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ZUSAMMENFASSUNG 

Basale Metazoa besitzen eine große Anzahl vielfältiger Lebenszyklen, inklusive klonaler 

Fortpflanzung, woraus sich eine einzigartige Möglichkeit ergibt, die Evolution der Alterung 

von einem biodemografischen Standpunkt aus zu untersuchen. Dieses Dissertationsprojekt 

zielt darauf, die Diversität der Alterungsmuster zwischen und innerhalb Spezies auf dem 

Genet- und Ramet-Level durch Vergleiche alterungsspezifischer Merkmale wie 

Überlebenszeit und Reproduktion in experimentellen Laborstudien und durch die Analyse 

demografischer Daten vielerlei basaler Metazoen zu beleuchten. Zum ersten Mal überhaupt 

bei dieser Art konnten wir alterungsspezifisches Überleben, Größe und Reproduktion in 

einem Langzeit-Laborexperiment mit Eleutheria dichotoma (Cnidaria: Hydrozoa), einem 

metagenetischen marinen Hydrozoon mit einer halbsessilen Meduse, unter konstanten 

Bedingungen für die Polypen und Medusenstadien eines Klons (Genets) messen. Etablierte 

Polypenkolonien zeigten fast keine Mortalität innerhalb von mehr als 3.5 

Beobachtungsjahren. Dagegen war die Larven- und Primärpolypenmortalität relativ hoch, 

was ein negatives Seneszenz-Muster auf dem Polypenkolonie-Ramet-Level andeutet. Die 

demografischen Merkmale der isogenen Medusen-Ramets unterschieden sich substantiell 

dazu, indem sie buckelartige Kurven („Hump shape senescence“) hinsichtlich des Überlebens 

und beider Reproduktionsmodi zeigten. Medusengröße war nicht mit dem Überleben 

korreliert und wir konnten keine Heritabilität der Lebensspanne oder des 

Reproduktionsoutputs feststellen. Hervorzuheben war ein signifikanter Trend zu einem 

qualitativen Abfall des Überlebens und beider Reproduktionsmodi mit der Aufeinanderfolge 

vegetativer Medusengenerationen. Wir schlussfolgern, dass E. dichotoma-Genets negative 

Seneszenz aufweisen. In weiteren Laborexperimenten testeten wir die 

Ressourcenverteilungsflexibilität eines anderen Hydrozoons, eines nicht-alternden und rein 

vegetativ reproduzierenden Süßwasserpolypen-Stamms von Hydra magnipapillata. Wir 

untersuchten die individuelle phänotypische Variation der isogenen Hydra Polypen unter 

konstanten Bedingungen und Hydra‘s phänotypische Plastizität in Bezug auf verschiedene 

Umwelteinflüsse, so wie Temperaturgradienten, Hunger oder Bisektion. Hydra Polypen 

zeigten hochvariable und nicht vererbliche Knospungsphänotypen unter konstanten 

Bedingungen, was auf einen zufälligen Phänotypen-Generierungs-Prozess hindeutet. 

Umweltstress kann hormetische Reaktionen in Hydra auslösen, ohne dass direkte Kosten 

dafür gefunden werden konnten. Dies zeigt, dass variable und fluktuierende Umwelteinflüsse 

sogar von Vorteil für Hydra sein können.  

Schlagworte: Basale Metazoa, Alterung, Biodemografie 



 

 

ABSTRACT 

Basal metazoans show large variations in life-cycle patterns, including clonal propagation 

modes, offering unique opportunities to study the evolution of aging from a biodemographic 

point of view. Comparing age-specific life history traits such as survival and reproduction in 

experimental laboratory studies and analyzing demographic data across various basal 

metazoans at both genet and ramet levels this dissertation project aims to shed light on the 

different resource allocation strategies and diversity of aging patterns across and within 

species. For the first time ever in this species, we measured age-specific survival, size and 

reproduction in a longitudinal laboratory experiment with Eleutheria dichotoma 

(Cnidaria: Hydrozoa), a metagenetic marine hydrozoan with a crawling medusa, under 

constant conditions for both polyp and medusa stages of one clone (i.e. genet). Established 

polyp colonies suffered almost no mortality at all within more than 3.5 years of observation 

whereas larva and primary polyp mortality was rather high, pointing towards a negative 

senescence pattern at the polyp colony ramet level. Demographic traits of isogenic medusae 

differed substantially from polyp colonies, exhibiting hump shaped trajectories in survival 

and both reproduction modes, suggesting a “hump shape senescence” on the medusa ramet 

level. Medusa size was not correlated with survival and no heritability of lifespan or 

reproductive output could be found, indicating a stochastic origin of generally high trait 

variability in medusae. Remarkable was a significant trend towards a qualitative decline in 

survival and both reproduction outputs with succession of vegetative medusa generations. We 

reason that the overall aging pattern of E. dichotoma genets is of a negative senescent type. In 

further sets of laboratory experiments, we tested the resource allocation flexibility of another 

hydrozoan, a non-senescing and purely asexually reproducing freshwater Hydra strain 

(Hydra magnipapillata). We examined individual phenotypic variation of isogenic Hydra 

polyps under constant conditions and Hydra’s phenotypic plasticity in response to various 

environmental challenges such as temperature gradients, hunger and bisection. We recorded 

budding rates, size and starvation survival as indicators to changes in the allocation of 

resources to asexual reproduction and maintenance. Hydra polyps showed highly variable, 

non-heritable budding phenotypes under constant conditions, hinting towards a random 

phenotype generation process. Environmental stresses triggered hormetic responses in Hydra 

without any detectable trade-off costs, showing that variable stressful and fluctuating 

environments can be salutary for Hydra.  

 

Key words: basal Metazoa, aging, biodemography 
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GENERAL INTRODUCTION 

 

AGING AND BIODEMOGRAPHY 

 

What is aging and how can it be measured? 

Aging is intrinsically tied to life and questioned as a mysterious process since time 

immemorial. But what exactly do we mean by „aging‟? Across the tree of life (ToL, fig. 1) 

organisms are not only highly diverse in terms of their body structures, bauplan, behaviour, 

sizes and genes, but also in terms of their aging patterns (Baudisch and Vaupel 2012; 

Baudisch et al. 2013; Jones et al. 2014). There are extremely long lived and short lived 

species, semelparous species which die soon after reproduction and species which do not 

seem to age, or more specifically senesce, at all, like the hydrozoan freshwater polyp Hydra 

(Martinez 1998; Jones et al. 2014; Schaible et al. in preparation for submission). The 

definitions of aging and senescence are often confused. Aging is more than just the familiar 

decline in physiological functioning with age that negatively affects the ability to survive 

and/or to reproduce, which is more precisely termed senescence (*derived from the Latin 

word senex, meaning "old man" or "old age" or "advanced in age“). Aging is most clearly 

defined and measurable using a demographic approach, whereby aging shall be a broader 

generic term for: “variation in functioning with age, for the better or worse” (Baudisch 2008; 

Baudisch and Vaupel 2012). Thus aging, in its most basic and abstract sense, is merely 

“change over time”. Furthermore, in contradiction to the common dogma in gerontology and 

life-history science that mortality starts to rise after the age of reproductive maturity, there 

are, next to senescence, even aging patterns which can be named negligible, non- and 

negative senescence (Vaupel et al. 2004). Following and modified after Vaupel et al., aging  
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Figure 1.Maximum Likelihood Phylogenetic Tree of Metazoan Relationships (Schierwater et al. 2009) 
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can thus be fragmented into three different patterns, described in a demographic 

understanding (Vaupel et al. 2004; Baudisch 2008; Baudisch 2011): 

 Senescence: Age-related changes in an organism that adversely affect its vitality and 

functions, but most importantly increase its mortality rate and/or decrease its fertility 

as a function of time 

 

 Non-senescence (a.k.a. negligible senescence): Death rates stay rather constant with 

age, no measurable reductions in reproductive capability with age, or measurable 

functional decline with age 

 

 Negative senescence: a decline in mortality with age after reproductive maturity, 

generally accompanied by an increase in fertility 

 

It is important to note, that negative or non-senescence do not imply that some species have 

acquired individual immortality - every known life form can still die from intrinsic factors or 

be killed by extrinsic (environmental) influences, such as heat or predation. It is meant in an 

actuarial sense that the risk of dying, however high it may be for a specific species, does not 

increase with age.  

I believe that the biodemographic approach is most promising to understand more about the 

evolutionary pathways of aging across the tree of life. Biodemography combines methods 

used in demography, which studies population dynamics and structure, with evolutionary 

biology, which is concerned with the origin, descent, multiplication and diversity of species 

over time, coming up with a research path on how evolution shapes age-specific trajectories 

of life-history parameters such as mortality, fertility, and growth (Metcalf and Pavard 2007). 

Biodemographic methods include gathering and analysing age- or size-specific survival, 
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growth and ideally also reproductive data of individuals from populations of various species 

in longitudinal laboratory or field studies, supplemented by additional measurements of size 

and other physiological traits, if possible. However, there is no generally agreed upon 

measure of senescence and the most frequently used demographic approach is to look at the 

change in mortality with age. This is a simple and widely accepted working definition (Finch 

1990). But since both mortality and fertility are closely linked and crucial for the fitness and 

natural selection of each species, an ultimate measure of senescence should include both 

survival and reproduction (Baudisch 2008).  

 

Evolutionary theories of aging 

The evolutionary origin of senescence remains a fundamental unsolved problem in biology. 

At first glance evolution should tend to eradicate senescence because senescence reduces 

survival and reproduction. Several evolutionary theories of aging have been developed 

aiming to explain why senescence nevertheless evolved (Weismann 1891; Medawar 1952; 

Williams 1957; Hamilton 1966; Kirkwood 1977), but none of them can explain the diversity 

of aging patterns, including non- and negative senescence, that we find across the tree of life 

(Martinez 2002; Vaupel et al. 2004; Baudisch and Vaupel 2012; Jones et al. 2014).   

August  Weismann  (1891)  was  the  first biologist  of  the  evolutionary  era  to  advance  a  

theory of senescence in his broad, but also contradictory and disputed “Essays upon 

Heredity”. He believed that “death is not a primary necessity, but that it has been secondarily 

acquired as an adaptation…that life is endowed with a fixed duration, not because it is 

contrary to its nature to be unlimited, but because the unlimited existence of individuals 

would be a luxury without any corresponding advantage.” But he also stated, that death is by 

no means an attribute of all organisms and elaborated on the potentiality of unending life in 

„low organisms‟ like Amoebae. Weismann thought that such animals are too simply 
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constructed for any deterioration to take place within them. Later on, his explanations were 

heavily criticized as being incomplete and circular (Medawar 1952; Comfort 1954; Comfort 

1956; Kirkwood 1977). The main critique concerned Weismann‟s statements, that death and 

“‟ageing‟ is a mechanism for ridding a population of old and worn-out individuals, who 

would otherwise compete for resources with younger and fitter ones” (Kirkwood 1977). This 

was indeed regarded as circular since it assumes initially what it purports to explain (wear-out 

and „ageing‟), without explaining the reason for the wear-out with age. On the other hand, 

Weismann also concluded, following his own remarks on on the origin and necessity of 

death, “that the organism did not finally cease to renew the worn-out cell material because the 

nature of the cells did not permit them to multiply indefinitely, but because the power of 

multiplying indefinitely was lost when it ceased to be of use.” Although Weisman did not 

state it particularly, these thoughts, to my understanding, already imply a natural selection of 

death and senescence in conjunction with a declining selection pressure on longevity with age 

due to the declining fertility output with age in a theoretical population of „potentially 

immortal organisms‟ under a constant (external) mortality regime, which was well explained 

by Sir Peter B. Medawar (1952) in his test tube example to criticize Weismann‟s ideas. In 

conclusion, it is tempting to say, as Medawar commented on Weismann: “This is all a great 

muddle, but there is certainly some truth in it….” - a statement which might apply to all aging 

theories to date, as we shall see. 

Apart from the inconsistent wear-out assumption, Weismann's  theory  is  subject  to  a  

number  of other criticisms (Williams 1957), namely: 1) the problematic nature of identifying 

senescence with mechanical wear 2) the extreme rarity of finding decrepit individuals in the 

wild in natural  populations of any species and 3)  the  failure  to  uncover  any  death-

mechanism or evidence for an adaptive and naturally selected senescence programme during  
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many  decades  of  gerontological  research and 4) the  difficulties  in  understanding  how 

such  a  programme  could  be produced  by  natural  selection.  

Further theories followed in an attempt to solve the inconsistencies. In 1952, Medawar 

proposed that aging is basically a matter of neglect. His theory, which is referred to as 

Mutation Accumulation Theory, states that senescence results from a decline in selection 

pressure with age for traits that maintain viability. Older ages matter less to life-time 

reproductive success because only a small proportion of all individuals reaches old ages due 

to external hazards such as diseases, accidents or predation. Thus detrimental mutations 

showing an effect only late in life accumulate via natural selection and cause physiological 

decline and damage with increasing age, which is usually associated with senescence. There 

is no selection pressure for genes which would promote increased longevities or immortality 

of individuals.   

George C. Williams proposed another theory in 1957, called Antagonistic Pleiotropy 

Hypothesis. Pleiotropy means basically that one gene can have two or more effects on the 

phenotype. Antagonistic pleiotropy imposes that one of these effects is beneficial and another 

is detrimental to an organism. Williams referred this mechanism to genes that offer benefits 

in early life, but exact costs later in life. He assumed that enhanced early fertility can be 

selected for even if it includes a price tag in form of an earlier death or physiological decline 

with age. Senescence, accordingly, evolved basically as a side effect of beneficial fitness 

traits during younger ages. Williams also stated, that his theory predicted senescence as an 

evolved characteristic of the soma – just as Weismann did already in 1891 and Kirkwood 

later in 1977, too - and that senescence should not be present in organisms without a clear 

germ-soma segregation. However, Williams differentiated, that while clones, i.e. genets, 

should be non-senescent, asexually reproducing individuals of a clone, i.e. modules/ramets, 

should show senescence because they could be regarded as soma. 
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In 1966 William D. Hamilton claimed that senescence is an inevitable outcome of evolution 

because the force of selection declines with age, implying that later ages become unimportant 

to evolution. By combining insights from Medawar and Williams with concepts and models 

of population dynamics (Lotka 1924) he showed theoretically by mathematical modeling that 

„„senescence is an inevitable outcome of evolution‟‟ and „„cannot be avoided by any 

conceivable organism‟‟ - survival and fertility have to decline with age. This dogma became 

established among gerontologists until Vaupel et al. introduced the concept of negative 

senescence in 2004 and Annette Baudisch disproved Hamilton‟s claim in her article on 

“Hamilton‟s indicators of the force of selection” (Baudisch 2005). Baudisch concludes that 

“life histories are likely to be shaped largely by optimization rather than by a burden of 

deleterious mutations, at least over ages where the bulk of life-time reproduction is realized” 

(Baudisch 2008). Baudisch‟s models show that, theoretically, senescence is not an inherent 

part of life and that optimal life histories can cover a broad range of senescent and non-

/negative senescent strategies, just as we can truly observe them in real life scenarios (Jones 

et al. 2014). 

Another prominent mainstream theory of aging is the Disposable soma theory, proposed in 

1977 by Thomas B. L. Kirkwood. The term disposable soma came in analogy with disposable 

products. Why spend energy in making something durable, if it will only be used and needed 

for a limited amount of time? Each organism must budget the amount of energy available to 

its body. Energy resources must be allocated for metabolism, reproduction, growth, repair 

and maintenance. With a finite supply of food or energy, compromises and trade-offs occur 

within the resource allocation system, which finally result in physiological deterioration with 

age. Kirkwood conjectured that the critical part of an organism that must survive is the 

genetic code, which contains all information necessary to ensure the persistence of a lineage. 

The germ line acts, therefore, as the keeper of the genetic code of each respective species and 
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thus has to be protected from any damage and remains basically immortal, whereas the rest of 

the body cells, the soma, can be replaced. The soma can be understood as the vehicle for 

carrying and transporting the genetic code over generations, which is consistent with the 

gene-centered view of evolution proposed by Dawkins in “The Selfish Gene” (Dawkins 

1976). In his theory, Kirkwood assumes that the costs required for the continuous repair of 

the soma are too high in perpetuity; therefore evolution transposes the protection of the germ 

line against senescence of the soma, “the evolutionary optimum leads directly to senescence” 

(Kirkwood and Rose 1991). According to Kirkwood‟s theory, somatic senescence evolved 

because of the accumulation of unrepaired somatic defects with age. The problem with the 

Disposable soma theory is, though, that it only applies to organisms with a sequestered germ-

line, like most bilaterians, but not to clonal organisms without a germ-soma distinction, 

where the concept becomes blurry, as Kirkwood admitted himself (Kirkwood and Rose 

1991). 

To date, as noted above, none of the evolutionary theories of aging can describe the diversity 

of aging patterns found across the tree of life (Jones et al. 2014) and further theoretical 

research is deeply in need. The current published literature is full of empirical results that 

challenge and contradict the established theories. For example, it has been suggested for 

asexual metazoans via experimental data on a marine oligochaete and a rhabdocoel, that the 

evolution of somatic differentiation, preceding germ-line sequestration, is the necessary 

condition for the evolution of senescence (Martinez and Levinton 1992; Martinez 2002). 

Other studies suggest that senescence exists also in unicellular organisms like bacteria, 

contrasting previous aging concepts even more (Stewart et al. 2005; Wang et al. 2010). And 

then there is the case of the non-senescent Hydra polyp (fig. 2), a multicellular and mostly 

vegetatively reproducing basal metazoan without germ-line sequestration, exhibiting constant 

low mortality rates on its polyp-ramet level with only one exception in Hydra oligactis, 
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which relates to an environmentally triggered semelparous like mortality response when 

temperature drops (Martinez 1998; Yoshida et al. 2006; Jones et al. 2014; Schaible et al. in 

preparation for submission). In light of the vast diversity and complexity of life cycles and 

life stages across basal metazoans, plants and fungi, and their potential for clonal 

reproduction, theoretical modeling of all possible ways of their aging pattern evolution 

becomes seriously complicated, if not impossible - not to mention the huge gaps in 

knowledge regarding the diversity of living beings still existing today. Helpful are more 

empirical demographic studies of such organisms, including bacteria, which could serve as a 

cornerstone to modified theories on aging. In this thesis, I chose to focus on one of the least 

studied groups regarding their aging patterns: the basal metazoans. 

 

BASAL METAZOANS 

 

As the term "basal metazoans" is not very well-defined in general (Collins et al. 2005), I refer 

it from here on to animals from clades at the base of the metazoan (multicellular animal) 

evolutionary tree (fig. 1), i.e. Placozoa (Trichoplax spp.), Porifera (sponges), Cnidaria 

(jellyfish and polyps) and Ctenophora (comb jellies). Excluded from the diploblastic basal 

metazoans, having only two germ layers (ecto- and endoderm), are by this definition all 

higher metazoans with three germ layers (ecto-, meso- and endoderm), namely the 

triploblastic Bilateria, and the enigmatical Myxozoa, since their phylogenetic position and 

relationship, and whether they have diploblastic or triploblastic ancestors, are not so clear to 

date (Petralia et al. 2014). Hence, according to the definition I apply, all basal metazoans can 

also be called diploblasts (Schierwater et al. 2009), which does not have the potentially 

misleading term „basal‟ in it, since species of basal metazoans living today can be as much 

derived as today‟s species of bilaterians (Collins et al. 2005).   

http://www.wisegeek.com/what-are-cnidarians.htm
http://www.wisegeek.com/what-is-a-jellyfish.htm
http://www.wisegeek.com/what-is-a-ctenophore.htm
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Most basal metazoans have complex life cycles with various life stages and are capable of 

both sexual and asexual reproduction (we use the terms asexual and vegetative as synonyms, 

see (Schierwater and Hauenschild 1990) for a precise definition of asexual versus sexual 

reproduction which I apply throughout this thesis). Hence, they do not exhibit a clear germ-

line sequestration in a classical sense of the term in contrast to most higher metazoans (see 

(Weismann 1891; Buss 1987; Finch 1990; Martinez and Levinton 1992; Martinez 2002) for 

more on the concept of germ-soma segregation). When thinking about aging in basal 

metazoans, it is crucial to consider the organizational level of the individual one is looking at. 

Since asexual propagation modes are prevalent and commonly distributed across the lower 

tree of life, it is important to always distinguish between the genet (i.e. clone) and the ramet 

(i.e. module) level in clonal populations (Harper 1981; Silander 1985; Karlson 1988; Karlson 

1991; Martinez 2002). How does the additional dimension of asexual reproduction affect the 

aging patterns of both ramets and genets? What are the differences and variations between 

these levels, and what kind of aging diversity can we expect? These are core issues I want to 

raise and tackle with this thesis. 

Information on this subject is very scant throughout the literature and the genet/ramet 

distinction is most often completely neglected in aging studies about clonal animals, which 

complicates correct understanding and interpretations even further. Just few thorough reviews 

elaborating on the genet/clone/colony versus ramet/module senescence stand out (Orive 

1995; Gardner and Mangel 1997; Tanner 2001; Martinez 2002; Skold and Obst 2011; 

Arnaud-Haond et al. 2012), though all tend to remain tangled and blurry in their conclusions 

about the potentially distinct demographic aging patterns of genets and ramet stages.   
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GOALS OF THIS THESIS 

 

Since the established theories and concepts of aging become very unclear when it comes to 

clonal organisms, one of the main goals of this thesis is to raise this awareness and describe 

the possibilities and potential differences between the demographic aging patterns of the 

genet and ramet levels. The diversity of aging across the tree of life has just begun to be 

described and undermined by quantitative demographic data (Jones et al. 2014). Large gaps 

need to be filled both theoretically and experimentally and it is time to fit the clonal aging 

puzzle piece into the aging diversity assemblage. Empirical demographic aging data are 

especially scant at the root of the metazoan tree of life, where we find extremely plastic 

animals regarding their life cycles and regeneration abilities. Metagenetic basal metazoans 

like most Medusozoa (Kayal et al. 2013), including one of our experimental organisms: 

Eleutheria dichotoma (fig.3), possess parallel living life stages which can be simultaneously 

potent of reproducing either sexually or asexually or both. Hydra, on the other hand, is a 

Medusozoan which lost the medusa stage (Kayal et al. 2013) and was left with the polyp 

stage alone (fig. 2). Hence, when thinking about aging on the genet versus the ramet level, 

each species has to be evaluated differently and potentially parallel ramet life stages have to 

be considered as well.  

  

 

 

 

 

 

 
Figure 2. Hydra magnipapillata polyp 
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Throughout my thesis I will discuss aging in basal metazoans from a biodemographic point of 

view. A major core question in evolutionary demography is: Why evolution favoured a 

certain path of aging in a certain species? To look into this question, I chose to examine aging 

in two extremely interesting basal metazoans belonging to the Hydrozoans: Hydra 

magnipapillata and Eleutheria dichotoma.  

The freshwater polyp Hydra (Hydrozoa, Athecata, Aplanuata) is a well-studied model-

organism across various biological disciplines (Campbell 1967; Gierer et al. 1972; Martinez 

1998; Bosch et al. 2010; Bosch 2012; Chapter III). The cosmopolite genus (except 

Figure 3. Eleutheria dichotoma. A Medusa (aboral view) with two growing buds on the umbrella. B Stolonal 

colony with polyps. C Stolonal colony with polyps and medusae. D Section of a stolonal colony showing polyps 

close-up. Growing primary medusae can be seen at the hydrocaulus of the polyp in front and a the polyp in the 

back ingested an Artemia salina nauplius. Scale bar on the upper right (A) applies only to A. 

A  B  

C  D 

 0,5 mm  
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Antarctica) comprises four morphologically distinct and recognizable species clusters with 

various species (12-15 in total according to recent estimates) and more than a hundred species 

strains (Jankowski et al. 2008; Martinez et al. 2010). Populations usually undergo frequent 

seasonal fluctuations in temperate zones regarding population size and switches in 

reproduction patterns, changing from purely vegetative to sexual or simultaneous 

reproduction in summer times to a more dormant and unproductive living style during winter 

(Ribi et al. 1985)(own observations). However, in comparison with asexual reproduction, 

sexual reproduction seems to play only a marginal role for the proliferation and population 

growth in the Hydra (Bosch 2009). Connected to the mode of vegetative proliferation is the 

high stem cell potential, or “stem cellness” (Bosch 2007), and the continuous proliferative 

cell renewal and cell turnover of Hydra which equips the polyp also with its remarkable 

regeneration capabilities (Bosch 2007; Bosch et al. 2010). These features of Hydra are more 

than likely playing an important role in its exceptional non-senescent aging pattern and 

flexible life history responses towards changing environmental conditions, including 

hormetic reactions or phenotypic heterogeneities and random phenotype allocations (Hydra 

chapters). I chose to examine Hydra magnipapillata strain 105, a brown Hydra belonging to 

the Hydra vulgaris cluster, which was isolated in 1973 in Japanese wetlands near Mishima on 

Honshu (Sugiyama and Fujisawa 1977; Sugiyama and Fujisawa 1977; Sugiyama and 

Fujisawa 1978). This strain reproduces solely vegetatively in our lab cultures since more than 

10 years, although older ramets were reported to produce gametes as well (Sugiyama and 

Fujisawa 1977; Sugiyama and Fujisawa 1977).  

In contrast, Eleutheria dichotoma (Hydrozoa, Athecata, Cladonematidae), nowadays a 

cosmopolitan marine Cnidarian inhabiting the littoral zone (Hauenschild 1956; Fraser et al. 

2006), is a metagenetic organisms with a planula larva, polyp colony and medusa life stage. 

Under moderate conditions, a live larva is released from a medusa to search actively for a 
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suitable settlement spot for a few days to metamorphose then into a primary polyp, which 

develops into a stolonal polyp colony. These polyps proliferate only vegetatively by either 

growing as an intact colony network with increasing numbers of polyps, whereby colonies 

may break apart and live on as disjoined parts, or by budding primary medusae which detach 

from the parent colony. In contrast to most other hydrozoan medusa forms which are 

incapable of vegetative reproduction, the crawling and non-swimming medusa of E. 

dichotoma can proliferate both sexually and asexually. Sexually by bisexual self-fertilization, 

whereby sperm and eggs form embryos within brood chambers below the umbrella of a 

medusa which are released as hatched swimming planula larvae to settle and form new polyp 

colonies (Schuchert 2006). The asexual reproduction, which is the prior mode of reproduction 

in E. dichotoma medusae, consists of budding secondary medusae which have the same 

potential reproduction modes as the primary medusae (Hauenschild 1956). 

 

On the basis of the experimental laboratory studies me and my colleagues conducted with 

these two model organisms and the few data which are available throughout the literature on 

aging in basal metazoans I aim to tackle and discuss further key aging research questions:  

 Why evolution favoured a certain path of aging in a certain species? 

 Where on the tree of life is the evolutionary origin of senescence and why did  

     senescence evolve?  

 Did senescence evolve convergently or as a single event?  

 Which basal metazoans show patterns of non- or negative senescence? 

 Under which circumstances can negative and non-senescence evolve? 

 How can we incorporate the ramet and genet concept into the concept of aging? 

 What are the differences between aging on the genet and ramet levels. 

 Does senescence on the ramet level necessarily lead to senescence on the genet level? 
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 How are the different aging patterns maintained by evolution and which biological,  

physiological, ecological or life history factors are important to understand the  

evolution of non-senescent mortality trajectories? 

 How flexible are resource allocation strategies regarding aging in basal metazoans? 

 

Via the basal metazoan examples, this thesis aims to offer more insights into the concept of 

aging and into the evolutionary origin of senescence, why senescence evolved and how the 

evolution of non- and negative senescence patterns can be explained. To understand the 

remarkable diversity of aging is the key to our understanding of the process and evolution of 

aging in general.  

 

CHAPTERS 

 

This thesis is based on the following five research articles 

(presented and referred to as chapters I to V): 

 

I) Ringelhan, F.; Schierwater B.; Campos Rodigues, I. R.; Schaible, R.: Aging in a 

metagenetic basal metazoan I – The biodemography of Eleutheria dichotoma 

(Cnidaria: Hydrozoa) 

For the first time ever in a longitudinal experiment, the survival, size, and reproduction of 

isogenic Eleutheria were measured at two different feeding regimes under constant 

conditions for both polyp and medusa stages. Three successive vegetative medusa 

generations were studied, whereby the first was constituted from primary polyps of one 

chosen parent stem polyp colony and the two successive ones were descendants of the 

primary and secondary medusae, respectively. The stem colony was continuously observed 



 

21 

 

 

while larvae and polyps were collected and raised from the primary medusae. In this chapter 

we display and discuss the demographic survival and reproduction patterns and the 

differences between the feeding levels, vegetetative medusa generations and the 

polyp/medusa ramets. Additionally, we reflect on aging in genet versus ramet levels.   

 

II) Ringelhan, F.; Schierwater B.; Schaible, R.: Aging in a metagenetic basal metazoan II – 

demographic trade-offs in Eleutheria dichotoma (Cnidaria: Hydrozoa) 

Following on chapter I, we examined the correlations and trade-offs between the measured 

traits in the experiment, including size. Furthermore we elaborate on the phenotypic diversity 

between the isogenic medusa ramets and relate the results to the known ecological factors 

influencing E. dichotoma in their natural environments. 

 

III) Schaible, R., Ringelhan, F., Kramer, B.H., Miethe, T. (2011): Environmental challenges 

improve resource utilization for asexual reproduction and maintenance in hydra 

Experimental Gerontology 46 (10): 794-802. 

Variation in life history traits can reflect (epi-)genetic differences, and may be caused by 

environmental effects on phenotypes. To gain a deeper understanding of Hydra‟s exceptional 

aging patterns we examined Hydra‟s phenotypic plasticity in response to various 

environmental challenges. In a set of laboratory experiments, we studied the variation in the 

allocation of resources to vegetative reproduction and to somatic maintenance of isogenic and 

purely asexually reproducing Hydra polyps of a H. magnipapillata strain in relation to 

differences in temperature and food availability. We recorded budding rates and starvation 

survival as indicators to changes in the allocation of resources to asexual reproduction and 

maintenance. Finally, we discuss our findings regarding resource allocation trade-offs, 

hormetic reactions and ecological interactions of H. magnipapillata.   
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IV) Schaible, R.; Danko, M. J.; Ringelhan, F.; Wagner, P.; Kramer, B. H.: Variation in 

individual fitness of Hydra polyps and the importance of stochasticity 

In this experiment, we explicitly examined the individual variation in life-history traits of 

isogenic, purely asexual H. magnipapillata. To further look into the phenotypic heterogeneity 

within a Hydra clone, we analysed patterns of vegetative reproduction and age at first 

reproduction of more than 1118 isogenic polyps, subdivided into six cohorts of different 

ramet ages (2-5 years old). Environmental conditions were kept constant throughout the 

study. We discuss the effects of stochasticity and random phenotype allocation in clonal 

organisms. 

