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Abstract 
 

 Numerous possibilities exist for reactions of inorganic and organic compounds in nature, like for 

example in petroleum systems, submarine hydrothermal systems and sulfide ore deposits if associated 

with organic matter. The understanding of the effect of inorganic components on the stability of organic 

compounds in these settings is, however, limited. In order to contribute to a better understanding of 

these potential reactions, three internally consistent series of experiments (300-350°C, 13 and 35 MPa, 

72-336 h) were conducted to study the reaction of n-octane (C8H18) with two defined mineral 

assemblages (pyrite-pyrrhotite-magnetite = PPM and hematite-magnetite = HM), Na2SO4 and various 

transition metal sulfates (CuSO4, FeSO4, Fe2(SO4)3, NiSO4 and ZnSO4). After the experiments, solids were 

analyzed via X-ray diffraction and organic reaction products were analyzed via headspace gas 

chromatography. Quantified organic products comprise CO2, n- and iso-alkanes, alkenes, ketones and 

aromatics. An extended calibration allowed the determination of three organosulfur compounds 

(thiophene, 2- and 3-methylthiophene) for samples containing transition metal sulfates.  

 

 Overall, the distribution pattern of organic products is similar for all samples, indicating that 

cracking and aqueous oxidation are the major controlling factors for n-octane decomposition during the 

experiments. Despite this good general agreement, results clearly show that the examined inorganic 

compounds can affect the thermal decomposition of n-octane to various, non-negligible degrees. This is 

for example illustrated by the observation that different additives cause various n-octane conversions, 

which range from 0.24 mol% (PPM+H2O+C8H18 300°C) to 28 mol% (CuSO4+H2O+C8H18 315°C). 

Furthermore, generated products reflect more oxidizing conditions in presence of HM than in presence of 

the PPM, which is in line with the redox buffering ability of these mineral assemblages. Thermodynamic 

evaluation of organic products provide evidence that alkanes and alkenes, but not alkenes and ketones, 

attained or closely approached thermodynamic equilibrium with respect to the aqueous hydrogen 

concentration, which is regulated by the buffers during the experiments. 

 Addition of Na2SO4 reduces the oxidation of n-octane to CO2 in the HM, PPM and buffer-free 

experiments, which were processed at 350°C. This is in contrast to previous studies, which investigate the 

thermochemical reduction of sulfate (TSR), a redox reaction in which hydrocarbons are oxidized and 

sulfate is reduced. Based on the results of the present study, especially those for the PPM experiments, it 

is hypothesized that TSR may still have proceeded at a subordinate rate and that a shift in the reaction 

network toward a pathway involving organosulfur compounds may successfully explain this observation. 

 Clear evidence for TSR without the initial presence of low valence sulfur is provided by detection 

of organosulfur compounds in the Fe2(SO4)3, FeSO4 and CuSO4 containing samples, which were processed 

at 315°C. Moreover, this is the first time that occurrence of TSR without initial presence of low valence 

sulfur is demonstrated at pH ≥4. Based on the generated amount of organosulfur compounds (thiophene, 

2- and 3-methylthiophene), the following relative reactivity of the transition metal sulfates can be 

inferred: Fe3(SO4)2  >>  FeSO4  >  CuSO4. No organosulfur compounds were detected for the NiSO4 and 

ZnSO4 containing samples. 

 

 Results of this study highlight the potential of well-constrained experiments, which allow us to 

investigate the effect of inorganic species on organic matter transformation. Combination of such 

experiments with thermodynamic evaluations will have significant implications for our understanding of 

the occurrence and stability of hydrocarbons in nature. 

 
 

 

 

 

Keywords: Thermochemical sulfate reduction, transition metals, redox buffers, n-alkanes, fluid-rock 

interaction 

 
 

 



Zusammenfassung 
 

 In der Natur gibt es zahlreiche Möglichkeiten für die Reaktion von organischen und anorganischen 

Verbindungen, wie zum Beispiel in Erdöl- und Erdgaslagerstätten, submarinen hydrothermal Systemen 

oder Sulfiderzlagerstätten, wenn diese mit organischem Material assoziiert sind. Das Verständnis des 

Einflusses von anorganischen Verbindungen auf die Stabilität von organischen Verbindungen in diesen 
Milieus ist jedoch limitiert. Um ein besseres Verständnis zu erzielen, wurden in dieser Studie drei in sich 

konsistente experimentelle Serien (300-350°C, 13 und 35 MPa, 72-336 h) durchgeführt, um die Reaktion 

von n-Oktan (C8H18) mit zwei definierten Mineralvergesellschaftungen (Pyrit-Pyrrhotin-Magnetit = PPM 

und Hämatit-Magnetit = HM), Na2SO4 und verschiedenen Übergangsmetallsulfaten (CuSO4, FeSO4, 

Fe2(SO4)3, NiSO4 und ZnSO4) zu untersuchen. Nach den Experimenten wurden die Feststoffe mittels 
Röntgenbeugung und organische Reaktionsprodukte mittels Headspace-Gaschromatographie analysiert. 

Quantifizierte organische Produkte umfassen CO2, n- und iso-Alkane, Alkene, Ketone und Aromaten. Eine 

erweiterte Kalibration ermöglichte es für die Proben mit den Übergansmetallsulfaten auch 

Organoschwefelverbindungen (Thiophen, 2- und 3-Methylthiophen) zu messen. 

 
 Prinzipiell ist das Verteilungsmuster der organischen Reaktionsprodukte für alle Proben sehr 

ähnlich. Dies zeigt, dass während der Experimente Cracking und aquatische Oxidation die 

Hauptkontrollfaktoren für die Zersetzung von Oktan sind. Trotz dieser guten generellen 

Übereinstimmung, zeigen die Ergebnisse deutlich, dass die untersuchten anorganischen Verbindungen die 

thermische Zersetzung von n-Oktan in unterschiedlichem, nicht zu vernachlässigbarem Maße, 

beeinflussen können. Dies zeigt sich beispielsweise dadurch, dass die verschiedenen anorganischen 
Additive zu einem unterschiedlich hohen Umsatz an n-Oktan führen. Dieser reicht von 0.24 mol% 

(PPM+H2O+C8H18 300°C) bis 28 mol% (CuSO4+H2O+C8H18 315°C). Außerdem spiegeln die Produkte in 

Gegenwart von HM stärker oxidierende Bedingungen wider als in Gegenwart von PPM. Dies ist im 

Einklang mit der Pufferwirkung dieser Mineralvergesellschaftungen. Eine thermodynamische Betrachtung 

der organischen Produkte liefert Anzeichen dafür, dass Alkane und Alkene, aber nicht Alkene und Ketone, 
sich im thermodynamischen Gleichgewicht bezüglich der vom Puffer eingestellten aquatischen 

Wasserstoffkonzentration befinden, beziehungsweise sich diesem annähern. 

 In den 350°C Experimenten, führte die Zugabe von Na2SO4 in allen drei untersuchten Systemen 

(HM, PPM und ohne Puffer) zu einer verringerten Oxidation von n-Oktan zu CO2. Dies steht im 

Widerspruch zu früheren Studien, welche die thermochemische Reduktion von Sulfat (TSR) untersucht 
haben. TSR bezieht sich auf eine Redoxreaktion bei der Kohlenwasserstoffe oxidiert und Sulfat reduziert 

werden. Basierend auf den Ergebnissen dieser Studie, speziell denen für die PPM Experimente, wird die 

Hypothese aufgestellt, dass TSR dennoch, wenn auch mit sehr niedriger Rate, abgelaufen sein könnte. 

Eine damit verbundene Verschiebung im Reaktionsnetzwerk hin zu einem Reaktionsweg mit 

Organoschwefelverbindungen als Zwischenstufen, könnte die Beobachtungen erfolgreich erklären. 
 Ein eindeutiger Beweis für TSR ohne anfängliche Anwesenheit von reduziertem Schwefel, ist für 

die Fe2(SO4)3, FeSO4 and CuSO4 haltigen Proben, die bei 315°C prozessiert wurden, durch den Nachweis 

von Organoschwefelverbindungen gegeben. Darüber hinaus ist dies die erste Studie, welche das Auftreten 

TSR ohne initiale Anwesenheit von reduziertem Schwefel bei einem pH von ≥4 nachweist. Anhand der 

gebildeten Mengen an Organoschwefelverbindungen (Thiophen, 2- und 3-Methylthiophen) lässt sich die 

folgende relative Reaktivität der Übergangsmetallsulfate ableiten: Fe3(SO4)2  >>  FeSO4  >  CuSO4. Für die 
Versuche mit NiSO4 und ZnSO4 wurden keine Organoschwefelverbindungen detektiert. 

 

 Ergebnisse dieser Arbeit zeigen das Potential auf, welches gut definierte Experimente haben um 

den Einfluss anorganischer Stoffe auf die Umwandlung von organischem Material zu untersuchen. Eine 

Kombination solcher Experimente mit thermodynamischen Betrachtungen kann eine erhebliche 
Auswirkung auf unser Verständnis bezüglich des Auftretens und der Stabilität von Kohlenwasserstoffen in 

der Natur haben. 

 
 

 

 

 

Schlagwörter: Thermochemische Sulfatreduktion, Übergangsmetalle, Redox Puffer, n-Alkane, Fluid-

Gesteins Interaktion 
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11..   MOTIVATION AND OVERVIEW 

 
 

 Organic-inorganic associations are abundant in diverse geologic environments (Fig. 1) 

including, but not limited to petroleum systems (Seewald, 1994, 2001, 2003), sulfide ore 

deposits (Powell and Macqueen, 1984; Leventhal, 1990; Sun and Püttmann, 2000; Bechtel et 

al., 2001; Sun and Püttmann, 2003) and submarine hydrothermal systems (McCollom and 

Seewald, 2007; Proskurowski et al., 2008). The reaction between inorganic components (e.g. 

minerals, dissolved sulfate and aqueous metal cations) and organic matter can play a crucial 

role in a wide range of geochemical processes that include, for example, the generation of 

oil and gas, as well as the transport and deposition of ore-forming metals. Despite this 

impact, understanding of inorganic-organic reactions is limited (Price and DeWitt, 2001).  

 

 

 
 

 

 

Natural Observations 

 Two sulfide ore deposits that are associated with organic matter are for example the 

Kupferschiefer and the Mississippi Valley type deposits. They both owe their origin to fluid 

circulation in sedimentary basins. The Kupferschiefer is a stratabound polymetallic sulfide 

deposit in Central Europe characterized by copper enrichment. It consists of black and marly 

 

Fig. 1: Schematic illustration of possible geologic environments, in which inorganic-organic interactions can be 

encountered: 1 = Mid Ocean Ridges (MOR), 2 = Sedimentary exhalative deposits (SEDEX), 3 = Mississippi Valley 

type deposits (MVT), and 4 = Petroleum systems.  

 



 
 2 

shales, which are intercalated between underlying Zechstein sandstones and overlying 

Zechstein carbonates (Sun, 1998). Sun and Püttmann (2000) showed that reduction of 

sulfate by organic matter, the so-called thermochemical sulfate reduction (TSR), is 

responsible for up to 60% of the Kupferschiefer mineralization in the Sangerhausen basin in 

Germany. Mississippi Valley type deposits (MVT), on the other hand, are stratabound, mainly 

carbonate-hosted sulfide ore deposits dominated by high concentrations in Pb, Zn and Cu 

(Robb, 2009). Analysis of natural samples from such deposits in Canada (Powell and 

Macqueen, 1984) and SE Missouri (Leventhal, 1990) confirmed the involvement of TSR in ore 

formation processes.  

 In context of petroleum reservoirs, TSR has been addressed as possible cause for 

severe gas souring with up to 90 vol% H2S in the gas phase (Orr, 1977). In addition to that, 

numerous geological and geochemical studies have presented convincing arguments that 

inorganic components like water, minerals and transition metals in the solid or dissolved 

state, have the ability to influence hydrocarbons during generation, expulsion, migration and 

storage (Siskin and Katritzky, 1991; Mango et al., 1994; Machel, 2001; Price, 2001; Price and 

DeWitt, 2001; Seewald, 2001; Lu et al., 2011). Apart from that, the impact of inorganic 

components on organic matter transformation is often neglected in petroleum maturation 

studies. Conventional petroleum models, for example, which are generally used to predict 

stability and maturation of hydrocarbons, only consider burial temperature, geologic time 

and the organic starting material as controlling factors (Price, 2001). Price (2001) noted that 

such models greatly underestimate the thermal stability of oil. Thus, it is a challenge to 

predict what is happening “down there”. Prediction of processes influencing the quality of 

hydrocarbon reservoirs becomes, however, more and more important at an early 

exploration stage to avoid problems during recovery as well as to save exploration and 

production costs (Hoffmann et al., 1995; Huc, 2003). 

 

 

Experimental Investigations 

 Laboratory experiments represent a powerful tool to gain insight into inorganic-

organic interactions in a confined system. Their results have the potential to contribute to a 

better understanding of petroleum generation and evolution in nature. Consequently, 

experimental studies are strongly required for the improvement of prediction models. 
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During the last three decades increasing number of experimental studies were published 

that emphasize the critical role that water (Winters et al., 1981; Lewan, 1997; Leif and 

Simoneit, 2000), minerals (Horsfield and Douglas, 1980; Seewald, 2001; McCollom and 

Seewald, 2003), dissolved sulfate (Zhang et al., 2007; Zhang et al., 2008a; Lu et al., 2011), 

and transition metals (Mango et al., 1994; Mango and Hightower, 1997b) can play for the 

conversion of organic matter. Extrapolation of many experimental results to natural systems 

is, however, questionable because key chemical variables such as redox conditions were not 

controlled at geologically reasonable values (Helgeson et al., 1993; Seewald, 2001). Helgeson 

et al. (1993) makes a strong point in his conclusion, stating that redox-controlled 

experiments reflecting conditions prevailing in hydrocarbon reservoirs are crucially needed 

to understand oil and gas generation in nature. To the best of my knowledge, there are to 

this point only studies by Jeffrey Seewald and two of his former PhD students (Tom 

McCollom and Eoghan Reeves), who used redox-controlled experiments to investigate the 

stability of low molecular weight hydrocarbons (≤C7) and organic acids (≤C5) under 

hydrothermal conditions (Seewald, 1994, 2001; McCollom and Seewald, 2003; Seewald, 

2003; McCollom and Seewald, 2003a; McCollom, 2010; Reeves et al., 2012). From these 

studies, only three focus on the conversion of n-alkanes (Seewald, 1994, 2001; Reeves et al., 

2012), which are the major constituents of oil and gas (Kissin, 1987). Seewald (1994, 2001) 

presents results for three experiments with ethane and three with n-heptane at 300 and 

325°C using the hematite-magnetite-pyrite (HMP) and the pyrite-pyrrhotite-magnetite 

(PPM) mineral redox buffers. Reeves et al. (2012) presents results for experiments with a 

mixture of C1 to C5 n-alkanes at 325°C with the PPM mineral buffer. 

 

 

This PhD Thesis 

 Driving factors for initiating the present PhD thesis were scarcity of data for redox-

controlled experiments studying hydrocarbon stability in presence of sulfate, on the one 

side, and insufficient data for studies investigating the effect of inorganic components on the 

reaction network associated with hydrocarbon transformation at elevated temperature, on 

the other side. The central goal of this thesis is to stress the impact inorganic components 

can have on organic matter transformation under hydrothermal conditions, which can be of 

fundamental importance in the context of petroleum reservoirs, sulfide ore deposits and 
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submarine hydrothermal systems. Due to complexity of natural systems, a simplified 

synthetic system is used for the experiments in this study. Three experimental series were 

conducted in the course of the present PhD thesis in order to study the effect of minerals, 

dissolved sulfate and dissolved transition metals on the conversion of n-octane in the 

temperature range of 300 to 350°C. The effect of minerals on n-octane conversion was 

explored using the hematite-magnetite and the pyrite-pyrrhotite-magnetite mineral buffer 

assemblages. Sodium sulfate and five different transition metal sulfates (CuSO4, FeSO4, 

Fe2(SO4)3, NiSO4 and ZnSO4) were used as sulfate sources, with the latter also being a source 

for transition metals. For all experiments, special attention was drawn to the organic 

product distribution (n-alkanes, alkenens, ketones and CO2).  

 

 The thesis is structured in eight chapters. The first one is this introductory chapter, 

which is followed by a chapter summarizing the theoretical background relevant for this 

study. It summarizes important chemical reactions and principals, and gives a brief literature 

review on today’s state of knowledge regarding inorganic-organic reactions under 

hydrothermal conditions. Chapter 3 represents the foundation of the thesis. Here, the 

experimental strategy is described and details on materials and methods are provided. 

Chapters 4 to 6 form the core of the thesis and contain experimental results, as well as their 

discussion. Basically, the experiments discussed in theses chapters can be divided into two 

main parts (Part I and II): Experiments presented in chapter 4 (Part I-A) and chapter 5 (Part I-

B) focus on the effect of mineral-buffers on the thermal decmposition of n-octane, and those 

presented in chapter 6 (Part II) elucidate the effect of transition metal sulfates on the 

thermal decomposition of n-octane. In detail, the objectives of the individual chapters are as 

follows: 

 

 Part I-A (chapter 4) focuses on the interpretation of the data for the 

HM and PPM samples processed at 300°C and 350°C in presence and 

absence of sulfate. The objective is to evaluate the effect of these 

inorganic components on the product distribution and to determine 

possible processes responsible for the degradation of n-octane during 

the experiments. 
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 Part I-B (chapter 5) ties in with part I-A. Here, data for experiments 

with the HM and PPM redox buffers are evaluated in a thermodynamic 

framework in order to explore possible equilibration of redox-

dependent organic reactions like the alkane-alkene and alkene-ketone 

reactions. 

 

 Part II (chapter 6) presents first results for samples with transition 

metal sulfates, which were processed at 315°C and 13 MPa for 168 h in 

absence of mineral buffers. The ability of dissolved transition metals to 

initiate and catalyze TSR is evaluated. 

 

The three results and discussion chapters are followed by an implications chapter 

(chapter 7), which highlights the broad spectrum of natural environments where results 

might be applicable. Last but not least, the thesis is concluded in chapter 8. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
 6 

22..  THEORETICAL BACKGROUND 

 

2.1 THERMAL CRACKING 

 Thermal cracking is investigated in pyrolysis studies. The compound of interest (e.g. 

n-alkanes) is heated to a desired temperature, usually >300°C, and reaction products are 

monitored in order to gain insight into the product distribution and associated reactions. 

During thermal cracking the starting material is mainly cleaved into shorter molecules and 

the products are dominated by straight-chain n-alkanes and alkenes (Moldoveanu, 2010). 

Pure pyrolysis is studied in an oxygen-free atmosphere and without additives. Such studies 

provide information on basic reaction mechanisms for n-alkane conversion and results are 

valuable for a better understanding of refining processes.  

 

The Radical Chain Mechanism 

 The generally accepted standard mode of n-alkane decomposition during pyrolysis is 

the radical chain mechanism. It was first described by pioneering studies in the early 1930s 

(Rice, 1931; Rice and Herzfeld, 1934). The principal concept of this mechanism, which is also 

known as the Rice-Kossiakoff concept (Kossiakoff and Rice, 1943),  is summarized here using 

the example of n-octane, a straight chain hydrocarbon with eight carbon atoms (Fig. 2). The 

interested reader is referred to Safarik and Strausz (1996), Olah and Molnár (2003) and  

Moldoveanu (2010), for thorough reviews and detailed information on the process. 

