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Zusammenfassung 

Die vorliegende Studie konzentrierte sich auf mögliche Substrate und Reaktionsbedingungen für 

die Herstellung von wertvollen Aromastoffen sowie geschmacksmodifizierenden Substanzen 

durch enzymatische Reaktionen. 

1. Die Synthese von natürlichem Vanillin - einer bevorzugten Zielkomponente 

biotechnologischer Verfahren zur Herstellung natürlicher Aromastoffe - aus Curcumin wurde 

untersucht. Vor der Spaltung des Moleküls durch pilzliche Laccasen musste eine der 

phenolischen Hydroxylgruppen durch Acetylierung mit einem natürlichen Acyldonator unter 

Verwendung einer Lipase aus Candida antarctica geschützt werden. Unter kontrollierten 

Bedingungen in einem Zweiphasensystem katalysierten geeignete Laccasen die Spaltung der 

aliphatischen Doppelbindung unter Bildung von Phenolresten und eine Polymerisation des 

Curcumins konnte vermieden werden. Dabei zeigte eine Laccase aus Funalia trogii unter den 

gewählten Reaktionsbedingungen die höchste Stabilität und Oxidationspotential. Durch Spaltung 

von Acetylcurcumin mit dieser Laccase konnte eine Ausbeute von 46% Acetylvanillin erzielt 

werden. Die Zielkomponente Vanillin wurde im letzten Schritt des dreistufigen enzymatischen 

Prozesses durch Deacetylierung mit Hilfe einer Esterase aus Pleurotus (Pe FaeA) in höherer 

Ausbeute im Vergleich zu anderen Esterasen freigesetzt. Vanillin konnte so mit einer molaren 

Ausbeute von mehr als 15% des ursprünglich eingesetzten Curcumins gewonnen werden. 

2. Zur Herstellung von natürlichem Dehydrodivanillin, einem Geschmacksverstärker, der  

Milchprodukten und auch anderen Lebensmitteln Cremigkeit verleiht, wurde die Oxidation von 

Vanillin in wässriger Phase mit verschiedenen Laccasen und Peroxidasen verglichen. Ein nahezu 

quantitativer Umsatz wurde mit einer Laccase aus Funalia trogii erzielt, während die anderen 

pilzlichen Laccasen sowie kommerzielle Peroxidasen  deutlich geringere Ausbeuten lieferten. 

3. Erneut wurden mehrere Laccasen aus Basidiomyceten mit unterschiedlichen 

Redoxpotenzialen zur Umsetzung phenolischer Substrate verwendet. Zielprodukte waren in 

diesem Ansatz Lignane, (Phenoldimere) deren potenzielle geschmacksmodifizierende 

Eigenschaften von Interesse sind. Verglichen wurden die Umsatzraten und die Enzymstabilitäten 

in Gegenwart verschiedener  organischer Lösungsmittel. Die Laccase aus F. Trogii erwies sich 

einmal mehr, als ein potenter Biokatalysator, der auch unter harschen experimentellen 

Bedingungen Aktivität zeigte, während andere Enzyme inaktiviert wurden. Die 
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Dimerisierungsreaktionen erfolgten in einem Zweiphasensystem mit mehr als 95% Ausbeute für 

Substrate, wie Ferulasäure, Sinapinsäure und Coniferylalkohol. 

 

Stichworte: Vanillin, Dehydrodivanillin, Flavour, Laccase, Esterase, Lignans 
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Summary  

The present study focused on possible substrates and reaction conditions for the production of 

valuable aroma and taste modifying compounds by enzymatic reactions.   

1. The production of natural vanillin as a prime target of flavour biotechnology by the 

enzymatic degradation of curcumin was investigated. Curcumin was protected by an 

enzymatic acetylation using a lipase from Candida antarctica and a natural acyl donor. 

Under controlled conditions in a two phase system, laccase catalysed the formation of 

phenol radicals, so cleavage of double bound occurred, but polymerization was avoided. 

The laccase from Funalia trogii showed the highest stability and oxidative potential. 

Acetyl vanillin was the result of the cleavage of acetyl curcumin by the laccase with a 

yield of 46 %. Natural vanillin was finally released by a fungal esterase from Pleurotus 

eryngii (PeFaeA) in higher yield in comparison to other esterases. Vanillin with a molar 

yield of more than 15 % of the initially applied curcumin was achieved by these three 

consecutive steps. 

2. Oxidation of vanillin in the aqueous phase using three types of laccases and two 

peroxidases was compared for the production of dehydrodivanillin, a taste-enhancer 

which imparts creaminess in dairy and other products. The reaction was catalysed by the 

laccase from Funalia trogii and delivered almost quantitative conversion to divanillin (> 

95 %), while other fungal laccases and commercial peroxidases yielded much less.  

3. Several laccases from basidiomycetes with different redox potential were used to direct 

the oxidative reaction of phenols to the production of lignan dimers with potential taste 

modifying properties. The rates of substrate oxidation and enzyme stability were 

compared in the presence of organic solvents. F. trogii again proved to be a potent 

catalyst and was effective even under harsh conditions, which strongly inhibited the 

activity of other enzymes. Dimerization reactions took place in a two phase system with 

more than 95 % yield for substrates, such as ferulic acid, sinapic acid and coniferyl 

alcohol. 

 

Keywords: Vanillin, Dehydrodivanillin, Flavour, Laccase, Esterase, Lignans. 
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1 Introduction 

1.1 Biotechnology 

Biotechnology is the use of biological processes, living organisms or derivatives to make or 

modify products for specific application. One simple definition of biotechnology is 

commercialization of cell and molecular biology (Altman and Hasegawa, 2012). Biotechnology 

in food processing is using microbial and enzymatic technologies to modify properties such as 

the taste, aroma, shelf-life, texture and nutritional value of foods (Niar 2008). Biotechnology 

appears to be a new and a key technology for the 21st century, but the concept is not new. Many 

years ago, the use of micro-organisms and their enzymes to bring desirable changes in food was 

known as fermentation. Examples of this are the production of cheese, bread, wine, beer, etc. But 

none of these processes can be considered biotechnology in the modern sense. Recent 

development in molecular biology gave the new meaning and new potential to modern 

biotechnology (Klefenz 2002). Biotechnology is widely involved in the production and 

preservation of microbial cultures, enzymes, flavours, fragrances, food additives and a range of 

other high value-added products (Knorr and Sinskey 1985). These are increasingly produced in 

advanced developing countries for use in their food and non-food processing applications. Many 

of them are also imported by developing countries for use in their food-processing applications. 

Biotechnological developments have resulted in the widespread availability of low-cost rapid 

methods when compared with the significant cost/time requirements of traditional techniques 

(Maryanski 1995). 

Biotechnology has applications in many different areas, such as food, medicine, agriculture and 

various environmental uses. To demonstrate the utility of biotechnology-based methods a series 

of definitions have been used for different branches of biotechnology (Niar 2008):  

1- Blue biotechnology is the use of biotechnology in marine and aquatic applications. It is 

focused on advances in biotechnology to discover, produce or transform compounds from 

marine sources to be incorporated as functional and healthy ingredients in potential 

functional foods (Freitas 2012).  

2- Green biotechnology is related to agriculture to produce more environmentally friendly 

farming solutions as an alternative to the traditional industrial agriculture. The agro-

biotechnology is not a new science. For thousands of years, farmers have increased the 

desirable characters of their products with different biotechnological methods (Murray 

http://en.wikipedia.org/wiki/Blue_biotechnology
http://en.wikipedia.org/wiki/Industrial_agriculture
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2011). Since then, the use of biotechnology in agriculture has increased more and more 

through the introduction of new genes in 1960 by predicting the units of heredity or gene 

in plants (Niar 2008). The science of genetics was transformed by the discovery of DNA 

which contains the information in the cells (Murray 2011). The first transgenic crop was 

the "Flavr Savr ™" tomato; in this case the ripening was delayed and shelf life was 

increased (Zinnen and Voichik 1995; Falk 2002). One of the well-known developments 

in genetic modification in plants was indicated as an increase of herbicide tolerance and 

resistance against pathogens, such as fungi and insects, to improve the yields of crops and 

protect the environment. For instance, the resistance of maize (BT maize), oilseed rape 

and sugar beet can give the farmer much more flexibility in controlling weeds. Herbicide 

resistance is being used worldwide in cotton, potato, maize, soya, tobacco and wheat 

crops against insect pests. This is achieved by the integration of toxin forming genes from 

the common soil bacterium Bacillus thuringiensis into the genome (Maxwell et al. 1990). 

Another example of green biotechnology is designing of transgenic plants which are 

modified to improve flavour, for increasing the resistance to pests and diseases, or for 

enhancing growth in adverse weather conditions. Modifications of crop plants can be 

organized into two main categories: those that benefit the producer and those that benefit 

the consumer. Generally, modifications which involve resistance genes and are 

introduced into a crop with the use of genetic engineering methods will be called input 

trails. These resistant genes allow tolerance to herbicides or protect from fungi, pests 

certain insect, disease and other harmful organisms. The majority of modified crops in 

commercial use fit in this group. Scientists have just begun to tap the large potential of 

biotechnology to produce varieties of plants that confer a wide spectrum of advantages to 

consumers (Murray 2011).  

3-  Red biotechnology is most applicable in medical processes. The most well-known 

examples of red biotechnology are developing antibodies for the treatment of cancer, 

diagnosis of diseases, such as DNA chips for genetic diagnosis and tumor markers in 

cancer patients, or the cultivation of tissues such as cartilage, bone or skin stem cells in 

tissue engineering (Schmid and Urlacher 2007). 

4- White biotechnology or industrial biotechnology is biotechnology applied to industrial 

and chemical processes. The most important and well-known application of white 

http://en.wikipedia.org/wiki/Biopharmaceutical
http://en.wikipedia.org/wiki/Industry


7 
 

biotechnology is the use of enzymes as catalysts to either produce valuable chemicals or 

destroy hazardous/polluting chemicals. White biotechnology processes can help to make 

industrial manufacturing processes more environmentally friendly. They are performed in 

a contained environment, and have the potential to produce high yields of specific 

products with low energy use and minimal waste generation (Lorenz and Zinke 2005). 

The current demand of industry in enzyme productivity and stability, leads to 

development of novel technique for increasing shelf life and stability of enzymes. These 

requirements are inevitable to facilitate new and economic formulation. Using isolated 

enzyme in the reaction and immobilization provide an excellent base for increasing 

availability of enzyme. The main applications of enzymes are detergents (32 %), 

industrial processes (20 %) and the production of food and feed (33 %). The proportion 

of enzymes involved in the production of fine chemicals and pharmaceuticals with 4-5 % 

is comparatively low (Antranikian 2006).  

 

1.2 Flavour (Definition and history of usage) 

Flavours are extremely important chemicals. They have applications in different fields, such as 

food, feed, chemical, pharmaceutical and cosmetic industries. Financially, 25 % of the total 

market of food additives belong to flavours (Berger 2009). According to the U.S. Food and Drug 

Administration (FDA) regulation, flavours are compounds which can be added to food to impart 

taste and smell (All CFR regulations 2006). Flavours usually contain volatile and nonvolatile 

components and may be obtained through chemical and physicochemical process. Nonvolatile 

flavours evoke mainly taste sensations while volatiles have the influence on both taste and aroma 

(Gatfield 1988). The FDA identifies that flavours can be divided to natural and artificial. 

Artificial flavours are defined as any substance, which is not derived from natural sources such 

as spice, fruit or fruit juice, vegetable or vegetable juice, edible yeast, herb, root, leaf or similar 

plant material, meat, fish, poultry, eggs, dairy products, or fermentation products. On the other 

hand, natural flavours are defined as substances which are extracted from ‘essential oil, 

oleoresin, hydrolyse of protein, distillate, or any product of roasting, heating or enzymolysis, 

which contains the flavouring constituents derived from the mentioned above sources.  

The terms nature identical defines as substance, which is present in nature and may also be 

produced synthetically. For example, natural benzaldehyde is produced from the nature, but this 

http://en.wikipedia.org/wiki/Enzymes
http://en.wikipedia.org/wiki/Catalyst
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process has a rather low yield and produces waste material with the costly disposal. On the other 

hand, production of benzaldehyde from chemical feedstock is much more economical and is 

putatively the same as that produced from nature; therefore, it is nature identical. The nature 

identical designation is still used by the International Organisation of Flavour Industries (IOFI) 

but this term does no longer exist in the EU regulation. EU and US legislation has incorporated 

under the term ‘natural flavours’ those flavours produced from biological sources by living cells, 

including fungi or their enzymes (Cheetham 1993; Burdock 2002). 

The flavour market is expected to increase at a high rate. Many flavour compounds on the 

market are produced from chemical synthesis or by extraction from natural sources such as 

plants and animals (Krings and Berger 1998). A preparation of natural flavours from the wild is 

the easiest method, but influence of the weather and the risk of plant diseases cause the reduction 

of natural resources (Bedoukian 1986). Many products are still obtained by chemical synthesis 

even though chemical synthesis often causes undesirable side effects on the environment, and the 

raising awareness of consumers about the safety of the products, especially food and beverages 

drives the progress in biological production of these compounds (Berger 1995; Schrader et al. 

2004). 

The first creation roots of biotech flavours were the flavours in fermented foods, such as cheese, 

yoghurt, beer, wine and other products. From a technical point of view, advances in analytical 

techniques such as infrared (IR) spectroscopy, nuclear magnetic resonance (NMR) spectroscopy 

and in particular, high resolution capillary gas chromatography (HRGC) and mass spectrometry 

(HRMS) have been improved the knowledge about flavours. In recent decades, extensive 

research has been done to increase the potential and variety of flavours from biotechnological 

sources. Flavours produced by biotechnological methods compete with those from agricultural 

sources in terms of quality, variety, selectivity of the end products (Havkin-Frenkel and Belanger 

2008). The production of natural flavours can be performed by two basic methods; through de 

novo synthesis or by biotransformations. De novo synthesis refers to the production of complex 

substances from simple molecules through complex metabolic pathways, while 

biotransformations are single reactions catalysed enzymatically to result in a product structurally 

similar to the substrate molecule (Bicas et al. 2010; Baines and Seal 2012). 
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1.2.1 Biotechnological approach for the production of flavour compounds 

Nowadays, more than 100 commercial aroma compounds are made by biotechnology with the 

use of microorganisms or enzymes as biocatalyst. A wide range of microorganism, such as 

bacteria, fungi and yeast are well known to produce flavours from simple substrates by synthesis 

or by bioconverting specific substrate into the desirable compounds (Vandamme 2003). 

Production of sweet and fruity flavours with the aid of enzymes and microorganism was most 

successful in the recent decade. For instance, Ceratocystis species and the yeast Kluyveromyces 

lactis were able to produce a wide range of terpenes with a fruity or floral odour (Drawert and 

Barton 1978; Collins 1976). Trichoderma viride and Trichoderma harzianum strains produce 

efficiently the coconut-flavoured lactone, 6-pentyl-α-pyrone in a fermentation process 

(Palomares et al. 2001). In 1972, the yeast Sporobolomyces odorus was found to produce large 

amount of peach-smelling compounds γ-decalactone (4-decanolide) and 4-hydroxy-cis-6-

dodecenoic acid flavour (Takahara 1972). In further innovations, conversion of castor oil to 4-

hydroxydecanoic acid and further to 4-decanolide by alkanophilic yeasts were investigated ( 

Farbood and Willis 1983). Geotrichum klebahnii produced de novo a broad spectrum of ethyl 

esters of branched carboxylic acids, generating a pleasant fruity flavour. When supplied with 

isoleucine, especially ethyl-2-methyl butanoate was formed (Janssens et al. 1989). Yeasts, such 

as Candida tropicalis or Yarrowia lipolytica degraded ricinoleic acid to C16, C14 and C12 acids 

and produced δ-decalactone, which exhibits fruity and oily notes important in the formulation of 

peach, apricot or strawberry aromas (Gatfield 1999). Hanseniaspora guilliermondii and Pichia 

anomala were found to produce 2-phenylethyl acetate and isoamyl acetate, respectively (Rojas et 

al. 2001). Different yeast strains such as Hansenula anomala, Kluyveromyces marxianus or 

Saccharomyces cerevisiae have shown a high potential for industrial production of aroma 

compounds, such as 2-phenylethanol, which is derived from L-phenylalanine by bioconversion 

(Stark et al. 2002). After a while, several yeasts were found to produce different aroma 

compounds (King and Dickinson 2003).  

Numerous bacterial strains also are capable of producing specific single flavour molecules either 

de novo or by converting an added substrate/precursor molecule. Traditionally, all dairy flavours 

were produced by fermentation processes, involving many varieties of bacteria. For instance, 

pyrazines in cheese which are produced by strains, such as Pseudomonas perolens and 

Corynebacterium glutamicum or other important cheese flavours produced by Lactic acid 
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bacteria (Germond et al. 1995). Catabolising ferulic acid to vanillin is one of the most important 

and well known examples in terms of bacterial production of flavours (Muheim and  Lerch, 

1999). 

Beside microbial fermentation for flavour production, enzymes as biocatalysts have vast 

possibilities for food flavour production. Enzymes can be used as processing aids for flavour 

production, and can also correct off-flavours caused by specific compounds naturally occurring 

or produced during processing (Armstrong and Yamazaki 1986). There are about 25,000 

enzymes found in nature of which 400 have been suggested in organic synthesis and also for the 

biotechnological production of flavour compounds (Cheetham 1997). The majority of enzymes 

which have applications in flavour production include hydrolytic enzymes, transferases, 

oxidoreductase and lyases (Serra et al. 2005). There are many examples in the food industry for 

the production of flavours by enzymatic reactions. Enzymes involved in cheese flavour 

biosynthesis (Kinsella and Hwang 1976), enzymes which have effect on the flavour of citrus, for 

example α-terpineol dehydratase which catalyses the reaction of limonene. This enzyme has been 

isolated from Pseudomonas gladioli (Cadwallader et al. 1992). Raspberry ketone (4-(4-

hydroxyphenyl)butan-2-one) which is the main aroma compound of raspberry can be produced 

by an enzymatic pathway involving hydrolysis of betuloside from the European white birch tree 

by ß-glucosidase and then transformation by an Acetobacter alcohol dehydrogenase into the 

ketone (Whitehead 1998). An industrial example is the production of L-menthol, the major 

constituent of peppermint oil. Microbial lipases have been found to hydrolyse L-menthyl esters 

(from the d, L-racemic mixture) into L-menthol, leaving the d-menthyl esters intact (Schrader et 

al. 2004). Benzaldeyde which is the most important molecule in cherry flavour can be produced 

by enzymatic biotransformation of benzyl alcohol by both whole cell of Pichia pastoris and cell 

free extract of Saccharomyces cerevisiae (Duff and Murray 1989; Nikolova and Ward 1992). 
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1.3 Biotransformation  

Biotransformation is a growing field of biotechnology, which converts a compound from one 

form to another form and results in a product structurally similar to the substrate molecule using 

an appropriate biological system (Bicas et al. 2010). This biological system can be both 

enzymatic or microbial. Biotransformation has the potential to produce products more cost 

effective by efficient utilization of raw materials, lower investment and energy sources and leads 

to less hazardous products (Faber 2011; Liese et al. 2006). Biotransformation has been made to 

produce not only new ingredients, but also improved processes to produce ingredients from 

chemical synthesis or extraction from natural sources. Biotransformation in the organic phase is 

a recent approach for those reactions which are limited because of low solubility and/or 

instability of substrates and/or products in water (Bornscheuer and Kazlauskas 2006). 

