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ABSTRACT

This thesis explores the prospects of entanglement-enhanced quan-
tum control of optomechanical systems. We first discuss several
pulsed schemes in which the radiation-pressure interaction is used to
generate Einstein—-Podolsky—-Rosen entanglement between the mech-
anical mode of a cavity-optomechanical system and a travelling-wave
light pulse. The entanglement created in this way can be used as a re-
source for mechanical state preparation. On the basis of this protocol,
we introduce an optomechanical teleportation scheme to transfer an
arbitrary light state onto the mechanical system. Furthermore, we
describe how one can create a mechanical non-classical state (i.e., a
state with a negative Wigner function) by single-photon detection,
and, in a similar protocol, how optomechanical systems can be used
to demonstrate the violation of a Bell inequality.

The second part of the thesis is dedicated to time-continuous quan-
tum control protocols. Making use of optimal-control techniques,
we analyse measurement-based feedback cooling of a mechanical
oscillator and demonstrate that ground-state cooling is achievable
in the sideband-resolved, blue-detuned regime. We then extend
this homodyne-detection based setup and introduce the notion of a
time-continuous Bell measurement—a generalisation of the standard
continuous variable Bell measurement to a continuous measure-
ment setting. Combining this concept with continuous feedback we
analyse the generation of a squeezed mechanical steady state via
time-continuous teleportation, and the creation of bipartite mech-
anical entanglement by entanglement swapping. Finally we discuss
an experiment demonstrating the evaluation of the conditional op-
tomechanical quantum state by Kalman filtering, constituting a
important step towards time-continuous quantum control of op-
tomechanical systems and the possible realisation of the protocols
presented in this thesis.
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ZUSAMMENFASSUNG

Diese Arbeit befasst sich mit der Verwendung von Quantenverschra-
kung um die Kontrolle {iber optomechanische Systeme zu verbessern.
Wir beschiftigen uns als erstes mit gepulsten Protokollen, in denen
die Strahlungsdruckwechselwirkung ausgenutzt wird um Einstein—
Podolsky—Rosen Verschriankung zwischen einem mechanischen Os-
zillator und einem Lichtpuls zu erzeugen. Diese kann dazu genutzt
werden um auf Basis eines Teleportationsprotokolles einen beliebigen
Quantenzustand eines Lichtpulses auf den mechanischen Oszillator
zu iibertragen. Wir untersuchen weiters wie man mit Hilfe der De-
tektion einzelner Photonen einen nichtklassischen mechanischen Zu-
stand, d.h. einen Quantenzustand mit negativer Wignerfunktion, zu
préaparieren. Auf dhnliche Weise ist es aufserdem moglich ein opto-
mechanisches System zur Verletzung einer Bellschen Ungleichung zu
benutzen.

Der zweite Teil des Manuskriptes ist der zeitkontinuierlichen
Kontrolle optomechanischer Quantensysteme gewidmet. Unter Ver-
wendung von optimalen Steuerungstechniken kann ein mechani-
sches System durch kontinuierliche Messung und Riickkoppelung
in seinen Bewegungsgrundzustand gebracht werden—dies ist auch
moglich im seitenbandaufgeldsten, blauverstimmten Regime. An-
schliefend diskutieren wir eine Erweiterung dieses Protokolls auf
eine sogenannte zeitkontinuierliche Bellmessung, die eine Gene-
ralisierung der standard Bellmessung kontinuierlicher Variablen
darstellt. Dieses Konzept ermoglicht es, einen mechanischen Oszil-
lator in einem gequetschten stationdren Zustand zu préparieren,
oder stationdre Verschrankung zweier mechanische Resonatoren zu
erzeugen. AbschlieSend diskutieren wir ein Experiment, das die Re-
konstruktion des sogenannten konditionalen Quantenzustand eines
optomechanischen Systems demonstriert. Dieses Experiment stellt
einen wichtigen ersten Schritt in Richtung der moglichen Durchfiih-
rung der in dieser Arbeit diskutierten Protokolle dar.
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NOTATION

GENERAL REMARKS

In this thesis vectors are printed in a bold, slanted font, e. g., M, while
matrices, such as M, are denoted by bold, upright letters. The corres-
ponding transposed quantities are written as M' and M' respect-
ively. The complex conjugate of a complex number z is denoted by
z", the Hermitian conjugate of an operator c is ¢'. For tuples of op-
erators we use the convention (c;,¢,,...)" = (c},c},...) which is dif-
ferent from (c{, c;r, .. )T. The same symbol is used to denote the Her-
mitian conjugate of complex matrices (or vectors), i.e., Mt = (M"‘)T
for M € C"". Quantum mechanical mean values with respect to
the initial state of a system are written as (c). A time dependence
is indicated in a Heisenberg-type notation, such as (c(t)). The sym-
bol 1 is used to denote both the identity operator in a Hilbert space
or the identity matrix. In the former case a subscript identifies the
(sub)system the operator acts on, in the latter case a numerical sub-
script denotes the matrix dimension.

Also note that that we use the convention /i = 1, except in chapter 1,
where the explicit usage of 71 is convenient for discussing the physics
underlying our optomechanical models.
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INTRODUCTION

Conducting any kind of quantum experiment requires, in a general
sense, excellent control over the physical system and the experimental
setup. On the one hand this means that the system under study must
be, to a large degree, decoupled from the environment and all clas-
sical noise sources—or from all sources of decoherence in general—,
in order for genuine quantum effects to emerge. On the other hand
one must be able to manipulate the system’s dynamics and quantum
state very precisely. In the quantum branch of atomic, molecular and
optical physics excellent control has been attained over many systems,
in particular over atoms [Chuoz] and ions [Win13]. The achievements
in these fields led, for example, to the first creation of a Bose-Einstein
condensate [AKoz] and the generation of Schrodinger cat states of
microwave fields in cavity quantum electrodynamics [HRo6].

