
Essays on Model Risk -

The Role of Volatility for the Accuracy of
Financial Risk Models

Von der Wirtschaftswissenschaftlichen Fakultät der

Gottfried Wilhelm Leibniz Universität Hannover

zur Erlangung des akademischen Grades

Doktor der Wirtschaftswissenschaften

- Doctor rerum politicarum -

genehmigte Dissertation

von
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Abstract

By entry into force of the first two Basel Accords, financial institutions within major economies

are urged to implement internal risk models in order to assess their exposures to credit risk and

market risk. The requirement for an accurate modeling of financial risk resulted in the emergence

of a new category of risk, which is induced by the usage of models and is termed model risk. Since

volatility constitutes an integral component of each risk model, this thesis addresses the role of the

volatility within different fields of financial risk management and examines the consequences that

arise from an inaccurate representation of the volatility in financial risk models.

After Chapter 1 briefly introduces into the subject of the thesis, Chapter 2 deals with the computa-

tion of the credit default risk of an indebted firm and its classification in rating categories. On the

basis of the Merton (1974) structural model, the volatility of the underlying equity is assumed to

follow a process of the GARCH class of models. By computing probabilities of default for firms of

the German DAX 30, it is shown that the disregard of specific characteristics of financial data may

result in a different credit rating. Moreover, the impact of the type of the conditional distribution

on the credit rating category is emphasized.

Chapter 3 provides an examination of the problems of the most common backtesting procedures for

the evaluation of Value at Risk measures in view of regulatory aspects. By conducting a simulation

study, standard approaches are compared with each other as well as with a procedure in which the

volatility is corrected for estimation risk. The general results indicate that duration-based tests

feature lower size distortions than frequency-based approaches. Even though the distortions can

be reduced by accounting for the presence of estimation risk, the volatility-adjusted procedure still

features significant oversized results.

In Chapter 4, a loss function-based framework for the comparison of the sensitivity of quantile risk

measures with regard to a structural break in the volatility is developed. Using two types of loss

functions, the theoretical results generally indicate that the lowest of the compared risk quantiles

features the best responsiveness to the occurrence of a volatility break. Assuming various DGPs,

different intensities of the break as well as realistic evaluation horizons, this result is confirmed

within a broad comparative simulation study between Value at Risk and Expected Shortfall. An

empirical application using data of several stock market indices additionally demonstrates the

superiority of Expected Shortfall over Value at Risk.

Keywords: Credit risk, Market risk, Backtesting, Volatility break
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Zusammenfassung

Seit Inkrafttreten der beiden ersten Baseler Eigenkapitalvereinbarungen sind Finanzinstitutionen

großer Volkswirtschaften zur Verwendung interner Risikomodell angehalten um auf deren Basis

ihre Kredit- und Marktrisiken zu bestimmen. Die Notwendigkeit einer möglichst präzisen Model-

lierung des Finanzrisikos hat zur Entstehung einer neuen Risikokategorie beigetragen, die aus der

Verwendung von Modellen resultiert und gemeinhin als Modellrisiko bezeichnet wird. Angesichts

der Tatsache, dass die Volatilität stets einen Hauptbestandteil eines jeden Risikomodells darstellt,

setzt sich diese Dissertation mit der Rolle der Volatilität in verschiedenen Bereichen des Risiko-

managements auseinander und untersucht die aus der Verwendung einer ungenauen Modellierung

der Volatilität entstehenden Auswirkungen.

Während Kapitel 1 in die Grundthematik dieser Arbeit einführt, beschäftigt sich Kapitel 2 mit der

Berechnung von Kreditausfallrisiken von Unternehmen und deren Klassifizierung in Ratingkate-

gorien. Auf Basis des strukturellen Kreditrisikomodells von Merton (1974) wird dabei das Schwan-

kungsverhalten des jeweiligen Eigenkapitals durch die Verwendung von Modellen bedingter Volati-

lität dargestellt. Indem Ausfallwahrscheinlichkeiten für Unternehmen des deutschen Aktienindex

DAX 30 berechnet werden, wird aufgezeigt, dass die Vernachlässigung von für Finanzmarktdaten

typischen Charakteristika zu einer Klassifizierung in eine abweichende Ratingkategorie führen kann.

Außerdem wird auf den Einfluss der Art der bedingten Verteilung auf das Kreditrating eingegangen.

In Kapitel 3 werden die Probleme der gebräuchlichsten Backtestingverfahren zur Evaluation des

Value at Risk hinsichtlich regulatorischer Vorschriften untersucht. In einer Simulationsstudie

werden dabei Standardverfahren sowie eine alternative Herangehensweise, bei der die Volatilität

zusätzlich vom auftretenden Schätzrisiko abhängig ist, miteinander vergleichen. Als generelles

Resultat kann dabei festgehalten werden, dass auf der Zeitdauer zwischen zwei Unterschreitun-

gen basierende Backtests geringere Verzerrungen der Size aufweisen als frequenzbasierte Backtests.

Auch wenn die Verzerrung durch die Berücksichtigung des Schätzrisikos verringert werden kann, so

weist auch die auf einer Varianzkorrektur basierende Testprozedur noch immer nach oben verzerrte

Ergebnisse auf.

Ein auf Verlustfunktionen basierendes Modell zum Vergleich der Sensitivität von Quantilsrisiko-

maßen gegenüber Strukturbrüchen in der Volatilität wird in Kapitel 4 entwickelt. Dabei werden

zwei verschiedene Arten von Verlustfunktionen unterstellt und theoretische Resultate hergeleitet,

die eine zu bevorzugende Reaktionsfähigkeit des jeweils kleinsten Risikoquantils gegenüber einem

Bruch in der Volatilität feststellen. Indem unterschiedliche datengenerierende Prozesse, verschiedene

Bruchintensitäten sowie realistische Evaluationshorizonte unterstellt werden, können diese Ergeb-

nisse auch in einer vergleichenden Simulationsstudie zwischen Value at Risk und Expected Shortfall

zu Gunsten des letztgenannten Maßes bestätigt werden. In einer Anwendung auf Daten einiger

großer Aktienindizes wird die Überlegenheit des Expected Shortfall nochmals aufgezeigt.

Schlüsselwörter: Kreditrisiko, Marktrisiko, Backtesting, Volatilitätsbruch
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1 Introduction

Ever since the publication of the seminal works of mathematical finance in the 1960s and 1970s,

such as by Mandelbrot (1963), Black and Scholes (1973) and Merton (1973), the quantitative

measurement of financial risk has evolved as a field of significant importance to nearly all profit-

seeking institutions. When mathematical models became available, the requirement for an accurate

modeling of financial risk resulted in the emergence of a new category of risk. This comprises the

risk which is induced by the usage of a model and is simply termed as model risk.

Several definitions of model risk have been offered in the course of an increasing literature on this

field of research. Derman (1996) provides a rough specification by designating a model to be, at

best, “a good scientific toy” which explains all the features that are most important to the user,

but is incapable to depict every characteristic of the reality. A more detailed approach is presented

by Kerkhof et al. (2010), who define estimation risk, misspecification risk, and identification risk

to be potential sources of model risk and emphasize that capital reserves should depend on the

reliability of the applied risk models. Sibbertsen et al. (2008) provide a statistical-based definition

of model risk as being each type of risk that is caused by the application of a statistical model.

In addition, they point out that the quantification of model risk demands a benchmark model by

which the underlying model can be compared.

Since the amendments of the Basel Capital Accord became effective within the G-10 countries in

1998, financial institutions are allowed to use internal models for the assessment of capital require-

ments for both their exposures to credit risk and market risk, which arises from an institutions’

trading activities. Following the outbreak of the subprime crisis of 2007 and 2008, for which the

limited scope of the models used to value the credit status of mortgage borrowers has been blamed

to be a key factor, an accurate risk management of financial institutions became a matter of public

concern. As a result, statistical-based risk models are deemed to be indispensable for the institu-

tions’ decision making processes.

The volatility of the value of a financial instrument, which is closely linked to the perceived risk of

an investor and the amount of uncertainty about future values, constitutes an integral component

of each risk model. Since volatility is commonly considered to be the most sensitive parameter of a

financial risk model, an appropriate measurement of the volatility is of crucial importance for the

accuracy of the model employed. Moreover, Derman (2003) designates volatility to be the main

driving factor of model risk, when it comes to the modeling of volatility smiles.

This thesis analyzes the role of the volatility within different fields of financial risk management. By

considering several models for the assessment of risk or the evaluation of risk measures, it examines

the consequences that arise from an inaccurate representation of the volatile components of the

underlying model.

Chapter 2 deals with the computation of the credit default risk of an indebted firm and its clas-

sification in rating categories. The structural credit risk model proposed by Merton (1974) lays

the groundwork for the quantitative assessment of a firm’s credit risk in terms of its probability
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of default. Using this approach, the volatility of the underlying equity, which strongly affects the

default probability, is assumed to follow a conditional volatility process. Since stock market data

are well-known to feature specific characteristics, different types of GARCH models are considered

in order to capture the respective properties, in particular the presence of leverage effects and

long-range dependencies. In an empirical study using stock data of firms of the German DAX 30,

default probabilities along with the corresponding credit ratings are calculated. In this process,

the results are compared with credit ratings which are induced by the application of a conditional

volatility model that disregards the specific properties of financial data. It becomes apparent that

the ratings substantially differ in many cases. Hence, employing an incorrect model implies that

the respective firms are classified in a different rating category. Moreover, the impact of the type

of the conditional distribution on the credit rating is emphasized.

The further chapters examine aspects regarding the evaluation of risk measures. Financial institu-

tions are required to compute minimum capital reserves subject to their credit risk, market risk,

and operational risk since the Basel II regulations came into force. Since risk measures provide a

tool to map profit and loss distributions to capital amounts (see Emmer et al. (2014)), the use of

an adequate measure which produces robust risk estimates is of crucial importance for the institu-

tion as well as for the regulatory side. However, the accuracy of the methods used for evaluation

depends on the appropriate specification of the volatility.

In particular, Chapter 3 focuses on the use of backtesting procedures for the evaluation of Value at

Risk measures, which provide the preferred approach to assess market risk exposure by the second

of the Basel Accords. However, the evaluation setting recommended therein entails significant

statistical drawbacks when conducting backtests. For instance, a low number of violations of

the estimated Value at Risk measure leads to heavy size distortions for most of the commonly

used backtesting frameworks. In this chapter, different backtesting approaches are outlined and

examined for these problems in view of regulatory aspects. By conducting a Monte Carlo study,

the standard backtesting procedures are compared with the approach proposed by Escanciano and

Olmo (2012). Within this backtesting framework, the volatility of the demeaned hit sequence is

corrected for estimation risk, which describes the risk induced by the calculation of forecasts and

provides a potential source of model risk. The results indicate that backtests which are based on the

duration between two consecutive violations rather than on the plain hit sequence show the lowest

size distortion, while even the tests accounting for estimation risk are not capable of significantly

alleviating the distortions.

Due to several shortcomings of Value at Risk regarding mathematical and practical issues, the

regulations of the Basel III accord mandate to replace Value at Risk as the preferred tool to

compute market risk by Expected Shortfall by 2019. Chapter 4 provides a framework for both

the theoretical comparison of quantile risk measures as well as a comparative evaluation of Value

at Risk and Expected Shortfall in the presence of occasional structural breaks in the volatility

of a profit and loss process, which represent a frequently documented characteristic of financial

time series. Next to a break induced by the change of the variance of the innovation process, the

possibility of a volatility break caused by a change in the innovation distribution is taken into
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consideration. By extending the approach introduced by Lopez (1998), a comparative evaluation

technique is proposed which is based on the usage of loss functions of both a frequency type and

a magnitude type. It can generally be derived that the risk measure on the basis of the lower of

two quantiles features the higher responsiveness to a volatility break and is therefore superior by

theoretical aspects in terms of the capability to identify the break. This result is confirmed within

a broad comparative simulation study between Value at Risk and Expected Shortfall, for which

different evaluation horizons, intensities of the volatility break as well as various DGPs for the

modeling of the profit and loss series are assumed. An empirical application using data of several

stock market indices additionally validates the findings and demonstrates the applicability of the

proposed procedure.
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Credit Risk Modeling under Conditional

Volatility
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2 Credit Risk Modeling under Conditional Volatility

Co-authored with Philipp Sibbertsen

2.1 Introduction

Credit rating aims at the classification of credit applicants in rating categories. The accurate

measurement of credit risk is of prime importance for the entire economic sector and equips rating

agencies with significant power: Creditors are interested in an adequate credit rating that reflects

the debtors’ reliability, while borrowing firms strive for a preferably low interest on credits, which

corresponds to a good rating, and a small amount of capital to keep in reserve, both of which are

determined by their credit risk.

For a long time, the term credit risk featured only an abstract denotation. However, this changed

since the enactments of the Basel II regulations issued by Basel Committee on Banking Supervision

(2004a) mandatorily took effect in 2007 within the EU countries. One of the three pillars of Basel II

addresses the maintenance of regulatory capital of credit institutes, between which in turn minimum

capital requirements are imposed on a bank subject to its credit risk. Within the regulations, it

is determined that corporate equity backing must depend on the probability of default of a firm.

Thereby, credit risk becomes a quantifiable value which allows the evaluation of credit risk with

quantitative methods.

The most popular approach to value credit risk in terms of probabilities of default involves the asset

value model proposed by Merton (1974), which represents a generalization of the option pricing

theory introduced by Black and Scholes (1973) and Merton (1973). In a commercial context, the

Merton (1974) model was first applied in an adjusted form by Moody’s KMV, which nowadays

constitutes an industry standard tool for credit rating.

The probability of default commonly depends on a multiplicity of parameters. Among them, the

most sensitive parameter, which severely reacts to extreme shocks and is therefore in the main

focus of an investor’s attention, is the volatility of the stock price, which directly affects the asset

volatility and thereby also the probability of default. For this reason, it is of crucial interest to

depict the stock volatility within the model framework in the most adequate way. The importance

of the specification of volatility is referred to by Leland (2004), Jacobs and Li (2008), and Afik et

al. (2012).

The well-known stylized facts refer to empirical findings in financial time series and comprise,

among others, volatility clustering and leptokurtosis of returns, a negative correlation between

past returns and future volatilities (the so-called leverage effect), and long-range dependencies (see

Sewell (2011) for a comprehensive overview about characteristics of financial series). The presence

of stylized facts within stock market time series constitutes an objective fact and is repeatedly

proven, even for German stock market data (see, among others, Corhay and Rad (1994) and Sun

et al. (2007)).
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Several works exist which recognize the special role of volatility in credit risk valuation, but rather

target to model the volatility as Itō stochastic process (see Heston (1993) for the most popular

stochastic volatility approach and different extensions within the Merton framework such as Bu

and Liao (2013)). Another strand of literature deals with implied volatilities, see, among others,

the work by Hull, Nelken and White (2004), in which the parameters of the Merton model are

estimated from options on the firm’s stock.

However, while being considered when modeling stock market data, stylized facts are widely dis-

regarded within the computation of credit risk. The main objective of this work is therefore

to account for the existence of specific data characteristics by combining the Merton credit risk

framework with conditional volatility models, which were primary introduced by Engle (1982). By

employing conditional volatility models which use fractional integration, we allow shocks to die out

at a hyperbolical rate and take account for the possibility of long-range dependencies within the

conditional volatility equation as well. Furthermore, we show that the disrespect of leverage and

long memory effects within the conditional volatility directly affects the credit rating of a firm.

This in turn provides practical relevance regarding the resultant interest rate to be paid by the

borrowing firm.

The remaining parts of this article are organized as follows: Section 2.2 presents Merton’s structural

approach to model corporate credit risk. Thereby, all relevant variables and determining factors

of the underlying model are defined and a method to compute default probabilities is illustrated.

In Section 2.3, several conditional volatility models (the GARCH class of models) are introduced

which account for different stylized facts on financial market series. On the basis of German stock

market data, the outlined approaches are combined in Section 2.4 in order to compute default

probabilities and to quantify the risk of neglecting relevant properties of financial data. Section 2.5

concludes the article.

2.2 The Merton Credit Risk Model

Two approaches of credit risk modeling can be distinguished. On the one hand, the reduction

approach derives the credit risk directly from the market price of corporate bonds, whereat the point

of a firm’s default can be considered as the first jump of a Poisson process, which (default) intensity

is aligned to the given market values (see Duffie and Singleton (1994) for a more detailed overview

of this model class). On the other hand, the most notable of the structural model approaches

constitutes Robert Merton’s (1974) credit risk model, which is based on the option pricing model

proposed by Black and Scholes (1973) and Merton (1973). The main issue of this approach lies in the

capital structure of a firm and in particular in the development of the firm’s assets. Consequently,

the possible default of the considered firm takes place endogenously and occurs if the firm’s value

falls short of a fixed boundary. Another advantage over the reduction approach, which assumes the

default to be exogenous, is therefore the economic justification of default.

In order to introduce the Merton model, consider a firm whose capital structure contains an equity

with a market value of Et at time t. Moreover, the firm holds liabilities of constant face amount D,
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which only consist of a single debt taken up by a zero bond with debt maturity T . By assumption,

the entire amount of liabilities has to be discharged at T without any priorities of order. 1 At

maturity time t = T , the firm defaults if the firm’s asset value At is too small to compensate its

liabilities, i.e. AT < D. Within this setting, it is assumed that the firm is conveyed to the creditors

as soon as the credit is raised, while the firm is transferred back to the holders if the asset value is

sufficiently large to repay the liabilities at T .

Thus, the holders possess a payoff function given by

ΛH := max{0;AT −D}.

This is the same payoff structure as given by the long position of a European call option within

the Black-Scholes model. Hence, the equity value can be considered to be a call option on the

firm’s asset value, E(At, t). If the option is exercised by the firm holders, D is payed and debts

are cleared, whereas D is considered to be the Black-Scholes strike price in the Merton setup. The

firm’s holders then earn AT − D for AT > D and zero otherwise, which is equivalent to the case

in which the call is abandoned. Since all assumptions for a European call option are fulfilled, the

Black-Scholes formula can be used to determine the value of the call, which represents the asset

value in the specified setting.2 Let τ = T − t denote the remaining time to maturity and Φ(·)
to be the N (0; 1) cumulative distribution function (cdf). Then, according to the Black-Scholes

framework,

E(At, t) = AtΦ(v1)−D exp(−µA τ)Φ(v2) (1)

depicts the equity value depending on t and the respective firm’s asset At, whereby the inputs of

the cdf’s are defined by

v1 =
ln
(
At
D

)
+
(
µA + 1

2σ
2
A

)
τ

σA
√
τ

(2)

and

v2 = v1 − σA
√
τ . (3)

The parameters µA ∈ R and σA > 0 arise from the asset value process {At}t∈R≥0
, which follows

(corresponding to Black-Scholes stock value) a Geometric Brownian Motion (GBM), solving the

1In addition, some of the usual assumptions in financial modeling are imposed, such as the absence of transaction
costs or taxes as well as a constant risk-free interest rate.

2The situation from the creditors point of view can be considered by a payoff function of

ΛC := min{D;AT } = D −max{0;D −AT },

i.e. D for AT > D or AT if the firm defaults. If one takes a look at the latter term, it is quite interesting
that max{0;D − AT } is a measure for the credit risk of the creditors. It is zero in case that the firm does not
default and takes the value D −AT in case of a default. As this depicts the payoff structure of a put option, the
Black-Scholes formula for a European put option can likewise be used to calculate the credit risk.
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stochastic differential equation (SDE)

dAt = µAAt dt+ σAAt dWt, (4)

whereby {Wt}t∈R≥0
is a standard Wiener process and µA depicts the expected return on assets.

The diffusion parameter σA > 0 captures the level of the volatility of the asset value. By Itō’s

Lemma, the solution process for SDE (4) is given by

At = A0 exp

(
(µA − 1

2
σ2A) t+ σAWt

)
.

The amount of credit risk can be derived from the Black-Scholes framework. A key figure for the

valuation of the creditor’s risk is the probability of the firm’s default (PD), which occurs if the

credit cannot fully be repaid at T . If one takes a look at the Gaussian cdf Φ(v2), it is obvious that

this specifies the probability for full repayment. Hence, the expression

PD := P (AT < D) = Φ(−v2) = Φ

 ln
(

D
At

)
−
(
µA − 1

2σ
2
A

)
τ

σA
√
τ

 (5)

denotes the probability of default by time T , whereat D
At

represents the debt financing ratio.

Intuitively, increasing the debt financing ratio (thus meaning a higher amount of liabilities and a

smaller asset value, resp.) leads to an increasing PD. Since the GBM At is log normal distributed,

it follows that ln(At) follows a Gaussian distribution. Thus, (µ− 1
2σ

2)τ depicts the time-dependent

expectation of the asset value, while σA
√
τ is the time-dependent asset volatility, increasing the

probability of default for a high value of σA.

Within the Black-Scholes framework, E(At, t) names the option value to be computed, depending

on the observable stock price At. In contrast, the unobservable variable within the Merton approach

is the asset value At (and thereby also its volatility σA), while the proportional equity value Et is

given by the stock price and thus represents a known value.

Since both variables are employed for the calculation of the PD (5), a system of equations depending

on both variables needs to be solved prior to the computation of (5).

Using Itō’s Lemma for the equity value E(At, t), the equation

σE Et =
∂E

∂A
At σA

holds (see Jones et al. (1984) for details), whereby σE is the instantaneous volatility of equity at

time t. The derivative ∂E
∂A equals the European call option delta in the Black-Scholes framework.

Thus,

σE = Φ(v1)
At

Et
σA (6)

forms the first part of the system of equations. Moreover, the Black-Scholes type formula for the
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equity value as given by (1), (2) and (3) is an equation in At and σA.

By solving (1) (in conjunction with (2) and (3)) and (6) for At and σA, the unobservable values

can be obtained in order to compute the probability of default (5). The solution of this nonlinear

system of equations of high grade demands the calculation of the parameters Et, σE , µA, and the

remaining time to maturity τ . Usually, the firm’s stock price is used to model the equity value of

the firm.

2.3 Modeling Conditional Volatility

The accurate modeling of the stock price volatility is of crucial relevance for the valuation of credit

risk since high volatilities give rise to a high possibility of heavy amplitudes of the stock price

process. Accounting for the stylized facts of financial time series (i.e. heteroskedastic volatilities

along with volatility clustering, heavy tailed distributions of returns, the asymmetric response

of conditional volatility to return shocks as well as the presence of long memory), the class of

Generalized Autoregressive Conditional Heteroskedasticity (GARCH) models needs to be employed

in order to model the stock price volatility.

2.3.1 Symmetric and Asymmetric GARCH Models

The ARCH class of models proposed by Engle (1982) enables to describe the process volatility

separately as a function of past squared innovations, ε2t−1, . . . , ε
2
t−p. Employing Engle’s ARCH

model, Bollerslev (1986) remarked that a high lag order p cannot be avoided in order to obtain a

good fit. Generalizing the work of Engle (1982), Bollerslev (1986) introduced the GARCH model,

which allows the past variances to influence the instantaneous volatility as well.

Let {Rt}t∈N0 be the mean process of a time series and assume {Rt} to follow some ARMA(k, l) type

process. Furthermore, let {Ft}t∈N0 be the filtration generated by {Rt}, so that Ft = σ(Rs, s ≤ t)

applies. Then, the innovation process {εt}t∈N follows a conditional distribution,

εt|Ft−1 ∼ iid(0, σ2t ), (7)

depending on the information gathered by the past observations of the mean process. The condi-

tional volatility of the residual process is then given by

σ2t = ω +

p∑
i=1

αi ε
2
t−i +

q∑
j=1

βj σ
2
t−j , (8)

representing the GARCH(p, q) model, whereat ω > 0, αi ≥ 0, i = 1, . . . , p and βj ≥ 0, j = 1, . . . , q

are imposed to ensure positivity of the conditional variance. However, Nelson and Cao (1992) show

that positivity of (8) can be ensured without the non-negativity restrictions of the coefficients.

The GARCH model features the stylized fact of volatility clustering as high values of elapsed

conditional volatilities increase the probability to observe a high present conditional volatility. By
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transforming the GARCH(p, q) equation into its ARCH(∞) representation, it can easily be shown

that an innovation observed infinitely long ago still influences the instantaneous variance by t.

Bollerslev (1986) shows that (8) provides weak stationarity for
∑p

i=1 αi +
∑q

j=1 βj < 1.

Since the past innovations influence the current volatility by its squared value, both negative

and positive innovations have the same influence on (8). However, Black (1976) remarks that

negative innovations cause a higher influence on the conditional volatility than positive ones. This

is commonly known as the leverage effect, which is reasoned by a higher risk of default seized by

the stock owners after a decreasing stock price as the liabilities D are constant and the ratio D
At

increases. This leads to a higher fluctuation of the stock price and a phase of high volatilities.

Ding, Engle and Granger (1993) generalize the GARCH model by accounting for the direction

of the impact of the innovations. The assumption of the conditional variance, i.e. the squared

volatility, to be the best method to model the conditional volatility is renounced and replaced by

the volatility to the power of δ ∈ R≥0. The conditional volatility of the Asymmetric Power ARCH

(APARCH) of order (p, q, γ, δ) is then expressed by

σδt = ω +

p∑
i=1

αi (|εt−i| − γi εt−i)
δ +

q∑
j=1

βj σ
δ
t−j . (9)

The restrictions for the parameters αi and βj , i = 1, . . . , p, j = 1, . . . , q are abided, while γi ∈
(−1; 1) , i = 1, . . . , p is imposed on the leverage parameter to ensure positivity of (9). Besides,

δ > 0 is required. For γi > 0 negative innovations have a higher influence on the volatility than

positive innovations (leverage effect). The power parameter δ describes a Box-Cox transformation

of the volatility σt. Note that the GARCH model is nested by the APARCH model for δ = 2 and

γi = 0∀i.

By setting δ = 2, it is assumed that the conditional volatility can be depicted best by the second

centralized moment of {εt}, while the leverage effect is still taken into consideration. This case is

covered by the GJR-GARCH introduced by Glosten et al. (1993), which imposes the restriction

δ = 2 within the APARCH conditional volatility (9). All further parameter restrictions stay the

same as for the APARCH. Modeling a return series by GJR(p, q, γ), however, might rather be

adequate if the innovations {εt} follow a conditional Gaussian distribution. Within the work by

Duan et al. (2006,) the GJR model is employed to represent the volatilities in option price models.

2.3.2 Long Memory GARCH Models

Another property which belongs to the well-known stylized facts on financial markets comprises

the existence of a long term structure of dependence, i.e. innovations which occurred way back in

the past still have a significant impact on present values of the process.

Within the mean equation the ARFIMA(k, d, l) model proposed by Granger and Joyeux (1980)

accounts for the long term structure by introducing the memory parameter d, which represents the

degree of persistence. Here, d is no longer restricted to be a natural number, but can embrace the
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set of real numbers. However, Harris and Nguyen (2011) refer to lots of empirical evidence for a

more slowly declining autocorrelation function (ACF) of the past squared returns than a GARCH

model, which is characterized by a geometrical decay of the ACF, could catch. Thus, modeling

the long memory of the stock price only within the mean equation could not be sufficient since

conditional volatilities may additionally be affected by past innovations.

When generalizing the GARCH model to allow for long term dependencies within the conditional

volatility equation, it is practical to rewrite the GARCH conditional volatility equation (8) by its

ARMA(p,max(p, q))-in-squares form3, which is given by

(1− α(L)− β(L)) ε2t = ω + (1− β(L)) (σ2t − ε2t ) (10)

when using the GARCH lag polynomial notation, whereby

α(L) :=

p∑
i=1

αi L
i and β(L) :=

q∑
j=1

βj L
j

as well as Lσ2t = σ2t−1 and Lε2t = εt−1 applies. An alternative definition of the conditional variance

of the GARCH equation (8) is then given by

σ2t =
ω

1− β(L)
+ Θ(L)εt, (11)

whereby Θ(L) := 1− 1−α(L)−β(L)
1−β(L) holds. Note that each of the models introduced in the following are

initially defined by the corresponding ARMA-in-squares representation for constructional reasons.

We define the lag polynomial of the GARCH coefficients by

φ(L) = (1− α(L)− β(L))(1− L)−d (12)

in order to obtain the Integrated GARCH (IGARCH) introduced by Engle and Bollerslev (1986)

for d = 1 with

φ(L) (1− L)ε2t = ω + (1− β(L))(σ2t − ε2t ).

In contrast to the GARCH model, the IGARCH model comprises the possibility of a unit root for

1−α(L)−β(L) = 0. Nelson (1990) shows that the IGARCH unconditional volatility is infinite, while

the first squared differences are stationary. Thus, the IGARCH model features infinite persistence,

which, however, comprises commonly no property of financial series.

Baillie et al. (1996) provide the Fractionally Integrated GARCH (FIGARCH) model, which gen-

eralizes the degree of integration for the squared innovations to real numbers and is given by

φ(L) (1− L)dε2t = ω + (1− β(L))(σ2t − ε2t ) d ∈ R, (13)

3The order max(p, q) results from the dependence of the squared innovations from the GARCH coefficients.



Credit Risk Modeling under Conditional Volatility 13

whereat φ(L) is defined by (12) for d ∈ R. By transposition of (13) and definition of

ω̃ :=
ω

1− β(L)

and ψ(L) := 1− φ(L)

1− β(L)
(1− L)d,

the explicit form of the FIGARCH conditional volatility results in

σ2t = ω̃ + ψ(L) ε2t , (14)

whereby d ∈ [0; 1] and ω̃ > 0 ensure positive values of the conditional volatility. Further non-

negativity restrictions are derived by Bollerslev and Mikkelsen (1996). Note that (14) depicts an

ARCH(∞) representation with lag polynomial ψ(L) =
∑∞

i=1 ψi L
i. For d = 0 and d = 1, FIGARCH

results in GARCH and IGARCH, respectively.

Robinson (1991) uses the dissolved lag polynomial representation of ψ(L) to show that the coeffi-

cients ψi for d ∈ (0; 1) decrease hyperbolically if ∀i : ψi ≥ 0 holds. Baillie et al. (2007) remark that

the series is sufficiently flexible to allow for slower hyperbolic rates of decay of the ACF, if d is an

element of the relevant interval.

However, the unconditional variance of the FIGARCH model, given by

E[ε2t ] =
ω̃

1− ψ(1)
, (15)

is infinite for values of d ∈ (0; 1). By developing the arguments of Nelson (1990), it is alleged by

Baillie et al. (1996) that despite the lack of weakly stationarity the FIGARCH process is strongly

stationary and ergodic. For a proof, see Caporin (2002). Kazakevicius and Leipus (1999) formulate

a necessary condition for weak stationarity in the existence of summable ψi coefficients.

It has to be remarked that the properties of d varying in the range of [0; 1] is contrary to the

modeling of the mean equation with an ARFIMA model since memory becomes shorter for the

FIGARCH case when d is increasing. Consequently, it follows that for lower values of d, a longer

memory is observed. Davidson (2004) refers this property to be counterintuitive as for the transition

from d→ 0 to d = 0 memory jumps from infinite long memory to the short memory GARCH case

and by transition from d → 1 to d = 1 from short memory to infinite persistence (the IGARCH

case). The reason for this finding is caused by the lag operator (1−L) since it is connected to the

squared residuals in the FIGARCH case (see (13)), while the lag operator is tied to the process

values for the ARFIMA model.

Allowing again for asymmetric effects without neglecting long memory, the features of the APARCH

and the FIGARCH model are combined within the Fractional Integrated Asymmetric Power ARCH

(FIAPARCH) model developed by Tse (1998). The parameters (ω, p, d, q, γ, δ) determine the model

volatility, which is given pursuant to the ARMA-in-squares representation of the FIGARCH model
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(13) by

φ(L) (1− L)d (|εt| − γεt)
δ = ω + (1− β(L))

(
(|εt| − γεt)

δ − εδt

)
. (16)

In analogy to the FIGARCH model, the explicit form of the conditional volatility can be written

as

σδt = ω̃ + ψ(L) (|εt| − γεt) ,

whereat δ > 0, ∀i ∈ 1, . . . , q : γi = γ ∈ (−1; 1), d ∈ [0; 1], ω̃ := ω(1 − β(L))−1, and φ(L) :=

(1 − α(L) − β(L))(1 − L)d holds, while ψ(L) := 1 −
[
ϕ(L)(1− L)d(1− β(L))−1

]
represents the

summarized back-shifted ARCH(∞) coefficients. Again, values of d, varying in [0; 1], ensure hy-

perbolic decreasing ACFs and strong stationarity (see Degiannakis (2004)). Correspondingly, weak

stationarity is not achieved for d ∈ (0; 1). The parameter choice γ = 0 an δ = 2 results in the

FIGARCH alternative. Note that the FIAPARCH representation is exclusively able to picture the

most frequently arising stylized facts within a single model: heavy tailed distribution of returns,

volatility clustering, long memory, and asymmetric impacts of random shocks. A proof of weak

stationarity of the FIAPARCH, however, is not available so far.

Combining the advantages of weak stationarity of the GARCH model and the ability of modeling

long memory of the FIGARCH model, Davidson (2004) proposes the Hyperbolic GARCH (HY-

GARCH) model. By introducing the HYGARCH parameter η to the lagged squared residuals

through the linear combination ((1 − η) + η (1 − L)d)ε2t , the ARMA-in-squares representation of

the FIGARCH equation (13) results in

φ(L)(1 + η[(1− L)d − 1])ε2t = ω + (1− β(L))(σ2t − ε2t ).

Thus, the explicit form of the conditional variance of the HYGARCH(p,d,q,η) model can be defined

by

σ2t = ω̃ + Ξ(L)ε2t , (17)

whereat d ∈ [0; 1], η ∈ R≥0, φ(L) := (1 − α(L) − β(L))(1 − L)d, Ξ(L) := 1 − [φ(L)(1 + η[(1 −
L)d − 1])(1 − β(L))−1], and ω̃ := ω(1 − β(L))−1 applies. By analogy with the FIGARCH case,

(17) represents the ARCH(∞) form of the HYGARCH model, while Ξ(L)ε2t represents the infinite

sum of the lagged squared residuals (with coefficients Ξj). The HYGARCH model features weak

stationarity under certain parameter restrictions and therefore existence of the variance.

Theorem. The HYGARCH model provides weak stationarity if both 1− α(1)
1−β(1) > 0 and η ∈ [0; 1)

hold.

Proof. Firstly, it is to show that the HYGARCH equation can be decomposed into a GARCH

and a FIGARCH part. In continuation of the notation (see (11),(14) and (17)), we denote the
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ARCH(∞) lag polynomials for GARCH, FIGARCH and HYGARCH, respectively, by

Θ(L) := 1− φ(L)

1− β(L)

ψ(L) := 1− φ(L)(1− L)d

1− β(L)

Ξ(L) := 1− ϕ(L)(1 + η((1− L)d − 1))

1− β(L)
,

whereby d = 0 holds for Θ(L). Then, it easily follows for Ξ(L) by addition of an absolute zero

Ξ(L) = η − η
ϕ(L)(1− L)d

1− β(L)
+ (1− η)− (1− η)

ϕ(L)

1− β(L)

= η

(
1− ϕ(L)(1− L)d

1− β(L)

)
+ (1− η)

(
ϕ(L)

1− β(L)

)
= η ψ(L) + (1− η)Θ(L).