Biotransformation has been found to be superior to chemical reactions because of the following 

features:  

-       Regio-specificity which means that substrate is usually attacked at a particular site, even if 

several groups are present. 

-    Reaction specificity and no side reaction as long as one catalysis will be involved in a 

particular biotransformation. 

-      Production of optically pure compound with producing one enantiomer. 

-   Performing under mild reaction condition and decreased activation energy of chemical 

reaction. 

Microbial and enzymatic catalysis allow classification of the generated biotechnological 

compounds as natural which has increased the attention in industry (Faber 2011).  

 

1.3.1 Basidiomycetes as fungal cultures 

The kingdom fungi have been estimated at 1.5 to 5 million species, which from this amount 

about 5 % have been formally classified (Bruns 2006). Fungi have a worldwide distribution, and 

grow in a wide range of habitats, including extreme environments such as deserts or areas with 

high salt concentrations and deep sea (Blackwell 2011). Traditionally, higher fungi have been 

treated as non-green plants. The reason for grouping fungi with plants was mainly due to the 

presence of cell walls. From biochemical, physiological and genetic analysis fungi are today 

https://en.wikipedia.org/wiki/Desert_fungi
https://en.wikipedia.org/wiki/Deep_sea
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placed closer to animals. True fungi divide into four taxonomic groups, Chytridiomycota, 

Zygomycota, Basidiomycota and Ascomycota (Webster and Weber 2007). 

Basidiomycota are a large family of fungi with more than 30,000 species that together with the 

Ascomycota, constitute the subkingdom Dikarya (Figure 1.1) (Carlile and Watkinson 1994). 

Basidiomycota are filamentous fungi composed of hyphae (except for yeasts), and reproduce 

sexually via the formation of specialized club-shaped end cells called basidia that normally bear 

external meiospores. These specialized spores are called basidiospores. (Alexopoulos et al. 

1996). The class of basidiomycetes contains some of the most common and familiar known 

fungi, including mushrooms, bracket fungi and puffballs. The majorities of this class are found in 

woody plant materials and degrade plant residues (Moore-Landecker 1996). Most of the 

Basidiomycota are scattered by wind but some of them also grow in fresh water environment 

(Webster and Weber 2007).  There are about 12,000 species of fungi considered as mushrooms, 

with at least 2,000 edible. More than 200 species have been used for different purposes. About 

35 species have been cultivated commercially and 20 species are cultivated on an industrial scale 

(Aida et al. 2009).  

 

 

 

 

 

 

 

 

Figure1.1 Basidiomycetes (Meripilus giganteus) 

Basidiomycete species act as lignocelluloses destroyers and include very different ecological 

groups such as white rot, brown rot, and leaf litter fungi (Cho et al. 2009). White rot 

basidiomycetes secrete a wide diversity of enzymes, in which oxidative enzymes represent an 

important and wide range of this group; for instance white-rot fungi which live on dead or living 

timber, have a powerful oxidative enzyme system that can degrade lignin to carbon dioxide 

(Siripong et al. 2009). White-rot fungi can degrade a vast range of toxic environmental 

http://en.wikipedia.org/wiki/Ascomycota
http://en.wikipedia.org/wiki/Dikarya
https://en.wikipedia.org/wiki/Hypha
https://en.wikipedia.org/wiki/Cell_%28biology%29
https://en.wikipedia.org/wiki/Basidium
https://en.wikipedia.org/wiki/Meiosis
https://en.wikipedia.org/wiki/Spore
https://en.wikipedia.org/wiki/Basidiospore
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pollutants; this ability makes these organisms unique and attractive for the bioremediation of 

polluted sites (Breitenbach et al. 2002).  

Besides many applications of fungi in food and other industries, it has been known that many 

fungi can generate flavours. Compared with other microorganisms, the volatile spectrum which 

can be obtained from living cells of fungi or enzymes thereof is closest to plant sources 

(Abraham and Berger 1994). The basidiomycetes represent a group of fungi for the industrial 

production of natural flavours. Starting from specific substrates, different reactions such as 

oxidations, hydrolytic reductions, dehydrations, formation of new C–C bonds and several 

degradation reactions can be performed by basidiomycetes in order to produce natural flavours 

(Lomascolo et al.1999).  

In order to increase the role of production of natural flavours by fungi in the flavour industries, 

biotechnological processes involving basidiomycetes have to compete economically with 

traditional processes or extracted flavours from nature. Choosing more appropriate culture 

conditions, supplementing with cheap, natural precursors, continuously developing more-suitable 

bioreactors designs could open the way to high-yielding processes (Lomascolo et al. 1999; 

Ramachandra Rao and Ravishankar 2002).  

 

1.3.2 Enzyme as biocatalyst 

A broad spectrum of chemical reactions such as hydrolysis, esterification, isomerization, addition 

and elimination, alkylation and dealkylation, halogenation and dehalogenation, oxidation and 

reduction and etc. require to be catalyzed to proceed at a significant rate. Catalysts are molecules 

that reduce the required energy to convert a substance chemically into another one and can be 

referred as enzyme (Figure 1.2) (Andres 2008). Principally, enzymes are proteins, but some of 

them contain additional non-protein compounds, such as lipids, metals, phosphate or some other 

organic moiety. The whole molecule of enzyme is called holoenzyme, while the protein part is 

known as apoenzyme, the rest of the molecule is called cofactor (Copeland 2000). Many 

enzymes retain their catalytic potential after extraction from the living organism, so it did not 

take long to recognize and exploit the catalytic power of enzymes for commercial purposes. In 

other words, they are highly specific biological catalysts and are ideal to be used in different 

applications (Aehle  2004).   



14 
 

       

 

Figure 1.2 Catalyst mechanisms, Ea and Ea´ are the energies of activation of the non-catalysed and catalysed 

reaction. ∆G is the free energy change of the reaction. 

Enzymes are capable of accelerating a wide range of biotransformation reactions. Enzymes have 

a number of advantages, such as high specificity, high activity under moderate conditions, high 

turnover number and biodegradability, but on the other hand they have disadvantages, such as 

high molecular complexity, denaturation at inappropriate pH and temperature. Microorganisms 

are attractive sources of enzymes, as they can be cultured in large quantities in a short time, 

hence they can provide a regular supply (Aehle 2007). 

The enzyme industry as we know it today is the result of a rapid development seen primarily 

over the past four decades of the evolution of modern biotechnology. In fact, the historical 

background of using enzymes was in ancient times in food applications, such as beer, wine, 

vinegar, cheese and bread (Aehle 2004). Enzymes have been used unknowingly for hundreds of 

years. The first production of alcohol was by fermentation. In France, Anselme Payen and Jean-

Francois Persoz described the isolation of an amylolytic substance from germinating barley 

(1833). Shortly afterwards the Swedish chemist Jons Jacob Berzelius coined the term catalysis 

(1835) to describe the property of certain substances to accelerate chemical reactions. In 

Germany, the physiologist Theodor Schwann (1836) discovered pepsin and the usage of an 

enzyme from the papaya fruit to tenderize meat. Dairy processes, such as the conversion of milk 

to cheese, were another important field of enzyme applications. In 1870’s the Danish chemist 

Christian Hansen succeeded in obtaining pure rennet from calves’ stomachs; this resulted in 

considerable improvements in both product quantity and quality. There are also many texts 

Non- 

catalysed 

Catalysed 
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related to the process of vinegar production, which is a kind of enzymtic conversion of alcohol to 

acetic acid. The leavening of bread by yeast, which results from the enzymatic production of 

carbon dioxide, was well known and widely used since ancient times (Bornscheuer and Buchholz 

2005; Polaina and MacCabe 2007).  

Due to the high level of use of enzymes in the nineteenth century, to answer the question of how 

enzymes were working and achieve substrates in the active sites, many investigations were done 

on the three dimensional structure of enzymes (Copeland, 2000). The characteristics of enzymes 

as catalysts are derived from their molecular structure. Enzymes contain a number of amino acid 

residues that ranges from 100 to several hundreds. These amino acids are covalently bound 

through the peptide bond that is formed between the carbon atom of the carboxyl group of one 

amino acid and the nitrogen atom of the α-amino group of the following. According to the nature 

of the R group, amino acids can be non-polar (hydrophobic) or polar (charged or uncharged) and 

their distribution along the protein molecule determines its behaviour (Lehninger 1970). 

According to this structure, some enzymes are so well designed for this purpose that they can 

accelerate the rate of chemical reactions by as much as 1012 times over the rate of the non-

catalysed reaction (Polaina and MacCabe 2007).  

Today enzymes have an important role in many food and pharmaceutical applications and as 

ingredients of many consumer products. Generally there are six main types/groups of enzymes 

classified, based on their chemical reaction mechanism. 

1.  Oxidoreductases: Enzymes catalyzing oxidation/reduction reactions that involve the 

transfer of electrons or redox equivalents between donor and acceptor molecules in the reaction 

(Xu 2005). 

2.  Transferases: Enzymes catalysing the transfer of a functional group such as methyl or 

glycosyl groups from one molecule which is called a donor to a suitable acceptor. 

3.  Hydrolases: Enzymes catalysing reactions of hydrolysis, this is an example of the 

cleavage of a chemical bond such as C-C, C-O, C-N, P-O and other bounds like acid anhydride 

bonds by the action of water. 

4.  Lyases: Enzymes catalysing reactions of non-hydrolytic and non-oxidative cleavage of 

chemical bonds such as C-C, C-O, C-N and other bonds by eliminating, adding or leaving groups 

to double bonds. 



16 
 

5.  Isomerases: Enzymes catalysing reactions of conversion of a substrate into an isomer, 

this is a substance with the same number and types of atoms. 

6.  Ligases: Enzymes catalysing reactions of covalent linkage of two molecules. These 

are the enzymes responsible for cell anabolism and perform an essential role in the reactions of 

synthesis inside the cell (sometimes they are named synthetics) (Belitz et al. 2008). 

 

 

1.3.2.1 Oxidoreductases 

Oxidation reactions are essential for many industrial applications. However, they may produce 

non-specific or undesirable side-reactions and involve the use of environmentally hazardous 

chemicals. This calls for new technologies based on biological systems, such as enzymatic 

oxidation. Enzymatic oxidation has substrate specificity and is using biodegradable catalysts that 

perform under mild conditions (Burton et al. 2003).  

Oxidoreductases are a class of enzymes which catalyse redox reactions. There is a wide range of 

enzymes which are distributed in microbial, plant and animal organism (Burton et al. 2003; Xu 

2005). Oxidoreductase catalyses the transfer of electrons from one molecule to another molecule 

similar to the following  A– + B → A + B– (Munro et al. 2000).  Generally, they are divided into 

oxidases and dehydrogenases.  Oxidases are enzymes involved when one or two oxygen 

molecules act as an acceptor of hydrogen or electrons. Whereas dehydrogenases are enzymes 

which oxidize a substrate by transferring hydride ions to an acceptor which is either 

NAD+/NADP+ or a flavin molecules.  Other oxidoreductases include peroxidases and laccases 

which are large groups of enzymes and have many applications in food and flavour, 

pharmaceutical and textile (Burton 2003).  

 

1.3.2.1.1 Peroxidases 

Peroxidases are oxidoreductases which are produced by a number of microorganisms, plants and 

animals and have a molecular mass ranging from 30,000 to 150,000 Da. They are a group of 

oxidoreductases which catalyzes the reduction of peroxides, such as hydrogen peroxide and the 

oxidation of a variety of organic and inorganic substrates in the presence of peroxides (Adam et 

al. 1999). 
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Peroxidases are haem proteins and contain iron (III) protoporphyrin IX (ferriprotoporphyrin IX) 

as the prosthetic group. In the initial step the native ferric enzyme is oxidized by hydrogen 

peroxide to form an unstable intermediate, called compound I (Co I), which has a haem structure 

of FeIV = O-porphyrin π-cation radical, and at the end reduction of peroxide to water has 

happened. Then Co I oxidizes the electron donor substrate to give compound II (Co II), releasing 

a free radical. Co II is further reduced by a second substrate molecule, regenerating the iron (III) 

state and producing another free radical (Conesa et al. 2002; Hofrichter et al. 2010). 

Reduction of peroxides at the expense of electron-donating substrates makes peroxidases useful 

in a number of industrial and analytical applications (Vamos-Vigyazo 1981), such as the 

treatment of waste water containing phenolic compounds, synthesis of various aromatic 

chemicals and removal of peroxide from foodstuffs and industrial wastes (Agostini et al. 2002). 

Enzymes, such as lignin peroxidase (LiP) and manganese peroxidase (MnP), both associated 

with lignin degradation and polymerization (Ward et al. 2001; Sakurai et al. 2003). Peroxidase 

from Lepista nuda was investigated as an enzyme for the degradation of carotene to produce 

flavour compounds (Zorn et al. 2003). More research on the degradation of ß-carotene was done 

using a peroxidase from Marasmius scorodonius (Scheibner et al. 2008).  

Horseradish peroxidase (HRP) is a known enzyme with many practical applications in industry, 

such as degrading phenolic and other organic compounds, oxidative polymerization via free 

radical, degrading and precipitating azo dyes and decolorization of textile dyes (Tatsumi et al. 

1996; Bhunia et al. 2002). HRP has been used to polymerize phenolic and aromatic amine 

compounds, while new types of aromatic polymers have been synthesized in water and in water 

miscible organic solvents (Oguchi et al. 1999). A fungal peroxidase from Coprinus macrorhizus 

was used as an alternative to HRP for the removal of aromatic compounds from waste water. Its 

performance was found to compare favourably to HRP, in that it could catalyse the same 

reactions, although it was noticeably more easily inactivated (Al-Kassim et al. 1994). 

Peroxidases are facing some issues. The inactivation of peroxidases by peroxides through the 

oxidation is one of the major problems. Another one is the low water solubility of the substrates 

of interest. Peroxidase activity is also greatly affected by temperature, limiting its application to 

processes at relatively low temperature. Meanwhile, the dependency of enzymes from hydrogen 

peroxide is a main reason of concern (Sahare et al. 2014).  
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1.3.2.1.2 Laccases  

Laccases (EC 1.10.3.2, para-benzenediol: dioxygen oxidoreductase) are multicopper proteins 

which mainly use molecular oxygen to oxidize various organic compounds, such as para-

diphenols, aminophenols, polyphenols, polyamines and lignin by a radical mechanism (Couto 

and Herrera 2006). Laccases belong to the so-called blue-copper family of oxidases. They are 

glycoproteins and include ascorbate oxidase, ceruloplasmin and bilirubin oxidase (Hoegger et al. 

2006). Typically, laccases are proteins with approximately 60–70 kDa and an acidic isoelectric 

point around pH 4.0 (Baldrian 2006). Laccase or laccase-like enzymes are widely found in 

plants, fungi (O'Malley et al. 1993), bacteria and insects (Dittmer and Kanost 2010). They have 

numerous biological roles that include lignification, delignification, pathogenicity, 

detoxification, morphogenesis, polymerization of melanin precursors (Faure et al. 1994), and 

many others (Hirai et al. 2004; Strong et al. 2011). Due to the variety of substrates, the use of 

available oxygen as the electron acceptor, and no requirement for cofactors, the interest of 

laccases has raised, especially to transform or degrade compounds which are found in nature or 

polluted soils and wastewaters (Majcherczyk et al. 1999; Strong et al. 2011).  

Yoshida (1883) discovered laccase for the first time in plants, based on the observation of rapid 

hardening of the latex in the Chinese or Japanese lacquer trees (Rhus vernicifera) in the presence 

of air (Yoshida 1883). Isolation, purification and the active site of catalyst responsible for this 

enzyme was done by another scientist (Bertrand 1894). Consequently, a significant number of 

reports have been published in the past decades which have focused on new laccase enzymes in 

numerous other plant tissues (Bligny and Douce1983; Lehman et al. 1974), but because of 

difficulties to detect and purify them, laccases have not been extensively used or characterized 

(Ranocha et al. 1999). For many years, it was thought that the only sources of laccases are plants 

due to their capability of degrading lignin (Bao et al. 1993). Fungal counterparts have now been 

discovered in most basidiomycetes and ascomycetes as an alternative source for laccase in the 

late twentieth century (Leonowicz and Trojanowski 1978; Baldrian 2006). This finding led to the 

discovery of more multicopper enzyme with phenol oxidase activity in yeasts (Augustine et al. 

2008), and some phenol oxidases laccase-like with enzymatic properties have been purified from 

insects (Yamazaki 1972). Recently, classes of laccases have been found widespread in bacteria 

(Claus 2004; Sharma et al. 2007). The first bacterial laccase was isolated from Azospirillum 

lipoferum (Givaudan et al. 1993; Diamantidis et al. 2000). Multicopper laccase-like enzymes 
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were identified in spores of Bacillus sphaericus (Martins et al. 2002), Marinomonas 

mediterranea (Sanchez-Amat et al. 2001) and Streptomyces antibioticus (Freeman et al. 1993). 

Laccases have also been isolated and characterized from Streptomyces cyaneus (Arias et al. 

2003), Streptomyces grizeus (Endo et al. 2003), Streptomyces lavendulae (Suzuki et al. 2003), 

and Streptomyces coelicolor (Koschorreck et al. 2008).  

The comparison of the molecule structures of laccases from different sources has confirmed the 

fact that laccases generally need four copper atoms as functional catalytic groups. There are three 

major types of copper in a laccase catalyst. Type 1(T1) is a blue copper with a maximum 

absorbance at 610 nm (ox) which corresponds to an intense blue colour. This absorption band is 

associated with the ligand–metal charge transfer from the sulfur atom of the cysteine ligand to 

the copper atom. This is the position where oxidation of the substrate takes place. The T2 centres 

containing conventional copper are similar to those observed for Cu (II) tetragonal complexes. 

