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Abstract

In this PhD thesis, an approach for the simulation of non-linear elastic-plastic three-
dimensional structures, including random material parameters, is presented. The
material parameters, which are assumed to be uncertain are the Young’s modulus,
yield stress and the hardening parameters. These parameters are represented by
independent random fields, which are realized with the Karhunen-Loève Expansion
as well as the Spectral Representation Method. The former approach is coupled with
the Polynomial Chaos (PC), which leads to the well known Spectral Stochastic Finite
Element Method. The Spectral Representation Method on the other hand is coupled
with a simple Monte Carlo Sampling (SPRM-MCS).

First, the basic theories are presented. In particular, these are: the continuum me-
chanics, the finite element method, the numerical realization of elastic-plastic mate-
rial behaviour and the probability theory. Afterwards, some remarks on the charac-
terization of uncertainties and its stochastic realization by random fields/processes
are discussed. With the introduction of the Polynomial Chaos, the linear Spectral
Stochastic Finite Element Method (SSFEM) is presented in the next step. First of all,
the stochastic counterpart of the deterministic weak form of equilibrium is derived.
This is realized by transferring the deterministic weak form into the so-called spectral
form. To be more specific, a stochastic discretization of the deterministic weak form
is applied and projecting it via the Galerkin method onto an orthogonal expansion
basis. Such a basis is spanned by polynomials, for instance, Hermite polynomials
when a Gaussian distribution is applied.

Afterwards, the extension of the linear SSFEM for solving non-linear problems is pre-
sented. The developed approach is an extension of the deterministic radial return
mapping. To allocate the random variables, in the subsequent solution process with
each other, some special mathematically algebraic rules and methods are necessary,
which are presented first. In particular, these are the PC-algebra as well as the collo-
cation method. Then, the coupling of the developments of the previous sections (resp.
chapters) are presented for the solution of stochastic non-linear problems by applying
the SSFEM. The developed approach, for the stochastic radial return mapping, is
an intrusive purely algebraic formulation, which are evaluated with the introduced
methods in this thesis. Finally, the presented formulation is tested with two numer-
ical examples and the results are compared with those obtained from the coupled
SPRM-MCS as well as a Latin Hypercube Sampling.

Keywords Finite Element Method, Stochastic Theory, Characterization of Uncer-
tainties, Random Fields/Processes, Polynomial Chaos, Linear Stochastic Finite Ele-
ments, Polynomial Chaos Algebra, non-linear Stochastic Finite Elements
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Kurzfassung

In der vorliegenden Arbeit wird ein Ansatz zur Berechnung von nichtlinearem Mate-
rialverhalten vorgestellt. Mit diesem Ansatz können nicht lineare elastisch-plastische
dreidimensionale Strukturen, unter Berücksichtigung von stochastischen Materialpa-
rametern, simuliert werden können. Als zufällige Materialparameter werden der E-
Modul, die Fließgrenze sowie die isotrope und kinematische Verfestigung gewählt,
wobei die Materialparameter durch Zufallsfelder charakterisiert werden. Die Erzeu-
gung dieser Zufallsfelder erfolgt mit Hilfe von zwei Methoden, der Karhunen-Loève

Expansion (KLE) sowie der Spektralen Representation Methode (SPRM). Die KLE
wird mit dem Polynom-Chaos (PC) kombiniert, was auf die bekannte Spektrale Sto-
chastische Finite Elemente Methode führt. Die SPRM auf der anderen Seite wird mit
dem Monte-Carlo Sampling (SPRM-MCS) gekoppelt.

Zuerst werden die Grundlagen der Kontinuumsmechanik, der finiten Elemente Metho-
de sowie der Wahscheinlichkeitstheorie behandelt. Ebenfalls wird die numerische Um-
setzung von elastisch-plastischem Materialverhalten präsentiert, welche im weiteren
Verlauf dieser Arbeit auf elastisch-plastisches Materialverhalten, mit zufälligen Para-
metern erweitert wird. Im Anschluss an die theoretischen Grundlagen wird sich der
Charakterisierung von zufällig verteilten Materialparametern sowie deren Beschrei-
bung durch Zufallsfelder/-prozesse zugewendet. Nachdem auf das Polynom-Chaos ein-
gegangen wurde, wird im nächsten Schritt die Spektrale Stochastische Finite Elemente
Methode (SSFEM) detailliert beschrieben. Zuerst wird das stochastische Equivalent
der deterministischen schwachen Form des Gleichgewichts hergeleitet. Hierzu wird die
deterministische schwache Form in die spektrale Form überführt. Im Einzelnen bedeu-
tet das, dass die deterministische Form zuerst im stochastischen Raum diskretisiert
wird und anschließend mit der Galerkin-Methode auf eine orthogonale Basis pro-
jiziiert wird. Eine solche Basis wird z.B., bei der Verwendung der Normalverteilung,
durch Hermite-Polynome aufgespannt.

Nachdem die lineare Formulierung an einem numerischen Beispiel diskutiert wur-
de, wird ein neuer Ansatz der stochastischen SSFEM vorgestellt, in welchem elasto-
plastisches Materialverhalten berücksichtigt werden kann. Der Ansatz basiert auf dem
deterministischen Radial-Return Mapping, welches um einen stochastischen Teil, zum
stochastischen Radial-Return Mapping, erweitert wird. Um im späteren Lösungspro-
zess die Zufallsvariablen miteinander verrechnen zu können, sind einige spezielle, ma-
thematisch algebraische Regeln und Methoden notwendig, welche zuerst vorgestellt
werden. Weiterhin wird die Kollokationsmethode eingeführt, welche ebenfalls zur Lö-
sung der entsprechenden Gleichungen verwendet wird. Bei dem präsentierten Ansatz
für das stochastische Radial-Return Mapping handelt es sich um eine intrusive For-
mulierung, welche mit den vorgestellten Methoden gelöst wird. Abschließened wird
die entwickelte Methode an zwei Bespielen getestet und die Ergebnisse werden mit
der gekoppelten SPRM-MCS sowie mit dem Latin Hypercube Sampling verglichen.

Stichworte Finite Elemente Methode, Stochastik, Charakterisierung von Unsicher-
heiten, Zufallsfelder/-prozesse, Polynom-Chaos, Lineare Stochastische Finite Elemen-
te Methode, Polynom-Chaos Algebra, nicht-lineare Stochastische Finite Elemente
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1. Introduction

The modelling of engineering problems often leads to non-linear ordinary and partial
differential equations. These non-linear solid mechanics problems are often solved
by numerical methods such as the well-established Finite Element Method (FEM),
which has been developed over the last five decades. The non-linear constitutive
equations have been formulated in order to characterize the underlying material
behaviour, e.g., elastic-plastic theories, where its basis formulations goes back to
Tresca about 150 years ago, where a detailed historical overview can be found in
Horstemeyer and Bammann [2010]. Based on Trescas formulation, Saint-Venant

and Levy proposed the foundation for the modern plasticity. In the next decades,
a large number of well-known scientists (e.g., von Mises, Hencky and Prandtl)
made important contributions to the theory of plasticity. After the second world war,
a unified theory of plasticity has been presented, based on the continuum formulations
proposed by Prager and Drucker. Probably, one of the first textbooks that gives
an established theoretical background on plasticity was published by Hill [1950]. In
the early days of the plasticity theory, the solution of non-linear problems is limited to
relatively simple cases. Nowadays, due to the continuous development of the theories
of solid mechanics, as well as the development of powerful computers, computational
plasticity is widely used in computational engineering, both in academic researches
and industrial applications. Some examples for applications are: standard stress anal-
ysis, soil or rock mechanics up to the simulation of manufacturing processes such as
metal forming. A general stress analysis with inelastic material behaviour can include
different non-linear effects, as listed below.

• Material Non-Linearity : Small deformations with only small displacements and
small strains (only a few percent).

• Large Deformations: This formulation is characterized by small strains and
large displacements.

• Geometrically Non-Linear : In this formulation the strains and the displace-
ments are large.

In this work only material non-linearities are considered and the proposed consti-
tutive equations are derived with respect to this assumption. The state-of-the-
art of the general formulation on small- and large-strain plasticity as well as the
numerical treatment is documented in a large number of textbooks, for instance,
Lemaitre and Chaboche [1990]; Simo and Hughes [1998]; Kojic and Bathe [2005];
Ibrahimbegovic [2006]; Chen and Han [2007]; Lubliner [2008]; Besson et al. [2010];
de Borst et al. [2012].

In addition to the ongoing developments of solid mechanics and computer resources,
the design of modern structures to very complex ones has also continuously evolved.
In most cases, the input parameters of the structural models are assumed to be of de-
terministic nature, which is accurate enough for the analysis of the structural response
and the design by small fluctuations. In most structural systems, the uncertainties
are not so small that they can be neglected. In this case, a stochastic formulation is
needed in order to overcome this drawback. There are a large number of probabilistic
methods available. However, most of structural systems are designed by idealizing
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Figure 1.1.: Schematic illustration of the system calculation of a structural system
by using a deterministic approach or a stochastic approach (inspired by
Choi et al. [2007]).

the deterministic methods, e.g., by using a safety factor. Figure 1.1 illustrates the
two major branches of a system calculation, the deterministic approach on the left
side and stochastic approach on the right side. The application of the deterministic
approach using a safety factor often results in overly expensive designs, because the
safety factor is often too conservative. This fact stands in conflict with the major
challenge to get an optimal design involving the proper material at the right place
of the structure. Moreover, an optimal design gives an improvement in security but,
e.g., the use of a larger amount of matter can results in negative structural effects.
For example, a increasing wall thickness of a pressure vessel can indeed decrease
purely mechanical stresses, cf. Besson et al. [2010]. The application of the stochastic
approach has a number of advantages: So, statistical results, such as the expected
value, the variance and further statistical moments allows a detailed (comprehen-
sive) analysis of the system response. To ensure that the mechanical structure fulfils
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the system requirements, it is necessary to take into account the fluctuations of the
relevant system parameters, e.g., the material parameters. In this PhD thesis the
classical three-dimensional elastic-plastic formulation is extended by an approach to
taking into account uncertainties of various material parameters.

1.1. The Objectives and Scope of the Thesis

The design of engineering structures can become very complex, e.g., due to the fab-
rication of the materials, construction and/or localization of stresses. The design
process often consists of two parts:

1. Defining the internal force field that acting on the materials and

2. evaluating the structure response of the material with respect to this force field.

The focus of the former part lies on the analysis of the stresses acting on struc-
tural elements, the finite elements, while for the second part the knowledge of the
structural material properties is necessary. However, as already discussed in the
previous section, such properties are not percisely known. There are different ap-
proaches available to overcome this problem. A stochastic approach is a reasonable
choice to deal with the material uncertainties without making too many simplifying
assumptions. In stochastic mechanics, especially in stochastic finite element analysis,
only linear-elastic material behaviour is often considered, see e.g., Geistefeldt [2003];
Stefanou and Papadrakakis [2007]; Xiu [2010] and only a few studies have taken into
account non-linear material phenomena. Here, Anders [2000]; Sett [2007]; Rosić [2013]
should be named.1 An extension of standard finite element procedure to cope with
the stochastic plasticity requires an extension of the theory of deterministic plastic-
ity. In this context, it provides more realistic estimates of load-carrying capacities of
structures in terms of mean values, variances and confidence intervals. In addition, it
leads to a better understanding of the structural response due to the internal forces
in the material. In summary: A better understanding of the role of the relevant
mechanical variables which represents the characteristic response of the material to
the applied forces is essential for an optimal design of the structure and the more
comprehensive the knowledge, the more exact will be the structural design.

With respect to these summary, the main goal of this PhD thesis is formulated as
follows:

The development of a fully descriptive2 Spectral Stochastic Finite Element Method
for elastic-plastic material behaviour including stochastic material properties

The proposed stochastic formulation has been implemented into an in-house finite
element program based on matlab and its applicability has been verified in various
numerical examples.

Scope of the Thesis

The focus lies on the formulation of a stochastic three-dimensional elastic plastic
material model. The formulation of the stochastic elastic-plastic problem is done

1See section 1.2 for more details.
2A fully descriptive stochastic method provides the complete stochastic information about the

system response.
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in a convex setting, which is similar to the deterministic case. In the deterministic
elastic-plastic formulation, variational inequalities (VIs) are applied to separate the
purely elastic material behaviour from the post-yield inelastic behaviour. However,
as already mentioned, all materials have fluctuations. Therefore, these uncertain-
ties should be included in the mathematical formulation. This could be done, for
example, by extending the deterministic VIs to stochastic variational inequalities
(SVIs). The solution of the SVIs is realized by solving the corresponding stochastic
convex-optimization problem. According to this, a new approach for the well-known
predictor-corrector method the stochastic radial return mapping is proposed. For the
sake of simplicity, the classical J2 flow theory (Simo and Hughes [1998]) with linear
isotropic and kinematic hardening is applied.

The random material parameters, which have a influence to the constitutive relation
and the evolution path are modelled by random fields. The evaluation of the corre-
sponding equations is realized by using the stochastic Galerkin method, which is
similar to the method applied in the deterministic finite element method, see e.g.,
Braess [1992]; Oden and Reddy [2011]. This stochastic projection method has been
proved to be very effective for solving many kinds of engineering problems including
uncertainties. Here, the solution of the governing equations is characterized by vari-
ational inequalities and subsequently projected onto a truncated polynomial chaos
basis, which can be computed with appropriate computational methods. A major
advance of stochastic projection approaches is the computationally efficiency, which
is often more efficient than sampling-based methods, such as the Monte-Carlo Simu-
lation (MCS).

The fluctuations of the material parameters are represented by the Karhunen-Loève

Expansion (KLE) (Ghanem and Spanos [2003]; Adler and Taylor [2007]) and the sys-
tem response is evaluated with the Polynomial Chaos Expansion (PCE), proposed by
Ghanem and Spanos [2003].

In general, the stochastic Galerkin method can be divided into the following two
classes:

• The intrusive method and

• the non-intrusive method.

The former method based on the reformulation of the governing system equations of
the original model by projecting it onto a polynomial chaos. With this approach, a
direct solution through linear and non-linear operations of polynomial chaos algebra
is achieved, cf. Debusschere et al. [2005]; Le Maître and Knio [2010]. This method is
essentially algebraic and requires only one program-run, which makes them computa-
tionally very efficient. However, for the computational realization of this methodology,
it is necessary to have an access to the program code, which is in commercial program
codes not possible.

The latter method, for instance, collocation methods (Najm [2009]; Xiu [2010]) or
MCS (Lemieux [2009]), approximates the structural response in a sampling manner.
This procedure has the major advantage that the program code can be considered
as a "black-box", because no particular modification of existing codes is necessary.
However, to get a satisfactory approximation of the system response many resolutions
of the deterministic model are necessary, which leads to drastically increasing compu-
tational costs. In this thesis, the regression method as proposed, e.g., in Sudret et al.
[2003] is applied for selected mathematical operations and not as complete "stan-
dalone" numerical method. For the purpose of verification, the MCS is used to com-
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pare the achieved results from the sampling with those obtained from the proposed
new stochastic approach. By this, the MCS is coupled with the Spectral Represen-
tation Method (SPRM) (Shinozuka and Deodatis [1991, 1996]) where, similar to the
KLE, the random material parameters are represented by random fields, which are
generated by the SPRM. The resolution of the mechanical system is performed by
applying the MCS. The random field generation as well as the subsequent calculation
of the repeating model calculation can be performed in parallel, which significantly
reduces the computation time.

1.2. Related Works on Stochastic Elastic-Plastic Mechanics

Already in his publication in 2003, Oden (Oden et al. [2003]) has recognized that the
probabilistic modelling of mechanical problems will be a topic of great importance
and interest in the next decade. Nowadays, the field of stochastic mechanics has re-
ceived an increasing amount of attention and being quickly and constantly evolving.
Therefore, this section will not show an attempt to present an intensive review of all
available methods, their applications nor results. The aim of this section is to give an
overview of the recent developments of numerical methods for stochastic non-linear
computations with a special focus on stochastic elastic-plastic material behaviour. In
addition to the distinction between the deterministic and stochastic approach, which
was illustrated in Fig. 1.1, shows Fig. 1.2 the difference in the nature of uncertainties.
In the probabilistic approach it is assumed that the probability density function of

Uncertainty Analysis

Probabilistic Approach Non-Probabilistic
Approach

Stochastic Finite Element
Method

Monte Carlo Sampling

Random Field/Process

Interval Analysis

Fuzzy Theory

Possibility Theory

Figure 1.2.: Categories of stochastic analysis.
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the parameters of interest are known. By this approach the uncertainties of the pa-
rameters are characterized by random variables, random processes and/or fields. On
the other hand, the non-probabilistic approach is primarily used when the parameters
are not precisely known. In the present work, the focus lies on the application of the
Stochastic Finite Element Method where the input parameters are represented by
random fields. This combination is well known as Spectral Stochastic Finite Element
Method (SSFEM). For the remaining methods in Fig. 1.2, the interested reader is
referred to Sudret and der Kiureghian [2000]; Hanss [2005]; Sudret [2007]; Choi et al.
[2007]; Kriegesmann [2012] and the references therein. In what follows, the recently
published works on non-linear stochastic mechanics with elastic-plastic material be-
haviour will be briefly outlined.

The first approach for the analysis of elastic-plastic material behaviour with ran-
dom material parameters was proposed by Anders and Hori [1999]; Anders [2000];
Anders and Hori [2001]. They approximated the stochastic elastic-plastic constitu-
tive equations by applying a bounding body analysis. The presented approach has
been tested with various two- and three-dimensional examples, whereas only one in-
put parameter, the Young’s modulus, was assumed to be uncertain. The fluctuation
of the random variable was represented by the KLE and the stochastic field variables
were evaluated by the PCE. This approach makes it necessary to approximate the
joint PDF of the governing variables (Young’s modulus, stress, strain and displace-
ments) by approximating the yield function via a perturbation expansion. Indeed, the
authors have presented that the approximation with only one term in the perturba-
tion expansion results in accurate results, see Anders and Hori [1999]. But, especially
strongly non-linear problems require more than one term. Another disadvantage is
the manageability of large variances when applying the perturbation method. In re-
cently published textbooks (Le Maître and Knio [2010]; Xiu [2010]) the coefficient of
variation is specified to 10%. The next disadvantage could be due to the complexity of
numerical approximation, which does not allow more than one random parameter (in
this particular case, the Young’s modulus) to be considered. An additional remark is
the limitation to only one random variable due to the mathematical treatment, which
is a further simplification and not optimal when the objective is to describe "realistic"
material behaviour as well as the structural response of the system.

A further treatment of uncertain material behaviour in an elastic-plastic frame-
work has been presented by Jeremić et al. [2007]; Sett [2007]; Sett et al. [2007b,a];
Jeremić and Sett [2009]; Sett and Jeremić [2010]; Sett et al. [2011]. In these works,
a special form of the Fokker-Planck-Kolmogorov (FPK) equation, derived by
Kavvas [2003], was applied to represent the random system response of a physical
system with stochastic input parameters. After these citations lies the advantage of
the FPK equation on probabilistic elasto-plasticity is that it transforms the non-linear
stochastic elastic-plastic constitutive rate equation in the real space into a linear de-
terministic partial differential equation in the probability density space. This leads
to a simplification of the corresponding numerical solution process of the probabilis-
tic constitutive equations, cf. Sett et al. [2011]. In addition, the Fokker-Planck-

Kolmogorov approach for probabilistic elastic-plastic material behaviour leads to
a second-order accurate probabilistic constitutive solution. The authors have also
pointed out that the proposed method did not suffer from a closure problem associ-
ated with perturbation technique or high computational cost associated with a MCS.
However, the presented stochastic framework was only applied to a one-dimensional
numerical example. It should be remarked that the computational effort increases
drastically when the FPK equation is applied to higher-dimensional problems, as
often found in engineering applications.
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Another concept has been proposed by Arnst and R.Ghanem [2012] where the math-
ematical treatment of the stochastic boundary value problem involves inequality con-
straints. The authors define a set of stochastic variational inequalities to characterize
the solution of specified inequality-constrained stochastic boundary value problems.
The discretization of this problems is done via a projection onto a polynomial chaos
expansion and collocation of the inequality constraints. In the numerical test only
one input parameter was assumed to be random, namely the linear isotropic hard-
ening modulus. Furthermore, the presented approach has been tested only on a
two-dimensional example.

The last reviewed methodology in this section is proposed by Rosić and Matthies
[2008]; Rosić et al. [2010]; Rosić and Matthies [2012]; Rosić [2013]. In these recent
presented works, similar to the approach presented by Arnst and R.Ghanem [2012],
a class of stochastic variational inequalities is defined to represent the elastic-plastic
material behaviour with random material parameters. The standard return-mapping
for J2 elastic-plastic material behaviour has been extended to calculate mechanical
problems in both small and large displacements with uncertain material properties.
The algebraic characteristics of this formulation allow the calculation of the material
response in each iteration step with the Newton-Raphson method and the solution
of the material response is given in a form of polynomial chaos expansion. Beside
the intrusive Galerkin approach, a non-intrusive collocation approach has also been
presented. Both approaches were validated on various two-dimensional examples in
plain strain conditions whose reference solution is computed via direct integration
methods. The fluctuations of the material parameters (the bulk modulus, the shear
modulus and the isotropic hardening modulus) were represented by random fields,
discretized by the KLE.

1.3. Outline of the Thesis

This thesis consists of ten chapters and comprises of three main parts. The first
part (Chaps. 2−4) discusses about the basic theories of continuum mechanics, the
Finite Element Method and the bases of the probability theory. It also provides a
detailed discussion of the numerical realization of elastic-plastic material behaviour.
The second part (Chaps. 5−6) discusses about the characterization of uncertainties
and its stochastic realization by random fields/processes. Moreover, a brief review
of the applied methods in this work is given. In the third part (Chaps. 7−9), the
previously presented techniques are combined to a new approach for the calculation
of elastic-plastic material behaviour including material uncertainties. In detail, these
are the realization of the material properties by random fields and the subsequent
calculation of the non-linear problem by using a novel numerical approach, consisting
of the stochastic Galerkin method and the regression method. The thesis ends
with a brief discussion of open questions for further developments and improvements
of the methods/concepts and some aspects for further research. Specifically, some
specifications are outlined where, based on those discussed in the individual chapters
in this work, may be possible. An illustration of the framework of a stochastic analysis
in terms of the individual chapters is given in Fig. 1.3. A more detailed outline of
each chapter is given below.
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Representation of the Structural Model
via Continuum Mechanics and the FEM

Uncertainty Representation

Sampling Methods

Spectral Stochastic
Analysis

Statistical Response

Stochastic System
Application

Figure 1.3.: Schematic illustration of the interaction of the contents of this thesis.

Chapter 2 presents the basics of continuum mechanics, which are needed for the for-
mulation of the FEM for solid mechanics and structural problems. The kinematics,
the balance laws and the constitutive relations are briefly presented. The constitu-
tive equations are confined to the standard J2 elastic-plasticity as it is applied in
this work. In Chapter 3, the Finite Element Method is discussed. Starting from
the strong formulation of equilibrium, the weak form is derived by using variational
principles. Afterwards, the linearization of the previously derived weak form is pre-
sented and subsequently the discretization of the weak form is discussed. After a
brief summary of the Newton-Raphson scheme, the computational implementation
of deterministic plasticity is presented in detail. This formulation will be extended
during this thesis to be able to handle non-linear structural problems with stochastic
input parameters. An introduction to stochastic input parameters is presented in
Chapter 4. The focus of this chapter lies on the necessary background on probabil-
ity theory. It contains the properties of single variables as well as the properties of
multiple random variables. Particular emphasis is placed on different sampling tech-
niques including the Monte-Carlo methods and some more efficient strategies, such as
the Latin Hypercube Sampling (LHS) and the Quasi Monte Carlo (QMC) Sampling.
Hereby, the first part, the theoretical framework, is complete.
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The second part of this thesis starts with Chapter 5, where the general character-
ization and quantification of uncertainties of various properties and their stochastic
description are presented. Afterwards, the two basic types of uncertainties, namely
epistemic and aleatory, are introduced. For the consideration of these uncertainties,
different mathematical frameworks are listed, whereas the scope of the present thesis
lies solely on the probability methods. In static analysis the parameter time is ne-
glected, whereas it is irrelevant whether a deterministic or stochastic simulation is
performed. On the other hand, dynamic analysis (e.g., structural, fluid or fatigue)
makes the consideration of the time explicitly necessary. In conjunction with time-
dependent random parameters the theory of the stochastic process is necessary. For
the simulation of such processes, many different mathematical concepts are available,
where in this work, the following methods are applied:

• the Spectral Representation Method,

• the Karhunen-Loève Expansion and

• the Polynomial Chaos Expansion.

A brief review of the respective level of development of each representation method
is given. For parameters of material strength as well as for the cross section, a
negative value is in particular not physical and therefore the assumption of a nor-
mal (Gaussian) distribution is not well suited. In view of this fact, the subsection
about Non-Gaussian Models gives a brief overview about some techniques to handle
with non-Gaussian distributions. Two methods are mainly referred to this context;
the memoryless transformation of the Gaussian distribution and the Askey-scheme
(Xiu and Karniadakis [2002, 2003]; Xiu [2009, 2010]). The chapter completes with a
general introduction of random fields. This methodology is later adopted to represent
the fluctuations of the material parameters. After the brief introduction on the quan-
tification of uncertainties and the subsequent overview of the methods applied in this
thesis, Chapter 6 is dedicated to the charaterization of material uncertainties by
the theory of random fields. Then, different discretization techniques are briefly dis-
cussed. This includes the point and the averaging discretization techniques as well as
the series expansion methods, where special emphasis is placed on the latter methods.
To be more specific, these methods are the KLE and SPRM. First, the KLE is pre-
sented in detail. Once, the basics are introduced, the analytical solution of the KLE
is presented and afterwards its numerical formulation is proposed. This formulation
is then applied in a numerical example and the results are discussed subsequently.
Then the SPRM is presented, where the formulation for the two-dimensional as well
as for the three-dimensional case are given. Afterwards, different investigations are
performed, especially on two-dimensional random fields. With the presentation of the
random field theory, the second part is complete.

The third and last part of this thesis starts with the introduction of the Polynomial
Chaos Expansion in Chapter 7. First of all, basic definitions and necessary func-
tional spaces are introduced. Afterwards, the general construction of a PCE with the
order p and dimension M is discussed. Based on these definitions, a formal expansion
of a second-order random variable in terms of the PCE is given. The construction
of a PCE system is examined for the case of Gaussian random variables, where
the Hermite-Polynomials are the optimal choice to approximate the stochastic ba-
sis. In one-dimensional systems, the Hermite polynomials are applied directly. In
multi-dimensional systems, the basis of the PCE is defined in terms of a partial ten-
sorization of the one-dimensional Hermite polynomials. The truncation of the PCE
at a finite order p is discussed as also the generalized PCE decompositions, the al-
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ready mentioned Askey scheme. The chapter ends with some remarks in terms of
the implementation of the PCE. After introducing the PCE, Chapter 8 is addressed
to the linear Stochastic Finite Element Method. The chapter starts with a brief re-
view of four different methods for the representation of the fluctuating part of the
SFEM. Namely, these are the perturbation method, the weighted integral method, the
Neumann expansion method and the improved Neumann method. At the end of
this section, a brief discussion of the intrusive and non-intrusive approach is given.
After this short overview, the linear Spectral Stochastic Finite Element Method (SS-
FEM) is discussed in detail. First, the stochastic counterpart of the deterministic
weak form of equilibrium is derived. This is realized by transferring the deterministic
weak form into the "so-called" spectral form. To be more specific, this is done by
performing a stochastic discretization of the deterministic weak form and projecting
it via the Galerkin method onto an orthogonal expansion basis, which is spanned
by polynomials. Then, some remarks on the computational realization of the SSFEM
are given. The evaluation of the statistical response is outlined for the first four sta-
tistical moments, namely the mean value, the standard deviation, the skewness and
the kurtosis and some extensions of the SSFEM are discussed. In particular, these
are the extension to log-normal random variables, to log-normal random fields and
to multiple input random fields. The extension to multiple input random fields is
discussed in some details, because in this thesis, four different random quantities are
included in the formulation of the governing equations. The chapter ends with a nu-
merical example with an analysis of the computed results. After presenting the SFEM
with a focus on the linear SSFEM, Chapter 9 provides the extension of the linear
SSFEM to a new SSFEM formulation for solving non-linear problems. Details on the
PC-algebra as well as some details on the applied regression method are discussed.
Then, the coupling of the developments of the previous sections (resp. chapters) are
proposed for the solution of stochastic non-linear problems by using the non-linear
SSFEM. The presented approach is tested on two numerical examples and the results
are compared with those obtained from the coupled SPRM-MCS and a simple Latin
Hypercube sampling. The thesis ends with Chapter 10, where the major findings,
achieved from the theoretical and numerical realization of the proposed method, are
summarized. Open questions and possible future research work are also discussed in
this chapter.

In Appendix A, some additional mathematical remarks are summarized. An
overview of frequently used probability density functions in engineering applications is
given in Appendix B. Appendix C specifies the detailed derivation of the tangent
modulus which is needed to evaluate the constitutive equation, presented in section
3.4. Finally, Appendix D is devoted to some additional results of the SPRM.
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2. Continuum Mechanical Framework

The physically correct description of a material body and its deformation is based
on interactions of the atomic scale. Material behaviour, such as plasticity can be de-
scribed on this length scale by a movement of imperfections in the atomic lattice. This
detailed modelling is quiet difficult and also unnecessary for engineering applications
on the macroscopic length scale due to the high effort for modeling and computational
time. Furthermore, the behaviour at the atomic level is often not of interest and the
description of the macroscopic behaviour is sufficient for engineering applications in
many cases. According to this, the microscopic structure of the material is described
macroscopically in the continuum mechanics as a continuous medium. Most of the
materials are, for example, inhomogeneous on smaller length scale. However, the
discrete structures of matter are often neglected, i.e their macroscopic behaviour is
assumed to be homogeneous. Therefore, the continuum mechanic framework will be
used for describing the microscopic behaviour of materials throughout this thesis.

The theoretical framework of the continuum mechanics, which is presented in this
chapter, is mainly inspired by the standard textbook by Holzapfel [2000]. Besides
this textbook, a detailed treatment of continuum mechanics as well as on constitutive
theory can be found in Gurtin [1981]; Chadwick [1999]; Haupt [2000]; Betten [2001];
Ibrahimbegovic [2006]; Altenbach [2012]. For additional information on non-linear me-
chanics, the reader is referred to the textbooks by Wriggers [2008] and de Borst et al.
[2012]. In addition to the literature mentioned above, the books by de Boer [1982];
Schade and Neemann [2009] and Itskov [2009] should be listed here, where the tensor
calculus is treated in detail.

This chapter gives an overview to the necessary continuum mechanical subdivisions
and is structured as follows: The kinematics and deformations of a continuum are
covered in section 2.1. In section 2.2 the mechanical stress concept is introduced.
The physical processes considered here are described by balance laws and the two
laws of thermodynamics, which are discussed in sections 2.3 and 2.4. The constitutive
theory of materials under consideration is presented in section 2.5. In this thesis, the
plasticity theory are the basis for the stochastic approach, which will be presented in
the later chapters. Therefore, section 2.6 provides the preliminaries to the generalized
plasticity with the subsequent extension to materials with hardening behaviour.

2.1. Kinematics

In continuum mechanics, a material body B is a continuous description of matter in
space and time. The material body is imagined as being a composition of a contin-
uous set of material points, described by P ∈ B. Let Φ be the motion of the body
which can be expressed by the mapping χ of the body B in the three-dimensional
Euclidean space R3. This mapping is called configuration of the body B and can be
mathematically written as

χ : B −→ R
3 (2.1)

P 7−→ χ(P) = {x1, x2, x3} , (2.2)
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see also the illustration in Fig. 2.1. A set of three real numbers describes a material
point P and can be identified by the vector x = χ(P).

X x

Φ

Ω0 Ω
X x

U(X, t) = u(x, t)

E3, e3

E2, e2

E1, e1

O

Figure 2.1.: Reference configuration Ω0 and current configuration Ω of a continuum
body in R3.

To characterize a deformation process, one configuration has to be chosen as a basis
configuration, denoted as the reference configuration Ω0, as shown in Fig. 2.1. Based
on this figure, each material point P at the initial time instant t = 0 (in the following
labelled as t0) corresponds to a geometrical point X embedded in the initial region Ω0.
Now, P can be identified by the position vector X = XAEA, where EA, A = 1, 2, 3,
defines an orthogonal base system in the reference configuration relative to the fixed
origin O. If the body transforms from Ω0 to a new configuration Ω at a subsequent
time t > 0, the new configuration of B is denoted as the current configuration. The
corresponding position vector x = xaea represents the associated geometrical point x

in the current configuration. The one-to-one mapping of the continuum body B from
the reference configuration Ω0 to the current configuration Ω is described by

x = Φ(X, t) . (2.3)

Because of the assumption that Φ is uniquely invertible, it exists a unique inverse
motion Φ−1 at any time t and the relation between X and x can be expressed by

X = Φ−1(x, t) . (2.4)

After these primarily remarks, a clear distinction between variables and mathematical
operators, related to each domain, has to be made. The notation employed here is
pointed out below.

• Vector and tensor variables defined in the reference configuration Ω0 are written
with bold face capital letters, like X. Scalar variables defined in this configu-
ration are written with capital letters, like X. The operators defined in this
configuration starts with a capital letter, e.g., Div or Grad.
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• For those variables related to the current configuration Φ(Ω0), the bold face
lower-case letters are used, for example, x. The scalar variables and operators
are denoted by using only lower-case letters, e.g, x, grad or div.

The displacement field U links the position of a material point in the reference con-
figuration with its corresponding position in the deformed configuration (current con-
figuration) by

U(X, t) = x(X, t) −X , (2.5)

which holds for all material points and is also illustrated in Fig. 2.1. The formulation

dX dx

dA da

dV dv

Ω0Ω0 Ω

N n

F

JF−T

J

Figure 2.2.: Transformation of line, area and volume elements from the reference con-
figuration Ω0 to the current configuration Ω.

of the displacement field in equation (2.5) is denoted as the material description
(Lagrangian form). The corresponding representation in the spatial description
(Eulerian form) is defined by

u(x, t) = x−X(x, t) . (2.6)

The velocity field V in the material description are expressed by

V(X, t) =
∂Φ(X, t)

∂t
, (2.7)

and the corresponding acceleration field A is given by

A(X, t) =
∂V(X, t)

∂t
. (2.8)

By applying the motion Φ, the velocity V and acceleration A can be transformed
into the spatial coordinates v(x, t) and a(x, t) as follows:

V(X, t) = V
[
Φ−1(x, t)

]
= v(x, t) , (2.9)

and accordingly for the acceleration by

A(X, t) = A
[
Φ−1(x, t)

]
= a(x, t) . (2.10)

In order to map an infinitesimal small line element dX placed in the reference con-
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figuration to the corresponding element dx placed in the current configuration, the
deformation gradient F is introduced. Such a transformation of a line element dX to
the equivalent element dx is given by

dx = F(X, t)dX . (2.11)

Here, F is defined by

F(X, t) =
∂Φ(X, t)

∂X
= Grad x(X, t) , (2.12)

or in index notation by

FaA =
∂Φa

∂XA
= GradXA

xa . (2.13)

The deformation gradient is a two-point tensor, which connects points in two different
configurations, indicated by the two different indices A and a in equation (2.13). To
fulfil the condition of the inverse transformation F−1, F may not be singular, which
is equivalent to the following condition

J(F, t) = detF(X, t) 6= 0 .

A further constraint is given through the impenetrability of matter. Mathematically,
that would be possible but in reality negative volumes are not physical. Therefore,
the Jacobian determinant J must always be greater than zero, thus

J(F, t) > 0 , (2.14)

and all other volume ratios are excluded. The area and volume elements can also
be transformed from the reference configuration Ω0 into the current configuration Ω
(and vice versa) by applying the deformation gradient F. For a graphical illustration
see Fig. 2.2. The transformation of an infinitesimal small area element dA to the
corresponding area element da is given by

da = JF−TdA , (2.15)

with dA = NdA and da = nda, where N is the normal vector on dA and n is the
normal vector on da. The relation (2.15) is also known as Nanson’s formula. By the
Jacobian determinant, the relation for the transformation of an infinitesimal small
volume element can be expressed as

dv = JdV . (2.16)

In non-linear continuum mechanics, different strain measures have been introduced
for specific purposes. The deformation gradient F can also be considered as one of
them. One basic characteristic of F is the description of the entire motion including
the rigid body motion. This means, that F is not objective and depends on the
reference coordinate system. In the case, that only deformations are described F
is not suitable and other strain measures are needed, where in table 2.1 the most
common strain measures are listed. For a detailed mathematical description and
further explanations reference is made to the given literature at the beginning of this
chapter.
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Table 2.1.: Commonly used strain tensors.

reference
configuration

current
configuration

strain tensors Green-Lagrange strain tensor Euler-Almansi strain tensor

E = 1
2 (C − 1) e = 1

2 (1 − b
−1)

with right Cauchy-Green tensor with left Cauchy-Green tensor

C = F
T
F b = FF

T

push-forward/

pull-back

for strain tensors
E = F

T
eF e = F

−T
EF

−1

The tensor 1, introduced in Tab. 2.1, is the second order identity tensor and the
push-forward operation transforms material tensors (tensors defined in the reference
configuration) into spatial tensors (tensors defined in the current configuration) or
vice versa for the pull-back operation.

2.2. The Definition of Stress

Besides different measures for the strains, there also exists various measures of stresses.
Physically, stress has the dimension of force per unit of area. To define the concept of
stress, the continuous body B in its reference configuration Ω0 and current configu-
ration Ω is considered here. Based on Newton’s third law (action equals reaction) it
is stated that the applied forces and the resulting reaction forces on the body surface
∂Ω0 and ∂Ω must be in equilibrium. A cut through the body provides an insight into
the resulting internal forces. An infinitesimal area element da and the infinitesimal
acting force vector df are defined in the current configuration. The corresponding
area element in the reference configuration is characterized by dA. The value and
direction of the infinitesimal acting force df in both configurations is assumed to be
equal. Thus, the surface tractions are defined by

T =
df
dA

and t =
df
da

, (2.17)

T = T(X, t,N) , t = t(x, t,n) , (2.18)

where T is referred to as the first Piola-Kirchhoff or nominal traction vector and
t is the Cauchy or true traction vector. Further important (second-order) tensors
are defined by Cauchy’s stress theorem:

t(x, t,n) = σ(x, t)n ,

T(X, t,N) = P(X, t)N or Ta = PaANA ,
(2.19)

where σ dentoes the Cauchy stress tensor and P is referred to the first Piola-

Kirchhoff stress tensor. The index notation given in equation (2.19) illustrates that
P, similar to F, is a two-field tensor. Two further characteristics of P are that it is
usually not symmetric and not objective. Therefore, alternative stress measures are
defined. They are often used for practical non-linear analyses, with the remark that
most of their components do not have a direct physical interpretation. Two of them,
the second Piola-Kirchhoff stress tensor S and the Kirchhoff stress tensor τ
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should be named here, which are listed together with the introduced stress measures
in Table 2.2 on the next page.
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Table 2.2.: Commonly used stress tensors.

reference
configuration

two field
tensors

current
configuration

stress definitions
1. Piola-Kirchhoff

stress tensor P
Cauchy stress tensor σ

PN = T σn = t

stress tensors 2. Piola-Kirchhoff stress tensor S
1. Piola-Kirchhoff

stress tensor P
Cauchy stress tensor σ

and Kirchhoff stress tensor τ
S = F−1P (=⇒ P = FS) P = JσF−T τ = Jσ

push-forward/
pull-back

for stress tensors
S = JF−1σF−T = F−1P = ST σ = J−1FSFT
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2.3. Balance Laws

Balance laws represent generally accepted laws of nature. It is important to distin-
guish between the global form of the balance laws (refers to the entire continuum
body) and the local form (refers to each material point of the continuum body). In
this section the fundamental balance principles, i.e. the conservation of mass, linear
and angular momentum and the balance of mechanical energy are presented.

2.3.1. Conservation of Mass

In what follows, only closed systems are considered, i.e. that the mass of a system is
conserved and

m(Ω0) = m(Ω) > 0 (2.20)

holds for all times t. The differential form of equation (2.20) is given by

dm(X) = dm(x, t) > 0 . (2.21)

The equation above shows an infinitesimal mass element dm in the reference config-
uration and in the current configuration, which has to be equal. With the relation

dm(X) = ρ0(X) dV and dm(x, t) = ρ(x, t) dv , (2.22)

where dV is an infinitesimal volume element in the reference configuration and dv
is the corresponding one in the current configuration, the following expression is ob-
tained

ρ0(X) dV = ρ(x, t) dv > 0 . (2.23)

Here, ρ0 denotes the density in the reference configuration and ρ is the corresponding
one in the current configuration. Integration of the infinitesimal mass dm over the
entire region leads to the total mass m of that region and equation (2.23) can be
rewritten as

m =

∫

Ω0

ρ0(X) dV =

∫

Ω

ρ(x, t) dv = const > 0 , (2.24)

for all times t. The rate of mass is calculated by

ṁ =
Dm
Dt

=
D
Dt

∫

Ω

ρ(x, t) dv = 0 . (2.25)

Using the transformation in equation (2.16), the mass densities in the material and
spatial description are related to each other via

ρ0 = Jρ = ρ detF , (2.26)
ρ0

ρ
= detF . (2.27)

From the previous equation it is obvious that the determinant of F can be written in
terms of the density by ρ0

ρ
. For the global rate of mass continuity (2.25), the following
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identity1 is obtained
∫

Ω

[ρ̇(x, t) + ρ(x, t) div v(x, t)] dv = 0 , (2.28)

where v describes the velocity of a mass particle. The equation above states, that the
change of mass density with respect to time equals the flow of mass density over the
boundaries.

2.3.2. Balance of Linear Momentum

The linear momentum of a continuum body B, at an arbitrary region Ω0 (Ω) and
covered by the boundary surface ∂Ω0 (∂Ω) at time t, can be written as follows:

L(t) =

∫

Ω

ρ v dv =

∫

Ω0

ρ0 V dV , (2.29)

where the quantities ρ, v and dv are measured with respect to the current configura-
tion and ρ0, V and dV are the ones with respect to the reference configuration. The
total time derivative of equation (2.29) corresponds to the resulting force F(t) acting
on the continuum, i.e.

L̇(t) =
D
Dt

∫

Ω

ρ v dv =
D
Dt

∫

Ω0

ρ0 V dV = F(t) , (2.30)

L̇(t) =

∫

Ω

ρ v̇ dv =

∫

Ω0

ρ0 V̇ dV = F(t) . (2.31)

n t

da

v

b = ρg

dv
∂Ω

Ω

e1 e2

e3

Figure 2.3.: Mechanical forces acting on the current configuration Ω.

1Evaluated with the transport theorem: D
Dt

∫

Ω

ρ(x, t) dv =
∫

Ω

[ρ̇(x, t) + ρ(x, t) div v(x, t)] dv.



20 2.3. Balance Laws

This external force F(t) can be decomposed into a body force b in Ω and a surface
load t acting on the boundary surface ∂Ω, as illustrated in Fig. 2.3. Hence, with the
decomposition of F, the balance of linear momentum can be written as

F(t) =

∫

Ω

b dv +
∫

∂Ω

t da . (2.32)

A typical body force is the gravity loading per unit volume of an arbitrary body.
Finally, with regard to equation (2.31), the global form of balance of linear momentum
can be written in spatial coordinates as

∫

Ω

ρ a dv =

∫

Ω

b dv +
∫

∂Ω

t da , (2.33)

with a = v̇ being the acceleration. With equation (2.19)1 and by use of the divergence
theorem2 the global formulation of the balance of linear momentum becomes

∫

Ω

(div σ + b− ρ a) dv = 0 , (2.34)

which is also known as Cauchy’s first equation of motion. Under the assumption
that this relation holds for any volume dv, the local form is obtained as follows:

div σ + b = ρ a , (2.35)

and in purely static systems, where the acceleration vanishes, equation (2.35) becomes

div σ + b = 0 . (2.36)

The last equation is often referred to as Cauchy’s equation of equilibrium.

2.3.3. Balance of Angular Momentum

For a continuous body B the angular momentum J is defined as

J(t) =

∫

Ω

r× ρ v dv =

∫

Ω0

r× ρ0 V dV , (2.37)

with the position vector r(x) = x−x0 and the operator × denotes the mathematical
cross product. The quantities ρ, v and dv are formulated with respect to the current
configuration and ρ0, V and dV are measured with respect to the reference configu-
ration. It states that the temporal change of angular momentum is equal to the sum
of all external momentums J̇ = M(t) acting on B, which can be written as

J̇(t) =
D
Dt

∫

Ω

r× ρ v dv =
D
Dt

∫

Ω0

r× ρ0V dV = M(t) . (2.38)

2Divergence theorem:
∫

a
u · n da =

∫

v
div u dv .
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M and F can be additively split into

M(t) =

∫

∂Ω

r× t da+
∫

Ω

r× b dv . (2.39)

Inserting this split into equation (2.38) the global form of balance of angular momen-
tum is obtained as

J̇(t) =
D
Dt

∫

Ω

r× ρ v dv =

∫

∂Ω

r× t da+
∫

Ω

r× b dv . (2.40)

2.3.4. Balance of Mechanical Energy

The mechanical energy results from three various parts. These are the external me-
chanical power Pext(t)

Pext(t) =

∫

Ω

b · v dv +
∫

∂Ω

t · v da , (2.41)

the kinetic energy K(t)

K(t) =

∫

Ω

1

2
ρ v · v dv , (2.42)

and the rate of internal mechanical work Pint(t)

Pint(t) =

∫

Ω

σ : d dv , (2.43)

where d = 1
2

(
gradv + gradTv

)
denotes the deformation rate tensor. With these

parts in hand, the balance of mechanical energy, in the global form in spatial descrip-
tion, can be written as

D
Dt

∫

Ω

1

2
ρ v · v dv +

∫

Ω

σ : d dv =

∫

Ω

b · v dv +
∫

∂Ω

t · v da , (2.44)

or in short form, written only in terms of K, Pint and Pext as

D
Dt

K(t) + Pint(t) = Pext(t) . (2.45)

The interpretation of equation (2.45) is as follows:

The rate of change of kinetic energy K of a system in combination with the rate of
internal mechanical work Pint, occurred by internal stresses, is equal to the rate of
external mechanical power Pext acting on the system by surface tractions t and body
forces b.
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With the balance of thermal energy

D
Dt

E(t) = Pint(t) +Q(t) , (2.46)

where Q denotes the thermal power

Q(t) =

∫

Ω

r dv +
∫

∂Ω

qn da . (2.47)

Substituting equation (2.46) into equation (2.45) leads to the first law of thermody-
namics, i.e.

D
Dt

K(t) +
D
Dt

E(t) = Pext(t) +Q(t) , (2.48)

with the relation

E(t) =
∫

Ω

ec(x, t) dv . (2.49)

Here, ec is the specific internal energy defined per unit current volume. The variables
r and qn in equation (2.47) are illustrated in Fig. 2.4 and denotes the heat source
and the normal heat flux, which is defined (in spatial description) as

qn(x, t,n) = −q(x, t) · n , (2.50)

where q = q(x, t) is the Cauchy heat flux. The negative sign in equation (2.50) is
needed in order to get a positive thermal flux when heat flows into the body, because
n is an outward normal. Formulated in an explicit expression, equation (2.48) can be
written as

D
Dt

∫

Ω

(
1

2
ρ v2 + ec

)
dv =

∫

Ω

(b · v + r) dv +
∫

∂Ω

(t · v + qn) da . (2.51)

From equation (2.51), it is obvious that the total energy, on the left hand side of
this equation, is equal to the external mechanical power Pext and heat supply Q,
which stands on the right hand side. A more explicit expression of equation (2.51)
are obtained by first rewriting equation (2.47) by using of equation (2.50) and the
divergence theorem, which leads to

Q(t) =

∫

Ω

(r − div q) dv . (2.52)

After inserting the equations (2.43), (2.49) and (2.52) into equation (2.46) results in
the reduced global form of balance energy in spatial description, i.e.

D
Dt

∫

Ω

ec dv =

∫

Ω

(σ : d− div q+ r) dv . (2.53)
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q
n

da

r

dv
∂Ω

Ω

e1 e2

e3

Figure 2.4.: Heat source r and the Cauchy heat flux q in the current configuration
Ω.

2.4. Entropy Inequality

Through the conservation of total energy, an energy form can be transformed into
another energy form. However, the first law of thermodynamics contains no detail
about the direction of such an energy transformation. Furthermore, there is no in-
formation if the process is reversible or irreversible. Therefore, the second law of
thermodynamics is introduced, which gives an information of the process direction.
This formulation is based on the concept of entropy.3

Let B be a continuous body, occupying a certain region (Ω0 or Ω) with the entropy

S(t) =
∫

Ω

ηc(x, t) dv =

∫

Ω0

η(X, t) dV , (2.54)

inside this system. Here ηc and η are the specific entropy per unit volume in the
current and reference configuration. The rate of the entropy input

Q̃(t) =

∫

Ω

r̃ dv −
∫

∂Ω

h · n da , (2.55)

is a total product of the entropy transferred across the boundary surface of the body
and the entropy generated (or dissipated) inside the considered region. In this formula
denotes r̃ the time-dependent entropy sources (defined per unit time and unit volume)
and h is the also time-dependent Cauchy entropy flux. The negative sign in equation
(2.55) results from the definition of the unit vector n, which is outward to ∂Ω, see
Fig. 2.4. With these two relations, the total production of entropy per unit time can

3The entropy can be viewed as a quantitative measure of microscopic disorder and randomness,
cf. Holzapfel [2000]. Here, the entropy is considered as a measure of how much free energy is
transformed into heat.
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be written as follows:

Γ(t) ≡ D
Dt

S(t)− Q̃(t) ≥ 0 , (2.56)

which is known as the second law of thermodynamics or entropy inequality principle
and states that the total entropy production of all thermodynamic processes is never
negative. With the use of equations (2.54) and (2.55), a more common expression of
equation (2.56) is obtained, which leads to the global spatial form of the second law
of thermodynamics

Γ(t) ≡ D
Dt

∫
ηc(x, t) dv +

∫

∂Ω

h · n da −
∫

Ω

r̃ dv ≥ 0 . (2.57)

In reality, the inequalities in equations (2.56) and (2.57) hold, i.e. real processes
are irreversible. The equal sign is applied only for idealized process, i.e. reversible
processes.

By inserting the proportional factor 1/Θ, where Θ = Θ(x, t) describes the absolute
temperature in Kelvin, the entropy flux h and the entropy sources r̃ can be redefined
by

h =
q

Θ
and r̃ =

r

Θ
. (2.58)

Substituting these two identities in equation (2.57) leads to the Clausius-Duhem

inequality

D(t) ≡ D
Dt

∫

Ω

ηc dv +
∫

∂Ω

q

Θ
· n da−

∫

Ω

r

Θ
dv ≥ 0 , (2.59)

which is written here in the spatial description. To obtain the local form of the
Clausius-Duhem inequality, the surface integral in equation (2.59) needs to be cov-
ered into a volume integral via the divergence theorem, thus

∫

∂Ω

q

Θ
· n da =

∫

Ω

1

Θ
div q dv . (2.60)

Afterwards, the product rule is applied on equation (2.60) and substitute it into
equation (2.59) leads to the local spatial form

η̇c +
1

Θ
div q− 1

Θ2
q · grad Θ− r

Θ
≥ 0 , (2.61)

where grad Θ denotes the spatial gradient of the temperature field Θ . The local form
of the inequality stated above can be coupled with the reduced local form of the first
law of thermodynamics, derived from equation (2.53), as

ėc = σ : d− div q+ r , (2.62)

which finally results i

η̇c +
1

Θ
div q− 1

Θ2
q · grad Θ− 1

Θ
(ėc + div q− σ : d) ≥ 0 . (2.63)
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With the introduction of the Helmholtz free-energy function ψ, in the current con-
figuration,

ψ = ec −Θηc , (2.64)

and the material time derivative of ψ

ψ̇ = ėc −
(
Θ̇ηc +Θη̇c

)
, (2.65)

and when substituting (2.65) into equation (2.63) leads to the reduced form of the
second law of thermodynamics:

σ : d−
(
ψ̇ + Θ̇ ηc

)
− 1

Θ
q · grad Θ ≥ 0 . (2.66)

The Helmholtz free-energy function is essential for the construction of constitutive
relations (see also the following section 2.5) of material behaviour. Some special cases
of the thermodynamic processes can be defined, for example, an isothermal process,
where the temperature in the body is constant (Θ = const.), where equation (2.66)
reduces to

σ : d− ψ̇ ≥ 0 . (2.67)

2.5. Constitutive Theory

With the balance laws, introduced in subsections 2.3.2 to 2.3.4, eight equations (with-
out thermal energy) are available for the solution of a mechanical process. However,
there are fourteen variables, namely the density ρ, velocity v, stress σ as well as the
internal energy E, to be determined. When considering a thermomechanical process,
the number of variables to be determined increases to nineteen. These are, addition-
ally, the entropy η, temperature Θ and the heat flux q. As already pointed out in
section 2.4, the second law of thermodynamics defines only the direction of the process
but gives no additional equation. The missing six equations of a mechanical process
and the eleven equations of a thermomechanical process can be formulated with re-
spect to the so-called constitutive equations. The systematic derivation of constitutive
equations based on fundamental principles, which guarantee the mathematical and
physical consistency. In the following these principles are briefly summarized.