 

 

 

 

 
 

Fig. 2: Structural formula of n-octane (C8H18). Circles represent carbon atoms; 

numbers refer to the carbon position. 
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Table 1: Possible initiation reactions for n-octane. 

Cleavage  

between  

C positions 

Generated radicals 

1-2 or 7-8 CH3
●

 + C7H15
●

 (rather unlikely) 

2-3 or 6-7 C2H5
●
 + C6H13

●
 

3-4 or 5-6 C3H7
●
 + C5H11

●
 

4-5 C4H9
●
 + C4H9

●
 

 

 The concept of the free-radical chain mechanism can be divided into four steps: i) 

initiation reaction, ii) chain propagation through hydrogen abstraction, iii) radical 

transformation by C-C bond homolysis (β scission), i.e. cleavage of the C-C bond by splitting 

the binding electron pair, and iv) termination reactions. 

 

Step 1: Initiation reaction 

 The initiation takes place by homolytic 

scission of a C-C bond in n-octane, producing 

two radicals (Table 1). The probability for 

cleavage of a C-C bond varies for the different 

positions in the C8 molecule, depending mainly 

on the bond energies. Bond dissociation 

energies summarized by Moldoveanu (2010) 

show that the C-C bonds are less stable the 

greater the alkyl-groups are, which are attached to the two carbon atoms. An alkyl-group is 

usually abbreviated with the symbol R and consists solely of single-bonded carbon and 

hydrogen atoms, for example a methyl (-CH3) or ethyl (-CH2-CH3) group. The different bond 

strengths indicate that the probability of cleaving n-octane between carbon positions 1-2 

and 7-8 is rather unlikely – although not excluded. As shown in Table 1, eight different 

radicals may be produced from n-octane by C-C bond scission.  

 

Step 2: Chain propagation through hydrogen abstraction 

 The initially formed radicals can then abstract hydrogen from n-octane, the reactant 

molecule, which is exemplified using an ethyl radical in the following reaction: 

 

 

    C2H5
●
 + C8H18 → C2H6 + C8H17

●
   (1) 

 

 

With progressing reaction, more and more radicals can form and may also abstract hydrogen 

from other product hydrocarbons. Non-terminal hydrogen atoms are preferentially removed 

over those bonded to a primary carbon atom (Kossiakoff and Rice, 1943). According to the 

authors, the probability to remove hydrogen from a tertiary carbon is greater than for 

removal from a secondary carbon atom. 
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Fig. 3: The red bar marks the C-C bond in β position to 

the radical site in a n-octyl radical. The carbon atom (8)  

with the unpaired electron (radical) is named α carbon, 

the next carbon atom in the chain (7) is the β carbon,  

and the following carbon atoms are named 

consecutively using greek letters. Thus the C-C bond in 

β position to the radical site is the bond between the β 

(=7) and γ (=6) carbon. 

 

 

Step 3: Radical decomposition by C-C homolysis (β scission) 

 If a radical is composed of at least three carbon atoms, it has the possibility to 

decompose by β scission. The greek letter refers to the discrete position of the carbon atom 

in the chain, that means that in this case the 

cleavage of the C-C bond occurs between the 

second and the third carbon adjacent to the 

radical site (Fig. 3). As a result, an α-alkene, i.e. 

an alkene with the double bond between the 

two outermost carbon atoms (e.g. 1-butene 

CH2=CH-CH2-CH3), and a radical of shorter 

chain length than the starting compound are 

produced. In Reaction (2) an example of β 

scission for a terminal n-octyl radical is given: 

 

 

  CH3CH2CH2CH2CH2CH2CH2CH2
●
 → C2H4 + C6H13

●
   (2) 

 

Step 4: Termination reactions 

 There are two kinds of termination reactions: i) termination by combination of two 

radicals (Reaction 3), and ii) termination with disproportionation (Reaction 4) (Moldoveanu, 

2010); both possibilities are illustrated using the example of the n-butyl and n-pentyl 

radicals: 

 

    C4H9
●
 + C5H11

●
 → C9H20    (3) 

 

    C4H9
●
 + C5H11

●
 → C4H10 + C5H10   (4) 

 

 

Termination according to Reaction (3) opens the possibility to produce larger n-alkanes than 

the starting material. In contrast, termination with disproportionation always results in 

shorter molecules than the starting compound, with an n-alkane and an alkene being the 

products. 

 

 Note that the radical chain mechanism shows pressure dependence. With increasing 

pressure, bimolecular reactions are favored over unimolecular reactions (Rice and Herzfeld, 
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1934; Fabuss et al., 1964).  As a result, cracking products obtained at higher pressures, like in 

the present study (13-35 MPa), are significantly different from normal pyrolysis studies at 

lower pressures (P ≈ 0.1 MPa), in the way that: i) larger n-alkanes are more abundant, and ii) 

the alkane/alkene ratios are significantly higher. 

 

 In addition to the radical chain mechanism, ionic mechanisms may also play a role for 

hydrocarbon decomposition. Carbonium-ion mechanisms (those involving positively charged 

intermediates), for example, are proposed to be responsible for the generation of branched 

hydrocarbons (Greensfelder et al., 1949). Organic reaction products generated from 

n-octane during experiments performed in the course of the present study, are, however, 

dominated by straight-chain alkanes. According to Seewald (2001), this observation indicates 

that ionic mechanisms play only a subordinate role. 

 

 

2.2 INFLUENCE OF INORGANIC COMPONENTS ON ORGANIC MATTER 

TRANSFORMATION 

 In natural systems, temperature is not the only controlling factor for n-alkane 

conversion and organic matter transformation in general. The reason is that inorganic 

components, like water, transition metals and minerals, are ubiquitous compounds in 

subsurface environments, which may all alter hydrocarbons during generation, expulsion, 

migration and storage to various degrees (Mango, 1997a; Seewald, 2001, 2003). Especially 

the effect of sulfate on petroleum alteration attracted great interest because it may 

minimize hydrocarbon quality severely (Zhang et al., 2007; 2008; Zhang et al., 2008a; Zhang 

et al., 2008b; Zhang et al., 2012). In the context of sulfide ore deposits, the reaction of 

dissolved transition metals, sulfate and organic matter may play a crucial role for ore 

transport and deposition. This subchapter provides a brief review on today’s state of 

knowledge about the effect of inorganic species on organic matter transformation under 

hydrothermal conditions. 
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2.2.1 ROLE OF WATER DURING PYROLYSIS 

 In contrast to dry pyrolysis, hydrous pyrolysis – i.e. pyrolysis in presence of water – 

has been shown to closely simulate petroleum generation in natural systems (Lewan et al., 

1985; Price, 2001), for example the characteristic low-olefin (high saturates) content of 

natural petroleum oils (Winters et al., 1981). The role of water is manifold. Water can act as 

solvent and thus facilitate reactions not available in dry environments. Furthermore, it may 

act as oxygen and hydrogen donor (Seewald, 2001). Stalker et al. (1994) used 
18

O labeled 

water in their experiments to show that oxygen addition from water to sedimentary organic 

matter can occur at hydrothermal conditions (150-330°C) during kerogen degradation. At 

about the same time, Lewan (1997) could 

proof extensive hydrocarbon deuteration as a 

result of hydrous pyrolysis of Woodford shale 

in presence of D2O at 330°C. Recently, Reeves 

et al. (2012) studied the hydrogen isotope 

exchange between n-alkanes (≤C5) and water 

at 323°C. They could verify that hydrogen 

exchange between water and hydrocarbons 

with more than two carbon atoms (C2+) occurs 

on the timescale of days under hydrothermal 

conditions. The study of Seewald (2003) 

strengthens these observations claiming that 

conventional models, which neglect water as 

hydrogen donor, may significantly 

underestimate the amount of oil and natural 

gas that can be generated (Fig. 4). 

 

2.2.1.1 AQUEOUS OXIDATION OF N-ALKANES 

 In 2001, Seewald published a reaction network for the stepwise aqueous oxidation of 

hydrocarbons in a sulfate-free system. With that, Seewald (2001) provided a new 

interpretational approach for hydrocarbon decomposition in natural environments and 

contributed to a better understanding of associated processes. He established the reaction 

network based on results from experiments studying the reaction of n-alkanes (ethane and 

Fig. 4: Schematic illustration of the oil and gas 

generation potential from kerogen during thermal 

maturation in sedimentary basins. Presence of 

water and minerals (indicated by solid fields) 

significantly affects the amount and timing of oil 

and gas formation when compared to predicted 

amounts by traditional petroleum generation 

models (hatched fields), which treat temperature as 

the only controlling factor (modified after Seewald, 

2003). 
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n-heptane) and alkenes (ethene, propene and 1-butene) with the HM, HMP and PPM 

mineral assemblages under hydrothermal conditions (300-350°C, 35 MPa).  Seewald (2001) 

notes that, besides a thermodynamic drive, presence of a suitable oxidizing agent or a 

mechanism to remove H2 is a prerequisite for the process to occur. The reaction sequence 

involves reduction, hydration and oxidation reactions, of which some are clearly sequential, 

whereas others may proceed in parallel. The alteration assemblage obtained by aqueous 

oxidation is compositionally distinct from that by pure thermal cracking, e.g. oxygenated 

organic compounds are more abundant. The final products in the sequence are methane and 

CO2. This reaction scheme is of fundamental importance for the discussion of results 

presented in the present PhD thesis and is referred to as the “Seewald model”. In detail, the 

reaction scheme is structured as follows: 

 

 

  In the first step of the reaction scheme (Fig. 5) an n-alkane is oxidized to an alkene. 

Specific hydration of the interior carbon associated with the double bond generates an 

alcohol, a process known as Markownikoff addition in chemistry. Seewald (2001) noted that 

hydration of the alkene in step (2) may also occur at the terminal carbon, but at a rate 

substantially slower than hydration following the Markownikoff rule. Further oxidation of 

the alcohol produces a ketone (step 3). The first three steps in this sequence are analogous 

to the reaction scheme postulated by Leif and Simoneit (1995; 2000). Oxidation in step (4) 

forces a decrease in carbon chain length. The interior C-C bond of the ketone that is adjacent 

to the carbonyl (C=O) functional group is cleaved, and two organic acids are produced.  

Seewald (2001) suggests that the largest organic acid that can be generated in step (4) has 

usually two carbons less than the starting n-alkane, due to the fact that alkene oxidation in 

step (2) is not likely to occur at terminal carbons. This also implicates that formation of 

formic acid (CH2O2) is generally not a preferred product in step (4). Formic acid may also be 

generated in step (5) if C2+ organic acids generated in step (4) undergo “deformylation” 

(McCollom and Seewald, 2003). However, results from McCollom and Seewald (2003) for 

experiments with valeric acid (C5H10O2) performed under identical conditions than the 

experiments conducted by Seewald (2001), i.e. in presence of water and the same mineral 

buffers (HM, HMP and PPM) and at a temperature of 325°C and a pressure of 35 MPa, 

indicate that formic acid is not stable and will instantly react to CO2 and H2. Apart from 

deformylation two more likely possibilities exist how reactions continue in step (5): 

decarboxylation and oxidation. Oxidation promotes the formation of CO2, whereas 



 
 12 

 

 

 

Fig. 5: Schematic representation of the reaction scheme postulated by Seewald (2001) for the oxidative 

decomposition of aqueous n-alkanes. The formation of a terminal alkene in the first step is for illustrative purpose only 

and formation of other alkene isomers is also possible. Products generated by C2+ carboxylic acid oxidation (step 5) 

could not be specified. Adapted from Seewald (2001) with kind permission of Pergamon. 
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decarboxylation produces equimolar amounts of CO2 and a short-chain n-alkane. The n-

alkanes produced in step (5) are mainly composed of three carbons less than the starting n-

alkane, because hydration of alkenes at the terminal carbon is negligible in step (2). 

Generated n-alkanes may re-enter the reaction scheme at step (1), which shows that the 

reaction scheme is interwoven. 

 Even though some products, like for example alkenes, might only be present at low 

concentrations, they still form a crucial link in the reaction scheme and are important 

intermediates for oxidative n-alkane decomposition. At all steps in the sequence, the 

thermodynamic drive becomes stronger the higher the chain length is (see Fig. 10 in 

Seewald, 2001).   

 

 

2.2.2 ROLE OF MINERALS DURING HYDROCARBON CONVERSION 

2.2.2.1 REDOX BUFFERING ABILITY OF MINERAL ASSEMBLAGES 

 The HM, HMP and PPM mineral assemblages that Seewald (2001) used during the 

experiments have the characteristic that they can act as redox mineral buffers. Such mineral 

assemblages can constrain redox conditions as a function of temperature, which may have 

implications for hydrocarbon transformations. The buffering ability can be attributed to the 

fact that the minerals may consume or supply molecular oxygen, i.e. their capability to 

function as oxygen buffers. If, in presence of water, conditions get more oxidizing the 

fraction of the oxidized mineral increases whereby the hydrogen activity in the system is 

kept constant if equilibrium is attained (see chapter 3.6.1 for detailed buffer reactions). 

Therefore, the activity of aqueous hydrogen can be used to characterize the redox 

conditions adjusted by the mineral buffers under hydrothermal conditions. For dilute 

solutions, the activity of any component i in solution is defined as: 

 

 

     �� =	
��

��
     (5) 

 

 

with ci being the molal (mol/kg
��) concentration of the species i in water, and c0 refers to 

the standard state of a dilute solution, which shows ideal behavior. The standard state for 

aqueous species other than water is a hypothetical 1 molal solution referenced to infinite 

dilution at any temperature and pressure. The standard state adopted for water is unit 
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activity of the pure liquid at any temperature and pressure. The activity of an aqueous 

species can be computed from thermodynamic models. Furthermore, the concentration of 

the aqueous species of interest can be measured during hydrothermal experiments. For 

dilute solution, this then corresponds to the aqueous activity (cf. Equation 5). 

 

 In addition to the hydrogen activity, the oxygen fugacity (ƒO2(g) in bar) is commonly 

used to characterize redox conditions. It refers to the effective partial pressure of oxygen in 

the system and can be defined as: 

 

     ƒO2 (g) = φ O2 (g) · XO2 (g) · Ptot    (6) 

 

with Ptot being the total pressure in the system, XO2(g) is the molar fraction of oxygen in the 

gas phase, and φ stands for the fugacity coefficient. Because the disproportionation of water 

rapidly attains a state of thermodynamic equilibrium under hydrothermal conditions, the 

fugacity of oxygen can be directly related to the activity of aqueous hydrogen via: 

 

 

    2 H2O (l) = 2 H2 (aq) + O2 (g)    (7) 

 

 

Note, that this does not necessarily mean that free oxygen is present in the reacting system, 

because oxygen generated by the reaction can be readily stored in minerals and other 

available reactants (Helgeson et al., 1993).   

 

 

 In experimental petrology, redox buffers are widely used to fix redox conditions at 

realistic geological conditions during experiments. In doing so, experiments can closely 

mirror natural processes and their results can be interpreted in a thermodynamic 

framework. Depending on the desired redox conditions different mineral assemblages are 

used. Up to this point, the use of mineral redox buffers in experimental organic 

geochemistry is scarce, despite the fact that many organic-organic and inorganic-organic 

reactions clearly involve changes in the nominal oxidation state of carbon and may be redox-

dependent (Seewald, 2001). 
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Natural Observations for Petroleum Reservoirs 

 Shock (1988; 1989) performed a thermodynamic study of data reported by Carothers 

and Kharaka (1978) for concentrations of short-chain organic acid anions (acetate, 

propionate, butyrate, and valerate) in 95 formation-water samples from 15 oil and gas fields 

in the San Joaquin Valley, California, and in the Houston and Corpus Christi areas, Texas, 

covering subsurface temperatures of 40-200°C. These fields all represent calcite-bearing 

sandstone reservoirs. Shock (1988; 1989) used this data to compute oxygen fugacity based 

on the law of mass action for the reaction:  

 

 

            3 CH3COOH (aq) = 2 CH3CH2COOH (aq) + O2 (g)       (8)  

 

 

assuming equilibrium between aqueous propanoic (CH3CH2COOH) and acetic acid 

(CH3COOH) (details see Shock, 1988; 1989). As shown in Fig. 6 calculated oxygen fugacities 

fall between the stability line of the HM and the field of the pyrite-pyrrhotite-magnetite PPM 

mineral assemblages. Calculated log fO2 values of -59 to -55 in the temperature range of 90 

to 110°C are in line with expectations for typical hydrocarbon reservoirs in nature (Pokrovskii 

and Helgeson, 1994). 

 

 

 

 
 

 

Fig. 6: Log fugacity of oxygen (log fO2) as a function of temperature (modified after Shock, 1988). 

The symbols represent log fO2 values computed by Shock (1988) for metastable equlibrium 

between aqueous propanoic (CH3CH2COOH) and acetic acid (CH3COOH) in formation-water 

samples from calcite-bearing sandstone reservoirs (details see Shock, 1988; 1989). Data used for 

the calculation is taken from Carothers and Kharaka (1978). Calculated values fall between the line 

of the hematite-magnetite (HM) and the field for the pyrite-pyrrhotite-magnetite (PPM) mineral 

assemblages. Owing to the non-stoichiometry of pyrrhotite the PPM buffer can fix fO2 in a certain 

range (see chapter 3.6.1 for details). 
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Implications for Reactions Between Organic Compounds 

 As discussed in the previous section, thermodynamic investigation of data for natural 

samples provide evidence that organic-organic reactions can be controlled by redox and that 

individual reactions may attain a thermodynamic equilibrium state although the global 

system may not have attained total thermodynamic equilibrium. According to Seewald 

(2001), this is possible because of kinetic barriers. He uses the expression “metastable 

thermodynamic equilibrium” for such partial thermodynamic equilibria of individual 

reactions. The expression is adopted in the present study. 

 

 Seewald (2001), investigated the possible attainment of metastable thermodynamic 

equilibria for the alkane-alkene and alkene-ketone reactions in sulfate-free experiments with 

n-alkanes (ethane and n-heptane) and alkenes (ethene, propene and 1-butene) in presence 

of the HM, HMP and PPM mineral assemblages under hydrothermal conditions (300-350°C, 

35 MPa), the same that were already referred to in chapter 2.2.1.1. He used a flexible-cell 

hydrothermal apparatus  for the experiments (cf. Fig. 1 in McCollom and Seewald, 2003), 

which allows sampling and injection of fluids without interruption of experiments. This offers 

a great advantage for studying reversibility of reactions. The effectiveness of the mineral 

buffers was confirmed by monitoring the concentration of aqueous hydrogen during the 

course of the experiments and comparing it with thermodynamic predictions for equilibrium 

values. In all three buffering systems the hydrogen activity quickly readjusted, i.e. within 

24 h, to the nominal value after perturbation of the chemical system. Results by Seewald 

(2001) highlight that redox can play a crucial role for stability and reactivity of organic 

compounds. In presence of the more oxidizing HM and HMP buffers, with both adjusting the 

same hydrogen activity, aqueous oxidation of hydrocarbons to CO2 is enhanced if compared 

to the more reducing conditions obtained with the PPM mineral buffer. In fact, results of 

experiments by Seewald (2001) indicate that the relative abundance of the whole set of 

reaction products generated by oxidation and reduction reactions associated with aqueous 

oxidation (Fig. 5) may be controlled by the redox conditions imposed by the mineral buffers. 

This seems self-explanatory, but such interaction between inorganic and organic compounds 

is often not considered in organic chemistry. 
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Experimental Evidence for Possible Metastable Thermodynamic Equilibrium 

of the Alkane-Alkene and the Alkene-Ketone Reactions 

 Seewald (1994, 2001) was the first one who provided experimental evidence that 

individual redox-dependent organic reactions, such as the alkane-alkene (Reaction 9) or 

alkene-ketone (Reaction 10) reactions, are reversible and can attain a redox-dependent 

metastable thermodynamic equilibrium state. 

