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Die Wissenschaft hat das mit der Kunst gemein, daß ihr das Alltäglichste         

völlig neu und anziehend, ja wie durch die Macht einer Verzauberung als 

eben geboren und jetzt zum ersten Male erlebt erscheint. Das Leben ist 

wert, gelebt zu werden, sagt die Kunst, die schönste Verführerin; das 

Leben ist wert, erkannt zu werden, sagt die Wissenschaft. 

 

Friedrich Wilhelm Nietzsche 

Homer und die klassische Philologie. Ein Vortrag (1869) 
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Abstract 

The production of petunia (Petunia hybrida) during winter consumes huge amounts of heating energy. 

Thus, the cultivation of chilling-tolerant petunia cultivars at reduced temperatures would enable a 

more sustainable production by reducing both, energy costs and greenhouse gas emissions. Since the 

molecular physiological chilling response of petunia in general and the responsible reaction patterns 

for chilling tolerance in particular are widely unknown, research is crucial. Therefore, the following 

categories were investigated: the expression of genes which build the basis for stress responses; 

phytohormones that act as stress tolerance modulating players; and the carbohydrate metabolism that 

can be influenced by low temperatures in its essential functions of translocation of carbohydrates for 

supply of energy and building material for new plant matter. 

Therefore, the aim of this thesis was to answer the following questions:  

1.) Can chilling-sensitive/tolerant cultivars be identified? 

2.) How can the chilling response of a chilling-sensitive cultivar on the levels of gene expression, 

phytohormone status and carbohydrate metabolism be characterized? 

3.) Which reaction patterns and which candidate genes can be related to chilling tolerance? 

Under chilling (12 °C vs. 16 °C), the growth of ten petunia cultivars was evaluated. Chilling reduced 

biomass production, elongation growth and leaf development. Branching of lateral shoots was less 

affected by chilling, but high rates of lateral shoot development seemed to support chilling tolerance. 

A repeatable parameter to evaluate chilling tolerance was dry weight production. Thus, indices based 

on this parameter were introduced to compare the individual chilling responses between cultivars as 

well as general cultivar-specific growth potentials of the investigated cultivars. ‘Sweet Sunshine 

Williams’ (SW) was selected as chilling-sensitive cultivar and ‘Ultra Blue’ (UB) as tolerant one. 

A response model for the chilling-sensitive cultivar SW is proposed. Young differentiated leaves were 

analyzed as source organs, the apex as sink organ, and the upper stem as transport unit. Chilling 

responses were detected at the levels of carbohydrates, phytohormones, and gene expression. Acute 

exposure to chilling deranged the plants’ homeostasis, followed by a transient phase of recovery 

marked by a trend towards values of control conditions. As long-term acclimation to chilling, new 

equilibria seemed to be established. 

To characterize chilling tolerance, the chilling response of the chilling-tolerant UB was compared 

with the chilling-sensitive SW. Chilling tolerance correlated with a generally better carbon 

translocation to and a higher abundance and a better utilization in the apical tissue. These findings 

were supported by general higher sucrose levels as well as higher invertase activities in the apex of 

UB. Abscisic acid (ABA) might play a key role for chilling tolerance. Especially in the apex, UB 

displayed generally higher ABA concentrations at both temperatures. The results of an experimental 

ABA-treatment of SW and an NDGA(ABA-biosynthesis inhibitor)-treatment of UB supported the 

hypothesis of a protective role. It is discussed how far transcription analyses support these findings 

and provide indications for candidate genes for chilling tolerance. In contrast to the chilling-sensitive 

cultivar SW, the tolerant cultivar UB seemed to follow a growth priority rather than a defense strategy 

at mild chilling stress. 

This work generates a better understanding of the molecular mechanisms of chilling tolerance in P. 

hybrida and suggests new candidate genes for chilling tolerance. The insights presented can be very 

helpful for future evaluation as well as for the selection and breeding of chilling-tolerant cultivars. 
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Zusammenfassung 

Die Produktion von Petunien (Petunia hybrida) im Winter verbraucht große Mengen an Heizenergie. 

Hier könnte der Anbau kühletoleranter Sorten bei reduzierten Temperaturen eine nachhaltigere 

Produktion durch reduzierte Energiekosten und Treibhausgasemissionen ermöglichen. Da die 

molekularphysiologische Kühlereaktion von Petunie im Allgemeinen und die für die Kühletoleranz 

relevanten Reaktionsmuster im Besonderen weitgehend unbekannt sind, besteht Forschungsbedarf. 

Die folgenden Kategorien wurden untersucht: Die Genexpression, die die Grundlage der 

Stressreaktion bildet; Phytohormone, die die Stresstoleranz beeinflussen; und der Kohlenhydrat-

metabolismus, der bei Kühle essentiell in seiner Funktion der Kohlenstofftranslokation zur 

Versorgung mit Energie und Baumaterial für neues Pflanzengewebe beeinträchtigt sein kann. 

Daher war es Ziel dieser Arbeit die folgenden Fragen zu beantworten:  

1.) Können kühlempfindliche/tolerante Sorten identifiziert werden?  

2.) Wie kann die Kühlereaktion einer kühlempfindlichen Sorte auf Ebene der Genexpression, 

des Kohlenhydratmetabolismus und des Phytohormonstatus charakterisiert werden?  

3.) Welche Reaktionsmechanismen und Kandidatengene sind für die Kühletoleranz relevant?  

Das Wachstum von zehn Petuniensorten unter Kühle (12 °C vs. 16 °C) wurde evaluiert. Die Kühle 

reduzierte Biomasseproduktion, Streckungswachstum und Blattbildung. Das Verzweigungswachstum 

war kaum von der Kühle betroffen, generell höhere Verzweigungsraten schienen aber die Kühle-

toleranz zu unterstützen. Ein reproduzierbarer Parameter zur Bestimmung der Kühletoleranz war die 

Trockenmasseproduktion. Darauf basierende Indizes wurden eingeführt, um sortenspezifische 

Wachstumspotenziale, sowie individuelle Kühlereaktionen verschiedener Sorten zu vergleichen. 

‚SweetSunshine Williams‘ (SW) wurde als kühleempfindliche Sorte und ‚Ultra Blue‘ (UB) als 

tolerante gewählt. 

Ein Modell für die Kühlereaktion der kühlesensitiven SW wird vorgeschlagen. Junge differenzierte 

Blätter wurden als „Source“-Organ untersucht, der Apex als „Sink“-Organ und die obere Sprossachse 

als Transporteinheit. Kühlreaktionen waren nachweisbar auf Ebene der Kohlenhydrate, der 

Phytohormone und der Genexpression. Die akute Kühleexposition destabilisierte die Homöostase der 

Pflanze, gefolgt von einer vorübergehenden Erholungsphase mit einem Trend zu den Werten unter 

Kontrollbedingungen. Als langfristige Kühleakklimatisierung schienen sich neue Gleichgewichte 

einzustellen etablieren.  

Zur Charakterisierung der Kühletoleranz, wurden die Kühlereaktionen der kühletoleranten Sorte UB 

und der ~sensitiven SW verglichen. Die Toleranz korrelierte mit einer generell besseren Kohlenstoff-

translokation sowie höheren Überschüssen und besserer Nutzung im Apex. Diese Ergebnisse wurden 

durch generell höhere Saccharosegehalte und höhere Invertaseaktivitäten im Apex von UB gestützt. 

Abscisinsäure (ABA) könnte eine Schlüsselrolle für die Kühletoleranz spielen. Vor allem im Apex 

zeigte UB deutlich höhere ABA-Konzentrationen bei beiden Temperaturen. Die Ergebnisse einer 

experimentellen ABA-Behandlung von SW und NDGA(ABA-Biosyntheseinhibitor)-Behandlung von 

UB unterstützten die Hypothese einer protektiven Rolle von ABA. Es wird diskutiert, in wie weit die 

Transkriptionsanalysen diese Erkenntnisse unterstützen und Hinweise auf Kandidatengene für die 

Kühletoleranz liefern. Im Gegensatz zu der sensiblen Sorte SW schien die tolerante Sorte UB bei 

mildem Kühlestress einer Wachstumspriorität, anstatt einer Verteidigungsstrategie zu folgen. 

Diese Arbeit schafft ein besseres Verständnis der molekularen Mechanismen der Kühletoleranz in P. 

hybrida und schlägt neue Kandidatengene für die Kühletoleranz vor. Die beschriebenen Erkenntnisse 

können der zukünftigen Evaluation, sowie Züchtung und Selektion kühletoleranter Sorten dienen. 

Schlagworte: Kühletoleranz, Petunia hybrida, Stress 
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1 General introduction 

The impending ecological crisis due to manmade climate change, increasing energy prices due to the 

shortage of energy and growing ecological awareness of the customers require the best possible 

sustainability of plant production. To comply with all these demands and to produce still profitably, 

the greenhouse production of ornamentals in Central Europe needs an efficient usage of all available 

resources. The greenhouse production of petunia in Germany from the middle of February until early 

April requires huge amounts of heating energy, especially during the first weeks. Heating of 

greenhouses accounts for about 90 % of the total energy consumption of German horticultural 

production (Gabot.de, 2012). Thus, especially for thermophilic ornamentals like petunia, which are 

produced during winter months and early spring, heating entails a big potential for savings of energy 

costs. To realize the full saving potential, various approaches can be applied to reduce energy costs in 

the greenhouse production. Improvements in the thermal insulation of greenhouses as well as 

optimization of temperature management are commonly used approaches to save heating energy. 

Another important option of saving energy is a production at lower temperatures. Elings et al. (2005) 

stated energy savings of 16 % for greenhouse production of tomato, realized by a 2 K reduction of the 

mean cultivation temperature. However, to avoid longer production times due to chilling-induced 

growth depression, the use of chilling-tolerant cultivars or species is crucial. In this context, a 

‘chilling-tolerant’ cultivar is a cultivar that displays a significantly smaller growth depression than the 

average of other cultivars of the same species at sub-optimal production temperatures compared to 

commonly used production temperatures. Best for production, of course, would be a cultivar that 

shows a similar growth performance at sub-optimal temperature, resulting in a similar development 

time for the production of marketable products of comparable quality.  

 

1.1 Petunia: An ornamental of economic importance and a model plant for research 
in ornamental crops 

Petunia is one of Germany’s favorite ornamentals. With a market volume of more than 110 million 

Euros, petunia belonged to the German top five balcony and bedding plants in 2012 (BMEL, 2014). 

Likewise, it is popular in other European countries and North America (Kelly et al., 2007).  

Beyond that, petunias already have a long history as cultivated bedding plants. The Petunia species 

belong to the family of Solanaceae and originate from South America. The modern Petunia x hybrida 

has been cultivated since the early 19th century. It was created by the hybridization of two Petunia 

species, the purple flowering Petunia axillaris and the white flowering Petunia inflata. Not only 

because of its genetic similarity to other scientifically and commercially important Solanaceae crop 

species like Nicotiana tabacum (tobacco), Solanum lycopersicum (tomato), and Solanum tuberosum 



 
 

2 

 

(potato), petunia is one of the best-investigated model plants in the research of ornamental crops 

(reviewed in Gerats and Vandenbussche, 2005). Furthermore, due to its more differentiated habitus 

and the general diversity in forms, compared to the rosette-like growth of Arabidopsis, as well as 

ecological niches, petunia species can be used to answer more complex questions than Arabidopsis 

thaliana. Petunias can easily be asexually propagated and are simple to cultivate. Some petunia lines 

as the double haploid Petunia hybrida cultivar `Mitchell´ can be easily transformed and large numbers 

of mutants are available. Furthermore, a broad variety of biochemical analysis methods have been 

well established for physiological and genetic analyses in petunia (reviewed in Gerats and 

Vandenbussche, 2005). Likewise, genetic engineering in petunia has a long history. Thus, the first 

field test with transgenic plants in Germany more than 25 years ago was conducted with transgenic 

petunia carrying a maize gene encoding for a dihydroflavonol reductase (Meyer et al., 1992). Today, 

the whole genome of both parental species of Petunia x hybrida, Petunia axillaris and of Petunia 

inflata is sequenced and currently annotated (unpublished, online article from Vandenbussche 

(2015)). Furthermore, a petunia specific microarray is available for gene expression analyses 

(Breuillin et al., 2010; Ahkami et al., 2014).  

 

1.2 Chilling: an abiotic stressor 

Plant growth and productivity can be adversely affected by a huge number of biotic and abiotic 

stressors delivered by the environment. The resulting plant condition in response to these exogenous 

stressors is stress. On the one hand, the plant growth and development can be severely reduced, when 

a plant needs to engage its resources to fight against pathogens such as viruses, bacteria, fungi, and 

herbivores. On the other hand, plant growth can also be negatively influenced by a great number of 

abiotic environmental stress factors such as oxidative stress, heavy metal toxicity, flooding or 

drought, salt surplus or nutrient deficiencies as well as low temperature or heat. Hereby, temperature 

is an important stress factor that influences development, growth performance and habitus of a plant. 

For every plant species a specific temperature range exists, which can be defined as optimal for plant 

development and growth. As soon as the surrounding temperatures decrease below this specific 

optimal temperature range, the effect of cold temperatures on the plant metabolism can be considered 

as abiotic stimuli that impose stress to the plant. However, the literature distinguishes between cold 

reactions at very low temperatures and freezing reactions below 0 °C on the one hand, and chilling 

reactions at still moderate, but sub-optimal temperatures on the other hand. While the cold and 

freezing reactions are pretty well investigated, much less literature is available for chilling reactions. 

Especially in research of ornamentals like petunia, the understanding of chilling reactions on a 

molecular physiological level is still lacking. Nevertheless, the literature concerning chilling reactions 

has proposed at least three different definitions of chilling temperature. Hogewoning and Harbinson 
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(2007) define beginning chilling stress when the first physiological reactions can be related to a 

decreased temperature. Other definitions are linked to a visible growth depression (Allen and Ort, 

2001) or even to the experience of visible cold damage or decaying plant parts (Nagarajan and 

Nagarajan, 2010). In the context of this thesis, the term ‘mild chilling’ refers to a slightly reduced 

temperature range compared to commonly used production temperatures at which a growth 

depression can be realized without any visible cold damage, so that the plant quality is still preserved.  

Plants often react to cold with obvious changes of their phenotype like a reduced growth and 

development (Figure 1) depending on their state of development and their genotype, but also because 

of environmental factors such as the degree and the duration of temperature reduction. Thus, at the 

same level of temperature reduction, different 

species but also different subspecies or cultivars 

within the same species can expose distinct 

reactions to this stress factor (Walworth and 

Warner, 2009; Warner, 2010). These changes 

derive from very complex modifications, which 

affect the expression of genes as well as the 

whole metabolism. In Arabidopsis, the reactions 

to slightly reduced temperatures do not seem to 

differ substantially from the kind of reaction to 

cold temperatures. Solely the extent and the 

severity of the reactions increased continually 

with decreasing temperatures (for an observed 

temperature range from 20 °C down to 8 °C) 

(Usadel et al., 2008). At 10 °C - 12 °C, 

especially thermophilic plants already show a 

disturbance of the carbohydrate metabolism 

(Hällgren and Öquist, 1990). In some thermo-

philic species, already at moderately reduced 

temperatures, photosynthesis can be inhibited 

by feedback mechanisms (photoinhibition) as a consequence of the changes regarding the carbo-

hydrate metabolism and thereby increased carbohydrate levels in source tissues (Bagnall et al., 1988). 

Additionally, also the phytohormone metabolism is involved in the reaction to chilling. However, all 

efforts a plant has to take to cope with the stress imposed by a stressor need energy at the expense of 

growth or at least of reserves. The next chapters will focus on these chilling reactions in detail. 
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1.2.1 Changes in gene expression in response to chilling  

The modification of the gene expression plays a crucial role in the plant’s reaction to chilling, which 

enables the plant to cope with stress stimuli. Thus, the growth depression and physiological changes 

as response to cold exposure are the result of a complex disturbance of a variety of genetic and 

molecular physiological processes. Carbohydrate metabolism and transport are affected as well as 

photosynthesis or the homeostasis of phytohormones (1.2.2, 1.2.3). These changes might partly be 

related to direct temperature-dependent physical effects, like chilling-dependent lower enzyme 

activities when temperatures are far below the temperature for optimal enzyme activity. Furthermore, 

activation or inhibition mechanisms of various enzymes can be changed under reduced temperatures 

(Sasaki et al., 2001). However, reduced temperatures affect gene expression and enhance or repress 

the transcription of whole groups of genes. Thus, several cold-responsive pathways are known. How 

effective such pathways are activated seems to be an important determinant for cold tolerance. 

The plant´s sensors for chilling stress are not fully identified yet (Chinnusamy et al., 2010). However, 

through detecting low temperature-induced changes in membrane fluidity, metabolite concentrations 

and/or nucleic acid and protein conformation plants can sense cold stress. Pharmacological 

rigidification (reduction of membrane fluidity) of plasma membranes in alfalfa and Brassica napus 

induced cold-responsive genes (COR) (Chinnusamy et al., 2010). Membrane rigidification-induced 

activation of Ca2+ channels increases Ca2+ influx and Ca2+-dependent phosphorylation, which are 

involved in cold stress signal transduction (Viswanathan and Zhu, 2002). Ca2+-mediated cold 

signaling can be also influenced by secondary signals like reactive oxygen species (ROS) or abscisic 

acid signaling. The accumulation of ROS seems to have a strong effect on the cold regulation of gene 

expression, but also enzymes like kinases, phospholipases and phosphatases can be involved in the 

signaling cascades (reviewed in Chinnusamy et al., 2007). One of the best investigated cold-response 

pathways, that plays a key role for cold acclimation in Arabidopsis and others, is the C-repeat binding 

factor (CBF) cold-response pathway (reviewied in Thomashow, 1999). These CBF proteins can 

activate the expression of COR genes by binding to cis-elements in their promotors and thereby 

improving cold/freezing tolerance (Thomashow, 2001). Exemplary in Arabidopsis, the transcript level 

of CBF genes accumulated within 15 min after exposure to cold (Gilmour et al., 1998). The 

transcription of CBF genes at cold temperature on the other side is regulated by the upstream 

transcription factor ICE1 (inducer of CBF expression 1) (Chinnusamy et al., 2003). The ICE1 cascade 

seems to be crucial for the expressional regulation of chilling tolerance, at least in Arabidopsis 

(reviewed in Chinnusamy et al., 2007). However, this is not the only cold-responsive pathway. Also 

several non-CBF transcription factors exist that induce the expression of COR genes in Arabidopsis 

(reviewed in Chinnusamy et al., 2007). Furthermore, post-transcriptional regulation of genes might 

play important roles in the cold response. Thus, Zhou et al. (2008) supposed that cold-inducible 
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microRNAs (non-coding ~ 21-nucleotide long RNAs) may affect many signaling pathways, such as 

auxin pathways.  

The cold-induced changes in gene expression affect a broad range of the plant’s metabolism and 

protection mechanisms. For instance, the expression of photosynthesis related genes can be repressed 

(Janská et al., 2010). Ruelland and Collin (2016) found an accumulation of proteins with a protective 

chaperone-like function like LEA proteins (late embryogenesis abundant), a kind of dehydrins 

protecting plants against cellular damage by stabilizing membranes. Further, the synthesis of heat 

shock proteins that display chaperone-like functions can be increased by cold (Taiz and Zeiger, 2008). 

For example, the constitutive expression of a gene for the tomato chloroplast-localized small 

molecular heat-shock protein (CPsHSP) lead to a weaker damage to photosynthesis, resulting in a 

higher net photosynthetic rate (Wang et al., 2005). Additionally, pathogenesis-related proteins like ß-

glucanases, chitinase, lipid-transfer proteins and thaumatin-like proteins can be affected by cold and 

be more synthesized (Janská et al., 2010). 

Current studies on petunia suggest the existence of several different signaling systems, whose 

interplay is substantial for the cold stress response (Li et al., 2015). The above-mentioned CBF cold-

responsive pathway also seems to be among these pathways. Walworth et al. (2014) increased the 

freezing tolerance of P. hybrida with the ectopic expression of AtCBF3. By that, the authors found 

evidence that a functional CBF cold-responsive pathway also exists in petunia. 

The abilities of non-targeted transcriptomic approaches have been increased enormously during the 

last decade, even for species like petunia. Therefore, Breuillin et al. (2010) have applied EST 

sequences from cDNA libraries derived from P. hybrida and P. axillaris control roots, mycorrhizal 

roots, and phoshate-treated roots to create a petunia specific microarray for gene expression analysis. 

Our research group at the Leibniz Institute of Vegetable and Ornamental Crops (IGZ) actively joined 

the development of this microarray. It provides 24,816 non-redundant unique sequences (Breuillin et 

al., 2010; Ahkami et al., 2014). 

 

1.2.2 Relationship between the plant carbohydrate metabolism and the chilling 
response of plants  

Carbohydrates in plants are the products of carbon dioxide fixation by photosynthesis. They play an 

essential role for the storage and translocation of energy, and as building material of new plant matter. 

Plant tissues displaying a net carbohydrate synthesis such as mature green leaves are categorized as 

carbohydrate source tissues. Plant organs with a net utilization of carbohydrates such as meristematic 

tissues, fruits, flowers or roots are categorized as carbohydrate sink tissues. Reduced temperatures 

especially influence the carbohydrate metabolism. Besides carbohydrate accumulation in the source 
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leaves, changed ratios of carbohydrate synthesis, transport and consumption are also the consequences 

of reduced temperatures (Druege and Kadner, 2008). Especially at very low temperatures approaching 

the freezing point, these increases of osmolyte concentrations may protect the cells from freezing 

(Mahajan and Tuteja, 2005). However, carbohydrates already accumulate at slightly reduced 

temperatures, even when cryoprotection is not vital for survival at those mild chilling temperatures. 

For example, in the newest mature source leaves of tomato, increased levels of sugar and starch were 

already observed as a response to a mild chilling (day/night temperature: 16/14 °C vs. 25/20 °C) 

(Venema et al., 1999). Nevertheless, one reason for the increased sugar levels, especially of sucrose, 

might be a change in enzyme activities that are involved in the carbohydrate metabolism. Thus, in 

Arabidopsis, the activities of the two sucrose synthesis enzymes fructose-1,6-bisphosphatase and 

sucrose-phosphate synthase were slightly increased in leaves after exposure to 5 °C and strongly 

increased in young leaves, which were fully developed at 5 °C (Strand et al., 1997). Guy et al. (1992) 

found higher sucrose-phosphate synthase activities in spinach source leaves under exposure to 

chilling. Since sucrose functions as a storage of fructose and glucose under exposure to abiotic stress, 

which can be fast and easily mobilized as an energy source that is translocated to utilization sinks 

(Guy et al., 1992), the accumulation under exposure to chilling seems to help the plants to maintain 

their metabolism. Thus, Sin’kevich et al. (2008) showed that cold resistant potato plants could adapt 

better to a temperature reduction, when they accumulated low-molecular carbohydrates by the 

activation of acid invertases.  

However, on the one hand, the increased carbohydrate levels in the source tissues might indirectly 

negatively affect the plant growth as long as the increase in the source leaves results from a reduced 

carbohydrate translocation to the utilization sinks. On the other hand, beside their importance for the 

maintenance of energy supply, sucrose and hexoses also play an important role as signal molecules, 

which are generally involved in the source-sink-regulation, and especially under exposure to stress-

related stimuli like cold (reviewed in Roitsch, 1999). Thus, photosynthesis can be inhibited in the 

photosynthetic active tissues by end-product accumulation of sugars (Goldschmidt and Huber, 1992). 

This temperature-dependent feedback inhibition of photosynthesis arises in thermophilic species like 

peanut already at moderate temperatures like 15 °C compared to an optimum of 30 °C (Bagnall et al., 

1988). Generally, cold-tolerant plants seem to be more flexible in various photosynthetic parameters 

during cold acclimation (Yamori et al., 2010) and cold tolerance also appears to be related to a better 

temperature homeostasis of leaf respiration and photosynthesis (Yamori et al., 2009). 

 

1.2.3 Relationship between phytohormones and the chilling response of plants 

Phytohormones control the growth and development of plants and mediate nutrient allocation as well 

source/sink transitions. Beyond that, they are the key players adjusting the reactions to abiotic and 
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biotic stimuli, and enable plants to adapt to a changing environment (Peleg and Blumwald, 2011). 

Several phytohormones are also involved in the chilling response. Cytokinins stimulate cytokinesis in 

plant roots and shoots. Under exposure to endogenous or exogenous increased cytokinin levels at 4 °C 

Arabidopsis showed higher relative growth rates by increasing total cell numbers (Xia et al., 2009). 

