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Abstract 

The mitochondrial electron transport chain (ETC) builds up a proton gradient between the 

mitochondrial intermembrane space and the mitochondrial matrix which is used by the ATP-synthase 

complex to produce ATP from ADP and Pi. This typical eukaryotic “recycling” process of ATP is called 

oxidative phosphorylation (OXPHOS). NADH and FADH2 are the main electron donors for the ETC. 

Plants as well as other eukaryotic species possess specific electron entry and exit points for the ETC. 

Especially plant mitochondrial dehydrogenases can be seen as a system of electron donors to the 

ETC. This intricate system of electron transfer pathways in plant mitochondria is poorly understood. 

Particularly plant mitochondria often have to cope with drastic changes in ATP requirements because 

of the diurnal rhythm and the fact that chloroplast only generate ATP during the day. In addition, ATP 

formation has to be readjusted in order to respond to several biotic and abiotic influences. 

This thesis aims to contribute to a better understanding of electron pathways in the mitochondria of 

plants and especially to provide insights into the role of plant mitochondrial dehydrogenases. 

Starting with a review on the mitochondrial dehydrogenase system in plants. However, the main 

focus of this thesis lies on the proline dehydrogenase (ProDH), the first enzyme of the L-proline 

catabolism. For ProDH from Arabidopis thaliana the Michaelis-Menten constant (Km) was 

determined. The influence of proline treatment on the activity of the Arabidopsis respiratory chain 

complexes and on other mitochondrial dehydrogenases was investigated in detail. For the first time 

it is shown that lactate as well as pyruvate act as competitive inhibitors for ProDH in plants. A 

possible rapid regulation mechanism for ProDH by the identified competitive inhibitors is discussed. 

It is shown that ProDH of Arabidopsis is associated to the mitochondrial membrane. In addition, 

analysis of Arabidopsis knock out lines allowed showing that proline breakdown represents an 

important electron source for the ETC under stress-release conditions. Finally, ProDH peptides from 

Arabidopsis were identified by mass spectrometry for the very first time in mitochondria isolated 

from proline treated plant cells. The second mitochondrial dehydrogenase investigated in this thesis 

is L-galactono-1,4-lactone dehydrogenase (GLDH). As a plant specific subunit of complex I, GLDH is 

responsible for the terminal step in vitamin c (ascorbate) biosynthesis as well as for the proper 

assembly of complex I. Three GLDH containing assembly intermediates of complex I (420 kDa, 

470kDa and 850 kDa) could be identified, adding further information on the specific role of GLDH in 

complex I assembly in plants. Furthermore it was successfully shown that GLDH is associated to the 

membrane arm of complex I assembly intermediates. Finally, native gel electrophoresis methods in 

combination with in-gel activity assays are presented, methods which were of central importance for 

the projects of this thesis. 
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Zusammenfassung 

Die pflanzliche mitochondriale Elektronentransportkette (ETC) baut einen Protonengradienten 

zwischen dem mitochondrialen Intermembranraum und der Matrix auf. Der gebildete 

Protonengradient kann von der mitochondrialen ATP-Synthase genutzt werden um ATP aus ADP und 

Pi zu generieren. Dieser universell bei Eukaryonten vorkommende Vorgang des ATP „recyclings“ wird 

oxidative Phosphorylierung (OXPHOS) genannt. Die Elektronen der ETC werden überwiegend über 

die Co-Faktoren NADH und FADH2 in die ETC geschleust. Dabei besitzen Pflanzen, wie auch andere 

Eukaryonten, sowohl spezifische Stellen für den Eintritt als auch für den Austritt von Elektronen. Vor 

allem mitochondriale Dehydrogenasen können als ein System von „Elektron-Quellen“ für die ETC 

verstanden werden. Das komplexe System dieser Elektronentransportwege ist bis heute bei weitem 

noch nicht vollständig verstanden. Insbesondere pflanzliche Mitochondrien müssen einem oft 

wechselnden ATP Bedarf gerecht werden. Dies liegt vor allem am diurnalen-Rhythmus und der 

Tatsache, dass Chloroplasten ausschließlich am Tag einen weiteren Ort der ATP-Synthese darstellen. 

Ebenfalls muss der pflanzliche Metabolismus auf viele äußere biotische als auch abiotische Faktoren 

reagieren können. Ziel dieser Dissertation ist es, die Elektronentransportwege hin zur ETC innerhalb 

pflanzlicher Mitochondrien besser zu verstehen und einzelne Enzyme (Dehydrogenasen), die einen 

Einfluss auf die ETC haben, zu charakterisieren. Hierbei steht das erste Enzym des Prolinkatabolismus 

im Mittelpunkt. Für die Prolin Dehydrogenase (ProDH) aus Arabidopsis thaliana wurde die Michaelis-

Menten-Konstante (Km) als enzymatische Kenngröße bestimmt. Es konnte gezeigt werden, dass durch 

externes Prolin Enzyme des Prolinkatabolismus als auch andere mitochondriale Dehydrogenasen 

induziert werden. Die Aktivität der Atmungskettenkomplexe hingegen veränderte sich nicht 

signifikant. Zum ersten Mal konnte gezeigt werden, dass sowohl Laktat als auch Pyruvat kompetitive 

Inhibitoren für eine pflanzliche ProDH darstellen. Ein schneller Regulationsmechanismus der ProDH 

Aktivität bei wechselnden Stressbedingungen wird diskutiert. Des Weiteren konnte eine 

Membranassoziation der ProDH in Arabidopsis gezeigt werden. Mit Hilfe von Mutanten wurde 

bestätigt, dass ProDH in Arabidopsis vorhanden sein muss, damit Prolin als Atmungskettensubstrat 

genutzt werden kann. Ebenfalls konnten zum ersten Mal ProDH-Peptide massenspektrometrisch in 

isolierten Pflanzenmitochondrien nachgewiesen werden. Die zweite mitochondriale Dehydrogenase, 

die im Fokus dieser Arbeit steht, ist die L-galactono-1,4-lacton Dehydrogenase (GLDH). Als 

pflanzenspezifische Untereinheit von Komplex I ist GLDH sowohl für den terminalen Schritt der 

Vitamin C (Ascorbat) Biosynthese als auch für die Assemblierung von Komplex I verantwortlich. 

Innerhalb dieser Arbeit konnten drei GLDH enthaltende Komplexe (420 kDa, 470 kDa und 850 kDa), 

die während der Assemblierung von Komplex I entstehen, identifiziert werden. Die in dieser Arbeit 

oft verwendete und immanent wichtige Methode der nativen Gelelektrophorese in Kombination mit 

in-gel Aktivitätstests wird in einem weiteren Teil der Arbeit detailliert beschrieben.

Schlagworte: Pflanzenmitochondrien, Dehydrogenase, Prolin 
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Abbreviations 

AOX    alternative oxidase 

ADP    adenosine diphosphate 

APX    ascorbate peroxidase 

ATP    adenosine triphosphate 

BCAA    branched chain amino acids 

BCKDH    branched chain -keto acid dehydrogenase complex 

BN    blue native 

c    cytochrome c 

CA2    mitochondrial carbonic anhydrase 2 in Arabidopsis (At1g47260) 

Complex I   NADH dehydrogenase 

Complex II   succinate dehydrogenase 

Complex III   cytochrome c reductase 

Complex IV   cytochrome c oxidase 

Complex V   ATP-synthase 

cyt. G-3PDH   cytosolic NAD+-dependent G-3-P dehydrogenase 

DHAP    dihydroxyacetone phosphate 

DHA    dehydroascorbate 

DHAR    dehydroascorbate reductase 

D2HG    D-2-hydroxyglutarate 

D2HGDH   D-2-hydroxyglutarate dehydrogenase 

DHODH    dihydroorotate dehydrogenase 

DLDH    D-lactate dehydrogenase 

E. coli    Escherichia coli 

ETC    electron transport chain 

ETF    electron transfer flavoprotein 

ETFQOR   electron transfer flavoprotein:quinone oxidoreductase 

FADH2    flavin adenine dinucleotide; reduced form 

FMN    flavin mononucleotide 

G3-P    glycerol-3-phosphate 

G3-PDH    glycerol-3-phosphate dehydrogenase 

GLDH    L-galactono-1,4-lactone dehydrogenase 

GR    glutathione reductase 
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GS/GOGAT   glutamine synthetase - glutamate synthase 

H+    proton 

IEF    isoelectric focusing 

IMM    inner mitochondrial membrane 

IMS    inter membrane space 

IVDH    isovaleryl-CoA dehydrogenase 

kDa    kilo Dalton 

LLDH    L-lactate dehydrogenase 

M    matrix 

MDHA    monodehydroascorbate 

MDHAR   monodehydroascorbate reductase 

MS    mass spectrometry 

NAD(P)+   nicotinamide adenine dinucleotid (phosphate); oxidized form 

NAD(P)H   nicotinamide adenine dinucleotid (phosphate); reduced form 

OMM    outer mitochondrial membrane 

OXPHOS   oxidative phosphorylation 

PAGE    polyacrylamide gel electrophoresis 

P5C    pyrroline-5-carboxylate 

P5CDH    pyrroline-5-carboxylate dehydrogenase 

PDC    pyruvate decarboxylase complex 

PEG    polyethylene glycol 

Pi    inorganic phosphate 

ProDH    proline dehydrogenase 

ROS    reactive oxygen species 

UCP    uncoupling protein 

UQ    ubiquinone 

UQH2    ubiquinol 

VAO    vanillyl-alcohol oxidase 
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Chapter 1 - General Introduction 

Plants can produce ATP by photophosphorylation linked to the light reaction of 

photosynthesis but at the same time depend on ATP formation by the mitochondrial 

Oxidative Phosphorylation (OXPHOS) system. The OXPHOS system consists of the respiratory 

chain and the ATP-synthase complex. Electrons provided to the system derive from 

mitochondrial catabolism. In plants, electron entry pathways into the mitochondrial 

respiratory chain follow unique routes. This thesis is devoted to mitochondrial 

dehydrogenases which are of outstanding significance for the electron transfer system of 

mitochondria in plants. 

 1.1 The Oxidative Phosphorylation (OXPHOS) System in Plants 

Mitochondria are of central importance for energy metabolism in eukaryotes. They are 

responsible for the formation of adenosine triphosphate (ATP) from adenosine diphosphate 

(ADP). ATP is the most prevalent energy carrier in all living cells. The cleavage of its 

phosphoanhydride bond releases high energy. ATP is quite unstable which is due to negative 

charges around its triphosphate arm. On the one hand the phosphoanhydride bond is low 

enough in energy to be easily broken, and on the other hand the released energy is high 

enough to represent a strong energy source for cellular metabolism. Mitochondrial ATP 

synthesis relies on mitochondrial catabolism. Different organic compounds are oxidized 

within mitochondria and electrons are transferred by several metabolic steps to molecular 

oxygen. CO2 represents the final oxidation product which is released from the organelles. 

Glycolysis which takes place in the cytosol is the preceding metabolic pathway of the process 

of cellular respiration. During glycolysis one molecule of glucose is oxidized forming two 

molecules of pyruvate in the cytosol. The following decarboxylation of pyruvate to acetyl-

CoA is carried out in the mitochondrial matrix. Afterwards acetyl-CoA is the starting point of 

the citric acid cycle. During decarboxylation steps within the citric acid cycle two molecules 

CO2, three nicotinamide adenine dinucleotide (NADH) molecules and one flavin adenine 

dinucleotide (FADH2) molecule are produced. Most of the reducing equivalents (NADH and 

FADH2) produced by the citric acid cycle transfer their electrons to the respiratory electron 

transport chain (ETC). ETC consists of four different protein complexes. The NADH 
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dehydrogenase or NADH-ubiquinone-oxidoreductase (complex I), the succinate 

dehydrogenase or succinate - coenzyme Q reductase (complex II), the cytochrome c 

reductase or coenzyme Q : cytochrome c - oxidoreductase (complex III) and the cytochrome 

c oxidase (complex IV). In addition two mobile electron transporters ubiquinone (UQ) and 

cytochrome c form part of the ETC. The electrons are transferred via the respiratory chain 

complexes to molecular oxygen (Figure 1). During this process a proton gradient is build up 

across the inner mitochondrial membrane which is used by the ATP-synthase complex to 

form ATP. 

 

Figure 1: The respiratory chain of the inner mitochondrial membrane, simplified. Both, complex I 
and complex II transfer electrons to the mobile electron carrier ubiquinone (UQ). Subsequently, 
complex III transfers electrons from UQ to cytochrome c. The electron transfer is coupled to a proton 
translocation from the matrix (M) to the intermembrane space (IMS) across the inner mitochondrial 
membrane (IM). The emerged proton gradient is used by the ATP-synthase (complex V) to produce 
ATP from ADP + Pi. The respiratory chain complexes I, II, III2 and IV are shown in blue. ATP-synthase 
(complex V) is shown in grey. The two mobile electron transporters ubiquinone (UQ) and cytochrome 
c (c) are given in red. 
 

Complex I of the respiratory chain is the largest enzyme of the ETC. It consists of 49 subunits 

in plants (Klodmann et al. 2010). Complex I has an L-like structure with one part protruding 

into the mitochondrial matrix (peripheral arm) and one part embedded in the mitochondrial 

inner membrane (Friedrich and Böttcher 2004). Complex I oxidizes NADH using the 

isoalloxazine ring of flavin mononucleotide (FMN) as an electron acceptor. Subsequently, the 

electrons are transferred via numerous iron-sulfur clusters within complex I to ubiquinone 

(UQ). UQ is reduced to ubiquinol (UQH2) by the uptake of two electrons. Coupled to this 

process four protons are transferred from the matrix to the intermembrane space (Sazanov 

et al. 2013). UQH2 can freely move within the inner mitochondrial membrane. The electrons 

coming from UQH2 are transferred via complex III to cytochrome c. A Q-cycle-like 
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mechanism within complex III couples electron transport and proton translocation across 

the inner mitochondrial membrane. The electron transfer within complex III is accomplished 

by cytochrome b and c1, and one iron sulfur cluster (rieske centrum). For each reduced 

cytochrome c molecule two protons are released in the intermembrane space. Furthermore, 

complex II transfers electrons onto UQ, too. Within this complex the transport of electrons 

from succinate to UQ is accomplished by FAD and iron-sulfur clusters and fumarate is 

produced (Kenney 1975). At this step no proton translocation occurs. Complex II is directly 

involved in the citric acid cycle. 

Complex IV oxidizes cytochrome c. Within complex IV, cytochrome a and a3 as well as two 

cupper ions are involved in the electron transfer. During this step further protons are 

transported across the inner mitochondrial membrane to the intermembrane space. 

Electrons are finally transferred onto molecular oxygen within complex IV (Millar et al. 

2004). 

The F0F1-ATP-synthase uses the proton gradient across the inner mitochondrial membrane 

for the synthesis of ATP from ADP and phosphate. The F1-part protrudes into the matrix. 

Here, ADP + Pi are bound and ATP is released. The F0-part of the ATP-synthase forms a 

channel for the protons through the inner mitochondrial membrane (Abrahams et al. 1994). 

Interestingly, all protein complexes of the OXPHOS system include some extra proteins in 

plants. Their functional roles are only partially understood (Klodmann et al. 2010). 

1.2 The Alternative Oxidase (AOX) and Type II NAD(P)H Dehydrogenases 

Besides the above mentioned “standard components” of the mitochondrial respiratory 

chain, plants have quite a number of enzymes which enable alternative electron transfer 

pathways. These enzymes are important to maintain the redox balance of the plant cell. The 

“alternative oxidase” (AOX) transfers electrons directly from UQH2 to molecular oxygen 

(Rasmusson et al. 2004). In this way complex III and complex IV of the respiratory chain are 

bypassed and proton translocation is reduced (Figure 2). Five AOX isoforms are encoded by 

the Arabidopsis thaliana genome. The expression of the different isoforms depends on the 

developmental stage, cellular redox status and external factors (Wagner and Krab 1995, Van 

der Straeten et al. 1995, Millenaar and Lambers 2003, Clifton et al. 2006). Pyruvate 

especially activates AOX, probably by interaction with specific cysteine residues within AOX. 
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These cysteines are also involved in dimer-formation of AOX (Rhoads et al. 1998; 

Vanlerberghe et al. 1998). This process causes increased activity of AOX during high 

glycolysis. Excess of NADH can be oxidized by the action of type II NADH(P)H 

dehydrogenases in plants. All type II NADH(P)H dehydrogenases are attached to the inner 

mitochondrial membrane. In Arabidopsis the external type II NADH(P)H dehydrogenases 

NDB1, NDB2, NDB3 and NDB4 are facing the intermembrane space. These enzymes are able 

to oxidize NAD(P)H from the cytoplasm, whereas the internal type II NADH(P)H 

dehydrogenases NDA1, NDA2 and NDC1 are exposed to the mitochondrial matrix. These 

enzymes exclusively oxidize NAD(P)H which is localized in the matrix (reviewed in Rasmusson 

et al. 2008) (Figure 2). (Solely matrix localized NADH is accessible to these enzymes due to 

the fact that NADH cannot traverse the inner mitochondrial membrane (Tobin et al. 1980)). 

A characteristic feature of type II NAD(P)H dehydrogenases in plants is their differential 

dependence on Ca2+. Some enzymes strictly depend on Ca2+, whereas others do not. Type II 

NAD(P)H dehydrogenases transfer electrons onto UQ. Thus, similar to AOX, no proton 

translocation occurs at the inner mitochondrial membrane. AOX and type II NAD(P)H 

dehydrogenases are not contributing to the proton gradient which causes decreased ATP 

formation by the ATP-synthase complex. By this mechanism, plant cells regulate their redox 

balance and ATP production. Furthermore the uncoupling protein (UCP) is able to regulate 

energy homeostasis. Protons are channeled back from the intermembrane space to the 

matrix thereby releasing stored energy as heat (reviewed in Nicholls and Rial 1999). 

 

Figure 2: Integration of alternative NAD(P)H dehydrogenases and AOX into the ETC in plants. Type 
II NAD(P)H dehydrogenases (given in light green) transfer electrons to UQ. The external type II 
NADH(P)H dehydrogenases NDB1, NDB2, NDB3 and NDB4 are facing the intermembrane space (IMS). 
The internal type II NADH(P)H dehydrogenases NDA1, NDA2 and NDC1 are localized on the matrix 
(M) side. AOX is able to transfer electrons directly from UQH2 to molecular oxygen. (For 
abbreviations see Figure 1). 
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1.3 Branched Chain Amino acid Catabolism 

Besides the citric acid cycle several other catabolic pathways take place in mitochondria 

which also contribute electrons to the respiratory chain. Especially the degradation of amino 

acids is of great importance. For example, electrons generated during proline, valine, leucine 

and isoleucine degradation can enter the ETC. The three amino acids valine, leucine and 

isoleucine belong to the group of branched chain amino acids (BCAA). Break down of BCAAs 

was found to be very important as an alternative source of electrons for plant cells under 

carbon starvation conditions (Ishizaki et al. 2005, Ishizaki et al. 2006, Araujo et al. 2010). A 

transamination is the starting reaction of BCAA degradation in plant mitochondria. By this 

reaction -keto acids are produced. Subsequently the branched chain -keto acid 

dehydrogenase complex (BCKDH) converts -keto acids to acyl-CoAs (reviewed in Binder 

2010). In Arabidopsis the isovaleryl-CoA dehydrogenase (IVDH), which belongs to the acyl-

CoA dehydrogenase family, is able to use different acyl-CoAs as substrates (coming from the 

different BCAAs) and produces enoyl-CoAs (Däschner et al. 2001). After this step the 

degradation of leucine proceeds via methylcrotonyl-CoA carboxylase, which forms 3-methyl-

glutaconyl-CoA (reviewed in Binder 2010). The next step in leucine degradation is carried out 

by an enoyl-CoA hydratase. It is assumed that 3-methyl-glutaconyl-CoA (leucine dreakdown) 

as well as the enoyl-CoAs of valine and isoleucine are putative substrates for enoyl-CoA 

hydratases in Arabidopsis (reviewed in Binder 2010) (Figure 3). IVDH is the link of BCAA 

breakdown and the respiratory chain. Via its flavo group IVDH transfers electrons to the 

electron transfer flavoprotein (ETF) system. In mammals ETF accepts electrons from nine 

different dehydrogenases involved in -oxidation and amino acid degradation (reviewed in 

Watmough and Frerman 2010). In addition the sarcosine dehydrogenase and 

dimethylglycine dehydrogenase, which are involved in one-carbon metabolism in mammals, 

are also able to transfer electrons to ETF. In contrast to mammals, only IVDH and 

additionally D-2-hydroxyglutarate dehydrogenase (D2HGDH) are currently known to transfer 

electrons to ETF, in plants. Via the electron transfer flavoprotein : ubiquinone 

oxidoreductase (ETFQOR) electrons are transferred from ETF to UQ. The expression of 

ETFQOR is highly increased during senescence, in sucrose-starved plants and cell cultures as 

well as in plants grown in the presence of continuous darkness (Ishizaki et al. 2005 and 

reviewed in Binder 2010). 
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The matrix localized enzyme D2HGDH converts D-2-hydroxyglutarate (D2HG) to -

ketoglutarate. In peroxisomes one possible source of D2HG is the condensation of propionyl-

CoA and glyoxylate to D2HG. This reaction is carried out by the 2-hydroxyglutarate synthase 

(Engqvist et al. 2009). Propionyl-CoA can be produced during membrane lipid, chlorophyll 

and protein turnover (Engqvist et al. 2009). Thus it seems that D2HGDH can act as a central 

player of coupling these catabolic processes with the ETC. 

 

Figure 3: The ETF – ETFQOR system in plant mitochondria. Until today only two plant mitochondrial 
dehydrogenases (IVDH and D2HGDH) are known to transfer electrons to ETF. IVDH is involved in the 
catabolism of BCAAs (Binder 2010). D2HGDH receives electrons from the membrane lipids, 
chlorophyll and protein turnover. Mitochondrial dehydrogenases are shown in green. The names of 
other enzymes are given in blue. Metabolites are written in black (For abbreviations see Figure 1). 
 

1.4 Proline Catabolism 

The ETF system is not the only way to transfer electrons from amino acid catabolism onto 

UQ. For instance, proline dehydrogenase (ProDH) can directly insert electrons into the 

respiratory chain. ProDH converts proline to pyrroline-5-carboxylate (P5C). It is assumed that 

electrons from proline are directly transferred to ubiquinone. Especially under stress 
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conditions leading to dehydration of cells (e.g. drought and salinity stress) proline 

accumulates to a high level in plants (Verslues and Bray 2006). Also abiotic stress like heavy 

metal toxicity (Sharma and Dietz 2009) and biotic stress like pathogen infection cause 

induction of proline levels in plants (Fabro et al. 2004). In contrast, stress release conditions 

lead to enhanced proline degradation and subsequently to an enhanced electron flow from 

proline to the ETC (Figure 4). 

 

 

Figure 4: Proline metabolism in higher plants (Szábadós and Savouré 2010, modified). Biosynthesis 
of proline takes place in the cytosol (green lines). Starting from glutamate, proline is formed by the 
subsequent action of pyrroline-5-carboxylate synthase and pyrroline-5-carboxylate reductase.  
Proline degradation takes place in mitochondria (red lines). In mitochondria proline dehydrogenase 
(ProDH) and pyrroline-5-carboxylate dehydrogenase (P5CDH) oxidize proline to glutamate. The 
ornithine pathway uses arginine and produces pyrroline-5-carboxylate (P5C) and glutamate. (A 
former suggested biosynthesis pathway of proline localized in chloroplast is not shown. The existence 
of this pathway is not clarified yet; personal correspondence Arnould Savouré) Enzyme names are 
given in blue. Metabolites are indicated in black. Transporters are shown as purple boxes. 
Abbreviations: G/P, mitochondrial glutamate/proline antiporter; P, mitochondrial proline 
transporter; GSA, glutamate-semialdehyde; P5C, pyrroline-5-carboxylate. 

 

ProDH is not the only enzyme of the proline catabolism that can transfer electrons to the 

ETC. The second enzyme of the proline degradation pathway, pyrroline-5-carboxylate 

dehydrogenase (P5CDH), uses NAD+ as electron acceptor. The formed NADH subsequently 
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can be used by complex I and the internal type II NADH(P)H dehydrogenases to feed 

electrons into the ETC (Figure 4). 

1.5 Mitochondrial Dehydrogenases of the Intermembrane Space 

In the mitochondrial matrix as well as in the mitochondrial intermembrane space 

dehydrogenases are localized which can transfer electrons directly to ubiquinone. In animals 

one of these dehydrogenases is the dihydroorotate dehydrogenase (DHODH). It catalyses 

the fourth step of the pyrimidine biosynthesis pathway. Thereby it converts dihydroorotate 

to orotate. DHODH is a flavoenzyme and it is able to transfer electrons directly to 

ubiquinone via a flavin mononucleotide (FMN) group. DHODH from Arabidopsis was 

recombinantly expressed and characterized for substrate specificity and inhibition properties 

(Ullrich et al. 2002). 

Another dehydrogenase localized in the intermembrane space is assumed to transfer 

electrons directly to UQ. The glycerol-3-phosphate dehydrogenase (G3-PDH) converts 

glycerol-3-phosphate (G3-P) to dihydroxyacetone phosphate (DHAP) (Shen et al. 2003). Shen 

et al. (2003, 2006) present evidence that a mitochondrial FAD-dependent G3-PDH occurs in 

Arabidopsis which is bound to the inner mitochondrial membrane and which is linked to 

oxygen consumption. The authors suggest a G-3-P-shuttle that links cytosolic G-3-P 

metabolism to carbon source utilization and energy metabolism in plants (Shen et al. 2003). 

Similar to the animal system the G-3-P-shuttle consists of a cytosolic NAD+-dependent G-3-P 

dehydrogenase (cyt. G3-PDH) and the mitochondrial localized G3-PDH. NADH is consumed 

by cyt. G3-PDH to generate G-3-P from DHAP. G-3-P can diffuse through the outer 

mitochondrial membrane. In the intermembrane space the mitochondrial localized G3-PDH 

converts G-3-P back to DHAP and donates electrons to the mitochondrial ubiquinone pool 

(Shen et al. 2006) (Figure 5). In this way reducing equivalents are shuttled from the cytosol 

to mitochondria without involving a metabolite transporter. This shuttle system can 

contribute to a fine tuning of cellular redox balance (Shen et al. 2006). 
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Figure 5: Model for the involvement of the G-3-P-Shuttle in redox regulation (Shen et al. 2006, 
modified). The mitochondrial G-3-P-shuttle consists of two G3-PDHs. One is located in the cytosol 
(cyt. G3-PDH) and another one is located in the mitochondrial intermembrane space (IMS). NADH is 
consumed by cyt. G3-PDH to generate G-3-P from dihydroxyacetonephosphate. G-3-P can diffuse 
through the outer mitochondrial membrane. In the intermembrane space the mitochondrial localized 
G3-PDH converts G-3-P back to dihydroxyacetonephosphate and donates electrons to the 
mitochondrial ubiquinone pool. (For abbreviations see Figure 1) 

 

Two further dehydrogenases, L-galactono-1,4-lactone dehydrogenase (GLDH) and D-lactate 

dehydrogenase (DLDH) also seem to be localized in the intermembrane space of plant 

mitochondria. Both enzymes use oxidized cytochrome c as electron acceptor. 

GLDH is a plant specific subunit of complex I (Millar et al. 2003). The enzyme catalyses the 

last step in the so called Smirnoff-Wheeler pathway of the vitamin c (L-ascorbate) 

biosynthesis pathway in plants. In the final step L-galactono-1,4-lactone is converted to L-

ascorbate by the activity of GLDH. The enzyme is an aldonolactone oxidoreductase. These 

oxidoreductases belong to the vanillyl-alcohol oxidase (VAO) family, containing a conserved 

FAD-binding domain. During the conversion of L-galactono-1,4-lactone to L-ascorbate, GLDH 

transfers two electrons to cytochrome c (Bartoli et al. 2000). Since cytochrome c only 

accepts one electron, GLDH requires two oxidized cytochrome c molecules for the oxidation 

of one molecule L-galactono-1,4-lactone. It is known that GLDH is the sole enzyme in the 
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Smirnoff-Wheeler pathway that is localized in mitochondria. By the reduction of cytochrome 

c the enzyme is able to introduce electrons into the respiratory chain (Millar et al. 2003). In 

addition to its role during ascorbate formation, it has been shown that GLDH is involved in 

the assembly of complex I and that GLDH is obligatorily required for the accumulation of 

complex I (Pineau et al. 2008). Interestingly, the enzyme only is part of a smaller version of 

complex I (850 kDa) but absent in the mature form of complex I (1000 kDa) (Heazlewood et 

al. 2003; Millar et al. 2003). It currently is not known which subunits are lacking in this 

smaller version of complex I. 

Like GLDH, also DLDH utilize oxidized cytochrome c as an electron acceptor. The Arabidopsis 

protein is a homodimer and each of the 59 kDa subunits possesses a FAD group (Engqvist et 

al. 2009). Substrate screening revealed activity of the enzyme with D- and L-lactate, D-2-

hydroxybutyrate, glycerate and glycolate, with a higher activity with D-lactate than with 

glycolate (Engqvist et al. 2009). Until now it is not clarified which the preferred substrate is 

in vivo. Complementation experiments showed that E. coli mutants impaired in glycolate 

oxidation can be complemented by expression of the Arabidopsis protein (Bari et al. 2004). 

The authors suggest a role of DLDH during photorespiration. Photorespiration is initiated by 

the oxygenase activity of RuBisCo, leading to the production of phosphoglycolate in plastids. 

In higher plants oxidation of glycolate is carried out within peroxisomes. In contrast several 

algae oxidize glycolate in mitochondria. The authors propose that the basic photorespiratory 

system of algae is also conserved in higher plants (Bari et al. 2004). Another possibility is that 

DLDH is involved in the detoxification of methylglyoxal in planta (Engqvist et al. 2009). The 

main role of DLDH within the plant mitochondrial metabolism and its connection to the 

respiratory chain remains elusive. 
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Figure 6: Integration of L-galactono-1,4-lactone dehydrogenase (GLDH) and D-lactate 
dehydrogenase (DLDH) into the ETC. GLDH and DLDH transfer electrons to cytochrome c. GLDH 
forms part of complex I assembly intermediates . Up to date it is not known if DLDH is a soluble or 
membrane bound enzyme. (For abbreviations see Figure 1). 

 

In summary, numerous electron entry pathways into the respiratory chain exist, especially in 

plants. Objective of this thesis is a systematic investigation of enzymes involved in 

mitochondrial catabolism and supply of electrons for the plant ETC. Previous investigations 

point to a highly dynamic system of dehydrogenases and oxidoreductases which act in a 

highly regulated manner in dependence of the metabolic state of the plant cell. Manuscripts 

presented in the following chapter refer to investigations on selected dehydrogenases. 

