
Detection of Moving Objects for
Aerial Surveillance of Arbitrary Terrain

Der Fakultät für Elektrotechnik und Informatik

der Gottfried Wilhelm Leibniz Universität Hannover

zur Erlangung des akademischen Grades

Doktor-Ingenieur

genehmigte

Dissertation

von

Dipl.-Ing. Marco Munderloh

geboren am 21.09.1977 in Wilhelmshaven.

2015



Referent: Prof. Dr.-Ing. J. Ostermann
Korreferent: Prof. Dr.-Ing. C. Heipke
Tag der Promotion: 24.03.2015



III

Acknowledgments

The time working at the Institut für Informationsverarbeitung (TNT) of the Gott-
fried Wilhelm Leibniz Universität Hannover to earn the degree Doctor of Engineering
has been intensive and highly instructive. It had a big influence on my life and career.
Especially the wide-ranging research topics at the institute allowed me an insight
into many areas of coding and computer vision, and by their connection this work
was originated.

My special thanks go to Prof. Dr.-Ing. Jörn Ostermann as the supervisor of my
thesis for his support, his guidance and ideas, and for always taking the time for
discussions. I also like to thank Prof. Dr.-Ing. Christian Heipke for being the
external examiner and for his detailed review and helpful comments and Prof. Dr.-
Ing. Bodo Rosenhahn as the chair of the examination board for his suggestions and
hints during writing.

Furthermore, I thank all my colleagues at the institute. Our discussions helped me
focusing and finding the right path to go. In particular, I like to mention Thorsten
Laude, Holger Meuel, Hendrick Hachmann, and Julia Schmidt for their support
and encouragement and Stella Graßhof, who was always open-minded for questions,
especially concerning math.

Finally, a huge thanks goes to my family: my parents Heidrun and Hans-Gerd,
my brother Timo and his wife Nicole, and of course to my wife Claudia and my
son Martin Justus, whose smile always brings sunlight into cloudy days. I am
very grateful for your understanding not having me there at so many evenings and
weekends during the finalization of this thesis.





V

Contents

1 Introduction 1
1.1 Motion Estimation and Parameter Extraction . . . . . . . . . . . . . 4
1.2 Problems of Current Ground Motion Models . . . . . . . . . . . . . . 5
1.3 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.4 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2 Basic Principles 10
2.1 Scene Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.2 Camera Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.3 Epipolar Geometry . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.4 Essential and Fundamental Matrix . . . . . . . . . . . . . . . . . . . 20
2.5 Projective Transformation and the Homography . . . . . . . . . . . . 21
2.6 Moving Object Detection by Background Subtraction . . . . . . . . . 23
2.7 Motion Estimation from Image Sequences . . . . . . . . . . . . . . . 25
2.8 Dense Optical Flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3 Planar Landscape Error Model 34
3.1 Aerial Surveillance Scene Model . . . . . . . . . . . . . . . . . . . . . 34
3.2 Vertical Aerial Photo . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
3.3 Motion Parallax Displacement . . . . . . . . . . . . . . . . . . . . . . 42
3.4 Camera with a Tilt Angle . . . . . . . . . . . . . . . . . . . . . . . . 46
3.5 Arbitrary Camera Orientation . . . . . . . . . . . . . . . . . . . . . . 51
3.6 Height Restrictions based Outlier Detection . . . . . . . . . . . . . . 54
3.7 Detectability in Dependence of Speed and Direction of Motion . . . . 57

4 Multi-Planar Landscape Model based on Triangle Meshes 58
4.1 Mesh Creation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
4.2 Outlier Removal and Moving Object Detection . . . . . . . . . . . . . 61
4.3 Mesh-based Motion Compensation . . . . . . . . . . . . . . . . . . . 63
4.4 Accuracy Analysis of the Mesh-based Approach . . . . . . . . . . . . 65

5 Experiments 73
5.1 Motion Vector Classification . . . . . . . . . . . . . . . . . . . . . . . 73
5.2 Motion Compensation Performance . . . . . . . . . . . . . . . . . . . 82
5.3 Moving Object Detection Performance . . . . . . . . . . . . . . . . . 85

6 Summary and Conclusions 93

Bibliography 97



VI

Abbreviations and Symbols

Abbreviations:
BMA Block Matching Algorithm
CCD Charge-Coupled Device
CMOS Complementary Metal-Oxide Semiconductor
CRF Corner Response Function
FOV Field Of View
GLONASS GLObalnaja NAwigazionnaja Sputnikowaja Sistema
GPS Global Positioning System
IMU Inertial Measurement Unit
INS Inertial Navigation System
KLT Kanade-Lucas-Tomasi feature tracker
MAV Micro Air Vehicle
MPP Motion Parallax Predictor classifier
PTZ Pan, Tilt and Zoom camera system
RANSAC RANdom SAmple Consensus
ROI Regions of Interest
SIFT Scale-Invariant Feature Transform
SURF Speed-Up Robust Features
UAV Unmanned Aerial Vehicle

Symbols:
α angle of aperture of the camera
β, γ, θ pan, roll, and tilt angle of the camera
λ parameter of a line equation
λ1,λ2 Eigenvalues of M
λm1, λm2 parameters of the triangle plane equation
A affine matrix of size 2× 2

bk(n) binarized image intensity differences of the frame k
c(cx,cy) principal point offset
C(Cx,Cy,Cz)

> position of the camera in world coordinates
Ck position of the camera in the frame k
∆C vector between two camera centers
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∆c, d̃0 motion parallax of the ground plane in image plane coordinates
DL diameter of the camera lens
DP distance of scene point P to the triangle surface
df minimum feature distance
dk(n) image intensity differences of the frame k
d(dx,dy)

> displacement vector
di(di,x,di,y)

> displacement of the ith feature
d̂ estimate of d

e position of an epipole
ek(n) binarized image intensity differences of the frame k after erosion
E elementary matrix of size 3× 3

f focal length
fi,k position of the ith feature in the frame k
F fundamental matrix of size 3× 3

gk−1 holds the temporal derivatives of I
h height of a scene point above the ground plane
h11...h33 the elements of H
H homography matrix of size 3× 3

I(n) image intensity at the position n

Ik(n) image intensities of the frame k
Ix,Iy partial derivatives of I
k frame index
kH Harris weighting factor
∆k number of frames between the source and destination frame used for

feature tracking and motion compensation
K camera calibration matrix of size 3× 3

l epipolar line
M Harris corner matrix
M0,1,2 mesh node positions of a triangle in world coordinates
m0,1,2 mesh node positions of a triangle on the image plane
n number of features
Nx,Ny amount of sensor elements in x- and y-direction
n(nx,ny)

> point in image coordinates
n̄, n̄0 normal vector and unit normal vector of a triangle surface
N position of the nadir in world coordinates
∆nc,∆nm relief displacement and motion displacement in pel
O projection of the image plane origin onto the ground plane
p(x,y)> point on the image plane
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p′(x′,y′)> displaced position of the point p

p̃(xd,yd)
> point on the image plane with lens distortions

pk point on the image plane of camera Ck

p̂k estimate of pk through affine motion compensation
p0,k projection of P′0 onto the image plane of camera Ck

ph,k projection of Ph onto the image plane of camera Ck

P(X,Y,Z) point in world coordinates
P̃(Xc,Yc,Zc)

> point in camera coordinates
P0,P

′
h point on the ground plane in world coordinates

P̃0, P̃
′
h point on the ground plane in camera coordinates

Ph point on an object width height h in world coordinates
P̃h point on an object width height h in camera coordinates
∆p relief displacement of p

∆pm motion parallax of p

∆P relief displacement projected to the ground plane
∆Pm motion parallax projected to the ground plane
q(q1,q2)>, q projective components of the homography
r, rd radii of p and p̃ to the center of distortion
rfps frame rate
r11...r33 the elements of R
R = RθRγRβ camera orientation matrix of size 3× 3

rk(n) pixel-wise motion detection results of the frame k
∆rc relief displacement in radial direction
∆Rc relief displacement projected to the ground plane in radial direction
sw, sh width and height of the camera sensor
T1, T2, T3 thresholds of the cluster filter
Tb, Tr binarization and erosion thresholds of the noise filter
Td distance threshold of the motion parallax outlier detector
ti,k set referencing the mesh nodes of the triangle i in the frame k
Ti,k matrix containing the nodes of the triangle i in the frame k
t translation vector component of a homography
u,v,u,v arbitrary feature indexes and positions
vplane = (vx,vy)

> velocity and flight direction of aircraft
vthresh minimal object speed needed for detection
W search window set of pixels
∆xc relief displacement in x direction
∆Xc relief displacement projected to the ground plane in x direction
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Abstract

The detection and segmentation of moving objects in aerial video sequences is a
common application in safety and environmental monitoring. The challenge hereby
is the non-static camera which is attached to and moves together with an aerial
vehicle. To be able to detect local changes due to movement of ground objects in
such a scenario, the displacements of the image pixels resulting from the motion of
the camera need to be compensated between the frames of the recorded sequence.
For this purpose, the motion of the camera as well as the structure of the recorded
scene needs to be known to compensate the global motion without errors. While
the motion of the camera can be measured accurately enough by external sensors
or can even be estimated from the video feed itself, the structure of the observed
scene is commonly unknown. Therefore, easy to compute universal approximations
of the scene structure are made instead. The most common method is to model the
global motion of the pixels by a projective transformation using a homography, in
which the observed scene is assumed to be planar. While this might be accurate
enough for high altitudes, small focal lengths, and vertically downwards oriented
cameras, the approximation fails for scenes with high buildings or low altitudes due
to motion parallax effects. As a result, the global motion for large areas of the frame
is estimated and compensated incorrectly, which leads to lots of falsely detected local
motion for such scenarios. In this work, the problem is addressed in two ways: first,
the approximation errors made by the projective transformation for scenes with
high buildings, low altitudes, and tilted or sideways looking cameras are analyzed
mathematically. From the resulting aberration equations, a predictor for the motion
parallax of image pixels is created and used as an outlier and moving object detector.
It is called motion parallax predictor classifier is this work and able to distinguish
between global motion of the background, displacements resulting from the motion
parallax of static objects such as buildings, and local motion of individual objects
in the scene. In contrast to similar methods, e.g. the elementary or fundamental
matrix conformance test, only a small range on the epipolar line is determined as
a valid representation of the possible motion parallax of static scene objects. This
allows the detection of local moving objects moving along the epipolar line, which is
not possible with epipolar geometry alone. However, the predictor has restrictions
when it comes to objects moving along the epipolar line in the direction of the
motion parallax: only objects with a displacement larger than the motion parallax
are detectable. Moreover, the intrinsic and extrinsic camera parameters must be
known, which requires external sensors and calibrated cameras. For this reason, an
additional detector based on the clustering of frame to frame displacements of feature
points (cluster filter) is developed in this work. It uses similarity constraints to join
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the estimated displacement into clusters of equal motion. This allows the detection
of local moving objects without explicit knowledge of the flight altitude, camera
parameters and motion, or the scene geometry. Compared to the homography and
fundamental matrix based methods used as references, the cluster filter as well as
the motion parallax predictor classifier were able to classify up to 100% of the
moving objects correctly. Moreover, the negative predictive value is increased from
30 to over 90% at the same time. The second way of addressing the problem is the
global motion compensation of image pixels for the use in an image differences based
system. As the investigated scenario does not conform with the single planar model
of the homography, a multi-planar approach using a mesh of locally adaptive triangle
patches is presented. In contrast to the homography, the mesh is able to adapt to
objects sticking out of the ground plane by using an individual affine mapping for
each triangle, e.g. the wall of a building and the roof. This allows the compensation
of the global motion nearly error free, leaving only the newly occurring background
as a possible source of false detections. Compared to the single planar model, the
multi-planar approach was able to reduce the amount of falsely classified pixels in
the experiments by a factor of 4.

Keywords: aerial surveillance, motion detection, motion segmentation, non-planar
motion compensation
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Kurzfassung

Das Erkennen bewegter Objekte in Luftbildsequenzen ist eine häufige Aufgabe in
der Luftüberwachung. Die Herausforderung liegt hierbei in der Unterscheidung
der globalen Verschiebung der Pixel zwischen den Bildern, hervorgerufen durch die
Bewegung der Kamera, und lokalen Bewegungen durch die zu erkennenden Ob-
jekte. Um diese trennen zu können, muss die globale Bewegung kompensiert wer-
den. Hierfür muss sowohl die Bewegung der Kamera als auch die Geometrie der
überwachten Szene bekannt sein. Während sich die Bewegung der Kamera mit-
tels externer Sensoren oder aus der Bildsequenz selbst heraus ermitteln lässt, ist
die überflogene Szene meist unbekannt und wird daher unter Verwendung eines
einfach zu bestimmenden Modells approximiert. Das meist genutzte Modell ist hier-
bei die Homographie, welche die überflogene Szene durch einer Ebene annähert.
Diese Approximation gilt allerdings nur für große Flughöhen, kleine Brennweiten
und lotrechte Aufnahmen. Entspricht die Landschaft nicht diesem Modell, z.B.
wegen hoher Gebäude, niedriger Flughöhe, etc., führen die unterschiedlichen Be-
wegungsparallaxen zwischen der Oberfläche und Gebäuden zu Fehldetektionen in
großen Bereichen des Bildes. In dieser Arbeit wird das Problem auf zweierlei
Arten angegangen. In der ersten Methode wird zunächst der Approximationsfehler
des Homographiemodells mathematisch bestimmt. Aus den sich ergebenen Fehler-
gleichungen wird ein Prädiktor erstellt, der die Bewegungsparallaxen von statischen
Objekten bis zu einer vorgegebenen Maximalhöhe voraussagt. Der in dieser Ar-
beit Bewegungsparallaxeklassifizierer genannte Detektor erlaubt die Unterscheidung
zwischen einer Bild-zu-Bild Verschiebung aufgrund statischer Objekte wie Hinter-
grund oder Gebäuden und einer lokalen Verschiebung durch ein sich bewegendes Ob-
jekt anhand des Abstandes zu einem prädizierten Epipolarliniensegment. Im Gegen-
satz zu Verfahren, die auf der Elementar- oder der Fundamentalmatrix basieren,
erlaubt dieser Ansatz auch die Detektion von Bewegungen entlang der Epipolar-
linie. Allerdings werden Objekte, welche sich in Richtung der Bewegungsparallaxe
bewegen, nur erkannt, wenn die Eigengeschwindigkeit ausreichend hoch ist. Außer-
dem müssen für dieses Verfahren die intrinsischen und extrinsischen Kamerapa-
rameter bekannt sein. Aus diesen Gründen wurde ein zweiter Detektor entwickelt,
welcher auf dem Clustern von Bewegungsvektoren basiert und als Clusterfilter beze-
ichnet wird. Das Vektorfeld wird hierbei anhand von Ähnlichkeitsbedingungen in
Bereiche gleicher Bewegung eingeteilt, wobei innerhalb der Bereiche eine sanfte Än-
derung der Bewegungsrichtung erlaubt wird. Hierdurch wird eine Erkennung von
Objekten unabhängig von der Bewegungsrichtung und ohne zwingende Kenntniss
der Flughöhe oder der Kameraparameter ermöglicht. Sowohl der Bewegungsparal-
laxeklassifizierer als auch das Clusterfilter erreichen dabei eine Erkennungsrate be-
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wegter Objekte auch für nicht planare Sequenzen von bis zu 100%, bei gleichzeitig
niedrigerer Fehlalarmrate als das Referenzverfahren. Die zweite Methode hat als
Ziel die Verbesserung der globalen Bewegungskompensation, welche z.B. für Detek-
toren notwendig ist, die auf Bilddifferenzen arbeiten. Im vorgestellten Verfahren
wird hierbei das Einzelebenenmodell der Homografie durch ein Multiebenenmodell
auf Basis von stückweise planaren Dreiecksnetzen ersetzt, in dem jedes Dreieck eine
individuelle Ebene darstellt. Hierdurch ist es möglich, auch Objekte abzubilden, die
aus der Grundebene herausstehen, in dem z.B. die Bewegung der Wand oder des
Daches eines Gebäudes individuell bewegungskompensiert wird. Im Gegensatz zum
Referenzverfahren lässt sich hierdurch die Anzahl der fälschlicherweise als bewegt
erkannten Pixel dramatisch reduzieren, so dass Fehldetektionen nur noch an neu auf-
tauchendem Hintergrund auftreten. Im Experiment ließen sich die Fehldetektionen
um den Faktor 4 reduzieren.

Schlagworte: Luftbildüberwachung, Bewegungserkennung, Bewegungssegmentierung,
nicht-planare Bewegungskompensation
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1 Introduction

The detection and segmentation of moving objects in video sequences is a com-
mon application in safety and environmental monitoring. One of the use cases is
the detection of alarm events, e.g. something is moving in a specific area, unusual
behavior of people, or abandoned objects. In a static camera scenario where the
examined scene is quasi-static over time and therefore the projected image back-
ground is nearly constant and perspective distortions are practically non-existing,
there has been a lot of research done and many algorithms are available. Most of
them are based on background subtraction. One simple solution to separate chang-
ing foreground from static background is by subtracting the pixel luminances of two
images from different points in time, as done in [2]. This results in a difference im-
age with high energy in areas of change. To increase the robustness, a background
reference can be computed from multiple images, e.g. by temporal mean or median
filtering [11], and used for the image subtraction instead. This eliminates noise and
temporarily visible objects from the reference and enables an adaption to slowly
changing conditions such as lighting. Statistical methods such as Gaussian Mixture
Models (GMM) are a more sophisticated and a widely-used way of constructing and
adapting a background reference model [57, 51, 35].

If the camera is moving, however, the problem is more complex as the image back-
ground is not static anymore but changes with the camera movement. To cope with
this, a global motion estimation and compensation has to be performed, meaning
the displacement for each of the image pixels has to be estimated and compensated
before applying the change detection algorithm (Figure 1.1). As the displacement
of the image background is dependent on the camera movement only, it can be ex-
pressed by a model of the camera motion and a model of the background structure,
whose parameters have to be determined.

In the case of pole or tree mounted cameras moved by e.g. wind turbulence or ground
vibration, or in the case of pure rotation, the degrees of freedom are limited. A simple
camera motion model with two or three parameters might be accurate enough to
describe the displacement of the image content, assuming the observed scene to be
planar and the camera displacement between frames to be small. Concerning more
complex motion paths, as they appear in freehand or vehicle mounted cameras, or
in the case of aerial surveillance, this simple approach is not sufficient to cover the
extensive position and orientation changes the camera is able to perform, and a more
sophisticated model has to be incorporated which allows more degrees of freedom.
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motion
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global

motion
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Frame t1 superimposed by

Figure 1.1: Difference image calculation after global motion compensation

In the case of aerial surveillance, which is the topic of this work, a major task is the
detection of objects operating at the ground level. To monitor ongoing events on the
surface of the earth, usually electro-optical sensors, consisting of video or infrared
cameras, are in use, which might either observe large areas for overview purposes or
dynamically aim at and zoom in on interesting spots (Regions of Interest, ROI) for
further inspection. Concerning the motion of the camera sensors, as they are directly
mounted to the aerial vehicle, the changes in position and orientation are equivalent
to the ones of the flying platform itself. To gather this motion information, it is
common practice to attach a satellite navigation systems such as GPS, GLONASS
or Galileo to the airborne platform as done for e.g. Synthetic Aperture Radar (SAR)
imaging [47, 52]. It is assisted by inertial systems (INS/IMU) to achieve adequate
accuracy and to determine the angular orientations roll, tilt, and pan.
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However, to reliably estimate and compensate the global motion in the optically
recorded sequences for surveillance and the detection of moving ground objects,
this accuracy is not high enough. Therefore it is appropriate to use the GPS/INS
data as a rough prediction and refine it by exploiting the data from the image
sequence directly. This can be done by registering the sensor data to external maps
or beacons [10], or by relying just on the optical data alone, e.g. by using optical
flow techniques [13].

Additional to the motion information of the camera, a model of the structure of
the image background is needed to differentiate local from global motion. The most
common model in aerial surveillance to approximate the surface of the earth is a
plane, which is valid for high altitudes, for small focal lengths, and for the sensors
pointing perpendicularly downwards. Assuming a pinhole camera, this allows the
movement of the image background pixels to be modeled as an affine or projective
transformation of the pixels between the frames by a homography mapping. A
homography describes the mapping of pixels between two frames taken from the
same scene at two different positions in projective space by assuming that all scene
points, which are the source of the projected pixels on the image plane, are located
on a single planar surface [68]. This model is therefore valid for planar scenes only,
as they appear in high altitude aerial surveillance or in the recording of remote
scenarios which can be assumed as being more or less at an infinite distance. As
the model is simple, robust and easy to compute, it is widely-used for the creation
of panorama images by registering the single shots to each other and stitching them
into one large frame. However, for low altitudes, tilted cameras, and urban scenarios,
the planar model assumption is invalidated and the model fails.

