
 

 

Impact of climate change on 

vegetable pest insects -  

Aleyrodes proletella as a model 

organism 
 

 

 

Von der Naturwissenschaftlichen Fakultät der  

Gottfried Wilhelm Leibniz Universität Hannover  

zur Erlangung des Grades 

Doktorin der Naturwissenschaften Dr. rer. nat. 

 

genehmigte Dissertation  

von 

 

 

Diplom-Biologin Christine Tölle-Nolting 

geboren am 15.02.1983 in Lemgo 

 

 

2015 

 



Abstract  

  

ii 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Referent: Prof. Dr. rer. nat. Hans-Michael Poehling 

Korreferent: Prof. Dr. rer. nat. Hansjörg Küster 

Tag der Promotion: 30.01.2015 



Abstract  

  

iii 

 

Abstract 

 

The cabbage whitefly Aleyrodes proletella is a serious pest in cabbage. The importance 

of this species increased in the last 30 years with an enormous increase in the last ten years 

(Loomans et al. 2002; van Alebeek 2008). The population increase might be a consequence of 

the climate change and the increase in the average temperature in the last decades. Therefore 

we investigated experiments to test the influence of climate change on the cabbage whitefly. It 

has been assumed that the temperature will increase about 2 °C in Lower Saxony in the next 

century and that extreme events like heat waves will occur more often (Hartmann et al. 2013). 

Repeated heat waves were modeled in climate chambers to study the effect of this slowly 

increasing hot temperature on the mortality and development on A. proletella. The whiteflies 

were exposed to the heat waves in all developmental stages either in Petri dishes or on plants. 

The experiments showed that the temperature and the duration of the heat waves had no 

influence on the mortality or the developmental success. The only effect was a speeding up of 

the development from egg to larvae. 

An increase in temperature can also effect the plant nutrients and the secondary plant 

compounds. To test the influence of repeated heat waves on secondary compounds and to 

investigate if a change in the population density might be caused by them, the glucosinolates 

in plants exposed to heat waves were analyzed. The heat waves had no significant effect on 

the amount and composition of glucosinolates, while the sucking of the whitefly increased the 

amount of glucosinolates, especially sinigrin and progroitin threefold. 

Next to the temperature also the precipitation regime will change with an increase in 

heavy rains in summer, but also more dry spells from spring to autumn. To test the influence 

of heavy rain a rain arena was constructed where whiteflies were exposed to medium 

(0.6 l/min*m²), heavy (2 l/min*m²) and torrential (6 l/min*m²) rain. Our experiments showed 

that the rain had no negative effect on the larvae and the adults were only negatively 

influenced under torrential rain, whereas half of the egg clutches were destroyed by all rain 

intensities. Also the egg-laying decreased, if the females had faced a torrential rain shower.  

To test the influence of droughts Brussels sprout plants were either water-stressed 

(water holding capacity > 80%) or drought-stressed (water holding capacity <15%). Plants 

growing under a normal water holding capacity (40-50%) served as control. The plants grown 

under drought-stress were significantly smaller compared to the other plants. Under drought 

stress also the C/N-ratio decreased. Heavy droughts led to a decrease in the egg-laying and the 
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insects which developed under these circumstances were significantly smaller. The water-

stress had no significant effect on both plants and whiteflies. 

In the last part of the project the influence of mild winters in comparison to cold winters 

was examined to study the mortality and development of the whiteflies. Furthermore the 

synchronization between the cabbage whitefly and its natural enemy, the parasitoid Encarsia 

tricolor should be studied. E. tricolor is a common parasitoid in Lower Saxony, which is 

however not able to control the whitefly successfully in the field today. Therefore 

greenhouses were built, half of them with heating devices, representing semi-field conditions. 

In autumn Brussels sprout plants, which were infested with Aleyrodes proletella in all 

developmental stages and additional parasitoids were brought into the houses. Our results 

showed that the adults survived best in the unheated houses while none of the larvae survived. 

In February the surviving adults laid eggs and the population development was much faster in 

the heated houses compared to the unheated ones. No parasitoids survived the winter in the 

greenhouses.   

Due to the results of our experiments we assume that the cabbage whitefly will gain in 

importance in the next years and might become one of the major pests in cabbage. 

 

Keywords: climate change, Aleyrodes proletella, heat waves, glucosinolates, drought, 

simulated rain 
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Zusammenfassung 

Die Kohlmottenschildlaus Aleyrodes proletella ist einer der brisantesten 

Kohlschädlinge. Die Bedeutung dieser Art hat in den letzten 30, ganz besonders aber in den 

letzten zehn Jahren zugenommen (Loomans et al. 2002; van Alebeek 2008). Dieses 

Populationswachstum könnte eine Folge des Klimawandels und des Anstiegs der 

Durchschnittstemperaturen in den letzten Jahren sein. Aus diesem Grund haben wir 

Experimente entwickelt, um den Einfluss des Klimawandels auf die Kohlmottenschildlaus zu 

untersuchen. Die Durchschnittstemperaturen werden sich in Niedersachsen bis zum Ende des 

Jahrhunderts um 2 °C erhöhen und Extremereignisse wie Hitzewellen werden sich häufen 

(Hartmann et al. 2013). Um den Einfluss von extremen Temperaturen auf die Mortalität sowie 

die Entwicklung von Aleyrodes proletella zu testen, wurden wiederholte Hitzewellen in 

Klimakammern modelliert. Die Kohlmottenschildläuse wurden der Hitze in all ihren 

Entwicklungsstadien, entweder in Petrischalen oder aber an Rosenkohlpflanzen, ausgesetzt. 

Die Ergebnisse zeigen, dass weder die Höchsttemperaturen der Hitzewellen, noch die Dauer 

des Hitzeereignisses einen Einfluss auf die Mortalität oder den Entwicklungserfolg haben. 

Einzig die Entwicklungszeit der Eier war positiv beeinflusst. 

Der Anstieg der Durchschnittstemperatur kann ebenso die Nährstoffe in Pflanzen und 

die sekundären Pflanzeninhaltsstoffe beeinflussen. Um die Wirkung der Hitzewellen auf 

sekundäre Pflanzeninhaltsstoffe zu testen und festzustellen, ob diese einen Einfluss auf die 

Populationsänderungen von Aleyrodes proletella haben, wurden Rosenkohlpflanzen der Hitze 

ausgesetzt und die Glucosinolate in diesen geprüft. Die Hitzewellen hatten keinen 

signifikanten Effekt auf die Menge und Zusammensetzung der Glucosinolate, wohingegen die 

Saugaktivität der Kohlmottenschildläuse, besonders das Sinigrin und Progroitin, um das 

Doppelte bis Dreifache erhöhte. 

Neben der Temperatur wird sich auch das Niederschlagsregime ändern. Es ist eine 

Zunahme von Starkregenereignissen im Sommer zu erwarten, unterbrochen von länger 

anhaltenden Trockenperioden. Um den Einfluss dieses Starkregens zu testen, konstruierten 

wir eine Regenarena, in der die Kohlmottenschildläuse mittlerem (0,6 l/min*m²), starkem 

(2 l/min*m²) und sintflutartigem (6l/min*m²) Regen ausgesetzt waren. Die Ergebnisse zeigen, 

dass der Regen keine negativen Auswirkungen auf die Larven von A. proletella hatte und 

lediglich der sintflutartige Regen die Adulten negativ beeinflusste, wohingegen circa die 
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Hälfte der Eigelege unter allen Regenintensitäten zerstört wurden. Ebenso nahm die Eiablage 

ab, nachdem die Weibchen einem sintflutartigem Regenschauer ausgesetzt waren. 

Um den Einfluss von Trockenperioden zu testen, wurden Rosenkohlpflanzen entweder 

durch Trockenheit (Wasserkapazität des Bodens <15%) oder durch Überflutung 

(Wasserkapazität des Bodens >80%) gestresst. Pflanzen in normal feuchten Böden 

(Wasserkapazität des Bodens 40-50-%) dienten als Kontrolle. Die Pflanzen, die unter 

Trockenstress wuchsen, waren signifikant kleiner und das C/N-Verhältnis in den Blättern war 

geringer als bei den Kontrollpflanzen. Derartig starke Trockenheit führte zu einer 

Verringerung der Eiablage und die Tiere, die sich unter diesen Bedingungen entwickelten, 

waren kleiner. Das Überangebot an Wasser hatte keine signifikanten Auswirkungen, weder 

auf die Pflanzen, noch auf die Kohlmottenschildläuse. 

Im letzten Teil des Projekts wurde die Auswirkung von milden Wintern im Vergleich zu 

kalten Wintern auf die Mortalität und die Entwicklung von A. proletella untersucht. Darüber 

hinaus sollte die Synchronisation zwischen der Kohlmottenschildlaus und ihres natürlichen 

Gegenspielers, der Schlupfwespe Encarsia tricolor getestet werden. E. tricolor ist eine 

parasitische Wespe, die natürlicherweise in Niedersachsen vorkommt, unter den heutigen 

klimatischen Umständen aber nicht in der Lage ist, die Kohlmottenschildlaus erfolgreich zu 

kontrollieren. Für die Winterversuche wurden Minigewächshäuser konstruiert, in denen es 

möglich ist, die Insekten unter Semifreilandbedingungen zu untersuchen; die Hälfte der 

Häuser wurde dazu mit einer Heizung ausgestattet. Rosenkohlpflanzen, die mit 

Kohlmottenschildläusen in allen Entwicklungsstadien befallen waren, wurden in die 

Gewächshäuser gebracht. Zusätzlich wurden Mumien der Schlupfwespe in die 

Gewächshäuser eingebracht. Die Ergebnisse zeigen, dass die adulten Kohlmottenschildläuse 

am besten in den ungeheizten Häusern überlebten, wohingegen eine hohe Mortalität bei den 

Larven zu beobachten war. Im Februar legten die überlebenden Tiere Eier, wobei sich die 

Populationen in den geheizten Häusern deutlich schneller entwickelten als in den ungeheizten. 

Es fanden sich keine Parasitoide, weder in den geheizten noch in den ungeheizten 

Gewächshäuser. 

Aufgrund der Ergebnisse unserer Versuche nehmen wir an, dass die Bedeutung der 

Kohlmottenschildlaus in den nächsten Jahren weiter zunehmen und sie zu einem der 

signifikantesten Schädlinge im Kohlanbau werden wird. 
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1 General Introduction 

The worldwide climate has changed in the last century due to human impact and it is 

likely that these changes will continue in the next years. Global scenarios predict an increase 

in average temperature of about 2-4 °C (0.3- 4.8 °C) and a change in the precipitation regime 

(Hartmann et al. 2013). But these changes will vary between different continents and regions. 

It has been forecast that the precipitation in the Sahel zone for example will decrease, while it 

is going to increase in polar regions, and that the changes in temperature will be more relevant 

in the higher latitudes than in the equatorial region (Hartmann et al. 2013). It is also likely that 

the temperature changes will occur mainly in the cold extremes leading to warmer winters and 

warmer nights (Hartmann et al. 2013). Also more weather extremes like heavy storms, heat 

waves or extreme rain intermediated by longer dry spells, are to be expected (Hartmann et al. 

2013). 

Due to these variations in change it is important to predict the regional or even local 

climate changes. For Lower Saxony a temperature increase of 2 °C till the year 2100 is 

expected. Lower precipitation in the middle of Lower Saxony concerning the region around 

Hanover, and little increase in precipitation in the Northern and Southern region are expected 

due to the fact that the temperature has increased in this region 2-3 °C in the last 50 years and 

the precipitation has decreased in this region (Haberlandt & Hölscher 2010). Overall we 

expect more extreme events as forecast worldwide. These changes will have an important 

influence on our life and especially on agriculture, forestry and water management. 

To explore the expected changes and mainly the influence they will have on the 

ecosystems the KLIFF-Network was incorporated. “The aim of the research co-operation 

KLIFF, is to increase the knowledge base of the consequences of climate change at regional 

and local scales, in order to develop sustainable adaptation strategies”(Beese 2012). The 

network is organized in five divisions with different working groups concerning, agriculture 

and horticulture, forestry and water management. The working group (Pflanzenproduktion - 

crop production) within which this thesis was preformed, focuses on the influence of the 

climate change on selected species in some of the most important horticultural crops in Lower 

Saxony. Agriculture and horticulture are prominent economic sectors in Lower Saxony and it 

is of utmost relevance to study how key pest species will behave under a changing CO2-level, 

warmer temperatures and a changed precipitation regime. 
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Worldwide, the CO2-levels will rise with consequences for all creatures including 

insects. Via the plants, the increased CO2 will have direct and indirect effects on insects (Bale 

et al. 2002; Pritchard et al. 2007). Plants generally react positive to increased CO2: It offers 

added protection against ozone and increases resistances against pests and viruses while also 

stimulating growth due to increased photosynthesis (Fuhrer 2003). It also leads to a higher 

wax layer on leaves and more carbon-based secondary plant compounds (Bezemer et al. 1999; 

Pritchard et al. 2007; Hillstrom & Lindroth 2008). On the other hand it is leading to a 

decreased amount of nitrogen in the leaves (Holton et al. 2003). In the experiment of 

Vuorinen (2004) generalists were able to find the plants regardless of CO2-level, while 

specialists were not able to detect the plants under elevated CO2-concentrations  

Other indirect effects of elevated CO2-levels may be a higher surface temperature of 

leaves (Fuhrer 2003; Dermody et al. 2008), which might increase growth rate of leaf settling 

populations. It also leads to a changing C/N-ratio in the leaves due to the faster growth 

(Williams et al. 2000; Fuhrer 2003) resulting in higher herbivory (Pritchard et al. 2007; 

Guerenstein & Hildebrand 2008; Thomson & Hoffmann 2010), whereas various species react 

differently to the changed circumstances. Some aphids reproduce better under increased CO2, 

some worse and many aphids do not react to a change in the CO2-concentration and (Coviella 

& Trumble 1999; Hughes & Bazzaz 2001; Stacey & Fellows 2002; Newman 2005; Pritchard 

et al. 2007). The reasons for that may be (a) other plant parameters which are more important 

for the insects, (b) the change in the nitrogen-sugar-rate is more important than the total 

amount of nitrogen or (c) a changed sucking behaviour based on a different location on the 

plant (Hughes & Bazzaz 2001).  

But the CO2 may also have direct effects. Awmack et al. (1997) found that Aulacorthum 

solani, grown under elevated CO2, produce less or no alarm pheromones, therefore making 

them more vulnerable to predators. Many insects use the carbon dioxide to find their egg 

laying spaces, because plants assimilate CO2 manly during the night and CO2-concentration 

near the leaf surface is about 80 ppm higher compared to the surrounding concentration 

(Guerenstein & Hildebrand 2008). A change in the concentration will have direct effects on 

them (DeLucia 2008). But the increase in the CO2-concentration in all experiments was very 

fast, in nature the increase will be slower, giving the insects time to adapt to the new 

circumstances (Whittaker 2001). 

Besides carbon dioxide the amount of ozone and UV radiation will increase as well 

(Hartmann et al. 2013). There are different findings regarding the effect of O3 on the plant 
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compounds. Fuhrer (2003) found that an increased amount of O3 increases nitrogen, sugar and 

starch in the leaves, while Holton et al. (2003) could show that nitrogen and phenolic 

glucosides are decreasing and starch and tannins are increasing. The ozone has mainly 

indirect effects on insects, as it for example can lead to an increase of VOCs (Yuan et al. 

2009). As to the CO2- concentration insects react species-dependent on an increase in O3 

(Holton et al. 2003). The survival rate of a caterpillar (Malacosoma disstria) increased under 

elevated O3-levels, while the fitness of its parasitoid was decreased (Holton et al. 2003) or 

even no reaction was detectable (Dermody et al. 2008). 

The UV radiation will increase (Fuhrer 2003), but it will have mainly indirect influences 

on insects. Plants protect themselves against UV with an increasing level of jasmonic acid in 

the leaves (Foggo et al. 2007). Studies could show that enhanced UV radiation induces 

resistance to herbivores in plants. Enhanced UV-B leads to an increase in flavonoids, reducing 

herbivory (Lavola et al. 1998; Rousseaux et al. 2004). On plants grown under enhanced UV-B 

radiation not only the herbivory, but also the growth rate of herbivores is decreased and their 

mortality increased (McCloud & Berenbaum 1999; Zavala et al. 2001; Warren et al. 2002). 

Increased UV radiation not only influences herbivores, it also affects the third trophic level 

for example parasitoids because plants send the same signals under enhanced UV radiation as 

under herbivore attack. Therefore parasitoids prefer plants grown under enhanced UV (Foggo 

et al. 2007). Nevertheless it seems that aphids and whiteflies are more abundant under plants 

grown under elevated UV (Kuhlmann & Müller 2009). 

Increasing temperatures will have several effects on weather events like warmer 

winters, warmer nights, early snow melting leading to less days with snow cover and longer 

growing periods, more heat extremes and more days with temperatures at the upper 

developmental level (Juroszek & Tiedemann 2012). A change in the average annual 

temperature can result in a changed geographical distribution (increased risk of pest invasion, 

range expansion), changed seasonal phenology (earlier emergence in spring) or changed 

population development (decreased winter mortality, faster development) (Juroszek & 

Tiedemann 2012). The warmer temperatures will have ambivalent effects on insects. Warmer 

temperatures can promote insects in leading to a faster development, decrease the winter 

mortality and may boost insects with low frost resistance (Netherer & Schopf 2010). It can 

also lead to an earlier arrival of the pest in spring making it possible to build up bigger 

populations and reach the host in an earlier, more vulnerable stage (Juroszek & Tiedemann 

2012). But it can be disadvantageous for species that need the cold for their diapause or to 
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increase their frost resistance (Netherer & Schopf 2010). Heat extremes and temperatures near 

the upper thermal tolerance can also raise insect mortality. Higher temperatures in spring and 

winter can also lead to an asynchronisation of pests and their natural enemies (Cannon 1998; 

Parmesan 2006; Hance et al. 2007). Most pest species are temperature-triggered, so that they 

occur earlier after a mild winter. The breaking of diapause of most parasitoids in contrast is 

triggered by the photoperiod (Tobin et al. 2008). An earlier emergence of the pest hence 

cannot be controlled by the natural enemy. Such asynchronism between prey and parasitoid 

can already be observed with a decrease in parasitism on caterpillars in a more variable 

climate (Stireman et al. 2005). But there is also evidence that high temperatures in spring can 

break the diapause independent of photoperiod avoiding the problem of asynchronism (Tobin 

et al. 2008).  

The temperature also indirectly affects herbivores due to changed secondary plant 

compounds. Glucosinolates are a major group in Brassicaceae which are important in the 

plants' defence system. The glucosinolates can be found in the cell vacuole separated from the 

enzyme myrosinase. In the event of herbivory and damage of the plant tissue, the myrosinase 

can hydrolyze the glucosinolates to volatiles. Different groups of herbivorous insects react 

differently to glucosinolates. Generalists are repelled by the substances, whereas specialists 

are attracted and able to metabolise the toxic substances.  

The changes in the precipitation regime (more rain in winter, more precipitation in 

winter with rain instead of snow, less rain in summer, more heavy rains in summer, more 

frequent droughts) and their effects on insect herbivores are not well understood. Rain has 

mainly negative effects on insects resulting in a higher mortality due to direct impacts and 

lower developmental rate due to (a) higher mortality of eggs and larvae and (b) less 

favourable conditions like cooler temperatures. But also a lack of humidity can influence the 

insects directly as they might lack humidity essential for egg laying, or indirectly, by fostering 

the plants with an adequate water ability or impair them with droughts (Bale et al. 2002; 

Harvell et al. 2002). The plant stress hypothesis predicts that plants suffering drought stress 

are more vulnerable to herbivore attack and that herbivory and drought will have synergetic 

negative effects (English-Loeb et al. 1997; Grinnan et al. 2013). This hypothesis is supported 

by the fact that in tropical forest under extraordinary dry conditions after El Niño events, mass 

outbreaks of several lepidopteran pest are observed (Van Bael et al. 2004). Especially 

generalist herbivores benefit from the drought stress, because drought stress reduces the plants 

defence (Gutbrodt et al. 2011). The plant vigor hypothesis in contrast predicts that insects will 
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prefer fast-growing vigorous plants. In an experiment with soybeans, Grinnan et al. (2013) 

could show that drought decreased herbivory, which supports the plant vigor hypothesis. 

Nevertheless it is likely that drought will have mainly negative effects on plants, either 

through reduced growing or increased herbivory. 

In an "old field community climate and atmosphere manipulation experiment" Engel et 

al. (2009) could show that the impact of the changed temperature eclipsed the effects of the 

elevated CO2. Hence the influence of CO2 is not included in this study. 

The first part of this thesis will evaluate which pest species in the most important 

vegetable crops might become important under a changing climate. We also evaluated how 

the species which are already important in vegetable crops may behave under changed 

climatic conditions. This will be done by assembly and comparison of developmental 

thresholds of the different herbivore species in literature to compile a compendium of the 

most important insect species in horticulture in Lower Saxony. 

The effects of climate change may become already visible as they appear to lead to a 

changed plant community and the appearance of new species. One of those species with 

gaining importance is the cabbage whitefly Aleyrodes proletella. In the 70s this species was 

found only seldom in private gardens (Loomans et al. 2002), but in the last ten years its 

distribution and population size increased rapidly (van Alebeek 2008). Nowadays it is one of 

the most important pest species in cabbage in Central Europe. It is likely that the population 

increase is a consequence of a changing climate and the altered surroundings with a higher 

amount of oil rape providing optimal overwintering habitats for the whitefly (Richter 2010). 

Encarsia tricolor on the other hand is a parasitoid that naturally occurs in Lower Saxony and 

that is specialised in whiteflies like Aleyrodes proletella. The species is common to Lower 

Saxony, yet is not able to fully control the whitefly population here in the field. Schultz et al. 

(2010) could show that they can be used successfully under agricultural foil, indicating that 

they have the potential to become an important beneficial against the cabbage whitefly under 

certain conditions. 

In the past, mainly effects of cold and increased temperatures, still ranging within the 

optimum of the insects temperature thresholds, were studied while extremely high 

temperatures were merely studied as singular heat events lasting for a short time. 

Additionally, effects of altered rain patterns are studied rarely, although precipitation is 

crucial for plant and insects development. Therefore, we performed experiments with the 

cabbage whitefly as a model organism to answer the following questions. 
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1. How does a selected study species (Aleyrodes proletella) react to very high 

temperatures and repeated heat waves? 

2. How does the glucosinolates in the plant react to repeated heat waves? 

3. How does the same species react to heavy rain? 

4. How does it (Aleyrodes proletella) reacted to drought stress of the plants? 

5. How do the selected species and its natural enemy (Encarsia tricolor) react to a mild 

winter compared to a cold winter? 
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2 Review: Impact of climate change on vegetable pest insects  ̶ 

A case study for Lower Saxony, Germany 

 

2.1 Magnitudes of climate change: on the global and regional scale (Lower 

Saxony) 

Due to human impact the global climate has already changed drastically. Air CO2 levels 

increased rapidly (from 280 pm at the beginning of the century to 390.5 ppm nowadays) 

during the last century, with consequences for temperature and precipitation averages (Gleick 

1987). During that time global average temperature increased by 0.74 °C and the distribution 

of precipitation changed dramatically (Hartmann et al. 2013). Until the end of this century, a 

further CO2 increase by factors 2-3 (540-970 ppm) is to be expected and will result in a 

temperature increase of another 2-4 °C (0.3-4.8 °C) (Hartmann et al. 2013). In general, the 

continuation of today’s climate changes, i.e. warmer winters and nights as well as further 

changes in precipitation regime are very likely. Rainfall will move to higher latitudes and 

although frequencies of storms might drop, their intensity will increase. Generally, different 

world climate scenarios predict that all kinds of extreme weather events will become more 

frequent in the future, while regions in higher latitudes are affected the most (Hartmann et al. 

2013). 

On a regional scale, climate change effects will show in correlation to those expected 

globally. Yet, due to their nature, they can prove far more difficult to predict, as for example 

with quickly evolving cloud patterns (Juroszek & Tiedemann 2012). The reason behind is that 

most prognostic models are developed for a global scale on a grid of 10 x 10 km, without any 

intention to predict local weather events. Therefore it is likely, that regional weather effects 

will display high variability and low predictability (Juroszek & Tiedemann 2012). 

For Northern Germany, i.e. Lower Saxony, the regional scenarios predict milder 

winters, warmer summers as recorded in the summer heat waves of 2003 and 2010, which 

reached temperatures up to more than 40 °C in Germany (38 °C in Lower Saxony) (DWD). A 
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shift of precipitation from the summer to the winter half-year, increased CO2 levels, and more 

frequent extreme weather events, like droughts, thunderstorms, heavy rain etc. will 

complement this. 

 

2.2 Research areas in KLIFF 

As a consequence of a changing climate and the lack of knowledge about the reaction of 

natural recourses in smaller regions like Lower Saxony, the KLIFF-Network 

(KLImaFolgenForschung in Niedersachsen, Climate impact and adaptation research in Lower 

Saxony) was founded and funded by the Niedersächsisches Ministerium für Wissenschaft und 

Kultur (Ministry for Science and Culture of Lower Saxony). It is the aim of the KLIFF-

Network to study the influence of the expected climate change on a regional scale. Therefore, 

several research groups have formed, studying the impact of a changing climate on 

agriculture, divided in plant- and animal production, forestry and water management inland 

and the coast respectively. In the working group "plant production" most sub-groups deal with 

cereal crops and their pests or diseases. The aim of our subgroup (Klimaänderungen: 

Auswirkungen auf Schadinsekten und Nützlinge im Freilandgemüsebau - Climate Change: 

Impact on pest and natural enemies on horticulture) is to identify pests which might become 

more important in the future and study how they behave under a changing climate to help 

growers to develop adaptation strategies to these threats. 

 

 

2.3 Impact of climate change on production systems: in general and in Lower 

Saxony 

Climate change will have direct impact (crop selection; growing period; changed 

temperature, precipitation regime and higher CO2-level; N availability on assimilation 

efficacy of specific crops) and indirect effects (pests, diseases) on most production systems 

(Bale et al. 2002). Field crops will be more affected than crops under protected cultivation due 

to the fact that in greenhouses temperatures and water supply are regulated. Basically, 
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growers will select crop species based on climatic conditions, market demands and economic 

value (Tuck et al. 2006). Under climate change conditions it is likely that growers will pay 

more attention to resistant varieties regarding drought and pest and the selection of new crop 

species which prefer warmer climates (Seo & Mendelsohn 2008; Olesen et al. 2011). The 

relevance of protected cultivation might increase since unforeseen weather extremes were not 

to endanger growth. Additionally there will be an inverse trend insofar today’s greenhouse 

crops will find agreeable conditions in the open field of tomorrow. The most important 

climate change impact will be expanded growing periods and in consequence the 

intensification of land use (Olesen & Bindi 2002). The challenge for growers will be to 

comply with the growing period earlier in the year, thereby increasing the number of cropping 

cycles. In consequence, supply of nutrients and water has to be adjusted and new crop rotation 

regimes as well as plant protection strategies have to be adapted (Olsen & Bindi 2002). 

Finally, policies will have a tremendous effect on the production system, though only within 

the range of crops that are suitable for specific climatic conditions (Vasil 2003; Stone 2013). 

For example, the market and subsidies for energy plants in combination with a loss of 

subsidies for land set-aside made their extensive cultivation highly attractive (Tuck et al. 

2006). Consequently, biodiversity (and conservation biological control) in the agricultural 

landscape is largely affected (Opdam & Wasch 2004). Further incentives and shifts on the 

crop markets due to political decisions are hard to predict. 

In Lower Saxony it is likely that climate change will affect the production systems in a 

way as outlined above. At the moment the area under cultivation in Lower Saxony is about 

2.6 million hectare, of which 35% are agricultural, 30% are meadows and pastures, 16% are 

energy plants like maize and rapeseed, and only 1.5% horticultural crops are grown. Among 

the horticultural crops vegetable- (18,712 ha) and fruit-growing (13,515 ha) are most 

important. Fruit-growing is mainly focused on apples and strawberries, while field vegetable 

growing is devoted to asparagus (22%), green salad (17%), cabbage (18%), onions (11%) and 

carrots (9%) (Niedersächsisches Landesamt für Statistik 2011). There is a trend of increasing 

fruit and vegetable growing over the last 20 years (Fig. 1). 

In the future, the relevance of different crop groups might follow the trend recognised in 

the last years, i.e. increasing horticultural growing areas. Trends towards other crop species 

have not been recognised so far, but i.e. peaches, apricots, and grapevines are already part of 

the grower’s portfolio in Lower Saxony. A peek at other regions where the expected climatic 

conditions for Lower Saxony are already a reality, i.e. Brittany, France, underlines the further 
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rise of field vegetable crops. Brittany today is one of the most important vegetable producers 

in Europe and the largest one in France (http://www.invest-in-bretagne.org). Vegetables are 

grown on more than 80% of the agricultural area, with cauliflower, artichoke, shallot, and 

broccoli as most widespread crops. Of their land under cultivation, they even yield more than 

50% to cabbage (Institut national de la statistique at des études économiques). This might be 

an indication that vegetable growing will increase substantially in Lower Saxony under future 

climatic conditions. 
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Fig. 1: Area under cultivation of the most important horticultural crops in Lower Saxony (data from 

Niedersächsischem Landesamt für Statistik). 

 

2.4 Impact of climate change on pest insects and plant protection 

Climate change will not only influence crops and cropping systems, but also pest insects 

and their natural enemies in many ways (Cannon 1998; Bale et al. 2002). It is known that all 

expected climate changes (CO2, temperature, precipitation, etc.) influence insects directly and 

indirectly. By increasing CO2 levels, insects are influenced to a minor extent directly as well 

as even more indirectly via the altered nutritional quality of the host plant (Awmack et al. 
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1997). Among other abiotic factors, temperature is the most important one and influences 

development times, reproduction and survival rates (Finch et al. 1996; Bale et al. 2002; 

Morsello et al. 2008). To a wide extent, the relationship between development and 

temperature is linear, with faster development at higher temperatures, limited only by upper 

and lower threshold temperatures (Grassberger & Reiter 2002; Kontodimas et al. 2004). The 

number of developing generations per year will increase and thereby on the evolutionary 

timescale also the speed of adaptations (Altermatt 2010). In the same way, temperature has a 

huge impact on locomotion and related behavioural activities. The impact of rain on insects is 

less understood, but most likely population growth (survival, reproduction) and locomotory 

activities are impaired. Indirectly, pest insects and natural enemies might be influenced by the 

host plant nutritional quality and the host’s location processes (visual and olfactorial) 

(Himanen et al. 2008). 

Having in mind the predictions for Lower Saxony, i.e. milder winters, warmer summers, 

a shift in precipitation (from summer to winter), and more frequent extreme weather 

conditions, the impact of climate change on pest insects and their natural enemies can be 

summarised briefly by three major effects: Thus, (a) mild winter conditions enhance survival 

rates, (b) warmer spring, summer and autumn conditions lead to faster development and 

therefore more generations per year and (c) extreme weather events, like heat waves or heavy 

rainfall, cause additional mortality and therefore reduce pest numbers. The same pattern can 

be expected for natural enemies, with the difference that they have different thresholds for 

development which may lead to shifts towards non-synchronous development with their hosts 

(Doi et al. 2008). 

But under the predicted climate changes, plant protection strategies not only have to 

cope with changing population dynamics of already important pest species. So far, minor pest 

species might become key pest species in the future, if their optimal developmental conditions 

align with future climate conditions or as secondary pests. Additionally new pest species will 

arrive, either due to range expansion or as invasive species (Warren et al. 2002; Parmesan 

2006). Such range expansions can already be observes by the mountain pine beetle 

(Dendroctonus ponderosae) in North Columbia, a species which distribution expanded north- 

and eastwards in the last decades due to a climate warming (Carroll et al. 2003). In Europe 

such northward range expansions can be noticed, for example for the winter moth 

(Operophtera brumata) in Fennoscandia (Jepsen et al. 2008). Also the common butterflies 

European Peacock (Inachis io) and the Small Tortoiseshell (Aglais urticae) might change 
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their area of distribution. The species survive far better at temperatures of less than 10 °C in 

winter. With climate warming they will likely migrate northwards (Bale et al. 2002). A range 

expansion also brings the hazard of new disease. In Canada Ogden et al. (2006) could observe 

that the tick Ixodes scapularis is enlarging its range northwards and will continue to do this 

boosting the risk of Lyme disease in these regions. In both cases, the predicted climatic 

conditions might be favourable not only for survival but also for mass development of a new 

species to gain pest status. 

In summary it is likely, that in the future the number of relevant pest species in 

vegetable crops will increase mainly due to better living conditions and new crop species. 

Therefore, adequate plant protection strategies have to be adopted.  

It is likely that the pest spectrum will change under a changing climate as species, which 

prefer warmer conditions will become more common. Species that used to annually 

immigrate, may find temperatures to overwinter in Lower Saxony, while Mediterranean 

species may migrate to regions further north (Bale et al. 2002). For several pest species, data 

about their basal developmental temperature and their developmental time are available, but 

for most of them the upper developmental temperature is not known. Therefore this thesis 

reflected in the first part the appropriate literature and gathers the available data about the 

most important vegetable pests in Lower Saxony.  

In the following paragraphs, pest species of currently important vegetable crops (sorted 

by vegetable species) are reviewed according to the predicted impact of the future climate on 

population development and relevance as a pest. Additional attention is given to the potential 

of invasive species in relation to the vegetable crop species. 

 

2.5 Important field vegetable crops, pest species and predictions for Lower 

Saxony 

Cabbage is the vegetable crop with most varieties and most pest species in Lower 

Saxony. More than 13 different varieties are grown on 3301 ha (16,037 ha total in Germany). 

The most important varieties in 2009 were white cabbage (235 ha, 232 635 dt), cauliflower 

2.5.1 Cabbage
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and Kohlrabi (532 ha, 161600 dt). In general, more than 30 pest species of 10 different taxa 

(Nematoda; Arthropoda: Diptera, Hemiptera, Lepidoptera, Coleoptera, Heteroptera, 

Thysanoptera , Hymenoptera) are described for Lower Saxony, yet it is likely that climate 

change and globalization will increase this number even further. Nevertheless, only 6 are of 

major importance for growers at the moment: 

 

2.5.1.1 The cabbage whitefly Aleyrodes proletella, (Fam. Aleyrodidae, Order 

Homoptera) 

is a polyphagous phloem sucker with a general preference for Brassicaceae and 

Compositae. Since the 1970th the importance of Aleyrodes proletella as a cabbage pest has 

increased continuously in Central Europe. Especially during the last ten years, a rapid increase 

was observed (van Alebeek 2008). On the one hand, the reasons behind this can be attributed 

to climatic changes (better development due to a temperature increase of 1 °C in the last 100 

years and more high temperature events), on the other hand to increased land use, i.e. 

cultivation of winter rape as energy plant, and therefore more favourable habitats for 

overwintering and mass outbreaks (Richter 2010). So far, the cabbage whitefly is not a pest in 

rape (Richter 2010). The cabbage whitefly has spread across Europe and is invasive in 

Taiwan, Australia and Brazil (DeBarro & Carver 1997). 

Especially in warmer climates with low rainfall A. proletella is a serious cabbage pest 

(Leite et al. 2005). Among vegetables A. proletella shows distinct preferences and frequently 

is a serious pest on curly kale (Richter 2010). Whitefly feeding causes leaf yellowing and leaf 

drop, but more important are a sooty mould (growing on honeydew excretions) and virus 

transmission (i.e. BYNV, Broccoli necrotic yellow virus). 

Adult A. proletella (Byrne & Bellows 1991) or L4 (Iheagwam 1978) overwinter on 

cabbage and other brassicae crops (winter rape) as well as wild plants (Richter 2010). Females 

undergo a reproductive diapause, but egg-laying is also possible during mild winters (Adams 

1985). The main egg-laying period lasts from May to September and lifetime fecundity ranges 

from 40-400 eggs. Mostly, A. proletella is active in the morning and eggs are placed on the 

lower side of the leaf in ring formation. Eggs hatch approx. after 12d and the emerging first 

larval instars are mobile and select a suitable feeding site. The next three instars (L2-L4) are 

sessile and covered by wax (Byrne & Bellows 1991). 
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Development takes place in general above 8 °C, but depending on the larval stage is 

also possible at lower temperatures (Iheagwam 1978). Optimal developmental temperatures 

range between 28-33 °C (Alonso et al. 2009). In total, egg to adult development takes 

420 °DD (Alonso et al. 2009). 

High temperatures and rain are known factors to slow down development (Leite et al 

2006). Currently 4-5 generations can develop in Germany within one year (Hill 1987). Mass 

outbreaks are normally in late summer, when egg to adult development only takes three weeks 

(Alonso 2009; Richter 2010). 

Control of the cabbage whitefly is difficult, on the lower side of the leaves they are 

hardly reached by insecticide residuals. At present 73 insecticides are approved with 7 

different active ingredients (rape oil, green soap, dimethoat, azadirachtin, thiacloprid, 

deltamethrin, pyrethrin, lambda-cyhalothrin). But most of these pesticides are only available 

for private gardening. For professional agriculture and horticulture only 7 other insecticides 

are allowed, with 3 different active ingredients being imidacloprid, gamma-cyhalothrin, 

lamda-cyhalothrin. It is likely that all neonicotionoids are going to be banished by the EU 

commission in the foreseeable future (Bundesamt für Verbraucherschutz und 

Lebensmittelsicherheit). The cabbage whitefly is attacked by several different natural enemy 

species. Among those, coccinellids (e.g. Clitostethus arcuatus, Harmonia axyridis), syrphids 

(Episyrphus balteatus, Eupeodes corollae, Melanostona mellinum) and parasitic wasps like 

Encarsia tricolor and Encarsia formosa (not on cabbage plants) are of major importance 

(Mound & Halsey 1978). 

Since the cabbage whitefly is adapted to warmer climates and able to adapt quickly to 

new environmental conditions, it is likely, that in the future its pest status will not remain 

limited to field vegetables but also encompass agricultural crops like oilseed rape. Several 

analyses in fields found that the amount of whiteflies has increased rapidly in the last years 

(van Alebeek 2008; Richter 2010). 

 

2.5.1.2 The cabbage aphid Brevicoryne brassicae, (Fam. Aphididae, Order 

Homoptera) 

is a polyphagous phloem sucker and is found on most cabbage crops, but also on other 

Brassicaceae host plants. Originally from the Holarctic region, the cabbage aphid shows today 
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an almost cosmopolitan distribution. Within the northern hemisphere and especially in 

warmer regions, the species is a serious pest (Capinera 2004). 

Infested plants show deformations and are not marketable. Additionally, B. brassicae is 

a vector for more than 22 virus species including Cauliflower Mosaic Virus, while aphid 

honeydew favours growth of sooty moulds (Palacios et al. 2002; Moreno et al. 2005). 

The cabbage aphid does not alternate between host plants. Overwintering takes place on 

cultivated or wild Brassicaceae in the larval stage, as adult aphid (mild winter conditions, 

anholocycle) as well as in the egg stage (holocycle). The lower developmental threshold is 

4 °C for the first instar and development from egg to adult takes 142.9 °DD from a first instar 

to adult (Satar et al. 2005). Population development continues in April within the 

overwintering habitat but colonisation of new crop plants takes place with the development of 

winged adults in June. Winged aphids develop earlier if following a mild winter (Alford et al. 

2000). Optimal developmental temperatures range between 20-25 °C (Satar et al. 2005). The 

number of generations ranges between 6-11 per year. A summer peak occurs from mid-July to 

mid-August, followed by a population crash. In autumn a population build-up with a second 

peak from mid-September to mid-December can be noticed. The cabbage aphid prefers warm 

climates. With dry and hot climatic conditions, population densities increase quickly. In 

contrast, low temperature and rain negatively influence population development (Leite et al. 

2006). 

Control of the cabbage aphid is predominantly done with synthetic insecticides. So far, 

resistance has not developed, although the number of approved insecticides and active 

ingredients declined over the last years. Today, 46 insecticides with 15 different active 

ingredients (e.g. thiacloprid, dimethoat, lamda-cyhalorin, thiamethoxam, imidacloprid) are 

allowed (Bundesministerium für Verbraucherschutz und Lebensmittelsicherheit). The 

management strategy includes frequent crop walks for monitoring. Early control is important 

since B. brassicae is difficult to control in autumn due to mass outbreaks and colonisation of 

new hosts in the case of crowding (Hughes 1963). Natural enemies include a range of 

aphidophagous predators like ladybeetles (e.g. Coccinella septempunctata, Harmonia 

axyridis), syrphids (Episyrphus balteatus) or green lacewings (Chrysoperla carnea). But most 

important is the aphid parasitoid Diaeretiella rapae, which is specialised on B. brassicae (but 

also parasitizes other aphid species). 

Since the cabbage aphid has also adapted to warmer climatic conditions, it is likely that 

the relevance as cabbage pest increases in the future. The effect of mild rainy winters on aphid 
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mortality is being discussed controversially. On the one hand warmer temperatures will allow 

the aphids to develop faster and build up big populations early in the year, but on the other 

hand rainy conditions could be disadvantageous, slowing down development and causing 

higher mortality.  

 

2.5.1.3 The diamond back moth Plutella xylostella, (Fam. Plutellidae, Order 

Lepidoptera) 

is a polyphagous lepidopteran pest on cabbage, rape, radish and other Brassicaceae. The 

origin is in the Mediterranean area but the distribution today is cosmopolitan. The species still 

expands its range northwards. Since the year 2000 the moth is also frequently found as far 

north as Spitsbergen, where yearly immigrations with southeast wind streams take place 

(Coulson et al. 2002). Worldwide, the diamond back moth is an important vegetable pest, 

especially in Europe, but also in South and North America and Asia (Kfir 1998; Shirai 2000). 

Damage is mainly caused by loss of leaf surface up to complete defoliation. 

Overwintering takes place in the pupal stage, within a silky cocoon on plant debris. First 

adult moths occur in May, to lay their eggs singly or in small groups on the upper surface of 

the leaf. The lower developmental threshold is at 7 °C and the upper threshold at 39 °C. 

Optimal developmental conditions are between 15 and 30 °C (Shirai 2000). In total, 

development from egg to adult needs 268.2 °DD (egg 51.0, larva 143.2, adult 74.0). Up to 4 

generations can develop per year in the UK (Golizadeh et al. 2007). Due to the fact that the 

average annual temperature in the UK is 9.7 °C while it is 8 °C in Germany, we assume that 

Plutella xylostella can complete 3-4 generations per year in Germany depending on the 

conditions of the individual year. In the tropics, i.e. lowland Malaysia, 15 generations can 

develop per year (Capinara 2004). Under optimal conditions the lifecycle is completed in 12-

15 days (Hill 1987). Severe damage occurs mainly in warm, dry summers, when this pest can 

develop rapidly. Again in contrast, increased adult mortality can be caused by rain (Guilloux 

et al. 2003). Studies so far also indicate that increasing CO2 levels have a negative impact on 

the growth rate of Plutella xylostella (Reddy et al. 2004), while increasing ozone levels lead 

to higher feeding activity (Pinto et al. 2008). 

The diamond back moth is resistant to several insecticides and therefore difficult to 

control. Currently no appropriate agents are approved in Germany. Natural enemies of the 

diamond back moth are of minor relevance, although the parasitoid species Cotesia plutella 
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and the egg parasitoid Trichogramma pretiosum are dominant. Control with Bacillus 

thurgeniensis toxin or P. xylostella granulovirus (PlxyGV) (Subramanian et al. 2010) is 

feasible. In the latter case, the optimum threshold for PlxyGV application is at 15 larvae per 

ten plants (Subramanian et al. 2010). 

Under prospective climatic conditions it is likely that the relevance of this species will 

also increase in Lower Saxony. 

 

2.5.1.4 The Cabbage Moth Mamestra brassicae, (Fam. Noctuidae, Order Lepidoptera) 

is a polyphagous generalist lepidopteran pest found on several Brassicaceae species and 

other crops, but it prefers cruciferous pest, especially kale and cabbage (Cartea et al. 2010). 

The insect is native in the Palaearctic, especially Northern Scandinavia and Northern Russia 

(Harvey & Gols 2011). It is known to be one of the major pests in Europe and Asia (Finch & 

Thompson 1992) and is the most important cabbage pest in Spain, leading to damages of 80% 

in the area under cultivation (Cartea et al. 2009). It is also an important pest species in 

Germany (Forster & Hommes 1992) and the Netherlands (van Alebeek 2008). 