Furthermore, a review is presented which summarizes properties of the entire electron 

transfer system in plants. Finally, an approach to identify so far unknown mitochondrial 

dehydrogenases has been carried out and is presented in the end of the supplementary 

discussion of this thesis (Chapter 3). 
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The respiratory electron transport chain (ETC) couples electron transfer from organic
substrates onto molecular oxygen with proton translocation across the inner mitochondrial
membrane. The resulting proton gradient is used by the ATP synthase complex
for ATP formation. In plants, the ETC is especially intricate. Besides the “classical”
oxidoreductase complexes (complex I–IV) and the mobile electron transporters
cytochrome c and ubiquinone, it comprises numerous “alternative oxidoreductases.”
Furthermore, several dehydrogenases localized in the mitochondrial matrix and the
mitochondrial intermembrane space directly or indirectly provide electrons for the ETC.
Entry of electrons into the system occurs via numerous pathways which are dynamically
regulated in response to the metabolic state of a plant cell as well as environmental
factors. This mini review aims to summarize recent findings on respiratory electron
transfer pathways in plants and on the involved components and supramolecular
assemblies.

Keywords: plant mitochondria, electron transport chain, dehydrogenase, alternative oxidase, respiratory

supercomplex

INTRODUCTION
During cellular respiration, organic compounds are oxidized to
generate usable chemical energy in the form of ATP. The respi-
ratory electron transport chain (ETC) of mitochondria is at the
center of this process. Its core consists of four oxidoreductase
complexes, the NADH dehydrogenase (complex I), the succinate
dehydrogenase (complex II), the cytochrome c reductase (com-
plex III) and the cytochrome c oxidase (complex IV), as well as
of two mobile electron transporters, cytochrome c, and the lipid
ubiquinone. Overall, electrons are transferred from the coen-
zymes NADH or FADH2 onto molecular oxygen which is reduced
to water. Three of the four oxidoreductase complexes (complexes
I, III and IV) couple their electron transfer reactions with pro-
ton translocation across the inner mitochondrial membrane. As a
result, a proton gradient is formed which can be used by the ATP
synthase complex (complex V) for the phosphorylation of ADP.
In its classically described form, cellular respiration is based on a
linear ETC (from NADH via complexes I, III, and IV to molecular
oxygen). However, electrons can enter and leave the ETC at several
alternative points. This is especially true for the plant ETC sys-
tem, which is highly branched. In this review we aim to integrate
current knowledge on the ETC system in plants with respect to
its components, electron transport pathways and supramolecular
structure.

COMPONENTS OF THE PLANT ETC SYSTEM
The “classical” oxidoreductase complexes of the respiratory chain
(given in dark blue in Figure 1) resemble their homologues in
animal mitochondria but at the same time have some clear dis-
tinctive features (reviewed in Millar et al., 2008, 2011; Rasmusson
and Moller, 2011; van Dongen et al., 2011; Jacoby et al., 2012).
Complex I is especially large in plant mitochondria and includes

nearly 50 different subunits (Braun et al., 2014). Compared to its
homologs from bacteria and other eukaryotic lineages it has an
extra domain which includes carbonic anhydrase-like proteins.
The function of this additional domain is currently unclear but
it has been suggested to be important in the context of an inner-
cellular CO2 transfer mechanism to provide mitochondrial CO2

for carbon fixation in chloroplasts (Braun and Zabaleta, 2007;
Zabaleta et al., 2012). Complex II is composed of four subunits
in bacteria and mitochondria of animals and fungi. In plants
complex II includes homologs of these subunits but addition-
ally four extra proteins of unknown function (Millar et al., 2004;
Huang and Millar, 2013). In contrast, the subunit composition
of complex III from plants is highly similar to the ones in yeast
and bovine mitochondria (Braun and Schmitz, 1995a). The two
largest subunits of this protein complex, termed “core proteins”
in animals and fungi, are homologous to the two subunits of
the mitochondrial processing peptidase (MPP) which removes
pre-sequences of nuclear-encoded mitochondrial proteins after
their import into mitochondria. In animal mitochondria, the core
proteins are proteolytically inactive. Instead, an active MPP is
present within the mitochondrial matrix. In contrast, the core
subunits of complex III from plants have intact active sites (Braun
et al., 1992; Glaser et al., 1994). Indeed, complex III isolated from
plant mitochondria efficiently removes pre-sequences of mito-
chondrial pre-proteins. The differing functional states of complex
III in diverse eukaryotic lineages might reflect different evo-
lutionary stages of this protein complex (Braun and Schmitz,
1995b). Also complex IV has some extra subunits in mitochon-
dria of plants (Millar et al., 2004). Eight subunits are homologous
to complex IV subunits from other groups of eukaryotes and
another six putative subunits represent proteins of unknown
functions.
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FIGURE 1 | Mitochondrial dehydrogenases and the respiratory chain.

Within the mitochondrial matrix (M) numerous dehydrogenases generate
NADH by oxidizing various carbon compounds. NADH subsequently is
re-oxidized at the inner mitochondrial membrane (IM) by the respiratory
electron transfer chain (ETC). The electrons of NADH can enter the ETC
through complex I or at the ubiquinone level via alternative
NAD(P)H-dehydrogenases. Besides, some dehydrogenases of the
mitochondrial matrix transfer electrons to ubiquinone via the ETF/ETFQOR
system. Proline dehydrogenase possibly directly transfers electrons onto
ubiquinone. In the intermembrane space (IMS), electrons from NAD(P)H
generated in the cytoplasm can be inserted into the ETC via alternative
NAD(P)H dehydrogenases. Furthermore, some dehydrogenases of the IMS
can directly transfer electrons onto ubiquinone or cytochrome c. Color
code—dark blue, protein complexes of the ETC; blue, AOX; purple,
ETF/ETFQQ system; light green, alternative NAD(P)H dehydrogenases of the
ETC; green, dehydrogenases; red, ubiquinone and cytochrome c; yellow,
NADH produced by dehydrogenases of the mitochondrial matrix/NADH
re-oxidized by complex I or internal alternative NADH dehydrogenases; dark
gray, ATP synthase complex; light green background, NADH producing

dehydrogenases of the mitochondrial matrix. Abbreviations—alphabetically
ordered. I, complex I; II, complex II; III, complex III; IV, complex IV; V, complex
V; α-KGDH, α-ketoglutarate dehydrogenase; AOX, alternative oxidase;
BCKDH, branched-chain α-ketoacid dehydrogenase complex; c, cytochrome
c; D-2HGDH, D-2-hydroxyglutarate dehydrogenase; DHODH, dihydroorotate
dehydrogenase; DLDH, D-lactate dehydrogenase; ETF, electron transfer
flavoprotein; ETFQOR, electron transfer flavoprotein ubiquinone
oxidoreductase; FDH, formate dehydrogenase; GDC, glycine dehydrogenase;
GDH, glutamate dehydrogenase; GLDH, L-galactono-1,4-lactone
dehydrogenase; G3-PDH, glyceraldehyde 3-phosphate dehydrogenase; HDH,
histidinol dehydrogenase; IDH, isocitrate dehydrogenase; IVDH,
isovaleryl-coenzyme A dehydrogenase; MDH, malate dehydrogenase; ME,
malic enzyme; MMSDH, methylmalonate-semialdehyde dehydrogenase;
NDA1/2, NDB2/3/4, alternative NADH dehydrogenase; NDC1, NDB1,
alternative NADPH dehydrogenase; P5CDH, pyrroline-5-carboxylate
dehydrogenase; PDH, pyruvate dehydrogenase; ProDH,
proline dehydrogenase; SPDH, saccharopine dehydrogenase; SSADH,
succinic semialdehyde dehydrogenase; UQ, ubiquinone. For further
information of the enzymes see Table 1.

The ETC of plant mitochondria additionally includes sev-
eral so-called “alternative oxidoreductases”: the alternative oxi-
dase (AOX; light blue in Figure 1) and several functionally
distinguishable alternative NAD(P)H dehydrogenases (alternative
NDs, light green in Figure 1). Findings on their functional roles
have been reviewed recently (Rasmusson et al., 2008; Rasmusson
and Moller, 2011; Moore et al., 2013). AOX directly transfers

electrons from ubiquinol to molecular oxygen and therefore
constitutes an alternative electron exit point of the ETC. As
a result, complexes III and IV are excluded from respiratory
electron transport. The alternative NAD(P)H dehydrogenases
serve as alternative electron entry points of the plant ETC and
may substitute complex I. They differ with respect to co-factor
requirement and localization at the outer or inner surface of
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Table 1 | Mitochondrial dehydrogenases in Arabidopsis thaliana a.

Enzyme Accession no.b

subunits
isoforms etc.

Catalysed reaction Oligomeric state

Native mass/monomer mass according
to GelMapc (according to other data in
the literature)

Publicationd

for Arabidopsis
(for other plants)

Malate
dehydrogenase

At1g53240
At3g15020

Malate + NAD+
⇔ Oxaloacetate + NADH

At1g53240: 89 kDa/42 kDa
At3g47520: 157 kDa/38 kDa

Journet et al., 1981
Gietl, 1992
Krömer, 1995
Nunes-Nesi et al., 2005
Lee et al., 2008
Tomaz et al., 2010

Isocitrate
dehydrogenase

At4g35260
At5g14590
At4g35650
At3g09810
At5g03290
At2g17130

Isocitrate + NAD+
⇔ α-Ketoglutarate + CO2

+ NADH

At4g35260: 89 kDa/42 kDa
At5g14590: 140 kDa/53 kDa
At3g09810: 138 kDa/40 kDa
At5g03290: 138 kDa/40 kDa

Behal and Oliver, 1998
Lancien et al., 1998
Lin et al., 2004
Lemaitre and Hodges, 2006
Lemaitre et al., 2007

α-Ketoglutarate
dehydrogenase
complex

At3g55410 (E1)
At5g65750 (E1)
At4g26910 (E2)
At5g55070 (E2)
At3g17240 (E3)
At1g48030 (E3)
At3g13930 (E3)

α-Ketoglutarate +
coenzyme A + NAD+
⇔ succinyl-CoA + CO2 +
NADH

At5g65750: 207 kDa/91 kDa
At3g55410: 207 kDa/91 kDa

(1.7 MDa complex)

Poulsen and Wedding, 1970
Wedding and Black, 1971a,b
Dry and Wiskich, 1987
Millar et al., 1999
Araújo et al., 2008
Araújo et al., 2013

Glutamate
dehydrogenase

At5g18170
At5g07440
At3g03910

Glutamate + H2O + NAD+
⇔ α-Ketoglutarate + NH+

4
+ NADH

At5g18170: 209 kDa/48 kDa
At5g07440: 209 kDa/48 kDa
At3g03910: 209 kDa/48 kDa

Yamaya et al., 1984
Turano et al., 1997
Aubert et al., 2001
Miyashita and Good, 2008a,b
Fontaine et al., 2012
Tarasenko et al., 2013
Fontaine et al., 2012

Malic enzyme At2g13560
At4g00570
At1g79750

Malate + NAD+ ⇔
Pyruvate + NADH + CO2

At2g13560: 370 kDa/63 kDa
At4g00570: 370 kDa/63 kDa

Jenner et al., 2001
Tronconi et al., 2008
Tronconi et al., 2010
Tronconi et al., 2012

Pyruvate
dehydrogenase
complex

At1g59900 (E1)
At1g24180 (E1)
At5g50850 (E1)
At3g52200 (E2)
At1g54220 (E2)
At3g13930 (E3)
At3g17240 (E3)
At1g48030 (E3)

Pyruvate + coenzyme A +
NAD+ ⇔ Acetyl-CoA +
CO2 + NADH

At3g13930: 1500 kDa/54 kDa
At1g24180: 470 kDa/41 kDa
At5g50850: 150 kDa/39 kDa
At1g59900: 138 kDa/44 kDa

(9.5 MDa complex)

Luethy et al., 1994
Grof et al., 1995
Zou et al., 1999
Tovar-Méndez et al., 2003
Szurmak et al., 2003
Yu et al., 2012

Glycine
dehydrogenase
complex

At4g33010 (P)
At2g26080 (P)
At1g32470 (H)
At2g35120 (H)
At2g35370 (H)
At1g11860 (T)
At4g12130 (T)
At3g17240 (L)
At1g48030 (L)

Glycine + H4 folate +
NAD+ ⇔ methylene-H4

folate + CO2 + NH3 +
NADH

At4g33010: 144 kDa/91 kDa
At2g26080: 209 kDa/91 kDa
At1g11860: 148 kDa/46 kDa

(1.3 MDa complex)

Somerville and Ogren, 1982
Oliver et al., 1990
Oliver, 1994
Srinivasan and Oliver, 1995
Douce et al., 2001

(Continued)
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Table 1 | Continued

Enzyme Accession no.b

subunits
isoforms etc.

Catalysed reaction Oligomeric state

Native mass/monomer mass according
to GelMapc (according to other data in
the literature)

Publicationd

for Arabidopsis
(for other plants)

Branched-chain alpha
keto acid
dehydrogenase
complex

At5g09300 (E1)
At1g21400 (E1)
At1g55510 (E1)
At3g13450 (E1)
At3g06850 (E2)
At3g13930 (E3)
At3g17240 (E3)
At1g48030 (E3)

Branched chain alpha
keto-acids + CoA + NAD+
⇔ Acyl-CoA + NADH

At1g55510: 150 kDa/39 kDa

(0.95 MDa complex)

Fujiki et al., 2000
Mooney et al., 2000
Fujiki et al., 2001
Fujiki et al., 2002
Taylor et al., 2004
Binder, 2010

Formate
dehydrogenase

At5g14780 Formate + NAD+ ⇔ CO2

+ NADH
(200 kDa complex) Halliwell, 1974

Colas des Francs-Small et al.,
1993
Hourton-Cabassa et al., 1998
Jänsch et al., 1996
Bykova et al., 2003
Baack et al., 2003
Olson et al., 2000
Alekseeva et al., 2011

Methylmalonate
semialdehyde
dehydrogenase

At2g14170 (S)-methylmalonate-
semialdehyde + coenzyme
A + NAD+ + H2O ⇔
propanoyl-CoA +
bicarbonate + NADH

At2g14170: 200 kDa/59 kDa Oguchi et al., 2004
Tanaka et al., 2005
Kirch et al., 2004

Isovaleryl-CoA
dehydrogenase

At3g45300 Isovaleryl-CoA + acceptor
(ETF) ⇔
3-methylbut-2-enoyl-CoA +
reduced acceptor (ETF)
(also considerable activity
with other acyl-CoA’s)

At3g45300: 132 kDa/46 kDa

(homodimeric complex)

Däschner et al., 1999
Reinard et al., 2000
Faivre-Nitschke et al., 2001
Däschner et al., 2001
Goetzman et al., 2005
Araújo et al., 2010

D-2-Hydroxyglutarate
dehydrogenase

At4g36400 D-2-hydroxyglutarate +
acceptor (ETF) ⇔
2-oxoglutarate + reduced
acceptor (ETF)

(homodimeric complex) Engqvist et al., 2009
Araújo et al., 2010
Engqvist et al., 2011

Saccharopine
dehydrogenase

At5g39410 Saccharopine + NAD+ +
H2O ⇔ Glutamate +
-Amino adipate
semialdehyde + NADH

not known Zhu et al., 2000
Heazlewood et al., 2003

Pyrroline-5-
carboxylate
dehydrogenase

At5g62530 Pyrroline-5-carboxylate +
NAD+ ⇔ Glutamate
(Glutamate-5-
semialdehyde) +
NADH

At5g62530: 158 kDa/59 kDa Forlani et al., 1997
Deuschle et al., 2001
Deuschle et al., 2004
Miller et al., 2009

Proline
dehydrogenase

At3g30775
At5g38710

L-Proline ⇔
Pyrroline-5-Carboxylate

not known Elthon and Stewart, 1981
Verbruggen et al., 1996
Kiyosue et al., 1996
Mani et al., 2002
Szabados and Savouré, 2010
Funck et al., 2010
Sharma and Verslues, 2010
Schertl et al., in press

(Continued)
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Table 1 | Continued

Enzyme Accession no.b

subunits
isoforms etc.

Catalysed reaction Oligomeric state

Native mass/monomer mass according
to GelMapc (according to other data in
the literature)

Publicationd

for Arabidopsis
(for other plants)

L-Galactono-1,4-
lactone
dehydrogenase

At3g47930 L-Galactono-1,4-Lactone ⇔
L-Ascorbate

(420 kDa, 470 kDa, 850 kDa complexes) Mapson and Breslow, 1958
Siendones et al., 1999
Leferink et al., 2008
Pineau et al., 2008
Leferink et al., 2009
Schertl et al., 2012

D-Lactate
dehydrogenase

At5g06580 D-Lactate ⇔ Pyruvate (homodimeric complex) Bari et al., 2004
Atlante et al., 2005
Engqvist et al., 2009
Wienstroer et al., 2012

Glycerol-3-phosphate
dehydrogenase

At3g10370 Glycerol 3-phosphate ⇔
Dihydroxyacetonephosphate

At3g10370: 160 kDa/65 kDa Shen et al., 2003
Shen et al., 2006

Dihydroorotate
dehydrogenase

At5g23300 Dihydroorotate ⇔ Orotate At5g23300: 156 kDa/49 kDa Ullrich et al., 2002
Doremus and Jagendorf, 1985
Miersch et al., 1987

Succinic
semialdehyde
dehydrogenase

At1g79440 Succinic semialdehyde ⇔
Succinate

At1g79440: 163 kDa/55 kDa Busch and Fromm, 1999
Bouché et al., 2003
Kirch et al., 2004
Toyokura et al., 2011

Histidinol
dehydrogenase

At5g63890 L-histidinol + NAD+ ⇔
L-histidine + NADH

At5g63890: 115 kDa/51 kDa Nagai and Scheidegger, 1991
Ingle, 2011

Alternative NAD(P)H
dehydrogenases
(NDA1, NDB4,
NDA2, NDB2, NDB3,
NDB1, NDC1)

At1g07180
At2g20800
At2g29990
At4g05020
At4g21490
At4g28220
At5g08740

NAD(P)H + UQ ⇔ NAD(P)+
+ UQH2

At2g20800: 160 kDa/65 kDa
At2g29990: 163 kDa/55 kDa
At4g05020: 160 kDa/65 kDa

Escobar et al., 2004
Rasmusson et al., 2004
Rasmusson et al., 2008
Wulff et al., 2009
Wallström et al., 2014a,b

aMitochondrial dehydrogenases without complex I (NADH dehydrogenase) and complex II (succinate dehydrogenase) of the respiratory chain. This list corresponds

to the dehydrogenases shown in Figure 1.
bAccession numbers in accordance with The Arabidopsis Information Resource (TAIR).
cOligomeric state: native mass and monomer mass according to GelMap (https://gelmap.de/231).
d Key publications for Arabidopsis (other plants).

the inner mitochondrial membrane (external alternative NDs,
internal alternative NDs). Some of the genes encoding alternative
NDs are activated by light (Rasmusson et al., 2008; Rasmusson
and Moller, 2011). The latter enzymes are considered to be impor-
tant during photorespiration and all alternative enzymes during
various stress conditions. Since none of the alternative oxidore-
ductases couple electron transfer with proton translocation across
the inner mitochondrial membrane, their enzymatic function is
believed to be important in the context of an overflow protec-
tion mechanism for the ETC which is especially relevant during
high-light conditions.

Finally, dehydrogenases (dark green in Figure 1; Table 1)
can directly or indirectly insert electrons into the respira-
tory chain (Rasmusson et al., 2008; Rasmusson and Moller,
2011). Numerous dehydrogenases of the mitochondrial matrix

generate NADH which is re-oxidized by complex I and the
internal alternative NDs. However, some dehydrogenases directly
transfer electrons onto ubiquinone [dihydroorotate dehydro-
genase (DHODH), glyceraldehyde 3-phosphate dehydrogenase
(G3-PDH) and possibly proline dehydrogenase (ProDH)] or onto
cytochrome c [L-galactone-1,4-lactone dehydrogenase (GLDH)
and D-lactate dehydrogenase (DLDH)]. Furthermore, at least two
dehydrogenases [isovaleryl-coenzyme A dehydrogenase (IVDH)
and D-2-hydroxyglutarate dehydrogenase (D-2HGDH)] transfer
electrons onto ubiquinone via a short electron transfer chain
composed of the “electron transfer flavoprotein” and the “elec-
tron transfer flavoprotein-ubiquinone oxidoreductase” (ETF and
ETFQ-OR, purple in Figure 1) (Ishizaki et al., 2005, 2006; Araújo
et al., 2010). IVDH is involved in the branched chain amino
acid catabolism and D-2HGDH in the catabolism of lysine. In
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plants, degradation of amino acids for respiration was shown
to be especially important during carbon starvation conditions,
e.g., extended darkness (Araújo et al., 2011). In contrast to
animal mitochondria, fatty acid oxidation does not take place
in plant mitochondria and the involved dehydrogenases conse-
quently are absent. Instead, additional metabolic pathways occur
in plants, e.g., the final step of an ascorbic acid biosynthesis path-
way, which is catalyzed by GLDH. Electrons of L-galactono-1,4-
lactone (GL) oxidation are inserted into the ETC via cytochrome
c (Bartoli et al., 2000). Proline, besides being a building block
for protein biosynthesis, is used as an osmolyte in plant cells.
Proline is catabolized in mitochondria by a two-step process
involving pyrroline-5-carboxylate dehydrogenase (P5CDH) and
ProDH (Szabados and Savouré, 2010). P5CDH produces NADH,
whereas ProDH represents a flavoenzyme which is assumed
to transfer electrons directly or indirectly onto ubiquinone.
Some additional dehydrogenases occur in plant mitochondria
in the mitochondrial matrix and the intermembrane space

which also contribute electrons to the ETC (Figure 1, Table 1).
However, in some cases their mitochondrial localization is not
entirely certain and should be further investigated by future
research.

ELECTRON ENTRY PATHWAYS INTO THE ETC
All electrons enter the ETC via NAD(P)H (generated by
a variety of dehydrogenases in the mitochondrial matrix
or the intermembrane space/the cytoplasm) or via flavine
nucleotides (FADH2, FMNH2), which generally are bound to
proteins termed flavoproteins. Consequently, the following elec-
tron entry pathways into the ETC can be defined: (i) the
Matrix NAD(P)H pathway, (ii) the Matrix-FADH2 pathway,
(iii) the Intermembrane-space-NAD(P)H pathway, and (iv) the
Intermembrane-space-FADH2/FMDH2 pathway (Figure 2).

Different metabolic processes, which vary depending on the
physiological state of the plant cell, contribute to the four electron
entry pathways. During stable carbohydrate conditions, electrons

FIGURE 2 | Electron entry pathways into the mitochondrial electron

transport chain in plants. Electrons enter the respiratory chain via
four different pathways. (1) The Matrix-NAD(P)H pathway. Various
dehydrogenases oxidize carbon compounds in the mitochondrial
matrix. Electrons are transferred in the form of NADH to the ETC.
NADH is re-oxidized by complex I or the internal alternative NAD(P)H
dehydrogenases. (2) The Matrix-FADH2 pathway. FAD-containing
enzymes oxidize carbon compounds in the mitochondrial matrix and
directly (ProDH?) or indirectly (via the ETF/ETFQQ system) transfer
electrons to the ubiquinone pool. (3) The IMS-NAD(P)H pathway.
Cytoplasmically formed NAD(P)H is re-oxidized via external alternative
dehydrogenases. (4) The IMS-FADH2 pathway. FAD/FMN-containing
enzymes oxidize carbon compounds in the mitochondrial
intermembrane space. Electrons are transferred either to the
ubiquinone or the cytochrome c. M, matrix; IM, inner membrane;
IMS, intermembrane space. Abbreviations—alphabetically ordered. I,

complex I; II, complex II; III, complex III; IV, complex IV; α-KGDH,
α-ketoglutarte dehydrogenase; AOX, alternative oxidase; BCKDH,
branched-chain α-ketoacid dehydrogenase complex; Cytc, cytochrome c;
D-2HGDH, D-2-hydroxyglutarate dehydrogenase; DHODH, dihydroorotate
dehydrogenase; DLDH, D-lactate dehydrogenase; ETF, electron transfer
flavoprotein; ETFQOR, electron transfer flavoprotein ubiquinone
oxidoreductase; FDH, formate dehydrogenase; GDC, glycine
dehydrogenase; GDH, glutamate dehydrogenase; GLDH,
L-galactono-1,4-lactone dehydrogenase; G3-PDH, glyceraldehyde
3-phosphate dehydrogenase; HDH, histidinol dehydrogenase; IDH,
isocitrate dehydrogenase; IVDH, isovaleryl-coenzyme A dehydrogenase;
MDH, malate dehydrogenase; ME, malic enzyme; MMSDH,
methylmalonate-semialdehyde dehydrogenase; P5CDH,
pyrroline-5-carboxylate dehydrogenase; PDH, pyruvate dehydrogenase;
ProDH, proline dehydrogenase; SPDH, saccharopine dehydrogenase;
SSADH, succinic semialdehyde dehydrogenase; UQH2, ubiquinol.
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for the respiratory chain can be supplied by NADH and FADH2

provided by the tricarboxylic acid (TCA) cycle. This is believed to
be the standard mode of cellular respiration in non-green plant
tissues or green tissues at night and resembles the basic situ-
ation in animal cells. However, during photosynthesis, NADH
generation of the TCA cycle is reduced because some of its inter-
mediates are used for anabolic reactions (reviewed in Sweetlove
et al., 2010). Furthermore, the pyruvate dehydrogenase (PDH)
complex is deactivated in plant mitochondria in the light by
phosphorylation (Budde and Randall, 1990). At the same time
photorespiration leads to an increase in NADH formation in the
mitochondrial matrix by the activity of the glycine dehydroge-
nase complex (GDC). Indeed, at high-light conditions, NADH
formed by GDC is believed to be the main substrate of the ETC,
and not the NADH formed by the enzymes of the TCA cycle.
At the same time, plant cells might become over-reduced in the
presence of high-light. In this situation alternative oxidoreduc-
tases can insert excess electrons into the respiratory chain without
contributing to the proton gradient. Upon carbon starvation con-
ditions (e.g., extended darkness) electrons from the breakdown
of amino acids are provided to the ETC (Araújo et al., 2011).
Especially after release of salt stress the amino acid proline is used
as an electron source (Szabados and Savouré, 2010). In summary,
electron entry into the ETC is a highly flexible process in plants

which much depends on light, the metabolic state of the cell as
well as environmental stress factors.

SUPRAMOLECULAR STRUCTURE OF THE ETC SYSTEM
The ETC is based on defined protein-protein interactions. Most
stable interactions occur within the four “classical” oxidoreduc-
tase complexes of the respiratory chain. Indeed, complexes I to IV
can be isolated in intact form by various biochemical and elec-
trophoretic procedures. Furthermore, several lines of evidence
indicate that complexes I, III and IV interact within the inner
mitochondrial membrane forming respiratory supercomplexes
(reviewed in Dudkina et al., 2008). Complex I as well as com-
plex IV associate with dimeric complex III (I + III2 and IV2 +
III2 supercomplexes). An even larger supercomplex includes com-
plexes I, III2, and IV and was proposed to be called “respirasome”
because it can autonomously catalyzes the overall ETC reaction
in the presence of ubiquinone and cytochrome c. The alterna-
tive oxidoreductases of the plant ETC seem not to be part of
the respiratory supercomplexes. However, alternative NDs were
found to be part of other protein complexes of about 160 kDa
(Klodmann et al., 2011) or 150–700 kDa (Rasmusson and Agius,
2001).

Experimental data also indicate that several of the mito-
chondrial dehydrogenases form protein complexes. TCA cycle

FIGURE 3 | The dehydrogenase subproteome of plant mitochondria.

Mitochondrial proteins from Arabidopsis thaliana were separated by
2D Blue native/SDS PAGE and displayed via GelMap
(https://gelmap.de/231#). Protein separation under native condition was
from left to right, protein separation in the presence of SDS from top

to bottom. Molecular masses of standard proteins are given to the
left/above the 2D gel. All proteins annotated as “dehydrogenase” are
indicated by white arrows. Exception: The subunits of complex I
(NADH dehydrogenase) and complex II (succinate dehydrogenase) are
not indicated on the figure.
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enzymes can assemble forming multienzyme clusters (Barnes
and Weitzman, 1986). In addition, some of the mitochondrial
dehydrogenases interact with ETC complexes, e.g., malate dehy-
drogenase has been reported to interact with complex I in animal
mitochondria (Fukushima et al., 1989; see Braun et al., 2014
for review). Information on the native state of mitochondrial
dehydrogenases furthermore comes from the GelMap project
(Klodmann et al., 2011). Using 2D Blue native/SDS PAGE and
systematic protein identifications, various dehydrogenases were
described (Figure 3, Table 1). Native molecular mass of the dehy-
drogenases in many cases much exceeds the molecular mass
of the monomeric proteins (Table 1, column 3). This indicates
that probably most mitochondrial dehydrogenases form part of
defined higher order structures.

CONCLUSION AND OUTLOOK
Cellular respiration in plants is an especially dynamic system.
The classical protein complexes of the ETC have extra func-
tions and several alternative oxidoreductases occur. A network
of mitochondrial dehydrogenases directly or indirectly supplies
electrons for the respiratory chain. Insertion of electrons via var-
ious pathways is highly dependent on the metabolic state of the
plant cell. The regulation of electron entry pathways into the res-
piratory chain is only partially understood and might, besides
others, depend on the formation of supramolecular structures.
Non-invasive experimental procedures will be necessary to phys-
iologically investigate the function of these structures by future
research.
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Proline has multiple functions in plants. Besides being a building block for

protein biosynthesis proline plays a central role in the plant stress response

and in further cellular processes. Here, we report an analysis on the inte-

gration of proline dehydrogenase (ProDH) into mitochondrial metabolism

in Arabidopsis thaliana. An experimental system to induce ProDH activity

was established using cell cultures. Induction of ProDH was measured by

novel photometric activity assays and by a ProDH in gel activity assay.

Effects of increased ProDH activity on other mitochondrial enzymes were

systematically investigated. Activities of the protein complexes of the respi-

ratory chain were not significantly altered. In contrast, some mitochondrial

dehydrogenases had markedly changed activities. Activity of glutamate

dehydrogenase substantially increased, indicating upregulation of the entire

proline catabolic pathway, which was confirmed by co-expression analyses

of the corresponding genes. Furthermore, activity of D-lactate dehydroge-

nase was increased. D-lactate was identified to be a competitive inhibitor of

ProDH in plants. We suggest that induction of D-lactate dehydrogenase

activity allows rapid upregulation of ProDH activity during the short-term

stress response in plants.

Introduction

In plants the amino acid proline is not only used to

build up proteins. Rather, it is involved in several

additional cellular processes. It is well known that

plants accumulate proline under different environmen-

tal stress conditions [1–4]. These stress conditions can

be both biotic and abiotic. For example, biosynthesis

of proline is highly upregulated during drought stress

and high salt [5–7]. Increased proline concentration

was also observed in response to heavy metals [8] and

plant pathogens [9]. Under these conditions, proline

does not only act as an osmolyte adjusting the osmo-

lality of a cell. Besides, it can directly act as a chaper-

one enhancing protein stability and integrity [10].

Proline can also buffer the cytosolic pH and influence

the cell redox status [11]. Furthermore, it has been

suggested that proline metabolism acts as an electron

Abbreviations

CN PAGE, clear native PAGE; DCIP, 2,6-dichloroindophenol; DLDH, D-lactate dehydrogenase; GluDH, glutamate dehydrogenase; MG,

methylglyoxal; OXPHOS, oxidative phosphorylation; P5C, pyrroline-5-carboxylate; P5CDH, P5C dehydrogenase; ProDH, proline

dehydrogenase.
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shuttle between chloroplasts and mitochondria,

thereby influencing the redox state of these organelles

[12].

