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Abstract

This thesis explores some questions regarding the combinatorial structure of cluster alge-
bras and cluster categories, with a strong focus on cluster algebras and cluster categories
of infinite rank.

Recently, cluster algebras of infinite rank have received more and more attention.
We formalize the way in which one can think about cluster algebras of infinite rank by
showing that every rooted cluster algebra of infinite rank can be written as a colimit of
rooted cluster algebras of finite rank. Relying on the proof of the positivity conjecture for
skew-symmetric cluster algebras of finite rank by Lee and Schiffler, it follows as a direct
consequence that the positivity conjecture holds for skew-symmetric cluster algebras of
infinite rank.

The framework for our colimit construction is the category of rooted cluster algebras
introduced by Assem, Dupont and Schiffler. We further investigate this category and
give a sufficient and necessary condition for a ring homomorphism between cluster alge-
bras to give rise to a rooted cluster morphism without specializations. Assem, Dupont
and Schiffler proposed the problem of a classification of ideal rooted cluster morphisms.
We provide a partial solution by showing that every rooted cluster morphism without
specializations is ideal, but in general rooted cluster morphisms are not ideal.

We further investigate the combinatorial structure of cluster categories of infinite
rank by studying mutation of torsion pairs in the important example of discrete cluster
categories of Dynkin type A, which are cluster categories of infinite rank studied by Igusa
and Todorov. Work in progress by Holm and Jørgensen combinatorially classifies torsion
pairs in discrete cluster categories of Dynkin type A. Relying on this classification, we
provide a complete combinatorial model for mutation of torsion pairs in these categories.

Torsion pairs in cluster categories of finite Dynkin typeD have been classified by Holm,
Jørgensen and Rubey. We combinatorially describe mutations of torsion pairs in these
cluster categories. The situation displays less symmetry than in Dynkin type A, providing
additional challenges, but nevertheless allows for a nice combinatorial description.
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Zusammenfassung

Die vorliegende Arbeit befasst sich mit Fragen zur kombinatorischen Struktur von Clus-
ter-Algebren und Cluster-Kategorien, mit einem Fokus auf Cluster-Algebren und Cluster-
Kategorien von unendlichem Rang.

In den letzten Jahren wurde Cluster-Algebren von unendlichem Rang mehr und mehr
Beachtung geschenkt. Wir zeigen, dass jede Cluster-Algebra von unendlichem Rang
als Colimes von Cluster-Algebren endlichen Ranges geschrieben werden kann. Eine
wichtige Konsequenz dieses Resultats erlaubt uns den Beweis der Positivitätsvermutung
für schiefsymmetrische Cluster-Algebren von unendlichem Rang. Die Positivitätsvermu-
tung war eine lange offenstehende Vermutung in der Cluster-Theorie, die erst kürzlich
von Lee und Schiffler für schiefsymmetrische Cluster-Algebren von endlichem Rang be-
wiesen wurde. Der Rahmen für unsere Colimeskonstruktion ist die von Assem, Dupont
und Schiffler eingeführte Kategorie von verwurzelten Cluster-Algebren. Wir befassen
uns weiter mit dieser Kategorie und geben eine hinreichende und notwendige Bedingung,
wann ein Ring-Homomorphismus zwischen Cluster-Algebren einen verwurzelten Cluster-
Morphismus ohne Spezialisierungen induziert. Ausserdem geben wir eine Teilantwort
auf die Frage von Assem, Dupont und Schiffler, welche verwurzelten Cluster-Morphismen
ideal sind. Anders als von ihnen vermutet, ist nicht jeder verwurzelte Cluster-Morphismus
ideal und wir präsentieren ein Gegenbeispiel. Wir zeigen ausserdem, dass jeder ver-
wurzelte Cluster-Morphismus ohne Spezialisierungen ideal ist.

Des Weiteren untersuchen wir die kombinatorische Struktur von Cluster-Kategorien
von unendlichem Rang, indem wir Mutationen von Torsionspaaren im wichtigen Beispiel
von diskreten Cluster-Kategorien von Dynkin-Typ A untersuchen. Dies sind von Igusa
und Todorov untersuchte Cluster-Kategorien von unendlichem Rang. Laufende Studien
von Holm und Jørgensen klassifizieren Torsionspaare in diskreten Cluster-Kategorien von
Dynkin-Typ A durch einen kombinatorischen Zugang. Wir nutzen diese Klassifizierung,
um ein vollständiges kombinatorisches Modell für Mutationen von Torsionspaaren in
diskreten Cluster-Kategorien von Dynkin-Typ A zu geben.

Torsionspaare in den Cluster-Kategorien von endlichem Dynkin-Typ D wurden von
Holm, Jørgensen und Rubey klassifiziert. Wir beschreiben Mutationen von Torsions-
paaren in diesen Cluster-Kategorien. Die Situation weist weniger Symmetrie auf als in
Dynkin-Typ A, was uns vor neue Herausforderungen stellt. Dennoch ist eine kombina-
torisch klare Interpretation der Mutationen möglich.
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Chapter 1

Introduction

Cluster algebras were introduced by Fomin and Zelevinsky [FZ1] at the beginning of
this millennium, motivated by the study of total positivity and dual canonical bases in
Lie theory. They have grown increasingly popular over the past decade and enjoy the
attention of an active research community; not least because they are of interest in a
vast variety of mathematical fields, reaching far beyond their original ties with combina-
torial algebra. Despite their young age, deep connections between cluster algebras and
diverse areas of mathematics such as Teichmüller theory, Poisson geometry, mathematical
physics, integrable systems and the representation theory of finite dimensional algebras
have emerged. A collection of interesting problems and open conjectures concerning clus-
ter algebras – made even more beautiful by virtue of being easy to state yet hard to prove
– more than justify the standing of cluster theory as a mathematical field in its own right.
A nice example is the positivity conjecture, which – having been conjectured by Fomin
and Zelevinsky in [FZ1] – persisted as an open problem for more than ten years until
being solved very recently for skew-symmetric cluster algebras of finite rank by Lee and
Schiffler [LS].

Put briefly, cluster algebras are commutative rings with a combinatorial structure.
Classically, to give a presentation of an algebra, one specifies a set of generators and
defining relations. The fundamental idea of a cluster algebra is different: We start with
a so-called initial seed Σ, consisting of a distinguished subset of generators X called a
cluster, which is simply a set of indeterminates over Q, and a combinatorial rule, encoded
in a skew-symmetrizable locally finite integer matrix B. Inductively, by a process called
mutation, we obtain a family of seeds from this initial seed, each new seed consisting again
of a cluster and a skew-symmetrizable matrix. All clusters are of the same cardinality,
and the union of their elements, which are called cluster variables, generate the cluster
algebra associated to the seed Σ. The initial seed Σ is by no means unique – every other
seed which we obtain from Σ by mutation gives rise to the same cluster algebra.

This thesis is concerned with several topics in the intersection of combinatorics, alge-
bra, and category theory that fall into the framework of cluster algebras and categories.
The main theme of the work is the study of infinite clusters in various guises. What fol-
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12 CHAPTER 1. INTRODUCTION

lows serves as both a gentle introduction to and rough outline of the results we present,
beginning with the category of rooted cluster algebras, passing via cluster categories, and
ending with mutation of torsion pairs in discrete cluster categories of Dynkin type A and
in cluster categories of finite Dynkin type D.

Classically, clusters are finite. However, the theory can be extended naturally to
allow infinite clusters, giving rise to cluster algebras of infinite rank. While most of the
research on cluster algebras in the past decade has focused on cluster algebras of finite
rank, recently an interest in cluster algebras of infinite rank has arisen, appearing for
example in work by Hernandez and Leclerc [HL] as well as in joint work with Grabowski
[GG]. Cluster algebras of infinite rank are the main focus of our studies in Chapter
2. We formalize the way in which one can think about cluster algebras of infinite rank
by showing that we can consider them as colimits of cluster algebras of finite rank.
The context for these considerations is the category Clus of rooted cluster algebras,
introduced by Assem, Dupont and Schiffler [ADS]. Rooted cluster algebras are pointed
versions of cluster algebras, that is we fix an initial seed. This allows for a rigorous
definition of what it means for a ring homomorphism between rooted cluster algebras
to commute with mutation – which is exactly what we want for a natural map between
cluster algebras. This idea gives rise to the concept of rooted cluster morphisms, which
provide the morphisms in the category Clus, while rooted cluster algebras are the objects.
The main result Theorem 2.4.7 of Chapter 2 can be stated as follows.

Theorem. Every rooted cluster algebra of infinite rank is isomorphic to a colimit of
rooted cluster algebras of finite rank.

This theorem provides useful insights into the nature of cluster algebras of infinite rank
and we expect it to facilitate the generalization of a range of properties for cluster algebras
of finite rank to cluster algebras of infinite rank. Notably, the positivity conjecture, which
was proved by Lee and Schiffler [LS] for skew-symmetric cluster algebras of finite rank,
holds for skew-symmetric cluster algebras of infinite rank as a consequence of Theorem
2.4.7. This is shown in Theorem 2.4.10.

On the way to our main result, we encounter and solve a few problems concerning
rooted cluster morphisms, including the question from [ADS] asking whether or not every
rooted cluster morphism is ideal – the answer is no in general as we show in Theorem
2.3.16, but yes for the important class of rooted cluster morphisms without specializations
(see Proposition 2.3.33).

The second part of this thesis concerns cluster categories. Various classical problems
for cluster algebras profited from the categorical approach to cluster theory provided by
Buan, Marsh, Reineke, Reiten and Todorov [BMRRT] with the introduction of cluster
categories and an alternative approach to categorification via preprojective algebras by
Geiss, Leclerc and Schröer (see [GLS] for a comprehensive overview). Chapter 3 provides a
short overview of the theory of cluster categories. The basic idea is that all combinatorial
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aspects of cluster algebras find a translation into cluster categories: There will be a
categorical analogue of clusters, of cluster variables and of mutation. Like many aspects
of cluster algebras, the research on the infinite case is strongly promoted by the study
of their categorical counterparts and in recent years, the work on cluster categories of
infinite rank by Holm and Jørgensen [HJ] as well as Igusa and Todorov (for example
[IT1], [IT2] and [IT3]) has provided meaningful insights into the combinatorial structure
of infinite versions of cluster categories of Dynkin type A. These cluster categories form
the content of Section 3.3, where we first consider the cluster category of infinite Dynkin
type A∞ in Section 3.3.1 studied by Holm and Jørgensen and later its generalization due
to Igusa and Todorov via discrete cluster categories of Dynkin type A in Section 3.3.2.
Very roughly speaking, discrete cluster categories of Dynkin type A have a combinatorial
interpretation via arcs in the closed disc with discrete sets of endpoints on its boundary.
Indecomposable objects of the discrete cluster category C(Z) associated to the subset
Z ⊆ S1 correspond to arcs with endpoints in Z and its subcategories correspond to sets
of such arcs.

The combinatorial structure on discrete cluster categories of Dynkin type A not only
allows for a canonical generalization of the cluster structures from finite Dynkin type A,
it also enables further combinatorial generalizations. In particular, work in progress by
Holm and Jørgensen combinatorially classifies torsion pairs in discrete cluster categories
of Dynkin type A, generalizing the classification of torsion pairs in the cluster category
of infinite Dynkin type A∞ by Ng [Ng] and in cluster categories of finite Dynkin type A
by Holm, Jørgensen and Rubey [HJR1]. Holm and Jørgensen show that torsion pairs in
the discrete cluster category C(Z) associated to Z ⊆ S1 are in one-to-one correspondence
with certain sets of arcs with endpoints in Z, which we call Ptolemy diagrams of Z.
Torsion pairs in triangulated categories were introduced by Iyama and Yoshino [IY],
providing a triangulated version of torsion pairs in abelian categories due to Dickson
[D]. In the same paper [IY], Iyama and Yoshino introduced mutation in triangulated
categories, providing a generalization of the categorical version of mutation of clusters.
Zhou and Zhu [ZZ2] have shown that in nice enough circumstances, mutation of a torsion
pair in a triangulated category T gives rise to another torsion pair in T . Chapter 4 is
devoted to the study of torsion pairs in triangulated categories and their mutations. In
Section 4.3, we present a combinatorial model for mutation of torsion pairs in discrete
cluster categories of Dynkin type A via mutation of the corresponding Ptolemy diagrams.
The main result of Section 4.3 can be loosely stated as follows – the precise statement is
given in Theorem 4.3.10.

Theorem. Mutation of a torsion pair in the discrete cluster category C(Z) corresponds
to mutation of the associated Ptolemy diagram of Z.

This generalizes results by Zhou and Zhu [ZZ2], who combinatorially described mu-
tation of torsion pairs in the cluster categories of finite Dynkin type A and of infinite
Dynkin type A∞.
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The combinatorial model for discrete Dynkin type A is very nice, as it is quite sym-
metric. It gets more complicated once we move on to Dynkin type D: Using the com-
binatorial model for finite Dynkin type D introduced by Fomin and Zelevinsky [FZ3],
Holm, Jørgensen and Rubey [HJR2] classified torsion pairs in cluster categories of finite
Dynkin type D. Some of the symmetry of the Dynkin type A case gets lost, since we have
to deal with the exceptional vertices of Dynkin diagrams of type D. However, inspired
by the approach for Dynkin type A, a clean combinatorial classification of torsion pairs
in the cluster category of Dynkin type Dn for n ≥ 4 via so-called Ptolemy diagrams of
Dynkin type Dn is possible. In Section 4.4 we use this classification to describe mutation
of torsion pairs in cluster categories of finite Dynkin type D combinatorially. The main
result of this section, Theorem 4.4.21, can be loosely stated as follows.

Theorem. Mutation of a torsion pair in the cluster category of Dynkin type Dn corre-
sponds to mutation of the associated Ptolemy diagram of Dynkin type Dn.

This thesis is organized as follows. Chapter 2 is concerned with the study of the
category of rooted cluster algebras. In Section 2.2 we review the most important defini-
tions along with explanations and examples. In Section 2.3 we present the category of
rooted cluster algebras as introduced by Assem, Dupont and Schiffler [ADS]. We prove
helpful new facts about the morphisms in this category, which are called rooted cluster
morphisms. In particular, we answer an open question from [ADS] by showing that not
every rooted cluster morphism is ideal in Section 2.3.2 and we give a complete character-
ization of rooted cluster morphisms without specializations in Section 2.3.6. Section 2.4
deals with colimits in the category of rooted cluster algebras and contains our main result
Theorem 2.4.7 stating that every rooted cluster algebra can be written as a colimit of
rooted cluster algebras of finite rank. Section 2.4.3 presents, as an important application
of our main result, the generalization of Lee and Schiffler’s [LS] solution to the positivity
conjecture for skew-symmetric cluster algebras of finite rank to skew-symmetric cluster
algebras of infinite rank.

In Chapter 3 we review cluster categories. Section 3.2 presents an overview of the
most relevant features of cluster categories to the results in this thesis. We explain how
the combinatorial structures of cluster categories and cluster algebras are linked. In line
with our interest in cluster algebras of infinite rank we dedicate Section 3.3 to the work
on cluster categories of infinite rank as studied by Holm and Jørgensen [HJ] and Igusa
and Todorov ([IT1] and [IT3]).

Mutation of torsion pairs in triangulated categories forms the content of Chapter 4.
Section 4.2 presents an overview of the concepts of torsion pairs and mutation in triangu-
lated categories and we see how they relate to cluster structures on cluster categories. In
Section 4.3 we present a combinatorial model for the mutation of torsion pairs in discrete
cluster categories of Dynkin type A and in Section 4.4 we present a combinatorial model
for the mutation of torsion pairs in cluster categories of finite Dynkin type D.



Chapter 2

Cluster algebras of infinite rank as
colimits

2.1 Introduction

This chapter is concerned with cluster algebras, with the aim of presenting a better
understanding of cluster algebras of infinite rank. In general, when passing from finite to
infinite cardinality, it is natural to consider limits or colimits in an appropriate category.
The optimal framework for our purposes is given by the category Clus of rooted cluster
algebras, which was introduced by Assem, Dupont and Schiffler [ADS]. The objects of
Clus are what can be thought of as pointed versions of cluster algebras; they are pairs
consisting of a cluster algebra and a fixed initial seed. Fixing a distinguished initial
seed allows for the definition of natural maps between cluster algebras, so-called rooted
cluster morphisms, which are ring homomorphisms commuting with mutation and which
provide the morphisms for the category Clus. We review the most important definitions
in Section 2.2.

The category Clus of rooted cluster algebras and its morphisms are very new concepts,
only having been introduced in Assem, Dupont and Schiffler’s paper [ADS] from 2014.
In Section 2.3 we devote some space to the study of rooted cluster morphisms and show
a few useful properties. In particular we answer an open question on ideal rooted cluster
morphisms. A rooted cluster morphism is ideal, if its image coincides with the rooted
cluster algebra generated by the image of the initial seed. Assem, Dupont and Schiffler
ask in [ADS, Problem 2.12] for a characterization of ideal rooted cluster morphisms.
We answer part of this question by showing that not every rooted cluster morphism is
necessarily ideal in Theorem 2.3.16. The counterexample we provide is a rooted cluster
morphism with specializations, that is, some cluster variables get sent to integers. Rooted
cluster morphisms without specializations are more nicely behaved and we characterize
them by a necessary and sufficient combinatorial condition. As a result we show that
every rooted cluster morphism without specializations is ideal (see Proposition 2.3.33).

15
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In Section 2.4 we proceed to study colimits in the category Clus. We show that the
category Clus is neither complete nor cocomplete, that is, limits and colimits do not in
general exist. However, it has sufficient colimits to express any cluster algebra of infinite
rank as a colimit of cluster algebras of finite rank, as we show in our main result (see
Theorem 2.4.7).

Theorem. Every rooted cluster algebra of infinite rank can be written as a colimit of
rooted cluster algebras of finite rank in the category Clus.

We expect this statement to be a useful tool in extending results that are known
for (certain) cluster algebras of finite rank to cluster algebras of infinite rank. As an
important application, we show in Theorem 2.4.10 that the positivity conjecture, as
shown by Lee and Schiffler in [LS] for skew-symmetric cluster algebras of finite rank,
holds for skew-symmetric cluster algebras of infinite rank.

Important sources of (rooted) cluster algebras are triangulations of marked surfaces,
as studied for triangulations of surfaces with finitely many marked points by Fomin,
Shapiro and Thurston [FST]. An important inspiration for our work on cluster algebras
of infinite rank stems from recent work on cluster categories of infinite rank as carried
out by Holm and Jørgensen in [HJ] and by Igusa and Todorov in [IT1] and [IT3], which
uses countable triangulations of the closed disc with infinitely many marked points as a
combinatorial model. (Serving as a purely motivational concept here, we will talk about
cluster categories in more detail in Chapter 3.) Section 2.4.4 is concerned with cluster
algebras associated to countable triangulations of the closed disc, providing an algebraic
interpretation of these cluster categories. It is a direct consequence of our main result,
Theorem 2.4.7, that every rooted cluster algebra arising from a countable triangulation
of the closed disc can be written as a colimit of finite rooted cluster algebras. We show
that all the finite rooted cluster algebras occurring in this colimit can be taken to be of
finite Dynkin type A.

2.2 Rooted cluster algebras

Cluster algebras have been introduced by Fomin and Zelevinsky [FZ1]. Throughout this
thesis we work with cluster algebras of geometric type and in this chapter we consider
their rooted versions, which we obtain by fixing an initial seed. Rooted cluster algebras
are the objects in the category Clus we want to work in, and which was introduced by
Assem, Dupont and Schiffler [ADS].

2.2.1 Seeds

All the information we need to construct a (rooted) cluster algebra is contained in a
so-called seed. Along with a distinguished subset of generators for our cluster algebra, it
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contains a rule that describes how a prescribed set of generators and the relations between
them can be obtained. This rule can be encoded in a skew-symmetrizable integer matrix.
A skew-symmetrizable integer matrix is a square integer matrix B such that there exists
a diagonal matrix D with positive integer entries and a skew-symmetric integer matrix
S with S = DB.

Definition 2.2.1 ([FZ2, Section 1.2]). A seed is a triple Σ = (X, ex,B), where

• X is a countable set of indeterminates over Z, i.e. the field FΣ = Q(x | x ∈ X) of
rational functions in X is a purely transcendental field extension of Q. The set X
is called the cluster of Σ.

• ex ⊆ X is a subset of the cluster. The elements of ex are called the exchangeable
variables of Σ. The elements X \ ex are called the coefficients of Σ.

• B = (bvw)v,w∈X is a skew-symmetrizable integer matrix with rows and columns
labelled by X, which is locally finite, i.e. for every v ∈ X there are only finitely
many non-zero entries bvw and buv. The matrix B is called the exchange matrix of
Σ.

The field FΣ = Q(x | x ∈ X) is called the ambient field of the seed Σ. Two seeds Σ =
(X, ex,B = (bvw)v,w∈X) and Σ′ = (X′, ex′,B′ = (b′vw)v,w∈X′) are called isomorphic, and we
write Σ ∼= Σ′, if there exists a bijection f : X→ X′ inducing a bijection f : ex→ ex′ such
that for all v,w ∈ X we have bvw = b′f(v)f(w).

Remark 2.2.2. The assumption of countability of the cluster X in a seed is not necessary
for any of our results to hold (up to a minor change in Theorem 2.4.7, cf. Remark 2.4.9).
However, as we will see in Remark 2.3.22, from a combinatorial viewpoint one does not
observe any new phenomena by considering uncountable seeds. Where appropriate, we
will include a short remark clarifying the situation for uncountable clusters.

Often when giving examples it is more intuitive to think of the combinatorics of a
seed as encoded in a quiver instead of in a matrix. This is possible if the exchange matrix
is skew-symmetric.

Remark 2.2.3. If the exchange matrix B of the seed Σ = (X, ex,B) is skew-symmetric,
we can express it via a quiver QB. The vertices of QB are labelled by elements in the
cluster X and there are bvw arrows from v to w whenever bvw ≥ 0. The quiver QB is
locally finite, i.e. there are only finitely many arrows incident with every vertex. For a
seed whose exchange matrix is skew-symmetric by abuse of notation we will often write
Σ = (X, ex,QB) for the seed Σ = (X, ex,B).

Conversely, to any locally finite quiver without loops or 2-cycles we can associate a
locally finite skew-symmetric matrix, with rows and columns labelled by the vertices and
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with entries

bij =


#{arrows from i to j}, if there are arrows from i to j
−#{arrows from j to i}, if there are arrows from j to i
0, otherwise.

Thus we can use locally finite skew-symmetric matrices and locally finite quivers inter-
changeably.

To any seed Σ = (X, ex,B) we can naturally associate its opposite seed Σop =
(X, ex,−B), by reversing all signs in the exchange matrix B. If B is skew-symmetric,
this corresponds to reversing all arrows in the associated quiver QB which gives rise to
the opposite quiver Qop

B .

Notation 2.2.4. From now on, when we consider a seed with a skew-symmetric exchange
matrix pictured as a quiver, we will mark vertices associated to coefficients with squares.

Example 2.2.5. Consider the seed

Σ = ({x1,x2,x3,x4}, {x1,x2},


0 1 0 0
−1 0 −1 −2
0 1 0 0
0 2 0 0

).

Its exchange matrix is skew-symmetric, and we can express it via a quiver:

Σ = ({x1,x2,x3,x4}, {x1,x2}, x1 x2

x3

x4 ).

Its opposite seed is given by

Σop = ({x1,x2,x3,x4}, {x1,x2}, x1 x2

x3

x4 ).

An important source of seeds is provided by triangulations of surfaces with (possibly
infinitely many) marked points. Throughout this chapter we will follow the example of
countable triangulations of the closed disc with marked points on the boundary. This
provides a connection to the work of Holm and Jørgensen [HJ] and Igusa and Todorov
([IT3, Section 2.4] and [IT1]), covering cluster categories of countable rank which have
combinatorial models via triangulations of the closed disc. In this chapter, cluster cat-
egories do not appear, except for the aforementioned motivational purpose and we will
provide an overview of cluster categories later in Chapter 3 with a short introduction
to the cluster categories of infinite rank studied by Holm and Jørgensen and Igusa and
Todorov in Sections 3.3.1 and 3.3.2.



2.2. ROOTED CLUSTER ALGEBRAS 19

Let us start by defining what we mean by a triangulation of the closed disc D2. We
cover the boundary ∂D2 = S1 of the closed disc by R in the usual way: e : R→ S1,x 7→
e(x) := eix.

Notation 2.2.6. For any two elements a 6= b ∈ S1 choose a lifting ã ∈ R of a and b̃ ∈ R
of b under the map e such that ã ≤ b̃ < ã+ 2π. Then we denote by [a, b] the image

[a, b] = e([ã, b̃]).

We define the open interval (a, b) and the half-open intervals [a, b) and (a, b] analogously.

We view D2 ⊆ R2 as a topological space with the standard topology. Let Z ⊆ S1 be
a subset of the boundary of D2. To rule out trivial cases, throughout we assume that
any such subset contains at least two elements, i.e. |Z| ≥ 2.

Definition 2.2.7. An arc of Z is a two-element subset of Z, i.e. a set {x0,x1} ⊆ Z with
x0 6= x1. An arc {x0,x1} of Z is called an edge of Z if (x0,x1)∩Z = ∅ or (x1,x0)∩Z = ∅.
An arc of Z that is not an edge of Z is called an internal arc of Z.

Two arcs {x0,x1} and {y0, y1} are said to cross if either y0 ∈ (x0,x1) and y1 ∈ (x1,x0)
or y1 ∈ (x0,x1) and y0 ∈ (x1,x0), i.e. if the straight line connecting x0 and x1 crosses the
straight line connecting y0 and y1 in the closed disc.

A triangulation of the closed disc with marked points Z is a maximal collection T
of pairwise non-crossing arcs of Z, i.e. a collection T of non-crossing arcs of Z such
that every arc of Z that is not contained in T crosses at least one arc in T . We call a
triangulation T a countable triangulation of the closed disc, if the set T is countable.

Remark 2.2.8. Note that in order for a triangulation T of the closed disc with marked
points Z to be countable, the set Z ⊆ S1 does not need to be countable. Consider for
example Z = S1 and the triangulation

T = {
{
e
(
mπ

2n
)

, e
(

(m+ 1)π
2n

)}
| n ≥ 0, 0 ≤ m < 2n+1}

of the closed disc with marked points S1, where the endpoints of the arcs in T are
a countable dense subset of S1 (see Figure 3.4 for a picture). Thus T is a countable
triangulation of the closed disc with uncountably many marked points Z = S1. Similarly,
any subset Z ⊆ S1 allows a countable triangulation of the closed disc with marked points
Z.

Remark 2.2.9. An edge of a subset Z ⊆ S1 crosses no other arcs of Z. Thus by definition
every triangulation of the closed disc with marked points Z ⊆ S1 must contain all edges
of Z. Note that the set of edges can be empty, for example if we have Z = S1.

To any countable triangulation of the closed disc we can associate a seed, via the same
method that has been introduced by Fomin, Shapiro and Thurston [FST, Definition 4.1
and Section 5] for finite triangulations of surfaces.
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Definition 2.2.10. Let T be a countable triangulation of the closed disc with marked
points Z ⊆ S1. The seed ΣT associated to T is the skew-symmetric seed ΣT = (T , exT ,QT )
defined as follows.

• The elements in the cluster are labelled by the arcs in T .

• An arc {x0,x1} ∈ T is called exchangeable in T , if it is the diagonal of a quadrilat-
eral in T , i.e. if there exist vertices y0, y1 ∈ Z with y0 ∈ (x0,x1) and y1 ∈ (x1,x0)
such that {x0, y0}, {y0,x1}, {x1, y1} and {y1,x0} lie in T . The exchangeable vari-
ables exT are labelled by exchangeable arcs in T .

• The exchange matrix of ΣT is skew-symmetric and we express it via the quiver QT :
The vertices of QT are labelled by the arcs in T , and for {x0,x1}, {y0, y1} ∈ T there
is an arrow {x0,x1} → {y0, y1} in QT if and only if the arcs {x0,x1} and {y0, y1}
are sides of a common triangle in T and {y0, y1} lies in a clockwise direction from
{x0,x1}:

{x0,x1}

{y0, y1}

Remark 2.2.11. If we omit the countability assumption on the cluster of a seed (cf. Remark
2.2.2), we do not need countable triangulations, but rather any triangulation of the closed
disc will give rise to a seed with possibly uncountable cluster.

Because every arc in T is the side of at most two triangles in T , the quiver QT is
locally finite and the seed ΣT associated to a triangulation T of the closed disc is indeed
a seed in the sense of Definition 2.2.1 in light of Remark 2.2.3.

Remark 2.2.12. An exchangeable arc in a triangulation T of the closed disc is always
internal, as every edge is adjacent to at most one triangle in T and hence cannot be
the diagonal of a quadrilateral in T . However, not every internal arc is necessarily
exchangeable. Consider for example the subset

Z = {e
(
π

k

)
|k ∈ Z \ {0}} ⊆ S1

which has exactly one limit point at 1, and the triangulation T of the closed disc with
marked points Z whose internal arcs are given by

Tint = {{e
(
π

2

)
, e
(
π

k

)
}|k ∈ Z>3}∪{{e

(
−π2

)
, e
(
−π
k

)
}|k ∈ Z>3}∪{{e

(
π

2

)
, e
(
−π2

)
}}

(see Figure 2.1), i.e. T consists of the union of Tint and all edges of Z. The arc
{e(π2 ), e(−π

2 )} ∈ T is internal. However, it is not exchangeable: If it was, then it would
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1

e(π2 ) = i

e(−π
2 ) = −i

e(π) = −1

Figure 2.1: In this example of a triangulation the internal arc {−i, i} is not exchangeable.

have to be contained in a quadrilateral in T , so there would exist a z ∈ (e(−π
2 ), e(π2 ))∩Z

with {e(π2 ), z}, {z, e(−π
2 )} ∈ T . However, if z ∈ (1, e(π2 )) then the arc {z, e(−π

2 )} inter-
sects infinitely many of the arcs in {{e(π2 ), e(π

k
)}|k ∈ Z>2} ⊆ T and otherwise, if z ∈

(e(−π
2 ), 1), the arc {e(π2 ), z} intersects infinitely many of the arcs in {{e(−π

2 ), e(π
k
)}|k ∈

Z<2} ⊆ T . This leads to a contradiction, since arcs in T have to be pairwise non-crossing.

2.2.2 Mutation

A seed Σ = (X, ex,B) contains all of the data that is needed to construct the associated
(rooted) cluster algebra. In order to actually obtain generators for the cluster algebra, a
combinatorial process, which is called mutation, is applied. The information needed to
perform mutation is encoded in the exchange matrix B.

Definition 2.2.13 ([FZ2, Definition 1.1]). Let Σ = (X, ex,B) be a seed and let x ∈
ex be an exchangeable variable of Σ. We denote the mutation of Σ at x by µx(Σ) =
(µx(X),µx(ex),µx(B)). It is defined by the following data.

• For any y ∈ X the mutation of y at x is defined by

µx(y) = y, if y 6= x

and

µx(x) =

∏
v∈X: bxv>0

vbxv + ∏
v∈X: bxv<0

v−bxv

x
∈ FΣ. (2.1)

The equations of the form (2.1) are called exchange relations. The cluster, respec-
tively the exchangeable variables, of the seed µx(Σ) thus are

µx(X) = {µx(y)|y ∈ X} = (X \x) ∪ µx(x) and
µx(ex) = {µx(y)|y ∈ ex} = (ex \x) ∪ µx(x).
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x0

x′0

x1

x′1α
fα

x0

x′0

x1

x′1
α

Figure 2.2: Diagonal flip at the arc α = {x0,x1}

• The matrix µx(B) = (b̃ṽw̃)ṽ,w̃∈µx(X) is given by matrix mutation of B at x: For
ṽ = µx(v) and w̃ = µx(w) set

b̃ṽw̃ = µx(bvw) =

−bvw if v = x or w = x,
bvw + 1

2(|bvx|bxw + bvx|bxw|), otherwise.

Remark 2.2.14. The following facts are well-known and straightforward to check.

(1) Mutation is involutive, i.e. for a seed Σ = (X, ex,B) and any x ∈ ex we have
µµx(x) ◦ µx(Σ) = Σ.

(2) Let Σ = (X, ex,B) be a seed and let x ∈ ex. The cluster µx(X) of the seed µx(Σ)
is a transcendence basis of the ambient field FΣ = Q(X) of Σ.

In the case where the exchange matrix B is skew-symmetric, mutation of B corre-
sponds to quiver mutation of the associated quiver QB, where mutation of the quiver QB

at a vertex v of QB is denoted by µv(QB) := Qµv(B).
Consider our standard example of a seed ΣT = (XT , exT ,QT ) associated to a count-

able triangulation T of the closed disc with marked points Z ⊆ S1. Geometrically,
mutation of ΣT at an exchangeable variable in exT can be represented by a so-called
diagonal flip of T . Every exchangeable arc {x0,x1} ∈ exT is the diagonal of a unique
quadrilateral with vertices x0,x1,x′0 and x′1 in Z, whose sides {x0,x′0}, {x′0,x1}, {x1,x′1}
and {x′1,x0} are all contained in T . The diagonal flip of T at α = {x0,x1} is the map
fα : T → (T \ α) ∪ α which replaces the arc α in T by the arc α = {x′0,x′1} of Z and
leaves all other arcs invariant, see Figure 2.2.

It is well-known for finite triangulations of the closed disc that for any exchangeable
arc α ∈ T we have µα(QT ) = Qfα(T ). Since mutations of quivers and diagonal flips
are defined locally, only a finite subquiver of QT is affected by the mutation at α: This
is the full subquiver consisting of α and those vertices of QT that are labelled by the
arcs of the unique quadrilateral in T that has α as a diagonal. Therefore the equality
µα(QT ) = Qfα(T ) remains true for infinite triangulations.
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2.2.3 Rooted cluster algebras

Mutation of a seed at any exchangeable variable in its cluster yields another seed, which
again can be mutated at any exchangeable variable in its respective cluster. Thus we can
successively mutate a seed Σ along what are called Σ-admissible sequences. Mutation
along all possible Σ-admissible sequences will provide a prescribed set of generators of
the cluster algebra associated to the seed Σ, the definition of which we will recall in this
section.

Definition 2.2.15 ([ADS, Definition 1.3]). Let Σ = (X, ex,B) be a seed. For l ≥ 1 a
sequence (x1, . . . ,xl) is called Σ-admissible if x1 ∈ ex and for every 2 ≤ k ≤ l, we have
xk ∈ µxk−1 ◦ . . . ◦ µx1(ex). The empty sequence of length l = 0 is Σ-admissible for every
seed Σ and mutation of Σ along the empty sequence leaves Σ invariant. We denote by

Mut(Σ) = {µxl ◦ . . . ◦ µx1(Σ) | l ≥ 0, (x1, . . . ,xl) Σ-admissible}

the set of all seeds which can be reached from Σ by iterated mutation along Σ-admissible
sequences and call it the mutation class of Σ.

Since mutation is involutive (see Remark 2.2.14 (1)), it is clear that mutation along
Σ-admissible sequences induces an equivalence relation on seeds, where two seeds Σ and
Σ′ are mutation equivalent if and only if there exists a Σ-admissible sequence (x1, . . . ,xl)
with µxl ◦ . . . ◦ µx1(Σ) = Σ′. The mutation class of a seed Σ is thus really an equivalence
class. Analogously, mutation equivalence of locally finite, skew-symmetrizable exchange
matrices is defined.

Remark 2.2.16. Note that it is a direct consequence of Definition 2.2.13 that if two seeds
Σ and Σ′ are mutation equivalent, then the coefficients of Σ are precisely the coefficients
of Σ′ and that by Remark 2.2.14 (2), any two mutation equivalent seeds give rise to the
same ambient field FΣ = FΣ′ .

