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Abstract

Classically a chemical reaction occurs only when there are sufficient thermal fluctua-
tions to overcome the Arrhenius activation energy. This makes chemistry close to
the quantum ground state temperature seem paradoxical. However, nowadays there
are many experimental techniques known to form ultracold molecules from ultracold
atoms, e.g. via Feshbach resonance, which can be understood as a chemical process
in an ultracold regime.

This thesis presents a framework for the description of the kinetics of ultracold
chemical reactions and systematically investigates the occurring dynamical phenom-
ena. We use the notion of order of reaction to classify two classes of ultracold bosonic
reactions. The first class is given by linearly interacting quantum fields and allow for
a compact analytical solution. Comparing these exact solutions to the corresponding
dynamics of high-temperature kinetics shows the fundamental differences between
classical and fully quantised reactions.

Chemical reactions belonging to the second class are modelled by non-linear
interacting quantum field theories. Finding solutions for the dynamics of the non-
linear systems turns out to be very hard, such that we have to rely on variational
and perturbational techniques. Investigating the quantum dynamics of the most
elementary example with non-linear interaction, the diatomic molecule formation,
we find that quantum entanglement between the atomic and molecular modes plays
a key role in driving the reaction towards a dynamical equilibrium. Moreover, we
study the formation of solitons in the mean-field approximation of diatomic molecule
formation. We find, by employing phase space methods, the emergent soliton pairs to
be dynamically unstable. These results show the wide range of dynamical phenomena
that occur for a single ultracold reaction.

As an extension to previous formulations of ultracold chemical reactions, our
model allows us to consider concurrent reactions. We study the dynamics of a pair of
reactions consisting of the diatomic molecule formation and a coupling of the atomic
species to a particle reservoir. Choosing special values for the reaction constants, we
find that chaos dominates the phase space dynamics in the mean-field approximation.
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Kurzfassung

Bei Betrachtung der klassischen Sichtweise kann eine chemische Reaktion nur dann
stattfinden, wenn genügend thermische Fluktuationen vorhanden sind, um die Ar-
rhenius’sche Energiebarriere zu überwinden. Dieses Bild einer klassischen Reaktion
lässt chemische Vorgänge in ultrakalten Umgebungen als etwas Paradoxes erscheinen.
Heutzutage gibt es dennoch eine Vielzahl experimenteller Techniken um Moleküle
aus ultrakalten Quantengasen zu erzeugen. Die dabei auftretenden Prozesse werden
zusammenfassend als „ultrakalte Chemie“ bezeichnet.

Die vorliegende Arbeit stellt ein theoretisches Modell vor, das es ermöglicht, die
Reaktionskinetik ultrakalter chemischer Reaktionen zu untersuchen. Hierfür wird
der Begriff der Reaktionsordnung verwendet, um eine grundsätzliche Einteilung
ultrakalter Reaktionen in zwei Klassen vorzunehmen. Die erste Klasse wird dabei
durch linear wechselwirkende Quantenfeldtheorien beschrieben und kann analytisch
gelöst werden. Die entstehenden analytischen Lösungen werden daraufhin mit den
korrespondierenden Lösungen der klassischen Reaktionskinetik verglichen und, die
durch den Vergleich herausgearbeiteten Unterschiede, dargestellt.

Die zweite Klasse ultrakalter chemischer Reaktionen wird hingegen durch nicht-
linear wechselwirkende Quantenfeldtheorien beschrieben. Das Finden analytischer
Ausdrücke für diese zweite Klasse ist nahezu unmöglich, so dass bei der Analyse
dieser Systeme auf Näherungsverfahren zurückgegriffen werden muss. Das Haup-
taugenmerk liegt auf der Betrachtung der Bildung eines zweiatomischen Moleküls,
dass das einfachste Beispiel einer nichtlinearen Reaktion darstellt. Bei der einge-
henden Untersuchung dieser Reaktion wird festgestellt, dass das Phänomen der
Verschränkung einen wesentlichen Einfluss auf die Dynamik hat. Darüber hinaus
werden solitäre Lösungen der Molekularfeldnäherung der Reaktion betrachtet, wobei
sich herausstellt, dass die gefunden Lösungen dynamisch instabil sind.

Als eine Erweiterung der bisherigen theoretischen Modelle ultrakalter Reaktionen,
ermöglicht das vorliegende Modell die Betrachtung mehrerer, gleichzeitig ablaufender,
Reaktionen. Als lehrreiches Beispiel werden die Atome der Reaktion der Molekülbil-
dung gleichzeitig an ein Reservoir gekoppelt. Für eine spezielle Wahl der Reaktion-
skonstanten wird gezeigt, dass die Phasenraumdynamik in der Molekularfeldnäherung
des betrachteten Reaktionspaares chaotischer Dynamik folgt.
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CHAPTER 1
Introduction

A chemical reaction normally occurs at a few hundred kelvin between reagents
involving large numbers of particles (∼ 1023). This is because reactions are usually
activated by thermal fluctuations which are only significant for large concentrations
of particles with high momenta. The influence of the temperature on the emergent
kinetics is often successfully described by Arrhenius’ law [Arr89], which predicts
the rate of a chemical reaction to exponentially decrease at smaller temperatures.
Therefore, the possibility of a chemical reaction taking place in the dilute and
ultracold (𝑇 < 1𝜇K) regime is somewhat counterintuitive.

However, this picture of a necessary activation energy breaks down, when the
considered chemical reaction is barrierless, that is, the reaction takes place even if the
relative translational energy between the reactants is small or equals zero. As soon
as experimental cooling techniques were efficient enough to create a Bose-Einstein
condensate (BEC) [Dav95], researchers began to investigate the creation of ultracold
molecules by barrierless or low-barrier reactions from this new state of matter. The
formation of ultracold molecules from atoms in a Bose-Einstein condensate was
observed in [Wyn00]. This interaction of atoms and molecules close to the absolute
zero of temperature has been referred to as ultracold chemistry [Hut10].

Nowadays, a variety of experimental techniques such as the coupling of atoms and
molecules via magnetic Feshbach resonance [Don02; Reg03] have been successfully
employed to achieve chemical bonding in an ultracold environment. For example,
ultracold Potassium-Rubidium molecules [Osp10] have been investigated to analyse
the quantum mechanical effects of particle statistics on molecular reactivity. The
now ready experimental accessibility of chemical processes in the dilute ultracold
regime strongly motivates us to develop a general physical understanding of their
reaction kinetics.

A quantized description is required in order to study the dynamics of ultracold
reactions, in order to fully account for the effects of quantum fluctuations and
entanglement. Here we should replace the classical notion of a temperature-dependent
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1 Introduction 2

reaction with a coherent reversible Hamiltonian evolution. The first phenomenological
steps toward such a description were taken in [Hei00], where a mean field ansatz
was exploited to describe the coherent formation of diatomic molecules in a BEC.
Since then a variety of extensions to this model, mainly focussed on adding quantum
corrections to the original mean field ansatz, have been studied [Gór01; San06]. So
far, a general and systematic investigation of the dynamics of ultracold reactions,
analogous to the study of reaction kinetics for classical thermal reactions, has not
yet been undertaken. Such an approach seems to be indispensable if one wants to
study the role of quantum coherence and the production of quantum entanglement
in ultracold chemical systems.

This thesis is organised as follows. In chapter 2 we introduce basic terminology
and fundamental aspects of high-temperature kinetics. The terminology will help
to understand our proposed framework of ultracold chemistry. Also included in
this chapter is a short review of semi-classical descriptions for ultracold reactions.
As a central aspect of the present thesis, chapter 3 contains the framework we
subsequently use to formulate the reaction kinetics of ultracold chemistry. As
motivation for formulating our proposal in the language of second quantisation, we
also investigate the first quantisation of classical kinetics. Chapter 4 contains a
systematic classification of the ensuing dynamics of elementary examples of ultracold
reactions. We obtain the dynamical evolution in compact analytical form and
compare it to the dynamics of the corresponding high-temperature reactions. Also
included in this chapter is the identification of the overall number of quantum
particles as conserved quantity. It turns out that this quantity can be thought of as
quantum analogue of the classical principle of the conservation of mass. Chapter 5 is
based on the work published in [Ric15], which was completed in collaboration with
Daniel Becker, Cédric Bény, Torben Schulze, Silke Ospelkaus and Tobias Osborne.
In this chapter we study the reaction kinetics of ultracold molecule formation, as
an important instance of a non-linear interacting reaction within our theory. We
find that, within the two-mode approximation, entanglement between the atomic
and molecular mode plays an important role to the dynamics. Extending the
molecule formation by a coupling of the participating atoms to a reservoir, we
find that Hamiltonian chaos dominates the phase space dynamics of the mean-field
approximation. Chapter 6 considers the existence and stability of solitary solutions
in ultracold chemical reactions. We find a pair of bright solitons in diatomic molecule
formation, which is unstable against small perturbations.



CHAPTER 2
From classical kinetics to ultracold chemistry

The study of chemical reaction kinetics dates back to the end of 18th century. At this
time the experimental techniques in chemistry were so far developed, that scientists
finally were able to investigate how the speed of a chemical reaction depends on
the details of the experimental setting. The first important result in this field was
obtained in 1864 with the formulation of the law of mass action [Gul64]. This
law recognises that the chemical equilibrium of a reversible reaction is indeed a
dynamical equilibrium in which the rate of the forward and reverse reaction balance
each other. A subsequent result was given by Svantje Arrhenius in 1889. His
famous equation identifies the temperature as decisive environmental factor of the
rate constant [Arr89]; only when the temperature is beyond a certain threshold the
reaction will occur.

In its modern form, the framework of chemical kinetics maps a chemical reaction,
that is a stoichiometric reaction scheme and corresponding reaction constants, to
a first-order differential system for the species’ concentration. Depending on the
complexity of the reaction it predicts numerous dynamical phenomena. Chemical
kinetics is an effective theory. The reaction constants as dynamical parameters arise
as quantities averaged over many different microscopic scenarios. The model of
reaction kinetics is justified by its correct prediction of various amazing phenomena
like pattern formation, chaotic oscillations, etc.

This chapter is organised as follows. We first introduce in section 2.1 the corner-
stones of the theory of classical reaction kinetics. The clarity and effectiveness of
this theory makes it an inspiring example for our later proposal of ultracold reaction
kinetics. In section 2.2 we consider the microscopic foundations of classical reaction
kinetics and how they are modified with decreasing temperature. This results in a
first definition of ultracold chemistry. The material covered in 2.1 is well-known in
the field of reaction kinetics and can be found in many textbooks and lecture notes.
In particular we follow [Bro10; Con90].

3



2.1 Classical reaction kinetics 4

2.1 Classical reaction kinetics
The subject of reaction kinetics covers a specific but important aspect of chemical
reactions. While the study of chemical structures and chemical equilibrium considers
stationary states, chemical kinetics focuses on the temporal evolution of the system.
At a first glance kinetics seems to be very complicated, as it considers physical
systems in which familiar concepts from thermodynamics like the minimisation of the
Gibbs free energy fail. However, when a small number of physical requirements are
satisfied, we are able to formulate an effective theory which predicts the dynamics of
a certain class of chemical reactions with surprising accuracy.

2.1.1 Rate equations
In what follows, we will give a short introduction to the theory of reaction kinetics of
classical chemical reactions. We focus on the notions and terminology which we refer
to when proposing our scheme for ultracold reactions. For a thorough introduction
to the topic we refer the reader to [Con90]. We start considering a volume 𝑉 which
contains a set of chemical species 𝑋𝑗 with 𝑗 ∈ {1,...,𝐽}. Particles are not allowed to
leave or enter the volume. We denote the number of particles of each species as 𝑁𝑋𝑗

.
This allows us to define the concentration

[𝑋𝑗] := 𝑁𝑋𝑗
/𝑉. (2.1)

A chemical reaction is some transformation between the species according to the
scheme

𝜇1𝑋1 + 𝜇2𝑋2 + . . .+ 𝜇𝐽𝑋𝐽

𝑘𝑓

�
𝑘𝑟

𝜈1𝑋1 + 𝜈2𝑋2 + . . .+ 𝜈𝐽𝑋𝐽 (2.2)

The numbers 𝜇𝑖 and 𝜈𝑗 are referred to as stoichiometric coefficients with 𝜇𝑖,𝜈𝑖 as
integers. In order to avoid ambiguity, we remove a possible factor of the coefficients
in the chemical equation or consider the stoichiometric coefficients as the actual
number of particles of a certain species required for a reactive collision to take place.
The macroscopic quantities 𝑘𝑓 and 𝑘𝑟 are called rate constants of the forward or
reverse reaction respectively. The species on the left-hand side of (2.2) side are
called reactants whereas the right-hand side lists the products. In case of a reversible
reaction we find both constants to be non-zero, whereas an irreversible reaction
amounts to 𝑘𝑟 = 0.

We start to derive the dynamics of (2.2) by first considering its equilibrium. It is
a standard exercise in thermodynamics to derive the law of mass action [Sch06]

𝐾 = 𝐾(𝑇,𝑃 ) = [𝑋1]𝜇1 [𝑋2]𝜇2 . . . [𝑋𝑁 ]𝜇𝑁

[𝑋1]𝜈1 [𝑋2]𝜈2 . . . [𝑋𝑁 ]𝜈𝑁
. (2.3)



2.1 Classical reaction kinetics 5

It relates the concentration of the species and the stoichiometric coefficients with an
equilibrium constant 𝐾 being a temperature 𝑇 and pressure 𝑃 dependent function 1.
The crucial step to relate this static constant to dynamical quantities is now to
assume that at the equilibrium state the forward and reverse reaction rates exactly
balance each other

𝐾(𝑇,𝑃 ) = 𝑘𝑟(𝑇,𝑃 )
𝑘𝑓 (𝑇,𝑃 ) .

While the pressure dependence of the reaction constants is in general complicated
to determine and depends on the particular reaction considered, the temperature
dependence is often well described by Arrhenius’ law

𝑘(𝑇 ) = 𝐴 exp
(︂

−𝐸𝐴
𝜅𝑇

)︂
, (2.4)

where 𝐴 is referred to as pre-exponential factor. This empirical equation manifests a
typical threshold law: If the weighted temperature 𝜅𝑇 (where 𝜅 denotes Boltzmann’s
constant) is smaller than the activation energy 𝐸𝐴, there are only few particles which
possess enough energy to overcome the reaction barrier. However, if 𝜅𝑇 > 𝐸𝐴, there
is an exponential increase of the rate constant. However, for some chemical reactions
we find that the rate of reaction decreases with increasing temperature. Some of
these reactions still follow an exponential law, such that it is possible to fit a negative
activation energy 𝐸𝐴 < 0.

With these preliminaries it is now possible to infer the rate constants from equi-
librium and assume their validity as reaction rates even outside equilibrium. The
description non-equilibrium reactions requires the following properties [Kam92]:

• Homogeneity of the considered mixture of species
• The underlying velocity distribution (Maxwell) of a certain species is valid

outside equilibrium
• The internal degrees of freedom of the molecules can be neglected during the

reaction
• Temperature and pressure remain constant while the reaction takes place.

If these restrictions are fulfilled and if the reaction is elementary, that is there are
no catalytic, intermediate, or concurrent reactions, the theory of classical reaction

1 It is, in principle, possible to transform the inner variables to any other thermodynamic state
variable, for instance the chemical potential 𝜇 . The preference for 𝑃 and 𝑇 stems from the fact
that these quantities usually remain unchanged during a chemical reaction.
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kinetics yields the rate equations

𝑑[𝑋𝑗]
𝑑𝑡

= 𝑘𝑓 (𝜈𝑗 − 𝜇𝑗)
𝐽∏︁
𝑘=1

[𝑋𝑘]𝜇𝑘 + 𝑘𝑟(𝜇𝑗 − 𝜈𝑗)
𝐽∏︁
𝑙=1

[𝑋𝑙]𝜈𝑙 with 𝑗 ∈ {1,...,𝐽}. (2.5)

This means that the kinetics of chemical reactions are mathematically described by
a—possibly nonlinear—system of first-order ordinary differential equations (ODE). It
describes the time evolution of the concentrations outside equilibrium. This system
is particularly easy to solve for elementary reactions as each rate equation in (2.5) is
a multiple of the other:

1
𝜇1 − 𝜈1

𝑑[𝑋1]
𝑑𝑡

= 1
𝜇2 − 𝜈2

𝑑[𝑋2]
𝑑𝑡

= ... = 1
𝜇𝐽 − 𝜈𝐽

𝑑[𝑋𝐽 ]
𝑑𝑡

To confirm consistency of this framework, we find that the fixed point of (2.5), that
is ∀𝑗 : 𝑑[𝑋𝑗 ]

𝑑𝑡
= 0, reproduces the law of mass action,

𝑘𝑟
𝑘𝑓

= [𝑋1]𝜇1 [𝑋2]𝜇2 . . . [𝑋𝑁 ]𝜇𝑁

[𝑋1]𝜈1 [𝑋2]𝜈2 . . . [𝑋𝑁 ]𝜈𝑁
.

To get a better intuition why the powers of the stochiometric constants appear on
the right-hand side in (2.5), we shortly sketch another way to derive the equations
of motion. We do this exemplary for the concrete irreversible reaction

𝐴
𝑘→ 𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑠. (2.6)

We consider the chemical reaction as Markov process, that is the combination of
reactants (in this case only one) as a process without memory. The reaction constant
𝑘 determines the probability of a single reactant to react. This means if (2.6) has
initially one atom of species 𝐴, the probability of a reaction event in the time interval
[𝑡,𝑡+𝛥𝑡] is 𝑘𝛥𝑡, leading to an probability of reaction at time 𝑡 given by

𝑝(𝑡) = 𝑘𝑒𝑘𝑡. (2.7)

Now, suppose you consider 𝑛𝐴 particles of species 𝐴 as initial condition. How does
this affect the probability of a reaction event? Since every of the 𝑛𝐴 particles reacts
independently of the other particles with reaction constant 𝑘, the overall probability
of a reaction in the time interval [𝑡,𝑡+𝛥𝑡] is simply given by 𝑛𝐴𝑘𝛥𝑡.

In a next step, we connect this reaction probability with the time evolution of
the concentration of particles. Every time a reaction occurs, the particle number is
decreased by one and a small change in the particle concentration occurs. Therefore,
we can write the following discrete time evolution for the probability distribution of
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the particle concentration

𝑃 ([𝐴],𝑡+𝛥𝑡) = 𝑛𝐴𝑘𝑃 ([𝐴] +𝛥[𝐴],𝑡) + (1 − 𝑛𝐴𝑘)𝑃 ([𝐴],𝑡) . (2.8)

Expanding this into a Taylor series yields

𝜕𝑃 ([𝐴],𝑡)
𝜕𝑡

= 𝛥[𝐴]
𝛥𝑡

𝑛𝐴𝑘
𝜕𝑃 ([𝐴],𝑡)
𝜕[𝐴]

= [𝐴]𝑘𝜕𝑃 ([𝐴],𝑡)
𝜕[𝐴] ,

(2.9)

where we choose the continuum limit 𝛥𝑡 → 0 and 𝛥[𝐴] → 0 such that 𝛥[𝐴]
𝛥𝑡

= 1
𝑉

.
Identification of the deterministic particle concentration as expectation value of
𝑃 ([𝐴],𝑡) yields the same equations of motion as classical reaction kinetics. The key
point is that the probability of the reaction event divided by the volume occurs in
the equations of motion. Suppose you consider the reaction

𝐴+𝐵
𝑘→ 𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑠. (2.10)

Then the probability of a reaction event in the time interval [𝑡,𝑡+𝛥𝑡] is 𝑛𝐴𝑛𝐵𝑘𝛥𝑡,
since the number of distinct reaction possibilities is 𝑛𝐴𝑛𝐵. By extending this
argumentation to more complex reactions, we obtain the same equations for the
concentrations as provided by the law of mass action (2.5).

An important tool in reaction kinetics to classify the complexity of the occurring
dynamics is the reaction order. Considering the rate equation of an elementary
irreversible reaction (𝑘𝑟 = 0)

𝑑[𝑋𝑗]
𝑑𝑡

= 𝑘𝑓 (𝜈𝑗 − 𝜇𝑗)
𝐽∏︁
𝑘=1

[𝑋𝑘]𝜇𝑘 , (2.11)

the the power 𝜇𝑘 is called the order of reaction with respect to species 𝑋𝑘. More
important for our considerations is the overall order of this reaction, which is defined
by

𝑂𝑐𝑙 :=
∑︁
𝑘

𝜇𝑘. (2.12)

Reactions with 𝑂𝑐𝑙 ≥ 2 result in non-linear differential equations, which is a crucial
prerequisite for many complex phenomena. However, in the realm of classical kinetics
there are many non-elementary reactions whose rate equations are of different form
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than (2.11). For instance, concentrations may appear in the denominator:

𝑑[𝐴]
𝑑𝑡

= −𝑘 [𝐴]2
[𝐵] (2.13)

We can generalize the concept of reaction order to these kind of rate constants by
allowing negative or even fractional values. However, the concept of overall order does
not apply these kind of reactions, since the dynamics of (2.13) are more complicated
than an elementary first order reaction. Throughout this thesis we will only consider
elementary classical reactions. Therefore, if we use the term order of reaction we
mean the overall order.

2.1.2 Reaction networks
So far, the presented framework provides the dynamic equations governing elementary
reactions. Although describing elementary reactions is far from trivial, the more
interesting dynamical effects occur in reaction networks, that is reactions where at
least one reactant undergoes two or more concurrent chemical transformations 1. In
order to define the kinematics for reaction networks, we note that any reversible
reaction can be unfolded as a network of two concurrent irreversible reactions,
e.g. (2.2) can be written as:

𝜇1𝑋1 + 𝜇2𝑋2 + . . .+ 𝜇𝐽𝑋𝑗

𝑘𝑓→ 𝜈1𝑋1 + 𝜈2𝑋2 + . . .+ 𝜈𝐽𝑋𝑗

𝜈1𝑋1 + 𝜈2𝑋2 + . . .+ 𝜈𝐽𝑋𝑗
𝑘𝑟→ 𝜇1𝑋1 + 𝜇2𝑋2 + . . .+ 𝜇𝐽𝑋𝑗

(2.14)

We therefore restrict our considerations to reaction networks of 𝑁 irreversible reac-
tions:

𝜇
(𝛼)
1 𝑋1 +𝜇(𝛼)

2 𝑋2 + . . .+𝜇(𝛼)
𝐽 𝑋𝑗

𝑘
(𝛼)
𝑓→ 𝜈

(𝛼)
1 𝑋1 +𝜈(𝛼)

2 𝑋2 + . . .+𝜈(𝛼)
𝐽 𝑋𝑗 with 𝛼 ∈ {1,...,𝑁}

(2.15)

We introduce 𝑣(𝛼)
𝑖 := 𝜈

(𝛼)
𝑖 − 𝜇

(𝛼)
𝑖 as the difference of stoichiometric coefficients for

the 𝛼-th reaction. The dynamical evolution of species [𝑋𝑗 ] is then a superposition of
each reaction:

𝑑[𝑋𝑗]
𝑑𝑡

=
𝑁∑︁
𝛼=1

𝑘(𝛼)𝑣
(𝛼)
𝑗

𝐽∏︁
𝑖=1

[𝑋𝑖]𝜇
(𝛼)
𝑖 . (2.16)

1 The standard chemical literature distinguishes more types of chemical reactions, e.g. consecutive
or competitive reactions. For our purpose this distinction is not important as they can be
considered as special cases of reaction networks.
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All the assumptions we made on elementary reactions carry over to each of the
reaction inside a reaction network. In addition it is assumed that each reaction
only takes place when the reactants concentration are non-zero. It is clear that
with growing complexity of the considered reaction networks the phenomenological
description of classical reaction kinetics becomes inaccurate. This model of classical
chemical reaction kinetics has been validated by its long term success in describing
a wide range of astonishing phenomena from the oscillating Belousov-Zhabotinskii
reaction [Bel59; Zha64] to deterministic chaos [Eps96].

2.1.3 Brusselator
As an instructive example of complex dynamics consider the Brusselator [Pri68]:

𝐴
𝑘1→ 𝑋

𝐵 +𝑋
𝑘2→ 𝑌 + 𝐶

2𝑋 + 𝑌
𝑘3→ 3𝑋

𝑋
𝑘4→ 𝐷

(2.17)

This one example of the class of Belousov-Zhabotinskii reactions, which is known to
show chemical oscillations. A simplification of the model assumes the concentrations
of species 𝐴,𝐵,𝐶 and 𝐷 to be constant during the reaction. For a closed system this
is approximately true if the concentration of the respective species is much larger
than the others. Applying scheme (2.16) yields the equations of motion:

𝑑[𝑋]
𝑑𝑡

= 𝑘1[𝐴] − 𝑘2[𝐵][𝑋] + 𝑘3[𝑋]2[𝑌 ] − 𝑘4[𝑋]

𝑑[𝑌 ]
𝑑𝑡

= 𝑘2[𝐵][𝑋] − 𝑘3[𝑋]2[𝑌 ].
(2.18)

In order to reduce degrees of freedom, we introduce the following non-dimensional
quantities:

𝜏 = 𝑘4𝑡, 𝑋 = 𝑘4

𝑘1[𝐴] [𝑋], 𝑌 = 𝑘4

𝑘1[𝐴] [𝑌 ], (2.19)

with free parameters

𝑏 = 𝑘2

𝑘4
[𝐵], 𝑎 = 𝑘3𝑘

2
1

𝑘2
4

[𝐴]2. (2.20)
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This transforms (2.18) into

𝑑𝑋

𝑑𝜏
= 1 − (𝑏+ 1)𝑋 + 𝑎𝑋2𝑌

𝑑𝑌

𝑑𝜏
= 𝑏𝑋 − 𝑎𝑋2𝑌.

(2.21)

This system has been subject to thorough dynamical studies (see for example [Eps96]).
The most interesting phenomenon is a Hopf bifurcation, that is the onset of a limit
cycle in phase space when the fixed point (1, 𝑏

𝑎
) changes its stability. In figure (2.1),

the shape of the limit cycle for different values of 𝑏.

.
Figure 2.1: Phase space plot of the intermediate Brusselator species 𝑋 and 𝑌 . A limit
cycle occurs for 𝑏 > 𝑎 + 1. Starting from the initial nondimensionalized concentrations
(𝑋0,𝑌0) = (1.5,2), the trajectories either converge to the fix point (1, 𝑏𝑎) or drive towards
the limit cycle.

We close this introductory example by mentioning that reaction kinetics of chemical
networks is still an active field. The question of the existence of an equilibrium of
reaction networks was only recently investigated in [Bae15].

2.2 Cold and ultracold chemistry
In the previous chapter we introduced an effective model for chemical reactions taking
place in an environment that provides a large amount of thermal energy as well as
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high densities of particles. However, in this thesis we want to present a framework for
reaction kinetics under inherently different conditions. For example, the temperature
of a Bose-Einstein condensate (BEC) is very close to absolute zero such that the
application of Arrhenius’ law would imply that no chemical reaction occurs at all.
However, there is a wide range of environments between room temperature and a few
nanokelvin in which chemical reactions occur, e.g. the lower parts of the stratosphere
or interstellar clouds. For reactions in these environments, there are theoretical
approaches to determine the rate and therefore the kinematics.

In order to get a better conceptual understanding of our proposed framework, we
shortly review these theories. We start our review with a microscopical model of
high-temperature reactions and subsequently decrease the temperature until quantum
effects come into play. Eventually, we consider full quantum field descriptions for
degenerate quantum gases on which our later proposal is based.

2.2.1 Classical reaction models
The previously introduced framework considers the temperature empirically via
Arrhenius’ law (2.4). In this section we introduce a microscopic account of chemical
reactions referred to as a capture model. Loosely speaking, it assumes that all
particles that can energetically overcome a certain barrier contribute to the chemical
reaction.