 

V) Ringelhan, F. and Schaible, R: To cut or not to cut - Biscetion trade-offs in the polyp 

Hydra magnipapillata (Cnidaria: Hydrozoa) 

Following on chapter III&IV and in light of the remarkable plasticity, regeneration abilities 

and non-senescent aging pattern of Hydra polyps, this study examines its resource allocation 

strategy in response to strong environmental stressors. We reared isogenic, purely asexually 

reproducing Hydra polyps of a H. magnipapillata strain at five different feeding regimes and 

bisected them horizontally to simulate predation stress. We observed reproduction, size, and 

starvation survival after regeneration and compared these traits between groups to reveal 

eventual allocation trade-offs and hormesis effects. We also looked into trait heterogeneity 

within and between polyps and checked for heritability as we monitored fed and unfed 

budded offspring generations at the two highest feeding levels. 
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ABSTRACT 

 

Basal metazoans show large variations in life-cycle patterns, offering unique opportunities to 

study the evolution of aging from a biodemographic point of view. Laboratory 

experiments were conducted on Eleutheria dichotoma (Cnidaria: Hydrozoa: 

Cladonematidae), a metagenetic hydrozoan with a crawling medusa, to test the resource 

allocation flexibility of a remarkably plastic and variable marine organism. For the first time 

ever in a longitudinal experiment, the survival, size and reproduction of isogenic Eleutheria 

were measured at different feeding regimes under constant conditions for both polyp and 

medusa stages. E. dichotoma medusae have the ability to reproduce both via asexual budding 

and bisexual self-fertilization. The polyps stay asexual, growing as stolonal polyp colonies 

with the ability to form medusa as buds. Established polyp colonies suffered almost no 

mortality at all within more than three years of observation while larva and primary polyp 

mortality was rather high. This points towards a negative senescence pattern at the polyp 

colony ramet level. Medusa demography differed substantially, exhibiting hump shaped 

trajectories in survival and both reproduction modes, suggesting a “hump shape senescence” 

at the medusa ramet level. The maximum medusa lifespan was 359 days and low feeding 

regimes had a positive effect on survival at generally lower reproduction rates. Striking was a 

significant trend towards a qualitative decline in successive vegetative medusa generations in 

survival and both reproduction outputs. In context with the reported natural seasonal 

occurrence of medusae these results broaden our understanding of the genet-ramet complex 

and its evolutionary demographic implications for the diversity of aging patterns in basal 

metazoans. We reason that the overall aging pattern of E. dichotoma genets is of a negative 

senescent type. 
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INTRODUCTION 

 

Aging and the demography of basal metazoans (i.e. Diploblasta: Placozoa, Porifera, Cnidaria 

and Ctenophora) are still poorly understood. Aging is most clearly defined and measurable 

using a demographic approach, with aging itself being a summary term, broadly meaning 

„change over time‟, comprising the three following main aging types: 1) senescence - 

described as increasing mortality and/or declining fertility with age, i.e. a decline in 

individual fitness with age, 2) non-senescence - with both traits staying constant over age and 

3) negative senescence - with trait directions opposite to the senescent types, respectively 

(Vaupel, Baudisch et al. 2004; Baudisch 2008; Baudisch 2011; Baudisch and Vaupel 2012). 

Evolutionary theory proposes that the decline in the force of natural selection with age is the 

fundamental cause of senescence (Medawar 1952; Hamilton 1966). As follows, senescence 

should commence inevitably from reproductive maturity onwards for every living being – but 

this is not the case. Especially recent literature on the diversity of aging patterns across the 

tree of life suggest a far more diverse nature of aging than proposed by previous theories 

(Martinez 1998; Martinez 2002; Vaupel, Baudisch et al. 2004; Baudisch and Vaupel 2012; 

Baudisch, Salguero-Gómez et al. 2013; Jones, Scheuerlein et al. 2014). Yet, the diversity of 

aging across the tree of life has just begun to be described and undermined by quantitative 

demographic data. Large gaps need to be filled both theoretically and experimentally. The 

data are especially scant at the root of the metazoan tree of life, where we find the most 

plastic animals regarding their life cycles and regeneration abilities. Most basal metazoans 

are capable of both sexual and asexual reproduction (see Schierwater and Hauenschild 1990 

for a precise definition of asexual versus sexual reproduction which we apply consistently). 

Consequently, they do not exhibit a clear germ-line sequestration in the classical 

Weismannian sense of the term compared to higher metazoans (Weismann 1891; Buss 1987; 
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Finch 1990; Martinez and Levinton 1992; Martinez 2002). August Weismann proposed more 

than a century ago that “natural death”, meaning senescence, appeared for the first time in 

multicellular organisms with a natural germ-line (non-senescent) - soma (senescent) 

distinction (Weismann 1891). Accordingly, organisms that sequester the germ-line should 

senesce (at the soma level) and those without a clear distinction between the germ-line and 

the soma, generally capable of both sexual and asexual reproduction (Martinez and Levinton 

1992, see above), should not. Complicating this even further, metagenetic basal metazoans, 

like most Medusozoa, possess parallel life stages which can be simultaneously potent of 

reproducing either sexually or asexually or both (Kayal, Roure et al. 2013). From these 

considerations follows that we have to distinguish in such non-germ-line-sequestering 

organisms between aging on the ramet level (individual organism unit) and aging on the 

genet level (the entire clone), the latter being the evolutionary actor sensu stricto (Harper 

1981; Silander 1985; Karlson 1991; Martinez 2002).  

Till today, contradicting results have been found and it has been suggested that the evolution 

of somatic differentiation, preceding germ-line sequestration, is the necessary condition for 

the evolution of senescence (Martinez and Levinton 1992; Martinez 2002). Other studies 

suggest that senescence exists also in unicellular organisms like bacteria, contrasting previous 

aging concepts even stronger (Stewart, Madden et al. 2005; Wang, Robert et al. 2010). And 

then there is the case of the non-senescent Hydra, a multicellular basal metazoan without 

germ-line sequestration, exhibiting a constant low mortality rate with only one exception in 

Hydra oligactis, which relates to an environmentally triggered semelparous like mortality 

response (Martinez 1998; Yoshida, Fujisawa et al. 2006; Jones, Scheuerlein et al. 2014; 

Schaible, Scheuerlein et al. in preparation for submission). However, the obligatory 

distinction between senescence on the ramet/genet level has been left out and unmentioned in 

most of these works, which complicated proper understanding of the aging concept strongly.  
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This study aims to help disentangling this evident aging mess by contributing new 

quantitative demographic data of a yet undescribed basal metazoan regarding aging, while 

emphasizing the genet/ramet complex and its distinct aging deductions. The extents of the 

variety of aging patterns might become apparent by considering metagenetic species 

expressing different aging phenotypes/life stages within the same genome. The two distinct 

generations of most Medusozoa are, apart from a usually short (~ hours to days) planula larva 

stage after hatching, typically a polyp form as the sessile, vegetative state and the 

jellyfish/medusa form as dispersal unit capable of sexual reproduction. Interestingly, both of 

these exemplary cnidarian life cycle stages seem to show different aging patterns – generally 

it is assumed for most metagenetic cnidarians that the (possibly colonial) polyp stage 

represents a longer-lived, perennial life stage surviving through winter periods in temperate 

regions and that the medusa is a shorter-lived, only seasonal and ephemeral stage (Mills 

2001; Ojimi, Isomura et al. 2009; Lucas, Graham et al. 2012). Generally, a typical lifespan 

assumption for “a jellyfish” (Cnidaria: Medusozoa) is about 6-9 months, although many 

exceptions in various taxa exist (Lucas, Graham et al. 2012). Individual Aurelia polyps 

(scyphistomae) have been maintained in the laboratory under controlled conditions with 

artificial seawater without signs of deterioration or individual mortality for three years, while 

the medusae reached maximally six months (Spangenberg 1965).  

Much less is known about our study object, the hydrozoan Eleutheria dichotoma. E. 

dichotoma’s distinctively complex life-cycle makes it a perfect study organism to gain deeper 

insights into the demographic aging patterns of a metagenetic basal metazoan at both the 

genet and ramet level. The genus Eleutheria belongs to the family Cladonematidae, of which 

the medusae are adapted to a benthic life style with crawling or swimming medusa, while the 

polyps grow as colonies (hydroid colonies), usually attached to a substrate, whereby polyps 
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are connected with root like hydrocauli and stolons typical for many hydrozoans (Schuchert 

2006). An additionally most interesting and unusual feature for Medusozoa the E. dichotoma 

medusa shares with some of its family sister species is the ability to reproduce both 

vegetatively by budding plus sexually by bisexual self-fertilization (Hauenschild 1956; 

Schuchert 2006). E. dichotoma enables us hereby to study not only the aging differences 

between parallel life-cycle stages (medusa vs. polyp) and aging at the genet vs. ramet level, 

but also the effects and trade-offs of the varying reproductive modes on its aging patterns.   

Only few examples of detailed demographic studies on basal metazoans exist and these are 

most often very limited in their representative relevance for general patterns since individual 

numbers are usually low in ecological field studies but also in most laboratory studies 

(Babcock 1991; Martinez 1998; Garrabou and Harmelin 2002; Martinez 2002; Vaupel, 

Baudisch et al. 2004). The diversity of demographic aging patterns across the basal 

metazoans is supposedly very high considering the enormous plasticity in life cycle variations 

and the abundant potential of asexual reproduction coupled to high regeneration capabilities. 

A full spectrum of patterns, including senescent, non-senescent and even negatively 

senescent species and species stages, with declining mortality risks and/or rising fertility with 

age, might be expected (Baudisch 2008; Baudisch 2011; Baudisch and Vaupel 2012; 

Baudisch, Salguero-Gómez et al. 2013; Jones, Scheuerlein et al. 2014). More demographic 

data are needed to study these patterns, whereby the differences between genet and ramet 

aging patterns are most interesting and consequential to examine considering the specific life 

cycle stages at which the respective ramet units occur (Karlson 1991; Martinez 2002).  

Here we report the first extensive demographic laboratory study of the life of a metagenetic 

hydrozoan, including the measurement of the survival, size, and reproduction measured at 

different feeding regimes for both polyp and medusa stages, including released planula larva 
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survival. We chose two different feeding regimes to observe potential shifts and trade-offs in 

resource allocation patterns regarding aging. 

 

MATERIAL AND METHODS 

 

Study Organism 

The Hydrozoan Eleutheria dichotoma Quatrefages, 1842 (Hydrozoa, Athecata, 

Cladonematidae) is a metagenetic, nowadays cosmopolitan marine Cnidarian inhabiting the 

littoral zone (Hauenschild 1956; Fraser, Capa et al. 2006). The polyps proliferate only 

asexually by either growing as an intact colony network with increasing numbers of polyps 

whereby colonies may break apart and live on as disjoined parts, or by budding primary 

medusae which detach from the parent colony. The crawling medusa can proliferate both 

sexually and asexually. Sexually by bisexual self-fertilization, whereby sperm and eggs form 

embryos within brood chambers below the umbrella of a medusa which are released as 

hatched swimming planula larvae to settle and form new polyp colonies (Schierwater and 

Hadrys 1998; Schuchert 2006). The asexual reproduction, which is the prior mode of 

reproduction in medusae, consists of budding secondary medusae which have the same 

potential reproduction modes as the primary medusae (Hauenschild 1956). 

The genetic consequences of the vegetative and the bisexual reproduction via self-

fertilization are presumably similar for Eleutheria, both modes lead to genetically identical 

offspring generations through time (Williams 1975; Schierwater and Hauenschild 1991; 

Ender 1997). E. dichotoma shows evidence of being one of the remarkable clonal/inbred 

species without any signs of genetic exhaustion. The often-quoted Muller‟s ratchet dead end 

scenario (Muller 1964) for clonal/inbred species may not apply for Eleutheria although there 

is no evidence of cross fertilization at all in the wild (Ender 1997).  
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E. dichotoma medusae are unable to swim and are adapted to a benthic and crawling lifestyle 

which is specific for and widespread among Cladonematidae medusae (Schuchert 2006). E. 

dichotoma medusae have been found in shallow depths (< 20 m) and tide pools on algae such 

as Ulva, Cystoseira and Gelidium, sessile polyps have rarely been found in the wild so far but 

seem to prefer lithoidal and hard substrate (Hauenschild 1956; Brinckmann-Voss 1970; 

Ender 1997; Fraser, Capa et al. 2006; Schuchert 2006). The seasonal pattern of medusa and 

polyp occurrence and their corresponding reproduction modes is not yet clear and fully 

understood. E. dichotoma medusae may not sustain winter conditions since medusa were 

frequently found in all seasons except in winter (Riedl 1983; Schierwater 1989a), so the 

polyp colony stage may serve as the reservoir and backup stage of Eleutheria in harsher 

winter conditions. Surprisingly, reproductive patterns are not synchronized with seasonal 

external environmental factors such as temperature, photoperiod and population density 

(Schierwater 1989a). Still, differences in food abundance between winter and the other 

seasons could be a relevant factor for the direction of the reproductive mode, although 

evidence is lacking that such food abundance differences between seasons really exist for 

Eleutheria (Schierwater 1989a) and are likely not true as Calbet et al found out in 2001 for a 

bay not far away from the original sampling spots of the Eleutheria we used (Calbet, Garrido 

et al. 2001; García-Comas, Stemmann et al. 2011). Both reproductive modes can be observed 

in medusae from spring throughout autumn (Schierwater 1989a) which leads to the 

assumption that no optimization in terms of an allocation of seasonal reproductive modes 

(Giese 1959) is necessary for Eleutheria in the field and that rather stochastic heterogeneity 

or endogenous processes are underlying the reproductive patterns of this species. 

 

Culturing conditions 

We used individuals of a single clone (Ω) of E. dichotoma, derived from the laboratory of  
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the ITZ Ecology and Evolution, Tieraerztliche Hochschule Hannover, Germany (ITZ). The 

original medusa specimen for this clonal line was collected in 1984-1986 from the 

Mediterranean shores of Banyuls-sur-Mer, France (Schierwater 1989a; Ender 1997) and 

cultured in the laboratory since then. Culturing conditions applied for this study were 

modified after Hauenschild (1956) and Schierwater (1989). Both polyp and medusa stages 

were cultured in the laboratory in artificial seawater of 35 ‰ (“Reef Crystals“ by Aquarium 

Systems mixed with Milli Q filtered water) in either glass dishes of about 50-100 ml or 

plastic six-well microwell plates with about 9 ml saltwater per well. Constant temperature 

(23°C) and light conditions (18/6-light/dark diurnal rhythm) were provided in BINDER 

incubators. Light was hereby offered by Osram Lumilux Cool Daylight lamps (L18W/865) at 

PFD‟s (Photosynthetically Active Photon Flux Density) around 7-20 µmol/m
2
/s, constituting 

a low light environment resembling natural sublittoral illumination conditions. Both polyps 

and medusae were constantly fed a mono-diet of Artemia salina nauplii (2 days post 

hatching), water was exchanged at least once a week (for more one the feeding behaviour of 

E. dichotoma, see (Hadrys, Schierwater et al. 1990). 

 

Experimental Design 

The isogenic medusa cohorts for the biodemographic monitoring study were built up from a 

single and separated polyp colony of the original clone Ω (minimum age > 6 months, 

minimum of 6 live polyps during primary medusa isolation). This stem parent colony was 

continuously well maintained in a separate glass dish and fed with a gush or Artemia three 

times a week. Three cohorts were generated with 60 medusae per each cohort, whereby half 

of each cohort were fed with 6 Artemia per week (= High feeding regime (HFR), fed Mo, 

Wed, Fr) and the other half with 2 Artemia per week (= Low feeding regime (LFR), fed Mo 

& Fr). Feeding rates were chosen according to a pilot experiment and experiences in previous 
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culturing and experiments (Hauenschild 1956; Schierwater 1989a; Raudonat 1995). The first 

medusa cohort , so called primary medusae, was constituted by the first medusae budded off 

by the parent polyp colony (PH = primary medusa at HFR, PL = primary medusa at LFR). 

The first medusa bud of each isolated primary medusa was kept to generate the second 

cohort, so called secondary medusae (SH = secondary medusa at HFR, SL = secondary 

medusa at LFR). To prevent any direct inter-generational transmission of signals, we made 

sure that only these medusae were taken for the secondary medusa cohort, which have not 

been already in development when the primary medusae were still attached to their parent 

polyps. The same procedure was applied to the third cohort, only that these tertiary medusae 

were now isolated from their respective parent secondary medusa individuals (TH = tertiary 

medusa at HFR, TL = tertiary medusa at LFR).  

Each isolated medusa was kept and traced individually in a well of a plastic six-well 

microwell plate with about 9 ml saltwater per well. Wells were checked for uneaten Artemia 

before feeding to compensate for uneaten food in the subsequent feeding round. At least 

twice per week medusae were checked for detached medusa buds, which were discarded, to 

record individual budding rates. The sexual state of a medusa as well as the number of 

released and free swimming planula larvae were recorded also at least twice per week during 

the experiment under a binocular. From each medusa of the primary cohort the first five 

released planulae were isolated into separate glass dishes. Feeding started here as soon as the 

first tentacles were visible after settlement and metamorphosis into a polyp. The same feeding 

schedule was applied to the primary polyps as to the respective parent primary medusa, 

whereby each additionally growing polyp on the developing colony got additionally always 

the same amount of Artemia as the first polyp. With the successful emergence of the first 

polyp with tentacles the remaining planulae and smaller polyps were discarded to maintain 

and monitor only one polyp (-colony) offspring per parent primary medusa individual for 
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practical and laboratory space reasons. 

This experimental design allowed us to analyse for the first time completely the demographic 

survival and both sexual and asexual reproductive patterns of the parent stem polyp colony, 

three successive medusa generations and one polyp offspring generation of the primary 

medusae at two different feeding levels, respectively.  

Medusa size was also monitored by photographing all living cohort medusa individuals four 

times during the experiment under the microscope. Two- and three dimensional surface areas 

were calculated (Schierwater 1989b) and used to compare medusa size and growth (see the 

follow-up chapter II for the anaylsis of size patterns). 

 

Analyses 

SPSS and R software were used for the statistical analysis of the obtained data. We tested for 

cohort and feeding level differences regarding survival and reproduction (vegetative and 

sexual output). We applied non-parametric Mann-Whitney U, Jonckheere-Terpstra and 

Kendall‟s tau b tests in compliance with the respective statistical requirements of the data. 

Furthermore, we used graphical data representation to assess demographic patterns where 

appropriate. We applied a smooth spline fit to mortality data via a Generalized Additive 

Model (GAM). 

For the survival curve analysis, graphical methods were used in order to assess the 

assumption of proportional hazards between the generations, namely: (1) the log of the 

cumulative hazard functions (using the – log transformation of the Kaplan-Meier estimates) 

against time were plotted and checked for parallelism and (2) the differences in the log 

cumulative hazard for each pair of functions against time were plotted and checked for 

constancy. Based on the obtained plots (not shown), the assumption of proportional hazards 

was dismissed both between the high feeding as among the low feeding groups. Accordingly, 
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we used the distribution-free Gehan-Breslow (generalized Wilcoxon) test (Gehan 1965; 

Breslow 1970) to test the null hypothesis that the survival functions of the three generations 

are the same in each feeding regime, versus the global alternative hypothesis that, at least, 

one of the survival functions is different. The trend version of the Gehan-Breslow test 

(Moeschberger and Klein 2003) was used to test the same null hypothesis against the ordered 

alternative hypothesis that SP(t) ≥ SS(t) ≥ ST(t), with SP(t), SS(t)and ST(t) being the survival 

functions of the primary, secondary and tertiary generations, respectively. As in all other tests 

in this study, a p-value of 0.05 or less was considered to be statistically significant. 

 

RESULTS 

 

In Eleutheria we see a difference of life history patterns between the polyp and medusa 

stages. While the stem polyp colony survived well throughout the whole experiment until 

today (minimum age > 3.5 years), the longest observed medusa lifespan was almost exactly 1 

year (359 days). The polyp colonies produce continuously new stolonal branches, polyps and 

medusa buds if fed and maintained under constant environmental conditions. Medusae start 

off with early medusa bud production, switch quickly to often simultaneous sexual self-

fertilization parallel to ongoing bud production until both reproductive modes cease and 

medusae stop feeding and finally die.   

We found a significant overall trend towards a qualitative decline in all measured traits with 

asexually progressing medusa generations.  
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Survival 

Medusa 

Cohort and feeding level comparisons 

Based on the survival information from table 1 and figure 1, it is considered that there are no 

substantial differences in the censoring pattern between the generations in both feeding 

regimes. We found significant differences in the survival functions of the three generations in 

the HFR, both when considering the global alternative hypothesis (𝜒2=9.67, d.f.=2, 

p=0.0079) and the ordered alternative (Z=3.074, p=0.00106, see fig. 1 and table 1). On the 

other hand, the results concerning the medusa generations in the LFR showed significant 

differences only when considering the global alternative, at which at least one of the survival 

functions is different (𝜒2=6.25, d.f.=2, p=0.044), but not when testing against the ordered 

alternative (Z=0.788, p=0.215, see fig. 1 and table 1). 

Comparing all LFR with HFR medusae, medusae in the LFR lived significantly longer than 

in HFR (Mann–Whitney U test, p<0.001, fig. 2). Separate cohort comparison reveals 

significantly longer survival for SL and TL medusae compared to SH and TH, respectively 

(Mann–Whitney U tests, p<0.001, fig. 3.), while P medusa cohorts were not different in 

survival. 

 

Mortality trajectories 

Most interesting regarding Eleutheria‟s aging pattern are the survival and mortality 

trajectories for medusae (figs. 1 & 4-7). We calculated and compared mortality (qx) on a 

monthly scale - in our opinion a reasonable interval choice regarding the death distributions 

(to reduce interval „gaps‟ with no death occurrences) and the medusas‟ lifespan of ≤ 1 year. 

Medusa mortality follows a striking hump-shape senescence pattern with falling mortality 

after an earlier mortality rise for all cohorts separated (fig. 4), HFR and LFR combined (fig. 
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5) and all cohorts combined together again (fig. 6). An exception are the tertiary medusa 

cohorts at both feeding levels, which displayed a steady monthly mortality increase (fig. 4). 

Additionally, the hump shape could be confirmed by a smooth spline fit, fitting a Generalized 

Additive Model (GAM) to the data (see fig 7, last death interval excluded for the shape fit). If 

the last interval, including the last three medusa deaths out of 162 individuals at the start of 

the experiment, is not excluded from the data, the smoothed GAM trajectory increases again 

at the end due to the nature of mortality calculation. In conclusion, the shape captured by the 

raw monthly mortality plus the GAM fit (while excluding the last interval) is a strong 

statement for falling mortality through most of a long-lived medusa‟s lifetime.  

Remarkably, freshly budded medusa offspring does not have any mortality risk in the first 

weeks of its lifetime in neither cohort (fig. 4). Generally, medusa lifespan is very 

heterogeneous between and within isogenic cohorts, with only less than 50% of a cohort 

surviving to half of the maximum observed lifespan of each cohort, respectively (figs. 1 & 7).   

 

Polyps. 

LpH – Larva isolated from medusa of the high feeding regime 

Most of the isolated larvae (88) did not develop into polyps and did not make it to an 

observed attachment to the ground including a metamorphosis into a primary polyp. 

Furthermore, most of the metamorphosed primary polyps (33) did not develop further to 

grow into a colony with stolon formation and died/starved to death within seven weeks after 

original larva isolation. Only four out of the 88 isolated larvae developed further into a 

colony, which was defined as a polyp(s) with stolon formation. None of the four primary 

polyp colonies is still alive today, though colony mortality was very low and flat, considering 

that only 4 colonies were present. Colonies contained always varying numbers of polyps, just 

like in the stem polyp colony, and deaths occurred after 38, 221, 579 and 977 days of 
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lifetime. Colony deaths were assigned to colonies, which had no living polyp and no polyp 

formation out of resting stolon fragments for at least one month. 

 

LpL – Larva isolated from medusa of the high feeding regime 

The pattern for LpL larvae was similar to the ones from LpH. Most of the isolated larvae (74) 

did not become polyps and did not metamorphose into primary polyps. In contrast to LpH, 

none of the metamorphosed primary polyps (18) developed further to grow into a colony with 

stolon formation. The last and “oldest” of the LpL polyps died after about seven weeks post-

larva isolation. 

 

Stem Parent Polyp Colony 

The parent polyp colony survived throughout the full experiment until today (minimum age > 

3.5 years). Still, the degree of stolon partition (5 - 26 disconnected stolon parts), alive polyp 

number of the colony (1 - 21), individual polyp lifetime at a stolon (not observed) and the 

biofilm environment varies considerably through time, confirming previous observations 

(Hauenschild 1956; Schierwater 1989a; Raudonat 1995).  

 

Reproduction 

Medusa Reproduction 

Asexual 

Cohort and feeding level comparisons 

Comparing medusa total bud release (TBR) and budding rates per day alive (BRR) between 

cohorts (figs. 8-9), significant trends towards a decline in both measurements with succeeding 

generations could be observed in the HFR (Jonckheere-Terpstra-Tests, p<0.001, Kendall's tau 

b = -0.446 & -0.312, p<0.001), in the LFR regime (Jonckheere-Terpstra-Tests, p<0.001, 
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Kendall's tau b = -0.535 & -0.499, p<0.001) as well as in both regimes analysed together 

(Jonckheere-Terpstra-Tests, p<0.001, Kendall's tau b = -0.358 & -0.236, p<0.001).  

 

Budding trajectories 

The overall pattern of the budding behavior of medusae again was a hump shaped trajectory 

(fig. 10). Young medusae begin very quickly to produce their first buds themselves, often 

already while still being attached to their parent polyp or medusa. Hence, first medusa bud 

detachment can happen very early in a medusa life, sometimes even in not yet detached 

medusa buds. Age specific budding rates peak around the second to fourth week (after 

detachment from parent) throughout cohorts and decrease from then on with possible minor 

peaks afterwards (fig. 10). TBR and BRR are, in accordance with food intake, much higher in 

HFR than in LFR (Mann–Whitney U tests, p<0.001, see figs. 8-11). Almost all medusa 

produced detached bud offspring, only in the SL and TL cohorts were medusae with no bud 

production at all (fig. 11).  

Budding behavior was very heterogeneous between and within isogenic cohorts, with 

minimum 0 and maximum 15 buds released in the LFR and minimum 3 and maximum 32 

buds released per medusa in the HFR (fig. 11). 

 

Sexual 

Cohort and feeding level comparisons 

Medusa total planula larva release (TLR) and larva release rates per day (LRR) compared 

between cohorts showed similar patterns as in medusa buds (figs. 12-13). Significant trends 

towards a decline in both measurements with succeeding generations could be observed only 

in the LFR (Jonckheere-Terpstra-Tests, p<0.05, Kendall's tau b = -0.202 & -0.207, p<0.05). 

In the HFR and both regimes analysed together a trend was only visible for TLR and not for 
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LRR (Jonckheere-Terpstra-Tests, p<0.05 & < 0.01, Kendall's tau b = -0.212 & -0.163, p<0.05 

& < 0.01). 

 

Larva Release trajectories 

The overall pattern of the larva release of medusae followed as well a hump shaped trajectory 

(fig. 14). Young medusa buds can rarely begin very early to produce their first embryos while 

still being attached to their parent medusa (at parent polyps it has not been observed but also 

not so frequently checked). Hence, first larva release can happen very early in a medusa life 

as well (e.g. while still being connected to parent) and even larva sharing between connected 

parent and offspring medusa has been observed. Age specific larva release rates peak around 

the fourth to sixth week throughout cohorts, which is later than the budding release rates, and 

decrease from then on with possible minor peaks afterwards (fig. 14). TLR and LRR are, in 

accordance with food intake, much higher in HFR than in LFR (Mann–Whitney U tests, 

p<0.001, see figs. 12-15). Almost all medusae produced embryos and released larva 

offspring, only few medusae stayed completely asexual without any observed embryo 

development at all (in the SL and TL cohorts were medusae with no larva production at all 

(one in SL, one in TH & five in TL). Not all medusa with observed embryogenesis released 

functional and live planula larvae as well.   

The sexual larva release behavior was very heterogeneous between and within isogenic 

cohorts, with minimum 0 and maximum 20 larvae released in LFR and minimum 0 and 

maximum 31 larvae released per medusa in HFR (fig. 15). 

The onset and offset of sexual reproduction differed between HFR and LFR with LFR 

medusae needing a longer time to produce “first seen larva in medusa” and “first released 

larva” and also a longer time (counted from medusa birth onwards) to go back to the 

(degenerative) vegetative state whereafter no sexual reproduction occurred (Mann–Whitney 
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U tests, p<0.001, see cumulative plots (fig. 15) regarding larva release patterns). The “days 

from last released larva until death” did not differ between HFR (median = 26 days) and LFR 

(median = 28 days) with observations exhibiting a broad scale ranging from -3 to 110 days. 

Although HFR seemed to show a slight trend towards longer total sexual reproductive phases, 

this trait was not compared directly because of the huge heterogeneity of medusas‟ sexual 

behavior. Many medusae had phases without larva releases and larva observations within 

medusae in between and hence could have switched completely to a vegetative state in 

between sexual phases as well (varying also in their possibly simultaneous bud production 

and larva release all the time), which would confound a direct comparison of this trait.  

 

Polyp Reproduction (only Asexual) 

From the four (all LpH) of totally 162 isolated embryos which developed further into a polyp 

with stolons, three made it to a multipolyp- and medusae-releasing colony stage, the other 

one died already after 38 days. The colony deaths occurred since then after 221, 579 and 

977days of living with average medusa bud release rates of 1.05, 2.06 and 2.17 per week.  

The longest living colony thus produced 303 medusa buds in about 140 weeks of lifetime at 

the HFR of 6 Artemia per week per polyp at the colony. 

 

DISCUSSION 

 

Demographic Trajectories – Eleutheria medusae are ‘hump shaped’ 

In all measured medusa traits an overall occurring pattern was the hump shape. The hump in 

mortality, expressed as age-specific mortality (qx) and/or death rate (mx), can be seen in all 

cohorts separated, HFR and LFR combined and all cohorts combined, except in the tertiary 

cohorts both in HFR and LFR. Regarding both sexual and vegetative age-specific fertility, 
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measured as mean weekly larva/bud release per medusa, a hump can be seen in every 

comparison (all cohorts separate, HFR and LFR combined and all combined). The hump 

shaped medusa traits can be distinguished into three phases, with the first phase showing 

absolutely no mortality and reproduction yet. The second phase is determined by increasing 

mortality risk and increasing budding- and larva release rates. Finally, in the third phase all 

traits start to decrease again on the population level after having reached a hump 

characteristic climax before. In all traits, the climax tends to be relatively early, at a young 

medusa age regarding maximum lifespan, in contrast to the observed humps in other species, 

e.g. in medflies (Carey, Liedo et al. 1992; Vaupel, Carey et al. 1998). Remarkably, the age-

specific fertility trajectories run though similar absolute values between sexual and asexual 

reproduction but in slightly shifted phases, with the budding trajectory preceding in its phase 

the larva release curves around one to three weeks.           