Salicylic acid is a phytohormone that regulates plant growth and development, and is also involved in 

the plant defense against pathogens. Likewise, it plays a role in the response to abiotic stresses. Thus, 

salicylic acid accumulates at low temperatures. Scott et al. (2004) showed that at 5 °C mutants, in 

which this accumulation at low temperatures was inhibited, grew faster than wild-type Arabidopsis. 

On the other hand salicylic acid treatment was shown to protect tomato from chilling injuries (Ding et 

al., 2002). The gibberellin class of growth hormones regulates developmental processes like stem 

elongation, germination, dormancy, leaf senescence and others, and is also involved in the response to 

abiotic stress, including cold. The cold-responsive CBF pathway (see 1.2.1) mediates a reduction in 

bioactive gibberellins, which promotes an accumulation of DELLA proteins. An accumulation of 

these DELLA proteins results in a growth restriction, but enhances freezing tolerance (Achard et al., 

2006). Ethylene is a gaseous phytohormone, which controls numerous cellular and developmental 

processes, and has an important role during the abiotic and biotic stress response (reviewed in Abeles 

et al., 1992 and in Gallie, 2015). Shi et al. (2012) found that ethylene negatively regulates cold 

signaling through direct transcriptional control of cold-regulated CBFs. Therefore, ethylene seems to 

reduce cold/freezing tolerance. 

Abscisic acid (ABA) was first described as a leaf abscission- and seed dormancy-promoting 

phytohormone. Today it is known to play an important role as an endogenous messenger in the plant’s 

response to biotic and abiotic stress factors. Especially high salinity and drought cause strong 

increases of ABA levels (reviewed in Raghavendra et al., 2010). Nevertheless, ABA also seems to be 

critical for the chilling tolerance, since an adequate regulation of endogenous ABA levels is supposed 

to be critical for maintaining cold tolerance, at least in rice (Mega et al., 2015). Mild chilling tolerance 

of tomato can be related to the ABA biosynthesis, even if in this case no accumulation of ABA seems 

to be necessary (Ntatsi et al., 2013). However, application of exogenous ABA induces freezing 

tolerance in wheat and chilling-sensitive rice seedlings (Veisz et al., 1996; Shinkawa et al., 2013). 

Transgenic rice lines overexpressing the enzyme ABA 8′-hydroxylase (OsABA8ox1), which is 

involved in ABA catabolism, display reduced ABA levels. While even reduced ABA levels still 

seemed to support chilling tolerance, excessively low levels caused reduced cold and drought 

tolerance (Mega et al., 2015). Nevertheless, ABA seems to regulate many genes, which are positively 

associated with freezing tolerance. Likewise, Gusta et al. (2005) suggested that ABA-dependent 

pathways, beside ABA-independent ones, are part of the cold-response. Thus, the CBF pathway is 

also induced by exogenous ABA application (Knight et al., 2004).  
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Jasmonic acid (JA) is an important regulator of the wound response in many plants, including petunia, 

and also involved in the regulation of primary metabolic functions such as sucrose and starch 

accumulation (Ahkami et al., 2009). While wounding is often caused by biotic stressors like 

herbivores, JA also plays a role in the chilling response. Thus, exogenous application of JA enhances 

cold tolerance (Ding et al., 2002; Fung et al., 2004). On the one hand, the balance of JA and IAA 

homeostasis and signaling seem to be important for development in general and in stress response in 

particular (Du et al., 2013). On the other hand, JA also activates freezing tolerance-enhancing 

pathways. Jasmonates improve the freezing tolerance in Arabidopsis by acting as a critical upstream 

signal of the CBF/DREB1 pathway, which is a key player of chilling tolerance in Arabidopsis (Hu et 

al., 2013). 

Auxin is a key growth hormone that regulates all stages of the plant development from embryogenesis 

to senescence. Furthermore, auxin plays an essential role in the existing hormonal crosstalk, which 

also affects several developmental stages (reviewed in Rahman, 2013). The metabolism and transport 

of auxins are affected by sub-optimal temperatures. Thus, in carnation cuttings, the transport of auxins 

is impaired by sub-optimal temperatures (Garrido et al., 2002). However, the cold treatment gradually 

enhanced the auxin response in tulip bulbs over the course of 12 weeks (Rietveld et al., 2000). 

Conversely, in Arabidopsis, auxin-inducible genes are down-regulated in response to cold (Lee et al., 

2005). The authors suppose that the cold-induced disturbance of auxin homeostasis, signaling and 

transport might be involved in the cold-induced downregulation of auxin-inducible genes. In 

consequence, the growth depression, caused by cold, might be partially triggered by the 

downregulation of auxin transport and auxin-responsive genes (Lee et al., 2005). 

 

1.2.4 Impact of chilling on the growth of petunia 

On the phenotypical level, some research has already been done regarding the temperature needs as 

well as the response to sub-optimal temperatures of petunia. For the cultivar `Snow Cloud´ 

Kaczperski et al. (1991) described a decrease in plant height and average internode length 

accompanied by a reduced length of individual shoots but a higher number of lateral shoots for a 

progressive temperature reduction from 30 °C to 10 °C. Since petunia is famous for its plentiful 

blossom, several studies focused on the production time to flower and the quality of the flowering 

plants. For plant producing companies, both are very important issues for producing good, marketable 

quality. Thus, Warner (2010) analyzed the time to flower of four Petunia species, including P. 

hybrida. In a temperature range from 14 °C to 26 °C, for all four species the days to flower decreased 

with increasing temperature and the plants had formed fewer nodes under the first flower. At 14 °C, 

the time to flower required by P. hybrida cultivar ‘Mitchell’ was about 20 days longer than at 17 °C, 

whereas the number of flower buds remained relatively stable (Warner, 2010). In contrast to 
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‘Mitchell’, the number of flower buds of nine analyzed grandiflora-type P. hybrida cultivars declined 

at increasing temperatures from 14 °C to 26 °C (Warner, unpublished data, cited in Warner [2010]). 

Other studies on other P. hybrida cultivars confirmed the prolonged time period to flower at sub-

optimal temperatures (Adams et al., 1998; Adams et al., 1999; Blanchard et al., 2011b). Thus, the 

optimal temperature for minimizing the time to flower seemed to be 26 °C or more, at least for the 

four petunia species Warner (2010) investigated. This temperature range for the optimal development 

was also proven by the findings of earlier studies (Adams, 1999; Kaczperski et al., 1991; Lieth et al., 

1991). Nevertheless, since such high temperatures also promote length growth of the shoots and 

internodes respectively, and reduce the number of flower buds (Warner, 2010; Blanchard et al., 

2011b), the optimal development temperatures are not automatically optimal production temperatures. 

Since temperatures below the optimum of 26 °C cause a more compact growth with higher flower bud 

numbers, the optimal temperatures are not used in common production. Moreover, Blanchard et al. 

(2011a) even established models to calculate the impact of the temperature and the photosynthetic 

daily light integral and their interactions on the development time and quality of selected petunia 

cultivars, based on parameters like plant height, number of flowers and time to flower. Taking the 

longer cultivation time at reduced temperatures into account on the one hand and energy savings on 

the other, Blanchard et al. (2011b) predicted the lowest heating costs for an average temperature 

between 14 °C and 17 °C when the finish date of petunia is set in the middle of May. However, 

because the different petunia cultivars showed differences in their general growth performance and in 

their chilling response, cultivar-specific adaptions would be required for the practical use of such 

models.  

The above-mentioned reactions differ in extent and manifestation of the reaction between existing 

Petunia species as well as between the different P. hybrida cultivars. These differences indicate the 

existence of divergent chilling-tolerant genotypes in Petunia species as well as P. hybrida cultivars. 

Thus, bearing in mind to produce at sub-optimal temperatures, not only the vegetative growth 

performance at sub-optimal temperature should be considered, which takes place during the season 

with the highest heating demand, but also the time to flower.  

The molecular physiological and genetic backgrounds for distinct chilling reactions between different 

petunia species or even between cultivars, which are genetically very close, are still largely unknown. 

Therefore, research is needed to elucidate the underlying mechanisms that are relevant for chilling 

tolerance. Thus, the present work contributes to a better understanding of chilling tolerance in Petunia 

hybrida. 
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1.3 WeGa cooperation project: Product- und production safety in intensive plant 
production systems 

The present work `Molecular physiology of chilling tolerance of Petunia´ was embedded in the joint 

project `Chilling Tolerance of Plants´. The background of this joint project was the crucial importance 

of future reduction of energy consumption of greenhouse ornamental production in Central and 

Northern Europe. Consumption of energy and resources could be reduced by producing plants, which 

display a higher tolerance against chilling stress, at reduced temperatures. Apparently, gene pools of 

thermophilic plant species like petunia conceal reserves that could be used to enhance chilling 

tolerance through breeding. The objective of the joint project was to explore knowledge regarding the 

molecular and physiological regulation of chilling tolerance to integrate low temperature concepts in 

future greenhouse production. Therefore, the aims and collaborators were:  

- Screening of cultivars and physiological investigations                                                                                        

(petunia and impatiens; Dr. S. Amberger-Ochsenbauer, Weihenstephan-Triesdorf University 

of Applied Sciences, Freising)  

- Physiological and molecular relations of chilling tolerance                                                

(petunia and poinsettia; M.A. Bauerfeind and Dr. U. Druege, Leibniz Institute of 

Vegetable and Ornamental Crops) 

- Genetic modifications: testing of genetic engineering methods in petunia                                              

(petunia; A. Langhans and H. Mibus-Schoppe (now University of Geisenheim), Leibniz 

Universität Hannover) 

- Physiological conditioning: investigation of an alternative way via symbiotic microorganisms 

such as arbuscular mycorrhiza                                                                                                  

(petunia and poinsettia; Dr. J. Knopp and Dr. H. von Alten, Leibniz Universität Hannover) 

- Screening of cultivars                                                                                                                        

(petunia and poinsettia; Dr. D. Ludolph, B. ter Hell, Landwirtschaftskammer Niedersachsen, 

LVG Ahlem) 

- Industrial partner in the joint project: Dümmen Jungpflanzen GmbH & Co. KG; Klemm + 

Sohn GmbH & Co KG, Selecta Klemm; INOQ GmbH  

- Subcontracts: TU München, Gewächshauslaborzentrum Dürnast; TU München Lehrstuhl für 

Phytopathologie 
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1.4 Objectives of this thesis 

The present work investigates the molecular and physiological background of the response and 

tolerance of petunia to mild chilling stress, which is still unknown. Observations of commercial 

breeders showed that some P. hybrida cultivars display a better growth performance under exposure 

to sub-optimal temperatures than the average, and other cultivars stay beneath the average. However, 

the reasons for those distinct chilling responses remained unidentified. Since savings in heating 

energy costs are only possible, if the production time at sub-optimal temperatures increases only 

moderately, genotypes that are only marginally affected by sub-optimal temperatures have to be 

identified. Thus, the present study describes differences in the phenotypical reactions of petunia 

cultivars, in order to identify chilling-tolerant genotypes. Based on the growth response, chilling-

sensitive and chilling-tolerant cultivars were selected for the investigation of their physiological and 

molecular chilling responses.  

In the context of finding the molecular causes for phenotypical differences, first of all gene 

expression, which is strongly affected by cold (1.2.1), is analyzed in order to examine, whether a 

small reduction in cultivation temperature is already leading to explicit changes in the regulation of 

gene expression. Also, the carbohydrate household is strongly affected by cold (1.2.2). Consequently, 

at first, concentrations of the sugars fructose, glucose and sucrose, which are essential for the 

utilization and translocation of energy, were analyzed. Secondly, the relevant invertase activities were 

analyzed. Most development and growth processes in plants are regulated by phytohormones and 

several of them are involved in the responses to biotic and abiotic stimuli like chilling stress (1.2.3). 

Because of the time-consuming and cost-intensive complexity of the phytohormone analyses, in the 

presented thesis only three important phytohormones abscisic acid (ABA), the auxin indole-3-acetic-

acid (IAA) and jasmonic acid/jasmononates (JA) were chosen for the analysis of their role in the 

chilling response. 

Based on the results of these investigations, explanations for the differences in chilling tolerance were 

deduced.  

In detail, the objectives of this thesis were: 

1.) Establishment of a reliable and easily applicable screening method for the identification of 

cultivars with chilling-tolerant and chilling-sensitive responses, respectively. 

2.) Characterization of the chilling reaction of a chilling-sensitive cultivar on the levels of 

phenotypical development, carbohydrate metabolism, phytohormone homeostasis and gene 

expression. 

3.) Formulation of a hypothesis for the basis of chilling tolerance in P. hybrida, which is based 

on the distinct reaction patterns of the phenotypical development, the carbohydrate 
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metabolism, the phytohormone homeostasis and the gene expression of a chilling-sensitive 

and a chilling-tolerant cultivar and the identification of new candidate genes involved in 

chilling tolerance. 

 

1.5 Publications and manuscripts emerged from this thesis 

In the following, one publication and two manuscripts are presented, which answer in detail the three 

above-mentioned objectives of this thesis. A final discussion (Chapter 3 Conclusions and Outlook) 

condenses the results from the three manuscripts to a coherent overview of the elaborated findings.  

 

1.5.1 Determination of tolerance of Petunia hybrida cultivars to mild chilling stress 

This manuscript approaches the first aim of this thesis. A set of commercially available petunia 

cultivars was tested for the phenotypical chilling reactions in air-conditioned greenhouse cabins and 

climate chambers. The chilling response of the parameters dry and fresh weight, elongation, 

branching and development of new leaves were measured to determine the growth reaction of the 

aerial plant to the exposure to chilling. Thus, from the observed growth parameters, fresh and dry 

weight were proven as the most reliable and repeatable parameters. Based on dry weight production 

indices are introduced to assess the relative growth potential at a given temperature in relation to the 

best growing cultivar and to estimate the individual chilling reaction of a cultivar. Furthermore, a 

reduced susceptibility to chilling of high-branching cultivars is discussed.  

The manuscript will be submitted the first time in May 2016 to the peer-reviewed journal Scientia 

Horticulturae. 

 

1.5.2 Transcriptome, carbohydrate, and phytohormone analysis of Petunia hybrida 
reveals a complex disturbance of plant functional integrity under mild chilling 
stress 

This chapter concerns the second aim of this thesis. It gives a detailed overview of the molecular 

physiological chilling reaction of the chilling-sensitive cultivar ‘SweetSunshine Williams’. The 

selection of this cultivar was based on the phenotypical growth analyses of the first investigation 

approach (Chapter 2.1). ‘SweetSunshine Williams’ already displayed a strong chilling reaction under 

exposure to mild chilling of 4 K temperature reduction (12 °C compared to 16 °C). This chilling 

reaction was marked by a complex disturbance of plant functional integrity, featured by a 

derangement of the carbohydrate metabolism and phytohormone homeostasis, and an altered gene 

expression. In the paper, a three-phasic model is proposed for the chilling reaction of the sensitive 
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cultivar ‘SweetSunshine Williams’. The model consists of a derangement during the first days after 

temperature reduction, a recovery phase after one to two weeks and a phase of stabilization after two 

to three weeks. 

The paper was published on July 28th 2015 in the peer-reviewed open access journal ‘Frontiers in 

Plant Science’ in the specialty section ‘Crop Science and Horticulture’ (Bauerfeind et al., 2015). 

 

1.5.3 Comparative analysis of two contrasting petunia cultivars indicates important 
functions of carbohydrate utilization and abscisic acid in tolerance to mild 
chilling stress 

This manuscript approaches the third aim of this thesis. It gives a detailed overview of the distinct 

molecular physiological chilling reactions of the chilling-sensitive cultivar ‘SweetSunshine Williams’ 

and the chilling-tolerant cultivar ‘Ultra Blue’. The selection of both cultivars was based on the 

phenotypical growth analyses described in Chapter 2.1. Both cultivars reacted to the mild chilling 

stress of a 4 Kelvin temperature reduction (12 °C compared to 16 °C) with a retarded growth, while 

the growth of the chilling-sensitive cultivar was more affected. The disturbance of plant functional 

integrity was less in extent and shorter in the chilling-tolerant cultivar compared to the chilling-

sensitive one. The analyses of metabolic values and the microarray results indicate a better carbon 

translocation from the source tissues and utilization in the apex of the chilling-tolerant cultivar ‘Ultra 

Blue’ at both temperatures, which is less inhibited by chilling. In addition, generally higher ABA 

levels in the apex of ‘Ultra Blue’ also seem to enhance chilling tolerance.  

The manuscript discusses the differential chilling reaction patterns of both cultivars, and draws a 

hypothesis regarding the contribution of chilling reaction patterns to the chilling-tolerance of ‘Ultra 

Blue’. Furthermore, it suggests new candidate genes for chilling tolerance in petunia such as genes 

coding for phosphoenolpyruvate carboxylase kinase or the ABA biosynthesis related carotenoid 

cleavage dioxygenase and others.  

The manuscript has been submitted the first time on May 9th 2016 to the peer-reviewed journal BMC 

Plant Biology and was at the time of submitting the presented thesis in the process of reviewing. 

 

1.6 Contributions of co-authors to the publications 

All figures and statistics of the first manuscript (1.5.1) were created by myself. I performed the 

phenotypical analyses of the greenhouse experiments at the IGZ (Leibniz Institute of Vegetable and 

Ornamental crops) in Erfurt. The climate chamber experiment was conducted by Annika Langhans at 

the University of Hannover (Department of Ornamental Crops, Leibniz Universität Hannover) under 
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the supervision of Prof. Dr. Heiko Mibus-Schoppe (now at the Department of Urban Horticulture and 

Ornamental Plant Research, Geisenheim University). The manuscript was written by myself and 

revised by Dr. Uwe Druege and the co-authors. 

All data presented in the second paper (1.5.2) were gained from experiments I performed at the IGZ. 

The array hybridization of RNA samples was performed by OakLabs (OakLabs GmbH, Hennigsdorf, 

Germany). OakLabs also executed the normalization of the whole set of array data, which I used for 

the array analyses. The manuscript was written by myself and revised by Dr. Uwe Druege and the co-

authors.  

The analysis of photosynthetic rates presented in the third manuscript was conducted by Dr. Susanne 

Amberger-Ochsenbauer and Florian Steinbacher (both Weihenstephan-Triesdorf University of 

Applied Sciences, Freising). All remaining data (1.5.3) were gained from experiments I performed at 

the IGZ. All figures were created by myself. The array hybridization of RNA samples was performed 

by OakLabs (OakLabs GmbH, Hennigsdorf, Germany). OakLabs also executed the normalization of 

the whole set of array data. I used this normalized data for the analyses. The manuscript was written 

by myself and revised by Dr. Uwe Druege and the co-authors.  
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2 Publications and Manuscripts 

2.1 Determination of tolerance of Petunia hybrida cultivars to mild chilling stress 
 

 

Determination of tolerance of Petunia hybrida cultivars to mild chilling 

stress  

 

Martin Bauerfeind1, Annika Langhans2, Heiko Mibus-Schoppe2, 3, Uwe Druege1*  

 

1 Department of Plant Propagation, Leibniz Institute of Vegetable and Ornamental Crops (IGZ), 

Erfurt, Germany 

2 Institute of Horticultural Production Systems, Leibniz Universität Hannover (LUH), Hannover, 

Germany 

3 Department of Urban Horticulture and Ornamental Plant Research, Geisenheim University, Germany 

 

* Correspondence: Uwe Druege, Department of Plant Propagation, Leibniz Institute of Vegetable 

and Ornamental Crops (IGZ), Kuehnhaeuser Str. 101, 99090 Erfurt, Germany, e-mail: 

druege@erfurt.igzev.de 

 

Abstract: Growth performance of ten Petunia hybrida cultivars (cvs) was evaluated in response to 

mild chilling (low temperature) stress. Dry weight production, shoot elongation, leaf development and 

development of lateral shoots were analyzed after four and five weeks, respectively, of chilling 

treatment in the greenhouse and climate chamber (12 °C compared to a control of 16 °C; two K 

day/night difference). The applied temperatures were proofed to be appropriate for evaluating mild 

chilling tolerance in petunia. The cultivar-specific vegetative growth of the investigated cvs, measured 

by dry weight production, shoot elongation and leaf development, was reduced by chilling, while 

branching of lateral shoots was mostly not affected. Within the pool of ten cvs, high branching cvs 

appeared to be more tolerant to mild chilling stress. However, relative growth and growth depression 

under chilling compared to control conditions featured distinct differences in chilling tolerance among 

certain cvs, which were independent of general growth characteristics. Here, we introduce three 

specific indices for a proper evaluation of growth performance at control (growth index = GI) or 

chilling conditions (chilling performance index = CPI), and the growth robustness to chilling (chilling 

tolerance index = CTI). GI and CPI can be used to compare the growth performance of a particular cv 
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at control temperature or chilling, respectively, to the growth of the best cv of a certain pool. To 

estimate the individual chilling reaction of a cv, CTI can be applied as stand-alone index. Finally, we 

propose two cvs as models for further physiological and molecular investigations. 

 

Key words: Petunia hybrida, chilling stress, cold, chilling tolerance, growth index 

 

 

1 INTRODUCTION 

Petunia (Petunia hybrida) was among the five most produced bedding and balcony plant species of 

Germany with a market share of 6 % of a total of nearly 2 billion euros in 2012 (BMEL, 2014). 

Thermophilic species like petunia that are produced during winter months and early spring need high 

amounts of energy for heating and artificial lighting. In German horticultural production, heating of 

greenhouses accounts for up to 90 % of the total energy consumption (Gabot.de, 2012). While high 

energy prices and the customers’ growing ecological consciousness in the face of climate change 

request the highest possible sustainability of ornamental production, heating carries a remarkable 

saving potential of both direct costs and greenhouse gases. Therefore, improved materials for the 

thermal insulation of greenhouses are already commonly used as well as enhanced adjusted 

temperature management techniques. Moreover, the optimized combination of both will be 

increasingly used for production in low energy greenhouses in the future (Schuch et al., 2014). 

However, the obviously easiest way to save heating energy would be to produce at reduced 

temperatures. Elings et al. (2005) showed that a 2 Kelvin reduction of the mean cultivating 

temperature of tomato greenhouse production could save 16 % of heating energy. Since cultivation at 

reduced temperatures would cause a prolonged production time due to chilling-induced growth 

depression, chilling-tolerant cultivars (cvs) or species, respectively, are needed. Thus, to maintain an 

efficient sustainable production at reduced temperatures, plants should be only slightly affected in 

their growth performance or at least display a significantly smaller growth depression compared to the 

average of other cvs of the same species. Practical experiences indicate that the degree of chilling 

tolerance varies among existing commercial petunia cvs. Therefore, to identify distinct chilling-

tolerant cvs, reliable and easy to apply criteria are needed for the evaluation of growth response to 

mild chilling. Especially in ornamentals like petunia, the phenotypical growth reactions on the cv-

level aiming at mild chilling tolerance have not been adequately investigated. A more detailed 

knowledge of the impact of mild chilling stress on phenotypical reactions of petunia cvs would 

provide an indication on how chilling affects growth and allow establishing selection criteria that 

provide more efficient breeding towards chilling tolerance. This would also enable a more sustainable 

greenhouse production.  
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The term ‘chilling’ commonly labels the temperature range between 15 °C and 0 °C (Lucau-Danila et 

al., 2012), which is below the optimum temperature of thermophilic crops like petunia. However, the 

temperature optimum for a minimal time to flower seems to be quite higher with temperatures around 

25 - 26 °C or more in petunia (Kaczperski et al., 1991; Warner, 2010). The specific effect of chilling 

on plants depends mainly on three factors, the degree of temperature reduction, the duration of 

exposure and the plants’ susceptibility to chilling. Thus, chilling reactions can reach from a reduced 

plant productivity (Allen and Ort, 2001) up to numerous chilling symptoms such as electrolyte 

leakage, chlorosis, or severe injuries as necrosis until death of tropical thermophilic plants by 

nonfreezing low temperatures (Mahajan and Tuteja, 2005). Chilling tolerance describes the capability 

of plants to cope with these chilling temperatures, while the degree of tolerance varies between plants 

(Lucau-Danila et al., 2012; Sanghera et al., 2011). That means, chilling-tolerant species are less 

susceptible to chilling temperatures and show less growth retardation or injuries than the average 

(Pennycooke et al., 2005; Sanghera et al., 2011). However, tolerance to mild chilling evoked by sub-

optimal temperatures cannot simply be determined by evaluating damage symptoms on plants because 

those are often observed only under severe cold stress. Therefore, easy identifiable growth parameters 

are needed to evaluate the extent of mild chilling stress or chilling tolerance. The term ‘chilling 

tolerance’ implies that the plant phenotype or growth under the exposure to chilling has to be 

evaluated compared to the growth under optimum conditions. For this purpose, many publications use 

the term ‘performance’ to compare the plant development of a particular cv at specific conditions like 

chilling with other cvs or with growth at control conditions, while they lack in a proper definition of 

‘performance’. In contrast, Kelly et al. (2007) who evaluated growth and development of a huge pool 

of petunia cvs measuring plant height, width, flower diameter, flowering and days to first flower, 

defined the overall performance as the average of the flower, foliage, disease and arthropod ratings.  