To improve those scenarios is the topic of this thesis. This is done in two ways:
the first one is to improve the detection of moving objects, independent of the
image content, using frame-to-frame displacement vectors only. The homography is
used hereby as a classifier to distinguish local object and global background motion
vectors. To improve the detection, the approximation error of the homography
is mathematically analyzed in detail. By incorporating known camera properties
and assumptions of the maximum height of background structure into the error
equations, a motion parallax predictor of static scene objects is created and used as
a classifier instead. Moreover, a second classifier based on motion vector clustering is
introduced. As a benefit, it does not rely on any a prior scene knowledge or known
camera parameters at all. The second way of improving the detection of moving
objects in aerial video sequences is to improve the global motion compensation of
image pixel between the frames directly to generate a quasi-static camera scenario
for background subtraction algorithms. Herby, the single-plane homography model
is replaced by a multi-planar local adaptive approach, based on 2D triangle meshes.
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1.1 Motion Estimation and Parameter Extraction

To determine the motion of the background from the recorded image content alone,
the motion information has to be extracted from the image sequence. The estimation
of motion in image sequences is a well investigated problem in the computer vision
and video coding community. The main motion estimation algorithm used in video
coding today is a block matching algorithm (BMA): it minimizes the sum of absolute
or squared differences between blocks of pixel in the current frame and candidate
blocks from preceding or succeeding frames. Those candidates are selected from an
area within a search window surrounding the position of the current block. The
current frame is divided into a grid of blocks and one motion vector is computed
for each of them by determining the best fitting candidate block. The resulting
motion vectors are applied to all pixels of the corresponding block equally [34]. To
increase the resolution of the resulting motion vector field beyond the needs of the
video coder, a sliding window approach might be used by shifting the position of the
block over the frame in smaller steps than the size of the block leading to overlapping
blocks [48, 49].

However, one problem remains: the minimum is always evaluated over the whole
content of the block. This leads to problems if more than one motion exists within
one block. On the other hand the size of the block cannot be arbitrarily reduced as
the chance of mismatches due to image noise increases. One solution is the use of
a hierarchical block matcher combined with a motion vector candidate selection on
the lower levels [36]. The block matching process is started with a large block size
giving an initial motion vector. The large block is then divided into smaller blocks
with their search window origin set to the displacement position of the larger block
and their search window size reduced. This is repeated until the block size becomes
relatively small. Then only the already existing displacement vectors of the next
higher levels are tested and chosen from. This is repeated for all positions of the
frame, resulting in a dense motion vector field, also called optical flow.

Besides block matching algorithms, there are other widely spread optical flow tech-
niques. One major optical flow estimator is the Lucas-Kanade method [43, 42]. It
uses the least-squares approach to solve the optical flow equation for a local group
of pixels assuming the motion to be constant in a local neighborhood. As the dif-
ferential equation is only reliable for a small displacement, the well known Kanade-
Lucas-Tomasi (KLT) [64] feature tracker uses a multi-resolution image pyramid to
extend the range. As the Lucas-Kanade method relies on the image gradient dis-
tribution (so called structure tensor), unstructured areas of the image are hard to
track. In the KLT feature tracker, a pre-selection step is involved to select and track
only those points in the image which have a high “cornerness“ [56]. A very successful
corner detector was introduced by Harris and Stephens [25] and has proven to most
reliably detect consistent feature points [54]. Another way of determining the opti-
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cal flow from features is the matching of so called keypoints, as done in SIFT [41],
RIFT [39], or SURF [4]. Keypoints do not only represent a position in the image but
additionally contain a description vector of its surroundings which is independent
of scale or lighting. In contrast to feature tracking, keypoints are detected in each
frame individually and are concatenated by matching their description vectors. This
allows the assignment of keypoints to objects and a matching to known objects from
a database. This work is based on corner features, as a high location precision and
good feature distribution is more important than having a huge baseline matching
ability, as it was shown in [14], or the possibility to recognize objects.

With the extracted 2D motion vectors available, the motion model parameters ac-
cording to the background motion model can be determined by applying it to the
model equations, e.g. by using Random Sample Consensus (RANSAC) to deter-
mine the parameters of a homography. Afterwards, all motion vectors can be tested
against the calculated motion model and mismatches, so called outliers, can be re-
moved, allowing a refinement of the model parameters by just using the remaining
inliers as input. The determined motion model can then either be used to com-
pensate the global motion by applying it as a transformation to every pixel of the
frame or as a classifier to compare the displacement of a feature calculated from the
motion model to the actual measurement [3, 60]. For the latter, it has to be ensured
that all moving objects in the scene are covered by at least one motion vector. This
is true for dense vector fields but not guaranteed for feature based systems.

In addition to the homography model with the planar constraint, it is possible to
use epipolar geometry as a classifier by calculating the elementary or the fundametal
matrix [26], similar to the homography matrix by using all feature displacements
as input. By evaluating the distance of the measured feature displacements to the
associated epipolar lines, outliers and moving objects can be detected without a
constraint on the background structure [66].

1.2 Problems of Current Ground Motion Models

If the camera undergoes translational movements and the scene is not planar and
not at infinity, the homography model is not sufficient to describe the displacement
of the image pixels accurately enough, resulting in imperfect image registration and
perspective aberrations. In the case of pixel-based motion detection, this leads
to image differences between the current and motion compensated frame not only
caused by the local motion of objects but by the 3D structure of the background and
the simplistic surface model. This is illustrated in Figure 1.2: the non-planar parts
of the building appear in the difference image additionally to the moving car. Hence
moving objects and motion compensation errors cannot be reliably distinguished,
which lead to false alerts.
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Figure 1.2: Difference image calculation after global motion compensation
with perspective distortions due to 3D scene structure

Concerning aerial surveillance, the approximation of the ground level as a plane is
only valid for high altitudes and small focal lengths. However, due to the widespread
use of small and cheap operating flying systems such as Micro Air Vehicles (MAV) or
Micro-UAVs (Unmanned Aerial Vehicles), which usually operate at low altitudes, the
insufficient approximation of the ground level becomes more and more of a problem
[9] and leads to perspective distortions if objects stick out of the ground plane as
illustrated in Figure 1.3: the distance between p1 and p3 stays constant between the
image planes but the position of p2 changes towards p1 because of the scene point
P2 not being on level with the ground plane. The model assumptions are violated
and perspective distortions occur.

Moreover, systems which use pictures of the surface of the earth taken by airborne
vehicles with the objective of creating large image mosaics have to deal with per-
spective distortions when stitching the picture tiles together. These pictures are
imprecisely called satellite images in e.g. Google maps [24] or Bing maps [45], al-
though the image database is based on both satellite and aerial imagery. To be
able to see the sides of buildings, lower altitude images are not taken with the cam-
era pointing directly downwards but with a tilt angle θ, and are known as oblique
images. While the homography model is still valid for objects on the plane, the
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image plane image planep3

p1

p2
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P1 P3 ground plane

P2

p1 p2

Figure 1.3: Aerial surveillance model, camera pointing downwards. Planes and
building from [12].

displacement of non-planar objects in the image plane is increased compared to the
case of the camera pointing directly downwards. The problem is illustrated in Fig-
ure 1.4. The projection of P2 onto the image plane should be the same as the one
of P′2 to be independent from the plane’s position.

To cope with this problem, state of the art techniques utilize a priori knowledge in
two ways: One is to rely on externally created 3D models describing the texture and
structure of the observed area as an input to compensate the object height related
pixel displacements of the image background [44]. The alternative is to use geo-
information data like road and building maps to mask out areas with problematic
or occluded structure, and just detect moving objects on planar regions such as
roads [50]. The former method needs a precise and up-to-date 3D model of the
observed area mandatorily, but the on-board creation of such a model in real time
is not an option due to the limited electric and computational power. Hence it is
not possible to use such a system for areas where no model was created yet, the
available data is outdated, or whose structure has largely changed, e.g. by a disaster
like floods or earthquakes. This is also a problem for the latter approach, although
the area selection is less effected by structural changes and maps are more commonly
available than 3D models. It has to be added that, because of the masked out areas
and the necessary safety distances, the area where motion detection is possible at
all is very limited in these systems.
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image plane

ground plane P1

P2

P′2 P3

Figure 1.4: Aerial surveillance model under tilt angle. Plane and building from [12].

Regarding feature-only approaches, the separation of global and local motion has
similar problems. If the model is violated, e.g. by a non-planar structure and a
homography model, the model parameters become imprecise and the detection is
less accurate or large regions are falsely classified as containing motion. Moreover,
as outliers and moving objects cannot be distinguished, additional techniques have
to be applied to eliminate the outliers. Concerning the epipolar model, if objects
move in direction of or against the epipolar point, their feature positions move along
the epipolar line and are therefore not detectable.

1.3 Contributions

• An accuracy analysis and aberration model is provided in this work to describe
the aberrations of a homography model for the case of camera motion and
non-planar scenes. Calculations are done for an aerial surveillance scenario;
however, the resulting equations are valid for other purposes as well. The
vertical photo case is investigated first and than extended to cameras having
a tilt angle or performing arbitrary movements.

• Using the aberration model, an outlier and moving object detector is created.
It predicts the motion parallax of static background objects by assuming a
maximum height. This results in an epipolar line segment, which is used in
this work to classify feature displacements into background and moving object
by evaluating the distance between the measured displacements of the feature
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and the predicted epipolar line segment. In contrast to epipolar geometry, this
method also allows for the detection of objects moving along the epipolar line.

• Following this, a second outlier and moving object classifier is presented for
arbitrary scene structure and camera movement. In contrast to the former
method, it does not require calibrated cameras and accurate camera motion
information. The only assumption made is a smooth displacement vector field
of the background. It is compared to the state-of-the-art methods as well as
the motion parallax predictor classifier.

• To improve the pixel-wise global motion compensation of non-planar scenes,
a piece-wise planar locally adaptive mesh-based motion compensation is pre-
sented and evaluated, coping with the issues of the single planar model. It
combines the vector-based and pixel-based motion detection methods by first
using the displacement vector field to create a deforming mesh and then ap-
plying piece-wise image warping [21, 16] to compute the motion compensated
reference image for use in a pixel-based motion detection algorithm. Compared
to a full 3D ground model, this largely reduces the amount of complexity as all
calculations are done in 2D, but still gives the benefits of a 3D ground model
[46].

• The benefits of the presented moving object detectors as well as the perfor-
mance of the proposed motion compensation algorithm are demonstrated and
rated using ground truth data.

1.4 Outline

The remaining work is organized as follows: in Chapter 2, basic principles of the
feature extraction and the feature tracking process are introduced, as well as the
perspective camera and the scene model used is this work. This is continued by
presenting the epipolar geometry, the projective and affine mapping by a homogra-
phy, and the calculation of a Delaunay triangulation used in the mash-based motion
compensation. Chapter 3 follows with an aberration analysis of the homography
model for non-planar scenes, using the example of aerial surveillance. It starts with
the aberrations occurring in vertical photos and is extended to cameras with a tilt
angle and arbitrarily moving cameras. The gained knowledge is used afterwards to
create a moving object and outlier detector based on the prediction of the motion
parallax of static scene objects with height restrictions. To cope with the identified
accuracy problems of the planar motion compensation, a mesh-based multi-planar
approach is introduced in Chapter 4, including a comparison of the remaining aber-
rations to the single planar model. The chapter is followed by experimental results
in Chapter 5 and finally concluded in Chapter 6.
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2 Basic Principles

In this chapter, the fundamental principles and geometric models used in this work
are presented. It starts with the introduction of a scene model and a camera model.
Two coordinate systems are introduced which describe the global position of the
camera and all objects in the scene in world coordinates on the one hand as well as
the mapping characteristics of the camera-lens system in local camera coordinates
on the other hand. Following this, the pinhole camera model is presented as a basic
model in computer vision. The single camera geometry is then extended to multiple
views by introducing models to describe the relations between different camera views
of the same scene. This is followed by discussing the process of motion extraction
and model estimation from image sequences as well as the elimination of outliers.
The chapter ends with the process of interpolating a dense motion vector field from
the sparse representation.

2.1 Scene Model

The scene model, illustrated in Figure 2.1, is a parametric description of the whole
scene. Its global world coordinate system (X,Y,Z) contains all objects and all cam-
eras. A diffuse ambient lighting is assumed to make the model invariant to changes
of surface orientations and lighting related effects such as shadows. The camera
itself has its own local coordinate system, the camera coordinate system (Xc,Yc,Zc).

Diffuse ambient lighting

Z

Y

X Camera Coordinate System

Camera

Zc

Xc

Yc

C,R

Scene ObjectsWorld Coordinate System

Figure 2.1: Scene Model (building from [12])
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Its origin is set to the center of projection, also known as the camera center. It
corresponds to the center of the light sensitive sensor element. The Z-component is
pointing towards the scene through the center of the camera lens, whereas the X-
and Y components are aligned to the coordinate axis of the camera sensor. Camera
coordinates can be mapped to world coordinates by applying a rotation R, express-
ing the local orientation of the camera coordinate system compared to the world
coordinate system, and the position of the camera center C in world coordinates.

2.2 Camera Model

The projection of 3D scene objects onto the 2D image plane of a camera is described
by the camera model. It is the concatenation of a perspective projection model, a
lens model, and a sensor model [63]. Figure 2.2 illustrates the projection of a scene
point P̃ in camera coordinates through the camera model into n on the image plane
in image coordinates. In this work, a non-distorting camera lens is assumed, so that

Zc

Yc

Xc

Model
Mapping

Perspective

x

y
Camera Model

Scene Point
Model

P̃

Camera Coordinate System

n

Image Coordinate System

Image PointLens
Model

p̃ Sensorp

Figure 2.2: Camera mapping model (based on [63])

p̃ = p. In practice, distortions of a known camera lens can be corrected by a post
processing step in the digital domain.

2.2.1 Sensor Model

Concerning the sensor model, digital video and still image cameras manufactured
prior to around 2005 almost exclusively contained CCD sensors (Charge-Coupled
Device). They are analog devices and consist of an array of photo diodes and
energy storages. Light radiation hitting the diodes cause electric charges which are
accumulated over the exposure time in integrated capacitors. The energy is read
out by shifting each charge over the elements to an output node at the edge of the
sensor where they are consecutively amplified, and, in the case of digital cameras,
quantized and coded into intensity values. The quantized energy values are stored
into the picture buffer as picture elements [31].
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With the emergence of HDTV cameras, CCD sensors have more and more been
replaced by CMOS devices (Complementary Metal-Oxide Semiconductor). In con-
trast to CCD sensors, CMOS sensor elements can be read out directly without the
need of an energy storage layer or charge shifting. This makes them faster, mainly
for high resolution, and more flexible, as it allows to read out only parts of the sen-
sor. Additionally they are cheaper to produce, use less energy, and they allow the
integration of additional on-chip processing steps such as amplifying or A/D conver-
sion. The main drawbacks are less light sensitivity and, in general, a lower dynamic
range than CCD elements - although research is catching up swiftly. Today, almost
all camera sensors are manufactured in CMOS technology.

...

0

0...

· · · nx

...
1sy

ny

memory storageimage plane

y[mm]

x[mm]

ny[pel]

nx[pel]
(Nx-1)

(Ny-1)

1sx
np

· · · · · · · · ·

Figure 2.3: Geometric relations between the image plane on a camera sensor and
the image stored in memory (based on [63])

Images are stored in computer memory as a concatenated chain of bytes. The stored
elements of an image are called picture elements, or in short pixel, and have the unit
[pel]=̂1. The size of this storage is dependent on the amount of light sensitive sensor
elements, often referred to as the resolution of the sensor. We define Nx being the
amount of sensor elements in one row of the sensor and Ny being the number of rows
of elements. The resulting image in the memory of the computer has then a size of
Nx×Ny bytes, assuming one byte per pixel (luminance only and an 8 bit quantizer).
The start of the image storage is represented by a so called pointer, which points to
the address of the first pixel of the image in memory. To access the nxth pixel in the
nyth line of the image, one has to add ny ·Nx + nx to that pointer. Nx is called the
image width and Ny is called the image height. This representation defines a new
image coordinate system, with the origin at the upper left pixel of the image (where
the pointer points to). To convert the discrete image coordinates n = (nx, ny)

>

without a unit into measured units p = (x, y)> on the image plane, the origin of the
coordinate system has to be displaced to the center of the image (see Figure 2.3)
and the size of a pixel has to be scaled to the size of a sensor element. As the size
of the sensor may not be equal in horizontal and vertical direction, we define two
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scaling factors for the two dimensions:

sx =
sw
Nx

, sy =
sh
Ny

, (2.1)

with sw and sh being the width and the height of the sensor. Using the scaling
factors, pixel can be converted into coordinates on the image plane:

p =

[
sx 0 −0.5(Nx − 1)sx
0 sy −0.5(Ny − 1)sy

]
n, (2.2)

and image plane coordinates into pixel, respectively:

n =

[
1/sx 0 0.5(Nx − 1)

0 1/sy 0.5(Ny − 1)

]
p. (2.3)

2.2.2 Lens Model

Real camera lenses do not have a linear mapping throughout the lens. Wide angle
cameras in particular tend to add non-linear behavior, resulting in geometrical dis-
tortions. In the camera model, this is treated in the lens model block. It performs a
non-linear mapping between the perspective mapping coordinates p̃ = (xd, yd)

> and
the real image coordinates on the image plane p. The main geometric distortion is
the radial distortion [17, 67]. It can be approximated by a Taylor expansion:

r = rd(1 + κ1r
2
d + κ2r

4
d + · · · ), (2.4)

wherein rd is the distorted and r the undistorted distance of a point on the image
plane from the center of distortion. The center of distortion is hereby often assumed
to be equal to the origin of the camera coordinate system. As the first coefficient
κ1 has the main influence on the final radial distortion, only the second order radial
distortion is used as a approximation in the following lens model mapping equation:

p = (1 + κ1r
2
d) p̃, (2.5)

with r2
d = x2

d + y2
d as the squared distance of p̃ from the origin.

2.2.3 Additional Lens Characteristics

Figure 2.4 illustrates a simplified camera and lens model. The complex optical
system of a real camera lens is approximated as one single lens. The distance
between the image plane and the lens is referred to as the focal length f , as all rays
emitting from the scene point P̃ and traveling through the lens are bent such that
they focus in one single point p̃ on the image plane. In Figure 2.4 the beam of light
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rays is represented by the dashed lines. In the case of an infinitesimal lens (or an
infinitely small aperture), only one ray of light remains (solid line). In this case,
as no rays of light have to converge, all possible scene points are always in focus,
independent of their distance to the lens. A camera having an infinitesimal small
lens is called a pinhole camera.

optical axis

focal length f

P̃

C

image plane

sw, sh

p̃

c

Figure 2.4: Simplified camera and lens model

sw, sh

image plane

f

α

FOV

Figure 2.5: Angle of view α and field of view (FOV) for a sensor of size sw × sh and
focal length f

Another property of a camera lens is the opening angle or angle of view α of the
camera. It directly corresponds to the viewable area of the scene, called field of
view (FOV) (illustrated in Figure 2.5 as the gray area). All rays of light emitted
by objects in this area are mapped through the lens onto the surface of the sensor.
The maximum angle of view is thereby dependent on the size of the camera sensor
(sw, sh), the diameter of the lens DL the light can pass, and the focal length f :

α = 2 arctan

(
min(DL,

√
s2
w + s2

h

2f

)
. (2.6)
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The lens is assumed to be large enough so the limiting factor are the sensor dimen-
sions only. As the sensor may not be quadratic, the angle of view can be different
for the x and y-axis:

αx = 2 arctan

(
sw
2f

)
,

αy = 2 arctan

(
sh
2f

)
.

(2.7)

The common width of a camera sensor is 36mm (full frame format). All focal length
specifications on optical lenses refer to this size. For sensors with different sizes, the
effective focal length has to be converted: e.g. for the APS-C format with a width
of 22.2mm, all focal lengths have to be multiplied by

36mm
22.2mm

= 1.621. (2.8)

The vertical size of the sensor can be derived from the aspect ratio: for HDTV
cameras the aspect ratio is 1.8 (16 : 9), resulting in a vertical sensor size of

36mm
1.8

= 20mm. (2.9)

This leads to an angle of view for common focal lengths from 20mm to 200mm of:

84.0◦ ≥ αx ≥ 10.3◦ (2.10)

in horizontal direction and
53.1◦ ≥ αy ≥ 5.7◦ (2.11)

in vertical direction, respectively. But with increased angle of view, the resolution
per angle decreases: a sensor in 1920 pel×1080 pel full-HD resolution yields to an
angular resolution between

1920 pel
84.0◦

= 22.9
pel
◦ and

1920 pel
10.3◦

= 186.7
pel
◦ . (2.12)

Often, the viewable area as well as the achievable spatial resolution is of interest. If
the distance of the camera to the recorded scene is known, these can be calculated
from the angular resolution. For the example of aerial photography, the necessary
calculations for vertical and tilted cameras are provided in Chapter 3.1.
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2.2.4 Perspective Mapping Model

The perspective mapping model does only handle the mapping of an ideal pinhole
camera, meaning no aberrations of the camera lens occur and all objects are in
perfect focus. With this model, an object point P̃ is mapped onto an image point p
where a straight line connecting the object point and the pinhole meets the image
plane (see Figure 2.4). In practice, camera lenses are used instead of a pinhole to
achieve reasonable imaging properties and light sensitivity. Although the path of
rays is different (dashed lines in Figure 2.4) than in an ideal lens, the rays combine
at the same spot on the image plane and produce the same mapping a pinhole would
have. Therefore (in this ideal case) the camera lens is defined by its optical enter
C = (Cx,Cy,Cz)

> and the distance and size of the image plane only.

