆ū ≤ ε.

Also, it allows for the generation of additional samples if this threshold ε (accuracy of the

mean value) has not yet been reached.
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5.3 Statistical characterization of rough road surfaces

The solution of the random Signorini problem requires a description of the rough road

surface. In order to allow for an exact evaluation of the contact kinematics and to cal-

culate a consistent sti�ness matrix, a C2-continuous surface representation is required in

case of unilateral contact. In this thesis, a C∞-continuous spectral representation was

chosen, which can be obtained by the discrete Fourier transform (DFT). The raw data

is thereby transformed into a power spectrum representing the measured data by a set

of cosine functions. This allows for an e�cient statistical analysis as well as for �ltering,

storage, and evaluation of surface points by an inverse transformation. The procedure of

its construction is brie�y described in the following subsection. Alternatively, the mea-

sured data could have been discretized with spline functions, or the height pro�le of the

surface could have been generated as realization of a random �eld description of the rough

surface with prescribed stochastic properties. The de�nition of the most relevant quanti-

ties and the evaluation of the measured smooth and rough road pro�les and their �ltered

representations are presented in the second part of this section.

5.3.1 Continuous representation

In the context of contact simulations, a continuous analytic description of measured sur-

face data that enables a continuous evaluation of surfaces derivatives is desirable. This

fact allows for a calculation of a continuous normal vector �eld, which is bene�cial for

the convergence of the contact constraint enforcement algorithm. In this study, an ana-

lytic representation is obtained by DFT, for which the discrete spectral power density is

calculated via

Z
(
f (u)
x , f (v)

y

)
=

1

M N

M−1∑
k=0

N−1∑
l=0

z
(
x(k), y(l)

)
e−i2π(

uk
M

+ vl
N ) (5.60)

where k, u ∈ [0,M − 1] and l, v ∈ [0, N − 1] de�ne a discrete set of frequencies. The upper

bound of the resolved frequencies is given by the so-called Niquist frequency fN = 1
2∆l

,

where ∆l is the spatial sampling rate of the measurement device. The surface points

ẑ (x, y) ∈ C∞ can then be calculated by inverse DFT

ẑ (x, y) =
M−1∑
k=0

N−1∑
l=0

|Z (k, l) | cos
(

2π
(
fkxx+ f lyy

)
+ φ

(k,l)
o�

)
, (5.61)

using the spatial frequencies fx and fy, the absolute amplitudes |Z (k, l) | and o�set phase

angles φo�, which are the imaginary parts of log(Z). Note that this evaluation is costly

for surfaces with a large frequency spectrum and needs to be computed successively to
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lmax

wtread

(a) Lower cut-o� 1/lmax

hel

lmin

(b) Upper cut-o� 1/lmin

Figure 5.4: De�nition of cut-o� frequencies in the tread-road interaction simulations,

based on the tread width wtread and the contact element size hel.

determine the closest point in the contact algorithm, see section 4.1. Especially for detailed

tread models these surface evaluations may by far exceed computational costs of solving

the resulting sti�ness matrix.

In order to reduce the size of the frequency spectrum, a bandpass �lter is applied that

removes spatial frequencies without e�ective contribution to the contact interaction so

that fx, fy ∈ [flow, fhigh]. Here, the lower cut-o� frequency flow = 1
lmax

is de�ned by the

maximum wavelength lmax = 2wtread and the width of the tread block wtread, all larger

wavelengths are regarded as waviness. The upper cut-o� frequency fhigh = 1
lmin

is de�ned

by the minimal wave length lmin = 6hel and the contact element size hel, which ensures

that the spatial frequencies can be detected by the mesh resolution. The amplitudes of

frequencies f > fhigh are small and therefore assumed to have no signi�cant contribution

to rolling resistance, as will be shown in subsection 5.4.3.

5.3.2 Statistical characterization of rough road surfaces

The comparison of di�erent measured road pro�les requires their statistical characteriza-

tion, which is de�ned in the DIN EN ISO norms:

� 4287: De�nitions and characteristic quantities of surface properties: linear

� 4288: Methods to determine surface properties

� 13473: Road surface textures

� 11562: De�nition of admissible �lter operations

� 13565: Surfaces having strati�ed functional properties
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� 25178: De�nitions and characteristic quantities of surface properties: areal

The surface characteristics are evaluated for the measured height pro�le z(x, y)with meth-

ods known from digital image processing, see e.g. [Gonzalez et al., 2003]. In this context,

the transformation of the raw data into a power spectrum by means of the DFT allows

for the application of e�cient algorithms.

Following [Brinkmeier, 2007], the surface amplitude a(x, y) = z(x, y)−m(x, y) is intro-

duced �rst, which describes all surface heights as variations about the mean plane m(x, y)

of the measured Nx×Ny points. In the following, a shorthand notation is used to describe

discrete local values by •ij = •(xi, yj). With these de�nitions, the basic unbiased mea-

sures for the characterization of the height distribution are the �rst four discrete statistical

moments of the amplitude:

1. Mean amplitude ā = 1
NxNy

∑Nx
i=1

∑Ny
j=1 aij

2. Standard deviation σ =
√

1
NxNy

∑Nx
i=1

∑Ny
j=1 a

2
ij

3. Skewness S = 1
NxNyσ3

∑Nx
i=1

∑Ny
j=1 a

3
ij

4. Kurtosis K = 1
NxNyσ4

∑Nx
i=1

∑Ny
j=1 a

4
ij

As the distribution has been centered ā = 0, the mean absolute amplitude

āabs =
1

NxNy

Nx∑
i=1

Ny∑
j=1

|aij| (5.62)

is introduced as the most common measure for surface roughness about the mean plane.

Further common quantities are so-called hybrid parameters, e.g. the average slope

S∆q =

√ ∑Nx
i=1

∑Ny
j=1 qij

(Nx − 1)(Ny − 1)
, with qij =

(
a(i+1)j − aij

∆x

)2

+

(
ai(j+1) − aij

∆y

)2

(5.63)

and the developed area ratio

S∆A =
A− A0

A0

with A =
Nx∑
i=1

Ny∑
j=1

Ai,j. (5.64)

It de�nes the relation of nominal surface area A0 and real surface area A, see DIN EN

ISO 25178. Here, the area increments Ai,j can be obtained e.g. by surface tessellation.

A valuable insight into the height distribution of asperities can be obtained by the

Abbott-Firestone or bearing-area curve, which describes the increase in real contact area

over penetration depth, see Figure 5.7. Mathematically, this curve is the cumulative

distribution function of the asperity amplitudes that are involved in the contact interaction.

Additionally, the roughness can also be described as regional or local quantity, which
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results in the formulations of uniformity and entropy of surface heights. Other common

measures for texture descriptions are spectral measures, moment invariants, and principal

components. For further details, the reader is referred to the norms cited above.

An important measure to check the surface randomness is the autocorrelation function

Af (ξ) =
1

A

∫
A

a(x0)a(x0 + ξ)dx0dy0, (5.65)

which describes the correlation of surface heights with respect to the reference point x0

under a certain o�set ξ. At zero o�set Af (0), the function has a maximum, which is the

global maximum for non-periodic surfaces. If the function contains other local maximums

representing o�sets with high correlations of surface heights, a possible periodicity is indi-

cated. In case of periodic surfaces, the function takes its maximal and minimal values at

o�sets that coincide with the wavelength. The indication of a periodic surface allows for

the de�nition of a representative surface element.

5.3.3 Comparison of the measured and filtered road profiles

In this thesis, the rolling resistance contribution of a smooth and a rough asphalt road

surface are compared. Both optically measured surfaces (sized 400x240 mm) served for

the evaluation of tire rolling noise radiation in [Brinkmeier, 2007]. The evaluation of

their autocorrelation functions yields that both surfaces are random, and therefore a

stochastic homogenization using Monte Carlo simulations is performed to evaluate the

average tread-road interaction in subsection 5.4.3. In order to reduce the numerical e�ort

of the surface projections within these contact calculations, the frequency spectra for

both surfaces were �ltered by a bandpass �lter, which severely reduced the number of

frequencies to be evaluated. This �ltering also reduces the oscillation of surface normals,

which is bene�cial for the convergence of the contact constraint enforcement algorithm. In

this thesis, the bounds of the bandpass �lter were chosen to be [1/120, 1/4] 1/mm for the

smooth surface and [1/120, 1/5] 1/mm for the rough surface. In the following the surface

characteristics of the raw data are compared to those of the �ltered spectral representation.

The smooth asphalt surface

In Figure 5.5, the measured smooth surface (a), its bandpass �ltered representation (b)

and the di�erence plot (c) are illustrated. The removal of low-frequency contributions

hardly e�ects the di�erence area, as the measured surface was already very smooth. Only

high-frequency oscillations with relatively small amplitudes are visible. This results in the

optically very good representation of the mesoscopic surface characteristics. In contrast

to that the comparison of the statistical values given in Table 5.1 points out a severe

impact of the �ltering, especially for the higher order moments S and K.
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(a) Measured surface (b) Filtered surface (c) ∆z - plot

Figure 5.5: Comparison of the un�ltered (a) with the �ltered (b) smooth surface represen-

tation by inverse DFT and height di�erence of both surfaces (c).

āabs σ S K S∆q S∆A

Measurement 0.383 mm 0.489 mm -0.443 3.423 0.309 4.375%

Bandpass �ltered 0.262 mm 0.355 mm -1.079 5.180 0.261 3.256%

Absolute percentage Error 32% 27% 144% 51% 16% 26%

Table 5.1: Statistical characterization surface of the smooth asphalt and the in�uence of

the �ltering upon it.

The rough asphalt surface

The rough surface illustrated in Figure 5.6 (a)-(c) clearly reveals that the removal of low-

frequency contributions causes a waviness in the di�erence plot (c), which is superimposed

by high-frequency oscillations. Nonetheless, the comparison of the �ltered and the un�l-

tered surface representations as well as the statistical values given in Table 5.2 shows an

acceptable preservation of the mesoscopic surface characteristics. Note that the ampli-

tudes of the rough surface almost have a Gaussian distribution, which is centered around

the mean value, and for this reason, the skewness is zero and the kurtosis equals 3.

(a) Measured surface (b) Filtered surface (c) ∆z - plot

Figure 5.6: Comparison of the un�ltered (a) with the �ltered (b) smooth surface represen-

tation by inverse DFT and height di�erence of both surfaces (c).
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āabs σ S K S∆q S∆A

Measurement 1.409 mm 1.726 mm 0.109 2.585 0.766 22.781%

Bandpass �ltered 1.173 mm 1.452 mm 0.085 2.746 0.681 19.183%

Absolute percentage Error 17% 16% 22% 6% 11% 16%

Table 5.2: Statistical characterization surface of the rough asphalt and the in�uence of

the �ltering upon it.

Comparison of both surfaces

The comparison of the bearing area curves displayed in Figure 5.7 reveals that the increase

in contact area with penetration depth is much smaller on the rough asphalt surface than

on the smooth asphalt surface, which results in a smaller sti�ness of the tread-road contact.