The absorption spectrum of these centres frequently has a low intensity and is a non-blue copper. 

The T2 is connected by two histidines and one molecule of water. This position is very close to 

T3 and is connected by a strong hydrogen bridge. The T3 copper centre contains two copper ions 

bound to ligands and is called the binuclear site. The T3 sites are diamagnetic and exhibit an 

absorption band at 330 nm (Thurston 1994; Solomon 1996, 1998). From a mechanistic point of 

view, the Type 1 copper is oxidized by substrate. This electron will then be transferred from 

Type 1 to Type 2 and Type 3, and in the last step the oxygen molecule is reduced to water. 

However, in this reaction, laccase uses oxygen as the electron acceptor to remove the proton 

from the substrate (Gianfreda et al. 1999). The T1 copper is connected with two histidines and 

one cysteine as ligands. Many studies have claimed that this axial ligand has influences on the 

oxidation potential, specificity and stability of the enzyme, however the catalytic efficiency 

(kcat/Km) of laccase has been related to their redox potential Type 1 copper and plays a major 

role in the overall performance of these enzymes (Xu 1996a; Xu et al. 1996b) (Figure 1.3) 
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Figure 1.3 A) Ribbon model of the X-ray crystal structure from T. versicolor Lac C. B) Cu- atom structure which 

shows Phe is responsible for redox potential (adapted from Rodgers et al. 2003). 

 

Generally, the redox potential is defined as the energy that is necessary to capture one electron to 

reduce substrate and produce a cation radical (Xu 1997; Lahtinen et al. 2009a). According to this 

definition and to compare laccase primary structures, laccases are divided in 3 major groups; 

laccases with higher redox potentials (730–780 mV; e.g. Trametes versicolor) occur when 

phenylalanine is the axial ligand of the enzyme (Shleev et al. 2005), while laccases with middle -

range redox potential (470–710 mV; e.g. Ganoderma sp.) carry leucine in the axial position 

(Sharma et al. 2013), and lower redox potential laccases (340–490 mV; e.g. the bacterial CotA 

enzyme from Bacillus subtilis) have a methionine as the axial ligand (Rodgers et al. 2010; 

Enguita et al. 2013).  

It is difficult to define laccase by its reducing substrate due to the wide range of compounds 

oxidized and substrate variation from one laccase to the other. This can generally be attributed to 

the high variation of the redox potential (E0) of various laccase enzymes (Kunamneni et al. 

2008a). Generally, the reaction mechanism of laccase is to produce a radical from one electron 

reaction which is bound to four other electrons. This radical is unstable and will be converted to 

a quinone in second step enzymatic-catalysed reaction (Thurston 1994). This intermediate radical 

can undergo for more non-enzymatic reactions via cross-linking or polymerization of covalently 

coupled bound such as C-C, C-O and C-N. This reaction leads to the formation of non-soluble 
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dimers, oligomers or polymers that can precipitate in the solution mixture (Gianfreda et al. 1999; 

Mayer et al. 2002; Kunamneni et al. 2008b). Many studies have reported that laccase is involved 

in the degradation of polymers and also in ring cleavage of aromatic compounds. The 

intermediate reactive radicals result in the cleavage of covalent bonds and release the monomers 

from polymers in degradation mechanisms (Kawai et al. 1998). In some cases, enzymes cannot 

be directly involved in the reaction due to steric hindrance of the substrate, however small 

molecules which are called mediators and normally can be oxidised by enzyme, will participate 

in the reaction and can promote or facilitate enzyme action (Elegir et al. 2005; Camarero et al. 

2008). A mediator can participate in enzyme mechanism reaction via an electron-transfer 

mechanism, a radical hydrogen transfer route, or ionic oxidation (Riva 2006). 

Fungal laccases have been studied for many decades because of their functions in many 

applications. Laccase can be used in beverage (wine, fruit juice and beer) processing, ascorbic 

acid determination, sugar beet pectin, gelatin, baking, as a biosensor and to improve food sensory 

parameters (Kunamneni et al. 2008b). Laccase is also well known for use in flavour application. 

Laccase from Coriolus versicolor can improve the flavour and taste of cacao by removing 

bitterness and unpleasant taste (Takemori 1992). The flavour and colour quality of many 

vegetable oils can be improved or modified by laccase eliminating dissolved oxygen. Oils, 

especially vegetable oils (e.g., soybean oil), are present in many food items and can be 

deoxygenated by laccase (Petersen et al. 1996). Conversion of benzyl alcohol to benzaldeyde has 

been reported by laccase catalysed oxidation of aroma compounds (Potthast 1996). Laccase 

produced nootkatone, an important flavour compound of grapefruit in the presence of synthetic 

mediators (Huang et al. 2001). Various enzymatic treatments have been reported to clear and 

stabilise drinks, such as fruit juice, beer and wine (Alper et al. 2004). For apple and grape juices 

excessive oxidation of phenols has been considered detrimental to the organoleptic quality of the 

product. These beverages are typically stabilised to delay the onset of protein-polyphenol haze 

formation. In 2004, laccase from Myceliophthora thermophila was expressed in Aspergillus 

oryzae for the use of brewing beer and prevent the formation of off- taste compound such as 

trans-2-nonenal with scavenging the oxygen. In this reaction, oxygen reacts with fatty acid, 

proteins and alcohol and produces some precursors of off-flavour compounds (FAO 2001). 

Adding laccase to dough for baked products increased the strength of the gluten structure and has 

been used in industry in recent decades (Arnaut et al. 2006; Si 1994). Improvement of 
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rheological characteristics of wheat bread by laccase and tyrosinase has been investigated 

(Selinheimo et al. 2006 & 2007).  

 

 

1.3.2.2 Hydrolases 

Most of the enzymes which are commercialised in food and flavour industry belong to the class 

of hydrolases (Belitz et al. 2009). Hydrolases are a group of enzymes which catalyse reactions 

using water as a co-substrate to cleave a chemical bond. The hydrolases are classified according 

to the bond which can be hydrolysed. Most of the enzymes of this category are esterases, lipases, 

peptidases and glycosidases (Polaina and MacCabe 2007).  

 

1.3.2.2.1 Lipases 

Lipases (EC 3.1.1.3) are a group of enzymes that catalyse the hydrolysis of fatty acid esters 

under controlled conditions and the synthesis of esters in organic solvents (Anthonsen et al. 

1995). Lipases are able to catalyze many reactions based on a phenomenon called interfacial 

active site; it means that high catalytic activity is observed only in the presence of a hydrophobic 

phase, a lipid droplet dispersed in water or an organic solvent. This phenomenon has been related 

to the presence of a hydrophobic lid or flap covering the entrance to the active site (Adlercreutz 

2014). Lipases have higher activity when there is organic solvent and a small amount of water in 

the reaction conditions (Rueda 2005). They are greatly different as regards both origins and their 

properties, and can catalyse both reverse reaction to synthetise esters or to exchange acyl groups 

and catalyse transesterification among different acylglycerols, alcohols, esters and amines (Gupta 

et al. 2004). Because of catalytic versatility, lipases have a wide range of industrial applications 

and are the largest group in terms of total sales (Hasan et al. 2006). The catalytic versatility,  

chemoselectivity and regioselectivity, availability on a large scale, cofactor-independence and 

finally no side reactions make lipases interesting and highly applicable in industry (Jaeger and 

Eggert 2002).   

In 1856 lipases were discovered to be produced by the pancreas and form part of the digestive 

process in humans (Peterson and Drabløs 1994). Initial interest in microbial lipase has increased 
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because of lack of pancreas and difficulties in collecting materials. Since then, the industrial 

demand of new sources of lipases has led to identify and isolate many different lipases from 

bacteria, fungi, plants, and animals (Jaeger et al. 1999). Lipases are provided in living organisms 

from bacteria to Eukarya, including animals, plants and fungi. The bacterial sources showed high 

stability in organic solvents (Olson et al. 1994). Examples of stable bacterial lipases in organic 

solvent are lipases from Bacillus sphaerichus and Candida antarcita which are used in many 

industrial applications (Escorcia et al. 2013). 

The first 3D-structures of lipases were solved for a lipase from pancreas and a fungal lipase from 

Rhizomucor miehei (Jaeger et al. 1994 and 2002). After analysing structures of many lipases, it 

was clarified that all lipases have the same folding pattern, although they do not necessarily have 

a similar sequence (Fan et al. 2008). The X-ray structure of hydrolytic enzymes was shown for 

the first time by Ollis in 1992. He reported that all lipases have the α/β hydrolase folding pattern. 

The α/β hydrolase fold consists of eight standard β-sheets which are connected by six α-helices. 

The active site of lipases presents serine, aspartic or glutamic and histidine residues (Schmid and 

Verger 1998; Nardini and Dijkstra 1999) (Figure 1.4). In general, lipase is a polypeptide chain 

folded into two domains, the C-terminal domain and the N-terminal. The N-terminal domain 

contains the active site with a hydrophobic tunnel from the catalytic serine to the surface that can 

accommodate a long fatty acid chain (Petersen et al. 2001). 

The reaction mechanism of lipases is defined as hydrolysis of ester bounds with the consumption 

of water. In this reaction the serine in the active site of the enzyme is attacked by the carbonyl 

carbon of the ester bond leading to the formation of the first intermediate product or acyl-

enzyme. Then, the acyl-enzyme intermediate is hydrolysed by water and a carboxylic acid is 

formed as product (Adlercreutz 2013). The catalytic activity of each lipase in organic media is 

depended on different factors, such as pH, the concentration of water, the method of enzyme 

preparation and the kind of solvent (Schmitke et al. 1996). In addition to the reactions mentioned 

above, lipases catalyse the reverse hydrolysis reaction, (= esterification), transesterification 

(acidolysis, interesterification, alcoholysis), aminolysis, oximolysis and thiotransesterification. 

The equilibrium between the forward (hydrolysis) and the reverse (synthesis) reactions is 

controlled by the water activity of the reaction mixture (Aldercreutz 2013). 
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Figure 1.4 X-ray structure of Candida antarctica lipase A (Source: Erricson et al. 2008) 

Since lipases have a wide range of substrate specifity and enantioselectivity for esterficiation and 

transesterification reactions, they are widely used in food applications and especially in the 

synthesis of aroma compounds (Gupta et al. 2004). Lipases are also used to give special flavour 

to food by synthesis of fatty acids and alcohols, which are accepted as flavour and fragrance 

compounds (Gandhi 1997). Lactones as well-known flavour compounds can be produced by 

transesterification of 4-hydroxy carboxylic esters with more than 80 % yield (Lutz et al. 1992). 

The first application of a lipase on industrial scale was to lipolyse milk fat. For example, Mucor 

miehei lipase has a high selectivity towards short chain fatty acids, such as butanoic, hexanoic 

and decanoic acid. Lipolysed milk fat can serve as cream butter flavouring agent (Schreier 

1997a). Methyl benzoate has a kind of exotic fruits and berries flavour. The aroma compound 

was produced by esterification of benzoic acid by Candida rugosa (Leszczak and Trasn-Minh 

1998). In the dairy industry, there are many other applications of using lipase, such as 

improvement of flavour in cheeses, accelerating cheese ripening and the production of cheese-

like products. Addition of lipases to such products primarily releases short-chain (C4 and C6) 

fatty acids which have a sharp flavour, but the release of medium- chain (C12 and C14) fatty 

acids leads to formation of a smoother taste (Saxena et al. 1999). Methyl butanoate and methyl 

butyl esters which are essential flavour compounds in fruit flavours can be generated by lipases. 

Immobilised lipase from Mucor miehei can be used to produce fruity flavours by direct 

esterification of isoamyl alcohol and isovaleric acid to produce isoamyl isovalerate (Chowdary et 

al. 2000). Stillingia oil can be converted to ethyl (2E,4Z)-decadienoate, the impact compound of 

Williams pear flavour by transesterification (Gatfield et al. 1999). Sweet fruity banana apple 

Ca 2+ 
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grassy flavour which is defined by (Z) -3- hexenyl acetate can be synthesised by lipase from 

Candida antarctica or using immobilised lipase of Mucor miehei in hexane (Schrader 2004). The 

alkamide cis-pellitorine [(2E,4Z)-N-isobutyldeca-2,4-dienamide] which occurs naturally in 

tarragon, can be produced with high yields up to 80 % by lipase-catalysed conversion of ethyl-

(2E,4Z)-decadienoate which is the pear ester (Ley et al. 2004). Fatty acids, such as racemic 4-

methyloctanoic acid in cheese from sheep and goat milk, which is responsible for the special 

flavour in this product, can be selectively esterified with ethanol with the help of a lipase from 

Candida antarctica (Franssen et al. 2005).  

Modification of lipids (oils and fats) is an important process in the food industry. Some moieties 

can be added or deleted from triacylglycerols by lipase catalysed specific reactions. Also, several 

esterification and transesterification reactions can be carried out by lipases to form modified 

lipids. Cheap oils may be converted to nutritionally or technologically modified triacylglycerols, 

such as cocoa butter substitutes, triacylglycerols with low caloric content and oils containing 

high amounts of oleic acid (Hasan et al. 2006).  

The use of lipases for a variety of biotechnological applications, especially flavours and 

fragrances, is rapidly increasing. Many novel lipase genes have been identified and enzymes 

with new properties were discovered. In parallel, the combination of optimised lipases with 

improved reaction conditions will lead to novel synthetic routes, allowing the production of high-

value chemicals components (Hasan et al. 2006). 

 

 

1.3.2.2.2 Esterases 

Esterases catalyse the hydrolysis and synthesis of ester bonds. Substrate acceptance variety, high 

stability, enantioselectivity and the fact that they do not require cofactors make them attractive 

biocatalysts for organic synthesis (Bornscheuer 2002). Esterase and lipase have the same 

catalytic mechanism, whereas the lipases display high activity towards the aggregated state of the 

substrate, the esterases typically show highest activity towards the soluble state of the substrate 

(Fojan et al. 2000). The mechanism starts with the attack of the active site of the enzyme on the 

carbonyl group of the substrate ester. This ‘chemical operator’ can be the hydroxyl group of a 

serine for instance, or, in the case of porcine liver esterase, a carboxyl group of an aspartic acid. 

The reaction will be continued with the formation of an acyl enzyme complex, respectively. 
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Finally, the reaction will be ended by releasing of the acid (Greenzaid and Jenckst 1971; Fojan et 

al. 2000). The esterase mechanism is different from the lipase mainly on the basis of substrate 

specificity, protein structures and biological functions (Long 1971; Pleiss et al. 1998). It appears 

that the physical state of the substrate is most likely a contributing factor towards the substrate 

specificity. Long-chain fatty acids are typically insoluble or at least poorly soluble (emulsions). 

Thus the lipase has to be capable of identifying an insoluble or heavily aggregated substrate. 

Since lipases are active towards aggregated substrates, lipase activity is directly correlated with 

the total substrate area, and not with the substrate concentration. Esterase activity is found to be 

highest towards more water soluble substrates (Fojan et al. 2000).  

Esterases have been isolated from plants, animals, fungi and other microorganisms. The most 

applicable esterases are from microbial sources because of low cost of growing and maintaining 

the process (Gupta et al. 2012). Esterase from Fusarium oxysporum was able to produce flavour 

and fragrance compounds, such as geranyl esters by direct esterification of alcohol and acid 

(Chaabouni et al. 1996). In 1996, Ostdal discovered that the flavour of fermented meat will be 

improved by an esterase from Pedicoccus pentosauces (Ostdal et al. 1996). An esterase from 

Saccharomyces cerevisiae synthesised isoamyl acetate which is the major and important flavour 

of sake from isoamyl alcohol (Fakuda et al. 1998). Short chain fatty acids esters are commonly 

used in the manufacturing of flavours and fragrances because of their fruity odour. They are 

provided from nature by extraction or using chemical synthesis, but they can also be produced 

enzymatically by inverse enzymatic hydrolysis in organic solvents. An esterase from Bacillus 

licheniformis was used for ethyl ester synthesis in n-heptane by direct esterification of fatty 

acids. The highest reaction rates and yields were with mid-chain length fatty acids (Alvarez-

Macarie and Baratti 2000). A feruloyl esterase from Aspergillus niger catalysed the synthesis of 

pentylferulate which is an important compound as flavouring agent in water-in-oil 

microemulsion systems (Giuliani et al. 2001). Feruloyl esterases (FAEA) are a subclass of the 

carboxylic acid esterases (EC 3.1.1.1.). They hydrolyse ester bonds including 

hydroxycinnamates from plant derived material (Haase-Aschoff et al. 2013). Isoamyl acetate as 

strong banana flavouring compound occurred via esterification of the alcohol by esterases from 

Acetobacter spp. (Kashima et al., 2000). Using esterase in dairy application is known for many 

years. In this application, esterase from Bacillus casei was used as transesterification catalyst to 

improve the milk fat in cheese production (Choi and Lee 2001). Esterases hydrolysed methyl 
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esters, such as ferulic acid, sinapic acid and caffeic acid. Feruloyl and cinnamoyl esterases of 

Aspergillus niger released hydroxy cinnamic acids from wheat bran (Ashter 2002).  

 

 

 

1.4 Target product  

1.4.1   Vanillin 

1.4.1.1 General features  

Vanillin (4-hydroxy-3-methoxybenzaldehyde) is the major compound of vanilla flavours which 

are extracted from Vanilla planifolia with a concentration of 1-2 % in cured vanilla pods and 

extensively used in food, cosmetic and pharmaceuticals industry (Berger 2007). It is a flavouring 

compound belonging to the C6–C1 phenolic compounds and structurally is a phenol substituted 

with an aldehyde and a methoxy group (Figure 1.5) (Müller et al. 1998; Sinha et al. 2008). In 

addition to its use as a fragrance ingredient in perfumes and cosmetics, vanillin has become an 

important deodorant to mask unpleasant odours of medicines, cleaning products, and many 

manufactured goods, such as paper products, plastics, rubber goods, etc. In several studies, 

antioxidant, antimicrobial, antimutagenic and anticarcinogenic activities of vanillin were 

published (Durant and Karran 2003). Some relevant physical properties of vanillin are shown in 

Table 1.1. Vanilla pods are mainly grown in south-eastern regions of America and some parts of 

Asia, such as Indonesia. Isolated vanillin occurs in the form of white needle-like crystalline 

powder with a pleasant aromatic vanilla odour and an intensively sweet taste, which are the main 

reasons for its widespread demand. In terms of toxicity, vanillin does not present any particular 

risk for humans (Clark 1999). 
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Figure 1.5 Vanilla bean and chemical structure of vanillin molecule. 