The distance between the optical center and the image plane is called focal length f .
The point on the image plane intersected by the optical axis is called the principal
point c. It is often assumed to be the origin of the coordinate system of the image
plane.

optical axis
C c

shx

p
P̃

sw

image plane

Yc

focal length f

y

Xc

Zc

Figure 2.6: Central projection

In this representation, all image coordinates are mirrored as they would be in a real
pinhole camera. However, as the camera image is inverted anyway by the camera
itself and for easier calculations, it is valid to move the image plane in the model in
equidistance to the other side of the pinhole, as shown in Figure 2.6. This results
in uninverted image coordinates of the projected scene points. The optical center
is now also referred to as the center of projection or the camera center. As all rays
intersect at this central point, this representation is called central projection.

As depicted in Figure 2.6, the point C, the point p = (x,y,f)>, and the point
P̃ = (Px,Py,Pz)

> are collinear (lying on the same straight line). Therefore, the
mapping between them can be described by the theorem of intersecting lines:(

x
y

)
=

f

Pz
·
(
Px
Py

)
(2.13)
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In this theorem, the projection is carried out by assuming a virtual plane at distance
Pz from the optical center C, parallel to the image plane at distance f . The mapping
is performed by scaling the remaining two space coordinates of the point at distance
Pz by the ratio of their distances f

Pz
.

Homogeneous Coordinates

Instead of a mapping between two parallel planes, the projection can be described
directly in 3D space by using projective space geometry. In this representation, a
two space point (a,b)> is represented in 3D space in the homogeneous form (a,b,1)>.
This 3D space vector represents a line which is defined by the center of projection
C and, in this case, the point (a,b,1)>. But also all other points on this line are
valid homogeneous representations of the two space point (a,b)>, as they only differ
by scaling. Therefore, it its valid to write (a,b,1)> = k(a,b,1)> = (a

k
, b
k
,k)>.

In Figure 2.6, the points p=(x,y,f) and P̃=(Px,Py,Pz) define the same line together
with C and are therefore per definition the same homogeneous coordinate:

p =

 x
y
f

 =

Px
Py
Pz

 = P̃ (2.14)

To get the Euclidean representation of Equation 2.14, p and P̃ have to be normalized
such that their third dimension becomes 1. This is done by dividing through the
third dimensions:

1

f

 x
y
f

 =
1

Pz

Px
Py
Pz

 (2.15)

The 3rd dimension can now be removed which returns the vectors back to the
Euclidean representation. Both divisors can be moved to the right side, leading
back to Equation 2.13 and describing the theorem of intersecting lines.

In Equation 2.13 it is assumed that the optical axis intersects the origin of the image
plane coordinate system. This is only true if the origin of the image plane is perfectly
aligned to the optical center of the lens. To get a more general representation for
real world cameras, an principal point offset c = (cx,cy)

> might be added to the
equation: (

x
y

)
=

f

Pz
·
(
Px
Py

)
+

(
cx
cy

)
(2.16)

The great advantage of homogeneous coordinates and the projective space geome-
try is that all geometrical operations become linear and can be written as matrix
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multiplications. If the third dimension of p is normalized to 1, Equation 2.16 can
simply be written as:

p = K P̃, (2.17)

wherein the matrix K contains all inner camera parameters, in this case the focal
length f and the image plane offset c. It is therefore referred to as the camera
calibration matrix:

K =

 f 0 cx
0 f cy
0 0 1

 (2.18)

World Coordinates to Camera Coordinates

Equation 2.17 only describes the mapping of a point in camera coordinates. To map
an arbitrary scene point P = (X,Y,Z)> in world coordinates, the point must first
be expressed as a point P̃ in camera coordinates. This is done by a rotation and
translation of the coordinate axis as follows: First, the world coordinate system is
translated such that the camera center becomes the new origin. This is achieved by
subtracting the position of the camera center C in the world coordinate system from
the observed scene point P. Following this, the axis of the translated coordinate
system have to be aligned to the orientation of the camera coordinate system. The
alignment is performed by a rotation around each of the axis. The angles are known
as pan, roll, and tilt and they are noted β, γ, and θ as rotation around the Z-, X-
and Y -axis, respectively. All three rotations can be combined into one 3×3 rotation
matrix R, with the order of rotation Y , X, Z:

R = RθRγRβ =

 cos θ 0 − sin θ
0 1 0

sin θ 0 cos θ

 1 0 0
0 cos γ − sin γ
0 sin γ cos γ

 cos β sin β 0
− sin β cos β 0

0 0 1

 . (2.19)

Using the camera center offset and the orientation, P can be expressed in camera
coordinates as:

P̃ = R(P−C). (2.20)

By inserting Equation 2.20 into Equation 2.17, the projection of a point P in world
coordinates into a point p on the image plane can be written as:

p = KR(P−C) (2.21)

The offset of the camera center C and the rotation matrix R describe the position
and orientation of the camera in the world coordinate system. They are therefore
called the extrinsic camera properties.
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If Equation 2.21 is transferred to the Euclidean space by normalizing the third di-
mension to 1, dividing thorough it, and solving the equation for x and y, it leads to
the following form known as the collinearity equations in the field of photogramme-
try:

x = f
r11(X−Cx) + r12(Y −Cy) + r13(Z−Cz)
r31(X−Cx) + r32(Y −Cy) + r33(Z−Cz)

y = f
r21(X−Cx) + r22(Y −Cy) + r23(Z−Cz)
r31(X−Cx) + r32(Y −Cy) + r33(Z−Cz)

, (2.22)

wherein r11 to r33 are the elements of R. Note that the sign of the Z-components
must be changed between the world and the camera coordinate system as the camera
coordinate system is left handed and the world coordinate system is right handed.

2.3 Epipolar Geometry

The epipolar geometry describes the geometry of two pinhole camera views of the
same scene at distinct positions. By applying the pinhole camera model (Chap-
ter 2.2), constraints can be formulated for the relationship of image points between
different camera views originated by the projection of objects in 3D space on the
image planes without the actual knowledge of the 3D structure of the scene.

This is illustrated in Figure 2.7. If a 3D scene point P is observed by a camera 1,
the projection of P into p1 on the image plane 1 is, according to the pinhole camera
model, the intersection of the line of sight between P and the camera center C1 and
the image plane 1. If only the projection p1 is known, there is no information avail-
able of the distance between the camera center C1 and the scene point P (depicted
as the P?). But what is known is that the scene point P must lie somewhere on the
line of sight.

If we now want to formulate relationships and constraints between the observed
projected point p1 and the projection of the unknown scene point P onto the image
plane 2 of a second camera 2, we can project the known line of sight of camera 1
onto the image plane of camera 2. This can be seen as the intersection of a plane,
spanned by the line of sight of camera 1 and the connection of the two camera
centers, referred to as the baseline, with the image plane 2 of the camera 2. The
plane is called the epipolar plane of p1 and the projection of the line of sight is
called the epipolar line l2 of p1. If the epipolar lines of several points are drawn,
we will note that all lines intersect in one point, the so called epipole. It is also the
intersection of the baseline with the image planes, as the baseline is the common
part of all epipolar planes. In Figure 2.7, these points are denoted as e1 and e2. It
is also the projection of the camera center of the other camera.
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epipolesimage plane 1 image plane 2

epipolar line l2
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p2
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Figure 2.7: Without the knowledge of scene point P, the projected image point p1 of
camera C1 can be mapped by the essential matrix E (for known camera
properties) or the fundamental matrix F (unknown camera properties)
to an epipolar line l2 on the image plane of camera C2 (based on [26]).

2.4 Essential and Fundamental Matrix

The essential matrix (Ematrix) was presented to computer vision in 1981 by Longuet-
Higgins [40]. It describes the metric relationship of the epipolar geometry between
two images taken of the same scene with calibrated cameras from different positions.
With the essential matrix known, one point in the image plane of camera C1 can
be mapped into the associated epipolar line in the image plane of camera C2 and
vice versa. Without noise and errors, the projection of the original scene point p1

has to lie on the associated epipolar line l2:

l2 = Ep1. (2.23)

This can also be written as a contraint:

p>2 Ep1 = 0. (2.24)

For the calculation of the E matrix, the cameras must be calibrated with all coordi-
nates beeing normalized.

In 1992, Faugeras [20] and Hartley [27] pointed out that the properties of the E
matrix can also be applied to uncalibrated cameras in projective geometry. In this
generalized case, the matrix is called the fundamental matrix F. Analog to the E

matrix, the F matrix is also a 3× 3 matrix defined as:

l2 = Fp1. (2.25)
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If P is a scene point and p1 and p2 are projections of that point onto the image
planes of two cameras, the F matrix describes the mapping between both points
such that:

p>2 Fp1 = 0. (2.26)

The essential and the fundamental matrix are related such that they can be con-
verted by incorporating the calibration matrices of both cameras K1 and K2:

E = K>2 F K1. (2.27)

As the essential matrix has less degrees of freedom (5) compared to the fundamental
matrix (7) due to the known calibration properties, some additional constraints can
be applied for its determination: two of its singular values are equal and nonzero
and the other one is zero. These properties are used in the eight-point algorithm
presented by Higgins in [40] to estimate the E-matrix from a given set of image
correspondences.

However, in practice the gathered image sequences are often recorded with the cam-
era properties unknown. Therefore, the F-matrix is more common. To estimate the
F-matrix, the same eight-point algorithm is usable with the constraints that one
singular value is zero and the others are non-zero. In practice, however, it is pretty
frequent that one of the non-zero values becomes pretty close to zero compared to
the other ones [19]. If more than eight points are used for the estimation which are
all effected by noise, it can happen that more than one singular value becomes a
candidate of being the zero one, which makes the linear system of equations hard
to solve.

To address this problem, Hartley proposed in [28] a normalized eight-point algo-
rithm. Hereby the image coordinates are transformed independently into a new
coordinate system prior to calculating the F matrix. However, in the case of aerial
image sequences, the F-matrix is often still ill-conditioned. An additional method
of computing F is by using the homography H and at least two off-plane correspon-
dences (plane induced parallax [26]). But again it has to be made sure that the
off-plane correspondences result from non-planar static objects and that the camera
translation between the frames is large enough for the parallax to have any effect,
which is hard to achieve in overflight sequences.

2.5 Projective Transformation and the
Homography

Mathematically, a projective transformation is an invertible linear mapping from
projective space to itself that maps straight lines to straight lines. Applied to com-
puter vision it is able to describe the mapping of points between two transformed
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image planes
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Figure 2.8: Homography mapping between a projected point on image planes of a
points on a plane in 3D space

planes in space. It can also be used to describe the mapping of pixels between the
image plane of a camera and a planar surface in space assuming central projec-
tion. Similar to the E and F matrices, a projective transformation, also known as a
homography, is expressed as a 3× 3 matrix H [68]: x′1

x′2
x′3

 =

 h11 h12 h13

h21 h22 h23

h31 h32 h33

 x1

x2

x3

 , (2.28)

or in matrix notation:
x′ = Hx. (2.29)

The Euclidean form of Equation 2.28 can be derived by dividing through the ad-
ditional dimension added in Equation 2.14, assuming x1 = x, x2 = y and x3 = 1:

x′ =
x′1
x′3

=
h11x+ h12y + h13

h31x+ h32y + h33

, y′ =
x′2
x′3

=
h21x+ h22y + h23

h31x+ h32y + h33

. (2.30)

A homography can be split up into its single properties[26]:

H =

 a11 a12 tx
a21 a22 ty
q1 q2 q

 =

[
A t

q> q

]
, (2.31)

where t denotes the translational part, A describes an affine two dimensional scaling
and rotation and q = (q1,q2)> adds the non-linear properties of a projectivity. q
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is just a scaling factor and has no further influence. H is typically normalized such
that q = 1. Therefore projective transformation has eight degrees of freedom.

A more restricted form of the projective transformation is the affine transformation.
It requires the two coordinate systems of the transformation to be Euclidean (recti-
linear). In this case, the mapping can be expressed with only six degrees of freedom,
wherein the vector q is (0,0)>. This leads to the affine inhomogeneous mapping
equation:

x′ = h11x+ h12y + h13, y′ = h21x+ h22y + h23. (2.32)

A mapping of pixels between the image planes of two cameras observing one planar
surface in space can be seen as a concatenation of two projective transformations
(H1 and H2 in Figure 2.8). As long as the plane is static, the same calculations can be
done for only one camera observing the plane from two different positions in space.
The main application in this case is the retrieval of the extrinsic camera parameters.

As the coordinate systems of all the planes in Figure 2.8 are assumed to be Euclidean,
each projection of the image points from the 3D plane into the image planes of the
cameras is an affine transformation described by Equation 2.32. The direct mapping
of one image plane into the other image plane is therefore a concatenation of two
affine transformations - from the image plane of the first camera to the 3D plane
x = H1X and back to the image plane of the second camera x′ = H2X - which can
also be expressed directly as one single projective transformation [26] (illustrated in
Figure 2.8):

x′ = H2H
−1
1 x = H21x. (2.33)

A homography can be estimated from four independent point correspondences (see
Chapter 2.7) between the two planes, if the points in both planes are not collinear.
Given Equation 2.30, this yields to eight equations which solve the eight unknowns
of H. An affine transformation has only six degrees of freedom. Therefore three
independent point correspondences are enough to create the necessary six equations
by using Equation 2.32.

2.6 Moving Object Detection by Background
Subtraction

The detection of motion in a scene is often based on background subtraction. Hereby
a simple [2, 11] or more sophisticated [57, 51, 35] model of the background is created
beforehand or constructed and adapted during runtime. To detect moving objects,
the constructed background image is subtracted from the current input image, leav-
ing only the changing foreground (moving objects). These methods assume a static
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background and camera. In case of a moving camera, the movement of the back-
ground pixels due to the camera movement must be compensated prior to computing
the model. This allows (within limits) static camera motion detection algorithms
to detect local motion in a moving camera scenario. The detection results highly
depend on the accuracy of the background motion compensation, as an inaccurate
compensation of the background motion leads to image differences between the back-
ground model and the image background of the current frame which are not caused
by moving objects and therefore lead to false positive detections.

In this work, a simple background subtraction based outlier detector is used to
evaluate the performance of the state-of-the-art global motion compensation and
the proposed mesh-based approach. The algorithm is kept simple, as it is only used
to compare the motion compensation algorithm in the sense of background motion
compensation accuracy. However, the results should be transferable to any more
sophisticated motion detection algorithm.

binarization
noise filter
median

previous frame k−∆k
motion compensated

rk(x,y)

classification of
moving objects

pixel-wise

bk(x,y)

noise filter-

Tb Tr
dk(x,y)

ik−∆k(x,y)

ik(x,y)
current frame k

Figure 2.9: Simple image background subtractions based motion detection system.

As shown in Figure 2.9, the simple motion detection algorithm first computes a
difference image by calculating the absolute pixel differences dk between the motion
compensated frame k−∆k and the current frame k. Afterwards, a noise filtering
is performed by summing up the pixel differences of a 3×3 neighborhood. These
pixel differences are binarized by comparing the summed up energy value against a
threshold Tb. The output of the filter is the pixel-wise binary decision bk:

bk(x,y) =

{
1 for dk(x,y) ≥ Tb
0 for dk(x,y) < Tb

, with

dk(x,y) =

y+1∑
y−1

x+1∑
x−1

ik(x,y)− ik−∆k(x,y).

(2.34)

ik(x,y) denotes the image intensity at the pixel coordinate (x,y) in the frame k and
ik−∆k(x,y) the image intensity in the frame k−∆k. The binarized output is noise
filtered once more using a median filter. It works similar to the first one: It sums
up the amount of pixel-wise detections in a rectangular shaped sliding window of
configurable size W , we used W = 8. If enough pixel-wise detections are found in
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the block (ek > Tr), the center pixel rk is marked as being part of a moving object:

rk(x,y) =

{
1 for ek(x,y) ≥ Tr
0 for ek(x,y) < Tr

, with

ek(x,y) =

y+W
2∑

y−W
2

x+W
2∑

x−W
2

bk(x,y).

(2.35)

2.7 Motion Estimation from Image Sequences

The feature based motion estimation from image sequences is based on the detection
and tracking of suitable image regions, so called features. This is done by three
steps: First, features are located and selected in the current frame k. Secondly,
the selected features are relocated in the next frame k+ 1. The resulting set of
displacement vectors, also called optical flow, still contains falsely relocated features
which have to be removed in an outlier removal step. The resulting sparse motion
vector field can then be used to estimate a dense vector field as input for further
processing steps, e.g. a motion compensation.

Feature
detection z−1 Correspondence

analysis removal
Outlier

field calculation
Dense motion vector

Inlier /

vector field
Sparse motion

Time consistant features
Further processing steps

Frame k

Figure 2.10: Feature tracking workflow used in structure from motion

Feature
detection

Correspondence
analysisz−1

refinement
Parameter

Parameter estimation
Outlier removal

Motion parameter
for frame k

Time consistant features

parameters
Initial motion

Inlier

Frame k KLT RANSAC

Figure 2.11: Feature tracking workflow used in this work

Two methods of feature detection and tracking are common. The first one, displayed
in Figure 2.10, is more common and used in e.g. structure from motion. Hereby,
features for the full frame are only located in the first frame. Afterwards, all feature
positions passing the outlier removal are re-used for the next frame. Only the amount
of removed features is refilled by the feature detection. This allows the tracking of
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feature positions over a long period of time, which is necessary to e.g. increase the
baseline of the camera for structure from motion. The second method, depicted in
Figure 2.11, detects the features independently for each frame. Although this does
not allow the creation of consistent multi-frame feature tracks, it reduces the drift
of the feature locations which occur due to accumulation of small errors resulting
from changes in texture of the feature patch caused by perspective, change of shape,
occlusion, etc.

2.7.1 Feature Detection

A features is a specific descriptor and position in an image. Whereas the position
specifies the exact location, the duty of the associated descriptor is to contain as
much information as is necessary to uniquely relocate the feature in a different image
even if the description is affected by noise. Common feature types in computer vision
are corner features [25], SIFT features [41] and HOG features [15]. The idea behind
corner features is that the exact location of a corner is defined by high gradients in
two orthogonal directions only. This property allows for a robust locatability even
if the image suffers from deformation, e.g. by rotation or perspective distortions, or
change in lighting. The descriptor of a corner feature mostly contains the image
intensities or gradients in a surrounding window. As for SIFT, the location of a
feature is defined by a local extrema in a scale space. As SIFT uses a Difference of
Gaussians (DoG) pyramid to locate a feature not only in x- and y-direction but also
in scale direction, it is in contrast to corner features invariant to changes in feature
size. SIFT uses a 128 dimensional vector containing surrounding image gradient
as descriptor. HOG features are similar to a SIFT descriptor, but are computed
on an uniformly spaced grid. This work is based on corner features, as a high
location precision and good feature distribution is more important than having a
large baseline matching ability, as it was shown in [14].

Harris& Stephens / Shi& Tomasi Corner Detector

Harris & Stephens presented in [25] a corner detector which detects corners as gra-
dients in two orthogonal directions. To calculate the image gradient at a position
n = (x,y)> of the image, they used the following approximation, with I(n) being
the image intensity at position n and Ix and Iy being the partial derivatives of I:

∇I(n) =

(
Ix(n)
Iy(n)

)
=

(
Ix(x,y)
Iy(x,y)

)
≈

(
I(x+1,y)−I(x−1,y)

2
I(x,y+1)−I(x,y−1)

2

)
(2.36)
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To measure the ”cornerness” of an image point n, the calculated matrix M, containing
the multiples of the image gradients surrounding the image point n:

M(n) =

 ∑
n∈W

I2
x(n)

∑
n∈W

Ix(n)Iy(n)∑
n∈W

Ix(n)Iy(n)
∑
n∈W

I2
y (n)

 . (2.37)

W is the surrounding of n, with n as its center, in this case a 7× 7 block:∑
n∈W

I2
x(n) =

3∑
i=−3

3∑
j=−3

I2
x(x+ i,y + j) (2.38)

∑
n∈W

I2
y (n) =

3∑
i=−3

3∑
j=−3

I2
y (x+ i,y + j) (2.39)

∑
n∈W

Ix(n)Iy(n) =
3∑

i=−3

3∑
j=−3

Ix(x+ i, y + j)Iy(x+ i,y + j). (2.40)

Evaluating the eigenvalues λ1 and λ2 of M(n) now give information on the structure
of n (and its surrounding W ):

λ1 ≈ λ2 ≈ 0 : no structure
λ1 ≈ 0, λ2 � 0 : edge
λ1 � 0, λ2 ≈ 0 : edge
λ1 ∧ λ2 � 0 : corner

(2.41)

High values for λ1 and λ2 indicate a corner. This can be checked by the determinant
of M(n):

det M(n) = λ1λ2 (2.42)

Harris & Stephens added an additional term to the determinant to reduce the influ-
ence of edgy structures and called it the corner response function (CRF):

CRF (n) = det M(n)− kH(trace M(n))2

= λ1λ2 − kH(λ1 + λ2)2, (2.43)

where kH was proposed as 0.04 by the authors. In [56], Shi and Thomasi replaced
the determinant and the trace by a more simple to calculate min(λ1,λ2) operation.

