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Abstract

The formation and stability of the row of  hitherto unknown ternary oxides in the gas phase

has been studied. The following novel 24 ternary gaseous oxides were detected:

- MoTeO5, Mo2TeO8, Mo3TeO11 and MoTe2O7 in MoO3 – TeO2 system;

- PbMoO4, PbMo2O7, PbMo3O10 and Pb2MoO5 in PbO –  MoO3 system;

- PbTeO3, PbTe2O5, Pb2TeO4 and Pb2Te2O6 in PbO –  TeO2 system;

- PbAs2O4, PbSb2O4 and Pb3As2O6 in PbO –  X2O3 systems (X = As, Sb); 

- Sb2MoO6, Sb2Mo2O9, Sb2Mo3O12, Sb4MoO9, Sb2WO6, Sb2W2O9 and Sb4WO9 in Sb2O3

– MO3 (M = Mo, W) system;

- Sb2TeO5 and Sb2Te2O7 in Sb2O3 – TeO2 system.

The gaseous species was identified in mass spectrometric experiments by the determination of

m/z-values and isotopic patterns. Thermodynamic data for the ternary oxides  were obtained

experimentally by means of a mass spectrometric Knudsen-cell method and were confirmed

by quantum chemical  calculations.  The structures of the gaseous oxides were obtained by

means of quantum chemical calculations too. Several compounds exist in two stable isomeric

forms in the gas phase. The appearance energies were obtained experimentally and compared

with theoretical vertical ionisation energies.

Keywords: gaseous ternary oxides, mass spectrometry, quantum chemical calculations
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Zusammenfassung

Die  Bildung und  Stabilität einer  Reihe  von bisher  unbekannten ternären Oxiden in  der

Gasphase wurde  untersucht. Die folgenden  neuen 24 ternären gasförmigen Oxide

nachgewiesen:

- MoTeO5, Mo2TeO8, Mo3TeO11 und MoTe2O7 in MoO3 – TeO2 System;

- PbMoO4, PbMo2O7, PbMo3O10 und Pb2MoO5 in PbO –  MoO3 System;

- PbTeO3, PbTe2O5, Pb2TeO4 und Pb2Te2O6 in PbO –  TeO2 System;

- PbAs2O4, PbSb2O4 und Pb3As2O6 in PbO –  X2O3 Systems (X = As, Sb); 

- Sb2MoO6, Sb2Mo2O9, Sb2Mo3O12, Sb4MoO9, Sb2WO6, Sb2W2O9 und Sb4WO9 in Sb2O3

– MO3 (M = Mo, W) System;

- Sb2TeO5 und Sb2Te2O7 in Sb2O3 – TeO2 System.

Die  gasförmigen Spezies in den  massenspektrometrischen Experimenten durch  die

Bestimmung von m / z-Werten und Isotopenmuster identifiziert. Thermodynamischen Daten

für  die  ternären Oxide  wurden experimentell mit  Hilfe  eines massenspektrometrischen

Knudsenzellen-Verfahrens  erhalten  und quantenchemischen Berechnungen bestätigt. Die

Strukturen der gasförmigen Oxide wurden durch quantenchemische Berechnungen erhalten.

Mehrere Verbindungen existieren in zwei stabilen isomeren Formen in der Gasphase. Die

Auftrittsenergien wurden  experimentell bestimmt und mit  den  theoretisch  berechneten

vertikalen Ionisationsenergien verglichen.

Schlagwörter: gasförmige  ternäre  Oxide,  Massenspektrometrie,  quantenchemische

Berechnungen
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1 INTRODUCTION

The formation and stability of gaseous ternary oxides from individual metal oxides have

been investigated in the present work.

Metal oxides have a very broad application area and represent an attractive class of ma-

terials whose properties cover the entire range from semiconductors to insulators and are in-

teresting for many aspects of material science, chemistry,  physics and engineering science.

The area of application is quite wide: electronics [1-2], photonics [3-5], catalysis [6-7], chem-

ical and biological sensors [8-10], thermionic emission [11], energy storage devices [12 -14],

e.g. In the past few years many studies of the metal oxides were devoted to the synthesis,

structural, physical and chemical characterization. A large number of scientific papers have

been published on metal-oxide nanostructures and thin films. The chemical vapour deposition

(CVD)  [15 -17], physical  vapour deposition (PVD)  [18 -19] and vapour transport  [20-22]

technique are the main synthesis methods for growing nanostructures and thin films. There-

fore it is important to study properties of the gaseous oxides and ternary oxides.