 

Table 1.1 Physical properties of vanillin 

 

Physical properties of vanillin  Value  Reference  

Melting point  81-82 ºC  Perry, Green and Maloney, 

1997  

Boiling point at 760 mmHg  285 ºC  Perry, Green and Maloney, 

1997  

Density at 20 ºC  1.056  Perry, Green and Maloney, 

1997  

Water solubility at 25 ºC  10 g/l  The Merck Index, 2001  

Vapour pressure at 25 ºC  2.2×10-3 mmHg  Perry, Green and Maloney, 

1997  

Heat of solution in water  -21.8 kJ mol-1  Washburn, 2003  

pH  4.3  http://www.chem.unep.ch  

 

 

 1.4.1.2 Production routes  

 

The methods to obtain vanillin can be divided in three main classes: natural, chemical synthesis      

and biotechnological routes. 

 

1.4.1.2.1 Natural route 

The most relevant natural source of vanillin is the beans, or pods, of the tropical Vanilla orchids, 

principally the Vanilla planifolia species (Walton et al. 2000). The flowers of this plant have a 
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closed structure that makes selfpollination almost impossible. Artificial pollination is the only 

solution, and to obtain reasonable yields it is manually made, which is a very laborious task 

which discourages the cultivation of these plants on a larger scale (Rao and Ravishankar 2000). 

Vanillin was first isolated in 1858 by Gobley after recrystallization of vanilla extract. Less than 

20 years after its initial isolation, synthetically produced vanillin was marketed (Hocking 1997). 

Vanillin is found in trace amount in many other plants, but just two species, Vanilla planifolia 

and Vanilla tahitensis, are allowed for food application (Clark 1999). The cured vanilla beans 

contain about 200 components, where the most abundant aromatic is vanillin with 2 % of the dry 

matter, followed by p-hydroxybenzaldehyde and vanillic acid with 0.2 % and 0.1 %, respectively 

(Rao and Ravishankar, 2000).  

The curing process is an important stage to gradually develop flavour which requires special 

growing of plant and fermentation at the elevated temperature. Vanillin which is linked to 

glucose  molecules in the green pods separates from the sugar moiety during the curing process, 

and the vanillin β -D-glucoside is enzymatically hydrolysed to give glucose and vanillin as free 

molecules (Figure 1.6) (Converti et al. 2010). The exact pathway of vanillin from vanilla bean is 

still not clear. In between, the shikimic acid pathway is the agreed pathway in all literatures. 

Zenk reported that vanillin was obtained by ferulate pathways and ferulic acid was more 

responsible for vanillin production (Zenk 1965), while Kanisawa claimed that 4-coumaric acid is 

the main precursor for p-hydroxybenzaldehyde glucoside, the central intermediate for the 

biosynthesis of the glucosides (Kanisawa et al. 1994). This hypothesis was named the benzoate 

pathway and was followed by hydroxylation and methoxylation of the aromatic ring. Figure 1.7 

shows the possible pathway of vanillin which can be formed through harvesting and curing of 

vanilla beans with the benzoate hypothesis pathway. During harvesting, conversion of 

hydroxycinnamic acids to their coenzyme A esters with subsequent chain-shortening by a 

process analogous to NAD-dependent β-oxidation of fatty acids, is leading to a benzoic acid 

(Podstolski et al. 2002). 
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Figure 1.6 Hydrolytic liberation of vanillin during ripening (Converti et al. 2010) 

 

Figure 1.7 Benzoate pathway of vanillin production during harvesting the vanilla planifolia (Podstolski et al. 2002) 

Less than 1% of the market (20-50 ton per year from total demand of market 15,000 ton in 2010) 

comes from vanilla beans as a natural source (Krings and Berger 1998; Gallage and Moller 

2015). The market price of vanillin from vanilla beans is 300 times higher than that of the 

synthetic one (Muheim and Lerch 1999). 

 

1.4.1.1.2 Chemical synthesis route  

Limited natural sources, condition of curing process, high and variable cost of natural vanillin 

and large consumption in many applications were factors which encouraged the industry to find 

other routes, such as chemical synthesis, biotechnology and conversion of related natural 

products for production of vanillin. The main portion of industrial demand of vanillin is covered 

by chemical synthesis from lignin, the glucoside of coniferyl alcohol (4- hydroxy-3-
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methoxycinnamyl alcohol), guaiacol (2-meth-oxyphenol) and eugenol (4-allyl-2-methoxyphenol) 

(Rao and Ravishankar 2000). One of the potential sources for the synthesis of vanillin was 

eugenol, but nowadays, this process has only historical interest, as synthetic vanillin is produced, 

on a commercial scale, from either the petrochemical guaiacol or from lignin (Van den Heuvel et 

al. 2001). In the industrial process, the condensation of the glyoxyl radical with the aromatic ring 

of guaiacol occurs, in alkaline media, almost entirely in the para position in the phenolic 

hydroxide group. Crude vanillin is then obtained by oxidation, acidification and simultaneous 

decarboxylation of vanillyl mandelic acid. The vanillin is formed with very little by-products, 

simplifying the subsequent separation procedure, which is an advantage for the production 

process. However this process is dependent on petroleum derived compounds, such as guaiacol, 

in opposition to the biomass based lignin oxidation process. 

Alternatively to this guaiacol based process, lignin can be used as raw material to produce 

vanillin. Lignin is an important biomass component which finds its major industrial source as a 

by-product stream of pulp and paper mills, called black liquor. This vanillin synthesis route 

consists of treating an aqueous solution of lignin with oxidants, at very alkaline pH, and high 

temperatures and pressures. These oxidants can be air, oxygen, nitrobenzene or metallic oxides, 

with or without the help of catalysts (Mathias 1993). Lignin is degraded and oxidised, producing 

vanillin along with other by-products. Besides lignin fragments, typical compounds which can be 

observed are vanillic acid, acetovanillone, syringic aldehyde, syringic acid, p-

hydroxybenzaldehyde, p-hydroxybenzoic acid, 5-formylvanillin, dehydrodivanillin and 

dehydrodivanillic acid (Bjørsvik and Liguori 2002). The presence of these contaminants with 

chemical structures close to vanillin requires more intensive purification procedures, as 

compared to the guaiacol process. These procedures have a determinant role on the economical 

competitiveness of the lignin-based process, and breakthroughs in this field will lead to major 

positive impacts to its expansion in the industrial panorama (Mathias 1993). 

 

1.4.1.1.2 Biotechnological route  

The principal biotechnological methods for production of natural vanillin consist of using 

microorganisms, plant cell cultures or enzyme extracts. Biotechnological approaches for 
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producing vanillin have been explored with plant cell cultures of Vanilla planifolia and 

Capsicum frutescens, but no feasible economical end product was detected. To improve the 

biotransformation rate, α-cyclodextrin and cell cultures immobilised in alginate were used, but 

still it was difficult to compare with the microbial process (Suresh et al. 2003). The inherent 

problem to produce vanillin with plant tissue culture was slow growth rate and low yields of the 

desired products. In the next generation, several precursors, such as isoeugenol, eugenol, 

phenolic substrates, lignin, ferulic acid, curcumin and aromatic amino acids were investigated for 

the production of vanillin (Benz and Muheim 1996; Converti et al. 2010). Phenylpropanoids, 

such as eugenol and isoeugenol, which are the main components of clove essential oil, served as 

potential and inexpensive substrates for the production of valuable aromatic compounds. The 

first biotransformation of isoeugenol to vanillin was discovered using Aspergillus niger in low 

yield (Abraham et al. 1988). The pathway of production of vanillin from eugenol with a strain of 

Pseudomonas is shown in Figure (1.8). The initial step of eugenol degradation was confirmed to 

be the double-bond-transferring hydroxylation catalysed by eugenol dehydrogenase (Rabenhorst 

1996).  

 

Figure 1.8 Conversion of eugenol to ferulic acid in Pseudomonas sp. strain HR199 (Walton et al. 2000) 

Other microorganisms were found to transform isoeugenol to vanillin, such as Pseudomonas sp., 

Fusarium solani and Pseudomonas fluorescens, Pseudomonas putida, Pseudomonas 

paucimobilis (Priefert et al. 2001). Isoeugenol was also reported as a potential substrate for 

production of vanillin with isolation of a Bacillus subtilis with the molar yield of 12.4 % 

(Shimoni et al. 2000). The recent research in eugenol-degrading microorganisms attempted the 

conversion of eugenol to vanillin using cells of Bacillus species strain BR, with a molar 

conversion yield of 15.6 % (Sindhwani et al. 2012). Industrially applicable microorganisms 

which produced vanillin from eugenol and isoeugenol are summarised below. But the fact that 
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they are synthesised from plants and they caused toxicity and side product formation led to look 

for other alternative sources for the bioconversion to vanillin. 

 

Table 1.2 Industrial microorganisms for production of natural vanillin from eugenol and isoeugenol 

Substrate Microorganism Incubation (h) Yield (g/l) References 

Eugenol Pseudomonas sp. HR199 200 2.6 Overhage et al. 2000 

Amycolatopsis sp. HR167 32 >10 Overhage et al. 2006 

Isoeugenol Bacillus fusiformis SW-B9 72 32.5 Zhao et al. 2005 

Recombinant E. coli BL21 (DE3) 6 28.3 Yamada et al. 2007 

P. putida 24 16.1 Yamada et al. 2007 

Psychrobacter sp. strain CSW4 - 1.28 Ashengroph et al. 2012 

 

The second and most important precursor for biosynthesis of vanillin is ferulic acid which is 

widely available in many cereals. In plants ferulic acid is synthesised starting with phenylalanine 

or tyrosine (Dewick 1989). There are several reports to explain the pathway of ferulic acid based 

on cell suspension cultures of Vanilla planifolia (Funk and Brodelius 1990), immobilised cell 

cultures of Capsicum frutescens (Ramachandra and Ravishankar 2000), and organised aerial 

roots of V. planifolia (Westcott et al. 1994). A two-step bioconversion of ferulic acid to produce 

natural vanillin was investigated. The first step was formation of vanillic acid from ferulic acid 

by a strain of Aspergilus niger, and the second step was the oxidation of vanillic acid to vanillin 

by a laccase from Pycnoporus cinnabarinus (Figure 1.9) (Lesage-Meessen et al. 1996). To 

improve the production yield of vanillin more studies have been done using culture of 

Pycnoporus cinnabarinus in glucose-phospholipid medium, and the result was the production of 

760 mg L-1 vanillin from ferulic acid (Oddou et al. 1999). Two strains of Amycolatopsis and 

Streptomyces setonii have been identified for the production of vanillin with a yield of 11.5 g L-1 

(Muheim and Lerch 1999). There are different approaches for the bioconversion of ferulic acid 

to vanillin. The easiest pathway was decribed by Priefert (2001) which consisted of a non-

oxidative decarboxylation side chain reduction, coenzyme-A-independent deacetylation, and 
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coenzyme-A-dependent deacetylation (Priefert et al. 2001). Today, ferulic acid for natural 

vanillin is obtained from the by-product rice bran by enzymatic treatment, but the raw material 

for production of natural vanillin in this way is very costly. Many different microorganisms were 

investigated for the conversion of ferulic acid to natural vanillin, and some of them are already 

used as industrial sources (Table 1.3). Among all different microbial strains which were 

investigated for production of natural vanillin, the highest productivity (>11g per litre in 30 h) 

was found using an actinomycete of the Amycolatopsis family (Rabenhorst and Hopp 2000). 

Altough ferulic acid was known as a potential source for the production of natural vanillin by 

microbial strains, the high price of ferulic acid was a limiting factor (Priefert et al. 2001).  

 

Substrate Microorganism Incubation (h) Yield (g/l) References 

 

 

Ferulic acid 

Streptomyces setonii 23 >10 Achterholt et al. 2000 

Streptomyces sp. V-1 55 19.2 Hua et al. 2007a 

Aspergillus niger and Pycnoporus 

Cinnabarinus 

72 2.8 Zheng et al. 2007 

Recombinant E. coli 24 5.14 Lee et al. 2009 

Amycolatopsis sp. ATCC 39116  13.9 g L-1 Fleige et al. 2013 

 

 

Figure 1.9 Microbial routes to vanillin. A two-step process from ferulic acid using the filamentous fungi Aspergillus 

niger and Pycnoporus cinnabarinus (Lesage-Meessen et.al 1996). 

As well as for the major precusors shown above, many studies have reported the use other 

phenolics, such as stilbenes, siam benzoin and curcumin as potential substrates (Benz et al. 

1996). Lignin has been investigated as one of the best natural sources for aromatic compounds 

http://www.ncbi.nlm.nih.gov/pubmed/?term=Lesage-Meessen%20L%5BAuthor%5D&cauthor=true&cauthor_uid=8987621
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for many years, but vanillin production from lignin on an industrial scale is only possible with 

chemical synthesis (Kirk and Farrell 1987). Different studies have explored the degradation of 

lignin by biological methods with the aim of natural product formation. White-rot fungi are the 

most abundant tools to degrade the lignin polymer and to yield vanillin but only in trace 

amounts. Characterization of the enzymes resulting this pathway is still incomplete (Clark 1990; 

Priefert et al. 2001). Biotransformation of vanillic acid which is an intermediate in the 

conversion of aromatic amino acids, such as phenylalanine, was investigated as the starting point 

of flavonoids, coumarines, stilbenes, and lignin biosynthesis in plants and also synthesis of 

vanillin from glucose by different microbial and enzymatic methods. None of these 

phenylpropanoides could produce considerable amounts of vanillin on an industrial scale (Krings 

et al. 1996; Priefert et al. 2001). Methylguaiacol, obtained from creosote, can be converted to 

vanillin via vanillyl alcohol oxidase from Penicillium simplicissimum (Van den Heuvel 2001). 

Biotransformation of rice bran oil by Aspergillus niger and Pycnoporus cinnabarinus was 

reported as sucessful method for the production of natural vanillin with a high molar yield 

(Zheng et al. 2007). Bioconversion of glucose to vanillin has been reported. The mechanism was 

suggested to be done by soil bacteria from the Pseudomonas strains, although no evidence for the 

direct conversion of glucose to vanillin was given (Ryu et al. 2012). A recombinant S. cerevisiae 

was the only commercialised strain for the production of vanillin during 24-168 h with the yield 

of below 0.5 g L-1 from glucose (Hansen et al. 2013). 

Curcumin is one of the possible precusors for vanillin production. Curcumin is a natural 

phytochemical which is obtained from the dried root of turmeric. It has functions as a spice, a 

colouring agent, a highly promising antioxidant, an anti-inflammatory agent and an anticoagolant 

properties (Roughley and Whiting 1973; Tønnesen and Karlsen 1985, 1986). Because of some 

similarity in the structure of curcumin to lignin compounds, there is high interest of the 

degradation of curcumin with the same microorganism for lignin degradation (Musuda et 

al.1999, 2002). In the structure of curcumin there is double bond in the molecule which can also 

be cleaved to form two or more smaller molecules. Cleavage is accomplished by a small number 

of reaction sequences, such as ozonolysis. Hydrolysis of curcumin in a water solution at 

appropriate temperature and pressure led to the production of vanillin (Dolfini et al. 1999). 

Degradation of curcumin was reported in the buffer solution before. The result confirmed that 

curcumin, under basic incubation, will degrade to many products. In this hypothesis, when the 
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pH is netural, proton transfer from phenolic group leads to the destruction of the molecule of 

curcumin, while in acidic conditions curcumin has more stability. Vanillin, vanillic acid, ferulic 

aldehyde and ferulic acid were the major degradation products in this assay, but the molar yield 

of conversion products was not reasonable (Wang et al. 1997). The biomimetic oxidation of 

curcumin confirmed the fact that vanillin and ferulic acid were the most abundant products after 

incubation with hydrogen peroxide catalysed by 5, 10, 15, 20-tetraarylporphyrinatoiron (III) 

chlorides for 24 hours with molar yields of 2.8 % for vanillin and 1.9 % for ferulic acid 

(Chauhan et al. 2003) . There are also reports which show that vanillin and ferulic acid can be 

produced from curcumin using UV irradiation (Khurana and Ho 1988; Tønnesen et al. 1986), a 

radical reaction (Masuda et al. 2002) or transformation of curcumin in 5 % (w/v) NaOH which 

yielded 76 % vanillin (Roughley and Whiting 1973). In all reports, the concentration of the final 

product vanillin was low. 

 

 

1.3.3 Divanillin 

Divanillin is a compound in vanilla pods which occurs naturally during the harvesting process 

from green vanilla pod to the fermented brown or black pod. The occurrence of divanillin in 

vanilla is limited to trace amounts in the range of 10 to 100 ppm dry matter according to the 

country of origin (Freudenberg and Renner 1965). Divanillin can be detected after the chemical 

or enzymatic degradation of wood (Lahtinen et al. 2009b). Various applications of divanillin as 

an antioxidant, skin lightening agent and fixative in perfume oils have been described in the 

literature (Ikemoto et al. 1995). In 2006, a patent claimed the usage of divanillin as taste 

enhancer in some milk and ready to eat products (Reiss et al. 2006). 

Divanillin is commonly produced by different chemical methods. It has been synthesised by 

oxidative phenol coupling using iron (II) chloride (FeCl3) or iron (II) sulfate (FeSO4).  In 1885 

the first synthesis of divanillin was discovered by oxidation of the ortho position of phenol 

groups. The yield of resulting divanillin after precipitation and filtration was 57 % (Tiemann 

1885). Some other chemical syntheses, such as using potassium/sodium persulfate were 

published. In this method, vanillin was converted to divanillin by oxidation with an iron (II) 

sulfate heptahydrate and sodium peroxodisulfate in hot water (Elbes and Lerch 1916). Enzymatic 

synthesis of divanillin with the aim of natural has been described in 1972. Divanillin was 
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produced after oxidation of vanillin in aqueous solution with the aid of peroxidases and hydrogen 

peroxide (Baumgartner and Neukom 1972). The reaction involves splitting of the H2O2 peroxide 

bond to form two hydroxyl radicals as the initiation step. The radical reaction is then propagated 

in various ways to form other reactive oxygen species. This is another free radical step as the free 

radical is essentially transferred to vanillin. The most stable location in the vanillin structure for 

the resonating electron to populate will be the 5-position ortho to the original phenol. Two 

vanillin free radicals will combine in a termination step (both free radicals are consumed), 

whereby a covalent bond is formed via both 5 positions of the vanillin molecules. Thus, 5,5'-

divanillin is formed. Similar free radical chemistry exists with capsaicin (Akinchan 2003). 

