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A B S T R A C T

This thesis contributes to the field of quantum optomechanics, which
studies the interaction of light with mechanical oscillators. In the
first part we derive an analytical model to describe optically driven
self-sustained oscillations of a mechanical object, which can be un-
derstood as the phonon analogue of lasing. Accordingly our model
is based on methods first developed in the context of the laser. We
examine different experimental setups to prepare non-classical me-
chanical states in this phonon laser phase and find surprisingly weak
conditions on the experimental system parameters to detect quantum
signatures such as phonon antibunching and negative density of the
mechanical oscillator’s Wigner function.

In the second part of the thesis we study the neighboring field of
trapped ions. Measuring the recoil of an ion when scattering a pho-
ton, a new high precision spectroscopy method (photon recoil spec-
troscopy) was recently demonstrated. A subtle Doppler-induced sys-
tematic frequency shift that occurs in this experiment is theoretically
analyzed with an adapted laser theory model. Finally, we present
and analyze an efficient quantum algorithmic readout mechanism for
multi-ion clocks, which promise record time keeping accuracy.

keywords: laser theory, quantum optomechanics, trapped ions
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Z U S A M M E N FA S S U N G

Dies ist ein Beitrag auf dem Gebiet der Quanten-Optomechanik, wel-
ches die Interaktion von Licht mit mechanischen Oszillatoren unter-
sucht. Im ersten Teil der Dissertation entwickeln wir ein Modell zur
Beschreibung optisch getriebener, sich selbst erhaltender Oszillatio-
nen eines mechanischen Objekts, die als phononisches Analogon ei-
nes Laser-Zustands verstanden werden können. Folgerichtig basiert
unser Modell auf Methoden, die ursprünglich im Kontext des La-
sers entwickelt wurden. Wir untersuchen verschiedene experimentel-
le Setups auf ihre Eignung nicht-klassische Zustände mechanischer
Objekte in der Phononen-Laser-Phase zu erzeugen. Es stellt sich her-
aus, dass die Anforderungen an die Systemparameter überraschend
schwach sind, um Quanteneffekte wie zum Beispiel Antibunching
von Phononen oder eine negative Dichte der mechanischen Wigner-
funktion nachzuweisen.

Der zweite Teil dieser Dissertation befasst sich mit dem benachbar-
ten Gebiet gefangener Ionen. Eine neue, hochpräzise Spektroskopie-
Methode (Photonen-Rückstoß-Spektroskopie) basiert auf der Messung
des Impulsübertrags auf ein Ion bei Absorption eines Photons. In
diesem Experiment entsteht eine systematische Verschiebung der Re-
sonanzfrequenz durch einen subtilen Einfluss des Doppler-Effekts.
Wir analysieren diese Verschiebung mit einem für Ionenfallen adap-
tierten Lasertheorie-Modell. Schließlich präsentieren und analysieren
wir einen effizienten Quanten-Algorithmus zum Auslesen von Multi-
Ionen Uhren, die ein Kandidat für die nächste Definition des Zeitstan-
dards sind.

Schlagworte: Laser Theorie, Quanten-Optomechanik, gefangene Io-
nen
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1
I N T R O D U C T I O N A N D O U T L I N E

Quantum theory describes the laws of nature governing the micro-
scopic world populated by objects such as photons or atoms. Macro-
scopic objects (cats, etc.) on the other hand cannot be isolated. There-
fore any possible quantum coherence is lost on an extremely short
timescale due to interaction with the unavoidable environment [6, 7].
For this reason tests of quantum theory on macroscopic scales have
been extremely limited. With advancing technology experimentalists
have been adding increasingly heavy objects (Fullerenes and larger
molecules [8], mechanical oscillators visible to the human eye [9]) to
the zoo of tamed quantum systems and it is an exciting research per-
spective to keep pushing this frontier of quantum mechanics: Will we
encounter a fundamental border between the microscopic and macro-
scopic realm so that quantum theory has to be altered [10, 11] or ex-
tended at some scale? Or are we only limited by human technological
capabilities to isolate and control [12, 6] larger experiments?

Optomechanical systems [13, 14], consisting in their most basic
form of an optical cavity mode coupled to a resonance mode of a
mechanical oscillator, are very promising for this endeavor: Spectac-
ular progress is being made in increasing the coupling strength of
light to larger-scale, well-isolated mechanical objects. Using red de-
tuned laser-light with respect to the cavity resonance it is possible
to extract energy from the mechanical oscillator to realize an optical
cooling mechanism. In recent years even optical cooling to the quan-
tum ground state has been achieved [15, 16]. Near the ground state
quantum effects such as coherent transfer of quantum states between
light and mechanics [17, 18], light-matter entanglement [19], and ob-
servation of radiation pressure shot noise on the oscillator [20, 21]
have been demonstrated on unprecedented mass scales.

Experiments on the reversed process [22, 23, 24, 25, 26, 27, 28, 29,
30], where mechanical oscillations are driven with blue detuned light
can be understood as the phonon analogue of lasing with the opti-
cal cavity playing the role of the gain medium that pumps the me-
chanical oscillator into a highly excited state. Such setups are now
reaching quantum level precision, even readout of the phonon statis-
tics [30] has been demonstrated to prove the coherence in these me-
chanical oscillations. In future experiments it will be most exciting
to create phonon laser states with truly quantum signatures such as
phonon anti-bunching or negative density of the mechanical oscilla-
tor’s Wigner function.
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2 introduction and outline

In this thesis we contribute to the theory of optomechanical oscil-
lations. Exploiting the aforementioned laser analogy, we derive in
Chapter 3 an analytical model based on techniques due to Haake
and Lewenstein [31] first developed in the context of lasers. In this
framework the gain medium is treated as a density matrix, while the
laser state is described in a phase space picture by means of a Fokker-
Planck equation. The model allows for a flexible treatment of the
oscillator’s back-action on the gain medium and correctly describes
optomechanical oscillations in the quantum regime. It provides a
natural starting point for further studies of quantum effects in op-
tomechanics.

In Chapter 4 we apply laser theory to the standard optomechani-
cal setup, where one optical and one mechanical mode are coupled
dispersively, we compare the analytical model with numerical sim-
ulations and find very good agreement over a wide and previously
unexplored regime of system parameters. As one main conclusion,
we predict negative Wigner functions to be observable even for sur-
prisingly classical parameters, i.e. outside the single-photon strong-
coupling regime, for strong cavity drive and rather large limit-cycle
amplitudes.

For verification of these analytical results we used (Monte-Carlo)
Quantum Jump Trajectories as implemented in QuTiP [32, 33]. We op-
timized this numerical method to simulate optomechanical systems
in the numerically most challenging regime on the border between
quantum and classical parameters. As it is neither sufficient to ex-
pand the system on a small Hilbert space nor to simulate classical
phase space trajectories, we developed an algorithm that dynamically
adapts the numerical Hilbert space following the quantum trajecto-
ries.

In Chapter 5 we conclude the study of optomechanical limit cy-
cles with a proposition to make use of the enhanced nonlinearity of
an optomechanical system with two cavity modes. We find that this
setup allows for sub-Poissonian limit cycle states with small mechan-
ical amplitudes, making it an ideal candidate for the demonstration
of phonon antibunching in future experiments.

Alongside the study of quantum physics on macroscopic scales,
the field of optomechanics offers great perspectives with regard to
many applications [34]. In particular we will consider here setups of
trapped ions [35, 36], which in a wider sense can be viewed as op-
tomechanical systems: The ions’ internal energy states are coupled to
their motional degrees of freedom via the momentum transfer upon
absorption of photons e.g. from a laser tuned to a transition fre-
quency. Due to their small size, ions can be very well isolated from
their environment. In consequence trapped ions are among the best
controlled quantum systems to date with applications ranging from
optical clocks [37] to spectroscopy experiments [38] and even proto-
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types for quantum computers and simulators [36]. In the second part
of this thesis we study two metrology experiments developed at PTB:

In Chapter 6 we study a spectroscopy experiment [3] with trapped
ions, which demonstrated a new method to measure an ion’s inter-
nal level structure via the transferred momentum of a photon when
absorbed by the ion. This photon recoil spectroscopy experiment is
an extension of quantum logic spectroscopy to a wider class of ob-
jects, allowing spectroscopy also on short-lived transitions of ions or
molecules. Use of the effective two point sampling method results
in a systematic error of the resonance frequency, which must be cor-
rected to obtain a reasonable result. Adapting the model developed
in Chapter 3 to the situation of trapped ions, we can attribute the
systematic error to a subtle Doppler induced shift.

Optical ion clocks are a candidate for the next definition of the
time standard. Clocks based on a single ion have been built and mul-
tiple ion clocks are soon to come. Due to unavoidable electric field
gradients in ion traps, the electric quadrupole moments of the clock
ions have to be negligible to avoid systematic frequency shifts. This
severely limits the choice of clock ion species and for most suitable
species the readout has to be done indirectly via co-trapped logic ions.
In Chapter 7 we present and analyze an efficient scheme for a setup
with multiple clock ions, which is based on a quantum algorithm first
developed in the context of entanglement concentration to read out
the Hamming weight.

In the following Chapter 2 we review some basic results in the field
of optomechanical systems and introduce some textbook methods of
quantum optics before presenting our new contributions presented
in Chapters 3-7, which are based on the publications [1], [2], [3] and
[4].





Part I

I N T R O D U C T I O N T O Q U A N T U M
O P T O M E C H A N I C S





2
S TA N D A R D D E S C R I P T I O N O F Q U A N T U M
O P T O M E C H A N I C A L S Y S T E M S

Figure 1: Schematic drawing of the most basic optomechanical system: An
optical mode (red) trapped inside a Fabry-Pérot cavity couples to
a movable mechanical object (blue), in this case one of the cavities’
end mirrors.

Optomechanical systems are, as the name suggests, composed of
optical and mechanical degrees of freedom that are coupled to each
other. The most basic example is schematically depicted in Figure 1.
Before introducing the various concrete physical setups that realize
this concept, we develop their theoretical description with the quite
general formalism of Lindblad master equations as our starting point
following standard treatments found e.g. in the reviews [13, 14]. In
this formalism the time derivative of the density matrix ρ, describ-
ing the state of the composite optomechanical system, is given by a
Lindblad (super-) operator L acting on ρ:

ρ̇ = Lρ. (1)

It is convenient to decompose

L = Lc + Lm + Li (2)

into an operator Lc acting only on the optical (cavity) degrees of free-
dom, an operator Lm acting only on the mechanics and an interaction
operator Li describing the optomechanical coupling.

Both optical and mechanical systems exist in a multitude of phys-
ical realizations. Also the optomechanical coupling can be achieved
in different ways. Nevertheless a small set of Lindblad operators can
describe most experiments of the field. In the following three sec-
tions we introduce these variations of Lc,Lm and Li, which are also
sufficient for all setups discussed in this thesis. For convenience of
notation the dimension of all Lindblad and Hamiltonian terms will
be frequency (and not energy).

7



8 standard description of quantum optomechanical systems

2.1 the standard optomechanical master equation

2.1.1 Optical modes: Lc

The time evolution of a free optical mode a of frequency ωc is given
by the Hamiltonian

Hc = ωc â† â, (3)

where â (â†) is the annihilation (creation) operator of mode a. When
such a mode is associated with a cavity, the tunneling of photons in
and out of the cavity can be described by the operator

Lcρ = κ (1 + n̄c)
(

âρâ† − 1
2 â† âρ − 1

2 ρâ† â
)

+κn̄c

(

â†ρâ − 1
2 ââ†ρ − 1

2 ρââ†
)

(4)

as the interaction with the outside modes is usually Markovian. Here
n̄c = (eh̄ωc/kBT − 1)−1 is the occupation number of the surrounding
thermal radiation environment. Disregarding technical laser noise, in
the optical domain n̄ ≈ 0 even at room temperature. In the microwave
domain however, where frequencies are lower, one cannot neglect n̄c.
We denote the cavity energy decay rate with κ.

A laser drive of power PL and frequency ωL is modeled by the
additional time-dependent Hamiltonian

HL(t) = −iEâe−iωLt + h.c., (5)

where E =
√

2κPL/h̄ωL parameterizes the laser strength and we ne-
glect the laser’s line width. In a frame rotating at the laser frequency
ωL with ρ → eiωLtρe−iωLt, the total cavity Lindblad operator is time
independent and given by

Lcρ = −i
[

−∆â† â + iE
(

â† − â
)

, ρ
]

+ Lcρ, (6)

where ∆ = ωL − ωc is the detuning of the laser with respect to the
cavity. If the cavity is driven at more than one frequency, the laser
can be described as a slowly (on the scale of ωl) varying amplitude
E = E(t) and hence the cavity Lindblad operator is time dependent.

2.1.2 Mechanical Oscillator: Lm

The motion along one dimension of a mechanical object of mass m in
a harmonic potential V = 1

2 kx2 is described by the Hamiltonian

Hm = ωmb̂†b̂ (7)

for the mechanical mode b, where the frequency is given by ωm =√
k/m. A mechanical system composed of N subsystems with har-

monic interaction can always be decomposed into normal modes bj.
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While the effective mass of these normal modes depends on the scale
used to measure their displacement, the frequency of each normal
mode is uniquely defined.

Each mode also unavoidably interacts with its environment. E.g.
scattering events with the gas molecules of the surrounding atmo-
sphere or with phonons from modes that are not considered as part
of the system can be effectively described by a mechanical damping γ

that couples the mode to its environment with phononic occupation
number n̄m. In analogy to Equation (4) the corresponding Lindblad
operator is

Lmρ = γ (1 + n̄m)
(

b̂ρb̂† − 1
2 b̂†b̂ρ − 1

2 ρb̂†b̂
)

+γn̄m

(

b̂†ρb̂ − 1
2 b̂b̂†ρ − 1

2 ρb̂b̂†
)

. (8)

In combination with the harmonic evolution the full Lindblad opera-
tor for a harmonic mechanical mode is

Lmρ = −i
[

ωmb̂†b̂, ρ
]

+ Lmρ. (9)

In order to obtain good control of the mechanical oscillator the damp-
ing to its environment should be small. One way to quantify this
quality is given by the quality factor (Q-factor)

Qm = ωm/γ, (10)

which corresponds to the number of oscillations a phonon survives
during its lifetime.

2.1.3 Optomechanical Interaction: Li

Most commonly in today’s experiments the dominant interaction is
dispersive: The position of the mechanical system couples to the en-
ergy of the optical system (and not e.g. to its decay rate, which would
be "dissipative coupling"). The simplest such interaction Hamiltonian

Hi = −g0 â† â(b̂ + b̂†), (11)

couples the number of photons n̂ = â†a of an optical mode to the po-
sition x̂ = b̂ + b̂† of a mechanical mode. Here g0 denotes the coupling
constant on the level of single quanta. Coupling to higher orders of
the position are negligible for the situation studied in this thesis, we
note however that alternative experimental setups exist where e.g. a
term quadratic in x̂ proportional to â† â(b̂+ b̂†)2 or higher order terms
cannot be neglected or may even be dominant.

The general multimode version of Equation (11) is

Hi = ∑
j,k,l

− [g0]
l
jk â†

j âk(b̂l + b̂†
l ), (12)
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where [g0]jk is a Hermitian Matrix for each l. While in almost all
realistic optomechanical systems many modes are present and thus
Equation (12) should be used, it is often possible to use Equation (11)
as a very good approximation if only one mechanical mode is ad-
dressed. In this thesis we will encounter both situations, in any case
the Lindblad interaction operator only has the Hamiltonian contribu-
tion and

Liρ = −i [Hi, ρ] . (13)

2.1.4 Linearized Interaction

For the standard system consisting of one optical and one mechanical
mode as described by the master equation ρ̇ = (Lc + Lm + Li) ρ with
Lindblad operators

Lcρ = −i
[

−∆a†a + iE
(

a† − a
)

, ρ
]

+ Lcρ, (14)

Lmρ = −i
[

ωmb†b, ρ
]

+ Lmρ, (15)

Liρ = −i
[

−g0a†a
(

b + b†
)

, ρ
]

, (16)

it is often possible to approximate the interaction Hamiltonian by its
linearized version: If the amplitude β = 〈b〉 of the mechanical oscil-
lations is small on the scale of ωm/g0, its modulation of the optical
amplitude α = 〈a〉 is also small. For this situation the linearization
around time-constant mean amplitudes α0 and β0 is a good approxi-
mation.

Formally this is achieved by switching to a displaced frame

ρ̃ = D(−α0)⊗ D(−β0)ρD(−α0)
† ⊗ D(−β0)

†. (17)

for both cavity and oscillator, where D̂(α) = exp
(

αâ† − α∗ â
)

denotes
the displacement operators for the respective systems. We demand
that all displacement terms (those proportional to a single destruction
or creation operator) in the master equation for ρ̃ drop out, so that the
system undergoes no DC-drift of its mean amplitudes. This condition
is met if α0 and β0 fulfill the set of equations

α0 =
E

κ/2 − i (∆ + 2g0ℜ (β0))
, (18)

β0 =
g0|α0|2

(ωm − iγ/2)
. (19)

Depending on the system parameters, this can have not only one but
three different solutions for (α0, β0), making the system bistable 1,
which is further discussed in Section 2.1.6. Here we proceed assum-
ing a unique solution. We note that this bistability is relevant only for
red detuning.

1 Only two solutions are stable.
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Figure 2: a) The energy levels of photons and phonons are plotted along
the two axes, with energy ωm for each mechanical excitation and
energy ωc for each photon. We choose the orange energy level
as a starting point to illustrate both the state swap and the two
mode squeezing interaction: For both the green (∆ = −ωm) and
the purple (∆ = +ωm) lines all four possible transitions are drawn
and the resonant levels are highlighted in the respective color.
b) If the cavity is effectively in the (displaced) vacuum state,
only the transitions where one photon is created can contribute.
Thus the state swap interaction realizes cooling and the two-mode
squeezing interaction realizes excitation of mechanical motion, as
illustrated in this Figure. The curved arrows symbolize the loss of
photons due to the cavity decay.

Defining the effective detuning as ∆̃ = ∆ + 2g0ℜ(β), the linear
coupling enhanced by the coherent amplitude as g = g0|α|, as well as
phase-adjusted annihilation operator ã = − α∗

|α| a, the master equation
for ρ̃ with amplitudes according to (18) and (19) is

Lcρ̃ = −i
[

−∆̃ã† ã, ρ̃
]

+ Lcρ̃, (20)

Lmρ̃ = −i
[

ωmb†b, ρ̃
]

+ Lmρ̃, (21)

Liρ̃ = −i
[

g
(

ã + ã†
) (

b + b†
)

, ρ̃
]

, (22)

where we neglected a term −g0a†a
(

b + b†
)

in the Hamiltonian. This
is justified if two conditions are met:

• The optical amplitude |α0| ≫ 1 is large enough so that g ≫ g0,
making the g-term dominant.

• The mechanical oscillation is small on the scale of g0/ωm, so
that its modulation of the optical detuning can be neglected.

Note that Equations (20)-(22) form a time-independent set of linearized
equations that can describe the system dynamics.

Finally, in an interaction picture where ρ′ = eiH0tρ̃e−iH0t with re-
spect to H0 = ωmb̂†b̂ − ∆̃â† â all Hamiltonian terms except for the
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interaction cancel and the interaction becomes time dependent, so
that the dynamics of the system is given by the set

Lc = Lc, (23)

Lm = Lm, (24)

Hi = −g
(

ã†be−i(∆̃+ωm)t + ã†b†e−i(∆̃−ωm)t
)

+ h.c. (25)

Operating the laser at a detuning where ∆̃ = −ωm the ã†b + h.c. term
becomes resonant, which is a state swap interaction, i.e. it swaps the
states of the two systems. This can be used e.g. for laser cooling,
where the vacuum state of the cavity is swapped onto the thermal
state of the mechanical oscillator [15, 16] and the mechanical oscilla-
tor’s energy is dissipated by the cavity mode into the environment.
For ∆̃ = ωm the ã†b† + h.c. term becomes resonant, which is a two
mode squeezing interaction that can entangle [19] the two systems
and excite oscillations of the mechanical oscillator. At ∆̃ = 0 the inter-
action is balanced, which can be used for quantum non-demolition
measurements [39]. The regimes ∆̃ = ±ωm are visualized in Figure 2

and quantitatively treated in the following Section 2.1.5.

2.1.5 Optomechanical Sideband-Cooling and Onset of Self-Sustained Os-

cillations

Let us assume that initially the mechanical oscillator is near the ground
state. We may thus start from the fact, at least for small times, that
the mirror amplitudes are small and we may use the Lindblad op-
erators (23)-(25). If the cavity decay rate κ is much larger than the
coupling rates g, γn̄ of the mechanical oscillator, the cavity adiabati-
cally follows the state of the mechanical oscillator, which then moves
at a much slower timescale. In this situation it is possible to derive an
effective equation for the mechanical oscillator by adiabatically elim-
inating the cavity as described in Appendix 2.B leading to Equation
(90). In this framework the role of LA is taken by Lc and the role of
LB is taken by Lm.

Equation (90) applied to this optomechanical situation yields

∂tPρ(t) = LmPρ(t) + PLi(t)

t
∫

−∞

dt′eQLc·(t−t′)QLi(t
′)Pρ(t), (26)

where P projects the cavity into the vacuum for nc = 0. In leading
order in g we obtain for ρm = Trcρ in the lab frame

∂tρm =− i(ωm + δω+ + δω−)
[

b†b, ρm

]

(27)

+ γ (1 + n̄m + C+)
(

b̂ρb̂† − 1
2 b̂†b̂ρ − 1

2 ρb̂†b̂
)

+ γ(n̄m + C−)
(

b̂†ρb̂ − 1
2 b̂b̂†ρ − 1

2 ρb̂b̂†
)
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where

δω+ = g2 ∆ + ωm

κ2/4 + (∆ + ωm)2 , δω− = g2 ∆ − ωm

κ2/4 + (∆ − ωm)2 (28)

are frequency shifts induced by the state swap interaction ( for ω+)
and the two-mode squeezing interaction (for ω−) from Hamiltonian
(25). Furthermore,

C+ =
g2

γ

κ

κ2/4 + (∆ + ωm)2 , C− =
g2

γ

κ

κ2/4 + (∆ − ωm)2 (29)

parameterize the light induced phonon loss (C+, caused by the state
swap interaction) and gain (C−, caused by the two-mode squeezing
interaction) of phonons. Note that both ω± and C± have resonances
at ∆̃ = ±ωm. The ratio of the optically induced phonon transition
rates and the intrinsic transition rates is given by C = |C+ + C−| at
temperature zero) and, correspondingly, Cth = C/(n̄m + 1) for finite
temperature. In the sideband resolved regime (κ ≪ ωm) and the
detuning chosen at one of the resonances ∆ = ±ωm one can neglect
C∓ in comparison to C± so that

C =
4g2

γκ
, Cth =

4g2

γκ(n̄m + 1)
, (30)

which are referred to as (linearized) cooperativity and thermal (lin-
earized) cooperativity. The corresponding single-photon cooperativi-
ties are defined by replacing the linearized coupling g by the single-
photon couling g0.

For κ ≫ ωm the shift of the resonance frequency δωm = (δω+ +

δω−) caused by the optical spring effect can be approximated as
δωm = g2 2∆̃

κ2/4+∆̃2 . In the free mass limit where ωm ≈ 0 this optically
mediated shift is even the dominant contribution to the spring. In the
sideband resolved regime (κ ≪ ωm) the relative shift δωm/ωm is very
small (on the order of g2/κωm) and can usually even be neglected for
high frequency oscillators.

In any case, to discuss the optomechanical damping or anti-damping
we transform Equation (27) to a Fokker-Planck equation for the me-
chanical oscillator’s phase space distribution, as introduced in Ap-
pendix 2.A. (As an example we choose here the Glauber-Sudarshan-
P distribution because the cooling dynamics is essentially classical.
For the description of the nonclassical states in Chapter 3 onwards
we choose to work with the Wigner distribution or the Husimi Q-
distribution instead.) While there are more direct ways to discuss
this, e.g. in terms of transition rates between phonon occupation
states, we choose here to work with the phase space distributions,
as this is the formalism in which we discuss the self-induced oscil-
lations later. Switching for convenience to a rotating frame oscillat-
ing at ωm + δωm, we use the translation rules for the equation of
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motion from Appendix 2.A (with Equation (65) applicable for the
P-distribution) to obtain the equation of motion for the mechanical
distribution Pm(β, β∗) as

∂tPm(β, β∗) =
(

∂ββ + ∂β∗ β∗) ΓTPm(β, β∗) (31)

+ 2∂β∂β∗DPm(β, β∗),

with damping ΓT and diffusion D given by

ΓT =
γ

2
(1 + C+ − C−) , D =

γ

2
(n̄m + C−) . (32)

If the damping ΓT > 0 is positive, Equation (31) can be solved for
its steady state: We set the time derivative on the left side to zero
and choose to work with Cartesian coordinates β = x + iy, where the
equation conveniently factorizes to

∂xxΓTPx = − 1
2 ∂2

xDPx (33)

and the same equation for y, with Pm = PxPy. Equation (33) is inte-
grated to xPx = − 1

2 ∂x
D
ΓT

Px and hence the solution for Pm is

Pm ∝ e−
ΓT
D x2

e−
ΓT
D y2

. (34)

In the case of ΓT > 0 this can be normalized to a Gaussian (hence the
state is automatically thermal) with variance σ2 = D/2ΓT for each
quadrature. With (62) we obtain for the mean number 〈n̂〉 = 〈b†b〉 of
phonons

〈n̂〉 = D/ΓT =
n̄m + C−

1 + C+ − C−
. (35)

However, in the case of negative damping ΓT < 0, the system is
unstable and no steady state exists in this description which relies on
the linearization of the optomechanical interaction. We stress how-
ever, that due to this instability our original assumption of small
mechanical amplitudes is violated and the system dynamics needs
to be described taking into account the full nonlinear Hamiltonian
H − g0a†a

(

b + b†
)

from Equation (16) and the more elaborate method
of adiabatic elimination presented in Section 2.B.2.

Chapter 3 is dedicated to the dynamics in this regime and the quan-
tum steady state is derived. We will find that the damping and diffu-
sion corresponding to Equation (32) are in fact a nonlinear function of
the amplitude r = |β| of mechanical oscillations, so that the system is
driven to a limit cycle at an amplitude where the damping ΓT(r) = 0.