Apparently, for a higher value for η in this linear combination, we observe a higher influence of the

long memory FIGARCH part at the expense of the short memory GARCH part.

Secondly, restrictions must be derived for which the process assures weak stationarity. Reminding

of E[εt] = 0∀t and Cov(εt, εt−j) = 0 ∀t∀j ∈ N in the general case for the GARCH class of models,

only E[ε2t ] =
ω̃

1− Ξ(1)
<∞ is left to prove. For this purpose, consider

Ξ(1) =
∞∑
i=1

Ξi = η ψ(1) + (1− η)Θ(1)

and investigate the ARCH(∞) polynomials separately for covariance stationarity. Clearly, the

GARCH polynomial provides weak stationarity if Θ(1) < 1 is fulfilled (which is an alternative

definition of the more common condition φ(1) = 1− α(1)− β(1) > 0 from the ARMA representa-

tion of the GARCH equation). However, since the FIGARCH model is not able to provide weak

stationarity, ψ(1) = 1 for d ∈ (0; 1) must hold (see (15)). Thus,

η + (1− η)Θ(1) < 1

is fulfilled, if

Θ(1) = 1− 1− α(1)− β(1)

1− β(1)
=

α(1)

1− β(1)
< 1 (18)

holds and η ∈ (0; 1) generates a linear combination of the GARCH and the FIGARCH polynomial.

Trivially, this is also true for η = 0 (GARCH case). Rewriting (18), the parameter restrictions for
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the HYGARCH model to be weak stationary result in

1− α(1)

1− β(1)
> 0 and η ∈ [0; 1). (19)

�

Conrad (2010) points out that a weak stationary HYGARCH model under small modifications is

possibly be obtained even for η ≥ 1. Also note that an asymmetric version of the HYGARCH model

is provided the HYAPARCH model proposed by Dark (2006), but is of less practical relevance.

2.4 Computing Default Probabilities

2.4.1 Data Description and Estimation Procedure

In this section, we want to bring together both the ideas of Merton’s credit risk model and con-

ditional volatility modeling with the GARCH class of models in order to compute probabilities of

default (PD’s) for a horizon of one year . We therefore consider daily stock data over an observation

period from July 2002 to September 2007 of 24 firms which were part of German DAX 30 at that

time, i.e. we observe 1370 trading days for each of the firms (with the exception of Lanxess, which

stock market launch took place by February 2005, leaving only 695 observations here). Appendix

A provides the plots of the log return series.
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Figure 2.1: Visualization of the estimation procedure by means of the Siemens stock price log differences (Jul 02 -

Sep 07) and one of 1,000 simulated trajectories over an one-year horizon generated by the best fitting DGP for the

corresponding firm - AR(1)-GARCH(1,1) in this case (for parameter values see Appendix B).

In contribution of better understanding, the estimation procedure can be summarized as follows

(see Figure 2.1): The first step comprises the estimation of different models of the GARCH class

(GARCH, APARCH, GJR, FIGARCH, FIAPARCH, HYGARCH) from the observation period for

the log differences of the stock price, which represents the proportional equity value. The DGP

which describes the data best is then selected by the information criterion proposed by Hannan and
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Quinn (1979). Subsequently, data for the selected model are simulated over the relevant horizon of

one year, labeled as Volatility Estimation Period in Figure 2.1. By conducting 1,000 replications,

the volatility parameter is then estimated from the simulated data. This parameter is needed to

solve the non-linear system of equations represented by (1) and (6) in order to finally compute the

PD’s for firm i given by (5),

PDi = Φ

 ln
(

Di
At,i

)
−
(
µA − 1

2σ
2
A,i

)
τ

σA,i
√
τ

 . (20)

Note that µA may not be mixed up with the risk-free interest rate r, but denotes the expected

return on assets, which has to be determined separately. Consistent with Campbell et al. (2008),

we use a constant market risk premium µA = r+0.06, whereby r = 0.04 is the effective key interest

rate set by ECB in June 2007. Several other approaches to determine µA exist. Some of them

utilize the CAPM model (see Afik et al. (2012) for an overview), while Bharath and Shumway

(2008) set the expected return assets equal to the stock return over the preceding year. The debt

capital per share can be extracted from the annual business reports. However, it might fall short

of considering only the short term debt as inauspicious developments could the firm require to

preferentially serve long term credits. Therefore, as most of the more recent literature including

the works by Bharath and Shumway (2008), Campbell et al. (2008), and Duffie et al. (2007),

we use the KMV approach devised by Bohn and Crosbie (2003), for which the default barrier is

composed of the short term debt plus half of the long term debt.

2.4.2 Results

For the estimation of the AR-GARCH models, let Rt = ln
(

Et
Et−1

)
be the log return of the stock

prices Et at time t. The mean equation of all models estimated in the following are represented

by a simple AR(1) process, Rt = ϱRt−1 + εt, whereby εt = σtνt with νt ∼ iid(0; 1) ∀t holds and σt
denotes the conditional volatility equation of the most suitable model. The usage of AR(1) for the

mean can describe the observed log returns well and is in line with many other work on modeling

finance data with AR-GARCH (see, among others, Ferenstein and Gasowski (2004)). Furthermore,

in order to compare the effect on PD’s resulting from the applied conditional distribution, we

employ both a Gaussian and a Student-t distribution for all firms and models.

Different orders (p, q) for the GARCH part of all models are applied in the estimation process, but

for the very most of cases the setting p = q = 1 outperforms all other combinations. Thus, only

the models of GARCH order (1, 1) with coefficients α := α1 and β := β1 are reported.

The full estimation results for the GARCH class of models for both assuming a Gaussian and a

Student-t conditional distribution can be found in Appendix B. It is not surprising that a GARCH

model is selected for only one firm (Siemens, which stock is commonly known for its stability

and insensitivity for cycles) since typical properties of financial data are suppressed by the simple

GARCH model. For the selected models, we mostly observe high significance for those parameters

that indicate specific stylized facts (i.e. γ for the leverage effect (APARCH, GJR), d for long
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memory (FIGARCH) or both γ and d (FIAPARCH)) whenever the model features the effect in

question. These results confirm that the well-known stylized facts need to be taken into account

not only within the mean equation, but necessarily when modeling the conditional variance of stock

market data as well. Notably, for the Gaussian conditional distribution, the HYGARCH parameter

η is not significantly different from one in nearly each case, implying that the model falls back to

the FIGARCH case, which is nested for η = 1. Assuming the Student-t conditional distribution, η

clearly fails to be located within the interval that assures weak stationarity (see (19)). Thus, the

HYGARCH model seems generally not to be appropriate to model stock market data.

Table 2.1 provides the selected models and the corresponding PD’s for each firm when assuming a

Gaussian and a Student-t conditional distribution within the volatility equation, respectively. In

the majority of the cases, the selected models for both the conditional Gaussian and Student-t

distribution are equal. For only nine firms, the best performing models are different, whereas only

a marginal discrepancy exists for two of these firms as APARCH and GJR measure essentially the

same effect. In contrast, for only one case, a rough deviance (APARCH vs. FIGARCH measuring

different effects for Dt. Telekom) is observed. Note that the Student-t selected models always

outnumber the Gaussian selected model by maximizing the Hannan-Quinn criterion (HQIC), which

is in line with the findings by Corhay and Rad (1994).

Firm
Sel. Model & PD

Firm
Sel. Model & PD

Gaussian Student-t Gaussian Student-t

Adidas
FIAPARCH FIGARCH

E.ON
FIGARCH FIAPARCH

0.00004 0.00006 0.00098 0.00095

Allianz
FIAPARCH FIAPARCH

Fresenius MedCare
FIGARCH FIAPARCH

0.00000 0.00000 0.00008 0.00014

BASF
APARCH APARCH

Henkel
FIAPARCH FIAPARCH

0.00015 0.00016 0.00013 0.00014

Bayer
GJR GJR

Infineon
FIGARCH FIGARCH

0.00005 0.00003 0.00007 0.00011

BMW
FIGARCH FIGARCH

Lanxess
GJR GJR

0.00075 0.00084 0.00009 0.00009

Continental
FIAPARCH FIAPARCH

Linde
GJR APARCH

0.00029 0.00037 0.00018 0.00006

Daimler
FIGARCH FIGARCH

RWE
GJR GJR

0.00032 0.00032 0.00025 0.00031

Dt. Bank
FIAPARCH GJR

SAP
FIGARCH FIAPARCH

0.00104 0.00117 0.00000 0.00000

Dt. Börse
APARCH GJR

Siemens
GARCH GARCH

0.00037 0.00243 0.00012 0.00017

Dt. Lufthansa
FIAPARCH FIGARCH

ThyssenKrupp
FIGARCH FIGARCH

0.00043 0.00050 0.00045 0.00048

Dt. Post
FIGARCH FIGARCH

TUI
FIGARCH FIGARCH

0.01880 0.01933 0.00047 0.00048

Dt. Telekom
APARCH FIGARCH

Volkswagen
FIGARCH FIGARCH

0.00070 0.00072 0.00052 0.00050

Table 2.1: Selected models and estimated PD’s for DAX 30 firms for Gaussian

and Student-t conditional distribution, respectively.
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In most of the cases, the computed default probabilities are slightly higher for a Student-t condi-

tional distribution than for a Gaussian, which can especially be compared when the selected models

for one and the same firm are equal. Under identical conditions otherwise, this finding appears to

be intuitive when comparing Gaussian and heavy tailed innovations. For three firms, we observe a

higher PD for the Gaussian conditional distribution. It can also be derived from the results that

those models which feature long memory tend to yield higher values of PD (of course, under validity

of the assumption that equity quotas for two firms are nearly on an equal level, e.g. Henkel and

Lanxess, Bayer and Infineon, Continental and RWE).

The next question arising is whether there is an effect on PD’s when not the best model (selected

by HQIC) is used to model the conditional volatility, but a “wrong” model. For this purpose, we

employ the simple GARCH(1,1), insinuating to ignore special stylized facts such as leverage and

long memory effects, one of which is found in nearly all data. The comparison between the selected

and the GARCH model is exemplifically elaborated for the assumption of a Gaussian conditional

distribution. Table 2.2 provides the PD’s computed for both the actual selected model and under

the assumption of GARCH innovations as well as the corresponding one year credit ratings as

awarded by Standard & Poor’s.

Firm
PD & Rating

Firm
PD & Rating

Selected Model GARCH Selected Model GARCH

Adidas
0.00004 0.00001

E.ON
0.00098 0.00085

AAA AAA A- A-

Allianz
0.00000 0.00000

Fresenius MedCare
0.00008 0.00000

AAA AAA AAA AAA

BASF
0.00015 0.00017

Henkel
0.00013 0.00005

AA+ AA+ AA+ AAA

Bayer
0.00005 0.00005

Infineon
0.00007 0.00001

AAA AAA AAA AAA

BMW
0.00075 0.00069

Lanxess
0.00009 0.00010

A A AAA AA+

Continental
0.00029 0.00020

Linde
0.00018 0.00027

AA AA AA+ AA

Daimler
0.00032 0.00034

RWE
0.00025 0.00031

AA- AA- AA AA-

Dt. Bank
0.00104 0.00099

SAP
0.00000 0.00000

A- A- AAA AAA

Dt. Börse
0.00037 0.00258

Siemens
0.00012

-
AA- BBB AA+

Dt. Lufthansa
0.00043 0.00050

ThyssenKrupp
0.00045 0.00023

A+ A A+ AA

Dt. Post
0.01880 0.01506

TUI
0.00047 0.00037

BB- BB A+ AA-

Dt. Telekom
0.00070 0.00070

Volkswagen
0.00052 0.00058

A A A A

Table 2.2: Influence of “wrong” model on PD and S&P 1yr rating using Gaussian conditional distribution.
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For those firms for which an APARCH/GJR was selected by HQIC, the PD’s tend to be higher

when the “wrong” GARCH model is used to model the conditional volatility (i.e. BASF, Bayer,

Dt. Börse, Dt. Telekom, Lanxess, Linde, RWE). This effect is rather reverse for the models which

account for long memory, even if not as distinct as for those which capture asymmetric reaction.

This tendency might be explained by the fact that fractionally integrated conditional volatility

models do not feature weak stationarity and therefore are prone to be explosive, although the very

most of the estimated models are very mildly explosive if at all.

The impact resulting from the employment of the wrong model seems not to be decisive at first

view. However, taking into consideration that the highest graded credit ratings are awarded only

within an interval of [0.0%; 0.1%] of PD and that a stock is already labeled to be speculative for a

PD in excess of 0.94% (see Appendix C for an overview), the consequence from neglecting occurrent

effects in stock data becomes more evident. At least for nearly 40% of the firms, the disregard of

special characteristics of financial data entails a change of its credit rating. Four of these show a

positive change in rating (Dt. Post, Henkel, ThyssenKrupp, TUI), while five firms are classified

worse (Dt. Börse, Dt. Post, Lanxess, Linde, RWE). The degree of discrepancy yields one rating

category each with the exception of ThyssenKrupp (improvement of two categories) and Dt. Börse,

for which the degradation of five rating categories is striking. Certainly, all of these results come off

by means of the S&P rating categorization - using a different classification of credit rating would

possibly bring out different rating migrations as a result of which different firms could be affected.

For the sake of completeness, the empirical examination also involved constant stock price volatili-

ties estimated from an AR(1) process. All of the results, however, yield significantly higher volatili-

ties than under the assumption of conditional volatility which leads to higher PD’s in consequence.

This finding might be an explanation for the gap between the computed PD’s and corresponding

credit ratings and the actual rating of the firms in question, which tend to be worse than expectable

under conditional volatility.

2.5 Conclusion

We combine the structural credit risk model proposed by Merton (1974) and the GARCH condi-

tional volatility class of models in order to compute default probabilities in consideration of the

presence of common characteristics of stock market data. This can be achieved by employing con-

ditional volatility models which account for leverage effects and the existence of long memory, while

credit risk is quantified by the probability of default of a firm subject to the Basel II regulations.

By applying this method to data of the German stock market, we thereby find strong evidence

for the adequacy of conditional volatility models which are capable to capture specific properties

as nearly all data sets contain leverage effects and/or long memory. One considered conditional

volatility model using fractional integration (HYGARCH), whose weak stationarity is proved within

the theoretical part of the article, turns out to be inappropriate to model stock market data.

When computing one year default probabilities, slightly higher PD’s result for the assumption

of a conditional Student-t distribution than for imputing a Gaussian conditional distribution. In
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order to derive implications regarding the risk of neglecting specific stylized facts, we moreover

examine the effects that arise from assuming a simple GARCH model instead of the selected model

and obtain distinct credit ratings for one and the same firm in a considerable number of cases.

The main finding therefore comprises the fact that the occurrence of specific characteristics of

financial data needs to be considered not only within the mean equation of stock price series for

the computation of PD’s, but within the conditional volatility as well.

Practical relevance arises directly from the high share of discrepant ratings induced by the employ-

ment of an inferior model since credit ratings provide an indicating device for a firm’s reliability

and affect the interest rate which has to be paid out when raising a credit.

The computation of credit risk is a highly comprehensive topic as there are plenty of potential ad-

justable screws to rotate on. Along these lines, it would be reasonable to also implement conditional

volatility within some of the large number of enhancements of the Merton approach. These include

the first passage class, which assumes a time dependent exogenous default barrier, whereas default

is possible to appear as stopping time before expiration (see Black and Cox (1976)), while Longstaff

and Schwartz (1995) suggest the expected return to follow a stochastic process. Additionally, a

more detailed empirical investigation which involves the influence of conditional volatility on mid

and long term credit PD’s would be important to determine the full credit risk that a firm has to

bear. Even though the short term analysis already shows the importance of the consideration of

the stylized facts, the examination of these issues remains an interesting topic for future research.
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Appendix to Chapter 2

A Time Series Plots
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B Estimation Results

Description: All estimates of the GARCH constant actually yield strictly positive values since with

digits different from zero at least at sixth position after decimal point. - (∗ ∗ ∗), (∗∗), (∗) indicate

significance of the coefficient to 1%, 5% and 10% level, respectively. - Note that H0 : ln(η) = 0

is tested for the HYGARCH parameters. - Highest HQIC values written in bold indicate the

corresponding selected model. - ncr: No convergence reached for this model.

B.1 Results for the Assumption of a Gaussian Conditional Distribution

Adidas GARCH APARCH GJR FIGARCH FIAPARCH HYGARCH

ϱ 0.0444 0.0471 0.0470 0.0433 0.0478 0.0433

ω 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

d - - - 0.1385∗∗∗ 0.2125∗∗∗ 0.0012∗∗

α 0.0698∗ 0.0694∗∗∗ 0.0399 0.2409 0.1141 0.2186

β 0.8085∗∗∗ 0.8658∗∗∗ 0.8113∗∗∗ 0.3072 0.2592 0.2480

γ - 0.5291∗∗ 0.0752∗ - 0.7262∗∗ -

δ - 1.2496∗∗∗ - - 0.8862∗∗∗ -

η - - - - - 4.5396∗∗∗

HQIC 5.647 5.650 5.649 5.651 5.656 5.649

Allianz GARCH APARCH GJR FIGARCH FIAPARCH HYGARCH

ϱ 0.0564∗∗ 0.05668∗ 0.0567∗∗ 0.0579∗∗ 0.0539∗ 0.0567∗∗

ω 0.0000∗∗∗ 0.0000∗∗∗ 0.0000∗∗∗ 0.0000∗∗∗ 0.0000∗∗∗ 0.0000∗∗∗

d - - - 0.4345∗∗∗ 0.2262∗∗∗ 0.2126∗∗∗

α 0.0794∗∗∗ 0.0754∗∗∗ 0.0427∗∗∗ 0.2612∗∗∗ 0.1552 0.2645∗

β 0.9083∗∗∗ 0.9047∗∗∗ 0.9048∗∗∗ 0.5815∗∗∗ 0.2997∗ 0.4361∗∗

γ - 0.2452∗∗∗ 0.0741∗∗∗ - 0.2092∗∗∗ -

δ - 2.0000∗∗∗ - - 2.5965∗∗∗ -

η - - - - - 1.3569

HQIC 5.311 5.321 5.319 5.314 5.324 5.313

BASF GARCH APARCH GJR FIGARCH FIAPARCH HYGARCH

ϱ -0.0372∗ -0.03836 -0.0384 -0.0358 -0.0424 -0.0366

ω 0.0000∗∗∗ 0.0000∗∗∗ 0.0000∗∗∗ 0.0000∗∗∗ 0.0000∗∗∗ 0.0000∗∗∗

d - - - 0.3376∗∗∗ 0.1377 0.1608

α 0.0674∗∗∗ 0.0634∗∗∗ 0.0214∗ 0.2449∗∗ 0.1559 0.1807

β 0.9164∗∗∗ 0.9012∗∗∗ 0.9013∗∗∗ 0.04919∗∗∗ 0.2387 0.3264

γ - 0.4179∗∗ 0.1060∗∗∗ - 0.2670∗∗∗ -

δ - 2.0000∗∗∗ - - 2.8267∗∗∗ -

η - - - - - 1.4492

HQIC 5.784 5.803 5.802 5.783 5.780 5.781
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Bayer GARCH APARCH GJR FIGARCH FIAPARCH HYGARCH

ϱ 0.0145 0.0140 0.0234 0.0144 0.0140

ω 0.0000∗∗∗ 0.0000∗∗∗ 0.0000∗∗∗ 0.0000∗∗∗ 0.0000∗∗∗

d - - - 0.8023∗∗∗ 0.8584∗∗∗

α 0.0766∗∗∗ 0.8584∗∗∗ 0.0284∗∗∗ 0.1287 0.0971

β 0.9181∗∗∗ 0.0971 0.9399∗∗∗ 0.8482∗∗∗ 0.8694∗∗∗

γ - 0.8694∗∗∗ 0.9917∗∗∗ - -

δ - 0.0056 - - -

η - - - - - 0.9944

HQIC 5.263 5.309 5.321 5.261 ncr 5.258

BMW GARCH APARCH GJR FIGARCH FIAPARCH HYGARCH

ϱ 0.0149 0.0144 0.0152 0.0149 0.0155 0.0148

ω 0.0000∗∗∗ 0.0000∗∗∗ 0.0000∗∗∗ 0.0000∗∗∗ 0.0000∗∗∗ 0.0000∗∗∗

d - - - 0.4911∗∗∗ 0.04720∗∗∗ 0.4467∗∗∗

α 0.0557∗∗∗ 0.0482∗∗∗ 0.0408∗∗∗ 0.2703∗∗∗ 0.2747∗∗∗ 0.2902∗∗∗

β 0.9348∗∗∗ 0.9351∗∗∗ 0.9339∗∗∗ 0.7111∗∗∗ 0.7008∗∗∗ 0.6966∗∗∗

γ - 0.1502∗ 0.0276∗ - 0.1436∗ -

δ - 2.1652∗∗∗ - - 1.9367∗∗∗ -

η - - - - - 1.0223

HQIC 5.566 5.562 5.565 5.568 5.564 5.564

Continental GARCH APARCH GJR FIGARCH FIAPARCH HYGARCH

ϱ -0.0138 -0.0101 -0.0144 -0.0127 -0.0100 -0.0128

ω 0.0000∗∗∗ 0.0000∗∗∗ 0.0000∗∗∗ 0.0000∗∗∗ 0.0000∗∗∗ 0.0000∗∗∗

d - - - 0.3435∗∗∗ 0.4705∗∗∗ 0.3713∗

α 0.0727∗∗∗ 0.0731∗∗∗ 0.0313∗∗ 0.2195∗∗∗ 0.2692∗∗∗ 0.2157∗∗∗

β 0.8976∗∗∗ 0.9086∗∗∗ 0.8957∗∗∗ 0.5021∗∗∗ 0.6980∗∗∗ 0.5164∗∗∗

γ - 0.5629∗∗∗ 0.0855∗∗∗ - 0.7969∗ -

δ - 1.1405∗∗∗ - - 0.8736∗∗∗ -

η - - - - - 0.9740

HQIC 5.308 5.319 5.317 5.309 5.324 5.306

Daimler GARCH APARCH GJR FIGARCH FIAPARCH HYGARCH

ϱ 0.0079 0.0093 0.0091 0.0115 0.0119 0.0112

ω 0.0000∗∗∗ 0.0000∗∗∗ 0.0000∗∗∗ 0.0000∗∗∗ 0.0000∗∗∗ 0.0000∗∗∗

d - - - 0.3246∗∗∗ 0.3726∗∗∗ 0.5081∗

α 0.0757∗∗∗ 0.0753∗∗∗ 0.0597∗∗∗ 0.1600∗ 0.1775∗∗ 0.1294

β 0.8932∗∗∗ 0.8953∗∗∗ 0.8951∗∗∗ 0.4633∗∗∗ 0.5237∗∗∗ 0.5736∗∗∗

γ - 0.0897 0.0260 - 0.0485 -

δ - 1.8722∗∗∗ - - 1.7857∗∗∗ -

η - - - - - 0.9064∗

HQIC 5.346 5.341 5.344 5.348 5.343 5.345
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Deutsche Bank GARCH APARCH GJR FIGARCH FIAPARCH HYGARCH

ϱ 0.0488∗ 0.0464∗ 0.0464∗ 0.0539∗ 0.0494∗ 0.0543∗

ω 0.0000∗∗∗ 0.0000∗∗∗ 0.0000∗∗∗ 0.0000∗∗∗ 0.0000∗∗∗ 0.0000∗∗∗

d - - - 0.4449∗∗∗ 0.4294∗∗∗ 0.5044∗∗

α 0.0690∗∗∗ 0.0519∗∗∗ 0.0269∗∗ 0.2250∗∗∗ 0.2730∗∗∗ 0.2047∗∗

β 0.9147∗∗∗ 0.9303∗∗∗ 0.9279∗∗∗ 0.6300∗∗∗ 0.6567∗∗∗ 0.6571∗∗∗

γ - 0.3240∗∗∗ 0.0608∗∗∗ - 0.3168∗∗∗ -

δ - 1.9145∗∗∗ - - 1.7606∗∗∗ -

η - - - - - 0.9759

HQIC 5.536 5.540 5.542 5.539 5.543 5.536

Deutsche Börse GARCH APARCH GJR FIGARCH FIAPARCH HYGARCH

ϱ 0.0588∗ 0.0661∗∗∗ 0.0684∗∗ 0.0567∗ 0.0580∗

ω 0.0000∗∗∗ 0.0000∗∗∗ 0.0000∗∗∗ 0.0000∗∗∗ 0.0000∗∗∗

d - - - 0.2928∗∗∗ 0.8308∗∗∗

α 0.1251∗∗∗ 0.1139∗∗∗ 0.0688∗∗∗ 0.2103∗ 0.0562

β 0.7798∗∗∗ 0.8237∗∗∗ 0.7783∗∗∗ 0.3875∗∗∗ 0.6565∗∗∗

γ - 0.7052∗∗∗ 0.1250∗∗∗ - -

δ - 0.5524∗∗∗ - - -

η - - - - - 0.8561∗

HQIC 5.426 5.449 5.431 5.418 ncr 5.420

Deutsche Lufthansa GARCH APARCH GJR FIGARCH FIAPARCH HYGARCH

ϱ 0.0244 0.0277 0.0274 0.0380 0.0318 0.0359

ω 0.0000∗∗∗ 0.0000∗∗∗ 0.0000∗∗∗ 0.0000∗∗∗ 0.0000∗∗∗ 0.0000∗∗∗

d - - - 0.3945∗∗∗ 0.3393∗∗∗ 0.0017∗∗∗

α 0.0408∗∗∗ 0.0327∗ 0.0168∗ 0.3674∗∗∗ 0.3818∗∗∗ 0.4217

β 0.9524∗∗∗ 0.9555∗∗∗ 0.9514∗∗∗ 0.6236∗∗∗ 0.5984∗∗∗ 0.4618

γ - 0.4438 0.0475∗∗∗ - 0.2864∗∗∗ -

δ - 1.8952∗∗∗ - - 2.0171∗∗∗ -

η - - - - - 107.7916∗∗∗

HQIC 5.291 5.296 5.298 5.295 5.301 5.297

Deutsche Post GARCH APARCH GJR FIGARCH FIAPARCH HYGARCH

ϱ -0.0254 -0.0234 -0.0261 -0.0312 -0.0324 -0.0302

ω 0.0000∗∗∗ 0.0000∗∗∗ 0.0000∗∗∗ 0.0000∗∗∗ 0.0000∗∗∗ 0.0000∗∗∗

d - - - 0.4104∗∗∗ 0.3616∗∗∗ 0.2463

α 0.0405∗∗∗ 0.0471∗∗∗ 0.0449∗∗∗ 0.3249∗∗∗ 0.3434∗∗∗ 0.3618∗∗∗

β 0.9495∗∗∗ 0.9730∗∗∗ 0.9503∗∗∗ 0.6701∗∗∗ 0.6499∗∗∗ 0.6321∗∗∗

γ - -0.0334 -0.0076 - -0.0393 -

δ - 1.6654∗∗∗ - - 2.2019∗∗∗ -

η - - - - - 1.2246

HQIC 5.519 5.520 5.516 5.523 5.518 5.521
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Deutsche Telekom GARCH APARCH GJR FIGARCH FIAPARCH HYGARCH

ϱ 0.0303 0.0304 0.0304 0.0381 0.0258 0.0366

ω 0.0000∗∗∗ 0.0000∗∗∗ 0.0000∗∗∗ 0.0000∗∗∗ 0.0000∗∗∗ 0.0000∗∗∗

d - - - 0.3770∗∗∗ 0.1476∗∗ 0.2645

α 0.0543∗∗∗ 0.0545∗∗∗ 0.0542∗∗∗ 0.2933∗∗∗ 0.3843∗∗∗ 0.3274∗∗∗

β 0.9287∗∗∗ 0.9288∗∗∗ 0.9286∗∗∗ 0.6004∗∗∗ 0.4965∗∗∗ 0.5582∗∗∗

γ - 0.1733∗ 0.0006 - -0.0127 -

δ - 2.0304∗∗∗ - - 2.9276∗∗∗ -

η - - - - - 1.1417

HQIC 5.689 5.697 5.686 5.692 5.693 5.689

E.ON GARCH APARCH GJR FIGARCH FIAPARCH HYGARCH

ϱ -0.0386 -0.0398 -0.0398 -0.0422 -0.0411 -0.0401

ω 0.0000∗∗∗ 0.0000∗∗∗ 0.0000∗∗∗ 0.0000∗∗∗ 0.0000∗∗∗ 0.0000∗∗∗

d - - - 0.8466∗∗∗ 0.9125∗∗∗ 0.9184∗∗∗

α 0.0486∗∗∗ 0.0469∗∗∗ 0.0353∗∗∗ 0.2116∗∗∗ 0.1533∗ 0.1355∗

β 0.9394∗∗∗ 0.9382∗∗∗ 0.9382∗∗∗ 0.9205∗∗∗ 0.9323∗∗∗ 0.9292∗∗∗

γ - 0.1428 0.0254 - 0.1481 -

δ - 1.9979∗∗∗ - - 1.6992∗∗∗ -

η - - - - - 0.9882

HQIC 5.674 5.671 5.674 5.675 5.670 5.673

Fresenius MedCare GARCH APARCH GJR FIGARCH FIAPARCH HYGARCH

ϱ -0.0625∗∗ -0.0476∗∗ -0.0683∗∗ -0.0570∗∗ -0.0649∗∗ -0.0694∗∗

ω 0.0000∗∗∗ 0.0000∗∗∗ 0.0000∗∗∗ 0.0000∗∗∗ 0.0000∗∗∗ 0.0000∗∗∗

d - - - 0.6206∗∗∗ 1.0000∗∗∗ 0.1875

α 0.0376∗∗∗ 0.0324∗∗∗ 0.0165∗ 0.4567∗∗∗ 0.1328∗∗ 0.7329∗∗∗

β 0.9573∗∗∗ 0.9728∗∗∗ 0.9658∗∗∗ 0.8859∗∗∗ 0.9707∗∗∗ 0.8597∗∗∗

γ - 0.5021∗∗ 0.0301∗∗ - 0.1689 -

δ - 0.5307∗∗∗ - - 1.7987∗∗∗ -

η - - - - - 1.4977

HQIC 5.550 5.552 5.551 5.5575 5.557 5.556

Henkel GARCH APARCH GJR FIGARCH FIAPARCH HYGARCH

ϱ -0.0236 -0.0387 -0.0271 -0.0257 -0.0382 -0.0252

ω 0.0000∗∗∗ 0.0000∗∗∗ 0.0000∗∗∗ 0.0000∗∗∗ 0.0000∗∗∗ 0.0000∗∗∗

d - - - 0.2815∗∗∗ 0.4018∗∗∗ 0.6001∗∗

α 0.0722∗∗∗ 0.0620∗∗∗ 0.0109 0.4337∗∗∗ 0.3296∗∗∗ 0.3058∗∗

β 0.8775∗∗∗ 0.9189∗∗∗ 0.8820∗∗∗ 0.6013∗∗∗ 0.6596∗∗∗ 0.7006∗∗∗

γ - 0.7606∗∗∗ 0.1060∗∗∗ - 0.7775∗∗∗ -

δ - 0.8305∗∗∗ - - 0.8690∗∗∗ -

η - - - - - 0.8671∗

HQIC 5.832 5.844 5.843 5.831 5.848 5.829
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Infineon GARCH APARCH GJR FIGARCH FIAPARCH HYGARCH

ϱ 0.0175 0.0167 0.0173 0.0126 0.0122 0.0156

ω 0.0000∗∗∗ 0.0000∗∗∗ 0.0000∗∗∗ 0.0000∗∗∗ 0.0000∗∗∗ 0.0000∗∗∗

d - - - 0.4100∗∗∗ 0.3690∗∗∗ 0.1506

α 0.0654∗∗∗ 0.0612∗∗∗ 0.0557∗∗∗ 0.3743∗∗∗ 0.3928∗∗∗ 0.4395∗∗

β 0.9188∗∗∗ 0.9182∗∗∗ 0.9186∗∗∗ 0.6666∗∗∗ 0.6495∗∗∗ 0.5637∗∗

γ - 0.0830 0.0199 - 0.0811 -

δ - 2.1540∗∗∗ - - 2.1345∗∗∗ -

η - - - - - 1.5917

HQIC 4.793 4.788 4.790 4.794 4.789 4.791

Lanxess GARCH APARCH GJR FIGARCH FIAPARCH HYGARCH

ϱ 0.0178 0.0021 0.0215 0.0132 0.0241 0.0142

ω 0.0000∗∗ 0.0000∗∗ 0.0000∗∗ 0.0000∗∗ 0.0000∗∗ 0.0000∗∗

d - - - 0.1393∗∗ 0.1387∗ 0.7904∗∗∗

α 0.0638∗∗ 0.0648∗ 0.0138 0.0771 0.0433 0.0000

β 0.7682∗∗∗ 0.7622∗∗∗ 0.7634∗∗∗ 0.2021 0.1374 0.5181∗∗

γ - 0.1226 0.1364∗∗ - 0.9261 -

δ - 2.0011∗ - - 1.0149 -

η - - - - - 0.6707

HQIC 5.168 5.172 5.176 5.155 5.160 5.155

Linde GARCH APARCH GJR FIGARCH FIAPARCH HYGARCH

ϱ -0.0421 -0.0362∗ -0.0316 -0.0361 -0.0363

ω 0.0000∗∗∗ 0.0001∗∗∗ 0.0000∗∗∗ 0.0000∗∗∗ 0.0000∗∗∗

d - - - 0.2918∗∗∗ 0.0016∗∗∗

α 0.0302∗∗∗ 0.0336∗∗∗ 0.0377∗∗ 0.5814∗∗∗ 0.8596∗∗∗

β 0.9591∗∗∗ 0.9648∗∗∗ 0.9275∗∗∗ 0.7420∗∗∗ 0.9016∗∗∗

γ - 0.9787∗∗∗ 0.0941∗∗∗ - -

δ - 0.5539∗∗∗ - - -

η - - - - - 96.6890∗∗∗

HQIC 5.510 5.528 5.529 5.513 ncr 5.514

RWE GARCH APARCH GJR FIGARCH FIAPARCH HYGARCH

ϱ 0.0033 0.0033 0.0018 0.0032 0.0021 0.0031

ω 0.0000∗∗∗ 0.0000∗∗∗ 0.0000∗∗∗ 0.0000∗∗∗ 0.0000∗∗∗ 0.0000∗∗∗

d - - - 0.3428∗∗∗ 0.3551∗∗∗ 0.3135

α 0.0690∗∗∗ 0.0697∗∗∗ 0.0302∗ 0.5321∗∗∗ 0.4630∗∗∗ 0.5513∗∗∗

β 0.9024∗∗∗ 0.8949∗∗∗ 0.8947∗∗∗ 0.7011∗∗∗ 0.6685∗∗∗ 0.7015∗∗∗

γ - 0.3392∗∗∗ 0.0830∗∗∗ - 0.3106∗∗∗ -

δ - 1.7920∗∗∗ - - 1.6231∗∗∗ -

η - - - - - 1.0313

HQIC 5.604 5.610 5.613 5.607 5.612 5.604
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SAP GARCH APARCH GJR FIGARCH FIAPARCH HYGARCH