• Principle of Causality : By this principle the dependent and independent vari-
ables, with respect to cause and effect, will be selected. For example, if the
motion and the temperature are investigated in a thermomechanical analysis,
the heat fluxes, free energy and the entropy are the dependent variables, because
they change their values relative to the investigated ones.

• Principle of Determinism: The current state of a continuum is determined by
the actual loading condition as well as the entire history. This means that the
reaction of the considered material point depends on the reactions of all other
material points inside the continuum body.

• Principle of Equipresence: A set of independent variables, which specifies the
thermodynamic state of the material, must be included for the considered con-
tinuum model in all other constitutive equations.
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• Principle of Material Frame Indifference: The constitutive equations must be
independent from the choice of the reference system, which describes the defor-
mation of the body.

• Principle of Local Agency : The conditions in the material points only depend on
the close surrounding of the material point. Long-distance effects are neglected,
which is sufficient for "simple" materials.

• Principle of Fading Memory : A Material has a "memory" and reflects effects of
the past in different ways. This axiom enables simplifications regarding to the
temporal description. In the case of a fading memory it is assumed that past
effects have less influence than recent effects.

• Principle of Physical Consistence: Constitutive equations may not contradict
the balance laws.

2.5.1. Thermodynamics with Internal Variables

The previously formulated principles are far too general to have practical utility in
modelling real materials. Therefore, it is necessary to formulate constitutive relation-
ships to describe the specific properties of a material. For example, the thermody-
namic state of a material can be described by the movement x = Φ(X, t) and the
temperature Θ(X, t) of the material points P at time t. If x and Θ are selected as
independent variables the Cauchy stress tensor σ, free energy ψ, heat flux vector q
and the specific entropy ηc are the dependent variables. Using the axioms listed at
the beginning of this section, the constitutive equations, formulated in the current
configuration, have the following functional dependencies:

ψ = ψ
(
x,Θ, Θ̇, gradΘ, grad Θ̇,F, Ḟ, ρ, ρ̇

)
,

ηc = ηc
(
x,Θ, Θ̇, gradΘ, grad Θ̇,F, Ḟ, ρ, ρ̇

)
,

σ = σ
(
x,Θ, Θ̇, gradΘ, grad Θ̇,F, Ḟ, ρ, ρ̇

)
,

q = q
(
x,Θ, Θ̇, gradΘ, grad Θ̇,F, Ḟ, ρ, ρ̇

)
.

(2.68)

If the material is assumed to be thermoelastic homogeneous, the material time deriva-
tives can be neglected, because no time dependent effects occur. In this case, the
material properties at all points are the same and the constitutive equations do not
depend on the position vector x as well as the mass density ρ and the set of functional
dependencies in equation (2.68) simplifies to

ψ = ψ (Θ, gradΘ,F)
ηc = ηc (Θ, gradΘ,F)
σ = σ (Θ, gradΘ,F)
q = q (Θ, gradΘ,F) .

(2.69)

Following the functional dependencies listed above, the rate of change of the specific
free energy reads

ψ̇ =
∂ψ

∂F
: Ḟ+

∂ψ

∂Θ
Θ̇ +

∂ψ

∂gradΘ
grad Θ̇ . (2.70)
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Substituting this equation into the Clausius-Duhem inequality (2.66) gives

σ : d−
(
∂ψ

∂F
: Ḟ+

∂ψ

∂Θ
Θ̇ +

∂ψ

∂gradΘ
grad Θ̇ + Θ̇ηc

)
− 1

Θ
q gradΘ ≥ 0 , (2.71)

and with

σ : d = σF−T : Ḟ , (2.72)

the inequality (2.71) becomes
(
σF−T − ∂ψ

∂F

)
: Ḟ−

(
∂ψ

∂Θ
+ η

)
Θ̇− ∂ψ

∂gradΘ
·gradΘ̇− 1

Θ
q ·gradΘ ≥ 0 . (2.73)

The last term of equation (2.73) can be interpret as a restriction, which states that
the heat flux must act against the direction of the temperature gradient. To follow
the principle of physical consistence, the inequality in (2.73) must hold for any pair
of functions {Ḟ(t), Θ̇(t)}, which implies

σ =
∂ψ

∂F
FT , ηc = − ∂ψ

∂Θ
and

∂ψ

∂grad(Θ)
= 0 , (2.74)

for the constitutive equations.

2.5.2. Material Symmetries

The incorporation of material symmetries can lead to a significant simplification of
the constitutive equations. Basis for the consideration of symmetries is the experi-
mental experience, that a large number of continua have a dependence of direction
(anisotropy). The application of statements on the material symmetry have a practi-
cal benefit, because it results in a simplification of the mathematical equations.

At the beginning of this subsection, some expressions are listed, which are used during
this subsection. The first Piola-Kirchhoff stress tensor P can be expressed in terms
of the free energy function ψ as

P =
∂ψ(F)

∂F
. (2.75)

With the push-forward operation, see Tab. 2.2, the Cauchy stress σσσ reads

σ = J−1PFT , (2.76)

which, when taking into account equation (2.75) gives

σ = J−1F

(
∂ψ

∂F

)T

= 2J−1F
∂ψ

∂C
FT . (2.77)

This equation implies that

(
∂ψ

∂F

)T

= 2
∂ψ

∂C
FT . (2.78)

The first and second Piola-Kirchhoff stress tensor can be also derived with equation
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(2.78) as follows:

P = 2F
∂ψ

∂C
or PaA = 2FaB

∂ψ

∂CAB
, (2.79)

and

S = 2
∂ψ

∂C
=
∂ψ

∂E
or SAB = 2

∂ψ

∂CAB
=

∂ψ

∂EAB
, (2.80)

where E denotes the Green-Lagrange strain tensor.

The derivation of the stress tensor by the strain tensor gives the fourth-order tensor,
denoted as material tensor C, where below the derivations of C with respect to E or
S are listed:

C =
∂S

∂E
or CABCD =

∂SAB

∂ECD
, (2.81)

C = 2
∂S

∂C
or CABCD = 2

∂SAB

∂CCD
. (2.82)

In the special case, where elastic behaviour and small deformations are assumed, i.e.
E → ǫ, with the linear strain tensor ǫǫǫ, C equals the elasticity tensor. In this case,
C is represented by the generalized Hooke’s law, which can be either isotropic or
anisotropic, which postulates the linear dependency between the small strains and
the stresses and reads

σ = C : ǫ . (2.83)

The fourth-order material tensor has 81 independent components and is always sym-
metric in the first two slots and in the second two, i.e.

CABCD = CBACD = CABDC , (2.84)

which leads to a reduction to 36 independent components in C. This symmetry
condition is independent of ψ and holds for any isotropic elastic material. With
respect to equation (2.80)3 and (2.82)2, C can be also expressed as

C = 4
∂2ψ

∂C∂C
or CABCD = 4

∂2ψ

∂CAB∂CCD
, (2.85)

with the symmetries

CABCD = CCDAB . (2.86)

Considering these characteristics the tensor C has only 21 independent components
and can be expressed in matrix formulation as

C =




C1111 C1122 C1133 C1112 C1113 C1123

C2222 C2233 C2212 C2213 C2223

C3333 C3312 C3313 C3323

s C1212 C1213 C1223

y C1313 C1323

m C2323




. (2.87)
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Further reductions of the independent components of C are possible by the consid-
eration of material symmetries, based on the structure of the crystal lattice. By
anisotropic elasticity a distinction can be made between:

• Monotropy: 13 independent components, one symmetry plane in the material.

• Orthotropy: 9 independent components, at least two orthogonal symmetry
planes in the material.

• Transversal isotropy: 5 independent components, there is a symmetry in the
material with respect to the assumption that all properties are equal.

• If there are at least two axes of symmetry in the material and the elastic prop-
erties are the same for these axes, the material is denoted as isotropic, where a
common isotropic expression for C, in terms of the Young’s modulus E and the
Poisson’s ratio ν, is as follows:

Ciso =
E

(1 + ν)(1 − 2ν)




1− ν ν ν 0 0 0
ν 1− ν ν 0 0 0
ν ν 1− ν 0 0 0
0 0 0 1−ν

2
0 0

0 0 0 0 1−ν
2

0

0 0 0 0 0 1−ν
2



, (2.88)

where Ciso is introduced to distinguish between the general material tensor and the
isotropic counterpart.

2.6. Theory of Plasticity

In this work only ductile metals with only small deformations are considered. In this
case, the current configuration can be considered as a small perturbation around the
reference configuration and an additive decomposition of the linear strain tensor in
an elastic ǫel and an inelastic (plastic) part ǫpl can be made as follows:

ǫ = ǫel + ǫpl or ǫij = ǫelij + ǫpl
ij , (2.89)

where the elastic strain ǫel is given by

ǫǫǫel = ǫǫǫ− ǫǫǫpl or ǫelij = ǫij − ǫpl
ij , (2.90)

and with equation (2.83) ǫǫǫel can also be expressed as

ǫǫǫel = C
−1 : σσσ or ǫelij = C−1

ijklσkl . (2.91)

Within this framework, the previously introduced continuum basics are applied to
formulate a general elastic-plastic constitutive model. The basic definitions for the
yield function and the yield criteria are introduced in the one-dimensional case and
extended then to the generalized three-dimensional case. The evolution of the plastic
strain is described with a plastic flow rule, whereas the general formulation is given
for materials with distinct work-hardening properties. Here the kinematic and the
isotropic hardening are in focus, and for simplification reasons, thermal effects are
ignored in the formulation of the constitutive equations.
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Apart from the textbook by Neto et al. [2008], the book by Lubliner [2008] mainly
inspires for the formulation of the classical theory in this section. Further the-
oretical background of plasticity can be found in Lemaitre and Chaboche [1990];
Chen and Han [2007] and Besson et al. [2010].

2.6.1. Plasticity at Small Deformations

First of all, some basic concepts of plasticity in one-dimensional problems are summa-
rized. Afterwards, the extension on the generalization to three-dimensional problems
is presented.

A yield function of the form

f(σ, σy) = |σ| − σy , (2.92)

is chosen, which is controlled by the given yield stress σy in the elastic domain Del as
follows:

Del = {σ | f(σ, σy) < 0} , (2.93)

which states that the elastic domain covers all stresses which satisfy

|σ| < σy . (2.94)

By definition, the stress is not allowed to be above the current yield region. More
precisely, the plastic yielding occurs either in the elastic domain or at the elastic
boundary of it, i.e.

f(σ, σy) ≤ 0 , (2.95)

which is also known as yield limit. For the yield function f , it is necessary to distin-
guish between the followoing three states:

f(σ, σy) < 0 elastic, σ lies in the elastic domain Del

f(σ, σy) = 0 plastic, σ lies at the boundary ∂Del

f(σ, σy) > 0 inadmissible, σ lies outside of Del .

(2.96)

The yield criterion is defined as

If f(σ, σy) < 0 =⇒ ǫ̇pl = 0 ,

If f(σ, σy) = 0 =⇒
{
ǫ̇pl = 0 for elastic unloading ,

ǫ̇pl 6= 0 for plastic loading ,

(2.97)

where ǫ̇pl denotes the plastic strain rate, which will be described in more detail later.

As previously mentioned, the formulation of the plasticity should be now extended to
three-dimensional problems. For the three-dimensional generalization, the free energy
function ψ

ψ = ψ(ǫǫǫ, ǫǫǫpl,ααα) , (2.98)

is considered. Here, ǫǫǫ is the total strain, ǫǫǫpl is the plastic strain (considered as
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internal variable) and ααα is an additional set of internal variables used for describing
the hardening. Furthermore, is ψ additively split as follows:

ψ(ǫǫǫ, ǫǫǫpl,ααα) = ψel(ǫǫǫ− ǫǫǫpl) + ψpl(ααα) ,

= ψel(ǫǫǫel) + ψpl(ααα) ,
(2.99)

where the elastic contribution ψel depends only on the elastic strain and the plastic
contribution ψpl depends on the internal variable α. With the free energy function
(equation (2.99)) the Clausius-Duhem inequality can be rewritten as

(
σσσ − ∂ψel

∂ǫǫǫel

)
: ǫ̇ǫǫel + σσσ : ǫ̇ǫǫpl − ∂ψpl

∂ααα
∗ α̇αα ≥ 0 , (2.100)

where ∗ denotes an appropriate product operation between A and α̇αα. After introduc-
ing the thermodynamical force

A ≡ ∂ψpl

∂ααα
, (2.101)

equation (2.100) can be rewritten as

(
σσσ − ∂ψel

∂ǫǫǫel

)
: ǫ̇ǫǫel + σσσ : ǫ̇ǫǫpl −A ∗ α̇αα ≥ 0 , (2.102)

From equation (2.100) and (2.102), the stress tensor σσσ can be directly derived from

σσσ =
∂ψel

∂ǫǫǫel
. (2.103)

When taking into account that the plastic dissipation function, referred asDpl, cannot
be negative, the formulation of Dpl can be written as

Dpl(σσσ,A; ǫ̇ǫǫpl, α̇αα) ≡ σσσ : ǫ̇ǫǫpl −A ∗ α̇αα ≥ 0 . (2.104)

In the generalized three-dimensional case, plastic flow occurs when

f(σσσ,A) = 0 , (2.105)

and the corresponding elastic domain is defined as the set

Del = {σσσ | f(σσσ,A) < 0} , (2.106)

of stresses where plastic yielding is not possible. This set is analogous to the expression
in equation (2.93) for the uni-axial case. The stresses, which lie in the elastic domain
or on the boundary of it, are defined by the set

D̄el = {σσσ | f(σσσ,A) ≤ 0} . (2.107)

The set in which the plastic yielding may occur is defined by the hyper-surface

Y = {σσσ | f(σσσ,A) = 0} , (2.108)

which is understood as the yield surface. The complete characterization of the general
constitutive model for plasticity requires an explicit definition of the evolution laws
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for the internal variables, i.e. the variables associated with the dissipative phenomena.
In the present formulation, these are the plastic strain ǫǫǫpl and the set of hardening
variables ααα. The plastic flow rule and hardening law are defined by, cf. Neto et al.
[2008],

ǫ̇ǫǫpl = λ̇N(σσσ,A) , (2.109)

α̇αα = λ̇H(σσσ,A) . (2.110)

Here, N(σσσ,A) is the flow vector, H(σσσ,A) describes the evolution of the hardening
variables and λ̇ denotes the so-called plastic multiplier, which is a non-negative value
by definition. These two equations are completed by the Kuhn-Tucker (also known
as Karush-Kuhn-Tucker or loading/unloading) conditions

f(σσσ,A) ≤ 0 , λ̇ ≥ 0 , λ̇f(σσσ,A) = 0 . (2.111)

The flow vector N(σσσ,A) is derived from

N(σσσ,A) ≡ ∂Ψ

∂σσσ
with the flow potential Ψ = Ψ(σσσ,A) . (2.112)

The hardening law can be derived by using the same potential,

H(σσσ,A) ≡ − ∂Ψ

∂A
. (2.113)

For the determination of the plastic multiplier λ̇ the consistency condition

ḟλ = 0 , (2.114)

is used, which implies that ḟ = 0 under plastic yielding (λ 6= 0). The differentiation
of f with respect to time reads

ḟ =
∂f

∂σσσ
: σ̇σσ +

∂f

∂A
∗ Ȧ . (2.115)

With respect to equation (2.83) the rate of the stress tensor can be written as

σ̇σσ = C
el : ǫ̇ǫǫ , (2.116)

where the superscript •el denotes that Cel is the elasticity tensor with respect to
Hooke’s law. With the expression (2.90)1 and the plastic flow rule given in equation
(2.109), equation (2.116) can be reformulated as

σ̇σσ = C
el : (ǫǫǫ − λ̇N(σσσ,A)) . (2.117)

Using the definition of A in terms of ψ, see equation (2.101), the evolution law (2.110)
and the rate of the stress tensor (2.117), equation (2.115) becomes

ḟ =
∂f

∂σσσ
: Cel : (ǫ̇ǫǫ− λ̇N(σσσ,A)) + λ̇

∂f

∂A
∗ ∂

2ψpl

∂ααα2
∗H(σσσ,A) . (2.118)
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When ḟ = 0, the plastic multiplier λ̇ can be determined from equation (2.118) as

λ̇ =

∂f
∂σσσ

: Cel : ǫ̇ǫǫ

∂f
∂σσσ

: Cel : N(σσσ,A)− ∂f
∂A

∗ ∂2ψpl

∂ααα2 ∗H(σσσ,A)
. (2.119)

For the elastic region, the constitutive equation for the stress are given by equation
(2.116). When plastic flow occurs, the corresponding rate equation are defined by

σ̇σσ = C
ep : ǫ̇ǫǫ , (2.120)

where the fourth-order tensor Cep is the elastic-plastic tangent modulus and by sub-
stituting equation (2.119) into equation (2.117) gives

C
ep ≡ C

el −
(Cel : N(σσσ,A)) ⊗ ( ∂f

∂ααα
: Cel)

∂f
∂σσσ

: Cel : N(σσσ,A)− ∂f
∂A

∗ ∂2ψpl

∂ααα2 ∗H(σσσ,A)
, (2.121)

where ⊗ denotes the tensor product operator.

2.6.2. Yield Criteria

In the previous subsection, the generalized elastic-plastic constitutive model has been
established, whereas the yield criteria are introduced without referring to any specific
one. In engineering applications, different yield criteria, such as the Tresca, von

Mises, Mohr-Coulomb or the Drucker-Prager criteria are available. The selec-
tion of each criterion, depends primarily on the material to be applied. For metals,
as considered in this work, pressure-insensitve criteria, like Tresca or von Mises are
adequate. For materials like soil, rock or concrete which are compressible, a pressure-
sensitive criteria are necessary. Examples of this are the Mohr-Coulomb or the
Drucker-Prager criteria. This work focuses on the von Mises criteria, proposed
by Mises [1913]. Informations about the other yield criteria are available in the cited
literature in this section. Detailed phenomenological aspects can be found, e.g., in
the textbook by Rösler et al. [2008].

By assuming that the material behaviour is isotropic as well as the knowledge that
metals are plastically incompressible, the yield function can be formulated in terms of
the invariants of the stress tensor or the principal stresses captured by the assumption
of von Mises. This assumption states that plastic yielding occurs when the J2 stress-
deviator invariant reaches a critical value, cf. Neto et al. [2008]. According to this,
the yield function can only be formulated in terms of the second invariant J2 of the
deviatoric stresses s as follows:

f(σσσ) = f(J2) , (2.122)

with

J2 =
1

2
s : s =

1

2
‖ s ‖2 (2.123)

where the deviatoric stresses s are defined by

s = σσσ − 1

3
tr (σσσ)1 , (2.124)
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with the second-order identity tensor 1 and tr (•) is the trace of •. With these
relations, the von Mises yield criterion can be expressed by the yield function as

f(σσσ) =
√

3 J2(s(σσσ)) − σy , (2.125)

f(s) =

√
3

2
s : s− σy . (2.126)

A classical representation of the von Mises criterion is to characterize it by a circular
cylinder in the space of principal stresses with the hydrostatic axis as the axis of rota-
tion as illustrated in Fig. 2.5. In view of the relation between J2 and the octahedral

σ1

σ2

σ3 −
√
3p

Figure 2.5.: von Mises yield surface in principal stress space.

shear stress, the von Mises criterion is also known as maximum-octahedral-shear-
stress criterion, cf. Lubliner [2008].

2.6.3. Plastic Flow Rule

Until now, the formulation of the plasticity based on the definition of the flow rule
in terms of a potential function Ψ. For metals, the associated plasticity are often
assumed and, therefore, the constitutive equations are usually formulated in terms of
their yield function f instead of a potential function Ψ, thus

Ψ ≡ f , (2.127)

In that case, the rate equation of plastic strain can be expressed by

ǫ̇ǫǫpl = λ̇
∂f

∂σσσ
, (2.128)

and the evolution equation of the hardening variables is given by

α̇αα = −λ̇ ∂f
∂A

. (2.129)

The expression in equation (2.127) implies that N(σσσ,A) = ∂f/∂σσσ and the plastic
strain rate is a tensor in the direction normal to the yield surface in the space of
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stresses.

Another possibility to determine the rate equations (2.128) and (2.129), is the appli-
cation of the principle of maximum dissipation, proposed among others by Hill [1948].
An explanation of this formulation is here omitted and the reader is referred to the
cited literature in this section.

The use of the Prantl-Reuss plasticity law, in conjunction with the von Mises

yield function (2.126) as the flow potential, makes it possible to express the flow
vector (2.112) as

N(σσσ,A) ≡ ∂f

∂σσσ
=

∂

∂σσσ

(√
3 J2(s)

)
=

√
3

2

s

‖ s ‖ , (2.130)

and accordingly, the flow rule (2.128) can be rewritten as

ǫ̇ǫǫpl = λ̇

√
3

2

s

‖ s ‖ . (2.131)

The flow direction of the associative yield condition, based on the von Mises model
is shown in Fig. 2.6. The principal directions of N(σσσ,A) and s are identical, so the
it is obvious that the flow vector is normal to the yield surface and perpendicular to
the hydrostatic axis. Furthermore, based on the von Mises hypothesis, N(σσσ,A), is
a deviatoric tensor.

σ1

σ2

σ3 −
√
3p

N(σσσ,A)

σσσ

Figure 2.6.: Illustration of the Prantl-Reuss flow vector in the principal stress space.

2.6.4. Hardening Laws

Hardening is represented by changes in the hardening thermodynamical force, A,
during plastic yielding. The yield surface may be changed in the shape, size and posi-
tion in the stress space. Mathematically, this fact is taken into account by additional
terms in the yield function, which describes the change of the yielding surface. In
this subsection, three different types of hardening behaviour are presented, namely,
the perfect plasticity, isotropic and the kinematic hardening.
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Perfect Plasticity

A material is referred as perfectly plastic if no hardening occurs during plastic defor-
mation. This means that the yield surface f remains constant and the yield stress σy
remains unchanged during the entire deformation process. Such a material behaviour
is illustrated in Fig. 2.7. In reality, there is no perfect plastic material. However, these
material models are often employed in the metal forming technology. Further areas
of application are the determination of limit loads and safety factors, cf. Neto et al.
[2008].

σ1 σ2

σ3 σ

σy ET = 0

E

ǫ

−σy

π−plane uni-axial cyclic test

fixed yield
surface

Figure 2.7.: Illustration of perfect plasticity.

Isotropic Hardening

A plasticity model an isotropic hardening behaviour if the yield surface evolves in such
a way that it isotropically expands with respect to the initial yield surface, without
translation, as shown in Fig. 2.8. In the case of a multiaxial plasticity model, the von

Mises yield surface grows symmetrically in a cylinder shape around the hydrostatic
axis. For the characterization of isotropic hardening, the tensor ααα is reduced to a
single scalar variable, which determines the size of the yield surface.

Consider the typical case of the von Mises accumulated plastic strain

ǭpl =

t∫

0

√
2

3
ǫ̇ǫǫpl : ǫ̇ǫǫpl dt =

√
2

3

t∫

0

‖ ǫ̇ǫǫpl ‖ dt , (2.132)

where the corresponding rate equation of ǭpl can be expressed by

˙̄ǫpl =

√
2

3
ǫ̇ǫǫpl : ǫ̇ǫǫpl =

√
2

3
‖ ǫ̇ǫǫpl ‖ . (2.133)
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By taking the flow rule ǫ̇ǫǫ of equation (2.131) into account, leads to

˙̄ǫpl = λ̇ . (2.134)

The function which describes the strain hardening is defined by

σy = σy(ǭ
pl) , (2.135)

with the initial condition σy(ǭpl = 0) = σy0 . The growth of the yield surface according
to the accumulated increasing plastic strain determined by a hardening law. In the
present work, the hardening modulus is assumed to be a linear function in ǭpl, which is
often used in conjunction with metals. Formulated as a rate equation, the hardening
in equation (2.135) law reads

σ̇y = Hiso ˙̄ǫ
pl , (2.136)

where Hiso is the constant isotropic hardening modulus. Integrating this rate equation
gives

σy(ǭ
pl) = σy0 + Hisoǭ

pl , (2.137)

with σy0 being the constant initial yield stress.

σ1 σ2

σ3 σ

ǫ

π−plane uni-axial cyclic test

hardened
surface

initial
surface

Figure 2.8.: Illustration of isotropic hardening.

Kinematic Hardening

If kinematic hardening occurs, the yield surface changes neither its shape nor size, but
the center of the yield surface translates in the stress space. A further phenomenon
which can be characterized by means of kinematic hardening is the reduction of the
yield stress in the opposite direction after being loaded in one direction. This effect
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is denoted as Bauschinger effect. These phenomena are both exemplary illustrated
in Fig. 2.9.

The yield function of a model with kinematic hardening is given by

f(σσσ,βββ) =
√

3 J2(ηηη(σσσ,βββ))− σy , (2.138)

where ηηη(σσσ,βββ)

ηηη(σσσ,βββ) ≡ s(σσσ)− βββ , (2.139)

describes the difference between the stress deviator s(σσσ) and the symmetric deviatoric
tensor βββ, denoted as back-stress tensor. The associated plastic flow rule in the case
of kinematic hardening is given by

N(σσσ,A) ≡ ∂f

∂σσσ
=

√
3

2

ηηη

‖ ηηη ‖ , (2.140)

with the plastic strain rate equation

ǫ̇ǫǫpl = λ̇N(σσσ,A) = λ̇

√
3

2

ηηη

‖ ηηη ‖ . (2.141)

To complete the definition of the kinematic hardening, an evolution equation for the
tensor βββ is needed. Therefore, Prager’s linear kinematic hardening rule is applied
and the rate form of βββ reads

β̇ββ =
2

3
Hkinǫ̇ǫǫ

pl = λ̇Hkin

√
2

3

ηηη

‖ ηηη ‖ , (2.142)

where Hkin is the constant linear kinematic hardening modulus.

σ1 σ2

σ3

βββ

σ

ǫ

π−plane uni-axial cyclic test

σy

σy

hardened
surface

initial
surface

Figure 2.9.: Illustration of kinematic hardening.
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3. Finite Element Method

Many physical processes can be described by differential equations. If the investigated
problems are simple, the corresponding differential equations can be solved analyti-
cally. However, in many engineering applications this is not the case and a numerical
approach is often applied as an alternative technique to solve these equations. In this
regard, the finite element method (FEM) is a widely applied numerical technique to
get an approximate solution of the underlying partial differential equations, which has
been applied to a wide range of problems, such as structural mechanics, structural
dynamics, fluid dynamics or heat transfer.

When considering boundary value problems for static or quasi-static processes, el-
liptical partial differential equations have to be solved. In this work, elastic-plastic
problems (neglecting inertia effects) are considered, where this kind of equations oc-
curs. Furthermore, only small deformations (F ≈ 1) are assumed, where a distinction
between the initial and the current configuration is not required. This means, that all
kinematic quantities as well as the related constitutive equations are written in the
current configuration.

This chapter is organized as follows: It starts with the well known (standard) varia-
tional formulation of the FEM in section 3.1. The linearisation of the governing equa-
tions, within an iterative solution scheme will be subsequently discussed in section 3.2.
The discretization procedure is addressed in section 3.3, where a brief summary about
the computation of non-linear equation systems is given in addition. Afterwards, the
incremental predictor-corrector method for the integration of the constitutive laws of
the elastic-plastic material, proposed in the previous chapter, is presented in section
3.4.

This chapter gives only a brief overview on the finite element method. For a de-
tailed treatment of the finite element method the reader is referred to the standard
textbooks, for example, the ones by Crisfield [1991]; Zienkiewicz and Taylor [2000];
Hughes [2000]; Bathe [2002]; Wriggers [2008]; de Borst et al. [2012].

3.1. Weak Form of Equilibrium

The finite element method requires the formulation of the balance laws in form of
variational principles. The first one to be mentioned here is the balance of linear
momentum

divσσσ + b = 0 , (3.1)

which has been already introduced in equation (2.36). Together with the prescribed
displacements on the boundary (also known as Dirichlet boundary conditions)

u = ū on ∂Ωu , (3.2)
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and the surface tractions (also known as Neumann boundary conditions)

t̄ = σσσ · n on ∂Ωσ , (3.3)

where ∂Ω = ∂Ωu
⋃
∂Ωσ and ∂Ωu

⋂
∂Ωσ = ∅ are disjoint parts, the quasi-static

boundary value problem is completely defined. The •̄ denotes the prescribed functions
on the boundaries. The set of equations to derive the weak form of mechanical
equilibrium is summarized in the following:






divσσσ + b = 0 ,

u = ū on ∂Ωu ,

t̄ = σσσ · n on ∂Ωσ .

(3.4)

For the FE-formulation of the boundary value problem, a variational formulation is
applied to equation (3.4)1. Multiplying this equation by a vector-valued function
δδδu = {δδδu | δδδu = 000 on ∂Ωu}, known as the virtual displacement or test function, and
integrating over the region Ω yields

g(u) =

∫

Ω

(divσσσ + b) · δδδu dv = 0 . (3.5)

Applying the product rule on the term divσσσ · δδδu, i.e.

divσσσ · δδδu = div (σσσδδδu)− σσσ : grad δδδu ,

gives

g(u) =

∫

Ω

div(σσσδδδu)dv −
∫

Ω

σσσ : grad δδδu dv +
∫

Ω

b · δδδu dv = 0 , (3.6)

and applying the divergence theorem on equation (3.6) leads to

g(u) =

∫

∂Ω

σσσδδδu · n da−
∫

Ω

σσσ : grad δδδu dv +
∫

Ω

b · δδδu dv = 0 . (3.7)

Substituting the traction boundary condition, given in equation (3.4)3, into equation
(3.7) and rearranging the terms, the weak form of equilibrium is obtained as

g(u) =

∫

Ω

σσσ : grad δδδu dv −
∫

Ω

b · δδδu dv −
∫

∂Ω

t̄ · δδδu da . (3.8)

Due to the symmetry of the Cauchy stress σσσ = σσσT, equation (3.8) can be rewritten
as

g =

∫

Ω

σσσ : ∇sym.δδδu dv −
∫

Ω

b · δδδu dv −
∫

∂Ω

t̄ · δδδu da , (3.9)

where

∇sym.δδδu =
1

2

(
grad δδδu + gradT δδδu

)
. (3.10)
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The first part of equation (3.9)

δWint =

∫

Ω

σσσ : ∇sym.δδδu dv ,

is referred to as the virtual internal work δWint, and the second part

δWext = −
∫

Ω

b · δδδu dv −
∫

∂Ω

t̄ · δδδu da ,

is related as the external virtual work δWext. For a vanishing acceleration, equation
(3.9) implies that the virtual internal work equals the external virtual work

δWint = δWext . (3.11)

The weakness of the variational formulation arises from the fact that the balance
of linear momentum is not fulfilled locally in each material point, but rather in the
integral average. It has to be fulfilled for any arbitrary test function δδδu satisfying the
boundary conditions.

3.2. Linearization

One of the main goals in structural analysis is to find the unknown displacement field,
which is a solution of the associated non-linear boundary value problem. As already
mentioned at the beginning of this thesis, it can be distinguished between geometri-
cal non-linearities, for example, non-linear strain measures described by the Green-

Lagrange strain tensor and material non-linearities like plasticity, as considered in
this work. In view of these non-linearities, it is in general not possible to get direct
(analytical) solutions for the non-linear boundary value problem(s). Such problems
are often solved by applying an iterative procedure as the widely used Newton-

Raphson scheme. By this, linearizations of the underlying differential equations are
necessary, where it is quite convenient to linearise the governing equations by ap-
plying the first-order Taylor series expansion. In view of the previous section, the
linearization of the weak form in equation (3.9) reads

g (u +∆u) = g (u) + ∆g(u,∆u) +R , (3.12)

where ∆g(u,∆u) denotes the linear increment of g at u, ∆u is the increment of the
displacement field and R defines the residual of the Taylor series expansion. The
term ∆g(u, ∆u) is solved by the Gâteaux derivative

∆g(u,∆u) =
d
dǫ
g(u+ ǫ∆u)

∣∣∣∣
ǫ=0

=
∂g

∂u
·∆u , (3.13)

where ǫ is a scalar parameter. Under the assumption that the body forces b and the
surface traction t are independent of the displacement field u, the linearization of the
weak form can be expressed by

g (u+∆u) =

∫

Ω

σσσ : ∇sym.δδδu dv+
∫

Ω

∆σσσ : ∇sym.δδδu dv−
∫

Ω

b·δδδu dv−
∫

∂Ω

t̄·δδδu da . (3.14)
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The incremental stress tensor ∆σσσ, appearing in the second integral, has also be cal-
culated by a Gâteaux derivative as follows:

∆σσσ(u,∆u) =
d
dǫ
σσσ(u + ǫ∆u)

∣∣∣∣
ǫ=0

=
∂σij

∂ǫkl
∆ǫkl = C : ǫǫǫ . (3.15)

3.3. Discretization of the Weak Form

The weak form as well as its linearization are functions that are continuous in space
and time. In this section the approximation of these functions are presented. A
common way to solve the weak form numerically is to discretize the continuous body
B using the finite element method. To be more specific, the geometry of the considered
domain is subdivided into ne finite elements, which have to fulfil the following two
requirements, cf. Wriggers [2008]:

• They are not allowed to overlap each other and

• there should be no gap between them.

The approximation of the geometry of B, as illustrated in Fig. 3.1, can be expressed
as the union of all elements Ωe, cf. Wriggers [2008],

B ≈ Bh =

ne⋃

e=1

Ωe , (3.16)

where
⋃

denotes the assembly process.

Ωe

∂Ωe

∂B

∂Bh

B

Figure 3.1.: Discretization of a physical body B where ∂B defines the associated bound-
ary and Ωe and ∂Ωe are, respectively, an element and the corresponding
boundaries of the discretized body.

The approximation of the nodal displacement field u within element e are realized
with the shape functions N , where the approximation of the displacements u within
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each element can be done as follows:

u(x) ≈ û(x) =

nn∑

I=1

NI(ηηη)uI , (3.17)

where, •̂ denotes the approximation of the variable, nn is the number of nodes per
element, x is the position vector with respect to Ωe, NI(ηηη), ηηη = [ξ, η, ζ]T, represents
the shape functions which are defined in Ωe and uI are the nodal displacements.
In general, the shape functions are polynomials defined on a reference element Ω�

and expressed in terms of the isoparametric coordinates (specified here for the 3-
dimensional case) ξ, η and ζ.

The idea of the isoparametric concepts is to interpolate the geometry of a structural
system and the displacement of an element e with the same shape functions in the
following way:

ûe(ηηη) =

nn∑

I=1

NI(ηηη)uI = H(ηηη)ue , (3.18)

x̂e(ηηη) =

nn∑

I=1

NI(ηηη)xI = H(ηηη)xe . (3.19)

In this work, only 8-node brick elements are used, where the shape functions are
defined by

NI(ξ, η, ζ) =
1

8
(1 + ξIξ) (1 + ηIη) (1 + ζIζ) , (3.20)

with the local coordinates ξ, η and ζ ∈ [−1, 1]3 and the index •I denotes the field
variables at node I, for example, uI = {ux, uy,uz}TI . The vector •e includes the
values of the primal variables at all nodes associated with element e and the matrix
H(ηηη) gathers the corresponding interpolation functions NI . In view of the linearized
weak form in equation (3.14), the shape functions, which are defined in the local
coordinates, must be differentiated with respect to the global coordinates x, y, z.
This can be done by using the chain rule, for instance, the first derivative of NI , with
respect to ξ reads

∂NI

∂ξ
=
∂NI

∂x
∂x
∂ξ

+
∂NI

∂y
∂y
∂ξ

+
∂NI

∂z
∂z
∂ξ

. (3.21)

Performing the differentiations of NI with respect to η and ζ in the same way and
writing the resulting derivatives in a matrix form gives




∂NI

∂ξ
∂NI

∂η
∂NI

∂ζ




=




∂x
∂ξ

∂y
∂ξ

∂z
∂ξ

∂x
∂η

∂y
∂η

∂z
∂η

∂x
∂ζ

∂y
∂ζ

∂z
∂ζ




︸ ︷︷ ︸
J




∂NI

∂x
∂NI

∂y
∂NI

∂z



. (3.22)

Here J is known as Jacobian matrix or simply as Jacobian, which was already
introduced in the previous chapter. By using the interpolation in equation (3.19), the
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components of the Jacobian can be calculated explicitly and the derivatives of the
global coordinates are obtained from




∂NI

∂x
∂NI

∂y
∂NI

∂z




= J−1




∂NI

∂ξ
∂NI

∂η
∂NI

∂ζ



. (3.23)

Calculating the derivatives ∂ux
∂x

, ∂ux
∂y

, ∂ux
∂z

, ∂uy

∂x
, ∂uy

∂y
... ∂uz

∂z
and gather them into a

matrix leads to the strain-displacement interpolation matrix, simply denoted as the
B-matrix. By use of this matrix, the approximation of the strains ǫǫǫe of element e can
be expressed as

ǫǫǫe = Bue . (3.24)

With the approximations ue = ûe, δδδu = δδδû, ∆ue = ∆ûe and ǫǫǫe as well as with the
incremental constitutive law (3.15) and Hooke’s law (2.83) the discretized linearized
form of equation (3.14) can be expressed as:

δδδû

∫

Ω

BT σσσ dv

︸ ︷︷ ︸
fe int

+δδδû

∫

Ω

BT
CBdv

︸ ︷︷ ︸
ke

∆ûe

− δδδû




∫

Ω

HT b dv −
∫

∂Ω

HT t̄da





︸ ︷︷ ︸
fe ext

= 0 ,

(3.25)

where fe int are the internal forces, fe ext are the external forces and ke denotes the
element stiffness matrix, all with respect to element e. Note, that this equation is
valid within each element of the FE-mesh, indicated by •e. Since the (approximated)
test function δδδû is arbitrary, the remaining parts must be zero, which leads to

fe int − fe ext + ke∆u = 0 . (3.26)

All entries in the B-matrix are given in terms of the local coordinates, but the integra-
tion in equation (3.25) is done over the global coordinates, which makes it necessary
to transform these volume integrals into local coordinates, i.e.

dx dy dz = dv = det J dξ dη dζ . (3.27)

Using this transformation, the element stiffness matrix, for example, can be rewritten
as

ke =

∫

Ω

BT
CBdet J dξ dη dζ . (3.28)



3. Finite Element Method 45

Finally, the global system are obtained by assembling the element systems presented
above, which results in the following equation:

ne⋃

e=1



δδδû
∫

Ω

BT σσσ dv + δδδû

∫

Ω

BT
CB dv∆Û

−δδδû




∫

Ω

HT b dv −
∫

∂Ω

HT t̄ da







 = 0 .

(3.29)

Since δδδû is arbitrary and with respect to the local form given in equation (3.26), the
discrete global boundary value reads

Fint − Fext +K∆U = 0 . (3.30)

Here, Fint are the global internal forces, Fext are the global external ones and K
denotes the global stiffness matrix.

Because some functions in the discretized weak form, e.g., the first two integrals in
equation (3.29), are usually rational functions and the analytical integration is not
always applicable. A convenient solution is to apply a numerical integration scheme,
for example, the Gauss integration. In this context, the integrals are replaced by
a sum of integrand functions evaluated at discrete sampling points, the so-called
Gaussian-points, which are multiplied by certain weights. The coordinates of the
Gaussian-points as well as the weighting factors can be found in the cited literature
at the beginning of this chapter.

Solution of Non-Linear Equation Systems

The solution of non-linear equations, arising from kinematics or non-linear material
behaviour, makes the use of an iterative procedure necessary. An often used iterative
technique in, structural analysis, is the Newton-Raphson method, which is briefly
described below. For detailed informations the reader is referred to the books by
Wriggers [2008] or de Borst et al. [2012].

First of all, the concept of (pseudo-) time t should be employed to apply the external
load in a number of loading increments. Applying this conception to equation (3.30)
gives

tK∆U =t+∆t Fext −t Fint , (3.31)

where tK denotes the global tangent matrix at the time step t. The aim is now to
determine the displacement increment ∆U in the time step t+∆t, so that the forces
Fext and Fint are in equilibrium. This means, that in each iteration step n the global
incremental displacement vector is updated as follows:

t+∆tKn−1∆Un =t+∆t Fext −t+∆t Fint
n−1 , (3.32)

t+∆tUn =t+∆t Un−1 +∆Un . (3.33)

This iteration process will be repeated until the norm of the residuum R is less than
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a defined convergence tolerance η, i.e.

Rn =‖t+∆t Fext −t+∆t Fint
n−1 ‖< η . (3.34)

3.4. Numerical Implementation of Plasticity

This section is addressed to the numerical implementation of the stress update al-
gorithm and the tangent moduli, which are needed for the computation of the
elastic-plastic constitutive equations, introduced in section 2.6. For additional in-
formations to the presented theory here, the reader is referred to the textbooks by
Simo and Hughes [1998]; Kojic and Bathe [2005]; Neto et al. [2008]; Wriggers [2008]
or Shabana [2008].

First of all, an additive decomposition of the strain tensor (2.89) is done as follows:

ǫ̃ = ǫ̃el + ǫ̃pl , (3.35)

where only the deviatoric parts, labelled with •̃, are of interest. Introducing Hooke’s

law, the stresses are also split into a deviatoric part s as well as into a hydrostatic
part p, i.e.

s = 2µ ǫ̃ǫǫel = 2µ
(
ǫ̃ǫǫ− ǫ̃ǫǫpl

)
, p = K tr (ǫǫǫel) . (3.36)

Here, µ denotes the shear modulus1 and K is the bulk modulus2. With respect to
the von Mises model with hardening properties, the yield condition reads

f(ηηη, α) = ‖ηηη‖ −
√

2

3
(σy + Hisoα) ≤ 0 , (3.37)

where ηηη = s(σσσ)−βββ is the relative stress tensor (back-stress tensor), already introduced
in equation (2.138). The evolution equations for the plastic strain and the internal
variables are defined by, e.g, cf. Wriggers [2008],

˙̃ǫǫǫpl = λ̇
∂f

∂s
, α̇ =

√
2

3
λ̇ , β̇ββ = −2

3
Hkinλ̇

∂f

∂s
. (3.38)

After applying the implicit Euler rule to discretize the evolution equations, they can
be reformulated as follows:

ǫ̃ǫǫpln+1 = ǫ̃ǫǫpln +∆λnn+1 ,

αn+1 = αn +

√
2

3
∆λ ,

βββn+1 = βββn +
2

3
Hkin∆λnn+1 ,

(3.39)

where ∆λ = λn+1 − λn and n ≡ N(σσσ,A). With respect to equation (3.36)1, the

1µ = E
2(1+ν)

2K =
(

3λ+2µ
3

)
with λ = νE

(1+ν)(1−2ν)
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deviatoric stresses at time-step tn+1 are calculated by

sn+1 = 2µ
(
ǫ̃ǫǫn+1 − ǫ̃ǫǫpln+1

)
, (3.40)

and by substituting equation (3.39)1 into equation (3.40) gives

sn+1 = 2µ
(
ǫ̃ǫǫn+1 − ǫ̃ǫǫpln

)
− 2µ∆λnn+1 . (3.41)

The next step is the formulation of the predictor-corrector method for the constitutive
equations. In the first step (also denoted as the elastic-predictor) the variables are
assumed as fixed. This assumption results in the trial state and the corresponding
equations are

strialn+1 = 2µ
(
ǫ̃ǫǫtrialn+1 − ǫ̃ǫǫpln

)
,

ηηηtrialn+1 = strialn+1 − βββn ,

αtrial
n+1 = αn .

(3.42)

The set of plastic variables {ǫ̃ǫǫpln , αn, βββn} are known from the last time step at tn, the
elastic strain ǫǫǫn+1 is computed from the global solution of the weak form and the
trial parts in equation (3.42) can be calculated directly. The next step is to check the
yield condition

ftrialn+1 (ηηη
trial
n+1, α

trial
n+1) = ‖ηηηtrialn+1‖ −

√
2

3
(σy +Hisoαn) ≤ 0 , (3.43)

formulated here in terms of the trial variables. If the deviatoric stress strialn+1 ful-
fils the yield condition within the (pseudo-) time interval [tn, tn+1] ∈ [0, T ], i.e.
ftrialn+1 (ηηη

trial
n+1, α

trial
n+1) ≤ 0, the material behaviour is purely elastic and the constitutive

variables are updated as follows:

sn+1 = strialn+1 ,

ǫ̃ǫǫpln+1 = ǫ̃ǫǫpln ,

βββn+1 = βββn ,

αn+1 = αn .

(3.44)

Otherwise, the material shows an elastic-plastic behaviour within this time-step and
the trial quantities have to be updated by the radial-return mapping procedure as
outlined in the following. In this case, the solution for the plastic multiplier ∆λ and
its direction nn+1 have to be determined for the deviatoric stress sn+1, defined in
equation (3.41).

Using the equations (3.42)1,2 and (3.39)3 the relations

sn+1 − βββn+1 = ηηηtrialn+1 −
(
2

3
Hkin + 2µ

)
∆λnn+1

ηηηtrialn+1 = ηηηn+1

[
1 +

(
2

3
Hkin + 2µ

)
∆λ

‖ηηηn+1‖

]
,

(3.45)

can be determined form equation (3.41). From these relations, it is obvious that
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the trial and the updated deviatoric parts of the relative stresses are co-linear. This
implies that

ntrial
n+1 =

ηηηtrialn+1

‖ηηηtrialn+1‖
= nn+1

and the flow vectors at the trial and updated states are the same. Multiplying equa-
tion (3.45)2 by nn+1 and noting that ηηη · n = ‖ηηη‖ leads to

‖ηηηn+1‖ = ‖ηηηtrialn+1‖ −
(
2µ+

2

3
Hkin

)
∆λ . (3.46)

Inserting this relation into the yield condition (3.37) gives

fn+1 = ‖ηηηtrialn+1‖−
(
2µ+

2

3
Hkin

)
∆λ−

√
2

3

[
σy +Hiso

(
αn +

√
2

3
∆λ

)]
= 0 , (3.47)

which has to be fulfilled at the current time step tn+1. In the case of linear hardening,
the plastic multiplier ∆λ can be calculated in a closed form by rearranging the previous
equation as

∆λ =
ftrialn+1

2µ
(
1 + Hiso+Hkin

3µ

) , (3.48)

with ftrialn+1 = ‖ηηηtrialn+1‖−
√

2
3
(σy+Hisoαn). With the computed increment of the plastic

multiplier, the stresses, plastic strains and internal variables, given in equation (3.39),
can be calculated. The actual stresses at tn+1 are given by

σσσn+1 = K tr (ǫǫǫ) + 2µ
(
ǫ̃ǫǫn+1 − ǫ̃ǫǫpln

)
− 2µ∆λntrial

n+1 . (3.49)

By using the stresses σσσn+1, the consistent elastic-plastic tangent modulus is deter-
mined by

C
ep
n+1 =

∂σσσn+1

∂ǫǫǫn+1
, (3.50)

= C
el
n+1 − 2µntrial

n+1 ⊗ ∂∆λ

∂ǫǫǫn+1
− 2µ∆λ

∂ntrial
n+1

∂ǫǫǫn+1
, (3.51)

where the detailed derivations ∂∆λ
∂ǫǫǫn+1

and
∂ntrial

n+1

∂ǫǫǫn+1
are given in Appendix C. The tensor

Cel
n+1 is the elasticity tensor

C
el
n+1 = K 1 ⊗ 1+ 2µ

(
I− 1

3
1⊗ 1

)
,

with the fourth-order identity tensor I.
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4. Probability Theoretical Framework

Probability theory is the study of uncertainty and in the university engineering edu-
cation non well established. Therefore, this chapter gives a brief introduction in the
basics of the probability theory, which are applied in this thesis. For a thorough out-
line of the mathematical theory of probability, the reader is referred to the standard
textbooks, for example, the ones by Loève [1977], Stark and Woods [1986], Papoulis
[1991], Montgomery and Runger [1994], van Kampen [2007], Gardiner [2009].

4.1. Basic Definitions

In the following some frequently used definitions are listed and briefly explained, which
are mainly inspired by the report of Sudret and der Kiureghian [2000].

Random Experiment

A random experiment is an experiment which can result in different outcomes, even
though it is repeated in the same manner every time.

Sample Space

The set of all possible outcomes of a random experiment, denoted as the sample space
of the experiment, is defined by Θ.

Event

An event is a subset of Θ containing outcomes θ ∈ Θ of a random experiment, denoted
by E, whereas the symbol θ always specifies an elementary event.

Probability of an Event

The probability P of an event E is equal to the sum of the probabilities of the outcomes
in E.

σ-Algebra

The collection of all possible events having well-defined probabilities is referred to as
the σ-algebra associated with Θ and defined by F .
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Probability Space

The probability space consists by means of the notations given above and is defined
by (Θ, F , P).

Random Variable

Let X be a real1 random variable (RV), which is defined the mapping which assigns
a real number to each outcome in the sample space of a random experiment by

X : (Θ, F , P) −→ R .

The value that a RV may take is defined by using lower case letters, such as x.

4.2. Properties of Single Random Variables

The objective of this section is the presentation of the mathematical tools which are
available to analyse the complete probabilistic description of a continuous single RV
X on the probability space (Θ, F , P).

4.2.1. Probability Density Function

Let X be a continuous RV where any value in the range −∞ < X < ∞ is possible.
The probability density function (PDF) fX(x) of a RV is a function which represents
the probability that X takes a value in [x1, x2] with the following definition:

fX(x) dx = P (x1 ≤ X ≤ x2) . (4.1)

By integrating fX(x) over the interesting interval [x1, x2], thus

P (x1 ≤ X ≤ x2) =

x2∫

x1

fX(t) dt , (4.2)

leads to the probability that the RV takes a value within this interval. Any function
that satisfies the following three conditions can be chosen as the PDF for a given RV
X, cf. Montgomery and Runger [1994]:

1. fX(x) ≥ 0 .

2.
∞∫

−∞
fX(x) dx = 1 .

3. P(x1 ≤ X ≤ x2) =
x2∫
x1

fX(t) dt .

1Only real valued random variables are considered in this work.
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Figure 4.1.: Gaussian probability distribution function of E with mean = 21000 kN
cm2

and standard deviation of σE = 5%.

The simplest probability density function is the Gaussian, or normal density function,
which is for a single RV given by

fE(x) =
1√
2πσ2E

e
−

(x−µE)2

2σ2
E . (4.3)

Here, µE and σE are the mean and the standard deviation of the RV E. Fig. 4.1 shows
the PDF of E, assuming a Gaussian distribution2 with a mean of µE = 21000 kN

cm2

and a standard deviation of σE = 5%, which are typical values for steel of minor
quality.