Here we briefly discuss the limits of optomechanical cooling as
derived in (35). The damping process is resonant at ∆̃ = −ωm and
most efficient in the sideband-resolved regime, (κ ≪ ωm), where the
resonances of C± at ∆̃ = ±ωm become sharp and

C+ = 4
g2

γκ
, C− ≈ 1

4
g2

γκ

κ2

ω2
m

, (36)
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cf. Equation (30). We then approximate ΓT ≈ γ
2 (1 + C+) to obtain

〈n̂〉 ≈ n̄m + C−
1 + C+

, (37)

from which we can read off that a large thermal cooperativity is re-
quired to approach the quantum ground state and that the minimal
achievable phonon occupation for C → ∞ is 〈n̂〉 = κ2/16ω2

m. There is
however the caveat that the cooperativity scales with the circulating
intra cavity power via the linearized coupling parameter g = g0|α|.
But the circulating intra cavity power leads to additional phonon ex-
citations through photon absorption processes, so that one should
actually consider the bath occupation number n̄m as a function of the
cooperativity C in Equation (37).

We conclude this introduction to linearized optomechanics with a
discussion of the optomechanical bistability in the next section.

2.1.6 Optomechanical Bistability

Let us consider the classical equations of motion corresponding to the
standard optomechanical master equation (14)-(16). The time evolu-
tion of (â, b̂) in the Heisenberg picture directly follows from (14)-(16)
and by changing the operators to amplitudes (α, β) and dropping
quantum noise we obtain

α̇ = −(κ/2 − i∆ − 2ig0ℜ(β))α + E, (38)

β̇ = −(γ/2 + iωm)β + ig0|α|2. (39)

Solving for steady state amplitudes α0 and β0 where ∂t(α, β) = 0 must
be fulfilled gives the same condition as (18)-(19). The shift of β0 can be
understood as the point where the constant radiation pressure force
g0|α|2 and the restoring force due to the mechanical spring ωm|β0| are
in equilbrium. The shift of α0 in turn is due to the shifted detuning
caused the cavity length change through displacement of β0.

Inserting (19) into (18) and squaring both sides leads to the laser in-
put |E|2 as a third order polynomial in the intra cavity photon number
n = |α0|2,

|E2| =
(

4
g4

0

ω2
m

n2 + 4
∆g2

0

ωm
n + ∆2 +

κ2

4

)

n, (40)

where we approximated ωm/(ω2 + γ4/4) ≈ 1/ωm assuming a high
mechanical Q. For ∆ > 0 the polynomial (40) is strictly a monotoni-
cally increasing function. Hence ∆ < 0 is necessary for bistability. In
addition the point of inflection

n =
−4g2

0ωm∆ ±
√

4g4
0ω2

m∆2 − 3g4
0ω2

mκ2

12g4
0

(41)
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Figure 3: Laser drive E as a function of the intra cavity photon number
n for parameters with (left plot, ∆ = −1.8κ) and without (right
plot, ∆ = −0.5κ) bistability. The black solid line represents areas,
where there exists a unique solution of Equations (18)-(19). The
red solid line represents areas where two stable solutions are pos-
sible. There is then also a third solution on the dashed line lying
exactly between the two points of inflection. A detailed stability
analysis shows however, that this solution is not stable. Note that
for convenience of the theoretical discussion we plot here E as a
function of n, but it is E that can be controlled in an experiment by
adjusting the laser power.

of Equation (40) must be real, requiring 4∆2 > 3κ2. We conclude that
the standard optomechanical system shows bistability of its intracav-
ity amplitude if and only if

∆ < −
√

3/4κ. (42)

For such parameters there can be three possible solutions, out of
which only two are stable, as visualized in Figure 3, showing the
dependence of the laser drive E as a function of the intra cavity pho-
ton number n for parameters with and without bistability. We stress
again that Equation (42) can only be fulfilled for negative detuning.
Thus the static bistability is typically not relevant for the regime of
self-sustained oscillations that requires ∆̃ > 0.

2.2 physical realizations

2.2.1 Model system: Fabry-Pérot cavity coupled to end mirror

The simplest realization of the optomechanical system described above
is the optical mode of a Fabry-Pérot cavity coupled via radiation pres-
sure force to the center of mass motion of one of its end mirrors along
the cavity axis. The Fabry-Pérot cavity consists of two highly reflec-
tive mirrors facing each other. Inside the distance L between the mir-
rors standing light modes are resonantly trapped if their wavelength
λ fulfills nλ/2 = L for some integer n. As λ = 2πc/ω for light with
speed c the cavity can support modes at frequencies

ωc = n · π
c

L
. (43)
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As no mirror is perfectly reflective photons have a finite linewidth κ

inside the cavity. The ratio of mode distance πc/L and linewidth

F = π
c

Lκ
, (44)

is called the finesse. For high finesse cavities it is possible to address
the different resonances individually and leave out all irrelevant res-
onances from the description of the system. In the following we will
thus focus on only one cavity mode.

In our model system one of the Fabry-Pérot cavity’s end mirrors
is fixed and the other mirror (mass m) is movable and attached to
a spring with spring constant k. We will consider only the displace-
ment δX of the center of mass of this mirror as the system mode
with approximate (neglecting e.g. the mass of the spring) resonance
frequency ωm =

√
k/m. All other modes are treated as part of the

environment and their effect on the system is approximately incorpo-
rated in the Lindblad operator (8).

According to Equation (43) the cavity frequency ωc is proportional
to (L + δX)−1. Expanding in a Taylor series around δX = 0 this gives

ωc =
2πc

λ

∞

∑
n=0

(−δX

L

)n

. (45)

As the ratio δX/L is very small we neglect all terms of higher than
first order in δX/L. The only additional term in the Hamiltonian
stemming from the mirror displacement then is

Hi = −2πc

λL
â† â · δX̂, (46)

which has the structure of Hamiltonian (11). As the force on the
mirror F̂ = −h̄∂δX̂ Hi = h̄ 2πc

λL â† â can be decomposed into the momen-
tum 2h̄k of â† â photons reflected from the mirror per round trip time
T = 2L/c in the cavity, it is commonly referred to as the radiation
pressure force.

Note that with δX̂ = xZPF

(

b̂ + b̂†
)

, where

xZPF =
√

h̄/2mωm (47)

is the zero point fluctuation of mechanical motion, the coupling con-
stant in (11) for the Fabry-Pérot setup is

g0 =
2πc

λL

√

h̄

2mωm
. (48)

2.2.2 Optomechanical setups

While the Fabry-Pérot setup described above is perhaps the concep-
tually simplest realization of an optomechanical setup, other architec-
tures exist with unique properties and tailored for different purposes.



18 standard description of quantum optomechanical systems

We give below a brief overview based on the review article [13] with
visualization in Figure 4.

a Fabry-Pérot cavity with one movable end mirror, see discussion
above.

b Gravitational wave detectors [40]: The length difference of the
perpendicular arms in a Michelson Interferometer is measured
in the interference of their transmitted light in the signal port.
Such a signal may be caused by a gravitational wave that dis-
torts spacetime. In order to reach high sensitivity it is necessary
to increase the laser power Pl to reduce the quantum shot noise
scaling with 1/Pl . In consequence, even with the massive end
mirrors of these setups the optomechanical back-action on the
mirror motion becomes non-negligible resulting in back-action
noise (scaling with Pl) that disturbs the signal. The best signal is
reached at the standard quantum limit, where back action noise
and shot noise are of the same size.

c Optical Microresonators [41]: Light travels in a whispering gallery
mode that couples e.g. to the breathing mode of the mechanical
object. Due to the small size of the resonators high coupling
rates are achieved in these setups. Addressable mechanical fre-
quencies range from a few MHz to the GHz regime.

d Optomechanical crystals [42]: The optical modes of optical crys-
tals can be coupled to highly localized mechanical modes of
the crystal. These nanofabricated devices are considered a very
promising candidate to reach the single-photon strong-coupling
regime, where g0 becomes comparable to the cavity decay rate
κ and quantum effects are observable on the level of single
quanta.

e Levitated objects [43, 44]: Freeing the mechanical resonator from
a mounting drastically reduces its coupling to the environment
and thereby also decoherence. It has been proposed to use
e.g. optically levitated nanospheres to test modifications of stan-
dard quantum mechanics such as the Penrose interpretation or
Ghirardi-Rimini-Weber theory, which both propose additional
decoherence processes, due to an objective collapse of the wave
function that would scale with the mass of the oscillator. Also
a cloud of cold atoms can be used as the mechanical oscilla-
tor. Such setups can get very close to the single-photon strong-
coupling regime due to the tiny mass of the oscillator.

f Microwave resonators [45]: Mechanical motion can also be cou-
pled to radiation on scale of microwaves. Typical architectures
consist of a several micrometer sized membrane (resonance fre-
quency around 10 MHz) capacitively coupled to an LC circuit.
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Figure 4: Schematic drawings of common optomechanical systems: Optical
or microwave modes (red) couple to the motion of mechanical ob-
jects (blue). As described above, the systems are respectively: a)
Fabry-Pérot cavity with movable end mirror. b) Gravitational wave
detector. c) Toroid shaped optical microresonator. d) Optomechan-
ical Crystal e) Levitated object. f) Microwave resonator.

Such setups hold the record for the highest cooperativity, which
is the ratio of optically induced mechanical damping to intrinsic
mechanical damping.

So far we have only considered coupling of a mechanical oscillator
to an optical mode. Stretching a bit the definition of optical, me-
chanical oscillators can also form optomechanical systems with e.g.
nitrogen-vacancy centers [46], superconducting qubits [9] or the in-
ternal level structure of atoms [35, 36]. While the Lindblad equation
for these systems is not necessarily identical to the standard optome-
chanical setup, phenomena such as sideband cooling or heating can
be understood in close analogy and have been experimentally real-
ized first in these setups.

In particular a focus of this thesis lies also on optomechanics with
trapped ions [35, 36], where the ions’ oscillations inside the trap are
coupled to their internal energy structure via radiative forces. The
Lindblad equation for such a setup is introduced in the next section.

2.2.3 Trapped ions

A typical ion trap (Paul Trap) consists of two electrodes that create a
static potential for the ion along the z-axis. While no static electromag-
netic potential exists that could create a stable stationary equilibrium
in three dimensions, it is possible to trap the ions simultaneously
along the x and y axis also, using a time dependent field that oscil-
lates at a radio frequency along these directions. Effectively this can
be described as a static harmonic potential for the ions. We assume
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Figure 5: Schematic picture of an ion trap with two trapped ions (blue).
A transition of one ion is driven here by a laser, establishing the
coupling between its internal levels and the ion crystal’s motion
via photon recoil.

here that the trapping along the x- and y- direction is so tight that
we need to consider only the oscillations along the z-axis. Also we
consider here only one ion to introduce the Lindblad operator

Lmρ = −i
[

νb†b, ρ
]

, (49)

describing the motion of the ions. More complex setups with many
ions can be mapped onto this simple model. We will address the
description of such a multi ion setup in Section 7.4.1.

Note that Equation (49) is the same as Equation (15), but neglect-
ing dissipation. In the context of ions the mechanical resonance fre-
quency ωm is usually referred to as ν and we adopt this convention
here as well. We keep the notation for the destruction operator of
a motional excitation as b. While an ion has many internal levels,
we use here the approximation of a two level ion described by the
Lindblad operator

LAρ = −i
[ωA

2
σz, ρ

]

+ Γ
(

σ−ρσ+ − 1
2 σ+σ−ρ − 1

2 ρσ+σ−
)

, (50)

where ωA is the transition’s frequency and Γ its linewidth. The inter-
action of the internal ion state to its motion can be turned on with
an external laser that drives e.g. a dipole transition between the two
levels, leading to an interaction Hamiltonian of the form

HI =
Ω

2
σ− exp

(

iωlt − iη(b + b†)
)

+ h.c. (51)

The parameter η is referred to as the Lamb-Dicke parameter and
given by η = kXZPF where k is the lasers wave number in z-direction
and XZPF =

√
h̄/2νM is the position’s zero point fluctuation for an
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(a) Level scheme for mechanical oscilla-
tor coupled to an optical cavity.
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(b) Level scheme for mechanical oscilla-
tor coupled to the intrinsic state of
an ion.

Figure 6: Comparison of optomechanical cooling for a system of an optical
cavity coupled to a mechanical oscillator (a), and for a trapped ion
(b).

ion of mass M. In a rotating frame for the internal level at the laser
frequency ωl the full set of Lindblad operators is

Lmρ = −i
[

νb†b, ρ
]

, (52)

LAρ = −i

[

−∆

2
σz, ρ

]

+ Γ
(

σ−ρσ+ − 1
2 σ+σ−ρ − 1

2 ρσ+σ−
)

, (53)

Liρ = −i

[

Ω

2
σ− exp

(

−iη(b + b†)
)

+ h.c., ρ

]

(54)

with ∆ = ωL − ωa.
We note that in many setups XZPF is small on the scale of the laser’s

wavelength, allowing for an approximation of Equation (51) to first
order in the Lamb-Dicke parameter for small oscillation amplitudes.
This Hamiltonian then is very similar to the linearized version of the
optomechanical interaction between an oscillator and a cavity given
by Equations (20)-(22), where the cavity degree of freedom is replaced
by the internal degree of freedom of the ion:

At a detuning ∆ = −ν the resonant term of the interaction is pro-
portional to σ+b + σ−b† and for ∆ = +ν the resonant term of the
interaction is proportional to σ+b† + σ−b. Viewing σ− and σ+ as the
qubit analogue of the destruction operator a and the construction op-
erator a†, this is similar to the state-swap and two-mode squeezing
interaction discussed in the oscillator-cavity coupling above, if the
cavity is truncated only on its lowest two excitation states around the
shifted vacuum. The truncation is indeed a good approximation and
the two systems can be understood in analogy, as visualized in Figure
6, if the following two conditions are fulfilled: First, the mechanical
oscillations have to be small enough to ensure the applicability of the
linearized interaction. Second, the atomic transition decay rate Γ has
to be much faster than ηΩ for a trapped ion, respectively the cavity
decay rate κ has to be much faster than the linearized coupling g, so
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that both the cavity and internal state approximately occupy only the
lowest two levels.

2.3 outline of the following contributions

In this first chapter, we introduced the basic concepts and methods for
quantum optomechanics that are needed for the following chapters,
where our new contributions to the field are presented. To provide
the context to these contributions, this last introductory section gives
a brief overview on the respective experiments considered and the
questions we will address.

2.3.1 Self-sustained optomechanical oscillations

For the analytical description of optomechanical self-sustained oscil-
lations [22, 23, 24, 25, 26, 27, 28, 29, 30] in the quantum regime, we
develop in Chapter 3 a formalism based on the projection operator
method from Appendix 2.B.2, which allows to eliminate the cavity
with a different reference state for each point of the oscillator in phase
space. This flexibility of the reference state is necessary as an excited
mechanical oscillator is spread out in phase space, in contrast to the
situation of optomechanical cooling, where the oscillator is approx-
imately in its ground state and it is sufficient to use one reference
state for the cavity. In Chapter 4 we then use the formalism to derive
conditions on the system parameters to generate a steady state with
non-classical phonon statistics for the standard optomechanical sys-
tem (coupling one cavity mode to a mechanical oscillator). In Chap-
ter 5 we show that an optomechanical system with two cavity modes
can significantly ease these conditions: By supporting both carrier
and sideband photons, the phonon excitation process becomes reso-
nant. In both setups the phonon statistics can be mapped out via a
Hanburry-Brown-Twiss measurement on the sideband-photons emit-
ted from the optomechanical cavity, as was experimentally demon-
strated in [30].

2.3.2 Ion spectroscopy

In Chapter 6 we turn to the theoretical description of a spectroscopy
experiment [3] with trapped ions, which demonstrated a new method
to measure an ion’s internal level structure via the recoil of the pho-
tons on the ion. This recoil excites the center of mass motion of
the spectroscopy ion and a co-trapped logic ion of a different, well-
controlled species. The motional excitation finally is transferred onto
the internal state of the logic ion, where it can be measured with
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extremely high efficiency. 2 The scheme [3] is an extension of quan-
tum logic spectroscopy [47] to a wider class of objects, allowing spec-
troscopy also on transitions of ions (or molecules) with a short life-
time. When measuring the resonance with the effective two point
sampling method, a systematic shift occurs. It is analyzed within the
framework from Section 2.B.2, adiabatically eliminating the internal
state of the ions with a reference state depending on the Doppler shift
caused by the ions’ momentum in phase space.

2.3.3 Ion clocks

Chapter 7 is concerned with optical clocks in the context of trapped
ions. Such clocks provide record frequency accuracy and a good
short-term stability. For most ion species suitable to build an opti-
cal clock a direct readout is not possible due to their lack of a tran-
sition allowing for laser cooling and state detection. In analogy to
the quantum logic spectroscopy experiment described above, one can
indirectly read out their state via co-trapped logic ions with an ap-
propriate transition. Optical clocks based on a single ion employing
such indirect readout have been built [48, 49] and clocks with multi-
ple ions are soon to come. We present and analyze an efficient scheme
for a setup with multiple clock ions, which is based on the quantum
algorithm to read out the Hamming weight.

2 The logic ion is chosen from a species where this is possible.





A P P E N D I X T O C H A P T E R 2 : A N A LY T I C A L A N D
N U M E R I C A L M E T H O D S F O R Q U A N T U M O P T I C S I N
P H A S E S PA C E

In this appendix we introduce a number of methods for the descrip-
tion of quantum optical systems, which we apply in the following
chapters to the optomechanical setups studied in this thesis.

2.a phase space distributions

The state of a bosonic mode can be represented not only as a density
matrix, but also in terms of a phase space distribution in the oscilla-
tor’s complex amplitude α. The most prominent distributions are the
Glauber-Sudarshan P-distribution, the Wigner-distribution (W) and
the Husimi Q-distribution. As we will use these three representa-
tions for some of the calculations in this thesis, we give an overview
below.

2.a.1 Definition

We define the phase space distributions via the (normally ordered,
anti-normally ordered and symmetrically ordered) quantum charac-
teristic functions

χN(λ, λ∗) = Tr
(

ρ̂ exp(λâ†) exp(−λ∗ â)
)

, (55)

χA(λ, λ∗) = Tr
(

ρ̂ exp(−λ∗ â) exp(λâ†)
)

, (56)

χS(λ, λ∗) = Tr
(

ρ̂ exp(λâ† − λ∗ â)
)

, (57)

where the ordering is with respect to the operators â† and â and the
indices N, A and S indicate the ordering of the used displacement
operator

D̂(λ) = exp
(

λâ† − λ∗ â
)

. (58)

In analogy to the characteristic function in classical statistics, the
derivative of the quantum characteristic functions evaluated at the
origin gives the expectation values of the moments. However, as â

and â† don’t commute, it is necessary to specify the ordering in the
quantum case, as we did above. Again in analogy to classical statis-

25
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tics the quasi probability distributions can be defined as the Fourier
transformation of the characteristic functions, i.e.

P(α, α∗) =
1

π2

∫

d2λ exp (αλ∗ − α∗λ) χN(λ, λ∗), (59)

Q(α, α∗) =
1

π2

∫

d2λ exp (αλ∗ − α∗λ) χA(λ, λ∗), (60)

W(α, α∗) =
1

π2

∫

d2λ exp (αλ∗ − α∗λ) χS(λ, λ∗), (61)

where P, Q and W correspond to normal, anti-normal and symmetri-
cal ordering.

2.a.2 Calculation of moments

The normally ordered, anti-normally ordered and symmetrically or-
dered moments of â† and â are obtained from the phase space distri-
butions as

〈â†m ân〉 =
∫

d2αP(α, α∗)α∗mαn (62)

〈âm â†n〉 =
∫

d2αQ(α, α∗)αmα∗n (63)

〈S
(

âm, â†n
)

〉 =
∫

d2αW(α, α∗)αmα∗n, (64)

where S
(

âm, â†n
)

stands for the symmetric ordering of the operators,
where the average over all possible orderings is taken. Note that
the relations (62)-(64) can be used e.g. to calculate the mean values
〈n〉 = 〈â† â〉 and 〈n2〉 = 〈(â† â)2〉.

2.a.3 Equations of motion

The time derivative of the phase space distributions can be obtained
from the master equation via the following translation rules and their
adjoints for the

• Glauber-Sudarshan P-distribution:

âρ → αP, â†ρ →
(

α∗ − ∂

∂α

)

P. (65)

• Husimi Q-distribution:

âρ →
(

α +
∂

∂α∗

)

Q, â†ρ → α∗Q. (66)

• Wigner distribution:

âρ →
(

α +
1
2

∂

∂α∗

)

W, â†ρ →
(

α∗ − 1
2

∂

∂α

)

W. (67)

The translation rules can be verified using Equations (55)-(57), as
well as Equations (59)-(61) and applying the cyclicity of the trace, the
Baker-Campbell-Hausdorff formula and partial integration.
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2.a.4 Basic properties

• The P-distribution of a density operator ρ̂ fulfills

ρ̂ =
∫

d2αP(α)|α〉〈α|. (68)

While unique, P is not always an ordinary, well-behaved func-
tion, but can sometimes only be defined in the more general
framework of (sufficiently singular) distributions. As one can
immediately read off from the definition, a coherent state’s P-
distribution is given by a Dirac delta distribution δ(α − α0).
Thus, roughly speaking, anything more thermal than a coherent
state can be obtained by a convolution of a positive continuous
function with a Dirac delta distribution, which is again a pos-
itive continuous function. On the other hand, states with less
uncertainty than a coherent state in a quadrature (e.g. Gaussian
squeezed states) or energy (e.g. number squeezed states) will
have a highly singular P-distribution. In the context of optics,
where the measurement statistics of photons is derived from
the normal ordered operators described by the P-distribution, a
singular P-function indicates a nonclassical state of light.

• The Wigner distribution for density matrices was historically
first defined in position and momentum as

W(x, p) =
1

πh̄

∫ ∞

−∞
dye−2ipy/h̄〈x + y|ρ|x − y〉, (69)

which is equivalent to (61). It exists for any ρ and is positive
for any Gaussian state. According to Hudson’s theorem [50]
for any non-Gaussian pure state it will have some negative area.
An extension to mixed states was given in [51]. Recently it was
shown [52] that negative Wigner density can be understood as
a resource in quantum computing in the sense that quantum
circuits exhibiting only positive Wigner distributions can be ef-
ficiently simulated classically. The Wigner function is the quan-
tum analogue of the classical Liouville phase space probabil-
ity density, which is always positive. Thus, negativity of the
Wigner function is often used to as an indicator of quantum
mechanical interference.

A useful property of the Wigner function is that the marginal
distributions of the quadratures give their (positive) probability
densities

∫ ∞

−∞
dp W(x, p) = 〈x|ρ|x〉 (70)

∫ ∞

−∞
dx W(x, p) = 〈p|ρ|p〉. (71)
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• The Husimi Q-function may alternatively be defined as

Q(α, α∗) =
1
π
〈α|ρ|α〉 (72)

and, being always a positive continuous function, it is the most
regular of all phase space distribution. This is also reflected in
the relations

W(α, α∗) =
2
π

∫ ∞

−∞
dβ2 P(β, β∗) exp(−2|α − β|2), (73)

Q(α, α∗) =
1
π

∫ ∞

−∞
dβ2 P(β, β∗) exp(−|α − β|2), (74)

which means that both Q and W are obtained from P via con-
volution with a Gaussian that smoothes out irregularities. For
the Q function the Gaussian’s variance is largest, making even
areas of negative density become positive.

• More generally it is possible to define for s ∈ [−1, 1] an s-
parameterized characteristic function

χs(α, α∗) = exp
( 1

2 s|α|2
)

Tr
(

ρ̂D̂(α)
)

(75)

and corresponding s-parameterized phase space distribution

Ps(α, α∗) =
1

π2

∫

d2λ exp (αλ∗ − α∗λ) χs(λ, λ∗), (76)

obtained again via Fourier transformation. The translation rules
for the equation of motion of an s-parameterized distribution
are

bρ → (β + 1−s
2 ∂β∗)Ps, b†ρ → (β∗ − 1+s

2 ∂β)Ps. (77)

Choosing s at 1, 0,−1 corresponds to respectively normal, sym-
metric and anti-normal operator ordering so that the phase space
distributions introduced above correspond to P1 = P, P0 = W

and P−1 = Q.

2.b adiabatic elimination

For dynamical systems where one process happens on a much faster
timescale than all other processes it can be possible to adiabatically
eliminate the fast process and retain an effective description of the
system on the slower timescales only. We review here a text book
approach found e.g. in [53, 54] for the situation where one subsystem
of a composite quantum system decays so fast that it can be adia-
batically eliminated. Particularly, the approach is applicable for the
following commonly encountered situation: Two subsystems A and



2.B adiabatic elimination 29

B with independent environments are coupled to each other. If sys-
tem A is driven (by interaction with its environment) into a particular
steady state at a decay rate exceeding all other relevant timescales (in
particular the independent time evolution of subsystem B and the
interaction between the subsystems), it is possible to adiabatically
eliminate system A and derive an approximate equation of motion
for system B.

Formally, assuming Markovian interaction with the environment,
we describe this situation by a master equation of the form

ρ̇ = Lρ, L = Li + LA + LB (78)

with operators for interaction (Li), system A (LA) and system B (LB).
The adiabatic elimination is a good approximation if L ≈ LA in a
sense we will explain below, after the necessary framework is intro-
duced.

2.b.1 Introduction to the projection operator method

The adiabatic elimination can be done with various formalisms. Here
we introduce a projection operator method resembling the Nakajima-
Zwanzig formalism 3 in the notation of [54], which can be applied on
the level of master equations. We assume that LA is time independent
and has a unique steady state σss (fulfilling LAσss = 0) in system A
to define the projector P as

Pρ = lim
t→∞

eLAtρ. (79)

From this definition follows the property

Pρ = σss ⊗ TrA (ρ) , (80)

where TrA is the partial trace over system A. As system A is assumed
to be almost completely in its steady state, P is called the projector
on the relevant part of the system. We also define the complementary
projector Q = 1 − P on the complementary, irrelevant part of the
system. Inserting the identity as 1 = P +Q we can now write the
equation of motion for both subspaces as

∂tPρ = PL(P +Q)ρ (81)

∂tQρ = QL(P +Q)ρ. (82)

Equation (82) is a standard linear differential equation for Qρ with
linear operator QL and inhomogeneity QLPρ. Defining the propa-
gator G(t, t0) as the solution of

∂tG(t, t0) = QL(t)G(t, t0) (83)

G(t0, t0) = 1 (84)

3 The Nakajima-Zwanzig formalism is tailored to study non-Markovian dynamics. We
will use it as our general framework, but finally derive a Markovian equation.
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Equation (82) can be solved as

Qρ(t) = G(t, t0)Qρ(t0) +

t
∫

t0

dt′G(t, t′)QL(t′)Pρ(t′).

for arbitrary initial state ρ(t0) at initial time t0. The first expression
G(t, t0)Qρ(t0) can be dropped if (at least) one of the following two
conditions is met:

• The system is initialized such that Qρ(t0) = 0.

• t − t0 is large on the decay time of G(t, t0), which we may as-
sume e.g. when calculating a steady state. As all eigenvalues
of QL restricted on the Q-subspace have negative real part, it
follows that lim

t→∞
G(t, t0)Q = 0.