ϱ -0.0321 -0.0227 -0.0240 -0.0191 -0.0183 -0.0191

ω 0.0000∗∗∗ 0.0000∗∗∗ 0.0000∗∗∗ 0.0000∗∗∗ 0.0000∗∗∗ 0.0000∗∗∗

d - - - 0.5721∗∗∗ 0.5817∗∗∗ 0.5744∗∗∗

α 0.1304∗∗∗ 0.1375∗∗∗ 0.0974∗∗∗ 0.0491 0.0698 0.0489

β 0.8553∗∗∗ 0.8578∗∗∗ 0.8537∗∗∗ 0.5691∗∗∗ 0.5818∗∗∗ 0.5704∗∗∗

γ - 0.1597∗∗∗ 0.0751∗∗ - 0.1150∗ -

δ - 1.7742∗∗∗ - - 1.9080∗∗∗ -

η - - - - - 0.9986

HQIC 5.198 5.198 5.200 5.209 5.206 5.206

Siemens GARCH APARCH GJR FIGARCH FIAPARCH HYGARCH

ϱ 0.0539∗ 0.0528∗ 0.0535∗ 0.0517∗ 0.0532∗ 0.0545∗

ω 0.0000∗∗ 0.0000∗∗∗ 0.0000∗∗ 0.0000∗∗ 0.0000∗∗ 0.0000∗∗

d - - - 0.5085∗∗∗ 0.4089∗∗∗ 0.2450

α 0.0482∗∗∗ 0.0412∗∗∗ 0.0395∗∗∗ 0.2932∗∗∗ 0.3253∗∗∗ 0.3733∗∗∗

β 0.9441∗∗∗ 0.9447∗∗∗ 0.9426∗∗∗ 0.7417∗∗∗ 0.6815∗∗∗ 0.6234∗∗∗

γ - 0.1135 0.0189 - 0.1453∗ -

δ - 2.2711∗∗∗ - - 2.1410∗∗∗ -

η - - - - - 1.2614

HQIC 5.439 5.435 5.438 5.435 5.432 5.433

ThyssenKrupp GARCH APARCH GJR FIGARCH FIAPARCH HYGARCH

ϱ 0.0306 0.0323 0.0305 0.0257 0.0274 0.0266

ω 0.0000∗∗ 0.0000∗∗ 0.0000∗∗ 0.0000∗∗ 0.0000∗∗ 0.0000∗∗

d - - - 0.5620∗∗∗ 0.3783∗∗∗ 0.3779∗∗

α 0.0543∗∗∗ 0.0339∗∗∗ 0.0548∗∗∗ 0.4197∗∗∗ 0.5222∗∗∗ 0.5242∗∗∗

β 0.9383∗∗∗ 0.9437∗∗∗ 0.9386∗∗∗ 0.8248∗∗∗ 0.7650∗∗∗ 0.7882∗∗∗

γ - -0.0492 -0.0014 - -0.0051 -

δ - 2.7987∗∗∗ - - 2.4798∗∗∗ -

η - - - - - 1.0964

HQIC 5.195 5.192 5.192 5.202 5.198 5.200

TUI GARCH APARCH GJR FIGARCH FIAPARCH HYGARCH

ϱ 0.0178 0.0174 0.0178 0.0161 0.0160 0.0160

ω 0.0000∗∗∗ 0.0000∗∗∗ 0.0000∗∗∗ 0.0000∗∗∗ 0.0000∗∗∗ 0.0000∗∗∗

d - - - 0.5141∗∗∗ 0.6959∗∗∗ 0.4964∗∗

α 0.0520∗∗∗ 0.0668∗∗∗ 0.0482∗∗∗ 0.3375∗∗∗ 0.2468∗∗ 0.3458∗∗∗

β 0.9397∗∗∗ 0.9358∗∗∗ 0.9404∗∗∗ 0.7648∗∗∗ 0.8401∗∗∗ 0.7589∗∗∗

γ - 0.0115 0.0060 - 0.0419∗∗∗ -

δ - 1.4548∗∗∗ - - 1.6153∗∗∗ -

η - - - - - 1.0059

HQIC 5.090 5.087 5.088 5.092 5.089 5.090
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Volkswagen GARCH APARCH GJR FIGARCH FIAPARCH HYGARCH

ϱ 0.0793∗∗∗ 0.0785∗∗∗ 0.0787∗∗∗ 0.0802∗∗∗ 0.0803∗∗∗ 0.0798∗∗∗

ω 0.0000∗∗∗ 0.0000∗∗∗ 0.0000∗∗∗ 0.0000∗∗∗ 0.0000∗∗∗ 0.0000∗∗∗

d - - - 0.4202∗∗∗ 0.4549∗∗∗ 0.3594

α 0.0834∗∗∗ 0.0819∗∗∗ 0.0657∗∗∗ 0.2594∗∗∗ 0.2697∗∗∗ 0.2762∗∗∗

β 0.8912∗∗∗ 0.8879∗∗∗ 0.8883∗∗∗ 0.6135∗∗∗ 0.6562∗∗∗ 0.5850∗∗∗

γ - 0.1165∗ 0.0390∗ - 0.1160 -

δ - 2.0795∗∗∗ - - 1.9195∗∗∗ -

η - - - - - 1.0451

HQIC 5.258 5.255 5.258 5.262 5.259 5.259

B.2 Results for the Assumption of a Student-t Conditional Distribution

Adidas GARCH APARCH GJR FIGARCH FIAPARCH HYGARCH

ϱ 0.0165 0.0220 0.0168 0.0227 0.0235 0.0188

ω 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

d - - - 0.2920∗∗∗ 0.4078∗∗∗ 0.0029∗∗∗

α 0.0179∗∗∗ 0.0658∗∗∗ 0.0161∗∗ 0.6714∗∗∗ 0.3961∗∗∗ 0.8998∗∗∗

β 0.9809∗∗∗ 0.9262∗∗∗ 0.9788∗∗∗ 0.8003∗∗∗ 0.6914∗∗∗ 0.9528∗∗∗

γ - 0.4548∗∗ 0.0065 - 0.5873∗ -

δ - 1.1189∗∗∗ - - 0.8930∗∗ -

η - - - - - 74.1804∗∗∗

HQIC 5.771 5.767 5.769 5.772 5.769 5.771

Allianz GARCH APARCH GJR FIGARCH FIAPARCH HYGARCH

ϱ 0.0591∗∗ 0.0600∗∗ 0.0622∗∗ 0.0598∗∗ 0.0603∗∗ 0.0588∗∗

ω 0.0000∗∗ 0.0000∗∗ 0.0000∗∗ 0.0000∗∗ 0.0000∗∗ 0.0000∗∗

d - - - 0.4740∗∗∗ 0.2749∗∗∗ 0.2392

α 0.0930∗∗∗ 0.0706∗∗∗ 0.0444∗∗ 0.2338∗∗∗ 0.1524 0.2342

β 0.8976∗∗∗ 0.8900∗∗∗ 0.8989∗∗∗ 0.5940∗∗∗ 0.3488∗ 0.4316∗∗

γ - 0.2245∗∗∗ 0.0899∗∗∗ - 0.2506∗∗∗ -

δ - 2.6010∗∗∗ - - 2.4183∗∗∗ -

η - - - - - 130744∗∗∗

HQIC 5.321 5.328 5.3293 5.322 5.3295 5.320
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BASF GARCH APARCH GJR FIGARCH FIAPARCH HYGARCH

ϱ -0.0460∗ -0.0457∗ -0.0456∗ -0.0423 -0.0438 -0.0429

ω 0.0000∗∗ 0.0000∗∗ 0.0000∗∗ 0.0000∗∗ 0.0000∗∗ 0.0000∗∗

d - - - 0.3714∗∗∗ 0.2588∗ 0.1441

α 0.0700∗∗∗ 0.0658∗∗∗ 0.0199 0.2022 0.2298 0.0998

β 0.9167∗∗∗ 0.9053∗∗∗ 0.9053∗∗∗ 0.4919∗∗∗ 0.4256∗ 0.2587

γ - 0.4433∗ 0.1143∗∗∗ - 0.3509∗∗ -

δ - 2.0102∗∗∗ - - 2.2460∗∗∗ -

η - - - - - 14200∗∗∗

HQIC 5.802 5.820 5.818 5.801 5.813 5.800

Bayer GARCH APARCH GJR FIGARCH FIAPARCH HYGARCH

ϱ 0.0215 0.0241 0.0258 0.0248 0.0252

ω 0.0000∗∗∗ 0.0000∗∗∗ 0.0000∗∗∗ 0.0000∗∗∗ 0.0000∗∗∗

d - - - 0.3955∗∗∗ 0.2525

α 0.0706∗∗∗ 0.0433∗∗∗ 0.0253∗∗∗ 0.2553∗∗ 0.2451

β 0.9156∗∗∗ 0.9497∗∗∗ 0.9435∗∗∗ 0.5602∗∗∗ 0.4531∗

γ - 0.9878∗∗∗ 0.9877∗∗∗ - -

δ - 1.2341∗∗∗ - - -

η - - - - - 199.099∗∗∗

HQIC 5.333 5.355 5.360 5.332 ncr 5.330

BMW GARCH APARCH GJR FIGARCH FIAPARCH HYGARCH

ϱ 0.0178 0.0172 0.0175 0.0174 0.0158 0.0165

ω 0.0000∗∗∗ 0.0000∗∗∗ 0.0000∗∗∗ 0.0000∗∗∗ 0.0000∗∗∗ 0.0000∗∗∗

d - - - 0.5223∗∗∗ 0.4680∗∗∗ 0.3607∗

α 0.0541∗∗∗ 0.0488∗∗ 0.0377∗∗ 0.2715∗∗∗ 0.3010∗∗∗ 0.3452∗∗∗

β 0.9400∗∗∗ 0.9402∗∗∗ 0.9388∗∗∗ 0.7321∗∗∗ 0.7107∗∗∗ 0.6834∗∗∗

γ - 0.1683 0.0311 - 0.1601 -

δ - 2.0706∗∗∗ - - 2.0309∗∗∗ -

η - - - - - 2248.7∗∗∗

HQIC 5.589 5.585 5.588 5.590 5.586 5.587

Continental GARCH APARCH GJR FIGARCH FIAPARCH HYGARCH

ϱ -0.0184 -0.0164 -0.0205 -0.0160 -0.0154 -0.0158

ω 0.0000∗∗ 0.0000∗∗ 0.0000∗∗ 0.0000∗∗ 0.0000∗∗ 0.0000∗∗

d - - - 0.3691∗∗∗ 0.5147∗∗∗ 0.3394

α 0.1007∗∗∗ 0.0976∗∗∗ 0.0501∗∗ 0.1349 0.2349∗∗∗ 0.1323

β 0.8635∗∗∗ 0.8840∗∗∗ 0.8667∗∗∗ 0.4259∗∗ 0.6724∗∗∗ 0.4044

γ - 0.4398∗∗∗ 0.1032∗∗∗ - 0.5496∗∗ -

δ - 1.2146∗∗∗ - - 1.0494∗∗∗ -

η - - - - - 416.089∗∗∗

HQIC 5.347 5.352 5.352 5.348 5.353 5.344
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Daimler GARCH APARCH GJR FIGARCH FIAPARCH HYGARCH

ϱ 0.0083 0.0111 0.0093 0.0135 0.0137 0.0123

ω 0.0000∗∗∗ 0.0000∗∗∗ 0.0000∗∗∗ 0.0000∗∗∗ 0.0000∗∗∗ 0.0000∗∗∗

d - - - 0.0478∗∗∗ 0.5919∗∗∗ 0.2371

α 0.0678∗∗∗ 0.0817∗∗∗ 0.0503∗∗∗ 0.1567∗∗ 0.1516∗ 0.1997∗

β 0.9239∗∗∗ 0.9165∗∗∗ 0.9209∗∗∗ 0.6218∗∗∗ 0.7065∗∗∗ 0.4873∗∗∗

γ - 0.1698∗ 0.0397∗∗∗ - 0.1412 -

δ - 1.6028∗∗∗ - - 1.7251∗∗∗ -

η - - - - - 622.478∗∗∗

HQIC 5.409 5.407 5.409 5.411 5.407 5.408

Deutsche Bank GARCH APARCH GJR FIGARCH FIAPARCH HYGARCH

ϱ 0.0420∗ 0.0409 0.0407 0.0454∗ 0.0407 0.0447∗

ω 0.0000∗∗∗ 0.0000∗∗∗ 0.0000∗∗∗ 0.0000∗∗∗ 0.0000∗∗∗ 0.0000∗∗∗

d - - - 0.5479∗∗∗ 0.3717∗∗∗ 0.3891∗∗

α 0.0724∗∗∗ 0.0473∗∗ 0.0164 0.1913∗∗∗ 0.3053∗∗∗ 0.2450∗∗∗

β 0.9226∗∗∗ 0.9386∗∗∗ 0.9336∗∗∗ 0.6931∗∗∗ 0.6251∗∗∗ 0.6279∗∗∗

γ - 0.5424∗∗ 0.0901∗∗∗ - 0.4510∗∗∗ -

δ - 1.8653∗∗∗ - - 2.0079∗∗∗ -

η - - - - - 3116.6∗∗∗

HQIC 5.567 5.578 5.580 5.569 5.579 5.567

Deutsche Börse GARCH APARCH GJR FIGARCH FIAPARCH HYGARCH

ϱ 0.0500∗ 0.0661∗ 0.0547∗ 0.0517∗ 0.0503∗

ω 0.0000∗∗∗ 0.0000∗∗∗ 0.0000∗∗∗ 0.0000∗∗∗ 0.0000∗∗∗

d - - - 0.4106∗∗∗ 0.8750∗∗∗

α 0.1744∗∗∗ 0.1331∗∗∗ 0.1019∗∗∗ 0.1503∗∗∗ 0.0453

β 0.7345∗∗∗ 0.8104∗∗∗ 0.7416∗∗∗ 0.3684∗∗∗ 0.06454∗∗∗

γ - 0.6114∗∗∗ 0.1556∗ - -

δ - 0.5666∗∗ - - -

η - - - - - 102.044∗∗∗

HQIC 5.510 5.513 5.514 5.505 ncr 5.505

Deutsche Lufthansa GARCH APARCH GJR FIGARCH FIAPARCH HYGARCH

ϱ 0.0002 0.0021 0.0023 0.0052 0.0049 0.0027

ω 0.0000∗∗∗ 0.0000∗∗∗ 0.0000∗∗∗ 0.0000∗∗∗ 0.0000∗∗∗ 0.0000∗∗∗

d - - - 0.4361∗∗∗ 0.4062∗∗∗ 0.0404

α 0.0788∗∗ 0.0981∗∗∗ 0.0560∗ 0.2653∗∗ 0.2703∗∗ 0.2892

β 0.9137∗∗∗ 0.9032∗∗∗ 0.9074∗∗∗ 0.5669∗∗∗ 0.5496∗∗∗ 0.3535

γ - 0.2017∗∗ 0.0545∗ - 0.1995∗∗ -

δ - 1.4724∗∗∗ - - 2.0163∗∗∗ -

η - - - - - 245.501∗∗∗

HQIC 5.349 5.348 5.350 5.352 5.351 5.351
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Deutsche Post GARCH APARCH GJR FIGARCH FIAPARCH HYGARCH

ϱ -0.0216 -0.0197 -0.0214 -0.0243 -0.0230 -0.0241

ω 0.0000∗∗∗ 0.0000∗∗∗ 0.0000∗∗∗ 0.0000∗∗∗ 0.0000∗∗∗ 0.0000∗∗∗

d - - - 0.4656∗∗∗ 0.4985∗∗∗ 0.2335

α 0.0864∗∗∗ 0.0934∗∗∗ 0.0840∗∗∗ 0.3426∗∗∗ 0.3305∗∗∗ 0.4538∗∗∗

β 0.8994∗∗∗ 0.9000∗∗∗ 0.8981∗∗∗ 0.6918∗∗∗ 0.7050∗∗∗ 0.6457∗∗∗

γ - 0.0323 0.0068 - 0.0527 -

δ - 1.7285∗∗∗ - - 1.8657∗∗∗ -

η - - - - - 401.336∗∗∗

HQIC 5.569 5.564 5.567 5.5710 5.566 5.569

Deutsche Telekom GARCH APARCH GJR FIGARCH FIAPARCH HYGARCH

ϱ -0.0026 -0.0010 -0.0011 0.0028 0.0037 0.0013

ω 0.0000∗∗∗ 0.0000∗∗∗ 0.0000∗∗∗ 0.0000∗∗∗ 0.0000∗∗∗ 0.0000∗∗∗

d - - - 0.4593∗∗∗ 0.3564∗∗∗ 0.1431

α 0.0711∗∗∗ 0.0772∗∗∗ 0.0592∗∗∗ 0.2199∗∗ 0.1998∗ 0.2346

β 0.9241∗∗∗ 0.9189∗∗∗ 0.9200∗∗∗ 0.6028∗∗∗ 0.4863∗∗∗ 0.4128∗

γ - 0.1151 0.0328 - 0.1368 -

δ - 1.9339∗∗∗ - - 2.2804∗∗∗ -

η - - - - - 79.0673∗∗∗

HQIC 5.800 5.797 5.799 5.801 5.798 5.800

E.ON GARCH APARCH GJR FIGARCH FIAPARCH HYGARCH

ϱ -0.0371 -0.0322 -0.0379 -0.0341 -0.0292 -0.0342

ω 0.0000∗∗∗ 0.0000∗∗∗ 0.0000∗∗∗ 0.0000∗∗∗ 0.0000∗∗∗ 0.0000∗∗∗

d - - - 0.4680∗∗∗ 0.5283∗∗∗ 0.5127∗∗

α 0.0658∗∗∗ 0.0698∗∗∗ 0.0341∗ 0.3118∗∗∗ 0.3029∗∗∗ 0.2942∗∗

β 0.9196∗∗∗ 0.9229∗∗∗ 0.9149∗∗∗ 0.6740∗∗∗ 0.7227∗∗∗ 0.6919∗∗∗

γ - 0.5593∗∗ 0.0683∗∗ - 0.7150∗∗∗ -

δ - 1.2616∗∗∗ - - 1.0080∗∗∗ -

η - - - - - 176.355∗∗∗

HQIC 5.737 5.7381 5.7386 5.734 5.7389 5.731

Fresenius MedCare GARCH APARCH GJR FIGARCH FIAPARCH HYGARCH

ϱ -0.0761∗∗∗ -0.0760∗∗∗ -0.0769∗∗∗ -0.0745∗∗ -0.0736∗∗ -0.0799∗∗∗

ω 0.0000∗∗∗ 0.0000∗∗∗ 0.0000∗∗∗ 0.0000∗∗∗ 0.0000∗∗∗ 0.0000∗∗∗

d - - - 0.3781∗∗∗ 0.3487∗∗ 0.0227

α 0.0594∗∗∗ 0.0720∗∗∗ 0.0256∗∗∗ 0.5982∗∗∗ 0.6036∗∗∗ 0.9799∗∗∗

β 0.9257∗∗∗ 0.9266∗∗∗ 0.9365∗∗∗ 0.7729∗∗∗ 0.7577∗∗∗ 0.9867∗∗∗

γ - 0.2835∗∗ 0.0581∗∗∗ - 0.2367∗∗∗ -

δ - 1.5118∗∗∗ - - 2.0894∗∗∗ -

η - - - - - 372.747∗∗∗

HQIC 5.635 5.638 5.640 5.6429 5.643 5.641
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Henkel GARCH APARCH GJR FIGARCH FIAPARCH HYGARCH

ϱ -0.0474∗ -0.0484∗ -0.0502∗ -0.0494∗ -0.0484∗ -0.0494∗

ω 0.0000∗∗∗ 0.0000∗∗∗ 0.0000∗∗∗ 0.0000∗∗∗ 0.0000∗∗∗ 0.0000∗∗∗

d - - - 0.2807∗∗∗ 0.3317∗∗∗ 0.2600

α 0.0685∗∗∗ 0.0629∗∗∗ 0.0475∗ 0.4159∗∗ 0.3356∗∗∗ 0.4219∗∗

β 0.8878∗∗∗ 0.9005∗∗∗ 0.8806∗∗∗ 0.5762∗∗∗ 0.5914∗∗∗ 0.5706∗∗∗

γ - 0.7066∗∗ 0.1251∗∗∗ - 0.6949∗∗ -

δ - 1.3280∗∗∗ - - 1.2819∗∗∗ -

η - - - - - 92.712∗∗∗

HQIC 5.919 5.924 5.923 5.919 5.927 5.916

Infineon GARCH APARCH GJR FIGARCH FIAPARCH HYGARCH

ϱ 0.0283 0.0283 0.0283 0.0275 0.0282 0.0295

ω 0.0000∗∗∗ 0.0000∗∗∗ 0.0000∗∗∗ 0.0000∗∗∗ 0.0000∗∗∗ 0.0000∗∗∗

d - - - 0.4922∗∗∗ 0.4306∗∗∗ 0.1979

α 0.0633∗∗∗ 0.0609∗∗∗ 0.0512∗∗∗ 0.3260∗∗∗ 0.3476∗∗∗ 0.4024∗∗∗

β 0.9283∗∗∗ 0.9309∗∗∗ 0.9305∗∗∗ 0.7098∗∗∗ 0.6798∗∗∗ 0.5828∗∗∗

γ - 0.0875 0.0203 - 0.0803 -

δ - 1.9860∗∗∗ - - 2.1650∗∗∗ -

η - - - - - 12510.2∗∗∗

HQIC 4.822 4.817 4.820 4.821 4.816 4.819

Lanxess GARCH APARCH GJR FIGARCH FIAPARCH HYGARCH

ϱ -0.0183 -0.0179 -0.0179 -0.0261 -0.0210 -0.0236

ω 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

d - - - 0.2222∗∗ 0.2904∗ 0.6730∗

α 0.0577∗ 0.0645 0.0156 0.0258 0.3682 0.0000

β 0.8510∗∗∗ 0.8112∗∗∗ 0.8113∗∗∗ 0.2758 0.3682∗ 0.5025∗

γ - 0.5033∗∗∗ 0.1298∗ - 0.5885 -

δ - 0.8343 - - 0.8722 -

η - - - - - 146.028∗∗∗

HQIC 5.222 5.226 5.229 5.218 5.218 5.216

Linde GARCH APARCH GJR FIGARCH FIAPARCH HYGARCH

ϱ -0.0479∗ -0.0507∗ -0.0390 -0.0460∗ -0.0398∗ -0.0436

ω 0.0000∗∗∗ 0.0000∗∗∗ 0.0000∗∗∗ 0.0000∗∗∗ 0.0000∗∗∗ 0.0000∗∗∗

d - - - 0.3785∗∗∗ 0.3623∗∗∗ 0.0015∗∗∗

α 0.0350∗∗ 0.0316∗∗∗ 0.0709∗∗∗ 0.4714∗∗∗ 0.3533∗∗∗ 0.9345∗∗∗

β 0.9627∗∗∗ 0.9739∗∗∗ 0.9049∗∗∗ 0.7038∗∗∗ 0.6073∗∗∗ 0.9652∗∗∗

γ - 0.9999∗∗∗ 0.3480∗∗∗ - 0.4850∗∗ -

δ - 0.7783∗∗∗ - - 1.6697∗∗∗ -

η - - - - - 74.896∗∗∗

HQIC 5.607 5.615 5.613 5.607 5.614 5.611
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RWE GARCH APARCH GJR FIGARCH FIAPARCH HYGARCH

ϱ 0.0030 0.0021 0.0008 0.0045 0.0009 0.0045

ω 0.0000∗∗∗ 0.0000∗∗∗ 0.0000∗∗∗ 0.0000∗∗∗ 0.0000∗∗∗ 0.0000∗∗∗

d - - - 0.3815∗∗∗ 0.3960∗∗∗ 0.2837

α 0.0619∗∗∗ 0.0700∗∗∗ 0.0343∗ 0.4646∗∗∗ 0.4178∗∗∗ 0.5166∗∗∗

β 0.9200∗∗∗ 0.9064∗∗∗ 0.9059∗∗∗ 0.6870∗∗∗ 0.6676∗∗∗ 0.6761∗∗∗

γ - 0.2959∗∗ 0.0696∗∗ - 0.2890∗∗ -

δ - 1.7333∗∗∗ - - 1.6355∗∗∗ -

η - - - - - 13436.1∗∗∗

HQIC 5.621 5.623 5.625 5.622 5.624 5.619

SAP GARCH APARCH GJR FIGARCH FIAPARCH HYGARCH

ϱ -0.0130 -0.0099 -0.0093 -0.0148 0.0009 -0.0133

ω 0.0000∗∗∗ 0.0000∗∗∗ 0.0000∗∗∗ 0.0000∗∗∗ 0.0000∗∗∗ 0.0000∗∗∗

d - - - 0.5119∗∗∗ 0.3960∗∗∗ 0.2888

α 0.0713∗∗∗ 0.0753∗∗∗ 0.0358∗ 0.2344∗∗∗ 0.4178∗∗∗ 0.2915∗∗∗

β 0.9252∗∗∗ 0.9364∗∗∗ 0.9390∗∗∗ 0.6742∗∗∗ 0.6676∗∗∗ 0.5756∗∗∗

γ - 0.2592∗∗ 0.0465∗∗ - 0.2890∗∗ -

δ - 1.3090∗∗∗ - - 1.6355∗∗∗ -

η - - - - - 61.6701∗∗∗

HQIC 5.335 5.338 5.336 5.335 5.339 5.334

Siemens GARCH APARCH GJR FIGARCH FIAPARCH HYGARCH

ϱ 0.0392 0.0382 0.0382 0.0409 0.0392 0.0409

ω 0.0000∗∗∗ 0.0000∗∗∗ 0.0000∗∗∗ 0.0000∗∗∗ 0.0000∗∗∗ 0.0000∗∗∗

d - - - 0.7035∗∗∗ 0.4427∗∗ 0.3689

α 0.0509∗∗∗ 0.0388∗∗ 0.0378∗∗∗ 0.1883 0.3332∗∗∗ 0.3412∗∗∗

β 0.9456∗∗∗ 0.9486∗∗∗ 0.9450∗∗∗ 0.8428∗∗∗ 0.7247∗∗∗ 0.7086∗∗∗

γ - 0.1470∗∗∗ 0.0269 - 0.1599∗ -

δ - 2.4089∗∗∗ - - 2.3055∗∗∗ -

η - - - - - 1327.03∗∗∗

HQIC 5.471 5.468 5.470 5.469 5.466 5.466

ThyssenKrupp GARCH APARCH GJR FIGARCH FIAPARCH HYGARCH

ϱ 0.0227 0.0228 0.0227 0.0195 0.0189 0.0199

ω 0.0000∗∗∗ 0.0000∗∗∗ 0.0000∗∗∗ 0.0000∗∗∗ 0.0000∗∗∗ 0.0000∗∗∗

d - - - 0.7145∗∗∗ 0.5618∗∗ 0.4187∗

α 0.0624∗∗∗ 0.0671∗∗∗ 0.0583∗∗∗ 0.3192∗ 0.4143∗∗∗ 0.4968∗∗∗

β 0.9348∗∗∗ 0.9320∗∗∗ 0.9328∗∗∗ 0.8697∗∗∗ 0.8166∗∗∗ 0.7978∗∗∗

γ - 0.0547 0.0115 - 0.0437 -

δ - 1.8896∗∗∗ - - 2.2043∗∗∗ -

η - - - - - 883.331

HQIC 5.231 5.226 5.229 5.234 5.229 5.232
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TUI GARCH APARCH GJR FIGARCH FIAPARCH HYGARCH

ϱ 0.0177 0.0148 0.0171 0.0139 0.0126 0.0159

ω 0.0000∗∗∗ 0.0000∗∗∗ 0.0000∗∗∗ 0.0000∗∗∗ 0.0000∗∗∗ 0.0000∗∗∗

d - - - 0.5858∗∗∗ 0.6132∗∗ 0.3419

α 0.0514∗∗∗ 0.0620∗∗∗ 0.0352∗∗ 0.3005∗∗∗ 0.2911∗ 0.4107∗∗∗

β 0.9467∗∗∗ 0.9378∗∗∗ 0.9532∗∗∗ 0.7942∗∗∗ 0.8084∗∗∗ 0.7228∗∗∗

γ - 0.1105 0.0204 - 0.0813 -

δ - 1.4791∗∗∗ - - 1.9194∗∗∗ -

η - - - - - 96.3127∗∗∗

HQIC 5.1707 5.167 5.169 5.1708 5.166 5.168

Volkswagen GARCH APARCH GJR FIGARCH FIAPARCH HYGARCH

ϱ 0.0646∗∗ 0.0639∗∗ 0.0639∗∗ 0.0658∗∗ 0.0655∗∗ 0.0658∗∗

ω 0.0000∗∗∗ 0.0000∗∗∗ 0.0000∗∗∗ 0.0000∗∗∗ 0.0000∗∗∗ 0.0000∗∗∗

d - - - 0.5301∗∗∗ 0.5890∗∗∗ 0.5504∗

α 0.0919∗∗∗ 0.0910∗∗∗ 0.0660∗∗∗ 0.2232∗∗∗ 0.2057∗∗ 0.2147

β 0.8902∗∗∗ 0.8914∗∗∗ 0.8913∗∗∗ 0.6809∗∗∗ 0.7264∗∗∗ 0.6894∗∗∗

γ - 0.1499∗ 0.0538∗ - 0.1760∗∗ -

δ - 1.9965∗∗∗ - - 1.8784∗∗∗ -

η - - - - - 396.629∗∗∗

HQIC 5.3182 5.315 5.3180 5.3183 5.316 5.315

C Standard & Poor’s 1 Year Credit Ratings

The categories along with the ratings and PD’s are adopted from Henking et al. (2006).

Rating PD (in %) Rating category

AAA <0.01 Prime

AA+ <0.02

AA <0.03 High grade

AA- <0.04

A+ <0.05

A <0.08 Upper medium grade

A- <0.13

BBB+ <0.22

BBB <0.36 Lower medium grade

BBB- <0.58

Rating PD (in %) Rating category

BB+ <0.94

BB <1.55 Speculative

BB- <2.50

B+ <4.08

B <6.75 Highly speculative

B- <10.88

CCC <17.75

CC <29.35 Extremely speculative

C >29.35

D In default
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3 Model Risk in Backtesting Risk Measures

Co-authored with Corinna Evers

3.1 Introduction

Backtesting provides an instrument to analyze whether a model used for calculating risk measures

is accurate. Since severe implications for the solvency capital arise from the calculation of risk

measures, backtesting procedures are considered to be a core concern of supervisory activity, which

strives to ensure the resilience of financial institutions in order to alleviate the impact of financial

crisis.

The regulations issued by the Basel Committee on Banking Supervision (1996b) state that the

calculation for the market capital requirement for the prevention of losses which result from adverse

market conditions should be computed as follows: the maximum of either the 1% Value at Risk

(VaR) or the average VaR reported over the previous 60 days is multiplied by a factor that depends

on the sum of the VaR violations across the reporting period (traffic-light approach). Thus, the

accuracy of the VaR model is closely linked to the regulatory framework. As defined by Kupiec

(1995) and Christoffersen (1998), an accurate VaR model needs to satisfy two properties.

Firstly, the property of unconditional coverage claims that the probability of a violation equals the

α level set for the VaR model. Unconditional coverage exists if

P (I(α) = 1) = α (21)

holds, whereby {It} denotes the hit sequence indicating whether or not a violation occurred at time

t. The VaR model is deemed to be inaccurate (in the sense of failing to account for the incurred

risk) if the number of violations exceeds the expected loss. The risk model is too conservative if

the VaR model yields less violations than expected.

A second claim is the independence of the elements of the hit sequence. Contrary to a situation

in which the violations are spread out evenly over the reporting horizon, the financial institution

might not be able to tackle the losses if the violations occur in a cluster. Next to the property of

unconditional coverage, an accurate VaR model is therefore characterized by satisfying the attribute

of independence as well. This property is fulfilled if the hit sequence consists of independent

Bernoulli random variables which are identically distributed with probability α, that is

It(α)
iid∼ Ber(α). (22)

Backtests are statistical tests designed for determining the accuracy of VaR models. While several

tests have been proposed for each of the two properties, joint tests determine whether the VaR

model is entirely accurate in the sense of fulfilling both (21) and (22). However, joint tests are

not considered to be universally preferable over single-property tests as they entail that the ability
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to detect the infringement of one of the two properties is decreasing (see Campbell (2005)). A

type I error arises if an accurate model with a coverage of 99% is erroneously rejected. If the

VaR model is inaccurate involving a lower coverage rate, e.g. 2%, a type II error represents the

probability that the inaccurate model is not rejected. If the power of the backtest remains low, the

probability of classifying an inaccurate model to be accurate (not rejecting the null) is comparatively

high. Therefore, backtests should not be over- or undersized and feature high power. However,

Escanciano and Olmo (2007) emphasize that standard backtesting approaches which neglect the

presence of estimation risk are misleading.

This paper analyzes the problems of the most common backtesting procedures within a Monte

Carlo study. The main result of this paper consists in the finding that even when accounting for

the presence of estimation risk, the problems which arise from conducting common backtesting

procedures cannot be alleviated, especially for the restrictions set by the regulation side. The

remainder of the paper is organized as follows: subsequently, Section 3.2 describes the most relevant

classes of backtesting procedures. In Section 3.3, we conduct a Monte Carlo study and examine the

problems that arise when conducting univariate backtests in the view of regulatory aspects. The

study includes very simple procedures as well as backtests which take the impact of estimation and

misspecification risk into account. Finally, the Section 3.4 provides a conclusion.

3.2 Overview of Backtesting Procedures

Backtests can be distinguished by two categories: frequency-based and size-based tests. While

frequency-based tests examine only the sequence which indicates whether a violation has occurred

for the realized profit and loss series at the respective point in time, size-based tests are constructed

from the size of the exceedance. As the regulatory framework is based upon the violations and

not on their size, size-based tests are relatively rare to be found in the literature due to regulatory

constraints (see Lopez (1998)).

3.2.1 Kupiec Tests for Unconditional Coverage

The most basic backtests for testing the unconditional coverage property are given by the time

until first failure (TUFF) test and its generalization, the proportion of failures (POF) test, both

suggested by Kupiec (1995). As shown by Kupiec (1995), the simplicity of the TUFF test entails

that the total number of failures which occurred since the start of the monitoring is ignored. Thus,

the POF test should always be run to validate potential loss estimates in place or in addition. In

contrast to the TUFF framework, in which only the elapsed time until the first failure is considered,

the POF uses the entire information. For this purpose (and all further analyses), consider a hit

sequence {It}nt=1 of size n, whereby ∀t : It ∈ {0, 1} applies. The number of hits (i.e. the observations

for which It = 1 is observed) is denoted by n1, while n0 = n−n1 (i.e. n0 = ♯(t : It = 0)) stands for

the number of observations without a violation. The probability of observing n1 hits in a sample
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of size n is given by the probability function of the binomial distribution,

P (♯(t : It = 1) = n1) =

(
n

n1

)
(1− α)n0 αn1 .