The average speed of particles in a gas with roughly room temperature is about
500 m⁄s with a number of approximately 2.7 × 1019 particles per 𝑐𝑚3. Therefore,
the starting point of a microscopic theory of chemical kinetics is to investigate the
scattering events between the species. For elastic collisions between two particles one
considers the cross section 𝜎, which can be inferred from the two-body interaction
potential, to describe the likelihood for a scattering event. For collisions between
two particles which may or may not chemically react, one extends this model to the
reactive cross-section 𝜎𝑅 measuring the likelihood for a chemical reaction to take
place. This quantity is in close relationship with the rate constant of a chemical
reaction. By considering two particles that collide with fixed relative velocity 𝑣, the
reaction rate is related to the reactive cross section via

𝑘(𝑣) = 𝑣𝜎𝑅(𝑣). (2.22)

In order to infer Arrhenius’ law from the collision events, we need to average (2.22)
over some thermal distribution of velocities 𝑓(𝑣,𝑇 ):

𝑘(𝑇 ) =
ˆ ∞

0
𝑓(𝑣,𝑇 )𝑘(𝑣)𝑑𝑣 =

ˆ ∞

0
𝑓(𝑣,𝑇 )𝑣𝜎𝑅(𝑣)d𝑣. (2.23)

What kind of distribution we choose for 𝑓(𝑣,𝑇 ) depends sensitively on the physical
context. Although there are counterexamples, for instance for photochemical reac-



2.2 Cold and ultracold chemistry 12

tions, the relative velocity distribution in classical reaction kinetics will be essentially
Maxwellian. Transforming to the center-of-mass frame we can express the velocity
coordinate as a function of the collision energy:

𝐸𝑇 = 𝜇

2 𝑣
2, (2.24)

where 𝜇 denotes the reduced mass. In case of Maxwell-Boltzmann distributed
particles (2.23) takes the form

𝑘(𝑇 ) =
(︂

1
𝜋𝜇

)︂ 1
2
(︂

2
𝜅𝑇

)︂ 3
2
ˆ ∞

0
exp

[︂
−𝐸𝑇
𝜅𝑇

]︂
𝐸𝑇𝜎𝑅(𝐸𝑇 )d𝐸𝑇 . (2.25)

The key is now to infer 𝜎𝑅(𝐸𝑇 ) from the physical model of the scattering event.
To introduce the standard terminology of scattering, in figure (2.2) we sketched a
two-body collisional event. Using the center-of-mass frame, the impact parameter 𝑏
labels the distance of the colliding particles perpendicular to their relative velocity 𝑣.
We introduce the opacity funtion 𝑃 (𝑏,𝑣) as the probability that the collision with
parameters 𝑏 and 𝑣 leads to reactive scattering. Using this terminology we are able
to formulate an infinitesimal reactive cross-section 𝑑𝜎𝑅, that is, cross-sections where
the impact parameter varies in the infinitesimal interval [𝑏,𝑏+ 𝑑𝑏]

𝑑𝜎𝑅 = 2𝜋𝑏𝑃 (𝑏,𝑣)𝑑𝑏. (2.26)

Figure 2.2: Depiction of line-of-centers model for impact parameter 𝑏 > 𝑏𝑚𝑎𝑥 at fixed
relative velocity 𝑣𝑟𝑒𝑙. The reaction partners are modeled as hard spheres with radius
𝑟𝐴 and 𝑟𝐵 . The energy corresponding to the velocity in direction of the line of centers
𝑣𝑙𝑐 needs to be larger than 𝐸0 for chemical reaction to take place. Otherwise, the
particles merely scatter elastically. For the sake of simplicity, the sketch assumes that
𝑚𝐵 ≫ 𝑚𝐴 such that the center of mass is approximately in the middle of the blue
particle.
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A simple expression for the opacity function of a chemical reaction with energy
threshold can be inferred from the line-of-centers model [Kup68]. The reaction
partners are assumed to be hard spheres which form a molecule only if the collisional
velocity 𝑣𝑙𝑐 along the line of centers is sufficient to overcome a certain threshold energy
𝐸𝐴. Therefore, this model provides a maximal impact parameter 𝑏𝑚𝑎𝑥 for which the
reaction occurs. The opacity function is thus of the form 𝑃 (𝑏,𝑣) = 𝛩(𝑏𝑚𝑎𝑥(𝑣) − 𝑏)
and the reactive cross section yields

𝜎𝑅(𝑣) = 2𝜋
ˆ ∞

0
𝑃 (𝑏,𝑣)𝑏d𝑏 = 𝜋𝑏2

𝑚𝑎𝑥(𝑣). (2.27)

Denoting the radii of the collisional particles as 𝑟𝐴 and 𝑟𝐵, we readily obtain 𝑏𝑚𝑎𝑥(𝑣)
from considering the collision velocity along the line of centers

𝑣𝑙𝑐 = 𝑣

√︃
1 − 𝑏2

(𝑟𝐴 + 𝑟𝐵)2 . (2.28)

According to the model this quantity needs to be larger than the threshold 𝑣0 =
√︁

2𝐸0
𝜇

in order to amount to a reactive collision. This threshold translates to a maximal
impact parameter as follows

𝑏𝑚𝑎𝑥(𝑣) = (𝑟𝐴 + 𝑟𝐵)
√︂

(1 −
(︁𝑣0

𝑣

)︁2
. (2.29)

We may rewrite this in terms of the energy 𝐸𝑇 and find the final expression for the
reactive cross section:

𝜎𝑅(𝐸𝑇 ) =
{︃

0 if 𝐸𝑇 < 0
𝜋(𝑟𝐴 + 𝑟𝐵)2

(︁
(1 − 𝐸0

𝐸𝑇
)
)︁

if 𝐸𝑇 ≥ 𝐸0
(2.30)

Substituting this into (2.25) yields the reaction rate

𝑘(𝑇 ) = 2(𝑟𝐴 + 𝑟𝐵)2

√︃
2𝜋𝜅𝑇
𝜇

exp
[︂

−𝐸0

𝜅𝑇

]︂
. (2.31)

This equation resembles Arrhenius’ law (2.4) where we identify the macroscopical
activation energy 𝐸𝐴 with the microscopical threshold energy 𝐸0. Nevertheless, a
difference between the models is that the pre-exponential factor 𝐴 is now a function
of the temperature. However, in actual chemical reactions this dependence is hard
to measure as the growth of the exponential term is dominant for small temperature
differences.



2.2 Cold and ultracold chemistry 14

Evidently, Arrhenius’ law fails to describe reactions at low temperatures as it
predicts the reaction rate dropping quickly to zero when 𝜅𝑇 ≪ 𝐸0. However,
there is a class of barrierless reactions for which the rate can even increase at
lower temperatures (e.g. ion-molecule reactions). The rate of these reactions is not
dominated by the effect of the energy threshold 𝐸0 ≈ 0, but by the long-range shape
of the interaction potential 𝑉int(𝑅) between the particles. In order to derive a proper
model for the rate constant of these reactions, we revise the motion of two colliding
particles in terms of the participating energies:

𝐸𝑡𝑜𝑡 = 𝐸𝑘𝑖𝑛 + 𝐸𝑝𝑜𝑡 = 1
2𝜇�̇� + 𝑙2

2𝜇𝑅2 + 𝑉int(𝑅), (2.32)

where 𝑅 is the radial coordinate and 𝑙 denotes the preserved angular momentum.
Connecting this to the initial energy 𝐸𝑇 = 1

2𝜇𝑣
2 and impact parameter 𝑏 yields

𝐸𝑡𝑜𝑡 = 1
2𝜇�̇� + 𝐸𝑇 𝑏

2

𝑅2 + 𝑉int(𝑅)⏟  ⏞  
𝑉eff(𝑅)

, (2.33)

where we introduced the effective potential 𝑉eff as the sum of the conserved part
resulting from angular momentum 𝑉𝑙 = 𝐸𝑇 𝑏

2

𝑅2 and interaction potential. The shape of
the effective potential depends on the interaction forces between the molecules, but
for most intermolecular potentials there is a unique maximum of 𝑉𝑏 = 𝑉eff(𝑅 = 𝑅𝑚𝑎𝑥)
referred to as centrifugal barrier (see Fig. 2.3). The model assumes that all particles
that can cross this barrier contribute to particle conversion. Using the fact that
asymptotically the total energy 𝐸𝑡𝑜𝑡 equals 𝐸𝑇 , we can write this condition as

1
2𝜇�̇�

2|𝑅=𝑅𝑚𝑎𝑥 =
(︂
𝐸𝑇 − 𝑉int(𝑅) − 𝐸𝑇 𝑏

2

𝑅2

)︂
𝑅=𝑅𝑚𝑎𝑥

≥ 0. (2.34)

Since this expression decreases as the impact parameter 𝑏 increases, the maximal
impact parameter 𝑏𝑚𝑎𝑥 is implicitly given via

𝐸𝑇 − 𝑉int(𝑅𝑚𝑎𝑥) − 𝐸𝑇 𝑏
2
𝑚𝑎𝑥

𝑅2
𝑚𝑎𝑥

= 0. (2.35)

Solving this for 𝑏𝑚𝑎𝑥(𝐸𝑇 ) allows us to directly calculate 𝜎𝑅 via (2.27).
For the purpose of illustration we consider an example of a singly charged ion-

molecule reaction, where we have a fourth-order power law:

𝑉int(𝑅) = − 𝐶

𝑅4 . (2.36)
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Figure 2.3: The effective potential 𝑉eff as sum of centrifugal term 𝑉𝑙 and interaction
potential 𝑉int. In the capture model the relative energy 𝐸𝑇 of the particles needs to be
larger than the centrifugal barrier 𝑉𝑏 in order to form products. Treating the problem
quantum mechanically also energies with 𝐸𝑇 < 𝑉𝑏 contribute to the reaction through
tunneling.

For an extensive discussion of other long-range potentials we refer to [Bro10]. Given
the potential shape (2.36), the radius 𝑅𝑚𝑎𝑥 follows from the condition:

𝑑𝑉eff

𝑑𝑅
|𝑅=𝑅𝑚𝑎𝑥 = 0 ⇒ 𝑅𝑚𝑎𝑥(𝑏) =

√︂
4𝐶

2𝐸𝑇 𝑏2 . (2.37)

Applying this to (2.35) we obtain the maximum impact parameter

𝑏2
𝑚𝑎𝑥(𝐸𝑇 ) =

√︂
4𝐶
𝐸𝑇

, (2.38)

which yields the reactive cross section

𝜎𝑅(𝐸𝑇 ) = 𝜋

√︂
4𝐶
𝐸𝑇

. (2.39)

Assuming a maxwellian distribution of relative energy, the reaction rate (2.25)
becomes

𝑘(𝑇 ) = 2𝜋

√︃
2𝐶
𝜇
, (2.40)
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which is, in contrast to Arrhenius’ law, independent of the temperature.
The models considered in this chapter show that, depending on the microscopical

details of particle collisions, different types of rate laws can occur. However, one
major problem of the introduced models is that this simple two-body point of view
fails to describe steric effects: some orientations of colliding molecules may be more
conducive to reaction than others. Nevertheless, the introduced simple models
already show possible candidates for reactions at ultralow temperatures.

2.2.2 Quantum reactive scattering
Considering chemical reactions at lower and lower temperatures will inevitably
introduce quantum mechanical effects to the setting. For example, the magnitude
of the angular momentum is restricted to the values |𝑙| = ~

√︀
𝑙(𝑙 + 1) with 𝑙 ∈ N0.

Considering (2.23) we see two possible aspects of the previously introduced model,
which can be extended to quantum mechanics straightforwardly. First, the probability
distribution 𝑓 over relative velocities can be adapted to quantum statistics, e.g. Bose-
Einstein statistics for bosons or Fermi-Dirac statistics for fermions. Secondly, the
reactive cross section 𝜎𝑅 can be inferred from a quantized description of the scattering
process. In this chapter, we will shortly review the formalism of quantum scattering
and its application in a simple quantum threshold model.

The formalism of elastic scattering, where the kinetic energy is conserved, is surely
not suitable to describe reactive scattering. Therefore, we need to consider inelastic
processes. We introduce a label 𝑛 which collectively describes all the quantum
degrees of freedom, except the inter-particle coordinate r = 𝑅�⃗�:

𝜓(𝑛,r) =
∑︁
𝑛

|𝑛⟩𝜓𝑛(r). (2.41)

Here the channel functions |𝑛⟩ label a basis of the inner degrees of freedom. For
example, in the case of two scattering atoms with spin we have |𝑛⟩ = |𝑠1𝑚1,𝑠2𝑚2⟩,
where 𝑠𝑖 and 𝑚𝑖 label the eigenstates of the corresponding irreducible representation.
In quantum mechanics in the same way as in classical mechanics the collision of two
particles is considered in the center-of-mass frame. A standard approach to scattering
problems considers an incoming plane wave as flux of reactants in a quantum state
|𝑛⟩ and expands this in terms of the spherical harmonics 𝑌 𝑚

𝑙 (�⃗�). Let kn = 𝑘𝑛�⃗� be
the wave vector of the incoming wave then we obtain

|𝑛⟩ 𝑒𝑖knr = |𝑛⟩
∑︁
𝑙

𝑖𝑙(2𝑙+ 1)𝑗𝑙(𝑘𝑛𝑅)𝑃𝑙(�⃗� · �⃗�) = 4𝜋 |𝑛⟩
∑︁
𝑙,𝑚

𝑖𝑙𝑗𝑙(𝑘𝑛𝑅)𝑌 𝑚
𝑙 (�⃗�)𝑌 𝑚

𝑙 (�⃗�)*,

(2.42)

where 𝑃𝑙 denotes a Legendre polynomial and 𝑗𝑙 a spherical Bessel function [Sch05] and
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for the second equality we used the spherical harmonic addition theorem. Considering
a specific channel |𝑛⟩ the different values of 𝑙 are referred to as partial waves of that
channel. The asymptotic form of the Bessel function is

𝑗𝑙(𝑘𝑛𝑅) 𝑅→∞→ 𝑒𝑖(𝑘𝑛𝑅−𝑙𝜋/2) − 𝑒−𝑖(𝑘𝑛𝑅+𝑙𝜋/2)

2𝑖𝑘𝑛𝑅
, (2.43)

such that for large 𝑅 the plane wave can be written as combination of an incoming
and outgoing spherical wave:

|𝑛⟩ 𝑒𝑖knr 𝑅→∞→ 2𝜋
𝑖𝑘𝑛𝑅

|𝑛⟩
∑︁
𝑙,𝑚

𝑌 𝑚
𝑙 (�⃗�)

[︀
𝑒𝑖(𝑘𝑛𝑟−𝑙𝜋/2) − 𝑒−𝑖(𝑘𝑛𝑟+𝑙𝜋/2)]︀ 𝑖𝑙𝑌 𝑚

𝑙 (�⃗�). (2.44)

Now, the S-matrix is the characteristic quantity which models the scattering process
as a modification of the outgoing wave’s amplitude, such that the overall wave
function of the scattering problem can be written as:

𝜓(kn,r) 𝑅→∞→ 2𝜋
𝑖𝑘𝑛𝑅

∑︁
𝑛′

∑︁
𝑙,𝑚;𝑙′,𝑚′

|𝑛′⟩𝑌 𝑚′

𝑙′ (�⃗�)
[︁

− 𝑒−𝑖(𝑘𝑛𝑟−𝑙′𝜋/2)𝛿𝑛,𝑛′𝛿𝑙,𝑙′𝛿𝑚,𝑚′+ (2.45)

𝑒𝑖(𝑘𝑛𝑟−𝑙′𝜋/2)𝑆𝑛′,𝑙′,𝑚′;𝑛,𝑙,𝑛

]︁
𝑖𝑙𝑌 𝑚

𝑙 (�⃗�)

When there is no interaction the S-matrix is equivalent to the identity matrix.
Otherwise, the off-diagonal terms of the S-matrix measure how much is scattered
into channels |𝑛′⟩ different from the incoming channel |𝑛⟩. This is more directly
expressed by the related T-matrix, 𝑇 := 1 − 𝑆, with which we define the scattering
amplitude 𝑓𝑛′,𝑛:

𝑓𝑛′,𝑛(�⃗�,⃗𝑘) := − 2𝜋
𝑖𝑘𝑛𝑅

∑︁
𝑙,𝑚;𝑙′,𝑚′

𝑖𝑙−𝑙
′
𝑌 𝑚′

𝑙′ (�⃗�)𝑇𝑛′,𝑙′,𝑚′;𝑛,𝑙,𝑚𝑌
𝑚
𝑙 (�⃗�)* (2.46)

This quantity is connected to the state-to-state integral cross section 𝜎𝑛′,𝑛 for a
particular incident direction �⃗� by integration over the unit sphere:

𝜎𝑛′,𝑛(�⃗�) =
ˆ ˆ

|𝑓𝑛′,𝑛(�⃗�,⃗𝑘)|2d�⃗� (2.47)

For an isotropically distributed scattering system we obtain the integral state-to-state
cross section 𝜎𝑛′,𝑛 by averaging over the incident directions:

𝜎𝑛′,𝑛 = 1
4𝜋

ˆ ˆ
𝜎𝑛′,𝑛(�⃗�)d�⃗� = 𝜋

𝑘2
𝑛

∑︁
𝑙,𝑚,𝑙′,𝑚′

|𝑇𝑛′,𝑙′,𝑚′;𝑛,𝑙,𝑚|2 (2.48)
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Let 𝑛𝑅 label the reactive channels, then we obtain the reactive cross section 𝜎𝑅 from
taking the sum of the contributing state-to-state integral cross sections:

𝜎𝑅 =
∑︁

𝑛′∈𝑛𝑅,𝑛

𝜎𝑛′,𝑛 (2.49)

At this point we establish a link between the classical impact parameter 𝑏 and the
partial wave quantum number 𝑙. Due to the unitarity of the S-matrix we find an
upper bound for the contribution of partial wave 𝑙 for an initial state |𝑛⟩ to any of
the output channels to be

𝜎𝑚𝑎𝑥𝑛,𝑙 = 𝜋

𝑘2
𝑛

(2𝑙 + 1), (2.50)

where the factor 2𝑙 + 1 stems from the summation over the possible 𝑚. Assuming
that beyond some wave number 𝑙𝑚𝑎𝑥 the partial waves become nonreactive, we obtain

𝜎𝑚𝑎𝑥𝑛 =
𝑙𝑚𝑎𝑥∑︁
𝑙=0

𝜎𝑚𝑎𝑥𝑛,𝑙 = 𝜋

𝑘2
𝑛

(𝑙𝑚𝑎𝑥 + 1)2. (2.51)

Comparing this with the definition of the classical reactive cross section (2.27) leads
us to conclude that

𝑏2
𝑚𝑎𝑥 = (𝑙𝑚𝑎𝑥 + 1)2

𝑘2 . (2.52)

Assuming the potential to have a maximal distance 𝑅𝑚𝑎𝑥 at which particles interact
yields

𝑅2
𝑚𝑎𝑥𝑘

2 = (𝑙𝑚𝑎𝑥 + 1)2. (2.53)

This shows that when temperature decreases and 𝑘 becomes smaller only a few
partial waves contribute to the cross section. In case of ultracold temperatures the
cross sections are often governed by partial waves with 𝑙 = 0 (or s-waves) for bosons
or distinguishable particles and 𝑙 = 1 (or p-waves) for fermions.

Equation (2.48) shows that the T-matrix or equivalently the S-matrix are the key
elements as they provide a direct way to derive reaction rates. Various methods
have been developed to obtain the elements of these matrices, for example coupled
channels theory [Hu06]. However, most of them are computationally demanding.
Here we present an approach, referred to as quantum threshold model [Qué10] which
modifies the results of the classical capture model by a simple quantum correction.
We have already seen that for low-energy scattering only the smallest partial wave
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contributes to the reactive cross section. The contributions of these waves in the
limit of low energies follow the so-called Wigner threshold law [Wig48]

|𝑇𝑛′,𝑙′;𝑛,𝑙|2 ∝ 𝑘2𝑙+1
𝑛 , (2.54)

implying the reactive cross section

𝜎𝑛′,𝑙′;𝑛,𝑙 ∝ 𝑘2𝑙−1
𝑛 . (2.55)

The quantum threshold model considers the classical effective potential (see figure
2.3) and assumes that for 𝐸𝑇 ≥ 𝑉𝑏 the entries of the T-matrix have modulus one,
that is |𝑇𝑙,𝑚|2 = 1, just as the probability for reaction in the classical capture model.
However, for energies below the centrifugal barrier 𝐸𝑇 < 𝑉𝑏 the reaction probability
is not equal to zero but follows a threshold law,

|𝑇𝑙,𝑚|2 =
(︂
𝐸𝑇
𝑉𝑏

)︂𝑙+1/2

. (2.56)

This can be interpreted as the contribution to the reaction by tunnelling through the
centrifugal barrier. Substituting this expression into (2.48) gives the reactive cross
section

𝜎𝑅 = ~2𝜋

2𝜇𝑉 𝑙+1/2
𝑏

𝐸
𝑙−1/2
𝑇 . (2.57)

Note that this model does not apply to s-wave scattering due to the absence of the
centrifugal barrier. However, assuming a Maxwell-Boltzmann distribution of the
relative velocities and considering two fermionic molecules at ultracold temperatures
we obtain a rate for the p-wave contribution that scales linearly with temperature.
A considerable feature of this model is that it provides an analytical expression of
the rate coefficient which scales with the height of the centrifugal barrier, which is in
qualitative agreement with experiments. Moreover, one can easily introduce a fitting
parameter to the barrier height or modify the reaction probability below the barrier
by an overall factor to introduce flexibility.

To summarise, we have that the presented quantum treatment of scattering modifies
the reaction constants of classical kinetics by important quantum effects. However,
the resulting dynamical description is still dissipative as the quantum mechanically
calculated reaction constants are simply used as parameters within the framework of
classical kinetics.
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Figure 2.4: Depiction of an ultracold reaction resulting from the superposition or
interaction of two BECs. Describing the creation of molecules by a two-body scattering
model fails due to positional delocalization and indistinguishability of particles.

2.2.3 Ultracold chemistry
The ground-breaking experimental achievement of creating a Bose-Einstein conden-
sate (BEC) of Sodium atoms [Dav95] spurred experimental as well as theoretical
physicists to explore a wide range of questions around this new kind of matter. One
aspect was the creation of a molecular BEC through coupling atomic BECs using
photoassociation [Wyn00] or magnetic field Feshbach resonance [Don02] (sketched
in Fig. 2.4). A natural question to ask is how a suitable framework for these ultra-
cold particle conversions should look like. So far our determination of the reaction
rate was based on the consideration of the two-particle reactive cross section 𝜎𝑅.
However, for chemical reactions taking place in the realm of BECs or degenerate
quantum gases this picture necessarily fails; due to the spatial delocalization and
indistinguishability of the particles throughout the condensate, the particles can only
collectively "scatter", which requires a full quantum description of the many body
system.

The first theoretical proposal to effectively describe the coherent creation of
molecules inside a BEC completely within the quantum framework was made
in [Dru98]. The authors described the atoms as well as the molecules by three-
dimensional quantum fields interacting through

�̂�𝑖𝑛𝑡 =
ˆ

d3𝑥
𝜒

2

[︁
𝜑2𝜓� + 𝜑�2

𝜓
]︁
, (2.58)

where 𝜑 labels the atomic and 𝜓 the dimer species. The coupling constant 𝜒 represents
the s-wave scattering limit of the dimer formation rate, effectively modeling process
photoassociation as well as magnetoassociation. At the same time a similar approach
was described in [Jav99], whereas the authors derive the coupling parameter from
the matrix dipole moment in photoassociation.
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A first step to describe the proposed theories as a new kind of chemistry was
undertaken in [Hei00]. In this publication the authors coined the term superchemistry
as ’the coherent stimulation of chemical reactions via macroscopic occupation of
a quantum state by a bosonic chemical species‘. The authors point out that the
resulting kinetics are fundamentally different from Arrhenius’ type of dynamics.
However, the authors miss to present a complete scheme or method to describe the
reaction kinetics of more complex reactions as well as a fundamental categorization
of the occurring dynamical regimes. Subsequent work [Hop01; Oli04] extended the
specific model of diatomic molecule formation correcting previous predictions of the
system dynamics. In [Moo02] the authors consider the dissociation of triatomic
molecules, assuming two open rearrangement channels. It is found that a small
change in the coupling constants to the rearrangement channels has dramatic effects
on the dynamics. A short review article considering certain aspects of superchemistry
can be found in [Jin11].

In this thesis we extend the notion of superchemistry to ultracold chemistry by two
major aspects: First, we allow the participating species to be fermions. Although
mentioned by the authors in [Hei00], they miss to provide possible explicit interaction
Hamiltonians to describe a fermionic reactions. And secondly, we do not restrict
ourselves to elementary reactions. Our proposed model allows to describe ultracold
reaction networks, that is an arbitrary number of concurrent reactions. Consequently,
we define ultracold chemistry as chemical reactions driven by the coherent interaction
of quantum degenerate Fermi or Bose gases.



CHAPTER 3
Ultracold reaction kinetics

The main objective of this thesis is to set up a framework that provides a com-
prehensive description of ultracold reaction kinetics and allows for a systematic
classification of the occurring phenomena. As a template we consider the theory
of classical reaction kinetics, which successfully finds a trade-off between a not too
complex description of an open thermodynamic system and still capturing the impor-
tant physical aspects to predict experimental interesting phenomena. A promising
route to follow is to consider the equations of motion of classical reaction kinetics
as some kind of classical limit of the proposed quantum framework. This can be
achieved by employing the method of first quantisation [Dir25]. This method takes
the classical equations of motion as a starting point and proposes a class of related
quantum systems. First quantisation is validated by its enormous success in pre-
dicting fundamental quantum phenomena like discrete energy levels, tunnelling and
uncertainty principles. However, within the framework of first quantisation it is not
possible to model creation and annihilation of particles. Considering a chemical
reaction, it is an appealing interpretation to understand the transformation process
between chemical species as annihilation of the reactant species and creation of the
product species. Therefore, the formalism of second quantisation, which is capable of
modelling creation and annihilation of particles, provides another promising approach
to model ultracold chemical reactions. Second quantisation describes many-particle
quantum systems in terms of occupation numbers of a complete set of single particle
states. This method is used as a framework for quantum field theories and therefore
validated by the successful description of numerous physical systems ranging from
superconductors to particle physics. However, as second quantisation usually begins
with the quantisation of a classical field theory, it is not clear how classical reaction
kinetics should appear as classical limit.

This chapter is organised as follows. In section 3.1 we review the method of first
quantisation. The method has a classical Hamiltonian system as starting point.
Therefore, we present a way to embed the dissipative dynamics of classical kinetics

22
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into a Hamiltonian description. We first quantise the embedded systems and discuss
the validity of this approach. In section 3.2 we introduce the basic concepts of
second quantisation. We focus on certain aspects which will help to understand the
formulation of the proposed framework. In section 3.3 we present a proposal, which
starts with the stoichiometric scheme of an arbitrary chemical reaction and yields a
second quantised Hamiltonian description. This proposal is a central aspect of the
thesis as we study the following chapters instructive examples of second quantised
kinetics.

3.1 First quantisation
First quantisation of classical systems has a long and successful history of applications.
The idea of describing particles or other physical objects by ‘wave functions’ goes
back to the early days of quantum mechanics [Dir25]. In translating a classical
Hamiltonian description into the framework of single-particle wave functions, it
succeeded in describing fundamental quantum phenomena. Besides the explicitly
single particle aspects, it also successfully explained even many-body systems, for
example the occurrence of energy gaps in semiconductors. The starting point of first
quantisation of a classical Hamiltonian system is to replace the Poisson brackets by
commutator relations

{𝑥,𝑝} ↦→ 𝑖 [�̂�,𝑝] . (3.1)

This maps the dynamics from a finite-dimensional phase space to an infinite di-
mensional Hilbert space. However, first quantisation does not provide a unique
connection between quantum and classical systems; the quantisation of canonically
equivalent classical systems leads to non-equivalent quantum systems. In this sense,
first quantisation can only give us an indication of which quantum systems we should
investigate, given its classical limit.

Inspired by the success of first quantisation in predicting phenomena for quantised
classical systems, we attempt to apply this method to classical reaction kinetics.
Keeping in mind that a chemical reaction is inherently a many particle problem,
we assume the resulting description to be approximate. Nevertheless, we hope to
gain insights, from first quantisation, into the qualitative behaviour of chemical
reactions at ultracold temperatures. Clearly, this requires a valid Hamiltonian
description of the system under consideration, which brings us to the first problem:
The dynamic of high-temperature kinetics 2.16 is in general of dissipative nature,
that is, there is neither a time-reversal symmetry nor a preservation of the state
space volume during time evolution. Moreover, the conservation of energy is a
central aspect of closed Hamiltonian systems. However, we know that dissipative
terms effectively model the interaction a system with an environment, for example
a heat reservoir in thermodynamics. Therefore, by enlarging the system to include
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environment, we obtain an energy-conserving model. However, in case of classical
chemical reactions this seems to be a hopeless endeavour as this would require
including all particles taking part in the reaction. Consequently, we try to find an
effective Hamiltonian description which on the one hand reproduces the dissipative
dynamics when considered on a subsystem, and on the other hand is not too complex
to be suitable for a first quantisation.

In what follows, we present a efficient way of embedding a dissipative system into a
Hamiltonian description. We apply this embedding to a classical first-order reaction
and first-quantise different equivalent descriptions of the resulting Hamiltonian
system. We compare the dynamics of the different quantised systems with the
dynamics of classical reaction kinetics.

3.1.1 Dynamical embedding
Before we can quantise classical reaction kinetics, we need to find a suitable Hamilto-
nian description of it. By ‘suitable’ we mean that the original dissipative dynamics
should be reproduced by some kind of natural restriction within the Hamiltonian
system. We employ a method which we refer to as dynamical embedding. The key
idea of this method to is set up a Hamiltonian system of twice the dimension1 of
the dissipative system, in such way that we obtain the dissipative trajectories as a
projection onto a subspace. To be more precise, we define a Hamiltonian system to
be a triple consisting of a 2𝑁 -dimensional phase space with coordinates

(x,p) = ((𝑥1,𝑝1),(𝑥2,𝑝2),...,(𝑥𝑁 ,𝑝𝑁)) , (3.2)

a Hamilton function 𝐻 = 𝐻(x,p) and a set of observables {𝐴𝑖 (x,p)}𝑘𝑖=1 evolving in
time according to

𝑑𝐴𝑖 (x,p)
𝑑𝑡

=
𝑁∑︁
𝑗=1

𝜕𝐴𝑖 (x,p)
𝜕𝑥𝑗

𝜕𝐻(x,p)
𝜕𝑝𝑗

− 𝜕𝐻(x,p)
𝜕𝑥𝑗

𝜕𝐴𝑖 (x,p)
𝜕𝑝𝑗

𝑖 = 1,2,...,𝑘. (3.3)

Note that for the sake of simplicity we restrict our considerations to quantities which
are not explicitly time-dependent. A dynamical first-order system consists of a state
space (𝑧1,𝑧2,...,𝑧𝑛) and an ODE-system

𝑑𝑧𝑖
𝑑𝑡

= 𝑓𝑖(𝑧1,...,𝑧𝑛) 𝑖 = 1,2,...,𝑛 , (3.4)

where 𝑓𝑖 is a smooth function for each 𝑖. We say a dynamical first-order system is
dynamically embedded into a Hamiltonian system if we can find a set of observables

1 Considered as vector space, not as sympletic space.



3.1 First quantisation 25

𝐴𝑖 for the Hamiltonian system whose time-evolution coincides with (3.4).
In what follows we show that, although the existence of a dynamical embedding

for any finite dimensional first-order dynamical system is guaranteed, it is not
unique. In fact, we can find infinitely many Hamiltonian systems reproducing the
proper dissipative dynamics on a subsystem. To see this, we identify the state space
coordinates (𝑧1,𝑧2,...,𝑧𝑛) as position variables of a 𝑛-dimensional phase space, that is
𝑧𝑖 = 𝑥𝑖. Substituting this ansatz into 3.3 yields

𝑑𝑥𝑖
𝑑𝑡

= 𝜕𝐻(x,p)
𝜕𝑝𝑖

!= 𝑓𝑖(x), (3.5)

as a constraint on possible Hamilton functions. Equation (3.5) is an underdetermined
system as it merely determines the partial derivatives of 𝐻 with respect to the
canonical momenta. We see that any Hamiltonian of the form

𝐻 =
𝑛∑︁
𝑖=1

𝑓𝑖(x)𝑝𝑖 +
𝑛∑︁
𝑖=1

𝑔𝑖(x) =
𝑛∑︁
𝑖=1

𝑓𝑖(x)𝑝𝑖 + 𝑔(x), (3.6)

induces the desired equations on the subspace spanned by (𝑥1,𝑥2,...,𝑥𝑛), for any
smooth function 𝑔. The freedom of choosing an arbitrary 𝑔 has a large impact on
the dynamics of the conjugate variables (𝑝1,...,𝑝𝑛),

𝑑𝑝𝑗
𝑑𝑡

= −𝜕𝐻(x,p)
𝜕𝑥𝑗

= −

(︃
𝑛∑︁
𝑖=1

𝑝𝑖
𝜕𝑓𝑖(x)
𝜕𝑥𝑗

+
𝑛∑︁
𝑖=1

𝜕𝑔𝑖(x)
𝜕𝑥𝑗

)︃
. (3.7)

However, this seemingly large degree of freedom may be reduced by the fact that
different embeddings may describe the same physical system in different coordinates.
In this case Hamiltonian dynamics tells us that there exists a canonical transformation
[Gol65] between the systems. This transformation maps the position and momentum
coordinates of a given Hamiltonian system to new coordinates while preserving
Hamilton’s equation of motion. However, the particular canonical transformation
relating two systems may, in general, be very hard to find. At this point, we
content ourselves by formulating a sufficient condition for the existence of a canonical
transformation between two different embeddings. This condition relies on the fact
that every canonical transformation is induced by some generating function. Bearing
in mind that there are different types of generating functions, we assume here that
the generating function depends on the old and new position coordinates, that is
𝐹 = 𝐹 (x,x̃). This implies the following equations for the respective momentum
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coordinates:

𝑝𝑖 = 𝜕𝐹 (x,x̃)
𝜕𝑥𝑖

𝑝𝑖 = 𝜕𝐹 (x,x̃)
𝜕�̃�𝑖

.