 

Taking into account that particularly the early vegetative growth of petunia occurs during the winter 

and early spring with a high demand on heating and to avoid interferences with flower development, 

the present study focused on the chilling response of vegetative growth. Therefore, based on 

observations of growers on the response of diverse petunia cvs to varying temperature, a pool of 10 

cvs was selected to answer the following questions 1) How large is the variability in growth among 

the cvs, when cultivated at control temperature of 16 °C (day: 17 °C; night 15 °C) and at sub-optimal 

temperature of 12 °C (13 °C; 11 °C)? 2) How do different structure parameters of the shoot contribute 

to chilling tolerance? 3) Which parameters are suitable to compare a) the growth of cvs at the sub-

optimal temperature and b) the robustness of growth against sub-optimum temperature? 
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2 MATERIAL AND METHODS 

2.1 PLANT MATERIAL AND CHILLING TREATMENT 

Ten commercial Petunia hybrida cvs were screened for differences in their phenotypical chilling 

reaction: Compact Famous Hot Pink (Com Fam HP), Compact Famous Electric Purple (Com Fam 

EP), Famous Dark Blue (Fam DB), Famous Firestorm (Fam F), Famous Light Blue (Fam LB), 

Famous Lilac Dark Vein (Fam LDV), SweetSunshine Burgundy (SwSu Bur), SweetSunshine White 

Evolution (SwSu WE), SweetSunshine Williams (SwSu Will), Ultra Blue (UB). The pre-selection of 

these cvs was based on experience of producers who rated these cvs as putative chilling-tolerant, 

moderate or chilling-sensitive. 

 

For chilling treatment, an average chilling day temperature (24 h mean) of 12 °C was compared to a 

control of 16 °C average (24 h mean), both with a 2 K day/night difference. This control temperature 

is frequently used in German greenhouse production of petunia. Preliminary experiments showed that 

this 4 K reduction in temperature caused a delayed development depending on the cv without visible 

cold injuries. Young plants were produced from cuttings (Bauerfeind et al., 2015). After potting (pot 

size: 11 cm; Einheitserde Classic Tonsubstrat ED 73, +Fe, coarse, nutritive salt 1.0, without slow-

release fertilizer (GEPAC LCD); Patzer GmbH & Co. KG, Sinntal, Germany), the plants were 

transferred to greenhouse cabins or climate chambers, respectively. For acclimation, rooted cuttings 

were transferred into the climate chamber or greenhouse cabin and cultivated on control conditions 

for two weeks. After this pre-cultivation, half of the plants were relocated to another greenhouse cabin 

or climate chamber, respectively, with identical climate conditions, but exposed to reduced 

temperatures for chilling treatment. The other half of the plants remained under control conditions 

(Table 1). Based on the results of the first two experiments in climate chamber (CC, at the Leibniz 

Universität Hannover, LUH) and greenhouse (GH1, at the Leibniz Institute of Ornamental and 

Vegetable Crops in Erfurt, IGZ), two additional greenhouse experiments (GH2 & 3, both at the IGZ) 

were conducted with a reduced number of putative chilling-tolerant and chilling-sensitive cvs, 

respectively. GH2 and GH3 were conducted simultaneously as two independent repetitions with 

plants originating from two different batches. In the climate chamber, the indicated targeted values 

were reached. For the greenhouse experiments, actually measured temperatures are presented. Since 

investigations focused on vegetative growth only, developing flower buds were constantly removed, 

as soon as visible, to prevent interference with competing sinks. 

 

2.2 GROWTH PERFORMANCE ANALYSIS 

Fresh weights of the aerial plant parts were measured at the beginning and the end of chilling 

treatments. Dry weights were determined after drying at 80 °C for 48 h until constant weights were 

reached. To calculate increases in weights, initial weights were subtracted from the end weights. For 

detailed growth evaluation, the elongation of the main shoot as well as the increases in numbers of 
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newly developed shoots and leaves of the main shoot (marked at the start of temperature treatment) 

were evaluated over the period of chilling treatment (for growth conditions see Table 1). 

 

2.3 DATA PROCESSING AND STATISTICS 

Growth depression in response to chilling was calculated by subtracting individual dry weight 

increases per plant of each cultivar (cv) at 12 °C from the mean dry weight increase of the same cv at 

control conditions. As another parameter of growth robustness to chilling, ratios of dry weight 

increases at 12 °C versus 16 °C were calculated by dividing individual values measured under chilling 

conditions by the mean value of the measurements of the corresponding control of the same cv. To 

evaluate the influence of mild chilling stress on the general growth rate, the growth at chilling 

temperature and the growth robustness against chilling, the growth index (GI), the chilling 

performance index (CPI) and the chilling tolerance index (CTI) were determined with the five 

selected putative chilling-tolerant and chilling-sensitive cvs. The GI was calculated by dividing the 

particular dry weight increases of a specific cv at control conditions by the highest dry weight 

production found among the pool of cvs at control conditions. Likewise, the CPI was calculated for 

dry weights under chilling treatment. The CTI was calculated by dividing the individual dry weights 

of each cv under chilling treatment by the dry weight of the same cv at control conditions. For 

statistical analyses the STATISTICA software package (StatSoft, Inc. [2014]. STATISTICA for 

Windows [data analysis software system], version 12.0. www.statsoft.com) was used (Bauerfeind et 

al., 2015). Different characters indicate different significance groups, significant differences between 

temperature treatments were marked in the respective figures by asterisks (ANOVA, * P ≤ 0.05), 

Spearmans rank correlation coefficient was used to calculate correlation coefficients between the 

different growth parameters and tested at a significance level of (P ≤ 0.05). 

 

3 RESULTS 

Evaluation of the chilling stress on dry weights  

The below-described experiments were conducted in two different research facilities. The climate 

chamber experiment (CC) was performed at the Institute of Horticultural Production Systems of the 

Leibniz Universität Hannover and the three greenhouse experiments (GH1-3) at the Department of 

Plant Propagation of the Leibniz Institute of Vegetable and Ornamental Crops. The increases in fresh 

and dry weights during temperature treatment were determined to obtain general information on 

biomass production at the differentiated temperatures. Since dry and fresh weight production 

responded in a similar manner to cv and temperature, only the dry weight production is shown in 

Figures 1 - 5. The Petunia hybrida cvs displayed highly specific growing rates, measured as dry 

weight increases after 4 or 5 weeks, independent of temperature treatment and experimental 

compartments.  
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In the climate chamber experiment (CC: Figure 1 A; 2 A; 3 A, C), Fam LB, UB and Fam LDV, the 

cvs with the highest dry weight increase after five weeks accumulated under both temperature 

treatments more than twice as much dry weight as SwSu Will, the cv with the lowest dry weight 

accumulation (Figure 1 A). In response to chilling treatment, the dry weights of all cvs were 

significantly reduced, with the exception of Com Fam EP and Fam F. A further experiment was 

conducted in greenhouse cabins (GH1: Figure 1 B; 2 B; 3 B, D). The cultivar-specific differences in 

dry weight accumulation were even bigger than in climate chamber (compare Figure 1 A and B). Fam 

LDV, Fam LB and UB produced the highest dry weight increases again. SwSu WE and SwSu Will 

showed the lowest dry weight production (Figure 1 B). The chilling response was in the most cvs 

stronger than in the climate chamber, and showed a significantly reduced dry weight production for 

all cvs (compare Figure 1 A and B).  

 

Correlating the dry weight production at control and chilling temperature in CC, the regression line 

reflected a strong cultivar-specific correlation between growth at 11.5 °C and 15.75 °C (Figure 2 A). 

Nevertheless, Com Fam EP, Fam F and UB were situated above the regression line, whereas the other 

cvs were situated on or below the line. Correlating the dry weight productions at both temperatures in 

GH1 showed a slightly stronger cultivar-specific correlation between growth at chilling and control 

than in CC. In GH1, UB and Fam F were again placed above the regression line, indicating a slight 

above-average dry weight production under chilling compared to control (Figure 2 B). Additionally, 

Fam DB and SwSu Will were below the line as they were in CC.  

 

In CC, also the growth ratios of Fam F, Com Fam EP, and UB showed only small chilling-induced 

growth restrictions (Figure 3 A), which was also reflected by lower absolute growth depressions 

(Figure 3 C). Higher growth depressions were found for the cvs with the lowest growth ratios as 

Fam DB, Com Fam HP and SwSu Bur. The absolute growth reduction of SwSu Will was smaller than 

in these three cultivars, while it still displayed a low growth ratio indicating a strong growth 

restriction. The two cvs positioned above the regression line in both experiments (Figure 2 A, B), 

Fam F, and UB, also displayed the highest growth ratios at chilling in GH1 (Figure 3 B), while SwSu 

Will and Fam DB, positioned below the regression line in both experiments, were positioned among 

the three cvs, with the lowest growth ratios. Whereas in CC, the cvs with high growth rates under 

exposure to chilling (Figure 3 A) simultaneously displayed the lowest growth depressions (Figure 3 

C), in the GH1 there was no clear connection between growth ratio (Figure 3 B) and extent of growth 

depression (Figure 3 D). Furthermore, despite the significantly different growth ratios, the absolute 

growth depression of UB and SwSu Will were almost the same in both experiments. 
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Evaluation of the chilling stress on certain growth characteristics 

To find indication, whether certain growth characteristics of the cvs at control or chilling temperature 

may determine the tolerance against chilling, we calculated the correlation between the different 

biomass production and development of structure parameter values determined at the specific 

temperature as independent variables and the ratio or absolute depression for the same values between 

12 °C and 16 °C as dependent variables (Table 2). The data indicates that the relative robustness of 

growth against mild chilling is determined to a high extent by the absolute growth in terms of biomass 

production and branching rate (development of lateral shoots) in particular. Thus, ratios of fresh 

weight, shoot length and leaf number at 12 °C related to 16 °C are highly correlated to the fresh and 

dry weight production and to the shoot number produced at 16 °C. Especially the ratios of fresh 

weight were highly correlated with shoot number produced at 12 °C. Higher general growth in terms 

of fresh and dry weight production was also correlated to higher losses in dry weight in response to 

chilling, even though the reversal relationship was found for the absolute depression in leaf number. 

Nevertheless, against this background, the data provided an indication that particular cvs show 

specific responses to chilling which are not simply related to general growth characteristics. 

 

Investigation of selected cultivars on mild chilling stress 

A consecutive second greenhouse experiment (GH2) focused on a reduced number of cvs that reacted 

chilling-tolerant, chilling-sensitive or mediocre in the first two screenings (CC and GH1: Figure 1 to 

3 and Table 1). Focusing on these selected cvs reduced the overall variability in growth between the 

cvs so that the differences in tolerance were more pronounced. Thus, this experiment featured much 

less cultivar-specific growth differences at 16 °C, but displayed for all cvs, with exception of UB, a 

significant chilling response (Figure 4 A). Further, the distinct chilling reactions of UB and SwSu 

Will were confirmed. For both cvs, dry weight production did not vary significantly at control 

temperature, but differed under chilling. The growth ratio of SwSu Will was lower than the ratio of 

UB (Figure 4 B) and the growth depression stronger (Figure 4 C). Thus, due to the reduced number 

of cvs and the higher growth performance of UB under chilling, there was only a weak correlation of 

dry weight production at 12 °C and at 16 °C, while the data point of UB was above the regression line 

(Figure 5).  

 

Comparison of growth parameter development of two different greenhouse experiments 

Responses of particular structure parameters of the cvs to temperature were analyzed in two 

greenhouse experiments (GH1 and GH2). Figure 6 features only the selected cvs, which were chosen 

for the analysis in GH2. In GH1, the shoot elongation growth varied between the cultivars and 

responded to chilling with significant decreases in all cvs (Figure 6 A). The production of new leaves 

on the main shoot showed cultivar-specific growth differences at both temperatures, and responded to 

chilling with significant decreases in the cvs except for Fam LB (Figure 6 C). The distinct growth 
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response of dry weight of UB and SwSu Will was not reflected by the elongation growth or the leaf 

development on the main shoot, both parameters did not vary significantly at chilling or control 

temperature between both cvs. However, the formation rate of new lateral shoots of the main shoot 

displayed the strongest cultivar-specific variations (Figure 6 E). The more dry-weight-producing cvs 

Fam LB and UB developed at both temperatures considerably more lateral shoots than the poor dry-

weight-producing cv SwSu Will. Nevertheless, only Com Fam HP responded to chilling with a 

decrease in number of new shoots. In GH2, the shoot elongation was generally lower, which leads to 

smaller cv-differences at control temperature and no significant differences under chilling (Figure 6 

B). However, all cvs still responded to chilling with a decrease of shoot length growth. The leaf 

development showed no cultivar-specific growth differences at both temperatures, whereas all cvs 

reacted to chilling with a reduced leaf production (Figure 6 D). GH2 proved that the distinct growth 

response of dry weight of UB and SwSu Will was not reflected by the elongation growth or the leaf 

development on the main shoot. Likewise, in GH1, both parameters did not vary significantly at 

chilling or control temperature in both cvs. Also in GH2, the formation rate of new lateral shoots 

displayed strong cultivar-specific differences, with higher rates for UB and Com Fam HP at both 

temperatures compared to GH1 (Figure 6 F). The chilling effect on branching was just marginal. 

Only in Com Fam HP, the number of newly developed shoots was significantly reduced. The findings 

of the first experiment that Fam LB and UB developed at both temperatures considerably more lateral 

shoots than SwSu Will could be reproduced. 

 

Introduction of growth performance indices 

For final comparison of the five cvs which were used in the three above-shown experiments CC, GH1 

and GH2 and in an additional third greenhouse experiment, GH3, their indices for growth 

performance (GI), chilling performance (CPI) and chilling tolerance (CTI) were calculated based on 

dry weight production (Table 3). In addition to the mean values over the four experiments, SEs were 

calculated as indicators for the environmental stability of the growth and chilling reaction. GI and CPI 

reflect the relative growth performance of each cv in relation to the highest-performing cv at control 

temperature or chilling, respectively. The CTI describes the individual robustness of the specific cvs 

to the exposure to chilling. The highest GI and CPI and therefore the highest dry weight production at 

both temperatures compared to the pool of cvs, displayed Fam LB, but combined with the second 

lowest CTI. UB showed the second highest GI and CPI, but the highest CTI. However, regarding the 

individual growth robustness against chilling, measured by CTI, Fam LB, Com Fam HP and Com 

Fam EP differed only marginally. The biggest difference in the individual dry weight production 

response to chilling was found between UB and SwSu Will. 
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5 DISCUSSION 

Producing thermophilic ornamentals like petunia at reduced temperatures could save a lot of heating 

energy, as long as the produced species would show a similar growth performance at sub-optimal 

temperatures compared to common cultivation temperatures. Growth of Petunia hybrida cvs is 

impacted to a varying degree by sub-optimal temperatures, depending on their genotype. For this 

study we investigated putatively chilling-tolerant, and -sensitive reacting cvs to evaluate if the degree 

of susceptibility to chilling can be connected with changes in development of specific growth 

parameters. Since especially the first weeks of cultivation before flowering during winter account for 

the highest heating demand, we investigated the vegetative growth only.  

 

The applied temperatures of 12 °C compared to 16 °C (with two K day/night difference) seem 

appropriate as testing system for investigations of mild chilling tolerance in petunia. The data 

indicates that the variation in vegetative growth among commercial petunia cvs at sub-optimal 

temperatures close to 12 °C is to a high extent related to their general growth characteristics (Figure 

1). However, selected cvs displayed specific chilling responses which reflect a variation in chilling 

tolerance being independent of the general growth capacity (Table 3).  

 

The ten analyzed cvs showed high diversity in dry weight production (Figure 1) and dry weight 

production was reduced by chilling. However, the cultivar-specific differences between fast and 

slowly growing cvs were more pronounced than individual chilling-induced growth depressions. 

Interestingly, particular the cv but also the temperature effects on growth were more pronounced 

when greenhouse cultivation allowed some fluctuation of temperature and irradiance compared with 

stable climate chamber conditions (Table 1, Figure 1, Figure 3). The variation in growth under 

chilling was strongly determined by the general growth performance of the cvs as reflected by the 

high positive correlation between dry weight production at chilling and control temperature 

(Figure 2). Nevertheless, plotting of individual cvs (Figure 2) and the calculation of the ratio of dry 

weight production at 12 °C versus 16 °C indicated cultivar-specific differences in the chilling 

response (Figure 3 A, B). Focusing on fewer cvs and thus reducing the general variation in growth 

(Figure 4, Figure 5) further highlighted these differences. It also confirmed that the cv UB shows 

better growth under chilling compared to SwSu Will (Figure 4 A) and revealed that a higher growth 

robustness of UB against chilling (Figure 4 B, Figure 5). Whereas calculation of the 12/16 °C ratio 

gave relatively stable results for UB versus SwSu Will over four experiments (Figure 3 A, B, Figure 

4 B, Table 3), the absolute growth depression in terms of dry weight (Figure 3 C, D, Figure 4 C) 

was highly variable between individual experiments. This may be based on the fact, that the absolute 

depression is the outcome of interaction between two factors, the chilling tolerance and the general 

growth performance of the cv (see the correlation between dry weight depression and fresh and dry 

weight production at 16 °C in Table 3).  
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The positive correlation of fresh weight ratio with the branching rates at both temperatures suggests 

that cvs that develop high numbers of lateral shoots may be less susceptible to chilling (Table 2). In 

contrast to the shoot elongation and the development of new leaves, the branching rate in most cvs 

was only marginally affected by chilling, but displayed high cultivar-specific temperature-

independent differences (Figure 6). Since the numbers of lateral shoots were correlated at both 

temperatures with several relative growth parameters (Table 2), a higher number of shoots may 

contribute to a good relative growth performance under chilling. Especially when shoot elongation 

growth and leaf development are much more disturbed than the branching rate, biomass production of 

cvs with a higher branching rate should be less affected by chilling. A recent detailed study of the 

sensitive cv SwSu Will revealed that mild chilling stress disturbs plant functional integrity at levels of 

plant hormones and carbohydrate metabolism (Bauerfeind et al., 2015). The metabolic data indicated 

that under mild chilling sugars accumulate in source leaves whereas carbohydrate transport to and/or 

carbohydrate utilization in the growing shoot apices are inhibited. A higher branching rate and thus a 

higher number of new lateral shoots implies also a higher number of growing points which provide 

large utilization sinks for carbohydrates being produced in the source leaves (Lieth et al., 1991). 

Therefore, a higher branching rate may reflect a generally different plant hormone homeostasis (e.g. 

of auxin) and by that altered carbohydrate flux situation (Mason et al., 2014), which may further 

contribute to chilling tolerance. Further, the higher number of shoots might increase the carbohydrate 

demand of the utilization sink tissues and probably increase the carbohydrate translocation from the 

source leaves. Thus, a detailed analysis of carbohydrate metabolism and plant hormone homeostasis 

and signaling in cvs with contrasting branching rate and chilling tolerance is necessary to elucidate 

such relationships. Nevertheless, a more complex branching habitus of a cv might be a usable first 

selection criterion, when screening a huge sets of Petunia hybrida cvs for chilling-tolerant cvs. 

 

The specific indices, reflecting the growth at control (GI) and chilling (CPI) conditions and the 

growth robustness to chilling (CTI), suggest that variation in growth of commercial petunia cvs under 

the condition of mild chilling is to a great part determined by general growth performance. However, 

the data shows that chilling tolerance is not in all cases simply determined by the general growth. 

Further, relative growth under stress versus control conditions revealed distinct differences in chilling 

tolerance among the investigated cvs independent of general growth characteristics. GI and CPI may 

serve as indices to describe the growth of a particular cv at control temperature or chilling, 

respectively, in relation to the growth performance of the best growing cv of a certain pool. However, 

we propose CTI as stand-alone index to evaluate the individual reaction of a cv to chilling. 

Calculation of the SE for the different values over individual experiments or tests provides 

information on the environmental stability of growth performance, chilling performance and chilling 

tolerance of the analyzed cvs. 
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The vegetative growth of commercial Petunia hybrida cvs at sub-optimal temperatures in terms of dry 

weight production, shoot elongation and leaf development, but not branching of lateral shoots was 

reduced compared with control temperature but strongly determined by the general cv-specific growth 

potential. Furthermore, growth analyses suggest a higher chilling tolerance in cvs that develop more 

lateral shoots. This work suggests distinct indices to describe chilling performance and chilling 

tolerance of cvs. Finally, UB and SwSu Will seem suitable as models for further physiological and 

molecular investigations. 
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6 FIGURES 

 

Figure 1 │ Impact of chilling on dry weight production in climate chamber and greenhouse. Dry 

weight increases after four weeks of temperature treatment. (A) dry weight increases in climate 

chambers after five weeks (CC, control temperature mean: 15.75 °C, chilling mean: 11.5 °C); (B) dry 

weight increases in greenhouse cabins after four weeks (GH1, control temperature mean: 16.1 °C, 

chilling mean: 12.1 °C). (GH1: n = 24; CC: n = 18; data are means ± SE; different characters indicate 

significant differences between the cvs, P < 0.05; asterisks indicate significant temperature effects 

within one cv, * P ≤ 0.05).  
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Figure 2 │Dry weight increases under chilling vs. increases at control temperature. Correlations 

of mean dry weight production per cv at chilling temperature with dry weight production at control 

temperature. (A) in climate chambers after five weeks (CC, control temperature mean: 15.75 °C, 

chilling mean: 11.5 °C; y = 0.7486x – 0.0968; R2 = 0.9624); (B) in greenhouse cabins after four 

weeks (GH1; control temperature mean: 16.1 °C, chilling mean: 12.1 °C; y = 0.8425x – 0.0427; R2 = 

0.9357). 
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Figure 3 │Growth ratio and absolute growth depression. Growth ratios (dry weight production 

under chilling divided by production at control temperature) compared to the absolute growth 

depressions (difference of dry weight production under chilling and at control temperature) caused by 

exposure to chilling. (A) growth ratio in climate chambers after five weeks (CC, control temperature 

mean 15.75 °C, chilling mean 11.5 °C); (B) growth ratio in greenhouse cabins after four weeks (GH1, 

control temperature mean: 16.1 °C, chilling mean: 12.1 °C); (C) absolute growth depression in 

climate chambers; (D) absolute growth depression in greenhouse cabins. (GH1: n = 24; CC: n = 18; 

data are means ± SE; different characters indicate significant differences between the cvs, P < 0.05; 

asterisks indicate significant temperature effects within one cv, * P ≤ 0.05). 
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Figure 4│ Impact of chilling on dry weight production of selected cvs. Impact of chilling on 

absolute dry weight production, growth ratios (dry weight production under chilling divided by 

production at control temperature) and on dry weight depression (difference of dry weight production 

under chilling and at control temperature) of five selected cvs in a second greenhouse experiment 

(GH2). Dry weight increases after differentiated temperature treatment. (A) dry weight increases after 

four weeks; (B) growth ratio; (C) absolute growth depression. (GH2, control temperature mean: 16.1 

°C, chilling mean: 11.8 °C; n = 16; data are means ± SE; different characters indicate significant 

differences between the cvs, P < 0.05; asterisks indicate significant temperature effects within one cv, 

* P ≤ 0.05). 
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Figure 5 │Dry weight increases of selected cvs under chilling vs. increases at control 

temperature. Correlations of mean dry weight production per cv at chilling temperature with dry 

weight production at control temperature in greenhouse cabins after four weeks (GH2, control 

temperature mean: 16.1 °C, chilling mean: 11.8 °C; y = 0.4787x - 0.6364; R2 = 0.5262). 
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Figure 6│ Impact of chilling on growth parameters of selected cvs. Impact of chilling on shoot 

elongation, production of leaves and production of lateral shoots. Increases after four weeks of 

differentiated temperature treatment. (A) elongation growth of the main shoot (GH1, control 

temperature mean: 16.1 °C, chilling mean: 12.1 °C); (B) elongation growth of the main shoot 

(GH2, control temperature mean: 16.1 °C, chilling mean: 11.8 °C); (C) newly developed leaves 

(GH1); (D) newly developed leaves (GH2); (E) newly developed shoots (GH1); (F) newly developed 

shoots (GH2). (GH1: n = 24; GH2: n = 16; data are means ± SE; different characters indicate 

significant differences between the cvs, P < 0.05; asterisks indicate significant temperature effects 

within one cv, * P ≤ 0.05).  
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Table 1 │Growth conditions of individual experiments. Conditions of the four experiments. (CC = 

climate chamber, LUH; GH1 - 3 = greenhouse cabins, IGZ; experiments GH2 and GH3 were 

conducted simultaneously as independent repetitions with plants derived from distinct shipments). 