In order to make optimal use of this high level of control a mul-
titude of techniques have been developed. Quantum control theory
combines concepts from classical control theory with concepts from
quantum physics, exploiting inherently non-classical features such as
coherent superpositions and entanglement. It is nowadays an active
research field that plays a crucial role in modern quantum experi-
ments across different fields [DP10; Gou12]. Prominent examples of
successful application of quantum control protocols are spin squeez-
ing [KMBoo] and steady-state entanglement generation in atomic
ensembles [Kra+11], or come from the field of quantum metrology,
such as nuclear magnetic resonance [Ger+o3] and atomic clocks
[BJWo1]. Strongly connected (and partly overlapping) fields are those
of quantum filtering [BVJo7; BGo8] and quantum estimation theory
[Hel6g; Parog], which concern themselves with the estimation of the
quantum state itself [Bel8o; GJM13], or the estimation of classical
parameters (or classical signals) from the measurements of quan-
tum systems [Tsaog; TWC11]. Quantum estimation techniques have
also been successfully applied in optomechanics [Szo+12; Ang+13;
Iwa+13]. Another successful experiment in the same direction—
optimal estimation of the optomechanical quantum state—comprises
part this thesis (see section 3.5).

Although radiation-pressure effects on mechanical oscillators have
already been analysed theoretically in the late 1960s [BM67], and
experimentally demonstrated using microwaves [BMT70] and op-
tical fields [Dor+83] several years later, in its modern form cavity
optomechanics is a relatively young field within the quantum sci-
ences. First theoretical studies of quantum effects in optomechanical
systems concerned squeezing of light [Fab+94, MMTogy7], and the
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generation of optomechanical entanglement and non-classical states
[BJKg7;, MMTgy]. Feedback cooling of vibrational modes via radi-
ation pressure was first analysed theoretically in [MVT98] and later
implemented experimentally [CHPg9] to cool a Fabry—Pérot cavity’s
macroscopic end mirror. Today, highly advanced microfabrication
techniques allow for the fabrication of high-quality (both optical
and mechanical) cavity optomechanical systems, which has then led
to the demonstration of passive radiation-pressure cooling [Gig+06;
Arc+06; Sch+o06]. Since then, cavity optomechanical systems have
been implemented in various forms, such as micromembranes in cav-
ities [Tho+08], microtoroids [Kip+o5], microdiscs featuring optical
whispering gallery modes [Jia+09], and photonic crystals [Eic+09].

In parallel a different—and very successful—approach to observe
the same physics has been developed in the form of so-called elec-
tromechanical systems, which employ inductor—capacitor (LC) reson-
ators in lieu of optical cavities, and make use of capacitive coupling
between mechanical resonators and microwave fields [RL11]. Even
more approaches to demonstrate optomechanical interaction include
levitating nano-objects in cavities [Kie+13; Ase+13; Mil+15], and coup-
ling the collective motion of a cold atomic cloud to the electromag-
netic field of a cavity [Mur+o8; Bre+08; Sch+11].

Despite these advancements, control of optomechanical systems
has not yet been developed to the high degree attained in more
mature branches of quantum physics; however, during the last years
several experiments in the quantum regime have been conducted
using these systems. These include quantum state transfer [OCo+10;
Pal+13], ground-state cooling of the mechanical mode [Teu+11;
Cha+11], ponderomotive squeezing [Bro+12; Saf+13; Pur+13], and
observation of back-action noise in position sensing [Mur+o8; PPR13].
Many of these experiments rely on the fact that the employed sys-
tems can be operated in the strong-cooperativity regime, in which the
coherent (linearized) optomechanical coupling rate exceeds the effect-
ive decoherence rates of the optical and the mechanical mode. These
developments lay the foundation for quantum limited (feedback)
control of optomechanical systems.

Applications of quantum control theory in optomechanics range
from feedback cooling of the mechanical motion [CHPg99], mechan-
ical squeezing [CMJo8; Woo+08], and two-mode squeezing [WC13] to
back-action elimination [Wisgs; CHPo3] with possible applications in
gravitational-wave detection. Importantly for quantum information
processing and communication, it can also be used to robustly gen-
erate entanglement between remote quantum systems, as has been
demonstrated recently for spin qubits [Dol+14]. At the same time en-
tanglement itself can be an essential component to facilitate control of
quantum systems, e. g., as a resource for teleportation [Ben+93], when
employed as a means for remote state preparation. In optomechanics,
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pulsed entanglement between a mechanical oscillator and the electro-
magnetic field has recently been demonstrated in an electromechan-
ical setup [Pal+13], using the protocol developed in this thesis (see
section 2.1); state preparation (and verification) of an arbitrary mech-
anical quantum state (e.g., a Fock state) has yet to be accomplished
(see, however, [OCo+10], which suffered from a too low mechanical
quality factor to perform quantum state tomography). Quantum con-
trol protocols are often operated in a time-continuous fashion and
rely on continuous measurements that are capable of tracking the
quantum state of the controlled system. The resulting measurement
record—and the so-called conditional quantum state inferred from
it—is then used as a basis for the applied feedback [WMog]. Thus,
the control protocol’s success critically depends on the precision of
the employed measurements. Recently, monitoring a mechanical oscil-
lator with a measurement strength matching its thermal decoherence
rate (equivalent to a cooperativity above 1) and measurement-based
feedback cooling to an occupation number of several phonons (lim-
ited by residual absorption) has been demonstrated in [Wil+14].

Outline of the Thesis

In this thesis we discuss different approaches to control optomechan-
ical systems on the quantum level. One central topic is the generation
of optomechanical entanglement, but also its application as a resource
to implement quantum control of these systems. The presented pro-
tocols can therefore be described as entanglement-enhanced quantum
control. The thesis is divided into three chapters.

Chapter 1 provides an introduction to the physics of cavity-optome-
chanical systems, as well as to their description we use throughout
this work. We review the quantum theoretic models of the mechanical
and the optical resonator, and their interaction. We then introduce
the total system’s description as an open quantum system in terms
of (stochastic) master equations and quantum Langevin equations, as
well as a phase-space description. Finally we discuss characteristic
features of the optomechanical steady state.