Several conclusions can be drawn from this observation, namely that the phase of vegetative, 

sexual and simultaneous reproduction including tissue bursts by larva releases constitute the 

most risky medusa life phase, whatever vegetative generation. The declining mortality risk 

phase is accompanied by lower larva and budding release rates (down to zero in both traits, or 

just shutting sexual reproduction), less food consumption and starvation. Two explanations 

for this pattern seem most probable to us, both not mutually exclusive: heterogeneity and 

medusa physiology. Heterogeneity between isogenic medusae could be an important driver 

for this phenomenon, potentially caused by epigenetic differences between medusa tissues 

and cell lines and distributed differently across the isogenic medusae in the cohort. Similar 

phenotypic variability observations due to random phenotype allocation to ramets regarding 

budding rate and starvation survival have been made by us with the freshwater polyp Hydra, 

for example (Chapter IV; Chapter V). Our second hypothesis is that the early risky life phase 

associated with the high mortality hump is an inherent physiological feature of all medusae. 
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High reproduction rates in both asexual and especially sexual reproduction seem to pose a 

high risk to the medusa survival. Not all larvae are released through the sexual channels 

without damage to the parent medusa (Hauenschild 1956, own observations), larva release 

can be associated with tissue bursts in the umbrella, sometimes larvae even hatch within the 

brood pouches of the medusa and may cause serious damage to the parent. As a result of this 

highly reproductive phase a high mortality hump phase is following, with deaths occurring 

randomly among otherwise isogenic and similar medusae. The relatively few long lived 

medusa survivors of the critical phase expressed rather low age-specific weekly budding and 

larva release rates later on after the peak, pointing to a generally different resource allocation 

in them emphasizing more investment in maintenance which is strengthened by the overall 

low BRR and LRR values of the long lived medusa (without that lifetime had an effect on 

TLR in contrast to TBR, which was generally positively correlated with lifetime (see chapter 

II)), or even to a post-peak trade-off shift in some to more maintenance and less reproduction 

relative to their total energy investment. Generally, longer lived medusae had also longer 

absolute sexual phases and some parent medusae actually merged and fused with their still 

attached buds, prolonging their „life‟ in this way. Most medusae displayed phases of 

simultaneous sexual and asexual reproduction and purely sexual or asexual individuals were 

extremely rare. This leaves the question if all these observations are due to heterogeneity 

from medusa birth on or linked to random survival and late life resource allocation patterns. 

Most likely, both heterogeneity and medusa physiology are interactively at work. 

Heterogeneity between isogenic medusae could as well be related to differences and 

variations among their proposed associated bacterial epicommunity (i.e. 

metaorganismic/holobiontic variations), which turns recently more and more into focus of 

research, especially in the freshwater polyp Hydra (Bosch and McFall-Ngai 2011; Bosch 

2012; Bosch 2012; McFall-Ngai, Hadfield et al. 2013). The trade-off features of our 
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experiment will be further elaborated in a separate follow-up article on Eleutheria trade-offs 

(Chapter II).   

The risky mortality hump of Eleutheria medusae might be abstractly compared to the 

“accident hump” we observe in human mortality at young ages around 15-30 years of age, 

whereby after this hump decline mortality keeps on rising exponentially with age according 

to the Gompertz curve with late deceleration after age 80 till reaching a mortality plateau at 

very high ages for supercentenarians (Heligman and Pollard 1980; Vaupel, Carey et al. 1998; 

Remund 2012). Additionally, no ontogenescence, i.e. ontogenetic decline of death rate 

between conception and maturity (Levitis 2011), is observed in the vegetatively produced 

medusa cohorts, which do not show any early ontogenetic death at all in the first month after 

being budded off. 

  

Polyp vs. Medusa Aging 

The finding that the stolonal polyp stage (colony) lives longer than the medusa stage in 

Eleutheria is not a complete new discovery of this study but it could be confirmed here with 

the most extensive demographic study on Eleutheria so far. Previous studies on Eleutheria 

touched this feature along the way as well (Hauenschild 1956; Schierwater 1989a; 

Schierwater and Hauenschild 1990; Schierwater and Hauenschild 1991; Raudonat 1995; 

Ender 1997; Schierwater and Hadrys 1998) but never studied aging patterns of both polyps 

and medusa on a demographic basis, except Raudonat 1995, where 15 medusae (5 parental 

and 2 x 5 horizontal offspring medusae) were observed over their complete lifespan (max. ca. 

22 weeks at 18°C and low feeding level) plus additionally the development and survival of 

10-15 planula larvae for four months. The sexual conception, brooding and spawning stages 

and the following settling and establishment stages of the embryos, planula larvae and 

metamorphosing primary polyps we observed in our experiment were all very risky phases at 



 

49 
 

 

which we found high mortality levels compared to low mortality levels of older and 

established stolonal colonies, speaking for sexual ontogenescence in Eleutheria. Once a 

primary polyp is established, producing its first stolonal protrusions and starting to grow new 

secondary polyps, mortality starts to decline sharply and seems to sink into a plateau shaped 

non-senescence, with sporadic colony deaths in between but without signs of an increased 

mortality due to age. Individual polyps on a colony may be absorbed and/or degenerate 

through time, but can reappear at the same position, somewhere else on the stolon or on a 

new stolonal protrusion. Additionally, colonies may break apart and split to continue life as 

several colony ramets. These patterns are in stark contrast to the complete absence of 

ontogenescence and early-life mortality in medusae. Considering the different developmental 

steps involved in the budding process compared with the bisexual self-fertilization including 

the following hatching, settlement and metamorphosis steps, it is not surprising to find this 

result. Sexual reproduction is the much riskier way of propagation for Eleutheria, but it opens 

up a different route of dispersal completing the full life cycle including a possible epigenetic 

reset for the clonal unit which might not be accomplished by pure asexual vegetative 

reproduction via budding. Surely, more detailed demographic ontogenescence data including 

embryo, larva and primary polyp mortality and following stolonal colony data need to be 

collected over longer time spans to confirm this finding and our rather low feeding rate for 

the primary polyps could be adjusted to higher levels to compare the outcomes.  

Considering the presumed seasonal occurrence of Eleutheria medusa, medusae were not 

found during winter periods in European temperate zones, i.e. along Atlantic and 

Mediterranean shores (Hincks 1868; Brinckmann-Voss 1970; Riedl 1983; Schierwater 

1989a) - not including occurrences in the aquarium or in the laboratory - but it is still not 

understood what causes their winterly absence and why only the polyps shall survive this 

period as a reservoir stage. Winterly medusa absence could be due to substrate (Ulva algae) 
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loss or declines at very cold water temperatures (<5°C, see (Schierwater and Hauenschild 

1990)) or due to somehow low food abundance (zooplankton), although evidence of this strict 

seasonal zooplankton pattern is still lacking and likely not true as discussed before (Calbet, 

Garrido et al. 2001; García-Comas, Stemmann et al. 2011). Low water temperatures in 

winter, with minimum surface sea water temperatures seldom short below 10°C in the 

Northwest Mediterranean, (Schierwater 1989a; Calbet, Garrido et al. 2001) are most likely 

not directly affecting Eleutheria medusa in a negative sense according to Schierwater 1989, 

who showed that medusae and polyps have a similar temperature tolerance regime (5°C lethal 

for polyps, 10-25°C tolerable for both polyps and medusa, 29°C also tolerable for polyps but 

30°C deadly for medusa). Generally, seasonal synchronization patterns of jellyfish 

appearances and abundances coupled with food availability and other environmental factors 

are very unclear and understudied for jellyfish in the field (Lucas 2001; Lucas, Graham et al. 

2012). Just like for most Cnidarians with a metagenetic life-cycle, a deep understanding of 

the ecology and especially the (natural) biodemography of all life stages is still lacking, as 

Mills pointed out in 2001 regarding jellyfish bloom occurrences „Knowledge about the 

ecology of both the medusa and the polyp phases of each life cycle is necessary if we are to 

understand the true causes of these increases and decreases, but in most cases where 

changes in medusa populations have been recognized, we know nothing about the field 

ecology of the polyps.‟ Lucas, Graham et al. 2012 carried this on and mentioned that this gap 

has started to be addressed over the past decade and summarized recent and related studies in 

their comprehensive review on „Jellyfish life histories: role of polyps in forming and 

maintaining scyphomedusa populations‟, but definitely more detailed observational field 

monitoring and laboratory studies are needed for the extremely diverse and complex 

Cnidarian taxa to gain a glimpse of the true ecological and demographic diversity across all 

relevant life stages of each species. 
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Our finding of the different demography patterns across the three life stages of Eleutheria 

(larva – stolonal polyp form – medusa) can be linked to the qualitative decline we observed 

with successive vertical vegetative medusa generations. This decline in medusa survival, 

asexual and sexual reproduction may be explained by an evolved endogenous natural 

seasonal rhythm/adaptation of the examined Eleutheria genet, determining that medusa are 

only „made for one season‟ (< one year) since in winter, likely unfavourable for medusae, 

only the polyp stage is needed as a reservoir and survivor anyway, thus it does not matter if 

asexual secondary medusa generations loose quality in their demographic traits. Assuming 

this purely seasonal occurrence of medusae, the selection pressure for high maintenance and 

reproduction levels should decline with time during a medusa season for successive medusa 

generations, pushing the earliest medusae of each season (especially the primary medusae 

released by the polyps) to highest fitness levels maximizing maintenance and reproduction. 

Mechanistically, this quality decline could possibly be shown by a reduced amount of stem 

cells within medusae of successive vegetative vertical (and possibly horizontal) generations 

or differential gene expressions between generations. To prove this theory, more genets from 

various geographical zones differing in climate need to be checked for the presence of this 

qualitative decline. Additionally, more laboratory studies and field observations and 

monitorings are needed during all seasons to understand the probable winterly medusa 

absence in the Mediterranean. 

Alternatively and not mutually exclusive, the qualitative decline could be evidence that the 

mode of bisexual self-fertilization via forming a zygote to restart the life cycle is an inherent 

and necessary feature for Eleutheria to survive, because by only reproducing themselves via 

medusa vegetative budding without the polyp stage the stem cell potential may be somehow 

lost through time resulting in a dead end scenario for pure medusa propagation. This 

proposed process still needs to be clarified, since previous results already showed successive 
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propagation of vegetative secondary medusae for more than 40 generations (Hauenschild 

1956; Hauenschild 1957). Hauenschild thus proposed a theoretical vegetative medusa 

reproduction ad infinitum. Strikingly, several of these medusa generation lines lost their 

sexuality through time which might hint to a loss or decline in stem cell potential, although 

further on a recovery of this lost sexuality was reported and discussed as well (Hauenschild 

1957). This loss of sexuality in many vertical survivor generations through repeated 

vegetative propagation could hint to a connection to an increased demand of sexuality on the 

stem cell potential of each medusa – contrasted to the stem cell potential of the stolonal polyp 

stage, which does not induce the gene expression cascade and cell differentiation for sexual 

reproduction. The polyp stage remains overall „simpler‟ compared to the more complex 

medusa stage, serving as a reservoir stage for the genet with a possible complete cell 

replacement and continuous turnover of all cells similar as reported for the freshwater 

hydrozoan polyp Hydra (Campbell 1967; Campbell 1974; Bosch 2007; Bosch 2009; Bosch, 

Anton-Erxleben et al. 2010; Galliot and Ghila 2010; Chapter III), enabling them complete 

regeneration and long-term maintenance and survival in contrast to the medusa. Complexity 

differences in various aspects between less complex planula and polyp stages to the more 

complex medusa stage have been described and confirmed for many Medusozoa in several 

previous studies (Piraino, Boero et al. 1996; Boero, Gravili et al. 1998; Piraino, De Vito et al. 

2004; Seipel and Schmid 2005; Boero, Schierwater et al. 2007). The induction of sexual 

reproduction might itself constitute a much higher demand on the medusa impeding complete 

long term cell maintenance and replacement, leading mechanistically to a lower threshold for 

a system failure and a higher probability of an earlier death of the individual medusa. 

However, the few purely asexual medusae we observed in our experiments (only in 

successive SL, TH and TL cohorts) did not live longer than the sexual ones, although this 

pure asexuality does not imply that no sexual potential or pathways had been present or 
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(unsuccessfully) induced. Eleutheria medusae show a remarkable plasticity regarding their 

activated or suppressed sexuality, which could most likely be a stochastic result of vegetative 

allocation and proliferation of competing interstitial cell (I-cell) lines of different 

(sexual/asexual) expressions within each medusa, as discussed already in Hauenschild 1956 

& 1957. Eleutheria does not seem to have a fixed “Keimbahn” and a strict germ/soma 

segregation (Hauenschild 1957). The complexity difference between the stolonal polyp life 

stage and the medusa might therefore promote the evolved life-stage biodemography we have 

observed in our experiment. The mode of bisexual self-fertilization could constitute a „reset‟ 

of the stem cell potential within the genet by forming new solitary zygotes of the clone, with 

an (nearly) identical genotype (Williams 1975; Schierwater and Hauenschild 1991; Ender 

1997), enabling the genet to assemble a new independent ramet line untouched by effects of 

possibly previously accumulated damages or stem cell losses within the medusa. Via this 

proposed mode, the genet would maintain its survival through time with varying, possibly 

even increased fitness over time (by increasing its ramet population with time), overcoming 

the separate dead end scenarios for each of the ramet lines which may by itself not 

necessarily be mechanistically or physiologically inevitable but which evolved as optimized 

adaptation to the specific seasonal and organismic features. Additionally, by sexual 

reproduction the genet always gets the bonus of distributing its presence on two (three 

including the short term planula) life stages with different characteristics and requirements, 

extending the stolonal polyp stage as a perennial backup stage with dispersing medusa as 

„bonus‟ units not totally necessary for the survival of the genet but offering the advantage to 

spread the presence of the genet.  

Still unclear is why it seems to be an advantage for Eleutheria not to cross fertilize and only 

shows signs of self-fertilization as studied and discussed by Schierwater and Hauenschild 

1991 and Ender 1997.  
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This molecularly confirmed finding concurs at least with the biological features of Eleutheria 

with its sessile mode of living of both medusa (semi-sessile) and polyp stages and a limited 

dispersal ability via the short-termed (several days according to own observations) planulae 

(Jackson 1986). Recently it has been shown that even with only mitotic recombination 

extensive chromosomal reshuffling can drive the evolution of virulence in a fungal, strictly 

asexual plant pathogen (de Jonge, Bolton et al. 2013), opening up ways of understanding how 

clonal lines, if meiotic/mitotic or both through several stages, can persist and react to 

selection forces over long evolutionary time scales. Indeed, the age of the collected clone 

lines of E. dichotoma has been estimated to be .2 – 2.4 Million years, according to 16S-

mtDNA analyses (Ender 1997). One haplotype-line, collected on Mallorca, was even 

estimated to be 5 – 10 Million years old. This renders clonal lines of E. dichotoma among the 

“oldest” organisms ever measured. 

Moreover, it has been found in plants that inbreeding and selfing is accompanied by major 

changes in the offspring‟s transcriptome by epigenetic modifications, i.e. gene 

silencing/activation by methylations and demethlyations of the genome, affecting inbreeding 

depression effects directly (Vergeer, Wagemaker et al. 2012; Cheptou and Donohue 2013). 

This opens up new ways of thinking about inbreeding depression, seeing it not anymore as an 

unavoidable evolutionary consequence and constraint for every (inbred/selfed) organism 

imposed by the accumulation of recessive homozygous deleterious mutations. The epigenetic 

pathway, influenceable by both environmental and genetic factors (Cheptou and Donohue 

2013), may have a much more concise role which even allows negative inbreeding effects to 

be altered and avoided epigenetically in clonal lines (genets) of e.g. Eleutheria over 

evolutionary long time scales. Additionally, inbreeding leading to more homozygous and less 

variable genets may have more chances to survive selection in less complex organism where 

a relatively low number of processes and interactions have to be maintained. Optimally 
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inbred genets may be achieved and sustained when all processes are maintained in an optimal 

state suited for the ecological niche the organism conquered – non beneficially mutated 

ramets of the genet get selected out, beneficially mutated ramets will spread and add more 

variability and plasticity to the dynamic clone - the same is true for clonal vegetative 

propagation. In more complex organisms more processes are prone to failure and thus they 

are more vulnerable to negative inbreeding effects. We hypothesize an organism dependent 

complexity threshold for inbreeding depression - a threshold from which inbreeding, leading 

to increased homozygosity, is not successful anymore due to an increased failure 

vulnerability with increasing organism complexity. Ultimately, with increasing organism 

complexity, sex via cross fertilization becomes necessary to recombine and refresh genomes 

to overcome inbreeding depression effects. 

There is still the possibility that the qualitative decline with successive medusa generations is 

just an experimental artifact and a matter of random heterogeneity between cohorts, since it 

could not be clearly confirmed in the LFR survival data, „only‟ three generations were tested, 

a huge heterogeneity within cohorts for all measured traits was observed and, of course, more 

individuals per cohort would give an even clearer picture – however, this is rather unlikely. 

The LFR treatment may have somehow masked and prevented the qualitative decline in 

survival – in contrast to reproduction - since this low food stress, i.e. caloric restriction, could 

have induced hormetic counter responses (Calabrese and Baldwin 2003; Stebbing 2003; 

Parsons 2005; Mangel 2008; Rattan 2008) in all LFR medusae, especially in successive 

generations. We observed similar hormetic responses to low food stress and bisection before 

in Hydra, for example (Chapter III; Chapter V). Indicators for this kind of hormetic reaction 

are, besides the absent decline in mean survival time with successive generation, the 

relatively long average survival of SL medusae compared to the other LFR and even HFR 

groups and that both SL and TL medusae have a higher average survival than their 
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counterparts SH and TH, respectively. Alternatively, or additionally, a trade-off could be seen 

here, with proportionally more resources allocated to maintenance than to reproduction in the 

LFR medusa compared to the HFR, especially in the two succeeding LFR generations. If both 

effects are at work simultaneously, happen to be coupled and the relative share of each to the 

found patterns in these cases remain unclear – to us, the hormesis effect seems to have a far 

larger impact considering the exceptional survival times of SL and TL, the low energy 

availability to produce offspring in the LFR anyway and the similar reproductive declines 

with succeeding generations in both feeding levels. However, we can conclude that the 

particular response to low food stress in E. dichotoma medusae is not a pure hormesis effect 

without any costs, but instead coupled to a reduction in offspring output and an eventual 

resource allocation trade-off between maintenance and reproduction. The parental exposure 

to the low food conditions additionally seems to play a crucial role for the hormesis/trade-off 

response since the primary medusa of the LFR did not show longer average survival 

compared to their counterparts in the HFR.      

 

CONCLUSIONS 

 

Aging patterns in E. dichotoma are multisided. We found the aging patterns between the 

polyp and medusa ramet life stages to be highly different, with indices for non- and negative 

senescence in polyp colonies, displaying a flat and low mortality, accompanied by a rather 

continuous, feeding dependent asexual reproduction output, producing polyps and medusae. 

In contrast, medusa ramets displayed a distinct hump shape regarding mortality and both 

vegetative and sexual reproduction output, suggesting a “hump shape senescence” pattern. 

Furthermore, a vast heterogeneity of both survival and reproduction seems to be extant within 

the isogenic ramet life stages, especially within the medusae.  
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Strikingly, we observed a trend towards a quality decline with successive medusa generation, 

which was more emphasized in the high feeding regime. We suggest that hormetic responses 

towards the low feeding stress, coupled to a maintenance-reproduction trade-off in favour of 

maintenance, may have masked the qualitative decline in successive medusa generations in 

the low feeding regime. The quality decline may be an indicator of adaptation to the reported 

seasonal occurrence of E. dichotoma in the Mediterranean. 

The aging pattern of E. dichotoma genets still remains unclear, also in light of missing cross-

fertilization in E. dichotoma. All indices we found point towards a negative senescent pattern 

at the E. dichotoma genet level (i.e. all polyp colonies of a genet combined with their medusa 

offspring and again their self-fertilized inbred offspring), i.e. the clone or haplotype level, 

similar to stony corals (Babcock 1991) and most likely many more basal metazoans and other 

organisms capable of asexual reproduction (see Jones et al. 2014 for more negative 

senescence examples). The extremely old age estimates of E. dichotoma haplotypes, ranging 

from .2 to 10 Million years of age (Ender 1997), render E. dichotoma among the “oldest” 

organisms ever measured and strengthen our assumptions. 

The case of E. dichotoma displays beautifully the wide range and diversity of aging patterns 

not only between, but also within species. More demographic field and laboratory studies of 

basal metazoans with various ramet life stages are needed to verify our conclusions. A further 

very promising target of research will be to find the (epi-) genetic pathways controlling the 

diverse aging patterns. 
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FIGURES AND TABLES 

 

 

 

 

 

 
Feeding 

Generation 
Censored Median survival 

 

regime n (%) (days) 
 

 
 

    
 

 Primary (n=30) 2 (6,7%) 82 
 

High Secondary (n=30) 4 (13,3%) 73 
 

 Tertiary (n=30) 0 (0,0%) 66 
 

 Primary (n=30) 3 (10,0%) 93 
 

Low Secondary (n=28) 2 (7,14%) 125 
 

 Tertiary (n=26) 2 (7,7%) 91 
 

     

 
 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

 

Table 1. Censored observations and median survival time for each generation, by feeding regime 

Figure 1. Kaplan-Meier estimates of the survival functions for each generation (P=Primary; S=Secondary; 

T=Tertiary), high feeding regime (left) and low feeding regime (right). 
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Figure 3. Mean medusa survival. All cohorts separated. P, S and T stand for Primary, Secondary and Tertiary 

medusa cohort, H and L represent High and Low feeding regime. Error bars are standard errors.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. Median medusa survival. High- versus low feeding, * indicates a significant difference (Mann–

Whitney U test, p<0.001). Error bars represent standard errors.  
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Figure 4. Raw monthly medusa mortality (qx). All cohorts separated. P, S and T stand for Primary, 

Secondary and Tertiary medusa cohort,  H and L represent High and Low feeding.  
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Figure 5. Raw monthly medusa mortality (qx). High- and low feeding regimes separated.  
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Figure 6. Raw monthly medusa mortality (qx). All cohorts combined.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7. Smoothed monthly medusa mortality (qx) using a Generalized Additive Model (GAM). All 

cohorts combined. The last month interval with the last three medusa deaths is excluded for the shape fit. 
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Figure 8. Mean Total Bud Release per medusa (TBR). P, S and T stand for Primary, Secondary and Tertiary 

medusa cohort, H and L represent High and Low feeding regime Error bars are standard deviations. 

 

Figure 9. Mean Bud Release Rate per medusa per day (BRR). P, S and T stand for Primary, Secondary and 

Tertiary medusa cohort, H and L represent High and Low feeding regime Error bars are standard errors. 
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Figure 10. Smoothed monthly medusa mortality (qx) using a Generalized Additive Model (GAM). All 

cohorts combined. The last month interval with the last three medusa deaths is excluded for the shape fit. 

 

Figure 10. Age-specific asexual fertility. Mean weekly bud release per medusa (upper graphs) and parallel medusa survival (lower graphs). 

Left (red) graphs represent all HFR cohorts combined, right (green) graphs represent all LFR cohorts combined. Error bars are standard errors. 
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Figure 11. Cumulative bud release. Upper graph represents all HFR cohorts combined, lower graph represents 

all LFR cohorts combined.  
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Figure 12. Mean Total Larva Release per medusa (TLR). P, S and T stand for Primary, Secondary and 

Tertiary medusa cohort, H and L represent High and Low feeding regime Error bars are standard deviations. 

Figure 13. Mean Larva Release Rate per medusa per day (LRR). P, S and T stand for Primary, Secondary and 

Tertiary medusa cohort, H and L represent High and Low feeding regime Error bars are standard errors. 
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Figure 14. Age-specific sexual fertility. Mean weekly larva release per medusa (upper graphs) and parallel medusa survival (lower graphs). Left 

(red) graphs represent all HFR cohorts combined, right (green) graphs represent all LFR cohorts combined. Error bars are standard errors. 
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Figure 15. Cumulative larva release. Upper graph represents all HFR cohorts combined, lower graph 

represents all LFR cohorts combined.  
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ABSTRACT 

 

Basal metazoans show large variations in life-cycle patterns, offering great opportunities to 

study the evolution of aging from a biodemographic point of view. Laboratory 

experiments were conducted with Eleutheria dichotoma (Cnidaria: Hydrozoa: 

Cladonematidae), a metagenetic hydrozoan with a crawling medusa, to test the resource 

allocation flexibility of a remarkably plastic and variable marine organism. For the first time 

ever in a longitudinal experiment, the survival, size and reproduction of isogenic Eleutheria 

were measured at different feeding regimes under constant conditions for both polyp and 

medusa stages. E. dichotoma medusae have the ability to reproduce both via asexual budding 

and bisexual self-fertilization. The polyps stay asexual, growing as stolonal polyp colonies 

with the ability to form medusae as buds. Our results suggest a huge phenotypic diversity 

within the studied clonal line (Omega). Huge heterogeneity could be observed in the survival 

and in the vegetative medusa bud production as well as in the bisexual self-fertilization and 

the resulting released planula larvae of isogenic medusae within the cohorts. We propose that 

the nutritional level affects the resource allocation trade-off in E. dichotoma, acting like a 

lifetime pacesetter for a medusa - the more food is available, the faster and compressed it 

lives. More specifically, the feeding level seems to influence the fine tuning of the adjusting 

screw of the trade-off between reproduction and maintenance. The missing heritability of the 

measured traits and the huge variability within all traits between medusa individuals and 

cohorts suggest a random phenotype generating process in E. dichotoma. However, another 

trade-off was observable between successive medusa generations, expressed by a quality 

decline with consecutive generations. This trade-off might have evolved in the light of the 

seasonal appearance of E. dichotoma medusae, whereby the force of selection pushed 

emphasis on the primary medusae. Our findings strikingly show and confirm that senescence 

is not inevitable. Instead, aging patterns can vary greatly between genet and ramet level and 

ramet life stages as well. Our results support the idea that the evolution of different aging 

paths and various life history strategies substantially depend on the type of the underlying 

trade-offs between survival and reproduction.  

 

 

 



80 
 

INTRODUCTION 

 

Demographic aging patterns of basal organisms capable of both sexual and asexual 

reproduction are still poorly known and understood until today. Understanding aging from a 

demographic perspective still remains a major challenge in evolutionary biology. A vast 

variety of different aging patterns seems to be extant and spread across the tree of life 

(Baudisch 2008; Baudisch 2011; Jones, Scheuerlein et al. 2014; Chapter I). Species with 

senescent patterns, i.e. increasing mortality&/decreasing fertility with age, non-senescent 

patterns, i.e. non-increasing mortality&/fertility with age and even negative senescent 

patterns, i.e. declining mortality/increasing fertility with age, have just been started to be 

described and gathered in various databases (Martinez 1998; Martinez 2002; Vaupel, 

Baudisch et al. 2004; Jones, Scheuerlein et al. 2014; Chapter I). This immense variation in 

aging should depart one from the generally negative connotation with the term aging, and 

more precise terms such as non-/negative senescence should be used instead. In this paper we 

follow up on chapter I, in which mortality and fertility patterns of the metagenetic hydrozoan 

Eleutheria dichotoma have been in focus, discussing here the plasticity of the described aging 

patterns in E. dichotoma and the demographic trade-offs we observed during the first 

extensive biodemographic study on this basal metazoan. 

S. C. Stearns stated very profoundly, that “Trade-offs represent the costs paid in the currency 

of fitness when a beneficial change in one trait is linked to a detrimental change in another” 

(Stearns 1989). And Kirkwood and Rose claimed that, according to the disposable soma 

theory, which assumes a trade-off of resource allocation between maintenance and 

reproduction, the evolutionary optimum would lead directly to senescence (Kirkwood 1977; 

Kirkwood and Holliday 1979; Kirkwood and Rose 1991). But considering the vast amount of 

positive and negative aging patterns being discovered now, also within species between 
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different life stages, this general claim needs to be revised. More precisely, the evolution of 

different aging paths and various life history strategies substantially depend on the type of the 

underlying trade-offs between survival and reproduction (Baudisch 2009). These trade-offs 

need to be studied to fully comprehend ageing. 

E. dichotoma is an ideal organism to study the demographic trade-offs affecting aging. E. 

dichotoma develops from a live released, free-swimming planula larva into a polyp colony, 

which can propagate asexually by growing more polyps formed in a stolonal network and 

additionally medusae buds at the polyps bases. The medusa can propagate both vegetatively 

and sexually by budding secondary medusae and self-fertilize itself to brood and release 

planula larvae (Hauenschild 1956; Hauenschild 1957; Schierwater 1989a; Schierwater and 

Hauenschild 1990). Both sexual and vegetative offspring of a clone can hence be allocated to 

that same clone since no indications of any cross-fertilization has been found in E. dichotoma 

to date (Schierwater and Hauenschild 1991; Ender 1997). Interestingly, both of the exemplary 

Cnidarian life cycle stages seem to show different aging patterns, as shown in chapter I – 

polyp colonies show signs of non- or even negative senescence when including the high 

recruitment mortality, whereas medusae showed an explicit hump shaped mortality pattern, 

with the highest death risks occurring usually after initial sexual and asexual reproduction 

bursts. In this paper we want to further discuss our findings on the fine tuning of E. 

dichotoma’s aging patterns, how the different traits we measured affected each other in 

respect of the different feeding levels we chose and the successive medusa cohorts we 

investigated. How heterogeneous and how heritable are reproductive patterns, size and 

lifespan? Here, we pursue these questions with measurements of the survival, size, and 

reproduction measured at different feeding regimes for both polyp and medusa stages kept 

under controlled laboratory conditions to gain more insights into the plasticity of the trade-off 

system of E. dichotoma.    
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MATERIAL AND METHODS 

 

Study Organism 

The Hydrozoan Eleutheria dichotoma Quatrefages, 1842 (Hydrozoa, Athecata, 

Cladonematidae) is a metagenetic, nowadays cosmopolitan marine Cnidarian inhabiting the 

littoral zone (Hauenschild 1956; Fraser, Capa et al. 2006). A brief description about the 

biology and ecology of E. dichotoma can be found in chapter I at this point. 

 

Culturing conditions 

We used individuals of a single clone (Ω) of E. dichotoma, derived from the laboratory of  

the ITZ Ecology and Evolution, Tieraerztliche Hochschule Hannover, Germany (ITZ). The 

original medusa specimen for this clonal line was collected in 1984-1986 from the 

Mediterranean shores of Banyuls-sur-Mer, France (Schierwater 1989a; Ender 1997). 

