
Development and application of a modular
ray tracing framework to multi-scale

simulations in photovoltaics

Von der Fakultät für Mathematik und Physik
der Gottfried Wilhelm Leibniz Universität Hannover

zur Erlangung des Grades

Doktor der Naturwissenschaften
Dr. rer. nat.

genehmigte Dissertation
von

Dipl.-Phys. Hendrik Holst
geboren am 18.02.1982 in Hannover

2015

Referent: PD Dr. Pietro Altermatt
Korreferent: Prof. Dr. Detlev Ristau
Tag der Promotion: 19.05.2015

Kurzzusammenfassung

Während optische Simulationen, auf Basis von Raytracing, im Bereich der Solarzellent-
wicklung bereits seit Jahrzehnten genutzt werden, ist die optische Simulation von Solar-
modulen weiterhin eine Herausforderung. Dies hat zwei Gründe. Zum einen werden die
optischen Eigenschaften von Modulen durch geometrische Strukturen bestimmt deren
Größenordnungen stark variieren. Dies umfasst Größenordnungen im Bereich von Mikrom-
etern für die Pyramidentextur von Solarzellen bis hin zu Abmessungen im Bereich von
Zentimetern für die Modulgeometrie. Die daraus folgende Komplexität der Geometrie
verhindert die Simulation innerhalb akzeptabler Zeiträume. Zum anderen erschwert
die monolithische Struktur vorhandener Simulationssoftware die nötigen Erweiterungen,
welche eine Anpassung an die spezifischen Eigenschaften des Problems erlauben und die
Simulationszeit senken würden.
In dieser Arbeit wird daher ein neu entwickeltes, modulares Software Framework für

optische Simulationen vorgestellt. Sein modularer Aufbau erlaubt dabei den flexiblen
Eingriff in den Simulationsprozess und die Integration eigener Effekte. Der Aufbau und
die Erweiterbarkeit des Daidalos genannten Frameworks werden detailliert beschrieben.
Mit Daidalos werden die optischen Eigenschaften photovoltaischer Komponenten

simuliert, welche bislang nicht oder nicht in dieser Genauigkeit simuliert werden konnten.
Erstmals werden Simulation anhand von detaillierten Messungen der texturierten Ober-
fläche von Solarzellen durchgeführt. Es wird gezeigt, dass solche Simulation die gemessene
Reflektivität in guter Übereinstimmung wiedergeben und daher für die Optimierung des
Texturierungsprozesses verwendet werden können. Darüber hinaus wird anhand von
Simulationen gezeigt, dass der gute Lichteinfang von texturierten Silizium-Wafern dazu
führen kann, dass die Reflektivität des Wafers in Messungen unterschätzt wird.

Bedingt durch die optische Wechselwirkung der verwendeten Komponenten innerhalb
eines Moduls unterscheidet sich der Lichteinfang einer im Modul verbauten Solarzelle
von dem einer Einzelzelle. Durch die komplexe Lichtausbreitung innerhalb des Module
sind räumlich getrennte Bereiche optisch miteinander gekoppelt. Dieser Effekt macht
optische Simulation auf Basis der lokalen Geometrie unmöglich. Zusätzlich verhindern die
stark unterschiedlichen Größenordnungen der Modulkomponenten bislang die Simulation
ausgedehnter Bereiche in akzeptabler Zeit. In dieser Arbeit wird ein neuer Ansatz zur
Modellierung von Solarmodulen vorgestellt, der die Simulation ganzer Module ermöglicht.
Der Ansatz wird genutzt um die Auswirkungen von unterschiedlichen Zellabständen
auf den photogenerierten Strom zu untersuchen. Die gezeigten Resultate werden mit
Messungen an einem 3× 3 Mini-Modul verglichen und der Einfluss auf den generierten
Gesamtstrom abgeschätzt.
Neben der Optimierung der optischen Eigenschaften von Modul und Zelle ist auch

die konkrete Position eines Solarmoduls auf Hausdächern oder -fassaden von Bedeutung.
Daher wird Daidalos verwendet, um den jährlichen Leistungsertrag zu ermitteln, wie
er auf gängigen Gebäuden im Umland und der Stadt zu erwarten ist. Dazu wird eine,
auf gemessenen Wetterdaten basierende, Tageslichtquelle genutzt, um die Auswirkung
lokaler Abschattung auf den zu erwartenden jährlichen Leistungsertrag zu simulieren.
Diese Simulationen demonstrieren die Möglichkeit, in Zukunft konkrete Aussagen über

die Nutzbarkeit einzelner Dach- und Fassadenbereichen für die Installation von photo-
voltaischen Systemen, auch für größere Gebiete, automatisiert zu treffen.

4

Abstract
While ray tracing of solar cells was established decades ago, ray tracing of entire modules
has met obstacles for two main reasons: firstly, the optics of solar cell modules is
determined by geometric structures on a wide scale of dimensions, ranging from pyramids
on cells in the micrometer range to module geometry in the centimeter range. This
leads to high complexity of the simulation. Secondly, although it would be possible to
accelerate these simulations by exploiting specific properties, the code of available ray
tracing software is rather hard to extend to serve this purpose.

For that reason, this work introduces a newly developed modular software framework
for optical simulation. Its modular structure allows for a flexible access to the simulation
process and the integration of new effects. The problems that occur using a modular
approach are discussed and solutions are presented. The structure and extendibility of
the framework, named Daidalos, is presented in detail.

Using Daidalos the optical characteristics of photovoltaic components are investigated
by simulations that up to now either hadn’t been done at all or not with the presented
level of detail. One of the most important properties of a solar cell is the texture on its
surface in the range of micrometers, which significantly reduces their reflectivity. For
the first time simulations are presented that are based on detailed measurements of
the textured surface. It is shown that such simulations of the surface’s reflectivity are
in good agreement with the measurements and therefore can be used to optimize the
texture process. Furthermore, it is shown that the good light-trapping capabilities of
textured silicon wafers can result in an error in reflectivity measurements that leads to
an underestimation of the measured reflectivity.

Because of the optical interdependencies between the components of a solar cell module,
the optical characteristics of a solar cell that is embedded within a module differ from
that of a single cell. Due to the complex propagation within the module, spatially
separated module regions are optically coupled. Therefore, optical simulations can not be
performed on local geometries, but have to include wide regions of the module geometry.
Moreover, due to the different length scales of the components used in common solar cell
modules, such simulations typically cannot be performed in an acceptable amount of
time. In this thesis a new approach for modeling the module geometry is presented that
allows for a simulation of the whole module geometry. The presented approach is used
to simulate the impact of the inter-cell gap on the photo-generated current. The shown
results are compared to measurements on a 3× 3 mini-module and the impact on the
total photo-generate current is approximated.
Aside from the optimization of the optical characteristics of solar cells and solar cell

modules, the particular position on a building’s roof or facade is important with respect
to the photo-generated current. For this is reason Daidalos is used to simulate the
annual power yield as expect for buildings in the city and the urban hinterland. Using a
newly developed daylight source, which is based on measured weatherdata, the angular
distribution of daylight is considered to evaluate the impact of shadowing on the expected
annual power yield.

Keywords: optical simulation, ray tracing, solar cells
Schlagwörter: optische Simulation, Raytracing, Solarzellen

Introduction

Solar cells generate an electric current from the conversion of absorbed sunlight. Therefore,
to maximize the efficiency of a solar cell module its ability to absorb light needs to be
optimized. Considering solar system installations this optimization process has to take
place on different length scales. While commercially available solar cells are textured
on a micrometer scale to provide a low reflectivity, solar cell modules are build from
components in the range of centimeters to meters.
The paths by which light propagates through an optical system as complex as a

solar cell cannot be calculated analytically. Therefore, supported by the rise of desktop
computers and their ever increasing computational power, several software applications
like Raysim [1], Texture [2] and Sunrays [3] were developed to allow for a numerical
calculation of optical characteristics of solar cells. Most of these applications were
developed as monolithic software which provide their users with a fixed set of options to
configure their simulations. Due to this limited reconfigurability several tools have to be
available to account for different needs during simulation. Moreover, newly discovered
effects often can not be integrated into simulations using available tools. In this cases,
scientist have to develop there own tools often rewriting parts which are already provided
by existing software just to add a small potion of extended functionality. This behavior
is prone to errors as well as inefficient.
At the end of the 20th century the complexity of common software has grown to a

size which made it cumbersome to develop software as a whole. Instead it was split into
smaller parts that allowed for easier development and maintenance. In the year 2000
the Open Services Gateway initiative (OSGi) introduced the first release of the OSGi
framework [4] which consists of set of specifications of interfaces for the Java to support
the development of modular software.

Over the last twenty years several implementations, like Knopflerfish or Apache Equinox,
of the interfaces described by the OSGi framework were developed. Using these imple-
mentations it is now possible to create Java applications which are not only developed in
an efficient modular manner, but allow the exchange of modules after the application has

7

been deployed.
Based upon the todays available implementations of the OSGi framework a modular ray

tracing simulation can be created. By following a modular approach it is not necessary to
rewrite the whole application to add new features. Instead it is possible to develop single
modules to extend the functionality where needed but rely on established modules where
possible. Such a framework is presented with the following work and used on several
problems that can be investigated by ray tracing simulations and that are hardly or not
at all possible to implement in other currently available ray tracers

Structure of this thesis

The first part of this work is concerned with an introduction to the Daidalos ray tracing
framework and the possibilities by which it can extended by the user. The second part
demonstrates the usability of the Daidalos framework and its modular approach by
presenting ray tracing simulation on various scales, ranging from wafer optics to the
simulation of the facades of buildings.

Chapter 1 gives a short introduction to optics in introduces the concepts of refraction,
reflection and absorption.

Chapter 2 presents the necessary background to the programing paradigm referred to
as object orientated programing (OOP) as needed to understand the further chapters.

Chapter 3 introduces the concept of Monte-Carlo ray tracing. Furthermore, the
statistical error which results from the application of this method is discussed.

Chapter 4 presents the newly developed Daidalos ray tracing framework. The first
part gives an overview over the fundamental differences between monolithic and modular
applications. Moreover, the typical problems which occur when developing modular
applications are discussed. This is followed by an overview of the implementation of the
Daidalos and its capabilities. The second part of this chapter discusses the possibilities
by which user defined modules can interact with the framework to influence the ray
tracing process

Chapter 5 demonstrates the use of Daidalos to investigate wafer optics and shows
its functionality in comparison with measurements, reference simulations and analytical
calculations. An artifact which occurs during the measurement of the reflectivity of
wafers with good light-trapping is discussed. Finally, the simulation of the reflectivity of
a textured wafer is conducted. For this simulation, the actual surface texture is measured
by means of a laser scanning microscope and integrated into the simulation.

Chapter 6 presents a newly developed daylight source which is based upon measured
weather data and can be used with Daidalos to simulate real daylight including its

8

spectral and angular distribution.

Chapter 7 demonstrates the use of Daidalos to investigate module optics. A new
approach is presented which uses the capabilities of Daidalos to allow simulations of the
optical characteristics of whole modules. The usability of this approach is demonstrated by
simulating the impact of the gap between different solar cells within a solar module. This
is compared with a laser induced current measurement (LBIC) of a 3×3-cell mini-module.

Chapter 8 uses the previously describes daylight source to simulate the annual ir-
radiation which incidents on the facades of buildings. For these simulations the facades of
three buildings are used which were modeled based upon laser scans of real facades and
were provided by the Institute of Cartography and Geoinformatics(IKG) of the Leibniz
University Hannover

Chapter 9 summarizes the results of this work

9

Contents

1. Optics 15
1.1. Light as an electromagnetic wave . 15

1.1.1. The wave equation . 16
1.1.2. Harmonic plane waves . 16
1.1.3. The wavelength . 17
1.1.4. Intensity of a plane wave . 18
1.1.5. Polarization . 19

1.2. Absorption . 19
1.3. Refraction . 20

1.3.1. The Fresnel equations . 22
1.4. Geometric optics . 24

1.4.1. Energy flux . 25

2. Introduction to object orientated programing 27
2.1. Classes and objects . 28
2.2. Interfaces . 29

2.2.1. Inheritance with respect to interfaces 32

3. Ray tracing 35
3.1. The Monte-Carlo method . 35
3.2. Monte-Carlo particle tracing . 36
3.3. Calculation of the statistical error of Monte-Carlo particle tracing 39

4. Daidalos - A framework for flexible ray tracing 41
4.1. Monolithic vs. modular applications . 41
4.2. The OSGi service platform . 43

4.2.1. Java archives . 43
4.2.2. Bundles . 44

11

Contents

4.2.3. Plugin enviroment . 44
4.2.4. Module lifecycle . 45
4.2.5. Package exports and services . 45

4.3. Daidalos framework . 46
4.3.1. Framework concept . 46
4.3.2. Framework structure . 51

4.4. The tracing loop . 54
4.5. Plugins . 55

4.5.1. Plugin bundles . 56
4.5.2. Plugin factory . 56
4.5.3. Plugin service connectors . 57

4.6. Available service connectors . 59
4.6.1. The tracer . 59
4.6.2. Light sources . 60
4.6.3. The scene compiler . 62
4.6.4. Optical materials . 64
4.6.5. Face effects . 64
4.6.6. Refraction calculators . 66
4.6.7. Boundary effects . 67
4.6.8. Volume effects . 68

5. Wafer optics 71
5.1. Reflectivity measurements with the Cary UV-VIS-NVIS spectrometer . . 71
5.2. Reflectivity of a planar wafer . 73
5.3. Reflectivity of a pyramidal textured wafer 74
5.4. Complex geometries . 78

6. An advanced light source 83
6.1. Weather data measurements . 83
6.2. Generating the spectral distribution using SMARTS 84

6.2.1. Simulated spectral values . 86
6.2.2. Matching simulated spectra with measurements 87

6.3. Generating the angular distribution . 91
6.3.1. Bin-Model of the direction of radiation 91
6.3.2. Direct irradiation . 91
6.3.3. Diffuse irradiation . 92

6.4. The final weather data . 97
6.5. The daylight source plugin . 98

6.5.1. Spherical mode . 98
6.5.2. Box source . 99

7. Simulating module optics 103
7.1. Module optics . 103

7.1.1. Laser beam induced current . 105

12

Contents

7.2. Modeling the module geometry . 107
7.2.1. A multi-domain approach . 107

7.3. Simulation of the optical impact of the gap-distance 108
7.3.1. Simulation model and materials . 108
7.3.2. Simulation results . 109
7.3.3. Increase in photo-generation current for full square solar cells . . . 112

8. Simulations of facades 115
8.1. Facade vs. rooftop installations . 115
8.2. Simulation process . 116

8.2.1. Simulation and model-triangulation 116
8.2.2. Calculation of the power yield . 118

8.3. Buildings in the urban hinterland . 120
8.4. City buildings . 122

9. Summary 127

A. Measured material parameters of silicon nitride (SiNx) 129

List of publications 138

Curriculum vitae 139

13

1
Optics

This chapter serves as an introduction to optics, starting with the common representation
of light as an electromagnetic wave. In the following this representation is used to describe
the propagation of light within matter as well as the concepts of absorption, reflection
and refraction.
The text presented within this chapter is based on the work of Reider [5] with other

references being marked separately.

1.1. Light as an electromagnetic wave
The fundamental phenomena of classical optics is the existence of the electromagnetic
field described by the electrical field vector ~E(~r, t) and the magnetic field vector ~H(~r, t).
In matter, these vectors are supplemented by the current density ~j(~r, t), the displacement
field ~D(~r, t) and the magnetic induction ~B(~r, t) [6]. The relations between these vector
quantities are described by Maxwell’s equations:

∇ · ~D(~r, t) = ρ, (1.1)
∇ · ~B(~r, t) = 0, (1.2)

∇× ~H(~r, t) = ∂ ~D(~r, t)
∂t

+~j(~r, t), (1.3)

∇× ~E(~r, t) = −∂
~B(~r, t)
∂t

, (1.4)

where t is the time and ρ is the charge density. For a description of the electromagnetic
field within matter Maxwell’s equations are accompanied by a set of material equations:

~D(~r, t) = ε0
(
~E(~r, t) + ~P (~r, t)

)
= ε0ε̂ ~E(~r, t), (1.5)

~B(~r, t) = µ0µ̂(~H + ~M). (1.6)

Here, ε0 = 8.854× 10−12 AsV−1 is referred to as dielectric constant of the vacuum and
µ0 = 4π × 10−7 VsA−1 m−1 is the permeability of vacuum. Additionally, µ̂ and ε̂ are the

15

1. Optics

values for the relative permeability and the relative permittivity which are represented
by tensor values in the general case. Furthermore, the polarization vector ~P describes
the interaction of the electric field with matter.

1.1.1. The wave equation
Within the frequency range of optics the magnetic induction ~M can be usually considered
to be insignificant and is therefore neglected within the further discussion. Furthermore,
we are constraining to homogeneous media which are free of charges (ρ = 0) and currents
(~j = 0).

Under this assumptions the rotation of equation (1.4) is considered as:

∇×
(
∇× ~E(~r, t)

)
= ∇

=0︷ ︸︸ ︷
(∇ ~E)−∇2 ~E

= − ∂

∂t
∇× ~B(~r, t). (1.7)

Here, the first equality sign makes use of the identity ∇ × (∇× ~a) = ∇(∇ · ~a) − ∇2~a.
Additionally, taking into account that the considered medium is free of charges and
the relative permittivity is a scalar, it can be concluded that ∇ ~D = ε0ε∇ ~E = ρ = 0.
Therefore, using equation (1.3) this results in:

∇2 ~E − εµ

c2
0

∂2 ~E(~r, t)
∂t2

= 0, (1.8)

where c0 = √ε0µ0 is the velocity of light in vacuum and is defined to be 299 792 458m s−1.
The above equation is known as the wave equation for the propagation of the electric
field. A similar equation can be derived for the magnetic field:

∇2 ~H − εµ

c2
0

∂2 ~H(~r, t)
∂t2

= 0. (1.9)

1.1.2. Harmonic plane waves
While the wave equation for the electric field (1.8) can be solved under a multitude of
conditions, the most simple solution is that of a harmonic plane wave. This kind of
electromagnetic wave is described by1:

~E(~r, t) = <
[
~̃E(~r, t)

]
= <

[
~̃E0 · exp

(
−i(~k~r − ωt)

)]
(1.10)

Here, ω = 2πν describes the time harmonic oscillation of a wave with a frequency ν and
is referred to as the circular frequency of the wave. The vector ~k describes the spatial

1While harmonic waves can also be described using trigonometric functions, the representation by an
exponential function eases mathematical operations. For example, the application of the operator ∇
is reduced to a multiplication with −i~k.

16

1.1. Light as an electromagnetic wave

harmonic oscillation of the wave and points in the direction of propagation. It is known
as the wave vector. Furthermore, the amplitude vector ~̃E0(~r, t) is in general a complex
value which can be represented by:

~̃E0(~r, t) =

 Ex exp (iϕx)
Ey exp (iϕy)
Ez exp (iϕz)

 , (1.11)

where φx/y/z are in general arbitrary phase values.
While equation (1.10) takes the real part of the complex wave function, the explicit

evaluation of the real part and the explicit highlighting of the complex wave function is
omitted in the following. That can be done as Maxwell’s equations are linear and the
application of the operators can be exchanged with the evaluation of the real part [5].
However, this is not valid anymore when squares of the electric field are considered, in
which case the real part evaluation will be done explicitly.

Substituting equation (1.10) into equation (1.8) one can derive the magnitude k = |~k|
as:

− k2 ~E(~r, t)− ω2εµ

c2
0

~E(~r, t) = 0 ⇒ k =
√
ω2εµ

c2
0

= ωn

c0
, (1.12)

where n = √εµ is referred to as the index of refraction of the medium in which the wave
propagates. In particular it is ε = µ = 1 in vacuum and therefore nvac = 1.0.

In general ε and µ can be complex values2, in this case the complex index of refraction
n̂ is represented by:

n̂ = n− iκ, (1.13)

where κ is referred to as the extinction coefficient.

1.1.3. The wavelength
Equation (1.10) introduced the harmonic plane wave, specifying its circular frequency
ω = 2πν as well as its vacuum velocity c0. In fact, the velocity c0 of a plane wave
propagating in vacuum and its frequency ν are interrelated by:

c0 = νλ, (1.14)

with λ being the wavelength of the wave. When propagating through matter, the
propagation velocity of the wave is lower than c0 by a factor n equal to the index of
refraction of the medium. Therefore, equation (1.14) can be written as:

c = c0
n

= νλ ⇒ c0 = ν

(
λ

n

)
, (1.15)

and is further valid using a reduced wavelength λmat = λ/n within matter.
2With respect to the frequencies used in optics µ is near to one for most materials.

17

1. Optics

1.1.4. Intensity of a plane wave
Following Pointing’s theorem the energy contained within a volume due to the existence
of an electromagnetic field can be written as:∫

A

[(
~E × ~H

)
~n
]
dA = −

∫
V

[
∂

∂t

(
ε0
~E2

2 + µ0
~H2

2

)
+ ~E

∂ ~P

∂t

]
. (1.16)

Here, the left hand integral is taken over the surface of the volume while the right hand
integral is taken over the volume. Additionally, the first term of the integral on the right
hand side describes the energy contained within the volume, the second term describes
the interaction with the medium and the left hand side represents the energy flux through
the bounding faces of the volume. This flux is measured in direction of the normal vector
~n of the particular face and is referred to as the Pointing vector ~S, with:

~S = ~E × ~H. (1.17)

In the case of plane waves, the Pointing vector is orientated in parallel to the wave
vector ~k. Assume a charge and current free medium with vanishing magnetization ~M
and a relative permeability µ equal to one, then substituting equation (1.10) into (1.4)
leads to:

~k × ~E(~r, t) = ωµ0 ~H(~r, t), (1.18)
~k × ~H(~r, t) = −ωε0ε ~E(~r, t). (1.19)

Using this, the Pointing vector ~S can be represented by:

~S = ~E × ~H = 1
ωµ0

~E ×
(
~k × ~E

)
, (1.20)

and using the orthogonality ~E · ~k = 0 this can be further transformed to:

~S = 1
ωµ0µ

~E ×
(
~k × ~E

)
= 1

ωµ0µ

[
~k
(
~E(~r, t) · ~E(~r, t)

)
+ ~E(~r, t)

(
~E(~r, t) · ~k

)]
=

~E(~r, t) · ~E(~r, t)
ωµ0

~k. (1.21)

Consequently, for plane waves the Pointing vector and therefore the flux of energy is
orientated in the direction of the wave vector ~k.

With respect to the high oscillation frequencies considered in optics quantities like the
electric and magnetic field vector cannot be measured directly, but only as time averaged
values. For this reason, it is the mean value

〈
~S
〉
which is of interest. This mean value of

the energy flux density perpendicular to a plane with normal vector ~f is referred to as
the intensity I of the wave and can be calculated using equation (1.21) by:

I =
∣∣∣〈~S〉∣∣∣ = n

~̃E(~r, t) · ~̃E(~r, t)∗
2µ0c0

= n
|E0|2

2µ0c0
, (1.22)

18

1.2. Absorption

where n is the index of refraction of the medium. In the case that the normal vector ~f of
the plane is not orientated parallel to ~S the value of the intensity is given by:

I =
∣∣∣〈~S〉 · ~n∣∣∣ = n

|E0|2

2µ0c0
cos (θ) , (1.23)

where θ is the angle between the direction of the energy flux and the plane’s normal
vector.

1.1.5. Polarization

Many phenomena in optics, for example the refraction at an interface between two media
(see section 1.3), rely on the spatial orientation of the electric field vector. This state of
orientation is referred to as the polarization of the electromagnetic wave.

With respect to plane waves it can be seen from equation (1.18) that the electrical field
is always orientated perpendicular to the wave vector. For this reason, using equation
(1.11) and choosing the wave vector ~k to be orientated in the direction of the z-axis, this
leads to an ~E0 of:

~̃E0(~r, t) =

 Ex exp (iϕx)
Ey exp (iϕy)

0

 =

 Ex exp (i∆ϕ)
Ey
0

 . (1.24)

In the last step, the phase values of x- and y-component are combined within the relative
phase ∆ϕ which fully describes the relative orientation of both components.
In many situations (i.e. the evaluation of refraction in section 1.3) it is useful to

define a base of two orthogonal polarization states. Due to the linearity of the Maxwell
equations this orthogonal base can be used to describe any state of polarization by means
of superposition.

1.2. Absorption

A harmonic plane wave which propagates within matter does interact with the medium.
To visualize the impact of this interaction consider a plane wave as defined by equation
(1.10) but restricted to one dimension. This is described by:

E(x, t) = E0 · exp (−i(kx− ωt)) . (1.25)

Assume the wave propagates a distance ∆x from its initial position at x = 0. Then the
electric field at x = 0 and x = ∆x is described by:

E(0, t) = E0 · exp (−iωt) (1.26)
E(∆x, t) = E0 · exp (−i(k∆x− ωt)) . (1.27)

19

1. Optics

Making use of equation (1.12), equation (1.27) can be written as:

E(∆x, t) = E0 · exp
[
−i
(
ωn̂

c0
∆x− ωt

)]
= E0 · exp

[
−i
(
ω(n− iκ)

c0
∆x− ωt

)]
= E0 · exp

[
−i
(
ωn

c0
∆x− ωt

)]
exp

[
−ωκ
c0

∆x
]
, (1.28)

where equation (1.13) was used to consider for the general case of a medium whose
relative permittivity is a complex value. The intensities for the initial and the propagated
wave can be calculated using equation (1.22). If the propagation of the considered wave
occurs in an homogeneous medium then the term n/(2µ0c0) is the same for E(0, t) and
E(∆x, t) and the ratio of the intensity at both points can be calculated by:

|E(∆x, t)|2
|E(0, t)|2 =

|E0|2 exp
[
−2ωκ

c0
∆x
]

|E0|2
= exp [−α∆x] , (1.29)

where α = 2ωκ
c0

is referred to as the absorption coefficient.
Consequently, equation (1.29) describes an exponential attenuation of a plane harmonic

wave which propagates through a medium with a complex index of refraction. This
relation is known as the Lambert-Beer law of absorption.

1.3. Refraction

With respect to the propagation within matter, the behavior of the electromagnetic wave
at an interface between media with different complex index of refraction n̂1 and n̂2 is of
particular interest. Such an interface is shown in figure 1.1.
Assume the interface is located at z = 0 with the face normal vector ~f orientated

parallel to the z-axis. In this case the harmonic plane wave described by equation (1.10)
is represented at the point of incidence by:

~Ei(~r, t) = ~E0 · exp
(
−i(~ki~r − ωt)

)
= ~E0 · exp

(
−i(~ki,‖~r − ωt)

)
, (1.30)

where ~ki is the wave vector of the incident wave and ~ki,‖ is its parallel projection with
respect to the interface. This condition must be valid for the incident as well as for the
reflected and transmitted wave.