The biosynthesis of proline takes place in the cytosol

and most probably also in chloroplasts [3]. In plants,

the starting compound of proline biosynthesis is gluta-

mate. In contrast to its biosynthesis, proline break-

down takes place in mitochondria [13]. Proline

dehydrogenase (ProDH), a mitochondrial flavoenzyme,

is especially induced upon stress release conditions

[13]. ProDH converts proline to pyrroline-5-carboxyl-

ate (P5C). Electrons from proline are transferred

directly or indirectly to ubiquinone. As a next step,

P5C dehydrogenase (P5CDH) catalyzes the oxidation

of P5C to glutamate, which involves formation of glu-

tamic semialdehyde as a reaction intermediate.

P5CDH uses either NAD+ or NADP+ as an electron

acceptor [14]. Glutamate can be exported from mito-

chondria or converted within mitochondria to a-keto-
glutarate catalyzed by glutamate dehydrogenase

(GluDH). Finally, a-ketoglutarate can be introduced

into the citric acid cycle.

Mitochondrial localization of ProDH has been

revealed by several investigations. Boggess and Koeppe

[15] demonstrated that isolated mitochondria from dif-

ferent plant species efficiently oxidize proline. In a

later study, Elthon and Stewart [16] showed that pro-

line oxidation is catalyzed by an enzyme associated

with the inner mitochondrial membrane in Zea mays.

Furthermore, mitochondrial localization of ProDH

from Arabidopsis was proved by immunoblotting

[17,18]. In Arabidopsis, ProDH occurs in two closely

related isoforms termed ProDH1 (At3g30775) and

ProDH2 (At3g38710). ProDH1 was reported to be the

predominantly expressed isoform under most condi-

tions and in most tissues [19].

The regulation of proline metabolism in plants is

not fully understood. Accumulation of proline is

believed to depend on simultaneous increase in proline

biosynthesis and decrease in proline degradation.

Dehydration, low water potential and salinity downre-

gulate the genes encoding ProDH [11,17,19–21]. In

contrast, stress release conditions induce expression of

ProDH [11,20,22–24]. Additionally it has been shown

that exogenously added proline induces ProDH expres-

sion [17,20].

Here we report an investigation on the integration

of ProDH into mitochondrial metabolism in plants.

An experimental system to substantially induce ProDH

was established by external addition of proline to an

Arabidopsis thaliana cell culture. Increase of enzyme

activity in mitochondrial fractions was monitored by

newly developed photometric ProDH activity assays

and by a ProDH in gel activity assay. Next, effects of

increased proline catabolism on other mitochondrial

enzymes were systematically characterized. Activities

of the protein complexes of the respiratory chain were

largely unchanged. In contrast, some mitochondrial

dehydrogenases had markedly changed activities.

Increase of GluDH indicates upregulation of the entire

proline catabolic pathway. Also D-lactate dehydroge-

nase activity was upregulated in proline-treated cells.

D-lactate was identified to represent a competitive

inhibitor of ProDH which is assumed to play an

important role during the rapid stress response of

plants.

Results

Induction of ProDH

Plant mitochondria have been extensively characterized

by proteome analyses (reviewed in [25]). Based on

these investigations, more than 800 distinct proteins

could be assigned to this subcellular compartment in

Arabidopsis (for detailed information see the subcellu-

lar localization database for Arabidopsis proteins,

SUBA (http://suba.plantenergy.uwa.edu.au/) [26]).

However, in none of these studies was ProDH identi-

fied. We conclude that ProDH is of very low abun-

dance if plants are cultivated under standard

conditions. It has been shown previously that ProDH

activity is much induced during stress release condi-

tions or direct proline treatment [17]. We decided to

establish a cell culture based system to investigate

ProDH in Arabidopsis under defined conditions. Ara-

bidopsis cell cultures were shown to be an ideal start-

ing material for mitochondrial preparations [27]. For

ProDH induction, the cell culture was treated with

50 mM L-proline for 21 h. Mitochondria were isolated

in parallel from treated and non-treated cells (Fig. S1).

Measurement of ProDH activity in mitochondrial

fractions

ProDH activity of mitochondrial fractions was mea-

sured using an established assay which is based on the

proline-dependent reduction of the artificial electron

acceptor 2,6-dichloroindophenol (DCIP) at 600 nm

[28]. Induction of ProDH activity was 6-fold in pro-

line-treated versus non-treated Arabidopsis cells

(Fig. 1A). To confirm these results, two novel photo-

metric ProDH assays were established that use cyto-

chrome c or decylubiquinone as electron acceptors.

Both methods revealed 4- to 5-fold induction

of ProDH in proline-treated versus non-treated
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Arabidopsis cells (Fig. 1B,C). Finally, a DCIP-based

in gel assay was developed to monitor ProDH activity.

For this approach, proteins of mitochondrial fractions

from proline-treated and non-treated cells were sepa-

rated by clear native (CN) PAGE. Upon in gel ProDH

activity staining a white diffuse band becomes visible

in the proline-treated but not in the control fraction

(Fig. 2). DCIP is blue in the oxidized state but

becomes colorless upon reduction. The position of the

band nicely corresponds to a ProDH signal on a paral-

lel immunoblot which was developed using an anti-

body directed against Arabidopsis ProDH1 [5].

Subsequent Coomassie staining of the activity-stained

gels did not reveal any visible differences between the

proline-treated and non-treated fractions with respect

to protein complexes.

Immunological identification of ProDH in

mitochondrial fractions

Increase in ProDH activity could be caused by enzyme

activation and/or de novo synthesis of ProDH. An

immunoblotting experiment was carried out to

investigate this issue. Mitochondrial fractions from

proline-treated and non-treated cells were separated by

SDS/PAGE, blotted onto nitrocellulose and probed

using the antibody directed against Arabidopsis

ProDH (Fig. 3). Immunopositive bands at about 55

and 57 kDa become visible in the proline-treated frac-

tion. Only after much longer exposure times were these

bands also detectable in the control fraction (Fig. S2).

This result is in accordance with the native immuno-

blot shown in Fig. 2B. Furthermore, proline treatment

also induces ProDH in planta (Fig. S2).

Activities of the respiratory chain complexes in

proline-treated Arabidopsis cells

Like several other amino acids, proline represents a

substrate for the respiratory chain [15]. In conse-

quence, cultivation of Arabidopsis in the presence of

proline could cause a decrease or increase in one or

the other activity of complex I–IV of the respiratory

chain. This hypothesis was tested for mitochondrial

fractions of proline-treated and non-treated cells.

Activities of all four complexes did not differ signifi-

cantly (Fig. 4). At the same time, occurrence of the

mitochondrial protein complexes was unchanged in

proline-treated and non-treated cells as revealed by

CN PAGE (Fig. 2). We conclude that the oxidative

phosphorylation (OXPHOS) system does not adapt

structurally or physiologically in response to proline

treatment. This is in line with previous findings that

the OXPHOS system of plant mitochondria is

expressed constitutively rather than dynamically

adapted in response to changing external factors [29].

Activities of other dehydrogenases in proline-

treated Arabidopsis cells

Mitochondria include numerous other dehydrogenases

which are involved in the citric acid cycle, amino acid

catabolism and other processes. Some dehydrogenases

are highly induced upon stress [30]. We tested the

activities of various dehydrogenases in mitochondrial

fractions of proline-treated and non-treated cells. Most

dehydrogenases displayed unchanged activities. How-

ever, two dehydrogenases clearly had increased activi-

ties in proline-treated Arabidopsis cells: GluDH and
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Fig. 1. Activity of ProDH as determined by

three different photometrical methods.

The activity of mitochondrial ProDH was

measured in mitochondria isolated from

cells which were treated with 50 mM L-

proline for 21 h (proline treated) or from

non-treated cells. Methods of determining

the ProDH activity are based on different

electron acceptors: (A) DCIP; (B)

cytochrome c; (C) decylubiquinone.

Standard errors are based on three

biological replicates. *Significantly different

(P < 0.05) between proline-treated and

non-treated fractions.
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D-lactate dehydrogenase (DLDH). GluDH activity was

increased by 30%, while DLDH activity even went up

by 40% (Fig. 5). Since glutamate is generated by the

proline degradation pathway in mitochondria, increase

in GluDH activity was expected. However, it was not

clear why DLDH activity is increased in proline-trea-

ted cells.

L- and D-lactate are competitive inhibitors of

ProDH in plants

A review of the literature on ProDH revealed a study

reporting that lactate was identified as an inhibitor of

ProDH in mammalian mitochondria [31]. Similar

results were found in bacteria [32]. We therefore

directly tested the effect of D-lactate on ProDH activity

in proline-treated Arabidopsis cells (Fig. 6B). In the

absence of D-lactate, the Km value of ProDH was

31 mM and Vmax was approximately 120 nmol DCIP

min�1�mg�1 (measured at pH 7.5). The comparatively

high Km value indicates that ProDH is active when

proline concentrations are high. In the presence of

1 mM D-lactate, Vmax is not altered but Km is increased

to 95 mM. Hence, D-lactate represents a competitive

inhibitor of ProDH in plants. The inhibitory effect of

D-lactate depends on its concentration. Besides D-lac-

tate, also L-lactate inhibits A. thaliana ProDH (data

not shown).

Discussion and conclusions

In plants, proline is a multifunctional amino acid

which, besides its role for protein biosynthesis, plays a

central role in the plant stress response. Nevertheless,

proline catabolism, which takes place in mitochondria,

is not quite understood. An experimental system was

established for A. thaliana to investigate ProDH, the

first enzyme of the proline degradation pathway. Three

different photometric assays clearly revealed strong

induction of ProDH activity upon treatment of Ara-

bidopsis cells by 50 mM proline for 21 h (Fig. 1). Two

of these assays are newly developed and either use

cytochrome c or decylubiquinone as electron accep-

tors. In comparison to the DCIP assay [28], absolute

ProDH activities obtained by the cytochrome c based

assay were twice as high (227 versus 103 nmol reduced

electron acceptor per minute and milligram protein in

mitochondrial fractions of proline-treated cells, and 42

versus 18 nmol reduced electron acceptor per minute

and milligram protein in mitochondrial fractions of

76 kDa

38 kDa

52 kDa

n.t. pron.t. pro

Fig. 3. Identification of ProDH by immunoblotting. Mitochondrial

protein isolated from non-treated (n.t.) and proline-treated (pro)

Arabidopsis cells was separated by SDS/PAGE and either

Coomassie stained (left) or blotted onto nitrocellulose membranes

(right). The blots were developed using polyclonal IgG directed

against Arabidopsis ProDH1. Masses of standard proteins are

given to the right of the blots.
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Fig. 2. ProDH in gel activity assay. (A) Reaction scheme (PMS,

phenazinemethosulfate). (B) In gel assay. Mitochondria were

solubilized by 2.5% digitonin and subsequently separated by one-

dimensional CN PAGE. In gel ProDH activity was measured directly

after completion of the electrophoretic run (left). The identical gel

was Coomassie stained afterwards (right). pro, mitochondrial

protein from cells which were treated with 50 mM proline for 21 h;

n.t., mitochondrial protein from non-treated cells. Identities of

protein complexes of the respiratory chain are given on the left.

The immunoblot (right) was developed with polyclonal IgG directed

against Arabidopsis ProDH1.
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non-treated cells). This result reflects that DCIP can

accept two electrons while cytochrome c only accepts

one electron. The cytochrome c based ProDH activity

assay should be useful for future ProDH research but

is only applicable in mitochondrial fractions because

cytochrome c does not represent a direct electron

acceptor of ProDH (reduction of cytochrome c

depends on the presence of additional components,

e.g. complex III). In contrast, the novel decylubiqui-

none based activity assay should also work with puri-

fied recombinant ProDH. However, absolute ProDH

activity is lower compared with the other two photo-

metric assays, which most probably reflects that decyl-

ubiquinone is a ubiquinone analog and not the

naturally occurring ProDH electron acceptor.

Furthermore, a DCIP-based in gel ProDH activity

assay was developed (Fig. 2). DCIP reduction causes a

shift in color from blue to colorless. Therefore, ProDH

separated in a native gel becomes visible by whitish

bands on a blue background in the presence of pro-

line. A good separation of mitochondrial proteins

under native conditions is achievable by blue native

(BN) PAGE [33]. However, the blue background of

this PAGE system interferes with the DCIP-based

in gel assay. We therefore used CN PAGE [34] for the

ProDH assay. The ProDH band is somehow diffuse

which has been reported before for other membrane

proteins separated by CN PAGE [35]. Unfortunately,

CN PAGE does not allow determination of native

molecular mass information because migration of pro-

teins in the gel partly depends on intrinsic charges.

The novel ProDH in gel assay confirms a strong

induction of ProDH in mitochondria isolated from

proline-treated Arabidopsis cells. The in gel assay
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Fig. 4. Activity of the oxidoreductase complexes of the respiratory chain in proline-treated and non-treated cells. Assays were carried out as

described in Materials and methods using mitochondrial fractions. Standard errors are based on three biological replicates.
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should be useful to monitor ProDH activity in total

protein fractions from plants cultivated under various

stress conditions.

Increase of ProDH activity in mitochondria of pro-

line-treated Arabidopsis cells is well correlated to

induction of ProDH synthesis in Arabidopsis as shown

by immunoblotting (Figs 2 and 3). Upon separation

by SDS/PAGE, ProDH bands are visible at 55 kDa

and 57 kDa, which closely correspond to the calcu-

lated molecular mass of ProDH1 and ProDH2 (55 and

53 kDa). Gene expression data indicated that ProDH1

is much more expressed in Arabidopsis than ProDH2,

especially in response to exogenously applied proline

[19]. We speculate that the main band on our immuno-

blot (55 kDa) represents ProDH1. The 57 kDa band

might represent a post-translationally modified version

y = 0.263x + 0.0083
R² = 0.958

y = 0.8063x + 0.0084
R² = 0.9946
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Fig. 6. Kinetic properties of ProDH from

Arabidopsis. (A) ProDH activity in the

presence of varying substrate

concentrations in mitochondrial fractions

of L-proline-treated Arabidopsis cells.

Standard errors are based on three

technical replicates. (B) Lineweaver–Burke

double reciprocal plot of ProDH activity

measured in the presence/absence of

1 mM D-lactate.
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of ProDH1 or ProDH2. The molecular biology of

ProDH1 and ProDH2 of Arabidopsis should be fur-

ther investigated.

Arabidopsis cells containing strongly induced

ProDH levels were next used to investigate the integra-

tion of ProDH into mitochondrial metabolism in

plants. Proline catabolism is linked to the generation

of reducing equivalents at two points. First, ProDH,

via its flavin group, can probably directly transfer elec-

trons on ubiquinone. Second, conversion of P5C into

glutamate by P5CDH is linked to reduction of NAD+

or NADP+. As a consequence, cultivation of plants in

the presence of excess proline could cause changes with

respect to the activities of the oxidoreductases of the

respiratory chain. However, photometric activity

assays for complexes I–IV did not reveal any differ-

ences between proline-treated and non-treated cells

(Fig. 4). We conclude that the OXPHOS complexes

are not individually regulated in response to high pro-

line concentrations under the conditions tested.

In contrast, the activities of two mitochondrial dehy-

drogenases are clearly enhanced if cells are cultivated

in the presence of proline: GluDH and DLDH

(Fig. 5). GluDH is part of the proline catabolic path-

way because glutamate is generated from P5C, the

product formed by ProDH. Induction of GluDH by

cultivation of cells at high proline concentration indi-

cates that the entire catabolic pathway is upregulated.

Induction of GluDH activity by proline furthermore

indicates that glutamate formed from proline degrada-

tion is at least partially converted into a-ketoglutarate

within mitochondria and most likely further oxidized

by reactions of the citric acid cycle. At the same time

part of the glutamate and/or a-ketoglutarate might be

exported from the mitochondria into the cytoplasm to

become part of other metabolic pathways, e.g. nitro-

gen fixation. Co-expression analyses indeed confirm

that regulation of ProDH and GluDH synthesis are

closely connected (Figs S3 and S4; Tables S1 and S2).

Figure 7 summarizes the current knowledge on the

integration of ProDH into mitochondrial metabolism

in plants.

Interestingly, DLDH activity is induced in proline-

treated Arabidopsis cells. D-lactate is mainly formed

from methylglyoxal (MG), which is a non-enzymatic

by-product of glycolysis. Conversion of MG into

D-lactate is carried out by the glyoxylase system [36].

D-lactate can be transported into mitochondria by a D-

lactate/H+ symporter or a D-lactate/malate antiporter

[36,37]. Alternatively, upstream intermediates of the

MG side-way of glycolysis are transported into mito-

chondria and D-lactate is produced in the matrix. In

Arabidopsis, D-lactate is a competitive inhibitor of

ProDH (Fig. 6).

It has been previously reported that D-lactate repre-

sents an inhibitor of ProDH in mammalian mitochon-

dria [31]. The D-lactate concentration reflects the

metabolic flux through glycolysis and might function

as a signal. In addition, experimental evidence points

to an upregulation of the MG-initiated side branch of

glycolysis during stress [38]. Within mitochondria, D-

lactate mediated inactivation of ProDH could prevent
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Fig. 7. Integration of proline dehydrogenase into mitochondrial metabolism in plants: blue, enzymes of the respiratory chain are indicated

with numbers; red, enzymes involved in proline catabolism (ProDH, proline dehydrogenase; P5CDH, pyrroline-5-carboxylate dehydrogenase;

GluDH, glutamate dehydrogenase); green, electron carriers (UQ, ubiquinone/ubiquinol; c, cytochrome c); light green, alternative respiratory

enzymes (NDA1 and NDA2, alternative NADH dehydrogenases; AOX, alternative oxidase).

2800 FEBS Journal 281 (2014) 2794–2804 ª 2014 FEBS

Proline dehydrogenase in Arabidopsis thaliana P. Schertl et al.

_____ 
   33



usage of this amino acid as a substrate for OXPHOS

under high carbohydrate conditions. In plants, D-lac-

tate might additionally have a role for regulating pro-

line metabolism during the stress response. We

speculate that D-lactate is involved in a rapid mecha-

nism for regulating ProDH activity during changing

salt stress. Upon release of salt stress, ProDH becomes

induced for increase of proline breakdown. If salt

stress increases again, ProDH activity should become

inhibited for proline re-increase. Increase of DLDH

activity in proline-treated Arabidopsis cells may con-

tribute to rapidly reduce inactivation of ProDH in

plants. Most intriguingly, proline was reported to sta-

bilize the structural integrity of a rabbit muscle M4

lactate dehydrogenase, thereby protecting its activity

[39]. In summary, observations made in different

experimental systems indicate that lactate and proline

are embedded into reciprocal regulatory mechanisms

which might be of special importance during the plant

stress response.

Materials and methods

Cultivation of A. thaliana suspension culture cells

All experiments were carried out using a suspension cell

culture of A. thaliana (var. Columbia-0). Conditions for

establishing and maintaining the cell culture were taken

from [40]. In short, cells were cultivated at 24–26 °C under

continuous shaking at 90 rpm. The medium was changed

once a week and contained the following ingredients: 3%

(w/v) sucrose, 0.0001% (w/v) 2,4-dichlorophenoxyacetic

acid, 0.00001% (w/v) kinetin, 0.316% (w/v) B5 medium,

pH 5.7 adjusted with KOH. In order to induce ProDH,

cells were treated with 50 mM L-proline. The time of L-pro-

line treatment was set at 21 h in accordance with the litera-

ture (proline-induced expression of the ProDH gene has

been reported to reach a maximum between 10 and 24 h

[17]).

Isolation of mitochondria

Isolation of mitochondria was carried out according to

[41]. Organelles were extracted using a buffer containing

450 mM sucrose, 15 mM 3-(N-morpholino) propanesulfonic

acid (MOPS), 1.5 mM EGTA, 0.6% (w/v) polyvinylpyrroli-

done (PVP40), 0.2% bovine serum albumin, 0.2 mM phen-

ylmethylsulfonyl fluoride (PMSF), pH 7.4 (KOH). After

cell disruption in a Waring blender 14.3 mM b-mercapto-

ethanol was added. To remove cell debris the suspension

was centrifuged twice for 5 min at 2700 g and once for

10 min at 8300 g. Afterwards mitochondria were sediment-

ed at 17 000 g for 10 min. The mitochondria pellet was

resuspended in 3–5 mL washing buffer containing 300 mM

sucrose, 10 mM MOPS, 1 mM EGTA and 0.2 mM PMSF.

The pH was adjusted with KOH to 7.2. Subsequently

the suspension was homogenized using a potter (two

strokes). Next, the mitochondria suspension was transferred

on Percoll gradients and centrifuged for 45 min at 70 000 g

using an ultracentrifuge. The Percoll gradients consisted of

40%, 23% and 18% Percoll in 0.3 M sucrose and 10 mM

MOPS, pH 7.2 (KOH). After centrifugation mitochondria

are localized at the 23%/40% interphase. Collected mito-

chondria were washed two to three times with resuspension

buffer (400 mM mannitol, 10 mM Tricine, 1 mM EGTA and

0.2 mM PMSF, pH 7.2 with KOH) at 14 300 g for 10 min.

SDS and CN PAGE

One-dimensional SDS/PAGE was carried out according

to [42]. One-dimensional CN PAGE was carried out

using pre-cast 4–16% Bis-Tris Native Gels (Life Technol-

ogies GmbH, Darmstadt, Germany). Before gel loading,

mitochondria were solubilized with 2.5% digitonin in

50 mM Tris/HCl pH 7.2. After incubation for 10 min

insoluble material was sedimented at 21 700 g for another

10 min. Samples were mixed with native loading buffer

(62.5 mM Tris/HCl pH 6.8, 10% (w/v) glycerol, 0.00125

(w/v) bromophenol blue). Running conditions for CN gels

were 3.5 h at 375 V and 4 °C using an XCell SureLock

Mini-Electrophoresis System (Life Technologies GmbH).

The running buffer contained 25 mM Tris and 19.2 mM

glycine.

In gel ProDH activity assay

After completion of the electrophoresis run, the gel was

incubated for 10 min with 1.2 mM DCIP in 50 mM Tris/

HCl pH 7.2 while gently shaking. After this incubation step

the DCIP solution was discarded and the gel was incubated

with ProDH activity staining solution (50 mM Tris/HCl

pH 7.15, 5 mM MgCl2, 0.25 mM flavin adenine dinucleo-

tide, 0.5 mM phenazinemethosulfate, 100 mM L-proline)

without shaking for 1.5 h in the dark.

Immunoblotting

Proteins separated in polyacrylamide gels were blotted on

nitrocellulose membranes using the Trans-Blot SD Semi-

Dry Transfer Cell (Bio-Rad, Hercules, CA, USA). The

transfer of proteins was carried out at 400 mA, maximum

23 V, for 90 min using transfer buffer (25 mM Tris,

192 mM glycine, 20% v/v methanol). Equal protein loading

and integrity of protein samples were checked by Ponceau

S red staining of the blot membrane. Immunostaining was

carried out by incubating the nitrocellulose membrane in

NaCl/Tris/Tween with 5% nonfat dry milk and 0.05% (v/
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v) Tween 20 for 1 h at room temperature and then in

NaCl/Tris/Tween with 1 : 1000 ProDH antibody for 2 h at

room temperature. The antibody raised against ProDH was

obtained by rabbit immunization with AtProDH1 (amino

acids 1–522) as described earlier [5]. Subsequently the mem-

brane was incubated for 1 h with a 1 : 5000 diluted second-

ary antibody directly coupled to the horseradish

peroxidase. ProDH was detected using the ECL prime

chemiluminescence detection kit from GE Healthcare

(Munich, Germany).

Enzyme activity measurements

Enzyme assays were carried out at 25 °C using an Epoch

Microplate Spectrophotometer (Biotek, Winooski, VT,

USA). All activity assays were carried out in a total volume

of 300 lL. Kinetic values were corrected by values

obtained in parallel control experiments (assays without

substrate or added protein). Protein quantification was car-

ried out using PierceTM Coomassie (Bradford) Protein Assay

(Thermo Scientific, Bonn, Germany). All measurements

were carried out with mitochondria which were frozen

before (membranes are permeable). ProDH was measured

using three different photometric methods. In method A,

the DCIP method [28], ProDH was measured in a reaction

mixture containing 250 mM Tris/HCl, pH 7.5, 5 mM

MgCl2, 1 mM KCN, 0.06 mM DCIP, 0.25 mM flavin ade-

nine dinucleotide, 0.5 mM phenazinemethosulfate, 2 lg of

whole mitochondrial protein. The reaction was initiated

with 100 mM L-proline. The reduction of DCIP was moni-

tored at 600 nm (E = 19.1 mM
�1�cm�1). Method B, the

Cyt-C method, used 250 mM Tris/HCl, pH 8.4, 60 lM cyto-

chrome c, 1 mM KCN and 2 lg of whole mitochondrial

protein. The reaction was initiated with 100 mM L-proline.

The reduction of cytochrome c was monitored at 550 nm

(E = 19 mM
�1�cm�1). Method C, the decylubiquinone

method, used 250 mM Tris/HCl, pH 8.4, 1 mM KCN,

100 lM decylubiquinone and 25 lg of whole mitochondrial

protein. The reaction was initiated with 100 mM L-proline.

Reduction of decylubiquinone was monitored at 275 nm

(E = 15 mM
�1�cm�1).

GluDH activity was determined following the reduction

of NAD+ at 340 nm. The reaction mixture contained

50 mM Tris/HCl, pH 8.4, 2 mM NAD+ and 2.5 lg of solu-

ble mitochondrial proteins. To separate most of the mem-

brane bound proteins from soluble proteins mitochondria

underwent a thaw–freeze cycle twice. Afterwards, mem-

brane bound proteins were sedimented at 25 000 g. The

reaction was started with the addition of 30 mM glutamate.

D-lactate dehydrogenase activity was determined by mon-

itoring the increase in absorbance at 550 nm. The assay

mixture contained 50 mM Tris/HCl, pH 8.4, 60 lM cyto-

chrome c, 1 mM KCN and 2.5 lg of soluble mitochondrial

proteins. To separate most of the membrane bound pro-

teins from soluble proteins mitochondria underwent a

thaw–freeze cycle twice before the membrane bound

proteins were sedimented at 25 000 g. The reaction was

started by adding 100 mM D-lactate.

Complex I activity was measured according to [43] and

[44]. The assay mixture contained 0.5 mM K3Fe(CN)6,

0.2 mM NADH, 50 mM Tris/HCl pH 7.4 and 2 lg mito-

chondrial protein. Reduction of K3Fe(CN)6 was monitored

at 420 nm (E = 1 mM
�1�cm�1).

Complex II was measured according to [45]: 5 mM

MgCl2, 20 mM succinate, 0.3 mM ATP, 50 mM Tris/HCl

pH 7.4 and 15 lg mitochondrial protein were mixed and

incubated for 5 min to repeal inhibition through oxaloace-

tate. Afterwards 0.5 mM SHAM, 100 lM decylubiquinone

(oxidized) and 2 mM KCN were added to the solution. The

reaction was started with 50 lM DCIP and the reduction of

DCIP was measured at 600 nm (E = 19.1 mM
�1�cm�1).

Complex III was measured according to [45]. The assay

mixture contained 5 mM MgCl2, 2 mM KCN, 30 lM cyto-

chrome c (oxidized), 100 lM decylubiquinone (reduced with

sodium borohydrate), 50 mM Tris/HCl pH 7.4 and 2 lg
mitochondrial protein. Reduction of cytochrome c was

monitored at 550 nm (E = 19 mM
�1�cm�1).

Complex IV was measured according to [45]. The assay

mixture contained 15 lM cytochrome c (reduced with sodium

dithionite), 0.3 mM dodecylmaltoside, 50 mM Tris/HCl pH

7.4 and 1 lg mitochondrial protein. Oxidation of

cytochrome c was followed at 550 nm (E = 19 mM
�1�cm�1).

Statistical analyses

A minimum of three biological replicates were measured

for each experiment. Significant differences between means

were evaluated. The extinction of each enzyme was

calculated using a linear mixed model [46] of the

form yijk = bj + dj xijk + bi + eijk with i = 1, 2, j = 1, 2, 3,

k = 1,. . ., nij where bj denotes the treatment-specific inter-

cept, dj the treatment-specific slope at time xijk and bi the

block effect representing the different biological replicates.

To compare the enzyme activity between the two treatment

groups the treatment-specific regression slopes were com-

pared using the t test statistic. Because multiple null

hypotheses were tested simultaneously the Bonferroni–

Holm procedure [47] was applied to control the pre-speci-

fied overall type I error rate a = 0.05. For the statistical

analysis the open source statistic software R (http://www.r-

project.org/) was used.

Acknowledgements

We thank Marianne Langer, Christa Ruppelt and

Dagmar Lewejohann for expert technical assistance.

Furthermore, we thank Andreas Kitsche for advice

with respect to statistical analyses. This research pro-

ject is supported by the PROCOPE program of the

Deutsche Akademische Austauschdienst (DAAD)

2802 FEBS Journal 281 (2014) 2794–2804 ª 2014 FEBS

Proline dehydrogenase in Arabidopsis thaliana P. Schertl et al.

_____ 
   35

http://www.r-project.org/
http://www.r-project.org/
http://www.r-project.org/
http://www.r-project.org/
http://www.r-project.org/
http://www.r-project.org/
http://www.r-project.org/
http://www.r-project.org/


funded by the Bundesministerium f€ur Bildung und

Forschung (BMBF), Project ID 55903318.

Author contributions

PS: planned and performed experiments, analyzed

data, wrote the paper. CC: performed experiments.

KS: performed experiments. MB: performed experi-

ments. AS: initiated project, planned and coordinated

experiments. HPB: planned and coordinated experi-

ments, wrote the paper.

References

1 Hare PD & Cress WA (1997) Metabolic implications of

stress-induced proline accumulation in plants. Plant

Growth Regul 21, 79–102.

2 Verbruggen N & Hermans C (2008) Proline accumulation

in plants: a review. Amino Acids 35, 753–759.

3 Szabados L & Savour�e A (2010) Proline: a

multifunctional amino acid. Trends Plant Sci 15, 89–97.

4 Verslues PE & Sharma S (2010) Proline metabolism and

its implications for plant–environment interaction.

Arabidopsis Book 8, e0140.

5 Thiery L, Leprince AS, Lefebvre D, Ghars MA,

Debarbieux E & Savour�e A (2004) Phospholipase D is a

negative regulator of proline biosynthesis in Arabidopsis

thaliana. J Biol Chem 279, 14812–14818.

6 Parre E, Ghars MA, Leprince AS, Thiery L, Lefebvre

D & Bordenave M (2007) Calcium signaling via

phospholipase C is essential for proline accumulation

upon ionic but not nonionic hyperosmotic stresses in

Arabidopsis. Plant Physiol 144, 503–512.

7 Ghars MA, Richard L, Lefebvre-De Vos D, Leprince

AS, Parre E, Bordenave M, Abdelly A & Savour�e A

(2012) Phospholipases C and D modulate proline

accumulation in Thellungiella halophila/salsuginea

differently according to the severity of salt or

hyperosmotic stress. Plant Cell Physiol 53, 183–192.

8 Sharma S & Dietz KJ (2009) The relationship between

metal toxicity and cellular redox imbalance. Trends

Plant Sci 14, 43–50.

9 Fabro G, Kov�acs I, Pavet V, Szabados L & Alvarez

ME (2004) Proline accumulation and AtP5CS2 gene

activation are induced by plant–pathogen incompatible

interactions in Arabidopsis. Mol Plant Microbe Interact

17, 343–350.