 

 

1.4.3 Lignan  

Lignans are a large class of secondary metabolites found widely in several parts of plants, e.g. 

roots, stems and fruits. Many lignans occur as optically pure enantiomers or mixtures of 

enantiomer pairs (Saleem et al. 2005). The term lignan was first defined by Haworth in 1936 as a 

class of compounds derived from two β-β'-linked phenylpropanoid (C6C3) units. The 

dimerization of two or more C6C3 units can occur in a variety of ways which may or may not 

include the incorporation of oxygen (Umezawa 2003; Calvo-Flores et al. 2015). Formation of 

lignans in nature is achieved by the one electron-oxidation of the phenol groups. This one 

electron oxidation allows delocalization of the unpaired electron, giving resonance forms in 

which the free electron places in ortho and para positions (Suzuki and Umezawa 2007). In 1933, 

Erdtman discovered the formation of a dimer in the oxidative coupling reaction of phenolic 

compounds in isoeugenol as the model compound (Erdtman 1933). Freudenberg developed this 

idea by using coniferyl alcohol as the lignin precursor and the so-called dehydrogenation 

polymers (DHPs) were obtained by using enzymes or inorganic oxidants (Freudenberg 1968). 

Lignin chemistry and research have developed on many fronts including the findings of 

phenylpropanoid pathways and other biosynthetic routes to lignans and lignin. In natural sources, 

lignans typically occur conjugated with fibrous constituents in the plants. However, to use these 

compounds in pure form, isolation by chemical and enzymatic methods is necessary (Dewick 

2002). Because of the presumed biological activity of lignans and their potential in 

pharmaceutical properties, syntheses of podophyllotoxin and related compounds as well as other 
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lignans have been studied intensively (Ward 1992). The antitumor activities of several products 

of the dihydrobenzofurantype lignans have also been demonstrated (Pieters et al. 1999). Many of 

these lignans used for the production of pharmaceuticals are extracted and purified from plants 

and modified then chemically to the end-products (Jin et al. 2006). Beside of the other biological 

activities of lignans, such as antimitotic, anti-HIV, anti-Alzheimer and antiviral in medicine and 

pharmaceutical application (Lee and Xiao 2004), the application of some of these dimers as taste 

modifiers in foods and beverages was investigated (Backes et al. 2014). The concentrations of 

lignans which are present in natural sources are not sufficient in order to have appropriate 

masking effects on bitter, stringent and metallic off-tastes in food stuffs. However, new 

biotechnical routes to the production of lignans with the use of biocatalysts may be an interesting 

topic (Zoia et al. 2008). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



39 
 

1.5 The aim of the work  

 

The aim of this study: 

 

 Screening suitable enzymes from fungi for enzymatic production of vanillin from 

curcumin 

 

- To overcome cross-linking of curcumin degradation products, by enzymatic 

acetylation of curcumin  

- To determine laccases from selected basidiomycetes with different redox potential for 

the cleavage of the double bound in the molecule of curcumin with the aim of higher 

production yield  

- To determine suitable esterase from basidiomycetes with the aim of vanillin 

production 

 

 Oxidative coupling reaction of phenolic substrates with the aim of production of 

divanillin and lignans as taste modifier 

 

- To determine the effect of catalysts. Three different laccases and two peroxidases 

were compared with the aim of increasing the yield of products 

 

- To identify structure of dimers and trimers which are produced in the oxidative 

coupling reaction of phenolic substrates  

 

- To increase the yield of end products by working on number of factors, such as redox 

potential of laccases and substrates, incubation temperature, the presence of organic 

solvent in the reaction and the pH optimum for the reaction 

 

 

 

 

https://en.wikipedia.org/wiki/Basidiomycota
https://en.wikipedia.org/wiki/Basidiomycota
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2.  A Three-Enzyme-System to Degrade Curcumin to Natural Vanillin 

 

Reproduced with permission from Molecules, 14 April 2015, 20, 6640-6653 

 

2.1 Abstract:  

The symmetrical structure of curcumin includes two 4-hydroxy-3-methoxyphenyl substructures. 

Laccase catalyzed formation of a phenol radical, radical migration and oxygen insertion at the 

benzylic positions can result in the formation of vanillin. As vanillin itself is a preferred phenolic 

substrate of laccases, the formation of vanillin oligomers and polymers is inevitable, once 

vanillin becomes liberated. To decelerate the oligomerization, one of the phenolic hydroxyl 

groups was protected via acetylation. Monoacetyl curcumin with an approximate molar yield of 

49 % was the major acetylation product, when a lipase from Candida antarctica (CAL) was 

used. In the second step, monoacetyl curcumin was incubated with purified laccases of various 

basidiomycete fungi in a biphasic system (diethyl ether/aqueous buffer). A laccase from Funalia 

trogii (LccFtr) resulted in a high conversion (46 % molar yield of curcumin monoacetate) to 

vanillin acetate. The non-protected vanillin moiety reacted to a mixture of higher molecular 

products. In the third step, the protecting group was removed from vanillin acetate using a 

feruloyl esterase from Pleurotus eryngii (PeFaeA) (68 % molar yield). Alignment of the amino 

acid sequences indicated that high potential laccases performed better in this mediator and 

cofactor-free reaction. 

 

Keywords: vanillin; curcumin; lipase; laccase; esterase 
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2.2   Introduction 

Flavours and fragrances originate from traditional extraction or distillation of plant and animal 

sources or from chemosynthesis, but the quality and the stability of the natural supplies are 

sometimes limited. Effective law in Europe (EG 1334/2008) and in the U.S. (Code of Federal 

Regulation, Title 21) defines flavours with the preferred label ‘natural’ as compounds obtained 

by physical, enzymatic or microbiological processes. As this disqualifies chemical synthesis, 

biotechnological approaches have moved into focus (Berger 2015).  Biocatalysis represents an 

economic alternative using either intact cells or isolated enzymes, such as laccases (Mayer and 

Staples 2002), often resulting in the formation of products difficult to obtain by conventional 

chemical means. Enzymes possess a long history of safe use in producing fermented foods. They 

accelerate just one reaction without the ballast of an ongoing metabolism of a whole cell. 

Technically well manageable, many technical enzymes have become amenable through 

recombinant hosts expressing the target enzyme in good yield and purity (Copeland 2000). With 

an annual consumption of an estimated 15,000 tons, vanillin (4-hydroxy-3-

methoxybenzaldehyde) is one of the most widely-used flavour compounds in baked goods, 

chocolates, dairy products, perfumes and even pharmaceuticals. Only 0.2 % of the total demand 

is provided from vanilla beans, while the rest is supplied by chemical synthesis and a ferulic 

acid-based bioprocess. Natural vanilla flavor is a complex of many components, but the aroma is 

largely determined by vanillin. Because of the scarcity and high cost of natural vanilla extract, 

there has been a continuing interest in its biotechnological production. There are different 

possibilities for the production of natural vanillin, such as biotransformation of caffeic acid and 

veratryl aldehyde, or the fermentation of natural substrates, such as ferulic acid, eugenol, 

isoeugenol, coniferyl alcohol, vanillin alcohol and stilbene, by bacteria and fungi, such as 

Pseudomonas fluorescens, Escherichia coli, Amycolatopsis sp., Streptomyces setonii, 

Pycnoporus cinnabarinus or Aspergillus niger (Negishi et al. 2009; Sindhwani et al. 2012; 

Walton et al. 2012; Korthou and Verpoorte 2007). Ferulic acid is available in abundance in plant 

cell walls and has become the most popular precursor substrate. The increasing price of ferulic 

acid has stimulated the search for other natural precursor molecules to obtain vanillin naturally. 

Curcumin occurs in turmeric (Curcuma longa) rhizome powder, a common ingredient of curry 

spice, in concentrations of up to 3 %. It is a food colorant (E 100) and was claimed to exhibit 
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numerous wide biological functions, although the bioavailability of curcumin is low (Kumar 

Singh et al. 2014). The two phenolic rings at the molecule ends are connected by two α,β-

unsaturated carbonyl moieties. A hypothetical cleavage at the benzylic position would yield two 

moles of vanillin from one curcumin molecule. Because of physico-chemical and structural 

features similar to lignin-related compounds, it was supposed that lignin-degrading 

microorganism may also be able to degrade curcumin. Previously, Rhodococcus strains have 

been reported as promising candidates, which degraded curcumin to (E)-6-(4'-hydroxy-3'- 

methoxyphenyl)-2,4-dioxo-5-hexenal, feruloylmethane, ferulic acid and vanillin (Bharti et al. 

2011). The aim of the present study was to develop an enzyme-based route starting with 

curcumin and resulting in vanillin as the most abundant reaction product. 

 

2.3 Results and Discussion 

For 20 years, the degradation of natural ferulic acid to vanillin using an optimised bacterial strain 

(Amycolatopsis family) has been one of a few successful large-scale processes using whole cell 

cultures for the production of a natural flavour compound (Priefert et al. 2001). Alternative 

precursors and routes to natural vanillin have been intensively researched, including the 

symmetric cleavage of curcumin. Its autoxidative degradation at physiological conditions led to 

the incorporation of oxygen into a curcumin radical resulting in a bi-substituted 

bicyclopentadione structure, while vanillin, ferulic acid and feruloylmethane occurred as minor 

degradation products (Gordon and Schneider 2012). A more concerted enzymatic cleavage at 

both benzylic positions using either a whole cell system or an oxidoreductase could be 

envisaged. One curcumin molecule would result in the formation of two molecules of vanillin, 

and a cofactor-independent enzyme would be most preferred. Abstraction of a hydrogen from a 

phenol with subsequent oxidation of the substrate is the domain of fungal laccases. These multi-

copper oxidases (E.C.1.10.3.2) form resonance-stabilized phenol radicals directly or by the aid of 

mediators, such as caffeic acid, vanillin (natural) or 2,2'-azino-bis(3-ethylbenzthiazoline-6-

sulphonic acid) (ABTS, non-natural), and reduce molecular oxygen to water at the same time 

(Diaz-Godinez et al. 2013). The cofactor and mediator-free direct incubation of curcumin with 

various laccases of different redox potentials resulted in an immediate degradation of curcumin 

(as measured by HPLC) and visible formation of a buffer-insoluble precipitate. However, the 

targeted degradation products, mainly vanillin (and ferulic acid), were found in traces only. 
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Being phenols themselves, they were preferred substrates for the laccases, resulting in oligo-

/polymerization of the intermediate monomers. To arrive at the intended benzylic cleavage, a 

less reactive substrate was required. A hypothetical mechanism would imply the delocalization 

of the unpaired electron of the phenoxy radical into the side chain and, after tautomerization and 

insertion of molecular oxygen, the generation of respective 1,2-endoperoxides; these, in turn, are 

well known to decay into two carbonyl moieties (Figure 2.1) (Kruegener et al. 2009). 

 

2.3.1 Acetylation of Curcumin 

 

2.3.1.1 By a Chemical Route 

To reduce the suitability of curcumin as a laccase substrate, it was aspired to achieve the 

acetylation of at least one of the phenolic hydroxyl groups of the molecule. Chemical formation 

of acetyl curcumins yielded two pairs of peaks with identical molecular masses, corresponding to 

monoacetyl, m/z 409, ESI (−) with 50 %, and diacetyl curcumins, m/z 451, ESI (−) 50 % by mass 

of total reaction products. The respective major peak of each pair was assigned to the phenolic 

acetyl/diacetyl ester with 93 % by mass, whereas the minor peaks (7 % by mass) were assigned 

to the acetylated hydroxyl group of the tautomeric form of curcumin. The reaction mixture was 

partially purified by means of preparative TLC. A curcumin-free mixture after purification, 

which was composed of around 90 % monoacetyl curcumin and 10 % of diacetyl curcumin, was 

used as the substrate for the following cleavage by three fungal laccases possessing different 

redox potentials. 
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Figure 2.1 Hypothetical pathway of laccase-catalysed biotransformation of curcumin. (1) Curcumin; (2) O-centered 

curcumin radical; (3) C-centered curcumin radical; (4,5) C-centered radicals in the alkenyl chain of curcumin; (6,7) 

intermediate 1,2-endoperoxides of the curcumin radical; (8) Vanillin; (9) Ferulic acid.  

 

2.3.1.2 By an Enzymatic Route 

For the production of ‘natural’ vanillin, an enzyme-based formation of acetyl curcumin is 

mandatory. Therefore, reverse hydrolysis was adapted for the acetylation of curcumin in organic 

medium. A number of commercial lipases are available for acetate synthesis. CAL, a lipase from 

Candida antarctica, was frequently used, and vinyl acetate served as the acyl donor, thus forcing 

the equilibrium to the product side by tautomerization of the liberated vinyl alcohol. Yields were 

semi-quantified by LC-MS, but remained unsatisfactory. Reaction solvent, temperature, time and 

the molar ratio of the reactants were varied. A maximum yield of approximately 49 % was 

eventually achieved using geranyl acetate as the acyl donor and a molar ratio of 1:50 of curcumin 

to acetyl donor. The yield of monoacetyl curcumin increased continuously over time until day 

three and decreased again thereafter. Even after a long time of incubation, only traces of diacetyl 

curcumin were detected. It may be speculated that the large and inflexible curcumin molecule 

does not fit well into the deep substrate-binding site of this lipase. The larger monoacetyl 

curcumin fitted even less well, thereby preventing diacetylation. 

 

2.3.2 Transformation of Acetyl Curcumin by Laccases 

The commercial laccase LccAbi of A. bisporus and two laccases, recovered and purified from 

supernatants of cultivated fungal strains, LccMgi (M. giganteus) and LccFtr (F. trogii), were 

compared (Table 2.1) (Strong and Claus 2011). Iso-active (1.19 U mL−1 adjusted against ABTS 

as a substrate) laccase preparations in buffered aqueous solution were added to acetyl curcumins 

in different solvent systems; these were monophasic organic solvents, monophasic water/water 

miscible organic solvents and biphasic systems composed of water/water immiscible organic 

solvents. 
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Table 2.1 Characteristics of laccases used for the degradation of acetyl curcumin. 

Laccase Origin Redox Potential a pI pH Optimum b 
Temperature 

Optimum b (°C) 

LccAbi A. bisporus Middle (0.47–0.71 V) 3.5 4.5–5 30–40 

LccMgi M. giganteus High (0.73–0.78 V) 3.1 5–5.5 30–40 

LccFtr F. trogii High (0.73–0.78 V) 3.8 4.5–5 30–40 

a According to the literature; b according to 2,2'-azino-bis(3-ethylbenzthiazoline-6-sulphonic acid) (ABTS) enzyme 

activity. 

The best reaction conditions were found to be a biphasic system consisting of water/diethyl 

ether. Samples were taken after 20 h and analyzed by LC-MS for substrate transformation and 

possible polymerization products and GC-MS for volatile degradation products. In all 

incubations in the presence of a laccase, as well as in the controls, diacetyl curcumin remained 

stable and did not change concentration over time. Monoacetyl curcumin concentration, in 

contrast, declined with time depending on the laccase added. For LccAbi, no distinct degradation 

occurred, whereas for LccMgi, a 15 % and for LccFtr 46 % declines of the monoacetyl curcumin 

concentration were observed. During the reaction, the yellow bright reaction solution did not 

show visible alteration with LccAbi, but turned into yellow/brownish with little precipitation 

with LccMgi and became cloudy with LccFtr. Several molecular masses in the m/z range >600 

Da were detected over a broad retention time window in the LC-MS chromatograms of these 

samples, indicating the formation of oligomer phenols, but the structural elucidation of these was 

no the aim of this study. GC-MS analysis of the volatile reaction products showed just one major 

product, acetyl vanillin. This was expected, because other possible degradation products, such as 

vanillin or ferulic acid, were good substrates for the laccases and polymerized in situ, as 

discussed above. The highest concentration of acetyl vanillin was analyzed for LccFtr, which 

agreed with the rapid degradation of monoacetyl curcumin (Table 2.2). 
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Table 2.2 Yield of vanillin acetate after cleavage of monoacetyl curcumin in a biphasic system: 2 mL of 0.5 

mM monoacetyl curcumin in diethyl ether and 2 mL aqueous buffer of laccases (each set to 1.19 U mL−Y) 

under continuous mixing for 20 h at 20 °C. 

Laccase Vanillin Acetate (mg L−1) Vanillin Acetate (mM) Molar Product Yield (%) * 

LccAbi 6.4 0.032 6.4 

LccMgi 15.1 0.078 15.6 

LccFtr 45.02 0.23 46 

* Calculated according to the concentration of the actual precursor, monoacetyl curcumin. 

2.3.3 Alignment of the Laccases 

Different amino acid substituents near the substrate binding site and copper T1 coordination of 

laccases result in different potentials of the redox centers, thus affecting the catalytic properties 

of bacterial (Gunne et al. 2014) and fungal laccases (Uzan et al. 2010). To better explain the 

observed differences in reactivity, the respective parts of amino acid sequences were aligned 

(Figure 2.2). According to previous studies, the T1 copper shows a trigonal bipyramidal 

coordination with three highly-conserved trigonal ligands (H,C,H) and two weakly coordinated 

ligands in axial position, of which one is invariable Ile, whereas the second is variable. There is a 

modest correlation between this axial ligand and the redox potential of T1 copper, with Phe 

consistently producing high, Leu middle and Met low potentials. An adjacent tripeptide (LEA in 

terms of high potential laccases), which is part of the T1 pocket, also serving as part of the 

substrate-binding pocket, is indicative of the respective redox potential of laccases, as well (Uzan 

et al.2010; Rodgers et al. 2009). The comparison of the sequences of the laccases from Ftr, Mgi 

and Abi with literature data showed that with Phe, the axial ligand located in position 460 for 

Laccase Ftr and 480 for laccase Mgi; both had to be classified as high redox potential-type 

enzymes and LccAbi, having leucine in the axial position 485, as a midrange potential enzyme. 

The different oxidation rates of the laccases with monoacetyl curcumin as the substrate may be 

explained by these differences in the amino acid sequences and, consequently, redox potential. 

High potential laccases appear to be more suitable for the cleavage of C = C bonds in the side 

chain of curcumin. 
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Figure 2.2 Partial amino acid alignment of LccFtr (Funalia trogii), LccMgi (Meripilus giganteus) and LccAbi 

(Agaricus bisporus). Bold letters show three out of four invariable T1 copper ligands, bold and italic letters the 

variable axial ligand and letters highlighted in grey a characteristic tripeptide of the binding site of T1 copper 

indicative of the redox potential of the respective laccases. 

 

2.3.4 Enzymatic Deacetylation of Acetyl Vanillin 

Vanillin acetate was obtained as the major volatile compound of the laccase-catalyzed 

degradation of monoacetyl curcumin. To achieve the enzyme-catalyzed deacetylation of acetyl 

vanillin, three different esterases were compared (Table 2.3). At an optimum reaction 

temperature of 37 °C, the esterase PeFaeA deacetylated 68 % of acetyl vanillin to vanillin after 

five hours of incubation, as calculated by external standard-based GC-flame ionization detection 

(FID) and GC-MS analyses. 