 

 

   CnH2n+2 (aq) = CnH2n (aq) + H2 (aq)   (9) 

     alkane           alkene 

 

   CnH2n (aq) + H2O (l) = CnH2nO (aq) + H2 (aq)  (10) 

     alkene                       ketone 

 

 

As indicated by Reactions (9) and (10), more reducing conditions, i.e. higher hydrogen 

activity, favor n-alkanes with respect to alkenes, and alkenes with respect to ketones. 

Seewald (2001) showed that injected alkenes (propene and 1-butene) attain a metastable 

thermodynamic equilibrium state with corresponding ketones within <200 h in presence of 

the HMP and PPM mineral buffer at 300, 325 and 350°C, whereas this is not the case in 

presence of the HM mineral buffer (compare Seewald, 2001 Fig. 11). This is surprising 

because identical redox conditions are expected in presence of both, the HM and HMP 

mineral buffer. One crucial difference between these two buffers is, however, the presence 

of sulfur in the HMP system, which might possibly explain observed differences.   

 A positive effect of sulfur on equilibration was observed by Seewald for alkane-alkene 

equilibria in the HM system if sodiumthiosulfate (Na2S2O3) is added to the experiment 

containing 1-butene. Without sulfur being present in the system, 1-butene did not achieve a 

metastable equilibrium state with n-butane during the course of the experiments (see Fig. 

12 in Seewald, 2001). However, the adjustment of metastable equilibrium states is quite 

complex and influenced by many other factors as shown in the following section. 

 

 In presence of the HMP mineral buffer alkane/alkene ratios reach equilibrium values 

within ≤100 h after ethane, propene and 1-butene injection at 300°C, but continuing 

reaction results in a departure from equilibrium conditions, indicating a reversal in the 
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direction for Reaction (12) (see Seewald, 2001 Fig. 12). According to Seewald (2001), 

“metastable thermodynamic equilibrium was not attained because the rate of alkene 

production by alkane oxidation was insufficient to keep pace with alkene consumption due 

to ketone formation (acetaldehyde in the case of ethane)”. The finding points out that the 

attainment of metastable equilibria can be severely influenced by reaction rates as well as 

the effect of preceding and subsequent reactions in the reaction network.  

 During experiments performed at 325°C in presence of the same mineral buffer 

(HMP), ethene and ethane equilibrate within <200 h after ethene injection. In contrast to 

the 300°C experiments with ethene, the equilibrium persists even with continuing reaction. 

This highlights that the experimental temperature does have an influence on alkane/alkene 

equilibration, which is also confirmed by Seewald’s experiments in the PPM system. Here, 

injected alkenes (propene and 1-butene) could only attain metastable equilibrium at the 

highest temperature (350°C). The experimental duration is also critical. The PPM 

experiments at 350°C show that butene-butane equilibration happened within <100 h, but 

the starting butane/butene ratio was already close to equilibrium. In case of propene, 

prolonged reaction times (>2500 h) were needed to reach metastable equilibrium (see Fig. 

12 in Seewald, 2001) at the same experimental conditions. 

  

 In addition to experiments with alkenes as starting compounds, Seewald (2001) also 

presents data for two experiments (HMP and PPM) at 300°C with n-heptane – an n-alkane – 

as reactant. In both buffer systems metastable thermodynamic equilibrium for neither the 

ethane-ethene nor the propane-propene reaction could be reached within 3000 hours. 

  

 The results of Seewald (2001), which were presented above are summarized in Table 

2. They highlight the possibility of metastable thermodynamic equilibrium states for 

individual redox-dependent organic reactions. Even though these equilibria are not 

necessarily fixed once they are attained, they may, however, prevail for a certain duration, 

which can have implications for the reacting system. The attainment of such metastable 

equilibrium states may be influenced by various factors, which may be interdependent: 

redox, temperature, reaction rate, time, availability of catalytic species (e.g. intermediate 

sulfur species), as well as the interdependency on preceding and subsequent reactions in the 

reaction network.  
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2.2.2.2 TRANSITION METAL MINERALS AS REACTANTS AND CATALYSTS DURING AQUEOUS 

OXIDATION OF HYDROCARBONS 

 Apart from the fact that certain mineral assemblages may act as redox buffers, 

individual minerals have the ability to act as reactants. Hematite, for example, has been 

reported to directly supply oxygen during the oxidation of hydrocarbons (Surdam et al., 

1989; Surdam et al., 1993; Bell et al., 1994). In nature, the reduction of hematite by organic 

matter can lead to significant bleaching of sandstones (PhD thesis of Meier, 2012 and 

references therein).  

 In presence of water pyrite has been shown to supply sulfur to the reacting system 

(Seewald, 2001) by generating H2S. According to Seewald (2001), this enhances the rate for 

the conversion of alkanes to alkenes, but he notes that “the specific mechanisms and species 

responsible for the catalytic activity of sulfur are unclear”. 

  

 The catalytic activity of transition metals is well known in petrochemistry and used 

there to improve desired outcome of thermal cracking operations (Olah and Molnár, 2003). 

The potential of transition metal minerals to act as catalysts during hydrocarbon 

Table 2: Overview of reactions for which metastable thermodynamic equilibrium 

has (+) or has not been (-) observed during experiments performed by Seewald, 

2001. Limitations exist if sign is bracketed. For explanations see text. Experimental 

conditions: 300, 325 and 350°C, 35 MPa and run durations of up to 8000 hours. 
 

Compound injected 

Mineral buffer used 
alkane-alkene alkene-ketone 

alkene (ethene, propene or 1-butene) 

PPM 

HMP 

HM 

HM + Na2S2O3 

 

(+) 

(+) 

- 

+ 

 

+ 

+ 

- 

- 

n-heptane (only 300°C experiments) 

PPM 

HMP 

 

- 

- 

 

no data 

 

no data 

 

HMP – hematite-magnetite-pyrite; PPM – pyrite-pyrrhotite-magnetite;  

HM – hematite-magnetite 
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transformation under hydrothermal conditions has been explored by various authors. Below, 

a brief summary of the studies by Shipp et al. (2010), Mango (Mango, 1992; Mango et al., 

1994; Mango, 1997a; Mango and Hightower, 1997b) and Bell et al. (1994) is given. The 

general conclusion among the authors is consistent. They state that the behavior of a 

mineral to act as catalyst depends on its accessibility, as well as on the structure and 

chemical composition of the minerals, which both affect the strength of the chemisorption 

potential at the mineral surface. A detailed mechanistic model how this works on a 

molecular scale is often not provided. Only Mango (1992) proposes a schematic catalytic 

cycle for the hydrogenolysis of an alkene to methane. 

 

 

Effect of Minerals on the Interconversion Between Alkanes and Alkenes in 

Hydrothermal Systems (Shipp et al., 2010) 

 The interconversion of alkanes and alkenes represents the initial step of the reaction 

scheme proposed for aqueous oxidation by Seewald (2001) (Fig. 5). In order to elucidate if 

mineral surfaces might be catalytically active for this reaction, Shipp et al. (2010) performed 

experiments with trans-1,2-dimethylcyclohexane as educt at 300°C and 100 MPa in presence 

of pyrite, pyrrhotite, magnetite and hematite. All samples contained water. Gold tubes were 

used as sample container. The authors put a special focus on the analysis of cis- and trans- 

hydrocarbon products in order to identify whether reactions took place on the mineral 

surface or rather in solution. A dominance of cis products provides strong evidence that the 

reactions occur on the mineral surface. Based on the results the authors conclude that the 

different minerals affect the amount of conversion and relative abundance of reaction 

products differently, suggesting that the structure and chemical composition of the mineral 

has an effect on the reaction mechanism. Detailed information is not given, because the 

reference is just a conference abstract. In a recent paper that presents data for the 

transformation of organic functional groups under hydrothermal conditions in a mineral free 

system (Shipp et al., 2013), the authors emphasize, however, that the research investigating 

the effect of minerals on such reactions is still ongoing in their group. 
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Transition Metal Catalysis in the Generation of Natural Gas (studies by Mango 

et al., 1992 – 1997) 

 Alkenes are generated during cracking and as intermediate products during aqueous 

oxidation. They may be hydrogenated on the surface of solid transition metals. This catalytic 

process is well known in petrochemistry, mainly in the context of refining operations 

(Vollhardt and Schore, 2005) (Fig. 7).  

 Based on natural observations, Mango (1992) proposed that this process may also 

play a key role for the generation of dry, i.e. methane-rich, natural gas. He states  that 

cracking of oil and kerogen without the aid of transition metal catalysts is not able to mimic 

the high methane content observed in natural thermogenic gas, which equals 85 %wt 

methane in the C1 to C4 fraction on average (Mango, 1997a). 

 

 

  

 

 In his 1992 paper Mango proposes a catalytic cycle for the hydrogenolysis of an 

alkene to methane (Fig. 8). Within the following five years he, together with co-workers, 

published experimental results consolidating his hypothesis (Mango et al., 1994; Mango and 

 

Fig. 7: Hydrogenation of 1-butene on a transition metal catalyst (modified after Fig. 12-1 in Vollhardt and Schore, 

2005). The first step involves activation of hydrogen (H2) by forming metal-hydrogen bonds on the catalyst surface. 

In the second step, the pi bond of the alkene interacts with the metal weakening the bond (Weisshaar, 1993). As a 

result, a hydrogen atom from the metal surface is transferred to one of the carbon atoms from the double bond 

forming a new C-H bond. The other carbon atom from the double bond forms a bond with the metal. In the final 

step, the second hydrogen atom is transferred to the alkene. The newly formed alkane, in this case n-butane, is 

released from the catalyst’s surface allowing the catalyst to accept hydrogen and alkene molecules again. Because of 

the physical arrangement of the alkene and hydrogen on the metal surface, the reaction produces cis-alkanes (Shipp 

et al., 2010). That means that hydrogen atoms are added to the same face of the double bond. 
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Hightower, 1997b). Active transition metal catalysts in this cycle can be transition metal 

oxides (e.g. Fe3O4) and organometallic complexes (e.g. Ni-porphyrins), which may become 

catalytically active under the reducing conditions of diagenesis (Mango, 1997a). A limitation 

under natural conditions may be that “low concentrations of contaminants, such as humic 

acids or H2S, could reduce the levels of catalytic activity” of the transition metals (Mango, 

1992). 

 

 

 In addition to the studies by Mango (Mango, 1992; Mango et al., 1994; Mango, 

1997a; Mango and Hightower, 1997b; Mango et al., 2010), experimental work by Ott et al. 

(2006) show that aqueous transition metals, like Zn
2+

(aq), Ni
2+

(aq) and Cu
2+

(aq), may also display 

 
 

Fig. 8: Cycle proposed for the hydrogenolysis of a long-chain alkene to methane on the surface of a solid transition 

metal catalyst (modified after Mango, 1992). R represents an alkyl group, with the chain length of R’ being one 

methylene unit (CH2) shorter than R. Steps A to B are consistent with steps A to D in Fig. 7. 

In the first step of the cycle [A], hydrogen (H2) and an alkene, both for example generated from decomposing kerogen, 

are activated on the catalyst’s surface. A weak coordinate bond forms between the double bond and the metal, which 

is indicated by a downward pointing arrow. In the next step [B], a hydrogen atom from the metal surface is transferred 

to one of the carbon atoms from the double bond forming a new C-H bond. The other carbon atom from the double 

bond forms a bond with the metal. According to Mango (1997a) the metal-carbon bond is free to move up or down the 

carbon chain by sequential addition-elimination steps, but he does not provide more mechanistic detail. In step C of 

the scheme, the metal-carbon bond shifted by one position, wherefore the alkyl chain (R) is shortened by one 

methylene unit (CH2). The carbon bond in β position to the metal-carbon bond, i.e. the bond between the green and 

white carbon atom in step C, can cleave easily. As a result, a methyl (CH3) group and an alkene are generated, with the 

chain length of the alkene being one carbon atom shorter than the starting alkene. The methyl group adsorbs on the 

metal surface and the double bond of the alkene forms a weak coordinate bond with the metal [step D]. The second 

hydrogen atom adsorbed on the metal surface can now combine with the methyl group to generate methane. If 

additional hydrogen is available, the cycle can start over again, but the new starting alkene will contain one methylene 

unit less than the starting alkene from the previous cycle.  
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catalytic potential. In their study, they investigated the influence of metal sulfates on the 

dehydration of polyols, i.e. an alcohol with multiple hydroxyl groups (e.g. 1,2-propanediol), 

under hydrothermal conditions (280-400°C, 25-34 MPa, 10-180 s).  

 

 

Thermal Decomposition of Acetate Catalyzed by Mineral Surfaces (Bell et al., 

1994) 

 Transition metal minerals may not only affect the conversion of n-alkanes and 

alkenes, but also that of other products generated during aqueous oxidation, like for 

example organic acids (step 4 in Fig. 5). The effect of minerals on the stability of organic 

acids under hydrothermal conditions has been the focus of quite many studies (Palmer and 

Drummond, 1986; Bell et al., 1994; McCollom and Seewald, 2003; McCollom and Seewald, 

2003a) , because it may have severe implications for reservoir porosity and metal transport. 

 The study by Bell et al. (1994) is presented in more detail, because they investigated 

a broad variety of common sedimentary minerals, comprising quartz, calcite, natural pyrite, 

Ca-montmorillonite, Fe-bearing montmorillonite, hematite, synthetic pyrite and magnetite. 

In addition to that, they investigated the catalytic potential of typical reaction vessel 

materials used in experimental studies, i.e. gold, Pyrex, fused quartz and titanium oxide. Bell 

et al. (1994) studied the thermal decarboxylation of aqueous solutions of acetic acid and 

sodium acetate in contact with these minerals and reaction vessel materials. Experiments 

were conducted in a Ti vessel or gold bag at 335°C and 355°C, with the experimental 

pressure being fixed to the vapor/liquid boundary of water at the given temperature. Run 

durations were ≤3000 hours.  

 Regarding the reaction vessel materials, it should be emphasized that Pyrex was the 

only one that catalyzed decarboxylation. Based on this observation, I suggest that 

experiments performed in Pyrex glass tubes (e.g. Kiyosu, 1980; Kiyosu and Krouse, 1993) 

should be viewed critical. 

 Concerning the minerals relevant for the present PhD study, Bell et al. (1994) showed 

that hematite promotes oxidation according to:  

 

 

 

  CH3COOH + 12 Fe2O3 = 8 Fe3O4 + 2 CO2 + 2 H2O      (11) 
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Fig. 9: Curves for the hydrogen fugacity adjusted by the quartz-

fayalite-magnetite (QFM), the pyrite-pyrrhotite-magnetite (PPM) and 

the hematite-magnetite (HM) mineral assemblages as a function of 

temperature. The grey area represents conditions at which abiotic 

organic synthesis may occur. (modified after Shock, 1992) 

 

They state that defected magnetite, i.e. with some Fe(III) in the structure, also promotes 

oxidation. I want to emphasize that the oxygen supply by the minerals can, however, not be 

regarded as a true catalytic trait because the mineral is transformed. Magnetite containing 

lower amounts of Fe(III) may catalyze decarboxylation, with the cleavage of the C-C bond 

occurring while the acetate molecule is adsorbed onto the surface. But as noted above, 

details for the mechanism are not presented. Decarboxylation may also be catalyzed by 

synthetic pyrite, but the natural pyrite used in the study by Bell et al. (1994) did not show 

catalytic activity. 

 

 

Effect of Minerals on Abiotic Synthesis of Organic Compounds Under 

Reducing Conditions 

 The counterpart of aqueous oxidation is abiotic organic synthesis, during which low 

molecular weight hydrocarbons may be synthesized from inorganic carbon sources such as 

CO2, CO and HCO3
-
 (Shock, 1992). This process may only proceed under highly reducing 

conditions and temperatures below 350°C (Fig. 9). These are conditions which are not 

encountered during experiments conducted in the course of the present PhD study. The 

information is still provided in order to provide guidance for planning of follow-up 

experiments. The objective is to 

make the reader aware of the 

possibility of this process if 

experimental conditions moved to 

conditions displayed as shaded 

region in Fig. 9. 

 In nature, such conditions 

may, for example be encountered 

in submarine hydrothermal 

systems if the circulation reaches 

deep into the crust (>1.3 km, cf. 

chapter 7.2.2). In the scientific 

community, the process of abiotic 
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organic synthesis is generally discussed in the context of the debate on the origin of life. 

Experimental studies showed that transition metals may catalyze the reaction. Results of 

McCollom et al. (2010) indicate for example that the reduction of CO and CH2O2 (formic acid) 

to methane and other short-chain n-alkanes is promoted on the surface of magnetite (Fe3O4) 

under extremely reducing and hydrothermal conditions (250°C, 17 MPa, 0 - 400 h). They 

propose that catalysis by magnetite occurs according to reactions encountered during 

Fischer-Tropsch synthesis, a process, which can be used commercially to convert a mixture 

of carbon monoxide and hydrogen into liquid hydrocarbons (Dry, 1990). 

 

 

2.2.3 ROLE OF SULFATE – POSSIBILITY OF THERMOCHEMICAL SULFATE 

REDUCTION 

 In environments where organic matter gets in contact with sulfate, thermochemical 

sulfate reduction (TSR) may be initiated. Two natural TSR laboratories are for example the 

Smackover formation in the Gulf of Mexico (Sassen, 1988; Rooney, 1995; Amrani et al., 2012; 

Wei et al., 2012) and the Khuff formation in Abu Dhabi (Worden and Smalley, 1996; Worden 

et al., 2000). TSR is a redox reaction, which is commonly defined as the abiological
1
, 

thermally-driven oxidation of organic compounds by reduction of sulfate, with CO2 and H2S 

as main reaction products (Orr, 1974; Machel, 2001; Zhang et al., 2007; Zhang et al., 2008a; 

Zhang et al., 2008b; Lu et al., 2011). Especially, the high H2S contents (up to 80 vol%; Orr, 

1977) encountered with TSR altered reservoirs caught the interest of the oil and gas industry 

that asked for a better understanding of the reaction, because H2S contents >10% in natural 

gases increase production cost substantially (Hoffmann et al., 1995; Nöth, 1997; Cross et al., 

2004). Additionally, TSR products lead to the dilution of remaining hydrocarbon gases, which 

minimizes reservoir quality (Goldstein and Aizenshtat, 1994; Cross et al., 2004). If transition 

or base metals are present, H2S generated by TSR can initiate metal sulfide precipitation and 

thus contribute to the formation of sulfide ore deposits (Powell and Macqueen, 1984; 

Machel et al., 1995; Sun and Püttmann, 2000). Geological and geochemical investigations of  

Kupferschiefer samples from the Sangerhausen Basin (Germany) indicate, for example, that 

60% of the copper-sulfide mineralization in this location can be attributed to the TSR 

                                                      
1
 No bacteria are involved in TSR, wherefore it has to be distinguished from bacterial sulfate reduction (BSR).   

  Machel (2001) presents a comparison of BSR and TSR. 
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reaction (Sun and Püttmann, 2000). Extensive reviews on TSR are presented by Trudinger et 

al. (1985), Goldstein and Aizenshtat (1994) and Machel (2001). In addition to that, a 

thorough PhD study on the molecular geochemical signature of TSR is provided by Hanin 

(2002), but it is only available in French language. Despite these and other TSR studies, many 

open questions remain regarding TSR reaction mechanisms and controlling factors. This 

chapter summarizes the current state of knowledge. 

