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Abstract  

Grain legumes or pulses are cultivated throughout the word and play crucial roles in 

nurturing millions. Moreover, grain legumes can fix nitrogen in symbiosis with Rhizobia 

and thus contribute to maintaining soil fertility in agricultural production systems. However, 

production and storage of pulses is negatively affected by many factors including insect 

pests. Grain legumes are attacked by diverse groups of insect pests both in field and during 

storage after harvesting. Resistance breeding is one of the strategies to reduce yield losses 

due to insect pests. In grain legumes, however, the lack of resistance genes has limited the 

successful application of conventional breeding. Transgenic approaches can therefore 

provide the best alternative in grain legume resistance breeding.  

Hence, this study was done with the main goal of improving insect resistance in grain 

legumes via Agrobacterium-mediated transformation. The study was conducted on two 

important grain legume species (Pisum sativum L. and Vigna unguiculata L.) with their 

respective specific research activities and objectives.   

In the first part of this study, transgenic pea lines expressing the cry1Ac gene from Bacillus 

thuringiensis were grown under growth chamber and greenhouse conditions and used for 

molecular and functional characterizations. The result demonstrated the stable integration, 

inheritance and expression of the cry1Ac transgene. The inheritance of the transgene was 

confirmed in advanced generations (T4-T7) of different transgenic lines. Quantitative real-

time PCR analysis showed variation in the expression folds (up to 4.72) of cry1Ac gene 

among the different transgenic lines. In the insect bioassay studies, high levels of larval 

mortality (up to 100 %) and substantially reduced feeding damage were recorded on the 

transgenic plants from different transgenic lines. The transgenic lines could play a vital role 

in pea production and improvement programs. However, further studies are required to 

evaluate the performance of the transgenic lines under field conditions and select the 

promising ones for future use.   

In the second part of this study, regeneration and transformation of cowpea has been 

pursued. Since there is no routinely and universally applicable protocol for regeneration and 

Agrobacterium-mediated transformation of cowpea, different in vitro conditions were 

optimized using the Kenyan cowpea variety K80. MSB5 medium supplemented with 3 µM 
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BA and 0.5 µM Kin was optimal for multiple shoot regeneration from CN explants. A better 

transformation efficiency (56 % or more) was obtained with embryo explants and 

inoculation/co-cultivation medium containing 100 µm acetosyringone. The supplementation 

of the inoculation/co-cultivation medium with 1 mM Na-thiosulphate and a high 

concentration of acetosyringone (200 µM) improved the transformation efficiency by nearly 

40 %. PCR analysis of the putative transgenic shoots showed presence of transgene (cry1Ac 

and bar genes) fragments in the genomic DNA of two in vitro shoots indicating the genomic 

integration of the T-DNA region. On the other hand, stable transformation was not achieved 

in the rest of the experiments. Given the recalcitrance of the crop, further exploration of the 

in vitro conditions and alternative protocols are required to develop a robust protocol that 

works across genotypes.  

Key words: Legumes, insect pests, insect resistance, recalcitrance, regeneration, 

transformation, Agrobacterium, Bacillus thuringiensis, transgenic approaches 



iv 

 

Zusammenfassung  

Körnerleguminosen warden welt weit angebaut und konsumiert. Darüberhinaus lesiten 

Lguminosen durch ihre Fähigkeit zur symbiontischen N2-Fixierung einen enormen Beitrag 

zur Verbesserung und Erhaltung der Bodenfruchtbarkeit. Allerdings sind Anbau und 

Lagerung von Körnerleguminosen durch eine Reihe gefährdet, darunter auch Insektenfraß 

durch eine Reihe unterschiedlicher Insektengattungen. Da in den Genpools der moisten 

Leguminosenarten Resistenzgene gegen Insekten fehlen, stößt die klassische 

Resistenzzüchtung auf unüberwindliche Hindernisse, so daß gentechnische Methoden 

eingesetzt warden müssen. 

In der vorleigenden Arbeit wird versucht, mittels Agrobacterien-vermittelte Transformation 

bei zwei wichtigen Leguminosenarten (Pisum sativum L. und Vigna unguiculata L.) die 

Resistenz gegen Insekten zu verbessern. 

Im ersten Teil der Arbeit werden Erstellung und molekulare sowie funktionale Analyse 

transgener Erbsen vorgestellt, die ein cry1Ac Gen aus Bacillus thuringiensis  exprimieren. 

Es kann gezeigt warden, daß die Transgene stabil integriert im Genom vorliegen und auch 

stabil vererbt (bis zur T7) und exprimiert warden. Mittels qPCR kann auch demonstriert 

warden, dss die unterschieldichen events, die den Linien zu Grunde liegen, zu 

unterschiedlichen Expressionsniveaus führen (bis zum 4,72-fachen). In Fütterungsstudien 

wurden hohe Mortalitätsraten von Insektenlarven sowie reduzierte Level an Fraßschäden 

gefunden. Inwieweit diese aus Pflanzen, die in Gewächshäusern herangezogen wurden, 

gewonnenen Daten sich übertragen lassen, muss in Freilandversuchen untersucht warden. 

Im zweiten Teil der Arbeit sollte untersucht warden, ob sich die Erfahrungen mit der Erbse 

auf die in Afrika sehr wichtige “cowpea” übertragen lassen. Da diese Species sehr schwierig 

für in vitro-Arbeiten ist, mussten zunächste die Bedingungen für die Regeneration und die 

Transformation etabliert werden. Als Modell stand die kenianische Sorte K80 zur 

Verfügung. Es konnten optimierte Kultur- sowie Transformationsbedingungen etabliert 

warden. So erwiesen sich die Zugaben von Na-thiosulphate und hohen Konzentrationen an 

Acetysyringon als förderlich. Es konnten im Verlauf des Projekts transgene Sprosse erzeugt 

und analysiert werden, erste Daten deuten auch auf eine stabile Integration der Transgene 

hin. 
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1. General introduction  

1.1 General information on grain legumes 

Grain legumes or pulses are dicotyledonous plants and belong to the Fabaceae/leguminosae 

family (Rubatzky and Yamaguchi, 1997). With about 450 genera and over 12 thousand 

known species (Rubatzky and Yamaguchi, 1997), legumes are the third largest family of 

higher plants (Gepts et al., 2005). The family includes many economically important food 

crop species such as peas, cowpea, common bean, soybean and peanut (Rubatzky and 

Yamaguchi, 1997; Gepts et al., 2005).   

Legumes have a number of interesting features: they are annual or  perennial plants with 

alternate leaves (pinnate, trifoliate, or digitate) and perfect flower structure (Rubatzky and 

Yamaguchi, 1997). They exhibit both hypogeal and epigeal germination. In some legumes 

such as pea, there is a limited elongation of the hypocotyl resulting in hypogeal germination 

while in other legumes like cowpea and common bean, the elongation of the hypocotyl  

pushes the cotyledons up to the surface of the soil resulting in epigeal germination 

(Rubatzky and Yamaguchi, 1997). Another important feature of legumes is their ability to 

undergo symbiotic relationship with soil bacteria to fix atmospheric nitrogen (Ferguson et 

al., 2010).  

1.2 Importance of grain legumes 

In terms of agricultural importance, cereals are only the crops that outweigh legumes 

(Graham and Vance, 2003; Jaiwal and Singh, 2003; Gepts et al., 2005). Cultivated 

throughout the world, legumes are a multiple purpose socio-economically important crops. 

They are used as food, feed, oil, forage, fuel, wood, fiber, ornamentals, green manure and 

ground cover (Rubatzky and Yamaguchi, 1997; Jaiwal and Singh, 2003; Somers et al., 

2003; Varshney et al., 2009). As food crops, they are an important source of good dietary 

proteins, processable oil and other nutrients (Gepts et al., 2005) for millions of people in 

many parts of the world. The protein content of grain legumes ranges from 18 to 48 % 
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(Ranalli, 2003) making them the cheapest sources of daily protein intake in many 

developing countries. They are also a crucial component of livestock feed as a protein 

source in both tropical and temperate farming communities of the world (Young et al., 

2003).  

By symbiotically interacting with soil bacteria (Rhizobia spp.), legumes are also involved in 

biological atmospheric nitrogen fixation and convert it into a biologically useful form 

(Ferguson et al., 2010). The fixed nitrogen can be used by the plant itself and/or enrich the 

soil fertility for the next cropping season. Moreover, legumes can be used as a cover crop to 

reduce soil erosion, control weeds and conserve soil moisture (Giller, 2001). By the virtue 

of these characteristics, the production of legumes plays a key role in the sustainability of 

agricultural production system (Jaiwal and Singh, 2003; Dita et al., 2006).   

Being one of the best studied plant families (Young et al., 2003), legumes have been the 

subject of various genetic, biochemical and physiological studies for many decades (Bean et 

al., 1997; Young and Bharti, 2012). Mendel has used pea in his studies and developed the 

principle of inheritance. Legumes like Medicago truncatula or Lotus corniculatus  are 

considered as a model plants to study the interaction of plants to its environment ranging 

from biotic to abiotic factors (Gepts et al., 2005; Li et al., 2012).   

1.3 Insect pests of grain legumes and their economic importance 

Despite their socio-economic and environmental importance, improvement in the yield of 

legumes has been lagging behind particularly compared to cereals (Graham and Vance, 

2003). The yield and productivity of legumes is severely affected by many factors. Biotic 

factors include fungi, bacteria, viruses, weeds, insects and nematodes while abiotic factors 

include drought, freezing, salinity, heat, water logging and mineral toxicities (Nene and 

Reed, 1994; Graham and Vance, 2003; Dita et al., 2006).  

Of the biotic factors, grain legumes are attacked by diverse groups of insect pests (Sharma et 

al., 2010). Like in other crops, insect pests cause both direct and indirect damage to grain 

legumes (Dita et al., 2006). Direct damage is caused by feeding on the pod and seeds, 

defoliating the plants and sucking the sap of the plants (Edwards and Singh, 2006; de 

Filippis, 2012) which eventually result in yield losses in terms of quantity and quality. Insect 
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pests also act as vectors for viral infections inflicting indirect damage to crop plants 

(Christou and Twyman, 2004).   

Insect pests in general cause yield losses both in the field as well as during storage after 

harvesting (Christou and Twyman, 2004). Despite heavy use of chemical insecticides, about 

37 % of world crop production is lost to diseases and pests, with at least 13 % lost directly 

to insect pests (Gatehouse et al., 1993). In grain legumes, up to 100 % yield losses can be 

caused by insect pests both in the field and/or during storage depending on the legume 

species, the insect pest type and the location (Clement et al., 2000; Sharma et al., 2010).  

In the field, legumes are damaged by insect species of the orders Lepidoptera, Diptera, 

Homoptera, Heteroptera and Coleoptera (Clement et al., 2000; Sharma, 2008; Sharma et al., 

2010). Some of the economically important pests include pod borers, leaf miners, weevils, 

aphids, whitefly, leafhoppers and thrips (Saini and Sharma, 2013).  

During storage, legumes are attacked by seed beetles (Coleoptera: Bruchidae) (Credland, 

1994). In the family Bruchidae, about 20 species are known to be storage pests of legumes 

(Credland, 1994). Some of the economically important species include Callosobruchus 

maculatus, C. chinensis, C. analis, C. rhodesianus, C. subinnotatus, Acanthoscelides 

obtectus, Zabrotes subfasciatus, Bruchus pisorum, B. rufumanus and Bruchidius 

atrolineatus (Pajni and Gill, 1991; Credland, 1994). 

1.4 Resistance breeding in grain legumes 

The desirable way to combat production constraints is to use integrated approaches (Nene 

and Reed, 1994) that combines two or more compatible control measures. This can include 

host plant resistance, cultural practices, chemicals and natural enemies (de Filippis, 2012). 

The use of resistant varieties is an important aspect of integrated approaches. Hence, the 

development and availability of resistant varieties plays a very crucial role for substantial 

reduction of yield losses.  
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1.4.1 Insect resistance breeding in grain legumes 

The majority of grain legume species are self pollinated with a low degree of out crossing 

(Rubatzky and Yamaguchi, 1997; Gepts et al., 2005). Theoretically, breeding strategies 

(such as backcrossing, pedigree selection, bulk selection, pure line selection and hybrid line 

development) for self pollinated crops can be used to develop improved varieties (Ambrose, 

2008; Koutsika-Sotiriou and Traka-Mavrona, 2008; Keneni et al., 2011). In some legume 

crops such as cowpea, conventional breeding achieved progress with respect to resistance 

against bacteria, fungal and viral diseases, parasitic weeds and root-knot nematodes as well 

as  for drought and heat tolerance (Timko et al., 2007; Timko and Singh, 2008; Lucas et al., 

2013). In pea, resistance to powdery mildew has been achieved using conventional breeding 

as well (Fondevilla and Rubiales, 2012). 

Development of resistant varieties can however only be achieved by conventional breeding 

approaches when the trait is available in the gene pool of the species or compatible wild 

relatives. Unfortunately, for most of the economically important insect pests, resistance 

traits are lacking in the gene pool of the legume species (Clement et al., 2002; Chaudhury et 

al., 2007; Keneni et al., 2011). Attempts to transfer from wild relatives (if any) were 

hampered by crossing incompatibility or co-transfer of unwanted traits (Machuka, 2002; 

Singh et al., 2002; Popelka et al., 2004; Chaudhury et al., 2007; Keneni et al., 2011).  

As state of the art nowadays genetic engineering systems can be applied when resistance 

traits in the species’ gene pool is limited. There are a number of cases where genes for agro-

economically important traits (such as insect, diseases and herbicide resistances) where 

obtained from other sources and transferred to crop plants via transgenic approaches (Korth, 

2008). The same approaches can be applied in legume improvement efforts in order to 

introduced resistance traits against the economically important insect pests. 

1.4.2 Transgenic insect resistance  

Using genetic engineering techniques, transgenes for traits of interest can be identified, 

isolated and introduced to the plant genome (Schroeder et al., 2000). For transgenic insect 

resistance development in crop plants, transgenes have been identified and isolated from 
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diverse sources ranging from prokaryote species (like bacteria) to eukaryote species (such as 

fungi and plants) (Christou and Twyman, 2004; Korth, 2008). The protein products from the 

expressed transgenes have a negative lethal effect on the target insect pests (Korth, 2008), 

while not harming humans or animals. Candidate transgenes encoding for such proteins 

such as lectins, protease inhibitors, Chitinase and delta-endotoxins (Jouanin et al., 1998; 

Korth, 2008) have been identified. Of the different potential transgenes, cry genes from the 

soil bacterium Bacillus thuringiensis encoding for endotoxins are the most commonly used 

transgenes conferring insect resistance (Korth, 2008). Some of the B.t cry genes expressed 

in transgenic plants include cry1Ac gene in maize, soybean, chickpea and rice; cry1Ab gene 

in maize, chickpea, tomato and  rice; and cry3a gene in potato (Perlak et al., 1990; Stewart 

Jr et al., 1996; Carozzi and Koziel, 1997; Cheng et al., 1998; Mandaokar et al., 2000). 

Today, insect resistant transgenic crops are the second most popular commercialized traits 

next to transgenic herbicide resistance (James, 2013).  

In insect pest management, control measures are used to disrupt the life cycle of the insect 

pests. The Cry proteins are targeted to the larval stage of the insect (Bravo et al., 2011). Fig. 

1 shows the three dimensional structure of activated endotoxins and the roles played by the 

different domains on the mode of endotoxins action. To be effective, the delta-endotoxins 

have to be ingested by the larvae of the target insect. When the larvae feed on the transgenic 

B.t plant, the ingested Cry proteins are activated in the midgut of the larvae and bind to the 

receptors on the epithelial cell membrane (domain II and III are suggested to be involved in 

the action) leading to the formation of membrane pores with the involvement of domain I. 

The formation of lytic pores causes the uncontrolled release of ions, the collapse of the 

epithelia that stops the larvae from feeding and finally leads to the death of the larvae (de 

Maagd et al., 2001; Bravo et al., 2007).  
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Fig. 1 Three dimensional structure (left) of the activated endotoxins and the mode of action 
(right) of the endotoxins. During the process of action, domains II and III are involved in 
binding to receptors on the epithelial cell membrane while domain I is involved in pore 
formation (de Maagd et al., 2001).  

1.5 Regeneration and genetic transformation in grain legumes 

Plant breeding has benefitted from the advancement in transgenic approaches. New crop 

varieties with novel traits have been developed and their production has been realized in 

many countries throughout the world (James, 2013). These crops include maize, cotton, 

soybean and canola with novel herbicide tolerance and/or insecticide resistance traits. 

Despite their socio-economic importance, grain legumes have not yet found the same 

attention regarding genetic engineering (Popelka et al., 2004; Eapen, 2008). Today, in spite 

of some reports, there is no commercial production of a single transgenic event in grain 

legumes. 

The success of biotechnological approaches depends on many factors ranging from the plant 

species itself to the availability of protocols allowing regeneration, transformation and 

appropriate selection systems (Atkins and Mc Smith, 1997). Like in other crops, efficient 

regeneration and transformation protocol is a must to apply genetic engineering in grain 

legumes (Atkins and Mc Smith, 1997). In few grain legumes like pea, there is a well 

established protocol for regeneration and transformation (Schroeder et al., 1993). However, 

in some orphan legumes like cowpea, there is no routinely applicable protocol (Brar et al., 

Domain I 

Domain III 

Domain II 

(de Maagd et al., 2001) 
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1997b; Chandra and Pental, 2003; Popelka et al., 2006). Legumes belong generally to the 

group of recalcitrant plants for in vitro manipulations (Atkins and Mc Smith, 1997; Brar et 

al., 1997b; Somers et al., 2003; Chaudhury et al., 2007). In several cases, the existing 

protocols are variety dependent and require the need to optimize in vitro conditions for a 

given variety in hand (Brar et al., 1997b; Somers et al., 2003). In general, in vitro 

manipulation of grain legumes is a challenging activity (Brar et al., 1997b; Schroeder et al., 

2000; Somers et al., 2003; Chaudhury et al., 2007) where further efforts are required in 

order to develop robust and genotype neutral protocols necessary for the application of 

genetic engineering.  

Therefore, this study was conducted with the general aim of improving insect resistance in 

two different grain legumes, pea and cowpea, through transgenic approaches using 

Agrobacterium-mediated transformation. 
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2. General Materials and Methods 

2.1  List of equipment 

The equipment used in this study is listed in Appendix 1 

2.2  List of chemicals 

The list of chemicals is indicated in Appendix 2. 

2.3  List of buffers and solutions 

The buffers and solutions used during the study are listed in Appendix 3.  

2.4  YEP media for overnight culture of Agrobacterium  

10 g/L Tryptone 

5 g/L Yeast Extract 

5 g/L NaCl, pH 7 

2.5  Plant culture media 

Murashige and Skoog basal medium (Murashige and Skoog, 1962) containing B5 vitamins 

(Gamborg et al., 1968) (MSB5), supplemented with 30 g/L sucrose and 1 g/L MES was used. 

The medium was adjusted to a pH 5.8 and 7.5 g/l plant agar was added prior to autoclaving 

for 20 min at 121oC. Heat sensitive components (plant hormones and antibiotics) were filter-

sterilized and added to the medium post autoclaving. 
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2.6  Methods  

2.6.1 Overnight culture of Agrobacterium and preparation of glycerol stocks 

Overnight culture of Agrobacterium and preparation of glycerol stocks was done following a 

standard procedure (Hassan, 2006). A glycerol stock (500 µL) of the Agrobacterium with the 

transformation vector (from -80°C) was cultured overnight in 500 ml YEP medium 

supplemented with 50 mg/L Kanamycin. The culture was maintained on a shaker (170-200 

rpm) at 28°C. The next day, the overnight culture was harvested by centrifugation (4,500 

rpm) at 4°C for 10 min. The harvested culture was resuspended in inoculation medium by 

adjusting the optical density (OD600) to the required level.  

Agrobacterium glycerol stock was prepared by mixing 500 µL of 86 % glycerol and 1000 µL 

of the overnight culture in 2 ml cryogenic vials. The prepared stock was immediately placed 

in liquid nitrogen and transferred to -80°C for storage.  

2.6.2  Plasmid DNA isolation 

Plasmid DNA was isolated from an overnight culture of Agrobacterium using the alkaline 

extraction method (Birnboim and Doly, 1979). Two milliliters of overnight culture of 

Agrobacterium were added into a 2 ml microcentrifuge tube and harvested at 12,000 rpm for 

five min. The supernatant was discarded and the harvesting step was repeated with another 2 

ml aliquot of the culture. The harvested pellet was suspended in 200 µl Sol. A (15 mM Tris-

HCl pH 8.0, 10 mM EDTA, 50 mM Glucose, 2 mg/ml fresh Lysozyme) and incubated for 15 

min at room temperature. Then, 400 µl Sol. B (0.2 M NaOH, 1 % SDS) and 300 µl Sol. C (3 

M NaOAc, pH 4.8) were added and mixed gently, and then incubated for 15 min on ice. After 

10 min centrifugation (12,000 rpm), the supernatant was transferred into a new 

microcentrifuge tube and centrifuged for another 10 min. Then, 800 µl of the supernatant was 

transferred into a new microcentrifuge tube and 600 µl cold isopropanol was added and 

mixed gently till the DNA starts to precipitate. After centrifugation for 10 min, the 

supernatant was discarded and the pellet was dissolved in 200 µl sol. D (0.1 M NaOAc pH 

7.0, 0.05 M Tris-HCl pH 8.0), and then 400 µl absolute ethanol were added and mixed. After 
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10 min centrifugation, the supernatant was discarded and 200 µl 70 % ethanol were added 

and centrifuged for another 10 min. Then, the ethanol was discarded and the pellet was dried 

at room temperature. Finally, the plasmid DNA was dissolved in 50 µl TE buffer and stored 

at 4°C for later use.  

The isolated plasmid DNA was checked with PCR using primers for the gene of interest 

(GOI). Fig. 2 shows a control PCR gel for the isolated plasmid DNA. The isolated plasmid 

DNA was then used as a positive control during molecular analyses (PCR and RT-PCR) of 

putative transgenic plants and their progenies. 

 

 

    

Fig. 2 Control PCR gel for plasmid DNA isolation indicating the specificity of the expected 
PCR product for the respective plasmid DNA using T-DNA region specific primers. Cry1Ac 
(750 bp), Bar447 (447 bp) and Bar499 (499 bp) primers were used to amplify gene specific 
fragment from a plasmid DNA isolated from a transformation vector harboring cry1Ac gene 
while Cry1Ab (600 bp) primers were used to amplify cry1Ab specific sequence from plasmid 
DNA isolated from a transformation vector harboring cry1Ab gene. L: GeneRulerTM 100 bp 
plus DNA ladder, 1 and 2: Plasmid DNA and W: Water control.  

2.6.3 Genomic DNA isolation from leaves 

Quick method: A quick and simple DNA isolation protocol (Edwards et al., 1991) was used 

with little modification as described elsewhere (Kumari et al., 2012). Briefly the steps were 

as follows: 

1. Collect fresh leaves into a 2 ml microcentrifuge tube and grind the tissue using liquid 

nitrogen (LN) cooled forceps.  

2.  Add 500 µl extraction buffer (200 mM Tris-HCl pH 7.5, 250 mM NaCl, 25 mM 

EDTA, 0.5 % SDS) and homogenize using vortex at room temperature.  

L    1  2    W     1     2    W    1     2     W       L     1     2    W    

Cry1Ac Bar447 Bar499 Cry1Ab 

1000 bp 

500 bp 
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Alternatively, collect fresh leaves in 2 ml micro-tube (Sarstedt, Germany) containing 

beads and 500 µl extraction buffer, and lyse the leaves using PrecellysTM homogenizer. 

Then directly continue with step 3.  

3. Add 500 µL CI-mix and homogenize using vortex at room temperature 

4. Centrifuge for 3 min at 10,000 rpm and transfer 500 µl of the supernatant to new 1.5 

µl microcentrifuge tube.  

5. Add 500 µl isopropanol and mix by inverting the tube and incubate at -20 °C for 10-

30 min. 

6.  Centrifuge for 3 min at 10,000 rpm and discard the supernatant. 

7. Wash the pellet with 200 µl 70 % ethanol. 

8. Dry the pellet at room temperature (~60 min) or 37°C (~30 min). 

9. Dissolve the pellet in 50 µl sterile ddH2O or TE-buffer overnight at +4°C.  

10. For PCR amplification, 1-2 µl of the dissolved DNA are used. 

CTAB method: For large quantity and good quality DNA isolation, the CTAB-based 

protocol (Doyle and Doyle, 1990) was used as follows: fresh leaves (8-10) were collected, 

cooled in LN and grinded with a LN cooled forceps. Then, 5 ml preheated CTAB buffer 

(60°C) was added to the sample under the fume hood and incubated for 30 min at 60°C in a 

water bath. Then, 5 ml CI-mix was added and centrifuged for 10 min at 4,500 rpm. After 

centrifugation, 5 ml of the clear aqueous phase was transferred into new tubes and 3.5 ml 

isopropanol was added. Then, the mixture was gently mixed and centrifuged for 10 minutes 

at 4,500 rpm. The supernatant was discarded and the pellet was washed with 2 ml washing 

buffer. After removing the washing buffer, the pellet was resuspended in 1 ml TE buffer 

supplemented with RNase (10 mg/ml) and incubated for 30 min at 37°C. Then, 750 µl 7.5 M 

NH4-acetate and 2.5 ml absolute ethanol were added successively. After gentle mixing, the 

mixture was centrifuged at 4,500 rpm for 10 min. Finally, the supernatant was discarded and 

the pellet was resuspended in 400 µl TE buffer and dissolved overnight at 4°C or stored for 

later uses. For PCR amplification, 1 µl of the dissolved DNA was used. 
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2.6.4 Total RNA isolation  

From each plant, young leaves (~100 mg) were collected into 2 ml microcentrifuge tubes and 

placed immediately in LN. Then, the samples were brought to the laboratory and pulverized 

using LN cooled forceps. Then, total RNA was isolated using NucleoSpin® RNA plant 

(Macherely-Nagel) according to the manufacturer’s instruction. 