By mutating a seed Σ along all possible Σ-admissible sequences we obtain the mutation
class Mut(Σ) of Σ and with it a collection of overlapping clusters. Let P (FΣ) denote the
powerset (i.e. the set of all subsets) of the ambient field FΣ, and let

clΣ : Mut(Σ)→ P (FΣ), (X̃, ẽx, B̃) 7→ X̃

be the map assigning to each seed in the mutation class of Σ its cluster. We now define the
cluster algebra associated to a given seed Σ. The original definition for cluster algebras
of finite rank is given by Fomin and Zelevinsky in [FZ1, Definition 2.3].

Definition 2.2.17. Let Σ be a seed. The cluster algebra associated to Σ is the Z-
subalgebra of its ambient field FΣ given by

A(Σ) = Z[x | x ∈ clΣ(Mut(Σ))] ⊆ FΣ.
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The elements of clΣ(Mut(Σ)) are called the cluster variables and the coefficients of Σ are
called the coefficients of the cluster algebra A(Σ). We call the cluster algebra A(Σ)
coefficient-free, if X = ex and we call it skew-symmetric, if the matrix B is skew-
symmetric. The rank of the cluster algebra A(Σ) is defined as the cardinality of the
cluster of Σ.

Remark 2.2.18. Traditionally, the rank of a cluster algebra A(Σ) is defined as the cardi-
nality of the set of exchangeable variables of Σ, while we define it as the cardinality of the
cluster of Σ. A major point of interest in this thesis are cluster algebras of infinite rank,
and when we talk about those we explicitely want to include cluster algebras associated
to seeds with infinitely many coefficients but only finitely many exchangeable variables.

Example 2.2.19. For a seed Σ = (X, ∅,B) with no exchangeable cluster variables, we
have Mut(Σ) = {Σ} and the cluster algebra A(Σ) is isomorphic to the polynomial algebra
Z[x | x ∈ X]. The empty seed Σ∅ = (∅, ∅, ∅) gives rise to the cluster algebra A(Σ∅) ∼= Z.

Two seeds in the same mutation class give rise to the same cluster algebra. To
rigorously define morphisms between cluster algebras in the sense of [ADS] (as we will
do in Section 2.3) it is necessary to fix an initial seed.

Definition 2.2.20 ([ADS, Definition 1.4]). For any given seed Σ the rooted cluster algebra
with initial seed Σ is the pair (A(Σ), Σ), where A(Σ) is the cluster algebra associated to Σ.
We call the rooted cluster algebra (A(Σ), Σ) coefficient-free, respectively skew-symmetric,
ifA(Σ) is coefficient-free, respectively skew-symmetric. The cluster variables, respectively
the coefficients, of the rooted cluster algebra (A(Σ), Σ) are defined as the cluster variables,
respectively the coefficients of A(Σ) and the rank of (A(Σ), Σ) is defined as the rank of
A(Σ).

Two distinct seeds in the same mutation class do not give rise to the same rooted
cluster algebra. We can think of rooted cluster algebras as pointed versions of cluster
algebras.

Example 2.2.21. Consider the seed

Σ = ({x1,x2}, {x2}, x1 x2 ).

There are only two seeds in the mutation class of Σ, namely Σ itself and

µx2(Σ) = ({x1, x1 + 1
x2
}, {x1 + 1

x2
}, x1 x1+1

x2
).

The rooted cluster algebra (A(Σ), Σ) is of rank two, its cluster variables are x1,x2 and
x1+1
x2

and it has one coefficient x1. As a ring, the cluster algebra A(Σ) is of the form
A(Σ) ∼= Z[x1,x2,x′2]

/
(x2x

′
2 = x1 + 1).
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Remark 2.2.22. Combinatorially, the coefficients of a cluster algebra are not very interest-
ing: They do not get changed under mutation and we just “carry them along”. However,
cluster algebras occurring in nature frequently have coefficients. For instance, the Z-form
of the homogeneous coordinate ring C[Gr(2,n)] of the Grassmannian of planes in Cn,
considered as a projective variety via the Plücker embedding, carries the structure of
a cluster algebra with coefficients. Thus it is important to develop the theory in this
generality. Fomin and Zelevinsky [FZ2] assumed coefficients to be invertible. Contrary
to this we, as in [ADS], do not assume invertibility of coefficients. We could pass to the
case of invertible coefficients simply by localizing at coefficients.

Let T be a countable triangulation of the closed disc with marked points Z ⊆ S1.
Recall that the cluster variables in the associated seed ΣT are labelled by the arcs of T
and mutation is represented by diagonal flips. We denote by RT the set of arcs

RT = {µαl ◦ . . . ◦ µα1(α) | l ≥ 0,α ∈ T , (α1, . . . ,αl) is ΣT -admissible}

and call its elements the arcs that can be reached from T . These are all of the arcs of Z
we obtain from T by finite sequences of successive diagonal flips, and they correspond
to the cluster variables of A(ΣT ), which effectively are all variables we obtain from the
initial cluster by successive mutation at exchangeable variables.

Remark 2.2.23. If T is finite, then all arcs of Z can be reached from T . However, this is
not necessarily the case if T is infinite. For example, as in Remark 2.2.12 consider the
subset

Z = {e
(
π

k

)
|k ∈ Z \ {0}} ⊆ S1

and the triangulation T of the closed disc with marked points Z whose internal arcs are
given by

Tint = {{e
(
π

2

)
, e
(
π

k

)
}|k ∈ Z>3}∪{{e

(
−π2

)
, e
(
−π
k

)
}|k ∈ Z>3}∪{{e

(
π

2

)
, e
(
−π2

)
}}

(see Figure 2.1). The arc {e(−π
4 ), e(π4 )} of Z cannot be reached from T . If it could, then

there would be an l ≥ 0, a ΣT -admissible sequence (α1, . . . ,αl) of arcs of Z and an arc
α ∈ T , such that

{e(−π4 ), e(π4 )} = µαl ◦ . . . ◦ µα1(α) ∈ µαl ◦ . . . ◦ µα1(T ).

However, the two infinite triangulations µαl ◦ . . . ◦ µα1(T ) and T differ only by finitely
many elements. Since {e(−π

4 ), e(π4 )} crosses infinitely many arcs in T it also crosses
infinitely many arcs in µαl ◦ . . . ◦µα1(T ). This contradicts the fact that µαl ◦ . . . ◦µα1(T )
is a triangulation.

The exchange relations (cf. Equation (2.1) in Definition 2.2.13) for mutation of seeds
in Mut(ΣT ) are the Plücker relations: For any two arcs {x0,x1} and {y0, y1} in RT , such
that {x0,x1} and {y0, y1} cross, we have

{x0,x1}{y0, y1} = {x0, y0}{x1, y1}+ {x0, y1}{x1, y0}.
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We denote the ideal generated by the Plücker relations in T by JT . Then the cluster
algebra A(ΣT ) is the ring generated by all arcs of RT being subject to the Plücker
relations:

A(ΣT ) = Z[α | α ∈ RT ]/JT .

Remark 2.2.24. If T is a finite triangulation of the closed disc with marked points Z ⊆ S1

of cardinality |Z| = n + 3 for an n ≥ 1, then the ring A(ΣT ) is a cluster algebra of
Dynkin type An, i.e. it is skew-symmetric and the full subquiver of the exchange quiver
of ΣT consisting of the vertices associated to the exchangeable variables of ΣT is mutation
equivalent to an orientation of the Dynkin diagram An. There is no ambiguity here, as all
orientations of the Dynkin diagram An are mutation equivalent as quivers. (This can be
checked for example by successive quiver mutations at sources and sinks.) In particular,
up to ring isomorphism, there is exactly one coefficient-free cluster algebra of Dynkin
type An. We say that the cluster algebra A(ΣT ), respectively the rooted cluster algebra
(A(ΣT ), ΣT ) is of finite Dynkin type A. A closer look reveals that base change to C yields
the homogeneous coordinate ring C[Gr(2,n+ 3)] of the Grassmannian of planes in Cn+3

via the Plücker embedding, as shown by Fomin and Zelevinsky [FZ2, Proposition 12.7].
In the case where Z ⊆ S1 is discrete with exactly one limit point the cluster algebras

associated to triangulations of Z have been studied in [GG]. After base change to C they
are subrings of the homogeneous coordinate ring of the doubly infinite Grassmannian of
planes via the Plücker embedding. Note that this is in analogy with our observations
above on cluster algebras of finite Dynkin type A.

2.3 Rooted cluster morphisms and the category of
rooted cluster algebras

When working with cluster algebras, it is natural to wonder what a “morphism of cluster
algebras” should be. Intuitively we want such maps to be ring homomorphisms commut-
ing with mutation. In [FZ2, Section 1.2], Fomin and Zelevinsky considered what they
called strong isomorphisms of cluster algebras. These are isomorphisms of rings between
cluster algebras that map each seed to an isomorphic seed. This idea was generalized by
Assem, Schiffler and Shramchenko in [ASS] via the notion of cluster automorphisms. A
cluster automorphism is a ring automorphism of a cluster algebra which sends a distin-
guished seed Σ to another seed f(Σ) in the mutation class of Σ, such that f commutes
with mutation at every variable in the two clusters. Again, only ring homomorphisms be-
tween isomorphic rings are considered. Furthermore, only coefficient-free cluster algebras
are considered and cluster automorphisms always bijectively map clusters to clusters:
There is no way to “delete” cluster variables.
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2.3.1 Rooted cluster morphisms

In [ADS] Assem, Dupont and Schiffler introduced the notion of rooted cluster morphisms.
Passing from cluster algebras to rooted cluster algebras by fixing an initial seed allows for
a rigorous definition of what one means for a ring homomorphism between not necessarily
ring isomorphic cluster algebras to commute with mutation.

Definition 2.3.1 ([ADS, Definition 2.1]). Let Σ and Σ′ be seeds and let f : A(Σ) →
A(Σ′) be a map between their associated cluster algebras, see Definition 2.2.17. A Σ-
admissible sequence (x1, . . . ,xl) whose image (f(x1), . . . , f(xl)) is Σ′-admissible is called
(f , Σ, Σ′)-biadmissible.

Definition 2.3.2 ([ADS, Definition 2.2]). Let Σ = (X, ex,B) and Σ′ = (X′, ex′,B′) be
seeds and let (A(Σ), Σ) and (A(Σ′), Σ′) be the corresponding rooted cluster algebras,
see Definition 2.2.20. A rooted cluster morphism from (A(Σ), Σ) to (A(Σ′), Σ′) is a ring
homomorphism f : A(Σ)→ A(Σ′) of unital rings, i.e. a ring homomorphism with f(1) =
1, satisfying the following conditions:

CM1 f(X) ⊆ X′ ∪ Z.

CM2 f(ex) ⊆ ex′ ∪ Z.

CM3 The homomorphism f commutes with mutation along (f , Σ, Σ′)-biadmissible se-
quences, i.e. for every (f , Σ, Σ′)-biadmissible sequence (x1, . . . ,xl) we have

f(µxl ◦ . . . ◦ µx1(y)) = µf(xl) ◦ . . . ◦ µf(x1)(f(y))

for all y ∈ X with f(y) ∈ X′.

Notation 2.3.3. From now on by abuse of notation we write A(Σ) for the rooted cluster
algebra (A(Σ), Σ).

Remark 2.3.4. Every cluster automorphism in the sense of Assem, Schiffler und Shram-
chenko [ASS] can be viewed as a rooted cluster morphism from a skew-symmetric,
coefficient-free rooted cluster algebra A(Σ) of finite rank to itself (where skew-symmetry,
finite rank and coefficient-freeness are the assumptions in [ASS] for the definition of a
cluster automorphism). Thus rooted cluster morphisms really provide a generalization of
the concept of cluster automorphisms.

The following example includes some of the more interesting things that can happen
with rooted cluster morphisms: Firstly, they may exist between non-isomorphic rings, fur-
ther we may “delete” cluster variables by sending them to integers and we may “defreeze”
coefficients by sending them to exchangeable cluster variables.

Example 2.3.5. Consider the seeds

Σ = ({x1,x2,x3}, {x2,x3}, x1 x2 x3 )
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and
Σ′ = ({y1, y2}, {y1, y2}, y1 y2 ).

The associated cluster algebras are as rings isomorphic to

A(Σ) ∼= Z[x1,x2,x3, x1x3 + 1
x2

, x2 + 1
x3

, x1x3 + x2 + 1
x2x3

]

A(Σ′) ∼= Z[y1, y2, y1 + 1
y2

, y2 + 1
y1

, y1 + y2 + 1
y1y2

].

Consider the ring homomorphism f : A(Σ)→ A(Σ′) we obtain from the projection of x3

to 1, which acts on the cluster variables of Σ as xi 7→ yi for i = 1, 2 and x3 7→ 1. This
ring homomorphism satisfies axioms CM1 and CM2 by definition. The only exchangeable
cluster variable in Σ whose image is exchangeable in Σ′ is x2 with f(x2) = y2, so the first
entry of every (f , Σ, Σ′)-biadmissible sequence has to be x2. We have

f(µx2(x2)) = f
(
x1x3 + 1

x2

)
= y1 + 1

y2
= µy2(y2) = µf(x2)(f(x2))

and, since f(xi) 6= f(x2) for i = 1, 3, we have f(µx2(xi)) = f(xi) = µf(x2)(f(xi)). Fur-
thermore, the only exchangeable cluster variable in µx2(Σ) whose image is exchangeable
in µy2(Σ′) is µx2(x2) with f(µx2(x2)) = µy2(y2), so all (f , Σ, Σ′)-biadmissible sequences
have alternating entries x2 and µx2(x2). Since mutation is involutive (see Remark 2.2.14),
the ring homomorphism f commutes with mutation along any of these sequences. Thus
axiom CM3 is satisfied and f is a rooted cluster morphism.

The following proposition shows that the conditions for a map f : A(Σ) → A(Σ′) to
be a rooted cluster morphism are preserved under mutation along biadmissible sequences.

Proposition 2.3.6. Let Σ and Σ′ be seeds and let f : A(Σ)→ A(Σ′) be a rooted cluster
morphism. Then for every (f , Σ, Σ′)-biadmissible sequence (x1, . . . ,xl), the map f induces
a rooted cluster morphism f : A(Σ̃) → A(Σ̃′) between the rooted cluster algebras with
initial seeds Σ̃ = µxl ◦ . . . ◦ µx1(Σ) and Σ̃′ = µf(xl) ◦ . . . ◦ µf(x1)(Σ′).

Proof. Because Σ and Σ̃, respectively Σ′ and Σ̃′, are mutation equivalent, we haveA(Σ) =
A(Σ̃) and A(Σ′) = A(Σ̃′) as algebras, so f : A(Σ̃) → A(Σ̃′) is well-defined as a ring
homomorphism. Let Σ = (X, ex,B) and Σ′ = (X′, ex′,B′) and let Σ̃ = (X̃, ẽx, B̃) and
Σ̃′ = (X̃′, ẽx′, B̃′). Then every element x̃ of X̃ (respectively of ẽx) is of the form x̃ =
µxl◦. . .◦µx1(x) for an x ∈ X (respectively x ∈ ex). If f(x) ∈ Z, then because (x1, . . . ,xl) is
(f , Σ, Σ′)-biadmissible we have x 6= xi for all 1 ≤ i ≤ l. Thus x̃ = x and f(x̃) = f(x) ∈ Z.
On the other hand, if f(x) /∈ Z, then by axiom CM1 (respectively CM2) we have f(x) ∈ X′

(respectively f(x) ∈ ex′). Thus by axiom CM3 for f : A(Σ)→ A(Σ′) we have

f(x̃) = µf(xl) ◦ . . . ◦ µf(x1)(f(x))

which lies in X̃′ (respectively in ẽx′). Thus f : A(Σ̃) → A(Σ̃′) satisfies axioms CM1
and CM2. Because ẽx = µxl ◦ . . . ◦ µx1(ex) and ẽx′ = µf(xl) ◦ . . . ◦ µf(x1)(ex′), ev-
ery (f , Σ̃, Σ̃′)-biadmissible sequence (y1, . . . , ym) gives rise to a (f , Σ, Σ′)-biadmissible
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sequence (x1, . . . ,xl, y1, . . . , ym). Let now ỹ ∈ X̃ be such that f(ỹ) ∈ X̃′. We have
ỹ = µxl ◦ . . . ◦ µx1(y) for a y ∈ X. If f(y) ∈ Z, then with the same argument as above we
have ỹ = y and thus f(ỹ) ∈ Z. Therefore whenever we have f(ỹ) ∈ X̃′ we have f(y) ∈ X′

and by axiom CM3 for f : A(Σ)→ A(Σ′) we have

f(µym ◦ . . . ◦ µy1(ỹ)) = f(µym ◦ . . . ◦ µy1 ◦ µxl ◦ . . . ◦ µx1(y))
= µf(ym) ◦ . . . ◦ µf(y1) ◦ µf(xl) ◦ . . . ◦ µf(x1)(f(y))
= µf(ym) ◦ . . . ◦ µf(y1)(f(ỹ))

Thus axiom CM3 is satisfied for f : A(Σ̃)→ A(Σ̃′).

We will show in Proposition 2.3.9 that a rooted cluster morphism is quite limited
in its action on exchangeable variables of the initial seed: It has to be injective on the
exchangeable variables that are not being sent to integers. Furthermore, it cannot map
any coefficients to the same cluster variable to which it maps an exchangeable variable.
It may however send two coefficients to the same cluster variable, as long as it is careful
about their exchangeable neighbours.

Definition 2.3.7. Let Σ = (X, ex,B = (bvw)v,w∈X) be a seed and let x ∈ X be a cluster
variable in Σ. We call a cluster variable y ∈ X a neighbour of x in Σ, if bxy 6= 0.

Remark 2.3.8. Note that being neighbours is a symmetric relation: For a given seed
Σ = (X, ex,B) a cluster variable x ∈ X is a neighbour of y ∈ X in Σ if and only if y is a
neighbour of x in Σ. We then say that x and y are neighbours in Σ.

Proposition 2.3.9. Let Σ = (X, ex,B = (bvw)v,w∈X) and Σ′ = (X′, ex′,B′) be seeds and
let f : A(Σ) → A(Σ′) be a rooted cluster morphism. If x 6= y are cluster variables of Σ
with f(x) = f(y) ∈ X′, then both x and y are coefficients of Σ. In that case for any
z ∈ ex that is a neighbour of both x and y in Σ and such that f(z) ∈ ex′, the entries bzx
and bzy have the same sign.

Proof. Let x ∈ ex with f(x) ∈ X′. We want to show that f(y) 6= f(x) for every cluster
variable y ∈ X \x. By axiom CM2 we have f(x) ∈ ex′ and the sequence (x) is (f , Σ, Σ′)-
biadmissible. Let y ∈ X with y 6= x. If f(y) ∈ Z then we have f(x) 6= f(y), thus assume
f(y) ∈ X′. By axiom CM3 we obtain

f(y) = f(µx(y)) = µf(x)(f(y)).

Assume for a contradiction that f(y) = f(x) =: z′ ∈ ex′. This would imply z′ = µz′(z′).
Writing B′ = (b′xy)x,y∈X′ we thus would have

(z′)2 = z′µz′(z′) =
∏

v∈X′ : b′
z′v>0

vb
′
z′v +

∏
v∈X′ : b′

z′v<0
v−b

′
z′v ,

which contradicts algebraic independence of the cluster variables in X′.
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We now prove the second part of the statement. Let x 6= y ∈ X \ ex be coefficients
of Σ. Assume for a contradiction that f(x) = f(y) = x′ ∈ X′ and there exists a z ∈ ex
which is a neighbour of both x and y in Σ with f(z) ∈ ex′ such that bzx and bzy have
opposite signs. Without loss of generality assume bzx > 0 and bzy < 0. Then we have

f(zµz(z)) =
∏

v∈X: bzv>0
f(v)bzv +

∏
v∈X: bzv<0

f(v)−bzv

= x′

 ∏
x 6=v∈X: bzv>0

f(v)bzv +
∏

y 6=v∈X: bzv<0
f(v)−bzv

 .

By axiom CM3 this has to be equal to

f(z)µf(z)(f(z)) =
∏

v′∈X′ : b′
f(z)v′>0

(v′)b
′
f(z)v′ +

∏
v′∈X′ : b′

f(z)v′<0
(v′)−b

′
f(z)v′ ,

and since we either have b′f(z)x′ ≥ 0 or b′f(z)x′ < 0 the cluster variable x′ cannot divide
both summands on the right hand side. This contradicts algebraic independence of the
variables in X′.

Corollary 2.3.10. Let Σ = (X, ex,B = (bvw)v,w∈X) and Σ′ = (X′, ex′,B′) be seeds and
let f : A(Σ)→ A(Σ′) be a rooted cluster morphism. Consider any (f , Σ, Σ′)-biadmissible
sequence (x1, . . . ,xl). If x 6= y are cluster variables in µxl ◦ . . . ◦ µx1(X) with f(x) =
f(y) ∈ µf(xl) ◦ . . . µf(x1)(X′), then both x and y are coefficients of Σ. In that case, for any
exchangeable neighbour z ∈ µxl ◦ . . . ◦ µx1(ex) of both x and y in µxl ◦ . . . ◦ µx1(Σ) with
f(z) ∈ µf(xl) ◦ . . . ◦ µf(x1)(ex′) the entries µxl ◦ . . . ◦ µx1(bzx) and µxl ◦ . . . ◦ µx1(bzy) of the
matrix µxl ◦ . . . ◦ µx1(B) have the same sign.

Proof. By Remark 2.2.16 the coefficients of µxl ◦ . . . ◦ µx1(Σ) =: Σ̃ are precisely the
coefficients of Σ. The statement follows from Proposition 2.3.9 by using Proposition
2.3.6 to view f as a rooted cluster morphism with source A(Σ̃).

2.3.2 Ideal rooted cluster morphisms

An ideal rooted cluster morphism is a rooted cluster morphism f : A(Σ)→ A(Σ′) whose
image f(A(Σ)) is the rooted cluster algebra with initial seed f(Σ) the image of Σ. In
the discussion before [ADS, Problem 2.12] (which asks for a characterization of all ideal
rooted cluster morphisms), the authors asked whether every rooted cluster morphism was
ideal. In this section we answer the question by showing that not every rooted cluster
morphism is ideal.

Definition 2.3.11 ([ADS, Definition 2.8]). Let

Σ = (X, ex,B) and Σ′ = (X′, ex′,B′ = (b′vw)v,w∈X′)
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be seeds and let f : A(Σ)→ A(Σ′) be a rooted cluster morphism. Then the image f(Σ)
of the seed Σ under the morphism f is the seed

f(Σ) = (f(X) ∩ X′, f(ex) ∩ ex′, f(B) = (b′vw)v,w∈f(X)∩X′).

Note that the exchangeable variables of the image seed f(Σ) all are images of ex-
changeable variables of Σ. We might well have exchangeable variables of Σ′ that lie in
the image f(X \ ex) of the coefficients of Σ – these are not exchangeable variables of f(Σ).

Example 2.3.12. Consider the seeds

Σ = ({x1,x2,x3,x4,x5,x6,x7}, {x1,x2,x3}, x1 x2

x5

x4

x3 x6

x7 )

and

Σ′ = ({y1, y2, y3, z1, z2, a}, {y1, y2, y3, a}, y1 y2 z1 y3 z2 a )

and the map f : {x1,x2,x3,x4,x5,x6,x7} → {y1, y2, y3, z1, z2, a} which maps

xi 7→ yi for i = 1, 2, 3
xi 7→ z1 for i = 4,5,7
x6 7→ z2.

As we will see in Example 2.3.40 this map induces a rooted cluster morphism f : A(Σ)→
A(Σ′). The image f(Σ) is the seed

f(Σ) = ({y1, y2, y3, z1, z2}, {y1, y2, y3}, y1 y2 z1 y3 z2 ).

If f : A(Σ)→ A(Σ′) is a rooted cluster morphism, then the seed f(Σ) is an example
of what is called a full subseed of the seed Σ′.

Definition 2.3.13 ([ADS, Definition 4.9]). Let Σ′ = (X′, ex′,B′ = (b′vw)v,w∈X′) be a seed.
A full subseed of Σ′ is a seed Σ = (X, ex,B = (bvw)v,w∈X) such that

• X ⊆ X′,

• ex ⊆ ex′,

• B is the submatrix of B′ formed by the entries labelled by X×X, i.e. for all v,w ∈ X
we have bvw = b′vw.

Remark 2.3.14. Note that while all exchangeable variables of a full subseed of Σ′ have to
be exchangeable variables of Σ′, cluster variables which are coefficients in the full subseed
are not necessarily coefficients in Σ′.
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Definition 2.3.15 ([ADS, Definition 2.11]). A rooted cluster morphism f : A(Σ) →
A(Σ′) is called ideal if its image is the rooted cluster algebra with initial seed f(Σ), i.e.
if f(A(Σ)) = A(f(Σ)).

In [ADS, Lemma 2.10] the authors showed that the inclusion A(f(Σ)) ⊆ f(A(Σ))
holds for any rooted cluster morphism f : A(Σ)→ A(Σ′). We can show that the converse
is not true in general.

Theorem 2.3.16. Not every rooted cluster morphism is ideal.

Proof. We give an example of a rooted cluster morphism that is not ideal. Consider the
seeds

Σ = ({a1, a2,x}, {x}, a1 x a2 )

and
Σ′ = ({y1, y2}, {y1, y2}, y1 y2 ).

As rings, the cluster algebras are isomorphic to

A(Σ) ∼= Z[a1, a2,x,x′]
/
〈xx′ = a1 + a2〉

and
A(Σ′) ∼= Z

[
y1, y2, 1 + y1

y2
, 1 + y2

y1
, 1 + y1 + y2

y1y2

]
.

Consider the ring homomorphism f : A(Σ) → A(Σ′) defined by the algebraic extension
of the map which sends

a1 7→ 1 a2 7→ −1
x 7→ 0 x′ 7→ y1.

Because f(xx′) = 0 = f(a1 + a2) this is well-defined. Furthermore, it satisfies the
axioms CM1 and CM2 for a rooted cluster morphism and because there are no (f , Σ, Σ′)-
biadmissible sequences it trivially satisfies axiom CM3 and thus is a rooted cluster
morphism. The image of the seed Σ is f(Σ) = (∅, ∅, ∅) and thus as a ring we have
A(f(Σ)) ∼= Z. However, the image of the cluster algebra A(Σ) is f(A(Σ)) ∼= Z[y1].

2.3.3 The category of rooted cluster algebras

Considering rooted cluster algebras and rooted cluster morphisms gives rise to a category.

Definition 2.3.17 ([ADS, Definition 2.6]). The category of rooted cluster algebras Clus
is the category which has as objects rooted cluster algebras and as morphisms rooted
cluster morphisms.

In [ADS, Section 2] it was shown that Clus satisfies the axioms of a category. In
particular, axiom CM2 for rooted cluster morphisms is necessary to ensure that compo-
sitions of rooted cluster morphisms are again rooted cluster morphisms, as the following
example illustrates.
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Example 2.3.18. Consider the seeds

Σ1 =
(
{x1,x2,x3}, {x2}, x1 x2 x3

)
,

Σ2 =
(
{z}, ∅, z

)
Σ3 = ({y1, y2}, {y1, y2}, y1 // y2 )

with associated cluster algebras

A(Σ1) = Z[x1,x2,x3, x1 + x3

x2
], A(Σ2) = Z[z]

and
A(Σ3) = Z[y1, y2, 1 + y2

y1
, 1 + y1

y2
, 1 + y1 + y2

y1y2
].

Consider the ring homomorphisms f : A(Σ1)→ A(Σ2), which is defined by sending xi 7→
z for all i = 1, 2, 3, and g : A(Σ2)→ A(Σ3) defined by sending z 7→ y1. Both f : A(Σ1)→
A(Σ2) and g : A(Σ2) → A(Σ3) satisfy axiom CM1, but f does not satisfy axiom CM2.
Axiom CM3 is satisfied trivially by both f and g, since there are neither (f , Σ1, Σ2) nor
(g, Σ2, Σ3)-biadmissible sequences. However, the composition g ◦f does not satisfy axiom
CM3: Consider the (g ◦ f , Σ1, Σ3)-biadmissible sequence (x2). We have

g ◦ f(µx2(x2)) = g ◦ f
(
x1 + x3

x2

)
= g(2) = 2

but
µg◦f(x2)(g ◦ f(x2)) = µy1(y1) = 1 + y2

y1
.

2.3.4 Coproducts and connectedness of seeds

Assem, Dupont and Schiffler showed in [ADS, Lemma 5.1] that countable coproducts
exist in the category Clus of rooted cluster algebras. Taking coproducts of a countable
family {A(Σi)}i∈I of rooted cluster algebras amounts to taking what can be intuitively
described as the disjoint union Σ of their seeds. The seeds Σi will be full subseeds of the
seed Σ which are mutually disconnected.

Definition 2.3.19. Let Σ = (X, ex,B) be a seed. A sequence x0,x1, . . . ,xl of cluster
variables in X with l ≥ 0 such that for any 0 ≤ i < l the cluster variables xi and xi+1 are
neighbours in Σ is called a path of length l in Σ. We call two cluster variables x, y ∈ X
connected in Σ, if there exists a path x0, . . . ,xl of finite length l ≥ 0 in Σ such that
x = x0 and y = xl. We call the seed Σ connected if any two cluster variables x, y ∈ X are
connected in Σ. We call a rooted cluster algebra A(Σ) connected if its initial seed Σ is
connected.

Remark 2.3.20. If Σ = (X, ex,B) is a seed with skew-symmetric exchange matrix B, it is
connected if and only if the underlying graph of the associated quiver QB is connected.
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We can decompose any seed into its connected components. For a seed

Σ = (X, ex,B = (bvw)v,w∈X)

and an element x ∈ X of its cluster, the connected component of x in Σ is the full
connected subseed Σx of Σ consisting of those cluster variables in X that are connected
to x and such that all coefficients in Σx are also coefficients in Σ, i.e.

Σx = (Xx, ex∩Xx,Bx = (bvw)v,w∈Xx),

where Xx = {y ∈ X | x and y are connected in Σ}. The decomposition is given as
follows: Let {Σj = (Xj, exj,Bj = (bjvw)v,w∈Xj)}j∈I for a countable index set I be the set
of mutually distinct connected components in Σ. Since no vertex in Xi is connected to
any vertex in Xj for i 6= j ∈ I, we have bxy = 0 for x ∈ Xi and y ∈ Xj with i 6= j ∈ I.
Thus we have X = ⋃

j∈I Xj and ex = ⋃
j∈I exj, and the matrix B has the matrices Bj for

j ∈ I as block-diagonal entries, i.e. bvw = bjvw if v,w ∈ Xj for some j ∈ I and bvw = 0
otherwise.

Remark 2.3.21. It is a direct consequence of the definition of matrix mutation (cf. Defi-
nition 2.2.13) that mutation of seeds respects connected components.

Conversely we can build a new seed from a countable collection of seeds by taking
the disjoint union of the clusters and the exchangeable variables and constructing a
big matrix which contains all of their exchange matrices as block-diagonal entries: Let
{Σj = (Xj, exj,Bj)}j∈I be a countable collection of seeds. Denote by ⊔ the disjoint union
and set ⊔

j∈I
Σj := (

⊔
j∈I

Xj,
⊔
j∈I

exj,B),

where B is the block-diagonal matrix with blocks Bj for j ∈ I. The analogous construc-
tion for rooted cluster algebras is taking coproducts; by [ADS, Lemma 5.1], the category
Clus of rooted cluster algebras admits countable coproducts ∐ and for a countable index
set I we have ∐

j∈I
A(Σj) ∼= A(

⊔
j∈I

Σj).

The seeds Σj for j ∈ I are mutually disconnected full subseeds of Σ. On the other hand,
since we can decompose any given seed into its connected components and there are only
countably many cluster variables, given a rooted cluster algebra A(Σ) we can write it as
a countable coproduct of connected rooted cluster algebras.

Remark 2.3.22. If we omit the countability assumption for clusters of seeds (cf. Remark
2.2.2), then uncountable coproducts exist: This follows directly from the proof of [ADS,
Lemma 5.1], where the countability assumption is solely needed for the cluster of the
coproduct to be countable. All of the other arguments go through directly.

In fact, having uncountably many connected components is the only way for a seed to
have an uncountable cluster; if a seed is connected, then the fact that it has a countable
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cluster is automatic: Let Σ = (X, ex,B) be a connected seed and let x ∈ X. For l ≥ 0
we set Xl = {y ∈ X | x and y are connected by a path of length l in Σ}. Because B is
locally finite, for each l ≥ 0, the set Xl is finite and because Σ is connected, we have
X = ⋃

l≥0 Xl. Therefore, X is countable.
Thus every connected component of a seed has a countable cluster. As a consequence,

one does not currently gain much from considering uncountable clusters. The usual
operations on seeds, namely mutations along (finite) admissible sequences, affect only
finitely many connected components and hence only operate on a countable full subseed
which is not connected to its invariant complement. So for all practical purposes one can
restrict to working with countable seeds without any substantial loss of generality.

Let us consider again the example of a countable triangulation T of the closed disc
with marked points Z ⊆ S1. Note that by definition of the seed ΣT associated to T two
cluster variables α, β ∈ T are neighbours in ΣT if and only if the arcs α and β are sides of
a common triangle in T and they are connected in ΣT if and only if there exists a k ≥ 0
and a sequence of arcs γ0, . . . , γk, such that α = γ0 and β = γk and for all 0 ≤ i ≤ k the
arcs γi and γi+1 are sides of a common triangle in T . It turns out that the connected
components of ΣT depend on the behaviour of arcs in T in the neighbourhood of limit
points of Z.

Definition 2.3.23. Let Z ⊆ S1. We say that a sequence {zi}i∈Z≥0 of points in Z
converging to z converges to z ∈ S1 from the right, if for any x ∈ S1 the set [x, z) ∩ Z is
infinite and the set (z,x] ∩ Z is finite. We say that it converges to z ∈ S1 from the left,
if for any x ∈ S1 the set [x, z) ∩ Z is finite and the set (z,x] ∩ Z is infinite. We say that
it converges to z ∈ S1 from both sides, if for any x ∈ S1 both the set [x, z) ∩ Z and the
set (z,x] ∩ Z are infinite.

Let {ai, bi}i∈Z≥0 be a sequence of arcs of Z and let the sequence of endpoints converge
to a = lim−→ ai ∈ S1 and b = lim−→ bi ∈ S1. If both sequences of endpoints {ai}i∈Z≥0 and
{bi}i∈Z≥0 are non-constant, we say that the sequence {ai, bi}i∈Z≥0 of arcs is a nest if a = b

and we say that it is a half-nest if a 6= b.
If the sequence {ai}i∈Z≥0 is constant and the sequence {bi}i∈Z≥0 is non-constant, we say

that the sequence {ai, bi}i∈Z≥0 of arcs is a right-fountain at a converging to b, if {bi}i∈Z≥0

converges to b from the right, we say that it is a left-fountain at a converging to b, if
{bi}i∈Z≥0 converges to b from the left and we say that it is a fountain at a converging to
b, if {bi}i∈Z≥0 converges to b from both sides. We call a sequence {ai, bi}i∈Z≥0 of arcs in Z
a split fountain converging to b, if it can be partitioned into a left fountain {al, bi}i∈Z<0

at al ∈ Z converging to b ∈ S1 and a right fountain {ar, bi}i∈Z≥0 at ar ∈ Z converging to
b with al 6= ar.