As one of these conditions is always fulfilled in this thesis, we in-
sert only the second term of Equation (85) into (81) to obtain for the
relevant subspace

∂tPρ(t) = PL(t)Pρ(t) + PL(t)
t
∫

t0

dt′G(t, t′)QL(t′)Pρ(t′). (85)

While still exact, this equation is in general just as hard to solve as the
original master equation, due to the appearance of ρ(t′) and G(t, t′)
in the integral. Thus we make two approximations at this point:

• All eigenvalues of QLAQ automatically have negative real part
by construction. The real part of the eigenvalue with least nega-
tive real part shall be denoted as −κ, making κ a decay rate. We
denote G = maxρ ‖QLiQρ‖, γ = maxρ ‖QLBQρ‖ for all density
matrices ρ encountered during the time evolution. 4 If κ ≫ G, γ,
we can make the approximation

G(t, t′)Q ≈ eQLA·(t−t′)Q (86)

with a relative error of at most (G + γ)/κ. If only κ ≫ G is
fulfilled, it is possible to make the analogous weaker approxi-
mation G(t, t′)Q ≈ eQ(LA+LB)·(t−t′)Q, but here we assume the
stronger condition κ ≫ G, γ for simplicity.

• We anticipate here that ‖Pρ(t′) − Pρ(t)‖ will turn out to be
smaller than (γ + G2

κ )(t − t′), justifying the approximation

Pρ(t′) ≈ Pρ(t), (87)

as the integration kernel decays at a rate faster than κ. The rela-
tive error of this approximation is smaller than (γ/κ + G2/κ2).

4 Li and LB can be unbounded on the whole Hilbert space, but often ρ can neverthe-
less be considered on a subspace where Li and LB are bounded, e.g. if the system’s
energy is bounded.
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With these approximations we get the expression

∂tPρ(t) = PL(t)Pρ(t) + PL(t)
t
∫

t0

dt′eQLA·(t−t′)QL(t′)Pρ(t), (88)

where the L operators can be simplified using the following proper-
ties:

• LAP = 0 because LAσss = 0.

• PLA = 0 as LA must preserve the trace on subsystem A.

• QLBP = PLBQ = 0 as all three operators commute and PQ =

0.

• We demand that PLiP = 0. If this is not the case Li should
be redefined (before starting the calculation) by shifting the
nonzero term to LB. Formally: Define the operator LI,B acting
only on system B as LI,BρB = TrA (LiρB ⊗ σSS) and change

Li → Li −LI,B, LB → LB + LI,B. (89)

Note that this redefinition decreases G (possibly at the cost of
increasing γ) and thereby helps to fulfill G ≪ κ.

Our final result is

∂tPρ(t) = PLB(t)Pρ(t) + PLi(t)

t
∫

t0

dt′eQLA·(t−t′)QLi(t
′)Pρ(t), (90)

where t0 ≈ −∞ is applicable for large times t ≫ 1/κ.

2.b.2 Adiabatic Elimination in phase space

In the previous Section 2.B.1 we assumed that LA has a unique steady
state into which system A decays at a rate much faster than the in-
teraction with system B can drive it somewhere else. In this section
we introduce a more versatile method of adiabatic elimination that
can be applied even if this condition is not fulfilled. It is tailored
for setups where system B is a bosonic mode and the interaction is
such that system A is driven into a different steady state depending
on the amplitude β of the mode. It was first developed [31] to theo-
retically describe a laser cavity pumped by atoms, where the atoms
decay into a different steady state depending on the amplitude of the
cavity amplitude.

Formally we again start from a master equation of the form

ρ̇ = Lρ, L = Li + LA + LB (91)
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with operators for interaction (Li), system A (LA) and system B (LB).
Remember that one condition for the applicability of the standard adi-
abatic elimination was that κ ≫ G, γ, with κ and G defined just above
Equation (86). We stress that the definition of G = maxρ ‖QLiQρ‖
depends on the possible density matrices considered. If highly ex-
cited states of system B (encountered e.g. if system B undergoes
self-induced oscillations, cf. end of Section 2.1.5) must be taken into
account, G may grow too large.

This problem can often be solved by switching to one of the phase
space distributions defined in Section 2.A for system B. The state of
the system is then described by an object σ(β, β∗), which is a density
matrix for system A at each point of phase space β of system B. (Note
that nonlinear dependence of σ on β is possible and thus the method
presented here allows for the accurate description of nonlinear inter-
action.) Tracing out system A then yields the phase space distribution
for system B

P(β, β∗) = Trσ(β, β∗), (92)

if we choose e.g. to work with the P-distribution. The equation of
motion for σ(β, β∗) is obtained from the master equation for ρ using
the translation rules (65).

We now decompose Li into

Li = LI,A + LI,I , (93)

such that no derivatives ∂β or ∂β∗ appear in LI,Aσ(β, β∗), i.e. only
operators acting on system A multiplied by functions of β and β∗

appear and hence LI,A affects only system A but not system B. This
decomposition is used to regroup the original operators into

L̃I = Li −LI,A = LI,I , (94)

L̃A = LA + LI,A, (95)

L̃B = LB. (96)

Only if a decomposition can be found where G̃ = maxρ ‖L̃Iρ‖ is
small on the timescale of κ, the adiabatic elimination procedure gives
a good approximation. As the terms from LI of leading order in |β|,
i.e. the largest terms, can be put into LI,A, this is often possible. Other
standard manipulations such as rotating or shifted reference frames
may of course also be employed to reach the goal G̃ ≪ κ. Once this is
achieved the remaining procedure is analogous to Section 2.B.1, but
with the following differences:

• The steady state σSS(β, β∗) of L̃A in system A may now depend
on β. The new projector on the relevant subspace is again de-
fined via

P̃ρ = lim
t→∞

eL̃Atρ, (97)
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which now has the property

P̃σ(β, β∗) = σss(β, β∗)TrA (σ(β, β∗)) , (98)

the β-dependent analogue to Equation (80).

• A redefinition of the operators analogous to (89), now with
LI,BP(β, β∗) = TrA

(

L̃I P(β, β∗)σSS(β, β∗)
)

may further decrease
g̃.

• Note that, in contrast to Section 2.B.1, L̃B does not necessarily
commute with L̃A, P̃ and Q̃. Thus one must in general take the
commutators into account.

Under some circumstances, e.g. if γ ≪ κ, one can however neglect
the commutators and derive

∂tP(β, β∗, t) ≈ L̃BP(β, β∗, t)

+ TrA



L̃I(t)

t
∫

t0

dt′eL̃A·(t−t′)L̃I(t
′)σSS(β, β∗)(t)



 P(β, β∗, t), (99)

which is the analogon of Equation (90).
The adiabatic elimination method presented in this section allows

for very flexible transformations of the system’s equation of motion.
We fully develop this formalism in the optomechanical context in
Chapter 3. It is then used to analyze self-induced oscillations in the
standard optomechanical setup in Chapter 4. For the description of
a trapped ion system in Chapter 6, a very similar transformation al-
lows for the treatment of a systematic Doppler shift in the context of
a high precision spectroscopy experiment [3].

2.c numerical analysis

In this section we give a brief overview on the most common numeri-
cal methods for the study open quantum systems. For small to mod-
erate system size it is possible to use standard methods on the level
of density matrices, e.g. for the time evolution one can numerically
integrate the master equation with a standard Runge-Kutta scheme;
to find steady state solutions, standard linear algebra solvers such as
the biconjugate gradient method can be used.

For increasingly large Hilbert space dimensions it can be more effi-
cient to operate on the level of wave functions, scaling linearly with
the number of states, instead of density matrices, which scale quadrat-
ically. This is possible using the quantum trajectories method for the
time evolution, where pure quantum states follow a stochastic equa-
tion of motion. The price to pay for the improved scaling with di-
mensionality is that many independent trajectories have to be run
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and finally averaged to compose the density matrix out of the wave
functions. The method is described in the following Section 2.C.1.

An even more efficient method is to describe the system dynamics
in terms of Langevin equations in phase space. The Langevin method
is however only applicable to a more narrow set of problems as we
describe in Section 2.C.2.

Both stochastic methods allow for parallelization of the computa-
tion e.g. on a computer cluster or graphic cards. Most numerical
calculations in this thesis were performed using QuTiP, a Toolbox for
Quantum Mechanics based mostly on the Python libraries SciPy and
NumPy, which provides many useful tools such as a quantum trajec-
tories solver. If parallelizable, we made use of the RRZN Cluster from
the Leibniz University Hannover.

2.c.1 Quantum trajectories

Consider the time evolution of a pure state ρ(t) = |ψ〉〈ψ| for a master
equation of the general form

ρ̇ = −i[H, ρ] + γk

N

∑
k=1

akρa†
k −

1
2

a†
k akρ − 1

2
ρa†

k ak. (100)

With the definitions

|ψ̃0〉 =
(

1 − iHdt −
N

∑
k=1

a†
k akdt

)

|ψ〉 (101)

|ψ̃k〉 =
√

γkdtak|ψ〉, for k > 0 (102)

the state after a short time dt is given by

ρ(t + dt) ≈
N

∑
k=0

|ψ̃k〉〈ψ̃k|, (103)

with an error on the order of O
(

dt2
)

. On the level of wave functions
Equation (103) is obviously equivalent to jump from the state |ψ〉 at
time t into the (normalized) state |ψk〉/‖ψk‖ at time t + dt with a
probability of ‖ψk‖2. Averaging over m such probabilistic trajectories
one can reconstruct the density matrix in the limit m → ∞. When
calculating a steady state density matrix it is helpful to note that this
ensemble average over many trajectories is equivalent to a time aver-
age of a single trajectory.

In a numerical implementation one could calculate all probabilities
‖ψk‖2 in each time step and generate a random number between 0
and 1 with uniform distribution to select the state |ψk〉. It is however
numerically more efficient to make use of the fact that 1− ‖ψ0‖2 ∝ dt

and thus in each time step it is most likely that |ψ0〉 is selected. Such
an algorithm would loop the following three steps:
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• generate a random number p from a uniform distribution in the
interval [0, 1].

• propagate the state |φ〉 with the efficient, non-Hermitian Hamil-
tonian H−i ∑k a†

k ak with some efficient method (e.g. Runge
Kutta) until ‖φ‖2 < p.

• Probabilistically jump into one of the states ak|φ〉/‖ak|φ〉‖ with
k ≥ 1. The remaining probabilities pk must be weighed accord-
ing to pk ∝ γk‖ak|φ〉‖2.

2.c.2 Langevin equations

A master equation can be translated to an equation of motion describ-
ing the system dynamics on the level of phase space distributions, see
Section 2.A. If this equation contains derivatives only up to second or-
der, it is of the general form

∂tP(~x) = −
N

∑
j=1

∂xj
µj(~x, t)P(~x, t) +

1
2

N

∑
j=1

N

∑
k=1

∂xj
∂xk

Djk(~x, t)P(~x, t),

(104)

where P denotes one of the phase space distributions. Equation (104)
is a Fokker-Planck equation, if the diffusion is everywhere positive,
i.e. D is a positive matrix for all ~x and t. Such a Fokker-Planck
equation can always be translated to the Itō-Langevin equation

dxj = µj(~x, t)dt + ∑
k

σjk(~x, t)dWk, (105)

where the matrix σ must fulfill Dlm(~x, t) = ∑k σlk(~x, t)σmk(~x, t) and
the Wk are independent Wiener processes. Averaging many trajecto-
ries obeying Equation (105) the phase space distribution P is retrieved.
The dimensionality is limited by the number of phase space variables
N. E.g. for n 1-dimensional harmonic oscillator N = 2n, as each
oscillator is described by x and p. Note that N scales only linearly
with the number of systems, while for both numerical solutions of
the master equation and the quantum jump method the scaling is ex-
ponential. Thus, if applicable, the Langevin simulation is usually by
far the most efficient method. Therefore it is often also applied as
an approximation for phase space equations that do contain higher
derivatives, which have to be truncated to fit the Fokker-Planck tem-
plate. The validity of this approximation has to be carefully verified
from case to case.
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L A S E R T H E O RY F O R O P T O M E C H A N I C S

3.1 introduction

In this chapter we study the most elementary optomechanical setup,
where a single cavity mode couples to a single mechanical oscilla-
tor through, e.g., radiation pressure or dipole gradient forces. The
dynamics of the system depends crucially on the frequency of the
external driving field applied to the cavity: For the purpose of po-
sition or force sensing as in [20, 21] the driving field is chosen reso-
nant. For back action cooling (as discussed in Section 2.1.5) or state
transfer the field is tuned below the cavity frequency on the red side
band [15, 16, 18]. For blue detuning the system exhibits a rather com-
plex nonlinear behavior. When the driving field is swept from the
red to the blue side the nonlinear dynamics sets in as a parametric
amplification process where phonons and photons are created cor-
related in pairs [55]. This lies at the heart of the recently reported
generation of optomechanical entanglement [19]. While this onset
of mechanical oscillations may still be described by the linearized
Hamiltonian from Section 2.1.5, the amplification will finally go over
into a regime of self-sustained limit cycles due to the nonlinearity in-
herent to the optomechanical coupling, which requires a nonlinear
description. The classical dynamics in this regime has been observed
experimentally [56, 22, 57, 58, 25, 28] and is well studied theoretically
[59, 60, 61, 62]. Motivated by the impressive progress towards quan-
tum effects in optomechanical systems also the quantum regime of
optomechanical limit cycles received significant attention in theoreti-
cal studies [63, 64, 65, 66, 67, 68, 69].

In particular, a recent numerical study of the full optomechanical
master equation in the limit cycle regime showed that the Wigner
function of the mechanical oscillator can become strongly negative
[68]: Negativities of the Wigner function occur for driving fields at
the blue sidebands and – more pronounced – also for resonant drive.
Limit cycle states with negative Wigner density even exist in regions
of red detuning where a (simple) classical model would not predict
limit cycles at all. The numerical findings were independently con-
firmed in [69]. This reference predicts negative Wigner density even
on higher sidebands and compares the extent of negativity found
for different detunings in more detail. In view of these findings we
develop in this chapter an appropriate analytical model to strive for
a deeper understanding of these effects and the underlying mecha-
nisms on its basis in the next Chapter 4.

39
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The transition from parametric amplification to optomechanical
limit cycles can be understood in analogy 1 to the threshold behaviour
of a laser (or maser) cavity [70, 31, 53] where the roles of the laser
cavity and the laser medium are played by, respectively, the mechan-
ical oscillator and the optomechanical cavity [71]. Along this line a
semiclassical rate equation model was derived in [71, 61] for optome-
chanical systems. Rodrigues and Armour [66, 67] developed a quan-
tum mechanical treatment employing a truncated Wigner function
approach to derive a Fokker-Planck equation (FPE) for the mechan-
ical oscillator. The FPE predicted in particular a sub-Poissonian, or
number-squeezed, phonon statistics in the limit cycle when the driv-
ing field is blue detuned from the cavity resonance by the mechanical
oscillation frequency.

In this chapter we apply the laser theory due to Haake and Lewen-
stein [31, 53] introduced in Section 2.B.2 to describe optomechanical
limit cycles in the quantum regime. Starting from the standard op-
tomechanical master equation [14, 72] an effective FPE is derived for
the quasi-probability distribution (such as e.g. the Wigner–, P– or
Q–function) of the mechanical oscillator under adiabatic elimination
of the cavity mode. The nonlinearity of the optomechanical interac-
tion gives rise to nonlinear drift and diffusion coefficients in the FPE
which describe, respectively, the (classical) nonlinear physics of limit
cycles [59, 60] and the impact of quantum noise of the cavity. The
approach taken here permits to work in a picture which interpolates
between the dressed state picture introduced in [73, 74] through a po-
laron transformation and the bare state picture of the standard master
equation [75, 14, 72, 66, 69]. Remarkably, in analogy to the polaron
picture, this intermediate picture explicitly separates the optical Kerr-
nonlinearity inherent to the radiation pressure from the optomechan-
ical interaction. In contrast to the polaron picture, the interaction
term is not removed from the master equation. Furthermore, both
the mechanical oscillator and the cavity remain separate systems as
in the standard master equation picture. In contrast, the polaron pic-
ture entangles cavity and oscillator. This entanglement complicates
the description of the systems individually, which is desirable in the
context of limit cycles. As we will show, the novel treatment of the op-
tomechanical Kerr nonlinearity presented in this chapter can become
essential to understand the physics of limit cycles.

The effective FPE derived here exactly reproduces the one of Ro-
driguez and Armour [66, 67] when neglecting the different descrip-
tion of the Kerr nonlinearity of the cavity, which is treated in the
standard master equation picture there. In comparison to [66, 67] our
approach does not require truncation of higher order derivatives, and
gives a consistent and natural account of the Kerr nonlinearity.

1 See Section 3.A for a more detailed comparison.
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3.2 laser theory for optomechanics

3.2.1 Haake-Lewenstein Laser Theory Ansatz in Optomechanics

master equation — As our starting point we repeat here the
standard 2 master equation of an optomechanical system [14, 72] in-
troduced in Chapter 2

d
dt

ρ = (Lm + Lc + Lint) ρ (106)

where

Lmρ = −i
[

ωmb†b, ρ
]

+ γ(n̄ + 1)D[b]ρ + γn̄D[b†]ρ, (107)

Lcρ = −i
[

−∆a†a − iE
(

a − a†
)

, ρ
]

+ κD[a]ρ (108)

Lintρ = −i
[

−g0a†a
(

b + b†
)

, ρ
]

. (109)

The three Liouvillians Lm, Lc, and Lint refer to the mechanical oscil-
lator, the cavity, and their interaction respectively. a and b denote the
annihilation operators of the cavity and the mechanical oscillator. The
frequency of the mechanical oscillator is ωm, its amplitude damping
rate is γ = ωm/Qm, and its mean phonon number in thermal equi-
librium n̄. We use the notation D[A]ρ = 2AρA† − A† Aρ − ρA† A

for Lindblad operators. κ is the cavity amplitude decay rate, ∆ =

ωL − ωc is the detuning from cavity resonance at ωc of the driving
field E =

√
2κPL/h̄ωL with power PL and frequency ωL. The mas-

ter equation is written in a frame rotating at the frequency ωL of
the driving field. The optomechanical coupling per single photon is
denoted by g0, and essentially determines the dispersive shift of the
cavity frequency with the displacement of the oscillator in units of
the mechanical zero-point amplitude 3.

Our primary aim is to derive an effective equation of motion for
the mirror based on the assumption that the dynamics of the cavity
adiabatically follows the mechanical oscillator. This will be strictly
the case when the cavity decay rate κ is larger than the characteristic
coupling strength of the oscillator and the cavity mode (i.e. g0 or the
linear coupling g = g0α enhanced by the mean cavity field α at the
position of the limit cycle). As we will see, the resulting effective
equation of motion for the mechanical oscillator gives good results
for the stationary state also when this condition is fulfilled barely,
and even when it is mildly violated.

2 Note that in contrast to the more standard definition from Chapter 2 and e.g. [68, 59,
64] the definitions of γ and κ used here refer to the decay rate of the amplitude and
will be used for all analytical results, in order to make the equations more readable.
The corresponding decay rates for the energy κE = 2κ and γE = 2γ are the standard
convention from [14]. For comparison to most experimental and numerical studies,
we provide also the energy decay rates in the numerical results.

3 The zero point amplitude is
√

h̄/mωm for an oscillator of mass m.
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quasiprobability distribution — Most importantly, we will
not assume the usual linearization of the optomechanical coupling
when we perform the adiabatic elimination. This is achieved by
means of an Ansatz inspired by laser theory [31, 53], which allows
us to use a different adiabatic reference state of the cavity field for each

point in phase space of the mechanical oscillator. The idea is to switch
to a phase-space representation for the mechanical degree of freedom,
as introduced for the more general case in Section 2.B.2. In principle
any quasi-probability distribution (e.g. P-distribution, Wigner func-
tion; compare Section 2.A) can be used, but we will in the following
mostly focus on the (Husimi) Q function which yields the simplest
formulas for the calculation presented below. In this formalism the
density operator ρ is replaced by

σ(β, β∗) =
1
π
〈β|ρ|β〉

where |β〉 is a coherent state of the mechanical oscillator. In Ap-
pendix 3.C we provide an extension and comparison of the present
approach based on the Q function to a general (s-parameterized)
quasi-probability distribution including the P-distribution and Wigner
function as special cases. σ(β, β∗) is a density operator for the cavity
field and a quasi-probability distribution for the oscillator over the
complex phase space variables (β, β∗). The reduced density operator
for the cavity is obtained by integrating over phase space,

ρc = trm{ρ} =
∫

d2β σ(β, β∗),

and the quasi-probability distribution (Q function) for the oscillator
follows on taking the trace over the cavity,

Q(β, β∗) = trc{σ(β, β∗)}. (110)

σ(β, β∗) itself still contains all information about the state of both
systems, and is fully equivalent to the density operator ρ. For the Q

function the replacement rules [53]

b†ρ → β∗σ(β, β∗), bρ →
(

β + ∂β∗
)

σ(β, β∗), (111)

and their adjoints can be applied to the master equation (106) in order
to arrive at an equivalent description in phase space of the oscillator.
We use the notation ∂β to denote the partial derivative with respect
to a variable β. The translated equation of motion is

∂t σ(β, β∗, t) = (Lm + Lc + Lint) σ(β, β∗, t) (112)
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with

Lmσ =
(

∂β(γ − iωm)β + c.c.
)

σ + 2γ(n̄ + 1)∂2
ββ∗σ (113)

Lcσ = Lcσ − i
[

−g0 (β + β∗) a†a, σ
]

= −i
[

− (∆ + 2g0Re(β)) a†a − iE
(

a − a†
)

, σ
]

+ κD[a]σ

Lintσ = −ig0

(

∂βσa†a − ∂β∗a†aσ
)

. (114)

The Liouvillian Lm affects only the mechanical oscillator, and is just
the Fokker-Planck version of Eq. (107). A crucial point in this for-
malism is that the nonlinear optomechanical interaction Lint from
Eq. (109) makes a contribution to both, the new Liouvillian for the
cavity Lc and the new interaction Lint. Parts of the interaction can
thus formally be treated as a shift of the detuning by 2g0Re(β) which
depends on the phase space variables (β, β∗). Note that Eq. (112) is
still exactly equivalent to (106).

a semi-polaron-transformation — The parametric depen-
dence of the cavity detuning on the phase space variables can be
transformed into one of the driving field E by means of a transforma-
tion

σ̃(β, β∗, t) = eη(β−β∗)a†a/2σ(β, β∗, t)e−η(β−β∗)a†a/2 (115)

= eiθ(β,β∗)a†aσ(β, β∗, t)e−iθ(β,β∗)a†a,

with

θ(β, β∗) = η Im(β), η =
2g0

ωm
.

When transforming the equation of motion (112) care has to be taken
on commuting the unitary operators in (115) with derivatives with
respect to (β, β∗) in Lm and Lint due to the β-dependence of θ. Details
are given in App. 3.B. The resulting equation of motion for σ̃(β, β∗, t)

can be written again in the form of Eq. (112),

∂t σ̃(β, β∗, t) =
(

Lm + L̃c + Lint
)

σ̃(β, β∗, t), (116)

where Lm and Lint remain unchanged as in (113) and (114), and the
Liouvillian operator for the cavity becomes

L̃cσ̃ = −i
[

−∆a†a − K(a†a)2 − iE
(

e−iθ(β,β∗)a − h.c.
)

, σ̃
]

+ κD[a]σ̃. (117)

In this picture the phase of the driving field is different for each point
in phase space (via θ(β, β∗)), and the cavity acquires an effective Kerr
nonlinearity of strength

K =
g2

0

ωm
.
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We point out that the effective Kerr nonlinearity of the optomechani-
cal interaction gives rise to ponderomotive squeezing of light, as was
recently observed in [76, 77].

The equation of motion for σ̃(β, β∗, t), Eq. (116), is an approxima-
tion. In principle it contains further terms which are of order Q−1

m

and whose explicit form is given in App. 3.C. For high quality oscil-
lators these terms provide only small corrections and, therefore, will
be dropped in the following. Apart from this approximation Eq. (116)
still contains the full nonlinear dynamics of the system, while the as-
pect of the optical Kerr nonlinearity is explicitly separated from the
nonlinearity in the optomechanical interaction. It is also important
to note that the quasiprobability distribution for the reduced state
of the oscillator still follows from the transformed state σ̃(β, β∗, t) in
Eq. (115) by taking the partical trace over the cavity

Q(β, β∗) = trc{σ̃(β, β∗)}. (118)

semi-polaron- versus polaron-transformation — The
transformation in Eq. (115) has many parallels with the polaron trans-
formation [78] which has been applied fruitfully to optomechanical
systems in order to describe single-photon strong coupling effects
[73, 74]. The polaron transformation is effected by a unitary transfor-
mation of the density operator

ρ̃pol = eη(b−b†)a†a/2ρe−η(b−b†)a†a/2 (119)

which should be compared to the transformation in Eq. (115). Instead
of (106) the transformed state ρ̃ fulfills a transformed master equation

˙̃ρpol = (Lm + L̃c)ρ̃pol, (120)

L̃cρ̃pol = −i
[

−∆a†a − K(a†a)2 − iE
(

e−η(b−b†)/2a − h.c.
)

, ρ̃pol

]

+ κD
[

e−η(b−b†)/2a
]

ρ̃pol, (121)

where Lm is given in Eq. (107). This equation is again correct up to
terms of order Q−1

m . It is instructive to compare the master equation
in the polaron picture (120) to the equation of motion (116) attained in
our “semi-polaron transformation”. In both equations of motion the
Liouvillians for the cavity, Eqs. (117) and (121) respectively, exhibit a
Kerr nonlinearity and contain a driving field whose phase depends
on the momentum of the oscillator. Crucially, the polaron transfor-
mation changes the jump operator describing cavity decay from a to
eiη(b−b†)/2a, and entirely removes the interaction term (109). More-
over, since the polaron picture corresponds to a transformation into
dressed states of the optomechanical system the partial trace of ρ̃pol

over the (dressed) cavity mode does not give the reduced state of
the mechanical oscillator, cf. Eq. (119). In contrast, the semi-polaron
transformation introduced here retains a nonlinear interaction Lint,
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Eq. (114), leaves the jump operator for cavity decay unchanged, and
conserves the important relation (118). These properties are crucial
in order to perform second order perturbation theory in Lint, and
to derive an effective equation of motion for the mechanical oscilla-
tor as a separate system. For further comments on the semi-polaron
transformation we refer to Appendix 3.B.