10 Arakawa T & Timasheff SN (1985) The stabilization of

proteins by osmolytes. Biophys J 47, 411–414.

11 Sharma S & Verslues PE (2010) Mechanisms

independent of abscisic acid (ABA) or proline feedback

have a predominant role in transcriptional regulation of

proline metabolism during low water potential and

stress recovery. Plant, Cell Environ 33, 1838–1851.

12 Jacoby RP, Taylor NL & Millar AH (2011) The role of

mitochondrial respiration in salinity tolerance. Trends

Plant Sci 16, 614–623.

13 Servet C, Ghelis T, Richard L, Zilberstein A & Savoure

A (2012) Proline dehydrogenase: a key enzyme in

controlling cellular homeostasis. Front Biosci

(Landmark Ed) 17, 607–620.

14 Forlani G, Scainelli D & Nielsen E (1997) [delta]1-

Pyrroline-5-carboxylate dehydrogenase from cultured

cells of potato (purification and properties). Plant

Physiol 113, 1413–1418.

15 Boggess SF & Koeppe DE (1978) Oxidation of proline

by plant mitochondria. Plant Physiol 62, 22–25.

16 Elthon TE & Stewart CR (1981) Submitochondrial

location and electron transport characteristics of

enzymes involved in proline oxidation. Plant Physiol 67,

780–784.

17 Kiyosue T, Yoshiba Y, Yamaguchi-Shinozaki K &

Shinozaki K (1996) A nuclear gene encoding

mitochondrial proline dehydrogenase, an enzyme

involved in proline metabolism, is upregulated by

proline but downregulated by dehydration in

Arabidopsis. Plant Cell 8, 1323–1335.

18 Mani S, van de Cotte B, van Montagu M &

Verbruggen N (2002) Altered levels of proline

dehydrogenase cause hypersensitivity to proline and its

analogs in Arabidopsis. Plant Physiol 128, 73–83.

19 Funck D, Eckard S & M€uller G (2010) Non-redundant

functions of two proline dehydrogenase isoforms in

Arabidopsis. BMC Plant Biol 10, 70.

20 Verbruggen N, Hua XJ, May M & van Montagu M

(1996) Environmental and developmental signals

modulate proline homeostasis: evidence for a negative

transcriptional regulator. Proc Natl Acad Sci USA 93,

8787–8791.

21 Verslues PE, Kim YS & Zhu JK (2007) Altered ABA,

proline and hydrogen peroxide in an Arabidopsis

glutamate: glyoxylate aminotransferase mutant. Plant

Mol Biol 64, 205–217.

22 Peng Z, Lu Q & Verma DP (1996) Reciprocal

regulation of delta 1-pyrroline-5-carboxylate synthetase

and proline dehydrogenase genes controls proline levels

during and after osmotic stress in plants. Mol Gen

Genet 253, 334–341.

23 Yoshiba Y, Kiyosue T, Nakashima K, Yamaguchi-

Shinozaki K & Shinozaki K (1997) Regulation of levels

of proline as an osmolyte in plants under water stress.

Plant Cell Physiol 38, 1095–1102.

24 Satoh R, Nakashima K, Seki M, Shinozaki K &

Yamaguchi-Shinozaki K (2002) ACTCAT, a novel cis-

acting element for proline- and hypoosmolarity-

responsive expression of the ProDH gene encoding

proline dehydrogenase in Arabidopsis. Plant Physiol

130, 709–719.

2803FEBS Journal 281 (2014) 2794–2804 ª 2014 FEBS

P. Schertl et al. Proline dehydrogenase in Arabidopsis thaliana

_____ 
   36



25 Lee CP, Taylor NL & Millar AH (2013) Recent

advances in the composition and heterogeneity of

the Arabidopsis mitochondrial proteome. Front Plant

Sci 4, 4.

26 Tanz SK, Castleden I, Hooper CM, Vacher M, Small

I & Millar HA (2013) SUBA3: a database for

integrating experimentation and prediction to define

the SUBcellular location of proteins in

Arabidopsis. Nucleic Acids Res, 41 (Database issue),

D1185–D1191.

27 Davy de Virville J, Aaron Y, Alin MF & Moreau F

(1994) Isolation and properties of mitochondria from

Arabidopsis thaliana cell suspension culture. Plant

Physiol Biochem 32, 159–166.

28 Huang AH & Cavalieri AJ (1979) Proline oxidase and

water stress-induced proline accumulation in spinach

leaves. Plant Physiol 63, 531–535.

29 Atkin OK & Macherel D (2009) The crucial role of

plant mitochondria in orchestrating drought tolerance.

Ann Bot 103, 581–597.

30 Ara�ujo WL, Tohge T, Ishizaki K, Leaver CJ & Fernie

AR (2011) Protein degradation – an alternative

respiratory substrate for stressed plants. Trends Plant

Sci 16, 489–498.

31 Kowaloff EM, Phang JM, Granger AS & Downing SJ

(1977) Regulation of proline oxidase activity by lactate.

Proc Natl Acad Sci USA 74, 5368–5371.

32 Zhang M, White TA, Schuermann JP, Baban BA,

Becker DF & Tanner JJ (2004) Structures of the

Escherichia coli PutA proline dehydrogenase domain in

complex with competitive inhibitors. Biochemistry 43,

12539–12548.

33 Wittig I & Sch€agger H (2007) Electrophoretic methods

to isolate protein complexes from mitochondria.

Methods Cell Biol 80, 723–741.

34 Wittig I & Sch€agger H (2005) Advantages and

limitations of clear-native PAGE. Proteomics 5,

4338–4346.

35 Wittig I & Sch€agger H (2009) Native electrophoretic

techniques to identify protein–protein interactions.

Proteomics 9, 5214–5223.

36 Atlante A, de Bari L, Valenti D, Pizzuto R, Paventi G

& Passarella S (2005) Transport and metabolism of D-

lactate in Jerusalem artichoke mitochondria. Biochim

Biophys Acta 1708, 13–22.

37 de Bari L, Valenti D, Pizzuto R, Paventi G, Atlante A

& Passarella S (2005) Jerusalem artichoke mitochondria

can export reducing equivalents in the form of malate

as a result of D-lactate uptake and metabolism. Biochem

Biophys Res Commun 335, 1224–1230.

38 Yadav SK, Singla-Pareek SL, Ray M, Reddy MK &

Sopory SK (2005) Methylglyoxal levels in plants

under salinity stress are dependent on glyoxalase I

and glutathione. Biochem Biophys Res Commun 337,

61–67.

39 Rajendrakumar CS, Reddy BV & Reddy AR (1994)

Proline–protein interactions: protection of structural

and functional integrity of M4 lactate dehydrogenase.

Biochem Biophys Res Commun 201, 957–963.

40 Sunderhaus S, Dudkina N, J€ansch L, Klodmann J,

Heinemeyer J, Perales M, Zabaleta E, Boekema E &

Braun HP (2006) Carbonic anhydrase subunits form a

matrix-exposed domain attached to the membrane arm

of mitochondrial complex I in plants. J Biol Chem 281,

6482–6488.

41 Klein M, Binder S & Brennicke A (1998) Purification

of mitochondria from Arabidopsis. Methods Mol Biol

82, 49–53.

42 Laemmli UK (1970) Cleavage of structural proteins

during the assembly of the head of bacteriophage T4.

Nature 227, 680–685.

43 Singer TP (1974) Determination of the activity of

succinate, NADH, choline, and alpha-glycerophosphate

dehydrogenases. Methods Biochem Anal 22, 123–175.

44 Zhou G, Jiang W, Zhao Y, Ma G, Xin W, Yin J &

Zhao B (2003) Sodium tanshinone IIA sulfonate

mediates electron transfer reaction in rat heart

mitochondria. Biochem Pharmacol 65, 51–57.

45 Birch-Machin MA, Briggs HL, Saborido AA, Bindoff

LA & Turnbull DM (1994) An evaluation of the

measurement of the activities of complexes I–IV in the

respiratory chain of human skeletal muscle

mitochondria. Biochem Med Metab Biol 51, 35–42.

46 Pinheiro JC & Bates DM (2000) Mixed-Effects Models

in S and S-PLUS. Springer, New York.

47 Holm S (1979) A simple sequentially rejective multiple

test procedure. Scand J Stat 6, 6570.

Supporting information

Additional supporting information may be found in

the online version of this article at the publisher’s web

site:
Fig. S1. Experimental strategy.

Fig. S2. Identification of ProDH in mitochondrial

fractions from Arabidopsis non-green cell cultures and

green seedlings.

Fig. S3. Co-expression analysis of ProDH (At3 g30775)

using the Atted-II database (http://atted.jp/).

Fig. S4. Co-expression analysis of ProDH (At3 g30775)

using Genevestigator (www.genevestigator.com).

Table S1. Atted-II co-expression analysis results.

Table S2. Genevestigator co-expression analysis results.

2804 FEBS Journal 281 (2014) 2794–2804 ª 2014 FEBS

Proline dehydrogenase in Arabidopsis thaliana P. Schertl et al.

_____ 
   37

http://atted.jp/
http://atted.jp/
http://atted.jp/
http://atted.jp/
http://www.genevestigator.com
http://www.genevestigator.com
http://www.genevestigator.com
http://www.genevestigator.com


Biochemical characterization of 
proline dehydrogenase in Arabidopsis 
mitochondria

Peter Schertl, Cécile Cabassa, Kaouthar Saadallah, Marianne Bordenave, 
Arnould Savouré and Hans-Peter Braun

DOI: 10.1111/febs.12821

_____ 
   38



Supplementary Material 

 

Biochemical characterization of proline dehydrogenase in Arabidopsis mitochondria 

 

 

Peter Schertl
1
, Cécile Cabassa

2
, Kaouthar Saadallah

2
, Marianne Bordenave

2
,  

Arnould Savouré
2
, and Hans-Peter Braun

1
 

 

 

1 From the Institute of Plant Genetics, Plant Proteomics, Leibniz University Hannover,  

Herrenhäuser Str. 2, 30419 Hannover, Germany 
2 Physiologie Moléculaire et Cellulaire des Plantes, Université Pierre et Marie Curie Paris 6, UR5 

EAC7180 CNRS, 4 Place Jussieu, 75005 Paris, France 

  

_____ 
   39



Supp. Figure 1: 

 

 

 

Supp. Figure 1: Experimental strategy. Arabidopsis thaliana Columbia suspension culture cells were 
treated with 50 mM L-proline. After incubation of 21 h mitochondria were isolated from treated and 
non-treated cells. 
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Supp. Figure 2: 

 

Supp. Figure 2: Identification of ProDH in mitochondrial fractions from Arabidopsis non-green cell 

cultures and green seedlings. Cells and seedlings were either proline treated (pro) or not treated by 

proline (n.t.). Proline treatment of the cell cultures was carried out as specified in the Material and 

Methods section. For proline treatement of plants, seedlings were cultivated on ½ Murashige & 

Skoog medium (0.8 % agar). After 12 days, seedlings were transferred onto 50 mM proline containing 

½ Murashige & Skoog medium for additional 24 h. Mitochondrial fractions were separated by SDS 

PAGE and blotted onto nitrocellulose. First, total protein of the blot was visualized by Ponceau 

staining (right part of the figure). Afterwards, ProDH was identified by immunostaining (left part of 

the figure). Masses of standard proteins are given to the left of the blots. 

Note: protein load is identical between the mitochondrial fractions of pro-treated and non-treated 

cells on one hand and between those isolated from pro-treated and non-treated seedlings on the 

other. However, protein load between cells and seedlings differed by ca. factor 4. In mitochondrial 

fractions isolated from both sources (cells and seedlings), proline treatement clearly induces ProDH. 
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Supp. Figure 3:

 

Supp. Figure 3: Co-expression analysis of ProDH (At3g30775) using the Atted-II data base 

(http://atted.jp/). ProDH1 (At3g30775) and GluDH2 (At5g97440) are indicated by red dots. 

To define co-expressed genes, gene expression profiles were compared. The profiles were 

constructed from Gene- Chip data downloaded from TAIR. To quantify the similarity of the gene 

expression profiles, pairwise Pearson’s correlation coefficients were used (Obayashi et al 2007). 

 
Table S1: Atted-II Co-expression analysis results. 

MRa Geneb Descriptionc 

 At3g30775 proline dehydrogenase 
1.0 At2g19800  myo-inositol oxygenase 2 
1.4 At5g41080  PLC-like phosphodiesterases superfamily protein 
2.0 At3g57520  seed imbibition 2 
3.5 At5g07440  glutamate dehydrogenase 2 
6.7 At5g27920  F-box family protein 

27.2 At5g18840 Major facilitator superfamily protein 
a Mutual Rank is a geometrically averaged correlation rank, which is based on weighted Pearson 
correlation coefficients, b gene accession number, c description of protein function 
 
Reference: Obayashi T, Kinoshita K, Nakai K, Shibaoka M, Hayashi S, Saeki M, Shibata D, Saito K, Ohta 
H. (2007) ATTED-II: a database of co-expressed genes and cis elements for identifying co-regulated 
gene groups in Arabidopsis. Nucleic Acids Res., 35, D863-D869. 
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Supp. Figure 4: 

 

Supp. Figure 4: Co-expression analysis of ProDH (At3g30775) using Genevestigator 
(www.genevestigator.com; Nebion, Hruz et al., 2008). A two-step workflow has been applied: First, 
microarray experiments with a significant change (p < 0.05) of at least 1.5-fold in ProDH expression 
were selected using the perturbations tool. Genes with most similar expression patterns in these 
experiments were then identified with the co-expression tool using the Pearson correlation 
coefficient as a measure of similarity. 

Table S2: Genevestigator Co-expression analysis results. 

Noa Scoreb Genec Descriptiond 

1 0.82 At2g19800 myo-inositol oxygenase 2 

2 0.81 At5g41080 PLC-like phosphodiesterase superfamily protein 
3 0.79 At1g32460 unknown protein 

4 0.76 At3g57520 seed imbibition 2 

5 0.73 At1g03090 methylcrotonyl-CoA carboxylase alpha chain 

6 0.71 At5g07440 glutamate dehydrogenase 2 

7 0.71 At2g30600 BTB/POZ domain-containing protein 

8 0.71 At2g39570 ACT domain-containing protein 

9 0.71 At5g21170 5´-AMP-activated family protein 

10 0.70 At5g20250 glutamin-dependent asparagine synthase 
a Protein number given in the figure, b Pearson’s correlation coefficient, c gene accession number 
d description of protein function 
 
Reference: Hruz T, Laule O, Szabo G, Wessendorp F, Bleuler S, Oertle L, Widmayer P, Gruissem W, and 
Zimmermann P. (2008). Genevestigator v3: A reference expression database for the meta-analysis of 
transcriptomes. Adv. Bioinforma. 2008: 420747. 
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Abstract  

Proline is accumulated in many plant species in response to environmental stresses. Upon 

relief from stress, proline is rapidly oxidized in mitochondria by two enzymes, proline 

dehydrogenase (ProDH) and pyrroline-5-carboxylate dehydrogenase (P5CDH), the former 

being the limiting step in proline catabolism. Although two ProDH isoforms have been 

identified in the Arabidopsis genome, little is known about the function of these isoforms. A 

viable double prodh1prodh2 mutant was generated. We show that root growth as well as root 

density are differentially affected in prodh1, prodh2 and double prodh1prodh2 mutants in 

response to proline. We also demonstrate that ProDH activity is tightly correlated to ProDH 

protein content under our experimental conditions. To evaluate the contribution of each 

isoform to proline oxidation, oxygen consumption using proline as substrate was measured in 

mitochondria isolated from wild-type, prodh1, prodh2, prodh1prodh2 and p5cdh mutants. 

Results indicate a key role of ProDH1 in proline oxidation, ProDH2 not being able to 

compensate the lack of ProDH1 isoform. In addition we show that ProDH1 is linked to the 

mitochondrial membrane and forms part of a low molecular weight complex. Finally, protein 

separation by 2D Blue native / SDS PAGE in combination with immunoblotting and protein 

analysis by mass spectrometry allowed the identification of ProDH1 peptides in mitochondria. 

These observations have many implications for further investigating the role of this 

mitochondrial ProDH complex in relation to organelle functions.  
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Introduction 

Proline is a proteinogenic secondary amino acid known to play an essential role in primary 

metabolism, redox homeostasis, osmotic adjustment, protection against stress and signalling 

in many organisms, such as prokaryotes, yeasts, mammals and plants (for review, see 

Szabados and Savouré, 2010). Today, the proline biosynthetic pathway is well documented 

but less is known about its catabolism, which contributes to generate important molecules 

such as ATP, reactive oxygen species (ROS) or reducing power (Servet et al., 2012). In 

response to water stress, plants usually accumulate proline. Proline biosynthesis occurs both 

in the cytosol and chloroplasts (Szekely et al., 2008). Upon recovery from stress, the 

accumulated proline is oxidized in mitochondria by two distinct enzymes: proline 

dehydrogenase (ProDH) (Kiyosue et al., 1996; Peng et al., 1996; Verbruggen et al., 1996) and 

delta-1-pyrroline-5-carboxylate dehydrogenase (P5CDH) (Deuschle et al., 2001). The first 

and limiting step of proline oxidation is under the control of ProDH, the flavin-dependent 

oxidation of proline to delta-1-pyrroline-5-carboxylate (P5C). P5C is then non-enzymatically 

converted into glutamate semialdehyde (GSA), which is then oxidised to glutamate by 

P5CDH. In most bacteria, a single bifunctional enzyme known as Proline utilization A (PutA) 

is a membrane-associated dehydrogenase with combined ProDH and P5CDH activities while 

in all eukaryote cells, ProDH and P5CDH are monofunctional enzymes (Servet et al., 2012). 

In prokaryotes and yeasts, ProDH has been shown to be a flavoenzyme transferring electrons 

to the respiratory chain via ProDH-FAD complexes while P5CDH reduces NAD+ (Tanner 

2008; Wanduragala et al., 2010). In plants, it can be hypothesised that the first ProDH-

catalysed step of proline oxidation also produces FADH2 and the second P5CDH-catalysed 

step generates NADH. Both reducing equivalents finally provide electrons to the 

mitochondrial electron transfer chain (ETC) (Schertl and Braun, 2014).  

Proline oxidation activity has been reported for maize, wheat, barley, soybean and mung bean 

(Boggess et al., 1978; Elthon and Stewart, 1981) by L-proline dependent O2 consumption 

measurements of isolated mitochondria. Other abundant mitochondrial amino acids like 

glutamate and glycine can also be used as respiratory substrates by Arabidopsis mitochondria 

(Keech et al., 2005) while wheat mitochondria cannot support O2 consumption from glycine, 

arginine, serine and alanine (Boggess et al., 1978). This indicates substrate and plant 

specificities in providing the mitochondrial respiratory chain. P5C, product of proline 

oxidation, was found to be used as a respiratory substrate in maize mitochondria (Elthon and 

Stewart, 1981) thus demonstrating the existence of a direct electron transfer pathway from 
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P5CDH to the respiratory chain. In contrast, the ability of ProDH to directly transfer electrons 

to the mitochondrial respiratory chain remains to be demonstrated in plants.  

In Arabidopsis, there are two closely related ProDH isoforms (75% amino acid sequence 

identity), ProDH1 and ProDH2. Analysis of the ProDH1 promoter has led to the 

identification of a PRE (Proline or hypoosmolarity-Responsive Element) motif that is 

involved in the regulation of its expression (Nakashima et al., 1998; Servet et al., 2012). 

ProDH1 expression has been found to be repressed by dehydration when proline accumulates 

but increased after recovery after water stress, exogenous proline addition and hypoosmolarity 

(Kiyosue et al., 1996; Verbruggen et al., 1996; Nakashima et al., 1998). ProDH1 and ProDH2 

are both scarcely expressed in vegetative organs when Arabidopsis seedlings are cultivated in 

standard conditions and differentially regulated by various bZIP transcription factors 

(Weltmeier et al., 2006; Hanson et al., 2008). Specific expression patterns were nevertheless 

found using promoter-GUS fusion studies as the ProDH1 promoter directs high expression in 

floral organs such as pollen and stigma while ProDH2 expression is preferentially localized to 

vascular tissues and abscission zones (Funck et al., 2010). ProDH2 transcript accumulation 

might also be induced by pathogen attack or UV stress (Arabidopsis eFP Browser: 

http://bar.utoronto.ca/efp/cgi-bin/efpWeb.cg) and in the presence of 20 mM proline or 200 

mM NaCl (Funck et al., 2010).  

The first step of proline catabolism is thus a highly regulated process, an essential feature 

regarding its possible impact on cell ROS and energy production or in maintaining the redox 

balance (Cecchini et al., 2011; Ben Rejeb et al., 2014). The subcellular location of proline 

catabolism enzymes is of crucial importance to ensure its role for providing electrons to the 

respiratory chain. ProDH1 has been clearly demonstrated to be mitochondrial (Kiyosue et al., 

1996; Mani et al., 2002) but due to contradictory ProDH-GFP fusion analyses, subcellular 

location of ProDH2 is still under debate (Funck et al., 2010; Van Aken et al., 2009). P5CDH 

has been identified in mitochondrial proteome analyses (Kruft et al. 2001; Millar et al. 2001; 

Heazlewood et al. 2004). It possibly represents a dual-targeted protein because it also was 

identified in the course of proteome analyses of chloroplasts (Kleffmann et al., 2004). So far, 

ProDH1 and ProDH2 could not be identified by any organelle-based proteome project in 

plants.  

Although proline metabolism has been extensively investigated, the biochemical 

characterization of ProDH remains elusive. Therefore and to further characterize how ProDH 

participates in resuming growth after stress, we first developed an experimental system to 

induce ProDH accumulation leading to high ProDH activity in Arabidopsis seedlings. ProDH 
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accumulation and activity were localized in the mitochondrial membrane fraction. L-proline 

dependent O2 consumption analyses were performed on isolated mitochondria from wild-type 

and various Arabidopsis proline catabolism knockout mutants to precisely define the proteins 

involved in the electron transfer from L-proline to the respiratory chain in Arabidopsis. 

Analyses using a p5cdh knockout mutant demonstrated for the first time a direct electron 

transfer pathway from L-proline to the respiratory chain via the first step of proline 

catabolism. Investigations using prodh1 and prodh2 mutants provided evidences that ProDH1 

is the only isoform involved in transferring electrons to the Arabidopsis respiratory chain 

when plants are treated with external proline. This result was confirmed by the identification 

of ProDH1 peptides in Arabidopsis mitochondria of L-proline-treated plants using 2D Blue-

native (BN) / SDS PAGE and western blot analyses in combination with mass spectrometry.  
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Results 

Molecular characterization of prodh mutants 

In order to assess the functions of ProDH1, we genetically characterized allelic T-DNA 

insertion mutants of ProDH1 (prodh1-3 and prodh1-4) and ProDH2 (prodh2-2 and prodh2-3) 

(Fig. 1). Insertions in prodh1-3, prodh1-4 and prodh2-2 are located in an intron as previously 

described by Funck and co-workers (Funck et al., 2010), while prodh2-3 mutant has a T-DNA 

insertion in the promoter (Fig. 1A). The homozygous lines were confirmed by PCR 

genotyping experiments (Fig. 1B). Next, the impact of prodh mutations were investigated on 

ProDH protein content. Arabidopsis seedlings of wild-type as well as prodh1-4, prodh2-2 and 

the double prodh1-4prodh2-2 lines were subjected to L-proline treatment for 24 h to trigger 

ProDH accumulation. Western blot analysis using an antibody directed against ProDH 

revealed a very strong immunoreactive signal (around 54 kDa) in response to exogenous L-

proline, which became much fainter with mitochondrial extracts from non-treated seedlings 

(Fig. 1C). This signal was absent in the prodh1-4 mutant as well as in the double 

prodh1prodh2 mutant. This suggests that the signal can be attributed to ProDH1 isoform and 

that prodh1-4 is a complete loss-of-function allele. The absence of any band in both prodh1 

and in the double mutant as well as the fact that it is much more intense in response to proline 

clearly confirms that the 54 kDa band corresponds to ProDH1 isoform. 
As a control, we also performed western blots with an excess of recombinant ProDH1, which 

can bind the ProDH antibody before its binding to the blotted proteins. As expected, the 

ProDH signal was not visible anymore in both proline-treated and not-treated seedlings 

extracts (supplemental Figure 1).  

 

ProDH1 is required for root development on high proline concentration but not ProDH2 

To get deeper insights into the physiological role of ProDH, prodh mutants were grown in 

vitro in order to test their root development in presence of exogenous proline (Fig. 2). In 

absence of proline, single prodh1-4 mutant and prodh1prodh2 double mutant showed a root 

growth identical to wild-type, but prodh2-2 mutant had a slightly increased primary root 

growth after eight days of culture (Fig. 2). To better quantify the responses of prodh mutants 

to exogenous proline on root system development, the length of the primary root was 

analysed during plant growth in presence of proline (Fig. 2A and B). First, presence of proline 

did not affect wild-type plants. However, in presence of proline, primary root growth of the 

prodh2-2 mutant was slightly delayed at 4 days but later became identical to wild-type. 

prodh1-4 mutant and prodh1prodh2 double mutant had more striking phenotypes: primary 
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root growth of these mutants was clearly inhibited during development in presence of proline, 

46% delay for prodh1 and 43% for prodh1prodh2 after 12 days of 10 mM proline treatment; 

this growth inhibition was more severe with 10 mM proline as early as four days after 

germination (Fig. 2B). Thus absence of ProDH1 causes an inhibition of the root growth in 

presence of exogenous proline, while the absence of ProDH2 did not.  

The number of secondary roots was also investigated. In general, proline exposure had a 

slight negative effect on the number of secondary roots, which was more severe in the prodh 

mutants than in wild-type plants (Supplementary Fig. 2). However, compared to changes in 

primary root growth, changes were less substantial and at the borderline of significance. 

Finally, the development of the aerial parts was not affected by proline. Wild-type and 

mutants had the same number of leaves that displayed the same size and morphology (data 

not shown). 

 

L-proline treatment triggers ProDH1 protein content and activity 

ProDH1 is induced in seedlings in response to externally added proline (Fig. 1). ProDH 

activity was monitored in mitochondria isolated from wild-type and mutant plant lines 

exposed to proline using a modified version of the 2,6-dichloroindophenol- (DCIP) based 

assay (Schertl et al., 2014) previously established by Huang and Cavalieri (1979). In presence 

of proline, 32.1 nmol reduced DCIP min-1 mg protein-1 ProDH activity was measured in wild-

type (Fig. 3). This ProDH activity was slightly higher in the prodh2 mutant than wild-type. In 

contrast, ProDH activity was decreased by 80% in prodh1. In prodh1prodh2 double mutant, 

ProDH activity was close to background level. Thus ProDH activities tightly correlate with 

ProDH protein contents, with a high ProDH activity dependent on the presence of the proline-

induced ProDH1.  

 

Proline-treated seedlings displayed a higher mitochondrial respiration  

First we measured and compared standard respiration parameters in mitochondria from 

proline-treated and non-treated seedlings. Mitochondrial respiratory parameters were recorded 

using isolated mitochondria and various respiratory substrates (Supplemental Fig. 3). NADH 

and succinate respiratory substrates were used in order to define the intrinsic parameters of 

the various mitochondria tested. As presented in Table I, in control conditions (NT), wild-type 

mitochondria displayed a state 3 O2 consumption rate around 144 nmol O2 min-1 mg protein-1 

and a state 4 rate around 72 nmol O2 min-1 mg protein-1. The respiratory coupling rate (RCR) 

of 2.0 indicates a rather good capability to readjust electron flow. These mitochondria were 
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also normally coupled with a phosphorylating yield of 1.4 using NADH and succinate as 

substrates. More generally, they displayed a high CytC pathway (96% of total electron flow) 

and a weak alternative oxidase (AOX) capacity (13.3 nmol O2 min-1 mg protein-1). Proline-

treated plants displayed higher respiratory rates in both phosphorylating state (around 168 

nmol O2 min-1 mg protein-1 in state 3 and 84 in state 4) than non-treated plants. The RCR 

parameter was again around 2.0, similar to what was previously observed in proline-non-

treated mitochondria. By contrast, the ADP/O ratio was dramatically lower (1.0 versus 1.4), 

indicating that more electrons had to be transferred to oxygen to produce the same ATP 

content. This feature could explain the higher respiratory rates observed in these mitochondria. 

As proline catabolism is known to induce ROS production (Miller et al., 2009; Cecchini et al., 

2011; Ben Rejeb et al., 2014), we also measured AOX capacity. A 40% higher AOX capacity 

in proline-treated seedlings could be measured (19 nmol O2 min-1 mg protein-1), leading to 

smaller participation of the CytC pathway (85% of total electron flow). This result indicates 

an oxidative stress response of the proline-treated plants. As AOX is one of the uncoupling 

plant mitochondria systems, the high AOX capacity measured when plants are exogenously 

supplied with L-proline could partially explain the low phosphorylating yield observed in 

these mitochondria.  

 

L-proline provides electrons to the respiratory chain 

L-proline oxidation in mitochondria isolated from Arabidopsis leaves was tested and 

compared with standard respiration measurements. As shown in Table I, specific L-Proline 

dependent respiration could be measured in mitochondria from wild-type proline-treated 

plants (29 nmol O2 min-1 mg protein-1 for the CytC pathway and up to 36.4 nmol O2 min-1 mg 

protein-1 for the AOX pathway). No L-proline dependent electron flow could be measured in 

non-proline-treated plants. Interestingly proline-related substrates like D-proline or L-

hydroxyproline could not lead to any respiratory chain-dependent O2 consumption even in 

mitochondria isolated from L-proline-treated plants (supplementary figure 3 C). Thus, only 

mitochondria containing high ProDH level displayed L-proline dependent oxygen 

consumption, indicating that a ProDH content or activity threshold should be reached to allow 

measurable L-proline respiration in isolated mitochondria.  

P5C, the product of ProDH catabolism, was shown to function as a respiratory substrate in 

maize mitochondria (Elthon and Stewart, 1981) thus demonstrating the existence of a direct 

electron transfer to the respiratory chain involving P5CDH. However, the ability of ProDH to 

directly provide electrons to the mitochondrial respiratory chain remained elusive. To address 
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this question, proline-dependent mitochondrial respiration was investigated using a p5cdh 

knockout mutant. p5cdh had a slightly higher mitochondrial ProDH content in response to 

proline treatment than wild-type (supplemental Fig. 4). Respiratory rates of prodh and p5cdh 

mutants were investigated using different respiratory substrates as well as proline (Table I). 