Consequently, the same applied load results in larger penetrations of the tread block by the

surface asperities, which causes larger local stretches, and �nally results in a higher rolling

resistance than on the smooth asphalt surface. Furthermore, it can be concluded from the
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Figure 5.7: Bearing area over penetration for both measured asphalt surfaces and the

resulting �ltered representations, see Figure 5.5 and Figure 5.6.

comparison of the �ltered and the un�ltered bearing area curves that the �ltering reduces

the �uctuation in surface heights, which results in steeper slopes and therefore in a sti�er

contact behavior. This e�ect can be observed in the results of the convergence study

on the reaction forces presented in subsection 5.4.3. Even though the �ltering severely

changes the surface characteristics, the e�ect on the reaction-force-penetration-relation is

relatively small. The high-frequency small scale asperities basically cause a small o�set

in the resulting reaction forces. Only the peak values of the local pressures are a�ected

by the bandpass �ltering, which are damped out by the volumetric homogenization. This

�nally justi�es the applied �ltering approach in order to reduce the numerical e�ort.
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5.4 Numerical examples

The following numerical examples for the homogenization of rough surface contact scenar-

ios prove the consistency of energy of the presented approach. Furthermore, the material

parameters of the constitutive contact model are identi�ed in order to enable a represen-

tation of the average tread-road interaction. This representation is applied in the rolling

resistance simulations of the next chapter. Initially however, the work�ow for the homog-

enization procedure used in the following examples is explained.

5.4.1 Homogenization procedure

The homogenization of the tread behavior �rst requires the de�nition of the transition

area ∂ΩM which separates the macroscale and the mesoscale problem. This distance of

this plane to the actual contact region must be su�ciently large, so that local oscilla-

tions of the stress �eld are homogenized in the mesoscale model. In case of the present

tread pattern, the transition area was placed at the tread base, where the tread block is

connected to the tire structure, see Figure 5.8. According to this de�nition, the contact

interaction of the tread block with the rough surface is calculated with the separated

mesoscale (homogenization) model. In these simulations, the tread rubber is described by

the thermo-viscoelastic material model in the regime of �nite strains (see chapter 3). Here,

the quantities of interest are:

1. Average nominal pressure P̄
(
d̄N(t),Θ

)
2. Volume average power

〈
P
(
d̄N(t),Θ

)〉
3. Volume average dissipation

〈
D
(
d̄N(t),Θ

)〉
as functions of the applied macroscopic boundary conditions:

� Partial �xation of lateral displacements at the top nodes, resulting in a unilateral

deformation state

� Constant penetration increments ∆d̄N (linear increase in displacement) of the top

nodes prescribing a constant penetration rate ˙̄dN

� Prescribed initial service temperature Θ
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The work�ow to homogenize a rough surface contact scenario is:

1. Calculate the stochastic average of the elastic response of the mesoscale model

2. Identify �tting polynomials for the stretch-penetration relation λ1D(d̄N)

3. Fit elastic response P 1D
el (d̄N ,Θ) = P̄el(d̄N ,Θ) by scaling factor cel

4. Calculate one viscoelastic realization of a load cycle with the mesoscale model

5. Fit viscoelastic response P 1D
visco

(
d̄N(t),Θ

)
= P̄visco

(
d̄N(t),Θ

)
by scaling factor cvisco

In this study, the discrete evaluations of the stretch-penetration relation λ1D(d̄N) obtained

in the numerical experiments are �tted with a polynomial function

λ̃1D(d̄N) =
N∑
i=0

ai
(
d̄N
)i
. (5.66)

The coe�cients ai for this �tting function λ̃1D(d̄N) can be calculated by solving a linear

least squares approximation

min
ai

0.5
∣∣∣λ̃1D

(
d̄N
)
− λ1D

(
d̄N
)∣∣∣2 . (5.67)

Note that the evaluation of the constitutive contact model is very sensitive to the stretch.

Therefore, a good representation of the contact pressure response requires a high approx-

imation precision for the nonlinear stretch-penetration relation. Here, the proper polyno-

mial order depends on the problem, but higher order polynomials are often necessary. In

order to obtain consistent characteristics of the approximated stretch-penetration relation

in the interval [0, h0], the solution is restricted by

λ̃1D(0)
!

= 1, λ̃1D
(
d̄N > 0

)
< 1,

1

h0

≤
(
λ̃1D
)′

(d̄N) ≤ 0 ∀ d̄N ∈ [0, h0], (5.68)

which ensures that the stretch vanishes at zero penetration λ̃1D(0)
!

= 1 and always repre-

sents a compression. Furthermore, the polynomial approximation needs to be monotoni-

cally decreasing in order to obtain a convex potential, which allows for a consistent contact

pressure calculation. Though, the slope may not be larger than for �at surface contact. In

order to solver the optimization problem (5.67), the target function and the restrictions

are rewritten in a matrix notation that can be solved e.g. with the Matlab®algorithm

lsqlin.
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5.4.2 Homogenization of single asperity contact

In this �rst example, the penetration of a tread rubber block by a single spherical asperity is

studied. The tread block has a size of 30x30x20 mm, its bedding has a height of 8 mm and

the asperity diameter is 8 mm. The aim of this example is to identify the dominating e�ects

in tread-road interaction and to illustrate the homogenization procedure. Furthermore,

the accuracy of the representation of this contact scenario in terms of the homogenized

constitutive contact model is validated in this investigation.

The reference solution for the contact interaction of the bedded tread on the sphere is

obtained by computing a full scale �nite element model, which is depicted in Figure 5.8

(a). The model is discretized with 1204 20-node brick elements (5415 nodes) with a spatial

resolution of 1.6 x 1.6 mm above the contact zone. In this �gure, the green tetrahedrons

mark the nodal Dirichlet boundary conditions on the top surface. The application of the

Dirichlet boundary is motivated by the steel belt, which is situated above the tread layer

and assumed to be rigid. This assumption is based on the fact that the steel belt has

∂ΩM

(a) Full scale model

∂ΩM

(b) Mesoscale model

∂ΩM

(c) Macroscale model with

constitutive contact

model (5.29)

(d) Reference solution uz (e) Identi�ed mesoscale

contact behavior uz

(f) Homogenized

macroscale represen-

tation uz

Figure 5.8: (a)-(c) Tread block model (size 30x30x20 mm) with bedding (height: 8 mm) on
spherical asperity (diameter = 8 mm). Green tetrahedrons represent Dirichlet

boundary conditions. (d)-(e) Deformations uz at the maximum prescribed

penetration dN .
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Elastic properties Viscoelastic properties

Chemical shear modulus Gc = 3.0 N/
(
mm2

)
Shear modulus µ1

v = 1 N/
(
mm2

)
Topological shear modulus Ge = 1.3 N/

(
mm2

)
Viscosity η1

v = 0.02 Ns/
(
mm2

)
Stretch restriction δ = 0.3 Relaxation time τ1

v= 0.01 s

Poisson's ratio ν = 0.49 Thermal softening ξ1
v = 10

Thermal behavior

Reference temperature Θ0 = 293 K Heat capacity %0cp0 = 1.7385 N/
(
mm2 K

)
Thermal expansion αΘ0 = 0.000222 1/K kcp = 0.0024 J/

(
kg K2

)
Density %0 = 800 kg/m3 Thermal conductivity kΘ0 = 0.2595 · 10−4 1/K

ωk = 0.004 1/K

Table 5.3: Material parameters for the tread material in the extended tube model (3.20).

much larger material sti�ness than the tread block. The tread rubber is represented by

the thermo-viscoelastic extended tube model (3.20) at a constant temperature of 293 K

using the material parameters listed in Table 5.3. In this calculation, a linear loading

cycle with a prescribed penetration d̄N = 3 mm and a duration of impact T = 0.01 s is

calculated in 90 quasi-static load steps, whilst all lateral displacements are �xed.

This full scale tread model is then divided by the transition area ∂ΩM that is situated at

z = 20 mm into a mesoscale model (see Figure 5.8 (b)) and a macroscale model (Figure 5.8

(c)). The mesoscale model (864 elements, 3731 nodes) is used to identify the equivalent

stretch-penetration relation λ1D(d̄N) and the scaling factors cel and cvisco for the consti-

tutive contact model (5.51) based on the bulk material. In order to realize the assumed

uniaxial compression test, the lateral displacements are held �xed only at the central axes

(ux = 0 at x=0 and uy = 0 at y=0) of this model, which excludes rigid body motions.

In the macroscale model (340 elements, 2165 nodes) only the behavior of the bedding is

approximated by �nite elements. The behavior of the mesoscale tread-sphere interaction

is described by the homogenized constitutive contact model that is applied to the contact

elements. The results of the macroscale model are �nally compared to those of the full

scale reference model in order to prove the accuracy of the presented approach.

The deformation uz in the central plane y = 0 mm for all three simulated models at

the maximum prescribed penetration d̄N = 3 mm is presented in Figure 5.8 (d)-(f). In

Figure 5.8 (d) it can be observed that the large local deformation caused by the asperity

becomes homogeneous towards the interface plane. Due to this fact, the chosen position

for the separation by the interface plane and the prescription of a uniform displacement

on the top side of the mesoscale model are plausible, as this motion precisely describes

the behavior of the interface.
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Figure 5.9: Approximation of the stretch-penetration relation for tread-sphere contact.

First the elastic response of the tread-sphere interaction (Figure 5.8 (b)) is calculated

with the mesoscale model and homogenized. With the results of this step, both the

scaling factor cel for the elastic material parameters and the polynomial least squares

approximation of the stretch-penetration relation λ̃1D(d̄N) are identi�ed for this contact

scenario. This approximation enables the evaluation of the equivalent kinematics of the

uniaxial compression test and can be performed with freely available software packages,

as described in section 5.4. The result of this approximation is depicted in Figure 5.9

and it can be observed that the the numerical results are �t well. Note that due to the

nonlinearity of the resulting stretch-penetration a �fth-order polynomial is required to

obtain a high-accuracy representation in this example. This accuracy is necessary, as the

pressure calculation using the constitutive contact model is very sensitive to the stretch.

Due to this high polynomial order, the least squares optimization must be restricted by

the conditions Equation 5.68. The ful�llment of these restrictions prevents oscillations

and non-monotonic behavior of the approximation, which is of crucial importance for the

stability of the contact algorithm in the further course of this study.

Comparing the resulting nonlinear stretch-penetration relation on the sphere with those

on a �at surface (dashed blue line) it can be observed that the slope is much smaller on

the sphere. The slope on the �at surface is known a priori and forms the upper bound.

The smaller slope on the sphere yields the conclusion that the contact behavior is also

much softer than on the �at surface.