Chapter 2 is devoted to pulsed optomechanical quantum control and
quantum information protocols. In section 2.1 we discuss a protocol
to create and verify continuous-variable entanglement between a
mechanical oscillator and a light pulse, including an extension to a
teleportation scheme. First the protocol is analysed in a perturbative
approach to build intuition for the process; in a second step the full
fledged optomechanical model is solved, and the physical parameters
are optimized. This section is based on

‘Quantum entanglement and teleportation in pulsed cavity op-
tomechanics’
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S. G. Hofer, W. Wieczorek, M. Aspelmeyer & K. Hammerer
Physical Review A 84, 052327 (2011)

for which the author of this thesis did the majority of the analytical
and all numerical calculations, and prepared the larger share of the
published manuscript.

In section 2.2 we analyse the creation of non-classical mechanical
quantum states building on the protocol in section 2.1. We discuss
how a mechanical state with a negative Wigner function close to a
phononic Fock state can be prepared by coupling to a qubit and tomo-
graphically reconstructed from measurements of light. This work has
not previously been published. The protocol was devised together
with Konrad Lehnert, Tauno Palomaki, and Klemens Hammerer dur-
ing a visit at the University of Colorado, Boulder. The author of this
thesis did a substantial part of the analytical and all numerical calcu-
lations.

Section 2.3 discusses the violation of a Bell inequality using op-
tomechanical entanglement. The author worked out the details of the
optomechanical implementation and did all numerical calculations.
This work has been published as:

"Violation of Bell’s inequality in Electromechanics’
S.G. Hofer, K. W. Lehnert & K. Hammerer
arXiv:1506.08097 [quant-ph] (2015)

Chapter 3 discusses time-continuous control protocols, analysing
in detail measurement-based feedback schemes to control general
and optomechanical systems. First, we analyse homodyne-detection
based feedback cooling in section 3.1. We then introduce the notion
of a time-continuous Bell measurement, and discuss its application
for time-continuous teleportation and entanglement swapping pro-
tocols [both for generic (section 3.2) and optomechanical systems
(sections 3.3 and 3.4)]. The presented protocols are based on work
published in two articles. For

‘Time-Continuous Bell Measurements’
S.G. Hofer, D. V. Vasilyev, M. Aspelmeyer & K. Hammerer
Physical Review Letters 111, 170404 (2013)

the author was involved in the development of the generic formalism
of time-continuous Bell measurements, worked out the optomechan-
ical implementation (in terms of analytical and numerical calcula-
tions) and wrote substantial parts of the manuscript. For the addi-
tional material presented in

"Entanglement-enhanced time-continuous quantum control in op-
tomechanics’

S.G. Hofer & K. Hammerer

Physical Review A 91, 033822 (2014)


https://dx.doi.org/10.1103/PhysRevA.84.052327
http://arxiv.org/abs/1506.08097
https://dx.doi.org/10.1103/PhysRevLett.111.170404
https://dx.doi.org/10.1103/PhysRevA.91.033822
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he did most of the analytical and numerical work and wrote most of
the manuscript.

Finally we discuss in section 3.5 first steps towards experimental time-
continuous quantum control of (Gaussian) optomechanical systems.
The theoretical basis is formed by the so-called Kalman filter, which
extracts the conditional quantum state from a measurement traject-
ory. We show the implementation of a Kalman filter for an existing
optomechanical experiment. This work has been published in

‘Optimal state estimation for cavity optomechanical systems’

W. Wieczorek, S.G. Hofer, J. Holscher-Obermaier, R. Riedinger,
K. Hammerer & M. Aspelmeyer

Physical Review Letters 114, 223601 (2015).

The author developed the code for the data analysis and the statistical
analysis of the filter consistency, was involved in modelling of the ex-
periment and statistical analysis, and wrote parts of the manuscript.


https://dx.doi.org/10.1103/PhysRevLett.114.223601




CAVITY-OPTOMECHANICAL SYSTEMS

1.1 THE PHYSICAL SYSTEM

Although optomechanical systems exist in many different physical
implementations, many of them can be described by the same simple
physical model [AKM14]. To exemplify the most important features
of a cavity-optomechanical system, we will use as our toy-model a
Fabry-Pérot cavity with one oscillating mirror (see fig. 1). On the
most basic level this simple system consist of two coupled harmonic
oscillators. In this section we will introduce its main constituents—
the optical and mechanical resonator—, and the physical background
of the optomechanical interaction.

In this thesis we are mostly interested in optomechanical setups,
working with optical photons, but the description as well applies
to electromechanical systems, where an LC resonator driven by a mi-
crowave field takes the role of the optical cavity (see fig. 2).

1.1.1 Mechanical Oscillators

Due to their size and high number of degrees of freedom, experiment-
ally employed mechanical oscillators in general posses a multitude of
mechanical eigenmodes, whose spectral features are determined by
the oscillator’s geometry, material properties, and the coupling to its
support. For general geometries, the spatial mechanical mode shape
can be arbitrarily complex and can be described by a displacement
field u(r, t) [PHHg9]. We can expand u(r, t) in terms of the oscillator’s
eigenmodes u,(r),

u(r,t) = Y X, (D, (1) (11)
n

with the corresponding time-dependent amplitudes X, (t). Two ex-
amples of different eigenmodes of a doubly-clamped oscillating mir-
ror pad are shown in fig. 3. While mechanical oscillators are in gen-
eral not linear (in terms of their response to applied forces), linearity
poses a good approximation for the small displacements typically at-
tained in normal operation. We therefore model the amplitudes X, ()
to follow the damped harmonic evolution given by

. . F,
Xy (1) + 7, X, (8) + wixn(t) = %' (1.2)
Mgt

Here w,, and <, are the angular resonance frequency and the damp-
(n)
f

ing constant of the n-th eigenmode and m y; denotes the correspond-

1
e

FIG 1. Schematics of an
optomechanical setup.
The cavity length L(X,,)
is modulated by the
mechanical motion.
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FIG 2. Schematics of an
electromechanical setup.
The capacitance C(X,,)
of the LC resonator

is modulated by the
mechanical motion.
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CAVITY-OPTOMECHANICAL SYSTEMS

ing effective mass determined by the mode volume of u,,. F,,; denotes
the sum of all external forces acting on the specific mechanical mode,
e.g., radiation pressure or fluctuating Langevin forces.