To have stable and equally distributed feature points, the CRF values of all image
points are sorted in descending order. The point with the highest CRF is selected
as a feature point and removed from the list. After that, all feature points in a
local surrounding of size df of the removed feature are also removed to prevent
clustering of features at single spots but achieve a uniform distribution instead.
This is repeated until the desired amount of feature points is reached or the CRF
values fall below a threshold.
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2.7.2 Correspondence Analysis

To track the selected feature points over several images k and thereby get the motion
of the specific image regions, the feature points are represented by a descriptor
additionally to their position in the image. In the Kanade-Lucas-Tomasi feature
tracker [43, 42], a window W of size N ×N of image intensities around the feature
position n is used to identify the feature. The main idea behind the Lukas-Kanade
method is that the displacement of pixels d = (dx,dy)

> inside a small image region
can be assumed as constant and only translational, as long as the size of the region
and the displacement between the frames is small enough. The same assumption is
also made in video coding. In the case of optical flow [32], this assumption translates
to the optical flow equation (here given for the 2D case) being valid for all pixel inside
the feature window (block) W :

Ik(n + d) = Ik−1(n). (2.44)

To determine the displacement d of a feature point n between the frames k−1 and
k, the sum of squared differences (SSD) of image intensities inside the block W has
to be minimized over all possible d:

εd(d) =
∑
n∈W

(Ik(n + d)− Ik−1(n))2. (2.45)

This leads to an estimated value d̂ of d:

d̂ = arg min
d

(εd(d)). (2.46)

Instead testing all possible d, d̂ can also be estimated using the local image in-
tensity derivations. To get sub-pel accuracy, the image signal is assumed as being
continuous:

Ik(n + d) ≈ Ik−1(n) +∇>Ik−1(n)d +
δIk−1(n)

δt
tk. (2.47)

The time derivative of the image signal can be approximated by ([7]):

δIk−1(n)

δt
≈ Ik(n)− Ik−1(n)

tk
. (2.48)

This leads to the continuous simplified cost function:

εd(d) =
∑
n∈W

(∇>Ik−1(n)d + Ik(n)− Ik−1(n))2. (2.49)

To solve the minimization problem, the extrema of Equation 2.49 have to be found
by partially differentiating with respect to dx and dy and setting it to zero. This
leads to a linear equation system

Mk−1d̂ = gk−1, (2.50)
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where, analog to Equation 2.36 and Equation 2.37,

Mk−1 =
∑
n∈W

∇Ik−1(n)∇>Ik−1(n)

=

 ∑
n∈W

Ix
2
k−1(n)

∑
n∈W

Ixk−1(n)Iyk−1(n)∑
n∈W

Ixk−1(n)Iyk−1(n)
∑
n∈W

Iy
2
k−1(n)

 (2.51)

gk−1 = −
∑
n∈W

(Ik(n)− Ik−1(n))∇Ik−1(n)

= −
∑
n∈W

(Ik(n)− Ik−1(n))

(
Ixk−1(n)
Iyk−1(n)

)
. (2.52)

Mk−1 contains the spatial derivatives of the image intensity function and gk−1 holds
the temporal derivatives. To get the estimated displacement value, Equation 2.50
can be solved for d̂:

d̂ = M−1k−1gk−1, (2.53)

Due to the approximations being made, this equation is only valid for very small
displacements d. Therefore, in [42] the equations are solved iteratively using the
Newton-Raphson method, whereas the next estimate of displacement d̂i+1 is calcu-
lated from the previous iteration as follows:

d̂i+1 = d̂i + M−1k−1

∑
n∈W

(
(Ik−1(n)− Ik(n + d̂i))∇Ik−1(n)

)
. (2.54)

To get the unknown image intensity Ik at the sub-pel coordinate n + d̂i, it has to
be estimated from known sampled positions. Typically, a simple bilinear filter is
employed for this using the 4 adjacent sampling positions. The iteration is stopped,
if the change in d for the next iteration is smaller than a threshold, commonly a
value of 0.01 pel, or the maximum amount of iterations is reached.

d1

d
d2

d3

p

Figure 2.12: Image pyramid to handle large displacements
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If the displacement between frames gets too large, the Newton-Raphson method
tends to get stuck in local minima. To handle this and to reliably estimate large
displacements between frames, a hierarchical search is incorporated. To do so, an
image resolution pyramid is created by low-pass filtering and down sampling the
intensity image several times, depending on the size of the original image and the
maximum displacement that is likely to occur. The search is started in the lowest
resolution stage and is refined in the higher resolution stages by going through
the iteration process (Equation 2.54) in each stage. The feature position n and
displacement d is appropriately scaled to each pyramid stage (see Figure 2.12). To be
able to better handle deformation of objects on large displacement, the translational
motion model can be replaced by a full affine model as proposed by [56], although
it is less stable due to the higher number of degrees of freedom.

Figure 2.13: Harris features (green crosses) and KLT tracking (yellow stripes).
Frame of the Chicago test sequence [62].

2.7.3 Outlier Removal: Random Sample Consensus

To calculate robust H-, E-, or F matrices, it has to be taken into account that the
measured feature points and correspondences are affected by noise. Moreover, false
correspondences or non-static image regions are common and have a great effect on
the final result [22]. To get a robust mapping estimation in the presence of noise,
two steps have to be made. First, falsely tracked correspondences (outliers) and
correspondences describing the movement of local objects have to be removed from
the input data. For this, Random Sample Consensus [22] (in short RANSAC) is
suitable. It uses a minimal set of random correspondences to calculate the desired
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mapping model (e.g. a homography). All remaining correspondences are then tested
for conformance by evaluating the distance of the calculated model mapping posi-
tions and the measured positions. If a correspondence is too far away from the
calculated mapping position (ε > εmax), it is considered an outlier; otherwise it is
kept as an inlier (Figure 2.14). These steps are repeated until the mean squared
mapping error (MSE) of all inliers is minimal and the amount of inliers is maximal.
Commonly, the number of RANSAC runs is limited to a reasonable amount, and
a MSE threshold abort criterion is set to keep the run times low. After having
calculated this first coarse mapping, it has to be refined and the noise has to be
eliminated. This is done in a second step by minimizing the sum of squared Eu-
clidean distances using the least squares approach and only the inliers as input [65].

Figure 2.14: RANSAC outlier removal. Dashed correspondences are removed as they
do not confirm to majority determined model (solid arrows).

2.8 Dense Optical Flow

Using the methods above, only a sparse sampling of the optical flow is known so
far. This is due to the correspondences being only determined for the robust feature
coordinates selected by the Shi & Tomasi corner detector. To be able to compensate
the motion of the full image, a pixel-wise dense optical flow must either be estimated
globally or it might be interpolated from the already known correspondences. Algo-
rithms for a global solution have to deal with unstructured image regions, occlusions,
or blurring by themselves. Most of them are based on energy minimization, as first
presented by Horn and Schunck in [33]. These methods can nicely estimate a smooth
and dense optical flow field, but the smoothing term also smooths out the border
regions at motion discontinuities. Gradient-based local methods like Lucas-Kanade
[43] and the structure tensor approach of Bigün and Granlund [5] are better at mo-
tion discontinuities but fail to determine the correct flow for large displacements or
in unstructured regions. Combined methods like [55, 70, 8] try to merge the global
and local approaches to have a discontinuity-preserving dense optical flow. How-
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ever, all of these global methods have in common that they are relatively complex
to calculate and therefore hard to implement e.g. into a small energy constrained
aerial vehicle.

Concerning the interpolation of a dense field from sparse correspondences, methods
like Markov random fields [29] or the method of Gibson and Spann [23] are able to
fill in the gaps while removing outliers at the same time. However, if evaluating the
underlying image intensities or gradients is involved in the interpolation process,
these methods have to deal with the same run-time problem as the global solutions.
A fast way of interpolating the missing information is to fit a simplified model of
the scene into the sparse set of known correspondences an then extract the missing
information from the model. In the case of aerial surveillance where the observed
ground plane of the earth is mostly planar, a homography or even more restricted
transformations are state of the art as they are easy and fast to compute and very
robust against outliers. However, those models are often too simple to be used in
a complex structured urban environment and, as e.g. with the homography model,
fail in the presence of non-planar objects like trees.

In this work, a multi-planar mesh-based approach is presented instead. It uses a
large set of small triangular patches which are connected in a mesh. The area inside
each patch is described as affine. Due to the individual transformation of each
patch, the multi-planar approach is able to follow non-planar scene structure while,
by using simple linear equations, keeping the computational complexity low at the
same time. The mesh is created by triangulating the known correspondences using
a Delaunay triangulation. The affine transformations for the triangular patches are
determined from the feature positions of the three correspondences defining each
patch.

2.8.1 Delaunay Triangulation

The Delaunay triangulation is a method of converting a set of points on a plane into
a continues, non-overlapping mesh of triangles. It is defined by the property that
no other mesh node can exist in a circumcircle drawn through the three nodes of
each triangle. Doing so, the Delaunay triangulation has the ability to maximize the
minimum angle of all triangles whereby thin and pointy triangles are avoided. The
Delaunay triangulation is related to the Voronoi diagram such that the dual graph
of the Delaunay triangulation is a Voronoi diagram (connecting the centers of all
circumcircles, see Figure 2.15).

A common method of creating a Delaunay triangulation is the flip algorithm. It is
initialized by an arbitrary triangle mesh wherein the circumcircle constraint does
not need to be fulfilled. The flip algorithm starts by testing the circumcircle con-
straint on a random pair of connected triangles. If the circumcircle constraint is
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(a) Delaunay triangulation (black) and the
circumcircles with their centers (red dots)

(b) Voronoi diagram (red lines) as the conec-
tion of the center points of the circumcircles

Figure 2.15: Delaunay triangulation [37]

fulfilled by both triangles, the next pair is chosen. If it is violated by one of the
triangles, the common edge between the triangles is flipped (see Figure 2.16). As
the flipping operation may destroy the circumcircle constraint for neighboring trian-
gles, they have to be retested afterwards. Faster algorithms are the Bowyer–Watson
incremental calculation method [6][69] which adds one point after another to the
mesh and is also suitable for more than two dimensions, or the Dwyer divide-and-
conquer approach [18]. Hereby the point cloud is divided into two single Delaunay
triangulations, which are, after solving them separately, merged together (conquer
step).

Figure 2.16: The Delaunay flip operation. The red points are inside the circumcircles
of the triangles. By flipping the common edge, all other points are
outside the circumcircles. [37]
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3 Planar Landscape Error Model

In this chapter, the planar landscape model commonly used in aerial surveillance
is described and the aberrations to reality are analyzed for different observation
scenarios. The surface of the earth is in this model represented by a single plane,
so the mapping of projected ground objects between the airborne camera views can
be described by a projective mapping model using a homography, as introduced in
Chapter 2.5. This is a state-of-the-art global motion model in aerial surveillance
systems, as it is easy to compute, robust against outliers, and most of the time
accurate enough for the desired tasks.

However, in reality the surface of the earth is not planar. To get an impression of the
model aberration in the presence of non-planar objects like buildings or trees, or even
the curvature of the earth, we derive in this chapter the absolute mapping error of
projected pixels due to violation of the non-planar assumption. Only the projective
mapping is considered; lens distortions are neglected, as they are rectifiable in the
recording step (Chapter 2.2.2).

The chapter starts by adapting and simplifying the general scene model introduced
in Chapter 2.1 for the aerial surveillance scenario. Following this, a first error model
is introduced by assuming the camera to point directly downwards. In this case the
image plane is parallel to the surface of the earth. After having derived the error
model, it is extended for cameras having a tilt angle θ as well as arbitrary viewing
directions, e.g. looking sideways. For all cases, the mapping error in pel on the image
plane is determined as well as the associated displacement vector on the ground
plane in meter. Finally, we will calculate the motion displacement of pixels from
projected non-planar objects after motion compensation of the background motion
as a result of the camera movement and parallax effects, and create a classifier for
the differentiation of the motion displacement from parallax effects of static objects
and the displacement of individual moving ground objects.

3.1 Aerial Surveillance Scene Model

First we take the general scene model from Chapter 2.1 and apply it to an aerial
surveillance scenario (Figure 3.1). The position and orientation of the local camera
coordinate system are given by the center of projection C of the camera in world
coordinates and the rotation matrix R, containing the roll, pan, and tilt angles γ,
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Figure 3.1: Aerial surveillance scene model

β, and θ. The nadir point of the camera center on the ground plane is labeled
N = (Cx,Cy,0)>. A general point in the scene is referred to as P = (X,Y,Z)>.
Moreover, three special points are considered: a point Ph = (X,Y,h)> at height h
above the ground plane, the associated nadir point P0 = (X,Y,0)> and the point
P′h=(X ′,Y ′,0)>, which is the intercept point of a line connecting the camera center
and the point Ph with the ground plane. Transformed to the camera coordinate
system, Ph becomes P̃h = (Xc,Yc,Zc)

>, P0 becomes P̃0 and P′h becomes P̃′h. The
projections onto the image plane are denoted as p and p′, respectively.

To simplify the observations, Figure 3.2 gives a 2D cut of the 3D scene. The gray
area represents the field of view (FOV) of the camera and is dependent on the angle
of aperture α of the camera lens. It can be calculated from the focal length and the
sensor dimensions (see Chapter 2.2.3). The effective viewing range on the ground
plane is in this case additionally effected by the height of the camera center Cz and
the tilt angle θ, such that θmin = θ − α

2
and θmax = θ + α

2
. This leads to the visible

area between Xmin and Xmax on the ground plane:

Xmin = Cx + Cz · tan(θmin) = Cx + Cz · tan
(
θ − α

2

)
(3.1)

Xmax = Cx + Cz · tan(θmax) = Cx + Cz · tan
(
θ +

α

2

)
(3.2)

From the amount of pixels per visible area follows the size of a pixel on the ground
plane, which is equal to the ground resolution of the given camera setup. It calculates
from the size of a sensor element projected to the ground plane (here given for the
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Figure 3.2: Mapping error caused by non-planar landscape

size in x-direction):

Sx =
Cz · sx

f · cos
(
θ ± α

2

) . (3.3)

To give an example, assuming a vertical aerial photo of a HD-camera (1920×1080
pel) with a full-frame sensor (36×20 mm) and a focal length of f = 80 mm. With
a flight altitude of Cz = 500 m, this leads to a visible area on the ground plane of
225 m and a pixel size of Sx = 11.7 cm. Changes of the focal length as well as the
flight altitude hereby have a linear effect on both the visible area and the pixel size.

To demonstrate the mapping error, we assume two sample points of a building
standing on the ground plane: one point P0 = (X,Y,0)> at the foot of the building
and a point Ph = (X,Y,h)> at the roof at the height h. One can see that, although
a point p on the image plane only maps to one point P0 in the scene, the mapping
of a point p′ on the image plane is ambiguous, as it may be projected from two
scene points: the point Ph on the roof of the building or the point P′h = (X ′,Y ′,0)>

placed on the ground plane. Considered the other way, there is no unique mapping
possible in the case of model violations. This leads to perspective aberrations, which
is illustrated in Figure 3.3.

Additional aberrations occur due to the curvature of the earth as well as atmospheric
refractions [53]. In normal remote sensing scenarios, these errors are relatively small
compared to the error caused by non-planar ground objects. Moreover, as these
errors are only dependent on the recording scenario but not on the observed scene
content, they can easily be compensated [30] and are therefore not further examined.
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(a) Radial displacement of non-planar objects
(from [1])

(b) Vertical aerial photo of Manhattan, New
York (from [30])

Figure 3.3: Radial distortion due to perspective projection

3.2 Vertical Aerial Photo

In a vertical aerial photo setup as shown in Figure 3.4, objects sticking out of the
ground plane are mapped to the image plane with a displacement such that the
point P̃h seems to be identical to the point P̃′h. The displacement is dependent
on the height of the object from the ground plane h as well as the distance of
the object from the nadir point Xc. Objects with a positive height are mapped
with an increasing distance, negative heights lead to a mapping towards the nadir
point. The displacement is called relief displacement and, by assuming a point
P̃h,0 =(0,0,Cz−h)> as the projection of P̃h to the nadir, can be determined by the
theorem about ratios in similar triangles, or in short similarity theorem. It states
that if the triangle P̃hP̃

′
hP̃0 is similar to the triangle CP̃′hN as well as the triangle

CP̃hP̃h,0, the following applies:

∆Xc

h
=
X ′c
Cz

=
Xc

Cz − h
. (3.4)

This can be rearranged to get the displacement on the ground plane ∆Xc:

∆Xc = h
X ′c
Cz

= h
Xc

Cz − h
. (3.5)

Note that the displacement is expressed as a function of the virtual ground position
X ′c. By applying the intercept theorem, this can be expressed as the displacement
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Figure 3.4: Mapping error (ideal)

on the image plane instead:

∆xc = h
x′c
Cz

= h
xc

Cz − h
, (3.6)

whereby xc and x′c are the projections from Xc and X ′c onto the image plane. To
get the model aberrations, we have to express the displacement as a function of h
and the real ground position Xc. This can be achieved by looking at the intercept
theorem again:

xc
Xc

=
x′c
X ′c

=
∆xc
∆Xc

=
f

Cz
, (3.7)

and by introducing a virtual plane parallel to the ground plane at object height h,
this results in:

x′c
Xc

=
f

Cz − h
and (3.8)

X ′c
Xc

=
Cz

Cz − h
. (3.9)

Equations Equation 3.7 and Equation 3.8 can be rearranged to describe the projected
positions on the image plane of an object on the ground plane at position Xc and
having the height h:

xc = f · Xc

Cz
, x′c = f · Xc

Cz−h
, (3.10)
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with Cz being the flight altitude (more precisely the distance of the camera center
from the ground plane). Finally, the difference of both projected points gives us the
mapping error ∆xc on the image plane:

∆xc = x′c − xc =
f Xc h

(Cz−h)Cz
. (3.11)

By considering Equation 3.9, we get the mapping error in meter on the ground plane:

∆Xc = X ′c −Xc = Xc
h

Cz−h
(3.12)

As the distortion for the vertical photo case are equal in x- and y-direction, the
x-dimension can simply be substituted by a radius, which is the also most common
notation in the literature:

∆rc = r′c − rc =
f Rc h

Cz (Cz − h)
, (3.13)

∆Rc = R′c −Rc = Rc
h

Cz−h
. (3.14)

In vector notation this correlates to the following form:

∆p = p′ − p = P̃0
f · h

Cz (Cz − h)
, (3.15)

∆P = P̃′h − P̃0 = P̃0
h

Cz−h
. (3.16)

∆rc and ∆p are specified in meter on the image plane. To get image coordinates in
pel, we have to take the scaling factors from the sensor model in Equation 2.1 into
account:

∆nc =
∆rc
sx

=
Nx

sw

f Rc h

(Cz−h)Cz
(3.17)

Figure 3.5 shows exemplary relief displacements ∆nc in pel for different heights of
objects h, positions of the objects on ground plane Rc, aircraft altitudes Cz, and
focal lengths f . A full-HD camera sensor with 1920×1080 elements on a full frame
sensor is assumed. It can be seen that every variable has a linear effect on the
mapping error, except for the aircraft altitude Cz, which influence decreases nearly
quadratic with increasing altitude. In this realistic scenario, the relief displacement
reaches quite high displacements in the range of 100 pel for small tower buildings
of 30m height and flight height of 500 m. For low flying drones, the displacement is
growing largely to 600 pel and more due to the non-linear behavior.
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Figure 3.5: Resulting mapping error for a camera pointing downwards
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3.3 Motion Parallax Displacement
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Figure 3.6: Change in relief displacement due to different camera positions

The previous examination was only done for the static case (a single vertical photo
taken at one camera position). However, if multiple pictures are made from nearly
the same scene while the aircraft has moved on, the relief displacement of a specific
object point with non-zero height h changes between the views as the mapping error
is a function of the ground position P̃0, which changed with the nadir. Therefore
P̃0 and all associated variables are further specified with an index k, referring to the
referenced nadir Nk as the origin. It corresponds to the frame index.