Culturing conditions were modified after Hauenschild (1956) and Schierwater (1989). Both 

polyp and medusa stages were cultured in the laboratory in artificial seawater of 35 ‰ (“Reef 

Crystals“ by Aquarium Systems mixed with Milli Q filtered water) in either glass dishes of 

about 50-100 ml or plastic six-well microwell plates with about 9 ml saltwater per well. 

Further culturing details are described in chapter I.  

 

 

Experimental Design 

The isogenic medusa cohorts for the biodemographic monitoring study were built up from a 

single and separated polyp colony of the original clone Ω (minimum age > 6 months, 

minimum of 6 live polyps during primary medusa isolation). This stem parent colony was 

continuously well maintained in a separate glass dish and fed with a gush or Artemia three 
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times a week. Three cohorts were generated with 60 medusae per each cohort, whereby half 

of each cohort were fed with 6 Artemia per week (= High feeding regime (HFR), fed Mo, 

Wed, Fr) and the other half with 2 Artemia per week (= Low feeding regime (LFR), fed Mo 

& Fr). Feeding rates were chosen according to a pilot experiment and experiences in previous 

culturing and experiments (Hauenschild 1956; Schierwater 1989a; Raudonat 1995). The first 

medusa cohort , so called primary medusae, was constituted by the first medusae budded by 

the parent polyp colony (PH = primary medusa at HFR, PL = primary medusa at LFR). The 

first medusa bud of each isolated primary medusa was kept again to generate the second 

cohort, so called secondary medusae (SH = secondary medusa at HFR, SL = secondary 

medusa at LFR). To prevent any direct inter-generational transmission of signals, we made 

sure that only these medusae were taken for the secondary medusa cohort, which have not 

been already in development when the primary medusae were still attached to their parent 

polyps. The same procedure has been applied to the third cohort, only that these tertiary 

medusae were now isolated from their respective parent secondary medusa individuals (TH = 

tertiary medusa at HFR, TL = tertiary medusa at LFR). Further details on the experimental 

design are described in chapter I. 

 

Our experimental design allowed us to analyse for the first time the complete demographic 

survival and both sexual and asexual reproductive patterns of the parent stem polyp colony, 

three successive medusa generations and one polyp offspring generation of the primary 

medusae at two different feeding levels, respectively.  

Medusa size was additionally monitored and controlled for by taking successive comparable 

pictures of all living cohort medusa individuals four times during the experiment under the 

microscope. Two- and three dimensional surface areas were calculated (Schierwater 1989b) 

and used to compare medusa size and growth. 
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Analyses 

SPSS software were used for the statistical analysis of the obtained data. We tested for cohort 

and feeding level differences regarding size (Mann-Whitney U tests) and checked for 

heritability of survival, asexual- and sexual reproduction (linear regressions). Trade-offs were 

investigated via linear regressions between measured traits and several quotients: budding 

rate per day (BRR)/survival, larva release rate per day (LRR)/survival, BRR/size and 

LRR/size. The quotients were applied as a kind of trade-off measure between maintenance 

(survival), growth (size) and reproduction (BRR and LRR). In the example of BRR/survival, 

a low value close to zero implies no asexual reproduction at all (all resources are indicated to 

be focused on individual maintenance), and an increased value implies a higher asexual 

reproduction-resource allocation contrasted with survival. The quotients regarding size are 

just rough measures, because we took size, in this case, as average individual total surface 

area constituted by maximum four successive photo-size measurements taken within 3 

months (see above in experimental design). All tests were performed in compliance with the 

respective statistical requirements of the data. Furthermore, we used graphical data 

representation to assess demographic patterns, where appropriate.  

 

RESULTS 

 

The demographic experiment with E. dichotoma suggests a huge phenotypic diversity within 

and between cohorts and life stages within the studied clonal line (Omega). Large variances 

can be observed in the survival and in the vegetative medusa bud production as well as in the 

bisexual self-fertilization and the resulting released planula larvae of isogenic medusae within 

the cohorts (see also chapter I).  
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Medusa Size 

Cohort and feeding level comparisons 

Medusae of the HFR were significantly larger than in LFR when comparing all cohorts 

together or each cohort separately, either in two dimensional or three dimensional total 

surface area extrapolations (Mann–Whitney U tests, p<0.001, fig. 1). Analysing and 

comparing size trajectories and trends throughout cohorts was left out because of only four 

conducted size measurements within three months of the experiments resulting in a resolution 

too coarse to capture accurate size trajectories with age and the possible changes and 

differences between cohorts through time, considering as well the strong influence of the 

varying reproductive states on size. Still, with the coarse data, general trends go towards 

smaller sizes in successive generations (at least in LFR and both feeding regimes together) 

and hump shaped size trajectories when plotted against relative individual medusa lifetime (in 

basically all groups). 

 

Heritability of traits 

Medusa Survival 

No clear heritability patterns regarding survival could be found between generations in either 

HFR and LFR. Offspring lifespan is independent of parent lifespan in both feeding regimes 

comparing primary parent and secondary offspring medusae and secondary parent and 

tertiary offspring medusae (linear regressions, p>0.05). Also when comparing all primary 

parents with secondary offspring medusae (feeding regimes merged) and all secondary 

parents with tertiary offspring medusae no significant correlation could be found, although 

significant survival differences existed between HFR and LFR (cohorts combined) with 

longer survival times in LFR (Mann–Whitney U test, p<0.001, chapter I). Only a slight 

correlation could be found when comparing PH with TH (linear regression, p<0.05, y = 
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0.2107x + 50.135, R² = 0.468), indicating a low heritability of .21 as the slope of the 

regression, illustrating the much narrower distribution of lifespans in TH. Still, the coefficient 

of determination (r
2
) is rather low due to the heterogeneity of lifespans. PL and all primary 

parents lifespans were not correlated with those of TL or all tertiary medusae, respectively. 

 

Budding 

No clear budding heritability patterns could be found between generations in either HFR and 

LFR. Linear regressions for total bud release (TBR) were not significant in HFR comparing 

PH with SH and SH with TH, in LFR comparing PL with SL and PL with TL. In contrast, PH 

and SL parent TBR was significantly correlated with TH and TL offspring TBR, respectively 

(linear regressions, p<0.05, y = 0.1774x + 4.6624, R² = 0.1781; p < 0.01, y = 0.6356x - 

0.3241 R² = 0.2805). Merging feeding regimes and comparing generations, all three 

comparisons yielded significantly positive but weak regressions (P vs. S p<0.05, R² = 0.106; 

S vs. T p<0.01, R² = 0.158; P vs. T p<0.001 R² = 0.368;), which is mostly attributed to the 

significant TBR difference between HFR and LFR with HFR having generally a much higher 

TBR (Mann–Whitney U test, p<0.001, see chapter I). Maximum R² values were not higher 

than .368 in all significant correlations indicating the high variation of TBR in each of the 

cohorts and low linear relationship even between significantly correlated groups. The 

maximum slope, i.e. heritability was here between SL and TL with .6356, indicating the 

general decline of TBR in successive medusa generations. 

Looking at BRR, none of the separate cohort comparisons showed significant heritability 

correlations. Merged feeding regimes resulted in highly significant (p<0.001) correlations 

throughout all three comparisons again, but as in TBR this is mainly attributable to the 

generally higher BRR in HFR compared to LFR (Mann–Whitney U test, p < 0.001, see 

chapter I). R² values were never higher than .504 in all significant correlations; the maximum 
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slope was between S and T with .683, indicating also the general decline of BRR in 

successive medusa generations. 

   

Larva Release 

Larva release was not a heritable trait. All comparisons between parent and offspring TLR 

and LRR in either HFR or LFR showed no significant correlations, except for comparing PL 

with TL TLR, which was significant (linear regression, p<0.05, y = 0.4243x + 1.2633 

R² = 0.1863). Still, the R² value was very low again indicating the weak linear relationship 

(i.e. heritability) between the compared cohorts. Merging feeding regimes and comparing 

generations, two comparisons yielded significant correlations for TLR and LRR (S vs. T, P 

vs. T; P vs. S non-significant), but this is mostly attributed to the significant TLR and LRR 

difference between HFR and LFR with HFR having generally a much higher TLR and LRR 

(Mann–Whitney U tests, p<0.001, see chapter I). Additionally, R² values were never higher 

than .232 in all significant correlations indicating the high variation of TLR in each of the 

cohorts and low linear relationship even between significantly correlated groups. The 

maximum slope, i.e. heritability was here between PL and TL TLR with .4243, indicating the 

general decline of LRR and TLR in successive medusa generations. 

 

Trade-offs 

Survival vs. Size vs. Feeding Level 

No correlation could be found between survival and individual average size over all four size 

measurement times (linear regressions - all cohorts combined and HFR and LFR separate, 

size both in 2D and 3D total surface area extrapolations, see fig. 2). However, medusae in the 

HFR were generally larger but lived shorter than in LFR when compared separately (see size 

results section, fig. 1 and chapter I regarding survival).  
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Survival vs. Reproduction 

Survival vs. Sex 

Sexual reproduction is not directly coupled with survival. Neither total larva output nor larva 

release rate were clearly correlated with survival (tested in all optional groups, r
2
 always 

below 0.3). Still, the few long lived individuals had mostly rather low or medium LRR values 

in respect of their feeding level, without that TLR showed such a trend. 

The onset of sexual reproduction, either measured as “days from birth to first seen embryo in 

medusa” or “days from birth to first released larva of medusa” was only well positively 

correlated, with survival in TL (linear regressions, p<0.001, y = 1,4811x + 46,878, R² = 

0,6027 & y = 0.865x + 56.319, R² = 0.769, see figs. 3-4). All other cohorts were much more 

heterogeneous and without a clear linear trend when comparing these traits, with R² values 

ranging from 0.02 (PL) to 0.31 (PL). Still, the longest lived individuals tended to have a 

medium to late onset of sexual reproduction in respect of their feeding level (see cumulative 

larva release, chapter I). Lifespan correlated positively with “days from birth to last released 

larva” throughout all cohorts with R² values ranging from 0.73 to 0.94 (linear regressions, 

p<0.001). The “days lived after last released larva till death of medusa” showed only a 

correlation with total individual lifespan in both primary medusa cohorts (linear regressions, 

p<0.001, R² from 0.61 to 0.69), whereas in all others these two traits remained uncorrelated 

(R² 0.03 to 0.21). 

 

Survival vs. Asex 

Longer survival increased the total bud output, as TBR was significantly positively correlated 

with survival in all cases exhibiting mostly convincing linear trends with variable data 

spreads (linear regressions, p<0.05, 0.2 (ALL LFR) as lowest and 0.68 (PH) as highest r
2
, see 

fig. 5). BRR showed a different picture without any good correlation with survival (highest r
2 
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= 0.23 (PH)). The long lived individuals tended again to have BRR values at the lower end of 

the scale in respect to their feeding level, just as with LRR. 

 

BRR/Survival Quotient – a trade-off measure 

BRR/S is much higher in HFR than in LFR in accordance with food intake and TBR and 

BRR (Mann–Whitney U tests, p<0.001). Despite a strong spread, survival tended to be 

weakly negatively correlated with BRR/S in all comparisons (linear regressions, p<0.05, all 

cohorts separate, HFR and LFR separate and all combined, with r
2 

from 0.19 to 0.57). 

Distinctively, all longer lived individuals tended to have very low quotients. 

 

LRR/Survival Quotient – a trade-off measure 

LRR/S is much higher in HFR than in LFR in accordance with food intake and TLR and LRR 

(Mann–Whitney U tests, p<0.001). Similar as in BRR/S, survival tended to be weakly 

negatively correlated with LRR/S in all comparisons, despite an even stronger spread (linear 

regressions p<0.05, all cohorts separate, HFR and LFR separate and all combined, with r
2 

from 0.11 to 0.31). Again, all longer lived individuals tended to have very low quotients. 

 

Sex vs. Asex 

No directional trend of a trade-off was observable between sexual and asexual reproduction 

when comparing either total budding with larva output or budding- with larva release rate 

(linear regressions for all cohorts separate or together or HFR vs. LFR, with r
2 

from = 0.0002 

to 0.22. 

 

BRR/Survival vs. LRR/Survival Quotients  

Both quotients were quite independent of each other and showed no correlation in any 
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comparison (linear regressions for all cohorts separate, HFR and LFR separate and all 

combined, with r
2 

from 0.0001 to 0.27). 

 

Size vs. Reproduction 

Size vs. Sex 

Size was not correlated with sexual reproduction in neither comparison (linear regressions - 

TLR, LRR & LRR/S for all cohorts combined and HFR and LFR separate in 2D and 3D total 

surface area extrapolations, r
2 

from 5E-05 to 0.14). 

 

Size vs. Asex 

Size was also uncorrelated with asexual reproduction in all comparisons (linear regressions - 

TBR, BRR & BRR/S for all cohorts combined and HFR and LFR separate in 2D and 3D total 

surface area extrapolations, r
2 

from 0.0035 to 0.21). 

 

BRR/ Size and LRR/Size Quotients – further trade-off measures 

BRR/Size and LRR/Size quotients are much higher in HFR than in LFR in accordance with 

food intake and TBR, TLR & BRR and LRR (Mann–Whitney U tests, p<0.001). Despite a 

strong spread, size tended to be weakly negatively correlated with BRR/S in all comparisons 

(linear regressions p<0.05, all cohorts separate, HFR and LFR separate and all combined, 

with r
2 

from 0.11 to 0.51). Distinctively, all larger individuals tended to have very low 

BRR/Size quotients. LRR/Size quotients revealed a different picture without a clear trend 

towards a correlation (linear regressions, r
2 

from 0.01 to 0.32).  

Survival was also independent of both trade-off measures in all comparisons (linear 

regressions, r
2 

from 0.01 to 0.23). Strikingly, the longest lived individuals tended again to 

have quotients at the lower end of the scale.  
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BRR/ Size vs. LRR/Size Quotients 

We found mixed results for these correlations. PH, SH, All HFR and all cohorts combined 

showed a trend towards positive correlations (linear regressions p<0.05, with r
2 

from 0.22 

(PH) to 0.83 (SH)). In all other cohorts and ALL LFR no correlation trend could be found (r
2 

from 0.0004 to 0.08). 

 

DISCUSSION 

 

Trade-Offs 

Not surprisingly, food levels had a significant impact on the growth and size of medusae. 

However, size is very plastic and flexible for E. dichotoma medusae. By trend, a freshly 

detached medusa bud starts off growing in size, producing buds vegetatively and larvae 

sexually to finally stop eating and shrinking again down to a completely disintegrating tissue 

clump. Sometimes, this decomposition process seems to happen rather fast, in an „explosive 

manner‟, when intact, but tiny medusae, with already reduced tentacles, dissociate from one 

day to the next into many tiny tissue fragments. In addition to the impact of nutrition level on 

the size of a medusa found here, especially aging and reproductive state influence medusa 

size as well (own observations and Schierwater 1989b; Hadrys, Schierwater et al. 1990) - two 

traits which vary a lot within and between cohorts in our experiment.  

Although we found no correlation between survival and individual average size of all four 

size measurement times, medusae in the HFR were generally larger but lived shorter than in 

LFR. The difference between HFR and LFR in size was consistent for cohorts compared 

separately or for all medusae of the respective feeding regime combined, but non consistent 

for survival because of one exception, the absence of a difference in primary medusa between 

HFR and LFR (see chapter I). The feeding regime shows hereby overall to have a significant 
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influence on the survival and size of medusae, but size itself is too variable within and 

between treatments, at least in the way the averaged size was measured here, to be a good 

predictor of the survival time of a medusa, or vice versa. Concordantly, reproductive output, 

either sexual or asexual, was not correlated with average medusa size. However, these are 

very rough comparisons and one needs to be aware of the heterogeneity within the feeding 

regimes and cohorts, especially as seen in the survival trend analysis (chapter I). Finer 

temporal resolution of size measurements will be needed to offer deeper insights into the age 

and cohort effects on size. 

Surprisingly, in contrast to hypothesized, survival turned out not to be directly linked to 

sexual reproduction. Long-lived medusae tended to have low LRR (but not TLR) values and 

a medium to late onset of larva release (yet following longer sexual phases), but sexual onset 

and output of the majority of the medusae was rather heterogeneous and no reliable predictor 

of the survival time. After initial budding and larva release phases, medusae were either 

stopping both or showing long-term simultaneous reproduction, some switched back to pure 

vegetative reproduction before dying while others could have more (eventually simultaneous 

to bud production) larva release bursts or periods again as well. However, the long-lived 

individuals could be regarded as reproducing sexually at a generally rather slow pace in 

respect of their released larvae per lifetime, which might explain at least partially their 

longevity. Sexual maturity has been shown to state the onset of senescence in many cases for 

various species across the tree of live, since selection pressure usually declines with age after 

first reproduction (Hamilton 1966; Cui, Chen et al. 2000; Baudisch and Vaupel 2012). 

Additionally, sexual reproduction uses resources otherwise potentially allocated for somatic 

maintenance and adds more complexity to an organism comparing it to a „less spectacular‟ 

vegetative mode of reproduction as present in E. dichotoma. The negligible influence of 

sexual reproduction on medusa survival is remarkable in the light of a declining selection 
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pressure with age, which should be present for E. dichotoma on the ramet level as well, in 

contrast to the genet level. The potential for vegetative reproduction plus the bisexual self-

fertilization mode of E. dichotoma should both neutralize the decline of selection pressure 

with age for a clone. The population of ramets can grow with genet age by either vegetative 

polyp- or medusa reproduction and/or by inbreeding sexually, providing that a certain level of 

ramet sustenance is met. These characteristics lead to the potential of a greater fitness at older 

ages for a genet resulting in an increasing selection pressure with age for the genet, a 

selection directed towards maximizing genet lifespan leading to a pattern of non- or even 

negative senescence for the genet. However, the selection pressure on the ramet level is 

declining with age after first reproduction. Ramets could be exchanged and need not 

necessarily be sustained for a long time, at least not all, but the selection pressure on the 

genet would push towards larger and/or sustainable ramet populations, met either by „fast 

pace‟ ramets (fast reproduction and death), or „slow pace‟ ramets (slow reproduction and 

death), depending on the respective environmental conditions and hazards. 

Considering this and the observed phenotypic variability between isogenic medusa ramets, 

stochastic phenotype allocation leading to vitality differences between medusae and random 

survival through physiologically demanding phases like the larva breeding and -release are 

presumably more dominant influences for lifespan outcome than individual sexual output 

itself. The mortality rise and peak at the hump-shaped mortality we observed throughout 

medusa cohorts in chapter I indicates the declining selection pressure for medusa ramets 

following their first vegetative and sexual offspring outputs. The following mortality decline 

might be explained by the stochastic phenotype variability, whereby the most robust 

individuals persist much longer than average and drag population mortality with age down 

again. The hump-shaped trajectories observed for vegetative and sexual reproduction 

(Chapter I) speak additionally for the declining selection pressure with age for medusa 
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ramets. Concluding, the crucial points about the negligible influence of sexual reproduction 

on medusa survival may not be the absence of a trade-off on the ramet-level between sexual 

output and survival, but the phenotypic heterogeneity of medusae, with medusae mixed along 

the „fast‟ and „slow‟ paced continuum, which obscure a clear trade-off between (sexual) 

output and survival. Both the low LRR and BRR levels of the long-lived individuals support 

this “vitality heterogeneity hypothesis”.  

The observation of positive correlations between medusa lifespan and TBR shows that 

vegetative reproduction is not averting but fostering medusa longevity, although BRR values 

tended again to be at the mid to lower end of the scale. Cell growth and division, which are 

coupled to vegetative budding, can also facilitate somatic maintenance, offering an easy „by-

the-way‟ mode to an individual medusa to sustain itself while allocating resources to 

„growth‟ and supporting hereby its vegetative proliferation plus individual maintenance. The 

same should apply to the supposedly non-senescent perennial polyp colony (Chapter I), 

where cell proliferation can lead to colony growth by adding more polyps or stolonal tissue to 

the colony, to medusa production or to pure maintenance by replacing degenerated polyps, 

cells and tissues. Mechanistically, all these processes are very closely related, that no real 

trade-off between reproduction and maintenance or growth must exist. Similar observations 

have been made with isogenic Hydra polyps, which show no senescence on the ramet level 

(Martinez 1998; Schaible, Scheuerlein et al. in preparation for submission), whereby the 

question arises, if non-senescence for ramets is just a by-product of this special trade-off 

paradox. As discussed before, ramets need not necessarily be non-senescent to preserve the 

non-senescence of the genet, but they still are so in the case of Hydra and most likely E. 

dichotoma polyp colonies as well, in contrast to the E. dichotoma medusa (Chapter I). More 

demographic long-term studies comparing genet with ramet aging trajectories are needed to 

reveal these proposed patterns in many more organisms capable of vegetative reproduction.  
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Medusae might show the different „hump‟ pattern due to their increased complexity in 

connection to their sexual reproduction which adds another resource allocation cost not 

ending up in maintenance. An additional important medusa death factor could be (still 

undetermined) seasonal environmental condition changes (see chapter I), posing higher 

mortality risks at winter times specifically for medusae, in contrast to presumably lower risks 

for the more sheltered, robust and less demanding polyp colonies, explaining further the 

differently emerged aging patterns between these two ramet life stages.   

Expectedly, all longer lived medusae had low sexual and asexual trade-off quotients 

regarding size and survival in respect of the applied feeding level, indicating a resource 

allocation shift towards maintenance in these specimen. Generally higher quotients for both 

reproductive modes at higher feeding levels are simply explainable with more energy 

availability for reproduction. Considering the overall shorter lifespan of medusae at HFR 

compared to LFR, a higher food abundance seems to trigger a resource allocation shift 

towards more reproduction, including a size increase, affecting maintenance negatively 

hereby as well, although more total energy is available at HFR. Consequently, the idea of a 

positive low food stress effect on survival, i.e. calorie restriction (CR) effect (Heilbronn and 

Ravussin 2003; Chung, Kim et al. 2013), at the cost of reduced reproduction (and in our case 

smaller body sizes), seems to apply also for E. dichotoma medusae. Another interesting 

finding was that no direct trade-off between sexual and asexual reproduction could be found. 

Both traits apparently function independently of each other.  

 

Heritability & Stochasticity 

Remarkably, none of the measured traits was heritable. Neither the lifespan, nor the asexual 

or sexual reproductive output of the medusa parents, measured as total offspring count or 

offspring release rate, determined the respective patterns in their vegetative medusa offspring. 
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These results are a strong argument for a stochastic allocation mechanism being at work for 

the phenotypic outcome of each individual. We found similar patterns in the freshwater polyp 

Hydra, where we suggest them to be an evolutionary selected feature of the species enabling 

it to cope quickly to changing conditions in a frequently fluctuating environment (Chapter 

IV). The vegetative mode of reproduction might play a crucial role for this potential, 

including its associated differential tissue shift into the offspring buds. Each vegetative bud 

might get different cell lines and signals from the parent resulting in a completely 

individualized transcriptome and phenotype plasticity, always dependent on the current state 

of the parent, affected by the present environmental and individual conditions during which 

the bud is growing at the parent (see chapter I).    

 

CONCLUSIONS 

 

The patterns found in our demographic experiment with E. dichotoma suggest a huge 

phenotypic diversity within the studied clonal line (Omega). Huge variances can be observed 

in the survival and in the vegetative medusa bud production as well as in the bisexual self-

fertilization and the resulting released planula larvae of isogenic medusae within the cohorts. 

Nevertheless, several demographic trends can be observed between different feeding levels 

and between different vegetative medusa generations. Although medusa survival seems not 

directly linked to both sexual- and asexual reproduction output (in the case of TLR, LRR and 

BRR, just TBR tended to be positively correlated with survival), the overall results indicate 

that the nutritional level affects the resource allocation trade-off in E. dichotoma by setting a 

metabolic pace level for a medusa - the more food is available, the faster and compressed it 

lives. The feeding level influences the fine tuning of the adjusting screw of the trade-off 

between reproduction and maintenance. The missing heritability of the measured traits and 
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the huge variability within all traits between individuals and cohorts suggest a random 

phenotype generating process in E. dichotoma. However, as discussed in chapter I, a trade-off 

seems to be extant between successive medusa generations with an observable quality decline 

with consecutive generations. This trade-off might be beneficial for the genet in the light of 

the seasonal appearance of E. dichotoma medusae (Chapter I). 

Our findings, together with chapter I, support a revision of the general claim by Kirkwood 

and Rose, that the evolutionary optimum leads directly to senescence. Instead, senescence 

seems not inevitable, but multifaceted in pace and shapes (Baudisch 2011), when considering 

the “hump shape senescence” of E. dichotoma medusa ramets, the indications of negative- 

and non-senescence of polyp colony ramets and E. dichotoma genets and the diverse patterns 

found for many more species across the tree of life (Martinez 1998; Martinez 2002; Vaupel, 

Baudisch et al. 2004; Jones, Scheuerlein et al. 2014; Schaible, Scheuerlein et al. in 

preparation for submission). Our results support the idea that the evolution of different aging 

paths and various life history strategies substantially depend on the type of the underlying 

trade-offs between maintenance and reproduction. 

 It is next to study E. dichotoma under further environmental challenges and to take a closer 

look at early-life mortality of embryos and developing polyp colonies. Furthermore, studying 

the proximate mechanisms for the fitness difference between E. dichotoma polyp colonies 

and medusae and between the vegetatively produced medusa generations, e.g. if it is the 

result of measurable changes and differences in the transcriptome and/or the stem cell 

distribution between them, will also help to gain a deeper understanding of the ultimate 

causes of the vast diversity of aging patterns in basal metazoans, with E. dichotoma being one 

among them.   
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Figure 1. Size comparison – mean HFR- versus mean LFR sizes. Mean total surface areas of medusae 

averaged over all measurement time points are shown. Error bars represent standard errors. Medusae of the HFR 

were significantly larger than in LFR when comparing all cohorts of a feeding regime together (shown here) or 

each generation separately (not shown), either in two dimensional or three dimensional total surface area 

extrapolations (Mann–Whitney U tests, p<0.001). 
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Figure 2. Medusa Size versus Survival. Individual average 2-dimensional total surface areas of medusae were 

taken. Upper graph shows all cohorts of the HFR combined, lower graph shows LFR, respectively. Linear 

regressions were non-significant in both cases (p>0.05, equations given in graphs). 
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Figure 3. Medusa survival versus onset of sexual reproduction. TL cohort. Onset of sexual reproduction is 

here shown as days from birth to first seen embryo in medusa. The strongest correlation is shown here with an r
2
 

of .6 (linear regression, p<0.001). All other cohorts had much lower r
2
 values, were much more heterogeneous 

and without a clear linear trend when comparing these traits.   

Figure 4. Medusa survival versus onset of sexual reproduction. TL cohort. Onset of sexual reproduction is 

here shown as days from birth to first released larva of medusa. The strongest correlation is shown here with an 

r
2
 of .77 (linear regression, p<0.001). All other cohorts had much lower r

2
 values, were much more 

heterogeneous and without a clear linear trend when comparing these traits.   
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Figure 5. Medusa survival versus total bud release (TBR). PH cohort. The strongest correlation is shown 

here with an r
2
 of .68 (linear regression, p<0.001). All other cohorts showed similar significant trends, but with 

lower r
2
 values.  
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ABSTRACT 

 

It is widely recognized that the fitness of individuals varies substantially within populations. 

It is difficult to allocate the different sources of variation as there are genetic, environmental 

and residual stochastic variabilities. While it is widely assumed that genetic and 

environmental variations are major components of fitness differences, there have been few 

attempts to examine whether stochasticity alone could be sufficient to account for fitness 

differences. The asexually reproducing freshwater polyp Hydra represents an ideal study 

organism to examine the features of realized inter-individual variation in a clonal animal 

under constant environmental conditions.   

In this study, we examined the individual variation in life-history traits, using an isogenic 

laboratory population of Hydra magnipapillata. We analysed the traits “asexual 

reproduction” and “age at first reproduction” of more than 1118 genetically identical polyps, 

subdivided into six cohorts of different ages (2-5 years). The individuals were kept rigorously 

under constant and equal environmental conditions.  

We detected a highly uneven distribution of phenotypes of both traits. The analysis of the 

budding behaviour reveals that half of the offspring was produced by about a quarter of 

parent individuals (17-25%) and about 25% of the individuals changed their budding rate 

more than once throughout their lifetime. The high variation in budding behaviour is also 

supported by a high coefficient of variation of 70% and more per cohort. Comparisons of the 

budding behaviour between generations reveal that budding potential is not a heritable trait 

for Hydra. 

The high variation of budding phenotypes in isogenic Hydra individuals provide clear 

evidence for a random phenotype generation process leading to stochasticity in phenotype 

plasticity in a basal multi-cellular organism. We assume that this phenotype stochasticity is 

an adaptive bet-hedging strategy ensuring survival for some individuals in case of sudden und 

unpredictable environmental changes.  
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INTRODUCTION 

 

Individuals within a wild population can differ substantially in their fitness. It is well 

established that survival and lifetime reproductive success are far from homogeneous across 

individuals within populations. Such differences within populations are usually driven by 

genetic differences between individuals, providing the basis for the populations’ ability to 

adaptively respond to natural selection caused by environmental changes (Weismann 1889; 

Burt 2000).  

Alternatively, individual phenotypic variations determine the ability of an individual to 

respond to environmental changes. Such individual plasticity can be defined as a reaction to 

changing environmental conditions by altering the individual’s morphological, physiological 

or developmental traits during its lifetime. Therefore, different environments may result in 

different phenotypes even if the genotypes are the same (Stearns 1989).  

Even if both genetic and environmental causes of phenotypic variation have been controlled 

for, individuality still exists. For instance, under constant laboratory conditions isogenetic 

populations of nematodes (Finch and Kirkwood 2000); (Rea et al. 2005) and marble 

crayfishes (Vogt 2008), inbred lines of Drosophila (Gartner 1990) and genetically 

homogeneous bacteria cultures (Spudich and Koshland 1976; Avery 2006) show substantial 

variation in various life history traits such as survival, lifetime reproduction and other 

measures of individual performance. However, this individuality in isogenic populations 

should not necessarily be interpreted as evidence for quality differences between individuals. 

Stochastic variation could also be important. Stochasticity is a biologically important variable 

for the fitness of organisms (Kussell and Leibler 2005; Steiner and Tuljapurkar 2011) that is 

subject to natural selection (Beaumont et al. 2009; Lenormand et al. 2009).  
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Here, we aimed to assess if phenotypic variation can be observed among individuals within 

an isogenetic population of the freshwater polyp Hydra kept at controlled and constant 

laboratory conditions. Such a variation would be generated solely by stochastic phenotype 

expression. Hydra's body plan is well defined. It contains stem cells, its nerve system is 

simple and the tissue consists of only two differentiated tissue layers. Hydra species 

reproduce mostly clonally by budding. The cells from the mother individual migrate into the 

bud without meiosis or the reduction to a single cell. This excludes phenotypic variation due 

to instability in developmental processes (see literature in (Vogt 2008)). Thus, Hydra offers 

an ideal opportunity to analyse the influence of stochastic mechanisms on individual 

phenotypes in contrast to recent research that mostly focuses on the importance of 

stochasticity for phenotypic variation due to instabilities in developmental processes (Gartner 

1990; Lajus and Alekseev 2004; Vogt 2008). If high phenotypic variation in the life history 

traits of isogenetic Hydra individuals kept under uniform environmental conditions were 

detected, this would be the first evidence for phenotype plasticity due to stochastic variability 

in this genus.  