After the homogenization of the elastic behavior, the scaling factor cvisco for the vis-

coelastic material constants is evaluated based on a viscoelastic simulation. Here, the

same linear loading cycle (maximum penetration d̄N = 3 mm, duration of the impact 0.01

s, 90 quasi-static load steps) as used for the full scale model was applied. The scaling

factors for this example were identi�ed as

cel = 1.023 and cvisco = 0.801. (5.69)
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The approximation of the response of the mesoscale model (Figure 5.8 (b)) in terms of

the constitutive contact model (5.51) is shown in Figure 5.10 (a)-(d). Both, the elastic and

the viscoelastic response of the vertical reaction force Rz over the prescribed penetration

d̄N (depicted in Figure 5.10 (a)) are represented very well. Here, the nonlinear reaction

force stems from the hyper-elastic material formulation and the continuous increase in

contact area. As expected, the time-dependent response has a hysteresis that results from

viscoelastic e�ects in the material. This e�ect can be observed also in the volume average

external power Pext, which is therefore unsymmetric and �nally causes a loss of external

energy

Eext =

∫
B

∫ t

t0

Pext dV dt, (5.70)

see Figure 5.10 (b) and (c). Note that one di�culty in optimizing the viscoelastic scaling

parameter cvisco is the accurate representation of the uplift and separation of the tread

block. Due to the applied displacement controlled evaluation of the constitutive contact

model, the uplift e�ect is not properly depicted, which causes the strong increase in dissi-

pation at the end of the load cycle, see Figure 5.10 (c). As a result of this error balancing,

the internal dissipation is depicted with a maximum deviation of ≈ 15% for the present

contact scenario, see Figure 5.10 (c). This error can be reduced by increasing the scaling

factor cvisco, which however causes a severe reduction in the accuracy of the mechanic re-

sponse. This impaired accuracy can be regarded as a restriction of the presented approach

and requires further development in order to be overcome.

The homogenized constitutive contact model is then applied to the macroscale model

(Figure 5.8 (c)) in order to validate the approximation quality with the results obtained

from the full scale model (Figure 5.8 (a)). In this study, both models were simulated

isothermally at di�erent loading frequencies (1 Hz, 10 Hz and 100 Hz) and service tem-

peratures (273 K, 293 K and 333 K). The absolute percentage approximation error was

evaluated at the maximum penetration d̄max = 3 mm and at the end of the load cycle

in each simulation. All resulting errors are depicted in Figure 5.11, which all lie below a

tolerance of 10%. It can be observed that the change in frequency positively in�uences

the error in the reaction force and the external energy at maximum penetration, see Fig-

ure 5.11 (a). This in�uence is plausible, as viscous e�ects are less pronounced when the

period of the load cycle is much larger or much smaller than the relaxation time. On the

other hand, the error in the energy loss at the end of the cycle increases with decreasing

frequency. This fact is based on the di�culty to capture the separation of tread block and

surface accurately. Due to the equivalence of frequency and temperature a similar behav-

ior can be observed for the in�uence of the service temperature, illustrated in Figure 5.11

(b). At lower temperatures viscoelastic e�ects are much more pronounced, see section 3.5.
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Figure 5.10: Comparison of the mechanical behavior of the mesoscale model (MS) and its

representation by the constitutive contact model (1D).

Therefore, the energy loss in the cycle is approximated better, but the resulting reaction

force and the stored external energy at maximum penetration are less accurate. This

behavior arises from the fact that the stretch-penetration relation is not a�ected by the

change of service temperature. Therefore, it can be concluded that for practical applica-

tions the scaling parameters need to be evaluated only at a single temperature. This fact

signi�cantly reduces the testing e�ort compared to covering the entire parametric space

of penetration depth, loading frequency and temperature.

In the next step of this study, a coupled thermomechanical simulation was conducted

in order to demonstrate the extensibility of this approach. Here, the initial temperature

was set to 273 K and a loading frequency of 10 Hz was chosen. Additionally, the material

model was extended by a second Maxwell-element with µ2
v = 0.5 N/(mm2) and η2

v = 0.03

Ns/(mm2) (relaxation time τ 2
v = 0.03 s). Analogous to the previous examples, the param-

eters of the constitutive material model were scaled by the factors given in Equation 5.69,
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Figure 5.11: Resulting approximation error of the macroscale model for di�erent loading

frequencies (a) and service temperatures (b).

which were identi�ed at the mesoscale level model with just one Maxwell-element. The

comparison of the resulting reaction forces over penetration and the external energy over

the time of the load cycle is displayed in Figure 5.12. Even though the dissipated energy

acts as a heat source in this simulation, the increase in service temperature is restricted to

the local area of large deformation, see Figure 5.8 (d). The �gure reveals that the increase

in volume average temperature is negligible, see also [Beyer and Nackenhorst, 2014]. In

this simulation, the absolute percentage error of the maximum reaction force was 4.5%,

that of the maximum stored external energy was 4.4%, and the energy loss at the end of

the cycle contained an error of 5.5%. The high quality of the macroscale representation

allows for the conclusion that the identi�ed scaling parameters are valid for a variety of

material models.
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Figure 5.12: Representation of the thermomechanical contact behavior of a tread block

at 273 K, with a load frequency of 10 Hz and two Maxwell-elements.
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5.4.3 Stochastic homogenization of tread-road interaction

In this second example, the average viscoelastic contact interaction of tread blocks with

the rough and the smooth measured road surfaces (see subsection 5.3.2) is computed. This

stochastically averaged tread-road interaction is then represented by a homogenized consti-

tutive contact model. Analogous to the previous example, a polynomial approximation for

the equivalent uniaxial stretch λ̃1D(d̄N) as well as the scaling cel and cvisco for the material

parameters are identi�ed based on this solution. The ful�llment of these goals requires

the solution of the stochastic contact problem (5.56), introduced in section 5.2, which is

obtained by a Quasi Monte Carlo simulation (QMC-simulation). In this simulation, �rst

the elastic and then the viscoelastic average tread-road interaction is identi�ed on both

road surfaces. In order to demonstrate the practical relevance of the homogenization ap-

Surface 1:

Rough asphalt

(a) Solid tread (S1)

6303 elements, 10938 nodes

(b) Grooved tread (G1)

6647 elements, 11525 nodes

Surface 2:

Smooth asphalt

(c) Solid tread (S2)

2480 elements, 4539 nodes

(d) Grooved tread (G2)

3065 elements, 5493 nodes

Figure 5.13: Tread block models (solid and grooved) used in the QMC-simulations to ob-

tain their average contact behavior on the rough and on the smooth asphalt.
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(a) Lateral view (b) Magni�ed view onto the con-

tact surface

Figure 5.14: Nested FE-meshes of the solid tread block models for the convergence study.

The line colors mark the level of re�nement as follows: red is the �rst, green

is the second, and blue is the third level.

proach, the contact behavior of a solid as well a grooved tread block are calculated and

homogenized. In general, tread designs have a far more complex structure, but this simple

example proves that di�erences in the average structural response due to design changes

can be represented. The resulting constitutive contact models are applied in the next

chapter in order to evaluate the in�uence of surface roughness on rolling resistance.

The �nite element models, which were used to perform the QMC-simulations, are de-

picted in Figure 5.13 together with the surface they are pressed upon. In order to resolve

the asperities of the rough asphalt a �ner spatial resolution (max. edge length 1.41 mm)

than on the smooth surface (max. edge length 2.12 mm) was necessary. For the sake

of computation time a coarser mesh was used on the smooth asphalt. Analogous to the

previous example, all vertical displacements of the top nodes are prescribed, and the lat-

eral displacements are constrained only in the central axis in order to mimic a uniaxial

compression test. Furthermore, the same viscoelastic extended tube model is used with

the material parameters given in Table 5.3. In order to resemble real tread blocks and to

improve numerical stability, all edges in the contact zone were cut at an angle of 45°.

In order to approximate the accuracy of the meshes that were used in the QMC-

simulations a convergence study on the resulting reaction forces was conducted. Therefore,

a rectangular tread block was meshed with three di�erent element size levels, in which the

longest edge of each contact element are 1: 3.54 mm; 2: 1.76 mm; and 3: 0.88 mm. The

lateral view and a magni�cation of the contact area of these meshes are presented in Fig-

ure 5.14 (a) and (b). It can be observed that the mesh of the �rst re�nement level (marked

by the red lines) has a regular structure, which yields tetrahedrons with an optimal aspect
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Figure 5.15: Convergence of the maximum reaction force over mesh size using red re�ned

nested meshes (gray line) compared to the result of the locally �ne meshes

used in the QMC-simulations (black cross) in contact with both asphalt

surfaces.

ratio. Both subsequent levels were constructed by so-called "red re�nement" in order to

maintain the initial mesh quality. These nested meshes also allow for an exact projection

of the results from a coarser to a �ner mesh level. As for the other models, the applied

displacement boundary conditions resemble a uniaxial compression test with a prescribed

maximum penetration of d̄N = 2.5 mm.

The resulting reaction forces at maximum penetration on both surfaces are depicted in

Figure 5.15 (a) and (b). As expected, the reaction forces decrease with element size and

converge to a �nal value that has not yet been reached. Nonetheless, it is concluded that

the accuracy of the meshes S1 and S2 (values at the black crosses) is su�cient for the

intended application in the QMC-simulations later on in this study.

In a second preliminary investigation, the in�uence of the applied bandpass �ltering

(see subsection 5.3.3) on the reaction force was observed. Therefore, the �nest mesh level

of the models used in the previous study (longest edge of each contact element 0.88 mm)

was simulated, which is most sensitive to high-frequency small asperities. The coarsest

�lters used in this study are those, which were later on applied for the QMC-simulations,

with a minimal wavelength (WL-min) of 4 mm on the smooth asphalt and WL-min = 5

mm on the rough asphalt. These �lters were compared to a �ner �ltering with WL-min

= 3 mm, and a quasi un�ltered surface with WL-min = 1 mm. The upper bound of a

maximal wavelength (WL-max) of 120 mm was not altered, as the in�uence of waviness

e�ects was not under observation here.

The resulting reaction force penetration curves for these bandpass �lter levels are

shown in Figure 5.16 . When comparing the di�erent results, a negligible softening of the
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Figure 5.16: Resulting reaction forces over penetration for di�erent bandpass �lters, which
de�ne a wavelength range (Wl) for the surface representations of (a) the

rough asphalt and (b) the smooth asphalt.

reaction forces can be observed when accounting for smaller wave-lengths (larger number

of high-frequency contributions). On the rough surface presented in subsection 5.3.3 (c),

the force penetration curve of the �nest and the next coarser level with a wavelength of

3-120 mm coincide, which indicates that the �ltering does not at all a�ect these results.

For the results obtained on the smooth surface, shown in subsection 5.3.3 (d), the �ltering

has a small o�set e�ect. Here, the block is almost in full contact, so that the contribution

of small frequencies is more strongly pronounced. Nonetheless, the gain of information is

negligible in this study of mesoscale contact interaction. Therefore, the 20 times higher

computation time to evaluate the un�ltered surface with 180000 frequencies, compared

to ≈ 10000 frequencies in the �ltered representation, was avoided due to the fact that it

is computed multiple times in every closest point projection at every integration point in

order to calculate the contact contribution.