The effect of the relief displacement on the image plane being dependent on the
distance of the projected scene point to the moving camera center is called image
parallax. Besides leading to image distortions, the effect can be used to e.g. deter-
mine the distance of a scene point P̃ to the camera by measuring the parallax d̃ of
the projected points pk and pk+∆k in the two image planes (see Figure 3.7(a)). With
a known reference (e.g. the parallax of the ground plane d̃0), it can also be used to
determine the height of objects.

However, in aerial ground moving object detection systems, moving objects are
detected by a different displacement of projected object points compared to the
background motion. Hereby, the parallax effect is harmful as the displacement of
objects between the frames has not arisen from actual motion of ground objects but
from the parallax effect and a non-zero object height compared to the background.
In this section we derive the displacements of object points due to the parallax effect
and compare them to real motion of objects on the ground plane.
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Figure 3.7: Superposition of image planes

We start with the distance ∆C the aircraft has traveled between two consecutive
frames:

∆C =
vplane

rfps
, (3.18)

with vplane being the velocity and flight direction of the aircraft and rfps being the
number of recorded frames per second (frame rate). As the observing camera is
hard-fixed on the airplane, this displacement also expresses the new coordinates of
the camera center from the old position:

Ck+∆k = Ck + ∆C, (3.19)

wherein k is the index of the photo, or the video frame respectively. In the vertical
photo case, the displacement of the camera might also be expressed as a translation
of all points on the ground plane (see Figure 3.6):

P̃0,k+∆k = P̃0,k + ∆C. (3.20)

According to Equation 3.7, this translates to the image plane as:

pk+∆k = pk + ∆c, (3.21)

with ∆c = d̃0 = ∆C f
Cz

as the distance of the projected nadirs Nk and Nk+∆k on
the image plane. If now both image planes are superimposed such that the camera
centers overlap and the image plane axis are aligned, the parallax displacement can
directly be calculated as the distance between the projected scene points, as is shown
in Figure 3.7(b):

d̃ = r′c,k − r′c,k+∆k, d̃ = p′k − p′k+∆k. (3.22)
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To get the relations between the image parallax and the height and distance of an
object, Equation 3.8 is feasible by replacing Xc with ∆C:

d̃ = ∆C
f

Cz−h
(3.23)

To get the motion displacement ∆pm of a projected point p′ with non-zero height h
compared to the same point but on the ground plane p (with h = 0), we have to
compensate the parallax of the ground level d0 (the background motion), which can
be calculated by simply choosing h = 0:

d̃0 = ∆C
f

Cz
, (3.24)

and corresponds to the distance of the projected nadirs ∆c. The subtraction of
both parallaxes yields to the motion parallax displacement ∆pm:

∆pm = d̃− d̃0 = −∆C
f · h

(Cz − h)Cz
= −∆c

h

(Cz − h)
, (3.25)

which can be converted to image pel by applying the scaling from Equation 3.17:

∆nm =
Nx

sx
∆pm = −∆c

Nx

sx

h

(Cz − h)
. (3.26)

The same consideration can also be made for the motion displacement on the ground
plane ∆Pm, which gives us the relation between the virtual ground motion caused
by the parallax effect and a real moving object on the ground plane:

∆Pm = −∆C
h

(Cz − h)
(3.27)

It should be noted that,in contrast to the relief displacement, the motion error with
a non-tilted camera is independent of the ground position P0 but dependent on the
aircraft motion ∆C only.

Some examples of the motion error resulting from image parallaxes for different
aircraft speeds vplane and object height h are given in Figure 3.8. A full frame
(36x20mm) 16:9 camera sensor with full-HD (1920x1080) resolution is assumed in
all the following measurement. The motion error itself is a lot smaller than the
associated relief displacement as the motion error is, in contrast to the relief dis-
placement, not an absolute measure of aberration but describes the relative changes
of the relief displacement between the camera positions instead. This leads to vir-
tual motion of objects in the scene after the global compensation of the ground
motion, depending on their height. In a detection system of moving ground objects,
this might lead to mis-detections. The equivalent speed of a moving ground object
is provided. For a better classification of the displacement magnitudes, Figure 3.9
provides an overview of the achievable image resolutions and the viewable ground
area (fov) for the given camera setup.
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3.4 Camera with a Tilt Angle
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Figure 3.10: Tilted camera

In contrast to the vertical photo, the calculations become non-linear if the camera is
tilted. In this first step, only a rotation around the Y-axis by an angle θ is assumed
(tilting in flight direction). This is illustrated in Figure 3.10. It can be seen that
the image plane and the ground plane are not parallel anymore. This results in a
varying distance of the image plane to the ground plane. Moreover, the nadir is
not intersecting with the principal point of the image plane, which was an implicit
assumption in the previous cases.

In order to apply the previous equations to the tilted case, the image plane coordi-
nates from Equation 3.6 have to be referenced to the nadir instead of the principal
point by adding the nadir offset xn = f · tan θ:

∆xc = h
x′c + f · tan θ

Cz
= h

xc + f · tan θ

Cz − h
. (3.28)

To have object positions on the ground plane instead of the image plane, we have
to consider the nadir offset again:

xc = f · Xc · cos θ

Cz +Xc · sin θ
− f · tan θ, (3.29)

x′c = f · Xc · cos θ + h · sin θ
Cz +Xc · sin θ − h · cos θ

− f · tan θ. (3.30)

To get the reflief displacement as a function of h, θ, and Xc, we have to calculate
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the difference between Equation 3.30 and Equation 3.29, as in Equation 3.13:

∆xc = x′c − xc = f ·
(

Xc · cos θ + h · sin θ
Cz +Xc · sin θ − h · cos θ

− Xc · cos θ

Cz +Xc · sin θ

)
. (3.31)

To have an easier expression, the tilted camera case can also be written in angular
notation instead. This is done by substituting the ground positions Xc of the scene
points P̃0 and P̃′h with the angles ϕ and ϕ′ between the view rays to the scene points
and the optical axis, as is given in Figure 3.10:

ϕ = tan−1

(
Xc

Cz

)
−θ, (3.32)

ϕ′ = tan−1

(
Xc

Cz − h

)
−θ. (3.33)

The mapping of the object points onto the image plane can now be expressed by:

xc = f · tanϕ, (3.34)
x′c = f · tanϕ′. (3.35)

By inserting Equation 3.32 and Equation 3.33 into Equation 3.34 and Equation 3.35,
we get the mapping from an object point P̃0 on the ground plane onto p = (xc, yc)

>

on the image plane, or from an non-zero height object point P̃h onto p′ = (x′c, y
′
c)
>:

xc = f · tan

(
tan−1

(
Xc

Cz

)
− θ
)
, (3.36)

x′c = f · tan

(
tan−1

(
Xc

Cz − h

)
− θ
)
. (3.37)

The difference between those two is, again as in Equations 3.13 and 3.31, the relief
displacement ∆rc on the image plane:

∆xc = x′c−xc = f

(
tan

(
tan−1

(
Xc

Cz−h

)
−θ
)
− tan

(
tan−1

(
Xc

Cz

)
−θ
))

. (3.38)

To get an universal radial expression as in Equation 3.13, one can substitute the Xc

by the radius Rc and θ by its in tilted direction effective component θx = θ · cos β:

∆rc = r′c−rc = f

(
tan

(
tan−1

(
Rc

Cz−h

)
−θx

)
− tan

(
tan−1

(
Rc

Cz

)
−θx

))
. (3.39)

Figure 3.12 gives some exemplary plots. In Figure 3.12(a), the relief displacement
is plotted dependent on the ground position and the tilt angle for building height
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of 20m. One can see that the relief displacement increases with the angle for closer
positioned ground objects but falls slightly prior to climbing up for objects positioned
further away. Common is that values of θ < 30◦ have only a small influence on
the relief displacement for the given recording scenario, which can also bee seen
in Figure 3.12(b) and (d). Figure 3.11 shows the influence of the tilt angle to the
motion error, where the motion displacement ∆xm decreases with an increase of the
tilt angle for a fixes object position of Xc = 150m.

The motion displacement can be calculated similarly to Equation 3.25 - however,
one different method should be presented here by calculating the motion error from
the differences in relief displacement instead. Hereby it is assumed that the camera
is static but the ground position of the object has changed by the displacement of
the camera:

∆xm = ∆xc(Xc −∆Cx)−∆xc(Xc) and (3.40)
∆rm = ∆rc(Rc −∆Cx)−∆rc(Rc), (3.41)

wherein ∆xc and ∆rc are now functions of the ground positions Xc and Rc. The
relief displacement and the motion displacement can be converted from m to pel
similar to Equation 3.17 by applying the scaling factor from Equation 2.1.
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Figure 3.11: Motion displacement for different tilt angles and flight speeds. Altitude
Cz =500m, focal length f =80mm, height of building h=20m, ground
position Xc=150m, frame rate of recording rfps =30Hz, full-HD sensor.
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Figure 3.12: Relief displacement (x-component) for different tilt angles, ground posi-
tions and, building heights. Altitude Cz=500m, focal length f=80mm.
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3.5 Arbitrary Camera Orientation

To express the mapping of scene points to image coordinates for arbitrary oriented
cameras (Figure 3.13), we take the perspective mapping model from Chapter 2.2.4,
especially Equation 2.21:

p = KR(P−C). (3.42)

With the Rotation matrix R being

R =

 r11 r12 r13

r21 r22 r23

r31 r32 r33

 , (3.43)

Equation 3.42 expands to:

p =


x′

y′

z′

 =

 f 0 cx
0 f cy
0 0 1



r11(X−Cx) + r12(Y −Cy) + r13(Z−Cz)

r21(X−Cx) + r22(Y −Cy) + r23(Z−Cz)

r31(X−Cx) + r32(Y −Cy) + r33(Z−Cz)

 . (3.44)

The Euclidean form of Equation 3.44 is derived by dividing the first two vector com-
ponents by the third, wherein, for the reason of simplicity and space, the principal
point offset c = (cx,cy)

> inside the matrix K is assumed to be (0,0)> here:

x =
x′

z′
= f

r11(X−Cx) + r12(Y −Cy) + r13(Z−Cz)
r31(X−Cx) + r32(Y −Cy) + r33(Z−Cz)

,

y =
y′

z′
= f

r21(X−Cx) + r22(Y −Cy) + r23(Z−Cz)
r31(X−Cx) + r32(Y −Cy) + r33(Z−Cz)

.

(3.45)

The coefficients of the rotation matrix are given by the individual rotations around
the three axis by the angles β, γ, and θ, taken from Equation 2.19:

r11 = cos(β) cos(θ) + sin(β) sin(γ) sin(θ)

r12 = sin(β) cos(θ)− cos(β) sin(γ) sin(θ)

r13 = − cos(γ) sin(θ)

r21 = − sin(β) cos(γ)

r22 = cos(β) cos(γ)

r23 = − sin(γ)

r31 = cos(β) sin(θ)− sin(β) sin(γ) cos(θ)

r32 = sin(β) sin(θ) + cos(β) sin(γ) cos(θ)

r33 = cos(γ) cos(θ).

(3.46)
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Figure 3.13: Collinearity characteristics and scene to image plane projections for
arbitrary camera orientations

Note that if R is the identity matrix (meaning no rotations are performed), the
Equations 3.45 simplify to the vertical photo case presented earlier as Equation 3.10
in Chapter 3.2, whereas having only a tilt angle θ results in the tilted only case from
Equation 3.29 in Chapter 3.4.

To get the aberrations of the planar global motion compensation model for arbitrary
camera movements and the imperfect compensation of non-zero height objects, we
first investigate the relief displacement ∆pk = (∆x′k,∆y

′
k,∆z

′
k)
> for a single cam-

era Ck as the difference of the projected points of a non-zero height scene point
P = (X,Y,h)> in the frame k and a point P0 = (X,Y,0)> at the same X and Y
coordinates, but directly placed on the ground plane (see Figure 3.13, left part):

∆pk = KkRk(P−Ck)− KkRk(P0 −Ck) (3.47)

The Euclidean form expands to the following form, similar to Equation 3.45:

∆xk = fk

(
r11,kX + r12,kY + r13,k(h−Ck,z)
r31,kX + r32,kY + r33,k(h−Ck,z)

− r11,kX + r12,kY − r13,kCk,z
r31,kX + r32,kY − r33,kCk,z

)
, (3.48)

∆yk = fk

(
r21,kX + r22,kY + r23,k(h−Ck,z)
r31,kX + r32,kY + r33,k(h−Ck,z)

− r21,kX + r22,kY − r23,kCk,z
r31,kX + r32,kY − r33,kCk,z

)
, (3.49)
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wherein, for easier representation, the camera is assumed to be positioned above the
origin of the world coordinate system in the frame k, such that Nk = (0,0,0)> and
Ck=(0,0,Ck,z).

The same calculations as above can be applied to the frame k+∆k, resulting in the
relief displacement ∆pk+∆k of P:

∆pk+∆k = Kk+∆kRk+∆k(P−Ck+∆k)− Kk+∆kRk+∆k(P0 −Ck+∆k). (3.50)

In Euclidean notation, this is expressed as:

∆xk+∆k = fk+∆k

(
r11(X−Ck+∆k,x) + r12(Y −Ck+∆k,y) + r13(h−Ck+∆k,z)

r31(X−Ck+∆k,x) + r32(Y −Ck+∆k,y) + r33(h−Ck+∆k,z)

− r11(X−Ck+∆k,x) + r12(Y −Ck+∆k,y)− r13Ck+∆k,z

r31(X−Ck+∆k,x) + r32(Y −Ck+∆k,y)− r33Ck+∆k,z

)
,

∆yk+∆k = fk+∆k

(
r21(X−Ck+∆k,x) + r22(Y −Ck+∆k,y) + r23(h−Ck+∆k,z)

r31(X−Ck+∆k,x) + r32(Y −Ck+∆k,y) + r33(h−Ck+∆k,z)

− r21(X−Ck+∆k,x) + r22(Y −Ck+∆k,y)− r23Ck+∆k,z

r31(X−Ck+∆k,x) + r32(Y −Ck+∆k,y)− r33Ck+∆k,z

)
.

(3.51)

Equations 3.47 and 3.50 cannot be further simplified, as the main minuend and the
subtrahend are both individual perspective projections in homogeneous coordinates.
A combination would result in the calculation of the difference of the projected 2D
points on the image plane instead of the 3D points in the world coordinate system.

Due to the imperfect compensation of the background motion of non-planar objects
between the frames k and k+∆k caused by the insufficient global motion model,
the relief displacement changes with the camera orientation and position (see Fig-
ure 3.14). This leads to a displacement of points on the image plane projected
from static objects with a non-zero height related to the ground plane. This vir-
tual motion of projected static objects was defined in Chapter 3.3 as the motion
displacement ∆pm. As with the simplified case, it can be calculated directly from
the difference of relief displacements:

∆pm = ∆pk+∆k −∆pk (3.52)
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Figure 3.14: Relief displacements ∆pk and ∆pk+∆k on the image planes of the frames
k and k+∆k as well as the resulting motion displacement ∆pm. pk
and pk+∆k are identical here due to the global motion compensation.

3.6 Height Restrictions based Outlier Detection

Until now, the difference in displacement of the projected points p0,k and ph,k =
p0,k + ∆pk between the frames k and k+∆k can be calculated from the known
camera parameters Kk, Rk and Ck as well as Kk+∆k, Rk+∆k and Ck+∆k by Equation 3.52
for known positions and heights of the original scene points Ph = (X,Y,h)> and
P0 = (X,Y,0)>. However, for a feature point pk for which the actual position and
height of the original scene point is unknown (as it is true for a real operating
system), estimates of the minimum and maximum height hmin and hmax of the
original scene point Pk, e.g. as the maximum height of buildings or trees in the
scene, can be made. This information can then be used to define a range of valid
displacements ∆p0,k to ∆phmax,k, which might apply to pk+∆k due to motion parallax
if Pk, as the source of pk and pk+∆k, is a static scene point with a z-coordinate
between hmin and hmax. Comparing the actual measure of pk+∆k to the prediction
pk+∆pk (with ∆p0,k ≤ ∆pk ≤ ∆phmax,k) allows the detection of outliers or non-
static objects on the ground plane such as moving cars or pedestrians. This is
illustrated in Equation 3.53.

To do so, first we need to calculate the viewing ray from the camera center Ck

through the measured feature point pk. As this is an inverse projection from the
image plane into the scene, this can be achieved by inverting Equation 3.42, which
was the projection from a scene point onto the image plane:

Ph =

X
Y
h

 = (KkRk)
−1 pk + Ck (3.53)

The Euclidean form of Equation 3.53 retrieves the X and Y world coordinate of a
possible source of pk for a scene point with a given Z-coordinate of h. This is done
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Figure 3.15: Retrieval of the parallax prediction line (red, dashed). The scene points
Ph and P0 are determined by calculating the ground coordinates of the
ray through pk at the heights hmax and 0, respectively. Both scene
points are projected onto the image plane of camera Ck+∆k as ph,k+∆k

and p0,k+∆k. They define a constrained epipolar line piece on which the
point pk+∆k has to lie, if it was projected from a static ground object.

by first rotating the image plane coordinate pk into the world coordinate system
and then projecting it to a virtual plane in parallel to the ground plane with a
Z-coordinate of h. By inserting hmin and hmax for h, this yields to two possible
sources of pk in the Euclidean form: one with a Z-coordinate of hmin and one with
a Z-coordinate of hmax, respectively.

In Figure 3.15, hmin = 0 was assumed as the minimum height of objects. This
retrieves the scene points Ph and P′0 as the intersections of the viewing ray from Ck

through pk with the plane at hmax (illustrated by the dashed line) and the ground
plane at 0. Both points - as any point on the viewing ray - are possible sources for
the projected point pk, but as Ph and P′0 were created by assuming a maximum and
minimum height of objects in the scene, they restrict the viewing ray to a possible
area (the part of the viewing ray touching the gray triangle in Figure 3.15) as valid
sources for pk. If this section of the view is projected onto the image plane of
camera Ck+∆k, it creates a line segment, limited by the points ph,k+∆k and p0,k+∆k as
projections of Ph and P′0, on which a point pk+∆k has to lie if it was projected from a
static ground objects under the above height restrictions. Note that in Chapter 2.4,
the projection of the viewing ray for a point on the image plane of one camera onto
the image plane of a second camera was introduced as the epipolar line. For this
reason, the above restriction might also be named a constrained epipolar projection.
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Figure 3.16: pk+∆k is classified as non-background motion, if the distance of pk+∆k to
the epipolar line segment p0,k+∆k,ph,k+∆k is greater than a threshold Td
(green areas). The distance is always calculated to the closest element
of the line segment (left: 0 ≤λ≤ 1, right: λ<0).

The projection of the line segment can be performed by projecting the start and
end point of the line p0,k+∆k and ph,k+∆k using Equation 3.42 and the scene points
Ph and P′0 as sources. The line equation is then consequently written as:

p′k+∆k(λ) = p0,k+∆k + λ(ph,k+∆k − p0,k+∆k),with 0 ≤ λ ≤ 1, (3.54)

where 0 ≤ λ ≤ 1 limits the valid range of the line to the segment given by p0,k+∆k

and ph,k+∆k. By computing the distance of the actual measurement of the feature
position pk+∆k to the constrained epipolar line segment p′k+∆k(λ) and comparing it
to a threshold Td, feature displacements can be classified into being caused by either
motion parallax of static objects (≤ Td) or individual object motion (> Td):

min(|pk+∆k − p′k+∆k(λ)|) ≤ Td,with 0 ≤ λ ≤ 1. (3.55)

This can be implemented by calculating the distance of the point pk+∆k to the line
given by p′k+∆k(λ). However, if the closest point on the epipolar line is beyond
the line segment (λ < 0 ∨ λ > 1), the distance must be calculated to the closest
point of the line segment instead (p0,k+∆k or ph,k+∆k). Both cases are displayed in
Figure 3.16. For the use in practice, the parameters Kk, Kk+∆k, Rk, Rk+∆k, Ck, and Ck+∆k

are available from the GPS/INS sensor of the aerial vehicle or are known from the
camera settings. The minimal and maximal height of a building hmax can be chosen
to a value representing the individual observed scene.
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3.7 Detectability in Dependence of Speed and
Direction of Motion

As the test above compares the measured feature displacement against a constrained
epipolar line, it should be mentioned that moving objects moving along the epipolar
line are only detectable, if their displacement is bigger or smaller than the maximal
and minimal motion parallax from static objects, given by the position P0 and
maximum and minimum height of scene objects hmax and hmin. By projecting the
epipolar line segment onto the ground plane, this retrieves a range of positions
in which the moving object cannot be located at the time the frame k+ ∆k is
taken in order to be detected. In Figure 3.16, this corresponds to the area on the
ground plane between the points P′0 and P′h. This also means that an object moving
opposite of the motion parallax displacement is always detectable, independent of
the speed (corresponding to a location at the time of frame k+∆k right of P′0). By
incorporating the time difference between the frame k and k+∆k, which is expressed
here by the frame rate rfps of the camera, this directly defines a speed threshold vthresh

the moving object must exceed to be detected if it moves in direction of P′h:

vthresh =
P′h −P′0
rfps

. (3.56)

P′h is calculated analogously to Equation 3.53, but with respect to the camera Ck+∆k:

P′h =

X ′h
Y ′h
0

 = (Kk+∆kRk+∆k)
−1 ph,k+∆k + Ck+∆k. (3.57)

To give a generalized statement of detectability, the distance threshold Td in pel from
Equation 3.55 must additionally be taken into account. As the distance threshold is
equally distributed around the epipolar line segment, the necessary minimal speed
is dependent on the direction of motion of the moving object. Considering only
the image plane, this corresponds to a displacement threshold ∆pthresh on the image
plane the moving object must exceed to be detectable, depending on the angle δ
between the direction of motion and the epipolar line segment:

∆pthresh =

{
Td for 90◦ ≤ δ ≤ 270◦

Td + |ph,k+∆k − p0,k+∆k| · cos δ else . (3.58)

The equivalent ground velocity vthresh is calculated by inserting the image plane
coordinates of the minimal displacement into Equation 3.56:

vthresh =
(Kk+∆kRk+∆k)

−1 (p0,k+∆k + ∆pthresh) + Ck+∆k −P′0
rfps

, (3.59)

with ∆pthresh = ∆pthresh

(
sin δ
cos δ

)
.
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4 Multi-Planar Landscape Model based
on Triangle Meshes

In this chapter, a novel multi-planar ground model is presented and analyzed for
approximation errors. The goal of the proposed method is to suppress the relief
displacements of non-planar ground structure during motion compensation for the
use in moving object detection systems. In contrast to the planar landscape model,
multiple affine projections are applied to compensate the global motion of the scene
locally instead of using one single homography for the whole frame. For this, the
scene is overlapped by a triangle mesh wherein the single mesh nodes should be
positioned as close as possible to geometric discontinuities to be able to take care of
the different parallaxes. An example for an automatically created mesh overlay is
given in Figure 4.1. If the motion of the mesh nodes is known between the frames
and the displacements are small enough, the unknown motion of the pixels inside
each patch can be approximated as affine, wherein the surrounding mesh nodes
provide enough information to define the affinity.