(3.8)

By inserting (3.8) into (3.6), we find that two of dynamical embeddings, determined
by distinct 𝑔1 and 𝑔2 in (3.6), describe the same physical system if the partial
differential equation∑︁

𝑖

𝑓𝑖 (x̃) 𝜕𝐹 (x,x̃)
𝜕x̃𝑖

+
∑︁
𝑖

𝑓𝑖 (x) 𝜕𝐹 (x,x̃)
𝜕x𝑖

= 𝑔1 (x̃) − 𝑔2 (x) (3.9)

has a non-trivial solution in 𝐹 (x,x̃). We emphasize again that this is merely a
sufficient condition and the class of equivalent descriptions may be much larger.

Summarising this method, we see we can obtain a compact canonical description
of a dissipative system. Within this description the dissipative dynamics emerge
naturally from the physical restriction of only having access to a subspace of the full
phase space. Naively applied, this method comes with a large degree of freedom,
making it difficult to decide which embeddings might be the right for the subsequent
quantisation. We might be able to mitigate this effect by identifying equivalent
embeddings through canonical transformations. However, as long as we have no full
classification of the different embeddings, we can merely pick out certain examples
and investigate the consistency between the quantised and classical systems.

3.1.2 Case-study
As an example of a dynamical embedding and of the predicted dynamics of the
corresponding first quantised system, let us consider the elementary reaction

𝐴
𝑘→ 𝐵. (3.10)

For the sake of clarity, we henceforth omit the embracing brackets [.] of the particle
concentration. The dynamical equation for species 𝐴 can be inferred from (2.16) to
be

𝑑𝐴

𝑑𝑡
= −𝑘𝐴, (3.11)

which is solved by an exponential decay

𝐴 = 𝐴0𝑒
−𝑘𝑡, (3.12)



3.1 First quantisation 27

with 𝐴0 as initial particle number. Considering the concentration 𝐴 as a canonical
variable 𝑥 of some Hamiltonian system results in the following equation determining
the Hamiltonian:

𝑑𝑥

𝑑𝑡
= 𝜕𝐻

𝜕𝑝
= −𝑘𝑥 (3.13)

This is solved by the set of Hamilton functions

𝐻(𝑥,𝑝) = −𝑘𝑥𝑝+ 𝑔(𝑥), (3.14)

with 𝑔 as smooth function. As already mentioned, the choice of a particular 𝑔 seems
to result in different physical systems. However, let us evaluate our sufficient criterion
for canonical equivalence (3.9):

�̃�
𝜕𝐹

𝜕�̃�
+ 𝑥

𝜕𝐹

𝜕𝑥
= 𝑔(𝑥), (3.15)

where we set 𝑔1(�̃�) = 0 and 𝑔2(𝑥) = 𝑔(𝑥). This equation is analytically solvable by
the method of characteristics (see for example in [Cou66]). The generating function
can be determined to be

𝐹 (𝑥,�̃�) =
ˆ 𝑥

0
d𝑥 ′ 𝑔(𝑥′)

𝑥′ + ℎ

(︂
�̃�

𝑥

)︂
, (3.16)

where ℎ can be any non-zero smooth function. This result is surprising as it means
that for all possible embeddings given by 𝑔2, we can find a generating function 𝐹
inducing a transformation to the embedding with 𝑔 = 0. In mathematical terms we
say that all possible embeddings belong to the same equivalence class.

Motivated by this result, let us further investigate the dynamical embedding with
𝑔 = 0, that is

𝐻0(𝑥,𝑝) = −𝑘𝑥𝑝. (3.17)

This physics described by this system can be understood if we canonically transform
it to coordinates(︂

𝑥
𝑝

)︂
= 1√

2

(︂
1 −1
1 1

)︂(︂
�̃�
𝑝.

)︂
(3.18)

The Hamiltonian then yields

𝐻1 = 𝑘

2(𝑝2 − �̃�2). (3.19)
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This Hamiltonian represents a physical system consisting of a particle moving in the
inverted harmonic potential 𝑉 (𝑥) = −𝑘

2𝑥
2. This system therefore has one unstable

fixed point at 𝑥 = 𝑝 = 0. Trajectories starting with 𝑥 ̸= 0 only move to this
fixed point when the initial kinetic energy is equal to minus the potential energy.
Therefore, most of the trajectories will diverge to infinity. Similar systems occur
in the path integral framework of quantum field theory as result of Wick rotation
[Das93]. The original dissipative dynamics are reproduced by following the observable
𝐴 = 1√

2 (�̃�− 𝑝).
Having understood the physical model of the dynamical embedding of the chemical

reaction, we now apply first quantisation to the system. Let us consider, as an
example, the classical equivalent systems (3.19) and (3.17). Replacing the classical
phase space variables with operators yields

�̂�0 = −𝑘�̂�𝑝, (3.20)

and

�̂�1 = 𝑘

2(𝑝2 − �̂�2). (3.21)

The first problem we immediately see is that (3.20) is not self-adjoint. This can be
resolved by rewriting the classical term 𝑥𝑝 as 𝑥𝑝+𝑝𝑥

2 resulting in the operator

�̂�0 = −𝑘

2 (�̂�𝑝+ 𝑝𝑥) . (3.22)

To reach a more intuitive understanding we rewrite �̂�0 and �̂�1 in terms of the ladder
operators of the harmonic oscillator, that is

�̂� = �̂�+ 𝑖𝑝√
2

(3.23)

and

�̂�� = �̂�− 𝑖𝑝√
2
. (3.24)

Substituting these identities into 3.22 yields

�̂�0 = −𝑘

2 (�̂�𝑝+ 𝑝𝑥) = −𝑖𝑘

4
(︀(︀
�̂�+ �̂��

)︀ (︀
�̂�� − �̂�

)︀
+
(︀
�̂�� − �̂�

)︀ (︀
�̂�� + �̂�

)︀)︀
= −𝑖𝑘

2
(︀
�̂���̂�� − �̂��̂�

)︀
.

(3.25)
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The quantised particle concentration in case of �̂�0 is

𝐴0 = �̂� = 1√
2
(︀
�̂�� + �̂�

)︀
. (3.26)

Similarly, we obtain for 3.21 the expression

�̂�1 = 𝑘

2
(︀
𝑝2 − �̂�2)︀ = 𝑘

2

(︂
−1

2
(︀
�̂�� − �̂�

)︀2 + 1
2
(︀
�̂�� + �̂�

)︀2
)︂

= −𝑘

2(�̂���̂�� + �̂��̂�),
(3.27)

with quantised observable

𝐴1 = 1√
2

(�̂�− 𝑝) = 1 − 𝑖

2 �̂�� + 1 + 𝑖

2 �̂�. (3.28)

We see that first quantisation has led us to two seemingly different quantum descrip-
tions of equivalent classical models. We mention here, that besides the observables
that result directly form the quantisation, we also consider the expectation value of
the particle number operator

⟨�̂�⟩ = ⟨�̂���̂�⟩, (3.29)

as a possible candidate for a dynamical observable. This is due to its great success
in quantum optics, where it successfully establishes a duality between the classical
particle and quantum wave view. To make the quantum framework complete,
we assume that the Hamiltonian induces the dynamics via the time-dependent
Schrödinger equation (TSDE)

|𝜓(𝑡)⟩ = 𝑒−𝑖�̂�𝑡 |𝜓(0)⟩ . (3.30)

Within this framework, we find by substituting (3.25) and (3.27) into (3.30) that the
time evolution is represented by two different instances of squeeze operators [Ger05]:

𝑆(𝑠,𝜃) = 𝑒
1
2 𝑠(𝑒

−𝑖𝜃 �̂��̂�−𝑒𝑖𝜃 �̂���̂��), (3.31)

with 𝜃 = 0 for �̂�0 and 𝜃 = 3
2𝜋 for �̂�1 and 𝑠 = 𝑘𝑡 for both. To obtain an analytical

expression for the temporal evolution of observables, we use the identities [Lou00]

𝑆��̂�𝑆 = �̂� cosh(𝑠) − �̂��𝑒−𝑖𝜃 sinh(𝑠)
𝑆��̂��𝑆 = �̂�� cosh(𝑠) − �̂�𝑒𝑖𝜃 sinh(𝑠).

(3.32)
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In what follows, we compare the resulting quantum trajectory with the classical
trajectory. To make this comparison as feasible as possible, we choose the quantum
systems to be initially in a coherent state labelled by |𝛼⟩. These states are to some
extent the most classical states (see details in 5.1.1).

Let us start our investigation by considering the expectation value of the observable
𝐴0: ⟨

𝐴0(𝑡)
⟩

= 1√
2

⟨𝛼| �̂� cosh(𝑘𝑡) − �̂�� sinh(𝑘𝑡) + �̂�� cosh(𝑘𝑡) − �̂� sinh(𝑘𝑡) |𝛼⟩

=
√

2Re(𝛼) (cosh(𝑘𝑡) − sinh(𝑘𝑡)) = 2Re(𝛼)𝑒−𝑘𝑡.

(3.33)

Surprisingly, this exactly reproduces the classical trajectory if we identify 𝐴0 =√
2Re(𝛼). This gives us an intuition concerning how to find a classical limit of

this system resulting in the expected classical dynamics, namely, a limit where the
fluctuations around the expectation value become negligibly small. As a second
system we consider �̂�1 with observable 𝐴1:⟨

𝐴1(𝑡)
⟩

=1
2 ⟨𝛼| (1 − 𝑖)

(︀
�̂�� cosh(𝑘𝑡) + 𝑖�̂� sinh(𝑘𝑡)

)︀
|𝛼⟩

+ 1
2 ⟨𝛼| (1 + 𝑖)

(︀
�̂� cosh(𝑘𝑡) − 𝑖�̂�� sinh(𝑘𝑡)

)︀
|𝛼⟩

= (Re(𝛼) − Im(𝛼)) 𝑒𝑘𝑡

(3.34)

Its dynamics are fundamentally different from the classical ones. Depending on the
choice of real and imaginary part of 𝛼 the expectation value goes to plus or minus
infinity. Therefore, is is not possible to interpret this observable as pendant of the
classical particle number. In the last step, we consider the expectation value of the
number operator,⟨

�̂�(𝑡)
⟩

= ⟨𝛼| �̂���̂� cosh2(𝑘𝑡) − �̂���̂��𝑒𝑖𝜃 cosh(𝑘𝑡) sinh(𝑘𝑡) |𝛼⟩

+ ⟨𝛼| − �̂��̂�𝑒−𝑖𝜃 sinh(𝑘𝑡) cosh(𝑘𝑡) +
(︀
�̂���̂�+ 1

)︀
sinh2(𝑘𝑡) |𝛼⟩

=|𝛼|2 cosh(2𝑘𝑡) − Re(𝛼2𝑒−𝑖𝜃) sinh(2𝑘𝑡) + sinh2(𝑘𝑡)

=
(︂

|𝛼|2 + 1
2

)︂
cosh(2𝑘𝑡) − Re(𝛼2𝑒−𝑖𝜃) sinh(2𝑘𝑡) − 1

2 .

(3.35)

Here we keep 𝜃 as a parameter so we may compare the different time evolutions
induced by �̂�0 and �̂�1. However, for large times the difference between the systems
vanishes and the particle number is dominated by an exponential increase⟨

�̂�(𝑡)
⟩
𝑡≫1→ 𝐴𝑒2𝑘𝑡, (3.36)
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where 𝐴 is a constant depending on the initial state.
Comparing the trajectories of the different systems, we see that 𝐴0 evolves in time

like the classical trajectory, whereas the others strongly deviate from the classical
solution. This seems to be a good starting point as it means we have found a
quantum description which recovers the classical kinetics in the limit of vanishing
fluctuations around the mean value. However, further investigations of (3.25) reveal
some problems for it as candidate for the description of ultracold reactions: For a
general coherent state the expectation value of �̂�0 is given by

⟨𝛼| �̂�0 |𝛼⟩ = −𝑖𝑘

2
(︀
𝛼2 − 𝛼2)︀ = −𝑘Im(𝛼2). (3.37)

Since there are no restrictions on the imaginary part of 𝛼2, we find that the operator
�̂�0 is neither bounded from below nor from above. This shows that the system
described by �̂�0 cannot be subject to thermal investigations as the ground state is not
well defined. The same reasoning can be applied to �̂�1. Moreover, the fact that �̂�0
and �̂�1 model squeezing hints at another problem: In quantum optics the squeezing
operator results from an approximate description of parametric down conversion
[Wu86], that is the recombination of two photons into one of double energy. However,
this recombination scheme would correspond to a second-order reaction, whereas our
classical example is a first order reaction.

To summarise, we have successfully embedded the dissipative dynamics of a
classical first-order reaction into a Hamiltonian framework. By comparing different
quantisations of canonically equivalent systems, we found that the resulting systems
predict different dynamics. Although we found a promising candidate reproducing
the dissipative dynamics on a subspace, the resulting Hamiltonian systems are
"unphysical" in the sense that they violate essential properties we demand from
a proper quantum description. Besides these issues, it is completely unclear how
important aspects like the distinction between fermionic and bosonic reactions should
enter a first quantised description. Altogether, we consider the obtained insights not
promising enough warrant following this route further.

3.2 Second quantisation
A chemical reaction can be considered as a result of two or more scattering particles
that form particles of inherently different structure. This implies that a full quantum
description of this process needs to take the different structure of reactants and
products as well as variable particle numbers into account. The resulting formalism
should, in particular, be capable of describing the change of the statistics of the
particles, which can have an important impact on the dynamics of the reaction. The
formalism of second quantisation has the required properties and, moreover, provides
a compact route for the formulation of our proposed framework. As such, we review
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here the basic notions and terminology of second quantisation. In the sequel, we
closely follow [Sch05].

We start our introduction of second quantisation by considering a single-particle
quantum system with {𝜓𝑗(x)}∞

𝑗=1 as a complete orthogonal basis of wave functions.
Here x does not merely denote the position of the particle, but also other degrees of
freedom, e.g. spin. According to the rules of quantum mechanics the wave function
of N copies of this particle will be an element of the N-fold tensor product:

𝛹(x1, . . . ,x𝑁 ,𝑡) =
∑︁

𝑖1,...,𝑖𝑁

𝑐𝑖1,...,𝑖𝑁 (𝑡)𝜓𝑖1(x1) . . . 𝜓𝑖𝑁 (x𝑁). (3.38)

A typical Hamiltonian many-body system consists of kinetic energy and an interaction
potential:

�̂� =
𝑁∑︁
𝑘=1

𝑇 (x𝑘) + 1
2

𝑁∑︁
(𝑘,𝑙)=1
𝑘 ̸=𝑙

𝑉 (x𝑙,x𝑘). (3.39)

Considering the time-dependent Schrödinger equation, this problem is equivalent to
an infinite number of coupled differential equations in 𝑐𝑖1,...,𝑖𝑁 (𝑡). A basic principle
in many-body quantum mechanics is that identical particles are indistinguishable
in the following sense: The permutation of two particles in the wave function does
not result in observable consequences. Let 𝑃𝑗𝑘 denote the operator that exchanges
the labels of the particles 𝑗 and 𝑘. Then, the indistinguishability condition can be
written as

𝑃𝑗𝑘𝛹(x1, . . . ,x𝑗, . . . ,x𝑘, . . .x𝑁) = 𝑒𝑖𝜑𝑗𝑘𝛹(x1, . . . ,x𝑗, . . . ,x𝑘, . . .x𝑁), (3.40)

that is the permuted wave function merely changes by a phase. It is intuitive to
demand that applying the exchange operator 𝑃𝑗,𝑘 twice yields the original wave
function1. This implies that any phase 𝜑𝑗,𝑘 is either 0 or 𝜋 or, equivalently, the wave
function is either even or odd under permutations. Particles with an even parity are
called bosons whereas an odd parity corresponds to fermions. To ensure the right
properties of the wave function the coefficients in (3.38) must satisfy

𝑐𝑖1,...𝑖𝑘,...,𝑖𝑗 ...𝑖𝑁 (𝑡) = ±𝑐𝑖1,...𝑖𝑗 ,...,𝑖𝑘...𝑖𝑁 (𝑡), (3.41)

where + holds in the bosonic and − for the fermionic case. The bosonic symmetry
makes it convenient to rewrite the wave function in a symmetrised basis. Let 𝑛1

1 For excitations in certain two-dimensional systems, e.g. the toric code, this condition is indeed
violated. These particle-like quantities are referred to as anyons
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denote the number of particles which are in state 𝜓1, 𝑛2 the number of particles
in state 𝜓2 and so on. We refer to (𝑛1,𝑛2, . . .) as occupation numbers which in the
bosonic case, can take values between zero and 𝑁 . Using this terminology we can
write a complete set of symmetrised functions as

𝜑𝑛1,𝑛2,...(x1, . . . ,x𝑁) :=
√︂
𝑛1!𝑛2! . . .

𝑁 !
∑︁

𝑖1,...,𝑖𝑁
(𝑛1,𝑛2,...)

𝜓𝑖1(x1) . . . 𝜓𝑖𝑁 (x𝑁), (3.42)

where the summation runs over all 𝑖1, . . . ,𝑖𝑁 that satisfy a pattern of (𝑛1,𝑛2, . . .).
Moreover, for a fixed particle number 𝑁 we find that the pattern of occupation
numbers needs to satisfy

∑︀
𝑖 𝑛𝑖 = 𝑁 . Expressing the wave function in this basis

yields

𝛹(x1, . . . ,x𝑁 ,𝑡) =
∑︁

𝑛1,𝑛2,...∑︀
𝑖 𝑛𝑖=𝑁

𝑓𝑛1,𝑛2,...(𝑡) · 𝜑𝑛1,𝑛2,...(x1, . . . ,x𝑁), (3.43)

where 𝑓𝑛1,𝑛2,... labels the coefficients in this basis. The same reformulation for the
basis can be done for fermions, with the differences that the antisymmetry of the
wave function restricts the occupation numbers to be either zero or one 𝑛𝑖 ∈ {0,1}
and that an extra sign appears in (3.42) according to the parity of the wave function.

While the representation introduced allows us to correctly write down the time
evolution of the many-body wave function of a system with fixed particle number,
particularly in chemical systems we need to be able to describe number-changing
processes. In what follows, we introduce a more compact notation of the previous
concepts that in addition keeps track of the underlying statistics and allows us to
express particle-number-changing Hamiltonians. To this end, we rewrite (3.42) in
bra-ket notation,

|𝑛1,𝑛2, . . .⟩ := 𝜑𝑛1,𝑛2,...(x1, . . . ,x𝑁). (3.44)

We define the n-particle sector as the linear span of all states with particle number
𝑁 ,

ℱ𝑁 := span{|𝑛1,𝑛2, . . .⟩ ,
∑︁
𝑖

𝑛𝑖 = 𝑁} (3.45)

and consider the direct sum of the spaces with all possible particle numbers 𝑁 , that
is the Fock space:

ℱ =
∞⨁︁
𝑖=0

ℱ𝑁 . (3.46)
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Inside this Hilbert space it is now possible to define operator which change the overall
particle number of the state, for example the creation operators �̂��𝑖 : ℱ𝑁 ↦→ ℱ𝑁+1,
which creates a particle in state 𝜓𝑖 as

�̂��𝑖 |𝑛1, . . . ,𝑛𝑖, . . .⟩ =
√
𝑛𝑖 + 1𝜂𝑠𝑖 |𝑛1, . . . ,𝑛𝑖 + 1, . . .⟩ , (3.47)

where 𝜂 = 1 for bosonic and 𝜂 = −1 for fermionic systems and 𝑠𝑖 =
∑︀𝑖−1

𝑗=1 𝑛𝑗. Note
that for fermionic particles the occupation numbers are restricted to 0 and 1, that is
the application of 𝑎�𝑖 to a state with 𝑛𝑖 = 1 maps this state to zero. Defining the
vacuum state as the state where no particles are present, that is |0⟩ := |0,0, . . .⟩,
allows us to obtain every basis state of ℱ by repeated application of �̂��𝑖 ,

|𝑛1,𝑛2, . . .⟩ =
∏︁
𝑖

1√
𝑛𝑖!

(︁
�̂��𝑖

)︁𝑛𝑖

|0⟩ . (3.48)

The completeness of the occupation number basis allows us to derive further properties
of the creation operator. From (3.47) we find(︁

�̂��𝑖 �̂�
�
𝑗 − 𝜂�̂��𝑗 �̂�

�
𝑖

)︁
|𝑛1,𝑛2, . . .⟩ = 0. (3.49)

Since this is true for every basis vector, this is equivalent to

�̂��𝑖 �̂�
�
𝑗 − 𝜂�̂��𝑗 �̂�

�
𝑖 = 0. (3.50)

The action of the adjoint of the creation operator
(︁
𝑎�𝑖

)︁�

= 𝑎𝑖 can be inferred to be

�̂�𝑖 |𝑛1, . . . ,𝑛𝑖, . . .⟩ = √
𝑛𝑖𝜂

𝑠𝑖 |𝑛1, . . . ,𝑛𝑖 − 1, . . .⟩ , (3.51)

that is it takes states from ℱ𝑁 to ℱ𝑁−1 and is consequently called an annihilation
operator. The adjoint of (3.50) shows that it obeys the same relations as the creation
operator. Combining (3.47) and (3.51) amounts to the following between annihilation
and creation operator:

�̂�𝑖�̂�
�
𝑗 − 𝜂�̂�𝑗 �̂�

�
𝑖 = 𝛿𝑖,𝑗. (3.52)

In case of bosons these results are referred to as canonical commutation relations
(CCR):

[�̂�𝑖,�̂��𝑗] = 𝛿𝑖,𝑗 and [�̂�𝑖,�̂�𝑗] = [�̂��𝑖 ,�̂�
�
𝑗] = 0. (3.53)

In case of fermionic systems we have the canonical anticommutation relations (CAR):
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{�̂�𝑖,�̂��𝑗} = 𝛿𝑖,𝑗 and {�̂�𝑖,�̂�𝑗} = {�̂��𝑖 ,�̂�
�
𝑗} = 0, (3.54)

where {𝐴,�̂�} := 𝐴�̂� + �̂�𝐴 denotes the anticommutator1.
This formalism provides a very compact notation for many-body operators in

terms of the single particle wave function and creation and annihilation operators.
Let us illustrate this by considering the kinetic operator in (3.39). Due to the
indistinguishability of the particles, we can write it as a sum of identical single-
particle operators

𝑇 =
∑︁
𝑘

𝑇𝑘 =
∑︁
𝑖,𝑗,𝑘

⟨𝑖|𝑇𝑘 |𝑗⟩ |𝑖⟩𝑘 ⟨𝑗|𝑘 , (3.55)

where 𝑘 labels a single-particle Hilbert space. Our aim is to express 𝑇 in terms of
creation and annihilation operators. We consider its action on an arbitrary state of
the form (3.44). Suppose 𝑗 ̸= 𝑖, then(︃∑︁

𝑘

|𝑖⟩𝑘 ⟨𝑗|𝑘

)︃
|. . . ,𝑛𝑖, . . . ,𝑛𝑗, . . .⟩

=
(︃∑︁

𝑘

|𝑖⟩𝑘 ⟨𝑗|𝑘

)︃√︂
. . . ,𝑛𝑖, . . . ,𝑛𝑗, . . .

𝑁 !
∑︁

𝑖1,...,𝑖𝑁
(...,𝑛𝑖,...,𝑛𝑗 ,...)

|𝑖1,𝑖2,...,𝑖𝑁⟩ .
(3.56)

The expression on the right-hand side can now be evaluated as follows: The 𝑛𝑗
positions which are in state |𝑗⟩ will be replaced by state |𝑖⟩. This leads to 𝑛𝑗 states
with occupation numbers 𝑛𝑗 + 1 and 𝑛𝑖 − 1,

= 𝑛𝑗
√
𝑛𝑖 + 1 1

√
𝑛𝑗

|. . . ,𝑛𝑖 + 1, . . . ,𝑛𝑗 − 1, . . .⟩

= �̂��𝑖 �̂�𝑗 |. . . ,𝑛𝑖, . . . ,𝑛𝑗, . . .⟩ .
(3.57)

For 𝑖 = 𝑗 the evaluation is straightforward(︃∑︁
𝑘

|𝑖⟩𝑘 ⟨𝑗|𝑘

)︃
|. . . ,𝑛𝑖, . . .⟩ = 𝑛𝑖 |. . . ,𝑛𝑖, . . .⟩ = �̂��𝑖 �̂� |. . . ,𝑛𝑖, . . .⟩ . (3.58)

1 Note that in the context of canonical quantisation of relativistic field theories the commutation
relations are multiplied by the complex number 𝑖 on the rhs
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Hence we can write (3.55) in terms of creation and annihilation operators

𝑇 =
∑︁
𝑖,𝑗

⟨𝑖|𝑇𝑘 |𝑗⟩ �̂��𝑖 �̂�𝑗. (3.59)

This can be generalized to two-body operators. For example, the interaction potential
in (3.39) can be rewritten as

1
2
∑︁
𝑘 ̸=𝑙

𝑉 (x𝑙,x𝑘) = 1
2
∑︁
𝑘 ̸=𝑙

∑︁
𝑖𝑗
𝑚𝑛

⟨𝑖,𝑗|𝑉 |𝑚,𝑛⟩ |𝑖⟩𝑘 |𝑗⟩𝑙 ⟨𝑚|𝑘 ⟨𝑛|𝑙

= 1
2
∑︁
𝑖𝑗
𝑚𝑛

⟨𝑖,𝑗|𝑉 |𝑚,𝑛⟩ �̂��𝑖 �̂�
�
𝑗 �̂�𝑚�̂�𝑛.

(3.60)

Using the above, we may write Hamiltonian (3.39) in second quantised form

�̂� =
∑︁
𝑖,𝑗

�̂��𝑖 ⟨𝑖|𝑇 |𝑗⟩ �̂�𝑗 +
∑︁
𝑖,𝑗,𝑘,𝑙

�̂��𝑖 �̂�
�
𝑗 ⟨ĳ|𝑉 |𝑘𝑙⟩ �̂�𝑘�̂�𝑙. (3.61)

A nice interpretation of this expression is to say that the kinetic operator 𝑇 removes
a particle in state 𝜓𝑗 and adds one in state 𝜓𝑖 weighted by its single particle matrix
element 𝑇𝑖,𝑗. The same applies to the interaction term 𝑉 with the difference that it
removes and adds two particles. This form of the Hamiltonian is generally referred
to as second quantised form.

Let us close this short introduction by considering what happens to (3.61) if we
change the single particle basis {|𝑗⟩} to another {|𝜇⟩}. Using the completeness of
both bases we can write

�̂��𝜇 |0⟩ = |𝜇⟩ =
(︃∑︁

𝑗

|𝑗⟩ ⟨𝑗|

)︃
⏟  ⏞  

=1

|𝜇⟩ =
∑︁
𝑗

⟨𝑗|𝜇⟩ �̂�𝑗 |0⟩ . (3.62)

From this we obtain the transformation rule for the creation operators:

�̂��𝜇 =
∑︁
𝑗

⟨𝑗|𝜇⟩ �̂��𝑗. (3.63)

A useful basis for the description of single-particle problems is the position basis {|𝑥⟩}.
Transformation of a countable basis {|𝑖⟩} into this basis yields the field operators,

𝜓�(𝑥) :=
∑︁
𝑖

⟨𝑖|𝑥⟩ �̂��𝑖 =
∑︁
𝑖

𝜑(𝑥)�̂��𝑖 and 𝜓(𝑥) =
∑︁
𝑖

𝜑𝑖(𝑥)�̂�𝑖. (3.64)
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The completeness of the single particle basis implies the commutation relations[︁
𝜓(𝑥),𝜓�(𝑦)

]︁
=
∑︁
𝑖

𝜓𝑖(𝑦)𝜓𝑖(𝑥) = 𝛿(𝑥− 𝑦), (3.65)

and [︁
𝜓�(𝑥),𝜓�(𝑦)

]︁
=
[︁
𝜓(𝑥),𝜓(𝑦)

]︁
= 0. (3.66)

We can interpret the action of the field operators as creating or removing a particle
at position 𝑥. In case of fermions analogous identities follow for the anticommutator.
The Hamiltonian (3.61) transforms in terms of field operators into

�̂� =
ˆ

d𝑥𝜓�(𝑥)𝑇𝜓(𝑥) + 1
2

ˆ
d𝑥 d𝑦𝜓�(𝑥)𝜓�(𝑦)𝑉 (𝑥,𝑦)𝜓(𝑥)𝜓(𝑦). (3.67)

Our proposal for an effective theory of ultracold chemical reactions will use second
quantised Hamiltonians of similar form in position representation.