20

1.3. Refraction

ki

n

kt

kr

ni

nt

Θi Θr

Θt

Figure 1.1.: A plane wave with wave vector ~ki which incidents on an interface between
two media with index of refraction ni and nt. It is split up into a reflected
wave with wave vector ~kr and a transmitted wave with wave vector ~kr, this is
known as refraction. The relations between these three waves are dependent
on the index of refraction of the involved media as well as on the angles
Θi,Θr and Θi of incidents, reflection and transmission.

Additionally, as the interface is translation invariant the condition must stay valid
independent of the particular position vector ~r on the interface. Consequently, the ratio

exp(−i(~ki,‖~r−ωt))
exp(−i(~kr/t,‖~r−ωt)) between incident and reflected or transmitted wave, respectively, has
to be independent of ~r. This can only be true if:

~ki,‖ = ~kt,‖ = ~kr,‖, (1.31)

which is known as the phase matching condition. Accordingly, the wave vectors of incident,
transmitted and reflected wave span a plane, which is referred to as the plane of incidence.
Furthermore, each wave vector has to satisfy the equation (1.12) for the particular

medium which leads to: ∣∣∣~ki/r/t∣∣∣ = ω

c0
ni/t. (1.32)

Introducing the angles Θi,Θr,Θt of incidents, reflection and transmission as shown in
figure 1.1, the last two equations can be combined to:∣∣∣~ki,‖∣∣∣ = ω

c0
ni sin(Θi) =

∣∣∣~kr,‖∣∣∣ = ω

c0
ni sin(Θr) ⇒ sin(Θi) = sin(Θr), (1.33)∣∣∣~ki,‖∣∣∣ = ω

c0
ni sin(Θi) =

∣∣∣~kt,‖∣∣∣ = ω

c0
nt sin(Θt) ⇒ ni sin(Θi) = nt sin(Θt). (1.34)

21

1. Optics

Here, the first equation is known as the law of reflection while the latter equation is
referred to as Snellius law of refraction.

1.3.1. The Fresnel equations
It follows from Maxwell’s equations that the tangential components of the electric field
vector ~E and the magnetic field ~H are continuous over the interface. In particular this
means that the sum of the tangential components of the fields of transmitted and reflected
wave must be equal to the tangential component of the fields of the incident wave.

Consider the previously described interface shown in figure 1.1. The wave vectors ~ki/r/t
of incident, reflected and transmitted wave are located within the plane of incidence (i.e.
the x-z-plane) and the interfaces normal vector is orientated in the direction of the z-axis
(see figure 1.1). Therefore, the components of the wave vectors are:

~ki/r/t =

 kx,i/r/t
0

kz,i/r/t

 . (1.35)

For the following discussion it is helpful to consider two orthogonal states of the electric
field of the incident wave, that is two orthogonal states of polarization. In the first state,
referred to as the parallel polarized π-state, the electric oscillates within the plane of
incidence in the second state, known as the perpendicular polarized σ-state, the electric
field vector is perpendicular to the plane of incidence. As both state form a orthogonal
base, all other states of polarization can be constructed by superposition.

Assume an incident plane wave whose electric field vector ~E is in the σ-polarized state
and is therefore orientated perpendicular (i.e. in y-direction) to the plane of incidence.
Following equation (1.18), the magnetic field vector ~Hπ is orientated perpendicular to ~Eσ
as well as to ~k and therefore lies within the plane of incidence (i.e. is orientated along
the x-axis). The demand for continuity of the tangential components then results in:

Ey,i + Ey,r = Ey,t, (1.36)
Hx,i +Hx,r = Hx,t. (1.37)

Using equation (1.18) the equation (1.37) can be written as:

(~k × ~E)x,i = (~k × ~E)x,r + (~k × ~E)x,t. (1.38)

Furthermore, it has to be considered that the electric field ~Ei is σ-polarized and therefore
only the y-component is a non-zero value. This leads to:

ky,iEy,i = ky,rEy,r + ky,tEy,t. (1.39)

Making use of equation (1.36) this can be resolved for Er and Et,

Er = kz,i − kz,t
kz,i + kz,t

Ei = rσEi, (1.40)

Et = 2kz,i
kz,i + kz,t

Ei = tσEi. (1.41)

22

1.3. Refraction

According to figure 1.1 and equation (1.32), the kz values can be written as:

kz,i/r/t =
∣∣∣~k∣∣∣ ω

c0
ni/t cos Θi/r/t, (1.42)

cos(Θt) =

√
n2
t − n2

i sin(Θi)
nt

, (1.43)

where the latter equation can be directly derived from Snellius law of refraction (1.34).
Substituting equation (1.42) into equation (1.40) and (1.41) leads to:

rσ = ni cos(Θi)− nt cos(Θt)
ni cos(Θi) + nt cos(Θt)

, (1.44)

tσ = 2ni cos(Θi)
ni cos(Θi) + nt cos(Θt)

. (1.45)

These relations are referred to as the Fresnel equations for perpendicular polarized
light and rσ and tσ are known as the Fresnel coefficients of reflection and transmis-
sion,respectively.

The derivation of these components can be repeated for an incident parallel polarized
plane wave. In this case, the derivation process is similar when electric and magnetic
fields are exchanged. This leads to the Fresnel equations for parallel polarized light and
the associated Fresnel coefficients, given by:

rπ = nt cos(Θi)− ni cos(Θt)
nt cos(Θi) + ni cos(Θt)

, (1.46)

tπ = 2ni cos(Θi)
nt cos(Θi) + ni cos(Θt)

. (1.47)

Energy transfer at the interface

As aforementioned, the electric and magnetic field of electromagnetic waves as used
in optics are not directly accessible by measurement. Instead it is the intensity of the
electromagnetic wave which is of particular interest.
Consider a plane wave which incidents onto an interface as shown in figure 1.1. The

normal vector of the interface does not generally coincident with the wave vectors of the
incident, reflected or transmitted wave. For this reason, equation (1.23) has to be used
to calculate their intensities with respect to the interface. Due to energy conservation,
the total energy of reflected and transmitted wave must be equal to the energy of the
incident wave:

ni
|E0,i|2

2µ0c0
cos (Θi) = ni

|E0,r|2

2µ0c0
cos (Θr) + nt

|E0,t|2

2µ0c0
cos (Θt) . (1.48)

Assume the case of a parallel polarized incident plane wave, by making use of equations

23

1. Optics

(1.46) and (1.47) the energy conservation can be written as:

|E0,i|2 = |rπ|2|E0,i|2 + |tπ|2
[
nt cos (Θt)
ni cos (Θi)

|E0,i|2
]

= Rπ|E0,i|2 + Tπ

[
nt cos (Θt)
ni cos (Θi)

|E0,i|2
]
, (1.49)

where the values Rπ and Tπ are referred to as the reflectivity and the transmission
for parallel polarized light. The corresponding values Rσ and Tσ for a perpendicular
polarized wave can be derived analogous.

Any arbitrary incident plane wave can be considered to be a superposition of a parallel
polarized and a perpendicular polarized wave. Assume the intensity of the parallel
polarized wave to be Ip ∝ |E0,p|2 and that of the perpendicular polarized wave to be
Iσ ∝ |E0,σ|2, then the total reflected intensity Irefl and transmitted intensity Itrns is given
by:

Irefl = RπIπ +RσIσ, (1.50)
Itrns = TπIπ + TσIσ. (1.51)

1.4. Geometric optics
This section gives a short introduction into the field of geometric optics and is based one
the work of Born and Wolf [6] with other references marked as necessary.

As the frequencies considered within optics are rather high (i.e. around 1× 1014 Hz to
1× 1015 Hz) the wavelength as given by equation (1.14) is very small. For this reason,
within the field of geometric optics the limit λ → 0 is considered and distances in the
order of the wavelength are neglected. At first, this seems to be an invalid approach as
the magnitude of the wave vector, as defined by equation (1.12), would approach infinity.
Nevertheless, it can be shown [6] that a real scalar function Υ can be defined such that
the electric and magnetic field are given by:

~E(~r) = ~e(~r) exp(ik0Υ(~r)), (1.52)
~H(~r) = ~h(~r) exp(ik0Υ(~r)), (1.53)

where ~e and ~h are complex vector functions of the position ~r. Substituting these field
vectors into the time-free form of the Maxwell equations one can deduce the following
relations between ~e, ~h and Υ:

(∇Υ)× ~h+ ε~e = 0, (1.54)
(∇Υ)× ~e− µ~h = 0, (1.55)

~e (∇Υ) = 0. (1.56)

If equation (1.55) is resolved for ~h and this is substituted into equation (1.54) this results
in:

(∇Υ)× ((∇Υ)× ~e) + εµ~e = 0. (1.57)

24

1.4. Geometric optics

This can be rewritten using vector identities to:{
(∇Υ) [(∇Υ)~e]− ~e (∇Υ)2

}
+ εµ~e = −~e (∇Υ)2 + εµ~e = 0

⇒ (∇Υ)2 = εµ = n2, (1.58)

where n is the index of refraction. The function Υ is referred to as the eiconal and
equation (1.58) is known as the eiconal equation which is the base of geometric optics.
Additionally, the planes defined by Υ(~r) = constant are referred to as the geometrical
wave fronts.

1.4.1. Energy flux
Based on the eiconal equation (1.58) and the representation of the electric and magnetic
fields by equations (1.52) and (1.53) the properties of rays of light can be investigated.
With respect to optical simulations it is the average flux of energy through an optical
system which is of particular interest. As shown in section 1.1.4 its direction is given by
the average direction of the Pointing vector ~S, which can be calculated by:

〈
~S
〉

=
<
[
~e× ~h∗

]
2

(1.54)= [∇Υ (~e · ~e∗)− ~e∗ (~e · ∇Υ)]
2

(1.56)= ∇Υ (~e · ~e∗)
2 = ∇Υ |~e|2

2 . (1.59)

Accordingly, the direction of energy flux is parallel to the gradient of the eiconal Υ and
therefore stands perpendicular on the geometrical wave fronts. Additionally, while ∇Υ is
not necessarily a unit vector, making use of the eiconal equation (1.58), the equation
(1.59) can also be written as:

〈
~S
〉

= n |~e|2

2

(∇Υ
n

)
= n |~e|2

2 ~s, (1.60)

with ~s being the unit vector in the direction of the average energy flux. Consequently,
using geometric optics instead of wave optics, the average energy flux through an optical
system can be described if the rays of light are orientated perpendicular to the geometric
wave fronts.

25

2
Introduction to object orientated programing

From the most general point of view, any program is essentially made up by two
components : data and functions. While data represent the current state of the program,
functions manipulate the data to propagate from one state to another. Following this,
the challenge of any program is to start from an initial state, specified by the users input,
and propagate towards a final state, which contains a representation of the requested
output.

For example, a program which calculates the result of (a+ b)2, with a and b being user
defined inputs, may proceed as sketched in figure 2.1. First, the initial state is set to the
user defined inputs. By applying the +-operator on the variables a and b and assigning
the result to the variable c, an internal state is reached1. The further application of the
∗-operator leads to the final state, which has the result stored in d.
Although this general description of a program is valid independent of the used

programing language the actual structural organization of data and functions during
programing does heavily dependent on it. Historically, there were developed different
structural styles, so called programing paradigms. The Daidalos ray tracing framework
was developed using the Java R© programing language. Therefore, to achieve a deeper
understanding of this work a basic knowledge of the programing paradigm used by Java,
the so called object orientated programming (OOP) [7–11], is advantageous.

While the OOP covers a broad range of different concepts, this chapter will be constraint
to the features needed to understand the following chapters. On the one hand, this includes
the general concept of classes and objects which are the base of any Java program. On
the other hand, the concept of interfaces is heavily used within the Daidalos framework.
Both concepts are introduced using the example of the aforementioned calculation of the
first binomial.

1Here, an internal state is defined as a state of a program, which is not directly accessible by the user.

27

2. Introduction to object orientated programing

Figure 2.1.: Calculation of (a + b)2 seen as a stepwise modification of an initial state.
After the user initializes the first state (1), the execution of the program
starts by applying the +-operator. Through this, the state (2) is reached.
Further application of the ∗-operator leads to the final state (3), which holds
the result of the calculation.

2.1. Classes and objects
The OOP is based upon the concept of classes and objects. A class is a construct designed
by the programmer while writing the program, used to clearly arrange a program into
meaningful components. It consists of a set of variables (referred to as attributes within
the OOP) that represent the data hold by this class and functions (known as methods
within OOP) that work on this data.

At runtime2 the class is used as a blueprint to create an object which represents the
class in computer memory. The process of deriving an object from a class-blueprint is
referred to as instantiation and each object is called an instance of the class. Multiple
instances may be created from one class blueprint. While each of them has its own
internal variables and therefore its own state, all objects derived from the same class
share the same methods and therefore the same behavior.
For example, the simple calculation shown in figure 2.1 may be implemented as the

FirstBinomial-class shown in the class diagram in figure 2.2. Within such a diagram, a
class is represented by a rectangular box consisting of three compartments. These hold
the class name as well as the attributes of the class and its methods. While some methods
have to be accessible from outside the class (e.g. the user has to be able to set the initial
values of a and b), other methods only exist for internal purposes (e.g. the add-method).
Therefore, the OOP allows to specify access rights for methods and attributes. Within
the class diagram these access rights are presented by an access prefix which marks a
method or attribute as either public (denoted by a + prefix) or private (denoted by a −

2The time interval in which the program is actually executed.

28

2.2. Interfaces

- a : double
- b : double
- c : double
- d : double

- add(term1,term2 : double) : double
- multiply(term1,term2 : double) : double
+ setInitials(aInitial,bInitial : double) : void
+ calculate() : double

FirstBinomial

Figure 2.2.: A possible implementation of the first binomial calculation by means of a
FirstBinomial class. The class diagram represents the class as a rectangle
consisting of three compartments. These hold the name of the class, its
attributes and its methods. The prefixes + and − mark an attribute or
method as public and private, respectively.

prefix). The declaration of an attribute follows the scheme:

attribute→ [AccessPrefix][AttributeName] : [DataType],

where the data type double stands for a floating-point number of double precision.
Correspondingly, the declaration of a method follows the similar scheme:

method → [AccessPrefix][Name](paramList1;paramList2; . . .) : [ReturnType],
paramList → [ParameterName1], [ParameterName2], . . . : [DataType].

As the name implies, the return type of a method represents the type of the result that
is returned by the method, e.g. a floating-point number with double precision for the
shown calculate-method. A return type declared as void specifies a method which doesn’t
return any value.

2.2. Interfaces
While the use of classes provides an approach for creating a meaningful component
structure an application which only relies on them can be hard to maintain. This is
due to the case that in order to fulfill the applications task different classes have to
work together which inevitable leads to dependencies between them. This inter-class
dependency, also known as coupling, can result in complications when classes (i.e. their
features) should be changed during subsequent maintenance.
For example, consider an application whose single task is the calculation of the

first binomial for two user-defined numbers. For the sake of simplicity this applica-
tion was developed to consist of two classes (see figure 2.3), the FirstBinomial class as
shown in figure 2.2 and a UserInterface class. This class provides two methods, namely

29

2. Introduction to object orientated programing

Figure 2.3.: The relationships between the two classes of a hypothetical application used
to calculate the first binomial of two user-defined numbers.

Figure 2.4.: A faster implementation of the first binomial calculation. Compared to the
initial FirstBinomial class, the calculate method is changed. Now a speed
parameter is required to choose between different speeds of execution.

setUserValues(double,double) and startCalculation(). However, the UserInterface class ad-
ditionally contains a private attribute of type FirstBinomial which stores an instance of
the FirstBinomial class. This instance is used internally by the startCalculation() method
to perform the actual calculation. That is, whenever the user starts the calculation
by executing startCalculation from the user-interface, this method itself delegates the
calculation to the stored instance of FirstBinomial.
While this approach would provide the desired functionality it has one major draw-

back. By specifying the binomialCalculator attribute to be of the type FirstBinomial, the
UserInterface class gets coupled to the FirstBinomial class. To visualize, consider the case
that eventually the application should receive an update. With this the FirstBinomial
class should be replaced by a more sophisticated FastFirstBinomial class (figure 2.4).

Despite the fact that both classes do the same thing, namely the calculation of the first
binomial, their implementation is quite different. While the FirstBinomial-class provides
the calculate-method to start the actual calculation, this method is not implemented by
the FastFirstBinomial-class. Instead a calculateWithSpeed(int)-method is provided which
requires an additional speed parameter. Even if names and parameters were equal,
the UserInterface-class explicitly define its binomialCalculator-attribute to be of type
FirstBinomial. Due to this the UserInterface-class is strongly coupled to the FirstBinomial-
class by explicitly relying on this type as well as on its implementation details (i.e.

30

2.2. Interfaces

Figure 2.5.: The presentation of the BinomialCalculator-interface. Compared to the pre-
sentation of a class, an interface can only consist of public methods (i.e. no
attributes). Additionally, the <interface >- keyword is added to distinguish
an interface from an equal looking class-definition.

methods and their parameters). Therefore, whenever the coupled component should be
replaced or its implementation changes the UserInterface has to be changed accordingly.
Considering real-world applications, which can easily consist of hundreds of classes, a
strong coupling can lead to ripple-effects, where the change of one class propagates
through an entire part of the application.

Fortunately, within the OOP their exists a concept, referred to as interface, by which
the above problems can be solved3. An interface can be visualized as a contract by
which a class assures the implementation of certain methods. For this, the interface
specifies a set of methods but unlike a class it never provides an implementation for them.
Instead, the class which implements the interface has to provide an implementation of
these methods to satisfy the contract. For example, a BinomialCalculator-interface can
be defined as shown in figure 2.5. In addition, the calculator classes FirstBinomial and
FastFirstBinomial are required to implement this interface. Within the class diagram
(figure 2.6) the implementation of an interface is shown as an arrow consisting of a dashed
line and non-filled head. Following the contract specified by the interface, both classes
have to provide the methods as specified by the interface. As this is already the case for
the FirstBinomial-class no changes have to be made to this class. However, concerning
the FastFirstBinomial-class a new calculate-method has to be introduced. One approach
to implement this method would be to internally execute the calculateWithSpeed-method,
using a default value for the speed-parameter.

Finally, the UserInterface-class is adjusted for defining the binomialCalculator-attribute
to be of type BinomialCalculator. By relying on the abstract definition of a binomial
calculator rather than on its concrete implementation the coupling between the user-
interface and its calculators is reduced with the result of a significantly ease on later
changes (e.g. by means of maintenance).

3One can argue that the above issues can also be solved by the use of inheritance (e.g. both calculators
can be derived from one parent class). While that’s true the concept of inheritance (with respect
to classes) is not needed to understand subsequent chapters and therefore not part of this short
introduction.

31

2. Introduction to object orientated programing

Figure 2.6.: The BinomialCalculator interface introduces an additional level of abstraction.
By relying on this abstract definition of a calculator instead of its concrete
implementation, the coupling between the UserInterface and the calculator
implementations is significantly reduced.

2.2.1. Inheritance with respect to interfaces

While an interface was described to be a contract, which has to be satisfied by an
implementing class, it may equally be seen as a kind of tag that indicates the membership
to a group of similar objects (e.g. the group of binomial calculators). In some cases, such
a group should be refined to provide access to the functionality which is exposed only by
a part of its members.
To visualize, assume that a subgroup of the available binomial calculators provide a

method getSum() to retrieve the sum of the initial values. As the user interface only sees
the BinomialCalculator interface it can not make use of methods which are not part of
this interface. However, adding the getSum() method to the BinomialCalculator interface
would break the contract with those classes which already implement the interface but
do not provide the new method.

32

2.2. Interfaces

One approach to solve this problem is by using a OOP concept known as inheritance.
Following this, a child interface SummingBinomialCalculator can be derived from the
BinomialCalculator interface. In this case, the child interface inherits all methods provided
by its parent in addition to those defined by itself. Therefore, the child interface can be
seen as a specialization of its parent. Within a class diagram the usage of inheritance is
indicated by an arrow with a straight line and a non-filled head.
With respect to the above problem, assuming that the FirstBinomial class provides

the mentioned getSum() method while the FastFirstBinomial does not, a possible class
diagram is shown in Figure 2.7. By implementing the SummingBinomialCalculator in-
terface the FirstBinomial is still of the type BinomialCalculator. During runtime the
UserInterface can evaluate the used BinomialCalculator to check whether it also provides
the SummingBinomialCalculator interface, in which case it can provide the additional
sum-information to the user. Also note that by using this approach the UserInterface class
retains its low coupling by still relying only on abstract interfaces instead of concrete
implementations.

33

2. Introduction to object orientated programing

Figure 2.7.: By deriving a new interface (e.g. the SummingBinomialCalculator) from an
existing interface (e.g. the BinomialCalculator), a class which implements the
derived interface (e.g. FirstBinomial) provides both interfaces. This allows
for a group of similar objects, described by the parent interface, to contain
subgroups of objects with extended functionality that is provided through
the derived interface.

34

3
Ray tracing

An optical system, like a solar cell, usually consists of several components of different
material and shape. Each component has an impact on light propagating within the
system, leading to refraction, reflection or absorption. Although the optical characteristics
of these single components are usually well-known, multiple reflections and scattering on
rough surfaces result in a propagation of light, that are not easily described by analytical
methods. For this reason, such systems are often investigated by tracing the propagation
of light throughout the system. This way, effects like scattering are included in a native
way.

In the general case, optical simulations have to consider light as an electromagnetic
wave including effects like diffraction and interference [6]. This is done with a standard
approach, the finite-difference time-domain (FDTD) [12–15] method, or alternatively by
other approaches such as the finite element method (FEM) [16, 17].
However, in the simulation of solar cells, wave effects can usually be neglected and

geometrical optics can be used, which significantly increases performance. This work uses
a statistical concept known as Monte-Carlo particle tracing [18–20]. In the first part of
this chapter the fundamentals of this concept are introduced by describing its application
to the events of reflection, transmission and absorption. This is followed by a discussion
of the statistical error which is inevitable introduced by any statistical approach.

3.1. The Monte-Carlo method

The Monte-Carlo [18] method refers a to category of algorithms that use a stochastic
approach to calculate a numerical solution of complex problems by sampling with random
numbers.

The phase space of a system is a multidimensional space consisting of all possible states
the system can be in. With respect to an optical system that is described using geometric
optics the phase space can be defined as a seven dimensional space. Every point of this
space consists of three values (x, y, z) to specify an initial position of a propagating ray
of light, three values (dx, dy, dz) to specify its direction of propagation and one value I

35

3. Ray tracing

to describe its intensity. Any path by which a ray propagates through the system can
then be described as a trajectory T within the phase space. Moreover, the stochastic
average value 〈Q〉 of any quantity Q that can be derived for any particular trajectory T
can principally be calculated by:

〈Q〉 =
∑
T
ρ(T)QT . (3.1)

Here, the sum is taken over all possible trajectories in the phase space, QT is the value
of Q derived for a particular trajectory T and ρ(T) is a normalized weighting factor that
describes the probability for a propagation along T . Using the Monte-Carlo approach
the value of 〈Q〉 is approximated by simulating an ensemble composed of N rays of light
that propagate along randomly chosen trajectories Ti. For each of these trajectories, the
value QT is calculated and the average value calculated by:

〈Q〉 ≈ 1
Ni

∑
T
QT . (3.2)

This approach provides the advantage that trajectories with high probability ρ(T) and
therefore high significance are more frequently considered then trajectories with low
significance, this is referred to as importance sampling. The calculation of the statistical
error that is introduced due to the limited number of considered trajectories depends
upon the actual implementation of the Monte-Carlo method. It is discussed in section
3.3 for the approach of Monte-Carlo particle tracing.

3.2. Monte-Carlo particle tracing

This section introduces an implementation of the Monte-Carlo method, referred to as
particle trancing, which is used for the optical simulations as described within this work.
In Monte-Carlo particle tracing, a ray of light is represented by an ensemble of N particles,
which are referred to as simulated photons or just photons in this work. The state of each
simulated photon is described by its position vector ~x, its propagation direction ~d and a
value λ that specifies the simulated wavelength. Within this representation each photon
can be considered to transport a fraction γ of the rays intensity I, given by:

γ = I

N
, (3.3)

where I is defined by equation (1.23).
Different trajectories are randomly sampled by individually simulating the propagation

of these N photons, where each path is followed as illustrated in figure 3.2. First, the
simulated photon is created by a light source and initialized with its initial position
~x, direction ~d and wavelength in vacuum λ. After its creation the photon is located
within a particular medium with an index of refraction n1 as specified by the simulation
domain. Using the photon’s position ~x and direction ~d, a search for the next hit with an

36

3.2. Monte-Carlo particle tracing

n2

n1

d x λ, ,

n2

n1

n2

n1
n2

n1
dr

dt

1 Creation of a simulated
photon

2 Search of next hit
interface

3 Propagation to
the hit point

4 Decision for
transmission
or re�ection

Figure 3.1.: The path of each individual photon is followed in a cyclic manner. In the first
step, the photon is created by a light source as defined by the simulation (1).
Using its direction of propagation ~d and its position ~x the next hit interface
is determined. In case a hit is found the photon is propagated within the
current medium to the hit point (3). During this step a possible absorption
of the photon by the medium is checked (see text). If not absorbed, the
photon reaches the interface. In this case the probabilities for transmission
and absorption are calculated (4). Based on this probabilities it is decided
whether the photon is reflected by the interface or transmitted through the
interface (see text). In any case the direction vector ~d is changed to comply
with the law of reflection or Snellius law of refraction. The shown cycle is
executed until the photon is either absorbed by the medium or leaves the
simulation domain.

37

3. Ray tracing

interface is conduct, which in the general case separates two media with different index
of refraction n1 and n2.
If a hit can be found, the photon is propagated along its direction to the hit point

on the interface. Depending upon the used material as described by n1 the photon
can get absorbed during this propagation. This absorption process is described by the
Lambert-Beer law of absorption as given by equation (1.29). It describes an exponential
attenuation by a factor Ω(α,∆x) = I(∆x)/I(0) = exp(−α∆x) of a ray’s intensity after
propagating a distance ∆x within a medium with an absorption coefficient α. As each
photon transports the same fraction γ of the intensity and all photons are equally
handled during simulation, the probability for a single photon to get absorbed is defined
by Ω(α,∆x). For this reason, before propagating the photon to the hit point, the distance
to the hit point is calculated and Ω(α,∆x) is evaluated. Additionally, a random number
mabs in the range from 0 to 1 is generated by means of a pseudo-random number generator.
In the case of mabs > Ω(α,∆x), the photon is absorbed, otherwise it is propagated to
the hit point.

For all photons that reach the interface it has to be decided whether they are reflected
by the interface or transmitted through the interface. Following a similar reasoning as for
the process of absorption, the probability for a photon to get reflected by interface is equal
to the interface’s reflectivity R and can be calculated by Fresnel theory as introduced
in section 1.3. A second pseudo-random number mrefl is generated and the photon is
reflected by the interface for mrefl < R or transmitted through the interface otherwise.
After the decision, the direction vector ~d of the photon is changed to comply with the
law of reflection (equation 1.33) or the Snellius of refraction (equation 1.34), respectively.
The cycle of hit search, propagation and refraction calculation is repeated until the

photon is either absorbed by a medium or no further hits can be found, which means
that the photon leaves the simulation domain.