4.2.2. Cumulative Distribution Function

The cumulative distribution function (CDF) is a function FX(x) : R → [0, 1], which
specifies a probability measure as

FX(x) = P(X ≤ x) . (4.4)

2The use of Gaussian distributions is quiet common in the context of probabilistic mechanics.
These distribution is not well suited to modelling material properties, for example, E or yield
stress, which are by their nature positive valued. However, with respect to small standard
deviations, the Gaussian distribution is a sufficient assumption.
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Figure 4.2.: Gaussian cumulative density function of Young’s modulus E with a mean
of µE = 21000 kN

cm2 and a standard deviation of σE = 5%.

For a continuous RV the CDF is defined as

FX(x) = P(X ≤ x) =

a∫

−∞

fX(t) dt , for −∞ < x < ∞ , (4.5)

and characterize the probability that X will take a value equal or less than a.
The CDF is a monotonically increasing function with the following properties, cf.
Montgomery and Runger [1994]:

1. FX(−∞) = 0 .

2. 0 ≤ FX(x) ≤ 1 .

3. FX(∞) = 1 .

For some continuous RVs, the cumulative density function is differentiable everywhere
and the PDF fX(x) can be determined from the CDF by differentiating

fX(x) =
dFX(x)

dx
. (4.6)

As example consider the Gaussian distributed Young’s modulus, where the integra-
tion of equation (4.3) leads to the CDF for this example, which is illustrated in Fig.
4.2. From this CDF, the probability that E is less than equal to 21000 kN

cm2 can be
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read easily from Fig. 4.2, there is a likelihood of

P(E[E] ≤ 21000
kN

cm2
) = 0.5 .

Here, E[·] denotes the first moment of the RV, which is introduced in the following
subsection. Both, the CDF and the PDF can be used to calculate the probabilities of
events. Finally, it should be noted that the value of the PDF, at any given point x is
not the probability of that event, i.e.

fX(x) 6= P(X = x) . (4.7)

4.2.3. Moments of Probability Distributions

For a global characterization of a probability distribution, it is convenient to represent
the distributions by their moments. In general, the nth moment of a probability
distribution is defined as

E[Xn] =

∞∫

−∞

xnfX(x) dx , for −∞ < x <∞ , (4.8)

where fX(x) is the PDF of X. The most important quantities are related to the first
and second moment of the probability distribution and will be introduced below.

Expected Value

Let g(X) : R → R be a function of X. In this case g(X) is also a RV and the
mathematical expected value (also denoted as expectation, mean value or simply as
mean) of the function g(X) is defined as

E[X] = E[g(X)] =

∞∫

−∞

g(x)fX(x) dx for −∞ < x <∞ . (4.9)

If g(x) = x, the expectation E[g(X)] becomes the expected value of X and reads

E[X] = µX =

∞∫

−∞

xfX(x) dx for −∞ < x < ∞ , (4.10)

which is equivalent to n = 1 in equation (4.8).

Variance

The nth moment about the expected value is referred to as the nth central moment
and is defined by the integral

E[(X − µX )n] = σn =

∞∫

−∞

(x− µX)nfX(x) dx for −∞ < x < ∞ . (4.11)
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It is referred as the (nth-) central moment, because the respective moment is related
to the expected value of the RV and not to the origin of the coordinate system. The
central moment, which represents the measure of the deviation of the RV X, from
its expected value µX , is denoted as the variance of X. The variance is the second
central moment and is defined as

Var(X) = E[(X − µX)2]

=

∞∫

−∞

(x− µX)2fX(x) dx

=

∞∫

−∞

x2fX(x) dx− µ2X for −∞ < x < ∞ ,

(4.12)

with the condition that µX exist. Considering equation (4.8) again and let g(X) =
X2. Then, the variance can be expressed as

E[X2] =

∞∫

−∞

x2fX(x) dx = σ2X , (4.13)

where the positive square root of σ2X

σX =
√

Var(X) , (4.14)

is denoted as the standard deviation of X.

In addition to the unit-based moments, there are a number of dimensionless coeffi-
cients, which describe the shape of the probability distribution. Three of them are
listed below:

1. The coefficient of variation αX of a RV is given by

αX =
σX

µX
, (4.15)

if µX 6= 0.

2. The skewness sX is a measure for the symmetry of the distribution and is
defined as

sX =
E[(X − µX)3]

σ3X
. (4.16)

3. The kurtosis κX is the fourth central moment which gives a statement for the
slope or the peak of the distribution, and is given by

κX =
E[(X − µX)4]

σ4X
. (4.17a)

For the normal distribution is sX = 0 and κX = 3. Additionally, in some
literature the excess is also specified. To distinguish between the excess and the
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kurtosis the excess is denoted by κXe and is indicated by

κXe =
E[(X − µX)4]

σ4X
− 3 . (4.17b)

For the normal distribution the excess is κXe = 0.

4.3. Properties of Two or More Random Variables

This section is focused on the complete probabilistic characterization of more than one
continuous RV. For convenience the explanations are limited on two, the continuous
RVs X, Y ∈ (Θ, F , P). Basically, this theoretical framework is applicable and can be
extended for the analysis to a various number of n RVs.

4.3.1. Joint and Marginal Probability Distribution

The probability distribution of X and Y which characterizes their common behaviour,
in the same region, is referred as the joint probability distribution fXY (x, y). This
distribution is specified by providing a method for calculating the probability that
X and Y assume a value in any region of a two-dimensional space and satisfies the
following three conditions, cf. Montgomery and Runger [1994]:

1. fXY (x, y) ≥ 0 ∀ x, y .

2.
∞∫

−∞

∞∫
−∞

fXY (x, y) dxdy = 1 .

3. For any region B of a two-dimensional space P((X, Y ) ∈ B) =
s

B

fXY dx dy .

Consider the bivariate Gaussian probability function for the RVs E and the Poisson
ratio ν with µE and µν as well as σE and σν , where the associated bivariate PDF is
defined by

fEν(E, ν) =
1

2πσEσν

√
1− ρ2Eν

exp

(
− 1

2(1 − ρ2Eν)

[
(E − µE)2

σ2E
+

(ν − µν)2

σ2ν

−2ρEν(E − µE)(ν − µν)

σEσν

])
,

(4.18)

where ρEν denotes the correlation between the RVs E and ν. To represent the
probability density function the following parameters are chosen: µE = 21000 kN

cm2 ,
σE = 5%, µν = 0.3 , σν = 10% . Furthermore, it is assumed that X and Y are in-
dependent, which results in a correlation ρEν of zero. The corresponding probability
density function is illustrated in Fig. 4.3.

For the probability of any outcome of the joint PDF, the double integral

P((X, Y ) ∈ B) =
x

B

fXY dx dy ,
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Figure 4.3.: Gaussian joint probability density function of E with µE = 21000 kN
cm2 ,

σE = 5% and Poisson ratio ν with µν = 0.3, σν = 10%.

can be evaluated at any specific region. For example, the probability P that E =
21000 kN

cm2 and ν = 0.25 reads

P(E = 21000
kN

cm2
, ν = 0.25) = P(20900

kN

cm2
< E < 21100

kN

cm2
, 0.245 < ν < 0.255)

=

0.255∫

0.245

21100∫

20900

0.00505 e
−

(E−21000 kN
cm2 )2

2·10502 kN
cm2

2 −
(ν−0.3)2

0.0018

dE dν

= 0.0025365 .

From the joint probability function of any continuous RV the marginal probability
density function can be computed, which is defined for the RVs X and Y as follows:

fX(x) =

∫

BX

fXY (x, y) dy ,

fY (y) =

∫

BY

fXY (x, y) dx ,
(4.19)

where BX and BY are the sets of all points, valid for the range X = x and Y = y,
respectively. For example, the requested probability of E can be calculated from the
marginal probability distribution of E by integrating the joint PDF over the set of all
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points for which E[E] = µE , i.e.

fE(E) =

∞∫

−∞

fEν(E, ν) dν (4.20)

=

∞∫

−∞

0.00505 e
−

(E−21000 kN
cm2 )2

2·10502 kN
cm2

2 −
(ν−0.3)2

0.0018

dν

=

∫

E

fE(E) dE (4.21)

= 0.0003799 e
−

(E−21000 kN
cm2 )2

2·10502 kN
cm2

2

.

The resulting marginal PDF of E from the joint PDF of ν and E is plotted in Fig.
4.4.
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Figure 4.4.: Marginal PDF of E from joint PDF of ν and E.

Furthermore, the expected value and the variance of any of the two RVs X and Y can
be obtained from the joint PDF as listed below:

E[X] =

∫

Rx

∫

Ry

fXY (x, y) dx dy , (4.22)

Var(X) =

∫

Rx

∫

Ry

(x− µX)2fXY (x, y) dx dy , (4.23)
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where Rx and Ry are the ranges over which X and Y are defined. Let g(X, Y ) be
a function of X and Y . Then the expected value E[g(X, Y )] can be calculated from
their joint PDF

E[g(X, Y )] =

∫

Rx

∫

Ry

g(x, y)fXY (x, y)dx dy . (4.24)

4.3.2. Joint Cumulative Probability Distribution

As already discussed for a single RV in subsection 4.2.2, the cumulative probability
distribution is another way to characterize the simultaneous probabilistic behaviour
of more than one RV. When more than one RV is considered, the corresponding
distribution is denoted as the joint cumulative probability distribution FXY and is
given by

FXY (x, y) = P(X ≤ x, Y ≤ y)

=

x∫

−∞

y∫

−∞

fXY (s, t) ds dt .
(4.25)

In Fig. 4.5, an example of the joint CDF for E and ν is illustrated, where the value
of the probability P(E ≤ 21000 kN

cm2 , ν ≤ 0.3) is calculated as 0.25.
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Figure 4.5.: Gaussian joint cumulative density function of E with µE = 21000 kN
cm2 ,

σE = 5% and Poisson ration ν with µν = 0.3 and σν = 10%.



4. Probability Theoretical Framework 59

4.3.3. Conditional Probability Distribution

The conditional probability distribution describes the fact when not the hole sam-
ple space Θ of the probability space is of interest, but only a subset, for instance,
B ⊂ Θ, which is exemplary illustrated in Fig. 4.6. The triple (B,FB ,PB) with
FB = {A ∩ B;A ∈ F} is again a probability space. Such a conditional probability

Θ

A B

A ∩B

Figure 4.6.: Sample space B,FB ,PB of the probability space Θ.

function, denoted as fY |x(y) ∀ y in Rx satisfies the following three conditions, cf.
Montgomery and Runger [1994]:

1. fY |x(y) ≥ 0 .

2.
∫

Rx

fY |x(y) dy = 1 .

3. P(Y ∈ B|X = x) =
∫

B

fY |x(y) dy, for any set B in the range of Y .

The conditional probability of Y given X = x is by definition

fY |x(y) =
fXY (x, y)

fX(x)
for fX(x) > 0 . (4.26)

For example, looking at the previously defined joint distribution between E and ν.
The conditional probability of E, given ν = ν are:

fE|ν(ν) =
fEν(E, ν)

fν(ν)

=
0.00505 e

−
(E−21000 kN

cm2 )2

2·10502 kN
cm2

2 −
(ν−0.3)2

0.0018

13.2981 e−
(ν−0,3)2

0.018

= 0.000379 e
−

(E−21000 kN
cm2 )2

2·10502 kN
cm2

2

,

where • denotes the RVs of E and ν. The result of the conditional probability dis-
tribution of E, given ν = ν coincides with the result in subsection 4.3.1. This is also
obvious, because the RVs E and ν are assumed to be uncorrelated, i.e. knowledge
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which are obtained with the values of one RV can not change the probabilities which
are received by the values of the other.

4.3.4. Covariance and Correlation between Random Variables

The covariance is a measure for the linear3 dependency between two RVs. For the
dependent RVs X and Y applies

fXY (x, y) 6= fX(x)fY (y) . (4.27)

To charaterize the covariance between X and Y it is assumed that the means E[X],
E[Y ] as well as

E [(X − E[X])(Y − E[Y ])] , (4.28)

exists. Then, equation (4.28) is defined by the covariance4

Cov(X, Y ) =E [(X − E[X])(Y − E[Y ])]

=E[XY ]− E[X]E[Y ] .
(4.29)

Note that the formula for the covariance is valid for continuous and discrete RVs. If
the covariance is zero, thus

Cov(X, Y ) = 0 , (4.30)

the RVs X and Y are independent of each other. The variance, also derived in
Appendix A, is given by

Var(X + Y ) = Var(X) + Var(Y ) + 2Cov(X, Y ) = Var(X) + Var(Y ) . (4.31)

A dimensionless measure of the relation between two RVs is the correlation, which is
defined as

ρXY =
Cov(X, Y )√

Var(X)Var(Y )

=
σXY

σXσY
.

(4.32)

The correlation between any two RVs could have a value between −1 ≤ ρXY ≤ 1.
If the value of (say) X increases and the value of Y also increases, the correlation is
positive. On the other hand, means a negative correlation that, if the value of one RV
is negative, the value of the other one is positive. The correlation is also zero if the
two RVs are independent. Hence, independent RVs are uncorrelated, but a correlation
equals to zero does not necessarily imply that the RVs are independent.

Random Vectors

In many applications exist a large number n of RVs and it is convenient to gather
these variables into a vector. Such a vector, referred as random vector XXX : Θ → R, is

3The covariance of the RVs might not be sensitive if the relationship between them is non-linear.
4See Appendix A for a derivation.
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given by

XXX =




X1

X2

...
Xn


 , (4.33)

with the expected value

X̄XX = E[XXX] =
[
X̄1, X̄2, ..., X̄n

]T
. (4.34)

For a given random vector XXX the covariance matrix Σ is a n×n square matrix whose
entries are given by Σij = Cov(Xi,Xj), which reads

Σ =




Cov(X1, X1) Cov(X1, X2) . . . Cov(X1,Xn)
Cov(X2, X1) Cov(X2, X2) . . . Cov(X2,Xn)

...
...

. . .
...

Cov(Xn, X1) Cov(Xn, X2) . . . Cov(Xn,Xn)


 . (4.35)

Note that Cov(Xi,Xi) = Var(Xi). The covariance matrix is symmetric, because
Σij = Σji and in general positive definite. Further properties of Σ are:

• A positive value of the covariance matrix indicates that both dimensions increase
or decrease together.

• A negative value indicates that one value increases while the other decreases.

• Two values X, Y are independent of each other if Σ is zero.5

4.3.5. Some useful Properties for Discrete Random Variables

In the following some useful properties of two discrete RVs X, Y ∈ (Θ, F , P ) are
outlined.

• Let X and Y be two discrete RVs with existing µX and µY then

E[X ± Y ] = E[X]± E[Y ] . (4.36)

• For a set of discrete RVs {X1, ...Xn}, with corresponding expectation values
E[Xi], 1 ≤ i ≤ n, applies

E

[
n∑

i=1

Xi

]
=

n∑

i=1

E[Xi] . (4.37)

• With respect to E[X], E[Y ], Var[X], Var[Y ], E[(X−E[X])(Y −E[Y ])], the vari-
ance of X and Y becomes

Var[X + Y ] = Var(X) + Var(Y ) + 2E[(X − E[X])(Y − E[Y ])] , (4.38)

5If two RVs are independent, the knowledge of the value of one of the two RVs does not change
the chance for the value of the other according to E[XY ] = E[X]E[Y ], cf. equation (4.39).
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where a derivation is given in Appendix A.

• The expectation of the two correlated RVs X and Y are defined by

E[XY ] = E[X]E[Y ] + Cov(X, Y ) . (4.39)

• Let X and Y are two independent RVs. In this case, the variance of their
product6 is given by

Var(XY ) = E[X]2Var(Y ) + E[Y ]2Var(X) + Var(X)Var(Y ) . (4.40)

4.4. Sampling Techniques

Almost all problems in stochastic structural analysis can be treated with the aid of
random number generators, denoted in this work as sampling techniques. The ad-
vantage of such methods is their direct applicability to various systems to obtain the
statistical informations of the system response. Not seldom these techniques are the
only numerical useful method in solving the problem under uncertainty, especially for
high dimensional problems. The purpose of the entire sampling process is to obtain
probabilistic informations through the application of statistical methods to the gen-
erated samples. In order to fulfil the requirements, the samples need to follow the
prescribed distribution function closely. Furthermore, the generated sample must be
statistically independent of each other, which is a basic condition for the applicabil-
ity of the available statistical methods. Finally, statistical methods are applied to
estimate expected values and/or probabilities of the quantities of interest, e.g., the
structural response. The flow chart displayed in Fig. 4.7 shows the typical sequence
of an analysis process when applying a sampling technique.

There exist various methods for the selection of the values of the input variable(s),
whereas in this section only these methods are proposed, which are applied in this
thesis. First of all the simplest and maybe the most widespread technique, the Monte
Carlo Sampling is presented in section 4.4.1, the two other presented techniques are
the Latin Hypercube Sampling, introduced in section 4.4.2 and the Quasi-Random
Sequences, discussed in section 4.4.3. For further sampling techniques and more the-
oretical background, the reader is referred to the textbooks by Sobol’ [1994]; Fishman
[1996] or Rubinstein and Kroese [2008].

4.4.1. Monte Carlo Sampling

The Monte Carlo Sampling (MCS) is one of the most frequently used simulation
technique for quantifying the statistical response of a structural system with random
input parameters. The MCS is based on (independent) realizations of random inputs
with respect to their prescribed probability distribution. The sampling scheme for
each realization becomes deterministic, because the data is fixed in each realization.
Upon solving the deterministic realizations of the sampling scheme, the outcomes are
collected into a vector. From this vector, statistical informations can be extracted,
e.g., the expected value µ and the variance σ2 of the structural response, the strains,

6For products of dependent RVs see, e.g., Goodman [1960].
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vector XXX with a set of
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i = i + 1

Compute the statistics
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Figure 4.7.: Flow chart of computation for sample-based stochastic structural analysis.

the stresses etc. The corresponding point estimates (only unbiased7 estimators con-
sidered here) are the sample mean µ̂ = ȳ and the sample variance σ̂2 = s2, which are
defined as

µ̂ = ȳ =
1

n

n∑

i=1

yi , (4.41)

where yi = f(xi) and

σ̂2 = s2 =
1

n− 1

n∑

i=1

(yi − µ̂)2 , (4.42)

7An estimator is unbiased if its mean value is equal to the true value of the parameter of interest.
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for i = 1, ... n. The accuracy of the estimator can be measured with the help of the
standard error

σȳ =
σ√
n
, (4.43)

σ̂ȳ =
s√
n
, (4.44)

where equation (4.44) is denoted as estimated standard error, which can be used
when the standard deviation σ in equation (4.43) is unknown. Although the MCS is
straightforward to apply, because it only requires repetitive runs of the deterministic
system, the convergence rate of O(1/

√
n) very slow. This fact has the effect, that a

large number of sample runs is required to get a satisfactory solution. For example:
A reduction of the error by a factor of (say) 10 leads to a drastically increasing sample
size of factor 100. In summary:

Obtaining high accuracy is impossible. A good accuracy is only reachable by a large
number of samples and for structural systems where the deterministic solution is
already computationally expensive this method will be not the optimal choice.

On the other hand, the convergence rate is independent of the dimension of the
random space, which is a notable benefit, because no other sample method possess
this property.

4.4.2. Latin Hypercube Sampling

The Latin Hypercube Sampling, proposed by Mckay et al. [1979], is a sampling tech-
nique with the aim to generate a random set of a random input vector XXX, which is
more representative of the joint distribution of XXX than those generated by a MCS. In
Fig. 4.8 a simple example is illustrated, where on the left side, the MCS is used and
on the right side, the LHS is applied for the sampling. The RV, the Young’s modulus
E, is assumed to be log-normal distributed with a mean value of µE = 21000 kN

cm2

and a standard deviation of σE = 5%. This example already shows that the LHS
generates a more accurate sample than those obtained by a MCS.

This subsection gives a brief overview and explains the schematic generation of a
LHS, for a detailed explanation of the theory and the explicit generation of a LHS,
the reader is referred to the publications by Mckay et al. [1979]; Iman and Conover
[1980, 1982]; Stein [1987]; Florian [1992]; Helton and Davis [2003].

Let xxx = [x1, x2, ... xK ]T be a realization of the random input vector XXX with the
dimension K, whereas each random input variable xk, k = 1, 2, ...K, is characterized
by its own CDF FXk

. The general procedure for the generation of a Latin Hypercube
sample is as follows, cf. Helton and Davis [2003]:

1. The range of the known CDF FXk
(x) of each RV xk is divided into N disjoint

intervals Skn with the property that each interval has the same probability
pkn = 1

N
.

2. Then, one value of each interval Skn is chosen randomly.

3. TheN values obtained for xi are randomly paired with the N values obtained for
xj for i, j = 1, ...K and i 6= j, which implies that each value is used only once.
This procedure is repeated until a set of N K-tuples is generated randomly,
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Figure 4.8.: Comparison of the approximation of sampling techniques for E as RV
with n = 10000 samples.

where the K-tuples are of the form

xxxl = (xl1, xl2, ... xlK), l = 1, 2, ... N . (4.45)

An example of a LHS, with K = 2 independent uniform RVs and N = 6 samples
over the domain [0, 1]2, is illustrated in Fig. 4.9. The superscript •2 characterises the
dimension of a LHS and will be hereinafter omitted, because the dimension is already
defined by K.

Mckay et al. [1979] shows that the LHS and MCS produces unbiased estimates for Υ,
i.e. that repeated calculations of µ̂LHS results in the expected value of the population
Υ

µ̂LHS = Υ , (4.46)

where the subscript •̂LHS denotes the estimator of a LHS. The accuracy of this
estimator is compared with the variance of the estimator of a MCS (4.42), which is
repeated below:

σ̂2MCS = s2MCS =
1

N − 1

N∑

i=1

(yi − µ̂)2 , (4.47)

for i = 1, ... N ,

where the subscript •̂MCS represents the estimator of a MCS and for convenience
n is replaced by N . The variance of the unbiased estimator of a LHS, as given in
Mckay et al. [1979] or Helton and Davis [2003], reads

σ̂2LHS = s2LHS = σ̂2MCS +
N − 1

NK+1 (N − 1)K

∑

Ωr

(µr − µ)(µs − µ) , (4.48)
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Figure 4.9.: Concept of a LHS for K = 2 and N = 6 over [0, 1].

with

µ = E[y] , (4.49)

µr = E [y |xxx ∈ cell r] . (4.50)

The sum over Ωr includes the restricted space of all pairs (µr , µs) for which the
associated cells have no coordinates in common, cf. Helton and Davis [2003]. The
benefit of a LHS in comparison to a MCS is not directly visible when comparing the
equations (4.47) and (4.48). However, the following theorem, cf. Helton and Davis
[2003],

Theorem 4.1. If y = f(x1, x2, ... xK) is monotonic in each sample element xj and
g(y) is a monotonic function of y, then

Var(TLHS) ≤ Var(TMCS) , (4.51)

implies that

σ̂2LHS ≤ σ̂2MCS . (4.52)

Here, T denotes the estimator defined by

T =
1

n

n∑

i=1

yi , (4.53)

with yi = f(xxxi), which describes the random sample set xxx = {x1, ... xi}. This relation-
ship indicates, that the sampling variability of a sample, realized by a LHS, is smaller
than the variance of a sample generated with a MCS. Mckay et al. [1979] shows by
means of an example that the variance σ̂2LHS of a sample is considerably less than
that for σ̂2MCS. This is also illustrated in Fig. 4.10 where different sample sets8 were

8The sets are represented by 100, 500, 1000, 2000, 3000, 4000, 5000, 7500, 10000 and 20000
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created for E and the standard deviation of each sample is calculated. The samples
based on a Gaussian distribution with µE = 21000 kN

cm2 and σE = 1050 kN
cm2 . From

this plot the variance reduction is clearly visible. The generated LHS sets match
the target value quite well, while significant fluctuations are visible by applied the
MCS. Furthermore, the estimating error in the statistical moments is proportional to
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Figure 4.10.: Deterministic standard deviation σdet (the target value) of E compared
with the results received by a MCS σ̂MCS and by a LHS σ̂LHS.

O(n−1), see Poles and Lovison [2009]. This means that for a reduction of the error
(say) 10 the sample size also increases by a factor of 10.

4.4.3. Quasi-Random Sequences

The Quasi-Random or low discrepancy sequences are a deterministic counterpart to
the (pseudo)-random integration used by the MCS. In conjunction with the Monte-
Carlo procedure the term Quasi-Monte Carlo (QMC)-method is used in the following.
One attribute of the QMC-method is that they are more uniformly distributed as the
MCS. There are several ways of generating such quasi-random sequences, e.g., Halton
[1960]; Sobol’ [1967]; Niederreiter [1988, 1992]. Whereas in this work the so-called
Sobol’ sequences (Sobol’ [1967]) are used, which are basically efficient to estimate
high-dimensional integrals, cf. Morokoff and Caflisch [1995].

samples.
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An introductory overview of the QMC-method is given by L’Ecuyer and Lemieux
[2005] and for a detailed treatment of the QMC-method the reader is referenced to
the textbooks by Fox [1999] and Lemieux [2009]. A detailed documentation of an
algorithm for the generation of Sobol’ sequences is presented in Bratley and Fox
[1988].

The general idea of QMC-methods is to use a more regularly distributed point set
xxx = {x1, x2, ... xn} to build the approximation of equation (4.41) than the point set
associated with a MCS. The basic one dimensional sequence is the van der Corput

sequence, where the first six sample values of the binary van der Corput sequence
are given below

0.12, 0.012, 0.112, 0.0012, 0.1012, 0.0112, ... (4.54)

or, equivalently

1

2
,
1

4
,
3

4
,
1

8
,
5

8
,
3

8
, · · · . (4.55)

The van der Corput prime p = 2 is the first dimension of the Halton sequence, cf.
Halton [1960]. The sequence of interest in this work, the Sobol’ sequence is a special
case of the Halton sequence where only the prime p = 2 is used. In the following
a brief introduction on the generation of a Sobol’ sequence will be given, where for
the sake of simplicity only a one-dimensional example is discussed. Consequently, a
Sobol’ sequence is generated by expanding the set of integers {0, 1, 2, 3, ... n} into
base 2 notation, whereas the i-th term of the sequence is calculated as

xi =
b0

2
+
b1

22
+
b2

23
+ · · ·+ bm

2m+1
, (4.56)

where the bm’s are integers taken from the base 2 expansion of the number i− 1

[i− 1]2 = bmbm−1 · · · b2b1b0 (m ∈ N) , (4.57)

with bm ∈ [0, 1]. An evaluation of the representation in equation (4.56) together with
equation (4.57) leads to the van der Corput sequence given in equation (4.55). In Fig.
4.11, the space-filling process of a one-dimensional unit "cube" using the technique
described above is illustrated. The construction of a s-dimensional Sobol’ sequence
is generated by s permutations of the one-dimensional sequence, where the result of a
two-dimensional Sobol’ sequence is plotted in Fig. 4.12. To make out the difference
between the three procedures presented in this section, consider Fig. 4.13 where the
differences between a MCS, a LHS and the QMC-method are obvious. In the first two
plots the clustering of points is still clearly visible. This phenomenon can be explained
by the uncorrelated arrangement of the points. In the article by Caflisch [1998] such
areas are investigated with the result that in the case of applying the MCS about

√
n

points of n points are lying in clumps. Beyond this publication, Morokoff and Caflisch
[1993, 1994] give examples which show a significant improvement using quasi-random
sequences over standard MC-Methods using (pseudo)-random sequences. The ex-
pectation error for the integration with a MCS is given by OMCS(n

−1/2). To get
an error bound for the QMC-method, the probability theory can not be used due
to the deterministic nature of quasi-random sequences. Such sequences have a con-
vergence error of O(n−1) in optimal cases, where the theoretical upper (worst case)
convergence bound is specified with O((logn)sn−1), cf. Morokoff and Caflisch [1994,
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Figure 4.11.: Space-filling process of [0, 1] using a one-dimensional Sobol’ sequence.
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Figure 4.12.: Space-filling process of [0, 1]2 using a two-dimensional Sobol’ sequence.
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Figure 4.13.: Comparison of a space-filling process [0, 1]2, each generated with n = 512
points.
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Figure 4.14.: Convergence rates of a MCS and a Sobol’ sequences in different dimen-
sions.

1995]. In Fig. 4.14 these two error measures9 are plotted. Here, the QMC-method is
plotted with the dimensions s = 1, 2, 4 and the best convergence rate for the QMC-
method, denoted with QMCbest. The sample set, which are used for the curves, is
n = {100, 500, 1000, 2000, 5000, 10000, 15000, 20000, 200000}. From the result shown
in Fig. 4.14 it is obvious, that for small s the convergence rate of the QMC-method
is faster than the MCS but for large s (in this example s ≥ 2) the efficiency of the
QMC-method might be considerably reduced. It significantly depends on the number
of points used. However, Caflisch [1998] and Morokoff [1998] show that the QMC-
method, even for integrating high-dimensional problems, can be extremely effective.
Also, in Burhenne et al. [2011] it is pointed out, that Sobol’ sequences perform as
good as the LHS and with increasing number of input parameters Sobol’ results even
in a better sampling than the LHS.

9Note that the convergence error for the LHS is equal to the best Sobol’ convergence error and
therefore not separately plotted.
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4.4.4. Summary

From the investigations in this section, it has been shown that the standard deviation
of the estimates in the case of a LHS is much smaller than in the case of a MCS.
Furthermore, it is by no means certain that the standard deviation of the MCS es-
timates with increasing sample number matches the target value. Whereas the LHS
with appropriate sample number (here approximately by n = 5000 samples) closely
approaches the target value. A direct comparison of the sampling with the QMC-
method has not been performed at this point. The reason for this is based on the
deterministic nature of the underlying sequence and the resulting correlations between
the points of the quasi-random sequence.

In general, the sampling techniques discussed in this section can be applied to repre-
sent random input parameters. In view of correlated input parameters and if more
complete information about a multivariate input distribution is available it should be
applied in the sampling framework.



73

5. Quantification of Uncertainties and their Stochastic
Modelling

As in any kind of scientific or technical prediction, uncertainties exist in structural
engineering analysis. In practice, the estimation of the input parameters of a struc-
tural system may be difficult or inaccurate, i.e. uncertain. The fact, that the input
parameters are uncertain also leads to an uncertainty of the system response, thus in
the prediction of the structural response. If the informations of the input parameters
are vague or not known and the statistics of these parameters cannot be evaluated,
the theory of fuzzy sets can be applied, for further informations on this topic, the
reader is referred to de Lima and Ebecken [2000] or Moens and Vandepitte [2005]. In
the case of known statistical informations, e.g., the probability distributions of the
input parameters are known, the system response can be determined with the aid
of the probability theory using random processes or fields, see Matthies and Bucher
[1999]; Ghanem and Spanos [2003]; Chen and Soares [2008]. Also in this work, the
focus lies on the categorization of uncertainties in various categories and the subse-
quent consideration of these uncertainties by means of the probability theory. The
branch for the quantification of uncertainties in structural analysis is too large to be
conveyed more detailed here. Therefore, the reader is referred to the publications by
Matheron [1989]; Oberkampf et al. [2002a,b]; Christian [2004]; Field Jr. and Grigoriu
[2007]; Helton et al. [2008]; Kiureghian and Ditlevsen [2009].

The chapter is structured as follows: First of all, a brief survey of different types of
uncertainties is given and how to deal with them. After this, section 5.2 is addressed
to give a brief overview of stochastic processes. The subsections 5.3.1 to 5.3.3 are
devoted to methods for the representation of random processes and fields, with special
emphasis on these methods which are applied in this thesis. A detailed discussion of
these methods are afterwards presented in the chapters 6 to 9. Subsection 5.3.4 gives
a short overview of non-Gaussian models, which are interesting for the representation
of data which is characterized by statistics that are inconsistent with the Gaussian

distribution. At the end of this chapter, section 5.4 provides an insight into the
modelling of uncertain material parameters applying random fields. In addition, a
clear distinction between random processes and random fields is given in this section.

5.1. Introductory Comments on Uncertainties in Structural
Analysis

All types of engineering problems based in a multitude of cases on a deterministic
approach. Observed variations, e.g., in loading conditions, material properties or
geometry are taken into account by either selecting extremely high or low average
values for representing the parameters. But, as already mentioned in the introduction
of this chapter, uncertainties exist in all engineering branches. There are several
strategies how to deal with these uncertainties, where Christian [2004] distinguishes
in his article between the following four strategies:

1. Ignoring the uncertainty.
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2. Being conservative.

3. Using the observational method.

4. Quantifying the uncertainty.

For the quantification and the mathematical description of uncertainties, statistical
and probabilistic procedures provide a sound framework for a reasonable treatment of
the analysis of these uncertainties. Moreover, there are various sources of uncertainties
to be dealt with, where hereinafter some common ones are listed. These could be, e.g.,
inherent uncertainties, statistical uncertainties, model uncertainties or measurement
uncertainties. A graphical illustration of the confines of the uncertainties is given in
Fig. 5.1 and is named after Kiureghian and Ditlevsen [2009] as the model universe.

PhysicalMechanical
Model

Entire Spectrum

Figure 5.1.: Graphical depiction of the universe of uncertainties (according to
Schenk and Schuëller [2005]).

While the uncertainties in mechanical modelling can be reduced, for instance, when
additional knowledge becomes available, the physical or intrinsic uncertainties cannot.
In the literature, these uncertainties are often categorized into epistemic and aleatoric,
which are described below:

Epistemic uncertainty describes potential deficiency in any phase of modelling that
is due to imperfect knowledge, ignorance or limitations of information in building the
mathematical model of a physical system and/or in its numerical computation. Exam-
ples could include the vagueness in structural parameters or in boundary conditions,
deficiency in modelling of the physical system and/or a subjective implementation.
From the foregoing description it is clear that such uncertainties can be reduced by
collecting more informations.

Aleatoric uncertainty is an inherent randomness or variability in the physical prop-
erties, such as variability/scatter in material properties, geometrical parameters etc.,
of a system over time and/or space. IAdditional information cannot reduce this
type of uncertainty.

Conceptually, analyses which involve epistemic and aleatoric uncertainties involve the
following three distinct mathematical entities, cf. Helton et al. [2008].

1. A characterization of the aleatoric uncertainty.

2. A function that predicts results of interest.
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3. A characterization of the epistemic uncertainty.

There are various methods for dealing with these two types of uncertainties available.
For the representation of aleatoric uncertainties mathematical models of the prob-
ability theory are available, cf. chapter 4. For the representation of the epistemic
uncertainty, Helton et al. [2008] identifies the following four different mathematical
structures: the Interval analysis, possibility theory, evidence theory and the probabil-
ity theory. Whereas this thesis focuses on the probability methods, which are widely
used and rely upon a sound mathematical framework. Coming back to Fig. 5.1, where
the entire spectrum is still not categorized. This last area is also of the aleatory type
and therefore also not reducible, because no physical system is truly isolated, which
is illustrated by the dashed line.

Until now, the FEM is not taken into account in the classification of uncertainties.
This will be now done with respect to structural systems, including general outlines.
Hereby, the focus lies on the explanation of the discrepancy between the prediction and
the measurement of the system parameters, by neglecting the discretization error1 .
One reason for such kind of discrepancy is the finite element model, which is only a
mathematical idealization of the physical system and does not represents the physical
behaviour of the system exactly but with a certain accuracy. This sort of uncertainty
can be categorized as model uncertainty, where typical examples could be strongly
non-linear interactions in a linear model or ignoring theses non-linear interactions
as well as inaccurate modelling of the boundary conditions etc. A further point is
the level of detail of the mathematical model which represents the system behaviour.
Also when assuming that the mathematical model represents the system behaviour
quite well, the system parameters exhibit deviations from their true values. Such
deviations (resp. uncertainties) could be loading uncertainties, such as wind, snow, life
loads2 , water waves or earthquakes as well as uncertainties in structural properties like
geometry imperfections, Young’s modulus, material strength, damping characteristics
or tensile strength.

In general, the deterministic values are the so called nominal values, where no scat-
tering is taken into account. Such a parameter, for instance, the Young’s modulus E
can be quantified in terms of their CDF as

PE(a ≤ E ≤ b) =

b∫

a

fE(x) dx .

In general, experimental data are extremely scarce in most areas of engineering ap-
plications. In reference to practical applications, most of the system parameters are
assumed as nominal values, because no statistical informations are available. In this
work only stochastic material parameters are considered and this kind of uncertainties
are normally epistemic in nature. Here, the motivation lies on the fact that, with more
available information, the uncertainty of the estimation decreases and may be theo-
retically vanish when the sample of observations is large, i.e. infinit. Furthermore,
it has been taken into account that a stochastic input data sample also results in an
uncertain output, i.e. the system response. Since the input is random and specified
by probability distributions, the output also follows such probability distributions,

1For further information to discretization errors the reader is referred to Zienkiewicz and Taylor
[2000].

2Life loads may be categorized either as quasi-static load processes such as floor loads, or as
actual dynamic loads such as those generated by traffic on bridges, cf. Vanmarcke et al. [1986].
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i.e. has a well defined unique distribution, where an illustration can be found in the
PhD thesis of Geistefeldt [2003].

5.2. Stochastic Processes

The classical probability theory is concerned with those random variables whose values
do not depend upon time, or any other set of parameters. However, in the analysis of
many phenomena it is necessary to study a family of random variables, which depend
upon groups of parameters, most often including time. This section gives a brief
survey in the characterization of random processes, which is mainly inspired by the
textbook by Kleiber and Hien [1992]. For further informations, the reader is referred
to this book, as well as to the textbooks by Papoulis [1991] or Gardiner [2009].

A stochastic process is a family of RVs X(t), t ∈ T . In many engineering problems
the parameter t will be the time and the underlying intuitive notion will be that of
a random variable developing in time. A standard example for a simple stochastic
process is illustrated in Fig. 5.2, where an ensemble of all possible realizations H(t, θ)
of the random process X(t) is illustrated.

θ

H(t, θ)

s t s, t

θ1

θ2

θ3

θ4

Figure 5.2.: Ensemble of realizations of a one-dimensional random process.

On the basis of the previous chapter, some mathematical definitions for stochastic
processes are summarized below.

Let X(t) be a stochastic process, which is characterized by a two dimensional CDF
as

F2(x1, t1; x2, t2) = P(X(t1) ≤ x1;X(t2) ≤ x2) , (5.1)

where the corresponding PDF is given by

f2(x1, t1;x2, t2) =
∂2F2(x1, t1; x2, t2)

∂x1∂x2
. (5.2)
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If fn is known all functions with a number less than n, i.e. (n−1), can be determined,
such as f1 by f2,

f1(x1, t1) =

∞∫

−∞

f2(x1, t1; x2, t2) dx2 .

In general, a n-dimensional CDF is defined by

Fn(x1, t1; ...;xn, tn) = P(X(t1) ≤ x1; ...;X(tn) ≤ xn) , (5.3)

and a n-dimensional PDF by

fn(x1, t1; ...;xn, tn) =
∂nFn(x1, t1; ...;xn, tn)

∂x1 . . . ∂xn
. (5.4)

The m-th moment of X(t) is given in terms of its first density function, i.e. f1(x1, t)
as

µmx (t) = E[Xm] =

∞∫

−∞

xmf1(x, t) dx . (5.5)

The expected value E of the stochastic process X(t) is defined by the first moment
µ1x(t) = µx(t) and the second moment µ2x(t) denotes the mean square value of X(t).

The m-th central moment of a stochastic process X(t) is defined by,

µmx (t) = E[(Xm − x0)m] =

∞∫

−∞

(x− µ1x)
mf1(x, t) dx , (5.6)

and the variance of X(t) is given by µ2
x(t) = σ2x(t). The mn-th joint moment, at the

given times t1 and t2 reads

µmnx (t1, t2) = E[Xn(t1)X
m(t2)]

=

∞∫

−∞

∞∫

−∞

xm1 x
n
2 f2(x1, t1;x2, t2)) dx1dx2 .

(5.7)

A measure for the independence between X(t1) and X(t2) is the correlation function,
defined by µ11x (t1, t2). The autocovariance function is a further measure, which is
given by

Cxx(t1, t2) = E [(X(t1) − µx(t1))(X(t2)− µx(t2))] ,

=

∞∫

−∞

∞∫

−∞

(x1 − µx(t1)) (x2 − µx(t2)) f2(x1, t1;x2, t2) dx1dx2 ,

= µxx(t1, t2)− µx(t1)µx(t2) .

(5.8)

This equation describes the covariance of the variable against a time-shifted version
of itself. If t1 = t2 = t, the autocovariance function becomes the variance of the
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stochastic process X(t), i.e.

Cxx(t, t) = Varx(t) = σ2x(t) = µ2x(t) − (µ1x(t))
2 . (5.9)

If the stochastic process X(t) has the following properties:

E[X(t)] = µ1x ∀ t ∈ T

Var(X(t)) = σ2x ∀ t ∈ T

Cxx(t1, t2) = Cxx(t2 − t1) = Cxx(τ) ∀ t ∈ T ,

(5.10)

it is denoted as weakly stationary process. All given remarks in the listing above
do not depend on time t. To be more specific, these moments are invariant by a
translation of the time origin. A stronger condition for a stochastic process X(t) is
the requirement, that all possible moments are not affected by a shift in time, which
is denoted as strongly stationary process.

A further property are the Wiener-Khintchine-realization of the autocovariance
function Cxx. When assuming that the time separation τ tends to infinity, the au-
tocovariance function tends to zero. Therefore, the Fourier-transform pair of Cxx
exists and by definition the spectral density S(ω) of the weakly stationary process
X(t) is given by

Sxx(ω) =
1

2π

∞∫

−∞

Cxx(τ)e
iωτ dτ . (5.11)

By performing the inversion of Sxx(ω) recovering the autocovariance function, i.e.

Cxx(τ) =

∞∫

−∞

Sxx(ω)e
−iωτ dω . (5.12)

This realization states that the autocovariance function, of a weakly stationary process
is the Fourier-transformation of the corresponding spectral density and vice versa,
see also Appendix D.

A central stochastic process, which achieves the stationary condition, is the stationary
Gaussian process, which plays a central role in the theory as well as in the application
of probabilistic methods. In general, a stochastic process X(t) is called a Gaussian

stochastic process, if for every finite set {t1, t2, ..., tn} ∈ T , the set of random param-
eters {x(t1), x(t2), ..., x(tn)} have the joint probability density function

fn(x1, t1; ...; tn, xn) =
1

√
(2π)ndet(Σxxxxxx)

e−
1
2
(xxx−µµµxxx(t))T Σxxxxxx(t)−1(xxx−µµµxxx(t)) , (5.13)

where µµµxxx(t) = E[xxx(t)] denotes the expectation vector, Σxxxxxx(t) is referred to as the
covariance matrix and xxx = [x1, x2, ... xn]T. It can be shown that the multivariate
Gaussian probability density function is fully specified by its average E[X(t)] and
its second moment E[X(t1)X(t2)], cf. Xiu [2010]. In practice, many variables are
empirically well approximated by Gaussians. The reason for this is based on the
central limit theorem, which states that a random variable composed of the result of
many additive parts, each independent but arbitrarily distributed, is Gaussian, cf.
van Kampen [2007]; Gardiner [2009].
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5.3. Representation of Stochastic Processes and Fields

The uncertainties of physical quantities can be characterized by stochastic processes
or stochastic fields very well. In engineering applications there are typical examples
of interest, such as earthquake ground motion, sea waves, wind and snow loads, road
roughness, imperfections of structures or fluctuating properties in random media.
For many of these parameters, stochastic properties were determined over the years,
through a variety of measurements and investigations.

In view of structural engineering, the structural response is often non-linear, see for
example, Augusti et al. [1984]; Sundararajan [1995]; Ditlevsen and Madsen [2007],
and as already discussed in subsection 4.4.1 it might be too complex to determine
such non-linear response statistics by other means than sampling techniques. Such
a sampling is realized by a sample function, where this function should be chosen in
such a way that the underlying stochastic process/field is characterized accurately.
This sample function might be stationary or non-stationary, univariate or multivari-
ate, Gaussian or non-Gaussian. What properties a sample function finally has,
strongly depends on the requirements of the accuracy of the realistic representation
of the physical behaviour as well as on the available statistical data. Besides these
standard sampling techniques, quite different representation methods have been de-
veloped, such as the Spectral Representation Method, Karhunen-Loève Expansion
and the Polynomial Chaos Expansion (PCE). These three discretization methods are
applied in this thesis and in the following three subsections a briefly overview of some
developments is given. Detailed theoretical informations with respect to this methods
will be given in the following chapters.

5.3.1. Spectral Representation Method

The Spectral Representation Method has been introduced by Shinozuka and Jan
[1972] and appears to be one of the most used spectral representation methods, e.g.,
Shinozuka and Deodatis [1991]; Grigoriu [1993]; Deodatis [1997]; Grigoriu [2000a].
According to this method, sample functions of the stochastic processes/fields are gen-
erated with specified power spectral density informations. In the case of stationary or
homogeneous cases, the fast Fourier transform technique (FFT) is used for a signif-
icantly improvement of the computationally efficiency, e.g., Shinozuka and Deodatis
[1991]. The SPRM generates ergodic sample functions of which each generated sam-
ple function is identical to the corresponding target power spectrum. The method
was continually developed through the years in various ways, for example, for the
simulation of stochastic waves, cf. Deodatis and Shinozuka [1989], or non-Gaussian

stochastic fields, see Yamazaki and Shinozuka [1988]; Bocchini and Deodatis [2008],
spatially incoherent multidimensional and multivariate random processes and fields,
see Ramadan and Novak [1993], as well as to simulate multivariate ergodic stochastic
processes, presented by Deodatis [1996b], multivariate nonstationary stochastic pro-
cesses, cf. Deodatis [1996a], and non-Gaussian multidimensional multivariate fields,
proposed by Popescu et al. [1998].

5.3.2. Karhunen-Loève Expansion

A quiet general spectral representation, utilized for Gaussian stochastic processes
/ fields, is the Karhunen-Loève Expansion (KLE) of the covariance function.
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This representation technique is the most efficient method for the discretisation of
a random process/field, because it requires the smallest number of random vari-
ables to represent a random process or field within a given level of accuracy,
cf. Ghanem and Spanos [2003]; Li and Der Kiureghian [1993]; Zhang and Ellingwood
[1994]; Le Maître and Knio [2010]. In Phoon et al. [2002b], the author directly ap-
plies the KLE for the representation of non-Gaussian fields. A further study by
Phoon et al. [2002a] presents a wavelet Galerkin approach to solve the Fredholm

integral equation for a large number of KL terms accurately and cheaply. In stochas-
tic finite element analysis, the KLE is often applied in conjunction with the Polyno-
mial Chaos approximation, for instance, Anders and Hori [2001]; Ghanem and Spanos
[2003]; Xiu and Karniadakis [2003]; Keese [2004]; Chung et al. [2005]; Sachdeva et al.
[2006]; Sett et al. [2011]. In these articles and textbooks, the input parameters are
characterized by the KLE while the statistics of the system response are evaluated us-
ing the PCE. This combination of the KLE and the PCE in the context of FEM is well
known as Spectral Stochastic Finite Element Method (SSFEM). To the end of this brief
review of the KLE, the articles of Huang et al. [2001] and Stefanou and Papadrakakis
[2007] should be mentioned, where a detailed overview including a direct assessment
of the SPRM and the KLE is presented.

5.3.3. Polynomial Chaos Expansion

The Polynomial Chaos Expansion provides a generalization of the Karhunen-Loève

expansion and was first presented by Wiener [1938]. Based on Wiener’s ideas,
Cameron and Martin [1947] constructed an orthogonal basis for non-linear function-
als in terms of Fourier-Hermite functionals. A detailed review of the develop-
ment steps is given in Ghanem and Spanos [2003]. When the PCE is applied in the
context of a stochastic finite element analysis it is used to represent the structural
system response by a set of coefficients in a suitable so-called polynomial chaos ba-
sis. The following collection focuses on some publications which use the PCE for the
evaluation of the covariance function of the underlying solution process. These are:
Ghanem and Kruger [1996]; Sakamoto and Ghanem [2002]; Debusschere et al. [2005];
Field Jr. and Grigoriu [2004]. The PCE has two major advantages compared to the
KLE, cf. Anders [2000]:

1. The PCE can be used to expand random variables of any distribution, i.e. not
only Gaussian.

2. The PCE doesn’t require any a priori knowledge on the probability distribution
of the expanded random process or field.

5.3.4. Non-Gaussian Models

In almost all previously cited studies a Gaussian distribution is applied for the rep-
resentation of the random variables or random vectors. One reason for assuming a
Gaussian distribution is the simplicity and the lack of relevant experimental data. As
already mentioned earlier, the most physical phenomena and therefore practical en-
gineering problems, such as material and geometric properties exhibit non-Gaussian

probabilistic characteristics. Furthermore, the non-Gaussian assumption permits to
efficiently treat the case of large input variability without violating the physical con-
straints of the material and geometric properties, as remarked in Stefanou [2011]. The
generation of a sample functions of a non-Gaussian processes / fields can be realized
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Figure 5.3.: Sample function of a random variable described by an one-dimensional
random field.

in various ways. One widely applied technique is the memoryless non-linear transfor-
mation of Gaussian processes, e.g., Yamazaki and Shinozuka [1988], which utilizes
the spectral representation method. Bocchini and Deodatis [2008] compare in their
article the three simulation algorithms, proposed by Yamazaki and Shinozuka [1988];
Deodatis and Micaletti [2001] and Shi and Deodatis [2004]. Furthermore, Grigoriu
[2000b] considers two different non-Gaussian models, whereas Stefanou [2011] used
non-Gaussian transformation in connection with the stochastic finite element method
to estimate the response variability of cylindrical shells. For the application of non-
Gaussian polynomials Xiu and Karniadakis [2002, 2003]; Xiu [2009] presented the
Askey scheme, see also the following chapter.

A further method for the characterization of non-Gaussian processes/fields is the
application of non-linear filters. Such filters are utilized to generate a stationary non-
Gaussian stochastic process in agreement with a given first-order probability density
function and the spectral density, see e.g., Cai and Lin [1996].

5.4. Modelling of Uncertain Material Properties

So far, the definitions random process and random field were always called synony-
mous. Now, a distinction between these definitions is made and afterwards some
important definitions of random fields are listed.

Typical examples for the description, in terms of random processes have already
been given in this section. Such processes could be, for instance, wind loads on
structures which exhibit random spatial and temporal fluctuations, whereas spatially
correlated fluctuations, such as material properties are generally characterized by
random fields. An example could be the simple beam in Fig. 5.3, where a random
field is applied to represent the randomness of the Young’s modulus E(x), where
the vector x = (x1, x2, ...,xn) defines the spatial location of E. When performing
such a measurement for different beams and different realizations of the beam the
value of E(x), x ∈ x will be randomly vary from measurement to measurement.
Mathematically, this connection is defined through a random variable E(x, θ), θ ∈ Θ.
The same measurement at a different location y ∈ y results in a different value,
E(y, θ). This means that the measurement will again vary from one measurement to
another and this difference in turn is random. A further observation is that values
from adjacent locations do not differ as much as values that are measured at locations
further apart. Such a behaviour is an example of a covariance structure, many different
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types of which may be modelled by random fields.

Mathematically spoken, a random field H(x) is a real valued random variable whose
statistics, such as the expected value, standard deviation etc., may be different for
each x ∈ x, i.e.

H ∈ R; x = [x1, x2, ...,xn]T ∈ D ⊂ R
n . (5.14)

The expected value function of H(x) is defined by

H̄(x) = µH = E[H(x)] , (5.15)

where the expectation operator E is to be taken at a fixed location x over all possible
realizations H(x, θ), see Fig. 5.4 where four realizations (θ1, θ2, θ3, θ4) at the locations
x and y are illustrated. As by stochastic processes, a specific dependency structure of

θ

H(x, θ)

x y
L

x, y

θ1

θ2

θ3

θ4

Figure 5.4.: Ensemble realizations of a one-dimensional random field.

random field values H(x) and H(y) is characterized by the autocovariance function

CHH (x,y) = E
[
(H(x) − H̄(x))(H(y) − H̄(y))

]
. (5.16)

A random field H(x) is called weakly homogeneous if

H̄(x) = const. ∀ x ∈ D (5.17)

CHH(x,x+ ξ) = CHH (ξ) ∀ x ∈ D , (5.18)

where ξ defines the separation distance along the axes. This properties are equivalent
to a stationary random process, cf. the listing in (5.10). If the autocovariance function
CHH(·) depends on the distance but not on the direction, i.e.