2.6.5 Complementary DNA (cDNA) synthesis 

First strand cDNA was synthesized by RevertAidTM H Minus First Strand cDNA Synthesis 

kit (MBI Fermentas/Thermo Scientific) according to the manufacturer’s instruction. Briefly, a 

determined amount of total RNA (~5 µg) was mixed with 1 µl Oligo (dT)18 primer in a 

reaction volume of 12 µl with DEPC-treated RNase free water. The mixture was incubated 

for 5 min at 65°C using a thermocycler and then chilled on ice. Then, 4 µl  5X Reaction 

buffer, 1 µl RiboLockTM RNase inhibitor and 2 µl dNTP mix were added to the tube, and 

then mixed and incubated at 37°C for 5 min in a thermocycler. Then, 1 µl RevertAidTM H 

Minus M-MuLV Reverse Transcriptase was added and incubated at 42°C for 60 min 

followed by 70°C for 10 min. Finally the reaction was stopped at 4°C and then stored at -

20°C for later use. For PCR and qRT-PCR analysis using gene specific primers, 1 µl of the 

synthesized cDNA was used as template.  

2.6.6 Polymerase chain reaction (PCR) 

PCR was used to amplify gene specific sequences from the DNA of putative transgenic 

shoots and their progenies. Table 1 shows the list of primers used during PCR amplification 

of specific sequence. Table 2 and 3 shows the PCR component preparation and PCR 

program, respectively.   
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Table 1. List of primers for PCR analysis 

Gene of interest Primer name Primer Sequence Tm 
(°C)* 

Expected 
Product 

cry1Ac gene from 
B. thuriengenesis 

Cry1Ac-For 5’-GTTCAGGAGAGAATTGACCC-3’ 56  750 bp Cry1Ac-Rev 5’-CTTCACTGCAGGGATTTGAG-3’ 
cry1Ac gene from 
B. thuriengenesis 

Cry160-For 5’-GATTGGAAACTACACCGACC-3’ 59 160 bp Cry160-Rev 5’-GGAGTCATAGTTCGGGAAGA -3’ 
cry1Ab gene from 
B. thuriengenesis 

Cry1Ab1025-For 5’-CTATGGGAAACGCCGCTCCA-3’ 60  600 bp Cry1 Ab1635-Rev 5’-TCCGTCGATGGAGGTGTGGA-3’ 
bar  gene from S. 
Hygroscopicus 

Bar447-For 5‘-GATTTCGGTGACGGGCAGGA-3‘ 60  447 bp Bar447-Rev 5‘-TGCGGCTCGGTACGGAAGTT-3‘ 
bar gene from S. 
Hygroscopicus 

Bar499-For 5‘-CTACCATGAGCCCAGAACGACG-3‘ 60  500 bp Bar499-Rev 5‘-CTGCCAGAAACCCACGTCATGCCAGTTC-3‘ 
A.  tumefaciens 
specific gene 

Pic A-For 5'-ATGCGGATGAGGCTCGTCTTCGAG-3'  63 550 bp Pic A-Rev 5'-GACGCAACGCATCCTCGATCAGCT-3'  
HMG-I/Y gene for 
pea** 

HMG-For 
HMG-Rev 

5’-ATGGCAACAAGAGAGGTTAA-3’  
5’-TGGTGCATTAGGATCCTTAG-3’ 56 570 bp/ 

370 bp+ 
HMG -I/Y gene for 
pea 

HMGIII-For 5‘-AGGGGTAGGCCGAAGAAGAT-3’ 59 164 bp HMGIII –Rev 5’-TGAGGCTTCACCTTAGGAGG -3’ 
HMG gene for 
cowpea++ 

cHMG-For 5′-GCACAGTTTGGGTATATTG-3′ 
56 300 bp cHMG-Rev 5′-GTAAAACTGGCAAAAATTAG-3′ 

NptI gene  NptI-For 5’-GAAAAACTCATCGAGCATCA-3’ 53 400 bp NptI-Rev 5’-TTGTCCTTTTAACAGCGATC-3’ 
PR10a gene from 
potato 

PR10-For 5’-ATGGGTGTCACTAGCTATACACATG-3’  57 480 bp PR10a-Rev 5’-TTAAGCGTAGACAGAAGGATTGGC-3’  
Dreb2a gene from 
rice 

Dreb780-For 5’- AGGGGAGATTGCTCCGTGC-3’ 62 780 bp Dreb780-Rev 5’- CCCATCATCTCCCTCTTGG-3’ 
*Annealing Temperature,**(Gupta et al., 1997),+570 bp for genomic DNA and 370 bp for cDNA, ++(Phelps et 

al., 2007)  

 

Table 2. PCR component preparation 

PCR ingredients DNA isolation method 
Quick method CTAB method or cDNA 

Double distilled H2O (autoclaved) 9.3 µl 10.3 µl 
10 X PCR buffer (GoTaq-Promega) 5.0 µl 5.0 µl 
MgCl2 (25 mM) 2.5 µl 2.5 µl 
DMSO 1.0 µl 1.0 µl 
Primer1-Forward (10 pmol/ml stock) 1.0 µl 1.0 µl 
Primer1-Reverse (10 pmol/ml stock) 1.0 µl 1.0 µl 
Primer2-Forward (10 pmol/ml stock) 1.0 µl 1.0 µl 
Primer2-Reverse (10 pmol/ml stock) 1.0 µl 1.0 µl 
dNTP mix (10 mM) 1.0 µl 1.0 µl 
GoTaq DNA polymerase (5U / ml ) 0.2 µl 0.2 µl 
DNA sample 2.0 µl 1.0 µl 
Total volume 25.0 µl 25.0 µl 
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Table 3. PCR program  

Steps Temperature Duration (Min) No. of Cycles 
1. Initial denaturation 94°C 10 1 
2. Denaturation 94°C 1 

30 3. Annealing Vary* 1 
4. Synthesis(Extension) 72°C 1 
5. Final Extension 72°C 10 1 
6. Pause 4°C ∞ 1 
*Indicated in Table 1 

2.6.7 Gel electrophoresis and documentation 

The PCR products were separated on a 1 % agarose gel. The gel was prepared by mixing 1 g 

agarose in 100 ml 1xTAE buffer and then heating in a microwave oven until the agarose was 

completely dissolved and the solution looked clear. The heated solution was cooled and 

RedsafeTM Nucleic Acid staining solution (5 ml for 100 ml) was added and mixed well. The 

mixed solution was poured into the gel casting box and a comb was inserted at the required 

distance. After solidification, the gel was placed in the electrophoresis tank filled with 

1xTAE buffer sufficient to cover the gel. Then, the comb was carefully removed and the PCR 

products were loaded into the slots. After all samples were loaded, the lid of the tank was 

closed and the gel electrophoresis chamber was connected to the power source. The gel was 

run for 50-60 minutes at 100-120 V. Then, the gel was photographed under UV light and 

documented. 

2.7  Data analysis 

Data from the regeneration and rooting experiments were subjected to analysis of variance 

(ANOVA) and mean separation test using SAS9.2 software. 
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3.1 Abstract 

Progenies of Cry1Ac transgenic pea lines were characterized at molecular and functional 

levels. In the PCR, RT-PCR and qRT-PCR analyses, transgene specific primers were 

designed and used for the amplification of transgene specific fragment. The accumulation of 

Cry1Ac protein in the tissue of transgenic plants was detected using immunostrip assay 

specific to Cry1Ab/Cry1Ac proteins. Leaf paint assay using 600 mg/L Basta® herbicide 

solution was used for functional characterization of the progenies from transgenic lines. 

Insect bioassay was conducted to evaluate the resistance level of the transgenic lines using 

tobacco budworm larvae.  

The result of molecular and functional analyses showed the presence, inheritance and 

expression of the introduced transgene at different progeny levels. Variation in the 

expression levels of the cry1Ac gene was observed among the different transgenic lines. The 

result of immunostrip assay showed the presence of the Cry1Ac protein in plants from the 

different transgenic lines. In the insect bioassay studies, both larval survival and plant 

damage were highly affected on the different transgenic plants. Up to 100 % larval mortality 

was observed on the transgenic plants compared to 17.42 % on control plants. Most of the 

challenged transgenic plants showed very negligible to substantially reduced feeding 

damage indicating the insect resistance of the developed transgenic lines. In general, the 

result confirmed the development of insect resistant Cry1Ac transgenic pea lines which 

could potentially be used in pea production and improvement programs.  

Key words: Pea, cry1Ac protein, insect pests, transgenic resistance, larval mortality, 

feeding damage 
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3.2  Introduction 

Insect pests are one the main production constraints affecting crop production and 

productivity throughout the world. Estimated yield losses due to insect pests vary from crop 

to crop and region to region (Sharma et al., 2010). Pea (Pisum sativum L.)  is susceptible to 

many insect pests both in the field and during storage and 10 to 70 % yield losses can be 

caused depending on the insect pests (Legowski and Gould, 1960; Schroeder et al., 1995; 

Williams et al., 1995; Biddle and Cattlin, 2001; Clement et al., 2002). 

One way to complement conventional breeding approach is to apply modern biotechnology 

techniques to access genes for novel traits from other sources. This approach has been used 

to develop not only resistant varieties to production constraints (such as insect and diseases) 

but also to improve the nutritional value of different crops (Korth, 2008).   

Pea is one of the economically important legume crops that have been extensively studied 

under in vitro conditions during the last few decades. Both organogenesis and somatic 

embryogenesis (Gamborg et al., 1974; Lehminger-Mertens and Jacobsen, 1989; Ozcan et 

al., 1992) have been used in pea in vitro regeneration. Nowadays, organogenesis is the most 

commonly used regeneration system in pea for in vitro manipulations.  

Benefited from the decades of in vitro studies, pea is one of the few legumes that have been 

repeatedly genetically modified via transgenic approaches. Of the different plant 

transformation methods, Agrobacterium-mediated is the most commonly used method in 

pea (de Kathen and Jacobsen, 1990; Puonti-Kaerlas et al., 1990; Schroeder et al., 1993; 

Bean et al., 1997; Richter et al., 2006; Krejci et al., 2007; Hassan et al., 2009).  

Similar to other plants, different types of explants have been explored in pea regeneration 

such as embryonic axis of immature seed (Schroeder et al., 1993), lateral cotyledonary 

meristems from germinating seeds (Bean et al., 1997), meristematic tissue initiated from 

nodal tissue (Tzitzikas et al., 2004),  an immature embryo with the embryo axis and the 

basal part of a cotyledon (Pniewski and Kapusta, 2005) and embryo slices from mature 

seeds (Richter et al., 2006; Krejci et al., 2007; Hassan et al., 2009). Of these explants, 
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embryos from mature seeds are probably the cheap and easily available explants in pea 

regeneration and transformation. 

Of the different regeneration and transformation protocols, the protocol reported by 

Schroeder and his colleagues (Schroeder et al., 1993) is the most commonly used and 

reproducible protocol for pea regeneration and transformation. In most cases, modification 

to this protocol was made to the explant sources since immature embryo is not always 

available. Based on this protocol or its modification, transgenic pea lines have been 

developed against different production constraints such as insect pests (Shade et al., 1994; 

Schroeder et al., 1995) and diseases (Richter et al., 2006; Hassan et al., 2009). Some of the 

transgenes introduced into the pea genome with agronomic importance include bar, αAI,  

PGIP, Vst1 and Chitinase genes (Schroeder et al., 1993; Shade et al., 1994; Schroeder et al., 

1995; Richter et al., 2006; Hassan et al., 2009). In general, against of the odds of many grain 

legumes which are recalcitrant to in vitro conditions, there is a well established and 

routinely used regeneration and transformation protocol for pea genetic modification to 

introduce novel traits. 

Despite the successful application of transgenic approach in pea genetic modification, little 

attention has been given to insect resistance development using B.t cry genes. In line with 

this gap, we have reported the successful development of transgenic pea lines expressing 

cry1Ac gene from Bacillus thuringiensis (Negawo et al., 2013). In this study, we 

characterized and evaluated the insect resistance of the different Cry1Ac transgenic pea 

lines.  

Cry1Ac gene is one of the commonly used B.t cry genes to develop transgenic lines in many 

plant species such as tobacco, cotton, maize, soybean, tomato and rice (Perlak et al., 1990; 

Stewart Jr et al., 1996; Cheng et al., 1998; Bohorova et al., 1999; Mandaokar et al., 2000). 

The product of cry1Ac gene (Cry1Ac crystal toxin) is active against the Lepidopteran insect 

pests (Hofte and Whiteley, 1989; Crickmore et al., 1998). The Lepidopteran insect pests are 

one of the major pests of pea and many legume species which cause significant yield losses 

under field conditions (Sharma et al., 2010). Their control by conventional measures is 

inefficient due to different reasons such as absence of resistant variety. Even though 

chemical pesticides are used at a cost of billion of dollars, an average yield loss of 30 % is 

still caused by insect pests in legumes (Sharma et al., 2010). Sometimes, it is difficult to 
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target the insect pests (e.g. larval stage) via pesticide application since they are located 

inside the crop tissue (Christou and Twyman, 2004). There is also a clear socio-

environmental concerns related to the heavy use of chemical pesticides in agriculture 

production system (Sharma et al., 2000) which needs to be changed. Besides million of 

chronic illnesses related to pesticide poisoning, about 200,000 people are estimated to be 

killed per year worldwide by pesticides (Odukkathil and Vasudevan, 2013). Hence, the 

application of transgenic approaches is a viable alternative strategy to control the insect 

damage and reduce the load of chemical pesticide used in agricultural system (Christou and 

Twyman, 2004) and finally increase the crop yield available for consumers.  

Thus, the current study has contributed to the development of insect resistant pea plants by 

analyzing Cry1Ac transgenic pea lines at molecular and functional levels. The results of 

molecular and functional characterization have confirmed the presence, inheritance, 

expression and functionality of the introduced cry1Ac gene in the developed transgenic pea 

lines. 

3.3 Materials and Methods 

3.3.1 Plant material 

In this study, seeds of Cry1Ac transgenic pea (Pisum sativum L. cv. sponsor)  lines 

(Negawo, 2012) were used for molecular and functional characterizations. They were  

developed  using the routine pea transformation protocol (Schroeder et al., 1993) with 

modification as described in Richter et al.(2006). Briefly, dry seeds were surface sterilized 

with 70 % Ethanol for one min followed by 6 % NaOCl solution for 10 min. The seeds were 

washed 3-5 times with sterile distilled water and soaked overnight in sterile distilled water. 

The next day, embryo slices (explants) were isolated and soaked in Agrobacterium 

suspension (OD600= 1) for 60 min. Then, the explants were removed from the 

Agrobacterium suspension, blotted dry on sterile filter paper and then cultured on co-

cultivation medium for three days in dark. The co-cultured explants were washed (first with 

water and then Ticarcillin solution), filter paper dried and cultured on multiple shoot 

induction medium for 10 days under semi-dark condition. Then, the induced shoots were 
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selectively regenerated on medium supplemented with increased concentrations of PPT (2.5 

to 10 mg/L) every 3-4 weeks.  

3.3.2 Analysis of transgene stable integration, inheritance and expression 

3.3.2.1 PCR and RT-PCR analyses 

Cry1Ac transgenic pea lines and their progenies were characterized using PCR as described 

in materials and methods sections. In PCR confirmed transgenic plants, expression of the 

transgene at RNA was analyzed using RT-PCR. 

3.3.2.2 Quantitative real-time PCR (qRT-PCR) 

The expression level of the cry1Ac gene was determined using quantitative real-time PCR 

(qRT-PCR) for selected transgenic plants. Primers (Cry160-For: 5’-

GATTGGAAACTACACCGACC-3’ and Cry160-Rev: 5’-

GGAGTCATAGTTCGGGAAGA -3’) amplifying 160 bp of the cry1Ac gene sequence 

were designed and used for the quantitative analysis of cry1Ac transgene expression in the 

transgenic plants. Primers (HMGIII-For: 5‘-AGGGGTAGGCCGAAGAAGAT-3’ and 

HMGIII-Rev: 5’-TGAGGCTTCACCTTAGGAGG -3’, 164 bp) for a pea housekeeping 

gene (HMG-I/Y) (Gupta et al., 1997) as a reference were included in the analysis to 

normalize the expression of cry1Ac transgene.  

The qRT-PCR was performed on iQTM 96-well PCR plates covered with Optical Sealing 

Tape (Bio-Rad) on iCycleriQ5 Real Time PCR detection system (Bio-Rad). The qRT-PCR 

mixture contained 3 pMol (0.3 µl from 10 pMol stock) of both forward and reverse primers, 

7.5 µl of iQTM SYBR® Green Supermix (Bio-Rad) and 1 µl cDNA of each sample. The 

reaction volume was brought to 15 µl with sterile ddH2O.   

The qRT-PCR profile included:  

 Cycle 1: Initial denaturation step of 95°C for 10 min,  

 Cycle 2: 40 cycles of 95°C for 20 sec denaturation step, 59°C for 30 sec annealing 

step and 72°C for 45 sec extension step, 
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 Cyle 3: Denaturation step of 95°C  for 60 sec  

 Cylcle 4: Holding step of 55°C  for 60 sec, and  

 Cycle 5: Melting curve analysis steps of   55-95°C for 10 sec with 0.5 °C increment 

after each temperature point.  

Each cDNA sample was duplicated three times. The qRT-PCR data were automatically 

collected and analyzed using iQ5 Optical System Software v2.0 (Bio-Rad). The unscaled 

normalized expression relative to the control was chosen in the gene expression analysis 

option. 

3.3.2.3 Detection of Cry1Ac protein in transgenic pea plants 

Commercially available immunostrip specific to Cry1Ab/Ac protein (Bt-Cry1Ab/1Ac 

Immunostrip® test, Agdia Inc.) was used for the detection of Cry1Ac protein in the 

progenies of transgenic pea lines. The extraction of crude protein and detection of the 

Cry1Ac protein was done according to the manufacturer’s instruction. Briefly, 80-100 mg 

leaf sample was grinded in liquid nitrogen and 1500 µL extraction buffer (SEBA4, Agdia 

Inc.) was added and mixed using vortex. Then, 500 µL of the crude extract was transferred 

to a new 1.5 ml microcentrifuge tube and the immunostrip was inserted into the tube. Both 

control and test signals development was monitored on the immunostrip for a maximum of 

30 min.  

3.3.3 Leaf paint functional characterization of transgenic pea plants 

Leaf paint functional characterization was used to characterize progenies of transgenic pea 

lines. The assay was conducted according to Schroeder et al. (1993) as described in Richter 

et al. (2006). Briefly, a Basta® herbicide solution (600 mg/L) with a drop of Tween20 was 

prepared and applied onto the upper side of the selected leaflet of both transgenic progenies 

and control plants while the opposite leaflet was marked as a control (Fig. 3). Then, the 

herbicide tolerance of the plants was evaluated one week after application. 
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Fig. 3 Leaf paint functional characterization of transgenic plants 

3.3.4 Insect bioassay 

Seeds of both transgenic pea lines and control none-transgenic plants were grown in growth 

chamber (22±2 °C, 16/8 photoperiod). The transgenic pea plants were characterized for the 

presence of T-DNA region by PCR at DNA level, immunostrip assay at protein level and 

leaf paint assay at functional level. For some selected transgenic plants, the expression of 

cry1Ac gene at RNA level was also determined by RT-PCR and qRT-PCR. 

Then, five larvae of Heliothis virescens (kindly provided by Dr. Jürgen Langewald, BASF 

Plant Science, Limburgerhof, Germany) were inoculated on each pea plant. The inoculated 

plants were covered with a glass cylinder to restrict the larvae movement (Fig. 4). Then, 

larval mortality and feeding damage were recorded on each plant one week after larvae 

inoculation.  
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Fig. 4 Larvae inoculated plants covered with glass cylinder to restrict larvae movement. 

3.4 Results 

3.4.1 PCR detection of the stable integration and inheritance of the 

transgene to the next generation 

Putative transgenic shoots as well as the progenies of transgenic Cry1Ac pea lines were 

analyzed by PCR. Primers for cry1Ac and bar transgenes were used to specifically amplify 

the transgene segments. Primers for the HMG-I/Y housekeeping gene were included to 

monitor the presence of the genomic DNA during the amplification process. The result 

showed the presence of the transgene fragments in the genomic DNA of different transgenic 

lines (Fig. 5) confirming the stable integration of the transgene. The transgene was also 

inherited to the next generations for most of the analyzed transgenic lines. Up to T4-T7 

advance generations were obtained for some of the transgenic lines (Appendix 4).  
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Fig. 5 PCR detection of transgene integration into the genome of few putative transgenic 
shoots and their advanced generations in Cry1Ac transgenic pea lines. (a) Putative 
transgenic shoots and their subsequent generation of transgenic pea lines analyzed using 
primers for cry1Ac (750 bp) and pea housekeeping (570 bp) genes indicating the stable 
genomic integration and inheritance of the cry1Ac transgene. (b) Putative transgenic shoots 
and their subsequent generation of transgenic pea lines analyzed using primers for bar gene. 
L: GeneRulerTM 100 bp plus DNA ladder, +C: plasmid (pGII35S-cry1Ac) DNA as a 
positive control, -C: genomic DNA from non-transgenic pea plant as a negative control, W: 
water control;  and DA, B3, D2R and C1 are different transgenic pea lines 

3.4.2 RT-PCR detection of transgene expression in the transgenic pea 

plants  

To analyze the expression of the cry1Ac gene at transcription level, the isolation of RNA 

and the synthesis of cDNA from selected PCR confirmed transgenic plants was done using 

the standard kits. The purity of the isolated RNA was checked with spectrophotometer by 

measuring the ratio of absorbance at 260:280 nm. The measured ratios ranged from 2.057-

2.166 (Appendix 5). The integrity of the RNA was checked on agarose gel electrophoresis 

(Fig. 6a) indicating the intactness of the isolated RNA. There was no genomic DNA 

contamination in the isolated total RNA (Fig. 6b).  

(a) 

(b) 
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Fig. 6 Monitoring RNA integrity (a) on standard 1 % agarose gel and genomic DNA 
contamination (b) with PCR using primer for cry1Ac (750 bp) and pea HMG-I/Y (570 bp) 
genes. L: GeneRulerTM 100 bp plus DNA ladder, +C: plasmid (pGII35S-cry1Ac) DNA as a 
positive control, -C: genomic DNA from non-transgenic pea plant as a negative control and 
W: water control. 

 

The prepared cDNA was used in the PCR detection of the cry1Ac gene specific sequence. 

The result demonstrated the expression of the cry1Ac transgene at different progeny levels 

(T0 to T7) (Table 4). The expected PCR products for both cry1Ac and HMG-I/Y 

housekeeping genes were amplified in most of the analyzed plants (Fig. 7). Out of 58 T2-T7 

generation plants analyzed from 15 transgenic lines, 44 plants from 13 transgenic lines 

showed the expression of cry1Ac gene at the transcriptional level. In the cDNA of the non-

transgenic plant, as expected, only the sequence without intron for the HMG-I/Y 

housekeeping gene was amplified indicating the absence of genomic DNA in the 

synthesized cDNA. 
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Fig. 7 RT-PCR expression analysis of cry1Ac transgene (750 bp) and pea HMG-I/Y 
housekeeping gene (570 bp from genomic DNA and 350 bp from cDNA) in the advanced 
progenies of different transgenic pea lines. L: GeneRulerTM 100 bp plus DNA ladder, +C: 
plasmid (pGII35S-cry1Ac) DNA as a positive control, -C: genomic DNA of non-transgenic 
pea plant as a negative control; W: water control, lane 1-12 and 14-20: cDNA from different 
transgenic lines and lane 13: cDNA from non-transgenic control plant [1: D2R-1(T2), 2: 
E15(a)-2-1(T2), 3: G*A-1-1(T2), 4: BR-5-1-4-1(T4), 5: DA-2-3-6-1(T4), 6: DqR-8-7-2-
1(T4), 7: C1-2-6-15-1(T4), 8: G51-2-2-3-1-1(T5), 9: C1-2-3-3-3-2-1(T6), 10: C1-2-6-13-1-
3-6-1(T7),11: B1-2-1, 12: G51-1-5-1(T3), 14: B3-1-11-4-1(T4), 15: G51-1-11-1(T3), 16: 
A2/D12-1-1-1-1(T4), 17: A2R-2-1(T2), 18: G51-1-5-1 (T3), 19: D2R-2-12-1(T3) and 20: 
B1-2-1(T2)]. 

Table 4. Summary of RT-PCR expression analysis of cry1Ac gene in the transgenic pea 
lines  

Plant code 
Progeny 

level 
PCR for 
Cry1Ac 

RT-PCR Plant code 
Progeny 

level 
PCR for 
Cry1Ac 

RT-PCR 

A3 T0 + ?a B3-3-1-3 T3 - 
 

A2/D12 T0 + + B3-3-1-4 T3 + + 
B T0 + + B3-3-1-5 T3 + + 
B2 T0 + + B3-3-2-1 T3 + + 
B2R T0 + + BR-3-1 T2 + + 
B3 T0 + + BR-5-1 T2 + + 
BR T0 + + BR-5-1-4-1 T4 + + 
BR* T0 + ? BR-5-2 T2 + + 
C7 T0 + + C1-1-2 T3 + + 
D T0 + + C1-2-1-6-13-1 T5 + + 

aDNA contamination problem!  