The vaporization and thermodynamic properties of many individual oxide systems and

some ternary oxides have been widely studied. Very informative and detailed overview of the

properties of the gaseous individual oxides is reported in the handbook of Kazenas et al. [23].

There are many studies devoted to the formation of ternary oxides in the gas phase too.

However the investigation of the ternary systems is not complete. There are many systems

which were not studied at all or were studied superficially. Many gaseous ternary oxide sys-

tems are presented in recent review of Lopatin et al. [24] and handbook of Kazenas et al. [25].

The investigation of the evaporation process provided the rich information about the

composition of the vapour, stability of the gas compounds and equilibrium processes in the

gas phase. The most of studies were carried out by means of mass spectrometry using effusion

Knudsen cell method. The composition of vapour of individual oxides is not simple and con-

tains monomer and oligomer molecules. The composition of the vapour of ternary oxides is

even more complicated. The composition of oxide ternary systems in the gas phase differs

from the composition of condense state. Some compounds of oxide system exist in both gas

and condense state; other compounds of the same oxide system exist only in the gas or con-

dense state.

Mass spectrometric experiment gives the possibility to determine the partial pressures of

gaseous species and consequently the equilibrium constant of gas reactions.

8



The dependence of the recorded ion currents on the partial pressure of the particular ion

is described by the following equation: 

                                                                                                                                      (1.1)

where pi = the partial pressure of component i, c = the proportionality factor, Ii = the

intensity of all of the ions formed by the ionisation and fragmentation of a gaseous molecule

of  i,  T =  temperature,  σi =  the  ionisation  cross  section  and  Si =  the  electron  multiplier

efficiency.  The  approximated  eq.  1.2  can  be  used  in  most  cases  (the  procedure  of

simplification is described elsewhere [26]):

               pi = c·Ii·T                                                                                                     (1.2)

The proportionality factor c is determined by a calibration experiment.

 The mass spectrometric study of the gaseous oxide systems which presented in that

work is limited by the narrow temperature range. Therefore the obtaining of the reaction en-

thalpy ΔrH0
T by means of second law of thermodynamics, where temperature dependence of

equilibrium constants has to be determined (eq. 1.3), is not possible. 

d lnKp,T / d T = ΔrH0
T / RT 2                                                                                                                                                             (1.3)

The third law of thermodynamic (eq. 1.4) can be applied. The difficulty of that approach

is determination of the reaction entropy ΔRS0
T. 

ΔrH0
T = –R·T·lnKp,T + T·ΔRS0

T                                                                                       (1.4)

Usually  the  calculation  of  entropies  based  on  “rigid  rotor-harmonic  oscillator”

approximation, with using data on molecular structures and normal mode frequencies. Except

the mentioned method of statistical thermodynamics quantum chemical calculations can be

applied for the determination of reaction entropy. Additionally quantum chemical calculation

give the possibility determine the reactions enthalpy of the equilibrium processes at standard

and experimental temperatures, the structure of the gaseous components in oxide system and

IR spectra of the molecules. Thus the two main methods applied in the present study are mass

spectrometry and quantum chemical calculations. 

2 Objects of the investigation.

In the present work  hitherto unknown ternary gaseous oxides have been investigated.

Following systems are in the centre of interest: MoO3 – TeO2, PbO – MoO3, PbO – TeO2, PbO

– X2O3 (where  X = As, Sb), Sb2O3 –  MO3 (M = Mo, W) and Sb2O3 – TeO2. The individual

oxides MoO3, WO3, TeO2, PbO, As2O3 and Sb2O3 are widely used in the industry. 
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Transition metal oxides such as  MoO3 and  WO3 are n-type semiconductors and have

unique gas sensing properties for a series of target gases.  Tellurium dioxide TeO2  is p-type

semiconductor and it is also important gas sensing material. These three oxides  are suitable

for the detection of oxidizing and reducing gases. 

The mechanism of gas detection is following. The target gas interacts with the surface of

the metal oxide film, which results in a change in charge carrier concentration of the material.