The larvae perforate the leaves and this affects the value of the cabbage rendering it not 

marketable (Cartea et al. 2009). The second generation, which lives in August and September, 

is the most damaging. They also feed on paprika and lettuce. 

The Cabbage moth overwinters in the pupal stages in the soil and develops at 

temperatures over 7 °C (Johansen 1997a). After a preovipostion period of four days, the 

females start to lay eggs for around 6 days (Rojas et al. 2001). The egg-laying period takes 

places only in the scotophase (Rojas et al. 2001). Peak times are in May- June and August- 

September and the females lay several eggs on the upper side of the leaves. The fifth instar is 

sensitive to light and hides in the cabbage (Johansen 1997 b). Mamestra brassicae has two 

generations per year with a summer diapause (Goto et al. 2001). The eggs develop in 

approximately 9 days (at 15.5 °C) to the first larval instar. The lower developmental threshold 

is 5.4 °C and the upper threshold is not known. In total, development from egg to adult takes 

660 °DD (egg 75, larvae 496, and pre-pupae 100) (Johansen 1997b). But the developmental 

time also depends on the cabbage cultivar the larvae are feeding on (Gols et al. 2008). 

The control with Bacillus thuringiensis toxin or Bt-plants has not been successful for 

this species, because the toxin is merely distributed into the alimentary canal and does not 

reach the hemolymph (Kim et al. 2008). Another possibility of biological control is the 
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releasing of Trichogramma evanescens which decreased the attack of M. brassicae by 50% 

(Krnjajic et al. 1997b). Further approaches to fighting the cabbage moth are the fungi 

Paecilomyces fumosoroseus and Nomuraea rileyi. These fungi are more effective under 

temperatures of 25 °C instead of 20 °C against M. brassicae (Maniania & Fargues 1992). 

Thus, an increase in temperature can lead to a more successful protection against the cabbage 

moth and may reduce the impact of this species in the future. 

 

2.5.1.5 The Cabbage White Pieris rapae, (Fam. Pieridae, Order Lepidoptera) 

is the most common butterfly species in Europe. The species is native to the Palaearctic 

and is invasive in North America and Australia. Today it is distributed worldwide (Scott 

1986; Capinera 2000). It feeds on several cruciferous plants, but also on other herbs. It is a 

pest species in many cabbage crops. It is one of the most important pests in Germany (Forster 

& Hommes 1992) and the most important invasive cabbage pest in North America (Capinera 

2004). The larvae feed on the leaves and contaminate them with their droppings. 

The species overwinters as pupae 1-3 m above soil level on plants and fences. The egg-

laying takes place in May and the female lays single eggs on the upper side of the leaf. 

The lower development threshold is 10 °C and the upper developmental threshold is not 

known. The development from egg to adult takes 184 °DD (Gilbert & Raworth 2000). The 

growths rates of the larvae are temperature-dependent and reach their peak at temperatures of 

35 °C. Above 35°C the growth rates are declining. At temperatures over 40 °C the mortality is 

very high. The optimal temperature for the larvae is 30.5 °C (Kingsolver 2000). 

The reaction of the Small White to temperature changes is ambivalent. The abundance 

of Small Whites is known to be highest when the previous and current growing session is 

relatively cool and winter precipitation has been high (Woods et al. 2008). In the case of 

global warming, it is predicted that mainly the cold extremes, the nights and the winters will 

warm. Under warmer nights the larvae of Pieris rapae develop faster (Whitney-Johnson et al. 

2005). But in the same experiment Whitney-Johnson et al. (2005) found, that the pupal mass, 

which is an indicator for fecundity, is decreasing with increasing night temperatures. But this 

effect was overcompensated by the shorter developmental time. 

For Cabbage Whites 15 different insecticides with 9 active ingredients (thiacloprid, 

beta-cyfluthrin, gamma-cyhalothrin, cypermethrin, deltamethrin, alpha-cypermethrin, lamba-

cypermethrin, tau-fluvalinat, esfenvelerat) are accredited (Bundesamt für Verbraucherschutz 
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und Lebensmittelsicherheit). But also biocontrol methods are effective in the reduction of the 

Small White. In most cases the parasitoids are not able to reduce the pest effectively (Parker 

& Pinnell 1972; Lundgren et al. 2002). Treatments with Bacillus thuringiensis can reduce the 

activity of the Small White significantly (Chen et al. 2008). But in combination with the 

parasitoids Cotesia rubecola (McDonald et al. 1990) or Trichogramma evanescens, the 

bacterium can reduce the caterpillars much more effectively (Krnjajic´ et al. 1997a). 

 

2.5.1.6 The Cabbage Root Fly Delia radicum, (Fam. Anthomyiidae, Order Diptera) 

is the most important pest on cabbage. It is native to Europe and was introduced to 

Northern America around 100 years ago (Turnock et al. 1998). The insects feed on 

cruciferous plants and cause high damage to cabbage crops. In Canada it is one of the main 

pests in canola and can lead to losses of 20% to 50% (Griffiths 1991). The insects prefer 

turnips and rutabagas (Dreves et al. 2006). The larvae of the species feed on the fine roots, 

which can lead to wilting or dying especially of young plants. It also opens the way for 

pathogens (Hemachandra et al. 2007) such as black leg (Phoma lingam), bacterial soft rot 

(Erwinia carotovora) and root rot (Fusarium and Rhizoctoinia ssp.) (Griffiths 1986; 

McDonald & Sears 1992). As pupae in the soil, the species hibernate from October until 

middle of April. From the middle of April to May, the first flies are hatching more or less at 

the same time (Johansen & Meadow 2006). Three days after the flight peak they are starting 

to lay eggs into the soil next to the stem or into the floret of Brussels sprouts. There are three 

generations a year with the flying peak in April-May, in July and in September. (Landesamt 

für Landwirtschaft Mecklenburg-Vorpommern). One female can lay up to 100 eggs. The eggs 

hatch within 3-9 days and the larvae will then start to feed on the roots. After 2-3 weeks of 

feeding the larvae pupate and after 1-2 weeks the new generation of flies hatch (Dreves et al.  

2006). 

The lower developmental threshold is 6 °C (Collier & Finch 1985) and the insects need 

580-600 °DD to complete their life cycle (Aguiar et al. 2007; Dreves et al. 2006). 

It is assumed, that with an average warming of 3 °C in the UK, Delia radicum would 

emerge one month earlier (Collier et al. 1991). In North America two different populations of 

Delia radicum occur, one which is early emerging and one late-emerging. In early summers 

the early emerging can complete three generations and the late emerging 2.5. The last of the 

year suffers high mortality. In late summers it is the other way round, with the first population 
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completing 2.5 generations followed by 2 later the year (Hance et al. 2007). In face of climate 

change we expect more early summers which would lead to a dominance of the early 

emerging population. With a temperature increase of five or ten degrees the species would be 

able to complete four generations per year. Yet, average day temperatures over 25 °C inhibit 

the egg laying and under dry soil conditions, the eggs would die. At temperatures of over 

21 °C pupal development stops and starts again when it’s getting cold (Collier & Finch 1985). 

With climate change, also the conditions for control of D. radicum could change. One 

option of biological plant protection is the release of the entomopathogenic nematode 

Steinernema felitae. S. felitae. is not very effective at the low temperatures of springtime, but 

can reduce the amount of cabbage maggots considerably, when released in the summer (Chen 

et al. 2003). The nematodes efficiency could therefore increase with rising temperatures and 

shifts of the season. 

 

2.5.1.7 The Cabbage flea beetle Phyllotreta cruciferae, (Fam. Chrysomelidae, Order 

Coleoptera) 

is a species with increasing importance in the last years. The insects overwinter as 

adults in the soil or in leaf litter (Vig 1998). They become active in the spring when the daily 

temperature exceeds 15 °C (Mihailova et al. 1982), and migrate in May, when the soil 

temperature exceeds 15 °C (Ulmer 2006), from wild cruciferous plants and rape oil fields to 

young cabbage crops (Toshova et al. 2009). The females lay their eggs into the soil next to the 

fine roots and the larvae feed on the roots. In June, the young beetles which feed on the leaves 

hatch but only cause little damage. The adults migrate to their hibernation sites early in 

autumn. In Europe, the beetles normally have one generation per year (Vig 1998). In some 

years there is a second period of egg-laying in autumn, which is mainly observed in Canada 

and Massachusetts (Andersen et al. 2006). 

The beetles damage the plants due to the adults feeding on the leaves while the larvae 

devour the roots. Especially young plants suffer from high mortality by this two-pronged 

assault. Yet, even the mere feeding of the adults alone can lead to large damages and wilting 

of the plants (Toshova et al. 2009). When plants are beyond the seedling stage they are less 

vulnerable to the damage (Gavloski & Lamb 2000). Especially under dry conditions the 

feeding of the beetles can be harmful to the plants. Flea beetles can also cause indirect 

damage by transmitting the Turnip yellow mosaic virus, the Radish mosaic virus and the 
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fungus Alternaria brassicicola (Shelton & Hunter 1985; Dillard et al. 1998; Stobbs et al. 

1998; Glits 2000). 

The base developmental temperature for these insects lies around 11 °C and they need 

455 °DD to complete their life cycle (Kinoshita et al. 1979). The upper developmental 

temperatures and the optimal temperatures are not investigated. But it is known, that low 

winter temperatures and high summer temperatures have a negative effect on the flea beetles 

(Howard 1920; Toshova et al. 2009), while very warm and dry weather has a positive effect 

(Hiiesaar et al. 2003). Due to fact that future scenarios predict warmer summers and winters it 

is likely that the importance of the flea beetles will decrease. 

 

 

New pest species: 

 

2.5.1.8 The Cabbage semi-looper Trichoplusia ni, (Fam. Noctuidae, Order 

Lepidoptera) 

is a lepidopteran pest, which in Europe is mainly distributed in the South, migrating 

from subtropical regions. The species regularly reaches several regions in Germany, but it 

cannot survive the winter. The Cabbage Looper has spread globally except reaching Australia 

(Forster & Wohlfahrt 1971). In North America and in the Southern regions of Europe it is one 

of the most important pest species (Capinera 2004). It is a multivoltine generalist species 

(McCloud & Berenbaum 1999). 

It overwinters in Southern regions as larvae and pupates in spring in a white cocoon. 

The adults of the first generation hatch in May and June, while the adults of the second 

generation fly from July till September (Forster & Wohlfahrt 1971). 

The base developmental temperature lies around 10 °C (Toba et al. 1973) and the 

species needs around 350 °DD to complete its development (Butler et al. 1975). 

With a warming of the climate it would become possible for this species to overwinter 

in northern European areas such as Germany and hence infest plants in earlier stages then 

today. This would increase its damage potential and change its status to an important pest 

species in the future. 
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Asparagus is the crop with the highest area under cultivation dedicated to it in Lower 

Saxony (3948 ha in Lower Saxony and 19,634 ha in Germany). Since asparagus is cultivated 

in monoculture on the same field and for several years on end, it is likely that especially pests 

related in their biology close to that crop will increase with time. There are three important 

pest species in asparagus (invasive species are not known), two coleopteran species and one 

dipteran species: 

 

2.5.2.1 The Asparagus Fly Platyparea poeciloptera, (Fam. Tephritidae, Order Diptera) 

is next to the asparagus beetles the most important pest species in asparagus (Crüger 

1991). It causes damage in all European countries (Fischer et al. 1989). It is distributed in the 

whole of Europe except in the Mediterranean (Merz 1994). 

The species overwinters as pupae in the soil on old asparagus plants and in spring the 

young adults start to hatch. The hatching can last up to several months (Eckstein 1934). Some 

days after hatching, the females lay eggs into the asparagus stems. The main flying period is 

from May to June (Otto 2002). One female can lay up to 80 eggs (Dingler 1934). The larvae 

feed on the plant tissue causing damage with the feeding holes. After one month they pupate 

in the dying asparagus stems (Otto 2002) and spend the rest of the year, around ten months, as 

pupae (Merz 1994). Their flight activity lasts from April until July or August (Otto 2002). The 

species is strictly univoltine (Otto 2002). 

The asparagus fly is known to damage mainly young plantings (Crüger 1991; Otto 

2002). Below temperatures of 15 °C the adults are in a cold rigor (Koch 2011). There are no 

data about the lower and upper developmental temperature available. The eggs develop after 

3-10 days to larvae and the larvae need 17-35 days to develop to pupae (Nijvelt 1957). Field 

studies show that the larvae develop in three to four weeks with three ecdyses (Koch 2011). It 

is assumed that asparagus flies show a higher flying activity under temperatures over 25 °C 

(Dingler 1934). 

In the last years, the importance of the asparagus fly increased due to the covering of 

fields with foils and earlier harvesting. The increased temperature under the foils leads to a 

faster development and earlier harvesting of the asparagus. Thereby, the harvesting time of 

the asparagus matches the peak of flight activity of the asparagus fly. The importance of the 

2.5.2 Asparagus
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asparagus fly will increase the more growers start to harvest asparagus early in the year and as 

warmer springs will promote the development of Platyparea poeciloptera. 

 

2.5.2.2 The Spotted Asparagus Beetle Crioceris duodecimpunctata, (Fam. 

Crysomelidae, Order Coleoptera) 

is closely related to the Common Asparagus Beetle, but bears a lower damage potential. 

He is native to the Palaearctic region and was introduced to North America at the beginning 

of the last century (LeSage et al. 2008). It is the second most important pest species on 

asparagus. The species is monophagous on asparagus (Clark et al. 2004). The beetles 

hibernate as adults in the soil or under fallen leaves. The Spotted Asparagus Beetle occurs at 

the same time as the Common Asparagus Beetle, though its oviposition starts one month later 

than its latter cousin (Fink 1913). The eggs need 7 to 12 days to develop to larvae (LaSage 

2008). The larvae then crawl to the berries of the asparagus plants and bore into it (Capinera 

2001). After three to four weeks and four larval stages the larvae pupate in the soil (LaSage 

2008). Pupation lasts 12-20 days (Fink 1913). There are two generations per year with a peak 

in July and September (Armand 1949). There may be no data about the temperature 

dependence of this species available, yet it appears likely that they are similar to the Common 

Asparagus Beetle (See 2.5.2.3.). 

But the damage of the Spotted Asparagus beetle is in contrast to the Asparagus Beetle 

mainly important for plants which are already weakened by cold stress (LaSage 2008). The 

relevance of this species will decrease, since rising temperatures will reduce cold-stress and 

thereby the vulnerability of plants. 

 

2.5.2.3 The Asparagus Beetle Crioceris asparagi, (Fam. Crysomelidae, Order 

Coleoptera) 

is a specialist on asparagus and native to the Palaearctic having originated in the 

Mediterranean (Fara 2007; LeSage et al. 2008). The beetles are a common pest in Europe and 

North America, feeding exclusively on asparagus. The adults overwinter hidden under stones, 

sticks, litter or decomposing asparagus stems (Drake & Harris 1932). In April or May they 

start with the egg-laying and place the eggs under the plants’ leaves or stem. After three to 

eight days the larvae emerge and feed on the foliage for 10 to 14 days until reaching full 
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growth (Watts 1912; Capinera 2001). The first generation appears in June. The individuals of 

the second generation that appears in July then go into diapause until the next spring. There 

are two to three generations of beetles per year, with flying peaks in June, early July and early 

August (Campbell et al. 1989). The damage is caused by the feeding of larvae and adults alike 

(Watts 1912). 

The base developmental temperature is 8 °C and the upper developmental temperature 

is 34 °C (Taylor & Harcourt 1978). The optimal temperature is 32 °C for the first and the 

second larval instars and 30 °C for the third and fourth instars (Taylor & Harcourt 1978). 

Due to the fact that the optimal development temperatures of the Asparagus Beetle are 

very high, it seems probable that the impact of this species increase in the future. 

 

Salad is the second most important horticultural crop in Lower Saxony with an area 

under production of 3732 ha. The most important cultivars are iceberg lettuce (4700 ha in 

Germany), corn salad and mini romana (334 ha) (Monatsschrift Magazine für den 

Gartenbauprofi 2009). Salad is host to around 20 pest species, mainly aphids. 

 

2.5.3.1 The Lettuce Aphid Nasonovia ribis-nigri, (Fam. Aphididae, Order Hemiptera) 

is the most important aphid pest in lettuce (Sauer-Kesper et al. 2011). It is native to 

temperate zones of Europe (Nebreda et al. 2004) but has gained worldwide distribution at this 

point (Fagan et al. 2010). The aphids are holocyclic, their primary hosts being currants, but 

use a wide range of plants, including lettuce, as secondary hosts (Collier et al. 1999). In 

temperate regions they are anholocyclic (Lacasa et al. 2003) and use the secondary hosts 

during the whole year (Blackman & Eastop 1984). 

The feeding of the aphids lead to leaf distortion and secondary head rots (Fletcher et al. 

2009), and they are an important transmitter of several viruses such as Necrotiv Yellow Virus 

(NYV) or the Lettuce Mosaic Virus (LMV) (Vasicek et al. 2002). Normally, they hide in the 

lettuce head (Parker et al. 2002). The adult aphids overwinter on currant plants and migrate in 

spring to the lettuce plants. The females deposit the offspring next to the terminals of young 

leaves and they colonise the wrapping leafs in the lettuce head (Palumbo 2000). The lower 

developmental threshold is 3.6 °C for apterous aphids and 4.1 °C for alate aphids, while the 

2.5.3  Salad 
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developmental time is 125-129 °DD and 143-144 °DD respectively (Diaz et al. 2007). The 

upper temperature threshold is 35.9 °C for apterous and 33.6 °C for alate aphids (Diaz et al. 

2007). The optimal temperature for population development is between 20 and 24 °C (Diaz & 

Fereres 2005). The temperature has also an important effect on the ratio between alate and 

apterous insects. At temperatures of 20-28 °C the proportion of alate is around 40-57%. At 

temperatures below 16 °C nearly all of the adults are apterous (Diaz & Fereres 2005). The 

temperature seems to be the only parameter that influences the proportion of alates (Liu 

2004a). Up to the year 2007 the control of the aphids was without any problems, yet, in the 

last years a new resistant biotype (rb-type) has emerged (Meyhöfer & Poehling 2013). 

Due to the fact, that the Lettuce Aphid faces a high mortality under air temperatures 

above 30 °C (Diaz et al. 2007) and no nymphs are produced under air temperatures above 

28 °C (Diaz & Fereres 2005), it is likely that the importance of this aphid species will 

decrease in the future. 

 

2.5.3.2 The Potato Aphid Macrosiphum euphorbiae, (Fam. Aphididae, Order 

Hemiptera) 

is native to North America but has been introduced to Europe and Asia (Blackman & 

Eastop 1984). The females hibernate on lettuce in greenhouses or on weeds (Rothamstead 

Research). In May and June they migrate to the host plants. In Europe they are mainly 

anholocyclic and they reproduce parthenogenetically, so that they can build up big 

populations in a very short time (Blackman & Eastop 1984). In North America a sexual phase 

on Rosa spec. occurs. The species is highly polyphagous, but they prefer plants from the 

family Solanaceae. 

The insects can spread several viruses, such as the lettuce mosaic virus, the potato leaf 

roll virus (PLRV) or beet yellows virus (BYV). The base developmental threshold is lower 

than 5 °C (Barlow 1962), and 144.9 °DD are needed to complete the development (De Conti 

et al. 2011). The optimal developmental temperature is around 20 °C and the upper 

developmental threshold ranges between 25-30 °C (Barlow 1962). 

Since the upper developmental threshold is relatively low with 25 °C it is likely that the 

importance of this species will decrease in future.  
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2.5.3.3 The Foxglove Aphid Aulacorthum solani, (Fam. Aphididae, Order Homoptera) 

is a cosmopolitan species which is native to Europe (Vasicek et al. 2002; Blackman & 

Eastop 1984). Its primary hosts are common foxglove (Digitalis purpurea) and common 

perennial hawkweed (Hieracium spp.) (Wave et al. 1965). The anholocyclic tribes of the 

species live the whole year on secondary hosts, which include several herbaceous plants 

(Jandricic et al. 2010). The salivary secretion of this aphid is toxic to several plants and 

produces decolouration and deformation of the leaves. In high concentration it can lead to 

complete defoliation (Sanchez et al. 2007). On top of this, the species is an important vector 

of viruses (Stoltz et al. 1997). 

The basal development threshold is 3.7 °C and the upper developmental threshold 

35 °C. 141 °DD are needed to complete the development from egg to adult of the aphid. The 

optimal temperature for development is at around 23 °C (Jandricic et al. 2010). 

The impact of this aphid increased in recent years (Jandricic et al. 2010) and it is likely 

that its importance will increase in the next years. 

 

2.5.3.4 The Green Peach Aphid Myzus persicae, (Fam. Aphididae, Order Homoptera) 

is one of the most common aphids in Lower Saxony. The species is believed to be 

native to Europe, yet today features worldwide distribution. The aphid is highly polyphagous 

to their secondary hosts, but very specialized on the primary host. The species overwinters in 

eggs on Prunus persica trees and the adults emerge in spring to migrate to their secondary 

host plants. In the summer months, the species reproduce asexually, which means that females 

give birth to nymphs and can build up big populations. In autumn, when the temperatures are 

dropping, sexual morphs are formed and eggs are laid on the trees again (Blackman & Eastop 

1984). In warmer regions they can also be anholocyclic (Blackman 1972). High population of 

aphids lead to wilting and curling of the leaves. They are very efficient in transmitting viruses 

(Blackman & Eastop 1984), and are known to transmit more than 100 types. 

The base developmental temperature is lower than 5 °C (Barlow 1962) and it takes 

130 °DD to complete development (Whalon & Smilowitz 1979). The optimal temperature for 

development is 25 °C (Barlow 1962), while the upper developmental threshold is 34.2 °C 

(Davis et al. 2006). 
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It is likely that this species will continue to be one of the most important aphids in 

Lower Saxony, because it is highly polyphagous and will be able to adapt to other crop 

species easily. 

 

2.5.3.5 The Lettuce Root Aphid Pemphigus bursarius, (Fam. Pemphigidae, Order 

Homoptera) 

is a gall forming aphid on poplars (Populus nigra) (Miller et al. 2005). The species 

features worldwide distribution (Pike et al. 2007). The aphids overwinter as eggs, which are 

laid on the bark of a poplar. Out of every egg a female is hatching which is building up a 

population in the galls (Miller et al. 2005). Around 60 aphids are living in one leave gall, 

which are open most of the time (Pike et al. 2007). The alate offspring abandons the galls 

from May to September, with peak emergence in June-July and colonise the roots of several 

plants, e.g. salad (Collier et al. 1994). On secondary hosts they reproduce with 

parthenogenesis (Miller et al. 2005). In autumn, another winged generation is produced which 

returns to the poplars and gives birth to the sexuparae (Braendle & Foster 2004). But 

anholocyclic tribes which overwinter on the host roots are also known (Phillips et al. 1999). 

The Lettuce Root aphid is one of the few social aphids with soldiers defending the galls. The 

soldiers are nymphs which are not morphological specialised and are moderately aggressive 

(Pike et al. 2007). 

The base developmental threshold is at 4 °C. The aphids feed on the roots of the lettuce 

plants and weaken them by their sucking. At the moment Pemphigus bursarius is a minor pest 

and damages the plants only in cases of drought stress (Collier et al. 1994). 

Although droughts will occur more often in future, the importance of this species will 

not increase, because farmers will irrigate their plants to avoid crop loss due to droughts. 
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Carrots are the second most common horticultural crop in Germany (10,504 ha) after 

asparagus and also one of the most important in Lower Saxony (1733 ha). 

 

2.5.4.1 The Carrot Rust Fly Psila rosae, (Fam. Psilidae, Order Diptera) 

is the most important carrot pest in Northern Europe (Dirksmeyer et al. 2005). It is 

native to Europe but has been introduced to the Americas. The insects are mainly living on 

Apiaceae and damaging carrots and celery. The insects hibernate as pupae in the soil or as 

larvae in plant material (Collier et al. 1994). The adults fly in April and May and the females 

lay their eggs into the soil next to the roots at that time. The first larval stage feeds on the fine 

roots, where after the second and third larval stage inflict damage by boring into the carrot 

itself. Four to seven weeks after hatching they pupate. At temperatures above 22-25 °C the 

pupae fall into diapause to avoid drying-out. The lower developmental threshold is between 2-

4 °C and the development requires around 1140 °DD (Finch & Collier 1996). Up into the 

1980s, only two generations of carrot flies developed in Germany, but since the 1990s, nearly 

every year a third generation is completed. The second generation is the most dangerous one. 

Feeding on young plants, it makes them wilt and perish. On older plants the larvae harm the 

carrot body and the feeding destroys it, make it unmarketable. In dry areas, fewer flies are 

found (Schoneveld & Ester 1994) and at soil temperatures above 26 °C, high egg mortality is 

observed (Burn 1984). Thus, the relevance of the carrot rust fly is likely to decrease in the 

future. 

 

2.5.4.2 The Turnip Moth Agrotis segetum, (Fam. Noctuidae, Order Lepidoptera) 

is one of the most important pests in carrots in Central Europe (Dirksmeyer et al. 2005). 

It is distributed worldwide in temperate as well as in subtropic regions (Svensson et al. 1997). 

The larvae of this species overwinter 3-7 cm below the soil surface. In April, they ascend to 1-

3 cm below the surface to pupate (Ogaard & Esbjerg 1993). The adults of this first generation 

fly from May to July and the females lay their eggs on leaves in small groups. The larvae feed 

on several plants including crops like potatoes, salad and carrots and on coniferous plants. 

The larvae pupate in the soil and the second generation is flying from August till September. 

2.5.4 Carrots 
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From the beginning of the century to the 70s the population of the turnip moth did rise 

steadily, yet in the last years it decreased (Esbjerg & Mogens 2005), perhaps due to the wet 

June in the last years. 

The basal developmental temperature is around 11 °C (Bongers & Weismann 1971) and 

depending on the diet around 520 °DD are needed to complete the development (Görnitz 

1951). They are a serious pest to several crops and can lead to high damages of up to 30% in 

carrots (Zethner 1980). It has been assumed that hot summers would advance the 

development of the species (Esbjerg & Mogens 2005), increasing its importance under 

climate change conditions. 

 

2.5.4.3 The Carrot Psyllid Trioza apicalis, (Fam. Triozidae, Order Hemiptera) 

is an important pest species on carrot plants. This Psyllid species is distributed over the 

whole of Europe, yet more damaging in Northern and Central Europe (Munyaneza et al. 

2010). The species hibernate as adults on common spruce or on other coniferous plants 

(Kristoffersen & Anderbrant 2007). In May, the egg-laying on the carrot leaves starts. The 

eggs are laid on the edges of the leaves one by one (Nehlin et al. 1996). Within around 10 

days the little yellow larvae develop (Valterova et al. 1997). The nymphs need around six 

weeks to develop to adults, which then migrate over the duration of two to three days after 

exclusion back to their hibernation sites (Valterova et al. 1997). There is only one generation 

of carrot psyllids per year (Laska & Rogl 2008). The species is specialised on carrot plants 

and depends on them for reproduction (Kristoffersen & Anderbrant 2007). 

The larvae and especially the adults damage the plants due to their phloem sucking 

(Nissinen et al. 2007) and the excretion of their saliva, which leads to a rippling of the foliage 

and the transmission of viruses (Munyaneza et al. 2010). 

We assume that the meaning of this species will not change in future. 
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Onions are grown on approximately 2000 ha in Lower Saxony (9691 ha in Germany) 

and face three important pest species. 

 

2.5.5.1 The Onion Maggot Delia antiqua, (Fam. Anthomyiidae, Order Diptera) 

is native to Europe, but today the species is also common in North America and Japan 

(Otto 2002), and it is the most important onion pest in Europe (Dirksmeyer et al. 2005). The 

species is a pest on all bulbous plants due to the feeding of the larvae. Damaged by the larvae, 

bacteria and fungi can infest the plants (Everts et al. 1985). The species overwinter with pupae 

in the soil. The pupae are diapausing until mid-January (Otto 2002) and then start to finish 

their development. After a feeding period on flowering plants, the females lay their eggs in 

groups of 5-20 eggs next to the bulbs (Otto 2002). The larvae feed on the roots leading to 

wilting and dying of the plants. They pupate next to the bulbs in the soil (Carruthers 1979). If 

summer temperatures are above 24 °C the pupae are in a summer diapause, regardless of the 

photoperiod (Ishikawa et al. 2000). The optimal temperature to complete diapause is 16 °C 

(Ishikawa et al. 2000). 

The lower developmental threshold is 4 °C and 640 °DD are needed to complete the 

life-cycle (Lui & McEwan 1982). For the development of the eggs around 60 °DD are needed 

and for the larvae around 260 °DD. In Europe one to four generations per year have been 

observed (Otto 2002), with one generation in Norway (Rygg 1960) and up to four generations 

in Austria and Turkey (Keyder & Atak 1972). 

Nomura & Ishikawa (2001) found that non-diapausing pupae cannot survive 

temperatures above 35 °C for more than 6 days. If the heat lasts shortly, only some hours, 

they can recover. To prevent young onion plants from feeding, seeds are incrustated (Otto 

2002). Heat waves, which are harmful to the pupae will occur more often in the next decades 

(Hartmann et al. 2013). Therefore it is likely that the importance of this species will lose 

importance in the future. 

 

2.5.5 Onions
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2.5.5.2 The Leek Moth Acrolepiopsis assectella, (Fam. Yponomeutidae, Order 

Lepidoptera) 

is native to Europe and Asia and is distributed as far east as Japan. The butterflies are 

being introduced to other parts of the world for example Canada right now (Handfield 1997). 

The insects feed on cultivated Allium plants, especially on leek and onions (Mason et al. 

2011). The feeding of the larvae weakens the plants and due to feeding holes the plants are 

not marketable (Mason et al. 2011). They overwinter as adults under leaf debris and emerge in 

April when the temperature is above 9.5 °C (Garland 2002). In May, the females lay their 

eggs in the leaves’ axils. The larvae feed on the young leaves, undergo five larval stages and 

then pupate in cocoons on the plant surface or in the soil. In Europe two to four (in Italy even 

six) generations of the leek moth can be observed per year (Asman 2001). Mainly in hot and 

dry summers, they can cause big damages on onion crops. The base developmental threshold 

is 7 °C and full development requires around 445 °DD. The developmental time differs 

regarding to region (450 °DD in France and 630 °DD in Sweden) (Mason et al. 2011). It 

appears likely, that the developmental time in Lower Saxony will be between the data of 

France and Sweden, with an average of around 520 °DD. This species poses a problem for 

Integrated Pest Management. Due to their hidden life in the onion leaves, they are hard to 

reach for pesticides as well as for natural enemies. In Europe, the leek moth leads to minor 

damage compared to the other two pest species (Thrips tabaci, Delia antiqua). But due to the 

fact that it causes major damage under dry and hot conditions, this species can become more 

important in the future. 

 

2.5.5.3 The Onion Thrips Thrips tabaci, (Fam. Thripidae, Order Thysanoptera) 

is an important pest species in onion crops. Thrips are polyphagous sucking insects and 

distributed worldwide. Their origin is believed to be in the eastern Mediterranean (Mound 

1997). Damage is inflicted on several cultivated crops, especially on onions and cabbage. Due 

to the sucking on the host plants’ cell tissue, the plants cannot photosynthesize adequately. 

Thrips can also transmit viruses like TSWV (Morsello et al. 2008) or the much more 

dangerous Iris yellow spot virus (IYSV). 

The adults of the species hibernate in the soil in onion fields or next to them (Larentzaki 

et al. 2007). They start to become active from March/April until October/November, with an 

activity peak in June-July (Bergant et al. 2005). One female can lay up to 260 eggs (Murai 
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2000). Thrips sp. can reproduce sexually and asexually. Mated females lay eggs which 

develop to males and females while unmated females lay eggs that develop to females (van 

Rijn et al. 1995). Due to this, one female alone can build up big populations (Diaz-Montano et 

al. 2011). 

The lower developmental threshold is 6 °C and the species needs 260 °DD to complete 

their life cycle (Stacey & Fellows 2002; Bergant et al. 2006). Other authors investigate a basal 

threshold of 10 °C and a developmental time of 232 °DD (Murai 2000). The optimal 

temperature for development lies at around 25 °C (Murai 2000). Temperatures above 30 °C 

can cause high egg mortality (Murai & Toda 2002). 

Under a changing climate, Thrips tabaci could become more important. Hotter summers 

are already followed by a bigger population of T. tabaci and warmer winters would lead to an 

early emerging of the species in spring (Bergant et al. 2005). Heavy rain (daily above 1.8 cm 

or more (Liu 2004b)) can inhibit the development of thrips (Leite et al. 2006) and it can wash 

the insects off the plants (North & Shelton 1986), but the positive effects of the temperature 

will predominate the effects of the rain. 

 

 

Tab. 1: Cardinal values of important field vegetable pest species. 

Crop Pest 
species 

Order Lower 
develop-
mental 
threshold 
(°C) 

Upper 
develop-
mental 
threshold 
(°C) 

Develop-
ment 
time 
(degree 
days) 

References 

Cabbage 
Aleyrodes 
proletella 

Hom. 6.88/ 10.4 >33  420 
Alonso et 
al. 2009 

 Brevicoryne 
brassicae 

Hom. 4 ? 142.9 
Satar et al. 
2005 

 Plutella 
xylostella 

Lep. 7.4 39 268.2 
Liu et al. 
2002 

 Mamestra 
brassicae 

Lep. 7  660 
Johansen et 
al. 1997 b 

 Pieris rapae Lep. 10 ? 184 
Gilbert & 
Raworth 
2000 

 
Delia 
radicum 

Dipt. 6.1 ? 
580-600  
 

Aguiar et 
al. 2007; 
Dreves et 
al. 2006 

 
Phyllotreta 
spp. 

 11 ? 455 
Kinoshita et 
al. 1979 
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Trichoplusia 
ni 

Lep. 10.9 ? 342.7 

Toba et al. 
1973; 
Butler et al. 
1975 

Asparagus 
Platyparea 
poeciloptera 

Dipt. ? ? ?  

 
Crioceri 
duodecimpun
ctata 

Col. ? ? ?  

 
Crioceris 
asparagi 

Col. 8 34 317 
Taylor & 
Harcourt 
1978 

Salad 
Nasonovia 
ribis-nigri 

Hom. 3.6/4 35.9/33.6 
129/143-
144  

Diaz et al. 
2007 

 
Macrosiphon 
euphorbiae 

Hom. 5 >30 144.9 
Barlow 
1962 

 
Aulacorthum 
solani 

Hom. 3.7 35 141 
Jandricic et 
al. 2010 

 
Myzus 
persicae 

Hom. 5 34.2 130 

Barlow 
1962, 
Whalon & 
Smilowitz 
1979 

 
Pemphigus 
bursarius 

Hom. 4.4 ? ? 
Collier et 
al. 1994 

Carrot Psila rosae Dipt. 2-4 ? 1140 
 Finch & 
Collier 
1996 

 
Agrotis 
segetum 

Lep. 11 ? 520 

Görnitz 
1951; 
Bongers & 
Weismann 
1971 

 
Trioza 
apicalis 

Hem. ? ? ?  

Onion Delia antiqua Dipt. 4.4 ? 643 
Lui & 
McEwan 
1982 

 
Acrolepiopsis 
assectella 

Lep. 7 ? 445 
Mason et 
al. 2010 

 Thrips tabaci Thys. 10 ? 232 Murai 2000 
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2.5.6.1 Ladybeetles (Fam. Coccinellidae, Order Coleoptera) 

are distributed worldwide. Most species of the ladybeetles feed on aphids and mealy 

bugs. The number of consumed aphids varies. The larvae of a Harmonia axyridis can 

consume around 300 per day (Hukusima & Kamei 1970), whereas the adults of Hippodamia 

convergens consumes 25-170 aphids per day (Dreistadt & Flint 1996). Most of these 

beneficial species are distributed throughout the subtropic and tropic regions, while in the 

temperate regions only few lady beetle species are found (Klausnitzer & Klausnitzer 1997). 

The species overwinter as adults in big groups and from the end of April to the 

beginning of May, the females start to lay (up to 1600) eggs (Stathas et al. 2001). After five to 

eight days, the larvae hatch and then need another 30 to 60 days and four instars to pupate 

(Obrycki & Tauber 1981). Normally two generations are formed in Lower Saxony per year. 

For most of the species in the region, the base developmental temperature is around 

10 °C and 250 °DD are needed to complete the development (Honek & Kocourek 1988; Xia 

et al. 1999). It has been observed, that coccinellids are more successful in hot summers 

(Skirvin et al. 1997) so that it is likely that their efficiency will increase in the future. 

 

2.5.6.2 Hoverflies (Fam. Syrphidae, Order Diptera) 

are a family with 6000 species from which 1800 are found in the Palaearctic. They are 

important natural enemies to herbivores since the larvae can devour up to 100 aphids a day. 

The overwintering is species-specific. Some species overwinter as larvae while others like 

Episyrphus balteatus do so as adult females. For winter survival, the species E. balteatus 

shows two strategies: Some females overwinter in diapause while adults also immigrate in 

spring from warmer regions to Lower Saxony (Hondelmann & Poehling 2007). The females 

lay their eggs next to the food resource for the hatching larvae. After 8-14 days the larvae 

pupate and after a further 8-10 days they develop to adults. 

One of the most important natural enemies of the Syrphid family in Lower Saxony is 

Episyrphus balteatus (Hondelmann & Poehling 2007). This species is distributed in Europe, 

Asia and Australia (Hondelmann & Poehling 2007). The base temperature for the 

development of this species is around 4 °C (Dixon 2003) and 260 °DD are needed to complete 

2.5.6 Natural enemies 
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the development (Hart et al. 1997). Syrphid larvae, in contrast to cocconellids, are not very 

resistant to drought and depend on moist environments for development. Therefore, today’s 

abundance of syrphids might wane in the future, since warmer summers with more drought 

periods are to be expected (Hartmann et al. 2013). 

 

2.5.6.3 Parasitoids (Fam. Chalcidoidea, Order Hymenoptera) 

designate several species. Some parasitize several hosts while others are specialised on 

a single host species. In Europe, around 2000 species of this superfamily are to be found. Of 

these parasitic wasps, two groups with different parasitation strategies are known: 

Ectoparasitoids, lay their eggs next to their hosts, while endoparasitoids lay their eggs into the 

host itself. Most endoparasitoids are koinoboints, which means that their host develops further 

after parasitation and thereby allows it to reach a distinct size to guarantee enough host 

biomass for the parasitoid. Many of the ectoparasitoids are idiobionts which normally 

paralyze their hosts and stop the hosts’ development (Quicke 1997), often the size of the 

victims is much bigger than the parasitoid. Most of the commercially used parasitoids are 

endoparasitoids. They overwinter inside the mummified host and in late spring the adults 

hatch. The females are laying their eggs into suitable hosts and the larvae develop and pupate 

there. Normally, they kill their host before pupation. The basal developmental temperatures 

and the developmental time are depending on the species (e.g. Encarsia formosa 12.7 °C and 

189 °DD or Diaeretiella rapae 3.56 °C and 292 °DD). The developmental time also depends 

on the size of the hosts, with a faster development in larger hosts (Rice & Allen 2009) and the 

host species (Sengonca et al. 2001). 

 

2.6 Adaptation strategies in plant protection/ Are adaptation strategies 

necessary and how can they look like? 

It is necessary for agricultural and horticultural production systems to adjust to the 

expected climate change. This can be achieved by: 

� forecast models which not only focus on first appearances of pests 
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� a better understanding of source-sink relationships in the field, the ratio of natural 

areas and cultivated land 

� advanced decision support models 

� further selection of resistant crops/varieties 

� advanced crop rotation schemes 

� forceful use of integrated plant protection strategies  

� a reliable integration of conservation biological control strategies 

� automated monitoring tools 

� on farm land-use management 

� development of new advanced strategies 

� reliable but sustainable intervention 

Climate change will proceed slowly and development of new insecticides will keep 

pace. Yet, in the case of an "explosion" of pest species, the intensity of the application of 

pesticides might become important. To avoid resistances of pest species, damage of the 

environment and residues of insecticides in food, the use of insecticides should be minimized 

while alternative strategies will have to be intensified and improved. Molecular and 

biotechnological developments may be available to close some of the gaps in the future. 

Experiments are being made with the release of male insects, as for example Episimus 

unguiculus, which are sterilised with gamma radiation to then replace fertile individuals in 

nature and thereby reduce the population (Moeri et al. 2009). 

It is expected that winters will warm, which will effectively prolong the vegetation 

periods, but since also insects can arrive early in the year, the plants may be harmed in a much 

more vulnerable stadium, if plants are seeded at the same time as today. The prolonged 

vegetation period will change the cultivation cycle and provide longer food availability for 

pests. This will allow them to produce more generations and build up bigger populations. 

Therefore, it is necessary to control the plants early in the year, to then use plant protection 

and if necessary to prepone sowing to avoid heightened plant vulnerability. Due to the higher 

probability of summer droughts more irrigation is needed (Döll 2002; Olesen & Bindi 2002). 

To avoid water stress is to avoid raised vulnerability to pests. Hence it is important to develop 

new water-saving irrigation systems and to try to breed plants which can handle the new 

climate (Karpenstein-Machan & von Buttlar 2012). It is also necessary to breed plants which 

grow better under warmer temperatures and which can handle a changed pest spectrum.  
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For the plant protection it is necessary to try to find new ways of integrated pest 

management. Pests may become resistant against pesticides due to the short generation time 

and their increased rate of mutations and the fact that by the application of pesticides, the 

resistant individuals of the population survive. In this context, the increasing interest of 

consumers to acquire foodstuffs produced without pesticides has to be taken into account. It is 

therefore necessary to combine natural enemies with conventional strategies, for example 

releasing Encarsia tricolor under foil tubes to defeat the cabbage whitefly (Schultz et al. 

2010). Another important factor might become the promotion of natural enemies via flower 

strips or landscape items such as hedges (Ludwig & Meyhöfer 2012).  

  

2.7 Is the available information sufficient to make predictions for pest 

outbreaks in future a propose adaptation strategies? (Need for research) 

It is not known, how most of the pest species react to extremes like short-time heat 

waves and heavy rain. In most experiments only the influence of high temperatures, still in the 

range of developmental thresholds or singular heat events where tested. But the influence of 

slowly increasing repeated heat events hasn't been tested so far. Also the research on the 

impact of rain generally leaves a lot to be desired, especially the influence of heavy rains. 