In order to identify the importance of stochasticity for variation in Hydra life history, we 

analysed the traits “asexual reproduction” and “age at first reproduction” of 1118 genetically 

identical polyp individuals that were kept rigorously under constant and equal environmental 

conditions. We tested the hypothesis that these isogenetic individuals have a high variation in 

the measured traits as can express statistically by mean value with high variance. Such 

variance would indicate the expression of multiple phenotypes by one genotype as caused by 

stochastic processes, implying a high degree of genome plasticity and differential gene 

expression of one clone. Also, if the assumed process was at work those traits should not be 

heritable. 
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MATERIAL AND METHODS 

 

Study Organism 

Hydra is a derived member of the basal metazoan phylum Cnidaria (Hydrozoa), belonging to 

the Diploblasta, the sister group of the Bilateria. Hydra has a defined body plan, stem cells, a 

simple nerve system and two differentiated tissue layers. (Martinez et al. 2010) estimate the 

origin of Hydra about 60 Ma ago. The experiment was performed using a laboratory 

population of Hydra magnipapillata strain 105 under conditions described in chapter III. 

Strain 105 was established as lab culture from a single polyp (= single clone) collected from a 

freshwater pond in Japan in 1973 (Toshitaka Fujisawa, personal communication, (Sugiyama 

and Fujisawa 1977)). The polyps are well adapted to artificial environmental conditions. No 

sexual reproduction has ever been observed within our cultures. For further culturing details 

see chapter III. 

Our lab stock culture was founded in March 2005 by budded offspring from a single polyp (= 

one member of the clone strain 105), which originated from a sub lab culture of the Irvine 

University (U.S.A.). On 1 March 2006 individuals for the first cohort A derived by budding 

from the stock culture. This process of building a new cohort of 204 polyp individuals was 

finished after 55 days. About six months later (10 December 2006) cohort B (all subsequent 

cohorts consist of 204 individuals) was established by budding by the individuals of cohort 

A. Three months later (16 March 2007) cohort C was established from cohorts A and B. The 

following cohorts were all derived from cohorts A, B and C and were separated on 10 

January 2008 (cohort D), on 9 September 2008 (cohort E), on 1 April 2009 (cohort F), on 18 

March 2010 (cohort G) and on 1 November 2010 (cohort H). Exceptionally, 19 buds of 

cohort E were produced by cohort D.  
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Experimental setup 

 In order to minimize sources for variation in the life history of single polyps we followed 

standard proven laboratory procedures (Martinez 1998; Chapter III). All individuals were 

cultured individually in plastic multi-well culture plates using a medium containing 0.05 mM 

NaHCO3, 1 mM CaCl2, 0.1 mM MgCl2, 0.001 mM MgSO4 and 0.003 mM KNO3 in 

deionised water. The medium (~ 9 ml per well and per polyp) was exchanged once in a week. 

The culture plates with the polyps were reared in an incubator at a constant temperature of 

18°C under a constant 12/12 light/dark cycle.  

Following rules for the experimental set-up were applied: The polyps were cultured under 

identical and constant laboratory conditions in order to standardize macro-environmental 

parameters and minimize micro-environmental conditions; we used only genetically identical 

polyps that were derived from asexual reproduction (budding) of originally one polyp; (3) all 

individuals were set on a controlled mono-diet with the same quality and quantity of food 

(Artemia salina nauplii, 1 day post hatching; (4) each polyp was reared in a single well on a 

6-well micro-plate and could thus be individually recognized and fed; (5) polyps were 

regularly inspected (4 days per week) and checked for new buds or non-consumed Artemia.  

 

Feeding regime 

Hydra in general shows deterministic growth, but size can vary as a function of food and 

environments (Otto and Campbell 1977). Hydra can shrink or grow depending on the food 

supply (Chera et al. 2009). The rate of asexual reproduction (budding) also depends on the 

supply of food, but additionally on the ability of the parents to utilize it, as well as on how 

resources are allocated within the organism (Chapter III). In order to minimize phenotypic 

changes in reproductive traits as a response to differing feeding regimes within and between 

individuals the feeding regime was highly controlled. Throughout the whole experiment, 
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every Hydra was fed 3 Artemia every Monday, Wednesday and Friday resulting in 9 Artemia 

per week per Hydra. These Artemia were fed directly to the Hydra by placing each of the 

three nauplii with a pipette onto the Hydra tentacles. All polyps were checked for complete 

food intake after feeding on the subsequent day or on the medium exchange day.  

 

Data analyses 

Data 

Each newly detached bud was counted. “Budding rate” (buds produced per day per Hydra) as 

well as “age at first reproduction” (when a polyp produced its first bud) are used as a measure 

of fitness of each polyp. We assume that fitness is a direct measure of the individuals’ 

efficiency to allocate energy into reproduction. Healthy, fit and well adapted polyps have 

enough energy to reproduce by budding. We here assume that differences in reproduction of 

equal polyps in a constant environment are evidence for phenotypic differentiation. 

Important, 106 individuals died by accidents during the experiments and were not included 

into the calculations.  

 

Concentration curve 

An approach to find inequalities within our experimental cohorts are to use concentration or 

Lorenz curves (Lorenz 1905) and the Gini coefficient (G, (Gini 1912)) which summarizes the 

total amount of inequality within a cohort. “Budding” was used to evaluate the degree of 

inequality among all isogenetic polyps within each cohort. We compared the concentration of 

reproduction across six Hydra cohorts. In a concentration curve individuals are ranked by 

their reproduction, and the cumulative proportion of polyps (x-axis) is plotted against the 

corresponding cumulative proportion of their total reproduction on the y-axis. These 

concentration measures are estimated from distributions of all adult Hydra individuals within 
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a cohort according to the number of buds they had throughout the study. If the Hydra share is 

equal to the share of buds, then perfect homogeneity of reproduction exists and the 

concentration curve is simply diagonal (G=0). Greater differences in individual budding rates 

lead to greater deviation from the diagonal concentration curve (concave shape; G>0). The 

Havehalf and Halfhave are two measures of reproductive concentration used in prior studies 

(Shkolnikov et al. 2007). In this study Havehalf was defined as a minimum proportion of a 

cohort of parent Hydra producing 50% (half) of all buds. Halfhave denotes a maximum 

proportion of buds produced by 50% (half) of all parent Hydras. The value of Havehalf 

decreases whereas the value of Halfhave increases when phenotypic variation is high for the 

reproductive trait (curve becomes concave).  

 

Budding behaviour within a polyp’s lifetime 

We aimed to analyse the budding pattern of polyps under constant environmental conditions. 

We used linear regressions on the cumulative buds throughout the experimental time, the life 

span of an individual. The obtained slope (buds/days), from now on called b-value, was used 

to describe the budding rate of an individual. This measure is only appropriate if the budding 

rate of an individual is constant over time. To check if budding rate was constant over time 

and to verify our approach we tested if the b-value displaying the mean budding rate also 

described the budding behaviour on subsets of individuals’ lifetime. 

Since we observed a slight delay for most individuals before they reached a constant 

production of buds, we tested if either birth, the day of first reproduction (first bud produced) 

or the day the second bud was produced is best to be used for the fit of the linear regression. 

Additionally, we tested the possibility of changing reproductive output during a polyp’s 

lifetime, which would reject the use of the b-values. For that purpose we divided the lifetime 

interval of each individual into ten disjoint test intervals of equal length (number of days). 
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Assuming constant reproduction mean via probability model in each of the ten small 

intervals, the expected number of expected buds equals the budding rate times the interval 

length. Thus we could check whether the counted number of buds per day lied within a 90% 

confidence interval around the calculated expected number of buds (b-value). If we could not 

find derivations from the calculated b-value a score of 0 was given to this interval. A 

significant deviation from the 90% CI resulted in the allocation of the score 1 for that 

interval. Also, we chose a minimum length of 50 days for each small interval in order to be 

able to make sensible use of estimations involving the Central Limit Theorem. In this way, 

the theoretical cumulative score over all ten intervals is binomially distributed for each polyp 

(n=10, p=0.1). The more the distribution of the real cumulative score deviates from the 

theoretical binomial distribution, the less support exists that our b-value model describes the 

budding behaviour, and the more a polyp's budding pattern is governed by changes in its 

budding rate. To realize this comparison some specific prerequisites must be fulfilled to draw 

reasonable conclusions: Only individuals with ≥12 buds and ≥500 days between the second 

and the last bud could be used, reducing our sample of 1118 polyps to 519. Our findings are 

that the distribution of the real cumulative score obtained by considering the period from the 

day of the second bud to the day of the last bud resembles the theoretical binomial 

distribution extremely well, providing strong support for our b-value model. 

 

Heritability 

To test the heritability of the measured traits (budding rate, age at first bud) we compared 

parents and their offspring as well as parents and their grand offspring and parents and their 

grand-grand offspring. If the traits are inherited by the next generation we should expect 

minor differences in the measured traits between generations. Additionally, traits could be 

constant over two or more generations, which we tested here. Heritability of budding rates 
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between isogenetic individuals of various generations were obtained directly from the slope 

of the linear regressions between generations. If the slope of the regression is 1, the traits are 

inherited between generations. If the offspring performed worse the slope of the regression 

would be smaller than one. If the measured trait improved in the following generations the 

slope would be greater than one. Since we study a clonal organism without a mother and 

father in the traditional sense we used 1 as the coefficient of relationship between the 

generations for the heritability estimation. Therefore, the heritability is equal to the slope of 

the regression between parents and offspring.  

 

RESULTS 

 

Reproduction 

The concentration curves of reproduction reveal a strongly unequal concentration of 

reproduction among individuals in all six cohorts (fig. 1). Minorities of highly reproductive 

individuals in all cohorts lead to these inequalities. The Have-half statistic of the 

concentration curves indicate that, depending on the cohort, 17-26% of the polyps provided 

about 50% of all reproduction, while 50% of the polyps are responsible for 78-88% of the 

reproduction (fig. 1; Table 1). The concentration curves of reproduction are nearly similar 

between the cohorts except cohort D and E. The Gini coefficient reflects these results. A 

lower inequality in budding in the cohorts A, B, C, and F (G=0.38-0.42; Table 1) is followed 

by a higher inequality in budding in the cohort D and E (G=0.53 and G=0.54; Table 1).  

The distribution of the polyps’ reproduction in the cohorts A, B and C were right skewed (fig. 

2) caused by a high intra-cohort variation in reproduction, ranging from 0 to 105 buds per 

polyp per measured lifetime. For the cohorts E and D the distribution of reproduction were 

weakly skewed right and showed a high number of individuals with only low or no budding 
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rate. Cohort F is, as the youngest cohort, tending to be right skewed as well. The coefficients 

of variation for reproduction vary between 0.79 and 1.12 (Table 1) and indicating a high 

individuality in reproduction of Hydra under constant conditions.  

Age at first reproduction 

All cohorts showed an unequal distribution (fig. 3) of age at first reproduction. Individuals 

needed between 20 and 1635 days to produce their first bud, 63 of 1118 individuals never 

produced a bud. Between 78-91% of the individuals produced their first bud until about 300 

days after their birth.  

In the cohorts D and E 50 (~26%) and 43 (~22%) individuals, respectively, have not started 

reproduction after 600 days of observation (fig. 3). Moreover, 22 individuals of cohort D and 

27 of cohort E never produced a bud even after 1026 and 783 maximal observation days (data 

not shown).  

Variation in reproduction during polyp lifetime  

Our data consist of 1118 polyps with their daily budding information, the oldest cohort 

observed for up to five years. A total of 1055 polyps budded at least once during the 

observation time, and 963 polyps budded at least twice. Due to our b-value model 

specifications we could use 519 polyps (see methods). Fig. 4 describes the lifetime budding 

behaviour of four example individuals and the deviations from the b-value. In two of the 

shown example individuals the observed interval budding rates differed in five and six time 

intervals significantly from the expected overall budding rate (b-value). About 25% of all 

individuals analysed showed two or more deviations from the expected overall budding rates, 

suggesting that the budding pattern of those polyps is governed by frequent changes in their 

budding rate during lifetime (fig. 5). In contrast, 384 out of 519 tested individuals (around 

75%; fig. 5), do not or only at most once change their budding behaviour during their 
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lifetime. Two of such individuals are depicted in figure 4 (bottom), they showed a constant 

budding rate over their lifetime. 

 

Heritability estimates  

The heritability analysis was done independently for budding rate and age at first 

reproduction between one, two and three generations. All linear regressions between 

consecutive generations showed no significant relationship between related individuals (all 

linear regressions; p>0.05) and low r² values, which shows that the linear regressions cannot 

describe the data appropriately (fig. 6). Therefore heritability estimates for budding rates and 

ages at first reproduction from all generation regressions were close to zero, indicating no 

heritable reproductive traits between generations. Consequently, the measured trait of the 

offspring does not depend on the trait of the parents. This means that an efficiently 

reproducing parent polyp does not necessarily produce similar efficiently reproducing buds.  
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DISCUSSION 

 

In our study, we observed considerable variation in two reproductive traits between hundreds 

of isogenetic Hydra individuals reared under constant conditions over four generations. The 

analysis of the lifetime reproductive success of each single individual revealed that the most 

productive individuals (17-25%) produced half of the offspring for the next generation. Such 

an uneven distribution of budding rate in an isogenetic organism is surprising and it is, 

however, supported by a high coefficient of variation of 70% and more per cohort. A high 

variation in budding behaviour could mostly be observed between overall lifetime budding 

rates (b-value), and just weakly during a polyp’s lifetime. Only about 25% of the individuals 

changed their reproduction rate throughout the experiment. Most individuals (~75%) 

expressed a constant budding rate throughout their lifetime, once it was established, which 

usually was the case after the production of the first bud. This indicates clearly that the 

laboratory conditions were constant and equal over the course of the experiment. However, 

several questions arise from our observations: what triggers (i) the huge variation of budding 

rate between individuals and (ii) the changing budding behaviour per lifetime of the 

remaining 25%.  

Such great phenotypic variation as shown by the uneven distribution of reproductive success 

is clearly not derived from genetic or environmental differences, as these have been 

experimentally excluded, and should therefore not be viewed as evidence for differences in 

quality between individuals. It might be argued that individuals can never be optimally 

adapted to an environment and hence heterogeneity in a cohort or population is just a natural 

occurrence. But it is also very unlikely that such a huge phenotypic variation as we observed, 

is a consequence of small genetic or microenvironmental disparity. Rather, the results of this 

study point to the importance of stochasticity in producing phenotypic variation as supported 
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by a growing number of publications (Rea et al. 2005; Sanchez-Blanco and Kim 2011; 

Steiner and Tuljapurkar 2011). 

Several studies show that individual fates may be shaped by a sequence of stochastic events 

that generate significant variations in different life history traits e.g. lifespan, reproduction or 

germination ability (Gartner 1990; Finch and Kirkwood 2000; Rea et al. 2005; Vogt 2008; 

Sanchez-Blanco and Kim 2011). Johnson (Johnson 1990) describes considerable variations of 

lifespan between genetically identical individuals of highly inbred populations of the 

nematode C. elegans. Also, the production of many different phenotypes measured as 

reproductive success and lifespan was observed in isogenetic populations of Daphnia (Lajus 

and Alekseev 2004) and in marble crayfish (Vogt 2008). Other intriguing examples are 

unicellular organisms where individuality in growth rate and reproduction are of particular 

significance. Here, individual cells may randomly switch among a number of different 

inheritable phenotypes (Kussell and Leibler 2005; Davidson and Surette 2008). Even in out-

bred populations, similar non-genetic and non-environmental variations seem to be a major 

component for life history traits such as lifetime reproductive success or lifespan of species 

(kittiwakes: (Steiner and Tuljapurkar 2011), in C. elegans and others: (Finch and Kirkwood 

2000). Another example is annual plants and insects where stochastic mechanisms are often 

related to great variations in the duration of diapause and dormancy (Cohen 1966; Childs et 

al. 2008). Taken together, these examples and the results of this study support the view that 

the intrinsic individual variability of Hydra is of stochastic nature.  

 

Stochastic mechanisms introducing high phenotypic variability 

Which mechanisms can create variations in genetically identical Hydra reared under constant 

conditions? Despite the possible importance of stochasticity in the life history of Hydra, 
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nothing is known about the interaction between stochastic events and biological processes. 

There are some interesting aspects, which might be worth considering in the future: 

Stochastic processes have been described in a variety of species from unicellular organisms 

to plants and animals. For example, stochastic fluctuations occur in gene expression (Fraser 

et al. 2004; Rea et al. 2005), or in epigenetic changes (Henderson and Jacobsen 2007; Levy et 

al. 2012; Pujadas and Feinberg 2012). This can result in multiple states of phenotypes varying 

strongly in their activity, which in turn affects growth or metabolic rates of the entire 

organism (Raser and O'Shea 2004; Davidson and Surette 2008; Levy et al. 2012). In a 

laboratory study of the worm C. elegans, Rea et al. (Rea et al. 2005) showed that a significant 

amount of phenotypic variation could be related to the stochastic variation in the expression 

of a single gene involved in thermal stress resistance. 

Most likely, such molecular processes within single cells also cause stochastic variation in 

Hydra, resulting in variations of basic cellular processes such as cell division, migration and 

differentiation. Such cell-to-cell variability may influence the individuality of a single polyp. 

If stochasticity was also responsible for the selection of cells that migrate during budding 

between parental polyp and offspring, the different distribution of cell phenotypes between 

different offspring lines would trigger the polyp-to-polyp differences in reproduction. A 

remarkable phenotypic plasticity of epithelial cells with diverse architectural design and 

physiology in Hydra was described in the study of Anton-Erxleben et al. (Anton-Erxleben et 

al. 2009).  

Another source for stochastic variation, although not generated by the polyp itself, is the 

interplay between epithelial cells and microbial communities living on those cells (Fraune et 

al. 2009; Fraune and Bosch 2010). Already in 1982, (Rahat and Dimentman 1982) showed 

that bacteria might be important for tissue proliferation and successful budding in Hydra. But 

whether stochastic processes contribute to the variation in budding rate in Hydra depends on 
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whether the interaction between polyp and microbial community enhances or suppresses the 

effect of stochasticity. Furthermore, stochastic phenotypic switching often observed in 

bacterial cells (see (Kussell and Leibler 2005; Davidson and Surette 2008)) has been 

proposed to facilitate immune changes within and colonization of new niches by the host 

(Salathe et al. 2009). This might also influence the reproduction rate of polyps in a stochastic 

way.  

However, the mechanisms underlying stochastic changes in Hydra are yet completely 

unknown and it is uncertain, whether stochasticity is of significance for the survival of Hydra 

under natural conditions.  

 

Benefits for Hydra’s life history  

A major question that arises from the findings in our study is: Why does Hydra display such 

high phenotypic variability without genetic variability? Most likely, this results from a risk 

spreading strategy in uncertain environments that are called bet-hedging (Stumpf et al. 2002; 

Thattai and van Oudenaarden 2004). This strategy could enhance long-term fitness by 

increasing the likelihood that a subset of individuals expresses a phenotype that allows the 

genet to sustain well through time in different and fluctuating environments (Cohen 1966; 

Kussell and Leibler 2005). Understanding the role of individuality in Hydra requires a greater 

appreciation of the ecological context of Hydra’s natural environment – freshwater rivers, 

lakes or ponds (Holstein and Emschermann 1995). Besides seasonal variation in ambient 

temperatures, photoperiod or food density, unpredictable fluctuations of Hydra’s 

environment could be water-level fluctuations, freezing, sudden spatial or temporal changes 

of the biotic or abiotic substrate niches or abrupt inter-species competition for resources or 

predation. All those environmental cues influence and affect the life history of individual 

Hydra polyps on different levels in several ways. On the basis of our experimental design, 
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that ensured constant environmental conditions, we can only speculate whether stochasticity 

significantly affects the fitness in the wild. In order to test whether the high variation of 

phenotypes is an evidence for an adaptive strategy to survive in fluctuating environmental 

conditions we should transfer individuals in an environment that fluctuates in time among a 

finite number of different environmental types (Kussell and Leibler 2005; Acar et al. 2008; 

Beaumont et al. 2009). Observing various subgroups of phenotypes within these 

environments would support the hypothesis that stochasticity and randomness are 

biologically important for Hydra’s life history and beneficial for its fitness and adaption.  

 

Evolution of phenotypic variability 

A high number of phenotypic variations in a population can reduce the mean fitness of the 

organism in a constant environment. Thus, from an evolutionary point of view, low 

phenotypic fluctuation around the fittest state is beneficial for maintaining optimal and 

maximal function over time (Landry et al. 2007; Lehner 2008). If genetic variability 

governed phenotypic adaptation and plasticity, the influence of stochasticity on phenotypic 

traits should be minimized through natural selection thus reducing any deleterious effects. In 

contrast, a faster adaptation to fluctuating environments by stochastically induced phenotypic 

variation of Hydra buds could be a selective advantage if we assume that genetic variation 

plays a minor role in the wild. One way this could have evolved in Hydra is by exhibition to 

multiple environmental cues that vary over small spatio-temporal scales. Such conditions 

may lead to differences in fitness between individual phenotypes but should not affect the 

distribution of phenotypic variation within a genet in general. In that case, selection pressures 

vary (with temporal environmental fluctuation) in such a way that in a given environment 

only a fraction of phenotypes is exposed to selection. A subsequent, sudden environmental 

change may affect another fraction. Such a fluctuating selection could favour the evolution of 
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phenotypic stochasticity within a population (Slatkin 1974; Meyers and Bull 2002; Kussell 

and Leibler 2005) and can therefore enhance long-term fitness of the Hydra genet, by 

increasing the chance that a subgroup of individuals exhibits a phenotype that will be well 

adapted to future environments (Slatkin 1974; Acar et al. 2008; Beaumont et al. 2009). 

Selection would favour the genotype which generates the stochastic variability of individual 

offspring phenotypes in an optimal phenotypic variability range of the affected traits, 

according to their living environment, to increase the genotype’s lifetime reproductive 

success through time. In millions of year’s evolution, Hydra experienced various 

environmental conditions, which should allow the development of genotypes with a high 

potential and ability for phenotypic plasticity.  

 

CONCLUSIONS 

 

The findings of our study provide the first evidence that stochasticity might be very important 

for the adaption ability of mainly clonally reproducing Hydra populations. Stochasticity can 

be an important component for Hydra life history by modifying individual fitness and 

population dynamics. Therefore, this study on Hydra supports the suggestion by (Beaumont 

et al. 2009) that stochastic processes may have been among the earliest evolutionary solutions 

to survival in variable environments. 
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Cohort N age range 

(days)

Have-half 

(%) 

Half-have 

(%)

Gini-

coefficient

%CV 

Budding

%CV 

Age at first 

reproduction               

A 164 1593-1706 25 78 0.39 70.5 99.7
B 185 1419-1513 26 78 0.38 68.4 92.6
C 184 1216-1326 25 79 0.40 71.8 79.7
D 192 861-1026 18 87 0.53 105.1 112.9
E 198 627-783 17 88 0.54 106.1 101.9
F 195 430-579 25 79 0.42 80.9 95.9

Cohort N age range 

(days)

Have-half 

(%) 

Half-have 

(%)

Gini-

coefficient

%CV 

Budding

%CV 

Age at first 

reproduction               

A 164 1593-1706 25 78 0.39 70.5 99.7
B 185 1419-1513 26 78 0.38 68.4 92.6
C 184 1216-1326 25 79 0.40 71.8 79.7
D 192 861-1026 18 87 0.53 105.1 112.9
E 198 627-783 17 88 0.54 106.1 101.9
F 195 430-579 25 79 0.42 80.9 95.9

Table 1. The Number of samples, the age range of individuals per cohort, the “Have-half”, 

“Half-have” statistic, Gini coefficient for the concentration curve of reproduction and the 

coefficient of variations (SD / mean) for budding rate and age at first reproduction were 

presented.  
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Fig. 1 Figure 1. Concentrations of reproduction among genetically identical Hydra 

magnipapillata individuals of six cohorts with different ages at similar and constant 

environmental conditions are shown. The diagonal line is identical with the line of equality of 

reproduction within each cohort.  
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Figure 2. Frequency distribution of the differences in “budding rate” between genetically 

identical Hydra magnipapillata individuals of six cohorts with different ages at similar and 

constant environmental conditions (Table 1). 
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Fig. 3 

Figure 3. Frequency distribution of the differences in “age at first reproduction” 
between genetically identical Hydra magnipapillata individuals of six cohorts with different 

ages at similar and constant environmental conditions (Table 1). 
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Figure 4. Budding behaviour during lifetime of four example individuals. Two polyps 

(above) have 5 and 6 changes, respectively, here scored as 1 in their observed budding 

behaviour as compared to the expected overall budding rate (b-value). Two other examples 

(bottom) showed no or only one deviation from the expected overall budding rate value (b-

value). 
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Figure 5. The distribution of the number of interval budding rate deviations from the 

expected overall budding rate value (b-value). Presented here are the results of the 

theoretical expected distribution of the deviations (model) and the distribution of the 

observed deviations in budding rates after the times of starting from birth, production of the 

first and of the second bud.  
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Fig. 6 Figure 6. The relationship as measure of heritability of the expected budding value (b-

value) between different generations; parents polyps are compared with offspring lines of 

different generations (children; grand-children; grand-grand-children) of Hydra 

magnipapillata. The linear regression model for parental generation vs. offspring: y1,853 = 

0.23x + 0.011, r² = 0.038, SE = 0.001, F = 33.2, p < 0.001; for parental generation vs. grant-

offspring: y1,398 = 0.15x + 0.012, r² = 0.016, SE = 0.002, F = 6.4, p = 0.012; for parental 

generation vs. grant-grant-offspring: y1,72 = -0.14x + 0.02, r² = 0.005, SE = 0.001, F = 0.54, p 

= 0.46. 
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ABSTRACT 

 

Basal metazoans have large variations in life-cycle patterns, offering great opportunities to 

study the evolution and demographic patterns of aging. In light of the remarkable 

regeneration abilities and non-senescent aging pattern of the freshwater polyp Hydra, this 

study aims to examine its resource allocation strategy in response to environmental stressors. 

In a set of laboratory experiments, we tested the resource allocation flexibility of a purely 

asexually reproducing Hydra strain (Hydra magnipapillata). Isogenic Hydra polyps were 

reared at different feeding regimes and bisected to simulate predation stress while 

reproduction, size, and starvation survival after regeneration were compared between groups 

to reveal eventual allocation trade-offs and hormesis effects. Surprisingly, bisection effects 

were similar in both halves. Both head and foot regenerates showed similar if not slightly 

enhanced trait merits in comparison to the uncut controls, from which we conclude a 

hormetic efficiency increase response. Short feeding regime interruptions accompanying the 

bisection treatment reinforced this hormetic response. Feeding level prior to starvation had a 

substantial influence. More food resulted in higher budding rates, but not necessarily longer 

starvation survival. Instead, a clear trade-off could be shown between the intermediate and 

second-highest food levels, with the highest and lowest average starvation survival, 

respectively. A shift of resource allocation focus towards reproduction is a reasonable 

explanation for the low survival group, since all groups with lower food levels had none or 

negligible offspring output. This effect is neutralized with increasing food availability, at 

which size, budding rate and starvation survival all increase again. However, all three key life 

history traits were uncoupled from each other - size, survival or budding showed no 

correlation. No heritability of any trait pattern from parent to bud could be detected. We 

conclude that Hydra is a dynamic organism with heterogeneous phenotypic states between 

and within polyps, a feature which is most likely linked to its constitutive proliferative cell 

renewal machinery. This vitality is particularly emphasized in its hormetic responses without 

that any costs of it were detectable in our experiment. 
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INTRODUCTION 

 

Hydra (Cnidaria, Hydrozoa) is truly an enigmatic organism concerning its aging and life-

history patterns. From a demographic point of view, Hydra polyps show no senescence, 

meaning that neither their mortality nor fertility schedules change with age, for the better or 

worse (Martinez 1998; Jones et al. 2014; Schaible et al. in preparation for submission). To 

understand this extraordinary evolutionary outcome it is helpful to study the flexibility of 

Hydra‟s resource allocation and the trade-offs between maintenance, reproduction and 

growth which may be involved in shaping this pattern. According to present theories, 

organisms allocate resources either to 1) repair, regeneration and somatic maintenance, 2) 

growth and/or 3) reproduction; and this allocation is hypothesized to be optimized according 

to the selected course of life (Kirkwood 1977; Kirkwood and Holliday 1979; Stearns 1989; 

Kirkwood and Rose 1991; Vaupel et al. 2004; Baudisch 2007; Baudisch 2009; Flatt 2011). 

Hence, resource allocation can be thought of as a flexible system affecting an organism‟s 

aging pattern directly, contributing to the evolution of the various and diverse aging patterns 

found across the tree of life (Jones et al. 2014), which make it hard to claim a general 

exclusion of potentially lifelong growth and reproduction as well as continuous maintenance. 

The freshwater polyp Hydra is a well-studied organism across various biological disciplines 

(Campbell 1967; Gierer et al. 1972; Martinez 1998; Bosch et al. 2010; Bosch 2012; Chapter 

III). The worldwide spread genus (except Antarctica) comprises four morphologically distinct 

and recognizable species clusters with various species (12-15 in total according to recent 

estimates) and more than a hundred species strains (Jankowski et al. 2008; Martinez et al. 

2010). Populations undergo frequent seasonal fluctuations in temperate zones regarding 

population size and switches in reproduction patterns, changing from purely asexual to sexual 

or simultaneous reproduction in summer times to a more dormant and unproductive living 
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style during winter (Ribi et al. 1985)(own observations). However, sexual reproduction 

appears to play only a marginal role for proliferation and population growth in comparison 

with asexual reproduction in the genus Hydra (Bosch 2009). Asexual reproduction, which in 

the case of Hydra means vegetative proliferation via budding, can be viewed as extended 

growth, at which continuous individual growth results simply in more isogenic individuals 

(“ramets”) after some time, providing a Hydra clone with an enormous proliferation power. 

Connected to this mode of vegetative proliferation, and most likely evolutionary selected by 

it, is the continuous proliferative cell renewal and cell turnover of Hydra. This machinery 

equips the polyp also with its remarkable regeneration capabilities (Bosch 2007; Bosch et al. 

2010), and is thereby likely to play an important role in Hydra’s exceptional maintenance and 

non-senescent aging pattern as well as in its flexible life-history responses, including 

hormetic reactions, towards changing environmental conditions (Chapter III; Schaible et al. 

in preparation for submission).  