After conducting a particle tracing simulation using an ensemble of Ni incident photons,
the optical characteristics of the investigated optical system can be evaluated using
equation (3.2). For example, the reflectivity of a silicon wafer for a fixed wavelength λ
can be evaluated as the stochastic average of the number of reflected photons Nr for an
ensemble of Ni incident photons. Making use of equation (3.2), this can be written as:

R = 〈Nr〉 ≈
1
Ni

∑
T
Nr(T) = Nr

Ni
, (3.4)

where the sum is executed over the trajectories the Ni simulated photons and Nr(T) is the
number of reflected photons due to particular trajectory T . Other optical characteristics,
like transmission and absorption, can be evaluated by a similar calculation.

38

3.3. Calculation of the statistical error of Monte-Carlo particle tracing

10,000
photons

20,000
photons

40,000
photons

80,000
photons

 5×10-3

 4×10-3

 3×10-3

 2×10-3

 10-3

 0
 0

St
at

is
tic

al
 e

rr
or

 σ

Re�ectivity

0.2 0.4 0.6 0.8 1.0

Increasing the number
of photons by a factor
of four halves the
statistical error.

Figure 3.2.: The statistical error σ as expressed by equation (3.9) for different values of
the number of incident photons and the value of the reflectivity. Increasing
the number of simulated photons by a factor of four reduces the statistical
error by 50 %.

3.3. Calculation of the statistical error of Monte-Carlo particle
tracing

For most optical systems there is an infinite number of paths. Thus, the number of traced
paths (i.e. the number of traced photons Ni) have to be constraint to keep the simulation
time reasonable. By doing this using the approach of Monte-Carlo particle tracing, a
statistical error is introduced, leading to results that expose a binomial distribution with
variance σ2 :

σ2 = Npq. (3.5)
Here, N is the number of independent events, p is the probability which describes a
positive outcome of the event (however this is defined) and q = (1− p) is the probability
for the complimentary result. With this, the standard deviation σ can be calculated by:

σ =
√
Npq. (3.6)

For example, consider a ray tracing simulation where a set of Ni incident photons
results in a number of Nr reflected photons. According to equation (3.4), this leads to a
reflectivity value of:

R = Nr

Ni
. (3.7)

39

3. Ray tracing

As not all possible paths were covered, the value of Nr is afflicted with a statistical
error which, following equation (3.6), can be approximated by:

σNr ≈
√
NiR(1−R). (3.8)

This leads to a statistical error σR for the value of the reflectivity R:

σR ≈
1
Ni

√
NiR(1−R) =

√
R(1−R)

Ni
. (3.9)

This statistical error is shown in figure 3.3 for different values of reflectivity R and
simulated photons Ni. As can be seen from the figure and is expressed by equation (3.9),
the error is halved when the number of simulated photons is increased by factor of four.

40

4
Daidalos - A framework for flexible ray tracing

This chapter introduces the concept behind the Daidalos framework approach, starting
from the most fundamental point, the comparison of monolithic to modular applications
[21]. Here, the term framework refers to a set of tools or pieces of software that are
used to simplify the creation of a second application. This ranges from mathematic
frameworks that provide functions for e.g. efficient calculation of matrix products, to
user-interface (UI) frameworks that provide common UI elements like buttons or text
input-fields. Usually, such frameworks can not be executed as a standalone application,
but rely on a second application to use them. This second application will be referred to
as host application, as it is the host for the used framework, throughout this chapter.
In the later sections, the utilized modularization framework as well as the basic

elements provided by Daidalos are presented. This is finished by an introduction to the
possibilities, namely the types of plugins, which can be developed by any user.

4.1. Monolithic vs. modular applications
Today, any well-designed application is structured into different components with each
component being responsible for a fraction of the overall task. The resulting component-
structure often is an hierarchic one, where some low-level components (e.g. loading
data from disk or doing matrix calculations) are used by some more abstract high-level
components. While a component hierarchy is used for monolithic applications as well
as for modular ones, there exists a big difference considering the moment in time when
the actual hierarchy is established. Regarding a monolithic application (figure 4.1), all
components are developed at once, leading to a full knowledge of the actual component
hierarchy at the time the application is programed. This fact provides two advantages.
First, a developer can rely on the existing components, knowing that each of them
will be also existent at runtime. Second, the compiler1 has access to all parts of the

1A compiler is an application which translates code written in a programming language (e.g. Java) into
the much lesser readable machine code needed for execution on a particular machine (e.g. the Java
virtual machine).

41

4. Daidalos - A framework for flexible ray tracing

Figure 4.1.: A monolithic application (left) is developed as one, knowing the dependencies
between different components while it is programed. Contrary to that, the
components of a modular application (right) are separated into different
modules, each individually developed. As the actual components are not
loaded until runtime, no assumptions can be made about the existence of
particular components during development.

application, which allows him to notify the developer of unsatisfied dependencies (e.g.
some components which rely on older, but now removed, components).
There is a significant difference when it comes to a modular application. Here,

components or groups of them are distributed within different modules (figure 4.1),
each of them providing a group of functions to the overall application (e.g. basic math
calculations are provided by one module). There exists no strong coupling between the
modules, instead a module providing a particular set of functions can be replaced by
another one providing the same set. At the moment the host application is started, it
chooses the needed modules and establishes the final component hierarchy. Compared
to a monolithic application, the modular approach provides greater flexibility, allowing
for the replacement of any module at any time even after the compilation of the host
application. However, two new tasks have to be tackled if using the modular approach.
First, there has to exist a mechanism to manage the different modules used by the

host applications. That means, as the host application is required to choose and load the
needed modules2, there has to be a mechanism which allows for communication between
modules and application to exchange information like module type or module version.
Furthermore, as the application finally has to establish a valid component hierarchy, the
used modularization mechanism has to ensure that the dependencies between all loaded
modules can be satisfied. Considering different module versions, where any of them may
have other dependencies, this is a rather complex task.
Second, there has to exist a specification which describes the interfaces that allow

communication between different modules. That is, component developers have to know
which functions their modules should provide and which function they can rely on as

2Note, there can always be more than one module providing the required set of functions, so the host
application actually has a choice which one to use.

42

4.2. The OSGi service platform

being provided by other modules. Therefore, the types of modules which exist have to
be specified as well as the functions they provide.
Considering the Daidalos framework, the responsibility for these tasks is split into

two parts. The modular Daidalos framework specifies the available types of modules,
which are also referred to as plugins, and the functions they provide. An introduction
to its elements is given in section 4.3. The needed modularization mechanism which
manages modules as well as their interdependencies is provided by the OSGi service
platform and is subject of section 4.2.

4.2. The OSGi service platform
TheOSGi service platform supports the development of modular applications by specifying
a fundamental concept which covers the task of defining modules and their dependencies
as well as managing (that is, loading, configuring, etc.) them during runtime. Amongst
a set of interfaces that allows modules to present their provided features, the service
platform includes a bunch of already written code to ease recurring tasks during module
management. The term OSGi was originally an acronym for the Open Services Gateway
Initiative. It was dropped after the third release of the OSGi service platform and since
then serves as a general trademark for the associated technology [4, 22,23].

This chapter will introduce the basic mechanisms provided by the OSGi service platform.
While OSGi provides a broad set of features to support modularization, this chapter will
be constrained to those needed to understand the modularization concept as used by
Daidalos.

4.2.1. Java archives
Applications written with the Java programming language [24] usually consist of a number
of different classes which work together to provide the applications functionality. In order
to keep the application well-arranged Java provides a package-concept. Any package is
comparable to a folder on the disk of a computer and can contain a number of classes
as well as sub-packages. During the compilation process, the compiler translates the
Java program code of these classes into binary code which could be interpreted by the
Java virtual machine (JVM) [25]. As a result, a folder structure is created on disk which
reflects the initial package-structure wherein any original class definition is replaced by
the binary code outcome of the compilation process.
In the usual compilation process the compiling step is followed by a packaging step.

Within this step the created folder structure is compressed into a Java archive(.jar) file.
Additionally, the compiler adds a MANIFEST.MF file which is referred to as manifest
file. It contains information about the archive and is used by the JVM to execute the
contained program.

For example, the manifest includes the name of the class which contains themain()-method
of the application. This is the first method that is executed when the application starts
and is also referred to as the entry-point of the program.
Finally, the created .jar-file can be distributed and executed on other computers.

43

4. Daidalos - A framework for flexible ray tracing

4.2.2. Bundles

While Java archives allow for an easy distribution of monolithic applications, where the
whole program is included within the created .jar file, it is not adequate to develop
modular applications. This is mainly due to the fact that modular applications need a
sophisticated mechanism for providing access to one part of a module (the public part)
while restricting external access to the internal part (the private part). Such separation
mechanisms can hardly be implemented with the concepts provided by Java archives.
For this reason, the OSGi service platform uses slightly modified Java archives which

are referred to as bundles. Additionally to the components of a standard archive file,
bundles are extended by an OSGi information file. On the one hand, the existence of
this file marks a .jar file as being a bundle. On the other hand, it includes important
information about the dependencies of the module. For example, this can include a set
of packages which are exported (i.e. made available) to the public (i.e. other modules)
and packages which are imported (i.e. required) by the module.
Although it is possible to spread a single module of the application over several

OSGi bundles it is common to associate one module with one bundle. Following this
one-module-one-bundle approach functionality can be added or removed to or from an
application by adding or removing the associated module bundles.

4.2.3. Plugin enviroment

Following the one-module-one-bundle approach mentioned in the last section, a bundle
is the representation of a single module on the disk of the computer. It provides basic
informations over the bundle’s dependencies but is a pure passive object. As mentioned
in section 4.1, the module-management, consisting of loading modules in memory and
resolving there dependencies, is a rather complex process. In order to simplify the control
over this process, OSGi provides an environment which will be referred to as plugin
environment within this work. It can be seen as an abstract space into which modules
have to be loaded in order to get usable by the application. When properly loaded into
the environment any module can access the functionality provided by any other loaded
module.

Due to the fact that the plugin environment must exist before the first module is loaded
into it, an application designed to use OSGi has to consist of at least two components.
First, code responsible for initially setting up the OSGi framework is required. This
starter component contains the entry point of the host application and is therefore the
first one executed when the user starts the application. Second, there have to be a set of
modules which contain the business logic of the application, that is the basic features
needed to fulfill the application’s task.

During the startup process it is at the responsibility of the starter component to load
these base modules into the environment and transfer the execution control to them.
Afterwards, the now started application, which is made up of base modules, is in control of
the execution process. Up from here it is itself responsible for loading additional modules
if needed. Eventually, when the application is shut down, the control of execution is

44

4.2. The OSGi service platform

transfered back to the starter component, which is responsible for properly shutting down
the OSGi environment before exiting.

4.2.4. Module lifecycle

Any module runs through a lifecycle which consists of three major states, namely installed,
resolved and started [4].

When a module gets loaded by the host application it starts in the installed state.
Within this state the module’s bundle is internally accessible by the host application,
but does not provide any functionality yet. Based upon this state an application can
execute the resolve command. During the resolving process the OSGi framework tries
to satisfy the dependencies of the module by those modules which have already been
started. In case the dependencies are properly resolved, the module state is changed to
resolved. At this point the module is not active yet, but can be started by the application
executing the start command, changing the module state to started. When this state is
reached the module is successfully loaded into the plugin environment and can provide
its functionally to the application.

Eventually, the module is no longer needed, in which case the application executes the
stop command, which removes the plugin and its functionality from the environment and
changes the module state back to resolved.

4.2.5. Package exports and services

A module which has reached the started state is able to provide its functionality within
the plugin environment. This can be done by two approaches, by means of package
exports or services [4].

By using package exports a module defines a subset of the Java packages to be accessible
for other modules. However, in order to make use of these exposed classes and interfaces
the developers of other modules must know their fully qualified name3 of the used classes
when the modules are developed. For this reason, this approach is most applicable for
modules that provide utility libraries (e.g. a math library). Here, the decision about the
used classes is made while developing the module, therefore the fully qualified names of
each used class is known in advanced.
Using the service-approach, a module registers a set of interfaces with the OSGi

platform that represent the services it provides. For example, a module might declare
to provide the BinomialCalculator as shown in figure 2.5 to provide the functionality to
calculate the first binomial. Other modules can ask the OSGi platform for registered
services with a particular interface. While this service query can be made at runtime
(contrary to the import of exported packages), both modules (i.e. service provider and
requester) have to agree on the interface used for the representation of the service.

Within Daidalos and most of other expandable modular applications a combination
of both approaches is used. On the one hand, a publicly available library is released that

3The fully qualified name of a Java-class consists of the actual class-name and the name of the package
it resides in.

45

4. Daidalos - A framework for flexible ray tracing

exports packages mainly composed of the interfaces for all services used later on by the
application. The definition of those interfaces is one task of the Daidalos framework
core. On the other hand, any module makes it capabilities available by providing services
represented by those interfaces.

4.3. Daidalos framework

This section covers the fundamental principles of the Daidalos framework. While the
first part is about the underlying concept, the latter part describes the provided elements.

When developing any software framework to support the development of applications
of a particular domain (e.g. a framework supporting scientific calculations), the developer
has to take care of two issues. First, a concept has to be developed that describes
the way in which the framework is meant to be used. This includes the paths (e.g.
programming code, additional software tools, etc.) by which support is provided as well
as the requirements that have to be satisfied by a host application. Second, the actual
framework elements have to be implemented and made available to the using application.

4.3.1. Framework concept

An application providing the possibility of ray tracing has to take care of two tasks. It
starts with a pure management task, which includes issues like the presentation of a user
interface, the configuration of the elements used during simulation and finally starting
the actual simulation process. Afterwards, the task is switched to a simulation orientated
one, consisting of elements like the ray tracing algorithm, refraction calculation and result
generation4.
In the case of Daidalos, this separation of issues is an important part of the overall

concept. To clarify this, Daidalos actually separates the simulation into two parts.
During the startup part, the user starts an application, referred to as host application,
which provides the ability of ray tracing by means of Daidalos and implements the
elements described in the startup concept discussed later. It is an important point, that
there are no other requirements to the host application5 than being able to execute the
startup process. The host application is in charge of the whole startup process, including
creation of the user interface and configuration of the used plugins.
When the user starts the simulation process (e.g. by clicking some button in the

user interface of the host application), the control is transferred to one of the plugins
which were already loaded by the host application. This is the moment, when the
actual simulation part, referred to as runtime part, begins. During this part, the plugins
supported by the Daidalos framework control the process of simulation. The elements
of this part as well as the process itself is what is described by the runtime concept.

4There can be an additional task-switch when it comes to displaying the generated results (e.g. in a
window of the user-interface).

5As Daidalos is based on Java programing language its usage is greatly simplified if the host application
is also using Java

46

4.3. Daidalos framework

Figure 4.2.: The initialization stage is the first stage during startup, triggered by the
user when starting the host application (1). During this stage, the host
application is responsible for starting the OSGi service platform (2), which
itself creates the required plugin environment (3). Afterwards, the host
application transfers the Daidalos framework into the plugin environment
(4), which represents itself by its API.

Startup concept

The startup concept of Daidalos is divided into three stages, namely the initialization,
configuration and finalization stage.

The initialization stage (figure 4.2) begins with the user starting the host application (1),
which is responsible for starting the OSGi service platform (2) that provides the necessary
plugin environment (3) needed for proper plugin management. Additionally, the host
application loads the Daidalos framework which is itself composed of several OSGi
modules. After transferring these modules into the plugin environment (4), the frame-
work makes itself available through its application programming interface (API) that
is discussed in section 4.3.2. Note that the host application resides outside the actual
plugin environment and has only minor impact on the later simulation, which executes
within the environment.

After the host application is properly started the configuration stage is reached (figure
4.3), it provides an interface6 to the user, allowing him to configure the simulation to
the needs of his problem (5). Based upon the given configuration, the host application
chooses the plugins required to fulfill the configured simulation task (6) and transfers
them into the plugin environment (7). Each plugin presents itself within the environment

6The concept does not make any assumptions about the nature of this interface. For example, it might
be a graphical user interface as well as a console based one.

47

4. Daidalos - A framework for flexible ray tracing

Figure 4.3.: The configuration stage is entered when the host application provides a
configuration interface to the user. Using this interface the user configures
the simulation (5) for his purposes. Based upon this configuration the host
application choses the required plugins (6) and transfers them into the plugin
environment (7).

by the interfaces (α, β and γ) it provides and needs. Sometime after the configuration
has finished, the user starts the actual simulation process (e.g. by using some element of
the user interface) and triggers the start of the finalization stage (figure 4.4). During
this final stage, the host application finalizes the configuration of the used plugins. This
includes the task of creating the interdependencies between different plugins and therefore
establishing the final component hierarchy (9). In the last step of the startup process,
the host application transfers control to a specific plugin, in this case Plugin A (10), that
is in charge of the actual simulation process7. To satisfy the need for an interface of one
plugin (e.g. Plugin A) with the one provided by a second plugin (e.g. Plugin C), both
have to agree with respect to the methods provided by this interface. For this reason,
there has to exist an external specification of the interface to which both plugins refer.
Providing such interface specifications is one of the responsibilities of the Daidalos
framework (see section 4.6).

Runtime concept

While the host application is the leading part during the startup process, this changes
as soon as the simulation is switched to the runtime part. This part is controlled
by two plugins, which represent themselves as Tracer plugin (see section 4.6.1) and
SceneCompiler plugin (see section4.6.3).

7Usually, this will be the plugin providing the Tracer interface that is discussed in section 4.6.1.

48

4.3. Daidalos framework

Figure 4.4.: After configuration is done the user starts the actual simulation process
(8). This event triggers the finalization stage, in which the host application
finishes the plugin configuration process and establishes the final component
hierarchy (9). As last step, the host application transfers control to the
Plugin A which controls the simulation process (10).

In Daidalos, a simulation consists of geometry and effects. While geometry specifies
the shape, position and orientation of volumes, the effects are software components that
can be associated with the geometry. During the tracing process the effects are executed
by the Tracer component and can be used to manipulate the photon (e.g. its direction of
propagation). They are used to implement physical effects as well as photon detectors
(e.g. to count all photons reflected by a particular interface).

The runtime part (see figure 4.5) is specified to begin after the host application has
transfered control to the Tracer plugin (marked 10 in figure 4.4). However, there are
two steps within the final stage of the startup process which are quite important for the
simulation process. First, the host application configures the SceneCompiler plugin by
transferring the underlying geometry (figure 4.5a). It is important to note that Daidalos
makes no assumptions considering the structure by which the geometry is presented. For
example, the author of a host application which already has an internal representation of
geometry (e.g. by a polygon model) may create a SceneCompiler plugin which accepts
this structure and makes it available for simulations with Daidalos. Second, the host
application registers all effects applied to any part of the geometry as well as geometry
independent plugins, e.g. light sources, with the Tracer plugin (b).

Eventually the runtime part is started. At this point the SceneCompiler is responsible
for creating a so called Scene object (figure 4.5,(1)). The required interface of this object
is specified by the Daidalos framework and is kept simple to be usable with any type of
underlying geometry (see section 4.6.3). After the Scene is created, the Tracer starts by

49

4. Daidalos - A framework for flexible ray tracing

Figure 4.5.: An overview of the runtime process. During the finalization stage of the
startup process (figure 4.4), the host application transfers the underlying
geometry to the SceneCompiler plugin and registers the used effects with the
Tracer plugin. Afterwards, the control of execution is transfered to the Tracer
plugin and the actual simulation is started. During the following process,
the tracer uses the Scene, created by the SceneCompiler, to retrieve the next
interface hit of the photon. According to the simulation, as defined by the
user, physical effects which were applied by the user are executed by the
tracer.

50

4.3. Daidalos framework

following a tracing loop, which is discussed in section 4.4. During this loop the Tracer
submits the position and direction of the simulated photon to the Scene object and asks
for the next hit with an interface (2). Based upon the answer of the Scene object8, the
Tracer decides which effects should be executed (3). This process is periodically repeated
until the simulated photon is either absorbed by a media or no next hit is found (i.e.
the photon leaves the simulation domain). In such cases, the Tracer either triggers the
creation of a new photon or finishes the simulation as no new photons are available.

4.3.2. Framework structure

In order to put the concepts described in the last section in practice, Daidalos has to
satisfy several requirements. For the startup process elements for communication between
host application and plugins are required. This includes recognition of plugin types as
well as the transfer of data between host application and plugin. Finally, Daidalos
should provide support in plugin development as well as in the integration of ray tracing
into the host application.
While plugin related elements like associated interfaces and the structure of plugin

bundles are separately discussed in section 4.5, this section provides an insight into the
remaining elements provided by Daidalos to tackle the above issues.

Framework values

Any meaningful communication relies in an agreement between sender and receiver, with
respect to the type of data which is exchanged. With regard to scientific communication,
this data often is expressed in terms of mathematical expressions, including complex
numbers, vectors or matrices. However, although Java provides a broad set of different
data types, complex numbers are not part of the natively provided types.
For this reason, Daidalos introduces its own set of base types which are referred to

as framework values. These types include three tensor types, namely complex numbers,
vectors and matrices. Additionally, the Java types Boolean for logical values and String
for character strings are also included.
All tensor types provide the methods needed for basic mathematical operations, e.g.

matrix-matrix or matrix-vector products. Additionally, all numerical types allow for the
definition of a physical unit, referred to as SIUnit. When using the provided mathematical
methods these units are taken into account.

Message channels

While the framework values define the content of an exchanged message Daidalos
provides two ways to transfer them.

8There are three possible answers. First, there can be only one next hit, e.g. a photon hitting the
side of a cube. Second, there can be multiple hits, e.g. a photon which hits the tip of a pyramid is
actually hitting all neighboring faces. Finally, there can be no hits at all, e.g. when a photon leaves
the simulated scene.

51

4. Daidalos - A framework for flexible ray tracing

First, communication can take place by using the predefined plugin interfaces as
described in section 4.5. For example, the Tracer plugin (see section 4.6.1) will ask a
LightSource plugin (section 4.6.2) for a photon, by calling its createPhoton method which
is defined by the associated plugin interface. The advantage of this kind of communication
is its well defined nature, reducing the risk of unwanted ambiguities. The main drawback
of this approach is the constraint to a number of predefined messages (as defined by the
plugin interfaces), leaving no space to introduce new kinds of messages where needed.
Therefore, Daidalos supports a second way of communication, based upon so called

message channels. A MessageChannel can be visualized to be similar to a mailing list,
identified by a unique name. On the one hand, any plugin can post a message, consisting
of an arbitrary FrameworkValue, to any message channel. On the other hand, any plugin
can register with any message channel as a so called listener. In the case, where a
message is posted on a channel any listener registered with this channel gets notified of
the message. While this approach allows for nearly arbitrary communication between
plugins, its main drawback is the undefined nature of messages which are transfered by a
message channel. Due to this, any plugin listening to a channel is itself responsible to
handle messages which are not matching the expected format (e.g. a plugin expects to
receive 3× 3 matrices, but another plugin posts a 4× 5 matrix).

To visualize the power of the message channel concept, consider the task of information
transfer from a plugin to the user. A plugin needed to inform the user, either of a
simulation related detail or an occurred error, has no knowledge of the user-interface
(e.g. is it a console application or a graphical interface) which is created by the host
application. Therefore, Daidalos specifies four default channel names, namely Debug,
Warning, Information and Error. Any plugin wanting to inform the user of any of the
above, posts its message on the associated channel. By registering a listener to each of
these channels, the host application can receive the messages and decides itself on how
to present it to the user.

Utilities

During the process of a simulation, there are recurring tasks which have to be done by
most of the used plugins. Therefore, the Daidalos framework includes a set of utility
classes to ease the development process and avoid redundant code.

The provided classes can be roughly divided into two groups. On the one hand, there
is set of classes, e.g. ParameterList and ArgumentSet, which are used during the plugin
initialization process (see section 4.5). As all plugins are initialized on a mostly similar
way, the provided utility classes are of use for practically every plugin developer. On the
other hand, there is set of classes which supports typical tasks done during simulation.
For instance, the CubicSpline class is of great use when wavelength-dependent input
values (e.g. the material specific index of refraction) should be interpolated.

52

4.3. Daidalos framework

Scene construction

As it was shown in section 4.3.1, the host application transfers a model of the simulations
geometry to a SceneCompiler plugin, which is able to create a Scene from this model (see
figure 4.4). There are two ways to conform with this concept.
On the one hand, there are some host applications which already contain an internal

geometry model for other purposes and should just be extended to support ray tracing by
means of Daidalos. For these ones, the easiest approach might be to integrate their own
geometry-model into the ray tracing simulation by developing a SceneCompiler plugin
that understands the model and creates a Scene from it.

On the other hand, most host applications will not provide their own geometry model
or the one provided is to complicated to be easily integrated into a SceneCompiler plugin.
For these cases, Daidalos provides a set of classes to build geometries based on the
approach of constructive solid geometry (CSG) [26].

Application programming interface

Programs are seldom static. Their source code changes over time either due to error
corrections or due to replacement of deprecated functions by newer ones. Because of this
it is necessary to develop with later changes in mind.
For this reason the Daidalos framework was split into several modules (see figure

4.6) which can be easily replaced by newer versions. In order to result in a meaningful
modularization, two issues have to be considered. First, the classes from one module
should, as far as possible, not rely on any class of other modules. This allows for an
independent development of single modules and simultaneously limits the impact of
possibly introduced errors to the particular module.
Second, the partition of Daidalos is hidden from the host application which makes

use of it, by a so called application programming interface (API). This is encapsulated
within its own module and serves as a kind of additional abstraction level between the
host application and Daidalos. Whenever the host application wants to use one of the
methods provided by Daidalos, it calls the associated method of the Daidalos API.
The underlying logic of the API module knows which class of the framework is responsible
for the particular request as well as the module in which the class can be found. After
execution of the chosen method, the API logic returns the associated return value to the
application. While this approach seems rather complicated, it allows for nearly arbitrary
changes on the implementation of the framework modules. For instance, consider moving
a class from one framework module to another (e.g. from ValueCreation to Utilities).
In the case, the host application or any plugin would directly access the modules this
change would lead to broken dependencies9, i.e. a non-working plugin. By hiding the
internal structure of Daidalos behind the API, a change in the module structure can
be integrated within the underlying logic of the API module. As long as the provided
API methods are not changed (i.e. name, parameters and return value stay the same) all
plugins will keep working without even noticing the replacement of modules.

9That is, the plugin code won’t find the required class it depends on (as it has been moved).

53

4. Daidalos - A framework for flexible ray tracing

Figure 4.6.: The Daidalos framework is distributed as separated modules. External
program code, like plugins or the host application, access the framework
through an API layer, which hides the internal implementation.