Figure 4.1: Mesh overlay for the Chicago test sequence [62].
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4.1 Mesh Creation

4.1.1 Mesh Node Selection

The shape of the mesh patches should reflect the shape of planes in the scene with
different distances to the camera center (different heights from the ground plane).
The best possible solution to construct the mesh is by using an already existing
3D model of the scene. However, as the system should run without prior know-
ledge, a fully automatic technique is preferred. In this work, it is assumed that
the Shi&Tomasi corner feature detector (Chapter 2.7.1) is exact enough to detect
the relevant corners of buildings and other structures. The feature candidates must
hereby fulfill a minimum cornerness criterion of CRF > λmin = 0.01 and a minimal
feature-to-feature distance of df = 9 pel – although these parameters might be
adjusted for the individual use case. The corner detection is performed on the
current frame k of the input video. The detected and elected n corner positions
are stored as the feature position fn,k and become the mesh nodes of frame k. An
example of the corner-based feature selection was given in Figure 2.13.

4.1.2 Mesh Node Tracking

To determine the displacement of the mesh nodes between the frames of interest,
the method of Kanade-Lucas-Tomasi (Chapter 2.7.2) is applied to the mesh nodes.
It estimates the position of the given corner features fn,k of frame k in a second
frame k−∆k. The new positions of the features are stored as fn,k−∆k. This results
in two possible meshes: one created by the selected corner feature positions and one
created from the feature positions with the displacement applied (see Figure 4.2).

frame k−∆k frame k

Figure 4.2: The position of the mesh nodes are tracked from frame to frame. This
yields to two individual meshes, related by the mesh node displacements.
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4.1.3 Mesh Coverage Padding

The resulting mesh does not cover the full image plane yet. This is due to the mesh
emerging from the concatenation of the mesh nodes. The nodes themselves have
been placed by the corner detection algorithm, which uses a rectangular window to
calculate the cornerness and therefore is not able to reach the image boundaries.
In addition, displacements cannot be estimated if features only occur in one of the
frames. This happens a lot at image boundaries due to the features wandering
out of the frame. The mesh coverage problem is illustrated in Figure 4.3a). Two
possible solutions to this problem are to limit the moving object detection to the
mesh-covered region or to generate additional feature positions and displacements
at the image boundaries for the mesh to cover the full frame. In this work, the
later approach was chosen by extrapolating eight additional displacement vectors
at the frame boundary: four at each corner and four on the centers of the bound-
ary line between each of the corners. More samples might be added to obtain a
finer approximation. The displacements are extrapolated from known feature dis-
placements nearby. This can be done by a (non-)linear extrapolation from multiple
feature displacements e.g. by computing an affinity, fitting a polynomial, or by us-
ing belief propagation; however experiments by the author have shown that copying
the displacement of the closets feature is, besides being fast, accurate enough for
the scenario in this work. The filled up mesh using the eight additional boundary
features and displacements is shown in Figure 4.3b).

(a) Without boundary features (b) With boundary features added

Figure 4.3: Extra features are inserted at the image boundaries to handle the uncov-
ered border region. Their displacements are extrapolated from known
feature displacements close by. Test sequence Chicago [62].
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4.2 Outlier Removal and Moving Object Detection

As the mesh-based global motion compensation relies on correctly determined move-
ment of the mesh nodes, it is mandatory to eliminate outliers from the estimated
optical flow as well as any motion not emerging from the movement of the static
background scene. In contrast to the planar model from Chapter 3, in this locally
adaptive approach it is not possible to validate each determined feature displace-
ment against a globally optimized model, e.g. by using the RANSAC algorithm from
Chapter 2.7.3.

Instead, in this work it is proposed to identify the correctness of a feature vector by
comparing its displacement to the local surrounding. As the background scene is
static, all measured feature displacements of background objects must have emerged
from the movement of the camera itself, overlapped by the virtual motion resulting
from relief displacements due to different distances of scene points to the camera. If
the spatial distance of the camera positions between the frames is small (as is true
for normal video frame rates and flight speeds), and the distance to scene objects
is big enough, the vector field is dominated mainly by the motion of the camera.
Therefore all features spatially close should move more or less similarly between the
frames, if they belong to the static background.

To exploit this assumption, a region growing approach is proposed in which a nearby
feature displacement vector is clustered into an existing region if the distance of the
feature position to the border of the cluster (distance constraint) and the difference
in displacements (similarity constraint) between the feature vector and the border
of the cluster are both small enough. As the algorithm is intended to be computed
on-board small aerial devices with a hard power and battery limit, the proposed
algorithm eyes on low computational complexity. Therefore, in this work, the border
of the cluster is defined only by the feature vector position u = fu,k with the shortest
distance to the yet to be clustered feature vector v = fv,k. The distance constraint
can then be written as:

|u− v| =
√

(ux − vx)2 + (uy − vy)2 < T1. (4.1)

In this work, it is approximated by this easier to calculate implementation:

|ux − vx|+ |uy − vy| < T1. (4.2)

The similarity constraint evaluates the difference in displacement between the same
two vectors located at u and v. The displacement is the difference between the
coordinates of the feature position in the frames k and k−∆k, and calculates for
the two vectors as follows:

du =

(
du,x
du,y

)
= fu,k − fu,k−∆k, dv =

(
dv,x
dv,y

)
= fv,k − fv,k−∆k. (4.3)
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The similarity constraint is defined as the Euclidean distance of the displaced coor-
dinates:

|du − dv| =
√

(du,x − dv,x)2 + (du,y − dv,y)2 < T2. (4.4)

In this work, the easier to compute linear approximation was used:

|du,x − dv,x|+ |du,y − dv,y| < T2. (4.5)

In addition, two more similarity constraints have been investigated. The first one
scales the similarity threshold with the distance. It forces closer features to a higher
similarity compared to those further away:

|du,x − dv,x|+ |du,y − dv,y| < T2 ·
|ux − vx|+ |uy − vy|

T1

. (4.6)

The second one is based on the assumption that, for small displacements, the dif-
ference in displacement is also small if the feature displacement vectors are similar.
Therefore, the similarity threshold is scaled down by the absolute value of the dis-
placement vector, clipped at 5 pel:

|du,x − dv,x|+ |du,y − dv,y| <
{
T2 · |du,x−dv,x|5

for |du,x − dv,x| < 5.0
T2 for |du,x − dv,x| ≥ 5.0

. (4.7)

The clustering process is illustrated in Figure 4.4. The green arrows assemble the
displacement vectors of the currently growing cluster whereas the dashed arrow is a
nearby displacement vector under test. As the distance to the cluster is smaller than
a threshold T1 (Figure 4.4(a)) and the difference in displacement is smaller than the

T1

(a) The green vectors assemble an
already clustered object while the
dashed vector is currenty tested
againts the closest boundary vec-
tor.

T2

(b) The similarity is
verified by the differ-
ence in displacement.

(c) The dashed vector was clus-
tered into the green object while
the blue vectors assemble a new
cluster. The single red vector is
marked as an outlier.

Figure 4.4: Displacement vector clustering by similarity
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threshold T2 (Figure 4.4(b)), it is merged into the cluster. This process is repeated
until no further feature vector fulfills the distant and similarity constraints. In this
case a new cluster is created (blue arrows in Figure 4.4(c) with one of the remaining
feature vectors. The whole process is repeated until all feature vectors are clustered
into individual objects. In a final outlier elimination step, all clusters containing
less feature vectors than a threshold T3 are marked as outliers and removed from
the list of mesh nodes. This is illustrated by the red arrow in Figure 4.4(c).

An exemplary clustering result is given in Figure 4.5 for the chicago sequence. Fig-
ure 4.5(a) shows the feature positions and Figure 4.5(b) the displacement distri-
bution of the feature vectors. The different colors denote different object clusters.

fy

fx

(a) Spatial positions of the features

dy

dx

(b) Displacement distribution

Figure 4.5: Clustered vector field. Green dots: background object, other colors:
detected moving objects.

4.3 Mesh-based Motion Compensation

4.3.1 Triangulation of the Mesh Node Point Cloud

The Shi&Tomasi corner detector only provides an amount of point coordinates in
the image plane. To create a connected mesh, the points have to be assigned to
triangles. This process is known as the triangulation of a point cloud. In this work,
the triangulation process is handled by the Delaunay method, which was presented
in Chapter 2.8.1. As the goal is to compensate the background motion only for
the purpose of moving object detection, only the feature points referenced by the
background motion object are given to the triangulation process. The triangulation
is performed for each of the frames k individually by using only the feature point
coordinates detected in the frame k.

The result is a set of i triangles, wherein each triangles ti,k references the three
determining mesh nodes/feature coordinates ti,k =

{
fti,1,k, fti,2,k, fti,3,k

}
.
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4.3.2 Multi-planar Affine Transformation

The previous process actually creates two coherent meshes: the one created by the
Delaunay method using the feature coordinates fn,k of the frame k and the one
created by the same mesh topology but using the displaced feature coordinates
fn,k−∆k of the frame k−∆k (see Figure 4.2). Therefore, the triangulation process
actually creates i pairs of associated triangles:

ti,k =
{
fti,1,k, fti,2,k, fti,3,k

}
, ti,k−∆k =

{
fti,1,k−∆k, fti,2,k−∆k, fti,3,k−∆k

}
. (4.8)

Each pair of triangles provides three point correspondences, which equals six restric-
tions (three feature positions in two frames with two coordinates each). Assuming
the motion inside each triangle as linear, this is enough information to determine an
individual affine transformation for each triangle. To calculate the affine matrices Hi,
each pair of triangles has to be written as a matrix, containing the referenced feature
point coordinates in their homogeneous form. For this, let fn = (xn,yn,1) = fti,n,k
and f ′n = (x′n,y

′
n,1) = fti,n,k−∆k, with n = [1,2,3] for the three triangle vertices. The

two triangle matrices Ti,k and Ti,k−∆k can then be written as:

Ti,k =
[
f>1 f>2 f>3

]
=

 x1 x2 x3

y1 y2 y3

1 1 1

 , (4.9)

Ti,k−∆k =
[
f ′>1 f ′>2 f ′>3

]
=

 x′1 x′2 x′3y′1 y
′
2 y
′
3

1 1 1

 . (4.10)

With these matrices available, the individual affine transformations Hi for each tri-
angle ti can easily be calculated by inverting one of the triangle matrices using
Equation 2.29:

Hi · Ti,k = Ti,k−∆k (4.11)
Hi = Ti,k−∆k · T−1

i,k . (4.12)

The individual displacement vector for each of the pixels inside the triangle ti is
retrieved by Equation 2.32 using the parameters of Hi. The resulting vector defines
the source coordinate of the pixel in the frame k−∆k, which has to be motion
compensated to the position of the target pixel in the frame k.

As the resulting image coordinates are fractional, an appropriate interpolation filter
must be used to determine the correct color and luminance of the intermediate pixel
position from surrounding known samples. For performance reasons, this is achieved
in this work by a two step filter: the first one doubles the resolution once for the
entire source frame using a fixed 8-tap Lanczos filter. The second filter retrieves the
final pixel properties by bi-linearly interpolating the upscaled samples at the source
position using the individual fractional components as weighting.
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4.4 Accuracy Analysis of the Mesh-based
Approach
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(a) Mesh nodes M0 and M1 represent a triangle
plane projected from the image planes into the scene.
P is an off-plane scene point observed by the two
cameras Ck−∆k and Ck.
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(b) Cut-out of the mesh plane and
the scene points. The red dashed ar-
row denotes the motion compensa-
tion error of P.

Figure 4.6: Mesh deviation from real scene structure

In contrast to the global planar landscape model, the proposed mesh approach is lo-
cally adaptive. Although the relief displacement referenced to the ground plane does
not change, the local adaptation of the mesh patches to the non-planar structure
allows an individual motion compensation of image regions in the image plane pro-
jected from scene objects with heights different from the ground plane. This leads to
a great reduction in aberrations between motion compensated frames compared to
the single global plane model. However, as the mesh nodes are created from image
intensity corners on the 2D image planes without knowledge of the scene structure
or depths, they do not perfectly reflect discontinuities in the scene. To calculate
the remaining motion compensation aberrations, the approximations done in the
2D-mesh approach are compared to the full 3D scene model in this chapter.

If perfectly tracked, the 2D mesh represents the projection of an undersampled
3D model of the scene. The undersampling is due to the mesh nodes not being
placed perfectly at discontinuities in the 3D shape by the corner detector or due to
undetectable feature displacements in the tracking part. An simplified example of
the undersampling is given in Figure 4.6. The aberrations of the mesh is shown in
this section on an exemplary triangle ti, consisting of the mesh nodes m0,m1, and
m2. Their scene points are created by the intersection of the view ray through the
nodes with the first scene object and named M0,M1, and M2, respectively. In the
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example in Figure 4.6, the mesh node M1 is assumed to be perfectly placed at the top
edge of the building, whereas the mesh nodes M0 is slightly off the base point P of
the building. M2 is placed at the position of and M0, but shifted in y-direction. As
mesh nodes are only created from successfully tracked 2D feature points, the position
of each of the mesh nodes M in each of the cameras C is known and are therefore
perfectly compensateable. Applied to the example in Figure 4.6, this translates to
a simple displacement of the pixel values at the mesh node positions m0,k−∆k and
m1,k−∆k from the image plane of camera Ck−∆k onto the associated positions m0,k

and m1,k on the image plane of camera Ck. The relationship between the 2D mesh
node positions on the image planes and the 3D scene points are depicted as the solid
black lines connecting the camera centers and the 3D mesh nodes in the figure.

The displacements of all remaining pixel positions in the image plane, however, are
unknown and need to be interpolated from the known samples. The mesh-based
motion compensation assumes a linear distribution of pixel displacements between
the known mesh nodes. For this purpose, the mapping between the triangle shapes
in both image planes is modeled as affine wherein the parameters of the transfor-
mation are determined by the displacements of the triangle vertices as described in
the previous chapter. In three space, the affine mapping translates to a single plane
through the 3D positions of the triangle vertices, viewed from both cameras Ck and
Ck−∆k. As each mesh patch has its own individual plane equation, this approxi-
mation of the real ground structure is called piece-wise planar. In Figure 4.6, the
projected triangle patch is illustrated by the straight line connecting M0 and M1.

Each scene point with a 3D position directly on the surface of the triangle follows the
affine model and is perfectly motion compensated into the other image plane, except
for the inferior imaging properties of an affine to an projective mapping, which are
neglected for now. All points off that surface, however, are motion compensated as
being projected onto the surface of the triangle by the camera Ck−∆k. In Figure 4.6b,
P′Ck−∆k

represents the projection of the off-plane point P onto the surface of the
triangle by the camera center Ck−∆k. If pk−∆k, as the 2D projection of P (and
P′Ck−∆k

, as they are on the same ray) onto the image plane of camera Ck−∆k is
motion compensated onto the image plane of camera Ck by an affine transformation,
it becomes an estimation of the real position pk, here called p̂k. But as p̂k was
projected from P′Ck−∆k

due to the linear assumption, it differs from pk, the real
projection of P onto the image plane of camera Ck. This difference is the model
aberration of the piece-wise planar model compared to a real 3D structure and is
called, similar to the comparable motion displacement, ∆pm:

∆pm = pk − p̂k. (4.13)

p̂k was created by an affine projection of pk−∆k, so we can write:

∆pm = pk − Hi pk−∆k. (4.14)
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Hi is the individual affine transformation matrix for the triangle ti and is calculated
from the known mesh nodes of the triangle using Equation 4.12:

∆pm = pk − Ti,k−∆kT
−1
i,k pk−∆k. (4.15)

Ti,k and Ti,k−∆k consist of the 2D projected points creating the triangle ti:

Ti,k =
[
m>0,km

>
1,km

>
2,k

]
, Ti,k−∆k =

[
m>0,k−∆k,m

>
1,k−∆k,m

>
2,k−∆k

]
. (4.16)

If we replace the image coordinates by the projection Equation 2.21, we get the
approximation error expressed by the geometry of the scene points and mesh nodes:

∆pm = KkRk(P−Ck)− Ti,k−∆kT
−1
i,k Kk−∆k Rk−∆k(P−Ck−∆k), (4.17)

wherein, according to Equation 3.42, each mesh node has the following projection
equations:

mn,k = KkRk(Mn−Ck); mn,k−∆k = Kk−∆kRk−∆k(Mn−Ck−∆k). (4.18)

∆pm can be scaled to ∆nm similar to Equation 3.17.

Equation 4.17 describes the accuracy of the pice-wise planar approximation, depen-
dent on fixed coordinates of the scene points and camera positions. To keep the
expression comparable to the global planar model, the position of P needs to be
described by parameters, similar to the height of the building h of the scene point
Ph and the position on the ground plane P0 in the Equations 3.27, 3.39, or 3.48.
Applied to the mesh-based approach, this results in the following conditions: a point
without approximation aberrations is a point on the surface of the triangle. A point
off the surface has aberrations dependent on its distance. Therefore, P should be
expressed in relation to the mesh surface as the distance to the surface D and the
position of the dropped perpendicular foot P′, similar to Ph being expressed by P0

and h.

We recollect that the mesh surface is created by projecting the tracked mesh nodes
from the image plane into the 3D scene, and that each triangle in the mesh is
determined by three surrounding mesh nodes, here denoted as M0,M1, and M2.
P is assumed to be located in between them, if viewed from the direction of the
cameras as illustrated in Figure 4.6.

The surface of the triangle in three space can be expressed as a plane in point-normal
form, defined by the mesh node coordinates used as vertices of the triangle:

(x−M0) · n̄ = 0. (4.19)

The mesh node M0 is assumed to be the position vector whereas n̄ is a normal
vector perpendicular to the triangle surface. It is calculated by the cross product of
the two directional vectors given by the remaining mesh nodes:

n̄ = (M1 −M0)× (M2 −M0). (4.20)
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To keep adjacent formulas simpler, the unit normal is used here by normalizing the
length of the vector to 1:

n̄0 =
n̄

|n̄|
. (4.21)

The distance DP of P to the plane defined by the triangle can now easily be calcu-
lated using the Hessian normal form:

DP = (P−M0) · n̄0. (4.22)

To finally eliminate the point P, we have to determine the position P′ of the foot of
the dropped perpendicular of P. It is the point on the triangle where the perpen-
dicular line through P intercepts the plane. To get the foot point, the line equation
is considered backwards with the position vector at P and its direction n̄ inverted.
Inserting DP as the scalar unit directly yields to the foot point:

P = P′ +DP · n̄0 (4.23)

= P′ +DP ·
(M1 −M0)× (M2 −M0)

|(M1 −M0)× (M2 −M0)|
(4.24)

The dropped perpendicular foot P′ can furthermore be expressed by coordinates on
the triangle surface instead of world coordinates. To do so, the triangle surface is
expressed as a plane in parameter form. The position vector of the plane is given
by one of the mesh nodes, here M0, whereas the differences to the remaining nodes
specify the two directional vectors of the plane. These vectors are normalized to
unit length and scaled by the two parameters λm1 and λm2 such that the position of
the dropped perpendicular foot P′ is obtained:

P′ = M0 + λm1 ·
M1 −M0

|M1 −M0|
+ λm2 ·

M2 −M0

|M2 −M0|
. (4.25)

By combining Equation 4.25 and Equation 4.24, the scene point P can completely be
eliminated from the equation and is expressed by the position of the perpendicular
foot (described by λm1 and λm2) and the distance to the surface of the mesh DP

instead:

P=M0+λm1
M1 −M0

|M1 −M0|
+λm2

M2 −M0

|M2 −M0|
+DP

(M1 −M0)× (M2 −M0)

|(M1 −M0)× (M2 −M0)|
. (4.26)

By inserting Equation 4.26 into Equation 4.17, we get the final motion displacement
dependent on the distance of a 3D space point to the triangle surface in three space.