CHH (x,x+ ξ) = CHH(‖ξ‖) ∀ x ∈ D , (5.19)

H(x) is referred as a isotropic random field.
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6. Random Field Modelling

An experiment may be defined as an operation designed to discover some unknown
truth. For example, consider a steel beam where an investigator observes the material
properties in an experimental study. The observed measures, denoted as outcomes, are
described in the elementary probability theory usually in terms of random variables.
Projecting this onto a numerical method, for example, a sampling method, it works
well. Performs the investigator a variety of trials with a large number of steel beams,
the outcomes of all experimental studies are equivalent to observing the realization
of a random field. Each outcome, in the terminology of random fields, identified by
its coordinates x = [x, y, z] and with respect to a n-dimensional space. The points of
the outcomes are grouped in a random vector XXX = [x1, ...xn]T whose elements are
the structural coordinates of the mechanical system.

This chapter contains the background of the theory of random fields, which is later
used in conjunction with the FEM for the representation of material uncertainties. In
section 6.1 some general remarks about random fields are presented. Section 6.2 gives
an overview about discretization methods for random fields. Further discretization
methods are the series expansion methods, such as the Karhune-Loève Expansion and
the Spectral Representation Method, which are discussed in detail in sections 6.3 and
6.4.

The bandwidth over the theory of random fields is large and can not be treated here
comprehensively. For a broad treatment of random fields the reader is referred to the
literature. For an illustrative textbook with some applications the reader is referred to
Christakos [1992] or Vanmarcke [2010], whereas a detailed mathematical background
of random fields can be found in the textbook of Adler and Taylor [2007].

6.1. Preliminary Remarks on Random Fields

The term random field has already been introduced in section 5.4 and some properties
of such fields are already given there. In this section the theory of random fields is
presented in detail.

Let (Θ, F , P) be the probability space and considering a Lp(Θ, F , P) space, which
is a linear normed space of a set of random variables {X1, ...Xn} on (Θ, F , P). The
Lp space satisfies the condition

E[X]p =

∫

Θ

|X(x)|p dP(x) , (6.1)

with the norm

‖X‖ = (E[X]p)
1
p , (6.2)

whereby Lp is defined completely. In this work, only second-order random variables
are considered, i.e. p = 2. Per definition a L2 space is being defined with the inner
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product

〈X1,X2〉 = E[X1X2] =

∫

Θ

X1(x)X2(x)dP(x) , (6.3)

where X1 and X2 are random variables and L2 is denoted as Hilbert space.

A random field should be assumed as a set of random variables indexed by the con-
tinuous value x, with x ∈ Θ. For a given parameter x0, H(x0, θ) is per definition a
random variable and for an outcome θ0, H(x, θ0) is a realization of the random field,
cf. Sudret and der Kiureghian [2000].

In the following, some properties are listed into which random fields can be classified,
where similar discussions can be found in Sudret and der Kiureghian [2000]. Fur-
thermore, some of these properties are already mentioned in section 5.4 and will be
reviewed here for convenience.

• A random field is referred to as univariate when the value H(x) coupled with
the point x is a random variable. On the other hand a random field is called
multivariate, when the value H(x) attached to the point x is a random vector.

• A random field is denoted as one-dimensional if the dimension d of x is one.
The multidimensional case occurs when the dimension d of x is larger than one.

• Random fields can be distinguished by means of the chosen probability density
law. In general, random fields are subdivided into Gaussian and non-Gaussian

fields. As mentioned earlier in this work, the Gaussian distribution is often ap-
plied in engineering applications and has several important properties. Probably
the most important property is the complete characterization by its mean and
its covariance1 .

• A random field can be classified by the spatial variability of x. To be more
specific, it can be distinguished between homogeneous fields, i.e. when the
mean and the covariance are being constant. Otherwise the field is referred to
as non-homogeneous.

With respect to this work, only univariate multidimensional homogeneous Gaussian

fields are applied. This is sufficient for the representation of physical parameters,
like Young’s modulus, Poisson’s ratio, yield stress, hardening parameters etc. as
independent random fields.

6.2. Categories of Discretization Methods for Random Fields

Until now, the set of points {x1,x2, ...} is infinite and not sufficient to express all
the properties of the random field H(xi, θ), i = 1, ... . Therefore, a discretization
technique is needed to approximate the random field by a finite number of random
variables into a measurable set in Rn. Besides the discretization methods mentioned
in the previous chapter, several methods have been developed for the discretization of
random fields. This section gives a summary of the discussions given in the report of
Sudret and der Kiureghian [2000]. For further details reference is made to this report
as well as to the references given in the following subsections.

1In the multidimension case it is the covariance matrix.
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Starting from the previous considerations and using the notation style of
Sudret and der Kiureghian [2000], the following definition has been be made:

The discretization of H(·) is done by an approximation, denoted by Ĥ(·), with a finite
set of random variables {Xi, i = 1, ... n}, Xi ∈ (Θ,F ,P) at points xi, which can be
formally expressed as

H(x)
discretization−→ Ĥ(x) = F(x,XXX(θ)) . (6.4)

After Sudret and der Kiureghian [2000], the discretization methods can be separated
into the three following categories:

1. Point discretization: Here, each random variable Xi is a selected value of the
random field H(·) at some given point xi.

2. Average discretization: By applying this method, the set of random variables
{Xi} are weighted integrals of H(·) over a domain Ωe

Xi =

∫

Ωe

H(x)w(x) dΩe , (6.5)

with the weighting function ω(x).

3. Series expansion methods: Here, H(·) is in principal represented by a infinite
series involving random variables and deterministic spatial functions, where the
approximation Ĥ(·) is received by truncating the infinite series after a certain
number of terms.

6.2.1. Point Discretization Methods

In general, the uncertainty of a random field H(·) is represented by specific points,
for example, the nodes of a finite element mesh or the integration points, where the
number of considered points characterizes the number of random variables.

The Midpoint (MP-) Method

This technique, proposed by Kiureghian and Ke [1988], is the simplest method for the
discretization of a random field. Hereby, the approximation Ĥ(·) is realized within
each element domain Ωe by a single random variable, which is characterized by the
value of the field at the centroid xc of the element, i.e.

Ĥ(x) = H(xc) , x ∈ Ωe . (6.6)

The approximated field is characterized by the random vectorXXX , including all element
centroids x1

c , ...x
ne
c , i.e. XXX =

[
H(x1

c), ...H(xne
c )
]T. The mean is directly available

by the mean of H(·) as well as the variance, where both values are evaluated at the
centroids of the elements.
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The Shape Function (SF-) Method

This method, introduced by Liu et al. [1986a,b], approximated the random field H(·)
within an element in terms of the nodal values xi and the corresponding shape func-
tions Ni as follows, cf. Sudret and der Kiureghian [2000]:

Ĥ(x) =

nn∑

i=1

Ni(x)H(xi) , x ∈ Ωe (6.7)

where nn is the number of nodes of element e and xi defines the coordinates of the i-th
node. In this case Ĥ(·) is represented by the random vector XXX = [H(x1), ...,H(xnn )].
The statistics of the mean and the covariance matrix of Ĥ(·) can be found in the
references at the beginning of this subsection. In view of the MP-method, where
discontinuities occur at the element boundaries has this method the advantage that
Ĥ(·) is continuous over the entire domain Ω.

The Integration Point (IP-) Method

Here, H(·) is implicitly discretized by the total number of integration points. The
discretization scheme where each integration point associated with one random vari-
able, gives accurate results for a short correlation length. Furthermore, this method
uses the same integration rules as the standard FE-method. On the one hand, the
number of random variables is limited to the total number of integration points. To
be more specific, when the set of random variables is larger than the total number of
existing integration points the correlation matrix will be singular. On the other hand
grows the number of RVs drastically with a finer FE-mesh, respectively by increasing
mechanical systems.

The Optimal Linear Estimation (OLE-) Method

This method, also denoted as Kriging technique (Matthies et al. [1997]) was proposed
by Li and Der Kiureghian [1993]. Here, the random field is approximated by a linear
function of nodal values as follows, cf. Li and Der Kiureghian [1993]:

Ĥ(x) = a(x) +

na∑

i=1

bi(x)Xi = a(x) + bT(x) ·XXX , x ∈ Ω (6.8)

where XXX = [H(x1), ...,H(xna )] and na denotes the number of nodal points, used in
the approximation. The functions a(x) and b(x) have to be evaluated, therefore see
the references at the beginning of this subsection. The error of this method can be
determined by, cf. Li and Der Kiureghian [1993],

Var
[
H(x)− Ĥ(x)

]
= σ2(x)−

∑T

H(x)XXX

∑−1

XXXXXX

∑
H(x)XXX︸ ︷︷ ︸

Var [Ĥ(x)]

, (6.9)

where
∑
XXXXXX denotes the covariance matrix of XXX ,

∑
H(x)XXX is a vector containing

the covariances of H(x) with the elements of XXX and σ2(x) represents the vari-
ance of H(·). Since the error (resp. the variance) is always positive indicates that
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Ĥ(x) always under-represents the variance of the original random field H(x), cf.
Sudret and der Kiureghian [2000].

6.2.2. Averaging Discretization Methods

Spatial Average (SA-) Method

This method was proposed by Vanmarcke and Grigoriu [1983]. Here, Ĥ(·)
within each element e is realized as the spatial average of H(·) as follows, cf.
Sudret and der Kiureghian [2000]:

Ĥ(x) =

∫
Ωe
H(x) dΩe

|Ωe|
= H̄e , x ∈ Ωe . (6.10)

The random vector XXX is assembled by the average values H̄(x), thus XXX = [H̄e], e =
1, ... ne. The mean and the covariance of XXX are evaluated in terms of the mean
and covariance function of H(x) over the domain Ωe. Usually, the spatial average
over an element e with respect to the variance is smaller than the local variance of
the random field, i.e. it under-represents the local variance of the random field, cf.
Sudret and der Kiureghian [2000].

Weighted Integral (WI-) Method

The WI-method was introduced in the early 1990s by Deodatis [1990, 1991];
Deodatis and Shinozuka [1991]. At the same time, Takada [1990a,b] applied this
method in conjunction with the finite element method. The method seems to be
more attractive than the previous ones, because no extra discretization of the random
field is necessary.

Let ke be the deterministic element stiffness matrix

ke =

∫

Ωe

BT
CB dΩe , (6.11)

with the linear elasticity tensor C. The (until now) deterministic matrix ke is now ex-
tended by a univariate random field H(x, θ), which represents the fluctuating material
properties within element e by

C(x, θ) = C0 [1 +H(x, θ)] . (6.12)

Here, C0 denotes the constant part of the elasticity tensor and H(x, θ) is a zero-mean
homogeneous random field. By substituting the expression (6.12) into equation (6.11),
the element stiffness matrix can be rewritten as

ke(θ) = ke0 +∆ke(θ) with ∆ke(θ) =

∫

Ωe

H(x, θ)BT
C0B dΩe , (6.13)

where θ ∈ Θ. After some algebra (see the references at the beginning of this subsec-
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tion) the stochastic element stiffness matrix is obtained as follows:

ke(θ) = ke0 +

nWI∑

i=1

∆keiX
e
i , (6.14)

where ke0 denotes the mean element stiffness matrix, ∆kei are deterministic matrices,
Xe
i are variables of the random field, referred to as the weighted integrals and nWI

denotes the number of the weighted integrals of element e. The number of the weighted
integrals depends on the type of the used element.

The method depends strictly on the FE-mesh and for a small correlation length the
accuracy of the result is questionable compared to the integration domain Ωe. Some
further drawbacks, discussed in Sudret and der Kiureghian [2000], are summarized in
the following:

• The method is limited to elastic structures.

• The input parameters are restricted to small Cov’s when applying the first-order
perturbation method.

• The method is time intensive when the system contains a large number of ele-
ments.

In the habilitation treatise of Sudret [2007], the author concludes that this method
has been given less attention in the recent years. Moreover, through the literature
review which has been done in this thesis, this statement should be generalized to the
fact that the proposed methods in this section have little to no longer be applied in
SFEM applications in the last years.

6.2.3. Series Expansion Methods

In view of the previous presented discretization methods the series expansion methods
differs by the fact, that the random field is exactly represented by a (formally) infinit
series involving random variables and deterministic spatial functions. The realization
of a random field is then obtained by a truncation of this series. Such methods are
the two already mentioned ones, namely the KLE, see Ghanem and Spanos [2003] and
the SPRM, cf. Shinozuka and Jan [1972]. Further related methods are the Expansion
Optimal Linear Estimation (EOLE-) method, cf. Li and Der Kiureghian [1993] and
the Orthogonal Series Expansion (OSE), see Zhang and Ellingwood [1994].

One of the pioneering works in the field of series expansion methods is the approach
proposed by Lawrence [1987], where the series expansion of H(x) is defined by

H(x) =
∞∑

j=1

H0jϕj(x) +
∞∑

i=1

∞∑

j=1

Hijξi(θ)ϕj(x) . (6.15)

Here, ϕj(x), j = 1, ... is a set of linear independent deterministic functions and
ξi(θ), i = 1, ... are statistically independent random variables. The basis random
variables have the following properties:

E [ξi] = 0 for i = 1, 2, ... , (6.16)

E [ξiξj ] = δij , (6.17)
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where δij denotes the Kronecker delta. Truncating the series in equation (6.15) after
M basis random variables and N deterministic functions leads to

H(x) ≈
N∑

j=1

H0jϕj(x) +
M∑

i=1

N∑

j=1

Hijξi(θ)ϕj (x) = Ĥ(x) . (6.18)

For the solution, including some descriptions for the calculation of the coefficients
Hij , the reader is referred to Lawrence [1989].

6.3. Karhunen-Loève Expansion

Let H(x, θ) be a random field where θ ∈ Θ belonging to the space of random events
(Θ, F , P). Furthermore, the mean µ(x) and the variance σ2(x) are defined on this
probability space and indexed on a bounded domain D.

The general idea is to decompose a general second-order random field H(x, θ) into an
orthonormal set of series expansion functions f(x) whose coefficients are uncorrelated
random variables ξ(θ). The deterministic functions f(·) have been orthonormalized
to serve as a basis set for the decomposition, where the expanded Fourier-type series
reads, cf. Ghanem and Spanos [2003]:

H(x, θ) =
∞∑

i=0

√
λifi(x)ξi(θ) , (6.19)

with a set of constants {λi}∞i=1 as well as a set of orthonormal deterministic eigenfunc-
tions {fi(x)}∞i=1 and {ξi(θ)}∞i=1 denotes a set of uncorrelated random variables with
a mean equal to zero. The definition in equation (6.19) is denoted as the Karhunen-

Loève expansion of the random field H(x, θ). Any realization of the random field
H(x, θ) is expanded by a set of {fi(x)}∞i=1, which can be expressed as an eigenvalue
problem as follows, cf. Ghanem and Spanos [2003]:

∀ i = 1, ...

∫

D

C(x1,x2)fi(x2) dDx2 = λifi(x1) , (6.20)

where C (x1,x2) is the covariance function of H(x, θ), λi denotes the i-th eigenvalue
and fi(x) are the corresponding eigenfunction of the covariance function. Equation
(6.20) is referred as Fredholm integral equation. The eigenfunctions fi(x) can be
normalized by

∫

D

fi(x)fj (x)dD = δij . (6.21)

The covariance function is bounded, symmetric and positive definite, cf.
Sudret and der Kiureghian [2000]; Ghanem and Spanos [2003]; Le Maître and Knio
[2010], where a set of {fi(x)}∞i=0 forms a complete orthonormal basis of L2(D).2 The
set of eigenvalues {λi}∞i=0 is real, numerable and the only possible accumulation point
of the eigenvalues is zero. Due to the aforementioned properties, any realization of

2A proof can be found, e.g., in the textbook by Stark and Woods [1986].
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H (x, θ) can be expanded over L2(D) as, cf. Sudret and der Kiureghian [2000],

H(x, θ) = µ(x) +
∞∑

i=1

√
λifi(x)ξi(θ) . (6.22)

Further, the following relation applies:

E[ξiξj ] = δij , (6.23)

which can be checked when calculating Cov[H(x1, θ), H(x2, θ)] by means of equation
(6.19) and requiring that the result is equal to C(x1,x2), see also Appendix D.

With respect to the definition in expression (6.4) a discretized random field Ĥ(·) is
obtained by truncating the series expansion in equation (6.22) after the M -th term,
i.e.

Ĥ(x, θ) = µ(x) +
M∑

i=1

√
λifi(x)ξi(θ) . (6.24)

The variance and the covariance functions of this series are given by

Var
[
Ĥ(x, θ)

]
=

M∑

i=1

λif
2
i (x) , (6.25)

Cov
[
Ĥ(x1, θ), Ĥ(x2, θ)

]
=

M∑

i=1

λifi(x1)fi(x2) . (6.26)

Properties of the Karhunen-Loève Expansion

In the following, a few properties of the KLE are listed, which are summarized from
the report by Sudret and der Kiureghian [2000]. Further properties can be found in
this report as well as in the textbook by Ghanem and Spanos [2003] and the references
therein.

• The set of basis functions {fi(x)}, of the covariance function C(·), is opti-
mal in the mean square error. This means, that the mean square error of the
truncated expansion Ĥ(·) is minimized and no other series expansion method
leads to a smaller mean square error after the truncation of M terms, see also
Le Maître and Knio [2010].

• The variance of Ĥ(·) always underestimates the variance of H(·), because the
variance of Ĥ(·) is always smaller than the variance of H(·), which becomes
clear by considering the following equation:

Var
[
H(x) − Ĥ(x)

]
= σ2H (x)−

M∑

i=1

λif
2
i (x) = Var[H(x)]−Var[Ĥ(x)] . (6.27)

• A set of random variables {ξi(θ)} is orthonormal if and only if the set of basis
functions {fi(x)} as well as the constants {λi} are solutions of the eigenvalue
problem (6.20), cf. Sudret and der Kiureghian [2000].
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• If the investigated random field is Gaussian each random variable ξi(θ) is also
Gaussian. It follows, that any set of random variables {ξi(θ)} forms a set of
independent standard normal variables, cf. Sudret and der Kiureghian [2000];
Nouy [2009].

6.3.1. Analytical Solution of the Integral Equation

In this subsection the analytical solution of the Fredholm integral is presented.
Closed form solutions of this equation do seldom exist and only for some simple
geometries an analytical solution is available. Analytical solutions, for instance, of
rectangular or quadratic domains, can be found in Ghanem and Spanos [2003]. For
complex geometries no analytical solution exists and numerical methods must be
applied to solve the covariance function. This fact is discussed in subsection 6.3.2,
where a Galerkin type procedure is applied to compute the covariance function
numerically.

A covariance function commonly applied is the exponential function, where the ex-
pressions for one-, two- and three-dimensional domains are given below:

C1D(x1,x2) = e−
|x1−x2|

cx , (6.28)

C2D(x1,y1;x2,y2) = e
−

|x1−x2|
cx

−
|y1−y2|

cy , (6.29)

C3D(x1,y1, z1;x2,y2, z2) = e
−

|x1−x2|
cx

−
|y1−y2|

cy
−

|z1−z2|
cz , (6.30)

where the first index of CiD, i = 1, 2, 3 refers to the dimensionality of the function
and cx,y,z denotes the correlation length in the corresponding direction.

In Fig. 6.1 the one-dimensional covariance function is exemplary plotted. The
function is defined over the domain D = [0, 1], where different correlation lengths
cx = 0.01, 0.1, 1.0, 10.0 are applied to demonstrate the influence of c on the covari-
ance function. The limit of the correlation function is zero, i.e. when the covariance
function takes the form of a delta function C(x1,x2) = δ(x1 − x2), see Fig. 6.1
(a). Here, the eigenvalues will not decrease, i.e. they are constant. A further dis-
cussion can be found in subsection 6.3.3, where the resulting eigenvalues for different
correlation lengths are evaluated.

In the following, the analytical solutions for the eigenfunctions fi and the eigenvalues
λi are calculated for the one-, two- and three-dimensional exponential covariance
function, defined in equations (6.28) to (6.30). The approximation of the random
field is expressed by

Ĥ(x, θ) = µ(x) + σ
Ĥ

M∑

i=1

√
λifi(x)ξi(θ) , x ∈ D , (6.31)

where σĤ denotes the standard deviation of the approximated field Ĥ(·).
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(a) Correlation length cx = 0.01
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(c) Correlation length cx = 1.0
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Figure 6.1.: Surface plots of the covariance function (6.28) over the domain D = [0, 1]
with different correlation lengths.

One-Dimensional Case

The solution of the one-dimensional random field is computed by the approximate
random field Ĥ, given in (6.31) and repeated here again

Ĥ(x, θ) = µ(x) + σĤ

M∑

i=1

√
λifi(x)ξi(θ) , x ∈ D . (6.32)

The variables λi and fi(x) are the solutions of the eigenvalue problem
∫

D

C(x1,x2)fi(x2)dDx2 = λifi(x1) . (6.33)

By use of the one-dimensional exponential covariance function (6.28), the Fredholm

integral equation can be solved in closed form. Therefore, when substituting the
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function (6.28) into the eigenvalue problem (6.33) yields

a∫

−a

e−
|x1−x2|

cx fi(x2)dDx2 = λifi(x1) , (6.34)

where the domain is defined within the interval [−a, a]. Based on Ghanem and Spanos
[2003] the exact solutions of (6.34) are listed below:

• The eigenpairs (λi, fi(x)) for i = 1, 3, 5, ... are calculated by

λi =
2 c

ω2
i c

2 + 1
, (6.35)

fi(x) = αi cos (ωix) , (6.36)

where c is the correlation length and αi is defined by

αi =
1√

a +
sin (2ωia)

2ωi

. (6.37)

The variable ωi is the solution of the transcendental equation

1

c
− ωi tan (ωia) = 0 in the range

[
(i− 1)

π

a
, (i− 1

2
)
π

a

]
. (6.38)

• Similar for i = 2, 4, 6, ... :

λi =
2 c

ω2
i c

2 + 1
, (6.39)

fi(x) = αi sin (ωix) , (6.40)

in the case of even permutations, αi is given by

αi =
1√

a − sin (2ωia)
2ωi

. (6.41)

With the associated term ωi, where the solution of the transcendental equation
reads

1

c
tan (ωia) + ωi = 0 in the range

[
(i− 1

2
)
π

a
, i
π

a

]
. (6.42)

With these derivatives all coefficients for the analytical solution of the eigenvalue
problem can be calculated.

One-Dimensional Example

Let D = [0, a] be a domain in R1 with a = 1. The associated covariance function,
given in equation (6.28), with the coordinates x ∈ D has a correlation length of
cx = 1. The analysed field Hα(x, θ) is the zero mean part of equation (6.32) with
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the corresponding covariance function C1D(x1,x2). For the analysis, this function is
truncated after the first six terms, i.e.

Ĥα(x, θ) ≈ σα

6∑

i=1

√
λifi(x)ξi(θ) . (6.43)

The first six eigenfunctions fi(x) are calculated as

f1(x) = 1.0725 cos(1.3065 x)

f2(x) = 1.3257 sin(3.6732x)

f3(x) = 1.3834 cos(6.5846 x)

f4(x) = 1.3994 sin(9.6317x)

f5(x) = 1.4056 cos(12.7232 x)

f6(x) = 1.4086 sin(15.8341x)

with the corresponding eigenvalues λi

λ1 = 0.7388, λ2 = 0.1380, λ3 = 0.0451,

λ4 = 0.0213, λ5 = 0.0123, λ6 = 0.0079 .

The resulting curves for the variance and the covariance profiles are plotted in Fig.
6.2, where the target curve, the two-, four- and the six-term KLE is illustrated. The
corresponding equations for the curves are given by, cf. Anders [2000],

Cov (x,x) = Ĥα
(
−a
2
+ xa,−a

2
+ xa

)
, x ∈ [0, 1] , (6.44)

Cov (x, 1− x) = Ĥα
(
−a
2
+ xa,−a

2
+ (1− x) a

)
, x ∈ [0, 1] , (6.45)

where the standard deviation σα is assumed to σα = 1.

Two-Dimensional Case

The previously presented procedures can be applied analogically to the two-
dimensional case, where the rectangular domain

D = [−a, a]× [−b, b]

is considered. With respect to the two-dimensional function C2D(x,y), given in equa-
tion (6.29), the corresponding eigenvalue problem reads

a∫

−a

b∫

−b

e

(
−

|x1−x2|
cx

−
|y1−y2|

cy

)

fi(x2,y2) dDx2dDy2 = λifi(x1,y1) . (6.46)

The solutions of equation (6.46) are obtained by products of the one-dimensional
solutions, see Ghanem and Spanos [2003] or Sudret and der Kiureghian [2000]. The
eigenvalues λi are determined by

λi = λ1Dix λ1Diy , (6.47)



6. Random Field Modelling 95

 

 

M = 6

M = 4

M = 2

Target

C
o
v
a
r
ia

n
c
e

(
x
1
,
x
1
)

x1

0 0.2 0.4 0.6 0.8 1
0.6

0.7

0.8

0.9

1

1.1

(a) Covariance function Cxx(x,x)

 

 

M = 6

M = 4

M = 2

Target

C
o
v
a
r
ia

n
c
e

(
x
1
,
1

−
x
1
)

x1

0 0.2 0.4 0.6 0.8 1
0.2

0.4

0.6

0.8

1

(b) Cxx with shift distance (1 − x)

Figure 6.2.: (a) Comparison of the covariance for different dimensions M . (b) Covari-
ance with a shift distance representation in the one-dimensional case for
different dimensions M .

and the eigenfunctions fi(x,y) are computed by

fi(x,y) = fix (x)fiy (y) . (6.48)

Here, the superscript •1D indicates the one-dimensional solution of the eigenvalues
and eigenfunctions.

Two-Dimensional Example

Let D = [0, a] × [0, b] be a domain in R2 with edge lengths a = 1 and b = 1. The
covariance function defined in equation (6.29) has the coordinates (x1, y1), (y1, y2) ∈
D and the correlation lengths are cx = cy = 1. The two-dimensional KLE, truncated
after the first six terms and reads

Ĥα(x,y, θ) ≈ σα

6∑

i=1

√
λifi(x,y)ξi(θ) . (6.49)

The first six eigenfunctions fi(x,y) are computed by

f1(x,y) = 1.1502 cos(1.3065x) cos(1.3065y)

f2(x,y) = 1.4218 sin(3.6732x) cos(1.3065y)

f3(x,y) = 1.4218 cos(1.3065x) sin(3.6732y)

f4(x,y) = 1.4837 sin(6.5846x) cos(1.3065y)

f5(x,y) = 1.4837 cos(1.3065x) sin(6.5846y)

f6(x,y) = 1.7575 sin(3.6732x) sin(3.6732y)
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Figure 6.3.: (a) Comparison of the covariance for different dimensions M . (b) Covari-
ance with a shift distance representation in the two-dimensional case for
different dimensions M .

with the associated eigenvalues λi

λ1 = 0.5458, λ2 = 0.1020, λ3 = 0.1020,

λ4 = 0.0333, λ5 = 0.0333, λ6 = 0.0190 .

The resulting curves for the variance and the covariance profiles are depicted in Fig.
6.3. Plotted are the target curve, the two-, four- and the six-term KLE. The corre-
sponding equations for the curves are given by, cf. Anders [2000],

Cov(x,x) = Ĥα

(
−1

2
(a, b) + x(a, b),−1

2
(a, b) + x(a, b)

)
, (6.50)

Cov(x, 1− x) = Ĥα

(
−1

2
(a, b) + x(a, b),−1

2
(a, b) + (1− x)(a, b)

)
, (6.51)

where x ∈ [0, 1] and the standard deviation σα in each direction is assumed to σα = 1.

Three-Dimensional Case

The extension of the KLE to three-dimensional random fields has been established in
a manner analogous to the two-dimensional case. To be more specific, the eigenvalues
and eigenfunctions of the one-dimensional solutions are multiplied with each other.

Let D be a domain in R3 which is defined by a hexahedron with the edge lengths

D = [−a, a]× [−b, b]× [−c, c]
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and the corresponding eigenvalue problem is given by

a∫

−a

b∫

−b

c∫

−c

C(x1,y1, z1;x2,y2, z2)fi(x2,y2, z2)dDx2dDy2dDz2

= λifi(x1,y1, z1) .

(6.52)

Substituting the three-dimensional covariance kernel (6.30) into equation (6.52) leads
to the solution of the corresponding eigenvalue problem, which is, for simplicity rea-
sons, split into the three one-dimensional solutions as follows:

a∫

−a

e−
|x1−x2|

cx fix (y) dDx2 = λixfix (x1) , (6.53a)

b∫

−b

e
−

|y1−y2|
cy fiy (y2)dDy2 = λiyfiy (y1) , (6.53b)

c∫

−c

e−
|z1−z2|

cz fiz(z2) dDz2 = λizfiz(z1) . (6.53c)

Similarly to the two-dimensional case, the resulting eigenvalues λi are products of the
one-dimensional solutions, i.e.

λi = λ1Dix λ1Diy λ1Diz , (6.54)

and for the eigenfunctions f(x,y, z) the procedure is analogously, i.e.

fi(x,y, z) = fix(x)fiy (y)fiz (z) . (6.55)

Three-Dimensional Example

Let D be a domain in R3 with the dimensions [0, a]× [0, b]× [0, c], with a = b = c = 1.
The covariance function has the properties (x1, y1, z1), (x2, y2, z2) ∈ D and the
correlation length is cx = cy = cz = 1. The corresponding approximation of the
random field, truncated after the first six terms reads

Ĥα(x,y, z, θ) ≈ σα

6∑

i=1

√
λifi(x,y, z)ξi(θ) , (6.56)

with the corresponding eigenfunctions fi(x,y, z), given on the next page.
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f1(x,y, z) = 1.2336 cos(1.3065x) cos(1.3065y) cos(1.3065z)

f2(x,y, z) = 1.5249 sin(3.6732x) cos(1.3065y) cos(1.3065z)

f3(x,y, z) = 1.5249 cos(1.3065x) sin(3.6732y) cos(1.3065z)

f4(x,y, z) = 1.5249 cos(1.3065x) cos(1.3065y) sin(3.6732z)

f5(x,y, z) = 1.5913 cos(6.5846x) cos(1.3065y) cos(1.3065z)

f6(x,y, z) = 1.5913 cos(1.3065x) cos(6.5846y) cos(1.3065z)

and the associated eigenvalues λi are determined as

λ1 = 0.4032, λ2 = 0.0753, λ3 = 0.0753,

λ4 = 0.0753, λ5 = 0.0246, λ6 = 0.0246 .

The resulting curves for the variance and the covariance profiles are depicted in Fig.
6.4, where the target curve, the two-, four- and the six-term KLE are illustrated. The
corresponding equations for the curves are defined by, cf. Anders [2000],

Cov(x,x) = Ĥα

(
−1

2
(a, b, c) + x(a, b, c),−1

2
(a, b, c) + x(a, b, d)

)
, (6.57)

Cov(x, 1− x) = Ĥα

(
−1

2
(a, b, c) + x(a, b, c),−1

2
(a, b, c) + (1 − x)(a, b, c)

)
(6.58)

where x ∈ [0, 1] and the standard deviation σα in each direction is assumed to σα = 1.
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Concluding Remarks

From the results displayed on the left hand side in Figs. 6.2−6.4, it is obvious that
the variance is fluctuating with regard to the spatial coordinate x and the error at
the boundaries of the domain D is larger compared to that of the middle region.
Furthermore, it can be noticed that the convergence to the target value (σ2 = 1)
is faster for the one-dimensional case than for the two- and three-dimensional cases,
because the solution for the multi-dimensional case are products of the solutions
of the one-dimensional case, as can be seen when considering equations (6.48) and
(6.55). The graphs on the right hand side in Figs. 6.2−6.4 show the cross-section of
the covariance function. From these plots it is obvious that the KLE comes closer
to the target curve by an increasing M . Furthermore, it should be remarked that
the number of dimensions of M , which are applied in this work, corresponds to the
number of terms that are used in most applications in the literature, for instance,
Sudret and der Kiureghian [2000] or Ghanem and Spanos [2003]. This is also a rea-
sonable choice in this work, because the material properties of steel, which are exclu-
sively used in this work, varies smoothly at the interesting scales and these variations
can be sufficiently capture by a moderat number of M . For a detailed discussion of
the convergence properties, the truncation order should have at least M = 20 and
more terms, see e.g., Stefanou and Papadrakakis [2007] where a detailed assessment
of the KLE is presented. It is emphasized that this applies only for the KLE alone.
When the KLE is used for the characterization of random input parameters in the
framework of SSFEM3, the dimension M should be small, because the resulting poly-
nomial basis P increases drastically with increasing M . A detailed discussion on the
polynomial chaos will be given in the next chapter.

6.3.2. Numerical Solution of the Integral Equation

As already remarked in the previous subsection, analytical solutions for the Fred-

holm integral equation (6.20) are only available for a few autocovariance functions and
simple geometries. Closed form solutions for exponential and triangular covariance
functions for one-dimensional homogeneous fields are given in Spanos and Ghanem
[1989] and Ghanem and Spanos [2003]. Except for these particular examples the
Fredholm integral equation has to be solved numerically. A widely used strategy is
the approximation of the eigenfunctions {fk(x)}∞k=1 by a combination of basis func-
tions hi(x). For the choice of the basis different approaches are available, which are
listed below:

• Piecewise polynomials used by Ghanem and Spanos [2003],

• orthogonal Legendre polynomials used by Zhang and Ellingwood [1994] and

• wavelets used by Phoon et al. [2004].

In this work, the approach, presented by Ghanem and Spanos [2003] is pursued.
They developed a Galerkin-type procedure for numerical solutions and illus-
trated this approach through its application to a two-dimensional curved geome-
try. This formulation will be presented below (for the sake of clarity) for the one-
dimensional case. Similar derivations of the numerical solution can be also found in
Sudret and der Kiureghian [2000]; Ghanem and Spanos [2003]; Le Maître and Knio
[2010].

3SSFEM: Spectral Stochastic Finite Element Method. For a detailed discussion see chapter 8.
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Let hi(x) be a complete set of functions in the Hilbert space L2(D). It is possible to
write the eigenfunctions of the covariance function C(x1,x2) as a linear combination
of the interpolation functions {hi(x)}∞i=1 as follows, cf. Ghanem and Spanos [2003]:

fk(x) =
∞∑

i=1

dki hi(x) , (6.59)

where the coefficients {dki }∞i=1 are the unknown nodal values of the eigenfunctions of
the k-th element. Truncating equation (6.59) after the N-th term, and substituting
it afterwards into equation (6.20) gives the residual, cf. Ghanem and Spanos [2003],

ǫN (x) =
N∑

i=1

dki




∫

D

C(x1, x2)hi(x2) dDx2 − λkhi(x1)



 . (6.60)

Requiring that the truncated series being the projection of fk(·) onto the space HN ,
spanned by the set {hi(· ), i = 1, 2, ... N} implies that ǫM is orthogonal to HN in
L2(D). With this at hand and with respect to the inner product (6.3), the following
expression is obtained, cf. Sudret and der Kiureghian [2000]:

〈ǫN , hj(x)〉 =
∫

D

ǫN (x)hj(x) dDx1 = 0 , j = 1, 2, ... N . (6.61)

Substituting (6.60) into equation (6.61) and after some rearrangement leads to

N∑

i=1

dki




∫

D




∫

D

C(x1, x2)hi(x2)dDx2



hj(x1)dDx1 − λk

∫

D

hi(x)hj(x)dDx1



 = 0 ,

(6.62)

which finally results in the generalized algebraic eigenvalue problem

WD = ΛAD . (6.63)

This linear system may be solved for the matrix DDD and the eigenvalues {λi}Ni=1, where
the individual matrices are given by

Aij =

∫

D

hi(x)hj(x) dDx1 , (6.64)

Wij =

∫

D

∫

D

C(x1,x2)hi(x1)hj(x2)dDx1dDx2 , (6.65)

Dij = dki , (6.66)

Λij = δijλj . (6.67)

This solution scheme can be implemented using the FE-mesh shape functions as the
basis set {hi(·)} and {hj(·)}. The eigenvalues {λi}Ni=1 are the diagonal elements of
the matrix Λ and the set of eigenfunctions {fk(x)}Nk=1 of the covariance function are
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obtained by substituting the solutions of the matrix D back into equation (6.59).
Based on the correlation structure over the hole domain the matrix W is a dense
matrix whereas the matrix A is usually sparse and both matrices are positive definite.

In general, by a KLE other than by a classical eigenvalue calculation the highest
eigenvalues are sought, because the highest eigenfunctions represents the longest wave-
lengths. For smaller eigenvalues the associated eigenfunctions are short waves. The
precision of the approximation for the eigenvalues decreases with smaller eigenvalues,
because the fluctuation of the associated eigenvalues are on higher frequency over the
domain and with linear shape functions are no longer satisfactory mappable. Hence
only a few solutions of equation (6.63) should be used for the representation of the
random field since there is a risk of tampering by the solution with small eigenval-
ues. In view of the representation of material properties, a higher number of random
variables ξi captures higher frequency random fluctuations, whereas a few random
variables should only be used for the approximation of slow varying material proper-
ties. In addition, for a good representation of the correlation structure, especially for
small correlation lengths, the FE-discretization must be fine.

6.3.3. Example for the Numerical Solution of the Integral Equation

In this subsection, the analytical and the numerical KLE are compared by using a
Gaussian homogeneous random field with zero mean and unit variance where the
investigated domains are shown in Fig. 6.5. The two-dimensional FE models are
discretized using shell elements with piecewise linear shape functions and the three-
dimensional FE models are discretized with brick elements using piecewise linear
shape functions. In the table below, the investigated FE models, with their number
of elements and degrees of freedom (d.o.f.), are summarized.

Table 6.1.: Number of elements and degrees of freedom of the investigated FE models.

Dimension of the domain D Number of Elements Degrees of Freedom
Plate with a coarse mesh 16 50
Plate with a fine mesh 1600 ≈ 3360

Cube with a coarse mesh 64 375
Cube with a fine mesh 2197 ≈ 8230

The applied covariance functions are given by equations (6.29) and (6.30), where for
each case different correlation lengths c = 0.01, 0.1, 1.0, 10 are applied to show the
influence of the scale of correlation, on the quality of the solution of the eigenvalues.
Note, that the correlation lengths in each direction are identical, i.e. cx = cy =
cz = 1.0 or cx = cy = cz = 10 etc. The exact eigenvalues are calculated by solving
the Fredholm integral equation (6.20) with respect to the dimension, i.e. two- or
three-dimensional and the numerical values are computed by evaluating equation
(6.63). As already mentioned in subsection 6.3.2 one limit of the correlation length
is zero, i.e. the covariance function takes the form of a delta function, as depicted
in Fig. 6.1 (a). In this case, the eigenvalues remain constant, as can be seen in
Figs. 6.6 and 6.7, where this case is illustrated by the straight lines. The other
limit is the completely correlated field, i.e. the correlation length is infinite. Here,
only the first eigenvalue is non-zero and the remaining eigenvalues are very small in
comparison to the first eigenvalue. The strong decrease of the eigenvalues in this
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Figure 6.5.: Investigated FE models.
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Figure 6.6.: Exact and approximate Eigenvalues λM of the covariance function given
by equation (6.29), M = 1, ... 10 and using different correlation lengths c.
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Figure 6.7.: Exact and approximate Eigenvalues λM of the covariance function given
by equation (6.30), M = 1, ... 10 and using different correlation lengths c.
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Table 6.2.: Computational time for the numerical solution of the eigenvalues.

Dimension of the domain D Computational time in sec.
Plate with a coarse mesh < 1 sec.
Plate with a fine mesh ≈ 8000 sec.

Cube with a coarse mesh ≈ 30 sec.
Cube with a fine mesh ≈ 74500 sec.

case can is illustrated by the dotted lines in Figs. 6.6 and 6.7. Moreover, the results
in these figures show the generally good match between the analytical (lines) and
numerical evaluation (only markers) of the eigenvalues, whereas the large discrepancy
by applying a small correlation length of c = 0.01 is also obvious in these figures.
The similarities/deviations of the results can be seen very good in Figs. 6.8 and 6.9,
where the relative errors

ǫλ =
cnumeric − canalytic

canalytic
· 100% , (6.68)

of the analytical and the corresponding numerical evaluation of the eigenvalues are
shown. Theoretically, the numerical and analytical eigenvalues are identical if an
infinite small interval for the FE discretization is used. However, in practical applica-
tions the computational costs for the realization of such a fine discretization for the
mechanical structure as well as for the random field realization are disproportional,
which becomes clear when comparing the computation times4 for the determination
of the eigenvalues in Tab. 6.2.

Concluding Remarks

With the numerical investigations in this subsection, an important property of the
KLE has been demonstrated, namely the influce of the correlation length on the
accuracy of the solution of the eigenvalues. For a given covariance function the decay
rate of the eigenvalues depends inversely on the correlation length. For instance, a
long correlation length implies that the field is strongly correlated and the eigenvalues
drops faster. The limit of this, the infinite correlation length, is the fully correlated
field where the eigenvalues decay to zero immediately. On the other hand, a weakly
correlated field has a short correlation length, where the decay of the eigenvalues is
slow. Here is the limit the uncorrelated field, i.e. where the correlation length is zero.
In this case, the eigenvalues have no eigenvalue decay, i.e. are being constant. Finally,
regarding to the solution time of the two- and three-dimensional calculation of the
eigenvalues, which are reported in Tab. 6.2. From this listing, it is obvious that the
fine discretizations requires drastically more computation time than the coarse meshes
by no significantly improving results.

4All computations are performed on a Intel Xeon server with 32 Intel Xeon E5-2680 processors,
each of them with 2,7 GHz and a total memory of 256 GB.
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Figure 6.8.: Relative error ǫλ of the eigenvalues using different correlation lengths c
for the two-dimensional plate.
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Figure 6.9.: Relative error ǫλ of the eigenvalues using different correlation lengths c
for the three-dimensional cube.
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6.4. Spectral Representation Method

The Spectral Representation Method is a further method that is commonly applied
for the representation of Gaussian stochastic fields. The generation of sample
functions for stochastic fields, which describe the random parameters of the un-
derlying system, can also be done by using the spectral representation theorem.
Shinozuka and Deodatis [1991] show that sample functions produced by the spec-
tral representation theorem are not ergodic. They provide an alternative formulation
which generates sample functions by a cosine series formula of the SPRM and shows
that this formulation results in ergodic sample functions. Besides the KLE this for-
mulation seems simultaneously the most applied one in engineering applications for
the representation of random properties. This method is also applied in this thesis for
the analysis of elastic-plastic problems with respect to random material parameters.

Numerous papers dealing with simulations of random processes / fields have been pub-
lished in the last four decades. Apart from the cited publications in the subsection
5.3.1 here are some publications listed which deal with uncertain material and ge-
ometry properties. These are: Shinozuka and Lenoe [1976]; Shinozuka and Deodatis
[1996]; Stefanou and Papadrakakis [2004]. One of the first publications which deals
with the representation of uncertain material parameters is the article, presented by
Shinozuka and Lenoe [1976]. An extended formulation of stochastic fields realized by
the SPRM can be found in Shinozuka and Deodatis [1996] where the simulation of
multi-dimensional univariate Gaussian fields are presented and a specific applica-
tion can be found in Stefanou and Papadrakakis [2004]. Here, the SPRM is applied
to represent material and geometrical uncertainties of shells by uncorrelated two-
dimensional stochastic fields. The SPRM is well suited in the context of the Monte
Carlo simulation technique whereas the application of parallel computing is straight
forward.

In the following subsections the methodology of the SPRM is presented for two-
dimensional and three-dimensional random fields. The theoretical contexts are
essentially a summary of the article proposed by Shinozuka and Deodatis [1996].
It should be remarked that the Fast Fourier Transform (FFT) version, cf.
Shinozuka and Deodatis [1991, 1996], is not applied in this thesis, because the val-
ues of the stochastic field are needed at non-uniformly spaced points. Finally, the
generation of random fields with multivariate variables, cf. Deodatis [1996b, 1997],
is also not being considered here, because all random parameters are assumed to be
independent from each other.

6.4.1. Simulation of 2-D Univariate Homogeneous Stochastic Fields

Let HS(x,y, θ) be a two-dimensional univariate (2D-1V) homogeneous real valued
stochastic field with mean value equal to zero and bi-quadrant power spectral density
function SHSHS

(ωx, ωy). The corresponding spectral representation of the random
field reads, cf. Shinozuka and Deodatis [1996]:

HS(x,y, θ) =

∞∫

−∞

∞∫

0

[cos(κxx+ κyy)du(κx, κy)

+ sin(κxx+ κyy) dν(κx, κy)] .

(6.69)
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The parameters du(κx, κy) and dν(κx, κy) are the orthogonal increments of the inde-
pendent real valued random fields u(κx, κy) and ν(κx, κy) where both have a mean
value equal to zero and the requirements

E [u(κx, κy)] = E [ν(κx, κy)] = 0 , (6.70)

E [du(κx, κy)] = E [dν(κx, κy)] = 0 , (6.71)

must be satisfied by each random field of this kind. The power spectral density
function SHSHS

(κx, κy) and the autocovariance function CHSHS
(τx, τy) constitute

the two-dimensional Wiener-Khintchine5 transform pair

SHSHS
(κx, κy) =

1

(2π)2

∞∫

−∞

∞∫

−∞

CHSHS
(τx, τy)e

−i(κxτx+κyτy) dτxdτy , (6.72)

CHSHS
(τx, τy) =

∞∫

−∞

∞∫

−∞

SHSHS
(κx, κy)e

i(κxτx+κyτy) dκxdκy , (6.73)

where τx and τy are the separation distances along the x and y axes, respectively, and
κx, κy are the corresponding wave numbers. After some algebraic manipulations, see
Shinozuka and Deodatis [1996], equation (6.69) can be rewritten as

HS(x,y, θ) =
√
2

∞∑

nx=0

∞∑

ny=0
{√

2SHSHS
(κxnx

, κyny
)∆κx∆κy cos

(
κxnx

x+ κyny
y +Φ

(1)
nxny (θ)

)}
+

{√
2SHSHS

(κxnx
,−κyny

)∆κx∆κy cos
(
κxnx

x− κyny
y +Φ

(2)
nxny

(θ)
)}

.

(6.74)

Here, Φ(1)
nxny

(θ) and Φ
(2)
nxny

(θ) are two different sets of random phase angles, which are
uniformly distributed in the range [0, 2π]. By making use of the symmetry properties

CHSHS
(τx, τy) = CHSHS

(−τx,−τy) ,
SHSHS

(κx, κy) = SHSHS
(−κx,−κy) ,

(6.75)

and truncating the infinite series in equation (6.74) after a finite number the following
formulation is obtained, Shinozuka and Deodatis [1996]:

ĤS(x,y, θ) =

√
2

Nx−1∑

nx=0

Ny−1∑

ny=0

[
Anxnycos

(
κxnx

x+ κyny
y+ Φ

(1)
nxny

(θ)
)

+Ãnxnycos
(
κxnx

x− κyny
y + Φ

(2)
nxny

(θ)
)]

,

(6.76)

5See also Appendix D
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where the •̂ denotes the discretized formulation of the random field. The parameters
in equation (6.76) are given by

Anxny =
√

2SĤSĤS
(κxnx

, κyny
)∆κx∆κy (6.77)

Ãnxny =
√

2S
ĤSĤS

(κxnx
,−κyny

)∆κx∆κy (6.78)

κxnx
= nx∆κx ; κyny

= ny∆κy (6.79)

∆κx =
κxu

Nx
; ∆κx =

κyu

Ny
, (6.80)

with the subsequent relations

A0ny = Anx0 = 0 for nx = 0, 1, 2, ...Nx − 1 and ny = 0, 1, 2, ...Ny − 1 ,

Ã0ny = Ãnx0 = 0 for nx = 0, 1, 2, ...Nx − 1 and ny = 0, 1, 2, ...Ny − 1 .
(6.81)

Here, κxu and κyu
in equation (6.79) are the cut-off wave numbers defining the space

domain along the corresponding axes x and y of the power spectral density function
SĤSĤS

(x, y). To be more specific, this means, that SĤSĤS
(·) is set to zero for any

mathematical or physical reason when it lies outside the regions

−κxu ≤ κx ≤ κxu and − κyu
≤ κy ≤ κyu

. (6.82)

Due to the fact that κxu and κyu
have fixed values, the wave number steps ∆κx and

∆κy tends to zero when Nx and Ny tends to infinity. For a given number of terms
for Nx and Ny, ∆κx and ∆κy are constant and it yields

Nx∆κx = κxu ,

Ny∆κy = κyu .
(6.83)

In the following listing the properties of ĤS(x,y, θ) are summarized, see also
Shinozuka and Deodatis [1996]:

• The simulated stochastic field ĤS(x,y, θ) is periodic with

Lx0 =
2π

∆κx
along the x axis (6.84)

Ly0 =
2π

∆κy
along the y axis . (6.85)

This means, that with a smaller ∆κi, i = x, y or equivalently with a larger n
under a specific cut-off wave number κiu , i = x, y the longer the period of the
simulated field ĤS(x,y, θ) gets.

• The stochastic field ĤS(x,y, θ) is asymptotically Gaussian as Nx, Ny → ∞
due to the central limit theorem, cf. Shinozuka and Deodatis [1991].

• The expected value and the autocorrelation function of the simulated field are
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both identical to the corresponding targets, i.e.

E

[
ĤS(x,y, θ)

]
= E [HS(x,y, θ)] (6.86)

CĤSĤS
(τx, τy) = CHSHS

(τx, τy) . (6.87)

To generate a sample function Ĥ
(i)
S (x,y, θ) the random phase angles Φ

(1)
nxny (θ) and

Φ
(2)
nxny

(θ); nx = 0, 1, 2, ...Nx − 1; ny = 0, 1, 2, ...Ny − 1 must be substituted by their

corresponding i-th realizations φ(1)(i)nxny
(θ) and φ

(2)(i)
nxny

(θ); nx = 0, 1, 2, ...Nx − 1; ny =
0, 1, 2, ...Ny − 1. With respect to the realizations of the phase angles, equation (6.76)
can be rewritten as

Ĥ
(i)
S (x,y, θ) =

√
2

Nx−1∑

nx=0

Ny−1∑

ny=0

[
Anxnycos

(
κxnx

x+ κyny
y+ φ

(1)(i)
nxny

(θ)
)

+Ãnxnycos
(
κxnx

x− κynx
y + φ

(2)(i)
nxny

(θ)
)]

,

(6.88)

where the realizations of φ(1)(i)nxny (θ) and φ
(2)(i)
nxny (θ) can be sampled by the methods

discussed in section 4.4. The space increments ∆x and ∆y separate the generated
values H(i)

S (x,y, θ) by

∆x ≤ 2π

2κxu

,

∆y ≤ 2π

2κyu

,

(6.89)

where this restriction must be set to prevent aliasing according to the sampling the-
orem, cf. Eveleigh [1996]. Every sample function generated by equation (6.88) is er-
godic in the mean value and in the autocorrelation when the rectangular area Lx×Ly

over which Ĥ(i)
S (x,y, θ) is simulated is equal to one period, i.e.

Lx = Lx0 and Ly = Ly0 , (6.90)

or when it approaches infinity

Lx = ∞ and Ly = ∞ . (6.91)

The only randomness in equation (6.88) occours through the uniformly distributed
phase angle θ. It is also possible to generate weakly ergodic sample functions with a
random phase angle as well as random amplitudes, but this is not considered further
at this point. Therefore, the reader is referred to the textbook by Grigoriu [1993].

The Special Case of Two-Dimensional Quadratic Fields

The simulation formula for a quadratic homogeneous stochastic field, denoted by
ĤS�

(x,y, θ), differs only in one term of the general case for homogeneous two-
dimensional stochastic fields as defined in equation (6.76).
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The quadratic stochastic field ĤS�
(x,y, θ) can be computed by, cf.

Shinozuka and Deodatis [1996],

ĤS�
(x,y, θ) =

√
2

Nx−1∑

nx=0

Ny−1∑

ny=0

Anxny

[
cos
(
κxnx

x+ κyny
y +Φ

(1)
nxny (θ)

)

+cos
(
κxnx

x− κyny
y+ Φ

(2)
nxny (θ)

)]
.