 

 

 

 

Table 2│Spearmans correlation coefficients: absolute production vs. ratio and growth 

depression under chilling. Correlations between the increases in fresh weight, dry weight, shoot 

number, shoot length and leaf number and the ratios (increase under chilling divided by increase at 

control temperature) and absolute growth depressions (difference of increase under chilling and at 

control temperature) of these parameters. (GH1; n = 10; data are means ± SE; bold numbers indicate 

significant correlations, P ≤ 0.05). 

  Ratio (12 °C/16 °C) Growth depression (16 °C - 12 °C)  

 Increases 
Fresh 

weight 

Dry  

weight 

Shoot 

number 

Shoot 

length 

Leaf 

number 

Fresh 

weight 

Dry  

weight 

Shoot 

number 

Shoot 

length 

Leaf 

number 

 Fresh weight 12 °C 0.62 0.42 0.47 0.66 0.42 -0.38 0.32 -0.36 -0.10 -0.24 

 Fresh weight 16 °C 0.76 0.42 0.16 0.68 0.84 -0.15 0.72 -0.10 0.18 -0.64 

 Dry weight 12 °C 0.56 0.30 0.42 0.61 0.44 -0.19 0.49 -0.31 0.07 -0.21 

 Dry weight 16 °C 0.76 0.42 0.16 0.68 0.84 -0.15 0.72 -0.10 0.18 -0.64 

 Shoots 12 °C 0.87 0.62 0.27 0.72 0.78 -0.49 0.36 -0.20 -0.19 -0.53 

 Shoots 16 °C 0.78 0.79 -0.27 0.68 0.65 -0.65 0.05 0.32 -0.31 -0.39 

 Shoot length 12 °C -0.04 -0.24 -0.15 0.31 0.49 0.47 0.74 0.19 0.61 -0.08 

 Shoot length 16 °C -0.08 -0.49 0.24 -0.21 0.39 0.14 0.60 -0.22 0.70 -0.36 

 Leaf number 12 °C 0.54 0.63 -0.36 0.49 0.34 -0.26 0.00 0.44 -0.07 0.28 

 Leaf number 16 °C 0.06 0.06 -0.03 0.19 0.26 -0.14 -0.10 0.09 -0.18 0.32 

 

 

Control Chilling Control Chilling Control Chilling Control Chilling

Duration of temperature 

treatment

Average temperatures:

     Day 16.5 °C 12.5 °C 16.8 °C 13.1 °C 17.1 °C 13.0 °C 17.1 °C 13.0 °C
     Daily min/max - - 15.1 °C/17.6 °C 11.8 °C/14.1 °C 14.8 °C/18.6 °C 10.8 °C/14.1 °C 14.8 °C/18.6 °C 10.8 °C/14.1 °C

     Night 15.0 °C 10.5 °C 15.2 °C 11.0 °C 15.2 °C 10.6 °C 15.2 °C 10.6 °C

     Daily min/max - - 14.6 °C/16.7 °C 10.0 °C/12.4 °C 14.6 °C/16.5 °C 10.2 °C/12.5 °C 14.6 °C/16.5 °C 10.2 °C/12.5 °C

     24 h 15.75 °C 11.5 °C 16.1 °C 12.1 °C 16.1 °C 11.8 °C 16.1 °C 11.8 °C

Length of photoperiod

Photosynthetic photon 

flux density

Photosynthetic photon 

flux density of outside 

light (time frame)

Humidity 79% 83% 61% 62% 61% 62%

day length extension by 
assimilation lighting

day length extension by 
assimilation lighting

day length extension by 
assimilation lighting

150 µmol/s*m²

65%

 6.14 mol/d*m
2                                                  

(24 h mean, 29.03.2011 - 
28.04.2011)

6.61 mol/d*m²                                                                                               
(24 h mean, 01.02.2012 - 02.03.2012)

                              
(May 2011)

CC GH1 GH2 GH3 

12 h 12 h 12 h 12 h

5 weeks 4 weeks 4 weeks 4 weeks
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Table 3│Growth indices. Growth index (GI), cold performance index (CPI) and cold tolerance index 

(CTI). Means of four experiments (CC, GH1, GH2 and GH3).  

  GI   CPI   CTI   

Cultivar Mean SE Mean SE Mean SE 

Fam LB 1.00 0.00 0.99 0.04 0.76 0.04 

UB 0.78 0.07 0.88 0.08 0.87 0.08 

Com Fam EP 0.72 0.11 0.75 0.11 0.81 0.11 

Com Fam HP 0.57 0.09 0.58 0.11 0.78 0.10 

SwSu Will 0.48 0.12 0.44 0.12 0.70 0.12 
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2.2 Transcriptome, carbohydrate, and phytohormone analysis of Petunia hybrida 

reveals a complex disturbance of plant functional integrity under mild chilling 
stress 
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2.3 Comparative analysis of two contrasting petunia cultivars indicates important 
functions of carbohydrate utilization and abscisic acid in tolerance to mild 
chilling stress 
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Abstract 

Background: Energy savings in production of thermophilic ornamental crops could be realized with 

tolerant cultivars that show minimal growth depression in response to sub-optimal temperature. To 

identify factors that might control chilling tolerance of Petunia hybrida, the chilling-tolerant cultivar 

(cv) `Ultra Blue´ (UB) was compared with the sensitive cv `SweetSunshine Williams´ (SW). We 

investigated dynamics of carbohydrate metabolism by enzymatic assays, photosynthetic activity by 

gas exchange measurement, homeostasis of phytohormones by GC-MS/MS and gene expression by a 

petunia specific microarray over a chilling period (12 °C versus 16 °C) of three weeks.  

Results: UB was characterized by a lower chilling-induced increase of soluble sugars in the source 

organs but constitutively higher sucrose levels in the apex and higher net photosynthesis at both 

temperatures. Furthermore, activities of cytosolic and cell wall invertase were constitutively higher 

for UB than for SW particularly in the apex and were associated with lower expression of genes 

coding for invertase inhibitors in the different organs. In UB one gene coding for 

phosphoenolpyruvate carboxylase kinase was higher expressed in the apex. Abscisic acid (ABA) 

displayed three fold higher concentrations in UB at both temperatures, especially in the apex. This 
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was associated with generally higher hybridization signals for a gene encoding a carotenoid cleavage 

dioxygenase independent of the temperature. Application of ABA to SW enhanced ABA levels and 

reduced biomass production at both temperatures, whereas treatment of UB with nordihydroguaiaretic 

acid (NDGA), an inhibitor of ABA-biosynthesis, reduced ABA levels but enhanced biomass 

production only at control temperature. ABA treatment reduced the chilling-induced growth 

depression and enhanced leaf development in chilled SW, whereas NDGA treatment enhanced the 

chilling-induced growth depression.  

Conclusions: Metabolic and transcriptome data suggest that higher and more stable carbohydrate 

transport to and carbohydrate turnover in the growth sinks contribute to higher tolerance to mild 

chilling in petunia. The results further support a protective role of ABA, which might depend on the 

intrinsic distribution within the plant. Ethylene-, auxin-, and gibberellin-related pathways seem also to 

be involved. Functional analysis of candidate genes will contribute to a better understanding of the 

processes controlling tolerance to mild chilling stress.  

 

Keywords: cold, gene expression, invertase, low temperature, microarray, Petunia hybrida, 

photosynthesis, plant hormones, SAUR 

 

Background 

Heating of greenhouses is a significant cost factor for the production of thermophilic ornamental 

crops during the winter months in northern climates. In respect to the rising energy costs as well as to 

the growing environmental awareness of customers, energy saving is becoming more and more 

important as integral part of sustainable crop production. Producing at lower temperatures would 

reduce energy inputs but also impose chilling stress on the plants causing damage or at least extend 

the time of production, which would counteract the energy saving goals. To realize an efficient 

sustainable production of thermophilic plant species, cultivars (cvs) are needed that are chilling-

tolerant, which means that they are only slightly affected in their growth when exposed to sub-optimal 

temperatures. It is known for many species, such as Petunia hybrida, that chilling susceptibility varies 

between cvs.  

 

Petunia belongs to the top five bedding plants in Germany with a market volume of more than € 100 

million in 2012 [1]. Nevertheless, processes on molecular level underlying variations in chilling 

tolerance of petunia have not been adequately investigated as of many other ornamental crops. 

Whereas detailed analyses of contrasting chilling-tolerant and -sensitive cvs on mild chilling 

conditions already exist for several crop species, e.g. for rice (10 °C vs. 25 °C) [2] and vegetables like 

spinach (15 °C vs. 30 °C) [3], for petunia such comparative molecular physiological investigations are 

lacking. A detailed knowledge of the molecular regulation of chilling tolerance in petunia in a range 

of temperature, practically relevant to production, would help breeders to enable a more efficient 
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breeding technology towards lower energy demand of petunia for example via functional markers and 

thus promote more sustainable crop production.  

 

The chilling response is a complex interplay of reactions that affect the integrity of the whole plant 

metabolism. The carbohydrate metabolism including photosynthesis and the homeostasis of stress-

related phytohormones are involved, and these multifaceted responses are regulated on gene 

expression level. Considering low temperature stress, the question arises whether responses and 

tolerance to sub-optimal production temperatures such as 4 - 6 K below the usual production 

temperature involve the same physiological principles when compared to stronger cold stress at 

temperatures close to or even below the freezing point. In rosette leaves of Arabidopsis, changes in 

plant metabolism and gene expression were already observed at slightly decreased ambient 

temperatures and were qualitatively not different to the changes induced by lower temperatures, while 

the responses to chilling increased gradually with decreasing temperatures [4]. With increasing 

severity of chilling (from 20 °C to 17, 14, 12, 10 or 8 °C), levels of carbohydrates and many other 

stress-responsive metabolites progressively increased in the cells [4]. Some of these metabolites like 

soluble sugars shelter cells from freezing [5]. However, increased levels of sugars and starch were 

observed in young mature source leaves of tomato already at a moderate reduction of temperature 

(16/14 °C vs. 25/20 °C) [6], when cryoprotection was not essential for survival. Sucrose and the 

hexoses fructose and glucose are beyond their energy, organic carbon and osmotic functions 

important signal molecules regulating source-sink relations in general and particular under stress [7]. 

Therefore, altered carbohydrate levels can be expected both, to be the result of a modified source-

sink-regulation, but also to affect directly the source-sink crosstalk. In contrast to the increasing 

carbohydrate levels, photosynthetic rates have been frequently observed to decrease at reduced 

temperatures [8]. However, when low light levels impair gross photosynthesis, decrease in 

temperature below 20 °C can enhance net photosynthetic rate, which may result from reduced 

respiration [9]. Yamori et al. [10] investigated the plasticity of photosynthetic temperature acclimation 

in different crop species. They found, that cold-tolerant plants featured a higher flexibility in various 

photosynthetic parameters during cold acclimation, and by that they were able to tolerate bigger 

decreases in optimum temperature for the photosynthetic rate (CO2 concentration: 360 µL L-1) [10]. 

Thus, the cold tolerance of the investigated species seemed to be based on a greater temperature 

homeostasis of photosynthesis and leaf respiration over a bigger extent of temperature changes than in 

cold-sensitive plants [11].  

 

As key enzymes for the hydrolysis of sucrose into fructose and glucose, invertases play a crucial role 

in carbohydrate partitioning. Especially extracellular cell wall invertases (cwINV) are crucial for an 

apoplastic phloem-unloading pathway and therefore of importance for the carbohydrate translocation 

and the supply of sink organs. An up-regulation of extracellular invertases seems to be part of the 
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stress-related reactions to several abiotic and biotic stimuli [12] and that might be, at least partly, due 

to an altered post-translational regulation. Thus, small proteins act as invertase inhibitors that form 

inactive complexes with the invertases and by that silence the invertase activity [13,14]. In mature 

healthy Arabidopsis leaves, invertase inhibitors keep the invertase activity repressed. During stress-

related stimuli like pathogen attack or wounding, a repression of inhibitor activity increases the 

activity of cell wall-bound invertases [15]. The authors suggest that this post-transcriptional de-

repression of the invertase activity supports the source leaf to establish a localized sink metabolism to 

enhance the energy supply, needed for the activation of defense reaction cascades. 

 

Phytohormones are involved in plant reactions to chilling. In tomato, mild chilling tolerance could be 

related to ABA biosynthesis, even if no accumulation of ABA seemed to be necessary to alleviate the 

depressing effect of chilling on the shoot growth [16]. In maize seedlings, Anderson et al. [17] found 

that enhanced ABA synthesis, accompanied by an intense rise in free ABA levels, was essential for 

acclimation-induced chilling tolerance that enables a higher survival rate of seedlings at low 

temperatures (5 °C). Furthermore, exogenous ABA application onto leaves of Trichosanthes kirilowii 

seedlings decreased malondialdehyde levels, which indicates an increased chilling tolerance under 

cold environments (4 °C) [18]. Due to its important regulatory role in the control of cell division, 

elongation and specification, auxin, mainly indole-3-acetic acid (IAA) is crucial for the general 

regulation of plant growth and development. Considering the response of auxin homeostasis to 

environmental changes including low temperature, Rahman [19] suggested that reduced development 

and growth in response to sub-optimal temperature might be linked to altered local auxin gradients. 

Jasmonic acid (JA) may be involved in the chilling response in rice, too [20]. At freezing 

temperatures, endogenous JA production was enhanced in Arabidopsis, and JA application stimulated 

the cold induction of genes acting in the CBF/DREB1 signaling pathway (CBFs: C-repeat binding 

factors; DREB: dehydration-responsive-element-binding protein) that is mediated by CBF/DREB1 

proteins, a family of transcription factors, which seem to be crucial for the cold-response pathways in 

Arabidopsis [21,22]. The expression of members of this transcription factor family is triggered by 

cold, while the transcription factors in turn, increase plant freezing tolerance by controlling the 

transcription of a regulon of cold-induced genes [23,24]. Usadel et al. [4] supposed that in 

Arabidopsis the CBFs have a critical role already for the response of gene expression and the adaption 

of the metabolism to mild chilling temperature. Walworth et al. [25] proved the existence of a 

functional CBF cold-response pathway in petunia and its importance for enhancing freezing tolerance. 

Nevertheless, beside the CBF pathway, an interplay of different other signaling systems seems to 

control the cold stress response in petunia [26,27]. 

 

In a previous study, we described three consecutive phases of the molecular physiological response of 

the sensitive cv `SweetSunshine Williams´ (SW) to mild chilling provoked by decrease in temperature 
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from 16 °C (day/night: 17/15 °C) to 12 °C (13/11 °C), which caused a significant growth depression 

without any visible cold damage. Carbohydrate levels, phytohormones and gene expression in 

different organs reflected an early derangement of plants during the first days of mild chilling, 

followed by a partial recovery after one week and a stabilization phase later on. In that work, we did 

not find any evidence that the CBF pathway was already involved under the influence of the mild 

chilling [26]. Based on these results, in the present study we conducted a comparative analysis of the 

chilling-tolerant cv UB against the sensitive cv SW to elucidate putative candidate factors and 

processes relevant for tolerance to mild chilling in P. hybrida. UB shows a less strong growth 

depression by reduction of temperature from 16 °C to 12 °C when compared to SW. To cover the 

functional system of the aerial part of the plants, we considered young but fully developed leaves, the 

upper stem and the shoot apex as important functional units representing the carbohydrate source, the 

elongating transport route and the main utilization sink of the growing shoot. We followed the 

hypothesis that the differences in growth reaction to sub-optimal temperature are related to divergent 

changes in the carbohydrate metabolism, phytohormone homeostasis, and/or gene expression, of the 

two cvs. Therefore, we analyzed carbohydrate concentrations and invertase activities by enzymatic 

assays, determined photosynthetic activities by gas exchange measurement and measured the 

concentration of the phytohormones ABA, IAA and JA by gas chromatography-tandem mass 

spectrometry (GC-MS/MS). Moreover, we used a specific petunia microarray, which provides 24,816 

unique, non-redundant annotated sequences [28,29] to monitor responses of the transcriptome. 

 

Methods 

Plant material and chilling treatment 

For the comparison of distinct chilling-sensitive P. hybrida cvs, the chilling-sensitive cv 

`SweetSunshine Williams´ (SW) and the chilling-tolerant `Ultra Blue´ (UB) were chosen. For chilling 

treatment, an average day temperature of 12 °C was applied and compared to a control of 16 °C 

average day temperature. The latter is commonly used in German greenhouse production of petunia. 

This reduction in temperature of 4 K already caused a delayed growth in both cvs, but to different 

degrees, both without any visible cold damage. Young plants were established from cuttings as 

described by Bauerfeind et al. [26]. All experiments were conducted in climate chambers. For 

acclimation to the control conditions (day/night temperatures: 17 °C/15 °C; relative humidity: 70%) 

and to establish a good rooting system, rooted cuttings were transferred into a climate chamber 

immediately after potting. The photoperiod lasted 12 h per day (photosynthetic photon flux density: 

during the first week 100 µmol m-2 s-1, from the second week onwards 150 µmol m-2 s-1; fluorescent 

tubes, FQ80W/865 HO Constant, Lumilux Cool Daylight, Osram, München, Germany). For chilling 

treatment, half of the plants were relocated to a climate chamber with identical conditions, but 

exposed to chilling temperatures (day/night: 13 °C/11 °C) after two weeks. Because investigations 

during the four-week period of temperature treatment focused on the vegetative growth of plants, 
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developing flower buds were constantly removed as soon as visible to prevent interference with 

competing sinks.  

 

Growth analysis and collection of samples 

For determination of dry and fresh weight production, fresh weights of the aerial parts of 12 plants per 

treatment were measured after three weeks of chilling treatment. Dry weights were determined after 

drying at 80 °C for 48 h until a constant weight was reached. For detailed evaluation of growth, the 

elongation of the main shoot was measured and the numbers of newly developed lateral shoots and 

leaves of the main shoot (marked at the start of differentiation of temperature) were evaluated after 

three weeks of chilling treatment. 

 

Collection time during the day, sampling of source leaves and of shoot apex, and the treatment and 

storage of samples was conducted according to Bauerfeind et al. [26]. Additionally, the uppermost 

stem (1.5 cm, leaves removed), located directly below the harvested apex, was collected for 

phytohormone and gene expression analyses. The samples for the analyses of carbohydrates, enzymes 

and phytohormones were collected at 0, 1, 3, 7, 21 days after differentiation of temperature (DoT), the 

samples for the microarray analysis were collected at 3, 7, and 21 DoT.  

 

Analysis of carbohydrates, invertase activities and phytohormones 

Fructose, glucose and sucrose were analyzed using enzymatic assays as described by Hajirezaei et al. 

[30] and Klopotek et al. [31]. Activity measurements of invertases were conducted as described by 

Hajirezaei et al. [30,32]. Per each treatment and date, nine biological replicates were analyzed. 

Extraction, purification and analysis of the phytohormones ABA, IAA and JA by GC-MS/MS were 

performed as described by Ahkami et al. [33]. One ml methanol containing 10.3 pmol (2H)2-IAA, 

10.3 pmol (2H)6-ABA and 27.8 pmol (2H)6-JA as internal standards was added to frozen samples 

before extraction. Gas chromatography and mass spectrometry settings for ABA, IAA and JA were 

applied as described by Ahkami et al. [33], Ntatsi et al. [16] and Rasmussen et al. [34]. Per each 

treatment and date, six biological replicates were analyzed. 

 

Measurement of net photosynthetic rate 

An independent experiment was conducted for measuring net photosynthetic rate. Conditions of plant 

cultivation were identical as described above with the difference that illumination was provided with 

fluorescent tubes of the type Lumilux Cool White 840 (Osram, München, Germany) and the 

differentiation of temperature started three weeks after potting of the plants. While plants were 

cultivated in greenhouse cabins, the actually realized temperatures were 19/15 °C (control, day/night) 

and 14/11 °C (chilling, day/night). The measurements of gas exchange rates were performed at 1, 3, 7 

and 14 DoT. To enable to perform measurements referring to one specific DoT on two consecutive 
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days, for half of the chilling treated plants the first day of chilling treatment was postponed by one 

day. For each cv and DoT, two of the four replications were measured in the morning and two in the 

afternoon, respectively. To eliminate root respiration, the pots of the plants were placed in a 

polyethylene bag and closed at the stem basis by an elastic sealing. The gas exchange rate of the 

whole plant was measured in an open system (cuvette volume 15 L) with approximately 400 ppm CO2 

and calculated per leaf dry weight. The relative humidity was adjusted to 70 % by a bypass system 

and resulted in a saturation deficit of 5.8 hPa for the control and 4.5 hPa for the chilling treatment. 

Irradiation was applied by metal halide lamps (photosynthetic photon flux density: 150 µmol m-2 s-1; 

Osram Power Star HQI-T, 400 W). The volumetric flow rate was adjusted to 3 ± 1 L min-1 and the air 

circulation to 0.2 – 0.3 m s-1. The steady-state CO2 uptake rates were determined using infrared gas 

analysis (Binos 100, Fisher-Rosemount GmbH & Co., Hasselroth, Germany) 45 min after the 

installation of the plants in the cuvette. 

 

Microarray hybridization and statistical analysis 

For gene expression analysis, a petunia-specific microarray was used, which was first described by 

Breuillin et al. [29]. It carries 24,816 unigene annotated sequences [35]. RNA from three replicates 

(each replicate was a pooled sample of four individual plants) was extracted with the QIAGEN 

RNeasy Plant Mini Kit (Qiagen, Hilden, Germany). Following the Qiagen protocol, RNA was treated 

with DNase for extraction. The array hybridization was performed by OakLabs GmbH (Hennigsdorf, 

Germany) with a minimum of 500 ng total RNA per sample. Normalization of the data was conducted 

by OakLabs using the Quantil-normalization according to Bolstad et al. [36]. A Rank Product online-

analysis (http://strep-microarray.sbs.surrey.ac.uk/RankProducts/) was carried out to identify 

statistically significant chilling responses and differences between the cvs, respectively [37,38]. 

Therefore, the expression values of each three replicates grown at sub-optimal temperature (12 °C) 

were compared with the corresponding samples from the same cv grown at control temperature 

(16 °C) for each date (3, 7 and 21 DoT). Analogous, hybridization signals of genes in UB were 

compared with hybridization signals in SW separately for both temperatures to find constitutive or 

chilling-specific different RNA accumulation values between the contrasting cvs. To indicate the 

intensity of up- or down-regulation of genes under exposure to chilling, respectively the ratio of 

hybridization signals of both cvs was calculated and transferred to M-values (Log2 of ratios). Thus, 

Log2 < -1 was defined as down-regulated/lower hybridization signal, Log2 > 1 as up-regulated/higher 

hybridization signal. To identify statistically significant differentially expressed genes, 

a pfp (probability of false prediction) value threshold of < 0.15 was applied. Expression graphs were 

created with Genesis, software version 1.7.6 [39].  
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Spray treatment with abscisic acid and nordihydroguaiaretic acid  

Plants for the treatment with (+) abscisic acid (ABA, NBS Biologicals Ltd., Huntingdon, UK) 

respectively with the ABA-synthesis inhibitor nordihydroguaiaretic acid (NDGA, Sigma-Aldrich, St. 

Louis, USA) were cultivated as described above. SW was treated with ABA (0, 30, 120, 480 mg/L 

equivalent to 0, 0.11, 0.45, 1.82 mM), UB was treated with NDGA (0, 15.1, 30.2, 60.5 mg/L 

equivalent to 0, 0.05, 0.10, 0.20 mM). The NDGA stock solutions were prepared with concentrated 

ethanol, the ABA stock solutions with H2O containing 30% ethanol. To reach final concentrations, 

solutions were diluted with H2O and adjusted to a final ethanol concentration of 0.4%. Tween 

(200 µl/L) was added as wetting agent to assure a complete wetting of the treated plants. Plants were 

sprayed with ABA respectively NDGA solution until complete moistening, while in both treatments 

0 mM was used each as a control. The first treatment was applied two days before differentiation of 

temperature (-2 DoT) and then repeated at weekly intervals (7, 14, 21 DoT). Dry and fresh weights as 

well as the growth parameters, number of shoots, length of the main shoot, and the leaves on the main 

shoot, were recorded on -1 DoT and one week after the last spray treatment (28 DoT). In addition, 

apex samples for phytohormone analyses were taken at 28 DoT. 