  

 In 1974 Orr proposed a model reaction for TSR, in which methylene groups (-CH2-) 

represent the organic reducing agent: 

 

 

  SO4
2-

 + 1.33 (-CH2-) + 0.66 H2O = H2S + 1.33 CO2 + 2 OH
-
   (12) 

 

 

This reaction is simplified and more recent studies showed that TSR is a multistep reaction, 

which involves many parallel and sequential steps (Seewald, 2003; Amrani et al., 2008; 

Zhang et al., 2008b). Seewald (2001) emphasized that there is a striking similarity between 

reaction products derived from TSR and aqueous oxidation, indicating that aqueous 

oxidation of hydrocarbons probably contributes to TSR.   

 The confirmed temperature for TSR occurring in nature ranges from 127°C (Rooney, 

1995) to 300°C (Giuliani et al., 2000). Thermodynamic modeling indicates that direct 

reduction of sulfate by most organic molecules is energetically favorable at temperatures 

above 20°C, but due to the high activation energy the direct reduction of sulfate by organic 

matter is not considered to be important in most oil field waters (Goldstein and Aizenshtat, 

1994). Amrani et al. (2008) point out that the activation of sulfate is the critical step for 

initiating TSR and that the rupture of the first S–O bond, i.e. the reduction of SO4
2- 

(with S 

having a valence of +6) to SO3
2- 

(with S having a valence of +4), requires the greatest 

activation energy. In order to overcome the high activation energy for TSR initiation, 

experimental studies are usually performed at higher temperature (>300°C) or catalysts, like 

reduced sulfur species  are used (Goldstein and Aizenshtat, 1994; Cross et al., 2004; Ma et 

al., 2008).  

 Machel (2001) noted that there is not the one parameter, which can be used to 

identify TSR in nature, and he suggests that as many petrographic and geochemical criteria 

as possible should be combined. The following list comprises an excerpt of possible 

indicators for TSR involvement that have been reported: 
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Compounds with sulfur 

• High H2S concentrations, at least in carbonate reservoirs, because in 

environments with clastic rocks H2S can be sequestered in mineral phases 

(Worden et al., 2003), leading to low H2S concentrations in such settings 

despite TSR. 

• Sulfur incorporation in organic matter is promoted (Zhang et al., 2008b).  

• Recent work by Amrani et al. (2012) demonstrate that the δ34
S values of 

benzothiophenes and dibenzothiophenes seem to be a promising proxy for 

TSR. 

 

 

Compounds without sulfur 

• Increased gas dryness, i.e. high methane content (Orr, 1977; Pan et al., 

2006). 

• Residual organic matter shows a lower H/C ratio and more aromatic 

structure, both indicating a loss of hydrogen (Leventhal, 1990).  

• Wei et al. (2012) showed that an increase in concentration of 

thiadiamondoids correlates positively with the extent of TSR. 

 

 

 

 

 In contrast to natural observations, experimental studies offer a powerful tool for a 

better understanding of TSR, because reaction mechanisms, kinetics and controlling factors 

can be studied in a confined system. Often the H2S yield is used as measure of the extent of 

TSR in these studies (Zhang et al., 2007; Amrani et al., 2008; Zhang et al., 2008a; Zhang et al., 

2008b; Lu et al., 2010a; Lu et al., 2011). The first experiments on TSR have been presented 

half a century ago (Harrison and Thode, 1957; Toland, 1960) and during the last two decades 

numerous experimental works followed (Kiyosu and Krouse, 1993; Cross et al., 2004; Yue et 

al., 2006; Zhang et al., 2007; Amrani et al., 2008; Zhang et al., 2008a; Zhang et al., 2008b; 

Chen et al., 2009; Truche et al., 2009; Lu et al., 2010b; Lu et al., 2011; Zhang et al., 2012). 

Despite these approaches specific reaction mechanisms could to date not be determined 

(Pryor, 1962; Kiyosu, 1980; Yue et al., 2006). The upside is, however, that experimental 

studies were successful in identifying various influencing factors for TSR, such as: 
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i) availability and nature of reactants, ii) inorganic and organic sulfur species, and iii) 

temperature and pH. 

 

 

Availability and Nature of Reactants 

 The initiation and continuation of TSR requires that sulfate and organic matter 

obviously have to be available, and in contact. Nature of sulfate and organic reactants 

significantly influence reaction rate and products. Lu et al. (2011) investigated the reaction 

of three different sulfates (Na2SO4, CaSO4 and MgSO4) with n-tetracosane (C24H50) in 

presence of water at 420°C and 50 MPa using sealed gold tube reactors. Run duration 

ranged between 12 and 48 h. According to Lu et al. (2011), the sulfates display the following 

reactivity during TSR: 

 

 

   Na2SO4 = no TSR! and MgSO4 >> CaSO4 

 

 

The significantly higher rate for TSR with MgSO4 is consistent with results of Zhang et al. 

(2008a), who studied the reaction of MgSO4 with n-octane (C8H18) at 350°C and 24 MPa for 

24 h using gold tube reactors. They suggested that precipitation of a magnesium hydroxide 

sulfate mineral might have lowered the pH significantly during experiments (Zhang et al., 

2008a; p. 321). This in turn leads to an increase of the concentration of HSO4
-
 ion, which has 

been shown to be more reactive than the fully-solvated SO4
2-

 anion (Ma et al., 2008). 

Another possibility for the enhanced TSR rate is the formation of MgSO4 contact ion pairs 

(CIP), which seem to be equally reactive compared to the HSO4
-
 ion, as indicated by 

molecular modeling calculations (Ma et al., 2008). Calculated activation energies of the 

HSO4
-
 ion, MgSO4 CIP, CaSO4 CIP and free sulfate ion reacting with ethane are 

54.21 kcal/mol, 54.95 kcal/mol, 62.53 kcal/mol and 77.60 kcal/mol respectively (Ma et al., 

2008).  

 Although Lu et al. (2011) observed no evidence for reduction of Na2SO4 with 

n-alkanes under his experimental conditions, Hoffmann et al. (1995) showed that TSR of 

Na2SO4 by crude oil is possible. They investigated the potential of TSR with Na2SO4 and crude 

oil in glass cylinder experiments (250-320°C, 6 to 20 MPa, 70-530 h). At the highest 

temperature and after 500 h, 36% of initial sulfate was reduced. However, reduction may 

have been catalyzed by organic sulfur compounds (see next paragraph) present in the crude 
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oil or by the glass used as sample container. A third study (Kiyosu, 1980) investigated the 

possibility of TSR with Na2SO4 and dextrose in presence of water at temperatures between 

300 and 340°C in Pyrex (boric-silica glass) tubes. Only at the highest temperature evidence 

for TSR was observed after 170 h, indicated by a slight decrease of sulfate and a slight 

increase of H2S concentrations. However, the TSR process was very sluggish and it cannot be 

excluded that the reaction was catalyzed by PYREX (Bell et al., 1994). Thus, it remains open if 

TSR is possible with Na2SO4 as sulfate source. 

 

 In addition to sulfate, the organic reactant influences TSR rate. Zhang et al. (2007) 

investigated the effect of hydrocarbon type on TSR with MgSO4 in presence of water at 

350°C and 24.1 MPa for 24 h using gold tube reactors. Based on the H2S yields (Fig. 10), they 

inferred that the relative reactivity during TSR for the synthetic model compounds studied is: 

 

 

      1-octene > 1-octanol > 1-octanone > n-octane > octanoic acid > octylbenzene > xylene 

 

 

 

 

 

 

Fig. 10: H2S yield from reduction of MgSO4 by model compounds after 24 h at 350°C and 24.1 MPa. 

Adapted from Zhang et al. (2007) with kind permission by Pergamon. 



 
 30 

 A similar trend in reactivity is observed by Lu et al. (2010a) for experiments 

simulating TSR with MgSO4 and four fractions (saturated, aromatic, polar
2
 and asphaltene) of 

a crude oil from well Che571 in the Dongying Depression (China). Experiments were 

performed in presence of water at 420°C and 50 MPa for 24 h in gold tube reactors. They 

showed that TSR is possible with all four fractions, which is manifested by increased H2S 

yields upon sulfate addition (compare Fig.1h in Lu et al., 2010a). Based on H2S yields, 

generated amounts of C1 to C5 alkanes (especially methane), and the δ
13

C values for 

methane, ethane and propane, Lu et al. (2010a) inferred the following relative reactivity for 

the individual petroleum fractions with MgSO4: 

 

 

   saturated > asphaltene > polar > aromatic    

 

 

 

Inorganic and Organic Sulfur Species 

 In 1960, Toland addressed the positive effect of H2S and other low valence sulfur 

species on the TSR rate. As a result, H2S or elemental S are often used to initiate the reaction 

in experimental studies (Kiyosu and Krouse, 1993; Cross et al., 2004). Once initiated, 

increasing H2S partial pressures lead to increasing TSR rates, which is an autocatalytic 

process. The nature of the active sulfur species responsible for the oxidation of organic 

matter in TSR is still subject of speculation. Goldstein and Aizenshtat (1994) proposed that 

polysulfides are likely the most active species for TSR. More recently it has been suggested 

that H2S and other inorganic low valence sulfur species play only a subordinate role and that 

labile organosulfur compounds (LSC) are more likely the key intermediate species for early 

stage TSR catalysis (see Amrani et al., 2008 and Zhang et al., 2008b for details). Labile 

organosulfur compounds stands for organic compounds that contain sulfur and show a 

relatively low thermal stability, like thiols (CnH2n+1SH), some organosulfides and 

organopolysulfides. Amrani et al. (2008)
3
 showed that minute amounts of LSCs can 

significantly enhance the rate of TSR; e.g. addition of 0.03 wt% S (as 1-pentanethiol = LSC) 

doubles the rate of TSR over that of TSR without LSCs. The authors used density functional  

                                                      
2
 The polar fraction is composed of NSO compounds, i.e. organic molecules that contain nitrogen, sulfur and/or 

oxygen. 
3
 Amrani et al. (2008) performed gold-tube hydrous pyrolysis experiments with n-octane and CaSO4 in presence 

of reduced sulfur (H2S, S° and organic sulfur compounds like e.g. 1-pentanethiol) at 330 and 356°C, 24.1 MPa 

for 5 to 405 h. The pH during the experiments was buffered to 3.5 with talc and silica. 
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theory-based molecular modeling in order to gain insight into possible reaction mechanisms 

responsible for the catalytic effect of LSCs. They propose that “1-pentanethiol or its thermal 

degradation products may directly react with sulfate and reduce the activation energy 

required to rupture the first S-O bond through the formation of a sulfate ester” (Amrani et 

al., 2008, p. 2960), but they state at the same time that “further study, both theoretical and 

experimental, is needed to confirm this suggested mechanism” (Amrani et al., 2008, p. 

2970). 

 

 

Reaction Kinetics of TSR, and the Effect of Temperature and pH 

 TSR without presence of initial low valence sulfur, has been successfully simulated in 

laboratory experiments at temperatures ≥241°C with either H2SO4, CaSO4 or MgSO4, which 

were reacted with different organic compounds, like dextrose, acetic acid and hydrocarbons 

(Zhang et al., 2012 and references therein). The reaction shows strong temperature 

dependence, with higher temperatures increasing the reaction rate. Zhang et al. (2012) 

provide new experimental data for kinetics of TSR, as well as a thorough review on published 

TSR kinetic data. There is general agreement amongst the authors (Zhang et al., 2012 and 

references therein) that H2S generation from sulfate is a first-order reaction and that the 

activation of the sulfate is the critical first step. However, Zhang et al. (2012) also emphasize 

that “further work is needed to quantify the effect of different reductants on the rate of 

sulfate reduction” and that only then a comprehensive model can be developed for the 

prediction of TSR in geologic settings. 

 The pH can be critical for the TSR reaction rate. Kiyosu (1980) and Zhang et al. (2012) 

showed that acidic pH (<4) significantly enhance the TSR rate and lower the onset 

temperature for the reaction. This is due to activation of sulfate by increasing the HSO4
-
 

activity with decreasing pH values (Toland, 1960; Goldstein and Aizenshtat, 1994; Zhang et 

al., 2008b). As noted above, the bisulfate ion (HSO4
-
) has been shown to be more reactive 

than the free sulfate ion (SO4
2-

) (Ma et al., 2008). It is, however, noteworthy that acidic pH 

values are rather uncommon in petroleum systems. Here the pH usually ranges from 5.5 to 7 

(cf. Helgeson et al., 1993, Fig. 10). In this pH range, the TSR rate seems to be independent of 

pH  (Cross et al., 2004). In experimental studies, the pH may be controlled by using suitable 

pH mineral buffers. Zhang et al. (2012) used, for example, the talc-silica pH buffer to control 
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the pH during TSR experiments, but other effects of the minerals on the reacting system are 

not addressed. 

 

 

 Despite the availability of numerous studies investigating inorganic-organic reactions, 

they all have serious limitations. The major one being that the effect of inorganic 

components on isolated reactions is often studied in great detail, but not their effect on the 

whole reaction network responsible for hydrocarbon conversion and associated processes 

like cracking and aqueous oxidation. This is especially true for TSR experiments. A second 

limitation is that the effect of redox buffers on TSR reactions has not been studied in detail, 

although TSR is obviously a redox-dependent process. A third limitation is that the effect of 

dissolved transition metals is barely studied, which may, however, have severe implications 

for the stability of hydrocarbons.  

 In order to contribute to a better understanding of these open points, an internally 

consistent set of experiments was conducted investigating the reaction of n-octane with two 

mineral buffers (HM and PPM) in presence and absence of sulfate. Furthermore, 

experiments with a variety of transition metal sulfates were conducted to investigate the 

effect of dissolved transition metal cations on the product distribution generated from n-

octane.  
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33..  MATERIALS AND METHODS 

 

3.1 EXPERIMENTAL STRATEGY 

 Three experimental series were conducted in the course of the present PhD thesis 

(Table 3). The objective of the first series was to investigate the effect of the hematite-

magnetite and the pyrite-pyrrhotite-magnetite mineral assemblages on the hydrothermal 

conversion of n-octane. For this, experiments with n-octane and water in presence of these 

two mineral buffers were carried out in the temperature range of 300 - 350°C and at a 

pressure of 35 MPa for a duration of 168 h. In the sample names, presence of n-octane is 

indicated by the subscript C8 whereas HM and PPM denote presence of the hematite-

magnetite and the pyrite-pyrrhotite-magnetite mineral buffers respectively. For comparison 

identical experiments were performed without any mineral buffer being present, which is 

denoted by the label -buf in the sample name. Furthermore, one experiment with only n-

octane (labeled by C8* 350°C) was carried out at 350°C and 35 MPa for 168 h with the 

intention to assess contributions from pure thermal cracking at these conditions. 

 The second experimental series ties in with the first one. The objective was to 

explore the effect of sodium sulfate (Na2SO4) on the product distribution generated from n-

octane thermal decomposition in presence and absence of the HM and PPM mineral buffers. 

Presence of sodium sulfate in the experimental charge is highlighted by the subscript +Na in 

the sample name. The experiments were run at identical conditions as the first series. In 

addition to that, time series experiments with run durations ranging from 72-336 h were 

conducted for sulfate-containing samples processed in presence of the PPM mineral buffer 

at 300°C and 350°C. In the course of the time series experiments, one blank sample of the 

type PPM+H2O+Na2SO4 was processed at each temperature for 168 h in order to determine 

possible hydrocarbon contributions from the PPM mineral buffer. 

 The objective for the third experimental series was to investigate the influence of five 

transition metal sulfates (NiSO4, ZnSO4, FeSO4, Fe2(SO4)3 and CuSO4) on reaction outcome of 

thermal n-octane decomposition. Four different concentrations of the metal sulfates were 

tested, ranging from 0 to 0.5 mol/kg���. Presence of transition metals is indicated in the 

sample name via the following subscripts: Ni, Zn, Fe(II), Fe(III) and Cu. Experiments were 

carried out at a temperature of 315°C and at a pressure of 13 MPa for a run duration of 
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168 h. For comparison, a sample with a Na2SO4 solution and n-octane was processed at 

identical conditions. 

 

 

 

 

 

3.2 STARTING MATERIALS 

 Synthetic n-octane (Sigma-Aldrich, anhydrous, >99% pure) was used as model organic 

compound. Minerals were purchased from Sigma Aldrich in case of hematite (Fe2O3, 

>99 wt% pure on metal basis), and from Alfa Aesar in case of pyrite, pyrrhotite and 

magnetite (all >99.997 wt% pure on a metal basis). For each mineral buffer, equal amounts 

(on a weight basis) of powdered minerals with a grain size of <150 µm for iron sulfides and 

<840 µm for hematite and magnetite were thoroughly mixed in a mortar. For the PPM buffer 

this was done under an argon atmosphere to prevent oxidation of minerals. Two Na2SO4 

solutions, one with a concentration of 1.7 mol/kg��� (300°C and 350°C experiments) and 

one with a concentration of 0.5 mol/kg��� (315°C experiments), were used to study the 

effect of sulfate on the hydrothermal decomposition of n-octane. The solutions were 

Table 3: Overview of the variety of experiments conducted in the course of the present PhD thesis. 
The duration of most experiments was 168 h, with the exception of the time series. Here, samples 
were processed for 72 to 336 h. 

Experimental 

conditions 
300°C & 35 MPa 315°C & 13 MPa 350°C & 35 MPa 

C8H18 only   x 

-buf 
with/without Na2SO4 

  x/x 

HM 
with/without Na2SO4 

  x/x 

PPM 
with/without Na2SO4 

x/x  x/x 

PPM Blank 

(PPM+H2O+Na2SO4) 
x  x 

PPM time series 

(PPM+H2O+Na2SO4) 
  x 

-buf 
with transition metals* 

 x  

-buf, HM and PPM stand for: no buffer, hematite-magnetite and pyrite-pyrrhotite-magnetite respectively 

*the following transition metal sulfate solutions were investigated: FeSO4, Fe2(SO4)3, NiSO4, CuSO4 & ZnSO4 
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Fig. 11: Sketch of a typical sample layout 
as used for samples processed in the 
course of the present PhD study. 

 

prepared by dissolving Na2SO4 powder (Merck, anhydrous, >99%) in HPLC-grade water (Lab-

Scan Analytical Sciences). Stock solutions of transition metal sulfates, namely FeSO4*7H2O 

(Sigmal Aldrich, 99+%), Fe2(SO4)3*xH2O (Sigma Aldrich, 97%), NiSO4 (Sigma Aldrich, 99.99%), 

CuSO4 (Sigma Aldrich, 99.99+%) and ZnSO4*H2O (Sigma Aldrich, 99.9+%), were prepared in 

the same manner to adjust a sulfate concentration of 0.5 mol/kg���. In case of FeSO4*7H2O 

the prepared stock solution had a sulfate concentration of 0.3 mol/kg���. 

 

 

 

3.3 SAMPLE PREPARATION 

 Arc welded gold tubes were used as sample containers for all experiments. The 

dimension of the containers were as follows: inner diameter of 4 or 5 mm, wall thickness of 

0.2 mm and length between 25 and 40 mm (V = 440 to 503 µl).  A schematic picture of the 

general sample layout is given in Fig. 11.  