3.2.2 Fokker-Planck Equation for the Mechanical Oscillator

interaction picture — Our goal is now to adiabatically elim-
inate the cavity field from the dynamics, similar to the analysis of
sideband cooling [75]. This requires that the cavity dynamics, gov-
erned by L̃c in (117) with dominant characteristic time scale κ, is fast
as compared to all other time scales in Lm and Lint. Since we aim
to cover in particular also the resolved sideband regime, ωm > κ, we
move to an interaction picture with respect to the free harmonic mo-
tion of the mirror. The equation of motion is still given by Eq. (116)
where Lm describes thermal decay only,

Lmσ = γ
(

∂ββ + ∂β∗ β∗ + 2(n̄ + 1)∂2
ββ∗

)

σ, (122)

and L̃c and Lint become explicitly time-dependent,

L̃cσ = −i
[

−∆a†a − K(a†a)2 − iE
(

e−iθ(β,β∗,t)a − h.c.
)

, σ
]

+ κD[a]σ,

(123)

Lintσ = −ig0

(

eiωmt∂βσa†a − h.c.
)

. (124)

The phase of the driving field is θ(β, β∗, t) = η Im
(

β e−iωmt
)

.
In the adiabatic elimination it is assumed that the cavity essentially

remains in the (quasi) stationary state of its undisturbed (by Lint)
dynamics,

ρ̇c = L̃cρc (125)

with L̃c given by (123). This Liouvillian describes the dynamics of a
Kerr nonlinear cavity driven by an amplitude- and phase-modulated
field,

Eeiθ(β,β∗,t) = E
∞

∑
n=−∞

Jn (−η|β|) ein(ωmt−φ), (126)

where Jn are Bessel functions. Note that the partial amplitudes de-
pend on the mechanical phase space variable β = |β|eiφ. We do not
attempt to solve Eq. (125) exactly. While in fact an exact solution
for the stationary state of a Kerr nonlinear cavity exists [79] for the
case of a constant driving field (i.e. θ ≡ const.), no such state can be
expected for the present situation. Due to the periodic modulation
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of the driving field the cavity will not settle into a strictly station-
ary state, but rather to quasi-stationary state with a periodic time-
dependence. If the Kerr nonlinearity is neglected an exact solution
for this quasi-stationary state can be constructed by means of a Flo-
quet series Ansatz [80]. However, in the present case both aspects,
modulated drive and Kerr nonlinearity, are important and shall be
taken into account.

In order to arrive at an approximate solution of Eq. (125) which can
serve as a (β-dependent) reference state for the adiabatic elimination
of the cavity we will follow two complementary approaches in the
paragraphs below: In the first one we assume the cavity is driven to a
state of large mean amplitude, which we determine self-consistently
from an essentially classical nonlinear dynamics. The fluctuations
around this mean field will be treated in a linearized model as Gaus-
sian noise. The second approach concerns the case of a weak driving
fields for which the cavity essentially stays close to its ground (vac-
uum) state, which corresponds to the regime considered in [66, 67]. In
this case the master equation Eq. (125) can be expanded and directly
solved on the low lying Fock states.

In both cases we aim to retain a nonlinear dynamics for the mean
cavity amplitude, and use a linearized description for fluctuations.
Formally this is done by switching to a displaced frame, defining ˜̃σ =

D(α(t))σ̃D†(α(t)) where D(α) = exp(αa† − αa). We choose α(t) ∈ C

such that the terms of dominant order in α are canceled from the
transformed master equation for ˜̃σ. In the case of |α(t)| ≫ 1 (|α(t)| ≪
1) we cancel the terms of third (up to first) order in α and then neglect
the terms up to first (of third) order in α. The full equation of this
transformation may be found in Eq. (155) of this chapter’s appendix,
we proceed here with its most important features:

displaced frame for the limit |α(t)| ≫ 1 — In the limit
|α(t)| ≫ 1 we identify α(t) with the long time solution of

α̇(t) = −
[

κ − i
(

∆ + 2K|α(t)|2
)]

α(t) + Eeiθ(β,β∗,t), (127)

which formally follows from the requirement that terms of third order
in α cancel in the resulting master equation for the displaced state ˜̃σ
are canceled. Due to the Kerr nonlinearity the dynamics described by
this equation of motion can be bistable. On assuming a single stable
solution we preclude bistable regimes from our description. For a
constant phase θ bistability occurs only for driving fields which are
red detuned with respect to the cavity resonance for detunings ∆ <

−
√

3κ, cf. Section 2.1.6. For the present case of a modulated drive
no such simple condition can be given. However, it is reasonable to
expect that bistability will become an issue only when the driving
field has sufficient spectral weight for frequencies with a detuning
below −

√
3κ. In the following we are mainly concerned with the
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cases of resonant or blue detuned drive, for which it turns out that
bistability is not an issue [81, 82, 83].

From Eq. (127) and (126) we can expect that in the long time limit
the cavity amplitude will be of the form

α(β, β∗, t) =
∞

∑
n=−∞

αn(β, β∗)einωmt. (128)

Inserting this expression into (127) one sees that the effective detun-
ing experienced by the cavity will be dominantly given by the DC
component of |α(t)|2, such that it is useful to define an effective de-
tuning

∆eff(β, β∗) = ∆ + 2K ∑
n

|αn(β, β∗)|2. (129)

Eq. (129) has to be read as a non-linear equation for ∆eff. In regimes
where more than one solution exists, the system will be bi- or multi-
stable, and we have to expect large photon number fluctuations. The
validity of our approach will thus be limited to regions where only a
single stable solution for ∆eff exists, as discussed above. We seek an
approximate solution to (127) by assuming a fixed effective detuning
∆eff, such that

αn =
E

hn
Jn (−η|β|) e−inφ, (130)

hn = κ + i(nωm − ∆eff), (131)

where we follow the notation of [66, 67]. In total α(t) in (128) depends
on the mechanical phase space variable β through both ∆eff(β, β∗)
and the β-dependent driving field Eeiθ(β,β∗,t). We will see that the β-
dependence in ∆eff(β, β∗) is a crucial effect for the case of resonant
cavity-drive (for which ∆eff . κ).

The Liouvillians after the transformation with D(α(t)) are

Lmσ = γ
(

∂ββ + ∂β∗ β∗ + 2(n̄ + 1)∂2
ββ∗

)

σ

− ig0

(

∂βeiωmt|α(t)|2 − h.c.
)

σ, (132)

L̃cσ = −i
[

−
(

∆ + 4K|α(t)|2
)

a†a − K
(

α(t)2a†2 + h.c.
)

, σ
]

+ κD[a]σ, (133)

Lintσ = −ig0

(

eiωmt∂βσ(α∗(t)a + α(t)a†) + h.c.
)

(134)

The Liouvillian for the mechanical oscillator, Lm, acquires an addi-
tional drift term (second line in (132)) with a nonlinear drift coeffi-
cient ∝ eiωmt|α(β, β∗, t)|2 which contains in particular the nonlinear
DC force and dynamic back action effects (i.e. optical damping and
frequency shifts), as will be discussed below. In the Liouvillian for the
cavity, L̃c, terms of order α(t) and lower have been dropped. The lead-
ing terms of order α2 describe squeezing dynamics and an effective
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detuning. Finally, in Lint only the term of linear order in α has been
kept. Note also that when moving to the displaced frame commu-
tators of the (β-dependent) displacement operators and derivatives
with respect to β have been neglected. They would add corrections to
the Liouvillians of higher order in g0. We have now removed the driv-
ing field from the dynamics of the cavity. The remaining Liouvillian
(133) describe the Gaussian evolution of fluctuations:

The ponderomotive squeezing of the light field is naturally con-

tained in the α2a†2
-term and its hermitian conjugate. While in this

thesis we will only study parameters for which this squeezing is neg-
ligible, the effect of ponderomotive squeezing back on the mirror af-
ter the adiabatic elimination of the cavity is an interesting perspective
for future applications of our new formalism: In the adiabatic elimi-
nation of the cavity one would have to use a squeezed reference state,
which can introduce possibly additional diffusion terms in the mo-
tion of the mirror. Applied to the situation of limit cycles, this may
also alter the state of the mechanical oscillator.

Curiously, the Kerr nonlinearity induces a different effective detun-
ing for the mean field α than for the fluctuations (compare Eqs. (127)
and (133)). This is consistent with results for a Kerr nonlinear cavity
[79]. We therefore define

∆̃eff = ∆ + 4K ∑
n

|αn|2. (135)

The fast decay rate to the vacuum is still given by κ from the origi-
nal master Eq. (108).

This can be used in order to adiabatically eliminate the cavity tak-
ing into account second order effects in the optomechanical interac-
tion ∝ g0, Eq. (134), very much in the spirit of laser cooling theory
[75]. Details of the calculation can be found in Appendix 3.D. The
result is an effective equation of motion for the mechanical oscillator
in the form of a Fokker-Planck equation

Q̇(β, β∗) = g2
0 ∑

n

(

∂β∗∂β
α∗

nαn

h̃n−1
− ∂β∗∂β∗

α∗
n−2αn

h̃n−1

)

Q(β, β∗) + h.c.

+ ig0 ∑
n

(

∂β∗α∗
n−1αn

)

Q(β, β∗) + h.c.

+ γ
(

∂ββ + ∂β∗ β∗ + 2(n̄ + 1)∂2
ββ∗

)

Q(β, β∗) (136)

for the Q-function of the mechanical oscillator. In analogy to hn we
define h̃n = κ + i(nωm − ∆̃eff) with ∆̃eff given in (135).

The drift and diffusion coefficients in the Fokker-Planck equation
(136) do not depend on the phase of β as a consequence of the ro-
tating wave approximation involved in its derivation. We therefore
transform the Fokker-Planck equation to polar coordinates β = reiφ,
and focus on the time evolution of the oscillator amplitude r by inte-
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grating out the phase variable φ. The time evolution for r is then a
one dimensional Fokker-Planck equation (on a half space),

Q̇(r) = −∂rµ(r)Q(r) + ∂2
r D(r)Q(r) (137)

with drift µ(r) and diffusion coefficient D(r)

µ(r) = −γr + ∑
n

g0E2Im
[

Jn−1(ηr)Jn(ηr)

hn−1h∗n

]

(138)

D(r) =
γ(n̄ + 1)

2
+ ∑

n

g2
0E2

2

(

κ Jn(ηr)2

|hn|2|h̃n−1|2
− Re

[

Jn−2(ηr)Jn(ηr)

h̃n−1h∗n−2hn

])

.

(139)

The details of the transformation may again be found in Appendix
3.D. Equation (137) admits a potential solution in steady state which
is given by (up to normalization)

Q(r) ∝
eI(r)

D(r)
, I(r) :=

∫ r

0

µ(r′)
D(r′)

dr′. (140)

This solution is valid for any value of ∆, such that it covers both the
regime of optomechanical cooling and the regime of self-induced os-
cillations. In [75] an effective equation of motion for the oscillator
was derived in order to study the limits of sideband cooling under
linearization (cf. Section 2.1.4) of the dynamics and adiabatic elimi-
nation of the cavity using a coherent state as a reference state. The
present approach generalizes this calculation to the nonlinear regime
by using a different reference state for each phase space point of the
oscillator. The non-linear quantum dynamics has been described ana-
lytically using a method based on the classical theory for limit cycles
[84] and by means of Langevin equations [66], and has been applied
in great detail to limit cycles, but also to the cooling regime [67]. The
results of our calculation reproduce these results in the regime of a
negligible Kerr-Term and provide suitable extensions in those cases
where the Kerr nonlinearity of the cavity becomes a dominant effect.
In the next section we will compare the analytical expression for the
steady state of the mechanical to numerical solutions of the exact mas-
ter equation (106) to study the limit cycle regime. We conclude this
section by briefly stating the corresponding results for the limit of
small intracavity field amplitude, followed by a comparison of limit
cycles studied in different laser setups.

displaced frame and adiabatic elimination for the limit

|α(t)| ≪ 1 — In the case of |α(t)| ≪ 1 all steps can be performed
in analogy. The difference is that we need to cancel the terms up to
first order in α and then neglect the terms of third order in α. The
effective detuning now is given by

∆eff = ∆ + K, (141)
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i.e. the bare detuning is just shifted by the constant Kerr term in
this extreme regime. No distinction between ∆eff and ∆̃eff needs to
be made. The adequate choice for the displacement amplitude is the
long term solution of

α̇(t) = − [κ − i∆eff] α(t) + Eeiθ(β,β∗,t). (142)

The result of the adiabatic elimination is structurally the same, αn and
hn are given as in equations (130) and (131), but with the effective de-
tuning now given as in (141). In Eq. (139) the h̃n are simply replaced
by hn.

3.3 conclusion

In this chapter we studied the quantum regime of optomechanical
limit cycles. Based on the Laser theory of Haake and Lewenstein [31]
we derived an effective Fokker-Planck equation for an optomechani-
cal system. The analytical prediction for the oscillator’s steady state
is in agreement with the work of Rodrigues and Armour [66, 67].

Our treatment naturally includes also the Kerr effect, which be-
comes important for large g2

0/ωm. One consequence important for
the quantum theory of limit cycles is the shift of the detuning of
equation (141), which occurs even without photons in the cavity, and
had to be introduced phenomenologically in [67]. This shift explains
the possibility of limit cycles on the blue sideband in [68].

We believe that the present approach provides a suitable starting
point for further studies of optomechanical systems in the limit of
strong couplings. We point out once more that in the “semi-polaron
picture” introduced here the Kerr nonlinearity and the optomechani-
cal interaction occur as independent terms. This enables in principle
to take into account the squeezed noise of the cavity when deriving
effective equations of motion of the mechanical oscillator. While for
the parameters considered in this thesis we could neglect this effect,
additional diffusion for the mechanical oscillator is to be expected for
very strong laser drive. This would apply to the case of limit cycles,
but could also become important in the cooling regime.
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3.a quantum limit cycles in lasers

It seems natural to base a model of optomechanical limit cycles on
theory used in the context of lasers [70, 31, 53], where quantum limit
cycles have been extensively studied most prominently. The standard
laser system consists of a reservoir of many atoms which forms a bath
for the cavity mode. The pumped atoms will drive the laser mode to
a high amplitude limit cycle, where it settles into a coherent state
with random phase.

A setup that can be driven to highly sub-Poissonian states is the
regularly pumped laser [85, 86], where excited atoms fly through a
cavity. The mechanism works in the situation, where at each time
approximately only one atom interacts with the light mode and the
interaction is a swapping of excitations. In the case of more regular
than Poissonian statistics of the pump, the fluctuation of the trans-
mitted energy decreases and the light mode will have sub-Poissonian
phonon statistics. This setup is sometimes also referred to as one
atom laser/maser or micro maser, because the events when more than
one atom interacts with the field can be neglected.

The one atom laser is different from the ’one-and-the-same’ atom
laser [87], where a single atom is trapped inside a cavity and drives
the laser mode. Also in this setup a sub-Poissonian steady can be
reached and the explanation again relies on counting the number of
interactions exchanged between the atom and the cavity [88].

In our optomechanical system a single laser mode is the bath driv-
ing the mechanical oscillator. The bath consisting of only a single
mode is in analogy to some extent to the micro maser, as stressed
in [69], and even more similar to the ’one-and-the-same’ atom laser.
Even though we also describe sub-Poissonian boson statistics, the an-
alytical techniques developed e.g. in [88] cannot be readily applied to
our situation, because they crucially rely one the preservation of total
excitations by the interaction, which is not given in the optomechani-
cal setup. Our analytical model 3.2 is based on [31], which was first
developed for the standard setup without sub-Poissonian statistics.

For the creation of non-Gaussian states a nonlinearity is required.
In the optomechanical setup the nonlinearity stems from the inter-
action, while in the ’one-and-the-same’ atom laser it stems from the
two level nature of the bath, which is equivalent to a highly nonlinear
cavity.
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3.b semi-polaron transformation

The semi-polaron transformation, Eq. (115) in Sec. 3.2, is introduced
in terms of the formalism of quasiprobability distributions. In view
of the similarities of this transformation with the polaron transforma-
tion in Eq. (119) the question arises how the semi-polaron transforma-
tion in Eq. (115) can be expressed in terms of an ordinary operator
representation. The transformed state σ̃ in (115) fulfills

∂η σ̃ =

[

1
2
(β − β∗) a†a, σ̃

]

=
1
2

[

a†a, σ̃β − β∗σ̃
]

. (143)

When written in the second form we can apply the replacement rules (111)
to write the last equation in operator representation

∂η ρ̃ =
1
2

[

a†a, ρ̃b − b†ρ̃
]

=
1
4

[

(b − b†)a†a, ρ̃
]

+
1
4

(

D[b† + a†a]− D[b†]− D[a†a]
)

ρ̃

≡ Ls−polρ̃ (144)

In the second line we expressed the generator for the semi polaron
transformation in terms of a commutator with a Hamiltonian and
three Lindblad terms. The semi polaron transformation in operator
representation is thus

ρ̃ = exp
(

ηLs−pol
)

ρ.

It becomes equivalent to the polaron transformation if the Lindblad
terms in the generator Ls−pol are dropped. Thus, the semi polaron
transformation is non-unitary. In the context of adiabatic elimination
of a cavity mode in the bad cavity limit a similar transformation to a
“dissipation picture” was employed in [89, 90].

3.c transformations for general phase space distribu-
tion

semi-polaron transformation In the main text we introduced
the semi-polaron transformation only for the special case of the Q-
function, to make the equations more readable. Here we drop this
restriction and assume the more general case of an s-parameterized
phase space distribution Ps with s ∈ [−1, 1]. For the convenience of
the calculation we define p = s+1

2 ∈ [0, 1] and q = 1− p. Note that for
q = 0 this corresponds to the Glauber-Sudarshan P-representation,
for q = 1

2 to the Wigner representation, and for q = 1 to the Husimi
Q-representation.

Starting from the standard optomechanical Hamiltonian and Lind-
blad operators we first switch to a displaced and rotating frame with
frequency ωm for the mechanical oscillator so that b → β0 + be−iωmt
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and introduce the shorthand notation bt = be−iωmt. This transforma-
tion also leaves the Lindblad operators unchanged and the Hamilto-
nian transforms to

H = (ωm + iγ)β∗
0bt + (ωm − iγ)β0b†

t

− g0(β0 + β∗
0)a†a

− ∆a†a − g0a†a
(

bt + b†
t

)

− iE
(

a − a†
)

. (145)

Using the translation rules

bρ → (β + q∂β∗)σ b†ρ → (β∗ − p∂β)σ (146)

we obtain the translated equation of motion σ̇(β, β∗) = Lcσ + Lmσ +

Lintσ. With the shorthands βt = βe−iωmt and ∂βt
= ∂βeiωmt this gives

Lcσ = −i
[

−g0(β0 + β∗
0)a†a − ∆a†a − g0a†a (βt + β∗

t ) , σ
]

− i
[

−iE
(

a − a†
)

, σ
]

+ Lcσ (147)

Lintσ = −ig0

(

(q∂βt
− p∂β∗

t
)σa†a − (q∂β∗

t
− p∂βt

)a†aσ
)

(148)

Lmσ = −i(ωm + iγ)β∗
0∂β∗

t
σ + i(ωm − iγ)β0∂βt

σ + Imσ. (149)

with

Im = γ
(

∂ββ + ∂β∗ β∗)+ 2γ(n̄ + q2 + pq)∂β∗∂β (150)

Lc = κD[a]. (151)

In analogy to transformation (115) we apply the more general

σ̃(t) = exp
[

−iθ(t)a†a
]

σ(t) exp
[

iθ(t)a†a
]

,

with λ = λr + iλi =
g0

ωm+iγ and θ(t) = i
(

λβe−iωmt − λ∗β∗eiωmt
)

. Using

the notation with K =
g2

0
ωm

this gives after dropping terms of order 1
Q

as an approximation,

Lcσ = −i
[

−∆a†a − K(a†a)2 − iE
(

eiθ(t)a − e−iθ(t)a†
)

, σ
]

+ Lcσ

(152)

Lintσ = −ig0

(

(q∂βt
− p∂β∗

t
)σa†a − (q∂β∗

t
− p∂βt

)a†aσ
)

(153)

Lmσ = Imσ − i(ωm + iγ)β∗
0∂β∗

t
σ + i(ωm − iγ)β0∂βt

σ. (154)

We now transform to a displaced frame σ̃ = D†(α)σD(α) with param-
eter α(β, t) ∈ C. For a master equation of the form

ρ̇ = −i
[

−∆a†a − K(a†a)2 − i
(

E(t)a − E∗(t)a†
)

, ρ
]

+ Lcρ

the transformation to a displaced frame ρ̃ = D†(α(t))ρD(α(t)) gives

˙̃ρ = Lρ̃ − i[−(∆ + 4K|α|2)a†a − K(a†a)2

− K
(

α2(a†)2 + (α∗a + αa†)a†a + h.c.
)

− i
{

(

α̇ + (κ − i∆ − i2K|α|2)α − E
)

a† − h.c.
}

, ρ̃] (155)
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Depending on wether one wants to study the regime |α| ≫ 1 or
|α| ≪ 1, either the terms with low or high order in α can be neglected
at this point and a different choice of α(t) is required to cancel all
displacement-like terms.

displaced frame for |α | ≫ 1 We can cancel the displacement-
like terms, which include the terms of order K |α |3, by imposing that
α( t) solves

α̇( t) =
(

i(∆ + 2K |α( t) |2 ) − κ
)

α( t) + E( t)

such that in the displaced frame

˙̃ρ = − i [−(∆ + 4K |α |2 )a† a

− K
(

α2 (a† )2 + (α∗ a + αa† )a† a + h .c .
)

− K(a† a)2 , ρ̃ ] + L ρ̃ .

(156)

Neglecting the terms proportional to K up to first order in α, the
Liouvillians are

L c σ = − i
[

−(∆ + 4K |α |2 )a† a − K
(

α2 (a† )2 + h .c .
)

, σ
]

+ L c σ

(157)

L int σ = − i g0 (q∂ β t
− p∂ β∗

t
)σ(α∗ a + αa† )

+ i g0 (q∂ β∗
t
− p∂ β t

)(α∗ a + αa† )σ (158)

Lm σ = − i g0 (∂ β t
− ∂ β∗

t
) |α |2 σ + Im σ

− i(ωm + iγ)β∗
0 ∂ β∗

t
σ + i(ωm − iγ)β0 ∂ β t

σ (159)

Note that now, in analogy to laser theory, Lm reproduces the classical
drift. We have now |L int | ∝ g0 |α | ≪ g0 〈a† a〉 ≈ g0 |α |2, where
〈a† a〉 refers to the average before the transformation.

displaced frame for |α | ≪ 1 If we restrict the analysis to
only the lowest two Fock states, the operators consisting of three
creation/annihlation-operators resulting from transformation (155) can
be approximated with just one operator, e.g. aa† a ≈ a. This time we
neglect the terms proportional to K of third order in α. By imposing
that α( t) solves this time

α̇( t) = ( i(∆ + K) − κ ) α( t) + E( t) , (160)
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we can cancel the remaining displacement-like terms. The Liouvil-
lians are now

L c σ = − i

[

−∆a† a − K
(

a† a
)2

− K
(

α2 (a† )2 + h .c .
)

, σ

]

+ L c σ

(161)

L int σ = − i g0 (q∂ β t
− p∂ β∗

t
)σ(α∗ a + αa† + a† a)

+ i g0 (q∂ β∗
t
− p∂ β t

)(α∗ a + αa† + a† a)σ (162)

Lm σ = − i g0 (∂ β t
− ∂ β∗

t
) |α |2 σ + Im σ

− i(ωm + iγ)β∗
0 ∂ β∗

t
σ + i(ωm − iγ)β0 ∂ β t

σ (163)

3.d derivation of fokker-planck equation

In order to obtain the approximate Fokker-Planck equation for the
mechanical oscillator, we now eliminate the cavity in second order
perturbation theory. We show this in detail for |α| ≫ 1 and then
briefly write down the results for |α| ≪ 1.

adiabatic elimination of the cavity in the |α| ≫ 1 regime

Let us for now ignore Im and re-include it later. Defining σij := 〈i|σ|j〉
and cutting off after index (i, j) = (1, 1) we get the EOM

σ̇00 = 2κσ11

+ ig0
(

(q∂β∗
t
− p∂βt

)α∗
t σ10 − (q∂βt

− p∂β∗
t
)αtσ01

)

+ ig0

(

∂β∗
t
α∗

t αtσ00 − ∂βt
α∗

t αtσ00

)

− i(ωm + iγ)β∗
0∂β∗

t
σ10 + i(ωm − iγ)β0∂βt

σ10 (164)

σ̇11 = −2κσ11

+ ig0
(

(q∂β∗
t
− p∂βt

)αtσ01 − (q∂βt
− p∂β∗

t
)α∗

t σ10
)

+ ig0

(

∂β∗
t
σ11 − ∂βt

σ11

)

+ ig0

(

∂β∗
t
α∗

t αtσ11 − ∂βt
α∗

t αtσ11

)

− i(ωm + iγ)β∗
0∂β∗

t
σ11 + i(ωm − iγ)β0∂βt

σ11 (165)

σ̇10 = −κσ10 + i∆̃effσ10 + ig0∂β∗
t
σ10

+ ig0
(

(q∂β∗
t
− p∂βt

)αtσ00 − (q∂βt
− p∂β∗

t
)αtσ11

)

+ ig0

(

∂β∗
t
α∗

t αtσ10 − ∂βt
α∗

t αtσ10

)

− i(ωm + iγ)β∗
0∂β∗

t
σ10 + i(ωm − iγ)β0∂βt

σ10 (166)

We now adiabatically eliminate σ10 to first order in g0 (note that σ11 is
already of order g2

0. Also note that the mean amplitude β0 is chosen
such that it cancels the zero frequency component of |α|2 acting on
the mechanical drift.):

σ10(t) =
∫ ∞

0
dτe−κτ+i∆̃effτig0(q∂β∗

t−τ
− p∂βt−τ

)αt−τσ00(t) (167)

= ig0 ∑
n

(q∂β∗ei(n−1)ωMt αn

h̃n−1
− p∂βei(n+1)ωMt αn

h̃n+1
)σ00(t) (168)
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where hn = κ + i(nωM − ∆̃eff) and α = ∑
∞
n=−∞ αneinωmt with αn =

Ξne−inφ. Now the derivative of the phase space distribution is ap-
proximately given by Ṗs(β, β∗) ≈ Tr(σ̇00(β, β∗) + σ̇11(β, β∗)), which
gives to second order in g0

Ṗs = ∑
n

q2g2
0

(

∂β∗∂β
α∗

nαn

h̃n−1
− ∂β∗∂β∗

α∗
n−2αn

h̃n−1

)

Ps

+ p2g2
0

(

∂β∗∂β
α∗

nαn

h̃n+1
− ∂β∂β

α∗
n+2αn

h̃n+1

)

Ps

+ pqg2
0

(

∂β∗∂β

(

α∗
nαn

h̃n+1
+

α∗
nαn

h̃n−1

)

− ∂2
β

α∗
n+2αn

h̃n+1
− ∂2

β∗
α∗

n−2αn

h̃n−1

)

Ps

+ ig0
(

∂β∗α∗
n−1αn

)

Ps + h.c., (169)

where we neglected terms ∝ 1
r as they are negligible at the position

of the limit cycle. Note that the drift term does not depend on the
choice of phase-space distribution. For the Q-function the equation
implies to

Q̇ = g2
0 ∑

n

(

∂β∗∂β
2κα∗

nαn

|h̃n−1|2
− ∂β∗∂β∗

α∗
n−2αn

h̃n−1
− ∂β∂β

αn−2α∗
n

h̃∗n−1

)

Q

+ ig0 ∑
n

(

∂β∗α∗
n−1αn − ∂βαn−1α∗

n

)

Q, (170)

and for the Wigner function to

Ẇ = ∑
n

g2
0κ

|h̃n+1|2
(

∂β∗∂β

(

|αn|2 + |αn+2|2
)

− ∂2
βα∗

n+2αn − ∂2
β∗α∗

nαn+2

)

W

+ ig0 ∑
n

(

∂β∗α∗
n−1αn − ∂βαn−1α∗

n

)

W (171)

transformation to polar coordinates We are finally in-
terested in the EOM for polar coordinates (r, φ). When previously
∫

dαdα∗Ps(α, α∗) = 1 the new normalization is
∫

rdrdφPs(r, φ) = 1.
With

∂x = cos(φ)∂r −
sin(φ)

r
∂φ (172)

∂y = sin(φ)∂r +
cos(φ)

r
∂φ (173)

we get

∂β = 1
2 e−iφ

(

∂r −
i

r
∂φ

)

(174)

∂β∗ = 1
2 eiφ

(

∂r +
i

r
∂φ

)

(175)

and

(2∂β)
2 = e−2iφ

(

∂2
r − 2

i

r
∂rφ + 2

i

r2 ∂φ −
1
r

∂r −
1
r2 ∂2

φ

)

(176)

(2∂β)(2∂∗β) = ∂2
r +

1
r

∂r +
1
r2 ∂2

φ (177)
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Integrating out φ and again neglecting terms ∝ 1
r we get e.g. for the

Q-distribution

Q̇ = ∑
n

g0∂r (Im [Ξn−1Ξ∗
n]) Q +

g2
0

2
∂2

r

(

κΞ∗
nΞn

|h̃n−1|2
− Re

[

Ξ∗
n−2Ξn

h̃n−1

])

Q

(178)

or, in compact form with Jn := Jn (−ηr) and re-including the effect of
Im, this gives the parameters

DQ =
γ(1 + n̄)

2
+ ∑

n

g2
0E2

2

(

κ Jn Jn

|hn|2|h̃n−1|2
− Re

[

Jn−2 Jn

h̃n−1h∗n−2hn

])

(179)

µQ = −γr − ∑
n

g0E2
(

Im
[

Jn−1 Jn

hn−1h∗n

])

(180)

for the FPE:
Ṗs = −∂rµsPs + ∂2

r DsPs (181)

that can be solved (up to normalization) as

Ps(r) ∝
eIs(r)

Ds(r)
, Is(r) :=

∫ r

0

µs(r′)
Ds(r′)

dr′. (182)

The corresponding equation for the Wigner function has the same
drift coefficient and a diffusion of

DW(r) =
γ(2n̄ + 1)

4

+ ∑
n

κg2
0E2

4|h̃n+1|2

(

∣

∣

∣

∣

Jn+2

hn+2

∣

∣

∣

∣

2

+

∣

∣

∣

∣

Jn

hn

∣

∣

∣

∣

2

− Jn Jn+2

hnh∗n+2
− Jn Jn+2

h∗nhn+2

)

.