Table 2.3 Yield of vanillin after deacetylation of vanillin acetate in a biphasic system:  

2 mL of 1 mM vanillin acetate in diethyl ether and hexane (5:95) and 2 mL aqueous buffer of esterases (each 

set to 1 U mL−2) under continuous mixing for 5 h at 37 °C. 

Esterase Vanillin (mg L−1) * Vanillin (mM) Molar Product Yield (%) 

UmChlE 0 0 0 

Porcine liver 75.5 0.50 50 

PeFaeA 103 0.68 68 

* Calculated according to the external standard (3,4-dimethoxybenzaldehyde). 

In summary, many different possibilities for the biotechnological production of vanillin have 

been investigated in the past. Most processes were primarily affected by the high chemical 

reactivity and toxicity of vanillin. Thus, three-step enzymatic reactions are a novel approach to 

produce natural vanillin from curcumin (Figure 2.3). 



49 
 

 

Figure 2.3 Three-step enzymatic bioconversion of curcumin to natural vanillin. 

 

 

2.4 Experimental Section 

 

2.4.1 Materials 

All chemicals were analytical grade. Curcumin (>90%, natural) was purchased by Roth 

(Karlsruhe, Germany). 3,4-dimethoxybenzaldehyde and geranyl acetate from Sigma-Aldrich 

(Taufkirchen, Germany). 2,2'-Azino-bis (3-ethylbenzthiazoline-6-sulfonic acid) diammonium 

salt (ABTS) and p-nitrophenyl butanoate were obtained from ICN Biochemicals (Muenchen, 

Germany). Diethyl ether, ethyl acetate, toluene and n-pentane were from Karl Roth (Karlsruhe, 

Germany), and solvents (all MS grade) used for HPLC-MS were from Carlo Erba Reactifs 

(Peypin, France). 

 

2.4.2 Enzymes 

Immobilized lipase (triacylglycerol hydrolase, EC 3.1.1.3 (Novozyme 435, 5000 U·g−1) from 
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Candida antarctica and laccase from Agaricus bisporus (6.8 U·mg−1) were from Sigma-Aldrich 

(Taufkirchen, Germany), and esterase from porcine liver (lyophilisate, 15 U·mg−1) was from 

Sigma Aldrich (Taufkirchen, Germany). Recombinant feruloyl esterase from Pleurotus eryngii 

(PeFaeA) and chlorogenic acid esterase from Ustilago maydis (UmChlE) were selected from our 

own stocks. Two further laccases were isolated from fungal culture supernatants, as described 

below. The strains were purchased from the Centraalbureau voor Schimmelcultures (Meripilus 

giganteus CBS 561.86) and from the German Collection of Microorganisms and Cell Cultures 

(Funalia trogii, DSMZ), respectively. 

 

2.4.3 Cultivation of Fungi 

The culture supernatant of M. giganteus was provided according to the paper of Schmidt et al. 

(Schmidt et al. 2012).Submerged pre-culture of F. trogii was inoculated with the same structure 

of M. giganteus, except that for the main cultures, the expression of laccases was induced either 

by the addition of three grams per100 mL−1 wheat bran and CuSO4 (300 μM final concentration) 

to the culture medium of F. trogii or 300 μM CuSO4 solely in the case of M. giganteus. At the 

time of maximum laccase activity (ABTS activity, pH 3.0), cultivation was stopped and the 

culture supernatant harvested and stored at −20 °C, unless used immediately for laccase isolation 

and purification. 

 

2.4.4 Laccase Isolation and Purification 

The laccase from M. giganteus was isolated according to the protocol of Schmidt et al. (Schmidt 

et al.2012). In brief, the supernatant was frozen at −20 °C, thawed and centrifuged at 25,000× g. 

After filtration using a 0.45-μM polyester filter (CHROMAFIL PET-45/25, Macherey-Nagel, 

Dueren, Germany) and concentration using an ultra-filtration module (30-kDa cut-off, PES, 

Sartorius, Goettingen, Germany), the laccase was purified using fast protein liquid 

chromatography (Biologic Duoflow TM, Bio-Rad, Hercules, CA, USA) at 4 °C. First, a weak 

anion exchange column was applied (HiPrep 16/10 DEAE,16 × 100 mm fast flow, GE 

Healthcare, Munich, Germany). Concentrated laccase fractions were submitted to a second 

purification using size exclusion chromatography (Superdex 75 10/300 GL column, GE 

Healthcare, Munich, Germany). Active fractions were pooled and adjusted to the activity 

required. 
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Laccase from F. trogii was purified as follows: The culture supernatant was frozen at −20 °C, 

thawed and centrifuged at 5000× g at 4 °C for 15 min. The supernatant was filtered (0.45 μM, 

Chromafil Pet-45/25, Dueren, Germany), concentrated using an ultrafiltration module (30-kDa 

cut-off, PES, Sartorius, Goettingen, Germany) and subjected to fast protein liquid 

chromatography (Biologic Duoflow TM, Bio-Rad, Hercules, United States) at 4 °C. Twenty five 

milliliters of concentrated solution were purified on a HiPrep 16/10 DEAE, 16 × 100 mm fast 

flow column with a flow rate of 3 mL·min−1 (GE Healthcare, Munich, Germany) with 20 mL 

running Buffer A (50 mM, potassium phosphate, pH 6.5) and eluted with 5% Buffer B (50 mM 

potassium phosphate, pH 6.5 + 1 M NaCl). Purification was controlled using SDS-PAGE 

electrophoresis. SDS-PAGE was performed using 12 % (w/v) polyacrylamide gels. Samples 

were diluted in native loading buffer (0.05 M Tris/HCl pH 6.8, 0.1 % bromophenol blue, 10% 

glycerol, 2% SDS) and applied to electrophoresis. Proteins were stained with ready-to-use 

Instant Blue solution (0.1%, Expedeon, Cambridge, UK). Laccase activity staining was 

performed directly on the gel using ABTS (5 mM in 100 mM sodium phosphate buffer pH 4.5). 

 

2.4.5 Analysis of Amino Acid Sequence 

 

The identities of the purified laccases, as well as the sequence of LccAbi were deduced from the 

amino acid sequence of tryptic peptides of cut out protein bands from SDS gel electrophoresis. 

De-staining and tryptic digestions of the respective protein bands were carried out as described 

elsewhere (Plagemann et al. 2014). Tryptic peptides were analyzed by means of nano-LC 

EASY-nLC II (Bruker Daltronik, Bremen, Germany) equipped with a 20-mm pre-column (C18-

A1 3PCS; ThermoFisher Scientific, Dreieich, Germany) and a capillary column (0.1 mm × 150 

mm) packed with Magic C18 AQ (3-mm particle size, 200-Å pore size; Michrom Bioresources, 

Inc., Auburn, CA, USA) eluted by a linear gradient (300 nL min−1) of water and acetonitrile, 

each with 0:1 % formic acid v/v from 95 % water to 95 % acetonitrile within 25 min and held for 

15 min. The amino acid sequences elucidated were subjected to protein database (NCBI, Mascot 

search algorithm). Sequences were aligned using the ClustalW2 multiple sequence alignment 

database. 
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2.4.6 Enzyme Assays 

 

2.4.6.1 Laccase Activity 

The activity of each laccase was determined with ABTS as the substrate. The change in the 

absorbance was recorded at 420 nm using a Biotek Eon 2 Microplate reader (Biotek, Winooski, 

VT, USA) at 30 °C. In brief, 15 μL of enzyme solution were mixed with 0.5 mM substrate in 50 

mM phosphate buffer at pH 3.0 in a total volume of 300 μL. The change in the absorbance was 

monitored over ten minutes. One unit of enzyme activity was defined as 1 μmol of substrate (ɛ = 

36,000 L·mol−1·cm−1) oxidized per minute under the experimental conditions (Linke et al. 2013). 

 

2.4.6.2 Esterase Activity 

Esterase activity was assayed using p-nitrophenyl butanoate as the substrate and monitoring the 

change in absorbance at 410 nm (15,000 L·mol−1·cm−1, pH 8.0) over ten minutes with a Biotek 

Eon 2 Microplate reader (Biotek, Winooski, VT, USA) at 37 °C. Twenty microliters of sample 

were mixed with 175 μL of 100 mM sodium phosphate buffer (pH 6.0) and 5 μL of 50 mM p-

nitrophenyl butanoate in ethanol. The increase of absorbance was monitored at 37 °C at 410 nm 

for 20 min. One unit of enzyme activity was defined as the release of 1 μmol nitrophenol per 

minute under the specified conditions (Haase-Aschoff et al. 2013). 

 

2.4.6.3 Lipase Activity 

This assay was performed by measuring the increase in absorbance at 410 nm produced by p-

nitrophenol released from 0.4 mM p-nitrophenyl butanoate in sodium phosphate buffer (50 mM, 

pH 7.0) at 37 °C. To start the reaction, the lipase solution or suspension (20 μL) was added to the 

substrate solution (175 μL buffer, 5 μL p-nitrophenyl butanoate). One international unit of 

activity was defined as the amount of enzyme that hydrolyzed one μmol of p-nitrophenol 

butanoate per minute under the conditions (Escorcia et al. 2013). All enzyme assays were 

performed in duplicate, and the standard deviation was found below 5 %. 

 

2.4.7 Curcumin Transformation 
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2.4.7.1 Chemical Acetylation of Curcumin 

Acetylated curcumins were synthesized chemically as reference compounds using acetic 

anhydride. One mmol of curcumin was dissolved in 150 mL ethyl acetate and mixed for 20 min. 

After dissolving was completed, four mmol acetic anhydride were carefully added. After six 

hours, the reaction was stopped by adding one drop H2O2. Reaction yield (consumption of 

curcumin) and product identification were carried out by LC-MS. 

 

2.4.7.2 Lipase-Catalyzed Acetylation of Curcumin 

Before each experiment, ethyl acetate and toluene as the solvent and the acyl donor (vinyl or 

geranyl acetate) were stored over Na2SO4. The reaction was carried out in 2 mL ethyl acetate and 

toluene (10:90) in sealed 30-mL glass vials at 40 °C with continuous stirring using a glass 

magnetic stir bar (150 rpm). The powdered CAL was added to a final concentration of five 

mg·mL−1. Sodium acetate buffer 50 mM, pH 6, was added at 4 % to the reaction solution. Over 

the incubation, time samples were taken, filtered using 0.45 μm filter (Chromafil PET 45/25, 

Macherey-Nagel) and then analyzed directly by LC-MS. 

 

2.4.7.3 Monoacetyl Curcumin Degradation 

The two-phase reaction system was made up of 2.0 mL of 0.5 mM monoacetyl curcumin 

(concentration calculated according to a curcumin standard) together with a minor impurity of 

diacetyl curcumin (concentration not affected by the laccase present) in 2.0 mL diethyl ether and 

2.0 mL respective enzyme solution (1.19 U·mL−1, ABTS-assay, 30 °C, pH 3) in 50 mM sodium 

phosphate buffer, pH 5.5, under continuous vortexing at 1300 rpm (Heidolph, Germany) for 20 h 

at room temperature. A control sample with the buffer, but without enzyme, was treated under 

the same conditions. After separation of the diethyl ether phase, the aqueous buffer was re-

extracted three times with 2.0 mL diethyl ether, and the combined organic phases were dried 

over night with Na2SO4. The degradation rate of acetyl curcumin was determined by LC-MS, 

and volatile degradation products, such as vanillin acetate, were analyzed by GC-MS. 

 

2.4.7.4 Esterase-Catalyzed Deacetylation of Vanillin Acetate 

Three esterases were used for the hydrolysis of vanillin acetate. The hydrolysis was carried out in 

a glass vial containing 2 mL of 1 mM vanillin acetate dissolved in diethyl ether/hexane and 2 mL 
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sodium phosphate buffer 50 mM, pH 5 and 6.5. The reactions were initiated by adding enzyme 

solution with an activity of one U·mL−1 to the reaction mixture and placed in a vortex shaker at 

37 °C for five hours. The samples were extracted three times with diethyl ether, and the 

combined fractions were dried over sodium sulfate and analyzed by GC-MS using the external 

standard, 3,4-dimethoxybenzaldehyde (final concentration 125 mg L−1). The reproducibility of 

three repeated transformations showed a relative standard deviation of typically 3 %. 

 

2.4.8 Gas Chromatography 

 

2.4.8.1 Gas Chromatography/Flame Ionization Detection 

For each sample, 1 μL was injected on-column in an Agilent 7890A gas chromatograph (Agilent, 

Waldbronn, Germany) equipped with a cool on-column injection port and a 30 m × 0.32 mm i. d. 

× 0.25 μm CP-Wax 52 CB column (Varian, Darmstadt, Germany). The oven temperature 

program was 40 ° C for 3 min, raised at 3 °C per minute to 230 °C and held for 10 min. 

Hydrogen was used as the carrier gas at a flow rate of 2 mL per minute. Quantification was 

carried out according to the external standard (3,4-dimethoxybenzaldehyde). 

 

2.4.8.2 Gas Chromatography/Mass Spectrometry 

Gas chromatography-mass spectrometry (GC-MS) was conducted using a GC 8000 coupled to 

an MD 800 mass-selective detector (Fisons, Mainz-Kastel, Germany) equipped with a cool-on-

column injection port and a 30 m × 0.32 mm i.d. × 0.25 μm CP-Wax 52 CB column (Varian). 

The samples were injected using the same oven program as for GC/FID, but helium at a flow rate 

of 1.2 mL per minute was the carrier gas. Mass spectra were acquired using electron impact 

ionization at 70 eV and a 200 °C source temperature. Reaction products were identified by 

comparing their RIs (Resonance-ionization) and mass spectra with those of authentic standards. 

 

2.4.9 Liquid Chromatography/Mass Spectrometry 

For the identification of vanillin, curcumin and acetylated curcumins, as well as for the 

determination of the molar mass of the expected oxidation/polymerization products thereof, high 

performance liquid chromatography coupled to a triple quadrupole mass analyzer was used 

(Varian 212 LC pump, Pro Star 325 UV-Vis detector, 320 TQ-MS mass spectrometer). The MS 
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was conducted simultaneously in the ESI positive and negative mode with a scan range of m/z 

110–500 or m/z 300–1200, respectively. The MS parameters for ESI(+)/ESI(−) were: capillary 

voltage +30 V/−40 V, needle voltage 5000 V/−4500 V, nebulizer gas (N2) 379 kPa, drying gas 

207 kPa at 350 °C. For HPLC, water and acetonitrile (MS-grade), both containing 0.1 % formic 

acid, were used as the mobile phase, and the following linear gradient was used: 10 % 

acetonitrile for three minutes, up to 90% acetonitrile within 20 min, hold for five minutes and 

back to start conditions. The separation was performed on an RP-18 HD column (Eurosphere 

100-C18-5-HD, 250 × 4 mm, 5 μm, Macherey-Nagel) at a flow rate of 0.3 mL per minute. 

Additionally, UV absorption was monitored at 280 and 425 nm. 

 

2.5 Conclusions 

During the coming years, the flavour market is expected to increase, and biotechnology will 

contribute to guaranteeing the supply (Berger 2015; Wells and Meyer 2014). This work showed 

that laccases are suitable for the oxidative cleavage of acetyl curcumin in a cofactor- and 

mediator-independent reaction. A three-enzyme system provided protection/deprotection 

chemistry, with the selective acetylation of one of the two phenolic hydroxyl groups of curcumin 

as the key step. As a result, one phenol moiety of the symmetric molecule was protected against 

attack of the laccase, while the other vanillin moiety was inevitably lost to oligomerization. 

Laccase-catalyzed reactions are governed by the structure of the phenolic substrate, the redox 

potential of the enzyme (high, middle or low), the presence and choice of a mediator and the 

usual parameters, such as reaction pH, temperature and solvent composition (Kunamneni et al. 

2008a). A refined system, including a food-grade mediator, might convert both acetyl vanillin 

moieties of an enzymatically-synthesized diacetyl curcumin into ‘natural’ vanillin. To this end, 

the first enzymatic step must be made more efficient by using a lipase able to accept both 

curcumin and monoacetyl curcumin as substrates. Some representatives out of the large set of 

lignolytic enzymes of higher fungi might be even more suitable for the acetylation, cleavage and 

hydrolysis of phenolic substrate molecules to yield ‘natural’ flavor compounds. 
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The taste enhancer divanillin: sources and enzymatic generation 

 

 

Reproduced with permission from Flavour and Fragrance Journal, 2015, 30, 362-365 

 

3.1 Abstract  

Dehydrodivanillin, the symmetrical dimer of vanillin, is a taste enhancer which imparts pleasant 

impressions of creaminess to food. Found in vanilla pods in traces only, a co-substrate 

independent dimerization of vanillin, conducted in a co-solvent system to improve the solubility 

of vanillin, was developed using iso-active fungal laccases from Meripilus giganteus, Agaricus 

bisporus and Funalia trogii. The yields were compared with a peroxidase from Marasmius 

scorodonius (MsP2) and horseradish peroxidase (HRP), both supplied with hydrogen peroxide. 

Using laccase catalysis, the kinetically preferred reaction product, 5,5’-dehydrodivanillin, rapidly 

reached saturation and precipitated in situ, thus shifting the reaction equilibrium to the product. 

Yields of > 95 % were obtained with the high-redox-potential laccase of Funalia trogii, while 

HRP gave 18 %. 

 

Keywords: dehydrodivanillin, vanillin, laccase, peroxidase, co-solvent, reaction equilibrium 
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3.1 Introduction 

The discovery of divanillin (6,6′-dihydroxy-5,5′-dimethoxy-(1,1′-biphenyl)-3,3′-dicarbox-

aldehyde) dates back to Tiemann and the year 1885 (Tiemann 1885). A first comprehensive 

report on the chemical synthesis and properties of divanillin appeared as early as in 1916 (Elbs 

and Lerch 1916). In contrast to the original method of Tiemann, the use of Na2S2O8 as an oxidant 

instead of FeCl3 resulted in a nearly quantitative conversion of vanillin to its symmetric dehydro-

dimer.  

Divanillin occurs in nature as an occasional sub-unit of lignin, and it is detectable upon chemical 

or enzymatic degradation of wood (Freudenberg and Renner 1965; Lahtinen et al. 2009b; 

Martinez et al. 2005). A Japanese patent claimed properties as an antioxidant, skin-lightening 

and fixative in perfume oils, but described the substance as being odorless and tasteless (Ikemoto 

et al. 1995). In-depth sensorial evaluations showed divanillin to possess a pleasant, adherent and 

rich taste impression of creaminess, milk fattiness and sweetness, improving the quality of low-

fat and reduced fat, semi-finished food products and ready-to-eat foodstuffs (Reiss et al. 2006). 