This change in charge carrier concentration serves to alter the conductivity (or resistivity) of

the material.  An n-type semiconductor upon interaction with a reducing gas an increase in

conductivity occurs. Conversely, an oxidising gas serves to deplete the sensing layer of charge

carrying  electrons,  resulting  in  a  decrease  in  conductivity.  A  p-type  semiconductor  is  a

material  that  conducts  with  positive  holes  being  the  majority  charge  carriers;  hence,  the

opposite effects are observed with the material and showing an increase in conductivity in the

presence of an oxidising gas (where the gas has increased the number of positive holes). A

resistance increase with a reducing gas is observed, where the negative charge introduced in

to the material reduces the positive (hole) charge carrier concentration [27]. Band gap theory

is also applied in studying of gas sensors. 

It was reported that MoO3 and WO3 with band gap 3.2 and 2.7 eV [28 -29] respectively

are sensitive to NO [30-31], NO2 [30-31], NH3 [32, 31], H2S [33-34], H2 [32, 35], CO [36-37],

CH3CH2OH [36, 38] and volatile organic compounds (VOC) [39-40].  MoO3 is also sensitive

to CH4 [30] and WO3 is sensitive to O3 [37], Cl2 [41] and SO2 [42]. Molybdenum and tungsten

oxides exhibit other interesting properties such as electrochromism  [43-44], photocromism

[45-46], photoluminescence   [47-48], luminescence [49] and used in catalyst  [50-52]. Gas

sensors  and  other  devices  are  produced  as  nanostructure  and  thin  films  by  different

techniques, including CVD, PVD, sol-gel process and sputtering. 

Tellurium dioxide used for detection of  NO2 [53-54], NH3 [53, 55], H2S  [53]  and Cl2

[56]. In addition TeO2  thin films is a sensitive material for -radiation and were suggested as

an effective  material  for  room temperature  real  time radiation  dosimetry due to  observed

changes in both the optical  and the electrical  properties  [57]. TeO2  is  important  acousto-

optical and electro-optical material with a variety of desirable characteristics [58]. Band gaps

of TeO2  are 3.41 eV for annealed TeO2 crystalline film, 3.5 eV for single-crystal  TeO2 and

increased band gap 3.73-4.2 eV for amorphous TeO2 [59-60].

Sb2O3 and As2O3 oxides are important materials because of their unique properties and

applications in optics and electronics. These trioxides can serve as glass former when mixed

with other oxides [61]. The Sb2O3 – As2O3 based glasses (for example PbO-Sb2O3-As2O3) can
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be used in non-linear optical devices and as thermoluminescent material [62]. This alkali free

glass  systems,  is  expected  to  be  relatively  moisture  resistant  and  possess  low  rates  of

crystallization [63]. Many of Sb2O3 or As2O3 based glass systems with optical and electrical

properties are known: V2O5-As2O3 [64], Sb2O3-B2O3  [65], Li2O–Sb2O3–GeO2 glasses mixed

with different modifiers (viz., PbO, ZnO, BaO, SrO and CaO) [66], ZnO–Sb2O3–As2O3 [67],

PbO-P2O5-As2O3 [68],  Sb2O3–Na2O–WO3–PbO  [69],  CaO–Sb2O3–B2O3 [70],  PbO–Sb2O3–

B2O3 [71] etc.

Lead  oxide,  which  is  one  of  these  semiconductor  nanostructures,  has  important

applications in storage batteries, the glass industry, and pigments. Various forms of lead oxide

and their nanostructure compositions are known, including nanoplates, nanostars, nanorods,

nanopowders, nanosheets and nanotubes.  PbO is an indirect  band gap semiconductor  with

tetragonal and orthorhombic phases. The tetragonal and orthorhombic phases of PbO have

band gaps of 1.9–2.2 eV and 2.6 eV, respectively [72].

Over past decades the development of nanotechnology was very intensive. Science and

industry focused their interest on this class of materials. Optics and electronics were in the

centre of interests too. As was shown above the  MoO3, WO3, TeO2,  PbO, As2O3 and Sb2O3

oxides are widely applied in the mentioned fields. Therefore ternary oxides with their unique

properties, which can combine the properties of the individual oxides, have a big potential for

the industry. 
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3.6 Formation and stability of antimony tellurium ternary oxides Sb2TeO5 and Sb2Te2O7

in the gas phase. Quantum chemical and mass spectrometric studies.