(183)

In both cases we assume in steady state that Ps(r, φ) = Ps(r), i.e. the
distributions are independent of φ.

fokker-planck equation for |α|2 ≪ 1 The procedure of the
adiabatic elimination is in complete analogy to |α|2 ≫ 1. One only
has to replace ∆eff and ∆̃eff with ∆K = ∆+K and adjust the solution of
α as in Eq. (160). With hn = κ + i(nωm − ∆K) The final coefficients for
the Fokker-Planck equation then have the same structure but without
the distinction between hn and h̃n. E.g. for the Q-function one obtains

DQ =
γ(1 + n̄)

2
+ ∑

n

g2
0E2

2

(

κ Jn Jn

|hn|2|hn−1|2
− Re

[

Jn−2 Jn

hn−1h∗n−2hn

])

(184)

µQ = −γr − ∑
n

gE2
(

Im
[

Jn−1 Jn

hn−1h∗n

])

(185)
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Q U A N T U M S I G N AT U R E S I N O P T O M E C H A N I C A L
L I M I T C Y C L E S

4.1 introduction

In this chapter, which can be read as a continuation of chapter 3, we
apply the model derived there to show that it correctly reproduces the
characteristics of limit cycles in the standard optomechanical setup.
It identifies general requirements on system parameters (such as cou-
pling strength, driving power, sideband resolution, temperature etc.)
for the occurrence of sub-Poissonian phonon statistics and negative
Wigner functions, and establishes a tight connection between the two
phenomena. We find that negative Wigner functions can be achieved
also in rather classical parameter regimes where the coupling per sin-
gle photon g0 is smaller than the cavity line width, and where the
cavity is driven strongly and limit cycle amplitudes are large. The as-
sociated small Fano factors are lower bounded by, and can reach, the
sideband parameter κ/ωm (ratio of cavity line width to mechanical
resonance frequency) for sufficiently strong optomechanical coopera-
tivity. We confirm the analytical results with numerical simulations
using Quantum Jump Trajectories.

As an introduction to our study, we sum up some known results
on limit cycles that the rest of this chapter refers to. First, we intro-
duce the theory for the amplitude of classical limit cycles as devel-
oped in [59, 64], and then we recapitulate the numerical results on
nonclassical states of quantum limit cycles as reported in [68]. When
comparing these findings to our analytical treatment developed in the
previous chapter we will be mainly concerned with the special case
of close to resonant driving field, ∆eff ≃ κ ≪ ωm. Therefore, we start
out by stating some approximate expressions for this case.

close to resonant drive — In the sideband-resolved regime
and with a detuning close to the resonance, i.e. ∆eff, κ ≪ ωm (but
not necessarily ∆eff ≪ κ) we keep only the terms with n = 0, 1 in the
expression for the drift coefficient, Eq. (138), and approximate

µ(r) ≃ −γr +
g0E2

ω2
m

2κ∆eff(r)

∆2
eff(r) + κ2

J0(ηr)J1(ηr). (186)

In the sideband-resolved regime, the equation for the effective detun-
ing, Eq. (129), becomes a third order polynomial in ∆eff and in the
limit ∆eff ≪ κ it even simplifies to a simple and explicit expression

∆eff(r) ≃ ∆ + 2
KE2

κ2 J2
0(ηr). (187)
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classical limit cycles — The theory for classical optomechan-
ical limit cycles from [59] is reproduced by the drift-part of the Fokker-
Planck equation, Eq. (138), when neglecting the diffusion and using a
constant effective detuning, ∆eff(r) = ∆eff ≡ const. Disregarding the
diffusion the oscillator amplitude r(t) evolves fully deterministically
and obeys

ṙ = µ(r) = −γeff(r)r, γeff(r) = γ + γopt(r).

Following Eq. (186) the combined intrinsic and optically induced
damping of the oscillator γeff(r) close to resonance is then given as
the sum of the intrinsic mechanical damping γ and the amplitude-
dependent optical damping

γopt(r) = − g0E2

ω2
m

2κ∆eff

∆2
eff + κ2

J0(ηr)J1(ηr)

r
. (188)

Note that the sign of the optically induced damping at r = 0 coincides
with the sign of ∆eff. For negligible intrinsic damping, γ ≪ |γopt|, one
can then expect limit cycles to always start for ∆eff > 0 (whereas the
dynamics will be stable for ∆eff < 0). The possible amplitudes r0 for
limit cycles are given by the conditions γeff(r0) = 0 and γ′

eff(r0) > 0.
The first condition is equivalent to

J0(ηr)J1(ηr)

r
= γ

ω2
m

g0E2

∆2
eff + κ2

2κ∆eff
. (189)

The left hand side of this equation has infinitely many roots as the
Bessel functions oscillate at a constant amplitude, cf. Fig. 7 a). The
envelope is given by the r−1 decay. As illustrated in Fig. 7 a) the exact
position of the limit cycle and the number of possible amplitudes is
then determined by the right hand side of Eq. (189).

4.2 outline

In the following sections we will explain two features of limit cycles
on resonance that can be heavily influenced by the Kerr term:

First, in Sec. 4.3 we show that in the strong driving limit |α|2 ≫ 1
the phase transition between optomechanical cooling and self-induced
oscillations is crucially determined by the dynamical dependence
of the effective detuning on the intracavity amplitude and its corre-
sponding nonlinear dependence on the cycle amplitude, cf. Eq. (187).
This behavior can also be explained in a classical picture.

We then develop an explanation of the interesting numerical result
for limit cycles in the quantum regime reported in [68, 69]: For ap-
proximately resonant driving fields, ∆ ≃ 0, and at the blue detuned
sideband resonance, ∆ ≃ ωm, the steady state of the mechanical os-
cillator can have a Wigner function with a negative area. The re-
quirement on the strength of the optomechanical coupling g0 is more
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a)

b)

Figure 7: Plot a) shows the effective damping γeff(r) = γ + γopt(r) from

Eq. (188) in units of γ0 = g0E2

ω2
m

2κ∆eff
∆2

eff+κ2 versus cycle amplitude r in

units of the mechanical zero point fluctuation and η = 2g0/ωm.
The blue and red line are two examples for different intrinsic
damping γ. Limit cycles are stable at roots of the total damping
with a positive slope. This happens only once for the red dashed
line with γ = 0.1γ0, corresponding to only one possible amplitude
for the oscillation. For the blue solid line with γ = 0 many such in-
tersections occur and the oscillator amplitude will in general jump
between those different meta-stable points.
Plot b) shows the optical part of the diffusion from approximation
(194) for κ/ωm = 0.1 and ∆eff = κ in units of D0 = κg2

0E2/ω4
m.

Note that the dominant part of the diffusion from Eq. (194) is
exactly canceled at the position of the limit cycle for γ = 0, as in-
dictated by the vertical line. This cancellation explains the strongly
sub-Poissonian phonon statistics for such parameters.
Note that both drift and diffusion are a function of r, in contrast
to the linearized theory presented in Section 2.1.5.

stringent at the sideband than on resonance where non-classical limit
cycles appear already for weaker coupling. Curiously, on resonance
the numerical solution to the master equation predicts (non-classical)
limit cycles also for parameters where classically the effective detun-
ing ∆eff < 0, and one would expect a stable cooling dynamics. Fig. 8

shows the steady-state Wigner function of the mechanical oscillator
for such parameters.

We will use the analytical description of limit cycles with the Fokker-
Planck equation to explain the features displayed in Fig. 8, and to
predict general requirements on system parameters to achieve a non-
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Figure 8: Wigner function W of the lowest metastable limit cycle of the
mechanical oscillator for parameters (g0, κE = 2κ, γ, E, ∆, K) =
(0.275, 0.1, 0, 0.15 − 0.026, 0.076)× ωm. As there are less than 0.03

photons in the cavity we are in the regime of |α|2 ≪ 1, where
∆eff = ∆ + K, cf. equation (141). Choosing the bare detuning to
minimize the Fano factor (F=0.1 at the attractor with lowest ampli-
tude, which is depicted in this plot) implies according to equation
(196) ∆ = κ − K, which for the strong optomechanical coupling of
this example gives the negative numerical value ∆ = −0.026. Note
that classically, or excluding the Kerr effect, a limit cycle would
not even start for these parameters. The minimal value of W in
this plot is −0.02.

positive Wigner function. In Section 4.5 we show that the occurrence
of negative Wigner functions in turn is intimately linked to achiev-
ing a small variance of the phonon statistics, as characterized by a
small Fano factor F = 〈∆n〉2/〈n〉, along with a small cycle amplitude
r0. We analyze the variance of the phonon number in Section 4.4
and find that the conditions for small Fano factor are favorable at the
∆ = 0-resonance.

In Section 4.6 we describe the numerical method used to check
the analytical predictions. It allows for the first time to numerically
study quantum features of optomechanical limit cycles in the regime
of large mechanical amplitudes and strong laser drive, populating
many states of the cavity. We find that the analytical model can still
be applied and even for g0 < κ negativity of the Wigner function can
be observed.
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4.3 drift and dynamical detuning

In this section we study in detail the time evolution of the mean am-
plitude r̄, which is determined by the drift µ(r) in (186). In particular
we show how the dynamical dependence of ∆eff(r) on r gives new
results which are not observed in any model based on a static detun-
ing (like the one we used above). We focus on the regime where r̄

is larger than its standard deviation ∆r, such that we can derive the
time evolution of r̄ via ˙̄r = µ(r̄) directly from (186) as

˙̄r = −γr̄ +
2κgE2

ω2
m

∆eff(r̄)

∆eff(r̄)2 + κ2 J0(ηr̄)J1(ηr̄). (190)

These assumptions are fulfilled for small η = 2g0
ωm

, because ηr̄ is the

argument of the Bessel functions and hence r̄ ∝ 1
η .

With the oscillator initially in the ground state, it is the sign of
∆eff(0) that determines if the limit cycle starts at all: For ∆eff(0) < 0
the optical damping is initially positive and no oscillation starts, but
for ∆eff(0) > 0 it is negative and may be larger than the intrinsic
damping γ, so that a self-induced oscillations can start. The oscillator
arrives at its steady state, when ˙̄r = 0. Neglecting the small correc-
tions due to γ, this is equivalent to the condition ∆eff(r̄)J0(ηr̄)J1(ηr̄) =

0. If the effective detuning ∆eff is independent of r, the smallest root
of this product is always the first root of J0. This corresponds to the
standard situation (as discussed above) valid for a negligible Kerr
parameter or in the weak driving limit, cf. Eq. (141).

In the converse case, for large amplitudes |α|2 ≫ 1 and non-negligible
Kerr parameter, the dynamic nature of the effective detuning can be-
come important: The smallest root of the product ∆eff(r̄)J0(ηr̄)J1(ηr̄)

is then determined either by J0 or ∆eff, depending on the sign of ∆. If
the bare detuning is on the blue (heating) side, ∆ & 0, the condition
for the limit cycle is still J0(ηr0) = 0 as in the case of a static detuning.
However, if the bare detuning is on the red (cooling) side ∆ < 0 the
effective detuning for a small cycle amplitude can still be positive as
∆eff(0) = ∆ + 2KE2/κ2, cf. Eq. (187). This is the case in particular for
a driving field E larger than a critical value of Ecrit =

κ√
2g0

√

|∆|ωM.

The sign of ∆eff(r) will then depend on, and ultimately change with,
the increasing amplitude r of the oscillation since ∆eff = ∆ < 0 at
the roots of J2

0(ηr). With increasing oscillator amplitude r the DC-
component of the cavity occupation and hence (via the Kerr nonlin-
earity) also the shift of the detuning drops. The steady state am-
plitude r0 of the limit cycle is reached when ∆eff(r0) = 0. Using
again approximation (187) the condition ∆eff(r0) = 0 is equivalent to
J0(ηr0) = κ√

2g0E

√

|∆|ωM. Thus, the Kerr nonlinearity smoothes the

transition from cooling to amplification. This is in contrast to models
with a static detuning where a sharp transitions occurs at ∆eff = 0.
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We numerically check the dynamical nature of the detuning by in-
tegrating the equations of motion

α̇ = i(∆ + g0(β + β∗)α − κα + E, β̇ = ig0|α|2 − iωmβ − γβ, (191)

which are the classical analogue to the master equation (106). Fig. 9

illustrates the time dependence of the detuning with an example of a
time evolution where the bare detuning ∆ < 0, so that the limit cycle
amplitude r0 in steady state is determined by the condition ∆eff(r) =

0. Fig. 10 shows that this condition gives a good prediction for r0 as
a function of ∆.

An approximation similar to equation (190) for the case of a laser
drive close to the first blue sideband, ∆ ≈ ωm, shows that there the
position of the limit cycle does not depend on the exact value of ∆. It
is approximately given by the first root of J1 (ηr). Thus the limit cycle
amplitude is generally smaller on resonance than on the sideband.
We use this observation in Section 4.5, where we will see that a small
limit cycle amplitude is favorable for the occurrence of a negative area
in the Wigner function.

4.4 diffusion and fano factor

Having discussed the conditions for a limit cycle to start and having
derived the mean amplitude in steady state for the ∆ ≃ 0 resonance,
we now consider the fluctuations caused by the diffusion D around
this mean value to derive a prediction for the Fano factor

F = (〈n2〉 − 〈n〉2)/〈n〉 = 〈∆n〉2/〈n〉, (192)

which is a measure for number squeezing: For a coherent state the
phonon distribution is Poissonian so that 〈∆n〉2 = 〈n〉 and F = 1.
A state with sub-Poissonian phonon variance can hence be character-
ized by F < 1.

We will use the term Fano factor in the context of limit cycles as fol-
lows: For generic parameters an optomechanical system can exhibit
several limit cycles, such that the Fano factor of the full density matrix
typically is larger than one. The oscillations at each of these attractors
are metastable, such that it is possible to consider the phonon statis-
tics at a particular limit cycle. Especially in the relatively classical
regime where g0/ωm is not too large the cycles will be well separated.
When we refer to Fano factor, we will implicitly always mean the
Fano factor of one particular attractor.

We obtain the mean and variance of the phonon number n via [53]

〈
{

ar(a†)s
}

sym
〉 =

∫

d2αW(α, α∗)αr(α∗)s, (193)

where W(α, α∗) is the Wigner function. We use here the Wigner func-
tion because it gives better agreement with the numerical analysis
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Figure 9: Example of the oscillator time-evolution for the classical equa-
tions of motion, see equation (191), with initial condition r = 0
for ∆ . 0 but ∆eff(r = 0) > 0. Effective detuning ∆eff(t) (a)
with scale on the left (blue) axis, oscillator amplitude r(t) (b) and
DC-shift in position (c) with scale on the right (black) axis. A
positive effective detuning at r ≈ 0 ensures that the limit cycle
starts. With increasing oscillator amplitude the intra-cavity pho-
ton number ∑n |αn|2 from Eq. (129) drops and hence also ∆eff. As
µ ∝ ∆eff, see Eq. (186), the oscillator settles in steady state as soon
as this drop reaches ∆eff = 0. The parameters in this plot are
(E, g0, κE = 2κ, γE = 2γ) = (4.0, 0.05, 0.3, 2 · 10−5)× ωm.

for the statistics of the phonon number than other quasi-probability
distributions. Drift and diffusion coefficients for the Wigner function
are calculated in App. 3.C along the same lines as shown above for
the Q-function. In particular, close to resonance the radial diffusion
coefficient as relevant to the Wigner function is

DW =
γ(1 + 2n̄)

4
+

κg2
0E2

ω4
m

(

J2
1(ηr) +

1
2

ω2
m

κ2 + ∆2
eff

J2
0(ηr)

)

, (194)

where we applied to equation (183) the same approximations as in
Sec. 4.1 for the drift coefficient.

For most amplitudes the J2
0 -term is dominant, as it is enhanced by

at least (ωm/κ)2 over the J2
1 -term. For parameters where the optical

anti-damping is much stronger than the intrinsic mechanical decay, a
curious cancellation of the diffusion occurs in steady state: The limit
cycle will then settle exactly at the first root of J0 as discussed in Sec-
tion 4.3. There the term proportional to J2

1 , which is suppresed by
(κ/ωm)

2, becomes the only relevant term in the diffusion. This sup-
pression is illustrated in Figure 7 b) and can be intuitively explained:
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Figure 10: Amplitude r0 for the first stable limit cycle versus bare detuning
∆. In the limit of an amplitude-independent effective detuning
(red) the values for large amplitudes are predicted correctly. It is
known from [59] that for small amplitudes at the onset of limit
cycles, the amplitude follows a square root (red). With inclu-
sion of the dynamical effective detuning ∆eff(r) (blue) the limit
cycle amplitude r0 follows J0(ηr0) = κ√

2g0E

√

|∆|ωM, both limit-

ing cases are reproduced, and the whole transition between the
regimes of damping and antidamping can be described. In this
figure we compare the predictions with the numerical solution
(dots) of the classical equation. The parameters of this plot are
(E, g0, κE = 2κ, γ) = (0.5, 0.25, 0.3, 0.0)× ωm.

The last two terms in equation (171) (or equivalently (183)) are the
(coherent) squeezing terms. For n = 1 they exactly cancel the corre-
sponding (incoherent) diffusion terms ∝ ∂β∗∂β∗ in leading order and
only the higher order terms in κ2/ω2

m remain. Because of this sup-
pression of diffusion in the sideband-resolved regime one can obtain
a very small Fano factor of the mechanical oscillator, as we show be-
low.

The phase space distribution in steady state is given by Eq. (140).
In the limit of small g0/ωm, where ∆n ≪ 〈n〉, and for the case of
only a single stable limit cycle centered around a position r0 with
µ(r0) = 0, we linearize µ(r) h µ(r0) + µ′(r0)(r − r0) around this r0

and set D(r) ≃ D(r0) so that the corresponding solution for W is
approximately

W(r) ∝ exp
(

− (r − r0)2

2σ2

)

. (195)
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with σ2 = −D(r0)/µ′(r0). One can then derive the approximate ex-
pression F ≃ 4σ2 for the limit ωm/g0 > σ. In the sideband-resolved
regime and with the limit cycle position at the first root of J0 this
gives

F ≃
(

γ(1 + 2n̄)

4
+ ζ

κg2
0E2

ω4
m

)/(

γ

4
+

2κ∆eff(r0)

∆eff(r0)2 + κ2 ζ
g2

0E2

ω3
m

)

, (196)

where ζ ≃ 0.27 is the numerical value of J2
1 at the position of the limit

cycle. The Fano factor is minimal at an effective detuning ∆eff(r0) = κ

where it takes on the value

F ≃
(

γ(1 + 2n̄)

4
+ ζ

κg2
0E2

ω4
m

)/(

γ

4
+ ζ

g2
0E2

ω3
m

)

. (197)

Note first that Eq. (197) implies that the Fano factor is lower bounded
by the sideband resolution

F >
κ

ωm
, (198)

and that this bound is achieved for sufficiently large driving field
E =

√
2κPL/h̄ωL (laser power PL). Furthermore Eq. (197) implies that

the condition for sub-Poissonian statistics 1 > F is exactly equivalent

to g2
0E2

ω3
m

(

1 − κ
ωm

)

>
γn̄
2ζ . This can be interpreted as a condition for the

driving power which for small κ/ωm becomes

PL

h̄ωL
>

ω3
m

4ζκg2
0

γn̄. (199)

It is instructive to express this also in terms of the (thermal, linearized)
cooperativity parameter

C =
4g2

0α2

κγ(2n̄ + 1)
=

8g2
0

ω2
mγ(2n̄ + 1)

PL

h̄ωL
, (200)

where we used that the relevant average intracavity amplitude at the
optomechanical limit cycles is α = α1 ≃ E/ωm, cf. Eq. (130). Condi-
tion (199) then takes the form (in the limit n̄ ≫ 1)

C >
1
ζ

ωm

κ
. (201)

Note that this is essentially a requirement on the linearized optome-
chanical coupling (g ∝ g0E), and not on the coupling per single pho-
ton g0. The condition in Eqs. (199) and (201), and the lower bound in
Eq. (198) are the main result regarding sub-Poissonian phonon statis-
tics.

The possibility of a sub-Poissonian number distribution was dis-
cussed in [66, 67] for the resonance at the first (and higher) blue
sidebands. The prediction of the analytical model is especially good
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for the regime with small g0 that results in larger limit cycle ampli-
tudes. In Figure 11, which compares the Fano factors as derived from
our analytical model and from solving the master equation, the good
agreement can be seen. For larger g0 (not depicted in Figure 11) the
condition necessary for adiabatic elimination is less satisfied and also
the linear approximation (195) gets worse, because ∆n ≈ 〈n〉. Thus
the quantitative agreement gets worse. Still the resonances for F at
∆ ≈ 0, ωm are qualitatively reproduced.

In [66, 67] the Fano Factor has been calculated with a derivation
using the truncated Wigner function approximation and solving the
resulting Langevin equation. If we use the Wigner function as the
phase space distribution, our calculation, which does not rely on this
truncation, gives the same result in the regime where the Kerr param-
eter K is negligible.

For limit cycles with the cavity close to its ground state, different
approaches to treat the Kerr effect have been taken in the literature:
[69] uses the classical part of the Kerr effect, as derived with the stan-
dard master equation approach, to introduce a renormalized detun-
ing with a shift proportional to the cavity occupation. An additional
constant (independent of the cavity occupation) shift of the detuning
by K = g2

0/ωm, was numerically observed in [67] and then introduced
by hand, to match the numerical data. It is one of the main results of
the semi-polaron approach, that the separate Kerr term for the cavity
is naturally derived for limit cycles. It causes exactly the additional
quantum shift of ∆ observed in [67], which is most striking in the
|α| ≪ 1 limit, cf. Eq. (141).

4.5 nonpositive wigner function

Finally we use the Fano factor to predict the occurrence of a negative
area in the Wigner function. For a Fock state the Fano factor F =

∆n2/〈n〉 is of course zero and, except for the vacuum, all Fock states
have a pronounced negativity of the Wigner function. Both F and the
Wigner function are continuous functions of the state ρ. Hence, for a
given mean phonon number n0 there is a critical value Fc, such that
for a state with F < Fc the Wigner function has a negative area. For
a simple set of Ansatz states given by a density matrix diagonal in
Fock basis with Gaussian probability distribution

P(n) ∝ exp
(

− (n − n0)2

V

)

, (202)

we numerically determined the corresponding critical Fano factor Fc.
The result is illustrated in Fig. 12. We use this particular Ansatz,
because the typical steady state density matrix of our problem is ap-
proximately of this form when g0/ωm is not too large. In [67] the
steady state as a Gaussian distribution in Fock states is derived in
more detail.
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Figure 11: Plots A) and B) show the Fano factor F versus (bare) detuning
∆ and bath occupation number n̄. Note that by varying n̄, we
automatically vary the crucial quantity γn̄ appearing in equa-
tions (196) and (197). Plot A) is a plot of the simple analytical
expression (196). Plot B) shows the numerical result obtained
with Monte-Carlo trajectories for 30000 mechanical oscillations.
A) and B) are in good agreement despite the fact that in the pa-
rameter regime considered here some of the approximations are
barely fulfilled. Note that the color scale in the numerical predic-
tion for the Fano factor is slightly shifted up by 0.01, hinting possi-
bly at some additional diffusion process not considered in the an-
alytical model. Plot C) shows the prediction for Wigner function
negativity (defined as the quotient of the most negative and the
most positive value of W) obtained by extrapolating the results
for F from plot B) using the function from Fig. 12. Plot D) shows
the Wigner function negativity as directly extracted from the nu-
merical result of the Wigner function. The fixed parameters in all
plots are (g0, κE = 2κ, γE = 2γ, E) = (0.05, 0.1, 10−7, 1.56)× ωm.
The approximate average number of photons in the cavity is 1.5
in these plots.
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Figure 12: Maximal negativity of the Wigner function (defined as the quo-
tient of the most negative and the most positive value of W) as
a function of the Fano factor F and the mean amplitude r0 for a
phonon distribution as in equation (202). From this plot one can
read of, how small the Fano factor needs to be for a given r0, to
see a negative value in the Wigner function. Implicitly this is also
a requirement on g0 because r0 ∝ ωm

g0
, see Section 4.3.