(6.92)

The only difference is Ãnxny , which is replaced through Anxny , because the terms
are equal in the quadratic case, with the symmetry conditions

CĤSĤS
(τx, τy) = CĤSĤS

(τx,−τy) = CĤSĤS
(−τx, τy) = CĤSĤS

(−τx,−τy) , (6.93)

and

SĤSĤS
(κx, κy) = SĤSĤS

(κx,−κy) = SĤSĤS
(−κx, κy)

= SĤSĤS
(−κx,−κy) ,

(6.94)

as listed in Shinozuka and Deodatis [1996]. All parameters in equation (6.92) have
already been defined with reference to equation (6.76) and therefore are not repeated
here again.

6.4.2. Two-Dimensional Numerical Example

A first example will be given with respect to the generation of the randomly and
uniformly distributed phase angle Φ, introduced in equation (6.74). The only input
parameter for Φ is the range where the uniform distribution is defined, i.e. [0, 2π].
The used sample sizes are listed in Tab. 6.3. By use of equations (B.12) and (B.13),
given in Appendix B, the mean value of Φ computed as µΦ = π and the standard
deviation is calculated as σΦ ≈ 1, 8138. The results for the sampling are also reported
in Tab. 6.3 and plotted in Fig. 6.10. The MCS shows relatively large deviations from
the target values, where the target values even with 20000 samples are not being
achieved. On the other hand, the LHS and the Sobol’ sequence6 reached the target
mean relatively fast while the standard deviation is only achieved at 20000 samples.
The errors of the LHS and the Sobol’ sequence occur during the study of small size,
i.e. for µ̂Φ and σ̂Φ less than 1%, while the maximal errors for the MCS are nearly 5%
for µ̂Φ and around 4% for σ̂Φ. It should be remarked, that the used quasi-random
sequences, cf. subsection 4.4.3, are deterministic point sets. This means, that these
sequences are not directly applicable to simulations due to the correlations between
the sample points (Morokoff and Caflisch [1993, 1994, 1995]; Morokoff [1998]) and a
direct efficient simulation of material parameters is only possible if the samples are
reordered. To overcome this drawback some scrambling, cf. Owen [1994]; Matoušek
[1998], is used to put enough randomness in the sequences.

6This term will be used instead of QMC-Method, because a Sobol’ sequence is exclusively used
to generate a deterministic point set.
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Table 6.3.: Results of the sampled values for µ̂Φ and σ̂Φ of the uniformly distributed
phase angle Φ.

Sample size Sampling technique Sampled value µ̂Φ Sampled value σ̂Φ

100
MCS 2.9922 1.7439
LHS 3.1400 1.8250

Sobol’ sequence 3.1411 1.8290

500
MCS 3.2399 1.7603
LHS 3.1418 1.8156

Sobol’ sequence 3.1417 1.8186

1000
MCS 3.1353 1.8003
LHS 3.1417 1.8147

Sobol’ sequence 3.1416 1.8134

2500
MCS 3.1308 1.7878
LHS 3.1416 1.8142

Sobol’ sequence 3.1416 1.8144

5000
MCS 3.1500 1.8131
LHS 3.1416 1.8140

Sobol’ sequence 3.1416 1.8137

10000
MCS 3.1195 1.8263
LHS 3.1416 1.8139

Sobol’ sequence 3.1416 1.8139

20000
MCS 3.1423 1.8170
LHS 3.1416 1.8138

Sobol’ sequence 3.1416 1.8138

Two-Dimensional Representation of a Stochastic Field

The generation of a zero-mean Gaussian stochastic field is based on the generation of
a set of sample functions ĤS(·), given by equation (6.76). The power spectral density
function SĤSĤS

appearing in equations (6.77) and (6.78) is given below:

S
ĤSĤS

(κx, κy) = σ2
cxcy

4π
exp

[
−
( cxκx

2

)2
−
( cyκy

2

)2]
, (6.95)

which has also been applied by Shinozuka and Deodatis [1996] and
Stefanou and Papadrakakis [2004]. The parameters that are used to generate
a discretized stochastic field ĤS(x,y, θ) are listed below.

• The correlation length parameters cx and cy and the standard deviation σ of
the random field are

cx = 1.0m, cy = 1.0m, σ = 1 . (6.96)

• The upper cut-off wave numbers, defined in equation (6.80), are specified by

κxu = 5.00
rad
m

and κyu
= 5.00

rad
m

. (6.97)
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Figure 6.10.: Plot of the results from Tab. 6.3.

• The parameters Nx and Ny, also appearing in equation (6.80), are chosen to

Nx = Ny = 48 , (6.98)

with which the parameters ∆κx and ∆κy in equation (6.80) are determined to

∆κx = ∆κy = 0.1042
rad
m

. (6.99)

• The periods Lx0 and Ly0
, given in equations (6.84) and (6.85), are calculated

as

Lx0 = Ly0
= 60.32m . (6.100)

With this parameters and with the aid of a LHS and Sobol’ sequences, Gaussian

stochastic fields are generated. For comparison a simulation with a MCS with 1000
samples has also been performed. All sample functions are realized over a range with
the dimensions Lx = 20.11m and Ly = 20.11m. In Fig. 6.11 the results for the
sample functions with n = 1000 samples are plotted.

To see how well a stationary Gaussian field, applying the SPRM, is simulated the
sampled skewness ŝĤS

and the sampled excess7 κ̂ĤSe
of the generated fields are

compared. The results of this investigation are reported in Tab. 6.4. The comparison
of the obtained values with the target values clearly shows that the target skewness
is quite good approximated with already n = 100 samples. The target value for the
skewness is achieved by n = 250 samples using a LHS, while the Sobol’ sequence
shows an asymptotic line against κ̂ĤSe

= 0.6. This result is further discussed with
respect to Fig. 6.12, where the histograms for the stochastic fields in Fig. 6.11 are
plotted. Besides the histogram the fitted Gaussian curves are also plotted, where it
can be clearly seen that the sampled values by the Sobol’ sequence are accumulated
closer to the expected value what correlates with the value for the excess. Also the
obtained result with a MCS shows a good or even more accurate solution than this

7For a Gaussian distribution the target values for ŝ
ĤS

and for κ̂
ĤSe

are both equal to zero.
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(c) Generated with a MCS.

Figure 6.11.: Sample functions of a stochastic field ĤS(x,y, θ).

one reached with a Sobol’ sequence. In summary, the sampled skewness and excess
are relatively near to the target values, where a LHS performs better than a Sobol’

sequence. Furthermore, the sampled values shows a decreasing trend as the number
of samples increases, but no further improvement is visible from a certain sample size
when comparing the results in Tab. 6.4. The obtained result with respect to a MCS
shows a quite well approximation, which has not been expected. In addition, the
evolution of the skewness and excess over the samples are plotted in Appendix D.
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Table 6.4.: Reached values for the sampled skewness and sampled excess for ĤSe(x,y).

Samples Sampling technique for Φ ŝĤS
κ̂ĤSe

100
LHS 0.01172 0.04589

Sobol’ -0.01078 0.60408

250
LHS 0.00632 0.00691

Sobol’ -0.00678 0.60278

500 LHS -0.00958 0.01563
Sobol’ -0.01229 0.60940

1000
MCS -0.00262 -0.03962
LHS 0.00425 0.00942

Sobol’ 0.00219 0.58486
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Figure 6.12.: Histograms and Gaussian fit of the sample functions of ĤS(x,y, θ) dis-
played in Fig. 6.11.
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6.4.3. Simulation of 3-D Univariate Homogeneous Stochastic Fields

The three-dimensional simulation of a homogeneous stochastic field is a straight for-
ward extension of the two-dimensional case. First, the extended formulas and relations
are specified. Afterwards, the simulation formula for the three-dimensional case will
be given.

Let HS(x,y, z, θ) be a three-dimensional univariate (3D-1V) homogeneous real val-
ued stochastic field with mean value equal to zero, a power spectral density func-
tion SHSHS

(κx, κy, κz) and an autocovariance function CHSHS
(τx, τy, τz). The

power spectral density function and the autocovariance function constitute the three-
dimensional Wiener-Khintchine transform pair, cf. Shinozuka and Deodatis [1996],

SHSHS
(κx, κy, κz) =

1

(2π)3

∞∫

−∞

∞∫

−∞

∞∫

−∞

CHSHS
(τx, τy, τz)e

−i(κxτx+κyτy+κzτz) dτxdτydτz ,
(6.101)

CHSHS
(τx, τy, τz) =

∞∫

−∞

∞∫

−∞

∞∫

−∞

SHSHS
(κx, κy, κz)e

i(κxτx+κyτy+κzτz) dκxdκydκz .

(6.102)

Here, τx, τy and τz are the separation distances along the x, y and z coordi-
nate axes and κx, κy and κz are the corresponding wave numbers. The simu-
lation formula for the three-dimensional series is extended to the third direction
z, similar to the two-dimensional case defined in equation (6.76). The simula-
tion formula ĤS(x,y, z, θ) of a three-dimensional stochastic field HS(x,y, z, θ), with
SĤSĤS

(κx, κy, κz), CĤSĤS
(τx, τy, τz) and the symmetries

CĤSĤS
(τx, τy, τz) = CĤSĤS

(−τx,−τy,−τz) ,
S
ĤSĤS

(κx, κy, κz) = S
ĤSĤS

(−κx,−κy,−κz) ,
(6.103)

is given ba, cf. Shinozuka and Deodatis [1996],

ĤS(x,y, z, θ) =
√
2

Nx−1∑

nx=0

Ny−1∑

ny=0

Nz−1∑

nz=0
[
A

(1)
nxnynzcos

(
κxnx

x+ κyny
y + κznz

z+ Φ
(1)
nxnynz (θ)

)

+ A
(2)
nxnynz

cos
(
κxnx

x− κyny
y + κznz

z+ Φ
(2)
nxnynz

(θ)
)

+ A
(3)
nxnynz

cos
(
κxnx

x+ κyny
y − κznz

z+ Φ
(3)
nxnynz

(θ)
)

+ A
(4)
nxnynzcos

(
κxnx

x− κyny
y − κznz

z+ Φ
(4)
nxnynz (θ)

)]
,

(6.104)
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with the following parameters:

A
(1)
nxnynz

=
√

2SĤSĤS
(κxnx

, κyny
, κznz

)∆κx∆κy∆κz , (6.105)

A
(2)
nxnynz =

√
2SĤSĤS

(κxnx
,−κyny

, κznz
)∆κx∆κy∆κz , (6.106)

A
(3)
nxnynz =

√
2SĤSĤS

(κxnx
, κyny

,−κznz
)∆κx∆κy∆κz , (6.107)

A
(4)
nxnynz

=
√

2S
ĤSĤS

(κxnx
,−κyny

,−κznz
)∆κx∆κy∆κz , (6.108)

κxnx
= nx∆κx ; κyny

= ny∆κy ; κznz
= nz∆κz , (6.109)

∆κx =
κxu

Nx
; ∆κy =

κyu

Ny
; ∆κz =

κzu

Nz
, (6.110)

and the relations

A
(j)
0nynz

= A
(j)
nx0nz

= A
(j)
nxny0

= 0 for j = 1, 2, 3, 4 and

nx = 0, 1, 2, ...Nx − 1; ny = 0, 1, 2, ...Ny − 1; nz = 0, 1, 2, ...Nz − 1 .
(6.111)

Here, κxu , κyu
and κzu are the cut-off wave numbers defining the space domain along

the x, y and z axes of the power spectral density function S
ĤSĤS

(x,y, z), which is
set to zero for any mathematical or physical reason if it lies outside the region defined
by

−κxu ≤ κx ≤ κxu , −κyu ≤ κy ≤ κyu
and − κzu ≤ κz ≤ κzu . (6.112)

Due to the fact that κxu , κyu and κzu have fixed values, the wave number steps
∆κx, ∆κy and ∆κz tends to zero while Nx, Ny and Nz tends to infinity. For a given
number of terms Nx, Ny and Nz, ∆κx, ∆κy and ∆κz are constant and it follows

Nx∆κx =κxu , (6.113)

Ny∆κy =κyu
, (6.114)

Nz∆κz =κzu . (6.115)

The independent random phase angles Φ
(j)
nxnynz

(θ), nk = 0, 1, 2, ... Nk − 1, j =
1, 2, 3, 4, k = x, y, z in equation (6.104) are uniformly distributed in the range [0, 2π].
The properties of ĤS(x,y, z, θ) are identical to those listed for the two-dimensional
case ĤS(x,y, θ), so they will only be summarized shortly below.

• The simulated stochastic field ĤS(x,y, z, θ) is periodic with period

Lx0 =
2π

∆κx
along the x axis , (6.116)

Ly0 =
2π

∆κy
along the y axis , (6.117)

Lz0 =
2π

∆κz
along the z axis . (6.118)

• The simulated stochastic field ĤS(x,y, z, θ) is asymptotically Gaussian as
Nx, Ny, Nz → ∞.
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• The expected value and the autocorrelation function of the simulated field are
both identical to the corresponding targets

E

[
ĤS(x,y, z, θ)

]
= E [HS(x,y, z, θ)] ,

CĤSĤS
(τx, τy, τz) = CHSHS

(τx, τy, τz) .
(6.119)

To generate a sample function Ĥ
(i)
S (x,y, z, θ) the random phase angles Φ

(1)
nxnynz

(θ),

Φ
(2)
nxnynz

(θ), Φ(3)
nxnynz

(θ) and Φ
(4)
nxnynz

(θ), nk = 0, 1, 2, ...,Nk−1, k = x, y, z are sub-

stituted by their corresponding i-th realizations φ(1)(i)nxnynz
(θ), φ(2)(i)nxnynz

(θ), φ(3)(i)nxnynz
(θ)

and φ
(4)(i)
nxnynz (θ), nk = 0, 1, 2, ...,Nk − 1, k = x, y, z. With respect to the realizations

of the phase angles φ(j)(i)nxnynz (θ), j = 1, 2, 3, 4, the series representation in equation
(6.104) can be rewritten, cf. Shinozuka and Deodatis [1996],

Ĥ
(i)
S (x,y, z, θ) =

√
2

Nx−1∑

nx=0

Ny−1∑

ny=0

Nz−1∑

nz=0
[
A

(1)
nxnynzcos

(
κxnx

x+ κyny
y + κznz

z+ φ
(1)(i)
nxnynz (θ)

)

+ A
(2)
nxnynzcos

(
κxnx

x− κyny
y + κznz

z+ φ
(2)(i)
nxnynz (θ)

)

+ A
(3)
nxnynz

cos
(
κxnx

x+ κyny
y − κznz

z+ φ
(3)(i)
nxnynz

(θ)
)

+ A
(4)
nxnynz

cos
(
κxnx

x− κyny
y − κznz

z+ φ
(4)(i)
nxnynz

(θ)
)]

,

(6.120)

where the realizations φ
(j)(i)
nxnynz (θ), j = 1, ... 4 are generated by a LHS. To avoid

aliasing the space increments ∆x, ∆y and ∆z, which separate the generated values
Ĥ

(i)
S (x,y, z, θ), have to obey

∆x ≤ 2π

2κxu

, ∆y ≤ 2π

2κyu

and ∆z ≤ 2π

2κzu

. (6.121)

Every sample function, generated by equation (6.120) is ergodic in the mean value and
autocorrelation when the domain Lx×Ly×Lz over which Ĥ(i)

S (x,y, z, θ) is simulated,
is equal to one period

Lx = Lx0, Ly = Ly0 and Lz = Lz0 , (6.122)

or when it approaches infinity, i.e.

Lx = ∞, Ly = ∞ and Lz = ∞ . (6.123)
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Special Case of Three-Dimensional Cubic Fields

A homogeneous cubic stochastic field is represented by the following series, cf.
Shinozuka and Deodatis [1996]:

ĤS�
(x,y, z, θ) =

√
2

Nx−1∑

nx=0

Ny−1∑

ny=0

Nz−1∑

nz=0

A
(1)
nxnynz

[
cos
(
κxnx

x+ κyny
y + κznz

z+Φ
(1)
nxnynz (θ)

)

+ cos
(
κxnx

x− κyny
y + κznz

z+Φ
(2)
nxnynz

(θ)
)

+ cos
(
κxnx

x+ κyny
y − κznz

z+Φ
(3)
nxnynz

(θ)
)

+ cos
(
κxnx

x− κyny
y − κznz

z+Φ
(4)
nxnynz (θ)

)]
.

(6.124)

Because of the symmetry property A
(1)
nxnynz = A

(2)
nxnynz = A

(3)
nxnynz = A

(4)
nxnynz the

series formula for three-dimensional cubic fields is slightly simpler than the corre-
sponding formula for the general case in equation (6.104). As in the two-dimensional
case there are also symmetry conditions of CĤSĤS

(τx, τy, τz) and SĤSĤS
(κx, κy, κz)

in the three dimensional case, which are

C
ĤSĤS

(τx, τy, τz) = C
ĤSĤS

(−τx, τy, τz) = C
ĤSĤS

(τx,−τy, τz)
CĤSĤS

(τx, τy,−τz) = CĤSĤS
(τx,−τy,−τz) = CĤSĤS

(−τx, τy,−τz)
CĤSĤS

(−τx,−τy, τz) = CĤSĤS
(−τx,−τy,−τz) ,

(6.125)

and

SĤSĤS
(κx, κy, κz) = SĤSĤS

(−κx, κx, κz) = SĤSĤS
(κx,−κy, κz)

S
ĤSĤS

(κx, κy,−κz) = S
ĤSĤS

(κx,−κy,−κz) = S
ĤSĤS

(−κx, κy,−κz)

SĤSĤS
(−κx,−κy, κz) = SĤSĤS

(−κx,−κy,−κz) .

(6.126)

All parameters in equation (6.124) have already been defined with reference to equa-
tion (6.104) and are therefore not repeated here.

6.4.4. Three-Dimensional Numerical Realization

The generation of a multidimensional Gaussian zero-mean stochastic field is based
on the generation of a set of sample functions ĤS(·), defined in equation (6.104). The
applied power spectral density function SĤSĤS

(·), appearing in the equations (6.105)
to (6.108), is a direct extension of the equation (6.95) and reads

S
ĤSĤS

(κx, κy, κz) = σ2
cxcycz

4π
exp

[
−
( cxκx

2

)2
−
( cyκy

2

)2
−
( czκz

2

)2]
, (6.127)

which has been also applied in the publication by Papadrakakis and Kotsopulos [1999].
The calculation in the three-dimensional case is exemplary performed with 100 sam-



6. Random Field Modelling 121

ples, where the parameters are listed in a short manner below.

• The correlation length parameters cx, cy and cz and the standard deviation σ
of the random field are

cx = 1.0m, cy = 1.0m, cz = 1.0m, σ = 1 . (6.128)

• The upper cut-off wave numbers defined in equation (6.110) are specified by

κxu = 5.00
rad
m
, κyu = 5.00

rad
m

and κzu = 5.00
rad
m

. (6.129)

• For computational purposes the parameters Nx, Ny and Nz also appearing in
equation (6.110) are chosen as

Nx = Ny = Nz = 20 , (6.130)

with which the parameters ∆κx, ∆κy and ∆κz in equation (6.110) computed
as

∆κx = ∆κy = ∆κz = 0.25
rad
m

. (6.131)

• The periods Lx0, Ly0 and Lz0 defined in the equations (6.116) to (6.118), are
calculated as

Lx0 = Ly0 = Lz0 = 25.13m . (6.132)

For simplicity reasons, a detailed discussion, such as in the two dimensional random
fields, given in subsection 6.4.2, will be waived here8. Some properties of the SPRM
are discussed at a concrete example in section 8.6. At this point only a remark regard-
ing to the computational time will be given. With respect to the defined parameters
above, the calculation time for 100 sample functions is about 470 seconds, which was
done on a server9 using a parallel code and 12 CPUs.

6.4.5. Concluding Remarks

The computational simulations and analysis discussed in this section show that Sobol’

sequences can give a valid Monte-Carlo based simulation result for the considered
problem. When comparing the results for the sampled phase angles, it can be seen
that a LHS and the Sobol’ sequence show better results with a much lower number
of samples than the MCS. The result for the skewness and the kurtosis obtained
from the LHS seems to be more precise than those obtained with a MCS as well
as the Sobol’ sequence. The computational effort for the realization of a sample
set of random fields grows in the three dimensional case drastically. For example
takes the calculation of a two-dimensional field with 100 sample functions, applying
the parameters of section 6.4.2 about 7 seconds, while the realization of 100 sample
functions in the three dimensional case takes about 470 seconds.

8For multivariate statistical analysis, see, e.g., Anderson [1958]; Tabachnick and Fidell [2013].
9The server consists of 32 Intel Xeon E5-2680 processors, each of them with 2,7 GHz and a total

memory of 256 GB.
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6.5. Summary

In this chapter various discretization methods for the characterization of random ma-
terial properties are presented. After some general remarks on random fields, gives
section 6.2 a brief summary of some existing techniques for the discretization of ran-
dom fields. In sections 6.3 and 6.4 the theory of the methods applied in this work is
discussed in detail. First, the theoretical background of the KLE and SPRM is pre-
sented. Afterwards, some numerical studies have been carried out for both methods
and the results are discussed. The results of the realized random fields are quite good,
but as might be expected the computational time for the realization of a representa-
tion of a three-dimensional random field increases drastically by increasing degrees of
freedom of the FE mesh. In future research, special attention should be paid on the
reduction of the computational time, especially in view of three-dimensional random
fields, where the calculation time increases drastically. Especially in view of the KLE,
several methods are developed in the last decade to reduce the computational time.
One example, is the fast multipole methods, e.g., Schwab and Todor [2006], whereas
for the interested reader is referred to the cited article and the references therein as
well as to the textbook by Le Maître and Knio [2010] for a general overview.

In this work, the KLE is exclusively used to represent the fluctuations of the input
parameters in a series expansion. The fact that the KLE requires knowing the co-
variance function of the field being expanded makes it impossible to use it for the
representation of the system response. To circumvent this lack of knowledge, the sys-
tem response is approximated by the Polynomial Chaos Expansion, which is outlined
in the next chapter. Furthermore, the SPRM is coupled with a MCS and used as
reference solution of the system response, which are compared with the results ob-
tained from the SSFEM (the KLE coupled with the Polynomial Chaos Expansion)
in the linear elastic formulation in section 8.6 and with the proposed elastic-plastic
formulation in chapter 9.
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7. Polynomial Chaos Expansion

As already pointed out in the previous chapter, the KLE is a powerful method to
characterize the fluctuations of the input parameters of a (e.g., mechanical) system.
However, by applying this technique, the covariance kernel C(·) is explicitly required
to represent the random field in terms of their eigenfunctions. In view of the repre-
sentation of the system response it is not optimal, because the covariance function
of the system response is not known a priori. A possibility to represent the system
response by random variables is the Polynomial Chaos Expansion, which is presented
in this chapter. With respect to various engineering applications, this methodology is
well documented, see for instance, Ghanem and Spanos [2003]; Matthies et al. [1997];
Schuëller [1997]; Sudret and der Kiureghian [2000]; Le Maître and Knio [2010]; Xiu
[2010]. In addition to this works, the mathematical textbooks by Funaro [1992] and
Gautschi [2004] should be also mentioned here, where the theory of orthogonal poly-
nomials is discussed in detail.

This chapter is structured as follows: In section 7.1 important definitions are intro-
duced, which are used in the subsequent sections and chapters. The main focus of
this chapter is the construction of the Polynomial Chaos, which is presented in section
7.2. Besides the basic construction contains this section the definition of the Polyno-
mial Basis, presented in subsection 7.2.1. For computational reasons, it is necessary
to conduct system analysis with a finite number of random variables, which is dis-
cussed in subsection 7.2.2. In section 7.2.3, the approximation of a random variable
is explained, because there are various ways possible to represent a random variable
in terms of polynomials and for an accurate approximation of the system response,
an optimal choice of these polynomials is important. The section ends with a brief
overview of the generalized PCE, which is applied when non-Gaussian random vari-
ables are used. In the last paragraph of this chapter the general implementation of
the polynomial chaos is presented in detail.

7.1. Basic Definitions and Functional Spaces

First of all, the basic definitions and notations, which are used in the subsequent
sections and chapters are introduced. More detailed informations can be found in
Ghanem and Spanos [2003] or Le Maître and Knio [2010].

Let X be a R-valued random variable defined on the probability space L2(Θ,F , P ),
i.e.

X : Θ → R . (7.1)

Furthermore, a set of Gaussian variables {ξi(θ)}∞i=1 is introduced, which is centred,
normalized and mutually orthogonal. With Γ̂p the space of polynomials in {ξi(θ)}∞i=1
is defined, which have a degree that not exceeds p. The set of polynomials that
belongs to the space Γ̂p is defined by Γp and is orthogonal to Γ̂p−1. Finally, the
space Γ̃p should be introduced, which is spanned by Γp. With these definitions at
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hand the so-called Wiener Chaos decomposition should be defined as follows, cf.
Le Maître and Knio [2010]:

Γ̂p = Γ̂p−1 ⊕ Γ̃p , L2(Θ,F , P ) =
∞⊕

i=0

Γ̃i , (7.2)

where ⊕ denotes the operator of orthogonal summation. The subspace Γ̃p of
L2(Θ,F , P ) is referred to as the p-th homogeneous chaos, whereas Γp denotes the
polynomial chaos of order p. Thus, the polynomial chaos of order p consists of
all polynomials of order p, involving all possible combinations of the random vari-
ables {ξi(θ)}∞i=1. The random variables are functions and the polynomial chaos
accordingly are functions of functions and therefore denoted as functionals, cf.
Ghanem and Spanos [2003]; Le Maître and Knio [2010].

7.2. Construction of the Polynomial Chaos

The polynomial chaos based on the concept of the homogeneous chaos, proposed by
Wiener [1938], has been refined and extended in the subsequent decades by various
researchers. This representation technique was applied in the late 1980s, respectively
early 1990s by Ghanem and Spanos [2003] in order to solve boundary value prob-
lems with random coefficients. This publication can be seen as the "pioneer work"
of the PCE in the area of engineering applications. The polynomial chaos expansion
has been successfully applied for stochastic analysis in various applications, where
some of the recent publications are listed in the below: Xiu and Karniadakis [2002];
Field Jr. and Grigoriu [2004]; Sudret [2007]; Blatman and Sudret [2008]; Blatman
[2009] as well as the two reviews by Najm [2009] and Xiu [2009].

Let X be a Gaussian random variable, which should be expressed via a series expan-
sion. Based on the probability space (Θ,F , P ), {ξi(θ)}∞i=1 denotes a set of indepen-
dent standard Gaussian random variables on Θ. Each second order random variable
X, as introduced in equation (7.1), can be represent by a polynomial chaos expansion
as follows, cf. Ghanem and Spanos [2003]; Le Maître and Knio [2010]:

X = a0Γ0 (7.3)

+
∞∑

i1=1

ai1Γ1(ξi1 (θ))

+
∞∑

i1=1

i1∑

i2=1

ai1i2Γ2(ξi1 (θ), ξi2 (θ))

+
∞∑

i1=1

i1∑

i2=1

i2∑

i3=1

ai1i2i3Γ3(ξi1 (θ), ξi2 (θ), ξi3 (θ)) + ... ,

where Γp are successive polynomial chaoses of order p and a• ∈ R are determin-
istic coefficients. This series expansion is convergent in the mean-square sense, cf.
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Le Maître and Knio [2010]:

lim
p→∞

E







a0Γ0 + · · ·+
∞∑

i1=1

· · ·
ip−1∑

ip=1

ai1···ipΓp(ξi1 , ... ξip )− x




2

 = 0 . (7.4)

An important property of Γp is the orthogonality where the polynomials with order
p > 0 have an expectation equal to zero

E[Γi] = 0 , i > 0 . (7.5)

The mean value of the product of two polynomials, with respect to the inner product,
is also zero

E[ΓiΓj ] = 0 , i 6= j . (7.6)

Equation (7.3) should be recast in a more compact manner by the univocal relation

ψ(·) ⇐⇒ Γ(·) . (7.7)

With this relation, the PC-expansion of X can be subsequently rewritten as

X =
∞∑

j=0

ajψj(ξξξ(θ)) , ξξξ = {ξ1, ...} . (7.8)

The construction of the PCE outlined above is realized with an infinite number of
normalized uncorrelated Gaussian random variables ξi, i = 1, ... . For computational
purposes, this series expansion needs to be truncated after a finite number M of
random variables, which leads to a PCE with a finite dimension P . To be more
specific, the PC-expansion of dimensionM and order p is the subspace of Γ̃p generated
by the elements of Γp involving only the set of random variables up to order M , i.e.
{ξ1, ... ξM}, see also subsection 7.2.2. This fact is exemplary expressed for equation
(7.3) with a dimension of M = 2 in the following:

X = a0Γ0 (7.9)

+
2∑

i1=1

ai1Γ1(ξi1 (θ))

+
2∑

i1=1

i1∑

i2=1

ai1i2Γ2(ξi1 (θ), ξi2 (θ))

+
2∑

i1=1

i1∑

i2=1

i2∑

i3=1

ai1i2i3Γ3(ξi1 (θ), ξi2 (θ), ξi3(θ)) + ... ,
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or when the summations are evaluated explicitly, it reads

X = a0Γ0 (7.10)

+ a1Γ1(ξ1(θ)) + a2Γ1(ξ1(θ))

+ a11Γ2(ξ1(θ), ξ1(θ)) + a21Γ2(ξ2(θ), ξ1(θ)) + a22Γ2(ξ2(θ), ξ2(θ))

+ a111Γ3(ξ1(θ), ξ1(θ), ξ1(θ)) + a211Γ3(ξ2(θ), ξ1(θ), ξ1(θ))

+ a221Γ3(ξ2(θ), ξ2(θ), ξ1(θ)) + a222Γ3(ξ2(θ), ξ2(θ), ξ2(θ)) + ... .

By applying the compact form of equation (7.8) the expansion above can be recast in
terms of ψj(·) (where only the first six terms are specified here) as

X = a0 ψ0 + a1 ψ1 + a2 ψ2 + a3 ψ3 + a4 ψ4 + a5 ψ5 + a6 ψ6 + ... , (7.11)

where, for instance, the term a22Γ2(ξ2(θ), ξ2(θ)) becomes a6 ψ6. Closed form expres-
sions for Γ• up to order p = 4 are given in Ghanem and Spanos [2003] and also listed
here:

Γ0 = 1,

Γ1(ξi1 ) = ξi1 ,

Γ2(ξi1 , ξi2 ) = ξi1ξi2 − δi1i2 ,

Γ3(ξi1 , ξi2 , ξi3) = ξi1ξi2ξi3 − ξi1δi2i3 − ξi2δi1i3 − ξi3δi1i2 and

Γ4(ξi1 , ξi2 , ξi3 , ξi4 ) = ξi1ξi2ξi3ξi4 − ξi1ξi2δi3i4 − ξi1ξi3δi2i4 − ξi1ξi4δi2i3

− ξi2ξi3δi1i4 − ξi2ξi4δi1i3 − ξi3ξi4δi1i2 + δi1i2δi3i4

+ δi1i3δi2i4 + δi1i4δi2i3 .

(7.12)

In principle, a multi-dimensional PC can be computed as, cf.
Sudret and der Kiureghian [2000],

ΓM (ξ) = (−1)M e
1
2
ξT ξ ∂M

∂ξi1 ...∂ξiM
e−

1
2
ξT ξ , (7.13)

where ξξξ = {ξi1 , ξi2 , ... ξiM } denotes a set of M Gaussian random variables.

7.2.1. Polynomial Basis

Up to now, no specification about the basis of the polynomial chaoses Γ or the cor-
responding ψ’s was made. If the random variable ξ is assumed to be Gaussian, a
one-dimensional Hermite polynomial chaos basis is optimal, because an expansion
with p = 1 results in an exact representation, cf. Le Maître and Knio [2010]. This
will be discussed in detail along this subsection.

One-dimensional PC-Basis

In the one-dimensional case (polynomials of only one random variable ξ), Γ and ψ
can be generated directly from the definition of the Hermite polynomials as follows,
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cf. Sudret and der Kiureghian [2000]:

hM (ξ) = (−1)M
∂M

(
e−

1
2
ξ2
)

∂ξM
e

1
2
ξ2 , (7.14)

which is simply the single variable version of equation (7.13). Some of these polynomi-
als are tabulated in Ghanem and Spanos [2003], where the first five one-dimensional
Hermite polynomials (h0, ... h4) are listed below:

h0 = 1 , h1 = ξ , h2 = ξ2 − 1 , h3 = ξ3 − 3ξ , h4 = ξ4 − 6ξ2 + 3 , (7.15)

as well as illustrated in Fig. 7.1 for ξ ∈ [−2, 2]. Substituting these polynomials into
equation (7.8) the random response X becomes

X = a0 + a1ξ + a2(ξ
2 − 1) + a3(ξ

3 − 3ξ) + a4(ξ
4 − 6ξ2 + 3) . (7.16)
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Figure 7.1.: One-dimensional (M = 1) Hermite polynomials of order up to p = 4.

The orthogonality of the one-dimensional Hermite polynomials, with respect to the
inner product of L2(Θ,F , P ), leads to

〈hm, hn〉 =
∫

Θ

hm(ξ(θ))hn(ξ(θ)) dP(θ) ,

=

∫

R

hm(ξ)hn(ξ)ρξ dξ ,

= δmn〈h2n〉 ,

(7.17)
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where ρξ defines the probability density of ξ.

Multi-Dimensional PC Basis

If more than one random variable occurs in the investigated system, a multi-
dimensional PC basis is needed. in the presented work, such a basis is con-
structed by products of the one-dimensional Hermite polynomials. Therefore, let
ααα = {α1, ... αp} ∈ Np be a multi-indices. Then, the p-variate M -th degree PC basis
functions are the products of the one-dimensional PC polynomials of total degree less
than or equal to M . To be more specific, the p-th order Hermite polynomial can be
constructed by, see, e.g., Sudret and der Kiureghian [2000],

ψααα(θ) =
M∏

k=1

hαk
(ξk(θ)) . (7.18)

Each multi-dimensional polynomial is defined by a sequence of M non-negative inte-
gers ααα = {α1, ... αM} whose sum is smaller than or equal to p. Ghanem and Spanos
[2003] tabulated the polynomial chaos for different dimensions M and orders p, which
are listed in the table below for a two-dimensional polynomial chaos up to order p = 4.
An example of a two-dimensional (M = 2) polynomial chaos up to order p = 3 are
illustrated in Figs. 7.2 and 7.3.

Table 7.1.: Two-dimensional polynomial chaos up to order p = 4 and their correspond-
ing variances.

j p, order of the homogeneous chaos j-th polynomial chaos ψj 〈ψ2
j 〉

0 p = 0 1 1
1

p = 1
ξ1 1

2 ξ2 1
3

p = 2
ξ21 − 1 2

4 ξ1ξ2 1
5 ξ22 − 1 2
6

p = 3

ξ31 − 3ξ1 6
7 ξ21ξ2 − ξ2 2
8 ξ1ξ22 − ξ1 2
9 ξ32 − 3ξ2 6
10

p = 4

ξ41 − 6ξ21 + 3 24
11 ξ31ξ2 − 3ξ1ξ2 6
12 ξ21ξ

2
2 − ξ21 − ξ22 + 1 4

13 ξ1ξ32 − 3ξ1ξ2 6
14 ξ42 − 6ξ22 + 3 24

7.2.2. Truncation of the Polynomial Chaos Expansion

As already mentioned earlier in this chapter, for computations it is important to
truncate the number of random variables ξi, i = 1, ...M and the series expansion
after a finite number p of PC coefficients. When truncating equation (7.8) after the
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Figure 7.2.: Two-dimensional (M = 2) Hermite polynomials of order p = 0, 1, 2.
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Figure 7.3.: Two-dimensional (M = 2) Hermite polynomials of order p = 3.

M -th dimensions and p-th order, the dimension dim of the polynomial basis P can
be determined by

dimP =
(M + p)!

M ! p!
. (7.19)

Evaluating this formula for different dimensions M and orders p leads to a number of
basis polynomials P where the results up to M = p = 6 are reported in Tab. 7.2.

Table 7.2.: Number of basis polynomials P in a M -dimensional PCE truncated after
order p.

M p = 1 p = 2 p = 3 p = 4 p = 5 p = 6
2 3 6 10 15 21 28
4 5 15 35 70 126 210
6 7 28 84 210 462 924

The interpretation of this values is as follows: Each scalar value, for instance, the
system response ux(θ) at a certain node, is represented by a series expansion of P
coefficients. This means, that the whole stochastic of ux(θ) is approximated by a
number of coefficients equal to dim P . As already mentioned in the previous chapter,
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Table 7.3.: Correspondence of the probability law and their corresponding orthogonal
polynomials.

PDF Orthogonal polynomials Support range
Continuous Gaussian Hermite (−∞, ∞)

Gamma Laguerre [0, ∞)
Uniform Jacobi [a,b]

Beta Legendre [a,b]
Discrete Possion Charlier {0, 1, 2, ...}

Binomial Krawtchouk {0, 1, 2, ... N}
negative Binomial Meixner {0, 1, 2, ...}
Hypergeometric Hahn {0, 1, 2, ... N}

a higher dimension M reflects higher random fluctuations better, whereas, with a
higher order of p, non-linearities of the system response can be represented more
accurate.

7.2.3. Stochastic Approximation

The optimal choice of the stochastic basis is essential to get an accurate representation
of the random variable. For example, consider the series expansion of X in equation
(7.16). Theoretically, X can also be expanded by

X = a0F0(ξ(θ)) + a1F1(ξ(θ)) + a2F2(ξ(θ)) + a3F3(ξ(θ)) , (7.20)

where Fi are polynomials, which can be constructed by any basis. For this example,
the polynomials

F0 = 1, F1 = ξ(θ), F2 = ξ2(θ), F3 = ξ3(θ), (7.21)

are assumed to approximate the system response. However, these polynomials are
not the ideal choice. For example, large positive values of ξ(θ) lead to large positive
values of the system response. Furthermore, when ξ(θ) is negative the odd power
terms result in negative values and the even terms give positive values. Since they
are not orthogonal, small changes in F (ξ(θ)) result in relatively large changes in
the coefficients ai. This collinearity will make the associated least-squares problem
ill-conditioned, cf. Choi et al. [2007]. The crucial point of this example is that a
more reasonable polynomial basis, that satisfies the orthogonality, should be used.
In the literature several orthogonal polynomials are described whose orthogonality
weighting functions match the standard probability density functions. A few of the
most common PDFs, with their corresponding orthogonal polynomials, are listed in
Tab. 7.3, see also Schoutens [2000]; Xiu and Karniadakis [2002]; Xiu [2010]:

Generalized Polynomial Chaos Expansion

For a Gaussian distribution ofX the Hermite polynomial basis is the optimal choice,
see also Tab. 7.3. In order to represent various probability distributions with the
polynomial chaos expansion, Xiu and Karniadakis [2002, 2003] presented the Askey

scheme. Here, not only Hermite polynomials could be used to represent a Gaussian
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or non-Gaussian system response, but also any orthogonal polynomials to charac-
terize the system response. For detailed informations of this scheme, the reader is
referred to Xiu and Karniadakis [2002, 2003].

In general: For the class of problems of interest the probability distribution of the
system response to be determined is generally not known a priori and the construction
of the optimal orthogonal basis is therefore (a priori) not possible. However, by
knowledge of the probability laws of the input data, it may be useful to utilize these
measures to generate a suitable PC basis for the system response. This means, that the
basis will at least be optimal with respect to the uncertain input data representation.
If, e.g., the system response cannot be captured with an orthogonal polynomial basis,
because no orthogonal basis can be constructed, a numerical construction is possible,
see Stoer and Bulirsch [2002], where this methodology is discussed in detail.

7.3. Implementation of the Polynomial Chaos Expansion

The construction of the polynomial chaos basis is an add-on of the institutes
internal FE-code, realized in the programming environment of Matlab. For
the implementation of the polynomial chaos basis the formulation presented in
Sudret and der Kiureghian [2000]; Sudret et al. [2006] will be summarized in this sec-
tion. This approach was realized in collaboration with Schmidt [2013] in the context
of his bachelor thesis.

The goal is to compute all possible non negative integer sequences of M whose sum
is equal to q = {1, ... p} where q =

∑M
i=1 αi. This problem is equivalent to that of

filling (M + q − 1) boxes with (M − 1) balls, see Tab. 7.4, where an example for the
generation of such an integer sequences ααα is given.

Table 7.4.: Relation between the reverse integer sequences ααα, the ball samples and the
resulting chaos polynomials.

Arrangement of the balls Reverse Integer Sequence Chaos Polynomial
⊡ ⊡⊡ 2 2 2 0 0 0 h2(ξ1) = ξ21 − 1
⊡ 2 2 ⊡ ⊡ 0 1 1 0 h1(ξ2)h1(ξ3) = ξ2 ξ3

The relation between the integers αi of the sequences ααα and the box samples is listed
below:

• For each integer αi of the sequence ααα skip αi empty boxes and put a ball in the
next box.

• Conversely, for each ball sample, each integer αi of the sequence is equal to the
number of empty boxes between two consecutive balls.

The recursive algorithm for the generation of all possible ball samples is summarized
in the following. For example, let M = 4 and q = 2, which is equivalent to put three
balls in a certain sequence into five boxes 2 2 2 2 2, whereas the idea is sub-divided
into the following two steps.

1. In the first step the initial sample is obtained by putting the balls in the M − 1
first boxes. The corresponding integer sequence reads ααα = {0, 0, 0, q} and the
associated box sample results to ⊡ ⊡ ⊡ 22.
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2. From the second up to the last step, the rightmost ball is shifted one box to the
right. If this is not possible, i.e. the rightmost ball is already rightmost and the
rightmost ball, which can be shifted by one box to the right, is picked and the
balls lying to the right of this ball shifted one box back to the left.

This procedure is illustrated in Tab. 7.5 for all sequences of M = 4 and q = 2, where
it should be remarked that the polynomial basis ψi is based on the reversed integer
sequence that corresponds to this one used in Ghanem and Spanos [2003].

Concluding Remark

As already mentioned in the last subsection based the polynomial chaos mainly on
the explanations of Ghanem and Spanos [2003]; Sudret and der Kiureghian [2000];
Sudret et al. [2006]. It has been realized, that effective techniques for the reduction
of CPU time has been developed. Such methods are, e.g., an adaptive choice of the
PC basis or an refinement during the computation as well as an p-refinement of the
polynomial chaos. These techniques will not be covered here in detail and the reader
is referred to the textbook by Le Maître and Knio [2010] and the references therein,
where such newer developments are discussed.
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Table 7.5.: Integer-sequences of four-dimensional (M = 4) chaos-polynomials of order p = 2, respectively q = 2.

Arrangement of the Balls Integer Sequence Reverse Integer Sequence Polynomial Basis
⊡ ⊡⊡ 2 2 0 0 0 2 2 0 0 0 ξ21 − 1
⊡ ⊡ 2 ⊡ 2 0 0 1 1 1 1 0 0 ξ1 ξ2
⊡ ⊡ 2 2 ⊡ 0 0 2 0 1 0 1 0 ξ1 ξ3
⊡ 2 ⊡⊡ 2 0 1 0 1 1 0 0 1 ξ1 ξ4
⊡ 2 ⊡ 2 ⊡ 0 1 1 0 0 0 2 0 ξ22 − 1
⊡ 2 2 ⊡⊡ 0 2 0 0 0 1 1 0 ξ2 ξ3
2 ⊡ ⊡⊡ 2 1 0 0 1 0 1 0 1 ξ2 ξ4
2 ⊡ ⊡ 2 ⊡ 1 0 1 0 0 0 2 0 ξ23 − 1
2 ⊡ 2 ⊡⊡ 1 1 0 0 0 0 1 1 ξ3 ξ4
2 2 ⊡⊡ ⊡ 2 0 0 0 0 0 0 2 ξ24 − 1
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8. Stochastic Finite Element Method

The Stochastic Finite Element Method (SFEM) is meanwhile a well established tech-
nique to investigate (e.g., structural) systems with stochastic properties in various
engineering branches. It is an extension of the standard FEM, which combines the
probability theory with the deterministic approach. The focus lies on the solution
of mechanical systems whose parameters, such as material, geometry or loads are
uncertain. The motivation of any SFEM approach is to get an alternative and more
effective method to the time-consuming Monte Carlo Sampling techniques. Stefanou
[2011] identifies two factors for the constantly growing attention of the SFEM received
over the last three decades, which are:

• The understanding of the significant influence of the inherent system uncertain-
ties on the system response and

• the enormous increase of the computational performance in the last years.

Some publications, which reflect some of the early developments of the SFEM are
the works from Contreras [1980]; Vanmarcke et al. [1986]; Liu et al. [1986a,b, 1987];
Shinozuka and Deodatis [1988]; Takada [1990a,b]; Zhu et al. [1992]; Kleiber and Hien
[1992].

The general formulation in the SFEM is a simple extension of the deterministic linear
formulation KU = F, i.e.

K(θ)U(θ) = F(θ) , with θ ∈ (Θ,F ,P) , (8.1)

where (Θ,F ,P) denotes a Hilbert space. To shorten the notation, the random
character θ is not explicitly written in the following sections. It will only be used when
a clear distinction between the deterministic and the stochastic variable is needed,
for instance, to distinguish the deterministic stiffness matrix K from its stochastic
counter part K(θ).

After the discretization of the random field with the KLE, the fluctuations of the
input parameters are characterized by a finite number of random variables. The
system response may be also represent by a suitable space, which is spanned by a
polynomial chaos basis P . The statistics of the system response (beyond the mean)
reached if the PC coefficients are evaluated. This methodology is well known as
the Spectral Stochastic Finite Element Method (SSFEM) where the pioneered work,
which was applied to mechanical problems, was presented by Ghanem and Spanos
[2003]. The vast amount of research is reflected in a large number of publications.
In addition to the reference textbook by Ghanem and Spanos [2003], the recently
published textbooks by Le Maître and Knio [2010] and Xiu [2010] are mentioned in
this context, which cover a wide range of the stochastic finite element analysis.

This chapter is structured as follows: A brief overview of techniques for the analysis
of stochastic mechanical systems is presented in section 8.1. This section ends with a
short explanation of the distinction between the non-intrusive and the intrusive ap-
proach. The detailed formulation of the SSFEM, for linear elastic material behaviour,
is presented in section 8.2. Then, some remarks on the computational implementation
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of the SSFEM are discussed and illustrated by means of pseudo-algorithms. After-
wards, the post-processing step is presented. Here, it is explained how the polynomial
chaos coefficients must be evaluated to make practical predictions for the quantities
of interest, for example, the system response, which is outlined in section 8.4. Then,
some extensions of the SSFEM are presented in section 8.5, with a particular empha-
sis on multiple input random fields. A numerical example is presented and discussed
in section 8.6 and the major findings of this chapter are summarised in section 8.7.

8.1. Overview of Numerical Techniques

The discretization of the random input parameters has already been addressed in
chapter 6 and will not be described here any more. This section is addressed
to give a brief summary of some alternative stochastic finite element methods be-
sides the SSFEM. Namely, these are the perturbation method, the weighted inte-
gral method and the Neumann expansion. The following subsections are essen-
tially a summary of the works of Matthies et al. [1997]; Schuëller [1997]; Anders
[2000]; Sudret and der Kiureghian [2000]; Choi et al. [2007]. Due to the "overview-
character", detailed expressions of the formulations of the presented methods will be
omitted in this section. Therefore, the reader is referred to the cited works above as
well as to the citations in the subsequent subsections.

8.1.1. Perturbation Method

The perturbation method is a commonly used non-sampling method, where the input
parameters are expanded around their corresponding mean values and truncated after
a certain order. This method is mainly limited to second-order expansions, because
the evaluation of the statistical moments needs higher order statistical moments,
which makes it complicated as well as computationally extensive.

Let XXX = [X1, ...XN ] be a zero-mean random vector including the variations of the
input parameters around their means with the total number of the input parameters
defined by N . The expansion of the terms, appearing in equation 8.1, in a Taylor-
Series reads, cf. Sudret and der Kiureghian [2000]:

K(θ) = K0 +
N∑

i=1

KI
iXi +

1

2

N∑

i=1

N∑

j=1

KII
ij XiXj + ... , (8.2)

U = U0 +
N∑

i=1

UI
iXi +

1

2

N∑

i=1

N∑

j=1

UII
ij XiXj + ... , (8.3)

F = F0 +
N∑

i=1

FIiXi +
1

2

N∑

i=1

N∑

j=1

FIIij XiXj + ... , (8.4)

where •Ii and •IIij are the first and the second derivatives with respect to XXX = 0. For
example, the partial derivatives KI

i and KII
ij are given by

KI
i =

∂K(θ)

∂Xi

∣∣∣∣
XXX=0

and KII
ij =

∂2K(θ)

∂XiXj

∣∣∣∣
XXX=0

. (8.5)
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The coefficient vectors U0, UI
i and UII

ij are evaluated by substituting the equations
(8.2)−(8.4) into equation (8.1) and identifying terms with the same order. This leads
to the following recursive equations, cf. Sudret and der Kiureghian [2000]:

U0 = K0
−1F0 , (8.6)

UI
i = K−1

0

(
FIi −KI

iU0

)
, (8.7)

UII
ij = K−1

0

(
FIIij −KI

iU
I
j −KI

jU
I
i −KII

ijU0

)
. (8.8)

The expected value of the system response U can be evaluated by using equation
(8.3), thus

E[U] ≈ U0 +
1

2

N∑

i=1

N∑

j=1

UII
ij Cov(Xi, Xj) , (8.9)

with U0 = E[U0]. The second-order approximation of the covariance matrix Cov(·, ·)
can be found in Yamazaki et al. [1988].

The perturbation-based SFEM has been applicated to a wide range of problems,
such as elastic problems, dynamic problems, eigenvalue problems, non-linear prob-
lems etc. However, this method is practically restricted to input parameters, which
have only small fluctuations. The coefficient of variation αX , where X denotes an
arbitrary stochastic variable, depends on the non-linearity of the system and is spec-
ified in many publications to αX ≤ 20%. In the recently published textbooks by
Le Maître and Knio [2010] and Xiu [2010], αX is even specified to αX ≤ 10%.

This method can be coupled with random field discretization techniques. Examples
are the spatial average method, discussed in the subsection 6.2.1 or the shape function
method, which was introduced in the subsection 6.2.2. For more informations about
the coupling between the perturbation method and these discretization methods, see
Sudret and der Kiureghian [2000] and the references therein.

8.1.2. Weighted Integral Method

The weighted integral method is a perturbation-based approach with the discretiza-
tion scheme presented in section 6.2.2. This method was first introduced amongst
others by Deodatis [1991] and Deodatis and Shinozuka [1991].

For convenience, the stochastic element stiffness matrix ke(θ), introduced in equation
(6.14), is written here again

ke(θ) = ke0 +

nWI∑

i=1

∆keiX
e
i , (8.10)

where ∆kei are deterministic matrices, Xe
i are the weighted integrals and nWI denotes

the number of weighted integrals of element e. The assembling procedure of the parts
in equation (8.10) leads to a global stiffness matrix of N × nWI random variables in
the linear equation system

K(θ)U = F , (8.11)
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which has to be solved for U. For more details on the assembling see Deodatis
[1991]. The response statistics are evaluated from equation (8.11), where the first-
order Taylor series expansion is applied to U about the mean values of the weighted
integrals Xe

i . Evaluating this expansion leads to, cf. Sudret and der Kiureghian
[2000],

U = U0 +
N∑

e=1

nWI∑

i=1

Xe
i

∂U

∂Xe
i

∣∣∣∣
Xe

i
=0

. (8.12)

In the case of a deterministic load vector F, the partial derivative ∂U
∂Xe

i
is calculated

by partially differentiating equation (8.11) with respect to Xe
i , i.e.

∂U

∂Xe
i

= −K0
−1 ∂K

∂Xe
i

∣∣∣∣
Xe

i
=0

U0 , (8.13)

with U0 = K−1
0 F. Substituting this derivative back into equation (8.12) it becomes

U = U0 −
N∑

e=1

nWI∑

i=1

Xe
iK0

−1 ∂K

∂Xe
i

∣∣∣∣
Xe

i
=0

U0 . (8.14)

The mean value of U can be evaluated directly from equation (8.14) as

E[U] = U0 = K−1
0 F . (8.15)

For the evaluation of the Var and Cov of U, the reader is referred to, e.g., the article
by Deodatis [1990].