3.6.1 Summary

The present section concerns the gaseous ternary antimony tellurium oxides.  The detailed

information about composition of the gas phase of individual antimony and tellurium oxides

was reported before. The gas phase over the mixture of solid oxides Sb2O3 and TeO2 contains

high concentrations of TeO2 and Sb4O6 similar like the gas phase of individual antimony and

tellurium  oxides.  Additionally two  ternary  oxides  (Sb2TeO5 and  Sb2Te2O7)  in  small

concentration  were  detected.  It  is  known one  relative  compound  of  Sb2TeO5 oxide.  The

gaseous  PbTe2O5, which was studied previously is isoelectronic with  Sb2TeO5 and has very

similar structure. 

3.6.2 Mass spectrometric study. 

The formation of the ternary antimony tellurium oxides was observed in the gas phase with a

help of mass spectrometry. The mixture of two solid oxides Sb2O3 and TeO2 (1:1) was heated

in a Knudsen cell by the temperature of 933 K. The gaseous products of interaction of the

oxides were analysed after leaving the Knudsen cell. The relative intensities of ion species in

system Sb2O3-TeO2 are given in Table 3.1. Unfortunately the appearance potentials could not

be obtained for ternary oxides, since the intensities of Sb2TeO5
+ and Sb2Te2O7

+ were too small.

It is concluded that Sb2Te2O7
+ is the parent ion because there were no heavier ions in the mass

spectra from which they could have been spitted. Presumably the Sb2TeO5
+ is parent ion too.

The obtained experimental enthalpies of formation based on this conclusion will be compared

with quantum chemical calculated enthalpies of formation.
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Table 3.1. Intensities of the ion species in the mixture Sb2O3 – TeO2 (1:1 mol), 70 eV, 933 K.

Ion Relative intensity

Sb2Te2O7
+ 1.3

Sb4O6
+ 35.9

Sb2TeO5
+ 3.5

Sb3O4
+ 8.2

Te2O4
+ 7.5

Te2O2
+ 4.1

Te2
+ 32.2

TeO2
+ 100

TeO+ 61.3
Te+ 16.0

The partial pressures of the gaseous compounds were calculated using approximated eq. 3.1,

which was also used for the investigation of other oxide systems (see above).

               pi = c·Ii·T                                                                                                              (3.1)

The proportionality factor c was determined by a calibration experiment and was found to be

2.4·10-10 bar·K-1. The mass spectrometric measurement of pure antimony oxide was used for

the calibration. The procedure of calibration was described before. 

Table  3.2  presents  the  parent  ions,  their  fragments,  which  contributed  to  the  gaseous

molecules, and the partial pressures of these molecules.  The TeO+ ions are both parent and

fragmented ions according to previous studies [73]. The ratio p(TeO)/p(TeO2) is close to 0.7

in wide temperature range as was reported by Lakshmi Narasimhan et. al. [74]. Therefore the

contribution of TeO+ was distributed between partial pressures of TeO and TeO2 according to

mentioned ratio. Using the partial pressures, we determined the equilibrium constants of the

formation of the antimony tellurium ternary oxides, which will be given later (Table 3.6). 

Table 3.2. Molecules and their ions in the gas phase of the Sb2O3- TeO2 system. 

Molecule Attributed ions Partial pressure, p (bar)

 (933 K)

Sb4O6 Sb4O6
+, Sb3O4

+ 1.0·10-5

TeO2 TeO2
+, TeO+ 2.5·10-5

TeO TeO+, Te+ 1.6·10-5

Sb2TeO5 Sb2TeO5
+ 8.1·10-7

Sb2Te2O7 Sb2Te2O7
+ 2.9·10-7
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3.6.3 Density functional theory computations.

Method def2-TZVP/RI-BP86 which is used for the theoretical investigation of other oxide

system, was used for the study of Sb2O3-TeO2 system. The Table 3.3 presents calculated total

energies and thermal energies of gaseous components, which were detected experimentally.

The good agreement between experimental and theoretical values for individual oxides (Sb4O6

and  TeO2)  was  demonstrated  before.  Therefore  the  chosen  method  of  quantum chemical

calculations  was  used  for  the  Sb2TeO5 and  Sb2Te2O7 oxides.  The  thermodynamic

characteristics of the ternary oxides presented in Table 3.4. 