FIGURE 3. Finite-element simulation of the fundamental (right) and a higher-
order mode (left) of a doubly-clamped oscillating mirror as has been used
in [Gré+09] (courtesy of Witlef Wieczorek, University of Vienna).

In this thesis we will consider the single-mode case only, where
we assume that we can experimentally address a single one of the
mechanical eigenmodes. This mode is assumed to have no significant
spectral overlap with its neighbouring modes. In the following we
will denote this mode’s resonance frequency by w,,,, and the energy
damping rate as <, [the full width at half maximum (FWHM) of
the corresponding spectral peak]. The corresponding amplitude of
the oscillation we will call X;,(¢). In our toy-model, the Fabry-Pérot
cavity, the centre-of-mass oscillation is the only available eigenmode,
and the amplitude X, (¢) is simply the mirror’s displacement from its
equilibrium position. The effective mass m.g is then approximately
given by the total mass of the mirror (not accounting for the finite
mass of the supporting spring).

The viscous damping term in eq. (1.2) is due to the coupling of
the mechanical oscillator to its support, which at the same time also
acts as a thermal environment (commonly also referred to as heat
bath), and represents a noise source for the mechanical oscillator.
Customary this heat bath is modelled as a collection of an infinite
number of harmonic oscillators in a thermal state at a temperature
T, as first introduced by Caldeira and Leggett [CL83]. The mean bath
occupation number follows a Bose-Einstein distribution and we thus
have ng(w) = [exp(hw/kgT) —1]"' (with the reduced Planck con-
stant 7 and the Boltzmann constant kg). Later an important figure
for us will be the mean bath occupation at the mechanical frequency,
i.e., 1 = ng(wy,). In the high-temperature limit we can approximate
ng(wp) =~ kgT/hw,,. We will see in section 1.3.1 that the effective
decoherence rate (often called thermal decoherence rate) is given by
Ym ~ kgT/hQ.,, where we defined the mechanical quality factor
(Q-factor) Q,, = Wy /Ym- One thus sees that in order to have low
thermal decoherence we need a high-Q mechanical oscillator and a
low-temperature bath, which can be obtained by cryogenic cooling of
the experimental setup. Apart from the Caldeira-Leggett approach
above, another (phenomenological) model takes into account internal
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friction effects [Saugo]; additionally, more realistic microscopic mod-
els and experimental studies of system-bath coupling exist [Col+11;
Gro+15].

For the quantum treatment of the mechanical oscillator we intro-
duce position and momentum operators X,,,, P,,, which fulfil canon-
ical commutation relations [X,,,, P,,] = ifi. As is customary in quan-
tum optics, we also introduce the dimensionless quadratures x.,, p,,
with [x,, pm] = 1. We express them in terms of creation and annihila-
tion operators et e (leqpch] =1)

.I.
Cm+Cm Cm — Cm

We can convert them to X,, = v/2xyx, and Py, = V25 XoPm by
rescaling with the oscillator’s ground state extension

X0 =V h/zmeffa]m' (14)

(1.3)

1.1.2  Optical Resonators

The second constituent of a cavity-optomechanical system is the op-
tical cavity which forms a resonator for photons. A simple Fabry-
Pérot cavity consists of two highly reflecting mirrors separated by
a distance L. Such a cavity contains a sequence of equally-spaced
modes with resonance frequencies v,, = nAv (n € IN) [VWo6], which
are separated by a frequency Av, the so-called free spectral range.
The free spectral range is determined by the cavity length, and—in

the absence of an optical medium—is given by
c
Av = 5T (1.5)

Again, in this work we will focus on the case of the mechanical os-
cillator interacting with a single cavity mode with a central angular
frequency w. = 27tv, only. In nano- and micro-optomechanical setups
this situation can easily be created experimentally, as the free spectral
range is many orders of magnitude larger than any frequency scale
of the mechanical system. Thus different cavity modes do not interact
via coupling to the mirror. There are systems, however, where coup-
ling between different optical modes can occur (deliberately or as a
perturbative effect) [FSW14].

Due to finite mirror reflectivity, absorption in the mirror substrate,
or photon scattering out of the cavity mode the lifetime of photons in
the cavity is limited to a finite number of round trips. This number
is called the optical finesse F,, and is connected to the cavity decay
rate x by

2nAv e

Feav = K = xL’ (1.6)
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Throughout this thesis we denote by « the energy (FWHM) decay rate,
i.e., the number of photons leaving the cavity per unit time. As we
need to monitor the output light of the cavity in virtually every exper-
iment we need to discriminate between pure photon losses (absorp-
tion, scattering) and transmission into the external field which we can
eventually measure. The total decay rate is thus « = x;,, + &, where x;,
is associated with the input-coupler of the cavity (i.e., the decay chan-
nel we can measure), whereas & collects all other loss mechanisms we
cannot measure.

Let us assume we drive an optical cavity by a constant coherent
laser field with a central frequency w, and a (appropriately rescaled)
complex amplitude &. This amplitude is connected to the input power
P, by |e| = \/ P,/ hw,, and therefore describes the square root of the
driving laser’s photon-flux. The mean intracavity field «. then follows
the equation of motion
K
2
We can get rid of the (trivial) evolution at optical frequencies by in-
troducing @, (t) = a.(t) €“?’. After a transient period &, will assume
a constant steady-state amplitude &> = lim,_,, &.(t) given by

—iwyt

Q= — (iwc + ) a+ \JEnee (1.7)

&S = Kin€
V.

(1.8)

with the detuning Ay = wy — w, of the laser with respect to the cav-
ity resonance frequency. Note the distinction between the total decay
rate ¥ and the input-coupling rate x;,, which leads to a decreased
intracavity photon number || for increasing losses &.

Taking the Fourier transform of eq. (1.7) we obtain the cavity’s sus-
ceptibility x(wy), i.e., its linear response function. The value x(wy)
determines the response of the system for a constant input at a fre-
quency wy. It is given by the Lorentzian

xw) = (19
5 —i(w—w,)
Its modulus and its argument give the amplitude and phase response
of the intracavity field respectively.