The average elastic response of the tread blocks on the road surfaces is identi�ed by solving

the random rough surface contact problem (5.56) using a QMC-simulation. Herein, 600

uniformely distributed samples were calculated, where each realization was located at a

di�erent position φ on the surface that was determined from the Sobol-sequence. Prior to

each calculation, the tread block was positioned on top of the highest asperity in order to

remove unphysical o�sets in the reaction force response caused by waviness e�ects. In this

study, the �nal vertical displacement d̄N was set to 3 mm for all models, and was applied

in 30 load steps on the rough asphalt surface and 25 load steps were used on the smooth

asphalt surface. All simulations in this study were calculated isothermally at a reference
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(a) Rough asphalt (b) Smooth asphalt

Figure 5.17: Deformation of the grooved tread blocks at maximum penetration in one

exemplary realization.

temperature of 293 K using the same thermo-viscoelastic extended tube model as in the

previous studies with the material parameters given in Table 5.3.

In each realization of this QMC-simulation, the contacting surface asperities caused local

deformations of the tread blocks. An example for the deformation of the grooved tread on

each surface is depicted in Figure 5.17. On the rough asphalt surface Figure 5.17 (a), the

large surface asperities cause a quite complex deformation of the tread block with large

local changes in curvature. In contrast to this, the deformation on the smooth surface

Figure 5.17 (b) is rather uniform and exhibits only small waves.

In view of this complex deformation, the solution for the rough surface contact problems

proves to be a challenging task, especially with respect to the robustness of the applied

contact constrained enforcement algorithm. Due to the quasi incompressible material

behavior, the penetration by an asperity is compensated by large tangential relative mo-

tions, which push integration points from peeks to gaps changing the active set. In this

context, instabilities are caused by rapid changes in the surface normal direction due to

high-frequency roughness on top of the mesoscale surface asperities. This e�ect can hardly

be resolved by small load steps or by reducing the penalty parameter used in the Uzawa

algorithm, and it is most pronounced when approaching full contact. The only possibility

to achieve a higher stability in the current algorithmic framework was observed in the

relaxation of the volume preservation restriction by reducing the Poisson ratio.

For these reasons, 34.7% of the solid tread samples and 45.8% of the grooved tread

samples failed on the rough asphalt surface in this QMC- simulation. The number of

completed samples in area sections sized 30x30 mm (tread block size) of the sampling

region is presented in Figure 5.18. It can be observed that the distribution of the completed

samples cover most of the surface. In case of the solid tread block model, three area sections

were not sampled, and four area sections were not covered in case of the grooved model.
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(a) Solid tread: 65.3% completed samples. (b) Grooved tread: 54.2% completed samples.

(c) Fail region

Figure 5.18: Number of completed samples per area section (30x30 mm) for both tread

models on the rough surface and magni�ed view of a surface region (x ∈
[210, 240] mm, y ∈ [90, 120] mm) with no completed samples.

Furthermore, failed samples can be observed to cluster in some regions. In Figure 5.18

(c) a magni�ed view onto the surface of one of these failing sections is shown in order to

point out the reasons for the failure of the contact algorithm. Steeply �anked asperities

can be observed in this area, and accordingly, the material is squeezed into the valleys

causing very high local strains and relative motion. It was therefore concluded that the

obtained results are biased, but still representative. As on the smooth asphalt only 5.2%

of the solid tread samples and 12.5% of the grooved tread samples failed, this distribution

is not depicted.

The resulting average displacements for both models on the rough asphalt are presented

in Figure 5.19. As expected, the average deformation of the contact surface (bottom of the

tread block) is quite homogeneous, but due to the large distance in between the asperities

a certain variation can still be observed, which does not contradict a convergence of the

normal reaction forces. Regarding the evolution of the mean reaction forces at maximum

penetration, the results appears to change by less than 4 N (≈ 1%) from 80 to 100%, which
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Figure 5.19: Average deformation of the tread blocks on the rough asphalt surface.

ful�lls the accuracy requirements of this study, see Figure 5.20. Furthermore, the grooved

tread block has a smaller contact sti�ness than the solid tread block, as its material can

be squeezed to the sides to the block more easily. This fact generally results in larger

dissipation. Additionally, the hypothesis that the thermo-viscoelastic contact behavior

can be represented by an equivalent uni-axial compression test is validated by the fact

that the tangential reaction forces vanish in the stochastic average, which can also be

regarded as a measure for convergence.

The average deformation of the contact surface of both tread blocks on the smooth

surface is ≈ 0 (see Figure 5.21), which results from the structure of this surface being

relatively �at except for some valleys. Due to the surface topology of the smooth surface,

the vertical deformation is much smaller than on the rough surface, where only single

asperities penetrate the tread block. This larger contact area results in a much higher

contact sti�ness of the interface, see [Persson, 2006a], which then causes less dissipation,

as the volume average stretch velocities occurring in a load cycle are smaller. This can also

be observed from the convergence behavior of the reaction forces, in which the di�erence of

the mean value does not exceed 15 N (≈ 1%) for any illustrated percentage of the samples,
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Figure 5.20: Convergence of mean reaction forces for the solid (S1) and the grooved (G1)

tread model on the rough asphalt at maximum penetration.
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Figure 5.21: Average deformation of the tread blocks on the smooth asphalt surface.

which means that only 60 samples would have been su�cient for the stochastic averaging

on this surface, see Figure 5.21.

Finally, the resulting stochastically averaged force-penetration curves and their approx-

imation by means of the homogenized constitutive contact model (5.51) is presented in

Figure 5.23. It can be observed that the resulting contact behavior of all four contact

pairings is depicted with a high accuracy.

After the identi�cation of the average elastic response, an additional QMC-simulation

with 50 samples was conducted in order to obtain the average viscoelastic behavior. There-

fore, the viscoelastic contribution of the extended tube model was set active again. In this

study, a complete load cycle was simulated in each realization, in which the impact dura-

tion of the tread blocks the surfaces was 0.01 s that was subdivided into 60 load steps.

The results of this study revealed that the stored volumetric energy converges after a few

cycles. According to this �nding, this quantity was used to adapt the viscoelastic material

scaling factor cvisco, where the stretch-penetration relation λ̃1D(d̄N) (see Appendix B) and

the elastic scaling factor cel were known from the previous study.

The approximation of the visco-elastic contact behavior is presented exemplary for the
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Figure 5.22: Convergence of mean reaction forces for the solid (S2) and the grooved (G2)

tread model on the smooth asphalt at maximum penetration.
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Figure 5.23: Elastic force-penetration curves on the rough and on the smooth asphalt.

grooved tread block on the smooth asphalt surface in Figure 5.24. Here, the smaller values

of the reaction force (see Figure 5.24 (a)) and the stored volumetric energy (see Figure 5.24

(b)) compared to the homogenization model at maximum penetration result from the small

viscoelastic scaling factor cvisco. This parameter was identi�ed to minimize the di�erence

of the dissipated energy at the end of the load cycle for this scenario. Note that an increase

of this factor results in a better approximation of the force penetration curve as well as

for the stored volumetric energy, but reduces the accuracy of the dissipated energy ED.
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Figure 5.24: Approximation of visco-elastic force-penetration response (a) and stored vol-

umetric energy (b) for model G2 at 100 Hz.
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Table 5.4: Material scaling factors and absolute approximation error of the uniaxial con-

stitutive contact model.

Model cel cvisco Err. Rz(d̄max) Err. max Eext Err. ED

Surface 1: Rough asphalt

S1 1.0 0.49 5.7% 7.2% 8.6%

G1 0.97 0.5 7.8% 8.4% 10.0%

Surface 2: Smooth asphalt

S2 1.045 0.75 6.0% 2.3% 9.2%

G2 1.02 0.72 8.5% 7.0% 9.0%

The scaling factors for the material parameters (see Table 5.3) as well as the approxima-

tion quality for all identi�ed average contact behaviors are summarized in Table 5.4. In

conclusion, the obtained results give a good approximation of the stochastically averaged

tread-road interaction.
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6 Rolling resistance simulations

In this chapter, the numerical framework for the rolling resistance calculation of tires

accounting for stochastically averaged homogenized tread-road interaction is presented.

This extension of the existing institute framework is realized by means of the constitutive

contact model developed in subsection 5.1.3. In this framework, the mathematical model

is formulated in terms of Arbitrary Lagrangian Eulerian kinematics (ALE-kinematics)

presented in [Nackenhorst, 2000, 2004], which was brie�y introduced in section 2.1. The

treatment for frictional contact and transport of internal variables in the isothermal regime

were developed in [Zie�e, 2007; Zie�e and Nackenhorst, 2008]. In order to account for the

temperature dependence of tire rubber compounds, a thermo-viscoelastic material model

as well as an isentropic operator split scheme to resolve the thermomechanical coupling

were introduced in [Suwannachit, 2013; Suwannachit and Nackenhorst, 2013] for frictionless

rolling contact.

The extension of this framework by the homogenized constitutive contact model (see

subsection 5.1.3) enables the quanti�cation of the in�uence of surface roughness and tread

design on rolling resistance. In this context, the developments of [Zie�e, 2007] and [Suwan-

nachit, 2013] have been united, allowing for the calculation of the pressure distribution

within the tire's footprint in tractive rolling contact. In addition, frictional heating e�ects

can be taken into account with the present framework, which is demonstrated in combi-

nation with sophisticated phenomenological friction law for rubber friction presented in

[Huemer et al., 2001a].

In the following, the algorithmic treatment of the di�erent nonlinearities occurring in

the coupled thermomechanical problem of tractive rolling contact is brie�y introduced.

Thereafter, numerical examples demonstrating the capability of the extended numerical

framework to quantify the in�uence of surface roughness on rolling resistance are presented.

The amount of increase in rolling resistance is compared to the results presented in [van

Haaster et al., 2015; Willis et al., 2014], who measured a di�erence of 8-10% in rolling

resistance between a coarse and a smooth asphalt.

6.1 Statement of the mathematical problem

As a consequence of the severe temperature dependence of tire rubber, the calculation of

the rolling resistance requires the solution of both the balance of linear momentum (2.40)
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and the heat conduction equation (2.49). In the context of stationary rolling contact the

choice of an ALE-kinematic formulation enables the expression of material time derivatives

(2.23) in terms of spatial gradients for both transient problems. Due to this fact, they

can be reformulated as boundary value problems without neglecting inertia e�ects, see

[Nackenhorst, 2000; Suwannachit, 2013]. As a result of the kinematic description, material

particles are not �xed to the mesh and therefore the evolution of the material history

describing inelastic e�ects, e.g. viscoelasticity (3.45), cannot be calculated with algorithms

developed in Lagrangian kinematics. The same applies for the direct enforcement of the

stick condition (4.7) in case of tractive rolling contact.