Figure 12 shows that this threshold Fc is smaller for larger ampli-
tude r0. We infer that in order to see negativity of the Wigner function
in steady state, small limit cycle amplitudes with small Fano factors
are favorable. Applied to the results of [68, 69] this explains the more
favorable condition for negativity at the ∆ ≃ 0-resonance as com-
pared to the ∆ ≃ ωm-resonance, because the limit cycle there has
a smaller amplitude (given by the first root of J0(ηr) as compared
to J1(ηr), as discussed in Section 4.3). Independently of ∆, the am-
plitude scales with the inverse of g0/ωm, such that for a large ratio
g0/ωm a non-positive Wigner function is achieved already for larger
Fano factors. More precisely, we can conclude from Fig. 12 that

Fc ≃ ξr−s
0 , s ≃ 0.6, (203)

where the constant ξ depends on how negative the Wigner function
should be. In order to achieve a ratio of minimal to maximal value of
the Wigner function of e.g. −0.1 this constant is found to be ξ ≃ 0.6.
As a comparison, this negativity ratio can reach (approximately) -2.5
for odd Fock states and -0.4 for even Fock states.
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Since the amplitude of the first limit cycle is r0 ≃ ωm/g0 the con-
dition F < Fc, together with Eqs. (197) and (203), is equivalent to
(ζ ≃ 0.27)

g2
0E2

ω3
m

[

ξ

(

g0

ωm

)s

− κ

ωm

]

>
γ(2n̄ + 1)

4ζ
− ξγ

4ζ

(

g0

ωm

)s

. (204)

Thus, one necessary condition for negative Wigner function is that
the square bracket on the left side is positive. This is a condition on
the single photon optomechanical coupling g0, that can be written
equivalently as both

g0

ωm
>

(

κ

ξωm

)1/s

,
g0

κ
>

1
ξ1/s

(

κ

ωm

)(1−s)/s

. (205)

Note that this condition for the occurrence of a quantum state is
weaker than the condition g0/κ > 1 which had been expected before.

Assuming this condition to be well fulfilled we can drop the second
terms on both left and right hand side of (204) and get the power
requirement

PL

h̄ωL
>

ω3
m

4ξζκg2
0

(

ωm

g0

)s

γ
(

n̄ + 1
2

)

(206)

Note that this is stronger than the requirement (199) for sub-Poissonian
statistics, as one would expect. In terms of the cooperativity (for any
n̄) this becomes

C >
1

ξζ

(

ωm

g0

)s

. (207)

Note also that even for zero temperature, n̄ → 0, there is now a
threshold for the power (cooperativity) in contrast to the condition
for sub-Poissonian statistics. Condition (205) on the strength of the
optomechanical coupling per single photon, and condition (206) (or
(207)) are the main results regarding negative Wigner functions. We
again stress that negative mechanical Wigner density is possible even
outside the single-photon strong-coupling regime, i.e. for paramters
g0 < κ.

4.6 numerical analysis

In this section we compare the predictions from the sections above
with the numerical result for the master equation of Eq. (106). To
do the calculation for large Hilbert space dimension, we applied the
Monte-Carlo wave function method [91, 92, 93] described in Section
2.C.1 as implemented in QuTiP [32, 33], the quantum toolbox for
python. The advantage is that one needs to simulate only wave func-
tions and not density matrices, so that the Hilbert space dimension
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required for the simulation scales only with the number of possible
pure states N instead of N2. In this method the individual trajectory
of an initially pure state is calculated, conditioned on the history of
fictive photon and phonon counters measuring the particles leaking
out of the system. With this knowledge of the environment an ini-
tially pure state stays pure. The density matrix is then retrieved by
averaging over a large ensemble of such conditional states. The en-
semble average can be replaced by the time average for calculating a
steady state density matrix.

Our implementation was done with an adaptive Hilbert space, where
the Fock states are not only limited from above, but also from below
and after each mechanical oscillation the Hilbert space is updated so
that it is centered around the current state. To make sure that not
too much of the Hilbert space is truncated, the number of states to be
used is scaled with the standard deviation in energy of the state in the
previous step. This flexibility of the Hilbert space during the calcu-
lation allows to run the simulation without much a priori knowledge
of the steady state and even fewer basis states are required.

The solution is obtained in the following steps: For speed up of
the calculation, the initial state is chosen to be a coherent state with
an amplitude close to the expected steady state. It is then evolved
for some period until at a time t0 the conditional state’s amplitude
and Fano factor stop to drift and only fluctuate. We then make use
of the fact, that in steady state the time average corresponds to the
ensemble average, and calculate the steady state of the oscillator as

ρM =
∫ t0+T

t0

trc (|ψt〉〈ψt|)dt, (208)

where |ψt〉 is the conditional state at time t, and T spans many me-
chanical oscillations.

This procedure is performed many times in parallel on a cluster
and the resulting matrices ρM are averaged. The deviation of the
individual ρM provides an error estimate for the method. As a fur-
ther benchmark and control, we also calculated the steady state with
the biconjugate gradient steady-state solver from scipy [94], which is
however limited to a comparably small Hilbert space dimension.

The algorithm described above allows for the first time to numeri-
cally study optomechanical limit cycles in the experimentally relevant
regime of large amplitudes of the mechanical oscillator (as caused by
a relatively small g0/ωm) and with more than only a few photons in
the cavity. In previous studies the question was posed whether the
analytical theory can be applied to this regime [67] and if the non-
classical features survive [69] for more than one photon in the cavity.
We answer this question affirmative: Fig. 13 shows an example of
a Wigner function in this regime with small Fano factor and some
negative density.
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Figure 13: Radial part of a Wigner function for parameters with high ampli-
tude and many photons (〈a†a〉 ≈ 8) in the cavity featuring a very
small Fano factor (F = 0.07) and some negative density. The pa-
rameters are (g0, κE = 2κ, γ, E, ∆) = (0.033, 0.1, 0., 3.5, 0.03)× ωm.
The blue and red line are the result of two independent runs (each
averaging 5000 mechanical oscillations) of the Monte-Carlo based
steady state solver.

Strictly speaking the steady state calculated here is only metastable
if γ is so small that there is more than one attractor for the limit cycle,
cf. Fig. 7. The timescale for switching between different attractors
is much longer than the time to relax in a given metastable steady
state. Thus it is not considered in this thesis. In order to choose the
metastable attractor for the numerical simulation, we choose an ini-
tial state in the vicinity of our preferred attractor, in this case the limit
cycle with lowest possible amplitude. Also in the analytical expres-
sions for the Fano factor, we always treat possibly metastable states
as steady states. For very large g0/ωm different metastable attractors
start to merge and the analysis becomes more involved. This merg-
ing of attractors and its effect on nonclassical features was studied in
detail by [69].

4.7 conclusions

In this chapter we studied quantum limit cycles of the standard op-
tomechanical system tuned near resonance and found the simple an-
alytical expression (196), that predicts the possibility of very small
values for the Fano factor F of the mechanical oscillator. We found
that in the sideband resolved regime a large value of g2

0E2/ω3
mγn̄, i.e.

a large linearized optomechanical coupling, is required to minimize F.
We found that it is possible to create a negative mechanical Wigner

function in steady state even outside the single-photon strong-coupling
regime. (i.e. for parameters g0 < κ.) Particularly, we established a re-
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lation between sub-Poissonian phonon statistics and negativity of the
Wigner density for typical parameters of limit cycles: The oscillator’s
steady state has an approximately Gaussian number distribution at
each metastable limit cycle. For these states the requirement on F to
see negativity of the Wigner function is given by the function plotted
in Figure 12.

Using a Monte-Carlo method with an adaptive Hilbert space, we
numerically checked this scaling even for limit cycles with very large
amplitude and many photons in the cavity, where an ordinary steady
state solver cannot be applied. The numerical simulation depicted
in Figure 11 show that indeed the criterion of a small Fano factor
can predict the negativity of the Wigner function. For currently more
feasible experimental parameters with even smaller g0/ωm, the nega-
tivity disappears according to Fig. 12, but the very small Fano factors
remain.



5
S U B - P O I S S O N I A N P H O N O N L A S I N G I N
T H R E E - M O D E O P T O M E C H A N I C S

5.1 introduction

As discussed in the previous chapter 4, theoretical work suggests
that for optomechanical limit cycles in the standard optomechani-
cal setup (with one mechanical and one optical mode) it is possi-
ble to prepare a state with quantum signatures in the phonon statis-
tics such as phonon antibunching and even negative Wigner density
[66, 67, 68, 69, 1, 95]. Notably, this is possible even for parameters
outside the single-photon strong-coupling regime. In such setups the
laser must be operated at a detuning from the cavity resonance on
the order of the mechanical resonance frequency ωm in order to ex-
cite limit cycles at all. Therefore all relevant processes are suppressed
by a factor 1/ωm, which is reflected in the scaling of the optomechan-
ical nonlinearity with g0/ωm (cf. Figure 7 from chapter 4), as well as
the unfavorably scaling of the requirements for sub-Poissonian statis-
tics with ωm (cf. equation (201) from chapter 4). On the other hand,
a large value of ωm is desireable to have a low occupation number of
the phononic bath and to stay in the sideband resolved regime.

In this chapter we propose to make use of the enhanced optome-
chanical nonlinearity [96, 97, 98] of a setup with a second optical
mode directly supporting the laser frequency to overcome the unfa-
vorable 1/ωm scaling and prepare phonon laser states featuring anti-
bunching in steady state with state of the art optomechanical crystals.
The enhanced nonlinearity has been discussed in the context of de-

tectors for phonons or photons [97], quantum memories [99], and
to improve [98] the parameters of mechanically induced photon anti-
bunching [73, 74]. In the context of the phonon laser transition the en-
hanced optomechanical instability with two optical modes has been
anticipated as a possible complication for gravitational wave detec-
tors [100], and has been studied experimentally [23, 24, 25, 26, 27, 101]
and theoretically [102, 103, 104, 105, 106, 107] in the classical regime.
Here we show for the first time that one can detect quantum signa-
tures in the phonon lasing of such a three-mode system. In particular
antibunched statistics of the phonon number (n̂ = c†c), as commonly
characterized by a Fano factor F = 〈∆n̂2〉/〈n̂〉 < 1, and a second
order coherence function g(2)(t) at time t = 0,

g(2)(0) = 〈c†c†cc〉/〈n̂〉2 = 1 + (F − 1)/〈n̂〉 < 1, (209)

can be prepared in steady state. With more demanding system re-
quirements, even a negative mechanical Wigner density can be achieved.

75
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Figure 14: left: Two optical modes a and b are coupled to a mechanical
mode c. The b-mode is resonantly driven by a laser of strength
E and frequency ωL = ωb. The a-mode is detuned from b by
∆ = ωm, the mechanical resonance frequency, as depicted in the
plot on the right. The nonlinear interaction of the three modes
a, b, and c gives rise to optomechanical limit cycles with strongly
sub-Poissonian phonon number statistics. A third optical mode
d can be used to reduce the effective temperature of the mechan-
ical oscillator’s bath and to read out the phonon statistics in a
Hanburry-Brown-Twiss measurement.

5.2 system description

We study the optomechanical setup depicted in Fig. 14. Two optical
modes a and b couple to a mechanical mode c via the three-mode
interaction Hamiltonian V = g0(ab† + a†b)(c + c†),where g0 is the
single photon optomechanical coupling strength and a, b, c are the
lowering operators of the different modes. Such an interaction has
been implemented in Refs. [23, 24, 25, 26, 27, 101]. The optical mode
b is resonantly driven with a laser of power P , which we parametrize
with E =

√
κP/h̄ωb (κ is the cavity line width, and ωb the resonance

frequency of mode b). The other optical mode a is detuned with
respect to cavity mode b and the driving laser by ∆, and the mechan-
ical frequency is ωm, so that the Hamiltonian in a rotating frame for
both cavities with frequency ωb is H = H0 + V + iE(b† − b) with
H0 = ωmc†c − ∆a†a.

Depending on the sign of the laser detuning, the laser either cools
the mechanical mode (∆ < 0) , or gives rise to self-induced mechan-
ical oscillations (∆ > 0). In the latter regime the intrinsic nonlinear-
ity of the three-mode optomechanical interaction V stabilizes the me-
chanical oscillation at a finite amplitude [101]. We choose a detuning
∆ = ωm between the two cavities which corresponds to a resonant
excitation of optomechanical limit cycles. In an interaction picture
with respect to H0 the Hamiltonian is

HI = iE(b† − b) + g0(ab†c + a†bc†). (210)

We neglected here fast oscillating terms e2iωmtg0ab†c† + h.c., assuming
a cavity decay rate of κ ≪ ωm for both cavities (the corrections are
of order κ2/ω2

m, i.e. negligible for typical optomechanical crystals.).
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In the framework of Langevin equations the system dynamics is then
described by

ȧ = −ig0bc† − κ
2 a +

√
κain, ḃ = −ig0ac − κ

2 b + E +
√

κbin, (211)

ċ = −ig0a†b − γ
2 c +

√
γcin, (212)

where 〈ain(t)a†
in(t

′)〉 = 〈bin(t)b
†
in(t

′)〉 = δ(t − t′) and 〈cin(t)c
†
in(t

′)〉 =
(1+ n̄)δ(t− t′) are the two-time correlation functions of the Langevin
noise forces. We assumed energy decay of the mechanical oscillator
at rate γ, due to coupling to a thermal thermal bath with mean occu-
pation n̄. We adopt the convention from the review [14] that κ and
γ are energy decay rates. Correspondingly, amplitudes decay at κ/2
and γ/2.

5.3 calculation of classical amplitudes

We express each operator as a sum of a classical (C-number) com-
ponent and an operator describing fluctuations around it, such that
a = α+ δa, b = β+ δb and c = ζ + δc. Inserting this into the Langevin
equations, and considering the C-number components only, gives rise
to a coupled set of nonlinear equations for the classical cavity ampli-
tudes α and β, and the (complex) mechanical amplitude ζ. In partic-
ular one finds

α̇ = −ig0βζ∗ − κ
2 α, β̇ = −ig0αζ − κ

2 β + E. (213)

We assume that the optical amplitudes adiabatically follow the mo-
tion of the mechanical oscillator which is equivalent to the conditions
(n̄ + 1)γ, g0|α|, g0|β| ≪ κ. Solving α̇ = β̇ = 0 results in the adiabatic
solution for the optical amplitudes

β(ζ, ζ∗) =
Eκ

2hζ
, α(ζ, ζ∗) = −i

Eg0ζ∗

hζ
, (214)

where hζ = g2
0|ζ|2 + 1

4 κ2. Inserting these optical amplitudes in the
equation of motion for the classical mechanical amplitude results in
ζ̇ = − 1

2 (γ + γopt)ζ, where the optically mediated (anti)damping is

γopt(ζ) = − g2
0E2κ

h2
ζ

, (215)

cf. Fig. 15a. γopt is negative for all mechanical amplitudes and its ab-
solute value decreases with increasing amplitude ζ according to the
Lorentzian given by h2

ζ , approaching 0 for ζ ≫ κ/g0. In agreement
with [101] we define the dimensionless parameter R = |γopt(0)|/γ =

16g2
0E2/κ3γ, which corresponds to the gain of mechanical amplifica-

tion at zero mechanical amplitude. For R < 1 the total mechani-
cal damping γ + γopt(0) > 0 is positive for all amplitudes, implying
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ζ = 0 in steady state. Above threshold, R > 1, the steady state (ζ̇ = 0)
is achieved for a mechanical amplitude ζ0 such that γopt(ζ0) = −γ,
cf. Fig. 15a. The solution of this nonlinear equation is

|ζ0|2 =

(

κ

2g0

)2
(√

R− 1
)

. (216)

The solution is unique (up to the oscillator’s phase, where we choose
ζ0 = |ζ0|, without loss of generality) and fully determined by the
gain parameter R and the single-photon strong-coupling parameter
2g0/κ. It is instructive to contrast this result with the equivalent
one for a conventional two-mode (one mechanical and one optical
mode) optomechanical system where the mean phonon number of
self-induced limit cycles scales as the inverse of the much smaller ra-
tio (g0/ωm)2 instead, cf. equation (190) and following from Chapter
4, as well as Figure 7 from the same chapter. In view of Eq. (209) it
is clear that a small oscillation amplitude is advantageous in order
to observe strong antibunching and that the three mode setup im-
proves the signal approximately by a factor of 4(ωm/κ)2. This can
be two orders of magnitude for typical system parameters of optome-
chanical crystals, e.g. 4(ωm/κ)2 = 217 with κ/2π = 500MHz and
ωm/2π = 3.68GHz from [16].

5.4 calculation of quantum amplitude noise

The fluctuations δa, δb, and δc with respect to these classical ampli-
tudes fulfill the linearized Langevin equations

δȧ =
(

− κ
2 δa − ig0ζ0δb

)

− ig0β0δc† +
√

κain, (217)

δḃ =
(

− κ
2 δb − ig0ζ0δa

)

− ig0α0δc +
√

κbin, (218)

δċ = −γ
2 δc − ig0(α

∗
0δb + β0δa†) +

√
γcin, (219)

where we consistently dropped all terms of quadratic order in the
fluctuations. This approximation is only valid for large enough am-
plitudes. We also introduce here the shorthand notation (α0, β0) =

(α(ζ0), β(ζ0)) for the cavity amplitudes in the developed mechanical
limit cycle. The quantum fluctuations of the cavity modes can now
be treated in analogy to the classical amplitudes simply by setting
δȧ = δḃ = 0 and solving the resulting algebraic equation. Inserting
the solutions for δa and δb back into Eq. (219) gives the dynamics for
the mechanical mode δc. For the canonical mechanical quadratures
X =

(

δc + δc†
)

/
√

2 and Y =
(

δc − δc†
)

/
√

2i, cf. Fig. 15 c), we get
effective Langevin equations

Ẋ = − 1
2 ΓX +

√
DXN , Ẏ =

√
DYN , (220)
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Figure 15: (a) Optically mediated (anti)damping γopt(ζ) (bold line) as a func-
tion of mechanical amplitude ζ according to equation (215). The
steady state ζ0 is reached when γopt(ζ0) = −γ (dashed line). (b)
Intra cavity photon number |α|2 in mode a (blue dashed line),
|β|2 in mode b (red dash-dotted line) and total photon number
ncav = |α|2 + |β|2 (black solid line) is plotted as a function of me-
chanical amplitude ζ according to equation (214). The optically
induced diffusion Dopt = g2

0
κ
2 (|α|2 + |β|2)/hζ of the mechanical

oscillator scales exactly like the red dash-dotted line with a scale
as given on the right y-axis. (c) Schematic phase space trajectory
of the mechanical oscillator approaching the limit cycle attractor
with amplitude ζ0. In the co-rotating frame of the oscillator the
X quadrature relates to its amplitude and the Y quadrature to its
phase.

with damping Γ, diffusion D and noise forces with two-time correla-
tors 〈XN(t), XN(t

′)〉 = δ(t − t′) and 〈YN(t), YN(t
′)〉 = δ(t − t′). Both

damping

Γ = γ + Γopt(ζ) (221)

and diffusion

D = γ( 1
2 + n̄) + Dopt(ζ) (222)

have an intrinsic mechanical constant contribution and an optically
mediated nonlinear (ζ-dependent) contribution. We find that Dopt(ζ) =

g2
0

κ
2 (|α|2 + |β|2)/hζ at the point of the limit cycle is exactly as large

as the vacuum contribution of the mechanical bath, i.e. Dopt(ζ0) =
γ
2 ,

but Γopt(ζ0) = γ(3− 4/
√
R) can grow up to three times the mechani-

cal damping for large R. In total the damping and diffusion depicted
in Fig. 15 a) and b) are at the limit cycle

Γ(ζ0) = 4γ(1 − 1/
√
R), D(ζ0) = γ(n̄ + 1). (223)
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As schematically depicted in Fig. 15 c), in our convention the Y-
quadrature relates to the phase of the mechanical oscillator, which is
subjected to undamped diffusion, cf. Eq. (220). The X-quadrature
relates to the mechanical amplitude, which is our focus of interest.
In particular for the phonon occupation number n̂ = c†c one finds
〈n̂〉 = ζ2 + O(ζ0) and 〈n̂2〉 = ζ4 + 2ζ2〈X2〉 + O(ζ0), such that the
Fano factor is F ≃ 2〈X2〉. Eq. (220) gives 〈X2〉 = D/Γ in steady
state, i.e. the amplitude variance is determined by the compromise of
diffusion and effective damping, yielding for the Fano factor

F =
1
2

1 + n̄

1 − 1/
√
R

. (224)

This is in excellent agreement with numerical results shown in Figure
17 a) that were obtained by Monte-Carlo simulation (see Appendix
5.A) of a master equation equivalent to the exact, nonlinear equations
of motion in Eqs. (211) to (212).

From Eq. (224) we see that for R ≫ 1 the Fano factor approaches
(1+ n̄)/2. Therefore, we arrive at the condition n̄ < 1 necessary in or-
der to observe sub-Poissonian phonon statistics. For a cryogenically
cooled mechanical oscillator n̄ = 1/(eh̄ωm/kBT − 1) < 1 can in princi-
ple be achieved for a sufficiently high resonance frequency and at low
temperature T, see [108, 109]. However, in the present case it is pos-
sible to take advantage of laser cooling of the mechanical oscillator
[75, 110] in order to observe sub-Poissonian statistics.

5.5 additional laser cooling

Consider a setup where the mechanical oscillator is coupled to a third
optical cavity of line width κd which is driven below resonance such
as to induce an additional damping γL of the oscillator. Eliminat-
ing this cooling cavity gives rise to a ‘dressed’ mechanical oscillator
whose equation of motion is still given by (212) with an effective me-
chanical damping and occupation number

γ = γ0 + γL, n̄ =
γ0n̄0 + γLn̄L

γ0 + γL
, (225)

cf. equation (36) and following from Section 2.1.5. Here γ0 is the
line width and n̄0 the occupation number of the bare mechanical res-
onance (without laser cooling), and n̄L = (κd/4ωm)2 is the quantum
limit of optomechanical laser cooling [75, 110].

In order to have F < 1 we assume laser cooling to an effective
phonon occupation n̄ < 1. This comes at the cost of a decreased gain
parameter R = 16g2

0E2/κ3(γ0 + γL), which can be compensated for
by a somewhat more intense driving field. It is rather remarkable
that laser cooling can help to observe a quantum feature such as sub-
Poissonian phonon statistics: While laser cooling can provide a small
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Figure 16: (a) Fano factor as a function of effective mechanical bath oc-
cupation number n̄ and total number of photons in the cav-
ity nph[κγ/4g2

0] =
√
R according to Eq. (224). (b) Plot of

(g(2)(0) − 1)[(g0/κ)2] as a function of the same parameters in
units of the squared single-photon strong-coupling parameter
(g0/κ)2 according to Eqs. (226) and (227). The condition for both
sub-Poissonian statistics (F < 1) and antibunching (g(2)(0) < 1)
is visualized by the red contour line n̄ = 1− 2/

√
R in both plots.

(c) Plot of g
(2)
opt(0) for optimal choice of R as a function of g0/κ

and n̄ according to Eq. (228).

effective occupation number n̄ ≪ n̄0 it does so by increasing the ef-
fective mechanical line width γ ≫ γ0 by the same factor. As a result,
the decoherence rate relevant for quantum effects, γ0n̄0 = γn̄, stays
constant, such that laser cooling in most cases does not help in order
to achieve quantum effects with mechanical oscillators.

5.6 experimental feasibility

The requirements on the system parameters to have g(2)(0) < 1 (and
therefore F < 1) is found by inserting the mean amplitude (216) and
the Fano factor (224) in the definition (209) of g(2)(0),

g(2)(0)− 1 = 4
( g0

κ

)2 F − 1√
R− 1

. (226)

For the discussion of experimental feasibility it is more instructive
to express the gain parameter R in terms of the steady state total
number of photons in the cavity nph = |α0|2 + |β0|2 = κγ

4g2
0

√
R, where

we used Eqs. (216) and (214). The circulating number of photons
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is important as it determines the heating of the mechanical struc-
ture, which was the limiting decoherence mechanism in recent ex-
periments with optomechanical crystals [16]. In Fig. 16 (a) and (b) we
show the Fano factor F and g(2)(0)− 1 (in units of g2

0/κ2) as a function
of the number of photons in the cavity nph and the effective mechani-
cal bath occupation number n̄. In view of the dependence of the Fano
factor and the second order coherence function on R, cf. Eqs. (224)
and (226) respectively, it is clear that there is an optimal number of
circulating photons minimizing g(2)(0) for given n̄ and single photon
strong coupling parameter g0/κ. The minimum is reached at

nph
[

κγ/4g2
0

]

= (3 + n̄)/(1 − n̄) (227)

and is given by

g
(2)
opt(0) = 1 − 1

2

( g0

κ

)2 (1 − n̄)2

(1 + n̄)
, (228)

which is illustrated in Fig. 16c. Thus, a large single-photon coupling
helps, but is not strictly required, to create a robust signal to ver-
ify antibunching. We conclude that a sub-Poissonian phonon laser
state can be prepared and verified outside the single-photon strong-
coupling regime and for small but finite effective (cf. Eq. (225)) bath
occupation n̄ by detecting photon antibunching in the reflected light.
We emphasize that phonon antibunching can be observed already in
a regime of few circulating photons nph ≪ 1.

5.7 readout of phonon statistics

The readout of the – possibly antibunched – phonon statistics can be
implemented in analogy to [30] using the cooling laser mode d. In
the sideband resolved (κd ≪ ωm) and linear (gdζ ≪ ωm) regime the
dynamics of laser cooling can be understood as a continuous coher-
ent state swap interaction cd† + c†d [17, 18]. The phonon statistics
of d can then be measured by counting the photons in the output of
the cooling cavity d at the sideband frequency +ωm [30]. Hence with
this readout scheme phonon antibunching is detected via photon an-
tibunching.