4.4. The tracing loop

This section introduces the concept of a tracing loop. While the previous section presented
the startup and runtime concepts, which specify the responsibilities of the involved
components during the startup and runtime process, a similar concept can be used to
specify the responsibilities of the available plugin types during the ray tracing process.
This concept is referred to as the tracing loop and is shown in figure 4.7.

The specification of the tracing loop by Daidalos is necessary for two reasons. First,
the tracing loop specifies the information which is available at a given moment during
the ray tracing simulation. For example, the search for the next hit with an interface
is always executed after the photon creation is done, therefore the information about
the photon’s propagation direction is available at the moment the hit search plugin is
activated. While it is intuitively understandable that this is needed for a meaningful ray
tracing simulation an explicit definition of this behavior allows the developers of plugins
to rely on the existence of previously calculate information.

The second reason for having specified a tracing loop is to define the point during the
ray tracing process when a plugin can influence the simulation. For example, as shown
in figure 4.7, a SceneCompiler plugin can change the way by which the next interface
hit is calculated, but only a FaceEffect, a RefractionCalculator or a BoundaryCondition
plugin can change the way by which the simulated photon interacts with the hit interface.
Consequently, the explicit definition of the tracing loop allows developers to choose the
appropriate plugin type to influence the ray tracing process in specified manner.

54

4.5. Plugins

Found hit ?

[Yes]

[No]

[No]

Is absorbed before
hitpoint ?

[Yes]

Photon creation

- LightSource
- DynamicSource

Search next interface hit

- SceneCompiler

Propagation to hitpoint

- ContinuousE�ect
- LengthTriggeredE�ect
- OpticalMaterial

Execute interface
actions

- FaceE�ect
- RefractionCalculator
- BoundaryCondition

Figure 4.7.: An abstract view of the tracing loop. The actions which have to be executed
during ray tracing (rectangles) can all be influenced by particular plugin
services. While the tracer is not explicitly shown, it is responsible for actually
executing the required actions and making decisions (diamond shapes) based
upon their outcome.

Finally, there is one plugin type which is not involved in the tracing loop as shown
in figure 4.7, namely the Tracer. As mentioned in the previous section, the plugin of
this type is in control of the execution flow during the runtime part of the simulation
(see figure 4.5). It is specified by the Daidalos framework that a plugin of this type is
responsible to ensure that the execution of a ray tracing simulation is done as specified
by the tracing loop. This is further discussed in section 4.6.1.

4.5. Plugins

Plugins are the base for every simulation that is made with Daidalos. They are part of
the startup process, wherein they are loaded and configured by the host application and
of the simulation process where they are working together to fulfill the simulation task.
This section discusses the two representations of a plugin which result from this twofold
appearance.

55

4. Daidalos - A framework for flexible ray tracing

Figure 4.8.: Any plugin presents itself to the host application by means of the
PluginFactory interface. By executing the createWith(ArgumentSet) method,
the host application triggers the creation of a new Plugin instance.

4.5.1. Plugin bundles

Technically, the format of the binary storage chosen for plugins does not affect the actual
simulation process. As the host application is the only component which actually gets
in touch with the plugin storage (during the configuration stage, see figure 4.3), a new
storage format could easily be developed for any host application
The Daidalos framework is developed with the idea of providing the tools to allow

any person to develop plugins which than can be used to extend the ray tracing abilities
of any host application that supports Daidalos. For this reason, Daidalos specifies a
binary storage format for plugins, referred to as plugin bundle.
A plugin bundle is actually a modified OSGi bundle (see section 4.2.2), which allows

for using the utilities of the OSGi service platform to load the plugin. The bundle file is
extended by a plugin descriptor which is a text-file named Descriptor.dpd and is placed
within the plugin bundle. It allows a host application to determine the provided features
and needed configuration parameters of a plugin without having to load it into computer
memory.

4.5.2. Plugin factory

A plugin bundle provides information about the associated plugin, as for example required
configuration parameters. It is a pure passive object. The first time the actual plugin
comes to life is when the host application transfers it into the OSGi plugin environment.
After that, the plugin presents itself to the host application by providing an interface
which is referred to as plugin factory (figure 4.8) and consists of only three methods.

The host application first executes the getParameters() method to retrieve the plugins
configuration parameters10. The returned parameter set is designed as a read-only object,
that is the host application can read parameters and their default value but cannot
change them. In order to change parameter values the parameter set has to be converted
into an ArgumentSet object, which is part of the Daidalos framework utilities. Finally,

10While this set of parameters, which is returned by the getParameters() method, should be equal to
the one defined in the plugin descriptor file (see section 4.5.1), there is (at least at the moment) no
mechanism which ensures this equality.

56

4.5. Plugins

the host application executes the createWith(ArgumentSet) method to create the final
already configured plugin instance.

The reason for introducing the intermediate plugin factory approach instead of having
the host application creating the plugin instance by itself is due to the issue of decoupling
(see section 2.2). A host application which should be able to create and configure a plugin
needs a deep understanding of the implementation of the particular plugin. Therefore,
it would be strongly coupled to the particular implementation of the plugin.11 By
introducing a plugin factory that looks the same for any plugin, a host application doesn’t
even have to know if it is a light source (section 4.6.2) or a face effect (section 4.6.5)
which is created. It uses the methods to specify the configuration while the plugin factory
takes care of the correct creation and initialization of the plugin instance.

4.5.3. Plugin service connectors

During the actual simulation process the plugin instance created by the plugin factory
presents its capabilities by exposing a set of service connectors. For this, the plugin
has to implement the Connectable interface (see figure 4.9) which allows for providing a
set of ServiceConnector instances. Each connector stores the name of the connector (i.e.
its identifier) and the type of capability (e.g. being a light source). In order to clarify
the connectors direction, i.e. whether the capability is provided or required, the plugin
developer doesn’t implement the ServiceConnector interface directly, but one of its child
interfaces, namely ServiceProvider and ServiceRequester, respectively.

While the fact of having a plugin requesting a service instead of providing it does not
make sense at first, it allows for the development of plugins which act as a filter for the
output of other plugins. For instance, consider the task of developing a plugin which
introduces the effect of Lambertian reflection. This kind of reflection is used to describe an
isotropically distribution of the directions of light reflected on rough surfaces [6]. However,
the concept doesn’t make any statements about the actual amount (i.e. the intensity) of
light reflected by the surface. Instead, this amount is dictated by the particular interface,
i.e. the material of the volume or the existence of an anti-reflection coating. While
one approach would be to develop a sophisticated Lambertian reflection plugin which
provides the ability to describe any useful surface refraction, the possibility for input
service connectors allows for a much easier solution. According to this, the plugin is
developed to delegate the calculation of refraction to a second plugin, e.g. a Fresnel
based calculation of refraction (see section 1.2), which is accepted by an input service
connector. When this plugin is done with calculation of probabilities and directions, the
Lambertian reflection plugin changes the direction of the reflected light to comply with
the desired distribution.

11This also implies that a host application has to know the implementation of any plugin it uses. Any
change of a plugin (e.g. in a newer version) would force an adaption of the host application.

57

4. Daidalos - A framework for flexible ray tracing

Figure 4.9.: Any plugin which implements the Connectable interface can provide a set
of ServiceConnector instances. Each connector represents a capability of
the plugin, e.g. a face effect (see section 4.6.5). By implementing either
the ServiceRequester or the ServiceProvider interface, the developer decides
whether the plugin provides the specified service or requests it.

58

4.6. Available service connectors

Figure 4.10.: A plugin which should control the tracing process has to implement the
Tracer interface. The host application registers all other services with the
tracer (here only the registerLightSource method is shown). Additionally,
the tracer is responsible for the creation of a TracingState object which is
accessible for any plugin within the simulation.

4.6. Available service connectors

This section serves as an overview of the available types of services connectors that can
be exposed by a plugin to contribute to the simulation process.

The service connectors exposed by a plugin determine the location within the tracing
loop when its effect is executed (see figure 4.7). Furthermore, as discussed later, the
choice of the provided connectors determines which properties of a photon (e.g. position,
direction, etc.) can be changed by a plugin. For example, while a boundary effect (see
section 4.6.7) can change the position of the simulated photon, a refraction calculator
(see section 4.6.6) cannot.

4.6.1. The tracer

The tracing loop in figure 4.7 shows the tasks which have to be done during ray tracing.
However, this representation of the simulation process omits the point that there has to
be program code that controls the execution of this loop. This means, a component which
is responsible for deciding when a step is done or which step is taken next, respectively.
This issue of flow-control is the responsibility of the Tracer service.

The moment the simulation process is started the control of execution is transfered to
a plugin, which is referred to as the tracer. This plugin is required to provide a Tracer
service connector (see figure 4.10). The host application registers all used plugins as
well as their connections to the elements of the geometry12 with the tracer (see section
4.3.1). During the simulation the tracer uses the registered plugins (e.g. light sources)
to retrieve information (e.g. position, wavelength and propagation direction of a new
photon) about the current state of the simulation. Based upon those information the
tracer is responsible to decide about the next step within the tracing loop, e.g. whether
a photon gets reflected or transmitted at an interface.

Aside from its controlling function, the tracer is responsible for creating and providing
12For example, a face effect is always bound to at least one face of the geometry.

59

4. Daidalos - A framework for flexible ray tracing

an implementation of the TracingState interface (see figure 4.10). This object is distributed
at the beginning of each simulation to all involved plugins. The TracingState gives access
to the current state of a simulation by providing information about the currently simulated
photon, the volume it resides in and a list of events which has led to this state, referred
to as PhotonHistory.

The photon history

The existence of a photon is merely a sequence of events, like creation, hitting an interface,
getting reflected, and so on. There are several cases in which the action of a plugin might
depend on an event which happened in the past of the photon’s life. For example, to
calculate the distance a photon has propagated within a volume a plugin may ask for the
transmission event by which the volume was entered.

For such cases, the TracingState object provides the method getPhotonHistory() which
returns a PhotonHistory object. The photon history is a sequential list of all events which
led to the actual state of the currently simulated photon:

• Refraction events
These events are associated with each refraction process and can be distinguished
with respect to their outcome as transmission and reflection, respectively. Addi-
tionally, any refraction event contains information about the interface which led to
refraction and the refraction result (see section 4.19).

• Leaving and entering events
These events are generated whenever a photon enters or leaves a volume. They
provide information about the involved volumes.

• Creation-, absorption- and lost-events
Events of this kind are generated, when a photon is created by a source or gets lost
either by leaving the simulation domain or by getting absorbed by a medium.

4.6.2. Light sources

Light sources are the starting point of any optical simulation. Their is a great variety of
different light sources requiring different types of support by the underlying ray tracing
framework. For example, light sources as a lamp or the sun emit a steady flux of photons.
Contrary to that, the emission of light sources based on photoluminescence depend on
the earlier absorption of a photon and therefore may eventually stop emission and resume
after the next absorption. With regard to Daidalos a plugin which wants to act as a
light source has to provide the LightSource interface as shown in figure 4.11.
When the tracer decides that a new photon is created, it has to choose a light source

that should be used for creation. In the case where more than one source is available,
the tracer first retrieves the photon flux of any source by calling the getPhotonFlux()
method of the LightSource interface. The returned value describes the number of photons
per second which are emitted into the full solid angle. The probability by which a

60

4.6. Available service connectors

Figure 4.11.: Any plugin exposing the LightSource interface can be used as a light source.

Figure 4.12.: A light source which implements the DynamicSource interface signals that
it wants to change its photon flux during simulation. For this, the tracer
transfers a SourceFluxChanger object to the source. Any time the light
source changes its photon flux, it finalizes the process with executing the
notifyOnFluxChange() method of the SourceFluxChanger. This triggers the
tracer to re-evaluate the available sources and their fluxes.

particular source creates a photon is then equal to the ratio between its photon flux and
the cumulated photon flux of all available sources. After the source is chosen, the tracer
executes the createPhoton() method, which returns an initialized photon.

Dynamic sources

Dynamic light sources, as for example luminescence based sources, can stop and resume
their emission based upon a set of conditions (e.g. a previously absorbed photon). The
associated change in their photon flux value13 has to be communicated to the tracer. For
this, dynamic sources have to implement the DynamicSource interface shown in figure
4.12. When the tracer recognizes this interface it transfers a SourceFluxChanger instance
to the source by executing the setChangeNotifier method. By using the methods provided
by the SourceFluxChanger instance, a source can communicate changes in its photon flux
at any time during the simulation process.

Expansion stages of simulated photons

Simulated photons as created by a light source come in different stages of expansion,
which are shown in figure 4.13. The most basic one is the Photon which is initially created
by all light sources. At this stage, the photon consists of only three values, namely its
wavelength, its current position and the direction of propagation.
13For instance, a luminescent source may change its photon flux between zero, when no photon was

previously absorbed, and a fixed value for normal emission.

61

4. Daidalos - A framework for flexible ray tracing

Figure 4.13.: The different expansion stages of simulated photons. Note, each stage
extends its successor interface and therefore provides the methods of its
parent additionally to the newly introduced ones.

As soon as the tracer gets in touch with the created photon it wraps an implementation
of PhotonState around it, which allows for retrieving additional information (e.g. the
internal photon identifier). This photon expansion stage is then made available to all
involved plugins through the TracingState (see section 4.6.1). The most important feature
of a PhotonState object is the ability to request properties previously attached to the
photon. These can be set by any plugin that gets access to the ExtendablePhotonState
expansion stage.14 Any property consists of an identification String, which serves as a
key by which the associated value can be addressed, and the actual value, which can be
any kind of FrameworkValue.
Some plugins, like refraction calculators (see section 4.6.6) or boundary effects (see

section 4.6.7) do need the possibility to influence either the direction of propagation of
the photon or its current position within the simulation. To support these cases, two
additional interfaces exist, namely the PhotonManipulator and the PhotonController.

4.6.3. The scene compiler
Ray tracing simulations based upon Daidalos consist of a geometry, which specifies
object shapes and surfaces, as well as plugin-driven effects, which are applied to these
objects. There is a broad variety of sources where an actual geometry can come from.
This includes different file formats, for example the standard tesselation language (STL),
14This stage is the common stage transmitted to any involved plugin at its turn within the tracing loop.

62

4.6. Available service connectors

Figure 4.14.: The SceneCompiler and its related interfaces are responsible for loading and
representing the Scene during the simulation.

as well as different types of geometry descriptions (e.g. representations by polygons or
constructive solid geometry).

In order to allow for nearly arbitrary sources of geometry, Daidalos breaks the process
of providing a geometry into two independent parts. First, a geometry has to be retrieved,
that means it has to be loaded from some kind of storage, e.g. a file on disk. Second, the
geometry has to be presented within the simulation in a manner that allows for calculating
the next hit interfaces for a particular photon. With regard to Daidalos, the first part
is done by the SceneCompiler and the second by the Scene (see figure 4.14). To visualize
the concept, consider a host application that already has a geometry representation
by means of STL files, which contain a polygonal description. The developer who
wishes to integrate the geometry with Daidalos will first develop an implementation
of the SceneBlueprint interface. This interface is merely for handling by Daidalos, e.g.
simplifying the task of informing the user about the loaded scene. Additionally, the
developer will implement a plugin which exposes a SceneCompiler service connector to
accept the previously implemented blueprint and to create an implementation of the
Scene interface when requested. This Scene object represents the loaded geometry during
simulation and allows the tracer to execute a search for the next hit interface. As the
developer of the SceneCompiler knows the geometry as well as its representation, he can
implement the methods used for searching the next interface hit of a photon. The tracer
does not have to know the details of the geometry at all. It executes the initiateHitSearch()
method of the created Scene object and gets the found hits as result.

At some point of the simulation, e.g. when the photon has been created or its position
has been changed by a boundary effect (see section 4.6.7), the tracer needs to determine
the current volume in which the photon resides. In such cases, the tracer executes the
getEncapsulatingVolumeAt(SceneVector) with the current position of the photon.

63

4. Daidalos - A framework for flexible ray tracing

Figure 4.15.: An OpticalMaterial service connector represents a material within the simula-
tion. The getAbsorptionCoefficientAt(NumberValue) returns the real-valued
absorption coefficient while the getIndexOfRefractionAt(NumberValue)
method retrieves the complex index of refraction at a given wavelength.

Figure 4.16.: An interface which separates two volumes consists of two sides. The outer
side is determined by the direction of the face normal. Both sides expose a
separated face effect stack to which face effects can be applied.

4.6.4. Optical materials

In order to allow for the association between volumes (as defined by the geometry) and
specific materials, Daidalos provides the OpticalMaterial service connector. It consists
of two methods, namely the getAbsorptionCoefficientAt(NumberValue), which returns the
real-valued absorption coefficient, and the getIndexOfRefractionAt(NumberValue) method,
which retrieves the complex index of refraction at a given wavelength.

The tracer is responsible for exposing the current volume (i.e. the volume in which
the currently simulated photon is propagating) as well as the associated optical material
through its TracingState object (see section 4.6.1). Therefore, any plugin involved with
the simulation can access and use the provided values (e.g. for calculating the volume
absorption by a volume effect (see section 4.6.8)).

4.6.5. Face effects

Within any meaningful simulation some photons will eventually hit an interface between
two volumes of the underlying geometry. Such faces are often used to apply photon
detectors, like counters for transmitter or reflected photons. With regard to Daidalos
any face is associated with a single volume as defined by the geometry. The face’s normal
vector is specified to be always directed towards the outer side of the volume and is used
to distinguish both sides of the face (see figure 4.16).
A plugin that should be able to perform actions on the event of photons hitting a

particular face, has to expose the FaceEffect service connector, which is shown in figure

64

4.6. Available service connectors

Figure 4.17.: A FaceEffect service connector represents any effect which should be asso-
ciated with a face of the underlying geometry. During the simulation the
tracer calls the method corresponding to the current type of photon-interface
contact (see figure 4.18).

Figure 4.18.: Naming conventions with regard to photons which are propagating to and
from a face, respectively. The different names which are associated with
different types of a photon-interface contact (i.e. incident, interface hit,
reflected or transmitted, respectively) allows for a differentiated reaction of
the applied face effects.

4.17. During the configuration of the simulation, the user decides whether a face effect
is applied to the inner or outer side face effect stack. Both stacks are growing away
from the actual interface, so later applied effects will sit on top of previously applied
ones. When the tracer recognizes a photon is hitting a particular face, it is responsible
for notifying the associated face effects in the proper order (see figure 4.18). That
is, an incident photon will first hit the most outwards effect, triggering the execution
of its applyIncidenceEffectOn(ExtendablePhotonState) method. In the case of multiple
effects they become active in a decreasing order before the photon actually hits the
interface. After the tracer has evaluated the outcome of the refraction process (i.e.
the photon gets either reflected or transmitted) either the inner side or the outer side
face effect stack is traversed in an increasing order. This propagation than triggers
the applyEmergenceEffectOn(ExtendablePhotonState) in the case of transmission or the
applyReflectedEmergenceEffectOn(ExtendablePhotonState) for a reflected photon.

65

4. Daidalos - A framework for flexible ray tracing

Figure 4.19.: A plugin which is used as refraction calculator has to implement the
RefractionCalculator interface. While the tracer specifies the conditions
at the hit point by providing an implementation of the FaceInformation
interface, the refraction calculator returns an implementation of the
RefractionResult interface to provide the probabilities for transmission and
reflection.

4.6.6. Refraction calculators

As shown in the last section, face effects are not directly bound to an interface, but
are applied to a stack which is located on both sides of the interface (see figure 4.16).
The ability to influence the behavior of the actual interface is reserved for two services,
namely the RefractionCalculator discussed in this section and the BoundaryEffect which is
subject of the following section.
Whenever a photon hits an interface between two materials (i.e. after the face effect

stack on the incident side has been traversed) the tracer needs to calculate the properties
for transmission and reflection. In most cases this calculation can be done based on the
Fresnel equations (see section 1.3). However, some effects like anti-reflection coatings [27]
or Lambertian reflection [6] can change the calculated probabilities or the direction of
propagation for reflected or transmitted photons. To allow for a broad range of different,
exchangeable effects Daidalos associates any face with either a refraction calculator or
a boundary effect.
Any plugin that should be used to act as a refraction calculator has to implement

the RefractionCalculator interface as shown in figure 4.19. Anytime a photon hits an
interface, the tracer is responsible to create a FaceInformation instance, which includes
information about the face normal of the interface as well as the materials on both sides.
This information is provided to the refraction calculator of the particular interface by
calling its setFaceInformation(FaceInformation) method. Afterwards, the tracer calls the
calculateRefractionOf(ExtenablePhotonState) method, which is answered by the refraction
calculator by returning an implementation of RefractionResult. The refraction result has
a twofold function. First, it includes the probabilities for transmission or reflection of
the photon, allowing the tracer to decide which of them takes place. Second, after the

66

4.6. Available service connectors

Figure 4.20.: Periodic geometries (a) can often be represented by a repetition of a basic
unit cell. By equipping the side boundaries of the unit cell with periodic
boundary conditions, the simulation can be constrained to the unit cell (b)
while leading to the same simulation result.

Figure 4.21.: A plugin which should act as boundary effect has to provide the
BoundaryEffect service connector.

tracer has made its decision it calls either the transmit or the reflect method, allowing
the refraction calculator to choose the direction of the resulting photon. Following this
way, the tracer maintains its power to decide what happens within the simulation while
the plugin can decide about how it is done.

4.6.7. Boundary effects
Sometimes only changing the direction of a photon is not enough. To visualize, consider
the case where a geometry can actually be represented by the repetition of some base
element, referred to as unit cell (see figure 4.20). In this case, the simulation can be
greatly simplified by constraining the path of a photon to this unit cell, applying periodic
boundary conditions to the side boundary of the unit cell.
As can be seen from figure 4.19 the reflect and transmit methods of the refraction

result are only getting a PhotonManipulator interface (see figure 4.13) and therefore are
incapable of changing the photons position (i.e. positioning the photon). For such cases,
Daidalos specifies the BoundaryEffect interface (see figure 4.21). As discussed in chapter
7, aside from the mentioned unit cell approach, boundary effects can be used to increase
the performance in multi-scale simulations15 by connecting spatially separated simulation
domains of different scale.
15This means, simulations where the geometry includes different magnitudes of scale (e.g. ranging from

m to µm).

67

4. Daidalos - A framework for flexible ray tracing

Figure 4.22.: A plugin which should act as boundary effect has to provide the
BoundaryEffect service connector.

4.6.8. Volume effects

While previously described services are associated with the faces of a geometric object,
Daidalos provides two kinds of volume effects, namely the LengthTrigerredEffect and the
ContinuousVolumeEffect. Both are used to represent volumetric effects (e.g. absorption
of light within volumes), but they differ with respect to the location within the tracing
loop where they are executed.

Length-triggered volume effects

A volume effect which is based upon a LengthTriggeredEffect service connector (see figure
4.22) gets executed after a predefined trigger-length. For this, the associated interface
specifies the getTriggerLength() method. With respect to the tracing loop (see figure
4.7), the execution of a length-triggered effect takes place between the search for the
next hit-point and the actual propagation to it. The tracer compares the trigger length
of any length-triggered effect to the distance calculated for the next interface hit. If
the trigger-length is lower than the distance to the hit-point, the photon is only moved
by the trigger-length and the effect is executed. Otherwise, the photon is moved to
the hit-point and the propagated distance is subtracted from the current value of the
trigger-length. After any execution of a length-triggered effect, the tracer executes the
getTriggerLength() method to ask for a new trigger-length value. Volume effects based
upon the LengthTriggeredEffect interface are usable for physical effects which have to be
executed at a given location within a volume. For instance, consider the application of
an index-gradient lens. Such an optical device impacts the direction of a ray of light
through a successive change in its index of refraction. By using a LengthTriggeredEffect
the direction of the photon can be changed during its propagation through the volume
and allows for an effective simulation of the desired behavior (see figure 4.23(a)).
The main drawback of a length-triggered effect is the interruption of the tracing

loop and the resulting increase in simulation time. For example, in order for a precise
simulation of an index-gradient lens the trigger-length of the volume effect has to be

68

4.6. Available service connectors

Figure 4.23.: A LengthTriggeredEffect is executed at a location within a volume. It can
be used for effects which must be activated within a volume, e.g. the
change of propagation direction for an index-gradient lens (a). Contrary,
a ContinuousVolumeEffect is executed whenever the photon hits one of the
surrounding faces (b). This increases the simulation performance (see text)
and should be used for all volume effects which are necessarily executed at
a specific location, e.g. general volume absorption.

small enough to follow the underlying gradient of the refractive index. Consequently, the
more steep this gradient gets, the smaller the trigger-length has to be. This leads to
a significantly increased time for the propagation within the volume and, considering
multiple internal reflections, can be the time-dominating part of the simulation.

Continuous volume effects

A volume effect which is based upon the ContinuousVolumeEffect interface (see figure
4.22) gets executed whenever the photon hits a face of the underlying geometry (see figure
4.23). Additionally, if any effect requests execution while propagating through the volume
(e.g. a length-triggered effect) the continuous volume effect gets executed before this
effect. Due to this behavior, continuous volume effects can be used for any effect which
is not directly related to a specific position within a volume. For instance, consider the
physical effect of volume absorption as described by the Lambert-Beer law (see section
1.2). This effect doesn’t need to be executed at a specific location, but latest before
leaving the volume. By using a ContinuousVolumeEffect instead of a length-triggered one,
the overall simulation time can be greatly reduced.

69

5
Wafer optics

In this chapter the ray tracing framework is tested by simulating a simple as possible
geometry, the reflectivity of silicon wafers, and by comparing the results to another,
established ray tracer, to analytical expressions where possible, and to measurements.

During these tests, it became apparent that the reflectivity measurements are affected by
the geometrical configuration of the measurement setup, especially in the wavelength range
of weak absorption. Therefore, this chapter starts with a short introduction on reflectivity
measurements, done with the Cary UV-VIS-NVIS spectrometer. This is followed by
ray tracing simulations of a planar and of a textured silicon wafer. For validation,
the gathered simulation results are compared to analytical calculations and reference
simulations performed by using the well-known Sunrays ray tracing application [3, 28–30].
Additionally, a significant problem associated with reflectivity measurements on wafers
with good light-trapping properties is discussed.

In the final section Daidalos is used for a detailed simulation of the reflectivity of
two textured silicon wafers based upon texture structures measured by laser scanning
microscopy.

5.1. Performing reflectivity measurements with the Cary
UV-VIS-NVIS spectrometer

This section provides an overview of the reflectivity measurement process with the Cary
UV-VIS-NVIS spectrometer which was used to perform the measurements presented in
the following two sections. This description is limited to the fundamental measurement
procedure as needed to understand the shown reflectivity curves.

With the Cary spectrometer, the reflectivity of a sample is measured using a component
referred to as integrating sphere or Ulbricht sphere as shown in figure 5.1(a). This
is a hollow sphere where the inner walls provide ab almost perfect diffuse reflection.
Additionally, there are four openings, referred to as ports. Two of them are used as inputs,
allowing the reference beam and the sample beam to enter the sphere. Both beams are

71

5. Wafer optics

(a) (b) (c)

Ref.