3.3 Proposed framework
In this section we present a framework providing an effective description of ultracold
chemical reaction kinetics. Following our definition of ultracold chemistry as ’chemical
reactions driven by the coherent interaction of quantum degenerate Fermi or Bose
gases’, we resort to the language of second quantisation to formulate a framework
for the corresponding reaction kinetics. Second quantisation in connection with
ultracold quantum gases is validated by its success in describing phenomena like
superfluidity in case of bosons [Bog47] and superconductivity in case of fermions
[Bar57]. Moreover, in contrast to a first quantised description, the incorporation of
creation and annihilation of particles as it happens in a chemical transformation is
easy to implement in the description of second quantised operators.

The standard approaches to constructing a second-quantised field theory, the path
integral formalism and canonical quantisation, consider a classical Lagrangian field
theory as a starting point. A possible ansatz would thus be to look for a classical
field theory that is in some sense related to the equations of classical reaction kinetics.
Indeed, the theory of reaction kinetics can be extended to incorporate positional
degrees of freedom, resulting in reaction-diffusion systems [Nic77]. However, the
results obtained in 3.1 hint that it might be very difficult to find a Hamiltonian
or Lagrangian field density that reproduces the proper dynamics on a subspace.
Therefore we take another route here and consider the set of single-particle quantum
states as a starting point. These quantum states describe a single bosonic or fermionic
particle in the context of a degenerate quantum gas. Following the second quantisation
procedure considered in the previous section then results in a second-quantised version
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of Schrödinger’s equation

𝑖
𝜕 |𝜓(𝑡)⟩
𝜕𝑡

= �̂� |𝜓(𝑡)⟩ , (3.68)

where |𝜓(𝑡)⟩ is an abstract state vector of an underlying Fock space. Following this
approach, the central problem is to determine a suitable Hamilton operator, which
effectively describes an ultracold chemical reaction between the degenerate quantum
gases. One important aspect of using (3.68) to describe a chemical reaction is that
this elementary quantum description amounts to coherent, energy-conserving and
time-reversal-invariant dynamics. This seems to be contradictory as we know that
the dissipation resulting from energy gain or loss is the driving force of classical
chemical reactions. We argue here in two ways: First, there is no reason why particle
conversion in the ultracold regime such as molecule production should be inherently
connected to an energy gain or loss. A prominent counterexample is spontaneous
parametric down-conversion of photons in quantum optics [Bur70]. And secondly, we
know from various physical models (e.g. quenched systems[Sch13]) that even closed
quantumsystems can be ’driven’ to equilibrium due to growth of entanglement. The
question remains how we can obtain classical reaction kinetics as a classical limit if
the proposed Hamiltonian does not result from quantisation of the classical system.
Here we argue that the model we are going to propose can readily be extended
to incorporate possible environmental effects such as energy gains or losses. By
successively incorporating more and more environmental effects, we eventually expect
to reproduce high-temperature kinetics.

We start to present our proposal by recapitulating the cornerstones of classical
reaction kinetics for a general elementary chemical equation

𝜇1𝑋1 + 𝜇2𝑋2 + . . .+ 𝜇𝐽𝑋𝐽

𝑘𝑓

�
𝑘𝑟

𝜈1𝑋1 + 𝜈2𝑋2 + . . .+ 𝜈𝐽𝑋𝐽 . (3.69)

The important quantities determining the time evolution of each species density [𝑋𝑗 ]
are the stoichiometric coefficients (𝜇𝑗,𝜈𝑗) and the rate constants 𝑘𝑖 and 𝑘𝑓 . Classical
kinetics maps these parameters to a coupled first-order ODE system. Solving this for
given initial conditions provides the dynamical evolution of the species concentration.

Translating scheme (3.69) into a framework of interacting quantum fields, we first
assign every reacting species 𝑋𝑗 to a corresponding set of quantum field operators
{𝜓𝑋𝑗

(𝑥)}𝑥∈R (see (3.64)), that is a 𝑑-dimensional quantum field 𝜓𝑋𝑗
. For the sake of

simplicity, and since we are interested in basic phenomena, we will focus throughout
this thesis on the case 𝑑 = 1. We assume the quantum field to be contained inside
in a (1-dimensional) box with length 𝐿 and periodic boundary conditions. The
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underlying Hilbert space is given by the tensor product of each species Fock space

ℋ =
𝐽⨂︁
𝑗=0

ℱ𝑋𝑗
. (3.70)

Representing a classical system, all possible observables in classical reaction kinetics
can be measured jointly. However, proposing a quantum field theoretical description
for chemical reactions, we are confronted with the typical quantum situation of
incompatible observables. A common interpretation of quantum field theory is that
particles are considered as excitations of the quantum field. Therefore the particle
number operator

�̂�𝑋𝑗
=
ˆ

d𝑥 𝜓�
𝑋𝑗

(𝑥)𝜓𝑋𝑗
(𝑥), (3.71)

should count the overall number of particles of species 𝑋𝑗. The number of particles
seems to be a natural candidate to replace the role of the classical particle concentra-
tion, and is even directly related to it when we divide the number of particles by the
size of the considered volume V. To make direct comparison between classical and
quantised kinetics possible, we consider the trajectories of the expectation value of
the particle number operator as the quantum counterpart of the classical trajectory.

The crucial part of our proposal is now the choice of the Hamilton operator �̂�
describing the ultracold chemical reaction. For the sake of clarity, we split the
Hamiltonian into two parts

�̂� = �̂�0 + �̂�int. (3.72)

The first part 𝐻0 is a non-interacting part and models the standard kinetic and
potential terms of each species. This part should dominate in the absence of a
chemical reaction in the system. This situation occurs if the degenerate condensates
are spatially separated. Expressing the standard terms in position basis yields

�̂�0 =
ˆ

d𝑥
𝐽∑︁
𝑗=0

(︁
𝜓�
𝑋𝑗

(𝑥)
(︁
𝑇𝑋𝑗

+ 𝑉𝑋𝑗
(𝑥)
)︁
𝜓𝑋𝑗

(𝑥)
)︁
. (3.73)

Here the potential term 𝑉𝑋𝑗
(𝑥) models the trapping potential of the ultracold

degenerate gas. In a next step, we define a suitable interaction term �̂�int describing the
chemical reaction, that is, the conversion of particles between the species. Similarly as
in [Dru98], we take guidance from the successful description of photon conversion by
quantum fields in non-linear optics. In the quantum optical setting the interactions
between the modes of the quantum field are modelled by non-linear interaction terms
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resulting from a canonical quantisation of the electromagnetic field in a non-linear
crystal [Wal07]. Analogously, considering the nonlinear terms in the equations of
motion in classical kinetics, we propose the following interaction Hamiltonian for the
elementary reaction (3.69)

�̂�int =
ˆ

d𝑥
(︃
𝑘𝑓

𝐽∏︁
𝑗=0

(︁
𝜓�
𝑋𝑗

(𝑥)
)︁𝜈𝑗
(︁
𝜓𝑋𝑗

(𝑥)
)︁𝜇𝑗

+ 𝑘𝑟

𝐽∏︁
𝑗=0

(︁
𝜓�
𝑋𝑗

(𝑥)
)︁𝜇𝑗
(︁
𝜓𝑋𝑗

(𝑥)
)︁𝜈𝑗

)︃
,

(3.74)

where the 𝜓𝑋𝑗
obey the canonical commutation relations (CCR) or canonical anti-

commutation relations (CAR) according to particle type of the species. This proposal
extends the previous approaches in different ways. Whereas previous work focuses
on bosonic diatomic molecule formation [Gór01; Hop01; Oli04], our proposal allows
the reaction to have an arbitrary order. Higher orders will merely lead to an
increase of the degree of the monomial of field operators in (3.74). The reaction can
consist of bosons and fermions and undergo a change of statistics, for instance the
formation of bosonic molecules from pairs of fermionic particles. Note that due to
symmetry requirements for fermionic particles without any inner degree of freedom
the stoichiometric coefficients are restricted to 𝜇𝑖,𝜈𝑖 ∈ {0,1}. To circumvent this
issue, we can add degrees of freedom to the model, e.g. a spin coordinate for each
species 𝛹𝑋𝑗

(𝑥) ↦→ 𝛹𝑋𝑗
(𝑥,𝜎). Alternatively, we can assume the formation of particles

to not occur exactly at position 𝑥, but instead at an infinitesimally shifted position
𝑥+ 𝑑𝑥.

As a next step, let us discuss the role of the reaction constants in the proposed
model. In contrast to previous approaches, the reaction constants of forward and
reverse reaction can be different. Considering the overall Hamiltonian (3.72), the
reaction constants represent the coupling strength between the quantum fields and, in
contrast to classical reaction kinetics, can take complex values. This includes negative
reaction constants, which makes the comparison to the classical interpretation, as
rate or probability with which the particles react, difficult. However, in previous
work the reaction constants were real valued as they resulted from a description
of concrete physical setting. For instance, they might represent the limit of dipole
matrix elements in photoassociation [Kos00] or the S-wave limit of interparticle
scattering [Dru98]. Assuming complex reaction constants, we immediately infer the
following constraint from the hermiticity of �̂�𝑖𝑛𝑡:

𝑘𝑓 = 𝑘𝑟. (3.75)

This implies that it is not possible to model non-trivial irreversible reactions within
the framework of our proposal. This is a consequence of the fact that our system is
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closed. Nevertheless, we want to introduce the concept of overall reaction order as a
useful tool for the classification of the complexity of the resulting reaction dynamics.
Remember, in classical kinetics the overall order of the reaction is defined as the sum
of the stoichiometric coefficients of the reactant species (2.12), or equivalently, the
sum of all exponents in the rate equation. The definition is restricted to irreversible
reactions, since for reversible reactions terms appear in the denominator of (2.11),
making the classification by the overall order ambiguous. However, according to
our proposal the reversible part of the reaction is expressed by creation operators in
the forward and annihilation operators in the backward part of �̂�int. Therefore the
backward and forward reaction parts contribute in the same way to the interaction
Hamiltonian. Considering the overall order as sum of the exponents, we can generalise
the concept to the ultracold setting by defining

𝑂𝑢𝑐 :=
∑︁
𝑗

𝜈𝑗 +
∑︁
𝑗

𝜇𝑗. (3.76)

This means that the order of the chemical reaction corresponds to the order of the
monomial of field operators inside the Hamiltonian. As a simple consequence, in
case of spinless fermions we need a minimum number of participating species 𝐽 for a
given order

𝐽 ≥
⌈︂
𝑂𝑢𝑐

2

⌉︂
. (3.77)

The study of elementary ultracold reactions seems already very promising as the
quantum optical analog, quantum field theory of nonlinear optics, shows a rich
structure of phenomena ranging from solitary waves in crystals to the generation
of squeezed states of light [Dru14]. However, similarly to classical reaction kinetics,
we expect even more interesting phenomena to appear, if we consider a network of
ultracold reactions. In order to define the interaction Hamiltonian describing an
ultracold reaction network, we take guidance from the classical setting, which simply
superposes the equations of motion for each reaction. Therefore we propose, for a
network of 𝑁 ultracold reactions

𝜇
(𝛼)
1 𝑋1 +𝜇(𝛼)

2 𝑋2 + . . .+𝜇(𝛼)
𝐽 𝑋𝑗

𝑘
(𝛼)
𝑓

�
𝑘

(𝛼)
𝑟

𝜈
(𝛼)
1 𝑋1 +𝜈(𝛼)

2 𝑋2 + . . .+𝜈(𝛼)
𝐽 𝑋𝑗 with 𝛼 ∈ {1,...,𝑁}

to take the sum of each of the interaction Hamiltonians �̂�int =
∑︀𝑁

𝛼=1 �̂�
(𝛼)
int as the

Hamiltonian describing the overall system. This superposition of each system should
be valid as long the reactions are sufficiently decoupled from each other. Finally,
we mention that, similar to the classical case, the treatment of multiple concurrent
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reactions will increase the complexity of the considered system and therefore impede
the finding of analytical and numerical solutions.

Let us close the section with a first discussion of our proposed model. In contrast
to the result of first quantisation, our proposed model contains a non-interacting
term, representing the system in absence of chemical reactions. The non-existence
of this term in the first quantised examples stems from the fact that the dynamical
equations of classical kinetics do not cover the ‘non-interacting’ scenario. However,
this term is of major importance in the ultracold setting. We learn from the theory
of interacting Bose gases that changing the external potential can lead to entirely
different behaviour of the condensate [Bag87]. Considering the proposed interaction
Hamiltonian (3.74), it is clear that such an effective description can only occur after
various approximations of a real physical model. However, we know from dilute
interacting Bose gases that exactly local interactions can arise as the low-temperature
limit of some complex shaped interaction potential. Also the nonlinear terms in
case of high-order reactions, like the formation of diatomic molecules, have been
successfully applied in quantum optics. The fact that the rate constants are complex
valued in the ultracold setting seems to impede the comparison to the rate constants
of classical kinetics. However, so far we have not specified in which way classical
reaction kinetics appears as classical of our framework. Hence there is no need at
this point for consistency of the descriptions.



CHAPTER 4
Elementary bosonic reactions

High-temperature kinetics show that the dynamics of classical low-order reactions
have a compact solution. The corresponding dynamical systems can be solved in
analytical form, making it possible to explicitly calculate characteristic values in
terms of the rate constant and initial conditions. For example, the half-life of a
first-order reaction is the natural logarithm of two divided by the reaction constant
[Con90]. These results of classical kinetics inspire us to investigate ultracold low-
order reactions. Table 4.1 shows interaction Hamiltonians for elementary reactions
according to our proposal. Throughout this chapter we restrict ourselves to consider
real valued reaction constants. This makes it possible to compare the ultracold
reactions to classical reactions. The zeroth-order reaction is just listed for the sake
of completeness; some reaction constant added to the Hamiltonian has no impact
on the dynamics. We see that elementary ultracold chemical reactions with order
𝑂𝑢𝑐 ≥ 3 describe interacting field theories implying that it is not possible to find a

Table 4.1: The proposed interaction Hamiltonians for low-order reactions, assuming
a real-valued reaction constant 𝑘. The single-mode approximation refers to the case
where we expand the field operator in a single-particle basis and merely retain the first
term of the expansion.

Order 𝑂𝑢𝑐 Reaction Proposed �̂�int One-mode approx.
0. — 𝑘 𝑘

1. bath
𝑘

� 𝐴 𝑘
´

d𝑥
(︁
𝜓�
𝐴 + 𝜓𝐴

)︁
𝑘(�̂��𝐴 + �̂�𝐴)

2. 𝐴
𝑘

� 𝐵 𝑘
´

d𝑥
(︁
𝜓𝐴𝜓

�
𝐵 + h.c.

)︁
𝑘(�̂�𝐴�̂��𝐵 + h.c.)

3. 𝐴+𝐵
𝑘

� 𝐶 𝑘
´

d𝑥
(︁
𝜓𝐴𝜓𝐵𝜓

�
𝐶 + h.c.

)︁
𝑘(�̂�𝐴�̂�𝐵�̂��𝐶 + h.c.)

4. 𝐴+𝐵
𝑘

� 𝐶 +𝐷 𝑘
´

d𝑥
(︁
𝜓𝐴𝜓𝐵𝜓

�
𝐶𝜓

�
𝐷 + h.c.

)︁
𝑘(�̂�𝐴�̂�𝐵�̂��𝐶 �̂�

�
𝐷 + h.c.)
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compact solution to these reactions. In contrast, reactions with 𝑂𝑢𝑐 ≤ 2 describe
‘free’ or ‘quasi-free’ systems. These systems are known to be analytically solvable.
However, we will see that even for low order reactions we can find dynamical regimes,
which can not be transformed to normal modes.

The conservation of mass in closed chemical system is a frequently used fact in the
dynamical analysis of chemical reactions. In particular for elementary reactions the
mass balance equations give rise to a conserved quantity and therefore restrict the
temporal evolution to a subspace of the full state space. Since conserved quantities
also simplify the analysis of quantum systems, we investigate how the conservation
of mass translates into our proposed framework.

This chapter is organised as follows. In section 4.1 we establish the existence of
a conserved quantity in the case of an elementary bosonic reaction of any order.
Starting from elementary reactions with distinct reactant and product species, we
extend the conservation law to autocatalytic reactions. In section 4.2 we investigate
the dynamics of elementary low-order reactions. Due to the fact that low-order
reactions result in free field theories, we find analytical solutions for the occurring
dynamics. This gives us the possibility to discuss the impact of the reaction constant
as dynamical parameter. Moreover, we compare the dynamics of ultracold reactions
to the dynamics of classical reactions of the same order.

4.1 Conservation law
The principle of mass conservation in chemical reactions results in a conserved
quantity that facilitates the investigations in classical reaction kinetics. In this
section we will show how the mass conservation carries over to the ultracold setting.
We find that any elementary ultracold reaction in a closed system has a non-trivial
constant of motion different from the energy. To get a better overview, let us first
consider reactions which are not autocatalytic:

∑︁
𝑎∈𝐴

𝜇𝑎𝑋𝑎

𝑘𝑓

�
𝑘𝑟

∑︁
𝑏∈𝐵

𝜈𝑏𝑋𝑏, (4.1)

where we divided the participating species into reactants 𝑋𝑎 and products 𝑋𝑏. Due
to the fact that our framework merely allows for reversible reactions in which the
roles of reactants and products can be interchanged, this distinction is somewhat
artificial. Therefore we expect our results to be symmetric with respect to this
partition. Nevertheless, using this notation, the property of being non-autocatalytic
reads 𝐴∩𝐵 = ∅. Moreover, the reaction is not allowed to couple to a bath, that is at
least one of the 𝜇𝑎 and one of the 𝜈𝑏 is not equal zero. To ease the notation, we will
label the quantum fields corresponding to some species by a small index, that is 𝑋𝑎

by 𝜓𝑎, etc. Applying our proposal to (4.1) results in the Hamiltonian �̂� = �̂�0 + �̂�𝑖𝑛𝑡,
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where

�̂�0 = �̂�0,𝑎 + �̂�0,𝑏 =
ˆ

d𝑥
∑︁
𝑎

(︁
𝜓�
𝑎(𝑥)

(︁
𝑇𝑎 + 𝑉𝑎(𝑥)

)︁
𝜓𝑎(𝑥)

)︁
+
ˆ

d𝑥
∑︁
𝑏

(︁
𝜓�
𝑏(𝑥)

(︁
𝑇𝑏 + 𝑉𝑏(𝑥)

)︁
𝜓𝑏(𝑥)

)︁ (4.2)

and

�̂�int =
ˆ

d𝑥
∏︁
𝑎,𝑏

𝑘𝑓

(︁
𝜓�
𝑎(𝑥)

)︁𝜇𝑎
(︁
𝜓𝑏(𝑥)

)︁𝜈𝑏⏟  ⏞  
�̂�int,𝑓

+
∏︁
𝑎,𝑏

𝑘𝑟

(︁
𝜓𝑎(𝑥)

)︁𝜇𝑎
(︁
𝜓�
𝑏(𝑥)

)︁𝜈𝑏⏟  ⏞  
�̂�int,𝑟

, (4.3)

where �̂�int,𝑓 and �̂�int,𝑟 describe the forward and reverse part of the reaction re-
spectively. Given this notation, we will show that conservation of mass in classical
systems translates to the conservation of the weighted overall particle number of the
system

�̂�tot :=
(︃∑︁

𝑏

𝜈𝑏

)︃∑︁
𝑎

�̂�𝑎 +
(︃∑︁

𝑎

𝜇𝑎

)︃∑︁
𝑏

�̂�𝑏, (4.4)

where �̂�𝑎,�̂�𝑏 denote the particle number operators (3.71) of the respective reactants
and products. To ease the notation further, we write 𝑀 :=

∑︀
𝑎 𝜇𝑎 and 𝐾 :=

∑︀
𝑏 𝜈𝑏

for the sum of the stoichiometric coefficients. Due to the fact that the time evolution
is induced by the Schrödinger equation, a sufficient criterion for �̂�𝑡𝑜𝑡 to be conserved
is a vanishing commutator with the Hamiltonian of the overall system:[︁

�̂�,�̂�tot

]︁
=
[︁
�̂�0,�̂�tot

]︁
+
[︁
�̂�int,�̂�tot

]︁
= 0. (4.5)

In a first step, we focus on the commutator of the non interacting part, that is

[︁
�̂�0,�̂�tot

]︁
=
[︃∑︁

𝑎

�̂�0,𝑎 +
∑︁
𝑏

�̂�0,𝑏,𝐾
∑︁
𝑎

�̂�𝑎 +𝑀
∑︁
𝑗

�̂�𝑏

]︃
= 𝐾

∑︁
𝑎

[︁
�̂�0,𝑎,�̂�𝑎

]︁
+𝑀

∑︁
𝑏

[︁
�̂�0,𝑏,�̂�𝑏

]︁
.

(4.6)

Therefore, it suffices to show that for each species 𝑋𝑎,𝑋𝑏 the number operator �̂�𝑎,�̂�𝑏

commutes with the standard kinetic and potential term. This is best illustrated by
expanding the operators in a countable single particle basis {|𝑗⟩}. Let us pick an
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arbitrary reactant species and consider the commutator[︁
�̂�0,𝑎,�̂�𝑎

]︁
=
[︂ˆ

d𝑥
(︁
𝜓�
𝑎(𝑥)

(︁
𝑇𝑎 + 𝑉𝑎(𝑥)

)︁
𝜓𝑎(𝑥)

)︁
,

ˆ
d𝑥 𝜓�

𝐴𝑖
(𝑥)𝜓𝐴𝑖

(𝑥)
]︂

=
[︃∑︁
𝑖,𝑗,𝑘

⟨𝑖|𝑇𝑎 + 𝑉𝑎 |𝑗⟩ �̂��𝑖 �̂�𝑗,�̂�
�
𝑘�̂�𝑘

]︃

=
∑︁
𝑖,𝑗,𝑘

⟨𝑖|𝑇𝑎 + 𝑉𝑎 |𝑗⟩

⎛⎜⎜⎜⎝�̂��𝑖 [︁�̂�𝑗,�̂��𝑘�̂�𝑘]︁⏟  ⏞  
𝛿𝑗𝑘�̂�𝑗

+
[︁
𝑎�𝑖 ,�̂�

�
𝑘�̂�𝑘

]︁
⏟  ⏞  

−𝛿𝑖𝑘�̂�
�
𝑖

�̂�𝑗

⎞⎟⎟⎟⎠
=
∑︁
𝑘

⟨𝑘|𝑇𝑎 + 𝑉𝑎 |𝑘⟩
(︁
�̂��𝑘�̂�𝑘 − �̂��𝑘�̂�𝑘

)︁
= 0.

(4.7)

Since this calculations also apply to product species, it shows that
[︁
�̂�0,�̂�tot

]︁
in 4.5

vanishes. To prove that the commutator with the interacting part vanishes as well,
we shall use the following identities [Sch05]:[︃

�̂�𝑎′ ,

ˆ
d𝑥
∏︁
𝑎

(︁
𝜓�
𝑎(𝑥)

)︁𝜇𝑎

]︃
= 𝜇𝑎′

ˆ
d𝑥
∏︁
𝑎

(︁
𝜓�
𝑎(𝑥)

)︁𝜇𝑎

[︃
�̂�𝑏′ ,

ˆ
d𝑥
∏︁
𝑏

(︁
𝜓𝑏(𝑥)

)︁𝜈𝑏

]︃
= −𝜈𝑏′

ˆ
d𝑥
∏︁
𝑖

(︁
𝜓�
𝑋𝑏

(𝑥)
)︁𝜈𝑏

.

(4.8)

Applying these identities for a sum of number operators of the reactants �̂�𝑎 yields[︃∑︁
𝑎′

�̂�𝑎′ ,�̂�int,𝑓

]︃
=
[︃∑︁

𝑎′

�̂�𝑎′ ,

ˆ
d𝑥
∏︁
𝑎,𝑏

𝑘𝑓

(︁
𝜓�
𝑎(𝑥)

)︁𝜇𝑎
(︁
𝜓𝑏(𝑥)

)︁𝜈𝑏

]︃

=
(︃∑︁

𝑎′

𝜇𝑎′

)︃ˆ
d𝑥
∏︁
𝑎,𝑏

𝑘𝑓

(︁
𝜓�
𝑎(𝑥)

)︁𝜇𝑎
(︁
𝜓𝑏(𝑥)

)︁𝜈𝑏

= 𝑀�̂�int,𝑓 .

(4.9)
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Similarly, for the product species �̂�𝑏:[︃∑︁
𝑏′

�̂�𝑏′ ,�̂�int,𝑓

]︃
=
[︃∑︁

𝑏

�̂�𝑏,

ˆ
d𝑥
∏︁
𝑎,𝑏

𝑘𝑓

(︁
𝜓�
𝑎(𝑥)

)︁𝜇𝑎
(︁
𝜓𝑏(𝑥)

)︁𝜈𝑏

]︃

= −

(︃∑︁
𝑏′

𝜈𝑏′

)︃ˆ
d𝑥
∏︁
𝑎,𝑏

𝑘𝑓

(︁
𝜓�
𝑎(𝑥)

)︁𝜇𝑎
(︁
𝜓𝑏(𝑥)

)︁𝜈𝑏

= −𝐾�̂�int,𝑓 .

(4.10)

Now, with the previous results we can readily show that the commutator between
�̂�tot and �̂�int,𝑓 vanishes:

[︁
�̂�tot,�̂�int,𝑓

]︁
=
[︃
𝐾

(︃∑︁
𝑎

�̂�𝑎

)︃
+𝑀

(︃∑︁
𝑏

�̂�𝑏

)︃
,�̂�int,𝑓

]︃
= (𝐾𝑀 −𝑀𝐾) �̂�int,𝑓 = 0.

(4.11)

Since the part of the interaction Hamiltonian modelling the reverse reaction is the
adjoint of the forward part, it follows that[︁

�̂�tot,�̂�int,𝑟

]︁
= 0 (4.12)

Altogether, this shows the validity of (4.5) and therefore the conservation of �̂�tot.
As we expected, we found that �̂�tot is symmetric under the change of reactants and
products: Interchanging the indices 𝑎 and 𝑏 amounts to the same conserved quantity.

The connection of �̂�tot with the classical conservation of mass is best illustrated
by an example. Consider the elementary fourth-order reaction

2𝐴
𝑘

� 2𝐵. (4.13)

Due to the fact that classical kinetics assumes homogeneous concentrations, we
neglect positional degrees of freedom in the quantum system by restricting ourselves
to the ground state approximation of the proposed Hamiltonian

�̂� = 𝐸𝐴�̂�
��̂�+ 𝐸𝐵 �̂�

��̂�+ 𝑘
(︁
�̂���̂���̂��̂�+ �̂��̂��̂���̂��

)︁
. (4.14)

Within this approximation the overall particle number (4.4) for the reaction is given
by

�̂�tot = 2�̂���̂�+ 2�̂���̂�. (4.15)
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To see the consequences of this conserved quantity for the dynamics, we consider the
underlying Hilbert space in the occupation number bases |𝑛𝐴,𝑛𝐵⟩. Furthermore, we
assume the system to start in an eigenstate of �̂�tot with eigenvalue 𝑁tot. Instead of
evolving through the whole Hilbert space, the dynamics is restricted to the subspace

ℋ𝑁tot = span
{︂

|𝑛𝐴,
𝑁𝑡𝑜𝑡 − 2𝑛𝐴

2𝑛𝐵
⟩ : 𝑛𝑎 ∈ {0,2,...,𝑁tot}

}︂
. (4.16)

This reduces the solution of (4.14) to a finite dimensional problem as the dimension
of the subspace is 𝑁tot/2. Fig. 4.1 illustrates the evolution within the subspace
for initially six particles in the system. Considering the evolution of the classical
analogue of (4.13) in the classical state space, the conservation of mass results in
exactly the same restrictions, if we replace the occupation numbers in the Fock
states by the number of classical particles [Kam92]. Therefore, we can say that the
conservation of �̂�tot is the quantum analogue of the conservation of mass in classical
chemistry.

In a next step, we extend the considered class of reactions and allow species 𝑋𝑐 on
both sides of the chemical equation:

∑︁
𝑎

𝜇𝑎𝑋𝑎 +
∑︁
𝑐

𝜇𝑐𝑋𝑐

𝑘𝑓

�
𝑘𝑟

∑︁
𝑏=1

𝜈𝑏𝑋𝑏 +
∑︁
𝑐

𝜈𝑐𝑋𝑐. (4.17)

This means that according to our proposal the forward part of the autocatalytic
interaction Hamiltonian is

�̂�
(𝑎𝑐)
int,𝑓 =

ˆ
d𝑥
∏︁
𝑎,𝑏,𝑐

𝑘𝑓

(︁
𝜓�
𝑎(𝑥)

)︁𝜇𝑎
(︁
𝜓𝑏(𝑥)

)︁𝜈𝑏
(︁
𝜓�
𝑐(𝑥)

)︁𝜇𝑐
(︁
𝜓𝑐(𝑥)

)︁𝜈𝑐

. (4.18)

Note that most of the reasoning from the non-autocatalytic case be translated into
this setting. In particular, the quantity (4.4) remains an non-trivial constant of
motion on the subsystem of species 𝑋𝑎 and 𝑋𝑏. The problem is to figure out the
weight of autocatalytic number operators �̂�𝑐 in the contribution to �̂�tot such that it
commutes with (4.18). For this purpose, we consider the commutator between �̂�𝑐′

and the part of (4.18) which models the autocatalytic contribution:[︂
�̂�𝑐′ ,

ˆ
d𝑥
(︁
𝜓�
𝑐(𝑥)

)︁𝜇𝑐
(︁
𝜓𝑐(𝑥)

)︁𝜈𝑐
]︂

=
ˆ

d𝑥
(︁
𝜓�
𝑐(𝑥)

)︁𝜇𝑐
[︁
�̂�𝑐,
(︁
𝜓𝑐(𝑥)

)︁𝜈𝑐
]︁

+
[︂
�̂�𝑐,

ˆ
d𝑥
(︁
𝜓�
𝑐(𝑥)

)︁𝜇𝑐
]︂(︁

𝜓𝑐(𝑥)
)︁𝜈𝑐

= (𝜇𝑐′ − 𝜈𝑐′)
ˆ

d𝑥
(︁
𝜓�
𝑐(𝑥)

)︁𝜇𝑐
(︁
𝜓𝑐(𝑥)

)︁𝜈𝑐

.