Therefore, it is necessary, to study the influence of rain on the mortality and the development 

of selected pest species. Another predicted change is the increase of droughts in summer and 

autumn. It is not clear how pests and their natural enemies will react under these conditions 

and it is necessary to study this. Experiments were conducted to study the influence of 

repeated heat waves, heavy rain, drought stress and mild winters on the mortality and 

population development of Aleyrodes proletella.  
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3 Influence of repeated short-time heat waves on Aleyrodes 

proletella 

3.1 Abstract 

The climate changes which have become apparent in the last hundred years are likely to 

continue into the new century. Worldwide temperatures will increase as the precipitation 

regime changes. Very likely, extreme events such as heavy rains and dry spells will increase 

in occurrence and intensity. Temperature in particular has an enormous effect on insects: It 

will boost development if meeting the species’ optimal requirements, but can also stunt 

development and cause high mortality if critical temperatures are reached. Up to know mainly 

regimes with sudden exposure to peak temperatures have been tested, but under this heat 

shocks, the temperature is increasing very fast and it is not clear, if the mortality is a result of 

the detrimental effect of lethal heat or the fast temperature change and missing adaptation 

time. Furthermore, only one heat event had been tested. In nature however slow temperature 

increases and decreases over daytime and multiple stress events can be expected. Therefore, 

the experiment features a model with slightly increasing and decreasing temperatures and 

additional high peak temperatures. Under these conditions, the mortality and the development 

of whiteflies, both in Petri dishes and on plants, were studied. Moreover, repeated heat cycles 

simulated daily heat waves, which might occur in Lower Saxony, to evaluate whether the 

animals could adapt to the repeated heat. Our results with whiteflies in Petri dishes show that 

they are extremely robust to one heat wave of even 8 hours and 42 °C, but that with an 

increasing number of heat cycles the mortality is increasing. Ninety percent of the adult 

females died after three heat cycles with peak temperatures of 38 °C and warmer temperatures 

and after four cycles all females were dead. The males were even more vulnerable to heat and 

suffered a mortality of over 90% after just two cycles. Even after one heat cycle of 38 °C the 

egg-laying decreased dramatically, while temperatures of 30 and 34 °C had no negative effect 

on egg-laying. When repeated on leaves, the results were quite different. The heat waves, 

even five cycles with peak temperatures of 38 °C, had no influence on the mortality of both 

females and males. There was also no measurable negative effect  on egg-laying or the 

mortality of eggs and the development of larvae. The developmental time of eggs even 
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decreased with increasing temperature. It can be concluded, that the whitefly population will 

not suffer from short time heat waves whereas warm temperatures will even accelerate 

population development.  
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3.2 Introduction 

At the rate climate has changed in the last century, it is likely that the climate will 

continue to evolve in the coming decades. Due to human impact, CO2 levels have risen, 

followed by an increase in temperature (Hartmann et al. 2013). In Germany, temperatures 

increased about 0.9 °C in the last hundred years. It has been predicted that the temperature 

will further rise in the next years, that precipitation will change and that extreme weather 

events such as heavy rains, droughts and heat periods will occur more frequently. This 

temperature increase will likely manifest in cold weather extremes, leading to warmer winters 

and warmer nights, therefore decreasing temperature differences of day and night and finally 

influence insects (Stamp & Osier 1997). Temperatures are likely to rise around 2 °C (0.3- 

4.8 °C) until the year 2100. And it has been assumed, that heat waves will occur more 

frequent and with higher peak temperatures (Hartmann et al. 2013). As an example, 2003 had 

a summer with extremely high temperatures of up to 40.2 °C in Karlsruhe, Freiburg and other 

German cities. In Lower Saxony, the temperatures reached 38 °C in Hanover (German 

Weather Service). Swiss scientists assume that at the end of the century every second summer 

will be as hot as the summer of 2003 (ProClim 2005). The number of days with temperatures 

over 30 °C will increase by 5-10 days in Northern Germany in the years 2021-2050 and by 

10-15 days from 2071- 2100. In Southern Germany they will even increase by 30-35 days per 

year (Becker et al. 2012). 

Therefore, the effects of high temperatures on the mortality and the development of the 

cabbage whitefly as a model species was studied. In former studies, mainly the effects of 

constant temperatures or of singular high temperatures were investigated, while the effect of 

short-time high temperatures had only been tested in very few studies. In those experiments it 

was not clear, if the mortality had been caused by the high peak temperature or by the sudden 

temperature increase. Therefore climate data of Lower Saxony were analysed studying the 

occurrence of high temperatures in Lower Saxony and experiments were investigated testing 

the influence of repeated, slowly increasing, short-time heat waves on the development of 

Aleyrodes proletella. 

The life cycle of most insects is regulated by temperature (Yurk & Powell 2009). 

Normally insects respond to increased temperatures with accelerated development, because 
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their physiological processes are strictly temperature regulated. Under increasing 

temperatures the developmental time will decrease and insects with short generation periods 

such as whiteflies or aphids will be able to have more generations per season and build up 

bigger populations (Williams et al. 2000; Tobin et al. 2008). For example, Harrington et al. 

(2007) assumed that aphids in the UK would be able to have five more generations at an 

average warming of 1 °C. Beside the direct influence on mortality and development, an 

increase in temperature can also have indirect effects due to changes in host plant physiology, 

such as an altered C/N ratio could naturally influence the nutritional situation of herbivorous 

insects. Aphids for example produce more apterous offspring under high temperatures, is the 

latter being more fecund and able to build up high populations (Bale et al. 2002). 

Furthermore, higher temperatures lead to an earlier dispersal of alate aphids, so that they can 

reach host plants in a more vulnerable stage (Harrington et al. 2007). As a consequence they 

can build up earlier in the year colonies on the summer hosts leading to bigger populations. 

Some insects like the cricket Gryllus texensis reproduce better under high temperatures 

(Adamo & Lovett 2011). While herbivores would profit as indicated, so would beneficials. 

The Lady beetle Coccinella septempunctata is more successful controlling wheat aphids 

(Sitobion avenae) under warm temperatures (Cannon 1998). Also the parasitism rate of 

Brevicoryne brassicae (Belder et al. 2007) and the parasitoid rate of Pieres rapae and 

Mamestra brassicae caterpillars by Microplitis mediator, Cotesia rubecula and Diadegma 

semiclausum is higher (Pfiffner et al. 2006). 

Yet, very high temperatures can also have negative effects on insects (Rosenzweig et al. 

2001). At temperatures above 40 °C, the mortality of insects will increase (Tobin et al. 2008) 

and the egg stages especially will suffer from a higher mortality (Murai 2000). Under those 

extreme temperatures, the fecundity is reduced, too (Murai 2000). An increase in the night 

temperatures has also negative effects on several insects. Stamp & Osier (1997) found the 

developmental rate and biomass of the generalist caterpillar Spodoptera exigua to decrease at 

elevated night temperatures. 

Our model organism Aleyrodes proletella has spread extensively in the last ten years 

and has become one of the most important cabbage pests in Lower Saxony (van Alebeek 

2008). The population increase seems to correlate with the temperature increase. Therefore, 

this species’ reaction to temperature extremes, both sudden heat shocks and slowly increasing 

temperatures will be examined. The upper temperature threshold for this species is not known 

and we wanted to evaluate the mortality and population development to evolve forecast 
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models for the grower. For this reason the influence of sudden heat events on the parasitoid 

Encarsia tricolor will be studied as well. E. tricolor is a parasitic wasp which occurs naturally 

in Central Europe and its population might also be influenced by the climate change. Up to 

now the thermal development thresholds for this species are not known. Apparently, the 

parasitoid is not able to control the whiteflies in Lower Saxony successfully over the whole 

year. While it is most successful in September and October, it might become relevant for 

year-round integrated plant protection under a changed climate. 

 

is a serious pest in cabbage and has spread extensively in the last 30-40 years. In the 

1970ies the cabbage whitefly was merely observed in some household gardens. Since this 

time the population has increased and, especially in the last ten years, has spread throughout 

Europe (van Alebeek 2008). Reasons for this increase might be global warming and also the 

cultivation of rape oil which, as a habitat for overwintering, might intensify the problem 

(Richter 2010). 

Especially in warmer climates with low rainfall A. proletella is a serious cabbage pest 

(Leite et al. 2005). The lower developmental threshold is 8 °C, but depending on the larval 

stage, development is also possible under lower temperatures. The development from egg to 

adult requires 420 °DD and the optimal temperatures for the development rank between 28-

33 °C. But very high temperatures can slow down the development and cause a high mortality 

(Leite et al 2006). (See also chapter 2.5.1.1) 

 

Encarsia tricolor Foerster (1878) is an autoparasitoid that occurs on 10 different 

whitefly species over Europe and Russia. Their host species include Aleyrodes proletella 

(Butler 1936, Gomez-Menor, 1943), Aleurotrachelus jelinekii (Laudonia & Viggiani 1984), 

and Trialeurodes vaporariorum (Albajes et al. 1980; Arzone 1976). The females primarily 

develop as endoparasitoids, the males as hyperparasitoids of several species (Williams 1995) 

e.g. E. formosa (Arzone 1976, Huang et al. 2009) or E. inaron (Williams 1989), including 

their own. The longevity of the females is higher than the males’, due to the bigger body size 

of the females (19.9 ± 0.62 days for females and 13.8 ± 0.66 for males) and faster 

3.2.1 The cabbage whitefly Aleyrodes proletella (Fam. Aleyrodidae, Order Homoptera) 

3.2.2 The parasitoid Encarsia tricolor (Fam. Aphelinidae, Order Hymenoptera) 
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development of the males (Williams 1995). Imagos of Encarsia tricolor ingest water, honey 

dew and body fluid of the hosts (Stüben 1949). They can consume hemolymph of a particular 

host, by piercing it with the ovipositor without laying eggs. This host-feeding is increasing the 

mortality of the host (Williams 1995). The females lay about 7.3 (±0.27) eggs per day 

summing up to a lifetime fecundity of 85.4 (±13.85) eggs per female (Williams 1995). The 

number of eggs laid per day depends on the temperature, with a peak at 28 °C allowing a life 

time fecundity of 123 eggs per female (Artigues et al. 1992). At higher temperatures it 

decreased considerably (Artigues et al. 1992). During egg-laying, the host is paralyzed by a 

toxin which is inserted along with the egg (Stüben 1949). When acting as hyperparasitoids the 

females can distinguish between hosts parasitized by their own species and by a foreign 

species and will prefer foreign species as hosts for hyperparasitism and the development of 

males. (Williams 1989; Avilla et al. 1991). If the hosts are abundant the females will lay their 

eggs on primary hosts and avoid hyperparasitism that would lead to a female-biased 

population (Avilla et al. 1991). The larvae overwinter in their hosts and hatch in late spring as 

adults. The females are laying their eggs into suitable hosts and the larvae develop in the host 

larvae and pupate there, killing the host during development. The developmental temperature 

range, as well as the developmental time are not known for Encarsia tricolor. Other 

parasitoids, like the close relative Encarsia formosa have a basal developmental temperature 

of 12.7 °C and a developmental time of 189 °DD, while Diaeretiella rapae, which exists in 

the same region needs 3.56 °C and 292 °DD. The developmental time also depends on the 

host species (Sengonca et al. 2001), as well as on the size of the hosts, since they develop 

faster in larger specimen (Rice & Allen 2009). Encarsia formosa, a close relative to Encarsia 

tricolor, prefers the third and the fourth larval instar as host (Fransen & Montfort 1987). Due 

to this, we will assume that Encarsia tricolor also prefers the later larval instars, although 

males and females can develop in all larval instars (Williams 1995). Older host have several 

advantages: They reduce the danger of hyperparasitism and serve as better source of forage 

due to their bigger size. Even more important is the fact that the developmental time decreases 

with later host larval instars. On larvae of the first instar the wasps need 22.3 days to complete 

their development, while they need just 18 days on L3-larvae (Avilla & Copland 1987). The 

females that emerge from L1-larvae and L3-larvae are bigger than females hatching from L4-

larvae or pupae (Avilla & Copland 1987). The temperatures for development of females range 

between 14-32 °C and between 16-28 °C for males (Avilla & Copland 1988). Next to the host 

size, the developmental time depends on temperature. At temperatures of 14 °C the insects 
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need 51.1 days to complete their development and 14.3 days at 28 °C (Avilla & Copland 

1988). Males develop faster with a developing time of 11.8 days at 28 °C (Avilla & Copland 

1988). The lethal temperature for pupae is 34 °C (Avilla & Copland 1988). The optimal 

development temperature is 20-22 °C (Katz, unpublished). 

 

3.3  Material and Methods 

To evaluate how often heat waves occur in Lower Saxony and how long they last, 

climate data from the DWD (German Weather Service) was analyzed and the results were 

used to model the heat cycles in the climate chambers. 

Temperatures above 30 °C occurred about forty times in the years from 1996- 2010 and 

lasted up to twelve days. Temperatures above 32 °C lasted up to nine, temperatures above 

34 °C up to five days and temperatures above 36 °C up to four days. But the events with high 

temperatures above 36 °C lasting for several days occurred only once in ten years (Data from 

1996-2010 (Fig. 2) 

3.3.1 Frequency of heat waves in Lower Saxony 
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Fig. 2: Frequency of heat waves from 1996-2010 in Lower Saxony. Different weather stations in Lower 

Saxony were analyzed for the occurrence of temperatures above 30 °C. 

 

The results from the weather stations created a profile of heat waves that the actual 

experiment on insects shall be modelled to. Thus, the experimental simulation will be 

consistent with environmental conditions. 

The cabbage whiteflies for the experiments were taken from the rearing of the Institute 

of Plant Disease and Plant Protection in Hanover (Institut für Gartenbauliche 

Produktionssystme Abt. Phytomedizin, früher Institut für Pflanzenkrankheiten und 

Pflanzenschutz). The insects were reared on Brussels sprouts at temperatures of 21 °C and 

light conditions of 18/6 (light/darkness). The stock culture was maintained isolated for five 

years, but approximately every six months individuals from the fields close to the institute 

were introduced to avoid inbreeding effects. 

3.3.2 Experiment



Influence of repeated short-time heat waves on Aleyrodes proletella  

  

50 

 

The Encarsia tricolor for this experiment were taken from the rearing of the Institute of 

Plant Disease and Plant Protection as well. The parasitoids were reared on whiteflies on 

Brussels sprout under temperatures of 24 °C and light conditions of 18/6 (light/ darkness). 

The culture was held isolated since one year and the start population was provided by Katz 

Biotech AG. 

 

The first experiments (Experiment No. 1) shall investigate the upper developmental 

temperature and the influence of very high temperatures. Therefore, five 3 days old, 

synchronised whiteflies (males and females were separated with a brush after visual checking 

with a binocular microscope) on well-watered Brussels sprout leaves in Petri dishes were 

exposed for either four, six or eight hours to three different temperatures (36, 39 and 42 °C). 

12 replicates per treatment were run. Immediately after the heat exposure the dead individuals 

were counted and the survivors were observed for five days to study delayed mortality and the 

fecundity after the heat shock. All experiments took place in control environments of climate 

cabinets (Vötsch - BioLine Prüfschrank, Modell VB 1100 Vario).  

In the second experiment (Experiment No. 2) specific temperature profiles with a base 

temperature of 20 °C were used. The temperature increased over a time period of 7.5 hours to 

the peak temperature (30, 34, 38, 40, 42 °C). The peak temperature lasted for three hours. 

After this time the temperature decreased 7.5 hours back to the base temperature. The increase 

of the temperature started with the onset of the light period. We used long-day conditions 

(18L/6D) and a humidity of 60%. One run of this program was one heat cycle (Fig. 3).  

In the first part of this second experiment (Experiment No. 2.1) we exposed the adults, 

separated as males (n = 5) and females (n = 5) on well-watered leaves in air conditioned Petri 

dishes to the heat and checked the mortality immediately after the exposure. Then the egg-

laying per female was determined three days after the exposure. The impact on the insects 

was checked after one, two, three and four days of heat-cycles. Nine replicates per treatment 

were used. 

In the second part of this experiment (Experiment No. 2.2) five adults (divided by males 

and females separated as in the first experiment) in clip-cages on plants were exposed to the 

heat (30, 34, 38 °C). After every cycle, the mortality and rate of egg-laying were checked. In 

this part of the experiment, also eggs and larvae were exposed to the heat and their mortality 

and developmental time were measured. Ten different plants with clip-cages were used as 
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replicates. The impact on the insects was checked after one, three and five days of heat-

cycles. 

 

 
 

 

 

 

 

The data was visually checked for normality of residuals, creating histograms and box 

plots, and if necessary transformed and pooled for the replicates. The percentage data for the 

mortality of the males, females and larvae underwent arc sine square root transformation, the 

counting data for eggs square root transformation respectively. 

Main emphasis of the experiment was put on the relationships between mortality and 

temperature and number of heat cycles. To that end, the effects of the heat cycles and the 

temperature on the insects were tested with an ANOVA. The influence of sex was also tested 

to see if there would be important differences. ANOVAs that yielded significant results were 

followed by a post-hoc-test (Tukey's Test). IMB SPSS 19 was used for all statistical analyses. 

3.3.3 Statistical analysis 

3

3 3

7.5 

24 h 

Temperature profile of the heat-cycles 

7.5 

Fig. 3: Example of daily temperature profile of the heat cycles. The temperature increased slowly over a 

time period for 7.5 hours, then a peak temperature lasted for three hours and afterwards the 

temperature decreased for 7.5 hours. These cycles were repeated one, three or five times. 
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3.4 Results  

The temperature had a highly significant effect on the direct mortality (F2,220 = 174.28; 

p < 0.001, Fig. 4). and the delayed mortality after one (F2,220 = 283.922; p < 0.001) and two 

days (F2,220 = 54.30; p < 0.001). With increasing temperature the direct and the delayed 

mortality increased. It also had a significant effect on the egg-laying (F2,220 = 4.35; p = 0.017). 

With increasing temperature the amount of eggs decreased. And it had a significant influence 

on the development of the eggs (F2,220 = 3.79; p = 0.027; Fig. 5). 

 

The duration of applied heat had also a significant effect. As expected the direct 

(F3,220 = 42.91; p < 0.001; Fig. 4) and the delayed mortality after one day (F3,220 = 86.70; 

p < 0.001) increased with increasing number of heat hours. Under all heat exposure times, the 

delayed mortality after two days (F3,220 = 64.28; p < 0.001) was significantly high, yet in this 

regard, the different exposure times bore no significant difference. The number of eggs 

decreased with an increasing time of heat exposure (F3,220 = 13.95; p < 0.001), while the 

development changed marginal significantly with the number of heat hours (F3,220 = 2.46; 

p = 0.069; Fig. 5). With increasing exposure time the number of hatched larvae decreased. 

 

3.4.1 Mortality of adults in the Petri dishes with single heat shocks (Experiment No. 1) 
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The sex had a marginal significant effect on the delayed mortality after one day 

(F1,220 = 2.91; p = 0.089). Though there was also a big difference on the direct mortality of 

males and females but this difference was not significant (F1,220 = 2.11; p = 0.15). Overall, 

males were more vulnerable to heat and suffered a higher mortality (Fig. 4). 

 

The interaction between the factors temperature and number of heat hours had a 

significant effect on the direct (F6,220 = 26.810 p < 0.001) as well as on the delayed mortality 

(F6,220 = 29.07; p < 0.001; F6,220 = 9.27; p < 0.001; one day delayed, two days delayed, 

respectively). Furthermore, it bore a marginal significant effect on the development of the 
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Fig. 4: Mortality at different temperatures and exposure times, comparing male and female whiteflies 

(Aleyrodes proletella) and the parasitoid Encarsia tricolor (A) mortality at 36 °C (B) mortality at 

39 °C (C) mortality at 42 °C. n = 12 for each experiment and treatment. Different characters 

representing significanes (α ≤ 0.05). 
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eggs (F6,220 = 2.08; p = 0.069). Yet, this interaction had no impact on the egg-laying 

(F6,220 = 1.06; p = 0.39). 

 

The interaction between temperature and sex on the other hand had no significant 

effects, merely displaying a marginal significant impact on direct mortality (F2,220 = 2.66; 

p = 0.073) and delayed mortality after two days (F2,220 = 2.63; p = 0.074). 

 

 

 

The interaction between number of heat hours and sex had a significant effect on direct 

mortality (F3,220 = 4.48; p = 0.005). It had no significant effect on delayed mortality. 

 

The combination of all three factors (temperature, exposure time and sex) had a 

significant effect on direct mortality (F6,220 = 2.38; p = 0.031). It had no significant effects on 

delayed mortality and egg-laying. 
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Fig. 5: Impact of exposure time on the hatching rate of cabbage whitefly (Aleyrodes proletella) eggs. 

 Eggs were exposed to the different heat treatments in climate chambers and successful hatching 

evaluated in the following five days. n = 12 for each experiment and treatment.  
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Tab. 2: Influence of temperature, exposure time and sex on mortality and development. 

 Direct 

mortality 

Mortality 

after 1 day 

Mortality 

after 2 days 

Egg laying  Egg 

development 

Temperature F2,220 = 

174.28 

p < 0.001 

F2,220 = 

283.92 

p < 0.001 

F2,220 = 54.30 

p < 0.001 

F2,220 = 4.35 

p = 0.017 

F2,220 = 3.79 

p = 0.027 

Exposure 

time  

F3,220 = 42.91 

p < 0.001 

F3,220 = 86.70 

p < 0.001 

F3,220 = 64.28 

p < 0.001 

F3,220 = 

13.95 

p < 0.001  

F3,220 = 2.46 

p = 0.069 

Sex F1,220 = 2.11 

p = 0.15 

F1,220 = 2.91 

p = 0.089 

F1,220 = 1.047 

p = 0.307 

  

Temperature* 

exposure time 

F6,220 = 26.81 

p < 0.001 

F1,220 = 29.07 

p < 0.001 

F1,220 = 9.27 

p < 0.001 

F1,220 = 1.06 

p = 0.39 

F1,220 = 2.08 

p = 0.069 

Temperature* 

sex 

F2,220 = 2.66 

p = 0.073 

F2,220 = 0.57 

p = 0.57 

F2,220 = 2.63 

p = 0.074 

F 2,220 = 8.95 

p < 0.001  

 

Exposure 

time* sex 

F3,220 = 4.48 

p = 0.005 

F3,220 = 0.083 

p = 0.97 

F3,220 = 0.743 

p = 0.53 

F3,220 = 

13.95 

p < 0.001  

 

Temperature* 

exposure 

time* sex 

F1,220 = 2.38 

p = 0.031 

F1,220 = 0.695 

p = 0.65 

F1,220 = 0.55 

p = 0.77 

F1,220 = 

1.046 

p = 0.40 

 

 

 

For the parasitic wasp Encarsia tricolor nearly no mortality could be found at 

temperatures of 36 °C and 39 °C. Only after eight hours at 39 °C mortality of 20% was 

registered. Opposite to this, at temperatures of 42 °C mortality of Encarsia tricolor was at 

100% (Fig. 4). Temperature and exposure time had a highly significant effect on the mortality 

of the parasitoid (F3,120 = 5000.67, p < 0.001; F2,120 = 14.71, p < 0.001; respectively). Also, the 

combination of the factors temperature and exposure time had a significant effect 

(F6,120 = 16.13 p < 0.001).  
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In this part of the experiment the Petri dishes were used again, while now applying the 

heat waves with different exposure times. 

The temperature had a merely significant effect on the delayed mortality three days after 

the heat exposure (F1,35 = 4.21; p = 0.05). With increasing temperature, mortality increased as 

well. It had no significant effect on neither direct nor delayed mortality after one or two days. 

But these mortalities also increased with increasing temperature. However, it had a highly 

significant effect on the egg-laying (F1,35 = 4.69; p < 0.001). With an increasing temperature 

the number of laid eggs decreased (Fig. 6 (C)). 

 

The number of heat cycles had a significant effect on the delayed mortality not before 

two days after heat exposure (F1,35 = 4.57; p = 0.041). It had no effect on direct mortality or 

other delayed mortalities. With an increasing number of heat cycles the mortality increased. 

On the egg-laying it had only a marginal significant effect (F1,35 = 2.21; p = 0.075), as a 

consequence of the longer time span the insects had available to lay eggs. Below temperatures 

stages of 30 °C and 34 °C the number of laid eggs increased with increasing number of heat 

cycles, but this was not significant. However, after a single heat cycle at 38 °C or higher 

temperatures there was no egg-laying at all (Fig. 6 (C)). 

 

The sex of the animals had a significant effect on direct mortality (F1,35 = 4.54; 

p = 0.042) and delayed mortality after four days (F1,35 = 6.13; p = 0.02). The delayed 

mortalities after two and three days were not influenced. The mortality of males was higher, 

being more vulnerable to the heat (Fig. 6 (B)). Four days after the heat exposure all males 

were dead, whereas the females’ mortality was just at 80% (Fig. 6 (A)). The mortality of 

females constantly increased at temperatures above 38 °C. At the lower temperatures there 

was nearly no mortality for the first three or four heat cycles (at 34 °C and 30 °C, 

respectively). After this time, the mortality increased rapidly. The males already suffered a 

mortality of 100% after two cycles of 38 °C or higher temperatures. For the lower 

temperatures (30, 34 °C) the mortality increased constantly and reached a mortality of 100% 

after four cycles. 

 

3.4.2 Mortality of adults in Petri dishes with repeated heat waves (Experiment No. 2.1) 
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The ANOVA with the combination of the factors temperature and heat cycle yielded no 

significant results. 

 

The combination of the factors temperature and sex had a significant effect on the 

delayed mortality after two (F1,35 = 4.57; p = 0.041) and after three days (F1,35 = 9.47; 

p = 0.005). 

The combination of the number of heat cycles and sex had no significant effect, as well 

as the combination of all three factors. 
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Fig. 6: Influence of different temperatures and different numbers of heat cycles in a climate chamber on 

the mortality of Aleyrodes proletella. (A) Influence on the mortality of females (B) influence on the 

mortality of males (C) influence on the egg-laying during the heat exposure. Error bars were left 

out for better visual clearness. n = 9 for each experiment and treatment. 
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Tab. 3: Influence of temperature, number and sex on the mortality and egg laying. 

 Direct 

mortality 

Mortality 

after 2 days 

Mortality 

after 3 days 

Mortality 

after 4 days 

Egg laying 

Temperature F1,36 = 

1.135 

p = 0.30 

F1,36 = 

0.840 

p = 0.37 

F1,36 = 4.21 

p = 0.05 

F1,36 = 

0.182 

p = 0.67 

F1,36 = 4.69 

p < 0.001 

Number of 

heat cycles 

F1,36 = 

2.018 

p = 0.17 

F1,36 = 4.57 

p = 0.041 

F1,36 = 

0.066 

p = 0.80 

F1,36 = 

0.007 

p = 0.93 

F1,36 = 2.21 

p = 0.075 

Sex F1,36 = 4.54 

p = 0.042 

F1,36 = 0.84 

p = 0.37 

F1,36 = 

0.592 

p = 0.49 

F1,36 = 

6.113 

p = 0.02 

 

Temperature* 

heat cycle 

F1,36 = 

1.135 

p = 0.30 

F1,36 = 

0.093 

p = 0.76 

F1,36 = 

0.263 

p = 0.61 

F1,36 = 

0.007 

p = 0.99 

F1,36 = 0.742 

p = 0.70 

Temperature* 

Sex 

F1,36 = 

1.135 

p = 0.30 

F1,36 = 

4.573 

p = 0.041 

F1,36 = 

9.465 

p = 0.005 

F1,36 = 

0.065 

p = 0.80 

 

Heat cycle* 

sex 

F1,36 = 

0.505 

p = 0.48 

F1,36 = 

0.093 

p = 0.76 

F1,36 = 

0.066 

p = 0.80 

F1,36 = 

0.007 

p = 0.93 

 

Temperature* 

heat cycle* 

sex 

F1,36 = 

1.135 

p = 0.30 

F1,36 = 

2.333 

p = 0.14 

F1,36 = 

0.263 

p = 0.61 

F1,36 = 

0.007 

p = 0.93 

 

 

 

When testing the influence of heat waves on insects on plants, no influence of the 

temperature on either the mortality of males (F2,27 = 0.34; p = 0.72) or the mortality of 

females (F2,27 = 0.29; p = 0.76) could be registered. The temperature had as well no effect on 

the egg-laying during the heat wave and no impact on life time fecundity. Furthermore, no 

effect on the longevity of the females could be assessed. 

3.4.3 Mortality of adults on plants with repeated heat waves (Experiment No. 2.2)
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The number of the heat cycles had no influence on the mortality of neither males (Fig. 9 

(A)) nor females (Fig. 9 (B)), but it had a significant effect on the number of eggs a female 

laid during the heat period (F2,27 = 6.66; p = 0.007; Fig. 8 (A)). It had no effect on the lifetime 

fecundity of the females (Fig. 8 (B)) or on their longevity. The number of heat cycles had a 

significant effect on the developmental time of the eggs (F2,33 = 8.17; p = 0.002; Fig. 7 (A)), 

yet all eggs survived the heat wave without impairment of the development of the larvae (Fig. 

7 (B)). 
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Fig. 7: Impact of different temperatures and different number of heat cycles on eggs and larvae (A) the 

developmental time from egg to larvae of Aleyrodes proletella and (B) the survival rate of the larvae 

of Aleyrodes proletella. n = 9 for each experiment and treatment. Different characters representing 

significanes (α ≤ 0.05), graphs without characters show no significances. 
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The combination of the factors temperature and heat cycle had no effects at all. Also, 

sex had no influence on mortality (F1,54 = 1.47; p = 0.23). 
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Fig. 8: Impact of the different temperatures and number of heat cycles on egglaying and life-time 

fecundity(A) egg-laying per female of Aleyrodes proletella and (B) and the life-time fecundity of 

female Aleyrodes proletella. The treatments were repeated 10 times. n = 9 for each experiment and 

treatment. Different characters representing significanes (α ≤ 0.05), graphs without characters

show no significances. 

Fig. 9: Mortality after different heat cycles with different peak temperatures on Aleyrodes proletella (A) 

males (B) females. 5 individuals were used per treatment and the treatments were repeated 10 

times. n = 9 for each experiment and treatment. Different characters representing significanes (α ≤ 

0.05), graphs without characters show no significances. 
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Tab. 4: Impact of temperature, number and sex on mortality, egg development, lifetime fecundity and 

longevity of Aleyrodes proletella. 

 Mortality 

of males 

Mortality 

of 

females 

Egg 

laying 

Egg 

develop-

ment 

Lifetime 

fecundity 

Longe-

vity 

Temperature F2,27 = 

0.34 

p = 0.72 

F2,27 = 

0.29 

p = 0.76 

F2,27 = 

1.858 

p = 0.19 

F2,33 = 0.306 

p = 0.74 

F2,27 = 

1.008 

p = 0.38 

F2,27 = 

0.707 

p = 0.51  

Number of 

heat cycles 

F2,27 = 

0.009 

p = 0.99 

F2,27 = 

0.857 

p = 0.44 

F2,27 = 

6.66 

p = 0.007  

F2,33 = 8.17 

p = 0.002 

F2,27 = 

2.063 

p = 0.16 

F2,27 = 

1.593 

p = 0.23 

Sex F1,54 = 

1.47 

p = 0.23 

F1,54 = 

1.47 

p = 0.23 

   Not tested 

Temperature* 

heat cycle 

F4,27 = 

0.303 

p = 0.87 

F4,27 = 

0.465 

p = 0.76 

F4,27 = 

1.88 

p = 0.16 

F4,33 = 0.093 

p = 0.98 

F4,27 = 

1.051 

p = 0.41 

F4,27 = 

0.974 

p = 0.45 

Temperature* 

Sex 

F2,54 = 

0.565 

p = 0.57 

F2,54 = 

0.565 

p = 0.57 

   Not tested 

Heat cycle* 

sex 

F2,54 = 

0.413 

p = 0.67 

F2,54 = 

0.413 

p = 0.67 

 

 

  Not tested 

Temperature* 

heat cycle* 

sex 

F4,54 = 

0.028 

p = 0.99 

F4,54 = 

0.028 

p = 0.99 
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3.5 Discussion 

It is likely that temperatures above 30 °C on two or more consecutive days will occur 

much more often in the future (Hartmann et al. 2013). Even in the last fourteen years they 

occurred several times (Fig. 2). The analysis of temperatures in Lower Saxony could show 

that temperatures above 30 °C already occurred about five times annually for several days in 

this region and due to the climate prognoses the frequency of such warm days will increase. 

Even days with temperatures above 40 °C could be measured twice in Germany in the last 

decade (Karlsruhe, DWD). 

In the first experiment (Experiment No. 1) above temperatures of 36 °C no increase in 

mortality could be found independent of the duration of exposure. But at temperatures above 

39 °C and 42 °C the mortality increased rapidly; the different temperatures had a significant 

effect on mortality. The increase in the mortality was to be expected, because higher 

temperatures normally lead to a higher mortality due to the denaturation of proteins such as 

enzymes and membrane proteins in the insects by the cracking of the polypeptide chain 

(Nguyen et al. 1989; Campell 2000; Neven 2000). Surprisingly, even after eight hours at 

42 °C some animals still survived, indicating this species to be robust to high temperatures. In 

a similar experiment with Bemisia tabaci Chen et al. (2011) found that survival was at 49% at 

temperatures of 41 °C. Most whitefly species are distributed in lower latitudes up to the 

equator and most of these species can cope with very high temperatures (Byrne & Bellows 

1991). Even the species Trialeurodes vaporariorum and Bemisia tabaci biotype B which are 

common in Lower Saxony in greenhouses can survive temperatures of up to 45 °C, although 

the survival and the development are significantly influenced by these temperatures. Up to 

40 °C the mortality of these two species is not influenced by the heat, but under higher 

temperatures the mortality increases and at temperatures above 45 °C all males die when 

exposed to a one-hour heat-shock (Cui et al. 2008). The insects have several adaptation 

strategies to the heat. Under high temperatures heat-shock-proteins are formed and the 

metabolism changes. Salvucci et al. (1999) could show that the whitefly Bemisia tabaci 

accumulates polyhydric alcohol and sorbitol under temperatures of above 30 °C. Sorbitol is 

enriched in the bodies of whiteflies serving as heat protection (Hendrix & Salvucci 1998). 

They could also show that the insects incorporate more sucrose in their bodies under high 

temperatures compared to the control. The activation of enzymes changes under high 

temperatures, too (Salvucci et al. 1999). It has also been found, that heat tolerant whiteflies 
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have several secondary endosymbionts; mainly the endosymbiont Rickettsia seems to be 

responsible for an adaption to heat (Brumin et al. 2011). Another adaption to heat seems to be 

that even virgin females of T. vaporariorum which normally produce male offspring can 

produce females under high temperatures (Mittler 1946). 

The mortality of the males was higher than the mortality of the females. Adams (1985) 

could show that male whiteflies are more vulnerable to cold temperatures, because only 

females can survive the winter. And Cui et al. (2008) found in their experiments that males 

are also more vulnerable to high temperatures. Due to this, we assume males generally to be 

more vulnerable to extreme changes in temperature, leading to a higher mortality. Moreover, 

the females have to be more robust, because they are responsible for the egg-laying and the 

offspring (Darwin 1871). Cui et al. (2008) could show that females whiteflies of Bemisia 

tabaci biotype B are more resistant to heat due to differently expressed genes followed by a 

higher expression of Expression Sequence Tags, which seem to increase the heat-resistance. 

Females of the leaf beetle Chrysomela aeneicollis produce more of the heat shock protein 

HSP70 than males and thus are more robust to heat (Rank & Dalhoff 2002). Secondary 

endosymbionts cannot be responsible for the different mortality rates of males and females, 

because they occur in both sexes (van Opijnen & Breeuwer 1999). 

It could also be observed that the amount of eggs laid by females during heat exposure 

decreased with temperature and exposure time and that the number of eggs that developed to 

larvae decreased. The same is true for the whitefly species Bemisia tabaci (Chen et al. 2011). 

The decreased egg-laying could be caused by stress of the females or the conscious avoiding 

of unfavourable conditions. The preference-performance hypothesis predicts that the females 

of offspring with limited mobilisation should choose the best host plant for oviposition. 

Wennström et al. (2010) could show that females of the phytophagous beetle Gonioctena 

linnaeana prefer hosts that maximise offspring. The plants under heat treatment are not an 

optimal host plant for the offspring and so females avoid egg-laying and wait for better 

conditions. The females might also be in a less favourable condition to lay eggs, because Lee 

& Hou (1987) could show that the brown plant hopper Nilaparvata lugens transfers less 

secondary symbionts to its eggs under heat and that thereby the eggs were not viable.  

The reduced egg development could be caused by dehydration of the eggs. Ingrisch 

(1986) could show that a lack of water supply can stop or prolonged the embryonic 

development. The age of the eggs is also important for the impact of the heat. In the early 

developmental stage, including the disc stage, a heat shock causes high mortality rates of 



Influence of repeated short-time heat waves on Aleyrodes proletella  

  

64 

 

eggs. In later developmental stages the heat causes segmentation problems, which lead to 

abnormalities that can prohibit hatching (Mee & French 1986). During the embryonic 

development, the vulnerability to heat is particularly high, since no heat shock proteins are 

induced (Lindquist 1986). Zwick (2003) could show that the eggs of the stonefly Dinocras 

cephalotes do not develop under high temperatures, but that they are in a parapause and not 

dead. We classified the eggs which did not hatch as dead without waiting for further 

development. 

In the same experiment (Experiment No. 1) the mortality of the whitefly`s natural 

enemy Encarsia tricolor was studied and no mortality at temperatures above 36 and 39 °C 

were found. However, at temperatures above 42 °C Encarsia tricolor faced a mortality of 

100%. Due to this data it can be speculated, that under an increase of the average temperature, 

Encarsia tricolor might be able to control the population of the whitefly in the field. Yet, the 

parasitation success of Encarsia tricolor is depending on several factors beside the 

temperature. This study did not incorporate the parasitation rate under high temperatures, but 

we can assume that an increase in temperature would positively affect the population 

development of the parasitoid. Recent experiments with whiteflies and the parasitoids under 

foil show that the parasitoid is able to control the whitefly population compared to 

experiments in the wild (Schultz et al. 2010). Therefore it seems probable that Encarsia 

tricolor is able to control the whiteflies under warmer conditions even in the field.  

The repeated heat experiments (Experiment No. 2.1) showed that even at temperatures 

of 30 and 34 °C the mortality of the females increased rapidly after four heat cycles. At higher 

temperatures mortality increased as soon as after two days. The males showed to be even 

more vulnerable to high temperatures. The high mortality due to repeated heat waves is 

surprising in face of the results of our previous experiment (Experiment No. 1) where the 

specimens survived very high temperatures. Egg-laying dropped after one day at temperatures 

of 38, 40 and 42 °C but the lower temperatures (30, 34 °C) had no significant effect on the 

egg-laying. 

In experiment No. 2.2 the same procedure was conducted with whiteflies on Brussels 

sprout plants to test if there are differences between the experiments in the Petri dishes and in 

nature. These experiments showed that the different heat waves had no effect on the mortality 

of both males and females. It seems to be normal that the longevity of the females like in our 

experiment, is not influenced by heat (Chen et al. 2011). The different temperatures also had 

no significant effect on the egg laying. Cui et al. (2008) found similar results in his 



Influence of repeated short-time heat waves on Aleyrodes proletella  

  

65 

 

experiments. The number of eggs oviposited by B. tabaci or T. vaporariorum did not differ in 

the different treatments. The females of these species stopped egg-laying at 43 °C and 45 °C, 

respectively. Development from eggs to larvae and the hatching success was also not 

influenced. All eggs hatched and nearly all larvae developed to the next larval stage. In 

contrast to this, the developmental time of the A. proletella eggs was indeed influenced by the 

temperature. As expected, the eggs developed faster under higher temperatures. Compared to 

placing them in Petri dishes, the whiteflies boasted a better rate of survival when on leaves 

and under more natural circumstances. Although the temperatures next to the leaves were 

nearly the same as the temperature in the climate room, air humidity was approximately 20% 

higher (Paz, unpublished). This different microclimate on the leaves seems to protect the 

animals and decreases the mortality. The higher humidity next to the leave decreases the 

mortality of adults (Oida et al. 2009) and is known to promote the hatching success for mites 

(Ferrero et al. 2010). 

 

3.6 Conclusions 

Due to the fact that the animals can survive hot temperatures for a long time and that 

they survive high temperatures for several consecutive days, we assume that the cabbage 

whitefly will become more relevant in the future. This phenomenon has been registered with 

several species and, if found to be true for the cabbage whitefly, will lead to an even bigger 

increase in the population density. Under extreme heat events, especially those whiteflies 

which are protected by secondary endosymbionts will survive. And based on the fact that 

endosymbionts are transmitted from the female to the offspring, it is likely that the proportion 

of whiteflies which are well-adapted to high temperatures will increase. It is also likely that A. 

proletella will adapted to higher average temperatures within some generations, but it is not 

clear if it is able to handle extreme events like heat waves. Therefore, we propose that future 

experiments should consider several consecutive generations. It is likely that the whitefly 

Aleyrodes proletella will become the most important pest species in cabbage. With increasing 

temperature it might be possible that the employment of the parasitoid Encarsia tricolor can 

become one major option to efficiently control Aleyrodes proletella in the field. 
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4 Influence of repeated heat waves on glucosinolates in the leaves 

4.1 Abstract 

The increase in the temperature as a consequence of climate change, will have direct 

and indirect effects on the insects. An important indirect effect could be a change in 

nutritional quality for instance the C/N ratio or the availability of important primary 

nutritional plant compounds such as amino acids or proteins or changes in the composition of 

plant secondary compounds often related to plant defence against herbivores. One group of 

important secondary plant compounds are the glucosinolates, which are produced mainly by 

Brassicaceae as a defence mechanism against herbivory. We tested if these plant compounds 

changed under repeated heat waves and may influence the development of the insect 

population in the short term. Therefore temperature profiles with slightly increasing and 

decreasing temperatures and a peak temperature of 30 (34, 38 °C) in controlled environments 

(climate cabinets) were used to simulate heat waves which might occur in future Lower 

Saxony. These heat waves were repeated one or five times and secondary compounds were 

analysed by GC-MS. Our results show that the total amount of glucosinolate is increasing 

under high temperatures, but only the increase of the glucosinolate 4-Methoxy-Glucobrassicin 

was significant. The glucosinolates also increased more intensively after one heat wave 

compared to five heat waves. The most significant effect on the amount of glucosinolates had 

the feeding of the pest Aleyrodes proletella. The feeding activity caused threefold increase of 

the total amount of glucosinolates. 
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4.2 Introduction 

Due to human impact the CO2–level has risen, which was followed by an increase in 

temperature in the last century. It has been predicted that the temperature will increase in the 

next years (Hartmann et al. 2013).  

Normally insects respond positively to increased temperatures, with decreased 

developmental time, higher reproduction (Adamo & Lovett 2011) and more generations per 

year (Bergant et al. 2006; Tobin et al. 2008), but very high temperatures can also have 

negative effects like an increased mortality and a decreased fecundity (Skirvin et al. 1997). 

High temperatures may also affect the insects indirectly via the plant nutrients or secondary 

plant compounds. An important group of plant compounds are the glucosinolates which are 

released with herbivory and repel herbivores, whereas they can attract natural enemies of the 

pests. Glucosinolates are a group of secondary compounds common in Brassicaceae which 

repel generalist herbivores and attract specialists (Louda & Mole 1991; Braven et al. 1996). 

They are also associated with abiotic stress like heat or humidity (Khan et al. 2011a; 

Ramakrishna & Ravishankar 2011). (See also chapter 4.3.2.) 

In former studies mainly the effect of constant temperatures or of singular high 

temperatures was investigated and the effect of short-time high temperatures has only been 

tested in few studies. That’s why we tested the influence of repeated, slowly increasing, short-

time heat waves on the production of glucosinolates in Brussels sprout plants to study if a 

change in this secondary compounds may cause the changes in the mortality and development 

of Aleyrodes proletella. 

 

is a serious pest in cabbage plants. The species is common in Lower Saxony and 

especially in the last ten years a rapid range expansion has been observed (van Alebeek 2008). 

The species is a polyphagous phloem sucker with a general preference for Brassicaceae. The 

reasons behind the higher population development might be the climate warming on the one 

hand and the increased cultivation of rape oil on the other (Richter 2010). Development takes 

place in general above 8 °C, but depending on the larval stage is also possible at lower 

4.2.1 The cabbage whitefly Aleyrodes proletella, (Fam. Aleyrodidae, Order Homoptera) 
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temperatures. Optimal developmental temperatures range between 28-33 °C. In total egg to 

adult development takes 420 °DD. But very high temperatures slow down the insects 

development. (See also chapter 2.5.1.1) 

  

Glucosinolates are plant secondary compounds and part of the plant defence system 

against bacteria, fungi and herbivores (Zhao et al. 1994). They are common mainly in 

Brassica plants, but also in Rasedaceae and Capparidaceae (Fenwick et al. 1983b; Ludwig-

Müller et al. 1996). Glucosinolates are sulphur and nitrogen based compounds which are 

cleaved by myrosinase into small toxic molecules (Himanen et al. 2008). According to their 

side chain and precursor amino acid they are divided in aliphatic, aromatic and indolic 

glucosinolates (Fahey et al. 2001; Himanan et al. 2008). The glucosinolates can be found in 

the plant vacuole separated from the enzyme myrosinase, which exist in special myrosinase 

cells. (Bones & Rossiter 1996). The myrosinase is only released after destruction of the 

different cell compartments due to, for example, the chewing of herbivores (Vaughn & 

Boydston 1997). Depending on the pH-value the products of the reduction change. Under a 

neutral pH-value volatile isothiocyanates are hydrolyzed from aliphatic glucosinolates 

(Lambrix et al. 2001). Indolglucosinolates are also hydrolyzed to nitrils and instable 

isothiocyanates which degrade quickly to non-volatile compounds (Mithen 1992; Fig. 10). 