Quantum-mechanically the intracavity field can be described as a
damped harmonic oscillator [WMo8]. In analogy to section 1.1.1 we
introduce creation and annihilation operators C:, c., and the corres-
ponding (dimensionless) quadrature operators

t t
_Cc+cc _ G —C¢

x , = .
c V2 Pe J2i
We call x, the amplitude quadrature and p. the phase quadrature of

the electromagnetic field. Their equations of motion we will discuss
in detail in section 1.3.1.

(1.10)
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1.1.3  Cavity-Optomechanical Interaction

In cavity-optomechanical systems the interaction between the optical
and the mechanical mode typically manifests itself in the form of a
dispersive coupling, which means that the cavity resonance frequency
experiences a shift depending on the mechanical oscillator’s position.
Physically, the interaction is mediated by radiation pressure [Einog]
in the form of momentum transfer due to reflection (Fabry—Pérot type
setups, microtoroids) [BM67; BMT7o0] or gradient forces (membrane
in the middle setups [Tho+08], levitated micro-objects [Cha+10; BS10;
Rom+10]). In addition to the dispersive regime there exists a dissipat-
ive optomechanical coupling where the cavity decay rate is depend-
ent on the mechanical position [EGCog9; XSH11; Saw+15]. We will not
consider this kind of coupling in this thesis, however.

For photons impinging on a single mirror the radiation pressure
is just proportional to the incoming photon flux. As this force exer-
ted by photons on a massive object is typically very weak, cavity-
optomechanical experiments employ a resonator for the photons—
an optical cavity—in order to enhance the effective photon flux and
therefore the radiation pressure coupling. Conversely, the intracavity
photon flux now very sensitively depends on the mirror’s position,
as the mirror parametrically changes the cavity resonance frequency.
This can be nicely illustrated by plotting the modified susceptibility
of the cavity as a function of the mirror position X,,, which can be
obtained from eq. (1.9) by letting the resonance frequency depend lin-
early on the mirror position, i.e., w, = w.(X,,) (see also the discus-
sion of the radiation pressure Hamiltonian in the next section). Fig-
ure 5 shows that moving the mirror modulates the intracavity-field
amplitude [shown in (a)], as well as its phase [shown in (b)]. For res-
onant driving (as depicted in the figure) the amplitude stays constant
to second order in X, while the phase is changed linearly. Hence,
mechanical displacement sensing is typically operated on resonance
as there the sensitivity on the mechanical displacement A0/AX,, is
maximal [AKM14].

The finite decay time of the cavity (i.e., the average time it takes
photons to leave the cavity) leads to a time-lag in the radiation pres-
sure force on the mirror. This leads to so-called dynamical back-action
effects, most notably the optical-spring effect and back-action cooling
(or heating) of the mechanical motion, both of which we will again
encounter again below. A classical picture of optomechanical cool-
ing can be given by considering the cavity’s susceptibility (see fig. 6)
[MGog]: As the mirror oscillates and therefore sweeps the cavity’s res-
onance profile, it modulates the number of photons inside the cavity
and thus also the radiation pressure. However, due to the time-delay
associated with the cavity bandwidth, the radiation pressure is in-
creased in one half-cycle, while it is decreased in the other half-cycle
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(schematically depicted by the blue ellipse in fig. 6). Depending on
the relative phase between the radiation-pressure cycle and the mech-
anical oscillation this leads to additional damping for a red-detuned
laser drive or amplification for a blue-detuned drive.

1.2 HAMILTONIAN

Here we restrict ourselves to the case where a single mechanical mode
interacts with a single optical mode. The generalization to a multi-
mode scenario is straightforward. We give a simple derivation of the
cavity-optomechanical Hamiltonian; a rigorous version was given by
[Lawgs]. We start from the Hamiltonian of two uncoupled harmonic
oscillators

H, = hw,cr e + hwcc:cc, (1.11)

where w,, and w, denote the mechanical and (nominal) cavity reson-
ance frequency respectively, and we have [c;, c;] = g fori,j € {m, c}.
The optical resonance frequency w, is determined by the round-trip
time of photons in the cavity and thus by the effective cavity length
L,i.e., w./2m = 2¢/L. In the case of a cavity with a moving mirror,
the effective length L(X,,) depends on the (dimensionful) position
of the mechanical oscillator X ,. Moving the mirror thus shifts the
resonance frequency and therefore changes the energy stored inside
the cavity mode. For small displacements X ,/L < 1 [assuming that
X, = 0 is the rest position and hence w, := w.(0) the nominal cavity
frequency] we can expand w,(X,,) in a Taylor series around X, = 0,

0w,

2
BXme +O0(Xn)" (1.12)

wc(Xm) = W, +
Using that X, = xy(cy + ch) = v2XpX,, the Hamiltonian for the
optomechanical system is (to first order in X|,)

H.y = hwgch e + hwccjcC + hgoxmczcc. (1.13)

The last term is the sought-after radiation pressure interaction with
the so-called single-photon optomechanical coupling strength

0w,
80 = \fzxorx / (1.14)

which quantifies the interaction between the mechanical oscillator
and a single photon in the cavity. For the Fabry—Pérot case we find
90 = V2xyw./L. Note that by using these definitions a positive value
for the displacement X,,, > 0 increases the energy in the cavity, which
means that the cavity length decreases.