(4.19)
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Figure 4.1: Illustration of subspace (4.16) for the case of six particles in the system.
Each point where the grid-lines intersect represents a possible state in Fock space.
Starting in the state |4,2⟩, the dynamics is restricted to the states marked by a dot.
This can be understood by considering the interaction part of (4.14). While the
non-interacting part does not convert between the species, the interaction part either
creates or annihilates two particles of species 𝐴 and 𝐵 correspondingly. The same kind
of restriction of the state space can be found for the classical kinetics of reaction (4.13),
if we replace the occupation number of Fock modes with the classical particle number.

Therefore, introducing 𝐿 :=
∑︀

𝑐 (𝜇𝑐 − 𝜈𝑐) we find[︃∑︁
𝑎,𝑏,𝑐

�̂�𝑎 + �̂�𝑏 + �̂�𝑐,�̂�
(𝑎𝑐)
int,𝑓

]︃
= (𝑀 + 𝐿−𝐾) �̂�(𝑎𝑐)

int,𝑓 , (4.20)

and eventually the conserved quantity

�̂�
(𝑎𝑐)
tot = 𝐾

(︃∑︁
𝑎

�̂�𝑎

)︃
+𝐾

(︃∑︁
𝑐

�̂�𝑐

)︃
+ (𝑀 + 𝐿)

(︃∑︁
𝑏

�̂�𝑏

)︃
. (4.21)

The conservation of the overall particle number reduces the degree of freedom for
elementary reactions by one. This will useful be in particular when we deal with
high-order elementary reactions, like the diatomic molecule formation. Considering
this conservation law as the quantum analogue of the conservation of mass, we expect
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this law to carry over in a modified form to the case of concurrent reactions. However,
if the considered system is coupled to some environment, this conservation law is
immediately violated.

4.2 Low-order reactions
Solutions to the equations of motion of classical low-order reactions can be given in
closed analytical form [Upa07]. This results in detailed knowledge of the system’s
behaviour under the change of experimental parameters, making it possible to identify
dynamically interesting phenomena. Motivated by this systematic classification we
consider ultracold low-order reactions. As shown in Table 4.1, ultracold reactions
with order less than or equal two amount to non-interacting quantum fields. These
are known to be exactly solvable via a transformation to normal modes. The physical
systems we will encounter are reminiscent of typical models in quantum optics. This
fact lets us hope that we obtain compact solutions to the dynamics of ultracold
reactions. In what follows we study the dynamics of low-order reactions and compare
the results to the kinetics of the analogous classical reactions.

A useful operation that we will frequently use to study the dynamics of chemical
reactions is the so called operator mode expansion. As we mentioned in section 3.2,
we can rewrite the field operators in terms of an arbitrary orthonormal single-particle
basis {|𝑖⟩} as follows

𝜓(𝑥) :=
∑︁
𝑖

⟨𝑖|𝑥⟩ �̂�𝑖 =
∑︁
𝑖

𝜑𝑖(𝑥)�̂�𝑖. (4.22)

Which one of the possible single-particle bases is the most suitable to study the
proposed Hamiltonian depends on the physical situation. Assuming that the particles
are confined in a finite box with periodic boundary conditions and without external
potential, plane waves are a promising candidate:

𝜓(𝑥) = 1√
𝐿

∑︁
𝑛

𝑒−𝑖𝜔𝑛𝑥�̂�𝑛, (4.23)

with 𝜔𝑛 = 2𝜋
𝐿
𝑛 and 𝑛 ∈ Z labelling the modes of the free particle. Given the

free-particle situation, the non-interacting part of the Hamiltonian is diagonal in
this basis. An important advantage of this operator mode expansion is that it allows
us to readily implement approximations into our model. For instance, if we assume
all species to be in the ground state during the reaction, we speak of the one-mode
approximation and merely retain the 𝜔𝑛 = 0 term. Another step that simplifies the
problem is to perform a momentum cut-off and fix a maximal 𝑛𝑚𝑎𝑥 after which we
stop the expansion.
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4.2.1 First-order reaction
A first-order reaction is not a chemical reaction per se, due to the absence of any
interaction of different species. It can be rather understood as a connection of the
considered species to some reservoir:

bath
𝑘

� 𝐴. (4.24)

Within our framework this corresponds to the Hamiltonian

�̂� =
ˆ

d𝑥
(︁
𝜓�
𝐴(𝑥)

(︁
𝑇𝐴 + 𝑉𝐴(𝑥)

)︁
𝜓𝐴(𝑥)

)︁
+ 𝑘

ˆ
d𝑥
(︁
𝜓�
𝐴(𝑥) + 𝜓𝐴(𝑥)

)︁
. (4.25)

Let us first put our attention to the interacting part of the Hamiltonian. This
part determines the dynamics if the coupling strength 𝑘 is much larger than other
energies in the system. If the dynamics are dominated by �̂�int, we refer to this
situation as strong coupling regime. The operator mode expansion yields for a general
single-particle basis {𝜑𝑖(𝑥)}

�̂�int = 𝑘

ˆ
d𝑥
(︁
𝜓�
𝐴(𝑥) + 𝜓𝐴(𝑥)

)︁
= 𝑘

∑︁
𝑖

ˆ
d𝑥
(︁
𝜑𝑖(𝑥)�̂��𝑖 + 𝜑𝑖(𝑥)�̂�𝑖

)︁
,

(4.26)

and in particular for the plane waves as single-particle basis.

�̂�int = 𝑘√
𝐿

ˆ 𝐿

0
d𝑥
(︃∑︁

𝑛

𝑒𝑖𝜔𝑛𝑥�̂��𝑛 +
∑︁
𝑚

𝑒−𝑖𝜔𝑚𝑥�̂�𝑚

)︃
= 𝑘

√
𝐿
(︁
�̂��0 + �̂�0

)︁
.

(4.27)

We see that the created and annihilated particles all have zero momentum. The
generated dynamics of the ground state mode can be solved analytically. This
solution can be obtained intuitively, if we rewrite (4.27) in terms of the position
operator �̂� = �̂��+�̂�√

2 :

�̂�int = 𝑘
√
𝐿
(︁
�̂��0 + �̂�0

)︁
= 𝑘

√
2𝐿⏟  ⏞  

𝑘:=

�̂�0 (4.28)
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Position operators are the displacement generators in momentum space:

𝑑 ⟨𝑝0⟩
𝑑𝑡

= 𝑖𝑘 ⟨[�̂�0,𝑝0]⟩ = −𝑘

𝑑 ⟨𝑝2
0⟩

𝑑𝑡
= 𝑖𝑘

⟨︀[︀
�̂�0,𝑝

2
0
]︀⟩︀

= −2𝑘 ⟨𝑝0⟩
(4.29)

Solving these equations results in a quadratic scaling of the average particle number
in the ground state mode ⟨�̂�0(𝑡)⟩ ∝ 𝑡2:

⟨�̂�0(𝑡)⟩ = 1
2
(︀⟨︀
�̂�2

0
⟩︀

(𝑡) +
⟨︀
𝑝2

0
⟩︀

(𝑡) − 1
)︀

= 1
2
(︀⟨︀
𝑥2

0(0)
⟩︀

+
⟨︀
𝑝2

0(0)
⟩︀

+ 𝑘2𝑡2 − 2𝑘 ⟨𝑝0(0)⟩ 𝑡− 1
)︀
,

(4.30)

where ⟨𝑥2
0(0)⟩ , ⟨𝑝2

0(0)⟩ and ⟨𝑝0(0)⟩ denote the initial expectation of the respective
operators. Assuming the modes with momentum 𝑘 ̸= 0 to be initially depleted,
all particles of species 𝐴 will have zero momentum and therefore ⟨�̂�𝐴(𝑡)⟩ = ⟨�̂�0(𝑡)⟩.
An alternative account to understand the dynamics induced by the interaction
Hamiltonian is to identify (4.27) as the generator of a displacement operator for
coherent states (5.2). As the time increases the operator displaces the coherent state
linearly into a certain direction of the phase spaces. Since the number of particles
within a coherent state is given by the magnitude squared of the complex number
labelling the state, the linear displacement leads to a quadratic increase of the ground
state mode.

In what follows, we describe a possible physical situation where the first-order
interaction follows as a natural approximation. Consider the second-order reaction

𝐴
𝑘

� 𝐵. (4.31)

This models a simple particle conversion and occurs for example in quantum optics
modelling linear interactions [Wal07]. For the sake of a clear notation, we label in
the following the creation and annihilation operators according to the name of the
species, that is �̂� represents species 𝐴 and �̂� labels 𝐵. Considering the plane wave
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expansion of the proposed interaction Hamiltonian leads to

�̂�𝑖𝑛𝑡 = 𝑘

ˆ
d𝑥
(︁
𝜓𝐴(𝑥)𝜓�

𝐵(𝑥) + 𝜓�
𝐴(𝑥)𝜓𝐵(𝑥)

)︁
= 𝑘

𝐿

ˆ 𝐿

0
d𝑥
(︃∑︁
𝑛,𝑛′

𝑒𝑖(𝜔𝑛−𝜔𝑛′ )𝑥�̂��𝑛�̂�𝑛′ +
∑︁
𝑚,𝑚′

𝑒−𝑖(𝜔𝑚−𝜔𝑚′ )𝑥�̂�𝑚�̂�
�
𝑚′

)︃

= 𝑘

(︃∑︁
𝑛

�̂��𝑛�̂�𝑛 +
∑︁
𝑚

�̂�𝑚�̂�
�
𝑚

)︃ (4.32)

Now, the crucial step to obtain the first-order reaction as approximation is to assume,
that for both species only the ground state mode is occupied. This is a valid
assumption for a condensate of ultracold particles. Furthermore, the particle number
of the ground state mode of species 𝐵 shall be much larger than the particle number
of the ground state mode of species 𝐴. In this case we can employ the Bogoliubov
approximation [Lie05],

𝑏0 = 𝑏�0 =
√︀
𝑁0,𝐵 ∈ R, (4.33)

where 𝑁0,𝐵 labels the occupation number of the ground state. Substituting this
approximation into 4.32 yields

�̂�𝑖𝑛𝑡 = 𝑘
√︀
𝑁0,𝐵

(︁
�̂��0 + �̂�0

)︁
, (4.34)

which is identical to the interaction Hamiltonian of the first-order reaction (4.27),
where we identify

√
𝐿 =

√︀
𝑁0,𝐵.

After solving the interaction Hamiltonian, we now incorporate the non-interacting
term to obtain the full description of the reaction. In the case of no external potential,
the plane wave expansions yields

�̂�0 + �̂�int =
∑︁
𝑝

𝑝2

2𝑚𝐴

�̂��𝑝�̂�𝑝 + 𝑘
√
𝐿⏟ ⏞ 

𝑘

(︁
�̂��0 + �̂�0

)︁
=
∑︁
𝑝 ̸=0

𝑝2

2𝑚𝐴

�̂��𝑝�̂�𝑝 + 𝑘
(︁
�̂��0 + �̂�0

)︁
,

(4.35)

which means that the number of particles in the ground state mode evolves according
to (4.30), while the number of particles in the other modes stays constant. Let us
further extend our studies to a non-vanishing potential 𝑉𝐴(𝑥). In this case, we find
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that �̂�0 couples the plane wave modes,

�̂�0 + �̂�int =
∑︁
𝑛,𝑚

⟨𝑛|
(︁
𝑇𝐴 + 𝑉𝐴(𝑥)

)︁
|𝑚⟩⏟  ⏞  

𝐶𝑛,𝑚:=

�̂��𝑛�̂�𝑚 + 𝑘
(︁
�̂��0 + �̂�0

)︁
. (4.36)

The introduced coefficient matrix 𝐶 is by definition hermitian and we denote 𝑈 as
the diagonalising transformation. Note at this point that unitary transformations on
modes �̂�𝑗 =

∑︀
𝑖 𝑈𝑗𝑖�̂�𝑖 preserve the CCR:

[︁
�̂�𝑗,�̂�

�
𝑘

]︁
=
[︃∑︁

𝑖

𝑈𝑗𝑖�̂�𝑖,
∑︁
𝑙

𝑈 𝑙𝑘�̂�
�
𝑙

]︃
=
∑︁
𝑖𝑙

𝑈𝑗𝑖𝑈 𝑙𝑘

[︁
�̂�𝑖,�̂�

�
𝑙

]︁
=
∑︁
𝑖

𝑈𝑗𝑖𝑈 𝑖𝑘 = 𝛿𝑖𝑘 (4.37)

Applying the diagonalising transformation, we can rephrase the Hamiltonian in terms
of other modes �̂�𝑛 =

∑︀
𝑚 𝑈𝑛𝑚𝑐𝑚, yielding the decoupled system

�̂� =
∑︁
𝑛,𝑚
𝑘,𝑙

𝑈𝑘,𝑛𝐶𝑛,𝑚𝑈𝑚,𝑙𝑐
�
𝑘𝑐𝑙 + 𝑘

∑︁
𝑙

(︁
𝑈𝑙,0𝑐

�
𝑙 + 𝑈0,𝑙𝑐𝑙

)︁
=
∑︁
𝑙

𝜆𝑙𝑐
�
𝑙 𝑐𝑙 + 𝑘

∑︁
𝑙

(︁
𝑈 ′
𝑙 𝑐

�
𝑙 + 𝑈 ′

𝑙 𝑐
�
𝑙

)︁
=
∑︁
𝑙

�̂�(𝑙),

(4.38)

where 𝜆𝑙 labels the eigenvalues of 𝐶 and 𝑈 ′
𝑙 = 𝑈0,𝑙. In a next step, we can neglect

the phase factors 𝑈 ′
𝑙 and 𝑈 ′

𝑙 due to the fact that tehy have no effect to the dynamics.
This leads to

�̂�(𝑙) = 𝜆𝑙𝑐
�
𝑙 𝑐𝑙 + 𝑘(𝑐�𝑙 + 𝑐𝑙) (4.39)

as Hamiltonian which induces the dynamics of the first-order reaction in an external
potential. This system represents a shifted harmonic oscillator as we see by the
transformation 𝑐𝑙 + 𝑘

𝜆𝑙
= 𝑑𝑙:

�̂�(𝑙) = 𝜆𝑙

(︂
𝑑�𝑙 − 𝑘

𝜆𝑙

)︂(︂
𝑑𝑙 − 𝑘

𝜆𝑙

)︂
+ 𝑘

(︂
𝑑�𝑙 − 𝑘

𝜆𝑙

)︂
+ 𝑘

(︂
𝑑𝑙 − 𝑘

𝜆𝑙

)︂
= 𝜆𝑙𝑑

�
𝑙𝑑𝑙 − 𝑘2

𝜆𝑙
,

(4.40)

where the 𝑑𝑙 obey by definition the CCR. Assuming the vacuum as initial state, the
expectation value of the number operator of each mode evolves according to

⟨
�̂� (𝑙)(𝑡)

⟩
=
(︂√

2𝑘
𝜆𝑙

)︂2

(1 − cos𝜆𝑙𝑡) =
(︂√

2𝑘
𝜆𝑙

)︂2

𝑁0,𝐵 (1 − cos𝜆𝑙𝑡) , (4.41)
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where for the last equality we identified
√
𝐿 =

√︀
𝑁0,𝐵, meaning we consider the

first-order reaction as an effective approximation of a second-order reaction. The
closed analytical form in (4.41) allows us to identify the role of the energies 𝜆𝑙 and 𝑘
for the ultracold reaction: The amplitude of the oscillations is determined through
the ratio between the coupling constant and energy. However, the frequency of the
oscillations solely depends on the eigenenergies.

Motivated by this result, let us draw comparison to the classical analogue of (4.24).
Applying the scheme of classical reaction kinetics to 4.24, we obtain

𝑑[𝐴]
𝑑𝑡

= −𝑘[𝐴] + 𝑘𝑁0 (4.42)

as resulting equation of motion for the particle concentration. 𝑁0 denotes here the
concentration of the bath species which remains constant during the time evolution.
Equation 4.42 has the solution

[𝐴](𝑡) = 𝑁0(1 − 𝑒−𝑘𝑡), (4.43)

if we choose [𝐴]0 = 0 as initial condition. To complete the comparison, we also
consider the case where 𝑁0 ≫ [𝐴] effectively making the first term in 4.42 negligibly
small, which is the classical analogue to the situation that the coupling energy 𝑘 is
much larger than the other energies in the system. In this situation the concentration
linearly increases in time according to

[𝐴](𝑡) = 𝑘𝑁0𝑡. (4.44)

Comparing the quantum to the classical trajectories (see Fig. 4.2), we see that the
classical particle concentration relaxes to the particle number of the bath, whereas
the quantum occupation number in the case of a non-vanishing potential is oscillating
between bath and species. However, the case of a strong coupling constant 𝑘 or
a vanishing external potential the average particle number increases quadratically,
whereas the classical case of a large reservoir, that is 𝑁0 ≫ [𝐴], results in a linear
increase of the particle concentration. We see that at some point the strong coupling
limit breaks down, because the particle number in the ground state mode becomes
larger than the number of particles in the reservoir. However, for small times the
evolutions of the strong coupling approximation and the particles in an external
potential coincide.

4.2.2 Second-order reactions
The class of elementary second-order reactions can be divided in two different sets
which we expect to show fundamentally different dynamics. The first set consists of
the reaction , which models particle conversion between two species. Due to the fact
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Figure 4.2: The temporal evolution of the classical high-temperature and the ultracold
model of the first-order reaction (4.24). The quantum trajectories depict the occupation
number of the ground state mode. For both models, we choose an initially depleted
particle concentration/number. Using instructive parameters for the energies and
reaction constants, we see the qualitatively different behaviour of the considered
models. Whereas the full Hamiltonian of the quantum description generates an
oscillating particle number between bath and species, the classical system relaxes to
the fix point [𝑁 ] = 𝑁0. The approximated models also show different behaviour; the
quantum interaction term causes a quadratic increase of the expectation value of the
number operator, whereas in the case of the classical reaction the concentration grows
linearly in time.

that this reaction is not coupled to a reservoir, the overall particle number �̂�𝑡𝑜𝑡 is a
non-trivial constant of motion, making an unbounded growth of the particle number
of any of the species impossible. The second set contains the type of reactions which
are coupled to a bath. We expect the occurring dynamics to be qualitatively similar
to the dynamics of the first-order reaction (4.24), that is, we expect an unbounded
growth in the strong coupling regime.

Second-order reactions without bath
For the sake of completeness, we mention that formally

𝐴
𝑘

� 𝐴. (4.45)
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is a valid autocatalytic second-order reaction. Its dynamics are induced by

�̂� =
ˆ

d𝑥
(︁
𝜓�
𝐴(𝑥)

(︁
𝑇𝐴 + 𝑉𝐴(𝑥)

)︁
𝜓𝐴(𝑥)

)︁
+ 𝑘

ˆ
d𝑥
(︁
𝜓𝐴(𝑥)𝜓�

𝐴(𝑥) + 𝜓�
𝐴(𝑥)𝜓𝐴(𝑥)

)︁
=
∑︁
𝑛

𝐸𝑛�̂�
�
𝑛�̂�𝑛 + 𝑘

(︀
�̂��𝑛�̂�𝑛 + �̂�𝑛�̂�

�
𝑛

)︀
,

(4.46)

where the 𝑛 labels the eigenmodes of the non-interacting part. Since (4.46) is entirely
decoupled for any external potential, the particle number in each modes remains
constant. Let us advance and consider the simplest of all ultracold chemical reactions,
namely a simple particle conversion between two species.

𝐴
𝑘

� 𝐵. (4.47)

According to our proposal this system is described by the Hamiltonian

�̂� =
ˆ

d𝑥
(︁
𝜓�
𝐴(𝑥)

(︁
𝑇𝐴 + 𝑉𝐴(𝑥)

)︁
𝜓𝐴(𝑥)

)︁
+
ˆ

d𝑥
(︁
𝜓�
𝐵(𝑥)

(︁
𝑇𝐵 + 𝑉𝐵(𝑥)

)︁
𝜓𝐵(𝑥)

)︁
+ 𝑘

ˆ
d𝑥
(︁
𝜓𝐴(𝑥)𝜓�

𝐵(𝑥) + 𝜓�
𝐴(𝑥)𝜓𝐵(𝑥)

)︁
(4.48)

The first observation is that, since the reaction does not involve autocatalytic species
and is not coupled to a bath, the overall particle number (4.4)

�̂�𝑡𝑜𝑡 = �̂�𝐴 + �̂�𝐵, (4.49)

with �̂�𝐴,�̂�𝐵 as in 3.71, is conserved during the time evolution. Keeping this in mind
we start our dynamical investigation of the strong coupling regime, that is, we focus
on the dynamics induced by the interacting part of the Hamiltonian

�̂�int = 𝑘

ˆ
d𝑥
(︁
𝜓𝐴(𝑥)𝜓�

𝐵(𝑥) + 𝜓�
𝐴(𝑥)𝜓𝐵(𝑥)

)︁
= 𝑘

∑︁
𝑛

(︁
�̂��𝑛�̂�𝑛 + �̂�𝑛�̂�

�
𝑛

)︁
=
∑︁
𝑛

�̂�
(𝑛)
int ,

(4.50)

which we already considered in (4.32). This Hamiltionian is entirely decoupled
between the different modes of each species. It is therefore sufficient to study the
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dynamics in the two-mode picture by choosing 𝑛 = 0:

�̂�
(0)
int = 𝑘(�̂���̂�+ �̂��̂��) = (�̂� �̂�)

(︂
0 𝑘
𝑘 0

)︂(︂
�̂��

�̂��

)︂
, (4.51)

where we used �̂� = �̂�0 and �̂� = �̂�0 as abbreviated notation. Writing �̂�, �̂� as orthogonally
transformed modes(︂

�̂�

�̂�

)︂
= 1√

2

(︂
1 1

−1 1

)︂(︂
𝑐1
𝑐2

)︂
(4.52)

yields a decoupled system:

�̂�
(0)
int = 𝜆

(︁
𝑐�1𝑐1 − 𝑐�2𝑐2

)︁
(4.53)

We find that this Hamiltonian does not have a well defined ground state as an
infinite number particles in mode 𝑐2 corresponds to 𝐸 → −∞. However, due to the
conservation of 𝑁tot, the solution of (4.53) amounts to a finite-dimensional problem.
Therefore, the ground state is well-defined and respresented by the state in which
all particles are in mode 𝑐2. Starting the system’s evolution in a coherent state,
we obtain the following dynamics for the ground state occupation number of each
species:⟨

�̂�
(0)
𝐴 (𝑡)

⟩
= 𝑁𝐴 +𝑁𝐵

2 +
(︂
𝑁𝐴 −𝑁𝐵

2

)︂
cos (2𝑘𝑡)⟨

�̂�
(0)
𝐵 (𝑡)

⟩
= 𝑁𝐴 +𝑁𝐵

2 +
(︂
𝑁𝐵 −𝑁𝐴

2

)︂
cos (2𝑘𝑡) ,

(4.54)

where 𝑁𝐴,𝑁𝐵 label the initial number of particles of the respective species. As
already mentioned, this result applies to all other modes by adapting the initial
occupation number.

After the investigation of the strong coupling regime we extend the model by
incorporating the non-interacting part. Assuming a vanishing external potential for
both species the plane wave expansion of (4.48) yields

�̂� =
∑︁
𝑝

(︂
𝑝2

2𝑚𝐴

�̂��𝑝�̂�𝑝 + 𝑝2

2𝑚𝐵

�̂��𝑝�̂�𝑝 + 𝑘
(︁
�̂��𝑝�̂�𝑝 + �̂�𝑝�̂�

�
𝑝

)︁)︂
=
∑︁
𝑝

�̂�(𝑝). (4.55)

This Hamiltonian is decoupled in terms of the modes of each species. We therefore
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omit the index from the modes and find

�̂�(𝑝) = 𝐸
(𝑝)
𝐴 �̂���̂�+ 𝐸

(𝑝)
𝐵 �̂���̂�+ 𝑘(�̂���̂�+ �̂��̂��)

= (�̂� �̂�)
(︃
𝐸

(𝑝)
𝐴 𝑘

𝑘 𝐸
(𝑝)
𝐵

)︃
⏟  ⏞  

𝐴(𝑝):=

(︂
�̂��

�̂��

)︂
. (4.56)

with 𝐸
(𝑝)
𝐴 = 𝑝2

2𝑚𝐴
and 𝐸

(𝑝)
𝐵 = 𝑝2

2𝑚𝐵
as eigenenergies. This model represents a linear

interaction between two quantum fields (e.g. a beam-splitter in quantum optics
[Mar08]). Let 𝑈 denote the unitary transformation on the modes diagonalising 𝐴(𝑝):

�̂�(𝑝) = (�̂� �̂�)𝑈
(︃
𝜆

(𝑝)
1 0
0 𝜆

(𝑝)
2

)︃
𝑈 �

(︂
�̂��

�̂��

)︂
= 𝜆

(𝑝)
1 𝑐�1𝑐1 + 𝜆

(𝑝)
2 𝑐�2𝑐2,

(4.57)

where we already mentioned that 𝑐1,𝑐2 satisfy the CCR and 𝜆1,𝜆2 ∈ R are the
eigenvalues of 𝐴(𝑝). We see that the ground state of �̂�(𝑝) has finite energy if and only
if 𝜆(𝑝)

1 ,𝜆
(𝑝)
2 ≥ 0. This imposes the following conditions on the ground state energy

and the coupling constant:

|𝐸(𝑝)
𝐴 + 𝐸

(𝑝)
𝐵 | ≤

√︁
4𝑘2 + (𝐸(𝑝)

𝐴 − 𝐸
(𝑝)
𝐵 )2⏟  ⏞  

𝛺(𝑝):=

, (4.58)

where we introduced the characteristic frequency 𝛺(𝑝) of the system; assuming
initially coherent states in the modes, 𝛺(𝑝) is the frequency of the oscillations in the
𝑝-th mode:⟨

�̂�
(𝑝)
𝐴 (𝑡)

⟩
≈ 𝐶

(𝑝)
𝐴

(︀
1 − cos𝛺(𝑝)𝑡

)︀⟨
�̂�

(𝑝)
𝐵 (𝑡)

⟩
≈ 𝐶

(𝑝)
𝐵

(︀
1 − cos𝛺(𝑝)𝑡

)︀ (4.59)

The amplitudes 𝐶(𝑝)
𝐴 ,𝐶

(𝑝)
𝐵 of the oscillations are functions of the initial particle

numbers and the eigenenergy difference. For 𝐸(𝑝)
𝐴 −𝐸

(𝑝)
𝐵 = 0 the trajectories coincide

with (4.54).
Let us further consider the case, where the external potential is different from zero

and not equal for both species, that is 𝑉𝐴(𝑥) ̸= 𝑉𝐵(𝑥). This introduces a coupling
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between the modes in the plane wave basis

�̂� =
∑︁
𝑛,𝑚

⟨𝑛| �̂�0,𝐴 |𝑚⟩ �̂��𝑛�̂�𝑚+
∑︁
𝑛,𝑚

⟨𝑛| �̂�0,𝐵 |𝑚⟩ �̂��𝑛�̂�𝑚+𝑘

(︃∑︁
𝑛

�̂��𝑛�̂�𝑛 + �̂�𝑛�̂�
�
𝑛

)︃
. (4.60)

However, due to the fact that unitary transformations preserve the canonical structure,
we can transform this system to normal modes. Therefore, the time-evolution will
be qualitatively equivalent to the case of no external potential.

Concerning the corresponding classical reactions, we notice that scheme (4.47) cor-
responds to two concurrent first-order reactions. The reaction kinetics is determined
by

𝑑[𝐴]
𝑑𝑡

= −𝑘[𝐴] + 𝑘[𝐵]

𝑑[𝐵]
𝑑𝑡

= −𝑘[𝐵] + 𝑘[𝐴].
(4.61)

The concentrations, in contrast to the quantum behaviour, relax to a stationary
state:

[𝐴](𝑡) = [𝐴]0 + [𝐵]0
2 −

(︂
[𝐵]0 − [𝐴]0

2

)︂
𝑒−2𝑘𝑡

[𝐵](𝑡) = [𝐴]0 + [𝐵]0
2 −

(︂
[𝐴]0 − [𝐵]0

2

)︂
𝑒−2𝑘𝑡.

(4.62)

Fig. 4.3 shows typical trajectories for a single-mode in the strong coupling regime
and the relaxation of the classical model. Whereas the ultracold reaction oscillates
between the species, the classical trajectory relaxes to an equilibrium state. The
reaction constant determines the frequency of the oscillations in the strong coupling
limit. In contrast, in the classical case the reaction constant determines the time
scale of relaxation.

Second-order reactions coupled to a bath
Second-order reactions coupled to a bath describe the production of ‘pairs’ from a
bath:

bath
𝑘

� 𝐴+ 𝐴. (4.63)

Within our framework this corresponds to the Hamiltonian

�̂� =
ˆ
𝑑𝑥
(︁
𝜓�
𝐴(𝑥)

(︁
𝑇𝐴 + 𝑉𝐴(𝑥)

)︁
𝜓𝐴(𝑥)

)︁
+𝑘

ˆ
𝑑𝑥
(︁
𝜓�
𝐴(𝑥)𝜓�

𝐴(𝑥) + 𝜓𝐴(𝑥)𝜓𝐴(𝑥)
)︁
.
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Figure 4.3: Comparison of the quantum and classical trajectories for the reac-
tion (4.31). The quantum trajectory is plotted for the strong coupling regime. The
plot shows the expected occupation number of species 𝐴 as solid and species 𝐵 as
dashed lines. As initial state we choose both species to be in a coherent state with
100 particles of species 𝐴 and 144 particles of species 𝐵. Whereas the overall particle
number 𝑁tot is conserved in both cases, the quantum reaction oscillates while the
classical reaction equilibrates.

(4.64)

Let us start our consideration with the strong coupling regime. Expanding �̂�int in
the plane wave basis yields

�̂�int = 𝑘

ˆ
𝑑𝑥
(︁
𝜓�
𝐴(𝑥)𝜓�

𝐴(𝑥) + 𝜓𝐴(𝑥)𝜓𝐴(𝑥)
)︁

= 𝑘

𝐿

ˆ 𝐿

0
𝑑𝑥

(︃∑︁
𝑛,𝑛′

𝑒𝑖(𝜔𝑛+𝜔𝑛′ )𝑥�̂��𝑛�̂�
�
𝑛′ +

∑︁
𝑚,𝑚′

𝑒−𝑖(𝜔𝑚+𝜔𝑚′ )𝑥�̂�𝑚�̂�𝑚′

)︃
= 𝑘

∑︁
𝑛

(︁
�̂��𝑛�̂�

�
−𝑛 + �̂�𝑛�̂�−𝑛

)︁
=
∑︁
𝑛

�̂�
(𝑛)
int .