For the null hypothesis of the POF test, H0 : α = Π̂ with Π̂ = n1
n , the associated test is a Likelihood

Ratio (LR) test. The test statistic is given by

K = −2 log
(
L(α)/L(Π̂)

)
,

whereat α denotes the failure probability under the null, while L(·) represents the corresponding

Likelihood function.

However, if the sample size is relatively small, both tests appear to have poor ability to distinguish

between the underlying failure probability in the null hypothesis and failure probabilities which are

slightly higher (see Kupiec (1995)). Thus, these frameworks might not be adequate for the analysis

of the accuracy of VaR estimates which are evaluated over only a single trading year. Furthermore,

a frequently arising problem consists in the absence of violations during the reporting period. This

issue becomes most important if VaR models with a small failure probability are evaluated. In

these cases, the Kupiec tests are not computable.

3.2.2 Christoffersen Tests for Independence and Conditional Coverage

When testing the iid hypothesis of the hit sequence, the autocorrelation of the sequence itself or

the distance of the time span between consecutive violations is examined. Tests for independence of

the observations require the complete specification of the alternative hypotheses in the sense that

the structure in which violation clusters occur needs to be specified exactly. Autocorrelation-based

tests can be constructed by testing the autocorrelation structure in the hit sequence {It} itself or

in the demeaned sequence {It−α}, which forms a sequence of martingale difference summands (see

Berkowitz et al. (2011)).

The LR-type test proposed by Christoffersen (1998) represents the first test of this kind. The

basic idea behind this test consists in the following comparison: if there is no dependence between

two consecutive observations, then the probability of monitoring no violation on the day after a

violation occurred should be equal to the probability of monitoring no violation when no violation

was observed on the day before.

Like the tests proposed by Kupiec (1995), a LR framework which is based on Markov chains is

used for the test. The independence of the observations of the hit sequence is tested under the null

against the alternative of a first-order Markov chain, in which the stochastic matrix

Π1 =

(
π00 π01

π10 π11

)
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contains the transition probabilities πi,j = P (It = i|It−1 = j) , i, j ∈ {0, 1}. Let nij be the number

of observations, which yield the value i ∈ {0; 1} at some time t and the value j ∈ {0; 1} at time

t− 1. Then,

L(Π1) := L(Π1; {It}) = πn00
00 π

n01
01 π

n10
10 π

n11
11

constitutes the likelihood of the hit sequence {It} under validity of the alternative model, while the

likelihood for the null model can be computed by considering the stochastic matrix

Π2 =

(
1− π2 π2

1− π2 π2

)
.

The application of this model under the null makes it easy to see that the independence of the hit

sequence is tested by this means since the rows all exhibit the same entries. Under the null, the

previous observations do not influence the probability of monitoring a violation. The entries π2

represent the probability of a violation. Accordingly, the number of observations are aggregated

over index j as the past value j has no influence on the present value i. Thus, the probability of

observing a violation is given by

π2 =
n01 + n11

n00 + n01 + n10 + n11
,

so that the likelihood function under the null model can be computed by

L(Π2) := L(Π2; {It}) = (1− π2)
(n00+n10) π

(n01+n11)
2 .

Using L(Π1) and L(Π2), the LR test statistic for the Christoffersen test of independence can be

defined by

LR.IND = −2 log

(
L(Π1)

L(Π2)

)
.

Under validity of H0, LR.IND is χ2 distributed with one degree of freedom. Note that the Christof-

fersen (1998) test provides no opportunity of testing conditional coverage as LR.IND does not de-

pend on the true coverage probability α. A joint test for both testing the independence and the

conditional coverage property is provided below.

A problem which arises when using this procedure is that the Christoffersen (1998) test of inde-

pendence only examines the dependence between two consecutive observations. Campbell (2005)

refers to the possibility that the probability of monitoring a violation today may not be influenced

by a yesterday’s observation, but still could be influenced by prior observations.

Next to the test of independence of the hit sequence, Christoffersen (1998) introduces a test for

unconditional coverage, testing E[It] = α against its alternative E[It] ̸= α. The joint test for the

presence of both conditional coverage and independence, which is proposed by Christoffersen (1998)

as well, combines the single-property tests in order to examine whether both properties are jointly
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fulfilled.

The basic idea is as simple as for the independence test: first, if the unconditional coverage property

is fulfilled, then n00+n10
n00+n01+n10+n11

= α must hold, implying that the number of violations matches

with the hit probability α. Furthermore, as stated previously, the probability of a non-violation to

follow a previous hit equals the probability of a non-violation to follow a previous non-violation.

Thus, n00
n00+n01

= n10
n10+n11

applies, if the independence property is fulfilled. Combining these consid-

erations, both probabilities defined should match with the total proportion of non-violations, if the

VaR measure meets the independence property. Thus, provided that the property of unconditional

coverage is valid, this leads to

n00
n00 + n01

=
n10

n10 + n11
=

n00 + n01
n00 + n01 + n10 + n11

= α,

which denotes the hypothesis to be tested under the null. In terms of the LR framework, the

likelihood of the null of the unconditional coverage test is tested against the alternative of the

independence test. In effect, this forms a test for conditional coverage. Thus, the test statistics

results in

LR.CC = −2 log

(
L(α)

L(Π1)

)
.

Christoffersen (1998) shows that the limiting distribution of the joint test is χ2(2). However, even

if the utilization of a joint test might always seem preferable over the separate examination of

the unconditional coverage and the independence property, it has to be remarked that joint tests

ignore VaR measures which violate only a single property. As a result, the joint test may detect

the violation of either unconditional coverage or independence in less cases than a test which covers

only one of these properties. According to Campbell (2005), the usage of a test which comprises

only a single property might be preferable if prior information about the VaR measure is available.

3.2.3 Escanciano/Olmo Tests for Unconditional Coverage

Escanciano and Olmo (2012) propose a test for unconditional coverage as well as a test for condi-

tional coverage. Their analysis is based on a Monte Carlo study in which the unconditional and

the conditional coverage tests are compared to a corrected version of these tests. The corrected

versions account for the impact of estimation risk which is induced by the computation of forecasts.

All tests are based on the demeaned hit sequence {It − α}.

The test of unconditional coverage is derived from the validity of E[It] = α under the null model.

The associated test statistic is given by

SP =
1√
P

P∑
t+R=1

(It − α) (23)
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and is rested upon the unconditional coverage tests by Kupiec (1995) and Christoffersen (1998).

It can easily be checked that 1
σSP converges against a standard normal distribution, whereby the

term σ =
√
α (1− α) denotes the standard deviation of the distribution of a single demeaned

observation:

1

σ
√
P

P∑
t+R=1

(It − α) −→ N(0; 1).

When adjusting σ for estimation risk, it can be shown that the estimated standard deviation has

the form

σcorr =
(
α (1− α) + π Â V̂ Â′

)− 1
2

by using a notation defined below. This expression holds for the assumption that the applied

forecast scheme is set fixed and the underlying DGP is a GARCH process of order (1,1). Note that

Escanciano and Olmo (2012) also provide adjusted tests for rolling and recursive forecast schemes.

Let π = lim
n→∞

P
R indicate the relation between the length P of the out-of-sample series and the

length R of the in-sample period, which is used to estimate the process parameters. It is quite

intuitive that for a large value of R in relation to P (and thus a relatively long in-sample series)

the influence of estimation risk becomes negligibly small. Furthermore, let the matrix V ∼ (3× 3)

contain the variances and covariances of the data generating process, while A ∼ (3× 1) denotes a

vector containing the first derivatives of the DGP with respect to the GARCH parameters. Thereby,

Â and V̂ denote consistent estimators for A and V . For a detailed derivation of A and V , see the

Appendix. Note that the impact of estimation risk is asymptotically irrelevant for πÂV̂ Â′ = 0.

The resulting test statistic is given by

S̃P =
1√

nσcorr

n∑
t=1

(It − α), (24)

whereby the limiting distribution is N(0; 1) for n→ ∞ under the null.

3.2.4 Duration-based Tests for Independence

The seminal duration-based backtesting approach is proposed by Christoffersen and Pelletier (2004).

This class of backtests pursues the aim to overcome the pitfall of poor power in small samples of the

backtests existing by then and strives to account not only for first order Markov dependencies, as

is given by the independence test by Christoffersen (1998). The authors motivate their presented

approach by the existence of no-hit periods which are either relatively short by reason of high

market volatility or relatively long in the case that the markets calmed down. For this purpose,

we define di = ti − ti−1, i = 1, . . . , I as the duration between hit number i − 1 and hit number i,

which occur at dates ti−1 and ti (t ∈ {1, . . . , n}), respectively.

To construct the test that assumes independence of the durations and thus a correctly specified
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VaR model, a memoryless probability distribution is needed for modeling the durations. The only

continuous distribution which includes a constant failure probability α is given by the exponential

distribution, which is defined by the density

fExp(d) = α exp(−αd),

whereby α ∈ R>0 and d ∈ R≥0 holds. Note that the corresponding hazard function of the expo-

nential distribution is λExp(d) = α. Thus, the null of independence checks whether the durations

di come from an exponential distribution with likelihood function

lnL(α) = n ln(α)− αd̄.

For the alternative model, a duration distribution with a non-constant hazard rate is required. To

this effect, the simplest case is represented by the Weibull distribution, which is defined by the

density

fW (d) = αb b db−1 exp(−(αd)b),

whereat b ∈ R>0 denotes a shape parameter. Note that the exponential distribution is nested by

the Weibull distribution for b = 1. The Weibull hazard rate can easily be obtained by

λW (d) = αb b db−1.

For b < 1, the Weibull hazard rate is decreasing. Transferred to financial risk management, a

decreasing λW indicates the tendency of the market to feature more extreme durations, i.e. periods

of relatively short or relatively long duration. The log-likelihood function under the alternative is

then given by

lnL(α; b) = lnλ+ ln b+ (b− 1)
∑
i

ln di − λ
∑
i

dbi .

Thereby, the pair of hypotheses can be reformulated in terms of the shape parameter b, that is

H0 : b = 1 vs. H1 : b ̸= 1.

The null of independence can be tested by a Likelihood ratio test, which test statistic is given by

LRDur = −2
lnL(α)

lnL(α; b)
.

Under validity of H0, LRDur follows a χ2 distribution with two degrees of freedom.

In order to conduct the test, it is necessary to transform the hit sequence {It} into a duration

sequence {di}Ii=1. When implementing the transformation, it has to be kept into account that the

first and last duration is possibly censored, so that the duration of the first no-hit period could be

longer than d1 as there is no data available before. The only exception consists in the case that

the first observation already features a hit. Likewise, the last duration could be longer than dI if
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the last observation of {It} involves no hit.

The above spanned framework provides the opportunity to model dependencies of higher order

than it is possible with the Markov-type test. However, this test contains no information about

the exact order of dependence.4

Another test for independence that does not exploit the hit sequence directly, but the properties

of the durations between two consecutive hits, is proposed by Candelon et al. (2011). The major

motivation behind the construction of this test is to overcome the drawback of low power in realistic

sample sizes.

The test procedure exploits the following idea: an orthonormal polynomial can be associated to

each distribution that belongs to the Pearson family of distributions. Orthonormal polynomials are

composed by a sequence of polynomials in which each two polynomials are pairwise orthonormal

under the L2-inner product. Considering the duration sequence {di} to be discrete, the orthonormal

polynomial associated with the geometric distribution can be employed.

By defining the number of employed polynomials by h ∈ N, the orthonormal polynomial associated

with the geometric distribution with success probability β can be stated by the recursion

Mh =Mj+1(d;β) =
(1− β)(2j + 1) + β(j − d+ 1)

(j + 1)
√

(1− β)
Mj(d;β)−

j

j + 1
Mj−1(d;β)

for any j ∈ N0, β ∈ R[0;1], d ∈ N0, d := di ∀i ∈ {1, . . . , I} and initial values of M−1(d;β) = 0

and M0(d;β) = 1. Using the method of moments to estimate the parameters of the polynomial

regression, efficient and consistent estimates can be obtained. Thus, under the null of conditional

coverage, the moment condition

H0 : E[Mj(d;β)] = 0.

is tested. The duration sequence follows a geometric distribution with hit probability β, which

means that there is no correlation between two consecutive hits as the geometric distribution is

memoryless.

In contrast to the duration-based test by Christoffersen and Pelletier (2004), this framework allows

to separately test for unconditional coverage and the independence hypothesis. The reasoning is

straightforward: since the expectation of a geometrically distributed random variable with param-

eter β is equal to 1
β , it can be shown that this is equivalent to the condition for the orthonormal

polynomial of order h = 1. This condition is tested under H0 of unconditional coverage,

E[M1(d;β)] = E

[
1− βd√
1− β

]
=

1− β 1
β√

1− β
= 0 for E [d] =

1

β
.

4The order of dependence can be captured by the EACD framework introduced by Engle and Russell (1998).
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The usage of orthonormal polynomials enables to run the test within the GMM framework with

known asymptotic covariance matrices. The test statistic utilizing the polynomial order h can be

stated by

CG
CC(h) =

(
1√
n

n∑
i=1

Mj(di;β)

)′(
1√
n

n∑
i=1

Mj(di;β)

)
.

Under validity of H0, C
G
CC(h) has a χ

2 limit distribution with h degrees of freedom. Note that for

the special case of unconditional coverage and h = 1, the test statistic obtains the form

CG
CC(1) = CG

UC =

(
1√
n

n∑
i=1

M1(di;β)

)2

.

When presuming continuity of {dt}, the tests are run with the conditions adjusted for the expo-

nential distribution and its corresponding orthonormal polynomials, which follow the recursion

Lh := Lj+1(d;β) =
1

n+ 1
[(2n+ 1− βd)Lj(d;β)− nLn−1(d;β)] ,

whereby the initial values are given by L−1 = 1 and L1 = 1 − βd, while L denotes a polynomial

of the Laguerre family. The test statistic for the continuous case and the orthonormal polynomials

associated with the exponential distribution is then given by

CExp
CC (h) =

(
1√
n

n∑
i=1

Lj(di;β)

)′(
1√
n

n∑
i=1

Lj(di;β)

)
.

Again, the test statistic follows a χ2(h) distribution under the null.

3.3 Simulation Study

The following simulation study aims at the detection of the problems arising from conducting

backtests with univariate time series. For this purpose, we simulate GARCH(1,1) processes, as

given by

Yt = σtεt

σ2t = θ0 + θ1Y
2
t−1 + θ2σ

2
t−1.

A parameter vector of θ′ = (θ0, θ1, θ2) = (0.1, 0.1, 0.85) as well as different lengths of the in-sample

period R ∈ {250, 500, 750, 1000, 1500} and the out-of-sample horizon P ∈ {250, 500, 750, 1000, 1500}
are assumed. The in-sample period is used for the estimation of the respective parameters, while

the out-of-sample period is used for the evaluation of the estimated risk measure. A VaR measure

with exceedance level α = 0.01 for the respective series is calculated in the next step, before the hit

sequence {It} is computed. In order to test the accuracy of the VaR estimates, the test statistic

of the backtesting approaches described in the previous section are calculated. This procedure is
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replicated 5,000 times. Table 3.1 presents the results of the Monte Carlo study. For each combina-

tion of R and P , the respective empirical size is calculated from the computed test statistics. The

first three columns summarize the results for the Kupiec (1995) test and the tests for independence

and conditional coverage suggested by Christoffersen (1998), while the remaining columns show

size results for the duration-based backtests by Candelon et al. (2011), for which the sequence {dt}
of the time span between the respective hits of sequence {It} has been taken into account. While

the tests given by (4)-(6) are based on the null of a geometric distribution by assuming a number

of orthonormal polynomial of h = 1, 3, 5, the columns (7)-(9) report the results for the tests, for

which the distribution under the null is supposed to be continuous. For this purpose, we assume

the same number of orthogonal polynomials as under the assumption of discreteness.

P (1) (2) (3) (4) (5) (6) (7) (8) (9)

R=250 250 0.0930 0.0322 0.0808 0.0486 0.0512 0.0334 0.0138 0.0134 0.0118

500 0.2240 0.0428 0.1208 0.1758 0.1020 0.0730 0.0344 0.0390 0.0366

750 0.2262 0.0578 0.1832 0.1840 0.1696 0.1392 0.0718 0.0746 0.0660

1,000 0.2786 0.0684 0.2286 0.2396 0.2016 0.1660 0.0962 0.0952 0.0816

1,500 0.3452 0.0756 0.3148 0.3454 0.2828 0.2426 0.1472 0.1458 0.1224

R=500 250 0.0664 0.0328 0.0622 0.0350 0.0388 0.0246 0.0066 0.0080 0.0072

500 0.1682 0.0412 0.0802 0.1250 0.0682 0.0468 0.0224 0.0270 0.0250

750 0.1612 0.0640 0.1300 0.1198 0.1128 0.0936 0.0470 0.0574 0.0524

1,000 0.2138 0.0652 0.1712 0.1746 0.1454 0.1192 0.0666 0.0698 0.0600

1,500 0.2472 0.0694 0.2296 0.2478 0.1834 0.1500 0.0872 0.0854 0.0744

R=750 250 0.0628 0.0368 0.0582 0.0314 0.0348 0.0236 0.0056 0.0064 0.0074

500 0.1576 0.0414 0.0680 0.1102 0.0610 0.0456 0.0168 0.0234 0.0252

750 0.1460 0.0605 0.1216 0.1065 0.0998 0.0849 0.0399 0.0514 0.0448

1,000 0.1973 0.0621 0.1502 0.1581 0.1247 0.1000 0.0523 0.0589 0.0507

1,500 0.2058 0.0748 0.2104 0.2064 0.1550 0.1260 0.0652 0.0764 0.0628

R=1,000 250 0.2058 0.0748 0.2104 0.2064 0.1550 0.1260 0.0652 0.0764 0.0628

500 0.1430 0.0424 0.0634 0.1036 0.0556 0.0412 0.0166 0.0222 0.0230

750 0.1300 0.0556 0.1076 0.0956 0.0918 0.0734 0.0378 0.0466 0.0394

1,000 0.1678 0.0690 0.1440 0.1366 0.1096 0.0968 0.0568 0.0574 0.0508

1,500 0.1877 0.0757 0.1941 0.1877 0.1522 0.1208 0.0673 0.0743 0.0625

R=1,500 250 0.1678 0.0690 0.1440 0.1366 0.1096 0.0968 0.0568 0.0574 0.0508

500 0.1404 0.0378 0.0624 0.1000 0.0534 0.0384 0.0160 0.0224 0.0236

750 0.1206 0.0620 0.1058 0.0890 0.0844 0.0674 0.0316 0.0402 0.0358

1,000 0.1486 0.0604 0.1188 0.1152 0.0952 0.0822 0.0444 0.0494 0.0434

1,500 0.1652 0.0752 0.1856 0.1656 0.1318 0.1062 0.0622 0.0678 0.0558

Table 3.1: Results for the simulation of the size of the following backtests (α = 0.01): (1) Kupiec (1995), (2)

Christoffersen (1998) test for independence and (3) conditional coverage, as well as duration-based tests for

independence by Candelon et al. (2011) assuming a discrete distribution (4)-(6), and a continuous distribution

(7)-(9), each based on orthonormal polynomials of orders 1, 3 and 5.

The first observation to be noted is that the majority of the backtests are oversized since the null

is rejected too often. Thus, even if the null is true, the backtests classify the VaR to be inaccurate.

However, some of the duration-based backtests tend to be undersized, especially if both P and

R are indicated by small values. Secondly, if the choice of R and P induce a smaller value of



Model Risk in Backtesting Risk Measures 47

the quotient which indicates the relation of out-of-sample length and in-sample length, a lower

distortion can be observed, that is a smaller difference between the empirical and the nominal

size. For example, while the Kupiec test is distorted by 33.52% for R = 250 and P = 1, 500, the

distortion becomes smaller if we assume a smaller length of the in-sample period. If the out-of-

sample length is reduced to P = 250, the size is distorted by 8.3%. This is due to the reason that if

a smaller number of observations in relation to P is available for the estimation of the parameters,

the induced estimation risk increases. This leads to less accurate projections of VaR. Generally,

duration-based backtests appear to have lower size distortions.

Respecting the presence of model risk, Escanciano and Olmo (2012) provide backtests which account

for the presence of estimation risk. By the correction of the variance of the backtest provided by

Kupiec (1995) and taking the demeaned hit sequence {It − α} into account, the test should not

be rejected as often as for the uncorrected test. Therefore, it should be expected that the size

distortions decrease by applying the corrected backtest by Escanciano and Olmo (2012). Again,

we conduct a Monte Carlo experiment as outlined above with 5,000 replications for estimation

and evaluations of R,P ∈ {250, 500, 750, 1000} in order to compute the statistics SP for testing

unconditional coverage as well as the corrected statistics S̃P , which are given by the equations (23)

and (24). The size results are reported in Table 3.2.

R = 250 R = 500

P 250 500 750 1,000 250 500 750 1,000

SP 0.138 0.182 0.250 0.268 0.108 0.154 0.228 0.194

S̃P 0.088 0.096 0.082 0.118 0.074 0.078 0.092 0.074

R = 750 R = 1,000

P 250 500 750 1,000 250 500 750 1,000

SP 0.128 0.142 0.228 0.184 0.100 0.090 0.180 0.156

S̃P 0.090 0.098 0.084 0.064 0.084 0.062 0.078 0.084

Table 3.2: Results for the simulation of the size of the backtests proposed by Escanciano and Olmo (2012). The

test for unconditional coverage is indicated by SP , while the conditional coverage test is marked by S̃P . A VaR

exceedance level of α = 0.01 is assumed.

For each combination of P and R, the variance correction results in a much lower empirical coverage

for S̃P , while the empirical and nominal coverage do hardly deviate from each other for a small value

of the quotient π. However, for an evaluation sample of P = 250 observations and a VaR exceedance

level of α = 0.01, as it is recommended within the Basel II framework, the size distortions remain

at a considerable level of about 7%. Therefore, the problem that the test rejects too often is not

solved. Looking at the size distortions of the tests proposed by Escanciano and Olmo (2012), it

can be noted that even when accounting for estimation risk the problem persists.
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In Figure 3.1, the density of the true asymptotic distribution of SP and S̃P (the Gaussian distribu-

tion) as well as the kernel density estimation of the test statistics SP and S̃P (the corrected test)

for R = 250, P = 250 and α = 0.01 are plotted. While the density of SP shows a considerable

deviation from its asymptotic distribution, the kernel density estimation of the corrected backtest

(given by S̃P ) provides a much better approximation.
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Figure 3.1: The density of the N(0; 1) distribution (black) compared with the kernel density estimate of SP (blue)

and the kernel density estimate of S̃P (gray) for R = 250, P = 250 and α = 0.01

In another article (which accounts for misspecification risk in the proposed backtest framework),

Escanciano and Olmo (2011) take into consideration that their modified test still suffers from

problems of heavy size distortions even in the case of very small in-sample lengths. To put it in a

nutshell, all classes of univariate backtests proposed so far feature the problem of size distortions

within short in-sample horizons, even if this conclusion holds for duration-based backtests to a

lesser extent.

Although the corrected backtests result in a reduction of the size distortion, the tests tend to reject

too often. Despite of correcting for estimation risk, the problem especially persists in the setting

recommended within the Basel II framework if a VaR exceedance level of α = 0.01 is set. In this

setting, duration-based backtests with orthonormal approximation of the distribution under the

null seem to be the most promising alternative.

3.4 Conclusion

In this paper, we analyze the problems of backtests that have been suggested so far. Backtests which

are based on hit and duration sequences in a univariate framework show heavy size distortions.

The problems of univariate backtesting procedures consist in considerable size distortions for the

Basel II setting. A possible solution of this problem is to account for model risk by correcting the
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asymptotic variance of the backtest in order to reduce the distortion. However, this issue cannot be

alleviated by modifying backtests in a way that accounts for estimation risk. Financial institutions

face restrictions for the conduction of backtesting from the regulatory side, which mandate to use

an evaluation period of 250 observations. An alternative choice of the out-of-sample length does

not suffice to reduce the empirical size. The application of inaccurate backtests entails severe

implications and higher risk-based capital results because the factor for the calculation is directly

linked to the number of hits.

A possible solution is the utilization of multivariate backtesting procedures in order to overcome

these problems. Danciulescu (2010) and Berkowitz et al. (2011) argue that a multivariate frame-

work induces a higher sample size and a more efficient usage of information. In our Monte Carlo

study, backtests based on orthonormal polynomials performed best. The expansion of these proce-

dures to a multivariate framework would therefore be an alternative to the approaches which are

commonly used. Backtesting with multivariate orthonormal polynomials includes the assumption

that the duration sequences follow an associated discrete or continuous multivariate distribution

under the null and the approximation of these distributions by Laguerre polynomials in the con-

tinuous case. Therefore, the idea of multivariate backtesting with Laguerre polynomials is a topic

to be pursued in further research.
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Appendix to Chapter 3

Quasi-Maximum-Likelihood estimation of GARCH(1,1)

The following statements refer to Francq and Zaköıan as well as Escanciano and Olmo (2011).

The model is a pure GARCH(1,1) Yt = µ + σtεt with σ2t = θ0 + θ1Y
2
t−1 + θ2σ

2
t−1 with µ = 0,

innovation εt = Yt/σt
iid∼ t(ν) and parameter vector θ = (θ0, θ1, θ2).

Asymptotic normality of QMLE:
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Expected value of Hessian, J :
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Â = f(F−1
ε )F−1

ε

1

P

∑
(
1

σt

∂σt
∂θ

=f(F−1
ε )F−1

ε

1

P

∑
1

2σ2
t (1−θ

1
σ2
t

∑∞
j=1 θ

j−1y2t−j

1
σ2
t

∑∞
j=1 θj − 1σ2t−j





Chapter 4

Downside Risk Measure Performance in the

Presence of Breaks in Volatility



Downside Risk Measure Performance in the Presence of Breaks in Volatility 53

4 Downside Risk Measure Performance in the Presence of Breaks in

Volatility

Published in The Journal of Risk Model Validation, 2015, Volume 9, Number 4.

4.1 Introduction

During the past decades, a growing awareness for the importance of an accurate risk management

of a financial institution has evolved. Since the 1996 amendment of the Basel Accord5 on regulatory

capital for market risk, banks are demanded to implement internal models for measuring market

risk (BCBS (1996b, 1997)). A main objective of the Second Basel Accord (BCBS (2004a)) addresses

the calculation of risk-sensitive minimum capital requirements and the definition of standards for

the quantitative measurement of financial risk. In this context, Value at Risk (VaR) approaches are

recommended as the appropriate instruments for assessing the market risk exposure of a financial

institution and are widely used in financial risk management. However, the recent reviews of the

Basel Accords redefine the capital rules for market risk and include the proposition to gradually

replace VaR with Expected Shortfall (ES) by 2019 (see the consultative documents of the Third

Basel Accord issued by BCBS (2012, 2013b)).

Hendricks and Hirtle (1997) point out that the benefit arising from a model-based capital require-

ment is undermined by the use of incorrect models, which indicates that the evaluation of the

accuracy of the underlying risk models has to be of primary concern for banks and regulatory

authorities. Backtesting frameworks represent the preferred tool to evaluate the performance of

risk measures, even though numerous tests suffer from a lack of statistical power when following

the recommendation of the Basel Committee to adopt an evaluation horizon of one year. This

constitutes a widely examined issue which is described, among others, within the works of Lucas

(2001), Campbell (2005), Nieppola (2009) and Røynstrand et al. (2012). In order to overcome this

drawback, Lopez (1998) introduces loss function approaches as an alternative evaluation method

which is not based on hypothesis testing, but draws upon forecast evaluation techniques. Campbell

(2005) refers to the capability of targeting specific concerns of a financial institution by choosing a

certain type of loss function and emphasizes the usefulness for the distinction between competing

risk models.

Financial risk is often identified with the behavior of an asset’s volatility. Consequently, the eval-

uation and the accuracy of the risk model strongly depends on the variance of the profit and loss

series of the financial institution. A lot of evidence for occasional structural breaks in the volatility

of financial time series is provided by, among others, Lamoureux and Lastrapes (1990) and Amihud

and Mendelson (1991) and more recently within the works of Diamandis (2008) and Eichengreen et

al. (2012). Hence, a financial institution should preferably employ a risk measure which is charac-

terized by a reaction of sufficient sensitivity to the occurrence of a break in volatility in order to be

5All remarks about the Basel Accords refer to the frameworks issued by the Basel Committee on Banking Supervision
(BCBS).
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able to ensure an immediate adjustment of the underlying risk measure. While a variety of research

addresses the development of testing procedures regarding the detection of a structural change (of

unknown date) and the estimation of the break date (see Hansen (2001) and Perron (2006) for

an overview of the testing and estimation methodology), the literature on the characteristics of

risk measures thus far lacks an analysis of their performance in presence of a structural break in

volatility and a substantiated recommendation on which measure to give priority in this matter.

This paper provides a theory-based comparison of downside risk measures regarding their respon-

siveness to structural breaks in volatility and distribution. A loss function-based framework for the

theoretical design and the application performance of the comparative scenario study is proposed

by extending the model comparison approach introduced by Lopez (1998). Even though the theo-

retical aspects generally address the comparison of any two quantile risk measures, the main focus

of the application comprises the confrontation of VaR and ES.

The remainder of the paper is organized as follows: Section 4.2 provides a brief literature overview

of the current status of research on risk measures and the previous utilization of loss functions

in risk evaluation. In Section 4.3, the most common downside risk measures are reviewed and

assessed whether they fulfill mathematical and practical requirements on measuring financial risk.

Section 4.4 introduces the usage of loss functions for risk evaluation and develops a framework to

compare the sensitivity of risk measures in response to a structural break in volatility as well as

in reaction to a change in distribution. Moreover, theoretical results regarding the predominance

of risk measures in presence of breaks are presented. The validness of these results for realistic

evaluation horizons are examined within a broad simulation study presented in Section 4.5, which

surveys the performance of VaR and ES for common DGPs and accounts for the direction and the

intensity of the volatility break. In Section 4.6, the simulation results are reconfirmed by applying

the proposed evaluation technique to several stock indices series. A conclusion of the work is

provided in Section 4.7.

4.2 Literature Review

Even though VaR represents the most commonly used risk measure within financial risk manage-

ment, the suitability of VaR has been questioned since it became the benchmark tool for assessing

the exposure to market risk. Hendricks (1996) considers different VaR approaches for simulated

portfolios. While he can attest an accurate performance to all examined methods at a 95% level, an

understatement of the actual risk can be observed at a 99% level. This finding is endorsed by Bao et

al. (2006), who investigate the predictive performance of VaR models in terms of several emerging

Asian economies within the financial crisis of the late 90’s. Berkowitz and O’Brien (2002) present

evidence on the VaR model performance for large trading firms and conclude that the reported VaR

estimates are not appropriate to indicate the firms’ actual portfolio risk. Moreover, simple ARMA-

GARCH models appear to outnumber VaR in terms of their forecasting performance, while VaR is

not able to reflect volatility changes of the profit and loss series of the firms. Arising from all these

shortcomings in performance and because of some further theoretical drawbacks (see Section 4.3.1

for a discussion), Acerbi and Tasche (2002) are surprised by the fact that VaR has been adopted
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by essentially all banks and regulators. Recent research about the improvement of the accuracy of

VaR forecasts includes e.g. the article by Halbleib and Pohlmeier (2012).

ES has frequently been considered as an alternative to VaR for evaluating market risk exposure

and numerous academic contributions of the more recent past deal with the comparison of VaR

and ES by focussing on different aspects. Yamai and Yoshiba (2002) provide an overview of those

studies by then and carve out that rational investors are often misled by employing VaR, which

can be mitigated by adopting ES as main risk measure. However, an important requirement for its

practicality constitutes the availability of efficient methods for backtesting ES. The findings of Basu

(2006), who examines the impact of stress scenarios to the performance of VaR and ES, indicate that

the responsiveness of VaR to shocks for historical simulations remains low, while ES is more suitable

for capturing the impact of stress. Chen (2014) evaluates the effectiveness of the recent Basel

reforms with regard to the regulatory reservations arising from the usage of VaR. While he criticizes

ES for its lack of elicitability6 and hence denies reliability of the results from backtesting ES, Acerbi

and Székely (2014) propose three methodologies for backtesting ES and allege elicitability to be

irrelevant for backtesting risk measures. Emmer et al. (2014) support this result, even though

conceding that for these procedures more data is required than for backtesting VaR in order to

reach an equivalent level of certainty. An analogue to the well-known conditional backtesting

framework for VaR estimates is suggested by Escanciano and Du (2015) for the evaluation of ES

forecasts.

Loss functions represent a widely used tool for assessing the prediction performance of competing

models. After Lopez (1998) proposed three different types of loss functions and their utilization

for measuring the accuracy of VaR estimates, this method became an established procedure for the

evaluation of risk measures as well. Generalizations of this conception are provided by the works

of Lopez (2001), in which economic loss functions are incorporated into a volatility forecasting

framework, and Caporin (2008), who introduces a new set of loss functions for the purpose of

comparing VaR measures in the presence of long memory effects. In further articles, loss function

techniques are applied for the evaluation of the forecasting performance of several rival volatility

models in VaR frameworks. These include González-Rivera et al. (2004), in which a goodness-

of-fit loss function based on a VaR calculation is employed, and Amendola and Candila (2014),

who suggest an asymmetric loss function for this purpose. Degiannakis et al. (2013) employ a

quadratic loss function in order to examine whether conditional volatility models accounting for

long memory outperform those implying short memory when forecasting VaR and ES. In a current

paper, Abad et al. (2015) investigate whether the choice of a certain type of loss function affects the

comparison of VaR models by additionally accounting either for the firm’s or the regulator’s point

6Elicitability represents a criterion for determining the optimal point forecast of a functional on a class of probability
measures P ∋ P (see Emmer et al. (2014)). In simple terms, a functional is elicitable relative to P if its optimal
estimate ŷ minimizes the expectation of a scoring function S(y, Z),

ŷ = argmin
y

EP [S(y, Z)],

whereby Z denotes a random variable defined on (Ω,F , P ). Gneiting (2011) shows that ES fails to be elicitable
and provides a discussion about the importance of elicitability for the comparison of different prediction methods.
Ziegel (2014) generalizes this result to nearly all law-invariant spectral risk measures.
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of view. Moreover, Campbell (2005) describes how loss function-based backtests can be conducted

and remarks the enhanced flexibility of this approach.

4.3 Measuring Downside Risk

The intention pursued by applying a risk measure to some random variable X modeling the profit

and loss (P&L) of a portfolio is to quantify its underlying risk and determine a minimum capital

requirement to ensure that the risky position is acceptable to the regulatory authorities.