The feeding of insects can also lead to a higher content of glucosinolates, especially indolic 

ones (Bidart-Bouzat et al. 2005). Although glucosinolates play an important role in plant 

defence, specialist and generalist herbivores react different to these plant compounds. 

Generalist insects are in most cases repelled by the agent, whereas specialists are often 

attracted by glucosinolates. For several specialists, for example Brevicoryne brassicae, 

Plutella xylostella or Delia radicum (Braven et al. 1996) glucosinolates serve as oviposition 

stimuli or they use them as part of their own defence system (Louda & Mole 1991). 

It is likely that the contents of glucosinolates will change with climate change and 

Reddy et al. (2004) showed that they decreased under an increase of CO2 due to a change of 

the defence from nitrogen-based to carbon-based defence compounds (Bidart-Bouzat & Imeh-

Nathaniel 2008). Also a higher amount of O3 leads to a decrease of glucosinolates (Gielen et 

al. 2006). But there’s also evidence that they will increase under higher temperatures due to 

the fact that the plants will be stressed by the temperatures and abiotic stress is followed by an 

4.2.2 Glucosinolates 
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increase of glucosinolates (Bidart-Bouzat & Imeh-Nathaniel 2008; Zhao et al. 1994). But to 

our knowledge there are no studies to show how they may react to repeated high 

temperatures.  

 

 
Fig. 10: Degradation products of glucosinolates after hydrolysis by myrosinase (Lambrix et al. 2001). 

 

4.3 Material and Methods 

The cabbage whiteflies for the experiment were taken from the rearing of the Institute of 

Plant Disease and Plant Protection in Hanover. The insects were reared on Brussels Sprout 

under temperatures of 21 °C and light conditions of 18/6 (light/darkness). 

All experiments took place in controlled environments of climate cabinets (Vötsch - 

BioLine Prüfschrank, Modell VB 1100 Vario). Specific temperature profiles with a base 

temperature of 20 °C were used. The temperature increased over a time period of 7.5 hours to 

the peak temperature (30, 34, 38 °C). The peak temperature lasted for three hours. After this 

4.3.1 Experiment
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time the temperature decreased 7.5 hours back to the basal temperature. The increase of the 

temperature started with the onset of light. We used long-day conditions (18L/6D) and a 

humidity of 60%. One run of this program was one heat cycle (Fig. 11). Leaf samples were 

taken after one and five cycles. 

The plants were exposed either with Aleyrodes proletella or without any insects in the 

climate chamber and three samples per treatment were taken. After the experiment one leaf of 

the plants was cut, and immediately frozen with liquid nitrogen. Then the leaves were freeze-

dried and send to Prof. Dr. Monika Schreiner at the Leibniz-Institute of Vegetable and 

Ornamental Crops to analyse the glucosinolates in the leaves via the HPLC method reported 

by Krumbein et al. (2005). Therefore 0.5 g of the leaf material was heated and incubated at 

75 °C for 1 min, then 4 min extracted with a mixture of methanol and water (v/v = 7:3, T = 70 

°C) then 1 ml barium acetate was added and the extract centrifuged for 10 min at 4000 rpm. 

This process was repeated three times with 3 ml of the water/methanol mixture (v/v = 7:3, T = 

70 °C). The supernatants were combined and mixed with 10 ml of the water/methanol mixture 

(v/v = 7:3, T = 70 °C). 5 ml of this extract was applied to a 250 µl DEAE-Sephadex A-25 ion-

exchanger (acetic acid-activated, Sigma-Aldrich Chemie GmbH, Taufkirchen, Germany), 

rinsed with 10 ml of bi-distilled water before applying 250 µl of a purified aryl sulphatase 

solution (Boehringer-Mannheim GmbH, Mannheim, Germany) and leaving it for 12 h. Then 

the desulpho-compounds were flushed with 5 ml of bi-distilled water. The analysis of the 

glucosinolates was conducted using a Merck-Hitachi HPLC system (Merck-Hitachi, 

Darmstadt, Germany) with a Spherisorb ODS2 column (Bischoff, Leonberg, Germany, 5 µm, 

250 x 4 mm). A gradient of 0-20% acetonitrile in water was used from 2 to 34 min, followed 

by 20% acetonitrile in water until 40 min, and then 100% acetonitrile for 10 until 50 min. 

They conducted the determination at a flow of 1.3 ml/min and a wavelength of 229 nm. To 

calculate the glucosinolate concentration 2-propenyl glucosinolate was used as a external 

standard (Sigma-Aldrich Chemie GmbH, Taufkirchen, Germany) and the response factor of 

each compound relative to 2-propenyl glucosinolate (European Union 1990) was used. 

According to previous work (Zimmermann et al. 2007) the glucosinolates were identified 

from the protonated molecular ions [M + H]+ and the fragment ions corresponding to [M + H 

- glucose]+ by HPLC-ESI/MS2 using Agilent 1100 series (Agilent Technologies, Waldbronn, 

Germany) in the positive ionisation mode (Schreiner et al. 2006).  
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Data were visually checked for normality of residuals, creating histograms and box 

plots and if necessary transformed and pooled for the replicates. The percentage data for the 

different glucosinolates were arc sine square root transformed. 

Main emphasize of the experiment was on the relationships between amount of 

glucosinolates and temperature, number of heat cycles and presence of a pest species. We 

tested the effects of the heat cycles and the temperature on the glucosinolates with an 

ANOVA. Also the influence of the pest species was tested to see if there were important 

differences. Every ANOVA which yielded significant results was followed by a post-hoc-test 

(Tukey's Test). IMB SPSS 19 was used for all statistical analyses.  

 

4.3.2 Statistical analysis 

3

3 3

7.5 

24 h 

Run of the heat-cycles 

7.5 

Fig. 11: Example of daily temperature profile of the heat cycles. The temperature increased slowly over a 

time period for 7.5 hours, then a peak temperature lasted for three hours and afterwards the 

temperature decreased for 7.5 hours. These cycles were repeated one, three or five times. 
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4.4 Results  

We studied the influence of different heat cycles on the glucosinolates in the leaves to 

see if the heat reduces or increases them. The most common glucosinolate in all samples was 

glucobrassicin (2.08 ± 0.31 µmol/g TG; mean ± standard error), followed by glucoraphanin 

(1.05 ± 0.17 µmol/g TG; M ± SE) and sinigrin (0.82 ± 0.13 µmol/g TG; M ± SE). Less 

common was glucoiberin (0.63 ± 0.09 µmol/g TG; M ± SE) and progroitin (0.36 ± 

0.07 µmol/g TG; M ± SE). We found only small amounts of glucobrassicanapin (0.19 ± 

0.015 µmol/g TG; M ± SE), gluconapin (0.16 ± 0.02 µmol/g TG; M ± SE), 4-Methoxy-

glucobrassicin (0.06 ± 0.004 µmol/g TG; M ± SE) and neoglucobrassicin (0.03 ± 

0.004 µmol/g TG; M ± SE; Fig. 12). Total amount of glucosinolates differed in the different 

treatments. 
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Fig. 12: Average amount of the different glucosinolates in the Brussels sprout leaves independent of 

treatment. n = 9 for each treatment. 
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There was a big difference in the amount of glucosinolates in plants with and without 

the cabbage whitefly Aleyrodes proletella. Plants infested with the cabbage whitefly 

contained double or even three times higher amounts of glucosinolates than plants free of 

whiteflies (Fig. 13). Mainly the amount of progroitin and sinigrin increased considerably, but 

not significantly. 

 

 

 

 

 

The sucking of Aleyrodes proletella had a highly significant effect (p < 0.001) on the 

amount of all glucosinolates (Fig. 14 (B)), besides neoglucobrassicin (F1,41 = 1.24; p = 0.27; 

Fig. 14 (A)). Plants without whiteflies did not react to high temperatures with changes in the 

amount of total glucosinolates or individual glucosinolates, not even to temperatures of 38 °C 

for five days, but on plants with A. proletella the amount on glucosinolates increased 

(Fig. 14).  
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Fig. 13: Amount of different glucosinolates of plants with and without insects. (A) shows the amount of the 

glucosinolates of plants with Aleyrodes proletella (B) shows the amount of glucosinolates on plants 

without whiteflies. n = 9 for each experiment and treatment. 
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High temperatures strengthen the inducing effect of the whitefly sucking. One 

exposition with 30 °C was enough to increase the amount of glucosinolates (Fig. 15). Higher 

temperatures had no additional effect to the further increase effect. The glucosinolates 

increased with increasing temperature compared to the control, but there was no significant 

difference between the different heat cycles or temperatures. The difference to the control was 

also not significant (Fig. 15). 
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Fig. 14: Influence of the sucking of the whitefly in the different treatments (A) amount of Neoglucobrassicin 

(B) total glucosinolate amount. n = 9 for each experiment and treatment. Different characters 

representing significanes (α ≤ 0.05), graphs without characters show no significances. 
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Fig. 15: Total amount of glucosinolates in different treatments on plants with Aleyrodes proletella under 

different temperatures and different numbers of heat cycles. n = 9 for each treatment. 

 

 

To analyse the influence of the temperature and the number of cycles the influence of 

the whiteflies was excluded from our analysis by using "insect" as a covariate. After this we 

found no significant differences of the temperature on the different glucosinolates. Altogether 

the amount of glucosinolates increased under higher temperatures, but there was no 

significant difference between the different temperatures (Fig. 16 (B)). We could just find a 

marginal significant effect of the temperature on the amount of 4-Methoxy-Glucobrassicin 

(F3,41 = 2.79; p = 0.058; (Fig. 16 (A)). The amount of this glucosinolate was significantly 

higher under the higher temperatures compared to the control. 
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The number of different heat cycles had only a significant effect on the amount of 

glucoiberin (F1,41 = 6.30; p = 0.017; Fig. 17 (A)) and Glucoraphanin (F3,41 = 4.46; p = 0.042; 

Fig. 17 (B)). We could also find a marginal significant effect on the amount of 4-Methoxy-

Glucobrassicin (F3,4 = 2.75; p = 0.058). The other glucosinolates showed no significances 

(Fig. 17 (C)). But altogether the amount of glucosinolates was higher after one heat cycle 

compared to five heat cycles. This indicates that one heat cycle is enough to increase the 

amount of glucosinolates and support the effect of the sucking of the insects. More heat cycles 

had no additional effect. 
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Fig. 16: Influence of temperature independent of heat cycles on different glucosinolates on plants with A. 

proletella. (A) Influence of the different temperatures on the amount of the glucosinolates 4-

Methoxy-Glucobrassicin (B) Influence of the different temperatures on the amount of 

glucobrassicin. n = 9 for each experiment and treatment. Different characters in braces 

representing significanes (α ≤ 0.1), graphs without characters show no significances.  
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There was no significant effect on the interaction of temperature and cycle and also no 

interaction between temperature, cycle and insect. 

 

4.5 Discussion 

The total amount of glucosinolates in Brussels sprout control plants infested with 

whiteflies, but without a treating in the climate chamber was 4.3 µmol/g TG, whereas the 

highest amount of glucosinolates was found in the 34 °C treatment after one cycle with 
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Fig. 17: Amount of total glucosinolates on the different heat cycle treatments on plants with A. 

proletella independent of temperature, comparing plants after one heat cycle with plants after 

five heat cycles. (A) amount of Glucoiberin (B) amount of Glucoraphenin (C) total amount of 

glucosinolates. n = 9 for each experiment and treatment. Different characters representing 

significanes (α ≤ 0.05), charateres in braches represtenting significanes (α ≤ 0.1), graphs 

without characters show no significances. 
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whitefly infestation. The amount of glucosinolates was 10.8 µmol/g TG. In the control 

without insects the amount of glucosinolates ranged between 1.2 µmol/g TG and 

2.5 µmol/g TG. This data were compared to contents of glucosinolates found in other studies. 

Kushad et al. (1999) found contents of 25 µmol/g TG and Tiedink et al. (1988) found even 

34 µmol/g TG in Brussels sprout plants without insect infestation. Sarikamis et al. (2009) and 

Kushad et al. (1999) showed that beside the influence of the variety the climate and high 

temperatures have an important effect on the amount of glucosinolates. Due to the fact that 

their experiments as well as our experiments were realised under high temperatures, 

temperature impacts cannot be an explanation for the differences in the results. But other 

climatic factors might influence the amount of glucosinolates. Furthermore the quality of the 

soil and the fertilisation might have an impact on the content of glucosinolates. Most 

experiments were done under outdoor conditions with supplementary fertilisation whereas our 

experiments were done in the lab without fertilisation. Josefsson (1970) found that the quality 

of the soil has an important effect on the glucosinolates and that especially under loamy soil 

more glucosinolates are produced. The fertilisation is another factor that can influence the 

content of glucosinolates. Zhao et al. (1994) pointed out that the fertilisation especially with 

sulphur and nitrogen has an influence and Böhlendorf (2010) showed that the amount of 

glucosinolates increased with increasing fertilisation. In other studies (Herbst, unpublished) 

conducted in Hanover in greenhouses with the same soil (Fruhstorfer Erde®) the amount of 

glucosinolates in Brussels sprout was on average 2.1 µmol/g TG. In the study the contents of 

glucosinolates were determined on plants without whiteflies or other herbivores. The amount 

in this experiment was even less than the amount in our study, but the differences were small 

compared to the other studies. Due to this we can assume that the cause for the differences lay 

on the one hand on the variety of the Brussels sprout and on the other hand on the different 

soil. 

The most common glucosinolate in the Brussels sprout plants in our experiment were 

glucobrassicin (2.08 µmol/g TG) and glucoaphanin (1.05 µmol/g TG). In our study sinigrin 

(0.82 µmol/g TG ) was the third most glucosinolate in the plants. Normally sinigrin and 

glucobrassicin are the most common glucosinolates in Brussels sprouts followed by progroitin 

and gluconapin (Heaney & Fenwick 1980; Kushad et al. 1999) with sinigrin contents of 

8.9 µmol/g TG and 3.2 µmol/g TG glucobrassicin (Kushad et al. 1999). Heaney and Fenwick 

(1980) found that the amount of glucosinolates is differing due to the planting site, but that the 

percentages of the different glucosinolates are quite similar. The amount and the composition 
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of the glucosinolates depend on several factors (Rosa 1997). Due to the fact that total amount 

and the side chains are under genetic control (Kliebenstein et al. 2001) variety is the most 

important one (Böhlendorf 2010). But also other factors like climate, stress, plant age, date of 

harvest and many more factors are important (Ludwig-Müller et al. 1996; Ciska et al. 2000;).  

 

With increasing temperature the amount of glucosinolates was increasing in our 

experiment as well, but this increase was not significant beside a marginal significant effect in 

the amount of 4-Methoxy-Glucobrassicin. It has been found that stress (cold, heat) increases 

the amount of glucosinolates (Schreiner & Huyskens-Keil 2006). High temperatures can 

increase the glucose- and amino acid synthesis, the primary stage of the glucosinolate 

synthesis, leading to a higher content of glucosinolates (Cartea et al. 2008). The amount of 

glucosinolates was highest in the 30 °C treatment.  

 

The increase of the number of heat cycles effected only the amount of glucoiberin and 

glucoaphanin. The amount of glucosinolates was higher after one cycle compared to five 

cycles. We assume that the stress of the warming leads to an increase in the glucosinolates, 

but that the plants after five cycles are either accustomed to the heat or that the energy 

expenditure is too high to hold it for such a long time.  

 

The infestation with whiteflies increased the amount of glucosinolates up to the 

threefold compared to the control. The concentration of glucosinolates in the plant tissue is 

increasing after feeding of a herbivore (Martin & Müller 2007; Poelman et al. 2008). 

Especially the accumulation of indolic glucosinolates is increased by herbivore attack, 

whereas the amounts of aliphatic and aromatic glucosinolates may decrease (Textor & 

Gershenzon 2009). Mainly the feeding of specialists are followed by an increase in 

glucosinolates, whereas feeding of the generalist aphid Myzus persicae causes a decrease in 

glucosinolates (Kim & Jander 2007). According to expectations the concentration of 

glucosinolates should increase only slightly after feeding of a specialist, Rohr et al. (2012) 

could also show that feeding of the specialist Pieris brassicae lead to an increase in 

glucosinolates. Glucosinolates are commonly used by the plant as a defence mechanism 

against fungi, nematodes and insects (Rosa 1997). The effect of glucosinolates on insects 

depends on the specialisation of the insect. Normally generalist herbivores are repelled by 

glucosinolates and specialist can handle them or they are even attracted by them (Rojas 1999; 
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Miles et al. 2005; Halkier & Gershenzon 2006; Lankau 2007). Gols et al. (2008) for example 

could show that the caterpillar of Pieres rapae was not influenced by an increasing level of 

glucosinolates, while the larvae of the generalist Mamestra brassicae suffered high mortality 

under high concentrations of glucosinolates. High amounts of glucosinolates stimulate for 

example the specialist Pieres rapae (Stoner 1990; Müller et al. 2010) or Hellula undalis 

(Mewis et al. 2002) to oviposit and other specialist also use them to find oviposition places 

(Agerbirk et al. 2009). Glucosinolates also promote the larval feeding of Pieres rapae and 

Plutella xylostella (Müller et al. 2010). Specialised insects have developed several strategies 

to handle these compounds; the cabbage aphid Brevicoryne brassicae for example uses the 

glucosinolates for its own defence (Bridges et al. 2002) and is avoiding its toxicity by storage 

of the myrosinase in crystalline micro bodies (Bridges et al. 2002). The generalist aphid 

Myzus persicae in contrast is also sucking on cabbage plants and it excretes the toxic 

components with its honeydew (Hopkins et al. 2009). The sawfly Athalia rosae, a specialist 

on turnip roots however, store glucosinolates in the hemolymph for several hours and then 

excreted them into yet unidentified metabolites (Müller & Wittstock 2005). Similar for all 

herbivores feeding on plants rich in glucosinolates is the avoiding of the breakdown to toxic 

isothiocyanates by e.g. rapid metabolising of glucosinolates to harmless compounds or 

avoiding cell disruption (Winde & Wittstock 2011). Other generalists like snails (Newton et 

al. 2010) or Thrips tabaci (Bukovinszky et al. 2010) are repelled by glucosinolates. Overall 

herbivores seem to avoid plants with high concentrations of short side chain alkenyl 

glucosinolates, whereas they prefer plants with elongated side chains (Poelman et al. 2009). 

Beside herbivory abiotic stress factors can change the composition and amount of 

glucosinolates. Drought reduced the concentration of glucosinolate in the leaves of Broccoli 

plants (Khan et al. 2010). Whereas it increased the amount of aliphatic glucosinolates in the 

study of Mewis et al. (2012) and the total amount of glucosinolates in the study of Tariq et al. 

(2013). Khan et al. (2011b) could show that the amount of glucosinolates is increasing under 

water stress after the feeding of the generalist Myzus persicae, whereas the feeding of the 

specialist Brevicoryne brassicae leads to an increase independent of water-stress. CO2 is 

another abiotic factor influencing the concentration of glucosinolates. Under CO2-

concentrations as expected in the future the total amount of glucosinolates increased, while 

the amount of indole glucosinolates decreased (Schonhof et al. 2007). Also UV-B is an 

abiotic factor leading to an increase in glucosinolates in plant tissue (Schreiner et al. 2009). 
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These plant compounds does not only influence the herbivore but also higher trophic 

levels like predators and parasitoids. The turnip sawfly Athalia rosae elicits a bleeding 

behavior releasing hemolymph at predator contact. The hemolymph contains sinalbin and the 

larvae is protected by this release (Müller & Brakefield 2003). In other studies Müller et al. 

(2001) could show that the glucosinolate released in the "reflex bleeding" depends on the 

glucosinolate composition of the host plant. Moreover parasitoids, which feed on herbivores 

that do not sequester the glucosinolates but store them in their body, face a higher mortality 

and worse growth rate (Gols & Harvey 2009).  

 In our study especially progroitin and sinigrin increased with the sucking of the 

whitefly. Sinigrin and progroitin are the compounds which are responsible for the bitter taste 

of cabbage plants (Fenwick et al. 1983a;  van Doorn et al. 1998). Newton et al. (2010) showed 

that an increasing amount of sinigrin is correlated with an increasing population of Aleyrodes 

proletella. Whereas sinigrin had a negative effect on the whiteflies in the study of Ibanez et al. 

(2012). But Kuhlmann & Müller (2009) could show that whiteflies are more influenced by 

radiation or other abiotic factors than the plant chemical composition. 

 

4.6 Conclusion 

Due to our results that the glucosinolates are just slightly increasing under short periods 

of high temperatures and the increase even lasts only for one heat cycle, we assume that more 

frequent heat waves with even higher peak temperatures will have no indirect effect on the 

population of the whitefly versus changes in the amount of glucosinolates. Furthermore the 

whiteflies are not negatively affected by the high contents of glucosinolates, so that even an 

increase in the glucosinolates won’t have a negative effect on the population of Aleyrodes 

proletella.  
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5 Influence of heavy rain on the development of the cabbage whitefly 

Aleyrodes proletella 

5.1 Abstract 

Precipitation is next to temperature another important climatic factor for insects. Like 

all other climatic factors also the precipitation regime has changed with the climate change 

and will continue to change. It has been assumed, that the precipitation will shift into winter 

and that the summers in Lower Saxony will face more heavy rain storms intermitted by dry 

periods. Concrete studies to the influences of heavy rain on insects are rare. To test the 

influence of heavy rains on Aleyrodes proletella we developed an arena, in which different 

levels of heavy rain were tested. We used three rain levels, medium (0.6 l/min), heavy 

(2 l/min) and torrential (6 l/min) rain and exposed all life stages of the whitefly to them. The 

medium and heavy rain had no influence on the mortality of the whiteflies, just under the 

torrential rain treatment the mortality of the adults increased about 50% due to washing off 

effects from the leaves. The number of eggs laid after a torrential rain of 20 minutes also 

decreased about 50% and the hatching success of the eggs declined under all rain treatments. 

In opposite to this the rain had no effect on the development of all larval and the pupal stage. 

Repetitions with medium rain in the field had no effect on Aleyrodes proletella. 
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5.2 Introduction 

The precipitation regime will change in the future with more rain in the winter and 

lesser rain in the summer. In winter the precipitation will more often fall as rain instead of 

snow and in the summer it will rain less, but more heavy rain events intermediated with dry 

periods are expected (Hartmann et al. 2013).  

The German Weather Service defines heavy rain as a precipitation of 5 mm in 5 

minutes. The highest precipitation ever measured in Germany was measured in Füssen on 

25th of May, 1920 and was 126 mm in 8 minutes (Häuser 1922). And in other countries 

especially in the tropics precipitation can be even higher. In Barot, Guadeloupe in 1970 a 

precipitation of 38 mm in 1 minute or 401 mm in one hour in Shangdi, China was measured 

(WMO 1995). 

High rain can cause high direct mortality to herbivorous insects, in particular small, soft 

bodied species or indirectly affect insects by cooler temperatures (Bale et al 2002; Harrington 

et al. 2007). Heavy rains can increase the mortality especially of soil dwelling species (Fuhrer 

2003), such as Thrips tabaci pupating in the soil (Bergant et al. 2005) or also aphids moving 

on the soil when switching host plants after artificially dislodged (Leite et al. 2006; 

Harrington et al. 2007). But in the tropics it could be observed that the population of the 

whitefly Bemisia tabaci increased in the months with high rainfall (Dengel 1981) and 

populations are higher in regions with higher annual rainfall (Robertson 1985). This increase 

in the population is likely due to the increase in fresh leaves of the host plant and better plant 

growth due to higher soil moisture (Legg 1994). Higher precipitation in summer can lead to 

denser vegetation which is followed by more pest species, due to the higher food availability 

(Fuhrer 2003). But besides the direct and indirect effects on the mortality, rain can also 

influence other life history parameters. For example a delayed begin of the flight activity of 

aphids (Harrington et al. 2007) leading to an asynchrony between pest and host plant. Rain 

can also slow down the development or prohibit it as shown for the diamond back moth 

(Plutella xylostella) (Guilloux et al. 2003). Morsello et al. (2008) found that heavy rain can 

kill the larvae of Thrips tabaci and prevent the development. Other species like the cabbage 

fly Delia radicum (Esbjerg & Mogens 2005) are not influenced by rain. 
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We used the cabbage whitefly as a model organism in our experiments, because the 

populations of this species increased rapidly in the last ten years and the species has become 

one of the most important pest species in cabbage in Lower Saxony. Besides temperatures 

rain may have a crucial effect on the population development and the influence of the 

precipitation is necessary for prognosis models. Due to the fact that the whiteflies are most 

common in dry regions (Leite et al. 2005) and that, no studies, to our knowledge, about the 

population development of the cabbage whitefly under weather conditions like heavy rain, 

exist, we designed an experiment to test the adult behaviour and the development of the pest 

under heavy rain conditions.  

 

is a common in pest of Brassicaceae in Europe. The species is spreading heavily since 

the last ten years (van Alebeek 2008) and is assumed to become one of the main pest species 

in cabbage in the future. High temperatures and rain are known factors that slow down 

development (Leite et al 2006). Currently 4-5 generations can develop within one year in 

Germany. Mass occurrence is normally in late summer when egg to adult development only 

takes three weeks. (See also chapter 2.5.1.1) 

 

 

5.3 Material and Methods 

Before starting the experiments the occurrence of heavy rain events in Germany and 

especially in Lower Saxony were evaluated. Therefore the rain data of the years 1996-2010 on 

four randomly chosen weather stations were analysed. The results of this analysis were used 

to calculate the rain intensity in our rain arena to use rain intensities that already occur in 

Lower Saxony and may occur in the future. 

The cabbage whiteflies for the experiment were taken from the rearing of the Institute of 

Plant Disease and Plant Protection in Hanover. The insects were reared on Brussels Sprout 

5.2.1 The cabbage whitefly Aleyrodes proletella, (Fam. Aleyrodidae, Order Homoptera) 

5.3.1 Experiment
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under temperatures of 20 °C and light conditions of 18/6 (light/darkness). The insects were 

under artificial rearing for about five years and the initial specimen were obtained from the 

JKI in Braunschweig. Every six month new insects from the wild were added to the rearing. 

To test the influence of heavy rain, a rain arena with shower heads was constructed to 

simulate different rain intensities. The size of the rain droplets was measured using liquid 

nitrogen. The size of the droplets fluctuated between 2-4 mm, which is similar to the droplet 

size in nature. Then three different rain levels of medium (droplet size: 2-4 mm; amount of 

rain: 0.6 l/min*m²), heavy (droplet size: 2-4 mm; amount of rain: 2 l/min*m²) and 

extraordinary heavy/torrential (droplet size: 2-4 mm; amount of rain: 6 l/min*m²) rain were 

used. Nine Brussels sprout plants with three-day-old, synchronised whiteflies in clip-cages 

(five individuals per cage) were exposed under shower heads, the clip-cages were removed 

and rain delivered for twenty minutes. During this time the behaviour of whiteflies was 

observed to study if they are staying on the plants or flying away and after the twenty minutes 

the cages were clipped over the remaining flies. Those were counted and the missing assessed 

as dead. Then we visually observed the flies for the following five days in the greenhouse 

chamber, in which the experiments were conducted, to study the fecundity and delayed 

mortality. The experiments were repeated with eggs, larvae and pupae. For the experiments 

with the eggs five 2-day-old females were put on Brussels sprout plants and given two days 

for egg-laying. After the removing of the females the eggs were counted. For the experiment 

with the larvae and pupae, plants were infested with female whiteflies and after two days of 

egg-laying the females were removed and after the development of the eggs to larvae or pupae 

the plants were used for the experiments. 

In the second part of the experiment five adults were clipped on ten different plants, but 

these plants were exposed to rain in the field. The exposition took place in June and July 2011 

under a rain density of 0.5 l/min*m² and a droplet size of 2-4 mm The experiments were 

repeated with previously prepared plants with eggs, larvae and pupae. While it was raining the 

clip-cages were removed and after twenty minutes clipped again and the plants were brought 

inside. Again direct actual mortality was determined, the delayed mortality and the fecundity. 
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Data was visually checked for normality of residuals, creating histograms and box plots 

and if necessary transformed and pooled for the replicates. The percentage data for the 

mortality of the males, females and larvae was arc sine square root transformed. The counting 

data for the eggs was square transformed. 

Main emphasize of the experiment was on the relationships between mortality and the 

different rain intensities. We tested the effects of the rain intensities on the insects with an 

ANOVA. Every ANOVA which yielded significant results were followed by a post-hoc-test 

(Tukey's Test). IMB SPSS 19 was used for all statistical analyses. 

 

5.4 Results 

The analyses of the rain data showed that rain events with more than 5 l/h*m² appeared 

214 (±23) times, events with more than 10 l/h*m² 15 (±7.6) times and events with more than 

25 l/h*m² 3.5 (±0,6) times (demonstrating medium and heavy rain, respectively in accordance 

with the German Weather Service; Fig. 18). The rain data on the weather stations were 

checked hourly, making it impossible to know how long the rain shower really lasted. 

Furthermore it must be taken in account the heavy rain events are often small-scaled and 

therefore might not be detected by weather stations. 

 

5.3.2 Statistical analysis 
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Fig. 18: Frequency of heavy rain events in Germany on four randomly chosen weather stations over the 

years 1996-2010. 

.  

The different rain intensities of the simulated rain had a significant effect on the survival 

of the adults. Under the normal and the heavy rain the survival was about 80% compared to 

100% in the control, which was no significant difference. But under the third rain level, the 

torrential rain we found a mortality about 50%, which was significantly higher than the 

mortalities of the other rain intensities (F3,44 = 6.260; p < 0.001; Fig. 19). While it was raining 

the adults were hiding under the leaves and we couldn’t observe any flight activity. Due to 

this we assume that all missing insects were washed off the leaves and hence were dead. 

There was no delayed mortality due to the rain. All insects that survived the rain shower lived 

as long as the animals in the control. 

 

5.4.1 Simulated rain 
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Egg-laying during a 3-d period subsequent to rain exposure was reduced slightly but 

non-significantly for the treatment with torrential rain. (F3,30 = 1.511; p = 0.23; Fig. 20). For 

the other rain intensities no difference in the egg-laying could be found. 
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Fig. 19: Influence of different rain intensities on the immediate survival of adult Aleyrodes proletella 

directly after the rain. The rain lasted for 20 minutes. n = 9 for each treatment. Different 

characters representing significanes (α ≤ 0.05). 
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Fig. 20: Egg-laying of Aleyrodes proletella in three consecutive days after the females have faced a 20 

minute rain shower. n = 9 for each treatment. 

 

After the short-time rain the egg development decreased to less than half of the control 

data (F3,30 = 4.664; p = 0.009; Fig. 21), but there was no difference between the different rain 

intensities. Several egg clutches were destroyed by the rain, but there was no difference in the 

amount of destroyed clutches. 
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Fig. 21: The influence of different rain intensities on the development of Aleyrodes proletella eggs. The eggs 

faced a 20 minute rain shower and developed then under greenhouse conditions. n = 9 for each 

treatment. Different characters representing significances (α ≤ 0.05). 

 

 

The different rain intensities didn’t influence the development of the L1-larvae 

(F3,15 = 0.775; p = 0.53, Fig. 22 (A)) and it had also no influence on the development of the 

L3-larvae (F3,10 = 1.172; p = 0.39; Fig. 22 (B)). 
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The simulated rain shower had also no effect on the development of the pupae 

(F3,10 = 3.128; p = 0.097; Fig. 23). In the control and under the medium rain nearly 100% of 

the pupae developed to adults. Under the heavy rain and the torrential rain around 80% 

developed to adults, but the difference was not significant. 
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Development of the L1-larvae
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Fig. 22: The influence of different rain intensities on the development of the larvae (A) the L1-larvae of A. 

proletella and (B) the L3-larvae. The larvae faced a 20 minute rain shower and developed then 

under greenhouse conditions. n = 9 for each treatment. 
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Fig. 23: Development of the L4-larvae after a rain shower. The larvae faced a 20 minute rain shower and 

developed then under greenhouse conditions. n = 9 for each treatment. 

 

 

 

No differences in the mortality of the adults exposed to real rain and the adults in the 

control could be found (F1,19 = 0.72; p = 0.41; Fig. 24). In the experiment the mortality was a 

little bit higher but this was not significant. 

 

5.4.2 Real rain 
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Fig. 24: Survival of the adults after a twenty minute rain shower in the field with an intensity of 

0.5 l/min*m² and a droplet size of 2-4 mm with five adults per plant and ten replications. n = 9 for 

each treatment. 

 

There was also no difference in the mortality of the L1- or L3-larvae (F1,19 = 0.415; 

p = 0.53; F1,19 = 0.44; p = 0.52, respectively). The mortality in the control as well as in the 

treatment was around 85% (Fig. 25). 
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Fig. 25: Mortality of the larvae after a twenty minute rain shower in the field with an intensity of 

0.5 l/min*m² and a droplet size of 2-4 mm compared to the control (A) L1-larvae (B) L3-larvae. 

With ten replicates per treatment. n = 9 for each treatment. 
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The egg-laying was slightly influenced by the rain (F1,19 = 0.74; p = 0.4; Fig 26 (B)). 

Females which faced the rain laid fewer eggs than the females in the control. The 

development of the eggs was not significantly influenced by the rain (F1,19 = 0.14; p = 0.7; Fig 

26 (A)). Under rain a few less eggs developed. 

 

 
 

 

 

 

 

 

The development of the pupae was not influenced by the rain. In both the treatment and 

the control the survival was around 95% (F1,19 = 0.29; p = 0.6; Fig. 27). 
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Fig. 26: Egg-laying and hatching aftere a rain shower in the field (A) Egg-laying after the females have 

faced a rain shower with an intensity of 0.5 l/min*m² and a droplet size of 2-4 mm (B) hatching 

out of eggs which have faced a rain shower with an intensity of 0.5 l/min*m² and a droplet size of 

2-4 mm. n = 9 for each treatment. 
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Fig. 27: Development of the L4-larvae in the field  after a twenty minute rain shower with an intensity of 

0.5 l/min*m² and a droplet size of 2-4 mm with ten larvae per plant and ten replications. n = 9 for 

each treatment. 

 

5.5 Discussion 

In the simulated experiments nearly all adults died under the torrential rain due to 

washing off of the leaves. Under the other rain levels almost no mortality could be observed. 

Studies on Bemisia tabaci showed that rain seem to have nearly no influence on this whitefly 

species (Asiimwe et al. 2007). Although studies in tropical regions show that after heavy rain 

showers or the raining season the populations of both Bemisia tabaci and the spiralling 

whitefly (Aleurodicus dispersus) rapidly decline due to washing off all stages of the whiteflies 

of the leaves (Banjo 2010), Golding (1936) assumes that the decline of the population is due 

to mechanically destruction of the whiteflies. Whiteflies are normally found on the lower side 

of the leaves and are thereby protected from rain. Under the torrential rain they were 

dislocated and killed by the rain drops or washed away. The movement of the plants due to 

rain drops is important for the dislodging of small insects e.g. Sitobion avenae both due to 

5.5.1 Simulated rain 
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active movement or washing off (Mann et al. 1995). The potato aphid Macrosiphum 

euphorbiae shows an increased movement under rain events, perhaps to find shelter 

(Narayandas & Alyokhin 2006). In the experiment of von Berg et al. (2008) rain decreased 

the population of an aphid species by 27% and about 57% of the aphids were dislodged. On 

the soil they often became prey for ground-dwelling predators (von Berg et al. 2008). Other 

aphids like the Yellow Sugarcane Aphid (Sipha flava) also suffers high mortality after rain 

storms due to mechanical destruction by rain drops (Miskimen 1970). Not only pest but also 

their parasitoids are influenced by rain showers. The wasp Aphidius rosae stops searching for 

oviposition places and egg-laying under rain events (Fink & Völkl 1995). But moderate 

rainfall might even provide conditions that promote development or lead to higher movement 

between or within habitats (Pellegrino et al. 2013). But insects have adaption strategies to 

avoid the danger of rain storms. Some insects seem to be able to detect a coming rain storm 

via the change in the atmospheric pressure and Pellegrino et al. (2013) could show that mating 

behaviour of the cucurbit beetle (Diabrotica speciosa), the true armyworm moth (Pseudaletia 

unipuncta) and the potato aphid (Macrosiphum euphorbiae) decreased under decreasing 

atmospheric pressure, indicating that the insects change their behavior to avoid death or injury 

due to unfavorable conditions. Other insects like the parasitoids Trichogramma evanescens 

and Trichogramma pretiosum also react with a decreased flight activity to a rapid change in 

atmospheric pressure (Fournier et al. 2005). It is likely that several flying insects species are 

able to detect changes in barometric pressure and change their behaviour accordingly. 

Mosquitoes in contrast survive rains due to their small bodies and their strong exoskeletons. 

In contact with the mosquito the rain drop losses a little momentum and therefore its impact 

on the mosquito (Dickerson et al. 2012). Therefore we assume that the whitefly is adapted to 

rain events and reacts with a decreased flight activity and searching of shelter. But torrential 

rain leads to a mechanical destruction of the plants and consequently also of the whiteflies. 

The eggs development and the egg-laying were influenced, whereas only the influence 

in the egg development was significant. Only half of the eggs under all rain treatments 

hatched compared to the control due to the damage of the egg clutches. The destruction of the 

egg clutches was visible directly after the rain shower and the eggs were washed off of the 

leaves. The egg-laying of the females which were opposed to the rain dropped to one third 

under the torrential rain treatment compared to the control, but this result was not significant. 

Is this reduced egg-laying due to the direct impact of the rain or is the impact of the high air 

humidity which follows the rain? It is known for spider mites that they lay more eggs under a 
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dry climate than under high air humidity (Boudreaux 1958). Also clover mites Bryobia 

praetiosa are negatively affect by additional irrigation (Kramer & Cranshaw 2009). The 

decreased egg-laying might also be a consequence of the change in the behaviour. It is likely 

that the females spend some time after the rain with drying and cleaning (Fink & Völkl 1995). 

In opposite to this the larvae, regardless of larval stages, and the L4-larvae were not 

influenced by the rain. The larvae and the L4-larvae are sessile and they are enclosed by a 

wax layer. This wax layer is a very effective protection for the larvae and even torrential rain 

cannot harm them. In opposite of this Fishpool et al. (1995) reported that the population 

decrease is a consequence of the reduced oviposition activity. This is in consensus with our 

observation. 

 

In nature precipitation has several impacts on insects, either direct or indirect. They can 

change the conditions of the host plant via water supply or they can have effects on the natural 

enemies (Beirne 1970). Directly they can impinge the insects and kill them or dislodge them. 

In our experiment we only tested the direct effect on the whiteflies. 

The real rain in nature had no significant influence on the insects at all. The rain 

intensity (0.5 l/min*m²) was comparable to the medium rain in our experiment 

(0.6 l/min*m²). Under simulated circumstances this rain intensity significantly reduced the 

development of the eggs by washing the eggs off of the leaves. We couldn't observe this 

effect in the field. Comparable rain events could be observes around 124 times in Germany in 

the last 14 years, representing one medium rain shower every 1.5 month. Heavier rain events 

were observed 15 times in the last 14 years, leading to one heavy rain per year and torrential 

rains were observes only four times, representing one torrential rain event every four years. 

Furthermore it must be considered that heavy rain events often occur only for a very short 

time period lasting for a few minutes and only seldom for twenty minutes as in our 

experiment. Due to this we can assume that rain, even heavy rain showers cannot reduce the 

population of the whiteflies. 

We can summarise that the rain has an effect on the egg stage and on the adults, which 

are no longer protected by the wax layer, but not on the other developmental stages.  

 

5.5.2  Real rain 
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5.6 Conclusion 

We assume that heavy rains will have no influence on the population development of 

the cabbage whitefly. Just torrential rains, which occurred in the last century only once, might 

have a negative influence on the survival and development of Aleyrodes proletella. But these 

heavy rains will also destroy the cabbage plants and the loss for the farmers due to the rain 

will be much higher than the loss due to the feeding and pollution of the pest. 
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6 Influence of drought on the development of Aleyrodes proletella 

6.1 Abstract 

To test the influence of droughts on the cabbage whitefly, adult Aleyrodes proletella 

were deployed on plants which are then stressed with three different water levels (drought-

stress: <15% water holding capacity; normal: 40-50% water holding capacity; water-stressed: 

>80% water holding capacity). A further arrangement has the plants water-stressed before 

deploying the insects. With increasing water level the plants' biomass above and below 

ground increased significantly while the C/N-ratio decreased under the dry treatment. In the 

first part of the experiment the water level had no significant influence on the egg-laying and 

the development of the eggs and the larvae. In the second part of the experiment the number 

of eggs laid und hence the number of larvae and developing adults declined with decreasing 

water levels and the animals exposed to the dry treatment would be smaller in size. We could 

find no correlation between the C/N-ratio and the number of eggs, thus we assume that the 

change in the plant nutrients is not the limiting factor for the insects. In the second part of the 

experiment, we found a correlation between the plant size and the number of eggs laid. The 

plant size seems to be an important factor for the population development of the cabbage 

whitefly. 
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6.2 Introduction 

The Intergovernmental Panel on Climate Change (Hartmann et al. 2013) predicts that 

extreme events like droughts will occur more often in future. Not only in summer the 

probabilities of droughts are increasing, but mainly in spring and in autumn droughts are to be 

expected. In the last years, especially in April droughts were visible. In April 2007 the rain 

was only at 6% of the average monthly precipitation, in April 2009 at 49%. In March 2011 the 

precipitation did not exceed 19% of the monthly average and March 2014 was very dry as 

well (30%). In 2011 also the autumn was very dry. Beside the manifestation in temperature 

and precipitation regime, droughts can also bear an important indirect impact on insects 

(Pritchard et al. 2007). Droughts change the nutrients in leaves and plant saps and thereby 

change the insects’ hosts. Normally, droughts are reducing the nitrogen level in plants and are 

increasing the carbon level (Staley et al. 2007). Changing concentrations of elements (carbon, 

nitrogen, phosphorus) may affect herbivores, them being often limited by the availability of 

nitrogen and negatively affected by high contents of carbon, in regard to structural (e.g. 

lignin) and chemical defence (Mattson 1980). Besides carbon and nitrogen although the leaf 

chemicals (Schädler et al. 2007) are important. Droughts weaken the plants, making them 

more attractive for herbivores (Fuhrer 2003). Heavy droughts can also decrease the amount of 

VOCs, that are produced by the plant to communicate with other plants, attract beneficials or 

have antibacterial or antifungal effects (Laothawornkitkul et al. 2009). Many insects react to 

droughts favourably, but the different feeding guilds react to drought differently: Gall builders 

react negatively, while chewing insects do not react at all. Mining insects profit slightly, 

whereas phloem feeding insects even flourish (Fuhrer 2003) due to a higher concentration of 

amino acids in the phloem (Mengel 1991). As especially heavy droughts lead to a higher 

viscosity of the phloem (Mengel 1991), this extreme condition negatively affects all feeding 

guilds (Staley et al. 2006). A drought in spring would have a negative effect on herbivores, 

mykophages, omnivores and predators (Frampton et al. 2000).  

Droughts can also change the species community or the prey-predator-interaction. 

Staley et al. (2006) could show that the parasitation rate on Stephensia brunnichella is 

increased under drought conditions. Yet, also the opposite can be found: Parasitoids under 

tropic conditions react negatively to drought, leading to a higher pest population (Hance et al. 
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2007). Drought can also decrease the density of beneficials (Rosenzweig et al. 2001), e. g., 

spiders and beetles (Thomson & Hoffmann 2010), while lady beetles are more common in dry 

fields (Thomson & Hoffmann 2010). It does not only influence the various feeding guilds 

differently, the habitat is also important. Thus, insects which live in the soil or develop in the 

soil, like the carrot fly Psila rosae suffer more under drought (Burn 1984). 

A surplus of water has negative effects on plants as well, because it causes anaerobe 

conditions in the root area (Brunhold et al. 1996), killing fine roots and inducing decreased 

photosynthesis and growth. The concentration of carbon dioxide in the tissue increases, while 

the levels of nutrients like nitrogen, phosphor and potassium decline (Brunhold et al. 1996). 