 

In chapter III we conducted a series of laboratory experiments by exposing a purely asexually 

reproducing brown Hydra strain, Hydra magnipapillata strain 105, to challenging 

environmental conditions to investigate the trade-off between reproduction and somatic 

maintenance. Selected stressors were shifts in temperature and variation of food level, 

including a starvation period, while budding rates during feeding periods were recorded 

continuously. Instead of the normal survival observation, survival in a final starvation period 

was taken as a feasible measurement for maintenance allocation in Hydra since one had to 

wait for a long time for the last polyp to die under constant feeding conditions due to the low 

level of their flat mortality rates (Martinez 1998; Schaible et al. in preparation for 

submission). The trade-off found in the study was that budding increased linearly with food 

intake while survival under starvation stayed rather constant from normal and non-starving 
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feeding levels on. Under fluctuating environmental influence by temperature or food 

limitations, both maintenance and budding tended to show enhanced levels, pointing to a 

hormetic type of response lacking a trade-off. Such an effect could increase maintenance and 

reproduction efficiency, though possibly only temporarily, resulting from exposure to low 

and specific doses of stress, a phenomenon known as hormesis (Calabrese and Baldwin 2003; 

Stebbing 2003; Parsons 2005; Mangel 2008; Rattan 2008). How exactly this effect is 

achieved, though, is still uncertain and several different mechanisms have been proposed, 

including physiological counteractions to stress with overcorrections to retain homeostasis, 

leading to a hormetic response pattern known as homeostatic hypothesis for hormesis 

(Stebbing 2003). In chapter III we proposed that “environmental stresses could have a 

beneficial impact on the fitness-related phenotypical traits of the basal metazoan Hydra”, and 

that hormetic stress doses posed by variable and fluctuating environments could be salutary 

for the persistence of Hydra. 

To follow up on these findings and examine Hydra‟s resource allocation closer we conducted 

our study by applying a more direct type of stress. We simulated a predation injury by 

bisecting the polyps into two equally sized halves and combined this treatment with varying 

feeding levels. We measured sizes and budding rates before and after bisection and measured 

survival under starvation after the feeding period as maintenance measurement. We 

hypothesized that both bisected halves would show different trait values than uncut controls 

and that the foot regenerates would survive the longest under starvation whereas the head 

parts would have most buds compared to the respective counterparts. We supposed that the 

increased regeneration demand for the foot halve would trigger an increased general 

maintenance allocation within the polyp. Whereat the foot halves had to regenerate the 

complete head region including a new hypostome with the tentacle crown, the head halves 

had only to regenerate the adhesive basal foot region, which involves much less growth and 
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cell re- and transformation of Hydra‟s dynamic cell column (Bosch 2007; Galliot and Chera 

2010; Galliot and Ghila 2010; Galliot 2013). Five different feeding regimes were chosen to 

gain more insights into the required energy for complete regeneration after bisection and their 

effect on reproduction, growth and maintenance, measured as starvation survival, with 

respect to the bisection effect. Following up on our previous findings (Chapter III), we 

hypothesized that low food levels could increase allocation to maintenance and enhance 

starvation survival rates in comparison with the higher ones. Furthermore, we tested for 

heritability and persistence of any of the trait patterns in fed and unfed offspring generations. 

We suspected no heritability in any trait as no indications for inheritable reproductive traits 

have been found previously regarding budding rates and ages at first reproduction (Chapter 

IV).     

 

MATERIAL AND METHODS 

 

Study Organism 

In our study we used the Hydra magnipapillata strain 105, a brown Hydra belonging to the 

Hydra vulgaris cluster, which was isolated in 1973 in Japanese wetlands near Mishima on 

Honshu (Sugiyama and Fujisawa 1977; Sugiyama and Fujisawa 1977; Sugiyama and 

Fujisawa 1978). The isogenic strain has been kept successfully in the laboratory for over 40 

years with reproducing exclusively by clonal budding. No successful sexual reproduction nor 

clear production of either male or female gametes has been observed in the lab for this strain 

so far. Throughout the experiment we followed standard proven laboratory procedures with 

controlled environmental conditions benefiting from the long history of Hydra research. 
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Culturing conditions 

All experimental animals were cultured in the laboratory under controlled and constant 

environmental conditions in plastic multi-well culture plates with a „Hydra medium‟ (detailed 

culturing conditions in chapter III). Artemia salina nauplii (instar II to instar IV stages, 1.5 

dph (days post-hatching, Schaible & Houliston, personal communication)) were used as 

constant food source for all polyps. 

 

Experimental Design 

To test and compare bisection effects on Hydra we chose five different feeding regimes, from 

low (1 / 3 / 5 Artemia per week) to high (7 / 21 Artemia per week). The Artemia amount per 

feeding level was evenly distributed throughout a week with regularly three feeding days per 

week. Bisection was performed horizontally via scalpel in the middle of the body column 

(see fig. 1). Control groups without bisecting polyps were kept for both higher feeding 

regimes.  

 

Following measurements were taken: 

budding rate (daily) 

survival (daily) 

tentacle number (weekly) 

volume/size via photometric area analysis with Adobe Photoshop© (weekly) 

n = 18 in low feeding regimes             n = 30 in high feeding regimes 

 

All polyps were allocated individually to specified wells filled with 9ml culture medium on 

six-well-plates. Wells & culture medium were changed weakly to maintain favourable 
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conditions and feeding was conducted individually via pipettes, placing alive Artemia directly 

onto the tentacles of the polyps to ensure the correct amount of food per individual.  

 

All investigated Hydra individuals were isogenic and originated from a long-term mixed stem 

population established in our lab. First measurements in all groups were taken in an initial 

phase before bisection. After 25 days, each polyp was horizontally bisected via scalpel, 

except the polyps in the control groups. Individual foot and head pieces (see fig. 1) were 

followed up and observed regarding their regeneration in terms of survival, tentacle number, 

size, feeding ability and budding rates. To synchronize growth and individual food intake 

between foot and head halves and controls, each polyp got the same amount of Artemia in 

respect of its feeding regime throughout the experiment. Thus, each bisected head half and its 

respective control partner was only fed when the corresponding foot half was able to ingest 

Artemia again after hypostome regeneration. Regeneration and feeding ability for the foot 

halves was tested daily after bisection until all foot halves were able to feed again. Original 

feeding regimes were gradually installed again individually within two to three weeks and 

maintained for another four to five weeks. Finally, feeding was ceased and polyps were 

starved to measure starvation survival as a maintenance measurement (Chapter III). 

The budded offspring polyp generation after bisection was additionally followed up in 

parallel to check for the heredity of possible bisection effects. The first bud was taken and 

monitored from all polyps fed with 7 and 21 Artemia per week, the second bud was only 

isolated from each polyp in the highest feeding regime. All first buds of the highest feeding 

level were fed in the identical feeding regime as their parent counterparts before the start of 

the final starvation phase whereas the first buds of the 2
nd

 highest feeding regime were 

starved immediately after isolation from their parents. The second buds of the parental polyps 
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in highest feeding regime were starved immediately as well. The experiment ended with the 

last polyp‟s death. 

 

Size, as a measure for individual polyp growth, was measured by taking standardized pictures 

of elongated Hydra polyps free of ingested food (Levitis and Goldstein 2013). The same 

procedure as Levitis and Goldstein 2013 described it for measuring size in Hydra vulgaris 

strain AEP was applied to our measurements. Since we standardized our photo samples and 

photographed only elongated polyps we decided to use polyp the intuitive body volume as a 

size indicator (without the hypostome and tentacle crown for simplicity), which was 

calculated from the respective measured body area and length according the formulas given 

in Levitis and Goldstein 2013, who assumed a cylindrical polyp body shape for their 

calculations and showed that either volume, cylindrical body-column surface area or their 

proposed corrected version of the surface area of an individual give reliable size estimates in 

this case. 

 

Analyses 

SPSS software was used for the statistical analysis of the obtained data. We tested for 

bisection and feeding treatment effects on starvation survival, budding rate and polyp size 

(volume). One- and two-way ANOVAs were applied and followed by Tukey or Bonferroni 

post-hoc comparisons in compliance with the respective statistical requirements of the data. 

Trade-offs between the response variables and heritability of traits were checked with linear 

regressions, where appropriate. We compromised on the number of individuals in each 

treatment to maximize the treatment resolution, thus the statistical strength of the analysis 

might have got reduced for feasibility reasons.  
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RESULTS 

 

A clear trade-off between resource allocation to maintenance versus reproduction could be 

shown for Hydra in our experiments. No polyps, neither parent or offspring, died naturally 

during the feeding phases.   

 

Starvation Survival 

Comparing all parental cohorts, feeding level had a pronounced and significant influence on 

starvation survival while bisection tended to have a slight but minor and statistically non-

significant effect, no interaction effect was found (two-way ANOVA and Tukey post-hoc 

tests, p<0.05, see fig. 2 and supplementary tables S1-3). After a stepwise increase from the 

lowest feeding level up to 5 Artemia survival dropped sharply for polyps fed with 7 Artemia 

per week, increasing again to long survival at the highest feeding level. The shortest average 

survival was at the 7 Artemia feeding regime, while the cohort with 5 Artemia survived the 

longest. Bisection had basically no effect when comparing survival of head versus foot 

halves, while a slight trend towards longer survival in bisected polyps compared to uncut 

controls could be observed (only conducted at 7 and 21 Artemia per week). This positive 

survival effect was slightly more pronounced in foot halves compared to head halves. 

Never fed offspring generations survived much shorter in starvation than previously fed 

parent and offspring generations (see figs. 3 & 4). Still, never fed offspring from parents of 

the highest feeding regime survived longer than their counterparts from parents of the 7 

Artemia regime, while no bisection or interaction effects existed (two-way ANOVA and 

Tukey post-hoc test, p<0.05, see fig. 4 and supplementary tables S8-9).  

The fed first offspring generation from parent polyps of the highest feeding regime survived 

slightly, but significantly longer in starvation than their parents, with a trend towards a 
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bisection effect not within, but between generations, with survival lightly increased in the 

offspring of bisected polyps compared to unbisected control parents and offspring foot halves 

slightly increased compared to parent head halves, with the same, though here not significant, 

trend towards the parent foot halves as well (one- and two-way ANOVA with Tukey post-hoc 

tests, p<0.05, see fig. 3 and supplementary tables S4-7). 

Comparing all groups separated, including fed and unfed offspring cohorts, significant 

survival differences were never observable between head, foot or control polyps within any 

feeding regime per generation (Bonferroni post-hoc test after a significant (p<0.05) one-way 

ANOVA, p>0.05, fig. 2-4, test results not shown due to length). Clear survival differences 

existed here only between specific feeding levels, most pronounced between the short 

starvation survival of all unfed groups and groups fed with 7 Artemia per week compared to 

the relatively long survival of polyps fed with 5 and 21 Artemia per week.  

 

Budding behaviour 

Budding rates of parent polyps differed considerably between feeding levels but the 

comparison between before and after bisection budding rates per respective feeding level 

showed only differences at the highest feeding level (two-way ANOVA with Tukey post-hoc 

tests, p<0.05, see fig. 5 and supplementary tables S10-12). Most strikingly, a huge difference 

between the highest and second highest feeding level could be observed, while budding 

ceased almost completely at the three lowest feeding regimes (fig. 5). Among the low 

regimes, only the budding rates at 5 Artemia prior bisection stood out and were minimally 

increased compared to all low feeding groups, though just above the significance level 

(Tukey post-hoc, p>0.05, fig. 5 and supplementary table S11). At 7 Artemia per week a low 

budding output could be observed throughout groups, a weak, but non-significant trend 

towards an increased budding after vs. before bisection could be seen, whereby this effect 
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was strongly significant at 21 Artemia per week. Interestingly, budding rates prior bisection 

were similar at 5 and 7 Artemia per week. 

Irrespective of the significant group differences at the highest feeding regime between 

budding rates before vs. after bisection, we could not find clear correlations between 

individual budding rates before versus after bisection within treatments and feeding levels as 

well (linear regressions, maximum r
2
=0.145, see fig. 11 and supplementary tables S22), 

indicating independence of budding rates before versus after bisection. 

Bisection itself had no overall effect on the budding output (two-way ANOVA with Tukey 

post-hoc test, p>0.05, fig. 5 and supplementary table S12). Treatment budding rates before 

bisection were not different from head or foot halves in combined low feeding regimes while 

heads did not differ from feet as well. For the two combined high feeding levels, though, both 

control and treatment budding rates prior bisection were significantly lower than the 

respective controls, heads and feet after bisection and higher than all respective combined 

low feeding groups, without that they were different from each other themselves. No 

differences between heads, feet and controls after bisection were found. No overall 

interaction could be found in the two-way ANOVA. 

Within the highest feeding regime, parent versus first generation fed offspring buds yielded 

no significant differences between any group (one-way ANOVA and Tukey post-hoc test, 

p>0.05, see fig. 6 and supplementary tables S13-14). Combining groups and comparing 

generations, we found no difference between budding rates (two-way ANOVA and Tukey 

post-hoc test, p>0.05, see fig. 6 and supplementary tables S15-16). But when comparing 

bisection treatments of combined generations, we found a weak bisection effect, with foot 

regenerates having lower budding rates than heads, without that any of the treatments were 

different to the controls (Tukey post-hoc, p<0.05, fig. 6 and supplementary table S16). No 

buds were produced in both unfed offspring cohorts. 
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Size 

We recorded huge variations of polyp volumes within and between feeding levels as shown 

in fig. 7. Qualitatively, as visible in the graph, bisection and the associated feeding restriction 

had the effect of reducing every polyps‟ size in the first days after the bisection treatment in 

all groups. After reinstalling feeding regimes, polyps grew back to previous sizes at feeding 

levels of 5 and 7 Artemia and tended to grow even larger in the highest feeding regime. In the 

two lowest regimes polyps did not regain original sizes, no growth at all could be seen at 1 

Artemia per week and slight growth was visible at 3 Artemia. Head, foot or control polyps did 

not differ substantially in volumes within their respective feeding levels while size 

heterogeneity was highest during the feeding phases in all groups. Interestingly, size started 

to decrease already in the last two weeks of the feeding phase for the two highest feeding 

levels.  

 

Budding versus Starvation Survival 

We found no clear correlation between starvation survival and budding rate within the groups 

at the two highest feeding levels, starvation survival appeared to be independent of budding 

rate throughout all groups (linear regressions, maximum r
2
=0.132, see fig. 12 and 

supplementary table S23). The same pattern was evident in the fed offspring polyps and in 

parents combined with fed offspring polyps, no strong correlation could be found within or 

across bisection groups (linear regressions, maximum r
2
=0.22, see fig. 13 & 14 and 

supplementary tables S24-25). 

 

Size versus Starvation Survival 

Starvation survival did not depend on the polyp size (its volume) at the initiation of the 

starvation phase (linear regressions, all insignificant, p>0.05, see fig. 15 and supplementary 
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table S26). Polyps at all feeding levels have been analysed (within feeding levels) at 

separated or combined bisection treatments. 

 

Heritability 

Budding rates (after bisection) and starvation survival were not clearly correlated between 

parents and their first buds of the 21 Artemia feeding regime (linear regressions, maximum 

r
2
=0.23, see fig. 8-9 and supplementary tables S17-18). The only significant regression could 

be seen at budding rates between parent and offspring heads, though very weakly pronounced 

due to the high variance (linear regression, p<0.05, slope=0.707, r
2
=0.23, see fig. 9 and 

supplementary table S18). 

Unfed buds had also no direct heritability to their parents in starvation survival, budding was 

non-existent in unfed polyps anyway. When comparing parents with unfed offspring within 

their respective feeding regime, ignoring bisection treatments, no heritability of starvation 

survival was found. Taking both bisection and feeding into account, we found a slight trace 

of inherited starvation survival patterns just in one group, the heads of the 7 Artemia feeding 

regime (linear regression, p<0.01, slope=0.356, r
2
=0.521, see fig. 10 and supplementary table 

S19). All other groups had even weaker, i.e. none, linear relationships regarding survival 

(supplemental material, fig. S1-2 and tables S20-21). 

 

DISCUSSION 

 

To study and understand the plasticity of aging patterns in Hydra the concept of life-history 

trade-offs proved to be useful (Baudisch 2012; Chapter III). Assuming that resource gains of 

an organism are limited and also costly, allocation patterns of these to individual maintenance 

and reproduction are the crucial point to determine life-history patterns. If one of these 
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processes increases, there must be a cost for the other one, thus higher reproduction generally 

comes at the cost of lower survival chances. Extensive overviews of trade-off concepts and 

how trade-offs are involved in current evolution and aging theories are given in recent 

reviews (Parsons 2005; Flatt 2011; Baudisch 2012).  

Our finding of an increased starvation survival combined with a cease of budding at low 

feeding rates, especially for the groups at 5 Artemia per week, in contrast to the lowest 

survival in combination with starting reproduction at 7 Artemia per week, without that size 

patterns were different between these groups over time, represents a clear resource allocation 

trade-off between maintenance and reproduction similar to the observed trade-offs in one of 

our previous studies on Hydra (Chapter III). At the highest feeding regime, abundant 

resources allowed the polyps to have much higher budding rates and larger sizes than at all 

other lower feeding regimes, combined with a long starvation survival similar to the one at 5 

Artemia. Thus, the trade-off switch in resource allocation appears most clearly between 

feeding levels of 5 & 7 Artemia per week. Other than expected and proposed in chapter III, 

growth seems to be rather unaffected at this most pronounced trade-off shift as size patterns 

were very similar between these two feeding levels across all treatments and controls over 

time. In chapter III the results were different for their observed trade-off. For the same strain 

of Hydra, highest starvation survival was found to be at 7 & 9 Artemia per week, whereby 

not the same signs for a trade-off such as in our experiments could be observed due to the 

steadily increasing budding rates with increasing food intake. Still, from their next higher 

feeding level onwards (17 Artemia per week), survival declined slightly to a lower level 

while budding rates kept on increasing linearly, thus indicating the same maintenance-

reproduction trade-off we found in another way.  

These trade-off pattern differences between the studies could be either due to the bisection 

and the coupled food shortage days after bisection, or temporal size variations within the 
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feeding levels or the different amount of feeding lengths applied. Measured sizes varied 

considerably in our study not only between feeding levels but also within, as indicated in the 

huge standard deviations over time in fig. 7, whereas no size measurements were undertaken 

in chapter III for comparison. Furthermore, Levitis and Goldstein 2013 showed for Hydra 

vulgaris strain AEP that individual polyp size can vary considerably over time (two- to 

threefold changes in three-dimensional surface area over the course of a few days) within 

constant feeding regimes, without any obvious relationship to the timing of budding. To our 

surprise, we found that the actual polyp size at the point when feeding was stopped and the 

starvation phase began did not have any impact on the outcome of the final individual 

starvation survival, though. Within all groups and independent of the feeding level or 

bisection, no relationship existed between these two variables, implying that large or small 

body sizes did not have any cost for the maintenance allocation, other than suggested in our 

previous study (Chapter III). This leaves either effects due to bisection, accompanied by the 

food shortage, or the different feeding durations as a more probable explanation for the 

observed differences. In this experiment, polyps were fed for about one month before and one 

month after bisection on their respective feeding levels, while in chapter III feeding durations 

ranged from about two to eight months.  

Our hypothesis that bisection, as a simulated predation stress, could alter Hydra‟s trade-off 

allocation directly by triggering a higher maintenance at the cost of reproduction due to the 

high regeneration activities could not be confirmed. Bisection did not cause significant 

differences overall, both in starvation survival and daily budding rates between head and foot 

halves, neither were the bisected ones different to the controls. This leads to the conclusion 

that our bisection treatment had not changed the general trade-off allocation in Hydra. Either 

the difference between head and foot regeneration patterns and their pattern difference to the 

controls was not strong enough to invoke the hypothesized trade-off shift or bisection simply 
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cannot lead to such a shift. However, that the controls behaved similarly to bisected polyps 

could also be related to the feeding treatment we applied to all of our groups. Controls were 

always getting the same amount of Artemia as both treated halves, in the same order, thus, 

similar starvation survival and budding rates between all groups could potentially also be due 

to the similar feeding regime. These effects could have overruled potential differences 

between bisected and unbisected polyps. That a general plasticity on Hydra‟s trade-off 

allocation system exists, though, is evident based on the shift effect we found in response to 

different feeding levels and based on what our previous experiments showed in response to 

changed environmental conditions like feeding regimes, temperature and hunger treatments 

(Chapter III).  

Intriguing are the offspring generations results. At the highest feeding regime, we observed a 

trend towards increased performance in the first offspring generation, which was left 

unbisected and fed with the same feeding regime as their parents before their starvation 

period. Overall, starvation survival of offspring polyps was slightly higher than that of their 

parents, while no significant generation difference could be found at budding rates. Within 

treatment groups, generation did not have any effects for both traits. Bisection had, if at all, 

only a weak impact. When comparing generations, we found slight, but significant survival 

increases in the offspring of bisected polyps compared to unbisected control parents, as well 

as in offspring foot halves compared to parent head halves. In reproduction, just a slight 

bisection effect occurred at budding rates when generations were combined and foot halves 

showed slightly lower budding rates than heads, without that both bisected groups were 

different to the controls nor general interaction effects were evident. Overall, these results 

indicate a transmitted and even potentially enforced hormesis effect from the parent to the 

offspring generation. The higher performance enhancement of the treatment offspring 

compared to the control might be explained by the doubled hormesis trigger, namely both 
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parent bisection and the following food shortage during regeneration, while the control 

parents‟ only hormesis trigger could have been the foot shortage due to the treatments‟ 

bisection. 

Unfed offspring generations, the first buds of parents at 7 Artemia per week and the second 

buds of parents at the highest feeding level, did not produce any buds at all and lived much 

shorter, about a quarter less starvation survival, than their respective parents and their fed 

generation siblings in case of the highest feeding regime. This result is not surprising at all 

since buds are typically smaller and provided with less tissue, although not in all cases and 

depending on the feeding rates, than their parents when detaching and budding off (Otto and 

Campbell 1977; Slobodkin et al. 1991; Levitis and Goldstein 2013). In contrast, our results 

that size at the start of starvation of previously fed polyps does not influence the survival 

outcome in this period are relativizing the importance of size for maintenance and survival. 

 

Remarkably, we could not find traces for a direct trade-off between starvation survival and 

asexual reproduction within feeding levels (with bisection treatments separated and 

combined). Neither was size at the initiation of the starvation phase correlated with the 

following starvation survival time. From this we can conclude that no real trade-off between 

size, reproduction and maintenance seems to exist in Hydra, they seem to be uncoupled from 

each other although all three traits are basically run by the same system. A recent review on 

the transcription factor FOXO, an important key regulator for many target genes and 

molecular pathways in a cell determining resource allocation in metazoans, suggests that all 

of the three traits - maintenance, asexual reproduction and growth/size - are regulated via 

FOXO in Hydra (Schaible and Sussman 2013). Hydra‟s constitutive proliferative cell 

renewal machinery seems to offer a certain plasticity which is responsible for the observed 

patterns of a missing direct trade-off in our experiment, since all three key traits are regulated 
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by that same mechanism, which itself is regulated via FOXO activity. The only level where 

we could detect a trade-off was between the feeding regimes of 5 and 7 Artemia per week, 

where spare resources at the lower regime were limiting Hydra to use its cell proliferating 

renewal system just to maintain a stable body size and keep up maintenance without 

proliferating sufficient cells to allow budding, whereby at the higher regime budding could be 

established but at the cost of reduced maintenance capabilities resulting in much shorter 

starvation survival times. This might contradict somehow the suggested uncoupled nature of 

the three traits, but it does not necessarily oppose it. This trade-off rather reveals the 

interaction of key functions within Hydra at the threshold where just enough resources are 

provided that a polyp starts to propagate buds, which evidentially resulted in a weakened 

maintenance of such a parent polyp in our experiment. At this threshold, and only there, a 

cost of reproduction becomes evident with less resources available for maintenance, resulting 

in a coupled pattern. Increased cell proliferation accompanied with the loss of a substantial 

amount of cells due to the budding process could be an explanation for the reduced 

maintenance potential at this threshold level. The proportion of resources taken away from a 

polyp via budding at this food level seems to be too large to be compensated for by the 

constitutive proliferative cell renewal to sustain as much maintenance as on respective lower 

or higher feeding levels. With increasing resources provided at increasing feeding levels the 

budding cost vanishes and the imbalance gets resolved within the polyp, maintenance is 

rising.  

The uncoupled nature of the three traits displays itself also in the vast heterogeneity we find 

in all traits within and across treatments and controls. Interestingly and throughout treatments 

of the two higher feeding levels at which budding occurred regularly, polyps tended not to 

maintain an individual-specific averaged daily budding rate during our experiments since 

rates before and after bisection were uncorrelated, even in the controls. This contrasts our 
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previous findings for Hydra‟s budding behaviour (see chapter IV), where we observed rather 

stable budding rates per polyps and suggested a specific individual character stability and 

homeostasis over time in the light of the huge heterogeneity found between polyps, even 

when all controllable environmental factors are kept on a constant level. Possibly, our feeding 

phases here were too short to measure stabilized budding rates since we fed polyps only for 

four to five weeks before and after bisection compared to much longer durations in the 

experiments of chapter IV. In light of the slight budding increase we found in both treatments 

and controls after bisection in both higher feeding regimes compared to before, this non-

stability in budding may be affected by a hormetic stress effect. Since not only the bisected 

polyps were affected, but also the controls, the short starvation period after bisection, where 

feeding was lowered in all groups due to the applied treatment, rather than the bisection itself 

seems to have triggered that effect. Our findings underline hereby the plasticity of Hydra‟s 

efficiency, we found similar hormetic effects before in Hydra in response to temperature and 

starvation stresses (Chapter III). Another striking feature and indication of a hormetic 

response we found in our study is that both head and foot regenerates had similar, if not even 

slightly enhanced budding rates and starvation survival compared to the controls, without that 

a clear trade-off regarding size patterns was obvious between the groups either. This is 

surprising since these two groups consisted just of half of the tissue after bisection as their 

uncut counter controls and all individuals got the same amount of food after on. Here, the 

bisection itself seems to have caused that additional hormetic response on top of the effect of 

the interim starvation. Hydra shows evidence of being able to increase its metabolic 

efficiency as a stress response. It is still puzzling why the optimal metabolic efficiency is not 

reached during rather stable, optimal and non-stressful conditions and unclear what remains 

the trade-off to this effect and how long such an increased performance can be maintained, as 

hormetic effects appear to be mostly of a transient nature (Stebbing 1982), but not by all 
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means (Rattan 2008; Calabrese et al. 2012). Previously, we hypothesized that a constant 

excessive food supply may lead to more inefficiency and a certain slackness on energy 

utilization (Chapter III), but further experiments are needed to clear these propositions. 

A so far unmentioned but potentially very influential factor regarding phenotypic 

heterogeneity within and between ramets is the epibiome of polyps, consisting of various 

usually single celled organisms. These “holobiontic” or “metaorganismic” relationships and 

variations turn recently more and more into focus of research, especially in Hydra (Bosch and 

McFall-Ngai 2011; Bosch 2012; Bosch 2012; McFall-Ngai et al. 2013), and constitute a 

promising concept to reveal new insights into microecosystems of clonal organisms. 

 

Heritability 

Budding behaviour and starvation survival are not directly inherited in Hydra from parent to 

bud as our results show in the comparison of the offspring generations to their parents at the 

two highest feeding levels. Bisection and feeding level did not alter this pattern at all. From 

these results it seems that each bud is attaining its specific individual phenotypic character 

rather independently of its parent, if we can speak of a phenotypic character at all. Such a 

character would determine the resource allocation pattern of an individual onto a certain level 

and express itself in an individual specific, rather stable budding rate and starvation survival. 

Regarding the budding rates we could not find a stable character when comparing before 

versus after budding rates, as mentioned above. Plus, the hormetic responses we measured 

hint to a specific character plasticity over time with dynamic resource allocations within a 

polyp responding to actual environmental stressors. This expands the findings on Hydra‟s 

phenotypic plasticity and its random phenotype allocation of chapter IV, specifically 

regarding Hydra‟s budding behaviour, where we found rather stable budding rates over time, 

but measured under constant conditions (Chapter IV).  
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It is to be considered, though, that we did not have completely identical situations between 

parents and offspring generations in our experiments. In the fed buds at the highest feeding 

level, polyps were treated in the same way as their parents after bisection, but without the 

bisection itself. The two other offspring generations we surveyed at 21 and 7 Artemia feeding 

levels were both kept unfed and unbisected. Thus, when checking for heritability here we did 

not have a parent-offspring comparison under exactly the same (pre-)conditions. Still, since 

we could not determine clear trait inheritance patterns in any of the groups, these 

considerations might be overcautious in the end and we can conclude that Hydra shows no 

indication of inheriting any individual-specific phenotypic trait merits from parent to 

offspring via budding.  

 

CONCLUSIONS 

 

Simulated predation stress in the form of bisection triggers a hormetic response in Hydra, 

whereby head and foot regenerates do not display significant differences from each other. An 

increased maintenance and reproduction efficiency could be detected after bisection, both 

budding rates and starvation survival reached similar, if not slightly increased levels 

compared to uncut controls. Considering that only half of the original body mass was 

available to both bisected groups, a clear hormetic response can be inferred from these 

results. Additionally to bisection, temporal food shortage alone seems to trigger hormetic 

reactions as well, as both control and bisected groups had enhanced budding rates after the 

shortened food supply period accompanying bisection.  

A trade-off could be determined only at the threshold feeding level of 7 Artemia per week per 

polyp. With resources deviated to starting reproduction, less were available for maintenance, 

starvation survival decreased sharply. At lower or higher feeding regimes, none such an 
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effect was visible. Apart from this trade-off, all three key life history traits were uncoupled 

from each other - size, survival or budding showed no correlation. No signs of inheritance of 

trait merits from parent to bud could be detected, except of an overall hormetic effect 

transmission shown in the offspring buds at the highest feeding regime. The constitutive 

proliferative cell renewal machinery in Hydra renders the polyp into a dynamic organism 

with heterogeneous phenotypic states between and within polyps, respondent to 

environmental stress triggers. Furthermore, the overall organismal efficiency can be enhanced 

in a hormetic response without that any costs were detectable in our experiment.  
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Figure 1. Normal (left) and bisected (right) polyp. Hydra magnipapillata 
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Figure 2. Average starvation survival of Hydra polyps across all feeding regimes and bisection treatments. H, 

F and C represent polyp head/foot halves and controls. The adjoint numbers stand for the respective feeding 

levels. Different lower case letters indicate significant differences between feeding levels or bisection treatments 

in the post-hoc comparisons (two-way ANOVA, Tukey post-hoc tests, p<0.05, see tables S1-3 in the 

supplemental material). Error bars represent standard errors. 