The Figures 4.7 to 4.12 give examples for the accuracy. The following assumptions
were made for the plots: f = 80mm, Cz = 500m, vx = 200km/h, full frame full
HD sensor, frame rate 30 fps, P = (160,0,0),M0 = (140,0,0),M1 = (160,0,20), and
M2 =(140,20,10). Herby, Figures 4.7 to 4.10 directly compare the mesh to the planar
model by assuming a building on the ground plane with the height h. In contrast to
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the planar model, in which the approximation aberration on the foot of the building
is zero and on the top of the building is maximal, the opposite is true for the mesh:
for the example above, as the mesh node is placed directly on the top edge of the
building, the approximation aberration is zero here, whereas the mesh node at the
foot of the building is displaced by DM , which makes the aberration for the foot of
the building maximal as P has the largest distance to the mesh surface. Therefore,
the individual maximum of the motion displacement is given in the figures.

Figure 4.7 gives the motion displacement in x-direction for varying DM . If DM is
zero, the motion displacement for the mesh is also zero, as now the mesh surface lies
directly on the wall of the building. Therefore the motion displacement is zero for
every pixel projected from the wall. With increasing DM , the motion displacement
also increases; however, it is always lower than that of the planar model. More
precisely, the planar model is the extreme case of the mesh for DM =∞. Moreover,
if we assume a second mesh node being placed at the other edge of the building,
the motion displacement stays zero for the full roof, whereas for the planar model
the motion displacement stays constantly at the maximum value. In Figure 4.8, the
motion displacement is plotted dependent on the speed of the aircraft for different
tilt angles. It turned out the gains from the mesh compared to planar model are
largest for small tilt angles θ, whereas, for larger tilt angles, the motion displacement
for the mesh is still lower as for the planar model; however, the difference between
them is smaller.

In Figure 4.9, the difference in motion displacement for the mesh and for the planar
model are compared for different heights h of the building and ground positions X
for the vertical photo case (θ = 0◦). If the camera is placed directly over the point
under observation, the motion displacement is similar for both methods. However, if
the distance is increased, the motion displacement decreases for the mesh whereas it
stays constant for the planar model. In contrast, for a tilt angle θ of 15◦ the motion
displacement in not independent of the ground position anymore but decreases with
the distance of the object to the camera, as seen in Figure 4.11. Still, the motion
displacement decreases faster for the mesh as for the planar model. Figure 4.11
shows the effect of the placement of P compared to the camera Ck and the mesh
node M0, by shifting P with the distance DP parallel to the line between M0 and
M1. The plot shows that the effect of λm1 is rather small compared to the distance
DP of the point to the mesh surface. The influence of the tilt angle θ on the
motion displacement is provided in Figure 4.12. For small angles, the mesh performs
noticeably better than the planar model. For the given example, however, the motion
displacement increases for the mesh for larger values of θ while it decreases for the
planar model. This is due to the mesh nodes being forced to their positions, leading
to a disadvantageous triangle shape. In practice, however, the mesh node positions
are selected automatically and the Delaunay triangulation avoids the creation of
spike triangles.
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5 Experiments

In this chapter, different techniques and methods of moving object detection in
moving camera scenarios are compared. In the first part, the motion detection is
performed entirely on the (sparse) optical flow taken from tracked feature points.
Hereby, the state-of-the-art RANSAC approach, using either a planar (homography-
based) single plane background motion model of Chapter 2.5 or a F-matrix confor-
mance test (Chapter 2.4), competes against the proposed cluster filter approach
of Chapter 4.2 and the motion parallax predictor classifier from Equation 3.55 in
Chapter 3.6. Moving objects are detected as outliers of the background motion.

The second part of the chapter deals with the global motion compensation of pix-
els between the image planes of different cameras. Here, the proposed mesh-based
locally adaptive global motion compensation of Chapter 4 is compared to the state-
of-the-art planar (homography-based) single-plane global motion compensation, in-
troduced in Chapter 3. As the mesh-based approach relies heavily on outlier-free
mesh nodes, the motion compensation is first performed by using manually selected
motion vectors of the background only, which are free of outliers and moving ob-
jects. To show the influence of the outlier detection performance on the global
motion compensation, the motion compensation is additionally performed and eval-
uated using the background motion vectors automatically classified by the outlier
detection algorithms of Chapter 5.1.

For the tests, aerial image sequences from public datasets as well as television record-
ings are investigated. Figure 5.1 gives the different test sequences and properties.
All sequences share HD resolution and an aerial recording scenario of a non-planar
scene containing moving objects.

5.1 Motion Vector Classification

In this section, well known outlier detection algorithms are compared to the pro-
posed motion parallax predictor classifier and to the cluster filter for their ability to
distinguish between motion coming from static objects such as the ground plane or
buildings and non-static motion such as moving objects or false tracks on a feature
basis. The feature positions are determined by the Shi-Thomasi corner detector
from Chapter 2.7.1 and the correspondences to a previous frame (with a variable
frame skip distance of ∆k frames) are determined by the KLT feature tracker (Chap-
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(a) Stockholm, 1080p25, 157 frames [61]

(b) Chicago, 720p25, 472 frames [62]

(c) OldTownCross, 720p50, 500 frames [58]

Figure 5.1: Aerial video test sequences
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ter 2.7.2). The maximum amount of features was set to 4000 for all sequences, of
which around 3800 are successfully tracked on average. The same set of feature po-
sitions and correspondences is used for all the algorithms to get comparable results.

The H-matrix homography mapping (in the tables referred to as "H matrix") as
well as the F-matrix conformance test (in the tables referred to as "F matrix") are
used in RANSAC as the state-of-the-art algorithms for outlier detection. They are
rated by their classification result against the proposed cluster filter, whereby the
three different cost functions from Equation 4.5 to 4.7 for determining the similarity
of motion vectors are evaluated. In the tables, Equation 4.5 is referred to as "CF
max", Equation 4.6 as "CF max scale", and Equation 4.7 as "CF magnitude", re-
spectively. Additionally, the motion parallax predictor classifier from Chapter 3.6
(in the tables referred to as "MPP") is used for outlier detection, with the maxi-
mum distance threshold set to Td = 2.2 pel (Equation 3.55). As the motion parallax
predictor classifier needs camera positions and orientations as input, these parame-
ters were estimated from the video sequences by the Voodoo Camera Tracker [38].
The unknown scaling factor was determined by scaling the 3D scene coordinates to
known reference points (e.g. the size of the church in the Stockholm sequence). In
a practical setup, these values are provided by the GPS/INS system onboard the
aerial vehicles.

The high resolution sequence "Stockholm" has been tested with a frame skip distance
∆k (meaning the number of frames between the current frame k and the previous
frame k−∆k, which are used to determine the feature correspondences) of 6 and 9.
For the other sequences, a fixed value of ∆k = 6 was used, as for the same camera
motion the displacement for the lower resolution video in pel is smaller. Concerning
the performance evaluation, the following criteria have been evaluated to compare
the output of each method against a manually labeled reference:

True positive rate or recall: tp-rate =
tp

tp + fn

True negative rate or specificity: tn-rate =
tn

tn + fp

False positive rate or fallout: fp-rate =
fp

fp + tn

False negative rate or miss rate: fn-rate =
fn

fn + tp

Positive predictive value (ppv) or precision: ppv =
tp

tp + fp

Negative predictive value (npv): npv =
fn

fn + tn

(5.1)

Combined measure: accuracy =
tp + tn

tp + tn + fp + fn
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Table 5.1: Classification results in % for the sequence Stockholm, ∆k=9
tp-rate tn-rate fp-rate fn-rate precis. npv accur.

CF max scale 99.95 ± 0.1 85.96 ± 3.5 14.04 0.05 99.37 98.71 99.35
CF max 99.96 ± 0.1 80.26 ± 4.3 19.74 0.04 99.12 98.90 99.12
CF magnitude 99.78 ± 0.2 83.36 ± 3.6 16.64 0.22 99.26 94.53 99.08
MPP 99.64 ± 0.2 82.16 ± 4.8 17.84 0.36 99.20 90.98 98.89
F matrix 92.22 ± 5.4 84.75 ± 6.1 15.25 7.78 99.26 32.79 91.90
H matrix 93.30 ± 5.4 85.21 ± 4.2 14.79 6.70 99.30 36.29 92.96

Table 5.2: Classification results in % for the sequence Stockholm, ∆k=6
tp-rate tn-rate fp-rate fn-rate precis. npv accur.

CF max scale 100.00 ± 0.0 79.26 ± 5.8 20.74 0.00 99.26 100.00 99.28
CF max 100.00 ± 0.0 72.81 ± 7.5 27.19 0.00 99.04 100.00 99.06
CF magnitude 99.79 ± 0.2 79.39 ± 5.4 20.61 0.21 99.27 93.00 99.08
MPP 99.93 ± 0.1 79.43 ± 4.9 20.57 0.07 99.27 97.48 99.22
F matrix 94.18 ± 3.8 79.87 ± 10.8 20.13 5.82 99.24 32.91 93.68
H matrix 97.32 ± 4.0 80.03 ± 4.4 19.97 2.68 99.27 51.64 96.72

Table 5.3: Classification results in % for the sequence Chicago, ∆k=6
tp-rate tn-rate fp-rate fn-rate precis. npv accur.

CF max scale 99.69 ± 0.4 78.23 ± 10.0 21.77 0.31 99.67 79.26 99.37
CF max 99.80 ± 0.2 62.47 ± 10.8 37.53 0.20 99.44 82.66 99.25
CF magnitude 98.80 ± 3.2 71.76 ± 11.5 28.24 1.20 99.57 47.46 98.40
MPP 98.48 ± 1.1 53.07 ± 16.8 46.93 1.52 99.40 30.65 97.91
F matrix 93.93 ± 4.5 60.28 ± 13.1 39.72 6.07 99.37 13.02 93.43
H matrix 85.95 ± 4.9 63.26 ± 11.4 36.74 14.05 99.36 6.35 85.61

Table 5.4: Classification results in % for the sequence OldTownCross, ∆k=6
tp-rate tn-rate fp-rate fn-rate precis. npv accur.

CF max scaled 99.33 ± 0.3 85.07 ± 13.8 14.93 0.67 99.40 83.55 98.78
CF max 99.54 ± 0.2 79.23 ± 14.3 20.77 0.46 99.17 87.24 98.76
CF magnitude 99.32 ± 0.3 80.09 ± 14.3 19.91 0.68 99.20 82.40 98.58
MPP 94.59 ± 0.9 83.08 ± 15.2 16.92 5.41 99.29 38.05 94.15
F matrix 97.01 ± 2.9 67.77 ± 23.5 32.23 2.99 98.69 47.53 95.88
H matrix 86.95 ± 4.3 89.93 ± 9.0 10.07 13.05 99.54 21.60 87.06
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(a) The car is correctly classified as moving (red
displacement vector) since the current feature
position (green cross) is far away from the pre-
dicted epipolar line segment (white). The two
displacement vectors placed on the road (yellow)
are correctly classified as background as the cur-
rent feature position is close to the white line.

(b) The position of the feature (green cross) on
the epipolar line segment (white line) represents
the height of the 3D point in the scene. The
further the green cross is away from the end of
the epipolar line segment touched by the blue
line (displacement vector of the ground level),
the higher the scene point is (here: cut out of
the church tower in Stockholm).

Figure 5.2: The classification of the motion parallax predictor classifier is based on
the distance of the measured feature position in the current frame (green
cross) to the predicted epipolar line segment (white line). The blue line
represents the displacement vector of an object on the ground plane, the
yellow and red lines are the feature displacement vectors, classified as
background or moving object, respectively.

The standard deviation is only given for the tp- and the tn-rate, because the stan-
dard deviations of the fp- and the fn-rate are equal to that of the former as they
can be computed from each other by fp-rate = 1−tn-rate and fn-rate = 1−tp-rate,
respectively.

Tables 5.1 and 5.2 give the classification results for the "Stockholm" sequence using
a frame skip distance ∆k of 9 and 6 frames, respectively. The cluster filter approach
performs best for this sequence by classifying nearly 100% of the background motion
vectors correctly. Using the scaled maximum displacement, "CF max scale" also has
the lowest false positive detections for ∆k=9. For ∆k=6 the H-matrix test reaches
the lowest false positive rate for the Stockholm and the OldTownCross (Table 5.4)
sequence; however, this is achieved at the expense of the true positive detection
rate and the accuracy, which fall behind all the cluster filter methods and, for the
OldTownCross sequence, also performs worst. Concerning the Chicago sequence in
Table 5.3, the H-matrix test performs worst in the sense of recall and accuracy with
a npv of only 6.35%. The cluster filter on the other hand classifies up to 99.8% of
the true positives correctly with, at the same time, the best precision and accuracy
of 99.37% and 99.37%, respectively.
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The motion parallax predictor classificator comes close to the performance of the
cluster filter. The slightly poorer classification results are due to moving objects
moving along the epipolar line not being detectable. This is shown in Figure 5.3(b):
as soon as the yellow van starts to turn left, it is not detected anymore as the
feature coordinates of features placed on the van in the frame k come to lie on the
predicted constrained epipolar line (white) in the frame k−∆k. Figure 5.2 shows
the characteristics and the classification decisions of the motion parallax predictor
more detailed.

Concerning the Chicago and the OldTownCross sequence, the estimation of the
camera parameters through the Voodoo Camera Tracker fails in some way, making
the camera positions and orientations imprecise. As a result, the motion parallax
predictor is not able to predict the motion parallax of static objects correctly. This
reflects in the tables as the high false positive rate for motion parallax predictor
classifier for the Chicago sequence as well as the high false negative rate for the
OldTownCross sequence. For the latter sequence, a problem in feature tracking was
observed additionally, effecting all methods. Due to repetitive structure such as
the windows in Figure 5.3(c), the correspondence analyses often fails to retrieve the
correct displacement of feature points. This results in single false tracks possibly
detected as moving objects as well as large areas of outliers, like the bottom right
part of Figure 5.3(c). The latter mostly effects the cluster filter approaches, as
no correct motion information is available for some areas of the frame. The mesh
assumes a linear behavior in this case, which might or might not be correct.

The state-of-the-art classificators lag behind a lot in the sense of true positive de-
tections. Moreover, they have a far bigger variance in detection performance over
the frames. This is presented in Figure 5.5. Whereas the proposed cluster filter and
motion parallax predictor classifier stay constantly at high levels throughout the
sequences, the state-of-the-art methods have a high frame-to-frame variance in the
classification performances. For the homography, this is due to the model not being
able to describe the motion of the non-planar scene. Therefore, the plane described
by the homography is fitted somehow into the scene on a least-squares basis, which
might not represent the real ground plane at all, as e.g. shown in Figure 5.4(a) where
large areas of the ground plane are falsely classified as moving.

Concerning the fundamental matrix conformance test, the challenge lies in the ro-
bust estimation of the F-matrix under non-optimal conditions which often failed
during the test. This results in areas being misclassified as well as wide area single
classification errors as in Figure 5.4(b). The unreliable estimation of the F-matrix
can be avoided by using known camera parameters for the calculation. However,
as for the motion parallax predictor, the camera parameters must be correctly and
robustly estimated onboard, which might not always be possible. But even if the
data is available, the motion parallax predictor provides constraints on the epipolar
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(a) Stockholm, cluster filter. Sometimes mis-
detection of slowly moving vehicles (green dots).

(b) Stockholm, motion parallax predictor classi-
fier. Slow vehicles are not detected if they move
along the predicted epipolar line segment (green
cross close to the white line at the yellow van).

(c) OldTownCross, manual labeling. The tracking fails in some parts (bottom right, red lines)
due to repetative structure (windows). Moreover, the individual movment of the waves on the sea
(bottom left) makes the manual and automatic classification difficult. Displacement vectors of the
background are colored yellow, outliers and moving objects are colored red.

Figure 5.3: Problems of the proposed methods and the feature tracker
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(a) Stockholm, homography classifier. Upper right and bottom regions are marked as moving due
to the homography plane not being fitted onto the ground plane (mostly false positives).

(b) Stockholm, fundamental matrix classifier. Unreliable determination of the F-matrix results in
large areas of false classifications (false positives as well as false nagatives).

Figure 5.4: State-of-the-art classification results, difference to the manual labeling.
Green is the feature location, a yellow displacement vector marks a false
positive (background if actually moving), a red one marks a false negative
(moving instead of background).
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(a) Stockholm, ∆k=9
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(b) Stockholm, ∆k=6
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(c) Chicago, ∆k=6
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(d) OldTownCross, ∆k=6

Figure 5.5: Reliability for true positive classification (correctly classified as back-
ground motion) over the different sequences.

lines additionally to the F-matrix test by defining a valid range of possible feature
positions in the second camera view (which is equivalent to defining a valid range
of Z-coordinates for the scene points in camera coordinates, see Figures 2.7 and
5.3(b)). This largely increases the detection performance and should therefore be
used instead.

The results also reflect in the absolute values given in Table 5.5. Although the
average false positives per frame are more or less similar throughout the methods
and the sequences, the amount of false negatives is clearly higher for the state-of-
the-art outlier classifier. Moreover, the distribution of the false classifications differs
between the algorithms. The majority of the false positives is placed at moving cars
for both the cluster filter and the motion parallax predictor classifier. But while for
the motion parallax predictor classifier they are placed on cars moving along the
epipolar line, they are located on slowly moving cars for the cluster filter instead.
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Table 5.5: Average absolute difference to the manual labeling per frame
Stockh. ∆k=9 Stockh. ∆k=6 Chicago OldTownCross
fp fn fp fn fp fn fp fn

CF max scaled 22.9 1.8 27.3 0.0 8.4 10.2 11.7 21.8
CF max 32.2 1.5 35.8 0.0 13.4 6.8 12.2 16.7
CF magnitude 27.1 7.9 27.1 7.9 10.1 31.0 11.7 21.8
MPP 29.1 13.3 27.1 2.7 0 ∞ 13.8 326.2
F matrix 24.9 283.3 26.5 214.5 13.0 147.5 24.4 99.9
H matrix 24.1 244.0 26.3 98.7 12.2 340.8 6.5 510.5

The homography on the other hand is able to detect objects moving at very low
speeds, but totally fails in other regions at the same time where the underlying planar
assumption is violated or the model is misfitted. In such cases, large coherent areas
of false classifications are produced. The fundamental matrix on the other hand
mostly creates wide spread areas with only single misclassifications.

The cluster filter, using the scaled maximum displacement threshold, reaches best
accuracy throughout the sequences and almost always top precision by only making
rough assumptions about the scene or camera motion. However, true positive detec-
tions might be lost in single frames as in Figure 5.3(a) if their local motion difference
to the surrounding background motion is small. This can easily be worked around
by taking the temporal context into account.

5.2 Motion Compensation Performance

After sorting out the outliers, the motion compensation of the background pixels
from the previous frame to the current frame can be performed. This generates two
images shot from the same camera position but at two different moments in time.
The actual compensation of the camera position is performed by displacing the pix-
els of the previous image as if the scene was shot from the position of the camera
at the current frame. As only the global motion (that of the background pixels) is
compensated, changes of locally moving objects are still visible. This enables the
usage of static camera based motion detection algorithms within a moving camera
setup. The performance of the static motion detection algorithms hereby depends
strongly on the residual error of the background motion compensation. To evaluate
the performance of the proposed locally adaptive mesh-based global motion com-
pensation from Chapter 4 with the single-plane state-of-the art homography-based
method from Chapter 2.5, the residual error by means of image differences between
the current frame and the compensated previous frame are evaluated. If performing
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perfectly, only moving objects such as cars or pedestrians should be visible in the
image differences and all static objects should be hidden.

For the compensation, the integer pixel positions of the current frame are usually
mapped to sub-pel positions of the previous frame. To retrieve the image and color
intensities of the sub-pel positions, they must be interpolated from the known integer
positions. In this work, a two-stage filter is used to achieve reasonable complexity:
the first filter creates the half-pel positions in x- and y-direction (which quadruples
the amount of pixels) using a fixed 8-tap Lanczos filter. The second bi-linear filter
calculates the individual fractional sub-pel position of the upscaled reference frame.
The actual mapping is done using Equations 2.33 and 2.30 for the homography and
Equations 4.12 and 2.32 for the mesh.