The arguments for choosing the cabbage whitefly as a model organism for our 

experiments are twofold: The population of this species has increased in the last decade and it 

has become one of the most important pest species in cabbage cultivation. With the 

assumption, the relevance of Aleyrodes proletella will show even more in the future, it is 

important to test the reaction of this species under drought conditions to then compile robust 

forecast models. Based on data which is available on other sucking insects, the whiteflies will 

presumably react positively to drought. Existing data, however, does not allow assumptions 

on how they will react to extreme droughts or plants under water stress. 

 

belongs to the family of Aleyrodidae, which are distributed worldwide, with a focus in 

the tropical regions. Especially in warmer climates with low rainfall A. proletella is a serious 

cabbage pest (Leite et al. 2005). Cabbage whiteflies have spread heavily in the last ten years 

(van Alebeek 2008) and prefer warm temperatures for their development. Optimal 

developmental temperatures range between 28-33 °C. Especially in warm summers and 

autumns mass occurrences are observed. (See also chapter 2.5.1.1.) 

 

 

 

6.2.1 The cabbage whitefly Aleyrodes proletella, (Fam. Aleyrodidae, Order Homoptera) 
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6.3 Material and Methods 

The cabbage whiteflies for the experiment were taken from the rearing of the Institute of 

Plant Disease and Plant Protection in Hanover. The insects were reared on Brussels Sprout at 

temperatures of 20 °C and light conditions of 18/6 (light/darkness).  

The Brussels sprout (Brassica oleracea (L.) var. gemmifera DC. ”Hilds ideal®“) plants 

were grown two months in greenhouses at average temperatures of 20 °C. After this time the 

height of the plants and their leaf diameter were measured and the number of the leaves were 

counted as a parameter for plant developmental stage and to make plants more comparable. 

Afterwards, adult whiteflies and adult cabbage aphids were deployed in clip-cages on 

different leaves of the plants The plants were fertilised weekly with Wuxal® (AGLIKON), 

liquid fertiliser. The experiments were conducted in a climate chamber with a constant 

temperature of 21 °C (± 1 °C), a humidity of 50% and long-day-conditions (LD 16/8).  

To test the influence of drought- and water-stress on the development of Aleyrodes 

proletella, an experiment with three different water treatments of the soil were performed: in 

which on one part the plants were stressed due to drought (<15% water holding capacity) and 

in the other due to flooding (>80% water holding capacity). The third treatment served as a 

control (40-50% water holding capacity). The water capacity was measured with the TDR-

Bodenfeuchtesensor Fieldscout TDR 100 Soil moisture (Spectrum Technologies Inc.). In the 

first part of the experiment (Experiment No. 1), two adult female whiteflies were clipped on 

the plants and on the same day the water- or the drought-stressing started. The whiteflies were 

given one week to lay eggs after which they were removed and the eggs counted. 

Additionally, eggs and the adults were counted every third day to follow their development to 

larvae and later on to adults. Larvae that developed from the eggs were recorded in the 

different developmental stages. For each water level, a set of ten replicates was used.  

In the second part of the experiment (Experiment No. 2), the insects were clipped on 

plants which were already two weeks water- and drought-stressed. From there on, the 

experiment proceeded like the aforementioned. At the end of both experiments the plant 

height and the above- and belowground biomass were measured and the number of leaves was 

counted. During the experiment the stomatal conductivity was measured using the leaf-

6.3.1 Experiment
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porometer AP4 DELTA-T DEVICES-Cambridge-U.K. Ten replicates per water level were 

used as well. 

 

To analyze the C/N-ratio in the leaves, two to three leaves of every plant were dried and 

ground to fine powder. The samples were analyzed at the Institute of Plant Nutrition 

(Universität Hannover) using a Micro-Dumas-Quantitative analysis of combustion, employing 

the CNS-device vario EL III Element Analyzer of the company Elementar 2003. 

 

Data was visually checked for normality of residuals, creating histograms and box plots 

and was transformed and pooled for the replicates if necessary. The percentage data for the 

larval development and the C/N-ratio were arc sine square root transformed and the counting 

data for the leave number, the biomass and the eggs were square root transformed 

Main emphasis of the experiment was on the relationships between different water 

levels, the plant parameters and the insect development. The effects of the water levels and on 

the insects were tested with an ANOVA. Every ANOVA which yielded significant results 

was followed by a post-hoc-test (Tukey's Test). IMB SPSS 19 was used for all statistical 

analyses. 

The relationships of plant biomass, C/N-ratio and insect life data were evaluated 

determining Pearson’s correlation coefficient across values averaged per genotypes. 

 

6.4 Results 

The three different water treatments had a significant effect on the plant size 

(F1,2 = 90.72; p < 0.001). The results show that plants growing under drought stress (<15% 

water holding capacity of the soil) were much smaller than plants under normal water 

conditions (40-50% water holding capacity) or under water stress (>80% water holding 

6.3.2 C/N-analyses 

6.3.3 Statistical analysis 

6.4.1 Impact of drought stress on plants 
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capacity). The plants under drought stress showed no growth at all and got even smaller due 

to the missing water pressure in the stem (Fig. 28) The water treatment had also a significant 

effect on the number of leaves (F2,21 = 4.29; p = 0.05). In the drought stressed treatments less 

leaves were found compared to the normal and water-stressed plants. But the experiment 

(comparison between experiment No.1 and No.2) had an even greater significant effect on the 

leave number (F1,21 = 13.84; p = 0.014; Fig. 54 Addendum) 
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Fig. 28: Influence of water levels on plant growth during the experiment in the two different experiments 

(Experiment No. 1: Plants were stressed after colonisation by insects; Experiment No. 2: 

Colonisation took place after stressing of the plants). n = 10 for each experiment and treatment. 

Different characters representing significances (α ≤ 0.05). Capitals representing comparison 

between experiments, small letters within the experiment  

 

 

The water treatment had a significant effect on the leaf length. In the first experiment 

(Experiment No. 1) the leaves in the drought treatment were significantly smaller (F2,28 = 

2.85; p = 0.076), with a leaf length of 6.95 cm ± 0.18 cm (mean ± standard error). The leafs in 

the normal treatment and in the water-stress treatment had nearly the same length (8.12 cm ± 

0.40 cm; 8.28 cm ± 0.40 cm, respectively). In experiment No. 2 the leaves were significantly 

smaller (F2,29 = 4.70; p = 0.018) in the drought stressed treatment as well, with a leaf length of 

7.06 cm ± 0.26 cm (mean ± standard error). The leaves in the normal treatment had a length 
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of 8.3 cm ± 0.27 cm (mean ± standard error) and the leaves in the water-stressed treatments a 

length of 8.49 cm ± 0.40 cm (mean ± standard error). In both cases the growth in size was 

calculated to avoid effects of different plants sizes at the beginning of the experiment. 

 

The different water treatments had significant influence on the above- (F2,60 = 25.89; 

p < 0.001) and below- (F2,59 = 99.84; p < 0.001) ground biomass, both fresh and dry. With 

increasing water capacity the biomass increased (Fig. 29; Fig. 55 Addendum). It was also 

obvious, that those plants under the high water treatment were bigger and had more leaves 

and the leaves seemed even greener than the leaves in the other treatments. 
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Fig. 29: Influence of water capacity and experiment on the biomass above and below ground (dry) 

(experiment No. 1: Plants were stressed after colonisation by insects; experiment No. 2: 

Colonisation took place after stressing of the plants). n = 10 for each experiment and treatment. 

Different characters representing significances (α ≤ 0.05). Capitals representing comparison 

between experiments, small letters within the experiment. 

 

 

The different water treatments had a significant effect on the stomatal conductivity 

(F2,29 = 16.44; p < 0.001). With increasing water holding capacity of the treatment the 

stomatal conductivity in the leaves increased. (Fig. 30) 
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Fig. 30: Influence of water treatment on stomatal conductivity in the second experiment, representing 

median, upper and lower quartile, upper and lower whisker and aberrations. n = 10 for each 

treatment. Different characters representing significances (α ≤ 0.05). 

 

 

Our analysis of the C/N-ratio showed that the experiment had a significant effect on this 

ratio (F1,59 = 4.95; p = 0.03). Therefore, the ratio for every experiment was analyzed 

separately. In the first experiment the C/N-ratio increased with increasing water treatment 

(F2,28 = 16.86; p < 0.001; Fig. 31(A)). In the second experiment the water capacity had no 

significant effect (F2,29 = 0.43; p = 0.66). The C/N-ratio was highest under the normal water 

capacity and nearly the same under the water stressed treatment. Just under the drought 

stressed treatment the C/N-ratio decreased (Fig. 31(B)). 
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Fig. 31: Influence of the different water treatments in the C/N-ratio in the leaves (A) experiment No.1 

insects were clipped on not yet stressed plants) (B) experiment No. 2 (insects were clipped on 

already stressed plants). n = 10 for each experiment and treatment. Different characters 

representing significances (α ≤ 0.05). Graphs without characters show no significances. 

 

Independent of whether insects were already present on the plant when drought stress 

occurred (Experiment No. 1), or colonising plants experiencing already drought stress 

(Experiment No. 2) the number of eggs laid per day ranged between 0 and 56. While the 

experiment had a highly significant effect on the egg-laying of the females (F1,59 = 7.88; 

p = 0.007), the different water treatments had not (F2,59 = 1.89; p = 0.16). Experiment No. 1 

revealed nearly no differences in egg-laying (F2,28 = 0.56; p = 0.58) since the plants were not 

stressed until the insects were clipped. In Experiment No. 2, where the plants had been 

stressed before the insects were clipped, the egg-laying decreased significantly with 

decreasing water capacity (F2,28 = 0.64; p = 0.006; Fig. 32). 

6.4.2 Impact of drought stress on insects 
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Fig. 32: Influence of experiment and water capacity on the egg-laying of two females over eight days 

(experiment No. 1: Plants were stressed after colonization by insects; experiment No. 2: 

Colonization took place after stressing of the plants). n = 10 for each experiment and treatment. 

Different characters representing significances (α ≤ 0.05). Capitals representing comparison 

between experiments, small letters within the experiment. 

 

As a consequence, the water treatment had no influence on the number of larvae 

(Fig. 33 (A)) and adults (F2,28 = 0.72; p = 0.50; F2,28 = 0.49; p = 0.62, respectively; Fig. 

33 (B)) in experiment No. 1, but it had an effect in experiment No. 2 (F2,28 = 6.79; p = 0.004; 

F2,28 = 5.57; p = 0.01, respectively). 
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Fig. 33: Number of (A) larvae depending on water treatment and experiment (B) Number of adults, that 

emerged of the eggs laid on the experimental plants(experiment No. 1: Plants were stressed after 

colonisation by insects; experiment No. 2: Colonisation took place after stressing of the plants). 

n = 10 for each experiment and treatment. Different characters representing significances 

(α ≤ 0.05). Capitals representing comparison between experiments, small letters within the 

experiment. 

 

The experiments had a significant influence on the development from eggs to larvae 

(F1,58 = 7.95; p = 0.007) but not from the larvae to the adults (F2,58 = 1.31; p = 0.26). In the 

first experiment 79.28% ± 4.46 (mean ± standard error) of the eggs developed to larvae (on 

the >80% water capacity level: 74.62% ± 10.79; on the 40-50% water capacity level: 77.93 ± 

7.47 and on the <15% water capacity level: 85.28% ± 3.67) and in experiment No. 2 93.71% 

± 1.85 (mean ± standard error) of the eggs developed to larvae (on the >80% water capacity 

level: 94.83% ± 2.17; on the 40-50% water capacity level: 95.29 ± 2.36 and on the <15% 

water capacity level: 91% ± 4.63). The differences between the treatments and their impact on 

the development from larvae to adults were not as big. In experiment No. 1 85.53% ± 10.34 

(mean ± standard error; on the >80% water capacity level: 76.58% ± 10.96; on the 40-50% 

water capacity level: 83.9 ± 4.45 and on the <15% water capacity level: 71.11% ± 9.25) and 

in the second experiment 76.28% ± 3.5 (mean ± standard error; on the >80% water capacity 

level: 75.08% ± 4.72; on the 40-50% water capacity level: 84.94 ± 3.17 and on the <15% 

water capacity level: 68.8% ± 8.45) of the larvae developed to adults. In both experiments the 

water treatment had no significant effect on both the development of the larvae and the adults.  
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In the end of experiment No. 2 the size of the exuviae was measured to evaluate if the 

plants’ stress did influence their size. The results show that the whiteflies were biggest under 

the normal water treatment and smallest growing up on drought-stressed plants (F2,19 = 6.28; 

p = 0.009; Fig. 34). 
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Fig. 34: Influence of water treatment on the size of the exuviae in experiment No. 2 (colonisation took 

place after stressing of the plants, n= 8 per water level, showing median and quartile). n = 10 for 

each treatment. Different characters representing significances (α ≤ 0.05). 

 

To study the important correlations the experiments were separated and analysed each at 

its own, but for better comparison they'll be discussed together. In experiment No. 1 the plants 

were water-stressed after the colonisation of the insects took place. In experiment No. 2 the 

plants were water-stressed before the colonisation took place. 

 

The different plant parameters were expected to significantly correlate with each other, 

e.g., the aboveground biomass was correlated with the belowground biomass in experiment 

No. 1 and experiment No. 2 (r = 0.772; p < 0.001; r = 0.811; p < 0.001; respectively; Fig. 35). 

With an increase in the aboveground biomass the belowground biomass also increased. 

 

6.4.3 Correlations
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Fig. 35: Correlation between above and below ground biomass in the (A) experiment No. 1 (plants were 

stressed after colonisation) and (B) experiment No. 2 (plants were stressed before colonisation 

by insects took place). n = 10 for each experiment and treatment. 

 

The C/N-ratio in the leaves was measured after the experiments: It did correlate with the 

size of the plants (r = 0.726; p < 0.001) and the number of leaves at the beginning of the 

experiment (r = 0.518; p < 0.001). It also correlated with the plant growth parameters, which 

were measured at the end of the experiment as well. With an increasing size of the plant at the 

beginning of the experiment the C/N-ratio further increased (Fig. 36 (A)). In experiment No. 

2 in contrast to experiment No. 1, the C/N-ratio was not correlating with the plant parameters, 

e.g., the aboveground biomass (r = 0.126; p = 0.51; Fig. 36 (B)). 
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Fig. 36: Correlation between C/N-ratio and the aboveground biomass (A) in the first experiment (plants 

were stressed after colonisation by insects) and (B) in the second experiment (colonisation took 

place after stressing of the plants). n = 10 for each experiment and treatment. 

 

In experiment No. 1 the number of eggs was correlated with the number of larvae and 

the number of adults (r = 0.953; p < 0.001; r = 0.882; p < 0.001; respectively; Fig. 56 

Addendum). With an increasing number of eggs the number of adults increased. As in 

experiment No. 1, the number of the eggs was correlated with the numbers of larvae 

(r = 0.982; p < 0.001) and adults (r = 0.91; p < 0.001) in experiment No. 2. The number of 

adults and larvae were correlated as well (r = 0.931; p < 0.001). With an increasing number of 

eggs, the number of adults increased (Fig. 58 Addendum). 

 

But the number of eggs was not correlated with the plant growth parameter in 

experiment No. 1 (Fig. 37(A)). The number of eggs and larvae in experiment No. 2 was 

correlated with plant parameters especially the biomass (r = 0.559; p = 0.001; r = 0.570; 

p < 0.001, respectively). With an increasing amount of aboveground biomass the number of 

eggs increased (Fig. 37(B)). 
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Fig. 37: Number of eggs correlated with the fresh aboveground biomass (mg) (A) experiment No. 1 (plants 

were stressed after colonisation by insects) experiment No. 2 (colonisation took place after 

stressing of the plants). n = 10 for each experiment and treatment. 

 

In the first experiments the number of adults was slightly correlated with the plant size 

at the start (r = -0.409; p = 0.028; Fig. 38 (A)) and the end of the experiment (r = 0.-439; 

p = 0.017; Fig. 58 Addendum). If the plants were bigger at the beginning of the experiment 

as well as in the end, more adults developed.  

The number of adults is supplementary to the measured plant parameter correlated with 

the plant growth (r = 0.387; p = 0.035). With increased plant growth, the number of adults 

increased as well (Fig. 38 (B)). 
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Fig. 38: (A) Number of adults correlated with the plant size at the beginning of the experiment in 

experiment No. 1 (plants were stressed after colonisation by insects) (B) correlation between 

number of adults and the plant growth during the experiment in experiment No. 2 (colonisation 

took place after stressing of the plants). n = 10 for each experiment and treatment. 

 

The number of eggs, larvae and adults was not correlated with the C/N-ratio in both 

parts of the experiments (Fig. 39). 
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Fig. 39: C/N-ratio correlated with the number of eggs A) in the first experiment (plants were stressed after 

colonisation by insects) (B) in the second experiment (colonisation took place after stressing of the 

plants). n = 10 for each treatment and experiment. 

 

As expected the stomatal conductivity correlates with all the plant parameters, e.g. the 

aboveground biomass (r = 0.723; p < 0.001; Fig. 40). With increasing stomatal conductivity 

the above ground biomass increased. 
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Fig. 40: Correlation between stomatal conductivity and above ground biomass in experiment No. 2 

(colonisation took place after stressing of the plants). n = 10 for each treatment. 

 

 

Hence with increasing stomatal conductivity the number of animals (eggs, larvae and 

adults) increased (r = 0.746; p < 0.001; r = 0.764; p < 0.001; r = 0.746; p < 0.001, 

respectively; Fig. 41). Due to the fact that the stomatal conductivity is correlated with the 

plant growth parameters and the number of whiteflies are also, this correlation was expected. 
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Fig. 41: Correlation between the number of eggs and the stomatal conductivity in treatment No. 2 

(colonisation took place after stressing of the plants). n = 10 for each treatment. 

 

 

The size of the exuviae did correlate with the development of the larvae (r = 0.454; 

p = 0.044). With increasing larval development time, size of the exuviae, increased as well 

(Fig. 42). 
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Fig. 42: Correlation between the size of the exuviae and the larval development in treatment No. 2 

(colonisation took place after stressing of the plants). n = 10 for each treatment. 

 

 

6.5 Discussion 

The water level had a significant effect on plant growth. Plants under the wet and the 

normal treatment were bigger, had more leaves and a higher above- and belowground biomass 

compared to plants under the drought treatment. Plants under the wet treatment were slightly 

bigger than those under normal treatment. The green colour of the leaves also seemed more 

intense although this wasn't measured. Plants under the dry treatment didn’t grow at all or got 

smaller due to water loss in the stem tissue and early wilting and dying of the lower leaves 

was observed.  

Surprisingly, the results showed the plants to flourish best under high soil humidity, 

while actually the opposite was to be expected due to rotting of the roots and anaerobic 

conditions (Brunold 1996). As a result of the anaerobe conditions, a poisoning by the 

accumulation of specific metabolites and a poor intake of nutrients for both root and shoot 

should have occurred (Liao & Lin 2001). Apparently, the experiment failed to create 

anaerobic conditions, so that the plants were able to grow very well and use all the water 

r = 0.454  

p = 0.044 
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without facing the problems of rot due to missing oxygen. To create anaerobic conditions, it 

would have been necessary to use planting cylinders, which hold the water above the soil 

surface. It is likely that the plants would have died quickly under these conditions. We 

expected a small size of the plants under dry conditions, since a lack of water generally leads 

to wilting and dying (Veihmeyer & Hendrickson 1927; Stuhlfauth et al. 1987; Baher et al. 

2002). Furthermore, the root weight of the plants grown under dry conditions was expected to 

be higher, to counter the low amount of water. Several studies show, that plants store more 

biomass belowground than aboveground in face of water limitation (Masinde et al. 2005) or 

reduce the aboveground biomass instead of root biomass (Zhang et al. 2008). Drought reduces 

the net photosynthesis and the stomatal conductivity and hence the biomass (Naderikharaji et 

al. 2008). But other studies like the one of Kage et al. (2004) also found no differences in the 

ratio of shoot and root biomass of cauliflower after water limitation.  

 

The results showed that the C/N-ratio in the leaves of the first experiment was lowest in 

the dry treatment and nearly the same in the normal and the wet treatment, whereas the ratio 

was highest in the wet treatment. In the second experiment, the C/N-ratio in the leaves was 

also lowest in the dry treatment but slightly higher in the normal treatment than in the wet 

one. 

It was assumed that plants under water stress have a lower C/N-ratio due to the less 

growth. As a consequence of limited water in the soil, the leaves close their stomata leading to 

decreased carbon assimilation (Faria et al. 1998; Liu & Stützel 2002). And as a consequence 

of the water limitation, the plants are not able to take up sufficient amounts of nutrients from 

the soil (Rouphael et al. 2012). Studies on pepper plants showed no influence of limited water 

supply on the C/N-ratio (Estirate et al. 1994). Furthermore, Huluka et al. (1994) found no 

different impacts of various irrigation systems on the C/N-ratio in cotton leaves.  

Another source of differences could be an increase in nitrogen in the leaves of the 

drought-stressed plants (Huberty & Denno 2004). Staley et al. (2007) found drought to 

increase the amount of nitrogen in the leaves, whereas it would decrease the amount of 

carbon.  

In general, drought stress makes plants more vulnerable to insect attacks, with sucking 

insects reacting particularly positive (Fuhrer 2003). The infestation on Summer squash 

(Curcurbita pepo) by Bemisia tabaci and consequently the silvering of the leaves for example 

occur mainly under drought stress (Paris et al. 1993). Infestations of Bemisia argentifolii on 
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cotton have shown to be more intense on water-stressed plants compared to well-watered 

plants (Flint et al. 1995). Many insects prefer drought-stressed plants for oviposition like the 

Beet Armyworm (Spodoptera exigua) (Showler & Moran 2003). But heavy droughts have 

negative effects on all feeding guilds (Staley et al. 2006; Schoeneweis 1986; Mattson & 

Haack 1987). Reasons for this phenomenon may be increased nutrient and especially nitrogen 

levels (Rhoades 1983; White 1984), decreased plant defences (Rhoades 1983) and a generally 

better environment for the pests (Bregon 1983).  

Significant differences in the intensity of egg-laying appear in the executed 

experiments. In experiment No. 1, in which the insects were clipped on not-stressed plants, 

the amount of eggs was nearly the same in all treatments. In the second experiment, the egg-

laying decreased with decreasing water level. Altogether, the rate of egg-laying was higher in 

the second experiment. The insects of experiment No. 2 were clipped two weeks later on the 

plants compared to the insects in experiment No. 1. Due to the fact that the water capacity in 

the control level (40-50% water holding capacity) was the same in both experiments, we 

assumed the same amount of egg-laying in both treatments. The higher amount of eggs and in 

consequence the larvae and the adults in the experiment No. 2 might be due to abiotic factors, 

which we didn't take into account. In contrast to our results, Flint et al. (1995) found that 

Bemisia tabaci preferred drought stressed plants. And Isaacs et al. (1998) could find no 

difference in the preference of Bemisia tabaci on differently watered melons (Cucumis 

melon). 

The results of the first experiment show that the different water supply of the plant has 

no significant effect on the development of the eggs and larvae to adults. Once the eggs are 

laid they develop to adults. It has been proven for Trialeurodes vaporariorum that the eggs 

are provided by water through the egg pedicel (Byrne et al. 1990). At the beginning of the 

experiment, the plant tissue was able to provide enough water for the eggs. Also, in the 

second experiment, the tissue water was enough for the egg development. It is likely that a 

certain amount of drought stress favours the colonisation of herbivores, but that after a long 

drought, the amount of pest insects decrease (Mattson & Haack 1987). In farmland 

experiments Frampton et al. (2000) found that drought decreased the number of herbivores. 

Insect response to drought seems to be species- or at least feeding-guild specific, whereas 

leaf-miners for example react species-specific to drought (Staley et al. 2006). 

In the second experiment the stress level due to water loss was so high that the insects 

suffered and reduced egg-laying. An explanation for the bad performance of herbivores on 
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plants under water stress might be that the reduction of turgor and water content impede the 

insect in exploiting the increased amount of nitrogen (Huberty & Denno 2004). An elevated 

viscosity of the plant sap would hinder them to take up enough amino acids. The oviposition 

rate of the sawfly Diprion pini, e.g., correlates with the water content in the needles of the 

host tree (Pasquier-Barre et al. 2001). The increase in pest outbreaks on water-stressed plants 

may also be an indirect effect. The dry and warm conditions promote the development of the 

insects (Larsson 1989). The experiments’ results support this thesis their setup did not 

promote the insects’ environment, but stressed the plants. In contrast to the results of Rhoades 

(1983), who found plant defence to decrease under water stress, or Laothawornkitkul et al. 

(2009), who could show that VOCs, which are part of the plants defence system, are reduced 

by droughts, several authors found opposite effects and an increase in plant defensiveness. 

Under stress conditions plants metabolise more secondary compounds to repel insects (Baher 

et al. 2002; Stuhlfauth et al. 1987; Tang et al. 1995, Inbar et al. 2001). The reduced egg-laying 

raises the question if the female is so weakened, that it is not able to lay any more eggs on the 

stressed plants or that it suspends egg-laying in order to find a better host. The preference-

performance hypothesis suggests that females of phytophagous insects prefer oviposition 

places which support the best feeding ground for their offspring (Gripenberg et al. 2010; 

Videla et al. 2006). Skinner (1996) could show that Bemisia argentifolii prefers well watered 

plants for egg-laying. Females of the whitefly Bemisia tabaci also prefer to oviposit on host 

plants favourable for the larval development, supporting the preference-performance-

hypothesis (Jiao et al. 2012). 

The results of the size of the exuviae support the thesis of Huberty & Denno (2004) 

insofar the insects are not sufficiently able to use nutrients under drought stress. It was found 

that the exuviae were biggest under normal water treatment and smallest under the dry 

treatment. Without finding significances, the data shows that the developmental rate from 

eggs to larvae and from larvae to adult is smallest on the drought stressed plants. The host 

plants do not provide sufficient nutrients or water for the development of the larvae. It might 

also be possible that a change in the secondary compounds cause the poorer development. 

Mao et al. (2004) could show that the larvae of sweet potato weevil (Cylas formicarius) had a 

significantly higher mortality under drought.  

The nitrogen level is lowest under the dry treatment leading to malnutrition of the larvae 

and pupae. An increased drying of the soil leads to an immobilisation of soil nutrients, since 

the pores are filled with air and exacerbate the transport of nutrients to the roots (Nye & 
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Tinker 1977). Although the C/N-ratio had no influence on the number of eggs laid nor on the 

hatching success, it could have a negative impact on the performance of the larvae. This 

assumption is supported by the fact that the size of the exuviae correlates with larval 

development. It was observed, that pupae under dry treatment hatched one day earlier 

compared to the other treatments. In other studies, the pupae of Spodoptera littoralis had a 

higher body weight and were bigger in dry treatment (Walter et al. 2012). In that study 

however, the plants were not as heavily water-stressed as were our plants and mere moderate 

stress might even enhance the performance of the herbivores (Scheirs & De Bruyn 2005). 

Water-stress influences phytophagous insects depending on their feeding preferences: 

Chewing and leaf-mining insects perform worse on stressed plants, whereas sucking and 

boring insects profit from stress (Koricheva et al. 1998). A moderate amount of drought stress 

favours the development of the larvae of Brevicoryne brassicae on oil rape, but under heavy 

stress the aphids became restless and rejected the heavy drought-stressed plants (Miles et al. 

1982). The plant stress hypothesis predicts that insects perform better on stressed plants 

(White 1974), whereas the plant vigour hypothesis predicts that insects prefer vigorous plants 

(Price 1991). Several studies did show herbivorous insects to prefer stressed plants (De Bruyn 

1995; Saikkonen et al. 1995; Tisdale & Wagner 1991), yet other studies (Cornelissen et al. 

2008; McQuate & Connor 1990; Carr et al. 1998) and results of this paper promote the plant 

vigour hypothesis.  

 

Several similarities and some significant differences were found in the two experiments. 

In both the above-ground and below-ground biomass was significantly positive correlated. 

This was to be expected, yet it has often been found that plants under drought-stress develop a 

higher root biomass to counteract the water deficit (Liu & Stützel 2004). In experiment No. 1, 

the C/N-ratio in the leaves was positively correlated with the plant size and the biomass, 

whereas it did not correlate in experiment No. 2. 

 

The number of eggs in both experiment did correspond with the number of larvae and 

adults. Since the eggs are the basis for the number of adults, this was also to be expected. 

Nevertheless, it might have been possible that some eggs or larvae suffered high mortality 

resulting in a lacking correlation. 

6.5.1 Correlations
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In the first experiment the number of eggs did not correlate with plant biomass, while in 

the second experiment it did. This difference in the egg laying could be a consequence of the 

drought. The plants in the second experiment were stressed two weeks before the insects were 

clipped, leading to already visible drought effects. In experiment No. 1 the number of adults 

did positively correlate with the plant size before the experiment and the leaf size. In the 

second experiment the number of adults was positively correlated with the plant growth. In 

both experiments no correlation between the number of whiteflies, regardless of stage, and the 

C/N-ratio was found. It is unusual that the number of insects is not correlated with the carbon 

or nitrogen content in the leaves. In general, plant palatability increases with a decreasing 

C/N-ratio (Mattson 1980; Hartley & Jones 1997). Generalist as well as specialist herbivores 

should react positively to increased nitrogen (Coley et al. 2006; Mattson 1980; Schädler et al. 

2007). However, some studies found a negative correlation between number of herbivores and 

nitrogen concentration in the leaves (Kay et al. 2007; Valladares & Lawton 1991). A possible 

explanation for such a negative correlation is a degradation of the host quality by the 

herbivore (Valladares & Lawton 1991). As a result, an initially high-quality, preferred host 

may become an inferior one. For instance, Schädler et al. (2007) showed that due to their 

function as nitrogen sink, the number of aphids per plant was negatively correlated to the 

nitrogen content of their host plant in a controlled greenhouse study. Also, environmental 

factors could explain the results. Thus, we suggest that the leaves with a high nitrogen ratio 

have a low ratio of secondary compounds. This could explain the missing correlation between 

the egg numbers and the C/N-ratio, due to the fact that specialist are attracted by secondary 

compounds and use them for host-plant location and host-plant identification (Chew 1979; 

Feeny et al. 1983; Honda 1986; Pereyra & Bowers 1988).  

 

6.6 Conclusion 

The results suggest the population of the whitefly Aleyrodes proletella to decline under 

long drought periods. But it is likely that the whiteflies will adapt quickly conditions of 

limited water supply. Experiments with Drosophila melanogaster could show, that larvae 

which developed under drought stress, are more resistant to dry conditions they encounter as 

adults (Aggarwal et al. 2013). Furthermore, vegetables are regularly irrigated to avoid yield 

loss and therefore provide optimal conditions for whitefly development. 
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7 Impact of cold winters compared to mild winters on the development 

and synchrony of the cabbage whitefly Aleyrodes proletella and the 

parasitoid Encarsia tricolor 

7.1 Abstract 

The predicted temperatures increases will regard especially the cold extremes, leading 

to warmer nights and warmer winters. Those mild winters may have an important effect on 

the population development of the cabbage whitefly and the synchrony between it and its 

natural enemy the parasitoid Encarsia tricolor. The development of Aleyrodes proletella is 

mainly controlled by the temperature, while the diapause of the wasp is controlled by the 

photoperiod. An experiment with mini-greenhouses was designed, representing conditions 

close to agricultural realities to test the influence of mild winters compared to cold winters. 

These greenhouses provided nearly natural conditions, but were closed to other species and 

would allow to control the temperatures via a heating device. Results showed that the 

whiteflies had a reproducing diapause in December and in the beginning of January. After this 

diapause the egg-laying started earlier in the heated greenhouse compared to the unheated, but 

surprisingly more adults survived in the cold houses than in the heated. In both the heated and 

the unheated houses we found no living Encarsia tricolor. In the field none of the larvae or 

the mummies on the lower leaves of Brussels sprout plants survived and only adult females of 

A. proletella were found on the upper leaves at the end of the winter.  
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7.2 Introduction 

In Germany the temperature increased about 0.9 °C in the last hundred years. 

Temperature increase will be probably in the cold extremes leading to warmer winters and 

warmer nights (Rosenzweig et al. 2001) and to a shift in the differences of day and night 

temperatures. A temperature increase of 3 °C in winter is expected (Kromp-Kolb 2003). An 

increase in the average winter temperature and an early beginning of spring is already visible 

(Ahas et al. 2002). 

A warmer winter can have several effects on insect populations. It may lead to a higher 

initial population due to lower mortality during winter and an earlier beginning of population 

development in spring (Bale et al. 2002; Fuhrer 2003; Harrington et al. 2007). Another factor 

influencing the population development might be the promotion of asexual clones and 

anholocyclic life cycles of aphids as reported for the green peach aphid Myzus persicae or the 

grain aphid Sitobion avenae. They survive better under warmer conditions (Bale et al. 2002) 

and are more fertile, building up bigger populations under these conditions. The winter 

temperature has also a direct effect on the phenology of aphids (Zhou et al. 1995). Warmer 

winters are crucial for immigrating species allowing them to colonise new areas early and 

more intensively (Ward & Masters 2007) or they may even be able to overwinter in regions 

which have been too cold in the past (Cannon 1998), so that they can reach host plants early 

and in a more vulnerable stage. 

The model species for the following experiments is the cabbage whitefly Aleyrodes 

proletella. The population size of the whitefly increased rapidly in the last ten years and it has 

advanced to be one of the most important pest species in cabbage (van Albeek 2008). The 

females of this species overwinter on oil rape plants, cabbages stalks which remain on the 

field or wild Brasscia plants (Richter 2010). In spring they started to lay eggs as soon as 

temperatures are sufficient.  

Encarsia tricolor is the main specialized natural enemy of the whitefly occurring in 

temperate regions such as Lower Saxony. The parasitoids overwinter as diapausing pupae; the 

end of the diapause is triggered by the photoperiod. This species has the potential to become 

important for the integrated plant protection against whiteflies (Herz 2012). 
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It is likely that pest and parasitoid react differently to a temperature increase in 

wintertime causing an asynchrony between prey and parasitoid. Most parasitoids like 

Encarsia tricolor survive the winter in a diapause stage, reducing all metabolic functions. The 

end of diapause is triggered by the photoperiod and not by temperature (Tobin et al. 2008). 

But warm winters and springs might lead to an earlier ending of the diapause (Tobin et al. 

2008). The whiteflies in contrast overwinter as females without a diapause and their activity 

starts with increasing temperatures. If winter becomes milder, the activity of the whiteflies 

will start earlier than the activity of E. tricolor. 

Such asynchronies can already be observed between pest species and their host plants 

(Thomson & Hoffmann 2010). Due to the warming in the last century many spring plants 

blossom one or two weeks early (Parmesan 2006), and if the hatching time of aphids is 

heritable (Komazaki 1986; Mittler & Wipperfurth 1988; Komatsu & Akimoto 1995; Dixon 

2003) this causes an asynchrony between herbivore and host. Dixon (2003) could show that 

aphids which hatch before or after bud-burst are less fit than aphids that hatch at bud-burst. 

This phenomenon is leading to a high mortality of the aphids in spring (Dixon 2003). 

Furthermore, asynchronies between prey and parasitoid can be observed, with a decreased 

rate of parasitism on caterpillars in a more variable climate (Stireman et al. 2005). 

As the diapause of Encarsia tricolor is triggered by the photoperiod and not by 

temperature, warmer winters would lead to an asynchrony between the whiteflies and their 

parasitoid so that aphid populations would start to grow before parasitoids leave the 

overwintering mummy stage. To evaluate if this is the case, we developed a semi-field 

experiment in a protected eco-system, yet close to natural conditions. In it both species and 

their population development would be monitored under simulated conditions of warm 

winters with nearly no freezing and under normal winter conditions with temperatures under 

the freezing point. 

 

is a common pest of Brassicaceae in Europe. The importance of the species is increasing 

since the 1970th and especially in the last year the species has spread heavily (van Alebeek 

2008). The species overwinters on oil rape plants, on kale plants or on herbs like tetterwort 

(Cheledonium majus) as mated females or as pupae (Richter 2010). (See also chapter 2.5.1.1) 

 

7.2.1 The cabbage whitefly Aleyrodes proletella, (Fam. Aleyrodidae, Order Homoptera) 
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Encarsia tricolor is an autoparasitoid of whiteflies that occur in Europe and Russia. The 

mummies overwinter in their hosts and in late spring the adults hatch. The basal 

developmental temperatures and the developmental time are not known for Encarsia tricolor. 

Also the lower lethal temperature threshold is unknown. (See also chapter 3.2.2.) 

  

7.3 Material and Methods 

The cabbage whiteflies for the experiment were taken from the rearing of the Institute of 

Plant Disease and Plant Protection in Hanover. The insects were reared on Brussels Sprout at 

temperatures of 20 °C and light conditions of 18/6 (light/darkness).  

To test the influence of cold winters compared to mild winters small greenhouses were 

constructed which represent mini-ecosystems. These 12 greenhouses were made of steel 

frames with a surface area of 4 m² (2x2 m) and a height of 2 m. The lower part was stringed 

with UV-permeable gauze to allow air-ventilation and the upper part and the roof were 

stringed with UV-permeable foil. Half of the houses were equipped with a heating device. At 

the beginning of September eight ten-week-old cabbage plants were placed in each of the 

greenhouses and buried into the soil. Then 6 female 3-day-old whiteflies per plant were 

clipped on the Brussels sprouts. The whiteflies for this experiment were reared outside three 

months to allow the insects to adapt to field conditions. Each month the mortality and egg-

laying of the whiteflies was recorded. In three randomly chosen heated and three unheated 

houses Encarsia tricolor mummies on leaves were placed additionally. The whole winter the 

temperature was recorded using Tinytag Data logger. The experiments run in winter 

2010/2011 and 2011/2012. 

In addition to this experiment, ten plants in the field (experimental field of the Institute 

for Plant Protection and Plant Disease, University of Hanover) with Aleyrodes larvae and 

Encarsia tricolor mummies were chosen and every month the number of eggs, larvae, pupae, 

hatched adults and mummies were counted.  

7.2.2 The parasitoid Encarsia tricolor, Fam. Aphelinidae, Order Hymenoptera 

7.3.1 Experiment
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Data were visually checked for normality of residuals, creating histograms and box 

plots and if necessary transformed and pooled for the replicates. The percentage data for the 

mortality of the adults and the development of the larvae and eggs were arc sine square root 

transformed. To show the influence of the heating devices bar charts were created for the 

experiments in winter 2010/2011 and scatter plots for the results of the winter 2011/2012. Due 

to the fact that several problems occurred in the experiments an accurate statistical analysis 

was not implemented. 

Main emphasis of the experiment was on the relationships between influence of the 

heating and the different month on the mortality and the development of the whiteflies.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

7.3.2 Statistical analysis 
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7.4 Results 
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Fig. 43: Comparison of the heated and unheated greenhouses in December 2010. 

 

In the winter of 2010/2011 the temperatures ranged from -9 °C up to 5 °C. In the heated 

greenhouses temperatures were 3-4 °C warmer on average than in the unheated houses. 

Nevertheless, in spite of heating temperatures as low as -5 °C did occur there also (Fig. 43). 

The temperatures in November, January and February were comparable to the winter 

2011/2012 (Fig. 48). The lower developmental temperature for Aleyrodes proletella is 

6.88 °C and the lethal temperature is unknown. The lower developmental temperature and the 

lethal temperature for Encarsia tricolor are unknown, either. The lower developmental 

temperature for Diaeretiella rapae, another parasitoid in temperate regions, is 3.5 °C and the 

lethal temperature is not investigated. 

 

7.4.1 Winter 2010/2011 
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7.4.1.1 The cabbage whitefly 

After the first month (November), the counting did not indicate significantly different 

numbers of adults in the heated and unheated houses. The number of adults was even slightly 

higher in the unheated houses. In December and January only a few living adults were found 

in the unheated houses, but none in the heated ones (Fig. 44 (A)). All other specimen had 

perished. The amount of eggs decreased rapidly during January both in the heated and in the 

unheated greenhouses. In November some females still laid eggs leading to an egg amount of 

120% compared to the number of eggs at the beginning of the experiment. In December the 

number of eggs decreased in the unheated houses, while it increased in the heated houses. In 

January only a few eggs were left (Fig. 44 (B)). These eggs could have not been additionally 

laid, because all adults had died.  
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Fig. 44: (A) Amount of living adults of Aleyrodes proletella (B) Amount of eggs laid by Aleyrodes proletella 

in the heated and unheated greenhouses in winter of the first year. n = 6 for each treatment. 

 

 

The amount of larvae was very high in November in the unheated houses, indicating 

that several eggs hatched successfully and developed to larvae. In December still a lot of eggs 

hatched, but January no larvae were to be found anymore. In the heated houses the hatching 

success was high as well, but not as high as in the unheated once in November, whereas it was 

higher in December. Both in heated and unheated greenhouses no L1-larvae were found in 
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January (Fig. 45 (A)). Nearly all L3-larvae survived in November in the unheated house, 

whereas only 70% survived in the heated one. In December no L3-larvae were found in the 

unheated houses, but about 20% in the heated ones. In January few L3-larvae were found in 

both the unheated and the heated houses (Fig. 45 (B)). The L3-larvae in the unheated houses 

in January were newly developed larvae and not surviving larvae of the previous month.  
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Fig. 45: (A) Amount of L1-larvae of Aleyrodes proletella (B) Amount of L3-larvae of Aleyrodes proletella in 

the heated and unheated houses in winter of the first year. n = 6 for each treatment. 

 

 

7.4.1.2 Parasitoids 

In the first year no Encarsia tricolor could be found after the winter. 
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Fig. 46: Temperatures in winter comparing heated and unheated greenhouses. The red line illustrates the 

average temperature in the heated houses and the blue line the average temperature in the 

unheated houses. 

 

 

In the winter 2011/2012 the temperatures ranged from 0 °C up to 10 °C in December 

and January. At the beginning of February the temperatures dropped down to -17 °C. In the 

heated houses the temperature was on average 3-4 °C higher compared to the unheated 

greenhouses (Fig. 46, Fig. 47). Nevertheless in February temperatures down to -10 °C 

occurred in the heated houses for two weeks during night time with temperatures as cold as    

-16 °C in the unheated houses.  

 

7.4.2 Winter 2011/2012 
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Fig. 47: Temperature difference between the heated and the unheated greenhouses in December 2011.  

 

7.4.2.1 The cabbage whitefly 

The number of adults decreased over the winter. They survived longer in the unheated 

houses than in the heated ones. In November all adults were still alive but after one month the 

survival rate dropped to 58% in the heated houses and to 80% in the unheated. In February 

and March nearly no living adults remained in the heated houses, while in the unheated still 

69% (13% respectively) survived (Fig. 48).  
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Fig. 48: Number of the adults of Aleyrodes proletella which survived in the second winter comparing the 

heated and unheated greenhouses. The data were collected on different plants, i.e., a decrease 

must not necessarily show mortality. n = 6 for each treatment. 

 

 

The number of laid eggs increased with preceding months. There were more eggs in the 

heated greenhouses. In November in both heated and unheated houses no eggs were found 

and it seemed as if the females were in an egg-laying diapause. Then in December we found 

five eggs per plant in the heated houses and 1.5 eggs in the unheated ones. In January we 

could observe 3 eggs in the unheated and about 4 eggs in the heated houses. In February the 

number of eggs increased in the unheated houses to 4.5 eggs per plant and in the heated it was 

stable with 4 eggs per plant. In March the females started to reproduce especially in the 

unheated houses, where 14 eggs per plant could be found (Fig. 49). 
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Fig. 49: Egg-laying of Aleyrodes proletella during the second winter comparing heated and unheated 

greenhouses. The data were collected on different plants, i.e., a decrease must not necessarily 

show mortality. n = 6 for each treatment. 

 

 

No L1-larvae were found in November and in December only one larva was found in 

the heated house. In February the number of larvae increased significantly in the heated 

houses, while in the unheated still no larvae were found. In the unheated houses the first 

larvae emerged in March, whereas the number in the heated houses decreased (Fig. 50). At 

this point L3-larvae were found in the unheated houses for the first time. We found 4.3 larvae 

per plant in the heated houses and less than one in the unheated ones (Fig. 51). By the end of 

March several Brussels sprouts plants in the heated houses blossomed.  
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Fig. 50: Development from eggs to larvae of Aleyrodes proletella in the second winter comparing heated 

and unheated greenhouses. The data were collected on different plants, i.e., a decrease must not 

necessarily show mortality. n = 6 for each treatment. 
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Fig. 51: The development of L3-larvae of Aleyrodes proletella in the second winter in heated and unheated 

greenhouses. The data were collected on different plants, i.e., a decrease must not necessarily 

show mortality. 
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7.4.2.2 Parasitoids 

In the second year no Encarsia tricolor were found in the greenhouses, either. 