Sample beam

R≈1.0

8°

Figure 5.1.: A top view on the integrating sphere. Each reflection measurement with the
Cary spectrometer consists of three steps. The spectrometer is calibrated
by performing a dark-measurement (R0%) with the sample-port open (a),
followed by a light-measurement (R100%) using a reflection standard (b).
Afterwards, the actual measurement is executed with the sample (gray
rectangle) positioned at the sample-port (c).

generated by the same source and are illuminating the reference-port and the sample-port,
respectively. For the presented measurements, the sample-beam is configured to produce
a light-spot with dimensions of 2mm× 3mm on the measured sample. The sample is
attached to the sample-port with a slope of 8◦ to avoid that specular reflected light leaves
the sphere through the sample-beam input port. Finally, a detector (not shown in the
figure) is embedded into the bottom of the integrating sphere to measure the amount of
light which is diffusively reflected on its surface.
Each reflection measurement consists of three individual measurements each of them

performed for every wavelength λ in the considered wavelength range (usually from
300 nm to 1400 nm). First, the instrument is calibrated by measuring the extreme cases
of no-reflection (R0%(λ)) and full-reflection (R100%(λ)). The first value is received by
leaving the sample-port either open or by placing a light-trap at the sample-port (see
figure 5.1(a)).1 The latter value (see figure 5.1(b)) is measured by placing a reflection
standard with known reflectivity Rstd(λ) at the sample-port. It is chosen to best mimic
the angular distribution of the reflected light as expected for the actual sample. This
means, using a specular reflecting standard for measurements of polished wafers or using
a diffuse standard for textured ones. Finally, the measurement of the sample’s reflectivity
Rsmp.(λ) is executed as shown in figure 5.1(c), by placing the sample at the sample-port.
Based upon the performed measurements the adjusted value of the sample’s reflectivity

1Most light-traps seem to reflect at least a little amount of the incoming light which leads to an incorrect
calibration. This can be avoided by leaving the port open which obviously only makes sense if the
environment can be sufficiently shaded.

72

5.2. Reflectivity of a planar wafer

1
2

3

Surface re�ection Re�ection from
the backside

Multiple hits decrease
surface re�ectivity

(a) Paths for re�ection (b) Surface re�ection on pyramidal
 textured wafer

Rsrf

Rrear

Figure 5.2.: There are two paths by which light can be reflected from a wafer (a). It can
either be reflected at the wafer’s front surface (1) (reflectivity Rsrf) or at its
rear side (2) (Rrear) leaving the wafer through the front (possibly, after some
alternating internal reflections). Considering pyramidal surface textures (b),
the surface reflectivity is reduced by increasing the average number of hits
(3) a ray undergoes before finally being reflected.

Radj.,smp.(λ) is calculated by:

Radj.,smp.(λ) = Rsmp.(λ)−R0%(λ)
R100% −R0%(λ) ·Rstd(λ). (5.1)

5.2. Reflectivity of a planar wafer
The simplest geometry is that of a planar silicon wafer. Considering its optical charac-
teristics two wavelength ranges can be distinguished: where the sample is opaque and
where it is transparent. For incident light with wavelengths smaller than about 900 nm
all light transmitted into the silicon bulk is absorbed before reaching the wafer’s rear
surface. Consequently, the reflectivity within this wavelength range is determined only
by the reflectivity of the wafer’s surface (see figure 5.2(a)).
Knowing the complex index of refraction for silicon, the surface reflectivity can be

calculated with the Fresnel theory (see section 1.3). The wafer’s surface reflectivity
Rsrf(λ) at a wavelength λ is then given by:

Rsrf(λ) = α ·
∣∣∣∣∣
∼
nair cos(Θi)−

∼
nSi cos(Θt)

∼
nair cos(Θi) + ∼nSi cos(Θt)

∣∣∣∣∣
2

+ (1− α)
∣∣∣∣∣
∼
nSi cos(Θi)−

∼
nair cos(Θt)

∼
nSi cos(Θi) + ∼nair cos(Θt)

∣∣∣∣∣
2

. (5.2)

Here, α is the fraction of the light which is perpendicular polarized, Θi and Θt are
the incidence and transmission angle,respectively, and ∼nair and

∼
nSi are the wavelength

dependent complex indices of refraction for air and silicon, respectively.
The resulting curve for the parameters α = 0.5, ∼nair = 1.0 and Θi = 8◦ is shown as

black line in figure 5.3 (left). Additionally, two ray tracing simulations were conducted

73

5. Wafer optics

Sunrays

Daidalos

Re�ection
from the
backside

250
500

750
1250

1500
1000

Analytical calculated
surface re�ection

Wavelength in nm

Re
�e

ct
iv

ity

Re�ectivity

Wavelength in nm

Measurement

Daidalos
simulation

250
500

750
1250

1500
1000

0.4

0.5

0.6

0.7

0.8

0.35

0.40

0.45

0.50

0.55

0.60

0.65

Figure 5.3.: The surface reflectivity of a planar wafer can be calculated analytically with
Fresnel theory (black line). Additional simulations of a silicon wafer with
a thickness of 1300 µm were executed with Daidalos as well as with the
well-known ray tracer Sunrays (left). Both are in very good agreement with
each other as well as with the measurement (right).

for a planar wafer with a thickness d = 1300 µm. One of them with the established ray
tracing software Sunrays [3], the other using the Daidalos framework. Both results
are in very good agreement with each other as well as with the Fresnel theory (as long as
the wafer is opaque).

Up from a specific threshold wavelength, which depends on wafer material and thickness,
some rays reach the wafer’s backside. The ones that are reflected towards the front and
are leaving the wafer contribute to the measured reflectivity, see figure 5.2(2). This
behavior is shown in figure 5.3 (left) and confirmed by the measurement shown in figure
5.3.

5.3. Reflectivity of a pyramidal textured wafer
Rather than being planar, common solar cells provide a pyramidal textured surface as
shown in figure 5.2 (b). The investigation of the optical properties of the used texture
geometry is a common task that is executed using ray tracing software [29,31,32]. The
texture increases the average amount of surface hits to which an incident ray of light
is exposed. Accordingly, this leads to an increased probability for light being finally
transmitted into the solar cell. Considering the optical characteristics, similar wavelength
ranges as for planar wafers can be applied. However, due to the multiple interface hits
for incident as well as for internally reflected light, an analytical evaluation is rather

74

5.3. Reflectivity of a pyramidal textured wafer

Air

Si

46 nm SiNx

Counts re�ected
photons

Lambert factor
of 0.3

Re�ective boundary
with random shift

Re�ective boundary
with random shift

Figure 5.4.: The unit-cell simulation domain used to simulate a pyramidal textured wafer,
consists of a single pyramid and the associated substrate. The pyramid is
surrounded by a cubic volume of air which counts the reflected photons on
its top. Additionally, the pyramid’s surface is equipped with a 46 nm silicon
nitride and a reflective boundary is applied to the side-boundaries of the
domain. The used boundary effect also applies a lateral random shift to the
photon which allows for a simulation of random upright pyramids. In order
to account for a minor roughness, the substrates back has a Lambertian
factor of 0.3.

75

5. Wafer optics

complex. Therefore, for such geometries an optical simulation is the most adequate way
to gather insights of the optical characteristics.
In order to validate the results of the ray tracing simulation it is compared to the

measurement of a 247 µm thick wafer. It provides a random pyramid texture on its front
and a polished rear side. Additionally, a 46 nm silicon nitride (SiNx) coating was applied
to its textured front while having no coating on its rear side. The wafer’s reflectivity
was measured using three different apertures with diameters of 6mm, 12mm and 18mm.
They are placed between the wafer’s surface and the sample-port of the integrating sphere
(see figure 5.1).

For the simulation of this geometry a unit-cell approach was chosen as shown in figure
5.4. The simulation domain consists of a single upright pyramid, at the top surrounded
by a cubic volume filled with air and on the bottom continued by the associated substrate
volume. The cubic air volume ends 15 µm above the pyramids top to account for a small
gap of air between sample and aperture. A FaceEffect (see section 4.6.5) is applied to
the outer side of the top of the cubic air volume to count the reflected photons. Within
the Daidalos simulation, a RefractionCalculator (see section 4.6.6) is used to represent
the silicon nitride coating. Additionally, a BoundaryEffect (see section 4.6.7) is applied to
the surrounding sides of the substrate and the cubic air volume. This effect acts as a
reflective boundary with an additional random shift along the sides of the boundary to
allow for a simulation of a random upright pyramid texture. That means, a simulated
photon which hits the boundary of the simulation domain is not just reflected, but is
shifted by a random amount along the sides of the boundary. Finally, a Lambertian
factor of 0.3 is chosen for the substrates rear side to account for a minor roughness. The
associated Sunrays simulation was configured accordingly.

The results of these simulations are shown in figure 5.5 (a) along with the corresponding
measurement using an aperture of 12mm. As can be seen, while the simulation results
produced by Sunrays and Daidalos are in sufficient agreement, there is a deviation
of about 6 % at that plateau for wavelengths in the range of 1200 nm to 1400 nm
between simulations and measurement. As can be shown by additional measurements
and simulations (see figure 5.5 (b)) this deviation is the result of the good light-trapping
ability of a textured wafer in conjunction with the diameter of the apertures used.

To clarify this, during a reflection measurement as described in section 5.1 all light that
is not absorbed by the wafer’s substrate has six ways to either get transmitted or reflected
(see figure 5.6). With respect to a wafer’s reflectivity, the incident light gets reflected
back into the integrating sphere either from the wafer’s surface (1) or after one (3) or
several (4) internal reflections. However, note that internal reflections lead to a lateral
propagation of the trapped ray within the wafer. While this lateral propagated distance is
small for wafers with low light-trapping (e.g. planar wafers) and lower wavelengths which
are well absorbed, it can get significant for long wavelengths and good light-trapping as
provided by a textured wafer. Depending upon the distance dsmp between the sample
and the port and the height hsmp the lateral propagation of rays which incident near the
ports edge can lead to two types of measurement artifacts. First, rays which leave the
sample near the ports edge but are still within the port region may propagate through
the air slit between port and wafer, finally hitting the wall of the integrating sphere (5).

76

5.3. Reflectivity of a pyramidal textured wafer

≈ 6 %Sunrays

Daidalos

Measurement
12 mm blind

400
600

1000
1200

1400
800

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Wavelength in nm

Re
�e

ct
iv

ity

(a) Simulation of a wafer with pyramidal
 surface texture

Without aperture
18 mm

12 mm

6 mm

≈ 11 %

≈ 3 %
≈ 3 %

250
500

750
1250

1500
1000

Wavelength in nm

Re
�e

ct
iv

ity

0.1

0.2

0.3

0.4

0.5

0.6

0.7

(b) Simulation of the impact of di�erent
 aperture diameters performed with Daidalos

Figure 5.5.: The results produced by Sunrays and Daidalos ray tracing simulations (a)
for a pyramidal textured silicon wafer. While both simulations are in great
agreement they deviate from the associated measurement (line) by roughly 6
%. This deviation results from light-trapping in the wafer in combination
with the aperture used. Further, simulations performed with Daidalos and
the comparison with associated measurements (b) confirm this hypothesis.

Second, rays which propagate laterally within the wafer may leave the port region and
are, too, hitting the wall of the integrating sphere after leaving the wafer (6).
The impact of these artifacts gets more severe when an aperture is used during

measurement, which can be necessary to be able to measure the reflectivity of wafer
sample’s with dimensions smaller than the sample port of the Cary spectrometer. This is
due to the reduced diameter of the opening through which light can be reflected into the
integrating sphere (see figure 5.6 (b)). As shown in figure 5.5 (b), using an aperture with
a diameter of 6mm results in loss of a about 17 % of the reflected light. Even using an
aperture of 18mm still results in amount of 3 % of the reflected light getting lost.

As shown in this section Daidalos can be used to perform simulations to investigate
the optical characteristics of standard solar cell surface textures. When comparing
the simulation results to the measurements it is apparent that good light-trapping
capabilities can lead to measurements artifacts that result in an underestimation of a
sample’s reflectivity. To the authors knowledge this effect and its simulation has not
been published before.
Furthermore, it has been shown that Daidalos can be used to simulate the impact

of apertures of varying diameter and that these simulations show a sufficient agreement
with the made measurements. With respect to the measurement of wafers with good

77

5. Wafer optics

1

2

43

5 6

(a) Path of light during re�ection measurement (b) Wafer surface as seen from the
inside of the integrating sphere

Integrating
sphere

Sample

dsmp

hsmp

Wall of the
integrating sphere 18 mm aperture

12 mm aperture

6 mm aperture

Diameter of
the sample-port

Incident spot
2 mm x 3 mm

Figure 5.6.: During measurements of reflectivity all light which is not absorbed by the
wafer’s substrate follows one of six paths (a). While most paths (i.e. (1),(3)
and (4)) of reflected light lead to correct measurement results, good light-
trapping capabilities may lead to light propagating out of the ports region
and getting reflected onto the outer walls of the integrating sphere (5,6). If
additional apertures are used (b), this effect is increased due to the reduced
opening (borders marked by differently dashed black lines) through which
light can be reflected into the integrating sphere.

light-trapping it is recommended to avoid any shading aperture. If this is not possible,
for example due to the small dimensions of the investigated wafer, the aperture should
have a diameter which is significantly larger than the largest dimension of the incident
measurement spot. For the shown measurements performed with spot dimensions (see
section 5.1) of 3mm×2mm an aperture with diameter of 18mm reduces the measurement
error to about 3 %. In any case a Daidalos simulation can be used to estimate the
measurement error.

5.4. Complex geometries

This section demonstrates the usability of Daidalos for geometries with extended
complexity. For this, the reflectivity of a pyramidal textured wafer is simulated, whereby
the simulation domain is modeled as large as a scan of a wafer’s surface by means of a
laser scanning microscope (LSM). Thankfully, the processing of the wafers as well as the
LSM scans which are shown within this section were executed by Eckard Wefringhaus
et al. [33]. The surface texture of two differently etched samples are shown in figure
5.7. Both samples have their front surface as well as their rear surfaces textured with
a random pyramid texture. As can be seen, both textures (top) have a similar looking
structure. However, the distribution of their pyramid heights (bottom) differs with
sample 1 providing pyramid heights centered around 4.5 µm while most pyramids of
sample 2 have a height near 6 µm. The measured reflectivity of both samples is provided

78

5.4. Complex geometries

in figure 5.8 (left) showing a significant deviation for wavelengths in the range between
400 nm to 1000 nm, with sample 1 showing a reflectivity of up to 1.4 % higher than that
of sample 2.

79

5. Wafer optics

50 µm 50 µm

11 µm

0

1

2

3

4

5

6

7

8

9

10

9.2 µm

0.0

1.0

2.0

3.0

4.0

5.0

6.0

7.0

8.0

9.0

(b) Sample 2(a) Sample 1

1

10 %

20 %

30 %

10 %

20 %

30 %29 %

22 %
26 % 25 %

28 %

20 %

2 3 4 5 6 7 8 9 10

Pyramid height in μm

1 2 3 4 5 6 7 8 9 10

Pyramid height in μm

Figure 5.7.: The LSM scans of two differently etched wafers which are referred to as
sample 1 (left) and sample 2 (right) within the text. The surface structure
(top) as well as the height-map (mid) of both samples looks similar. However,
the pyramid height distribution (bottom) reveals that while pyramid heights
are centered around 4.5 µm for sample 1, most pyramids of sample 2 have a
height near 6 µm.

80

5.4. Complex geometries

400
500

600
800

900
1000

700
400

600
800

1200
1000

0.1

0.1

0.125

0.15

0.175

0.2

0.2

0.3

0.4

0.5

Wavelength in nm Wavelength in nm

Re�ectivityRe
�e

ct
iv

ity

Sample 1

Sample 1

Sample 2

Sample 2

Figure 5.8.: The reflectivity measurements of both samples (left) show significant differ-
ences in the wavelength range of 400 nm to 1000 nm. Here, the reflectivity
of sample 1 is up to 1.4 % higher than that of sample 2. The simulations
which were based upon the LSM scanned surface-textures are in very good
agreement with the measurement (b).

In order to reproduce these measurements, a simulation domain was created based upon
the gathered LSM scans. For this the coordinates of the pyramid annexes (xanx, yanx, zanx)
were extracted by Eckard Wefringhaus et al. using a watershed algorithm [33]. It was
assumed that all pyramids are ideal (i.e. having a pyramid angle of 54.7◦) with their base
located at the same height on the 300 µm thick substrate. Due to the former assumption
the length of a pyramid’s sides can be extrapolated from the calculated height zanx of
its annex. These pyramids were than placed on the surface of a 128 µm× 128 µm wide
substrate. Finally, the boundaries of the simulation domain were equipped with reflective
boundaries and a lambertian factor of 1.0 was chosen for the substrates back.2 The results
of the ray tracing simulations are provided in figure 5.8 (right) and are in good agreement
with the made measurements. Nevertheless, it is still a challenge to extract the reasons
for the apparent deviation in reflectivity from the shown results. The differences in the
distribution of pyramid heights as shown by figure 5.7 (bottom) provides no justification
on their own. Instead, it is rather likely that the spatial distribution of pyramids also
has to be taken account. For example, high pyramids may lead to a different reflectivity
when surrounded by small pyramids than when surrounded by high pyramids. Using

2Both sides of the wafer are equipped with a pyramidal texture, but LSM scans only exist for its front.
Therefore, a Lambertian factor of 1.0 is an adequate choice. Besides of that, within the considered
wavelength range only few rays are reaching the wafer’s back, therefore limiting its impact on the
optical characteristics.

81

5. Wafer optics

Daidalos it is possible to simulate the optical characteristics of textured wafers and
account for variations in the pyramidal texture due to the used etching process. These
simulations can be used to optimize the geometry of solar cell textures as well as the
associated etching processes. Nevertheless, further investigations are necessary to gain a
deeper understanding of the paths that incident light rays take when reflected by the
wafer’s surface.

82

6
An advanced light source

This chapter covers the development of a daylight source plugin for Daidalos which is
based on actual weather data measured at the Institute of Solar Energy Research Hamelin
(ISFH) in Germany. In the first part, the global and direct irradiance measurements
by means of a pyranometer are introduced. Afterwards, an approach is shown to add
additional information to irradiance, namely the wavelength distribution and the angular
distribution of light. Finally, the daylight source, as developed by Matthias Winter, is
introduced.

6.1. Weather data measurements
The daylight source is based upon irradiation measurements done at the Institute of
solar energy research (ISFH) in Hamelin/Germany (52.07◦ N, 9.35◦ E) during fourteen
years (1992–2005). The measurements were performed using an irradiation measurement
device, referred to as pyranometer. A schematic of the device’s structure is shown in
Figure 6.1. Its main components are a thermopile sensor which is calibrated to measure
the irradiation between 285 nm to 1300 nm in Wm−2. A movable light shade is used in
two configurations. First, by removing the light shade the thermopile sensor measures
the global irradiation on a horizontal plane Iglob,hor. Second, by configuring the light
shade to block the direct light of the sun during the whole day the sensor measures the
horizontal diffuse irradiation Idiff,hor. At the ISFH both values where measured during
each with a temporal resolution ∆t of five minutes. These values incorporate device
specific correction factors. For example, a correction is needed due to fact that the light
shade does not only block the direct incident irradiation, but also a part of the diffuse
irradiation.

Based upon the measured global and diffuse irradiances, the horizontal direct irradiance
is calculated by:

Idir,hor(t) = Iglob,hor(t)− Idiff,hor(t). (6.1)
This data will be used to derive the angular dependence of sunlight. The sun moves
approximately 1.25◦ in 5 minutes. If we bin the irradiance into 5◦ × 5◦ segments,

83

6. An advanced light source

Glas bulb

Thermopile
sensor

Movable light shade

(a) Global irradiation (b) Di�use irradiation

Figure 6.1.: A pyranometer consists of a thermopile sensor which is located under a glass
bulb. The thermopile sensor measures the global irradiation (a) in Wm−2.
The configuration can be changed to use a movable light shade which is
adjusted to shade the direct light of the sun during the whole day (b). In
this configuration, the pyranometer only measures the diffuse portion of the
daylight.

considerable binning errors occur. Therefore, these irradiance were linearly interpolated
to a temporal resolution of one minute. This means any two consecutive data values
data(t0) and data(t0 + 5min) were interpolated as:

data′(t0) = data(t0) (6.2)
data′(t0 + 1min) = 0.8 · data(t0) + 0.2 · data(t0 + 5min) (6.3)
data′(t0 + 2min) = 0.6 · data(t0) + 0.4 · data(t0 + 5min) (6.4)
data′(t0 + 3min) = 0.4 · data(t0) + 0.6 · data(t0 + 5min) (6.5)
data′(t0 + 4min) = 0.2 · data(t0) + 0.8 · data(t0 + 5min). (6.6)

As a result, a table is created for each day in the considered interval, consisting of 1440
values of direct, diffuse and global irradiation. Within this chapter, t is a discretized
variable which refers to the minutes tε[0 . . . 1439] of a particular day for which interpolated
measurement data exists. For example, figure 6.2 shows a comparison between the fourteen
year averaged global irradiance for the 15th of June (red) and the 15th of December
(blue).

6.2. Generating the spectral distribution using SMARTS

The following section describes the solar spectra were calculated using the SMARTS
software. Furthermore, an approach is presented for normalizing these spectrally resolved
values with the measured irradiances.

As a pyranometer measures the cumulative irradiance there is no information about
the prevailing spectra of daylight at the time the irradiances were measured. For that

84

6.2. Generating the spectral distribution using SMARTS

700

600

500

400

300

200

100

0
0 2 4 6 8 10 12 2 4 6 8 10 12

a.m. p.m.
Hour of the day

G
lo

ba
l i

rr
ad

ia
nc

e
in

 W
m

-2

15th of
 June

15th of
December

max.
84.35 Wm-2

max.
698.32 Wm-2

Figure 6.2.: The fourteen year average of the global irradiance for the 15th of December
(blue) and the 15th of June (red). During summer the average global
irradiance is about eight times higher than in winter.

85

6. An advanced light source

South

Zenith

North

Winter

Sum
m

er

2
1

3

Zenith

1

3

α1

α3

Azimuth
φsun

The altitude angle

Horizon plane

Figure 6.3.: During each day the sun travels over the celestial hemisphere on an circular
path (shown as dashed line) which changes over seasons. Using the horizontal
coordinate system, the sun’s position is described by an azimuthal angle ϕ
measured from the north over east and an altitude angle α measured against
the horizon plane (see outtake at the right).

reason, the spectral distributions are simulated with the SMARTS model [34, 35]. It is a
standard in photovoltaics. For example, SMARTS was used to calculate the standard
AM1.5g spectrum from the measured extraterrestrial AM0 spectrum.

6.2.1. Simulated spectral values

During each day the sun travels along a circular path on the hemisphere, shown in
figure 6.3. With respect to the horizontal coordinate system the sun’s position on the
hemisphere is described at any time t by an azimuth angle ϕsun(t) measured from the
north via east and an altitude angle αsun(t) measured from the horizontal plane towards
the zenith.
As light propagates through the atmosphere it is scattered or absorbed by particles

or molecules. The impact of both processes increases with the amount of traversed air
which is described by a value referred to as air mass m. For the sun located at the zenith
the air mass is defined to be 1.0 and increases with decreasing altitude angle αsun(t)
approximatively as [36]:

m(αsun(t)) = 1
sin(αsun(t)) . (6.7)

In order to resolve this altitude-dependent effect the spectral calculations are executed at
several altitude angles αsun between 0◦ to 62.9◦1 at a step-size of 0.1◦. The SMARTS

1The altitude angle of 62.9◦ is the maximum altitude reached at the ISFH, where measurements were
taken (see section 6.1).

86

6.2. Generating the spectral distribution using SMARTS

software uses a far more sophisticated approach than equation (6.7) to calculate the
influence of the air mass on the solar spectrum. Each SMARTS simulation provides the
solar spectrum at ground level for a different solar altitude under standard-atmospheric
conditions. The calculations include 91 wavelengths between 300 nm to 1200 nm with a
resolution of 10 nm. At each wavelength the following values are calculated:

• Diffuse horizontal irradiance
The diffuse horizontal irradiance ISMARTS,diff,hor(αsun) is the irradiance by diffuse
light measured in Wm−2 on a horizontal plane.

• Global horizontal irradiance
The global horizontal irradiance ISMARTS,glob,hor(αsun) is the irradiance by all
incident light, measured in Wm−2 on a horizontal plane.

• Direct horizontal irradiance
The direct horizontal irradiance ISMARTS,dir,hor(αsun) accounts for the direct part
of the incident light, measured in Wm−2 on a horizontal plane.

• Direct normal photon flux
The direct normal photon flux FSMARTS,dir,norm(λ, αsun) is the photon flux, measured
in cm−2 s−1 nm−1, as received on a plane which is orientated perpendicular to the
direction of incidence.

• Diffuse horizontal photon flux
The diffuse horizontal photon flux FSMARTS,diff,hor(λ, αsun) is the photon flux, mea-
sured in cm−2 s−1 nm−1, as received on a horizontal plane.

6.2.2. Matching simulated spectra with measurements

The SMARTS-Model allows for a broad set of options to configure the spectra simulations
to comply with the conditions of the actual measurement. Nevertheless, an additional
scaling procedure is necessary to normalize the simulations to the measured irradiances.
To visualize, consider a partly clouded hemisphere where several white clouds are

covering the blue sky. These clouds are effectively masking the diffuse spectrum of
the sky and instead are reflecting the direct spectrum of the sun in a diffuse manner.
Consequently, the diffuse irradiation as measured by the pyranometer is a superposition
of the diffuse spectrum of the blue sky and the diffusively reflected direct spectrum of
the sun. Therefore, within this section an approach is presented to estimate the degree of
cloudiness from the measured irradiation data and to use it to achieve a good matching
between simulation and measurement. The matching procedure can be split up into
several steps which are outlined in figure 6.5.

Cloud opacity

The following spectra calculations are made under the assumption that the radiance of a
partly clouded sky can be constructed from the weighted sum of the radiances of the

87

6. An advanced light source

1

0.8

0.6

0.4

0.2

00 2 4 6 8 10 12 2 4 6 8 10 12

Hour of the day

Cl
ou

d
op

ac
ity

15th of June 15th of December

a.m. p.m.

Figure 6.4.: A comparison of the fourteen year average of the cloud opacity calculated for
the 15th of December (blue) and the 15th of June (red). Low light conditions
in the morning and evening hours lead to measurement artifacts which result
into fluctuation of the cloud opacity around the zero-line.

clear sky and the overcast sky. The weighting factor used for this is the cloud opacity
which is defined to be zero for a blue sky and one for an overcast sky.