5.2.1 Ideal Mesh-based Motion Compensation

Figure 5.6 shows a comparison of the image differences between the current frame
and the motion compensated frame using the homography-based global motion com-
pensation and the mesh-based approach. Both methods get manually classified
displacement vectors of only the background motion as input to achieve the best
possible results and to evaluate the performance of the compensation method only
and not that of the outlier detection. It can be seen that the proposed mesh-based
motion compensation produces far less differences in the area of non-moving high
structures but preserves the moving objects (cars) at the same time throughout
the test sequences. Also, the individual affine mapping per mesh patch is accurate
enough to compensate the small changes between the frames, and the mesh resolu-
tion is fine enough to handle the motion discontinuities at object borders. However,
some remaining artifacts of the incorrectly compensated background motion is still
visible. Concerning the Stockholm sequence in Figure 5.6(b), this is mostly due to
missing feature points on the unstructured church roof and, as it applies also to the
OldTownCross sequence in Figure 5.6(f), newly occurring background behind build-
ings. The constructions on top of the stadium in Figure 5.6(d) are problematic, too,
as they are transparent and feature points were only detected on the construction
but not on the background behind.

5.2.2 Fully Automatic Mesh-based Motion Compensation

In the previous section, the mesh-based motion compensation was performed using
manually labeled feature displacements of the background only (ideal mesh). In
a real system, the feature detection as well as the outlier elimination and motion
compensation has to be done automatically. Hence, in this section, the mesh-based
motion compensation is computed using the outlier detectors from Chapter 5.1. As
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(a) Stockholm, homography (b) Stockholm, mesh

(c) Chicago, homography (d) Chicago, mesh

(e) OldTownCross, homography (f) OldTownCross, mesh

Figure 5.6: Closeup of image differences between the current frame k and a motion
compensated frame k−∆k. Nearly all of the unwanted image differences
on the non-planar background objects vanish with the mesh method.
Some errors are still visible due to missing feature points or newly oc-
curring background.
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only the cluster filter, the motion parallax predictor classifier, and the fundamental
matrix allow a classification of non-planar scenes, only these are evaluated with
the mesh motion compensation. For the cluster filter, only the best performing
similarity cost function "CF max scaled" is listed here.

The cluster filter performs close to the ideal mesh, despite the mis-classifications de-
noted in Table 5.5. This effects the motion compensation in a way that displacement
vectors classified as background but actually located on moving objects lead to the
moving objects being motion compensated. As a result, the moving objects might
get lost in the image differences. This is shown in the Figures 5.7(c) and 5.7(d) by
the red boxes/circles, where single moving objects are not visible compared to the
homography or the ideal mesh. But as long as this happens only in single frames
and with varying mis-classifications, it can easily be handled in a post processing
step of the outlier detection or in the image differences-based motion detection. The
overall compensation performance of the background is nearly identical to that of
the ideal mesh in Figures 5.7(e) and 5.7(f). The homography instead has large dis-
crepancies in the whole area of the stadium in Figure 5.7(b) as well for the full frame
in Figure 5.7(a).

The F-matrix classificator has large problems with single mis-classifications spread
over the frame. This is a big problem for the mesh-based motion compensation, as
exemplified in Figure 5.8(b). Because of the false positives with high differences in
angle and value to the local surrounding, the mesh is noticeably deformed, yielding
an error in the motion compensation in the size of all mesh patches connected to
that erroneous node. Concerning the cluster filter, this is prevented by design: a
smooth motion vector field is the basic idea of this approach and large changes
between neighboring displacement vectors lead to the vector being marked as an
outlier. Although this decision might sometimes be incorrect, the area surrounding
this vector is still being compensated - with a displacement interpolated through
the overlying mesh patch from the neighboring background displacement vectors.
That is why single false negatives of the cluster filter are not that harmful to the
mesh-based motion compensation result.

5.3 Moving Object Detection Performance

To detect moving objects from the motion compensation residual, the simple motion
detection algorithm from Chapter 2.6 was used to classify each pixel into belonging
to a moving object or to the background. The output after noise filter, binarization
and erosion is given in the Figure 5.9 for the Stockholm Sequence and Figure 5.10
for the Chicago sequence. If available, the output was evaluated against a pixel-wise
manual labeling of moving objects in the scene.
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(a) Stockholm frame 1, homography (b) Chicago, homography

(c) Stockholm frame 1, mesh cluster filter (d) Chicago, mesh cluster filter

(e) Stockholm frame 1, ideal mesh (f) Chicago, ideal mesh

Figure 5.7: Closeups of the residual for different motion compensation methods and
outlier detectors. The small car and the animal (red circles) vanish in
single frames with the cluster filter approach. The homography produces
high compensation aberrations at the stadium.
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(a) Stockholm frame 1

(b) Stockholm frame 50

Figure 5.8: Mesh-based motion compensation using the fundamental matrix outlier
classifier. Although it might work well in some frames and/or regions (a)
(comparable to the motion parallax predictor classifier results), it might
produce large errors if the F-matrix was incorrectly estimated (b).
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As the pixel-wise motion detection is based on image differences, only pixels of
moving objects with a significant difference in pixel values of the two subtrahends can
possibly be detected. This leads to holes in the blobs of the moving objects for the
automatic motion detection system as, e.g., the roof or the hood of cars is commonly
single-colored and equally illuminated. Moreover, moving objects actually create
two blobs in image differences: one at the old position and one where it went to.
Concerning the manual labeling, only the pixels of the moving objects in the current
frame are marked as moving. This is why the true positive rate can never reach 100%
by analyzing the image differences only. However, this characteristics are common
to all the motion compensation methods and therefore the results are comparable to
each other. Table 5.6 shows the detection results for the Stockholm sequence using
a manually labeled reference. Although the true positive rates of the homography
mapping and the mesh-based approach are alike, the homography has a 4 times
higher false positive rate and therefore a 3 times worse precision. The low absolute
value of the true positive rate is due to the large number of true negative pixels
containing no local motion and the, at the same time, relatively small amount of false
positives pixels. Among themselves, the mesh-based approaches using the different
outlier classifier produce similar results; however, the motion parallax predictor
classifier falls back a bit in true positive detections, as it cannot detect objects
moving along the epipolar line if the speed of the object is not fast enough or does
not move in the opposite direction (see Chapters 3.6 and 5.1 for details). However,
it reaches lowest fp-rate of all methods.

Figure 5.9 gives the pixel-wise classification results for the frames 29 and 147 of
the Stockholm sequence, using a ∆k of 9. The manually labeled mask is given in
the Figures 5.9(a) and (b). It is noticeable that the blobs in the manually labeled
mask are much bigger than that of the automatic results because of the previously
mentioned reasons, and explains the true positive rate of only 33.84 in Table 5.6.
Between the ideal mesh motion compensation in the Figures 5.9(e) and (f) and
the mesh using the cluster filter in the Figures 5.9(g) and (h), only very small
differences are visible, which are mostly due to small missing blobs in the latter.
The homography mapping displayed in the Figures 5.9(c) and (d) is able to classify
true positives nearly as good as the mesh (sometimes even better then the mesh
with cluster filter), but totally fails in the other regions containing no local motion.

Table 5.6: Pixel-wise classification results in % for the sequence Stockholm
tp-rate tn-rate fp-rate fn-rate precis. npv accur.

Mesh GT 33.84 ± 2.7 99.75 ± 0.0 0.25 66.16 44.88 99.60 99.36
Mesh CF 33.23 ± 2.8 99.75 ± 0.0 0.25 66.77 44.39 99.60 99.35
Mesh MPP 30.04 ± 2.2 99.78 ± 0.0 0.22 69.96 45.23 99.58 99.37
Mesh F-mat 28.38 ± 2.9 99.69 ± 0.1 0.31 71.62 35.97 99.58 99.27
Homography 33.53 ± 2.5 99.00 ± 0.1 1.00 66.47 16.75 99.60 98.61
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(a) Frame 29,manually labeled (b) Frame 147, manually labeled

(c) Frame 29, homography (d) Frame 147, homography

(e) Frame 29, ideal mesh (f) Frame 147, ideal mesh truth

(g) Frame 29, mesh using cluster filter (h) Frame 147, mesh using cluster filter

Figure 5.9: Pixel-wise moving object classification for the Stockholm test sequence
using ∆k=9. The broadcasting company logo was masked out.
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Table 5.7: Pixel-wise classification results in % for the sequence Chicago, referenced
to the ideal mesh result

tp-rate tn-rate fp-rate fn-rate precis. npv accur.
Mesh CF 96.79 ± 7.3 100.00 ± 0.0 0.00 3.21 94.07 100.00 100.00
Mesh F-mat 35.21 ± 17.2 99.97 ± 0.1 0.03 64.79 34.11 99.97 99.93
Homography 87.35 ± 12.7 99.02 ± 0.3 0.98 12.65 4.25 99.99 99.02

Table 5.8: Pixel-wise classification results in % for the sequence OldTownCross, ref-
erenced to the ideal mesh result

tp-rate tn-rate fp-rate fn-rate precis. npv accur.
Mesh CF 83.28 ± 14.3 99.99 ± 0.0 0.01 16.72 69.03 99.99 99.98
Mesh MPP 51.18 ± 16.9 99.92 ± 0.0 0.08 48.82 20.49 99.98 99.90
Mesh F-mat 58.54 ± 30.6 99.91 ± 0.1 0.09 41.46 20.19 99.98 99.89
Homography 75.54 ± 12.0 99.81 ± 0.1 0.19 24.46 13.08 99.99 99.80

In large areas, contours of buildings and the church are visible as well as additional
small errors distributed all over the frame, which make a reliable detection of moving
objects nearly impossible.

These errors are even worse for the Chicago sequence in Figure 5.10. Here, the
stadium takes a wide area of the frame and big contours of the superstructures of
the stadium are visible, together with further smaller buildings. For the mesh on
the other hand, the area of the stadium is nearly free of false positives, except for
small blobs at single parts of the superstructure. However, some false positives are
created by the mesh using the cluster filter at image borders in Figure 5.10(f). In
this case, this is due to the broad road in that area, which does not contain enough
texture for feature points to be placed there (see Figure 5.11(d)) and the emerging
gap is too big for the similarity constraints of the cluster filter to be fulfilled. For
the pictured frames, the true positive detections of the mesh are of the same quality
as the homography results. As manually labeled masks were not available for the
Chicago and the OldTown Sequences, the Tables 5.7 and 5.8 provide the relative
pixel-wise classification performances of the investigated methods to the results of
the mesh using feature points of the background only as reference.

Figure 5.11 provides a comparison of the final result as an overlay of the motion
detection map over the original frame for either the homography motion compensa-
tions as well as the proposed mesh-based method for all test sequences.
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(a) Frame 100, homography (b) Frame 465, homography

(c) Frame 100, ideal mesh (d) Frame 465, ideal mesh

(e) Frame 100, mesh using cluster filter (f) Frame 465, mesh using cluster filter

Figure 5.10: Pixel-wise moving object classification for the Chicago test sequence.
The broadcasting company logo was masked out. The homography
motion compensation leaves a lot of motion compensation residual for
non-moving objects and therefore has a high false positive detection
rate (a,b). The mesh performs a lot better, with almost only the real
moving objects remaining (c,d,e). However, if the mesh node selection
in not perfect due to missing feature points in unstructured areas, some
artifacts can remain (bottom right in (f)).
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(a) Stockholm, homography (b) Stockholm, mesh

(c) Chicago, homography (d) Chicago, mesh

(e) OldTownCross, homography (f) OldTownCross, mesh

Figure 5.11: Final selection of moving objects after erosion noise filter as overlay
over the input frame. The pixel-wise moving object detections are
highlighted in yellow.
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6 Summary and Conclusions

The problems of the planar ground model in a motion detection system for non-
planar sequences using the example of aerial surveillance were improved in this
work for two different detection methods. The first method is the evaluation of the
displacement vector field between the frames of the video sequence, where moving
objects are detected as displacements not consistent with a global motion model.
The second method is the pixel-based detection by background subtraction, in which
the displacement of the pixels between the frames due to the motion of the camera
needs to be compensated prior to computing the image differences.

The first improvement was done for the detection of moving objects and outliers
directly on the displacement vector field between two frames of the video sequence.
For this purpose, first the aberrations of the planar ground model have been ana-
lyzed in Chapter 3. To get a better understanding of the model aberrations, the
examination was done first for a simplified vertical aerial photo case, with the cam-
era looking perpendicularly downwards. It was revealed that the model aberrations
lead to displacements of pixels on the image plane, depending on the height of the
object compared to the ground plane. These relief displacements are radial to the
nadir point of the camera and are linearly depended on the position and height of
the object with respect to the camera and the ground plane.

The influence of the relief displacement on the detection process of moving objects
was investigated afterwards by evaluating the change in relief displacement between
different positions of the camera. These motion parallax effects lead to displacements
of pixels on the image plane which are dependent on the distance of the scene
point to the camera. The planar model, realized by a projective transformation
using a homography, is only able to describe and compensate the displacement of
the ground plane, leaving over the additional displacements from non-planar scene
points. These remaining displacements are called motion displacements in this work,
and as they appear as virtually moving, they might consequently be falsely detected
as moving objects: considering the amount of motion only, a pedestrian walking
at approximately 5 km/h cannot be distinguished from the motion displacement of
an object with a height of 20m, if the camera (f = 80mm) is moving with more
than 100 km/h at a height of 500m. These conditions already occur for small aerial
vehicles, such as medium-sized drones. This is independent of the frame rate of the
camera, as the sampling frequency influences the amount of motion parallax the same
way as the displacement of ground objects. In contrast to the relief displacement,
the motion displacement is, at least for the vertical photo case, not dependent on
the ground position of the object but on the height of the object and the motion
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and speed of the aircraft.

In the following, the investigation of the relief and the motion displacements was
extended to cameras with a tilt angle in flight direction, as well as arbitrary oriented
and moving cameras. It turned out that the tilt angle has a non-linear effect on the
relief and motion displacements. Moreover, the relief displacement is now dependent
on the ground position of the non-planar object. Compared to the non-tilted camera,
the relief displacement increases mostly with the angle, except for larger distances
of the object to the nadir point of the camera, where, for tilt angles less than 30◦,
it is slightly decreased. The motion displacement decreases with the tilt angle.

A predictor for the motion parallax was created afterwards, based on the equa-
tions from the former investigations. It allows the prediction of the minimum and
maximum motion parallax displacement of pixels in the image plane, depending on
camera speed and an assumed maximum height of objects in the scene. The result-
ing epipolar line segment can be used to detect moving objects as well as removing
outliers by comparing the actually measured displacements to the prediction.

Additionally, a second new clustering based moving object and outlier detector is
introduced in this work, named cluster filter. It uses a similarity/smoothness as-
sumption of the optical flow as the background motion model. Non-background
motion is detected as discontinuities in the flow and clustered into objects of simi-
lar motion. Compared to the motion parallax predictor, the cluster filter does not
require calibrated cameras or the positions of the camera during recording.

Concerning the improvement of the pixel-based detection by background subtraction
algorithms, Chapter 4 introduces a new locally adaptive global motion compensation
algorithm based on triangle meshes to replace the single planar model. Hereby, the
motion compensation is performed by sub-dividing the scene into piece-wise planar
patches, each of them having its own individual affine transformation. This allows
the compensation to locally adapt to non-planar objects, and therefore the mesh
has the ability to compensate the background motion more precisely. It also allows
the usage of conventional motion detection algorithms based on a static camera
scenario which was not possible with the state-of-the-art homography model due
to its high aberrations at non-planar structures. Using a Delaunay triangulation, a
triangle mesh is created from the point cloud of the background feature coordinates
and extended to cover the image edges. The individual mapping for the image
pixels contained in each triangle patch is determined by calculating an individual
affine projection matrix from the vertexes of each of the triangle patches and their
displacements given by the feature correspondences.

To evaluate the improvements over the single-planar model, the description is fol-
lowed by an accuracy analysis of the mesh model similar to that of the single planar
homography model in Chapter 3. The previous object height as distance of a scene
point to the ground plane was replaced by the shortest distance of a scene point
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to the mesh surface. Moreover, the influence of the distance of a mesh node to the
scene point was considered for various distances. The mathematical analysis shows
that the mesh performs better for nearly all scenarios. This is due to the mesh being
able to compensate planar surface patches above the ground surface, e.g. at roofs or
walls, nearly error free, as long as at least three mesh nodes are placed on the patch.
Remaining errors occur at mesh patches with mesh nodes on more than one plane,
e.g. on a roof and on a wall. In this case, similar distortions as with the homography
model appear. However, they remain relatively small due to the small patch sizes.

The performances of the proposed outlier detectors and the motion compensation
technique are evaluated in Chapter 5 by comparing the detection results to manually
created references. For the displacement vector field evaluation, the state-of-the-art
homography-based single planar model was used as a reference. Additionally, an
epipolar geometry-based detector was compared which uses a fundamental matrix
conformance test for the classification. The cluster filter was able to correctly classify
on average 99.7% of the background motion vectors correctly, compared to 90.8%
for the homography and 94.3% for the fundamental matrix. The motion parallax
predictor is on a high level, too, averaging at 98.1%. Moreover, the variance in
classification results between the frames, which is a measure of robustness, is dra-
matically reduced from 21.8% for the homography and 18.0% for the fundamental
matrix down to 0.1% for the cluster filter and 0.5% for the motion parallax predictor.
The false positive rate is always lower than the state-of-the-art results. It rates from
14% to 22% compared to 10%–40% throughout the tested sequences. The combined
accuracy measure averages 99.2% for the cluster filter, 97.5% for the motion paral-
lax predictor, 90.5% for the homography, and 93.7% for the fundamental matrix. It
was found that the bad results of the fundamental matrix arose from an unstable
estimation from image feature displacements and could be improved using known
camera parameters and the elementary matrix instead. However, moving objects
moving along the epipolar line are not detectable with the fundamental matrix.
This drawback is addressed by the presented motion parallax predictor by defining
a small segment on the epipolar line with actual valid displacements of image pixels
for non-moving objects. This reduces the amount of false negative detections a lot,
as objects moving against the motion parallax displacement direction or which are
fast enough are still detectable. The homography results, despite from not being
able to describe feature displacements above the ground plane, are additionally af-
fected by the least-squares fitting of the plane in a non-planar scenario. This leads
to the plane being placed totally of the real ground plane at random frames and
explains the high variance in the homography results.

Concerning the motion compensation of the background motion, the performance of
the proposed mesh-based motion compensation was compared to the homography
mapping as the state-of-the-art method. A simple image differences-based back-
ground subtraction algorithm was used for this, based on averaging, binarization,
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and erosion, to classify each pixel of the frames into fore- or background. The output
was evaluated against manually labeled binary classification maps where available,
and the results of an ideal mesh compensation using manually classified displace-
ment vectors of the background only for the other sequences. The ideal mesh-based
approach performs best by classifying 33.8% of the pixels containing moving objects
correctly. The mesh using the cluster filter determined mesh nodes showed a similar
or slightly lower true positive detection rate of 33.2% compared to the homography
mapping which reached 33.5%. However, the false positive rate was with 1.0% four
times higher for the homography than for both mesh approaches, which reached
0.25%. This was also visible in the resulting binary classification maps, which con-
tained around the same amount of false positive pixels than true positive ones for
the homography whereas the mesh approaches only had false positive detections in
the area of newly occurring background. For the Chicago sequence, the results of
the homography motion compensation was even worse. Due to the small number
of moving objects in the scene but the high number of false positive detections due
to the huge central stadium, the homography could only reach a precision of 4.3%
based on the ideal mesh results, whereas the cluster filter reached 94.1% with a
true positive rate of 96.8% correctly classified pixels on moving objects and 100% of
correctly classified background pixels.

For the fully automatic detection of moving objects in aerial video, the cluster
filter performs best for displacement vector based detection. It does not require a
priori knowledge such as camera motion or calibrated cameras and achieves a true
positive rate, precision, and accuracy of nearly 100%. Concerning global motion
compensation used for pixel-wise detections, the mesh-based method outperforms
the homography-based system by a factor of 4, and is able to eliminate nearly all
distortions due to motion parallax.

Outlook

The similarity constraints of the cluster filter are chosen fairly generalized at the
moment. Although this allows the usage in a wide field of applications, it limits the
detection performance for well-defined tasks. For example, in the aerial surveillance
scenario investigated in this work, the false positive rate is, although lower than
that of the state-of-the-art methods, still quite high. A better motion model of the
displacement vectors, e.g. by using a multidimensional predictor of the displacement
by extrapolating from more than one object feature might improve the result. The
same is true if the classification is not done for every frame individually but by
taking into account the knowledge of already processed frames. This would improve
the missed detections of moving objects in single frames.
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