Following the axiomatic approach initiated by Artzner et al. (1999), a risk measure is supposed

to feature certain desirable properties in order to be suitable for measuring financial risk. For this

purpose, consider a linear space H of measurable functions X : Ω → R, where Ω contains a fixed

and finite set of possible future scenarios. Then, a mapping ρ : H → R∪{+∞} is called a coherent

risk measure for H if the axioms (I)-(IV) are fulfilled:

(I) Monotonicity: X1

a.s.
≤ X2; X1, X2 ∈ H ⇒ ρ(X2) ≤ ρ(X1)

(II) Subadditivity: X1, X2, X1 +X2 ∈ H ⇒ ρ(X1 +X2) ≤ ρ(X1) + ρ(X2)

(III) Positive homogeneity: a ∈ R≥0; X, aX ∈ H ⇒ ρ(aX) = aρ(X)

(IV) Translation invariance: a ∈ R; X ∈ H ⇒ ρ(X + a) = ρ(X)− a

Note that for a = 0, axiom (III) implies normalization for ρ, i.e. ρ(0) = 0.

Föllmer and Schied (2002) propose a revision of the concept of coherent risk measures by replacing

(II) and (III) by a weaker axiom: A risk measure which satisfies the axioms (I) and (IV) belongs

to the class of convex risk measures if it additionally fulfills the axiom

(V) Convexity: ρ(λX1 + (1− λ)X2) ≤ λρ(X1) + (1− λ)ρ(X2)

for X1, X2 ∈ H and λ ∈ (0; 1). Subject to validity of (III), the axioms (II) and (V) are equivalent

(see Föllmer and Schied (2010)).

4.3.1 Value At Risk

Let FX(·) be the cdf of the P&L random variable X. Then, the Value at Risk for an exogenously

given confidence level 1− α is determined by

VaRα(X) = inf{x ∈ R : P(X > x) ≤ 1− α} (25)

= inf{x ∈ R : FX(x) ≥ α} = F−1
X (α),

whereby α := P(X ≤ VaRα(X)) holds and the second equality only applies for parametric VaR

approaches. VaR can easily be interpreted as the return which is exceeded in 100 · (1 − α)% of

all periods. The simplicity of interpretation is one of the main reasons why VaR has evolved as

an industry standard tool for financial institutions. Several techniques for the estimation of VaR
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exist, of which the historical simulation provides one of the simplest and most practical methods as

it does not require any distributional assumptions. For a data set of m observations, the historical

VaRα(X) estimator is based on the sequence of past P&L realizations {xt}mt=1 and can be defined

by

V̂aRα(X) = qα ({xt}mt=1) , (26)

whereby qα(·) denotes the quantile function for level α.

Despite its popularity in application, a couple of shortcomings of VaR include practical and intuitive

issues as well as mathematical defects. Firstly, VaR considers only a single quantile of the underlying

probability distribution, while all rare events of the downside tail are disregarded since the amount

of the actual loss is not taken into account. Thus, a false sense of security could arise from the

usage of VaR and lead to excessive risk taking (see Einhorn and Brown (2008)).

Furthermore, as can easily be shown by a simple counterexample (see Artzner et al. (1999) and

Acerbi and Tasche (2001) for details), VaR fails to satisfy axiom (II) of subadditivity and thus does

not represent a coherent risk measure. However, this contradicts the principle of diversification -

one of the key concepts of modern portfolio theory, which consists in the postulation that the risk

of an aggregate position should not be higher than the sum of the risks of the single positions.

In terms of risk management, the possibility of reducing risk (and thus capital requirements) by

splitting the risk up into its integral parts should be excluded by validity of (II). As a result of the

aforementioned limitations of VaR, several alternative approaches of risk assessment have emerged.

4.3.2 Lower Partial Moments and Expected Shortfall

Risk measures which ensure the incorporation of the downside risk distribution provide an alter-

native to the frequently employed VaR approaches. Lower Partial Moments (LPM) were (mainly)

introduced in financial economics by Fishburn (1977) and Bawa (1978) and define a family of down-

side risk measures specified by order n ∈ N0 and a target value τ ∈ R from which the negative

deviations are gauged.

Let X be a continuous and integrable random variable measuring a portfolio’s P&L. Then, the

general definition of LPM depending on n and τ is given by

LPM(X; τ, n) = E [max(τ − x; 0)n] =

∫ τ

−∞
(τ −X)n dFX ,

whereby the latter equality holds if FX represents a continuous distribution. LPM directly refer

to the deviance from the reference level τ and are, unlike VaR, not related to a predetermined

probability level. Depending on the problem under consideration, the reference level may be any

suitable attractor, such as the expected return on portfolios, the rate of inflation or simply the point

separating profits and losses. However, in terms of financial risk management the contemplated

target frequently (and in the following) concerns VaR, i.e. τ ≡ VaRα(X).
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Define LPM(X; VaRα(X), n) =: LPMn,α(X) for simplification as well as 11{X≤VaRα(X)} to be the

indicator function for X falling short of VaRα(X). In line with the work of Danielsson et al. (2006),

the relation LPM1,α(X) = αVaRα(X)−E[X 11{X≤VaRα(X)}] holds when the LPM of order n = 1 is

represented as a quantile of X. 7 However, as emphasized by Barbosa and Ferreira (2004), Lower

Partial Moments do not belong to the class of coherent risk measures.

Expected Shortfall represents another downside risk measure, which constitutes a more established

alternative in risk management than LPM measures. With respect to the target value VaRα(X)

its definition is given by

ESα(X) = E [X|X ≤ VaRα(X)] =
1

α

∫ α

0
VaRφ(X) dφ = VaRα(X)− 1

α
LPM1,α(X). (27)

The first equality marks the character as conditional expectation of the 100 ·α% worst losses, while

the second targets the property of ES to be the mean VaR over all levels lower than α. The last

equality refers to the close relation to the class of LPM and VaR since ES results from the difference

of the target value (VaR) and the scaled LPM1,α(X).

Due to the fact that common values for α are 5% or 1%, ES usually assumes substantially larger

values than LPM1. The representation of ES in terms of the actual P&L distribution indicates that

the ES-related quantile is given by the difference of F−1
X (α) and ESα(X). Hence, ES pays much

more attention to the tail of the distribution than VaR and LPM1.
8 Next to the attribute that it

constitutes possibly the most intuitive perception of risk, ES overcomes the theoretical drawback

of VaR and the class of LPM as it provides a coherent risk measure, which is shown by Artzner et

al. (1999), and furthermore fulfills convexity as is proved by Rockafellar and Uryasev (2000).

ES can easily be estimated by taking advantage of its relationship with LPM of first order. For a

sample of size m, the estimator of LPMn,α(X) is given by

L̂PMn,α(X) =
1

m

m∑
t=1

max (VaRα(X)−Xt; 0)
n . (28)

Consequently, it follows that ÊSα(X) = V̂aRα(X)− α−1 L̂PM1,α(X).

4.4 The Comparison of Risk Measures by Using Loss Functions

Next to the more familiar strand of literature concerning backtesting methods, loss function ap-

proaches constitute a second group of procedures to evaluate risk measure estimates (see Caporin

(2008)), which provide the opportunity to compare risk measures across financial institutions.

While the general idea of the most backtesting approaches is based on counting the pure number

7Commonly, only the values n ∈ {0, 1, 2} are matter of main interest. For n = 0, the downside probability results,
which shows the close relation to VaR. LPM1,α(X) can be interpreted as downside expected value of X. The order

n = 2 provides the expected squared deviation from VaR given by LPM2,α(X) =
∫ VaRα(X)

−∞ (VaRα(X)− x)2 dFX .
If τ ≡ E[X], LPM2,α(X) equals the semivariance of X.

8Under the assumption of a continuous distribution ES is also known as Tail VaR.
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of shortfalls below VaR, BCBS (1996b) suggests to attach importance to both the number and the

magnitude of violations within an institution’s risk evaluation.

4.4.1 Measuring Loss

The objective followed by using loss functions for risk evaluation consists in the minimization of

costs utilizing a risk measure ρ. The value assigned by the loss function at a point in time is

commonly termed as the loss function’s score. From regulatory point of view lower scores are

preferred over higher ones, i.e. each shortfall below ρ increases the cumulative loss.

For some reference value ρ ∈ Ψ (fixed in the following) desired not to be underrun by an estimator

Yi,t ∈ Yi, define the mapping Γ : Ψ × Yi 7→ R+ as the loss function which assigns a non-negative

valued score at time t for some P&L process {Yi,t} of type i. The actual type of the loss function is

to be chosen subject to the matter of concern of the evaluating institution. Although many types

can be constructed, two disparate approaches of assigning loss scores proposed by Lopez (1998) are

focused on within this work (see Rosasco et al. (2003) for an overview and an examination about

the impact of choosing different types of loss functions).

The most straightforward and elementary method to evaluate losses is presented by the binomial

loss function ΓB(ρ, Yi,t), where at time t the score

ΓB(ρ, Yi,t) = 11{Yi,t<ρ} =

1 if Yi,t < ρ

0 if Yi,t ≥ ρ,
(29)

is assigned. The binomial loss function attaches a score of one for an observation whenever it

involves a violation of the threshold value set by the risk measure. As it only takes the frequency

of extreme losses into account, this approach shares similarities with backtests which focus on the

property of unconditional coverage.

The amount of shortfall below the risk measure in case of a hit, however, is not accommodated by

ΓB. Kiliç (2006) advocates the usage of magnitude-type loss functions since one immense single hit

could already cause appreciable upheavals within the financial institution in question. Using the

historical simulation approach for the evaluation of VaR models, Hendricks (1996) finds portfolio

losses which exceed the corresponding VaR estimate by about 30% on average and extreme losses

of much higher intensity. Incorporating these aspects the score of the quadratic loss function

ΓQ(ρ;Yi,t) assigned at t is defined by

ΓQ(ρ, Yi,t) =

1 + (Yi,t − ρ)2 if Yi,t < ρ

0 if Yi,t ≥ ρ.
(30)

As before in case of an exception, the score comprises a fixed value of one, though an additional

score imposed by ΓQ(ρ, Yi,t) now increases quadratically with the magnitude of the occurred hit.

Therefore, the quadratic loss approach might be more suitable for financial risk evaluation.
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The cumulative loss of the entire evaluation period directly results from the sum of scores across

all observations. Since the distribution of the observations at time t depends on σ(Yi,s; s < t),

assumptions on their dependence are to be made in order to determine the actual score for the

entire period. However, market risk amendments included in the Basel Accords (see BCBS (1997)),

which mandate an evaluation period of only 250 observations, entail that the assumption of iid

observations is usually inevitable (see Lopez (1998) and Dowd (2007)).

4.4.2 Risk Measure Performance in Presence of a Break in Volatility

In his seminal paper, Lopez (1998) introduces the utilization of loss functions for the evaluation of

VaR models. On this basis, a procedure for the comparison of the behavior of two quantile risk

measures in presence of a break in volatility is developed and presented in this subsection.

Consider the situation that a break in the volatility of the P&L process occurs at the very beginning

of the evaluation period. Then, it would be desirable for the financial institution to identify the

break and adjust the process as quickly as possible in order to ensure a suitable evaluation of the

underlying risk measure. In this regard, the capability of identification connotes that the break is

reflected by the score of the loss function. For this purpose, the risk measures are evaluated for two

different settings: On the one hand, the process which was imputed prior to the break is incorrectly

assumed to prevail within the evaluation period as well, and on the other hand, the underlying

process for evaluation is correctly adjusted for the change in volatility. In order to construct a

measure for the sensitivity of risk measures in response to a structural break, consider the expected

score assigned for the incorrect process to be the numerator of a quotient and the expected score

assigned for the properly adjusted process to be the corresponding denominator.

If the risk measure shows an appropriate response to the occurrence of the break, the quotient

should be greater than 1 if the volatility declines after the occurrence of the break, while the

quotient should display a value less than 1 if the volatility increases. Therefore, the quotient itself

serves as a measure for the sensitivity to a structural break of the underlying measure. High

responsiveness for both directions of the volatility change can be attested if the quotient value

strongly deviates from one. When comparing two risk measures, a higher sensitivity is adjudged

for the risk measure which (depending on the direction of the break) features the quotient of the

more extreme value. Thus, the risk measure of the smaller of both quotient values shows a more

preferable response to an increase in volatility, and vice versa. Since the quotient values only

depend on the particular risk measure, this procedure is easily expandable to a comparison of more

than two quantile risk measures. For a pairwise comparison of e.g. three risk measures, a transitive

inequality relation on the real numbers applies.

The two risk measures to be compared are distinguished by the α-quantiles of the cdf of the

mistakenly imputed process, which each mark the boundary between acceptable and undesirable

risk, i.e. ρ ≡ F−1(α).

Let X and Y be two random variables, whose unconditional variances are related by σ2Y = κσ2X
with κ ∈ R+\{1}. Apart from this, the distributions of X and Y are identical. Assume that
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the observations of the P&L process prior to the break exhibit the distribution of X, while the

observations after the break follow the distribution of Y . Moreover, let F (·) be the cdf of X and

define qt := F−1(α) and q̃t := F−1(α̃) to be the quantiles of X which represent the risk measures

in question, whereby α > α̃, qt < 0 and q̃t < 0 holds. The sensitivity of the underlying risk

measures is gauged by the quotient of the loss functions of X and Y with reference values qt and

q̃t, respectively. These quotients are defined for loss functions each of type m ∈ {B,Q} by

Θ :=
Γm(X, qt)

Γm(Y, qt)
and Θ̃ :=

Γm(X, q̃t)

Γm(Y, q̃t)
. (31)

Let the following assumptions (although not very restrictive within risk management) be imposed

on both X and Y :

A1 The density functions are centered around 0.

A2 The probability measures are quasiconcave.

A3 The cdf’s are strictly monotone on their entire supports.

Note that A1 implies 1
2 > α > α̃.

Proposition 1. Let m = B. Under validity of A1-A3 the following conclusions apply:

For κ < 1: E[Θ] < E[Θ̃] (32)

For κ > 1: E[Θ] > E[Θ̃] (33)

Proof. See Appendix A.1.

Proposition 2. Let m = Q. Under validity of A1-A3 the following relations apply:

For κ < 1: E[Θ] < E[Θ̃] if
F
(

q̃t√
κ

)
F (qt)

F
(

qt√
κ

)
F (q̃t)

<
κq̃2t + q2t
κq2t + q̃2t

(34)

For κ > 1: E[Θ] > E[Θ̃] if
F
(

q̃t√
κ

)
F (qt)

F
(

qt√
κ

)
F (q̃t)

>
κq̃2t + q2t
κq2t + q̃2t

(35)

Proof. See Appendix A.2.

For the evaluation by means of the binomial loss function (see (32) and (33)), the general conclusion

of predominance of the risk measure which is represented by the lower of the compared quantiles

can be drawn. Thus, the quantile risk measure q̃t features a higher sensitivity to the occurrence of

a break than qt - regardless of the direction of the volatility change.

Taking a closer look on (32), the quotient of expected scores should be preferably large if a break

causes the volatility to decrease. As Θ̃ involves the α̃-quantile and E[Θ] < E[Θ̃] applies for κ < 1,

q̃t is more suitable to identify the break than qt. The same result can be observed for κ > 1 (see

(33)): Since the quotient values should be as small as possible when Y exhibits higher volatility

than X and E[Θ̃] < E[Θ] holds, the α̃-based risk measure q̃t predominates the α-based risk measure
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qt for volatility increases as well.

If the binomial loss function is used for evaluation, these statements are true for any distribution

which satisfies the assumptions A1-A3. In contrast, the implications drawn for assigning binomial

loss scores only apply for the quadratic loss function (see (34) and (35)) if certain conditions are

fulfilled. These depend on values of the cdf’s of the α- and α̃-quantiles of both X and Y , even

though the quantiles of Y are converted into the respective cdf values of X for the propositions.

Figure 4.1 illustrates the location of these quantiles with respect to the density of X. Note that the

conditions for m = Q do not depend on the actual level of the variances, but only on the volatility

ratio κ. Obviously, the limit cases show Θ, Θ̃ → 0 if κ→ ∞ and Θ, Θ̃ → ∞ if κ→ 0.

Shifting of Risk Measure Quantiles under Break in Volatility

q~ κ q~ q κ q 0
x

A

q~ q~ κ q q κ 0
x

B

Figure 4.1: Risk measures represented by quantiles q and q̃ shift within the distribution of X when a break in

volatility of intensity κ occurs. The quantiles of Y are notated in terms of X (red continuous lines). If κ < 1,

quantiles decrease for X (as exemplified in Part A), while quantiles increase if κ > 1 (as exemplified in Part B).

However, the conditions set in (34) and (35) are met for any combination of quantiles and ratios

of volatilities if the innovation generating distribution is either Gaussian or Student-t. Both distri-

butions satisfy the imposed assumptions A1-A3 and represent the most of all applied distributions

for modeling innovations in risk management.9 In order to provide evidence for this argument,

calculations regarding the fulfilment of these conditions are performed. The results are listed in

Tables 4.1/a and 4.1/b.

9Further details about properties of probability distributions with focus on concavity are described in the work by
Koenker and Mizera (2010).
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The left hand side (the functional of cdf’s, abbreviated by F) and the right hand side (the functional

of quantiles, abbreviated by Q) of the conditions are stated for several combinations of α̃ and κ

for both the Gaussian (4.1/a) and the Student-t case (4.1/b). While the α-level for quantile q is

fixed to 5%, the α̃-quantile varies to regard different distances between the quantiles. As indicated

by (34), Q>F holds within the upper parts of the tables (in which κ < 1 is valid), while the lower

parts provide evidence for (35) as F>Q applies in each case. Both cases indicate that for any fixed

α as q̃ → q F↗ Q holds if κ < 1 and F↘ Q if κ > 1, while for fixed quantiles F↗ Q applies as

k ↗ 1, and vice versa.

a κ

α = 0.05 0.1 0.5 0.9 0.95

α̃ F Q F Q F Q F Q

0.0499 0.98559 0.99904 0.99835 0.99961 0.99981 0.99994 0.99991 0.99997

0.045 0.46431 0.95169 0.91627 0.98003 0.99018 0.99682 0.99533 0.99845

0.04 0.19548 0.90304 0.83038 0.95933 0.97924 0.99347 0.99010 0.99681

0.025 0.00579 0.75138 0.55720 0.89066 0.93624 0.98190 0.96923 0.99114

0.01 0.00001 0.57136 0.25039 0.79996 0.85590 0.96551 0.92886 0.98305

0.001 0.00000 0.37276 0.03101 0.68612 0.67778 0.94289 0.83162 0.97177

1.05 1.1 1.5 2

α̃ F Q F Q F Q F Q

0.0499 1.00008 1.00003 1.00015 1.00006 1.00057 1.00024 1.00087 1.00039

0.045 1.00426 1.00148 1.00816 1.00289 1.03056 1.01218 1.04666 1.02038

0.04 1.00907 1.00304 1.01741 1.00595 1.06602 1.02522 1.10167 1.04240

0.025 1.02876 1.00850 1.05569 1.01666 1.22199 1.07190 1.35441 1.12277

0.01 1.06921 1.01640 1.13642 1.03226 1.60389 1.14289 2.04202 1.25006

0.001 1.18186 1.02762 1.37606 1.05464 3.24389 1.25147 5.89878 1.45747

b κ

α = 0.05 0.1 0.5 0.9 0.95

α̃ F Q F Q F Q F Q

0.0499 0.99322 0.99821 0.99760 0.99944 0.99980 0.99992 0.99991 0.99996

0.045 0.68566 0.91064 0.87680 0.97154 0.98927 0.99597 0.99515 0.99804

0.04 0.42803 0.82196 0.74728 0.94173 0.97683 0.99167 0.98952 0.99593

0.025 0.03483 0.55879 0.33917 0.84122 0.92327 0.97644 0.96493 0.98846

0.01 0.00000 0.29467 0.02957 0.70848 0.80659 0.95405 0.90925 0.97735

0.001 0.00000 0.12390 0.00000 0.56300 0.51242 0.92351 0.74840 0.96200

1.05 1.1 1.5 2

α̃ F Q F Q F Q F Q

0.0499 1.00008 1.00004 1.00014 1.00007 1.00043 1.00030 1.00059 1.00050

0.045 1.00407 1.00187 1.00752 1.00366 1.02348 1.01546 1.03195 1.02590

0.04 1.00882 1.00389 1.01634 1.00760 1.05129 1.03231 1.06999 1.05444

0.025 1.02995 1.01112 1.05579 1.02182 1.17975 1.09490 1.24863 1.16333

0.01 1.08058 1.02205 1.15233 1.04350 1.52455 1.19628 1.75063 1.35003

0.001 1.25786 1.03757 1.51501 1.07468 3.26800 1.35603 4.67320 1.67328

Tables 4.1/a and 4.1/b: Calculations for the conditions set in (34) and (35) employing the Gaussian distribution (4.1/a)

and the Student-t distribution (4.1/b). F and Q tag the left and the right hand side of the conditions, resp. The upper

quantile level is fixed to α = 0.05.

4.4.3 Risk Measure Performance in Presence of a Change in Distribution

Thus far, the switch in the volatility was assumed to be directly caused by a break in the second

moment of the innovation process. In contrast, the focus of this subsection lies on volatility breaks

induced by a change of the distribution of the innovation process and the comparative investigation
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of the ability of risk measures to discriminate between models of the same type, but with innovations

drawn from distributions of different families. This aspect becomes practically relevant if e.g. a

financial institution evaluates its utilized risk measure by assuming the wrong distribution. Under

consideration of the most pertinent distributions in financial statistics, the Gaussian distribution

is supposed to be erroneously postulated instead of the Student-t.

Maintaining the notation and the general setting of the previous subsection, consider two random

variables X ∼ N(0; 1) with cdf F (·) and Y ∼ t(ν). While the Gaussian distribution prevails

during the in-sample period and for the mistakenly perpetuated model for evaluation, the Student-

t distribution holds true for the alternative model during the evaluation period. The sensitivity of

the underlying quantiles qt and q̃t to a change in distribution is measured by the quotients

Θ⋆ :=
Γm(X, qt)

Γm(Y, qt)
and Θ̃⋆ :=

Γm(X, q̃t)

Γm(Y, q̃t)
. (36)

On this basis, the following proposition about the general comparative performance of risk measures

in the presence of a change in distribution can be derived:

Proposition 3. If m ∈ {B,Q} and assumptions A1-A3 apply, E [Θ⋆] > E[Θ̃⋆] holds.

Proof. See Appendix A.3.

Since V ar(Y ) ↘ V ar(X) = 1 as ν → ∞ and thus Y implicitly exhibits higher volatility than X

for any choice of ν, the risk measure which shows the smaller quotient always outclasses the other.

Hence, in accordance with the results for a break in volatility, this result indicates superiority for

the risk measure involving the lower quantile q̃ in distinguishing between models which feature

different distributions.

4.5 VaR vs. ES: A Comparative Simulation Study

The question arising is whether the theoretical results for the risk measure performance described

in the previous section hold for simulations over realistic evaluation horizons. The simulation study

is carried out as a comparison of two specific quantile risk measures, in fact VaR and ES (see (25)

and (27)). By specifying ES in terms of a quantile of the P&L distribution (see Section 4.3.2),

ES is considered to be the lower quantile q̃t and expected to outclass VaR (representing the higher

quantile qt) in distinguishing between different models.

4.5.1 Settings and DGP Configurations

The aim pursued in this section is to simulate the values of the quotients of the loss functions as

defined by (31) and (36), respectively, under the assumption of certain settings. All examinations

are performed in comparison to a reference time series model denoted by {Xt,i} (in the following

referred to as the “benchmark model”) and premise on historical 1-day VaR and ES estimates. The

benchmark model is valid during the in-sample period, from which the underlying risk measure is

estimated. The estimated measures are appraised by a scenario analysis, which contrasts {Xt,i}
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with the alternative model {Yt,i} over the course of the evaluation period. Certain properties of the

alternative model, which depend on the problem to be evaluated, distinguishes the benchmark from

the alternative model. The scores imposed on the benchmark model over the evaluation period are

each compared with the scores generated by the alternative model. The index i tags the type of

the data generating process (DGP).

When evaluating the performance for structural breaks in volatility, several scenarios for the al-

ternative model are assumed. Different values of κ indicate the extent and the direction of the

structural break. Thus, the alternative model features a volatility amounting the κ-fold of the

benchmark model. In order to evaluate the response of the risk measures to volatility breaks of

various intensity, volatility decreases of -50%, -35%, -20% and -10% as well as volatility increases

of 10%, 20%, 35%, 50%, 75% and 100% with respect to the reference volatility of {Xt,i} are consid-

ered for the alternative models {Yt,i}. As defined in the previous section, the risk measure which

provides a better ability to distinguish between the alternative model and the benchmark model

should show the higher value of the quotients of loss functions (as defined by (31)) if the alternative

model features the lower volatility, and vice versa.

Within the performance study regarding a change in distribution, the innovations of the benchmark

model are N(0; 1), while Student-t distributions with different numbers of degrees of freedom (df)

are assumed to generate the innovation process of the alternative model. Since all of them implicitly

mark scenarios with higher volatilities than the benchmark model, the risk measure which shows

the smaller quotients of the loss functions (as defined by (36)) is always expected to be the superior

measure. The numbers of df ν are chosen in a way to generate increases of the unconditional variance

of 10%, 20%, 35%, 50%, 75% and 100% as in the previous cases, namely ν ∈ {22, 12, 7.71, 6, 4.67, 4}.

The occurrence of scenarios without any violation of the risk measure depends on the intensity of

the volatility change and cannot be precluded, especially for small out-of-sample lengths. In order

to enable a functioning evaluation and comparison for these special cases, some assumptions are to

be made: In the event that no exceedance takes place for both the benchmark and the alternative

model, a quotient value of one is assigned to the respective replication. A score of one plus a value

reflecting the greatest finite percentile of the distribution of the quotients is assigned for scenarios

in which no exceedance occurs for the alternative model. This avoids infinite values for a single

replication and thus for the complete analysis. These substitution rules, however, do not affect

the result of the comparison since scenarios in which the rules effectively apply are characterized

by very high values of the respective quotient. This leads to the result that the value of such a

quotient anyway surpasses the other quotient’s value.

The simulation studies are conducted for measuring loss using both the binomial and the quadratic

approach (see (29) and (30)) and 2,500 replications each. The in-sample length n0 is chosen to

comprise 2,000 data points, which approximately depicts eight trading years, while in line with the

Basel Accords, the observation period n1 is suggested to be 250 (representing 1 year of trading).

However, this recommendation is frequently objected by both theorists (such as Best (2000), Pe-

saran and Zaffaroni (2004), Bams et al.(2005)) and economic authorities (such as National Bank of

Austria (1999)). In order to accommodate for diverse point of views and to carve out the behavior
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of Θ and Θ̃, different horizons for the observation period of n1 ∈ {100, 175, 250, 500} are imposed.

A number of standard stochastic processes are assumed as possible DGPs, whereby each benchmark

model is defined for t ∈ {1, . . . , n0} during the in-sample period and for t ∈ {n0 + 1, . . . , n0 + n1}
if the underlying process represents the benchmark or the alternative model within the evaluation

period. The innovations of all model classes are assumed to be drawn from the Gaussian or the

Student-t distribution. The following model classes are assumed to be the DGP i for both {Xt,i}
and {Yt,i} (for simplicity the DGPs are notated only in terms of the benchmark model):

DGP 1 White Noise: Xt
iid∼ N(0, σ2) (DGP 1a)

Xt
iid∼ t(ν) (DGP 1b)

DGP 2 ARMA(1,1): A simple linear model for the mean given by

Xt = ϕXt−1 + φεt−1 + εt,

whereby the iid innovations εt are drawn from a Gaussian distribution with parame-

ters (0;σ2ε) (DGP 2a) and from a Student-t(ν) distribution (DGP 2b), respectively.

DGP 3 GARCH(1,1), as proposed by Bollerslev (1986): For the mean Xt = εt and

εt|σ(Xt−1, Xt−2, . . .) ∼ (0;σ2t ), the model of conditional volatility is defined by

εt = σtξt

σ2t = ω + γ ε2t−1 + β σ2t−1,

whereby the iid innovations ξt are drawn from a Gaussian distribution (DGP 3a)

and from a Student-t(ν) distribution (DGP 3b), respectively.

When assuming a break in the unconditional volatility, the first unconditional moment needs to

stay unaffected. This is guaranteed for all DGPs by an unconditional expectation of 0. In order

to avoid a change in the persistence of DGPs 2 and 3, the ARMA and GARCH coefficients stay

unchanged by the volatility break. The volatility break in the ARMA process is implemented via

a change of the error variance10, while for the GARCH process, a volatility change can easily be

obtained by varying the constant coefficient of the conditional variance equation.11 A standard

deviation of 0.02 for the benchmark process is always implied by an appropriate choice of the

model parameters, which provides a realistic volatility level for financial log returns. The ARMA

parameters of DGP 2 are assumed to be ϕ = 0.7 and φ = 0.1. Parameters of γ = 0.1 and β = 0.7

for DGP 3 generate a heightened persistence of the GARCH models, while the constant of the

conditional volatility of the benchmark models is chosen to be ω = 0.00008.12

10The unconditional variance of an ARMA(1,1) is given by V ar[Xt] = 1+φ2−2ϕφ
1−ϕ2 σ2

ε . The model provides weak

stationarity for |ϕ| < 1.
11The unconditional variance of a GARCH(1,1) is given by V ar[Xt] =

ω
1−γ−β

. The model provides weak stationary
for |γ + β| < 1.

12For all models featuring the Student-t distribution, the volatility break needs to be implemented by a change of the
degree of freedom ν as the unconditional variance of a r.v. T ∼ t(ν) is given by V ar(T ) = ν

ν−2
. Since V ar(T ) ↘ 1

as ν → ∞, the Student-t innovations need to be rescaled in order to ensure a standard deviation of 0.02.
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4.5.2 Results: Break in Volatility

The ability of VaR and ES to distinguish models of different volatilities is initially compared for

a VaR exceedance level of α = 0.05, whereby VaR is computed by (26), while ES is estimated by

utilizing the LPM approach given by (28). The results of the simulation study can be found in

Appendices B.1 (measuring quadratic loss) and B.2 (measuring binomial loss), in which Θ and Θ̃

measure the performance of VaR and ES, resp. The tables contain the results for all configurations

of intensities of structural breaks (κ), lengths of evaluation periods (n1), and DGPs, as described

in the previous subsection. The values in parenthesis report the p-values for the t-statistic, testing

H0 : Θ ≥ Θ̃ if κ < 1 and H0 : Θ ≤ Θ̃ if κ > 1.

A whole string of general conclusions can be drawn: First of all, it is to be noted that the loss

quotient involving ES (Θ̃) always holds the significantly larger value than the VaR quotient (Θ)

for intensities κ < 1 across all evaluation sample sizes and DGPs. This finding validates the the-

oretical results given by (32) and (34) and attests the predominance of ES over VaR for volatility

decreases. For the vast majority of cases, the superiority of ES can also be certified for scenarios

involving volatility increases, where Θ > Θ̃ is expected to hold (see (33) and (35)). The sample

length n1 of the evaluation period, however, plays a more integral role here since the dominance

of ES in terms of distinguishing between the benchmark and the alternative model becomes more

severe, the longer the evaluation period lasts. While ES fails to outperform VaR for small volatility

heightenings, especially in small samples, ES provides consistently and significantly better results

than VaR for nearly all types of DGP and intensities of volatility breaks in mid-sized and large

sample horizons, which includes a period of 250 observations, as recommended by the Basel Ac-

cords. Corresponding to intuition, the relative sensitivity in distinguishing processes with different

volatilities is improving, the more extreme intensities of volatility breaks are assumed. This result

is valid for small sample sizes as well.

Regarding the different kinds of loss functions, a very satisfying performance can be reasonably

stated for both types considered. Only for a small number of cases the binomial and the quadratic

loss approach indicate contrary results, thus neither of the types can systematically be preferred.

However, this should not come as a surprise as the binomial aspect dominates the quadratic distance

to VaR in case of a violation since the simulated series feature a very low (and hence an empirically

realistic) volatility level within this part of the study.

The assumption of the data to be generated as simple White Noise comes closest to the character

of the theoretical results as it models independent observations. This interlinks the introduced

procedure with the familiar backtesting approach of testing whether any two elements of a hit

sequence are independent from each other (see e.g. Campbell (2005)). In accordance with that, the

Gaussian White Noise (see tables tagged with DGP 1a) presents a very good performance. While

ES only fails to outclass VaR in small sample sizes for a volatility increase of 10%, ES provides

results which perfectly fulfill the expectations derived from theory throughout for other intensities

for both small and large numbers of observations. Sample sizes as of 250, however, are sufficient

even for small volatility increases. If innovations are generated by a t-White Noise (DGP 1b),
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identification problems arise for small samples and volatility increases up to 20%. The relative

performances of ES when employing mid-sized and large samples can fully keep pace with those of

DGP 1a.

The ARMA class of models (DGP 2) shows a fairly sufficient performance for Gaussian innovations

(DGP 2a), which equals that of White Noise, even though a slight lack of efficiency occurs for

κ = 1.1 for n1 = 250. In contrast, the analysis for Student-t innovations (DGP 2b) breaks down for

volatility increases in small samples. Sample sizes of 500 observations are strongly recommended to

obtain a sufficient responsiveness, especially if only small or mid-level breaks in volatility emerge.

Altogether, ARMA-t yields the worst performance of all examined DGPs, although appropriate

reactions to volatility decreases as well as to severe increases are still guaranteed if the evaluation

horizon is long enough.

Even though the ARMA and the GARCH classes of models both feature serial dependence of

observations, the GARCH results dwarf the outcomes for ARMA in terms of relative sensitivity by

far. However, this comes as a less surprising result as GARCH models are able to capture volatility

clustering. Assuming Gaussian innovations (DGP 3a), only minor difficulties in distinguishing

between the different models in case of a 10% volatility increase are observed, for which even 250

observations are not sufficient to depict the outcome to be expected. Moreover, DGP 3b turns out

to be the role model among all DGPs using Student-t innovations since even models capturing a

volatility increase of only 20% can be discriminated well from the benchmark model.

Additionally, GARCH with Gaussian innovations as well as Gaussian White Noise yield excellent

results even beyond the comparison of VaR and ES. Almost entirely in line with the theoretical

findings, the values of both Θ and Θ̃ cross the frontier of one from below after the intensities κ

switch from volatility decrease to increase. Again, smaller deviations are observed in small samples

and for low volatility heightenings only. This finding indicates a good ability to correctly distinguish

between two processes of different volatilities, regardless whether VaR or ES is employed. However,

the distance of the quotient of loss functions to the value of one is always higher for ES.13

All DGP classes show better performances if the innovations are drawn from a Gaussian distribu-

tion. While evaluation horizons of at most 500 observations suffice to demonstrate the superiority

of ES for these models, marginal volatility breaks cannot be identified even in large samples if a

Student-t distribution is employed instead. To sum up, it can be recorded that a small evaluation

horizon is to be avoided for the distinction of processes of similar volatility in order to ensure su-

periority of the lower of two quantiles. The objective fact that the findings of the simulation study

clearly give evidence for the theoretical results is not impaired by this.