To determine the connected components of the seed ΣT associated to a given countable
triangulation T of the closed disc with marked points Z it is helpful to view any half-
nest, fountain and right-or left-fountain {ai, bi}i∈Z≥0 as converging to an arc {a, b} of the
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Figure 2.3: Triangulations of the closed disc consisting of (from left to right) a right
fountain at a ∈ Z, a left fountain at a and a fountain at a, all converging to the limit arc
{a, b} of the respective triangulation

a

b

•

•

a•

Figure 2.4: A triangulation of the closed disc consisting of a half nest converging to the
limit arc {a, b} of the triangulation, and a nest where the sequence of endpoints converges
to a

topological closure Z of Z ⊆ S1, where a = lim−→ ai and b = lim−→ bi. Let T be a triangulation
of the closed disc with marked points Z and let {a, b} be an arc of Z such that there is a
half-nest, fountain and right-or left-fountain in T converging {a, b}. Then we call {a, b}
a limit arc of T . Figure 2.3 provides an illustration of a left-fountain, a right-fountain
and a fountain, while Figure 2.4 illustrates a half-nest and a nest.

Lemma 2.3.24. Let T be a countable triangulation of the closed disc with marked points
Z ⊆ S1. Two arcs {x0,x1} 6= {y0, y1} are connected in ΣT if and only if there is no limit
arc {a, b} of T such that x0,x1 ∈ [a, b] and y0, y1 ∈ [b, a] or vice-versa.

Proof. First assume that there exists a limit arc {a, b} of T . It is straightforward to check
that there cannot be a finite sequence of arcs connecting any arc with endpoints in [a, b]
with a distinct arc with endpoints in [b, a], since there are infinitely many arcs from the
right-or left-fountain, fountain or half-nest in T converging to the limit arc {a, b} of T in
between.

On the other hand, assume that {x0,x1} and {y0, y1} are not connected. Without
loss of generality let (x0,x1) ⊆ (x0, y0) ⊆ (x0, y1). We can construct a sequence of arcs
{ai, bi}i∈Z≥0 by setting a0 = x0 and b0 = x1 and for i ≥ 1 choosing {ai, bi} such that
{ai−1, bi−1} and {ai, bi} are sides of a common triangle in T and such that ai ∈ [y1, ai−1]
and bi ∈ [bi−1, y0]. Because {x0,x1} and {y0, y1} are not connected, ai and bi are well-
defined for all i ≥ 0 and at least one of the sequences {ai}i∈Z and {bi}i∈Z is not constant.
Both sequences of endpoints {ai}i∈Z≥0 and {bi}i∈Z≥0 are monotone and bounded above
and below and thus {ai, bi}i∈Z≥0 is a half-nest, fountain or right-or left-fountain converging
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•

• •

•

Figure 2.5: This picture illustrates a partition of a triangulation T of the closed disc with
marked points Z ⊆ S1 into connected components. The arcs in T are drawn in grey, the
limit arcs of T are drawn in black. Limit points of Z are marked by bullets.

to a limit arc {a, b} of T such that x0,x1 ∈ [a, b] and y0, y1 ∈ [b, a].

Remark 2.3.25. For a given countable triangulation T with marked points Z ⊆ S1 the
limit arcs {a, b} of T partition the seed ΣT associated to T into connected components.
If a limit arc {a, b} of T is not an arc of Z (in particular this is always the case if Z
is discrete) then it divides ΣT into two mutually disconnected components. If the limit
arc {a, b} of T is an arc of Z, then it is an arc in T (because it cannot cross any arc of
T ) and it provides an additional connected component, consisting only of the arc {a, b}
itself. Figure 2.5 provides an illustration of the partition of a triangulation into connected
components.

Lemma 2.3.26. Let T be a countable triangulation of the closed disc with marked points
Z ⊆ S1 and let ΣT be the associated seed. Then the rooted cluster algebra A(ΣT ) is
isomorphic to a coproduct of connected rooted cluster algebras associated to countable
triangulations of the closed disc.

Proof. The limit arcs of T partition the seed ΣT associated to T into countably many
(since T is countable) connected components {ΣTi}i∈I for some countable index set I.
Thus by the discussion in Section 2.3.4 the rooted cluster algebra A(ΣT ) is isomorphic
to the countable coproduct ∐i∈I A(ΣTi).

2.3.5 Isomorphisms of rooted cluster algebras

An isomorphism of rooted cluster algebras implies a close combinatorial relation between
their initial seeds. First, we introduce some useful terminology.

Let Σ = (X, ex,B) be a seed. We say that two cluster variables x, y ∈ X are connected
by exchangeable variables in Σ if there exists a path x0,x1, . . . ,xl of finite length l ≥ 0
in Σ (see Definition 2.3.19), such that x = x0, y = xl, and x1, . . . ,xl−1 lie in ex. Further,
if l ∈ {0, 1} then at least one of x0 and xl has to lie in ex. Thus, two coefficients that
are neighbours are not necessarily connected by exchangeable variables and a coefficient
is not necessarily connected to itself by exchangeable variables. For an exchangeable
variable x ∈ ex we define the exchangeably connected component of x in Σ to be the full
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subseed Σex
x = (Xex

x , ex∩Xex
x ,Bx = (bvw)v,w∈Xexx ) of Σ where

Xex
x = {y ∈ X | x and y are connected by exchangeable variables in Σ}.

Partitioning a seed into its exchangeably connected components can be useful when
studying mutations of a seed; mutations within an exchangeably connected component
leave all other exchangeably connected components unchanged.

Remark 2.3.27. We can decompose any seed Σ = (X, ex,B) into its exchangeably con-
nected components {Σj = (Xj, exj,Bj = (bjvw)v,w∈Xj)}j∈I , where I is a countable index set
and ex = tj∈I exj. Mutation along a Σj-admissible sequence leaves all other exchange-
ably connected components unchanged (up to entries of the exchange matrix labelled by
coefficients), i.e. if (x1, . . . ,xl) is a Σi-admissible sequence and y ∈ exj with i 6= j ∈ I we
have

(µxl ◦ . . . ◦ µx1(Σ))y = (Xj, exj, B̃j = (b̃jvw)v,w∈Xj),

where b̃jvw = bjvw for all v,w ∈ exj. This follows directly from the fact that mutation at an
exchangeable variable x of Σ only affects entries in the exchange matrix that are labelled
by neighbours of x in Σ. No entries that are labelled by exchangeable variables of any
other exchangeably connected component are affected.

In particular, the same holds true for connected components rather than just ex-
changeably connected components: Mutation in one connected component does not af-
fect any other connected component, since two cluster variables in different connected
components are necessarily in different exchangeably connected components.

Definition 2.3.28. We call two seeds Σ = (X, ex,B = (bvw)v,w∈X) and Σ′ = (X′, ex′,B′ =
(b′vw)v,w∈X′) similar, if there exists a bijection ϕ : X → X′ restricting to a bijection
ϕ : ex → ex′ such that for every exchangeable variable x ∈ X the exchangeably con-
nected component Σex

x of x in Σ is isomorphic (cf. Definition 2.2.1) to the exchangeably
connected component Σex

ϕ(x) of ϕ(x) in Σ′ or to its opposite seed (Σex
ϕ(x))op.

Example 2.3.29. Consider the seeds

Σ1 = ({x1,x2,x3,x4,x5,x6}, {x1,x2,x4,x5}, x1 x2 x3 x4 x5

x6

),

Σ2 = ({y1, y2, y3, y4, y5, y6}, {y1, y2, y4, y5}, y1 y2 y3 y4 y5

y6

)

and

Σ3 = ({z1, z2, z3, z4, z5, z6}, {z1, z2, z4, z5}, z1 z2 z3 z4 z5

z6

).
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Each of the three seeds consists of two distinct exchangeably connected components,
which for Σ1 are the full subseeds

(Σ1)exx1 = ({x1,x2,x3}, {x1,x2}, x1 x2 x3 )

and

(Σ1)exx4 = ({x3,x4,x5,x6}, {x4,x5}, x3 x4 x5

x6

).

Similarly, we can determine the two distinct exchangeably connected components of Σ2

and Σ3 and we see that Σ1 and Σ2 are similar ((Σ1)exx1
∼= (Σ2)exy1 and (Σ1)exx4

∼= ((Σ2)exy4 )op),
but neither is similar to Σ3: There is no exchangeably connected component of Σ2 nor of
Σ3 that is isomorphic to (Σ3)exz1 or ((Σ3)exz1 )op.

Theorem 2.3.30. The rooted cluster algebras A(Σ) and A(Σ′) are isomorphic if and
only if their initial seeds Σ and Σ′ are similar.

This statement can be derived from [ADS, Section 3]. However, we consider the case
where a seed might consist of several exchangeably connected components, so for the
convenience of the reader we give a short proof.

Proof. Let Σ = (X, ex,B = (bvw)v,w∈X) and Σ′ = (X′, ex′,B′ = (b′vw)v,w∈X′) be similar via
a bijection ϕ : X → X′. It involves some calculations to check that ϕ induces a rooted
cluster morphism; in the interest of not giving a rather technical argument twice, we
refer to a result that will be proved in Section 2.3.6: In Theorem 2.3.37 we give three
necessary and sufficient conditions for a map between clusters of seeds to give rise to a
rooted cluster morphism. It is straightforward to check that ϕ satisfies all of these: Since
it is a bijection restricting to a bijection from ex to ex′ it satisfies conditions (1) and
(2). It satisfies condition (3) because for every two exchangeable cluster variables x and
y in the same exchangeably connected component of Σ we have b′ϕ(x)w′ = bxϕ−1(w′) and
b′ϕ(y)w′ = byϕ−1(w′) or b′ϕ(x)w′ = −bxϕ−1(w′) and b′ϕ(y)w′ = −byϕ−1(w′) for all w′ ∈ X′ . Thus it
induces a rooted cluster morphism f : A(Σ)→ A(Σ′). For the same reasons, the inverse
ϕ−1 : X′ → X induces a rooted cluster morphism g : A(Σ′)→ A(Σ). It remains to check
that f and g are mutual inverses as rooted cluster morphisms.

Let x be a cluster variable in A(Σ). It is of the form x = µxl ◦ . . . ◦ µx1(y) for some
y ∈ X and a Σ-admissible sequence (x1, . . . ,xl). By induction on the length l of the
admissible sequence, we show that g ◦ f(x) = x and thus g ◦ f is the identity on A(Σ):
If l = 0 we have g ◦ f(x) = ϕ−1 ◦ϕ(x) = x. If g ◦ f is the identity on all cluster variables
which can be written as a mutation along a Σ-admissible sequence of length l − 1, then
in particular g ◦ f(µxl−1◦...◦µx1

(y)) = µxl−1 ◦ . . . ◦µx1(y) and g ◦ f(xl) = xl and (x1, . . . ,xl)
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is (g ◦ f , Σ, Σ)-biadmissible. Thus by axiom CM3 for g ◦ f we have

g ◦ f(x) = µg◦f(xl) ◦ . . . ◦ µg◦f(x1)(g ◦ f(y))
= µxl ◦ µg◦f(xl−1) ◦ . . . ◦ µg◦f(x1)(g ◦ f(y))
= µxl(g ◦ f(µxl ◦ . . . ◦ µx1(y)))
= µxl ◦ . . . ◦ µx1(y) = x.

The argument for f ◦ g being the identity on A(Σ′) is symmetric and thus f is a rooted
cluster isomorphism.

On the other hand, if f : A(Σ) → A(Σ′) is a rooted cluster isomorphism then by
[ADS, Corollary 3.2] it induces a bijection ϕ : X → X′. By condition (3) of Theorem
2.3.37 it follows that Σ and Σ′ are similar under this bijection.

Two rooted cluster algebras with mutation equivalent initial seeds are in general not
isomorphic in Clus.

Example 2.3.31. Consider the seed

Σ = ({x1,x2,x3}, {x1,x2,x3}, x1 x2 x3 )

and its mutation at x1

Σ′ := µx1(Σ) = ({x′1 = x2 + 1
x1

,x2,x3}, {x′1,x2,x3}, x′1 x2 x3 ).

The seeds Σ and Σ′ are not similar, thus the associated cluster algebras A(Σ) and A(Σ′)
are not isomorphic. Indeed, if f : A(Σ) → A(Σ′) were an isomorphism of rooted cluster
algebras, then it would be an isomorphism of rings with f({x1,x2,x3}) = {x′1,x2,x3}.
Thus we would have f(xi) = x2 for some i ∈ {1, 2, 3}. To avoid confusion, denote
mutation of the seed Σ by µΣ and mutation of the seed Σ′ by µΣ′ . We have

f(µΣ
xi

(xi)) =


f(x2)+1
f(x1) = f(x2)+1

x2
, if i = 1

f(x1)f(x3)+1
f(x2) = f(x1)f(x3)+1

x2
, if i = 2

f(x2)+1
f(x3) = f(x2)+1

x2
, if i = 3

none of which can be equal to
µΣ′
x2(x2) = x′1 + x3

x2
.

So f does not satisfy axiom CM3.

2.3.6 Rooted cluster morphisms without specializations

The definition of rooted cluster morphisms (see Definition 2.3.2) allows cluster variables
to be sent to integers. Sending a cluster variable to an integer is called a specialization.
Given the seeds Σ = (X, ex,B) and Σ′ = (X′, ex′,B′) we call a rooted cluster morphism
f : A(Σ)→ A(Σ′) a rooted cluster morphism without specializations, if f(X) ⊆ X′, i.e. if
all cluster variables get sent to cluster variables.
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Lemma 2.3.32. Let f : A(Σ)→ A(Σ′) be a rooted cluster morphism without specializa-
tions. Then every Σ-admissible sequence is (f , Σ, Σ′)-biadmissible.

Proof. We prove the claim by induction on the length l of a Σ-admissible sequence. It is
satisfied trivially for sequences of length l = 0 . Assume now that it is satisfied for all
Σ-admissible sequences of lengths at most l ≥ 0 and let (x1, . . . ,xl+1) be a Σ-admissible
sequence of length l + 1. By Definition 2.2.15 we have xl+1 = µxl ◦ . . . ◦ µx1(y) for some
y ∈ ex and thus – because, by induction hypothesis, (x1, . . . ,xl) is (f , Σ, Σ′)-biadmissible
– f(xl+1) = f(µxl ◦ . . . ◦ µx1(y)) = µf(xl) ◦ . . . ◦ µf(x1)(f(y)) by axiom CM3. By axiom
CM2 f(y) ∈ ex′ so we have f(xl+1) ∈ µf(xl) ◦ . . . ◦ µf(x1)(ex′) and thus (x1, . . . ,xl+1) is
(f , Σ, Σ′)-biadmissible.

Lemma 2.3.32 helps us to further understand ideal rooted cluster morphisms (see
Definition 2.3.15): In [ADS, Problem 2.12], Assem, Dupont and Schiffler asked for a
classification of ideal rooted cluster morphisms. We provide a partial answer via the
following consequence.

Proposition 2.3.33. Every rooted cluster morphism without specializations is ideal.

Proof. Let Σ = (X, ex,B) and Σ′ = (X′, ex′,B′) be seeds and let f : A(Σ) → A(Σ′) be
a rooted cluster morphism without specializations. Every element of f(A(Σ)) can be
written as an integer polynomial in the images of cluster variables of A(Σ). A cluster
variable x ∈ A(Σ) is of the form x = µxl ◦ . . . ◦ µx1(y) for y ∈ X and a Σ-admissible
sequence (x1, . . . ,xl). Because f is without specializations we have f(y) ∈ X′ and by
Lemma 2.3.32 (f(x1), . . . , f(xl)) is Σ′-admissible. By axiom CM3 we obtain f(x) =
µf(xl) ◦ . . . ◦ µf(x1)(f(y)). This is an element of A(f(Σ)) and thus f(A(Σ)) ⊆ A(f(Σ)).
The other inclusion always holds and was proved in [ADS, Lemma 2.1].

Generally, if we have a rooted cluster morphism f : A(Σ)→ A(Σ′) the combinatorial
structures of the two seeds Σ and Σ′ are linked via those exchangeable cluster variables
in the cluster of Σ that do not get sent to integers. This provides a particularly strong
combinatorial link between two rooted cluster algebras A(Σ) and A(Σ′) for which there
exists a rooted cluster morphism f : A(Σ)→ A(Σ′) without specializations.

Lemma 2.3.34. Let Σ = (X, ex,B = (bvw)v,w∈X) and Σ′ = (X′, ex′,B′ = (b′v′w′)v′,w′∈X′)
be seeds and let f : A(Σ) → A(Σ′) be a rooted cluster morphism. Let x ∈ ex be an ex-
changeable variable of Σ with f(x) ∈ ex′. Consider the exchangeably connected component

f(Σ)exf(x) = (f(X)exf(x) ∩ X′, f(ex)exf(x) ∩ ex′, (b′vw)v,w∈f(X)ex
f(x)∩X′)

of f(x) in the full subseed f(Σ) ⊆ Σ′. Then we have

b′f(y)v′ =
∑

v∈X: f(v)=v′
byv for all f(y) ∈ f(ex)exf(x) ∩ ex′ and all v′ ∈ X′ or

b′f(y)v′ = −
∑

v∈X: f(v)=v′
byv for all f(y) ∈ f(ex)exf(x) ∩ ex′ and all v′ ∈ X′,
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where the empty sum is taken to be 0. In particular, if x, y ∈ ex with f(x), f(y) ∈ ex′,
then we have b′f(x)f(y) = ±bxy.

Before we give the proof for Lemma 2.3.34, we want to explore its meaning in more
detail by visualizing the statement for skew-symmetric rooted cluster algebras. Let Σ =
(X, ex,Q) and Σ′ = (X′, ex′,Q′) be skew-symmetric seeds with their combinatorial data
encoded in the quivers Q, respectively Q′, and let f : A(Σ)→ A(Σ′) be a rooted cluster
morphism. Then Lemma 2.3.34 implies that for every x ∈ ex with f(x) ∈ ex′ one of the
following two holds:

• The arrows incident with x “are invariant under f”, i.e. the number of arrows
starting (respectively ending) in x as a vertex of Q is equal to the number of arrows
starting (respectively ending) in f(x) as a vertex of Q′.

• The arrows incident with x “change direction under f”, i.e. the number of arrows
starting (respectively ending) in x as a vertex of Q is equal to the number of arrows
ending (respectively starting) in f(x) as a vertex of Q′.

Furthermore, for every y ∈ ex whose image f(y) lies in the same exchangeably connected
component of the image seed f(Σ) as f(x), the arrows incident with y are invariant under
f if and only if the arrows incident with x are, and equivalently, the arrows incident with
y change direction under f if and only if the arrows incident with x do. We now prove
Lemma 2.3.34.

Proof. Let X̃ = {x ∈ X | f(x) ∈ X′} be the set of cluster variables in X that get
mapped to cluster variables in X′ and let x ∈ X̃ ∩ ex with f(x) = x′. Because f is a ring
homomorphism we have

f(µx(x)x) =f
 ∏
v∈X: bxv>0

vbxv +
∏

v∈X: bxv<0
v−bxv


=k1

∏
v∈X̃ : bxv>0

f(v)bxv + k2
∏

v∈X̃ : bxv<0

f(v)−bxv

for some k1, k2 ∈ Z. By axiom CM3 this has to be equal to

µf(x)(f(x))f(x) = µx′(x′)x′ =
∏

v′∈X′ : b′
x′v′>0

(v′)b′x′v′ +
∏

v′∈X′ : b′
x′v′<0

(v′)−b′x′v′ .

We set

M1 =
∏

v∈X̃ : bxv>0

f(v)bxv M2 =
∏

v∈X̃ : bxv<0

f(v)−bxv

M ′
1 =

∏
v′∈X′ : b′

x′v′>0
(v′)b′x′v′ M ′

2 =
∏

v′∈X′ : b′
x′v′<0

(v′)−b′x′v′ ,

and thus have k1M1 + k2M2 = M ′
1 + M ′

2, where M1,M2,M ′
1 and M ′

2 are non-zero monic
monomials in X′ over Z. Assume first that bx′v′ = 0 for all v′ ∈ X′. Then we have
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M ′
1 = M ′

2 = 1, which implies k1M1 + k2M2 = 2 and by algebraic independence of
variables in X′ we have M1 = M2 = 1. Therefore we have bxv = 0 for all v ∈ X̃ and in
particular for all v′ ∈ X′ we have 0 = b′x′v′ = ∑

f(v)=v′ bxv = 0. Assume now that there
exists a z′ ∈ X′ with b′x′z′ 6= 0. Without loss of generality we may assume b′x′z′ > 0. Then
z′ divides M ′

1. Since z′ does not divide M ′
2, and M ′

1,M ′
2 6= 0, by algebraic independence

of variables in X′ either z divides M1 or z divides M2. If z divides M1, by comparing
coefficients of z′ we obtain k1M1 = M ′

1 and k2M2 = M ′
2 and if z divides M2 we obtain

k1M1 = M ′
2 and k2M2 = M ′

1. Either way, since M ′
1 and M ′

2 are monic, we get

k1 = k2 = 1 (2.2)

and the first case implies

b′f(x)v′ = b′x′v′ =
∑

v∈X: f(v)=v′
bxv,

for all v′ ∈ X′ and the second case implies

b′f(x)v′ = b′x′v′ = −
∑

v∈X: f(v)=v′
bxv

for all v′ ∈ X′. In particular, if x, y ∈ ex∩X̃ then by Proposition 2.3.9 we have b′f(x)f(y) =
±bxy.

Let now x, y ∈ X̃ ∩ ex be cluster variables such that their images f(x) and f(y) are
cluster variables in the same exchangeably connected component of f(Σ) and let them
be connected by the path f(x) = f(x0), f(x1), . . . , f(xl) = f(y) with x1, . . . ,xl−1 ∈ ex.
Assume that we have

b′f(x)v′ =
∑

v∈X: f(v)=v′
bxv

for all v′ ∈ X′, i.e. no signs occur. By the above argument, this is the case if and only if
b′f(x)f(x1) = bxx1 . Iteratively applying the same argument to xi for i = 0, . . . , l − 1, yields
that this holds if and only if b′f(xi)f(xi+1) = bxixi+1 for all 0 ≤ i < l; in particular if and
only if b′f(xl−1)f(y) = bxl−1y, which holds if and only if

b′f(y)v′ =
∑

v∈X: f(v)=v′
byv

for all v′ ∈ X′. This proves the claim.

Remark 2.3.35. The proof of Lemma 2.3.34 also tells us something about specializations of
cluster variables. If Σ = (X, ex,B) and Σ′ = (X′, ex′,B) are seeds and f : A(Σ)→ A(Σ′)
is a rooted cluster morphism, then for an x ∈ ex with f(x) ∈ ex′ the following holds:
If f(x) has at least one neighbour in f(Σ), i.e. if it is not its own connected component
in f(Σ), then all neighbours of x in Σ that do not get mapped to cluster variables get
mapped into {±1}. This follows directly from Equation (2.2) in the proof.
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In the following, we want to characterize rooted cluster morphisms without special-
izations. Before we do that, we observe the following useful fact.

Remark 2.3.36. Let Σ = (X, ex,B) and Σ′ = (X′, ex′,B′) be seeds. Any map f : X→ X′

gives rise to a unique ring homomorphism f : A(Σ)→ FΣ′ , because all elements of the ring
A(Σ) are Laurent polynomials in X. Thus in particular every rooted cluster morphism
without specializations is uniquely determined by its values on the cluster of the initial
seed.

Theorem 2.3.37. Let Σ = (X, ex,B = (bvw)v,w∈X) and Σ′ = (X′, ex′,B′ = (b′vw)v,w∈X′)
be seeds and let f : X → X′ be a map. Then the algebraic extension of f to A(Σ) gives
rise to a rooted cluster morphism f : A(Σ)→ A(Σ′) if and only if the following hold:

(1) The map f restricts to an injection f |ex : ex→ ex′.

(2) If f(x) = f(y) for some x 6= y ∈ X then both x and y are coefficients of Σ. In
that case for any Σ-admissible sequence (x1, . . . ,xl), setting µxl ◦ . . . ◦ µx1(Σ) =:
(X̃, ẽx, B̃ = (b̃vw)v,w∈X̃), for any neighbour z ∈ ẽx of both x and y in Σ̃ the entries
b̃zx and b̃zy have the same sign.

(3) Let x ∈ ex and consider the exchangeably connected component

f(Σ)exf(x) = (f(X)exf(x), f(ex)exf(x), (b′vw)v,w∈f(X)ex
f(x)

)

of f(x) in the full subseed f(Σ) ⊆ Σ′. Then we have

b′f(y)v′ =
∑

v∈X: f(v)=v′
byv for all f(y) ∈ f(ex)exf(x) and all v′ ∈ X′ or

b′f(y)v′ = −
∑

v∈X: f(v)=v′
byv for all f(y) ∈ f(ex)exf(x) and all v′ ∈ X′,

where the empty sum is taken to be 0.

Remark 2.3.38. Condition (2) of Theorem 2.3.37 is not always easy to check for two given
seeds Σ = (X, ex,B) and Σ′ = (X′, ex′,B′) and a map f : X → X′. However, it is useful
for checking when such a map does not induce a rooted cluster morphism. On the other
hand, if for all x, y ∈ X \ ex with f(x) = f(y) we have bxv = byv for all v ∈ ex then it is
straightforward to check using the definition of matrix mutation in Definition 2.2.13 that
condition (2) is satisfied.

Proof. Assume first that the map f extends to a rooted cluster morphism. By axiom CM2
and Proposition 2.3.9 point (1) holds. By Lemma 2.3.32 every Σ-admissible sequence is
(f , Σ, Σ′)-biadmissible and thus by Corollary 2.3.10 point (2) holds. By Lemma 2.3.34
point (3) is satisfied.
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Assume, on the other hand, that f : X→ X′ is a map satisfying conditions (1) to (3).
By Remark 2.3.36, it gives rise to a unique ring homomorphism f : A(Σ) → FΣ′ . This
ring homomorphism satisfies axioms CM1 and CM2 by definition and condition (1). It
remains to check axiom CM3 and that the image f(A(Σ)) is contained in A(Σ′).

We show the following points for every Σ-admissible sequence (x1, . . . ,xl) by induction
on the length l.

(a) The sequence (x1, . . . ,xl) is (f , Σ, Σ′)-biadmissible.

(b) For any y ∈ X we have

f(µxl ◦ . . . ◦ µx1(y)) = µf(xl) ◦ . . . ◦ µf(x1)(f(y)).

(c) Set
µxl ◦ . . . µx1(Σ) =: Σ̃ = (X̃, ẽx, B̃ = (b̃vw)v,w∈X̃)

to be the mutation of the seed Σ along (x1, . . . ,xl) and

µf(xl) ◦ . . . µf(x1)(Σ′) =: Σ̃′ = (X̃′, ẽx′, B̃′ = (b̃′vw)v,w∈X̃′)

to be the mutation of Σ′ along (f(x1), . . . , f(xl)). If f(x) = f(y) for some x 6= y ∈
X̃, then both x and y are coefficients of Σ̃. (This is equivalent to saying that for
any x ∈ ẽx and any y ∈ X̃ with x 6= y we have f(x) 6= f(y).)

(d) For every v ∈ ẽx we have

b̃′f(y)v′ =
∑

v∈X̃ : f(v)=v′
b̃yv for all v′ ∈ X̃′ or

b̃′f(y)v′ =−
∑

v∈X̃ : f(v)=v′
b̃yv for all v′ ∈ X̃′,

and for all y ∈ ẽx such that f(x) and f(y) lie in the same exchangeably connected
component of f(Σ̃) we have

b̃′f(x)v′ =
∑

v∈X̃ : f(v)=v′
b̃xv

for all v′ ∈ X̃′ if and only if

b̃′f(y)v′ =
∑

v∈X̃ : f(v)=v′
b̃yv

for all v′ ∈ X̃′.

If these conditions are satisfied for every Σ-admissible sequence (x1, . . . ,xl), then by
condition (b) axiom CM3 is satisfied and by conditions (a) and (b) the image of A(Σ)
under the algebraic extension of f lies in A(Σ′). Conditions (c) and (d) are used to help
prove conditions (a) and (b).
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We check conditions (a) to (d) for arbitrary Σ-admissible sequences by induction on
their length l. For a Σ-admissible sequence of length l = 0 conditions (a) and (b) are
satisfied trivially, condition (c) is satisfied by condition (2) and condition (d) is satisfied
by condition (3). Assume now that they are satisfied for all Σ-admissible sequences of
length ≤ l and let (x1, . . . ,xl+1) be a Σ-admissible sequence of length l + 1. We set

µxl ◦ . . . µx1(Σ) =: Σ̃ = (X̃, ẽx, B̃ = (b̃vw)v,w∈X̃)

and
µf(xl) ◦ . . . µf(x1)(Σ′) =: Σ̃′ = (X̃′, ẽx′, B̃′ = (b̃′vw)v,w∈X̃′)

as above.

(a) We have xl+1 = µxl ◦ . . . ◦ µx1(y) for some y ∈ ex and thus f(xl+1) = f(µxl ◦ . . . ◦
µx1(y)) = µf(xl) ◦ . . . ◦ µf(x1)(f(y)) by induction assumption (b) on the sequence
(x1, . . . ,xl). By condition (1) we have f(y) ∈ ex′ and thus f(xl+1) ∈ µf(xl) ◦ . . . ◦
µf(x1)(ex′) and (x1, . . . ,xl+1) is (f , Σ, Σ′)-biadmissible.

(b) Let y ∈ X. We have µxl ◦ . . . ◦ µx1(y) ∈ X̃ and xl+1 ∈ ẽx. If we have xl+1 6=
µxl ◦ . . . ◦ µx1(y) this implies

f(µxl ◦ . . . ◦ µx1(y)) 6= f(xl+1)

by induction assumption (c). In this case mutation at xl+1, respectively at f(xl+1)
acts trivially on µxl ◦ . . . ◦ µx1(y), respectively on µf(xl) ◦ . . . ◦ µf(x1)(f(y)) and we
obtain

f(µxl+1 ◦ . . . ◦ µx1(y)) = f(µxl ◦ . . . ◦ µx1(y))
= µf(xl) ◦ . . . ◦ µf(x1)(f(y))
= µf(xl+1) ◦ . . . ◦ µf(x1)(f(y)),

where the second equality follows from induction assumption (b) on the sequence
(x1, . . . ,xl). If, on the other hand, xl+1 = µxl ◦ . . . ◦ µx1(y) then we have

f(µxl+1 ◦ . . . ◦ µx1(y)) =

∏
v∈X̃:b̃xl+1v>0

f(v)b̃xl+1v + ∏
v∈X̃:b̃xl+1v<0

f(v)−b̃xl+1v

f(xl+1) . (2.3)

By induction assumption (d) we have

b̃′f(xl+1)v′ =
∑

v∈X̃ : f(v)=v′
b̃xl+1v for all v′ ∈ X̃′ or

b̃′f(xl+1)v′ =−
∑

v∈X̃ : f(v)=v′
b̃xl+1v for all v′ ∈ X̃′.
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Without loss of generality, assume that the first equation holds (otherwise we can
simply change the signs below accordingly). By condition (2), for any v′ ∈ X̃′ all
non-trivial summands in ∑

v∈X̃ : f(v)=v′
b̃xl+1v

have the same sign. Therefore for any v′ ∈ X̃′, we have b̃f(xl+1)v′ ≥ 0 if and only if
b̃xl+1v ≥ 0 for all v ∈ X with f(v) = v′, and b̃f(xl+1)v′ = 0 if and only if b̃xl+1v = 0
for all v ∈ X̃ with f(v) = v′. We get

∏
v′∈X̃′:b̃′

f(xl+1)v′>0

(v′)b̃
′
f(xl+1)v′ =

∏
v′∈X̃′:b̃′

f(xl+1)v′>0

(v′)
(

∑
v∈X̃ : f(v)=v′

b̃xl+1v)

=
∏

v∈X̃:b̃xl+1v>0

f(v)b̃xl+1v

and the analogous statement for the product over v′ ∈ X̃′ with b̃′f(xl+1)v′ < 0.
Substituting into Equation (2.3) we obtain

f(µxl+1 ◦ . . . ◦ µx1(y)) =

∏
v′∈X̃′:b̃′

f(xl+1)v′>0
(v′)b̃

′
f(xl+1)v′ + ∏

v′∈X̃′:b̃′
f(xl+1)v′<0

(v′)−b̃
′
f(xl+1)v′

f(xl+1) ,

which by definition of mutation is equal to

µf(xl+1)(f(xl+1)) = µf(xl+1)(f(µxl ◦ . . . ◦ µx1(y))).

By induction assumption (b) we obtain

f(µxl+1 ◦ . . . ◦ µx1(y)) = µf(xl+1) ◦ . . . ◦ µf(x1)(f(y)).

(c) Let now x ∈ µxl+1(ẽx) and y ∈ µxl+1(X̃) with x 6= y. We want to show that
f(x) 6= f(y). We have x = µxl+1(x̃) and y = µxl+1(ỹ) for some x̃ ∈ ẽx and ỹ ∈ X̃
with x̃ 6= ỹ. If both x̃ 6= xl+1 and ỹ 6= xl+1, then x = x̃ ∈ ẽx and y = ỹ ∈ X̃ and
by induction assumption (c) we have f(x) 6= f(y). Thus assume without loss of
generality that x̃ = xl+1 and ỹ 6= xl+1. Then we have

f(x)f(xl+1) = f(µxl+1(xl+1))f(xl+1)

=
∏

v∈X̃:b̃xl+1v>0

f(v)b̃xl+1v +
∏

v∈X̃:b̃xl+1v<0

f(v)−b̃xl+1v

and thus f(x) divides the right hand side of the equation. On the other hand, we
have f(y) = f(µxl+1(ỹ)) = f(ỹ) ∈ X̃′. Assume for a contradiction that f(x) = f(y).
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In particular, this implies f(x) ∈ X̃′. By algebraic independence of the elements of
X̃′, f(x) must divide both ∏

v∈X̃:b̃xl+1v>0

f(v)b̃xl+1v

and ∏
v∈X̃:b̃xl+1v<0

f(v)−b̃xl+1v .

This would mean that there exist v 6= w ∈ X̃ with f(v) = f(w) and such that
b̃xl+1v > 0 and b̃xl+1w < 0, which contradicts condition (2). Thus we have f(x) 6=
f(y).

(d) Set now
µxl+1(B̃) =: B = (βvw)v,w∈µxl+1 (X̃)

and
µf(xl+1)(B̃′) =: B′ = (β′vw)v,w∈µf(xl+1)(X̃′).

Fix v = µxl+1(ṽ) ∈ µxl+1(ẽx). By definition of matrix mutation (Definition 2.2.13),
for all w = µxl+1(w̃) ∈ µxl+1(X̃) we have

βvw = µxl+1(b̃ṽw̃) =

−b̃ṽw̃, if ṽ = xl+1 or w̃ = xl+1

b̃ṽw̃ + 1
2(|b̃ṽxl+1|b̃xl+1w̃ + b̃ṽxl+1|b̃xl+1w̃|), else.

We have shown that condition (b) holds for the sequence (x1, . . . ,xl+1) and thus we
have f(v) = µf(xl+1)(f(ṽ)). Thus for every w′ = µf(xl+1)(w̃′) ∈ µf(xl+1)(X̃

′) we have

β′f(v)w′ = µf(xl+1)(b̃′f(ṽ)w̃′) =


−b̃′f(ṽ)w̃′ , if f(ṽ) = f(xl+1) or w̃′ = f(xl+1)
b̃′f(ṽ)w̃′ + 1

2(|b̃′f(ṽ)f(xl+1)|b̃′f(xl+1)w̃′ + b̃′f(ṽ)f(xl+1)|b̃′f(xl+1)w̃′|),
else.