According to the semi-empirical model of Gueymard [37] the cloud opacity can be
calculated from the values of diffuse and global irradiance. However, during our ex-
periments with the daylight source we found that the evaluation of the cloud opacity
according to [37] leads to an overestimation of the light emitted in the ultra-violet regime.
Therefore, we used an empirical formula derived by Matthias Winter which is presented
in the following. The calculation of the cloud opacity is done during step (3) in figure 6.5
and consists of two parts. First, the ratio of diffuse and global irradiance is calculate.
This is done for the measured irradiances as well as for the irradiances simulated by the
SMARTS software:

rdiff/glob,hor(t) = Idiff,hor(t)
Iglob,hor(t)

,

rSMARTS,diff/glob,hor(t) = ISMARTS,diff,hor(αsun(t))
ISMARTS,glob,hor(αsun(t)) . (6.8)

88

6.2. Generating the spectral distribution using SMARTS

Second, the cloud opacity is calculated by:

copac.(t) =
rdiff/glob,hor(t)− rSMARTS,diff/glob,hor(t)

1− rSMARTS,diff/glob,hor(t)
(6.9)

Finally, the value of copac. is clamped to the interval of 0 to 1:

copac.(t) < 0 ⇒ copac.(t) = 0, (6.10)
∧ copac.(t) > 1 ⇒ copac.(t) = 1. (6.11)

To visualize, figure 6.4 shows the cloud opacity as calculated for the 15th of December
(blue) and the 15th of June (red). The global irradiance for both days were also shown
in figure 6.2.

Matching the diffuse and direct photon fluxes

The diffuse spectrum as seen by the pyranometer is modeled as a superposition of the
simulated spectra for diffuse and direct light. The particular contributions are weighted
by the calculated cloud opacity (see equation 6.9). This weighting-procedure is done
during step (7) shown in figure 6.5 and is subdivided into several internal steps which
are described in the following.
As preliminary calculation, the direct photon flux FSMARTS,dir,norm simulated using

SMARTS is converted from the normal flux value to the horizontal flux value by:

FSMARTS,dir,hor(λ, αsun) = FSMARTS,dir,norm(λ, αsun) · sin(αsun), (6.12)

where αsun is the sun’s altitude angle, which can be calculated for any particular geo-
graphical location, date and time by means of Ref. [38]. Based upon the simulated values
a scaling factor sdiff is derived by:

sdiff(λ, t) =(
FSMARTS,diff,hor(λ, αsun(t)) · (1− copac.(t))

ISMARTS,diff,hor(αsun(t)) +

[FSMARTS,dir,hor(λ, αsun(t)) + FSMARTS,diff,hor(λ, αsun(t))] · copac.(t)
ISMARTS,glob,hor(αsun(t))

)
. (6.13)

Here, the left term describes the contribution of the diffuse irradiance of the blue sky,
which is dominant in the clear sky case (i.e. copac. = 0), and the right term the contribution
of reflected direct light, which dominates under overcast conditions.

Finally, the diffuse photon flux is retrieved by multiplication of the scaling factor with
the measured diffuse irradiance:

Fdiff,hor(λ, t) = sdiff(λ, t) · Idiff,hor(t) (6.14)

Similar to that, the direct horizontal photon flux as given by equation 6.12 is matched to
the measured direct irradiance Idir (step (8) in figure 6.5) by:

Fdir,hor(λ, t) = FSMARTS,dir,hor(λ, αsun(t))
ISMARTS,dir,hor(αsun(t)) · Idir,hor(t). (6.15)

89

6. An advanced light source

Load irradiation data
of current day

1

Calculate suns
altitude

4

Load SMARTS
data for current

altitude of the sun

6

Scale SMARTS
simulated di�use

photon�ux to
irriadation data

(see text)

7

Scale SMARTS
simulated direct

photon�ux to
irriadation data

(see text)

8

For every minute
t ε [0...1440]

2

For every
wavelength

λ ε [300 nm ... 1200 nm]

5

Calculate cloud
opacity

(see text)

3

Iglob(t)

Idi�(t)

opac(t)

Fdi�.,hor.

Fdir.,hor.

φsun(t)

Idir(t)

FSMARTS,di�.,hor.

ISMARTS,di�.,hor.

ISMARTS,dir.,hor.

FSMARTS,dir.,hor.

Figure 6.5.: Several steps (rounded rectangles) are necessary to scale the photon fluxes as
calculated by SMARTS to the measured irradiances. The procedure consists
of two loops (loop-bodies in dashed rectangles) in which the final photon
flux values Fdiff,hor and Fdir,hor (shown in blue rectangles) are calculated. In
the figure the flow of execution is shown by red arrows, while the flow of
data is presented by black arrows.

90

6.3. Generating the angular distribution

6.3. Generating the angular distribution
In order to perform a meaningful ray tracing simulation the angular distribution of the
incident light has to be taken into account, too, not just the specular distribution. That
means the photon fluxes of direct and diffuse light, as calculated in the last section, have
to be distributed onto different directional segments.
The angular distribution of daylight was investigated and parametrized in detail by

Gueymard [37]. This parametrization was incorporated into the in-house SunCalculator
software developed by Marco Ernst, which was used here to simulate the angular distri-
bution of the calculated photon fluxes and spectra. This section covers the formulas used
within the SunCalculator software. Additionally, the bin-model used by the daylight
source, developed here, is introduced.

Within this section most equations are time-dependent. However, this is not indicated
explicitly to keep the shown formulas simple. That means, anytime a value explicitly or
implicitly depends upon the measured irradiances Idir,hor, Iglob,hor or Idiff,hor, this value
actually must be evaluated for any time t within the measurement interval. However,
this time dependence is taken into account when describing the final weather data table
within section 6.4.

6.3.1. Bin-Model of the direction of radiation
While the sky’s hemisphere is a continuous area in the real-world, it has to be discretized
for usage within a computer simulation. This discretization is done by partitioning the
hemispherical area into a set of bins (see figure 6.6).

In order to comply with the formulas described within this section each bin is addressed
by its midpoint, specified by a polar angle θ measured from the zenith and the azimuthal
angle ϕ measured from north over east. The angular size of the bins, which determines
the resolution of the resulting grid, is chosen to be ∆ϕ = ∆θ = 5◦.

6.3.2. Direct irradiation
According to Gueymard [37] the horizontal direct irradiation on an arbitrary orientated
plane can be calculated by:

Idir,hor(β, αsun) = max
[cos(β)

sin(αsun) , 0
]
Idir,norm. sin(αsun). (6.16)

Here, β is the angle of incidence with respect to the planes normal, αsun = 90◦−θsun is the
sun’s altitude angle and Idir,norm. is the value of the measured direct normal irradiation.

With respect to the developed daylight source, the irradiation is always considered to
be incident onto the horizontal plane. Therefore, β can be replaced by the sun’s altitude
angle αsun for the horizon plane, leading to the expression:

Idir,hor(αsun) = max
[cos(αsun)

sin(αsun) , 0
]
Idir,norm.

= max
[1

sin(αsun) , 0
]
Idir,hor sin(αsun). (6.17)

91

6. An advanced light source

NorthSouth

polar angle
θ

azimuthal angle
φ

Figure 6.6.: The hemisphere is partitioned into distinct bins. Each bin is associated with
its midpoint, specified by a zenith angle θ and an azimuthal angle ϕ. The
resolution of the partition depends upon the angular sizes of the bins which
are set to ∆ϕ = ∆θ = 5◦ for calculation of the daylight source.

Furthermore, the cosine factor is removed from the max-function to convert the given
direct irradiation value measured under normal incidence into the corresponding horizontal
direct irradiation as measured by the pyranometer.
In order to comply with the coordinate system of the hemisphere’s bin-model (see

section 6.3.1), the sun’s altitude angle αsun is replaced by the corresponding zenith angle
θsun:

Idir,hor(θsun) = max
[1

cos(θsun) , 0
]
Idir,hor cos(θsun). (6.18)

This equation allows the evaluation of the direct irradiance emitted by any bin of the
hemisphere depending upon the bins midpoint-coordinate (θ, ϕ) and the horizontal direct
irradiance Idir,hor as measured by the pyranometer.

6.3.3. Diffuse irradiation

Contrary to the direct irradiation, which impinges only from the direction of the sun, the
diffuse irradiation is incident from any direction. Its angular distribution be given by
D(θ, ϕ), which is normalized over all possible angles of incidence [37]:

2π∫
0

dϕ

∫ π

0
D(θ, ϕ) cos(θ) sin(θ)dθ = 1. (6.19)

For a spatially discretized hemisphere, these integrals can be reduced to sums. Considering
a partition into bins with midpoint-coordinates at (θi, ϕi) and a angular resolution of

92

6.3. Generating the angular distribution

∆ϕ and ∆θ, respectively, this leads to:∑
ϕi

∑
θi

D(θi, ϕi) cos(θi) sin(θi)∆ϕ∆θ = 1. (6.20)

Consequently, the angular distribution of the diffuse horizontal irradiation can be described
by:

Idiff,hor(θi, ϕi) =
R(θi,ϕi)︷ ︸︸ ︷

D(θi, ϕi) cos(θi) sin(θi)∆ϕ∆θ Idiff,hor, (6.21)

where R is a spatial distribution factor. According to Gueymard [37], R depends upon
the particular cloud conditions and can be generally expressed by:

R = (1− copac.)Rcs. + copac.Rov.. (6.22)

Here, copac. is the cloud opacity factor (see equation 6.9), Rcs. is the distribution factor
for clear sky conditions and Rov. describes the case of an overcast sky. The remaining
part of this section will cover the theory needed to calculate the values of Rcs. and Rov..

Overcast conditions

Following [37, 39–41], the angular distribution D(θ, ϕ) of the diffuse radiation of an
overcast sky only depends upon the zenith angle θ and can be described by:

D(θ)
D(0) = 1 + b cos(θ)

1 + b
. (6.23)

According to Gueymard [37], most theoretical and experimental determinations for an
overcast sky suggest a value b in the range of 1.0 to 2.0. While the median value of
b = 1.5 would be a good choice for overcast conditions, experimental observations for a
partly clouded sky show a decreases of b with cloudiness. In order to take the latter effect
into account Gueymard assumes that b is a linear function of the cloud opacity, given by:

b = 0.5 + copac. (6.24)

Substituting the equation (6.23) into equation (6.20), this results in:

D(0)
∑
ϕi

∑
θi

1 + b cos(θ)
1 + b

cos(θi) sin(θi)∆ϕ∆θ = 1. (6.25)

Consequently, D(0) can be expressed by:

D(0) = 1∑
ϕi

∑
θi

1+b cos(θ)
1+b cos(θi) sin(θi)∆ϕ∆θ

. (6.26)

93

6. An advanced light source

As b can be calculated using the equations (6.24) and (6.9), the value of Rov.(θk, ϕk) for
a bin with midpoint-coordinates (θk, ϕk) can be calculated by:

Rov.(θk, ϕk)
(6.21)= D(θk, ϕk) cos(θk) sin(θk)∆ϕ∆θ

(6.23)= D(0)1 + b cos(θk)
1 + b

cos(θk) sin(θk)∆ϕ∆θ

(6.26)= (1 + b cos(θk)) cos(θk) sin(θk)∑
ϕi

∑
θi

(1 + b cos(θ)) cos(θi) sin(θi)
(6.27)

Clear sky conditions

The diffuse light is not distributed homogeneously over the hemisphere. The main reason
is Mie scattering at particles comparable in size to the wavelength of the light. Mie
scattering is stronger in forward direction than in side direction. This is the main reason
why the blue sky near the sun looks whiter than at a large angle away from the sun.

Therefore, with respect to clear sky conditions, the hemisphere is divided into three
zones around the sun which are treated by different parameterizations for their diffuse
irradiance [42]. The membership of a particular point (θ, ϕ) of the hemisphere to any
of these zones is defined by the angle γ between the point’s position-vector and the
position-vector of the sun. For values of γ lower than 20◦, the point is considered to be
part of the circumsolar zone which describes the sky’s appearance near the sun. This
zone is itself subdivided into the C1-zone (γ ≤ 3◦) and the C2-zone (3◦ < γ ≤ 20◦). A
value of γ bigger than 20◦ associates a point with the hemispherical zone which describes
the remaining blue part of the sky.

The C1-Zone (γ ≤ 3◦)

The innermost zone is investigated most thoroughly, because it constitutes an important
contribution to the sunlight impinging on concentrator systems. According to an analysis
of the Lawrence Berkley Laboratory (LBL), conducted between 1975 and 1979, the
luminance N(γ) in the zone C1 is mainly linear to γ, if presented on a log-log scale, and
can therefore be described by [42]:

NC1(γ) = γ−τNC1(1), (6.28)

where τ is a term which depends on the particular turbidity conditions.
Following Gueymard [43] [42] t can be parametrized by the air mass m and a factor β

which can be described by:

mβ ≤ 1 ⇒ τ = 6.556(mβ)0.5 − 3.346mβ
1 ≤ mβ ≤ 3 ⇒ τ = 3.210 + 0.200(mβ − 1)0.5.

The D-value as described by equation (6.20) is a normalized value with respect to the
diffuse horizontal irradiation. Therefore, in order to retrieve the DC1 for the zone C1, a

94

6.3. Generating the angular distribution

normalization has to be applied to the NC1 calculated by equation 6.28. According to
Gueymard [42] such a normalization is described by:

DC1 = NC1(γ)
NC1(1) ·

NC1(1)
En

· En
Ed

, (6.29)

where En and Ed represent the normal and horizontal luminance, respectively. A further
evaluation is possible by considering each product term on its own.
The first term of the product can be derived from equations (6.28) and (6.29). The

second term is associated with the case of Rayleigh scattering and can be described for
β = 0 and γ ≈ 0◦ as [44]:

NRlgh

En
= 3

8πmτR. (6.30)

Here, τR is the optical thickness in the atmosphere associated with the molecules which
are the source of the Rayleigh scattering. Following Gueymard [43], the factor mτR can
be expressed the parametrization

mτR = 0.11008 + 0.07260 ln(m) + 0.04077 ln(m)2,

as long as 1 ≤ m ≤ 20 stays valid.
While (6.30) holds for β = 0, an additional factor F (m,β) is needed to describe NRlgh

En

for β 6= 0. Regarding the analysis done by the LBL, F (m,β) can be expressed [42] by

F (m,β) = exp(AβB).

Here, the factors A and B can be further parametrized by m as [42]

m ≤ 2.4 ⇒ A = 8.03 + 0.931m− 0.179m2

∧ B = 0.243− 0.023m
m > 2.4 ⇒ A = 8.093 +m0.15

∧ B = 0.14 + exp(−2.211− 0.342m).

The third term of the product in (6.29) is a function of the turbidity and the mass of
the atmosphere. Following Gueymard [42], it can be parametrized by

En
Ed

= A0 +A1β

1 +A2β
.

Here, A0 to A2 are given by [42]

A0 = 3.17− 1.98m+ 0.059m2 + 11.36m0.5

A1 = 3.93− 3.29m+ 0.061m2 − 8.62m0.5

A2 = exp(2.780 + 0.121m− 0.233m0.5)

95

6. An advanced light source

The C2-zone (3◦ < γ ≤ 20◦)

Within the circumsolar zone C2, Gueymard [42] suggest a parametrization of DC2 by

DC2 = (b0 + b1θsun,deg + b2θ
2
sun,deg) exp(b3 + b4γ), (6.31)

where θsun,deg is the zenith angle of the sun in degree and

b0 = 0.109 + 0.029γ + 0.005 exp(−0.015θsun,deg + 1.07 · 10−5θ3
sun,deg),

b1 = 0.02− 6 · 10−4γ,

b2 = 6.8 · 10−5,

b3 = 0.24,
b4 = −0.054.

Hemispherical zone (γ > 20◦)

Considering the hemispherical zone, the luminance does only depend on the altitude
but not on the angular distance to the sun. In his paper [42], Gueymard suggest a
parametrization of Dhem(θ) by

Dhem.(θ) = (1 + 0.01θsun,deg)(0.275− 0.395 cos(θ) + 0.170 cos(θ)2). (6.32)

Complete model of Dcs

In order to create the final model ofDcs, a renormalization factorKN has to be introduced,
for equation (6.19) to stay valid. According to Gueymard [42], KN is parametrized by

KN = a0 + a1θ
′
sun,deg + a2θ

′2
sun,deg + a3θ

′3
sun,deg,

where

θ′sun,deg = 0.01θsun,deg,
a0 = 1.0156 + 0.0907β − 0.8644β2,

a1 = −0.1966 + .15843β − 3.8185β2,

a2 = 0.3651− 4.8270β + 7.9650β2,

a3 = −0.0113 + 2.010β − 2.950β2.

Using KN , the final Dcs is expressed by:

Dcs = KN (max (DC1, DC2) +Dhem) . (6.33)

In conjunction with equation (6.21), this can be written as spatial distribution factor:

Rcs. = KN (max (DC1, DC2) +Dhem) cos(θk) sin(θk)∆ϕ∆θ. (6.34)

96

6.4. The final weather data

6.4. The final weather data
This section covers the overall process by which the previously presented calculations
are executed to generate the final weather data table as used by further simulations, e.g.
as input for the developed daylight source plugin (see section 6.5). It stores the data
by means of a bin-model presented in section 6.3.1. Therefore, considering an angular
resolution of 5◦ for the altitude angle as well as for the azimuthal angle, the resulting
data table consists of (360/5) · (180/5) = 2592 rows. Each row consists of several columns
which are described in the following text.

Column 1. to 2.: Bin center coordinates

These are the coordinates that describe the center coordinates of the particular bin given
as altitude angle α and azimuthal angle ϕ. Note, that the bins within the final data table
are addressed by their altitude angle α instead of their polar angle θ = 90.0◦ − α.

Column 3.: Directly irradiated energy

This is the energy density of the direct irradiation which incidents from the solid angle
represented by the particular bin during the time ∆t. It is given in Wm−2 ·∆t where ∆t
is given in seconds. The value is calculated based on equation (6.18) which is summed
over all days D of the measurement interval using time steps of ∆t = 60 s by:

Edir,hor(α,ϕ) =
∑
D

1439∑
t=0

isSunPosition(α,ϕ, t) · Idir,hor(t, αsun(t))∆t. (6.35)

Here, the sun’s altitude angle αsun(t) for a specific data can be calculated by well-known
formulas [38]. The function isSunPosition(α,ϕ, t) evaluates to one if the sun’s position
(αsun(t), ϕsun(t)) at the time t lies within the bin with center coordinates (α,ϕ), otherwise
it is zero. Accordingly, the direct irradiated energy measured at a time t is always
associated with the bin which currently incorporates the sun.

Column 4.: Diffusely irradiated energy

This is the energy density of the diffuse irradiation which incidents from the solid angle
represented by the particular bin during the time ∆t. It is given in Wm−2 ·∆t where
∆t is given in seconds. The value is calculated based on the equation (6.22) which is
summed over all days D of the measurement interval using time steps of ∆t = 60 s by:

Ediff,hor(α,ϕ) =
∑
D

1439∑
t=0

R(90◦ − α,ϕ, t) · Idir,hor(t) ·∆t. (6.36)

Columns 5. to 95.: Directly irradiated photon density

These columns contain the spectral photon density (in nmm−2 · ∆t) associated with
the measured direct irradiance. It is given for wavelengths of 300 nm to 1200 nm with a
resolution of 10 nm.

97

6. An advanced light source

The values are calculated at any time t of any day D within the measurement interval
using equation 6.15 and associated with the bin which currently incorporates the sun:

Fdir,hor(α,ϕ, λ) =
∑
D

1439∑
t=0

isSunPosition(α,ϕ, t) · Fdir,hor(λ, t). (6.37)

Here, λ is the wavelength for which the direct photon flux is calculated and the function
isSunPosition(α,ϕ, t) evaluates to one if the sun’s position (αsun(t), ϕsun(t)) at the time
t lies within the bin with center coordinates (α,ϕ), otherwise it is zero.

Columns 96. to 186.: Diffusely irradiated photon density

These columns contain the spectral photon flux (in nmm−2 ·∆t) associated with the
measured diffuse irradiance. It is given for wavelengths of 300 nm to 1200 nm with a
resolution of 10 nm.

The values are calculated at any time t of any day D within the measurement interval
using equation 6.14. Afterwards they are distributed into the available bins by means of
the spatial distribution factor R described by equation (6.22):

Fdif.,hor(α,ϕ, λ) =
∑
D

1439∑
t=0

R(90◦ − α,ϕ, t) · Fdir,hor(λ, t) (6.38)

6.5. The daylight source plugin
This section gives an overview of the implementation of the daylight source as a Daidalos
plugin, developed by Matthias Winter. As described in section 4.6.2, such a light
source plugin has to implement the associated LightSource interface shown in figure 4.11.
According to this, any source has to be able to create a Photon (see figure 4.13) providing
its wavelength λ, its initial position ~x, and direction ~d.2
Considering the daylight source plugin, its implementation supports two different

modes for its appearance during simulation, namely the spherical mode and the box
mode. Both modes are based on the final weather data as described in section 6.4 as
well as some mode specific, user defined values.

6.5.1. Spherical mode
Using the spherical mode the appearance of the daylight source is most similar to that of
the celestial hemisphere. That means the simulated photons are emitted from the inner
surface of a sphere with a user defined radius r.
The main challenge of the light source plugin is to calculated the values needed to

initialize the simulated photon. These are the photons wavelength λ, its initial position
~x, and its direction of propagation ~d. They are derived in a two-step process.

2Note, the LightSource-interface also provides a photon flux value. However, in most cases (especially
if only one source is used for simulation) this value can be any positive number. Therefore, it is
neglected in the following discussion.

98

6.5. The daylight source plugin

In the first step, the propagation direction ~d and the wavelength λ is determined based
upon the given angular distribution (see section 6.3). For the direction, a solid angle bin
(see section 6.3.1) with center coordinates (α,ϕ) is randomly chosen. The probability
Psph(α,ϕ, λ) for a bin with center coordinates (α,ϕ) of getting chosen is based on the
photon flux emitted by the bin and defined by:

Psph(α,ϕ, λ) = (Fdir,hor(α,ϕ, λ) + Fdif.,hor(α,ϕ, λ))∑
αB ,ϕB

∑
λ

(Fdir,hor(αB, ϕB, λ) + Fdif.,hor(αB, ϕB, λ)) . (6.39)

Here, the sum over αB, ϕB represents the sum over all solid angle bins. Each bin
has an angular extend of ∆ψ and ∆θ, therefore covering a solid angle ranging from
(θ−∆θ, ϕ−∆ϕ) to (θ+ ∆θ, ϕ+ ∆ϕ). To select a specific direction of propagation within
this solid angle, a pair of random offsets:

(δθrand., δϕrand.) ,where δθrand.ε [−∆θ,∆θ) , δθrand.ε [−∆ϕ,∆ϕ) , (6.40)

is calculated. This leads to a direction vector of:

~dphot. =

 − sin(θ + δθrand.) cos(ϕ+ δϕrand.)
− sin(θ + δθrand.) sin(ϕ+ δϕrand.)

− cos(ϕ+ δϕrand.)

 . (6.41)

In the second step, the initial position ~x of the photon is determined. If any obstacles
are neglected the light within the sphere must be homogeneous as shown in figure 6.7
(1). That means that light which incidents from a particular direction is visible from
any point within the sphere. This formulation is equivalent to the representation where
the incident light does homogeneously irradiate the area of the sphere projected on a
plane perpendicular to the light’s direction (2). For this reason, the initial position on
the sphere’s surface is determined by randomly choosing a point within the projected
circle (3) and projecting this point back onto the hemisphere (4).
Finally, the resulting position is rotated to match the direction chosen and shifted to

match the position of the sphere as defined by the user (figure 6.7).

6.5.2. Box source

While the spherical mode of the day light source is most similar to the common observation
of a hemispherical sky, there are some situations where a box shaped source is preferable.
For example, consider the simulation of a common solar cell module of rectangular shape.
When covering the module with a hemispherical source, a significant amount of photons
won’t strike the module at all, but pass without any impact to the simulations result. By
switching to a box shaped representation of the light source the modules outline can be
tightly surrounded by the source. Accordingly, the same statistical error (see equation
3.9) can be reached using a decreased number of simulated photons.

The internal working within box-mode is more complex than that of the spherical-mode.
It can best be visualized by thinking of the user defined box to be located within an

99

6. An advanced light source

Incident light homegeniously

distributed within the user-

de�ned sphere

1

2

3

4

Sphere projected on a
plane perpendicular to
the incident light

Choose a random point
within the projected area

Project the randomly chosen
point back onto the user-de�ned
sphere.

(a)

(b)

Figure 6.7.: In the second step, the initial position of the photon is calculated. The
distribution of light is homogeneous within the sphere (a). That means
if all obstacles are neglected the light incident from a particular direction
can be seen from any location within the sphere. Therefore, it is uniformly
distributed on the circle which represents the area of the sphere, projected
perpendicularly to the light’s direction (2). The initial position is then
determined (b) by choosing a random point on the projected area (3) and
calculating the intersection with the hemisphere along the direction of the
incident light (4).

100

6.5. The daylight source plugin

irradiating sphere. As preliminary step, the parallel projection of each of the six box faces
is calculated for any solid angle bin. Therefore, given a bin with the center coordinate
(α,ϕ) the area Ai of the i-th box face is projected onto an area A(α,ϕ, i) as seen by the
bin. In order to resolve possibly rapid changes in the area seen by the bins3, the available
bins are previously subdivide to increase their angular resolution to exceed a user-defined
threshold, which defaults to 1◦ × 1◦ = 3.046× 10−4.
This preliminary process is followed by the first step which consists of choosing the

propagation direction of the emitted photon. As for the hemispherical mode, this is done
by selecting a random solid angle and wavelength. However, due to the dimensions of
the box, different bins are seeing differently sized projections of the box faces A(α,ϕ, i)
that have to be taken into account. For this reason, the probability of a bin to getting
selected is defined by:

Pbox(α,ϕ, λ) = Psph(α,ϕ, λ) ·

∑
i
A(α,ϕ, i)∑

αB ,ϕB

∑
i
A(α,ϕ, i) , (6.42)

where Psph(α,ϕ, λ) is the corresponding selection probability of the spherical-mode as
given by equation 6.39.
At last, the initial position of the photon, located onto one of the box faces, is

determined. This is done, by first selecting a random box-face which is seen by the
emitting bin. Here, the probability Pf (α,ϕ, i) of a particular face i of the box for getting
selected by a bin with center coordinates (α,ϕ) is given by:

Pf (α,ϕ, i) = A(α,ϕ, i)∑
i
A(α,ϕ, i) . (6.43)

Finally, the initial position of the photon is randomly selected (uniformly distributed) on
the previously chosen face.

3For example, one bin might just barely see the top-face of the box while this is completely hidden for
its neighboring bin.

101

7
Simulating module optics

This chapter covers the simulation of the optical features of solar cell modules. It starts
with an overview of the components of a solar cell module. This is followed by the
introduction of the Laser beam induced current (LBIC)-method [45,46] which allows for
an investigation of the optical impact of the different module components.

While ray tracing simulations of module optics were done before, these simulations were
either done on simplified module geometries [47–49] or by using analytical calculations
[50–52]. Contrary to that, within this chapter a multi-domain approach is presented which
allows for the simulation of widely extended areas of solar modules within acceptable
simulation time. Finally, based upon the presented approach the impact of the inter-cell
distance is discussed.