Mitochondria were isolated from wild-type and mutants that were treated with or without 

proline. State 3 rates were similar in wild-type and p5cdh mitochondria from non-treated 

plants while RCR was significantly lower in p5cdh mutants (1.8 versus 2.0) because of higher 

state 4 rates (around 78 versus 72 nmol O2 min-1 mg protein-1). ADP/O ratio was also reduced 

in non-treated p5cdh mutant line (1.23 versus 1.4), which indicates poorly coupled 

mitochondria in control conditions. Interestingly upon proline treatment, p5cdh uncoupling 

did not change and wild-type mitochondria became even more uncoupled than the mutant 

ones (ADP/O decreasing up to 1.0). AOX capacity was also slightly higher in the NT p5cdh 

mutant but at an intermediate rate between NT and proline treated wild-type plants. In 

contrast, proline treatment induced an increase of the AOX capacity in the p5cdh mutant (36.6 

nmol O2 min-1 mg protein-1). The reduced phosphorylating yield and enhanced AOX capacity 

observed in this mutant under control conditions indicate that these plants behaved as stressed 

plants. The contradictory response to proline treatment in the mutant line (high increase of 

AOX capacity but no change in phosphorylating yield) may indicate a modification in 

mitochondrial membrane properties upon proline treatment that decreases proton leakage, 

which compensate the uncoupling increased by the AOX pathway in these mitochondria. L-

proline dependent O2 uptake could be observed in p5cdh mitochondria when isolated from 

proline-treated plants but with reduced rates when compared to wild-type plants (about 17.9 

versus 29 nmol O2 min-1 mg protein-1 in wild-type for the cytochrome pathway and 19 versus 

36.4 nmol O2 min-1 mg protein-1 in wild-type for the AOX pathway). The reduced L-proline 

dependent oxidation rates measured in the p5cdh mutant compared to wild-type could be 

explained by the lack of electron transfer from P5CDH in the ETC. Thus the ability of this 

mutant lacking the second step of L-proline oxidation to use L-proline as sole respiratory 

substrate indicates that ProDH can directly deliver electrons to the respiratory chain.  

 

ProDH is associated with mitochondrial membrane fraction in Arabidopsis 

Elthon and Stewart (1981) showed that a proline oxidation activity was associated with the 

inner mitochondrial membrane in Zea mays. In order to test this protein localization in 

Arabidopsis, mitochondria were purified using Percoll density gradient ultra centrifugation 

from 15 days-old wild-type seedlings treated for 24 h by 50 mM L-proline. Mitochondrial 

_____ 
   55



 

membrane (MB) and soluble fractions (S) were then separated and tested for the presence of 

ProDH by western blot analysis. The purity of the two fractions was assessed using antibodies 

against the membrane integrated adenylate translocator (ANT) and the matrix-localized 

isocitrate dehydrogenase (ICDH). Figure 4A shows a specific ProDH signal in the membrane 

fraction, confirmed by the fraction purity controls in B and C. These results demonstrate a 

physical association between ProDH and the mitochondrial membranes in Arabidopsis.  

 

ProDH1 is essential for L-proline dependent respiration 

We wanted to know which ProDH isoform is the main provider of electrons to the 

mitochondrial respiratory chain. We therefore performed respiratory measurements with 

mitochondria isolated from prodh mutants either treated or not treated by exogenous L-

proline. As presented in Table I, when tested with NADH and succinate as respiratory 

substrates, all mutant lines behaved like wild-type regarding the increases in the respiratory 

parameters upon proline treatment. When plants were treated with proline, AOX capacity was 

only slightly increased in the prodh1 mutant and even decreased in prodh2 lines. But this 

AOX value is already very high in all mutant lines (between 29 to 45.6 nmol O2 min-1 mg 

protein-1) under proline-treated and non-treated conditions. ADP/O ratios were also similar 

between wild-type and prodh2 while prodh1 displayed very low phosphorylating yields (1.18 

in NT plants and 0.85 in proline-treated ones), which is in accordance with their specifically 

high AOX capacity (up to 44 nmol O2 min-1 mg protein-1). 

The prodh1 mutant mitochondria could not support any L-proline dependent respiration 

independently of the treatments. On the contrary prodh2, mitochondria isolated from proline-

treated plants displayed L-proline dependent respiration (up to 23.3 nmol O2 min-1 mg protein-

1 for the CytC pathway and 18.3 nmol O2 min-1 mg protein-1 for the AOX pathway). Thus, L-

proline dependent respiration could only be observed in mitochondria from wild-type and 

prodh2 mutant lines treated with proline, when ProDH1 was present at high level. These 

experiments demonstrate that ProDH1 is the only isoform located in mitochondria under the 

tested conditions and that this enzyme is able to transfer electrons from L-proline to the ETC. 

 

ProDH1 is associated with low molecular weight complexes in Arabidopsis mitochondria 

In plants, ProDH is scarcely abundant even after relief from stress. Only few ProDH peptides 

have been reported today in the frame of global Arabidopsis shot gun proteome analyses 

(Baerenfaller et al. 2008). No ProDH peptides have been identified until now in any plant 

using organelle-based proteome analysis. In order to identify ProDH in mitochondria, we used 
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a cell suspension culture recently developed by Schertl et al. (2014) that allows a massive 

ProDH induction suitable for biochemical characterization of this enzyme. Proteins from 

mitochondria purified on Percoll density gradients were separated by 2D Blue native (BN) / 

SDS PAGE. As shown by the immune-blotting experiment in Fig. 5, spots were revealed 

using ProDH antibody in proline-treated cells. No signal was detectable on the corresponding 

2D gel of proline non–treated cells using identical film exposure time. Immuno-positive 

proteins of purified mitochondria from proline-treated cells had an apparent molecular mass 

of ~54-55 kDa on the second gel dimension. The oligomeric state of ProDH is not quite clear 

so far because the immune-positive proteins migrate in the range of 70 to 140 kDa on the first 

blue native gel dimension. Several film exposure times were used out in order to compare the 

signals between BN / SDS PAGE gels from non-treated and proline-treated mitochondrion 

samples (Fig. 6). Similar signals were observed in a 150-fold difference in exposure time (2 

seconds in mitochondria of proline-treated cells versus 300 seconds in non-treated cells), 

indicating an estimated 150-fold difference in ProDH content between the two samples. 

Additional experiments were also carried out using mitochondria isolated from non-treated 

and proline-treated Arabidopsis seedlings. Interestingly, very similar spot patterns were 

observed in 2D BN / SDS PAGE, but of very much lower intensity (supplemental Fig. 5). To 

obtain similar ProDH signals, much longer exposure times, minutes in comparison to seconds, 

were needed, indicating again that ProDH is of much higher concentrations in cell cultures 

than in seedlings.  

Spots recognized by the ProDH antibody and differentially expressed between NT and 

proline-treated material were further analysed by mass spectrometry (MS). Only ProDH1 

peptides were detected in four spots of mitochondria from proline-treated cell suspension (Fig. 

7), indicating that the ProDH2 isoform is not present or not at a sufficient level in these 

mitochondria. The peptides are well distributed along the ProDH1 protein (Fig. 8). In 

mitochondria isolated from seedlings, only ProDH1 peptides were also detected in the 

corresponding spots (data not shown). These results support our respiratory data 

demonstrating that ProDH1 is the only active isoform located in mitochondria of proline-

treated plants that provides electrons to the ETC when L-proline is used as a substrate. 

 

Discussion 

Proline is accumulated in response to various environmental stresses in many plant species. 

When stress is relieved, proline is rapidly degraded in mitochondria through the sequential 

action of two enzymes, ProDH and P5CDH. The limiting step of proline degradation is 
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controlled by ProDH (for review, see Servet et al., 2012). Although proline biosynthesis is 

well characterized at molecular and biochemical levels, only few information is available on 

the role and function of ProDH in proline degradation. Physiological, biochemical and 

proteomic analysis have been carried out to get better insight into the physiological role of 

this key enzyme. The use of a specific ProDH antibody allowed, for the first time, to 

investigate ProDH content in different mutants. One important step in ProDH characterization 

was the generation of a viable double prodh1prodh2 mutant. Using a root growth assay, we 

could demonstrate that proline hypersensitivity was due to the lack of prodh1 and not prodh2, 

a phenotype which is conserved in the double prodh1prodh2 mutant. Also proline-dependent 

respiration was investigated in mitochondria isolated from these different genotypes. Results 

again indicate a key role of ProDH1 in proline oxidation. A good correlation was observed 

between ProDH activity and its protein content. We therefore pursued to investigate some 

biochemical properties of ProDH. We could demonstrate that ProDH is linked to 

mitochondrial membrane and is part of a low molecular weight complex. Finally, protein 

separation by 2D Blue native / SDS PAGE in combination with immunoblotting and protein 

analysis by mass spectrometry allowed for the first time the identification of ProDH1 peptides 

in a mitochondrial fraction. These observations have many implications for further 

investigating how ProDH1 interacts with the inner mitochondrial membrane and for better 

understanding the respective roles of the two ProDH isoforms. 

 

ProDH1 and ProDH2 have distinct roles in proline hypersensitivity 

In order to characterize the role of ProDH, a double mutant prodh1prodh2 was generated. 

ProDH accumulation was totally impaired in this mutant in response to proline. To our 

surprise, this double mutant did not show any obvious developmental phenotype. It notably 

has growth as wild-type and can produce viable seeds, suggesting that proline degradation is 

not essential for vegetative and reproductive plant growth. The use of double mutant in the 

investigation of proline hypersensitivity demonstrated the key role of ProDH1 in primary root 

length growth, which is in accordance to previous published work (Mani et al. 2002, Nanjo et 

al., 2003). However the root density was affected in prodh2. All these data indicate different 

adaptation of the root system to the presence of exogenous proline which further indicates that 

the two ProDH isoforms have distinct roles, at least in plant development (Funck et al., 2010) 

with an essential role of ProDH1 in proline oxidation. 
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Proline is a respiratory substrate for ProDH1 but not for ProDH2 

The use of prodh mutants allowed investigating the role of each ProDH isoform in 

mitochondrial respiration. ProDH1 plays an essential role in L-proline dependent respiration 

in mitochondria. Recently it was shown by Funck et al. (2010) that ProDH2 is induced by 

proline but repressed by sucrose at least at the transcript level. This was not observed in our 

study at the mitochondrial protein level because ProDH2 isoform was not detectable in the 

prodh1 mutant background in response to proline. However, it cannot be excluded that the 

amount of ProDH2 is too low to be detected on western blots. Furthermore prodh1 did not 

show any measurable proline dependent respiration in isolated mitochondria although this 

mutant had been previously treated by proline. These findings suggest that ProDH2 is not 

accumulated in mitochondria in response to proline and more importantly ProDH2 cannot 

compensate the lack of ProDH1. Deuschle et al. (2004) reported that the p5cdh mutant, which 

is a single copy gene in Arabidopsis, was unable to completely degrade exogenously applied 
14C-labeled proline into glutamine or glutamate but could accumulate P5C. This is in 

accordance with our results where mitochondria isolated from p5cdh mutant displayed 

slightly higher ProDH1 content and a L-dependent proline respiration, although at a lower 

extent than in wild-type seedlings. This indicates that ProDH1 is able to oxidize proline even 

when P5CDH is lacking thus providing electrons to the ETC. This reduced p5cdh respiration 

could be explained by the lack of electron transfer from P5CDH to the ETC. The finding that 

ProDH and P5CDH can function independently is surprising because the analysis of structural 

data of the bifunctional ProDH and P5CDH enzyme PutA revealed a dynamic tunnel system 

that allows a substrate-channelling path between the two active sites (Singh et al., 2014). A 

detailed characterization of the interaction between ProDH and P5CDH in plants will help to 

answer this question.  

Hydroxyproline, a proline derivative containing a hydroxyl group attached to the gamma 

carbon atom, is known to represent a substrate for the vertebrate ProDH (Ostrander et al., 

2009). As shown by oxygen consumption measurements, hydroxyproline could not be used as 

a respiratory substrate for any mitochondria isolated from either wild-type or prodh mutants. 

A tyrosine 540 residue was found to be an important determinant for preventing 

hydroxyproline to bind to the substrate-binding site (Ostrander et al., 2009). Both Arabidopsis 

ProDH protein sequences show high sequence similarity and possess, as vertebrate ProDH1, a 

tyrosine residue in analogous position (Servet et al., 2012). Also in this respect the ProDH 

isoforms of plants should be further investigated.  
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It is well known that proline is an essential energy substrate for insect flights (Auerswald et 

al., 1998; Sacaraffia and Wells, 2003). However plant L-proline dependent respiration was 

always weak compared to canonical substrates like NADH or succinate and highly dependent 

on the uncoupling AOX activity. It is thus unlikely that L-proline oxidation could be used as 

the sole energy substrate for resuming growth after stress in plants. Proline oxidation might 

rather help in increasing respiratory rates and regulating redox balance and ROS generation. 

 

ProDH forms part of low molecular weight complex in mitochondria 

Availability of specific ProDH antibody allowed us for the first time to identify ProDH 

peptides in a plant mitochondrial fraction. Using external proline treatment, ProDH first was 

substantially induced (Schertl et al., 2014). Next, proteins were separated by 2D BN / SDS 

PAGE and ProDH was visualized by immunoblotting. The ProDH signal runs at about 70 to 

140 kDa on the native gel dimension, indicating that ProDH might represent a dimer or that it 

binds to another so far unknown protein. This issue has to be further investigated. The fact 

that ProDH somehow “smears” on the first BN gel dimension between 70 and 140 kDa is a 

commonly observed phenomenon on blue native gels, because protein separation takes place 

under very mild conditions. This may cause lipids or detergent molecules to stick to proteins. 

On the second gel dimension, the ProDH signal runs at 54 kDa, as expected. The 

corresponding gel region was cut out and analysed by mass spectrometry. Overall, seven 

unique ProDH peptides were identified, which cover different regions of the protein from the 

N- to its C-terminus. All peptides exactly match the predicted amino acid sequence of 

ProDH1. In accordance with our other data, ProDH2 peptides could not be identified. We 

conclude that ProDH1 is the far more prominent ProDH isoform in mitochondria under the 

conditions tested. ProDH1 associates to the mitochondrial membrane and forms part of a low 

molecular weigh complex.  

Dehydrogenases are of key importance for mitochondrial catabolism. Besides pyruvate 

dehydrogenase and dehydrogenases of the citric acid cycle, several further dehydrogenases 

occur, some of which are specific for plant mitochondria (Schertl and Braun 2014). 

Dehydrogenases transfer electrons either onto NAD+ or FAD, forming NADH and FADH2, 

respectively. NADH-producing enzymes are often localized in the mitochondrial matrix or 

attached to the inner mitochondrial membrane. The NADH is re-oxidized by complex I of the 

respiratory chain or alternative NADH dehydrogenases, which are especially prominent in 

plant mitochondria. In contrast, FAD+/FADH2 normally is tightly bound to dehydrogenases. 

Based on current knowledge, electrons of FADH2 are always directly transferred onto 
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ubiquinone, which requires tight linkage of the corresponding enzymes to the inner 

mitochondrial membrane. The proline catabolic pathway includes two dehydrogenases, 

ProDH and P5CDH, the former transferring electrons onto FAD and the latter onto NAD+. In 

accordance to other FAD-containing mitochondrial dehydrogenases, ProDH is tightly linked 

to the mitochondrial membrane and most likely transfers electrons directly onto ubiquinone. It 

is known that electron entry pathways into the respiratory chain of plant mitochondria can 

much vary depending on the biochemical state of a plant cell (Schertl and Braun 2014). 

Electron entry via proline certainly is of great importance during stress release conditions. 

The precise mode of action of the 70-140 kDa ProDH complex during electron transfer from 

proline to the ETC should be addressed by future research. 

 

Materials and Methods  

Plant material and growth conditions 

Arabidopsis (Arabidopsis thaliana (L.) Heynh. ecotype Col0 and prodh1-3 (GABI_308F08), 

prodh1-4 (SALK_119334), prodh2-2 (GABI_328G05), and prodh2-3 (SALK_918D08) T-

DNA insertion lines were obtained from the Salk Institute, La Jolla, USA (Alonso et al., 

2003) and the Center for Biotechnology, Universitat Bielefeld, Germany (Kleinboelting et al., 

2012). Presence of the T-DNA and allelic status were verified by PCR and sequencing of the 

T-DNA flanking sequences. In the crosses between prodh1-4 and prodh2-2, double prodh1-

4prodh2-2 F2 seedlings were selected by PCR. Gene and T-DNA-specific primers are listed in 

supplemental Table I. The mutant p5cdh T-DNA line (Salk_018453) has been previously 

described (Deuschle et al. 2004). 

Surface-sterilized seeds of Arabidopsis wild-type (Col0) and mutant lines were sown onto 

grids placed on half-strength agar-solidified Murashige and Skoog (MS) medium in square 

Petri dishes according to Thiery et al. (2004). After 24 h at 4°C to break dormancy, seedlings 

were allowed to grow at 22°C under continuous light (90 µmol photons m-2 s-1). Fifteen-day-

old Arabidopsis seedlings were exposed to proline or to water as control for 24 h.  

For root growth assays, 24 h old-seedlings were transferred onto agar-solidified MS/2 

medium supplied or not with proline and then were cultivated in growth chamber under a 16 h 

light (90 µmol m-2 s-1)/ 8 h dark cycle at 22°C. Treatments with up to 10 mM proline were 

used for root growth assays and 50 mM proline for biochemical and proteomic analysis. 
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Mitochondria isolation and subfractionation 

Mitochondria were isolated at 4°C from leaves of 15 day-old Arabidopsis plantlets. 50 g of 

fresh leaves were used for purification to undergo respiratory measurements and 130 g for 

purification on Percoll gradients to undergo subcellular ProDH localization. Leaves were 

ground in a blender with three volumes of grinding buffer (sucrose 0.3 M, KH2PO4 10 mM, 

Na4-pyrophosphate 25 mM, Na-ascorbate 20 mM, EDTA 2 mM, PVP 40 1%, PMF 0.2 mM 

and BSA 1% ; pH 7.5), filtered onto miracloth and blutex filters, then a cycle of two steps 

differential centrifugations were performed as follows: contaminants were pelleted with a  

2,500xg centrifugation for 5 min and mitochondria contained in the supernatant were 

sedimented by a 15 000xg centrifugation for 20 minutes. Pellets of crude mitochondria were 

resuspended in washing buffer (sucrose 0.3 M, TES buffer 10 mM, BSA FFA 0.1%, pH 7.5), 

aggregates were destroyed using a Potter homogenizer. Crude mitochondria were washed 

using one more cycle as describe above.  

For respiratory measurements, mitochondria were washed again with another cycle of two 

steps differential centrifugations process and BSA removed by several high-speed 

sedimentation steps (15,000xg) in washing buffer without BSA.  

For protein subcellular localization, mitochondria were purified on a 5 steps Percoll gradient 

(80%, 40%, 30%, 20% and 15% in washing buffer without BSA) by ultra-centrifugation at 

15,000xg for at least 45 minutes. Highly purified mitochondria were found at the 40%/30% 

interphase, carefully removed and diluted up to 100 time. Percoll was eliminated by several 

centrifugations at 15,000xg during 15 min until getting well aggregate pellets. BSA was then 

removed by additional 15,000xg sedimentation steps in washing buffer depleted in BSA. 

Whatever the purification level, mitochondrial protein concentration was determined 

according to Lowry et al. (1951) using bovine serum albumin (BSA) as a standard. 

Matrix and membrane fractions of Percoll gradient-purified mitochondria were separated as 

previously described in Sunderhaus et al. (2006) with some modifications. Mitochondria were 

resuspended in a sonication buffer (10mM TES, 1 mM EDTA, 1 mM EGTA and 0.2 mM 

PMSF, pH 7.2) at 1 mg/mL protein concentration. 1.5 mL of mitochondria was broken by 

three freeze-thaw cycles and 4 sonication steps during 16 seconds using a Branson Sonifier 

250. Unbroken mitochondria were sedimented by 7 min centrifugation at 5,000xg and 

discarded. The supernatant was then centrifuged 100 min at 140,000xg in a 70 Ti rotor. The 

resulting pellet containing mitochondrial membranes was resuspended in sonication buffer. 

The soluble fraction corresponding to matrix and inter-membrane space compartments was 

precipitated using pure acetone. Proteins were then centrifuged for 1 h at maximum speed in a 
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bench centrifuge. Pellets were resuspended in sonication buffer. Proteins were further 

analysed by western blots. 

 

Respiratory measurements  

Oxygen consumption were performed on isolated mitochondria using a Clark-type O2 

electrode system (Hansatech, Norfolk, United Kingdom) in a stirred temperature-controlled 

(25°C) 1 ml reaction buffer (sucrose 0.3 M ; KH2PO4 5 mM ; TES buffer 10 mM pH 7.2; 

KCL 10 mM ; MgSO4 2 mM, BSA FFA 0.1 %). Each assay contained 300 µg mitochondrial 

proteins. Respiratory substrates were used at final concentrations as follows: 1 mM NADH, 

10 mM succinate, 6 mM L-(D- or hydroxy-) proline. Alternative oxidase capacity was 

obtained in the presence of 1 mM KCN and by adding 1 mM DTT and 5 mM pyruvate. CytC 

dependent O2 uptake was specifically inhibited by 1 mM cyanid while AOX pathway was 

inhibited by 0.5 mM n-propyl gallate. RCR and ADP/O ratios were measured as previously 

described in Hourton-Cabassa et al. (2009). State 3 rates are oxidation rates under 

phosphorylating conditions (in the presence of ADP), state 4 rates are oxidation rates under 

non phosphorylating conditions (lack of ADP), RCR is the respiratory control rate (state 3 

rate /state 4 rate) which provides indications about the ability of the respiratory chain to 

readjust its electron flow with the ADP content and ADP/O ratio which represents the 

phosphorylating yield of the chain by measuring the quantity of molecular oxygen necessary 

to consume all the ADP added. The CytC rate represents the quantity of electron flow directed 

to the Cytochrome pathway by calculating the state 4 rate minus the remaining oxidation rate 

measured in the presence of cyanide, a CytC oxidase specific inhibitor. AOX capacity was 

also checked in the presence of cyanide, pyruvate and DTT to fully reduce and activate AOX 

enzymes. 

 

ProDH immunodetection 

Mitochondria were resuspended in Laemmli buffer containing freshly added -

mercaptoethanol. Proteins were separated by SDS-PAGE in 11 % (v/v) polyacrylamide gels 

and transferred to nitrocellulose membranes (Bio-Rad) in a Trans-Blot Semi-Dry 

Electrophoretic Transfer Cell (Bio-Rad) for 30 min at 135 mA using transfer buffer (25 mM 

Tris, 192 mM glycine, 20 % v/v methanol, pH 8.3). Equal protein loading and integrity of 

protein samples were checked by Ponceau S red staining of the blot membrane. For 

immunodetection, the nitrocellulose filter was incubated in TBS (TBS-T) with 5% non-fat dry 

milk and 0.05% (v/v) Tween 20 for 30 minutes at room temperature and then in TBS-T with 
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1:1000 ProDH antibody overnight at 4°C. Antibodies raised against ProDH were obtained by 

rabbits immunization with AtProDH1 (amino acids 1–522) as described in Thiery et al. 

(2004). The secondary antibody, an anti-rabbit horseradish peroxidase conjugate was diluted 

at 1:4000. ProDH is detected with a chemiluminescence detection kit ECL prime from GE 

Healthcare (France). 
 

Blue native / SDS PAGE and molecular identification of ProDH1 

Molecular identification of ProDH of Arabidopsis was carried out using mitochondria isolated 

form either Arabidopsis seedlings (growth conditions see above) or from Arabidopsis cell 

cultures (for details see Schertl et al. (2014). Mitochondrial proteins were separated by BN / 

SDS PAGE (according to Wittig et al. (2006); experimental parameters as given in Klodmann 

et al. (2011)). The 2D gels were either Coomassie-stained (Neuhoff et al., 1988), or used for 

Western Blotting and immunodetection experiments (as described above). Tryptic digestion 

of the selected proteins was carried out as highlighted in Klodmann et al. (2010). Analyses of 

the extracted peptides were carried out by tandem mass spectrometry using a micrOTOF Q-II 

mass spectrometer (Bruker, Bremen, Germany) as described previously (Klodmann et al. 

2011). 
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Figure legends 

Figure 1: Molecular characterization of the Arabidopsis prodh mutants. A. Map of T-DNA 

insertion loci in four mutant lines with the primer references used for genotyping. Primers are 

listed in supplemental table I. Gray box indicates the promoter region, white and black boxes 

represent the 5´ and 3´ untranslated regions and coding exons respectively, dash lines show 

intron regions. prodh1-3 and prodh1-4 carried inverted T-DNA tandem repeats. B. Genomic 

DNAs were extracted from either wild-type Col0 (wt), prodh1-3, prodh1-4, prodh2-2 or 

prodh2-3 seedlings and PCR products were separated in a 0.8 % agarose gel. C. Western blot 

analysis of ProDH content was performed on mitochondria isolated from 15 day-old wild-

type, prodh1-3, prodh1-4, prodh2-2 or the double mutant prodh1-4prodh2-2 (p1xp2) 

seedlings non-treated or treated with 50 mM L-proline for 24 h. 

 

Figure 2: Growth response of wild-type (WT), prodh1-4, prodh2-2 and prodh1-4/ prodh2-2 

seedlings to proline. A. Photographs of 12 days-old wild-type Col0 (WT), prodh1-4, prodh2-2 

and prodh1-4/ prodh2-2 seedlings grown on medium without or with 10 mM proline (P). B. 

Primary root elongation of WT, prodh1-4, prodh2-2 and prodh1-4/prodh2-2 seedlings grown 

on medium without (0 mM) or with 1 mM, 5 mM or 10 mM proline for 4, 8 and 12 days. For 

B, data shown are means of four to five independent experiments including each 12 plants. 

Small letters represent significant differences compared to the WT as indicated by an 

unpaired t test (a : P < 0,05; b : P < 0,01). 

 

Figure 3: ProDH activity in wild-type and in prodh1-4, prodh2-2 and prodh1-4prodh2-2 

(p1xp2) mutants treated with proline. Crude mitochondria were purified from 15 days-old 

plants treated with 50 mM L-proline for 24 h. ProDH activity measurements were performed 

using 2,6-dichlorindophenol (DCIP) as an electron acceptor. Standard errors are based on at 

least three biological replicates.  

 

Figure 4: ProDH is associated with mitochondrial membranes. Mitochondria were purified 

from 15 days-old seedlings treated for 24 h with 0.1M L-proline using a Percoll density 

gradient ultra centrifugation. Mitochondrial membrane (MB) and soluble (S) fractions were 

then separated by SDS PAGE (10 µg of each fraction per lane). Western Blots shown in A, B 

and C were probed with IgGs directed against ProDH, the adenine nucleotide translocase 

(ANT) or the isocitrate dehydrogenase (ICDH) as indicated. 
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Figure 5: Immunological identification of ProDH1 in mitochondrial fractions of proline-

treated Arabidopsis cells. Total mitochondrial proteins of proline treated / untreated cells were 

separated by 2D blue native / SDS PAGE. Proteins were either Coomassie stained (top) or 

blotted onto nitrocellulose (bottom). Blots were developed using an antibody directed against 

ProDH from Arabidopsis. Molecular masses of standard proteins are given to the left (in kDa), 

identities of the OXPHOS complexes are indicated above the gels. I+III2: supercomplex 

formed of complexes I and dimeric complex III; I: complex I; V: complex V; III2: dimeric 

complex III; F1: F1 part of complex V; IV: complex IV; II: complex II. The lipoamide 

dehydrogenase (L protein of the glycine dehydrogenase complex; mtLPD) is indicated on the 

gels. 

 

Figure 6. ProDH1 is strongly induced upon proline treatment in Arabidopsis. Total 

mitochondrial protein of proline treated / untreated cells was separated by 2D blue native / 

SDS PAGE and blotted onto nitrocellulose. The blot was incubated with antibodies directed 

against Arabidopsis ProDH. Immune signals were visualized after 2, 5, 120 and 300 seconds. 

 

Figure 7: Identification of ProDH1 by mass spectrometry. Total mitochondrial protein of 

proline-treated Arabidopsis cells was separated by 2D Blue native / SDS PAGE and 

Coomassie-stained (A). Four gel spots were cut out from the gel at positions corresponding to 

ProDH signals obtained on a parallel immunoblot (B) and analysed by mass spectrometry (C). 

 

Figure 8: Peptides of ProDH1 identified by mass spectrometry. Top: amino acid sequence of 

ProDH1 with the location of the corresponding peptides. Bottom: Peptides identified within 

spots 1-4 (as indicated on Figure 7). 

 

Table I: Respiratory parameters of L-proline-treated wild-type and p5cdh and prodh mutant 

seedlings measured using isolated mitochondria. Crude mitochondria were obtained from 15 

days-old seedlings of either wild-type, p5cdh, prodh1-3, prodh1-4, prodh2-2 or prodh2-3 

genotypes treated without (NT) or with 50 mM L-proline (Pro) for 24 h. Respiratory rates are 

expressed in nmol O2 min-1 mg protein-1 and are the mean of at least three biological 

replicates for wild-type and p5cdh genotypes for each condition. For prodh1 and prodh2, 

results correspond to a mean of three independent experiments for each prodh1-4 and prodh1-

3 mutants and for each prodh2-2 and prodh2-3 mutants, respectively. “State 3” and “state 4” 

respiration represent phosphorylation and non-phosphorylation modes of the respiratory chain 
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(ADP sufficiently present versus not present), respectively. CytC rate and AOX capacity were 

determined in the presence of KCN and SHAM, which block one or the other respiratory 

electron transfer pathway. RCR is the respiratory coupling rate (state3/state4 rate) and ADP/O 

is the phosphorylation yield. 

 

 

Supplemental Figure 1. Proline treatment increases ProDH content in seedlings. Mitochondria 

were purified from 15 day-old Col0 seedlings non treated (1) or treated with 50 mM L-proline 

(2) for 24 h. A and B, Western blot analysis of ProDH content using 40 µg of mitochondrial 

proteins. B, ProDH antibody were used in competition with a purified ProDH1 recombinant 

protein. Ponceau stainings of the corresponding blots are presented on the right. The masses 

of standard proteins are given in kDa. 

 

Supplemental Figure 2. Root architecture analysis in wild-type and prodh mutants in response 

to exogenously applied proline. A. Mean number of secondary roots of WT, prodh1-4, 

prodh2-2 and prodh1-4/prodh2-2 seedlings after 12 days of growth on medium without or 

with 1mM, 5 mM or 10 mM proline. B. Root density of WT, prodh1-4, prodh2-2 and prodh1-

4/prodh2-2 seedlings after 12 days of growth on medium without (0 mM) or with 1mM, 5 

mM or 10 mM proline. Root density was calculated for each plant as the ratio of the number 

of secondary root /length of the primary root. For A and B, data shown are means of four to 

five independent experiments including each 12 plants. Small letters represent significant 

differences compared to the WT as indicated by an unpaired t test (a : P < 0,05; b : P < 0,01). 

 

Supplemental Figure 3. Respiratory measurement of isolated mitochondria from Arabidopsis. 

Primary experimental results using either a combination of NADH and succinate (A: NADH 

+ Succ) or L-proline (B) or D-proline (C) as respiratory substrates. ADP, adenosine 

diphosphate; DTT, dithiothreitol; KCN, potassium cyanide; MP, purified mitochondria; PG, 

propyl gallate.  

 

Supplemental Figure 4. Molecular characterization of p5cdh mutant. A. Map of the T-DNA 

insertion in the p5cdh mutant. Representation of the gene is the same as in figure 1. B. PCR 

genotyping of p5cdh using genomic DNA isolated from either wild-type or p5cdh seedlings. 

PCR products were separated on a 0.8 % agarose gel. C. Western blot using mitochondria 

isolated from p5cdh and wild-type seedlings treated with 50 mM proline for 24 h.  
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Supplemental Figure 5. Immunological identification of ProDH1 in mitochondrial fractions 

isolated from 15-days old Arabidopsis seedlings either treated or not treated with 50 mM 

proline for 24 h. Total mitochondrial proteins of were separated by 2D Blue native / SDS 

PAGE. Proteins were either Coomassie stained (top) or blotted onto nitrocellulose (bottom). 