Expression (1.13) shows that the radiation-pressure coupling is non-
linear in the amplitudes c;, ¢l and depends on the number of photons

12
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in the cavity. However, as g, is very small in many current optomech-
anical systems, the generated non-linear dynamics—and optomech-
anical effects on the single-photon level in general—are hard to ob-
serve. To enhance the radiation pressure one can drive the optomech-
anical cavity by a strong laser beam with a large coherent (time-
dependent) amplitude ¢(t). Such a drive with a centre frequency wj
can be described by adding an additional driving term

Hgrive = —iR[E"(£) elwof c.— E(t) e 1ot CZ] (1.15)

to eq. (1.13), where E(t) = /k,&(t) describes the driving strength
and ¢(t) € C is the complex amplitude of the input field. This
Hamiltonian basically arises from a beam-splitter like interaction,
where photons are scattered into the cavity mode from the external
coherent field. In order to get rid of the explicit time dependence
in (1.15) we typically go to a frame rotating at the optical frequency
wy, which prompts us to introduce the detuning Ay, = wy — w..
The complete optomechanical Hamiltonian including the non-linear
radiation-pressure interaction then takes the form

1
Hy = Ehwm(xfn + pfn) - hAOCICc + thmeICc
—ih[E*(t)ce — E(t)cl]. (1.16)

We will discuss below that driving the optomechanical cavity in such
a way has two effects: (i) The mirror is shifted to a new equilibrium
position, and (ii) the radiation-pressure interaction is enhanced by
the classical intracavity amplitude a. created by the laser drive, effect-
ively linearizing’ it given that we have |a | > 1. For a full description
of these effects one needs to account for the open-system dynamics of
our system as will be discussed in detail in the next section. Here we
want to focus on the dynamics generated by the linearized Hamilto-
nian, as understanding their effects will be important throughout the
whole thesis.

We will see in section 1.3.1 that for a high-finesse cavity or a strong
enough laser drive the optomechanical Hamiltonian (1.16) can be ap-
proximated by

8o%c

V2

where we introduced an effective detuning A. which is shifted with
respect to Ay due to the shifted equilibrium position of the mirror.
We can see that the coupling strength ¢ = gya./+/2 of the linear
interaction is enhanced by «., which in the present case is the square-
root of the intracavity photon number. (Here we assumed a. € R
without loss of generality.) For a high-finesse cavity or a strong laser
drive the mean number of photons in the cavity can be large, and the
interaction strength can be enhanced by several orders of magnitude.

t + t t
Hlin = hmemCm - hAcCcCc +n (cm + Cm) (Cc + Cc)r (1'17)
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Depending on the chosen detuning A. we can identify different
types of interactions which are realized by the linearized radiation-
pressure Hamiltonian. Expanding the interaction part of (1.17) we can
identify two contributions: The so-called beam-splitter (BS) Hamilto-
nian

Hbs = hg(cmcz + CLCC) (1-18)

is resonant for A, = —w,,, and describes coherent exchange of energy
between the mechanical oscillator and the cavity mode. This term
is relevant for cooling the mechanical motion via sideband cooling
[Mar+oy; Wil+o7] (see also section 1.4) and can be employed to gen-
erate a state swap between the two modes. The so-called two-mode
squeezing (TMS) interaction

t 1‘),

on the other hand, is resonant for A. = w,,, and describes simultan-
eous creation and annihilation of excitations in both modes, and is
the optomechanical analogue to the optical down-conversion process.
It is known to create optomechanical correlations and entanglement.
Customarily we call the A, > 0 “blue detuned” and A, < 0 “red
detuned”.

Both terms can be interpreted in terms of three-mode scattering
processes involving the incoming laser beam (see fig. 7). In the beam
splitter process a phonon is annihilated in order to up-scatter a laser
photon into the cavity mode (resonant for wy = w. — w,). In the two-
mode squeezing process a fraction hiw,, of a laser photon’s energy
is transferred to the mechanical motion creating a phonon, while the
photon is down-scattered into the cavity mode (resonant for wy, =
We + wy).

In the case of zero detuning A. = 0 both processes contribute
equally and the full interaction Hamiltonian proportional to x,x.
is retained. This interaction is often referred to as quantum non-
demolition (QND) interaction® [Tho+78; BVT80] and can be used to
produce squeezed light, as demonstrated in [Bro+12; Saf+13; Pur+13].
Additionally, a resonant drive is commonly employed to measure po-
sition changes of the mechanical oscillator via phase shifts of the light
field; these measurements can in turn be used to cool the mechanical
motion by active feedback [CHPo1; Vit+o2; Gen+o8a].

The resonance conditions for the listed processes can be illustrated
by going into an interaction picture with heopmeh e — hACcIcC which
leads to

Hine = T1g [cmCI e i(em A +H.C.] +hg [CmcC e HWm=<AJl L Fy ] .

Tuning the laser to one of the mechanical sidebands, i.e., choosing
A. = Fw,,, makes one of the terms in H,,, resonant while the second

14
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term is oscillating rapidly at a frequency 3-2w,,. Invoking a rotating-
wave approximation (RWA), which is equivalent to taking a temporal
average, then allows us to neglect the corresponding off-resonant
term. The RWA is a good approximation in the sideband-resolved
weak-coupling regime ¢ < ¥ < w,,, where the off-resonant scatter-
ing terms are strongly suppressed by the cavity’s density of states
which is strongly peaked in this regime (see fig. 8).

One of the most important optomechanical parameters for us in
this thesis will be the optomechanical cooperativity
4g2

C= W, (1.20)

which quantifies the strength of the unitary optomechanical interac-
tion compared to electromagnetic and mechanical decoherence rates.
Intuitively, the coherent interaction should be stronger then the de-
cohering dynamics in order to observe quantum effects. Indeed we
will see later that all discussed protocols need to be operated in the
strong-cooperativity regime of C > 1.

1.3 OPEN SYSTEM DYNAMICS

A cavity-optomechanical system couples to two different kinds of
environments: On the one hand the mechanical oscillator couples
to a mechanical heat bath through its support;> on the other hand,
photons can leak out of the cavity into the electromagnetic environ-
ment in a finite time. Due to this interaction with the environment,
cavity-optomechanical systems inherently are open quantum sys-
tems and a Hamiltonian description does not suffice to describe
their full dynamics. In quantum optics, powerful methods have
been developed to describe open quantum systems [GZo4]. In the
following sections we will show how to describe the dynamics of
optomechanical systems in the master equation (MEQ) and the quan-
tum Langevin equations (QLEs) approach. As is customary we will
call the optomechanical system simply “system”, while we will refer
to the external electromagnetic field and the mechanical environment
as “bath” or “environment”.