In the present framework, these di�culties are solved within a staggered scheme, in

which the material time derivative (2.23) is separated into

α̇v =
∂αv

∂t

∣∣∣∣
X

+ Gradα(i)
v ·w (6.1)

a Lagrangian contribution α̇v = ∂αv

∂t

∣∣
X
, assuming w = 0, and an advective Eulerian

part 0 = ∂αv

∂t

∣∣
X

+ Gradαv ·w. By means of this separation, the material history can be

integrated using algorithms developed in Lagrangian kinematics within the local evolution

phase. The updated material history (internal variables) is then transported about an

angular increment ∆φ in the advective transport phase. The size of this angular increment

in conjunction with the angular velocity ω determines the incremental time step ∆t =

∆φ/ω in the local evolution phase.

In this thesis, the thermo-viscoelastic rolling contact problem is solved with a modi�ed

version of the three-phase fractional step approach presented in [Suwannachit, 2013] in

order to enable the calculation of the tire's rolling resistance. In this fractional step

approach, the thermomechanical coupling is treated with the isentropic operator split

scheme (see section 3.4) whilst the material history evolution is calculated in incremental

time steps, which results in the following subproblems:

1. Mechanical tractive rolling contact (6.4)

2. Stationary heat conduction in the rotating system (6.13)

3. Advective transport of material history (6.18)

The nonlinear Galerkin approximations of the mechanical and the thermal subproblem

are both obtained with the Newton-Raphson method, see section 3.4. Then, the advective

transport problem of the internal variables in the tire structure is solved using the time

discontinuous Galerkin method. In case of using the newly developed constitutive contact

model to represent the thermo-viscoelastic tread-road interaction, this transport problem



6 Rolling resistance simulations 89

also needs to be solved in the contact area. After the advection problem is solved, the

local internal variables are updated. Note that the transport of the internal variables

alters their contribution to the local entropy (3.49) calculated in the thermal phase. The

consistent solution of the isentropic mechanical problem in the next time step therefore

requires a recalculation of the local entropy after the transport phase has been completed.

At the end of each time step the convergence of the material history evolution∥∥∥Ȧv

∥∥∥
max

= max

√∑(
Ȧv

)2

ij
< tol (6.2)

is checked, so that the solution ful�lls the stationarity condition (2.25). The convergence

of the material history evolution depends on the ratio of relaxation time to angular velocity

and is in general reached after few revolutions. Finally, the rolling resistance as well as

the tractive response can be calculated in a post-processing step.

6.1.1 Mechanical subproblem

Following the discussion in [Nackenhorst, 2000], the direct evaluation of material accelera-

tion (2.27) requires a C1-continuous discretization of the body. Alternatively, [Govindjee

et al., 2014b] introduced the velocity as primary variable in a C0-continuous approach.

However, both approaches result in non-symmetric system matrices.

This issue was solved in [Nackenhorst, 2000] by reformulation of the inertia term and

application of the divergence theorem, which results in∫
B

(%Gradv ·w)·δudV =

∫
∂B

%δu·vw·NdA−
∫
B

v·δuDiv(%w)−%v·(Gradδu·w)dV. (6.3)

Here, the �rst term represents the momentum �ux across the system boundary, which is

neglected assuming w ·N = 0, see [Nackenhorst, 2000]. Later on, it has been shown in

[Zie�e, 2007] that this assumption is not valid for discretized structures in general and

therefore the neglect causes jumps in the inertia forces along the surface in case of varying

circumferential element size. The last term vanishes due to conservation of mass in the

rotational symmetric body Div(%w) = 0. The remaining second term can be evaluated

directly in terms of a C0-continuous discretization and results in a symmetric contribution

of the inertia term, which is characteristic for conservative systems. The mechanical weak

form of the stationary rolling contact problem then reads

Gu(u, δu)
!

= 0 =

∫
B

−%v · (Gradδu ·w) + S : δE dV +

∫
∂tBt

t · δuda+

∫
∂cB

T c · δudA. (6.4)

In this study, body forces are neglected. The boundary conditions are de�ned as

u(X, t) = ū(X, t) ∀X ∈ ∂uB and σ(x) · n(x) = t(x) ∀x ∈ ∂tBt, (6.5)
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on the separated boundary ∂B = ∂uB∪∂tB∪∂cB∧∂uB∩∂tB∩∂cB = ∅ using the projection
∂tBt = Φ(∂tB). Here, the surface tractions t are de�ned in the current con�guration Bt
in order to account for follower loads such as the in�ation pressure

tIn� = −pIn�n(x), (6.6)

which acts along the surface normal n(x) with the magnitude pIn�, see [Wriggers, 2008].

In this thesis, the tire is assumed to be in contact with a �at and rigid surface, which

has a constant surface temperature and moves with a prescribed velocity vR. The non-

penetration condition (4.23) is enforced with the Augmented Lagrangian multiplier method

presented in section 4.3. Thus, no algorithmic changes are required as the normal contact

contribution directly constrains the relative deformation u. However, due to the fact that

material particles are not �xed to the mesh, the stick condition ṡ = 0 cannot be enforced

using standard formulations, which are based on the direct evaluation of the relative slip.

In this thesis, the stick condition is enforced with the algorithm presented in [Zie�e, 2007].

Here, the relative slip s is introduced as an additional nodal degree of freedom in the

contact zone, which is formulated in the convective coordinates of the master surface. By

means of this, the sliding velocity is de�ned by

ṡ = (c− vR) ·A = Grads ·w, (6.7)

so that the slip can then be calculated in a weak sense by solving∫
∂cB

((c− vR) ·A) Gradδs ·w dA =

∫
∂cB

(Grads ·w) Gradδs ·w dA, (6.8)

in which A = {a1,a2} is a tangent vector matrix, δṡ = Gradδs ·w is the material time

derivative (2.23) of the variation of slip, and the left side of the equation is the local sliding

velocity in terms of the convective speed. The solution of this boundary value problem

requires Dirichlet boundary conditions s = s0, which are imposed on the leading edge of

the footprint, where material particles enter the contact zone. The global slip distribution

can be interpreted as the result of the local slip evolution

s = s0 +

∫ t

t0

ṡdτ (6.9)

of a material particle traveling through the contact zone. By means of this approach,

both the standard return mapping algorithm formulated in Lagrangian kinematics and

phenomenological friction laws can be applied. In this context, the sliding velocityṡ can be

used directly for the evaluation of the friction law (4.26) and the calculation of friction loss,

which causes frictional heating. Note that in case of linear shape functions in the element
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Figure 6.1: Relative kinematics of the projected integration point.

formulation the common approach to integrate the contact contribution using additional

two-dimensional membrane elements, which discretize the contact surface of the three-

dimensional body, does not allow for a consistent computation of the convective velocity c.

These linear membrane elements can only depict in-plane deformations and therefore the

required displacement gradient Gradu cannot be calculated correctly, see [Chapelle and

Bathe, 2011] for details. In this case, the integration needs to be performed on the sur-

face of the parent element, so that Gradu can be evaluated correctly and c = w for u = 0.

Accounting for mesoscale tread-road interaction

In order to account for homogenized mesoscale tread road interaction in macroscale rolling

resistance calculations, the constitutive contact model (5.51), which has been developed in

subsection 5.1.3, is attached to the contact elements. This treatment results in a nonlinear,

thermo-viscoelastic regularization of the normal contact constraint, see Figure 6.1. Here,

the penetration d̄N is assumed to compress the tread layer with initial height h0, so that

its current height is

h(d̄N) = h0 − d̄N . (6.10)

By means of this kinematic assumption, the contact contribution can be directly integrated

on the contact boundary of the tire model.

6.1.2 Thermal subproblem

In order to obtain the stationary temperature distribution the heat conduction equation

(3.10) needs to be solved. Following the argument presented in [Suwannachit, 2013], the

calculation of the entropy rate is rede�ned as

ṡ = ṡe + ṡĉ + ṡve = − ∂s

∂C
: Ċ − ∂s

∂Θ
Θ̇−

∑
i

∂s

∂α
(i)
v

: α̇(i)
v , (6.11)
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which can be separated into a thermoelastic contribution ṡe, the change of heat capacity

ṡc and a thermo-viscoelastic part ṡve. The entropy rate was then reduced to

%ṡ = −∂Ψ(C,Θ)

∂Θ
Θ̇ = ĉ(Θ)Θ̇ (6.12)

with
ṡe
Dint

≈ 0 and
ṡve
Dint

≈ 0,

neglecting thermoelastic ṡe and thermo-viscoelastic ṡve structural heating e�ects caused by

mechanical deformation, which are of minor in�uence compared to the viscous dissipation.

The remainder is the rate at which thermal energy is stored in the material.

The weak form of the heat conduction equation then yields

GΘ(Θ, δΘ)
!

= 0 =

∫
B

(ĉ(Θ)GradΘ ·w −Dint − %r) δΘ + GradδΘ ·Q dV

+

∫
∂qB

QNδΘ dA+

∫
∂cB

QcδΘ dA, (6.13)

which is subjected to the following boundary conditions

Θ(X, t) = Θ̄(X, t) ∀X ∈ ∂ΘB and Q(X, t) ·N (X) = QN(X, t) ∀X ∈ ∂qB.(6.14)

The boundary of the domain ∂B is separated into a non-contact set ∂tB in which general

heat �uxes QN are applied, and into a contact part ∂cB with dominant heat conduction

Qc, both of which ful�ll ∂B = ∂ΘB ∪ ∂qB ∪ ∂cB ∧ ∂ΘB ∩ ∂qB ∩ ∂cB = ∅. Due the applied
operator split scheme, the displacement is constant in the thermal solution phase ∆u = 0

and therefore the boundary separation does not change throughout a load step.

The internal heat �ux in the material is calculated via

Q = −kΘ0(Θ)C−1 ·GradΘ with kΘ0(Θ) = [1− ωk(Θ−Θ0)], (6.15)

which depicts a linear temperature dependence of the thermal conductivity with a softening

parameter ωk. The heat �ux into the ambient air is computed with

QN = γenv(Θ−Θenv), (6.16)

at non-contact surfaces, where γenv is a convection coe�cient and Θenv is the environmental

temperature. The heat �ux in the contact zoneQc de�ned in (4.20) accounts for conductive

heat transfer over the contacting asperities, and for mechanical dissipation due to friction

loss and viscous dissipation. It is assumed that the dissipation is completely transferred

into a heat �ux, of which only a fraction ρD enters the tire whilst the remainder 1− ρD is

transferred into the road. In this thesis, the heat up of the road surface is neglected due

to the high traveling speed of the tire. Analogous to the convective heat transport, the

heat conduction coe�cient is also assumed to be constant for the sake of simplicity.
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6.1.3 Advective transport of material history

The �nal step in the staggered approach for the treatment of the present thermo-

viscoelastic rolling contact problem is the advective transport of material history, see

[Zie�e, 2007]. In this phase the Eulerian part ∂αv

∂t

∣∣
X

+ Gradαv · w = 0 of the mate-

rial time derivative (6.1) is computed in order to enable a time-discrete evaluation of the

material history evolution (3.45) in the next load step. Therefore, the current values of

the deviatoric part of Green-Lagrange strain Ē, which yields the stretch rate ˙̄E, and the

internal variables α(i)
v for each Maxwell-element are transported by an angular increment

∆φ. In addition to the transport problem in the bulk material, the penetration dN and

the internal variables h(i)
N and h(i)

T (5.53) describing the viscoelastic material response of

the tread block in terms of the constitutive contact model have to be transported along

the contact surface as well.