Note that detection losses of an experiment do not alter the mea-
sured second order coherence function, as both its numerator 〈c†c†cc〉
and denominator 〈n̂〉2 scale with the detection efficiency squared. Ad-
ditional noise counts however, mostly caused by dark counts from the
detector and carrier photons leaking through the frequency filter, will
bring g(2)(0) closer to one. In [30] the noise equivalent-phonon num-
ber nNEP, defined as the ratio of noise counts and sideband counts
per phonon, was limited by nNEP = 0.89. Using an additional filter to
decrease the carrier bleed through, the authors of [30] even expect to
improve this value by a few orders of magnitude. We conclude that
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ba

Figure 17: (a) Comparison of analytical results (black solid line) from Eq.
(224) to numerical results for Fano factor F with increasing
g0/κ = 0.25, 0.5, 1. (square, diamond, circle). The parameter
g0E/κ2 = 0.04 is fixed to stay well inside the regime of valid-
ity of the adiabatic elimination. In this plot n̄ = 0 but for fi-
nite temperature the agreement of numerics with Eq. (224) is
equally good. (b) Negativity (quotient of smallest largest value)
of the mechanical oscillator’s Wigner function in steady state cal-
culated with QuTiP’s steady state solver. The bath occupation
is n̄ = 0.25, 0.5, 1, 2 for the increasing curves. The driving field
E = 0.07κ is constant in both plots, to stay well in the regime of
nph ≪ 1 for numerical simplicity. Each point in (b) is optimized
over R by varying γ.

a phonon statistics readout that does not significantly alter g(2)(0) is
feasible.

Currently the highest reported value for the coupling in optome-
chanical crystals is g0/2π = 1.1 MHz [111]. The lowest cavity decay
rate in a photonic crystal is, to our knowledge, κ = 20MHz [112].
While the best ratio achieved in a single device is g0/κ = 0.007
[16], combining the best values in one device would already reach
g0/κ ≈ 0.055. The lowest reported effective bath occupation reached
with optomechanical cooling is n̄ = 0.85 [16], using a dilution re-
frigerator mechanical oscillators have even been cooled down below
n̄ < 0.07. Assuming a slightly more optimistic g0/κ = 0.1, an ef-
fective environmental temperature of 200 mK and a mechanical fre-

quency of 5GHz the deviation of g
(2)
opt(0) from 1 according to Eq. (228)

will be 2.5 per mille. Further improvements on g0 and κ are expected
using new designs and fabrication methods, so that reaching a signal

of g
(2)
opt(0)− 1 on the order of a few per cent is a realistic prospect for

the near future, cf. Fig. 16.

5.8 outlook and conclusion

Our linearized model is strictly valid only for g0/κ ≪ 1. We can
however expect qualitative agreement to some extend even for larger
g0/κ. The deviation of F from equation (224) in this regime are plot-
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ted in Fig. 17a. Strongly sub-Poissonian states with small limit cycle
amplitude 〈n̂〉 feature a negative Wigner function [1]. As discussed
above 〈n̂〉 ∼ (κ/g0)2 . It is therefore reasonable to expect negative
mechanical Wigner density with g0/κ approaching the single-photon
strong-coupling regime. As depicted in Fig. 17b we confirm this nu-
merically. All numerical calculations were done with QuTiP [32, 33],
see Appendix 5.A.

Using an optomechanical setup with two optical modes brings ex-
perimental demonstration of both sub-Poissonian phonon statistics
and optomechanically induced phonon and photon antibunching in
reach of today’s technology. For parameters approaching the single-
photon strong-coupling regime the limit cycle states can even feature
a negative mechanical Wigner function.
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5.a phonon statistics and numerical analysis

The phonon statistics is commonly characterized by the Fano factor

F = 〈∆n̂2〉/〈n̂〉, (229)

and the second order coherence function g(2)(t) at time t = 0,

g(2)(0) = 〈c†c†cc〉/〈n̂〉2 = 1 + (F − 1)/〈n̂〉, (230)

which gives information on the temporal correlations of the phonons.
( g(2)(0) > 1 and g(2)(0) < 1 corresponding to bunching and anti-
bunching respectively [113].) The Fano factor F can be inferred from
g(2)(0) through (209), and F smaller/greater than 1 also indicates
sub/super-Poissonian statistics. In [30] g(2)(0) ≈ 1 was achieved,
verifying the coherent nature of the mechanical oscillations in their
setup. For comparison, the Poissonian statistics of a (classical) coher-
ent state imply F = 1 and g(2)(0) = 1, while a thermal state would
have g(2)(0) = 2.

Numerically we calculated the steady state of the system using
QuTiP [32, 33], the Quantum Toolbox in Python. For Fig. 4b, where
the mechanical amplitudes are small due to the large g0/κ, the Hilbert
space has moderate size and we used a direct steady state solver for
density matrices. For Fig. 4a the Hilbert space is (in general) too large
for this and we had to use Monte-Carlo trajectories [92, 91, 93] de-
scribed in Section 2.C.1 for the wave function and average over many
runs to obtain a density matrix. Each trajectory |ψj(t)〉 had a coherent
state with random, independent and identically distributed Gaussian
amplitudes, ξ j ∼ N (ζ, 1) around the analytical steady state ampli-

tude ζ0 (fulfilling |ζ0|2 =
(

κ
2g0

)2 (√
R− 1

)

, cf. the main text) as

initial state for the oscillator. Coherent states with amplitudes given

by the best analytical result, β0 = Eκ
2hζ0

, α0 = −i
Eg0ζ∗0

hζ0
, were chosen

as initial state for the optical modes. The system was then evolved
according to the master equation

ρ̇ = −i[H, ρ] + Lρ (231)

with the Hamiltonian

HI = iE(b† − b) + g0(ab†c + a†bc†) (232)
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and the Lindblad operator L = La + Lb + Lm, where

Laρ = κaρa† − κ
2 a†aρ − κ

2 ρa†a (233)

Lbρ = κbρb† − κ
2 b†bρ − κ

2 ρb†b (234)

Lm = γcρc† − γ
2 c†cρ − γ

2 ρc†c. (235)

The calculation for each trajectory was done in a displaced frame
around the (analytically expected) mean amplitude of the mechanical
oscillator and cavity modes, in order to reduce the required numerical
Hilbert space dimension. Finally we averaged after an evolution time
τ over all trajectories to obtain a density matrix σ = ∑j |ψj(τ)〉〈ψj(τ)|.
With this density matrix we calculated the mean values 〈n̂〉σ and
〈n̂2〉σ, which in turn give the Fano factor F and the second order co-
herence function g(2)(0) according to equations (229) and (209). The
evolution time was chosen as τ = 5/γ so that both mean values 〈n̂〉σ

and 〈n̂2〉σ had already relaxed to steady state while the phase has still
not diffused away too far from ζ0. In this time frame a small Hilbert
space around the mean mechanical amplitude was sufficient for the
simulation.
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P H O T O N R E C O I L S P E C T R O S C O P Y

6.1 introduction

Ion traps are ideal systems for spectroscopy experiments, as they al-
low to efficiently cool the motion of many atomic species so that
Doppler broadening is drastically reduced. The motional state of
ions with closed transitions, allowing for resolved sideband cooling,
can even be cooled down to its quantum ground state. While ions
or molecules without closed transitions cannot be sideband cooled
directly, as the internal state would soon decay to a state invisible
to the cooling laser, they can be cooled indirectly via a co-trapped
ion (logic ion) with a closed transition: The spectroscopy ion’s energy
is transferred via Coulomb interaction to the logic ion, where it is
dissipated by laser cooling.

Quantum logic spectroscopy [47] is a technique that allows to read
out the spectroscopy signal of such an indirectly cooled ion via the
logic ion: The excitation of the spectroscopy ion is transferred via the
motional coupling to the logic ion, where it can be read out via elec-
tron shelving. For a spectroscopy transition with a short lifetime this
transfer can take too long to faithfully transfer the signal. For this sit-
uation a modification of the quantum logic spectroscopy protocol was
recently demonstrated [3], allowing for high precision spectroscopy
of broad transitions.

In this photon recoil spectroscopy experiment the open transition of
the spectroscopy ion is driven by a short laser pulse. Due to the recoil
of the photon on the spectroscopy ion, a small momentum is trans-
ferred to the center of mass motion of the ion crystal. In contrast to
the fast decay rate of the spectroscopy transition, the motional damp-
ing is negligible so that this signal does not decay on the timescale of
the experiment. A series of n such identical pulses is periodically ap-
plied after each ion crystal oscillation so that the recoil momenta res-
onantly add up to a measurable signal. Finally the motional ground
state probability P(n) is transferred to the logic ion, where it can be
read out. The photon recoil spectroscopy sequence is illustrated in
Figure 18.

Varying the spectroscopy laser frequency ωL a resonance curve is
obtained to determine the transition’s resonance ωr. It turns out that
because of the transition’s momentum-dependent Doppler shift, this
curve is not perfectly symmetric around ωr. Using the standard two
point sampling method explained in Figure 19, which measures both
on the left and the right slope of the curve, this asymmetry leads to

89
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Figure 18: Illustration of Photon Recoil Spectroscopy sequence:
A) A motional mode of the ion crystal, consisting of the spec-
troscopy ion (left) and the logic ion (right), is cooled to its ground
state using the logic ion’s closed transition. B) A periodic se-
quence of spectroscopy pulses synchronized with the oscillation
period of the normal mode is applied to the spectroscopy ion, ex-
citing the ions’ motion. The maximal signal is achieved with a
laser frequency ωl = ωr matching the resonance frequency. C)
Using a red sideband pulse the ion crystal’s motional excitation
is transferred onto the logic ion. D) The spectroscopy signal is ob-
tained via electron-shelving detection of the logic ion’s internal
state.

a systematic shift of the result. In this chapter we provide a careful
theoretical analysis of the system dynamics to correctly determine ωr

from the resonance curve.

6.1.1 Two point sampling method

The experiment is performed for a fixed number of oscillations n0

at varying laser frequency ωl in order to determine the resonance
frequency ωr, where the excitation probability P(ωl , n0) has its maxi-
mum. As P does not change much 1 as a function of ωl for ωl − ωr ≈
0, the signal from a direct maximization of P would be very weak. A
better signal is obtained by finding the two frequencies ωl,+(PM) >

ωl,−(PM) as a function of the threshold value PM, where P(ωl±, n0) =

PM. As the signal ∂ωl
P is usually maximal at PM = 0.5, this is the

most common choice. For a symmetric line shape, the resonance fre-

1 Formally, the first derivative is zero at the maximum.
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Figure 19: Illustration of the two point sampling method to determine the
maximum of a resonance curve P(ωl). The blue solid curve is
symmetric around the resonance frequency ωr. In the drawn ex-
ample the purple marks indicate where the curve falls below a
threshold of, in this example, PM = 0.2 on the red side (ω−) and
on the blue side (ω+) of the resonance, where the measurement
data is taken. The average (indicated by a circle) at (ω+ + ω−)/2
is exactly at ωr due to the symmetry of the curve for any value
of PM. Best results are achieved for PM chosen such that the sen-
sitivity of ω± on P is maximized. This maximal slope of ∂ωl

P is
typically achieved around the half value PM ≈ 0.5.
The systematic shift arising for asymmetric line shapes is illus-
trated at the red dashed curve, which is resonant at the same fre-
quency ωr. The same two point sampling procedure then results
in a shifted estimate for the resonance frequency, which even de-
pends on the choice of the threshold value PM, as shown by the
green marks taken at PM = 0.8 and PM = 0.4.

quency can be determined by averaging, i.e. ωr = (ωl+ + ωl−)/2,
as illustrated in Figure 19. In the photon recoil spectroscopy exper-
iment this two point sampling method generates a systematic shift
δωr = (δωl+ + δωl−)/2, as the line shape is asymmetric due to the
Doppler effect, which we explain in the following section.

6.2 the theoretical model

In analogy to Section 2.2.3, we theoretically model the experiment
in terms of a master equation ρ̇ = Lρ for the density matrix ρ of
the system (consisting of the spectroscopy ion’s internal energy levels
and a mechanical mode of the ion crystal) with a Lindblad operator
L = Lm + La + Ll , where Lm,La,Ll are detailed below. Restricting
the model here to the selected normal mode, the ion crystal motion
can be effectively described as one mechanical mode b with reference
frequency ν and negligible coupling to the environment, thus the
Lindblad operator for this degree of freedom is

Lmρ = −i
[

νb†b, ρ
]

. (236)
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We describe the spectroscopy ion as an effective two level system with
ground state |g〉 and excited state |e〉 so that its Lindblad operator in
a rotating frame for the transition at the laser frequency is

Laρ = −i

[

−∆

2
σz, ρ

]

+ ΓD[σ−]ρ, (237)

where ∆ = ωl − ωr is the detuning of the laser with respect to the res-
onance, Γ is the linewidth of the spectroscopy transition, the Pauli ma-
trices are denoted with σ and D[σ−]ρ = σ−ρσ+ − 1

2 σ+σ−ρ − 1
2 ρσ+σ−.

The interaction between the internal and the motional degree of free-
dom can be turned on by the spectroscopy laser and is described by

Llρ = −i

[

Ω

2
σ− exp

(

−iη(b + b†)
)

+ h.c., ρ

]

, (238)

where Ω parameterizes the laser amplitude and η is the Lamb-Dicke
parameter. Each of these short laser pulses of duration τ is followed
by a period T − τ of free motion where Ll = 0 so that the time
evolution is synchronized to the mechanical oscillation period T =

2π/ν.

6.3 equation of motion in phase space

It is convenient to switch for the mechanical mode to a phase space
distribution along the lines of the framework introduced in Section
2.B.2 and Chapter 3 in order to derive a Fokker-Planck equation for
its dynamics during the pulse. We choose here to work with the
Wigner distribution W(x, p) in the following, with the convention
that x̂ = 1√

2
(b + b†) is the position and p̂ = − i√

2
(b − b†) is the

momentum of the normal mode. The object

w(x, p) =
1
π

∫

dy〈x + y|ρ|x − y〉e−2iyp (239)

is a density matrix for the internal state, which depends on the me-
chanical oscillator’s position in phase space. The states of both sepa-
rate systems can be retrieved as

W(x, p) = Tra (w(x, p)) (240)

for the mechanical mode and

ρa = Trb (ρ) =
∫

w(x, p)dxdp (241)

for the internal state. To obtain the equation of motion for w(x, p) we
use the translation rules

b̂ρ →
(

β +
1
2

∂

∂β∗

)

w, b̂†ρ →
(

β∗ − 1
2

∂

∂β

)

w. (242)
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from Section 2.A. Defining the scaled Lamb-Dicke parameter as η̄ =√
2η, the terms e±iη(b+b†)ρ exactly translate to e±iη̄(x+ i

2 ∂p)w, which
we approximate by neglecting all terms of higher than first order in
η̄∂p. While this approximation is motivated because the higher order
derivatives are very hard to treat analytically, it is ultimately justified
by the fact that it reproduces the systematic shift. We note that the
resulting approximate translation rules

e±iη(b+b†)ρ → e±iη̄x
(

1 ∓ η̄
2 ∂p

)

w,

ρe±iη(b+b†) → e±iη̄x
(

1 ± η̄
2 ∂p

)

w (243)

provide a better approximation than the standard Lamb-Dicke ap-
proximation, where also the exponential functions in η̄x would be
replaced by their first order approximation.

The equation of motion for w(x, p) can now be written as ẇ =

(Lm + La + Li)w with (denoting the anticommutator of two opera-
tors with curly brackets)

Lmw = ν
(

∂x p − ∂px
)

w, (244)

Law = −i

[

−∆

2
σz +

Ω

2

(

σ+eiη̄x + h.c.
)

, w

]

+ ΓD[σi]w, (245)

Liw =
η̄Ω

4
∂p

{

iσ+eiη̄x + h.c., w
}

, (246)

where we distributed the laser associated Lindblad operator Ll from
equation (238) among the internal operator La (receiving all terms
that leave the mechanical mode unchanged) and the interaction oper-
ator Li (receiving the interaction terms).

The effect of the position-dependent phase eiη̄x stemming from the
driving field is easier to understand in the unitarily changed frame
defined by

w̃(x, p) = e−iη̄xσz/2w(x, p)eiη̄xσz/2, (247)

where it introduces a Doppler shift to the detuning ∆dop(p) = ∆ −
η̄νp in La. The Lindblad operators for w̃ take the form

L̃mw̃ = ν
(

∂x p − ∂px
)

w̃, (248)

L̃aw̃ = −i

[

−∆dop(p)

2
σz +

Ω

2
σx, w̃

]

+ ΓD[σi]w̃, (249)

L̃iw̃ = − η̄Ω

4
∂p

{

σy, w̃
}

. (250)

Conveniently, the Wigner distribution is still obtained as W = Tra (w̃) ,
in complete analogy to equation (240).

At this point a remark on the formalism is in order: We used here
the framework introduced in Section 2.B.2, where the main system is
a bosonic mode and described in a phase space picture. The ancilla
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system is described by means of a density matrix, which is finally adi-
abatically eliminated. In chapters 3 and 4 we develop and apply this
framework to the standard optomechanical setup, where the ancilla
is also a bosonic mode, while in the present ion trap case it is a two
level system. We stress that the transformation (247), which reveals
the Doppler induced shift in the ion case is very much analogous to
the Semi-Polaron Transformation from equation (115), which allows
for a correct treatment of the Kerr effect in self-sustained oscillations
of the standard optomechanical system. Both transformation (115)
and (247) cannot be efficiently performed in the standard density ma-
trix picture, cf. Appendix 3.B. This shows the improved flexibility of
the phase space formalism that allows to conveniently describe these
subtle physical effects.

6.4 adiabatic elimination of the internal state

As the experiment is performed in the weak coupling limit η̄Ω ≪ ν, Γ,
we solve the equation of motion iteratively in orders of L̃i, respec-
tively η̄Ω. Formally we use an interaction picture with respect to
L̃a + L̃m and expand the Dyson series to second order in L̃i to obtain
the expression

w̃(τ) =e(L̃a+L̃m)τw̃(0)

+

τ
∫

0

dte(L̃a+L̃m)(τ−t)L̃ie
(L̃a+L̃m)tw̃(0)

+

τ
∫

0

dt

t
∫

0

dt′e(L̃a+L̃m)(τ−t)L̃ie
(L̃a+L̃m)(t−t′)L̃ie

(L̃a+L̃m)t′ w̃(0) (251)

for the state after the pulse of duration τ. After this pulse the laser
is turned off and the motional state evolves freely according to L̃m

for a period T − τ. The internal state decays to its ground state as
T − τ ≫ 1/Γ. Hence the state after a full mechanical oscillation is

w̃(T) = eL̃m(T−τ)Tra (w̃(τ))⊗ |g〉〈g| = eL̃m(T−τ)W(τ)|g〉〈g|. (252)

As the internal state is prepared in the ground state also before the
first pulse, we can write the state at times nT as W(n)(x, p)|g〉〈g| for
all n ∈ N0. Combining equations (251) and (252) and tracing out the
internal state the motional state after n cycles is

W(n+1) = W(n) +

τ
∫

0

dtTra

{

e−L̃mtL̃ie
(L̃a+L̃m)t|g〉〈g|

}

W(n)

+

τ
∫

0

dt

t
∫

0

dt′Tra

{

e−L̃atL̃ie
(L̃a+L̃m)(t−t′)L̃ie

(L̃a+L̃m)t′ |g〉〈g|
}

W(n).

(253)
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Neglecting the commutator of L̃a and L̃m (justified because of the
short pulse duration τ ≪ 1/ν) this is evaluated as

W(n+1) − W(n) = − η̄Ω

2

τ
∫

0

dt∂pt〈σy(t)〉W(n)

+
η̄2Ω2

4

τ
∫

0

dt

t
∫

0

dt′∂pt ∂pt′ Re
[

〈σy(t)σy(t
′)〉
]

W(n),

(254)

where we use the shorthand notation ∂pt = ∂p cos(νt)− ∂x sin(νt) and
σy(t) is the solution of the optical Bloch equations corresponding to
(249). The average is taken with respect to |g〉〈g|. The time evolu-
tion of 〈σy(t)σy(t′)〉 may be evaluated using the quantum regression
theorem.

Due to the small shift per step (η̄Ωτ ≪ 1) it is a good approxi-
mation to turn equation (254) into Gaussian dynamics. As a step to-
wards a Gaussian equation of motion, we can obtain a corresponding
recursion relation making the Fokker-Planck ansatz ∂n(x, p, n)W =

AW(x, p, n) with

A =
[

−
(

∂xdx + ∂pdp

)

+ 1
2

(

∂xxDxx + ∂ppDpp + 2∂xpDxp

)]

(255)

for the time evolution with dimensionless time n = t/T implying
t = nT. We demand that the resulting recursion relation W(n + 1) =
eA·1W(n) agrees with the corresponding relation (254) to second order
in the derivatives, 2 to read off the coefficients

dx = − η̄Ω

2

τ
∫

0

dt sin(νt)〈σy(t)〉, dp = − η̄Ω

2

τ
∫

0

dt cos(νt)〈σy(t)〉,

(256)

Dxx =
η̄2Ω2

2

τ
∫

0

dt

t
∫

0

dt′ sin(νt) sin(νt′)Re
[

〈σy(t)σy(t
′)〉
]

− d2
x (257)

Dpp =
η̄2Ω2

2

τ
∫

0

dt

t
∫

0

dt′ cos(νt) cos(νt′)Re
[

〈σy(t)σy(t
′)〉
]

− d2
p (258)

Dxp = − η̄2Ω2

4

τ
∫

0

dt

t
∫

0

dt′
[

sin(νt) cos(νt′)− sin(νt′) cos(νt)
]

×

Re
[

〈σy(t)σy(t
′)〉
]

− dxdp (259)

for the Fokker-Planck equation.
As the time evolution of σy in these integrals can be solved ana-

lytically along the lines of [114], this is in principle also possible for

2 In effect the new relation is equally valid as (254), which was a second order approx-
imation in the first place.
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the drift and diffusion coefficients. We can however understand the
essential physics of the systematic frequency shift even without this
explicit solution as shown below.

6.5 approximate solution as a gaussian time evolution

All drift and diffusion coefficients depend, possibly nonlinearly, on
the momentum variable p through the Doppler shift in the detun-
ing ∆dop(p). In order to obtain an approximate Gaussian equation
of motion, we therefore linearize as described below: In first order
Lamb-Dicke expansion the drift in momentum dp is Doppler shifted,
and we expand it as

dp(p) = dp(0) +
∂dp

∂∆dop

∂∆dop

∂p
p = dp(0)− g(∆dop(p))p, (260)

where g can be viewed as a Doppler shift induced (anti)damping for
positive (negative) values of g. To obtain a linear dependence in p,
we approximate g as

g(∆) = η̄ν
∂dp

∂∆
(∆), (261)

i.e. the derivative is evaluated at and with respect to ∆ (which is
fixed during each experimental run) instead of ∆dop. We stress that
g(∆) is a function of the detuning and its sign depends on the side
of the resonance: It is positive (negative) for red (blue) detuning. All
other drift and diffusion coefficients show a weaker dependence on
the momentum variable (of higher order in the Lamb-Dicke param-
eter), such that we neglect their dependence on p, set ∆dop = ∆ in
their evaluation and regard them as constants. Together with the ap-
proximation (261) the drift dp is a linear function in p so that the
approximate dynamics is Gaussian.

With the notation ~R = (x̂, p̂), the first and second moments of the
Wigner function can be compactly denoted with the displacement
vector ~r = 〈~R〉 and the matrix γij = 〈RiRj + RjRi〉 − 2rirj with i, j ∈
{x, p}, which contains the covariances scaled by a factor of 2. ~r and γ

follow the Gaussian dynamics

ṙx = dx, ṙp = dp(0)− grp (262)

γ̇xx = 2Dxx, γ̇pp = 2Dpp − 2gγpp, (263)

γ̇xp = 2Dxp − gγxp. (264)

The experiment is initialized in the ground state, so that the initial
conditions are rx = rp = γxp = 0 and γxx = γpp = 1 and the distri-
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bution is Gaussian. At dimensionless time n these moments evolve
to

rx = dxn, rp = 1
g (1 − e−gn)dp(0) (265)

γxx = 1 + 2Dxxn, γpp = 1
g (1 − e−2gn)2Dpp + e−2gn, (266)

γxp = 1
g (1 − e−gn)2Dxp, (267)

and the state remains Gaussian. As detailed in Section 2.A.4, the
Husimi Q-function can be obtained from the Wigner function by con-
volution with a Gaussian. Using its definition as Q(α) = 1

π 〈α|ρ̂|α〉
at α = 0, we obtain for the excitation probability P = πQ(0) of mea-
suring the motion outside the ground state at time n and for a (bare)
detuning ∆

P(n) = 1 −
∣

∣

∣

∣

1 + γ(n)

2

∣

∣

∣

∣

− 1
2

exp
[

~r(n)T(1 + γ(n))−1
~r(n)

]

, (268)

where a dependence on ∆ respectively ωl = ωr + ∆ is implicitely
given by the drift and diffusion parameters.

6.6 quantifying the systematic shift

In order to quantify (and thereby correct) the systematic shift δωr, it
is of course most reliable to numerically simulate the master equation.
In order to understand its origin, we apply further approximations to
derive a simple analytical equation for δωr:

one dimensional model All x-related drift and diffusion coef-
ficients are of higher order in τ/ν than the purely p-related coeffi-
cients due to the scaling with sin(νt) (as opposed to cos(νt) ) in the
integration kernels (256)-(259) and are therefore neglected. Keeping
only dp and Dpp and expanding to first order in g, the approximate
solution for the states displacement vector and covariance matrix is

rx = 0, rp = dn − gd

2
n2 (269)

γxx = 1, γpp = 1 + 2(Dpp − g)n, (270)

γxp = 0, (271)

where d = dp(0). Inserting this solution into equation (268) yields

P(n) = 1 −
[

2
1 + γpp

]1/2

exp

[

− rp(n)2

1 + γpp

]

. (272)

As for the parameter regime of the experiment Dpp ≪ |g|, we approx-
imate Dpp ≈ 0 in the equation for γp p and approximate the excitation
probability as P ≈ P0 + δP, with

P0 = 1 − exp
[

d2n2/2
]

, δP =
gn

2
exp

[

d2n2/2
]

. (273)
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Figure 20: Illustration of the systematic frequency shift δωl− on the red side
of the resonance ωR according to equation (274). The blue line
shows the symmetric part P0 of the resonance curve, the green
line indicates the chosen threshhold PM. In zeroth order of the
small asymmetric perturbation δP the value of ωl− lies at the
intersection. The lower dashed line linearizes the function around
this intersection with a slope of ∂ωl

P. The shift of ωl− may then
be approximated by the red gradient triangle. The shift on the
blue side is determined in complete analogy.