Blots were developed using an antibody directed against ProDH from Arabidopsis and 

immune signals were visualized after 2, 30 and 60 minutes. 

 

Supplemental Table I. List of the primers used for genotyping the different prodh and p5cdh 

mutants.  
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Figure 1: Molecular characterization of the Arabidopsis prodh mutants. A. Map of T-DNA 

insertion loci in four mutant lines with the primer references used for genotyping. Primers are 

listed in supplemental table I. Dash boxes indicate the promoter regions, dash lines show 

intron regions, boxes represent the 5´ and 3´ untranslated regions (white) and coding exons 

(black). prodh1-3 and prodh1-4 carried inverted T-DNA tandem repeats. B. Genomic DNAs 

were extracted from either wild-type Col0 (wt), prodh1-3, prodh1-4, prodh2-2 or prodh2-3 

seedlings and PCR products were separated in a 0.8 % agarose gel. C. Western blot analysis 

of ProDH content was performed on mitochondria isolated from 15 day-old wild-type, 

prodh1-3, prodh1-4, prodh2-2 or the double mutant prodh1-4prodh2-2 (p1xp2) seedlings 

non-treated or treated with 50 mM L-proline for 24 h. 

  

_____ 
   73



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2: Growth response of wild-type (WT), prodh1-4, prodh2-2 and prodh1-4/ prodh2-2 

seedlings to proline. A. Photographs of 12 days-old wild-type Col0 (WT), prodh1-4, prodh2-2 

and prodh1-4/ prodh2-2 seedlings grown on medium without or with 10 mM proline (P). B. 

Primary root elongation of WT, prodh1-4, prodh2-2 and prodh1-4/prodh2-2 seedlings grown 

on medium without (0 mM) or with 1 mM, 5 mM or 10 mM proline for 4, 8 and 12 days. For 

B, data shown are means of four to five independent experiments including each 12 plants. 

Small letters represent significant differences compared to the WT as indicated by an 

unpaired t test (a : P < 0,05; b : P < 0,01).  
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Figure 3: ProDH activity in wild-type and in prodh1-4, prodh2-2 and prodh1-4prodh2-2 

(p1xp2) mutants treated with proline. Crude mitochondria were purified from 15 days-old 

plants treated with 50 mM L-proline for 24 h. ProDH activity measurements were performed 

using 2,6-dichlorindophenol (DCIP) as an electron acceptor. Standard errors are based on at 

least three biological replicates.  
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Figure 4: ProDH is associated with mitochondrial membranes. Mitochondria were purified 

from 15 days-old seedlings treated for 24 h with 0.1M L-proline using a Percoll density 

gradient ultra centrifugation. Mitochondrial membrane (MB) and soluble (S) fractions were 

then separated by SDS PAGE (10 µg of each fraction per lane). Western Blots shown in A, B 

and C were probed with IgGs directed against ProDH, the adenine nucleotide translocase 

(ANT) or the isocitrate dehydrogenase (ICDH) as indicated. 
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Figure 5: Immunological identification of ProDH1 in mitochondrial fractions of proline-

treated Arabidopsis cells. Total mitochondrial proteins of proline treated / untreated cells were 

separated by 2D blue native / SDS PAGE. Proteins were either Coomassie stained (top) or 

blotted onto nitrocellulose (bottom). Blots were developed using an antibody directed against 

ProDH from Arabidopsis. Molecular masses of standard proteins are given to the left (in kDa), 

identities of the OXPHOS complexes are indicated above the gels. I+III2: supercomplex 

formed of complexes I and dimeric complex III; I: complex I; V: complex V; III2: dimeric 

complex III; F1: F1 part of complex V; IV: complex IV; II: complex II. The lipoamide 

dehydrogenase (L protein of the glycine dehydrogenase complex; mtLPD) is indicated on the 

gels. 
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Figure 6. ProDH1 is strongly induced upon proline treatment in Arabidopsis. Total 

mitochondrial protein of proline treated / untreated cells was separated by 2D blue native / 

SDS PAGE and blotted onto nitrocellulose. The blot was incubated with antibodies directed 

against Arabidopsis ProDH. Immune signals were visualized after 2, 5, 120 and 300 seconds. 
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Figure 7: Identification of ProDH1 by mass spectrometry. Total mitochondrial protein of 

proline-treated Arabidopsis cells was separated by 2D Blue native / SDS PAGE and 

Coomassie-stained (A). Four gel spots were cut out from the gel at positions corresponding to 

ProDH signals obtained on a parallel immunoblot (B) and analysed by mass spectrometry (C). 
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Figure 8: Peptides of ProDH1 identified by mass spectrometry. Top: amino acid sequence of 

ProDH1 with the location of the corresponding peptides. Bottom: Peptides identified within 

spots 1-4 (as indicated on Figure 7). 
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Table I: Respiratory parameters of L-proline-treated wild-type and p5cdh and prodh mutant 

seedlings measured using isolated mitochondria. Crude mitochondria were obtained from 15 

days-old seedlings of either wild-type, p5cdh, prodh1-3, prodh1-4, prodh2-2 or prodh2-3 

genotypes treated without (NT) or with 50 mM L-proline (Pro) for 24 h. Respiratory rates are 

expressed in nmol O2 min-1 mg protein-1 and are the mean of at least three biological 

replicates for wild-type and p5cdh genotypes for each condition. For prodh1 and prodh2, 

results correspond to a mean of three independent experiments for each prodh1-4 and prodh1-

3 mutants and for each prodh2-2 and prodh2-3 mutants, respectively. “State 3” and “state 4” 

respiration represent phosphorylation and non-phosphorylation modes of the respiratory chain 

(ADP sufficiently present versus not present), respectively. CytC rate and AOX capacity were 

determined in the presence of KCN and SHAM, which block one or the other respiratory 

electron transfer pathway. RCR is the respiratory coupling rate (state3/state4 rate) and ADP/O 

is the phosphorylation yield. 
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Supplemental Figure 1. Proline treatment increases ProDH content in seedlings. Mitochondria 

were purified from 15 day-old Col0 seedlings treated with 50 mM L-proline (1) or not treated 

(2) for 24 h. A and B, Western blot analysis of ProDH content using 40 µg of mitochondrial 

proteins. B, ProDH antibody were used in competition with a purified ProDH1 recombinant 

protein. Ponceau stainings of the corresponding blots are presented on the right. The masses 

of standard proteins are given in kDa. 
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Supplemental Figure 2. Root architecture analysis in wild-type and prodh mutants in response 

to exogenously applied proline. A. Mean number of secondary roots of WT, prodh1-4, 

prodh2-2 and prodh1-4/prodh2-2 seedlings after 12 days of growth on medium without or 

with 1mM, 5 mM or 10 mM proline. B. Root density of WT, prodh1-4, prodh2-2 and prodh1-

4/prodh2-2 seedlings after 12 days of growth on medium without (0 mM) or with 1mM, 5 

mM or 10 mM proline. Root density was calculated for each plant as the ratio of the number 

of secondary root /length of the primary root. For A and B, data shown are means of four to 

five independent experiments including each 12 plants. Small letters represent significant 

differences compared to the WT as indicated by an unpaired t test (a : P < 0,05; b : P < 0,01). 
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Supplemental Figure 3. Respiratory measurement of isolated mitochondria from Arabidopsis. 

Primary experimental results using either a combination of NADH and succinate (A: NADH 

+ Succ) or L-proline (B) or D-proline (C) as respiratory substrates. ADP, adenosine 

diphosphate; DTT, dithiothreitol; KCN, potassium cyanide; MP, purified mitochondria; PG, 

propyl gallate.  
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Supplemental Figure 4. Molecular characterization of p5cdh mutant. A. Map of the T-DNA 

insertion in the p5cdh mutant. Representation of the gene is the same as in figure 1. B. PCR 

genotyping of p5cdh using genomic DNA isolated from either wild-type or p5cdh seedlings. 

PCR products were separated on a 0.8 % agarose gel. C. Western blot using mitochondria 

isolated from p5cdh and wild-type seedlings treated with 50 mM proline for 24 h.  
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Supplemental Figure 5. Immunological identification of ProDH1 in mitochondrial fractions 

isolated from 15-days old Arabidopsis seedlings either treated or not treated with 50 mM 

proline for 24 h. Total mitochondrial proteins of were separated by 2D Blue native / SDS 

PAGE. Proteins were either Coomassie stained (top) or blotted onto nitrocellulose (bottom). 

Blots were developed using an antibody directed against ProDH from Arabidopsis and 

immune signals were visualized after 2, 30 and 60 minutes. 
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Supplemental Table I. List of the primers used for genotyping the different prodh and p5cdh 

mutants.  
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Background: L-Galactono-1,4-lactone dehydrogenase (GLDH) catalyzes the final step of the L-ascorbate biosynthesis path-
way and at the same time is essential for complex I accumulation.
Results: The active GLDH is localized within three different subcomplexes of complex I.
Conclusion: Evidence is increasing that GLDH represents a complex I assembly factor.
Significance: New insights into mitochondrial complex I assembly in Arabidopsis thaliana.

L-Galactono-1,4-lactone dehydrogenase (GLDH) catalyzes
the terminal step of the Smirnoff-Wheeler pathway for vitamin
C (L-ascorbate) biosynthesis in plants. A GLDH in gel activity
assay was developed to biochemically investigate GLDH local-
ization in plantmitochondria. It previously has been shown that
GLDH forms part of an 850-kDa complex that represents a
minor form of the respiratory NADH dehydrogenase complex
(complex I). Because accumulation of complex I is disturbed in
the absence of GLDH, a role of this enzyme in complex I assem-
bly has been proposed. Here we report that GLDH is associated
with two further protein complexes. Using native gel electro-
phoresis procedures in combinationwith the in gelGLDHactiv-
ity assay and immunoblotting, two mitochondrial complexes of
470 and 420 kDawere identified. Both complexes are of very low
abundance. Protein identifications by mass spectrometry
revealed that they include subunits of complex I. Finally, the
850-kDa complexwas further investigated and shown to include
the complete “peripheral arm” of complex I. GLDH is attached
to a membrane domain, which represents a major fragment of
the “membrane arm” of complex I. Taken together, our data
further support a role of GLDH during complex I formation,
which is based on its binding to specific assembly intermediates.

Ascorbate (vitamin C) is of central importance for several
biological processes. In plants, it was shown to be essential for
growth (1), programmed cell death (2), pathogen response (3),
signal transduction (4), and the stress response with respect to
ozone (5), UV radiation (6), high temperature (7), and high light
(8). Ascorbate is the cofactor of several enzymes and one of the
major components adjusting the redox state of cells. In plant
tissue, it can reach millimolar concentrations and form up to

10% of the soluble carbohydrate content. Biosynthesis of ascor-
bate in plants mainly takes place via the “L-galactose” also
known as “Smirnoff-Wheeler” pathway (9). The terminal step
of this pathway, the conversion of L-galactono-1,4-lactone
(GL)2 into ascorbate, is catalyzed by L-galactono-1,4-lactone
dehydrogenase (GLDH). GLDH is localized in mitochondria.
During ascorbate formation, GLDH needs oxidized cyto-
chrome c as the electron acceptor (10–12). Indeed, GL repre-
sents a respiratory substrate for oxidative phosphorylation in
plants (12, 13).
GLDH has been purified and characterized for several plant

species (11, 14, 15). The primaryGLDH translation product has
a molecular mass of about 68 kDa but is processed to a mature
protein of 56–58 kDa. Processing is based on removal of an
N-terminal peptide of about 100 amino acids and probably
takes place during transport of GLDH into mitochondria (15,
16). GLDH is most active with L-galactono-1,4-lactone but also
has some low L-gulono-1,4-lactone activity (14, 16). The
enzyme needs noncovalently bound FAD as a co-factor. GLDH
so far has not been crystallized but amino acid positions essen-
tial for regulation and activity were identified by the investiga-
tion of recombinant forms of the enzyme (16–19).
GLDH is localized in the innermitochondrialmembrane (12,

20, 21). Because the mature protein lacks membrane spanning
segments (16) it most likely is peripherally attached to the inner
mitochondrial membrane. If overexpressed in Escherichia coli,
GLDH forms part of the soluble fraction of this bacterium (16).
About a decade ago, it surprisingly was discovered that GLDH
is attached to the mitochondrial NADH dehydrogenase com-
plex (complex I) of the respiratory chain (22). Complex I has a
molecular mass of 1000 kDa and in plants includes at least 48
different subunits, several of which represent proteins specific
for this enzyme complex in plants (23, 24). Some of these extra
subunits integrate side activities into this respiratory complex,
e.g. carboanhydrase (CA) subunits, which were proposed to* This work was supported by Deutsche Forschungsgemeinschaft (DFG)

Grant Br 1829/10-1.
□S This article contains supplemental Tables S1 and S2 and Figs. S1–S3.
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support CO2 transfer from mitochondria to chloroplasts in
plant cells (25). However, GLDH was not found to be attached
to the 1000-kDa holoenzyme, but only to a slightly smaller ver-
sion of complex I, which is of comparatively low abundance (13,
22, 26). This complex has a molecular mass of about 850 kDa
and obviously lacks some of the subunits present in the main
form of complex I. The identity of these subunits is not known
so far. GLDH activity is inhibited in the presence of rotenone,
an inhibitor of electron transfer within complex I, if pyruvate
and malate are used as respiratory substrates (13). It therefore
was speculated that a subpopulation of complex I particles are
important for GLDH regulation by monitoring the rate of
NADH-driven electron flow through complex I (13).
Silencing of the gene encoding GLDH in tomato does not

much affect ascorbate concentration, indicating that GLDH
activity is not rate-limiting for ascorbate formation (27). How-
ever, silenced plants have a clearly retarded growth and pro-
duce smaller fruits. At the same time, the central metabolism of
plantmitochondria is significantly changed. It is concluded that
GLDH is important for other processes besides ascorbate for-
mation. Recently, characterization of anArabidopsis knock-out
mutant lacking the gene encoding GLDH was found to have
drastically reduced amounts of complex I (26). In contrast, the
amounts of the other protein complexes of the respiratory
chain were not changed. It therefore is speculated that GLDH,
besides its role in ascorbate formation, represents an assembly
factor for complex I.
Here we present a biochemical investigation onGLDH local-

ization within plant mitochondria. Protein complexes of the
inner mitochondrial membrane were carefully solubilized by
the use of nonionic detergents and resolved protein complexes
were separated by blue native PAGE. Using a newly developed
in gel GLDH activity assay and immunoblotting, three distinct
GLDH containing protein complexes of 850, 470, and 420 kDa
were discovered. The 850-kDa complex represents the known
smaller version of mitochondrial complex I. GLDH is shown to
be attached to the membrane arm of the 850-kDa complex I.
Subunits of the novel 470 and 420 kDa complexes were identi-
fied bymass spectrometry. Like the 850-kDa complex, they also
include complex I subunits.We propose that GLDHhas amore
extended function in complex I assembly by specifically binding
to several of its assembly intermediates.

EXPERIMENTAL PROCEDURES

Arabidopsis thaliana Cultivation and Isolation of
Mitochondria—A. thaliana cells (var. Columbia-0) were culti-
vated as previously described (28). Isolation of mitochondria
was performed according to Werhahn et al. (29).
Gel Electrophoresis Procedures and Immunoblotting—One-

dimensional BN-PAGE and two-dimensional BN/SDS-PAGE
was performed as previously described (30). Two-dimensional
BN/BN-PAGE was carried out as outlined in Sunderhaus et al.
(31). For the experiments of the current investigation, first
dimension BN-PAGE was carried out in the presence of digito-
nin, second dimension BN-PAGE in the presence of Triton
X-100. Proteinswere visualized byCoomassie colloidal staining
(32, 33). After separation on polyacrylamide gels proteins were
blotted onto a nitrocellulose membrane using the Trans Blot

Cell from Bio-Rad. The transfer of proteins was performed as
described inKruft et al. (34). Immunostainingswere carried out
using the VectaStain ABC Kit (Vector Laboratories, Burlin-
game, CA). The carbonic anhydrase antibody was provided by
Eduardo Zabaleta (Mar del Plata University, Argentina). The
GLDH antibody was purchased from Agrisera Antibodies
(Vännäs, Sweden).
In Gel Activity Stainings—In gel staining for NADH-ubiqui-

none-oxidoreductase was carried out as previously described
(35).
In gel activity staining of GLDH was performed as follows.

After half-completion of the electrophoretic run of a BN-PAGE
the Coomassie-containing cathode buffer was replaced by a
cathode buffer without Coomassie for dye reduction within the
gel. The gel was incubated in 100ml of GLDH staining solution
(40 mM Tris(hydroxymethyl)aminomethane, 2 mM L-galac-
tono-1,4-lactone, 1 mg/ml of nitro blue tetrazolium chloride,
200 �M phenazine methosulfate) in the dark. The pH of the
solution was adjusted to 8.8 (HCl). GLDH activity becomes vis-
ible as purple bands or spots after 15–30min. The activity stain-
ing was stopped by rinsing the gel with water. To improve visu-
alization and destain the background the gel was transferred
into destaining solution (40% methanol and 10% acetic acid)
overnight. The resulting gels were finally scanned on a trans-
mission scanner (PowerLook III, UMAX).
Mass Spectrometry (MS)—Tryptic digestion of proteins and

MS were performed as described previously (23). Protein
identifications were based on the MASCOT search algo-
rithm using the A. thaliana protein data base, release
TAIR10 (www.arabidopsis.org).

RESULTS

Identification of GLDH Containing Protein Complexes—Im-
munoblotting experiments were carried out to first get infor-
mation on GLDH localization in plant mitochondria. For this
approach, mitochondria were isolated from a suspension cell
culture of A. thaliana. Isolated organelles were solubilized by
5% digitonin and protein complexes were subsequently sepa-
rated by two-dimensional blue native (BN)/SDS-PAGE (Fig. 1).
Upon Coomassie staining, subunits of the mitochondrial pro-
tein complexes are visible as reported before (36). The main
formof complex I runs at about 1000 kDa. In addition, a slightly
smaller version of complex I is visible in accordance with pre-
vious investigations (13, 22, 26). On our gels, it runs at 850 kDa
on the first gel dimension and is designated complex I*. It also
includes an additional 58-kDa subunit not present in the main
form of complex I. This protein represents GLDH as shown by
a parallel immunoblotting experiment. Furthermore, the
58-kDa immune signal is detectable at two further regions on
the two-dimensional gels, which correspond to 470 and 420
kDa on the native gel dimension. Finally, the 58-kDa GLDH
signal is visible in the �100 kDa region of the native gel dimen-
sion. This signal represents the monomeric form of GLDH,
which was reported previously (36); see the two-dimensional
BN/SDS-PAGE GelMap of Arabidopsis mitochondria
(www.gelmap.de/47, spot 116). We conclude that GLDH not
only forms part of the 850-kDa complex I*, but additionally of
two unknown protein complexes of 470 and 420 kDa.

GLDH Forms Part of Three Complex I Subcomplexes in Arabidopsis
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An in gel activity assay was developed to investigate if the
850-, 470-, and 420-kDa complexes have GLDH activity. The
assay includes 2 mM L-galactono-1,4-lactone to avoid substrate
inhibition, which was reported to take place at higher concen-
trations (16). Oxidized cytochrome c was substituted by the
electron acceptor phenazine methosulfate, which increases
sensitivity of the assay. The pH of the assay solution was
adjusted to 8.8 in accordance with the pH optimum of GLDH
reported previously (16). Finally, nitro blue tetrazolium was
used forGLDHactivity visualization. This redoxdye is yellow in
its oxidized form and purple upon reduction into formazan
(37). Reduction takes place in the presence of ascorbate. Addi-
tionally, reduced phenazine methosulfate can directly reduce
nitro blue tetrazolium, which may enhance the ascorbate-me-
diated color reaction. Nitro blue tetrazolium itself cannot be
reduced directly by the GLDH. Using this assay, GLDH activity
becomes visible on native protein gels as purple bands or spots.
The principle of the assay is summarized in Fig. 2A and the
details are given under “Experimental Procedures.”
For performing the GLDH in gel activity assay, mitochondria

were solubilized by digitonin and protein complexes were sub-
sequently separated by one-dimensional BN PAGE (Fig. 2B).
The 850-, 470-, and 420-kDa complexes exhibit strong GLDH
activity. No activity is detectable in the absence of GL. The
activity-stained bands exactly correspond to the signals
obtained by immunoblotting (Fig. 2B). The bands at 850, 470,
and 420 kDa are not visible on a parallel Coomassie-stained gel
indicating that the in gel GLDH activity assay has very high
sensitivity.

FIGURE 2. L-Galactono-1,4-lactone dehydrogenase in gel activity assay.
A, reaction scheme of the in gel activity assay. B, in gel activity assay for GLDH.
Mitochondrial membrane proteins were solubilized by 5% digitonin and sub-
sequently separated by one-dimensional blue native PAGE. Co, Coomassie
stain. GL�/GL�, in gel GLDH activity stain in the presence (GL�) or absence
(GL�) of the substrate L-galactono-1,4-lactone. IgG, immunoblot for GLDH
detection. The identities of protein complexes are given on the right, the
GLDH-containing protein complexes are indicated in the center (for nomen-
clature see Fig. 1). The faint signals between the 470- and 850-kDa complexes
are caused by local overloading of the gel in the regions of complexes III and
V.

FIGURE 1. Immunological detection of L-galactono-1,4-lactone dehydrogenase in a mitochondrial protein fraction of A. thaliana. Proteins were sepa-
rated by BN/SDS-PAGE and either stained by Coomassie Blue (left) or blotted onto nitrocellulose membranes for immunological GLDH detection (center and
right). The blot in the center additionally was stained with Ponceau for background visualization. Enlargements of the boxed regions are given in the lower line
of the figure. Red circles indicate GLDH. A molecular mass standard is given to the left. Nomenclature of protein complexes: I, complex I; I*, 850-kDa subcomplex
of complex I; V, complex V; III2, dimeric complex III; F1, F1 part of complex V; IV, complex IV; I�III2, supercomplex composed of complex I � dimeric complex III;
850, 470, and 420 kDa, GLDH containing protein complexes (the 850-kDa complex corresponds to I*). GLDH is detected on the second gel dimension at 58 kDa.
The 58-kDa signal on the right side of the two-dimensional gel represents monomeric GLDH. Another signal at about 75 kDa represents a cross-reaction with
an unknown protein (see supplemental Table S1 and supplemental Fig. 1).
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For further investigation of the 470- and 420-kDa complexes,
a mitochondrial protein fraction was resolved by two-dimen-
sional BN/BN PAGE (Fig. 3). First dimension BN PAGE was
carried out in the presence of digitonin, second dimension BN
PAGE in the presence of Triton X-100. On the resulting two-
dimensional gels, most protein complexes are positioned on a
diagonal line, but resolution is increased in comparison to one-

dimensional BN PAGE due to differential effects of the two
detergents on the individual protein complexes. Visualization
of 850-, 470-, and 420-kDa complexes was carried out by in gel
GLDH activity staining (Fig. 3). Both, the 470- and 420-kDa
complexes again were not visible on a parallel Coomassie-
stained BN/BN gel due to their low concentration (supplemen-
tal Fig. S3). The 470-kDa complex runs close to dimeric com-
plex III (500 kDa).
Although present at extremely low concentrations, gel spots

representing the 470- and 420-kDa complexes were further
analyzed by mass spectrometry. As expected, both protein
complexes include GLDH (Table 1). Furthermore, and as
expected, MS analysis of the 470-kDa complex revealed identi-
fication of complex III subunits (supplemental Table S2). This
complex is of very high abundance and migrates in very close
proximity to the 470-kDa complex on the BN/BNgel. However,
the GLDH activity stain clearly is not at the position of complex
III (Fig. 3). Strikingly, the 470-kDa complex additionally
includes the CA2, CAL2, and Grim-19 subunits, which form
part of themembrane arm of complex I in plants. Similarly, MS
analysis of the 420-kDa complex revealed, besides GLDH, sev-
eral subunits of the membrane arm of complex I: CA2, CA3,
CAL2, and NAD2 (Table 1). Further complex I subunits were
not identified, probably due to the low abundance of the 470-
and 420-kDa complexes and due to the fact that the membrane
arm of complex I mainly includes very hydrophobic subunits,
which are difficult to detect by MS. Besides, some proteins of
the HSP60 and malic enzyme complexes and the F1-part of
ATP synthase were identified in the spot representing the 420-
kDa complex (supplemental Table S2). However, as in the case
of the 470-kDa complex, identification of these subunits rather
reflects spot overlappings on our BN/BNgel than physical asso-
ciation of these proteins with GLDH, because these complexes
run in very close proximity to the 420-kDa complex and are of
very high abundance.
MS analyses of the 850-kDa complex revealed, as expected,

several complex I subunits, which form part of the membrane
and the peripheral arm (supplemental Table S2). Also in this
data set, some subunits of other protein complexes were iden-
tified, which represent components of highly abundant protein

FIGURE 3. Detection of GLDH-containing protein complexes on a two-
dimensional BN/BN gel by activity staining. Isolated mitochondria from A.
thaliana were treated with digitonin for protein solubilization and protein
complexes were subsequently separated by two-dimensional BN-digitonin/
BN-Triton X-100 PAGE. The gel was stained for GLDH activity (purple spots).
Background complexes are visible due to Coomassie Blue present during the
electrophoresis run (the gel was not stained with Coomassie after completion
of the electrophoresis run). Identities of protein complexes are given on top of
the gels (for nomenclature, see Fig. 1). The arrows indicate GLDH-containing
complexes identified by the in gel activity assay. Another GLDH signal at the
lower border of the two-dimensional gel below the 420-kDa complex most
likely represents GLDH, which became detached from the 420-kDa complex
during the second native gel dimension. Two more extensively GLDH activity
stained BN/BN gels are presented in supplemental Fig. S2. A comparison of a
two-dimensional BN/BN gel before and after GLDH activity staining is pre-
sented in supplemental Fig. S3.

TABLE 1
Proteins of the two-dimensional BN/BN gel (Fig. 3) identified by MS
Only complex I subunits are shown. For complete list of the identified proteins see supplemental Table S2.

Samplea
Accession

No.b Proteinc Massd
Mascot
scoree

No.
peptidesf S.C.g Complex

kDa %
470 kDa At3g47930 GLDH 68.5 201 4 11.8 Complex I
470 kDa At1g47260 CA2 30.0 178 4 25.5 Complex I
470 kDa At3g48680 CAL2 27.9 154 3 17.6 Complex I
470 kDa At1g04630 GRIM19 16.1 65 1 7.0 Complex I
420 kDa At1g47260 CA2 30.0 204 4 24.5 Complex I
420 kDa At3g48680 CAL2 27.9 177 3 13.7 Complex I
420 kDa At3g47930 GLDH 68.5 170 4 8.5 Complex I
420 kDa At5g66510 CA3 27.8 101 1 15.5 Complex I
420 kDa AtMg00285 NAD 2A 54.8 84 2 4.2 Complex I

a Analyzed protein complex (Fig. 3).
b Accession numbers of identified proteins as given by TAIR.
c Names of identified proteins.
d Calculated molecular mass of the identified proteins as deduced from the corresponding gene.
e Probability score for the protein identifications based on MS analysis and MASCOT search.
f Number of unique peptides.
g Sequence coverage of the proteins by identified peptides.
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complexes running in close proximity to the 850-kDa complex
on the BN/BN gel.
Localization of GLDH within Complex I—GLDH forms part

of the 850-kDa complex I* and possibly of further complex I
subcomplexes. However, precise localization of GLDH within
complex I so far is not clear. Complex I consist of two longish
domains, which together form an L-like structure. One domain
is embedded in the inner mitochondrial membrane (“mem-
brane arm”), whereas the other protrudes into the mitochon-
drial matrix (“peripheral arm“). NADH oxidation takes place at
the peripheral arm, whereas proton translocation is mediated
by the membrane arm. Both processes are probably coupled
through conformational changes (38–40).
At which position does GLDH bind to mitochondrial com-

plex I in plants? To address this question, further experiments
were carried out using the two-dimensional BN/BN PAGE sys-
tem in combination with in gel activity staining and immuno-
blotting. First dimension BN PAGEwas carried out in the pres-
ence of digitonin, second dimension BN PAGE in the presence
of Triton X-100. Because Triton X-100 has a slightly reduced
mildness during membrane solubilization compared with dig-
itonin, some protein complexes partly get dissected into sub-
complexes during the second gel dimension. On the resulting
two-dimensional gels, these subcomplexes migrate below the
diagonal line. For example, the 1500-kDa I � III2 supercom-
plex, which is composed of complexes I and III2, is dissected
into its two components on the second native gel dimension
(28). Furthermore, complex I is partially dissected on the sec-
ond native gel dimension into two subcomplexes representing
themembrane arm (550 kDa) and the peripheral arm (370 kDa)
(23, 28).
In the first experiment, a mitochondrial fraction of Arabi-

dopsis was separated by two-dimensional BN/BN PAGE and
gels were activity stained for NADH oxidation (Fig. 4). As
expected, the main form of complex I (1000 kDa) becomes vis-
ible as well as its peripheral arm (370 kDa). Both complexes are
also visible as dissection products of the I � III2 supercomplex.

The peripheral arm of complex I additionally is visible on the
diagonal line on the two-dimensional gel system, indicating
that a small proportion of complex I was dissected into its arms
within our mitochondrial fraction. The GLDH containing
850-kDa complex I* has NADH oxidation activity. Further-
more, the 850-kDa complex is also partially dissected into its
arms on the second gel dimension. The peripheral arm of the
850-kDa complex has the same size as the peripheral arm of
the 1000-kDa main form of complex I. We conclude that the
peripheral arm of the 850-kDa complex I* includes a com-
plete set of subunits. Therefore, the unknown subunits of
complex I, which are absent in complex I*, must form part of
the membrane arm.
In the second experiment, a mitochondrial fraction of Ara-

bidopsis was separated by two-dimensional BN/BN PAGE and
the resulting gels were used for immunoblotting experiments
using antibodies directed againstGLDHand the carbonic anhy-
drase subunit CA2 of complex I (Fig. 5). The latter subunit is
known to form part of themembrane arm of complex I (23, 28).
As expected, the CA antibody recognizes complex I (1000 kDa)
and its membrane arm (570 kDa) (Fig. 5, center). Furthermore,
complex I* (850 kDa) is recognized as well as its membrane arm
(470 kDa), which is of slightly reduced size compared with the
membrane arm of the holoenzyme (550 kDa). Finally, the 470-
and 420-kDa complexes are recognized on the diagonal line.
This verifies the MS data indicating that the 470- and 420-kDa
complexes represent parts of the membrane arm of complex I
(including the CA2 subunit). The GLDH antibody does not
recognize complex I (1000 kDa), which was expected because it
was never reported to form part of themain form of the NADH
dehydrogenase complex. In contrast, the 850-kDa complex I* is
recognized as well as its membrane arm at 470 kDa. As
expected, the 470- and 420-kDa complexes are additionally rec-
ognized on the diagonal line of protein complexes visible on the
two-dimensional BN/BN gels. We conclude that GLDH is
attached to the membrane arm of complex I* (470 kDa), which

FIGURE 4. Detection of NADH dehydrogenase complexes on a two-dimensional BN/BN gel by activity staining. Isolated mitochondria from A. thaliana
were treated with digitonin for protein solubilization and protein complexes were subsequently separated by two-dimensional BN-digitonin/BN-Triton X-100
PAGE. A, Coomassie colloidal stained gel. B, NADH dehydrogenase activity stained gel. Identities of protein complexes are given on top of the gels (for
nomenclature see Fig. 1). The arrows indicate NADH dehydrogenase complexes identified by the in gel activity assay. The signals in the low molecular mass
region of the two-dimensional gel (bottom, right) represent alternative NADH-dehydrogenases.
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represents a large but incomplete fragment of the membrane
arm of complex I.