 Gold was chosen as material for sample containers because of its chemical inertness, 

good thermal conductivity and flexibility. Prior to the experiments, gold tubes were cleaned 

with acetone and dried. In order to remove residual organic material and to soften the gold, 

the tubes were then annealed at 850°C for 10 min. After that, one end of each gold tube was 

crimped and sealed by arcwelding using a “PUK 3 professional plus” welding plant from 

Lampert Werktechnik GmbH. Next, 5 µl of n-octane (=31 µmol) and 90 µl HPLC-grade water 

or 90 µl of the Na2SO4 solution (����	
�
= 

1.7 mol/kg���) were injected with a syringe. In case of 

the transition metal samples, the procedure was 

different. In this series four different concentrations of 

transition metal sulfates were investigated, ranging 

from 0 to 0.50 mol/kg���. That means that either 

200 µl of the pure Na2SO4 solution (����	
�
= 

0.50 mol/kg���), 200 µl of the pure transition metal 

sulfate solution or a mix of both was added to the 

sample container (Table 4). The amount of n-octane, 

which was added to the sample container (5 µl), was 

the same as in the other samples. 
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 After the liquids have been introduced to the sample container, solids were added by 

means of a funnel. Weights were recorded with an uncertainty below ±2 % for all 

compounds. Immediately after loading, the gold containers were flushed with argon for 30 

seconds to remove air, crimped, welded shut and weighted to check for any loss. Reduction 

in weight is usually below ±5 % and cannot be linked to a specific compound, wherefore 

correction is not possible. Directly before the experiments, the gold capsules were 

compressed at room temperature in a steel autoclave at 20 MPa argon pressure. 

Compaction of the capsule was taken as indication for efficient sealing.  

     

 

 

 

Table 4: Compositions employed for transition metal samples. The mixing ratios used for the individual transition 
metal sulfate solutions and the sodium sulfate solution (������

= 0.5 mol/�����
) are given. Due to inverse solubilities 

of the metal sulfates (except NiSO4) the actual amount of sulfate and the concentration of the transition metal cation 
in solution are lowered at experimental conditions (cf. chapter 6.1). 

 

 

Transition metal 

sulfate (TMS) 

Concentration of 

stock solution (mol/�����
) 

Ratio TMS/Na2SO4 

(µl/µl) 

 

Sample ID 

Na2SO4 0.50 0/200 Na 

FeSO4 0.27 

40/160 Fe(II)_mix1 

100/100 Fe(II)_mix2 

200/0 Fe(II) 

  Fe2(SO4)3   0.17 

42/158 Fe(III)_mix1 

84/116 Fe(III)_mix2 

200/0 Fe(III) 

NiSO4 0.50 

40/160 Ni_mix1 

100/100 Ni_mix2 

200/0 Ni 

CuSO4 0.48 

40/160 Cu_mix1 

100/100 Cu_mix2 

200/0 Cu 

ZnSO4 0.45 

40/160 Zn_mix1 

100/100 Zn_mix2 

200/0 Zn 
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3.4 EXPERIMENTAL PROCEDURE 

3.4.1 SETTING OF THE EXPERIMENTAL PARAMETERS TIME AND TEMPERATURE 

 Experimental parameters were set based on time series data for samples of the type 

PPM+H2O+C8H18+Na2SO4 processed at temperatures of 300 and 350°C, and at a pressure of 

35 MPa for 72 to 336 hours. In order to make the decision transparent, it is necessary to 

forestall some results. Data for generated n-alkanes show that their concentrations remain 

roughly constant at 300°C (Fig. 12 A), even if the reaction time is doubled from 168 h to 

336 h. The conversion of n-octane is very low. A temperature increase from 300 to 350°C 

significantly promotes n-octane decomposition, which is indicated by n-alkane yields that 

increase by one to two orders of magnitude (Fig. 12 B). This is in line with previous 

experimental studies (e.g. Behar and Vandenbroucke, 1996) that demonstrate the positive 

effect of temperature on n-alkane degradation in a sulfate- and mineral-free system. Time 

series data at 350°C (Fig. 12 B) show that generated amounts of n-alkanes continuously 

increase with increasing run duration from 72 to 336 h. Time series data provided by 

Seewald (2001) for similar experiments with n-heptane and the PPM buffer indicate, 

however, that decomposition of n-heptane is still ongoing in this time frame and that the 

whole system has not reached a final state after 3022 h (cf. Fig. 26).  

 

 The objective of the experiments performed in the present study is to investigate the 

effect of inorganic components on the conversion of n-octane at an early stage. Based on 

the results for the 350°C experiments (Fig. 12 B and Table A1 in the appendix) it was decided 

to choose a constant run duration of 168 h for the majority of the experiments, as a 

compromise of acceptable run duration and well measurable product concentrations. I am 

aware that the experiments only represent a snap shot on the reaction and that equilibrium 

for the whole system has not been reached, although in question if this is possible at all. At 

300°C, concentration of reaction products are still small after 168 h, but will only increase 

with very long run durations. Thus, a temperature of 350°C was chosen for most samples in 

order to overcome low product concentrations generated at the lower temperatures. In this 

way the “resolution” was improved so that effects of the inorganic components could be 

identified.  
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 In case of the transition metal samples, the focus was to process a large quantity of 

samples simultaneously in order to get an overview of the effect of different transition 

metals on n-octane decomposition. Therefore the Parr hydrothermal reactor (cf. chapter 

3.4.3) was used, which constrains the maximum possible experimental temperature to 

315°C. The pressure was adjusted to 13 MPa for these experiments. 

 Note that the pressure is well above the vapor pressure curve of water for all 

experiments in order to keep the reaction in the liquid sate. 

 

 

 

 

 

 

 

 
 

Fig. 12: Variations of n-alkane concentrations as a function of time during heating of n-octane at (A) 300°C and (B) 
350°C in presence of the pyrite-pyrrhotite-magnetite (PPM) mineral assemblage and sodium sulfate. Pressure was 
kept at 35 MPa for all experiments. Error bars represent uncertainties, which results from error propagation of the 
analytical error and the total weighing error of initial n-octane. 
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3.4.2 COLD-SEAL PRESSURE VESSEL SETUP 

 A cold-seal pressure vessel (CSPV, Fig. 13) was used for most experiments conducted 

in the course of the present PhD thesis. With this setup, it was possible to process up to six 

samples simultaneously. After loading, the autoclave was pressurized with argon and 

inserted into a vertical oven. Pressure was maintained constant at 35 ± 1 MPa during 

experiments. Desired run temperatures of 300 and 350 ± 5°C were reached within 70 to 

90 min. Temperature was kept within ± 5°C and monitored with three K-type thermocouples 

evenly distributed along the sample (indicated by TA, TB and TC in Fig. 13). At the end of the 

experiments, the CSPV was withdrawn from the oven and rapidly cooled (<10 min) to room 

temperature by compressed air, resulting in a cooling rate of 30°C/min. During quenching, 

the confining pressure was maintained constant to prevent rupturing of sealed gold tubes. 

After cooling, pressure was released and samples were recovered from the autoclave. 

 

 

 

 

 

 

  
 

Fig. 13: Cold-seal pressure vessel used for the experiments at the lab of the mineralogy department at the Leibniz 
University of Hanover (left). The right side shows a schematic picture of the experimental setup. TA, TB, TC, T0 and 
Tcontrol refer to individual thermocouples used to accurately monitor and control the temperature during the 
experiments. 
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3.4.3 PARR HYDROTHERMAL REACTOR 

 The Parr hydrothermal reactor (Fig. 14) was used for experiments of the transition 

metal series. Owing to its large volume (V = 450 mL), it was possible to process up to 34 

samples simultaneously. The samples were placed in a sample holder and then loaded in the 

autoclave that is externally heated. The reactor was completely filled with water, which was 

used as pressure medium. During the experiments the pressure was kept within 13.00 ± 

0.05 MPa using an ISCO high pressure syringe pump. Temperature was monitored using a 

thermocouple, which is located in the lower third of the reactor. The desired run 

temperature of 315 ± 5°C was reached within 80 min and maintained in this range during the 

experiments. The line of action at the end of an experiment is identical to that for 

experiments with the CSPV, with the exception that the autoclave was cooled by room air 

and water, instead of compressed air. Room temperature was reached within 60 min, which 

results in a cooling rate that is 6 times lower than for experiments with the CSPV. Method 

tests performed in the course of my PhD work showed, however, that both cooling 

procedures are sufficient enough to avoid detectable changes in product distribution caused 

by potential retrograde reactions. 
 

 

 

 

 

 

  

Fig. 14: Samples in the sample holder (left), which can be loaded into the Parr hydrothermal reactor (right). In 
the right picture all reactors are not running. This is represented by the ovens that are not covering the reactors. 
(photographs taken by Christian Ostertag-Henning) 
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3.5 ANALYTICAL METHODS 

 A weight difference of less than 0.4 mg before and after the experiments was taken 

to indicate no leak, and only these samples were taken for detailed analysis. Subsequent to 

experiments, the outside of sealed gold tubes was cleaned with dichloromethane (DCM) to 

remove any grease, which can be carried over from the autoclave. After complete 

vaporization of DCM, individual samples were placed into separate 22 ml vials, which were 

sealed with a PTFE/butyl septum. Vials were flushed with helium for 5 min to remove air 

using a double needle technique, which ensured that no over pressurization of vials 

occurred. Next, either 1.5 ml (for samples labelled by -buf C8, -buf C8+Na and PPM C8+Na) or 

1.0 ml (for all other samples) of nitrogen-purged water was injected. The gold capsules were 

pierced at two ends with an awl to allow release of reaction products. Vials containing 1.0 ml 

water were directly measured by headspace gas chromatography (HSGC), whereas a 500 µl 

fluid aliquot was taken for high performance liquid chromatography (data not presented 

here) from vials containing 1.5 ml water, before these samples were analyzed by HSGC. 

Method tests showed that only ketone concentrations were significantly affected by this 

difference in dilution because of their high solubility in water. Thus measured ketone values 

for samples -buf C8, -buf C8+Na and PPM C8+Na were corrected according to: 
 

 

  [CnH2nO]corrected = [CnH2nO]quantified x (1590 µl / 1090 µl)  (13) 

 

 

After HSGC analysis, vials were immediately opened, fluid was removed and the solid sample 

was lyophilized for X-ray diffraction (XRD) analysis.  

 

3.5.1 STATIC HEADSPACE GAS CHROMATOGRAPHY 

 A comprehensive analysis of selected hydrocarbons (<C8H18) and oxygen-containing 

compounds was performed by headspace gas chromatography (HSGC) using a two-channel 

Hewlett-Packard 6890 GC equipped with a PerkinElmer TurboMatrix 40 headspace 

autosampler. The gas chromatograph was fitted with a HP-Plot/Q column (30 m x 0.53 mm 

i.d.) connected to a flame ionization detector (FID) and a CP-PoraPlot Q column (27.5 m x 

0.32 mm i.d.), which is linked to a thermal conductivity detector (TCD). Helium was used as 

carrier gas at a constant flow rate of 8.2 ml/min and 2.2 ml/min respectively for the two 

columns. The initial temperature of the GC oven was kept constant at 50°C for 2 min, 
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followed by a temperature ramp of 10°C/min up to 230°C, which was held for 20 min. Prior 

to analysis, each vial was equilibrated and shaken at 80°C for 25 min in the auto sampler 

oven. For calibration, five standards, covering the full sample range, were prepared using a 

solution of pure n- and iso-alkanes, alkenes, ketones and aromatics in methanol and a 

standard gas from Air Products (CO2 + gaseous n-alkanes and alkenes). In addition to that, 

organosulfur compounds, i.e. thiophene, 2- and 3-methylthiophene, were calibrated for the 

series of the transition metal sulfate samples, i.e. samples of the third experimental series.  

 Retention times of individual compounds were used for compound identification. 

Peak integration was performed with the Agilent ChemStation software and all major peaks 

were considered for data evaluation. An example of a typical chromatogram is shown in Fig. 

15. In all samples, quantified products were at least one order of magnitude above detection 

limits (cf. Table A1 & A2 in the appendix). At low product concentrations, background noise 

of the chromatogram as well as coelution complicated integration of peaks. Significant 

coelution occurred around the retention times for iso-butane, 1-butene, iso-pentane, 

benzene, n-heptane and toluene. 

 

 

 
 

 

Fig. 15: Chromatogram for one of the PPM C8+Na 350°C samples. Only the trace of the flame ionization detector 
(FID) is shown. The FID signal is recorded in picoampere (pA).  
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 The analytical uncertainty was estimated from the comparison of standards between 

individual analytical sequences and multiple measurements (>10) of standards within one 

sequence. These data indicate that the uncertainty (1σ) of the HSGC method is 10 % for 

most concentrations in the range of the 350°C samples. It increases to 20 % at lower 

concentrations, which is the case for some alkene and all the benzene measurements at 

350°C. This is also true for the products generated at 300°C and some of the data obtained 

for the 315°C samples.  

 
 

3.5.2 X-RAY DIFFRACTION ANALYSIS AND TOTAL CARBON DETERMINATION 

 X-ray diffraction (XRD) patterns of powdered samples were recorded using a 

PANalytical X’Pert PRO MPD Θ-Θ diffractometer (Co-Kα radiation generated at 40 kV and 

40 mA), equipped with a variable divergence slit (10 mm irradiated length), primary and 

secondary soller, Scientific X´Celerator detector (active length 0.59°), and a sample changer 

(sample diameter 16 mm). The samples were investigated in the 2Θ range from 2° to 90° 

with a step size of 0.0167° and a measuring time of 10 seconds per step. All diffractograms 

had a low baseline, indicating that no detectable amount of an amorphous phase was 

present. Amounts of individual minerals were quantified by Rietveld refinement of XRD 

diagrams using the fundamental parameter software Autoquan (Bergmann et al., 1998). It 

was possible to assign between 98 to 100 % of all peaks. An accuracy of ±3 wt% is reached 

with this method. 

 

 The amount of total carbon was determined using the ELTRA CS-800 analyzer. The 

sample (50 - 100 mg) is mixed with 1500 mg tungsten and 300 mg iron and burned in an 

oxygen stream. Temperatures exceed 2000°C within less than a minute, which ensure total 

release of carbon as CO2. The gas is carried through an IR cell where absorbance is 

measured. Measurements of standards at the start and end of a measuring series ensure 

good calibration. The ELTRA CS-800 is especially adjusted to detect ppm amounts of carbon. 

Total C analysis confirms small amounts of carbon in both buffers, resulting in 309 ± 31 ppm 

(= 0.77 ± 0.08 µmol C per 30 mg buffer) for the PPM and 104 ± 10 ppm (= 0.26 ± 0.02 µmol C 

per 30 mg buffer) for the HM buffer. The analytical uncertainty is 10%. 
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3.6 THERMODYNAMIC CALCULATIONS 

3.6.1 ACTIVITIES OF AQUEOUS H2 AND H2S REGULATED BY THE HM AND PPM 

BUFFERS 

 Under hydrothermal conditions, the HM and PPM buffer regulate the hydrogen 

activity (aH2 (aq)), via Reactions (14) and (15) respectively. In addition to that, the PPM 

minerals have the ability to buffer the activity of aqueous hydrogen sulfide (aH2S (aq)) 

according to Reaction (16). 
 

 

       2 Fe3O4 (s) + H2O (l) = 3 Fe2O3 (s) + H2 (aq)                               (14) 

                         magnetite                   hematite 

 

 

 

      6 FeS (s) + 4 H2O (l) = 3 FeS2 (s) + Fe3O4 (s) + 4 H2 (aq)         (15) 

     pyrrhotite   pyrite     magnetite 

 

 

 

     FeS2 (s) + 2 FeS (s) + 4 H2O (l) = Fe3O4 (s) + 4 H2S (aq)            (16) 

      pyrite    pyrrhotite           magnetite 

 

 

 

 Thermodynamic calculations can be used to predict the activity of aqueous hydrogen 

and aqueous hydrogen sulfide, which are adjusted by the buffer minerals at a given 

temperature if the equilibrium state is attained. The subscripts (s), (aq) in the buffer 

reactions denote the gas and aqueous state respectively. The subscript (l) is used for pure 

water. It is important to define the phase states for thermodynamic calculations.  

 The first step for calculating aqueous hydrogen and hydrogen sulfide activities is to 

establish laws of mass action for the buffer reactions: 
 
 

 

log	�(��) = 3	log	!"#�
$(%)
+ log	!'�(())

− 2	log	!"#$
�(%)
     (17) 

 

 

log	�(�,) = 3	log	!"#	�(%) + log	!"#$
�(%)
+ 4	log	!'�(())

− 6	log	!"#	(%) − 4	log	!'�
(/)
 (18) 

 

 

log	�(�0) = log	!"#$
�(%)
+ 4	log	!'�	(())

− log	!"#	�(%) − 2	log	!"#	(%) − 4	log	!'�
(/)
 (19) 
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As the next step, the equilibrium constants (log K) at experimental temperature and 

pressure need to be calculated. I used the SUPCRT92 computer program (Johnson et al., 

1992) for the calculation, together with thermodynamic data consistent with the 

SPRONS92.DAT database (see Johnson et al., 1992 for original sources) or, in case of 

aqueous H2S with thermodynamic data provided by Schulte et al. (2001). Following the 

procedure of Seewald (2001), the standard states adopted for water and minerals are unit 

activity of the pure liquid and solid at any temperature and pressure. Note that pyrrhotite 

forms an exception because its activity is reduced due to a deficit of iron in the structure 

(see below). The standard state for aqueous species other than water is a hypothetical 

1 molal solution referenced to infinite dilution at any temperature and pressure (Seewald, 

2001). Accordingly, the mass action expressions for the buffer reactions reduce to: 
 

 

 

HM:   log 	!'�(())
= log�(��)      (20) 

 

 

 

PPM: log 	!'�(())
= (log�(�,) + 	6 log !"#	)/4    (21) 

 

 

 

PPM: log	!'�	(())
= (log�(�0) + 	2 log !"#	)/4    (22) 

 

 

 

 The activity of pyrrhotite can be derived from XRD data obtained for the PPM buffer 

after the experiments. Note that XRD measurements were only conducted for 350°C 

samples in the present PhD thesis, but the approach described below is universal.  

 The calibration of Yund and Hall (1969) is used to calculate the iron content in 

pyrrhotite according to: 
 

 

 

234566789:9; = 45.212 + 72.68	(A�BC − 2.04) + 	311.5	(A�BC − 2.04)C					[!F	%] (23) 

 

 

 

A�BC refers to the lattice plane spacing [Å] determined from the strongest pyrrhotite 

reflection in the X-ray diffractogram. According to Yund and Hall (1969), the calculated iron 

content is accurate to ±0.13 atomic percent iron (2σ). The atomic percentage of iron can 

than be used to calculate the real stoichiometric factor of iron in pyrrhotite (Fe1-xS): 
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�����	��	
 = 85.83	 �1000� − 1� �1 − � + ln�� + 	39.30√1 − 0.9981�
− 	39.23�� ℎ"�√1 − 0.9881� − 0.002 

Table 5: Equilibrium constants calculated for the hematite-magnetite (HM) and pyrite-
pyrrhotite-magnetite (PPM) buffer reactions at 350°C and 35 MPa. Subscript numbers refer to 
the corresponding buffer reactions, which are presented in the text. 
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�1 − /� = 	 012344567879	[;<%]
����"	012344567879	[;<%]�     (24) 

 

 

 

The activity of pyrrhotite (��	
	�?�) is than calculated using the calibration of Toulmin and 

Barton (1964): 

 

 

 

 

 

       (25) 

 
 

 

 

with T as temperature in K, and � being equal to twice the atom fraction of iron in 

pyrrhotite (N = 2 · ((1-x)/(1+(1-x))), with (1-x) being the stoichiometric factor of iron in 

pyrrhotite → cf. Equation 24). According to Toulmin and Barton (1964), the maximal 

uncertainty in �����	��	
 is ±0.03. 