 

At the first counting at the beginning of December nearly no whitefly egg clutches on 

the lower leaves of the plants and only few L1-larvae were found, but several pupae and 

mummies with E. tricolor. Several whitefly adults on the lower leaves were registered, yet it 

was assumed that they had hatched recently and did not use the leaves as oviposition site, 

although the upper leaves were populated by many adults. So did adults with egg clutches but 

nearly no larvae and pupae. In average we found 6 L3-Larvae per leaf, 25 pupae per leaf, 28 

mummies per leaf and 6 adults per leaf. 

At the second counting in January half of the leaves had died and on these leaves only 

few living pupae and mummies could be registered. On the other leaves also all of the 

mummies and pupae had died and no egg clutches or L1-larvae were to be found. Still there 

appeared adults, which seemed recently hatched. At this counting there were 2 L3-larvae per 

leaf, which is 10% of the number in the beginning, 9 pupae (37%) per leaf, 9 mummies (40%) 

per leaf and 3 adults per leaf. No adult parasitoids were to be found in the field during the 

observation period. 

At the third counting in February all leaves had wilted and all the mummies and pupae 

on them had died. No living whiteflies were recorded. In this month we only found living 

females in the upper leaves of the other cabbage plants than the experimental plants (Fig. 52). 

 

7.4.3 Development of the whiteflies in the field 
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Fig. 52: (A) Number of eggs, L1-larvae and adults of Aleyrodes proletella (B) Survival and development of 

the whitefly larvae and the Encarsia tricolor mummies on cabbage leaves in the field in the second 

winter To evaluate the amount of insects, plants were labeled and the living insects were counted 

monthly. n = 10 for each treatment. 

 

 

7.5 Discussion 

The results indicate the whiteflies to have an egg-laying diapause in December and the 

first weeks of January. In January even adults which were brought to the nursery, with long-

day conditions and temperatures of 20 °C, stopped laying eggs. Only after three weeks in the 

nursery, egg-laying started again. At the end of February the females started to lay eggs again, 

but mainly in the heated houses. In other whitefly species, e.g., the bayberry whitefly 

Parabemisia myricae, the reproduction is also reduced in winter (Swirski et al. 1986). The 

results in our experiments are in consensus with Adams (1986b) who found that the ovarian 

development decreases between September and December and that body fat increased during 

this time. The critical photoperiod that will induce this egg-laying diapause is LD 15.5/8.5 

hours (Adams 1985). Under this conditions 60% of the females went into egg-laying diapause 

(Iheagwam 1977). This reproductive diapause is independent of temperature and can be 

induced in face of temperatures of up to 15 or 20 °C (Iheagwam 1977). It is also important if 

the whiteflies live under constant short-day-conditions or if they live under developing short-

7.5.1 Overwintering under semi-field conditions
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day-conditions from long-day-conditions; The first case results in a weak inhibition of ovarian 

development, while in the second scenario the pre-emergence oogenesis is completely 

inhibited (Adams 1985b). The peak photoperiodic sensitivity is in the third larval instar 

(Adams 1985b). The termination of the diapause is in contrast to its induction temperature-

dependent (Adams 1986).  

In the heated greenhouses the developmental rate of the larvae was accelerated. The 

number of L3-larvae was also higher in the heated houses. The adults survived better in the 

unheated houses. 

In contrast to Aleyrodes proletella, the adults of the cotton whitefly Bemisia tabaci are 

most prone to cold while the eggs are less vulnerable (Bosco & Caciagli 1998). Yet, those 

specimen are common in regions with less than 5 frost days per winter, whereas our whiteflies 

were taken from the field in Hanover and already adapted to cold temperatures. In other 

regions like California, Bemisia tabaci overwinters in an active stage (Mayberry & Perring 

1992; Mallah et al. 2001). In an experiment with Bemisia tabaci biotype B the mortality of 

eggs, which were exposed 10 hours to -10 was 86.6%, and the mortality of nymphs and adults 

was even higher (88.4 and 100%, respectively; Lin et al. 2007). Although Bemisia tabaci is a 

close relative to the cabbage whitefly, it is a tropical species and a comparison with other 

species of the temperate region would be useful. The grain aphid Sitobion avenae, which is 

common in Germany, has a cold torpor point of 0.5 °C after a short period of cold hardening 

(Powell & Bale 2006). Thus, 80% of the nymphs and 68% of the adults can survive 

temperatures below -8 °C (Powell & Bale 2004). Aphides acclimated to cold can survive even 

temperatures as low as -12 °C after cold hardening (Powell & Bale 2005). In the field the 

aphids suffer mortality at temperatures below -4 °C (Williams 1980). The lower lethal 

temperatures (LLT50) for the Myzus persicae range from -12.7 to -13.9 °C (Hazell et al. 

2010), with first-born nymphs surviving temperatures of -15.9 °C (Clough et al. 1990). The 

host-alternating aphid Pemphigus bursarius overwinters as asexual hiemalis in the soil and as 

adult on poplars. The hiemalis have a LLT50 of -13.5 °C and can survive this temperature for 

up to 18 days (Phillips et al. 2000). The super-cooling point changes with the season, leading 

to an LT50 of -6.9 °C in October and -12.2 °C in January for Brevicoryne brassicae (Saeidi et 

al. 2012). In autumn the amount of glycerol or other alcohols like mannitol increases in 

insects, effectively serving as an antifreeze agent (Sømme 1964; Block et al. 1990). Aleyrodes 

proletella is the most cold tolerant whitefly species. In other outdoor studies as well as in our 
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study the populations of whiteflies thinned dramatically in winter and increased rapidly again 

in spring (Gerling 1984, Richter 2010). 

 

No parasitoids were recorded in both the heated and the unheated houses in spring. 

Normally the parasitic wasp overwinters as mummy in the host on fallen leaves (Nucifora 

1985), e.g., in Encarsia quaintancci, E. pergandiella, Eretmocerus haldemani and all 

parasitoids of Trialeurodes abutilonea. Encarsia formosa, a close relative, needs frost-free 

habitats to overwinter. Even temperatures of 10 °C for 13 days reduce its hatching success by 

about 45%; the hatching success of mummies exposed to 2 or 5 °C respectively declined 

rapidly after three days (Lacey et al. 1999). But other studies could show that the adults can 

survive temperatures of 5 °C for several days (Kajita 1983). The parasitoid Aphidius ervi, 

which is used in Integrated Pest Management in Germany (Katz, unpublished) and Aphidius 

rhopalosiphi overwinter as diapausing mummies and can survive long term exposures of 0 

down to -10 °C (Langer & Hance 2000). The parasitoid Aphidius colemani even has a super-

cooling point of -22 °C (Colinet et al. 2007). Another common parasitoid in Lower Saxony, 

the wasp Diaeretiella rapae, suffers a mortality of 55% after 32 days with temperatures under 

5 °C (Silvia et al. 2013).  

The longer the exposure to cold, the more the water content (water mass/ dry mass) 

increased in overwintering Aphidius colemani mummies, leading to a starving of the 

mummies (Colinet et al. 2006 b). A short rise in temperature can lead to a recovery of the 

parasitoids (Colinet et al. 2006 a), but in this paper’s experiments the low temperatures 

continued for several days. 

During the experiments it was not possible to hold the temperatures above 0 °C, due to 

very cold night temperatures. We assume that the low temperatures in the houses were too 

cold for Encarsia tricolor leading to a mortality of all individuals. In fallen leaves they are 

protected from very low temperatures.  

 

On the leaves we chose for our counting, mainly larvae and pupae were registered. The 

adults settled on the upper leaves for overwintering, because they prefer fresh leave material. 

Over the course of the winter most leaves died and the larvae and pupae on them died as well, 

due to a lack of nutrient availability. In the field under cold conditions the whiteflies seem the 

7.5.2 Overwintering in the field 
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overwinter completely as mated females. Living females were found even after nights with 

temperatures as low as -18 °C. The survival at these cold temperatures may be due to a 

protection of the whiteflies by the leaves, because the living insects on our field were hiding 

in the core of the kale plants and the animals on the lower and less protected leaves were 

dead. Furthermore is the amount of glycerol or other alcohols like mannitol increased in 

insects in winter, effectively serving as an antifreeze agent (Sømme 1964; Block et al. 1990). 

Males are more vulnerable to cold temperatures and only few of them survive the winter 

(Adams 1985). One explanation for this observation could be the smaller body size of the 

males. The Bergmann Rule postulates that bigger animals are better protected under cold 

circumstances due to the smaller surface in relation to the volume (Meiri 2010). Regarding 

other whitefly species, it has been found that merely larvae and females overwinter (Swirski 

et al. 1986). In the field, whiteflies overwinter regularly on cabbage plants, like Brussels 

sprout or kale, which are harvested late and often on oil rape plants (Richter 2010).  

In the field we found no surviving parasitoids on our test plants. In this winter the 

temperatures had fallen down to -18 °C and the mummies on the lower leaves were not 

protected from the cold. In the field the parasitoids overwinter mainly on fallen leaves, which 

provide frost-protected habitats. Due to the fact that Encarsia tricolor and Diaeretiella rapae 

live under the same climatic conditions we assume that the lethal temperatures are similar in 

both species. Diaeretiella rapae suffers a high mortality after 32 consecutive days with 

temperatures under 5 °C (Silvia et al. 2013) and it is likely that Encarsia mummies also have 

a high mortality at temperatures under 0 °C. The resettlement in the field might occur from 

individuals which overwintered on frost-free places. 

 

7.6 Conclusion 

Since the whiteflies in heated greenhouses, in spite of higher mortality, started earlier 

with the egg-laying and their larvae would developed faster, we assume that the whiteflies 

will be able to build up bigger populations and appear earlier in spring after mild winters. No 

parasitoids survived the experiment, but we assume that this shows no general trend. If the 

break of the diapause of the parasitoid Encarsia tricolor depends on the photoperiod, this will 

lead to an asynchrony between prey and predator. 
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We propose to repeat the experiments by bringing heavily infested plants into the 

greenhouses and clip several adults in clip-cages on at least five leaves. This would allow a 

population development over the winter of free whiteflies with a choice for the adults 

regarding the plant part, e.g., leaf level and a controlled observation of the insects in the clip-

cages. The parasitoid should as well be available in all developmental stages. Furthermore we 

would propose to infest plants on an experimental field with Aleyrodes proletella and 

Encarsia tricolor and to evaluate their numbers constantly. 

Especially the heating device must be improved: Despite additional improvised 

insulation with bubble wrap, the temperatures in the heated greenhouses fell below -10 °C. 

Maybe, a stronger heating device with heat sensor opposite of the heating or even under floor 

heating would be useful, although a under floor heating does not reflect the cooling from the 

air naturally. With such a device a drying of the plants due to frozen soil would be avoided as 

well, also this would not represent natural conditions for the plant, but near natural conditions 

for the insects. Furthermore, the plants in the greenhouses must be effectively protected 

against voles. This can be achieved by mesh cages or by applying older plants which are not 

palatable for the voles. Also mesh dug in under the greenhouses or sound devices might be 

helpful. 

For the overwintering in the field it would be useful to take half of the plants with 

whitefly larvae and mummies of Encarsia tricolor into the lab and study the rate of hatching 

under controlled conditions. Furthermore, it would be useful to open some of the mummies 

and study if they really contain larvae of the parasitoid. In spring trapping plants in the field 

could show resettlement with parasitoids. 

We would also suggest to study the lower lethal temperatures for Aleyrodes proletella 

and Encarsia tricolor under controlled conditions in the lab to estimate the mortality in winter 

under freezing conditions and to assess if milder winters would favour asynchronisation. 
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8 Final Discussion 

An increase of the population of the cabbage whitefly Aleyrodes proletella in the last 

decade and the results of our study, lead to the assumption that this insects are very robust 

against high temperatures and are promoted by an increase in the average temperature. Our 

results show that the whiteflies are robust to even very high temperatures of 42 °C and that 

also repeated heat waves, which might occur in the future in Germany and in Lower Saxony, 

have no negative influence on the population density. They are if anything even positive for 

A. proletella due to reducing of the developmental time. Furthermore the adults and the larvae 

are protected by the leaves due to evaporative cooling. 

The rain, another climatic factor, has also just a slightly negative effect on the 

population development of the cabbage whitefly. The mortality was mainly due to washing 

off of the leaves and mechanical destruction of the egg clutches. Torrential rain was the only 

rain level, which had an important effect on the mortality of the adult whiteflies and such 

heavy rains are not likely to occur several times a year in Lower Saxony. Due to this the 

whiteflies will be able to compensate the loss in connection with the rain, quickly. But 

normally the whiteflies cease flying under bad weather conditions and hide under the leaves. 

The larvae are also protected by the leaves and the wax layer.  

Associated with the heavy rains in summer are more frequent summer droughts. The 

negative effects of the drought, reduced egg-laying and a poorer larval conditions, won't be so 

distinct in the field, because the farmers will irrigate their plants to avoid harvest loss due to 

water shortage. The insects in out experiment hadn't had a chance to chose another plant for 

the oviposition and we assume that they will chose a more sufficient plant for oviposition in 

the field. In addition to it summer droughts are often associated with high temperatures and 

we therefore assume that the increase in temperature will outweigh the negative effects of the 

drought.  

The mild winters which are expected in the future will as well have ambivalent effects 

on Aleyrodes proletella. On the one hand our results indicate that adults will suffer a higher 

mortality under warmer winters, on the other hand the egg laying is starting earlier and the 

larvae develop faster. Despite the losses of the adult in winter, we assume that the positive 

effects of the earlier egg-laying and the faster larval development will predominate.  
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All in all we assume that the importance of the cabbage whitefly as a pest species in 

cabbage will further on increase and become even more dramatic for cabbage farmers than 

today. There are only few effective pesticides against whiteflies available and the living on 

the lower side on the leaves, complicates the application on the cabbage plants. Hence it is 

important to evolve new ways of plant protection and develop a sufficient model to forecast 

the emergence of the whiteflies (Fig. 53). 

 

 
Fig. 53: Model on a daily basis to forecast the population development of Aleyrodes proletella under 

changing climatic conditions. 

 

A forecast model will help the farmers and the plant protection commissioners to 

forecast the appearance of the whiteflies and calculate the instant on time on which pesticides 

can be used most successful or natural enemies can be released.  

It might also be important to breed cabbage varieties which are resistant to the feeding 

of the whiteflies or which are not very palatable to them. Short observations show that they 

seem to prefer green kale and avoid purple varieties if it is possible. Changed cultivation 

methods may as well help to reduce the problems. Brussels sprout planting for a harvest later 

in the year reduces the infestation compared to an early planting and harvesting till beginning 

of November (Schultz et al. 2010). Moreover it is important to evolve pesticides which can 
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perforate the wax layer and reach the larvae and pupae. It is also important to engineer crop 

protection sprayer, which can spray on the lower side of the leaf to reach as many insect as 

possible. Despite of this arrangements it will not be possible to get all insects and other ways 

of plant protection like beneficials will be necessary. This postulation is supported by the fact 

that the EU is discussing about a prohibition of neonicotinoids, one of the active ingredients 

against whiteflies. 

One possibility in the control of A. proletella is the parasitic wasp Encarsia tricolor, 

which naturally occur in Lower Saxony. An close relative of E. tricolor, E. formosa is 

successfully used in greenhouses against Trialeurodes vaporariorum. Nowadays E. tricolor is 

not able to control whiteflies sufficiently enough, but this might change under a warmer 

climate. Our results indicate that the parasitoid is also robust against high temperatures. And 

although the break of the diapause is controlled by the photoperiod, some studies indicate that 

the diapause can also be broken by high spring temperatures (Tobin et al. 2008). In an 

experiment in Kassel, Germany Encarsia tricolor was successfully used in combination with 

mesh. The use of Encarsia reduced the infestation about 33% leading to an yield increase of 

23% (Schultz et al. 2010) or even an reduction of 42% at an earlier release of the parasitoid 

(Liebig 2010). In southern Germany the use of Encarsia tricolor was even more successful 

leading to such an high decrease of whiteflies that a spraying with pesticides wasn't necessary 

any more (Hilgensloh 2010). This experiments indicate that the control with E. tricolor gains 

in importance in the future. 



References  

  

145 

 

 

9 References 

 

Adamo, S. A. and M. M. E. Lovett (2011). "Some like it hot: the effects of climate change on 
reproduction, immune function and disease resistance in the cricket Gryllus texensis." 
Journal of Experimental Biology 214: 1997-2004. 

Adams, A. J. (1985). "The critical-field photoperiod inducing ovarian diapause in the 
Cabbage Whitefly, Aleyrodes proletella (Homoptera, Aleyrodidae)." Physiological 
Entomology 10(3): 243-249. 

Adams, A. J. (1985 b). "The photoperiodic induction of ovarian diapause in the Cabbage 
Whitefly, Aleyrodes proletella (Homoptera, Aleyrodidae)." Journal of Insect Physiology 
31(9): 693-700. 

Adams, A. J. (1986). "The photoperiodic clock of the Cabbage Whitefly, Aleyrodes proletella 
- Resonance experiments at 3 temperatures." Journal of Insect Physiology 32(6): 567-572. 

Agerbirk, N.; De Vos, M.; Kim, J.H. and G. Jander (2009). "Indole glucosinolate breakdown 
and its biological effects" Phytochemistry Reviews 8(1): 101-120. 

Aggarwal, D.D.; Ranga, P.; Kalra, B.; Parkash, R.; Rashkovetsky, E. and L.E Bantis (2013). 
"Rapid effects of humidity acclimation on stress resistance in Drosophila melanogaster" 
Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology 
166(1): 8-90. 

Aguiar, A. ; Ferreira, A. ; Martins, D. and S. Paul (2007) "The life cycle of Delia radicum in 
turnip crops in the Northwast of Portugal"  IOBC WPRS BULLETIN; 30, 8; 25-30 

Ahas, R., A. Aasa, et al. (2002). "Changes in european spring phenology." International 
Journal of Climatology 22: 1727-1738. 

Albajes, R., M. Casadevall, et al. (1980). "La mosca blanca de los invernaderos, Trialeurodes 
vaporariorum en El Maresme. 11. Utilizacion de Encarsia tricolor (Hym., Aphelinidae) 
en un invernadero de tomate temprano." Anales del Inst. Nacional Invest. Agras Agricola 
13: 191-203. 

Alford, D. V., C. V. Bell, et al. (2000). Pest and Disease Management Handbook, John Wiley 
& Sons. 

Alonso, D.; Gomez, A.A.; Nombela, G. and M. Muniz (2009). " Temperature-Dependent 
Development of Aleyrodes proletella (Homoptera: Aleyrodidae) on Two Cultivars of 
Broccoli Under Constant Temperatures" Environmental Entomology 38(1): 11-17. 

Altermatt, F. (2010). "Climatic warming increases voltinism in European butterflies and 
moths." Proceedings of the Royal Society B-Biological Sciences 277: 1281-1287. 



References  

  

146 

 

Andersen, C. L., R. Hazzard, et al. (2006). "Alternative management tactics for control of 
Phyllotreta cruciferae and Phyllotreta striolata (Coleoptera: Chrysomelidae) on Brassica 
rapa in Massachusetts." Journal of Economic Entomology 99: 803-810. 

Armand, J. E. (1949). "Asparagus beetles." Agric. Can. Entomol. Div. Process. Publ. 103: 4 
pp. 

Artigues, M., J. Avilla, et al. (1992). "Egg laying and host stage preference at constant 
temperatures in Encarsia tricolor (Hym. Aphelinidae)." Entomophaga 37: 45-54. 

Arzone, A. (1976). "Indagini su Trialeurodes vaporariorum ed Encarsia tricolor in pien'aria." 
Informatore Fitotologico 26: 5-10. 

Asman, K. (2001). " Effect of temperature on development and activity periods of the leek 
moth Acrolepiopsis assectella (Zeller) (Lep., Acrolepiidae)." Journal of applied 
entomology 125: 361-364. 

Asiimwe, P., J. S. Ecaat, et al. (2007). "Life-table analysis of mortality factors affecting 
populations of Bemisia tabaci on cassava in Uganda." Entomologia experimentalis et 
applicata 122(1): 37-44. 

Avilla, J., J. Anadon, et al. (1991). "Egg allocation of the autoparasitoid Encarsia tricolor at 
different relative densities of the primary host (Trialeurodes vaporariorum) and two 
secondary hosts (Encarsia formosa and E. tricolor)." Entomologia experimentalis et 
applicata 59: 219-227. 

Avilla, J. and M. J. Copland (1988). "Development rate, number of mature oocytes at 
emergence and adult size of Encarsia tricolor at constant and variable temperatures." 
Entomophaga 33: 289-298. 

Avilla, J. and M. J. Copland (1987). "Effects of host stage on the development of the 
facultative autoparasitoid, Encarsia tricolor (Hymenoptera: Aphelinidae." Annals of 
Applied Biology 110: 381-389. 

Awmack, C. S., C. M. Woodcock, et al. (1997). "Climate change may increase vulnerability 
of aphids to natural enemies." Ecological Entomology 22(3): 366-368. 

Baher, Z. F., M. Mirza, et al. (2002). "The influence of water stress on plant height, herbal 
and essential oil yield and composition in Satureja hortensis." Flavour and Fragrance 
Journal 17: 275-277. 

Bale, J. S., G. J. Masters, et al. (2002). "Herbivory in global climate change research: direct 
effects of rising temperature on insect herbivores." Global Change Biology 8(1): 1-16. 

Banjo, A. D. (2010). "A review of on Aleurodicus dispersus Russel. (spiralling whitefly) 
[Hemiptera: Aleyrodidae] in Nigeria." Journal of Entomology and Nematology 2(1): 1-6. 

Barlow, C. A. (1962). "The Influence of Temperature on the Growth of Experimental 
Populations of Myzus persicae (Sulzer) and Macrosiphum euphorbiae (Thomas) 
(Aphididae)." Canadian Journal of Zoology 40: 146-156. 



References  

  

147 

 

Becker P., Jacob D. , Deutschländer T., Imbery F., Namyslo J., Müller-Westermeier G., Roos 
M. (2012) "Klimawandel in Deutschland" in "Klimawandel und Biodiversität" Hrsg.: 
Mosbrugger V., Brasseur, G., Schaller M., Stribrny B., WBG, Darmstadt 23-37. 

Beese, F. KLIFF, http://www.kliff-niedersachsen.de.vweb5-test.gwdg.de/?page_id=5 (called 
30.4.2012). 

Beirne, B.P. (1970). "Effects of precipitation on crop insects" The Canadian Entomologist 
102(11): 1360-1373. 

Belder, E.den; Elderson, J.; Schelling, G.C. (2007). "Effect of the surrounding landscape on 
the abundance of cabbage aphids in Brussels sprout fields" IOBC/WPRS Bulletin 30(8): 
31 - 36. 

Bergant, K., S. Trdan, et al. (2005). "Impact of climate change on developmental dynamics of 
Thrips tabaci (Thysanoptera: Thripidae): Can it be quantified?" Environmental 
Entomology 34(4): 755-766. 

Bergant, K., L. K. Bogataj, et al. (2006). "Uncertainties in modelling of climate change 
impact in future: An example of onion thrips (Thrips tabaci Lindeman) in Slovenia." 
Ecological Modelling 194(1-3): 244-255. 

Bezemer, T. M., K. J. Knight, et al. (1999). "How general are aphid responses to elevated 
atmospheric CO2?" Annals of the Entomological Society of America 92(5): 724-730. 

Bidart-Bouzat, M. G., R. Mithen, et al. (2005). "Elevated CO2 influences herbivory-induced 
defense responses of Arabidopsis thaliana." Oecologia 145: 415-424. 

Bidart-Bouzat, M. G. and A. Imeh-Nathaniel (2008). "Global change effects on plant 
chemical defenses against insect herbivores." Journal of Integrated Plant Biology 50: 
1339-1354. 

Blackman, R. L. (1972). "The inheritance of life-cycle differences in Myzus persicae (Sulz.) 
(Hem.: Aphididae)." Bulletin of Entomological Research 62: 281-295. 

Blackman, R. L. and V. F. Eastop (1984). Aphids on the world's crops: an identification 
guide. New York, Wiley. 

Block, W.; Baust, J.G.; Franks, F.; Johnston, I.A. and J. Bale (1990). "Cold tolerance of 
insects and other arthropods" Philosophical Transactions of the Royal Society London B: 
Biological Science 326(1237): 613-633. 

Böhlendorf, K. (2010). Interaktive Effekte der N- und S-Ernährung auf das Muster von 
Glucosinolaten in China-Kohl., Christian Albrechts Universität zu Kiel. 

Bones, A. M. and J. T. Rossiter (1996). "The myrosinase–glucosinolate system, its 
organisation and biochemistry." Physiologia Plantarum 97: 194-208. 

Bongers, J. and L. Weismann (1971). "Der Einfluss der Temperatur auf die Ernährung von 
Agrotis segetum (Lepidoptera)." Journal of Insect Physiology 17: 2051-2059. 



References  

  

148 

 

Bosco, D. and P. Caciagli (1998). "Bionomics and ecology of Bemisia tabaci 
(Sternorrhyncha: Aleyrodidae) in Italy." European Journal of Entomology 95: 519-527. 

Boudreaux, J. (1958). "The effect of relative humidity on egg-laying, hatching, and survival in 
various spider mites." Journal of Insect Physiology 2: 65-72. 

Braendle and W. A. Foster (2004). "Defensive Behaviour in Primary- and Secondary-Host 
Generations of the Soldier-Producing Aphid, Pemphigus bursarius (Hemiptera: 
Aphididae)." Journal of Insect Behavior 17: 663-672. 

Braven, J., N. P. Chilcott, et al. (1996). "Structure-activity relationships in glucosinolates and 
other compounds stimulating oviposition in the cabbage root fly (Delia radicum)." Journal 
of Chemical Ecology 22(8): 1567-1578. 

Bridges, M., A. M. E. Jones, et al. (2002). "Spatial organization of the glucosinolate–
myrosinase system in brassica specialist aphids is similar to that of the host plant." 
Proceedings of the Royal society B 269(1487): 187-191. 

Brumin, M.; Kontsedalov; M. Ghanim (2011). "Rickettsia influences thermal tolerance in the 
whitefly Bemisia tabaci B biotype" Insects Science 18(1): 57-66   

Brunhold, C. H., A. Rüegsegger, et al. (1996). Stress bei Pflanzen. Ökologie, Physiologie, 
Biochemie, Molekularbiologie. Bern, Stuttgart, Wien: Haupt. 

Burn, A. J. (1984). "Life-Tables for the Carrot Fly, Psila rosae." Journal of Applied Ecology 
21(3): 891-902. 

Butler, C. D. (1936). "The occurrence of the chalcids Encarsia partenopea Masi and E. 
tricolor Flirster in England (Hymenoptera)." Proceedings of the Royal society A London 
11: 3-5. 

Byrne, D. N., A. C. Cohen, et al. (1990). "Water uptake from plant tissue by the egg pedicel 
of the greenhouse whitefly, Trialeurodes vaporariorum (Westwood) (Homoptera: 
Aleyrodidae)." Canadian Journal of Zoology 68(6): 1193-1195. 

Byrne, D. N. and T. S. Bellows (1991). "Whitefly Biology." Annual Review of Entomology 
36: 431-457. 

Campbell, J. M., M. J. Sarazin, and D. B. Lyons. (1989). "Canadian beetles (Coleoptera) 
injurious to crops, ornamentals, stored products, and buildings." Agriculture Canada, 
Research Branch, Publication 1826,. 490.  

Campell, N.A. (2000). "Biologie" Hrsg.: Markl, J. Spektrum p.: 87. 

Cannon, R. C. J. (1998). "The implications of predicted climate change for insect pests in the 
UK, with emphasis on non-indigenous species." Global Change Biology 4(7): 785-796. 

Capinera, J. L. (2001). Handbook of Vegetable Pests. New York, Academic Press. 

Capinera, J. L. (2000). Imported Cabbage Worm, Pieris rapae (Linnaeus) (Insect: 
Lepidoptera: Pieridae). University of Florida. 



References  

  

149 

 

Capinera, J. L. (2004). Encyclopedia of Entomology, Springer. 

Carr, T. G.; Roininen, H. and P.W. Price (1998). "Oviposition preference and larval 
performance of Nematus oligospilus (Hymenoptera: Tenthredinidae) in relation to host 
plant vigor" Environmental Ecology 27(3): 615-625(11). 

Carroll, A. L., S. W. Taylor, et al. (2003). "Impacts of Climate Change on Range Expansion 
by the Mountain Pine Beetle." Canadian Forest Service 14: 20. 

Cartea, M. E., M. Francisco, et al. (2010). "Resistance of Cabbage (Brassica oleracea 
capitata Group) Crops to Mamestra brassicae." Journal of Economic Entomology 103(5): 
1866-1874. 

Cartea, M. E., G. Padilla, et al. (2009). "Incidence of the major Brassica pests in north-
western Spain." Journal of Economic Entomology 102(2): 767-763. 

Cartea, M. E., V. M. Rodriguez, et al. (2008). "Variation of glucosinolates and nutritional 
value in nabicol (Brassica napus pabularia group)." Euphytica 159: 111-122. 

Carruthers, R. I. (1979). Population sampling and spatial distribution of the immature life 
stages of the onion maggot, Hylema antiqua (Meigen). East Lansing, Michigan State 
University. 

Chen, M.; Zhao, J.; Shelton, A.M.; Cao, J.; E.D. Earle (2008). "Impact of single-gene and 
dual-gene Bt broccoli on the herbivore Pieres rapae (Lepidotera: Pieridae) and its pupal 
endoparasitoid Pteromalus puparum (Hymenoptera: Pteromalidae)" Transgenic Research 
17(4): 545-555. 

Chen, S. L., X. Y. Han, et al. (2003). "Biological control of Delia radicum (Diptera: 
Anthomyiidae) with entomopathogenic nematodes." Applied Entomology and Zoology 
38(4): 441-448. 

Chen, T., J. Guo, et al. (2011). "Effects of Heat Shock Temperature and Duration on 
Development and Reproduction of Bemisia tabaci Q-biotype (Homoptera: Aleyrodidae)." 
Chinese Journal of Applied & Environmental Biology 17(3): 398-403. 

Chew, K. K. (1979). The Pacific oyster (Crassostrea gigas) in the west coast of the United 
States. Exotic Species in Mariculture. Proc. Sympos. on Exotic Species in Mariculture. 
Case Histories of the Japanese Oyster, Crassostrea gigas (Thunberg). 

Clark, S. M., D. G. LeDoux, et al. (2004). Host plants of leaf beetles species occurring in the 
United States and Canada. Coleopterists Society Special Publication No. 2. Sacramento, 
California, United States: 476. 

Clough, M.S.; Bale, J.S. and R. Harrington (1990). "Different cold hardiness in adults and 
nymphs of the peach-potato-aphid Myzus persicae" Annals of Applied Biology 116(1): 1-
9. 

Ciska, E., B. Martyniak-Przybyszewska, et al. (2000). "Content of glucosinolates in 
cruciferous vegetables grown at the same site for two years under different climatic 
conditions." Journal of Agricultural and Food Chemistry 48(7): 2862-2867. 



References  

  

150 

 

Coley, P. D., M. L. Bateman, et al. (2006). "The effects of plant quality on caterpillar growth 
and defense against natural enemies." Oikos 115: 219-228. 

Colinet, H.; Renault, D.; Vernon, P. and T. Hance (2006 a). "The impact of fluctuating 
thermal regimes on the survival of a cold-exposed parasitic wasp, Aphidius colemani" 
Physiological Entomology 31(3): 234-240. 

Colinet, H.; Vernon, P. and T. Hance (2006 b). "Water relations, fat reserves, survival, and 
longevity of a cold-exposed parasitic wasp Aphidius colemani (Hymenoptera: Aphidiinae) 
Environmental Entomology 35(2):228-236. 

Colinet, H.; Vernon, P. and T. Hance (2007). "Does thermal-related plasticity in size and fat 
reserves influence super cooling abilities and cold-tolerance in Aphidius colemani 
(Hymenoptera: Aphidiinae) mummies" Journal of Thermal Biology 32(7-8): 374-382. 

Collier, R. H., J. Davies, et al. (1994). "Monitoring and forecasting the times of attack of the 
lettuce root aphid, Pemphigus bursarius L." IOBC wprs Bulletin 17(8): 31-41. 

Collier, R. and S. Finch (1985). "Accumulated temperatures for predicting the time of 
emergence in the spring of the cabbage root fly, Delia radicum (L.) (Diptera: 
Anthomyiidae)." Bulletin of Entomological Research 75(3): 395-404. 

Collier, R. H., M. S. Elliott, et al. (1994). "Development of the overwintering stages of the 
Carrot Fly, Psila rosae (Diptera, Psilidae)." Bulletin of Entomological Research 84(4): 
469-476. 

Collier, R. H., G. M. Tatchell, et al. (1999). "Strategies for the control of aphid pest of lettuce. 
Integrated control in field vegetable crops." IOLB Bull. 22: 25-35. 

Cornelissen, T.; Fernandes, G.W. and J. Vasconcellos-Neto (2008). "Size does matter: 
variations in herbivory between and within plants and the plant vigor hypothesis" Oikos 
117(8): 1121-1130. 

Coulson, S.J.; Hodkinson, I.D.; Webb, N.R.; Mikkola, K.; Harrison, J.A. and D.E. Pedgley 
(2002). " Aerial colonization of high Arctic islands by invertebrates: the diamondback 
moth Plutella xylostella (Lepidoptera : Yponomeutidae) as a potential indicator species" 
Diversity and Distribution 8(6): 327-334. 

Coviella, C. E. and J. T. Trumble (1999). "Effects of elevated atmospheric carbon dioxide on 
insect-plant interactions." Conservation Biology 13(4): 700-712. 

Crüger, G. (1991). Pflanzenschutz im Gemüsebau. Stuttgart, Ulmer. 

Cui, X. H., F. Wan, et al. (2008). "Effects of Heat Shock on Survival and Reproduction of 
Two Whitefly Species, Trialeurodes vaporariorum and Bemisia tabaci Biotype B." 
Journal of Insect Science 8(24). 

Darwin, C. (1871). "The Descent of Man, and Selection in Relation to Sex." Introduction by 
John Tyler Bonner and Robert M.May, Princton University Press 1981, pp. 349 



References  

  

151 

 

Davis, J. A., E. B. Radcliff, et al. (2006). "Effects of high and fluctuating temperatures on 
green peach aphid, Myzus persicae (Hemiptera: Aphididae)." Environmental Entomology 
35(6): 1461-1468. 

DeBarro, P. J. and M. Carver (1997). "Cabbage whitefly, Aleyrodes proletella (L.) 
(Hemiptera: Aleyrodidae), newly discovered in Australia." Australian Journal of 
Entomology 36: 255-256. 

De Bruyn, L. (1995). "Plant stress and larval performance of a dipterous gall former" 
Oecologia 101(4): 461-466. 

De Conti, B. F., V. H. P. Bueno, et al. (2011). "Development and survival of Aulacorthum 
solani , Macrosiphum euphorbiae and Uroleucon ambrosiae at six temperatures." Buletin 
of Insectology 64(1): 63-68 

DeLucia, E. H., C. L. Casteel, et al. (2008). "Insects take a bigger bite out of plants in a 
warmer, higher carbon dioxide world." Proceedings of the National Academy of Sciences 
of the United States of America 105(6): 1781-1782. 

Dengel, H. J. (1981). "Untersuchungen über das Auftreten der Imagines von Bemisia tabaci 
auf verschiedenen Manioksorten." Zeitschrift Für Pflanzenkrankheiten Und 
Pflanzenschutz-Journal of Plant Diseases and Protection 88: 355-366. 

Dermody, O., B. F. O'Neill, et al. (2008). "Effects of elevated CO2 and O3 on leaf damage and 
insect abundance in a soybean agro ecosystem." Arthropod-Plant Interactions 2(3): 125-
135. 

Diaz, B. M. and A. Fereres (2005). "Life table and population of Nasonovia ribisnigri 
(Homoptera: Aphididae) at different constant temperatures." Environmental Entomology 
34: 527-534. 

Diaz, B. M., M. Muniz, et al. (2007). "Temperature thresholds and thermal requirements for 
development of Nasonovia ribisnigri (Hemiptera: Aphididae)." Environmental 
Entomology 36(4): 681-688. 

Diaz-Montano, J., M. Fuchs, et al. (2011). "Onion thrips (Thysanoptera: Thripidae): A global 
pest of increasing concern in onion." Journal of Economic Entomology 104: 1-13. 

Dickerson, A.K.; Shankles, P.G.; Madhavan, N.M. and D.L. Hu (2012). "Mosquitoes survive 
raindrop collision by virtue of their low mass" Proceedings of the National Academy of 
Science of the United States of America 109(25): 9822-9827. 

Dillard, H. R., A. C. Cobb, et al. (1998). "Transmission of Alternaria brassicicola to Cabbage 
by Flea Beetles (Phyllotreta cruciferae)." Plant Disease 82: 153-157. 

Dingler, M. (1934). "Die Spargelfliege (Platyparea poecilioptera, Schrank)." Arbeiten über 
Physiologie und angewandte Entomologie Berlin-Dahlem 1(2+3): 131-162 185-217. 

Dirksmeyer, W., W. H., et al. (2005). "Comparison of pest control practices in open field 
vegetables among three European countries." IOBC wprs Bulletin 28(4): 83-103. 



References  

  

152 

 

Dixon, A. F. G. (2003). "Climate change and phenological asynchrony." Ecological 
Entomology 28: 380-381. 

Döll, P. (2002). "Impact of climate change and variability on irrigation requirements: A global 
perspective" Climate Change 54(3): 269-293. 

Doi, H., O. Gordo, et al. (2008). "Heterogeneous intra-annual climatic changes drive different 
phenological responses at two trophic levels." Climate Research 36(3): 181-190. 

Drake, C. J. and M. H. Harris (1932). "Asparagus insects in Iowa Agriculture Experiment 
Station of the Iowa State College of Agriculture and Mechanic Arts." Entomology 
Section. Circular 34: 12. 

Dreistadt, S.H. and M.L. Flint (1996). "Melon aphid (Homoptera: Aphididae) control by 
inundative convergent ladybeetles (Coleoptera: Coccinellidae) release on chrysanthemum" 
Envirnonmental Entomology 25(3): 688-697(10). 

Dreves, A. J., D. Dalthorp, et al. (2006). "Spring emergence and seasonal flight of Delia 
radicum L. (Diptera : Anthomyiidae) in western Oregon." Environmental Entomology 
35(2): 465-477. 

Eckstein, F. (1934). "Untersuchungen zur Epidemiologie und Bekämpfung von Pyrausta 
nubilalis Hb. und Platyparea poecilioptera." Schr. Arbeiten über Physiologie und 
angewandte Entomologie Berlin-Dahlem 1(2): 109-131. 

économiques, I. n. d. l. s. a. d. é. (2012). "Productions végétales principales en 2012." 

Engel, E. C., J. F. Weltzin, et al. (2009). "Responses of an old-field plant community to 
interacting factors of elevated [CO2], warming, and soil moisture." Journal of Plant 
Ecology 2(1): 1-11. 

English-Loeb, G.; Stout, M.S.; S.S. Duffey (1997). "Drought stress in tomatoes: changes in 
plant chemistry and potential nonlinear consequences for insect herbivores" Oikos 79(3): 
456-468. 

Esbjerg, P. and P. H. Mogens (2005). "Agrotis segetum in Denmark : first signs of global 
climate change." IOBC/WPRS Working Group: 1. 

Estirate, M.; Penuelas, J.; Kimball, B.A.; Idso, S.B. et al. (1994). "Elevated Co2 effects on 
stomatal density of wheat and sour orange tress." Journal of Experimental botany 45: 
1665-1668. 

Everts, K. L., H. F. Schwartz, et al. (1985). "Effects of maggots and wounding on occurrence 
of fusarium basal rot of onions in Colorado." Plant Disease 69(10): 878-882. 

Fagan, L. L., A. McLachlan, et al. (2010). "Synergy between chemical and biological control 
in the IPM of currant-lettuce aphid (Nasonovia ribisnigri ) in Canterbury, New Zealand." 
Bull. Entomol. Res. 100: 217-223. 

Fahey, J. W., A. T. Zalcmann, et al. (2001). "The chemical diversity and distribution of 
glucosinolates and isothiocyanates among plants." Phytochemistry 56: 5-51. 



References  

  

153 

 

Fara, H. (2007). "The Floral genome project: Asparagus flowers." 
http://www.flmnh.ufl.edu/flowerpower/asparagus.html. 

Faria, T., D. Silverio, et al. (1998). "Differences in the response of carbon assimilation to 
summer stress (water deficits, high light and temperature) in four Mediterranean tree 
species." Physiologia Plantarum 102(3): 419-428. 

Feeny, P., L. Rosenberry, et al. (1983). Chemical aspects of oviposition behavior in 
butterflies. Herbivorous Insects: Host-Seeking Behavior and Mechanisms. S. Ahmad. New 
York, Academic Press. 257: 27-76. 

Fenwick, G. R., R. K. Heaney, et al. (1983a). "Glucosinolates and their breakdown products 
in food and food plants." Critical Reviews in Food Science and Nutrition 18: 123-201. 

Fenwick, G. R., N. M. Griffiths, et al. (1983b). "Bitterness in Brussels sprouts (Brassica 
oleracea L. var. gemmifera): The role of glucosinolates and their breakdown products." 
Journal of the Science of Food and Agriculture 34(1): 73-80. 

Ferrero, M., C. Gigot, et al. (2010). "Egg hatching response to a range of air humidities for six 
species of predatory mites." Entomologia experimentalis et applicata 135(3): 237-244. 

Finch, S. and A. B. Thompson (1992). Pests of cruciferous crops. New York, McMillan Press. 

Finch, S.; Collier, R.H. and K. Phelps (1996). "A review of work done to forecast pest insect 
attack in UK horticultural crops" Crop Protection 15(4): 353-357. 

Fink, D. E. (1913). The twelve-spotted asparagus beetle (Crioceris duodecimpunctata 
L.).Agric. Exp Sta New York Ithaca Bull 331: 422-435. 

Fink, U. and W. Völkl (1995). " The effect of abiotic factors on foraging and oviposition 
success of the aphid parasitoid, Aphidius rosae" Oecologia 103(3):371-37. 

Fischer, S., J. Mittaz, et al. (1989). "La mouche de l'asperge Platyparea poeciloptera Schrank 
(Diptera, Tephritidae) en Valais." Revue Suisse de Viticulture, d'Arboriculture et 
d'Horticulture 21(5): 295-306. 

Fishpool, L. D. C., C. Fauquet, et al. (1995). "The phenology of Bemisia tabaci populations 
(Homoptera: Aleyrodidae) on cassava in southern Ivory Coast." Bulletin of Entomological 
Research 85: 197-207. 

Flint, H.M.; Radin, J.W.; Parks, N.J. and L.L. Reaves (1995). "The effects of drip or furrow 
irrigation of cotton on Bemisia argentifolii (Homoptera: Aleyrodidae)" Journal of 
Agricultural Entomology 12(1): 25-32. 

Fletcher, M.J.; Worsley, P. and S. McDougall (2009). "Detection and spread of currant-lettuce 
aphid Nasonovia ribisnigri (Mosley) (Hemiptera: Aphididae) in New South Wales." 
General and Applied Entomology 38: 27-30.  

Foggo, A.; Higgins, S.; Wargent, J.J.; R.A. Coleman (2007). "Tri-trophic consequences of 
UV-B exposure: plants, herbivores and parasitoids" Oecologia 154(3): 505-512. 



References  

  

154 

 

Forster, R. and M. Hommes (1992). "Supervised control of lepidopteran pests in white 
cabbage." IOBC wprs Bulletin 15(4): 127-138. 

Forster, W. and T. A. Wohlfahrt (1971). Die Schmetterlinge Mitteleuropas Bd. IV: Eulen. 
Stuttgart, Franckh'sche Verlagshandlung. 

Frampton, G. K., P. J. Frampton, et al. (2000). "Effects of spring drought and irrigation on 
farmland arthropods in southern Britain." Journal of Applied Ecology 37(5): 865-883. 