By induction assumption (d) we have

b̃′f(ṽ)ũ′ = ±
∑

ũ∈X̃ : f(ũ)=ũ′
b̃ṽũ and b̃′f(xl+1)ũ′ = ±

∑
ũ∈X̃ : f(ũ)=ũ′

b̃xl+1ũ

for all ũ′ ∈ X̃′ and the signs of the two sums are the same if f(ṽ) and f(xl+1) are
connected by a path of variables in f(ẽx), hence in particular if b̃′f(v)f(xl+1) 6= 0. Note
further that since ṽ ∈ ẽx we have b̃′f(ṽ)f(xl+1) = ±b̃ṽxl+1 by induction assumption (d)
and f(ṽ) = f(xl+1) if and only if ṽ = xl+1 by assumption (c). Setting

Sf(xl+1) :=
∑

w̃∈X̃ : f(w̃)=w̃′
b̃xl+1w̃
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we obtain

β′f(v)w′ =


−(± ∑

w̃∈X̃ : f(w̃)=w̃′
b̃ṽw̃), if ṽ = xl+1 or w̃′ = f(xl+1)

± ∑
w̃∈X̃ : f(w̃)=w̃′

b̃ṽw̃ + 1
2

(
|b̃ṽxl+1|(±Sf(xl+1))± b̃ṽxl+1 |Sf(xl+1)|

)
, else.

Pulling out the sum yields

β′f(v)w′ =



± ∑
w̃∈X̃ : f(w̃)=w̃′

(−b̃ṽw̃), if ṽ = xl+1

±(−b̃ṽxl+1), if w̃′ = f(xl+1)

± ∑
w̃∈X̃ : f(w̃)=w̃′

(
b̃ṽw̃ + 1

2

(
|b̃ṽxl+1|b̃xl+1w̃ + b̃ṽxl+1|b̃xl+1w̃|

))
, else.

=±
∑

w̃∈X̃ : f(w̃)=w̃′
µxl+1(b̃ṽw̃)

=±
∑

w∈µxl+1 (X̃) : f(w)=w′
βvw,

where the last equality holds because for w = µxl+1(w̃) by condition (b) we have

f(w) = f(µxl+1(w̃)) = µf(xl+1)(f(w̃)).

Thus for every w′ = µf(xl+1)(w̃′) we have f(w) = w′ = µf(xl+1)(w̃′) if and only if
f(w̃) = w̃′.

Observe that by definition of matrix mutation, if for x, y ∈ µxl+1(X) with x =
µxl+1(x̃) and y = µxl+1(ỹ) we have β′f(x)f(y) 6= 0, then we have b̃′f(x̃)f(ỹ) 6= 0
or both b̃′f(x̃)f(xl+1) 6= 0 and b̃′f(ỹ)f(xl+1) 6= 0. Therefore, if two variables f(x) =
µf(xl+1)(f(x̃)) ∈ f(µxl+1(X)) and f(y) = µf(xl+1)(f(ỹ)) ∈ f(µxl+1(X)) are exchange-
ably connected in f(µxl+1(Σ̃)), then f(x̃) and f(ỹ) are exchangeably connected in
f(Σ̃). Thus the signs of the sums in a given exchangeably connected component of
f(Σ) carry over from B̃′ to B′ and we obtain by induction assumption (d) that

β′f(x)u′ =
∑

u∈µxl+1 (X̃) : f(u)=u′
βxw

for all u′ ∈ µf(xl+1)(X̃
′) if and only if

β′f(y)u′ =
∑

u∈µxl+1 : f(u)=u′ (X̃)

βyw

for all u′ ∈ µf(xl+1)(X̃
′).

Remark 2.3.39. Theorem 2.3.37 implies that, for a rooted cluster morphism f : A(Σ) →
A(Σ′) without specializations, the full subseed (ex, ex, (bvw)v,w∈ex) of exchangeable vari-
ables of Σ = (X, ex,B = (bvw)v,w∈X) is similar to a full subseed of Σ′.
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Theorem 2.3.37 shows that rooted cluster morphisms without specializations are quite
restrictive. It is helpful to visualize this via skew-symmetric rooted cluster algebras where
the exchange matrices can be encoded in quivers. Let A(Σ) and A(Σ′) be skew-symmetric
rooted cluster algebras with initial seeds Σ = (X, ex,Q) and Σ′ = (X′, ex′,Q′), where
the exchange matrices are represented via the quivers Q and Q′ respectively, and let
f : A(Σ)→ A(Σ′) be a rooted cluster morphism without specializations. Two coefficients
x 6= y ∈ X \ ex may get sent to the same cluster variable if and only if there is no path in
Q of length two between x and y that passes through an exchangeable variable. In any
case, the number of arrows between f(x) ∈ f(ex) and f(y) ∈ f(X) in Q′ is equal to the
sum of the number of arrows between x and the preimages of y (where we do not worry
about the directions of the arrows). The following example highlights most interesting
features of rooted cluster morphisms without specializations: We may glue vertices to
images of coefficients and we may glue together coefficients of Σ while keeping track of all
the arrows that directly connect them to exchangeable variables. Furthermore, we can
always add or remove arrows between images of coefficients of Σ and we can turn any
coefficient into an exchangeable variable.

Example 2.3.40. Consider the seeds

Σ = (X = {x1,x2,x3,x4,x5,x6,x7}, {x1,x2,x3}, x1 x2

x5

x4

x3 x6

x7 )

and

Σ′ = (X′ = {y1, y2, y3, z1, z2, a}, {y1, y2, y3, a}, y1 y2 z1 y3 z2 a )

and the map f : {x1,x2,x3,x4,x5,x6,x7} → {y1, y2, y3, z1, z2, a} which maps

xi 7→ yi for i = 1, 2, 3
xi 7→ z1 for i = 4,5,7
x6 7→ z2.

We check that f satisfies conditions (1), (2) and (3) from Theorem 2.3.37. By defini-
tion of f , the restriction of f to the exchangeable variables of Σ is an injection that maps
into the exchangeable variables of Σ′, thus condition (1) is satisfied.

The variables x4,x5 and x7 all get mapped to the same variable, so we have to check
condition (2) for those. Firstly, they are all coefficients. Let now (x1, . . . ,xl) be a Σ-
admissible sequence and set Σ̃ = µxl ◦ . . . ◦µx1(Σ) with Σ̃ = (X̃, ẽx, Q̃). We have to check
that in Q̃ there are no paths of length 2 passing through an exchangeable vertex v ∈ ex
from any of x4,x5 and x7 to any of x4,x5 or x7 (i.e. no paths of the form xi → v → xj

for i, j ∈ {4, 5, 7}). Since x7 is its own connected component in Σ, and therefore also
in Σ̃, we have no arrow between x7 and any v ∈ ẽx in Q̃. Furthermore, we can check
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the condition for the two exchangeably connected components Σex
x1 = (Xex

x1 , exexx1 ,Qex
x1) and

Σex
x3 = (Xex

x3 , exexx3 ,Qex
x3) individually, by Remark 2.3.27. It is straightforward but tedious to

check that both Qex
x1 and Qex

x3 are mutation finite along Σx1-, respectively Σx3-admissible
sequences, with ten quivers in the mutation class of Qex

x1 and two quivers in the mutation
class of Qex

x3 and that the condition (2) holds for all of them.
Finally, we can see that in the exchangeably connected component f(X)exf(x1) of the

image seed f(Σ) (see Example 2.3.12) the number of arrows from f(x) ∈ f(ex) to f(y) ∈
f(X) is equal to the sum of arrows from x to the preimages of y and vice versa. In the
other exchangeably connected component f(X)exf(x3) of f(Σ), the number of arrows from
f(x) ∈ f(ex) to f(y) ∈ f(X) is equal to the sum of arrows from the preimages of y to x
and vice versa. Thus condition (3) is satisfied.

2.4 Rooted cluster algebras of infinite rank as colim-
its of rooted cluster algebras of finite rank

In this section, we show that every rooted cluster algebra of infinite rank can be written
as a linear colimit of rooted cluster algebras of finite rank. This yields a formal way to
manipulate cluster algebras of infinite rank by viewing them locally as cluster algebras
of finite rank.

2.4.1 Colimits and limits in Clus

We start by recalling the notion of limit and colimit. Let C and J be categories and let
F : J → C be a diagram of type J in the category C, i.e. a functor from J to C.

The limit lim(F ) of F (if it exists) is an object lim(F ) ∈ C together with a family
of morphisms fi : lim(F ) → F (i) in C indexed by the objects i ∈ J such that for any
morphism fij : i → j in J we have F (fij) ◦ fi = fj and lim(F ) is universal with this
property. That is, for any object C ∈ C with a family of morphisms gi : C → F (i) in C
for objects i ∈ J such that F (fij) ◦ gi = gj for all morphisms fij : i→ j in J there exists
a unique morphism h : C → lim(F ) such that the following diagram commutes.

C

h
��

gi

��

gj

��

lim(F )

fizz fj $$
F (i) F (fij) // F (j)

The dual notion of the limit of F is the colimit colim(F ) of F . If it exists, it is
an object colim(F ) ∈ C together with a family of morphisms fi : F (i) → colim(F ) in
C indexed by the objects i ∈ J such that for any morphism fij : i → j in J we have
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fj ◦ F (fij) = fi and for any object C ∈ C with a family of morphisms gi : F (i)→ C in C
for objects i ∈ J such that gj ◦F (fij) = gi for all morphisms fij : i→ j in J there exists
a unique morphism h : colim(F )→ C such that the following diagram commutes.

C

colim(F )
h

OO

F (i)

gi

CC

fi

99

F (fij) // F (j)

gj

\\

fj

ee

A limit lim(F ) or colimit colim(F ) is called finite, respectively infinite if the index
category J in the diagram F : J → C is finite, respectively infinite. It is called small if
the index category J in the diagram F : J → C is small. A category is called complete,
respectively cocomplete, if it has all small limits, respectively colimits.

Remark 2.4.1. Products are examples of limits. They are limits of diagrams F : J → C,
where J is a discrete category, i.e. a category with no morphisms except the identity
morphisms. Dually, coproducts are examples of colimits.

Coequalizers are examples for finite colimits. They are colimits of diagrams G : J →
C, where J is the category with two objects i1 and i2 and two parallel morphisms i1 ⇒ i2

in addition to the identity morphisms. Dually, equalizers are examples of finite limits.
In fact, these are rather important examples as having equalizers and small products is

necessary and sufficient for a category to be complete, and dually a category is cocomplete
if and only if it has coequalizers and small coproducts, see for example Mac Lane’s book
[ML, Chapter V].

Theorem 2.4.2. The category Clus is neither complete nor cocomplete.

Proof. If the category Clus were complete, then finite products would exist, cf. Remark
2.4.1. However, by [ADS, Proposition 5.4], the category Clus does not admit finite
products, hence it cannot be complete.

Furthermore, if Clus were cocomplete then coequalizers would exist. However, con-
sider the seeds

Σ0 = ({x0,x1}, {x0,x1},x0 → x1) and Σ1 = ({y0, y1}, {y0, y1}, y0 → y1)

and the parallel rooted cluster isomorphisms defined by the algebraic extensions of

f :

A(Σ0)→ A(Σ1)
xi 7→ yi for i = 0, 1

and g :

A(Σ0)→ A(Σ1)
xi 7→ y1−i for i = 0, 1.

Assume for a contradiction that there exists a coequalizer for f and g, i.e. a rooted
cluster algebra A(Σ) with initial seed Σ = (X, ex,B) with a rooted cluster morphism
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ϕ : A(Σ1)→ A(Σ) such that ϕ ◦ f = ϕ ◦ g and it is universal with this property. Because
ϕ is a rooted cluster morphism and ϕ ◦ f = ϕ ◦ g we have ϕ(y0) = ϕ(y1) ∈ ex∪Z. By
Proposition 2.3.9 two distinct exchangeable variables of Σ1 cannot be sent to the same
exchangeable variable via a rooted cluster morphism. Thus we must have ϕ(y0) = ϕ(y1) ∈
Z. Consider the empty seed Σ∅ = (∅, ∅, ∅). As a ring, we have A(Σ∅) ∼= Z. Consider the
rooted cluster morphisms ψ1 : A(Σ1)→ A(Σ∅), defined by sending all cluster variables in
A(Σ1) to 0, and ψ2 : A(Σ1)→ A(Σ∅) defined by evaluating both y0 and y1 at 1. Because
a rooted cluster morphism is a ring homomorphism between unital rings, any rooted
cluster morphism from A(Σ) to A(Σ∅) acts as the identity on the subring Z. Thus, if
ϕ(y0) = ϕ(y1) 6= 0, then ψ1 does not factor through ϕ and if ϕ(y0) = ϕ(y1) = 0, then ψ2

does not factor through ϕ. Therefore there exists no coequalizer for f and g and Clus is
not cocomplete.

2.4.2 Rooted cluster algebras of infinite rank as colimits

Even though colimits do not in general exist in Clus, we can show that there are sufficient
colimits such that every rooted cluster algebra of infinite rank is isomorphic to a colimit
of rooted cluster algebras of finite rank. More precisely, we can write them as linear
colimits. A colimit colim(F ) in a category C is called linear, if the index category J of
the diagram F : J → C is a set endowed with a linear order viewed as a category. A
diagram F : J → C where J is endowed with a linear order ≤ is just a linear system of
objects in C, that is a family of objects {Ci}i∈J and a family of morphisms {fij}i≤j∈J
such that fjk ◦ fij = fik and fii = idCi for all i ≤ j ≤ k in J . In order to explicitly
construct a suitable linear system of rooted cluster algebras of finite rank, we use the fact
that in certain nice cases inclusions of subseeds give rise to rooted cluster morphisms.

In general, if Σ is a full subseed of Σ′ (see Definition 2.3.13), the natural inclusion of
rings A(Σ) → FΣ′ does not give rise to a rooted cluster morphism A(Σ) → A(Σ′), see
[ADS, Remark 4.10]. However, we can fix this with an additional condition which has to
do with how the subseed is connected to the bigger seed.

Definition 2.4.3. Let Σ′ = (X′, ex′,B′) be a seed with a full subseed Σ = (X, ex,B =
(bvw)v,w∈X) such that for every x ∈ X with a neighbour y ∈ X′ \X in Σ′ we have x ∈ X \ ex,
i.e. x is a coefficient of Σ. Then we say that Σ and Σ′ are connected only by coefficients
of Σ.

Example 2.4.4. Consider the seed

Σ′ = (X′ = {x1,x2,x3,x4,x5,x6}, {x1,x2,x3,x5}, x1 x2

x5

x4

x3 x6

)
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and its full subseed

Σ1 = (X1 = {x1,x2,x4,x5}, {x1,x2}, x1 x2

x5

x4 ).

The seeds Σ1 and Σ′ are only connected by coefficients of Σ1: The only elements of X1

which have neighbours belonging to X′ \X1 in Σ′ are x4 and x5 (they have both the
neighbour x3), and both x4 and x5 are coefficients of Σ1. Consider now the full subseed

Σ2 = (X2 = {x1,x2}, {x1,x2}, x1 x2 )

of Σ′. The seeds Σ2 and Σ′ are not connected only by coefficients of Σ2: The element
x2 ∈ X2 is an exchangeable variable of Σ2 and it has neighbours x4 and x5 in Σ′.

The condition of being connected only by coefficients is transitive.

Lemma 2.4.5. If Σ = (X, ex,B) is a full subseed of Σ′ = (X′, ex′,B′) and Σ′ is a full
subseed of Σ′′ = (X′′, ex′′,B′′), such that Σ and Σ′ are only connected by coefficients in Σ
and such that Σ′ and Σ′′ are only connected by coefficients in Σ′, then Σ and Σ′′ are only
connected by coefficients in Σ.

Proof. If x ∈ ex is an exchangeable variable of Σ then, by the definition of full subseed,
it is an exchangeable variable of Σ′. Because Σ′ and Σ′′ are only connected by coefficients
of Σ′, x cannot have a neighbour in Σ′′ that lies in X′′ \X′. All neighbours of x in Σ′′

thus lie in X′, and, because Σ′ is a full subseed of Σ′′, these are exactly those variables
that are neighbours of x in Σ′. Because Σ and Σ′ are only connected by coefficients in Σ,
these neighbours must be elements of X.

If Σ is a full subseed of Σ′, such that the seeds are connected only by coefficients of
Σ, then the inclusion of Σ in Σ′ induces a rooted cluster morphism.

Lemma 2.4.6. Let Σ = (X, ex,B) be a full subseed of Σ′ = (X′, ex′,B′) such that Σ and
Σ′ are connected only by coefficients of Σ. Then the inclusion f : X→ X′ gives rise to a
rooted cluster morphism f : A(Σ)→ A(Σ′).

Proof. This follows directly from Theorem 2.3.37.

For any given rooted cluster algebra A(Σ) we can build a linear system {A(Σi)}i∈Z
of rooted cluster algebras whose initial seeds are finite full subseeds Σi of Σ such that for
all i ∈ Z, the seeds Σi and Σ are only connected by coefficients of Σi. Further, we can
construct it in a way, such that for all i ≤ j the seed Σi is a full subseed of Σj and the
two are connected only by coefficients of Σi. This construction yields a linear system of
rooted cluster algebras of finite rank which has the desired rooted cluster algebra A(Σ)
as its colimit.
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Theorem 2.4.7. Every rooted cluster algebra is isomorphic to a linear colimit of rooted
cluster algebras of finite rank in the category Clus of rooted cluster algebras.

Proof. Let A(Σ) be a rooted cluster algebra with initial seed Σ = (X, ex,B = (bvw)v,w∈X).
Let Σ = ⊔

j∈J Σj be its decomposition into connected seeds with Σj = (Xj, exj,Bj) for
j ∈ J , where J is some countable index set (since the cluster X is countable by Definition
2.2.1, there are only countably many connected components). We can thus write the
rooted cluster algebra A(Σ) as the countable coproduct of the connected rooted cluster
algebras A(Σj):

A(Σ) ∼=
∐
j∈J
A(Σj).

For notational simplicity we assume J = {0, 1, . . . ,n} for some n ∈ Z≥0 if J is finite,
and J = Z≥0 if J is infinite. We construct a linear system of rooted cluster algebras as
follows. For j ∈ J choose xj0 ∈ Xj and inductively define full subseeds Σj

i of Σ by

Σj
0 = (Xj

0, exj0,Bj
0) = ({xj0}, ∅, [0])

Σj
i+1 = (Xj

i+1, exji+1,Bj
i+1)

=
(
Xj
i ∪{w ∈ X | bvw 6= 0 for some v ∈ Xj

i}, Xj
i ∩ ex,Bj

i+1

)
, for i ≥ 0

where Bj
i+1 is the full submatrix of B formed by the entries labelled by Xj

i+1×Xj
i+1. Note

that because B is skew-symmetrizable bvw 6= 0 is equivalent to bwv 6= 0. Because Bj is
locally finite, for all i ≥ 0 the cluster Xj

i in the seed Σj
i is finite. We set

Σ̃i :=
∐

j∈J :j≤i
Σj
i−j

and write Σ̃i = (X̃i, ẽxi, B̃i = ((b̃i)vw)v,w∈X̃i). Because the cluster in each of the seeds
Σj
i−j for j ∈ J with 0 ≤ j ≤ i is finite, so is the cluster X̃i of Σ̃i. By definition, the seed

Σ̃i is a full subseed of the seed Σ̃i+1 for all i ≥ 0 and all the seeds Σ̃i are full subseeds of
Σ.

We now want to show that for all i ≥ 0 the seeds Σ̃i and Σ̃i+1 are connected only by
coefficients of Σ̃i. From that it follows by Lemma 2.4.5, that Σ̃i and Σ̃j for all i ≤ j are
connected only by coefficients of Σ̃i. Because the subseeds Σj

i and Σj′

i′ are by definition
mutually disconnected for j 6= j′ in J and any i, i′ ∈ Z≥0, it is enough to check that
Σj
i and Σj

i+1 are connected only by coefficients of Σj
i for any i ∈ Z and j ∈ J . Let

x ∈ exji and y ∈ Xj
i+1 with bxy 6= 0. We want to show that this implies y ∈ Xj

i . We have
i > 0, since exj0 = ∅ for all j ∈ J . It follows that x ∈ exji = Xj

i−1 ∩ ex ⊆ Xj
i−1 and thus

y ∈ {w ∈ X | bvw 6= 0 for some v ∈ Xj
i−1} ⊆ Xj

i . Therefore Σ̃i and Σ̃i+1 are connected
only by coefficients of Σ̃i. The same argument shows that for any i ≥ 0 the seeds Σ̃i and
Σ are connected only by coefficients of Σ̃i.

By Lemma 2.4.6 for 0 ≤ i ≤ j, the natural inclusion fij : X̃i → X̃j gives rise to a rooted
cluster morphism fij : A(Σ̃i)→ A(Σ̃j). For all 0 ≤ i ≤ j ≤ k we have fjk ◦ fij = fik and
fii = idA(Σ̃i), so the morphisms form a linear system of rooted cluster algebras of finite
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rank. Further, again by Lemma 2.4.6, for i ≥ 0 the natural inclusion fi : X̃i → X gives
rise to a rooted cluster morphism fi : A(Σ̃i)→ A(Σ). We show that A(Σ) together with
the maps fi : A(Σ̃i) → A(Σ) for i ≥ 0 is in fact the colimit of this linear system in the
category of rooted cluster algebras.

Because for any j ∈ J , the seed Σj is connected, we have Xj = ⋃
i≥0 Xj

i and thus

X =
⊔
j∈J

Xj =
⊔
j∈J

⋃
i≥0

Xj
i =

⋃
i≥0

⊔
j∈J

Xj
i =

⋃
i≥0

X̃i.

Because every exchange relation in A(Σ) lifts to an exchange relation in A(Σ̃i) for all
i big enough (by virtue of the exchange matrices B̃i being arbitrarily large restrictions
of the exchange matrix B), any fixed element of A(Σ) is contained in A(Σ̃i) for all i
sufficiently large.

Let Σ′ = (X′, ex′,Q′) be a seed such that for all i ≥ 0 there are rooted cluster
morphisms gi : A(Σ̃i) → A(Σ′) compatible with the linear system fij : A(Σ̃i) → A(Σ̃j).
We define a ring homomorphism f : A(Σ)→ A(Σ′) by f(x) = gi(x), whenever x ∈ A(Σ̃i),
i.e. it is the unique ring homomorphism making the following diagram commute.

A(Σ′)

A(Σ)

f

OO

A(Σ̃i)

gi

DD

fi

::

fij // A(Σ̃j)

gj

ZZ

fj

dd

For every x ∈ X (respectively x ∈ ex), there exists a k ≥ 0 such that x ∈ X̃i (respectively
x ∈ ẽxi) for all i ≥ k. Thus f(x) = gi(x) for all i ≥ k lies in X′ (respectively in ex′),
because gi is a rooted cluster morphism for all i ≥ 0. Thus the ring homomorphism f

satisfies axioms CM1 and CM2. Let now (x1, . . . ,xl) be a (f , Σ, Σ′)-biadmissible sequence
and let y ∈ X such that f(y) ∈ X′. Then there exists an i ≥ 0 such that y ∈ X̃i and the
sequence (x1, . . . ,xl) is (gi, Σ̃i, Σ′)-biadmissible. Thus we get

f(µxl ◦ . . . ◦ µx1(y)) = f ◦ fi(µxl ◦ . . . ◦ µx1(y))
= gi(µxl ◦ . . . ◦ µx1(y)) = µgi(xl) ◦ . . . ◦ µgi(x1)(gi(y)))
= µf(xl) ◦ . . . ◦ µf(x1)(f(y)).

Therefore the ring homomorphism f satisfies CM3 and is a rooted cluster morphism.
Thus A(Σ) satisfies the required universal property.

Remark 2.4.8. Work in progress by Stovicek and van Roosmalen shows the analogue of
Theorem 2.4.7 for cluster categories of infinite rank. However, their approach is different
and it is not clear that either result can be easily obtained from the other.
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Remark 2.4.9. The proof of Theorem 2.4.7 assumes that the seed of our cluster algebra
has a countable cluster. We can omit this assumption, but the price we pay is that the
colimit is no longer linear. If we allow seeds with uncountable clusters, by Remark 2.3.22
every connected component is still countable. For any given rooted cluster algebra of
possibly uncountable rank, we can take the decomposition of its initial seed into (possibly
uncountably many) connected components. This allows us to write our rooted cluster
algebra as a (possibly uncountable) coproduct of linear colimits of rooted cluster algebras
of finite rank, which – since taking coproducts is a special example of a colimit – is a
colimit of rooted cluster algebras of finite rank.

2.4.3 Positivity for cluster algebras of infinite rank

Fomin and Zelevinsky showed in [FZ1, Theorem 3.1] that every cluster variable of a cluster
algebra of finite rank is a Laurent polynomial in the elements of its initial cluster over
Z and they conjectured that the coefficients in this Laurent polynomial are nonnegative.
The so-called positivity conjecture has been a central problem in the theory of cluster
algebras and has recently been solved by Lee and Schiffler [LS] for all skew-symmetric
cluster algebras of finite rank. Previously, the problem had been solved via different
approaches for important special cases, such as for acyclic cluster algebras by Kimura
and Qin [KQ] and for cluster algebras from surfaces by Musiker, Schiffler and Williams
[MSW].

Theorem 2.4.10. The positivity conjecture holds for every skew-symmetric cluster alge-
bra of infinite rank, i.e. for every skew-symmetric cluster algebra A(Σ) of infinite rank
associated to a seed Σ = (X, ex,Q), every cluster variable in A(Σ) is a Laurent polynomial
in X over Z with nonnegative coefficients.

Proof. Let Σ = (X, ex,Q) be a skew-symmetric cluster algebra of infinite rank. Using the
construction in the proof of Theorem 2.4.7, the associated rooted cluster algebra A(Σ)
can be written as a linear colimit A(Σ) = colim(A(Σi)) of a linear system {A(Σi)}i∈Z of
skew-symmetric rooted cluster algebras of finite rank with seeds Σi = (Xi, exi,Bi) and
with canonical inclusions fi : A(Σi)→ A(Σ) for i ∈ Z. Let x̃ ∈ A(Σ) be a cluster variable,
thus x̃ = µxl ◦ . . . ◦ µx1(x) for some x ∈ X and some Σ-admissible sequence (x1, . . . ,xl).
Then there exists an i ∈ Z such that x ∈ Xi and (x1, . . . ,xl) is Σi-admissible. Set
y = µxl ◦ . . . ◦ µx1(x) in A(Σi). By axiom CM3 for fi we have fi(y) = x̃. By [LS,
Theorem 4.2], the cluster variable y ∈ A(Σi) is a Laurent polynomial in Xi over Z with
nonnegative coefficients. Since fi is a ring homomorphism (with fi(1) = 1) the image
x̃ = fi(y) is a Laurent polynomial in fi(Xi) ⊆ X over Z with nonnegative coefficients.

Remark 2.4.11. The positivity conjecture still holds if we allow uncountable clusters: Let
A(Σ) be a rooted cluster algebra of uncountable rank. We can decompose it into its
connected components A(Σi) with seeds Σi = (Xi, exi,Bi) for i ∈ I for some uncountable
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index set I. By Remark 2.3.22, for all i ∈ I the rooted cluster algebra A(Σi) is of
countable rank and, by the defintion of coproduct, every cluster variable x in A(Σ) lives
in the cluster algebra A(Σi) of countable rank for a unique i ∈ I. Since the positivity
conjecture holds for A(Σi), the cluster variable x is a Laurent Polynomial in Xi with
nonnegative integer coefficients, and thus in particular a Laurent polynomial in X with
nonnegative integer coefficients.

2.4.4 Rooted cluster algebras from infinite triangulations of the
closed disc

It follows from Theorem 2.4.7 that every rooted cluster algebra arising from a countable
triangulation of the closed disc can be written as a colimit of rooted cluster algebras of
finite rank. Moreover, as we will see in this section, it can be written as a linear colimit
of rooted cluster algebras that arise from finite triangulations of the closed disc. Thus
we obtain a formal way of treating cluster algebras associated to infinite triangulations
of the closed disc as infinite versions of cluster algebras of Dynkin type A. This provides
the algebraic analogue of the work of Holm and Jørgensen [HJ] and Igusa and Todorov
([IT1], [IT3, Section 2.4]), who introduced infinite versions of cluster categories of Dynkin
type A. A short introduction to these cluster categories will be given in Sections 3.3.1
and 3.3.2 of Chapter 3.

Theorem 2.4.12. Let T be a countable triangulation of the closed disc with marked
points Z. Then the associated rooted cluster algebra A(ΣT ) is isomorphic to a countable
coproduct A(ΣT ) ∼=

∐
j∈I A(ΣTj) of linear colimits A(ΣTj) ∼= colim(A(ΣT ji ) of rooted

cluster algebras A(ΣT ji ) of finite Dynkin type A.

Proof. We can directly translate the proof of Theorem 2.4.7 to this situation. Let first
T be a connected triangulation. We can build a linear system of rooted cluster algebras
associated to finite triangulations of the closed disc as follows. Let {x0,x1} ∈ T and set
T0 = {{x0,x1}} and for all i ≥ 0 set

Ti+1 = Ti ∪

α ∈ T
∣∣∣∣ there exists a β ∈ Ti such that α and β

are sides of a common triangle in T

,

where, for all i ≥ 0, Ti as a triangulation of the closed disc with marked points Zi being
the endpoints of arcs in Ti. We pass from Ti to Ti+1 by glueing triangles to all of those
edges of Zi that are not edges of Z. We can write T as the countable union of these
finite triangulations of the closed disc which are ordered by inclusion:

T =
⋃
i≥0
Ti, with Ti ⊆ Tj for all j ≥ i ≥ 0.

By Lemma 2.4.6, the natural inclusions fij : A(ΣTi) → A(ΣTj) for 0 ≤ i ≤ j provide a
linear system of rooted cluster algebras and following the lines of the proof of Theorem
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2.4.7 there is an isomorphism of rooted cluster algebras

A(ΣT ) ∼= colim(A(ΣTi)).

The rooted cluster algebras A(ΣTi) are associated to finite triangulations of the closed
disc and thus are of finite Dynkin type A. By Lemma 2.3.26, every rooted cluster algebra
associated to a triangulation of the closed disc is isomorphic to a coproduct of rooted
cluster algebras associated to connected triangulations of the closed disc. This proves the
claim.

Remark 2.4.13. The idea of the proof of Theorem 2.4.12 follows the construction in the
proof of Theorem 2.4.7. Glueing on arcs to the edges of the triangulations corresponds
to glueing on new cluster variables to coefficients.

In the case where the set of marked points Z ⊆ S1 has precisely one limit point, the
cluster algebras associated to triangulations of Z have been classified by their connected
components in [GG].

In the language of the category Clus we can reformulate the main result from [GG]
as follows.

Theorem 2.4.14 ([GG, Theorems 3.11 and 3.16]). Let Z be a discrete subset of S1 with
exactly one limit point and let T be a triangulation of Z. Then one of the following holds:

(1) The triangulation T has a nest and the rooted cluster algebra A(ΣT ) is isomorphic
to an infinite linear colimit of rooted cluster algebras of finite Dynkin type A.

(2) The triangulation T has a fountain and the rooted cluster algebra A(ΣT ) is iso-
morphic to the coproduct of two infinite linear colimits of rooted cluster algebras of
finite Dynkin type A.

(3) The triangulation T has a split fountain and the rooted cluster algebra A(ΣT ) is
isomorphic to the coproduct of a rooted cluster algebra of finite Dynkin type A and
two infinite linear colimits of rooted cluster algebras of finite Dynkin type A.

Remark 2.4.15. In a similar fashion it is possible to classify rooted cluster algebras as-
sociated to arbitrary triangulations of the closed disc with marked points Z ⊆ S1. The
decomposition of a fixed triangulation T into connected components can be worked out
directly with the help of Lemma 2.3.24 and Remark 2.3.25.

The work in [GG] was inspired by Holm and Jørgensen’s study of the cluster category
of infinite Dynkin type A∞. Igusa and Todorov introduced generalizations of this cluster
category in [IT1] and [IT3]. More details on these cluster categories will be given in
Section 3.3 of Chapter 3. All of these cluster categories have combinatorial interpretations
via countable triangulations of the closed disc and thus find their algebraic counterparts
in our cluster algebras associated to triangulations of the closed disc. In Section 3.3.2
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we explicitly describe how to obtain the rooted cluster algebra that allows the same
combinatorics as the continuous cluster category of Dynkin type A (as studied in [IT1])
as a colimit of rooted cluster algebras of finite Dynkin type A.



Chapter 3

Cluster categories

3.1 Introduction

An important step towards a better understanding of cluster algebras has been made by
their categorification, which started with the introduction of cluster categories by Buan,
Marsh, Reineke, Reiten and Todorov in [BMRRT]. In Section 3.2.1 we focus on this
construction, which works for skew-symmetric, coefficient-free cluster algebras of finite
rank, whose exchange quivers are mutation-equivalent to an acyclic quiver.

This categorification allowed for elegant proofs of structural properties of cluster al-
gebras, that had not been known before, such as the proof of the positivity conjecture
for cluster algebras of simply laced Dynkin type by Caldero and Keller in [CK1] and the
denominator conjecture for acyclic cluster algebras, i.e. cluster algebras whose exchange
quivers are mutation-equivalent to an acyclic quiver, by the same authors in [CK2]. The
basic idea of a categorical version of cluster algebras is that all the combinatorial concepts
we know from cluster algebras will reappear: The cluster variables will find their analogue
in indecomposable objects, the clusters in certain subcategories, which are sometimes also
called clusters, and we will have a concept of mutation, that allows us to uniquely replace
an indecomposable object in a cluster by a new one in order to obtain another cluster.
Cluster categories in the sense of [BMRRT] are triangulated categories by Keller [K], and
the explicit description of mutation on the categorical level relies on this triangulated
structure.

There are more triangulated categories than just the classical cluster categories which
mirror the combinatorics of cluster algebras. Buan, Iyama, Reiten and Scott [BIRS] in-
troduced the notion of cluster structures on triangulated categories. The classical cluster
categories from [BMRRT] carry a natural cluster structure in the expected way. How-
ever, these are not the only categories with cluster structures. In particular, categories
with a cluster structure might have infinite clusters and thus provide analogues of cluster
algebras of infinite rank. Important examples of cluster categories of infinite rank have
been studied by Holm and Jørgensen (see [HJ] for a cluster algebra of infinite Dynkin
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type A) and by Igusa and Todorov (see [IT1] and [IT3] for the continuous cluster cate-
gory of Dynkin type A and, amongst more general examples, discrete cluster categories
of Dynkin type A).

Conventions Throughout the rest of this thesis, we work over an algebraically closed
field k. All triangulated categories are assumed to be k-linear, Hom-finite and Krull-
Schmidt and functors are assumed to be k-linear. All subcategories of a triangulated
category T are assumed to be full and closed under isomorphisms, direct summands and
finite direct sums and we write X ⊆ T , if X is a subcategory of T . In the same vein we
write x ∈ X for an object x in X. If A is a collection of objects in T , we denote by addA
its additive hull.

We express any skew-symmetric cluster algebra without coefficients via a quiver Q,
cf. Remark 2.2.3. We associate to a locally finite quiver without loops or 2-cycles a seed
ΣQ = (XQ,XQ,Q) (see Definition 2.2.1) whose cluster variables are labelled by vertices of
Q and all of which are exchangeable. We write AQ for the coefficient-free cluster algebra
A(ΣQ) associated to ΣQ (see Definition 2.2.17) and call it the cluster algebra associated
to Q.

3.2 Cluster categories as a categorification of cluster
algebras

In [BMRRT], Buan, Marsh, Reineke, Reiten and Todorov introduced the cluster category
CH associated to a finite dimensional hereditary algebraH, i.e. a finite dimensional algebra
of global dimension at most one. Every such algebra H is derived equivalent to the path
algebra kQ of a finite quiver Q without oriented cycles (in fact, if in addition H is basic
it is even Morita equivalent to such a path algebra, see or example Assem, Simson and
Skowronski’s book [ASiSk, Chapter VII, Theorem 1.7]). The cluster category CH yields
a categorical interpretation of the combinatorics of the cluster algebra AQ associated to
the quiver Q.