27 

 

Table 4. Continuation  

Plant code 
Progeny 

level 
PCR for 
Cry1Ac 

RT-PCR Plant code 
Progeny 

level 
PCR for 
Cry1Ac 

RT-PCR 

D1 T0 + ? C1-2-1-6-13-2 T5 + + 
D2R T0 + + C1-2-1-6-13-3 T5 + + 
D4R T0 + ? C1-2-1-6-13-5 T5 + + 
D21R T0 + ? C1-2-3-3-3 T4 + + 
D40 T0 + ? C1-2-3-3-3-2-1 T6 + + 
DA T0 + + C1-2-3-6-2 T5 + + 
DqR T0 + + C1-2-6-13-1-3-6-1 T7 + + 
DR* T0 + + C1-2-6-15-1 T5 + + 
DT T0 + + C-5-1 T2 + + 
Danne T0 + ? C5-1-1 T3 + - 
Ddiff T0 + ? C5-2-1 T3 + - 
D20 T0 + + C5-2-2-1 T4 + - 
E T0 + + C5-3-1 T3 + - 
E1 T0 + ? C7-1-3-1 T3 + - 
E8 T0 + ? C7-1-4-1 T3 + - 
E8R T0 + ? C7-1-4-3 T3 + - 
ER T0 + + D2R-1 T2 + + 
G T0 + + D2R-2-12-1 T3 + + 
G3 T0 + + D2R-2-9-5 T3 + + 
G4 T0 + + DA-2-1 T2 + + 
G*A T0 + ? DA-2-2 T2 + - 
GB T0 + + DA-2-3 T2 + + 
GBR T0 + + DA-2-3-6-1 T4 + + 
GqR'/GTR' T0 + ? DA-2-4 T4 + + 
A2/D12-1-1-1-1 T4 + - DqR-8-1 T3 + + 
A2/D12-1-3 T2 + + DqR-8-2 T3 + + 
A2/D12-1-4 T2 + - DqR-8-4 T3 + + 
A2R-2-1 T2 + - DqR-8-7-2-1 T4 + + 
B1-1-1 T2 + + DqR-8-8 T3 + + 
B1-1-2 T2 + - E1 5(a)-2-1 T2 + + 
B1-1-3 T2 + - G*A-1-1 T2 + + 
B1-2-1 T2 + + G51-1-11-1 T3 + + 
B3-1-11-4-1 T4 + - G51-1-5-1 T3 + + 
B3-1-4-2 T3 + + G51-2-2-3 T3 + + 
B3-3-1 T2 + + G51-2-2-3-1-1 T5 + + 
B3-3-1-1 T3 - 

 
Positive Control (+) - + 

B3-3-1-2 T3 + + Negative Control (-) + - 
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3.4.3 qRT-PCR analysis of cry1Ac transgene expression levels in the 

transgenic pea plants 

The expression levels of the cry1Ac gene were determined using qRT-PCR for some of the 

transgenic lines. Primers amplifying the sequences of the cry1Ac and housekeeping genes at 

similar annealing temperature were designed and checked for the expected PCR products. 

Fig. 8 shows the amplification result for the primers indicating the expected PCR products 

for both primer sets. 

 

Fig. 8 Control PCR gel for primers used in qRT-PCR analysis indicating the expected PCR 
products for both housekeeping HMG-I/Y (164 bp) and cry1Ac (160 bp) genes. L: 
GeneRulerTM100 bp plus DNA ladder, +C: plasmid (pGII35S-cry1Ac) DNA as a positive 
control, -C: genomic DNA of non-transgenic pea plant as a negative control; B3: genomic 
DNA from Cry1Ac transgenic pea plant and W: water control. 

 

The designed primers were used for quantitative analysis of cry1Ac transgene expression 

normalized to the reference gene. PCR amplification (quantification) charts and the melting 

curve analysis for 18 transgenic plants are shown in Fig. 9. The PCR amplification charts 

indicate the relative fluorescence accumulation while the single peak on the melt curve 

analysis shows the presence of a single PCR product for each reaction tube. 
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Fig. 9 PCR quantification profile (upper panel) and melting curve analysis (lower panel) of 
the amplifcation products produced during qRT-PCR analysis.The melting curve graphs 
show the negative derivative of fluorescence accumulation plotted against the temperature 
(°C) for each tube. The single peak for each line on the melting curve analysis shows the 
absence of unspecific PCR product for each reaction tube.  

 

The normalized expression folds varied from line to line (Fig. 10). The expression levels 

ranged from very low (< 0.1) to 4.72 folds. Based on the expression folds, the transgenic 

plants were categorized to high (>1 folds), moderate (0.5-1 folds), low (0.1-0.499 folds) and 

very low (>0.1 folds) expression groups (Appendix 6). Eleven of the analyzed plants were 

grouped in high expression group. Of the plants in this group, the highest expression level 

(4.72 folds) was observed in A2/D12-1-1-1-1 plant followed by BR-5-1-4-1 (2.85 folds) and 

C1-2-6-13-1 (2.62 folds) plants. Another 11 plants showed low (7 plants) to moderate (4 

plants) expression level. Eight plants showed very low expression level of the cry1Ac 

transgene.  
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Fig. 10 Expression level of cry1Ac transgene in different transgenic pea lines. Normalized fold expression data represent the mean of three 
replicates (Mean ± SE). The analysis of plants indicated on the lower two graphs were done with the help of Linda Baranek.  
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3.4.4 Detection of Cry1Ac protein accumulation 

The production of the Cry1Ac protein in the leaf tissue of transgenic progenies of the 

Cry1Ac pea lines was detected using a commercial detection strip for Cry1Ab/Cry1Ac 

protein. The detection was done using crude protein extracted from leaves of both non-

transgenic control and PCR positive transgenic plants. In the protein extract of all tested 

plants (both non-transgenic control and transgenic plants), the expected control signal 

developed on the immunostrip. The expected test signal for the Cry1Ac protein was 

observed in the protein extract of most of the transgenic plants. On the other hand, the test 

signal was not developed on the immunostrip placed in the protein extract of control and 

few of the tested transgenic plants. Fig.11 shows the immunostrip result for a crude protein 

extracted from control and transgenic plants and Table 5 shows summary of the 

immunostrip detection of Cry1Ac protein for all the tested transgenic plants.  

 
Fig. 11 Immunostrip detection of Cry1Ac protein in control and transgenic pea plants. 
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Table 5. Summary of Immunostrip detection of Cry1Ac protein in the progenies of Cry1Ac pea plants 

No. Transgenic line Progeny level 
Immunostrip signal 

No. Transgenic line Progeny level 
Immunostrip signal 

Control Test Control Test 
1 Control - + - 19 DqR-8-4-5 T3 + + 
2 A2/D12-1-1 T2 + + 20 DqR-8-4-6 T3 + - 
3 B1-2-1 T2 + - 21 BR-5-1-1 T3 + + 
4 E1 5(a)-2-1 T2 + + 22 BR-5-1-4 T3 + + 
5 G*A-1-1 T2 + + 23 DA-2-3-6 T3 + + 
6 B3-1-11-4-1 T4 + - 24 DA-2-3-9 T3 + + 
7 D2R-2-12-1 T3 + + 25 DqR-8-7-1 T3 + + 
8 G51-1-11-1 T3 + + 26 DqR-8-7-2 T3 + + 
9 DA-2-1-1 T3 + + 27 A2/D12-1-1-1 T3 + + 
10 DA-2-1-2 T3 + + 28 G51-2-2-3-1 T3 + + 
11 DA-2-1-3 T3 + - 29 G51-2-2-3 T3 + + 
12 DA-2-1-4 T3 + + 30 B3-1-4-6 T3 + + 
13 DA-2-1-5 T3 + - 31 A2/D12-1-1-1-1 T4 + + 
14 DA-2-1-6 T3 + - 32 BR-5-1-4-1 T4 + + 
15 DqR-8-4-1 T3 + + 33 C5-2-2-1 T4 + + 
16 DqR-8-4-2 T3 + + 34 DA-2-1-1-1 T4 + + 
17 DqR-8-4-3 T3 + + 35 DA-2-1-4-1 T4 + + 
18 DqR-8-4-4 T3 + + 36 DA-2-3-6-1 T4 + + 
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Table 5. Continuation 

No. Transgenic line* Progeny level 
Immunostrip signal 

No. Transgenic line Progeny level 
Immunostrip signal 

Control Test Control Test 
37 DA-2-3-9-1 T4 + + 54 T3 B3-3-1-2 T3 + - 
38 DqR-8-7-2-1 T4 + + 55 T3 B3-3-1-3 T3 + - 
39 C1-2-3-6-2 T4 + + 56 T3 B3-3-1-4 T3 + - 
40 C1-2-6-15-1 T5 + + 57 T3 B3-3-1-5 T3 + - 
41 G51-2-2-3-1-1 T5 + + 58 T3 B3-1-4-2 T3 + - 
42 C1-2-3-3-3-1 T5 + + 59 T3 B3-1-4-4 T3 + - 
43 C1-2-3-3-3-2 T5 + + 60 T3 B3-1-4-5 T3 + - 
44 C1-2-3-3-3-3 T5 + + 61 T3 B3-1-4-6 T3 + + 
45 C1-2-1-6-13-1-1 T5 + - 62 T2 DA-2-2 T2 + - 
46 C1-2-1-6-13-1-2 T5 + + 63 T1 DqR-8-6 T1 + - 
47 C1-2-3-3-3-2-1 T6 + + 64 T1 DqR-8-7 T1 + + 
48 C1-2-1-6-13-1-3-1 T6 + + 65 T5 C1-2-3-3-3 T5 + + 
49 C1-2-1-6-13-1-3-6 T6 + + 66 T3 A2/D12-1-1 T3 + + 
50 C1-2-1-6-13-1-3-6-1 T7 + + 67 T2 BR-5-1 T2 + + 
51 T3 B3-3-2-1 T3 + - 68 T3 C1-1-2 T3 + - 
52 T3 B3-3-2-4 T3 + - 69 T4 G51-2-2-3 T4 + + 
53 T3 B3-3-1-1 T3 + - 70 T3 DR21R-2-2 T3 + - 

*Plant number from 51-70 was done with the help of Linda Baranek. 
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3.4.5 Leaf paint functional characterization of progenies of Cry1Ac 

transgenic pea lines  

Fig. 12 shows the result of the leaf paint assay for some of the plants. In the progenies of 

transgenic pea lines, both herbicide tolerant (complete or partial) and susceptible plants 

were observed (Fig. 12 a-h, Appendix 4). The leaves of all control plants were susceptible to 

the applied herbicide solution (Fig. 12, i). The result demonstrated the functionality of the 

bar gene product in the developed transgenic lines.  

 
Fig. 12 Leaf paint functional assay result for some of the assayed plants showing herbicide 
tolerant (a-e: complete and f: partial) and susceptible (g-h) transgenic plants from different 
transgenic lines and herbicide susceptible non-transgenic control plant (i). The red arrows 
indicate the herbicide solution treated leaves.  
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3.4.6 Evaluation of insect resistance of the Cry1Ac transgenic pea plants 

3.4.6.1 Larval mortality on Cry1Ac transgenic pea plants 

Progenies from different transgenic lines were subjected to insect bioassays. Table 6 shows 

the result of larval mortality studies on the different transgenic lines and Fig. 13 shows some 

of the dead and surviving larvae collected at the end of the assay period from transgenic and 

control plants, respectively. Total larval mortality was recorded on five of the transgenic 

lines. Of the tested lines, four lines showed about 73-92 % larval mortality while three lines 

showed less than 20 % larval mortality. On one transgenic line (C7), the recorded mortality 

rate was less than that observed on control plants (17.42 %).  

Table 6. Larva mortality on different transgenic pea lines  

Plant line 
Progeny 

level 
used 

Number 
of 

plants+ 

Number of larvae Mortality 
rate (%) 

Corrected 
mortality 
rate (%)a Inoculated Survived Died 

Control plants 31 155 128 27 17.42 
Transgenic lines 
A2/D12-1 line T2-T4 4 20 2 18 90 87.89 
A2R-2-1 T2 1 5 4 1 20 3.13 
B1-line T2 2 10 7 3 30 15.23 
B20R-2-1 T2 1 5 2 3 60 51.56 
B3-line T3-T4 14 70 38 32 45.71 34.26 
BR-5-line T4 2 10 0 10 100 100.00 
C1-line T3-T7 10 50 11 39 78 73.36 
C5-line T2-T4 4 20 15 5 25 9.18 
C7-line T2-T3 2 10 9 1 10 -8.98 
C8R-line T2 1 5 2 3 60 51.56 
D2R-line T2-T3 2 10 0 10 100 100.00 
DA-line T2-T4 10 50 6 44 88 85.47 
DqR-line T2-T4 6 30 2 28 93.33 91.93 
E15-line T2 1 5 0 5 100 100.00 
G*A-line T2 1 5 0 5 100 100.00 
G51-line T3-T5 7 35 0 35 100 100.00 

+Transgenic progenies from the same line were pooled together. aCorrected mortality is 
calculated using the following formula as described in Jia (Jia, 2004): Corrected Mortality 
rate on transgenic plants (%)=  [(LMRT-LMRC)/(100-MRC)] x 100; Where LMRT: Larva 
Mortality rate (%) on transgenic plants and LMRC: Larva mortality rate (%) on control 
plants.  
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Fig. 13 The physical appearances of few of the dead larvae (a) after feeding on the 
transgenic plants and surviving larvae (b) collected from control plants at the end of the 
feeding test. 

 

Fig. 14 shows the larval mortality and survival on individual transgenic plants for which the 

expression level of the cry1Ac gene was determined by qRT-PCR. Total larval mortality 

was recorded on transgenic plants expressing varying level of the cry1Ac gene. On most the 

transgenic plants in the high expression group and some of the plants in other expression 

groups (low to moderate such as G*A-1-1, D2R-1, DqR-8-4, etc), total larval mortality was 

recorded. On other transgenic plants (For example: C1-2-6-13-2-3-6-1, B1-2-1, C1-2-6-13-

3, C1-2-6-13-2, etc), in which the expression folds of the cry1Ac gene was moderate to high, 

2-3 larvae died on each plant. On one plant (A2R-2-1) in the low expression group, only one 

larva died compared to 2-5 larvae on other plants. 

 

(a) (b) 
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Fig. 14 Larval mortality and survival on individaul plants of different transgenic lines expressing cry1Ac gene. The experiment for the lower two 
graphs were done with the help of Linda Baranek. 
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3.4.6.2 Larval feeding damage on Cry1Ac transgenic pea plants 

Similar to larva survival, the average feeding damage on transgenic plants varied from line 

to line (Table 7). Fig. 15 shows relative feeding damage on one of the control and transgenic 

plants.  

On the transgenic plants, the average feeding damage ranged from very negligible (recorded 

as 5 %) to 57.50 %. On plants from nine transgenic lines, the estimated feeding damage was 

about 5-11 percent. More than 50 % average feeding damage was recorded on plants from 

two transgenic lines. Among the transgenic plants, the maximum feeding damage was 

observed on the transgenic plants from the C7-line. On control plants, the average feeding 

damage caused by the inoculated larvae was about 53.06 %.  More than 70 % (22 out of 31) 

of the control plants incurred 50 % or more feeding damage. In the transgenic lines, nine 

plants from four transgenic lines incurred 50 % or more feeding damage. 

Table 7. Estimated feeding damage on different transgenic lines  

Plant line 
Progeny 

level 
used 

Number 
of 

plants+ 

Number of plants with estimated  
feeding damage of 

Average 
estimated 
feeding 
damage 

(%) 
0-10% 11-20% 21-49% 50-100 % 

Control plants  31 1 1 7 22 53.06 
Transgenic lines        

 A2/D12-1 line T2-T4 4 4 0 0 0 5.00 
 A2R-2-1 T2 1 0 0 1 0 35.00 
 B1-line T2 2 0 0 1 1 55.00 
 B20R-2-1 T2 1 0 0 1 0 25.00 
 B3-line T3-T4 14 2 6 1 5 28.93 
 BR-5-line T4 2 2 0 0 0 5.00 
 C1-line T3-T7 10 6 3 1 0 11.50 
 C5-line T2-T4 4 0 1 1 2 46.25 
 C7-line T2-T3 2 0 1 0 1 57.50 
 D2R-line T2-T3 2 2 0 0 0 5.00 
 DA-line T2-T4 10 10 0 0 0 5.50 
 DqR-line T2-T4 6 6 0 0 0 5.00 
 E15-line T2 1 1 0 0 0 5.00 
 G*A-line T2 1 1 0 0 0 5.00 
 G51-line T3-T5 7 7 0 0 0 5.00 

+Transgenic progenies from the same line were pooled together.  
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Fig. 15 The state of (a) non-transgenic control plant and (b) transgenic plant after one week 
of larvae feeding (Negawo et al., 2013). 

 

Fig. 16 shows the recorded feeding damage on the different transgenic plants for which the 

expression level of the cry1Ac gene was determined by qRT-PCR. On most of the 

transgenic plants, despite varying level of expression folds, the estimated feeding damage 

was very negligible (~5 %) compared 40 and 60 % estimated average feeding damage on 

control plants. Relatively higher feeding damage of 15-25 % was recorded on few of the 

transgenic plants (C1-2-6-15-1, C1-2-6-13-2-3-6-1, B1-2-1, C1-2-6-13-2, B3-3-2-1) 

grouped in moderate to high expression groups. On transgenic plants A2R-2-1 and B3-3-1-5 

(both with very low expression folds), the estimated feeding damage was 35 and 50 %, 

respectively.  

 

(a) (b) 
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Fig. 16. Feeding damage on individaul plants of different trasgenic lines expressing the cry1Ac gene. The experiment for the lower two graphs were 
done with the help of Linda Baranek.  
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3.5  Discussion 

Pea has been manipulated in vitro since more than three decades. These long term efforts 

have resulted in vital information about the in vitro regeneration and transformation of pea. 

Today, pea is one of the crop plants which have a routine regeneration and transformation 

protocol based on Agrobacterium-mediated transformation. The Cry1Ac transgenic pea lines 

(Negawo, 2012) used in this study are also the result from the application of such established 

protocol.  

3.5.1 Inheritance and expression of cry1Ac gene 

Progenies of different Cry1Ac transgenic pea lines have been characterized using molecular 

and functional analyses. The results of molecular analyses (such as PCR, RT-PCR and 

immunostrip assay) indicated the stable integration, inheritance as well as the expression of 

the introduced T-DNA region (cry1Ac and bar genes). The result of leaf paint assay also 

indicated the presence and functionality of the bar gene product. This assay has been used by 

different groups (Richter et al., 2006; Hassan et al., 2009) to characterize progeny of 

transgenic pea plants obtained after transformation with transformation vector harboring bar 

gene. They reported that transgenic progeny which inherited and expressed the bar gene was 

resistant to the herbicide application while others are not. In the current analysis, similar 

result was observed. In the progeny of transgenic lines, both herbicide tolerant and 

susceptible plants were observed as expected in segregating materials. This result further 

supports the molecular results and confirms the presence/inheritance as well as the functional 

expression of the T-DNA region in the developed transgenic lines.  

Attempts have also been made to analyze the segregation ratio of the transgene for some of 

the transgenic pea lines (Appendix 7). However, the number of seeds per line was very few 

which could either over or under estimated the result. Hence, the data were only used to track 

the inheritance of the transgene to the next generation.  

The use of transgenic plants depends on the faithful inheritance and expression of the novel 

traits (Finnegan and Mcelroy, 1994; Meyer, 1995). Despite the genomic integration, the 

expression of transgene could vary from line to line and/or could be silenced at all (Meyer, 
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1995; Kohli et al., 2006; Kohli et al., 2010). As reviewed by different authors (Iyer et al., 

2000; Kohli et al., 2006; Kohli et al., 2010), variation in transgene expression has been 

reported in many transgenic plants such as petunia, tobacco, rice, wheat and maize. Similarly, 

variation in expression folds of cry1Ac gene was also observed in the analyzed transgenic pea 

lines. In the progeny of few transgenic lines (such as C7-1-3-1, C7-1-4-1, C5-1-1 and C5-3-

1), despite the integration and inheritance of the cry1Ac gene was demonstrated by PCR, the 

expression of cry1Ac gene was not observed at transcription level (RT-PCR result). This is 

also supported by the negative result of immunostrip assay for Cry1Ac protein and/or leaf 

paint assay for bar gene product. It could be possible the introduced T-DNA region has been 

silenced in these transgenic plants. In transgenic plants, transgene silencing is a common 

phenomenon which can be due to transgene copy number, integration pattern, integration 

region and/or epigenetic effect and can occur at transcription and/or post-transcription level 

(Finnegan and Mcelroy, 1994; Stam et al., 1997; Kohli et al., 2010). For example, in 

transgenic clone B3 and its progenies, the result from Southern blot analysis showed the 

presence of multiple copies of the transgene (Negawo, 2012). Most of the progenies from this 

line showed negative result for the immunostrip and LP assay. Hence, without ruling out 

other factors, it might be possible that the copy number has contributed to the silencing of the 

T-DNA in these plants. Transgene integration is a random process in which the transgene is 

inserted anywhere in the host genome (Chyi et al., 1986; Wallroth et al., 1986; Kohli et al., 

2006) with consequence on the expression level (Stam et al., 1997; Kohli et al., 2006; Kohli 

et al., 2010). In petunia, the integration of transgene in the highly repetitive DNA and 

methylated region of the genome has caused inactivation of the integrated transgene (Prols 

and Meyer, 1992).  

3.5.2 Insect resistance evaluation of the Cry1Ac transgenic pea lines  

In support of the molecular and leaf paint functional analyses, the insect bioassay results have 

demonstrated the functionality of Cry1Ac protein in some of the analyzed transgenic lines. 

Up to 100 % larval mortality as well as substantially reduced plant damage was observed on 

the transgenic plants expressing the transgene indicating the insect resistance of the 

developed transgenic lines. On the other hand, on transgenic plants in which the T-DNA 

region seemed to be silenced (negative RT-PCR and LP results) or expressed at very low 

level (qRT-PCR result), the insect bioassay showed the susceptibility of the plants to the 
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larval challenge. For example, in transgenic plants A2R-2-1 and B3-3-1-5 the result of qRT-

PCR showed very low expression of cry1Ac gene. Similarly, on transgenic plants C7-1-4-1, 

C7-1-4-2, B1-1-1, B3-3-1-5 and A2R-2-1, the LP assay showed susceptibility to the applied 

herbicide solution. On these plants, less larval mortality rate (1-2 out of 5 larvae) and 

relatively high feeding damage (29-57.5 %) was recorded. 

Similar results have been reported on other transgenic crops expressing cry1Ac or other cry 

genes. Reduced feeding rate to complete larval mortality of Manduca sexta was reported on 

transgenic tobacco plants expressing B.t crystal proteins (Barton et al., 1987; Vaeck et al., 

1987). More recently, complete mortality of larvae of two insect pests (Manduca sexta and 

Heliothis virescens) and negligible leaf damage was observed on transgenic tobacco plants 

expressing cry1Ac gene under the control of wound-inducible promoter (Gulbitti-Onarici et 

al., 2009). Up to 100 % larval mortality of Lepidopteran insect pests (Manduca sexta, 

Heliothis virescens, Helicoverpa armigera and Spodoptera litura) and very little sign of 

feeding damage has been reported on transgenic tomato plants expressing crystal toxin from 

B.t var. Kurstaki HD-1(Fischhoff et al., 1987) and Cry1Ab protein (Koul et al., 2014). Total 

larval mortality of two insect pests (cabbage looper and beet armyworm) and high level of 

plant protection have been observed on transgenic cotton plants expressing cry1Ac or Cry1Ab 

genes from B.t var. Kurstaki (HD-1 and HG-73, respectively) (Perlak et al., 1990). Different 

cry toxins (cry1Ab, cry1ac or cry1B) have also been expressed in cereal crops like rice 

(Cheng et al., 1998; Datta et al., 1998; Breitler et al., 2001; Khanna and Raina, 2002; Ramesh 

et al., 2004), maize (Koziel et al., 1993; Armstrong et al., 1995; Bohorova et al., 1999) and 

sorghum (Girijashankar et al., 2005). According to the reports, up to 100 % larval mortality 

of the target insect pests as well as substantially reduced plant damage has been observed on 

the transgenic plants of these crops.  

Similarly, in few legume crops, transgenic insect resistance has been pursued during the last 

decades. B.t cry gene (cry1Ac, cry1Ab, etc) has been introduced into the genome of chickpea 

(Kar et al., 1997; Sanyal et al., 2005; Indurker et al., 2007; Acharjee et al., 2010; Biradar et 

al., 2010; Indurker et al., 2010; Mehrotra et al., 2011), cowpea (Adesoye et al., 2008; Bakshi 

et al., 2011; Bakshi and Sahoo, 2013), peanut (Singsit et al., 1997) and soybean (Parrott et al., 

1994; Stewart Jr et al., 1996) to develop resistant lines to the larvae of Lepidopteran insect 

pests. Different level of resistance to the target insect pests has been achieved in few of these 

legumes. However, despite the reports, follow up works on the claimed transgenic lines are 
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lacking in most of the cases. In legume crops, transgenic approaches have also been used to 

develop resistance to storage pests. For this purpose, bean alpha amylase inhibitor has been 

introduced into the genome of pea, cowpea and chickpea, and high level of resistance to the 

target storage pests (weevils) was achieved (Shade et al., 1994; Sarmah et al., 2004; Solleti et 

al., 2008a). However, the development of transgenic insect resistance in pea using B.t cry 

genes has not been given due attention during the last decades. Hence, this study has 

contributed to the development of Cry1Ac transgenic pea lines by characterizing different 

transgenic lines at molecular and functional levels.  

3.5.3 Summary and future outlook  

In general, Cry1Ac transgenic pea plants have been characterized at molecular and functional 

levels and the result demonstrated the successful development of insect resistant Cry1Ac 

transgenic pea lines. 

The scope of this study was limited to laboratory and greenhouse experiments. Field trial was 

not conducted on the developed transgenic lines. Hence, further research activities are 

required to evaluate the field performance of the transgenic lines under natural growing 

conditions. Then, selected transgenic lines could be used in production program to reduce 

yield losses due to the target pest or in improvement program to combine with other traits for 

multiple resistances.  
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4.1 Abstract 

Cowpea is susceptible to many insect pests during its life cycle. Thus, genetic transformation 

can be used to introduce genes for insect resistance into the variety of interest. Hence, in this 

study, different regeneration and transformation conditions were optimized. Transformation 

vectors containing GUS and GFP genes were used for transient transformation studies. 