8.1.3. Neumann Expansion Method

The Neumann expansion is an effective technique when coupled with the Monte-
Carlo Method, cf. Yamazaki et al. [1988]. The key advantage lies in the factorization
of the global stochastic stiffness matrix K(θ), which avoids repeating inversion of the
stochastic stiffness matrix ∆K during the calculation process, cf. Yamazaki et al.
[1988]; Chakraborty and Bhattacharyya [2002].

The stochastic global stiffness matrix K(θ) is defined by

K(θ) = K0 +∆K , (8.16)

where K0 denotes the mean stiffness matrix and ∆K is a matrix which includes the
fluctuating components of the considered parameter. Inserting equation (8.16) into
equation (8.1), by neglecting randomness in F, leads to

[K0 +∆K] U = F . (8.17)

The evaluation of this equation, with respect to U0, gives

U0 = K−1
0 F . (8.18)

Applying a Neumann expansion to the inverted stochastic global stiffness matrix
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K−1(θ) gives, cf. Yamazaki and Shinozuka [1988],

K−1(θ) = (K0 +∆K)−1 = (I−P+P2 −P3 + · · · )K−1
0 , (8.19)

with the relation P = K−1
0 ∆K(θ) and I is an identity matrix. After substituting

equation (8.19) into U = K−1(θ)F, the following result is obtained:

U = (I −P+P2 −P3 + · · · )K−1
0 (8.20)

= U0 +
∞∑

n=0

(−1)nPnU0 , (8.21)

where U0F−1 = K−1
0 . Statistics of the system response U are calculated by

Shinozuka and Deodatis [1988], whereas only the first two terms of equation (8.21)
are used, with the remark of the authors that the approximated results of U are
good if the coefficient of variation is small, i.e. αX ≤ 20%. The mean value of the
displacement vector is given by

E[U] = U0 , (8.22)

where U0 is already defined in equation (8.18). For this expansion method, the
covariance matrix of U can be written in a compact form as follows, cf. Matthies et al.
[1997]:

Cov(U, U) = E
[
PU0U

T
0 UT

]
. (8.23)

8.1.4. Improved Neumann Method

A similar approach to the Neumann Expansion method is presented by
Spanos and Ghanem [1989], where the KLE is applied to represent the fluctuations
of the input parameters. The Neumann expansion is also utilised to obtain the eval-
uation of the system response U.

Let H(x, θ) be a random field, defined by

H(x, θ) = H0 +∆H , (8.24)

where the fluctuating part ∆H is represented by a KLE as

∆H(x, θ) =
∞∑

i=1

√
λifi(x)ξi(θ) . (8.25)

Here, ξi are Gaussian random variables with respect to the corresponding set of
eigenfunctions {fi} and λi is the i-th eigenvalue. Substituting this representation
into equation (8.24) leads to

H(x, θ) = H0 +

∞∑

i=1

√
λifi(x)ξi(θ) . (8.26)

Now the formulation with respect to the FEM is presented below. The stochastic



140 8.1. Overview of Numerical Techniques

element stiffness matrix can be written in a compact form by

ke(θ) = ke0 +
∞∑

i=1

kei ξi(θ) , (8.27)

where kei is the i-th deterministic matrix of element e, defined by

kei =
√
λi

∫

Ωe

BT
C0fi(x)B dΩe , (8.28)

with C0
1 being a constant matrix and the matrix B relates the components of the

strains to the element nodal displacements. Assembling all element contributions
leads to the global stochastic stiffness matrix K(θ) and the stochastic counterpart of
the deterministic FEM formulation

[
K0 +

∞∑

i=1

Kiξi(θ)

]
U(θ) = F . (8.29)

Note, that the load vector F is assumed to be deterministic. The system random
response U(θ) is obtained by inverting equation (8.29). However, no closed solution
of such an inverse exists, cf. Sudret and der Kiureghian [2000]. To circumvent this
problem, Spanos and Ghanem [1989] proposed a Neumann series expansion to obtain
an approximation for this inverse operator, which is presented below.

First of all, multiplying both sides of equation (8.29) by K−1
0 , which leads to

[
I+

∞∑

i=1

K−1
0 Kiξi(θ)

]
U = U0 , (8.30)

with U0 = K−1
0 F. The inversion of equation (8.30) reads

U =

[
I+

∞∑

i=1

K−1
0 Kiξi(θ)

]−1

U0 . (8.31)

By applying a Neumann series expansion to equation (8.31), the following result is
obtained, cf. Spanos and Ghanem [1989]:

U =
∞∑

h=0

(−1)h

[
I+

∞∑

i=1

K−1
0 Kiξi(θ)

]h
U0 , (8.32)

where an explicit expression of the first terms is given by

U =



I −
∞∑

i=1

Qiξi(θ) +
∞∑

i=1

∞∑

j=1

QiQjξi(θ)ξj(θ) + · · ·



U0 ,

with Qi = K−1
0 Ki and Qj = K−1

0 Kj . Truncating the KLE (index i) and the
Neumann expansion series (index h) in equation (8.32) gives an approximation for

1The explicit definition of C0 for an isotropic material will be given in the next section.



8. Stochastic Finite Element Method 141

the displacement vector U. The first moment of the system response U can be
evaluated from equation (8.32) by applying the expectation operator, i.e.

E[U] =
∞∑

h=0

(−1)h E



I−
∞∑

i=1

Qiξi(θ) +
∞∑

i=1

∞∑

j=1

QiQjξi(θ)ξj (θ) + · · ·



U0 . (8.33)

For the determination of the covariance matrix the reader is referred to
Spanos and Ghanem [1989] or Matthies et al. [1997].

Each random displacement ui from U in equation (8.32) can be represented by a
series of polynomials P by a set of variables {ξh}∞h=1. By use of the single index j,
the response of a specific nodal displacement ui can be formally written as follows:

ui =
∞∑

j=0

uijPj ({ξh(θ)}∞h=1) , (8.34)

where P0 ≡ 1 and Pj
(
{ξh(θ)}∞h=1

)
are polynomials in standard normal variables.

The choice of the polynomials is important and must be made carefully to achieve
an accurate approximation of the random variables. Orthogonal polynomials are an
optimal choice, where a detailed discussion of this fact has been given in the previous
chapter.

In this section, an overview of a few numerical methods for the representation of
stochastic systems are presented. These methods are mainly applied at the beginning
of the SFEM developments. The recent applications and developments are primary
restricted the spectral stochastic methods, see, e.g., the article of Nouy [2009]. In
view of the following section the input parameters are characterized by a KLE and
the system response is represented by a PCE. This approach as well as the methods
presented in this section are called intrusive, hence it requires an expansion (new
formulation) of the computer code to handle the reformulated equations. An alter-
native approach is the non-intrusive one. In this context, the PC coefficients of the
system response are evaluated by a deterministic or random sampling of the original
deterministic model/computer code. Also the sampling techniques, which has been
presented in section 4.4, are non-intrusive methods. The former method calculates
the system response in terms of a PCE directly in one computer run, which is a great
advantage to the non-intrusive approach where a large number of computer runs are
necessary. On the other hand, the non-intrusive methods requires no modifications
on the existing computer code, which makes it attractive for industrial applications
in connection with a commercial code.

8.2. Spectral Stochastic Finite Element Method

The basis of the SSFEM was proposed by Ghanem and Spanos [1989];
Spanos and Ghanem [1989]; Ghanem and Spanos [2003] in the early 1990s. In its
first version, the fluctuations of the input quantities are represented by Gaussian

random fields, which are discretized by the Karhunen-Loève Expansion. As men-
tioned earlier, the KLE can not be used to represent the system response. Due to
this, Ghanem and Spanos [2003] used the PCE to overcome this drawback.

The basic approach, presented by Ghanem and Spanos [2003], has received a wide
acceptance and has been applied in various engineering application areas, what is
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documented by a large number of publications. A few of these applications are (cf.
also Sudret [2007]): Transport media problems, as presented in Ghanem and Dham
[1998], non-linear vibrations, see Li and Ghanem [1998] and heat conduction prob-
lems, discussed in Ghanem [1999].

Beside this listing, there are also some applications in the field of fluid dynamics
that give some benefit in view of the first proposed PCE. With respect to this area
of research it is referenced to the paper by Najm [2009] as well as to the recently
published textbook by Le Maître and Knio [2010].

Some mathematically based publications completed PCE approach in the early 2000s.
In this context, the works by Deb et al. [2001]; Babuška and Chatzipantelidis [2002];
Babuška et al. [2004] and Frauenfelder et al. [2005] are mentioned, see also Sudret
[2007]. The main focus of this works lies on the solution of elliptic differential equa-
tions with stochastic coefficients.

Apart from the detailed discussions in the referred books and papers above, a more
general overview of the SSFEM can be found in the reports by Matthies et al. [1997];
Schuëller [1997]; Sudret and der Kiureghian [2000] or Gutiérrez and Krenk [2004].

After this brief historical review the following subsections are devoted to the SSFEM
with respect to linear elastic problems where the entire field of a stochastic calculation
will be considered. Starting with the equilibrium equation in a stochastic context over
the representation of the system response by a PCE up to the post-processing of the
results. Afterwards, some remarks on the computational implementation and on the
extension of the SSFEM are given.

8.2.1. Formulation of the Stochastic Elliptic Boundary Value Problem

The following subsections are addressed to the formulation of the stochastic counter-
part of the deterministic balance of linear momentum with the boundary conditions
summarized in equation 3.4, which are repeated here for convenience reasons:






divσσσ + b = 0 ,

u = ū on ∂Ωu ,

σσσ · n = t̄ on ∂Ωσ .

(8.35)

In the stochastic formulation of this thesis, neither the domain Ω nor the parts ∂Ωu

and ∂Ωσ of its boundaries are random. Furthermore, the loading terms are also as-
sumed to be deterministic. In contrast, the Young’s modulus E is represented by a
random field, denoted by HE(x, θ). As a consequence the system response u (respec-
tively U for the global system response) is also a random field, denoted by u(x, θ),
respectively U(x, θ), and almost surely2 satisfies the following linear stochastic bound-
ary value problem (without body forces b):






divσσσ(x, θ) = 0 ,

u = ū on ∂Ωu ,

σσσ · n = t̄ on ∂Ωσ .

(8.36)

2Let (Θ,F,P) be a probability space. In this space an event E ∈ F happens almost surely if the
probability P(E) is 1, formally written as P(E) = 1.
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8.2.2. Stochastic Variational Form

The deterministic space for the random solution is denoted by V and the complete
functional space for the displacement field u(x, θ) is given by the tensor product space
V⊗S, where S = L2(Θ,F ,P) is a reasonable choice in practice. The variational form
of the linearized weak form of the stochastic problem (8.36) then reads:

Find u(x, θ) ∈ V ⊗ S such that

A (u, δδδu(θ)) = B(δδδu(θ)) ∀δδδu(θ) ∈ V ⊗ S , (8.37)

where

A (u, δδδu(θ)) =

∫

Θ




∫

Ω

σσσ(x, θ) : ∇sym.δδδu(θ) dv



 dP(θ)

≡ E[A (u, δδδu(θ))] ,

(8.38)

and

B(δδδu(θ)) =

∫

Θ




∫

∂Ω

t̄ · δδδu(θ)da



 dP(θ) ≡ E[B(δδδu(θ))] , (8.39)

with the mathematical expectation

E[f ] =

∫

Θ

f(θ) dP(θ) .

Discretization of the Stochastic Problem by the Galerkin Method

In order to solve the problem, given in equation (8.37), by the Galerkin method, it
is suitable to split the discretization procedure into the following two parts.

1. The first part of the discretization is similar to the discretization of the de-
terministic finite element formulation, where suitable subspaces of V ⊗ S are
selected. Such a subspace Vh ⊂ V , denoted as finite element approximation
space, is

Vh = span {Ni}i∈N , (8.40)

where N denotes the set of nodes of the FE mesh and Ni is the shape function
associated with the i-th node.

2. The second part is related to the stochastic discretization, which requires an
introduction of a finite-dimensional subspace SP ⊂ S. This subspace SP is
spanned by a polynomial chaos

SP = span{ψj(θ), j = 0, ... P − 1} , (8.41)

where the ψj ’s form a set of orthogonal multidimensional Hermite Polynomials.
Here, when applying the polynomial chaos expansion it is assumed that the input
random field is characterized by a KLE, using M random variables. Both parts,
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the discretization by the KLE and the approximation of the stochastic dimension
via the polynomial chaos will be illustrated in the following two subsections.

8.2.3. Spatial Discretization applying the KLE

The spatial discretization of the stochastic problem is straightforward. After applying
the procedure described in subsection 3.3 and with respect to the operators A (·)
and B(·), introduced in the previous section, the discretized stochastic weak form is
obtained as follows:

A (û, δδδû(θ)) ≈ E



δδδû(θ)

∫

Ω

BT
C(x, θ)B dv

︸ ︷︷ ︸
ke(θ)

û(θ)



, (8.42)

and

B(û, δδδû(θ)) ≈ E



δδδû(θ)




∫

∂Ω

HT t̄ da

︸ ︷︷ ︸
fe ext






, (8.43)

where fe ext are the deterministic3 external element forces and ke(θ) denotes the
stochastic element stiffness matrix.

Since the Young’s modulus is discretized by a KLE using a set of M Gaussian random
variables {ξi(θ), i = 1, ...M}, the stochastic elasticity tensor C(x, θ) can be expressed
as

C(x, θ) ≡ ĤE(x, θ)C0 . (8.44)

Here, ĤE(·) is the discretized random Young’s modulus field and C0 is the constant
part of the isotropic4 material tensor in equation (2.88), which is given by

C0 =
1

(1 + ν)(1− 2ν)




1− ν ν ν
ν 1− ν ν 0
ν ν 1− ν

1−2ν
2

0 1−2ν
2

1−2ν
2



. (8.45)

3Stochastic external forces are also possible but not applied in this thesis.
4For the sake of simplicity only isotropic materials are considered in this thesis. For further re-

search also anisotropic materials should be applied, because it could not a priori be assumed,
that the material properties which are characterized by random fields, has an isotropic mi-
crostructure.
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With respect to equation (6.31) the elasticity tensor can be recast as

C(x, θ) =

[
µE + σE

M∑

i=1

√
λifi(x)ξi(θ)

]
C0 , (8.46)

where σE is the standard deviation of the Young’s modulus. Inserting equation (8.46)
into the deterministic stiffness matrix

ke =

∫

Ωe

BT
CB dΩe ,

results in the stochastic counterpart ke(θ)

ke(θ) =

∫

Ωe

µE BT
C0B dΩe +

∫

Ωe

σE

M∑

i=1

√
λifi(x)ξi(θ)B

T
C0 B dΩe (8.47)

= ke0 + ĤEi
kei , (8.48)

where ke0 denotes the mean element stiffness matrix and kei is the i-th weighted
element stiffness matrix. Applying the same assembling procedure as for the deter-
ministic case, cf. section 3.3, the global mean stiffness matrix and the weighted global
stiffness matrices are obtained by assembling the element matrices, i.e.

K0 =

ne⋃

e=1

ke0 =

ne⋃

e=1

∫

Ωe

µEBT
C0B dΩe , (8.49)

Ki =

ne⋃

e=1

kei =

ne⋃

e=1

∫

Ωe

ĤEi
(x)BT

C0BdΩe . (8.50)

The components of the displacement and force vectors are arranged in a similar way to
the deterministic case, which finally leads to the stochastic counterpart of the global
variational problem:

δδδTU(θ)

([
K0 +

M∑

i=1

Kiξi(θ)

]
U(θ)

)
= δδδTU(θ)F

δδδTU(θ)

([
M∑

i=0

Kiξi(θ)

]
U(θ)

)
= δδδTU(θ)F ,

(8.51)

with the usual convention ξ0 ≡ 1. Hence, the semi-discretized version of the varia-
tional problem, given in equation (8.37), reads:

Find U(θ) ∈ V such that ∀U(θ)

E[δδδTU(θ)K(θ)U(θ)] = E[δδδTU(θ)F] . (8.52)
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8.2.4. Stochastic Discretization applying the PCE

To represent the solution in the stochastic dimension by the Galerkin method, a
subspace SP ∈ S is required. Such a subspace can be defined by

SP = span{ψj(θ)}P−1
j=0 , (8.53)

which is a span of second-order functionals in ξξξ, by the truncated polynomial chaos
basis. Here, {ψj(θ)}P−1

j=0 is a complete set of orthogonal random variables, defined as
polynomials in {ξi(θ)}Mi=1.

5 The random variables ψj have to satisfy the following
properties, cf. Sudret and der Kiureghian [2000]:

ψ0 ≡ 1 , (8.54)

E[ψj(θ)] = 0 , j > 0 , (8.55)

E[ψj(θ)ψk(θ)] = 0 , j 6= k . (8.56)

Every random variable, for instance, a random nodal displacement u(θ) may be sought
in the subspace SP and can be therefore represented by

u(θ) =
P−1∑

j=0

ujψj(θ) . (8.57)

In the same way, the expansion of the global stochastic nodal displacement vector
U(θ) can be expressed as:

U(θ) =

P−1∑

j=0

Ujψj(θ) , (8.58)

where the Uj ’s are deterministic vectors. Gathering the vectors Uj , j = 0, ... P − 1
and δδδTUk

(θ), k = 0, ... P − 1 into the block vectors UUU and δδδTUUU (θ) of size (N · P̄ ) × 1

leads to the following fully discretized variational problem:

Find UUU ∈ R(N·P̄ )×1 such that ∀ δδδTUUU (θ) ∈ R(N·P̄ )×1

P−1∑

j=0

P−1∑

k=0

δδδTUk
(θ)E[K(θ)ψj (θ)ψk(θ)]Uj =

P−1∑

k=0

δδδTUk
(θ)E[Fψk ] , (8.59)

where P̄ := P − 1. Since the test functions δδδTUk
(θ) are arbitrary the remaining parts

must be zero, so equation (8.59) becomes

P−1∑

j=0

E[K(θ)ψj(θ)ψk(θ)]Uj = E[Fψk] , k = 0, ... P − 1 . (8.60)

This set of systems of (usually coupled) deterministic equations can be formally writ-
ten in the compact block form

KKKUUU = FFF . (8.61)

5The detailed expression {ψj({ξi(θ)}
M
i=1)}

P−1
j=0 is omitted to shorten the notation.
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Alternative Derivation of the Spectral Problem

In order to obtain the expression (8.60) (resp. expression (8.61)), the subsequently
outlined steps are necessary. First, substituting equation (8.58) into equation (8.51)2
(since δδδTUk

(θ) is arbitrary) leads to

(
M∑

i=0

Kiξi(θ)

)


P−1∑

j=0

Ujψj(θ)



− F = 0 . (8.62)

The residual of this equation reads, cf. Sudret and der Kiureghian [2000],

ǫM,P =
M∑

i=0

P−1∑

j=0

Kiξi(θ)Ujψj(θ)− F = 0 . (8.63)

The Galerkin method is applied to minimize the previously defined residual, which
is equivalent to the requirement that this residual is orthogonal to the space SP , i.e.

E[ǫM,Pψk] = 0 , k = 0, ... P − 1 . (8.64)

With respect to equation (8.63) and by using the relations

cijk = E[ξiψjψk] , (8.65)

Fk = E[Fψk] , (8.66)

equation (8.64) can be rewritten as

M∑

i=0

P−1∑

j=0

cijkKiUj = Fk , k = 0, ... P − 1 . (8.67)

The occurring third order tensor cijk in equation (8.67) is essential in the assembling
process and will from now on be referred as multiplication tensor. This tensor is
symmetric with regard to the last two indices cijk = cikj , which highlights some
symmetries in the structure of the global stochastic stiffness matrix. Through the
properties of the stochastic basis, cf. equations (8.55) and (8.56), many of the entries
of cijk are zero. A further important property of cijk is that it only depends on the
stochastic basis P . This means, that the computation and the storage of the non-zero
entries can be done in a pre-processing step.

With the introduction of a further relation Kjk, which is defined by

Kjk =
M∑

i=0

cijkKi , (8.68)

equation (8.67) can be rewritten as

P−1∑

j=0

KjkUj = Fk , k = 0, ... P − 1 . (8.69)
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This set of linear equation systems can be also expressed by the block structure

KUKUKU = FFF ,

which is identical to equation (8.61). Finally, this structure can also be also written
in a matrix form, i.e.




K0,0 · · · K0,P−1

K1,0 · · · K1,P−1

...
. . .

...
KP−1,0 · · · KP−1,P−1




︸ ︷︷ ︸
KKK




U0

U1

...
UP−1




︸ ︷︷ ︸
UUU

=




F0

0
...
0




︸ ︷︷ ︸
FFF

. (8.70)

Note that Fk is zero for k > 0 when assuming only deterministic loadings, as in
this work. The matrix K0,0 contains the deterministic parameters and the matrices
Ki in equation (8.68) for i > 0 along with cijk corresponds to the spatial varying
parameters. Utilizing the KLE, the variations of these parameters are represented by
a set of eigenfunctions {fi(x)}Mi=1. In view of the sparse structure of the multiplication
tensor only a few Kjk’s are non zero and the global block matrix KKK shows a distinctive
sparse structure, which is illustrated in Fig. 8.1 for different dimensions M and
expansion orders p, where the coloured squares highlights the non-zero entries.

General remark: As already mentioned and illustrated by the figure 8.1, grows the
stochastic system of equations drastically with increasing dimension M and polyno-
mial order p. In view of the sparse structure of KKK, there are effective approximation
techniques developed, such as low-rank approximation techniques of the tensor struc-
ture of cijk (resp. the stochastic system of equations). These methods makes the
calculation of the stochastic system quiet efficient with respect to the computation
time as well as to an effective usage of the memory. A recently published paper, which
has been specifically addressed to these topics is this one presented by Espig et al.
[2014]. Further model reduction techniques can be found in the article by Nouy [2009].

8.3. Remarks on the Computational Implementation of the SSFEM

The implementation of the SSFEM is not straightforward. Often moments of or-
thogonal one-dimensional polynomials as well as multi-dimensional polynomials are
essential. This section outlines some ingredients of the computational implementation
of these tasks and illustrates, by pseudo-algorithmic options, how to realize it in a
computer code. If built-in functions of Matlab are used in the presented algorithms,
these functions are highlighted by italic characters.

8.3.1. Variance of the Chaos-Polynomials

The expectation of two one-dimensional Hermite polynomials can be evaluated by,
cf. Sudret and der Kiureghian [2000],

E[hp(ξ)hq(ξ)] = δpqp! . (8.71)

By the fact that the polynomials {ψj , j = 1, ... P − 1} are also orthogonal to each
other, the multi-dimensional case can be expressed as products of the one-dimensional
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(a) Dimension M = 2, order p = 2
⇒ basis P = 6.

(b) Dimension M = 2, order p = 4
⇒ basis P = 15.

(c) Dimension M = 4, order p = 2
⇒ basis P = 15.

(d) Dimension M = 4, order p = 4
⇒ basis P = 70.

(e) Dimension M = 4, order p = 8
⇒ basis P = 495.

(f) Dimension M = 8, order p = 4
⇒ basis P = 495.

(g) Dimension M = 12, order p = 4
⇒ basis P = 1820.

(h) Dimension M = 16, order p = 4
⇒ basis P = 4845.

Figure 8.1.: Illustration of the sparse structure of KKK for different dimensions M and
expansion orders p.
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polynomials as follows, cf. Sudret and der Kiureghian [2000]:

E[ψαααψβββ ] = δαααβββ

M∏

i=1

αi! , (8.72)

where ααα and βββ are multi-indices. The Kronecker delta is equal to 1 if the integer
sequences of ααα and βββ are identical, otherwise zero. In view of the post-processing, the
variances are needed for the calculation of the covariance in equation (8.77). Note that
ψ0 is not explicitly stored in the workspace, because of the convention E[ψ2

0 ] = 1. The
corresponding pseudo-code for the calculation of the variances (see equations (8.71)
and (8.72)) is illustrated in Algorithm 1.

Algorithm 1 Calculating the variances E[ψ2
j ]

Require: M , P and C
1: initialise: sn = ones(1, P -1)

2: for j = 1 : P - 1 do
3: for i = 1 : M do
4: sn(j) = sn(j)factorial(C{j}(i))

5: end for
6: end for

Here, M denotes the dimension of the KLE, P is the number of basis polynomials
calculated by equation (7.19) and C contains all (P − 1) integer sequences of the
polynomial chaos.

8.3.2. Multiplication-Tensor cijk

The multiplication-tensor cijk , introduced in equation (8.65), is essential when ap-
plying Gaussian random fields in the context of the (normal distributed) SSFEM.
This tensor is required for the computation of the stiffness matrices Kjk in equation
(8.68). The multiplication-tensor and the variances of the polynomials are equivalent
if one of the indices i, j, k is zero and the other two have the same value. Due to
the properties of cijk , this tensor is calculated only once and stored in the workspace
during the pre-processing.

Following the work of Sudret and der Kiureghian [2000], the coefficients of cijk are
calculated by

cijk =
(
p!δP−1,q + q!δp,q−1

)∏

l 6=i

αl! , (8.73)

where a detailed derivation can be also found in this work. This derivation style was
also used for the implementation, which is illustrated in the pseudo-code of Algorithm
2.

The variables M,P and C are already defined in the previous subsection. Using
multi-indices to define the integer-sequences ααα and βββ, this algorithm computes and
stores all coefficients of cijk , which are not equal to zero. This means, the terms
whose Hermite polynomials are not orthogonal to each other, i.e hαj0

and hβj0
with

αj0 = βj0 .



8. Stochastic Finite Element Method 151

Algorithm 2 Storing the values of the multiplication-tensor cijk

Require: M , P und C
1: for i = 1 : M do
2: initialise: CC{i} = sparse(P -1, P -1)

3: for j = 1 : P -1 do
4: for k = j : P -1 do
5: αj =C{j}

6: βk =C{k}

7: dif = C{j}-C{k}

8: if dif == i then
9: the i-th integer are

10: p = C{j}(i)

11: q = C{k}(i)
12: a = factorial(p)isequal(P -1, q) + factorial(q)isequal(p, q-1)

13: al = C{j}

14: al(i) = [ ]

15: b = prod(gamma(al+1))

16: CC{i}(j,k) = ab

17: end if
18: end for
19: end for
20: end for

As a first example, let M = 4, p = 2 and consider the loop-indices i = 1, j = 1, k = 5.
With respect to the algorithm above, this set of indices leads to the integer sequences
of ααα and βββ, which are listed in the first two rows of Tab. 8.1. From this listing, it is

Table 8.1.: Examples for integer sequences of different loop-indices i, j, k of cijk.

Reverse Integer Sequence Polynomial basis
First example 1 0 0 0 ξ1

i = 1, j = 1, k = 5 2 0 0 0 ξ22 − 1
Second example 1 0 0 0 ξ1
i = 2, j = 1, k = 6 1 1 0 0 ξ1ξ2

obvious that the integer sequences αααj and βββk are only different in their i-th integer.
Thus the corresponding coefficient of cijk is computed by using equation (8.73), which
results in c115 = 2. The following coefficients for i = 1 are constructed in the same
way, i.e. with respect to the orthogonal property of the Hermite polynomials, where
only four coefficients of c1jk are non-zero.

As a second example consider the loop-indices i = 2, j = 1, k = 6 where the corre-
sponding sequences of αααj and βββk are also listed in Tab. 8.1. Again, using equation
(8.73) the coefficient of the multiplication-tensor c216 = 2 is obtained. For this ex-
ample (M = 4, p = 2) a total number of sixteen terms (without taking into account
the expectation values ψ0) of cijk are non-zero. Note that the coefficients of cijk also
provides the variances of the basis polynomials, which are discussed in the foregoing
subsection.
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When operating with three6 polynomials, the tensor dijk = E[ψiψjψk] is required.
The implementation has also been realized with regard to Sudret and der Kiureghian
[2000], whereas a detailed pseudo-code is omitted here.

8.4. Post-Processing of the Results

The formulation of the linear SSFEM leads to a system response, for example, of a
displacement u(θ) of a specific node in terms of its polynomial chaos expressed by

u(θ) =
P−1∑

i=0

uiψi .

For practical predictions, the polynomial chaos coefficients (here ui) must be evaluated
in order to derive the quantities of interest.This section gives a brief overview to the
computation of some stochastic moments using the PC coefficients. These are the
mean value, variance, skewness and the kurtosis as well as the approximation of the
PDF of the system response.

8.4.1. Probability Density Function of the System Response

The computation of the probability density function of a specific value of the system
response can be realized by evaluating the series expansion of the PC coefficients by
applying a sampling technique. In this work, this is realized by use of the LHS, which
leads to a set of system responses {ui(θ), i = 1, ... n}. Using this set, a histogram may
be created as an estimator of the PDF. However, this result is not very smooth7 and
approximation methods are developed, which give a smooth estimation of the system
response. Such kernel smoothing techniques have been discussed, for example, in
Wand and Jones [1995], where a general equation for the kernel density estimation is
defined by

f̂u(θ)(u) =
1

nhK

n∑

i=1

K

(
u− ui

hK

)
. (8.74)

Here, K denotes the kernel function and hK is a smoothing parameter referred to
as bandwidth parameter. This parameter has a strong influence on the estimated
results and is selected with respect to the kernel. Commonly used kernels, such as
the Gaussian or the Epanechnikov kernel, are also provided in Matlab.

8.4.2. Computation of the Statistical Moments

The statistical moments of a certain system response u(θ) can be analytically eval-
uated from the polynomial chaos coefficients. In particular, this leads for the mean

6In the case of algebraic operations with more than three polynomials, a splitting of the polyno-
mials on tensors with lower-order is appropriate, therefore see subsection 9.2.2.

7One example has been given in subsection 4.4.2 where the MCS and LHS has been compared by
their resulting histograms, cf. Fig. 4.8.
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value and the variance to

µu,PC ≡ E[u(θ)] = u0 , (8.75)

σ2u,PC ≡ Var(u(θ)) =
P−1∑

i=1

u2i , (8.76)

Covuu,PC ≡ Cov(u(θ), u(θ)) =
P−1∑

i=1

E[ψ2
i ]u · uT , (8.77)

where •PC indicates that the moments are evaluated with respect to the polyno-
mial chaos expansion. The higher order moments can also be computed in the same
manner. The skewness is approximated by a PCE as, cf. Sudret [2007],

su(θ),PC =
1

σ3
u(θ),PC

P−1∑

i=1

P−1∑

j=1

P−1∑

k=1

dijkuiujuk . (8.78)

The kurtosis and accordingly its PC-based approximation reads, cf. Sudret [2007],

κu(θ),PC =
1

σ4
u(θ),PC

P−1∑

i=1

P−1∑

j=1

P−1∑

k=1

P−1∑

l=1

dijkluiujukul . (8.79)

For the accurate computation of the mean values and variances, a PCE of order p = 2
seems to be sufficiently. However, for the calculation of higher statistical moments a
PCE of at least of p = 3 should be used.

8.5. Extensions of the Spectral Stochastic Finite Element Method

Beside a quite common consideration of fluctuating material properties using Gaus-

sian random variables, there are also a lot of studies that use non-Gaussian random
fields to characterize the stochastic material properties. On the one hand, when us-
ing a Gaussian field, the implementation is easier, because no transformation of the
Gaussian random variables is necessary. On the other hand, when using Gaussian

variables, it is theoretically possible to get negative outcomes, which physically makes
no sense. With this in mind, log-normal random fields can be the better choice. How-
ever, in this work only small standard deviations σ ≤ 10% are considered, which is
typically a reasonable choice for material parameters, for instance, of steel. Inves-
tigations on the yield stress of σy = 23.5 kN/cm2 and σ(σy) = 10% show that no
negative sampling value occurs when a LHS with n = 10000 is used. Negative values
occured only when utilizing a LHS with n = 1000000 and with a standard deviation
of σ(σy) ≥ 20%. Negative values (if occur) are intercepted, what indeed leads to an
approximation, which is sufficiently accurate due to the sporadic occurring of negative
values.

The following two subsections briefly outline the generation of non-Gaussian random
variables and fields by means of the KLE. In subsection 8.5.3 the extension to multiple
random variables will be discussed, which is afterwards applied in chapter 9.
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8.5.1. Log-Normal Random Variables

Let g(θ) = µg + σgξ(θ) be a single random variable with the standard Gaussian

random variable ξ(θ). The transformation of g(θ) into a log-normal random variable
can be written as follows, cf. Sudret and der Kiureghian [2000],

l(θ) = eµg+σgξ(θ) , (8.80)

where the PCE of l(θ) is defined by

l(θ) =
∞∑

i=0

li ψi(ξ) , (8.81)

where ψi(ξ) denotes the i-th Hermite polynomial. With respect to the or-
thogonality properties of the ψi(ξ)’s, the coefficients li are obtained by, cf.
Sudret and der Kiureghian [2000],

li =
E [exp(µg + σgξ)ψi(ξ)]

E(ψ2
i )

. (8.82)

After Sudret and der Kiureghian [2000], the expansion of a log-normal random vari-
able into the polynomial chaos can be done by

l(θ) = µl

∞∑

i=0

σig

i!
ψi(ξ) . (8.83)

8.5.2. Log-Normal Random Fields

Let g(x) be a truncated Gaussian random field. This field can be transformed into
a log-normal field by l(x, θ) as follows, cf. Sudret and der Kiureghian [2000]:

l(x, θ) = exp

(
µg(x) +

M∑

i=1

gi(x) ξi

)
= exp

(
µg(x) + ggg(x)T · ξξξ

)
, (8.84)

with ggg = (g1, ... gM ) and ξξξ = (ξ1, ... ξM ). The corresponding polynomial chaos reads

l(x, θ) =

P−1∑

j=0

lj(x)ψj(ξξξ) . (8.85)

The use of a log-normal random field in the context of a SSFEM simulation is anal-
ogous to the steps described in section 8.2, where the random field realization, as
defined in equation (8.44), is replaced by equation (8.84). The global equilibrium
system then reads
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(
M∑

i=0

Ki ψi(θ)

)


P−1∑

j=0

Uj ψj(θ)



 = F , (8.86)

⇔
M∑

i=0

P−1∑

j=0

dijkKiUj = Fk , k = 0, ... P − 1 , (8.87)

with the coefficients of the multiplication tensor dijk and Fk = E[ψk F].

8.5.3. Multiple Input Random Fields

In almost all engineering applications, more than one material property is uncertain.
Examples could be the Young’s modulus and the Poisson’s ratio in elastic analysis or in
the case of elastic-plastic applications, the yield stress and the hardening parameters
could be uncertain as well. Until now, only one input variable is assumed to be
random, which should now be extended to multiple random input variables, see also
Ghanem [1999] for a similar framework.

In view of chapter 9 the Young’s modulus, yield stress, isotropic hardening modulus
and the kinematic hardening modulus are characterized as random quantities. With
respect to the presented framework in this chapter, the four random variables are
characterized as follows:

E(x, θ) = µE + ξ1E1 + ξ2E2 + · · ·+ ξMEM (8.88)

σy(x, θ) = µσy + ξ1σy1 + ξ2σy2 + · · ·+ ξMσyM (8.89)

Hiso(x, θ) = µHiso
+ ξ1Hiso1 + ξ2Hiso2 + · · ·+ ξMHisoM (8.90)

Hkin(x, θ) = µHkin
+ ξ1Hkin1

+ ξ2Hkin2
+ · · ·+ ξMHkinM

, (8.91)

where µ• denotes the expected value of the corresponding material parameter and M
is the dimension of the KLE. As shown in the expressions above, it is assumed that
each material parameter is represented by one random variable, which is equivalent to
a relatively slow variation of each material parameter over space. To combine these
four expansions into the same numerical environment, it is suitable to formulate them
as follows (with M = 4):

E(x, θ) = µE + ξ1E1 + ξ20 + ξ30 + ξ40 =

4∑

i=0

Eiξi , (8.92)

σy(x, θ) = µσy + ξ10 + ξ2σy2 + ξ30 + ξ40 =
4∑

i=0

σyiξi , (8.93)

Hiso(x, θ) = µHiso
+ ξ10 + ξ20 + ξ3Hiso3 + ξ40 =

4∑

i=0

Hisoiξi , (8.94)

Hkin(x, θ) = µHkin
+ ξ10 + ξ20 + ξ30 + ξ4Hkin4

=
4∑

i=0

Hkini
ξi , (8.95)

with the standard convention ξ0 ≡ 1 and the zero order material term is defined as the
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expected value, e.g., E0 = µE . The expansions above are not restricted to any specific
order p of the polynomial chaos. For example, let the polynomial order p = 2. Then,
the basis P of the polynomial chaos includes 15 terms. A higher order expansion can
be realized without any restriction. However, the choice of the dimension M and the
order of the polynomial chaos p must be carried out carefully, because the basis P of
the polynomial chaos grows drastically with increasing M and p, cf. Tab. 7.2.

8.6. Numerical Example

The accuracy of the analytical and the numerical approximation of the KLE has been
examined in subsection 6.3.2. As it was observed there both methods are quite similar.
The accuracy of the SPRM using different sampling techniques for the random phase
angle was discussed in subsection 6.4.2. From these investigations, it is obvious that
the random phase angle sampled with a LHS leads to the best accuracy. In this
section, a numerical example with different dimensions M , orders p and correlation
lengths c is investigated, where the special emphasis is placed on the influence of these
parameters on the system response uy and the standard deviation σ(uy) of a node at
the top of the plate. Due to the fact that the numerical example has a hole at the
centre, the realization of the random field, when using the KLE, has been performed in
a numerical manner. The results from the SSFEM are compared with those obtained
from a coupled SPRM-MCS and a simple Latin Hypercube Sampling. The three-
dimensional plate is illustrated in Fig. 8.2 (a). The domain D of the model is specified
by 10 × 10 × 1 [cm] and the circular hole at the center of the plate has a radius of
r = 1 cm. The plate is loaded by a distributed load of 10 kN/cm2. The constitutive
behaviour of the model is represented by a linear-elastic material formulation. The
elastic behaviour is represented by an isotropic linear-elastic material law with a
deterministic Poisson ration of ν = 0.25 and a spatial varying Young’s modulus of
E(x, θ) = 21.000 kN/cm2. The spatial fluctuations of E(x, θ) are represented in
two ways, i.e with the Karhunen-Loève Expansion and the Spectral Representation
Method.

Spatial Discretization of the Domain

By applying the Karhunen-Loève Expansion, the Young’s modulus is represented by
a discretized three-dimensional random field Ĥ(x,y, z, θ), x,y, z ∈ D with zero mean
and values in R+. To be more specific, E(x, θ) is characterized by the covariance
function

CE(x1,y1, z1;x2,y2, z2) = e
−

|x1−x2|
cx

−
|y1−y2|

cy
−

|z1−z2|
cz . (8.96)

The standard deviation of E(x, θ) is σE = 10%, which spatially varies over D. The
correlation length c is varied by c = 0.01, 0.1, 1.0, 10.0 [cm]. It is worth remembering
that an analytical solution of equation (6.20) is valid only for simple geometries and,
because of the hole at the center of the plate, the random field has to be calculated
numerically.

By using the Spectral Representation Method the Young’s modulus is characterized
by the discretized three-dimensional random field ĤS(x,y, z, θ), x,y, z ∈ D with zero
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(a) Schematic illustration of the plate.

ν = 0.25ν = 0.25

µE = 21.000 kN
cm2

140 elements

1008 degrees of freedom

(b) Discretization of the plate. (c) 3D view of the discretized plate.

Figure 8.2.: Numerical linear elastic example.
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mean and values in R+. The Young’s modulus is represented by

ĤS(x,y, z, θ) =
√
2

Nx−1∑

nx=0

Ny−1∑

ny=0

Nz−1∑

nz=0
[
A

(1)
nxnynzcos

(
κxnx

x+ κyny
y+ κznz

z+ Φ
(1)
nxnynz (θ)

)

+ A
(2)
nxnynzcos

(
κxnx

x− κyny
y+ κznz

z+ Φ
(2)
nxnynz (θ)

)

+ A
(3)
nxnynz

cos
(
κxnx

x+ κyny
y − κznz

z+ Φ
(3)
nxnynz

(θ)
)

+ A
(4)
nxnynz

cos
(
κxnx

x− κyny
y− κznz

z+ Φ
(4)
nxnynz

(θ)
)]

.

(8.97)

The power spectral density function SĤSĤS
characterizing the approximated random

field is assumed by

S
ĤSĤS

(κx, κy, κz) = σ2E
cxcycz

4π
exp

[
−
( cxκx

2

)2
−
( cyκy

2

)2
−
( czκz

2

)2]
. (8.98)

The standard deviation of E(x, θ) is σE = 10%, which spatially varies over D where
the correlation lengths are the same as for the KLE. The response statistics are
evaluated using a sample size of nSPRM = 1000, where the random phase angles are
sampled by applying the LHS.

Sampling Method

The accuracy of the spatial discretization methods is compared with a simple LHS
using a sample size of nLHS = 2000. As already discussed in section 4.4.2, the LHS
has a convergence rate of O(n−1), while the convergence rate of the standard MCS is
O(1/

√
n). By comparing these two methods it is obvious, that the convergence rate

of LHS is better than those of the MCS using the same number of samples. Therefore,
the LHS is applied as reference solution for this example.

Parameter Variation

The standard deviation of the system response σu of a node at the top of the plate,
with respect to the coefficient of variation αE of the Young’s modulus, has been
investigated. For the subsequent calculations, the parameters (M , p, c and αE) are
varied, which are summarized in the following:

• Different dimensions M of the KLE and polynomial orders p of the PCE.

• Various correlation lengths ci, i = x, y, z for both methods, i.e. for the KLE
and SPRM.

• Different coefficients of variation αE of E.

As already remarked in chapter 6, the values of the KLE as well as of the SPRM are
values, which are used in most applications in the literature and sufficiently reasonable
for system responses. However, for a detailed parameter study the values must be
significantly larger than those applied here.
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Finite Element Model

The discretized plate is illustrated in Figs. 8.2 (b) and 8.2 (c). The model consists of
140 FE elements with a total number of 1008 degrees of freedom, where linear shape
functions are applied to approximate the structural response.

Results of the Numerical Example

The results obtained by using the SSFEM, coupled SPRM-MCS and the LHS, are
depicted in Figs. 8.3 to 8.6. The accuracy of the linear SSFEM and the coupled
SPRM-MCS is examined by comparing the approximated standard deviation of the
system response σu with those of a LHS. The obtained curves using the SSFEM shows
an increasing standard deviation by a increasing correlation length, see Figs. 8.3−8.5.
This phenomena were also observed in subsection 6.3.2, where the influence of the
correlation length of the eigenvalues of the KLE was investigated. It implies, that
the field is strongly correlated by a long correlation length, which results in a fast
decay of the eigenvalues. A fully correlated field, i.e. where the correlation length
is infinite, leads to a rapidly decay of the corresponding eigenvalues, where only one
eigenvalue is one and all others are zero. On the other hand, a weakly correlated
field has a slow decay of the eigenvalues, where the fully uncorrelated field has no
decay in the eigenvalues. The under-representation of the variance of the random
field, cf. equation (6.27), is also visible in Figs. 8.3−8.5 when comparing the results
of the SSFEM with those of a LHS. It should be noticed that the deviation to a LHS
decreases with an increasing c. The influence of the dimension M and the order p
is also observed in these figures with a quantitatively similar trend. The curve using
M = 2 and p = 2 is still slightly different from the counterparts. However, when
applying M = 4 and p = 2 the parameter pair M = 4 and p = 4, the curves match
each other quite well. This result implies, that for this numerical example only a few
terms for the dimension (M = 4) and order (p = 2) are needed to achieve an accurate
approximation of the system response, measured in terms of the standard deviation
σu. As already remarked at the end of subsection 6.3.1, the number of terms (i.e. M
and p) should be small, otherwise the basis P of the PCE increases drastically. More
discussions about the truncation orders of M and p can be found in Xiu [2010] and
Le Maître and Knio [2010].

The results of the coupled SPRM-MCS are depicted in Fig. 8.6. The trend of the
curves using the correlation lengths c = 0.01, c = 0.1 and c = 1.0 are comparable to
those obtained from the SSFEM, plotted in Figs. 8.3−8.5. A noticeable difference is
seen by using a SPRM-MCS with c = 10. On the one hand, the curve is still above
the reference solution and on the other hand it seems so that there is no convergence
in the standard deviation.

In Fig. 8.7, all graphs from Figs. 8.3 to 8.6 with a correlation length of c = 1.0 are
plotted again. From this plot, the differences in the standard deviations of the system
response become quite obvious. the SPRM-MCS is the closest to the reference (LHS)
solution. Furthermore, the above mentioned matching between M = 4, p = 2 and
M = 4, p = 4 becomes quite clear here. In general, a good approximation, in view of
the solution of the LHS, is obtained with both methods.
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Figure 8.3.: Standard deviation of the plate deflection versus the coefficient of variation
αE of the plate by using a dimension of M = 2 and a order of p = 2.
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Figure 8.4.: Standard deviation of the plate deflection versus the coefficient of variation
αE of the plate by using a dimension of M = 4 and a order of p = 2.
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Figure 8.5.: Standard deviation of the plate deflection versus the coefficient of variation
αE of the plate by using a dimension of M = 4 and a order of p = 4.
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Figure 8.6.: Standard deviation of the plate deflection versus the coefficient of variation
αE of the plate by using the coupled SPRM-MCS.
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Figure 8.7.: Comparison of the standard deviation of the plate deflection versus the
coefficient of variation αE for c = 1.0 of the SSFEM, coupled SPRM-MCS
and the LHS.

8.7. Summary

In this chapter, the linear spectral stochastic finite element method was discussed in
detail. First, a brief overview of some solution methods, for the evaluation of the
stochastic system response, has been presented in section 8.1. At the end of this
subsection, a brief distinction between intrusive and non-intrusive methods has been
given. The emphasis of this chapter was the formulation of the linear SSFEM, which
was presented in detail in sections 8.2 to 8.5. First, the stochastic elliptic bound-
ary value problem is defined. Then, the variational form of the linearized stochastic
problem is introduced and afterwards discretized. The discretization is split into two
parts, namely the deterministic part and the stochastic part, which was presented
in detail in subsection 8.2.3 and 8.2.4. After that, some remarks on the computa-
tional implementation of important parts of the stochastic formulation are given in
8.3. To this point, only preprocessing steps are explained and the next step is the
post-processing, which was outlined in section 8.4. Here, the theoretical background
was provided to make practical predictions, such as the standard deviation, skewness,
kurtosis etc. for the quantities of interest. Some important extensions of the lin-
ear SSFEM are presented in section 8.5, with particular emphasis on multiple input
random fields. In section 8.6, the influence of the parameters M , p, c and αE are
discussed by a three-dimensional numerical example. By this, an assessment on the
capability of the linear SSFEM and the coupled SPRM-MCS for the simulation of a
three-dimensional plate with a circular hole at the center has been performed. The
evaluation of the Fredholm integral equation was performed numerically by applying
a Galerkin projection. A three-dimensional homogeneous Gaussian field with zero
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mean, unit variance and an exponential autocovariance function has been applied.
The solution of the random field with the SPRM has been done by using an expo-
nential power spectral density function and applying a LHS for the sampling of the
random phase angles. The accuracy of these methods are compared with a standard
LHS. In general, it has been shown that the solution comes closer to the reference
solution (the LHS) with an increasing correlation length. Furthermore, it has been
observed, that an increasing correlation coefficient has an influence on the stability
of the coupled SPRM-MCS approach. It has also been verified that, by applying the
SSFEM, only a few KLE terms M and a low polynomial order p is necessary in order
to achieve a sufficiently accurate approximation of the system response. In general,
the linear SSFEM provides an adequate approximation by using only a few terms M
and p. The coupled SPRM-MCS seems to provide sligthly better solutions than the
SSFEM, when comparing it with the solution of a LHS. However, two remarks should
be given. The first one is the correlation length, which must be selected carefully oth-
erwise some stability problems could occur. The second is the computational time,
which is relatively high in comparison to the linear SSFEM.
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9. Spectral Stochastic Finite Element Method in the Context
of Plasticity

The deterministic theory of plasticity as well as the realization in a computer code
was discussed in sections 2.6 and 3.4. This is equivalent with the assumption that
the material parameters are assumed to be exactly known in every point of the body.
However, this is not true in reality, because the material parameters are actually not
the same at every point in the considered domain. To get a more general formula-
tion, the standard deterministic J2 flow theory has to be extended in such a way that
random material parameters are taken into account. In this chapter, an approach is
developed where such material fluctuations can be taken into account. To be more
specific, the linear SSFEM approach, which has been presented in the previous chap-
ter, is used as basis and extended in the subsequent sections to solve elastic-plastic
problems with uncertain material parameters. The stochastic variational inequal-
ity is solved by a novel mixed method, consisting of an algebraic (PCE)−sampling
(regression method) formulation. The problem is projected in a Galerkin manner
similar to the one in the classical finite element approach onto the polynomial basis
of the discretized space. The stochastic closest point projection1 (SCPP) is done in
an algebraic-sampling manner to determine the relevant quantities in the stochastic
radial return scheme. This is achieved by using the polynomial chaos algebra (PCA)
as well as the regression method. The numerical realization of this formulation is
straightforward, which means that it is efficient but the intrusive character of this
approach requires the reformulation of the existing program code.

The structure of this chapter is as follows: In section 9.1, some existing approaches for
the stochastic analysis of elastic-plastic material behaviour are briefly summarized.
In view of the presented linear SSFEM the system response is represented in terms
of the PCE, i.e. as a function of the known random variables of some simple type.
Commonly used random variables for the PCE are normalised Gaussian RVs and,
with respect to some mathematical conditions, elementary mathematical operations
can be done on the PCE of these random variables. The necessary mathematical
operations for the novel non-linear approach will be presented in sections 9.2 and 9.3.
The main part of this chapter, the formulation of the von Mises (J2) plasticity in the
stochastic context is presented in section 9.4. The subsequent realization of this novel
theoretical formulation in the in-house FE-computer program is presented in section
9.5. In section 9.6, different approaches for the probabilistic yielding are discussed
and some remarks to these approaches are given. The verification of the presented
approach is done on two numerical examples, which are discussed in section 9.7. A
summary as well as a conclusion of this chapter is given in section 9.8.

1cf. Rosić [2013].
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9.1. Overview of Existing Approaches

The major difficulty in extending the available formulations of the linear SSFEM to
elastic-plastic problems is the highly non-linear coupling in the elastic-plastic consti-
tutive rate equation. There exist only a few formulations, where random material
properties are taken into account. In the following, a summary of the review, given
in section 1.2, is presented.

The first approach to be mentioned here was published by Anders and Hori [1999] and
Anders [2000]. In these publications, the authors dealt with elastic-plastic constitutive
equations by assuming a stochastic Young’s modulus. It is based on the perturbation
expansion at the stochastic mean behaviour. As already mentioned several times in
this thesis, the coefficient of variation αX is limited to αX ≤ 20% and in the recently
published book by Xiu [2010] the COV is even specified by αX ≤ 10%. The approach
was generalized to three-dimensional problems by Anders and Hori [2001], but the
limitations by applying the perturbation method are still present there. Another
drawback of this method is the always necessary need of information on higher order
moments in order to calculate lower-order moments. In the literature, this problem
is referred to as a closure-problem.

A further approach was presented in a series of papers by Sett et al. [2007b,a];
Jeremić et al. [2007]; Jeremić and Sett [2009]; Sett and Jeremić [2010]; Sett et al.
[2011]. This approach based on the Eulerian-Lagrangian (EL) form of the
Fokker–Planck–Kolmogorov equation, which was formulated by Kavvas [2003].
The presented methodology is second-order accurate and does not suffer from the
drawbacks of the MCS as well as the perturbation method. To be more specific,
neither does the closure problem, as in the perturbation method, occur nor does it
require the repetitive use of a computationally expensive deterministic elastic-plastic
model as when a MCS is used. Nevertheless, the formulation of the constitutive equa-
tion is complicated and this approach is currently only applied to one-dimensional
constitutive problems.