1.3.1  Quantum Langevin Equations

The non-linear open-system dynamics of optomechanical systems can
be described in the Heisenberg picture by the (Stratonovich) quan-
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tum Langevin equations [GC85] written in the frame rotating at the
driving-laser frequency wy

fpy = WePons (1.210)
Pm = —@Wm¥m = YmPm — gOCZCC +v 2()/mfl (1.21b)
¢ = —(5 —iAg)cc —igoXmCe + E + Viay,, (1.210)

where Ay = wy — w, is the detuning of the laser with respect to the
cavity resonance, and E(t) € C describes the laser drive (as discussed
in section 1.1.2).

The input from the external electromagnetic field to the cavity
mode is described by the field operators a;, and a;rn (see appendix A).

In a Markov approximation they obey the commutation relations*
[ain (1), an ()] = 8(t — '), (1.22a)
[ain(t)/ain(t/)] = [a:n(t)lajn(t/)] =0. (1-22]9)

Due to the Markov approximation the input fields are modelled as a
white-noise fields and are therefore é-correlated. For optical systems
the electromagnetic bath is normally assumed to be in the vacuum
state, which is due to the fact that at room temperature the mean
occupation number of the bath at relevant frequencies is negligible,
i.e., ng(w.) ~ ng(w,y) ~ 0.> We thus have

(ain(t)) =0, (ain(t))
(ain()ain (1)) = 0, (i ()ain ()

Note, however, that in electromechanical systems where w, is in the
microwave regime one might have a finite thermal occupation, i.e.,
ng(w.) > 0. The same description can also be valid if the laser drive
of an optomechanical system exhibits broadband amplitude or phase
noise that can be approximated by classical white noise. When the ex-
ternal field is in vacuum, we will often refer to the noise contribution
a;, as shot noise, which is a purely quantum-mechanical contribution.
In the experiment one typically has full access to the cavity input and
the corresponding output field. This means that we can (at least in
principle) engineer the input state [which modifies equations (1.23)]
and monitor the state of the outgoing field. The output of the cavity
is given by the input-output relation [GC85] (also see appendix A.3
for a more detailed discussion)

aout(t) = \/Ecc(t) - ain(t)' (1.24)

This shows that by measuring quadrature operators x,u, Pout (€- 8.,
by homodyne detection) of the output light we can directly monitor
the intracavity field quadratures x. and p. (plus a noise contribution).

In contrast to the treatment of the electromagnetic field, no single
accepted model exists for the coupling of the mechanical oscillator

0, (1.23a)
S(t—t). (1.23b)
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to its thermal environment [Vacoo]. A common approach is to model
it in the form of Brownian motion damping [CL83; GVo1], where
f denotes the corresponding Gaussian, Hermitian noise operator. In
general f does not describe a white-noise process, but rather has a
correlation function [GZo4; GVo1]

(FOFE)+FE)f(E) = — v coth
(1.25)

Here we adopt a quantum-optical stance and treat f in a Markov
approximation, which is known to be valid in the high-temperature
limit where kgT/hw,, > 1 [GVo1] and for high-Q oscillators [BK81].
For small arguments we can expand coth x = x '+ O(x) and thus ap-
proximate f as a zero-mean white-noise field which is b-correlated,’

(f(t)) =0, (1.26a)
FOFE) + FE)F(D) ~ (2a+1)5(t - F). (1.26b)

In contrast to the optical input fields the commutator of f at different
times is given by [GZo4, p 49]
i

£, £ = ——8(t=1), (1.27)

m

where 8’ denotes the first derivative of the Dirac §-function.

Classical Dynamics

The quantum Langevin equations (1.21) allow us to study the classical
non-linear dynamics of optomechanical systems. After introducing
the mean amplitudes a, (t) = (c,(f)) € C and a (t) = (c.(t)) €
C, and the semi-classical approximation that the correlation function
(ctc.) ~ |m.|* factorizes, we obtain the set of equations

Q= —1Wy &y — i%|ac|2, (1.28a)
a —{i[A —&(zx +zx*)]—K}cx +E (1.28b)
c 0 \ﬁ m m 2 c . :

By defining the vector & = (&, am, &, &;) We can write equations
(1.28) in compact form as & = G(«).

Let us first analyse the possible steady-solutions of equations (1.28)
for constant driving field E(t) = E,. Steady-state solutions which
we denote by a* are given by the fixed points of G, i.e., G(«™) = 0.
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They are thus determined by the solutions of the third-order algebraic
equations

o = 802 1.29a
m ﬁwm‘ c (1.292)
ss EO

. = (1.29b)

80— S +ag )~ 5
We thus see that while the mechanical mode in equilibrium has zero
momentum (i.e., Imaj, = 0) it is displaced from its original position
by a finite value uj = v/2Rea}: that in particular depends on the
driving strength E,. At the same time the cavity resonance is shifted,
leading to an effective detuning A, — gyip,, which in turn leads to a
steady-state mean intracavity amplitude depending on u;,..

Depending on the specific system parameters, equations (1.29) may
allow for multiple steady-state solutions. This situation is called bista-
bility [Dor+83; Mey+85]. It is easy to show that a necessary condition
for bistability is given by |Ay| > +/3/4x. Assuming this condition is
fulfilled, we find that the driving strength must be chosen in a certain
interval Ey € [E_, E, ] in order to observe bistable behaviour. Possible
solutions of equations (1.29) are shown in fig. 9 for Ay = 1.3« (solid
line)—showing a bistable region— and Ay = 0.7« (dashed line)—with
a single steady-state solution—as a function of the driving strength
Ey. The black dashed lines indicate the values of E, which mark the
boundaries of the bistable region. The three dots mark three possible
steady-state solutions u}, for a fixed driving E,,.

In the bistable regime the stability of the three solutions (shown in
different colours) can be analysed by applying linear stability theory
[Tab89, p 20]. We hence expand G around a chosen fixed point a* to
first order in small fluctuations d«. Denoting the Jacobian matrix of
G by (Jg)ij = 9G;/0u;j and defining a = «*® + S we can write

b= G(a) = G(&*) + T (&) b + O(6n). (1.30)

Due to the fixed-point condition G(a>) vanishes. The system is then
stable if all eigenvalues of J;(«*) have negative real parts, which
means that all deviations from the fixed point will decay exponen-
tially. Linear stability can be most conveniently analysed by using the
Routh-Hurwitz criterion (see appendix B.4) [Iloy], which eliminates
the need to explicitly calculate the eigenvalues of the Jacobian. Apply-
ing this to the situation depicted in fig. 9 we can show that the blue
and the yellow branch correspond to stable steady-state solutions,
while green shows an unstable solution. Which of the two possible
stable solutions is assumed in steady state depends on the system’s
initial conditions, and is determined by the solution’s basin of attrac-
tion (see, e.g., [Stro8]).