 

Statistics of data related to growth, metabolism and phytohormones 

The STATISTICA software package (StatSoft, Inc. [2014]. STATISTICA for Windows [data analysis 

software system], version 12.0. www.statsoft.com) was used for statistical analyses. ANOVA was 

used in combination with Tukey HSD test to detect differences between treatments as long as variance 

homogeneity and normal distribution within the groups were met. Variance homogeneity was tested 

by the Levene’s test and normal distribution by the Kolmogorov-Smirnov test. A non-parametric test 

for comparing means (Mann-Whitney-U test or Kruskal-Wallis test) was applied and tested for 

significance, if these assumptions were not fulfilled [33]. Significant differences were marked in the 

respective figures by asterisks (* P ≤ 0.05; ** P ≤ 0.01; *** P ≤ 0.01).  

 

Results 

Growth as affected by cv and mild chilling 

Both cvs responded with decreases in fresh weight (FW) and dry (DW) production to exposure to 

chilling. Production of FW (Additional file 1: Figure S1 A) and DW (Additional file 1: Figure S1 B) 

during the three weeks of temperature treatment differed not significantly between both cvs at control 

temperature. Contrastingly, the production of FW and DW was significantly higher for UB compared 

with SW under the influence of chilling, reflecting a reduced growth depression by chilling. Weight 

productions of UB were reduced by 40% in FW (absolute depression of 12.2 g) and 27% in DW 

(absolute depression of 0.6 g), whereas the productions of SW were significantly stronger reduced by 

57% in FW (absolute depression of 17.7 g) and 47% in DW (absolute depression of 0.9 g) (Additional 

file 1: Figure S1 C - F). The elongation of the main shoot as well as the production of new leaves and 
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lateral shoots on the main shoot was reduced under chilling. However, only the length of the main 

shoot and the development of lateral shoots were stronger affected in SW (Additional file 2: 

Figure S2). 

 

Carbohydrate levels and ratios as affected by cv and mild chilling 

Considering the important role of sugars, especially of sucrose (Suc) and the hexoses fructose (Fru) 

and glucose (Glc) in source-sink regulation particularly under the influence of stress factors, we 

assumed tolerance-specific reaction patterns of the carbohydrate levels to the chilling temperature. 

The source and sink organs of both cvs showed general cultivar-specific differences and a strong 

response to chilling while the magnitude and dynamics of the chilling reaction of the sugars 

particularly of sucrose was dependent on the cultivar (Significance Table in Fig. 1). In the source 

organ, the concentrations of hexoses (Fig. 1 A), Suc (Fig. 1 C) and starch (Fig. 1 E) varied only 

marginally between both cvs at 16 °C, whereas under chilling treatment, distinct reaction patterns 

were observed. Hexoses, Suc and starch levels increased immediately after the exposure to chilling. 

At the same time, sugar levels in the sensitive cv SW responded much stronger (Fig. 1 A). Whereas 

the tolerant cv UB reached a hexose peak already at 1 DoT of chilling treatment and showed a 

subsequent decline towards control concentrations thereafter, hexose levels in SW accumulated until 

7 DoT when levels were threefold higher compared with UB. The Suc levels in leaves showed an 

even stronger increase in SW reaching much higher concentrations than in UB at 7 DoT. While high 

concentrations were maintained in SW until 21 DoT, concentrations increased in UB, up to a level 

still below that of SW (Fig. 1 C). Additionally, starch levels simultaneously increased as reaction to 

chilling in both cvs until 3 DoT, followed by a decrease to levels similar to control plants (Fig. 1 E), 

with similar levels recorded for both cultivars.  

 

A significant cultivar effect was also found in the apex, at 16 °C, especially for Suc. However, larger 

differences were detected between cvs at 12 °C at least for sucrose and starch. Levels of hexoses were 

slightly higher in UB at 0, 3 and 7 DoT at both temperatures. A transient chilling-mediated increase in 

hexose levels observed for both cultivars at 1 DoT was followed by a decrease which at 7 DoT only in 

UB resulted in lower hexose levels for the chilled plants compared to the controls (Fig. 1 B). SW 

exhibited a similar reversal of hexose levels between chilled and control plants, which however was 

postponed to 21 DoT. The Suc levels were generally higher in UB at both temperatures compared 

with SW (Fig. 1 D). However, the cv effect was also dependent on temperature. Under chilling, Suc 

levels increased already on the first day of treatment, while the increase was much stronger in UB so 

that at 3 and 7 DoT the differences between cultivars were larger under chilling compared to control 

temperature. Starch levels increased in response to chilling transiently until 7 DoT with a much 

stronger response of UB (Fig. 1 F). A cultivar effect on starch was present on 3 and 7 DoT with 

higher levels in UB at both temperatures.  
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In addition to absolute concentrations, carbohydrate ratios between Suc and hexoses, and between 

source and sink organs, respectively, give a more precise view on the chilling impact on the dynamic 

equilibrium between the carbohydrate fractions and carbohydrate distributions between organs. The 

sucrose/hexose ratios showed cultivar-specific differences and responded to chilling with distinct 

reaction patterns between source and apex. Exposure to chilling caused increasing Suc/hexose ratios 

in the source leaves, with a stronger increase in SW (Fig. 2 A). In the apices of both cvs, the 

Suc/hexose ratio was increased by chilling until 7 DoT and then remained on similar levels. In 

contrast to the source leaves, however, ratios were higher in apices of UB than of SW and this effect 

was more pronounced on the condition of chilling (Fig. 2 C). The apex-source leaf ratios of 

carbohydrates were reduced in both cultivars under chilling. Under both temperature regimes, 

however, the apex-source leaf ratios of Suc were several fold higher in UB than in SW (Fig. 2 B). The 

hexose ratios between apex and source were in both cvs reduced on chilling conditions, but the 

reduction was smaller in UB (Fig. 2 D).  

 

Photosynthesis and invertase activities as affected by cv and mild chilling  

Since photosynthesis provides the bottleneck for the input of organic carbon into the plant and can be 

impaired at low temperatures, we analyzed the net photosynthetic rates of both cvs. Referring to the 

leaf dry weights of the measured plants, net photosynthetic rates were significantly lower in SW 

compared to UB at both temperatures (ca. 14 - 24 % at control temperature and ca. 13 - 32 % under 

exposure to chilling). No chilling response was found, however, on light conditions of                       

50 µmol m-2 s-1, which complied with the light conditions during the growth of plants (Fig. 3).  

 

Invertases play a crucial role in the regulation of carbohydrate metabolism particularly in relation to 

sink activity. They are also involved in plant reactions to several stress stimuli. Thus, we investigated 

the activities of vacuolar (vacINV), cytoplasmic (cytINV), and cell wall bound invertases (cwINV). 

The invertase activities, represented in Fig. 4, were measured on standard conditions to provide high 

turnover rates for the detection of acclimation of invertases to chilling stress [26]. The source and sink 

organs of both cvs displayed strong general cultivar-specific differences, which were more 

pronounced in the apex. However, only at a few dates a chilling response was detected (Significance 

Table in Fig. 4). UB showed generally higher activities of vacINV (Fig. 4 A) and cytINV (Fig. 4 C) in 

source leaves during the first week. Later on, the activity of both enzymes was slightly reduced at 

21 DoT on chilling conditions in both cvs, without cultivar effects. Differences in cwINV activities 

were only found at 7 DoT (Fig. 4 E), when the activities were increased in response to chilling, with a 

more pronounced increase in UB. 

 

Constitutivly higher invertase activities in UB were more obvious in the apex. The apical vacINV 

activities were higher in UB at both temperatures from 0 DoT until 3 DoT (Fig. 4 B). A chilling 
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induced reduction of activities was detected from 3 DoT until 21 DoT, which was stronger in UB at 

21 DoT. The activities of cytINV showed strong general cultivar-specific differences throughout the 

experiment, with higher activities in UB compared to SW at both temperatures (Fig. 4 D). A chilling 

response was only found on 21 DoT, indicated by reduced activities. Apical cwINV activities also 

showed strong cultivar-specific differences, with general higher activities in UB (Fig. 4 F). 

Nevertheless, no significant response to chilling was found.  

 

Phytohormone levels as affected by cv and mild chilling  

Since it is known that the homeostasis of the phytohormones jasmonic acid (JA), abscisic acid (ABA), 

and of the auxin indole-3-acetic acid (IAA) plays an important role in cold stress responses, 

concentrations of these phytohormones were analyzed. The stem serves as a key transport unit for 

phytohormones, and hormones like IAA may control stem elongation. In addition to the source and 

sink organs, the uppermost part (1.5 cm) of the stem, directly located below the apex, was therefore, 

analyzed. No effect of chilling on JA levels could be detected in the source leaves and in the apex, 

because most JA values were below limits of quantification of 1.5 pmol per injection [34] for both 

temperature treatments (data not shown). JA levels in the stem were still low but detectable with 

slightly higher levels for SW at 1, 3 and 21 DoT. Chilling reduced the JA levels in both cvs only at 

21 DoT (Fig. 5). We found that ABA levels in the source leaves, the upper stem and especially in the 

apex showed general cv specific differences, but ABA was not affected by the factor “temperature” or 

its interaction with the factor “cultivar” (Significance Table in Fig. 6). In the apex, ABA levels in UB 

were continuously more than twice as high as in SW at both temperatures (Fig. 6 A). Higher ABA 

levels for UB were also found in the upper stem at 21 DoT (Fig. 6 B) and in the source leaves at 

1, 7 and 21 DoT with strongest differences at 21 DoT (Fig. 6 C). The IAA levels showed cultivar 

differences only in the first days, and a chilling reaction was detected only in the stem (Significance 

Table in Fig. 6). Independent of temperature, UB revealed higher IAA levels in the apex at 1 and 

3 DoT (Fig. 6 B), in the upper stem at 0, 1 and 3 DoT (Fig. 6 D), and in the source leaves at 1 DoT 

(Fig. 6 F). IAA levels in the upper stem of both cvs were reduced after 21 days of chilling 

independent of the cultivar, (Fig. 6 D).  

 

Gene expression as affected by mild chilling and cv 

Samples were taken at three dates (3, 7, 21 DoT) to analyze differences in gene expression under the 

influence of the two temperature treatments. Additional files 3 and 4: Table S1A and Table S1B 

provide a complete overview of all annotated genes on the microarray. In a first step, we analyzed the 

number of genes, which were differentially expressed under chilling compared to control conditions 

in dependence on the cultivar (Fig. 7). Generally, overlapping of genes regulated in both cvs in the 

same direction was very low particularly in the apex. Also the total number of chilling-regulated 

genes was lower in the apex compared to the other organs particularly in SW. Both cvs showed a fast 
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reaction of gene expression to chilling in the apex with a prominent down-regulation at 3 DoT 

followed by a prominent up-regulation of genes at 7 DoT, while especially at 3 DoT more genes were 

affected in UB (Fig. 7 A). In the stem and the source leaves (Fig. 7 B, C), however, the up-regulation 

of genes in both cvs indicates three phases; a strong fast reaction at 3 DoT, a decrease of regulated 

genes after one week, and a higher number of up-regulated genes again at 21 DoT. Compared to the 

apex, the stem of both cvs showed a general higher number of differentially regulated genes with 

more down-regulated genes between 3 and 7 DoT, but less at 21 DoT in UB when compared with SW 

(Fig. 7 B). The highest numbers of up- and down-regulated genes in the source organ was observed 

for UB at 3 DoT and at 21 DoT and for SW at 7 DoT and 21 DoT (Fig. 7 C).  

 

In the next step, we directly compared the hybridization signals of genes between the two cvs at 

control or chilling temperature, respectively. The analyzed genes were grouped into two different 

categories: 1) genes with chilling-independent cultivar-specific hybridization signals (C category), 

and 2) genes with chilling-dependent cultivar-specific hybridization signals, which showed cultivar 

dependent hybridization differences only under chilling exposure (CC category). A high number of 

genes showed general C category differences between both cultivars at both temperatures in all organs 

at all dates (compare column D in Additional File 5: Table S1C). These differences are probably 

based on sequence polymorphisms between the two cvs, while differences that are not constitutively 

present at all dates and in all organs are probably based on differential RNA accumulation.  

 

Figs. 8 - 10 illustrate the numbers and functional groups of genes (CC category), which showed a 

cultivar-specific array hybridization only under the condition of chilling, indicating differential 

expression. In the apex (Fig. 8) and the stem (Fig. 9), the numbers reflect the strongest differences in 

gene expression during the early phase of the chilling response. In the apex, this phase is followed by 

fewer cultivar-specific differences at 7 and 21 DoT, whereas in the stem a similar response at 7 DoT 

is followed by a subsequent rise in number of cultivar-specific chilling responding genes at 21 DoT. 

However, prominent functional groups of genes with chilling-dependent expression patterns during 

the early phase mostly showed also responses during the later phases even though at lower levels. 

Such groups included genes related to “biotic stimuli”, “auxin metabolism and perception”, 

“antioxidative metabolism and perception”, “cell wall”, “gene expression and RNA metabolism”, 

“membrane transport”, “protein synthesis and degradation”, “secondary metabolism”, “signaling” and 

“miscellaneous”. In most cases, the different chilling responses between the cultivars involved up- 

and down-regulation of genes. Particular chilling-dependent genes related to “auxin metabolism and 

perception”, however, showed higher RNA accumulation levels in UB at 3 and 21 DoT in the apex 

(Fig. 8) and at 7 and 21 DoT in the stem if compared with SW. By contrast, chilling-dependent genes 

related to jasmonate mostly showed lower expression in UB. This also applies to genes of the group 

“biotic stimuli” at 7 and 21 DoT in the apex and 3 and 7 DoT in the stem, as well as to the categories 
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“membrane transport” and “mineral nutrient responsive and acquisition” at 3 DoT in the stem. In the 

source organ (Fig. 10), similar numbers of chilling-dependent cultivar-specific genes were identified 

at the three phases of chilling and the same functional groups were involved as found for apex and 

stem. In most cases, similar numbers of genes, up- and down-regulated by chilling, were found 

comparing UB and SW. At 3 DoT, however, functional groups such as “gene expression and RNA 

metabolism” or “signaling” showed more chilling-induced genes in UB than in SW, whereas the 

opposite picture was observed at 21 DoT for functional groups such as “Biotic stimuli”, “Cell wall”, 

“Membrane Transport” and “Signaling”. In source leaves, cultivar-specific genes related to ABA and 

jasmonate showed mostly lower RNA accumulation levels on chilling conditions in UB compared 

with SW.  

 

Additional files 3 and 4: Table S1A and Table S1B show all expression values of genes hybridized 

with probes derived from UB and SW, respectively. Additional file 5: Table S1C shows the M-values 

of the UB/SW hybridization signal ratios for each temperature and date for those genes which 

exhibited significant differences. Here we focus on individual genes, which can be associated with the 

above-described metabolic responses and/or have putative functions in stress response. Fig. 11 shows 

the UB/SW M-values of these selected genes for the different organs, dates and temperature 

conditions.  

 

Only a few photosynthesis-related genes were differentially hybridized between both cvs. Genes 

putatively involved in photosynthetic electron-transport coding for light harvesting complex gene and 

for plastocyanin-like domain-containing protein [40] showed, at least with one copy, continuously 

lower hybridization signals in all organs of UB. A gene coding for the chloroplast PIFI 

(postillumination chlorophyll fluorescence increase) protein, involved in the chlororespiratory 

electron transport [41], seemed to be chilling-induced in the cv UB. Among the families of genes 

coding for the small subunit of the carbon fixation protein RuBisCo (small subunit) and for its 

activase one member encoding the small subunit showed a lower expression in the stem of UB at 

3 and 21 DoT. Genes for sugar transporters were mostly not differentially expressed, but two genes 

coding for glucose-6-phosphate/phosphate translocators and one for a carbohydrate transmembrane 

transporter/sugar:hydrogen ion symporter showed higher expression in the source organ of UB at least 

at two from three dates under both chilling and control conditions. In addition, several genes coding 

for invertase/pectin methylesterase inhibitor family protein showed lower expression in the apex, 

source and stem organ of UB when compared with SW under both temperature conditions, while a 

cell wall invertase gene seemed to be constituently higher expressed in the stem organ. Although 

sucrose and starch levels were different (Fig. 1) genes coding for starch synthase and sucrose 

(phosphate) synthase showed almost no different hybridization signals between both cvs.  
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With reference to the strong response of carbohydrate metabolism, several other genes coding for 

enzymes regulating the glycolysis were differentially regulated. A gene coding for hexokinase, 

catalyzing the initial step of glycolysis, was continuously lower expressed on chilling in the source 

leaves and the stem, but not in the apex of UB. On the same condition, a gene coding for fructose-

bisphosphate aldolase showed higher expression levels in UB at 7 DoT in the apex and the source 

organ and at 3 and 7 DoT in the stem. Further, one gene coding for triosephosphate isomerase was 

higher hybridized in all three organs indicating gene polymorphism, while three others were higher 

expressed in the stem of UB. One gene coding for phosphoglycerate/bisphosphoglycerate mutase 

family protein showed higher expression in the apex of UB after 3 days of chilling and in the stem at 

all dates. In contrast, some genes encoding enzymes of the final steps of glycolysis showed lower 

hybridization levels in UB: Two genes coding for 2-phosphoglycerate dehydratase, an enolase 

catalyzing the conversion of 2-phosphoglycerate to phosphoenolpyruvate (PEP), showed this effect on 

chilling in all three organs of UB, but two genes coding for pyruvate kinase, which regulates the final 

irreversible and activity-regulating step of the glycolysis, at both temperatures in the source leaves of 

UB at 7 and 21 DoT and on chilling in the stem at 3 DoT. Enzymes of the citric cycle and its 

connection to the glycolysis partly showed ambivalent hybridization rates in UB compared to SW. 

While genes coding for PEP carboxylase were hardly differentially regulated on chilling, a PEP 

carboxylase kinase-encoding gene was up-regulated on chilling in UB in the apex and the stem and at 

21 DoT in the source. Additionally, a gene coding for the antioxidant thioredoxin, which may have 

also regulatory functions in carbohydrate metabolism, showed several times more intense 

hybridization signals in UB compared to SW. One gene coding for the enzyme aconitase showed 

constitutively higher hybridization in UB. A gene coding for the enzyme fumarase showed higher 

expression in the stem of UB, and a malate dehydrogenase encoding gene was constitutively lower 

hybridized in all organs.  

 

Furthermore, some genes coding for the metabolism and perception of stress related phytohormones 

showed distinct hybridization patterns. ABA-related genes displayed mainly general cultivar specific 

differences. Thus, one gene coding for carotenoid cleavage dioxygenase, involved in ABA 

biosynthesis, showed constitutively more intense hybridization signals in UB. Additionally, three 

genes coding for 9-cis-epoxy-carotenoid dioxygenase (1, 3) showed higher expression levels in the 

apex and the stem of UB at distinct dates after exposure to chilling. Two ABA-responsive genes 

coding for ABA-stress-ripening proteins showed divergent reactions: one gene showed constitutively 

stronger, the other one weaker hybridization signals in UB compared to SW. Several genes putatively 

coding for 1-aminocyclopropane-1-carboxylate oxidase controlling the final step of ethylene 

biosynthesis were lower expressed in UB at particular dates under both temperatures, while on 

chilling stress the most stable effect was found in source leaves and the stem. However, such 

consistent cultivar effect was not found for the family of genes encoding aminocyclopropane-1-



 
 

66 

 

carboxylate synthase (Fig. 11). Differences in hybridization signals for genes encoding ethylene-

responsive transcription factors were also ambivalent, some genes showed higher and others revealed 

lower levels in UB compared to SW (Additional file 5: Table S1C). Considering auxin related genes, 

one auxin efflux carrier gene was higher expressed in the source leaves of UB at both temperatures. 

One auxin:hydrogen symporter gene showed higher RNA accumulation levels in UB on chilling, and 

this was true in the source leaves at all dates and in the stem at two dates. Two genes coding for 

IAA amidohydrolase or IAA-amino acid hydrolase, the latter releases active IAA from conjugates, 

were higher expressed at 3 and 7 DoT in the apex of UB on chilling. Further, a gene coding for an 

Aux/IAA protein, a member of a family of transcriptional repressors, was constitutively down-

regulated in UB on chilling. Several genes encoding auxin-induced SAUR (SMALL AUXIN UP 

RNAs)-like proteins showed higher expression levels for UB compared to SW under both 

temperatures, particularly in the apex and the stem. Several other auxin responsive proteins or 

transcription factors were also differentially regulated. Some of them showed higher, but others lower 

expression on chilling in UB. However, more differences were found in the apex and the stem 

compared to the source leaves (Additional file 5: Table S1C). Genes coding for enzymes of the JA 

biosynthetic pathway as 12-oxophytodienoate reductase, beta-hydroxyacyl-ACP dehydratase, 

chloroplast allene oxide synthase and lipoxygenases showed mainly lower hybridization signals in UB 

at both temperatures. Interestingly, among the genes related to the gibberellin (GA) pathways, several 

genes coding for gibberellin 20 oxidases, a rate-limiting enzyme for biosynthesis of active GAs, were 

in UB higher expressed in the apex. In the upper stem, however, only one of these genes showed this 

pattern, while several other members of this family showed the reversal cultivar-dependent effect. 

Furthermore, two genes encoding a gibberellin 2-beta-dioxygenase and a gibberellin 2-oxidase, which 

both can expected to contribute to reduction of the pool of active GAs, were higher expressed in the 

apex and upper stem of UB (Fig. 11). Comparing UB with SW, one gene encoding the GA receptor 

GID1 showed generally higher expression in apex and stem, whereas one other GA receptor GID2-

encoding gene showed generally lower hybridization signals. 

 

Several genes coding for heat shock proteins (HSP) showed cultivar-specific hybridization signals. 

Likewise, a gene coding for a chloroplast small heat shock protein class I was in the apex and the 

source mostly lower expressed in UB than in SW on control and chilling conditions (Fig. 11). One 

gene of a mitochondrial small heat shock protein was constitutively higher transcribed in UB in the 

upper stem. Furthermore, two genes coding for one low temperature and salt responsive protein and 

one drought-responsive family protein showed generally lower hybridization signals in all organs of 

UB. One dehydrin gene was lower expressed in the apex, but higher in the stem at 3 and 7 DoT. Three 

other genes of cold-regulated proteins were lower expressed in UB at particular dates mostly on 

chilling. 
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In our previous study [26], we found several chilling-stress-related transcriptions factors (TFs) that 

were affected by the mild chilling that we applied. Half of these TFs did not show any differential 

hybridization patterns between UB and SW for the three dates in the three organs on chilling. The 

remaining were partly differentially expressed but some higher and some lower in UB on chilling and 

no clear common response could be detected (Additional file 5: Table S1C). Only two genes, which 

can be related to the CBF/DREB pathway were found to be differentially regulated between the two 

cvs. The transcription factor ERF029 (similar to DREB1D) was only in the source leaves at 7 DoT 

lower expressed in UB under chilling, while a gene coding for the CCAAT-binding transcription 

factor CBF-B/NF-YA family protein showed higher RNA accumulation levels in UB in the source 

organs at all dates and at 21 DoT in the stem on chilling. 

 

Effect of applications of ABA and nordihydroguaiaretic acid on growth and ABA levels under 

control and chilling conditions 

Considering the constitutively higher ABA levels in the growing apical meristems of the tolerant cv 

UB at both temperatures, which were further associated with a higher hybridization of one carotenoid 

cleavage dioxygenase-encoding gene, we tested the growth response of both cvs to a pharmacological 

modification of endogenous ABA levels. In the first approach, we applied ABA in three 

concentrations to the chilling-sensitive cv SW. In other studies, spray applications of concentrations 

between 200 and 2,000 mg of physiologically active S-ABA per L to petunia enhanced shelf life and 

reduced time to wilting under water deficit stress, however, from 500 mg/L onwards ABA also 

reduced the number of flowers in non-stressed plants [42–44]. We therefore applied S-ABA at 

concentrations of 30, 120 and 480 mg/L (0.11, 0.45 and 1.82 mM). In the alternative approach, we 

aimed to inhibit the ABA synthesis in UB by exogenous application of an ABA synthesis inhibitor, 

the lipoxygenase inhibitor nordihydroguaiaretic acid (NDGA) [45]. Considering findings of Han et al. 