 

Figure 3. Average starvation survival of Hydra polyps. Parents versus fed offspring cohort in the highest 

feeding regime. H, F and C represent polyp head/foot halves and controls. The adjoint numbers stand for the 

respective feeding level, while I- indicates the offspring polyps. Error bars represent standard errors. A 

significant overall generation effect was found (two-way ANOVA, Tukey post-hoc test, p<0.05, see tables S4-5 

in the supplemental material). Different lower case letters indicate significant differences between separated 

groups (one-way ANOVA, Tukey post-hoc test, p<0.05, see tables S6-7 in the supplemental material).  
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Figure 4. Average starvation survival of Hydra polyps. Unfed offspring cohorts in comparison to parents. H, 

F and C represent polyp head/foot halves and controls. The adjoint numbers stand for the respective feeding 

levels, while I- & II- indicate the offspring polyps. Error bars represent standard errors. Unfed polyps survived 

obviously much shorter than their parents during starvation. Feeding level of parents still had a significant effect 

on unfed offspring‟s starvation survival, no bisection effects were evident (two-way ANOVA, Tukey post-hoc 

test, p<0.05, see tables S8-9 in the supplemental material).  
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Figure 5. Average budding rate of Hydra polyps across all feeding regimes and bisection treatments. Budding 

before and after bisection. H, F and CA represent polyp head/foot halves and controls after bisection. T and CB 

represent treatment and control polyps before bisection. The adjoint numbers stand for the respective feeding 

levels. Error bars represent standard errors. See supplementary tables for distinct treatment effects (two-way 

ANOVA, Tukey post-hoc tests, p<0.05, see tables S10-12 in the supplemental material).  

Figure 6. Average budding rate of Hydra polyps. Parents versus fed offspring budding in the highest feeding 

regime. H, F and C represent polyp head/foot halves and controls (after bisection for parents). The adjoint 

numbers stand for the respective feeding levels, while I- indicates the offspring polyps. Error bars represent 

standard errors. No differences between parents and offspring groups could be found and bisection had no 

general effect (one and two-way ANOVAs, Tukey post-hoc tests, p>0.05, see tables S13-16 in the supplemental 

material). 
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Figure 7. Average Hydra sizes throughout the experiment. Error bars represent standard deviations. 
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Figure 8. Survival heritability between parent versus fed offspring in the highest feeding regime. Error bars 

represent 95% confidence intervals. No significant heritability existed (linear regression, p>0.05, see table S17, 

supplemental material), separated bisection groups and controls showed also no significant heritability (data not 

shown).  



 

179 
 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 9. Budding heritability between parents versus fed offspring in the highest feeding regime. Error bars 

represent 95% confidence intervals. The only significant heritability is shown here with a positive slope of .707, 

but an r
2
 of .23 (linear regression, p<0.05, see tables S18, supplemental material), no heritability was found in 

feet and controls and all three groups combined (data not shown).  
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Figure 10. Survival heritability between parents versus their unfed offspring in the two highest (separated) 

feeding regimes. Error bars represent 95% confidence intervals. The strongest heritability is shown here with a 

positive slope of .356 and an r
2
 of .521 (linear regression, p<0.05, see tables S19, supplemental material), all 

other separate and combined (within feeding levels) regressions had varying slopes (positive/negative) with 

much lower r
2
 values and/or were insignificant (see figures S1-2 and tables S20-21 for combined regression 

results, supplemental material, further data not shown).   
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Figure 11. Budding rates before versus after bisection in the two highest (separated) feeding regimes. Error 

bars represent 95% confidence intervals. The strongest relationship is shown here with a positive slope of .249, 

but an r
2
 of .145 (linear regression, p<0.05, see tables S22, supplemental material). All other separate and 

combined (within feeding regimes) regressions had varying slopes (positive/negative) with even lower r
2
 values 

and/or were insignificant (data not shown).   
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Figure 12. Budding versus starvation survival trade-off in the two highest (separated) feeding regimes. Error 

bars represent 95% confidence intervals. The non-significant regression with the highest r
2
 is shown here (linear 

regressions, p>0.05, see table S23, supplemental material). All other separate and combined (within feeding 

regimes) regressions had varying slopes (positive/negative) with even lower r
2
 values (data not shown).   
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Figure 13. Budding versus starvation survival trade-off in fed offspring polyps of the highest feeding regime. 

Error bars represent 95% confidence intervals. The strongest correlation is shown here with an r
2
 of .22 (linear 

regression, p<0.05, see tables S24, supplemental material). All other separate and combined regressions had 

lower r
2
 values and/or were insignificant (data not shown).   
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Figure 14. Budding versus starvation survival trade-off in parents and fed offspring polyps of the highest 

feeding regime combined. Error bars represent 95% confidence intervals. The non-significant regressions with 

the highest r
2
 is shown here (linear regressions, p>0.05, see table S25, supplemental material). All other separate 

and combined regressions had even lower r
2
 values and/or were insignificant as well (data not shown).   
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Figure 15. Size at starvation start versus starvation survival trade-off in all (separated) feeding regimes. 

Error bars represent 95% confidence intervals. No significant regression was found, parents 21 are shown as 

example (linear regression, p>0.05, see table S26, supplemental material). All other separate and combined 

(within feeding regimes) regressions were also insignificant (data not shown).   
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SUPPLEMENTAL MATERIAL 
 

 

 

 

 

Tests of Between-Subjects Effects 

Dependent Variable: Survivalparents 

Source Type III Sum of 

Squares 

df Mean Square F Sig. 

Corrected Model 17262.144
a
 11 1569.286 14.182 .000 

Intercept 896535.591 1 896535.591 8102.304 .000 

HeadFootorControl 578.379 2 289.189 2.614 .076 

Feedingrate 16069.854 4 4017.464 36.307 .000 

HeadFootorControl * 

Feedingrate 
94.196 5 18.839 .170 .973 

Error 22241.039 201 110.652   

Total 1262506.000 213    

Corrected Total 39503.183 212    

a. R Squared = .437 (Adjusted R Squared = .406) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table S1. Two-way ANOVA relating to figure 2. 

 

Table S2. Tukey post-hoc test relating to figure 2. 6, 9 and 8 represent foot/head halves and controls. 

 
Dependent Variable: Survivalparents 

  (I) 

HeadFootorControl 
(J) 

HeadFootorControl 
Mean 

Difference 

(I-J) 

Std. 

Error 
Sig. 95% Confidence 

Interval 

  Lower 

Bound 
Upper 

Bound 

Tukey 

HSD 

6.00 
8.00 5.7912

* 1.94733 .009 1.1931 10.3892 
9.00 1.1519 1.62325 .758 -2.6809 4.9848 

8.00 
6.00 -5.7912

* 1.94733 .009 -

10.3892 -1.1931 

9.00 -4.6392
* 1.93926 .046 -9.2182 -.0602 

9.00 
6.00 -1.1519 1.62325 .758 -4.9848 2.6809 
8.00 4.6392

* 1.93926 .046 .0602 9.2182 
Based on observed means. 
 The error term is Mean Square(Error) = 110.652. 
*. The mean difference is significant at the .05 level. 
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Table S3. Tukey post-hoc test relating to figure 2.  

 
 
Dependent Variable: Survivalparents 

  
(I) 
Feedingrate 

(J) 
Feedingrate 

Mean 
Difference 

(I-J) 

Std. 
Error 

Sig. 95% Confidence 
Interval 

  
Lower 

Bound 

Upper 

Bound 

Tukey 
HSD 

1.00 

3.00 -6.8537 3.10336 .181 
-

15.3963 
1.6889 

5.00 -18.8942
*
 3.06061 .000 

-
27.3191 

-
10.4692 

7.00 4.2042 2.35673 .386 -2.2832 10.6916 

21.00 -13.8052
*
 2.38786 .000 

-
20.3782 

-7.2321 

3.00 

1.00 6.8537 3.10336 .181 -1.6889 15.3963 

5.00 -12.0405
*
 3.28660 .003 

-
21.0875 

-2.9935 

7.00 11.0579
*
 2.64359 .000 3.7809 18.3349 

21.00 -6.9514 2.67138 .074 
-

14.3049 
.4020 

5.00 

1.00 18.8942
*
 3.06061 .000 10.4692 27.3191 

3.00 12.0405
*
 3.28660 .003 2.9935 21.0875 

7.00 23.0984
*
 2.59328 .000 15.9599 30.2369 

21.00 5.0890 2.62160 .299 -2.1275 12.3055 

7.00 

1.00 -4.2042 2.35673 .386 
-

10.6916 
2.2832 

3.00 -11.0579
*
 2.64359 .000 

-
18.3349 

-3.7809 

5.00 -23.0984
*
 2.59328 .000 

-
30.2369 

-
15.9599 

21.00 -18.0093
*
 1.74917 .000 

-
22.8243 

-
13.1944 

21.00 

1.00 13.8052
*
 2.38786 .000 7.2321 20.3782 

3.00 6.9514 2.67138 .074 -.4020 14.3049 

5.00 -5.0890 2.62160 .299 
-

12.3055 
2.1275 

7.00 18.0093
*
 1.74917 .000 13.1944 22.8243 

Based on observed means. 

 The error term is Mean Square(Error) = 110.652. 

*. The mean difference is significant at the .05 level. 
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Tests of Between-Subjects Effects 

Dependent Variable: Survival21parentsvs21offspringfed 

Source Type III Sum of 

Squares 

df Mean Square F Sig. 

Corrected Model 2764.365
a
 5 552.873 4.349 .001 

Intercept 1077930.080 1 1077930.080 8479.888 .000 

HeadFootorControl 770.292 2 385.146 3.030 .052 

Generation 1968.875 1 1968.875 15.489 .000 

HeadFootorControl * 

Generation 
128.616 2 64.308 .506 .604 

Error 17160.671 135 127.116   

Total 1106731.000 141    

Corrected Total 19925.035 140    

a. R Squared = .139 (Adjusted R Squared = .107) 

 

 

 

 

 

 

 

 
Dependent Variable: Survival21parentsvs21offspringfed 

  (I) 

HeadFootorControl 
(J) 

HeadFootorControl 
Mean 

Difference 

(I-J) 

Std. Error Sig. 95% Confidence 

Interval 

  Lower 

Bound 
Upper 

Bound 

Tukey 

HSD 

6.00 
8.00 5.0435 2.35091 .085 -.5278 10.6148 
9.00 1.0492 2.31465 .893 -4.4361 6.5346 

8.00 
6.00 -5.0435 2.35091 .085 -10.6148 .5278 
9.00 -3.9942 2.31465 .199 -9.4796 1.4911 

9.00 
6.00 -1.0492 2.31465 .893 -6.5346 4.4361 
8.00 3.9942 2.31465 .199 -1.4911 9.4796 

Based on observed means. 
 The error term is Mean Square(Error) = 127.116. 
 

 

 

 

Table S4. Two-way ANOVA relating to figure 3. 

 

Table S5. Tukey post-hoc test relating to figure 3. 6, 9 and 8 represent foot/head halves and controls. 
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Tests of Between-Subjects Effects 

Dependent Variable: Survival21parentsvs21offspringfed 

Source Type III Sum of 

Squares 

df Mean Square F Sig. 

Corrected Model 2764.365
a
 5 552.873 4.349 .001 

Intercept 1077930.080 1 1077930.080 8479.888 .000 

HeadFootControlparentvsoff

spring 
2764.365 5 552.873 4.349 .001 

Error 17160.671 135 127.116   

Total 1106731.000 141    

Corrected Total 19925.035 140    

a. R Squared = .139 (Adjusted R Squared = .107) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table S6. One-way ANOVA relating to figure 3. 
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Table S7. Tukey post-hoc test relating to figure 3. 6, 9 and 8 represent parent foot/head halves and controls. 

60, 90 and 80 represent offspring foot/head halves and controls. 
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Tests of Between-Subjects Effects 

Dependent Variable: Survivalunfed 

Source Type III Sum of 

Squares 

df Mean Square F Sig. 

Corrected Model 6470.051
a
 5 1294.010 8.032 .000 

Intercept 309137.872 1 309137.872 1918.791 .000 

Feedingrate 6054.669 1 6054.669 37.581 .000 

HeadFootControlunfed 66.071 2 33.035 .205 .815 

Feedingrate * 

HeadFootControlunfed 
131.784 2 65.892 .409 .666 

Error 14983.302 93 161.111   

Total 356697.000 99    

Corrected Total 21453.354 98    

a. R Squared = .302 (Adjusted R Squared = .264) 

 

 

 

 

 

 

 

Dependent Variable: Survivalunfed  
 Tukey HSD 
(I) 

HeadFootControlunfed 
(J) 

HeadFootControlunfed 
Mean 

Difference 

(I-J) 

Std. 

Error 
Sig. 95% Confidence Interval 

Lower 

Bound 
Upper 

Bound 

6.00 
8.00 3.8753 3.20844 .452 -3.7667 11.5172 
9.00 2.7402 3.03543 .640 -4.4896 9.9700 

8.00 6.00 -3.8753 3.20844 .452 -11.5172 3.7667 
9.00 -1.1351 3.16715 .932 -8.6786 6.4085 

9.00 
6.00 -2.7402 3.03543 .640 -9.9700 4.4896 
8.00 1.1351 3.16715 .932 -6.4085 8.6786 

Based on observed means. 
 The error term is Mean Square(Error) = 161.111. 
 

 

 

 

 

Table S9. Tukey post-hoc test relating to figure 4. 6, 9 and 8 represent foot/head halves and controls of unfed 

offspring polyps.  

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table S8. Two-way ANOVA relating to figure 4.  
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Tests of Between-Subjects Effects 

Dependent Variable: BuddingBeforeAndAfter 

Source Type III Sum of 

Squares 

df Mean Square F Sig. 

Corrected Model 1.136
a
 18 .063 163.350 .000 

Intercept .577 1 .577 1493.388 .000 

Beforevsafterinclfeedingdisti

nct 
.670 6 .112 289.039 .000 

BisectionHFCT .001 4 .000 .535 .710 

Beforevsafterinclfeedingdisti

nct * BisectionHFCT 
.002 5 .000 1.192 .312 

Error .165 428 .000   

Total 2.182 447    

Corrected Total 1.301 446    

a. R Squared = .873 (Adjusted R Squared = .868) 

 

 

 

 

 
Dependent Variable: BuddingBeforeAndAfter 

  (I) 

Beforevsafterincl 

feedingdistinct 

(J) 

Beforevsafterincl 

feedingdistinct 

Mean 

Difference 

(I-J) 

Std. 

Error 
Sig. 95% Confidence Interval 

  Lower Bound Upper Bound 

Tukey 

HSD 

1.00 

3.00 .0000 .00655 1.000 -.0208 .0208 
5.00 -.0153 .00655 .371 -.0361 .0056 
7.00 -.0118 .00528 .434 -.0286 .0050 
10.00 .0028 .00567 1.000 -.0153 .0208 
21.00 -.1002

* .00529 .000 -.1170 -.0834 
30.00 .0028 .00567 1.000 -.0153 .0208 
50.00 .0023 .00567 1.000 -.0157 .0204 
70.00 -.0198

* .00512 .005 -.0361 -.0035 
210.00 -.1222

* .00510 .000 -.1384 -.1060 

3.00 

1.00 .0000 .00655 1.000 -.0208 .0208 
5.00 -.0153 .00655 .371 -.0361 .0056 
7.00 -.0118 .00528 .434 -.0286 .0050 
10.00 .0028 .00567 1.000 -.0153 .0208 
21.00 -.1002

* .00529 .000 -.1170 -.0834 
30.00 .0028 .00567 1.000 -.0153 .0208 
50.00 .0023 .00567 1.000 -.0157 .0204 
70.00 -.0198

* .00512 .005 -.0361 -.0035 
210.00 -.1222

* .00510 .000 -.1384 -.1060 
5.00 1.00 .0153 .00655 .371 -.0056 .0361 

Table S10. Two-way ANOVA relating to figure 5.  
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Table S11. Tukey post-hoc test relating to figure 5. 1,3,5,7 and 21 represent polyps at respective feeding levels 

before bisetion, 10, 30, 50, 70 and 210 represent polyps after bisection.  

 relating to figure 5.  
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3.00 .0153 .00655 .371 -.0056 .0361 
7.00 .0035 .00528 1.000 -.0133 .0203 
10.00 .0181

* .00567 .050 .0000 .0361 
21.00 -.0849

* .00529 .000 -.1017 -.0681 
30.00 .0181

* .00567 .050 .0000 .0361 
50.00 .0176 .00567 .062 -.0004 .0357 
70.00 -.0045 .00512 .997 -.0208 .0118 
210.00 -.1069

* .00510 .000 -.1232 -.0907 

7.00 

1.00 .0118 .00528 .434 -.0050 .0286 
3.00 .0118 .00528 .434 -.0050 .0286 
5.00 -.0035 .00528 1.000 -.0203 .0133 
10.00 .0146

* .00414 .017 .0014 .0278 
21.00 -.0884

* .00360 .000 -.0998 -.0769 
30.00 .0146

* .00414 .017 .0014 .0278 
50.00 .0141

* .00414 .024 .0010 .0273 
70.00 -.0080 .00335 .337 -.0186 .0027 
210.00 -.1104

* .00331 .000 -.1210 -.0999 

10.00 

1.00 -.0028 .00567 1.000 -.0208 .0153 
3.00 -.0028 .00567 1.000 -.0208 .0153 
5.00 -.0181

* .00567 .050 -.0361 .0000 
7.00 -.0146

* .00414 .017 -.0278 -.0014 
21.00 -.1030

* .00416 .000 -.1162 -.0897 
30.00 .0000 .00463 1.000 -.0147 .0147 
50.00 -.0004 .00463 1.000 -.0152 .0143 
70.00 -.0226

* .00394 .000 -.0351 -.0100 
210.00 -.1250

* .00391 .000 -.1374 -.1126 

21.00 

1.00 .1002
* .00529 .000 .0834 .1170 

3.00 .1002
* .00529 .000 .0834 .1170 

5.00 .0849
* .00529 .000 .0681 .1017 

7.00 .0884
* .00360 .000 .0769 .0998 

10.00 .1030
* .00416 .000 .0897 .1162 

30.00 .1030
* .00416 .000 .0897 .1162 

50.00 .1025
* .00416 .000 .0893 .1157 

70.00 .0804
* .00336 .000 .0697 .0911 

210.00 -.0220
* .00333 .000 -.0326 -.0114 

30.00 

1.00 -.0028 .00567 1.000 -.0208 .0153 
3.00 -.0028 .00567 1.000 -.0208 .0153 
5.00 -.0181

* .00567 .050 -.0361 .0000 
7.00 -.0146

* .00414 .017 -.0278 -.0014 
10.00 .0000 .00463 1.000 -.0147 .0147 
21.00 -.1030

* .00416 .000 -.1162 -.0897 
50.00 -.0004 .00463 1.000 -.0152 .0143 
70.00 -.0226

* .00394 .000 -.0351 -.0100 
210.00 -.1250

* .00391 .000 -.1374 -.1126 

50.00 
1.00 -.0023 .00567 1.000 -.0204 .0157 
3.00 -.0023 .00567 1.000 -.0204 .0157 
5.00 -.0176 .00567 .062 -.0357 .0004 
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7.00 -.0141
* .00414 .024 -.0273 -.0010 

10.00 .0004 .00463 1.000 -.0143 .0152 
21.00 -.1025

* .00416 .000 -.1157 -.0893 
30.00 .0004 .00463 1.000 -.0143 .0152 
70.00 -.0221

* .00394 .000 -.0346 -.0096 
210.00 -.1246

* .00391 .000 -.1370 -.1121 

70.00 

1.00 .0198
* .00512 .005 .0035 .0361 

3.00 .0198
* .00512 .005 .0035 .0361 

5.00 .0045 .00512 .997 -.0118 .0208 
7.00 .0080 .00335 .337 -.0027 .0186 
10.00 .0226

* .00394 .000 .0100 .0351 
21.00 -.0804

* .00336 .000 -.0911 -.0697 
30.00 .0226

* .00394 .000 .0100 .0351 
50.00 .0221

* .00394 .000 .0096 .0346 
210.00 -.1024

* .00305 .000 -.1121 -.0927 

210.00 

1.00 .1222
* .00510 .000 .1060 .1384 

3.00 .1222
* .00510 .000 .1060 .1384 

5.00 .1069
* .00510 .000 .0907 .1232 

7.00 .1104
* .00331 .000 .0999 .1210 

10.00 .1250
* .00391 .000 .1126 .1374 

21.00 .0220
* .00333 .000 .0114 .0326 

30.00 .1250
* .00391 .000 .1126 .1374 

50.00 .1246
* .00391 .000 .1121 .1370 

70.00 .1024
* .00305 .000 .0927 .1121 

Based on observed means. 
 The error term is Mean Square(Error) = .000. 
*. The mean difference is significant at the .05 level. 
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Dependent Variable: BuddingBeforeAndAfter 
  (I) 

BisectionHFCT 
(J) 

BisectionHFCT 
Mean 

Difference 

(I-J) 

Std. Error Sig. 95% Confidence Interval 

  Lower Bound Upper Bound 

Tukey 

HSD 

4.00 

5.00 -.0493
* .00370 .000 -.0606 -.0381 

6.00 -.0640
* .00377 .000 -.0755 -.0525 

7.00 -.0517
* .00369 .000 -.0629 -.0405 

8.00 -.0683
* .00375 .000 -.0797 -.0569 

9.00 -.0691
* .00377 .000 -.0806 -.0576 

60.00 .0076 .00378 .482 -.0039 .0191 
90.00 .0079 .00378 .429 -.0037 .0194 

5.00 

4.00 .0493
* .00370 .000 .0381 .0606 

6.00 -.0147
* .00368 .002 -.0259 -.0034 

7.00 -.0024 .00360 .998 -.0134 .0086 
8.00 -.0190

* .00367 .000 -.0301 -.0078 
9.00 -.0198

* .00368 .000 -.0310 -.0086 
60.00 .0569

* .00370 .000 .0456 .0682 
90.00 .0572

* .00370 .000 .0459 .0685 

6.00 

4.00 .0640
* .00377 .000 .0525 .0755 

5.00 .0147
* .00368 .002 .0034 .0259 

7.00 .0123
* .00367 .020 .0011 .0235 

8.00 -.0043 .00373 .945 -.0157 .0071 
9.00 -.0051 .00375 .873 -.0165 .0063 
60.00 .0716

* .00377 .000 .0601 .0830 
90.00 .0719

* .00377 .000 .0604 .0833 

7.00 

4.00 .0517
* .00369 .000 .0405 .0629 

5.00 .0024 .00360 .998 -.0086 .0134 
6.00 -.0123

* .00367 .020 -.0235 -.0011 
8.00 -.0166

* .00365 .000 -.0277 -.0055 
9.00 -.0174

* .00367 .000 -.0286 -.0062 
60.00 .0593

* .00369 .000 .0481 .0705 
90.00 .0596

* .00369 .000 .0484 .0708 

8.00 

4.00 .0683
* .00375 .000 .0569 .0797 

5.00 .0190
* .00367 .000 .0078 .0301 

6.00 .0043 .00373 .945 -.0071 .0157 
7.00 .0166

* .00365 .000 .0055 .0277 
9.00 -.0008 .00373 1.000 -.0122 .0105 
60.00 .0759

* .00375 .000 .0645 .0873 

Table S12. Tukey post-hoc test relating to figure 5. 4, 5 and 7 represent low/high treatment and control before 

bisection. 6, 9 and 8 represent foot/head halves and controls after bisection in the two highest feeding regimes. 

60 and 90 stand for foot and head halves after bisection in the three lower feeding regimes.  
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90.00 .0762
* .00375 .000 .0648 .0876 

9.00 

4.00 .0691
* .00377 .000 .0576 .0806 

5.00 .0198
* .00368 .000 .0086 .0310 

6.00 .0051 .00375 .873 -.0063 .0165 
7.00 .0174

* .00367 .000 .0062 .0286 
8.00 .0008 .00373 1.000 -.0105 .0122 
60.00 .0767

* .00377 .000 .0652 .0882 
90.00 .0770

* .00377 .000 .0655 .0885 

60.00 

4.00 -.0076 .00378 .482 -.0191 .0039 
5.00 -.0569

* .00370 .000 -.0682 -.0456 
6.00 -.0716

* .00377 .000 -.0830 -.0601 
7.00 -.0593

* .00369 .000 -.0705 -.0481 
8.00 -.0759

* .00375 .000 -.0873 -.0645 
9.00 -.0767

* .00377 .000 -.0882 -.0652 
90.00 .0003 .00378 1.000 -.0112 .0118 

90.00 

4.00 -.0079 .00378 .429 -.0194 .0037 
5.00 -.0572

* .00370 .000 -.0685 -.0459 
6.00 -.0719

* .00377 .000 -.0833 -.0604 
7.00 -.0596

* .00369 .000 -.0708 -.0484 
8.00 -.0762

* .00375 .000 -.0876 -.0648 
9.00 -.0770

* .00377 .000 -.0885 -.0655 
60.00 -.0003 .00378 1.000 -.0118 .0112 

Based on observed means. 
 The error term is Mean Square(Error) = .000. 
*. The mean difference is significant at the .05 level. 
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Tests of Between-Subjects Effects 

Dependent Variable: buds21parentsvsoffspringfed 

Source Type III Sum of 

Squares 

df Mean Square F Sig. 

Corrected Model .008
a
 5 .002 1.712 .135 

Intercept 2.752 1 2.752 2832.527 .000 

HeadFootControlparentvsoff

spring 
.008 5 .002 1.712 .135 

Error .156 161 .001   

Total 2.923 167    

Corrected Total .165 166    

a. R Squared = .050 (Adjusted R Squared = .021) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table S13. One-way ANOVA relating to figure 6.  
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Table S14. Tukey post-hoc test relating to figure 6. 6, 9 and 8 represent parent foot/head halves and controls. 60, 90 

and 80 represent offspring foot/head halves and controls. 
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Tests of Between-Subjects Effects 

Dependent Variable: buds21parentsvsoffspringfed 

Source Type III Sum of 

Squares 

df Mean Square F Sig. 

Corrected Model .008
a
 5 .002 1.712 .135 

Intercept 2.752 1 2.752 2832.527 .000 

HeadFootorControl .006 2 .003 3.017 .052 

Generation .002 1 .002 2.123 .147 

HeadFootorControl * 

Generation 
.000 2 .000 .166 .847 

Error .156 161 .001   

Total 2.923 167    

Corrected Total .165 166    

a. R Squared = .050 (Adjusted R Squared = .021) 

 

 

 
 
 
Dependent Variable: buds21parentsvsoffspringfed 

  (I) 

HeadFootorControl 
(J) 

HeadFootorControl 
Mean 

Difference 

(I-J) 

Std. 

Error 
Sig. 95% Confidence 

Interval 

  Lower 

Bound 
Upper 

Bound 

Tukey 

HSD 

6.00 
8.00 -.0095 .00597 .254 -.0236 .0047 
9.00 -.0142

* .00587 .043 -.0281 -.0003 

8.00 
6.00 .0095 .00597 .254 -.0047 .0236 
9.00 -.0048 .00589 .700 -.0187 .0092 

9.00 
6.00 .0142

* .00587 .043 .0003 .0281 
8.00 .0048 .00589 .700 -.0092 .0187 

Based on observed means. 
 The error term is Mean Square(Error) = .001. 
*. The mean difference is significant at the .05 level. 
 

 

 

 

Table S15. Two-way ANOVA relating to figure 6.  
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Table S16. Tukey post-hoc test relating to figure 6. 6, 9 and 8 represent combined foot/head halves and 

controls.  
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ANOVA
a
 

Model Sum of Squares df Mean Square F Sig. 

1 

Regression 97.411 1 97.411 .602 .441
b
 

Residual 8732.142 54 161.706   

Total 8829.554 55    

 

 

 

 

 

 

 

ANOVA
a
 

Model Sum of Squares df Mean Square F Sig. 

1 

Regression .007 1 .007 7.775 .010
b
 

Residual .024 26 .001   

Total .031 27    

 

 

 

Coefficients
a 

Model Unstandardized 

Coefficients 
Standardized 

Coefficients 
t Sig. 95.0% Confidence Interval for 

B 
B Std. 

Error 
Beta Lower Bound Upper Bound 

1 
(Constant) .049 .033   1.460 .156 -.020 .118 
BudsAfterBparents .707 .253 .480 2.788 .010 .186 1.228 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table S17. Linear Regression output relating to figure 8. Starvation survival heritability. Parent polyps 

versus fed offspring in highest feeding regime.  
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Tables S18. Linear Regression output relating to figure 9. Budding rate heritability. Parent head halves 

versus their fed offspring cohort in highest feeding regime.  
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ANOVA
a
 

Model Sum of Squares df Mean Square F Sig. 

1 

Regression 343.409 1 343.409 13.061 .004
b
 

Residual 315.519 12 26.293   

Total 658.929 13    

 

 

 

Coefficients
a
 

Model Unstandardized Coefficients Standardized 

Coefficients 

t Sig. 

B Std. Error Beta 

1 
(Constant) 25.134 6.725  3.737 .003 

SurvivalALL .356 .098 .722 3.614 .004 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Tables S19. Linear Regression output relating to figure 10. Starvation survival heritability. Parent head 

halves versus their unfed offspring cohort in the second highest feeding regime.  
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ANOVA
a
 

Model Sum of Squares df Mean Square F Sig. 

1 

Regression 525.516 1 525.516 2.405 .129
b
 

Residual 8522.728 39 218.531   

Total 9048.244 40    

 

Table S20. Extra to figure 10. Linear Regression output relating to figure S1. Starvation survival 

heritability. Parents versus their unfed offspring cohort in the highest feeding regime.  
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure S1. Extra to figure 10. Survival heritability between parents versus unfed offspring in the highest 

feeding regime. Error bars represent 95% confidence intervals. Linear regression was non-significant (p>0.05, 

see table S20). 
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ANOVA
a
 

Model Sum of Squares df Mean Square F Sig. 

1 

Regression 462.141 1 462.141 6.625 .014
b
 

Residual 2580.936 37 69.755   

Total 3043.077 38    

Figure S2. Extra to figure 10. Survival heritability between parents versus unfed offspring in the second 

highest feeding regime. Error bars represent 95% confidence intervals. Linear regression was significant 

(p<0.05, see table S21). 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Tables S21. Extra to figure 10. Linear Regression output relating to figure S2. Starvation survival 

heritability. Parents versus their unfed offspring cohort in the second highest feeding regime.  
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Coefficients
a
 

Model Unstandardized Coefficients Standardized 

Coefficients 

t Sig. 

B Std. Error Beta 

1 

(Constant) 30.725 7.284  4.218 .000 

SurvivalALL .277 .108 .390 2.574 .014 

 

 
 

 

 

 

 

 

 

 

ANOVA
a
 

Model Sum of Squares df Mean Square F Sig. 

1 

Regression .003 1 .003 4.422 .045
b
 

Residual .016 26 .001   

Total .018 27    

 

 

 

Coefficients
a
 

Model Unstandardized Coefficients Standardized 

Coefficients 

t Sig. 