In the recently published paper by Arnst and R.Ghanem [2012], the authors presented
a formulation for stochastic boundary value problems (SBVPs) whose formulation
involves inequality constraints. They formulated a class of stochastic variational in-
equalities (SVIs) which is well adapted to characterize the solution of specified inequal-
ity constrained SBVPs. The discretization of the SVIs is performed via a projection
onto PCEs and collocation of the inequality constraints. Besides the application on
contact problems, the presented formulation is also applied to elastic-plastic problems
where the general von Mises elastic-plastic material formulation is used. However,
in the numerical example, the isotropic hardening modulus is the only stochastic ma-
terial parameter. The solution of the problem is done by applying the sparse grid
approach, where the stochastic convex domain of admissible stresses is represented
by a set of collocation points. This is a "drawback" of this method at the same
time, because the number of collocation points increases exponentially when a large
number of random variables are required, to represent the fluctuations of the system
parameters.

The last reviewed approach was presented by Rosić and Matthies [2008]; Rosić et al.
[2010]; Rosić and Matthies [2012]; Rosić [2013]. Here, the authors proposed a stochas-
tic variational inequality formulation of stochastic elastic-plastic material behaviour.
The solution algorithm in their work is an extension of the standard return-mapping
algorithm, cf. Simo and Hughes [1998]. They employed a stochastic closest point
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projection, whereas the predictor and corrector are formulated with the help of the
stochastic Galerkin method in its fully intrusive and non-intrusive variant. The pro-
posed techniques tested on a series of two-dimensional examples where the bulk mod-
ulus, shear modulus, yield stress and the isotropic hardening modulus are assumed to
be uncertain. Indeed, no mixed linear hardening, i.e., isotropic and kinematic harden-
ing is taken into account and the numerical examples are limited to two-dimensional
problems.

9.2. Calculating Non-Linearities via Polynomial Chaos Algebra

This section is devoted to the relevant algebraic operations of PC variables, such as
the subtraction/addition, multiplication/division and inversion of a system consisting
of PC variables. For further details to the discussed operations here as well as on the
evaluation of non-polynomial functions, such as exponential functions or differential
equations, the reader is referred to the publication by Debusschere et al. [2005] and
to the textbooks by Springer [1979] and Le Maître and Knio [2010].

Let a(θ), b(θ) and c(θ) be three random variables, which are mapped from the prob-
ability space L2(Θ,F ,P) into R. This (approximated) mapping is realized by its
truncated PCE as

â(θ) =

P−1∑

i=0

aiψi, b̂(θ) =

P−1∑

j=0

bjψj and ĉ(θ) =

P−1∑

k=0

ckψk , (9.1)

where ψ• (ξ(θ)), ξξξ(θ) = (ξ1, ξ2, ... ξM ) are the M -dimensional polynomials2 and the •̂
denotes the approximation of a RV.

9.2.1. Addition/Subtraction of PC-Variables

The basic operations subtraction and addition are straightforward. These operations
are performed by adding (resp. subtracting) the corresponding terms of the PCE.
With the RVs introduced in equation (9.1), the addition and subtraction of two RVs
can be consequently written as

ĉ(θ) = â(θ) ±̂ b̂(θ) . (9.2)

9.2.2. Galerkin Product (Multiplication of PC-Variables)

The multiplication of PC variables are not straightforward, because no direct solution
exists. To be more specific, an assumption, such as

ĉ(θ) = â(θ)b̂(θ) , (9.3)

has to be made. This assumption is valid as long as the PCE of â(θ) and b̂(θ) is high
enough for the representation of them. By use of equation (9.1), the multiplication

2In this work only Hermite polynomials are used, because only normal distributed random vari-
ables are applied.
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in equation (9.3) reads

ĉ(θ) =

P−1∑

k=0

ckψk =

P−1∑

i=0

aiψi

P−1∑

j=0

bjψj . (9.4)

For the calculation of the coefficients ck a Galerkin approximation is applied to
orthogonally project ĉ onto the basis, spanned by the polynomials ψi and ψj . There-
fore, equation (9.4)2 has to be multiplied by ψk. Afterwards, taking the expectation
on both sides with respect to the orthogonality property of the ψ’s and rearranging
the terms gives

ĉk =

P−1∑

i=0

P−1∑

j=0

dijkaibj with dijk ≡ 〈ψiψjψk〉
〈ψ2
k〉

, ∀ k ∈ 0, ... P − 1. (9.5)

The tensor dijk is a multiplication tensor similar to cijk, cf. equation (8.65). Two
properties of dijk , which are useful for the realization in the computer code, are listed
below:

1. dijk is only a function of the ψ•’s and needs to be calculated only once during
the entire calculation process and can be saved for the recurring access.

2. dijk is sparse and can therefore be efficiently saved as sparse-cell-array.

As a shorthand notation, the Galerkin product of two approximated RVs â(θ) and
b̂(θ) are prospectively written as â(θ) ∗̂ b̂(θ), thus

ĉ(θ) = â(θ) ∗̂ b̂(θ) . (9.6)

The product of three PC variables can be realized in analogy to the presented proce-
dure for two RVs. In general, the triple product of three approximated RVs â(θ), b̂(θ)
and ĉ(θ) is given by

êl =

P−1∑

i=0

P−1∑

j=0

P−1∑

k=0

Dijklaibjck with Dijkl ≡
〈ψiψjψkψl〉

〈ψ2
l 〉

, ∀ l ∈ 0, ... P−1, (9.7)

where Dijkl is a fourth-order multiplication tensor. The properties of Dijkl are sim-
ilar to those of the 3rd-order tensor dijk . However, note that this tensor becomes
extremely large as the basis P of the stochastic space increases. In order to circum-
vent this problem, the triple product in equation (9.7) is approximated by

ê(θ) = âbc ≈ â(θ) ∗̂ (b̂(θ) ∗̂ ĉ(θ)) = âb̂c , (9.8)

where first a Galerkin product (9.6) is applied to determine b̂(θ) ∗̂ ĉ(θ) = b̂c, whose
result is subsequently multiplied by â(θ). This strategy is used when a Galerkin

product of more than two RVs has to be evaluated.
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9.2.3. Galerkin Division (Division of PC-Variables)

The division of two PC-expanded random variables is defined by

â(θ) =
ĉ(θ)

b̂(θ)
, (9.9)

with the unknown coefficients b̂(θ) and ĉ(θ). This equation can be reformulated to
get âb = ĉ, where this set of linear equations can be expressed as




∑P̄
j=0 d0j0bj · · · ∑P̄

j=0 d0jP̄ bj
...

. . .
...∑P̄

j=0 dP̄ j0bj · · · ∑P̄
j=0 dP̄ jP̄ bj







a0
...
aP̄


 =




c0
...
cP̄


 , (9.10)

with the relation P̄ := P − 1. To determine the unknown coefficients of â(θ), the
sparse-structure of the linear system can be efficiently solved with the generalized
minimum residual method (GMRES)3.

For the division of two RVs b̂(θ), ĉ(θ), the shorthand notation

â(θ) = ĉ(θ) ÷̂ b̂(θ) , (9.11)

is introduced.

9.2.4. Galerkin Inversion

The determination of an inverse linear system of equations is the last algebraic oper-
ation on RVs, which should be presented in this section. Let â be the approximation
of the random variable a with known expansion. For the calculation of the stochastic
inverse â−1(ξξξ), the expansion coefficients ak has to be determined as follows:

â−1(ξξξ) =
1

â(ξξξ)
=

(
P−1∑

k=0

akψk(ξξξ)

)−1

, (9.12)

such that

â−1(ξξξ) â(ξξξ) = 1 , a.s. , (9.13)

where a.s. is the abbreviation for almost surely. Using the previous notation, the
formulation projected via the Galerkin method corresponds to

â−1 ∗̂ â = ψ0 , (9.14)

3GMRES is a built-in function in Matlab.
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with the usual definition ψ0 ≡ 1. The use of the multiplication formula (9.6) leads to
the following linear system of equations:




∑P̄
j=0 d0j0aj · · · ∑P̄

j=0 d0jP̄ aj
...

. . .
...∑P̄

j=0 dP̄ j0aj · · · ∑P̄
j=0 dP̄ jP̄ aj







a−1
0
...

aP̄−1


 =




1
...
0


 , (9.15)

with the abbreviation P̄ := P − 1.

9.3. Regression Method

The regression method is based on a least-square minimization of the difference be-
tween the exact solution and the approximated solution using the polynomial chaos
expansion. This section gives a compact summary of this method, presented among
others by Sudret et al. [2003]; Berveiller et al. [2004, 2005]; Sudret et al. [2006]. For
a detailed theoretical background the reader is referred to these works as well as the
citations therein.

Preliminary Remarks

Let X be a random variable with prescribed Gaussian4 PDF, which is approximated
by the Hermite series as follows:

X̂ =

P−1∑

i=0

aiψi(ξξξ) , (9.16)

where {ai, i = 0, ... P − 1} is a set of coefficients to be evaluated, ψi is the i-th
Hermite polynomial and ξξξ is a standard normal vector. Such an expansion can be
transformed into the standard normal space X → ξξξ : FX(X) = Φ(ξξξ) by

X(ξξξ) = F−1
X (Φ(ξξξ)) , (9.17)

where FX(·) is the CDF of the random variable X(ξξξ) and Φ(ξξξ) defines the standard
normal CDF of ξξξ.

As pointed out at the beginning of this section, the aim of the regression method is to
minimize the difference of the input variable X and its truncated approximation X̂.
Let {ξξξ1, ... ξξξn} be a set of n outcomes of the standard normal vector ξξξ, which leads
to a set of n outcomes of the random variable Xj and the approximated variable
X̂j , j = 1, ... n of equation (9.17). Consequently, the least squares method for finding
the minimum of X − X̂, with respect to the coefficients ai, i = 0, ... P − 1, reads

∆X =
n∑

j=1

[
Xj − X̂j

]2
. (9.18)

4The Gaussian distribution is not the only possible choice, although it is exclusively used in this
work. Alternative distributions and their corresponding polynomials are presented in subsection
7.2.3.
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Substituting the expressions (9.16) and (9.17) into equation (9.18) leads to

∆X =
n∑

j=1

[
F−1
X (Φ(ξξξj)) −

P−1∑

i=0

aiψi(ξξξ
j)

]2
, (9.19)

which can be also written as a linear system of equations as follows:



n∑
j=1

ψ0(ξξξj)ψ0(ξξξj) · · ·
n∑
j=1

ψ0(ξξξj)ψP̄ (ξξξ
j)

...
. . .

...
n∑
j=1

ψP̄ (ξξξ
j)ψ0(ξξξj) · · ·

n∑
j=1

ψP̄ (ξξξ
j)ψP̄ (ξξξ

j)







a0
...
aP̄


 =




n∑
j=1

Xjψ0(ξξξj)

...
n∑
j=1

XjψP̄ (ξξξ
j)



, (9.20)

with P̄ := P − 1, where the expansion coefficients a0, ... aP−1 can be determined.
However, it should be remarked that the P × P matrix on the left hand side may
be evaluated only once during the simulation procedure. This means, that it can be
evaluated in a pre-processing step and stored in the workspace, such as the multipli-
cation tensors cijk and dijk . To ensure that the method is not undefined, the number
of points n, i.e. the number of outcomes n, should not be smaller than the basis P of
the PCE.

9.4. Plasticity in a Stochastic Context

The stochastic discretization of the elastic-plastic problem is defined in any finite
dimensional subspace SP ⊂ S, where SP = L2(Θ,F ,P) is a reasonable choice. The
subspace SP is spanned by the polynomial chaos basis as already defined in (8.41)
and repeated here for convenience:

SP = span{ψj(θ), j = 0, ... P − 1} . (9.21)

Here, ψj form a set of orthogonal multidimensional Hermite Polynomials in the M
independent Gaussian random variables ξξξ = {ξ1, ... ξM}. As already discussed in
chapter 7, the Hermite polynomials are a suitable choice when using Gaussian ran-
dom variables. However, Gaussian variables and Hermite polynomials are not the
only possible combination. Instead, the use of other kinds of random variables, such
as Gamma, Beta or Uniform distributed ones, with their corresponding polynomials
(Laguerre, Jacobi and Legendre) is also possible. This methodology is referred
to as generalized polynomial chaos or Wiener-Askey polynomial chaos, as already
briefly discussed in section 7.2.3.

The deterministic discretization and the stochastic discretization of the elastic-plastic
problem are similar to this one described in the linear SSFEM, cf. section 8.2. Af-
ter the discretization, the displacements, strains and stresses within an element are
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obtained as follows:

û(x, θ) :=

nn∑

i=1

P−1∑

j=0

ûji (θ)Hψj(θ) , (9.22)

ǫ̂ǫǫ(x, θ) :=

nGP∑

i=1

P−1∑

j=0

ǫ̂ǫǫji (x, θ)ψj(θ) , (9.23)

σ̂σσ(x, θ) :=

nGP∑

i=1

P−1∑

j=0

σ̂σσji (x, θ)ψj(θ) , (9.24)

where nn is the number of nodes per element, nGP is the number of integration
points per element and H denotes the matrix that contains the shape functions. All
parameters, such as the stresses, strains, displacements and the internal variables are
determined by applying the polynomial chaos algebra. The subsequent computation
will be done similar to a deterministic FE analysis. More precisely, the unknown
variables are determined locally in each integration point via the Newton-Raphson

method, as illustrated in Algorithm 3. Afterwards, the statistics of the system re-
sponse, such as the mean value and the standard deviation of the variable of interest
are evaluated as described in section 8.4.

The basic steps of the proposed algorithm above are similar to the classical (de-
terministic) Newton-Raphson algorithm, where particular attention is paid to the
calculation of the stochastic consistent tangent Dep, as discussed throughout this
chapter.

9.5. Implementation of Stochastic Plasticity

The steps outlined in this section are similar to those presented in the deterministic
elastic-plastic analysis, discussed in section 3.4. Due to the material fluctuations,
the elasticity tensor C now becomes uncertain and will be denoted as D(x). This
also applies to the yield stress σy, which is denoted by σy(x, θ) in the stochastic
context. For the hardening parameters, Hiso(x) and Hkin(x) are used to distinguish
the deterministic case from the stochastic one. These random material parameters are
modelled as independent Gaussian random fields via the KLE and defined over the
probability space (Θ,F ,P). The random parameters make the analysis more complex,
but the key steps are the same as in the deterministic elastic-plastic formulation, which
will be later outlined in this section.

First of all, two notational remarks should be given:

1. To make use of a compact notation, the spatial dependence indicated by x will
be omitted in this sequel.

2. All parameters in this section are discretized in a deterministic and in a stochas-
tic manner, whereas the stochastic discretization as well as their approximation
is indicated by •̂, e.g., the stochastic deviatoric strain tensor ˆ̃ǫǫǫ(θ).

At the beginning of the stochastic formulation, the governing equations, from the
deterministic analysis, cf. section 3.4, are summarized below. Note that all parameters
that occur in the formulation are random variables and therefore are identified with
•(θ).
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Algorithm 3 Newton-Raphson Scheme in a Stochastic Context

1: for each time (load) step t = 1 : tend do
2: Initialization for n = 0
3: t+∆tUUU0 = tUUU , t+∆tKKK0 = tKKK, t+∆tFFF0 = tFFF
4: Iteration n = n+ 1
5: for each integration point nGP , i = 1 : nGP do
6: Update the approximated random strains ǫǫǫ(θ)
7: t+∆tǫǫǫn(θ)(xi) = Bi

t+∆tun(θ)
8: Calculate the terms of the stochastic consistent tangent via the PCA, cf.

section 9.2 and by the regression method, see section 9.3
9: Update the approximated internal random variables α(θ) and βββ(θ)

10: t+∆tαn(θ) = αn−1(θ) + ∆λ(θ)
√

2
3
, cf. equation (9.33)

11: t+∆tβββn(θ) = βββn−1(θ) + ∆λ(θ) 2
3
Hkin nn(θ), see equation (9.34)

12: Update the approximated random stresses σσσ(θ) according to equation (9.46)

13: Compute the stochastic consistent tangent Dep(xi, θ), see Algorithm 4
14: Assemble the stochastic element stiffness matrix ke(θ)
15: ke(θ) =

∑nGP
i=1 BT

i Dep(xi, θ)Bi wi det Ji
16: Compute the stochastic internal element forces
17: fe int(θ) :=

∑nGP
i=1 BT

i (xi)
t+∆tσσσn(θ)(xi)wi det Ji

18: end for
19: Assemble the stochastic global stiffness matrix KKKn−1 and solve for ∆UUUn
20: t+∆tKKKθn−1∆UUUn = Rn−1 with Rn−1 := t+∆tλFFFext − t+∆tFFF int

n−1
21: Update the displacements
22: t+∆tUUUn = t+∆tUUUn−1 +∆UUUn
23: Check for convergence criterion
24: if ‖∆UUUn‖

‖t+∆tUUUn‖
≤ ǫD then

25: t+∆t• := t+∆t•n
26: else
27: go to 4
28: end if
29: end for

• The additive decomposition of the stochastic strain tensor, where only the de-
vitatoric parts, labelled by •̃, are considered, i.e.

ǫ̃ǫǫ(θ) = ǫ̃ǫǫel(θ) + ǫ̃ǫǫpl(θ) , Pθ − a.s. , (9.25)

• The split of the stochastic stresses into a stochastic deviatoric part s(θ) and a
stochastic hydrostatic part p(θ) reads

s(θ) = 2 µ(θ) ǫ̃ǫǫel(θ) = 2µ(θ)
(
ǫ̃ǫǫ(θ)− ǫ̃ǫǫpl(θ)

)
, Pθ − a.s. , (9.26)

p(θ) = K tr (ǫǫǫel(θ)) , Pθ − a.s. , (9.27)

with the stochastic shear modulus µ(θ) and the stochastic bulk modulus K.
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• The stochastic von Mises yield condition (Pθ − a.s.) is given by

f(ηηη(θ), α(θ)) = ‖ηηη(θ)‖ −
√

2

3
(σy(θ) +Hisoα(θ)) ≤ 0 , (9.28)

where ηηη(θ) = s(σσσ(θ))−βββ(θ) denotes the stochastic back-stress tensor and σy(θ)
is the stochastic yield stress.

• The associative stochastic evolution equations, for the stochastic plastic strain
and the stochastic internal variables, are

˙̃ǫǫǫpl(θ) = λ̇(θ)
∂f(θ)

∂s(θ)
, Pθ − a.s. , (9.29)

α̇(θ) =

√
2

3
λ̇(θ) , Pθ − a.s. , (9.30)

β̇ββ(θ) = −2

3
Hkinλ̇(θ)

∂f(θ)

∂s(θ)
, Pθ − a.s. . (9.31)

After applying the implicit Euler rule to discretize the stochastic evolution equations,
they can be reformulated as

ǫ̃ǫǫpln+1(θ) = ǫ̃ǫǫpln (θ) + ∆λ(θ)nn+1(θ) , Pθ − a.s. , (9.32)

αn+1(θ) = αn(θ) +

√
2

3
∆λ(θ) , Pθ − a.s. , (9.33)

βββn+1(θ) = βββn(θ) +
2

3
Hkin∆λ(θ)nn+1(θ) , Pθ − a.s. , (9.34)

where ∆λ(θ) = λ(θ)−λn(θ). Using equation (9.26), the stochastic deviatoric stresses
at the time-step tn+1, are calculated as

sn+1(θ) = 2µ(θ)
(
ǫ̃ǫǫn+1(θ)− ǫ̃ǫǫpln+1(θ)

)
, Pθ − a.s. . (9.35)

After substituting equation (9.34) into equation (9.35), the stochastic deviatoric stress
becomes

sn+1(θ) = 2µ(θ)
(
ǫ̃ǫǫn+1(θ)− ǫ̃ǫǫpln (θ)

)
− 2µ(θ)∆λ(θ)nn+1(θ) , Pθ − a.s. (9.36)

9.5.1. Stochastic Closest Point Projection (SCPP)

The formulation of the stochastic predictor-corrector method, for the stochastic con-
stitutive equations is in principle similar to the standard procedure, which was de-
scribed in section 3.4. First, the stochastic elastic-predictor is presented, then followed
by the stochastic corrector step. Here, particular emphasis is placed on the PCA and
the regression method, which are applied for the evaluation of the corresponding
equations. It should be remarked that from now on only the approximated random
variables, characterized by •̂, are considered.
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Ωe

ǫ̂ǫǫn(x, θ)

ǫ̂ǫǫpln (x, θ)

α̂n(x, θ)

∆ǫ̂n(x, θ)

Stochastic
Radial Return

Mapping

ǫ̂ǫǫn+1(x, θ)

ǫ̂ǫǫpln+1(x, θ)

α̂n+1(x, θ)

Figure 9.1.: Schematic illustration of the stochastic elastic-plastic radial return map-
ping algorithm.

Stochastic Elastic Predictor

In the stochastic elastic-predictor, the variables are assumed as fixed. This assumption
results in the stochastic trial state and the corresponding set of equations is given by






ŝtrialn+1(θ) = 2µ̂(θ) ∗̂
(
ˆ̃ǫǫǫtrialn+1(θ)−̂ˆ̃ǫǫǫpln (θ)

)
,

η̂ηηtrialn+1(θ) = ŝtrialn+1(θ)−̂β̂ββn(θ) ,
α̂trial
n+1(θ) = α̂n(θ) ,

(9.37)

with Pθ = 1. The set of stochastic plastic variables {ˆ̃ǫǫǫpln (θ), α̂n(θ), β̂ββn(θ)} is known
from the last time step at tn. Because the stochastic elastic strain ∆ǫ̂ǫǫn(θ) was com-
puted from the solution of the stochastic weak form, the stochastic trial parts in
equation (9.37) can be computed directly, see Figure 9.1 for an illustration of this
procedure.

The check of the stochastic yield condition (for Pθ = 1) is given in terms of the
stochastic trial variables as follows:

f̂trialn+1 (η̂ηη
trial
n+1(θ), α̂

trial
n+1(θ)) = ‖η̂ηηtrialn+1(θ)‖︸ ︷︷ ︸

Regression

Method

−̂
√

2

3

(
σ̂σσy(θ)+̂Ĥiso ∗̂ α̂n(θ)

)
≤ 0 , (9.38)

where the norm of the back-stress tensor is evaluated with the regression method.
From now on, all norms in this section are calculated with the regression method
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even though it is not explicitly mentioned. If the stochastic deviatoric stress
ŝtrialn+1(θ) fulfils the yield condition within the time interval [tn, tn+1] ⊂ [0, T ], i.e.

f̂trialn+1 (η̂ηη
trial
n+1(θ), α̂

trial
n+1(θ)) ≤ 0, the material behaviour is purely elastic and the set of

the stochastic constitutive variables are updated as follows:





ŝn+1(θ) = ŝtrialn+1(θ) , Pθ − a.s.
ˆ̃ǫǫǫpln+1(θ) = ˆ̃ǫǫǫpln (θ) , Pθ − a.s.
β̂ββn+1(θ) = β̂ββn(θ) , Pθ − a.s.
α̂n+1(θ) = α̂n(θ), Pθ − a.s. .

(9.39)

Otherwise, the material shows an elastic-plastic behaviour within this time-step and
the trial quantities have to be updated by the stochastic radial-return mapping pro-
cedure, which is outlined below.

Stochastic Corrector

In this case, the solution for the stochastic plastic multiplier ∆λ̂(θ) and its direction
n̂n+1(θ) have to be determined for the stochastic deviatoric stress ŝn+1(θ), given in
equation (9.36).

From the relation (a detailed derivation is given in section 3.4)

η̂ηηtrialn+1(θ) = η̂ηηn+1(θ) ∗̂



1+̂

(
2

3
Ĥkin + 2µ̂(θ)

)
∗̂ ∆λ̂(θ)

‖η̂ηηn+1(θ)‖︸ ︷︷ ︸
F̂



, with (9.40)

F̂ = ∆λ̂(θ) ÷̂ ‖η̂ηηn+1(θ)‖ ,

it can be understood that the stochastic trial and the updated stochastic deviatoric
parts of the relative stresses are co-linear. This implies that

n̂trial
n+1(θ) =

η̂ηηtrialn+1(θ)

‖η̂ηηtrialn+1(θ)‖
= n̂n+1(θ)

= η̂ηηtrialn+1(θ) ÷̂ ‖η̂ηηtrialn+1(θ)‖ ,
(9.41)

namely the stochastic flow vectors at the stochastic trial and updated states are
coincide. After some algebra applied on equation (9.40)5, the following relation is
obtained

‖η̂ηηn+1(θ)‖ = ‖η̂ηηtrialn+1(θ)‖−̂
(
2µ̂(θ)+̂

2

3
Ĥkin

)
∗̂∆λ̂(θ) , Pθ − a.s. (9.42)

5See section 3.4 for details.
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Inserting this relation into the stochastic yield condition (9.28) gives

f̂n+1(θ) =‖η̂ηηtrialn+1(θ)‖−̂
(
2µ̂(θ)+̂

2

3
Ĥkin

)
∗̂∆λ̂(θ)

−̂
√

2

3

[
σ̂y(θ)+̂Ĥiso ∗̂

(
α̂n(θ)+̂

√
2

3
∆λ̂(θ)

)]
= 0 , Pθ − a.s. ,

(9.43)

which has to be fulfilled at the current time increment tn+1. The stochastic plastic
multiplier ∆λ̂(θ) can be calculated in a closed form by rearranging the foregoing
equation, i.e.

∆λ̂(θ) =
f̂trialn+1 (θ)

2µ̂(θ) ∗̂
(
1+̂ Ĥiso+̂Ĥkin

3µ̂(θ)

) (9.44)

= f̂trialn+1 (θ) ÷̂
[
2µ̂(θ) ∗̂

(
1+̂
(
Ĥiso+̂Ĥkin

)
÷̂ 3µ̂(θ)

)]
, Pθ − a.s. (9.45)

with f̂trialn+1 (θ) = ‖η̂ηηtrialn+1(θ)‖−̂
√

2
3
(σ̂y(θ)+̂Ĥiso ∗̂ α̂n(θ)). With the computed increment

of the stochastic plastic multiplier, the stochastic stresses, stochastic plastic strains
and the stochastic internal variables in equations (9.32) to (9.34) can be calculated.
The actual stochastic stress at tn+1 are determined by

σ̂σσn+1(θ) = K̂ tr (ǫ̂ǫǫ(θ))+̂2µ̂(θ) ∗̂
(
ˆ̃ǫǫǫn+1(θ)−̂ˆ̃ǫǫǫpln (θ)

)
−̂2µ̂(θ) ∗̂∆λ̂(θ) ∗̂ n̂trial

n+1(θ) , (9.46)

for Pθ = 1. From the stochastic stress at tn+1, the stochastic consistent elastic-plastic
tangent modulus (for Pθ = 1) is computed by

D̂
ep
n+1 =

∂σ̂σσn+1(θ)

∂ǫ̂ǫǫn+1(θ)
, (9.47)

= ∂σ̂σσn+1(θ) ÷̂ ∂ǫ̂ǫǫn+1(θ) ,

= D̂
el
n+1−̂2µ̂(θ) ∗̂ n̂trial

n+1(θ) ⊗̂
∂∆λ̂(θ)

∂ǫ̂ǫǫn+1(θ)
−̂2µ̂(θ) ∗̂∆λ̂(θ)

∂n̂trial
n+1(θ)

∂ǫ̂ǫǫn+1(θ)
, (9.48)

with

∂∆λ̂(θ)

∂ǫ̂ǫǫn+1(θ)
= ∂∆λ̂(θ) ÷̂ ∂ǫ̂ǫǫn+1(θ) and ,

∂n̂trial
n+1(θ)

∂ǫ̂ǫǫn+1(θ)
= ∂n̂trial

n+1(θ) ÷̂ ∂ǫ̂ǫǫn+1(θ) .

After some algebraic calculation (see section 3.4, respectively, Appendix C), the al-
gorithmic stochastic consistent tangent modulus reads

D̂
ep
n+1 = K̂ 1̂⊗̂1̂+ 2µ̂(θ) ∗̂ Ân+1

(
Î− 1

3
1̂⊗̂1̂

)

− 2µ̂(θ) ∗̂ B̂n+1n̂
trial
n+1(θ) ⊗̂ n̂trial

n+1(θ) .

(9.49)
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Here, Ân+1 is given by

Ân+1 = 1̂−̂2µ̂(θ) ∗̂∆λ̂
‖η̂ηηtrialn+1‖

= 1̂−̂2µ̂(θ) ∗̂∆λ̂ ÷̂ ‖η̂ηηtrialn+1‖ , (9.50)

and B̂n+1 is defined as

B̂n+1 =

(
1̂+̂

Ĥkin+̂Ĥiso

3µ̂(θ)

)−1

−̂2µ̂(θ) ∗̂∆λ̂(θ)
‖η̂ηηtrialn+1(θ)‖

,

=
(
1̂+̂
(
Ĥkin+̂Ĥiso

)
÷̂ 3µ̂(θ)

)−1
−̂2µ̂(θ) ∗̂∆λ̂(θ) ÷̂ ‖η̂ηηtrialn+1(θ)‖ . (9.51)

From the previous equations it is obvious that the PCA makes the evaluation of
the stochastic consistent elastic-plastic tangent matrix D̂ep more complex than the
standard deterministic counterpart. The complete procedure for the calculation of D̂ep

is summarized in Algorithm 4. Moreover, the key steps of the preceding algorithm of
the stochastic radial-return mapping are summarized in Tab. 9.1.
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Table 9.1.: Stochastic Radial-Return Mapping.

1. Computation of the stochastic trial elastic stress

ˆ̃ǫǫǫn+1(θ) = ǫ̂ǫǫn+1(θ)−̂
1

3
tr(ǫ̂ǫǫ(θ))1̂11 ,

ŝtrialn+1(θ) = 2µ̂(θ) ∗̂
(
ˆ̃ǫǫǫn+1(θ)−̂ˆ̃ǫǫǫpl

n (θ)
)
,

η̂ηηtrialn+1(θ) = ŝtrialn+1(θ)−̂β̂ββn(θ) .

(9.52)

2. Check the stochastic yield condition

f̂trialn+1 (η̂ηη
trial
n+1(θ), α̂

trial
n+1(θ)) = ‖η̂ηηtrialn+1(θ)‖−̂Ĵ , (9.53)

where Ĵ =
√

2
3

(
σ̂y(θ)+̂Ĥiso ∗̂ α̂n(θ)

)
.

IF f̂trialn+1 (η̂ηη
trial
n+1(θ), α̂

trial
n+1(θ)) ≤ 0 THEN

set •̂n+1(θ) = •̂trialn+1(θ) and EXIT
ENDIF

3. Computation of n̂trial
n+1(θ) and evaluation of the stochastic multiplier ∆λ̂(θ)

n̂trial
n+1(θ) =

η̂ηηtrialn+1(θ)

‖η̂ηηtrialn+1(θ)‖
= η̂ηηtrialn+1(θ) ÷̂ ‖η̂ηηtrialn+1‖ ,

α̂n+1(θ) = α̂n(θ)+̂

√
2

3
∆λ̂(θ) .

(9.54)

4. Update the stochastic plastic strain, stochastic back-stress and the stochas-
tic stress

ˆ̃ǫǫǫpln+1(θ) =
ˆ̃ǫǫǫpln (θ)+̂∆λ̂(θ) ∗̂ n̂trial

n+1(θ) ,

β̂ββn+1(θ) = β̂ββn(θ)+̂
2

3
Ĥiso ∗̂∆λ̂(θ) ∗̂ n̂trial

n+1(θ) ,

σ̂σσn+1(θ) = K̂ ∗̂ tr ǫ̂ǫǫ(θ)+̂L̂1−̂L̂2 ,

(9.55)

where L̂1 = 2µ̂ ∗̂
(
ˆ̃ǫǫǫn+1(θ)−̂ˆ̃ǫǫǫpln (θ)

)
and L̂2 = 2µ̂ ∗̂∆λ̂(θ) ∗̂ n̂trial

n+1(θ).

5. Computation of the stochastic consistent elastic-plastic tangent moduli (see
Algorithm 4)

D̂
ep
n+1 =

∂σ̂σσn+1(θ)

∂ǫ̂ǫǫn+1(θ)
= ∂σ̂σσn+1(θ) ÷̂ ∂ǫ̂ǫǫn+1(θ)

= K̂ ∗̂ 1̂⊗̂1̂+̂2µ̂(θ) ∗̂ Ân+1 ∗̂
(
Î−̂1

3
1̂⊗̂1̂

)

−̂2µ̂(θ) ∗̂ B̂n+1 ∗̂ n̂trial
n+1(θ)⊗̂n̂trial

n+1(θ) ,

(9.56)

with Ân+1 given in equation (9.50) and B̂n+1 defined in equation (9.51).
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9.5.2. Computation of the Consistent Stochastic Tangent Modulus

As already stated in the last subsection, the computation of the consistent stochastic
tangent modulus D̂ep is not as simple as in the deterministic case. Due to the RVs, it
is necessary to apply the PCA to determine D̂ep. For easier algebraic operations, the
specific calculation steps should be split into compact parts, for instance, if more than
two RVs have to be multiplied by each other. The following algorithm illustrates the
individual steps of the computation of D̂ep. The stochastic consistent elastic-plastic

Algorithm 4 Consistent Stochastic Tangent Modulus D̂ep

Require: µ̂(θ), η̂ηη(θ), f̂(η̂ηη(θ), α̂(θ)), Ĥiso, Ĥkin

1: Evaluation of the stochastic plastic multiplier ∆λ̂(θ), cf. equation (9.45)

2: ∆λ̂ = f̂(θ) ÷̂
[
2µ̂(θ) ∗̂

(
1̂+̂
(
Ĥiso+̂Ĥkin

)
÷̂ 3µ̂(θ)

)]

3: Determination of the stochastic normal n̂(θ), see equation (9.41)
4: n̂(θ) = η̂ηη(θ) ÷̂ ‖η̂ηη(θ)‖
5: Calculation of Â, cf. equation (9.50)
6: X̂1 = µ̂(θ) ∗̂∆λ̂
7: X̂2 = 2X̂1

8: X̂3 = X̂2 ÷̂ ‖η̂ηη‖
9: Â = 1̂−̂X̂3

10: Computation of B̂, see equation (9.51)

11: Ŷ =
(
Ĥkin+̂Ĥiso

)
÷̂ 3µ̂(θ)

12: B̂ =
(
1̂+̂Ŷ

)−1
−̂X̂3

13: Calculation of the stochastic consistent tangent modulus as given in equation
(9.49)

14: D̂ep = K̂ 1̂ ⊗̂ 1̂+̂2µ̂(θ) ∗̂ Â
(
Î−̂ 1

3
1̂ ⊗̂ 1̂

)
−̂2µ̂(θ) ∗̂ B̂ n̂(θ) ⊗̂ n̂(θ)

tangent matrix D̂ep consists of a number of block submatrices, which represent the
PCE coordinates of the stochastic stresses σσσ(θ) with respect to PCE coordinates of
the stochastic strains ǫǫǫ(θ), which are matrices with a size of P × 6.

9.5.3. Stochastic Stiffness Matrix

The computation of the element stochastic stiffness matrix ke(θ) is almost identical
to the procedure in the deterministic analysis. The difference is, that the numerical
integration at each Gaussian point has to be performed for all polynomial chaos ex-
panded coordinates, i.e P times. The subsequent assembling process for the stochastic
global stiffness matrix K(θ) and the corresponding global block matrix KKK is similar to
the procedure presented for the linear SSFEM in section 8.2. Due to the structure of
the RVs, which are represented by the PCE, the multiplication tensor dijk has to be
used instead of cijk . This results in the following form of the equilibrium equation:

KKK∆UUU = FFFext −FFF int , (9.57)

where KKK is the block matrix containing all stochastic global stiffness matrices. The
size of KKK is (P ·ndof)×(P ·ndof). The (unknown) stochastic block vector ∆UUU contains
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σ(θ)

σy(θ)

E(θ)

ǫ(θ)

Figure 9.2.: Random yielding stress and its influence on the system response (inspired
by Anders [2000]).

all global displacement vectors and FFFext −FFF int is referred to as the block form of the
stochastic residual vector, where all vectors have a size of (P ·ndof)×1. Here, the index
•dof denotes the degrees of freedom of the discretized FE system. The system of linear
equations (9.57) is similar to the one in the deterministic case, given in equation (3.30)
and the calculation can be done in the same way as for the deterministic formulation,
see section 3.3.

9.6. Probabilistic Yielding

The evaluation of the yielding function f(θ) might be difficult if the yield stress σy is
random. For convenience reasons, in this work, only the (via PC approximated) first
coefficient f̂0(θ) of the stochastic yield surface f̂(θ) is evaluated. However, to capture
the whole randomness of the system response it is necessary to apply a stochastic
approach for the evaluation of the uncertain yield surface. A schematic illustration,
of the influence of a (stochastic) yield stress, is shown in Fig. 9.2, where the two
following scenarios can be deduced:

1. The assumption that σy is deterministic, illustrated by the dashed lines.

2. The consideration of σy(θ) as a random variable, characterized by the straight
lines.

When applying a sampling approach, such as the MCS, the stochastic yield stress
makes no difficulty and the determination of the system response is quite simple,
because the random variable is fixed, i.e. it is deterministic in each sample run. How-
ever, the application of the Galerkin-type approach, developed in this chapter, could
be complicated, because the yield function f(θ) is approximated by their polynomial
chaos coefficients and no explicit value is known during the simulation process. With
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regard to the presented methods of Anders [2000]; Sett [2007]; Arnst and R.Ghanem
[2012] and Rosić [2013], different approaches has been applied to characterize the
randomness of the yield stress, where Anders [2000] also used a purely elastic as-
sumption. The other authors applied different formulations to take into account the
stochastic yielding behaviour. Sett [2007] used weighted probabilities for the elas-
tic and the elastic-plastic behaviour in his PhD thesis. These probabilities are then
utilized in the proposed Fokker-Planck Kolmogorov approach to represent the
material behaviour. These weights are based on the known CDF of the yield stress
σy and assigned to the associated advection and the diffusion coefficients of the ap-
plied Fokker-Planck Kolmogorov equation. Arnst and R.Ghanem [2012] used a
sampling based approach to approximate the stochastic yielding function. Through
the finite number of sampling points np, the yield function f(θ) is approximated
and thus almost surely not satisfied. However, with a sufficiently high number of
sample points, the approximation can be quite accurate. Nevertheless, it should be
mentioned that the number of sampling points np grows drastically with the stochas-
tic dimension, which in turn also results in a drastic increasing computation time.
The third approach has been presented by Rosić [2013], where it is checked if higher
order moments of the yield stress (approximated via PC) σ̂σσy(θ) are lager than the
corresponding moments of the approximated von Mises stress σ̂σσvM(θ).

As being mentioned at the beginning of this subsection, a stochastic approach for the
yield surface should be taken into account in the future., where the proposed approach
by Rosić [2013] seems to be a reasonable start point for future research.

9.7. Numerical Verification

The following two subsections are dedicated to the verification of the proposed stochas-
tic elastic-plastic approach by two numerical examples. It should be emphasized that
both examples are defined in a three-dimensional space where four material param-
eters are assumed to be random and are represented by random fields. This stands
in contrary to the methods presented in section 9.1 where only two-dimensional ex-
amples are considered and the number of random variables is limited to three. The
numerical examples in this section are chosen in such a way that the KLE is evaluated
analytically in the subsection 9.7.1) and numerically in the subsection 9.7.2).

In the case of the non-linear SSFEM, the estimates of the quantities of interest, namely
the first two statistical moments, are evaluated by the post-processing discussed in
section 8.4. When applying the coupled the SPRM-MCS or the LHS, the statistics
are evaluated as presented in chapter 4.

The material properties, characterised by the KLE as well as the SPRM, are assumed
to be statistically independent. All material parameters are assumed to be normal
distributed, which is a reasonable choice for engineering problems, as already discussed
in section 8.5. The accuracy of the approximated random fields depends on various
parameters. For example, applying the KLE these are: the correlation length c and
the number of dimensionsM . Besides the accuracy of the random field, the subsequent
approximation (or the accuracy of the approximation) of the system response depends
on the order p and the resulting basis P of the polynomial chaos expansion. On
the other hand, applying the coupled SPRM-MCS, the accuracy of the random field
depends on the sample method used for the random phase angle (standard MCS,
LHS, Sobol’) and the correlation length c, while the approximation of the system
response also depends on the number of samples nSPRM. It should be noted that in
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this section no detailed parameter studies are carried out with regard to the optimal
choice of the model parameters or an optimal size of the FE mesh.

9.7.1. Four-Point Bending Beam

In the first example, a four-point bending test of a beam with the domain D =
2 cm × 50 cm × 2 cm is considered. The dimensions and loads together with the FE
model of the beam are shown in Fig. 9.3 (a). The discretized FE model, illustrated
in Fig. 9.3 (b), consists of 400 FE elements with 2295 degrees of freedom. The
displacements within the elements are approximated with linear shape functions. As

33.334 cm

16.667 cm 2 kN 2 kN

50 cm � 2 cmxy

z z

(a) Dimensions of the beam

(b) 3D view of the FE model of the beam

Figure 9.3.: Beam for the four-point bending test example.

stochastic material parameters the Young’s modulus E(θ), yield stress σy(θ), isotropic
hardening Hiso and the kinematic hardening Hkin are chosen. The type of distribution,
mean and standard deviation are reported in Tab. 9.2.
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Table 9.2.: Random material parameters for the four-point bending beam.

Material Parameter Distribution Mean µ Standard Deviation σ
E(θ) Gaussian 21.000 kN/cm2 10%
σy(θ) Gaussian 23.5 kN/cm2 10%
Hiso Gaussian 100 kN/cm2 10%
Hkin Gaussian 100 kN/cm2 10%

The material parameters are spatially discretized with the KLE and SPRM. For the
characterization of material parameters by the KLE, the covariance function defined
in equation (6.30) is used, whereas the Fredholm integral in equation (6.20) can
be solved analytically due to the simple geometry of the beam. When applying the
SPRM, the random field HS(·) is discretized (HS −→ ĤS) n-times by using equation
(6.104), where the power spectral density function SĤSĤS

defined in equation (6.127)
is utilized.

In terms of the proposed non-linear SSFEM, the resulting polynomial basis P of
the PCE consists of the dimension M of the KLE and the polynomial order p of
PC. Any random variable, such as the system response at an arbitrary node, can be
approximated by

u(θ) =

P−1∑

i=0

uiψi . (9.58)

Here ui are deterministic coefficients and ψi are Hermite polynomials. The approx-
imation of the system response u(θ) has been done by using the polynomial chaos
order p = 2. The representation of the material parameters by the KLE has been
realized by applying various dimensions M and correlation lengths where the cor-
relation length is assumed to be isotropic in all directions. All parameters for the
generation of a random field by the KLE are summarized in Tab. 9.3, where the
sub-dimension M ′ defines the dimension of each material parameter. For example,
let the dimension assumed to be M = 8 with four random parameters. Then, the
resulting sub-dimension is M ′ = 2, see also subsection 8.5.3.

Table 9.3.: Input parameters for the spatial characterization of the material parame-
ters when applying the KLE.

Dimension M Sub-Dimension M ′ Order p Correlation Length c in cm
8 2 2 10
12 3 2 5
16 4 2 5

In the case of the SPRM as spatial discretization technique and a MCS (coupled
SPRM-MCS) as sample method, the system response u(θ) of an arbitrary node is
evaluated according to the following expression:

u(θ) = û =
1

n

n∑

i=1

ui , (9.59)
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where the sample size is n = nSPRM = 5000, ui is the i-th solution of the system
response and û is the sample mean of an arbitrary node. In this approach a correlation
length of c = 1 cm is used. When applying the LHS, the response statistics are
evaluated in the same manner as for the coupled SPRM-MCS with a sample size of
nLHS = 10000. Both methods, the coupled SPRM-MCS and the LHS are used as
reference solutions where the obtained results are compared with those obtained from
the developed method.

The quantity of interest is the von Mises (vM) stress σvM, where the approximation
of the mean value, denoted in this chapter by E[σvM] and the standard deviation
σ(σvM) are investigated.

Discussion of the Results

The results for the proposed non-linear SSFEM are shown in Fig. 9.4. They have been
obtained by using the finite element mesh shown in Fig. 9.3 (b) and the polynomial
bases P = 45 (M = 8, p = 2), P = 91 (M = 12, p = 2) and P = 153 (M = 16, p = 2).
The reference solutions obtained by the coupled SPRM-MCS and the LHS are plotted
in Figs. 9.5 and 9.6.

The computed results of the non-linear SSFEM show a good agreement of the mean
value of the vM stress with the coupled SPRM-MCS as well as with a LHS. Besides
the values of the mean stresses, the spatial distributions of the mean values of the
characteristic stresses are comparable as well. However, these results do not reflect
the quality of the obtained results. Future work may address this issue by applying a
higher number of dimensions M , order p and different correlation lengths c.

The standard deviation of the non-linear SSFEM using a polynomial basis of P = 45 is
noticeably higher in comparison with those obtained from the reference solutions. This
may be attributed to the relatively large correlation length of c = 10 cm and the small
dimension of M = 8. The standard deviation for the polynomial basis P = 91 and
P = 153 shows the expected deceasing value where, due to the higher dimension M ,
differences of spatial distribution are clearly visible. Besides of the higher dimension
is the smaller correlation length an indicator for these spatial characteristics. The
highest effect of the influence of the correlation length is observed in the coupled
SPRM-MCS model, where the small standard deviation results from the relatively
small correlation length of c = 1 cm. All results, which are characterized by random
fields, show significant influences of the standard deviation outside the stress zones,
whereas the LHS show almost exclusively influences of the standard deviation within
the stress zone. This phenomena may be attributed to the spatial characteristics of
the material parameters, represented by random fields.

With regard to the KLE, a direct correlation exists between the dimension M of the
KLE and the correlation length c. To be more specific, an increasing dimension M
combined with a decreasing correlation length c represents the standard deviation
more accurately. This is consistent with the observations in subsection 6.3.2 and sec-
tion 8.6, where it has been noted that a small correlation length is closely related to
a slower decay of the eigenvalues. This means, that a higher sub-dimension M ′ and
a smaller correlation length c captures the characteristics of the random field more
accurately than a smaller M ′ combined with a higher c. Moreover, the polynomial
order p is another parameter which has an influence on the accuracy of the approxi-
mation of the system response, but the non-linearities in this example are small and
the applied polynomial order of p = 2 seems to be sufficient. However, parameter
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(a) E[σvM] in kN/cm2 with M = 8 and
p = 2

(b) σ(σvM) in kN/cm2 with M = 8 and
p = 2

(c) E[σvM] in kN/cm2 using M = 12 and p =
2

(d) σ(σvM) in kN/cm2 using M = 12 and
p = 2

(e) E[σvM] in kN/cm2 applying M = 16 and
p = 2

(f) σ(σvM) in kN/cm2 applying M = 16 and
p = 2

Figure 9.4.: Left: Mean value E[σvM] of the von Mises stress. Right: Standard
deviation σ(σvM) of the von Mises stress applying the non-linear SSFEM.
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(a) E[σvM] in kN/cm2 using the SPRM-MCS (b) σ(σvM) in kN/cm2 using the SPRM-MCS

Figure 9.5.: Left: Mean value EσvM
of the vM stress. Right: Standard deviation

σσvM
of the vM stress. The results are obtained utilizing the coupled

SPRM-MCS.

(a) E[σvM] in kN/cm2 using the LHS (b) σ(σvM) in kN/cm2 using the LHS

Figure 9.6.: Left: Mean value E[σvM] of the vM stress. Right: Standard deviation
σ(σvM) of the vM stress. The results are obtained using the LHS.
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studies with various M and p as well as c should be subject in future research in the
context of non-linear analysis. Special emphasis should be taken on effective numer-
ical strategies for handling the rapidly growing basis P by an appropriate choice of
M and p, where a reference to efficient approximation methods was already given in
subsection 8.2.4.

Another remark should be given on the applied linear shape functions where the
polynomial degree could be too small, especially when a large number of KLE dimen-
sions is applied to characterize the material fluctuations. This means, that a large
dimension M results in high frequencies of the small eigenvalues, which can lead to
noticeable inaccuracies since small eigenvalues might not be mapped with linear shape
functions good enough. Also here, additional investigations, with higher order shape
functions, should be taken into account in future work.

In general, the investigation in this example shows that the developed approach ap-
proximates the first two statistical moments of the vM stress quiet well compared with
those obtained from the coupled SPRM-MCS and LHS. In addition, the method, de-
spite the relatively large standard deviation of 10% per each material parameter, is
numerically robust.

In engineering structures, for example, bridges the structural safety parameter is
an important value. For the analysis of the structural safety the knowledge of the
maximal stress is necessary and the identification of these values (areas where the
maximal stress occurs) is important, because these regions of the structure may failed
first. Therefore, in Figs. 9.7 to 9.9 the areas are highlighted where the stress exceeds a
predetermined stress limit. The values of the vM stress limits are chosen with respect
to the value of the yield stress σy , i.e., P(E[σvM]) < 20.5 kN/cm2 and P(E[σvM]) <

23.5 kN/cm2. The blue elements mark the regions where the yield stress is exceeded
and the red ones are the elements that are within the permissible yield stress. The
stress limits obtained from the non-linear SSFEM (shown in Fig. 9.7) are comparable
to those obtained from the SPRM-MCS and LHS, which are displayed in Figs. 9.8
and 9.9.
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(a) P(E[σvM]) < 20.5 kN/cm2 applying
M = 8 and p = 2

(b) P(E[σvM]) < 23.5 kN/cm2 applying
M = 8 and p = 2

(c) P(E[σvM]) < 20.5 kN/cm2 for M = 12
and p = 2

(d) P(E[σvM]) < 23.5 kN/cm2 for M = 12
and p = 2

(e) P(E[σvM]) < 20.5 kN/cm2 using M = 16
and p = 2

(f) P(E[σvM]) < 23.5 kN/cm2 for M = 16
and p = 2

Figure 9.7.: Limits of the mean value of the von Mises stress EσvM
in the case of the

non-linear SSFEM.
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(a) P(E[σvM]) < 20.5 kN/cm2 (b) P(E[σvM]) < 23.5 kN/cm2

Figure 9.8.: Limits of the mean value of the von Mises stress EσvM
utilizing the

coupled SPRM-MCS.

(a) P(E[σvM]) < 20.5 kN/cm2 (b) P(E[σvM]) < 23.5 kN/cm2

Figure 9.9.: Limits of the mean value of the von Mises stress EσvM
using the LHS.
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9.7.2. Three-Dimensional Plate with a Hole

In the second example, a plate with a hole at the centre and the size D = 10 cm ×
10 cm × 1 cm is investigated. The dimensions and loads together with the FE model
of the plate are shown in Fig. 9.10 (a). The discretized FE model, illustrated in
Figs. 9.10 (b) and (c), consists of 140 elements with 1008 degrees of freedom. The
displacements within the elements are approximated with linear shape functions. As
stochastic material parameters the Young’s modulus E(θ), yield stress σy(θ), isotropic
hardening Hiso and the kinematic hardening Hkin are chosen. The type of distribution,
mean and standard deviation are reported in Tab. 9.4. The material parameters

Table 9.4.: Random material parameters for the plate with a hole.

Material Parameter Distribution Mean µ Standard Deviation σ
E(θ) Gaussian 21.000 kN/cm2 10%
σy(θ) Gaussian 23.5 kN/cm2 10%
Hiso Gaussian 100 kN/cm2 10%
Hkin Gaussian 100 kN/cm2 10%

are spatially discretized with the KLE and the SPRM. The characterization of the
material parameters, by the KLE, is done using the covariance function defined in
equation (6.30), whereas (due to the geometry) the Fredholm integral has to be
solved numerically. The applied covariance function is similar to the one used in the
first example and has been defined in equation (6.30). When applying the SPRM,
the random field HS(·) is discretized (HS −→ ĤS) n-times by using equation (6.104),
where the power spectral density function SĤSĤS

, defined in equation (6.127), is
applied.