3.2.1 Cluster categories

In this section, we recall the definition of cluster categories as introduced in [BMRRT]. Let
H be a finite dimensional hereditary algebra and consider the bounded derived category
Db(modH) of finitely generated right H-modules. Since H is hereditary, the objects of
Db(modH) are finite sums of shifts of indecomposable objects of modH. The morphisms
are given by (shifts of) morphisms and extensions in modH (see for example Happel’s
book [H2]). This category is triangulated and has Auslander-Reiten triangles (see Reiten
and Van den Bergh’s article [RVdB, Section I.2] for the definition), as shown by Happel
[H1, Section 3.6]. Denote by Σ the shift functor and by τ the Auslander-Reiten translation
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of Db(modH). The cluster category associated to H is defined as the orbit category

CH := Db(modH)
/
τ−1Σ.

That is, the objects of CH are just the objects of Db(modH) and the morphism spaces
are given by

HomCH(x, y) =
∐
i∈Z

HomDb(modH)((τ−1Σ)i(x), y),

for x, y ∈ CH. By [BMRRT] the cluster category CH is a k-linear, Hom-finite, Krull-
Schmidt category and by Keller [K], it is canonically triangulated with shift functor Σ
– that is, it inherits the shift functor from Db(modH). By Reiten and Van den Bergh
[RVdB, Theorem I.2.4] the category Db(modH) having Auslander-Reiten triangles is
equivalent to it having a Serre functor S, which is then given by S = τΣ and the cluster
category CH inherits the Serre functor S. In general, a Serre functor on a triangulated
category T is an exact functor S : T → T , such that Serre duality is satisfied: For any
two objects x, y ∈ T

HomT (x, y) ∼= HomT (y,Sx)∗,

where ∗ denotes the dual space. If a Serre functor exists it is unique up to unique natural
isomorphism. A triangulated category with shift functor Σ and a Serre functor S is called
n-Calabi-Yau, if there exists an isomorphism of functors S ∼= Σn.

Remark 3.2.1. On any triangulated category T with shift functor Σ, Auslander-Reiten
translation τ and Serre functor S we have S = τΣ, and thus τ ∼= Σ as functors on T if
and only if T is 2-Calabi-Yau. Since τ ∼= Σ on CH, the cluster category CH associated to
H is 2-Calabi-Yau.

Notation 3.2.2. For a triangulated category T with shift functor Σ we set

Ext1
T (x, y) := HomT (x, Σy).

This notation is standard and extends the usual notion of extensions: If A is an abelian
category and x, y ∈ A, then

HomDb(A)(x, Σy) ∼= Ext1
A(x, y).

So, using the isomorphism HomCH(x, Σy) ∼= HomCH(Σy, Σ2x)∗ in CH coming from
Serre duality, we get

Ext1
CH(x, y) ∼= Ext1

CH(y,x)∗.

Hence the dimension of Ext1 is symmetric in its two arguments. This symmetry will be
implicitly used throughout the rest of this thesis.

For combinatorial computations, as we will carry out in Chapter 4, it is useful to
consider Auslander-Reiten quivers of categories. The Auslander-Reiten quiver Γ(C) of
an abelian category C with Auslander-Reiten sequences, or of a triangulated category
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C with Auslander-Reiten triangles (see for example [ASiSk, Chapter IV] for a thorough
introduction to Auslander-Reiten theory for finite dimensional algebras, and [H2, Chap-
ter I.4] for the triangulated setting) is the quiver with vertices given by isomorphism
classes of indecomposable objects in C and number of arrows given by the dimension
of the space of irreducible maps between them. Consider the case where H is of finite
representation type, i.e. by Gabriel’s theorem it is isomorphic to the path algebra kQ of
a simply laced Dynkin quiver Q. By [H1, Corollary 4.5(i)] the Auslander-Reiten quiver
Γ(Db(modH)) is the repetitive quiver ZQ. Its vertices are pairs (i, v) with i ∈ Z and
v ∈ Q0, where Q0 is the set of vertices of Q. For every arrow α : v → w in Q there are
arrows αi : (i, v)→ (i,w) and σ(αi) : (i− 1,w)→ (i, v) in Γ(Db(modH)) for all i ∈ Z.

We consider the example where our quiver has underlying diagram Dn for n ≥ 4. This
is the case which will be considered in Section 4.4 of Chapter 4, when we study mutation
of torsion pairs in cluster categories of finite Dynkin type D. The module categories of
the path algebras of any two orientations of a Dynkin diagram are derived equivalent
(this is a well-known fact and can be shown using BGP-reflection functors as introduced
by Bernstein, Gelfand and Ponomarev [BGP] ). Let Q have underlying diagram Dn.
Since we are only interested in Db(mod kQ) and its orbit category CkQ, we can, without
loss of generality, assume that Q is a linear orientation of Dn and label its vertices in the
following way:

1 2 3 . . . (n− 2)

(n− 1)+

(n− 1)−

We write Db(mod kQ) = Db(mod kDn), and CkQ = CkDn , since as noted above

Db(mod kQ) ∼= Db(mod kQ′) and CkQ ∼= CkQ′

for any other orientation Q′ of the Dynkin diagram Dn. For any n ≥ 4, the cluster
category CkDn is called a cluster category of finite Dynkin type D. Figure 3.1 provides
an illustration of the Auslander-Reiten quiver Γ(Db(mod kDn)). For a general finite
dimensional hereditary algebraH, the functor τ−1Σ is an auto-equivalence of the category
Db(modH) and thus induces an action on the vertices of Γ(Db(modH)). The Auslander-
Reiten translation τ acts on the vertices of the Auslander-Reiten quiver by sending each
vertex to its left-most neighbour, i.e. τ : (i, v) 7→ (i − 1, v) for all i ∈ Z and all vertices
v of Q. Note how this is reflected in the way we draw the Auslander-Reiten quiver;
for any indecomposable object m of Db(modH)and its Auslander-Reiten translation τm,
the corresponding vertices in Γ(Db(modH)) are drawn on the same horizontal level. In
Figure 3.1 we depict the action of the Auslander-Reiten translation by dashed arrows. The
natural embedding of the category modH into the bounded derived category Db(modH)
induces an embedding of the Auslander-Reiten quiver Γ(modH) into Γ(Db(modH)) and
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(0, 1)

(0, 2)

. . .

(0, 3)

(0, (n− 1)+)

(0, (n− 1)−)

(1, 1)

(1, 2)

. . .

(1, 3)

(1, (n− 1)+)

(1, (n− 1)−)

(2, 1)

(2, 2)

. . .

(2, 3)

(2, (n− 1)+)

(2, (n− 1)−)

Figure 3.1: The Auslander-Reiten quiver Γ(Db(mod kDn)) with the action of the
Auslander-Reiten translation indicated by dashed arrows

we can view Γ(Db(modH)) as being naturally covered by the shifted copies of Γ(modH).
This explains the action of Σ on vertices of Γ(Db(modH)). Identifying the vertices in
the orbits of τ−1Σ on Γ(Db(modH)) gives rise to the Auslander-Reiten quiver Γ(CH) of
the cluster category. For an explicit combinatorial description of the action of τ−1Σ on
the vertices of Γ(Db(mod kQ)) for a simply laced Dynkin quiver Q, we refer the reader
to Table 1 in Miyachi and Yekutieli’s paper [MY] and restrict ourselves to the example
of Dynkin type Dn. In Db(mod kDn) the auto-equivalence τ−1Σ acts on the vertices of
Γ(Db(mod kDn)) as

τ−1Σ :


(i, j) 7→ (i+ n, j) for 1 ≤ j < i+ n,

(i, (n− 1)±) 7→

(i+ n, (n− 1)±) if n is even,
(i+ n, (n− 1)∓) if n is odd.

Note that this action depends on the parity of n.
We use the coordinate system induced from the one on Γ(Db(mod kDn)) to label the

vertices of Γ(CDn), using 0 up to (n− 1) as first coordinates, i.e. choosing a fundamental
domain as indicated in Figure 3.2.

3.2.2 Cluster categories and cluster algebras

Let Q be a finite connected acyclic quiver; more generally, we could take a finite connected
quiver mutation equivalent to an acyclic quiver Q′, as then the associated cluster algebras
are equal, i.e. AQ = AQ′ , and we can consider the cluster category CkQ′ . A particularly
nice feature of the cluster category CkQ is that it models the combinatorial structure of
the cluster algebra AQ associated to the quiver Q. This means that we have analogues
in the cluster category CkQ for each of the basic combinatorial elements of the cluster
algebra AQ: We find a natural concept of clusters, cluster variables and mutation in CkQ.
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(0, 1)

(0, 2)

. . .

(0, 3)

(0, (n− 1)+)

(0, (n− 1)−)

· · ·

· · ·

· · ·

· · ·

· · ·

· · ·

(0, 1)

(0, 2)

. . .

(0, 3)

(0, (n− 1)+)

(0, (n− 1)−)

(n− 1, 1)

(n− 1, 2)

. . .

(n− 1, 3)

(n− 1, (n− 1)+)

. . .

Figure 3.2: In this picture of the Auslander-Reiten quiver Γ(CkDn), any two vertices with
the same labelling are identified. Note that the morphisms “wrap around” and we can
picture Γ(CkDn) as lying on a cylinder.

First, there is a bijection between indecomposable objects in CkQ and cluster variables
of AQ. In general, an explicit description of this bijection is given by the Caldero-
Chapoton map as introduced by Caldero and Chaperon [CC] for Q a simply laced Dynkin
quiver and by Caldero and Keller [CK2] for Q acyclic. Those indecomposable objects
that come from projective kQ-modules (via the composition of the natural embedding
mod kQ → Db(mod kQ) with the canonical projection Db(mod kQ) → CkQ) correspond
to cluster variables in the seed ΣQ associated to Q. In the simply laced Dynkin case, the
indecomposable objects of CkQ and the cluster variables of AQ are both in bijection with
the almost positive roots (i.e. the union of the positive roots and the simple negative
roots) of the simple Lie-algebra associated to the underlying diagram of Q, as shown by
Fomin and Zelevinsky in [FZ2, Theorem 1.9].

The analogues of clusters in CkQ are given by cluster tilting subcategories, as they
are called by Buan, Iyama, Reiten and Scott in [BIRS], see also Iyama’s paper [I], where
they are called maximal 1-orthogonal subcategories, and [BMRRT], where, without the
assumption of functorial finiteness, they are called Ext-configurations. A subcategory
X ⊆ T of a triangulated category T is called functorially finite, if for all t ∈ T there
exists a right X-approximation, i.e. a morphism f : x → t with x ∈ X such that all
morphisms from an object of X to t factor through f , and a left X-approximation, i.e.
a morphism g : t → x′ with x′ ∈ X such that all morphisms from t to an object of X
factor through g. Let us introduce some notation before we give the definition of a cluster
tilting subcategory.

Notation 3.2.3. For a subcategory X of a triangulated category T , we denote by X⊥ the
subcategory X⊥ = {t ∈ T |HomT (x, t) = 0 ∀x ∈ X} and dually by ⊥X the subcategory
⊥X = {t ∈ T |HomT (t,x) = 0 ∀x ∈ X}.
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Definition 3.2.4. Let T be a triangulated category with shift functor Σ (recall that we
assume it to be k-linear, Hom-finite and Krull-Schmidt.) A subcategory X ⊆ T is called
rigid, if Ext1(x, y) = 0 for all x, y ∈ X. It is called maximal rigid, if it is maximal with
this property, i.e. if it is rigid and if X ⊆ Y with Y a rigid subcategory of T , then X = Y .
A subcategory X ⊆ T is called a cluster tilting subcategory of T if it is functorially finite
and X = (Σ−1X)⊥ = ⊥(ΣX).

Remark 3.2.5. While cluster tilting subcategories are always maximal rigid by definition,
maximal rigid subcategories need not be cluster tilting. Counterexamples were given for
example by Burban, Iyama, Keller and Reiten [BIKR] in stable categories of maximal
Cohen-Macaulay modules over odd-dimensional isolated hypersurface singularities or by
Buan, Marsh and Vatne [BMV] in cluster tubes.

If T is 2-Calabi-Yau – in particular if T = CkQ – then by Serre duality we have
Ext1(x, y) ∼= Ext1(y,x)∗ for any two objects x, y ∈ T , so (Σ−1X)⊥ = ⊥(ΣX) holds true
for any subcategory X ⊆ T .

The “tilting” in the name cluster tilting subcategory stems from tilting theory: A
tilting module in the module category modH of a finite dimensional basic hereditary al-
gebra H is a H-module x with Ext1

modH(x,x) = 0, and such that x has n non-isomorphic
indecomposable summands, where n is the number of simple H-modules, i.e. the number
of vertices of Q if H is Morita equivalent to kQ. It has been shown in [BMRRT, The-
orem 3.3] that every tilting module in mod kQ induces a cluster tilting subcategory of
CkQ (through the functor from mod kQ to CkQ given by the composition of the natural
inclusion mod kQ → Db(mod kQ) and the natural projection Db(mod kQ) → CkQ). On
the other hand every cluster tilting subcategory of CkQ is induced by a tilting module in
some module category modH, where H is a finite dimensional hereditary algebra derived
equivalent to kQ. In particular, up to isomorphism there are n distinct indecomposable
objects in a cluster tilting subcategory of CkQ. This number coincides with the cardinality
of the clusters of AQ. Moreover, the Caldero-Chapoton map induces a bijection between
cluster tilting subcategories of CkQ and clusters of AQ. For example, the additive hull of
the indecomposable objects that come from projective kQ-modules forms a cluster tilting
subcategory of CkQ, since the projective modules give rise to a tilting object in mod kQ.
This subcategory corresponds to the cluster in the seed ΣQ associated to Q.

If X = add{x1, . . . ,xn} is a cluster tilting subcategory with mutually non-isomorphic
indecomposable objects x1, . . . ,xn, then by [BMRRT, Theorem 5.1] for every i = 1, . . . ,n
there exists a up to isomorphism unique x∗i 6= xi, such that

µxi(X) := add{x1, . . . ,xi−1,x∗i ,xi+1, . . . ,xn}

is again a cluster tilting subcategory. Thus we have a concept of mutation of cluster
tilting subcategories in CH.

Consider the case where Q is an orientation of a simply laced Dynkin quiver. As
with any acyclic quiver Q, the indecomposable objects of CkQ are in bijection with the
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cluster variables of AQ. In this case there are only finitely many cluster variables by [FZ2,
Theorem 1.5]. Thus every subcategory of CkQ is automatically functorially finite and in
this situation the cluster tilting subcategories are just the maximal rigid subcategories of
CkQ (for example by [ZZ1, Theorem 2.6]). We can view them as maximal collections of
pairwise non-isomorphic and mutually compatible indecomposable objects, where we say
that two indecomposable objects x, y ∈ CkQ are compatible if Ext1

CkQ(x, y) = 0. Then the
cluster tilting subcategories of CkQ are of the form addX, where X is a maximal set of
pairwise mutually compatible indecomposable objects of CkQ.

Remark 3.2.6. From Remark 2.2.24 in Chapter 2 we know that finite triangulations of
the closed disc provide a combinatorial model for cluster algebras of finite Dynkin type
A: Exchangeable cluster variables correspond to internal arcs of a fixed finite subset
Z ⊆ S1 and clusters correspond to triangulations of the closed disc with marked points
Z. Via the bijection between cluster variables in AQ and indecomposable objects in CkQ
this provides a combinatorial model for cluster categories of finite Dynkin type A, i.e. of
cluster categories associated to a hereditary algebra kQ, where Q is an orientation of a
Dynkin diagram An for some n ≥ 1. In this case, compatibility of two objects is encoded
by non-crossing of the corresponding arcs.

3.2.3 Cluster structures

The combinatorial structure on a category mirroring the structure of a cluster algebra
can also be found in other categories besides the cluster categories associated to finite
dimensional hereditary algebras. In particular, the cluster categories of infinite rank which
we will consider in Section 3.3 require a more general approach to cluster categories. The
basic combinatorial structure we want to have on triangulated categories to provide a
categorification of cluster algebras is formalized by the concept of cluster structures on
triangulated categories.

Definition 3.2.7 ([BIRS, Section I.1]). Let T be a triangulated category. (Recall that
we assume it to be Hom-finite, k-linear and Krull-Schmidt.) A cluster structure on T is
a collection of sets X of indecomposable objects, called clusters, such that the following
axioms CS1, CS2, CS3 and CS4 are satisfied.

CS1 For every cluster X and each indecomposable object x ∈ X there exists a up to
isomorphism unique indecomposable object x∗ ∈ T that is not isomorphic to x,
such that µx(X) := (X \ {x})⋃{x∗} is also a cluster. The pair (x,x∗) is called an
exchange pair and we call the cluster µx(X) the mutation of X at x.

CS2 Consider the subcategory D := add(X \{x}). For an exchange pair (x,x∗) as above
there exist distinguished triangles

x∗
f // d

g // x // Σx∗
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and
x

s // d′
t // x∗ // Σx

with d, d′ ∈ D and where f and s are left D-approximations and g and t are right
D-approximations. These distinguished triangles are called exchange triangles.

For any subcategory C ⊆ T the quiver of C is defined as the quiver of its opposite
endomorphism algebra End(C)op. Here, the endomorphism algebra of C is

End(C) =
⊕

x,y∈IndC
HomC(x, y),

where IndC is a set of representatives of the isomorphism classes of indecomposable objects
in C. The multiplication is induced by composition.

CS3 For every cluster X the quiver of the subcategory addX has no loops or 2-cycles.

CS4 The quiver of the subcategory addµx(X) is the mutation of the quiver of addX at
the vertex x (see Definition 2.2.13).

Axiom CS1 tells us that mutation of clusters is defined, and, analogously to mutation
of clusters in cluster algebras, is given by uniquely replacing one indecomposable object
(which represents a cluster variable). Axiom CS2 further provides an analogue of the
exchange relations in the cluster algebra via exchange triangles. For a formal way of
connecting the concept of exchange triangles in cluster categories associated to finite
dimensional hereditary algebras to exchange relations of their algebraic counterparts, we
refer the interested reader to the work of Caldero and Keller [CK1] and [CK2].

Axiom CS3 is needed for axiom CS4 to make sense – quiver mutation is only defined for
quivers without loops or 2-cycles (i.e. those quivers that are associated to skew-symmetric
matrices, cf. Remark 2.2.3). Axiom CS4 finally tells us that mutation of clusters in a
cluster structure follows the same combinatorial rules as mutation of clusters in cluster
algebras.

3.3 Cluster categories of infinite rank

In general, if a triangulated category T has cluster tilting subcategories whose quivers
have no loops or 2-cycles, they form a cluster structure on T by [BIRS, Proposition I.1.6].
These cluster tilting subcategories may have infinitely many indecomposable objects up
to isomorphism. If T has a cluster structure with clusters of infinite cardinality, we call T
a cluster category of infinite rank. Cluster categories of infinite rank provide a categorical
interpretation of cluster algebras of infinite rank. The examples in this section provide a
categorical analogue for the cluster algebras of infinite rank coming from triangulations
of the closed disc studied in Section 2.4.4.
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3.3.1 A cluster category of infinite Dynkin type A

A nice concrete example of a cluster category of infinite rank has been studied by Holm
and Jørgensen in [HJ]. Consider the quiver Q given by a sink-source orientation of the
infinite Dynkin diagram A∞:

• • • • • • . . .

and the derived categoryDf (mod kQ) of complexes of kQ-modules with finite dimensional
total homology. Let Σ denote its shift functor and τ its Auslander-Reiten translation.
Analogously to the case for finite acyclic quivers, we consider the category

CA∞ := Df (mod kQ)
/
τ−1Σ

which we call the cluster category of infinite Dynkin type A∞. We recall from [HJ] that
this is a 2-Calabi-Yau triangulated category. It was shown in [HJ, Section 5] that the
cluster tilting subcategories of the category CA∞ form a cluster structure on CA∞ . In [HJ,
Section 3] a combinatorial model was introduced for the cluster structure on CA∞ via
triangulations of the ∞-gon, by which we mean the integers equipped with their natural
linear order. In keeping with the convention of Chapter 2 we describe the model via
triangulations of the closed disc with marked points Z ⊆ S1, such that Z has exactly
one limit point, e.g.

Z = {e
(
π

m

)
|m ∈ Z \ {0}} ⊆ S1

which has its unique limit point at 1 (cf. Section 2.2.1 for notation). Note that the two
combinatorial models are completely analogous – we obtain the ∞-gon by cutting S1

with marked points Z at the limit point of Z.
Let Z = {e

(
π
m

)
|m ∈ Z \ {0}} ⊆ S1. The indecomposable objects in CA∞ are in

bijection with the internal arcs of Z, such that for objects x, y ∈ CA∞ we have Ext1(x, y) =
0 if and only if the arcs corresponding to x and y do not cross. As in finite Dynkin type A
we have a notion of compatibility between two indecomposable objects (cf. Remark 3.2.6):
Two indecomposable objects are compatible if the Ext1-space between them vanishes,
which is the case if and only if the corresponding arcs do not cross. The maximal rigid
subcategories of CA∞ thus correspond to triangulations of the closed disc with marked
points Z. Unlike in finite Dynkin type A, not all maximal rigid subcategories of CA∞ are
cluster tilting subcategories, since we do not get functorial finiteness for free. By [HJ,
Theorem 4.4] the cluster tilting subcategories correspond to those triangulations that have
either a nest or a fountain (cf. Definition 2.3.23). Triangulations with a split fountain
correspond to maximal rigid subcategories that are not functorially finite. Mutation of
cluster tilting subcategories corresponds to diagonal flips (cf. Figure 2.2).

Here we see very nicely from a combinatorial viewpoint why maximal rigid subcat-
egories are not necessarily enough for a cluster structure: Consider for example the
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triangulation T of the closed disc with marked points Z from Remark 2.2.12. It has
internal arcs given by

Tint = {{e
(
π

2

)
, e
(
π

k

)
}|k ∈ Z>3}∪{{e

(
−π2

)
, e
(
−π
k

)
}|k ∈ Z>3}∪{{e

(
π

2

)
, e
(
−π2

)
}}

(see Figure 2.1), i.e. T is the union of Tint and all edges of Z = {e
(
π
m

)
|m ∈ Z\{0}} ⊆ S1.

This is a triangulation with a split fountain and thus corresponds to a maximal rigid
subcategory of CA∞ that is not functorially finite. Recall from Remark 2.2.12 that the
arc α = {e(π2 ), e(−π

2 )} ∈ T is internal but not exchangeable. Thus the subcategory
addXT of CA∞ with indecomposable objects XT corresponding to T is not mutable at
the indecomposable object xα ∈ XT corresponding to α: The indecomposable xα is (up to
isomorphism) the only indecomposable object in ⊥(Σ add(XT \{xα})) that is not already
contained in add(XT \ {xα}).

An algebraic interpretation of the cluster structure on the category CA∞ has been
given in joint work with Grabowski [GG]: We classified cluster algebras associated to
triangulations of the ∞-gon. Not all triangulations are mutation equivalent via finite
admissible sequences of diagonal flips; in fact there are uncountably many mutation
classes. They give rise to different cluster algebras. Briefly put, triangulations without
a fountain or split fountain give rise to cluster algebra structures on the homogeneous
coordinate ring of an infinite version of the Grassmannian (see [GG] for more detail) and
other triangulations yield cluster structures on proper subalgebras of the coordinate ring.
In light of our results from Chapter 2, they are all colimits of finite coproducts of cluster
algebras of finite Dynkin type A (cf. Theorem 2.4.14).

3.3.2 Discrete and continuous cluster categories of Dynkin type
A

Instead of just considering triangulations of the closed disc with marked points Z, where
Z has only one limit point, we could allow multiple limit points. We consider first the
discrete case.

Definition 3.3.1. A subset Z ⊆ S1 is called admissible, if it is discrete, contains at least
four points and satisfies the two-sided limit condition: For every sequence in Z converging
to a limit point a ∈ S1 from the left, there is a sequence in Z converging to a from the
right and vice versa (see Definition 2.3.23 for terminology).

We discussed rooted cluster algebras associated to countably infinite triangulations
of the closed disc – including those whose marked points form an admissible set – in
Section 2.4.4. For admissible sets of marked points, Igusa and Todorov [IT3] provided
the categorical analogue. Let Z ⊆ S1 be an admissible subset. The discrete cluster
category C(Z) of Dynkin type A associated to Z is the k-linear, additive category with

• indecomposable objects given by internal arcs of Z and
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x0x1

z1

z0

y′1

y0

y1

Figure 3.3: There are morphisms from {x0,x1} to {y0, y1} and vice versa and morphisms
from {x0,x1} to {y0, y′1} and vice versa. There are morphisms from {y0, y1} to {y0, y′1},
but none from {y0, y′1} to {y0, y1} and every morphism from {x0,x1} to {y0, y′1} fac-
tors through {y0, y1}. There are no morphisms in either direction between {x0,x1} and
{z0, z1}.

• morphisms between indecomposable objects given by

HomC(Z)({x0,x1}, {y0, y1}) ∼=

k, if y0 ∈ [x0,x1) and y1 ∈ [x1,x0) or vice versa
0, otherwise,

such that

• a non-zero morphism in HomC(Z)({x0,x1}, {y0, y1}) factors through {z0, z1} if and
only if z0 ∈ [x0, y0] and z1 ∈ [x1, y1].

Figure 3.3 provides an example of indecomposable objects in C(Z) and in the caption
we describe if morphisms exist between them. Note that if two arcs cross, there are always
non-zero morphisms in both directions between the two corresponding indecomposable
objects.

Remark 3.3.2. Igusa and Todorov define discrete cluster categories in the slightly more
general setting where Z is a cyclically ordered set with an admissible automorphism, see
[IT3, Theorem 2.4.1] and [IT3, Lemma 2.4.12]. We restrict ourselves to those discrete
cluster categories associated to admissible subsets of S1, since they correspond to special
cases of the ongoing example from Chapter 2 of rooted cluster algebras coming from
triangulations of the closed disc. Further, for admissible subsets Z ⊆ S1, torsion pairs in
C(Z) are classified in work in progress by Holm and Jørgensen. This will be of interest
in Chapter 4, when we study mutation of torsion pairs in discrete cluster categories of
Dynkin type A.



3.3. CLUSTER CATEGORIES OF INFINITE RANK 73

It can be seen directly from the combinatorial models that in the case where Z has
exactly one limit point, the category C(Z) is isomorphic to the category CA∞ of infinite
Dynkin type A∞ described in Section 3.3.1, and when |Z| = n is finite, it is isomorphic to
the classical cluster category of Dynkin type An (see Remark 3.2.6). Igusa and Todorov
constructed the category C(Z) as the stable category of a Frobenius category and thus
it is triangulated. This is where (implicitly) the admissibility condition on the subset
Z ⊆ S1, and in particular the two-sided limit condition, is used. Recall that we did not
have these restrictions in Chapter 2 when studying rooted cluster algebras associated to
triangulations of the closed disc.

The discreteness and two-sided limit condition for Z imply that every point x ∈ Z
has a successor s(x), i.e. a unique point s(x) ∈ Z, such that Z ∩ (x, s(x)) = ∅, and a
predecessor p(x), i.e. a unique point p(x) ∈ Z, such that Z ∩ (p(x),x) = ∅. On objects,
the shift functor is given by Σ({x0,x1}) = {p(x0), p(x1)} and we obtain (cf. Notation
3.2.2)

Ext1
C(Z)({x0,x1}, {y0, y1}) = HomC(Z)({x0,x1}, Σ{y0, y1})

∼=

k, if {x0,x1} and {y0, y1} cross
0, otherwise.

It follows directly that Ext1
C(Z)(X,Y ) ∼= Ext1

C(Z)(Y ,X) for any two objects X,Y ∈ C(Z)
and it was further shown in [IT3, Theorem 2.4.5] that the discrete cluster category C(Z)
is 2-Calabi-Yau.

Adapting the methods from [HJ], it was shown in [IT3, Section 2.4.2] that C(Z) has
a cluster structure with clusters given by those triangulations of the closed disc with
marked points Z, in which for every right-fountain converging to a limit point a, there
is a left-fountain converging to a and vice versa (cf. Definition 2.3.23). Mutation is, as
for cluster algebras associated to triangulations of the closed disc, given by diagonal flips
(cf. Figure 2.2).

One can even take the construction one step further and consider a continuous set of
marked points, e.g. Z = S1. In [IT1], Igusa and Todorov described a category which has
precisely this underlying combinatorial model. We will not go into detail here, as this
category is not relevant for the rest of this thesis. Let us just mention that it provides a
nice example of a cluster category of infinite rank categorifying a cluster algebra of infinite
rank which occurs as a colimit of cluster algebras of finite Dynkin type A. We refer the
interested reader to [IT1] as well as [IT2] for a thorough explanation. The central idea
is to consider the limit of the cluster categories of Dynkin type An as n goes to infinity.
The continuous cluster category Cπ of Dynkin type A is the k-linear, additive category
whose indecomposable objects are given by arcs of S1 and morphism spaces are given by

HomCπ({x0,x1}, {y0, y1}) ∼=

k, if y0 ∈ [x0,x1) and y1 ∈ [x1,x0) or vice versa
0, otherwise,
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Figure 3.4: The standard cluster Tst
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Figure 3.5: Quiver associated to the standard cluster Tst

where a non-zero morphism in HomCπ({x0,x1}, {y0, y1}) factors through {z0, z1} if and
only if z0 ∈ [x0, y0] and z1 ∈ [x1, y1]. Again, Igusa and Todorov showed that this category
is equivalent to the stable category of a Frobenius category and the category Cπ is therefore
triangulated. Igusa and Todorov showed that Cπ has a cluster structure. The clusters are
given by triangulations of the closed disc that are all equivalent to the so-called standard
cluster, where we say that two triangulations T1 and T2 of the closed disc are equivalent, if
there exists an orientation-preserving homeomorphism ϕ : S1 → S1, such that ϕ(T1) = T2.
The standard cluster is defined as the triangulation

Tst = {
{
e
(
mπ

2n
)

, e
(

(m+ 1)π
2n

)}
| n ≥ 0, 0 ≤ m < 2n+1},

see Figure 3.4. Mutation is, as usual, given by diagonal flips. Informally speaking, up to
rearranging the endpoints of arcs in the triangulation while preserving their cyclic order,
all clusters look the same. In particular, they all give rise to the same exchange quiver
QTst , in the sense of Definition 2.2.10, see Figure 3.5. The quiver QTst has a countably
infinite set of vertices and every vertex of QTst is a vertex in exactly two oriented three-
cycles. A very interesting feature, that we can also observe when looking at diagonal flips
in Tst, is that mutation at any vertex leaves the quiver QTst invariant.

The continuous cluster category Cπ of Dynkin type A is the categorical version of the
cluster algebra A(ΣTst), in the sense that they share the same combinatorics. Our work
from Section 2.4.4 in Chapter 2 provides further support for Igusa and Todorov’s idea
that the continuous cluster category is a limit of cluster categories of Dynkin type An as
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n goes to infinity: By Theorem 2.4.12 the rooted cluster algebra A(ΣTst) is isomorphic
to a countable coproduct of linear colimits of cluster algebras of finite Dynkin type A. In
fact, it is isomorphic to a linear colimit of rooted cluster algebras of finite Dynkin type A:
We can construct the triangulation Tst by starting with a triangulation of the closed disc
with four marked points and successively glueing on triangles to all the edges, thus really
taking the limit in every direction. More precisely, we can construct a linear system of
rooted cluster algebras A(ΣTn) for n ≥ 1, where

Tn = {{e
(
mπ

2n
)

, e
(

(m+ 1)π
2n

)
} | 0 ≤ m < 2n+1}

and the rooted cluster morphism fmn : A(ΣTm) → A(ΣTn) for n ≥ m is defined by the
natural embedding (see Lemma 2.4.6). Then the rooted cluster algebra A(Σst) is the
colimit of this system and for all n ≥ 1 the cluster algebra A(ΣTn) is of finite Dynkin
type A (cf. the proof of Theorem 2.4.12).
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Chapter 4

Mutation of torsion pairs

4.1 Introduction

In this chapter, we discuss mutation of torsion pairs in triangulated categories from a com-
binatorial perspective. An important motivation for mutation in triangulated categories
stems from cluster theory. As we have seen in Chapter 3, cluster categories mimic the
combinatorics of cluster algebras and we obtain a categorical interpretation of mutation
using the categories’ triangulated structures.

Iyama and Yoshino [IY] introduced a more general concept of mutation in triangulated
categories. Every subcategory X of T can be mutated in two directions with respect to a
rigid subcategory D ⊆ T , yielding two subcategories µD(X) and µ−D(X). The mutation
of cluster tilting subcategories in the sense of Buan, Iyama, Reiten and Scott [BIRS] (see
Definition 3.2.7) is a special case of this notion of mutation in a triangulated category.

Not all triangulated categories have cluster tilting subcategories, for example cluster
tubes as shown by Buan, Marsh and Vatne [BMV, Corollary 2.7]. However, triangulated
categories always contain torsion pairs, which were introduced by Iyama and Yoshino
in [IY] and which we will discuss in more detail in Section 4.2.1: A torsion pair in a
triangulated category T is a pair of subcategories (X,Y ), such that there are no non-zero
morphisms from X to Y and every object in T can be written as an extension of an object
in Y by an object in X. This provides a triangulated version of the classical notion of
torsion pairs in abelian categories due to Dickson [D].

Any torsion pair (X,Y ) is defined uniquely by the subcategory X, which is called its
torsion part or equivalently by the subcategory Y , which is called its torsion-free part.
Cluster tilting subcategories can be viewed as a special case of torsion pairs, as every
cluster tilting subcategory of T is the torsion part of a torsion pair in T (cf. Example 4.2.3).
It is natural to ask how to define mutation of torsion pairs to provide a generalization of
mutation of cluster tilting subcategories. It was shown by Zhou and Zhu [ZZ2] that if a
triangulated category T (as usual we assume k-linearity, Hom-finiteness and the Krull-
Schmidt property) has Auslander-Reiten triangles, then mutation of a torsion pair in T

77
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in the sense of Iyama and Yoshino [IY] with respect to a suitably nice rigid subcategory
D yields another torsion pair in T .

In Section 4.3 we provide a combinatorial model for mutation of torsion pairs in
discrete cluster categories of Dynkin type A, relying on work in progress by Holm and
Jørgensen, who classify torsion pairs in these categories. In the discrete cluster category
C(Z) associated to an admissible subset Z ⊆ S1, torsion pairs are in one-to-one corre-
spondence with nice Ptolemy diagrams of Z. In general, we call a set of internal arcs
of Z a diagram of Z and Ptolemy diagrams of Z are diagrams of Z satisfying a cer-
tain combinatorial property: Roughly speaking, whenever two arcs in a Ptolemy diagram
cross, their convex hull also needs to be contained in the Ptolemy diagram (see Section
4.3.1 for a precise definition). Holm and Jørgensen use the fact that the dimension of
Ext1-spaces between two indecomposable objects can be read off the combinatorial model
by counting how many times (in this case either once or not at all) the arcs corresponding
to the objects cross. This allows one to determine which diagrams of Z are associated
to torsion parts of torsion pairs. They turn out to be Ptolemy diagrams and vice versa,
every Ptolemy diagram represents the torsion part of a torsion pair. Just like mutation
of a torsion pair in C(Z) depends on a nice rigid subcategory D ⊆ C(Z), mutation of
the corresponding Ptolemy diagram of Z is defined with respect to the diagram D of Z
corresponding to the subcategory D (cf. Definition 4.3.5). Since D is rigid, any such dia-
gram D consists of pairwise non-crossing arcs and we geometrically define the mutations
µD and µ−D as mutually inverse bijections on internal arcs of Z that do not cross any arcs
of D . We show in Theorem 4.3.10 that mutation of Ptolemy diagrams of Z provides a
combinatorial model for mutation of torsion pairs in the discrete cluster category C(Z).
As we have seen in Section 3.3.2, the cluster categories of finite Dynkin type A and of
infinite Dynkin type A∞ (see Section 3.3.1) are special examples of discrete cluster cat-
egories of Dynkin type A. Our work in Section 4.3 generalizes results by Zhou and Zhu
[ZZ2] who provide a combinatorial model for those two special cases, where they rely on
the classification of torsion pairs in the cluster category of type A∞ due to Ng [Ng] and
of finite Dynkin type A due to Holm, Jørgensen and Rubey [HJR1].