(4.65)

This term is quadratic in creation and annihilation operators. A similar Hamiltonian
appears in the theory of the self-interacting Bose gas as an approximation to the
two-body interaction potential [Sch05]. A standard technique to solve these kind of
quadratic Hamiltonians is a Bogoliubov transformation [Bog47],

�̂�𝑛 = 𝑢𝑛�̂�𝑛 + 𝑣𝑛�̂�
�
−𝑛

�̂��𝑛 = 𝑢𝑛�̂�
�
𝑛 + 𝑣𝑛�̂�−𝑛,

(4.66)
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with 𝑢𝑛,𝑣𝑛 ∈ R. This transformation preserves the CCR if and only if the coefficients
of the transformation satisfy

𝑢2
𝑛 − 𝑣2

𝑛 = 1. (4.67)

Substituting the Bogoliubov ansatz (4.66) into (4.65) yields

�̂�int = 𝑘
(︁(︀
𝑢2
𝑛 + 𝑣2

𝑛

)︀
�̂��𝑛�̂�

�
−𝑛 +

(︀
𝑢2
𝑛 + 𝑣2

𝑛

)︀
�̂�𝑛�̂�−𝑛 + 2𝑢𝑛𝑣𝑛

(︁
�̂��𝑛�̂�𝑛 + �̂�𝑛�̂�

�
𝑛

)︁)︁
. (4.68)

Considering this expression we see that the system is only transformed to decoupled
modes if

𝑢2
𝑛 + 𝑣2

𝑛 = 0. (4.69)

Solving the constraint (4.67) for 𝑢2
𝑛 and inserting into condition (4.69) results in

𝑢2
𝑛 + 𝑣2

𝑛 = 0 ⇔ 1 + 2𝑣2
𝑛 = 0 ⇔ 𝑣2

𝑛 = −1
2 , (4.70)

which has no solution in R. While it seems that this system of coupled modes is too
complex to solve exactly, we already get interesting insights considering the ground
state mode approximation of the interaction Hamiltonian,

�̂�
(0)
int = 𝑘

(︁
�̂��0�̂�

�
0 + �̂�0�̂�0

)︁
. (4.71)

Note that this Hamiltonian surprisingly coincides up to a sign with the model we
obtained from the canonical quantisation of a classical first order reaction 𝐴

𝑘→ 𝐵
(see (3.27)). Actually, as (4.71) is an instance of a squeezing operator, it appears to
better describe a pair of particles from a bath, like the generation of two squeezed
photons in a crystal, than the particle conversion between two species. Assuming
the vacuum as the initial state, we can infer from (3.35) that the expected particle
number evolves according to⟨

�̂�
(0)
𝐴 (𝑡)

⟩
= sinh2(𝑘𝑡). (4.72)

Now, let us go further and consider the full Hamiltonian in the case of no external
potential. The resulting Hamiltonian in the plane wave expansion is

�̂� =
∑︁
𝑝

(︂
𝑝2

2𝑚𝐴

�̂��𝑝�̂�𝑝 + 𝑘
(︁
�̂��𝑝�̂�

�
−𝑝 + �̂�𝑝�̂�−𝑝

)︁)︂
. (4.73)

Although we could not decouple the strong coupling regime with a Bogoliubov
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transformation, we make another attempt for the full system. Substituting the
Bogoliubov ansatz (4.66) into (4.73) yields

�̂� = 𝑝2

2𝑚𝐴

(︁
𝑢2
𝑝�̂�

�
𝑝�̂�𝑝 + 𝑣2

𝑝 �̂�𝑝�̂�
�
𝑝 + 𝑢𝑝𝑣𝑝

(︁
�̂��𝑝�̂�

�
−𝑝 + �̂�𝑝�̂�−𝑝

)︁)︁
+ 𝑘

(︁(︀
𝑢2
𝑝 + 𝑣2

𝑝

)︀
�̂��𝑝�̂�

�
−𝑝 +

(︀
𝑢2
𝑝 + 𝑣2

𝑝

)︀
�̂�𝑝�̂�−𝑝 + 2𝑢𝑝𝑣𝑝

(︁
�̂��𝑝�̂�𝑝 + �̂�𝑝�̂�

�
𝑝

)︁)︁ (4.74)

Comparing the coefficients of the coupled terms yields the condition

𝑘
(︀
𝑢2
𝑝 + 𝑣2

𝑝

)︀
+ 𝑝2

2𝑚𝐴

𝑢𝑝𝑣𝑝 = 0 (4.75)

in order to decouple the modes. To see if this non-linear equation has a solution, we
parametrise the solutions of (4.67) as

𝑢𝑝 = cosh 𝜃
𝑣𝑝 = sinh 𝜃,

(4.76)

where we refer to 𝜃 as transformation angle. Inserting this parametrisation into (4.75)
yields

0 = 𝑘
(︀
𝑢2
𝑝 + 𝑣2

𝑝

)︀
+ 𝑝2

2𝑚𝐴

𝑢𝑝𝑣𝑝

= 𝑘
(︀
sinh2(𝜃) + cosh2(𝜃)

)︀
+ 𝑝2

2𝑚𝐴

cosh(𝜃) sinh(𝜃)

= 𝑘 cosh(2𝜃) + 𝑝2

4𝑚𝐴

sinh(2𝜃).

(4.77)

This imposes the following constraint on the transformation angle

tanh(2𝜃) = −4𝑚𝐴𝑘

𝑝2 , (4.78)

which in turn imposes

𝑝2 > |4𝑚𝐴𝑘| (4.79)

on the parameters of the system to be transformable to normal modes. This is an
interesting result as it tells us that in the case vanishing external potential, the
particle number in the ground state mode will always increase according to (4.72).
Depending on the strength of the rate constant, the occupation number modes with
higher momentum will grow unbounded as well, until the momentum of the mode is
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large enough to satisfy (4.79). The particle number in these modes will oscillate as
in a free system. To be more precise, the corresponding particle number for modes
which satisfy (4.79) evolve in time according to⟨
�̂�

(𝑝)
𝐴 (𝑡)

⟩
= ⟨0|

(︀
𝑐𝑒−𝑖𝜔𝑡 sinh 𝜃 + 𝑐�𝑒𝑖𝜔𝑡 cosh 𝜃

)︀ (︀
𝑐𝑒−𝑖𝜔𝑡 cosh 𝜃 + 𝑐𝑒𝑖𝜔𝑡 sinh 𝜃

)︀
|0⟩

= 2
(︀
(cosh 𝜃 sinh 𝜃)2 − (cosh 𝜃 sinh 𝜃) cos (2𝜔𝑡)

)︀
,

(4.80)

where we introduced

𝜔 =

√︃(︂
𝑝2

4𝑚

)︂2

− 𝑘2, (4.81)

and assumed that the 𝑝-mode is initially in the vacuum state.
The equation of motion from classical kinetics for this reaction is given by

𝑑[𝐴]
𝑑𝑡

= −𝑘[𝐴]2 + 𝑘𝑁0, (4.82)

where 𝑁0 denotes the constant particle number of the bath. Assuming an initially
depleted species A, the particle concentration converges towards the square root of
the number of particles in the bath:

[𝐴](𝑡) =
√︀
𝑁0 tanh

(︁
𝑘
√︀
𝑁0𝑡
)︁

(4.83)

In 4.4 we depicted trajectories of the classical and the quantum models. Comparing
the trajectories with the first-order reaction we find that the behaviour is qualitatively
similar. However, the exact shape of the trajectories differ and the classical trajectory
converges to the stationary value

√
𝑁0 instead of 𝑁0. We close the discussion of

this elementary reaction with the remark that the presence of an external potential
will impede the investigations, due to the coupling between the modes of different
momenta. It is not clear, how the generalisation of the Bogoliubov transformation
should look in this case.

The last possible second order reaction is the creation of pairs of distinct species

bath
𝑘

� 𝐴+𝐵. (4.84)
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Figure 4.4: Classical and quantum trajectories of the reaction (4.63). As initial
state we assumed completely depleted modes or particle concentrations. The modes
which satisfy condition (4.79) oscillate periodically, while the number of particles in
the ground state grows unbounded in the strong coupling limit. The classical model
either relaxes to a stationary state [𝑁 ] =

√
𝑁0 or grows linearly as in the case of a

first-order reaction.

The Hamiltonian in ultracold kinetics is given by

�̂� =
ˆ

d𝑥
(︁
𝜓�
𝐴(𝑥)

(︁
𝑇𝐴 + 𝑉𝐴(𝑥)

)︁
𝜓𝐴(𝑥)

)︁
+
ˆ
𝑑𝑥
(︁
𝜓�
𝐵(𝑥)

(︁
𝑇𝐵 + 𝑉𝐵(𝑥)

)︁
𝜓𝐵(𝑥)

)︁
+ 𝑘

ˆ
d𝑥
(︁
𝜓�
𝐴(𝑥)𝜓�

𝐵(𝑥) + 𝜓𝐴(𝑥)𝜓𝐵(𝑥)
)︁

(4.85)

Following our previous scheme by starting the investigations with the strong coupling
regime in the plane wave basis results in

�̂�𝑖𝑛𝑡 = 𝑘

ˆ
d𝑥
(︁
𝜓�
𝐴(𝑥)𝜓�

𝐵(𝑥) + 𝜓𝐴(𝑥)𝜓𝐵(𝑥)
)︁

= 𝑘

𝐿

ˆ 𝐿

0
d𝑥
(︃∑︁
𝑛,𝑛′

𝑒𝑖(𝜔𝑛+𝜔𝑛′ )𝑥�̂��𝑛�̂�
�
𝑛′ +

∑︁
𝑚,𝑚′

𝑒−𝑖(𝜔𝑚+𝜔𝑚′ )𝑥�̂�𝑚�̂�𝑚′

)︃
= 𝑘

∑︁
𝑛

(︁
�̂��𝑛�̂�

�
−𝑛 + �̂�𝑛�̂�−𝑛

)︁
=
∑︁
𝑛

�̂�
(𝑛)
int

(4.86)
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This Hamiltonian is, due to the coupling between the modes, too difficult to be
solved in closed form. Similar to the previous reaction, we hope to gain insights from
the ground state dynamics:

�̂�
(0)
int = 𝑘

(︁
�̂��0�̂�

�
0 + �̂�0�̂�0

)︁
= 𝑘

2

(︁
�̂��0�̂�

�
0 + �̂��0�̂�

�
0 + �̂�0�̂�0 + �̂�0�̂�0

)︁

= 𝑘

2(�̂�0 �̂�0 �̂�
�
0 �̂�

�
0)

⎛⎜⎜⎝
0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0

⎞⎟⎟⎠
⎛⎜⎜⎜⎝
�̂��0
�̂��0
�̂�0

�̂�0

⎞⎟⎟⎟⎠ ,
(4.87)

Using the same transformation as in 4.52(︂
�̂�0

�̂�0

)︂
= 1√

2

(︂
1 1

−1 1

)︂(︂
𝑐1
𝑐2

)︂
(4.88)

yields

�̂�
(0)
int = 𝑘

2

(︁
𝑐�2𝑐

�
2 + 𝑐2𝑐2 −

(︁
𝑐�1𝑐

�
1 + 𝑐1𝑐1

)︁)︁
. (4.89)

Therefore, the dynamics of the ground state mode is governed by two decoupled
squeezing operators (4.71) leading to an unbounded increase of the particle number.

This similarity between the dynamics of the present system and the dynamics of
the creation of pairs (4.63), lets us stop the investigations here. The second species
makes the analytical treatment of the problem very hard and we do not see a way to
generalise the Bogoliubov transformation to this setting. On the other hand, we do
not expect fundamentally different behaviour from reaction(4.63), since we are still
dealing with quadratic terms.



CHAPTER 5
Diatomic molecule formation

Since the first experimental realisation of a Bose-Einstein condensate (BEC) [Dav95],
scientists began to investigate phenomena surrounding this new kind of quantum
matter. It turns out that the theoretical models successfully explaining dynamical
phenomena like solitons inside a BEC bear a resemblance to the models of non-linear
quantum optics. Spurred by this insight, the first phenomenological proposal to
describe diatomic molecule formation from a cloud of ultracold bosons was made
in [Dru98]. The authors considered the formation of molecules within a BEC as
the quantum atomic equivalent of second harmonic generation in quantum optics.
The first experimental realisation of molecules in a BEC, achieved through coherent,
stimulated recombination of atoms, was reported in [Wyn00].

Diatomic molecule formation is, within our framework, the simplest process which
does not fall into the category of low-order reactions. As we saw in chapter 4,
the dynamics of diatomic molecule formation are described by a non-linear field
theory. This makes these reactions interesting, since we expect that, similarly to
classical reaction kinetics, the non-linearity causes a range of new phenomena like
entanglement [Wan07] in the quantum evolution or soliton solutions in the mean-field
approximation [Hei00]. One of the reasons for these new phenomena is that the
non-linearity makes a transformation to decoupled modes, and therefore a restriction
to oscillatory behaviour of the system, a priori impossible. At the same time the
non-linearity forces us to make approximations if we want to obtain analytical
expressions for the resulting dynamics. An approximation which lends itself to
obtaining qualitative insights is the mean-field approximation. This approximation
is validated by its success in capturing complex many-body phenomena like phase
transitions. Additionally, we employ numerical methods to study the phenomena.

This chapter is organised as follows. In section 5.1 we introduce the mean-field
approximation as application of the time-dependent variational principle to coherent
states. We illustrate by an instructive example the limitations of the approximation.
In section 5.2 we introduce the two-mode model of diatomic molecule formation. This
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model will be the basis for our approximative and perturbational investigations of
the occurring dynamical phenomena. The two-mode model results in the mean-field
approximation in an integrable system. The numerical study of the full quantum
system shows that the oscillating behaviour predicted by the mean-field approximation
breaks down due to the entanglement present in the system. After discussing the
two-mode model we extend the reaction in section 5.3 by a concurrent coupling to
a bath. The resulting mean-field equations describe a system non-linearly coupled
oscillators. By employing perturbational methods we obtain analytic expressions of
the trajectories for small couplings between the reactions. Progressive increase of the
coupling causes perturbation theory to break down and finally results in Hamiltonian
chaos. We point out that parts of this chapter haven been published in [Ric15].

5.1 Mean-field approximation
Since the early days of quantum mechanics physicists find themselves confronted
with mathematical problems that, due to sheer complexity, can not be solved in
compact form. In particular we only know a handful of many-body systems and
non-linear interacting systems which are exactly solvable. For this reason one must
often employ approximation or perturbation methods in order to gain insight into
the physical structure of quantum systems. A widely used approximation is the
mean-field approximation also called mean-field theory. Originating from the field of
phase transitions in many-body systems, it was originally understood as a theory
of vanishing fluctuations around the statistical mean value of operators [Lan37]. In
this thesis we give a different account, considering (bosonic) mean-field theory as an
application of the variational method to a product of coherent states [Osb11]. This
provides us with clear intuition about the limitations of the mean-field approximation
| whenever the actual dynamics of the considered quantum system leads it outside
the manifold of coherent states, the approximation becomes inaccurate. This is in
particular the case if entanglement plays an important role in the dynamics.

Ultracold chemical reactions beyond second order describe interacting field the-
ories which support complex dynamics. Therefore, we must employ variational or
perturbative methods to obtain less complicated systems which, as far as possible,
still capture the most important physical aspects. In what follows, we quickly review
the basic properties of the coherent states that form our variational manifold. This
will lead us to the mean-field equations for bosonic systems.

5.1.1 Coherent states
Coherent states are an important class of states in quantum optics as they model
the quantum state of a laser beam [Gla63]. Being in some sense the ‘most classical’
quantum states, they form a suitable set of initial states for comparison to classical
dynamics.

We start by considering the Hilbert space of a single bosonic mode, that is
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ℋ = 𝐿2(R). We define the coherent states |𝛼⟩ within this space as eigenstates of the
annihilation operator:

{|𝛼⟩} := {|𝜓(𝛼)⟩ : �̂� |𝜓(𝛼)⟩ = 𝛼 |𝜓(𝛼)⟩ , 𝛼 ∈ C}. (5.1)

The spectrum of the annihilation operator is indeed the entire complex plane. Alter-
natively, one can define the displacement operator

�̂�(𝛼) := 𝑒𝛼�̂�
�−𝛼�̂�, (5.2)

which creates coherent states by displacing the vacuum

|𝛼⟩ := �̂�(𝛼) |0⟩ . (5.3)

Using the Baker-Campell-Hausdorff formula, we can expand the coherent state in
the Fock basis

|𝛼⟩ = 𝑒𝛼�̂�
�−𝛼�̂� |0⟩ = 𝑒− 1

2 |𝛼|2𝑒𝛼�̂�
�

𝑒𝛼�̂� |0⟩

= 𝑒
1
2 |𝛼|2

∞∑︁
𝑛=0

(︁
𝛼𝑎�
)︁𝑛

𝑛! |0⟩ = 𝑒
1
2 |𝛼|2

∞∑︁
𝑛=0

𝛼𝑛√
𝑛!

|𝑛⟩ .
(5.4)

We see that a coherent state is an infinite superposition of Fock states. However, the
expectation value of particles in a coherent state is given by

⟨�̂�⟩ = ⟨𝛼| �̂���̂� |𝛼⟩ = |𝛼|2. (5.5)

In quantum optics this equality is the central connection between the particle view
and the wave view, as it relates the mean particle number to the complex amplitude
squared. Notice that the displacement operator for 𝛼 = 𝑖𝑡 coincides with the operator
which generates time evolution for a first-order ultracold chemical reaction. Let us
now consider the expectation values of the quadratures �̂� and 𝑝 for a coherent state,
that is

⟨�̂�⟩ = ⟨𝛼| �̂� |𝛼⟩ = ⟨𝛼| 1√
2
(︀
�̂�� + �̂�

)︀
|𝛼⟩ =

√
2Re(𝛼)

⟨𝑝⟩ = ⟨𝛼| 𝑝 |𝛼⟩ = ⟨𝛼| 𝑖√
2
(︀
�̂�� − �̂�

)︀
|𝛼⟩ =

√
2Im(𝛼).

(5.6)
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The spread in the quadratures is given by

⟨�̂�2⟩ = ⟨𝛼| �̂�2 |𝛼⟩ = ⟨𝛼| 1
2
(︀
�̂�� + �̂�

)︀2 |𝛼⟩ = 2Re(𝛼) + 1
2

⟨𝑝2⟩ = ⟨𝛼| 𝑝2 |𝛼⟩ = ⟨𝛼| − 1
2
(︀
�̂�� − �̂�

)︀2 |𝛼⟩ = 2Im(𝛼) + 1
2 .

(5.7)

Therefore, the �̂�,𝑝-uncertainty of a coherent state is independent of 𝛼:

𝛥�̂�𝛥𝑝 =
√︀

⟨�̂�2⟩ − ⟨�̂�⟩2
√︀

⟨𝑝2⟩ − ⟨𝑝⟩2 = 1
2 . (5.8)

The generalisation of coherent states to multiple modes is straightforward. Suppose
�̂�𝑗 and �̂��𝑗 are the creation and annihilation operators of the j-th mode with 𝑗 ∈
{1,2,...,𝑁}. Then we define a coherent state of the system to be of the following
form

|𝛼⟩ = 𝑒
∑︀𝑁

𝑗=1 𝛼𝑗 �̂�𝑗−𝛼𝑗 �̂�𝑗 |0⟩ , (5.9)

where 𝛼 ∈ C𝑛. According to this definition the multi-mode coherent state is a pure
product state between the different modes and is therefore not capable of modelling
quantum correlations between the modes.

5.1.2 Time-dependent variational principle
In this section we present aspects of the time-dependent variational principle (TDVP)[Dir30;
Kra81]. This method reduces the complexity of given dynamical problem by restrict-
ing time evolution to a subspace referred to as the variational manifold 𝒱. It is
clear that, due to this restriction, the obtained dynamics will be an approximation
of the actual dynamics, with the accuracy sensitively depending on the choice of
manifold. Therefore, the key task in the application of the TDVP is to find a
variational manifold which, on the one hand, is capable of capturing the important
dynamical phenomena and, on the other hand, provides a significant simplification
to the original problem. In what follows, we present one possible way to derive the
equations of motion of the TDVP for a given variational class 𝒱 .

The principle of stationary action if one of the most important principles in modern
physics as it is in most cases sufficient for deriving equations of motion, given a
physical system. Schrödinger’s equation in quantum mechanics is no exception, as
we see by considering the action

𝑆{𝜓(𝑡),𝜓(𝑡)} =
ˆ 𝑡2

𝑡1

d𝑡𝐿
(︀
𝜓(𝑡),𝜓(𝑡),𝑡

)︀
(5.10)
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with the Lagrange function

𝐿
(︀
𝜓(𝑡),𝜓(𝑡),𝑡

)︀
= 𝑖

2 ⟨𝜓(𝑡)| 𝑑𝜓(𝑡)
𝑑𝑡

⟩ − 𝑖

2 ⟨𝑑𝜓(𝑡)
𝑑𝑡

|𝜓(𝑡)⟩ − ⟨𝜓(𝑡)| �̂�(𝑡) |𝜓(𝑡)⟩ . (5.11)

To avoid cluttering the notation, we henceforth omit the explicit time dependence
of each quantity. The principle of stationary action states that, for the physical
trajectories, the variation of the action becomes zero or, equivalently, the trajectories
solve the Euler-Lagrange equations. Assuming |𝜓⟩ and ⟨𝜓| as independent coordinates
and varying with respect to ⟨𝜓| leads to

𝑑

𝑑𝑡

𝜕𝐿

𝜕 ⟨𝑑𝜓
𝑑𝑡

|
− 𝜕𝐿

𝜕 ⟨𝜓|
= 𝑖 |𝑑𝜓

𝑑𝑡
⟩ − �̂� |𝜓⟩ = 0, (5.12)

which is the time-dependent Schrödinger equation (TDSE) on the full Hilbert space
ℋ. Now we assume that the dynamics take place in a subspace 𝒱 ⊂ ℋ. Suppose
this variational manifold is given by coherent states (5.1) of a single bosonic mode.
The variational Lagrangian (5.11) then yields

𝐿 (𝛼,𝛼) = 𝑖

2 ⟨𝛼| 𝑑𝛼
𝑑𝑡

⟩ − 𝑖

2 ⟨𝑑𝛼
𝑑𝑡

|𝛼⟩ − ⟨𝛼| �̂� |𝛼⟩ . (5.13)

Let us consider the first term on the right-hand side of (5.13). We find

⟨𝛼| 𝑑𝛼
𝑑𝑡

⟩ = ⟨𝛼| 𝑑
𝑑𝑡
𝑒− 1

2 |𝛼|2𝑒𝛼�̂�
� |0⟩

= ⟨𝛼| − 1
2

(︂
𝑑𝛼

𝑑𝑡
𝛼 + 𝑑𝛼

𝑑𝑡
𝛼

)︂
𝑒− 1

2 |𝛼|2𝑒𝛼�̂�
� |0⟩

+ ⟨𝛼| 𝑑𝛼
𝑑𝑡
�̂��𝑒− 1

2 |𝛼|2𝑒𝛼�̂�
� |0⟩

=1
2

(︂
𝑑𝛼

𝑑𝑡
𝛼− 𝑑𝛼

𝑑𝑡
𝛼

)︂
.

(5.14)

Since the second term in (5.13) is the complex conjugate of the first one we obtain

𝐿 (𝛼,𝛼) = 𝑖

2

(︂
𝑑𝛼

𝑑𝑡
𝛼− 𝑑𝛼

𝑑𝑡
𝛼

)︂
− ⟨𝛼| �̂� |𝛼⟩ . (5.15)

We call this the mean-field Lagrangian of the original quantum problem. The
Euler-Lagrange equations corresponding to a variation of 𝛼 in (5.15) yield

𝑖
𝑑𝛼

𝑑𝑡
= 𝜕

𝜕𝛼
⟨𝛼| �̂� |𝛼⟩ = 𝜕

𝜕𝛼
𝐻(𝛼,𝛼). (5.16)
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For a normal ordered quantum Hamiltonian, we obtain the mean-field Hamiltonian
𝐻(𝛼,𝛼) by simply replacing creation and annihilation operators by a single complex
number and its complex conjugate, that is

�̂� → 𝛼 and �̂�� → 𝛼. (5.17)

For the sake of completeness, we mention that instead of deriving (5.17) from the
principle of stationary action, we can also understand the equations of motion as the
result of an orthogonal projection of the actual dynamics onto the tangent plane of
the variational manifold. For an overview of different interpretations of the TDVP,
we refer the reader to [Hae11].

Comparing the full quantum formulation (5.12) with the mean-field approxima-
tion (5.16) shows that the complexity of the problem has drastically decreased.
Indeed, considering the real and imaginary part of 𝛼 as a conjugate variable pair
𝛼 = 𝑥+ 𝑖𝑝 transforms (5.16) into

𝑖
𝑑𝛼

𝑑𝑡
= 𝜕

𝜕𝛼
𝐻(𝛼,𝛼)

𝑖
𝑑(𝑥+ 𝑖𝑝)

𝑑𝑡
= 𝜕

𝜕𝑥− 𝑖𝑝
𝐻(𝑥,𝑝) = 𝜕

𝜕𝑥
𝐻(𝑥,𝑝) + 𝑖

𝜕

𝜕𝑥
𝐻(𝑥,𝑝),

(5.18)

which is equivalent to Hamilton’s equations of motion

𝑑𝑥

𝑑𝑡
= 𝜕𝐻(𝑥,𝑝)

𝜕𝑝

𝑑𝑝

𝑑𝑡
= −𝜕𝐻(𝑥,𝑝)

𝜕𝑥
.

(5.19)

of a one-dimensional system.
This scheme can be readily generalized to a scenario of 𝑁 modes. The variational

manifold in this case is

𝒱 = {|𝛼1,𝛼2,...,𝛼𝑁⟩ = 𝑒
∑︀𝑁

𝑗=1 𝛼𝑗 �̂�𝑗−𝛼𝑗 �̂�𝑗 |0⟩}, (5.20)

that is, a product of coherent states.
Although this method has an astonishing ability to qualitatively predict phase-

transitions in many-body systems, its dynamical predictions can fail even for a single
particle problem. To see this, we consider the Hamiltonian

�̂� = 𝑘
(︀
�̂���̂�� + �̂��̂�

)︀
, (5.21)

which is part of our proposed model of creation of pairs from a bath. Replacing
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operators by complex numbers, we readily obtain

𝑖
𝑑𝛼

𝑑𝑡
= 2𝑘𝛼 (5.22)

for the mean-field equations of motion. The mean-field approximation predicts the
vacuum state 𝛼 = 0 to be a fixed point of the dynamics. This clearly contradicts
the exact solution in (4.72), which shows a quadratic increase of particles at small
times. Why does the mean-field approximation fail for an operator that is quadratic
in creation and annihilation operators on a single mode? The answer is that (5.21) is
an instance of a squeeze operator 3.31 and therefore generates dynamics that bring
us immediately away from the manifold of coherent states.

To summarise, applying the TDVP with coherent states to a quantum problem
on ℋ = 𝐿2(R) results in a one-dimensional phase space problem, which we call the
mean-field approximation. Although greatly simplifying the problem, one should be
aware of the limitations of this method. We have presented a simple example where
the method fails to predict qualitatively correct dynamics.

5.2 Two-mode model
This section considers the dynamics of the most elementary second-order reaction,
diatomic molecule formation:

𝐴+ 𝐴
𝑘

�𝑀. (5.23)

The stoichiometric coefficient for the atomic species 𝜇𝐴 equals two and the molecular
coefficient 𝜈𝑀 is one. According to our proposed framework this reaction is modelled
by the Hamiltonian

�̂� =
ˆ

d𝑥
(︁
𝜓�
𝐴(𝑥)

(︁
𝑇𝐴 + 𝑉𝐴(𝑥)

)︁
𝜓𝐴(𝑥)

)︁
+
ˆ

d𝑥
(︁
𝜓�
𝑀(𝑥)

(︁
𝑇𝑀 + 𝑉𝑀(𝑥)

)︁
𝜓𝐵(𝑥)

)︁
+ 𝑘

ˆ
d𝑥
(︁
𝜓𝐴(𝑥)𝜓𝐴(𝑥)𝜓�

𝑀(𝑥) + 𝜓�
𝐴(𝑥)𝜓�

𝐴(𝑥)𝜓𝑀(𝑥)
)︁
.

(5.24)

Since this reaction is not coupled to a bath, the overall particle number (4.4)

�̂�tot = �̂�𝐴 + 2�̂�𝑀 (5.25)

is a constant of motion. Let us follow our previous scheme from elementary reactions
and start with the investigation of the interacting part, which dominates the reaction
if the coupling constant is large compared to the other energies in the system.
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Expanding the interacting part in the plane wave basis (4.23) yields

�̂�int = 𝑘

ˆ
d𝑥
(︁
𝜓𝐴(𝑥)𝜓𝐴(𝑥)𝜓�

𝑀(𝑥) + 𝜓�
𝐴(𝑥)𝜓�

𝐴(𝑥)𝜓𝑀(𝑥)
)︁

= 𝑘

𝐿
3
2

ˆ 𝐿

0
d𝑥
(︃ ∑︁
𝑛,𝑛′,𝑛′′

𝑒𝑖(𝜔𝑛+𝜔𝑛′ −𝜔𝑛′′ )𝑥�̂��𝑛�̂�
�
𝑛′�̂�𝑛′′ +

∑︁
𝑙,𝑙′,𝑙′′

𝑒−𝑖(𝜔𝑙+𝜔𝑙′ −𝜔𝑙′′ )𝑥�̂�𝑙�̂�𝑙′�̂�
�
𝑙′′

)︃

= 𝑘√
𝐿

∑︁
𝑛,𝑛′

(︁
�̂��𝑛�̂�

�
𝑛′�̂�𝑛+𝑛′ + �̂�𝑛�̂�𝑛′�̂��

𝑛+𝑛′

)︁
(5.26)

This Hamiltonian annihilates two atoms with momentum 𝑛 and 𝑛′ and creates, due
to momentum conservation, a molecule with wave number 𝑛 + 𝑛′. A very similar
Hamiltonian has been used to describe the chemical process of photoassociation in a
BEC [Jav99]. The model of photoassociation differs by the fact that the momentum
of the photon absorbed or emitted during molecule formation and dissociation is
taken into account. A solution of the full system in (5.26) presents a very difficult
task due to the coupling between the modes. Therefore, we restrict our considerations
to the case where all atoms start out in the state 𝑛 = 0. This yields the two-mode
model of molecule formation

�̂�(0) = 𝐸𝐴�̂�
��̂�+ 𝐸𝑀�̂�

��̂�+ 𝑘√
𝐿

(�̂���̂���̂�+ �̂��̂��̂��), (5.27)

where �̂� = �̂�0 and �̂� = �̂�0 are ground-state modes. We add the ground-state energies
𝐸𝐴 and 𝐸𝑀 to the model to account for the fact that the different species still can
have an energy foffset in their zero momentum state. This Hamiltonian has been the
subject of much recent research as it also models second harmonic generation [Wal72]
and two-photon down conversion [Hil90]. Nonetheless, a comprehensive investigation
of the dynamical regimes relevant for the reaction kinetics of ultracold chemistry is
missing.