B Std. Error Beta 

1 
(Constant) .091 .014  6.646 .000 

BeforeT21 .249 .119 .381 2.103 .045 

 

 

 

 

 

 

 

 

Tables S22. Linear Regression output relating to figure 11. Budding rates before versus after bisection in 

the highest feeding regime. Treatment polyps before bisection versus foot halves after bisection.  
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ANOVA
a
 

Model Sum of Squares df Mean Square F Sig. 

1 

Regression 270.033 1 270.033 2.901 .105
b
 

Residual 1768.539 19 93.081   

Total 2038.571 20    

 

 

 

 

 

 

 

 

ANOVA
a
 

Model Sum of Squares df Mean Square F Sig. 

1 

Regression 820.978 1 820.978 5.365 .032
b
 

Residual 2907.593 19 153.031   

Total 3728.571 20    

 

 

 

Coefficients
a
 

Model Unstandardized Coefficients Standardized 

Coefficients 

t Sig. 

B Std. Error Beta 

1 
(Constant) 111.921 7.846  14.265 .000 

B21OfffedF -138.836 59.941 -.469 -2.316 .032 

 

 

 

 

 

 

 

Table S23. Linear Regression output relating to figure 12. Budding versus starvation survival trade-off.  

Control polyps in the highest feeding regime. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Tables S24. Linear Regression output relating to figure 13. Budding versus starvation survival trade-off.  

Fed foot offspring in the highest feeding regime. 
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ANOVA
a
 

Model Sum of Squares df Mean Square F Sig. 

1 

Regression 300.835 1 300.835 2.615 .113
b
 

Residual 5061.534 44 115.035   

Total 5362.370 45    

 

 

 

 

 

 

 

 

ANOVA
a
 

Model Sum of Squares df Mean Square F Sig. 

1 

Regression 384.128 1 384.128 3.699 .059
b
 

Residual 6231.243 60 103.854   

Total 6615.371 61    

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table S25. Linear Regression output relating to figure 14. Budding versus starvation survival trade-off in 

parent controls and their offspring in the highest feeding regime combined.   
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table S26. Linear Regression output relating to figure 15. Size at starvation start versus starvation 

survival trade-off in parents of the highest feeding regime.  
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GENERAL DISCUSSION 

 

AGING PATTERNS IN BASAL METAZOANS 

 

It needs to be emphasized that it is absolutely essential to consider the organizational level of 

the individual one is looking at when it comes to aging in basal metazoans with their complex 

life cycles and –stages and their potential of clonal reproduction. A clonal organism could 

have disparate aging patterns between the ramet and genet level, comparable to differences in 

aging patterns within a non-clonal multicellular organism between its cells and the individual 

itself. Parallel different ramet life stages, like in many Medusozoans, need to be considered as 

well. In the clonal polyp Hydra for example, one can conclude that polyps on both ramet and 

genet levels show no senescence (Martinez 1998; Jones et al. 2014; Schaible et al. in 

preparation for submission), with a strong probability that Hydra‟s senescence is even 

negative on the genet level. In general, sexual reproduction is a very risky way to propagate. 

It coincides with high mortality risks at the very early stages of e.g. (embryonic) 

development, metamorphosis and settlement - compared to the vegetative asexual 

reproduction mode in which all these difficult phases are lacking, as in the case of Hydra. 

Taking this increased early life mortality risk for newly created genets into account, a 

negative senescence pattern on the clone level can be expected even in Hydra. In fact, the 

prevalence of negative senescence on the genet level is very likely to be the dominant pattern 

for all clonal organisms with both sexual and asexual reproduction modes. Surely, more 

detailed demographic studies of ramet and genet populations of clonal basal metazoans are 

needed to reconfirm this hypothesis, since the empirical demographic data situation is not yet 

very comprehensive till this day. Therefore, it is one of the major aims of this dissertation to 

bring more light into this neglected area of aging research by adding more demographic 
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experimental data on basal metazoans and raise awareness about the diversity of aging 

patterns in general. 

Most of the scant existent studies with life-history data on basal metazoans (Strehler 1961; 

Reiswig 1973; Brock 1974; Fell and Jacob 1979; Fell and Lewandrowski 1981; Brock 1984; 

Hughes 1987; Carre and Carre 1990; Babcock 1991; Carre and Carre 1991; Bavestrello et al. 

1992; Piraino et al. 1996; Lirman and Fong 1997; Miyake et al. 1997; Martinez 1998; Lucas 

2001; Bell and Barnes 2002; Garrabou and Harmelin 2002; Martinez 2002; Tanaka 2002; 

Wilson et al. 2002; Marschal et al. 2004; Albert 2005; Yoshida et al. 2006; Elahi and 

Edmunds 2007; Elahi and Edmunds 2007; Linares et al. 2007; McMurray et al. 2008; 

McMurray et al. 2010; Kubota 2011; Lucas et al. 2012; Jones et al. 2014; Schaible et al. in 

preparation for submission) tended to neglect the important distinction of genet versus ramet 

aging. One of the reasons for this neglect may be that most of the studies were conducted 

from an ecological point of view, without that aging or the demographic population patterns 

were on their focus. Therefore, the number of studied and sampled individuals per population 

also varied a lot and was usually rather low from a demographic perspective. Accordingly, 

relatively short time scales and low frequencies of observations were common. From those 

reviewed studies it is very hard to draw a conclusion about demographic aging in basal 

metazoans and the urgent need for more and thorough demographic aging studies on basal 

metazoans with complex life-cycles becomes apparent. 

      

Throughout the literature and based on the studies of me and my colleagues presented in this 

dissertation, I could not find clear evidence of genet senescence in basal metazoans. Martinez 

(2002) showed in his revised version of Hughes‟ data (1987), that hydroid colonies of 

Laomedea flexuosa, monitored and grown on Plexiglas sheets in the field in the southern 

North Sea, had abruptly declining age-specific survival rates after 18 days of rather constant 
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survival. Even if those colonies died of „age‟, and not by a disturbing natural force or 

environmental factor, which is always a potential uncontrollable factor in field studies, this 

would not necessarily imply genet senescence. Since hydroids of this species grow in huge 

stolonal networks, naturally on fronds of intertidal alga such as e.g. Fucus or Ascophyllum 

(Marfenin and Belorustseva 2008), and survive cutting experiments (Stebbing 2011), 

vegetative propagation by colony fission/breakoff is another plausible method of ramet 

multiplication. The genet itself may thus survive with continuously propagating ramet 

colonies of itself, as implied by previous studies (Marfenin and Belorustseva 2008; Stebbing 

2011). Furthermore, it has been noted that a L. flexuosa colony clone has been successfully 

maintained in a laboratory for over a decade (Wermuth 1980), which suggests that the 

number of degeneration-regeneration cycles of polyps on these colonies and of the colonies 

itself „appear to be intrinsically limitless‟ (Hughes 1989). The polyp recycling process, 

whereby polyps grow to a predetermined size, function for about a week in laboratory 

cultures of L. flexuosa (Strehler 1961), regress afterwards by autolysis (Brock 1970) and are 

replaced by new polyps developing from primordial cells (Crowell 1953), is the usual growth 

form of thecate hydroids (Hughes 1989). Hughes suggests that this cycle serves at least three 

main functions: 1) to replace „aging‟ polyps; 2) to excrete waste products and 3) to shed 

fouling organisms. While the latter two points make intuitively immediate sense, the first 

point might need some more consideration. Hughes proposes that this „aging‟ (meaning 

senescence strictly speaking) „seems to be an inevitable consequence of reduced mitotic 

activity associated with the cessation of growth and development‟. Considering a hydroid 

stolonal polyp colony as a dynamic cell system with a continuous high cell turnover 

sustaining its vitality, as it has been shown and discussed for the solitary polyp Hydra  

(Bosch and David 1984; Bosch 2007; Bosch et al. 2010; Schaible et al. in preparation for 

submission), the proposed localized stop of mitotic activity in a polyp of a colony can be 
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understood as a mechanism to establish the successful degeneration-regeneration cycle to 

sustain the latter two mentioned points. The polyps of the colony are hereby analogous to 

leaves on a tree who are shed frequently for similar reasons. This is supported by data within 

the same study by Hughes (1987), revised by Martinez (2002), in which a decline of age-

specific polyp survival within 16-24 days on the field colonies of L. flexuosa has been 

reported. However, Hughes found here in the field no evidence of the polyp regression-

regeneration cycles observed for this species under laboratory conditions. Interestingly, 

hydranths on older, central sections of the colony lived longer than the ones generated in 

young, peripheral parts of the colony. The lab data, on the other hand, describe these cycles 

very clearly (Brock 1974; Wermuth 1980; Hughes 1989; Stebbing 2011), and Brock (1974) 

reports detailed successive hydranth survivorship data of L. flexuosa laboratory colonies 

maintained for over three years under constant environmental conditions. Nevertheless, 

despite the finding of endogenous circannual rhythms in growth, development and hydranth 

longevity in absence of periodic signals from the environment (Brock 1974), a clear trend 

towards a decline in age-specific hydranth survival rates could be seen also for the laboratory 

cultures over observation time-spans of 12-26 days (Martinez 2002). Longest hydranth life 

spans between growth periods reached here 12 - 42 days at 10°C, while the colonies itself 

persisted continuously (Brock 1974).  

The aging patterns we see in L. flexuosa are, associated with the growth patterns, exemplary 

for thecate hydroids and many more Cnidarians. In athecate hydroids, like Eleutheria, the 

stolonal and polyp growth patterns are, in respect to the degeneration-regeneration cycles, 

principally very alike. The colonies persist over many years, whereby the polyps regress and 

regrow continuously (Schierwater 1989a)(own observations, see chapter I and II). Analogous 

patterns can be found in corals and colonial anemones.  
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Important to note is, wherever an organism has the potential to propagate clonally during one 

of its life stages, or grows in a colonial form, its genet distributes the chance of dying onto 

several units, i.e. the ramets, thereby lowering the mortality risk for itself in general. The 

typical and most expected genet aging pattern for such clonal organisms is therefore of a 

negative senescent type. An exemplary case of negative genet senescence has been described 

in the thorough study by Babcock on three scleractinian corals in Australia (Babcock 1991; 

Vaupel et al. 2004). The patterns of ramets of clonal organisms, on the other hand, vary 

enormously, without affecting the overall type of the aging pattern of the genet. We find 

senescent (e.g. L. flexuosa hydranths), non-senescent (e.g. Hydra polyps), hump-shaped (e.g. 

Eleutheria medusae) and even negative senescent (e.g. G. aspera coral ramets – Babcock and 

Rob revision, unpublished) patterns for ramets.  

Demographic patterns between different ramet life stages of a species, as in the case of E. 

dichotoma, can vary as well. While polyps on the stolonal colony grow and regress in varying 

periods in the above discussed polyp cycling system, the fractional stolonal colony ramets of 

an E. dichotoma genet may persist through much longer times (own observations, chapter I & 

II). Still, the exact aging pattern of both of these ramet modules needs to be further examined 

and I can just speculate that no senescence occurs in both cases. On the other hand, we found 

a very specific hump shaped mortality for the medusa ramet stage, with humps in size and 

both sexual and asexual vegetative reproduction, too (Chapter I; Chapter II). Concluding, 

aging patterns might not only vary between different parallel living adult life stages of a 

species, instead, the humpy pattern of the medusae traits of E. dichotoma indicate a huge 

heterogeneity within this life stage as well. Not to forget the obviously existing mortality 

differences between very young sexually produced (larval) life stages (e.g. planula larvae) 

and (young, vegetatively produced) adult life stages (stolonal polyp colonies, medusae). All 

these examples illustrate the evident need to look deeply at the specific demography of each 
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life-stage of a metamorphic organism to draw a distinct conclusion about its aging patterns in 

relation to the eco-evolutionary factors involved in the specific life-cycle.    

A general interesting observation is the higher mortality risk within sexual propagation 

compared to vegetative asexual propagation forms. Vegetatively produced offspring shows 

basically no early life mortality, whereas sexual reproduction poses usually much higher risks 

to the offspring (see Hydra polyps and E. dichotoma polyps & medusae, chapter I & II & V) 

(Martinez 1998; Levitis 2011; Levitis and Martinez 2013; Schaible et al. in preparation for 

submission). Several reasons may account for these risk differences and have been elaborated 

in previous works, such as the usually completely different development forms of sexual 

versus asexual offspring and the high regeneration potential of metazoans capable of asexual 

development (Martinez 2002). Vegetative asexual propagation, as seen in Hydra or 

Eleutheria, can be viewed as an extended form of individual growth, resulting in yet another 

module of the same genet. As in the exemplary case of Hydra, with vegetative reproduction 

as its main mode of reproduction (Bosch 2009), its exceptional proliferative stem cell renewal 

machinery seems to play a key role in the intriguing non-senescence of Hydra ramets from 

their birth onwards. The evolution of this machinery is likely to be strongly linked to the fact 

that vegetative reproduction is Hydra‟s main mode of reproduction. From this point of view, 

non-senescence of Hydra polyps, i.e. on the ramet level, can be interpreted as a by-product of 

its fast, effective and overall successful asexual reproduction strategy. In accordance, its 

remarkable maintenance, including its regeneration abilities, would be a part of this by-

product.  

In contrast, sexual reproduction has, besides various extrinsic costs related to the mating 

system itself, the disadvantage of random genetic shuffling and thereby creating a huge share 

of failing or nonfunctional offspring units out of functional parents (Agrawal 2006), which 

leads to high early-life sexual offspring (i.e. genet) mortality. Additionally, organismal 
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development throughout the ontogenesis of sexually produced offspring may pose in general 

much higher mortality risks than in vegetative offspring, where typically fully functional 

adult ramets are „born‟. To complicate things further, clonal genet lines can also occur 

through sexual reproduction by continuous self-fertilization and inbreeding, as seen in 

Eleutheria (Schierwater and Hauenschild 1991; Ender 1997; Chapter I; Chapter II). In this 

case, the process of sexual reproduction, and not the fact of inbreeding or cloning a 

successful genet by this self-fertilization, dictates the demographic outcome regarding early-

life mortality (e.g. chapter I & II, larva mortality). How obligate clonal reproducers, such as 

Eleutheria for example (Schierwater and Hauenschild 1991; Ender 1997), circumvent the 

proposed negative consequences of long-term cloning and inbreeding in absence of cross-

fertilization, i.e. the accumulation of harmful mutations known as Muller‟s Ratchet (Muller 

1964), is not clear, yet. That it seems possible, though, show not only the findings on 

Eleutheria (Schierwater and Hauenschild 1991; Ender 1997), but also studies on exclusively 

asexual metazoans like bdelloid rotifers (Wilson and Sherman 2010; Wilson and Sherman 

2013). Our finding of a loss of medusa quality with successive vegetative medusa generation 

regarding survival and both sexual and asexual reproduction in E. dichotoma is not likely to 

contradict the obligate clonal reproducer hypothesis. The quality decline rather depicts the 

seemingly seasonal nature of medusa population occurrences and emphasizes the importance 

of continuous clonal line „refreshment‟ by the means of sexual self-fertilization associated 

with the development of new polyp colonies and medusa cohorts through embryogenesis and 

metamorphosis steps. That E. dichotoma medusa generations can be potentially bred ad 

infinitum through successive vegetative generations showed Hauenschild 1956 already more 

than 50 years ago with the propagation of vegetative secondary medusae for more than 40 

generations (Hauenschild 1956; Hauenschild 1957). Nevertheless, a possible overall quality 

decline with successive generations cannot be excluded here since it was not checked. But 
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strikingly, several of these medusa generation lines were reported to have lost their sexuality 

through time which might hint to a loss or decline in stem cell potential (Hauenschild 1956); 

but some regained sexuality (Hauenschild 1957), which contradicts an irrevocable quality 

decline with pure vegetative reproduction. Whether purely vegetatively or both by vegetative 

plus sexual self-fertilization, established E. dichotoma clones show us to date no evidence of 

the necessity to cross-fertilize to sustain the survival of the species. Indeed, the age of the 

collected clone lines of E. dichotoma has been estimated to be .2 – 2.4 Million years, 

according to 16S-mtDNA analyses (Ender 1997). One haplotype-line, collected on Mallorca, 

was even estimated to be 5 – 10 Million years old. This renders clonal lines of E. dichotoma 

among the “oldest” organisms ever measured. 

 

MULTICELLULARITY AS A WAY TO OVERCOME RAMET-SENESCENCE 

 

As mentioned in the thesis introduction, the traditional theories on the evolution of aging 

focus on animals with a clear germ-soma segregation (Medawar 1952; Williams 1957; 

Hamilton 1966; Kirkwood 1977; Kirkwood and Holliday 1979; Kirkwood 1991) and remain 

very blurry about aging and senescence in organisms without this clear distinction, such as 

Protozoans, basal metazoans, fungi and plants. Several studies suggest, that organisms 

without a clear germ/soma cell line segregation are not completely free from senescence. 

Senescence on the ramet level has already been found in bacteria (Stewart et al. 2005; Wang 

et al. 2010) and, entering the multicellular animal kingdom, in hydranths of hydrozoans 

(Brock 1974; Hughes 1987; Martinez 2002) and, entering higher metazoans and bilaterians, 

in oligochaetes and Platyhelminthes (Martinez and Levinton 1992). With senescence already 

found to be present in bacteria, the occurrence of senescence, if only at the ramet level, seems 

to be deeply rooted in life itself, starting with the first reproductive (cell) units, making the 

http://www.marinespecies.org/aphia.php?p=taxdetails&id=793
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„parent‟ (cell) units replaceable. It seems that senescence is an inseparable feature of life, 

where anything „old‟ becomes replaceable by something new, whereby this „old‟ and „new‟ 

units can be represented by either parent and offspring cells or cell lines (in asymmetric 

division), or even genets/clones (in asymmetrically or symmetrically dividing ramet units 

when sexual reproduction - with a rejuvenating character for the sexual offspring - is 

additionally present). Thinking in an even more abstract way about reproduction enabling 

senescence, the replaceable unit does not have to be the “old” one – the replaceability can 

apply to any unit, as long as it is compensated for by multiplication and survival. Eventually, 

it seems not to be the case, as previously postulated, that “the evolution of somatic 

differentiation and hence of an integrated multicellular soma, and not of germ-line 

sequestration, was the necessary condition for the evolution of senescence” (Martinez and 

Levinton 1992).  

So why do Hydra ramets NOT senesce? One simple, but intriguing explanation is, that 

multicellularity itself opens a way for Hydra polyps to overcome senescence. Each cell of a 

Hydra polyp, just as shown in the experiments with the bacteria, may still „wear out‟ and 

senesce over time, as long as a kind of rejuvenation is ensured in the offspring cells, for 

example by asymmetrical division of stem cells. But the individual ramet unit, which is the 

polyp in Hydra, and not the single cell as in bacteria, can be sustained by the continuous cell 

proliferation and turnover machinery rooted in Hydra. Hydra‟s stem cell community thus 

may act as an ever rejuvenating cell line, analogous to a „germ line‟ in sexual organisms with 

a sequestered germ line, providing each Hydra ramet plus its genet with an unlimited source 

of cell proliferation potential - with the combined feature of eventual germ cell production in 

between. A Hydra polyp can be seen as a dynamic, continuously recycling active cell colony 

with constantly dividing, dying, renewing and proliferating cells in it, preventing senescence 

even on the ramet (polyp) level, additionally to the senescence prevention on the genet level. 
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It‟s body plan simplicity, low number of different cell types and low complexity in general 

have also an important share in this and allow Hydra to express this remarkable aging pattern.  

Hydra could be just an exemplary case for many more basal metazoans – a similar 

mechanism could be very likely at work for many more basal metazoans, especially hydranth 

(e.g. E. dichotoma) and coral colonies, for example. It is on future studies about the biology 

and demography of more basal metazoan cases to test this hypothesis.    

 

HETEROGENEITY & RANDOMNESS OF AGING 

 

The patterns we found in both Hydra (polyps) and Eleutheria (medusae) suggest a huge 

phenotypic diversity in the studied clonal lines. We observed huge variabilities between 

individuals in basically all measured traits, i.e. the survival, sexual (in the case of Eleutheria) 

and vegetative reproduction, as well as in individual size (all chapters). Furthermore, we did 

not find any traces for direct heritability of trait patterns between vegetative generations in 

both study organisms. These findings hint to an evolutionary successful randomized 

phenotype generation process during vegetative reproduction in both species in their different 

life stages. Our studies provide hereby first evidence that this random phenotype production 

might be favourable for the adaptation ability of the mainly asexually reproducing Hydra- 

and the metagenetic Eleutheria populations. Via this system, each genet automatically creates 

ramet populations consisting of multiple phenotypes. Each phenotype seems to have its own 

plasticity window, in which its trait pattern fluctuate according to the individual‟s dynamic 

state. This hypothesis is supported by our bipolar findings of trait stability over time. On the 

one hand, we found heterogeneous H. magnipapillata budding patterns to be stable over time 

within individuals under constant conditions (Chapter IV). On the other hand, we showed that 

budding rates after stress induction (hunger period in between/bisection) differ within 
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individuals (Chapter V). And we reported size fluctuations in both H. magnipapillata polyps 

and E. dichotoma medusae within constant regimes (Chapter II; Chapter V), as it has been 

reported for Hydra vulgaris strain AEP before (Levitis and Goldstein 2013). Both of these 

trait instabilities do not contradict our random phenotype generation hypothesis, instead, 

these cases display the plasticity window of each phenotype very nicely. While the budding 

rate change after stress indicates a hormetic response in H. magnipapillata polyps overriding 

the original phenotype setting, the size fluctuations reveal the dynamic states of each Hydra 

polyp or Eleutheria medusa. As both entities are involved in regular vegetative reproduction, 

fluctuating sizes are not really surprising. Additionally, as in the case shown for Hydra, high 

cell turnover rates may add to this phenotypic character plasticity (Bosch and David 1984; 

Bosch 2007; Bosch et al. 2010; Schaible et al. in preparation for submission). Through this 

high cell turnover and cell proliferation rates each polyp or medusa exists in a dynamic state 

with continuously changing cell proportions. It follows, that each bud is grown from a unique 

combination of parent cells leading to differing epigenetic profiles of each bud. Hence, from 

this mechanistical point of view the observed heterogeneity between, but also within polyps 

in the mentioned cases, is not so surprising anymore. Since vegetative reproduction is a very 

fast and effective way of producing high adult ramet numbers within a short time, 

circumventing thereby the risky development pathways annexed to sexual reproduction, this 

randomized phenotype generation process seems to be a most successful propagation 

strategy. Most likely, this has been selected due to its risk spreading feature, further described 

as bet-hedging in the literature (Cohen 1966; Stumpf et al. 2002; Thattai and van 

Oudenaarden 2004; Kussell and Leibler 2005; Beaumont et al. 2009; Chapter IV). This 

strategy could enhance long-term fitness by providing the genet continuously with many 

phenotype subsets of ramets which secure the survival of the genet in changing or fluctuating 

environments when one or several of these subsets are already optimized to the altered 
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conditions. Whether the natural conditions for H. magnipapillata in freshwaters of Japan 

(Sugiyama and Fujisawa 1977; Sugiyama and Fujisawa 1977; Sugiyama and Fujisawa 1978; 

Sugiyama and Fujisawa 1978; Sugiyama and Fujisawa 1979) or E. dichotoma in the 

Mediterranean (Schierwater 1989a; Ender 1997) are particularly fluctuating or challenging to 

support the bet-hedging hypothesis is relatively difficult to prove. Various unpredictable and 

sudden environmental changes could occur in both environments, such as temperature or 

salinity shifts (especially in rock pools for E. dichotoma), food shortages, inter-species 

competition for resources or predation. In all these cases, an array of already existent and 

differing ramet phenotypes could infer an advantage to the sustenance of the genet. Sensu 

stricto, this would not be bet-hedging under the previously proposed (ramet) phenotype 

switching strategy during the lifetime of (ramet) individuals (Thattai and van Oudenaarden 

2004; Kussell and Leibler 2005; Beaumont et al. 2009), but via our proposed random 

phenotype generation process in Hydra polyps or E. dichotoma medusae. In both cases, 

though, subpopulations of differing phenotypes will exist in the clonal (genet) population of 

ramets, compared to a hypothetical genet which relies on responsive switching of ramets.  

Kussel and Leibler (2005) found in a modeled clonal population that stochastic phenotype 

switching - or referring to our case: the random generation of phenotypic diversity within the 

ramet population - is favored over responsive switching in environments with less frequent 

changes. The longer an environment remains constant, the less it pays to invest resources in a 

sensoring system for a responsive switch. Interestingly, bet-hedging strategies have already 

been found and discussed for bacteria and it has been concluded that these risk-spreading 

strategies may have been among the earliest evolutionary solutions to life in clonal 

populations in fluctuating environments, “perhaps even preceding the evolution of 

environmentally responsive mechanisms of gene regulation” (Beaumont et al. 2009). This 
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exemplifies how primordial the survival strategies of Hydra, E. dichotoma and many more 

basal metazoans may be. 

Another, so far mostly neglected factor regarding phenotypic heterogeneity is the epibiome of 

organisms, consisting of various usually single celled species. Heterogeneity within and 

between isogenic ramets, as in the case of Hydra polyps or Eleutheria medusae, could 

possibly be related to differences and variations among their associated bacterial 

epicommunity. These metaorganismic or holobiontic relationships and variations turn 

recently more and more into focus of research, especially in the freshwater polyp Hydra 

(Bosch and McFall-Ngai 2011; Bosch 2012; Bosch 2012; McFall-Ngai et al. 2013), and pose 

a promising approach to gain new insights into the microecosystems of clonal organisms. 

 

AGING TRADE-OFFS 

 

Trade-offs between the allocation of limited resources to either maintenance or reproduction 

are of crucial importance when thinking about the evolution of aging patterns and are a 

centerpiece of the disposable soma theory of aging (Kirkwood 1977; Kirkwood and Holliday 

1979; Kirkwood and Rose 1991) which brought trade-offs into the limelight of aging research 

in the end. We found several indices for important trade-offs in Hydra and E. dichotoma in 

our studies. In E. dichotoma medusae, our results indicated direct effects of the nutritional 

level on the pace of medusa lifetime. The more food is available, the faster and compressed it 

lives. Hence, the feeding level directly affects the trade-off setting between reproduction and 

maintenance in E. dichotoma. The other, different kind of trade-off we discovered in the 

medusae emerged between successive medusa generations. Medusa quality, in terms of all 

measured traits, declined with consecutive generations. I propose that this trade-off might be 
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advantageous for the genet regarding the proposed seasonal appearance of E. dichotoma 

(Chapter I; Chapter II).   

In the Hydra bisection experiment, a clear trade-off between vegetative reproduction and 

maintenance did only occur at the threshold feeding level of 7 Artemia per week per polyp for 

both cut and uncut polyps (Chapter V). With resources deviated to starting reproduction at 

this feeding level, less seemed available for maintenance and starvation survival decreased 

sharply, independent of the previous bisection treatment. At lower or higher feeding regimes, 

none such an effect emerged in this experiment. Furthermore, as shown in chapter III & V, 

budding rates of polyps increased rather linearly with increasing food levels, while starvation 

survival stayed rather constant around 80 days from > 7 Artemia per week onwards, though 

slight variations occurred between the studies. Apart from these trade-off reactions to 

different feeding levels, all three key life history traits were rather uncoupled from each other 

in Hydra - size, survival or budding showed generally no correlations within treatment levels 

(Chapter V). This uncoupling of the three traits seems to be also the case for E. dichotoma 

medusae according to our findings. I can conclude that, next to the mentioned feeding level 

and generation trade-offs, no real trade-off in a traditional sense between size, reproduction 

and maintenance (Kirkwood 1977; Kirkwood and Holliday 1979; Stearns 1989; Kirkwood 

and Rose 1991; Vaupel et al. 2004; Baudisch 2007; Baudisch 2009; Flatt 2011) seems to exist 

in both Hydra and E. dichotoma. 

 

HORMETIC AGING RESPONSES 

 

Hormesis is a stress response phenomenon, where maintenance- and reproduction efficiency 

levels of an organism are found to be increased, though possibly only temporarily, resulting 

from exposure to low and specific doses of stress (Calabrese and Baldwin 2003; Stebbing 
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2003; Parsons 2005; Mangel 2008; Rattan 2008). The exact mechanisms at work are still 

unclear and several suggestions were made, including physiological counteractions to stress 

with overcorrections to retain homeostasis leading to a hormetic response pattern, known as 

homeostatic hypothesis for hormesis (Stebbing 2003).  

We found clear indications for hormetic responses at work in both Hydra and E. dichotoma. 

In Hydra polyps, various stressors, such as bisection, hunger periods and minor starvation, 

temperature or food level changes caused hormetic responses in both starvation survival and 

budding rates, without any signs of a trade-off (Chapter III; Chapter V). In E. dichotoma 

medusae, constant low feeding levels caused a positive effect on survival (Chapter I; Chapter 

II), comparable to the caloric restriction effect reported for many species (Heilbronn and 

Ravussin 2003; Chung et al. 2013). I propose, that this type of positive low food stress 

response is a variant of a hormetic stress response, but, in contrast to the Hydra results, with 

the additional feature of a visible trade-off. Medusae in the low feeding level tended to live 

longer, but were generally smaller and had lower budding- and larva release rates than at the 

higher feeding level. This effect became more pronounced at successive generations. While 

our findings on Hydra suggest that it is able to increase its metabolic efficiency in response to 

stress, free from a trade-off, our results on E. dichotoma medusae are less clear regarding 

interpretation. Low food stress could have induced a pure resource allocation shift, pushing 

resource utilization towards maintenance and attenuating reproduction, speaking for a pure 

trade-off reaction. On the other hand, this response may have been additionally coupled with 

a hormetic counter response increasing metabolic efficiency, just as in Hydra. Indicators for 

both responses working together are the relatively long average survival of SL medusae 

compared to the other LFR and even HFR groups and that both SL and TL medusae had a 

higher average survival than their counterparts SH and TH, respectively.   
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As for all hormetic reactions, it is still puzzling why the optimal metabolic efficiency is not 

reached during rather stable, optimal and non-stressful conditions. The costs, or trade-off, to 

this effect remain still unclear, as well as how long such an increased performance can be 

maintained, as hormetic effects appear to be mostly of a transient nature (Stebbing 1982), but 

not by all means (Rattan 2008; Calabrese et al. 2012). We hypothesize that a constant 

excessive food supply may lead to more inefficiency and a certain slackness on energy 

utilization (Chapter III), but further experiments are needed to resolve these propositions. 

Important to keep in mind is, that environmental stresses can have a beneficial impact on 

fitness-related phenotypical traits and that hormetic stress doses posed by variable and 

fluctuating environments could be, in the end, salutary for the persistence of clonal lineages 

of Hydra, Eleutheria and presumably many more basal metazoans.  
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