DISCUSSION

Using native gel electrophoresis procedures, which are com-
bined with in gel activity stains and immunoblotting, novel
insights into GLDH localization in plant mitochondria were
achieved: (i) GLDH forms part of three mitochondrial protein
complexes of 850, 470, and 420 kDa; (ii) all three complexes
exhibit GLDHactivity upon analysis by a newly developed in gel
GLDH activity assay; (iii) the 850-kDa complex represents a
known smaller version of complex I (13, 22, 26), here termed
complex I*, but also the 470- and 420-kDa complexes repre-
senting subcomplexes of complex I; (iv) 850-kDa complex I* has
a complete peripheral arm; and (v) The GLDH containing 470
kDa complex represents the membrane arm of complex I*,
which represents a large fragment of the membrane arm of the
holoenzyme.
Very recently, the x-ray structure of bacterial complex I,

which has a much simpler subunit composition, was resolved
by x-ray crystallography (38, 40). Also, the overall structure of
mitochondrial complex I is known by single particle electron
microscopy andmeanwhile also by partial x-ray crystallography
(39, 41–43). All complex I particles analyzed so far have the
characteristic L-like shape. Mitochondrial complex I from
plants is very special, because the L-motif is markedly modified
(28, 44–46). Most notably, it has a second matrix exposed
domain, which is attached to the membrane arm at a central
position. It was shown to include carbonic anhydrase subunits
(25, 28), which belong to the set of subunits special to complex
I in plants (23, 47). GLDH is another protein of this set of plant-

specific complex I subunits. However, it is absent in the 1000-
kDaholo complex but present only in a slightly smaller 850-kDa
complex I*, which is of comparatively low abundance. Because
the amount of complex I is very much reduced in an Arabidop-
sis knock-out line lacking the gene for GLDH, its involvement
in complex I assembly was suggested (26).
Assembly of complex I was extensively studied in fungi and

mammals (reviewed in Refs. 48 and 49–51) but not much is
known about this process in plants. Due to its unique shape, the
assembly pathway of plant complex I most likely differs sub-
stantially from the pathways taking place in other groups of
organisms. Using low-SDS treatment of isolated complex I
fromArabidopsis, subcomplexes were systematically generated
and analyzed for subunit composition (23, 47). This experimen-
tal approach gave insights into subunit arrangement within
plant complex I. However, disassembly of complex I does not
necessarily reflect its assembly pathways. Other insights into
complex I assembly in plants came from analyses of mutants
defective in complex I accumulation (26, 52). Most recently,
Arabidopsis knock-out lines defective in 7 different complex I
subunits were systematically analyzed by native gel electropho-
resis procedures (53). Assembly of the membrane arm of com-
plex I was shown to involve intermediates of 200, 400, 450, and
650 kDa. Because abundances of these assembly intermediates
are extremely low, they were only detectable by immunoblot-
ting. Their subunit compositions therefore are largely
unknown. However, based on information about which inter-
mediates accumulate inwhich knock-out line, some first results
became clear. Most notably, the plant-specific carbonic anhy-
drase subunit CA2 forms part of all assembly intermediates and

FIGURE 5. Detection of CA- and GLDH-containing protein complexes on a two-dimensional BN/BN gel using antibodies. Isolated mitochondria from
Arabidopsis were treated with digitonin for protein solubilization and protein complexes were subsequently separated by two-dimensional BN-digitonin/BN-
Triton X-100 PAGE. The resulting two-dimensional gels were either stained by Coomassie Blue (left) or blotted onto nitrocellulose membranes for immuno-
logical detection of CA (center) or GLDH (right). Identities of protein complexes are given on the top and left of the gels (for nomenclature see Fig. 1; black letters,
visible spots; gray letters, positions of protein complexes not visible on one or two of the subfigures). The schemes below further illustrate the identity of the
resolved protein complexes (dark blue circles, complex I and derived protein complexes; light blue circles, other protein complexes).
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therefore is involved in the initial events leading to the forma-
tion of the membrane arm.
We present evidence that the newly described GLDH con-

taining protein complexes of 470 and 420 kDa represent assem-
bly intermediates of complex I. Due to the fact that the GLDH
only is attached to the subcomplexes and not to the holo-com-
plex I, it is unlikely that they represent degradation fragments of
intact complex I. Because the assembly intermediates are of
very low abundance, they are only detectable by immunoblot-
ting or by the GLDH in gel activity assay. Their subunit compo-
sition therefore is not known. However, analyses by mass spec-
trometry and immunoblotting allowed identifying subunits of
the membrane arm of complex I, most notably CA2, CAL2,
CA3, NAD2, and Grim-19 (Fig. 3, Table 1). All other identified
proteins form part of protein complexes of very high abun-
dance,which are localized on theBN/BNgels in close proximity
to the 470- and 420-kDa complexes and that most likely were
detected due to spot overlappings. We presume that GLDH
containing 470- and 420-kDa complexes represent the 450- and
400-kDa assembly intermediates described byMeyer et al. (53),
which were both shown to include CA2 (the size difference of
the complexes as described by the two studies can be explained
by a slight variation in molecular mass calibration of the native
gels used for electrophoresis). The 850-kDa complex I* is par-
tially dissected into a 470-kDa membrane fragment, which
includes GLDH and CA and which exactly co-migrates on our
gels with the 470-kDa complex identified by GLDH in gel activ-
ity staining (Fig. 5). The 470-kDa dissection product of the 850-
kDa complex also exhibits GLDH activity (supplemental Fig.
S2).
In summary, our data point to amore extensive role ofGLDH

in complex I assembly. GLDH binds to the 420- and 470-kDa
complex I assembly intermediates, which at a later stage form
the 850-kDa intermediate. Formation of the 1000-kDa complex
I holoenzyme is preceded by detachment of GLDH. Because we
donot see smaller complex I subcomplexes on ourGLDHactiv-
ity stained two-dimensional BN/BN gels, we believe that the
420-kDa complex is the smallest complex I subcomplex that
includes GLDH. We so far cannot answer if GLDH binding to
the 420- and 470-kDa complexes is a prerequisite for formation
of the 850-kDa complex.
GLDH integrated into the 850-, 470-, and 420-kDa com-

plexes is active in ascorbate formation as revealed by our in gel
activity assay. It currently cannot be decided whether GLDH
activity (conversion of GL into ascorbate) is required for its
assembly function. The biological reason of the bifunctionality
of this protein so far remains a mystery and should be further
investigated.

Acknowledgment—We thank Dagmar Lewejohann for expert techni-
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Supplementary material 

 
 
Table S1: MS analysis of the 75 kDa spot/smear from the 2D BN/SDS PAGE (Figure 1) 

 

a
[kDa] 

b 
accession no 

c 
protein 

d 
mass 

[kDa] 

e 
mascot 

score 

f 
no pep-

tides 

g 
sequence-

coverage 

[%] 

 
75 kDa At3g07770 HSP89 90.5 1816 38 42.1 

75 kDa At2g04030 HSP90 88.6 300 1 9.0 

75 kDa At4g26970 aconitate hydratase 2 108.4 202 6 8.9 

75 kDa At5g07440 glutamate dehydrogenase 2 44.7 181 4 14.1 

75 kDa At2g05710 aconitate hydratase 3 108.1 169 4 5.1 

75 kDa At4g39690 unknown protein 70.5 120 4 9.7 

75 kDa At4g37910 HSP70 73.0 109 2 2.9 

75 kDa At5g27540 miro-related GTP-ase 1 72.3 88 3 4.5 
 

a analyzed protein spot (spot/smear at 75 kDa, Figure 1) 
b accession numbers of identified proteins as given by TAIR (http://www.arabidopsis.org/) 
c names of identified proteins  
d calculated molecular mass of the identified proteins as deduced from the corresponding gene. Note 
that the mature molecular masses normally are smaller due to removal of mitochondrial targeting se-
quences. 
e probability score for the protein identifications based on MS analysis and MASCOT search 
f number of unique peptides 
g sequence coverage of the proteins by identified peptides 
 
 
 
 
 
We conclude that the immune signal visible at ~75 kDa on the blot of the 2D BN/SDS gel 
(Figure 1) does not represent GLDH but is due to a cross-reaction of the GLDH antibody with 
one of the identified proteins given above. 
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Figure S1: 

 
 

 
 
Figure S1: Immunological detection of L-galactono-1,4-lactone dehydrogenase in a mitochondri-

al protein fraction of Arabidopsis thaliana (repetition of the experiment shown in Figure 1 of the 

paper). Proteins were separated by BN/SDS PAGE and either stained by Coomassie-blue (left) or 
blotted onto nitrocellulose membranes for immunological GLDH detection (centre and right). The blot 
in the centre additionally was stained with Ponceau for background visualization. Enlargements of the 
boxed regions are given in the lower line of the figure. Red circles indicate GLDH. A molecular mass 
standard is given to the left of the figure. Nomenclature of protein complexes: I: complex I; I*: 850 
kDa subcomplex of complex I; V: complex V; III2: dimeric complex III; F1: F1 part of complex V; IV: 
complex IV; I+III2: supercomplex composed of complex I + dimeric complex III; 850, 470 and 420 
kDa: GLDH containing protein complexes (the 850 kDa complex corresponds to I*). GLDH is detect-
ed on the second gel dimension at 58 kDa.  
 
 
This experiment represents a repetition of the experiment shown in Figure 1 of our paper. 
Results are identical, except that the immune signal at 75 kDa, which is due to a cross reaction 
of the GLDH antibody, is hardly visible. We conclude that GLDH only is represented by the 
immune signal at 58 kDa, which is confirmed by analysis by mass spectrometry (table 1 of 
our paper, table S1). 
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Figure S2 

 
 

 
 

 
 
 
Figure S2: Detection of GLDH-containing protein complexes on a 2D BN/BN gel by activity 

staining (two repetitions of Figure 3 of our paper): Isolated mitochondria from Arabidopsis thali-
ana were treated with digitonin for protein solubilization and protein complexes were subsequently 
separated by two dimensional BN-digitonin/BN-Triton X-100 PAGE. The gel was stained for GLDH 
activity (purple spots). Background complexes are visible due to Coomassie blue present during the 
electrophoresis run (the gel was not stained with Coomassie after completion of the electrophoresis 
run). Identities of protein complexes are given on top of the gels (for nomenclature see Figure 1). The 
arrows indicate GLDH-containing complexes identified by the in gel activity assay.  
 
 
 
Upon prolonged activity staining of the BN/BN gel, not only the 850 kDa complex I*, the 470 
kDa and the 420 kDa complexes become visible (purple spots), but also a dissection product 
of complex I* (red arrow), which exactly co-migrates with the 470 kDa complex. 
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Supplementary Figure 3 

 

 
 
Figure S3: Detection of GLDH-containing protein complexes on a 2D BN/BN gel by activity 

staining: GLDH visualization ± GLDH activity staining (gel to the left: without activity stain, gel 

to the right: with activity stain) 

Isolated mitochondria from Arabidopsis thaliana were treated with digitonin for protein solubilization 
and protein complexes were subsequently separated by two dimensional BN-digitonin/BN-Triton X-
100 PAGE. The gel to the right was stained for GLDH activity (purple spots). Background complexes 
are visible due to Coomassie blue present during the electrophoresis run (the gel was not stained with 
Coomassie after completion of the electrophoresis run). Identities of protein complexes are given on 
top of the gels (for nomenclature see Figure 1). The arrows indicate GLDH-containing complexes 
identified by the in gel activity assay. 
 
 
 
This figure illustrates the low abundance of the 420 and 470 kDa complex: without GLDH 
activity staining, these complexes are not visible on the 2D BN/BN gels. 
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Table S2: Proteins of the 2D BN / BN gel (Figure 3) identified by MS (complete list) 
 

a sample 
b 

accession 

no 
c 
protein 

d 
mass 

[kDa] 

e 
mascot 

score 

f 
no pep-

tides 

g 
s.c. 

[%] 
complex 

 
470 kDa At3g02090 beta MPP 59.1 1744 31 67.6 complex III 

470 kDa At1g51980 alpha MPP 54.4 1372 28 57.5 complex III 

470 kDa At3g16480 alpha MPP 54.0 888 9 36.7 complex III 

470 kDa At3g27240 cytochrome c1  33.6 492 11 53.7 complex III 

470 kDa At5g40810 cytochrome c1  33.7 347 2 37.5 complex III 

470 kDa At4g32470 14kDa subunit 14.5 256 5 49.2 complex III 

470 kDa At3g47930 GLDH 68.5 201 4 11.8 complex I 

470 kDa At1g47260 CA2 30.0 178 4 25.5 complex I 

470 kDa At5g13430 FeS subunit 29.6 168 4 13.2 complex III 

470 kDa At3g52730 QCR9 8.4 158 3 41.7 complex III 

470 kDa At2g07727 Cytochrome b 44.1 155 3 8.1 complex III 

470 kDa At3g48680 CAL2 27.9 154 3 17.6 complex I 

470 kDa At3g10860 QCR8  8.5 104 2 26.4 complex III 

470 kDa At1g04630 GRIM-19 16.1 65 1 7.0 complex I 

 
420 kDa At3g23990 HSP60-1 61.2 873 17 36.6 HSP60 

420 kDa At4g00570 malic enzyme 2 66.6 836 15 33.6 ME complex 

420 kDa At2g33210 HSP60-2 61.9 597 2 27.4 HSP60 

420 kDa At5g08670 ATP synt. beta  59.6 591 12 29.9 ATP synt. (F1) 

420 kDa At2g07698 ATP synt. aplha 85.9 454 8 14.2 ATP Synt. (F1) 

420 kDa At2g13560 malic enzyme 1 69.6 432 7 16.7 ME complex 

420 kDa At3g13860 HSP60-3A 60.4 258 6 14.2 HSP60 

420 kDa At1g47260 CA2 30.0 204 4 24.5 complex I 

420 kDa At3g48680 CAL2 27.9 177 3 13.7 complex I 

420 kDa At3g47930 GLDH 68.5 170 4 8.5 complex I 

420 kDa At4g37910 HSP70-1 73.0 126 2 6.3 HSP70 

420 kDa At5g12290 DGS1 68.9 102 1 4.7  

420 kDa At5g66510 CA3 27.8 101 1 15.5 complex I 

420 kDa AtMg00285 NAD2A 54.8 84 2 4.2 complex I 

 
850 kDa At3g23990 HSP60-1 61.2 1611 29 49.6 HSP60 

850 kDa At2g33210 HSP60-2 61.9 1213 8 39.0 HSP60 

850 kDa At5g40770 prohibitin 3 30.4 718 15 57.0 prohibitin 

850 kDa At4g28510 prohibitin 1 31.7 554 10 43.1 prohibitin 

850 kDa At1g03860 prohibitin 2 31.8 452 5 41.3 prohibitin 

850 kDa At3g27280 prohibitin 4 30.6 409 1 30.8 prohibitin 

850 kDa At3g13860 HSP60-3A 60.4 349 9 17.1 HSP60 

850 kDa At1g47260 CA2 30.0 305 8 28.1 complex I 

850 kDa At5g37510 75 kDa subunit 81.1 292 5 13.4 complex I 

850 kDa At2g20530 prohibitin 6 31.6 275 1 26.2 prohibitin 

850 kDa AtMg00070 NAD9 22.7 269 5 27.9 complex I 

850 kDa At2g20360 39 kDa subunit  43.9 207 7 12.7 complex I 

850 kDa AtMg00510 NAD7 44.5 184 3 9.9 complex I 

850 kDa At3g48680 CAL2 27.9 180 4 22.7 complex I 

850 kDa AtMg00285 NAD2A 54.8 154 3 6.2 complex I 

850 kDa At5g08670 ATP synth. beta 59.6 144 4 10.8 ATP synt. (F1) 

850 kDa At5g52840 B13 19.2 125 3 20.7 complex I 

850 kDa At2g07698 ATP synth. alpha 85.9 119 3 4.2 ATP synt. (F1) 

850 kDa At4g16450 compl. I su 11.3 108 2 18.9 complex I 
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6 
 

850 kDa At5g08530 51 kDa subunit 53.4 103 2 6.2 complex I 

850 kDa At3g08580 ADP/ATP carrier 41.4 96 2 4.5  

850 kDa At3g50930 BCS1 66.1 95 3 6.3  

850 kDa At1g67350 compl. I su 11.8 73 2 19.4 complex I 

850 kDa At2g07785 NAD1  10.6 61 1 14.1 complex I 

850 kDa At2g33220 GRIM-19 16.1 40 1 16.1 complex I 

850 kDa At1g16700 TYKY-2 11.9 38 1 4.1 complex I 

850 kDa At2g27730 compl. I su 25.4 38 1 26.5 complex I 

 
a analyzed protein complex (Figure 3) 
b accession numbers of identified proteins as given by TAIR (http://www.arabidopsis.org/) 
c names of identified proteins  
d calculated molecular mass of the identified proteins as deduced from the corresponding gene 
e probability score for the protein identifications based on MS analysis and MASCOT search 
f number of unique peptides 
g sequence coverage of the proteins by identified peptides 
 
Colour code for protein complexes: 

complex I 
HSP60 or HSP70 
probititin 
ATP synthase 
complex III 
malic enzyme 
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Summary 

In-Gel activity assays are useful tools to identify and characterize enzymes within gels. Prerequisite 

are electrophoretic protein separations that are carried out under conditions compatible with enzyme 

activity. While blue native (BN) polyacrylamide gel electrophoresis (PAGE) is widely used for 

activity assays of the five enzyme complexes of the oxidative phosphorylation system, the blue 

background of this electrophoretic system is not compatible with activity assays for some other 

mitochondrial enzymes. As an alternative system, clear native (CN) PAGE can be used for visualizing 

activities of mitochondrial enzymes. Here, we describe enzyme activity assays for mitochondrial 

enzymes in BN- and CN gels. 

 

1. Introduction 

Blue native (BN) polyacrylamide gel electrophoresis (PAGE), in contrast to SDS PAGE, allows 

protein separations under native conditions (1). BN PAGE is based on the usage of the dye Coomassie 

blue. Originally, Coomassie blue was used after completion of electrophoretic runs to stain and 

thereby visualize proteins within gels (2). In contrast, during BN-PAGE, Coomassie blue is added to 

protein fractions before gel electrophoresis. Due to its anionic properties it introduces negative charge 

into proteins, thereby allowing their separation according to molecular mass. In contrast to the anionic 

detergent SDS, Coomassie does not denature proteins and therefore is perfectly compatible for 

characterizing enzyme activities. In-Gel enzyme assays offer the direct identification of enzymes in 

gels based on their activity. In contrast to immunoblotting procedures for protein identification, in-Gel 

enzyme assays do not require the availability of antibodies. Furthermore, in-Gel activity assays offer 

characterizing enzymes within gels, e.g. by usage of specific inhibitors. Protocols to visualize enzyme 

activities within BN gels first were established for the enzyme complexes of the oxidative 

phosphorylation (OXPHOS) system (3 and references within). Later, in-Gel activity assays were 

successfully used to characterize dysfunctions of OXPHOS complexes caused by mutations (4,5,6). 

Numerous further enzyme activity assays meanwhile were established for BN gels (e.g. 7). However, 

some enzyme assays are not compatible with BN PAGE because the blue background of the gels 

interferes with the activity signals. As an alternative system, clear native (CN) PAGE (8) can be used 

under these circumstances. During CN PAGE Coomassie blue is omitted. As a result, protein 

separation is exclusively based on the intrinsic charge of proteins. Separation capacity of CN gels is 

slightly reduced and molecular mass determinations cannot be carried out. However, CN PAGE is an 

especially mild procedure and not associated with blue background formation. It ideally can be used 

for visualization of the enzymatic activities that only result in faint color changes or for assays that are 

based on usage of blue redox dyes. 

Here we present protocols for activity assays of the five OXPHOS complexes and for L-galactono-1,4-

Lactone dehydrogenase (GALDH) within BN gels. GALDH catalyzes the terminal step of the 
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ascorbate biosynthesis pathway which in plants takes place in mitochondria. Furthermore, a proline 

dehydrogenase assay, which is carried out within a CN gel, is presented. 

 

 
 
 
Figure 1: In-Gel activity assays of mitochondrial enzymes in native gels. Arabidopsis thaliana 
mitochondrial proteins (500 µg) were solubilized by digitonin and subsequently separated by 
1D BN-PAGE (A-G) or by 1D CN-PAGE (H). Designations to the bottom: Coomassie, 
Coomassie stained gel strip. I, II, III, IV, V: gel strips after in-Gel activity stainings for 
complexes I, II, III, IV and V. GALDH, gel strip after L-galactono-1,4-lactone dehydrogenase 
activity staining. ProDH, gel strip after proline dehydrogenase activity staining. For ProDH 
activity staining, mitochondria from proline treated Arabidopsis cells were isolated and 
separated on a 1D CN-PAGE. Identities of the separated protein complexes and 
supercomplexes are given to the left: I2 + III4, supercomplex consisting of two copies of 
complex I and two copies of dimeric complex III; I1 + III2, supercomplex consisting of one 
copy of complex I and one copy of dimeric complex III; I, complex I; V, ATP synthase; III2, 
dimeric complex III; IV, complex IV; II, complex II, F1, F1 subcomplex of complex V. 
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2. Materials 

All Buffers are prepared with analytical grade chemicals and with pure deionized water. It is not 

necessary to prepare stock solutions fresh. All other solutions are prepared freshly. 

 

2.1. Components for Casting and Running a BN Gel 

1. Acrylamide solution: 40 %, acryl/bisacryl = 32/1 (AppliChem, Darmstadt, Germany). 

2. BN gel buffer (6×): 1.5 M aminocaproic acid, 150 mM BisTris, pH 7.0 (adjust at 4 °C). 

3. Glycerol 100 % (AppliChem, Darmstadt, Germany). 

4. N, N, N`, N` -tetramethylethylenediamine (TEMED): 99 %, (Sigma, St. Louis, Missouri, USA). 

5. Ammonium persulfate solution (APS): 10 % (w/v) ammonium persulfate. 

6. BN cathode buffer (5×): 250 mM tricine, 75 mM BisTris, 0.1 % (w/v) Coomassie G250, pH 7.0 

(adjust at 4 °C). 

7. BN anode buffer (6×): 300 mM BisTris, pH 7.0 (adjust at 4 °C). 

8. Gradient former (for example: Model 485 Gradient Former #165-4120; Bio-Rad, Richmond, Ca, 

US). 

9. Protean II gel unit (Bio-Rad, Richmond, Ca, US). 

 

2.2. Components for CN-Gel run 

1. Precasted mini Gels: NativePAGE™ Novex® 4-16  % Bis-Tris Protein Gels, 1.0 mm, 10 wells 

(Life Technologies GmbH, Darmstadt, Germany). 

2. Anode and cathode running buffer (10x): 250 mM Tris and 192 mM glycine. 

3. XCell SureLock® Mini-Cell (Life Technologies GmbH, Darmstadt, Germany). 

 

2.3. Components for Sample Preparation 

1. Solubilization buffer with 5 % Digitonin, pH 7.4: 30 mM HEPES, 150 mM potassium acetate, 10 % 

(v/v) glycerol, 5 % digitonin (see Note 1). Buffer is stored at -20 °C. 

2. Blue loading buffer (20x) for BN PAGE: 750 mM aminocaproic acid, 5 % (w/v) Coomassie G250, 

stored at 4 °C. 

3. Solubilization buffer for proline dehydrogenase: 2.5 % digitonin in 50 mM Tris-HCl pH 7.2. 

4. Native loading buffer (5x) for CN PAGE: 62.5 mM Tris-HCl pH 6.8, 10 % (w/v) glycerol, 0.00125 

(w/v) bromphenol blue. 

 

2.4. Components for in-Gel activity assays 

Buffer stock solutions: 

1. Tris-HCl buffer stock solution pH 7.4: 2 M Tris-HCl, pH 7.4. 

2. Tris-HCl buffer stock solution pH 8.8: 2 M Tris-HCl, pH 8.8. 

3. Phosphate buffer stock solution: 0.5 M KH2PO4, 0.5 M K2HPO4, pH 7.4. 
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Staining solutions: 

4. NADH dehydrogenase staining solution (Complex I): 0.1 M Tris-HCl, pH 7.4, 0.14 mM NADH 

(Sigma, St. Louis, Missouri, USA), 0.1 % (w/v) nitroblue tetrazolium (AppliChem, Darmstadt, 

Germany) (9). 

5. Succinate dehydrogenase staining solution (Complex II): 50 mM phosphate buffer, pH 7.4, 84 mM 

succinic acid, 0.2 mM phenazine methosulfate, 0.2 % (w/v) nitroblue tetrazolium, 4.5 mM 

ethylenediaminetetraacetic acid (EDTA), 10 mM KCN (10). 

6. Cytochrome-c reductase staining solution (Complex III): Pierce 1-Step TMB-Blotting Substrate 

(Pierce, Rockford, IL, USA) (11). 

7. Cytochrome-c oxidase staining solution (Complex IV): 10 mM phosphate buffer, pH 7.4, 0.1 % 

(w/v) 3,3`-diaminobenzidine (DAB), 7.5 % (w/v) sucrose, 19 U/mL catalase, and 16 mM cytochrome-

c (Sigma-Aldrich, St. Louis, MO, USA) (12). 

8. ATPase staining solution (Complex V): 35 mM Tris-HCl pH 7.4, 270 mM glycine, 14 mM, MgSO4, 

0.2 % Pb(NO3)2 and 8 mM ATP (13). 

9. L-galactono-1,4-lactone dehydrogenase staining solution (GALDH): 40 mM Tris-HCl pH 8.8, 2 

mM L-galactono-1,4-lactone, 0.1 % (w/v) nitroblue tetrazolium (AppliChem, Darmstadt, Germany), 

0.2 mM phenazine methosulfate (7). 

10. Pre-incubation solution for Proline dehydrogenase (ProDH) activity: 1.2 mM 2,6-

dichlorophenolindophenol (DCPIP), 50 mM Tris-HCl pH 7.2 (14). 

11. ProDH staining solution: 50 mM Tris-HCl pH 7.2, 5 mM MgCl2, 0.25 mM flavin adenine 

dinucleotide (FAD), 0.5 mM phenazine methosulfate (PMS), 100 mM L-proline (14). 

8. Fixing solution: 40 % (v/v) methanol, 10 % (w/v) acetic acid. 

 

3. Methods 

3.1. Preparation of a BN Gel 

The following instructions refer to the Protean II electrophoresis unit (Bio-Rad, Richmond, CA, USA; 

gel dimensions 0.15 × 16 × 20 cm). However, units from other manufacturers are of comparable 

suitability for BN PAGE, e.g., the Hoefer SE-400 or SE-600 gel systems (GE Healthcare, Munich, 

Germany). 

1. 4.5 % separation gel solution is prepared by mixing 2.4 ml of acrylamide solution with 3.5 mL of 

BN gel buffer and 15.1 mL of deionized water. 

2. 16 % separation gel solution is prepared by mixing 7.4 mL of acrylamide solution with 3 mL of BN 

gel buffer, 4.6 mL deionized water and 3.5 mL glycerol. 

3. Use a gradient former and connect it with a tube and a needle with the space in-between two glass 

plates which are pre-assembled in a gel casting stand. Transfer the two gel solutions into the two 

chambers of the gradient former. Gradient gels can either be casted from the top (16% gel solution has 

to enter the gel sandwich first) or from the bottom (4.5% gel solution has to enter the glass plates 
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first). For casting the gel from the bottom, an adjustable pump (e.g., Bio-Rad Econo Pump) is 

required. 

4. 95 µl APS and 9.5 µl TEMED are added to the 4.5 % gel solution. To the 16 % gel solution 61 µl 

APS and 6.1 µl TEMED has to be added. 

5. Cast the gradient gel and overlay it with deionized water to get a sharp line at the top after 

polymerization. The gel is polymerized within 60 min. 

6. Discard the deionized water. 

7. For the stacking gel mix 1.5 ml of acrylamide solution with 2.5 ml of BN gel buffer and 11 ml of 

deionized water. 

8. For polymerization add 65 µl APS and 6.5 µl TEMED and cast the stacking gel on top of the 

separation gel. Use a comb according to the number of samples you want to analyze. The gel is 

polymerized within 30 min. 

9. Prepare 1× BN anode buffer and 1× BN cathode buffer by diluting the corresponding stock 

solutions (see Note 2). 

10. After removing the comb add the BN cathode and anode buffers to the upper and lower chambers 

of the gel unit, respectively. Cool the unit down to 4 °C. 

 

3.2. Sample Preparation for BN Gel and CN Gel 

The samples should be treated carefully in order to keep proteins in their native conformation (avoid 

high salt, ionic detergents, high temperatures, urea, etc.). All steps of the sample preparation should be 

carried out on ice. The BN and CN gel should be prepared and cooled down before the sample 

preparation is started. Here we describe sample preparation for isolated mitochondria from 

Arabidopsis cell culture but mitochondria from any other source can be used accordingly. 

 

Sample Preparation for BN Gel 

1. Mitochondria (corresponding to about 500 µg mitochondrial protein) are centrifuged at 15000 g for 

10 min at 4 °C using an Eppendorf centrifuge. 

2. The mitochondrial pellet is resuspended in 100 µl of 5 % digitonin solubilization buffer, pH 7.4, and 

incubated for 15 min on ice. 

3. Afterwards samples are centrifuged for 10 min, 4 °C at 20000 g using an Eppendorf centrifuge to 

remove insoluble material. 

4. The supernatant contains solubilized proteins and protein complexes. Mix the supernatant with 5 µl 

blue loading buffer. 

 

Sample Preparation for CN Gel: 

5. Mitochondria including 45 µg protein are centrifuged at 15000 g for 10 min at 4 °C using an 

Eppendorf centrifuge. 
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6. The mitochondrial pellet is resuspended in 30 µl of 2.5 % digitonin solubilization buffer 

(solubilization buffer for proline dehydrogenase; subheading 2.3) and incubated for 15 min on ice. 

7. Afterwards samples are centrifuged for 10 min, 4 °C at 20000 g using an Eppendorf centrifuge to 

remove insoluble material. 

8. Mix the supernatant with 7.5 µl native loading buffer. 

 

3.3. BN PAGE run 

1. Load samples mixed with blue loading buffer (see Subheading 3.2.) into the gel pockets. 

2. Connect the gel unit to a power supply. Start electrophoresis at constant voltage (100 V for 45 min) 

and continue at constant current (15 mA for about 11 h). Electrophoresis should be carried out at 4°C. 

Bands of the OXPHOS complexes are already visible during the gel run. 

 

3.4. CN PAGE run 

1. Load the samples mixed with native loading buffer into the gel pockets. 

2. Run the gel at 375 V, 4 °C for approximately 3.5 h using a XCell SureLock Mini-Electrophoresis 

System (Life Technologies GmbH, Darmstadt, Germany) or a mini gel chamber from another 

manufacturer. 