4.5.3 Results: Change in Distribution

In order to compare the relative performance of VaR and ES in distinguishing between two processes

employing different innovation distributions, the VaR level is set to be α = 0.05 as in the previous

section. According to (36), the study is carried out by simulating the quotients Θ⋆ and Θ̃⋆, whereat

13A value of one can be interpreted as utter inability to discriminate between the models.
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the benchmark process utilizes N(0; 1) innovations, while the alternative model employs Student-t

distributions of different numbers of df. The results for both assigning quadratic and binomial loss

scores can be found in Appendix C. The tables contain the performances for all configurations of

t(ν) distributions, lengths of evaluation periods (n1), and DGPs presented in Section 4.5.1. The

values in parenthesis report the p-values for the t-statistic, testing H0 : Θ
⋆ ≤ Θ̃⋆.

The principal finding lies in the fact that a diminishing number of df in the alternative model

leads to a clearer predominance of ES over VaR in terms of their responsiveness to a change in

distribution. This is again in line with the theory presented in Section 4.4.3, which gives rise

to expect that Θ⋆ > Θ̃⋆ holds. The superiority becomes more obvious for a growing number of

observations in the evaluation sample, while small samples are already sufficient for a low number

of df as these models yield the highest volatility and are easiest to distinguish from the benchmark

model. Large sample sizes are able to allow to discriminate between models of similar volatility

in most of the examined cases. The quotients show values of smaller than one with only a few

exceptions. Longer sample horizons and smaller values of ν furthermore underpin these results.

White Noise and GARCH equally exhibit excellent ability to distinguish between the models and

yield highly significant results for both employing quadratic and binomial losses. The only exception

exists for models of nearly equal volatilities. Especially for Θ̃⋆, values which are significantly lower

than one are observed - in small samples even for the t(12) alternative of relatively low volatility.

A weak performance in small samples can be attested for the ARMA class. When evaluating over

horizons of only 100 data points, only major changes in the distribution (i.e. for models which

feature a low number of df) can reliably be detected. For the t(22) case, the ARMA model fails to

capture the superiority of ES over VaR in the identification of the two processes even in samples

of 250 observations. Unlike the results presented in Section 4.5.2, the binomial and quadratic

loss approaches show smaller differences in favor of quadratic losses for small samples and for the

benefit of binomial scores for a large evaluation horizon. This can be traced down to the fact that a

standard deviation of 0.02 (as is valid in the previous part of the study) cannot be maintained since

the benchmark model features N(0; 1) innovations. Hence, the quadratic loss function involves a

quadratic component which is no longer dominated by the fixed part. Apart from this, even in the

ARMA case, the procedure shows highly significant results in samples greater than 100 observations

and for volatility increases of at least 20%.

At least for ARMA models, an evaluation sample of 250 observations is not sufficient in order

to ensure a satisfying sensitivity of both risk measures. However, evidence for the validity of

Proposition 3 can be found for all DGPs and numbers of df considered, implying that the risk

measure which represents the lower of two quantiles features a better ability to discriminate between

processes of similar volatility.

4.5.4 Robustness Checks

In order to check the generality of the conclusions drawn in the previous subsections, the simulations

are rerun for some different parameter configurations than assumed so far. For the purpose of a
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manageable extent of results, the simulations are carried out by applying only the quadratic loss

function.

Next to the 95% level, VaR estimates of a 99% confidence level are commonly utilized for measuring

risk of financial institutions. Choosing α = 0.01, nearly the same tendencies can be observed, even

though the conclusions drawn for α = 0.05 come only into force for larger sample sizes. That is,

a downturn of the small sample performance across all DGPs can be noticed for structural breaks

in volatility (see Appendix D.1). However, this can simply be explained by a small number of

violations for both the benchmark and the alternative process, which inhibits a quick convergence

to the result to be expected by lacking suitable observations (and is a well-known problem in many

backtesting frameworks). While a sample size of at most n1 = 500 is sufficient to demonstrate the

superiority of ES for a 95% VaR confidence level, some DGPs demand larger evaluation horizons for

α = 0.01.14 This point entails a minor difficulty of the introduced procedure. If the sensibility of the

risk measures is evaluated for large volatility decreases (κ = 0.5), the issue of too few exceedances,

especially of the alternative process, results in the inability to show the superiority of ES across all

evaluation horizons. However, this problem seems more relevant for applying Gaussian innovations,

while Student-t innovations are characterized by more extreme violations, which hence lead to more

suitable ES quotients.

The same tendency is observed for the results of a change in distribution (see Appendix D.2),

although to a less substantial extent. In very small samples, only changes to Student-t distributions

with a low number of df are reliably identified, while samples of 250 and 500 observations provide

results which are as good as for α = 0.05. Some major differences only arise for the evaluation of

ARMA models, for which a sample size of n1 = 500 is recommended to ensure predominance of ES

over VaR.

Another check is provided for alternative choices of the volatility level of the DGPs. While a

standard deviation of 0.02 was assured within the preceding parts of the study, simulations for two

alternative levels are supplementary run for assuming a break in volatility: On the one hand, a

low-level standard deviation of 0.015 (see Appendix E.1), which corresponds to 56.25% percent of

the initial variance, and on the other hand, a high-level standard deviation of 0.04 (see Appendix

E.2), which amounts the fourfold of the initial variance. The simulation results for both the low-

and high-level alternative volatility show no systematical different findings and comply with the

outcomes as discussed in section 4.5.2 across all DGPs, intensities of breaks, and evaluation horizons.

This however is perfectly in line with Propositions 1 and 2, which are indicated by independence

from the actual variance level of the P&L process.

4.6 Empirical Application to Stock Indices

It remains to reconfirm the conclusions drawn from the simulation studies involving breaks in

volatility by an application to empirical data sets. For this purpose, six time series of stock indices

are analyzed, in fact the German DAX 30, the EURO STOXX 50, the FTSE 100 representing the

14Additional simulations are available for n1 = 1, 000 within this branch of the simulation study.
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UK stock market, the Hang Seng Index of the Hong Kong stock market, the Japanese NIKKEI 225,

and the US S&P 500. Each time series contains daily data from January 1990 up to and including

March 2015. After performing a log transformation of the return series, 6,585 observations are each

left for examination.

As a first step, the series are examined for structural breaks in the volatility by applying the

CUSUM of squares test in the version of Deng and Perron (2008). The null of the absence of a

structural break is rejected if the test statistic exceeds the 95% quantile of the limit distribution.

By assuming a trimming parameter of 0.15, breaks are restricted to occur only within the central

70% of the observations. Thus, as is suggested by Bai and Perron (2006), a number of five breaks

should not be exceeded within each entire series. In order to generate subsamples of lengths which

guarantee robust estimations, a minimal distance of 10% of the entire sample between two breaks is

respected (see Pesaran and Timmerman (2002)). Four breaks in volatility are each found for DAX

30, EURO STOXX 50, Hang Seng and S&P 500, while the series of NIKKEI 225 and FTSE 100

contain three and five breaks, resp. The plots of the log returns along with the estimated breaks

are presented in Figure 4.3.
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Figure 4.3: Plots of log returns of stock market indices from January 1990 to March 2015. The estimated

structural breaks in volatility are indicated by vertical red dashed lines.
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A number of k breaks splits the series into k+1 subperiods, so that VaR and ES are estimated from

each of the first k subsamples. The risk measures estimated from subperiod j ∈ {1, . . . , k} are then

evaluated within subperiod j + 1 over horizons of n1 ∈ {100, 175, 250, 375, 500,maxEH}, whereat
maxEH = 1, 000 is set, unless the length of the evaluation subsample is smaller than 1,000. In

this case, maxEH denotes the length of the respective subperiod. The percentage changes of the

variances of the evaluation samples, each in relation to the previous subperiod, are stated in Table

4.2 in chronological order of the breaks.

n1

Series Break No. 100 175 250 375 500 maxEH

DAX 30

I -47.8 -51.9 -49.1 -50.9 -55.4 -44.5

II 441.7 300.6 245.5 363.0 324.1 251.1

III -41.2 -57.6 -57.0 -63.7 -69.8 -73.5

IV 192.4 144.8 498.8 453.3 368.4 246.2

Mean = 0.00029 (0.1014) V ariance = 0.00018

EURO

STOXX 50

I -48.1 -50.1 -48.9 -52.8 -54.3 -29.7

II 299.4 242.9 326.0 396.3 324.4 269.2

III -48.6 -60.7 -62.7 -66.6 -71.6 -74.4

IV 271.6 224.2 651.1 577.9 468.5 341.9

Mean = 0.00018 (0.2654) V ariance = 0.00020

FTSE 100

I -51.1 -51.6 -50.9 -52.9 -50.7 -16.7

II 423.9 324.3 246.1 201.6 207.1 169.0

III -57.5 -64.7 -68.5 -72.0 -75.6 -78.8

IV 145.8 70.1 63.8 113.0 201.0 534.4

V -61.4 -61.8 -55.0 -56.3 -60.7 -58.0

Mean = 0.00016 (0.2517) V ariance = 0.00012

HANG

SENG

I 670.7 570.0 457.8 407.5 323.2 198.0

II -66.3 -73.6 -71.1 -72.8 -74.5 -74.1

III -51.5 -55.1 -59.6 -59.2 33.5 154.8

IV -41.3 -47.0 -50.2 -57.9 -60.7 -54.4

Mean = 0.00033 (0.1102) V ariance = 0.00025

NIKKEI 225

I 133.9 73.7 64.6 60.2 36.7 20.0

II -40.2 -37.9 -30.7 -35.0 -36.8 -46.7

III 213.0 140.1 529.6 423.0 327.4 184.6

Mean = −0.00011 (0.5605) V ariance = 0.00022

S&P 500

I 24.3 20.5 1.7 28.3 76.6 68.7

II 248.6 169.3 135.2 101.6 121.4 102.5

III -53.3 -60.4 -65.0 -68.2 -71.1 -75.8

IV -41.4 -49.1 -30.0 -36.4 -44.3 -35.7

Mean = 0.00027 (0.0544) V ariance = 0.00013

Table 4.2: Percentage changes in volatility of stock market indices after the occurrence of a structural break by

length n1 of the evaluation horizon. The Roman numbers indicate the chronological occurrence of the break in the

respective series, while maxEH denotes the length of the evaluation subsample, but not exceeding 1,000.

Additionally, sample means along with their p-values and sample variances of the entire data sets are reported.
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Various intensities of changes in volatility can be observed with each series containing at least

one huge volatility increase. These increases are caused by the Russian financial crisis and the

subsequent downfall of LTCM in 1998, the global financial crisis in late summer 2007 or early

2008 or its aftermaths15. After the period of high volatility beginning in 1998, a large volatility

decrease is each observed in about spring of 2003 when the markets calmed down after the 2001

terrorist attacks, the Argentina economic crisis and the accusation of accounting fraud directed

against Enron in 2002. Moreover, volatility changes of weaker intensity occur for many of the

series. The percentage changes appear largely homogenous across the different out-of-sample sizes.

A few exceptions can be observed, such as the breaks no. I of NIKKEI 225 and S&P 500, for which

the intensities strongly depend on the evaluation horizon. For break no. III of the HANG SENG

series, negative changes of volatility are present for short evaluation horizons, while the direction

of the break switches for larger out-of-sample lengths. In addition, Table 4.2 provides the means

and sample variances of the entire data, whereby the means largely show an insignificant difference

from zero. Note that the levels of the variances are each in range of the low-level volatility assumed

within the robustness check conducted in Section 4.5.4.

Subperiod

1 2 3 4 5

Series Model n0 Model n0 Model n0 Model n0 Model n0

DAX 30 3b 1266 3b 702 3a 1541 3b 1197

EURO STOXX 50 3b 1277 3b 749 3b 1463 3b 1215

FTSE 100 3b 1370 3b 854 3a 1242 3a 793 3b 828

HANG SENG 3b 1987 3b 1093 3b 697 3b 1342

NIKKEI 225 3b 2035 3b 1332 3b 1330

S&P 500 3b 1553 3b 676 3b 1227 3b 1640

Table 4.3: Selected models and in-sample lengths by subsample of the stock indices series.

In a next step, the different models presented in Section 4.5.2 are estimated for each of the first k

subsamples, from which the best performing model is selected by the criterion proposed by Schwarz

(1978). The selected models along with the respective in-sample lengths n0 are presented in Table

4.3. As a less surprising fact within financial data analysis, GARCH-t models perform best for

most of the subsamples with few exceptions of GARCH models with Gaussian innovations. The

last subperiod of each series only serves for the evaluation of the last estimated risk measure, so

that no model needs to be estimated for subsample k + 1. The described subsampling approach is

used within many empirical applications in which time series are investigated for structural breaks,

such as by Granger and Hyung (2004) within an application to S&P 500 absolute stock returns

and by Rapach and Strauss (2008), who examine the empirical relevance of structural breaks in

the unconditional variance of GARCH(1,1) models.

In accordance with the simulation studies presented before, the sensitivity of VaR and ES in

response to a break in volatility is measured by the loss quotients given by (31). The selected

15The estimates for the exact dates of the structural breaks are itemized in Appendix F.1.
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model which prevails during the in-sample period serves as the benchmark model, which does not

account for the break.16 The data of the respective subsample works as the alternative model of the

application, which is confronted with simulations of the correct DGP of the preceding subperiod.

The simulations of the benchmark model are carried out on the basis of 5,000 replications, while

the quadratic loss function and a VaR level of 95% are applied for the evaluation. The results of

the application can be found in Table 4.4, whereby the p-values of the respective one-sided t-tests

are given in parenthesis.

n1 100 175 250 375 500 max EH

Subp. Θ Θ̃ Θ Θ̃ Θ Θ̃ Θ Θ̃ Θ Θ̃ Θ Θ̃

D
A
X

3
0

1
1.6019 1.9986 2.6325 4.9829 1.9146 3.8399 2.4249 2.6357 2.5680 4.4237 1.8284 2.4703

(0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000)

2
0.5026 0.3499 0.5999 0.4242 0.6795 0.5786 0.6005 0.4162 0.6225 0.5548 0.7280 0.5399

(0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000)

3
2.3949 20.1246 2.7369 10.2511 3.0094 40.2556 4.4669 3.2339 6.0012 13.4401 6.1722 162.701

(0.0000) (0.0000) (0.0000) (1.0000) (0.0000) (0.0000)

4
0.7283 0.6411 0.6182 0.5489 0.5011 0.3653 0.5173 0.3813 0.5659 0.5778 0.6487 0.6287

(0.0000) (0.0000) (0.0000) (0.0000) (0.6231) (0.0159)

E
U
R
O

S
T
.
5
0

1
3.0726 3.2502 3.5192 5.1641 2.5272 1.2192 3.0922 3.5832 2.8583 3.0152 1.5038 1.7055

(0.0000) (0.0000) (1.0000) (0.0000) (0.0000) (0.0000)

2
0.6650 0.6200 0.6761 0.6493 0.5763 0.4165 0.5924 0.6305 0.6562 0.5905 0.7476 0.6977

(0.0000) (0.0017) (0.0000) (0.9998) (0.0000) (0.0001)

3
5.0131 10.0123 8.7114 17.7001 6.2924 40.2533 6.3536 79.1995 8.4197 91.9534 7.0599 161.258

(0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000)

4
0.6192 0.2539 0.5604 0.3333 0.4856 0.3976 0.5156 0.3642 0.5728 0.4333 0.6492 0.5216

(0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000)

F
T
S
E

1
0
0

1
3.2943 2.2500 3.6602 7.7010 3.1864 3.2401 3.3812 3.6472 2.8829 3.9299 1.4155 1.8053

(1.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000)

2
0.4819 0.3379 0.5587 0.4122 0.6264 0.5357 0.7166 0.5886 0.7087 0.6308 0.8666 0.7464

(0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000)

3
4.6742 1.3490 8.1626 17.0987 6.0471 30.2520 6.1308 40.2525 8.2786 57.4423 13.0176 138.784

(1.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000)

4
0.6344 0.1674 0.8580 0.3611 0.9341 0.3321 0.8273 0.4881 0.6886 0.5328 0.6053 0.4317

(0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000)

5
5.6437 20.2520 9.3364 20.2482 2.1007 35.6527 2.0025 79.7716 3.2389 160.663 2.4324 6.4529

(0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000)

H
A
N
G

S
E
N
G

1
0.4820 0.3027 0.5424 0.3251 0.5302 0.3526 0.5407 0.5079 0.5855 0.5463 0.7272 0.6773

(0.0000) (0.0000) (0.0000) (0.0000) (0.0001) (0.0000)

2
5.5421 20.2760 9.2770 59.2046 6.6012 70.2277 9.6138 70.2937 12.5195 127.782 8.6407 93.3186

(0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000)

3
4.7157 13.7169 8.1208 20.2515 5.8063 76.8808 3.6676 81.6158 2.3240 7.7489 0.9748 0.6623

(0.0000) (0.0000) (0.0000) (0.0000) (1.0000) (0.0000)

4
5.3499 1.2501 4.6449 5.5376 4.3006 6.8459 4.6061 9.3203 3.9414 16.1485 1.8002 3.1314

(1.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000)

N
IK

K
E
I
2
2
5 1

0.6373 0.4500 0.7904 0.9306 0.5496 1.2000 0.6034 0.7038 0.7029 0.6820 0.8930 0.8434

(0.0000) (1.0000) (1.0000) (0.4990) (0.0398) (0.0000)

2
2.6685 1.2501 3.1822 4.9738 1.6307 0.9166 1.7791 2.5476 1.8616 2.1657 2.1684 4.0735

(1.0000) (0.0000) (1.0000) (0.0000) (0.0000) (0.0000)

3
0.5288 0.4316 0.5924 0.3409 0.4964 0.3902 0.5223 0.4284 0.5796 0.4251 0.8094 0.8083

(0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.4906)

1
0.8278 0.5000 0.9971 0.9168 1.3222 0.5834 1.0388 0.7017 0.9650 0.6564 1.0317 0.6310

(0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000)

S
&
P

5
0
0

2
0.6076 0.6068 0.6684 0.4993 0.7195 0.8055 0.8120 0.6661 0.7732 0.3690 0.8770 0.8384

(0.4702) (0.0000) (1.0000) (0.0000) (0.0000) (0.0004)

3
5.1230 30.2504 9.0212 20.2473 12.6105 59.9850 18.6002 54.7629 24.7674 136.182 47.8045 215.660

(0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000)

4
1.6460 0.0144 1.7013 10.0016 1.4065 1.7501 1.7045 3.6651 1.7577 6.1638 1.5247 2.9361

(1.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000)

Table 4.4: Results for the evaluation of VaR and ES by length of the evaluation horizon n1 for the subsamples of

different stock indices. The VaR confidence level is chosen to be 95%. The values in parentheses denote the p-values

for the respective t-test (the directions of the breaks can be taken from Table 4.2).

The majority of the application results confirm the findings from the simulation studies conducted

in Section 4.5 and are in line with the theoretical results. With some exceptions, which are mainly

16The estimated parameters of the selected models are listed in Appendix F.2.
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present in evaluation samples of n1 = 100, the comparison between both risk measures indicate

highly significant differences for Θ and Θ̃, each in favor of the direction to be expected. DAX break

no. IV and HANG SENG break no. III mark the only exceptions in samples of n1 = 500 for which

ES is not preferred over VaR. Note that the latter break mentioned concerns the case in which

the direction of the break switches shortly before the evaluation period ends. For the maximum

evaluation sample size, ES is preferred over VaR with only a single exception (NIKKEI break no.

III). The results for breaks of large intensity, for which ES appears to be superior in most of the

cases, expand the findings of Basu (2006), who works out that ES is affected to extreme shocks,

while VaR remains very sticky. However, the analysis works very satisfying even for breaks of

weaker intensities, e.g. for small and mid-sized evaluation samples of S&P 500 break no. I. Apart

from the comparative conclusions, it can be noted that for most of the cases both risk measures

are able to identify the breaks, which is demonstrated by the respective values of Θ and Θ̃. This

result confirms Lopez (1998), who attests VaR a good ability to differentiate between the true and

the false model when GARCH-t(6) models are applied, and expands his findings to ES.

4.7 Conclusion

The accurate evaluation of a risk measure employed by a financial institution is of high importance

in view of the institution’s capital requirement. The most sensitive response to breaks in the

volatility of the profit and loss process is a desirable property of the underlying measure. This paper

proposes a loss function-based framework for the comparative measurement of the responsiveness of

any two quantile downside risk measures to breaks in the volatility or in the distribution. For this

purpose, the model comparison technique introduced by Lopez (1998) is exploited and extended.

As a theoretical result, it can generally be noted that lower quantile risk measures are superior to

higher risk quantiles concerning their ability to identify breaks in the volatility. VaR and ES are

representatively contrasted within a broad simulation study and the theoretical results are validated

for realistic evaluation horizons. Numerous settings involving volatility breaks of different intensities

and several DGPs are checked by employing a frequency-type and a magnitude-type loss function.

An empirical study additionally demonstrates the applicability of the procedure using data from

six stock indices.

Both the simulation study and the empirical application strongly confirm the predominance of

ES over VaR regarding their ability to respond to a volatility break. While for small evaluation

samples the superiority of ES is not clearly identifiable for some DGPs, this result becomes more

evident for increasing evaluation horizons. The conclusions drawn from the theoretical part of the

comparison are met for the usage of all DGPs, even though the quality of performance for GARCH

and White Noise models clearly surpasses that for ARMA models. While the choice of the loss

function type carries secondary weight, models which involve Gaussian innovations provide better

results in small samples than models whose innovations are drawn from a Student-t distribution.

Only for breaks which lead to a slightly increasing volatility, the superior risk measure in theory

is not reliably identifiable, while the procedure works well for volatility decreases of any intensity

and increases of about 20%-35% over sufficiently large evaluation periods. In contrast to several
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other applications and practical considerations, this work suggests evaluation horizons of at least

250 observations for the evaluation of risk measures. However, even the recommendation by BCBS

seems not to be sufficient for a limited set of scenarios in order to guarantee the better performance

of the risk measure with the superior theoretical properties. This outcome is even stronger for

lower VaR exceedance levels. The empirical application for breaks in volatility using a subsampling

approach widely confirms these results for the selected and estimated models . In the absence of a

suitable test for a structural break in distribution, the corresponding outcomes of the Monte Carlo

study remain to be validated for empirical data.

The results of this work support the findings of prior research regarding the properties of VaR and

ES within several stress scenarios. Considering the fact that literature in this particular field is

still rare, this paper contributes to the expansion of the knowledge about the characteristics of risk

measure in presence of structural breaks.
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Appendix to Chapter 4

A Proofs

Under validity of assumptions A1-A3 and the notations given above and renaming α = F (qt) and

α̃ = F (q̃t), the proofs of propositions 1 and 2 are each carried out for κ > 1 (referring to equations

(33) and (35)). For κ < 1 (referring to equations (32) and (34)), the same arguments apply.

A.1 Proof of Proposition 1

For any binomial loss involving observations which underrun the risk quantile with probability α,

the expected value is given by E
[
ΓB
]
= α. The rest is straightforward:

E[Θ] > E[Θ̃]

⇔
F
(

q̃t√
κ

)
F (q̃t)

>
F
(

qt√
κ

)
F (qt)

(37)

The last inequality holds as the assumptions of quasiconcavity and strict monotonicity are observed.

Thus

F
(
κ−

1
2 q̃t

)
− F (q̃t) > F

(
κ−

1
2 qt

)
− F (qt)

⇔
F
(
κ−

1
2 q̃t

)
F (q̃t)

> 1 +
F
(
κ−

1
2 qt

)
− F (qt)

F (q̃t)

⇒
F
(
κ−

1
2 q̃t

)
F (q̃t)

> 1 +
F
(
κ−

1
2 qt

)
− F (qt)

F (qt)
=
F
(
κ−

1
2 qt

)
F (qt)

holds, whereby F (qt) > F (q̃t) applies. This equals (37) and proves (33).

A.2 Proof of Proposition 2

The following statements apply for using the quadratic loss function:

E[Θ] > E[Θ̃]

⇔
F (qt)(1 + E

[
(X − qt)

2
]
)

F
(

qt√
κ

)
(1 + E [(Y − qt)2])

>
F (q̃t)(1 + E

[
(X − q̃t)

2
]
)

F
(

q̃t√
κ

)
(1 + E [(Y − q̃t)2])

⇔
F (qt)(1 + E

[
X2 − 2Xqt + q2t

]
)

F
(

qt√
κ

)
(1 + E

[
Y 2 − 2Y qt + q2t

]
)
>

F (q̃t)(1 + E
[
X2 − 2Xq̃t + q̃2t

]
)

F
(

q̃t√
κ

)
(1 + E

[
Y 2 − 2Y q̃t + q̃2t

]
)

⇔
F
(

q̃t√
κ

)
F (qt)

F
(

qt√
κ

)
F (q̃t)

>
(1 + σ2X + q̃2t )(1 + σ2Y + q2t )

(1 + σ2X + q2t )(1 + σ2Y + q̃2t )
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⇔
F
(

q̃t√
κ

)
F (qt)

F
(

qt√
κ

)
F (q̃t)

>
σ2X (1 + κ+ κσ2X) + 1 + q2t + q̃2t + q2t q̃

2
t + σ2X

Q1︷ ︸︸ ︷
(κq̃2t + q2t )

σ2X (1 + κ+ κσ2X) + 1 + q2t + q̃2t + q2t q̃
2
t︸ ︷︷ ︸

a

+ σ2X︸︷︷︸
b

(κq2t + q̃2t )︸ ︷︷ ︸
Q2

⇒
F
(

q̃t√
κ

)
F (qt)

F
(

qt√
κ

)
F (q̃t)

>
a+ b(κq̃2t + q2t )

a+ b(κq2t + q̃2t )
>
κq̃2t + q2t
κq2t + q̃2t

> 1

The latter two inequalities hold as a, b > 0 and Q1 > Q2 for κ > 1, which proves equation (35) and

confirms the computations given in Tables 4.1/a and 4.1/b.

A.3 Proof of Proposition 3

Let X ∼ N(0;σ2X = 1) with cdf FN (·) and Y ∼ t(ν) with cdf Ft(·). The sensitivity functions Θ⋆

and Θ̃⋆ are given by (36). The proof is carried out for m = Q. Some steps are left out as being

identical with those in Appendix A.2.

E[Θ⋆] > E[Θ̃⋆]

⇔ P (Y ≤ q̃t)FN (qt)

P (Y ≤ qt)FN (q̃t)
>

(1 + σ2X + q̃2t )(1 + σ2Y + q2t )

(1 + σ2X + q2t )(1 + σ2Y + q̃2t )

⇔ Ft (q̃t) FN (qt)

Ft (qt)FN (q̃t)
>

2
(
1 + σ2Y

)
+ q2t q̃

2
t +

(
1 + σ2Y

)
q̃2t + 2q2t

2
(
1 + σ2Y

)
+ q2t q̃

2
t︸ ︷︷ ︸

a>0

+
(
1 + σ2Y

)︸ ︷︷ ︸
b>2

q2t + 2q̃2t

Since a + b q̃2t + 2q2t > a + b q2t + 2q̃2t is true for any 0 > qt > q̃t, the right hand side of the latter

inequality is larger than 1, so that

Ft(q̃t)

FN (q̃t)
>

Ft(qt)

FN (qt)
(38)

holds. By validity of assumptions A2 and A3, it follows that

Ft(q̃t)− FN (q̃t) > Ft(qt)− FN (qt),

whereby F (υq̃t) > F (q̃t), F (υqt) > F (qt) and F (qt) > F (q̃t) applies, so that

⇔ Ft(q̃t)

FN (q̃t)
> 1 +

Ft(qt)− FN (qt)

FN (q̃t)

⇒ Ft(q̃t)

FN (q̃t)
> 1 +

Ft(qt)− FN (qt)

FN (qt)
=

Ft(qt)

FN (qt)

holds. This equals (38) and hence proves the proposition. The proof for m = B equals those in

Appendix A.1.
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B Simulation Results: Break in Volatility

The following tables contain the results of the simulation study regarding the sensitiveness of Value

at Risk (Θ) and Expected Shortfall (Θ̃) to distinguish between the benchmark model and the

alternative model as presented in Section 4.5.2. Each table contains results for all combinations of

intensities of volatility breaks (κ) and lengths of evaluation periods (n1). The values in parenthesis

report the p-values for the t-statistic, testing H0 : Θ ≥ Θ̃ if κ < 1 and H0 : Θ ≤ Θ̃ if κ > 1. Each

table is tagged with the respective DGP i, the type of loss function, and the VaR exceedance level

(m-α%) in the upper left.

B.1 Results for Quadratic Loss

DGP 1a κ

Q-5% 0.5 0.65 0.8 0.9 1.1

n1 Θ Θ̃ Θ Θ̃ Θ Θ̃ Θ Θ̃ Θ Θ̃

100
7.3106 7.7464 3.2395 5.4100 1.8925 4.0700 1.5264 2.8610 1.0848 1.1566

(0.0000) (0.0000) (0.0000) (0.0000) (0.9978)

175
6.4073 8.7980 2.6681 5.8178 1.7562 2.5821 1.4290 1.7488 1.0678 1.0566

(0.0000) (0.0000) (0.0000) (0.0000) (0.2898)

250
5.5990 10.7815 2.6526 6.4125 1.7100 2.3067 1.4133 1.6378 1.0599 1.0346

(0.0000) (0.0000) (0.0000) (0.0000) (0.0836)

500
4.5858 12.1893 2.4471 4.0020 1.6586 2.0118 1.3767 1.4877 1.0564 1.0122

(0.0000) (0.0000) (0.0000) (0.0000) (0.0025)

1.2 1.35 1.5 1.75 2

n1 Θ Θ̃ Θ Θ̃ Θ Θ̃ Θ Θ̃ Θ Θ̃

100
0.9792 0.9492 0.8541 0.7448 0.7657 0.6337 0.6691 0.5308 0.6045 0.4743

(0.0857) (0.0000) (0.0000) (0.0000) (0.0000)

175
0.9615 0.8979 0.8456 0.7674 0.7653 0.6520 0.6749 0.5414 0.6749 0.5414

(0.0003) (0.0000) (0.0000) (0.0000) (0.0000)

250
0.9552 0.8637 0.8513 0.7416 0.7686 0.6392 0.6794 0.5467 0.6172 0.4893

(0.0000) (0.0000) (0.0000) (0.0000) (0.0000)

500
0.9622 0.8838 0.8607 0.7526 0.7819 0.6644 0.6691 0.5770 0.6394 0.5126

(0.0000) (0.0000) (0.0000) (0.0000) (0.0000)

DGP 1b κ

Q-5% 0.5 0.65 0.8 0.9 1.1

n1 Θ Θ̃ Θ Θ̃ Θ Θ̃ Θ Θ̃ Θ Θ̃

100
2.1573 5.6718 1.6354 5.0585 1.4016 2.8868 1.3091 2.5355 1.2150 1.7207

(0.0000) (0.0000) (0.0000) (0.0000) (1.0000)

175
2.0688 6.2213 1.5378 3.2636 1.3410 1.7324 1.2618 1.4820 1.1819 1.2343

(0.0000) (0.0000) (0.0000) (0.0000) (0.9859)

250
1.9323 6.2341 1.5274 2.2890 1.3226 1.6020 1.2473 1.3741 1.1552 1.1669

(0.0000) (0.0000) (0.0000) (0.0000) (0.7157)

500
1.8374 4.0202 1.4602 2.0075 1.3211 1.4939 1.2389 1.3121 1.1518 1.1397

(0.0000) (0.0000) (0.0000) (0.0000) (0.2397)

1.2 1.35 1.5 1.75 2

n1 Θ Θ̃ Θ Θ̃ Θ Θ̃ Θ Θ̃ Θ Θ̃

100
1.1823 1.5175 1.1245 1.4080 1.1206 1.1190 1.0882 1.0949 1.0367 1.0528

(1.0000) (1.0000) (0.4766) (0.6023) (0.7368)

175
1.1309 1.1321 1.1192 1.0595 1.0954 1.0288 1.0492 0.9793 1.0272 0.9791

(0.5206) (0.0022) (0.0007) (0.0003) (0.0093)

250
1.1288 1.1051 1.1023 1.0603 1.0701 1.0201 1.0419 0.9469 1.0112 0.9157

(0.1136) (0.0164) (0.0043) (0.0000) (0.0000)

500
1.1288 1.1033 1.0993 1.0182 1.0756 1.0039 1.0463 0.9252 0.9961 0.9077

(0.1079) (0.0000) (0.0000) (0.0000) (0.0000)
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DGP 2a κ

Q-5% 0.5 0.65 0.8 0.9 1.1

n1 Θ Θ̃ Θ Θ̃ Θ Θ̃ Θ Θ̃ Θ Θ̃

100
12.4509 13.9057 7.0295 9.1720 2.8826 7.6616 1.9351 6.6179 1.2454 3.3440

(0.0000) (0.0000) (0.0000) (0.0000) (1.0000)

175
9.3694 11.4105 3.8155 8.6495 1.9477 6.0081 1.5966 2.9443 1.1317 1.2370

(0.0000) (0.0000) (0.0000) (0.0000) (0.9999)

250
7.5832 15.3081 3.1330 8.9290 1.9039 3.9196 1.4655 2.0343 1.1009 1.1046

(0.0000) (0.0000) (0.0000) (0.0000) (0.5611)

500
5.2424 9.2209 2.5314 5.0726 1.7174 2.2114 1.4157 1.5782 1.0836 1.0337

(0.0000) (0.0000) (0.0000) (0.0000) (0.0043)

1.2 1.35 1.5 1.75 2

n1 Θ Θ̃ Θ Θ̃ Θ Θ̃ Θ Θ̃ Θ Θ̃

100
1.1143 1.8018 0.9373 1.0426 0.8232 0.7793 0.7019 0.6072 0.6279 0.4837

(1.0000) (0.9988) (0.0922) (0.0000) (0.0000)

175
1.0234 1.0031 0.8781 0.7678 0.7895 0.6725 0.6776 0.5538 0.6240 0.4978

(0.2044) (0.0000) (0.0000) (0.0000) (0.0000)

250
0.9916 0.9286 0.8600 0.7481 0.7648 0.6742 0.6824 0.5634 0.6249 0.4995

(0.0014) (0.0000) (0.0000) (0.0000) (0.0000)

500
0.9677 0.9027 0.8567 0.7770 0.7896 0.6672 0.6958 0.5723 0.6433 0.5133

(0.0001) (0.0000) (0.0000) (0.0000) (0.0000)

DGP 2b κ

Q-5% 0.5 0.65 0.8 0.9 1.1

n1 Θ Θ̃ Θ Θ̃ Θ Θ̃ Θ Θ̃ Θ Θ̃

100
7.4240 8.2087 2.5194 9.2044 1.9356 8.4811 1.6049 9.1756 1.3769 5.3625

(0.0000) (0.0000) (0.0000) (0.0000) (1.0000)

175
3.3091 9.6271 2.0510 8.0453 1.5742 5.0579 1.4260 4.7599 1.2475 1.9142

(0.0000) (0.0000) (0.0000) (0.0000) (1.0000)

250
2.9489 12.7339 1.8873 7.4692 1.5039 2.5076 1.3473 1.8832 1.1993 1.3504

(0.0000) (0.0000) (0.0000) (0.0000) (1.0000)

500
2.5268 14.4783 1.7233 2.9476 1.4327 1.7412 1.3197 1.4278 1.1748 1.1758

(0.0000) (0.0000) (0.0000) (0.0000) (0.5194)