Fransen, J. J. and M. A. J. Montfort (1987). "Functional response and host preference of 
Encarsia formosa Gahan (Hym., Aphelinidae), a parasitoid of greenhouse whitefly T. 
vaporariorum (Westwood) (Hom., Aleyrodidae)." Journal of applied entomology 103(1): 
55-69. 

Fuhrer, J. (2003). "Agro ecosystem responses to combinations of elevated CO2, ozone, and 
global climate change." Agriculture, Ecosystems and Environment 97: 1-20. 

Fournier, F.; Pelletier, D.; Vigneault, C.; Goyette, B. and G. Boivin (2005). "Effects of 
Barometric pressure on flight initiation by Trichogramma pretiousum and Trichogramma 
evanescens (Hymenoptera: Trichogrammatidae). Environmental Entomology 34(6): 1534-
1540. 

Garland, J. A. (2002). "Pest facts sheet – leek moth." Bulletin Entomological Society of 
Canada 34(3): 129-153. 

Gavloski, J. E. and R. J. Lamb (2000). "Compensation by cruciferous plants is specific to the 
type of simulated herbivory." Environmental Entomology 29: 1273-1282. 

Gerling, D. (1984). "The overwintering of Bemisia tabaci and its parasitoids in Israel." 
Phytoparasitica 12(2): 109-118. 

Gielen, B., K. Vandermeiren, et al. (2006). "Chlorophyll a fluorescence imaging of ozone-
stressed Brassica napus L. plants differing in glucosinolate concentrations." Plant Biology 
8: 698-705. 

Gilbert, N. and D. A. Raworth (2000). "Insects and temperature-differential effects of 
experimental conditions on growth and development." Canadian Entomologist 132(4): 
539-549. 

Gleick, P. H. (1987). "Regional hydrologic consequences of increases in atmospheric CO2 and 
other trace gases." Climate Change 10(2): 137-160. 

Glits, M. (2000). Turnip yellow mosaic virus (in Hung.). Kerteszeti novenykortan. (in Hug.). 
M. Glits and G. Folk. Budapest, Mezogazada Kiado: 422 p. 

Golding, F. D. (1936). "Cassava mosaic in southern Nigeri." Bulletin Department of 
Agriculture, Nigeria 11: 1-10. 

Golizadeh, A.; Kamali, K.; Fathipour, Y. and H. Abbispour (2007). "Temperature-dependend 
development of the diamond backmoth, Plutella xylostella (Lepidoptera: Plutellidae) on 
two brassicaceous host plants" Insects Science 14(4): 309-316. 



References  

  

155 

 

Gols, R. and J.A. Harvey (2009). "Plant-mediated effects in the Brassicaceae on the 
performance and behaviour of parasitoids" Phytochemistry Reviews 8(1): 187-206. 

Gols, R.; Wagenaar, R.; Bukovinszky, T.; van Dam, N.M.; Dicke, M.; Bullock, J.M. and J. A. 
Harvey (2008) "Genetic variation in defense chemistry in wild cabbage affects herbivores 
ad their endoparasitoids" Ecology 89:1616–1626. 

Gomez-Menor, J. (1943). "Contribucion al conoe (miento de los Aleyrodidoe de Espafta 
(Hem. Homopt. 1* nota." Eos 19: 173-209. 

Görnitz, K. (1951). "Die Massenaufzucht von Raupen der Wintersaateule (Agrotis segetum 
Schiff.) für Laboratoriumsversuche." Anzeiger für Schädlingskunde 24(5): 65-68. 

Goto, M., Y. P. Li, et al. (2001). "Cold hardiness in summer and winter diapause and post-
diapause pupae of the cabbage armyworm, Mamestra brassicae L. under temperature 
acclimation." Journal of Insect Physiology 47(7): 709-714. 

Grassberger, M. and C. Reiter (2002). "Effect of temperature on the development on the 
forensically important holarctic blow fly Protophormia terraenovae (Robineau-Desvoidy) 
(Diptera: Calliphoridae)" Forensic Science International 128(3): 177-182Griffiths, G. C. 
D. (1986). " Phenology and dispersion of Delia radicum (L.) (Diptera: Anthomyiidae) in 
canola fields at Morinville, Alberta." Quaestiones Entomologicae 22: 29-50. 

Griffiths, G. C. D. (1991). "Economic assessment of cabbage maggot damage in canola in 
Alberta." Proceedings of the GCIRC Eight International Rapeseed Congress. GCIRC, 
Canada: 528-535. 

Grinnan, R.; Carter Jr., T.E.; M.T.J. Johnson (2013). "The effects of drought and herbivory on 
plant-herbivore interactions across 16 soybean genotypes in a field experiment" 
Ecological Entomology 28(3): 290-302. 

Gripenberg, S.; Mayhew, P.J.; Parnell, M. and T. Roslin (2010). "A meta-analysis of the 
preference-performance relationships in phytophagous insects." Ecology Letters 13(3): 
383-393. 

Guerenstein, P. G. and J. G. Hildebrand (2008). "Roles and effects of environmental carbon 
dioxide in insect life." Annual Review of Entomology 53: 9.1- 9.18. 

Guilloux T., Monnerat R., Castelo-Branco M., Kirk A.A. and D. Bordat (2003). "Popluation 
dynamics of Plutella xylostella (Lep., Yponomeutidae) and its parasitoids in the region of 
Brasilia" Journal of Applied Entomology, 127 (5) : 288-292. 

Gutbrodt, B.; Mody, K. and S. Dorn (2011). "Drought changes plant chemistry and causes 
contrasting responses in lepidopteran herbivores" Oikos 120(11): 1732-1740. 

Haberlandt, U. B., A.; Hölscher, J. (2010). "Trends in beobachteten Zeitreihen von 
Temperatur und Niederschlag in Niedersachsen." Hydrologie und Wasserbewirtschaftung 
54: 28-36. 

Halkier, B.A. and J. Gershenzon (2006). "Biology and Biochemistry of Glucosinolates" Plant 
Biology 57: 303-333. 



References  

  

156 

 

Hance, T., J. van Baaren, et al. (2007). Impact of extreme temperatures on parasitoids in a 
climate change perspective. Annual Review of Entomology. Palo Alto, ANNUAL 
REVIEWS. 52: 107-126. 

Handfield, L. (1997). Liste des Lepidopteres du Quebec et du Labrador, Fabreries Suplement 
7. 

Harrington, R., S. J. Clark, et al. (2007). "Environmental change and the phenology of 
European aphids." Global Change Biology 13(8): 1550-1564. 

Hartley, S. E. and C. G. Jones (1997). Plant chemistry and herbivory, or why is the world 
green. Plant ecology. M. J. Crawley, Blackwell Science: 284-324. 

Hartmann, D.L., A.M.G. Klein Tank, M. Rusticucci, L.V. Alexander, S. Brönnimann, Y. 
Charabi, F.J. Dentener, E.J. Dlugokencky, D.R. Easterling, A. Kaplan, B.J. Soden, P.W. 
Thorne, M. Wild and P.M. Zhai, 2013: Observations: Atmosphere and Surface. In: 
Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to 
the Fifth Assessment Report of the Intergovernmental Panel on Climate Change[Stocker, 
T.F., D. Qin, G.-K. Plattner, M. Tignor, S.K. Allen, J. Boschung, A. Nauels, Y. Xia, V. 
Bex and P.M. Midgley (eds.)]. Cambridge University Press, Cambridge, United Kingdom 
and New York, NY, USA 

 
Harvell, C. D., C. E. Mitchell, et al. (2002). "Climate Warming and Disease Risks for 

Terrestrial and Marine Biota." Science 296(5576): 2158-162. 

Harvey, J. A. and R. Gols (2011). "Development of Mamestra brassicae and its solitary 
endoparasitoid Microplitis mediator on two populations of the invasive weed Bunias 
orientalis." Population Ecology 53(4): 587-596. 

Häuser, J. (1922). Ein Wolkenbruch von bisher noch nicht gekannter Intensität. - In: Kurze 
starke Regenfälle in Bayern, ihre Ergiebigkeit, Dauer, Intensität, Häufigkeit und 
Ausdehnung. Abhandlungen der Bayerischen Landesstelle für Gewässerkunde München, 
1. Ergänzungsband, umfassend den Beobachtungszeitraum 1916–1920. 

Hazell, S.P.; Groutides, C.; Neve, B.P.; Blackburn, T.M. and J.S. Bale (2010). "A comparison 
of low temperature tolerance traits between closely related aphids from the tropics, 
temperate zones, and Arctic" Journal of Insect Physiology 56(2): 115-122. 

Hemachandra, K. S., N. J. Holliday, et al. (2007). "Comparative assessment of the parasitoid 
community of Delia radicum in the Canadian prairies and Europe: A search for classical 
biological control agents." Biological Control 43(1): 85-94. 

Hendrix, D. L. and M. E. Salvucci (1998). "Polyol metabolism in homopterans at high 
temperatures: accumulation of mannitol in aphids (Aphididae: Homoptera) and sorbitol in 
whiteflies (Aleyrodidae: Homoptera)." Comparative Biochemistry and Physiology (Part 
A: Molecular and Intergrative Physiology) 120: 487-494. 

Herz, A. (2012). "1000 Arten für den Pflanzenschutz - die Vielfalt der Nützlinge schützen, 
fördern und nutzen!" Julius-Kühn-Archiv 436. 



References  

  

157 

 

Hiiesaar, K.; Metspalu, L.; Lääniste, P. and K. Jogar (2003). "Specific composition of flea 
beetles (Phyllotreta spp), the dynamics of their number on summer rape (Brassica napus 
L. var. oleifera subvar. annua) Mascot." Agronomy Research 1(2): 123-130. 

Hilgensloh, M. (2010). "Das Auftreten der Kohlmottenschildlaus und Ansätze zur 
Regulierung im Freiland." Veitschöchheimer Berichte - Bamberger Öko-Gemüsebautage 
am 15. Juli 2010: 11-22. 

Hill, D. S. (1987). Agricultural Insect Pests of Temperate Regions and their Control, 
Cambridge University Press. 

Hillstrom, M. L. and R. L. Lindroth (2008). "Elevated atmospheric carbon dioxide and ozone 
alter forest insect abundance and community composition." Insect Conservation and 
Diversity 1(4): 233-241. 

Himanen, S., A. Nissinen, et al. (2008). "Constitutive and herbivore-inducible glucosinolate 
concentrations in oilseed rape (Brassica napus) leaves are not affected by Bt cry1Ac 
insertion but change under elevated atmospheric CO2 and O3." Planta 227: 427-437. 

Holton, M. K., R. L. Lindroth, et al. (2003). "Foliar quality influences tree-herbivore-
parasitoid interactions: effects of elevated CO2, O3, and plant genotype." Oecologia 137: 
233-244. 

Honda, K. (1986). "Flavanone glycosides as oviposition stimulants in a papilionid butterfly, 
Papilio protenor." Journal of Chemical Ecology 12: 1999-2010. 

Honek, A. and F. Kocourek (1988). "Thermal requirements for development of 
aphidophagous Coccinellidae (Coleoptera), Chrysopidae, Hemerobiidae (Neuroptera), and 
Syrphidae (Diptera): some general trends." Oecologia 76: 455-460. 

Hondelmann, P. and H. M. Poehling (2007). "Diapause and overwintering of the hoverfly 
Episyrphus balteatus." Entomologia experimentalis et applicata 124: 189-200. 

Hopkins, R. J., N. M. van Dam, et al. (2009). "Role of glucosinolates in insect-plant 
relationships and multitrophic interactions." Annual Review of Entomology 54: 57-83. 

Huang, Y., A. J. M. Loomans, et al. (2009). "Hyperparasitism behaviour of the autoparasitoid 
Encarsia tricolor on two secondary host species." Biocontrol 54(3): 411-424. 

Huberty, A. F. and R. F. Denno (2004). "Plant water stress and its consequences for 
herbivorous insects: a new synthesis." Ecology 85: 1383-1398. 

Hughes, L. and F. A. Bazzaz (2001). "Effects of elevated CO2 on five plant-aphid 
interactions." Entomologia experimentalis et applicata 99(1): 87-96. 

Hughes, R.D. (1963). "Population dynamics of the cabbage aphid, Brevicoryne brassicae 
(L.)" Journal of Animal Ecology 32(3): 393-424. 

Huluka, G., D. R. Hileman, et al. (1994). "Effects of elevated CO2 and water stress on mineral 
concentration of cotton." Agricultural and Forest Meteorology 70(1-4): 141-152. 



References  

  

158 

 

Hukusima, S. and M. Kamei (1970). "Effects of various species of aphids as food on 
development, fecundity and longevity of Harmonia axyridis Pallas (Coleoptera: 
Coccinellidae)" Research Bulletin of the Faculty of Agriculture, Gifu University, 29:53–
66. 

Iheagwam, E. U. (1977). "Photoperiodism in the cabbage whitefly, Aleyrodes brassicae." 
Physiological Entomology 2(3): 179-184. 

Iheagwam, E. U. (1978). "Effects of temperature on development of immature stages of 
Cabbage Whitefly, Aleyrodes proletella (Homoptera-Aleyrodidae)." Entomologia 
Experimentalis Et Applicata 23(1): 91-95. 

Ibanez, S., C. Gallet, et al. (2012). "Plant Insecticidal Toxins in Ecological Networks." Toxins 
4(4): 228-243. 

Iheagwam, E. U. (1978). "Effects of temperature on development of immature stages of 
Cabbage Whitefly, Aleyrodes proletella (Homoptera-Aleyrodidae)." Entomologia 
Experimentalis Et Applicata 23(1): 91-95. 

Inbar, M.; Doostdar, H. and R.T. Mayer (2001). "Suitability of stressed and vigorous plants to 
various insect herbivores" Oikos 94(2): 228-235. 

Ingrisch, S. (1986). "The plurennial life-cycle of the European Tettigoniidae (Insecta: 
Orthoptera) 3.The effect of drought and the variable duration of the initial diapause" 
Oecologia 70: 624-630. 

Isaacs, R.; Byrne, D.N. and D.L. Hendrix (1998). "Feeding rates and carbohydrate 
metabolism by Bemisia tabaci (Homoptera: Aleyrodidae) on different quality phloem 
saps" Physiological Entomology 23(3): 241-248. 

Ishikawa, Y., T. Yamashita, et al. (2000). "Characteristics of summer diapause in the onion 
maggot, Delia antiqua (Diptera: Anthomyiidae)." Journal of Insect Physiology 46(2): 161-
167. 

Jandricic, S. E., S. P. Wraight, et al. (2010). "Developmental Times and Life Table Statistics 
of Aulacorthum solani (Hemiptera: Aphididae) at Six Constant Temperatures, with 
Recommendations on the Application of Temperature-Dependent Development Models." 
Environmental Entomology 39(5): 1631-1642. 

Jepsen, J.U.; Hagen. S.B.; Ims, R.A. and N.G. Yoccoz (2008). "climate change and outbreaks 
of the geometrids Operophtera brumata and Epirrita autumnata in subarctic birch forests: 
evidence of a recent outbreak range expansion" Journal of Animal Ecology 77(2): 257-
264. 

Jiao, X.; Xie, W.; Wang, S.; Wu, Q.; Zhou, L.; Pan, H.; Liu, B. and Y. Zhang (2012). "Host 
preference and nymph performance of B and Q putative species of Bemisia tabaci on three 
host plants" Journal of Pest Science 85(4): 423-430. 

Johansen, N. S. (1997a). "Influence of temperature on development, fecundity and survival of 
the cabbage moth Mamestra brassicae (L) (Lep, Noctuidae) in relation to the 



References  

  

159 

 

improvement of forecasting and control methods." Journal of Applied Entomology-
Zeitschrift Fur Angewandte Entomologie 121(2): 81-88. 

Johansen, N. S. (1997b). "Mortality of eggs, larvae and pupae and larval dispersal of the 
cabbage moth, Mamestra brassicae, in white cabbage in south-eastern Norway." 
Entomologia Experimentalis Et Applicata 83(3): 347-360. 

Johansen, T. J. and R. Meadow (2006). "Population differences in emergence of Brassica root 
flies (Diptera: Anthomyiidae)". Environmental Entomolgy 35(5): 1161-1165   

Josefsson, E. (1970). "Glucosinolate content and amino acid composition of rapeseed 
(Brassica napus) meal as affected by sulphur and nitrogen nutrition." Journal of the 
Science of Food and Agriculture 21: 98-103. 

Juroszek, P.; v. Tiedemann, A. (2012). "Climate change and potential future risks through 
wheat diseases: a review." European Journal of Plant Pathology 136(1): 21-33. 

Kage, H.; Kochler, M. and H. Stützel (2004.) "Root growth and dry matter partitioning in 
cauliflower under drought stress conditions: measurement and simulation" European 
Journal of Agronomy 20(4): 379-394. 

Kajita, H. (1983). "Effect of low temperatures on egg maturation and oviposition of Encarsia 
formosa Gahan (Hymenoptera, Aphelinidae) introduced from England into Japan." 
Zeitschrift für Angewandte Entomologie 95(1-5): 361-368. 

Karpenstein-Machan, M. and C. von Buttlar (2012). "Auswirkungen des Klimawandels auf 
die Phänologie der landwirtschaftlichen Kulturen in Niedersachsen – Möglichkeiten der 
Anpassung am Beispiel des Energiepflanzenanbaus." Berichte über Landwirtschaft 3. 

Kay, A. D., J. D. Schade, et al. (2007). "Fire effects on insect herbivores in an oak savannah: 
the role of light and nutrients." Ecological Entomology 32: 754-761. 

Keyder, S. and U. Atak (1972). "Studies on vegetable flies (Hylemya ssp.)." Pl. Prot. Res. 
annual, Ankara 136. 

Kfir, R. (1998). "Origin of the Diamondback Moth (Lepidoptera: Plutellidae)." Annals of the 
Entomological Society of America 91(2): 164-167 (4). 

Khan, T.A.; Mohd, M. and M. Firoz (2011a). "Status of secondary plant products under 
abiotic stress: an overview" Journal of Stress Physiology & Biochemistry 7(2): 76-98. 

Khan, T.A.; Ulrichs, C. and I. Mewis (2010). "Influence of water stress on the glucosinolate 
profile of Brassica oleracea var. italica and the performance of Brevicoryne brassicae and 
Myzus persicae" Entomologica Experimentalis et Applicata 137(3): 229-236. 

Khan, T.A.; Ulrichs, C. and I. Mewis (2011b). "Water stress alters aphid-induced 
glucosinolate response in Brassica oleracea var. italica differently" Chemoecology 21(4): 
235-242. 

Kim, J.H. and G. Jander (2007). "Myzus persicae (green peach aphid) feeding on Arapidopsis 
induce the formation of a deterrent indole glucosinolate" The Plant Journal 49(6): 1008-
1019. 



References  

  

160 

 

Kim, Y. H., J. S. Kang, et al. (2008). "Effects of Bt transgenic Chinese cabbage on the 
herbivore Mamestra brassicae (Lepidoptera : Noctuidae) and its parasitoid Microplitis 
mediator (Hymenoptera : Braconidae)." Journal of Economic Entomology 101(4): 1134-
1139. 

Kingsolver, J. G. (2000). "Feeding, growth, and the thermal environment of cabbage white 
caterpillars, Pieris rapae L." Physiological and Biochemical Zoology 73(5): 621-628. 

Kinoshita, G. B., H. J. Svec, et al. (1979). "Biology of the crucifer flea beetle, Phyllotreta 
cruciferae (Coleoptera: Chrysomelidae), in south-western Ontario." Canadian 
Entomologist 111: 1395-1407. 

Klausnitzer, B. and H. Klausnitzer: "Marienkäfer (Coccinellidae)". Westarp Wissenschaften, 
Magdeburg 1997. 

Kliebenstein, D. J., J. Kroymann, et al. (2001). "Genetic Control of Natural Variation in 
Arabidopsis Glucosinolate Accumulation." Plant Physiology 126: 811-825. 

Koch, T. (2011). Auftreten von Fusarium spp. und Mykotoxine im niedersächsischen 
Spargelanbau – Ertragsrelevanz und determinierende Faktoren. IPP. Hannover, Universität 
Hannover. 

Komatsu, T. and S. Akimoto (1995) Genetic differentiation as a result of adaptation to the 
phenologies of individual host trees in the galling aphid Kaltenbachiella japonica" 
Ecological Entomology 20: 33–42. 

Komazaki, S. (1986) "The inheritance of egg hatching time of the spirea aphid, Aphis 
citricola van der Goot (Homoptera, Aphididae) on two winter hosts." Kontyu 54: 48–53. 

Kontodimas, D.C.; Eliopoulos, P.A.; Stathas, G.J. and L.P. Economou (2004). "Comparative 
temperature-dependent developmet of Nephus includens (Kirsch) and Nephus bisignatus 
(Boheman) (Coleoptera: Cocconellidae) preying on Planococcus citri (Risso) (Homoptera: 
Pseudococcidae): Evaluation of a linear and various nonlinear models using specific 
criteria" Environmental Entomology 33(1): 1-11. 

Koricheva, J.; S. Larrson and E. Haukioja (1998). "Insect performance on experimentally 
stressed woody plants: A meta-analysis" Annual Review of Entomology 43: 195-216. 

Kramer, K. and W. S. Cranshaw (2009). "Effects of Supplemental Irrigation on Populations of 
Clover Mite, Bryobia praetiosa Koch (Acari: Tetranychidae), and Other Arthropods in a 
Kentucky Bluegrass Lawn." Southwestern Entomologist 34(1): 6-74. 

Kristoffersen, L. and O. Anderbrant (2007). "Carrot psyllid (Trioza apicalis) winter habitats – 
insights in shelter plant preference and migratory capacity." Journal of Applied 
Entomology 131(3): 174-178. 

Krnjajic´, S.; Dimic´, N.; Peric´, P.; Vukša, M.; Cvetkovic´, M. (1997a) "Biological control of 
cabbage pests" Acta Horticulturae 462: 199- 124. 

Krnjajic, S., N. Dimic, et al. (1997b). Biological control of cabbage pests. First Balkan 
Symposium on Vegetables and Potatoes, Vols. I & Ii. Leuven 1, INTERNATIONAL 
SOCIETY HORTICULTURAL SCIENCE. 1: 119-124. 



References  

  

161 

 

Kromp-Kolb (2003). "Auswirkungen von Klimaänderungen auf die Tierwelt - derzeitiger 
Wissensstand, fokussiert auf den Alpenraum und Österreich" Endbericht Projekt 
GZ 45 3895/171-V/4/02 Hrsg.: Bundesministerium für Land- und Forstwirtschaft, Umwelt 
und Wasserwirtschaft, Wien. 

Krumbein A, Schonhof I, Schreiner M (2005) Composition and contents of phytochemicals 
(glucosinolates, carotenoids and chlorophylls) and ascorbic acid in selected Brassica 
species (B. juncea, B. rapa subsp. nipposincia var. chinoleifera, B. rapa subsp. chinensis 
and B. rapa subsp. rapa). J App Bot Food Qual 79:168?174. 

Kuhlmann, F. and C. Müller (2009). "Development-dependent effects of UV radiation 
exposure on broccoli plants and interactions with herbivorous insects." Environmental and 
Experimental Botany 66(1): 61-68. 

Kushad, M. M., A. F. Brown, et al. (1999). "Variation of glucosinolates in vegetable corps of 
Brassica oleracea." Journal of Agricultural and Food Chemistry 47(1541-1548). 

Lacasa, A., M. J. Pascual-Villalobos, et al. (2003). "Los pulgones en los cultivos de lechuga y 
métodos de control." Agríc. Verg. 263: 579-589. 

Lacey, L. A., L. Millar, et al. (1999). "Effect of Storage Temperature and Duration on 
Survival of Eggs and Nymphs of Bemisia argentifolii (Homoptera: Aleyrodidae) and 
Pupae of the Whitefly Parasitoid Encarsia formosa (Hymenoptera: Aphelinidae)." Annals 
of the Entomological Society of America 92(3): 430-434(5). 

Lambrix, V., M. Reichelt, et al. (2001). "The Arabidopsis epithiospecifier protein promotes 
the hydrolysis of glucosinolates to nitriles and influences Trichoplusia ni herbivory." Plant 
Cell 13: 2793-2807. 

Langer, A. and T. Hance (2000). "Overwintering and cold hardiness of two aphid parasitoid 
species (Hymenoptera: Braconidae: Aphidiinae)" Journal of Insect Physiology 46(5): 671-
676. 

Lankau, R.A. (2007). "Specialist and generalist herbivores exert opposing selection on a 
chemical defense" New Phytologist 175(1): 176-184. 

Laothawornkitkul, J., J. E. Taylor, et al. (2009). "Biogenic volatile organic compounds in the 
Earth system." New Phytologist 183(1): 27-51. 

Larentzaki, E.; Shelton, A.M.; Musser, F.R. et al. (2007). "Overwintering locations and hosts 
for onion thrips (Tysanoptera: Thripidae) in the onion cropping ecosystem of New York." 
Journal of Economical Entomology 100: 1194-1200.   

Larsson, L. (1989). "Stressful times for the plant stress - insect performances hypothesis." 
Oikos 56(2): 277-283. 

Laska, P. and J. Rogl (2008). "Periodicity of the outbreaks of the carrot psyllid (Trioza 
apicalis) cannot be explained by sunspot activity." Biologia 63(6): 1181-1183. 

Laudonia, S. and G. Viggiani (1984). "Obeervazioni Bulla fenologia e sui parassiti di 
Aleurotubae jelinekii (Frauenf.)(Homoptera: Aleyrodidae) in Italia." Boll. Lab. Ent. Agra. 
Portic 41: 225-234. 



References  

  

162 

 

Lavola, A.; Julkunen-Tiitto, R.; Roininen, H.; P. Aphalo (1998). "Host-plant preference of an 
insect herbivore mediated by UV-B and CO2 in relation to plant secondary metabolites" 
Biochemical Systematics and Ecology 26(1): 1-12. 

Lee, Y.H. and R.F. Hou (1987). "Physiological role of a yeast-like symbiont in reproduction 
and embryonic development of the brown plant hopper, Nilaparvata lugens Stal" Journal 
of Insect Physiology 33(11): 851-860. 

Legg, A.D; Bannermann, R.T. and J. Panuska (1995). "Variations in the relation of rainfall to 
runoff from residential lawns in Madison, Wisconsin, July and August 1995." Water-
resources Investigations Report 96-4194 

Leite, G. L. D., M. Picanco, et al. (2005). "Bemisia tabaci, Brevicoryne brassicae and Thrips 
tabaci abundance on Brassica oleracea var. acephala." Pesquisa Agropecuaria Brasileira 
40(3): 197-202. 

Leite, G. L. D., M. Picanco, et al. (2006). "Whitefly, aphids and thrips attack on cabbage." 
Pesquisa Agropecuaria Brasileira 41(10): 1469-1475. 

LeSage, L., E. J. Dobesberger, et al. (2008). "Introduced leaf beetles of the maritime 
provinces, 6: The common Asparagus beetle, Crioceris asparagi (Linnaeus), and the 
twelve-spotted Asparagus beetle, Crioceris duodecimpunctata (Linnaeus) (Coleoptera : 
Chrysomelidae)." Proceedings of the Entomological Society of Washington 110(3): 602-
621. 

Liao, C.-T. and C.-H. Lin (2001). "Physiological adaptations of crop plants to flooding stress" 
Proceedings of the National Science Council, Republic of China, Part B (Life Science) 
25(3): 148-157. 

Liebig, N. (2010). "Regulierungsmöglichkeiten der Kohlmottenschildlaus im ökologischen 
Kohlanbau: Kulturschutznetzt, Pflanzenschutzmittel und Nützlingseinsatz." 
Veitschöchheimer Berichte - Bamberger Öko-Gemüsebautage am 15. Juli 2010: 6-11. 

Lindquist, S. (1986). "The heat-shock response" Annual Review of Biochemistry 55: 1151-
1191. 

Liu F, Stützel H. (2002): "Leaf water relations of vegetable amaranth (Amaranthus spp.) in 
response to soil drying" , Europ. J. Agron. 16, 137-150. 

Liu F, Stützel H. (2004): "Biomass partitioning, specific leaf area, and water use efficiency of 
vegetable amaranth (Amaranthus spp.) in response to drought stress", Scientia 
Horticulturae 102, 15-27. 

Liu, S.-S.; Chen, F.-Z and M.P. Zalucki (2002). "Development and survival of the 
Diamondback Moth (Lepidoptera: Plutellidae) at constant and alternatng temperatures." 
Environmental Ecology 31(2): 221-231.   

Liu, Y. B. (2004a). "Distribution and population development of Nasonovia ribisnigri 
(Homoptera: Aphididae) in iceberg lettuce." Journal of Economic Entomology 97: 883-
890. 



References  

  

163 

 

Liu, T. X. (2004b). "Seasonal population dynamics, life stage composition of Thrips tabaci 
(Thysanoptera : Thripidae), and predaceous natural enemies on onions in south Texas." 
Southwestern Entomologist 29(2): 127-135. 

Loomans, A. J. M., I. Staneva, et al. (2002). "When native not-target species go indoors: a 
new challenge to bio control of whiteflies in European greenhouses." IOBC wprs Bulletin 
25(1): 139-143. 

Louda, S. and S. Mole (1991). Glucosinolates: chemistry and ecology. Herbivores: Their 
Interactions with Secondary Plant Metabolites, 2nd Ed., Vol. 1: The Chemical 
Participants. G. A. Rosenthal and M. R. Berenbaum. San Diego, Academic Press: 123-
164. 

Ludwig, M. and R. Meyhöfer (2012). "Landschaftseinfluss auf Schädlinge und Nützlinge im 
Kohl." Julius-Kühn-Archiv 438: 388. 

Ludwig-Müller, J., B. Schubert, et al. (1996). "Glucosinolate content in susceptible and 
resistant chinese cabbage varieties during clubroot disease." Phytochemistry 44: 407-414. 

Lui, H. J. and F. McEwan (1982). "Forecasting events in the life cycle of the onion maggot, 
Hylemya antiqua (Diptera: Anthomyiidae): application to control schemes." 
Environmental Entomology 11: 751-755. 

Lundgren, J.G.; Heimpel, G.E.; S.A. Bomgren (2002). "Comparison of Trichogramma 
brassicae (Hymenoptera: Trichogrammatidae) augmentation with organic and synthetic 
pesticides for control of cruciferous pests" Environmental Entomology 31(6): 1231-1239. 

Mallah, G. H., A. K. Kerrio, et al. (2001). "Population dynamics of predatory insects and 
biological control of cotton pests in Pakistan." Journal of Biological Science 1: 245-248. 

Maniania, N. K. and J. Fargues (1992). "Susceptibility of Mamestra brassicae (L), and 
Spodoptera littoralis (Boisd) Larvae (Lep, Noctuidae) to the Hyphomycetes Paecilomyces 
fumosoroseus (Brown and Smith) and Nomuraea rileyi (Samson) at 2 Temperatures." 
Journal of Applied Entomology-Zeitschrift Fur Angewandte Entomologie 113(5): 518-
524. 

Mann, J.A.; Tatchel, G.A.; Dupuch, M.J.; Harrington, R.; Clark, S.J. and H.A. McCartney 
(1995). "Movement of apterous Sitobion avenae (Homoptera: Aphididae) in response to 
leaf disturbance caused by wind and rain" Annals of Applied Biology 126(3): 417-427. 

Mao, L.; Jett, L.E.; Story, R.N.; Hammond, A.M.; Peterson, J.K. and D.R. Labonte (2004). 
"Influence of drought stress on sweetpotato resistance to sweetpotato weevil, Cylas 
formcarius (Coleoptera: Apoinidae), and storage root chemistry" Florida Entomologist 
87(3):261-267. 

Martin, N. and C. Müller (2007). "Induction of plant responses by a sequestering insect: 
Relationship of glucosinolate concentration and myrosinase activity" Basic and Applied 
Ecology 8(1): 13-25. 



References  

  

164 

 

Masinde, P.W.; Stützel, H.; Agong, S.G. and A. Fricke (2005). "Plant growth, Water relation, 
and transpiration of spider plant (Gynandropsis gynandra (L.) Briq.) under water-limited 
conditions" Journal of the American Society for Horticultural Science 130(3): 469-477. 

Mason, P.G.; Appelby, M.; Juneja, S.; Allen, J. and J.-F. Landry (2010). "Biology and 
development of Acrolepiopsis assectella (Lepidoptera: Acrolepiidae) in Eastern Ontario" 
The Canadian Entomologist 142(4): 393-404. 

Mason, P. G., R. M. Weiss, et al. (2011). "Actual and potential distribution of Acrolepiopsis 
assectella (Lepidoptera: Acrolepiidae), an invasive alien pest of Allium spp. in Canada." 
The Canadian Entomologist 143(2): 185-196. 

Mattson, W. J. (1980). "Herbivory in relation to plant nitrogen content." Annual Review of 
Ecology and Systematics 11: 119-161. 

Mattson, W. J. and R. A. Haack (1987). "The Role of Drought in Outbreaks of Plant-eating 
insects." Bioscience 37(2): 110-118. 

Mayberry, K. S. and T. M. Perring (1992). "The Whitefly upsurge: Impact on California 
vegetable production." Hortscience 27(6): 628. 

McCloud, E. S. and M. Berenbaum (1999). "Effects of enhanced UV-B radiation on a weedy 
forb (Plantago lanceolata) and its interactions with a generalist and specialist herbivore." 
Entomologia Experimentalis Et Applicata 93(3): 233-247. 

McDonald, R.C.; Kok, L.T. and A.A. Youston (1990). " Response of fourth instar Pieris 
rapae parasitized by the braconid Cotesia rubecula to Bacillus thuringiensis subsp. 
kurstaki δ-endotoxin" Journal of Invertebrat Pathology 56(3): 422-423. 

McDonald, R. S. and M. K. Sears (1992). "Assessment of larval feeding damage of the 
cabbage maggot (Diptera: Anthomyiidae) in relation to oviposition preference in canola." 
Journal of Economic Entomology 85: 957-962. 

McQuate, G.T. and E.F. Conner (1990). "Insects response to plant water deficits. II. Effect of 
water deficits in soybean plants on the growth and survival on Mexican bean beetle 
larvae" Ecological Entomology 15(4): 433-445. 

Mee, J.E. and V. French (1986). "Disruption of segmentation in a short germ insect embryo" 
Journal of Embryology and Experimental Morphology 96: 245-266. 

Meiri, S. (2010). Bergmann's Rule- what's in a name?" Global Ecology and Biogeography 
20(1): 203-207 

Mengel, K. (1991). Ernährung und Stoffwechsel der Pflanze. Jena, Fischer. 

Merz, B. (1994). "Insecta Helvetica: 10. Diptera; Tephritidae. , Fauna. Bd. 10. 198 S., 2 Tab., 
60 mehrteil. Abb., Preis: 30.— CHF. Herausgegeben von der Schweizerischen 
Entomologischen Gesellschaft. Genève. 

Meyhöfer, R. & H.-M. Poehling (2013) "Schadfaktoren an Kulturpflanzen: Tierische 
Schädlinge" in Lehrbuch der Phytomedizin Hrsg.: Poehling H.-M. & Verreet, J.-A., 
Ulmer, Stuttgart, 210-261. 



References  

  

165 

 

Mewis, I.; Ulrich, C. and W.H. Schnitzler (2002). "The role of glucosinolates and their 
hydrolysis products in oviposition and host-plant finding by cabbage webworm Hellula 
undalis" Entomologia Experimentalis et Applicata 105(2): 129-139. 

Mewis, I.; Appel, H.M.; Hom, A.; Raina, R. and J.C. Schultz (2005) "Major signalling 
pathways modulate Arapidopsis glucosinolate accumulation and responses to both 
phloem-feeding and chewing insects" Plant Physiology 138(2): 1149-1162. 

Mewis, I.; Khan, M.A.M.; Glawischnig, E.; Schreiner, M. and C. Ulrichs (2012). " Water 
Stress and Aphid Feeding Differentially Influence Metabolite Composition in Arabidopsis 
thaliana (L.)". PLoS ONE 7(11): e48661. doi:10.1371/journal.pone.0048661. 

Mihailova, P., F. Straka, et al., Eds. (1982). Plant protection forecasting and signalization. 
Zemisdat, Sofia (In Bulgarian). 

Miles, P.W.; Aspinall, D. and L. Rosenberg (1982). "Performance of the Cabbage Aphid, 
Brevicoryne Brassicae (L.), On Water-Stressed Rape Plants, in Relation to Changes in 
Their Chemical Composition." Australian Journal of Zoology 30(2): 337 - 346. 

Miles, C. I., M. L. del Campo, et al. (2005). "Behavioral and chemosensory responses to a 
host recognition cue by larvae of Pieris rapae." Journal of Comparative Physiology A 
Neuroethology, Sensory, Neural, and Behavioral Physiology 191: 147-155. 

Miller, N. J., N. B. Kift, et al. (2005). "Host-associated populations in the lettuce root aphid, 
Pemphigus bursarius (L.)." Heredity 94(5): 556-564. 

Mittler, S. (1946). "Production of female offspring by virgin females in the greenhouse 
whitefly, Trialeurodes vaporariorum, under the influence of high temperatures." The 
American Naturalist 80(794): 532-546. 

Mittler, T.E. and T. Wipperfurth, (1988). "Hatching and diapause development of the eggs 
from crosses between Biotypes C and E of the aphid Schizaphis graminum (Homoptera: 
Aphididae)." Entomologia Generalis 13: 247–249. 

Miskimen, G.W. (1970). "Population dynamics of the Yellow Sugarcane aphid, Sipha flava, 
in Puerto Rico, as affected by heavy rains" Annals of Entomological Society of America 
63(3): 642-645(4). 

Mithen, R. (1992). "Leaf glucosinolate profiles and their relationship to pest and disease 
resistance in oilseed rape." Euphytica 63: 71-83. 

Moeri, O.E.; Cuda, J.P.; Overholt, W.A.; Bloem, S. J.E. Carpenter (2009). "F1 sterile insect 
technique: A novel approach for risk assessment of Episimus unguiculus (Lepidoptera: 
Tortricidae), a candidate biological control agent of Schinus terebinthifolius in the 
continental USA" Biocontrol Science and Technology 19(1): 303-315. 

Moreno, A.; Palacios, I.; Blanc, S. and A. Fereres (2005). "Intracellular salviation is the 
mechanism involved in the inoculation of Cauliflower Mosaic Virus by its major vector 
Brevicoryne brassicae and Myzus persicae" Annals of the Entomological Society of 
America 98(6):763-769. 



References  

  

166 

 

Morsello, S. C., R. L. Groves, et al. (2008). "Temperature and precipitation affect seasonal 
patterns of dispersing tobacco thrips, Frankliniella fusca, and onion thrips, Thrips tabaci 
(Thysanoptera : Thripidae) caught on sticky traps." Environmental Entomology 37(1): 79-
86. 

Mound, L. and S. Halsey (1978). "Whitefly of the World: A Systematic Catalogue of the 
Aleyrodidae (Homoptera) with Host Plant and Natural Enemy Data". British Museum 
(Nat. Hist.) and John Wiley and Sons, Chichester-New York-Brisbane-Toronto. 

Mound, L. A. (1997). Biological Diversity. Thrips as crop pests. T. Lewis. New York, CAB 
International. Oxon. 

Müller, C.; Agerbirk, N.; Olsen, C.E.; Boevé J.-L.; Schaffner, U. and P.M. Brakefield (2001). 
"Sequestration of host plant glucosinolates in the defensive hemolymphe of the sawfly 
Athalia rosae" Journal of Chemical Ecology 27(12): 2505-2516. 

Müller, C. and P.M. Bakefield (2003). "Analysis of a chemical defense in sawfly larvae: Easy 
bleeding targets predatory wasps in late summer" Journal of Chemical Ecology 29(12): 
2683-2694. 

Müller, C. and U. Wittstock (2005). "Uptake and turn-over of glucosinolates sequestered in 
the sawfly Athalia rosae" Insect Biochemistry and Molecular Biology 35(10): 1189-1198. 

Müller, C. and Aarand, K. (2007). "Trade-offs in oviposition choice? Food-dependent 
performance and defence against predators of a herbivorous sawfly" Entomologia 
Experimentalis et Applicata 124(2): 153-159. 

Müller, R.; de Vos, M.; Sun, J.Y.; Sønderby, I.E.; Halkier, B.A.; Wittstock, U. and G. Jander 
(2010) "Differential effects of indole and aliphatic glucosinolates on lepidopteran 
herbivores" Journal of Chemical Ecology 36(8): 905-913. 

Munyaneza, J. E., T. W. Fisher, et al. (2010). "Association of "Candidatus Liberibacter 
solanacearum" with the psyllid, Trioza apicalis (Hemiptera: Triozidae) in Europe." 
Journal of Economic Entomology 103(4): 1060-1070. 

Murai, T. (2000). "Effect of temperature on development and reproduction of the onion thrips, 
Thrips tabaci Lindeman (Thysanoptera : Thripidae), on pollen and honey solution." 
Applied Entomology and Zoology 35(4): 499-504. 

Murai, T. and S. Toda (2002). Variation of Thrips tabaci in color and size. Thrips and 
Tospoviruses: Proceedings of the 7th international symposium on thysanoptera. Australian 
National. Insect Collection,. R. Marullo and L. A. Mound. Canberra: 377-378. 

Naderikharaji, R.; Pakniyat, H.; Biabani, A. R (2008). "Effect of drought stress on 
photosynthetic rate of four rapeseed (Brassica napus) cultivars" Journal of Applied 
Science 8(23): 4460-4463. 

Narayandas, G.K. and A.V. Alyokhin (2006). "Interplant Movement of potato aphid 
(Homoptera: Aphidae) in response to environmental stimuli" Environmental Entomology 
35(3): 733-739. 



References  

  

167 

 

Nebreda, M.; Moreno, A.; Palacios, I. et al. (2004). "Activity of aphids assosicated with 
lettuce and broccoli in Spain and their efficiency as vectors of Lettuce mosaic virus.2 
Virus Res. 100: 83-88.  

Nehlin, G., I. Valterova, et al. (1996). "Monoterpenes released from Apiaceae and the egg-
laying preferences of the carrot psyllid Trioza apicalis." Entomologia experimentalis et 
applicata 80: 83-86. 

Netherer, S. and A. Schopf (2010). "Potential effects of climate change on insect herbivores in 
European forests-General aspects and the pine processionary moth as specific example." 
Forest Ecology and Management 259(4): 831-838. 

Neven, L.G. (2000). "Physiological response of insects to heat" Postharvest Biology and 
Technology 21(1): 103-111. 

Newman, J. A. (2005). "Climate change and the fate of cereal aphids in Southern Britain." 
Global Change Biology 11: 940-944. 

Newton, E., J. M. Bullock, et al. (2010). "Temporal consistency in herbivore responses to 
glucosinolate polymorphism in populations of wild cabbage (Brassica oleracea)." 
Oecologia 164(3): 689-699. 

Nguyen, V.T.; Morange, M.; O. Bensaude (1989). "Protein Denaturation during Heat Shock 
and Related Stress" The Journal of Biological Chemistry 264(18): 10487-10492. 

Nijvelt, W. C. (1957). "Levenswijze en Bestrijding von de aspergevlieg (Platyparea 
poecilioptera Schrank)." Nederland Versl Lanbouwk Onderz 63(4): 1-40. 

Nissinen, A., P. Vanhala, et al. (2007). "Short feeding period of carrot psyllid (Trioza 
apicalis) females at early growth stages of carrot reduces yield and causes leaf 
discolouration." Entomologia experimentalis et applicata 125: 277-283. 

Nomura, M. and Y. Ishikawa (2001). "Dynamic changes in cold hardiness, high-temperature 
tolerance and trehalose content in the onion maggot, Delia antiqua (Diptera : 
Anthomyiidae), associated with the summer and winter diapause." Applied Entomology 
and Zoology 36(4): 443-449. 

North, R. C. and A. M. Shelton (1986). "Colonization and intraplant distribution of Thrips 
tabaci (Thysanoptera: Thripidae) on cabbage." Journal of Economic Entomology 79: 219-
223. 

Nucifora, A. (1985). "Possibilities of biological and integrated control in protected crops" in 
Integrated and Biological Control in Protected Cops, Commission of the European 
Community, Proceedings of a meeting of the EC Experts´ Group/ Heraklion 24-26 April 
1985. 