Table 3.3. Point  group,  total  energies  and thermal  energies  of  the  molecules  (def2-

TZVP/RI-BP86).

Molecule

Point

group

Etot 

(a.u.)

Etherm 298 

(kJ·mol-1)
TeO2 C2v -418.646847 20.54
Sb4O6 Td -1413.450842 84.18

Sb2TeO5 Cs -1125.397790 66.52
Sb2Te2O7 C1 -1544.122986 94.79

Table  3.4. Calculated  thermodynamic  characteristics  of  antimony  tellurium oxides  (def2-

TZVP/RI-BP86). 

Molecule S0
298 // S0

933

(J·mol-1·K-1)
c0

p,T = a + b·10-3·T + c·106·T-2

a b c
Sb2TeO5 442.2 // 630.9 172.51 9.12 -2.74
Sb2Te2O7 544.5 // 810.6 242.00 13.75 -3.75

Table 3.5 presents the reactions for the formation of the ternary antimony tellurium oxides as

well  as  the  calculated  enthalpies,  entropies  and  equilibrium  constants  at  standard  and

experimental temperatures for these reactions.

Table 3.5. Calculated standard enthalpies, entropies of reaction and equilibrium constants for 

the equilibrium processes in the TeO2 - Sb4O6 system in the gas phase (def2-TZVP/RI-BP86).

Reaction

ΔrH0
T  (kJ·mol-1)

298  // 933

ΔS0
933

(J·mol-1·K-1)

298  // 933

lnKp.933

298  // 933

1 TeO2(g) + 1/2 Sb4O6(g) ⇌ Sb2TeO5(g) -64.4 // -59.3 -62.5 // -53.5 18.5 // 1.2

2 2 TeO2(g) + 1/2 Sb4O6(g) ⇌ Sb2Te2O7(g) -264.8 // -249.4 -233.9 // -206.5 78.8 // 7.3
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The  calculated  standard  enthalpies  of  formation  ΔfH0
298 of  the  ternary oxides  have  been

obtained with the help of the reaction enthalpies ΔrH0
298 of the processes from Table 3.5 and

the experimental values of ΔfH0
298(Sb4O6) = -1215.5 kJ·mol-1  [75], and ΔfH0

298(TeO2) = -61.3

kJ·mol-1 [75]  and are as follows:

ΔfH0
298(Sb2TeO5,QC) = -733.4 kJ·mol-1, and

ΔfH0
298(Sb2Te2O7,QC) =  -995.2 kJ·mol-1.

3.6.4 Experimental determination of the standard enthalpies of formation  

The experimental reaction enthalpies ΔrH0
T for processes 1 and 2 are calculated with eq.

3.2 and presented in Table 3.6. The values of the reaction entropies ΔRS0
T are calculated using

quantum chemical values of entropies for ternary oxides. 

    ΔrH0
T(exp.) = –RT·lnKp,T + T·ΔRS0

T                                                                                 (3.2)

   ΔfH0
T′  = ΔfH0

T + ∫   c0
p,T dT                                                                                                (3.3)

Table 3.6. Experimental equilibrium constants and enthalpies of gaseous reactions.

Reaction lnKp,933 ΔrH0
933

(kJ·mol-1) 

1 TeO2(g) + 1/2 Sb4O6(g) ⇌ Sb2TeO5(g) 2.4 -68.6

2 2 TeO2(g) + 1/2 Sb4O6(g) ⇌ Sb2Te2O7(g) 12.1 -286.4

Table 3.7. Experimental enthalpies of formation for  oxides.

Compound

ΔfH0
933 

(kJ·mol-1)

exp

ΔfH0
298 

(kJ·mol-1)

exp

ΔfH0
298(QC) 

kJ·mol-1

ΔfH0
298(exp)-

ΔfH0
298(QC)

kJ·mol-1

Sb2TeO5 -636.7 -743.6 -733.4 -10.2

Sb2Te2O7(g) -882.8 -1033.4 -995.2 -38.3

The enthalpies  of formation  (ΔfH0
T)  of the ternary  oxides (Table 3.7) were obtained

using the determined enthalpies of reactions ΔrH0
T (Table 3.5) and enthalpies of formation