Cowpea has been regenerated from cotyledonary node (CN) explants on a medium containing 

varying level of BA alone or in combination with 0.5 µM Kinetin or NAA. Medium 

supplemented with 3 µM BA and 0.5 µM Kin was optimal for multiple shoot production. CN 

explants obtained from BA supplemented pre-conditioning medium showed better shoot 

production rate than those from medium supplemented with TDZ. Rooting of in vitro shoots 

was obtained on media with or without IBA, and the in vitro rooted plantlets were 

successfully acclimatized and transferred to greenhouse. Based on the transient 

transformation, embryo explants from dry seeds showed better transformation efficiency as 

compared to CN explants. Transformation efficiency was improved by adding 200 µM 

acetosyringone and 1 mM Na-thiosulphate to the inoculation/co-cultivation medium. In 

addition, explant orientation during co-cultivation was also indicated as one of the in vitro 

factors affecting transformation in terms of the area of explant expressing the GUS gene. 

Based on the optimized protocol, a series of transformation experiment were conducted to 

introduce B.t cry genes into the genome of cowpea plants. PCR analysis of putative 

transgenic shoots showed presence of cry1Ac gene in the genomic DNA from two in vitro 

shoots of one experiment while positive result was not achieved in the rest of the 
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transformation experiments. RT-PCR and immunostrip analyses of the primary transformants 

showed the expression of the cry1Ac gene at RNA and protein levels, respectively.  Hence, 

given the recalcitrance of the crop, further works are required to explore the in vitro 

conditions for successful transformation of cowpea in the future.  

Key words: cowpea, regeneration, transformation, Agrobacterium, transgenic approach, 

insect pests, recalcitrance 

4.2 Introduction 

Cowpea (Vigna unguiculata L. Walp., 2n=2x=22) is a multipurpose legume widely grown in 

Africa, Asia and Latin America (Brar et al., 1997a; Brar et al., 1997b; Ehlers and Hall, 1997; 

Timko and Singh, 2008). It is used as a food for human consumption and feed for animals 

(Timko and Singh, 2008). Cowpea contains high protein level that makes it a good and cheap 

source of dietary protein for millions of people mainly in Africa and Asia (Brar et al., 1997b; 

Diouf and Hilu, 2005).  

The production of cowpea is affected by many biotic and abiotic factors.  Insect pests are one 

of the biotic factors causing substantial yield losses by attacking cowpea both in the field and 

during storage (Jackai and Daoust, 1986). There is always a major pest that could cause 

damage to the plants and grains in the life cycle of cowpea (Fatokun, 2002). Some of the 

most important pests include cowpea pod borer (Maruca vitrata), cowpea seed moth (Cydia 

ptychora), cowpea weevil (Callosobruchus maculatus), cowpea leaf beetle (Ootheca 

mutabilis) and cowpea curculio (Chalcodermus aeneus) (Jackai and Daoust, 1986; Popelka et 

al., 2004; Chaudhury et al., 2007). 

Benefits of genetic transformation in crop improvement have been well documented. With 

the application of genetic transformation, there is no need to expect cross compatibility to 

transfer trait from one species to another. This has opened opportunities to use gene of 

interest for new trait from any source (Korth, 2008). Cross incompatibility is one of the 

challenges breeders and researchers have managed to overcome through genetic 

transformation. In some crops, some of the economically important traits are lacking or 

available in distant relative species which makes the application of conventional 

improvement approaches very difficult or sometimes impossible. For example, resistance trait 
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for insect pests is lacking in cowpea (Chaudhury et al., 2007) and its introgression from wild 

relative or other closely related species has been limited by cross-incompatibility and co-

transfer of unwanted trait (Machuka, 2002; Singh et al., 2002; Popelka et al., 2004; 

Chaudhury et al., 2007). Thus, genetic transformation can help to address this problem so that 

any of the needed insect resistance traits can be introduced to the variety of interest (Machuka 

et al., 2002). This can be witnessed by the development of transgenic plants of different crops 

(for example cotton, maize, and pea) reported so far.  

Even though genetic transformation has been used to develop transgenic crops with news 

traits, a number of pre-requisites have to be fulfilled. One of the pre-requisites is the 

availability of suitable regeneration procedure amenable to transformation protocol (Brar et 

al., 1997b; Popelka et al., 2006; Cardoza, 2008). In some crops, the protocols are well 

documented and the application of the protocols is a matter of capacity rather than 

availability. On the other hand, in some orphan crops likes cowpea, regeneration and 

transformation procedures are still challenging (Brar et al., 1997b; Somers et al., 2003; 

Chaudhury et al., 2007; Bakshi et al., 2011). 

During the last few decades, cowpea has been subjected to in vitro studies ranging from 

simple regeneration to genetic transformation. Cowpea has been cultured in vitro using 

explants such as shoot tips, embryos (whole or sliced) from immature or mature seeds, 

cotyledons, cotyledonary node from germinated seedlings and leaf cuttings/discs.  

Regeneration was successfully obtained on a media supplemented with different plant growth 

hormones mainly BA (Table 8). However, there is no consistence in terms of the molar 

concentration used among the reports and the currently available regeneration protocols are 

optimized on a very few cultivars limiting the universal usage of the protocols. In some cases, 

these regeneration protocols were used for genetic transformation with low success rate. In 

addition to organogenesis, somatic embryogenesis was also used in cowpea in vitro 

regeneration by culturing explants on a medium supplemented with 2,4-D (2.3 - 4.52 µM)  

for embryo induction and 2,4-D (0.05-0.45 µM) and ABA (5 µM) for embryo maturation 

(Anand et al., 2000; Ramakrishnan et al., 2005). In both reports, the conversion rate of the 

induced somatic embryos into plantlets was low (5-32 %) which could limit the application of 

somatic embryogenesis in the genetic modification of cowpea. 

Both Agrobacterium-mediated and direct transformations were used in cowpea genetic 

manipulations (Table 9). Of these methods, Agrobacterium-mediated transformation is the 
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most popular method. Using direct gene transfer methods, only five groups (four with 

biolistic and one with in planta electroporation) have reported the successful development of 

transgenic cowpea lines. According to the different reports (Table 9), transformants were 

achieved with better efficiency using Agrobacterium-mediated method (1.43-3.6 %) than the 

direct method (0.14-0.9 %). In most of the transformation reports, there is either one or two 

of the following problems: low transformation efficiency, no information on the inheritance 

of the transgene and/or lack of Mendelian inheritance of the introduced transgene. These 

problems underline the difficulty of producing transgenic lines in cowpea compounded by 

many factors ranging from the crop itself to the lack of robust protocols.  

Cowpea is a very recalcitrant crop to in vitro regeneration and transformation (Brar et al., 

1997b; Somers et al., 2003). Regeneration study on different cowpea varieties indicated that 

regeneration procedure has to be optimized for the variety of interest due to varietal 

difference (Brar et al., 1997b; Brar et al., 1999; Popelka et al., 2006). This has limited the use 

of the available regeneration and transformation protocols for the variety in hand. Moreover, 

cowpea is economically more important in resource limited areas of the world such as Africa 

which limited the application of modern technology such as genetic transformation to 

develop improved varieties (Machuka et al., 2002).  

In general, there is no robust protocol for regeneration and transformation of cowpea posing 

challenge in the application genetic transformation in its improvement programs. Thus, fine-

tuning of the existing regeneration protocols is needed in order to optimize protocol which 

could work across varieties.  

The general aim of this part of the study was to develop transgenic cowpea with new 

agronomic traits through Agrobacterium-mediated transformation. In line with this aim, the 

following two objectives were pursued during the study time. The first objective was to 

optimize in vitro regeneration conditions suitable for Agrobacterium-mediated transformation 

of Kenya cowpea variety K80. The specific factors considered include (1) medium for (a) 

seed pre-conditioning, (b) multiple shoot induction, (c) root induction, (d) inoculation and (e) 

co-cultivation and (2) explant type. In the second objective, using the optimized protocol, 

attempts were made to develop insect resistant transgenic cowpea lines expressing either 

cry1Ab or cry1Ac gene. 
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Table 8. Summary of cowpea regeneration during the last few decades 

Variety(cultivar) Explant Basic 
Medium Hormone and concentration Average number of 

shoots  per explant Reference 

VITA 5-EXIITA Shoot tip meristem MSB5 0-0.5 µM BA + 0-0.5 µM NAA - (Kartha et al., 1981) 
Temine Shoot tips MS 0-0.2 µM IAA + 0-0.2 µM 2iP - (Sebastian, 1983) 
C-152 Calli from primary leaves B5 5 µM BAP 3.3 (Muthukumar et al., 1995) 
C152 Calli from in vitro leaves MS 0.5-2 mg/L 2,4-D - (Kulothungan et al., 1995) 
Georgia-21 Shoot tips MS 22.2 µM BA + 0.054 µM NAA or 

0.045 µM 2,4-D 
~5 (Brar et al., 1997a) 

17 different genotypes Cotyledons MS 4.4 µM BA 4-12 (Brar et al., 1999) 
EPACE-1 Longitudinal thin cell layers MSB5 10 µM TDZ for pre-treatment 

1 µM IBA + 1 µM TDZ for bud 
proliferation 

Up to 32.5 shoot buds (Van Le et al., 2002) 

Mognolia Blackeye Immature embryo B5 4.4 µM BA 10.1 (Choi et al., 2003) 
C152 Calli from in vitro leaves MSB5, B5 0.1-0.5 mg/L 2,4-D and 0.05 

mg/L TDZ 
Somatic embryos 
followed by plantlets 

(Ramakrishnan et al., 2005) 

Blackeye Shoot tips MSB5 8.88 µM BA 8 (Mao et al., 2006) 
19 different cultivars Embryonic axis from 

        Immature seeds 
        immature seeds 

B5 or MS 7.51 µM BAP 
 
3.3-6.1 
2.2-5.9 

(Popelka et al., 2006) 

V-585 CN from 4 days old seedling on 
MSB5 + 10 µM BA 

MSB5 5 µM BAP ~6-6.3 (Chaudhury et al., 2007) 

Mougne CN with one cotyledon 
CN with two cotyledon 
CN without cotyledon 

B5 4.4 µM BA 6.64 
8.3 
4.57 

(Diallo et al., 2008) 

IT86D1010 Decapitated embryo MS 8.8 µM BA for induction, 2.2 µM 
BA for proliferation and 0.44 µM 
BA for Elongation 

5-6 (Yusuf et al., 2008) 

Four different cultivars Shoot meristem from embryos 
precultured 3-5 days on MS medium 
containing 8.9 µM BA 

MS 0.89 µM BA 6.29-6.89 (Manoharan et al., 2008) 

IT86D1010 Decapitated embryo MSB5 2.2- 8.8 µM BA ? (Raji et al., 2008) 
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Table 8. Continuation 

Pusa Komal CN MSB5 5 µM BA 6.9 (Solleti et al., 2008b) 
Co(cp)-7 CN from MSB5 + 13.3 µM BA MSB5 6.6 µM BA and then 0.5 µM BA 13.5 (Raveendar et al., 2009) 
Akkiz Shoot tips MS 1.13 µM TDZ 4.72 (Aasim et al., 2009a) 
Karagoz Shoot tips MS 1.13 µM TDZ 2.86 (Aasim et al., 2009a) 
Akkiz Plumular apices from embryo cultured 

on MS+ 44 µM BA for 10 days 
MS 4.4 -5.5 µM BAP 6.42-7.11 (Aasim et al., 2009b) 

Akkiz DE from 5 days old embryo on MS + 
44 µM BA 

MS 4.4 µM BA + 0.54 µM NAA 10.33 (Aasim et al., 2010) 

Rabo-de-tatu and 
Branco 

Shoot tips MS 1.1 µM BA ? (do Rego et al., 2012) 

Akkiz Longitudinally sliced CN 
Unsliced CN 

MS 
MS 

3.33-4.44 µM BA 
2.22 µM BA 

9.79-9.92 
9.33 

(Aasim et al., 2012) 

Cheng-jiange II CN MSB5 5.3 µM BA 4.47 (Tang et al., 2012) 
Eight cultivars CN MSB5 5 µM BA + 0.5 µM Kinetin 1.14-6.72 (Bakshi et al., 2012a) 
Akkiz Immature cotyledon MS 2.2 µM BA 5 (Aasim et al., 2013) 
Cheng-jiange II CN MSB5 2.2 -6.6 µM BA 4.59-5.53 (Tie et al., 2013) 
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Table 9. Three decades of cowpea transformation efforts 

Date Explants used Transformation 
methods 

Agrobacterium 
strain Gene Transgenic status Remarks Transformation 

efficiency Reference 

1986 Leaf disc from 
primary leaves 

Agrobacterium 
tumefaciens 

C58C1 Kanamycin resistant Transgenic calli No whole plant was 
regenerated 

- (Garcia et al., 
1986) 

1987 Leaf disc from 
primary leaves 

Agrobacterium 
tumefaciens 

C58C1 mRNA of cowpea 
mosaic virus(CPMV) 

Transgenic calli 
 

No transgenic  plant was 
regenerated 

- (Garcia et al., 
1987) 

1991 Mature embryos Agrobacterium 
tumefaciens 

A281 and C58 uidA Transgenic calli 
and Chimeric 
transformants 

No transgenic plant was 
regenerated 

- (Penza et al., 
1991) 

1992 Mature embryos Biolistic - uidA Transient 
expression 

 - (Penza et al., 
1992) 

1993 Mature embryos Biolistic - uidA Transient 
expression 

 - (Akella and 
Lurquin, 
1993) 

1995 Nodal meristems In planta 
electroporation 

- uidA Transgenic plants   (Chowrira et 
al., 1995; 
Chowrira et 
al., 1996) 

1996 De-embryonated 
cotyledon from 
2-3 day old 
seedling 

Agrobacterium 
tumefaciens 

LBA4301 Hygromycin 
phosphotransferase 
(hpt) 

Hygromycin 
resistant  Primary 
transformants 

Progeny from primary 
transformant was not 
reported 

Not indicated (Muthukumar 
et al., 1996) 

1997 Embryo from 
immature seeds 

Agrobacterium 
tumefaciens 
Biolistic 

LB4404 nptII, αAI-1, uidA and 
bar 

Primary 
transformants 

Inheritance of the 
transgene was not 
reported.  

0.75 %  
 
0.2 % 

(Kononowicz 
et al., 1997) 

2003 Mature embryos Biolistic - uidA and bar  Transgenic plants Transgene was not 
inherited in a Mendelian 
laws 

0.14 % (Ikea et al., 
2003) 

2006 Decapitated 
embryo attached 
cotyledon 

Agrobacterium 
tumefaciens 

AGL1 uidA and bar Transgenic plants Transgene inheritance in 
a Mendelian laws was 
confirmed in progeny 

0.05-0.15 % (Popelka et 
al., 2006) 

2007 CN from 4 day 
old seedling 

Agrobacterium 
tumefaciens 

EHA105 uidA and nptII Transgenic plants Transgenic progeny 0.76 % (Chaudhury et 
al., 2007) 

2008 Decapitated 
embryo axes 

Agrobacterium 
tumefaciens 

LBA4404 uidA and npt Primary 
transformant 

No information on 
progeny analysis 

2.96 % (Raji et al., 
2008) 

2008 Embryonic axes Biolistic - ahas and uidA  Transgenic 
progeny 

T2 generation  0.90 % (Ivo et al., 
2008) 
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Table 9. Continuation 

Date Explants used Transformation 
methods 

Agrobacterium 
strain Gene Transgenic status Remarks Transformation 

efficiency Reference 

2008 Nodal buds In planta 
electroporation 

- Cry1Ab and NptII Transgenic plants The transgene 
inheritance did not 
follow Mendelian laws 

Not indicated (Adesoye et 
al., 2008) 

2008 CN from three 
day old seedling 

Agrobacterium 
tumefaciens 

LBA4404 NptII and uidA Transgenic lines 
expressing nptII 
and gus genes  

T1 generation with 
Mendelian inheritance 
of the transgene 

1.64 % (Solleti et al., 
2008b) 

2008 CN from three 
day old seedling 

Agrobacterium 
tumefaciens 

LBA4404 NptII, αAI-1 and uidA Transgenic 
progeny 

Mendelian inheritance 
of αAI-1 in T1 progeny 
was confirmed. 

1.67 % (Solleti et al., 
2008a) 

2010 CN Agrobacterium 
tumefaciens 

LBA4404 uidA and hpt Primary 
transformant 

Inheritance to progeny 
was not reported 

1.61 % (Raveendar 
and 
Ignacimuthu, 
2010) 

2010 Embryo Vacuum assisted 
Agrobacterium 
tumefaciens 

pGV3850 
pGV2260 
 

Bar and uidA 
 hpt and uidA 

Transgenic 
progeny 

Data on the Mendelian 
inheritance of the 
transgene was not 
provided 

2.5 % 
3.9 % 

(Adesoye et 
al., 2010) 

2011 CN from three 
day old seedling 

Agrobacterium 
tumefaciens 

EHA105 NptII, cry1Ac and 
uidA 

Transgenic plants Mendelian inheritance 
of cry1Ac gene in T1 
progeny was indicated 

3.09 % (Bakshi et al., 
2011) 

2012 CN Agrobacterium 
tumefaciens 

EHA105 NptII and uidA Transgenic 
progeny 

Mendelian inheritance 
of nptII gene in T1 
progeny was indicated 

0.6-2.1 % (Bakshi et al., 
2012a) 

2012 CN from 4 day 
old seedling 

Agrobacterium 
tumefaciens 

EHA105 Phosphomannose 
isomerase(pmi)  

Transgenic 
progeny 

Mendelian inheritance 
of pmi gene in T1 
progeny was indicated 

3.6 % (Bakshi et al., 
2012b) 

2013 Immature 
cotyledon 

Agrobacterium 
tumefaciens 

LBA4404 bar and uidA Putative transgenic 
plants 

Mendelian inheritance 
of the transgene was not 
provided in the progeny 

1.5 % (Aasim et al., 
2013) 

2013 Embryonic axes 
from mature 
seeds 

Biolistic - atahas and uidA Imazapyr-
tolerant lines 

Mendelian inheritance 
of transgene at T1 
generation was 
indicated 

Not indicated (Citadin et al., 
2013) 

Adapted and updated from different sources (Citadin et al., 2011; Diouf, 2011; Manman et al., 2013) 
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4.3 Materials and methods 

4.3.1 Plant material  

Seed of the Kenyan cowpea variety K80 (Fig. 17) were used for optimization of regeneration 

and transformation conditions as well as for stable transformation with B.t cry genes. 

 
Fig. 17 Seeds of Kenyan cowpea variety K80 collected from greenhouse grown plants. 

4.3.2 Agrobacterium strains and transformation vectors 

4.3.2.1 Transient transformation 

For transient transformation, a transformation vector harboring GUS (pIBGUS) and GFP 

(pEGAD-GFP) genes were used. The pIBGUS vector (de Kathen and Jacobsen, 1990) in  

Agrobacterium tumefaciens strain EHA101 (Hood et al., 1986) was used for transient GUS 

expression. Fig. 18 shows the physical map of the pIBGUS vector T-DNA region. The 

transformation vector contains a 35S-promoter driven GUSA-gene with an ST-LS1 intron 

reporter gene as well as a 35S-promoter driven pat gene  and a Nos-NPTII gene as plant 

selectable markers (de Kathen and Jacobsen, 1990; Krishnamurthy et al., 2000).  
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Fig. 18 The physical map of the pIBGUS transformation vector T-DNA region (Dr. Fathi 
Hassan, personal communication). The arrows show the direction of transcription.  

 

The pEGAD-GFP vector (Cutler et al., 2000) in Agrobacterium tumefaciens strain EHA105 

(Hood et al., 1993) was used for transient GFP expression. Fig. 19 shows the physical map of the 

pEGAD-GFP vector T-DNA region. The GFP gene is under the control of 35S promoter from 

CaMV and OCS terminator from Agrobacterium and the bar gene is under the control of 35S 

promoter and terminator from CaMV.  

 

Fig. 19 The physical map of the pEGAD-GFP transformation vector T-DNA region (Dr. 
Fathi Hassan, personal communication). The arrows show the direction of transcription. 

4.3.2.2 Stable transformation  

Agrobacterium tumefaciens strain EHA105 (Hood et al., 1993) carrying a dual binary vector 

pGreenII/pSoup, pGIIMH35s (Hellens et al., 2000) was used for this purpose. The binary 

vector harbors the gene of interest (either cry1Ac or cry1Ab) and the bar gene between its 

right and left borders. Fig. 20 shows the functional map of the transformation vector for both 

genes.  

The cry genes (cry1Ac and cry1Ab, 1.845 kb each) are under the control of double 35S 

promoter from CaMV and nopaline synthase (nos) terminator from Agrobacterium 

tumefaciens. They are plant codon usage optimized insect resistance genes from Bacillus 

thuringiensis (Sardana et al., 1996; Cheng et al., 1998). They encode crystal proteins toxic to 

insect pests in the Lepidopteran order (Hofte and Whiteley, 1989).  

The bar gene from Streptomyces hygroscopicus (Murakami et al., 1986; Thompson et al., 

1987) under the control of a nos promoter and terminator sequence of Agrobacterium 

tumefaciens is used as a plant selectable marker gene. It encodes the enzyme 

phosphinothricin acetyltransferase (PAT) and confers resistance to bialaphos, glufosinate 
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ammonium and phosphinothricin (PPT), the active compounds of the total herbicide 

BASTA®, through acetylation (Thompson et al., 1987; Lindsey, 1992; Finer and Dhillon, 

2008; Miki, 2008). 

The vectors also contain an NptI gene outside the T-DNA region for Kanamycin resistance. 

The NptI gene enables selective mass production of the bacterial cells in/on Kanamycin 

containing medium.  

 

Fig. 20 The functional map of the transformation vector harboring cry1Ac or cry1Ab gene 
(Kefale, 2006). 
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4.3.3 Seed disinfection and explant preparation 

For explant preparation, cowpea seeds were surface sterilized using the procedure for pea 

seeds with little modification as follows: first the seeds were washed with tap water and 

treated with 70 % (v/v) ethanol for one minute followed by 3-5 times rinsing with sterile 

distilled water. Then the seeds were treated under the clean bench with 6 % sodium 

hypochlorite (with a drop of Tween20) for 30 minutes with occasional shaking (preferably on 

a shaker at ~120 rpm). The treated seeds were thoroughly washed with sterile distilled water 

(4–5 times) to remove any trace of sodium hypochlorite. The surface sterilized seeds were 

imbibed overnight (~12 hr) in sterile distilled water (preferably on a shaker at ~120 rpm and 

26-28°C). The overnight imbibed seeds were used to prepare two types of explant: 

decapitated embryo (DE) and cotyledonary node (CN).  

For DE preparation (Fig. 21a), the seeds were carefully cut and opened. Then, the seed coat 

and cotyledons were removed, and the DE was obtained by removing the root and shoot tips 

of the embryos.  

For CN preparation (Fig. 21b), the surface sterilized and overnight imbibed seeds were 

germinated on a pre-conditioning medium for 3-4 days at 22 ± 2 °C and 16 hr photoperiod. 

Then, the CN was isolated and used for the experiment.  

 

 

Fig. 21 Explants preparation for in vitro regeneration and transformation of cowpea: a) 
Decapitated embryo and b) Cotyledonary node. 

(a) (b) 
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4.3.4 Optimization of the in vitro conditions for regeneration and 

Agrobacterium-mediated transformation of cowpea  

For cowpea transformation, there is no universally applicable and genotype neutral protocol 

yet. Hence, the existing protocols need to be optimized for the specific variety of interest. 

Because of this gap, different in vitro conditions were optimized in a series of experiments. 

The optimized conditions include media (for shoot regeneration, pre-conditioning, 

inoculation/co-cultivation and selective regeneration), explant type and Agrobacterium 

concentration. Then, based on the optimized protocol, stable transformation experiment with 

cry1Ac and cry1Ab genes were attempted to develop insect resistant cowpea lines. The 

detailed description of the protocol optimization and transformation experiments is given in 

the following sub-sections. 

4.3.4.1 Effect of BA alone or in combination with either Kin or NAA on multiple 

shoot production in cowpea using cotyledonary node explants 

Ten BA concentrations (0, 1, 2, 3, 4, 5, 6, 7, 8, 9 and 10 µM) were tested alone or in 

combination with 0.5 µM Kinetin or 0.5 µM NAA. The experiment was conducted in 

completely randomized design with three replications. Twelve cotyledonary node explants 

per treatment per replication were used. The performance of the explants were evaluated (Fig. 

22) after three weeks for the regeneration efficiency (0-1), presence of callus (scale: 0,1,2,3,4, 

and 5 with 0 means no callus and 5 means big callus size), number of shoots, the length of 

shoot (cm), the number of root and the length of roots (cm). The culture room conditions 

were 22 ± 2 °C and 16/8 hr photoperiod.  

 

Fig. 22 Evaluation parameters of cowpea regeneration from CN explants 
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4.3.4.2 Effect of pre-conditioned medium on multiple shoot production from CN 

explants 

The most commonly used explants in cowpea regeneration are cotyledonary nodes from 3-4 

days old seedlings germinated on pre-conditioning media. The effect of seed soaking and 

germination media on multiple shoot induction was studied. The media included Water-Agar, 

MSB5, MSB5 + 10 µM BA and MSB5 + 10 µM TDZ. In addition, in a separate experiment, 

the effect of different levels of either BA or TDZ (0-15 µM) were also tested as pre-

conditioning medium supplements. After surface sterilization, seeds were treated as indicted 

in Fig. 23a. Fig. 23b shows seedling germinated on different pre-conditioning media. The 

cotyledonary nodes obtained from each treatment were placed on the same shoot induction 

medium. After three weeks, the number shoots per explant was recorded and then subjected 

to further analysis.  

 

 

Fig. 23 Seed pretreatment: (a) overnight soaking and pre-conditioning schemes for seeds and 
(b) seedlings germinated on the different pre-conditioning media and used for preparation of 
CN explants. 