Before solving the transport problem, a L2-projection onto to the nodes is performed

for all local material history quantities (•), which are calculated at the integration points

during the mechanical phase. The advective transport problem for the nodal values reads

∂(•)
∂t

∣∣∣∣
χ

+
∂(•)
∂χ
· ∂χ
∂t

= 0. (6.17)

Following [Zie�e, 2007], this transport problem is treated with a time-discontinuous

Galerkin method (TDG-method). This technique is based on the idea that the trans-

ported quantity (•) can be discontinuous at the endpoints of time-intervals (temporal

nodes). In order to illustrate this approach, the integration over the current time interval

[tn, tn+1], which is the successive interval of [tn−1, tn], is observed. Here, the discontinuity

at tn is described by the jump operator [[•]] = •+ − •−, where •− is the nodal value at

the end of the last time interval and •+ denotes the value at the beginning of the current

interval. Now, the aim is to calculate the integral over the current time interval whilst

minimizing the jump at tn. Here, the value •− is known from the last solution.

In order to obtain this solution, a temporal shape function η is introduced to discretize

the time interval. The introduction of this shape function in combination with the de�ni-

tion of the jump yields the weak form of the advection equation∫
Tn

∫
B

ηn
(
∂(•)
∂t

+
∂(•)
∂χ
· ∂χ
∂t

)
dt dV +

∫
B

ηn−1
(
•+ − •−

)
dV = 0, (6.18)

where ηn−1 denotes the shape function value at tn, and the second term can be regarded

as a residual. Note that the discretization of this problem results in an equation system

sized nspace × ntime.
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6.2 Numerical examples

In this chapter, the application of the developed constitutive contact model, see subsec-

tion 5.1.3, is demonstrated in coupled thermo-viscoelastic rolling resistance calculations of

solid rubber wheels and air-in�ated radial tires. In a �rst example, the convergence of the

calculated rolling resistance in dependence of angular increment size is studied for a rubber

wheel. Then, the in�uence of surface roughness on the rolling resistance is quanti�ed for

this rubber wheel. In the last example, the in�uence of surface roughness on the rolling

resistance is investigated for a large scale radial tire model.

Before analyzing the results of these calculations, some preliminary information regard-

ing term de�nitions are given as well as a summary of the computation algorithm. A good

overview of basic rolling contact phenomena such as slip, traction, and rolling resistance

can be obtained from the textbook by [Johnson, 1985].

In the following tractive rolling contact simulations, a measure is required for the classi�-

cation of di�erent driving states (acceleration, free-rolling, braking and cornering). There-

fore, the global slip factor is de�ned as

s0 =
vr − ω × r0

|ω × r0|
, (6.19)

which prescribes a percentile di�erence of convective velocities. Here, |ω×r0| = ωr0 is the

convective velocity in the circumferential direction a1 of the undeformed tire that rotates

around a central axis. The global slip factor consists of circumferential slip

sc =
vr · a1 − ωr0

ωr0

, with


< 1, acceleration slip

= 0, free rolling

> 1, braking slip

(6.20)

(6.21)

and lateral slip sl in the direction a2 with

sl =
vr · a2

ωr0

, with

6= 0, cornering

= 0, straight rolling.
(6.22)

Furthermore, the road velocity vector can be expressed in terms of a slip-angle αs as

vr = vr(cosαsa1 + sinαsa2), with vr = ‖vr‖. (6.23)

In order to solve the nonlinear rolling contact problem and to gain better numerical

convergence, the applied loading and displacement boundary conditions are separated

into increments, which are applied in load steps. The global solution is then obtained in

the following solution phases:
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1. Initialization phase:

� Apply in�ation pressure load

� Apply angular velocity ω in order to calculate inertia e�ects

2. Frictionless, unilateral contact phase:

Apply vertical displacement boundary conditions in nvert increments

3. Tangential contact phase:

� Calculate stick state

� Apply prescribed slip factor in nslip increments

4. Material history evolution:

� Calculate advective transport of internal variables using nadv angular incre-

ments per revolution

� Convergence check: If
∥∥∥Ȧv

∥∥∥
max

< tol steady state is reached

In every load step of these solution phases, the complete algorithm for the solution of the

mathematical problem stated in section 6.1 is executed. Therein, the advective transport

problem is treated with an angular increment size of

∆φ =
2π

nadv
, with a time increment size of ∆t =

2π

ωnadv
. (6.24)

Due to this treatment, the number of load increments nvert and nslip does not a�ect the

�nal solution and the rolling resistance by varying time step sizes. In case of thermoelas-

tic material behavior, this algorithm reduces to the �rst three phases, and no advective

transport problem needs to be solved.

Finally, the rolling resistance is calculated as a torque around the central axis

MR =

∫
∂cB

P (X)X ·A1 dA, (6.25)

which results from the nonsymmetry of the contact pressure distribution. The rolling

resistance coe�cient is then evaluated via

CRR =
MR

‖r0 × FN‖
, (6.26)

where r0 is the initial radius, and FN is the axial load.
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Figure 6.2: Rubber wheel boundary conditions at the central axis (green tetrahedrons).

6.2.1 Convergence study of material history evolution

The numerical convergence of the stationary solution of material history evolution (6.1)

strongly depends on the number of angular increments (time steps) nadv per revolution.

These increments determine the angular distance over which the material history is trans-

ported using the time discontinuous Galerkin method (TDG). Further factors of in�uence

are the mesh size h, the order of temporal shape functions ot, and the ratio of relaxation

times τi to angular velocity ω.

The focus of this study lies on the in�uence of the number of angular increments per

revolution, on the order of temporal shape functions used for the TDG, and on the ratio

of relaxation time to angular velocity. For this reason, the stationary rolling contact of a

solid rubber wheel is observed by varying these parameters of in�uence, but the mesh size

and the material parameters are the same in all calculations.

The discretized model of the solid rubber wheel is depicted in Figure 6.2. Here, the

green tetrahedrons mark the bounded nodes of the central axis, where all mechanical and

thermal degrees of freedom are held �xed in all following calculations. The wheel has a

rectangular cross section, a radius of 60 mm, a width of 30 mm, and a diameter of 40

mm rim. The model is meshed with 3520 8-node brick elements. The exterior surfaces

are covered by a total number of 1144 4-node shell elements, which serve as integration

domains for the contact interaction and the convective heat transport. All non-contacting

surfaces allow for a convective heat �ux, and in the contact area (footprint) heat can be

transferred into the ground by heat conduction. The material parameters of the applied

thermo-viscoelastic material are displayed in Table 5.3.

The convergence of axial torque for the rubber wheel on the �at surface was calculated

at angular velocities of ω = 5, 10, 20 and 50 rad/s, see Figure 6.3. It can be observed
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Figure 6.3: Convergence of torque for the solid rubber wheel over angular increments.

Solid line: 1st-order TDG, Colored Markers: 2nd-order TDG.

from the results of this study that the necessary number of angular increments in order

to obtain convergence increases with decreasing angular velocity here. This comes along

with an increase in axial torque for the presented results. In the present case of a single

relaxation time, the axial torque, which is related to the rolling resistance via (6.26),

has a maximum at a speci�c angular velocity (frequency) and tends towards zero for

ω → 0 and also for ω → ∞. A similar behavior has been observed in the numerical

study presented in [Suwannachit, 2013]. This e�ect is induced by the viscous material

behavior and depends on the ratio of relaxation time τ (0.01 s in this study) to angular

velocity ω. Here, high rolling resistance is caused by a steep gradient in the internal

variable �eld, e.g. the distribution of α11 depicted in Figure 6.4. The precise solution

of this convective transport problem requires small time steps (angular increment). For

large angular increments implicit methods such as the TDG tend to introduce arti�cial

numerical di�usion, which causes a softening of the gradients in the transport phase and

results in an underestimation of the rolling resistance. The observed behavior agrees with

the �ndings in [Govindjee and Mihalic, 1998], where a reduced in�uence of the advective

transport was observed for small relaxation times.

These basic e�ects of the viscoelastic material response in rolling structures are pro-

nounced even more strongly in case of thermo-viscoelastic material behavior. Due to the

internal dissipation, the stationary temperature increases (see Figure 6.4 (b)) causing an

increase in elastic material sti�ness and a reduction of viscous e�ects.

In addition to the convergence behavior with angular increment size using linear tem-

poral shape functions, the e�ect of quadratic temporal shape functions on the solution is

studied. In general higher order shape functions allow for higher accuracy in the advective
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Figure 6.4: Internal variable distribution α11 at ω = 5 (a) and increase in maximum

stationary temperature Θ over angular velocity (b).

transport of �elds with steep gradients. The results of the second order TDG-solutions

for the respective angular velocity and the number of angular increments per revolution

are illustrated by the colored markers in Figure 6.3. In this example, the improvement by

higher order shape functions is rather small. This contradiction can be explained only by

the necessity to capture local sources above the contact zone. In fact, the resulting rolling

resistance for large angular increments is smaller than the solution using �rst order TDG

with the same increment size. No improvement of numerical e�ort (total number of load

steps) for obtaining the wheel's rolling resistance could be achieved. For all angular incre-

ment sizes the solution required the same total angle, e.g. ≈ a half revolution is required

at ω = 20 [rad/s] to obtain ‖∆A‖ < 10−8. This con�rms the dominant dependency on

the ratio of relaxation time to angular velocity. Analogously it can be said that if the

relaxation time is larger than the period of an entire revolution, the material has not fully

relaxed when it is reloaded, which consequently requires more increments (revolutions) to

reach the steady state.

6.2.2 Rolling resistance calculation of a rubber-wheel

In this example, the presented numerical framework is applied in order to study the in�u-

ence of surface roughness on the rolling resistance of a solid rubber wheel. Therefore, the

rolling resistance on a �at surface is compared to the results on the rough and the smooth

asphalt. This study also aims for the evaluation of the modeling error in this application

resulting from the assumption of a uniaxial compression. In this sense, an additional

constitutive contact model (CCM) is introduced, which represents the contact behavior

of the tread block on a �at surface. This representation is realized with the equivalent
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Figure 6.5: Stationary dissipation (mW/mm3) in the rubber wheel.

stretch-penetration relation

λ̃1D(dN) = 1− dN/h0,

in which h0 is the initial tread height of 20 mm, and the scaling factors for the material

parameters are cel = cvisco = 1.

For this study, the same �nite element model of a solid rubber wheel with a diameter

of 60 mm is studied at an angular velocity of ω = 20 rad/s, see Figure 6.2. Here, the

reference solution on the �at surface is calculated using the Uzawa algorithm with a gap-

tolerance of dN <0.001 mm. The rough surface contact interaction is represented by

adding the constitutive contact model (CCM) to the contact interface. In order to avoid

confusion of results obtained by di�erent models the results obtained with the �at surface

representation are called CCM �at, those for the smooth asphalt surface CCM smooth

and the results on the rough surface are denoted CCM rough.