In Section 4.4 we provide a combinatorial description of mutation of torsion pairs in
cluster categories of finite Dynkin type D. The situation is more complicated than in
type A, because we have to deal with the indecomposable objects in the cluster category
which arise from the exceptional vertices of Dynkin diagrams of type D. Holm, Jørgensen
and Rubey [HJR2] classified torsion pairs in the cluster category of Dynkin type Dn for
n ≥ 4 using Ptolemy diagrams of Dynkin type Dn. They used a combinatorial model for
Dynkin type Dn which was first introduced by Fomin and Zelevinsky in [FZ3] and which
is closely related to the model for the cluster category of Dynkin type Dn of Schiffler
[Sch] using triangulations of the punctured disc. We will discuss this model in detail in
Section 4.4.1: For the cluster category of Dynkin type Dn with n ≥ 4 consider the regular
2n-gon P2n. An arc of P2n is a pair of vertices of P2n and an arc that is invariant under
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rotation by π is called a diameter. We consider rotationally symmetric pairs of arcs and
introduce two copies of each diameter; a red one and a green one. Then indecomposable
objects in the cluster category CkDn are identified with rotationally symmetric pairs of
arcs and red and green diameters in the regular 2n-gon. Subcategories (which as usual
are assumed to be full and closed under isomorphisms, direct summands and finite direct
sums) thus correspond to collections of arcs, that are invariant under rotation by π and
which we call diagrams of Dynkin type Dn.

It was shown by Holm, Jørgensen and Rubey in [HJR2] that torsion parts of torsion
pairs in CkDn correspond to diagrams of Dynkin type Dn with a distinctive combinatorial
property, called Ptolemy diagrams of Dynkin type Dn (see Section 4.4.2). They resemble
Ptolemy diagrams of Z for admissible subsets Z ⊆ S1 and an integral part of the idea for
the classification is again that the dimension of Ext1-spaces between two indecomposable
objects can be read off from the combinatorial model by counting the number of times the
corresponding pairs of arcs, respectively diameters cross. In this case, we can have Ext1-
spaces of dimension zero, one or two. Again, we define mutation of a Ptolemy diagram
of Dynkin type Dn with respect to a subdiagram D corresponding to a rigid subcategory
D. Any such subdiagram D consists of pairwise non-crossing arcs and divides the 2n-gon
into convex polygons which we call D-cells of Dynkin type Dn. As in discrete Dynkin
type A, we define the mutations µD and µ−D as mutually inverse bijections on arcs that
do not cross any arcs of D (cf. Definition 4.4.15). Essentially, the mutations µD and µ−D
can be thought of as rotating the arcs within each of the D-cells of Dynkin type Dn in a
clockwise respectively anticlockwise direction. We show in Theorem 4.3.10 that mutation
of Ptolemy diagrams of Dynkin type Dn provides a combinatorial model for mutation of
torsion pairs in the cluster category CkDn .

Conventions We still use the same conventions as in Chapter 3. For instance, recall
that all triangulated categories are assumed to be k-linear, Hom-finite and Krull-Schmidt
and all subcategories are assumed to be full and closed under isomorphisms, direct sum-
mands and finite direct sums. In particular this means that to describe a subcategory X
of a triangulated category T , it is sufficient to identify its indecomposable objects up to
isomorphism.

4.2 Torsion pairs and mutation in triangulated cate-
gories

We have seen in Chapter 3 how certain triangulated categories can be used to model the
combinatorial structure of cluster algebras. Classically, the cluster structure is given by
cluster tilting subcategories. However, not all triangulated categories have cluster tilting
subcategories (for example cluster tubes, as shown by Buan, Marsh and Vatne [BMV]),



80 CHAPTER 4. MUTATION OF TORSION PAIRS

but they always allow torsion pairs (for example the trivial one (T , 0)). Every cluster
tilting subcategory gives rise to a torsion pair (as we will see in Example 4.2.3), so we
can view torsion pairs as a generalization of cluster tilting subcategories. Before we study
mutation of torsion pairs in discrete cluster categories of Dynkin type A and in cluster
categories of finite Dynkin type D in Sections 4.3 and 4.4, we review the general concepts
of torsion pairs and mutation in triangulated categories.

4.2.1 Torsion pairs in triangulated categories

Torsion pairs in triangulated categories were introduced by Iyama and Yoshino in [IY].
From now on let T be a triangulated category with shift functor Σ and recall that we
assume it to be k-linear, Hom-finite and Krull-Schmidt.

Definition 4.2.1 ([IY, Definition 2.2]). A torsion pair in T is a pair (X,Y ) of subcate-
gories of T such that

TP1 HomT (x, y) = 0 for all x ∈ X and y ∈ Y .

TP2 For each t ∈ T there exists a distinguished triangle

x→ t→ y → Σx

with x ∈ X and y ∈ Y .

In a torsion pair (X,Y ), the subcategory X is called the torsion part and the subcategory
Y is called the torsion-free part of (X,Y ).

Remark 4.2.2. Definition 4.2.1 provides a triangulated version of torsion pairs in abelian
categories as introduced by Dickson [D]. The terminology originates in the notion of a
torsion pair in the special case of the abelian category modZ of finitely generated abelian
groups. Every finitely generated abelian group is a (split) extension of a torsion-free
group by a torsion one. Furthermore, there are no maps from torsion abelian groups
to torsion-free abelian groups. So the finitely generated torsion abelian groups and the
finitely generated torsion-free abelian groups form a torsion pair in the abelian category
modZ.

Before we provide an example and a short proof of some well-known properties, we
introduce some terminology: A subcategory X ⊆ T is called contravariantly finite, if
every t ∈ T has a right X-approximation, i.e. a morphism f : x → t with x ∈ X, such
that every morphism from an object of X into t factors through f . It is called covariantly
finite, if every t ∈ T has a left X-approximation, i .e. a morphism g : t→ x′ with x′ ∈ X,
such that every morphism from t into an object of X factors through g. Recall (from
the paragraph before Notation 3.2.3) that the subcategory X ⊆ T is called functorially
finite, if it is both contravariantly and covariantly finite.
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Example 4.2.3. Every cluster tilting subcategory X ⊆ T (see Definition 3.2.4) gives
rise to a torsion pair (X,X⊥) (cf. Notation 3.2.3): Axiom TP1 is satisfied by definition.
Let now t ∈ T . Because X is a cluster tilting subcategory, it is functorially finite and
thus there exists a right X-approximation f : x→ t, which we complete to a triangle:

x→ t→ y → Σx.

For any x̃ ∈ X, applying HomT (x̃,−) to the triangle yields the long exact sequence

. . .→ HomT (x̃,x)→ HomT (x̃, t)→ HomT (x̃, y)→ HomT (x̃, Σx)→ . . .

Because X is cluster tilting, we have HomT (x̃, Σx) = 0 and because f : x → t is a right
X-approximation, the morphism HomT (x̃,x)→ HomT (x̃, t) is surjective. It follows that
HomT (x̃, y) = 0 for all x̃ ∈ X and thus y ∈ X⊥. Therefore, axiom TP2 is satisfied.

The following lemma summarizes some well-known and useful properties for torsion
pairs. As we could find no convenient reference for all of the statements given, we include
a proof for the convenience of the reader.

Lemma 4.2.4. Let (X,Y ) be a torsion pair in T . Then the following hold.

(i) Y = X⊥, so the torsion-free part is uniquely determined by the torsion part.

(ii) X = ⊥Y , so the torsion part is uniquely determined by the torsion-free part.

(iii) X is contravariantly finite and extension closed.

(iv) Y is covariantly finite and extension closed.

(v) X = ⊥(X⊥) and Y = (⊥Y )⊥.

Proof. (i) It follows directly from axiom TP1 that Y ⊆ X⊥. Let now t ∈ X⊥. By
axiom TP2 there exists a distinguished triangle

x
f // t // y // Σx

with x ∈ X and y ∈ Y . Because t ∈ X⊥, we have f = 0 and thus y ∼= t⊕ Σx and
because Y is closed under direct summands, we have t ∈ Y .

(ii) This is proved dually to (i).

(iii) Let t ∈ T . By axiom TP2, there exists a distinguished triangle

x
f // t // y // Σx

with x ∈ X and y ∈ Y . For any x̃ ∈ X, applying HomT (x̃,−) to the triangle yields
the long exact sequence

. . .→ HomT (x̃,x)→ HomT (x̃, t)→ HomT (x̃, y)→ HomT (x̃, Σx)→ . . .
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Because by axiom TP1 HomT (x̃, y) = 0, the morphism HomT (x̃,x) → HomT (x̃, t)
is surjective, i.e. every morphism from x̃ to t factors through f . Thus f is a right
X-approximation and X is contravariantly finite.

Consider now a distinguished triangle

x̃ // t // x̃′ // Σx̃

with x̃, x̃′ ∈ X. For a y ∈ Y , applying HomT (−, y) to the triangle yields the long
exact sequence

. . .→ HomT (Σx̃, y)→ HomT (x̃′, y)→ HomT (t, y)→ HomT (x̃, y)→ . . .

By axiom TP1, we have HomT (x̃′, y) = 0 = HomT (x̃, y) and therefore HomT (t, y) =
0. Therefore t ∈ ⊥Y , which by part (ii) is equal to X, and thus X is extension
closed.

(iv) This is proved dually to (iii).

(v) This follows directly from (i) and (ii).

Remark 4.2.5. By Lemma 4.2.4, every torsion pair in T is of the form (X,X⊥), where
X ⊆ T is a contravariantly finite and extension closed subcategory. Instead of thinking
of a torsion pair as a pair of subcategories, it is common to just think about it in terms
of its torsion part (or equivalently its torsion-free part). It is for purely historical reasons
(cf. Remark 4.2.2) that the term torsion pair prevails.

In fact, conditions (iii) and (v) in Lemma 4.2.4 are not only necessary, but sufficient.
Iyama and Yoshino prove the following:

Proposition 4.2.6 ([IY, Proposition 2.3]). A subcategory X ⊆ T is the torsion part of
a torsion pair if and only if it is a contravariantly finite subcategory with ⊥(X⊥) = X.

Studying torsion pairs in T thus boils down to studying contravariantly finite sub-
categories X with ⊥(X⊥) = X. This point of view turns out to be particularly useful
when classifying torsion pairs in those cluster categories of Dynkin type which have com-
binatorial models via triangulations of surfaces with marked points. These are generally
modelled such that dimensions of Ext1-spaces can be read off by counting crossings of arcs.
The condition ⊥(X⊥) = X can, in the examples we provide in the following chapters,
be nicely translated into certain configurations of arcs in the respective combinatorial
models.

Example 4.2.7. Recall from Remark 2.2.24 that, for n ≥ 1, triangulations of the closed
disc with marked points Z, where |Z| = n+3 provide a combinatorial model for a cluster
algebra of Dynkin type An. The exchangeable cluster variables correspond to internal arcs
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of Z, clusters correspond to triangulations of the closed disc with marked points Z and
mutations to diagonal flips. Analogously, this model works for the cluster category CkAn
(which encodes the coefficient-free cluster algebra of Dynkin type An): Indecomposable
objects correspond to internal arcs of Z and cluster tilting subcategories to triangulations
of the closed disc with marked points Z. Further, the dimension of the Ext1-space between
two indecomposable objects can be read off directly from the geometric picture: It is one-
dimensional if the corresponding arcs cross and zero otherwise.

If X ⊆ CkAn is a subcategory whose indecomposable objects correspond to a set of
arcs X , then ⊥(ΣX) = (Σ−1X)⊥ (the two are equal, since CkAn is 2-Calabi-Yau, see for
example Remark 3.2.5) has as indecomposable objects all those corresponding to internal
arcs that do not cross any of the arcs in X and these will be denoted by

nc X = {α an internal arc of Z | α does not cross any arc in X }.

The condition ⊥(X⊥) = X translates to the combinatorial condition nc(nc X ) = X by
[HJR1, Proposition 2.3]. Since there are only finitely many indecomposable objects (up
to isomorphism) in CkAn and CkAn is Hom-finite, every subcategory of CkAn is functorially
finite. The subcategories of CkAn that are the torsion part of a torsion pair are thus
precisely those that correspond to a set of arcs X with nc(nc X ) = X .

Holm, Jørgensen and Rubey [HJR1, Theorem A] classified torsion pairs in CkAn using
this idea. They showed that torsion pairs are in a one-to-one correspondence with so-
called Ptolemy diagrams of Z, with |Z| = n + 3: A subcategory X ⊆ CkAn is the
torsion part of a torsion pair if and only if the corresponding set of arcs X is a Ptolemy
diagram of Z. A set of arcs P of an admissible subset Z ⊆ S1 (see Definition 3.3.1) is
called a Ptolemy diagram of Z if it satisfies the Ptolemy condition: For every two arcs
{x0,x1}, {y0, y1} ∈ P such that {x0,x1} and {y0, y1} cross, every arc in their convex hull,
i.e. in the collection of arcs {x0, y0}, {y0,x1}, {x1, y1} and {y1,x0} of Z, is an edge of Z
or contained in P (see Section 4.3.1 for more details). This concept was inspired by work
of Ng [Ng], who classified torsion pairs in the cluster category CA∞ of infinite Dynkin
type A∞. We will look at torsion pairs in discrete cluster categories of Dynkin type A
more generally in Section 4.3, which will include both finite Dynkin type A and infinite
Dynkin type A∞ as special cases.

In this example we see combinatorially how cluster tilting subcategories are torsion
parts of torsion pairs in CkAn : They correspond to triangulations of the closed disc with
marked points Z with |Z| = n+ 3. Triangulations are Ptolemy diagrams of Z, since the
Ptolemy condition is satisfied trivially as no two arcs in a triangulation cross.

4.2.2 Mutation in triangulated categories

Mutation in triangulated categories with respect to rigid subcategories has been studied
by Iyama and Yoshino [IY] and in cluster categories provides a generalization of mutation
of cluster tilting subcategories. Zhou and Zhu [ZZ2] have shown that applying this general
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mutation with respect to a suitably nice rigid subcategory to a torsion pair produces
another torsion pair.

Definition 4.2.8 ([IY, Definition 2.5]). Fix a rigid subcategory D of T (see Definition
3.2.4). For a subcategory M ⊆ T , the mutations of M with respect to D are the subcat-
egories

1. µ−D(M) of objects t ∈ ⊥(ΣD) such that there exists a distinguished triangle

m
f // d // t // Σm

with m ∈M and d ∈ D.

2. µD(M) of objects t ∈ (Σ−1D)⊥ such that there exists a distinguished triangle

t // d
g //m // Σt

with m ∈M and d ∈ D.

A pair (M ,N) of subcategories M ,N ⊆ T is called a D-mutation pair if

D ⊆ N ⊆ µ−D(M) and D ⊆M ⊆ µD(N).

Remark 4.2.9. The assumption in 1. of Definition 4.2.8 that t ∈ ⊥(ΣD) is in fact equivalent
to asking that the morphism f in the distinguished triangle is a left D-approximation:
Consider any distinguished triangle

m
f // d // t // Σm

with m ∈ M and d ∈ D. For any d̃ ∈ D, applying HomT (−, d̃) to the triangle yields the
long exact sequence

. . .→ HomT (t, d̃)→ HomT (d, d̃)→ HomT (m, d̃)→ HomT (t, Σd̃)→ HomT (d, Σd̃)→ . . .

Because D is rigid, HomT (d, Σd̃) = 0 and so the morphism HomT (m, d̃)→ HomT (t, Σd̃) is
surjective. Thus HomT (t, Σd̃) = 0 if and only if the morphism HomT (d, d̃)→ HomT (m, d̃)
is surjective. Thus, since d̃ ∈ D was chosen arbitrarily, t ∈ ⊥(ΣD) if and only if f is a
left D-approximation.

Dually, the assumption in 2. of Definition 4.2.8 that t ∈ (Σ−1D)⊥ is equivalent to
asking that the morphism g in the distinguished triangle is a right D-approximation.

Example 4.2.10. Assume that T has cluster tilting subcategories which form a cluster
structure and let X be a cluster. The subcategory addX is cluster tilting, and in partic-
ular rigid. Let x ∈ X be any indecomposable object in X and consider the subcategory
D := add(X \ x) ⊆ addX, which, as a subcategory of a rigid subcategory, is also rigid.
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Then comparing Definition 4.2.8 with Definition 3.2.7, CS2, the mutation of addX with
respect to D corresponds to the mutation of X at x, i.e.

add(µx(X)) = µD(X) = µ−D(X).

In this sense, we can view mutation in triangulated categories as a generalization of
mutation of cluster tilting subcategories. Note that in this special case, the mutations
µD(X) and µ−D(X) are equal. This is not generally the case (see for example Figure 4.14).

The following statement is well-known, but we give a short proof for the convenience
of the reader.

Lemma 4.2.11. Mutation with respect to a rigid subcategory D ⊆ T leaves D invariant,
i.e. we have µD(D) = µ−D(D) = D.

Proof. Let d ∈ D and let

d // d′ // t 0 // Σd

be a distinguished triangle with d′ ∈ D and t ∈ ⊥(ΣD). Since the map t → Σd is zero,
the triangle splits and we get d′ ∼= d⊕ t and because every subcategory is assumed to be
closed under direct summands, we have t ∈ D. Thus we have µ−D(D) ⊆ D. On the other
hand for any object d̃ in D, the distinguished triangle 0 // d̃ d̃ // 0 exists and
thus we have equality; µ−D(D) = D. Dually one shows that µD(D) = D.

Remark 4.2.12. By [IY, Proposition 2.6], for any D-mutation pair (M ,N) in T we have
M = µD(N) and N = µ−D(M). This implies that the mutations µD and µ−D are mutually
inverse, i.e. µD(µ−D(M)) = M and µ−D(µD(N)) = N .

We are interested in mutating torsion pairs by mutating the torsion part and the
torsion-free part in the sense of Definition 4.2.8. First, we observe a useful fact. Let
X ⊆ T be a subcategory. Then the subcategory X ∩ (Σ−1X)⊥ of T (and thus any of its
subcategories) is automatically rigid: For x, y ∈ X ∩ (Σ−1X)⊥ we have

Ext1
T (x, y) = HomT (x, Σy) ∼= HomT (Σ−1x, y) = 0,

since x ∈ X and y ∈ (Σ−1X)⊥. Thus mutation in T in the sense of Definition 4.2.8 is
defined with respect to any subcategory of X ∩ (Σ−1X)⊥. Note further, that the shift
ΣD of any rigid subcategory D ⊆ T is again rigid, since for all objects x, y ∈ T we
have Ext1

T (Σx, Σy) ∼= Ext1
T (x, y). Assume that T has Auslander-Reiten triangles and

Auslander-Reiten translation τ . Zhou and Zhu prove the following.

Theorem 4.2.13 ( [ZZ2, Theorem 3.8]). Let (X,Y ) be a torsion pair in T and let
D ⊆ X∩(Σ−1X)⊥ ⊆ T be a functorially finite subcategory satisfying τD = ΣD. Then the
pairs of subcategories µD(X,Y ) := (µD(X),µΣD(Y )) and µ−D(X,Y ) := (µ−D(X),µ−ΣD(Y ))
are torsion pairs in T as well.
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Remark 4.2.14. The examples in which we study mutation of torsion pairs combinatorially
(namely discrete cluster categories of Dynkin type A in Section 4.3 and cluster categories
of finite Dynkin type D in Section 4.4) are all 2-Calabi-Yau (see Section 3.3.2 for the
former and Remark 3.2.1 for the latter case). If a triangulated category T is 2-Calabi-
Yau with Auslander-Reiten translation τ , then by Remark 3.2.1 every subcategory D ⊆ T

satisfies τD = ΣD. Thus if T is 2-Calabi-Yau, we can consider mutation of a torsion pair
(X,Y ) in T with respect to any functorially finite subcategory D ⊆ X ∩ (Σ−1X)⊥.

Example 4.2.15. Consider the cluster category CkAn of Dynkin type An and its combi-
natorial model via arcs of Z, where Z ⊆ S1 is a set of marked points on the boundary of
the closed disc with |Z| = n+3. Recall from Example 4.2.7, that a subcategory X ⊆ CkAn
is the torsion part of a torsion pair (X,Y ) if and only if the corresponding set of arcs
X of Z is a Ptolemy diagram of Z. Consider a rigid subcategory D ⊆ X ∩ (Σ−1X)⊥.
Because CkAn is Hom-finite with finitely many isomorphism classes of indecomposable ob-
jects, functorial finiteness is automatic and, as noted above, since CkAn is 2-Calabi-Yau,
we have τD = ΣD. Consider the set of arcs D of Z corresponding to D. The fact that
D is rigid translates to D consisting of pairwise non-crossing arcs of Z. The subcategory
X ∩ (Σ−1X)⊥ corresponds to the set of arcs X ∩ nc X , thus D ⊆X ∩ nc X .

Zhou and Zhu [ZZ2] defined mutation of a Ptolemy diagram X of Z with respect to
such subdiagrams D ⊆ X ∩ nc X consisting of mutually non-crossing arcs and showed
that it provides a combinatorial model for mutation of torsion pairs. Geometrically, it can
be interpreted as a generalization of diagonal flips. This is analogous to the way in which
mutation in triangulated categories can be seen as a generalization of mutation of cluster
tilting subcategories, cf. Example 4.2.10. Zhou and Zhu also provide a combinatorial
realization of mutation of torsion pairs in the cluster category CA∞ of infinite Dynkin
type A∞. In Section 4.3 we provide a generalization of these results via a combinatorial
model for mutation of torsion pairs in discrete cluster categories of Dynkin type A.

4.3 Torsion pairs and their mutation in discrete clus-
ter categories of Dynkin type A

Work in progress by Holm and Jørgensen provides a combinatorial classification of torsion
pairs in discrete cluster categories of Dynkin type A (cf. Section 3.3.2). This generalizes
both the classification of torsion pairs in the cluster category CA∞ of infinite Dynkin type
A∞ by Ng [Ng] and in cluster categories of finite Dynkin type A by Holm, Jørgensen
and Rubey [HJR1]. In this section, we provide an interpretation of mutation of torsion
pairs in discrete cluster categories of Dynkin type A via a combinatorial model: We
define mutation of Ptolemy diagrams of an admissible subset Z ⊆ S1 and prove that it
corresponds to mutation of torsion pairs in the discrete cluster category C(Z) associated
to Z. This in turn generalizes work by Zhou and Zhu [ZZ2], who provided a combinatorial
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model for mutation of torsion pairs in the category CA∞ and in the cluster categories of
finite Dynkin type A, as mentioned in Example 4.2.15.

4.3.1 Torsion pairs in discrete cluster categories of Dynkin type
A

Throughout the rest of Section 4.3 let Z ⊆ S1 be an admissible subset (see Definition
3.3.1) and denote its set of edges by E(Z). We call any set X of internal arcs of Z a
diagram of Z, and a subset of X will be called a subdiagram of X . Recall that the
indecomposable objects of the discrete cluster category C(Z) are labelled by the internal
arcs of Z. Thus to any subcategory of C(Z) we can associate a diagram of Z consisting
of the indecomposable objects of Z.

Let X be a subcategory of the discrete cluster category C(Z) associated to Z and let
X be the associated diagram of Z. Recall from Proposition 4.2.6 that X is the torsion
part of a torsion pair if and only if it is contravariantly finite and X = ⊥(X⊥). These
conditions can be nicely translated into the combinatorial model.

Theorem 4.3.1 (Holm-Jørgensen). The subcategory X is contravariantly finite if and
only if X satisfies the following condition:

CF1 For every sequence {ai, bi}i∈Z≥0 of arcs in X such that {ai}i∈Z≥0 converges to a ∈ S1

from the right and {bi}i∈Z≥0 converges to b ∈ S1 from the left or from the right, there
is a sequence {a′i, b′i}i∈Z≥0 of arcs in X such that {a′i}i∈Z≥0 converges to a from the
left and {b′i}i∈Z≥0 converges to b from the left.

Dually one can show that the subcategory X is covariantly finite if and only if X

satisfies the following condition:

CF2 For every sequence {ai, bi}i∈Z≥0 of arcs in X such that {ai}i∈Z≥0 converges to a ∈ S1

from the left and {bi}i∈Z≥0 converges to b ∈ S1 from the left or from the right, there
is a sequence {a′i, b′i}i∈Z≥0 of arcs in X such that {a′i}i∈Z≥0 converges to a from the
right and {b′i}i∈Z≥0 converges to b from the right.

It remains to translate the condition X = ⊥(X⊥) into the combinatorial model. Con-
sider the diagram

nc X = {α an internal arc of Z | α does not cross any arc in X }

of Z. Holm and Jørgensen showed that X = ⊥(X⊥) if and only if X = nc(nc X ) and
that this holds if and only if X satisfies the following two conditions:

(Ptolemy) If two arcs {x0,x1} and {y0, y1} in X cross, then the arcs {x0, y0}, {y0,x1}, {x1, y1}
and {y1,x0} of Z lie in X ∪ E(Z).
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x0x1 x′0x′1

. . .

Figure 4.1: The diagram X on the left does not satisfy the Ptolemy condition, but
satisfies CF1 and the diagram X ′ on the right does not satisfy CF1, but satisfies the
Ptolemy condition. Neither satisfies the blocking condition: Every element in (x0,x1)∩Z
is {x0,x1}-blocked by X , but {x0,x1} /∈X and every element in (x′0,x′1)∩Z is {x′0,x′1}-
blocked by X ′, but {x′0,x′1} /∈X ′.

(Blocking) Let {x0,x1} be an internal arc of Z such that for every z ∈ (x0,x1)∩Z there is an
arc {y0, y1} ∈X with z ∈ (y0, y1) ⊆ (x0,x1). Then we have {x0,x1} ∈X .

If X satisfies the Ptolemy condition, then X is called a Ptolemy diagram of Z. If {x0,x1}
is an arc of Z and for a z ∈ (x0,x1)∩Z there is a {y0, y1} ∈X with z ∈ (y0, y1) ⊆ (x0,x1),
the marked point z is called {x0,x1}-blocked by X .

Theorem 4.3.2 (Holm-Jørgensen). The subcategory X ⊆ C(Z) is the torsion part of a
torsion pair if and only if X satisfies conditions CF1, Ptolemy and Blocking.

Not all diagrams of Z satisfy the blocking condition, cf. Figure 4.1. However, as
the following lemma shows, we can omit the blocking condition from the assumptions in
Theorem 4.3.2.

Lemma 4.3.3. If X is a Ptolemy diagram of Z satisfying CF1, then X satisfies the
blocking condition.

To prove Lemma 4.3.3, we use the following helpful result. We observe that the cyclic
order on S1 induces a total order on any proper interval [a, b] $ S1, and for x, y ∈ [a, b]
we write x ≤[a,b] y if and only if [a,x] ⊆ [a, y].

Lemma 4.3.4. If X is a diagram such that every right fountain in X is a subsequence
of a fountain in X , then for every arc {x0,x1} of Z the extremum

xmax = max{l ∈ Z ∩ [x0,x1] | {x0, l} ∈X ∪ E(Z)}

with respect to the order ≤[x0,x1] exists. In particular, if X satisfies CF1, then every right
fountain in X is a subsequence of a fountain in X . If X is a diagram such that every
left fountain in X is a subsequence of a fountain in X , then for every arc {x0,x1} of Z
the extremum

xmin = min{l ∈ Z ∩ [x0,x1] | {x1, l} ∈X ∪ E(Z)}
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with respect to the order ≤[x0,x1] exists. In particular, if X satisfies CF2, then every left
fountain in X is a subsequence of a fountain in X .

Proof. First note that if CF1 holds for a diagram X , then taking the sequence {bi}i∈Z≥0

in CF1 to be constant yields that every right fountain in X must be a subsequence of
a fountain in X . Dually, if X satisfies CF2 then every left fountain in X must be a
subsequence of a fountain in X . We prove the existence of xmax under the assumption
that every right fountain in X is the subsequence of a fountain, the existence of xmin
under the dual assumption can be proved analogously.

The set {l ∈ Z ∩ [x0,x1] | {x0, l} ∈ X ∪ E(Z)} is non-empty, since it contains
the successor s(x0) of x0 (cf. Section 3.3.2 for terminology). If it is finite, it contains
a maximal element, which proves the claim in this case. Else, if it is infinite, there is
a left or a right fountain in X at x0 converging to some a ∈ (x0,x1). By assumption,
for every right fountain in X at x0 converging to a there is a left fountain in X at x0

converging to a, so we have a left fountain at x0 converging to a. Consider the set of such
left fountains:

F = {b ∈ [x0,x1] | there is a left fountain in X at x0 converging to b}.

The set F is closed as a subset of S1: For every x ∈ S1\F there is an open neighbourhood
x ∈ U ⊆ S1 with U ∩ F = ∅, since otherwise we would have x ∈ [x0,x1] and there would
be infinitely many arcs of the form {x0, bi} with endpoints bi in every open neighbourhood
of x. Thus there would be a left fountain, or a right fountain and consequently also a
left fountain, at x0 converging to x and we would get x ∈ F , which contradicts the
assumption.

Thus F is non-empty, closed and bounded in S1 and therefore has a maximum d. We
have d 6= x1, since x1 ∈ Z and so, because Z is discrete (cf. Definition 3.3.1), x1 cannot
be the limit point of a non-constant sequence in Z, i.e. there cannot be a fountain at x0

converging to x1. Consider now the set

M = {l ∈ Z ∩ (d,x1] | {x0, l} ∈X ∪ E(Z)}.

It is non-empty, since there is a left fountain in X at x0 converging to d. Furthermore, it
has a maximum: Else, because it is bounded, there would be a right fountain at x0 in X

converging to its supremum d̃ ∈ (d,x1], and by assumption this would be a subsequence
of a fountain in X converging to d̃, contradicting the maximality of d. ThusM contains
a maximal element and we get xmax = max{l ∈ Z ∩ [x0,x1] | {x0, l} ∈ X ∪ E(Z)} =
maxM.

We can now prove Lemma 4.3.3.

Proof. Let {x0,x1} be an internal arc of Z such that every z ∈ (x0,x1) ∩ Z is {x0,x1}-
blocked by X . Consider the set {l ∈ Z ∩ [x0,x1] | {x0, l} ∈ X ∪ E(Z)}. By Lemma
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4.3.4, it has a maximum a. Assume for a contradiction that a 6= x1. Then a ∈ (x0,x1)
and by assumption it is {x0,x1}-blocked by X . Thus there exists a {y0, y1} ∈ X with
a ∈ (y0, y1) ⊆ (x0,x1). Since a ≤[x0,x1] y1, by maximality of a we must have y0 6= x0.
However, in that case we have y0 ∈ (x0, a) and y1 ∈ (a,x1], so the arcs {x0, a} and {y0, y1}
cross. By the Ptolemy condition we have {x0, y1} ∈X which contradicts the maximality
of a. Therefore, we must have x1 = max{l ∈ Z ∩ [x0,x1] | {x0, l} ∈X ∪ E(Z)} and thus
in particular {x0,x1} ∈X .

4.3.2 Mutation of torsion pairs in discrete cluster categories of
Dynkin type A

In this section, we define mutation of diagrams of Z and prove that mutation of Ptolemy
diagrams of Z provides a combinatorial model for mutation of torsion pairs in the discrete
cluster category C(Z) associated to Z. Let (X,Y ) be a torsion pair in C(Z) and let
D ⊆ X ∩ (Σ−1X)⊥ be a functorially finite subcategory. Since C(Z) is 2-Calabi-Yau (cf.
Section 3.3.2) we have τD = ΣD (cf. Remark 4.2.14) and D, as a subcategory of the
rigid subcategory X ∩ (Σ−1X)⊥, is rigid. So, according to Theorem 4.2.13, mutating
the torsion pair (X,Y ) with respect to D yields the torsion pairs (µD(X),µΣD(Y )) and
(µ−D(X),µ−ΣD(Y )).

In order to obtain a combinatorial approach to mutation of torsion pairs we trans-
late the situation into the combinatorial model: Let X be the Ptolemy diagram of Z
corresponding to the torsion part X and let D be the diagram corresponding to the
subcategory D. The fact that D is rigid translates to D being a non-crossing dia-
gram, i.e. the arcs in D are pairwise non-crossing. Since the Ext1-space between two
objects vanishes if and only if the two corresponding arcs do not cross, the subcategory
(Σ−1X)⊥ = ⊥(ΣX) corresponds to the diagram nc X of Z. Thus the fact that D is a
subcategory of X ∩ (Σ−1X)⊥ translates to D being a subdiagram of X ∩ nc X . Because
D is functorially finite, the diagram D satisfies conditions CF1 and CF2 by Theorem 4.3.1
and the paragraph thereafter. In particular, by Lemma 4.3.4, it satisfies the following
condition:

FF For every right (respectively left) fountain {a, bi}i∈Z≥0 in D at a ∈ Z converging to
b ∈ S1 there is a left (respectively right) fountain {a, b′i}i∈Z≥0 in D at a converging
to b.

Let D be any non-crossing diagram of Z satisfying condition FF. In the following, we
define mutation of a subdiagram X ⊆ nc D with respect to D . Note that by Lemma
4.3.4 for every internal arc {x0,x1} of Z the extrema

x−1 = min{l ∈ Z ∩ [x0,x1] | {x1, l} ∈ D ∪ E(Z)}
x+

1 = max{l ∈ Z ∩ [x1,x0] | {x1, l} ∈ D ∪ E(Z)}

exist.
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x0

x1

x+
0

x+
1

...

Figure 4.2: The arcs in the non-crossing diagram D are marked with thick lines. We
picture the image µD({x0,x1}) = {x+

0 ,x+
1 } of the element {x0,x1} in nc D under the

map µD .

Definition 4.3.5. Let D be a non-crossing diagram of Z satisfying condition FF. We
define the map

µD : nc D → {arcs of Z}

by setting
µD({x0,x1}) = {x+

0 ,x+
1 }.

Dually, we define the map
µ−D : nc D → {arcs of Z}

by setting
µ−D({x0,x1}) = {x−0 ,x−1 }.

Figure 4.2 provides an example for the map µD.

Remark 4.3.6. Note that µD leaves any arc in D invariant, since for {x0,x1} ∈ D we have
x+

0 = x1 and x+
1 = x0. Dually, the map µ−D leaves any arcs in D invariant.

Lemma 4.3.7. The maps µD and µ−D from Definition 4.3.5 are mutually inverse bijec-
tions on nc D .

Proof. We first that show that the image of µD lies in nc D . Let {x0,x1} be in nc D .
If {x0,x1} ∈ D , then by Remark 4.3.6, µD({x0,x1}) = {x0,x1} ∈ D ⊆ nc D . Assume
{x0,x1} ∈ (nc D) \D with µD({x0,x1}) = {x+

0 ,x+
1 }. Let {y0, y1} be an arc of Z crossing

{x+
0 ,x+

1 } with
y0 ∈ (x+

0 ,x+
1 ) = (x+

0 ,x1) ∪ {x1} ∪ (x1,x+
1 )

y1 ∈ (x+
1 ,x+

0 ) = (x+
1 ,x0) ∪ {x0} ∪ (x0,x+

0 ).