[46] and Ren et al. [47], we used concentrations of 15.1, 30.2 and 60.5 mg/L (0.05, 0.10, 0.20 mM). 

We analyzed the growth under control and chilling conditions and measured the ABA levels in the 

shoot apices at the end of the experiment. 

 

Applications of ABA to SW decreased fresh and dry weight production of SW on control and chilling 

conditions, and the effect became stronger with increasing concentrations (Fig. 12 A, C). The ABA 

effect was, however, dependent on the temperature: The application of the lowest tested ABA 

concentration (0.11 mM) to SW reduced dry weight production only at 16 °C but not at 12 °C (Fig. 

12 C). This significantly reduced the chilling-induced growth depression in absolute (Fig. 12 E) and 

relative terms (Fig. 12 G). A similar effect was observed for fresh biomass, even though not 

statistically significant. Analyzing different structural parameters revealed that ABA application 

enhanced the number of leaves only on chilling conditions and the relative leaf development rate on 

chilling compared to control conditions (Additional file 6: Figure S3 A, C, E; Additional file 7: Figure 
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S4 A). Fresh weight production of UB at control temperature was increased by the highest NDGA 

dosage of 200 mg/L (Fig. 12 B). However, dry weight production was not significantly influenced by 

NDGA-treatment even though it was slightly enhanced by NDGA on control conditions (Fig. 12 D). 

Nevertheless, chilling-induced depression of fresh and dry weight production of UB in absolute and 

relative terms was increased by NDGA already at the application of 50 mM (Fig. 12 F, H). However, 

the investigated structure parameters did not show any response to the NDGA-treatment (Additional 

file 6: Figure S3 B, D, F; Additional file 7: Figure S4 B). The analyses of ABA levels confirmed the 

constitutively higher ABA level in apices of UB compared with SW (Fig. 13). The apices of the 

ABA-treated SW plants showed a dose-dependent high accumulation of ABA (Fig. 13 A), especially 

at 12 °C, while even the lowest dosage enhanced the ABA concentration far above the constitutive 

level in UB (Fig. 13 B). The apex samples for the phytohormone measurements were taken one week 

after the last spray-treatment expecting that the newly grown tissue was not directly exposed to spray 

application. Considering the reduced leaf development rate at the reduced temperature (Additional file 

7: Figure S4 A), the extremely high ABA levels in the chilled plants, which were reached after high 

ABA dosages, may be, however, partially based on some remains of the applied ABA on the surface 

of sampled apices. Nevertheless, the NDGA treatment reduced the ABA levels in apices of chilled UB 

plants to such an extent, that at the highest NDGA dosage ABA levels in UB were found to be similar 

to those measured in non-chemically treated plants of SW.  

 

Discussion 

 

Smaller growth depression of UB under mild chilling stress is related to constitutive and 

chilling-induced differences in gene expression 

In previous studies we have shown that the chilling response of the sensitive P. hybrida cv SW 

consists of a complex derangement of the plants’ functional integrity at the levels of carbohydrate 

metabolism, phytohormone homeostasis, and gene expression [26]. In the present comparative study, 

the growth of the cv UB, measured by dry and fresh weight production, was similar under control 

temperature but significant less disturbed by exposure to chilling compared to SW. The results of the 

detailed analyses of the two cvs at metabolic, phytohormone and transcriptome level at the two 

temperatures suggest that the higher chilling tolerance of the cv UB is based on a more balanced 

functional homeostasis. This provides a higher stability of utilization sinks compared to SW, which is 

largely maintained during the exposure to sub-optimal temperature.  

 

Only few genes were simultaneously up- or down- regulated on chilling in both cvs (Fig. 7). Most 

genes affected by chilling were differentially regulated only in one of both cvs. In contrast, a 

comparative study of two distinct chilling-tolerant rice cvs found high numbers of common 

differentially regulated genes under exposure to low temperatures. Here, at least half of the genes 
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were affected in both cvs [48]. The more consistent chilling reaction might be due to the lower 

temperature of 4 °C, the authors used as cold treatment in the rice experiment, causing a more 

dominant temperature effect. Nevertheless, our data show that gene expression was differentially 

regulated between cvs, especially in the early phase of chilling in the source organ, which is 

responsible for the maintenance of carbohydrate production and thus for the energy supply.  

 

In a second approach, we directly compared the hybridization rates of both cvs for each temperature. 

In this context, differences in signal intensities on the arrays between the two cvs might be based on 

different transcription levels but also on differential hybridization resulting from sequence 

polymorphisms of encoding genes. A high number of annotated genes were found with constitutive 

differential hybridization rates in all organs at both temperatures and at all dates (C category, compare 

column D in Additional file 5: Table S1C). These constitutive differences might probably be the result 

of gene polymorphisms between the both cvs, while differences in hybridization rates that were not 

observed continuously in all organs at both temperatures and at all dates might indicate differences in 

gene expression. 

 

General differences in gene expression and metabolism might contribute to the potential of a plant to 

cope with stress conditions. Nevertheless, distinct expression patterns provoked after exposure to 

chilling should be also considered to estimate the cultivar-specific plasticity in response to the sub-

optimal temperature. The expressional response of genes, which were only differentially chilling-

regulated between both cvs, featured organ specific patterns. After differential apical chilling 

responses in the early chilling phase, the individual differences attenuated (Fig. 8), indicating a 

harmonization of apical gene regulation between both cvs with increasing duration of chilling. In 

contrast, the differential chilling responses of the stem and source organs between both cvs were 

divided in a fast and a long-term response. While different responses in the stem were only transiently 

attenuated after one week (Fig. 9), in the source organ the quality of involved functional groups 

merely changed (Fig. 10). It seems that the source organ of UB responds faster to chilling indicated by 

more chilling-induced genes (Fig. 7) and higher hybridization signals (Fig. 10) during the early phase.  

 

Higher tolerance of UB to mild chilling is associated with a more stable leaf carbohydrate 

metabolism and a generally higher abundance and utilization of sucrose in the shoot apex  

The carbohydrate metabolism is the indispensable basis for plant growth, reliant on the availability of 

carbohydrates at the utilization sinks through the source-sink-transport from carbon sources. 

A previous study has proven that the 4 K temperature reduction we applied is sufficient to disturb the 

carbohydrate homeostasis and to cause substantial changes in the source and the utilization sink 

organs of the chilling-sensitive cv SW [26]. In order to test the hypothesis that the regulation of the 

carbohydrate metabolism might differ between distinct chilling-tolerant cvs, we monitored 
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carbohydrate levels at both ends of the source-sink network, at the uppermost fully developed leaves 

as carbohydrate source organ, and at the apex as utilization sink.  

 

Under control conditions, source leaves of both cvs contained similar sugar levels. However, under 

chilling the cv SW accumulated much higher sugar levels than the cv UB (Fig. 1 A, C), while the 

sucrose fraction increased (Fig. 2A). In general, an increase of levels of soluble sugars can be 

interpreted as a beginning chilling protection response [4]. Thus, Stitt and Hurry [49] showed that a 

consecutively increased expression and post-translational activation of enzymes of the Suc synthesis 

pathway seemed to counteract cold-induced inhibition of Suc synthase and supported the plants’ 

acclimation to low temperature as well as a modified expression of Calvin cycle enzymes. In addition, 

Usadel et al. [4] observed a repression of genes for Suc and starch breakdown with declining 

temperatures (4 °C) in Arabidopsis leaves. The increased sucrose levels in response to chilling in our 

study seemed not to be the result of altered expressions of sucrose phosphate synthase or sucrose 

synthase. Thus, the different levels may be influenced by post-transcriptional regulation of Suc 

synthesis and degradation. Nevertheless, it has also to be considered that genes which are not 

represented on the array might play a role.  

 

The higher sugar levels in leaves of SW at chilling cannot be explained by a higher net photosynthetic 

rate. By contrast, the general lower net photosynthetic rates in SW on a leaf dry weight basis at both 

temperatures indicate a general lower potential of the sensitive cv for carbon assimilation (Fig. 3). The 

gene expression analysis did not elucidate putative genes that might be responsible for these 

differences in photosynthetic rates. Many other reasons including post-transcriptional regulation of 

essential proteins or stomata regulation and density may be involved. The decrease in temperature 

from 16 °C to 12 °C did not affect the net photosynthetic rate of both cvs. It has to be taken into 

account, that light and dark respiration show higher temperature optima than gross photosynthesis. 

That means that at higher temperatures a larger amount of the photosynthetic CO2 fixation is 

compensated by respiratory CO2 loss than at lower temperatures. [50]. The present results stay in 

accordance with findings of Klopotek et al. [51]. In their study with the P. hybrida cv ‘Mitchell’, the 

net photosynthesis of cuttings at a PPFD of 100 µmol m-2s-1 was almost not affected by temperature 

when increased from 14 °C up to 30 °C, whereas dark respiration showed a strong increase. However, 

the higher expression of three genes in source leaves of UB encoding one carbohydrate 

transmembrane transporter/sugar-hydrogen ion symporter and two glucose-6-phosphate/phosphate 

translocators (Fig. 11) might indicate a better intracellular and long-distance sugar distribution for UB 

compared to SW. Athanasiou et al. [52] supposed that the glucose-6-phosphate/phosphate translocator 

plays a signaling role by influencing the partitioning of sugar phosphates between the chloroplast 

stroma and the cytosol or altering the phosphate balance of the cell. Sugar-hydrogen symporters have 

two important functions, they play a crucial role in the stomata-opening function of guard cells that 
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antagonizes the ABA-induced closure of stomata [53] and they are involved in phloem loading [54]. 

Taken together, these expression patterns suggest a wider stomata opening despite the higher ABA 

levels in the source leaves and an improved consecutive translocation of sugars from the chloroplasts 

of source leaves to the cytosol and to the phloem in UB. A better carbon supply of source leaves by 

open stomata and increased removal of photosynthetic products might have contributed to the 

observed higher photosynthetic rates and obviously enhanced sucrose transport in UB at both 

temperatures.  

 

An improved Suc-translocation is supported by the finding that UB accumulated less of the main 

carbohydrate transport form Suc in the source leaves under exposure to chilling, but more in the apex 

compared to SW (Fig. 1 C, D; Fig. 2 A, B, C). Since the photosynthetic rates were higher in UB, the 

lower sugar levels in source leaves under chilling seem to indicate that UB exports carbohydrates 

from source leaves to the shoot apex more efficiently than SW. Interestingly, UB revealed 

constitutively higher activities of cytosolic and cell wall invertases in the apex compared to SW 

(Fig. 4). Invertases play a general important role in the sink activity in petunia [33,55,56]. Cell wall 

bound invertases in particular are responsible for sucrose partioning by unloading of sucrose into cells 

[57]. Thus, the general cultivar-specific higher cell wall invertase activities suppose an enhanced 

influx of Suc and in consequence a constitutively higher carbohydrate supply of the UB apex. Higher 

sucrose levels in the apex, particularly at chilling, might have, however, indirectly caused the higher 

cytosolic and vacuolar invertase activities via feed-forward mechanisms. Thus, even independent of 

carbohydrate utilisation at the sink site, the sugar export from leaves and/or the transport route 

between source leaves and the apex may be more efficient in UB compared to SW. The higher 

concentrations of sucrose and the higher activities of invertases that hydrolyze Suc into Glc and Fru 

provide osmolytes that rise the osmotic pressure in the cells of the apical meristem. This might power 

an osmotic potential gradient as possible driving factor for cell elongation and plant growth [58]. In 

the apices of the two cvs, only small differences were found for transcripts of genes coding for 

invertases particularly at chilling (Fig. 11). In contrast, transcripts of several genes encoding invertase 

inhibitors showed lower expression in UB than in SW, further depending on the organ and days of 

temperature acclimation (Fig. 11). Invertase inhibitor proteins seem to be detached from cwInv during 

enzyme extraction, and high sucrose concentrations in the enzyme assays might protect invertases 

from re-inhibition [15]. We therefore suppose that the measured differences in invertase activities are 

more due to a generally higher quantity of invertases in UB apices than due to a distinct post-

transcriptional regulation. Consequently, a reduced post-transcriptional regulation of invertase 

activities in UB compared to SW due to less inhibition would mean even higher in vivo differences of 

activities than the measured ones.  
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The microarray results further indicate that the carbohydrate metabolism of UB differs from that in 

SW by being more anabolic orientated. Genes related to glycolysis and citric cycle showed more 

general hybridization differences between both cultivars than distinct reactions to chilling. Of 

particular interest is the higher expression of a gene coding for the PEP carboxylase kinase in the apex 

and the stem and in the late phase in the source leaves of UB. This kinase activates the enzyme PEP 

carboxylase by phosphorylation [59]. The C4-form of PEP carboxylase kinase seems to be redox-

regulated by thioredoxin [60]. If this should also apply to the C3-form of PEP carboxylase kinase, the 

constitutive higher hybridisation of a thioredoxin gene could indicate an altered regulation of PEP 

carboxylase via an additional altered activation of PEP carboxylase kinase through thioredoxin. In 

contrast, genes coding for PEP carboxylase itself were not higher expressed in UB. In C3-plants like 

petunia, a main function of PEP carboxylase is to increase the influx from glycolysis to the citric acid 

cycle by converting PEP to oxaloacetate [61,62]. The constitutivly higher hybridizations of a gene 

encoding for aconitase, an enzyme down-stream from oxaloacetate in the citrate cycle, indicate a 

polymorphism of this gene between both cvs. Should this contribute to a more active enzyme, it 

would also enhance the citrate cycle flux in UB. Further, the constitutive lower hybridization of a 

malate dehydrogenase-encoding gene seems also to indicate a polymorphism. The resulting enzyme 

replenishes the oxaloacetate pool. A lower expression of this gene and/or lower activity of the 

encoded protein would suggest a higher need for carbon influx at the oxaloacetate step. On the other 

hand, an increased flux in the cycle in combination with a restriction of the oxaloacetate 

replenishment might indicate higher carbon fluxes to cataplerotic pathways and by that towards 

biosynthetic processes determining growth. The lower expression for a hexokinase gene, which 

catalyzes the initial step of glycolysis, especially the general ones in the source leaves and the stem, 

might indicate a reduced glycolysis in both organs. In the source organ, this may have contributed to a 

higher abundance of sugars for carbohydrate export. However, while in the apex hexokinase was not 

affected at chilling, 2-phosphoglycerate dehydratase, an enolase, catalyzing the conversion of 2-

phosphoglycerate to PEP, was in UB lower expressed in all organs under chilling compared with SW. 

A reduced PEP synthesis may provide a bottleneck of carbon input for the citric cycle. We have, 

however, to consider that the constitutively higher invertase activities in UB, together with the high 

abundance of sucrose, might provide a high concentration of substrate for glycolysis so that PEP 

synthesis may be still higher compared to SW. Alternativly, the above-described enhancement of 

citric cycle might also be a way to channel more of a scarce resource, PEP, to the citric cycle for more 

biosynthesis. In UB source leaves, also a gene coding for pyruvate kinase was lower expressed at 7 

and 21 DoT. While pyruvate kinase catalyzes one of the energy-generating reactions of the glycolysis, 

a putatively reduced activity of this enzyme in source leaves of UB might give a hint at a lower 

energy consuming activity of UB compared to SW.  
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Taken together, the sensitive cv accumulates at chilling the sugars preferentially in the source leaf, 

whereas the sucrose abundance and utilization in the shoot apex is low probably based on low export 

of sucrose out of the source. By contrast, the more tolerant cultivar reveals a less disturbed leaf sugar 

homeostasis and a generally higher abundance and utilization of sucrose at the sink site. Recently, we 

[26] considered the carbohydrate metabolism response of SW as part of a primary defense strategy to 

protect the source leaves, which have an important maintenance function for the plant. By contrast, 

the less disturbed carbohydrate metabolism in the source leaf but higher and more stable carbohydrate 

abundance and utilization in the sink of UB indicate that the chilling-tolerant cv follows a “growth 

priority” under the condition of mild chilling.  

 

Auxin and constitutive higher ABA concentrations in the apex might contribute to chilling 

tolerance 

Beside reactions to biotic stimuli like pathogen infection, JA is also known to be involved in reactions 

to drought, heat and cold stress [20]. Thus, jasmonate seems to enhance the freezing tolerance of 

Arabidopsis. While it controls the INDUCER OF CBF EXPRESSION (ICE)–C-REPEAT BINDING 

FACTOR/DRE BINDING FACTOR1 (CBF/DREB1) cascade, jasmonate works as important 

upstream signal in the ICE-CBF/DREB1 pathway in Arabidopsis that positively regulates freezing 

tolerance [21]. The tolerant cv UB revealed mostly lower JA levels in the upper stem at both 

temperatures (Fig. 5), which was further associated with lower hybridization signals for of JA 

biosynthesis related genes. This indicates that JA signaling, contrasting to its role in freezing 

tolerance, did not contribute to the higher tolerance to mild chilling stress of UB. In accordance to this 

view, we did not find any indication for an expressional chilling response of the jasmonate-dependent 

ICE-CBF/DREB1 cascade in none of the two cvs. Both findings combined indicate, that the ICE-

CBF/DREB1 cascade was probably not yet fully activated at this mild chilling, neither in the tolerant 

nor in the sensitive cv.  

 

Shibasaki et al. [63] supposed that cold-induced changes in plant development and growth might be 

related to intracellular auxin gradients, based on the inhibition of intracellular trafficking of auxin 

efflux carriers. The IAA levels in the apex and the upper stem were higher under both temperatures in 

UB during the first days after DoT (Fig. 6). The higher expression of a gene encoding an efflux carrier 

in the source leaves of the same cultivar might indicate that an enhanced auxin transport from leaves 

supported the higher IAA levels in the organs. IAA amidohydrolases and IAA-amino acid hydrolases 

release active IAA by hydrolyzing auxin storage conjugates [64]. Considering the higher expression 

of genes coding for both enzymes in the apex of UB, such processes might also have contributed to 

the higher IAA levels in UB during the first days. Even though the higher IAA levels in UB were not 

maintained after 3 DoT, they may have contributed to the higher tolerance to chilling. This view is 

supported by our finding, that genes coding for auxin-responsive SAUR proteins showed higher 
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expressions in the apex and the upper stem of UB under both temperatures. Considering recent 

publications providing evidence that SAUR proteins promote cell expansion involving activation of 

plasma membrane H+-ATPases, Ren and Gray [65] proposed that SAURs are key effector outputs of 

hormonal and environmental signals that regulate plant growth and development.  

 

One growth characteristic of UB in contrast to SW is the higher elongation of the main shoot at 

chilling (Additional file 2: Figure S2 A). With other plant species, active GAs and GA metabolism 

have been shown to control shoot elongation at low temperatures [66-69]. The differential expression 

of genes related to the GA pathways in UB compared to SW, which partially differed between the 

organs, may indicate that the GA homeostasis and signaling is also involved in the higher chilling 

tolerance of UB. The expression data particular of genes encoding gibberellin 20 oxidases suggest 

higher levels of active GAs in the shoot apex of UB. The entire expression pattern of all genes, 

however, indicates that the contrast of GA homeostasis between both cvs is rather complex. The 

finding that UB revealed higher expression of one gene encoding the GA receptor GID1 in apex and 

stem, suggests that UB exhibits higher GA signaling capacity in these tissues. According to a current 

model, GID1 functions as soluble GA receptor interacting with DELLA proteins as active repressors 

of GA response. GID1 initiates proteosomal degradation of DELLAs via enhancing recognition by the 

F-box protein of an ubiquitin E3 ligase SCF complex, thereby releasing the GA repression [70]. The 

protein GID2 is a component of the E3 ligase SCF complex. The additional finding, that one gene 

encoding a GID2 receptor was lower hybridized in UB than in SW may indicate the presence of a 

polymorphism between both cvs. That might be an indication that DELLA-dependent GA signaling 

pathways could be differentially used in the two cvs [71]. 

 

ABA biosynthesis in the root, but especially in the shoot enhanced chilling tolerance in tomato and 

was suggested to indirectly control endogenous ethylene levels that might raise tomato susceptibility 

to chilling stress [16]. Yang et al. [72] related an enhanced expression of ABA, auxin, and JA-related 

genes under cold exposure in the shoots and roots of rice to cold tolerance, scaled by leaf fluorescence 

and membrane leakage at 4 °C. In contrast, Mega et al. [73] found that already sustained low ABA 

levels in rice seedlings during cold (4 °C) could increase the seedlings vigor, while an excessive lack 

of endogenous ABA reduced cold tolerance. Thus, the general ABA levels, but also the homeostasis 

in the plants may play a role for chilling tolerance. In this context, the constitutive higher ABA levels 

particularly in apices of UB (Fig. 6) might have contributed to the higher chilling tolerance as 

reflected by the enhanced dry matter production under chilling and the enhanced relative growth at 

12 °C versus 16 °C compared to SW. The data support the assumption that the higher ABA levels 

contributed to an effective stress response machinery particularly at the growing points of the plant, 

which are most important for the development of new plant material. The higher ABA levels in UB 

were associated with continuously higher hybridization rates of a carotenoid cleavage dioxygenase 



 
 

75 

 

gene in all organs. This enzyme is similar to the 9-cis-epoxycarotenoid dioxygenase, which catalyzes 

xanthophyll cleavage, the first and rate-limiting step of ABA biosynthesis [74]. The generally higher 

hybridization rate in UB might be due to polymorphism of this gene between the two cvs. We propose 

that the specific morphism of the carotenoid cleavage dioxygenase gene in UB provides an enzyme 

with higher biological activity contributing to the higher ABA levels in UB when compared with SW 

(Fig. 11). Levels of abscisic stress ripening proteins (ASR) can be increased by ABA and abiotic 

stressors. Thus, several ASR genes in tomato are induced by drought and cold [75]. ASRs play 

different roles. A chaperone-like activity was found for ASR1 in rice [76]. In contrast, some nuclear 

ASR proteins seem to bind to specific promoter sequences and modulate gene expression on 

transcriptional level [77]. While one ASR gene was constitutively higher and another lower 

hybridized in UB indicating polymorphism of the encoded regulatory proteins, it is unclear if this is 

involved in the chilling response. Nevertheless, the constitutivly higher ABA levels in UB and the 

complex differences in transcripts related to ABA biosynthesis and signaling suggest that differences 

in the ABA machinery contribute to the higher chilling tolerance of UB. Interestingly, ABA signaling 

has also a great influence on carbohydrate metabolism including regulation of invertases. Thus, ABA 

seems to have a key role in sucrose metabolism and starch biosynthesis by inducing genes for sucrose 

synthesis and degradation [78]. In contrast, ABA inhibits genes related to starch biosynthesis [79]. 

VacInv expression and activity was enhanced in maize seedlings by ABA-treatment [80,81] and ABA 

and sucrose increased the transcript levels of a cwINV [78]. Considering these data, both the 

constitutive higher cwINV activities and Suc levels in the apices of UB can be correlated with the 

constitutive higher ABA levels in the UB apex.  

 

In non-stressed plants, normal ABA levels are essential for maintaining shoot development and leaf 

expansion. This maintenance function is partly reducible to a restriction of ethylene biosynthesis 

and/or sensitivity [82]. In addition, a low-water stress-induced accumulation of ABA seems to support 

root growth by restricting ethylene biosynthesis and/or sensitivity [83]. The role of ethylene in cold 

stress is more complex. Ethylene production declines quickly in reaction to cold. Since ethylene 

signaling appears to regulate negatively the CBF freezing tolerance pathway, a decrease in ethylene 

biosynthesis under chilling seems to be important for an activation of this pathway [84]. Thus, the 

lower expression rates of genes related to ethylene biosynthesis in UB compared to SW might be a 

consequence of the increased ABA levels and contribute to an enhanced chilling tolerance.  

 

Manipulations of hormone levels in plants by pharmacological approaches may unravel hormone 

functions in regulation of growth and stress tolerance. However, it is generally difficult to obtain such 

an internal distribution of the hormone within the plant, which mimics the hormone homeostasis 

controlled by the plant itself in dependence on its genetic and response to the environment. This 

particularly applies to ABA, which on the one hand can increase stress tolerance depending on its 
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concentration but on the other hand may retard growth [85]. Exogenous application of ABA protected 

tomato plants from damage caused by suboptimal temperatures (day/night: 16/8 °C compared to 

28/22 °C) [86]. This increased tolerance to chilling was defined by a reduced decline in chlorophyll 

content and in the net photosynthetic rate. ABA treatment also enhanced freezing viability of rice 

seedlings [87]. ABA can, however, reduce stomatal conductance and photosynthetic rate of leaves 

[88] and is also known to inhibit shoot growth and cell cycle progression [89]. Considering these 

relationships, we used a dual pharmacological approach to study the function of ABA in chilling 

tolerance of petunia. We applied ABA to the sensitive cv SW aiming to increase endogenous ABA 

and applied the inhibitor NDGA to the tolerant cv UB aiming to reduce the endogenous ABA level. 