1.2 1.35 1.5 1.75 2

n1 Θ Θ̃ Θ Θ̃ Θ Θ̃ Θ Θ̃ Θ Θ̃

100
1.3064 4.4500 1.2628 4.8108 1.1574 5.7033 1.1420 4.0091 1.0692 3.6839

(1.0000) (1.0000) (1.0000) (1.0000) (1.0000)

175
1.1712 1.5724 1.1106 1.3632 1.0769 1.1573 1.0229 1.0319 0.9886 0.9451

(1.0000) (1.0000) (0.9977) (0.6339) (0.0308)

250
1.1495 1.2750 1.1026 1.0958 1.0487 1.0251 1.0065 0.9285 0.9724 0.9006

(1.0000) (0.3930) (0.1580) (0.0003) (0.0001)

500
1.1321 1.1151 1.0773 1.0187 1.0457 0.9456 0.9957 0.8877 0.9768 0.8427

(0.2059) (0.0016) (0.0000) (0.0000) (0.0000)

DGP 3a κ

Q-5% 0.5 0.65 0.8 0.9 1.1

n1 Θ Θ̃ Θ Θ̃ Θ Θ̃ Θ Θ̃ Θ Θ̃

100
7.0633 8.0556 3.0963 6.1853 1.8685 4.1122 1.5093 3.9228 1.1122 1.1561

(0.0000) (0.0000) (0.0000) (0.0000) (0.9508)

175
5.7695 10.8826 2.5807 6.3667 1.7659 2.7959 1.4254 1.7218 1.0892 1.0797

(0.0000) (0.0000) (0.0000) (0.0000) (0.3336)

250
5.0701 10.5346 2.5498 6.5637 1.6858 2.2967 1.4049 1.6238 1.0705 1.0712

(0.0000) (0.0000) (0.0000) (0.0000) (0.5144)

500
4.3223 11.3582 2.3597 3.8389 1.6250 2.0191 1.3722 1.5048 1.0656 1.0269

(0.0000) (0.0000) (0.0000) (0.0000) (0.0094)

1.2 1.35 1.5 1.75 2

n1 Θ Θ̃ Θ Θ̃ Θ Θ̃ Θ Θ̃ Θ Θ̃

100
1.0236 1.0700 0.8835 0.7419 0.7864 0.6955 0.6865 0.5732 0.6260 0.5064

(0.9632) (0.0000) (0.0000) (0.0000) (0.0000)

175
0.9798 0.9147 0.8681 0.7657 0.7858 0.6840 0.6765 0.5707 0.6258 0.4945

(0.0005) (0.0000) (0.0000) (0.0000) (0.0000)

250
0.9792 0.8919 0.8588 0.7553 0.7746 0.6726 0.6898 0.5583 0.6302 0.5085

(0.0000) (0.0000) (0.0000) (0.0000) (0.0000)

500
0.9706 0.9024 0.8721 0.7615 0.7946 0.6742 0.7053 0.5763 0.6459 0.5253

(0.0000) (0.0000) (0.0000) (0.0000) (0.0000)
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DGP 3b κ

Q-5% 0.5 0.65 0.8 0.9 1.1

n1 Θ Θ̃ Θ Θ̃ Θ Θ̃ Θ Θ̃ Θ Θ̃

100
2.6511 4.2271 1.8981 3.4844 1.5359 2.8503 1.3916 2.2819 1.1671 1.2963

(0.0000) (0.0000) (0.0000) (0.0000) (1.0000)

175
2.4691 4.8620 1.8585 2.4144 1.5239 1.8133 1.3342 1.4435 1.1407 1.1880

(0.0000) (0.0000) (0.0000) (0.0000) (0.9812)

250
2.3997 3.3991 1.8221 2.1697 1.4802 1.5588 1.3497 1.4527 1.1450 1.1468

(0.0000) (0.0000) (0.0005) (0.0000) (0.5356)

500
2.3180 2.8070 1.7717 2.0295 1.4743 1.5355 1.3381 1.3820 1.1464 1.1366

(0.0000) (0.0000) (0.0013) (0.0112) (0.2857)

1.2 1.35 1.5 1.75 2

n1 Θ Θ̃ Θ Θ̃ Θ Θ̃ Θ Θ̃ Θ Θ̃

100
1.0843 1.2071 0.9981 0.9939 0.9225 0.8414 0.8188 0.7847 0.7621 0.6775

(1.0000) (0.4295) (0.0000) (0.0397) (0.0000)

175
1.0668 1.0491 0.9896 0.9040 0.9065 0.8625 0.8262 0.7505 0.7637 0.6689

(0.1926) (0.0000) (0.0080) (0.0000) (0.0000)

250
1.0723 1.0447 0.9747 0.9269 0.9198 0.8829 0.8370 0.7569 0.7748 0.6928

(0.0751) (0.0032) (0.0200) (0.0000) (0.0000)

500
1.0802 1.0546 0.9937 0.9580 0.9273 0.8637 0.8574 0.7841 0.7938 0.7090

(0.0635) (0.0141) (0.0000) (0.0000) (0.0000)

B.2 Results for Binomial Loss

DGP 1a κ

B-5% 0.5 0.65 0.8 0.9 1.1

n1 Θ Θ̃ Θ Θ̃ Θ Θ̃ Θ Θ̃ Θ Θ̃

100
7.4538 7.8059 3.1183 5.4598 1.8402 3.5224 1.4570 3.0304 1.0842 1.1255

(0.0013) (0.0000) (0.0000) (0.0000) (0.9555)

175
5.9783 9.6006 2.8014 5.8475 1.7272 2.5040 1.4167 1.6701 1.0658 1.0476

(0.0000) (0.0000) (0.0000) (0.0000) (0.1783)

250
5.6378 9.5139 2.5520 5.8884 1.7171 2.2961 1.4148 1.5712 1.0678 1.0283

(0.0000) (0.0000) (0.0000) (0.0000) (0.0153)

500
4.7482 11.7352 2.4329 4.0299 1.6595 2.0109 1.3753 1.5445 1.0660 1.0234

(0.0000) (0.0000) (0.0000) (0.0000) (0.0035)

1.2 1.35 1.5 1.75 2

n1 Θ Θ̃ Θ Θ̃ Θ Θ̃ Θ Θ̃ Θ Θ̃

100
0.9786 0.9421 0.8685 0.7900 0.7693 0.6482 0.6751 0.5425 0.6083 0.4966

(0.0437) (0.0000) (0.0000) (0.0000) (0.0000)

175
0.9500 0.8716 0.8469 0.7378 0.7675 0.6432 0.6799 0.5469 0.6270 0.4747

(0.0000) (0.0000) (0.0000) (0.0000) (0.0000)

250
0.9837 0.9363 0.8452 0.7486 0.7690 0.6567 0.6859 0.5646 0.6273 0.4840

(0.0031) (0.0000) (0.0000) (0.0000) (0.0000)

500
0.9659 0.8859 0.8600 0.7493 0.7865 0.6640 0.7030 0.6000 0.6396 0.5175

(0.0000) (0.0000) (0.0000) (0.0000) (0.0000)

DGP 1b κ

B-5% 0.5 0.65 0.8 0.9 1.1

n1 Θ Θ̃ Θ Θ̃ Θ Θ̃ Θ Θ̃ Θ Θ̃

100
2.2236 4.9218 1.5916 3.5749 1.3743 3.1461 1.3310 2.4361 1.1933 1.4154

(0.0000) (0.0000) (0.0000) (0.0000) (1.0000)

175
1.9720 6.5540 1.5442 3.5989 1.3127 1.7136 1.2806 1.5487 1.1587 1.2490

(0.0000) (0.0000) (0.0000) (0.0000) (0.9990)

250
1.9667 5.5552 1.5176 2.2134 1.3111 1.5893 1.2404 1.4158 1.1735 1.1883

(0.0000) (0.0000) (0.0000) (0.0000) (0.7634)

500
1.8500 3.9842 1.4786 1.9702 1.2972 1.4691 1.2460 1.3196 1.1519 1.1411

(0.0000) (0.0000) (0.0000) (0.0000) (0.2607)

1.2 1.35 1.5 1.75 2

n1 Θ Θ̃ Θ Θ̃ Θ Θ̃ Θ Θ̃ Θ Θ̃

100
1.1818 1.4040 1.1558 1.3911 1.1132 1.1892 1.0883 1.0912 1.0654 1.0336

(1.0000) (1.0000) (0.9986) (0.5474) (0.0926)

175
1.1484 1.1959 1.1169 1.0461 1.0839 1.0283 1.0649 0.9718 1.0402 0.9572

(0.9807) (0.0004) (0.0036) (0.0000) (0.0000)

250
1.1353 1.1228 1.1096 1.0651 1.0736 1.0004 1.0609 0.9816 1.0264 0.9190

(0.2658) (0.0109) (0.0001) (0.0000) (0.0000)

500
1.1336 1.0877 1.0973 1.0454 1.0765 1.0123 1.0513 0.9594 1.0364 0.9502

(0.0030) (0.0008) (0.0000) (0.0000) (0.0000)
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DGP 2a κ

B-5% 0.5 0.65 0.8 0.9 1.1

n1 Θ Θ̃ Θ Θ̃ Θ Θ̃ Θ Θ̃ Θ Θ̃

100
10.8650 14.9116 7.9755 9.2406 2.6082 10.4300 1.8535 6.0509 1.2854 4.2785

(0.0000) (0.0000) (0.0000) (0.0000) (1.0000)

175
12.1118 15.2674 3.6440 9.7292 2.0582 6.0617 1.5486 3.2486 1.1548 1.2510

(0.0000) (0.0000) (0.0000) (0.0000) (0.9994)

250
7.6622 17.4049 3.0085 8.7170 1.8160 3.1848 1.4594 2.0166 1.0791 1.1294

(0.0000) (0.0000) (0.0000) (0.0000) (0.9808)

500
5.2291 16.5410 2.5455 5.1707 1.6970 2.2320 1.3978 1.6332 1.0903 1.0346

(0.0000) (0.0000) (0.0000) (0.0000) (0.0019)

1.2 1.35 1.5 1.75 2

n1 Θ Θ̃ Θ Θ̃ Θ Θ̃ Θ Θ̃ Θ Θ̃

100
1.1050 1.4959 0.8999 0.9270 0.8228 0.7220 0.7140 0.5963 0.6298 0.4824

(1.0000) (0.8413) (0.0000) (0.0000) (0.0000)

175
0.9995 1.0038 0.8782 0.8417 0.7915 0.7011 0.7004 0.5755 0.6303 0.5008

(0.5693) (0.0475) (0.0000) (0.0000) (0.0000)

250
0.9975 0.9279 0.8648 0.7903 0.7928 0.6670 0.6907 0.5599 0.6212 0.4874

(0.0006) (0.0000) (0.0000) (0.0000) (0.0000)

500
0.9755 0.9008 0.8661 0.7711 0.7869 0.6710 0.6977 0.5794 0.6386 0.5188

(0.0000) (0.0000) (0.0000) (0.0000) (0.0000)

DGP 2b κ

B-5% 0.5 0.65 0.8 0.9 1.1

n1 Θ Θ̃ Θ Θ̃ Θ Θ̃ Θ Θ̃ Θ Θ̃

100
9.3847 10.5501 2.7776 10.2991 1.8807 7.7784 1.6456 7.0533 1.3537 4.7700

(0.0000) (0.0000) (0.0000) (0.0000) (1.0000)

175
3.3483 11.0215 2.1084 7.5927 1.5947 6.6122 1.4380 5.3703 1.2048 2.0594

(0.0000) (0.0000) (0.0000) (0.0000) (1.0000)

250
2.9767 14.8934 1.8539 8.0124 1.4808 2.3683 1.3655 1.8393 1.2143 1.3837

(0.0000) (0.0000) (0.0000) (0.0000) (1.0000)

500
2.5048 13.3306 1.6926 2.6716 1.4103 1.7285 1.3196 1.4730 1.1800 1.1595

(0.0000) (0.0000) (0.0000) (0.0000) (0.1658)

1.2 1.35 1.5 1.75 2

n1 Θ Θ̃ Θ Θ̃ Θ Θ̃ Θ Θ̃ Θ Θ̃

100
1.2835 5.5721 1.2351 5.3479 1.1637 5.4208 1.1059 4.6756 1.0669 3.3103

(1.0000) (1.0000) (1.0000) (1.0000) (1.0000)

175
1.1954 1.5434 1.1268 1.3215 1.0967 1.1348 1.0249 1.1033 0.9534 0.9826

(1.0000) (1.0000) (0.9134) (0.9981) (0.0174)

250
1.1634 1.2545 1.0898 1.0884 1.0572 1.0535 1.0026 0.9420 0.9653 0.8689

(0.9996) (0.4768) (0.4584) (0.0033) (0.0000)

500
1.1344 1.1111 1.0744 1.0260 2.5714 1.0571 2.4706 0.9998 0.9643 0.8430

(0.1297) (0.0072) (0.0000) (0.0000) (0.0000)

DGP 3a κ

B-5% 0.5 0.65 0.8 0.9 1.1

n1 Θ Θ̃ Θ Θ̃ Θ Θ̃ Θ Θ̃ Θ Θ̃

100
7.3894 9.3862 3.0866 6.1554 1.9702 4.1253 1.5137 3.1712 1.1087 1.3231

(0.0000) (0.0000) (0.0000) (0.0000) (1.0000)

175
5.6606 10.2594 2.6661 8.4670 1.7245 2.6890 1.4261 1.6937 1.0804 1.0568

(0.0000) (0.0000) (0.0000) (0.0000) (0.1299)

250
5.0016 10.2310 2.5328 6.4984 1.6783 2.2706 1.4087 1.6119 1.0697 1.0668

(0.0000) (0.0000) (0.0000) (0.0000) (0.4416)

500
4.3062 11.1293 2.3487 3.7485 1.6265 2.0054 1.3683 1.5298 1.0747 1.0180

(0.0000) (0.0000) (0.0000) (0.0000) (0.0003)

1.2 1.35 1.5 1.75 2

n1 Θ Θ̃ Θ Θ̃ Θ Θ̃ Θ Θ̃ Θ Θ̃

100
0.9983 1.0270 0.8804 0.7956 0.7961 0.6912 0.6842 0.5539 0.6358 0.4958

(0.8793) (0.0000) (0.0000) (0.0000) (0.0000)

175
0.9890 0.9330 0.8521 0.7947 0.7690 0.6517 0.6834 0.5540 0.6274 0.5290

(0.0027) (0.0006) (0.0000) (0.0000) (0.0000)

250
0.9736 0.9079 0.8621 0.7519 0.7818 0.6609 0.6943 0.5624 0.6318 0.4986

(0.0001) (0.0000) (0.0000) (0.0000) (0.0000)

500
0.9762 0.9150 0.8745 0.7613 0.7885 0.6882 0.7091 0.5798 0.6513 0.5262

(0.0000) (0.0000) (0.0000) (0.0000) (0.0000)
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DGP 3b κ

B-5% 0.5 0.65 0.8 0.9 1.1

n1 Θ Θ̃ Θ Θ̃ Θ Θ̃ Θ Θ̃ Θ Θ̃

100
2.5841 4.8356 1.9332 4.0107 1.5635 2.9940 1.3650 2.0673 1.1907 1.3205

(0.0000) (0.0000) (0.0000) (0.0000) (1.0000)

175
2.5189 4.6851 1.8668 2.2914 1.4844 1.7705 1.3565 1.4667 1.1341 1.1568

(0.0000) (0.0000) (0.0000) (0.0000) (0.8533)

250
2.4861 3.3245 1.8222 2.0951 1.5068 1.6214 1.3502 1.4725 1.1610 1.1430

(0.0000) (0.0000) (0.0000) (0.0000) (0.1844)

500
2.2940 2.7175 1.7776 1.9668 1.4864 1.5660 1.3378 1.3839 1.1481 1.1331

(0.0000) (0.0000) (0.0001) (0.0081) (0.1932)

1.2 1.35 1.5 1.75 2

n1 Θ Θ̃ Θ Θ̃ Θ Θ̃ Θ Θ̃ Θ Θ̃

100
1.1128 1.2070 1.0331 0.9896 0.9292 0.9049 0.8282 0.7987 0.7507 0.6903

(0.9999) (0.0238) (0.1619) (0.0624) (0.0004)

175
1.0780 1.0911 0.9976 0.9975 0.9143 0.8942 0.8316 0.7480 0.7639 0.6984

(0.7343) (0.4999) (0.1372) (0.0000) (0.0000)

250
1.0737 1.0762 1.0019 0.9848 0.9079 0.8794 0.8400 0.7472 0.7870 0.6998

(0.5520) (0.1717) (0.0488) (0.0000) (0.0000)

500
1.0841 1.0731 0.9945 0.9609 0.9327 0.8785 0.8584 0.7828 0.8001 0.7239

(0.2575) (0.0185) (0.0002) (0.0000) (0.0000)

C Simulation Results: Change in Distribution

The following tables contain the results for the simulation study presented in Section 4.5.3. The

values in parenthesis report the p-values for a t-statistics, testing H0 : Θ⋆ ≤ Θ̃⋆. The benchmark

model always features N(0; 1) innovations. Each table is tagged with the respective DGP i, the

type of loss function, and the VaR exceedance level (m-α%) in the upper left .

DGP 1 Alternative Distribution

Q-5% t(22) t(12) t(7.71) t(6) t(4.67) t(4)

n1 Θ⋆ Θ̃⋆ Θ⋆ Θ̃⋆ Θ⋆ Θ̃⋆ Θ⋆ Θ̃⋆ Θ⋆ Θ̃⋆ Θ⋆ Θ̃⋆

100
1.0418 1.0474 0.9088 0.7861 0.7564 0.6295 0.6648 0.5229 0.5451 0.4296 0.4910 0.3865

(0.5886) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000)

175
1.0184 0.9586 0.8727 0.7482 0.7190 0.5988 0.6267 0.4968 0.5325 0.4194 0.4637 0.3646

(0.0014) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000)

250
0.9993 0.9276 0.8586 0.7412 0.7099 0.5791 0.6249 0.4893 0.5176 0.4048 0.4569 0.3607

(0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000)

500
0.9934 0.9026 0.8538 0.7362 0.7097 0.5799 0.6174 0.4865 0.5102 0.3986 0.4440 0.3538

(0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000)

DGP 1 Alternative Distribution

B-5% t(22) t(12) t(7.71) t(6) t(4.67) t(4)

n1 Θ⋆ Θ̃⋆ Θ⋆ Θ̃⋆ Θ⋆ Θ̃⋆ Θ⋆ Θ̃⋆ Θ⋆ Θ̃⋆ Θ⋆ Θ̃⋆

100
1.0985 1.1015 1.0210 0.9048 0.9550 0.8051 0.9232 0.7097 0.8202 0.6150 0.7621 0.6127

(0.5490) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000)

175
1.1091 1.0138 1.0108 0.8342 0.9382 0.7344 0.8799 0.6888 0.8141 0.6243 0.7647 0.5818

(0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000)

250
1.0866 1.0020 0.9985 0.9118 0.9176 0.7484 0.8686 0.6805 0.8149 0.6239 0.7821 0.5868

(0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000)

500
0.9934 0.9026 0.8538 0.7362 0.7097 0.5799 0.6174 0.4865 0.5102 0.3986 0.4440 0.3538

(0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000)

DGP 2 Alternative Distribution

Q-5% t(22) t(12) t(7.71) t(6) t(4.67) t(4)

n1 Θ⋆ Θ̃⋆ Θ⋆ Θ̃⋆ Θ⋆ Θ̃⋆ Θ⋆ Θ̃⋆ Θ⋆ Θ̃⋆ Θ⋆ Θ̃⋆

100
1.3588 5.6388 1.0834 2.1723 0.8581 1.0793 0.7516 0.7548 0.6131 0.5405 0.4946 0.4380

(1.0000) (1.0000) (1.0000) (0.5498) (0.0003) (0.0007)

175
1.1487 1.3105 0.9281 0.9589 0.7770 0.6922 0.6432 0.5660 0.5416 0.4390 0.4735 0.3779

(1.0000) (0.8798) (0.0000) (0.0000) (0.0000) (0.0000)

250
1.0790 1.0834 0.8960 0.8629 0.7378 0.6462 0.6325 0.5590 0.5296 0.4316 0.4496 0.3741

(0.5667) (0.0697) (0.0000) (0.0000) (0.0000) (0.0000)

500
1.0201 0.9927 0.8800 0.7990 0.7134 0.6118 0.6068 0.5179 0.5022 0.4106 0.4329 0.3571

(0.0896) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000)
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DGP 2 Alternative Distribution

B-5% t(22) t(12) t(7.71) t(6) t(4.67) t(4)

n1 Θ⋆ Θ̃⋆ Θ⋆ Θ̃⋆ Θ⋆ Θ̃⋆ Θ⋆ Θ̃⋆ Θ⋆ Θ̃⋆ Θ⋆ Θ̃⋆

100
1.2670 3.5443 1.0623 1.5159 0.9757 0.9584 0.8836 0.8462 0.8155 0.6555 0.7398 0.5728

(1.0000) (1.0000) (0.2665) (0.0763) (0.0000) (0.0000)

175
1.1414 1.2702 1.0343 0.9559 0.9199 0.7910 0.8202 0.7358 0.7490 0.5863 0.7140 0.5442

(1.0000) (0.0007) (0.0000) (0.0000) (0.0000) (0.0000)

250
1.0929 1.1248 1.0089 0.9353 0.8995 0.7786 0.8367 0.6857 0.7458 0.5879 0.6931 0.5498

(0.9097) (0.0003) (0.0000) (0.0000) (0.0000) (0.0000)

500
1.0666 1.0528 0.9986 0.9012 0.8820 0.7696 0.8274 0.6910 0.7639 0.6175 0.7130 0.5634

(0.2371) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000)

DGP 3 Alternative Distribution

Q-5% t(22) t(12) t(7.71) t(6) t(4.67) t(4)

n1 Θ⋆ Θ̃⋆ Θ⋆ Θ̃⋆ Θ⋆ Θ̃⋆ Θ⋆ Θ̃⋆ Θ⋆ Θ̃⋆ Θ⋆ Θ̃⋆

100
1.0961 1.0827 0.9397 0.8184 0.8202 0.6677 0.7720 0.5628 0.6737 0.4856 0.6237 0.4410

(0.3049) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000)

175
1.0383 0.9917 0.9206 0.7866 0.8090 0.6444 0.7443 0.5632 0.6551 0.4939 0.6243 0.4517

(0.0130) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000)

250
1.0305 0.9393 0.9202 0.7851 0.8094 0.6315 0.7487 0.5696 0.6650 0.5002 0.6197 0.4620

(0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000)

500
1.0289 0.9291 0.9221 0.7782 0.8260 0.6594 0.7541 0.5914 0.6743 0.5271 0.6274 0.4850

(0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000)

DGP 3 Alternative Distribution

B-5% t(22) t(12) t(7.71) t(6) t(4.67) t(4)

n1 Θ⋆ Θ̃⋆ Θ⋆ Θ̃⋆ Θ⋆ Θ̃⋆ Θ⋆ Θ̃⋆ Θ⋆ Θ̃⋆ Θ⋆ Θ̃⋆

100
1.0649 1.0807 0.9842 0.7888 0.8191 0.6702 0.7421 0.5866 0.6668 0.5222 0.6342 0.4531

(0.7351) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000)

175
1.0439 0.9741 0.9215 0.8270 0.8222 0.6515 0.7360 0.5612 0.6771 0.5000 0.6176 0.4518

(0.0003) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000)

250
1.0416 0.9702 0.9625 0.7860 0.8147 0.6453 0.7444 0.5713 0.6661 0.4970 0.6115 0.4591

(0.0001) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000)

500
1.0394 0.9511 0.9226 0.7744 0.8216 0.6563 0.7541 0.5962 0.6772 0.5266 0.6318 0.4923

(0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000)
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D Simulation Results: Alternative Choice of the VaR Level

The following tables contain the simulation results presented in Section 4.5.4 regarding the alter-

native choice of an 99% VaR level. Each table is tagged with the respective DGP i, the type of

loss function, and the VaR exceedance level (m-α%) in the upper left.

D.1 Results for Breaks in Volatility

DGP 1a κ

Q-1% 0.5 0.65 0.8 0.9 1.1

n1 Θ Θ̃ Θ Θ̃ Θ Θ̃ Θ Θ̃ Θ Θ̃

100
5.7197 1.9829 5.0420 3.8428 4.0752 4.3059 3.2773 3.1070 2.0936 2.3040

(1.0000) (1.0000) (0.0001) (0.9972) (0.9997)

175
6.5127 3.9449 6.0400 5.5169 3.9314 4.1680 3.6709 3.3850 1.0692 2.1634

(1.0000) (1.0000) (0.0010) (0.9992) (1.0000)

250
9.7779 4.8655 7.7140 5.3197 3.8583 4.2809 1.8766 3.9654 1.0211 1.5107

(1.0000) (1.0000) (0.0000) (0.0000) (1.0000)

500
11.5000 6.7102 7.0341 7.0321 2.4056 4.3448 1.6067 2.5198 1.0256 0.9939

(1.0000) (0.5065) (0.0000) (0.0000) (0.0706)

1000
15.7711 11.8163 4.6163 7.3578 2.1250 3.0209 1.5648 1.7735 1.0291 0.9615

(1.0000) (0.0000) (0.0000) (0.0000) (0.0000)

1.2 1.35 1.5 1.75 2

n1 Θ Θ̃ Θ Θ̃ Θ Θ̃ Θ Θ̃ Θ Θ̃

100
1.0954 2.4267 0.7301 1.4121 0.5775 0.6589 0.4944 0.4422 0.4261 0.3708

(1.0000) (1.0000) (0.9999) (0.0013) (0.0002)

175
0.8330 1.3710 0.6782 0.7048 0.5883 0.5243 0.5067 0.4195 0.4447 0.3899

(1.0000) (0.9005) (0.0002) (0.0000) (0.0002)

250
0.8609 0.7955 0.7087 0.6919 0.6047 0.5045 0.5262 0.4431 0.4596 0.3887

(0.0009) (0.2023) (0.0000) (0.0000) (0.0000)

500
0.8693 0.8209 0.7196 0.6344 0.6319 0.5470 0.5457 0.4590 0.4919 0.4244

(0.0052) (0.0000) (0.0000) (0.0000) (0.0000)

1000
0.8901 0.8215 0.7595 0.6837 0.6801 0.5977 0.5907 0.5199 0.5378 0.4719

(0.0000) (0.0000) (0.0000) (0.0000) (0.0000)

DGP 1b κ

Q-1% 0.5 0.65 0.8 0.9 1.1

n1 Θ Θ̃ Θ Θ̃ Θ Θ̃ Θ Θ̃ Θ Θ̃

100
5.0578 2.9374 4.5289 3.5838 3.6933 4.0656 3.3001 3.1143 2.3887 2.9855

(1.0000) (1.0000) (0.0000) (0.9962) (1.0000)

175
5.9962 5.7206 4.1555 4.9457 3.2325 3.5388 1.7215 3.9897 1.2980 2.9039

(1.0000) (0.0000) (0.0001) (0.0000) (1.0000)

250
7.1131 5.5849 3.9538 4.7349 1.8523 4.4377 1.4285 3.8421 1.2218 3.0573

(1.0000) (0.0000) (0.0000) (0.0000) (1.0000)

500
7.4850 6.9931 2.1979 4.9014 1.5698 3.5043 1.3503 2.3296 1.1860 1.2920

(0.9999) (0.0000) (0.0000) (0.0000) (1.0000)

1000
4.3653 9.0450 2.0511 4.8562 1.4990 1.9217 1.3240 1.5074 1.1513 1.1794

(0.0000) (0.0000) (0.0000) (0.0000) (0.9142)

1.2 1.35 1.5 1.75 2

n1 Θ Θ̃ Θ Θ̃ Θ Θ̃ Θ Θ̃ Θ Θ̃

100
2.6129 3.3442 2.6617 2.5905 1.5347 3.0577 1.1860 2.3216 1.1321 2.7487

(1.0000) (0.1704) (1.0000) (1.0000) (1.0000)

175
1.2668 2.6623 1.1213 2.8429 1.0434 2.6090 0.8770 2.4154 0.8592 1.9221

(1.0000) (1.0000) (1.0000) (1.0000) (1.0000)

250
1.1434 2.5509 1.0372 2.3103 0.9640 1.7998 0.9000 1.1323 0.8743 1.0945

(1.0000) (1.0000) (1.0000) (1.0000) (1.0000)

500
1.1041 1.2212 1.0235 1.0248 0.9814 0.9347 0.9358 0.8353 0.8921 0.8211

(1.0000) (0.3511) (0.0122) (0.0000) (0.0000)

1000
1.0909 1.0883 1.0455 1.0045 1.0072 0.9162 0.9491 0.8803 0.9217 0.8192

(0.4484) (0.0140) (0.0000) (0.0000) (0.0000)
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DGP 2a κ

Q-1% 0.5 0.65 0.8 0.9 1.1

n1 Θ Θ̃ Θ Θ̃ Θ Θ̃ Θ Θ̃ Θ Θ̃

100
7.6306 6.9009 8.6331 6.6665 6.5953 5.2897 6.9249 4.9379 4.4135 4.0581

(1.0000) (1.0000) (1.0000) (1.0000) (0.0005)

175
9.1840 5.8835 9.4738 5.5514 6.5173 4.8122 6.0858 8.4427 1.8025 3.7239

(1.0000) (1.0000) (1.0000) (0.0000) (1.0000)

250
11.5863 7.7755 11.0013 9.6656 6.2924 6.6292 4.5087 8.4830 1.2325 3.2720

(1.0000) (1.0000) (0.0069) (0.0000) (1.0000)

500
18.9935 10.4077 10.1836 8.8308 2.8504 6.9836 1.8519 4.3960 1.0575 1.2155

(1.0000) (1.0000) (0.0000) (0.0000) (1.0000)

1000
21.6042 15.4190 5.2743 10.7551 2.2796 4.5096 1.5999 1.9252 1.0267 1.0004

(1.0000) (0.0000) (0.0000) (0.0000) (0.0840)

1.2 1.35 1.5 1.75 2

n1 Θ Θ̃ Θ Θ̃ Θ Θ̃ Θ Θ̃ Θ Θ̃

100
4.1554 5.9601 2.8425 3.0255 0.8533 2.8373 0.6229 2.3059 0.4494 0.5597

(1.0000) (0.9714) (1.0000) (1.0000) (1.0000)

175
1.1305 3.9492 0.7399 2.0041 0.6807 0.7158 0.4933 0.4470 0.4398 0.3736

(1.0000) (1.0000) (0.9247) (0.0037) (0.0000)

250
0.9889 2.6805 0.7380 0.8492 0.6241 0.6371 0.5192 0.4469 0.4599 0.3861

(1.0000) (1.0000) (0.7339) (0.0000) (0.0000)

500
0.8715 0.9007 0.7369 0.6384 0.6322 0.5509 0.5490 0.4726 0.4863 0.4219

(0.9028) (0.0000) (0.0000) (0.0000) (0.0000)

1000
0.8930 0.8453 0.7647 0.6838 0.6824 0.6001 0.5908 0.5137 0.5391 0.4652

(0.0052) (0.0000) (0.0000) (0.0000) (0.0000)

DGP 2b κ

Q-1% 0.5 0.65 0.8 0.9 1.1

n1 Θ Θ̃ Θ Θ̃ Θ Θ̃ Θ Θ̃ Θ Θ̃

100
10.1364 4.8860 9.5178 8.3722 6.9058 6.1119 6.3196 5.9088 6.2976 7.1459

(1.0000) (1.0000) (1.0000) (0.9999) (1.0000)

175
9.4891 6.8977 12.3915 6.2833 7.8434 5.5789 6.8347 5.9328 8.5364 6.0377

(1.0000) (1.0000) (1.0000) (1.0000) (0.0000)

250
12.0205 15.9042 9.0841 8.3552 6.3889 7.1395 5.2827 6.6031 1.9373 5.6785

(0.0000) (1.0000) (0.0000) (0.0000) (1.0000)

500
12.4043 12.8078 7.7031 8.7415 2.2239 6.7383 1.5852 5.8094 1.2157 3.4508

(0.0189) (0.0000) (0.0000) (0.0000) (1.0000)

1000
13.0849 13.7579 2.6505 7.2856 1.6849 4.4224 1.4235 2.1426 1.1440 1.2808

(0.0005) (0.0000) (0.0000) (0.0000) (1.0000)

1.2 1.35 1.5 1.75 2

n1 Θ Θ̃ Θ Θ̃ Θ Θ̃ Θ Θ̃ Θ Θ̃

100
5.4578 6.6728 5.5560 4.3752 5.6544 4.3422 4.3256 4.0205 4.3728 4.6133

(1.0000) (0.0000) (0.0000) (0.0027) (0.9761)

175
7.7265 4.3971 4.2548 4.1818 2.0091 3.9731 1.3863 4.2320 1.0706 7.0768

(0.0000) (0.2860) (1.0000) (1.0000) (1.0000)

250
1.5314 4.8377 1.1822 4.3458 1.0518 5.8713 1.0353 4.7275 0.8704 5.5424

(1.0000) (1.0000) (1.0000) (1.0000) (1.0000)

500
1.0754 4.1908 1.0246 1.6846 0.9092 1.1303 0.8389 0.9646 0.8128 0.8189

(1.0000) (1.0000) (1.0000) (1.0000) (0.6068)

1000
1.0668 1.1323 0.9788 1.0342 0.9256 0.8709 0.8680 0.7910 0.8190 0.7862

(0.9971) (0.9931) (0.0034) (0.0000) (0.0422)
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DGP 3a κ

Q-1% 0.5 0.65 0.8 0.9 1.1

n1 Θ Θ̃ Θ Θ̃ Θ Θ̃ Θ Θ̃ Θ Θ̃

100
6.4172 3.8632 7.9423 3.6833 6.3192 3.4009 5.2829 3.1136 2.9237 3.1136

(1.0000) (1.0000) (1.0000) (1.0000) (0.9894)

175
8.6375 4.7948 6.9292 5.3375 4.9247 3.8086 3.4946 4.6270 1.2764 2.8862

(1.0000) (1.0000) (1.0000) (0.0000) (1.0000)

250
8.4146 6.6259 7.4802 6.7439 4.3584 5.4093 2.2590 4.5757 1.1508 2.7609

(1.0000) (1.0000) (0.0000) (0.0000) (1.0000)

500
12.4609 9.1181 6.6167 7.3741 2.4164 5.4834 1.6306 3.8222 1.0502 1.1087

(1.0000) (0.0000) (0.0000) (0.0000) (0.9891)

1000
13.2097 10.9555 4.3104 7.4998 2.0247 3.0766 1.5032 1.7947 1.0065 1.0117

(1.0000) (0.0000) (0.0000) (0.0000) (0.6099)

1.2 1.35 1.5 1.75 2

n1 Θ Θ̃ Θ Θ̃ Θ Θ̃ Θ Θ̃ Θ Θ̃

100
2.1299 3.1971 0.9395 2.6120 0.6329 1.7596 0.5041 0.7662 0.4143 0.4087

(1.0000) (1.0000) (1.0000) (1.0000) (0.3718)