 

 Regarding the 350°C PPM samples processed in the course of the present PhD thesis, 

d102 was determined to 2.065 ± 0.002 Å, resulting in a �����	��	
  of -0.254 ± 0.03. Now, the 

equilibrium activities of aqueous hydrogen and hydrogen sulfide at 350°C and 35 MPa can be 

calculated based on Equations 20 to 22, using the equilibrium constants for the buffer 

reactions at the experimental conditions (Table 5). The results are displayed in the phase 

diagram for the HM and PPM mineral buffers, which is shown in Fig. 16.    
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Fig. 16: Stability fields of hematite (Fe2O3), magnetite (Fe3O4), pyrite (FeS2) and pyrrhotite (Fe0.89S) plotted as 

function of the aqueous H2S and H2 activities at 350°C and 35 MPa. These minerals are the constituents of 

the hematite-magnetite (HM) and the pyrite-pyrrhotite-magnetite (PPM) buffers. At equilibrium, redox 

conditions adjusted by the PPM buffer are one order of magnitude more reducing than those with the HM 

buffer. This is indicated by the activities of aqueous hydrogen. At equilibrium, these are VW�ef�(eg)	= -3.21 

for the PPM buffer and VW�ef�(eg)	= -4.25 for the HM buffer, resulting in H2 concentrations of 

0.62 mmol/����� and 0.06 mmol/����� respectively if an activity coefficient of 1 is assumed. Owing to 

presence of sulfur in the PPM buffer minerals this buffer also has the potential to regulate the activity of 

aqueous hydrogen sulfide. Under equilibrium conditions, a hydrogen sulfide activity of VW�	e��h(eg)= -2.01 is 

obtained. An error of ±0.2 log units seems realistic for the calculated values, being attributed to 

uncertainties in thermodynamic data (Hentscher, personal communication). 

 
 

 
 

 

3.6.2 AQUEOUS SOLUBILITY OF N-OCTANE AT EXPERIMENTAL CONDITIONS 

 The aqueous solubility of n-octane at experimental conditions can be calculated from 

the equilibrium constants for the following reaction: 

 

 

n-J�F!S3(i)=	n-J�F!S3(cj)     (26) 

 

 

the subscript (l) denotes the pure n-octane liquid, whereas (aq) refers to aqueous n-octane. 

Equilibrium constants were calculated with the SUPCRT92 computer program (Johnson et 

al., 1992) for the temperature range 25-400°C. Calculations were carried out by Laurent 

Richard. He used thermodynamic data from Shock and Helgeson (1990) and Helgeson et al. 

(1998) for aqueous and liquid n-octane respectively. The standard state adopted for liquid n-
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octane is unit activity of the pure liquid at any temperature and pressure. The standard state 

adopted for aqueous n-octane is a hypothetical 1 molal solution referenced to infinite 

dilution at any temperature and pressure. Thus, calculated equilibrium constants for 

Reaction (26) directly represent solubility constants (Ks) for aqueous n-octane in the unit 

mol/kg��� (Fig. 17). The calculated maximum solubility of n-octane in water ranges from 

0.06 mol/kg��� at 300°C to 0.52 mol/kg��� at 350°C. 

 

 

 

 

 

 

3.6.3 AQUEOUS SOLUBILITY OF METAL SULFATES AT EXPERIMENTAL CONDITIONS 

AND MODELING OF IN SITU PH  

 Michael Hentscher provided modeled values of the initial pH at experimental 

conditions (=in situ pH) as well as values for the maximum solubility of the metal sulfates 

(Na2SO4, FeSO4, Fe2(SO4)3, NiSO4, CuSO4 and ZnSO4) at experimental conditions. The 

modeling was performed using the Geochemist´s Workbench
TM

 (GWB) (Bethke, 1996).   

 

Fig. 17: Solubility constants for aqueous n-octane calculated by Laurent Richard with the SUPCRT computer 

program (Johnson et al., 1992) for the temperature range 25 to 400°C and a constant pressure of 35 MPa. 

Experimental data taken from Heidman et al. (1985) is plotted for comparison. The pressure in Heidman’s 

experiments varies because it corresponds to the three phase equilibrium pressure in the H2O-C8H18 system, with 

the three phases being an excess water phase, a hydrocarbon rich liquid phase and a vapor phase. The good 

agreement of both data sets indicates that pressure does not seem to have much effect on the aqueous solubility 

of n-octane. 
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 In order to match the experimental system, Hentscher first created a database of 

equilibrium constants for use in GWB, which is valid for temperatures between 0 and 350°C. 

The required equilibrium constants were calculated with SUPCRT92 (Johnson et al., 1992) 

and the corresponding OBIGT database (Dick, 2008). Requisite data for solid metal sulfates 

were taken from Chase (1998) for Na2SO4 and FeSO4, and from Robie and Hemingway (1995) 

for all the other metal sulfates used. Following the procedure of Seewald (2001), the 

standard states adopted for water and minerals are unit activity of the pure liquid and solid 

at any temperature and pressure. Activity coefficients
4
 of aqueous charged species were 

calculated with the B-dot equation with hard core diameters, B-dot and Debye-Hückel 

parameters from Wolery and Jove-Colon (2004). Activity coefficients for dissolved neutral 

species are assumed to be unity at any temperature and pressure, except for aqueous non-

polar gases (e.g. H2 and H2S). Here, the approach of Drummond (1981) was followed, 

assuming that activity coefficients are equal to the activity coefficients of aqueous CO2. The 

Drummond (1981) equation takes into account that the activities are dependent on 

temperature and the salt concentration in the system. 

 

 

 The model mimics the experimental procedure by the following steps: initial water 

speciation, adding the pure metal sulfate and buffer minerals of interest at 25°C, subsequent 

heating of the sulfate solution to experimental conditions. For the modeling of mineral-

buffered experiments, redox reactions in between the minerals of the buffers, like the 

oxidation of Fe
2+

 to Fe
3+

, were allowed. Oxidation and reduction of sulfate and n-octane are 

suppressed. Complex formation of the metals and the sulfate anions is considered, but not 

that of possible organometal complexes. The formation of the metal-sulfate complexes were 

calculated on basis of the complexes in the database from Dick (2008) (NaSO4
-
, HSO4

-
, NaOH, 

FeO, FeOH
+

, etc). This procedure has the advantage that the external conditions of the 

buffers are achieved and that the influence of the association and disassociation of aqueous 

sulfate complexes to the pH can be modeled. Note, that the HPLC grade water, which was 

used to prepare the sulfate solutions in the laboratory is slightly acidic (pH 5.6), which is 

                                                      
4
 The activity coefficient is a dimensionless factor that accounts for differences to ideal behavior. An alternative 

definition of activity that includes the activity coefficient compared to the definition presented in chapter 

2.2.2.1 → Equation 5) is: αi = γi * ci/(mol/kg H2O), where αi, γi and ci designate the activity, activity coefficient 

and molality of the species i in solution. 
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probably due to dissolved CO2 from air
5
. To fit these starting conditions, a CO2 fugacity of 

0.002 bar was used to model the starting solution. In addition to that, a small amount of 

NaCl (10
-12

 mol) was added for charge balance.  

 For a first quality check of the modeling, modeled and measured pH values at room 

temperature were compared (Fig. 18). The data are in good agreement except for FeSO4 and 

CuSO4. The strong offset between measured and modeled pH for the FeSO4 solution 

suggests that a large amount of Fe(II) has been oxidized to Fe(III) during preparation of the 

stock solution. For CuSO4, it is rather proposed that inconsistencies in thermodynamic data 

are responsible for observed differences (Hentscher, personal communication). The 

measured pH values are regarded to be reliable, because laboratory measurements of pH 

were executed several times with different equipment (pH meter and pH sticks) and always 

showed the same value ±0.2 units. Thus, if differences exist, modeled pH values were 

adjusted to the measured values prior to heating the solution to the experimental 

temperature during the modeling.  

 

 

 

                                                      
5
 This does not show up in gas chromatography measurements of pure water and PPM+H2O samples. So the 

amount of CO2 dissolved in the water is small and its contribution to the measured amount of CO2 from 

n-octane is negligible.   

 

Fig. 18: Comparison of modeled and measured pH values for different metal sulfate solutions 

employed in this study. See text for details on the modeling of pH with the Geochemist’s Workbench 

(GWB). Uncertainties for measured and modeled pH values are ±0.2 units. 
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44..  PART I-A 

INVESTIGATING THE EFFECT OF THE PPM AND HM MINERAL  

BUFFERS, AND THE EFFECT OF DISSOLVED SULFATE ON THE  

PRODUCT DISTRIBUTION GENERATED FROM N-OCTANE UNDER 

HYDROTHERMAL CONDITIONS  
 

 

 

 

 In this chapter results from the first and second experimental series are presented 

and discussed, i.e. results for experiments processed at 300 and 350°C for 168 h in presence 

and absence of the HM and PPM mineral buffer, with and without sodium sulfate. The main 

focus is on the data for the 350°C experiments. This is because of the low product yield 

obtained at 300°C, which makes it difficult to resolve variations in generated products 

caused by the inorganic components. In addition to the data for the 168 h experiments, 

results from time series (72-336h) experiments of the type PPM+H2O+C8H18+Na2SO4 

processed at 350°C are presented. 

 

 The primary objective of this chapter is to characterize the effect of the employed 

inorganic components on the product distribution generated from n-octane in order to 

elucidate their effect on the reaction network and processes associated with the conversion 

of n-octane. In this context, a central point is to test if the reaction scheme proposed by 

Seewald (2001) for aqueous oxidation of hydrocarbons is also transferable to hydrocarbon 

conversion in a sulfate-containing system. 

 

 Apart from the analysis of organic reaction products, this chapter provides a 

characterization of the solid phase in order to identify background contributions from the 

minerals, as well as compositional changes in the PPM and HM mineral buffers after the 

experiments. In this context, the question of effectiveness with respect to the buffering 

ability of the mineral assemblages is addressed. 

 

 It was decided to present results first in order to provide a clear overview of available 

data. The discussion then follows in a separate chapter, which addresses the main findings 

(cf. chapter 4.3). 
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4.1 RESULTS – SOLID PHASE 

 XRD results are summarized in Fig. 19. XRD measurements of the pre-mixed initial 

mineral assemblages show 52 wt% hematite (Fe2O3) and 48 wt% magnetite (Fe3O4) for the 

HM buffer (single measurement), and 41 wt% magnetite, 27 wt% pyrite (FeS2), 18 wt% 

troilite (FeS), 12 wt% pyrrhotite (Fe1-xS) and 2 wt% native iron (Fe°) for the PPM buffer 

(average of four samples). Troilite is the iron rich endmember of the pyrrhotite (Fe1-xS) 

group. Detection of troilite and native iron in the initial PPM buffer is attributed to impurities 

in the starting compounds. XRD measurements indicate that initial pyrrhotite consists of 

59 wt% troilite, 33 wt% pyrrhotite and 8 wt% native iron. Note that the amount of native 

iron in the pre-mixed PPM buffer is very small and scratches the quantification limit of the 

method, wherefore this information is rather qualitative than quantitative. 

  

 

 

 XRD measurements on solid run products were only performed on 350°C samples. 

Results show that the solid phase consists of pyrite, pyrrhotite and magnetite in the case of 

the PPM and of hematite and magnetite in the case of the HM mineral buffer assemblage. In 

the sulfate-containing samples, thernadite (Na2SO4) was detected as additional phase. In 

 

 

 

 

Fig. 19: Changes in mineral buffer composition for the hematite-magnetite (HM) and the pyrite-pyrrhotite-

magnetite (PPM) mineral buffers after experiments processed at 350°C and 35 MPa for 168 h. The label initial 

refers to the composition of the mineral buffer before the experiment, “C8” denotes presence of n-octane and 

“+Na” presence of sodium sulfate in the experimental charge. Symbol sizes correspond to the analytical error of 

±3 wt%. 
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order to directly compare the buffer composition in sulfate-free and sulfate-containing 

samples, amounts of thernadite were ignored and only the amounts of the buffer minerals 

were then normalized to 100 wt%. 

 

HM Samples 

 The amount of magnetite increases from 48 wt% to 77 wt%, and that of hematite 

decreases from 52 wt% to 22 wt% in the sulfate-free 350°C HM sample (HM C8 350°C) 

compared to the initial HM buffer (Fig. 19). The sulfate-containing HM sample (HM C8+Na 

350°C) shows the same trend. However, the increase for magnetite (from 48 wt% to 63 wt%) 

and the decrease for hematite (from 52 wt% to 36 wt%) abundances are less pronounced. 

 

PPM Samples 

 The mixture of the mineral phases in the initial PPM buffer reduces to pyrite, 

pyrrhotite and magnetite in all PPM samples processed at 350°C (Fig. 19). The amount of 

pyrrhotite is identical (36 wt%) in the sulfate-free (PPM C8 350°C) and sulfate-containing 

(PPM C8+Na 350°C) PPM samples. The quantity of magnetite slightly decreases from 45 wt% 

to 37 wt% and the amount of pyrite slightly increases from 19 wt% to 27 wt%, if sulfate is 

present. However, changes are significantly smaller than observed for the HM samples. 

 

 

 

4.2 RESULTS – ORGANIC PRODUCTS 

 Generated products quantified via headspace gas chromatography, comprise the 

following:  

 

 

CO2, n-alkanes (C1 to 7), alkenes (C2 to 4), iso-alkanes (iC4 and iC5), 
 

ketones (C3 and C4) and aromatic compounds (C6H6 and C7H8)  

 

 

 

Fig. 20 A and B illustrate the results for the 300°C and 350°C samples, which were processed 

for 168 hours. All results, including those of the time series experiments, are summarized in 

Table A1 in the appendix. Analyzed quantities are expressed as millimol of products 

generated per mol of initial n-octane.  
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Fig. 20: Overview illustrating the variation of all quantified products generated from aqueous n-octane decomposition 

after 168 h at (A) 300°C and (B) 350°C in presence and absence of sulfate. Pressure was kept constant at 35 MPa 

during the experiments. The graphs show data for samples without any mineral buffer (-buf), with the pyrite-

pyrrhotite-magnetite (PPM) and the hematite-magnetite (HM) mineral buffer assemblage. At 350°C one sample was 

processed, which only contained pure n-octane. Detection limits for the headspace gas chromatography method are 

also shown. Butene+ = mixture of 1-butene and 2-butene 
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The error was calculated via error propagation from the analytical uncertainty and the total 

weighing error of initial n-octane (5%). Mean values are presented for repeated 

experiments. For these values, the standard deviation (1σ) is given as total error, if it is 

above the propagated error (values are explicitly marked in Table A1). Usually, the standard 

deviation is considerably below the propagated error. This indicates a good reproducibility of 

the experiments. Although generated amounts of products at 300°C are 1 to 2 orders of 

magnitude lower than at 350°C, the reproducibility of the experiments is good at both 

temperatures (Fig. B1 & B2 in the appendix). In the following sections, results are addressed 

in more detail.  

 

4.2.1 300°C EXPERIMENTS PROCESSED FOR 168 H  

 Concentrations of generated products at 300°C range from 0.04 to 

25 mmol/mol C8H18. The values are one to three orders of magnitude above the detection 

limit (Fig. 20 A). Mass balance considerations
6
 on analyzed products indicate that 0.24 mol% 

to 1.2 mol% of initial n-octane were converted during the experiments. In presence of the 

PPM mineral buffer, the conversion of n-octane is only one third of the corresponding values 

for the buffer free samples. This observation is in contrast to the trend for the corresponding 

350°C samples. Here, addition of mineral-buffers, i.e. HM and PPM significantly enhances 

the yield of reaction products. 

 
 

CO2 and n-Alkanes 

 In all samples processed at 300°C, CO2 is the most abundant single component out of 

all organic reaction products (Fig. 20 A). In presence of the PPM buffer, the measured 

concentration is the same for the sulfate-free (PPM C8 300°C) and sulfate-containing (PPM 

C8+Na 300°C) samples. In the buffer-free system, addition of sulfate cuts the generated 

amount of CO2 in half. 

                                                      
6
 In order to estimate the amount of initial n-octane, which was converted during the experiments, the mass 

balance for carbon was calculated. The molar amount of carbon in the reaction products was summed and 

normalized to the initial amount of carbon provided by n-octane (245 ± 12 µmol C). The resulting value is an 

estimate for the minimum conversion of n-octane. Error propagation taking into account the analytical 

uncertainty and the weighing uncertainty, leads to a relative error for this calculation of 17% for the 300°C 

samples and 7% for the 350°C samples. This “detour” was necessary owing to the fact that n-octane 

concentrations remaining after the experiments were too high to be accurately measured with the headspace 

gas chromatograph. 
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  The most abundant product group, which was generated, is that of the n-alkanes. In 

all samples, they show the same trend, i.e. increase in concentration with decreasing chain 

length (Fig. 20 A). In the buffer-free system, generated amounts of n-alkanes are very 

similar, with slightly lower values for the sulfate-containing sample (-buf C8+Na 300°C) than 

for the one without sulfate (-buf C8 300°C). In presence of the PPM buffer, this difference is 

more obvious. 

 
 

  Alkenes and Ketones 

 In all samples, measured concentrations of alkenes and ketones are in the same 

range as generated amounts of n-alkanes (Fig. 20 A). A closer look reveals, however, that 

variations exist. Generated amounts of propene and butene, are four to six times below that 

for corresponding n-alkanes. Ethene was not detected. Propene amounts are roughly three 

times higher than those for butene. Interestingly, the absolute amount of the individual 

alkenes is about the same in all samples. Only in the sulfate- and buffer-free sample (-buf C8 

300°C) and in the sulfate-containing PPM sample, which was processed for 336 hours (PPM 

C8 300°C, 336 h), no alkenes could be detected (Fig. 20 A and Tabel A1). Due to the close 

similarity of the other products, it is, however, suggested that alkenes were also generated 

in these samples, but possibly in low quantity. 

 

 Regarding the ketones (Fig. 20 A), acetone is generated in similar quantity than 

propene, with the exception of the sulfate-containing PPM samples (PPM C8+Na 300°C). Here, 

the acetone concentration is one order of magnitude below that for propene, and thus one 

order of magnitude below the acetone amount in the other samples. Acetone and butanone 

concentrations are usually comparable; only in the buffer-free sample without sulfate (-buf 

C8+Na 300°C) the butanone concentration reduces to one quarter of that for acetone. 

 
 

4.2.2 350°C EXPERIMENTS PROCESSED FOR 168 H  

 Data for the 350°C samples (Fig. 20 B) show more variation than at 300°C (Fig. 20 A). 

Product concentrations cover a range from 0.04 to 170 mmol/C8H18 (Fig. 20 B). The amount 

of generated products is up to one order of magnitude higher at the higher temperature. 

Mass balance considerations on analyzed products of the mineral buffered experiments 
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processed with and without sulfate indicate that a minimum of 13-16 mol% of initial n-

octane decomposed after 168 h. In the buffer free samples and in the pure n-octane sample 

(C8* 350°C), the values are three times smaller (4-6 mol%). After the experiment, reaction 

products in all samples are characterized by a strong dominance of n-alkanes (C1-7). They add 

up to 56-80 mol% of analyzed products, except for the sulfate-free HM sample, which shows 

a slightly lower value of 45 mol%. Acetone and butanone reach a comparable concentration 

as CO2, and as corresponding n-alkanes (Fig. 20 B). In contrast to the 300°C samples, the CO2 

concentration in the 350°C samples only rises above the concentration of individual n-

alkanes in the sulfate-free HM and PPM samples (Fig. 20 B). The concentration of generated 

alkenes is usually one order of magnitude lower compared to that of corresponding n-

alkanes. 