Nye, P.H. and P.B.H. Tinker (1977) "Solute movement in the Soil-Root System" Oxford, UK: 
Blackwell. 

Obrycki J.J.and M.J. Tauber (1981). "Phenology of three coccinellid species: thermal 
requirements for development." Annals of the Entomological Society of America 74: 31–
36. 



References  

  

168 

 

Ogaard, L. and P. Esbjerg (1993). "Observations on hibernation of cutworms, Agrotis segetum 
Schiff. (Lep., Noctuidae)." Journal of Applied Entomology 116(4): 326-332. 

Oida, H., T. Tsugane, et al. (2009). "Reduction of sweet potato [Ipomoea batatas] whitefly 
Bemisia tabaci (Homoptera: Aleyrodidae) Q-biotype survival by high temperatures." 
Annual Research Bulletin of the Chiba Prefectural Agriculture and Forestry Research 
Center 1: 29-36. 

Olesen, J. E. and M. Bindi (2002). "Consequences of climate change for European 
agricultural productivity, land use and policy." European Journal of Agronomy 16: 239-
262. 

Olesen, J.E.; Trnka, M.; Kersebaum, K.C.; Skjelvåg, A.O.; Seguin, B.; Peltonen-Sainio, P.; 
Rossi, F.; Kozyra, J. and F. Micale (2011) European Journal of Agronomy 34(2): 96-112. 

Opdam, P. and D. Wasch (2004). "Climate change meets habitat fragmentation: linking 
landscape and biogeographical scale levels in research and conservation." Biological 
Conservation 117(3): 285-297. 

Otto, M. W. (2002). Populationsökologische Untersuchungen zur Spargelfliege (Platyparea 
poeciloptera) und Zwiebelfliege (Delia antiqua) unter besonderer Berücksichtigung des 
Einsatzes von Simulationsmodellen im integrierten Pflanzenschutz. 

Palacios, I.; Drucker, M.; Blanc, S.; Leite, S.; Moreno, A. and A. Fereres (2002). "Cauliflower 
mosaic virus is preferentially acquired from the phloem by its aphid vectors" Journal of 
General Virology 83(12): 3163-3171. 

Palumbo, J. C. (2000). "Seasonal abundance and control of the lettuce aphid, Nasonovia 
ribisnigri, on head lettuce in Arizona." 2000 Vegetable Report 
http://ag.arizona.edu/pubs/crops/az1177/. 

Paris, H.S.; Stoffella, P.J. and C.A. Powell (1993). "Sweetpotato whitefly, drought stress, and 
leaf silvering of Squash" HortScience 28(2): 157-158. 

Parmesan, C. (2006). "Ecological and evolutionary responses to recent climate change." 
Annual Review of Ecology, Evolution, and Systematics 37: 637-669. 

Parker, F.D. and R.E. Pinnell (1972). "Further studies on the biological control of Pieres 
rapae using supplemental host and parasite release" Environmental Entomology 1(2): 
150-157(8). 

Parker, W. E., R. H. Collier, et al. (2002). "Matching control options to a pest complex: the 
integrated pest management of aphids in sequentially-planted crops of outdoor lettuce." 
Crop Protection 21: 235-248. 

Pasquier-Barre, F.; Palasse, C.; Goussard, F.; Auger-Rozenberg, M.-A. and C. Géri (2001). 
"Relationship of Scots Pine clone characteristics and water stress to hatching and larval 
performance of the sawfly Diprion pini (Hymenoptera: Diprionidae)" Environmental 
Entomology 30(1):1-6. 

Pellegrino, A.C.; Peñaflor, M.F.G.V.; Nardi, C.; Bezner-Kerr, W.; Guglielmo, C.G.; Bento, 
J.M.S. and J.N. McNeil (2013) Weather Forecasting by Insects: Modified Sexual 



References  

  

169 

 

Behaviour in Response to Atmospheric Pressure Changes. PLoS ONE 8(10): e75004. 
doi:10.1371/journal.pone.0075004. 

Pereyra, P. C. and D. M. Bowers (1988). "Iridoid glycosides as oviposition stimulants for the 
buckeye butterfly, Junonia coenia (Nymphalidae)." Journal of Chemical Ecology 14: 917-
928. 

Phillips, S. W., J. S. Bale, et al. (1999). "Escaping an ecological dead-end: asexual 
overwintering and morph determination in the lettuce root aphid Pemphigus bursarius L." 
Ecological Entomology 24: 336-344. 

Phillips, S.W.; Bale, J.S: and G.M. Tatchell (2000). "Overwintering adaptations of the lettuce 
root aphid Pemphigus bursarius (L.)" Journal of Insect Physiology 46(3): 353-363. 

Pike, N., J. A. Whitfield, et al. (2007). "Ecological correlates of sociality in Pemphigus 
aphids, with a partial phylogeny of the genus." Evolutionary Biology 7: 185. 

Pinto, D. M., S. J. Himanen, et al. (2008). "Host location behavior of Cotesia plutellae 
Kurdjumov (Hymenoptera: Braconidae) in ambient and moderately elevated ozone in field 
conditions." Environmental Pollution 156(1): 227-231. 

Poelman, E.H.; Galiart, R.J.; Raaijmakers, C.A.; Van Loon, J.J.A. and N.M. Van Dam (2008). 
"Performance of specialist and generalist herbivores feeding on cabbage cultivars is not 
explained by glucosinolate profiles" Entomologia Experimentalis et Applicata 127(3): 
218-228. 

Poelman, E.H.; van Dam, N.M.; Van Loon, J.J.A,; Vet, L.E.M. and M. Dicke (2009) 
Chemical diversity in Brassica oleracea affects biodiversity of insect herbivores. Ecology 
90:1863–1877. 

Powell, S.J. and J.S. Bale (2004). "Cold shock injury and ecological cost of rapid cold 
hardening in the grain aphid Sitobion avenae (Hemiptera: Aphidae)" Journal of Insect 
Physiology 50(4): 277-284. 

Powell, S.J. and J.S. Bale (2005). "Low temperature acclimated populations of the grain aphid 
Sitobion avenae retain ability to rapid cold harden with enhanced fitness" Journal of 
Experimental Biology 208: 2615-2620. 

Powell, S.J. and J.S. Bale (2006). "Effect of long-term and rapid cold-hardening on the cold 
torpor temperature of an aphid" Physiological Entomology 31(4): 348-352. 

Price, P.W. (1991) "The plant vigor hypothesis and herbivore attack". Oikos 62: 244 - 251. 

Pritchard, J., B. Griffiths, et al. (2007). "Can the plant-mediated impacts on aphids of elevated 
CO2 and drought be predicted?" Global Change Biology 13(8): 1616-1629. 

Pfiffner, L., H. Luka, et al. (2006). "Wildflower strips to reduce lepidopteran pests in cabbage 
crops." IOBC wprs Bulletin 29(6): 97-101. 

ProClim (2005) " Hitzesommer 2003 - Synthesebericht der Schweiz", Druckzentrum Vögeli 
AG, Langnau i.E.; Bern 



References  

  

170 

 

Quicke, D. L. (1997). Parasitic Wasps. London, UK, Chapman and Hall. 

Ramakrishna, A. and A. Ravishankar (2011). "Influence of abiotic stress signals on secondary 
metabolites in plants" Plant Signalling & Behaviour 6(11): 1720-1731. 

Rank, N. E. and E.P. Dalhoff (2002). "Allele frequency shifts in response to climate change 
and physiological consequences of allozyme variation in a montane insect" Evolution 
56(11): 2278-2289. 

Reddy, G. V. P., P. Tossavainen, et al. (2004). "Elevated atmospheric CO2 affects the 
chemical quality of Brassica plants and the growth rate of the specialist, Plutella 
xylostella, but not the generalist, Spodoptera littoralis." Journal of Agricultural and Food 
Chemistry 52(13): 4185-4191. 

Rhoades, D. F. (1983). Herbivore population dynamics and plant chemistry. Herbivore 
Population Dynamics and Plant Chemistry. R. F. Denno and M. S. McClure. Orlando, Fl., 
Academic Press: 155-200. 

Rice, A. D. and G. R. Allen (2009). "Temperature and developmental interactions in a 
multitrophic parasitoid guild." Australian Journal of Entomology 48: 282-286. 

Richter, E. (2010). "Populationsdynamik und Bekämpfung der Kohlmottenschildlaus 
Aleyrodes proletella im Gemüsebau." Humboldt-Universität zu Berlin; Kurzfassungen der 
Beiträge JKI (Hrsg.) Julius Kühn-Inst.. Quedlinburg Heft 428: 216. 

Rohr, F.; Ulrichs, C.; Schreiner, M.; Zrenner, R. and I. Mewis (2012). "Responses of 
Arapidopsis thaliana plant lines differing in hydroxylation of aliphatic glucosinolate side 
chains to feeding of a generalist and specialist caterpillar". Plant Physiology and 
Biochemistry 55:52-59. 

Rojas, J. C., T. D. Wyatt, et al. (2001). "Oviposition by Mamestra brassicae (L.) (Lep., 
Noctuidae) in relation to age, time of day and host plant." Journal of Applied Entomology-
Zeitschrift Fur Angewandte Entomologie 125(3): 161-163. 

Rojas, J. C. (1999). "Electrophysiological and behavioral responses of the cabbage moth to 
plant volatiles." Journal of Chemical Ecology 25: 1867-1883. 

Rousseaux, M.C.; Julkunen-Tiitto, R.; Searles, P. S.; Scoplol, A.L.; Aphalo, P.J.; Ballaré, 
C.L. (2004) "Solar UV-B radiation affects leaf quality and insect herbivory in the southern 
beech tree Nothofagus antarctia" Oecologia 138(4): 505-512. 

Rosa, E. A. S. (1997). "Glucosinolates from flower buds of Portuguese Brassica crops." 
Phytochemistry 44: 1415-1419. 

Rosenzweig, C., A. Iglesias, et al. (2001). "Climate change and extreme weather events." 
Global Change & Human Health 2(2): 90-104. 

Rouphael, Y.; Cardarelli, M.; Schwarz, D.; Franken, P. and G. Colla (2012). "Effects of 
drought on nutrient uptake and assimilation in vegetable crops" Plant Responses to 
Drought Stress pp: 171-195. 



References  

  

171 

 

Ryden, K. (1989). "Brome mosaic virus, transmission and effect on yield in greenhouse 
trials." Journal of Phytopathology 124: 256-258. 

Rygg, T. (1960). "The onion fly (Hylemya antiqua Meig.). Investigations on its biology and 
control in Norway." Med St Plantev 18: 1-56. 

Saeidi, F.; Moharramipour, S. and Barzegar (2012). "Seasonal patterns of cold hardiness and 
cryoprotectant profiles in Brevicoryne brassicae (Hemiptera: Aphididae Environmental 
Entomology 41(6):1638-1643. 

Saikkonen, K.; Neuvonen, S. and P. Kainulain (1995). "Oviposition and larval performance of 
European sawfly in relation to irrigation, simulated acid rain and resin acid concentration 
in Scots pine" Oikos 74(2): 273-282. 

Salvucci, M. E., D. L. Hendrix, et al. (1999). "Effect of high temperature on the metabolic 
processes affecting sorbitol synthesis in the silverleaf whitefly, Bemisia argentifolii." 
Journal of Insect Physiology 45: 21-27. 

Sanchez, J. A., F. Canovas, et al. (2007). "Thresholds and management strategies for 
Aulacorthum solani (Hemiptera: Aphididae) in greenhouse pepper." Journal of Economic 
Entomology 100: 123-130. 

Sarikamis, G., A. Balkaya, et al. (2009). "Glucosinolates within a collection of white head 
cabbages (Brassica oleracea var. capitata sub.var. alba) from Turkey." African Journal of 
Biotechnology 8(19): 5046-5052. 

Satar, S.; Kersting, U. and M.R. Ulusoy (2005). "Temperature Dependent Life History Traits 
of Brevicoryne brassicae (L.) (Hom., Aphididae) on White Cabbage." Turkish Journal of 
Agriculture and Forestry 29: 341-346. 

Sauer-Kesper, C., N. Lucia, et al. (2011). "Bedeutung und Verbreitung des neuen Biotyps 
Nr:1 der Grünen Salatlaus in der Deutschschweiz." Agrarforschung Schweiz 2(10): 462-
469. 

Schädler, M., R. Brandl, et al. (2007). "Antagonistic interactions between plant competition 
and insect herbivory." Ecology 88: 1490-1498. 

Scheirs, J. and L. de Bruyn (2005). "Plant-mediated effects of drought stress on host 
preference and performance of a grass miner" Oikos 108(2): 371-385. 

Schoeneweis, D. F. (1986). Water stress predisposition to disease-An overview. Water, Fungi 
and Plant. P. G. Ayres. New York, Cambridge University Press. 

Schoneveld, J. A. and A. Ester (1994). "The introduction of systems for supervised control of 
carrot fly (Psila rosae F.) in The Netherlands." IOBC wprs Bulletin 17(8): 55-67. 

Schonhof, I.; Kläring, H.-P.; Krumbein, A. and M. Schreiner (2007). "Interactions between 
atmospheric CO2 and glucosinolates in broccoli" Journal of Chemical Ecology 33(1): 105-
114. 

Schreiner, M. and S. Huyskens-Keil (2006). "Pytochemicals in fruits and vegetables: Health 
promotion and postharvest elictors" Critical Reviews in Plant Science 25(3): 267-278. 



References  

  

172 

 

Schreiner, M.C., Peters, P.J., Krumbein A.B. (2006) "Glucosinolates in mixed-packaged mini 
broccoli and mini cauliflower under modified atmosphere." Journal of Agriculture and 
Food Chemistry 54(6) 2218-2222. 

Schreiner, M.; Krumbein, A.; Mewis, I.; Ulrichs, C. and S. Huyskens-Keli (2009). "Short-
term and moderate UV-B radiation effects on secondary plant metabolism in different 
organs of nasturium (Tropaeolum majus L.)" Innovative Food Science &Emerging 
Technologies 10(1): 93-96. 

Schultz, B., O. Zimmermann, et al. (2010). Anwendung natürlich vorkommender 
Gegenspieler der Kohlmottenschildlaus (KMSL) in Kohlgemüse im kombinierten Einsatz 
mit Kulturschutznetzen. http://forschung.oekolandbau.de BÖL-Bericht-ID 18149. 

Scott, J. A. (1986). The butterflies of North America, Stanford University Press. 

Sengonca, C., W. Q. Wang, et al. (2001). "Development, longevity and parasitation of white 
fly parasitoid, Encarsia tricolor Forster (Hym., Aphelinidae), at different temperatures." 
Zeitschrift für Pflanzenkrankheiten Und Pflanzenschutz-Journal of Plant Diseases and 
Protection 108(3): 298-304. 

Seo, S.N. and R. Mendelsohn (2008). "An analysis of crop chioce: Adapting to climate 
change in South American farms" Ecological Economics 67(1): 109-116. 

Shelton, A. M. and J. E. Hunter (1985). "Evaluation of the potential of the flea beetle, 
Phyllotretra cruciferae Goeze, to transmit Xanthomonas campestris pv. campestris causal 
agent of black rot of crucifers." Canadian Journal of Plant Pathology 7: 308-310. 

Showler, A.T. and P.J. Moran (2003). "Effects of drought stressed cotton, Gossypium 
hirsutum L., on beet armyworm, Spodoptera exigua (Hübner) oviposition, and larval 
feeding preferences and growth" Journal of Chemical Ecology 29(9): 1997-2011. 

Shirai, Y. (2000). "Temperature tolerance of the diamondback moth, Plutella xylostella 
(Lepidoptera: Yponomeutidae) in tropical and temperate regions of Asia." Bulletin of 
Entomological Research 90: 357-364. 

Silvia, R.J.; Cividanes, F.J.; Pedroso, E.C.; Barbosa, J.C.; Matta, D.H.; Correia, E.T. and A. 
K. Otuka (2013). "Effect of low temperature storage on Diaeretiella rapae (McIntosh) 
(Hymenoptera: Braconidae) Neotropical Entomology 42(5): 527-533. 

Skinner, R.H. (1996). "Response of Bemisia argentifolii (Homoptera: Aleyrodidae) to water 
and nutrient stressed cotton" Environmental Ecology 25(2): 401-406(6). 

Skirvin, D. J., J. N. Perry, et al. (1997). "The effect of climate change on an aphid-coccinellid 
interaction." Global Change Biology 3(1): 1-11. 

Sømme, L. (1964). "Effects of glycerol on cold-hardiness in insects" Canadian Journal of 
Zoology 42(1): 87-101. 

Stacey, D. A. and M. D. E. Fellowes (2002). "Temperature and the development rates of 
thrips: Evidence for a constraint on local adaptation?" European Journal of Entomology 
99(3): 399-404. 



References  

  

173 

 

Staley, J.T.; Mortimer, S.R.; Master, G.J., Morecroft, M.D.; Brown, V.K. and M.E. Taylor 
(2006). " Drought stress differently affect leaf-mining species" Ecological Entomology 
31(5): 460-469. 

Staley, J. T., S. R. Mortimer, et al. (2007). "Summer drought alters plant-mediated 
competition between foliar- and root-feeding insects." Global Change Biology 13(4): 866-
877. 

Stamp, N. E. and T. L. Osier (1997). "Combined effects of night-time temperature and 
allelochemicals on performance of a generalist insect herbivore." Entomologia 
experimentalis et applicata 83: 63-72. 

Stathas, G.J.; Eliopoulos, P.A.; Kontodimas, D.C. and J. Giannopapas (2001) "Parameters of 
reproductive activity in females of Harmonia axyridis (Coleoptera: Coccinellidae)" 
European Journal of Entomology 98:547–549. 

Stireman, J. O., L. A. Dyer, et al. (2005). "Climatic unpredictability and parasitism of 
caterpillars: Implications of global warming." Proceedings of the National Academy of 
Sciences of the United States of America 102(48): 17384-17387. 

Stobbs, L. W., R. F. Cerkauskas, et al. (1998). "Occurrence of turnip yellow mosaic virus on 
Oriental cruciferous vegetables in southern Ontario, Canada." Plant Disease 82: 351. 

Stone, G.D. (2013). "Seeds, Science and Struggle: The global politics of transgenic crops by 
Abby Kinchy (review)" Technology and Culture 54(4):990-991. 

Stoner, K. A. (1990). "Glossy leaf wax and plant-resistance to insects in Brassica oleracea 
under natural infestation." Environmental Entomology 19: 730-739. 

Stoltz, R. L., R. G. Gavlak, et al. (1997). "Survey of potential aphid vectors of potato 
(Solanum tuberosum L.) virus diseases in the Matanuska valley, Alaska." Journal of 
Vegetable Crop Production Binghamton, v. 3, n. 1: 27-36. 

Stüben, V. M. (1949). "Zur Biologie der Chalcidide Encarsia tricolor." Biologisches 
Zentralblatt 68: 413-429. 

Stuhlfauth, T., K. Klug, et al. (1987). "The production of secondary metabolites by Digitalis 
lanata during CO2 enrichment and water stress." Phytochemistry 26: 2735-2739. 

Subramanian, S., R. J. Rabindra, et al. (2010). "Economic threshold for the management of 
Plutella xylostella with granulovirus in cauliflower ecosystem." Phytoparasitica 38: 5-17. 

Svensson, M. G. E., M. Bengtsson, et al. (1997). "Individual Variation and Repeatability of 
Sex Pheromone Emission of Female Turnip Moths Agrotis segetum." Journal of Chemical 
Ecology 23: 1833-1850. 

Swirski, E., Y. Izhar, et al. (1986). "Overwintering of the Japanese bayberry whitefly, 
Parabemisia myricae, in Israel." Phytoparasitica 14(4): 281-286. 

Tang, C.-S., W.-F. Cai, et al. (1995). Plant Stress and Allelopathy; organisms, processes, and 
applications. ACS Symp. Serie, American Chemical Society, Washington, D.C.. 



References  

  

174 

 

Tariq, M.; Rossiter, J.T.; Wright, D.J. and T. Staley (2013). "Drought alters interactions 
between root and foliar herbivores" Oecologia 172(4): 1095-1104. 

Taylor, R. G. and D. G. Harcourt (1978). "Effects of temperature on developmental rate of the 
immature stages of Crioceris asparagi (Coleoptera: Chrysomelidae)." The Canadian 
Entomologist 110(1): 57-62. 

Textor, S. and J. Gershenzon (2009). "Herbivore induction of the glucosinolate-myrosinase 
defense system: major trends, biochemical bases and ecological significance" 
Phytochemistry Reviews 8(1): 149-170. 

Thomson, L. J. M., S.; Hoffmann, A. A. (2010). "Predicting the effects of climate change on 
natural enemies of agricultural pests." Biological Control 52(3): 296-306. 

Tiedink, H. G. M., J. A. R. Davies, et al. (1988). "Formation of mutagenic N-nitroso 
compounds in vegetable extracts upon nitrite treatment; a comparison with the 
glucosinolate content." Food and Chemical Toxicology 26: 947-954. 

Tisdale, R.A. M.R. Wagner (1991). "Host stress influences oviposition preference and 
performance of a pine sawfly" Ecological Entomology 16(3): 371-376. 

Toba, H. H., A. N. Kishaba, et al. (1973). "Temperature and the development of the cabbage 
looper." Annals of the Entomological Society of America 66: 965-974. 

Tobin, P. C., S. Nagarkatti, et al. (2008). "Historical and projected interactions between 
climate change and insect voltinism in a multivoltine species." Global Change Biology 14: 
951-957. 

Toshova, T. B., E. Csonka, et al. (2009). "The seasonal activity of flea beetles in Bulgaria." 
Journal of Pest Science 82(3): 295-303. 

Tuck, G.; Glendining, M.J.; Smith, P.; House, J.I. and M. Wattenbach (2006). "THe potential 
distribution of bioenergy crops in Europe under present and future climate" Biomass and 
Bioenergy 30(3): 183-197. 

Turnock, W. J., G. Boivin, et al. (1998). "Interpopulation differences in the coldhardiness of 
Delia radicum (Diptera : Anthomyiidae)." Canadian Entomologist 130(2): 119-129. 

Ulmer, B. J. (2006). " Emergence of overwintered and new generation adults of the crucifer 
flea beetle, Phyllotreta cruciferae (Goeze) (Coleoptera: Chrysomelidae)." Crop Protection 
25(23-30). 

Valladares, G. and J. H. Lawton (1991). "Host-plant selection in the holly leaf-miner: Does 
mother know best?" The Journal of Animal Ecology 60: 227-240. 

Valterova, I., G. Nehlin, et al. (1997). "Host plant chemistry and preferences in egg-laying 
Trioza apicalis (Homoptera, Psylloidea)." Biochemical Systematics and Ecology 25: 477-
491. 

van Alebeek, F. (2008). "Perspectives for functional agro biodiversity in Brussels sprout." 
IOBC wprs Bulletin 34: 121-125. 



References  

  

175 

 

van Doorn, H.E.; van der Krug, G.C.; van Holst, G.-J. et al. (1998). "The glucosinolate 
sinigrin and progroitin are important determinants for tast preference and bitterness in 
Brussels sprout." Journal of the Science of Food and Agriculture 78: 30-38. 

van Rijn, P.C.J.; Mollema, C. and G.-M. Stennhuis-Broers (1995). "Comperative life history 
studies on Frankliniella occidentalis and Thrips tabaci (Thysanoptera: Thripidae) on 
cucumber" Bulletin of Entomological Research 85(2): 285-297. 

Van Opijnen, T. and J.A.J. Breeuwer (1999). "High temperature eliminate Wolbachia, a 
cyctoplasmic incompatibility inducing endosymbiont, from the two-spotted spider-mite" 
Experimental and Applied Acarology 23: 871-881. 

Vasicek, A., F. La Rossa, et al. (2002). "Biological and population aspects of Nasonovia 
ribisnigri and Aulacorthum solani on lettuce." Pesq. Agropec. Bras. 37: 407-414. 

Vasil, I.K. (2003). "The science and politics of plant biotechnology- a personal perspective" 
Nature Biotechnology 21: 849-851. 

Vaughn, S. F. and R. A. Boydston (1997). "Volatile allelochemicals released by crucifer 
green manures." Journal of Chemical Ecology 23: 2107-2116. 

Veihmayer, F. J. and A. H. Hendrickson (1927). "Soil moisture conditions in relation to plant 
growth." Plant Physiology, Lancaster 2: 71-82. 

Videla, M., Valladares, G. and A. Salvo (2006). "A tritrophic analysis of host preference and 
performance in a polyphagous leafminer" Entomologia Experimentalis et Applicata 
121(2): 105-114. 

Vig, K. (1998). "Data on the biology of Phyllotreta vittula (Redtenbacher, 1849) (Coleoptera: 
Chrysomelidae: Halticinae)." Med. Fac. Landbouw. Biol. Wet. Univ. Gent, 63: 357-363. 

von Berg, K.; Traugott, M.; Symondson, W.O.C. and S. Scheu (2008): "Impact of abiotic 
factors on predator-prey interactions: DNA-based gut content analysis in a microcosm 
experiment" Bulletin of Entomological Research 98(3): 257-26. 

Vuorinen, T. ; Nerg, A.-M.; Ibrahim, M.A.; Reddy, G.V.P. and J.K. Holopainen (2004): 
"Emission of Plutella xylostella-Induced Compounds from Cabbages Grown at Elevated 
CO2 and Orientation Behavior of the Natural Enemies" Plant Physiology 135(4): 1984-
1992 

Walter, J., R. Hein, et al. (2012). "How do extreme drought and plant community composition 
affect host plant metabolites and herbivore performance?" Athropod-Plant Interactions 6: 
15-25. 

Ward, N. L. and G. J. Masters (2007). "Linking climate change and species invasion: an 
illustration using insect herbivores." Global Change Biology 13(8): 1605-1615. 

Warren, J.M.; Bassman, J.; S. Eigenbrode (2002). "Leaf chemical changes induced in Populus 
trichocarpa by enhanced UV-B radiation and concomitant effects on herbivory by 
Crysomela scripta (Coleoptera: Chyrsomelidae)." Tree Physiology 22(15-16): 1137-1146. 



References  

  

176 

 

Warren, M. S., J. K. Hill, et al. (2001). "Rapid responses of British butterflies to opposing 
forces of climate and habitat change." Letters to Nature 414: 65-69. 

Watts, R. L. (1912). The Common Asparagus Beetle (Crioceris Asparagi). Vegetable 
Gardening. R. L. Watts, Orange Judd Company. 

Wave, H. E., W. A. Shands, et al. (1965). "Biology of the foxglove aphid in the northeastern 
United States." Technical Bulletin U.S. Department of Agriculture 1338: 1-40. 

Wennström, A.; Hjulström, L.N.; Hjältén, J. and R. Julken-Tiitto (2010). Mother really knows 
best: host choice of adult phytophagous insect females reflects a with-in host variation in 
suitability as larval food" Chemoecology 20(1): 35-42. 

Whalon, M. E. and Z. Smilowitz (1979). "The interaction of temperature and biotype on 
development of the green peach aphid, Myzus persicae (Sulz.)." American Potato Journal 
56(12): 591-596. 

White, T. C. R (1974). "A hypothesis to explain outbreaks of looper caterpillars, with special 
reference to populations of Selidosema suavis in a plantation of Pinus radiata in New 
Zealand" Oecologia 16(4): 279-301. 

White, T. C. R. (1984). "The abundance of invertebrate herbivores in relation to the 
availability of nitrogen in stressed food plants." Oecologia 63: 90-105. 

Whitney-Johnson, A., M. Thompson, et al. (2005). "Responses to predicted global warming in 
Pieris rapae L. (Lepidoptera): Consequences of nocturnal versus diurnal temperature 
change on fitness components." Environmental Entomology 34(3): 535-540. 

Whittaker, J. B. (2001). "Insects and plants in a changing atmosphere." Journal of Ecology 
89(4): 507-518. 

Williams, C.T. (1980). " Low temperature mortality of cereal aphids." Bulletin SROP 3(4): 
63-66. 

Williams, T. (1989). Sex ratio strategies in the facultatively autoparasitic wasp, Encarsia 
tricolor Forster. London, University of London. 

Williams, T. (1995). "The biology of Encarsia tricolor - an autoparasitoid of Whitefly." 
Biological Control 5(2): 209-217. 

Williams, R. S., R. J. Norby, et al. (2000). "Effects of elevated CO2 and temperature-grown 
red and sugar maple on gypsy moth performance." Global Change Biology 6(6): 685-695. 

Winde, I. and U. Wittstock (2011). "Insect herbivore counter adaptations to the plant 
glucosinolate-myrosinase system" Phytochemistry 72(13): 1566-1575. 

Woods, J. N., J. Wilson, et al. (2008). "Influence of climate on butterfly community and 
population dynamics in western Ohio." Environmental Entomology 37(3): 696-706. 

Xia, J. Y., W. van der Werf, et al. (1999). "Temperature and Prey Density on Bionomics of 
Coccinella septempunctata (Coleoptera: Coccinellidae) Feeding on Aphis gossypii 
(Homoptera: Aphididae) on Cotton." Environmental Entomology 28(2): 307-314(8). 



References  

  

177 

 

Yuan, J. S., S. J. Himanen, et al. (2009). "Smelling global climate change: mitigation of 
function for plant volatile organic compounds." Trends in Ecology & Evolution 24(6): 
323-331. 

Yurk, B. P. and J. A. Powell (2009). "Modelling the evolution of insect phenology." Bulletin 
of Mathematical Biology 71(4): 952-979. 

Zavala, J.A.; Scople, A.L.; Ballaré, C.L. (2001) "Effects of ambient UV-B radiation on 
soybean crops: Impact on leaf herbivory by Anticarsia gemmatalis" Plant Ecology 156(2): 
121-130. 

Zethner, O. (1980). "Control of Agrotis segetum [Lep.: Noctuidae] in root crops by granulosis 
virus." Entomophaga 25: 27-35. 

Zhang, H.; Schonhof, I.; Krumbein, A.; Gutezeit, B.; Li, L.; Stützel, H. and M. Schreiner 
(2008). "Water supply and growing season influence glucosinolate concentration and 
composition in turnip root (Brassica rapa var. rapifera L.)" Journal of Plant Nutrition and 
Soil Science 171(2): 255-265. 

Zhao, F., E. Evans, et al. (1994). "Influence of nitrogen and sulphur on the glucosinolate 
profile of rapeseed (Brassica napus L.)." Journal of the Science of Food and Agriculture 
64: 295-304. 

Zhou, X. L., R. Harrington, et al. (1995). "Effects of temperature on aphid phenology." Global 
Change Biology 1(4): 303-313. 

Zimmermann N, Gerendàs J, Krumbein A (2007) Identification of desulphoglucosinolates in 
Brassicaceae by LC/MS/MS: Comparison of electrospray ionisation and atmospheric 
pressure chemical ionization mass spectrometry. Mol. Nutr. Food Res. 51:1537-1546. 

Zwick, P. (2003). "Variable egg development of Dinocras spp. (Plecoptera, Perlidae) and the 
stonefly seed bank theory" Freshwater Biology 35(1): 81-100. 



Addendum  

  

178 

 

 

10 Addendum 

10.1 Zusammenfassungen der einzelnen Kapitel 

 

Die Klimaveränderungen, die im letzten Jahrhundert zu beobachten waren, werden sich 

auch in den folgenden hundert Jahren fortsetzen. Weltweit werden die Temperaturen 

ansteigen und das Niederschlagsregime wird sich verändern, außerdem wird es zu häufigeren 

Extremereignissen wie Starkregen oder Hitzewellen kommen. Besonders die Temperatur hat 

einen bedeutenden Einfluss auf die Entwicklung von Insekten und kann diese fördern oder 

verhindern, und sehr hohe Temperaturen können zu einer erhöhten Sterblichkeit führen. In 

bisherigen Studien wurde häufig lediglich der Einfluss einer bestimmten Höchsttemperatur 

getestet, wobei die Temperaturen in sehr kurzer Zeit anstiegen und es nicht klar ist, ob die 

Mortalität von der Temperatur oder dem schnellen Temperaturanstieg abhängt. Darüber 

hinaus wurde häufig nur ein Hitzeereignis getestet. Aus diesem Grund haben wir, um den 

Einfluss von hohen Temperaturen und Hitzewellen zu testen, ein Modell entwickelt, bei dem 

die Temperaturen langsam ab- und ansteigen. Dazwischen wird eine Spitzentemperatur von 

30 (34, 36, 38, 40, 42 °C) gehalten. Die Tiere wurden diesen Temperaturen entweder in 

Petrischalen mit Blättern oder an lebenden Pflanzen ausgesetzt. Zusätzlich wurden diese 

Hitzezyklen 1, 3 oder 5 mal wiederholt, um den Einfluss von Hitzewellen wie sie in 

Niedersachsen auftreten könnten, zu testen und zu untersuchen, ob sich die 

Kohlmottenschildlaus an diese Bedingungen anpasst oder stärker unter ihnen leidet als unter 

einem einzelnen Hitzeereignis. Unsere Ergebnisse zeigen, dass die Kohlmottenschildlaus sehr 

robust gegenüber Hitze ist und sogar Temperaturen von 42 °C für acht Stunden überlebt. Mit 

zunehmender Wiederholung der Hitzezyklen stieg jedoch auch die Mortalität. Nach drei 

Zyklen mit Temperaturen über 38 °C lag die Mortalität der Weibchen bei 90%. Männchen 

reagierten noch empfindlicher auf die Hitze, nach zwei Zyklen mit Temperaturen über 38 % 

waren über 95% der Tiere tot. Die Eiablage sank bereits nach einem Zyklus von 38 °C 

10.1.1 Zusammenfassung: Einfluss wiederholter kurzzeitiger Hitzewellen auf Aleyrodes 

proletella 
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drastisch, Temperaturen von 30 und 34 °C hatten jedoch keinen Einfluss auf die Oviposition. 

Bei einer Wiederholung der Versuche mit Tieren auf lebenden Pflanzen stellten sich die 

Ergebnisse jedoch anders da. Hitzewellen, unabhängig von Höhe der Temperatur und 

Wiederholung der Zyklen, hatten keinen Einfluss auf die Mortalität von Männchen und 

Weibchen. Es war ebenfalls kein Einfluss auf die Eiablage, die Entwicklung der Eier oder der 

Larven feststellbar. Lediglich die Entwicklungszeit der Eier verkürzte sich mit zunehmender 

Temperatur. Hitzewellen haben somit keinen negativen Einfluss auf die Kohlmottenschildlaus 

und, die hohen Temperaturen werden die Populationsentwicklung dieser Art eher fördern. 

 

Die Temperaturerhöhung als Folge des Klimawandels wird direkte und indirekte 

Wirkungen auf die Insekten haben. Ein wichtiger indirekter Effekt wird die Änderung der 

Pflanzennährstoffe und der sekundären Pflanzeninhaltsstoffe sein. Eine Gruppe dieser 

Pflanzeninhaltsstoffe sind die Glucosinolate, die vor allem in Brassicaceaen vorkommen und 

zur Abwehr gegen Herbivoren dienen. Wir untersuchten, ob sich diese Pflanzeninhaltsstoffe 

unter wiederholten Hitzewellen, die durch an- und absteigende Temperaturen und einer 

Spitzentemperatur von 30 (34, 38 °C), die für drei Stunden gehalten wurde, simuliert wurden, 

verändern und somit ein Grund für die Änderung in der Populationsentwicklung der Insekten 

sein könnte. Die Simulation dieser Hitzewelle, die in Niedersachen auftreten könnte, wurde 

einmal und fünfmal wiederholt. Unsere Ergebnisse zeigen, dass die Menge der Glucosinolate 

unter hohen Temperaturen zunahm, wobei jedoch nur die Zunahme von 4-Methoxy-

Glucobrassicin signifikant war. Die Menge der Glucosinolate nahm auch stärker nach einer 

Hitzewelle im Vergleich zu fünf Wellen zu. Den größten Einfluss auf die Veränderung der 

Glucosinolate hatte jedoch der Fraß des Schädlings Aleyrodes proletella. Dieser führte zu 

einer Verdreifachung der Glucosinulatmenge. 

 

Neben der Temperatur ist Niederschlag einer der wichtigsten Klimafaktoren für 

Insekten. Die Klimaszenarion für Niedersachsen sagen eine Verschieben des Niederschlags in 

10.1.2 Zusammenfassung: Einfluss von wiederholter kurzzeitiger Hitzewellen auf die 

Glucosinulate 

10.1.3 Zusammenfassung: Einfluss von Starkregen auf die Kohlmottenschildlaus 

Aleyrodes proletella 
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den Winter und häufigere Starkregenereignisse, unterbrochen von Trockenperioden, voraus. 

Studien zu dem konkreten Einfluss von Starkregen auf die Entwicklung von Insekten sind 

selten. Deshalb entwickelten wir eine Arena, um den Einfluss von Starkregen auf Aleyrodes 

proletella zu testen, in der die Insekten verschiedenen Regenleveln ausgesetzt waren. Wir 

untersuchten drei Regenlevel und setzten alle Stadien der Kohlmottenschildlaus mittlerem 

(0,6 l/min), starkem (2 l/min) und sintflutartigem (6 l/min) Regen aus. Der mittlere und der 

starke Regen hatten keinen Einfluss auf die Mortalität der Insekten, nur unter dem 

sinflutartigen Regen stieg die Mortalität auf 50% an, da die Tiere von den Blättern gewaschen 

wurden und starben. Die Anzahl der abgelegten Eier nach einem 20-minütigen Regenschauer 

sank unter dem sintflutartigen Regen um 50%. Der Schlupferfolg aus den Eier sank unter 

allen Regenlevel um circa die Hälfte, die Entwicklung der Larven und Puppen war jedoch 

nicht vom Regen beeinflusst. Wiederholung mit realem mittelstarkem Regen hatte keinen 

Einfluss auf Aleyrodes proletella. 

 

 

Die Gefahr von Trockenperioden, auch im Frühling und im Herbst, wird zunehmen. Um 

den Einfluss von Trockenheit auf die Kohlmottenschildlaus Aleyrodes proletella zu testen, 

haben wir zuerst Insekten auf Pflanzen in Clip-Cages aufgebracht, die wir dann in drei Stufen 

Wasserstress ausgesetzt haben. Im zweiten Teil des Experiments haben wir A. proletella auf 

Pflanzen gesetzt, die bereits gestresst waren. Mit zunehmendem Wasserkapazität nahm die 

ober- und unterirdische Biomasse der Pflanzen zu und das C/N-Verhältnis nahm unter dem 

Trockentreatment ab. Im ersten Teil des Experiments hatte die Wasserkapazität keinen 

signifikanten Einfluss auf die Eiablage, die Entwicklung der Eier oder die Entwicklung der 

Larven der Kohlmottenschildlaus. Im zweiten Teil des Experiments nahm die Eiablage und, 

als Folge davon, die Anzahl der sich entwickelnden Larven und Adulten mit abnehmender 

Wasserverfügbarkeit ab. Die Tiere, die sich unter dem Trockentreatment entwickelten waren 

darüberhinaus kleiner. Wir fanden keine Korrelation zwischen dem C/N-Verhältnis und der 

Anzahl der abgelegten Eier, sodass wir davon ausgehen können, dass dies nicht der 

limitierende Faktor für die Entwicklung war. Im zweiten Teil des Versuchs fanden wir jedoch 

eine signifikant positive Korrelation zwischen der Pflanzengröße und der Anzahl der 

10.1.4 Zusammenfassung: Einfluss von Trockenheit auf Aleyrodes proletella 
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abgelegten Eier. Die Pflanzengröße scheint ein wichtiger Faktor für die 

Populationsentwicklung der Kohlmottenschildlaus zu sein. 

 

 

Die zukünftigen Temperaturerhöhungen werden sich vor allem auf die Kälteextreme 

auswirken, was wärmere Nächte und wärmere Winter zur Folge haben wird. Die wärmeren 

Winter werden einen wichtigen Einfluss auf die Populationsentwicklung der 

Kohlmottenschildlaus Aleyrodes proletella und die Synchronität mit ihrem Parasitoiden 

Encarsia tricolor haben. Die Entwicklung der Kohlmottenschildlaus wird hauptsächlich von 

der Temperatur gesteuert, wohingegen die Diapause des Parasitoiden von der Photoperiode 

abhängt. Wir entwickelten ein Experiment mit Mini-Agrar-Ökosystem, das es ermöglicht, den 

Einfluss von milden Wintern im Vergleich zu kalten Wintern unter Halb-Freiland-

Bedingungen zu testen. Die Gewächshäuser für das Experiment boten den Vorteil, dass in 

ihnen nahezu freilandähnliche Bedingungen herrschten, die Temperaturen in ihnen bis zu 

einem gewissen Grad regulierbar waren und andere Insekten ausgeschlossen wurden. Unsere 

Ergebnisse zeigen, dass die Kohlmottenschildlaus eine reproduktive Diapause von Dezember 

bis Anfang Januar hat. Nach Beendigung dieser Diapause begann die Eiablage in den 

geheizten Gewächshäusern früher als in den ungeheizten Gewächshäusern und auch die 

Larven entwickelten sich unter den warmen Bedingungen schneller. Entgegen unserer 

Erwartung überlebten jedoch mehr Adulte in den ungeheizten Häusern. Sowohl in den 

ungeheizten als auch in den geheizten Gewächshäusern konnten wir keine Larven der 

Schlupfwespe Encarsia tricolor finden. Im Freiland überlebten keine der Larven oder 

Mumien an den unteren Blättern. Nur die adulten Weibchen der Kohlmottenschildlaus 

überlebten an den oberen Blättern und im Herzen der Kohlpflanzen. 

 

10.1.5 Zusammenfassung: Einfluss von kalten Wintern im Vergleich zu milden Wintern 

auf die Entwicklung und Synchronisation der Kohlmottenschildlaus Aleyrodes proletella 

und des Parasitoiden Encarsia tricolor 
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10.2 Additional graphs  
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Fig. 54: Influence of the water level on the increase of the leaf number in the two different experiments 

(Experiment No.1: plants were stressed after colonisation by insects; experiment No. 2: 

colonisation took place after stressing of the plants). Different characters representing 

significances (α ≤ 0.05). Capitals representing camparison between experiments, small letters 

within the experiment. 
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Fig. 55: Influence of water level and experiment on the above and belowground biomass (treatment one: 

plants were stressed after colonisation by insects; treatment 2: colonisation took place after 

stressing of the plants). Different characters representing significances (α ≤ 0.05). Capitals 

representing camparison between experiments, small letters within the experiment 
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10.2.1.1 First experiment 
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Fig. 56: Number of eggs correlated with the number of adults of Aleyrodes proletella in the experiment 

No. 1 (plants were stressed after colonisation by insects). 
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Fig. 57: Number of adults of Aleyrodes proletella correlated with the plant size at the end of the experiment 

No. 1 (plants were stressed after colonisation by insects). 
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10.2.1.2 Second experiment 
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Fig. 58: Correlation between the number of eggs and the number of adults of Aleyrodes proletella in 

experiment No. 2 (colonisation took place after stressing of the plants). 

r = 0.931; 

p < 0.001 
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    Nature conservation, final mark: 1.0 

   Zoology, Final mark: 1.0 

 Diploma thesis: Plant genotopic effects on insect herbivory in poplar 

 Practical course with the topic: The influence of artificial clipping of 

root exudates from Festuca rubra 

 

8/1993 - 6/2002 Abitur at Städtisches Gymnasium Barntrup 

 A-levels (Abitur)  

 Primary Subjects: Biology, German 

 Further examination subjects: Mathematics, History 

 

 

 

 



Curriculum vitae  

  

192 

 

Professional Experience 

 

3/2008 - 6/2015 Leasehold of a farm 

 cultivation of cereals, oil rape and sugar beet 

 

5/2008 - 4//2011 Research associate 

 research about the influence of climate change in the KLIFF 

cooperation 

 supervision of students 

 supervision of courses (phylogenetic systematics, phytomedicine) 

  

10/2008 - 12/2008 Freelancer at Simon & Widdig GbR 

 field mapping of bats 

 

10/2005 - 4/2008 Student assistant in the group of Prof. Brandl, Animal Ecology, 

University of Marburg  

 supervision of courses (phylogenetic systematics, ecology) 

 supervision of bachelor students,  

 leading of excursions (main focus: ornithology) 