We want to show that {y0, y1} /∈ D . If y0 ∈ (x1,x+
1 ), respectively y1 ∈ (x0,x+

0 ) (see
Figure 4.3) then the arc {y0, y1} crosses {x1,x+

1 } ∈ D , respectively {x0,x+
0 } ∈ D and

hence cannot lie in the non-crossing diagram D . If y0 ∈ (x+
0 ,x1) and y1 ∈ (x+

1 ,x0), then
{y0, y1} crosses {x0,x1} ∈ nc D and hence cannot lie in D , cf. Figure 4.4. If y0 ∈ (x+

0 ,x1)
and y1 = x0, then {y0, y1} cannot lie in D since this would contradict the maximality of
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x0x+
0

x1 x+
1

(x+
1 ,x+

0 )

(x1,x+
1 )

x0x+
0

x1 x+
1

(x0,x+
0 )

(x+
0 ,x+

1 )

Figure 4.3: If y0 ∈ (x1,x+
1 ), respectively y1 ∈ (x0,x+

0 ), then the arc {y0, y1}, marked by a
dotted line, crosses {x1,x+

1 }, respectively {x0,x+
0 }.

x0x+
0

x1 x+
1

(x+
1 ,x0)(x+

0 ,x1)

y0
y1

Figure 4.4: If y0 ∈ (x+
0 ,x1) and y1 ∈ (x+

1 ,x0), then {y0, y1} crosses {x0,x1}.
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x0 = y1x+
0

x1 x+
1

(x+
0 ,x1)

y0

x0x+
0

x1 = y0 x+
1

(x+
1 ,x0)

y1

Figure 4.5: Illustration of the case where y0 ∈ (x+
0 ,x1) and y1 = x0 and the case where

y0 = x1 and y1 ∈ (x+
1 ,x0)

x+
0 in {l ∈ Z ∩ [x0,x1] | {x0, l} ∈ D ∪ E(Z)}, cf. Figure 4.5. Similarly, if y0 = x1 and
y1 ∈ (x+

1 ,x0), then {y0, y1} /∈ D because of the maximality of x+
1 in {l ∈ Z ∩ [x1,x0] |

{x1, l} ∈ D ∪ E(Z)}. Finally, if y0 = x1 and y1 = x0, then {y0, y1} = {x0,x1} /∈ D .
Thus any arc crossing {x+

0 ,x+
1 } cannot lie in D , and we get {x+

0 ,x+
1 } ∈ nc D , so the

image of µD lies in nc D . Analogously, it can be shown that the image of µ−D lies in nc D .
We now show that µD ◦ µ−D is the identity on nc D . The fact that µ−D ◦ µD is the

identity can be shown analogously. If {x0,x1} ∈ D , then both µD and µ−D leave {x0,x1}
invariant. On the other hand given {x0,x1} ∈ (nc D) \ D with µ−D({x0,x1}) = {x−0 ,x−1 }
and µD({x−0 ,x−1 }) = {(x−0 )+, (x−1 )+}, we have

(x−1 )+ = max{l ∈ Z ∩ [x−1 ,x−0 ] | {x−1 , l} ∈ D ∪ E(Z)}
= max{l ∈ Z ∩ (x−1 ,x−0 ) | {x−1 , l} ∈ D ∪ E(Z)},

where the second equality holds because {x−0 ,x−1 } /∈ D . By definition of x−0 and x−1 we
have x1 ∈ {l ∈ Z ∩ (x−1 ,x−0 ) | {x−1 , l} ∈ D ∪ E(Z)}. We show that x1 is maximal in
this set: Let m ∈ (x−1 ,x−0 ) with m >[x−1 ,x−0 ] x1 and consider the arc {x−1 ,m} of Z. Since
m ∈ (x1,x−0 ) ⊆ (x1,x0) and x−1 ∈ (x0,x1) the arc {m,x−1 } crosses the arc {x0,x1} and
thus cannot lie in D∪ E(Z). Thusm cannot lie in {l ∈ Z∩(x−1 ,x−0 ) | {x−1 , l} ∈ D∪ E(Z)}
showing that x1 is maximal in this set. This proves (x−1 )+ = x1.

The fact (x−0 )+ = x0 is equivalent and we thus obtain µ−D(µD({x0,x1})) = {x0,x1}.
Thus µ−D ◦ µD is the identity on nc D .

Mirroring the definition of mutation pairs in triangulated categories we define the
following.

Definition 4.3.8. Let D be a non-crossing diagram satisfying FF. We call a pair (X , X ′)
of subdiagrams X , X ′ ⊆ nc D a D-mutation pair if D ⊆ X ′ ⊆ µ−D(X ) and D ⊆ X ⊆
µD(X ′).

Remark 4.3.9. Note that since µD is a bijection with inverse µ−D , for any D-mutation pair
(X , X ′) we have X ′ = µ−D(X ) and X = µD(X ′).

We can now state our main theorem for this section.
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Theorem 4.3.10. Let X be a Ptolemy diagram of Z satisfying condition CF1, i.e. cor-
responding to the torsion part of a torsion pair (X,Y ) in C(Z). Let D ⊆ X ∩ nc X

be a subdiagram satisfying conditions CF1 and CF2, i.e. corresponding to a functo-
rially finite subcategory D ⊆ X ∩ (Σ−1X)⊥. Then the mutation µD(X ), respectively
µ−D(X ), corresponds to the torsion part of the torsion pair (µD(X),µΣD(Y )), respectively
(µ−D(X),µ−ΣD(Y )).

Theorem 4.3.10 is a direct consequence of the following, more general, result:

Theorem 4.3.11. Let D be a non-crossing diagram of Z satisfying condition FF and
corresponding to the subcategory D of C(Z). Let X , X ′ ⊆ nc D be diagrams of Z, with
X corresponding to the subcategory X ⊆ ⊥(ΣD) and X ′ corresponding to the subcategory
X ′ ⊆ ⊥(ΣD). Then (X , X ′) is a D-mutation pair if and only if (X,X ′) is a D-mutation
pair.

Using Theorem 4.3.11, we can prove Theorem 4.3.10 as follows.

Proof. Let the notation be as in Theorem 4.3.10. Because D is a subdiagram of X ∩ nc X

it is non-crossing and we have X ⊆ nc D . Because it satisfies conditions CF1 and CF2 it
satisfies condition FF by Lemma 4.3.4. Applying Theorem 4.4.22 to the D-mutation pair
(X ,µ−D(X )), respectively to the D-mutation pair (µD(X ), X ), yields the result.

For the proof of Theorem 4.3.11, we need to compute some distinguished triangles.
For this, we make use of the cluster structure given by those triangulations of the closed
disc with marked points Z which satisfy FF (cf. Section 3.3.2). More precisely we use
the existence of the exchange triangles according to Definition 3.2.7, CS2. This relies
on [IT3, Proposition 2.4.9] which states that for any triangulation T of the closed disc
with marked points Z and any arc {x0,x1} ∈ T there is a unique arc {y0, y1} of Z which
crosses {x0,x1} with y0 ∈ (x1,x0) and y1 ∈ (x0,x1) and such that all of {x0, y1}, {y1,x1},
{x1, y0} and {y0,x0} are in (T \ {x0,x1})∪ E(Z). Further, as elaborated in [IT3] we get
a distinguished triangle

{x0,x1} → {x0, y0} ⊕ {x1, y1} → {y0, y1} → Σ{x0,x1},

where the first morphism is a left (C(Z) \ {{x0,x1}})-approximation and where we asso-
ciate a zero-object to any edge of Z. Using this we can prove Theorem 4.3.11.

Proof. Assume first that (X , X ′) is a D-mutation pair. We have D ⊆X , X ′ and thus
D ⊆ X,X ′. By Lemma 4.2.11 we further have D ⊆ µD(X ′),µ−D(X). It remains to show
that we also have x ∈ µD(X ′) for those objects x ∈ X with x /∈ D and x′ ∈ µ−D(X) for
those objects x′ ∈ X ′ with x′ /∈ D.

The indecomposable objects in X but not in D are labelled by the arcs in X \D
and the indecomposable objects in X ′ but not in D are labelled by the arcs in X ′ \D =
µ−D(X )\D . Consider an arc {x0,x1} ∈X \D and its mutation {x−0 ,x−1 } = µ−D{x0,x1} ∈
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X ′. It suffices to show that as objects in C(Z) we have {x0,x1} ∈ µD(X ′) and {x−0 ,x−1 } ∈
µ−D(X). By assumption, both arcs {x0,x1} ∈ X and {x−0 ,x−1 } ∈ X ′ lie in nc D , so
{x0,x1} and {x−0 ,x−1 } label indecomposable objects in ⊥(ΣD) = (Σ−1D)⊥. Furthermore,
we can complete the pairwise non-crossing arcs {x0,x1}, {x0,x−1 }, {x−1 ,x1}, {x1,x−0 } and
{x−0 ,x0} to a triangulation T of the closed disc with marked points Z. So by [IT3,
Proposition 2.4.9] there exists a distinguished triangle of the form

{x0,x1} // {x−1 ,x1} ⊕ {x−0 ,x0} // {x−0 ,x−1 } // Σ{x0,x1} , (4.1)

and {x−1 ,x1} ⊕ {x−0 ,x0} lies in D. Therefore we have {x−0 ,x−1 } ∈ µ−D(X) and {x0,x1} ∈
µD(X ′).

On the other hand let (X,X ′) be a D-mutation pair and let X̃ be the subcategory
corresponding to the diagram µ−D(X ). Then because (X ,µ−D(X )) is a D-mutation pair,
the pair (X, X̃) is a D-mutation pair and therefore by Remark 4.2.12 we have X̃ =
µ−D(X) = X ′. So the diagram µ−D(X ) corresponds to X ′ and we get that µ−D(X ) = X ′

and (X , X ′) is a D-mutation pair.

4.4 Torsion pairs and their mutation in cluster cate-
gories of finite Dynkin type D

In this section, we provide a combinatorial model for mutation of torsion pairs in cluster
categories of finite Dynkin type D. The situation is more complicated than in Dynkin
type A, since we have to deal with the indecomposable objects coming from the excep-
tional vertices of Dynkin diagrams of type D. For the Dynkin diagram Dn with n ≥ 4
(throughout this Chapter, when we refer to the Dynkin diagram of type Dn or related
combinatorial concepts, we always assume n ≥ 4) these are the vertices (n − 1)− and
(n− 1)+ in the following picture:

1 2 3 . . . (n− 2)

(n− 1)+

(n− 1)−

Recall from Section 3.2.1, that every two orientations Q and Q′ of Dn give rise to equiv-
alent cluster categories CkQ ∼= CkQ′ . Therefore it is justified to talk about the cluster
category of Dynkin type Dn. In Section 3.2.1, the cluster category CkDn of Dynkin type
Dn was discussed as an example. It is a triangulated, k-linear, Hom-finite, Krull-Schmidt
category and thus satisfies all prerequisites we had on our ambient category in the discus-
sion of torsion pairs and mutation in triangulated categories in Section 4.2. Furthermore,
as discussed in Section 3.2.1, it is 2-Calabi-Yau, which facilitates some considerations
when discussing mutation of torsion pairs.
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4.4.1 Cluster categories of finite Dynkin type D: a combinato-
rial model

The combinatorial model for Dynkin type Dn introduced by Fomin and Zelevinsky in
[FZ3] offers a geometric interpretation of the cluster category of Dynkin type Dn. Iso-
morphism classes of indecomposable objects are represented by rotation-invariant pairs
of arcs and diameters in a regular 2n-gon. As a useful property, this combinatorial model
allows for an easy way to determine the dimension of the extension space between two
indecomposable objects by counting the number of times the corresponding pairs of arcs
or diameters in the regular 2n-gon cross.

Consider the regular 2n-gon P2n with vertices labelled consecutively in an anticlock-
wise direction by 0, 1, . . ., 2n− 1. Throughout we will calculate modulo 2n.

Definition 4.4.1. An arc of P2n is an unordered pair of vertices {a, b} of P2n with a 6= b.
An arc of the form {a, a+ 1}, for a = 0, . . . , 2n− 1, is called an edge of P2n. An internal
arc of P2n is an arc of P2n that is not an edge. Each arc {a, b} of P2n has a partner
{a + n, b + n} which is obtained from {a, b} by rotation by π. An arc of P2n is called a
diameter if it is π-rotation invariant, i.e. if it is of the form {a, a+n}. A non-diameter arc
{a, b} together with its partner {a+n, b+n} is called a pair of arcs and denoted by {a, b}.
For each diameter {a, a+n} we introduce two coloured diameters: A red one {a, a+ n}r
and a green one {a, a+ n}g. By abuse of notation we sometimes omit the index and just
write {a, a+ n} for a coloured diameter, which could be either red or green. If we omit
the overline and simply write {a, a + n}, we refer to the diameter {a, a + n} without a
colour. We set

E(P2n) := {pairs of edges of P2n}

and
A(P2n) := {coloured diameters and pairs of arcs of P2n} \ E(P2n).

Figure 4.8 features some examples of pairs of arcs and coloured diameters.
Denote by Γ(CkDn)0 the set of vertices of the Auslander–Reiten quiver Γ(CkDn), which

correspond to isomorphism classes of indecomposable objects in CkDn , and recall the
labelling of Γ(CkDn)0 from Figure 3.2. We define a bijection ϕ : Γ(CkDn)0 → A(P2n) by
sending, for 0 ≤ a ≤ n− 1,

ϕ :



(a, b) 7→ {a, a+ b+ 1} for 1 ≤ b < n− 1,

(a, (n− 1)+) 7→

{a, a+ n}g if a = 0 mod 2,
{a, a+ n}r if a = 1 mod 2,

(a, (n− 1)−) 7→

{a, a+ n}r if a = 0 mod 2,
{a, a+ n}g if a = 1 mod 2.

This map provides the connection between the cluster category CkDn and the combina-
torial model for Dynkin type Dn. It sends vertices without a sign in Γ(CkDn) to pairs
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{0, 2}

{0, 3}

. . .

{0, 4}

{0,n}g

{0,n}r

{1, 3}

{1, 4}

. . .

{1, 5}

{1,n + 1}r

{1,n + 1}g

{0, 2}

{0, 3}

. . .

{0, 4}

{0,n}g,r

{0, 2}r,g

{n− 1,n + 1}]

{n− 1,n + 2}

. . .

{n− 1,n + 3}

{n− 1, 2n− 1}r,g

. . .

Figure 4.6: The vertices of the Auslander-Reiten quiver Γ(CkDn) are labelled by pairs of
arcs and coloured diameters of P2n. The action of the Auslander-Reiten translation τ is
marked by dashed arrows.
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Figure 4.7: The vertices in Γ(CkDn) marked with a dashed circle get matched to green
diameters, those marked with a continuous circle get matched to red diameters.

of internal arcs of P2n and alternatingly matches the vertices (a, (n − 1)±) to red and
green diameters. The isomorphism classes of indecomposable objects in CkDn are thus
labelled by A(P2n). Figure 4.6 shows the Auslander-Reiten quiver Γ(CkDn) with the
new labelling. Note that the indexing diameters alternate in colour along both the top
and the second to top horizontal levels of the Auslander-Reiten quiver. In other words,
the Auslander-Reiten translation τ changes the colours of the diameters, i.e. we have
τ({a, a + n}r) = {a − 1, a − 1 + n}g and τ({a, a + n}g) = {a − 1, a − 1 + n}r for all
0 ≤ a ≤ n − 1. We have drawn in the Auslander-Reiten translation in Figure 4.6 as an
illustration. Figure 4.7 provides an illustration of the alternating matching of colours to
the vertices associated to diameters.

Subcategories of CkDn correspond to subsets of A(P2n) and we call any subset X ⊆
A(P2n) a diagram of Dynkin type Dn, and if the context is clear sometimes just a diagram
for short. A subset D ⊆X of a diagram X is called a subdiagram of X . Any diagram
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Figure 4.8: The pictures illustrate from left to right: Two pairs of arcs crossing once,
two pairs of arcs crossing twice, a diameter crossing a pair of arcs and two diameters of
different colour crossing.

of Dynkin type Dn is invariant under rotation by π.

Definition 4.4.2. Two arcs {a, b} and {x, y} of P2n are said to cross, if a, b,x and y are
pairwise distinct and they lie on the boundary of P2n in the order a,x, b, y or x, a, y, b
when moving in an anticlockwise direction. We have the following notion of elements of
A(P2n) crossing:

• Two pairs of arcs {a, b} and {x, y} are said to cross once, if the arc {a, b} crosses
either {x, y} or {x+n, y+n}. They are said to cross twice, if the arc {a, b} crosses
both {x, y} and {x+ n, y + n}.

• A coloured diameter {a, a+ n} and a pair of arcs {x, y} are said to cross once, if
the arc {a, a+ n} crosses {x, y}.

• Two coloured diameters {a, a+ n}r and {x,x+ n}g of different colours are said to
cross once if the arcs {a, a + n} and {x,x + n} cross. Two diameters of the same
colour do not cross.

Figure 4.8 illustrates the crossing of arcs. Throughout this paper, when drawing
diagrams we will draw green diameters as wriggly lines and red diameters as straight
lines.

The combinatorial model for the cluster category of Dynkin type Dn via A(P2n) is
closely related to the model introduced by Schiffler [Sch], where triangulations of the
punctured disc were used to first combinatorially describe the cluster category of Dynkin
type Dn. In particular, [Sch, Proposition 1.3] translates directly to this model and can
be stated as follows:

Proposition 4.4.3 ([Sch, Proposition 1.3]). Let {a, b} and {x, y} be elements of A(P2n)
and consider the corresponding indecomposable objects in CkDn. Then the number of
times {a, b} and {x, y} cross is equal to the dimension dim Ext1

CkDn ({a, b}, {x, y}) of the
Ext1-space between them.

For the sake of clarity let us explicitly note that the above proposition determines all
extensions between such objects: Because CkDn is 2-Calabi-Yau we have

dim(Ext1({a, b}, {x, y})) = dim(Ext1({x, y}, {a, b})).
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4.4.2 Torsion pairs in cluster categories of finite Dynkin type D

Torsion pairs in the cluster category of Dynkin type Dn have been classified by Holm,
Jørgensen and Rubey in [HJR2] via the combinatorial model described in Section 4.4.1.

Recall that by Proposition 4.2.6 a subcategoryX ⊆ CkDn is the torsion part of a torsion
pair if and only if it is contravariantly finite and ⊥(X⊥) = X. Since there are only finitely
many indecomposable objects in CkDn , every subcategory is functorially finite, so the aim
is to classify all subcategories X satisfying ⊥(X⊥) = X. As in the example for discrete
cluster categories of Dynkin type A (cf. Section 4.3.1), this condition translates nicely to
the combinatorial model. Let X ⊆ CkDn be a subcategory corresponding to the diagram
X of Dynkin type Dn. Set

nc X = {{a, b} ∈ A(P2n) | {a, b} crosses no element of X }.

By [HJR2, Proposition 3.5], the pair (X,X⊥) is a torsion pair in CkDn if and only if X =
nc(nc X ). In light of this result, the problem of classifying torsion pairs in CkDn boils
down to finding a combinatorial description for diagrams X of Dynkin type Dn satisfying
X = nc(nc X ). Diagrams satisfying this condition can be described combinatorially by
considering all their crossing elements, as in the following definition.

Definition 4.4.4 ([HJR2, Definition 4.1]). Let X be a diagram of Dynkin type Dn. It
is called a Ptolemy diagram of Dynkin type Dn if for any two crossing elements {a, b} and
{x, y} of X the following hold:

Pt1 If {a, b} and {x, y} are pairs of arcs, then each of {a,x}, {x, b}, {b, y} and {y, a}
lies in X ∪ E(P2n). If any of {a,x}, {x, b}, {b, y} or {y, a} is a diameter, then both
the red and the green copy of that diameter lie in X .

Pt2 If {a, b} and {x, y} are diameters of different colour, then {a,x} = {b, y} and
{x, b} = {y, a} lie in X ∪ E(P2n).

Pt3 If {a, b} is a diameter and {x, y} is a pair of arcs, then those of {a,x}, {x, b}, {b, y}
and {y, a} which do not cross {x, y} lie in X ∪ E(P2n). Furthermore, the diameters
{x,x+ n} and {y, y + n} of the same colour as {a, b} also lie in X .

Figure 4.9 illustrates the axioms for a Ptolemy diagram.

Holm, Jørgensen and Rubey present the following useful classification of torsion pairs
in the cluster category CkDn of Dynkin type Dn.

Theorem 4.4.5 ([HJR2, Theorem 1.1]). Let X be a subcategory of CkDn and let X be
the corresponding diagram of Dynkin type Dn. Then the following are equivalent.

• The pair (X,X⊥) is a torsion pair in CkDn.

• The diagram X is a Ptolemy diagram of Dynkin type Dn.
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Figure 4.9: The axioms for a Ptolemy diagram of Dynkin type Dn illustrated: Whenever
two elements, drawn with thin lines, of a Ptolemy diagram X of Dynkin type Dn cross,
then the thick lines must be contained in X ∪ E(P2n).

4.4.3 Non-crossing diagrams of Dynkin type D and mutation

Throughout this section, let D denote a non-crossing diagram of Dynkin type Dn, i.e. a
diagram of Dynkin type Dn with pairwise non-crossing elements. We define mutation
of subdiagrams of nc D with respect to D using the concept of D-cells of Dynkin type
Dn. Informally speaking, D-cells of Dynkin type Dn are convex polygons with edges
in D ∪ E(P2n) whose diagonals do not lie in D . However, the presence of diameters
means that we have to be careful with the definition. The idea of D-cells of Dynkin
type Dn is inspired by Zhou and Zhu [ZZ2], who introduced D-cells for non-crossing
subdiagrams D of Ptolemy diagrams of Z, where Z ⊆ S1 is a finite subset or an admissible
subset with exactly one limit point (i.e. the combinatorial model corresponding to cluster
categories of finite Dynkin type A and the cluster category CA∞ of infinite Dynkin type
A∞ respectively).

For a formal definition of D-cells, it is useful to replace some of the diameters in
A(P2n) by pairs of radii.

Definition 4.4.6. We introduce an additional central vertex c, which is placed at the
centre of P2n and additional arcs {a, c} for a ∈ {0, . . . , 2n− 1}, which we call radii. The
π-rotation {a+ n, c} of a radius {a, c} is again a radius and together they form the pair
of radii {a, c}. For each pair of radii {a, c} we introduce a copy {a, c}r of the colour red
and a copy {a, c}g of the colour green.

We define the replacement map rD as follows. If D has no diameters, then we set
rD : A(P2n) ∪ E(P2n)→ A(P2n) ∪ E(P2n) to be the identity. Otherwise we define

rD : A(P2n) ∪ E(P2n)→ A(P2n) ∪ E(P2n) ∪ {{a, c}|a ∈ {0, . . . , 2n− 1}}

by rD({a, b}) = {a, b} for every pair of arcs {a, b} ∈ A(P2n) ∪ E(P2n) and for every
0 ≤ a < n we define

rD({a, a+ n}r,g) =

{a, a+ n}r,g if {a, a+ n}g,r ∈ D

{a, c}r,g if {a, a+ n}g,r /∈ D .

that is, a red diameter {a, a + n}r gets sent to a pair of radii if and only if the green
diameter {a, a + n}g does not lie in D and a green diameter {x,x + n}g gets sent to a
pair of radii if and only if the red diameter {x,x+ n}r does not lie in D .



4.4. DYNKIN TYPE D 101

rD1
c

rD2

Figure 4.10: The diameters lying in the non-crossing subdiagrams D1 respectively D2 are
marked by thick lines. The picture shows how some diameters in A(P2n) get replaced by
pairs of radii and some stay as diameters under the replacement maps rD1 and rD2 .

Figure 4.10 illustrates how the replacement map acts on diameters for different non-
crossing diagrams.

A pair of radii {x, c}r,g is said to cross a diameter or pair of arcs {a, b} if and only
if the corresponding diameter {x,x+ n}r,g crosses {a, b}. Two pairs of radii {x, c}r,g
and {a, c}g,r are said to cross if and only if the corresponding diameters {x,x+ n}r,g
and {a, a+ n}g,r cross. Furthermore, two radii {a, c} and {x, c} do not cross for any
a,x ∈ {0, . . . , 2n− 1}.

One neat effect of replacing diameters with pairs of radii according to the replace-
ment map, is that the image rD(D) of the non-crossing diagram D consists of pairwise
geometrically non-crossing arcs, i.e. where in D we had the possibility of diameters of the
same colour crossing as arcs, we cannot have that situation in rD(D), as the following
lemma shows.

Lemma 4.4.7. If {a, b} and {x, y} lie in rD(D) then the arcs {a, b} and {x, y} do not
cross.

Proof. Assume for a contradiction that the arcs {a, b} and {x, y} cross and that {a, b}
and {x, y} lie in rD(D). Because D is non-crossing, the elements {a, b} 6= {x, y} must
be diameters of the same colour in D , without loss of generality {a, b} = {a, a+ n}r and
{x, y} = {x,x+ n}r. Because {a, a+ n}r and {x,x+ n}r are in D , both {x,x+ n}g,
which crosses {a, a+ n}r and {a, a+ n}g, which crosses {x,x+ n}r, cannot lie in D .
Therefore rD({a, a+ n}r) = {a, c}r and rD({x,x+ n}r) = {x, c}r, which contradicts the
assumption that {a, b} and {x, y} lie in rD(D).

When talking about angles between arcs, we adhere to the following convention.

Notation 4.4.8. For two arcs {x, y} and {y, z} we denote by ^(x, y, z) the angle covered
when rotating {x, y} to {y, z} in a clockwise direction. We assume 0 ≤ ^(x, y, z) < 2π.
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d1

d2

d3dk

Figure 4.11: Example for a non-central pair of D-cells

d1d2

d k
2

d k
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dk

d1d2

dk−1

•dk

d1
d2

•dk

d1d2

dk

Figure 4.12: Examples for central pairs of D-cells. From left to right: When D contains
no diameters; when D contains one diameter; when D contains more than one diameter
and all are of the same colour; when D contains two diameters of different colour

We can now give a rigorous definition of D-cells of Dynkin type Dn.

Definition 4.4.9. Let D be a non-crossing diagram of Dynkin type Dn. A D-cell of
Dynkin type Dn, or D-cell for short, is a polygon 〈d1, . . . , dk〉 with k ≥ 3 with vertices
d1, . . . , dk ∈ {0, . . . , 2n − 1} ∪ {c}, ordered in an anticlockwise fashion, such that for
i = 1, . . . , k we have

{di, di+1} ∈ rD(D) ∪ E(P2n),

where we calculate modulo k in the indices. Furthermore, for any {di, v} ∈ rD(D) with
^(di−1, di, v) 6= 0 we have

0 < ^(di−1, di, di+1) ≤ ^(di−1, di, v).

We call a D-cell 〈d1, . . . , dk〉 of Dynkin type Dn together with its π-rotation 〈d1 +
n, . . . , dk + n〉 (where we set c + n = c) a pair of D-cells and denote it by 〈d1, . . . , dk〉.
We call a pair of D-cells central, if they contain the centre c of the polygon P2n.

Figure 4.11 shows an example of a non-central pair of D-cells, i.e. a pair of D-cells
which does not contain the centre of P2n. Figure 4.12 shows examples of central pairs of
D-cells.

The examples of D-cells we provided are convex. In fact, all of them are.

Lemma 4.4.10. Every D-cell of Dynkin type Dn is convex.

Proof. Let 〈d1, . . . , dk〉 be a D-cell of Dynkin type Dn. The interior angles are the an-
gles ^(di−1, di, di+1) for i ∈ {1, . . . , k} (calculating modulo k). If di ∈ {0, . . . , 2n − 1},
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a1

b1

a2

b2

a3

b3

Figure 4.13: The pictures illustrate three different non-crossing diagrams Di (for i = 1, 2, 3
labelled from left to right) marked by thick lines, with an element {ai, bi} of (nc Di) \Di

and the pair of Di-cells it is contained in. The pair of Di-cells containing {ai, bi} ∈
nc Di \Di is marked in grey.

then ^(di−1, di, di+1) ≤ ^(di−1, di, di + 1) < π. If di = c, then ^(di−1, di, di+1) ≤
^(di−1, di, di−1 + n) = π. Thus all interior angles are less or equal to π, and 〈d1, . . . , dk〉
is convex.

We can use D-cells to define mutation of subdiagrams of nc D with respect to D . We
start by showing (in Lemma 4.4.12) that each element of (nc D) \ D is contained in a
unique pair of D-cells, by which we mean the following.

Definition 4.4.11. We say that a diameter or a pair of arcs {a, b} ∈ A(P2n) is contained
in a pair of D-cells 〈d1, . . . , dk〉 if rD({a, b}) = {di, dj} for some i, j ∈ {1, . . . , k} with
j /∈ {i− 1, i, i+ 1}.

For a pair of arcs {a, b} to be contained in a pair of D-cells 〈d1, . . . , dk〉 means that
either the arc {a, b} is a diagonal in 〈d1, . . . , dk〉 and {a + n, b + n} is a diagonal in
〈d1 +n, . . . , dk +n〉 or vice versa. For a coloured diameter {a, a+ n} to be contained in a
pair of D-cells 〈d1, . . . , dk〉 can mean any of the following two: Either rD({a, a+ n}) is a
diameter and it is a diagonal in 〈d1, . . . , dk〉 and 〈d1 +n, . . . , dk +n〉 or it is a pair of radii
and {a, c} is a diagonal in 〈d1, . . . , dk〉 and {a+ n, c} is a diagonal in 〈d1 + n, . . . , dk + n〉
or vice versa.

Lemma 4.4.12. Every element {a, b} ∈ A(P2n) which is contained in a pair of D-cells
〈d1, . . . , dk〉 lies in (nc D) \ D . On the other hand, every element {a, b} ∈ (nc D) \ D is
contained in a unique pair of D-cells.

Figure 4.13 shows, for different non-crossing diagrams Di of Dynkin typeDn, examples
of elements of nc Di \ Di and the pairs of Di-cells they are contained in. The proof of
Lemma 4.4.12 uses the following useful fact.

Lemma 4.4.13. Let {x, y}, {y, z}, {y, z′} ∈ rD(D). Then we have ^(x, y, z) = ^(x, y, z′)
if and only if z = z′.

Proof. Assume that ^(x, y, z) = ^(x, y, z′). If both z and z′ lie in {0, . . . , 2n−1} it follows
from the regularity of P2n that z = z′. Otherwise, if c ∈ {z, z′} then z 6= z′ would imply



104 CHAPTER 4. MUTATION OF TORSION PAIRS

{z, z′} = {c, y+n}. Without loss of generality we may assume z = c and z′ = y+n, and
{y, z} = {y, c}r ∈ rD(D) is of the colour red, so rD({y, y + n}r) = {y, c}r ∈ rD(D) and
{y, y + n}r ∈ D . Then, by definition of the replacement map, rD({y, y + n}g) = {y, c}g.
Therefore, both diameters {y, y + n}r and {y, y + n}g get replaced by pairs of radii under
the replacement map rD , which contradicts the assumption that {y, z′} = {y, y + n} ∈
rD(D).

We can now prove Lemma 4.4.12.

Proof. Assume that {a, b} ∈ A(P2n) is contained in a pair of D-cells 〈d1, . . . , dk〉. Assume
for a contradiction that {a, b} lies in D . Then for some 1 ≤ i, j ≤ k with j /∈ {i−1, i, i+1},
we have rD({a, b}) = {di, dj} ∈ rD(D). By Lemma 4.4.10 the polygon 〈d1, . . . , dk〉 is
convex, so we have ^(di−1, di, dj) ≤ ^(di−1, di, di+1), where we cannot have equality
by Lemma 4.4.13. By minimality of ^(di−1, di, di+1) we must have ^(di−1, di, dj) = 0, so
either dj = c or di−1 = c and both r−1

D ({di, dj}) and r−1
D ({di, di−1}) are coloured diameters

in D with underlying non-coloured diameter {di, di + n}. Because {di, dj} 6= {di, di−1}
they must be of different colour. This contradicts the definition of the replacement map
rD and the fact that we have di−1 = c or dj = c. So we have {a, b} /∈ D . Assume now
that {x, y} ∈ A(P2n) crosses {a, b}. Then either it crosses a pair of sides of 〈d1, . . . , dk〉
or it is also contained in 〈d1, . . . , dk〉. In particular, the diameter or pair of arcs {x, y}
cannot lie in D and thus {a, b} ∈ (nc D) \D . This proves the first statement of Lemma
4.4.12.

Let {a, b} ∈ (nc D) \ D with rD({a, b}) = {a′, b′}. We first show the existence of a
D-cell of Dynkin type Dn containing {a, b}. Construct a sequence of vertices by setting

d1 = a′

d2 = min
^(b′,a′,v)>0

{v ∈ {0, . . . , 2n− 1} ∪ {c}|{a′, v} ∈ rD(D) ∪ E(P2n)}

and for i ≥ 2:

di+1 = min
^(di−1,di,v)>0

{v ∈ {0, . . . , 2n− 1} ∪ {c}|{di, v} ∈ rD(D) ∪ E(P2n)}.

We show that there exists a k ∈ Z, such that 〈d1, . . . , dk〉 is a polygon. Since the set
of vertices {0, . . . , 2n − 1} ∪ {c} is finite, there is a k ∈ Z≥3, such that dk+1 = di for
some i < k. Choose k to be minimal with this property, i.e. let k be such that there
is a 1 ≤ i < k with dk+1 = di and such that d1, . . . , dk are pairwise distinct. Since by
Lemma 4.4.7 the arcs {dj, dj+1} for 1 ≤ j ≤ k are pairwise non-crossing, 〈di, . . . , dk〉 is
a polygon. Assume for a contradiction that i ≥ 2. Then ^(dk, di, di+1) 6= 0. Otherwise,
by Lemma 4.4.13 we get dk = di+1 and thus di = dk+1 = di+2, which contradicts the
condition ^(di, di+1, di+2) 6= 0. So we have, by the definition of di,

^(di−1, di, di+1) ≤ ^(dk, di, di+1)
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and thus, since {di−1, di} does not intersect any side of the polygon 〈di, . . . , dk〉, it is a
diagonal or a side in 〈di, . . . , dk〉. Therefore we have di−1 = dl for some i < l ≤ k. This
contradicts the assumption that d1, . . . , dk are pairwise distinct. Therefore di = d1 and
〈d1, . . . , dk〉 is a polygon.

By definition, for 1 < i ≤ k the angles ^(di−1, di, di+1) satisfy the minimality condition
for angles in a D-cell of Dynkin type Dn. Furthermore, if {d1, v} ∈ rD(A(P2n)) is such
that 0 < ^(dk, d1, v) < ^(dk, d1, d2), then either it is contained in 〈d1, . . . , dk〉 or it
intersects one of its pairs of sides. Thus by the first part of the proof it cannot be an
element of D . So ^(dk, d1, d2) satisfies the minimality condition for angles in a D-cell of
Dynkin type Dn and the polygon 〈d1, . . . , dk〉 is a D-cell of Dynkin type Dn.

Because rD({a, b}) = {a′, b′} does not intersect any of the pairs of sides {di, di+1} of
〈d1, . . . , dk〉 and because by definition of d2 we have ^(b′, a′, d2) ≤ ^(dk, d1, d2), the arc
{a′, b′} is a diagonal in the polygon 〈d1, . . . , dk〉 and thus {a, b} is contained in 〈d1, . . . , dk〉.