7.1. Module optics
A common solar cell module is composed of several components as shown in figure 7.1.
The actual solar cells are arranged into a grid and interconnect by metal-connectors.
This solar cell grid is embedded into an encapsulation layer which is commonly made of
either ethyl-vinyl-acetate (EVA) or silicone.1 Finally, the encapsulated cells are placed
within an enclosure made of a backsheet behind the cells, a glass pane at the front and a
metal frame which supports stability. Each of these components has an impact on the
optical characteristics of the final solar cell module and increases the number of possible
paths of light which have to be taken into account during a ray tracing simulation (see
figure 7.2).
Following the path of the incident light, as shown in figure 7.2, the top glass is the

first component which is hit by the incoming rays. Commonly, this is made of glass with
a low iron content to reduce the amount of absorbed light (case 2). Additionally, an
anti-reflection coating can be applied to the glass outer surface in order to reduce its
reflectivity (1). Those rays which are not lost by these two processes reach the interface

1While silicone shows lower parasitic absorption, EVA is the cheaper material and therefore the prevalent
encapsulation material within commercially available solar cell modules.

103

7. Simulating module optics

Glass

Encapsulant

Backsheet

Solar cells

Metal frame

Silicon
Silic

onSiN x

Anti-re�ection
coating

Pyramidal surface
texture

Metal frame

Cell interconnectsBacksheet

Busbar

Finger

Figure 7.1.: A solar cell module (left) is composed of several components. The actual
solar cells are arranged into a grid-layout, interconnected by metal ribbons
and embedded into an encapsulation material (see text). This is enclosed by
a rear-backsheet, a front-glass and a metal frame. Each solar cell is equipped
with a pyramidal surface texture and an anti-reflection coating to reduce its
reflectivity (right).

1 2

3

3b 6b 7b

54 6 7 8 9

Figure 7.2.: There are several path by which a photon can propagate through a solar cell
module (see text). Most of these paths are not leading to any contact with a
solar cell.

104

7.1. Module optics

between the top glass and the encapsulating material. Depending upon the encapsulation
material used and the angle of incidence, this interface can reflect (3) some amount of
light. Furthermore, light can get trapped within the glass layer undergoing multiple
alternating reflections at the glass/encapsulation and the glass/air interface (3b)(6b)(7b).
Considering the low absorbance of the used glass, trapped light can propagate large
lateral distances (in the range of centimeters) in the glass layer before eventually leaving
it through one of its interfaces.
All rays which are not reflected at the glass/encapsulation interface are entering the

encapsulation material. In the commonly used EVA, most rays of wavelengths between
320 nm to 360 nm are absorbed within this layer (4) before reaching the actual solar
cells. Considering the amount of space (i.e. the gap) between neighboring solar cells and
between solar cells and metal frame (see figure 7.1), even the rays which are not absorbed
by the EVA have a good chance to hit the backsheet instead of the actual solar cell
area.2 Here, a small part of the light gets absorbed (5) while the major part is reflected
in a diffuse manner (6). A fraction of the incident rays eventually hits the surface of a
solar cell. While some of these rays are reflected (7) either by the solar cells metalization
(i.e. electrical contacts) or the pyramidal textured cell surface (see figure 7.1) others
are possibly absorbed (8) by the applied anti-reflection coating. Finally, the remaining
rays which enter the solar cell can be absorbed within the cell’s body (9) and contribute
to the generated current. Rays entering the solar cell may leave the cell without being
absorbed, as discussed in chapter 5.

Due to the shown processes, which each have their impact on the optical characteristics
of the final solar cell module, it is not possible to directly deduce the module’s optical
properties from the characteristics of its components. In order to investigate the optical
impact which results from a change in any of these components, the full module has
to be considered within a simulation to account for the interdependencies with other
components.

7.1.1. Laser beam induced current

Within this section the Laser beam induced current (LBIC) method is described that
allows for an experimental investigation of the optical impact of the module components.
Using this method, a single solar cell of a module is contacted separately and the generated
current is measured. A laser beam is then moved over the module’s surface illuminating
it at predefined points. Finally, each irradiation point is associated with the current
generated within the contacted solar cell while that point was irradiated.

As an example, a 3x3 solar cell mini-module was investigated by an LBIC scan with the
central cell contacted and its generation current monitored, see figure 7.3(a). A cutout
of the resulting bitmap is shown in figure 7.3(b). The pixel colors are representing the
generation current as measured for the solar cell shown on the right. It’s no surprise that
most current is generated when the solar cell surface is directly illuminated by the laser
beam. In this case, the main current loss is due to the reflection by the metalized areas

2The backsheet makes up for roughly 10% of the module area seen by perpendicular incident light.

105

7. Simulating module optics

Illumination
by a laser

Monitor generation
current of middle cell

(a) LBIC scan process (b) Result of LBIC scan

Figure 7.3.: The result of an LBIC scan. The solar cell on the right is contacted and the
generated current is measured. Each pixel’s color maps to the generation
current in the contacted cell when that pixel was irradiated. While most
current is generated when the cell is directly illuminated, even the illumina-
tion of the backsheet and the metallization of the neighboring cell lead to
significant current generation.

of the cell (i.e. the fingers and the busbar; see figure 7.1). However, some fraction of
the light first reflected by the fingers is subsequently reflected back onto the cell, hence
the metalized area still generates a current of about 0.2 µA. This effectively reduces the
total shading area of the metalization by a factor which is referred to as shading factor.
Furthermore, looking at the edge of the contacted cell as marked in figure 7.3(b), a small
region at the cells edge has no electrical contact (i.e. cannot contribute to the generated
current). This is due to an edge isolation process during solar cell production.

However, the most important point to be extracted from the shown LBIC result is the
fact that the backsheet and even the metalized areas of the neighbor cell measurably
contribute to the monitored generation current. These contributions result from reflected
light which is reflected at the front side of the glass, as shown by the paths (6b) and
(7b) in figure 7.2. This effect leads to a long-range optical coupling between laterally
separated parts of a module. Furthermore, it eliminates the possibility to calculate the
module’s optical characteristics by combining the results of several separately executed
simulations of small-sized parts of the module geometry. Instead, each simulation has to
take into account a simulation-domain which spans at least the distance a photon can
travel due to multiple reflections at the EVA/glass or glass/air interface, respectively.3

3The actual distance depends upon the used glass and EVA thickness and lies in the range of centimeters
for common solar cell modules.

106

7.2. Modeling the module geometry

Cell structure
(µm)

Module size
(cm -> m)

Gap area
(mm -> cm)

Figure 7.4.: The geometry of a module can be represented by gap-domain (right) repre-
senting the inter-cell and cell-to-frame gap, as well as a cell-domain modeling
the inner cell structure made of periodically repeating unit-cells (left).

7.2. Modeling the module geometry
Within this section an approach is presented to model the geometry of a solar cell module.
As shown in the previous section, there exists an optical long-range coupling between
laterally separated parts of a module. For this reason, it is not sufficient to perform ray
tracing simulations on separated parts and to expect that the combination of the gained
result will represent the actual optical characteristics of the module.
The major problem in modeling a module geometry is the large difference in scale of

the composing parts. While the size of a usual solar cell module is in the range of meters,
the dimensions of the individual solar cells are in the range of centimeters. Furthermore,
each solar cell provides a pyramidal surface texture (see figure 7.1) with dimensions in
the range of micrometers. This results in an amount of roughly 900 million pyramids to
be modeled for each solar cell. Consequently, a ray tracing simulation which incorporates
all geometrical details of a full solar cell module cannot be performed within acceptable
time on todays computers.

7.2.1. A multi-domain approach

Instead of modeling of a full solar cell module as a whole, a multi-domain approach is
used. For this, the module geometry is represented by only two simulation domains,
as shown in figure 7.4. While the inter-cell and the cell-to-frame gap is represented by
the gap-domain (left), the inner area (i.e. not directly adjacent to a gap) of a solar
cell is represented by the cell-domain (right). As aforementioned, these two domains
cannot be simulated separately in order to account for any long-range coupling effects.

107

7. Simulating module optics

To visualize, consider a ray of light which illuminates the surface of the cell, as shown in
figure 7.5(a). First, it propagates through the cell’s interior before leaving it through
an edge orientated towards the inter-cell gap. It travels through the gap by alternating
reflections at the glass/air-interface and the backsheet; and finally leaves the module just
above the neighboring cell.
Using Daidalos, such long-range propagations can be easily taken into account

by connecting both simulation domains during the ray tracing process. For this, a
BoundaryEffect (see section 4.6.7) is applied to each boundary face of those domains. The
ray tracing simulation starts by generating a new photon above the inner-cell domain (1).
The photon propagates through this domain, until it hits one of its boundaries. In this
case, the applied BoundaryEffect evaluates whether the photon resides in the cell-domain
(2) or should be transfered to the gap-domain (3). In the later case, the photon further
propagates through the gap-domain until it is transfered back to the cell-domain (4).
It should be highlighted that this approach only required the development of one

extra plugin, namely the used BoundaryEffect. All other functionality, like creation of
geometry, representation of materials and the ray tracer itself are features which are
either provided by the Daidalos framework utilities (see section 4.3.2) or can be reused
from earlier simulations (e.g. the ray tracer or the plugin to represent the cell’s nitride
coating). Furthermore, using additional simulation domains, the level of detail of the ray
tracing simulation is almost arbitrary expendable. An example for such an extension is
reference [53].

7.3. Simulation of the optical impact of the gap-distance
Within this section the usability of the presented modeling approach is demonstrated by
investigating the optical impact of the inter-cell gap distance. This is done by reproducing
an LBIC scan through two differently sized inter-cell gaps.
As shown in section 7.1.1, light which impinges on the area of the backsheet can be

reflected back onto nearby cells. This effect can be interpreted as an effective increase
of the light collecting area of the cell. However, as can be seen from figure 7.3, this
light harvesting effect quickly decreases with increasing distance to the cells edge. For
this reason it makes sense to evaluate the impact of the particular gap distance on the
generated current.

7.3.1. Simulation model and materials
Using the multi-domain approach introduced in section 7.2.1, both gap simulations were
execute with the dimensions shown in figure 7.6 (i.e. simulating a 2mm narrow-gap and
a 25mm wide-gap.).

The wavelength-dependent refractive index n and extinction coefficient k for crystalline
silicon were taken from [54]. Additionally, a 76 nm thick SiNx layer was applied as
anti-reflection coating on the pyramids of the solar cells front-texture. The refractive
index was modeled based on in-house measurements and the results are tabulated in the
appendix. The optical data for the EVA encapsulation material were taken from [54] while

108

7.3. Simulation of the optical impact of the gap-distance

Gap domain Cell domain

(a)

(b)
1

2

3

4

Figure 7.5.: A photon which travels through the module (a) can cover the cell as well
as the gap domain. In the simulation a BoundaryEffect connects the two
domains. It tracks the photons overall position and decides whether the
photon is shifted within the current domain (2) or is switched from one
domain to the other (3+4).

the reflectivity of the backsheet is set to R = 0.85.4 Furthermore, a RefractionCalculator-
service (see section 4.6.6) was developed and applied to the face representing the backsheet
to force Lambertian reflection.
An additional absorption free anti-reflection coating is applied to the top of the front

glass, providing k = 0 and n equal to a factor of 0.9 times the n of glass. These fictive n
values come close to those values we measured in-house from commercial manufacturers.

7.3.2. Simulation results
As aforementioned, the ray tracing simulation is executed to reproduce an LBIC scan
through a gap. For this reason, a point source is used as LightSource (see section 4.6.2)
and moved starting from the cell towards the gap.
A high spatial resolution (i.e. small step size of the moving point source) is used

to evaluate the near-edge region for the small-gap simulation, with the result shown in
figure 7.7(a).5 As can be seen, a direct illumination of the solar cell surface results in a

4During the simulations, this value has proven to best represent the backsheet of the measured mini-
module (see figure 7.3)

5While a gap of 2mm was simulated, here only the first 400 µm are shown as all effects are visible within

109

7. Simulating module optics

2mm (25mm)

10µm

10µm

7.07µm

170µm

500µm

3.2mm

10µm 10µm

7.07µm

170µm500µm

3.2mm

(a) (b)

Figure 7.6.: The models (not to scale) of cell-domain (a) and the gap-domain (b) as used
the simulations. While the backsides of the cells is considered to be fully
metalized by aluminum, the backside of the gap is considered to be filled
with the backsheet. Note, while the gap is 2mm wide for the narrow gap
simulation this is changed to 25mm for the wide gap case.

photo-generated current of about 40mAcm−2. This drops to half as soon as the LBIC
beam enters the gap and decreases further while moving farther away from the cell edge,
see (2) in figure 7.7. This behavior can be explained as shown in figure 7.8. A ray of light
hitting the backsheet is reflected into all directions due to the backsheet’s Lambertian
reflection. This means, when being near the cell edge only the half of the incident rays
are reflected towards the cell and can actually be absorbed. Consequently, the generated
current is reduced by 50 %. When moving farther away from the cells edge, an increasing
part of those rays which are reflected towards the cell hit the glass/air interface. Total
reflection occurs only for incident angles greater than roughly 40◦. For a fully Lambertian
backsheet a fraction of about 35 % of the reflected rays escapes from the module.
Especially for wide gaps as shown in figure 7.7(b), yet another effect has to be taken

into account. Consider an illumination of the gap at a distance x measured from the
illuminated location to the nearest cell. Assume further that the ray reflected by the
backsheet incidents on the glass/air interface with an angle of incidence γ = 40◦ which
just allows for total reflection. By relying on geometrics, the lateral distance which the
ray travels by this single reflection can be calculated by:

dmin = 2h tan(40◦) ≈ 1.68h. (7.1)

Here, h = hEVA + hglass is the vertical distance from the backsheet to the top of the
front-glass. That means if the distance x between the illumination point on the backsheet

this range.

110

7.3. Simulation of the optical impact of the gap-distance

0

10

20

30

40

0
100

200
300

400

Distance to cell edge in µm

G
en

er
at

ed
 c

ur
re

nt
 in

 (m
A

/c
m

-2
)

~40 (mA/cm-2) is generated
on direct illumination

Number of direct

cell hits decrease

A fraction of around 35 %
escapes from the module

1

2

3

Cell Gap

G
en

er
at

ed
 c

ur
re

nt
 in

 (m
A

/c
m

-2
)

0

Distance to cell edge in µm

40

30

20

10

0

5000
-5000

10.000

15.000

20.000

25.000

LBIC

Simulation

~40 (mA/cm-2) on
direct illumination

1

4

More than one re�ection is
necessary to reach the cell

(b)(a)
Cell Gap

1

Figure 7.7.: The result of a ray tracing simulation of a 2mm wide inter-cell gap (a)
shows a generated current of about 40mAcm−2 for a directly illuminated
cell (1). This is reduced to the half as soon as the cells edge is reached (2)
and decreases further when moving farther away (3). Simulating a gap of
25mm (b) width it can be seen that up from a specific distance some rays
need more than one reflection at the glass/air interface to reach the solar cell
(4). As shown, the course of the simulated curve is in good agreement with
the one measured in the 3x3 mini-module. Note that the measured curve is
scaled here to ease comparison.

and the nearest cell edge is greater than dmin some of the reflected rays need subsequent
reflections at the glass/air interface to reach the cell (see figure 7.8(4)).
This effect was investigated by performing a ray tracing simulating of a 25mm wide

gap. The results are shown in figure 7.7(b). The simulation result was compared to a
line-scan (shown on the top-right) taken from the LBIC scan shown in figure 7.3. The
shown measurement result is scaled to ease the comparison between both curves. There
exist some differences near the cell edge which result from two features not included in
the simulation. First, there is the edge isolation as aforementioned in section 7.1.1. And
second, the solar cells within the measured mini-module are not placed directly on the
backsheet as it is the case in the simulation, but are placed with a little offset. For this
reason, rays which are incident on the backsheet near the cells edge (see figure 7.8(2))
are reflected under the cell and can not contribute to the generated current.

Beside these differences there is a good agreement between both curves within the gap
region. Furthermore, the expected current loss can be seen, reaching its maximum at the

111

7. Simulating module optics

gap midpoint.

7.3.3. Increase in photo-generation current for full square solar cells
Within this section the photo-generation current Igap(x) as simulated for a location
within gap with a distance x to the next cell edge is used to approximate the additional
current generated within a full square solar cell. The presented approximation neglects
the electrical properties (e.g resistance of the cell interconnection) of the final module as
well as those of the solar cell (e.g. lifetime of the charge carriers).

The illumination of a small inter-cell gap of 2mm leads to an additional photo-
generation current I2mm(x) which depends upon the distance x between the illuminated
point of the backsheet and the nearest cell edge. It is shown in figure 7.7(a). Within
the shown simulation n illumination points xn were placed with a spacing ∆x within the
gap. Therefore, the photo-generation current coming from a narrow line through the gap
can be calculate by:

I1D,2mmGap =
n∑
i=1

I2mm ·∆x ≈ 1.5mAcm−1. (7.2)

Common full square solar cells have a side-length of 15.6 cm in both directions. Therefore,
the additional photo-generation current generated by a 2mm gap evaluates to 23.4mA.
Executing these calculations for the 25mm wide gap results in an additional generated
current of about 100.57mA.

A common full square solar cell has a surface area of (15.6×15.6)cm2 = 243.36cm2. As
shown in figure 7.7 a direct illumination of the cell results in a photo-generation current
of 40 (mA/c2m). Therefore, a current of about 9734.4mA is expected for a homogeneous
illumination of the cell’s surface area.

To conclude, a solar cell module as shown in figure 7.1 consists of 60 solar cells. From
these, 24 solar cells are located at the module edge and being surrounded by three
small inter-cell gaps and one large cell-to-metal gap. Therefore, those cells generate an
additional current of 3 × 23.4mA + 100.57mA = 123.97mA due to the light reflected
from the gap. Doing this calculation for the 4 solar cells at the corners and the 32
inner solar cells this results in additional photo-generation currents of 247.94mA and
93.6mA,respectively. Finally, this results in an additional photo-generation current of
6.96A from the gap compared to a current of 60× 9734.4mA = 584.064A as generated
by direct illumination6. Consequently, the gap is responsible for roughly 1 % of the total
photo-generation current.

6This amount of photo-generation current would only be available from the module if all solar cells were
connected in parallel. As can be seen from figure 7.1 this is usually not the case, but was chosen here
to ease the comparison.

112

7.3. Simulation of the optical impact of the gap-distance

24 1 3totally re�ected
(>40°)

may escape
(<40°)

Solar cell

Figure 7.8.: The amount of light actually hitting the solar cell decreases if moving away
from direct illumination (1). While being near the cell roughly 50 % of the
diffusively reflected rays directly hits the cell (2). This further decreases
(3) when moving farther away as around 35 % of the reflected rays are not
subject to total reflection at the glass/air interface. Finally, for wide gaps,
often one or more reflections at the glass/air interfaces are needed to reach
the cell surface (4).

113

8
Simulations of facades

This chapter covers the simulation of the annual irradiation which incidents on the
facades of chosen buildings. For this, the day light’s spectral and angular distribution is
considered by using the developed daylight source (see Chapter 6).

8.1. Facade vs. rooftop installations

Facade installations of either photovoltaic or photothermal systems is nothing new, but
is used and discussed since more than a decade [55–57]. While most solar systems today
are installed on roofs, facade installations can provide some advantages when considering
the large-scale supply with solar generated energy [58]:

• Availability of space
Todays cities provide large areas of facades available for solar system installations
possibly outnumbering the usable space for roof top installations. This larger area
may compensate for the less received power on the vertical facades. In section 8.4
the simulation of a common city building is presented to demonstrate the effect of
vertical facades as well as shadowing due to nearby neighbor buildings.

• Broadening of the peak-power interval
Common roof top installations reach their maximum performance around midday
when the suns light incidents almost perpendicular onto the roof. However, con-
sidering the further growth of solar system installations it might be favorable to
spread the power peak towards the morning and evening hours.

As most buildings have several differently orientated facades usable for solar system
installations, usually facades can be found either orientated towards the rising
(i.e. morning) sun or toward the sunset. Consequently, using those areas for the
installation of solar cell systems can support available rooftop installations by
broadening the peak-power interval.

115

8. Simulations of facades

• Decreased sensitivity for dirt
For the reason of their large exposed area solar cell modules are prone to become
soiled either by men-made dust (i.e. by cars or nearby industry) or environmental
conditions (i.e. tree pollen). This soiling leads to a shadowing effect which decreases
the solar systems efficiency. Due to their large installation angle, facade mounted
solar systems are less prone to gather significant amounts of dirt and are easily
cleaned; i.e. by rain shower. Furthermore, the heavily inclined installation avoids
the accumulation of snow in the winter, therefore reducing the mechanical load
which have to be taken into account for roof top installations.

Therefore, the usage of

8.2. Simulation process

This section covers the multi-step process (see figure 8.1) from acquiring the geometry
of a given building to evaluating the power yield due to irradiation of its facade- and
rooftop-areas.
In the first step, geometrical information about a building’s facade were collected by

means of a mobile laser scanning system which was done by the Institute of Cartography
and Geoinformatics(IKG) of the Leibniz University Hannover. The result of such a
scan is a point cloud as shown in figure 8.1(1). Using a sophisticate algorithm [59], the
IKG created a constructive solid geometry (CSG) model which represents the building’s
geometry (see figure 8.1(2)).

8.2.1. Simulation and model-triangulation

In the second step, these CSG descriptions are integrated into a Daidalos simulation
whose structure is shown in figure 8.2. Here, the daylight source (see section 6.5) is used
in box-mode to tightly surround the building. An AbsorbEverything-plugin is registered
as a face effect (see section 4.6.5) to the outer side of any face of the building’s geometry.
The only effect of this plugin is to absorb every photon hitting a face, thus avoiding
any further interaction of this photon. This implies that reflection of light at walls and
windows are neglected. Additionally, a PhotonPositionSaver-plugin is registered to the
same FaceEffect stack (see figure 4.16) and stores the position of any incoming photon
prior to the absorption by the AbsorbEverything-plugin. As result of the simulation a
table is produced which contains the hitpoint of any photon (i.e. a point cloud shown in
figure 8.1(3a)).

Unfortunately, using CSG, large areas of the building are represented by single faces of
the underlying CSG geometry. Consequently, calculating the power yield based upon those
faces would effectively lead to averaging over the faces area, blurring the optical impact
of local structures of the building. For this reason, the CSG geometry is triangulated
using the software Blender1 to create a mesh of sufficiently small triangles (see figure

1One may argue, that Blender, as used for graphical ray tracing, is not the most useful software to

116

8.2. Simulation process

Laser scan of
buildings facade

1

Create CSG-model
from point cloud

2 Perform
ray tracing

3a

Create triangle mesh
from CSG model

3b Associate photons
with triangles and

calculate power yield

4

Figure 8.1.: The facade simulation process consists of several steps. First, the building is
scanned with a laser resulting in a point cloud which represents the building’s
facade (1). This is used to create a CSG model of the facade (2) on which
a Daidalos based ray tracing simulation determines the hitpoints of the
simulated photons on the facade (3a). These hitpoints are associated with
a triangle mesh created from the CSG model (3b) to finally determine the
expected power yield on the facade (4).

117

8. Simulations of facades

Daylight sourcein box-mode

Facade
PhotonPositionSaver

AbsorbEverything

Figure 8.2.: Any facade simulation consists of a CSG model of the building’s facade which
is tightly embedded into a daylight source used in box-mode. Each face of
the building is equipped with a face effect provided by the AbsorbEverything
plugin, absorbing all incoming photons. Additionally, each face except
of the windows stores the hitpoints of incident photons by means of a
PhotonPositionSaver-plugin.

8.1(3b)). The point cloud which resulted from the Daidalos ray tracing process is then
projected onto the triangle mesh, associating each triangle i with a number of photons
Ni received on the triangles area Ai.

8.2.2. Calculation of the power yield

In the final step, the expected power yield has to be calculated for each triangle of the
generated mesh. As the number Ni of incident photons is already known for each triangle,
this calculation consists of two parts. First, the irradiation power transported by a single
simulated photon must is derived. Second, based upon assumptions about the efficiency
of the used solar system installation the expected power yield is calculated.

Transported power per photon

If used in box-mode, the daylight source distributes the total irradiated power equally
onto all simulated photons. Consequently, to derive the power which is carried by each
photon, the overall power on all faces of the box has to be calculated first.

As described in section 6.4, the final weather data associates the horizontal irradiance
as measured by the pyranometer with the bins of the underlying bin model. Accordingly,

generate meshes for scientific simulations (i.e. leading to triangles of different sizes). With respect
to the facade simulations presented within this chapter, the created meshes haven proven to be
sufficient for an estimation of the expected power yield and the optical impact of men-made and
natural obstacles. However, more advanced meshing may be useful for future simulations.

118

8.2. Simulation process

knowing the irradiance Ihor.(ϕ, θ) of any bin with center coordinates (ϕ, θ), as shown in
figure 6.6, the overall irradiated power is computed by the following steps:

1.) The normal irradiance Inorm.(ϕ, θ) is calculated by:

Inorm.(ϕ, θ) = Ihor.(ϕ, θ) cos(θ). (8.1)

2.) This normal irradiance Inorm.(ϕ, θ) is distributed onto the side faces of the box.
Usually, the box orientation will be aligned with the axes of the coordinate system,
leading to the projection:

I+x(ϕ, θ) = Inorm.(ϕ, θ) sin(θ) max [− sin(ϕ), 0] , (8.2)
I−x(ϕ, θ) = Inorm.(ϕ, θ) sin(θ) max [sin(ϕ), 0] , (8.3)
I+y(ϕ, θ) = Inorm.(ϕ, θ) sin(θ) max [cos(ϕ), 0] , (8.4)
I−y(ϕ, θ) = Inorm.(ϕ, θ) sin(θ) max [− cos(ϕ), 0] , (8.5)
I+z(ϕ, θ) = Ihor.(ϕ, θ), (8.6)
I−z(ϕ, θ) = 0. (8.7)

Here, I+x is the irradiance coming from the box-face located in direction of the
positive x-axis. The values of I−x, I+y, I−y, I+z and I−z are representing the
other sides of the box. The remaining non-directional fraction of the irradiation is
associated with the top-face of the box.

3.) As the irradiance measured by the pyranometer were derived for an area of 1m2,
the results of the previous step have to be scaled with the actual dimensions of the
box which were configured by the user. The result of this step is the power Pi (in
kWh) irradiated by any of the i box-sides.