P0 is the symmetric (with respect to ∆) excitation probability neglect-
ing the Doppler shift and δP is the first order contribution in g of the
antisymmetric shift. As δP

δωl−
≈ ∂P

∂∆
in linear approximation, we obtain

for the systematic shift on the left side of the resonance

δωl− = δP

/

∂P

∂∆
= δP

/

(

n2d∂∆d
)

, (274)

as illustrated in Figure 20. With relation (261) this yields δωl− =

η̄ν/2dn. For a given threshold value PM and measurement time n

the corresponding drift coefficient is, according to equation (273) (ne-
glecting the damping g) given by dn =

√

−2 log(1 − PM), so that
δωl− = 1

2 ην/
√

− log(1 − PM). In analogy, the same result is obtained
for δωl+ so that also the total systematic frequency shift of the reso-
nance is

δωr =
1
2 ην

/

√

− log(1 − PM). (275)

Note that this simple function depends only on the (unscaled) Lamb-
Dicke parameter η, the mechanical frequency ν and the measurement
point PM. Surprisingly, it is independent of the spectroscopy time per
cycle, the number of cycles, the laser drive Ω and the width of the
resonance Γ.
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Figure 21: Systematic, Doppler effect induced shift of the measured reso-
nance frequency ωr as a function of the threshhold probability
PM used in the two point sampling method. The blue dashed
curve follows the simple analytical equation (275) derived from
model (a). The red dash-dotted line is obtained from the two di-
mensional, semi-analytical model (b). For comparison, the black
continuous line represents the solution of a full numerical sim-
ulation of the master equation, model (c). The parameters used
in this plot are Lamb-Dicke parameter η = 0.1, pulse duration
τ = 50ns, transition line width γ = 140MHz, laser strength
Ω = 2π × 7.88MHz, mechanical frequency ν = 2π × 1.92MHz.

comparison of different models For typical experimental
parameters, we compare in Figure 21 the results for the shift from the
following increasingly complex models:

(a) The simple-one dimensional model leading to the analytical
equation (275).

(b) The coefficients for drift d and diffusion D, as well as the damp-
ing g are calculated numerically according to the approximate
equations (256)-(259), from which the time evolution of the two
dimensional model is obtained according to equations (265)-
(267) to obtain the probability (268).

(c) The full master equation with two internal levels, given by the
Lindblad operators (236)-(238) is simulated numerically using
QuTiP.

We conclude that the analytical models are in good agreement with
the numerical simulation and provide a good intuition to understand
the experiment. In order to cancel the systematic shift in an actual
high precision experiment, the optimal result is of course achieved
by a numerical simulation tailored to the concrete system, taking into
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account as much structure from the internal energy levels as numeri-
cally possible. E.g. in [3] we simulated the 8 relevant internal levels

of a 40
Ca+ ion, when measuring the 2P1/2 to 2S1/2 transition. The

Zeeman broadening due to the external magnetic field as well as de-
cay of the 2P1/2 level to the 2D3/2 level (which has to be repumped)
is taken into account. This additional structure gives rise to minor
deviations from the simple two-level model.

In future studies the analytical model may be used to optimize
variations of the photon recoil spectroscopy method including e.g.
initialization with a different initial state or a different shape of the
excitation pulse.



7
Q U A N T U M A L G O R I T H M I C R E A D O U T O F
M U LT I - I O N C L O C K S

We note that the content of the following Sections 7.2 and 7.3 are
based on the bachelor thesis [5] of Marius Schulte, where also a more
detailed derivation can be found.

7.1 introduction

Traditional atomic clocks are based on stabilizing an electronic signal
to atomic transitions in the microwave regime. While the NIST-F1 Cs
fountain, which defines today’s time and frequency standard, oper-
ates in this regime, clocks based on optical transitions have been built
with improved frequency accuracy and frequency stability by about
two orders of magnitude.

Currently an optical lattice clock [115] holds the record in both cate-
gories. Optical clocks based on a single trapped ion [48, 49] have held
the accuracy record before and are in competition for the definition
of the next time standard. The optical lattice clock, consisting of thou-
sands of neutral atoms, is very stable as the quantum noise can be
averaged over many atoms. In contrast, the signal from a single-ion
clock has to be averaged over many weeks to finally provide a result
with a relative inaccuracy on the order of 10−18 for the frequency. In
order to improve the stability and reduce the averaging time, the next
step for ion based clocks is to increase the number of ions. In this
chapter we introduce an efficient readout mechanism for multi-ion
clocks.

Such a mechanism is necessary as most suitable clock ions cannot
be read out directly. In reference [49] a quantum logic scheme was
used to map the state of the single ion clock onto a logic ion of a
different species where it can be measured. One could scale this up
by sequentially reading out multiple clock ions onto a single logic ion.
In order to speed up the process for a better clock stability, one could
also provide a logic ion for each clock ion and thereby parallelize
the process. In order to improve on these obvious extensions, we
propose to make use of a quantum algorithm [116, 117] developed in
the context of entanglement concentration that encodes the Hamming
weight 1 of the NC clock ions in a bitstring of NL = log2(NC + 1) logic
ions. The implementation can be done using a multi species Mølmer-
Sørensen gate acting on all clock and logic ions.

1 the number of excitations.
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7.2 the abstract and idealized readout mechanism

Before discussing the readout, we briefly summarize the (idealized)
clock mechanism: An external laser frequency ω is stabilized to the
atomic transition frequency ω0 of a two-level ion with levels |0〉 and
|1〉. Using for example Ramsay interferometry [118], the probability
of each ion j to populate the excited state |1〉j is P(ω) with a max-
imum at P(ω0), which would be P(ω0) = 1 for a perfect sequence.
In each clock cycle an estimate for ω0 is obtained by means of the
two point sampling method introduced in Section 6.1.1 and the laser
frequency is updated accordingly. As mentioned in the introduction,
the signal given by the number of excited clock ions

N̂ =
NC

∑
j=1

|1〉j〈1| ⊗ 1 (276)

has to be transferred to the logic ions, where it can be detected. We
choose here a notation that decomposes the Hilbert space H = HC ⊗
HL into clock (HC) and logic (HL) ions.

For simplicity we will assume that NL = log2(NC + 1) perfectly
matches, so that any possible number of excited clock ions can be
encoded in the bitstring of logic ions |j1, j2, ..., jNL

〉L with j ∈ {0, 1}.
E.g. for NC = 3 clock ions the possible number of excitations include
0, 1, 2, 3 that can be encoded as 00, 01, 10, 11 with NL = 2 logic ions.
Initializing the logic ions in the ground state for each ion |0〉L =

|0, 0, ..., 0〉L, the operator U for the readout process must fulfill

U|nj〉C|0〉L = |nj〉C|bin(n)〉L, (277)

where |nj〉C is any eigenstate of the operator N̂ (measuring clock exci-
tation number) with integer eigenvalue n and |bin(n)〉L is the binary
representation of n. Once the information is encoded in the logic
ions, it can be read out with standard methods available on the logic
species. The corresponding measurement operator acting on the logic
ions takes the form

N̂est = 1 ⊗
NL

∑
j=1

2j−1|1〉j〈1|. (278)

For the idealized readout represented by U defined in equation (277),
the logic ions’ estimate N̂est of clock ion excitations perfectly repro-
duces the statistics of the original clock ion operator N̂ from equation
(276).

In constructing U, it is instructive to consider the quantum Fourier
transformation of |bin(n)〉L, which is [119]

F|bin(n)〉L =
1√
2NL

NL
⊗

j=1

(

|0〉+ ei2π·n2−j |1〉
)

. (279)
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This representation, where the prefactor of |0〉 is constantly one and
the prefactor of |1〉 obtains a phase given by the product of n (the
number of excited clock ions) multiplied by a logic-ion-dependent
value φj = 2π2−j, suggests the following quantum algorithm [116,
117] for readout 2:

1. Apply the quantum Fourier transformation on the logic ions,
which are initially in the ground state, to bring each ion into
the superposition of |0〉 and |1〉. Note that this transformation
can be implemented using Hadamard gates on the single ions
and no interaction is required. In summary the first step is





NL
⊗

j=1

|0〉


→




NL
⊗

j=1

|0〉+ |1〉


 (280)

2. Perform a controlled rotation gate between each clock ion with
each logic ion, so that logic ion j obtains a phase φj = 2π2−j

conditioned on the excitation of the clock ion. Formally, with
the definition Dj = |0〉〈0|+ eiφj |1〉〈1| the gate Rkj between clock
ion k and logic ion j can be written as

Rkj = |0〉k〈0| ⊗ 1j + |1〉k〈1| ⊗ Dj (281)

and the Rkj have to be performed for each k = 1, ..., NC and
j = 1, ..., NL to obtain





NL
⊗

j=1

|0〉+ |1〉


→
NL
⊗

j=1

(

|0〉+ einφj |1〉
)

, (282)

the Fourier transformed encoding F|bin(n)〉L of the bitstring,
cf. equation 279. The order of execution is irrelevant as all Rkj

commute.

3. Finally the inverse quantum Fourier transformation F−1 on the
logic ions retrieves the desired bitstring |bin(n)〉,

F|bin(n)〉L → F−1F|bin(n)〉L = |bin(n)〉L. (283)

7.3 physical implementation of the readout mechanism

The physical implementation of the algorithm steps 1 and 3 require
operations on the logic ions only and can be solved with standard
quantum information processing methods. Each of these steps re-
quires NL − 1 single species Mølmer-Sørensen gates, scaling thus log-
arithmically in the number of clock ions NC = 2NL − 1. With a slight

2 We drop in the following the state normalization for better readability.
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adjustment of the algorithm corresponding to the use of a different ba-
sis, the first step’s Fourier transformation can even be skipped. This
modification is presented in [4] to give the best possible solution for
an experimental implementation, while we keep both Fourier trans-
formations here for conceptual clarity.

We analyze in the following only the most costly step 2, which re-
quires interaction between the clock and logic ions. For this purpose
we write the controlled phase gate from equation (281) as Rkj = e−iHkj

with Hkj = − 1
4 φj (1 − σz)k ⊗ (1 − σz)j , which can be expanded into

Hkj =
1
4 φj (−1 ⊗ 1 + σz(k)⊗ 1 + 1 ⊗ σz(j)− σz(k)⊗ σz(j)) . (284)

The first and second term are irrelevant as they do not change the
excitation number of the clock ions and do not act on the logic ions
at all, but the second two terms have to be implemented: The term
proportional to 1 ⊗ σz(j) corresponds to a single qubit gate on logic
ion j. The term proportional to σz(k)⊗ σz(j) corresponds to a 2-qubit
gate between different (logic and clock) species. Keeping thus only
the relevant terms and using the fact that all operators commute, we
write the full gate as R = R0 · RI

R0 = exp

(

−i ∑
k,j

1
4 φj1 ⊗ σz(j)

)

, (285)

RI = exp

(

−i ∑
k,j

− 1
4 φjσz(k)⊗ σz(j)

)

. (286)

The non-interacting gate R0 can be built with NL single-qubit gates
Sj, one for each logic ion, which is a routine operation with today’s
technology. The interaction gate RI requires multi-species interaction
and is the most demanding component of the experiment. We show
in the following paragraph that it can be built with a single multi-ion
interspecies Mølmer-Sørensen gate, which can be constructed as

T = exp(−iS2), S = ∑
α=L,C

Nα

∑
j=1

dα,jσ
α,j
z . (287)

with appropriately chosen laser phases. The index α in Equation (287)
refers to logic (L) or clock (C) ion. The coefficients of S are physically
determined by

dα,j = Ωαjηαj

√
t/δ, (288)

where Ωαj is the Rabi frequency given by the laser, ηαj is the Lamb-
Dicke parameter, δ is the detuning from the respective sideband tran-
sition used in the gate and t is the gate duration.

For the Mølmer-Sørensen gate (287) to execute the gate operation
(286) the coefficients dα,j must fulfill

dC,kdL,j = −π2−j+2 (289)

dL,kdL,j = πnkj (k , j), (290)
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where nkj must be integers in order to ensure that the gate effectively
does not include gates between logic ions. 3 In order to fulfill condi-
tion (289), the sign of Ωαj, which depends on the laser phase, must
be chosen depending on the sign of the Lamb-Dicke parameter ηαj.
Minimizing the size of the largest coefficient in order to keep the gate
duration as short as possible, the solution for the coefficients dα,j is

∣

∣dLj

∣

∣ =
√

π2NL−1−j, |dC| =
√

π2−NL−1. (291)

Note that the dC coefficient is identical for each clock ion.

7.4 case study : Al+-Ca+ clock

This section is a case study of a concrete experimental setup. We
consider the minimal setup consisting of three clock ions and two
logic ions. We choose Al+ for the clock species, which has a narrow
linewidth of 8 mHz in the transition 1S0 − 3P0 transition at 1.121 PHz
[49], and Ca+ as a suitable logic ion species. We must analyze the
normal mode spectrum of such an ion crystal to find a mode that

A) has large enough Lamb-Dicke factors for all ions in order to
establish an interaction.

B) and has a sufficiently large frequency gap ∆ν from the next nor-
mal mode. This allows for an execution of the Mølmer-Sørensen
gate of detuning δ ≪ ∆ν undisturbed from the other modes. As
the maximum applicable Rabi frequency must fulfill |ηΩ| ≪ δ,
finding a large enough gap is important to minimize the gate
execution time t.

7.4.1 Normal modes for transversal oscillations

We calculate the normal mode spectrum for the transversal oscilla-
tions of a two-species ion chain along the lines of [120]. In our ex-
ample setup text two logic ions (Ca+, mass mL = 40amu, laser wave-
length λL = 729.1nm) and three clock ions (Al+, mass mC = 27amu,
laser wavelength λC = 267.4nm) are (softly) trapped along the crystal
axis (z-axis). The trap frequency for the logic ions is νL

z = 2π874kHz.
The asymmetry parameters are defined as a = νL

x /νL
z and ayx =

νL
y /νL

x . We fix ayx = 5 to suppress oscillations along the y-axis. The
normal modes are calculated for different values of a for optimiza-
tion, because we will use the oscillations in x-direction for the gate.
As sketched in Figure 22 the clock ions (index k = 2, 3, 4) are placed in
the middle and the logic ions (index k = 1 and k = 5) on the outside.

3 A similar condition for the clock ions is not necessary again because the excitation
statistics is not changed by the interaction.
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Figure 22: (a) Sketch of setup for a crystal of NC = 3Al+ clock ions between
NL = 2Ca+ logic ions.

With masses (m1, m2, m3, m4, m5) = (mL, mC, mC, mC, mL) the kinetic
energy is given by

T(~p) =
5

∑
k=1

~p2
k/2mk. (292)

The potential energy due to the electrostatic component of the trap
is the same for each ion, as all ions are singly charged (elementary
charge q). Assuming a radially symmetric electrostatic trap we get a
total electrostatic potential of [121]

VS(~x) =
1
2

5

∑
k=1

(

b0z2
k − 1

2 b0x2
k − 1

2 b0y2
k

)

, (293)

i.e.trapping in z-direction but repulsion in x- and y-direction of equal
strength. The potential strength is parametrized by the parameter
b0, in units of energy divided by length squared. To keep the ions
also radially trapped, an additional time-dependent radio frequency
potential is used to create an effective potential in x and y direction

VRF(~x) =
1
2

5

∑
k=1

mL

mk

(

bxx2
k + byy2

k

)

, (294)

which unavoidably is mass-dependent. We parameterize the poten-
tial strength by bx and by, in the same units as b0. The parameters
b0, bx and by are fully determined by the physical parameters of the
setup: logic ion mass mL, logic ion frequency νL

z and the asymmetry
parameters a and axy. In addition to the trapping potential the ions
interact via the Coulomb repulsion potential

VI(~x) = ∑
k>j

q2

4πǫ0

∣

∣~xk −~xj

∣

∣

−1 . (295)

With these definitions we can write the total energy of the system as
E(~x,~p) = T(~p) + V(~x), where V(~x) = VS(~x) + VRF(~x) + VI(~x).

We find the steady state position ~x0 of the ions by numerically mini-
mizing 4 the potential energy V under the condition z1 < z2 < ... < z5.
In this study we choose large enough asymmetry parameters a so

4 We use Powell’s method as implemented in SciPy for the numerical minimization
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that the solution is always a linear chain without zigzag configura-
tion [121, 120, 122]. As the oscillations around the steady state will
be small, we use second order Taylor expansion to obtain an approxi-
mate harmonic potential. The different directions x, y and z decouple

in this approximation. Denoting pk = mk ẋk and Vkj = ∂xkxj
V(~x)

∣

∣

∣

∣

~x0

the

energy for motion in x-direction only, is

Ex =
5

∑
k=1

1
2 p2

k/mk + ∑
k,j

1
2 Vkjxkxj. (296)

In coordinates with scaled position x̃k =
√

mk/m0xk and momentum
p̃k =

√
m0/mk pk, normalized to mass m0 = 1amu, the kinetic term be-

comes diagonal and the potential transforms as Ṽkj =
√

m2
0/mkmjVkj.

In these coordinates Ex reads

Ex =
5

∑
k=1

1
2 p̃2

k/m0 + ∑
k,j

1
2 Ṽkj x̃k x̃j. (297)

For the normal modes we numerically diagonalize Ṽ = ODOT with
dimensionless orthogonal matrix O and diagonal matrix D of dimen-
sion frequency squared times mass. The eigenfrequencies are then
given by

νk =
√

Dkk/m0. (298)

In analogy to [120] the Lamb-Dicke factors of a mode k for an indi-
vidual ion with index j are

ηk
j =

2π

λj
Ok

j

√

h̄

2mjνk
, (299)

with λj the wavelength of the laser addressing the j-th ion and Ojk

the j-th entry of the eigenvector for the k-th normal mode.

7.4.2 Results for our example configuration

As mentioned, the asymmetry parameter a must not be chosen too
small in order to avoid an unstable zig-zag configuration [121, 120,
122]. Choosing a too large results in a decoupling of the normal
modes into modes involving either logic ions or clock ions only. In
order to fulfill condition A) from the beginning of this section, we
compromise at a = 2.5 and choose the normal mode with the highest
frequency for optimal results. The corresponding Lamb-Dicke pa-
rameters are plotted in Figure 23 (b), assuming laser beam alignment
with the x-axis. At a = 2.5 we read off ηL = 0.007 for for both logic,
ηC1 = ηC3 = 0.097 for the outer clock ions and ηC2 = 0.113 for the
inner clock ion.
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Figure 23: (a) Normal mode frequencies of transverse vibration for a crystal
of NC = 3Al+ clock ions between NL = 2Ca+ logic ions (see in-
set of (b)) versus asymmetry parameter a = νL

x /νL
z (ratio of trans-

verse to axial trap frequencies for logic ions, νL
z = 2π874kHz).

(b) Lamb-Dicke factors η of the three clock (index C) and two
logic ions (index L) for the normal mode of highest frequency
(thick line in (a)). For large asymmetry parameter transverse mo-
tions of clock and logic ions decouple due to the mass-dependent
transverse confinement. The dotted line in (a) and (b) marks the
case studied in the text.

As depicted in Figure 23 (a), for a = 2.5 the highest frequency mode
is at ν = 2π 3.14MHz and is gapped by ∆ν = 2π 480kHz to the next
mode. Choosing a Mølmer-Sørensen gate detuning δ = 2π 24kHz,
Rabi frequencies ΩL1 = 2π 500kHz and ΩL2 = 2π 250 kHz for the
logic ions and ΩC1 = ΩC3 = 2π 4.51kHz, ΩC2 = 2π 3.87kHz for the
clock ions, the gate can be fully executed in 1ms. In this example
the ratios set by condition B) from the beginning of this section are
fulfilled as δ/∆ν < 0.05 and, citing the largest ratio, |ηΩ|/δ < 0.15.

As the life time of the Ca+ ions’ D5/2 state is 1.17 s and the gate
execution time is 1ms, the readout errors due to spontaneous emis-
sion will be on the order of 0.001. We confirm this estimate with the
numerical calculation in the next section.

7.5 numerical readout noise simulation

Denoting the excitation probability of each ion after the Ramsay se-
quence with P, the quality of the clock is characterized (among other
parameters such as the readout time) by the signal of the mean deriva-
tive ∂p〈N̂est〉 and the variance σ2

est = 〈N̂2
est〉 − 〈N̂est〉2 of total readout

excitations N̂est. The values are taken at a detuning where P = 0.5, as
the clock is operated around that point for best results. For the ideal
case of a perfectly noiseless ion gates, N̂est follows the same statistics
as N̂ before readout with variance σ2 = 〈N̂2〉 − 〈N̂〉2. Any indirect
readout will add additional decoherence which decreases the signal
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and increases the variance. We define the readout quality ζ ≤ 1 as
the ratio

ζ =
∂p〈N̂est〉/σest

∂p〈N̂〉/σ

∣

∣

∣

∣

P=0.5
(300)

of the actual signal to noise ratio (SNR) including readout noise and
the ideal SNR neglecting this noise.

Here we consider in particular noise sources due to spontaneous
decay of the ions (mostly the logic ions) as well as additional phase
noise of the logic ions, due to e.g. stray magnetic fields. The execution
of the five-ion MS gate defined in equation (287) consumes by far the
most time (T = 1ms for our parameters) of the readout process, as its
speed is limited by the restrictions on the Rabi frequency described
in the main text. We thus simulate only these two noise sources and
only while executing the five-ion MS gate.

The numerics is implemented using QuTiP [32, 33] for the mas-
ter equation (302) below. The Hamiltonian for the gate operation is
given by HMS = S2/T with S from Eq. (287). Note that our nu-
merical model operates on the qubit level and does not include pos-
sible decoherence due to excitations of other phonon modes. Defin-
ing for a given operator x a corresponding superoperator D[x]ρ =

xρx† − 1
2 x†xρ − 1

2 ρx†x acting on a density matrix ρ, the Lindblad op-
erator for the spontaneous emission (index SE) of the j-th ion with

lifetime τj is L
(j)
SE = τj

−1D[σ
(j)
− ], where σ− is the lowering operator. In

total

LSE = ∑
j

L
(j)
SE . (301)

The lifetime of the D5/2 state in Ca+ is τL = 1.17s and lifetime of
the 3P0 clock state of Al+ is τC = 20.6s. The dephasing due to other
sources is characterized by a decay rate γ for all ions and the cor-

responding Lindblad operator is LB = ∑j γD[σ
(j)
z ]. The full master

equation now reads

ρ̇ = −i[H, ρ] + LSEρ + LBρ. (302)

While the T1 coherence time of the logic ions is fixed, T1 = τL, the T2

coherence time also depends on the experiment-dependent decay rate
γ via T2 = 1/(0.5τ−1

L + 2γ). The numerical result for ζ as a function
of T2 is depicted in Figure 24. The best achievable value, reached at
T∗

2 = 2T1, is ζ(T∗
2 ) = 0.999 for a gate time of 1ms.

7.6 conclusion

The resources for the readout mechanism presented in this chapter
scale, in both number of gates and time, linearly with the number of
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Figure 24: Plot of ζ from equation (300) for a gate time of 1ms. T∗
2 = 2T1 =

2.34s is the maximal possible value of T2 for the logic ions consid-
ering their finite lifetime due to spontaneous emission.

logic ions corresponding to a logarithmic scaling in the number of
clock ions. In contrast, reading out each clock ion separately would
scale linearly in the number of clock ions and would require cooling
of the ion crystals motion after each readout bit. We expect that exper-
imental implementation is feasible for more than 15 clock and 4 logic
ions. With even more ions however, the spacing between mechanical
modes becomes so small that active noise correction will be needed
to cancel the effects from spectator modes.
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C O N C L U S I O N A N D O U T L O O K

In the first part of this thesis we studied systems where an optical
cavity degree of freedom excites a mechanical oscillator so that the
system exhibits self-sustained limit cycles, similar to the state of a
laser cavity excited by atoms. Accordingly, we modeled the process
based on laser theory methods due to Haake and Lewenstein. Our de-
scription employs a new semi-polaron transformation, which allows
for an explicit treatment of the Kerr effect in the context of limit cycles.
One of the most interesting predictions for the standard optomechan-
ical setup is that quantum signatures such as negative density of the
Wigner distribution are observable even for surprisingly classical pa-
rameters, i.e. outside the single-photon strong-coupling regime, for
strong cavity drive and rather large limit-cycle amplitudes.

Simulation of this parameter regime at the border of quantum and
classical is numerically most challenging: For truly classical parame-
ters it is possible to efficiently simulate the system with a stochastic
equation in classical phase space. For truly quantum parameters the
system can be simulated on a small Hilbert space. For the border
regime of large oscillations on the scale of the harmonic oscillator’s
zero point fluctuation we developed an algorithm based on Quantum
Jump Trajectories as implemented in QuTiP. It dynamically adapts
the numerical Hilbert space following the present state of the system,
allowing for the verification of our analytical results for previously
unaccessed parameters with high mechanical amplitude and many
photons in the cavity.

We concluded the first part of the thesis on optomechanical limit
cycles with the proposition to use a setup where a second cavity en-
hances the nonlinearity in order to significantly ease the requirements
on detection of phonon antibunching.

We hope that the perspective for quantum signatures in phonon
lasing outside the single-photon strong-coupling regime may help to
develop future experiments aiming for the demonstration of these
effects for example with optomechanical crystals. The laser theory
based analytical model developed in the first part can be applied in
future projects e.g. for the study of the synchronization of limit cycles
in the quantum regime, to describe the Kerr effect’s influence on laser
cooling dynamics but also for the investigation of similar physical
systems such as trapped ions.

In the second part of the thesis, where we turned to trapped ion
systems, one such project is realized for the analytical description
of the photon recoil spectroscopy experiment: Exciting an ion crys-
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tal’s motion via the recoil on absorption of a photon, the resonance
of a broad ion (or molecule) transition is measured with unprece-
dented precision. To realize this high precision a systematic shift
must be corrected. We adapted the analytical model from part one to
trapped ions and derived a Fokker-Planck equation modeling the ion
motion. This allows to understand the systematic shift as a result of
the Doppler effect, where both drift and diffusion must be taken into
account. A future perspective is to use the model for improving the
photon recoil experiment, optimizing e.g. over different pulse shapes
or possibly nonclassical initial states of motion.

Finally we analyzed the proposition for a quantum algorithmic
readout mechanism for multi-ion optical clocks. The most impor-
tant operation of the mechanism can be realized with a single multi-
species Mølmer-Sørensen gate. In a case study with an Al-Ca clock
we show that such a readout can be efficiently experimentally real-
ized. Multi ion clocks will soon be built and it will be interesting to
further improve the readout mechanism especially when scaling up
the number of ions.

In conclusion, the rapid experimental progress in optomechanical
experiments offers the exciting perspective to see realizations of both
quantum signatures on macroscopic scales and quantum record ac-
curacy metrology applications as studied in this thesis in near future
experiments.
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