Even though none of the applied concentrations of ABA did enhance absolute dry matter production 

of chilled plants of SW, the lowest application rate decreased the chilling-induced growth depression 

when compared to the growth at 16 °C (Fig. 12), which is one criterion for the higher chilling 

tolerance of UB compared to SW. Furthermore, the finding that ABA treatment at this level enhanced 

the number of produced leaves at chilling compared to non-treated plants indicates a growth-

promoting influence of ABA at the sub-optimal temperature. This positive impact of ABA application 

on parameters of chilling tolerance in SW matched with the finding that applications of the ABA 

biosynthesis inhibitor NDGA to the tolerant cv UB enhanced chilling-induced growth depression. The 

ABA levels in the apices of the plants indicate that even the lowest ABA application raised ABA 

levels in SW above the control levels in UB. In UB, however, the highest application of NDGA 

decreased ABA to a level similar to the control levels in SW. It appears that the higher ABA level in 

UB contributes to the higher chilling tolerance but simultaneously restricts growth under non-stress 

conditions. As a whole, these application experiments support a protective role of ABA in chilling 

tolerance in petunia. However, considering the distribution of ABA between the different plant organs 

in UB compared to SW, this function seems not simply related to the overall ABA level in the whole 

plant but particular dependent on the fine-tuning of ABA homeostasis between particular organs. This 

regulation should be further investigated by complete sequencing of the candidate genes for 

characterization of polymorphisms and by modified expression while organ-specific promotors should 

also be considered. Exemplary, a constitutive overexpression of 9-cis-epoxycarotenoid dioxygenase, 

crucial for ABA biosynthesis, drastically enhanced drought resistance [90]. However, whereas the 

authors overexpressed the gene in source leaves, plant growth and development were affected due to 

decreases in stomatal conductance and photosynthesis. By the use of apical-meristem-specific 

promoters, 9-cis-epoxycarotenoid dioxygenase could be overexpressed in the apex to up-regulate 

ABA levels there locally, but the growth-retarding effects of ABA on the source leaves could be 

avoided. 
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CBF-pathway and heat- and cold-induced proteins seem not to have a primary role in tolerance 

of petunia to mild chilling 

Only one gene related to the CBF-pathway, coding for a CCAAT-binding transcription factor CBF-

B/NF-YA family protein, was higher expressed in the source leaf of UB at both temperatures. One 

other CBF-related gene was lower expressed at chilling at 7 DoT in the source leaf of UB. The data 

do not support an important role of the CBF-pathway for the higher tolerance of UB to mild chilling 

stress. In addition, the chilling-responsive transcription factors we found in a previous study on SW 

[26] did not feature a clear cultivar-specific pattern. Accumulation of small molecular heat shock 

proteins are known to be correlated with chilling tolerance. However, this usually applies to stronger 

stress situations compared to the present study. Thus, chilling tolerance in tomato, measured by 

chilling injury symptoms, was enhanced by the overexpression of a chloroplast-localized small 

molecular heat-shock protein [91]. Interestingly, in the present study one gene encoding a chloroplast 

small heat shock protein class I was in the apex and source leaves mostly lower expressed in UB 

compared with SW. Accordingly, other genes coding for cold-, drought- and salt-responsive proteins 

were lower hybridized in the tolerant cv. These findings support the concept that at mild chilling 

stress the tolerant cv follows a “growth priority” rather than a defense strategy.  

 

Conclusion 

Mild chilling reduces the production of fresh and dry weights of both cvs with a smaller impact on the 

chilling-tolerant cv UB. On the metabolic level, the exposure to chilling causes a derangement of the 

homeostasis of soluble sugars in both cvs, whereas the chilling-tolerant cv UB shows a more stable 

leaf carbohydrate metabolism and a generally higher abundance and utilization of sucrose in the shoot 

apex. This is correlated with an apparently improved carbohydrate translocation from source leaves 

towards the apical organ and a generally higher photosynthetic rate, while the photosynthetic rate is 

not affected by chilling itself. Higher cwINV and cytINV activities in the apex combined with a 

putatively reduced inhibition of invertase activities by invertase inhibitors might contribute to the 

sucrose import into and utilization in the apex. The array data further indicate an improved carbon 

flux from glycolysis into citric cycle driven by higher PEP carboxylase kinase levels and an enhanced 

citric cycle flux. A higher tendency towards cataplerotic metabolic pathways in combination with a 

higher osmotic potential in the apical organ, caused by the higher Suc abundance that is further 

increased by the enhanced invertase activity, might enhance cell elongation and plant growth at the 

growing points of UB. The observed general differences in phytohormone levels and the related array 

results support this higher growth priority of UB. While JA seems not to play a role in chilling 

tolerance at this mild stage of chilling stress, we suggest a key role for ABA homeostasis and 

signaling. A specific morphism of carotenoid cleavage dioxygenase gene in UB might provide a 

higher activity of this enzyme contributing to the general higher ABA level in the shoot apex, while 

ABA signaling might be at least partly responsible for the increased Suc levels and higher cytINV and 
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vacINV activities and further contribute to down-regulation of ethylene synthesis pathway. The 

functional role of ABA in chilling stress tolerance is supported by reduction and enhancement of 

chilling induced growth depression in response to treatments with ABA and the ABA synthesis 

inhibitor NDGA, respectively. However, organ-specific ABA homeostasis seems to be essential for 

proper growth performance. The microarray data further indicate that at the level of mild chilling the 

CBF-pathway, heat-shock proteins and cold-induced proteins do not have a dominant role for chilling 

tolerance of petunia. Further characterization and functional studies of candidate genes controlling the 

discussed metabolic and plant hormone pathways by use of mutants, RNAi technology and 

overexpression with involvement of organ-specific promotors are necessary to elucidate these 

relationships. 
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Figure legends 

 

 

 

Fig. 1 Carbohydrate concentrations. Impact of chilling on carbohydrate concentrations (straight 

lines: UB, dotted lines: SW; black: 12 °C, grey: 16 °C). (A) source leaf, hexoses; (B) apex, hexoses; 

(C) source leaf, sucrose; (D) apex, sucrose; (E) source leaf, starch (specified in units of Glc); (F) apex, 

starch (specified in units of Glc). (DoT = days after differentiation of temperature; n = 9; data are 

means ± SE; In the Significance Table, asterisks indicate significance levels of the effects of cultivar 

(C) and temperature (T) and of interactions between C and T for the specified DoT, * P ≤ 0.05, 

** P ≤ 0.001, *** P ≤ 0.0001; n.s. = not significant). 
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Fig. 2  Carbohydrate ratios. Impact of chilling on carbohydrate ratios between sucrose (Suc) and 

hexoses (glucose: Glc, and fructose: Fru) respectively between the apex and the source leaf (straight 

lines: UB, dotted lines: SW; black: 12 °C, grey: 16 °C). (A) source leaf, Suc:hexose ratio; (B) Suc, 

apex:source leaf ratio; (C) apex, Suc:hexose ratio; (D) hexoses, apex:source leaf ratio. (DoT = days 

after differentiation of temperature; n = 9; data are means ± SE; In the Significance Table, asterisks 

indicate significance levels of the effects of cultivar (C) and temperature (T) and of interactions 

between C and T for the specified DoT, * P ≤ 0.05, ** P ≤ 0.001, *** P ≤ 0.0001; n.s. = not 

significant). 
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Fig. 3  Net photosynthetic rate. Impact of chilling on net photosynthetic rates on leaf dry weight 

basis (straight lines: UB, dotted lines: SW; black: 13 °C, grey: 17 °C). (photosynthetically active 

radiation [150 µmol m-2 s-1]; DoT = days after differentiation of temperature; n = 4; data are 

means ± SE; In the Significance Table, asterisks indicate significance levels of the effects of cultivar 

(C) and temperature (T) and of interactions between C and T for the specified DoT, * P ≤ 0.05, 

** P ≤ 0.001, *** P ≤ 0.0001; n.s. = not significant). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

       

 



 
 

90 

 

 

 

Fig. 4  Invertase activities. Impact of chilling on the activities of vacuolar invertase (vacINV), 

cytosolic invertase (cytINV) and cell wall invertase (cwINV) (straight lines: UB, dotted lines: SW; 

black: 12 °C, grey: 16 °C). (A) source leaf, vacINV; (B) apex, vacINV; (C) source leaf, cytINV; 

(D) apex, cytINV; (E) source leaf, cwINV; (F) apex, cwINV. (DoT = days after differentiation of 

temperature; n = 9; data are means ± SE; In the Significance Table, asterisks indicate significance 

levels of the effects of cultivar (C) and temperature (T) and of interactions between C and T for the 

specified DoT, * P ≤ 0.05, ** P ≤ 0.001, *** P ≤ 0.0001; n.s. = not significant). 
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Fig. 5  Concentrations of jasmonic acid. Impact of chilling on levels of jasmonic acid in the upper 

stem (straight lines: UB, dotted lines: SW; black: 12 °C, grey: 16 °C). (DoT = days after 

differentiation of temperature; n = 6; data are means ± SE; In the Significance Table, asterisks 

indicate significance levels of the effects of cultivar (C) and temperature (T) and of interactions 

between C and T for the specified DoT, * P ≤ 0.05, n.s. = not significant). 
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Fig. 6  Concentrations of abscisic acid and indole-3-acetic acid. Impact of chilling on levels of 

abscisic acid (ABA) and indole-3-acetic acid (IAA) (straight lines: UB, dotted lines: SW; black: 

12 °C, grey: 16 °C). (A) apex, ABA; (B) apex, IAA; (C) upper stem, ABA; (D) upper stem, IAA; 

(E) source leaf, ABA; (F) source leaf, IAA. (DoT = days after differentiation of temperature; n = 6; 

In the Significance Table, asterisks indicate significance levels of the effects of cultivar (C) and 

temperature (T) and of interactions between C and T for the specified DoT, * P ≤ 0.05, ** P ≤ 0.001, 

*** P ≤ 0.0001; n.s. = not significant). 
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Fig. 7 Numbers of chilling responsive genes in dependence on cultivar. Numbers of annotated 

genes, which are up- respectively down-regulated under the impact of chilling compared to control. 

(A) apex; (B) upper stem; (C) source leaf. (Gene expression was analyzed at 3, 7 and 21 DoT: yellow 

and blue colors indicate genes regulated differentially only in SW, or only in UB, respectively, grew 

color indicates genes, differentially regulated in both cultivars; DoT = days after differentiation of 

temperature; up-regulated: log2 > 1; down-regulated: log2 < -1; pfp-value < 0.15). 
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Fig. 8  Numbers and functions of chilling-dependent cultivar-specifically regulated genes in the 

apex. Numbers of annotated genes, which were differentially expressed in UB and SW only at 

chilling and not at control temperature in the apex. (A) 3 DoT; (B) 7 DoT; (C) 21 DoT. Red color 

indicates genes with significantly higher expression rates in UB, green color indicates lower 

expression rates in UB. (DoT = days after differentiation of temperature; higher expression rates in 

UB: log2 > 1; lower expression rates in UB: log2 < -1; pfp-value < 0.15).  
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Fig. 9  Numbers and functions of chilling-dependent cultivar-specifically regulated genes in the 

upper stem. Numbers of annotated genes, which were differentially expressed in UB and SW only at 

chilling and not at control temperature in the upper stem. (A) 3 DoT; (B) 7 DoT; (C) 21 DoT. Red 

color indicates genes with significantly higher expression rates in UB, green color indicates lower 

expression rates in UB. (DoT = days after differentiation of temperature; higher expression rates in 

UB: log2 > 1; lower expression rates in UB: log2 < -1; pfp-value < 0.15).  
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Fig. 10  Numbers and functions of chilling-dependent cultivar-specifically regulated genes in the 

source leaf. Numbers of annotated genes, which were differentially expressed in UB and SW only at 

chilling and not at control temperature in the source leaf. (A) 3 DoT; (B) 7 DoT; (C) 21 DoT. Red 

color indicates genes with significantly higher expression rates in UB, green color indicates lower 

expression rates in UB. (DoT = days after differentiation of temperature; higher expression rates in 

UB: log2 > 1; lower expression rates in UB: log2 < -1; pfp-value < 0.15).  
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Fig. 11 Selection of relevant genes cultivar-specifically expressed under control or chilling 

conditions. Selection of relevant genes that are putatively involved in the observed metabolic changes and 
in plant hormone-related pathways (for the complete list of differentially expressed genes, see Additional 

file 5: Table S1C). Cultivar-specific differences are shown for the apex, the source leaf and the stem at 3, 7 

and 21 DoT for 12 °C and 16 °C. Colored squares represent Log2 values of differences in the expression 

rates between both cultivars for individual genes: red color represents genes, which showed higher 
expression rates in UB, green color represents genes, which showed lower expression rates in UB; the 

intensity of the colors indicate the extend of expression differences (pfp-value < 0.15). 
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Fig. 12  Impact of pharmacological treatments on dry and fresh weight production. Impact of 

chilling on dry (DW) and fresh weight (FW) production during ABA-treatment on SW and 

NDGA-treatment on UB (A-D: light grey: 16 °C, dark grey: 12 °C; E, F: light grey: FW depression, 

dark grey: DW depression; G, H: light grey: FW ratio, dark grey: DW ratio). Shown are weight 

increases after three weeks. (A) FW of ABA-treated SW; (B) FW of NDGA-treated UB; (C) DW of 

ABA-treated SW; (D) DW of NDGA-treated UB; (E) FW and DW depression (16 °C - 12 °C) of 

ABA-treated SW; (F) FW and DW depression (16 °C - 12 °C) of NDGA-treated UB; (G) relative 

growth depression of FW and DW ((16 °C - 12 °C) / 16 °C) of ABA-treated SW; (H) relative growth 

depression of FW and DW ((16 °C - 12 °C) / 16 °C) of NDGA-treated UB. (n = 16; data are 

means ± SE; different characters indicate significant differences between treatments, * P < 0.05; 

asterisks indicate significant differences between control and chilling temperature for a specific 

pharmacological treatment, P ≤ 0.05). 
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Fig. 13  Effect of applications of ABA to SW and of NDGA to UB on ABA concentrations in the 

apex. ABA levels in apices of ABA treated SW and NDGA treated UB after exposure to control or 

chilling temperatures (light grey: 16 °C, dark grey: 12 °C). Samples were taken at 26 DoT, 7 days 

after the last spray application. (A) ABA concentrations of ABA-treated SW; (B) ABA concentrations 

of NDGA-treated UB. (n = 4; data are means ± SE; In the Significance Table, asterisks indicate 

significance levels of the effects of treatment (Treat) and temperature (T) and of interactions between 

Treat and T for the specified DoT, * P ≤ 0.05, *** P ≤ 0.0001; n.s. = not significant). 
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Additional files 

 

 

 

Additional file 1: Figure S1. Dry weight, fresh weight, and growth depression. Impact of chilling 

on fresh and dry weight production. Shown are weight increases of aerial shoots after three weeks of 

exposure to chilling (grey: UB; white: SW). (A) fresh weight; (B) dry weight; (C) absolute growth 

depression of fresh weight; (D) absolute growth depression of dry weight; (E) relative growth 

depression of fresh weight (1 - 12 °C/16 °C); (D) relative growth depression of dry weight 

(1 - 12 °C/16 °C). (n = 12; data are means ± SE; asterisks indicate significant differences between cvs, 

* P ≤ 0.05; different characters indicate significant temperature effects within one cv, P < 0.05). 
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Additional file 2: Figure S2. Growth parameters. Impact of chilling on the length of main shoot 

and numbers of lateral shoots and leaves. Shown are increases after three weeks of exposure to the 

different temperatures (blue: UB; yellow: SW). (A) length increase of the main shoot; (B) number of 

newly developed lateral shoots; (C) number of newly developed leaves on the main shoot. (n = 12; 

data are means ± SE; asterisks indicate significant differences between cvs, * P < 0.05; different 

characters indicate significant temperature effects within one cv, P < 0.05). 

 

 

 

 



 
 

104 

 

Due to the large amount of data, it was not possible to print the additional files 3-5 here. Please find 

the regarding files on the enclosed CD-ROM (file names: Chapter_2.3_Tab_S1A.xlsx, 

Chapter_2.3_Tab_S1B.xlsx, Chapter_2.3_Tab_S1C.xlsx): 

 

Additional file 3: Table S1A. Expression values, Ultra Blue. Means of normalized expression 

values of all analyzed petunia genes for each date.  

 

Additional file 4: Table S1B. Expression values, Sweet Sunshine Williams. Means of normalized 

expression values of all analyzed petunia genes for each date. 

 

Additional file 5: Table S1C. M-values of significant hybridization differences between UB and 

SW. M-values (Log2 of hybridization ratios between UB and SW) of genes which were at least at one 

date significantly differentially hybridized. Genes being more than 2-times higher or lower hybridized 

in UB compared to SW are highlighted in red or in green, respectively (M-value > 1 or < 1). 

Pfp-values < 0.15 identify significantly differentially hybridized genes and are highlighted in yellow. 

"Cond 1 < Cond 2 pfp value" are relevant for genes with lower hybridization rates in UB; 

"Cond 1 > Cond 2 pfp value" are relevant for genes with higher higher hybridization rates in UB. 
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Additional file 6: Figure S3. Impact of pharmacological treatments on growth parameters. 

Effect of treatment of the cv SW with abscisic acid (ABA) and of the cv UB with 

nordihydroguaiaretic acid (NDGA) on the length of main shoot and the numbers of lateral shoots and 

leaves. Shown are increases after three weeks of exposure to the different temperatures and treatments 

(light grey: 16 °C, dark grey: 12 °C). (A) length increase of the main shoot of ABA-treated SW; 

(B) length increase of the main shoot of NDGA-treated UB; (C) numbers of newly developed lateral 

shoots of ABA-treated SW; (D) numbers of newly developed lateral shoots of NDGA-treated UB; 

(E) numbers of newly developed leaves on the main shoot of ABA-treated SW; (F) numbers of newly 

developed leaves on the main shoot of NDGA-treated UB. (n = 16; data are means ± SE; different 

characters indicate significant differences between treatments, P < 0.05; asterisks indicate significant 

differences between control and chilling temperature for a specific pharmacological treatment, 

P ≤ 0.05). 
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Additional file 7: Figure S4. Impact of pharmacological treatments on chilling induced growth 

depression in relation to cultivation at 16 °C. Effect of treatment of the cv SW with abscisic acid 

(ABA) and of the cv UB with nordihydroguaiaretic acid (NDGA) on the depressions of elongation of 

the main shoot (light grey), and of numbers of lateral shoots (dark grey) and leaves on the main shoot 

(black) produced during three weeks of chilling. Shown is the relative depression compared to the 

control ((16°C - 12 °C) / 16 °C). (A) ABA-treated SW; (B) NDGA-treated UB. (n = 16; data are 

means ± SE; different characters indicate different significance groups, P ≤ 0.05).  
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3 Conclusions and outlook 

For the production of plants, especially for thermophilic ornamentals like petunia, heating of 

greenhouses is the most important expense factor. Therefore, a production at reduced temperatures 

would save a huge amount of energy as well as emissions of greenhouse gases. However, this aim can 

only be achieved with cultivars, the growth of which is just slightly reduced by chilling and thus the 

production time is not much prolonged. The present thesis investigated how such cultivars can be 

identified and aimed at finding molecular patterns that contribute to a better growth performance 

under chilling. The results of this thesis are discussed in detail in the corresponding publications and 

manuscripts. The following chapters give a comprehensive overview of the results of this thesis and 

discuss the gained novel information, which can serve as a basis for future research. 

 

3.1 Establishment of a screening system for chilling tolerance in Petunia hybrida 
and screening of cultivars with distinct chilling responses 

The impact of chilling on commercially available Petunia hybrida cultivars varies depending on their 

genotype and the resulting growth habit. To identify cultivars differing in susceptibility to chilling, a 

set of Petunia hybrida cultivars described by growers as putatively chilling-sensitive or -tolerant, was 

evaluated for their phenotypical responses to chilling. Therefore, a chilling temperature was needed 

fulfilling two preconditions. First, it had to be reduced far enough below commonly used cultivation 

temperatures (= control) to trigger a mild chilling stress in the plants which is reflected by significant 

growth responses compared to the control. Secondly, the chilling temperature had to be high enough 

to prevent the plants from developing visible chilling injuries and to allow a growth performance that 

does not lead to exceptionally exceeding the normal production time. As average control temperature 

16 °C was chosen, a temperature commonly used for German petunia production, and as average 

chilling temperature 12 °C was chosen. The latter was proven to accomplish both above-mentioned 

preconditions. The effect of this chilling temperature on the evaluated cultivars was even strong 

enough to find significant differences in the phenotypical chilling response already after three to four 

weeks, with a significantly weaker impact on growth in the putative chilling-tolerant cultivars 

(Chapter 2.1).  

The analyzed growth parameters dry and fresh weight production, elongation of the main shoot, 

development of new leaves, and development of lateral shoots were reduced in response to chilling in 

most of the cultivars with exception of the production of lateral shoots (Chapter 2.1). Hereby, the 

chilling response of dry weight production was proven to be the most reliable and reproducible 

parameter. Even if the chilling-induced growth reduction was strongly determined by the general 

growth performance of the cultivars, distinct chilling responses could be identified between the 
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cultivars. While the absolute growth depression in terms of dry weight was highly variable between 

individual experiments, relative decreases in dry weight production under chilling could be 

reproduced at least for some cultivars that could be classified as chilling-tolerant or -sensitive, 

respectively.  

While the development of lateral shoots was only marginally affected by chilling in most experiments, 

but featured high cultivar-specific temperature-independent differences, the data suggest that high-

branching cultivars may be less susceptible to chilling. Thus, the number of newly developed lateral 

shoots was positively correlated at both temperatures with several relative growth parameters. 

Accordingly, one explanation for that finding might be that a higher branching rate indicates a higher 

number of growing points, that provide large utilization sinks for carbohydrates being produced in the 

source leaves (Lieth et al., 1991). Elongation growth and leaf development on the main shoot were 

reduced by chilling in tolerant cultivars as well as in sensitive ones. In contrast, the data suggest that a 

high-branching rate may contribute more to biomass production than a low-branching rate, since 

lateral shoots, as soon as leaves are big enough, are able to semi-autonomously supply themselves 

with carbon. Thus, higher branching might be a practical first selection criterion for screening of huge 

pools of Petunia hybrida cultivars for chilling-tolerant ones.  

 

3.2 Introduction of growth indices for the evaluation of growth performance 

The insights from this thesis improve the knowledge of how to select cultivars tolerant to mild sub-

optimal temperatures from a given set of different petunia cultivars by recommending easily 

applicable growth indices, which can be very decisive for future breeding of chilling-tolerant 

cultivars. These could contribute to a more sustainable, energy and greenhouse gas saving production 

of petunia in moderate climates.  

For the evaluation of the growth response to chilling in comparative approaches, specific indices were 

introduced (Chapter 2.1). The GI (growth index) and CPI (chilling performance index) describe the 

growth of an individual cultivar at control temperature or chilling, respectively, in relation to the best 

growing cultivar of the evaluated set at the same temperature. The best growing cultivar instead of the 

mean of all cultivars was chosen for this comparison to evaluate the relative growth potential of 

individual cultivars in relation to the maximum growth, defined by the best growing cultivar. The CTI 

(chilling tolerance index) describes the dry weight production under chilling in relation to control. 

This index can be used as a stand-alone index to evaluate the individual chilling response.  

Since the above-mentioned indices (GI, CPI) compare the responses of the cultivars within an 

analyzed set, they rather estimate the relative chilling-tolerance potential in relation to the other 

analyzed cultivars than give absolute information of the chilling susceptibility of an individual 
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cultivar. The investigated cultivars displayed strong general, chilling-independent growth differences, 

especially in terms of dry/fresh weight production and development of lateral shoots. However, the 

relative growth performance under chilling vs. control conditions (CTI) revealed significant 

differences among the cultivars, which could be reproduced for a selection of five distinct chilling-

susceptible cultivars in four experiments. Nevertheless, to verify if the introduced indices are also 

applicable on a large scale, they should be tested for screenings of higher numbers of cultivars. After 

successful verification, these indices could be used for the easy testing of bigger sets of cultivars to 

identify chilling-tolerant ones.  