It is worth noting that strong doubts about the validity of the model as a description
of photoassociation have been expressed in [Gór01], where the authors analyse the
impact of the coupling to higher modes. This coupling arises, for example, if the
initial condition of all particles having zero momentum is violated. The result of
the coupling is to change the system dynamics dramatically, leading to a complete
depletion of the ground state mode on short time scales. However, we should not
forget that (5.26) is an effective Hamiltonian, where the exact local interaction
results from the low-temperature approximation of an interaction potential. It
may be possible, similarly to the case of Feshbach resonances in a Bose-Einstein
condensate, to experimentally influence the interaction potential between the atoms
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and molecules such that the modes decouple in (5.26), leaving

^̃𝐻int = 𝑘√
𝐿

∑︁
𝑛

(︀
�̂��𝑛�̂�

�
𝑛�̂�𝑛 + �̂�𝑛�̂�𝑛�̂�

�
𝑛

)︀
. (5.28)

In what follows we restrict our studies to the two-mode model (5.27).

5.2.1 Mean-field dynamics
Let us begin our studies of the two-mode model of diatomic molecule formation with
the mean-field approximation of the system. As we mentioned when introducing our
account of mean-field theory, this maps the quantum Hamiltonian onto a classical
phase-space problem. Replacing the operators by complex numbers leads to the
classical Hamiltonian

𝐻(𝛼,𝛼,𝛽,𝛽) = 𝐸𝐴|𝛼|2 + 𝐸𝑀 |𝛽|2 + 𝑘√
𝐿

(︀
𝛼2𝛽 + 𝛽𝛼2)︀ , (5.29)

where 𝛼 labels the coherent state of the atomic mode and 𝛽 the coherent state of
the molecule. The conservation of the overall particle number (5.25) carries over to
the mean-field approximation as the constant of motion

𝑁tot = |𝛼|2 + 2|𝛽|2. (5.30)

This is already enough to make some qualitative statements about the type of
dynamics that occur in the mean-field approximation. The dynamics of the mean-
field approximation take place in a two-dimensional phase space. Since the energy and
overall particle number are independent constants of motion, the Hamiltonian (5.29)
describes an integrable system. Hence the trajectories in phase-space are lines on a
two-dimensional torus. The equations of motion follow from (5.16) as

𝑖�̇� = 𝐸𝐴𝛼 + 2𝑘𝛼𝛽 and
𝑖�̇� = 𝐸𝑀𝛽 + 𝑘𝛼2,

(5.31)

where we set 𝑘 = 𝑘√
𝐿

. A straightforward analysis shows that the fixed points of this
system are at

(𝛼0,𝛽0) = (0,0) and

(𝛼𝜑,𝛽𝜑) =
(︃√︂

𝐸𝐴𝐸𝑀

2𝑘2
𝑒𝑖𝜑, −𝐸𝐴

2𝑘
𝑒2𝑖𝜑

)︃
with 𝜑 ∈ [0,2𝜋).

(5.32)

In Fig. 5.1 we plot two trajectories of the expected atom number |𝛼|2 for slightly
different initial conditions. The number of molecules can be easily inferred from the
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Figure 5.1: Two mean-field trajectories predicted by (5.31). The plot shows the
expected number of atoms for slightly different initial conditions. The dynamical
parameters are set to 𝐸𝐴 = 1, 𝐸𝑀 = 2, 𝑘 = 1. While the atomic mode completely
depletes if there are no molecules present initially, a single initial molecule suffices to
drastically change the dynamics of the system.

number of atoms due to the conservation of 𝑁tot. The mean-field approximation
predicts a complete inversion of the population if the eigenenergies are coupled
through 𝐸𝐴 = 2𝐸𝑀 , given an initially depleted molecular mode. However, this fixed
point for the dynamics of the absolute square |𝛼|2 is not stable. A tiny change in
the initial condition brings the trajectory away from the fixed point and leads to an
oscillation of the system.

What can we say at this point about the validity of the mean-field approximation
in the present case? Due to the fact that the Hamiltonian resembles a squeezing
operator on the atomic system, we already learned from example (5.22) that the
mean-field prediction can not be entirely correct. However, we still can hope for a
qualitative approximation away from the fixed points. A more detailed analysis of
the mean-field system of the two-mode approximation can be found in [San06]. A
recent article presenting a nice illustration of the mean-field dynamics as a trajectory
on a tear-drop deformed Bloch sphere can be found in [Gra15].

5.2.2 Quantum phenomena
We are interested in studying the role that entanglement plays in the kinetics of
the two-mode model of reaction (5.23). The overall particle number operator is a
conserved quantity for the dynamics, hence we can restrict our study to the reduced
dynamics of the atomic mode, writing 𝑁 ≡ 𝑁𝐴. The behaviour of the molecular
mode can be deduced straightforwardly. In Fig. 5.2 we plot the full quantum time
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Figure 5.2: The dynamics of the atomic occupation number expectation value ⟨�̂�⟩
with respect to the rescaled time 𝜏 = 𝑡𝑘/~ for the diatomic molecular reaction (5.23),
with 𝑁 = 500 particles. The quantum and mean field trajectories coincide until they
separate at 𝜏MF. From then on, the quantum trajectory approaches a stationary value
𝑁 via entanglement-induced damped oscillations.

evolution of the expectation value of �̂� (obtained via exact diagonalisation) together
with the mean field prediction for the dynamics of the reaction. The system is
initially in a product state of a coherent atomic state and a completely depleted
molecular state. As we discussed in section 5.2.1, mean-field theory predicts a
complete inversion of the population, where the system is driven to an unstable fixed
point [Var01b]. However, in the full quantum solution we can identify three different
dynamical regimes. First, there is a semi-classical regime where the quantum and
mean field dynamics coincide. At the breakdown time 𝜏MF the full solution drifts
away from the mean field approximation [Var01a] and the semi-classical regime
transitions to an intermediate evanescent regime, where the quantum trajectory
oscillates with an increasingly damped amplitude. Eventually, the system reaches the
asymptotic regime where the expectation value of the population imbalance relaxes
to a stationary value 𝑁 .

We can understand the three different dynamical regimes by studying the time
evolution of the quantum entanglement between the atomic and molecular modes.
These results are shown in 5.3. In the semi-classical regime we see a rapid increase of
the entanglement at the beginning of the reaction, which is necessary for the formation
of molecules. It is initially rather surprising that the mean field approximation works
as well as it does in the semi-classical regime given that the state rapidly becomes
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Figure 5.3: Evolution of the quantum entanglement (in terms of the von Neumann
entropy of the atomic reduced density operator 𝜌𝐴) between the atomic and molecular
modes for the reaction (5.23) with respect to rescaled time 𝜏 = 𝑡𝑘/~. For an initially
coherent atomic state the amount of entanglement is close to zero for short times. For
an initial Fock state, however, the entanglement grows considerably for small times.
In the vicinity of the breakdown time 𝑡𝑀𝐹 the entanglement in the coherent case
rapidly increases. At large times, both initial states lead to a roughly constant level of
entanglement.

entangled and is not well-modelled by a product state. A possible explanation is that
the entanglement evolution in the semi-classical regime is typical of that produced
by integrable interactions [Hin03], at least until the breakdown time 𝜏MF. After the
breakdown time, in the evanescent regime, the system rapidly reaches the maximum
available entanglement and begins to explore the full Hilbert space. Soon after, it
enters the asymptotic regime where it ergodically evolves through highly entangled
states. It remains in the asymptotic regime until it experiences a quantum revival.

The dynamical behaviour exhibited by the reaction (5.23) is reminiscent of the
local relaxation observed in quenched many-particle quantum systems [Cra08].
That relaxation indeed takes place is supported by studying the time-averaged
fluctuations 𝛥𝑁2 = lim𝜏→∞

1
𝜏

´ 𝜏
0 d𝑡

(︁
⟨�̂�(𝑡)⟩ −𝑁

)︁2
relative to the mean value 𝑁 =

lim𝜏→∞
1
𝜏

´ 𝜏
0 d𝑡⟨�̂�(𝑡)⟩, which we plot in 5.4. We find that the fluctuations decrease

as the particle number 𝑁 is increased. However, the mechanism leading to the local
relaxation observed in quenched dynamics is slightly different to that found here. In
quenched many-particle systems the incoherent interference of localised excitations
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Figure 5.4: The time-averaged relative mean value of atoms, and the fluctuations
around it, plotted against the overall particle number for the reaction (5.23). As the
particle number is increased, the fraction of atoms in the asymptotic regime and the
relative temporal fluctuations decrease.

travelling at different velocities leads to a cumulative effect of relaxation. However, in
our case we have an interaction between just two modes and the relaxation we observe
is directly related to the growth of entanglement between them or, equivalently,
the loss of coherence, or purity, of the reduced density operators. Interestingly, the
relaxation behaviour in the asymptotic regime is remarkably similar to the classical
high temperature kinetics of (5.23), which relaxes to the fixed point [𝐴]2 = [𝐴2] even
though our system is always in a global pure state.

We obtained 𝑁 and 𝛥𝑁2 via exact diagonalisation. Although the full Hamiltonian
has degenerate eigenvalues, the dynamical problem, due to the conservation of �̂�tot,
can be separated into finite-dimensional problems with no degeneracy. Exploiting
this we find that the time-averaged expectation value of the atoms and the molecules
coincides with the predictions given by the diagonal ensemble 𝑁 ens :=

∑︀
𝛼 |𝑐𝛼|2𝑁𝛼,𝛼,

where 𝑐𝛼 = ⟨𝜓in|𝛼⟩ and 𝑁𝛼,𝛽 = ⟨𝛼| �̂� |𝛽⟩ [Neu29; Rig08] are the coefficients in the
complete energy eigenbasis. Moreover, the time-averaged fluctuations around this
mean value can be obtained via 𝛥𝑁2

𝑡 =
∑︀

𝛼 ̸=𝛽 |𝑐𝛼|2|𝑐𝛽|2|𝑁𝛼,𝛽|2 [Sre99]. However, the
system does not thermalise as the predicted expectation values do not coincide with
those of the microcanonical ensemble.
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5.3 Molecule formation coupled to a bath
In classical high-temperature kinetics we need to consider complex reactions involving
numerous reactants in order to obtain oscillating or irregular dynamics. However,
we will see that when we add a simple first-order reaction to the ultracold diatomic
molecule formation, we already encounter Hamiltonian chaos within the mean-field
approximation. We first consider the chemical reaction

𝐴+ 𝐴
𝑘1
�𝑀

bath
𝑘2
� 𝐴.

(5.33)

Applying the proposed rules and assuming an energy offset between the ground
states, we obtain the Hamiltonian

�̂� = 𝐸𝐴�̂�𝐴 + 𝐸𝑀 �̂�𝑀 + 𝑘1(�̂���̂���̂�+ �̂��̂��̂��) + 𝑘2(�̂�� + �̂�), (5.34)

where 𝐸𝐴 and 𝐸𝑀 denote the ground state energies of the atomic and molecular
species, respectively. The concurrent first-order reaction (5.33) breaks the conser-
vation of the overall particle number �̂�𝑡𝑜𝑡 and impedes a full quantum mechanical
treatment. Consequently, we investigate the dynamics of the system in the mean-field
approximation by replacing the creation and annihilation operators in (5.34) with
complex numbers (𝛼,𝛽) labelling the coherent states of the atomic and molecular
modes respectively. Note that within this approximation we obtain the average
particle number of a certain species ⟨�̂�𝑖⟩ by considering the absolute square of the
corresponding complex number (|𝛼|2 or |𝛽|2).

In the previous section we saw that diatomic molecule formation amounts involves
deviations from mean field dynamics because of the occurrence of quantum effects.
Therefore, we need to keep the coupling parameter 𝑘1 as small as possible compared
to some relevant energies to consider the mean-field approximation as an appropriate
description of the actual dynamics. Keeping this in mind, we obtain the equations
of motion from the variational principle:

𝑖�̇� = 𝐸𝐴𝛼 + 2𝑘1𝛼𝛽 + 𝑘2

𝑖�̇� = 𝐸𝑀𝛽 + 𝑘1𝛼
2.

(5.35)

To reduce the number of parameters in the system, we remove unnecessary degrees of
freedom by replacing the dynamical variables with the non-dimensionalised quantities

�̃� = 𝛼

𝛼0
, 𝛽 = 𝛽

𝛽0
, and 𝜏 = 𝑡

𝑡0
. (5.36)
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Substituting this into (5.35) results in the coupled equations

𝑖
𝑑�̃�

𝑑𝜏
− �̃� = 1 + 𝑐12�̃�𝛽

𝑖
𝑑𝛽

𝑑𝜏
− 𝑐2𝛽 = 𝑐1�̃�

2.

(5.37)

The non-dimensionalised Hamiltonian is given by

�̃� := 𝐻

𝑘2
2/𝐸𝐴

= |�̃�|2 + 𝑐2|𝛽|2 + 𝑐1
(︀
�̃��̃�𝛽 + 𝑐.𝑐.

)︀
+ (�̃� + 𝑐.𝑐.), (5.38)

with parameters

𝑡0 = 1
𝐸𝐴

, 𝛼0 = 𝑘2

𝐸𝐴
, 𝑐1 = 𝑘1𝑘2

𝐸𝑀
, 𝑐2 = 𝐸𝑀

𝐸𝐴
. (5.39)

The dynamics of the system is completely determined by the choice of the two
parameters 𝑐1,𝑐2 ∈ R and its initial conditions. Note that due to our choice of
parameters 𝑐1 = 0 implies 𝑘1 = 0, i.e. no molecule formation, and arbitrary 𝑘2.
Moreover, the constraint stemming from the validity of the mean field approximation
can now be precisely expressed as 𝑐1 ≪ 1, where the constraint on the molecular
reaction constant becomes 𝑘1 ≪ 𝐸𝑀

𝑘2
.

5.3.1 Perturbation theory
The dynamical system (5.37) is, due to the non-linear terms, too difficult to be solved
analytically. In such situations, perturbation theory often provides useful analytical
approximations of the full solution. However, a naive application of perturbation
theory may lead to qualitatively wrong results [Hin91]. Therefore, we first need some
physical intuition of the considered chemical system. To this end, we examine again
the structure of the non-dimensionalised equations of motion (5.37)

𝑖
𝑑�̃�

𝑑𝜏
− �̃� = 1 + 𝑐12�̃�𝛽

𝑖
𝑑𝛽

𝑑𝜏
− 𝑐2𝛽 = 𝑐1�̃�

2.

(5.40)

What is the physical meaning of the two parameters 𝑐1 and 𝑐2? The ODE system
(5.40) is equivalent to a pair of non-linearly coupled harmonic oscillators. Whereas
the oscillator describing the atoms has eigenfrequency one, 𝑐2 determines the eigen-
frequency of the molecular oscillator. We see that 𝑐1 is the coupling strength between
the two oscillators and represents the only non-linear term in the system. We
therefore expect a regular behaviour for small values of 𝑐1. Moreover, we see from
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(5.38) that if 𝑐1 ≫ 1 the system is also integrable due to the conservation of the
overall particle number 𝑁𝑡𝑜𝑡 = |�̃�|2 + 2|𝛽|2. Altogether, we decide to employ per-
turbation theory for anharmonic oscillators by expanding the functions in terms of
𝑐1, and fix 𝑐2 to an experimentally realistic value. The method we use is called the
Poincaré-Lindsted method [Lin82]. It dates back to the time when physicists tried
to find approximations to the exact trajectory of the moon. Let us first expand the
quantities considered into a perturbation series. This means expanding dynamical
quantities in (5.40) as

�̃�(𝜏) = �̃�0(𝜏) + 𝑐1�̃�1(𝜏) + 𝑐2
1�̃�2(𝜏) + ...

𝛽(𝜏) = 𝛽0(𝜏) + 𝑐1𝛽1(𝜏) + 𝑐2
1𝛽2(𝜏) + ... .

(5.41)

The Poincaré-Lindsted method modifies this expansion by rescaling the argument 𝜏
of each dynamical quantity differently, that is, we evaluate

�̃�(𝜑1 = 𝜔1𝜏) and
𝛽(𝜑2 = 𝜔2𝜏),

(5.42)

yielding the system

𝑖𝜔1
𝑑�̃�(𝜑1)
𝑑𝜑1

− �̃�(𝜑1) = 1 + 𝑐12�̃�(𝜑1)𝛽(𝜑2)

𝑖𝜔2
𝑑𝛽(𝜑2)
𝑑𝜑2

− 𝑐2𝛽(𝜑2) = 𝑐1�̃�(𝜑1)2.

(5.43)

The key of the method is now to not only expand the dynamical quantities but also
expand the frequencies as perturbed quantities

𝜔1 = 𝜔
(0)
1 + 𝑐1𝜔

(1)
1 + 𝑐2

1𝜔
(2)
1 + ...

𝜔2 = 𝜔
(0)
2 + 𝑐1𝜔

(1)
2 + 𝑐2

1𝜔
(2)
2 + ... .

(5.44)

This additional degree of freedom compared to the regular perturbation ansatz is
used to remove secular terms from the perturbational solution. Before we proceed to
discuss the terms of perturbation expansion, we simplify ansatz (5.44) by coupling
the frequencies as

𝜔2 = 𝑐2𝜔1. (5.45)

This coupling is justified if we consider the solution of the unperturbed system, where
we find 𝜔

(0)
1 = 1 and 𝜔

(0)
2 = 𝑐2. Substituting (5.45) into (5.44) and expanding the

frequencies and dynamical quantities into the perturbation series yields at zeroth-
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order the system

𝑖
𝑑�̃�0(𝜑1)
𝑑𝜑1

− �̃�0 = 1

𝑖𝑐2
𝑑𝛽0(𝜑2)
𝑑𝜑2

− 𝑐2𝛽0 = 0.
(5.46)

This system is the unperturbed system, having only a constant shift as an inhomoge-
neous part. It is solved by

𝛼0(𝜑1) = (1 + 𝐴0)𝑒𝑖𝜑1 − 1
𝛽0(𝜑2) = 𝐵0𝑒

𝑖𝜑2 .
(5.47)

Using this solution of the zeroth-order terms, first-order perturbation theory yields

Figure 5.5: Time evolution of the rescaled average number of atoms and molecules
in mean field approximation. The relative energy of the ground states is 𝑐2 = 1.1 and
the initial number of atoms is 40000. The oscillation becomes more and more strongly
modulated with increasing molecule formation 𝑐1. Perturbation theory determines an
amplitude 𝐴𝑚𝑜𝑑 ≈ 320 atoms for 𝑐1 = 13 × 10−5 (see (5.49)).
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the equations

𝑖
𝑑�̃�1(𝜑1)
𝑑𝜑1

− �̃�0 = −𝜔1(1 + 𝐴0)𝑒𝑖𝜑1 + 2𝐵0𝑒
𝑖𝑐2𝜑1

𝑖𝑐2
𝑑𝛽1(𝜑2)
𝑑𝜑2

− 𝑐2𝛽0 = −1 + (1 + 𝐴0)𝑒𝑖
𝜑2
𝑐2 − 𝜔1𝑐1𝐵0𝑒

−𝑖𝜑2 .

(5.48)

Considering the right-hand side of the equations, we can understand schematically
the motivation for expanding the frequency into a perturbation series. The in-
homogeneous terms that are oscillating with the eigenfrequency of the respective
oscillators cause a resonance in the perturbative solution. This leads to a breakdown
of perturbation theory in time even for small values of 𝑐1. Thanks to the freedom of
choosing 𝜔1, we can avoid the resonance in the terms on the right-hand side of (5.48).
In the present system this is achieved by setting 𝜔1 = 0. We content ourselves
at this point by considering first-order perturbation theory. At higher order, the
terms occurring become more complex and do not provide new insights regarding
the application of the method. Let us in the following compare the result of the
Poincaré-Lindsted to numerical results.

The trajectories depicted in Figure 5.5 show the expectation value of atoms |�̃�|2
and molecules |𝛽|2 for an initially depleted molecular mode and 40000 atoms. In case
of no coupling at all, i.e. 𝑐1 = 0, the molecular mode remains completely depleted
whereas the atomic mode oscillates due to the coupling to the bath. However, as
we increase 𝑐1 the system progressively enters a modulation regime, in which the
molecular site oscillates and the amplitude of the free oscillation on the atomic site
is modulated. Let 𝐴0 = �̃�(0) denote the square root of the initial rescaled number
of atoms, we then obtain from perturbation theory (5.48) the following analytical
expressions for the amplitude 𝐴𝑚𝑜𝑑 and frequency 𝜔𝑚𝑜𝑑 of this modulation:

𝐴𝑚𝑜𝑑 = 4(𝐴0 + 1)𝐴3
0𝑐

2
1

(𝑐2 − 2)2 + 𝒪
(︀
𝑐4

1
)︀
,

𝜔𝑚𝑜𝑑 = 𝑐2 − 1 + 𝒪
(︀
𝐴2

0𝑐
2
1
)︀
.

(5.49)

This means increasing 𝑐1 causes a quadratic increase of 𝐴𝑚𝑜𝑑 whereas the frequency
of modulation 𝜔𝑚𝑜𝑑 remains approximately unchanged. The restrictions on the
parameters for perturbation theory to be valid are 𝑐2

1𝐴
2
0 ≪ 1 ≪ 𝐴0 and 𝑐2 ∈ (1,2).

5.3.2 Chaos
What happens to the system if we increase 𝑐1 beyond the regime of perturbation
theory? We already mentioned that 𝑐1 interpolates between integrable systems. But
does the system remain integrable for all choices of 𝑐1? Chaos in Hamiltonian systems
is an interesting phenomenon which has been extensively studied in the context of
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the validation of statistical mechanics. A well-known tool to characterize irregular
behaviour of a system is to consider its Poincaré sections [Ott02]. In our case, we
choose the quadratures of the atomic species

𝑋𝐴 = 1
2 (𝛼 + 𝛼)

𝑃𝐴 = 1
2𝑖 (𝛼− 𝛼) ,

(5.50)

and the quadratures of the molecular species

𝑋𝑀 = 1
2
(︀
𝛽 + 𝛽

)︀
𝑃𝑀 = 1

2𝑖
(︀
𝛽 − 𝛽

)︀ (5.51)

as dynamical variables. We choose the surface 𝑋𝑀 = 0 as the intersection surface.
Poincaré sections with 𝑋𝐴 and 𝑃𝐴 on the (x,y)-axes are shown from Fig. 5.6 to
Fig. 5.11. We set 𝑐2 = 1.1 and the energy 𝐸 = 100. Note that in contrast to usual
Poincaré sections in the literature, we plotted 𝑃𝑀 on the z-axis to get an better
impression of the projected energy hypersurface. The sections are plotted for 25
long-time trajectories with arbitrary initial conditions. We find that, for a certain
range of 𝑐1, the system shows behaviour which is typical for Hamiltonian chaos. As
long as the system remains integrable, the Poincaré section consists of closed curves
corresponding to sections of two-dimensional tori. However, increasing 𝑐1 deforms
and finally destroys some of the closed curves. Some of the sampled trajectories start
to densely fill out parts of the energy hypersurface. We call this the chaotic regime
of the reaction. Finally, further increase of 𝑐1 leads to deformation of the energy
hypersurface and eventually restores the integrability of the system.

To summarise, we have seen that chaos plays an important role in the mean-field
approximation of ultracold chemical reactions. In contrast to classical reactions,
where one needs a very complex multi-species reaction to obtain dynamical chaos, the
ultracold reaction (5.33) consists of two concurrent reactions, where one is a simple
coupling to a reservoir. This looks a promising route to follow from experimental
point of view. The diatomic molecule formation could be implemented by Raman
photoassociation, whereas the coupling to a bath coupling to a reservoir could be
realised by coherent interaction to a second BEC, containing much more particles
than the molecule forming BEC.
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Figure 5.6: Poincaré section of the mean-field approximation of the reaction net-
work (5.33) for parameter 𝑐 = 0.001. For this small perturbation the system remains
integrable, which is consistent with the observation of perturbation theory.

Figure 5.7: Poincaré section with 𝑐1 = 0.0017. The increase of the perturbation leads
to splitting of the first orbits into little islands in accordance with the predictions of
the Poincaré-Birkhoff theorem [Poi12]
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Figure 5.8: Poincaré section of the mean-field approximation of the reaction net-
work (5.33) for parameter 𝑐1 = 0.018. The irregular trajectories begin to spread out
and densely fill out the energy hypersurface

Figure 5.9: Poincaré section with 𝑐1 = 0.02. Most of the energy hypersurface is
covered by irregular trajectories.
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Figure 5.10: Poincaré section with 𝑐1 = 0.2. The energy hypersurface shows a
significant deformation.

Figure 5.11: Poincaré section with 𝑐1 = 0.3. All of the plotted trajectories are on
closed curves. Therefore, the system is eventually integrable again.



CHAPTER 6
Solitons in ultracold chemistry

Solitons are wave-like solutions to non-linear equations which appear in many areas
of physics. They fascinate scientists since their discovery in the middle of the 19th
cenutry, not only for their remarkable experimental properties, but also for new
insights that they provide to physical systems. In the context of ultracold atoms,
solitons were first observed in Sodium BECs [Bur99; Den00]. This observation
was a remarkable confirmation for the non-linear model of a self-interacting Bose
gas. Moreover, solitary solutions are a central theoretical aspect in coupled atomic-
molecular Bose-Einstein condensates [Das13; Dru98; Ole07; Vau04]. However, the
experimental proof of the predicted solitons is, to the best knowledge of the author,
still missing.

In addition to the field of ultracold atoms, solitary solutions have been extensively
studied in the realm of reaction-diffusion models [Pur05]. Reaction-diffusion models
combine classical reaction kinetics and the theory of diffusion to describe the time-
evolution of a spatially inhomogeneous classical chemical reaction. Motivated by
the resemblance we observed between the ultracold reactions and high-temperature
reactions so far, we study if the solitary solutions in reaction-diffusion systems carry
over into the ultracold setting.

This chapter is organised as follows: In section 6.1 we study solitary solutions to
the Gross-Pitaevskii equation. This equation describes the mean-field approximation
of a self-interacting Bose gas. We introduce phase space methods as central tool to
show the existence of solitons. The material presented in section 6.1 is well known
and can be found in many textbooks. We follow here in particular [Dau06]. In
section 6.2, we apply phase space methods to the diatomic molecule formation. We
discuss the stability of bright solitons in this reaction.

6.1 Gross-Pitaevskii equation
The phenomenon of Bose-Einstein condensation can be explained by considering an
ideal non-interacting Bose gas. However, for any temperature that is not exactly

89
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zero there will an atom-atom interaction inside a condensate. As we discussed in
section 3.2, a natural approach to formulate interactions inside a condensate of
indistinguishable particles is to use the formalism of second quantisation. A general
Hamiltonian with self-interaction is given by

�̂� =
ˆ

d𝑥𝜓�(𝑥)
(︁
𝑇 + 𝑉ext(𝑥)

)︁
𝜓(𝑥) +

ˆ
d𝑥d𝑦 𝜓�(𝑥)𝜓�(𝑦)𝑉 (𝑥,𝑦)𝜓(𝑥)𝜓(𝑦), (6.1)

where 𝑉 (𝑥,𝑦) denotes the two-body interaction potential . All prominent examples of
two-body interactions are translationally invariant, that is 𝑉 (𝑥,𝑦) = 𝑉 (𝑥− 𝑦). The
resulting scattering problem can be solved in the center-of-mass frame (see section
2.2.2). If the potential in relative coordinates decays faster than 𝑟−3, the s-wave
scattering contribution becomes dominant for bosons at small temperatures [Dau02].
Additionally, for most potentials the s-wave scattering amplitude (2.46) converges
for small momenta towards a constant value

lim
𝑘→0

𝑓𝑛′,𝑛(�⃗�,⃗𝑘) = −𝑎, (6.2)

which is called the scattering length. The exact calculation of 𝑎 depends on the
parameters of the problem. As a result of this dependence it is possible, for example
by crossing a Feshbach resonance, to tune the scattering length from a large and
positive value, meaning strong repulsive interaction, to a large negative value resulting
in strong attractive interaction. Using the fact that in case of low-energy scattering
two potentials with the same scattering length lead to the same physics, we replace
𝑉 (𝑥,𝑦) by a contact potential

𝑊 (𝑥− 𝑦) → 𝑔𝛿(𝑥− 𝑦) (6.3)

with effective interaction constant 𝑔 = 4𝜋𝑎
𝑚

. Substituting this into (6.1) yields

�̂� =
ˆ

d𝑥𝜓�(𝑥)
(︁
𝑇 + 𝑉ext(𝑥)

)︁
𝜓(𝑥) + 𝑔

2

ˆ
d𝑥𝜓�(𝑥)𝜓�(𝑥)𝜓(𝑥)𝜓(𝑥). (6.4)

Due to the high order of the self-interaction term, we can not hope to find an exact
solution. Therefore we apply the variational method to decrease the difficulty of the
problem.