The reference model is pressed onto the �at surface with a prescribed displacement

of 4 mm, which causes a reaction force of ≈ 1950 N. The displacements of the other

models were adapted so that the same normal reaction force was obtained, resulting in 6

mm for the CCM �at model, 6.7 mm for the CCM smooth model, and 8.5 mm for the

CCM rough model. Note that the larger normal displacement to enforce the axial load is

caused by the softer contact compliance of the constitutive contact models. Again, heat

can be transferred over all free surfaces as well as in the footprint of the wheel. In order

to investigate only the in�uence of the constitutive contact model frictionless rolling is

assumed in this study.

In Figure 6.5, the resulting dissipation for the stationary rolling reference model is

illustrated for the entire wheel and its central cross section. The highest rates in the

structure occur above the leading edge of the contact zone (left of the center). Furthermore,

the view into the cross section reveals that this e�ect concentrates at the lateral edges, at

which the material is squeezed outwards due to its quasi-incompressible behavior.

Due to the viscous dissipation, the temperature increases inside the wheel. The resulting

temperature distribution is quite homogeneous within the structure, reaching its maximum
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Figure 6.6: Stationary temperature (K) distribution.
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Figure 6.7: Contact pressure distribution in the center of the footprint.

value in the center of the cross section, see Figure 6.6. This fact results from the �xed

temperature at the rim and the applied �ux boundary conditions on the external surfaces.

The resulting contact pressure distributions in the circumferential center line of the

footprint for the di�erent calculations are illustrated in Figure 6.7. It can be observed

that the contact area increases due to the application of the constitutive contact model

resulting in smaller nominal pressures. The softer response of the CCM model with the

�at surface approximation compared to the reference solution results from the neglect of

shear deformations. As expected, this e�ect increases for larger surface roughness, due

to the reduction of contact sti�ness. Furthermore, all contact pressure distributions are

unsymmetric, which results from the viscous e�ects in the rubber material and yields

the rolling resistance. This nonsymmetry of the contact pressure distribution is most

pronounced on the rough surface.

The resulting interface temperatures, axial torques, the percentile di�erence in axial

torque compared to the CCM �at model and the rolling resistance coe�cient are sum-

marized in Table 6.1. It can be observed that the application of the constitutive contact
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Table 6.1: In�uence of surface roughness on the stationary response, where the model

with the �at surface approximation (CCM �at) serves as base value.

Model Θmax (K) Mp (Nm) ∆Mp (%) CRR

Reference 329.4 0.458 -59.3 0.0017

CCM �at 321.3 1.126 - 0.0113

CCM smooth 320.4 0.809 -28.2 0.0082

CCM rough 318.3 1.202 6,7 0.0123

model in the contact interface results in an increase in rolling resistance, which is plausi-

ble as the constitutive material model only depicts normal contact interaction. The softer

response of CCM �at model, approximating the �at surface interaction, consequently re-

sults in higher rolling resistance compared to reference solution. Furthermore, a positive

correlation of rolling resistance and surface roughness is observed in between the smooth

and the rough asphalt surface, resulting in a 48% increase of torque. But the comparison

of the results for the �at and the smooth surface yields a negative correlation, which is

not in accordance with experimental observations. This �nding points out a weak point of

the current approach to depict the rolling resistance contribution of surface roughness for

rubber wheels with small radius. It is assumed that this e�ect is related to large curvature

of this model, which causes a lot of shear strain that is not be depicted by the present

approach.

6.2.3 Rolling resistance calculation of a tire

In this last example the rolling resistance contribution of the tread-road interaction is

quanti�ed for detailed large scale models of radial tires. The tire model used in this

study and its cross section are depicted in Figure 6.8 (a) and (b). Analogous to the

previous example the green tetrahedrons illustrate bounded nodes with Dirichlet boundary

conditions prescribing displacements and temperature. This detailed model is discretized

by 12690 8-node brick elements and consists of 16 di�erent material layers, including a steel

belt and a �bre-reinforced carcass. The entire model is covered with membrane elements,

which serve as integration domains for the contributions of the contact interaction, the

in�ation pressure and the convective heat �ux.

In this study, the in�ation pressure is modeled as a perpendicular follower load with a

magnitude of 0.32 MPa. Additionally, a vertical displacement of 30 mm is applied at the

boundary nodes, which results in an axial load of ≈ 10600 N. The angular velocity of the

tire is set to 50.95 rad/s, which is equivalent to a traveling speed of ≈ 80 km/h. Aiming

for the calculation of the in�uence of surface roughness in this study, 0% global slip was
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(a) (b)

Figure 6.8: Tire model with boundary conditions (green tetrahedrons) (a) and cross sec-

tion with the 16 di�erent material groups (b).

prescribed assuming a free rolling trailer tire. For the solution of the thermal problem

the rim temperature was kept constant at the initial temperature of 293 K. The heat �ux

into the ambient (293 K) and the contained air (313 K) was modeled with (6.16) using

the heat conduction coe�cients presented in [Behnke and Kaliske, 2015], which amount

to γenv = 50 W/(m2 K) and γcont = 20 W/(m2 K).

The material behavior of the tire rubber was represented using the thermo-viscoelastic

material model presented in section 3.2 using the Mooney-Rivlin model (3.19) for the

thermoelastic response. The viscoelastic material parameters for the di�erent layers were

adapted from [Zie�e, 2007; Suwannachit, 2013]. Furthermore, this model was combined

with a fraction layer approach to account for �bre-reinforcement, where the mechanical

behavior of the �bres was modeled with the exponential law presented in [Polley, 1999],

see Appendix C for details. The material parameters for this exponential model were

obtained using the Matlab®Curve Fitting ToolboxTM approximating the sti�ness of the

bilinear approach used in [Zie�e, 2007]. The thermal material parameters stem from the

works of [Höfer, 2009; Hofstetter, 2004; Suwannachit, 2013]. In this study, rubber friction

is modeled with the pressure, temperature and velocity dependent friction law (4.26)

presented in [Huemer et al., 2001a].

The calculation was executed with the algorithm described in the beginning of this

section. In a �rst step, the internal pressure was applied, which was followed by an

incremental increase of normal displacement and angular velocity (10 steps). Thereafter,

contact tractions were calculated using the algorithm suggested in [Zie�e, 2007]. After

the calculation of contact tractions, the steady state of the material history evolution

was iterated. In this last phase of the algorithm the mechanical and thermal subproblem
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(a) Von Mises stress (MPa) (b) Viscous dissipation (mW/mm3).

Figure 6.9: Distribution of von Mises stress (a) and dissipation (b) depicted in the tire

cross section above the contact region.

as well as the transport of material history were solved repeatedly until the convergence

criterion was ful�lled. In the entire calculation the angular increment for material history

transport was 7.2°, which is equivalent to 50 transport steps per revolution.

In order to point out the in�uence of surface roughness on the thermomechanical be-

havior, the structural response of the reference model rolling on a �at surface, is observed

�rst. The distribution of the von Mises stress in the tire's cross section is illustrated in

Figure 6.12 (a), where the maximum value was limited to 20 MPa in order to improve

the contrast in the contact zone. The maximum stress value of 35 MPa, which occurs in

the bead wire, was not subject of observation in this study. It can be observed that the

highest stresses occur in the central steel belt, which is much sti�er than the tire rubber.

Therefore, the belt can ensure the �at shape of the tire's tread cap by taking up the in�a-

tion pressure and resisting the bending, which results from its connection to the sidewalls

that transfer the axial load into the ground. This construction results in a larger contact

area and a more homogeneous distribution of contact pressure in the footprint compared

to a bias tire.

Due to the much higher material sti�ness of the belt, the adjacent rubber layer is sub-

jected to large local strains at high strain rates, which causes a large amount of dissipated

energy in each revolution, see Figure 6.12 (b). The mechanical dissipation is transferred

into heat and thereby signi�cantly increases the tire's service temperature. The resulting

temperature of the tire model and the temperature distribution within the cross section

are shown in Figure 6.12. As a consequence of the high local dissipation and the low

conductivity of tire rubber compounds the maximum temperature is situated next to the

belt. On the exterior and also on the interior surfaces the temperature decreases due to
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(a) (b)

Figure 6.10: Stationary temperature distribution (K) in the tire structure (a) and in its

cross section (b) for the free rolling reference model on a �at surface.

convective heat �ux. This result is in good agreement with the combined experimental and

numerical study presented in [Behnke and Kaliske, 2015]. Note that only small frictional

heating occurs due to the calculation of free rolling.

In order to study the in�uence of surface roughness on the thermomechanical behavior of

the tire, the results using the constitutive contact model representing the solid tread block

on the smooth and the rough surface are compared. The smaller contact sti�ness of the

homogenized contact interaction with the rough surface results in smaller local pressures,

which are distributed more homogeneously over a slightly larger footprint than for the

smooth surface, see Figure 6.11 (a) and (b). These higher local pressures result in larger

maximum circumferential tractions on the smooth asphalt surface, which can be observed

in Figure 6.11 (c) and (d). Here, the steep decrease at the trailing edge value results

from an exceed of the friction limit. In this area the sliding material causes frictional

heating, which is found to be dominant in the contact area, see Figure 6.11 (e) and (f).

It follows from the distribution of contact pressure and circumferential traction that also

the maximum value of dissipation is larger on the smooth surface.

The resulting temperature distribution in the cross section for both models is illustrated

in Figure 6.12. As a result of the additional heat source in the contact interface, the

temperature in the tread is larger than in the reference model (see Figure 6.12). In

comparison, the temperature on the rough asphalt is higher than on the smooth surface,

which results from the dissipation being integrated in the larger footprint.

The results of this comparative study are summarized in Table 6.2. As observed in the

results of the rubber wheel example, the application of the constitutive contact model

introduces an initial di�erence of 19.2% rolling resistance (CRR). But in this study, the
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(a) Pressure distribution using CCM smooth

(MPa).

(b) Pressure distribution using CCM rough

(MPa).

(c) Circumferential traction using CCM

smooth (MPa).

(d) Circumferential traction using CCM

rough(MPa).

(e) Interface dissipation using CCM smooth

(mW/mm2).

(f) Interface dissipation using CCM rough

(mW/mm2).

Figure 6.11: Contact behavior of the free rolling tire on the smooth and the rough asphalt
surface.
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(a) (b)

Figure 6.12: Stationary temperature distribution (K) in the cross section of the tire rolling
on the smooth (a) and on the rough asphalt (b).

Table 6.2: In�uence of surface roughness on the stationary response, where the model

with the �at surface approximation (CCM �at) serves as base value.