However, to validate the findings described in Chapter 3.1 and 3.2, additional screenings with larger 

sets of cultivars should be conducted. Additionally, screenings of other petunia species or chilling-

tolerant wildtypes could be added to evaluate if these findings are also true and generalizable for 

petunia on the species level. Screenings of sets of Petunia ssp. with higher genetic diversity could also 

reveal further phenotypical markers in addition to the branching rate, which would be helpful in 

identifying chilling-tolerant genotypes. The presented investigations focused on the vegetative 

chilling response only in order to elucidate the basic growth response patterns of chilling tolerance in 

petunia. Nevertheless, for breeders and producers, especially the quality of the flowering plants are of 

huge interest. Therefore, future screenings should also include the evaluation of markers that estimate 

the flowering of the plants. Thus, it would be crucial to find out if chilling tolerance of the vegetative 

growth also correlates with a lower number of days to flower and/or higher numbers of flower buds. 

Since a minimum number of nodes below the first flower seems to be essential for flowering (Warner 

and Walworth, 2010), it is very likely that high CTIs – especially when combined with high leaf 

development rates - will correlate with only small delays in time to flower compared to normal 

production temperatures.  

 

3.3 Comparative analysis of the chilling-tolerant cultivar ‘Ultra Blue’ and the 
chilling-sensitive cultivar ‘SweetSunshine Williams’ 

The cultivars ‘Ultra Blue’ and ‘SweetSunshine Williams’ were identified to serve as chilling-sensitive 

and -tolerant model cultivars and were chosen for the subsequent physiological and molecular 

investigations. Both cultivars reacted to the exposure to chilling with a clear growth depression, which 

was considerably stronger in ‘SweetSunshine Williams’. As already demonstrated in the initial 

screenings (Chapter 2.1), this growth retardation was mainly connected with a reduced elongation of 

the main shoot and a reduction in the production of new leaves, but for the production of new lateral 

shoots, genotypic differences were more pronounced. The present results suppose that the detected 

growth depressions are the consequence of a functional disturbance of the whole plant, caused by a 

highly dynamic and complex molecular physiological stress response, which was more severe in the 
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chilling-sensitive cultivar. This was featured by changes in phytohormone homeostasis, carbohydrate 

metabolism, and gene expression patterns in source leaves, apex and the stem, which reflect important 

functional units for plant growth. Nevertheless, differences in tolerance to mild chilling temperatures 

between ‘SweetSunshine Williams’ and ‘Ultra Blue’ seem not only to be based on different responses 

under chilling, but also on general differences in carbohydrate metabolism, phytohormonal regulation 

and gene expression between the two genotypes (Chapter 2.3). 

The three proposed phases of chilling response, described in the characterization of ‘SweetSunshine 

Williams’ (Chapter 2.2) were not completely reproduced during the comparison of both cultivars 

(Chapter 2.3). There are different reasons that could explain this finding. First, the petunia plant is a 

very complex system that sensibly responds to environmental influences. Even when maintaining all 

environmental conditions stable, uncontrollable factors like the season of the year when cuttings are 

harvested from the mother plants might influence the conditioning and particularly the dynamic of 

metabolic reactions of the plants. Exemplary, despite short day cultivation of mother plants all over 

the year, flower induction on cuttings was increased and simultaneously rooting rates were reduced 

during the summer season. Further, for phytohormone measurements and gene expression analyses, 

the first definable internode was used for the characterization of ‘SweetSunshine Williams’. However, 

after three to four weeks of the experiment, the size and position in the plant architecture of this first 

collectable internode varied distinctly between chilled and control plants. Thus, for a more consistent 

sampling in the comparison of cultivars, a defined shoot section, without leaves, situated directly 

below the sampled apex, was collected. Consequently, differences in internodium and upper shoot 

results might be based on the different sampling and cannot be used for the evaluation of 

reproducibility. Nevertheless, the general strong disturbance of carbohydrate metabolism in Williams 

at the source side and the obvious decoupling of leaf carbohydrates from the growth sink in response 

to chilling was reproduced. Finally, the characterization of gene expression of ‘SweetSunshine 

Williams’ by array analysis focused on the differences under chilling in comparison to control to 

feature the chilling response. In contrast, the comparison of the two cultivars compared hybridization 

rates of genes between these cultivars at both temperatures separately to find distinct chilling 

responses but also general cultivar-specific differences by simultaneously considering transcript levels 

of the genes. However, since general metabolic differences as well as the general direction of chilling 

response seem to be more crucial for chilling tolerance than transient response phases, the differences 

found in the comparative analysis are predominantly discussed below. 
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3.4 Chilling tolerance correlates with a more stable leave carbohydrate metabolism 
and a better supply of and utilization in the apex 

The carbohydrate metabolism is essential for plant growth. Equally important are the availability of 

carbon sources in the plant, the transport from source tissues to growing sinks, as well as the 

utilization at the site of growing sinks. In the present thesis, chilling caused a derangement of the 

homeostasis of soluble sugars in both cultivars, whereas the leaf carbohydrate metabolism of the 

chilling-tolerant cultivar ‘Ultra Blue’ was more stable and its shoot apex showed a generally higher 

abundance and utilisation of sucrose (Chapter 2.3). In contrast to cold and freezing temperatures, only 

few studies have investigated the chilling response of carbohydrate metabolism at mild sub-optimal 

temperatures. However, while it is widely known that soluble sugars increase in plant cells at very 

low temperatures to shelter cells as cryoprotectants from freezing (reviewed in Mahajan and Tuteja, 

2005), such increases are already reported for moderate sub-optimal temperatures. Thus, Venema et 

al. (1999) found increased carbohydrate concentrations and starch accumulation in tomatoes’ 

youngest mature source leaves as a response to mild chilling (day/night temperature, control: 

20/25 °C; chilling: 16/14 °C). The authors observed that the reduction of biomass production, 

particularly of new leaves, and in one genotype also the leaf expansion, could be correlated to sub-

optimal temperature, even without changes in photosynthetic rates. Thus, they related the strong 

accumulation of carbohydrates, especially in the form of starch, which they observed in sub-optimally 

developed tomato leaves, to the magnitude of chilling stress (Venema et al., 1999). These findings 

comply with the stronger increases in hexose and sucrose concentrations in the chilling-sensitive 

cultivar presented in this thesis, even if the differences in starch accumulation under chilling between 

both cultivars were only marginally. However, the stronger starch accumulation in the apex of the 

chilling-tolerant cultivar, especially in combination with the higher sucrose levels, and cytINV and 

cwINV activities in the apex, might indicate a general better carbohydrate translocation and utilization 

in the growing apical tissue of ‘Ultra Blue’. The constitutively higher sucrose levels in the apex of 

‘Ultra Blue’ did not seem to be the result of altered expressions of genes coding for sucrose phosphate 

synthase or sucrose synthase in comparison to ‘SweetSunshine Williams’. Thus, the different levels 

may rather be the result of post-transcriptional regulation of sucrose synthesis and/or degradation and 

translocation, respectively, or these enzymes are not cultivar-specifically regulated at all. However, 

there is also a possibility that genes coding for the responsible enzymes are not covered by the 

microarray. Moreover, higher invertase activities and lower expression rates of genes coding for 

invertase inhibitors indicate improved translocation and utilization of sucrose via action of invertases. 

Additionally, since photosynthetic rates were generally lower in ‘SweetSunshine Williams’ compared 

to ‘Ultra Blue’, and did not change under chilling in both cultivars, the higher increases in sugar levels 

under chilling in the source leaves of ‘SweetSunshine Williams’ cannot be explained by higher 

photosynthetic rates. Nevertheless, since the gene expression analysis did not reveal an involvement 
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of putative genes controlling photosynthesis, other causes might be responsible for the cultivar-

differences in photosynthetic rates, like stomata regulation and density or post-transcriptional 

regulation of essential proteins. Nevertheless, it cannot be excluded that genes are affected whose 

function is not annotated yet, or which are not present on the microarray. Chapter 2.3, discusses in 

detail several genes whose hybridization rates suggest a better carbon supply of source leaves by open 

stomata, an improved translocation of photosynthetic products from chloroplasts to the cytosol of 

source leaves, as well as a better carbohydrate translocation from source to sink tissues for the 

chilling-tolerant cultivar ‘Ultra Blue’. Further, transcriptome data suggest that an improved 

channeling of carbon flux from glycolysis towards cataplerotic reactions via the citric cycle and thus 

to biosynthesis in the apex seems to be driven by higher phosphoenolpyruvate carboxylase (PEP 

carboxylase) kinase levels and an enhanced citric cycle flux. This higher affinity towards cataplerotic 

pathways combined with the higher osmotic potential in the apical tissue, caused by the higher Suc 

abundance, which is further increased by enhanced invertase activities, might increase cell elongation 

and plant growth at the growing points of ‘Ultra Blue’ (Gibeaut et al., 1990).  

Finally, the findings of a less disturbed carbohydrate metabolism of the source leaves and the higher 

sucrose abundance and utilization in the apex of ‘Ultra Blue’ suppose that the chilling response of 

‘Ultra Blue’ is shifted more to a growth priority strategy. In contrast, the chilling response of 

carbohydrate metabolism in ‘SweetSunshine Williams’ is more shifted towards a primary defense 

strategy to protect the important maintenance function of the source leaves already at this mild 

chilling. To test the hypothesis, whether increased activities of cytINV and cwINV contribute to a 

higher carbon abundance and utilization in the apex, invertase activities in the apex of 

‘SweetSunshine Williams’ could be manipulated by the use of apical-meristem-specific promoters for 

the overexpression of invertase genes. Additionally, the efficiency of invertases could be enhanced by 

RNAi-mediated degradation of transcripts coding for invertase inhibitors. In the same way, the 

significance of PEP carboxylase for a growth priority strategy could be tested by overexpression of 

genes for PEP carboxylase and PEP carboxylase kinase.  

 

3.5 Higher apical ABA levels are correlated with chilling tolerance 

Phytohormones are essential for numerous reactions in plants. They play key roles in plant 

development, growth and the response to environmental stimuli. The observed fundamental 

differences in phytohormone levels, particular in the apex, and the related array results support a 

higher growth priority of ‘Ultra Blue’. Thus, the results suggest especially for ABA a key role for 

chilling tolerance (Chapter 2.3). Besides, IAA seems to have only a minor role and JA seems to be not 

involved at all in chilling tolerance of ‘Ultra Blue’ at this mild stage of chilling. Particularly in the 

apex of the chilling-tolerant cultivar constitutively higher ABA levels were found. It has to be 
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considered, that depending on the concentration, ABA has not only a growth retarding function, but 

can also improve stress resistance (Sreenivasulu et al., 2012). Thus, whereas Mega et al. (2015) 

described that low ABA levels contributed to seedlings vigor in rice under cold stress, several other 

studies proved an important role of ABA for the tolerance to chilling and cold stress (Veisz et al., 

1996; Ntatsi et al., 2013; Yang et al., 2015). In the present thesis, the constitutive higher ABA levels 

especially in the apex might have supported the higher chilling tolerance as reflected by the enhanced 

dry matter production and relative growth under chilling compared to control in comparison to 

‘SweetSunshine Williams’. The higher ABA levels also correlated with constitutively higher 

hybridization rates of a gene coding for a carotenoid cleavage dioxygenase, similar to the 9-cis-

epoxycarotenoid dioxygenase, which catalyzes xanthophyll cleavage, the first and rate-limiting step of 

ABA biosynthesis (Saito et al., 2006). Since ABA signaling is known to influence carbohydrate 

metabolism and regulate invertases (Trouverie et al., 2003, 2004; Ren et al., 2015), the findings of the 

higher ABA levels in ‘Ultra Blue’ apices also correlate with the higher sucrose levels and higher 

invertase activities. Additionally, the array data also suggest lower hybridization rates of genes coding 

for enzymes of the ethylene synthesis pathway, which might also be correlated with the higher ABA 

levels. Normal ABA levels of unstressed plants are vital for maintaining shoot development and leaf 

expansion, which is partly realized by a restriction of ethylene biosynthesis and/or sensitivity 

(LeNoble et al., 2004). The maintenance of ABA levels and simultaneous reduction of ethylene 

biosynthesis might be essential to sustain the growth performance under chilling also for further 

reasons. Thus, the CBF-induced cold tolerance pathway is reported to be negatively regulated by 

ethylene signaling, whereas a chilling-induced decrease in ethylene biosynthesis seems to be 

important for an activation of this pathway (Shi et al., 2012). However, in the present work no 

indications for an activation of the CBF-pathway were found. 

Pharmacological approaches can be used to manipulate phytohormone levels to elucidate hormone 

functions in regulation of growth in general and under stress in particular. Therefore, considering the 

above-mentioned results, a pharmacological treatment was applied for exogenous manipulation of 

ABA levels. Thus, to enhance the ABA levels in the chilling sensitive cultivar, ABA was applied, and 

to reduce the ABA levels in the chilling-tolerant cultivar the ABA synthesis inhibitor NDGA was 

applied. Nevertheless, to achieve an internal phytohormone distribution within the plant that mimics 

the homeostasis regulated by the plant itself in dependence on its genetic background and in response 

to the environment is principally challenging. This is especially true in the case of ABA, which can 

enhance stress tolerance or even retard growth just depending on its concentration (Sreenivasulu et al., 

2012). However, the ABA treatment enhanced and the NDGA-treatment reduced the ABA levels in 

the apex of the treated plants. The growth responses of the treated plants to chilling suppose a role of 

ABA in chilling tolerance. Nevertheless, the tolerance promoting effect seems to be highly dependent 

on the intrinsic distribution of ABA within the plant. The results support the hypothesis that higher 
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ABA levels enhance the effectiveness of the stress response machinery, especially at the growing 

meristems of the plant, which are crucial for biosynthesis of new plant material. 

In conclusion, the protective function of ABA under chilling seems to be connected not only to the 

overall ABA level of a plant but in particular to be dependent on a fine-tuned ABA homeostasis 

between particular plant organs, when comparing the distribution of ABA between the different plant 

tissues in ‘Ultra Blue’ and ‘SweetSunshine Williams’. To explore a better knowledge of these 

regulations further research is necessary by applying modified expression of genes coding for 

enzymes of the ABA biosynthesis pathways under the control of tissue-specific promotors. The 

above-mentioned constitutively higher hybridization levels of a gene coding for carotenoid cleavage 

dioxygenase in ‘Ultra Blue’ might indicate a cultivar-specific up-regulation of this gene. But more 

likely, these general higher hybridization rates are a result of a polymorphism of this gene. This would 

allow the possibility that the resulting enzyme might display differences in activity between both 

cultivars. To evaluate, if carotenoid cleavage dioxygenase plays a role for chilling tolerance at all, an 

apex-specific constitutive overexpression could be applied to up-regulate ABA levels locally in the 

apex of ‘SweetSunshine Williams’. In the case of ABA, a tissue-specific expression would be of 

special interest to simultaneously avoid the growth-retarding effects of ABA, when higher expressed 

in the source leaves (Estrada-Melo et al., 2015). Since excessive ABA degradation might reduce cold 

tolerance (Mega et al., 2015), the degradation pathway would also be an interesting target for 

manipulating ABA levels in the plant. The most effective way to block the degradation of ABA seems 

to be the inhibition of the cytochrome P450 enzyme ABA 8'-hydroxylase (Cutler and Krochko, 1999). 

Such an inhibition of ABA degradation would result in an ABA accumulation. 

 

3.5.1 Other candidate processes of chilling tolerance supported by differences in 
gene expression 

For the characterization of the chilling-sensitive cultivar ‘SweetSunshine Williams’, the gene 

expression analysis focused on differential expression of genes under chilling compared to the control 

temperature (Chapter 2.2). Applying this scope of analysis on the comparison of both cultivars, only a 

few genes were found to be up- or down-regulated simultaneously in both cultivars, whereas most 

chilling-responsive genes were differentially regulated only in one of both cultivars (Chapter 2.3). The 

data suppose differences in gene expression between both cultivars, especially in the source tissue 

during the early phase of chilling, which is essential for the maintenance of carbohydrate production 

and energy supply. Since this approach only focused on relative differences between the temperature 

treatments, but did not consider absolute transcript levels of the analyzed sequences, in a second 

approach the hybridization rates of both cultivars were compared directly, and separately for each 

temperature. Genes differentially hybridized only under chilling, featured organ specific patterns and 
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different consecutive phases in chilling response. Whereas the differences in the apex attenuated with 

the duration of chilling treatment, differences in the upper stem increased again after a transient 

weakening in differences after one week. In the source tissue merely the quality of involved 

functional groups changed from a higher number of higher expressed genes in ‘Ultra Blue’ in the 

early phase to a higher number of lower expressed genes in ‘Ultra Blue’ in the late phase. These 

higher expression rates in the early phase might suggest a faster chilling response of more chilling-

regulated genes in ‘Ultra Blue’. However, also many genes were found to be constitutively 

differentially hybridized at both temperatures, some of them in all tissues and at all dates. Latter might 

rather be the result of polymorphisms than of distinct expressions. 

Under the applied mild chilling stress, the CBF-pathway, heat-shock proteins and cold-induced 

proteins did not seem to play a significantly different role between both cultivars. Thus, they most 

likely also did not have a dominant role for chilling tolerance of ‘Ultra Blue’. Furthermore, the 

chilling-responsive transcription factors that were revealed by the characterization of ‘SweetSunshine 

Williams’ did not display clear cultivar-specific response patterns, when hybridization rates of genes 

were compared between both cultivars. The Jumonji (JmjC) domain-containing protein was one of the 

most constitutively chilling-dependent up-regulated genes in the characterization of the chilling-

sensitive cultivar ‘SweetSunshine Williams’. However, since it was up-regulated at similar transcript 

levels in both cultivars, it was not mentioned in the comparison. Although these results suggest a role 

of this gene in the chilling response, it did not seem to be essential for the distinct reactions of the two 

cultivars analyzed.  

The results of this thesis generate a better understanding of the molecular mechanisms of chilling 

tolerance, and suggest candidate genes that might be involved in chilling tolerance. The better 

understanding how to determine chilling tolerance and the insights of the importance of a stable 

carbohydrate-translocation to the utilization sinks as well as the protective function of ABA in the 

apex can be very helpful for the future selection and breeding of more chilling-tolerant cultivars. 

However, further investigations are indispensable to elucidate if the above-discussed models of two 

distinct chilling-susceptible cultivars can be generalized to explain the chilling responses of other 

petunia cultivars too. Thus, carbohydrate metabolism, phytohormone levels and gene expression of 

other cultivars should be evaluated. Furthermore, the candidate genes controlling the discussed 

metabolic and plant hormone pathways should be further tested. This can be executed by the use of 

knock-out mutants, by knock-downs using RNAi technology or the overexpression of genes coding 

for enzymes like 9-cis-epoxycarotenoid dioxygenase, phosphoenolpyruvate carboxylase kinase or 

invertases and invertase inhibitors with involvement of tissue-specific promotors. 
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4 Confirmation of the three thesis objectives 

The three main goals of this thesis were described in Chapter 1.4. In the following, the objectives are 

mentioned again and a short overview, to which extend they were achieved, is given. 

1.) Establishment of a reliable and easily applicable screening method for the identification of 

cultivars with chilling-tolerant and chilling-sensitive responses, respectively. 

A temperature reduction of 4 Kelvin from commonly used production temperatures for petunia (16 °C 

to 12 °C with 2 K day/night-difference each) was proven to be an appropriate testing system to reveal 

the distinct susceptibilities to chilling in a set of cultivars. Dry weight production was shown to be the 

most reliable and reproducible growth parameter for evaluating the level of chilling tolerance. Growth 

indices of dry weight production of an individual cultivar in a set of cultivars were established to 

assess the relative growth performance. These indices were calculated in relation to the best 

performing cultivar of the analyzed set at a given temperature to estimate the growth potential of a 

cultivar under the given conditions. Growth indices calculated for an individual cultivar at chilling 

and control temperatures gave information of the individual level of susceptibility to chilling stress. 

2.) Characterization of the chilling reaction of a chilling-sensitive cultivar on the levels of 

phenotypical development, carbohydrate metabolism, phytohormone homeostasis and gene 

expression. 

In several experiments, the cultivar ‘SweetSunshine Williams’ constantly showed a more severe 

susceptibility to chilling measured by relative decreases in dry weight production compared to the set 

of investigated cultivars. The characterization of the plants’ response to chilling revealed a complex 

disturbance of plant functional integrity, visible at the levels of carbohydrates, phytohormones, and 

gene expression. Based on all findings, a response model with three consecutive phases was proposed 

for this chilling-sensitive cultivar. In the beginning, chilling led to a phase of destabilization of 

metabolic parameters and gene expression. This phase was followed by a transient recovery phase, 

marked by a normalization of metabolic parameters and a lower number of differentially expressed 

genes. This phase was followed by a phase of stabilization, indicating a long-term acclimation to 

chilling. These adaptions were suggested to help the plant to cope with the stress induced by chilling 

without damage but at the expense of growth. 

3.) Formulation of a hypothesis for the basis of chilling tolerance in P. hybrida, which is based 

on the distinct reaction patterns of the phenotypical development, the carbohydrate 

metabolism, the phytohormone homeostasis and the gene expression of a chilling-sensitive 

and a chilling-tolerant cultivar and the identification of new candidate genes involved in 

chilling tolerance. 
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The chilling responses of the chilling-sensitive cultivar ‘SweetSunshine Williams’ and of the chilling-

tolerant cultivar ‘Ultra Blue’ displayed obvious differences. However, also general cultivar-specific, 

chilling-independent differences between both cultivars seem to be important for the differences in 

chilling tolerance. Thus, metabolic parameters as well as gene expression data suppose that the 

tolerant cultivar has a more stable carbohydrate metabolism in the source tissue under chilling, but 

also a generally better carbohydrate supply and utilization in the apex tissue. Despite the growth-

inhibiting role of high ABA levels, higher ABA concentrations in the apex may additionally support a 

better growth under chilling. ABA-treatment of the chilling-sensitive cultivar and ABA inhibitor 

(NDGA)-treatment of the chilling-tolerant cultivar seemed to confirm the role of ABA in chilling 

tolerance. Candidate genes for carbohydrate metabolism and translocation as well as for ABA 

synthesis such as invertase inhibitors and phosphoenolpyruvate carboxylase kinase or carotenoid 

cleavage dioxygenase were identified. 
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6 Appendix 

6.1 Supplementary Material for Chapter 2.2 (Transcriptome, carbohydrate, and 
phytohormone analysis of Petunia hybrida reveals a complex disturbance of 
plant functional integrity under mild chilling stress) 

 

Table S1│Expression data. (a) M-values, all expressed genes, (b) M-values, significantly regulated 
genes, (c) Expression values. 

Due to the large amount of data, it was not possible to print the supplementary table S1 here. Please 

find the regarding file on the enclosed CD-ROM (file name: Chapter_2.2_Tab_S1.xlsx). 

 

 

 

Figure S1│Fresh and dry weight. Impact of sub-optimal temperature (black: 12.1 °C (day/night: 
13.1 °C/11.1 °C), grey: 16.0 °C (16.8 °C/15.2 °C)) on fresh and dry weight over the period of 28 days. 
Shown are increases compared to 0 DoT. (A) fresh weight; (B) dry weight. (DoT = days after 
differentiation of temperature; greenhouse; n = 12; data are means +/- SE; asterisks indicate 
significant differences between temperature treatments for a given sampling time, P ≤ 0.05). 
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Figure S 2│Growth parameters. Impact of sub-optimal temperature (black: 12.1 °C (day/night: 

13.1 °C/11.1 °C), grey: 16.0 °C (16.8 °C/15.2 °C)) on different growth parameters over the period of 

28 days. Shown are increases compared to 0 DoT. (A) length increase of the main shoot; (B) number 

of newly developed shoots; (C) number of newly developed leaves on the main shoot. (DoT = days 

after differentiation of temperature; greenhouse; n = 12; data are means +/- SE; asterisks indicate 

significant differences between temperature treatments for a given sampling time, P ≤ 0.05). 
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6.2 Supplementary Material for Chapter 2.3 (Comparative analysis of two 
contrasting petunia cultivars indicates important functions of carbohydrate 
utilization and Abscisic acid in tolerance to mild chilling stress) 

 

Due to the large amount of data, it was not possible to print the additional files 3-5 here. Please find 

the regarding files on the enclosed CD-ROM (file names: Chapter_2.3_Tab_S1A.xlsx, 

Chapter_2.3_Tab_S1B.xlsx, Chapter_2.3_Tab_S1C.xlsx). 
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