A subsequent patent claimed divanillin as a bitterness masking substance which extended the 

scope of applications for the food industry (Ley et al. 2008). With 5 μg per kg skim milk, the 

orosensory perception threshold of divanillin is remarkably low (Schwarz and Hofmann 2009). 

 

3.2 Sources of divanillin  

Divanillin is primarily formed during the curing of the vanilla pods, a process of repeated 

wetting, warming (‘sweating’), drying and conditioning aiming at the liberation of vanillin (1.5 

to 2.5 % w/w) from its glucoside precursor. The traces of natural divanillin present (5 to 50 mg 

per kg) are much too small to allow for an economic isolation, but suggest a slow autoxidative 

formation once free vanillin is accumulating in the pods. In a situation where consumers 

worldwide increasingly call for ‘natural’ food ingredients and natural sources are economically 

unavailable, biotechnology can provide solutions without using toxic chemicals and harsh 

reaction conditions (Berger 2015). According to effective European law (EG 1334/2008) a 

‘natural flavouring substance’ shall mean a compound ‘obtained by appropriate physical, 

enzymatic or microbiological processes....’. The Code of Federal Regulation (CFR - Title 21) of 

the Food and Drug Administration of the United States contains the terms ‘enzymolysis’ and 

‘fermentation’. Transferred onto the divanillin case, a bioprocess could be envisaged mimicking 
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the above pathway in the vanilla tissue, if a rich source of ‘natural’ vanillin as a precursor 

existed. This is the case (Berger 2015; Walton et al. 2000]. 

First bioprocesses towards natural vanillin used plant cell cultures, or ß- glucosidases for an 

improved release; first concerted microbial transformations attempted the conversion of eugenol, 

isoeugenol, aromatic amino acids, vanillic acid, stilbenes or ferulic acid (Walton et al. 2000). As 

ferulic acid is the most abundant hydroxycinnamic acid in plants, its microbial side chain 

degradation by Gram-negative bacteria has been recognized as the prime rose path (Muheim and  

Lerch 1999). Various mechanisms of chain shortening by prokaryotics were suggested, and a 

dioxygenase of vanilla was assumed to present the key enzyme of the pod (Negishi et al. 2009). 

Catabolism of the target compound, a severe problem of the earlier systems, was combatted by 

pathway engineering of producer strains of Amycolatopsis (genus Actinomycetes), and has 

resulted in yields of 20 grams of ‘biotech-vanillin’ per liter of culture medium, presenting a rich 

source of the divanillin precursor (Fleige 2013). 

 

3.4 Enzyme catalyzed routes to divanillin 

With an abundant supply of ‘natural’ vanillin at hand, oxidoreductases specializing on phenolic 

substrates lend themselves not only for hydroxylation or epoxidation reactions, but also for the 

aspired dimerization (Martinez et al. 2014). Commercial horseradish peroxidase (HRP) 

biomimetically oxidized resveratrol, a trihydroxystilben, and the reaction was tuned from 

decomposition to dimerization by incorporation of various metal ions (Li et al. 2014). 

Immobilized HRP formed radicals on phenols which reacted to linear polymers via C-O bridges 

(Nanayakkara et al. 2014). In the presence of a slight molar excess of hydrogen peroxide HRP 

was also the enzyme of choice for the patented production of natural divanillin (Reiss et al. 

2006). In spite of the requirement of the reactive co-substrate, the procedure was recommended 

as a ‘green chemistry’ prototype (Nishimura et al. 2010). A previous report on the laccase 

catalyzed dimerization of resveratrol and other stilbenes indicated that this class of enzymes was 

able to replace HRP or other peroxidases (Ponzoni et al. 2007). Three dimers were obtained from 

resveratrol, the main product being an oxygen-bridged dihydrofuran structure.  

Laccases are widely distributed in nature. They couple the one electron oxidation of phenols with 

the reduction of oxygen to water, and were thoroughly investigated down to the gene level (Diaz-

Godinez et al. 2013). Compared to peroxidases, the peroxide free action of laccases represents a 
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significant advantage. However, the random character of radical reactions typically resulted in 

complex mixtures of oligomers and polymers (Ponzoni et al. 2007; Shumakovich et al. 2014). 

Another expected disadvantage was the possible requirement of a mediator for achieving 

reasonable yields (Calcaterra et al. 2008; Ihssen et al. 2014). To explore the pros and cons, three 

fungal laccases were compared under the same experimental conditions with a fungal peroxidase 

and HRP for their ability to react vanillin to the desired C-C bridged dimer; both peroxidases 

were supplied with H2O2 (Table 3.1).  

 

Table 3.1 Enzymes used for the oxidative dimerization of vanillin 

Enzyme Origin Enzyme description 

HRP Horseradish Peroxidase lyophilized powder (Sigma-Aldrich, 150 U mg-1 specified) 

MsP2 Marasmiusscorodonius  

Peroxidase 2 

Solution, recombinant from E. coli (2 U mL-1)  

Abi Agaricus bisporus lyophilized powder (Sigma-Aldrich, 4 U mg-1 specified) 

Mgi Meripilus giganteus solution, purified by IEX, SEC (12 U mL-1)  

Ftr Funalia trogii solution, purified by IEX (52 U mL-1) 

 

 

3.5 Generation of divanillin 

In a first screening, the fungal oxidases and HRP were reacted with vanillin under the same 

conditions: One U mL-1 of enzyme, sodium phosphate buffer pH 4.5, one mg vanillin mL-1, and 

equimolar concentration of H2O2 for the peroxidases. All enzymes were applied in iso-active 

form as measured using the common synthetic substrate ABTS (2,2'-azino-bis(3-

ethylbenzthiazoline-6-sulphonic acid)). Fastest reaction rates were obtained with the laccase Ftr 

from Funalia trogii (Ftr, related to the Trametes genus, a high-redox-potential enzyme from a 

white-rot fungus). LC-ESI(-)-MS and MS/MS collision experiments showed a broad range of 

reaction products. At least five divanillin structures were tentatively identified through their 

molecular ions. A number of trimers and higher oligomerization products were also tentatively 
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identified indicating that the oligomers reacted further with the primary phenolic radicals 

delivered by the laccase. The samples containing the laccases from Ftr and Mgi (Meripilus 

giganteus, giant polypore) showed cloudiness and numerous reaction products after 30 minutes 

of reaction, whereas the laccase from Abi (Agaricus bisporus, button mushroom) did not. 

During the incubation with the laccase from Ftr, precipitation of some crystals was observed. 

The precipitate was filtered off, re-dissolved and analyzed as chemically almost pure divanillin. 

Compared to vanillin, divanillin is less soluble in water (3.7 g L-1 vs. 0.26 g L-1 at pH 5). 

Therefore, it was attempted to favor the formation of the desired reaction product divanillin and 

to reduce the possibly inevitable formation of oligomers by changing the ratio of enzyme activity 

to substrate concentration. The final transformation conditions are summarized in Table 3.2. As 

expected, vanillin became the predominant substrate, and the divanillin formed was removed 

from the dynamic equilibria, otherwise leading to a mixture of oligomers, by rapid in situ 

precipitation as soon as its solubility product was exceeded. 

 

Table 3.2 Comparison of biotransformation systems for the formation of divanillin 

Parameter Patent (Reiss et al. 2006) This work 

Aqueous buffer Tris Acetate pH 5.0 50 mM Sodium Phosphate pH 4.5 

Vanillin 

concentration 

10 g L-1 [66 mM] 10 g L-1 [66 mM] 

Solubilization Heated to 40 − 50 °C Addition of 5 % (v/v) ethanol 

Enzyme activity 11 U mL-1 1 U mL-1 

[H2O2] > 2.25 g L-1 [66 mM] 2.25 g L-1 [66 mM]; HRP and MsP2 only 

Incubation time 18 h 5 h 

 

For both types of oxidases, laccases and peroxidases, the initial reaction step is the formation of a 

phenolic radical which is stabilized over the aromatic structure. Hence, oxygen and carbon 

centered radicals may result in the formation of C-O-C and C-C-bridged products. 

Recombination of two radicals occurs preferably at position five of the aromatic ring of vanillin. 
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To clarify whether a C-O-C or a C-C-bridged dimer was generated, the precipitate of the reaction 

catalyzed by the laccase from Ftr was re-dissolved and silylated after appropriate dilution in dry 

dichloromethane using MSTFA (N-methyl-N-(trimethylsilyl) trifluoroacetamide). In a C-C-

bridged dimer, both phenolic hydroxyl groups of vanillin are maintained. Accordingly, upon 

silylation of this divanillin isomer, its mass must be increased by 144 Da, whereas the C-O-C-

bridged dimer should show an increase of 72 Da. GC-EI-MS analysis showed a dominating peak 

(> 99 % of total area) which was attributed to the C-C-bridged form  of divanillin. The C-O-C-

bridged dimer, like other side products, was detected in traces only.  

The product yields for all enzymes tested are compiled in Figure 3.1. High yields were obtained 

with the laccases, exceeding 95 % (w/w) when using the laccase of Ftr, followed by the laccase 

of Mgi with > 60 %. No product was obtained from the reaction catalyzed by the laccase of Abi. 

Under the same conditions, the divanillin yield for HRP reached 18 %, whereas MsP2 (from 

Marasmius scorodonius, garlic parachute, peroxidase 2) gave around 50 % (w/w). This 

difference may be explained by the different structure, but also by the different origins of both 

peroxidases. Commercial HRP is heterologously expressed in Pichia and produced in a 

hyperglycosilated form (Capone et al. 2014), whereas MsP2 was expressed in E. coli 

BL21(DE3) using the cold shock vector pCOLD I (Zelena et al. 2012).  

 

 

Figure 3.1 HPLC- DAD chromatograms showing the formation of divanillin. Transformation conditions were as 

shown in Table 3.2 
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Activity measurements were carried out after the incubation. More than 40 % of the initial 

activity of the laccase of Ftr was recovered compared to 16 % and 10 % of the activity of MsP2 

and HRP, respectively. Laccases of both bacterial and fungal origin frequently showed excellent 

thermo-stability (Wang et al. 2006). Likewise favorable for technical applications are the good 

operational stability, particularly of fungal laccases, in the presence of organic solvents 

(Zumarraga et al. 2007) and surfactants (Schmidt et al. 2012). 

The different product yields of laccases from different sources may be attributed to their 

respective redox potentials (Macellaro et al. 2014). The T1 copper site of a laccase and its 

substrate binding properties allowed to classify them into low, medium and high redox potential 

types. Sequence alignments suggested that laccase harboring an axial phenylalanine residue at 

the T1 center, such as the laccase of Ftr, should have a high redox potential, while those with a 

methionine, such as the laccase of Abi, have a lower redox potential. Accordingly, the laccase of 

Abi with a middle redox potential was unable to oxidize vanillin, whereas the high-redox-

potential types, Ftr and Mgi, were active. However, the laccase of Mgi oxidized vanillin at a 

lower rate than the enzyme from Ftr, although the redox potentials of both were estimated as 

high. Apparently, other factors, such as the degree of glycosylation of the enzyme, the molecular 

shape of the substrate, the solvent system and perhaps other reaction conditions affect the 

observed reaction rate. 

 

3.6 Conclusion 

Laccases of the high-redox-type were found superior to H2O2 dependent peroxidases for the 

production of divanillin. The driving forces for high yields were a high concentration of the 

substrate vanillin, achieved with the aid of the co-solvent ethanol, an apparent lack of substrate 

inhibition, and the operational stability of the laccase in this chemical environment. High 

concentrations of divanillin above its solubility were immediately formed resulting in its in situ 

precipitation, thereby protecting the product, avoiding product inhibition, and shifting the 

equilibrium continuously towards the product side. An almost quantitative formation (> 95 % 

conversion) of natural divanillin was obtained in the absence of a mediator. This showed that the 

random formation of phenolic radicals may be channeled into a concerted dimerization. Different 

reaction conditions may favor polymerization (Zhang et al. 2014) or substitution (Hahn et al. 

2014) and cleavage reactions (Moreira et al. 2014) depending on the type of laccase and 
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mediator. No H2O2 or other co-substratesm (except oxygen) are required for the action of 

laccases, while peroxidases, as used previously, (Gatfield et al. 2006) depend on H2O2 by 

definition. Because of this distinct advantage, laccases (and laccase/mediator systems (Fillat et 

al. 2012)) may find wider synthetic and degradative applications to produce ’natural flavours’ 

according to EG 1334/2008. 
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4. Laccase catalyzed generation of lignans in a biphasic system 

 

       Reproduced with permission from Advances in Food Science, 2015, in press. 

 

 

4.1 Abstract  

Laccase (EC 1.10.3.2) catalyzed transformations of monomer lignin precursors were 

investigated. Coniferyl alcohol, coniferyl aldehyde, sinapic acid, ferulic acid, caffeic acid, gallic 

acid and p-coumaric acid were oxidized by commercial laccases from Agaricus bisporus, 

Trametes versicolor and the new high redox potential laccase from Funalia trogii. Rapid and 

random oligo-/polymerization instead of the desired dimerization occurred in aequeous standard 

buffers. In 80 % aequeous ethanol and in the biphasic system 80 % ethyl acetate plus 20 % 

buffer, dimerization was more favored. The solvent-tolerant laccase of Funalia trogii gave the 

best conversion retaining 25 % and 35 % of its activity, respectively, after 30 minutes of 

incubation in these solvents, and dimers of coniferyl alcohol, sinapic acid and ferulic acid were 

generated with more than 95 % conversion rate. Structural assignments of products by mass 

spectrometry of silylated products showed the formation of the  dimer of sinapic acid, and of 

both the  and the -5-dimer of ferulic acid, while several dimers of coniferyl alcohol and 

coniferyl aldehyde were formed concurrently. 

 

KEYWORDS: Lignin precursors, laccase, biotransformation, lignans, dimerization, taste 

modifiers, Bioactives 
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4.2   Introduction  

Lignans are widely distributed in roots, leaves, seeds and fruit of plants and are derived from the 

oxidative dimerization of phenylpropanoid precursors (Slanina and Glatz 2004). The two phenyl 

propane moieties occur connected through the formation of C-C or C-O bounds, and are 

precursors for higher molecular mass oligomers and finally the lignins. Dimerization, oxygen 

incorporation, and skeleton functionalization reactions result in a great variety of structures 

(Suzuki and Umezawa 2007). A wide range of biological and pharmaceutical activities has been 

claimed for lignans, such as anti-tumor (Zhu et al. 2013), especially anti-breast and colon cancer 

(Lee and Xiao 2004), cardiovasculoprotective and neuroprotective (Sok et al. 2009), anti-

Alzheimer, anti-HIV (Jiuan et al. 1993), anti-viral and anti-inflammatory properties (Saleem et 

al. 2005; Pan et al. 2014).  

Foods naturally often contain specific bitter compounds which negatively affect the sensorial 

quality of a product. In foods, such as tea, coffee, Citrus products and dark chocolate bitter 

tastants are inevitable and regarded as character impact compounds. More recently they were 

supposed to have a positive effect on human health (Drewnowski and Gomez-Carneros 2000), 

but if the bioactivity of the bitter compounds should be preserved, it is required for the bitter-

sensitive consumers to mask bitter and astringent tastes. Lignans appear to be a possible solution 

to the problem (Backes et al. 2014). The use of lignans as potent natural antioxidants and 

nutritional supplements are other possible applications in the food industry (Kumar and Singh 

2015). Extraction of lignans from plants using enzymatic and chemical methods is complicated, 

because the covalent lignin structures cannot be easily opened without simultaneously changing 

the lignan structures (Guerra et al. 2006). Thus, isolation of pure lignans from natural sources 

suffers from a scarcity of suitable natural sources and the risk of structural alterations during 

extraction (Willför et al. 2006).  

Enzymatic dimerization of phenolic substrates could be a practical option for the production of 

bioactive lignans. One-electron oxidation reaction by peroxidase/H2O2 works well for the 

dimerization of phenols (Agha et al. 2008). Laccases (EC 1.10.3.2) with their preference for 

phenolic substrates appear to be particularly suitable for the aspired dimerization possessing the 

additional advantages of co-factor independency and operational stability. Three-dimensional 

structures have been resolved to discover the mechanism of oxidation of the substrate (Kudanga 

et al. 2011). A detailed comparison between different laccases showed that the T1 copper site 
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determined the redox potential of the enzyme (Xu 1996a; 2005). Although the redox potential is 

an important factor related to radical formation, the reaction is also affected by the structure of 

the substrate, the redox potential difference between a phenolic substrate and the T1 copper of a 

laccase, the pH optimum of the enzyme, substrate and product solubility, incubation time, and 

the presence of organic solvents (Hahn et al. 2014; Wan et al. 2010).  

In this study seven phenols, coniferyl alcohol, coniferyl aldehyde, sinapic acid, ferulic acid, p-

coumaric acid and gallic acid served as substrates for three laccases with middle or high redox 

potential in various solvent systems with the aim of a preferred production of dimers with lignan 

structure. 

 

4.3 Material and Method 

 

4.3.1   Chemicals  

All phenolic substrates, coniferyl alcohol, coniferyl aldehyde, sinapic acid, p-coumaric acid, 

caffeic acid, ferulic acid and gallic acid (Figure 4-1) were provided from Sigma-Aldrich 

(Taufkirchen, Germany). 2,2`-Azino-bis (3–ethylbenzthiazoline-6-sulfonic acid) diammonium 

salt (ABTS) was obtained from ICN Biochemicals (Muenchen, Germany). Ethyl acetate, 

acetonitrile, ethanol, and methanol were from Karl Roth (Karlsruhe, Germany), and solvents (all 

MS grade) used for GC-MS and HPLC-MS were from Carlo Erba Reactifs (Peypin, France). 
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Figure 4.1 Phenolic substrates. 

 

4.3.2 Enzymes 

Laccase Abi from Agaricus bisporus (6.8 U mg-1) and laccase C from Trametes versicolor (10 U 

mg -1) were provided from Sigma-Aldrich (Taufkirchen, Germany) and laccase Ftr from Funalia 

trogii was isolated from fungal culture supernatants as described elsewhere (Esparan et al. 2015). 

The strain was purchased from the German Collection of Microorganisms and Cell Cultures 

(Funalia trogii, DSMZ). 