 

3.5. In-Gel activity assays for BN PAGE 

1. Incubate the gel with 50 mL freshly prepared staining solution at room temperature (NADH 

dehydrogenase staining solution, succinate dehydrogenase staining solution, cytochrome-c reductase 

staining solution (see Note 3), cytochrome-c oxidase staining solution, ATPase staining solution (see 

Note 4), or GALDH staining solution (see Note 5), (preparation of staining solutions see subheading 

2.4). 

Staining takes 10 – 30 min for NADH dehydrogenase, up to several hours for succinate 

dehydrogenase, minimum of 6 hours for cytochrome-c reductase, 2 hours for cytochrome-c oxidase, 3 

hours to overnight incubation for ATPase and approximately 30 min for GALDH. 

2. The reactions are stopped by transferring the gel into fixing solution (see Note 6). 

 

3.6. In-Gel activity assay for CN PAGE 

1. Incubate the gel for 10 min with 50 ml Pre-incubation solution for Proline dehydrogenase (ProDH) 

activity while gently shaking. Subsequently discard the solution and incubate the gel with ProDH 

activity staining solution without shaking (see Note 7) for 1.5 h in the dark. 

2. Scan the gel immediately after activity staining. The staining solution can be washed out with water. 

Subsequently the gel can be Coomassie stained. 
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4. Notes 

1. Digitonin is necessary for the solubilization of membrane bound protein complexes of cellular or 

organellar fractions. Solubilization buffer with digitonin should be heated to dissolve digitonin. 

2. It is recommended to use cold water for dilution of the anode and cathode buffer otherwise you have 

to wait to start the gel run until the buffers are cold. 

3. After completion of the staining reaction visibility of precipitated TMB can be optimized using an 

image processing software (e.g. Adobe photoshop) by decreasing the blue channel of the RGB image 

file. The blue Coomassie background is not altered (for details see 11). 

4. After complex V staining do not transfer the gel to fixing solution. Acidic solutions can dissolve 

lead phosphate precipitates. Instead use 50 % methanol for stopping the activity assay (15). 

5. Incubate in the dark because PMS is light sensitive. 

6. For some activity assays it is advisable to scan gels after incubation with fixing solution again. 

Coomassie blue background should be decreased after this step. 

7. Do not shake the gel in the staining solution. Otherwise DCPIP will be washed out and activity 

bands are not visible anymore. 
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Chapter 3 - Supplementary Discussion 

The production of ATP and thereby the supply of cells with energy can be seen as the most 

important metabolic function of mitochondria. This is especially true during the night and for 

tissues not exposed to light (e.g. roots). Due to the diurnal cycle and other external 

influences it is clear that mitochondrial metabolism has to be highly dynamic and flexible. As 

a consequence multiple alternative electron entry pathways into the ETC exist in plants and 

have to be tightly regulated. In this supplementary discussion, additional aspects are 

presented which are not addressed in the frame of the discussion sections of the 

manuscripts: (I) On the role of mitochondrial metabolism in the light, (II) on the mechanism 

of regulating proline dehydrogenase in plants, and (III) on the functional relevance of the 

linkage between ascorbate biosynthesis and complex I assembly. Finally, a search for 

additional mitochondrial dehydrogenases is presented. 

3.1 On the Role of Mitochondrial Metabolism in the Light 

Energy metabolism in plants is affected by changes during the diurnal cycle. As a 

consequence, ATP formation constantly has to be adjusted in dependence to external 

factors and internal demands. Due to the fact that energy consumption of plants is not 

constant, it is clear that cells have to adjust the production mechanisms of ATP in a specific 

manner. First of all the plant cell has to monitor the current energy status or available ATP. 

Afterwards this status has to be brought in line with the required level of ATP. Several 

factors have to be integrated by the plant cell. The required level of energy is specific for 

each cell and depends on intrinsic factors, like tissue type and developmental stage. In 

addition there are several external factors which influence the amount of energy necessary 

to fuel specific metabolic pathways in plant cells. Plants have to cope with numerous 

external influences due to their sessile mode of life. They have to handle temperature 

changes, pathogens, toxic metals, different accessibility of water and nutrient deficiencies. 

One of the most important aspects in plant energy metabolism that has to be considered is 

the diurnal cycle. During the day, ATP is produced by photophosphorylation in chloroplasts. 

What does this mean for mitochondrial metabolism? Two important processes in 

mitochondria are considerably changed in the light. The pyruvate decarboxylase complex 
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(PDC) is reversibly inactivated (Budde and Randall 1990) and the export of TCA cycle 

intermediates is elevated (Hanning and Heldt 1993, Hodges 2002). These intermediates are 

mainly used for nitrogen fixation (Hodges 2002). Several studies report a substantial 

reduction in TCA cycle activity in the light (Tcherkez et al. 2005). At the same time, 

mitochondrial ETC is still active in the light (Atkin et al. 2000, reviewed in Padmasree et al. 

2002, Yoshida et al. 2006). Since mitochondria possess a malic enzyme, mitochondria are 

able to run the TCA cycle also when PDC is inactivated. Nevertheless the function of plant 

mitochondria in illuminated leaves is poorly understood. Three mitochondrial functions are 

considered to be of special importance in the light (Nunes-Nesi and Fernie 2007). (I) 

Mitochondrial ATP can be used to support cytosolic sucrose biosynthesis. A decreased 

cytosolic ATP/ADP ratio was observed in barley leaf protoplasts when mitochondrial ATP-

synthase was specifically inhibited (Krömer and Heldt 1991, Krömer et al. 1993), indicating a 

possible important role of mitochondrial ATP during sucrose synthesis. In addition 

experimental evidence has been presented that a decrease in mitochondrial and cytosolic 

ATP/ADP ratios leads to a reduced activity of the sucrose-phosphate synthase (Krömer et al. 

1993). In contrast, other studies suggest that mitochondrial ATP is not necessary for 

cytosolic sucrose production (Carrari et al. 2003). Hence, the amount of ATP derived from 

mitochondria that is necessary to drive sucrose synthesis is still a matter of debate. (II) 

Another possible function of mitochondrial energy metabolism in illuminated leaves is the 

supply of -ketoglutarate for chloroplastic nitrogen assimilation (reviewed in Hodges 2002). 

Mitochondrial derived citrate is converted via isocitrate into -ketoglutarate in the cytosol. 

The -ketoglutarate is transported to the chloroplast to support nitrogen assimilation into 

amino acids by the glutamine synthetase - glutamate synthase (GS/GOGAT) pathway (Fernie 

et al. 2004). (III) Finally, the export of redox equivalents from mitochondria required for 

hydroxypyruvate reduction in peroxisomes is considered to represent another important 

function of mitochondrial energy metabolism in the light (Nunes-Nesi and Fernie 2007). 

In addition several studies show supportive effects of mitochondrial metabolism on 

photosynthesis (Krömer et al. 1988, Padmasree and Raghavendra 1999a,b, Noguchi and 

Yoshida 2008, Sweetlove et al. 2006). This might be explained by the fact that mitochondrial 

respiration is able to decrease excess of reducing equivalents produced by the light reaction 

of photosynthesis (reviewed in Raghavendra et al. 1994, Hurry et al. 1995). Another 

hypothesis is that all ATP produced by the photophosphorylation is used for carbon 
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reduction, and that also in the light, mitochondrial derived ATP is necessary for all other 

cellular operations (reviewed in Jacoby et al. 2012). In summary, it is clear that also in the 

illuminated leaf mitochondrial metabolism and ATP production is of great importance. In 

leaves in the dark and in non-green tissues at all times cellular respiration forms the basis for 

nearly all processes taking place in cells. 

3.2 Regulation of Proline Dehydrogenase (ProDH) activity 

Mitochondrial metabolism is not only affected by the light–dark cycle. Drastic changes 

concerning energy metabolism also can be observed in the presence of certain stress 

conditions (reviewed in Jacoby et al. 2012). Plants have to adjust the ATP production to fuel 

all metabolic processes necessary to handle the specific stress situation. Similar to bacteria 

and fungi, proline levels in plants highly increase during stress, whereby proline 

concentrations can be up to 100 fold higher in comparison to control conditions (reviewed in 

Verslues and Sharma 2010). This increase in proline concentration is completely reversible 

after stress release. The two enzymes ProDH and P5CDH connect proline catabolism with the 

respiratory chain. Under stress release conditions proline therefore can be considered as an 

alternative respiratory substrate. The high Km value of 31.69 mM indicates a very low 

substrate affinity of ProDH (Chapter 2: Biochemical characterization of proline 

dehydrogenase in Arabidopsis mitochondria). A high proline concentration is necessary to 

approach half of Vmax. Sharma and Verslues 2010 measured the proline concentration in 

seven-days-old Arabidopsis seedlings which were transferred to low water potential 

polyethylene glycol (PEG) agar plates. The seedlings were held at 1.2 MPa for four days and 

then transferred back to high water potential media (Sharma and Verslues 2010). After four 

days at low water potential the proline concentration reached approximately 50 µmol/g 

fresh weight (approximately 55 mM assuming that 90 % of the fresh weight represents 

soluble fraction). Therefore, the Km value of ProDH is exactly within the range of 

physiological proline concentrations occurring under stress conditions. The Km of 31.69 mM 

shows that ProDH activity can contribute to ATP production after stress release. Oxygen 

electrode measurements clearly show respiration with proline as substrate exclusively in 

seedlings which were treated with 50 mM proline for 24 h to induce ProDH (Chapter 2: 

Molecular and functional characterization of the mitochondrial proline dehydrogenase 1 in 

Arabidopsis thaliana). 
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For the first time it was shown that D-lactate as well as L-lactate competitively inhibit ProDH 

activity in plants (Chapter 2: Biochemical characterization of proline dehydrogenase in 

Arabidopsis mitochondria). Previously, this was only reported for mammalian ProDH and 

bacterial PutA (Kowaloff et al. 1977, Scarpulla and Soffer 1978). Much is known about PutA 

the bacterial homolog of ProDH. The crystal structure for PutA from E.coli revealed that the 

L-lactate hydroxyl forms hydrogen bonds to Asp370, Tyr540 and a water molecule (Lee et al. 

2003). The authors defined the exact binding of L-lactate to PutA by accident. During the 

crystallization process they used PEG3000 (polyethylene glycol 3000) which was 

contaminated with L-lactate (Lee et al. 2003). The physiological reason why lactate inhibits 

ProDH still remains unclear. For mammalian ProDH it was suggested that the inhibition of 

ProDH by lactate coordinates hepatic fuel allocation with muscle requirements during 

exercise (Kowaloff et al. 1977). During and after exercise muscle proteolysis is prevented. 

The inhibition of enzymes involved in amino acid degradation would spare amino acids for 

protein synthesis after exercise (Kowaloff et al. 1977). In plants it is known that D-lactate is 

mainly formed from methylglyoxal (MG), a toxic by-product of glycolysis. The MG-side way 

of glycolysis is enhanced during stress (Yadav et al. 2005). The inhibitory effect of D-lactate 

on ProDH could prevent usage of this amino acid as a substrate for OXPHOS under high 

carbohydrate conditions in plants when glycolysis is enhanced. Another possible function of 

regulating ProDH activity by D-lactate is that after stress release ProDH is induced in order to 

remove excess of proline. In the case, the plant gets a new stress impulse, for example a new 

drought period occurs, ProDH activity has to be stopped immediately. Under stress 

conditions D-lactate concentration increases rapidly (Yadav et al. 2005) and thereby possibly 

prevents the degradation of the osmoprotective molecule proline. 

Like D-lactate metabolism also L-lactate metabolism in plant mitochondria is not really 

understood so far. It is known that lactic fermentation represents a signal triggering ethanol 

production in hypoxic maize root tips (Roberts et al. 1984). In potato tubers a L-lactate 

dehydrogenase (LLDH) was identified (Paventi et al. 2007). Potato tubers are special with 

respect to mitochondrial metabolism. They represent ideal model systems to analyze 

hypoxia in plants because the oxygen concentration may drop below 5 % in the centre of 

potato tubers (Geigenberger et al. 2005). The physiological benefit of the inhibition of ProDH 

by L-lactate remains to be shown. In addition to the identification of D- and L-lactate as 

competitive inhibitors for Arabidopsis ProDH, pyruvate shows a similar effect on ProDH 
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activity (unpublished results, appendix Figure 7). The inhibitory effect of pyruvate on ProDH 

seems to be identical to the inhibition of D-lactate (Figure 7). It can be assumed that the 

physiological function of a pyruvate mediated inhibition of ProDH is the same as suggested 

for D-lactate. Under high carbohydrate conditions plant cells are not able to use proline as 

an alternative respiratory substrate, as far as the proline concentration is low. This may 

change if the proline concentration is high enough that proline can compete successfully 

with the competitive inhibitor. Finally, proline can be degraded when the plant cell does not 

need the protective function of this amino acid anymore. All ProDH inhibiton measurements 

were repeated with membrane fractions that did not contain any matrix proteins. It 

therefore can be excluded that pyruvate or D- L-lactate were metabolized by other matrix 

localized enzymes and that another intermediate caused the observed inhibition of ProDH 

(data not shown). 

3.3 L-Galactono-1,4-Lactone Dehydrogenase (GLDH) as an Assembly Factor of 

Complex I 

Besides ProDH, GLDH is the second mitochondrial dehydrogenase which stands in the focus 

of this thesis. Like ProDH also GLDH can be seen as an alternative electron donor for the 

mitochondrial respiratory chain. Two molecules cytochrome c are reduced during the 

oxidation of one L-galactono-1,4-lactone molecule. Cytochrome c can subsequently transfer 

its electron to complex IV of the respiratory chain (Bartoli et al. 2000). GLDH forms part of 

three distinct mitochondrial complexes (Chapter 2: L-Galactono-1,4-Lactone dehydrogenase 

(GLDH) Forms Part of Three Subcomplexes of Mitochondrial Complex I in Arabidopsis 

thaliana). Three lines of experimental evidence support these results. Using immunoblotting, 

in gel activity assays and mass spectrometry it was shown that enzymatically active GLDH is 

attached to a ~850 kDa, 470 kDa and a 420 kDa complex. Since GLDH is only attached to 

assembly intermediates and not to the holo-complex I (~1000 kDa) it can be ruled out that 

the discovered complexes represent artifacts of digitonin solubilization or that the 

complexes are degradation fragments of complex I. These fragments would not have GLDH 

attached. Until now it is not known at which point GLDH is detached from complex I during 

the assembly process. Besides GLDH acting as an assembly factor for complex I, Perales et al. 

2005 showed that the carbonic anhydrase (CA2) At1g47260 is also important for complex I 

assembly. Both, GLDH and CA2, are plant specific complex I subunits essential for the 
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assembly process of complex I. Since these proteins only occur in plants the assembly of 

plant complex I has to occur in a unique way. Bartoli et al. 2000 and Millar et al. 2003 have 

demonstrated that GLDH activity strongly depends on the availability of oxidized cytochrome 

c. In this way the L-ascorbate production is not only physically linked to the respiratory chain 

but also physiologically. Much is known about the physiologic function of ascorbate in 

plants. It is involved in growth (Pignocchi and Foyer 2003), programmed cell death (de Pinto et al. 

2006), pathogen response (Barth et al. 2004) and signal transduction (Barth et al. 2006). 

Ascorbate is also important for plants to handle environmental stress factors like ozone 

(Conklin and Barth 2004), UV-radiation (Gaoand Zhang 2008), high temperatures (Larkindale et al. 

2005) and high light conditions (Müller-Moulé et al. 2004). In addition, several enzymes 

require ascorbate as a co-factor. Thereby ascorbate often acts as a reductant keeping iron as 

Fe(II) (Prescott and John 1996). The prolyl hydroxylase, which catalyses posttranslational 

hydroxylation of proline residues, mainly in the cell wall, is one of these enzymes requiring 

ascorbate as a co-factor (Smirnoff and Wheeler 2000). One of the most important functions 

of ascorbate in chloroplasts is the ascorbate - glutathione cycle which consists of four 

enzymes; ascorbate peroxidase (APX), monodehydroascorbate reductase (MDHAR), 

glutathione-dependent dehydroascorbate reductase (DHAR), and glutathione reductase 

(GR). Plants use the cycle to detoxify reactive oxygen species (ROS). In all eukaryotes 

superoxide occurs in different organelles. The superoxide dismutase converts superoxide to 

hydrogenperoxid. Ascorbate acts as a co-factor of APX to reduce hydrogenperoxid to water. 

This reaction oxidizes ascorbate to monodehydroascorbate (MDHA). Subsequently MDHA 

undergoes a non-enzymatic disproportionation to ascorbate and dehydroascorbate (DHA) or 

MDHA is reduced to ascorbate by the action of MDHAR. Afterwards DHAR reduces DHA to 

ascorbate. DHAR uses glutathione as a co-factor. The oxidized glutathione is recycled by the 

glutathione reductase (GR) which receives the electrons for the reduction process from 

NADPH (Hancock and Viola 2005). Chew et al. 2003 demonstrated that the ascorbate - 

glutathione cycle is also present in Arabidopsis mitochondria. APX, MDHAR, and GR gene 

products are dual targeted to chloroplast and mitochondria in Arabidopsis. Only a DHAR 

isoform is specifically targeted to mitochondria (Chew et al. 2003). It is known that high 

amounts of ROS can be produced within mitochondria (Rhoads et al. 2006). For plant cells it 

is favorable to have the detoxification machinery at the place where it is needed. 
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Combining these insights with the findings that only assembly intermediates of complex I are 

connected with the respiratory chain via GLDH but not the holo-complex, it can be 

speculated that assembly intermediates of complex I are already catalytically active. Due to 

the absence of specific subunits, the correct function of these assembly intermediates is not 

possible. This could lead to an enhanced production of ROS by the assembly intermediates. 

In this way ascorbate would directly act as a scavenger of ROS at the site of its production. 

It remains to be investigated how complex I accumulation and L-ascorbate synthesis can be 

regulated separately and what the benefit is of GLDH having to completely different 

functions. If the activity of GLDH is necessary to assemble complex I it would be interesting 

to know the direction of the catalytically activity of GLDH. Does the enzyme need ascorbate 

and reduced cytochrome c as substrates to assemble complex I or does it work vice versa, 

using L-galactono-1,4-lactone and oxidized cytochrome c as substrates. The first possibility 

would imply that ascorbate is essential for complex I assembly. 

3.4 Supramolecular Structure of Plant Mitochondrial Enzymes 

Although mitochondrial metabolism and ATP production are well studied, several aspects 

still remain unclear. The regulation of mitochondrial energy metabolism is currently not fully 

understood. For the respiratory chain complexes it is known that one possible level of 

regulation is the formation of higher order structures. Several mitochondrial enzymes form 

multienzyme complexes (discussed in more detail in chapter 2: Respiratory electron transfer 

pathways in plant mitochondria, section “Supramolecular structure of the ETC System”). 

Formation of protein complexes accelerates the activity of two or more successively acting 

enzymes. Also ProDH seems to form a small complex (Chapter 2: Molecular and functional 

characterization of the mitochondrial proline dehydrogenase 1 in Arabidopsis thaliana). 

ProDH might form a complex with P5CDH under certain environmental conditions. Possibly 

catabolism of proline in plants works similar to the catabolic pathway in bacteria, where 

ProDH and P5CDH are combined within the multifunctional flavoprotein PutA. With the 

difference that ProDH and P5CDH in plants are encoded by two separate genes. BN-PAGE 

combined with in-gel activity staining methods (Chapter 2: Activity measurements of 

mitochondrial enzymes in native gels) would represents a powerful tool to investigate this 

issue. 

_____ 
   120



3.5 Identification of Putative Mitochondrial Dehydrogenases 

Besides characterizing the already known enzymes involved in the multiple electron entry 

pathways into the plant respiratory chain it is of great importance to identify new electron 

entry points to better understand the complex regulation of the alternative electron transfer 

pathways and the resulting high flexibility of the plant respiratory system. As already 

mentioned 11 dehydrogenases are known to channel electrons to the ETF – ETFQO system in 

mammals. In plants there only is evidence for IVDH and D-2HGDH to interact with the ETF – 

ETFQO system. It seems likely that in plants by far not all dehydrogenases are discovered 

which are able to deliver electrons to ETF. Several of the dehydrogenases of the ETF – ETFQO 

system in mammals are involved in mitochondrial localized -oxidation (reviewed in 

Watmough and Frerman 2010). In plants it was controversially discussed if -oxidation takes 

place in mitochondria (Dieuaide et al. 1993, Masterson and Wood 2001) or in peroxisomes 

(reviewed in Graham 2008). Today it seems that -oxidation of straight chain fatty acids in 

higher plants exclusively occurs in peroxisomes (Graham and Eastmond 2002). Bearing this in 

mind it is clear that not all dehydrogenases involved in the mammalian ETF – ETFQO system 

can be found in plant mitochondria. But it seems likely that the ETF – ETFQO system is not 

only used by two mitochondrial dehydrogenases in plants. A “shot gun proteomic approach” 

of mitochondria isolated from Arabidopsis suspension cells was carried out in order to 

identify possible new dehydrogenases or oxidoreductases which are able to fuel the 

mitochondrial electron transport chain. More than 1600 were detected (Table 1; Appendix). 

Data reduction was achieved by filtering proteins using known function and motif categories. 

The mitochondrial localization of unknown proteins was confirmed using “The subcellular 

localization database for Arabidopsis proteins‟, SUBA, (http://suba.plantenergy.uwa.edu.au/ 

Tanz et al. 2013). Table 1 (Appendix) includes known mitochondrial dehydrogenases and 

possible new dehydrogenases. The list contains 49 known mitochondrial dehydrogenases, 

including isoforms and subunits of protein complexes. 25 proteins were identified whose 

function has not been clarified so far. Most of them belong to the FAD/NAD(P)-binding 

oxidoreductase family or to the NAD(P)-binding rossmann-fold superfamily. In order to 

investigate the function of these proteins, knock out mutants have to be generated and 

analyzed. In addition, the characterization of recombinantly expressed putative 

mitochondrial dehydrogenases would allow to understand the processes of mitochondrial 

metabolism in more detail. This list of identified proteins only includes enzymes which are 
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expressed under standard growth conditions. Shot gun experiments should be repeated 

using mitochondria isolated from suspension cells or plants which were grown under 

different stress conditions. Investigation of mitochondria from plants cultivated under 

carbon starvation, osmotic stress, cold and heat stress or pathogen infections might help to 

reveal the roles of other dehydrogenases on the respiratory system in plants. 
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Appendix 

 

Figure 7: Inhibitory effect of pyruvate and D-lactate on ProDH activity. ProDH acitivty was measured 
in the absence of inhibitors (black dots) and in the presence of 1 mM pyruvate (grey dots) and 1 mM 
D-lactate (triangle) at different substrate concentrations (proline concentrations). 
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Table 1: Known and putative mitochondrial dehydrogenases of Arabidopsis thaliana identified by a 
“shot gun proteomic approach” (P. Schertl, H.P. Braun and H. Eubel, unpublished work). 

a Accession b Description 
c s.c. 
[%] 

d No. 
peptides 

e MW 
[kDa] 

fcalc. 
pI 

AT3G55410.1 2-oxoglutarate dehydrogenase, E1 component  52,90 27 115,1 6,93 

AT5G65750.1 2-oxoglutarate dehydrogenase, E1 component  59,51 31 116,3 7,3 

AT5G41670.1 6-phosphogluconate dehydrogenase 
family protein  

45,59 7 53,3 5,8 

AT4G20930.1 6-phosphogluconate dehydrogenase 
family protein  

6,34 2 37,3 7,37 

AT4G29120.1 6-phosphogluconate dehydrogenase 
family protein  

40,12 8 35,3 8,4 

AT3G48000.1 aldehyde dehydrogenase 2B4  63,75 24 58,6 7,46 

AT1G23800.1 aldehyde dehydrogenase 2B7  10,30 5 58,1 7,33 

AT2G29990.1 alternative NAD(P)H dehydrogenase 2  38,58 13 56,5 9,28 

AT2G38660.4 amino acid dehydrogenase family protein  35,54 8 36,3 6,99 

AT4G36400.1 D-2-hydroxyglutarate dehydrogenase 40,43 13 61,4 6,98 

AT4G34200.1 D-3-phosphoglycerate dehydrogenase  45,11 19 63,3 6,58 

AT5G23300.1 dihydroorotate dehydrogenase 47,17 14 48,5 9,2 

AT5G06580.1 D-lactate dehydrogenase 21,69 9 62,1 6,9 

AT1G50940.1 electron transfer flavoprotein alpha  38,29 9 38,4 6,92 

AT5G43430.3 electron transfer flavoprotein beta  69,86 10 23,8 5,35 

AT2G43400.1 electron-transfer flavoprotein:ubiquinone 
oxidoreductase  

38,70 15 70,1 7,61 

AT5G20080.1 FAD/NAD(P)-binding oxidoreductase  49,39 11 36 8,69 

AT1G24340.1 FAD/NAD(P)-binding oxidoreductase 
family protein  

26,94 13 78,3 7,25 

AT2G29720.1 FAD/NAD(P)-binding oxidoreductase 
family protein  

18,27 6 46,9 9,47 

AT3G24200.1 FAD/NAD(P)-binding oxidoreductase 
family protein  

44,75 14 55 7,96 

AT5G49555.1 FAD/NAD(P)-binding oxidoreductase 
family protein  

44,78 13 60,5 6,8 

AT5G48440.2 FAD-dependent oxidoreductase family protein  13,41 5 46,6 7,31 

AT5G14780.1 formate dehydrogenase  16,41 4 42,4 7,5 

AT5G18170.1 glutamate dehydrogenase 1  58,88 14 44,5 6,86 

AT5G07440.1 glutamate dehydrogenase 2  65,21 14 44,7 6,54 

AT3G10370.1 Glycerol-3-phosphate dehydrogenase 23,37 11 68,4 8 

AT3G10370.1 Glycerol-3-phosphate dehydrogenase 23,37 11 68,4 8 

AT3G15090.1 GroES-like zinc-binding alcohol dehydrogenase 
family protein  

54,37 13 39,4 9,03 

AT5G63620.1 GroES-like zinc-binding alcohol dehydrogenase 
family protein  

43,56 11 45,5 7,65 

AT5G63890.1 histidinol dehydrogenase  17,92 6 48,9 5,44 

AT4G35260.1 isocitrate dehydrogenase 1  52,86 10 39,6 8,13 

AT2G17130.2 isocitrate dehydrogenase subunit 2  44,08 7 39,1 6,33 

AT3G09810.1 isocitrate dehydrogenase VI  41,44 7 40,5 7,17 

AT5G14590.1 Isocitrate/isopropylmalate dehydrogenase 
family protein  

46,60 18 54,2 7,97 
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AT3G45300.1 isovaleryl-CoA-dehydrogenase  49,63 14 44,7 7,53 

AT1G53240.1 lactate/malate dehydrogenase family protein  78,89 8 35,8 8,35 

AT3G15020.1 lactate/malate dehydrogenase family protein  76,83 7 35,9 8,19 

AT3G47930.1 L-galactono-1,4-lactone dehydrogenase  42,95 21 68,5 8,56 

AT3G17240.1 lipoamide dehydrogenase 2  60,55 14 54 7,03 

AT2G14170.2 Methylmalonate semialdehyde dehydrogenase 52,41 14 53,4 6 

AT1G48030.1 mitochondrial lipoamide dehydrogenase 1  60,75 14 54 7,4 

AT2G20360.1 NAD(P)-binding Rossmann-fold 
superfamily protein  

54,48 16 43,9 9,23 

AT2G33600.1 NAD(P)-binding Rossmann-fold 
superfamily protein  

15,89 4 35,6 8,28 

AT3G26760.1 NAD(P)-binding Rossmann-fold 
superfamily protein  

69,00 13 31,7 7,44 

AT3G26770.1 NAD(P)-binding Rossmann-fold 
superfamily protein  

57,84 10 31,8 7,88 

AT4G03140.1 NAD(P)-binding Rossmann-fold 
superfamily protein  

7,29 1 36,8 8,87 

AT4G20760.1 NAD(P)-binding Rossmann-fold 
superfamily protein  

6,38 2 32,5 9,63 

AT4G33360.3 NAD(P)-binding Rossmann-fold 
superfamily protein  

23,24 5 36 7,46 

AT5G10730.1 NAD(P)-binding Rossmann-fold 
superfamily protein  

52,61 9 31 9,55 

AT5G15910.1 NAD(P)-binding Rossmann-fold 
superfamily protein  

33,46 6 28,8 9,67 

AT4G28220.1 NAD(P)H dehydrogenase B1  26,80 9 63,3 6,73 

AT4G05020.2 NAD(P)H dehydrogenase B2  34,09 16 69,2 8,48 

AT2G20800.1 NAD(P)H dehydrogenase B4  35,22 17 65,3 8,92 

AT5G08740.1 NAD(P)H dehydrogenase C1  6,55 2 57 6,96 

ATMG00070.E NAD9 NADH dehydrogenase subunit 9 
RNA Edit 

73,68 13 22,9 7,44 

AT2G13560.1 NAD-dependent malic enzyme 1  55,54 22 69,6 5,45 

AT4G00570.1 NAD-dependent malic enzyme 2  59,31 25 66,6 7,06 

AT5G37510.1 NADH-ubiquinone dehydrogenase (complex I) 50,60 22 81,1 6,64 

AT3G27890.1 NADPH:quinone oxidoreductase  51,02 6 21,5 7,5 

AT3G30775.1 proline Dehydrogenase 4,61 2 54,9 6,89 

AT5G62530.1 pyrroline-5-carboxylate dehydrogenase 53,60 20 61,7 6,73 

AT1G59900.1 pyruvate dehydrogenase complex E1 
alpha subunit  

37,53 10 43 7,49 

ATMG00516.E RNA Edit NAD1C, NAD1 
NADH dehydrogenase 1C 

16,92 5 36,1 8,59 

ATMG00285.E RNA Edit NAD2A, NAD2.1, NAD2 
NADH dehydrogenase 2A 

17,64 8 55,4 8,46 

ATMG00580.E RNA Edit NAD4 
NADH dehydrogenase subunit 4 

6,87 3 55,8 8,54 

ATMG00513.E RNA Edit NAD5A, NAD5.1, NAD5 
NADH dehydrogenase 5A 

16,44 8 74,3 6,99 

ATMG00510.E RNA Edit NAD7 
NADH dehydrogenase subunit 7 

50,51 15 44,9 7,12 

AT5G39410.1 saccharopine dehydrogenase   53,08 16 49,6 8,29 
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AT1G14810.1 semialdehyde dehydrogenase family protein  29,60 7 40,7 7,01 

AT5G66760.1 succinate dehydrogenase 1-1  58,20 24 69,6 6,29 

AT3G27380.1 succinate dehydrogenase 2-1  42,65 2 31,2 8,44 

AT5G40650.1 succinate dehydrogenase 2-2  38,93 2 31,1 8,62 

AT1G47420.1 succinate dehydrogenase 5  39,30 8 28,1 6,65 

AT1G79440.1 succinic semialdehyde dehydrogenase 56,82 25 56,5 6,92 
a accession numbers of identified proteins as given by TAIR (http://www.arabidopsis.org/) 
b names / descriptions of identified proteins  
c sequence coverage of the proteins by identified peptides  
d number of unique peptides 
e calculated molecular mass of the identified proteins as deduced from the corresponding gene 
f calculated isoelectric points 
light blue background: putative mitochondrial dehydrogenases 
Remark: MASCOT scores are not given due to the fact that the list consists of four independent MS 
runs with four different scores for each protein 
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