(a) 

(b) 
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4.3.4.3  Effect of inoculation and co-cultivation medium on multiple shoot 

production of cowpea explants 

Beside overnight soaking and pre-conditioning media, the effect of explant type (DE and CN) 

and inoculation/co-cultivation media were also studied on multiple shoot induction. Fig. 24 

shows the scheme of explants inoculation and co-cultivation during Agrobacterium-mediated 

transformation. Following this scheme, explants were treated with the different media 

(without Agrobacterium) and then evaluated for multiple shoot production on shoot induction 

medium.  

 

Fig. 24 Schematic representation of explants treatment with inoculation and co-cultivation 
medium and then culturing on shoot induction medium (SIM). B5i, B5hT, CCMb and CCMc 
are media used during inoculation and co-cultivation.  

 

4.3.4.4 Effect of IBA on rooting characteristic of cowpea in vitro shoots 

For in vitro rooting, actively growing shoots were cultured on MSB5 medium supplemented 

with different levels of IBA (0, 1, 2, 2.5, 3, 4, 5, 10, 15 and 20 µM). The rooting 

characteristic of the shoots were evaluated for the presence of roots, the number of roots and 

the length of roots (cm) (Fig. 25).  
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Fig. 25 Evaluation of in vitro rooting of cowpea shoots  

 

4.3.4.5 Optimization of phosphinothricin (PPT) concentration for selective 

regeneration of putative transgenic shoots and functional characterization 

of cowpea plants  

To test the sensitivity of cowpea to PPT and Basta® herbicide solution, two experiments were 

conducted. In the first experiment, the sensitivity of in vitro shoots was tested on a medium 

supplemented with PPT. Both primary shoots from in vitro germinated seeds on water-agar 

medium and secondary shoots from cotyledonary nodes cultured on shoot induction medium 

(MSB5 + 3 µM BA +0.5 µM Kin) were used for this experiment. The shoots were cultured on 

shoot induction medium supplemented with different concentration of PPT (1-4.5 mg/L). The 

experiment was laid in a completely randomized design with three replications. Twelve 

explants were used per treatment per replication. The culture room conditions were 22 ± 2 °C 
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and 16/8 hr photoperiod. The percentage of surviving shoots was recorded after three weeks 

and the data were subjected to analysis.  

In the second experiment, leaf paint functional assay (Schroeder et al., 1993) was used to 

determine the sensitivity of cowpea plants to BASTA® (200g/l stock) herbicide solutions. 

Seeds of cowpea (variety K80) were grown in the green house and used for the assay. The 

herbicide solutions (with a drop of Tween20) at different levels of the active ingredient (0, 

50, 100, 200, 300, 400, 500, 600, 700, 800, 900 and 1000 mg/L) were prepared and applied 

onto the upper side of the leaves. The sensitivity of the leaves was evaluated visually one 

week after application.  

4.3.4.6 Optimization of inoculation and co-cultivation conditions using transient 

transformation 

Transient transformation was conducted to optimize inoculation and co-cultivation 

conditions. Transformation vectors harboring GUS (EHA101 pIBGUS) and GFP (EHA105 

pEGAD-GFP) genes were used. Glycerol stock of Agrobacterium was grown overnight in 

YEP medium supplemented with 50 mg/L Kanamycin on a shaker at 28°C. The overnight 

culture was harvested by centrifugation (4,500 rpm and 4 °C) and used for transformation of 

explants after re-suspended in the inoculation medium. 

1.1.1.1.1 Effect of inoculation and co-cultivation media on transient transformation of 

DE and CN explants 

To test media for inoculation and co-cultivation, three paths of transformation were followed 

(Fig. 26). The first path was based on the procedure for pea transformation (Schroeder et al., 

1993) using B5i medium (B5 medium + 10 g/L sucrose + 10 g/L glucose + 2 g/L MES + 100 

µM acetosyringone, pH 5.6) for inoculation and B5hT medium ( B5 medium + 1 µM Kinetin 

+ 5 µM TDZ + 7.4 µM Adenine + 0.88 g/L CaCl2.2H2O + 0.5 g/L KNO3 + 0.5 g/L 

MgSO4.7H2O + 0.8 g/L Glutamine + 10 mg/L Glutathione + 30 g/L sucrose + 2 g/L MES + 

4.5 g/L Gelrite, pH 5.5) for co-cultivation. The second path was based on the protocol 

reported by Solleti et al. (2008a) using MSB5 medium (pH 5.5) supplemented with 1µM 

BAP, 1mM dithiothreitol and 8.3 mM L-Cysteine and 100 µM acetosyringone for inoculation 

(liquid medium) and co-cultivation (semi-solid medium, 7.5 g/L plant agar)[CCMb]. The last 
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path was similar to the second scheme except 3 µM BAP and 0.5 µM Kinetin were used 

instead of 1 µM BAP [CCMc: MSB5 medium pH 5.5 supplemented with 3 µM BAP, 0.5 µM 

Kinetin, 1mM dithiothreitol and 8.3 mM L-Cysteine and 100 µM acetosyringone]. In all the 

transformation schemes 60 min inoculation time and three days of co-cultivation were used. 

GUS expression was detected as described by Jefferson et al. (1987) and the expression of 

GFP was analyzed under the microscope using UV lamp with filter.    

 

Fig. 26 Inoculation and co-cultivation schemes for transient transformation of cowpea. 

  

1.1.1.1.2  Sonication and vacuum infiltration assisted transient transformation in cowpea 

Sonication and vacuum infiltration assisted Agrobacterium-mediated transformation was also 

conducted to further improve transformation efficiency using the CCMb medium for 

inoculation and co-cultivation. The transformation vector containing the GUS gene was used 

for this experiment. Three levels of sonication intensity (0, 30 and 60 seconds) and three 

levels of vacuum infiltration (0, 2.5 and 5 minutes) were applied on the explants. As explants 

embryos from overnight soaked seeds were used. 

1.1.1.1.3  Effect of bacterial culture concentration on transient transformation 

The effect of bacterial concentration on the transient transformation was tested using the GUS 

construct and DE explants. An overnight culture of Agrobacterium (OD600=1-1.5) was 

harvested (at 4,500 rpm and 4°C) and re-suspended in inoculation medium [CCMbT= 

modified CCMb medium containing higher concentration of acetosyringone (200 µM) and 1 

mM Na-thiosulphate]. The OD600 of the re-suspended Agrobacterium was adjusted to 0.5, 
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1.0, 1.5 and 2.0 and then used for transformation of DE explants. The transformed explants 

were co-cultivated on CCMbT medium in the dark at 22±2 °C for three days. GUS assay was 

conducted as described by Jefferson et al. (1987). Transformation efficiencies (TE, %) and 

the intensity of GUS expression were determined at the different levels of bacterial 

concentration.  

4.3.4.7  Agrobacterium-mediated transformation of cowpea with B.t cry genes 

Based on the optimized conditions, transformation experiments were conducted with 

transformation vectors harboring the cry1Ac or cry1Ab gene for insect resistance. In the 

regenerated putative transgenic shoots, genomic integration of the transgene was analyzed by 

PCR using transgene specific primers.  

4.4 Results 

4.4.1 Regeneration of cowpea from cotyledonary node explants 

Kenyan cowpea variety (K80) was regenerated on MSB5 medium containing BA alone or in 

combination with Kinetin or NAA. Regeneration performance of explants was evaluated for 

regeneration frequency (shoot formation), callus induction, shoot number and length, as well 

as root number and length. Except regeneration efficiency, other parameters were 

significantly affected on the tested media (Table 10).  

The regeneration efficiency ranged from 0.87-1.00 and there was no significant difference 

among the different media. Callus was observed on all media containing plant growth 

hormones and was significantly affected on media containing different molar concentration 

of plant hormones. The biggest callus size was recorded on media containing higher molar 

concentrations of BA (6-10 µM). The size of the induced callus increased with the increase in 

the molar concentration of BA in the medium.  

The addition of BA alone or in combination with kinetin or NAA to the medium had a 

significant effect on the number of shoots per CN explants. The average number of shoots per 

explant ranged from 1.4 to 4.8. The highest number of shoots (4.8) per explant was observed 

on medium containing 3 µM BA and 0.5 µM Kinetin. Statistically the same average number 
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of shoots per explant was obtained on a medium containing 5 µM BA. On the other hand, the 

number of shoots per explant obtained on media containing 2-4 µM BA alone or in 

combination with kinetin or NAA and 6-7 µM BA was not significantly different from the 

number of shoots per explant obtained on medium containing 5 µM BA. The lowest number 

of shoots per explants was observed on a medium with low or no growth hormone or on a 

medium containing high concentration of BA. 

The observed shoot length ranged from 2.16-8.82 cm and was significantly affected on media 

supplemented with different molar concentrations of BA. The highest shoot length (8.82 cm) 

was obtained on a medium with no plant hormones. On a medium containing 1 µM BA, 

shoot length was reduced to 4.07 cm and the shortest shoot length was obtained on medium 

containing 5 µM BA and 0.5 µM NAA. Statistically the same shoot length was obtained on 

medium supplemented with 1-3 µM BA alone or in combination 0.5 µM Kinetin or NAA. 

Shoot length became much shorter (2.16-3.80 cm) when moderate to high concentration of 

BA was used in the media.  

On the regeneration medium, the explants were also evaluated for the rooting characteristics. 

Accordingly, the result showed that the addition of growth hormones into the regeneration 

medium had a significant effect on the rooting characteristics of the explants. On plant 

growth hormone free medium, the average root number and length (cm) per explants was 

4.56 and 6.33, respectively, and both root number (1.56 per explant) and length (0.71 cm) 

were significantly reduced on a medium supplemented with 1 µM BA. On media containing 

2-10 µM BA alone or in combination with kinetin or NAA, almost all the explants did not 

produce roots. 
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Table 10. The regeneration performance on cowpea var. K80 using cotyledonary node explants from three days old germinated seedlings 

Medium code 
MSB5 medium plus 

R* C* SN* SL* RN* RL* BA(µM) Kinetin (µM) NAA(µM) 
C0 0 0 0 0.96 a 0.00h 1.52 de 8.82 a 4.56 a 6.33 a 
C1 1 0 0 0.88 a 1.28g 1.40 e 4.07 bcd 1.56 b 0.71 b 

C1K 1 0.5 0 0.87 a 1.67 fg 2.60 bcde 2.95 bcde 0.00 c 0.00 b 
C1N 1 0 0.5 0.94 a 2.29 cdefg 2.09 cde 4.40 b 0.12 c 0.10 b 
C2 2 0 0 1.00 a 2.27 defg 3.24 bc 4.24 bc 0.00 c 0.00 b 

C2K 2 0.5 0 1.00 a 3.78 ab 3.30 bc 3.35 bcde 0.00 c 0.00 b 
C2N 2 0 0.5 0.94 a 2.31 cdefg 2.83 bcde 3.58 bcde 0.03 c 0.01 b 
C3 3 0 0 1.00 a 2.32 cdefg 2.88 bcde 3.80 bcde 0.00 c 0.00 b 

C3K 3 0.5 0 1.00 a 3.40 abcd 4.80 a 3.68 bcde 0.00 c 0.00 b 
C3N 3 0 0.5 1.00 a 2.94 bcdef 3.15 bc 3.29 bcde 0.06 c 0.01 b 
C4 4 0 0 0.96 a 2.56 bcdef 2.80 bcde 2.51 cde 0.00 c 0.00 b 

C4K 4 0.5 0 0.90 a 1.10 g 2.40 bcde 2.41 de 0.00 c 0.00 b 
C4N 4 0 0.5 0.91 a 3.18 abcde 2.91 bcde 2.45 de 0.00 c 0.00 b 
C5 5 0 0 1.00 a 2.06 efg 3.64 ab 3.36 bcde 0.00 c 0.00 b 

C5K 5 0.5 0 0.87 a 3.00 abcde 2.20 bcde 2.20 e 0.00 c 0.00 b 
C5N 5 0 0.5 0.94 a 3.09 abcde 2.66 bcde 2.16 e 0.00 c 0.00 b 
C6 6 0 0 0.90 a 3.10 abcde 3.00 bcd 2.87 bcde 0.00 c 0.00 b 
C7 7 0 0 0.96 a 3.38 abcd 2.31 bcde 2.77 bcde 0.00 c 0.00 b 
C8 8 0 0 1.00 a 3.25 abcde 2.29 bcde 2.68 bcde 0.00 c 0.00 b 
C9 9 0 0 0.95 a 4.05 a 1.81 cde 2.56 cde 0.05 c 0.08 b 

C10 10 0 0 0.95 a 3.59 abc 2.14 bcde 2.34 e 0.00 c 0.00 b 
*Means followed by the same letter within column are not significantly different (REGWQ, p=0.05); R: Regeneration efficiency (0-1), C: Callus size (0-5), SN: Shoot 
Number, SL: Shoot Length (cm), RN: Root Number and RL: Root Length (cm). 
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4.4.2  Effect of pre-conditioning medium on multiple shoot production from 

CN explants 

Two experiments were conducted to study the effect of pre-conditioning media on multiple 

shoot production. In the first experiment, CN from seedling pre-conditioned on water-Agar 

medium, MSB5 medium and MSB5 medium supplemented with either 10 µM BA or TDZ 

were cultured on the multiple shoot induction medium. The result indicated that CN from 

pre-conditioning medium supplemented with 10 µM TDZ produced significantly less 

number of shoots per explants (Fig. 27). There was no statistically different numbers of 

shoots per explant from CN obtained from the other three pre-conditioning media (water-

Agar, MSB5 and MSB5 with 10 µM BA). 

 
Fig. 27 Effect of seed soaking and germination media (pre-conditioning) on multiple shoot 
induction from CN explants. Means followed by the same letter are not significantly 
different (REGWQ, p=0.05).  
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In the second experiment, regeneration from CN explants obtained from seedlings 

germinated on a medium containing different concentrations of BA or TDZ were studied for 

multiple shoot induction. The result showed the number of shoots per CN explant was 

significantly affected by pre-conditioning media, while shoot length was not (Table 11). CN 

explants obtained from media containing 2.5-15 µM TDZ produced significantly less 

numbers of shoots per explant compared to those obtained from media supplemented with 

similar concentrations of BA or water-agar medium. The number of shoots per explant did 

not show difference when media with or without BA were used for seed germination. 

Table 11. Effect of BA and TDZ supplement in pre-conditioning media on multiple shoot 
induction in cowpea 

Plant growth regulator Concentration (µM) Shoot number* Shoot length* 
Control - 2.74abcd 3.48 a 

BA 

1 2.90abc 3.47 a 
2.5 3.13ab 3.36 a 
5 2.60bcd 3.85 a 
10 3.33a 3.38a 
15 3.17ab 3.20 a 

TDZ 

1 2.75abcd 3.27 a 
2.5 2.30cd 3.26 a 
5 2.43cd 3.67 a 
10 2.39cd 3.53 a 
15 2.18d 3.24 a 

*Means followed by the same letter within a column are not significantly different (REGWQ, p=0.05). 

4.4.3 Effect of inoculation and co-cultivation media and explant type on 

cowpea in vitro regeneration 

For transformation, explants are inoculated and co-cultivated with Agrobacterium in/on 

suitable media, i.e.; on a medium that supports both the growth of explants and infection 

with Agrobacterium. In this section, the effect of three inoculation/co-cultivation media on 

regeneration efficiency and multiple shoot induction from CN and DE explants were 

studied.  

The use of different inoculation and co-cultivation media had significant effects on the 

regeneration efficiency of cowpea from CN explants (Fig. 28). However, regeneration 
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efficiencies (ranged from 0.86 to 0.96) from DE explants were not affected by the 

inoculation and co-cultivation media. For CN explants, the highest regeneration efficiency 

(0.970) was obtained when the explants were placed directly on shoot regeneration medium 

without pretreatment followed by explants treated with CCMb medium as inoculation and 

co-cultivation medium (0.949). Next to CCMb, CN explants treated with CCMc medium as 

inoculation and co-cultivation medium showed better regeneration efficiency (0.75), while 

the poorest regeneration efficiency was obtained when B5i/B5hT media were used for 

inoculation/co-cultivation.  

 
Fig. 28 Effect of inoculation and co-cultivation media on regeneration efficiency of cowpea 
explants. Means followed by the same letter within a group (explant) are not significantly 
different (REGWQ, p=0.05). 

 

In contrast to the regeneration efficiencies, shoot number per CN and DE explants was not 

affected by the use of different media for inoculation and co-cultivation (Fig. 29). The shoot 

number per explant ranged from 2.43 to 3.34 for CN explants while it ranged from 1.78 to 

2.37 for DE explants.  
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Fig. 29 Effect of inoculation and co-cultivation media on multiple shoot production from 
cowpea explants. Means followed by the same letter within a group (explant) are not 
significantly different (REGWQ, p=0.05). 

4.4.4 Effect of IBA on in vitro rooting of cowpea shoots 

In vitro rooting of cowpea shoots was evaluated on MSB5 medium containing different 

molar concentrations of IBA. The result indicated good rooting performance of the cowpea 

shoots both on IBA free and IBA supplemented medium. Except on medium containing 2-3 

µM IBA, which gave 70-90 % rooting efficiencies, 100 % rooting efficiency was obtained 

on all other media (Table 12). The average number of roots per shoot ranged from 3.71 to 

5.90 while the average root length ranged from 3.14 to 5.02 cm. In general, the addition of 

IBA into the medium did not significantly affect both the number of root and root length 

produced by the in vitro shoots.  The in vitro rooted shoots were successfully acclimatized 

and transplanted to greenhouse (Fig. 30). The transplanted in vitro rooted plantlets were 

easily established under greenhouse with a success rate of 80%.  
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Table 12. Effect of IBA on in vitro rooting of cowpea shoots 

MSB5 + IBA (µM) Rooting Efficiency (%)* Root Number* Root Length (cm)* 

0 100a 5.40 a 3.35 a 

1 100 a 4.90 a 4.31 a 

2 70 b 3.71a 3.14 a 

2.5 70 b 3.71a 4.14 a 

3 90 ab 3.89 a 3.37 a 

4 100 a 5.30 a 5.02 a 

5 100 a 5.90 a 3.85 a 

10 100 a 4.80 a 4.25 a 

15 100 a 5.50 a 4.55 a 

20 100 a 4.70 a 4.90 a 
*Means with the same letter within a column are not significantly different (REGWQ, p=0.05). 

 
Fig. 30 Acclimatization of in vitro rooted cowpea shoots  
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4.4.5 Optimization of phosphinothricin (PPT) concentration for putative 

transgenic shoot selection 

In order to selectively regenerate putative transgenic shoots, selection conditions were 

optimized on medium containing different concentrations of PPT (0-4.5 mg/L). Shoots 

survival was not observed on media containing 1.5 mg/L or more PPT (Table 13 and Fig. 

31). About 97.1 and 77.6 % of the primary shoots survived on a medium without PPT and 

0.5 mg/L PPT, respectively, while 100 and 82.7 % of the secondary shoots from CN 

survived on a medium without PPT and 0.5 mg/L PPT, respectively. The percentage of 

shoots surviving on a medium containing 1 mg/L PPT (4 % for primary shoots and 13.3 % 

for shoots from CN) was not significantly different from the result obtained on media 

containing 1.5 mg/L or more PPT.   

Table 13. In vitro survival of shoots on MSB5 medium supplemented with different 
concentration of phosphinothricin (PPT, mg/L)  

*Means followed by the same letter within a column are not significantly different (REGWQ, p=0.05).  
NA: Not applicable 

PPT (mg/L) 
Shoot survival (%) 

Primary shoot from seeds* Secondary shoots from CN* 

0.0 97.1a 100 a 

0.5 77.6b 82.7 b 

1.0 4.0c 13.3 c 

1.5 0.0c 0.0 c 

2.0 0.0c 0.0 c 

2.5 0.0c 0.0
 
c 

3.0 0.0 c NA 

3.5 0.0 c NA 

4.0 0.0 c NA 

4.5 0.0 c NA 
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Fig. 31 State of primary shoots on medium supplemented with different concentration of 
phosphinothricin (PPT) after three weeks. 

4.4.6 Optimization of inoculation and co-cultivation conditions using 

transient transformation 

4.4.6.1 Effect of inoculation and co-cultivation media on transient 

transformation of DE and CN explants 

Transient transformation was conducted using a transformation vector containing the GUS 

and GFP reporter genes in order to optimize inoculation and co-cultivation conditions. 

Three inoculation/co-cultivation media were tested. The result showed transient 

transformation efficiencies of 33-56.3 % and 22.6-84.5 % for GUS and GFP genes, 

respectively (Fig. 32 and 33). The highest transformation efficiency was obtained when 

CCMb medium was used for both GUS (56.3 %) and GFP (84.5 %) genes. The poorest 

transformation efficiency was observed on CCMc medium. Compared to embryo explants, 

very low transformation efficiencies were observed using CN explants in respective of the 

media used for inoculation and co-cultivation (1.92 % using CCMc, 3.28 % using CCMb 

and 6.52 % using B5i/B5hT). 
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Fig. 32 Transient transformation efficiency in cowpea embryo from dry seeds using 
different inoculation and co-cultivation media. 

 

 

Fig. 33 Cowpea embryo explants with blue and green spot(s) showing the expression of 
GUS and GFP genes, respectively, and control explants.  
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The addition of sodium-thiosulphate and higher concentration of acetosyringone were 

reported to be very important for cowpea transformation (Popelka et al., 2006; Raveendar 

and Ignacimuthu, 2010). Accordingly, the CCMb inoculation/co-cultivation medium was 

modified by adding 1 mM sodium-thiosulphate and increasing the acetosyringone 

concentration from 100 µM to 200 µM [CCMbT]. A transformation vector containing the 

GUS gene was used. The result showed an improvement in the transformation efficiency of 

almost 40 % using the modified medium for inoculation/co-cultivation step (Fig. 34).  

 

Fig. 34 Transient transformation efficiency as affected by addition of Na-thiosulphate and 
high concentration of acetosyringone into inoculation/co-cultivation medium. CCMb 
medium contain 100 µM acetosyringone and CCMbT medium contains 1mM Na-
thiosulphate and 200 µM acetosyringone. The Agrobacterium suspension was adjusted to 
OD600 =1.  

4.4.6.2 Sonication and vacuum infiltration assisted transient transformation in 

cowpea 

With the aim of improving transformation efficiency, sonication and vacuum assisted 

transient transformation experiment was conducted with the GUS gene using the CCMb 

medium for inoculation and co-cultivation. The result showed no improvement in transient 

transformation when either sonication or vacuum infiltration or combination of both was 

used (Fig. 35). A transformation efficiency of 71.4 % was obtained when explants were not 
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treated with sonication and vacuum infiltration compared to 30.19-60.47 % when sonication 

and/or vacuum infiltration was used.  

   
Fig. 35 Transient transformation efficiency of cowpea embryo slices using sonication and 
vacuum infiltration assisted Agrobacterium transformation 

 

4.4.6.3 Effect of bacterial culture concentration on transient transformation 

In addition to the media and explants, the effect of bacterial concentration on transient 

transformation efficiency was also tested using the GUS gene and DE explants. CCMbT 

(modified CCMb) medium was used for inoculation and co-cultivation step. Four bacterial 

concentrations (as determined at OD600 measurement: 0.5, 1, 1.5 and 2) and control were 

used. After co-cultivation, the GUS expression was detected and the explants were 

evaluated for transient transformation efficiency (TE, %) and the intensity of GUS 

expression. High transformation efficiencies of about 89 % to 99 % were observed 
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depending on the concentration of bacteria during inoculation. However, the intensity of 

GUS expression was not uniform across the concentration of bacteria used. Hence, based on 

the intensity of blue spots on the explant, transformed explants were categorized (visual 

assessment) into four groups: explants with strong, medium, weak and no GUS expression 

(Fig. 36). About 72 % of the explants showed medium to strong blue spots when a bacterial 

concentration of OD600=2 was used compared to 32 %, 46 % and 54 % at OD600 of 0.5, 1.0 

and 1.5, respectively (Fig. 37). 

 

Fig. 36 Intensity of blue spot as a measure of GUS gene expression at OD600=2.0 bacterial 
concentration. Explants with weak (a), medium (b) and strong (c) intensity of blue spots.  
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Fig. 37 Effect of Agrobacterium concentration (as determined at OD600 measurement) on 
transformation efficiency (TE, %) and the intensity of blue spot as a measure of GUS 
expression.  

4.4.7 Transformation with B.t cry genes 

Using the optimized protocol, experiments were conducted to introduce Cry1Ac and Cry1Ab 

genes for insect resistance into the genome of cowpea. 