 

  Fig. 20 B illustrates that a strong positive effect of water addition is observed for 

ketone formation. Presence of mineral buffers further promotes ketone formation, but the 

strongest positive effect is observed for quantified aromatic compounds, indicating that 

aromatization is promoted by the HM and PPM mineral buffer. The most prominent effect of 

sulfate addition is that it lowers the yield of CO2 in all three investigated systems (-buf, HM 

and PPM). The overall product distribution only shows minor, but non-negligible changes. 

Data for n-alkanes, alkenes, ketones and CO2 are described in more detail below, because 

they form the central part of the discussion. 

 

 

n-Alkanes  

 The distribution pattern for the n-alkanes is very similar for all samples (Fig. 21 A & 

B). The trend shows a characteristic steep increase from n-hexane to n-pentane and rather 

equal amounts of n-pentane, n-butane and propane. The concentration of ethane is usually 

comparable to that of propane. Only in the sulfate-containing HM (HM C8+Na 350°C) and PPM 

(PPM C8+Na 350°C) samples an increase from propane to ethane is observed. A drop in 

concentration from ethane to methane is characteristic for all samples, except for the 

sulfate-containing PPM samples. Here, methane reaches the same concentration as ethane. 

The higher methane production is also manifested in the gas dryness (C1/∑C1-4), which is 

twice as high in the sulfate-containing PPM sample as for the other sulfate-containing 

samples (Fig. 22). 
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 The absolute abundance of n-alkanes (C1-7) produced from pure n-octane pyrolysis 

under dry (sample labeled by C8* 350°C) and hydrous (-buf C8 350°C) conditions are equal 

(Fig. 21 A). In the sulfate-free system (Fig. 21 A), addition of the HM and PPM mineral 

assemblages roughly doubles the amount of generated n-alkanes. In presence of sulfate (Fig. 

21 B), n-alkane concentrations are quadrupled if the mineral buffers are added. 

 

 

 

 

 
 

Fig. 21: Comparison of n-alkane yields from (A) sulfate-free and (B) sulfate-containing (labeled by the suffix “+Na”) 

simulation experiments of aqueous n-octane decomposition after 168 h at 350°C and 35 MPa. Experiments were 

performed in presence of the hematite-magnetite (HM) or pyrite-pyrrhotite-magnetite (PPM) mineral assemblage, or 

without any mineral buffer (-buf). In addition, data for one sample, which contained only n-octane (labeled by C8*) is 

presented. Error bars represent uncertainties, which results from error propagation of the analytical error and the total 

weighing error of initial n-octane. 
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Alkenes, Ketones and CO2 

 Similar CO2 concentrations are observed for the pure n-octane (C8* 350°C) and the n-

octane + water (-buf C8 350°C) samples (Fig. 20 B and Table A1 in the appendix). It is, 

however, apparent that presence of water boosts the yield of ketones, which increases by a 

factor of 3 to 4 if water is added. Generated amounts of alkenes, on the other hand, 

decrease by a factor of 2 to 3 in presence of water (Fig. 20 B and Table A1 in the appendix). 

 

 In accordance with observations for n-alkanes, addition of HM and PPM in the 

sulfate-free and sulfate-containing systems generally increases the yield of alkenes (ethene, 

propene and butene), ketones (acetone and butanone) and CO2 (Fig. 23 A-E). In the sulfate-

free system, the amount of generated alkenes in presence of the HM buffer (HM C8 350°C) is 

between 1.6 (butene) to 2.4 (ethene) times higher than in presence of the PPM buffer (PPM 

C8 350°C). Propene is present in equal quantity in presence of both buffers.  

 The amount of acetone and butanone are 1.5 and 1.9 times lower in presence of HM 

than in presence of the PPM minerals. Despite lower ketone concentrations, the sulfate-free 

HM sample shows a higher concentration of CO2, which is in fact the highest CO2 content 

among all experiments (170 ± 19	mmol/mol���	�
). Only half the amount of CO2 was 

observed in the sulfate-free PPM sample (95 ± 11 	mmol/mol���	�
). 

 

     

Fig. 22: Gas dryness (C1/∑C1-4) for sulfate-free 

and sulfate-containing samples, which were 

processed at 350°C and 35 MPa for 168 h. 

Buffer conditions are indicated as: -buf = no 

mineral buffer, PPM = pyrite-pyrrhotite-

magnetite, and HM = hematite-magnetite. 

For the sulfate-containing PPM samples, the 

average of four samples is given. Otherwise, 

only one sample existed per series. Error bars 

display values that result from error 

propagation of the analytical uncertainty. 
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Fig. 23: Variation in the concentrations of (A) propene, (B) butene (includes 1- and 2-butene), (C) acetone,  (D) 

butanone and (E) CO2 generated from heating of n-octane, in dependence on sulfate availability and presence of 

mineral buffers (-buf = no buffer; PPM = pyrite-pyrrhotite-magnetite, HM = hematite-magnetite). Experiments were 

performed at 350°C and 35 MPa for 168 h. Regarding the mineral-free samples with and without sulfate, in each case 

the average of two samples is displayed. For the sulfate-containing PPM samples, the average of four samples is 

given. Otherwise, only one sample existed per series. Error bars display values that results from error propagation of 

the analytical error and the total weighing error of initial n-octane. It is apparent that C3 and C4 compounds show the 

same relative variations.  
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 The most prominent effect of sulfate addition is that it lowers the yield of CO2 in all 

three investigated systems (Fig. 23 E). The strongest decrease is observed in presence of the 

HM mineral assemblage. Here the CO2 value is lowered by a factor of 3. In presence of the 

PPM buffer, sulfate addition lowers the CO2 concentration by a factor of 1.5. In the system 

without any mineral buffer, the CO2 concentration decreases by a factor of 1.4. 

  

 Regarding the alkene and ketone data, addition of sulfate has different effects on the 

product distribution in the three investigated systems (Fig. 23 A-E). In the buffer-free and 

HM samples, generated amounts of propene and butene increase by a factor of roughly 2 to 

3 upon sulfate addition (Fig. 23 A & B), whereas acetone and butanone values remain 

constant or nearly constant (Fig. 23 C & D). In contrast, addition of sulfate in the PPM system 

does not affect generated amounts of propene and butene. It lowers, however, the 

concentration of ketones by a factor of approximately 3 in these samples (Fig. 23 A & B).  

 

 

4.2.3 TIME SERIES DATA FOR SAMPLES OF THE TYPE 

PPM+H2O+C8H18+NA2SO4 PROCESSED AT 350°C  

 Time series data for the sulfate-containing PPM samples (Fig. 24) show that C1 to C5 

n-alkanes are at a comparable concentration after 72 h, but they show more variation with 

increasing reaction time. Methane shows the strongest increase and n-hexane the lowest. At 

all times, the concentration of n-hexane is significantly below that of C1 to C5 n-alkanes. The 

offset increases with increasing reaction time (Fig. 24). The enhanced methane production 

with time is also mirrored by the gas dryness (C1/∑C1-4), which increases from 9.3 ± 1.0 wt% 

at 72 h to 16.0 ± 1.8 wt% after 336 h experiment duration (Table A1 in the appendix). 

 In the time frame 72 to 168 hours, ethene (average = 0.07 ± 0.01 mmol/mol C8H18) 

and propene (average = 2.3 ± 0.4 mmol/mol C8H18) concentrations remain constant within 

the uncertainty, but drop by approximately one order of magnitude between 168 and 336 

hours (Table A1 in the appendix). In contrast, butene concentration increases from 1.3 ± 

0.1 mmol/mol C8H18 to 2.2 ± 0.2 mmol/mol C8H18 between 168 and 336 hours . 

 Data for acetone and butanone are only available for the 168 h samples. Out of all 

quantified products, CO2 shows the strongest increase with time. After 72 h the amount of 

generated CO2 was below the detection limit and increases to 241 ± 17 mmol/mol C8H18 
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after 336 h (Fig. 24). The graph shows that the rate of formation (= slope in Fig. 24) for CO2 

significantly increases after 168 h, whereas variations in the rate of formation for C1 to C6 

n-alkanes is rather small between 72 to 336 hours experiment duration.  

  

 

 

 

 

4.3 DISCUSSION 

4.3.1 STARTING CONDITIONS 

 For the interpretation of the experimental data, it is necessary to constrain the state 

of the system at the start of the experiments with respect to the following questions: How 

high is the amount of atmospheric oxygen added to the experimental charge during sample 

preparation and, in case of the mineral containing samples, how much carbon is introduced 

by these minerals? Furthermore it needs to be clarified whether the fluid is composed of a 

single phase or not. Information on the starting pH is also given. 

 

Oxygen Contamination from Air 

 The oxygen contamination from air can be estimated from oxygenated compounds 

generated in the pure n-octane sample (C8* 350°C, Table A1 in the appendix). Here, air and 

 

Fig. 24: Evolution of n-alkane and CO2 concentrations as a function of time for experiments simulating 

aqueous n-octane decomposition in presence of the pyrite-pyrrhotite-magnetite mineral assemblage and 

Na2SO4. Experimental conditions were 350°C and 35 MPa. Error bars represent the uncertainty, calculated 

from error propagation of the analytical error and the total weighing error of initial n-octane. 
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oxygen dissolved in n-octane represent the only two possible oxygen sources. It is suggested 

that the latter can be neglected, because n-octane was always freshly taken from the 

container, i.e. it was never in contact with air for a long time. During the experiments oxygen 

from air seems to preferentially react with hydrocarbons to CO2. In the pure n-octane 

samples (C8* 350°C) the CO2 concentration reaches 26 ± 3	mmol/mol���	�
 after the 

experiment. Acetone and butanone could also be quantified, but their concentrations are 

one order of magnitude smaller. The total amount of oxygen incorporated in the reaction 

products for the pure n-octane sample adds up to 28 ± 4	mmol
�
/mol���	�

 (= 0.84 ± 0.12 

µmol O2 absolute).  

 In order to calculate the percentage of entrained air from this value, some basic 

considerations need to be made. First of all, the volume of the free gas phase in the sample 

container needs to be determined. The initial volume of the container was 440 µl, but the 

free volume is slightly lowered due to presence of 5 µl of n-octane in this sample. 

Furthermore, the free volume may be lowered during the welding process, because of the 

weld seam. This is hard to quantify, but the length of the capsule was usually not reduced by 

more than 1-2 mm. Based on these two factors, a free volume of 400 µl is expected to exist 

in the pure n-octane sample. If the free volume was completely filled with air, 21 % of O2 

would be introduced, which equals a volume of 16.35 µl in this case. The value can then be 

converted in a molar amount using the molar volume of an ideal gas, which is 24.46 l/mol at 

0.1 MPa and 25°C. The resulting value is 3.43 µmol O2. This value represents 100% air in the 

free volume. Thus, the 0.84 ± 0.12 µmol O2 incorporated in the organic reaction products 

represent 21 to 28 vol% of residual air. This seems to be a realistic value for the argon 

flushing method. Because the amount of residual air in the sample container may not be 

constant, data cannot be corrected for this error. 

 

 The contamination by oxygen from air has to be kept in mind during data 

interpretation. Especially for samples without any mineral buffer (-buf C8 350°C and -buf 

C8+Na 350°C) and for the 300°C PPM samples (PPM C8 300°C and PPM C8+Na 300°C) 

contamination by air is critical, because here the total amount of oxygen incorporated in 

organic products is equal to or even below the value of the pure n-octane sample (Table A1 

in the appendix). Nevertheless, the ketone data reveal a clear influence of water on n-octane 

decomposition if these samples are compared to the pure n-octane sample (cf. chapter 

4.2.2). 
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Table 6: Modeled starting pH values at experimental 

conditions. Values were calculated by Michael Hentscher 

using the Geochemist’s Workbench. The error is estimated 

to be ±0.2 units. 
 

 Sample name 300°C 350°C 

n
o

 b
u

ff
e

r -buf C8 350°C 4.9 5.0 

buf C8+Na 350°C 7.0 7.3 

H
M

 b
u

ff
e

r HM C8 350°C na 5.0 

HM C8+Na 350°C na 7.3 

P
P

M
 b

u
ff

e
r PPM C8 350°C 4.7 4.7 

PPM C8+Na 350°C 6.5 6.7 

-buf – no mineral buffer present, HM – hematite, 

magnetite, PPM – pyrite, pyrrhotite, magnetite ; na – not 

applicable, i.e. that no experiments were performed at 

these conditions 

Possible Carbon Input from Buffer Minerals 

 The HM and PPM mineral assemblages initially contain 104 ± 10 ppm (= 0.26 ± 

0.02 µmol) and 309 ± 31 ppm (= 0.77 ± 0.08 µmol) carbon respectively. Gas chromatography 

measurements for the PPM blanks show that no detectable amounts of CO2 and 

hydrocarbons were generated. In case of the HM samples, no blank was processed. 

However, from the data for the PPM blanks and from the fact that the carbon content in the 

HM minerals is three times lower than in the PPM ones, it can be inferred that no significant 

amounts of CO2 and hydrocarbons should be generated from carbon in the HM minerals. 

Thus, possible hydrocarbon contaminations generated from carbon in the buffer minerals is 

supposed to be negligible.  

 

 

pH 

 Initial in situ pH values at the specific 

experimental conditions were modeled by 

Michael Hentscher using the Geochemist’s 

Workbench software. A brief description of 

the procedure is given in chapter 3.6.3.  

 Owing to an enhanced auto-

dissociation of water with increasing 

temperature, the neutral point of water 

shifts from 7 at room temperature and 

pressure to a pH of 5.5 to 5.7 at 

experimental conditions (300 to 350°C, 

35 MPa). Thus, the modeled in situ pH 

values for the samples (Table 6) reflect 

slightly acidic to alkaline conditions. They 

are similar to typical pHs encountered in 

petroleum reservoirs, which range from 5.5 

to 7 (cf. Helgeson et al., 1993, Fig. 10). Cross 

et al. (2004) showed that the rate of TSR is 
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independent of pH at formation water pH. Only if the pH dropped below 3.5, an increase in 

the TSR rate would be expected (Zhang et al., 2012). 

 

 

 

 

Solubility of n-Octane and Na2SO4 and Mixing Behavior of Fluids 

 For the simple n-octane-H2O system, the thermodynamic calculations by Laurent 

Richard indicate a maximum solubility of n-octane in water of 0.52 mol/kg��

 at 350°C and 

35 MPa. This value is significantly higher than the initial concentration of n-octane in 

samples of the first and second experimental series, which all contained 0.34 mol/kg��

. 

The solubility of n-alkanes in water reduces in presence of salts (Price, 1976). Owing to this 

so-called salting-out effect, the addition of sodium sulfate probably results in the separation 

of two fluid phases – an octane- and water-dominated phase – at our experimental pressure 

and temperature. The coexistence of these two fluid phases is also expected for all samples 

processed at 300°C and 35 MPa because the aqueous solubility of n-octane reduces to 

0.06 mol/kg��

. The mixing behaviour of n-octane and water under the experimental 

conditions may affect the kinetics of conversion reactions, i.e. transport in fluids may 

become an important parameter if two or more fluid phases coexist.  It is, however, 

assumed that the system is dynamically mixed due to fluid convection in the sample 

container during the experiments. 

 

 Sodium sulfate shows an inverse solubility with temperature, which means that the 

solubility decreases with temperature.  Solubility data from Pablan and Pitzer (1988) indicate 

that 1.7 mol/kg��

 can be dissolved at 300°C and 35 MPa, which equals the initial 

concentration of the sodium sulfate solution in the samples, which were process at 300 and 

350°C. Thus, a highly saturated Na2SO4 solution exists during the 300°C experiments. At 

350°C the solubility of Na2SO4 in water reduces to 0.29 (Khan and Rogak, 2004). This means 

that only 17% of the initial sulfate are dissolved at the higher temperature, wherefore solid 

Na2SO4 is also present under experimental conditions. Solid Na2SO4 does not seem to have a 

catalytic effect, as indicated by similar results for the buffer-free samples with and without 

sulfate. Moreover, generated amounts of quantified products are rather lower in presence 

of sulfate.  
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4.3.2 CHANGES IN MINERAL BUFFER COMPOSITION 

 Comparison of buffer compositions before and after the experiment indicates 

whether the buffer is capable to adjust to chemical changes of the system or not. This is a 

prerequisite for the buffering ability of such mineral assemblages. For individual minerals 

present in the samples, µmolar amounts (Table 7) were calculated from the wt% data (Fig. 

19). 

 

 

 
 

  
 

HM Samples 

 Comparison of the sulfate-free (HM C8 350°C) and sulfate-containing (HM C8+Na 350°C) 

HM samples with the initial HM buffer composition shows that 57 µmol and 29 µmol, 

respectively, of hematite were reduced to magnetite during these experiments (Table 7): 

 

 

 

    6 Fe2O3 (s) → 4 Fe3O4 (s) + O2 (aq)   (27) 

       hematite magnetite 

 

 

 

This reaction can only proceed if a suitable sink for oxygen exists, like for example the 

decomposition products from n-octane. This observation is supported by mass balance 

considerations: 

 

Table 7: Comparison of µmolar amounts of individual minerals in the hematite-magnetite (HM) and pyrite-pyrrhotite-

magnetite (PPM) mineral buffer samples before and after the respective experiment. Values are calculated from XRD 

results. Usually one measurement per sample type exists, with the exception of the initial PPM buffer. Here the 

calculation is based on the average of four samples. 
 

Sample name 
Minerals (µmol per 30 mg buffer) 

hematite magnetite pyrite pyrrhotite troilite α-Fe 

Absolute error ± 6 ±  4 ±  8 ±  11 ±  10 ±  16 

HM initial 98 62         

HM C8 350°C 41 100         

HM C8+Na 350°C 69 81         

PPM initial   53 73 44 60 11 

PPM initial_corrected   52 64 121     

PPM C8 350°C   58 48 132     

PPM C8+Na 350°C   48 68 132     
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 The total amount of oxygen (O2) incorporated in quantified organic reaction products 

– namely CO2, acetone and butanone – in the sulfate-free and sulfate-containing HM 

samples equals 6.1 ± 0.9 µmol
7
 and 2.7 ± 0.4 µmol respectively. These amounts are 

significantly higher than for the corresponding buffer-free samples (0.92 ± 0.14 µmol and 

0.82 ± 0.12 µmol), which points to an additional oxygen input apart from the obvious one 

stemming from residual air and water. As indicated by Reaction (27), reduction of hematite 

to magnetite is a suitable way to supply extra oxygen. During the sulfate-free HM 

experiment reduction of hematite produces 9.5 µmol O2. In presence of sulfate only 29 µmol 

hematite are reduced, which results in the generation of 5 µmol O2. The estimation shows 

that oxygen gain in organic products and oxygen supply by hematite correlate well. Smaller 

oxygen amounts in organic reaction products can probably be attributed to oxygen-bearing 

reaction products, which were not quantified (pentanone) or analyzed (e.g. C5+-ketones and 

organic acids), as well as to the formation of water during hydrothermal n-alkane oxidation. 