175
0.9101 2.2110 0.7132 1.9885 0.5905 0.6057 0.4927 0.4275 0.4189 0.3473

(1.0000) (1.0000) (0.7787) (0.0000) (0.0000)

250
0.8781 1.2858 0.8920 1.2679 0.7122 0.6511 0.4843 0.4241 0.4298 0.3525

(1.0000) (0.0012) (0.0860) (0.0000) (0.0000)

500
0.8527 0.7863 0.7083 0.6326 0.6119 0.5357 0.5145 0.4484 0.4586 0.3843

(0.0001) (0.0000) (0.0000) (0.0000) (0.0000)

1000
0.8699 0.8290 0.7386 0.6682 0.6486 0.5793 0.5571 0.4961 0.5046 0.4409

(0.0070) (0.0000) (0.0000) (0.0000) (0.0000)

DGP 3b κ

Q-1% 0.5 0.65 0.8 0.9 1.1

n1 Θ Θ̃ Θ Θ̃ Θ Θ̃ Θ Θ̃ Θ Θ̃

100
4.3100 3.5124 3.7911 3.3500 3.2246 4.8037 3.3665 3.8299 1.7073 2.7589

(1.0000) (1.0000) (0.0000) (0.0000) (1.0000)

175
4.7175 4.1045 4.0020 4.2915 1.9700 3.3747 1.8134 3.1966 1.2471 3.2860

(1.0000) (0.0000) (0.0000) (0.0000) (1.0000)

250
4.8449 5.9004 2.4970 4.5913 1.7671 3.0293 1.4748 3.1908 1.2034 2.6290

(0.0000) (0.0000) (0.0000) (0.0000) (1.0000)

500
2.8917 4.3427 2.0815 3.9896 1.6394 1.9185 1.4189 1.8452 1.1550 1.3510

(0.0000) (0.0000) (0.0000) (0.0000) (1.0000)

1000
2.5533 3.2147 1.9213 2.1489 1.5407 1.6034 1.3765 1.4387 1.1634 1.1849

(0.0000) (0.0000) (0.0062) (0.0035) (0.8547)

1.2 1.35 1.5 1.75 2

n1 Θ Θ̃ Θ Θ̃ Θ Θ̃ Θ Θ̃ Θ Θ̃

100
1.6733 2.6570 1.2294 3.0653 0.8833 2.9020 0.8208 2.0899 0.7631 1.8946

(1.0000) (1.0000) (1.0000) (1.0000) (1.0000)

175
1.1391 3.0788 0.9279 2.3680 0.8974 2.0210 0.7746 1.8313 0.6958 0.7963

(1.0000) (1.0000) (1.0000) (1.0000) (1.0000)

250
1.0009 2.0405 0.9526 1.6053 0.9000 1.2076 0.7775 0.8116 0.6978 0.7683

(1.0000) (1.0000) (1.0000) (0.9461) (0.9997)

500
1.0518 1.1479 0.9622 0.9432 0.8893 0.8979 0.7988 0.8502 0.7360 0.6963

(1.0000) (0.1680) (0.6675) (0.9957) (0.0111)

1000
1.0972 1.0244 0.9924 0.9681 0.9307 0.9008 0.8527 0.8115 0.7875 0.7606

(0.0000) (0.0816) (0.0433) (0.0071) (0.0496)
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D.2 Results for Change in Distribution

DGP 1 Alternative Distribution

Q-1% t(22) t(12) t(7.71) t(6) t(4.67) t(4)

n1 Θ⋆ Θ̃⋆ Θ⋆ Θ̃⋆ Θ⋆ Θ̃⋆ Θ⋆ Θ̃⋆ Θ⋆ Θ̃⋆ Θ⋆ Θ̃⋆

100
2.1433 2.7911 0.8444 2.2164 0.5717 1.2507 0.4629 0.4613 0.3682 0.3167 0.3288 0.2715

(1.0000) (1.0000) (1.0000) (0.4671) (0.0004) (0.0000)

175
0.9117 2.2150 0.6873 0.7236 0.4994 0.4163 0.4192 0.3407 0.3408 0.2773 0.3110 0.2654

(1.0000) (0.9400) (0.0000) (0.0000) (0.0000) (0.0003)

250
0.8949 0.9887 0.6699 0.6080 0.4898 0.3973 0.4034 0.3366 0.3367 0.2815 0.3019 0.2594

(0.9996) (0.0009) (0.0000) (0.0000) (0.0000) (0.0002)

500
0.8441 0.7337 0.6441 0.5492 0.4884 0.3997 0.4119 0.3372 0.3358 0.2839 0.2995 0.2607

(0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000)

1000
0.8515 0.7548 0.6505 0.5488 0.4940 0.4213 0.4188 0.3511 0.3362 0.2942 0.2995 0.2608

(0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000)

DGP 2 Alternative Distribution

Q-1% t(22) t(12) t(7.71) t(6) t(4.67) t(4)

n1 Θ⋆ Θ̃⋆ Θ⋆ Θ̃⋆ Θ⋆ Θ̃⋆ Θ⋆ Θ̃⋆ Θ⋆ Θ̃⋆ Θ⋆ Θ̃⋆

100
7.5680 8.2844 6.0021 6.0737 1.9341 4.5619 0.8813 2.7992 0.5355 2.3478 0.4228 0.5835

(0.9997) (0.6541) (1.0000) (1.0000) (1.0000) (1.0000)

175
2.2152 6.2513 1.0558 7.4473 0.6696 1.6107 0.5267 0.6503 0.4112 0.3747 0.3654 0.3247

(1.0000) (1.0000) (1.0000) (1.0000) (0.0124) (0.0031)

250
1.2204 5.6076 0.8041 1.3739 0.6122 0.6391 0.4994 0.4296 0.3957 0.3542 0.3540 0.3080

(1.0000) (1.0000) (0.8918) (0.0000) (0.0029) (0.0005)

500
0.9942 1.1016 0.7743 0.6963 0.5688 0.5135 0.4821 0.4195 0.3975 0.3465 0.3486 0.3136

(0.9999) (0.0001) (0.0006) (0.0000) (0.0002) (0.0057)

1000
0.9548 0.9086 0.7680 0.6902 0.5862 0.5229 0.4897 0.4305 0.4042 0.3570 0.3547 0.3236

(0.0123) (0.0000) (0.0000) (0.0000) (0.0000) (0.0098)

DGP 3 Alternative Distribution

Q-1% t(22) t(12) t(7.71) t(6) t(4.67) t(4)

n1 Θ⋆ Θ̃⋆ Θ⋆ Θ̃⋆ Θ⋆ Θ̃⋆ Θ⋆ Θ̃⋆ Θ⋆ Θ̃⋆ Θ⋆ Θ̃⋆

100
1.4031 2.6554 0.7292 2.1693 0.5616 0.6163 0.4798 0.4241 0.4371 0.3540 0.3996 0.3273

(1.0000) (1.0000) (0.9947) (0.0007) (0.0000) (0.0000)

175
0.9174 1.9998 0.7500 0.6728 0.5686 0.4603 0.4914 0.3882 0.4334 0.3508 0.4020 0.3279

(1.0000) (0.0003) (0.0000) (0.0000) (0.0000) (0.0000)

250
0.8696 0.9087 0.6940 0.6228 0.5688 0.4745 0.5056 0.4029 0.4480 0.3652 0.4144 0.3483

(0.9465) (0.0001) (0.0000) (0.0000) (0.0000) (0.0000)

500
0.8933 0.7986 0.7002 0.5916 0.5933 0.4850 0.5231 0.4421 0.4601 0.3976 0.4317 0.3777

(0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000)

1000
0.9091 0.8049 0.7480 0.6370 0.6316 0.5426 0.5642 0.4906 0.5043 0.4473 0.4715 0.4327

(0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000)

E Simulation Results: Alternative Choices of the Volatility Level

The following tables contain the simulation results presented in Section 4.5.4 regarding alternative

choices of the variance of the innovation process. The VaR exceedance level is set to α = 0.05.

Each table is tagged with the respective DGP i, the type of loss function, the VaR exceedance level

and the volatility level in relation to the initial standard deviation of σ = 0.02 (m-α%-volatility

level) in the upper left.
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E.1 Results for a Low-Level Volatility

The standard deviation of the DGPs is set to σ = 0.015.

DGP 1a κ

Q-5%-Low 0.5 0.65 0.8 0.9 1.1

n1 Θ Θ̃ Θ Θ̃ Θ Θ̃ Θ Θ̃ Θ Θ̃

100
7.2971 7.7395 3.2050 5.3392 1.9360 4.2191 1.4555 3.2898 1.0808 1.1612

(0.0000) (0.0000) (0.0000) (0.0000) (0.9993)

175
6.2235 8.6825 2.7833 5.8059 1.7116 2.6718 1.4214 1.7167 1.0664 1.0414

(0.0000) (0.0000) (0.0000) (0.0000) (0.1091)

250
5.6391 10.1777 2.6420 5.7858 1.7088 2.3473 1.4124 1.6302 1.0679 1.0335

(0.0000) (0.0000) (0.0000) (0.0000) (0.0305)

500
4.6527 12.7864 2.4268 4.1091 1.6477 2.0275 1.3736 1.5018 1.0656 1.0075

(0.0000) (0.0000) (0.0000) (0.0000) (0.0001)

1.2 1.35 1.5 1.75 2

n1 Θ Θ̃ Θ Θ̃ Θ Θ̃ Θ Θ̃ Θ Θ̃

100
0.9651 0.9347 0.8434 0.7539 0.7554 0.6440 0.6776 0.5373 0.6083 0.4774

(0.0804) (0.0000) (0.0000) (0.0000) (0.0000)

175
0.9526 0.8846 0.8455 0.7621 0.7724 0.6420 0.6751 0.5383 0.6195 0.4859

(0.0001) (0.0000) (0.0000) (0.0000) (0.0000)

250
0.9494 0.8690 0.8493 0.7436 0.7614 0.6386 0.6791 0.5424 0.6267 0.4897

(0.0000) (0.0000) (0.0000) (0.0000) (0.0000)

500
0.9664 0.8783 0.8601 0.7543 0.7847 0.6662 0.6984 0.5730 0.6394 0.5165

(0.0000) (0.0000) (0.0000) (0.0000) (0.0000)

DGP 1b κ

Q-5%-Low 0.5 0.65 0.8 0.9 1.1

n1 Θ Θ̃ Θ Θ̃ Θ Θ̃ Θ Θ̃ Θ Θ̃

100
2.1568 4.9764 1.6395 3.9619 1.3896 3.1504 1.3528 2.8194 1.1931 1.7276

(0.0000) (0.0000) (0.0000) (0.0000) (1.0000)

175
2.0188 5.8923 1.5383 3.4837 1.3311 1.7414 1.2783 1.6037 1.1716 1.2384

(0.0000) (0.0000) (0.0000) (0.0000) (0.9974)

250
1.9368 6.1787 1.4930 2.3393 1.3232 1.5998 1.2616 1.3791 1.1558 1.1747

(0.0000) (0.0000) (0.0000) (0.0000) (0.8192)

500
1.8773 4.0469 1.4684 2.0161 1.3047 1.4737 1.2405 1.3332 1.1650 1.1524

(0.0000) (0.0000) (0.0000) (0.0000) (0.2336)

1.2 1.35 1.5 1.75 2

n1 Θ Θ̃ Θ Θ̃ Θ Θ̃ Θ Θ̃ Θ Θ̃

100
1.1835 1.4433 1.1382 1.3738 1.1194 1.1710 1.0722 1.0996 1.0636 1.0708

(1.0000) (1.0000) (0.9754) (0.8575) (0.6105)

175
1.1364 1.1985 1.1097 1.0945 1.0844 1.0301 1.0486 1.0301 1.0417 0.9359

(0.9955) (0.2412) (0.0044) (0.0005) (0.0000)

250
1.1270 1.1096 1.1017 1.0597 1.0688 1.0037 1.0418 0.9408 1.0215 0.9142

(0.1870) (0.0166) (0.0002) (0.0000) (0.0000)

500
1.1258 1.1029 1.0951 1.0145 1.0791 0.9931 1.0516 0.9519 1.0238 0.9105

(0.0879) (0.0000) (0.0000) (0.0000) (0.0000)

DGP 2a κ

Q-5%-Low 0.5 0.65 0.8 0.9 1.1

n1 Θ Θ̃ Θ Θ̃ Θ Θ̃ Θ Θ̃ Θ Θ̃

100
11.2476 11.5239 8.5540 9.3109 2.6547 6.0710 1.9514 5.8547 1.2401 3.5718

(0.0744) (0.0001) (0.0000) (0.0000) (1.0000)

175
12.8100 13.6281 3.8325 9.1348 2.0287 6.1726 1.5671 2.9802 1.1498 1.2801

(0.0017) (0.0000) (0.0000) (0.0000) (1.0000)

250
7.6772 17.7741 2.9499 11.1736 1.8185 3.3510 1.5015 2.0317 1.1058 1.1031

(0.0000) (0.0000) (0.0000) (0.0000) (0.4550)

500
5.1475 15.7450 2.5900 5.1979 1.6960 2.2577 1.4018 1.6305 1.0755 1.0502

(0.0000) (0.0000) (0.0000) (0.0000) (0.0921)

1.2 1.35 1.5 1.75 2

n1 Θ Θ̃ Θ Θ̃ Θ Θ̃ Θ Θ̃ Θ Θ̃

100
1.1248 2.0543 0.9254 0.9653 0.8231 0.7773 0.7051 0.6129 0.6294 0.5074

(1.0000) (0.9223) (0.0284) (0.0000) (0.0000)

175
0.9909 1.0619 0.8795 0.7869 0.7888 0.6804 0.7016 0.5494 0.6202 0.4946

(0.9968) (0.0000) (0.0000) (0.0000) (0.0000)

250
1.0047 0.9787 0.8861 0.7552 0.7848 0.6683 0.6863 0.5538 0.6176 0.4998

(0.1165) (0.0000) (0.0000) (0.0000) (0.0000)

500
0.9710 0.9086 0.8662 0.7622 0.7866 0.6681 0.7020 0.5709 0.6382 0.5162

(0.0002) (0.0000) (0.0000) (0.0000) (0.0000)
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DGP 2b κ

Q-5%-Low 0.5 0.65 0.8 0.9 1.1

n1 Θ Θ̃ Θ Θ̃ Θ Θ̃ Θ Θ̃ Θ Θ̃

100
9.4784 9.8515 2.6139 8.6163 1.9747 7.3725 1.6734 5.6298 1.4225 5.5154

(0.0000) (0.00000) (0.0000) (0.0000) (1.0000)

175
3.3640 13.5772 1.9553 8.3529 1.6006 5.6119 1.4300 5.3533 1.2143 2.0801

(0.0000) (0.0000) (0.0000) (0.0000) (1.0000)

250
2.8600 12.9189 1.8830 7.1137 1.5190 2.4683 1.3805 1.9527 1.2134 1.3774

(0.0000) (0.0000) (0.0000) (0.0000) (1.0000)

500
2.5331 11.5004 1.7327 2.7696 1.4379 1.7881 1.3197 1.4627 1.1812 1.1769

(0.0000) (0.0000) (0.0000) (0.0000) (0.4190)

1.2 1.35 1.5 1.75 2

n1 Θ Θ̃ Θ Θ̃ Θ Θ̃ Θ Θ̃ Θ Θ̃

100
1.2853 4.5390 1.2416 4.9514 1.1503 3.6707 1.0833 3.9376 1.0385 3.8141

(1.0000) (1.0000) (1.0000) (1.0000) (1.0000)

175
1.1952 1.5484 1.1430 1.3950 1.1062 1.1628 1.0403 1.0133 0.9972 0.9496

(1.0000) (1.0000) (0.9767) (0.1491) (0.0270)

250
1.1665 1.2398 1.1030 1.1326 1.0608 1.0219 0.9980 0.9436 0.9947 0.8453

(0.9964) (0.8778) (0.0512) (0.0072) (0.0000)

500
1.1489 1.1000 1.0824 1.0218 1.0456 0.9718 1.0137 0.8889 0.9842 0.8486

(0.0088) (0.0011) (0.0001) (0.0000) (0.0000)

DGP 3a κ

Q-5%-Low 0.5 0.65 0.8 0.9 1.1

n1 Θ Θ̃ Θ Θ̃ Θ Θ̃ Θ Θ̃ Θ Θ̃

100
7.6655 8.0081 3.0914 5.6735 1.8837 5.1955 1.5394 3.5573 1.1181 1.1583

(0.0000) (0.0000) (0.0000) (0.0000) (0.9377)

175
5.6367 9.0326 2.7656 6.5675 1.7354 2.7662 1.4269 1.8699 1.0777 1.0816

(0.0000) (0.0000) (0.0000) (0.0000) (0.5686)

250
4.8603 10.3923 2.5379 5.7499 1.6841 2.3194 1.3900 1.7625 1.0716 1.0358

(0.0000) (0.0000) (0.0000) (0.0000) (0.0318)

500
4.2889 11.4508 2.3448 3.6735 1.6247 1.9638 1.3851 1.4953 1.0692 1.0254

(0.0000) (0.0000) (0.0000) (0.0000) (0.0041)

1.2 1.35 1.5 1.75 2

n1 Θ Θ̃ Θ Θ̃ Θ Θ̃ Θ Θ̃ Θ Θ̃

100
0.9945 1.0662 0.8748 0.7435 0.7907 0.7007 0.6860 0.5576 0.6331 0.4871

(0.9974) (0.0000) (0.0000) (0.0000) (0.0000)

175
0.9666 0.9007 0.8639 0.7626 0.7769 0.6571 0.6787 0.5507 0.6252 0.4931

(0.0003) (0.0000) (0.0000) (0.0000) (0.0000)

250
0.9681 0.8830 0.8612 0.7547 0.7796 0.6651 0.6947 0.5561 0.6270 0.4991

(0.0000) (0.00000) (0.0000) (0.0000) (0.0000)

500
0.9711 0.9003 0.8642 0.7676 0.7942 0.6839 0.7048 0.5812 0.6448 0.5211

(0.0000) (0.0000) (0.0000) (0.0000) (0.0000)

DGP 3b κ

Q-5%-Low 0.5 0.65 0.8 0.9 1.1

n1 Θ Θ̃ Θ Θ̃ Θ Θ̃ Θ Θ̃ Θ Θ̃

100
2.6471 5.4180 1.9458 4.3118 1.5357 2.8559 1.3796 2.5645 1.1509 1.3162

(0.0000) (0.0000) (0.0000) (0.0000) (1.0000)

175
2.4938 5.0713 1.8845 2.3902 1.5189 1.8103 1.3475 1.4481 1.1439 1.1348

(0.0000) (0.0000) (0.0000) (0.0000) (0.3379)

250
2.4048 3.3776 1.8330 2.0970 1.5016 1.6695 1.3396 1.4482 1.1432 1.1763

(0.0000) (0.0000) (0.0000) (0.0000) (0.9457)

500
2.3098 2.8083 1.7706 1.9450 1.4676 1.5561 1.3409 1.3952 1.1531 1.1420

(0.0000) (0.0000) (0.0000) (0.0022) (0.2622)

1.2 1.35 1.5 1.75 2

n1 Θ Θ̃ Θ Θ̃ Θ Θ̃ Θ Θ̃ Θ Θ̃

100
1.0862 1.2234 0.9576 1.0734 0.9279 0.8452 0.8252 0.7774 0.7625 0.6717

(1.0000) (1.0000) (0.0000) (0.0070) (0.0000)

175
1.0741 1.1060 0.9861 0.9449 0.9211 0.8656 0.8281 0.7635 0.7574 0.6787

(0.9322) (0.0160) (0.0012) (0.0001) (0.0000)

250
1.0755 1.0454 0.9793 0.9201 0.9146 0.8356 0.8370 0.7480 0.7689 0.6905

(0.0572) (0.0004) (0.0000) (0.0000) (0.0000)

500
1.0880 1.0536 0.9995 0.9242 0.9284 0.8616 0.8483 0.7791 0.7937 0.7063

(0.0208) (0.0000) (0.0000) (0.0000) (0.0000)
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E.2 Results for a High-Level Volatility

The standard deviation of the DGPs is set to σ = 0.04.

DGP 1a κ

Q-5%-High 0.5 0.65 0.8 0.9 1.1

n1 Θ Θ̃ Θ Θ̃ Θ Θ̃ Θ Θ̃ Θ Θ̃

100
7.5664 6.9604 3.2385 6.5653 1.9023 3.7058 1.4525 2.7747 1.1105 1.1301

(1.0000) (0.0000) (0.0000) (0.0000) (0.7714)

175
6.3904 8.0061 7.5529 2.8648 1.7724 2.6017 1.4269 1.7683 1.0829 1.0489

(0.0000) (0.0000) (0.0000) (0.0000) (0.0471)

250
6.0541 11.3196 2.6457 5.9930 1.7191 2.3256 1.3996 1.6426 1.0653 1.0357

(0.0000) (0.0000) (0.0000) (0.0000) (0.0523)

500
4.7413 12.6762 2.4232 4.0468 1.6637 2.0436 1.3722 1.5337 1.0585 1.0119

(0.0000) (0.0000) (0.0000) (0.0000) (0.0014)

1.2 1.35 1.5 1.75 2

n1 Θ Θ̃ Θ Θ̃ Θ Θ̃ Θ Θ̃ Θ Θ̃

100
0.9662 0.9320 0.8484 0.7470 0.7633 0.6368 0.6716 0.5294 0.6144 0.4707

(0.0578) (0.0000) (0.0000) (0.0000) (0.0000)

175
0.9534 0.8800 0.8431 0.7692 0.7625 0.6426 0.6704 0.5442 0.6156 0.4800

(0.0000) (0.0000) (0.0000) (0.0000) (0.0000)

250
0.9579 0.8664 0.8465 0.7472 0.7668 0.6417 0.6797 0.5449 0.6199 0.4917

(0.0000) (0.0000) (0.0000) (0.0000) (0.0000)

500
0.9588 0.8869 0.8623 0.7465 0.7858 0.6649 0.6975 0.5751 0.6426 0.5108

(0.0000) (0.0000) (0.0000) (0.0000) (0.0000)

DGP 1b κ

Q-5%-High 0.5 0.65 0.8 0.9 1.1

n1 Θ Θ̃ Θ Θ̃ Θ Θ̃ Θ Θ̃ Θ Θ̃

100
2.3075 5.7803 1.6652 5.4764 1.3996 2.8885 1.3427 2.7240 1.2207 1.5269

(0.0000) (0.0000) (0.0000) (0.0000) (1.0000)

175
1.9887 7.2050 1.5206 4.3002 1.3414 1.7633 1.2486 1.6107 1.1718 1.2725

(0.0000) (0.0000) (0.0000) (0.0000) (1.0000)

250
1.9571 10.9256 1.4920 2.2809 1.3297 1.7302 1.2454 1.3771 1.1609 1.1927

(0.0000) (0.0000) (0.0000) (0.0000) (0.9380)

500
1.8655 4.0847 1.4707 2.0304 1.3053 1.5021 1.2477 1.3112 1.1509 1.1405

(0.0000) (0.0000) (0.0000) (0.0001) (0.2712)

1.2 1.35 1.5 1.75 2

n1 Θ Θ̃ Θ Θ̃ Θ Θ̃ Θ Θ̃ Θ Θ̃

100
1.1449 1.4473 1.1319 1.2645 1.1010 1.1499 1.0744 1.1064 1.0273 1.0677

(1.0000) (1.0000) (0.9700) (0.8931) (0.9441)

175
1.1308 1.1844 1.1145 1.0854 1.0892 1.0053 1.0393 0.9880 1.0270 0.9326

(0.9885) (0.0908) (0.0000) (0.0063) (0.0000)

250
1.1365 1.1051 1.1088 1.0593 1.0761 1.0056 1.0425 0.9459 1.0158 0.9186

(0.0558) (0.0057) (0.0001) (0.0000) (0.0000)

500
1.1257 1.0779 1.0870 1.0288 1.0727 0.9820 1.0410 0.9480 1.0202 0.8984

(0.0023) (0.0002) (0.0000) (0.0000) (0.0000)

DGP 2a κ

Q-5%-High 0.5 0.65 0.8 0.9 1.1

n1 Θ Θ̃ Θ Θ̃ Θ Θ̃ Θ Θ̃ Θ Θ̃

100
11.0008 11.4669 7.9591 8.6469 2.7828 6.1172 1.9818 5.9429 1.2593 3.9940

(0.0370) (0.0004) (0.0000) (0.0000) (1.0000)

175
11.5700 12.1330 3.7636 9.7698 2.0114 6.3601 1.5538 3.0183 1.1257 1.2163

(0.0108) (0.0000) (0.0000) (0.0000) (0.9993)

250
8.0676 16.0351 2.9188 8.6275 1.8850 3.4216 1.4914 1.9830 1.0881 1.1117

(0.0000) (0.0000) (0.0000) (0.0000) (0.8376)

500
5.2527 19.7073 2.4865 5.0921 1.7201 2.2416 1.3941 1.5552 1.0774 1.0597

(0.0000) (0.0000) (0.0000) (0.0000) (0.0727)

1.2 1.35 1.5 1.75 2

n1 Θ Θ̃ Θ Θ̃ Θ Θ̃ Θ Θ̃ Θ Θ̃

100
1.0503 1.8074 0.9213 0.9892 0.8171 0.7334 0.7040 0.6016 0.6338 0.4925

(1.0000) (0.9917) (0.0002) (0.0000) (0.0000)

175
1.0255 1.0592 0.8794 0.8245 0.7911 0.6712 0.6911 0.5684 0.6107 0.4978

(0.8995) (0.0056) (0.0000) (0.0000) (0.0000)

250
0.9581 0.9581 0.8653 0.7708 0.7750 0.6555 0.6987 0.5604 0.6243 0.4957

(0.4367) (0.0000) (0.0000) (0.0000) (0.0000)

500
0.9662 0.9019 0.8550 0.7508 0.7943 0.6760 0.7055 0.5758 0.6422 0.5079

(0.0001) (0.0000) (0.0000) (0.0000) (0.0000)
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DGP 2b κ

Q-5%-High 0.5 0.65 0.8 0.9 1.1

n1 Θ Θ̃ Θ Θ̃ Θ Θ̃ Θ Θ̃ Θ Θ̃

100
9.3380 9.9788 2.5679 9.0470 1.8420 6.2951 1.5563 5.9220 1.3733 4.6345

(0.0053) (0.0000) (0.0000) (0.0000) (1.0000)

175
3.3801 13.7328 2.0667 7.8098 1.5732 6.6728 1.4039 5.5401 1.2266 1.8707

(0.0000) (0.0000) (0.0000) (0.0000) (1.0000)

250
2.9659 12.4566 1.9221 8.3162 1.4802 2.5047 1.3541 1.8378 1.2064 1.2940

(0.0000) (0.0000) (0.0000) (0.0000) (0.9992)

500
2.5349 11.1950 1.7510 2.9013 1.4456 1.6851 1.3300 1.4398 1.1767 1.1775

(0.0000) (0.0000) (0.0000) (0.0000) (0.5142)

1.2 1.35 1.5 1.75 2

n1 Θ Θ̃ Θ Θ̃ Θ Θ̃ Θ Θ̃ Θ Θ̃

100
1.2758 5.2476 1.2418 4.0127 1.1695 7.3567 1.1163 9.3445 1.0415 4.0359

(1.0000) (1.0000) (1.0000) (1.0000) (1.0000)

175
1.1516 1.7326 1.0929 1.3224 1.0695 1.1675 1.0397 1.0254 0.9858 0.9406

(1.0000) (1.0000) (0.9997) (0.2913) (0.0336)

250
1.1413 1.2579 1.0966 1.0906 1.0540 1.0260 1.0110 0.9496 0.9757 0.8773

(1.0000) (0.4036) (0.1200) (0.0032) (0.0000)

500
1.1322 1.0940 1.0745 0.9967 1.0434 0.9512 1.0100 0.8930 0.9683 0.8514

(0.0320) (0.0000) (0.0000) (0.0000) (0.0000)

DGP 3a κ

Q-5%-High 0.5 0.65 0.8 0.9 1.1

n1 Θ Θ̃ Θ Θ̃ Θ Θ̃ Θ Θ̃ Θ Θ̃

100
7.8296 8.0901 3.1164 5.6386 1.8648 4.3876 1.5626 4.3982 1.0948 1.2831

(0.0411) (0.0000) (0.0000) (0.0000) (1.0000)

175
5.6428 10.7867 2.7037 6.3107 1.7356 2.7717 1.4453 1.8479 1.0660 1.0966

(0.0000) (0.0000) (0.0000) (0.0000) (0.9182)

250
5.1276 11.0328 2.5537 6.5571 1.6910 2.3263 1.3994 1.6527 1.0817 1.0689

(0.0000) (0.0000) (0.0000) (0.0000) (0.2608)

500
4.2230 10.7951 2.3548 3.8214 1.6263 2.0310 1.3686 1.5213 1.0622 1.0309

(0.0000) (0.0000) (0.0000) (0.0000) (0.0287)

1.2 1.35 1.5 1.75 2

n1 Θ Θ̃ Θ Θ̃ Θ Θ̃ Θ Θ̃ Θ Θ̃

100
0.9977 1.0663 0.8854 0.8244 0.7930 0.6912 0.6857 0.5563 0.6177 0.4889

(0.9962) (0.0021) (0.0000) (0.0000) (0.0000)

175
0.9696 0.9198 0.8665 0.7722 0.7750 0.6555 0.6910 0.5532 0.6249 0.4913

(0.0057) (0.0000) (0.0000) (0.0000) (0.0000)

250
0.9720 0.9169 0.8558 0.7520 0.7820 0.6615 0.6905 0.5573 0.6363 0.4974

(0.0011) (0.0000) (0.0000) (0.0000) (0.0000)

500
0.9676 0.8996 0.8687 0.7540 0.7889 0.6757 0.7112 0.5847 0.6468 0.5232

(0.0000) (0.0000) (0.0000) (0.0000) (0.0000)

DGP 3b κ

Q-5%-High 0.5 0.65 0.8 0.9 1.1

n1 Θ Θ̃ Θ Θ̃ Θ Θ̃ Θ Θ̃ Θ Θ̃

100
2.6383 4.3702 1.9101 3.9463 1.5445 2.9216 1.3923 2.0611 1.1619 1.2968

(0.0000) (0.0000) (0.0000) (0.0000) (1.0000)

175
2.4544 5.0471 1.9238 2.3647 1.5045 1.8262 1.3671 1.4322 1.1608 1.1958

(0.0000) (0.0000) (0.0000) (0.0053) (0.9375)

250
2.4133 3.3469 1.8207 2.0979 1.4958 1.7236 1.3385 1.4553 1.1338 1.1596

(0.0000) (0.0000) (0.0000) (0.0000) (0.8952)

500
2.3082 2.7914 1.7610 1.9584 1.4685 1.5512 1.3382 1.3829 1.1422 1.1303

(0.0000) (0.0000) (0.0000) (0.0097) (0.2459)

1.2 1.35 1.5 1.75 2

n1 Θ Θ̃ Θ Θ̃ Θ Θ̃ Θ Θ̃ Θ Θ̃

100
1.0781 1.2342 0.9678 1.0938 0.9234 0.8334 0.8181 0.7710 0.7532 0.7254

(1.0000) (1.0000) (0.0000) (0.0076) (0.0817)

175
1.0697 1.0521 0.9861 0.9527 0.9138 0.8540 0.8283 0.7437 0.7579 0.6693

(0.1941) (0.0419) (0.0006) (0.0000) (0.0000)

250
1.0757 1.0434 0.9792 0.9264 0.9143 0.8781 0.8308 0.7730 0.7776 0.6977

(0.0451) (0.0012) (0.0192) (0.0002) (0.0000)

500
1.0837 1.0520 0.9979 0.9271 0.9404 0.8668 0.8545 0.7735 0.7967 0.7132

(0.0296) (0.0000) (0.0000) (0.0000) (0.0000)
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F Supplementary Information on the Application to Stock Indices

F.1 Estimated Break Dates within the Stock Market Indices Series

Note that the dates are written in the order month/day/year.

Estimated Break

Series I II III IV V

DAX 30 11/08/94 07/17/97 06/13/03 01/16/08

EURO STOXX 50 11/23/94 10/08/97 10/23/01 01/14/08

FTSE 100 04/03/95 07/10/98 04/15/03 04/28/06 07/01/09

HANG SENG 08/13/97 10/22/01 06/23/04 08/14/09

NIKKEI 10/20/97 11/27/02 01/02/08

S&P 500 12/14/95 07/17/98 04/01/03 07/14/09

F.2 Estimated Parameters of Best Performing Models by Subperiods

Series Subp. Estimated Parameters

DAX 30

1 ω = 0.17235 · 10−5, α = 0.07132, β = 0.91694, ν = 5.30124

2 ω = 0.48050 · 10−5, α = 0.06800, β = 0.86847, ν = 8.22514

3 ω = 0.60932 · 10−5, α = 0.09453, β = 0.88887

4 ω = 0.25548 · 10−5, α = 0.07124, β = 0.90275, ν = 10.56011

EURO STOXX 50

1 ω = 0.35707 · 10−5, α = 0.08515, β = 0.86858, ν = 5.68607

2 ω = 0.07528 · 10−5, α = 0.04945, β = 0.93916, ν = 9.56355

3 ω = 0.50275 · 10−5, α = 0.08479, β = 0.89855, ν = 17.13093

4 ω = 0.28535 · 10−5, α = 0.07633, β = 0.88882, ν = 10.62949

FTSE 100

1 ω = 0.30858 · 10−5, α = 0.05245, β = 0.90178, ν = 10.64346

2 ω = 0.02580 · 10−5, α = 0.02904, β = 0.96754, ν = 13.12938

3 ω = 0.56263 · 10−5, α = 0.10960, β = 0.86287

4 ω = 0.10568 · 10−5, α = 0.04774, β = 0.92647

5 ω = 0.16404 · 10−5, α = 0.11824, β = 0.87772, ν = 7.15715

HANG SENG

1 ω = 0.62317 · 10−5, α = 0.07788, β = 0.88970, ν = 4.43131

2 ω = 2.05176 · 10−5, α = 0.07458, β = 0.88195, ν = 5.55199

3 ω = 1.03181 · 10−4, α = 0.00100, β = 0.25236, ν = 5.69186

4 ω = 0.07328 · 10−5, α = 0.07652, β = 0.92682, ν = 6.05149

NIKKEI 225

1 ω = 0.37473 · 10−5, α = 0.09151, β = 0.89576, ν = 5.24517

2 ω = 0.89326 · 10−5, α = 0.06486, β = 0.90087, ν = 7.64209

3 ω = 0.13691 · 10−5, α = 0.05615, β = 0.93551, ν = 7.70700

S&P 500

1 ω = 0.01487 · 10−5, α = 0.02482, β = 0.97242, ν = 5.24498

2 ω = 0.30272 · 10−5, α = 0.04274, β = 0.92033, ν = 5.91882

3 ω = 0.66309 · 10−5, α = 0.07069, β = 0.89619, ν = 9.05406

4 ω = 0.05614 · 10−5, α = 0.06510, β = 0.93200, ν = 7.27716
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