A number of transformation experiments were conducted with a vector containing the cry 

genes. More than 11 thousand explants (>9000 embryo explants from overnight soaked dry 

seeds and >2000 CN explants from a few days germinated seedlings) were treated (Table 

14). A number of putative transgenic shoots were developed from the experiments. Some of 

the putative transgenic shoots were rooted and transferred to pots (Fig. 38) for further 

analysis of the transgene integration.  
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Table 14. Summary transformation experiments conducted with transformation vector harboring either cry1Ac or cry1Ab gene  

Code Variety Transformation 
vector Explant type 

Number of explants (shoots) Number of PCR 
positive shoots Remark Co-cultivation Shoot 

induction 
survived after 

selection 
CP24 K80 PGII35S-Cry1Ab ES 199 199 0  Browning* 
CP25 K80 PGII35S-Cry1Ab ES 220 220 0  Browning 
CP27 K80 PGII35S-Cry1Ac ES 430 407 0  Browning 
CP28 K80 PGII35S-Cry1Ac DE 409 - -   
CP30 K80 PGII35S-Cry1Ac CN 310 275 0   
CP31 K80 PGII35S-Cry1Ac DE 143 130 0   
CP32 K80 PGII35S-Cry1Ac DE 100 100 0   
CP33 K80 PGII35S-Cry1Ac DE 109 109 0   
CP34 K80 PGII35S-Cry1Ac CN 285 245 0   
CP35 K80 PGII35S-Cry1Ac CN 230 - -   
CP36 K80 PGII35S-Cry1Ac DE 240 225 0   
CP37 K80 PGII35S-Cry1Ac CN 180 180 0   
CP38 K80 PGII35S-Cry1Ac CN 390 285 0   
CP39 K80 PGII35S-Cry1Ac CN 373 270 0   
CP43 K80 PGII35S-Cry1Ac ES 314 246 0   
CP45 K80 PGII35S-Cry1Ac DE 176 161 0   
CP46 K80 PGII35S-Cry1Ac ES 170 156 0   
CP47 K80 PGII35S-Cry1Ac DE 187 184 0   
CP48 K80 PGII35S-Cry1Ac DE 129 96 0   
CP49 K80 PGII35S-Cry1Ac CN 45 - -  Contamination 
CP51 K80 PGII35S-Cry1Ab DE 275 - -  Contamination 
Cp52 K80 PGII35S-Cry1Ac DE 175 160 0   
CP54 K80 PGII35S-Cry1Ac ES 170 170 0   
Cp55 K80 PGII35S-Cry1Ac CN 220 220 0   
CP56 K80 PGII35S-Cry1Ac DE 160 152 0   
Cp57 K80 PGII35S-Cry1Ac ES 188 188 -  Contamination 
Cp60 K80 PGII35S-Cry1Ac DE 148 148 0   
*Browning was very common and most of the embryos failed to regenerate.  
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Table 14. Continuation 

Code Variety Transformation 
vector Explant type 

Number of explants (shoots) 
Number of PCR 
positive shoots Remark Co-

cultivation 
Shoot 

induction 
survived after 

selection 
Cp64 RB PGII35S-Cry1Ac DE 282 240 0   
Cp65 RB PGII35S-Cry1Ac DE 358 226 0   
Cp66  ICAP.. PGII35S-Cry1Ac DE 196 190 0   
Cp67  VIT5 PGII35S-Cry1Ac DE 39 14 0   
Cp68  K80 PGII35S-Cry1Ac DE 110 ? 2 0  
Cp69 K80 PGII35S-Cry1Ac Callus - - -   
Cp70 K80 PGII35S-Cry1Ac DE 178 178 0   
Cp71 RB PGII35S-Cry1Ab DE 169 169 0   
Cp72 K80 PGII35S-Cry1Ab DE & ES 380 380 0   
Cp74 K80 PGII35S-Cry1Ac CN 

PN 
150 
144 

150 
144 

0 
0 

 Discarded** 

Cp75 K80 PGII35S-Cry1Ac DE 150 150 0  Discarded** 
Cp76 K80 PGII35S-Cry1Ab DE/EAC/DEP 418 258 4 0  
Cp77 K80 PGII35S-Cry1Ab DEP 251 162 0   
Cp78 RB PGII35S-Cry1Ac DE 99 99 0   
Cp79 K80 PGII35S-Cry1Ac DE 472 393 5 0  
Cp80 K80 PGII35S-Cry1Ac DE 374 330 10 0  
Cp81 K80 PGII35S-Cry1Ac DE 71 71 0   
Cp82 K80 PGII35S-Cry1Ac DE 191 191 0   
Cp84 ICAPjJAG5773 PGII35S-Cry1Ac EAC 82 82 0   
Cp85 Ethiopian/Gechi PGII35S-Cry1Ac DE 46 46 0   
Cp86 K80 PGII35S-Cry1Ac DE 386 310 4 0  
Cp87 K80 PGII35S-Cry1Ab DE 235 197 0   
Cp88 K80 pIBGUS DE 124 124 1 0  
Cp89 K80 PGII35S-Cry1Ac DE 246 246 8 2  
C90 K80 PGII35S-Cry1Ac DE 332 332 0   
**Discarded due to regeneration problem. 
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Fig. 38 Few of the transplanted putative transgenic cowpea plantlets 
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4.4.8 PCR detection of transgene integration into the genome of putative 

transgenic cowpea plants 

Putative transgenic shoots of cowpea were analyzed to determine the genomic integration of 

the transgene. Primers for cry (cry1Ac or cry1Ab) and bar genes were used for amplification 

of T-DNA region specific sequences. Primers for a cowpea housekeeping gene (cHMG) 

(Phelps et al., 2007) were used as an internal control while plasmid DNA was used as a 

positive control during PCR detection. Fig. 39 shows the PCR results of the putative 

transgenic shoots (in vitro shoots or transplanted plantlets) of cowpea from different 

transformation experiments. The expected PCR product was amplified for the housekeeping 

gene indicating the presence of genomic DNA in the reaction tube while the presence of the 

expected PCR product in the reaction tube containing plasmid DNA (+C) shows the PCR 

program is working. The expected PCR product of the cry1Ac transgene (T-DNA region) was 

observed in the reaction tubes containing the genomic DNA from two in vitro putative 

transgenic shoots (lane 29 and 30, Fig. 39 a). The expected PCR product was also observed 

using primers for bar gene for these two samples (Fig. 39 b). No amplification product was 

observed in the reaction tubes containing genomic DNA from the rest of the analyzed 

samples. The same transformation vector was used to transform pea where a number of 

transgenic lines were obtained (lane 23-35, Fig. 39 a). PCR analysis of Agrobacterium 

persistence showed absence of Agrobacterium specific DNA in the two PCR positive putative 

transgenic shoots (Fig. 39 c).  
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Fig. 39 PCR analysis of transgene integration into the genome of regenerated putative 
transgenic shoots of cowpea from different transformation experiments. Putative transgenic 
shoots of cowpea (variety K80) analyzed using primers for (a) cry1Ac transgene (~750 bp) 
and cowpea housekeeping gene (cHMG, ~ 300 bp), (b) bar gene (500 bp) and (c) 
Agrobacterium specific DNA sequences. L: GeneRulerTM 100 bp plus DNA ladder, +C: 
plasmid (pGII35S-cry1Ac) DNA as a positive control, -C: genomic DNA of non-transgenic 
cowpea plant as a negative control, W: water control, lane 1-21 and 26-33: genomic DNA 
from putative transgenic shoots of cowpea and lane 22-25: genomic DNA from pea plants as 
a control samples showing the success of transformation in pea using the same transformation 
vector (22: non-transgenic control plants and 23-25: Cry1Ac transgenic pea plants). For pea, 
in addition to primers for cry1Ac gene, primers for pea housekeeping gene (HMG-I/Y, ~570 
bp) were also used to monitor the presence of genomic DNA during PCR amplification.  

(a) 

(b) (c) 
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4.4.9 Expression of Cry1Ac gene in the primary transformants 

The expression of cry1Ac gene at transcription and protein levels in the two PCR positive in 

vitro shoots was analyzed using RT-PCR and immunostrip assay, respectively, as described 

in the previous section. The result showed the expression of cry1Ac gene and the 

accumulation of the novel Cry1Ac protein in the regenerated shoots (Fig. 40). The intensity 

of the test signal for the Cry1Ac protein in the two cowpea samples was relative weak as 

compared to that of the transgenic pea line used as a positive control.  

 

 

Fig. 40 Expression of cry1Ac gene in the putative transgenic cowpea shoots. (a) RT-PCR 
analyis of cry1Ac gene at transcription level and (b) immunostrip detection of Cry1Ac 
protein. 

Legend:  

-C: Control cowpea plants 

29 and 30: Putative transgenic cowpea shoots 

23: Cry1Ac transgenic pea line as a positive control 

(b) 

(a) 
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4.4.10 Sensitivity of cowpea leaves to BASTA® herbicide solutions 

In addition to the in vitro shoot sensitivity test on PPT containing media, leaf paint assay was 

also conducted on greenhouse grown non-transgenic plants to determine the concentration of 

herbicide solution to be used for leaf paint characterization of progenies from any transgenic 

lines. Basta® solutions (0-1000 mg/L) were applied on the upper side of the leaves and 

sensitivity of the leaves was evaluated one week after application. The result showed that the 

leaves of cowpea plants showed a little sign of necrosis when 50 mg/L herbicide solution was 

used (Fig. 41). The leaves showed partial wilting when 100 mg/L or more was used with 

completely wilting of the treated leaf starting from 300 mg/L. Based on this result, Basta® 

herbicide solution at a concentration of 300 mg/L could be used to characterize putative 

transgenic plants and their progeny during functional characterization (Fig. 42).  

 

Fig. 41 Sensitive of non-transgenic cowpea leaves to Basta® herbicide solution at different 
concentration of active ingredient evaluated one week (at least) after application. The red 
arrows indicate the herbicide solution treated leaves.  
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Fig. 42 One of the putative transgenic plants characterized with leaf paint assay using 300 
mg/L Basta® herbicide solution showing a negative result (red arrow) for the bar gene 
product.  

4.5 Discussion 

4.5.1 Optimization of in vitro conditions for regeneration and transformation 

of cowpea 

4.5.1.1 Regeneration of Kenyan cowpea variety from CN explants 

During the last three decades cowpea has been subjected to in vitro studies ranging from 

regeneration to genetic modification of traits via transgenic approaches. Despite these efforts, 

currently a universally applicable and genotype neutral regeneration and transformation 

protocol is lacking in cowpea. This has been long explained by the recalcitrant nature and 

varietal dependence of cowpea to in vitro manipulations (Brar et al., 1997b; Somers et al., 

2003). This has limited the application of existing protocols for a variety of interest.   

In the present study, in vitro conditions were optimized for a Kenyan cowpea variety (K80) 

for regeneration and transformation. Accordingly, a medium supplemented with 3 µM BA 

and 0.5 µM kinetin was found to be optimal for multiple shoots induction (4.8 shoots per CN 

explant). In earlier reports, different concentrations of BA either alone or in combination with 

other plant hormones (mostly kinetin) were used for multiple shoot production (1.14 to 13.5 

shoots per CN explants) of cowpea (Mao et al., 2006; Popelka et al., 2006; Chaudhury et al., 

2007; Solleti et al., 2008a; Raveendar et al., 2009; Bakshi et al., 2011; Aasim et al., 2012). 

The use of a range of BA concentration might be due to the wide cowpea gene pool and/or 



 

 
86

the type of explants used by the different groups. Response variation among cowpea varieties 

and genotypes to in vitro regeneration conditions has been reported by different authors (Brar 

et al., 1999; Popelka et al., 2006; Raveendar et al., 2009). In addition, different types of 

explants (such as CN, decapitated embryo, shoot tips, plumular apices) were used in cowpea 

regeneration with varying rate of multiple shoot production per explants (Popelka et al., 

2006; Chaudhury et al., 2007; Diallo et al., 2008; Raji et al., 2008; Solleti et al., 2008b; Yusuf 

et al., 2008; Aasim et al., 2009a, b; Raveendar et al., 2009; Aasim et al., 2010; Aasim et al., 

2012; Bakshi et al., 2012a). These different types of explant might require different optimal 

in vitro conditions.  

4.5.1.2 Effect of pre-conditioning media on multiple shoot production of CN 

explants 

CN explants are commonly used in cowpea in vitro regeneration. For CN explant preparation, 

seeds are imbibed overnight and pre-conditioned (germinated) for 3-4 days. While sterile 

distilled water is used for overnight imbibitions of seeds, medium containing 10 µM BA or 

TDZ is commonly used for pre-conditioning of seeds (Chaudhury et al., 2007; Solleti et al., 

2008a; Solleti et al., 2008b; Bakshi et al., 2011; Bakshi et al., 2012b; Bakshi and Sahoo, 

2013). Van Le et al. (2002) had tested different concentration of TDZ (0, 1, 5, 10, 20, 50 µM) 

in pre-conditioning medium and found that more number of buds was produced by explants 

conditioned on medium containing 10 µM TDZ. Bakshi et al. (2012a) also studied the effect 

of both TDZ and BA (0, 5, 10 and 20 µM) as a pre-conditioning medium supplement and 

reported maximum number shoots per explants from CN explants obtained from a pre-

conditioning medium containing 10 µM TDZ.  

In line with this gap, pre-conditioning media supplemented with either BA or TDZ were 

tested for their effects on the multiple shoot production ability of CN explants. The result 

indicated that the use of moderate to high concentration of TDZ (2.5 -15 µM) had 

significantly reduced the number of shoots per explant. This is not in agreement with other 

reports (Van Le et al., 2002; Bakshi et al., 2012a) which showed 10 µM TDZ as the best pre-

conditioning medium supplement. Moreover, the acceptable performance of CN explants 
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from a pre-conditioning medium with no growth hormone would be interesting from a 

developing countries point of view where cowpea is economically very important crop. 1 

4.5.1.3 In vitro rooting of cowpea shoots 

Cowpea shoots were easily rooted on medium with or without IBA with no significant 

difference among the media. The result is in line with other reports which indicated the 

addition of IBA into rooting media had no effect on the rooting characteristics of in vitro 

shoots in cowpea (Mao et al., 2006; Tang et al., 2012). Hormone free rooting medium has 

been used in many cases of in vitro rooting of cowpea shoots (Muthukumar et al., 1995; Brar 

et al., 1999; Choi et al., 2003; Raji et al., 2008; Raveendar et al., 2009; Tie et al., 2013). 

Despite the acceptable rooting efficiency of the in vitro shoots of cowpea on hormone free 

media, rooting medium supplement with 2.5 µM IBA has been used in many cowpea 

regeneration and transformation studies (Chaudhury et al., 2007; Diallo et al., 2008; Solleti et 

al., 2008a; Solleti et al., 2008b; Aasim et al., 2009a, b, 2010; Bakshi et al., 2011; Aasim et al., 

2012; Bakshi et al., 2012b; Aasim et al., 2013; Bakshi and Sahoo, 2013).  

4.5.1.4 Sensitivity of cowpea to PPT 

In plant transformation, one of the challenges faced by practitioners is the selection of cells 

with the introduced transgene of interest. This step is facilitated by co-introducing marker 

gene (with the gene of interest) encoding resistance/tolerance to selection agents (antibiotics 

or herbicides) (Miki and McHugh, 2004; Finer and Dhillon, 2008; Miki, 2008). In the 

transformation vectors used in this study, bar gene (Murakami et al., 1986; Thompson et al., 

1987) was used for this purpose. It is one of the commonly used plant selectable marker 

genes in plant transformation (Miki and McHugh, 2004; Miki, 2008). Hence, the 

transformation process was aided using the herbicide active ingredient, PPT. The result of in 

                                                

1 In many developing countries, the affordability and availability of most of the plant growth 

hormones from reliable source is one of the challenges for the application of tissue culture in crop 

improvement. Thus, plant growth hormone free medium can be used for seedling pre-conditioning 

and the limitedly available growth hormone could be used for other activities. 

 



 

 
88

vitro experiment demonstrated that PPT concentration as low as 1 mg/L was enough to kill 

most of the shoots within three weeks. Kononowicz et al. (1997) also found 1 mg/L bialaphos 

as effective concentration to kill explants (cotyledon, embryonic axes and plantlets) of 

cowpea. Theoretically; it is possible to use 1 mg/L PPT as the first selection pressure. 

However, in order to reduce the intensity of double stresses due to the selection agent and 

other in vitro conditions, 0.5 mg/L PPT was chosen as the first selection pressure for explants 

from transformation experiments and then increases the concentration at each subculture. On 

other hand, Popelka et al. (2006) have reported 4-6 mg/L PPT as the minimal concentration 

for effective selection of shoots for cowpea cultivar Sasaque. Adesoye and colleagues 

(Adesoye et al., 2010) also used 5 mg/L PPT for selection of putative transgenic shoots for 

cowpea variety IT96D-734. For the Turkish cowpea cultivar Akkiz, putative transgenic 

shoots were selected on a medium containing 2.5 mg/L PPT (Aasim et al., 2013). In this 

study, since there was no shoot survival on a medium containing 1.5 mg/L or higher 

concentration of PPT, the use of such elevated concentration of PPT could pose too much 

stress on the explants and thereby decreases the chance of getting surviving putative 

transgenic shoots. In addition, different cultivars of a crop species might have different levels 

of tolerance to selection agents in the medium (Galun and Breiman, 1998). Hence, it might be 

possible that cowpea cultivars have different levels of tolerance to PPT in the medium as 

well.  

4.5.1.5 Effect of inoculation/co-cultivation media and explant on regeneration 

and transient transformation of cowpea 

Of the inoculation and co-cultivation media tested using transient GUS and GFP expression, 

the highest transformation efficiency was obtained using a medium reported by Solleti et al. 

(2008a) compared to the other tested media. The addition of Na-thiosulphate (1 mM) and a 

high concentration of acetosyringone (200 µM) to this inoculation/co-cultivation medium has 

substantially improved the transformation efficiency. Similar observations have been reported 

in soybean where the addition of thiol compounds (Na-thiosulphate, dithiothreitol and L-

Cysteine) in the co-cultivation medium has enhanced stable transformation (Olhoft et al., 

2001; Olhoft and Somers, 2001; Olhoft et al., 2003). 

In Agrobacterium-mediated transformation, the use of explants which have good regeneration 

efficiency as well as easily susceptible to Agrobacterium infection (competence for foreign 
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DNA uptake) is very vital in order to introduce the gene of interest into the plant genome. In 

most cowpea organogenesis experiments, explants such as CN, DE, EAC, sliced embryos and 

shoot tips were used while leaf cuttings are used for somatic embryogenesis. In the current 

study, both CN and DE explants showed a good regeneration efficiency. However, transient 

transformation efficiency using the GUS gene was very poor with CN explants as compared 

to DE explants. As a result, DE explants were selected for further transformation 

experiments.  

During transformation, explants are wounded to make access for Agrobacterium infection 

and sometimes the transformation is assisted by sonication and vacuum infiltration (Finer and 

Dhillon, 2008). These procedures could promote browning of the damaged tissue and then 

determinately affect the regeneration ability of the explants.  In some crops like pea, embryo 

slices (3-5 per seed) can be prepared without substantially affecting shoot regeneration 

ability. In other crops like cowpea, slicing/wounding of explants and application of 

sonication/vacuum infiltration negatively affect the regeneration of explants (Fig. 43). Most 

of the sliced/wounded explants failed to produce shoots. Furthermore, the shoot production 

ability of explants (even without wounding) seemed to decrease after transformation. This 

could be due to the presence of the bacteria (during the inoculation and co-cultivation steps) 

and the conditions (media and media ingredients) which could negatively affect the 

regeneration ability of the explants.  

 
Fig. 43 Comparative regeneration of unwounded (a) and wounded (b) CN explants after three 
weeks of culturing on shoot induction medium. Wounded CN explants produced 1.32 shoots 
per explant with 78 % regeneration efficiency while intact unwounded CN explants produced 
2.36 shoots per explant with 100 % regeneration efficiency. The arrows shows wounded CN 
explants that failed to produce shoots.  
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The successful development of transgenic plants depends on the ability to introduce the target 

gene into a totipotent and transformation competent area (cells and/or tissues) of the explants 

(Finer and Dhillon, 2008). This could be further complicated by different in vitro factors. For 

example, during the GUS detection of explants, it was observed that some of the explants 

showed strong GUS expression on hypocotyl region (root forming side) while others showed 

strong expression in the epicotyl region (shoot forming side). For this reason, transient 

transformation was conducted to test whether this is related to the explant orientation on co-

cultivation medium. Three explant orientations (vertical upright plating by inserting the basal 

end into the media, inverted vertical plating by inserting the epicotyl end into the medium and 

horizontal plating) during co-cultivation were tested. The result showed that in majority of 

the explants, the GUS gene was expressed on the explant end that was not in contact with 

medium (Fig. 44, Appendix 8). Similar observation was reported in soybean in which the 

GUS gene expression on the explant tissue was strongly influenced by the orientation of the 

explants during co-cultivation (Ko et al., 2003). The transfer of T-DNA to plant cell is limited 

by factors affecting vir gene induction such as pH, culture aeration and presence of cell 

metabolites (Stachel et al., 1986). It is suggested that localized high pH and limited aeration 

on the side of explants in contact with the medium could inhibit the vir gene induction and 

then result in low or no expression of GUS gene (Santarem et al., 1998). In order to 

understand clearly the reason behind this localized expression of the GUS gene in the 

explants, besides Agrobacterium related factors, it is also very vital to understand the 

physiology and biology of explants during in vitro regeneration in general and co-cultivation 

in particular. According to Stachel and colleagues (Stachel et al., 1986), the constitutive 

presence of  cell metabolites are very important for the induction of the vir genes. The 

explant side that faces away from (i.e., not in contact with) the medium might be engaged in 

active cell division and metabolism which then contributes to the presence of metabolites 

required for induction of vir genes (Santarem et al., 1998). The DNA replication process in 

actively dividing cell accelerates the integration of transgene into the genome (Finer and 

Dhillon, 2008). The result from this study suggested that, during co-cultivation, explants have 

to be cultured in vertical upright orientation in order to increase the chance of Agrobacterium 

infection and introduction of T-DNA region into shoots producing area of the explants.  
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Fig. 44 Effect of explant orientations (horizontal, vertical upright and inverted vertical) 
during co-cultivation on GUS gene expression area of the explant. 

4.5.1.6 Effect of Agrobacterium concentration of transient transformation of 

cowpea  

In the effort to improve the transformation and increase the chance of getting stable 

transformation, the effect of Agrobacterium concentration (as measured by OD600) in the 

inoculation medium was tested. Using around 2.0 (OD600) in a medium containing a high 

concentration of acetosyringone (200 µM) and 1 mM Na-thiosulphate, consistently high 

transient transformation has been achieved. Hence, after harvesting, adjusting the OD600 of 

overnight culture to higher value might be more effective to increase the chance of 

introducing gene of interest into the plant cell.  

4.5.2 Summary of the optimized protocol 

In general, based on the optimized conditions, the transformation protocol can be summarized 

as shown in Table 15.  

 

 

 

 

 

 

 

Horizontal  Vertical upright  Inverted vertical 
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Table 15. Outline of transformation steps and time requirement  

Steps Media and solutions required Time required Days 
Explant preparation   1-2 
 Seed disinfection Tap water  

70 % Ethanol 
6 % NaOCl 
Sterile distilled water (3-5 times 
rinsing) 

~10 min 
1 min 

30 min 
~ 10 mi 

 

 Seed imbibitions  Sterile distilled water Overnight (10-12 hrs)  
 Embryo (DE) isolation  3-4 hr  
Inoculation  Agrobacterium suspended in 

inoculation medium (CCMbT 
medium: MSB + 1 µM BA + 1mM 
Na-thiosulphate + 8.3 mM L-cysteine 
+ 200 µM acetosyringone + 1 g/L 
MES + 1 mM Dithiothreitol + 3 % 
sucrose) 

60 min 2 

Co-cultivation  CCMbT medium solidified with 7.5 
g/L plant agar and plat the explant in 
vertical upright orientation 

3 days 2-5 

Collecting and Washing 
of co-cultivated explants  

Explant collection 
Sterile distilled water (3-5 times 
rinsing) 
Antibiotic solution (Ticarcillin, 100 
mg/L) 

~30 min 
~15 min 

 
30 min on shaker 

5 

Shoot induction Shoot induction medium (C3K 
medium: MSB + 3 µM BA + 0.5 µM 
Kin + 1 g/L MES + 100 mg/L 
Ticarcillin + 100 mg/L Sulbactam ) 

3 weeks Week 2-4 

Putative transgenic shoot 
(PTS) selection 

C3K medium supplemented with PPT 
 0.5 - 2 mg/L PPT 

3 weeks each Week 5-16 

PTS elongation  C3K medium 3 weeks Week 17-20 
Rooting  MSB with or with IBA (2.5 µM)  3 weeks Week 21-24 
Total time from explant preparation to rooting step  ~24 weeks 

 

4.5.3 Transformation with B.t cry genes  

Using the optimized in vitro conditions, attempts were made to introduce B.t cry genes 

(cry1Ac or cry1Ab) into the genome of the selected Kenyan cowpea variety. Despite 

thousands of explants were transformed in a series of experiments, stable transformation was 

rarely achieved during the study time. Only two PCR positive primary transformants (in vitro 

shoots) were obtained in one of the experiments. They were obtained from 246 transformed 

explants giving a transformation efficiency of 0.81 %. This could be explained by the 
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recalcitrant nature of the crop (Brar et al., 1997b) that places it among the difficult to 

transform plant species with which only little success has been obtained so far.  

In addition, transgene introduction and stable integration into the plant genome is affected by 

many factors such as the Agrobacterium strain used, the in vitro conditions (media 

composition, selection system, culture conditions, explant orientation, etc), the plant 

genotype, the explant type and the ability of delivering the transgene into regeneration 

competent cells/tissue of the explants (Altpeter, 2007). Though optimization was done, it 

might be possible that one or more of these factors have contributed to the lack of stable 

transformation in almost all of the experiments. The Agrobacterium strains EHA101 

(containing pIBGUS) and EHA105 (containing pEGAD-GFP, in which the cry genes were 

also located) were used for transient transformation. The expression of the GUS (56%) and 

GFP (84 %) genes was observed on majority of the explants indicating the susceptibility of 

the explants and the effectiveness of the two strains for the transformation of the cowpea 

variety used in this study. Despite a decisive factor for successful transformation of plants 

(Grant and Cooper, 2006), lack of stable transformation could happen in the presence 

effective Agrobacterium strains. For example, the low rate of transgenic soybean plants 

recovery from co-cultured cotyledonary explants was not due to the poor susceptibility to 

Agrobacterium but by the inefficient transformation of regenerable cells and/or poor selection 

or survival of these cells (Donaldson and Simmonds, 2000). According to them, despite 

explant transformation rates of 27-92 %, transformation events were usually restricted to the 

non-regenerable callus of the explant. Eapen (2008) also suggested low transformation 

competency of regenerating cells as one of the reasons for the poor efficiency in transgenic 

grain legume development. For example, detection of GUS expression in callus and leaf parts 

of the in vitro shoots showed positive results on the callus part, but very rarely on the leaves 

(Fig. 45). Similarly, PCR analysis of cry1Ac integration in genomic DNA from callus and 

leaf parts of in vitro shoots showed few positive results in DNA from callus (Fig. 46), but not 

from leaf in most of the cases. Hence, in addition to other factors, the lack of regeneration 

from transformation competent areas of the explants could also be the reason why there was 

no successful stable transformation. 
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Fig. 45 GUS detection in the callus and leaf parts of the explants after 2-3 weeks culture on 
shoot induction medium.  