In terms of the developed non-linear SSFEM, the resulting polynomial basis P of
the PCE consists of the dimension M of the KLE and the polynomial order p of
PC. Any random variable, such as the system response at an arbitrary node, can
be approximated by the expression defined in equation (9.58). The approximation
of the system response u(θ), at an arbitrary node, is done by using the polynomial
chaos orders p = 2 and p = 3. The material parameters are characterized by various
dimensions M and correlation lengths c, where c is assumed to be isotropic in all
directions. All parameters for the generation of a random field, applying the KLE,
are summarized in Tab. 9.5, where the sub-dimension M ′ defines the dimension of
each material parameter as already explained in the previous example.

Table 9.5.: Input parameters for the spatial characterization of the material parame-
ters when applying the KLE.

Dimension M Sub-Dimension M ′ Order p Correlation Length c in cm
8 2 2 10
8 2 3 10
12 3 2 5
16 4 2 5

In case of the SPRM as spatial discretization technique and a MCS as sample method,
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y

(a) Dimensions of the plate.

ν = 0.25ν = 0.25

E = 21.000 kN
cm2

140 elements

1008 degrees of freedom

(b) FE model of the plate. (c) 3D view of the discretized plate.

Figure 9.10.: Elastic-plastic example of the plate with a hole at the center.
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the system response u(θ) of an arbitrary node is evaluated according to equation
(9.59). As in the first example, a sample size of nSPRM = 5000 is used when applying
the coupled SPRM-MCS. In this approach a correlation length of c = 1 cm is used.
In case of a LHS, the response statistics are computed in the same manner as in the
coupled SPRM-MCS, with a sample size of nLHS = 10000. Both methods, the coupled
SPRM-MCS and the LHS, are used as reference solutions where the obtained results
are compared with those obtained from the proposed non-linear SSFEM approach.

The quantity of interest is the von Mises (vM) stress σvM where the approximation
of the mean value E[σvM] and the standard deviation σ(σvM) are investigated.

Discussion of the Results

The resulting mean of the vM stresses and the standard deviation for the non-linear
SSFEM are shown in Figs. 9.11 and 9.12. The reference solutions of the coupled
SPRM-MCS and LHS are displayed in Fig. 9.13. Comparing these figures, it can be
clearly seen that the mean value of the vM stress is quite similar. From the contour
plots of the developed approach in Fig 9.11 it is obvious that the vM stresses are
identical. This implies that the spatial variability of the material properties, in terms
of the dimension M of the KLE, has a larger influence on the system response than
the order p of the PCE. On the other hand, the approximated mean values in Fig.
9.11 are nearly identical to those one displayed in Fig. 9.12, where, in addition to
larger dimensions M (M = 12 and M = 16), the correlation length has been reduced
to c = 5 cm. Form this result it may be deduced that the correlation length c has no
remarkable influence on the approximation of the mean value of the vM stress.

In contrast, it appears that the proposed approach underestimates the standard devi-
ation in comparison to the reference solutions. A declining trend is observable when
comparing the standard deviations in Figs. 9.11 and 9.12. Furthermore, the distribu-
tion of the standard deviations in these figures show some asymmetric areas, which
may be attributed to the numerical solution of the Fredholm integral. To be more
specific, from the results in 9.11 it is quite obvious that the applied dimension M of
the KLE is to small to approximate the Fredholm integral satisfactory. The results
in Fig. 9.12 show that, with increasing M , the approximation of random field is much
more accurate. With regard to the obtained results of the standard deviation suggests
that the dimension of M must be chosen large enough, especially when the random
field is realized in a numerical manner. However, currently no statement can be made
with regard to the influence of the spatial variability when expanding the dimension
M of the KLE. In addition, further possibilities for an inaccurate approximation of
the random field is the relatively coarse discretization of the plate and the resulting
interpolation errors. In this context more investigations are needed and should be
done in future work. Moreover, the results indicate that the system response is not
that sensitive to the order p of the polynomial chaos when comparing the results for
p = 2 with those obtained for p = 3. Under this loading conditions and the resulting
small non-linearities, it seems that a polynomial order of p = 2 is sufficient to get a
satisfactory accuracy of the system response.

A further observation is the relatively small spatial variability of the standard de-
viation of a LHS in comparison to the coupled SPRM-MCS and to the developed
non-linear approach. This can be understood by the fact that the spatial variability
of the coupled SPRM-MCS and the non-linear SSFEM has a larger influence on the
system behaviour than a set of random variables as applied in a LHS. Basically, it can
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be concluded that the non-linear SSFEM and the coupled SPRM-MCS underestimate
the standard deviation of the LHS, which is consistent with that of the example in
section 8.6.

As already in the previous example of the four-point bending beam the areas with the
maximal vM stresses are evaluated. Therefore, in Figs. 9.14 to 9.16 theses regions are
shown where the predetermined stress limit exceeded. The values of the vM stress
limits are also set here to P(E[σvM]) < 20.5 kN/cm2 and P(E[σvM]) < 23.5 kN/cm2.
The blue elements show the areas where the yield stress is exceeded and the red
ones are the elements which are within the permissible yield stress. The trends of
the stress distribution are quiet similar for all methods. The stress limits obtained
from the non-linear SSFEM shown in Figs. 9.14 and 9.15 and those obtained from
SPRM-MCS and LHS are displayed in Fig. 9.16. The identical stress distributions in
Figs. 9.14 and 9.15 follows from the nearly identical mean values of the vM stresses,
cf. Figs. 9.11 and 9.12. In contrast, it appears that the non-linear SSFEM and the
coupled SPRM-MCS overestimate the stress region compared to those one obtained
from a LHS, which is likewise obvious when the computed vM stresses are compared,
cf. Figs. 9.11 to 9.13.



9. Spectral Stochastic Finite Element Method in the Context of Plasticity195

(a) E[σvM] in kN/cm2 using M = 8 and
p = 2

(b) σ(σvM) in kN/cm2 using M = 8 and
p = 2

(c) E[σvM] in kN/cm2 applying M = 8 and
p = 3

(d) σ(σvM) in kN/cm2 with M = 8 and
p = 3

Figure 9.11.: Left: Mean value E[σvM] of the von Mises stress. Right: Standard
deviation σ(σvM) of the von Mises stress utilizing the non-linear SSFEM
and the bases P = 45 and P = 165.
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(a) E[σvM] in kN/cm2 applying M = 12 and
p = 2

(b) σ(σvM) in kN/cm2 using M = 12 and
p = 2

(c) E[σvM] in kN/cm2 using M = 16 and
p = 2

(d) σ(σvM) in kN/cm2 using M = 16 and
p = 2

Figure 9.12.: Left: Mean value E[σvM] of the von Mises stress. Right: Standard
deviation σ(σvM) of the von Mises stress using the non-linear SSFEM
and the bases P = 91 and P = 153.
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(a) E[σvM] in kN/cm2 using the SPRM-MCS (b) σ(σvM) in kN/cm2 with the SPRM-MCS

(c) E[σvM] in kN/cm2 applying the LHS (d) σ(σvM) in kN/cm2 with a LHS

Figure 9.13.: Left: Mean value E[σvM] of the vM stress. Right: Standard deviation
σ(σvM) of the vM stress utilizing the SPRM-MCS (a) and (b) as well as
a LHS (c) and (d).
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(a) P(E[σvM]) < 20.5 kN/cm2 with M = 8
and p = 2

(b) P(E[σvM]) < 23.5 kN/cm2 with M = 8
and p = 2

(c) P(E[σvM]) < 20.5 kN/cm2 for M = 8
and p = 3

(d) P(E[σvM]) < 23.5 kN/cm2 for M = 8
and p = 3

Figure 9.14.: Limits of the mean value of the von Mises stress E[σvM] utilizing the
non-linear SSFEM.
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(a) P(E[σvM]) < 20.5 kN/cm2 utilizing M =
12 and p = 2

(b) P(E[σvM]) < 23.5 kN/cm2 utilizing M =
12 and p = 2

(c) P(E[σvM]) < 20.5 kN/cm2 applying M =
16 and p = 2

(d) P(E[σvM]) < 23.5 kN/cm2 applying M =
16 and p = 2

Figure 9.15.: Limits of the mean value of the von Mises stress E[σvM] utilizing the
non-linear SSFEM.
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(a) E[σvM] < 20.5 kN/cm2 (b) E[σvM] < 23.5 kN/cm2

(c) E[σvM] < 20.5 kN/cm2 (d) E[σvM] < 23.5 kN/cm2

Figure 9.16.: Limits of the mean value of the von Mises stress E[σvM] for SPRM-MCS
(a) and (b) as well as a LHS (c) and (d).
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9.8. Summary and Concluding Remarks

The aim of this chapter was the development of an approach to capture stochastic
material properties in an elastic-plastic finite element simulation. The developed
formulation relies on the classical theory of deterministic J2 plasticity, which has
been extended for the computation of stochastic elastic-plastic material behaviour.
The proposed formulation is an intrusive approach, where the KLE is used for the
characterization of the random material parameters and the PCE is utilized for the
approximation of the system response. The regression method, which was applied for
the calculation of the norm of the stochastic back-stress tensor η̂ηη(θ) in the stochastic
radial return mapping scheme. An alternative for the computation of the norm is
the PCA, which was applied in Rosić [2013]. However, in this work the regression
method was preferred, because it needs to be evaluated only once and for all during
the simulation process. This has the attractiveness that it can be realized in a pre-
processing step. The results of the regression method are comparable with those
obtained with PCA assuming that the number of samples6 is large enough. In this
work, the sample size of the regression method is set to ncol = 100000. In case of
the coupled SPRM-MCS method, a sample size of nSPRM = 5000 is used and for the
LHS a sample size of nLHS = 10000 is applied.

As already known from the linear SSFEM, presented in chapter 8, the necessarily
high polynomial basis P for the accurate approximation of the system response is the
major difficulty. This aspect has to be taken into account especially in non-linear
analysis, because for the accurate approximation of the system response, a relatively
high basis P is necessary. With this respect, two remarks should be given with regard
to the polynomial dimension P and an accordingly accurate approximation. The first
refers to the dimension M of the KLE, which should be chose with respect to the
material properties. More precisely, if the material properties have high fluctuations,
a larger M should be set, while for small fluctuations few dimensions M are sufficient.
The second remark relates to the polynomial order p. A higher order should be used
if a strongly non-linear system response is expected, while a lower polynomial order p
seems to be sufficient if it is expected that the system response has less non-linearities.

The numerical examples in this chapter are performed with a relatively small polyno-
mial basis P . The results allow the assumption that the basis P is not large enough
to make final assessment of the accuracy of the approximated system response. How-
ever, by applying a dimension of M = 12 and a polynomial order of p = 4 leads to
a polynomial basis P = 495. Attempt to apply this basis on the numerical examples
shows that a result cannot be obtained in a reasonable time. Nonetheless, the numer-
ical results show that the developed method approximates the first two moments of
the vM stresses quite well comparing with the non-intrusive coupled SPRM-MCS and
LHS. The highest basis applied in the examples was P = 165. Nevertheless, to make
additional statements about the influence of the parameters M of the KLE, order p
of PC and the correlation length c further investigations are necessary in the future.

The statistics of the material parameters for the numerical examples have been cho-
sen, because such material data is rare. For some materials various parameters are
reported in Lemaitre and Chaboche [1990] or Shackelford [2000]. However, no statis-
tical informations, such as the probability distribution or standard deviation of the

6The sample size is dependent of the mechanical problem. This means, whether it is elastic, non-
linear with small deformations or non-linear with large deformations, the sample size needs to
be accordingly adjusted. The number of samples ncol should be large if a large (non-linear)
system response is expected, which also applies to the order p of PC.
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material parameters are listed there. In engineering applications, this information
is of special interest for the evaluation of the structural system. One possibility to
identify the statistics of the material parameters could be the Bayesian theorem. It
determines the probability of the occurrence of an event of B under the condition
that an event A has occurred already. An application could be that the material
parameters from a known system response are determined. Some more details about
this approach will be given in the outlook of the next chapter.

All investigations in the presented examples have been performed with a fixed FE
mesh. Besides, the investigation of the stochastic convergence SP → S by increasing
P , the deterministic convergence Vh → V , by applying a finer FE discretization should
be also investigated in further studies, where particular attention should be placed on
a local mesh refinement.
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10. Summary and Outlook

The application of stochastic finite element methods has been rapidly developed in
the last decade. Various techniques such as sampling based methods, perturbation
methods, moment equations (Fokker-Planck), operator methods (e.g., the weighted
integral method) or Galerkin methods (intrusive/non-intrusive) were continuously
developed. The aim of this thesis was the formulation of a new Galerkin-based
method for the computation of non-linear equations applying random material pa-
rameters with regard on J2 elastic-plastic material behaviour. As reference solutions,
the coupled SPRM-MCS method and the LHS are applied, where the results of the
developed approach are verified with. The presented non-linear approach is tested on
two numerical examples with a subsequent discussion of the results.

10.1. Summary

The present thesis addresses to the simulation of elastic-plastic material behaviour
where it is assumed that the probability distributions of the input parameters are a
priori known. The classical well-known J2 elastio-plasticity, with small deformations,
is used as basis formulation. The deterministic formulation has been subsequently
extended to capture random fluctuations of the material parameters. The random
material parameters are characterized by random fields for which the Karhunen-

Loève Expansion and the Spectral Representation Method are utilized. The former
method has been applied with the polynomial chaos, which is well known as Spectral
Stochastic Finite Element Method. The widespread linear approach of this method
has been extended to a novel non-linear spectral stochastic finite element method
(non-linear SSFEM). The latter method has been coupled with the Monte Carlo
Sampling, referred to as coupled SPRM-MCS, to get a reference solution in order to
compare the results with those obtained from the developed approach.

In the proposed non-linear SSFEM formulation, the stochastic elastic-plastic problem
is projected in a Galerkin manner, similar to the one in the classical finite element
formulation, onto the polynomial basis P of the discretized space. The stochastic
closest point projection has been realized in a combined algebraic-sampling manner
to compute the relevant quantities in the stochastic radial return scheme. This is
achieved by applying the polynomial chaos algebra and the regression method. The
numerical realization of this novel formulation is straightforward. The developed
approach seems to be quite effective and robust but it requires a reformulation of the
existing program code (intrusive formulation). Due to the deterministic character of
the coupled SPRM-MCS as well as the LHS, the computer code for the non-linear
calculation needs no reformulation and can be treated in a black-box manner (non-
intrusive formulation).

The presented studies show that the developed method approximates the first two
moments of the vM stress quite well comparing with the coupled SPRM-MCS as
well as with LHS. However, to make further statements about the influence of the
parameters, such as the dimension M of the KLE, order p of PC or the correlation
length c, further investigations are necessary.
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A further emphasis of this work was to identify the characteristics of the employed
methods that makes it more attractive than the other. The developed non-linear
approach is an intrusive method that represents the random quantity with a set of
coefficients in a suitable basis and this basis contains the complete statistics. Here,
only one computer run is necessary to receive the stochastic system response. How-
ever, the implementation in a computer code is cumbersome, because the deterministic
code needs a reformulation to handle the expansion coefficients and the corresponding
coupled system of equations. In contrast, the applied coupled SPRM-MCS and the
LHS are non-intrusive methods, which allow the analyst to compute the coefficients
by a series of runs of the mechanical model at hand. Such methods may be launched
in a fully parallel computational environment. The post-processing of the results
is straight forward and the implementation, compared to the intrusive method, is
relative simple, because the existing computer code needs no reformulation.

With respect to the computational cost and accuracy, it is difficult to say whether the
developed non-linear SSFEM, the coupled SPRM-MCS or the standard MCS is the
best method for applications. In view of industrial practice, Augustin et al. [2008] re-
marks that the use of the SSFEM is the only reasonable method, because the standard
methods are unfeasible with respect to the computational costs. This observation has
also been done in the investigations in this work, where the non-linear SSFEM leads
to accurate results in less computation time. However, as mentioned several times
in this thesis, the computation time depends strongly on the number of stochastic
random input parameters and the properties of the problem under consideration.
Furthermore, the SSFEM (no matter if linear or non-linear) is only applicable when
there is an access to the computer code, because of the necessary reformulation of the
code.

In view of the applied methods in this thesis, the method should be used in case where
the most information about the stochastic parameters is available. Such information
could be:

• How many random input parameters are there in the system?

• Which distribution does the input parameters have?

• Is there any information regarding the correlation length of the interesting pa-
rameters?

• Is a covariance function available?

From this listing the following conclusion may be drawn. The standard MCS should
be preferred if nothing but the probability distributions of the input parameters are
known. Furthermore, the MCS should be the first choice if there are a lot of ran-
dom input parameters (high dimension) in the system. Moreover, due to its simple
handling and convergence properties, the MCS method is a reasonable reference so-
lution. On the other hand, if the number of random input parameters is moderate
and information on the correlation length and the covariance function is available, the
presented non-linear SSFEM seems to be the better choice, because the computation
of the system response is less time consuming.

10.2. Outlook

As verified in the numerical examples, the developed non-linear SSFEM works well and
leads to an accurate approximation of the system response. However, a few points are
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identified, which can be further improved to get a (hopefully) more accurate solution
within less calculation time. The following paragraphs are dealing with some points
and ideas are given to eliminate these weaknesses where possible.

As pointed out in subsections 6.3.2 and 6.3.3, the computational costs for the numer-
ical solution of the eigenvalue problem increase drastically with increasing degrees of
freedom of the FE system. When a coarse mesh is used the error of the numerical
eigenvalue solution grows with increasing eigenvalue and no accurate solution can be
expected. To achieve a possible improvement here, two opportunities will be shown.
An option could be a local mesh refinement where only those regions are refined
which are of particular interest. These are the areas where high strains, stresses or
displacements are expected. Moreover, the calculation of the eigenvalues is a very
time consuming process and the application of effective eigenvalue solvers is reason-
able. In this regard, Le Maître and Knio [2010] propose the application of multi-pole
expansions. This area seems to be of particular interest of further research.

To increase the effectiveness of the random field representation using the spectral rep-
resentation method seems to be less complicated, because with rather simple methods
a notable improvement of the computational time and approximation quality can be
reached. Examples could be the application of a more precise sampling method for
the evaluation of the random phase angle than a standard Latin Hypercube sam-
pling. Some investigations with different sampling techniques has been already done
in section 6.4. Moreover, the computation of the random fields as well as the system
response can be realized in a completely parallel code, which is time efficient.

In this thesis Gaussian distributions with corresponding Hermite polynomials are ex-
clusively used. However, the random input parameters are consistently non-Gaussian

distributed. To include various distributions beyond the normal and log-normal distri-
bution, the generalized polynomial chaos or Askey-scheme is a reasonable possibility.
A brief introduction to this subject has been given in subsection 7.2.3. Besides this
generalization, further research could go in the direction of generalization in terms
of non-orthogonal polynomials or the numerical construction of unknown polynomi-
als. For example, if no distribution for the characterization of the system response is
available.

Further Research Subjects

The discussion in this section up to this point has involved possible improvements/ex-
tensions with respect to the applied methods in this thesis. In this paragraph some
related topics are discussed, which goes beyond the present work. This includes the
following topics:

• Random geometry, random excitations, non-linear hardening or other plasticity
models, such as the Drucker Prager model and

• the parameter estimation via the Bayesian theorem.

Throughout this thesis it has been exclusively assumed that the geometry and the
external forces of the structural systems are deterministic. However, in practice it is
almost impossible to accurately characterize neither the geometry of the structural
system nor the forces (e.g., seismic excitations, waves, wind, snow) acting on the
structural system. An approach for the characterization of the random domain has
been proposed by Xiu and Tartakovsky [2006]. The idea of random excitations/loads
goes back a long way, see, e.g., Rackwitz and Flessler [1978], and is still not fully
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reflected in structural systems. Indeed, deterministic excitations is a widespread and
often reasonable assumption. In some engineering systems the external forces are not
sufficiently well characterized by deterministic assumptions, such as wave or snow
loads. To generalize the proposed non-linear SSFEM stochastic loading conditions
may be taken into account.

For the sake of simplicity, the J2 flow theory with linear hardening parameters has
been used in this thesis. This formulation is widely utilized for the representation
of the material behaviour of steel. A field where stochastic modelling of material
behaviour has long been used is geological engineering, e.g., Sett [2007]. For the
modelling of geotechnical materials, plasticity models such as the Cam Clay model
are applied to represent the material behaviour. In general, the developed approach in
this thesis is applicable to such models and the first step could be the computational
realization of the combined von Mises Drucker Prager material model, which
has been proposed by Lutz [2011]. The advantage of this formulation is the smooth
transition between the von Mises and the Drucker Prager model, which makes
the computational realization less complicated. Furthermore, the extension to mixed
non-linear hardening1 is a further issue. Some investigations with random material
properties in the context of non-linear isotropic hardening can be found in the PhD
thesis of Jablonski [2014].

For the computation of a stochastic structural system, for example, the set of equa-
tions in (8.36), knowledge of the system parameters, such as the material properties is
necessary. A very important information is the probability distribution of the respec-
tive input parameter. However, in many cases less parameter information is available,
because

• the measurement of the parameters is too expensive and/or

• it is impossible to measure the parameters.

To quantify unknown parameters, different methods are available and some of them
are already listed in subsection 5.1. Beyond this methods, the Bayesian theorem
should be briefly presented here. For further informations to the Bayesian theorem
the reader is referred to Sivia and J.Skilling [2006] or Christensen et al. [2011] and
with special emphasis to civil engineering to Scheiwiller [1999].

The Bayesian theorem is used for the calculation of an event A given that some event
B has already occurred, which is denoted by P(A|B). The mathematical definition
of the (simplest) Bayesian theorem is,

P(A|B) =
P(A)P(B|A)

P(B)
, (10.1)

where P(A|B) is the posteriori probability, P(A) the prior probability, P(B|A) the
likelihood and P(B) is a norming constant. The interpretation of this equation is as
follows:

Due to the existing knowledge of A an initial estimate for P(A) is given. This estimate
corresponds to the so-called prior probability or more general of the prior information.
With new insights (event B) the estimate of the probability of occurrence of A changed
and the prior information is updated. The quotient P(B|A)/P(B) shows how to
perform the update. The updated conditional probability P(A|B) includes the whole
available information on the occurrence of A and is called posteriori probability.

1The theory of mixed non-linear hardening can be found, e.g., in Neto et al. [2008].
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A method to evaluate the posteriori probability is the Bayesian inference.
Marzouk et al. [2007] presents an approach which represents the random variables
with the polynomial chaos expansion. The author comes to the conclusion that the
proposed approach provides a reduction of the computational time in comparison
when using a direct sampling approach. This seems to be a research area of par-
ticular interest, especially when the parameter information is rare or the numerical
approximation of the forward problem2 seems to be very time consuming and conse-
quently very costly. A typical example for this method could be the determination
of the input parameters when the system response of the structural system is known,
such as the system response of a offshore wind turbine.

2In a forward problem a class of possible descriptions of a system exists and a forward operator
maps each of these descriptions onto a probability measure for the characteristic values.
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A. Additional Mathematical Background

This chapter contains miscellaneous mathematical topics, such as some derivations,
mathematical calculation rules and additional definitions, which are applied in the
context of this thesis. The references, where the theoretical information has been
taken from are indicated accordingly.

A.1. Derivation of the Variance between two Random Variables

Let Var(X+Y ) be the variance of the two random variables X, Y ∈ (Θ,F ,P), which
is derived as follows:

Var(X + Y ) = E
[
((X + Y ) − E[X + Y ])2

]

= E
[
((X + Y ) − (E[X] + E[Y ]))2

]

= E
[
((X − E[X]) + (Y − E[Y ]))2

]

= E
[
(X − E[X])2 + (Y − E[Y ])2 + 2(X − E[X])(Y − E[Y ])

]

= E
[
(X − E[X])2

]
+ E

[
(Y − E[Y ])2

]

+ 2E [(X − E[X])(Y − E[Y ])]

= Var(X) + Var(Y ) + 2E [(X − E[X])(Y − E[Y ])] .

(A.1)

A.2. Derivation of the Covariance between two Random
Variables

Let Cov(X + Y ) be the covariance of the two random variables X, Y ∈ (Θ,F ,P),
which is be derived as described below:

Cov(X, Y ) = E [(X − E[X])(Y − E[Y ])]

= E [XY − E[X]Y −XE[Y ] + E[X]E[Y ]]

= E[XY ]− E[X]E[Y ]− E[X]E[Y ] + E[X]E[Y ]

= E[XY ]− E[X]E[Y ] .

(A.2)

A.3. Binomial Coefficient

The Binomial Coefficient, in a mathematical context, is a family of integers, which
occur as coefficients in the binomial theorem. The following explanation has been
taken from Bronshtein et al. [2007].

The definition is for non-negative integers n and k (read n choose k) and is defined
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as
(
n
k

)
=

n!

(n− k)!k!
, 0 ≤ k ≤ n . (A.3)

Here, n is the product of the positive integers from 1 to n

n! = 1 · 2 · 3 · ... · n ,

called n factorial. By definition is 0! = 1 as well as
(
n
0

)
= 1 ,

(
n
1

)
= n ,

(
n
n

)
= 1 .

A.4. Chebyshev Inequality

The Chebyshev Inequality furnishes a bound on the probability of how much the
RV X can deviate from its expected value. If X has the expected value µX and the
standard deviation σX , then for arbitrarily λ > 0 the Chebyshev inequality reads

P(|X − µX | ≥ λσ) ≤ 1

λ2
. (A.4)

Whereas this inequality is only useful for λ > 1, because when λ < 1 the right-hand
side becomes greater one what makes the inequality meaningless. In general, the
Chebyshev inequality is only a weak bound compared to what might be possible if
there informations about the associated probability distribution are available.

A.5. Central Limit Theorem

The Cental Limit Theorem (CLT) is one of the most useful theorems in the probability
theory. It states that a random sample set {X1, X2, ...Xn} with mean equal zero
and finite variances σ21 , σ

2
2 , ... σ

2
n tends to the standard normal distribution1. This

statement is defined by

Z =
µ̂− µ

σ/
√
n
, (A.5)

where µ̂ is the sample mean, µ and σ are the mean and the standard deviation of
the population and n is the sample size. From this equation it is obvious that the
sampling result for µ̂ depends on the sample size n. Montgomery and Runger [1994]
distinguishes between the following two ranges of n.

• If n ≥ 30:
The normal distribution will be satisfactory regardless of the shape of the pop-
ulation.

• If n < 30:
The CLT will work if the distribution of the population is not strongly non-
normal.

1Provided that the individual variances σ2
j , j = 1, ... n are small compared to

∑n
i=1 σ

2
i .
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A.6. Law of Large Numbers

The Law of Large Numbers (LLN) is the theoretical basis for estimating µ from
measurements. When an experimenter takes the sample mean µ̂ of n measurements,
it is relying on the LLN in order to use µ̂ as an estimate of the unknown theoretical
expectation µ. A distinction is made between the weak and the strong law. The weak
law obtains convergence in probability, while the strong law leads to convergence with
probability p − 1, p ∈ [0, 1], whereas p − 1 is a further expression for almost surely
(a.s.). In the following both laws are briefly presented. For a detailed treatment
the reader is referred to the standard textbooks on probability theory, e.g., by Loève
[1977] or Papoulis [1991].

Weak Law of Large Numbers

Let {X1, ...Xn} be a set of random variables with (unknown) mean µX and also
(unknown) standard deviation σX . In such a case the sample mean µ̂,

µ̂ =
1

n

n∑

i=1

Xi , (A.6)

has to be considered, which is an estimate of µX . By use of the Chebyshev Inequality
(A.4) and for every λ ∈ (0,∞) follows

P
(∣∣∣∣∣

1

n

n∑

i=1

Xi − µX

∣∣∣∣∣ ≥ λ

)
≤ 1

λ2
Var

(
1

n

n∑

i=1

Xi

)
, (A.7)

=
1

λ2
1

n2

n∑

i=1

Var (Xi) , (A.8)

=
σ2

λ2n
→ 0 , (A.9)

and finally for n→ ∞ it reads

1

n

n∑

i=1

Xi → µ . (A.10)

Strong Law of Large Numbers

Specifying the weak law of large numbers by the formulation of the p− 1 convergence
of

1

n

n∑

i=1

Xi , (A.11)

with n→ ∞ against the mean µX leads to the Strong Law of Large Numbers.

Let {Xk}, k ∈ N be a set of independent identically distributed (i.i.d.) random
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variables with mean µX and standard deviation σX , which leads to

µ̂k =
1

n

n∑

k=1

Xk → µX , a.s. , (A.12)

for n → ∞.

A.7. Hilbert Spaces

As first discussed in chapter 3, the mathematical description of the Finite Element
Method is based on a variation formulation of elliptical (in static mechanical sys-
tems) differential equations. This variational problem has a solution in the so-called
Sobolev space. From a numerical point of view, one carries out the solution of the
differential equations in a weak form, defined in a finite dimensional subspace. For
linear differential equations it is suitable to use Hilbert Spaces as solution spaces. In
this section the basic properties of Hilbert spaces are summarized. For further in-
formations of the mathematics of the FEM, the reader is referred to the textbooks by
Braess [1992] or Oden and Reddy [2011]. A more (general) mathematical background
can be found, for example, in Bronshtein et al. [2007]; Dobrowolski [2010]; Werner
[2011]; Alt [2012]. Hilbert spaces are Banach2 spaces, which are additionally allow
the mathematical structure of a scalar product.

Definition Normed Spaces

If every vector x of a real vector field (space) V is assigned with a real number ‖x‖
so that x, y ∈ V and α ∈ R the following properties apply:

‖x‖ ≥ 0 and ‖x‖ = 0 =⇒ x = 0 , (A.13)

‖α · x‖ = |α| · ‖x‖ , (A.14)

‖x+ y‖ ≤ ‖x‖+ ‖y‖ , (A.15)

where ‖ • ‖ denotes the norm on V and (V , ‖ • ‖) is a normed space.

Definition pre-Hilbert Spaces

Let x, y be two vectors of a real vector space V where a real number 〈x, y〉 is assigned,
so that ∀x, y, z ∈ V and α ∈ R the following properties apply:

〈x, x〉 ≥ 0 and 〈x, x〉 = 0 =⇒ x = 0 , (A.16)

〈x, y〉 = 〈y, x〉 , (A.17)

〈x+ α · y, z〉 = 〈x, y〉 + α · 〈y, z〉 , (A.18)

where 〈•, •〉 is the scalar product on V and (V , 〈•, •〉) is a pre-Hilbert space. In
general, a scalar product generates a norm according to

‖x‖ :=
√

〈x, x〉 , (A.19)

2For the mathematical theory of Banach spaces the reader is referred to the cited literature in
this section.
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where the frequently used Euclidean norm is given by

‖x‖2 := 2
√

|x1|2 + · · ·+ |xn|2 . (A.20)

Orthogonality

A further important property, which is frequently used in this thesis is the orthogonal-
ity property of two vectors. Let x , y be two vectors of a Hilbert space H, which are
orthogonal to each other (x⊥y) if the scalar product 〈x, y〉 = 0. Furthermore, holds
the orthogonality for two subsets A, B ⊂ H (A⊥B) if x⊥y, ∀x ∈ A and y ∈ B.
For a single element x ∈ A the notation is x⊥B.

Moreover, the orthogonality can be also applied to orthogonal systems. Therefore let
{xi}, i = 1, 2, ... be a vector set of H, which is orthogonal if it does not contain the
zero vector and xi⊥xj , i 6= j and 〈xi, xj〉 = δij , where δij denotes the Kronecker
delta.
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B. Classical Probability Density Functions

In this Appendix, various probability distributions are briefly presented. These prob-
ability density functions (PDFs) are commonly used in the context of structural me-
chanics with random input parameters. The following explanations are referred ba-
sically to the textbooks by Haldar and Mahadevan [2000]; Bucher [2009] and to the
doctoral thesis by Blatman [2009]. A claim to completeness is not applicable here and
for further readings the reader is referenced to the standard textbooks of probability
theory.

B.1. Gaussian Distribution

Due to its simplicity, the Gaussian or normal distribution is probably the most
commonly used distribution in engineering applications. Let X be a (normal) random
variable. Then, the corresponding probability density function reads

fX(x) =
1

√
2πσ2X

exp

(
− (x− µX)2

2σ2X

)
, (B.1)

where µX denotes the expected value of X and σX is the corresponding standard
deviation. The corresponding cumulative density function FX(x) is defined by

FX(x) =

∫ x

−∞
fX(x)dx . (B.2)

A Gaussian random variable with expected value µ = 0 and standard deviation σ = 1
is denoted as standard normal variable. The corresponding PDF (resp. CDF) is often
given by

Θ(x) =
1√
2π

∫ x

−∞
exp

(
− t

2

2

)
dt . (B.3)

The values Θ(x) of the CDF on the interval [0,1] of the normal distribution are not
solvable in closed form. However, tables are widely available or it can be calculated
numerically. Higher moments as the second moment σ can be derived in terms of
µ and σ. At this point, it will be waived, because the Gaussian distribution is
completely characterized by its first two moments. For the Gaussian distribution,
the third and fourth moment is:

Third moment (skewness) : s = 0 , (B.4)

Fourth moment (kurtosis) : κ = 3 . (B.5)
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B.2. Log-Normal Distribution

A log-normal distribution is commonly used to characterize quantities which are al-
ways positive, such as material properties in engineering applications. In this context,
the natural logarithm of the random variable X is used. Let X be a log-normal ran-
dom variable, then the probability density function is given by

fX(x) =
1

x
√
2πσL

exp


−

(
log x

µL

)2

2σ2L


 , for x ≥ 0 . (B.6)

Here, the subscript •L refers to the corresponding parameters of the log-normal dis-
tribution. The corresponding CDF of a log-normal distribution reads

FX(x) = Θ

(
log x

µL

σL

)
, (B.7)

where Θ is already given in equation (B.3). The expected value µ and standard
deviation σ is defined as follows:

µ = µL exp

(
−σ

2
L

2

)
=

µ2L√
µ2L + σ2L

, (B.8)

σ =

√√√√ln

(
σ2L
µ2L

+ 1

)
. (B.9)

B.3. Uniform Distribution

A uniform distribution can be used to represent a parameter when only its bounded
domain of variation is known by two limits, (say) a and b. The PDF of an uniform
random variable X is given by

fX(x) =
1

b− a
, for x ∈ [a, b], 0 otherwise , (B.10)

with b > a. The corresponding CDF reads

FX(x) =
x− a

b− a
, for x ∈ [a, b], 0 otherwise . (B.11)

The expected value µX and standard deviation σX is defined by

µX =
a + b

2
(B.12)

σX =
b− a

2
√
3
. (B.13)

The skewness of the uniform distribution is s = 0 and the corresponding kurtosis is
specified to κ = 1.8.
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B.4. Gamma and Exponetial Distribution

The Gamma distribution is also useful to represent parameters with only positive
values. A random variable X follows a Gamma distribution if its PDF is defined by

fX(x) =
1

aνΓ(ν)
xν−1exp

(
−x
a

)
, for x ≥ 0 . (B.14)

Here, ν is a shape parameter, a is a scale parameter and Γ(·) denotes the complete
Gamma function, which is defined by

Γ(ν) =

∫ ∞

0
tν−1e−t dt , for ν > 0 . (B.15)

The expected value is given by µ = νa and the standard deviation is defined by
σ =

√
νa . For the case ν = 1 equation (B.14) leads to the exponential density

function

fX(x) =
1

a
exp

(
−x
a

)
, for x ≥ 0 . (B.16)

The skewness s of the Gamma distribution and kurtosis κ are specified by

s =
2√
ν
, (B.17)

and

κ =
6

ν
. (B.18)

B.5. Weibull Distribution

The Weibull or (Type III smallest) distribution is often used to represent material
strengths and time to failure of mechanical structures. A random variable X follows
a Weibull distribution if its PDF reads

fX(x) =
k

ν

(x
λ

)k−1
exp

(
−
(x
λ

)k)
, for x ≥ 0 . (B.19)

Here, the parameter λ > 0 denotes a scale parameter and the value of k > 0 influences
the shape of the distribution. The corresponding CDF is defined as

FX(x) = 1− exp
(
−
(x
λ

)k)
, for x ≥ 0 . (B.20)

The expected value µ and the standard deviation σ can be calculated under consid-
eration of the distribution parameters λ and k as follows:

µ = λΓ

(
1 +

1

k

)
(B.21)

σ2 = λ2
(
Γ

(
1 +

2

k

)
− Γ2

(
1 +

1

k

))
, (B.22)
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where, Γ(·) is the Gamma function, cf. equation (B.15). The skewness s and the
kurtosis of the Weibull distribution can be found, e.g., in the textbook by Rinne
[2009].
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C. Derivatives of the Elastic-Plastic Tangent Modulus

In this Appendix, the explicit derivatives of the elastic-plastic tangent modulus intro-
duced in equation (3.51) are calculated.

Starting point is the partial derivative

∂∆λ

∂ǫǫǫn+1

which, when applying the chain rule, leads to

∂∆λ

∂ǫǫǫn+1
=

∂∆λ

∂ftrialn+1︸ ︷︷ ︸
a1

∂ftrialn+1

∂ηηηtrialn+1︸ ︷︷ ︸
a2

∂ηηηtrialn+1

∂ǫǫǫn+1︸ ︷︷ ︸
a3

a1 =

(
2µ

(
1 +

Hiso +Hkin

3µ

))−1

a2 =
∂‖ηηηtrialn+1‖
∂ηηηtrialn+1

=
1

2

(
n∑

i=1

(
ηηηtrialn+1, i

)2
)− 1

2

2ηηηtrialn+1, i = ntrial
n+1

a3 = 2µ ,

and finally

∂∆λ

∂ǫǫǫn+1
=

(
1 +

Hkin +Hiso

3µ

)−1

ntrial
n+1 . (C.1)

The explicit derivation of

∂ntrial
n+1

∂ǫǫǫn+1

is calculated by

∂ntrial
n+1

∂ǫǫǫn+1
=
∂ntrial

n+1

∂sn+1

∂sn+1

∂ǫǫǫn+1

=
2µ

‖ηηηtrialn+1‖
[
I− ntrial

n+1 ⊗ ntrial
n+1

]
, (C.2)

with the derivative of a unit normal field

∂n

∂s
=

1

‖ηηη‖ (I− n⊗ n) .

After substituting the derivatives (C.1), (C.2) and the explicit definition for the elas-
ticity tensor Cel into equation (3.51) results in the algorithmic consistent tangent
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modulus for the J2-elastic-plastic material, i.e.

C
ep
n+1 = K1⊗ 1+ 2µAn+1

(
I− 1

3
1⊗ 1

)
− 2µBn+1n

trial
n+1 ⊗ ntrial

n+1 , (C.3)

where

An+1 = 1− 2µ∆λ

‖ηtrialn+1‖
,

and

Bn+1 =

(
1 +

Hkin +Hiso

3µ

)−1

− 2µ∆λ

‖ηtrialn+1‖
.
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D. Additional Remarks on Random Fields

In the first two sections of this Appendix, some additional theoretical background to
the theory of random fields is presented. In section D.3 some additional graphs of the
SPRM are given. In detail, these are the evolution of the skewness and the kurtosis
of the random phase angle plotted against the sample number applying a LHS and
Sobol’ sequences.

D.1. Wiener-Khinchine Relations

In what follows is a compact summary of the theoretical explanations, which is taken
from the textbook by Vanmarcke [2010]. Let Ĥ(x) = Ĥ(x1, ...xn) be a discretized
n-dimensional homogeneous random field, which is expressed as a sum of 2K inde-
pendent random sinusoidal components as follows:

Ĥ(x) = µ+
K∑

k=−K

Ĥkkk(x) , (D.1)

where µ is the mean of the random field and Ĥkkk(x) is given by

Ĥkkk(x) = Akkk cos(ωωωkkk·x+Φkkk) . (D.2)

Here, Akkk is the random amplitude and Φkkk is the random phase angle of the component
Ĥkkk(x) associated with a point in the n-dimensional frequency domain. The cosine
function depends on the inner product of the frequency ωωωkkk = {ωk1 , ... ωkn} and the
vectors x = {x1, ... xn}

ωωωkkk·x = ωk1x1 + ωk2x2 + ...+ ωknxn , (D.3)

where ωki = ± [∆ωi(2ki − 1)/2] , ki = 1, ...,Ki denotes the i-th coordinate of a point
in the n-dimensional frequency domain. Each elementary random function Ĥkkk(x) has
a mean equal to zero and a variance given by

σkkk = E[Ĥkkk(x)
2] = E[A2

kkk]E[cos
2(ωωωkkk ·x+Φkkk)] =

1

2
E[A2

kkk] . (D.4)

Here, the expectation E[cos2(ωωωkkk·x+Φkkk)] is defined with respect to the random phase
angle Φkkk. The variance of Ĥ(x) is obtained by summing the spectral masses through-
out the frequency domain, i.e.

σ2 =

K∑

k=−K

1

2
E[A2

kkk] (D.5)

⇒
∞∫

−∞

S(ωωω)dωωω , (D.6)
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where S(ωωω) denotes the multidimensional spectral density function and dωωω =
dω1dω2 · · · dωn represents an elementary region in the frequency domain. The co-
variance function is analogously formulated as

C(τττ) =
K∑

k=−K

1

2
E[A2

kkk]cosωωωkkk · τττ . (D.7)

Substituting equation (D.6) into equation (D.7) and replacing the summation by an
integration leads to the first relation of the Wiener-Khinchine transform pair

C(τττ) =

∫ ∞

−∞
S(ωωω)cosωωωkkk · τττ dωωω =

∫ ∞

−∞
S(ωωω)eiωωω·τττ dωωω , (D.8)

where i denotes the imaginary unit. Performing a Fourier transformation of equation
(D.8) leads to the n-dimensional spectral density function S(ωωω),

S(ωωω) =
1

(2π)n

∫ ∞

−∞
C(τττ )cosωωωkkk · τττ dτττ =

1

(2π)n

∫ ∞

−∞
C(τττ)e−iωωω·τττ dτττ . (D.9)

The last two equations are referred to as the Wiener-Khinchine transform pair
(Khintchine [1934]), which states that the n-dimensional Fourier transform of the
covariance function C (τττ) is equal to the spectral density function S(ωωω). This means,
that the covariance function can be transformed directly into the spectral density
function and vice versa.

D.2. Additional Remarks on the Karhunen Loève Expansion

The following derivation is a compact summary of the explanations given in
Ghanem and Spanos [2003]. First of all, the required equations, introduced in chapter
6, are repeated here for convenience. These are:

• The expansion of the random field H(x, θ)

α(x, θ) =
∞∑

i=0

√
λifi(x)ξi(θ) , and (D.10)

• the normalization condition
∫

D

fi(x)fj(x) dD = δij . (D.11)

First, multiplying both sides of equation (D.10) by α(x2, θ) and taking the expectation
on both sides leads to

C(x1,x2) = E[α(x1, θ)α(x2, θ)] =
∞∑

i=0

∞∑

j=0

√
λiλjfi(x1)fj(x2)E[ξi(θ)ξj(θ)] . (D.12)
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Multiplying equation (D.12) by fk(x2), integrating over the domain D and applying
the normalization condition (D.11) gives

∫

D

C(x1,x2)fk(x2)dDx2 =
∞∑

i=0

∞∑

j=0

√
λiλjfi(x1)δjkE [ξi(θ)ξj(θ)]

=
∞∑

i=0

√
λiλkfi(x1)E [ξi(θ)ξk(θ)] .

(D.13)

Subsequently multiplying both sides of equation (D.13) by fl(x1) and integrating over
the domain D the equation results in

λk

∫

D

fk(x1)fl(x1)dDx1 =
∞∑

i=0

√
λiλkfi(x1)fl(x1)E [ξi(θ)ξk(θ)]

λkδkl =
∞∑

i=0

√
λiλkδilE [ξi(θ)ξk(θ)]

=
√
λkλlE [ξk(θ)ξl(θ)] ,

(D.14)

where the relation
∫
D = C(x1,x2)fk(x2) = λkfk(x1) is applied. Equation (D.14)3

can be rearranged, and the normalized condition

δkl = E [ξk(θ)ξl(θ)] , (D.15)

is finally obtained.
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Figure D.1.: Result for ŝĤS
(left) and κ̂ĤS

(right) used LHS with n = 100 samples.
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Figure D.2.: Result for ŝĤS
(left) and κ̂ĤS

(right) used a Sobol’ sequence with n =

100 samples.
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Figure D.3.: Result for ŝ
ĤS

(left) and κ̂
ĤS

(right) used the LHS with n = 250 samples.
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Figure D.4.: Result for ŝĤS
(left) and κ̂ĤS

(right) used a Sobol’ sequence with n =

250 samples.
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Figure D.5.: Result for ŝĤS
(left) and κ̂ĤS

(right) used the LHS with n = 500 samples.
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Figure D.6.: Result for ŝ
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(right) used the LHS with n = 1000 sam-
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Figure D.8.: Result for ŝĤS
(left) and κ̂ĤS

(right) used a Sobol’ sequence with n =

1000 samples.
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Symbols

Abbreviations

a.s. Almost surely

Cov(·, ·) Covariance of (·, ·)
CDF Cumulative density function

CLT Central limit theorem

det Determinant

dim Dimension

FE Finite element

FEM Finite element method

FPK Fokker-Planck-Kolmogorov

i.i.d Idependent identically distributed

KLE Karhunen-Loève expansion

LHS Latin Hypercube Sampling

LLN Law of large numbers

MCS Monte Carlo Sampling

PC Polynomial chaos

PCA Polynomial chaos algebra

PCE Polynomial chaos expansion

PDF Probability density function

QMC Quasi Monte Carlo

RV Random variable

SPRM Spectral representation method

SCPP Stochastic closest point projection

Var(•) Variance of •
vM Von Mises

Greek Symbols

ααα Set of internal variables (Chap. 2); Set of multi-indices ααα = {α1, ... αp}
(Chap. 7 to 9)

ǫǫǫ Linear stress tensor

ǫǫǫel Elastic part of the linear stress tensor

ǫǫǫpl Plastic part of the linear stress tensor

Γ̂ Space of polynomials in {ξ(θ)}∞i=1

Γp Polynomial chaos of order p

Γ̃ Space spanned by Γ

Γ Total production of entropy (Chap. 2)
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ǫM Residual of the numerical solution of KLE

ǫλ Relative error of the eigenvalue λ

ǫ̃ǫǫ• Deviatoric part of the stress tensor with respect to •

ǫ̇pl Plastic strain rate

ηηη Back-stress tensor (Chap. 2)

ηc, η Specific entropy in the current and reference configuration

Θ Absolute temperature (Chap. 2); Sample space

θ Outcome θ ∈ Θ

κX Kurtosis (fourth moment) of X

κXe Excess of X

κ•u Upper cut-off wave numbers with respect to the coordinate • (Chap.
6)

λ̇ Plastic multiplier

λi i-th Eigenvalue of KLE

µ Shear modulus

µ̂ Sample mean

µX Mean value of X

ν Poisson’s ratio

ξ Uncorrelated Gaussian random variable

ρ0 Density in the reference configuration

ρ Density in the current configuration

ρXY Correlation between X and Y

σσσ Cauchy stress tensor

σy Yield stress

σy(x, θ) Random yield stress

σX Standard deviation of X

σ̂X Standard deviation of the sample of X

Σ Covariance matrix

Φ Motion of the body B
Φn• Random phase angle with respect to the sample value n•

φn• Realization of the random phase angle with respect to the sample num-
ber n•

χ Mapping of the body B
ψ Free energy function (Chap. 2)

ψ(·) Functional/Polynomial

Ψ(σσσ,A) Flow potential (Chap. 2)

∂Ω Boundary of the domain

Ω0 Reference configuration

Ω Current configuration
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ω(x) Weighting function

Latin Symbols

A, a Acceleration field in the reference and current configuration; Thermo-
dynamical force

B Material (continuum) body

Bh Discretized continuum body

B B-matrix

b Body force

Cxx(·, ·) Autocovariance function

C Right Cauchy-Green tensor strain tensor

C Fourth-order material tensor

C•D Covariance function with respect to the dimension •
c• Correlation length with respect to the coordinate •
d Deformation rate tensor

Del Elastic domain

Dpl Plastic dissipation function

D(x) Stochastic elasticity tensor

E, e Orthogonal base system in the reference and current configuration

E(t) Thermal energy

ec Specific internal energy

E Green-Lagrange strain tensor

e Euler-Almansi strain tensor

E Young’s modulus

E(x, θ) Random Young’s modulus

E Event

E(•) First moment (mean) of •
F σ-Algebra

FFF Block vector of the stochastic force field

F(θ) Stochastic force field

F(·, t) Deformation gradient

f Deterministic yield function

f(θ) Stochastic yield function

fX Probability density function of X

FX Cumulative distribution function of X

fXY Joint probability density function of X and Y

FXY Joint cumulative probability distribution of X and Y

fY |x(y) Conditional probability of Y given X = x

fe int Internal force of element e

fe ext External force of element e



230 Symbols

Fint Global internal force

Fext Global external force

fi i-th Eigenfunction of KLE

h One-dimensional Hermite polynomial

H(·) Random field

HS(·) Random field realized with SPRM

Ĥ(·) Discretized random field

ĤS(·) Discretized random field realized with SPRM

Hiso Isotropic hardening modulus

Hkin Kinematic hardening modulus

Hiso(x, θ) Random isotropic hardening

Hkin(x, θ) Random kinematic hardening

H(ηηη) Vector of the shape functions

H(σσσ,A) Hardening variables

h Cauchy entropy flux

L2 Hilbert space

1 Second-order identity tensor

I Fourth-order identity tensor

J Jacobian matrix

J Angular momentum

J2 Second invariant of the deviatoric stresses

K(θ) Stochastic global stiffness matrix

KKK Block matrix consisting all stochastic global stiffness matrices

K(t) Kinetic energy

ke Element stiffness matrix

K Global stiffness matrix

K Bulk modulus

K Stochastic bulk modulus

l(θ) Log-normal random variable

L Impulse

L•0 Period with respect to the coordinate • (Chap. 6)

M Dimension of KLE

M ′ Sub-Dimension of KLE

m Mass

M External moments

N, n Normal vector in the reference and current configuration

N(σσσ,A) Flow vector

NI I-th Shape function

O Origin of the coordinate system

P Material point
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Pext(t) External mechanical power

Pint(t) Internal mechanical work

P 1. Piola-Kirchhoff stress tensor

P(·) Probability of an event E·
P Polynomial chaos basis

p Order of the polynomials of the Polynomial Chaos

Q(t) Thermal power

q Cauchy heat flux

qn Normal heat flux

R3 Euclidean space

R Residuum of the Newton-Raphson method

r Heat source

S Hilbert space L2(Θ,F ,P)

SP Subspace of S spanned by the polynomial basis P

S(ω) Spectral density

S(t) Entropy

S 2. Piola-Kirchhoff stress tensor

s Deviatoric stresses

sX Skewness (third moment) of X

t Chauchy vector

t̄ Traction boundary conditions

t0 Initial time

t Surface load

U(θ) Stochastic displacement field

UUU Block vector of the stochastic displacement field

ū Displacement boundary conditions

U, u Displacement field in the reference and current configuration

V, v Velocity field in the reference and current configuration

V Deterministic space for the random solution

Vh Subspace of V
∂W Virtual work

X Random variable

x Value of a random variable X

XXX Random vector

X(t) Stochastic process

Y Set of yield surfaces
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Operators

V ⊗ S Tensor product space

〈·, ·〉 Inner product

Div, div Divergenz in the reference and in the current configuration

Grad, grad Gradient in the reference and in the current configuration

× Cross product

· Scalar product

: Dual scalar product

⊗ Tensor product

∂ Partial differential operator

δδδ• (Vector-valued) Variation of •
δδδ•(θ) (Vector-valued) stochastic Variation of •
∆• Increment of •
d
dt

(•), •̇ Time derivative of •
•T Transpose of vector or matrix •
sin, cos Sine, cosine

‖ • ‖ Norm of •
∗ Appropriate product operation (Chap. 2)

δij Kronecker delta

Π Product operator

± Addition/Subtraction of random variables

±̂ Projection of ± onto the Polynomial basis

∗ Multiplication of random variables (Chap. 9)

∗̂ Projection of ∗ onto the Polynomial basis

÷ Division of random variables

÷̂ Projection of ÷ onto the Polynomial basis

sign Sign function

δ(•1 − •2) Delta function

•̂(θ) Approximation of the random variable •(θ) (Chap. 9)

tr(•) Trace of •
∪ Assembly process (Chaps. 3 and 8 )
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