It remains to show uniqueness. Let {a, b} ∈ (nc D) \ D with rD({a, b}) = {a′, b′}
and assume it is contained in the pairs of D-cells 〈d1, . . . , dk〉 and 〈d′1, . . . , d′k′〉. Without
loss of generality we may assume a′ = di = d′i′ and b′ = dj = d′j′ for some 1 ≤ i, j ≤ k

and 1 ≤ i′, j′ ≤ k′. First assume ^(di−1, di, d′i′−1) = 0. By Lemma 4.4.13 we have
di−1 = d′i′−1 and inductively, using minimality of the exterior angles of both D-cells, we
obtain 〈d1, . . . , dk〉 = 〈d′1, . . . , d′k′〉. Consider now the case where ^(di−1, di, d′i′−1) > 0.
Without loss of generality we may assume ^(di−1, di, d′i′−1) ≤ π, otherwise interchange the
roles of 〈d1, . . . , dk〉 and 〈d′1, . . . , d′k′〉. By Lemma 4.4.10, both 〈d1, . . . , dk〉 and 〈d′1, . . . , d′k′〉
are convex. We have

^(di−1, di, dj) = ^(di−1, di, d′i′−1) + ^(d′i′−1, di, dj)

and by convexity of 〈d′1, . . . , d′k′〉 we have ^(d′i′−1, di, dj) = ^(d′i′−1, d′i′ , d′j′) ≤ π. Thus
both angles on the right hand side are smaller or equal to π and we obtain

^(di−1, di, d′i′−1) ≤ ^(di−1, di, dj) ≤ ^(di−1, di, di+1),

where the last inequality holds by convexity of 〈d1, . . . , dk〉. On the other hand, minimality
of the exterior angles of 〈d1, . . . , dk〉 ensures that ^(di−1, di, di+1) ≤ ^(di−1, di, d′i′−1).
Thus we have equality and by Lemma 4.4.13 we have d′i′−1 = di+1. By convexity of the
D-cells we have 0 ≤ ^(dj, di, di+1) ≤ π and thus either we have

0 = ^(di+1, di, dj) = ^(di′−1, di, dj) or

π ≤ ^(di+1, di, dj) = ^(di′−1, di, dj) ≤ π.

The second case implies

^(di−1, di, dj) = ^(di−1, di, d′i′−1) + ^(d′i′−1, di, dj) = ^(di−1, di, d′i′−1) + π,

which contradicts the fact that ^(di−1, di, dj) ≤ π and 0 < ^(di−1, di, d′i′−1) ≤ π. Thus
we must have 0 = ^(di+1, di, dj) and both r−1

D ({di, di+1}) and r−1
D ({di, dj}) = {a, b} are
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diameters with di+1 = c or dj = c. Without loss of generality we may assume that the
diameter r−1

D ({di, di+1}) ∈ D is red. Then {a, b} must be green and by definition of the
map rD we get that rD({a, b}g) = {di, dj}g is a diameter and dj 6= c. Thus we have
di+1 = d′i′−1 = c and because none of the elements of D is crossed by {di, di + n}g =
{a, b}g ∈ nc D or {di, di + n}r ∈ D the diameter {di, di + n}r is the only diameter in D

and it follows that di+2 = d′i′−2 = di+n. By rotation invariance of D we get 〈d1, . . . , dk〉 =
〈d′1, . . . , d′k′〉.

A special situation, which is worth considering in more detail, is the case where we
have a π-rotation invariant D-cell, such as in the left-most picture of Figure 4.12. This is
only possible for certain diagrams D . The following result summarizes the most important
facts about the case where we have a π-rotation invariant D-cell.

Lemma 4.4.14. There exists a π-rotation invariant D-cell

〈d1, . . . , dk〉 = 〈d1 + n, . . . , dk + n〉

of Dynkin type Dn if and only if D contains no diameters. In this case, the π-rotation
invariant D-cell of Dynkin type Dn is unique, central and it contains all diameters in
(nc D) \ D . Furthermore, if 〈d1, . . . , dk〉 is a π-rotation invariant D-cell of Dynkin type
Dn, then {di, dj} is a diameter if and only if {di−1, dj−1} is a diameter.

Proof. Let 〈d1, . . . , dk〉 be a π-rotation invariant D-cell of Dynkin type Dn. It is of the
form

〈d1, . . . , dk〉 = 〈d1, . . . , d k
2
, d k

2 +1 = d1 + n, . . . , dk = d k
2

+ n〉,

with k ≥ 4 even. In particular, {di, dj} is a diameter if and only if j = k
2 + i, which

is the case if and only if {di−1, dj−1} is a diameter. Furthermore with the diameters
{di, di + n} = {di, d k

2 +i}, the D-cell 〈d1, . . . , dk〉 of Dynkin type Dn contains the central
vertex c. It is thus a central D-cell of Dynkin type Dn and c lies in its interior. Any
diameter {a, a+ n} ∈ A(P2n) contains the vertex c and is therefore either contained in
〈d1, . . . , dk〉 or crosses one of the pairs of arcs {di, di+1}. So any π-rotation invariant
D-cell of Dynkin type Dn contains all diameters in (nc D) \ D and if there is a π-
rotation invariant D-cell 〈d1, . . . , dk〉 of Dynkin type Dn, there is at least one diameter in
(nc D) \D , e.g. {d1, d1 +n}. By Lemma 4.4.12 the π-rotation invariant D-cell of Dynkin
type Dn is thus unique if it exists and in this case, also by Lemma 4.4.12, D contains no
diameters.

Suppose, on the other hand, that D contains no diameters. By [HJR2, Lemma 5.1],
there exists a diameter {a, a+ n} in (nc D)\D . By rotation invariance of D and because
D contains no diameters, the diameter {a, a+ n} is contained in a π-rotation invariant
D-cell. Thus in particular such a D-cell exists.
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We now have all the necessary machinery ready to define mutation with respect to
D . Informally speaking, one can think of the mutation µD , respectively µ−D , as rotating
the interior of each D-cell of Dynkin type Dn in an anticlockwise, respectively clockwise,
direction.

Definition 4.4.15. For every non-crossing diagram D of Dynkin type Dn we define the
mutation maps

µD : nc D → nc D and µ−D : nc D → nc D

as follows.

• The maps µD and µ−D leave D ⊆ nc D invariant:

µD

∣∣∣
D

= µ−D

∣∣∣
D

= idD .

• Suppose {a, b} ∈ (nc D) \ D . By Lemma 4.4.12, the element {a, b} is contained
in a unique pair of D-cells 〈d1, . . . , dk〉 and thus rD({a, b}) = {di, dj} for some
i, j ∈ {1, . . . , k}. We set

µD({a, b}) = r−1
D ({di+1, dj+1})

and
µ−D({a, b}) = r−1

D ({di−1, dj−1}),

where the colour of µD({a, b}), respectively µ−D({a, b}), if it is a diameter, is specified
as follows.

– If D contains no diameters, then by Lemma 4.4.14 all diameters are contained
in the unique central pair of D-cells 〈d1, . . . , dn〉 and only diameters get mu-
tated to diameters. We define both µD and µ−D to change their colour. So if
{a, b} is a red diameter, both µD({a, b}) and µ−D({a, b}) are set to be green
and vice versa.

– If D contains more than one diameter of the same colour, then all diameters
in D are of the same colour. Those of µD({a, b}) and µ−D({a, b}) which are
diameters are set to be of the same colour as all the diameters in D .

– If D contains exactly one diameter {x,x+ n}, then if µD({a, b}) = {a′, b′},
respectively µ−D({a, b}) = {a′′, b′′}, is a diameter, it is set to be of differ-
ent colour than {x,x+ n} if and only if {a′, b′} = {x,x + n}, respectively
{a′′, b′′} = {x,x+ n}. In all other cases, if µD({a, b}), respectively µ−D({a, b}),
is a diameter, it is set to be of the same colour as {x,x+ n}.

Note that in the case where D contains two diameters of different colour, the dia-
gram (nc D) \D of Dynkin type Dn does not contain any diameters.
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µDµ−D

Figure 4.14: This picture illustrates the mutation with respect to a non-crossing diagram
D (marked by thick lines) of some elements in nc D contained in a non-central pair of
D-cells. As we will see later (Theorem 4.4.22), combinatorial mutation of diagrams of
Dynkin type Dn corresponds to mutation in the triangulated category CkDn . In this
picture we see nicely that the mutations µD and µ−D give rise to different diagrams of
Dynkin type Dn, which correspond to different subcategories of CkDn .

µDµ−D

Figure 4.15: This figure illustrates mutation with respect to a non-crossing diagram D

(marked by thick lines) which contains no diameters. Only diameters get mutated to
diameters and mutation changes their colour.

Figures 4.14 provides an example of mutation of elements contained in a non-central
pair of D-cells. Figures 4.15 to 4.17 provide some examples of mutation of elements con-
tained in central pairs of D-cells for different possible configurations of the non-crossing
diagram D , where we cover the case where D contains no diameters, where it contains
more than one diameters of the same colour and where it contains exactly one diameter.

Remark 4.4.16. For any non-crossing diagram D of Dynkin typeDn, the map µD : nc D →
nc D is a bijection with inverse µ−D .

The following definition mirrors the definition of D-mutation pairs in triangulated
categories by Iyama and Yoshino [IY], cf Definition 4.2.8.

Definition 4.4.17. Let X and X ′ be subdiagrams of nc D . We call the pair of diagrams
(X , X ′) of Dynkin type Dn a D-mutation pair if D ⊆ X ′ ⊆ µ−D(X ) and D ⊆ X ⊆
µD(X ′).

Remark 4.4.18. Since µD is a bijection on nc D with inverse µ−D , for any D-mutation pair
(X , X ′) we have X = µD(X ′) and X ′ = µ−D(X ).

According to Definition 4.4.15, the colour we assign to a diameter we obtain by mu-
tation with respect to D depends on what the diagram D looks like. It is useful to note
that the following always holds.
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µDµ−D

µDµ−D

Figure 4.16: This picture illustrates the mutation of some elements in nc D with respect to
a non-crossing diagram D (marked by thick lines) which contains more than one diameter
of the same colour. Pairs of arcs can get glued together to diameters and diameters can
get split up into pairs of arcs when mutating.

µDµ−D

Figure 4.17: This picture illustrates the mutation of some elements in nc D with respect
to a non-crossing diagram D (marked by thick lines) which contains exactly one diameter.
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Lemma 4.4.19. Mutation changes the colour of diameters: Let {a, b} be a diameter
in (nc D) \ D such that µ−D({a, b}) (respectively µD({a, b})) is also a diameter. Then
µ−D({a, b}) (respectively µD({a, b}) is of different colour than {a, b}.

Proof. If D contains no diameters this is explicitly stated in Definition 4.4.15. If D

contains two diameters of different colour, then (nc D) \D contains no diameters, so the
statement is trivial. Thus we only have to consider the case where D contains at least
one diameter and all its diameters are of the same colour.

We first note that if rD({a, b}) is a pair of radii then rD(µD({a, b})) is not: Since
the ending vertices of rD({a, b}) and rD(µD({a, b})) are pairwise distinct, at most one of
them can be the central vertex c.

If D contains more than one diameter of the same colour, then every diameter in
(nc D)\D gets mapped to a pair of radii under the map rD . Thus, in this case, diameters
do not get mutated to diameters.

It remains to check the case where D contains exactly one diameter. Assume that
both {a, b} ∈ (nc D) \ D and µD({a, b}) (respectively µ−D({a, b})) are diameters. Since
rD({a, b}) and rD(µD({a, b})) (respectively rD(µ−D({a, b}))) cannot both be pairs of radii,
one of them has to be a diameter. However, there is only one diameter in rD((nc D) \D)
and it is of different colour to all the pairs of radii in rD((nc D)\D). Therefore mutation
changes colour.

Before we start explaining how the combinatorial concept of mutation from Definition
4.4.15 encodes mutation in the triangulated category CkDn , we note one last useful fact
about mutation of diameters.

Lemma 4.4.20. Consider a diameter {a, a+ n} ∈ nc D . If µD({a, a+ n}) is a pair of
arcs, or if µ−D({a, a+ n}) is a pair of arcs, then rD({a, a+ n}) = {a, c} is a pair of radii.

The way we may think about Lemma 4.4.20 is that only pairs of radii may get split
up into pairs of arcs and diameters have to stay “whole” (at least for one mutation step).

Proof. Let {a, a+ n} = r−1
D ({d,dj}). If µ(−)

D ({a, a+ n}) = r−1
D {di±1, dj±1} is a pair of

arcs, then the four vertices di±1, dj±1, (di±1 + n) and (dj±1 + n) are pairwise distinct. By
rotation invariance of D , the element {di, dj} = rD({a, a+ n}) ∈ rD(D) cannot be a
diameter.

4.4.4 Mutation of torsion pairs in cluster categories of finite
Dynkin type D

Our goal is to give a combinatorial interpretation for mutation of torsion pairs in the
cluster category CkDnvia mutation of Ptolemy diagrams of Dynkin type Dn. Since CkDn
is 2-Calabi-Yau, every subcategory satisfies τD = ΣD (cf. Remark 4.2.14) and since it
contains only finitely many indecomposable objects (up to isomorphism), any subcategory
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is functorially finite. By Theorem 4.2.13 mutation of a torsion pair (X,Y ) in CkDn is
thus defined with respect to every subcategory D ⊆ X ∩ (Σ−1X)⊥. We now want to
translate this into our combinatorial model: The torsion part X of the torsion pair
(X,Y ) corresponds to a Ptolemy diagram X of Dynkin type Dn and the subcategory
X∩(Σ−1X)⊥ corresponds to the diagram X ∩ nc X of those arcs in X that do not cross
any other arcs in X . A subcategory D ⊆ X ∩ (Σ−1X)⊥ corresponds to a subdiagram
D ⊆ X ∩ nc X . Any subdiagram of X ∩ nc X is a non-crossing diagram of Dynkin
type Dn. This corresponds to the fact, that any subcategory of X ∩ (Σ−1X)⊥ is rigid,
since rigid subcategories correspond to non-crossing diagrams – recall from Proposition
4.4.3 that crossings count dimensions of Ext1-spaces between indecomposable objects.

Mutation of Ptolemy diagrams of Dynkin type Dn provides a combinatorial model for
mutation of torsion pairs in the cluster category of Dynkin type Dn. This is formalized
in the following result.

Theorem 4.4.21. Let X be a Ptolemy diagram of Dynkin type Dn corresponding to the
torsion part of a torsion pair (X,Y ) in CkDn and let D ⊂ X ∩ nc X be a subdiagram
corresponding to a subcategory D ⊆ X ∩ (Σ−1X)⊥. The mutation µD(X ), respectively
µ−D(X ) corresponds to the torsion part of the torsion pair (µD(X),µΣD(Y )), respectively
of (µ−D(X),µ−ΣD(Y )).

Theorem 4.4.21 is a direct corollary of the following, more general result.

Theorem 4.4.22. Let D be a non-crossing diagram of Dynkin type Dn corresponding to a
rigid subcategory D of CkDn. Let X and X ′ be subdiagrams of nc D with X corresponding
to the subcategory X and X ′ corresponding to the subcategory X ′ of CkDn. Then (X , X ′)
is a D-mutation pair if and only if (X,X ′) is a D-mutation pair.

The proof of Theorem 4.4.21 follows from Theorem 4.4.22 as follows.

Proof. Because D is a subdiagram of X ∩ nc X it is non-crossing and we have X ⊆ nc D .
Applying Theorem 4.4.22 to the D-mutation pairs (X ,µ−D(X )) and (µD(X ), X ) yields
the result.

In order to understand how the combinatorial and the categorical mutations agree,
we want to calculate middle terms of extensions between certain indecomposable objects
in the cluster category CkDn . The proof of 4.4.22 relies on the following lemma.

Lemma 4.4.23. Let D be a non-crossing diagram of Dynkin type Dn corresponding to the
rigid subcategory D of CkDn. Consider the indecomposable objects in CkDn corresponding
to {x, y} ∈ (nc D) \D and to its mutation µ−D({x, y}). Then there exists a distinguished
triangle

{x, y} // d // µ−D({x, y}) // Σ{x, y}

in CkDn with d ∈ D.
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Using this result, we can prove Theorem 4.4.22.

Proof. Assume that (X , X ′) is a D-mutation pair. We show that (X,X ′) is a D-
mutation pair, i.e. that D ⊆ X ⊆ µD(X ′) and D ⊆ X ′ ⊆ µ−D(X) (cf. Definition 4.2.8).
Because D ⊆ X , X ′ we have D ⊆ X,X ′. By Lemma 4.2.11 we have D = µD(D) ⊆
µD(X ′) and D = µ−D(D) ⊆ µ−D(X).

It remains to show that every object m′ in X ′ which is not an object in D is contained
in µ−D(X) and that every objectm inX which is not an object inD is contained in µD(X ′).
The indecomposable objects in X but not in D are labelled by arcs {x, y} ∈X \D . The
indecomposable objects in X ′ but not in D are labelled by arcs in X ′ \D = µ−D(X \D),
which are of the form µ−D({x, y}) for some {x, y} ∈X \D .

Since both {x, y} and µ−D({x, y}) lie in nc D , they both label objects in ⊥(ΣD) =
(Σ−1D)⊥. Furthermore, by Lemma 4.4.23, for every element {x, y} ∈ (nc D) \D there is
a distinguished triangle

{x, y} // d // µ−D({x, y}) // Σ{x, y} , (4.2)

with d ∈ D. So {x, y} ∈ µD(X ′) and µ−D({x, y}) ∈ µ−D(X) and thus all indecomposable
objects in X ′ lie in µ−D(X) and all indecomposable objects in X lie in µD(X ′). Since all
subcategories are assumed to be closed under finite direct sums and isomorphisms, this
proves the first direction of the claim.

On the other hand, suppose (X,X ′) is aD-mutation pair and let X̃ be the subcategory
corresponding to the diagram µ−D(X ). Then, because (X ,µ−D(X )) is a D-mutation pair,
the pair (X, X̃) is aD-mutation pair, therefore X̃ = µ−D(X) = X ′. So the diagram µ−D(X )
corresponds to X ′ and we get that µ−D(X ) = X ′ and (X , X ′) is a D-mutation pair.

The rest of this section is devoted to the proof of Lemma 4.4.23. It can be worked
out using methods introduced by Buan, Marsh, Reineke, Reiten and Todorov [BMRRT].
They used graphical calculus to calculate short exact sequences in the module category
mod kDn, which induce distinguished triangles in CkDn . This technique works when we
have one-dimensional Ext1-spaces. This is the case in our setting, as the following lemma
indicates.

Lemma 4.4.24. Let D be a non-crossing diagram of Dynkin type Dn. Consider the
indecomposable object in CkDn corresponding to {a, b} ∈ nc D and the one corresponding
to its mutation µD({a, b}). We have

dim(Ext1
CkDn ({a, b},µ−D({a, b})) = 1.

Proof. By Proposition 4.4.3, the dimension of the extension space between two indecom-
posable objects is equal to the number of times the corresponding pairs of arcs cross (cf.
Definition 4.4.2). Let 〈d1, . . . , dk〉 be the pair of D-cells containing {a, b} and µ−D({a, b})
with {a, b} = r−1

D ({di, dj}) and µ−D({a, b}) = r−1
D ({di−1, dj−1}). The vertices di, dj−1, dj
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di
dj

di−1

dj−1 di
dj
dj−1

di−1

Figure 4.18: This figure illustrates the contradiction we obtain when we assume that
{di, dj} and µ−D({di, dj}) = {di−1, dj−1} cross twice.

and di−1 appear in this order in an anticlockwise direction on the boundary of 〈d1, . . . , dk〉.
The two arcs {di, dj} and {di−1, dj−1} thus cross. We distinguish the following cases.

• If both {a, b} and µ−D({a, b}) are diameters then by Lemma 4.4.19 they are of
different colour, so they cross once.

• If one of {a, b} and µ−D({a, b}) is a diameter and the other one is a pair of arcs it
follows directly from Definition 4.4.2 that they cross once.

• Now consider the case where both {a, b} and µ−D({a, b}) are pairs of arcs. We show
that {di, dj} and {di−1, dj−1} cannot cross twice, i.e. we show that if the arc {di, dj}
crosses {di−1, dj−1} it cannot cross its partner {di−1 + n, dj−1 + n}. Assume, for
a contradiction, that it does and without loss of generality assume dj < di + n.
Then both dj−1 and di−1 + n would lie between di and dj in a clockwise direction,
cf. Figure 4.18. This would imply that {di, di−1} and {di, dj} cross. However,
{di, di−1} lies in rD(D) and {di, dj} is a pair of arcs in X , so this contradicts the
fact that D ⊆ nc X .

By [BMRRT, Proposition 1.6] the indecomposable objects in the cluster category
CkDn are either induced by indecomposable kDn-modules or by shifts of indecomposable
projective kDn-modules. We label the (up to isomorphism) unique module which induces
an indecomposable object {a, b} ∈ CkDn by m{a,b}, see Figure 4.19 for the Auslander-
Reiten quiver Γ(mod kDn) of the module category with this labelling. The projective
modules are the modules of the form m{0,j} for 2 ≤ j ≤ n.

To compute the middle term of extensions in mod kDn, the notion of starting and
ending frame in mod kDn is a useful concept. Defined in [BMRRT, Definition 8.4] for
a vertex in the Auslander-Reiten quiver Γ(mod kDn), we formulate the starting and
ending frame for representatives of the isomorphism classes of indecomposable modules
in mod kDn, which is equivalent, as vertices in the Auslander-Reiten quiver are labelled
by isomorphism classes of indecomposable objects. Let

A(mod kDn) = {m{a,b} | {a, b} ∈ A(P2n)}
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m{0,2}

m{0,3}

. . .

m{0,4}

m{0,n}g

m{0,n}r

m{1,3}

m{1,4}

. . .

m{1,5}

m{1,n+1}r

m{1,n+1}g

m{n−2,n}

m{n−2,n+1}

. . .

m{n−2,n+2}

m{n−2,2n−1}r,g

. . .

Figure 4.19: The Auslander-Reiten quiver Γ(mod kDn) of the module category mod kDn:
The colours of the indexing diameters alternate along both the top and the second to top
horizontal levels.

be the set of indecomposable modules in mod kDn that label the vertices of the Auslander-
Reiten quiver according to our labelling. There is one representative in A(mod kDn) for
each isomorphism class of indecomposable modules of mod kDn.

Definition 4.4.25 ([BMRRT, Definition 8.4]). Let m{a,b} ∈ A(mod kDn). Its starting
frame Fs(m{a,b}) and ending frame Fe(m{a,b})) are defined as follows:

Fs(m{a,b}) =

m ∈ A(mod kDn)
∣∣∣∣ HomkDn(m{a,b},m) 6= 0 and

HomkDn(m{a,b}, τm) = 0



Fe(m{a,b}) =

m ∈ A(mod kDn)
∣∣∣∣ HomkDn(m,m{a,b}) 6= 0 and

HomkDn(τ−1m,m{a,b}) = 0


Before we explicitly state what the starting and ending frames of modules in mod kDn

look like, we observe that [BMRRT, Corollary 8.5] allows us to work out middle terms
occuring in extensions between two modules in mod kDn, if we know their starting and
ending frame: Let m{a,b} and m{x,y} be indecomposable objects in mod kDn such that
Ext1

kDn(m{a,b},m{x,y}) is one-dimensional. Then the (up to isomorphism) unique middle
term m̃ occuring in each non-trivial extension of m{a,b} by m{x,y} is the direct sum of one
copy of each indecomposable object in the intersection Fs(m{x,y}) ∩ Fe(m{a,b}):

m̃ ∼=
⊕

m∈Fs(m{x,y})∩Fe(m{a,b})
m.

The starting and ending frames can be worked out using the tables in Bongartz’s
paper [B, Section 1.3], see also [BMRRT, Section 8]. For an indecomposable module
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m{a,b}

m{a,a+n}g,r

m{b−2,b}

m{a,a+n}r,g

m{b,a+n}

Figure 4.20: The lines mark the starting frame of the module m{a,b} in Γ(mod kDn). The
area into which there are non-trivial morphisms from m{a,b} is marked in grey.

m{a,b} ∈ A(mod kDn) with 0 ≤ a < b < a+ n, they are given by:

Fs(m{a,b}) =

{m{a,y} ∈ A(mod kDn) | b ≤ y ≤ a+ n− 1}

∪ {m{a,a+n}g
,m{a,a+n}r

}

∪ {m{x,b} ∈ A(mod kDn) | a ≤ x ≤ b− 2}

∪ {m{x,a+n} ∈ A(mod kDn) | b ≤ x ≤ n− 2}

and

Fe(m{a,b}) =

{m{a,y} ∈ A(mod kDn) | a+ 2 ≤ y ≤ b}

∪ {m{x,b} ∈ A(mod kDn) | b− n+ 1 ≤ x ≤ a}

∪ {m{b−n,b}r
,m{b−n,b}g

}

∪ {m{b−n,y} ∈ A(mod kDn) | b− n+ 2 ≤ y ≤ a},

cf. Figures 4.20 and 4.21. For a module m{a,a+n}r
∈ A(mod kDn) with 0 ≤ a ≤ n − 2

associated to a red diameter the starting and ending frames are given by

Fs(m{a,a+n}r
) =
{m{x,a+n} ∈ A(mod kDn) | a < x ≤ n− 2}

∪ {m{x,x+n}r
| a ≤ x ≤ n− 2}

and

Fe(m{a,a+n}r
) =
{m{a,y} ∈ A(mod kDn) | a+ 2 ≤ y < a+ n}

∪ {m{x,x+n}r
| a ≥ x ≥ 0},

as picture in Figures 4.22 and 4.23. The starting and ending frame for modules corre-
sponding to green diameters is given analogously.

Using these ideas, we now provide a proof for Lemma 4.4.23. First we observe how
we can calculate extensions in CkDn via the module category mod kDn: Consider two
indecomposable objects {a, b}, {x, y} ∈ CkDn that are both induced by indecomposable
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m{a,b}

m{b−n,b}r,g

m{a,a+2}

m{b−n,b}g,r

m{b−n,b−n+2}

m{b−n,a}

Figure 4.21: The lines mark the ending frame of m{a,b} in the Auslander-Reiten quiver
Γ(mod kDn). The area from which there are non-trivial morphisms into m{a,b} is marked
in grey.

•m{a,a+n}r

•
•

•
•

•
•

•

Figure 4.22: The line and the bullets mark the starting frame ofm{a,a+n}r
in Γ(mod kDn).

The bullets correspond to all vertices of the form {x,x+ n}r with a ≤ x ≤ n− 2.

• m{a,a+n}r•
•

•
•

Figure 4.23: The line and the bullets mark the ending frame of m{a,a+n}r in Γ(mod kDn).
The bullets correspond to all vertices of the form {x,x+ n}r with 1 ≤ x ≤ a.
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modules m{a,b}, respectively m{x,y} in mod kDn. Assume that the object m{a,b} is a
projective kDn-module. Then by [BMRRT, Proposition 1.7(d)] we have

Ext1
CkDn ({a, b}, {x, y}) ∼= Ext1

kDn(m{a,b},m{x,y})⊕ Ext1
kDn(m{x,y},m{a,b}).

Because m{a,b} is assumed to be projective, we have Ext1
kDn(m{a,b},m{x,y}) = 0 and thus

Ext1
CkDn ({a, b}, {x, y}) = Ext1

kDn(m{x,y},m{a,b}).

Whenever the elements {a, b} and {x, y} in A(P2n) intersect exactly once, this extension
space is one-dimensional and we can apply [BMRRT, Corollary 8.5] to calculate short
exact sequences in mod kDn, which induce distinguished triangles in CkDn . For simplicity,
it will be convenient to not distinguish between pairs of edges and other pairs of arcs.
We associate to a pair of edges {a, a+ 1} ∈ A(P2n) with 0 ≤ a ≤ 2n − 1 a zero-object
in CkDn , denoted {a, a+ 1} ∼= 0 and the zero-module m{a,a+1}

∼= 0 in mod kDn. We can
now prove Lemma 4.4.23.

Proof. Let {x, y} ∈ (nc D)\D and let it and its mutation µ−D({x, y}) be contained in the
pair of D-cells 〈d1, . . . , dk〉 with {x, y} = r−1

D ({di, dj}) and µ−D{x, y} = r−1
D ({di−1, dj−1})

for some i, j ∈ {1, . . . , k}. The vertices di, dj−1, dj, di−1 appear in this order in an anti-
clockwise direction on the boundary of the D-cell 〈d1, . . . , dk〉. Without loss of generality,
we may assume that {x, y} is induced by a projective module m{x,y}, and thus assume
di = 0 and dj ∈ {2, . . . ,n} ∪ {c}. Otherwise we obtain the desired distinguished triangle
by shifting.

First consider the case where µ−D({x, y}) is induced by the shift of a projective module,
i.e. di−1 = 2n − 1 and dj−1 ∈ {1, . . . , dj − 1} ∪ {c}. In particular, {di−1, di} is a pair of
edges.

• Suppose that {x, y} = {di, dj} is a pair of arcs. Then we have 0 = di < dj−1 < dj <

n. In particular, {dj−1, dj} is a pair of arcs. If it is a pair of edges, then as objects in
CkDn we have µ−D({x, y}) = Σ{x, y} and we obtain the desired distinguished triangle

{x, y} // 0 // µ−D({x, y}) Σ{x, y}

with middle term 0 ∈ D. Otherwise, if {dj−1, dj} is a pair of internal arcs, then
{0, dj−1 + 1} and {dj−1, dj} cross precisely once. Intersecting the starting frame of
m{0,dj−1+1} with the ending frame of m{dj−1,dj} yields the short exact sequence

0 //m{0,dj−1+1}
//m{0,dj}

//m{dj−1,dj}
// 0,

which, since Σ{0, dj−1 + 1} = {2n− 1, dj−1} = µ−D({x, y}) and {0, dj} = {x, y},
induces the distinguished triangle

{x, y} // {dj−1, dj} // µ−D({x, y}) // Σ{x, y}

in CkDn , whose middle term lies in D.
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• Now suppose that {x, y} = {0,n} is a coloured diameter. If µ−D({x, y}) is also a
diameter, then

µ−D({x, y}) = {2n− 1,n− 1} = Σ{x, y}

which yields the distinguished triangle

{x, y} // 0 // µ−D({x, y}) Σ{x, y},

with middle term 0 ∈ D. If on the other hand µ−D({x, y}) is a pair of arcs, the
pair of arcs {0, dj−1 + 1} crosses the diameter {dj−1, dj−1 + n} once and intersect-
ing the starting frame of m{0,dj−1+1} with the ending frame of m{dj−1,dj−1+n}r,g

in
Γ(mod kDn) yields the short exact sequence

0→ m{0,dj−1+1} → m{0,n}r,g
→ m{dj−1,dj−1+n}r,g

→ 0,

where {0,n}r,g = {x, y}r,g has the same colour as {dj−1, dj−1 + n}r,g. Because the
diameter {x, y} was mutated to a pair of arcs {di−1, dj−1} we have dj = c by Lemma
4.4.20. Thus we have {dj−1, dj−1 + n}r,g = r−1

D ({dj−1, dj}r,g) and the short exact
sequence above gives rise to the distinguished triangle

{x, y}r,g → r−1
D ({dj−1, dj}r,g)→ {2n− 1, dj−1} = µ−D({x, y})→ Σ{x, y}r,g,

in CkDn , where {x, y}r,g is of the same colour as {dj−1, dj}r,g. Hence the middle
term lies in D.

Now consider the case, where the indecomposable object µ−D({x, y}) is induced by a kDn-
module. By Lemma 4.4.24, the elements {x, y} and µ−D({x, y}) of A(P2n) cross exactly
once, so we can apply [BMRRT, Corollary 8.5] to calculate middle terms of extensions of
mµ−D({x,y}) by m{x,y} in mod kDn.

• Suppose both {x, y} and µ−D({x, y}) are pairs of arcs. We have 0 = di < dj−1 <

dj < n < di−1 < 2n − 1. Because {di, dj} and {di−1, dj−1} intersect exactly once,
and since we have di < dj−1 < dj we cannot have di + n < di−1 < dj + n. Thus
either dj + n ≤ di−1 < 2n − 1 or dj < di−1 ≤ n. In both cases, if di−1 6= n,
intersecting the starting frame of the module m{0,dj} with the ending frame of the
module m{dj−1,di−1} yields the short exact sequence

0→ m{0,dj} → m{dj−1,dj} ⊕m{di,di−1} → m{dj−1,di−1} → 0,

in mod kDn which induces the distinguished triangle

{x, y} → r−1
D ({di−1, di})⊕ r−1

D ({dj−1, dj})→ Σ{x, y}

with middle term in D. If on the other hand di−1 = n, then we obtain the short
exact sequence

0→ m{0,dj} → m{dj−1,dj} ⊕m{0,n}r
⊕m{0,n}g

→ m{dj−1,n} → 0.
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This induces the distinguished triangle

{x, y} → r−1
D ({dj−1, dj})⊕ r−1

D ({0,n}r)⊕ r
−1
D ({0,n}g)→ Σ{x, y}.

Because di = 0 and di−1 = n are neighbouring vertices of the D-cell 〈d1, . . . , dk〉,
the red diameter {0,n}r or the green diameter {0,n}g have to lie in D . Without
loss of generality assume that {0,n}r ∈ D . Then by definition of the replacement
map rD , the green diameter {0,n}g is also contained in D . Thus the middle term
of the distinguished triangle is an object in D.

• Suppose now {x, y} = {0,n} is a diameter and µ−D({x, y}) is a pair of arcs. By
Lemma 4.4.20 we have dj = c. Since the arcs {0, c} and {di−1, dj−1} cross (both
are diagonals in the D-cell 〈d1, . . . , dk〉) we have 0 < dj−1 < di−1 + n < n and thus
0 < di−1 +n < dj−1 +n < di−1. Intersecting the starting frame of m{0,n}r,g

with the
ending frame of m{di−1+n,dj−1+n} yields the short exact sequence

0→ m{0,n}r,g
→ m{di−1+n,n} ⊕m{dj−1,dj−1+n}r,g

→ m{di−1+n,dj−1+n} → 0,

where {dj−1, dj−1 + n}r,g has the same colour as {0,n}r,g. This induces the distin-
guished triangle

m{x,y}r,g
→ mr−1

D ({dj−1,dj}r,g) ⊕m{di,di−1} → mµ−D{x,y} → Σm{x,y},

where {dj−1, dj}r,g is of the same colour as {x, y}r,g. The middle term thus lies in
D. Dual considerations show, that if {x, y} is a pair of arcs and µ−D({x, y}) is a
diameter, we can find the desired distinguished triangle.

• Finally, suppose both {x, y} and µ−D({x, y}) are diameters. By Lemma 4.4.19
they are of different colour. Without loss of generality let {x, y} = {0,n}r and
µD({x, y})) = r−1

D {di−1, dj−1}g.

If di−1 = c then, because the vertices di, dj, di−1, dj−1 are pairwise distinct and
di = 0, we have dj = n and 0 < dj−1 < n. The intersection of the starting frame of
the module m{0,n}r

with the ending frame of the module m{dj−1,dj−1+n}g
yields the

short exact sequence

0→ m{0,n}r
→ m{dj−1,n} → m{dj−1,dj−1+n}g

→ 0.

Because {dj−1,n} = {dj−1, dj} we get the induced distinguished triangle

{x, y} → {dj−1, dj} → µ−D{x, y} → Σ{x, y}

with {dj−1, dj} ∈ D.

If on the other hand di−1 6= c, then n < di−1 ≤ 2n− 1 and intersecting the starting
frame of the module m{0,n}r

with the ending frame of the module m{di−1+n,di−1}g
yields the short exact sequence

0→ m{0,n}r
→ m{di−1+n,n} → m{di−1+n,di−1}g

→ 0.
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Because di = 0 we have {di−1 + n,n} = {di−1, di} and we get the induced distin-
guished triangle

{x, y} → {di−1, di} → µ−D{x, y} → Σ{x, y}

with {di−1, di} ∈ D.
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