We now turn to the analysis of time-dependent solutions of equa-
tions (1.28). Due to their non-linear nature no closed-form solu-
tion exist in general and we seek approximate solutions under
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the resolved-sideband assumption x < w,,. Additionally, we can
simplify the analysis considerably if we assume that the effective
detuning Ay — go(am + @)/ /2 is kept constant by appropriately
tuning the laser frequency. This means that A(t) obtains a time-
dependence to counteract the motion of the mirror and consequently
that eq. (1.28a) decouples from (1.28b). (Additionally this precludes
any bistable behaviour.) This is a reasonable assumption as in almost
every optomechanical experiment working in a continuous-wave
regime the laser will be locked to the cavity frequency. We can
then integrate equations (1.28) formally and find [using the initial
conditions a,(0) = a.(0) = 0]

Eo

a.(t) = /0 eWA=2TE(¢ — 1) dr, (1.31a)
to

a,(t) = —i%/o e T |y (t — 7))*dT. (1.31b)

Integrating eq. (1.31a) by parts we find the solution

a(t) = —ﬁE(t)(l +0) ~ 3 £ (1.32)

where ¢ is a correction, which is small if E(t) varies slowly on a
timescale of 1/x. More precisely, one can show that a rough upper
bound is given by |6(f)| < supy %%, which must be much
smaller than unity. Also, in the second step we neglected transient
terms which only contribute on timescales t < 1/x. Plugging this
into (1.31b) and using k¥ < w,,, we find under the same assumptions

as above

(1) 2 =0l (133)
Comparing egs. (1.32) and (1.33) to the steady-state solutions above
shows that in the sideband-resolved regime and for a slowly varying
drive amplitude the system at all times is in a quasi steady state that
follows the driving field E(t).

Finally note that the frequency shift of the cavity due to the mean
displacement of the mirror is typically small (for gy < wy,). Assum-
ing A, to be constant will therefore often be a good approximation,
even without assuming it to be fixed explicitly.

Linearized Langevin Equations

The semi-classical analysis from the previous section shows that for
a strong laser drive E(t) and a high-finesse cavity the intracavity
field will have a large coherent mean value «.(t). Due to the radi-
ation pressure caused by this mean field the mirror will be displaced
accordingly by an amplitude «,,(t). Effectively «. and a,, define a
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new (quasi-)equilibrium point for the optomechanical system, around
which the dynamics can be linearized for certain parameter regimes.
The discussion of this procedure follows the standard treatment as
given in [Fab+94; MTo4]. We first define the operator-valued vectors

¢ = (ememsCorce) (1.342)
f = (v ’)’mifl Y ’)’mif/ 2Kain/ \/ﬁa:n)T/ (134b)

which allow us to rewrite the Langevin equations (1.21) in vector
form as ¢ = G(c) + f. We then decompose ¢ = al + dc where «
describes the coherent amplitudes as in the previous section and 1
is the identity operator. Formally this is achieved by going into a
displaced frame created by the displacement operator
+

D;(a) = exp(ac; —a’c;), (1.35)
defining d¢c; = D;(«;)¢;D} («;). For 8¢ we then obtain the exact equa-
tion

oc=c¢—al =[G(a) — &|1 + Tg(a)dc + h(dc) + f, (1.36)

where h is quadratic in dc. Choosing « such that it fulfils the classical
equations (1.28) makes the first term disappear and leaves us with
nonlinear equations for dc, which, however, explicitly depend on a
classical solution «(t). They read

- 80

8¢, = —iwgdey, —i2% (alde, + ade))

V2

_ %m((s(:m —och) - if;%éczécc Fivnf,

. . 8o * - 80
5Cc = I[AO - 7(“m + D‘m)](scc - liac((scm + (Scm)
V2 V2

Sc. — if/%écc(écm +6ch) + Viay,.

We can see that the linear interaction terms scale with gya, while
all nonlinear terms scale with g, only. If we thus work in a regime
with a large intracavity amplitude |a.(f)| > 1 while on the other
hand the single-photon coupling is weak (i. e., gy < k) we can neglect
the nonlinear terms 5CI5CC, oc.oc, [AKMi4]. For brevity of notation
we will in the following drop the prefix J and use c; instead of dc;
etc. Additionally we introduce the effective coupling strength ¢ and
detuning A,

_k
2

X80 80
= %80 Ao =Ny — % (a + ), 1.
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and write the linearized Langevin equations in terms of the quadrat-
ure operators as [MTo4]

Xm = WmPms (1.38a)
f?m = —WnXm — YmPm — 2gxc + V 2’)’mfl (138b)
Xe = —Ape — 5xo + Vixy, (1.38¢)
pc = Acxc - %pc - ngm + \/Epin' (138d)

Note that here we assumed «.(t) € R which can be achieved by ap-
propriately choosing the phase of the input field E [see, e.g., (1.32)].
The Hamiltonian evolution in equations (1.38) is generated by the lin-
earized Hamiltonian (1.17). One should keep in mind that the linear-
ization is only valid if the coherent amplitudes «; are sufficiently large
at all times. Throughout this thesis we will only consider cases where
the system is in a (quasi) steady state as discussed in the previous
section, and we can thus chose «(t) = «*. Also we do not account for
bistability effects. Note that in the same way as for the classical sys-
tem, the stability of (1.38) can be analysed using the Routh-Hurwitz
criterion [Ilo7].

The linearized Langevin equations (1.38), or the corresponding
equations for ¢; and c?, will often serve as a starting point for our
further analysis.

Mechanical Damping in RWA

Equations (1.38) show an important difference in the treatment of
mechanical and optical damping: While for the mechanical mode
only the momentum is directly subject to damping, both quadratures
of the cavity mode are damped symmetrical