ΔfH0
933 of  TeO2(g)  and  Sb4O6(g)  oxides,  which  were  obtained  from  eq.  3.3  and  the

experimental  c0
p,T functions  [75]: (ΔfH0

933(TeO2(g)) = -28.3 kJ·mol-1 and ΔfH0
933(Sb4O6(g)) =

-1079.7 kJ·mol-1). Then, the calculated enthalpies of formation ΔfH0
933 of the ternary oxides

were  converted  into  the  standard  enthalpies  of  formation  ΔfH0
298 using  eq.  3.3  and  the

calculated a, b and c coefficients of the c0
p,T function (Table 3.4). The experimental enthalpies
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ΔfH0
933 and  ΔfH0

298 and  the  quantum chemical  values  of  ΔfH0
298 of  the ternary  oxides  are

presented in Table 3.6 for comparison. 

3.6.5 Conclusions 

Two gaseous ternary antimony tellurium oxides (Sb2TeO5 and Sb2Te2O7) were detected in the

gas  phase. Atom of  tellurium in  both  ternary oxides  has  oxidation  state  4+  and atom of

antimony 3+.  Both structures  of ternary oxides  have three-coordinated  Te4+ and Sb3+ like

oligomers of tellurium dioxide and antimony oxide. The structure of Sb2TeO5 is similar with

the structure of relative isoelectronic PbTe2O5 oxide, which was studied before. 

The gas phase of the system contains significant concentration of binary oxides TeO2,

TeO and Sb4O6 and small concentration of ternary oxides. Since the intensities of Sb2TeO5
+

and Sb2Te2O7
+ were too small, it was not possible the determination of appearance energies of

these ions. But we suppose that Sb2TeO5 and Sb2Te2O7 oxides exist in the gas phase, because

experimental and theoretical enthalpies of formation are in good agreement. 

73



4 Discussion and results

In this thesis the formation and stability of the row of hitherto unknown ternary oxides in the

gas phase has been studied. 24 novel ternary gaseous oxides, which were detected by means

of mass spectrometry presented in Table 4.1. 

All structures are formed of alternating metal/metalloid and oxygen atoms. The structures are

built  as  “rings”,  “cages”  and  “open  cage”  structures.  The  ring  structures  presented  by

MoTeO5,  Mo2TeO8,  Mo3TeO11,  MoTe2O7,  PbMoO4,  PbMo2O7,  PbMo3O10,  Pb2MoO5,

PbTeO3(Cs) and Pb2TeO4(Cs) molecules. As we see all compounds of MoO3-TeO2 and PbO-

MoO3 systems are built as rings with four-coordinated Mo6+, three-coordinated Te4+ and two-

coordinated Pb2+. Two molecules of PbO-TeO2 system (PbTeO3(Cs) and Pb2TeO4(Cs)) are ring

structures with three-coordinated Te4+ and two-coordinated Pb2+. The PbO-TeO2 system has

the  structures  with  cage  and open cage  geometries  too.  In  these  structures  Pb2+ is  three-

coordinated (like in Pb4O4) and has no lone pair unlike in ring structures with Pb atoms. The

Pb2+ is four-coordinated in Pb3As2O6 and all valence electrons of Pb are shared with oxygen

atoms.  The  cage  structures  are  high  symmetrical  and  presented  by  PbTeO3(C3v),

Pb2Te2O6(C3v),  Pb3As2O6 and  Sb2Mo3O12(C3v)  molecules.  The  As3+ and  Sb3+ are  three-

coordinated in ternary oxides, which are either in cage (like in As4O6 and Sb4O6) or open cage

geometries.  All  other  structures  were  corresponded  to  open  cage  structures:  PbTe2O5,

Pb2TeO4(C1),  Pb2Te2O6(Ci),  PbAs2O4,  PbSb2O4, Sb2MoO6,  Sb2Mo2O9,  Sb2Mo3O12(Cs),

Sb4MoO9,  Sb2WO6,  Sb2W2O9,  Sb4WO9,  Sb2TeO5 and Sb2Te2O7 molecules.  The number  of

metallic/metalloid atoms in gaseous ternary oxides is from one to five atoms. 

Table 4.1. Structures of the thernary oxides (n – quantity of metal/metalloid atoms).