Model Θmax (K) Mp(Nm) ∆Mp (%) CRR

Reference �at 341.7 30.8 -23.2 0.0067

CCM �at 340.2 40.1 - 0.0083

CCM smooth 341.7 41.8 4.2 0.0087

CCM smooth grooved 341.5 41.8 4.2 0.0087

CCM rough 342.1 45.9 14.5 0.0094

CCM rough grooved 342.2 46.7 16.5 0.0095

expected positive correlation of surface roughness and the tire's rolling resistance can be

observed. Comparing the results of the smooth surface with those for the �at surface model

a small increase in rolling resistance can be observed, which results from the relatively �at

topology. The resulting di�erence of rolling resistance of 8% (CRR) between the rough

and the smooth asphalt surface is in good agreement with the measured range of 8-10%

di�erence in rolling resistance presented in [van Haaster et al., 2015] and also with those

results published in [Willis et al., 2014]. Furthermore, an increase of rolling resistance

for the grooved tread block on the rough road surface can be observed. These results

demonstrate the capability of the developed approach to quantify the rolling resistance

contribution of the tread layer in large scale applications and also to recognize the in�uence

of di�erent tread shapes.

In future research this approach can be combined with the anisotropic continuum model,

presented in [Kaliske and Timmel, 2005], in order to account also for shear deformations

of the structured tread.
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7 Conclusion and Outlook

Coupled thermomechanical �nite element calculations of rolling tires can create detailed

insight into material phenomena occurring at service conditions. These �ndings are of

crucial importance for tire manufacturers aiming to optimize tire designs for their intended

application, especially for the reduction of rolling resistance. Frameworks formulated in

Arbitrary Eulerian Lagrangian kinematics have proven to be highly e�cient for these

computations. However, this kinematic description does not allow for a direct application

of algorithms developed in Lagrangian kinematics in order to take into account inelastic

material behavior and friction. Handling these di�culties is thus a challenging task in

the development of tire computation frameworks. In this context, taking into account

the rolling resistance contribution of tread-road interaction into macroscale (mm; cm)

computations has been an unsolved issue. This contribution results from the penetration

of the tire's tread blocks by the mesoscale (mm) asperities of the rough road surface,

causing large strains at high strain rates.

In this thesis, a one-dimensional homogenized constitutive contact model has been de-

veloped that represents the stochastic average thermo-viscoelastic structural response of

a three-dimensional tread block in unilateral frictionless contact with a mesoscale random

rough road surfaces in the context of �nite deformations. Its application in coupled thermo-

viscoelastic rolling resistance calculations allows for a quanti�cation of the in�uence of sur-

face roughness on rolling resistance, which is demonstrated for tractive stationary rolling

contact of solid rubber wheels and air-in�ated radial tires.

The stochastic average tread-road interaction was identi�ed for a solid rubber and a

grooved tread block model, which were brought into contact with a rough and a smooth

asphalt surface. The measured raw data sets of these road surfaces were transferred into

a spectral representation using discrete Fourier transform. A bandpass �lter was then

applied to the resulting frequency spectrum in order to remove low-frequency macroscale

waviness and high-frequency microscale (µm) oscillations, as the focus was put on the

rolling resistance contribution that results from mesoscale roughness. The solution of the

random rough surface contact problem was achieved by a Monte Carlo integration over

uniformely distributed surface locations. In that study the bulk material of the tread

blocks was modeled quasi-incompressible in combination with a viscoelastic extended tube

model.

The basic idea for the constitutive contact model lies in the identi�cation of an equivalent
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kinematics based on the volume average stretch of the tread block as function of prescribed

penetration, which is dominated by uniaxial contributions. With this equivalent stretch-

penetration relation the pressure and volume average dissipation (heat �ux) of the tread

block in the coupling interface can be evaluated directly from the constitutive material

model of the treads bulk material, assuming a unilateral, incompressible compression

test. The accuracy of this approach in depicting uni-lateral contact scenarios and the

preservation of external energy in the load cycle, has been veri�ed with full scale numerical

calculations, see section 5.4.

The homogenized stochastic average interaction of the tread with the rough and the

smooth measured road surface has been included into the thermomechanical framework

for the stationary rolling contact, presented in [Suwannachit, 2013]. In order to account

for tractive rolling, this framework was enhanced with the approach presented in [Zie�e,

2007], proving its compatibility with arbitrary phenomenological models for rubber

friction. The resulting program environment allowed for rolling resistance calculation of

rubber wheels and air-in�ated radial tires accounting for thermo-viscoelastic e�ects in

the structure, energy dissipation in the tread-road interface, and frictional heating. A

comparison of the calculated rolling resistances for the rough and the smooth asphalt

quanti�ed the in�uence of surface roughness to increase by ≈ 8%, which is in good

agreement with the studies presented in [van Haaster et al., 2015]. These studies measured

an in�uence of surface roughness of 8 − 10%. Additionally, the softer contact response

of the grooved tread blocks lead to an increase in rolling resistance of 1% on the rough

asphalt. According to these results, the presented rolling resistance calculation approach

enables the manufacturer to evaluate and to compare di�erent tread designs. By means

of this, the description of homogenized tread-road interaction presented in this thesis can

yield more detailed insight into the multi-scale processes occurring within the tire, which

is necessary for the optimization of future tire designs to suit their intended application.

The next step in elaborating the outcomes of this thesis is seen in the combination

with the anisotropic continuum model presented in [Kaliske and Timmel, 2005] in order to

represent both the unilateral rough surface contact as well as the shear deformation of the

tread structure. Furthermore, the e�ciency of the evaluation of the rough surface contact

problem can be signi�cantly increased by using Multi-Level Monte Carlo methods, which

optimize the cost balancing of reducing stochastic and discretization error, see [Chernov

and Bierig, 2013]. The solution of the rough surface contact problem also requires a more

robust contact constraint enforcement algorithm, such as the Augmented Lagrangian mul-

tiplier formulation presented in [Pietrzak and Curnier, 1999], which yields a C1-continuous

contact potential.
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A Calculation of tangent matrices

In this chapter the calculation of material tangent operators is presented, which are neces-

sary to solve the nonlinear mechanical problems (3.50) and (6.4) using the Newton-Raphson

method. For further information on the calculus the reader is referred to the textbook by

[Holzapfel, 2000], which provides detailed descriptions of the derivations and their results.

Due to the introduction of the thermally expanded intermediate con�guration (see sub-

section 2.1.1), the enforcement of the quasi incompressible material behavior di�ers from

the formulation presented in [Suwannachit, 2013]. In the constitutive material model

presented in section 3.2, the contribution of the volumetric penalty function (3.16) is

calculated via
∂U∞(JM)

∂C
=
∂U∞(JM)

∂JM

∂JM
∂CM

∂CM

∂C
(A.1)

using
∂JM
∂CM

= 0.5JMCM
−1,

∂CM

∂C
= ϕ

− 2
3

Θ 1,C−1
M = ϕΘ(Θ)

2
3C−1. (A.2)

In the context of the applied isentropic operator split scheme (see section 3.4), the total

derivative of stress (material tangent) is calculated via

dS = 2
∂S

∂C
:

1

2
dC +

∂S

∂Θ
: dΘ, (A.3)

which results in the material tangent. In this phase, the entropy is assumed to be constant

and therefore its rate must vanish

ds = 2
∂s

∂C
:

1

2
dC +

∂s

∂Θ
: dΘ

!
= 0, (A.4)

which yields the thermal tangent modulus

dΘ =

(
−2

∂s

∂C
:

1

2
dC

)(
∂s

∂Θ

)−1

. (A.5)

For the presented thermo-viscoelastic material model the derivative of stress with respect

to the Cauchy-Green tensor is calculated via

∂S

∂C
= 4

∂2U∞(JM ,Θ)

∂C∂C
+ 4

∂2W∞(C̄,Θ)

∂C∂C
+ 4

∂2
∑

i Υ(αi,Θ)

∂C∂C
= CISO +

∑
i

C
α

(i)
v
, (A.6)

and the derivative of stress with respect to temperature is de�ned by

∂S

∂Θ
= 2

∂2U∞(JM ,Θ)

∂C∂Θ
+ 2

∂2W∞(C̄,Θ)

∂C∂Θ
. (A.7)
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Finally, the derivative entropy with respect to the Cauchy-Green tensor yields

∂s

∂C
=

3αΘ0κ0

4
(J5
M + J−5

M )C−1 − ∂2U∞(JM ,Θ)

∂Θ∂C
− ∂2W∞(C̄,Θ)

∂Θ∂C
− ∂2T∞(Θ)

∂Θ∂C
, (A.8)

where the last term vanishes due to the independence of deformation C. With these

de�nitions the thermomechanical material tangent operator is computed by

CISE = C∞ + CΥ +

(
∂s

∂Θ

)−1
∂S

∂Θ
⊗−2

∂s

∂C
(A.9)
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B Rough surface contact data

In Table B.1 the coe�cients for the polynomial approximation of the stretch-penetration

relation λ̃1D(d̄N) =
∑

i aid
i
N are given. Note that a0 = 1 is prede�ned in order to obtain

λ̃1D(0) = 1 and P (0) = 0. On the �at surface the stretch penetration relation is linear

and therefore a1 = −1/h0 is de�ned by the initial height of the tread block h0.

a1 a2 a3 a4 a5 a6 a7

Flat surface

Solid tread -0.05 0 0 0 0 0 0

Smooth asphalt

Solid tread 1.921e-23 -3.063e-2 9.383e-3 -1.413e-3 1.091e-4 -4.129e-6 6.067e-8

Grooved tread -6.383e-21 -2.910e-2 8.427e-3 -1.186e-3 8.491e-5 -2.952e-6 3.954e-8

Rough asphalt

Solid tread -6.768e-4 -2.961e-3 -8.468e-4 1.697-4 -1.028e-5 2.0444e-7 0

Grooved tread -6.799e-4 -2.265e-3 -1.035e-3 1.898e-4 -1.120e-5 2.197e-7 0

Table B.1: Amplitudes of the �tting polynomial stretch-penetration relation
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C Fibre reinforcement

The �bre reinforcement of tire rubber applied in section 6.1 is modeled by a homogenized

anisotropic volume fraction approach

Ψ = φFΨFiber + (1− φF )ΨMat, (C.1)

where the total strain energy density is the sum of �bre ΨFiber and matrix ΨMat contribution

weighted by the volume fraction φF of the cord layer. The embedded �bres are assumed

to have much higher sti�ness than the surrounding rubber matrix in the tensile regime.

However, they buckle under compression, resulting in a low sti�ness, which is neglected in

this study. In order to obtain a smooth transition between tension and compression, the

exponential model by [Polley, 1999]

ΨF =
a

2b2
(exp(b(λF − 1))− bλF ) with λF = C : AF , (C.2)

is applied. The actual �bre stretch λF is evaluated in the tangential �bre direction t via

the structure tensor A = tTt, and a and b are material parameters. The stress is then

calculated by

SF =
a

2b
(exp(b(λF − 1))− 1)AF , (C.3)

and its consistent tangent yields

∆SF =
a

2
exp(b(λF − 1))AT

FAF . (C.4)

For further information on �ber reinforcement models the reader is referred to [Schröder

et al., 2005].
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