 

4.3.3 Enzyme activity 

The activity of each laccase was determined with ABTS as the substrate. The change in the 

absorbance was recorded at 420 nm using a Biotek Eon 2 Microplate reader (Biotek, Winooski, 

United States) at 30 °C. In brief, 15 µL of enzyme solution was mixed with 0.5mM substrate in 

50 mM phosphate buffer at pH 3.0 in a total volume of 300 µL. The change in the absorbance 

was monitored over ten min. One unit of enzyme activity was defined as one µmol of substrate (ɛ 

= 36,000 L mol-1 cm-1) oxidized per minute under the experimental conditions (Linke et al. 

2013). 

 R1 R2 R3 

Coniferyl alcohol OCH3 H OH 

Coniferyl aldehyde OCH3 H COH 

Sinapic acid OCH3 OCH3 COOH 

Ferulic acid OCH3 H COOH 

p-Coumaric acid H- H COOH 

Caffeic acid H OH COOH 

Gallic acid OH OH COOH 
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4.3.4 Oxidation of phenolic substrates by laccases 

The oxidation reactions were carried out in a two solvent mixture (water plus an organic solvent) 

in a monophasic (methanol, EtOH, acetonitrile) or a biphasic system (ethyl acetate) with 

concentration of the organic solvent varying from 10 %, 50 % and 80 % (v/v). For both reaction 

systems, the mixture contained 10 mM of the respective phenolic substrate which was dissolved 

in the respective volume of each solvent (to obtain final volumetric ratio of 10, 50, and 80 % 

solvent) and mixed with aequeous (sodium phosphate buffer 100 mM, pH 5.0) enzyme solution 

containing 1.5 U mL-1 activity (ABTS assay). The reaction batch was stirred with glass magnet 

stirrer with 500 rpm at 35 °C under the same conditions for both mono and biphasic systems. 

Samples were taken every ten min. After continued shaking for 30 min, the reaction was stopped 

by adding 20 µL of HCl (5 mM); the reaction mixture was extracted three times with 1 mL EtAc 

which contained 25 ng µL -1 n-tetracosane as an external standard. Then, 100 μL of the organic 

layer were derivatized after evaporation of the solvent under nitrogen stream. For the silylation 

procedure 100 µL of a mixture of TMCS and BSTFA (1:99, v/v) were added and vortexed in 

screw cap glass tubes at 60 °C for one hour. To remove remaining silylating agent, methanol was 

added to the solution. 

 

4.3.5 Gas chromatography flame ionization detection (GC-FID) 

For each silylated sample, one μL was injected on-column in an Agilent 7890A gas 

chromatograph (Agilent, Waldbronn, Germany) equipped with a cool on-column injection port 

and a 30 m × 0.32 mm i. d. ×0.25 μm Optima 5 column (Macherey-Nagel , Dueren, 

Germany). The temperature program was from 40 °C to 250 °C with 2 °C/min, hold for 10 min; 

from 250 °C to 320 °C with 4 °C/min, hold for 15 min; from 325 °C to 350 °C with 3.5 °C/min 

and then hold for 5 min. A post run time of 10 min at 40 °C was found sufficient for re-

conditioning of the column for the next injection. The flow rate of carrier gas hydrogen was 

maintained at 2 mL min-1. Quantification was carried out according to the external standard n-

tetracosane. 

 

4.3.6 Gas Chromatography/Mass Spectrometry (GC-MS) 

Gas chromatography-mass spectrometry (GC-MS) was conducted using a GC 8000 coupled to 

an MD 800 mass-selective detector (Fisons, Mainz-Kastel, Germany) equipped with a cool-on-
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column injection port and a 30 m × 0.32 mm i.d. × 0.25 μm CP-Wax 52 CB column (Varian). The 

samples were injected using the same oven program as for GC-FID, but helium at a flow rate of 

1.2 mL min -1 was the carrier gas. Mass spectra were acquired using electron impact ionization at 

70 eV, 200 °C source temperature and mass range from 70 to 817 (m/z) was used to detect all 

products. Reaction products were identified by comparing their linear retention indices (RI) and 

mass spectral data with those of authentic compounds or with spectra from spectral databases 

(Wiley NIST08, 2008). 

 

4.3.7 Liquid Chromatography/Mass Spectrometry 

For the detection of non-volatile oligomerization products of phenolic precursors, high 

performance liquid chromatography coupled to a triple quadrupole mass analyzer was used 

(Varian 212 LC pump, Pro Star 325 UV-Vis detector, 320 TQ-MS mass spectrometer). The MS 

was conducted simultaneously in the ESI positive and negative mode with a scan range of m/z 

110–500 or m/z 300–1200, respectively. The MS parameters for ESI(+)/ESI(−) were: capillary 

voltage +30 V/−40 V, needle voltage 5000 V/−4500 V, nebulizer gas (N2) 379 kPa, drying gas 

207 kPa at 350 °C. For HPLC, water and acetonitrile (MS-grade), both containing 0.1 % formic 

acid, were used as the mobile phase. The following linear gradient was used: 10% acetonitrile 

for three min, up to 90 % acetonitrile within 20 min, hold for five min and back to start 

conditions. The separation was performed on an RP-18 HD column (Eurosphere 100-C18-5-

HD, 250×4 mm, 5 µm, Macherey-Nagel) at a flow rate of 0.3 mL min-1. Additionally, UV 

absorption was monitored at 280 and 425 nm. 

 

4.4 Result and Discussion  

Oxidation of phenolic substrates by laccases leads to radical intermediates (Figure 4.2). 

Depending on the type of substrate, the radicals react to quinones or cleavage products of the 

aromatic ring. With phenolic substrates, radical pairing creates a new C-C or C-O-C bond and 

connects two monomers (Hofer and Schlosser 1999). To overcome the problem of further 

ongoing crosslinking and polymerization, organic solvents were used to control the laccase 

activity in the reaction mixture (Mattinen et al. 2011; Krings et al. 2015). Solvents may affect an 

enzyme reaction by changing the actual concentration of educts or products, or by changing the 

tertiary structure of the enzyme; in the case of laccases the initial activity was lost upon small 
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changes of the three-dimensional structure (Rodakiewicz-Nowak et al. 2000). The data below 

show that suitable solvents direct the laccase-catalyzed reaction towards the concerted formation 

of dimers while the activity of the enzyme is maintained long enough to convert the substrate 

almost completely. 

 

 

 

Figure 4.2 Oxygen and carbon centered radicals formed after incubation of phenolic substrates with laccases. 

Positions relevant for dimer formation are shown, only; R1-3 refers to Figure 4.1. 

 

4.4.1 Oxidation of phenolic substrates in organic solvents 

Phenolic substrates were dissolved in mono and biphasic systems to find reaction conditions 

favoring the production of lignin-type dimers instead of polymerization. First, the concentration 

of substrates and the enzyme activity were kept constant, and the nature of the organic solvent 

and the volumetric ratio (10, 50 and 80 % (v/v)) to water were modified. All organic solvents 

adversely influenced the initial enzyme activity regardless of the redox potential of the respective 

laccase. Water miscible organic solvents, such as methanol and acetonitrile, inactivated each of 

the three laccases over time. The fastest inactivation was found for laccase Abi which was 

already completely inactivated after 10 min in a 1:1 mixture of methanol with water. Based on 

this result, further experiments were carried out in EtOH-water (one phase system) or EtAc-

water (biphasic system) mixtures, respectively. Table 4.1 shows the relative decrease of enzyme 

activity in 80 % EtOH and 80 % EtAc. The two high redox potential laccases (C, Ftr) retained 

some activity even at higher solvent concentration, and this activity was higher in the biphasic 

EtAc-water system than in EtOH-water. It should be noted that around 8 % w/v of ethyl acetate 

are soluble in water at 20 ○C. 
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Table 4.1   Residual laccase (Lcc Abi, Ftr, C) activity according to the ABTS assay in 80 % EtOH / 20 % H2O, and 

80 % EtAc / 20 % H2O (30 °C, after 0, 10, and 30 min). The numbers indicate the rate of oxidation (%) compared to 

the activity in buffer. 

 

 

 

 

 

 

 

 

The impact of EtOH and EtAc in both mono and biphasic system on the laccase catalyzed 

oxidation of phenolic substrates is shown in Figures 4.3 a and b. The bars show the relative 

decrease of the respective phenolic substrate as quantified by GC-FID, compared to the 

concentration at t0. The data are shown for laccase Ftr, only, because of its good stability in the 

organic solvents. The residual concentrations of substrates in both solvent systems showed that 

the consumption of substrates was faster in the biphasic system. For some phenolic substrates, 

such as ferulic acid, sinapic acid and coniferyl alcohol the oxidation was almost complete. Using 

the same laccase activity in the monophasic system, sinapic acid (> 30 %), coniferyl alcohol (> 

50 %) and ferulic acid (around 70 %) remained in the reaction mixture. Analysis of the samples 

using HPLC-MS and GC-MS showed that in the monophasic system most of the phenolic 

substrates were converted to polymers (data not shown), whereas the reaction was directed to 

preferred production of targeted dimers in the biphasic system. 

 

 

 

 

 

 

 Ethanol/water 

Enzyme  0 min 10 min 30 min 

Abi 100% 1.9% 0 

C 100% 
12% 

0.9% 

Ftr 100% 25% 1.7% 

 Ethyl acetate/water 

Enzyme  0 min 10 min 30 min 

Abi 100% 9% 0.7% 

C 100% 
18% 

7.2% 

Ftr 100% 35% 12.4% 
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a) 

 

b)  

 

 

4.4.2 Oxidation of phenolic substrates by middle and high redox potential laccases 

Laccases possessing different redox potentials were compared for the oxidation of the phenolic 

substrates. The laccases from Funalia trogii and Trametes versicolor (C) were classified as high, 

and the commercial laccase from Agaricus bisporus (Abi) as laccase with middle range redox 

potential (Table 4.2) (Strong and Claus 2011). As predictable from the residual activity of 

laccases in the presence of 80 % EtAc or EtOH, respectively, the fastest oxidation reaction was 

found for laccases Ftr and C in the biphasic system. The initial rate of substrate reduction 

indicated that both high redox potential laccases oxidized the substrates at different oxidation 
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Figure 4.3  Reaction rate of the laccase catalyzed oxidation of phenolic substrates (laccase Ftr, 1.5 U mL-1, at 30 °C)  

in a) monophasic two-solvent system (80 % EtOH in water (v/v)) and b) biphasic system (80 % EtAc in water (v/v)) 



74 
 

rates. The oxidation rate was faster using laccase Ftr than using laccase C, especially for 

coniferyl alcohol, ferulic acid and sinapic acid (Figure 4.4). The oxidation of p-coumaric acid, 

coniferyl aldehyde and caffeic acid proceeded more slowly, even with laccase Ftr: After 30 min 

72 % of coniferyl aldehyde, 80 % of p-coumaric acid and 80 % of caffeic acid remained in the 

reaction solution. The results confirm that reaction kinetics and selectivity of laccases in terms of 

dimerization of phenolic substrates were different, although they possessed the same (high) 

redox potential. These differences are probably related to the nature of the enzyme and the ligand 

binding site of type 1 copper in these two laccases (Gunne et al. 2014). The solvent inactivation 

kinetics of the laccase Abi were too fast to give significant product yields after 30 minutes 

(Figure 4.4).  

Table 4.2 Redox potential of laccases and phenolic substrates (Strong et al. Claus 2011) 

Laccasea  Redox potential 

E° (V) 

Lcc Abi  Middle 

(0.47-0.71 V) 

Lcc Ftr  High 

(0.73-0.78 V) 

Lcc C  High 

(0.73-0.78 V) 

a according to ABTS enzyme activity (Gonza´lez  et al. 2009) 

Phenolic substrates 

            pH 4.0 

 Redox potential  

E°(V) 

 

p-Coumaric acid 

 

Ferulic acid 

 

Coniferyl aldehyde 

 

Coniferyl alcohol 

 

Sinapic acid 

          Gallic acid 

          Caffeic acid 

          

            0.70 

            0.66 

            0.63 

            0.61 

            0.53 

            0.37 

            0.37 
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Figure 4.4 Oxidation of phenolic substrate in biphasic system (80 % EtAc in water (v/v)) by three laccases (Ftr, C, 

Abi), activity 1.5 U mL-1, 30 min, 30 °C 

 

4.4.3 Identification of products 

Structural analysis of oxidized products was done by HPLC-MS and GC-MS (Table 4.3). 

Coniferyl alcohol was completely converted to dimers, while coniferyl aldehyde was converted 

more slowly. Analysis of products by mass spectrometry showed at least three dimers as major 

products from coniferyl alcohol. The main product was ascribed to the -5 dimer with m/z 574, 

and the second biggest was pinoresinol with m/z 502. Pinoresinol is known as a phytoestrogen 

and taste modifier; moreover it is precursor to other lignans, such as matairesinol (Ito et al. 2002; 

Kuo et al. 2014). Compared to a previous study using a peroxidase for the dimerization of 

coniferyl alcohol or chemical oxidative reaction, the dimer with the -O-4 structure (m/z 664) 

was not detected which is explained by the different mechanism of laccase Ftr (Figure 4.5 a, b) 

(Houtman 1999). 

Oxidation of ferulic acid in the biphasic system (80 % EtAc) resulted in the formation of two 

dimers, and the substrate was completely converted when the incubation time was extended to 30 

minutes. The largest peak in the GC-MS chromatogram showed a m/z ratio of 530 after silylation 

which was related to the -dimer or dehydrodiferulic acid. Dehydrodiferulic acid which is the 

0

20

40

60

80

100

120

Blank Lcc Abi Lcc C Lcc Ftr

Coniferyl alcohol

Coniferyl aldehyde

p-Coumaric acid

Ferulic acid

Sinapic acid

Gallic acid

Caffeic aicd

re
si

d
u
al

 s
u
b

st
ra

te
 %

 



76 
 

main product of this reaction can be used as precursor of matairesinol-type lignans and has 

application in medicine, food and beverage industry (Backes et al. 2014; Takei et al.1972). The 

second peak represented the -5 dimer of ferulic acid (Figure 4.5 c) (Carunchio et al. 2001). This 

dimer is known for its high antioxidant activity, with possible application in the health and 

cosmetic industries (Sanchez-Moreno et al. 1998). In contrast, oxidized products with higher 

molecular masses were detected in the mono phasic systems, even in 80 % EtOH, by LC-MS. 

Sinapic acid was completely converted by laccase Ftr in the biphasic system. After 10 min only 

10 % of residual substrate was detected, and after 30 min, it was completely oxidized in the 

biphasic system. In the oxidation reaction at pH 5, one product with a molecular ion 590 (m/z) 

was detected which was tentatively attributed to dehydrodisinapic acid dilactone (Figure 4.5 d) 

(Wang et al. 2004). Comparing the decrease of sinapic acid with dimerization products, the 

substrate was completely converted to the dimer. Sinapic acid oxidation by a peroxidase from 

Momordica charantia was shown to produce the lactone type dimer at pH 5, but more than one 

product was detected in case of the peroxidase (Liu et al. 2007). Sinapic acid bears two methoxy 

groups ortho to the phenolic hydroxyl group, which prevents docking of a radical partner.  

The oxidation of p-coumaric acid was very slow even with the high redox potential laccases 

(Koschorreck et al. 2008). Gallic acid with its three hydroxyl groups at the aromatic ring was not 

even oxidized by high potential laccases in the biphasic system. The residual activity of laccase 

in solution after the reaction showed that gallic acid, adding to the inactivating effect of the 

organic solvent, inhibited all three laccases completely after 30 minutes. Caffeic acid solution 

showed the lowest laccase activity after 30 min of incubation confirming that other factors, such 

as the immediate inhibitory characters of substrates will also affect the activity of laccases (data 

not shown).  
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Table 4.3 Dimers identified after incubation of phenolic substrates with laccase Ftr (fragmentation of silyl-

derivatives of dimers (1.5 U mL-1, 30 min, 30 °C) 

Substrate molecular ion (m/z) dimer type 

Ferulic acid 530,530  (-), (-5)  

Coniferyl alcohol 574, 502, 634 (-5), (-),(-O-4) 

Coniferyl aldehyde 498, 498, 426 (-5), (-),(-O-4) 

Sinapic acid 586 (-) 

Gallic acid no dimers - 

p-Coumaric acid no dimers - 

 

a) 

 

b)  

 

c)                                                                                      d) 



78 
 

                            

Figure 4.5 Dimers identified after incubation with laccase Ftr in a biphasic system (80 % EtAc / 20 % H2O (v/v). a) 

coniferyl alcohol, b) coniferyl aldehyde, c) ferulic acid, d) sinapic acid 

 

4.5 Conclusion  

Lignans may gain importance for foods and beverages, because they can act as taste modifiers to 

cover bitter and astringent notes, as anti-oxidants, anti-cancer, anti-viral and anti-inflammatory 

compounds (Ríos et al. 2002). As isolation of pure lignans from plant sources is difficult, the 

laccase catalyzed dimerization of easily available phenolic precursors offers an alternative 

access. Two high and a middle redox potential laccase were investigated in mono and biphasic 

systems to increase the solubility of the substrates and to prevent polymerization. By selecting an 

appropriate solvent system and enzyme, the reaction was found to yield more than 95 % of 

desired products. As in the case of divanillin formation (Krings et al. 2015), more refined 

reaction conditions and subsequent chemical or enzymatic modifications may open access to 

sought-after lignans, such as pinoresinol or matairesinol. 
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5. Outlook 

Beside many well-known bacterial and yeast strains, fungi, especially basidiomycetes are able to 

synthesise potentially valuable flavour or fragrance compounds by whole-cell processes or 

isolated enzyme. Because of the economic challenges for the development of whole-cell process, 

research interest is shifting more and more to the enzyme catalysts reaction. 

In this thesis, new enzymatic route for the production of vanillin, divanillin and lignans was 

investigated. Although, the products were promising but further investigation for the production 

of these products in the industrial scale is needed.  

Additionally to this work which focused on the biotransformation of cheap substrates to valuable 

products such as vanillin, divanillin and lignans, high redox potential laccases from 

basidiomycetes, were found as promising candidate for biotransformation reaction especially 

where, organic solvents because of the high concentration of substrate are required.  

A better understanding of the fungal biochemistry, screening of new isolated enzymes, 

optimizing reaction condition and supplementing with cheap and natural precursors substrates 

for enzymatic reactions, could open the way to high-yielding processes for the future work.  

Meanwhile, for the future scientific interest, choosing appropriate substrate which has similar 

phenolic residues and double bounds in their structure such as carotenoids and capsaicin, with 

using same biotransformation system and isolated enzyme, can be an alternative for the 

production of valuable natural flavour and taste modifier.  
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