 

 

Fig. 46 PCR detection of cry1Ac gene in genomic DNA isolated from callus (C) and leaves 
(S) parts of explants surviving on selection medium.  
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4.5.4  Future outlook 

In general, regeneration and stable transformation of cowpea is far from being a routine 

procedure and is still a challenging process due to different factors (Brar et al., 1997b; 

Somers et al., 2003; Chaudhury et al., 2007; Bakshi et al., 2011). Every working group has 

their own protocol for in vitro culture and transformation. This underlines the need to further 

explore in vitro conditions which could work across laboratories and genotypes. Based on the 

result from this study, in order to increase the chance of obtaining transgenic shoots, the 

following recommendations have been drawn in future efforts of cowpea transformation: 

 Use of embryo explants from fresh and clean seeds collected from healthy mother 

plants, preferably grown under controlled conditions.  

 Seeds infested with storage pests should be avoided since the in vitro return from such 

seeds is very minimal. 

 Adjusting the concentration of Agrobacterium suspension to higher levels (OD600 

around 2) might increase the chance of getting stable integration.  

 Place explants in vertical upright orientation during co-cultivation. 

 Screen varieties that are most responsive to in vitro conditions.  

In addition, given the recalcitrance of the crop to in vitro conditions (Brar et al., 1997b; 

Somers et al., 2003), optimizing and testing the reproducibility and efficiency of other 

transformation approaches such as in planta nodal electroporation (Chowrira et al., 1995; 

Chowrira et al., 1996) and direct injection of DNA into ovary/pollen tube (Zhou et al., 1983; 

Luo and Wu, 1988; Li et al., 2002; Shou et al., 2002) could play a vital role in the future 

development of transgenic lines with novel traits in cowpea. These in planta approaches have 

been used in grain legumes (including cowpea), soybean, cotton, maize and rice. 

Finally, further analyses are required on the two PCR positive in vitro shoots (primary 

transformants) in order to confirm the stable integration, inheritance, expression as well as 

functionality of the transgene.   
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5. General discussion and future outlook 

Despite billions of dollars spent on the control measures, a substantial amount of potential 

crop yield is lost due to insect pests every year (Ferry and Gatehouse, 2010; Sharma et al., 

2010; Gatehouse et al., 2011). To feed the increasing world population in the current trend of 

climate change, not only potential productivity has to be increased but also yield losses have 

to be reduced as much as possible (Godfray et al., 2010). The application of transgenic 

approaches can help to ease some of the challenges (Yadav et al., 2013) through providing 

multiple benefits in agricultural production systems. It can complement conventional 

breeding in developing crop varieties with new traits which are not present in the gene pool 

of the crop of interest such as insect and disease resistance as well as improved nutritional 

qualities (Korth, 2008). The application of transgenic approaches can also help to reduce the 

amount of agrochemical and its side effect on the ecosystem. Globally, the adoption of 

transgenic technology in agriculture has not only reduced the amount of pesticide (8.8 %) and 

its environmental impacts (EIQ by 18.7%) but also helped to cut the release of greenhouse 

gas from farming areas (Barfoot and Brookes, 2014). According to recent meta-analysis on 

the impacts of GM crops, crop yields have increased by 21 % due to effective pest control 

and lower crop damage, and the amount and cost of pesticides have reduced by 37 % and 39 

%, respectively, by using GM crops compared to non-GM crops (Klümper and Qaim, 2014).  

Transgenic insect resistance is the second most popular trait in agricultural biotechnology 

next to herbicide resistance (James, 2013). Resistant lines of many crops have been 

developed against different insect pests ranging from field to storage pests. Today, most of 

the commercialized insect resistant transgenic crops such as cotton and maize express B.t cry 

genes specific to the Lepidopteran insect pests (James, 2013). In grain legumes, despite heavy 

attack of by this group of insect pest, B.t cry genes are not used at all or at early 

developmental stage.  

The lack of commercial production and use of transgenic grain legumes is attributed to many 

factors. One of the main reasons is the poor efficiency in the development of transgenic lines 

due to the recalcitrance nature of grain legumes (Popelka et al., 2004; Eapen, 2008). In 

addition, most of the grain legumes are economically more important in less developed 

countries of the world (Christou, 1997; Eapen, 2008) where resources are limited to apply 

modern transgenic approaches in crop improvement. As a result, much attention has not been 
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given to grain legumes regeneration and transformation (Christou, 1997; Eapen, 2008). 

Similar to other GM crops, the development of transgenic grain legumes is also affected by 

wrong perception about transgenic crops in some part of the world (Eapen, 2008).   

Given the socio-economic importance in general and the potential contribution in alleviating 

poverty and malnutrition in many countries of the world, the perspective of legumes has been 

changing during the last few years in terms of modern biotechnology application. As a 

consequence, protocols have been optimized for a number of legume species. In few legumes 

such as pea, such protocols have been used to produce transgenic lines for different 

production constraints. However, in many legume species, there are problems with the 

reproducibility of such protocols and transgenic lines are difficult to achieve (Chandra and 

Pental, 2003; Popelka et al., 2004). This problem needs to be addressed in coordinated 

manner (at different levels such as scientists, consumers, fund providers, policy maker, etc) 

so that a universally applicable robust protocol could be optimized for the legume species in 

question. In addition, the information and technical experiences from the successful 

transformed legumes species such as pea and soybean could help to address some of the 

problems faced in stable transformation of other recalcitrant legume species.   
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Appendices 

Appendix  1. List of equipment 

Autoclave (Tuttnauer systec) 

Balances (Sartorius) 

Cold centrifuge (Sigma 302K) 

Cryogenic vials (Cryoware-Nalgene, Rochester, USA) 

Deep freezer -80°C (Lozone) 

Dry oven (Memmert) 

Electrophoresis chamber (Bio-RAD) 

Electrophoresis power supply (Bio-RAD) 

Ice machine (ZIEGRA) 

Incubator (JURGENS) 

Lab centrifuge (Eppendorf 5415C) 

Magnetic stirrer (Heidolph) 

Microwave (Thomson) 

pH meter (Hanna) 

Pipette (Gilson, Eppendorf) 

Refrigerator 4°C (LIEBHERR) 

Rinsed water station (Millipore) 

Spectrophotometer (Pharmacia Biotech) 
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Thermocycler PCR(Biometra®) 

Thermostat shaker (Heidolph Unimax 1010) 

UV-trans illuminator (Vilber Lourmat) 

Vortex(Hiedolph) 

Water bath (GFL®) 

Scalpel blade (AESCULAB® No.11) 

Bottle for stock solution (NALGENE® , CRYOWARETM) 

Sterilization filter (Millex®-GS 0.22 µM) 

Parafilm (NESCOfilm) 



 

 
116

Appendix  2. List of chemicals 

Growth media component for plant  

 MS basal salts with B5 vitamins (Duchefa)  

 B5 medium (Duchefa) 

 Plant Agar (Duchefa)  

 D(+) saccharose (Roth)  

 MES(2-[N-morpholino] ethane sulfonic acid) (Biomol)  

Plant Hormones 

Hormone Molecular weight Company Solvent Stock solution 

2,4-D 

Kin 

NAA 

BAP 

TDZ 

Acetosyringone 

221.6 

215.2 

186.2 

225.3 

220.2 

196.2 

Duchefa 

Duchefa 

Duchefa 

Duchefa 

Duchefa 

Roth 

KOH  

KOH 

KOH 

KOH 

KOH 

DMSO 

10 mM 

10 mM 

10 mM 

10 mM 

10 mM 

10 mM 

Antibiotics and selection agents 

Substances Molecular 
weight Company Stock Solvent 

Sulbactam 

Kanamycin 

Ticarcillin 

 Phosphinotricin (PPT) 

233.24 

582.60 

428.39 

198.16 

Pfitzer 

Duchefa 

Duchefa 

Roth 

100 mg/ml 

50 mg/ml 

100 mg/ml 

600 mg/l 

Pure H2O 

Pure H2O 

Pure H2O 

Pure H2O 
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Appendix  3. List of buffers and solutions 

Solutions and buffers for GUS assay (Jefferson et al., 1987) 

 100mM Sodium Phosphate, pH 7.0 

o 57.7 ml  1M Na2HPO4  and 42.3 ml 1M NaH2PO4  

 Gus staining solution 

o 100 mM Sodium phosphate, pH 7.0 

o 1 mM EDTA,pH 8.0 

o 5 mM Potassium ferrocynide 

o 1 % Triton X-100 

o Add X-Gluc at a concentration of 0.5 mg/ml (Dissolve X-Gluc in DMSO) 

Buffer for Quick method of genomic DNA isolation (Edwards et al., 1991): 

o 200 mM Tris-HCl pH 7.5  

o 250 mM NaCl 

o 25 mM EDTA 

o 0.5 % SDS 

Buffers and solutions for CTAB based DNA isolation (Doyle and Doyle, 1990) 

 CTAB buffer: 

o 3% CTAB 

o 1.4 M NaCl  

o 0.2% ß-Mercaptoethanol 

o 20 mM EDTA 

o 100 mM Tris-HCl, pH 8.0 

o 0.5 % PVP-40 Polyvinyl Pyrolidone 

 24:1 CI-Mix:  24 part Chloroform and 1 part Isoamylalcohol 

 Wash buffer (WB):  76 % Ethanol and 10 mM Ammonium acetate 
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 EDTA (0.5 M): 

o 18.612 g in 70 ml H2O  

o Adjust pH 8.0 with NaOH pellets 

o Bring volume to 100 ml 

 TE-buffer: 10 mM Tris-HCl, pH 8.0 and 1 mM EDTA 

Buffers and solutions for gel-electrophoresis 

 6x DNA loading Dye (MBI Fermentas/Thermo Scientific):  

o 40 mM Tris-HCl, pH 7.6 

o 0.03% Bromophenol blue 

o 0.03% Xylene cyanol FF 

o 60% Glycerol 

o 60mM EDTA 

 50 X TAE buffer (1000 ml):  

o 242 g Tris-base 

o 57.1 ml Glacial Acetatic acid 

o 100 ml 0.5 M EDTA pH 8.0 

 1x TAE buffer (40 mM Tris-acetate and 1 mM EDTA) from 50x stock 

o 100 ml 50 X TAE  

o 4900 ml double distilled water 

 RedsafeTM Nucleic Acid Staining solution (20, 000x) (iNtRON Biotechnology) 

GoTap® Flexi DNA polymerase (Promega) component 

 GoTaq® DNA polymerase 

 5X Green GoTaq® Flexi Buffer 

 5X colorless GoTaq® Flexi Buffer 

 Magnesium Chloride solution, 25mM 

DNA markers 

 Gene RulerTM 100 bp plus DNA ladder (MBI Fermentas/Thermo Scientific) 
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Appendix 4. Summary of the molecular and functional characterization 

of Cry1Ac transgenic pea plants 

No. Transgenic line Progeny 
level Germination/grafting 

PCR 
LP 

HMG Cry1Ac Bar499 
1 A1-9-1 T2 + + - - - 
2 A2/D12 T0 + + + + + 
3 A2/D12-1-1 T2 + + + + + 
4 A2/D12-1-1-1-1 T4 + + + + + 
5 A2/D12-1-2 T2 + + + + + 
6 A2/D12-1-2-1 T3 + + - + + 
7 A2/D12-1-3 T2 + + + + + 
8 A2/D12-1-4 T2 + + + + + 
9 A2R-2-1 T2 + + + + - 
10 A3 T0 + + + + + 
11 A9R-1 T2 + + - - - 
12 B T0 + + + + + 
13 B-1-1 T2 -     
14 B1-1-1 T2 + + + + - 
15 B1-1-2 T2 + + + + + 
16 B1-1-3 T2 + + + + ± 
17 B1-2-1 T2 + + + + ± 
18 B2 T0 + + + + + 
19 B20R-2-1 T2 + + - + ± 
20 B2R T0 + + + + + 
21 B3 T0 + + + + + 
22 B3-1-11-4-1 T4 + + + + + 
23 B3-1-4-1 T3 + + + + + 
24 B3-1-4-2 T3 + + + + + 
25 B3-1-4-3 T3 + + + + + 
26 B3-1-4-4 T3 + + + - + 
27 B3-1-4-5 T3 + + + - + 
28 B3-1-4-6 T3 + + + + + 
29 B3-3-1 T2 + + + + + 
30 B3-3-1-1 T3 + + - - - 
31 B3-3-1-2 T3 + + + + + 
32 B3-3-1-3 T3 + + - - - 
33 B3-3-1-4 T3 + + + + + 
34 B3-3-1-5 T3 + + + + - 
35 B3-3-1-6 T3 -     
36 B3-3-2-1 T3 + + + + + 
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Appendix 4. Continuation 

37 B3-3-2-2 T3 + + + + + 
38 B3-3-2-3 T3 -     
39 B3-3-2-4 T3 + + + + + 
40 BR T0 + + + + + 
41 BR* T0 + + + + + 
42 BR-3-1 T2 + + + + + 
43 BR-3-1-1 T3 + + - - - 
44 BR-3-2 T2 + + - - - 
45 BR-5-1 T2 + + + + + 
46 BR-5-1-1-1 T4 + + + + + 
47 BR-5-1-4-1 T4 + + + + + 
48 BR-5-2 T2 + + + + + 
49 C1-1-1 T3 -     
50 C1-1-2 T3 + + + + - 
51 C1-1-2-1 T3 + + + + - 
52 C1-2-3-3-1 T4 + - - - - 
53 C1-2-3-3-2 T4 + + + - + 
54 C1-2-3-3-3 T4 + + + + + 
55 C1-2-3-3-3-1-1 T6 + + + + + 
56 C1-2-3-3-3-2-1 T6 + + + + + 
57 C1-2-3-3-3-3-1 T6 + + + + + 
58 C1-2-3-3-4 T4 + + + + + 
59 C1-2-3-3-5 T4 + + + + + 
60 C1-2-3-6-2 T5 + + + + + 
61 C1-2-6-13-1 T5 + + + + + 
62 C1-2-6-13-1-2-1 T6 + + + + + 
63 C1-2-6-13-1-3-6-1 T7 + + + + + 
64 C1-2-6-13-2 T5 + + + + + 
65 C1-2-6-13-3 T5 + + + + + 
66 C1-2-6-13-4 T5 + + + +  
67 C1-2-6-13-5 T5 + + + + + 
68 C1-2-6-15-1 T5 + + + + + 
69 C-5-1 T2 + + + + - 
70 C5-1-1 T3 + + + + - 
71 C5-2-1 T3 + + + + - 
72 C5-2-1-1 T4 -     
73 C5-2-2 T3 + + + + - 
74 C5-2-2-1 T4 + + + + ± 
75 C5-3-1 T3 + + + + - 
76 C5-4-1 T3 + + + + - 
77 C7 T0 - + + + + 
 



 

 
121

Appendix 4. Continuation 

78 C7-1 T2 + + + + - 
79 C7-1-3-1 T3 + + + + - 
80 C7-1-4-1 T3 + + + + - 
81 C7-1-4-2 T3 + + + + - 
82 C7-1-4-3 T3 + + + + - 
83 C8R-1-1 T2 + + + + - 
84 D T0 + + + + + 
85 D1 T0 + + + + + 
86 D20 T0 + + + + + 
87 D21R T0 + + + + + 
88 D2R T0 + + + + + 
89 D2R-1 T2 + + + + + 
90 D2R-2-12-1 T3 + + + + + 
91 D2R-2-8-1 T3 -     
92 D2R-2-9-5 T3 + + + + + 
93 D40 T0 + + + + + 
94 D4R T0 + + + + + 
95 DA T0 + + + + + 
96 DA-2-1 T2 + + + + + 
97 DA-2-1-1-1 T4 + + + + + 
98 DA-2-1-2-1 T4 + + - - - 
99 DA-2-1-4-1 T4 + + + + + 
100 DA-2-2 T2 + + + - - 
101 DA-2-3 T2 + + + + + 
102 DA-2-3-6-1 T4 + + + + + 
103 DA-2-3-9-1 T4 + + + + + 
104 DA-2-4 T2 + + + + + 
105 DA-2-5 T2 + + + + + 
106 DA-2-5-1 T3 + + + + + 
107 DAnne T0 + + + + + 
108 Ddiff T0 + + + + + 
109 DqR T0 + + + + + 
110 DqR-8-1 T3 + + + + + 
111 DqR-8-2 T3 + + + + + 
112 DqR-8-3 T3 + + + + + 
113 DqR-8-4 T3 + + + + + 
114 DqR-8-5 T3 + + + +  
115 DqR-8-6 T3 + + - - - 
116 DqR-8-7 T3 + + + + + 
117 DqR-8-7-1-1 T4 + + + + + 
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Appendix 4. Continuation 

118 DqR-8-7-2-1 T4 + + + + + 
119 DqR-8-8 T3 + + + + + 
120 DR* T0 + + + + + 
121 DR11-1 T2 -     
122 DR-2-1 T2 -     
123 DR21R-2-1 T2 + + - - - 
124 DR21R-2-1-1 T3 -     
125 DR21R-2-2 T2 + + - - - 
126 DR21R-2-3 T2 + + - - - 
127 DT T0 + + + + + 
128 E T0 + + + + + 
129 E1 T0 + + + + + 
130 E1 5(a)-2-1 T2 + + + + + 
131 E 5(4)-2-1 T2 -     
132 E8 T0 + + + + + 
133 E8R T0 + + + + + 
134 ER T0 + + + + + 
135 G T0 + + + + + 
136 G*A T0 + + + + + 
137 G*A- T2 + + - - - 
138 G*A-1-1 T2 + + + + + 
139 G3 T0 + + + + + 
140 G4 T0 + + + + + 
141 G51-1-1-1 T3 -     
142 G51-1-5-1 T3 + + + + + 
143 G51-1-10-1 T3 + + + + + 
144 G51-1-11-1 T3 + + + + + 
145 G51-2-1 T2 -     
146 G51-2-1-1 T3 + + - + + 
147 G51-2-2-1 T3 + + + +  
148 G51-2-2-1-1 T4 + + - - ± 
149 G51-2-2-2 T3 -     
150 G51-2-2-3 T3 + + + + + 
151 G51-2-2-3-1-1 T5 + + + + + 
152 G51-2-2-4 T3 + + - - - 
153 G51-2-5-1 T3 + + + + + 
154 GB T0 + + + + + 
155 GBR T0 + + + + + 
156 GqR'/GTR' T0 + + + + + 
157 Control plants(-)  + + - - - 
160 Positive Control (+)  + - + + NA 
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Appendix 5. RNA quality and concentration 

No. Line  Progeny A230 (A) A260 (A) A2680 (A) A320 (A) A260/A280 A260/A230 µg/µl 
1 A2/12-1-3 T2 0.134 0.305 0.145 0.001 2.111 2.286 0.608 
2 A2R-2-1 T2 0.150 0.356 0.168 0.000 2.119 2.373 0.712 
3 B1-2-1 T2 0.273 0.335 0.156 0.000 2.147 1.227 0.670 
4 D2R-1 T2 0.127 0.289 0.138 0.001 2.102 2.286 0.576 
5 E1 5(a)-2-1 T2 0.127 0.281 0.131 -0.001 2.136 2.203 0.564 
6 G*A-1-1 T2 0.191 0.289 0.141 0.001 2.057 1.516 0.576 
7 B3-1-11-4-1 T4 0.125 0.299 0.142 -0.001 2.098 2.381 0.600 
8 C5-1-1 T3 0.186 0.450 0.213 0.000 2.113 2.419 0.900 
9 C5-3-1 T3 0.164 0.391 0.183 -0.001 2.130 2.376 0.784 

10 C7-1-3-1 T3 0.135 0.316 0.148 0.000 2.135 2.341 0.632 
11 C7-1-4-1 T3 0.135 0.316 0.177 0.000 2.085 2.365 0.738 
12 D2R-2-12-1 T3 0.178 0.439 0.203 -0.003 2.146 2.442 0.884 
13 G51-1-11-1 T3 0.158 0.379 0.178 -0.001 2.123 2.390 0.760 
14 G51-1-5-1 T3 0.151 0.380 0.177 -0.002 2.134 2.497 0.764 
15 A2/D12-1-1-1-1 T4 0.167 0.414 0.194 -0.002 2.122 2.462 0.832 
16 BR-5-1-4-1 T4 0.188 0.429 0.204 0.002 2.114 2.296 0.854 
17 C5-2-2-1 T4 0.170 0.406 0.191 0.000 2.126 2.388 0.812 
18 DA-2-3-6-1 T4 0.144 0.359 0.165 -0.003 2.155 2.463 0.724 
19 DqR-8-7-2-1 T4 0.134 0.328 0.155 0.000 2.116 2.448 0.656 
20 C1-2-6-15-1 T5 0.120 0.316 0.144 -0.006 2.147 2.556 0.644 
21 G51-2-2-3-1-1 T5 0.153 0.400 0.182 -0.005 2.166 2.563 0.810 
22 C1-2-3-3-3-2-1 T6 0.138 0.362 0.165 -0.005 2.159 2.566 0.734 
23 C1-2-6-13-1-3-6-1 T7 0.143 0.370 0.170 -0.005 2.143 2.534 0.750 
24  Control (-C) plant 0.116 0.198 0.093 0.000 2.129 1.707 0.396 
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Appendix 6. Transgenic plants grouping by expression folds of cry1Ac 

gene 

Grouping scale:  
High level: > 1 folds normalized expression 
Moderate: 0.5-1 folds normalized expression 
Low: 0.1- 0.499 folds normalized expression 
Very low: < 0.1 folds normalized expression 

Line Expression Expression 
SD 

Group by 
expression 

level 

No. of larvae 
died(out of five 

inoculated) 

Estimated 
feeding 

damage(5) 
Control 0.000 0.000 1 (0.78) 60 (40) 
A2/D12-1-1-1-1 4.718 0.711 high 5 5 
BR-5-1-4-1 2.853 1.213 high 5 5 
C1-2-6-13-1 2.615 1.249 high 5 10 
G51-1-5-1 2.356 0.247 high 5 5 
D2R-2-12-1 2.197 0.318 high 5 5 
DA-2-1 2.153 1.213 high 5 5 
B1-2-1 1.840 0.247 high 3 25 
DqR-8-7-2-1 1.679 0.283 high 5 5 
G51-1-11-1 1.472 0.441 high 5 5 
DA-2-3-6-1 1.460 0.541 high 5 5 
C1-2-6-15-1 1.366 0.216 high 3 25 
C1-2-6-13-2-3-6-1 1.000 0.396 moderate 2 20 
G51-2-2-3-1-1 0.924 0.190 moderate 5 5 
C1-2-6-13-2 0.617 0.420 moderate 2 15 
C1-2-3-3-3-2-1 0.600 0.107 moderate 5 5 
DqR-8-2 0.438 0.063 low 4 5 
B3-1-11-4-1 0.410 0.106 low 4 10 
DA-2-4 0.392 0.170 low 3 5 
DA-2-3 0.335 0.101 low 4 5 
B3-3-2-1 0.327 0.187 low 3 15 
G*A-1-1 0.155 0.036 low 5 5 
D2R-1 0.140 0.053 low 5 5 
DqR-8-4 0.090 0.077 very low 5 5 
E15(a)-2-1 0.085 0.017 very low 5 5 
C1-2-6-13-3 0.082 0.028 very low 3 5 
A2R-2-1 0.033 0.011 very low 1 35 
B3-3-1-5 0.018 0.004 very low 2 50 
B3-1-4-2 0.004 0.002 very low 2 15 
A2/D12-1-3 0.002 0.000 very low 5 5 
DA-2-2 0.000 0.000 very low 4 10 
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Appendix 7. Segregation data  

Generation Line 
Leaf paint assay using Herbicide PCR for Cry1Ac 

Resistant Susceptible Total Test 
ratio X2* Positive Negative Total Test 

ratio X2* 

T1 

DA 5 0 5 3:1 0.00 5 0 5 3:1 0.00 
DqR 2 3 5 3: 1 1.47 2 3 5 3: 1 1.47 
DN 0 5 5 0 :1 0.00 5 0 5 1 : 0 0.00 
A9R 0 5 5 0 :1 0.00 0 5 5 0 :1 0.00 
B3 11 0 14** 3 : 0 0.00 11 0 14 3 : 0 0.00 
BR 6 0 6 1 : 0 0.00 6 0 6 1 : 0 0.00 
C1 2 4 6 3: 1 2.31 6 0 6 3: 1 0.00 
C4 2 5 7 3: 1 3.16 6 1 7 3: 1 0.17 

T2 

DqR 11 3 19** 3: 1 0.01 10 3 13 3: 1 0.01 
BR-1 1 0 2** 3: 1 0.50 1 0 2 3: 1 0.50 
B3-1 11 0 11 1 : 0 0.00 11 0 11 1 : 0 0.00 
B3-3 5 1 6 3: 1 0.09 5 1 6 3: 1 0.09 

C1-2-1 1 0 1 3:1 0.50 1 0 1 3: 1 0.50 
BR-3 1 1 2 3: 1 0.50 1 1 2 3: 1 0.50 
BR-5 2 0 2 1 : 0 0.00 2 0 2 1 : 0 0.00 
DA-2 4 1 5 3: 1 0.02 5 0 5 1 : 0 0.00 
BR-3 1 1 2 3 : 1 0.50 1 1 2 3 : 1 0.50 
BR-5 2 0 2 3 : 1 0.50 2 0 2 3 : 1 0.50 

T3 

DqR-8 6 1 7 3: 1 0.17 7 1 8 3: 1 0.25 
B3-1-4 6 0 6 1: 0 0.00 6 0 6 1: 0 0.00 
B3-3-1 2 3 5 3: 1 1.47 5 0 5 1: 0 0.00 
B3-3-2 3 0 3 1: 0 0.00 3 0 3 1: 0 0.00 
BR-1-1 8 1 9 3: 1 0.33 8 1 9 3: 1 0.33 