Oxide
system

n = 2 n = 3 n = 4 n = 5

MoO3 –
TeO2
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MoTeO5

Mo2TeO8 Mo3TeO11

MoTe2O7



Oxide
system

n = 2 n = 3 n = 4 n = 5

PbO –
MoO3

PbO –
TeO2

PbO –
As2O3

and
PbO –
Sb2O3

Sb2O3 –
TeO2
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PbMoO4 PbMo2O7 PbMo3O10

Pb2MoO5

(Cs) ⇌
PbTe2O5

(Ci) ⇌

PbTeO3

(C3v)

(Cs) ⇌

(C1) Pb2TeO4

(C2v)

Pb2Te2O6

PbAs2O4

PbSb2O4
Pb3As2O6

Sb2TeO5 Sb2Te2O7



Oxide
system

n = 2 n = 3 n = 4 n = 5

Sb2O3 –
MoO3

and
Sb2O3 –

WO3

The enthalpies of formation for all gaseous ternary oxides were obtained experimentally and

confirmed  using  quantum  chemical  calculations.  Table  4.2  presents  experimental  and

calculated standard enthalpies of formation and entropies of ternary oxides. The existence of

most of gaseous ternary oxides which were studied in that work was proved by appearance

energies  measurements.  The  experimental  AE  values  are  in  very  good  agreement  with

theoretical  values.  For  the  following  ions  AEs  were  measured:  Mo2TeO8
+,  Mo3TeO11

+,

Sb2Mo2O9
+,  Sb4MoO9

+,  Sb2Mo3O12
+,  Sb2WO6

+,  Sb2W2O9
+,  PbAs2O4

+,  PbMoO4
+,  PbMo2O7

+,

PbTeO3
+ and  Pb2TeO4

+.  The  intensities  of  several  ions  of  ternary oxides  were  too  small,

therefore  their  AEs  measurements  were  not  possible:  MoTeO5
+,  MoTe2O7

+,  Sb2MoO6
+,

Sb4WO9
+, PbSb2O4

+, Pb3As2O6
+, PbMo3O10

+, Pb2MoO5
+, PbTe2O5

+,  Pb2Te2O6
+, Sb2TeO5

+ and

Sb2Te2O7
+. However it was proved that these ions are parent species. 
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Sb2MoO6

Sb2WO6

Sb2Mo2O9

Sb2W2O9

(Cs)

Sb2Mo3O12

⇌

(C3)

Sb4MoO9

Sb4WO9



Table  4.2.  Experimental  and  calculated  (def2-TZVP/RI-BP86)  standard  enthalpies  of

formation and entropies of ternary oxides.

Ternary oxide ΔfH0
298

kJ·mol-1

exp

ΔfH0
298

kJ·mol-1

(QC)

S0
298

J·mol-1·K-1

(QC)
MoTeO5

Mo2TeO8

MoTe2O7

Mo3TeO11

-730.2

-1436.3

-999.7

-2132.7

-735.4

-1436.1

-1002.7

-2110.7

389.5

517.1

504.8

629.3
PbMoO4

PbMo2O7

Pb2MoO5

PbMo3O10

-676.3

-1397.2

-888.0

-2076.3

-698.2

-1406.0

-874.9

-2072.9

363.2

500.1

472.8

635.0
PbTeO3(Cs)

PbTeO3(C3v)

PbTe2O5

Pb2TeO4(Cs)

Pb2TeO4(C1)

Pb2Te2O6(Ci)

Pb2Te2O6(C2v)

-248.9

-269.9

-567.1

-456.3

-448.1

-762.1

-770.8

-249.9

-270.9

-547.7

-465.8

-457.6

-757.6

-748.9

360.7

340.1

462.5

434.7

446.8

543.8

521.7
PbAs2O4

PbSb2O4

Pb3As2O6

-659.5

-669.9

-1090.3

-668.5

-653.4

-1107.8

407.9

424.2

514.0
Sb2TeO5

Sb2Te2O7

-743.6

-1033.4

-733.4

-995.2

442.2

544.5
Sb2MoO6

Sb2WO6

Sb2Mo2O9

Sb2W2O9

Sb4MoO9

Sb4WO9

Sb2Mo3O12(C3)

Sb2Mo3O12(Cs)

-1187.9

-1240.7

-1905.9

-1994.3

-1881.6

-1926.8

-2583.1

-2573.7

-1197.9

-1251.1

-1907.8

-2012.1

-1888.9

-1945.5

-2570.2

-2560.8

440.9

448.9

566.4

593.0

626.3

569.2

691.0

699.9
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