Performing these steps for any bin of the hemisphere and summing over the power
irradiated by all box-sides, the total amount Pbox.,total as emitted by the box-mode
daylight source is derived. Consequently, using a number N of simulated photons the
average power P phot. carried by a single photon is given by:

P phot. = Pbox.,total
N

. (8.8)

Power yield per triangle

Based upon the average power per photon (see Equation 8.8), the irradiance received on
a triangle i of the mesh is calculated by:

Itriangle,i = Ni · P phot.
Ai

. (8.9)

Here, Ni are the number of photons associated with the triangle and Ai is its area in m2.
In order to deduce a power yield based upon these irradiance values, an assumption about

119

8. Simulations of facades

the installed solar system has to be made. Therefore, in the remaining part of this chapter
a solar cell module efficiency of σ = 0.16 is assumed to account for any losses due to
conversion of sun light to electrical current. Additionally, an overall system performance
ratio of rp = 0.85 is used to consider for system dependent losses (e.g. efficiency of the
used inverted rectifier). Based on these assumptions, the yearly power yield of a triangle
mesh element is calculated by:

Ei

(kWh
m2

)
= σ · rp · Itriangle,i. (8.10)

In the last step, the triangle area is colored based upon the associated power yield and
represents the final result of the building simulation process (see figure 8.1(4)).

8.3. Buildings in the urban hinterland

This section investigates the annual irradiation which can be expected for houses in
the urban hinterland. Most buildings in this region are small compared to common
city buildings and consists of usually two to three floors. Accordingly, men-made or
natural structures like neighbor buildings or trees can lead to significant shadowing
of the available facade area. Furthermore, as those buildings are commonly built to
meet individual needs (in contrary to companies) these buildings provide a much greater
diversity in structural appearance. This often includes several annexes or other building
extensions which can lead to additional shadowing.
Two examples of a building in the urban hinterland are shown in figure 8.3. The first

one shown in figure 8.3(top) provides a simple facade without much detail or extensions.
If any shadowing obstacles, like neighbors or trees, are neglected the expected power yield
is simulated as shown in figure 8.4. While the rooftop receives the maximum power yield
of 130 kWh/m2/year to 140 kWh/m2/year, the facades also receive a significant power
of around 100 kWh/m2/year. An integration over all faces of this building, considering
their dimensions, leads to the result that the rooftop has the potential of roughly 54% of
the yearly power yield, while the facades account for 41%.

Most buildings found in the urban hinterland are not standing isolated, but are either
placed nearby a shadowing neighbor or a have gardens with natural structures like trees.
Therefore, the impact of trees and neighboring buildings was considered by two additional
simulations as shown in figure 8.5. It can be seen, that such structures may result in
severe shadowing of extended parts of the facade which is usually taken into account
when planing the installation of photovoltaic system.

Finally, the impact of structural extensions or annexes were considered by simulating
the second building, shown at the bottom of figure 8.3. It is obvious from figure 8.6
that such structures are complicating the task of finding usable areas for solar system
installations. This is due to two reasons. On the one hand, these structures serve as
obstacles for light leading to wide areas of the roof being shadowed. On the other hand, by
partitioning the rooftop into several, small faces of possible different slope the installation
process gets increasingly difficult (possibly some of the smallest faces cannot be used for

120

8.3. Buildings in the urban hinterland

Figure 8.3.: The facades of two buildings in the urban hinterland were scanned by a
laser (a). Afterwards, their facade geometries were derived from the laser
scans and converted into CSG models (b) which are used in the ray tracing
simulations.

Figure 8.4.: The simulation of the facade of a non-shadowed building in the urban hinter-
land. The receivable power yield of the facade is around 100 kWh/m2/year
while being 130 kWh/m2/year to 140 kWh/m2/year for the roof.

121

8. Simulations of facades

Figure 8.5.: Simulation of a typical building in the urban hinterland. South-east and south-
west orientated facades may receive power yields of up to 100 kWh/m2/year if
not shadowed by any obstacles (a). This is significantly reduced when nearby
neighbors (b) or natural structures like trees (c) are taken into account.

solar system installation at all). However, as can be seen by comparing figure 8.4 and
figure 8.6, there is no impact on the facades which still receive a power yield of about
100 kWh/m2/year.

8.4. City buildings

Contrary to buildings in the urban hinterland, the common city building consists of
several floors and provide large facade areas. For this reason, natural structures like
trees have only limited impact on the received overall irradiation. However, due to space
considerations, city buildings are often surrounded by nearby neighbor buildings which
can lead to severe shadowing of the facades. Additional shadowing may originate from
building extensions often found in the form of balconies, especially on the buildings with
a facaded orientated towards south.
The laser scan of an exemplary city building is shown in figure 8.7(a). Considering

the amount of details, like windows and balconies, this model is the most complex one
within this work. Therefore, in order to avoid an unnecessary decrease in simulation
performance, subtle details like rooftop extensions are removed when creating the CSG
model (see figure 8.7(b)).
Using this model, we considered two different situations. First, the most ideal case

is simulated considering the city building to stand far away from any other obstacles.
The result of this simulation is shown in figure 8.8, viewing the building from the
south-direction. It is no surprise that the roof gets the biggest amount of irradiation,
leading to a power yield of around 160 kWh/m2/year. However, the facades area also

122

8.4. City buildings

Figure 8.6.: Simulation of an urban building with structural extensions; e.g. annexes.
The shadowing resulted from these structures are causing a severe decrease
of the roofs power yield.

Figure 8.7.: A laser scan of a city building (cutout shown in (a)) is used to generate the
CSG model (b) used for simulations. Note, with respect to the laser scan,
some subtle details like rooftop extensions were removed in the CSG model
to increase simulation performance.

123

8. Simulations of facades

Figure 8.8.: The simulation of a city building which stands far away from any shadowing
obstacles.

shows a significant amount of irradiation of around 100 kWh/m2/year. Even if the severe
shadowing in areas near the balconies is taken into account. Considering the large area
of the facade, facade-installations seem to be a serious competitor for rooftop systems.
Unfortunately, most city buildings are not standing alone but are confined by several
neighbor buildings of nearly equal size. Due to space considerations, the streets between
are usually narrow leading to even more shadowing by neighbor buildings. Therefore,
we simulated a scene shown in figure 8.9 including four neighbor buildings which are
surrounding the middle building. As can be seen, the resulting shadowing is severe
to a point where the facades of the lower floors are nearly unusable for photovoltaic
installations. Nevertheless, the upper floors facade remains usable with power yields of
around 80kWh/m2/year.

124

8.4. City buildings

Figure 8.9.: The simulation of a city building including nearby neighbors (top) shows
significant impact of shadowing for the facades of the lower floors (bottom).
Nevertheless, the most upper floor still receives a power yield of around
80kWh/m2/year and may be considered for solar system installations.

125

9
Summary

Within this work we presented the newly developed Daidalos ray tracing framework.
The Daidalos framework follows a modular approach and allows users to change the ray
tracing process with self-written plugins. This way ray tracing simulations can include
new effects while relying on existing functionality for everything else.

This ray tracing framework was applied to reflectivity measurements on textured wafers
using an integrating sphere. It could be shown that the good light-trapping capabilities
of such wafers can lead to severe underestimation of the reflectivity in measurements.
This is due to light which propagates within the wafer by alternating internal reflections
at the wafers front and rear surface. This effect gets even more severe when using an
aperture to measure the reflectivity of small wafers. With the simulations this effect
could be quantified for the first time.

Using Daidalos simulations the reflectivity of textured wafers could be calculated in
detail based on measured texture geometries for the first time. The texture structure was
derived by laser scanning microscopy (LSM). Differently etched surface textures show
deviations in their measured reflectivity of up to 1.4 % in the wavelength range from
400 nm to 1000 nm. The optical simulations conducted with Daidalos agree with the
measurements.
With Daidalos ray tracing simulations on entire solar cell modules become possible.

It was shown that the complex propagation of light within the module leads to an optical
coupling between spatially separated parts of the module. For this reason, it is not valid
to assume that the module’s optical characteristics can be derived from a set of separately
conducted simulations of small regions of the module geometry. We provided a new
approach that uses Daidalos capabilities to connect different simulation domains during
simulation. The usage of this approach was demonstrated by simulating the impact of
the length of the inter-cell gap to the photogenerated current of the module. It was
shown that the simulation conducted using Daidalos are in good agreement with the
laser beam induced current (LBIC) measurement of a 3 × 3-cell mini-module. It was
deduced that the light reflected from the gap is responsible for an additional amount
of 6.96A of photo-generated current or roughly 1 % of the modules total current. The

127

9. Summary

presented approach is nearly arbitrary expendable and was also used for sophisticated
analyses of optical losses in modules [53,60].

We showed that Daidalos can be used to simulate the annual irradiation which inci-
dents on the facades of buildings. For this simulation we used the facades of real building
whose facade geometry was laser scanned and modeled by the Institute of Cartography
and Geoinformatics (IKG) of the Leibniz University Hannover [59]. Additionally, we
presented a newly developed daylight source which was derived from measured weather
data and allows the simulation of real daylight by considering its angular and spectral
distribution. Using this source we simulated the annual power which irradiates on the
facades of buildings in the urban region as well as in the city. Hereby we considered for
shading obstacles like facade extensions, neighbor buildings and trees. Simulation times
between 5min to 12min for each building would allow an efficient evaluation of the solar
potential of buildings and their facades even on larger scale.

128

A
Material parameters of silicon nitride (SiNx) as derived by

in-house measurements

The values of silicon nitride with an index of refraction of n = 2.05 at a wavelength of
610 nm were derived by Pietro Altermatt from ellipsometric measurements, conducted
by Andreas Wolf at the Institute of solar energy research (ISFH) in Hamelin/Germany.

Wavelength in nm Index of refraction Extinction coefficient
λ n κ

310 2.281 1.021 · 10−01

320 2.264 8.652 · 10−02

330 2.247 7.308 · 10−02

340 2.232 6.155 · 10−02

350 2.217 5.176 · 10−02

360 2.204 4.355 · 10−02

370 2.191 3.672 · 10−02

380 2.180 3.069 · 10−02

390 2.169 2.525 · 10−02

400 2.159 2.041 · 10−02

410 2.150 1.613 · 10−02

420 2.141 1.239 · 10−02

430 2.133 9.177 · 10−03

440 2.124 6.471 · 10−03

450 2.117 4.258 · 10−03

460 2.110 2.522 · 10−03

470 2.103 1.250 · 10−03

480 2.096 4.255 · 10−04

490 2.091 3.671 · 10−05

500 2.085 4.790 · 10−10

510 2.081 0.000
520 2.077 0.000

129

A. Measured material parameters of silicon nitride (SiNx)

Wavelength in nm Index of refraction Extinction coefficient
λ n κ

530 2.073 0.000
540 2.069 0.000
550 2.066 0.000
560 2.063 0.000
570 2.060 0.000
580 2.058 0.000
590 2.055 0.000
600 2.053 0.000
610 2.051 0.000
620 2.049 0.000
630 2.047 0.000
640 2.045 0.000
650 2.044 0.000
660 2.042 0.000
670 2.040 0.000
680 2.039 0.000
690 2.038 0.000
700 2.036 0.000
710 2.035 0.000
720 2.034 0.000
730 2.033 0.000
740 2.031 0.000
750 2.031 0.000
760 2.030 0.000
770 2.029 0.000
780 2.028 0.000
790 2.027 0.000
800 2.026 0.000
810 2.025 0.000
820 2.024 0.000
830 2.024 0.000
840 2.023 0.000
850 2.022 0.000
860 2.022 0.000
870 2.021 0.000
880 2.020 0.000
890 2.020 0.000
900 2.019 0.000
910 2.019 0.000
920 2.018 0.000
930 2.018 0.000
940 2.017 0.000

130

Wavelength in nm Index of refraction Extinction coefficient
λ n κ

950 2.017 0.000
960 2.016 0.000
970 2.016 0.000
980 2.015 0.000
990 2.015 0.000

1 000 2.015 0.000
1 010 2.014 0.000
1 020 2.014 0.000
1 030 2.013 0.000
1 040 2.013 0.000
1 050 2.013 0.000
1 060 2.012 0.000
1 070 2.012 0.000
1 080 2.012 0.000
1 090 2.011 0.000
1 100 2.011 0.000
1 110 2.011 0.000
1 120 2.011 0.000
1 130 2.010 0.000
1 140 2.010 0.000
1 150 2.010 0.000
1 160 2.010 0.000
1 170 2.009 0.000
1 180 2.009 0.000
1 190 2.009 0.000
1 200 2.009 0.000
1 400 2.009 0.000

131

Bibliography

[1] J.E. Cotter. Raysim 6.0: a free geometrical ray tracing program for silicon solar cells.
In Photovoltaic Specialists Conference, 2005. Conference Record of the Thirty-first
IEEE, pages 1165–1168, Jan 2005.

[2] A.W. Smith, A. Rohatgi, and S.C. Neel. Texture: a ray tracing program for the
photovoltaic community. In Photovoltaic Specialists Conference, 1990., Conference
Record of the Twenty First IEEE, pages 426–431 vol.1, May 1990.

[3] R Brendel. Sunrays: a versatile ray tracing program for the photovoltaic community.
In Proceedings of the 12th European Photovoltaic Solar Energy Conference, volume
1994, 1994.

[4] Richard S. Hall, Karls Pauls, Stuart McCulloch, and David Savage. OSGi in Action:
Creating modular applications in Java. Manning Publications Co., 2011.

[5] Georg A. Reider. Photonik. Springer Wien New York, 2005.

[6] Max Born and Emil Wolf. Priciples of Optics, volume 7th. Cambridge University
Press, 2005.

[7] Grady Booch. Object-Oriented Analysis and Design with Applications. Addison-
Wesley Longman, 1993.

[8] Bertrand Meyer. Object-Oriented Software Construction. Prentice Hall, 1998.

[9] Timothy Budd. An Introduction to Object-Oriented Programming. Addison-Wesley
Educational Publishers Inc, 2001.

[10] Michael Blaha and James Rumbaugh. Object-Oriented Modeling and Design with
UML. Prentice Hall International, 2004.

133

Bibliography

[11] Bruce Eckel. Thinking in Java: The definitive introduction to object-oriented
programming in the language of the world wide web. Prentice Hall, 2006.

[12] Karl S. Kunz and Raymond J. Luebbers. The finite difference time domain method
for electrodynamics. Crc Pr Inc, 1993.

[13] Kane Yee. Numerical solution of initial boundary value problems involving maxwell’s
equations in isotropic media. Antennas and Propagation, IEEE Transactions on,
14(3):302–307, May 1966.

[14] Allen Taflove and Susan C. Hagness. Computational Electrodynamics: The finite-
difference time-domain method. Artech House Inc, 2005.

[15] Umran S. Inan and Robert A. Marshal. Numerical Electromagnetics: The FDTD
Method. Cambridge University Press, 2011.

[16] Niels Sadrje Ottonsen and Hans Petersson. Introduction to the finite element methods.
Prentice Hall, 1992.

[17] O. C. Zienkiewicz, R. L. Taylor, and J. Z. Zhu. The Finite Element Method: Its
Basis and Fundamentals. Butterworth-Heinemann, 2005.

[18] Nicholas Metropolis and S. Ulam. The monte carlo method. Journal of the American
Statistical Association, 44(247):335–341, September 1949.

[19] Andrew Glassner. An Introduction to Ray Tracing. Morgan Kaufmann Publishers,
1989.

[20] Kevin Suffern. Ray Tracing from the Ground Up. A K Peters, 2007.

[21] Craig Walls. Modular Java. Pragmatic Programmers, 2009.

[22] Alexandre de Castro Alves. Osgi in depth. Manning, 2011.

[23] Kirk Knoernschild. Java Application Architecture: Modularity Patterns with Ex-
amples Using OSGi: A Roadmap for Enterprise Development. Addison-Wesley,
2012.

[24] James Gosling, Bill Joy, and Guy Steele. The Java Language Specification, Java SE
8 Edition. Addison Wesley, 2014.

[25] Tim Lindholm, Frank Yellin, Gilad Bracha, and Alex Buckley. The Java Virtual
Machine Specification, Java SE 7 Edition. Prentice Hall, 2013.

[26] Sherif Ghali. Constructive solid geometry. In Introduction to Geometric Computing,
pages 277–283. Springer London, 2008.

[27] Ronald R. Willey. Field Guide to Optical Thin Films. SPIE - The International
Society for Optical Engineering, 2006.

134

Bibliography

[28] R. Brendel. Simple prism pyramids: a new light trapping texture for silicon solar
cells. In Photovoltaic Specialists Conference, 1993., Conference Record of the Twenty
Third IEEE, pages 252–255, May 1993.

[29] R. Brendel. Coupling of light into mechanically textured silicon solar cells: A ray
tracing study. Progress in Photovoltaics: Research and Applications, 3(1):25–38,
1995.

[30] R. Brendel and D. Scholten. Modeling light trapping and electronic transport of
waffle-shaped crystalline thin-film si solar cells. Applied Physics A, 69(2):201–213,
1999.

[31] A.W. Smith and A. Rohatgi. Ray tracing analysis of the inverted pyramid texturing
geometry for high efficiency silicon solar cells. Solar Energy Materials and Solar
Cells, 29(1):37 – 49, 1993.

[32] Toshiki Yagi, Yukiharu Uraoka, and Takashi Fuyuki. Ray-trace simulation of light
trapping in silicon solar cell with texture structures. Solar Energy Materials and
Solar Cells, 90(16):2647 – 2656, 2006.

[33] Mirko Loehmann and Eckard Wefringhaus. Microscopic parameters to describe
homogeneity of alkaline texture on si-wafers. Energy Procedia, 38(0):849 – 854, 2013.
Proceedings of the 3rd International Conference on Crystalline Silicon Photovoltaics
(SiliconPV 2013).

[34] Christian Gueymard. Smarts2, a simple model of the atmospheric radiative transfer
of sunshine: Algorithms and performance assessment. Technical report, Florida
Solar Energy Center, 1995.

[35] Christian A. Gueymard. Interdisciplinary applications of a versatile spectral solar
irradiance model: A review. Energy, 30(9):1551 – 1576, 2005. Measurement and
Modelling of Solar Radiation and Daylight- Challenges for the 21st Century.

[36] Fritz Kasten and Andrew T. Young. Revised optical air mass tables and approxima-
tion formula. Appl. Opt., 28(22):4735–4738, Nov 1989.

[37] Christian Gueymard. An anisotropic solar irradiance model for tilted surfaces and
its comparison with selected engineering algorithms. Solar Energy, 38(5):367 – 386,
1987.

[38] P. Duffett-Smith and J. Zwart. Practical Astronomy with your Calculator or Spread-
sheet, volume 4. Cambridge University Press, 2011.

[39] K Kondratyev. Ya.(1969): Radiation in the atmosphere. Albedo of the underlying
surface and clouds. Academic Press, New York-London, 12:411–452, 1969.

[40] Sigmund Fritz. Illuminance and luminance under overcast skies. J. Opt. Soc. Am.,
45(10):820–825, Oct 1955.

135

Bibliography

[41] M. D. Steven and M. H. Unsworth. The angular distribution and interception
of diffuse solar radiation below overcast skies. Quarterly Journal of the Royal
Meteorological Society, 106(447):57–61, 1980.

[42] Christian Gueymard. Une paramétrisation de la luminance énergétique du ciel clair
en fonction de la turbidité. Atmosphere-Ocean, 24:1–15, 1986.

[43] Christian Gueymard. Modélisation physique du rayonnement solaire basée sur
les observations météorologiques horaires. Cooll. Int. Météorologie et Énergies
Renouvelables, 03:291–302, 1984.

[44] K. Bullrich. Scattered radiation in the atmisphere and the natural aerosol. Advanced
Geophysics, 10:99–260, 1964.

[45] J. Carstensen, G. Popkirov, J.Bahr, and H.Foell. Cello: an advanced {LBIC}
measurement technique for solar cell local characterization. Solar Energy Materials
and Solar Cells, 76(4):599 – 611, 2003. Photovoltaics and photoactive materials -
properties, technology and applications.

[46] O. Breitenstein, J. P. Rakotoniaina, M. H. Al Rifai, and M. Werner. Shunt types in
crystalline silicon solar cells. Progress in Photovoltaics: Research and Applications,
12(7):529–538, 2004.

[47] Keith R. McIntosh, Richard M. Swanson, and Jeffrey E. Cotter. A simple ray
tracer to compute the optical concentration of photovoltaic modules. Progress in
Photovoltaics: Research and Applications, 14(2):167–177, 2006.

[48] K.R. McIntosh, J.N. Cotsell, J.S. Cumpston, A.W. Norris, N.E. Powell, and B.M.
Ketola. An optical comparison of silicone and eva encapsulants for conventional
silicon pv modules: A ray-tracing study. In Photovoltaic Specialists Conference
(PVSC), 2009 34th IEEE, pages 000544–000549, June 2009.

[49] Jo Gjessing and Erik S. Marstein. Optical performance of solar modules. Energy
Procedia, 38:348 – 354, 2013. Proceedings of the 3rd International Conference on
Crystalline Silicon Photovoltaics (SiliconPV 2013).

[50] G. Lifante, F. Cusso, F. Meseguer, and F. Jaque. Solar concentrators using total
internal reflection. Appl. Opt., 22(24):3966–3970, Dec 1983.

[51] Greg Smestad and Patrick Hamill. Concentration of solar radiation by white backed
photovoltaic panels. Appl. Opt., 23(23):4394–4402, Dec 1984.

[52] P. Grunow and S. Krauter. Modelling of the encapsulation factors for photovoltaic
modules. In Photovoltaic Energy Conversion, Conference Record of the 2006 IEEE
4th World Conference on, volume 2, pages 2152–2155, May 2006.

[53] Matthias Winter, Malte R. Vogt, Hendrik Holst, and Pietro P. Altermatt. Combining
structures on different length scales in ray tracing: analysis of optical losses in solar
cell modules. Optical and Quantum Electronics, pages 1–7, 2014.

136

[54] Martin A. Green. Self-consistent optical parameters of intrinsic silicon at 300 k in-
cluding temperature coefficients. Solar Energy Materials and Solar Cells, 92(11):1305
– 1310, 2008.

[55] J.A. Clarke, J.W. Hand, C.M. Johnstone, N. Kelly, and P.A. Strachan. Photovoltaic-
integrated building facades. Renewable Energy, 8(1-4):475 – 479, 1996. Special Issue
World Renewable Energy Congress Renewable Energy, Energy Efficiency and the
Environment.

[56] Stefan Krauter, Rodrigo Guido Araujo, Sandra Schroer, Rolf Hanitsch, Mohammed J
Salhi, Clemens Triebel, and Reiner Lemoine. Combined photovoltaic and solar
thermal systems for facade integration and building insulation. Solar Energy, 67(4-
6):239 – 248, 1999.

[57] T.T. Chow, W. He, and J. Ji. An experimental study of facade-integrated
photovoltaic/water-heating system. Applied Thermal Engineering, 27(1):37 – 45,
2007.

[58] P. Redweik, C. Catita, and M. Brito. Solar energy potential on roofs and facades in
an urban landscape. Solar Energy, 97(0):332 – 341, 2013.

[59] Hai Huang, Claus Brenner, and Monika Sester. A generative statistical approach
to automatic 3d building roof reconstruction from laser scanning data. {ISPRS}
Journal of Photogrammetry and Remote Sensing, 79(0):29 – 43, 2013.

[60] Malte R. Vogt, Hendrik Holst, Matthias Winter, Shebnem Knoc, A. Ruppenthal,
Marc Koentges, Rolf Brendel, and P. P Altermatt. Optical loss analysis of colored
pv modules using comprehensive ray tracing. In Proceedings WCPEC, volume 6,
November 2014.

137

List of publications
Publications arising from the work in this thesis:

1. H. Holst, P.P. Altermatt and R.Brendel, Daidalos - A plugin based framework for
extendable ray tracing, Proceedings of the 25th EUPVSEC, 2150 (2010).

2. H. Holst, M. Winter, M.R. Vogt, K. Bothe, M. Köntges, R. Brendel, and P.P.
Altermatt, Application of a new ray tracing framework to the analysis of extended
regions in Si solar cell modules, Energy Procedia 38, 86 (2013).

3. M. Winter, H. Holst and P.P. Altermatt, Prediction of a double-antireflection
coating made solely with SiNx in a single, directional deposition step, Energy
Procedia 38, 895 (2013).

4. M.R. Vogt, M. Winter, H. Holst, S. Knoc, A. Ruppenthal, M. Köntges, R. Brendel
and P.P. Altermatt, Optical loss analysis of colored PV modules using comprehensive
ray tracing, Proceedings of the 6th WCPEC 6, (2014).

138

Curriculum vitae
Name Hendrik Holst
Anschrift Kaiserstraße 49, 31785 Hameln
Geburtsdatum 18. Februar 1982
Nationalität deutsch
Familienstand ledig

Ausbildung

September 1994 - Juni 2001 Besuch des Georg-Büchner-Gymnasiums in Letter/Seelze
Abschluss der allgemeinen Hochschulreife
im Juni 2001

Oktober 2002 - Dezember 2008 Universität Hannover
Studium der Physik
Diplomprüfung im Dezember 2008

Anstellung

seit November 2008 Institut für Solarenergieforschung GmbH (ISFH)
Hameln/Emmerthal
Wissenschaftlicher Mitarbeiter
im Bereich optische Simulationen

139

	Optics
	Light as an electromagnetic wave
	The wave equation
	Harmonic plane waves
	The wavelength
	Intensity of a plane wave
	Polarization

	Absorption
	Refraction
	The Fresnel equations

	Geometric optics
	Energy flux

	Introduction to object orientated programing
	Classes and objects
	Interfaces
	Inheritance with respect to interfaces

	Ray tracing
	The Monte-Carlo method
	Monte-Carlo particle tracing
	Calculation of the statistical error of Monte-Carlo particle tracing

	Daidalos - A framework for flexible ray tracing
	Monolithic vs. modular applications
	The OSGi service platform
	Java archives
	Bundles
	Plugin enviroment
	Module lifecycle
	Package exports and services

	Daidalos framework
	Framework concept
	Framework structure

	The tracing loop
	Plugins
	Plugin bundles
	Plugin factory
	Plugin service connectors

	Available service connectors
	The tracer
	Light sources
	The scene compiler
	Optical materials
	Face effects
	Refraction calculators
	Boundary effects
	Volume effects

	Wafer optics
	Reflectivity measurements with the Cary UV-VIS-NVIS spectrometer
	Reflectivity of a planar wafer
	Reflectivity of a pyramidal textured wafer
	Complex geometries

	An advanced light source
	Weather data measurements
	Generating the spectral distribution using SMARTS
	Simulated spectral values
	Matching simulated spectra with measurements

	Generating the angular distribution
	Bin-Model of the direction of radiation
	Direct irradiation
	Diffuse irradiation

	The final weather data
	The daylight source plugin
	Spherical mode
	Box source

	Simulating module optics
	Module optics
	Laser beam induced current

	Modeling the module geometry
	A multi-domain approach

	Simulation of the optical impact of the gap-distance
	Simulation model and materials
	Simulation results
	Increase in photo-generation current for full square solar cells

	Simulations of facades
	Facade vs. rooftop installations
	Simulation process
	Simulation and model-triangulation
	Calculation of the power yield

	Buildings in the urban hinterland
	City buildings

	Summary
	Measured material parameters of silicon nitride (SiNx)
	List of publications
	Curriculum vitae