C1-2-1-2 8 1 9 3: 1 0.33 8 1 9 3: 1 0.33 

T4 

BR-1-1-3 6 7 13 3: 1 5.77 6 7 13 3: 1 5.77 
C1-2-1-2-1 7 5 12 3: 1 0.59 7 5 12 3: 1 0.59 
C1-2-1-2-2 4 0 4 1 : 0 0.00 4 0 4 1 : 0 0.00 
C1-2-1-2-3 11 0 11 1 : 0 0.00 11 0 11 1 : 0 0.00 
C1-2-1-2-4 14 0 14 1 : 0 0.00 14 0 14 1 : 0 0.00 
C1-2-1-2-5 5 1 6 3: 1 0.09 5 1 6 3: 1 0.09 
C1-2-1-2-6 15 0 15 1 : 0 0.00 15 0 15 1 : 0 0.00 
C1-2-1-2-7 12 3 15 3: 1 0.06 12 3 15 3: 1 0.06 
C1-2-1-2-8 9 0 9 1 : 0 0.00 9 0 9 1 : 0 0.00 

T5 
C1-2-1-2-3-3 4 0 4 1: 0 0.44 4 0 4 1: 0 0.000 
C1-2-1-2-6-13 5 0 5 1: 0 0.53 5 0 5 1: 0 0.000 
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Appendix 8. Effect of explant orientation during co-cultivation on the pattern of GUS gene expression 

Explants Age (day) of 
explants Treatment Explant 

Orientation 
Number of Explants with Transformation 

efficiency (%) 
Explants with strong GUS expression 

Blue spot No Blue spot Total Part of explants No. Explants Explants (%) 

CN0(=DE) 0 

GUS Vertical upright 26 0 26 100.00 Epicotyl region 20 76.92 
Control  Vertical upright 0 15 15 0.00 

   GUS Vertical inverted 39 3 42 92.86 Hypocotyl region 31 73.81 
Control  Vertical inverted 0 12 12 0.00 

   GUS Horizontal 30 0 30 100.00 
   Control  Horizontal 0 9 9 0.00 
   

CN1 1 

GUS Vertical upright 27 0 27 100.00 Epicotyl region 20 74.07 
Control  Vertical upright 0 8 8 0.00 

   GUS Vertical inverted 30 2 32 93.75 Hypocotyl region 21 65.63 
Control  Vertical inverted 0 8 8 0.00 

   GUS Horizontal 25 0 25 100.00 
   Control  Horizontal 0 8 8 0.00 
   

CN2 2 

GUS Vertical upright 10 1 11 90.91 Epicotyl region 5 45.45 
GUS Vertical inverted 10 0 10 100.00 Hypocotyl region 8 80.00 
GUS Horizontal 7 2 9 77.78 

   Control  -- 0 9 9 0.00 
  

 

CN3 3 

GUS Vertical upright 24 1 25 96.00 Epicotyl region 16 64.00 
Control  Vertical upright 0 9 9 0.00 

   GUS Vertical inverted 20 3 23 86.96 Hypocotyl region 14 60.87 
Control  Vertical inverted 0 10 10 0.00 

   GUS Horizontal 19 2 21 90.48 
   Control  Horizontal 0 10 10 0.00 
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Insect pests are the major constraints of grain legumes production and storage. Improvement through
conventional breeding strategies has been limited by the lack of resistance traits within the gene pool
for most of the economically important pests. This gap can be closed by transgenic approaches using
resistance genes from different sources. In this study, we report the development of insect resistant trans-
genic peas expressing a plant codon optimized cry1Ac gene from Bacillus thuringiensis. The transgenic nat-
ure of regenerated in vitro plants and their segregating progenies has been confirmed through molecular
analyses (PCR, Southern blot, RT-PCR and immunostrip assay). The introduced transgene was inherited
up to the T4 generation. Insect bioassay using larvae of tobacco budworm indicated total larval mortality
and significantly reduced feeding damage on the developed transgenic pea plants as compared to 85% lar-
val survival and heavy feeding damage on non-transgenic control plants. The developed transgenic lines
can be used for further studies such as gene stacking and field trials.

� 2013 Elsevier Inc. All rights reserved.
1. Introduction throughout the world (Oelke et al., 1991). It is one of the main
Pea (Pisum sativum L.), an economically very important multi-
purpose grain legume, is primarily grown for food and feed
sources of dietary protein for millions of households (Oelke et al.,
1991; Graham and Vance, 2003). Like other legumes, it has the
ability to fix atmospheric nitrogen through symbiotic relationship
with specific soil bacteria, which makes pea production an impor-
tant component of the cropping system in order to manage soil fer-
tility (Ferguson et al., 2010).

The production and storage of pea and other grain legumes is
constrained by diverse groups of insect pests. Some of the pests af-
fect the growing plants in the field and then contribute to reduced
productivity (e.g., pea aphid Acyrthosiphon pisum, pea moth Cydia
nigricana, pea leaf weevil Sitona lineatus, etc.) while other insect
pests affect the grain during storage and reduce the finally
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Fig. 1. The physical map of the transformation vector pGII35S-Cry1Ac. d35S-P, double 35S promoter from CaMV; cry1Ac, codon optimized insect resistant gene from Bacillus
thuringiensis (Sardana et al., 1996; Cheng et al., 1998); NOS-P and NOS-T, Agrobacterium nopaline synthase promoter and terminator, respectively; bar, herbicide resistant
plant selectable marker gene from Streptomyces hygroscopicus (Murakami et al., 1986); RB, right border; LB, left border. Arrows indicate the direction of transcription for the
respective genes.
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available product for consumption (e.g., most of the weevil species)
(Schroeder et al., 1995; Keneni et al., 2011). There are also some in-
sect pests (e.g., pea weevil) which cause yield losses both in the
field and during storage (Clement et al., 2002). Significant yield
losses by insect pests have been documented by different authors:
up to 13% for pea moth, 20–30% for pea aphids, up to 40–70% for
pea weevil and up to 10% for pea leaf weevil (Schroeder et al.,
1995; Clement et al., 2002, 2009; Legowski and Gould, 1960;
Biddle and Cattlin, 2001; Williams et al., 1995).

Insect resistance is a trait lacking for most of the economically
important insect pests in pea and other grain legumes (Keneni
et al., 2011; Clement et al., 2002). This makes improvement efforts
very difficult through conventional breeding. This limitation can
be overcome by transgenic approaches, i.e., by introducing trans-
genes for insect resistance from other sources. Preferably, cry genes
from the soil bacterium, Bacillus thuringiensis, are the most com-
monly used genes for the development of insect resistant transgenic
crops (Korth, 2008). There are different groups of cry genes that are
active against specific groups of insect pests: cry1 group against Le-
pidopteran pests and cry3 group against Coleopteran pests (Hofte and
Whiteley, 1989; Crickmore et al., 1998). Efforts on the development
of insect resistant transgenic crops have been reviewed by many
authors (Zaidi et al., 2012; Schuler et al., 1998; Gatehouse, 2008).

Some of the specific cry genes used so far include the cry1Ab gene
against maize corn borer in maize (Carozzi and Koziel, 1997),
cry1Ab/cry1Ac genes against cotton bollworm in cotton (Perlak
et al., 1990) and against stem borers in rice (Cheng et al., 1998),
and cry3A gene against potato beetle in potato (Perlak et al., 1993).

There are numerous reports on transgenic pea development
mainly against diseases (Hassan et al., 2009; Richter et al., 2006).
The only report to our knowledge on insect resistance was the
transgenic pea expressing a bean alpha-amylase inhibitor and the
transgenic seeds exhibited resistance against the principal insect
pest, pea weevil (Schroeder et al., 1995). However, this has not
reached consumers due to observations of an immune response
to the expressed alpha-amylase inhibitor in mice tests (Prescott
et al., 2005), although a recent report revealed that this apparently
is not the case (Lee et al., 2013). In general, however, little atten-
tion has been given to the development of insect resistance in
pea. So far, there is no report on transgenic pea expressing cry
genes to improve insect resistance.

The different groups of cry toxins provide a practical and imme-
diate solution to the problem. The major field pests in the order
Lepidoptera can be addressed by developing transgenic pea
expressing a cry1 toxin while the cry3 toxin can be used to target
the major storage pests in the order Coleoptera. Furthermore, these
cry toxins can be stacked into single pea plants so that both the
field and storage pests can be controlled.

In this study, we report the development of insect resistant
transgenic pea expressing a synthetic plant codon optimized
cry1Ac gene. The genomic integration, inheritance and expression
of the introduced cry1Ac gene has been confirmed through molec-
ular analysis while the insect bioassay showed the resistance of the
developed transgenic pea lines against one of the target insects.
2. Materials and methods

2.1. Plant materials and transformation vector

In vitro putative transgenic pea (P. sativum L. cv. Sponsor) plants
developed through Agrobacterium-mediated transformation with a
transformation vector pGII35S-Cry1Ac (Fig. 1) harboring codon
optimized insect resistant cry1Ac gene from B. thuringiensis
(Sardana et al., 1996; Cheng et al., 1998) and herbicide resistant
bar gene from Streptomyces hygroscopicus (Murakami et al., 1986)
were used. These putative transgenic plants were developed at
the Department of Plant Biotechnology (Institute of Plant Genetics,
Leibniz University of Hannover) based on the transformation pro-
tocol developed by Schroeder et al. (1993) with modification after
Richter et al. (2006). Fig. 2 shows an overview of transgenic pea
development steps. Seeds were surface sterilized in 70% ethanol
for one minute followed by 6% sodium hypochlorite for 10 min.
Then, the seeds were washed 4–5 times with sterilized distilled
water and imbibed overnight. The next day, embryos were sliced
longitudinally and inoculated with Agrobacterium suspension after
adjusting the OD600 to 1–1.2 for 60 min. After 3–4 days of co-culti-
vation, the explants were washed thoroughly in distilled water and
then in antibiotic solution to eliminate the Agrobacterium growth.
Subsequently, the explants were transferred to shoot induction
medium for 10 days and finally transferred to selective regenera-
tion medium where the regenerated shoots were subjected to in-
creased concentration of selection agent (PPT: 2.5, 5, 7.5 and
10 mg/L) every three weeks. In order to recover the putative trans-
genic shoots for further molecular and functional analyses, the
in vitro putative transgenic shoots were micro-grafted (Pickardt
et al., 1995) onto seedling rootstock raised on soil substrate until
flowering and setting the T0 seeds. Leaf samples were collected
from successfully grafted and well grown plants for molecular
analysis.

2.2. DNA isolation and PCR analysis

Genomic DNA was isolated using the CTAB method (Doyle and
Doyle, 1990). The isolated DNA was used for PCR and Southern blot
analyses of the putative transgenic plants and their subsequent
progenies.

The PCR program contained the initial denaturation step of
94 �C, 5 min followed by 30 cycles of [94 �C, 1 min denaturation
step; 1 min annealing step (Table 1); and 72 �C, 1 min extension
step] and the final extension steps of 72 �C, 10 min. Primers for
hmg-I/Y gene (high mobility group protein) were used as internal
control to check the presence of DNA (Gupta et al., 1997).

2.3. Southern blot analysis

Total DNA for Southern blot analysis was isolated from young
leaves of transgenic plants using CTAB method (Doyle and Doyle,
1990). The DNA (20 lg) was digested with EcoRI, and the resulting
fragments were fractionated by electrophoresis on a 0.8% agarose



Fig. 2. An overview of transgenic pea development. (a) Seed surface sterilization and overnight soaking in sterile distilled water (Days 1–2). (b) Explants (embryo slices)
preparation and inoculation with Agrobacterium suspension harboring transformation vector (Days 2). (c) Co-cultivation of explants for 3–4 days under dark condition at
22 ± 2 �C (Days 2–6). (d) Multiple shoot induction from co-cultivated explants on MST medium for 10 days under 16/8 h light/dark at 22 ± 2 �C (Days 6–16). (e) Selective
regeneration of shoots on P2 medium supplemented with 2.5–10 mg/l PPT at 3 weeks interval (Days 16–90). (f) Putative transgenic shoots on P2 medium supplemented with
10 mg/l PPT ready for micro-grafting. (g) Recovery of putative transgenic shoots through micro-grafting on seedling rootstock (The arrow indicates the graft union tied with
tape). During the first two weeks, it was necessary to maintain high relative humidity around the grafted shoots in order to facilitate graft-union healing. (h) Successfully
grafted putative transgenic shoots with flower and pods (arrows). (i) Greenhouse grown subsequent generations.

Table 1
List of primers, their annealing temperature and the expected PCR product.

Target gene Primers Tma (�C) PCR product

Cry1Ac Forward: 50-GTTCAGGAGAGAATTGACCC-30 56 750 bp
Reverse: 50-CTTCACTGCAGGGATTTGAG-30

Bar Forward: 50-CTACCATGAGCCCAGAACGACG-30 62 499 bp
Reverse: 50-CTGCCAGAAACCCACGTCATGCCAGTTC-30

hmg-I/Y Forward: 50-ATGGCAACAAGAGAGGTTAA-30 56 570/350 bpb

Reverse: 50-TGGTGCATTAGGATCCTTAG-3

a Tm: Annealing temperature.
b 570 bp for genomic DNA and 350 for cDNA.
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gel (w/v) and then transferred to a positively charged nylon mem-
brane (Roche, Germany) as described by Sambrook et al. (1989).
The membrane was hybridized with DIG-labeled Cry1Ac probe
using PCR-DIG Mix (Roche, Germany) according to the manufac-
turer’s instructions. The blots were exposed to X-ray film for 1 h.
2.4. RT-PCR expression analysis of cry1Ac gene

Total RNA was isolated from young leaves using NucleoSpin�

RNA plant kit (Macherely-Nagel) according to the manufacturer’s
instructions. Five micrograms of the total RNA was used for cDNA
synthesis using RevertAid™ H Minus cDNA synthesis kit (MBI Fer-
mentas, St Leon-Rot, Germany). The cDNA was used as a template
for PCR amplification of the transgene specific fragment.

2.5. Detection of Cry1Ac protein

The leaves of transgenic plants were collected and used to check
the presence of Cry1Ac protein using an immunostrip assay
(Bt-Cry1Ab/1Ac ImmunoStrip� test, Agdia Inc., USA) following
the manufacturer’s instructions. The leaf sample (80–100 mg
per plant) was ground using liquid nitrogen and crude protein
was extracted using 1.5 ml 1� sample extraction buffer 4 (SEB4,



Fig. 3. Molecular confirmation of the stable integration and inheritance of the T-DNA region into the genome of pea plants. (a) Multiplex PCR detection of cry1Ac (product size
of 750 bp) and HMG (product size of 570 bp) genes in putative transgenic plants (T0). (b) PCR detection of bar gene (product size of 499 bp) in putative transgenic plants. (c)
Multiplex PCR detection of cry1Ac and HMG genes in the subsequent generations (T1 plants: B3-1 and B3-3; T3 plants: BR-1-1, BR-1-2 and BR-1-3; T4 plants: C1-2-1-1-11, C1-
2-1-3-3, C1-2-1-4-3, C1-2-1-5-6, C1-2-1-6-8, C1-2-1-7-6 and C1-2-1-8-5) of transgenic plants. (d) PCR detection of bar gene in the subsequent generations of transgenic
plants. (e) Southern blot analysis of transgenic plants (T0) using DIG labeled cry1Ac probe. +C: plasmid DNA (pGII35S-cry1Ac) as a positive control, �C: genomic DNA of non-
transgenic plant as a negative control, W: water control, M: GeneRuler™ 100 bp plus DNA ladder (MBI Fermentas, St Leon-Rot, Germany) and M⁄: DIG-labeled DNA molecular
weight marker II (Roche, Germany).

296 A.T. Negawo et al. / Biological Control 67 (2013) 293–300
Agdia Inc., USA). Then, 500 ll of the crude extract was transferred
to a new microcentrifuge tube and a Bt-Cry1Ab/1Ac Immunostrip�

was inserted into the tube. Signal development on the strip was
noted after 30 min for the presence of Cry1Ac protein.

2.6. Leaf paint functional assay

Leaf paint functional characterization of progenies from trans-
genic clones was conducted according to Schroeder et al. (1993)
with modification following Richter et al. (2006). 600 mg/l herbi-
cide solution BASTA� (Aventis GmbH, Frankfurt, Germany) was
used. One pair of leaves was selected on the actively growing prog-
enies of transgenic and non-transgenic control plants. From the se-
lected pair of leaves, one of the leaves was marked as a control
while the prepared herbicide solution was applied on the upper
surface of the other leaf using a small brush. Then, the relative her-
bicide tolerance of the plants was evaluated visually one week
after application.

2.7. Insect bioassay

To test the efficiency of transgenic plants’ resistance against in-
sect pests, insect bioassays were conducted twice using the larvae
of tobacco budworm (Heliothis virescens) kindly provided by Dr.
Jürgen Langewald (BASF Limburgerhof, Germany). T4 and T5 gen-
eration of transgenic plants and non-transgenic control plants
were grown under contained condition and used for feeding exper-
iments. In the first experiment, seven each transgenic and non-
transgenic plants were used, while for the second experiment, 10
plants each were used. Five larvae were inoculated on each plant.



Fig. 4. RT-PCR expression analysis of cry1Ac (750 bp) and HMG (570 bp for gDNA and 350 bp for cDNA) genes in T4 transgenic plants.+C (pDNA): plasmid (pGII35S-cry1Ac)
DNA as a positive control, �C (gDNA) and �C (cDNA): genomic DNA and cDNA, respectively, from non-transgenic plant as a negative control, B3 (gDNA): genomic DNA from
clone B3 (T0 plant) as a control, B: blank, W: water control and M: GeneRuler™ 100 bp plus DNA ladder.

Fig. 5. Immunostrip detection of Cry1Ac protein in the leaves of some T4 generation plants. Control: crude protein extract from non-transgenic pea plant, Bt maize: crude
protein extract from seeds of Bt maize and C1-2-1-6-N (where N ranges from 3–15): crude protein extract from leaves of transgenic pea plants. The control signals proof the
function of the test as well as the non-transgenic control plant, while the transgenic lines indicated the positive plants.
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Then, larval survival and feeding damage were evaluated daily for
one week post-inoculation.
3. Results

3.1. Genomic integration of the T-DNA region

Putative transgenic pea plants expressing cry1Ac gene for insect
resistance and bar gene as a plant selectable marker gene were
developed through Agrobacterium transformation. Selective regen-
eration and maintenance of the developed putative transgenic
shoots were done on medium supplemented with PPT. Based on
the described procedure (Section 2.1), a minimum 7–9 months
were required to get the putative transgenic shoots ready for mi-
cro-grafting. In vitro putative transgenic shoots from more than
65 clones out of 2500 explants were recovered by micro-grafting
and analyzed using PCR and Southern blotting. PCR analysis was
done for all recovered putative transgenic shoots while Southern
blotting was done for few selected lines.

The results of PCR analysis using cry1Ac and bar gene specific
primers (Fig. 3a and b) indicated the genomic integration of the
T-DNA region and thereby the transgenic nature of the regenerated
in vitro plants. Further PCR analysis of the subsequent generations
(T1–T4) indicated the stable inheritance of the introduced
transgenes to the next generations (Fig. 3c and d). The result of
Southern blot analysis using DIG labeled non-radioactive cry1Ac
probe showed a single copy for two clones (DqR and DN) and five
copies for seven clones (A9R, B3, BR, C1, C4, C5 and CR) (Fig. 3e).
3.2. Expression analysis

Transcriptional level analysis using RT-PCR indicated the
expression of the cry1Ac gene in the developed transgenic plants.
Using the prepared cDNA as a template for PCR analysis, the ex-
pected PCR fragment for the introduced cry1Ac gene was amplified
in the transgenic plants while the equivalent PCR fragment was ab-
sent in the control plants (Fig. 4).
3.3. Detection of Cry1Ac protein

The immunostrip assay specific to Cry1Ac/Cry1Ab protein indi-
cated the accumulation of the novel protein in the transgenic
plants (Fig. 5). The control and test signals were observed in the
transgenic lines while only the control signal was observed in
the case of non-transgenic control plant.
3.4. Leaf paint functional characterization of progenies from
transgenic plants

The result of leaf paint assay showed a clearly observable differ-
ence between non-transgenic control plants and progenies from
transgenic plants (Fig. 6). The leaf of the control plants was suscep-
tible to the herbicide application. However, in the segregating
progenies of transgenic plants, both susceptible and tolerant leaves
were observed.



Fig. 6. Leaf paint assay of progenies from cry1Ac transgenic pea plants. (a) herbicide resistant transgenic plant showing no effect, (b) herbicide susceptible transgenic plant
and (c) herbicide susceptible non-transgenic control plant. The arrows indicate the herbicide solution (BASTA�, 600 mg/l) treated leaves and the marked leaves indicates the
control leaves. The effect of the herbicide was monitored after one week.

Fig. 7. Insect bioassay on cry1Ac transgenic pea plants with the larvae of tobacco
budworm (Heliothis virescens. The larvae were obtained from BASF Company) after
5–7 days after inoculation. (a) Non-transformed control pea plants inoculated with
five larvae resulted in heavy damage and normal growth of the larvae. (b)
Transgenic pea plants with negligible feeding damage and no survival of the
inoculated larvae.
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3.5. Insect bioassay

In order to evaluate the level of insect resistance in the trans-
genic pea plants, insect feeding tests were conducted using one
of the target pests, tobacco budworm. The result showed a clear
difference between transgenic and control plants in term of
damage and larval mortality. The observed feeding damage was
negligible on transgenic plants while the control plants were to-
tally damaged by the inoculated larvae (Fig. 7). Larval survival
was also highly impaired on the transgenic plants where most of
the larvae (73–85% in the first experiment and 53–78% in the
second experiment) died within 2–3 days after inoculation on the
transgenic plants which was not the case on the non-transgenic
control plants (Fig. 8). 5–7 days after inoculation, none of the larva
survived on transgenic plants whereas about 85% of the larvae sur-
vived on the non-transgenic control plants.
4. Discussion

Insect pests are the major cause of yield losses of grain legumes
throughout the world. About three decades have passed since
transgenic approaches were applied to improve crops wherever
conventional methods had no options, like in the case of insect
resistance. Nowadays insect resistant transgenic crops are under
production on increased acreage throughout the world (James,
2011). However, the use of transgenic approaches has been limited
to some major crops while there is also an urgent need for the
application of this technology in most of our crops. Grain legumes
such as pea, despite a multipurpose socio-economically important
crop and constrained significantly by insect pests, are an example
of crops that have less benefited from the application of genetic
transformation.

In this study, we developed and analyzed transgenic pea plants
expressing a cry1Ac gene conferring insect resistance and bar gene
as a plant selectable marker. The stable genomic integration, inher-
itance and expression of the introduced transgenes were con-
firmed using PCR, Southern blot and RT-PCR analyses.

Besides molecular analyses at the DNA and RNA level, it is
also necessary to determine whether the introduced transgene
is translated to the intended Cry1Ac protein product. Accord-
ingly, the accumulation of the novel Cry1Ac protein in the
developed transgenic plants was demonstrated by an immuno-
strip assay specific to Cry1Ac/Cry1Ab proteins. A similar tech-
nique was used to detect the presence of Cry1Ab protein in
transgenic potato (Hagh et al., 2009) and three Cry proteins
(Cry1Ac, Cry2Ab and Cry1F) in transgenic cotton genotypes (Ali
et al., 2012).

Leaf paint functional assay was conducted on progenies ob-
tained from PCR confirmed transgenic clones to evaluate the bar
gene expression and activity. Similar assays have been used to
characterize progenies of different transgenic pea plants (Hassan
et al., 2009; Richter et al., 2006). They reported that transgenic
plants that inherited the bar gene are resistant to herbicide appli-
cation. The result of the current study is also in line with previous
reports. Accordingly, both herbicide susceptible and resistant
plants were observed in the progenies from transgenic plants. This
suggested segregation since the putative transgenic plants (T0)
were not homozygous for the transgenes (bar and cry1Ac genes).
The original transgenic (T0) plants obtained from transformation
experiments were hemizygous for the introduced transgenes (Zale,
2008). In the subsequent generations (T1 onward), a mixture of
zygosity level (such as homozygous for the presence of transgene,
hemizygous for the transgene and homozygous for the absence of
transgene) are expected (Zale, 2008; Sridevi et al., 2006). At ad-
vanced generations such as T2, T3 and T4, it is possible to identify



Fig. 8. Effect of transgenic pea plants on larval mortality. Five to seven days after larval inoculation, total larval mortality was recorded on cry1Ac transgenic pea plants
compared to about 15% larval mortality on non-transgenic control plants.
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and recover homozygous lines where all subsequent progenies
could show resistance to the herbicide application.

The result of insect bioassays demonstrated the resistance of
the developed transgenic lines to one of the target insect pests. To-
tal larval mortality and negligible feeding damage was observed on
the transgenic plants compared to 15% larval mortality and heavy
feeding damage on the control plants. Similar results have been re-
ported on transgenic crops expressing different cry proteins. Trans-
genic sorghum plants expressing a synthetic cry1Ac gene showed
40% larval mortality of spotted stem borer (Girijashankar et al.,
2005). Total mortality of tobacco budworm and tobacco hornworm
larvae and negligible insect damage has been observed on trans-
genic tobacco expressing cry1Ac protein (Gulbitti-Onarici et al.,
2009). Similarly, up to 100% larval mortality of yellow stem borer
was reported on transgenic rice expressing cry1Ac protein (Cheng
et al., 1998).

In general, the development of insect resistant transgenic pea
expressing cry1Ac protein has been confirmed by molecular and
functional analyses and would be useful in the future of pea
improvement programs such as transgene stacking. It would also
be interesting to see how the soil bacteria such as nodule forming
Rhizobia would be affected in the rhizosphere of the developed
transgenic plants. Furthermore, conducting field trials would also
be necessary to evaluate the performance of the developed trans-
genic lines under natural growing conditions.
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