6.1.1 Derivation as mean-field approximation
To this end, we try to find a suitable variational class. A natural generalisation
of coherent states to infinitely many modes are the field coherent states. They are
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defined as eigenfunctions of the field operator

𝜓(𝑥) |𝜑(𝑥,𝑡)⟩ = 𝜑(𝑥,𝑡) |𝜑(𝑥,𝑡)⟩ . (6.5)

Note, that in contrast to the optical coherent states, which are labelled by a complex
number 𝛼(𝑡), we have

𝜑 : R2 ↦→ C, (6.6)

that is a classical field. Alternatively, the states can be generated by the unitary
displacement operator

𝐷(𝜓,𝜑) = 𝑒
´

d𝑥𝜑(𝑥,𝑡)𝜓�(𝑥)−𝜑(𝑥,𝑡)𝜓(𝑥), (6.7)

which displaces the vacuum to a field coherent state

|𝜑(𝑥,𝑡)⟩ = 𝐷(𝜓,𝜑) |0⟩ . (6.8)

Using the field coherent states as variational class in (5.11) yields

𝐿
(︀
𝜑(𝑥,𝑡),𝜑(𝑥,𝑡),𝑥,𝑡

)︀
= 𝑖

2 ⟨𝜑(𝑥,𝑡)| 𝜕𝜑(𝑥,𝑡)
𝜕𝑡

⟩ − 𝑖

2 ⟨𝜕𝜑(𝑥,𝑡)
𝜕𝑡

|𝜑(𝑥,𝑡)⟩

− ⟨𝜑(𝑥,𝑡)| �̂�(𝑡) |𝜑(𝑥,𝑡)⟩ ,
(6.9)

with (6.4) as �̂�(𝑡). Performing calculations analogous to (5.14), we can rewrite the
first two terms in terms of the classical field 𝜑(𝑥,𝑡) as

𝐿
(︀
𝜑(𝑥,𝑡),𝜑(𝑥,𝑡),𝑥,𝑡

)︀
= 𝑖

2

ˆ
d𝑥𝜑(𝑥,𝑡)𝜕𝜑(𝑥,𝑡)

𝜕𝑡
− 𝑖

2

ˆ
d𝑥 𝜕𝜑(𝑥,𝑡)

𝜕𝑡
𝜑(𝑥,𝑡)

− ⟨𝜑(𝑥,𝑡)| �̂�(𝑡) |𝜑(𝑥,𝑡)⟩ .
(6.10)

Let us now evaluate the expectation value of the Hamiltonian. To this end, we
consider the potential, kinetic and interaction parts separately. Using the definition
of the field coherent states as eigenvectors of the field operator (6.5), we obtain for
the potential energy term

⟨𝜑(𝑥,𝑡)|
ˆ

d𝑥𝜓�(𝑥)𝑉ext(𝑥)𝜓(𝑥) |𝜑(𝑥,𝑡)⟩ =
ˆ

d𝑥𝑉ext(𝑥)|𝜑(𝑥,𝑡)|2. (6.11)
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For the kinetic energy term we use the fact that the field is contained in some finite
volume. Therefore we obtain by partial integration

⟨𝜑(𝑥,𝑡)|
ˆ

d𝑥𝜓�(𝑥)−1
2𝑚

𝜕2

𝜕𝑥2𝜓 |𝜑(𝑥,𝑡)⟩ = −1
2𝑚

ˆ
d𝑥𝜑(𝑥,𝑡)𝜕

2𝜑(𝑥,𝑡)
𝜕𝑥2

= 1
2𝑚

ˆ
d𝑥 𝜕𝜑(𝑥,𝑡)

𝜕𝑥

𝜕𝜑(𝑥,𝑡)
𝜕𝑥

.

(6.12)

Finally, we evaluate the interaction term

⟨𝜑(𝑥,𝑡)| 𝑔2

ˆ
d𝑥𝜓�(𝑥)𝜓�(𝑥)𝜓(𝑥)𝜓(𝑥) |𝜑(𝑥,𝑡)⟩ = 𝑔

2

ˆ
d𝑥 |𝜑(𝑥,𝑡)|4. (6.13)

This amounts to an overall Lagrangian

𝐿
(︀
𝜑(𝑥,𝑡),𝜑(𝑥,𝑡),𝑥,𝑡

)︀
=
ˆ

d𝑥
(︂
𝑖

2𝜑(𝑥,𝑡)𝜕𝜑(𝑥,𝑡)
𝜕𝑡

− 𝑖

2
𝜕𝜑(𝑥,𝑡)
𝜕𝑡

𝜑(𝑥,𝑡)

− 1
2𝑚

𝜕𝜑(𝑥,𝑡)
𝜕𝑥

𝜕𝜑(𝑥,𝑡)
𝜕𝑥

− 𝑉ext(𝑥)|𝜑(𝑥,𝑡)|2 − 𝑔

2

ˆ
d𝑥 |𝜑(𝑥,𝑡)|4

)︂
.

(6.14)

Note that this Lagrangian is of the form 𝐿 =
´

d𝑥ℒ, where ℒ is called Lagrangian
density. The corresponding Euler-Lagrange equations are in this case [Gol65]

𝑑

𝑑𝑡

𝜕ℒ
𝜕
[︀
𝜕𝑡𝜑
]︀ + 𝑑

𝑑𝑥

𝜕ℒ
𝜕
[︀
𝜕𝑥𝜑
]︀ = 𝜕ℒ

𝜕𝜑
, (6.15)

and its complex conjugate. Evaluated with the Lagrangian density in (6.14) we
obtain the equations of motion for 𝜑(𝑥,𝑡) as

𝑖
𝜕

𝜕𝑡
𝜑(𝑥,𝑡) =

(︂
− 1

2𝑚
𝜕2

𝜕𝑥2 + 𝑉ext(𝑥) + 𝑔|𝜑(𝑥,𝑡)|2
)︂
𝜑(𝑥,𝑡) (6.16)

This equation is called the time-dependent Gross-Pitaevskii equation (GPE) [Gro61;
Pit61]. We refer to (6.16) as mean-field approximation of (6.4) by the same reasoning
as for coherent states of a single bosonic mode. Note, that similar to the single-mode
case (5.17), the mean-field equations can be obtained via the simple replacement

𝜓(𝑥) → 𝜓(𝑥) and 𝜓�(𝑥) → 𝜓(𝑥), (6.17)

for a normal ordered Hamiltonian.
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6.1.2 Bright and dark solitons
In what follows, we consider solutions to the GPE referred to as bright solitons. In a
first step, we neglect the external potential term in (6.16). This is a valid assumption
for real experimental implementations of BECs [Bur99]. Furhtermore, we assume
the coupling constant to be smaller than zero, that is, attractive interaction between
the particles. With these assumption (6.16) can be rewritten as

𝑖
𝜕

𝜕𝑡
𝜑(𝑥,𝑡) =

(︂
− 1

2𝑚
𝜕2

𝜕𝑥2 − 𝑔|𝜑(𝑥,𝑡)|2
)︂
𝜑(𝑥,𝑡) with 𝑔 > 0 (6.18)

This equation is also known as nonlinear Schrödinger equation (NLSE). The de-
nomination is due to obvious reasons: Equation (6.18) has exactly the form of the
classical Schrödinger equation, where the ’potential‘ term is proportional to the
squared of the wave function. The NLSE has a wide field of applications outside
quantum optics. For example, it is used to model the evolution of the envelope
of modulated water waves [Zak68]. It is exactly solvable by the use of the inverse
scattering transform [Sha72]. Due to the fact that this analytical method is restricted
to a very special class of equations, we like to follow another route to solve the NLSE.
This method can be understood as instance of a phase space method.

To this end, we rewrite the complex NLSE in terms of the modulus and phase of
the complex wave function

𝜑(𝑥,𝑡) = 𝑅(𝑥,𝑡)𝑒𝑖𝜃(𝑥,𝑡), (6.19)

which are real functions. Substituting this into (6.18) and separating the real and
imaginary part yields the coupled equations

−𝑅𝜕𝜃
𝜕𝑡

+ 1
2𝑚

𝜕2𝑅

𝜕𝑥2 − 1
2𝑚𝑅

(︂
𝜕𝜃

𝜕𝑥

)︂2

+ 𝑔𝑅3 = 0

𝜕𝑅

𝜕𝑡
+ 1
𝑚

𝜕𝜃

𝜕𝑥

𝜕𝑅

𝜕𝑥
+ 1

2𝑚
𝜕2𝜃

𝜕𝑥2𝑅 = 0
(6.20)

The next important step to reduce the complexity of the problem is to assume that
phase and modulus are translationally invariant functions with respect to position
and a scaled time. We introduce the variable 𝑧𝑖 = (𝑥− 𝑢𝑖𝑡) and write

𝑅(𝑥,𝑡) = 𝑅(𝑥− 𝑢𝑅𝑡) = 𝑅(𝑧𝑅)
𝜃(𝑥,𝑡) = 𝜃(𝑥− 𝑢𝜃𝑡) = 𝜃(𝑧𝜃),

(6.21)

where we emphasize that 𝑢𝑅 ̸= 𝑢𝜃. This assumption turns (6.20) into a coupled ODE



6.1 Gross-Pitaevskii equation 94

system

𝑢𝜃𝑅𝜃
′ + 1

2𝑚𝑅′′ − 1
2𝑚 (𝜃′)2

𝑅 + 𝑔𝑅3 = 0 (6.22)

−𝑢𝑅𝑅′ + 1
𝑚
𝜃′𝑅′ + 1

2𝑚𝑅𝜃′′ = 0, (6.23)

where the dash denotes the derivative with respect to the inner variable. Multiply-
ing (6.23) with 𝑅 and subsequent integration results in

−𝑢𝑅
2 𝑅2 + 1

2𝑚𝑅2𝜃′ = 𝐶, (6.24)

where 𝐶 is an integration constant. Up to now we have not specified what kind of
solutions we are looking for. We now make the further assumption that our solution
should be spatially localized, that is

lim
|𝑥|→∞

𝜑(𝑥,𝑡) = lim
|𝑥|→∞

𝜕𝜑(𝑥,𝑡)
𝜕𝑥

= 0. (6.25)

This restriction requires that 𝐶 is zero. Therefore we can easily determine the phase
function from (6.24) to be

𝜃′ = 𝑢𝑅𝑚 (6.26)

Excluding constant solutions for 𝜃 and subsequent integration of this equation yields
the expression

𝜃(𝑥,𝑡) = 𝑢𝑅𝑚(𝑥− 𝑢𝜃𝑡) + 𝐶 ′, (6.27)

where we can set 𝐶 ′ = 0 due to the boundary conditions. Putting this solution
into (6.22) yields

𝑢𝜃𝑢𝑅𝑚𝑅 + 1
2𝑚𝑅′′ − 𝑚

2 𝑢
2
𝑅𝑅 + 𝑔𝑅3 = 0. (6.28)

This is a second-order differential equation for the modulus of the wave function.
The idea of the phase space method is to rewrite (6.28) as a first-order ODE system
via the introduction of the variables 𝑥1 = 𝑅 and 𝑥2 = 𝑅′

𝑥′
1 = 𝑥2

𝑥′
2 = −2𝑚𝑔𝑥3

1 +𝑚2 (︀𝑢2
𝑅 − 2𝑢𝜃𝑢𝑅

)︀
𝑥1 = −2𝑚𝑔𝑥3

1 +𝑚2𝛥𝑢𝑥1,
(6.29)

where we defined 𝛥𝑢 = 𝑢2
𝑅 − 2𝑢𝜃𝑢𝑅. Solutions to this system can now be visualized
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as trajectories in the phase space. Assuming the function to become stationary
for |𝑥| → ∞, the fixed points in the phase space plot indicate the possible values
the function can take for |𝑥| → ∞. Since we were interested in spatially localized
solutions, we need to find a closed trajectory that starts at the origin. Figure 6.1
shows two examples of the phase space for different values of 𝛥𝑢 with distinct sign.
We see that in the case 𝛥𝑢 > 0 we find a closed curve starting at the origin. Indeed,
this trajectory is a separatrix, that is, a curve which separates two different regimes
of motion in phase space. This solutions corresponds to a soliton. Due to the simple
form of the NLSE, we can give the exact form of the solution as

𝑅(𝑧) =
√︂
𝑚𝑔

𝛥𝑢

sech
(︁√︀

𝑚2𝛥𝑢𝑧
)︁
. (6.30)

This can be obtained via directly solving (6.28) by the ansatz 𝑅(𝑧) = 𝐴 sech(𝐵𝑧).
The overall wave function is then given by

𝜑(𝑥,𝑡) =
√︂

𝑚𝑔

𝑢2
𝑅 − 2𝑢𝜃𝑢𝑅

sech
(︂√︁

𝑚2 (𝑢2
𝑅 − 2𝑢𝜃𝑢𝑅) (𝑥− 𝑢𝑅𝑡)

)︂
𝑒𝑖𝑢𝑅𝑚(𝑥−𝑢𝜃𝑡) (6.31)

These sech-shaped solutions are referred to as bright solitons. However, we see
from (6.30) that the solution is spatially localized if and only if 𝛥𝑢 > 0. To see what
happens if 𝛥𝑢 becomes smaller that zero, we consider again figure 6.1. We find that
in this case the trajectory starting from the origin diverges to infinity, making it
impossible to find spatially localized soliton solutions. Finally, we remark that if
we choose the velocities 𝑢𝑅 and 𝑎𝜃 to be equal, this results in 𝛥𝑢 < 0 and therefore
corresponds to the case where no soliton solution exists. This a posteriori justifies
ansatz (6.21).

Let us now proceed by looking for solutions with a constant but nonvanishing
modulus at large distances. As we have seen in the previous calculations, such
solutions to the NLSE do not exist in case of attractive interaction. Let us therefore
revise the NLSE and assume repulsive interaction

𝑖
𝜕

𝜕𝑡
𝜑(𝑥,𝑡) =

(︂
− 1

2𝑚
𝜕2

𝜕𝑥2 + 𝑔|𝜑(𝑥,𝑡)|2
)︂
𝜑(𝑥,𝑡) with 𝑔 > 0. (6.32)

Similar to the case of the attractive NLSE, we split the wave function into amplitude
and phase

𝜑(𝑥,𝑡) = 𝑅(𝑥,𝑡)𝑒𝑖𝜃(𝑥,𝑡). (6.33)

This time we have to choose a slightly modified ansatz for modulus and phase due
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Figure 6.1: Two phase space plots of (6.29) for 𝛥𝑢 = 1 in (a) and 𝛥𝑢 = −1 in (b).
The other parameters are equal and set to (𝑚 = 1, 𝑔 = 1

2). In the first case, the phase
space is divided by a separatrix which starts and ends at the origin. This corresponds
to a soliton. However, the topology of the phase space plot entirely changes for the
second case. The divergence of the trajectories makes it impossible to find a spatially
restricted solution.

to the nonvanishing amplitude at large distances,

lim
|𝑥|→∞

𝑅(𝑥,𝑡) = 𝑅0 and lim
|𝑥|→∞

𝜃(𝑥,𝑡) = 0. (6.34)

Using the previous approach of the attractive NLSE only admits the trivial solution
𝜓(𝑥,𝑡) = 0. We therefore extend (6.21) to

𝑅(𝑥,𝑡) = 𝑅(𝑥− 𝑢𝑅𝑡)
𝜃(𝑥,𝑡) = 𝛼(𝑥− 𝑢𝜃𝑡) + 𝛽𝑡.

(6.35)

With this ansatz, the wave function becomes

𝜑(𝑥,𝑡) = 𝑅0𝑒
𝑖𝛽𝑡 (6.36)

at the boundaries. Substituting (6.36) into the asymptotic form of (6.32) fixes the
phase factor to

𝛽 = −𝑔𝑅2
0 (6.37)
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for nontrivial solutions. Therefore the phase factor vanishes if we demand 𝑅0 = 0
when |𝑥| goes to infinity, which is consistent with ansatz (6.21). Substituting (6.35)
into (6.32) and separating real and imaginary parts leads to the coupled ODE system

𝑅𝑢𝜃𝛼
′ + 𝑔𝑅2

0𝑅 + 1
2𝑚𝑅′′ − 1

2𝑚𝑅 (𝛼′)2 −𝑅3 = 0 (6.38)

−𝑢𝑅𝑅′ + 1
𝑚
𝑅′𝛼′ + 1

2𝑚𝛼′′𝑅 = 0. (6.39)

Multiplication of (6.39) with 2𝑅 and subsequent integration yields

−𝑢𝑅𝑅2 + 1
𝑚
𝑅2𝛼′ = 𝐶. (6.40)

This can be solved for 𝛼′, yielding

𝛼′ = 𝐶𝑚

𝑅2 + 𝑢𝑅𝑚, (6.41)

where 𝐶 is a constant. Subsituting this into (6.38) and introducing phase space
coordinates 𝑥1 = 𝑅 and 𝑥2 = 𝑅′ yields the first-oder system

𝑥′
1 =𝑥2

1
2𝑚𝑥′

2 = −
(︁
𝑢𝜃𝑚𝑢𝑅 + 𝑔𝑅2

0 − 𝑚

2 𝑢
2
𝑅

)︁
𝑥1 − ((𝑢𝜃 − 𝑢𝑟)𝑚𝐶) 1

𝑥1

+ 𝑚

2 𝐶
2 1
𝑥3

1
+ 𝑥3

1.

𝑐 (6.42)

This system has various parameters involved. However, contrary to the case of the
attracting NLSE, we can choose 𝑣 = 𝑢𝜃 = 𝑢𝑅 simplifying (6.42) to

𝑥′
1 =𝑥2

1
2𝑚𝑥′

2 = −
(︂
𝑚𝑣2

2 + 𝑔𝑅2
0

)︂
𝑥1 + 𝑚

2 𝐶
2 1
𝑥3

1
+ 𝑥3

1.
(6.43)

The phase space plot is shown in Fig. 6.2. We see that the shape of soliton solutions
depends sensitively on the choice of the integration constant 𝐶. The trajectory of
the solitions for 𝐶 = 0 crosses the 𝑥2-axis, which means that at some point the
amplitude vanishes. However, for boundary conditions with 𝐶 ≠ 0 we find the
class of grey solitons, as the modulus decreases but never vanishes. For the sake
of completeness, we mention that system (6.43) can be solved analytically for a
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Figure 6.2: Two phase space plots of (6.43) for 𝐶 = 0 in (a) and 𝐶 = 1
2 in (b). The

other parameters are equal and set to (𝑅0 =
√

2, 𝑚 = 2, 𝑔 = 1, 𝑣 = 1). The left plot
shows the phase trajectory of a dark soliton with different starting and end point and
therefore vanishing amplitude at some position. The right soliton, however, starts at
the unstable fix point with negative 𝑥1 value and returns to the start without crossing
the line 𝑥1 = 0. Due to the remaining amplitude at the turning point, these solutions
are referred to as grey solitons.

vanishing velocity [Dau06]

𝜑(𝑥,𝑡) = 𝑅0tanh
(︁
𝑅0

√
2𝑥
)︁
𝑒−2𝑖𝑅0𝑡. (6.44)

To summarise, we have introduced phase space methods to identify soliton solutions
to the attractive and repulsive GPE. Although the GPE is analytical solvable, we
hope that the phase space method carries over to more complex systems arising from
interacting quantum fields in ultracold chemical reactions.

6.2 Solitons in diatomic molecule formation
The possibility of soliton-like solutions to the chemical reaction of diatomic molecule
formation was first considered in [Dru98]. Using a gaussian variational ansatz in
three dimensions, the authors find a stable solution the coupled GPEs. In what
follows, we consider soliton-like solutions for the diatomic molecule formation in
one-dimension, using phase space methods. We a couple of bright solitons and argue
that it is unstable against small perturbations.
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Solitons are inherently phenomena of non-linear equations. Therefore, we begin
to consider the lowest-order reaction with non-linear interaction term, that is the
diatomic molecule formation

𝐴+ 𝐴
𝑘

�𝑀 (6.45)

According to our proposal the describing Hamiltonian can be written as sum of an
interacting part,

�̂�int = 𝑘

ˆ
d𝑥
(︁
𝜓𝐴(𝑥)𝜓𝐴(𝑥)𝜓�

𝑀(𝑥) + 𝜓�
𝐴(𝑥)𝜓�

𝐴(𝑥)𝜓𝑀(𝑥)
)︁
, (6.46)

and a non-interacting part,

�̂�0 =
ˆ

d𝑥𝜓𝐴(𝑥) −1
2𝑚𝐴

𝜕2

𝜕𝑥2𝜓
�
𝐴(𝑥) + 𝜓𝑀(𝑥) −1

4𝑚𝐴

𝜕2

𝜕𝑥2𝜓
�
𝑀(𝑥). (6.47)

Here we assumed that the mass of the diatomic molecule is twice the mass of the
atom. For the sake of simplicity, we neglected the potential term in (6.47). In what
follows, we consider the mean-field approximation of �̂� = �̂�0 + �̂�int, by replacing
the operators with a classical field. The corresponding Euler-Lagrange equations
result in the coupled partial differential equations

𝑖
𝜕𝜓𝐴
𝜕𝑡

= −1
2𝑚𝐴

𝜕2𝜓𝐴
𝜕𝑥2 + 2𝑘𝜓𝐴𝜓𝑀

𝑖
𝜕𝜓𝑀
𝜕𝑡

= −1
4𝑚𝐴

𝜕2𝜓𝑀
𝜕𝑥2 + 𝑘𝜓2

𝐴,

(6.48)

where we omitted the time and position dependence for a clearer notation. Further-
more, we introduce the dimensionless variable

𝜉 = 𝑥
√

2𝑚𝐴. (6.49)

In terms of this variable we can rewrite (6.48) as

𝑖
𝜕𝜓𝐴
𝜕𝑡

= −𝜕2𝜓𝐴
𝜕𝜉2 + 2𝑘𝜓𝐴𝜓𝑀

𝑖
𝜕𝜓𝑀
𝜕𝑡

= −1
2
𝜕2𝜓𝑀
𝜕𝜉2 + 𝑘𝜓2

𝐴.

(6.50)

Note, that (6.50) is not a system of coupled NLSE, due to the absence of the self-
interaction term. Nevertheless, due to the nonlinear coupling we are hopeful to
find soliton solutions. Taking guidance from the treatment of the GPE, we look for
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solutions of the form

𝜓𝐴(𝑥,𝑡) = 𝑓(𝜉 − 𝜔𝑀 𝑡)𝑒𝑖(𝜉−𝜔𝑃 𝑡)

𝜓𝑀(𝑥,𝑡) = 𝑔(𝜉 − 𝜔𝑀 𝑡)𝑒2𝑖(𝜉−𝜔𝑃 𝑡).
(6.51)

This particularly assumes that the phase of the molecular field rotates with twice the
frequency of the atomic field. This idea is inspired by the quantum optic analogue
of the diatomic molecule formation, namely the second harmonic generation. The
molecular field corresponds to a laser field of double frequency. Substituting (6.51)
into (6.50) yields the equations for modulus and amplitude of both fields

−𝑖𝜔𝑀𝑓 ′ + 𝜔𝑃𝑓 = −
[︁
𝑓

′′ + 2𝑖𝑓 ′ − 𝑓
]︁

+ 2𝑘𝑓𝑔

−𝑖𝜔𝑀𝑔′ + 2𝜔𝑃𝑔 = −1
2

[︁
𝑔

′′ + 4𝑖𝑔′ − 4𝑔
]︁

+ 𝑘𝑓 2
(6.52)

Fixing 𝜔𝑀 = 2 removes the terms proportional to 𝑖 from (6.52). Therefore we can
assume the amplitudes 𝑓 and 𝑔 to be real. Setting 𝜔𝑃 = 0 and 𝑘 = −1 results in the
the following ODE-system:

𝑓
′′ = 𝑓 − 2𝑓𝑔 (6.53)
𝑔

′′

2 = 2𝑔 − 𝑓 2. (6.54)

This coupled system of two second-order equations can be transformed to a four-
dimensional state space, where we could apply phase space methods to look for
soliton-like solutions. However, we follow a slightly different way. After rescaling the
inner variable of 𝑔, we see that this coupled system can be understood as a particle
moving in the two-dimensional potential

𝑉 (𝑓,𝑔) = −𝑓 2

2 − 𝑔2 + 𝑓 2𝑔. (6.55)

This potential is depicted in Fig. 6.3. Due to the fact that a soliton becomes a
stationary solution at the boundaries, we look for trajectories where the particle
is initially and at the end of the motion at rest. Therefore, soliton-like solutions
correspond in this picture to a bounded motion of the particle between extremal
points. We see that this potential allows for solitary solutions: Starting with zero
initial energy at the origin, the particle moves along the gradient of the potential.
After passing a minimum, the particle reaches a turning point and rolls back to the
origin. The corresponding solution is a pair of bright solitons. We can also see by the
potential that the bright soliton solution is highly unstable. A small perturbation
will cause the particle to drift away from the trajectory. The exact shape of the
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Figure 6.3: Landscape of the potential (6.55). Bright soliton solutions correspond
to the particle moving between both points indicated by the spheres. Starting at the
origin with zero potential energy the particle follows the gradient, passes a minimum
and comes back to the starting point. Note, that the potential is indeed negative for
all the range of the trajectory. Note that the soliton solution is highly unstable. A
little perturbation will bring the particle away from the trajectory.

soliton couple can numerically be obtained and is depicted in Fig. 6.4. Since the
potential is a smooth function of 𝑓 and 𝑔 a small change in the coupling strength will
just shift the extrema of the potential a little and hence also have soliton solutions.
This means that the diatomic molecule with the coupling strength as parameter has
a whole class of bright soliton solutions. This class of solutions was found in the
context of second harmonic generation in [Bur95]. However, the parameters in the
system of second harmonic generation have a different physical meaning. Let us
close the discussion with the remark that further research at this point is needed.
An interesting question arises when we ask, how the diatomic molecule formation
can be embedded into an ultracold reaction network, such that the bright solitons
become a stable solution to the system. If we couple a certain class of reactions to
the molecule formation, the equations resulting from the ansatz (6.51) can still be
interpreted as the motion of a particle in a potential. For example, the reaction

𝐴
𝑘1
� bath (6.56)
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Figure 6.4: The exact shape of the bright soliton solution of the potential landscape
depicted in Fig. 6.3. According to the starting and end point of the motion the function
𝑓 and 𝑔 vanish at the boundaries.

adds the linear term in 𝑘1𝑓 in (6.55). ‘Stabilizing’ the soliton solution would
correspond in this picture to constructing a potential shape that has different
stability properties at its extrema.



CHAPTER 7
Conclusion and outlook

This thesis presented a framework for the description of the kinetics of ultracold
chemical reactions. Inspired by the success in describing non-linear phenomena in
ultracold gases, we formulate the framework in the language of second quantisation
The resulting dynamical equations are described by quantum field theories, which
implies a classification of ultracold reactions into two groups. The first consists of
reactions in which the interaction of the quantum fields is linear. These reactions
allow for an analytical and compact form of solutions. The second class of reactions
is described by non-linear interacting quantum fields such that the ensuing dynamics
can only be obtained approximately. Using variational and perturbational methods,
we systematically investigated the dynamics of ultracold chemical reactions and
obtained the following results:

In chapter 4 we proved that within our framework, elementary bosonic reactions
have a non-trivial constant of motion. This quantity can be thought of as quantum
analogue of the classical principle of the conservation of mass. Moreover, we carried
out a systematic analysis of bosonic low-order reactions. By employing standard
techniques of quantum optics we obtained analytical expressions for the time-evolution
of the particle number of each participating species. Comparing the results to
the dynamics of classical low-order reactions allowed us to identify fundamental
differences between these two frameworks. Whereas in classical low-order reactions a
quantitative change in the reaction constant has no qualitative consequences to the
reaction, the coupling strength in second-order ultracold reactions can change the
dynamical regime.

In chapter 5 we studied the simplest non-trivial example of a reaction that amounts
to an interacting field theory: the diatomic molecule formation. After discussing
the validity of the two-mode model of this reaction, we found that the mean-field
approximation predicts a complete depletion of the atomic mode. However, by
numerical investigation of the full quantum dynamics, we found that entanglement
between the molecular and atomic mode plays a major role in the formation of

103
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ultracold molecules. The large amount of entanglement in the system causes a
breakdown of the mean-field prediction and a relaxation of the atoms and molecules
to a stationary state. The relative fluctuations around the stationary state are
found to become smaller with increasing particle number. Extending the system
by a coupling of the atoms to a particle reservoir changed the mean-field dynamics
drastically. If the coupling strength increases beyond a certain threshold, the system
evolves chaotically in phase space.

In chapter 6 we investigated soliton-like solutions to the mean-field approximation
of diatomic molecule formation. By adapting an ansatz from second harmonic
generation, we were able to describe solutions of the coupled mean-field equations as
motion of a particle in a two dimensional potential. Using this method provided us
with a way to characterise the stability of the emerging solitons.

We conclude with a list of possible next steps for future research:

• Altough we compared the dynamics of high-temperature kinetics to our pro-
posed framework, it is not clear how exactly classical kinetics appears as
classical limit of our theory. A first step towards the dissipative dynamics
of classical kinetics could be the incorporation of particle loss into our frame
work. This could be modelled, for example, by giving up condition (3.75) on
the reaction constants. This would result in a non-hermitian Hamiltonian
similar to the introduction of a complex valued potential in standard quantum
mechanics. Subsequent application of the mean-field approximation may result
in equations of motion that are similar to classical kinetics.

• Within this thesis we focused on the dynamics of chemical reactions of bosonic
species. However, we expect fundamentally different behaviour for fermionic
or mixed systems, which play an important role in the context of experimen-
tal implementations. Since these reactions can already be described by our
framework, the extension of the analysis should be straightforward.

• The important role of entanglement in the dynamical evolution of two-mode
model of molecule formation shows that entanglement may also play a major
role in the formation of solitons. Therefore, employing matrix-product states as
variational manifold for the interacting field Hamiltonian should provide new
insights. A numerical simulator which uses matrix-product states as variational
class and which is able to capture a spatially discretised model of diatomic
molecule formation can be found in [Mil13].

• The coupling of the atomic species within the diatomic molecule formation
to a larger particle reservoir discussed in 5.3 has, to the best of the authors
knowledge, never been experimentally realised. An actual experimental proposal
to measure the predicted modulations od the particle number or even the chaotic
regime would be the next natural step.
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