The latter is for example possible during oxidation of alkanes to alkenes (Reaction 28) or 

alcohols to ketones (Reaction 29): 

 

 

 

   CnH2n+2 (aq) + 0.5 O2 (aq) → CnH2n (aq) + H2O (l)   (28) 

      alkane           alkene 

 

 

 

   CnH2n+2O (aq) + 0.5 O2 (aq) → CnH2nO (aq) + H2O (l)  (29) 

      alcohol              ketone 

 

 

 

 

 The key message from the data is that hematite initiates and promotes oxidation of 

n-octane. These observations are in line with previous studies that point out the role of 

hematite as oxidant in hydrocarbon systems (Surdam et al., 1989; Surdam et al., 1993; Bell 

et al., 1994). In presence of sulfate, the oxidizing effect of hematite is attenuated, which 

might be due to precipitated sulfate or mineral coating. Results for organic reaction products 

do, however, support the hypothesis that the buffers were not passivated (further discussed 

in chapters 4.3.2.1 & 4.3.2.2) and that a change in the reaction network has the potential to 

account for the observed decrease in oxidation (c.f. chapter 4.3.4.2). 

                                                      
7
 The µmolar amounts were calculated from results presented in Table A1 in the appendix, by multiplying these 

values with 30.64 µmol C8H18 (= initial amount of n-octane). 
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PPM Samples 

 The observation that native iron and troilite present in the initial PPM buffer are 

absent in any of the experimental samples (Fig. 19) is not surprising, because troilite and 

native iron are unstable under the experimental conditions (Toulmin and Barton, 1964 and 

McCollom et al., 2010 respectively). Troilite converts into the equilibrium modification 

pyrrhotite. Native iron readily reacts during heating, with two reactions being favorable. 

First, native iron may react with oxygen from air that prevails after capsule preparation, with 

a likely reaction being: 

 

 

            3 Fe°(s) + 2 O2 (aq) → Fe3O4 (s)    (30) 

           native iron                   magnetite 

    

 

Second, native iron may react with pyrite to generate pyrrhotite: 

 

 

    Fe°(s) + FeS2 (s) → 2 FeS (s)    (31) 

           native iron   pyrite       pyrrhotite 

 

 

 

Oxidation of native iron by water might also be possible under reducing conditions (see 

Reaction 2 in McCollom et al., 2010), but is rather unlikely under the conditions of the 

experiments performed here. The reaction would generate significant amounts of hydrogen, 

which contradicts results of Hinze (bachelor thesis 2012 → cf. appendix C), who performed 

similar experiments in an organic-free system with the PPM buffer at 350°C and 35 MPa. His 

results show that the amount of hydrogen generated in the sulfate-free PPM system is 

0.31 ± 0.06 mmol/kg��

 after 24 h and 0.43 ± 0.09 mmol/kg��


 after 168 h. These values 

are in the same range as the expected equilibrium concentration of 0.63 mmol/kg��

, 

providing evidence that no excess hydrogen was generated during buffer equilibration. Thus 

Reaction 30 and 31 are likely the dominating reaction for conversion of native iron. Based on 

these considerations a corrected starting composition of the initial PPM buffer at 

experimental conditions can be calculated from the measured initial PPM buffer 

composition (Table 7). For the calculation it is assumed that Reaction 30 is the preferred 

reaction for native iron. However, the reaction is limited by the amount of free oxygen from 

air that prevails after capsule preparation. This amount might not be constant in all samples, 

but the amount inferred from the pure cracking sample (≈1 µmol O2) gives a first estimate 



 
 69 

for the calculation. The resulting corrected buffer composition is: 52 µmol magnetite, 

64 µmol FeS2 and 121 µmol pyrrhotite. 

 

 Analyzed buffer compositions for the 350°C PPM samples with (PPM C8) and without 

(PPM C8+Na) sulfate are in good agreement with that for the corrected buffer (Table 7). 

Variations in the amounts of pyrite, pyrrhotite and magnetite are usually smaller than the 

analytical uncertainty. Only the increase in the amount of pyrite by 20 µmol, which was 

observed for the sulfate-containing PPM sample (PPM C8+Na 350°C) if compared to the 

sulfate-free PPM sample (PPM C8 350°C), is beyond the analytical uncertainty. 

 In the sulfate-free PPM sample (PPM C8 350°C), the amount of oxygen incorporated 

in oxygenated organic products (4.3 ± 0.6 µmol O2) is five times higher than the background 

value from air (≈1 µmol O2). This means that additional oxygen, in this case 3.3 µmol O2, has 

to be supplied either by minerals or by water. Regarding the PPM minerals, this may be 

possible according to: 

 

 

 

 1.5 FeS2 (s) + 0.5 Fe3O4 (s) = 3 FeS (s) + O2 (aq)    (32) 

        pyrite magnetite     pyrrhotite 

 

 

 

Hence, 9.9 µmol pyrrhotite would be coproduced with 3.3 µmol O2, and 4.9 µmol pyrite and 

1.7 µmol magnetite would be consumed. These changes are smaller than the analytical 

uncertainty of the XRD method. Absolute values point, however, in the right direction. 

Comparison of the sulfate-free PPM sample to the corrected initial buffer shows that the 

amount of pyrrhotite increases by 11 µmol and the amount of pyrite decreases by 16 µmol. 

Based on the stoichiometry of Reaction 32, it can be seen that the decrease in the amount of 

pyrite is larger than the expected 5.5 µmol if 11 µmol of pyrrhotite were produced. Thus, a 

second reaction consuming pyrite is likely to run in parallel: 

 

 

 

3 FeS2 (s) + 2 H2 (aq) + 4 H2O (l) = Fe3O4 (s) + 6 H2S (aq)   (33) 

      pyrite                                            magnetite         

 

 

 

This reaction could also explain the observed increase in the amount of magnetite for the 

sulfate-free PPM sample, which could not be explained by Reaction 32. Reaction 33 could 
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also consume excess hydrogen that is generated if water acts as oxygen source. Evidence for 

water as oxygen donor is provided by the observation that ketone concentrations increase 

when water is added to the reacting system. Although, the resolution of the XRD method is 

too low to provide an exact mass balance, the data provide strong evidence that minerals 

and water both act as oxygen sources in the sulfate-free PPM experiments. 

 

 XRD data for the sulfate-containing PPM samples (PPM C8+Na 350°) show that the 

absolute amounts of both sulfur-containing minerals, i.e. pyrite and pyrrhotite, increase if 

compared to the corrected mineral buffer composition (Table 7). This points to sulfur input 

from sulfate into the buffer minerals. An increase of pyrite by 4 µmol and of pyrrhotite by 

11 µmol equals a net sulfur gain of 19 µmol. This implies that 38 µmol O2 would be 

coproduced from sulfate. Access oxygen, does not seem to be stored in the minerals, 

because the amount of magnetite, the only oxygen-containing mineral, decreases if 

compared to the corrected buffer composition (Table 7). Moreover, a decrease of magnetite 

amount by 4 µmol would generate additional 8 µmol O2. At this point, it remains unclear 

what the sink for oxygen could be. The formation of minor additional oxygen-containing 

mineral phases, which could not be resolved with the XRD method, might be possible. Apart 

from additional mineral phases, organic reaction products can be a sink of oxygen in the 

reacting system. The amount of oxygen incorporated in CO2, acetone and butanone in the 

sulfate-containing PPM samples is 2.5 ± 0.4 µmol O2. The large difference to the above mass 

balance considerations may be accounted for by the fact that some oxygen-containing 

reaction products were not quantified (pentanone) or analyzed (e.g. C5+-ketones and organic 

acids). The formation of water during hydrothermal n-alkane oxidation (Reaction 28 and 29) 

may also lower the concentration of free oxygen in the system. Of course the presented 

mass balance considerations only represent a rough estimation due to the low resolution of 

the XRD method, but the general trend is obvious.  

  

 

4.3.2.1 IS THE BUFFER CAPABLE OF CONTROLLING REDOX?  

 A prerequisite for the buffering ability of mineral buffer assemblages is that the 

minerals are accessible and that they adjust to chemical changes of the reacting system. A 

crucial question that needs to be considered in this context is, whether kinetics of the 
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mineral buffer reactions is rapid enough to actually control the hydrogen activity of the fluid 

to the nominal equilibrium value. 

 

Literature Information on HM and PPM Buffer Kinetics 

 Results from Seewald (2001) show that the HM and PPM mineral buffers are capable 

of controlling the redox conditions in a sulfate-free system at the experimental conditions 

employed in the present study. For experiments performed in the temperature range of 300 

to 350°C and at 35 MPa, he could show that hydrogen concentrations readjust to (or at least 

close to) the equilibrium concentration within 25 h after perturbation of the chemical 

system. Based on these findings he states that the exchange of hydrogen and oxygen 

between water, the HM and PPM minerals, and alkanes, alkenes, alcohols and ketones in 

aqueous solution, is a rapid process with low kinetic barriers under hydrothermal conditions 

(Seewald, 2001, 2003). Mineral buffers used in the experiments were composed of the same 

synthetic minerals as used for the present study. Thus, mineral buffers employed by Seewald 

should be comparable to the ones used here. 

   

Data from the Present Study 

 One difference between Seewald’s experiments and those of the present study is, 

however, that Seewald has equilibrated the buffer together with water prior to hydrocarbon 

injection. The equilibration was performed for 200 to 500 h at a temperature, which was 25-

50°C above the desired run temperature. This different procedure seems to have an effect 

for the buffering ability of the mineral assemblages. Results presented by Hinze
8
 (bachelor 

thesis 2012) for experiments of the type PPM+H2O indicate that the aqueous hydrogen 

concentration adjusted in the system without prior equilibration is 0.31 ± 0.06 mmol/kg��

 

after 24h, and 0.43 ± 0.09 mmol/kg��

 after 168 h. Corresponding hydrogen activities were 

calculated based on the assumption of Seewald (2001) that activity coefficients are equal to 

unity. Results indicate that the hydrogen activity during the sulfate-free experiments 

performed by Hinze (bachelor thesis 2012), was up to 0.3 log units below the expected 

equilibrium value for the PPM buffer. The increasing trend of the hydrogen concentration 

with time indicates that the buffer is still equilibrating. 

                                                      
8
 A brief summary of the work by Hinze can be found in appendix C. 
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 For sulfate-containing experiments of the type PPM+H2O+Na2SO4, results from Hinze 

(bachelor thesis 2012) show that the measured hydrogen concentration after 24 h (0.18 ± 

0.04 mmol/kg��

) and 168 h (0.23 ± 0.05 mmol/kg��


) is only half as high as in the 

corresponding sulfate-free samples. Lower hydrogen concentrations in presence of sulfate 

are in line with the expected oxidizing effect of sulfate. Calculated hydrogen activities from 

results of Hinze (bachelor thesis 2012) indicate that the actual hydrogen activity in presence 

of sulfate may be 0.4 to 0.5 log units below the expected equilibrium value for the PPM 

buffer. An increasing hydrogen concentration with time indicates that the buffer is also 

moving toward equilibrium, despite the large sulfate reservoir. 

 Data like those provided by Hinze for the PPM system are not available for the HM 

experiments, but alkane/alkene data may indicate that equilibrium was attained during the 

course of the sulfate-free and sulfate-containing HM experiments, which were run for 168h 

(cf. chapter 5.2).  

 Even though, the buffers might not have adjusted redox condition to equilibrium 

values, results for the organic reaction products reflect more oxidizing conditions for HM 

samples compared to PPM samples (Fig. 23). In the sulfate-free system, this is indicated by a 

higher CO2 concentration for HM compared to PPM samples. In the sulfate-containing 

system, the generated amount of CO2 is the same in presence of both mineral buffers, but 

ketone concentrations are higher in presence of the HM buffer. This demonstrates that even 

in presence of sulfate, a regulating effect of the HM and PPM mineral buffers on generated 

products is evident. 

 

4.3.2.2 MINERAL BUFFERS AS CATALYSTS AND REACTANTS  

 In addition to the buffering effect of the minerals, results for organic reaction 

products at 350°C indicate that addition of the HM and PPM minerals to the experimental 

charge significantly promotes decomposition of n-octane. The conversion increases by a 

factor of 2 to 3 if minerals are added, and is in the same range for sulfate-free and sulfate-

containing samples (Table A1 in the appendix). This provides further support for the 

hypothesis that the minerals are not passivated. The observed increase in conversion points 

to the catalytic activity of the employed minerals, which is in line with previous studies (Bell 

et al., 1994; Shipp et al., 2010). Observed compositional changes of the mineral buffers do, 

however, indicate that minerals also actively participate as reactants.  



 
 73 

 In contrast, at 300°C, the conversion of n-octane is lowered by a factor of three if the 

PPM buffer is added in the sulfate-free and sulfate-containing samples, indicating that the 

catalytic effect of the minerals is hampered. 

 

 

4.3.3 EVALUATING CONTRIBUTIONS FROM CRACKING AND AQUEOUS OXIDATION 

 The distribution of organic reaction products can be used to investigate, which 

processes might have contributed to the decomposition of n-octane. In order to elucidate by 

which processes n-octane degradation is controlled in the experiments, a three step 

procedure was followed. First, contributions from pure cracking at the experimental 

conditions were estimated by evaluating the data for the sample containing pure n-octane 

(C8* 350°C) and comparing it to the sample, which additionally contained water. Second, 

experimental results are compared to results from Seewald (2001) in order to evaluate the 

contributions from aqueous oxidation. Third, the possibility that additional processes 

contribute to the degradation of n-octane in the experiments is explored. 

 
 

4.3.3.1 CRACKING 

 The sample C8* 350°C only contained n-octane and thus serves as a reference for pure 

thermal decomposition of n-octane at 350°C. Cracking of pure n-octane is expected to yield 

products that only contain carbon and hydrogen. Thus, small amounts of CO2 and ketones 

observed for this sample are viewed as “contaminations” that are produced from reaction 

with oxygen from air that is entrained during sample preparation.  

 Identical amounts of generated n-alkanes for the pure n-octane sample (C8* 350°C) 

and the sample with additional water (-buf C8 350°C) indicate that water does not alter the 

formation rate of n-alkanes under these experimental conditions (Fig. 21 A). The distribution 

pattern of the n-alkanes is in good agreement with results of Zhang et al. (2007; 2008a) for 

experiments with n-octane and water under nearly identical conditions
9
 (Fig. 25). The 

difference in absolute abundances can be attributed to different run durations, but the 

distribution pattern is the same. 

 

                                                      
9
 Zhang et al. (2007 and 2008a) performed hydrous pyrolysis experiments with n-octane at 350°C and 24 MPa, 

with a run duration of 24 h. They also used gold capsules as sample containers. 
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 If the 168 h samples of this study are compared to the 24 h samples of Zhang et al. 

(2007; 2008a), an increase in propane, butane and pentane concentrations by a factor of 15-

16 is observed. Concentrations of ethane and methane only increase by a factor of 11 and 10 

respectively. The lower increase for methane and ethane, as well as the lower yield of 

methane relative to the other n-alkanes, is consistent with expectations for cracking. This is 

because n-octane is less likely to be split at the terminal C-C bond and the probability for 

cleavage between carbon position 2 and 3 or 6 and 7 is also lower than at interior carbon 

bonds (cf. chapter 2.1). From this, and especially from the excellent agreement of the n-

alkane yield for the dry and hydrous pyrolysis samples in this study, it is concluded that 

cracking is the controlling process for aqueous n-octane decomposition in the buffer- and 

sulfate-free sample (-buf C8 350°C). The distribution pattern for n-alkanes in this sample is 

referred to as “typical cracking pattern” in the proceeding chapters. It is characterized by a 

steep increase from hexane to pentane, rather equal amounts for pentane, butane and 

propane, slightly lower ethane concentrations, and a drop towards lower methane values.        

 

 

Fig. 25: Comparison of n-alkane amounts generated from aqueous n-octane decomposition after 24 h (data from 

Zhang et al., 2007 and 2008a) and after 168 h (this study). Experiments of Zhang et al. (2007, 2008a) were 

conducted at 350°C and 24 MPa. Samples contained 220 µmol n-octane and either 1388 µmol (2007) or 280 µmol 

(2008a) water. The pure n-octane sample (referred to as C8* 350°C in the text) contained 31 µmol n-octane. The 

hydrous pyrolysis samples (referred to as –buf C8 350°C in the text) additionally contained 5 mmol water. The 

average of two samples is presented for this sample type. Samples of this study were processed at 350°C and 

35 MPa for 168 h. Error bars (mostly covered by data points) represent uncertainties, which results from error 

propagation of the analytical error and the total weighing error of initial n-octane. Zhang et al. (2007 and 2008a) do 

not address the uncertainty of the data, but it is suggested that the error should be in a same range. 
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4.3.3.2 AQUEOUS OXIDATION 

 Although water does not affect the amount of produced n-alkanes, it does influence 

alkene and ketone abundances. Results for the hydrous pyrolysis samples indicate that 

alkene yields (∑C2ene-4ene) are halved and ketone concentrations (∑C3one+4one) increase by a 

factor of 4 when water is added (Table A1 in the appendix). One reason for this can be that 

water promotes hydration of alkenes to ketones. According to Seewald (2001) the reaction 

proceeds via alcohols as intermediate products: 

 

 

  CnH2n (aq) + H2O (l) = CnH2n+2O (aq) = CnH2nO (aq) + H2 (aq)  (34) 

 

 

However, additional reactions need to be involved due to stoichiometric reasons. The 

formation of oxygen-containing compounds itself is already a first sign that n-octane 

decomposition is probably influenced by aqueous oxidation in addition to cracking. Acetone, 

butanone and CO2 were not only detected in the buffer-free samples, but also in those 

containing the HM and PPM mineral buffer, which were processed with or without sulfate 

(Table A1 in the appendix). 

 

 

Comparison of the 300°C Data to Results from Seewald (2001) 

 Seewald (2001) conducted time-series experiments at 300°C and 35 MPa in a sulfate-

free system in presence of the PPM buffer. During the experiments, Seewald collected a first 

sample after 70 h, followed by samples after 312, 741, 2229 and 3022 h. From the results he 

concluded that aqueous oxidation significantly contributes to n-heptane degradation during 

the experiments. The 300°C PPM samples without sulfate (PPM C8 300°C), which were 

processed for 168 h in the course of this study provide a direct comparison to Seewald’s 

(2001) experiments.  

 Generated n-alkanes generally show the same trend in both studies, i.e. increasing 

abundance with decreasing chain length (Fig. 26). Two main differences are, however, 

apparent. First of all, the n-alkane curve cuts the data of Seewald. Second, concentrations of 

methane, ethane, propane and n-butane are about the same in the n-octane sample, 

whereas a continuous increase in concentration with decreasing chain length is observed for 

the n-heptane experiments at all times. A possible explanation for the latter observation is 

that aqueous oxidation might be enhanced during Seewald’s experiments. In order to 



 
 76 

explain this, a brief explanation of the experimental setup used by Seewald (2001) is 

necessary. He used a flexible gold-titanium cell for his experiments, which allows withdrawal 

and injection of fluids during the experiments. This setup was used to perform multiple 

experiments sequentially. The aqueous phase was not completely removed before injection 

of new reactants. Thus, previously injected reactants and their products persisted in solution 

for subsequent experiments. Prior to injection of new reactants, water was added to dilute 

the abundance of aqueous “contaminants” in the reaction cell. Nevertheless, these species 

prevailed in the reacting system and it is hypothesized that they might have had a 

“catalyzing” character. This means that they may have facilitated all reactions associated 

with aqueous oxidation right away, whereas some reactions might first have to be initiated 

in the samples, which started off with pure n-octane. In order to facilitate comparison of 

both studies and to only investigate newly formed products, the contaminant values at time 

of educt injection are subtracted from concentrations measured at the time of sampling in 

Seewald’s experiments. These values are plotted in Fig. 26. 

 

 

 

 

 

Fig. 26: Comparison of n-alkane amounts generated from aqueous n-heptane decomposition after 70 to 3022 h 

(data from Seewald, 2001), and from aqueous n-octane decomposition after 168 h (this study). All samples 

contained the pyrite-pyrrhotite-magnetite (PPM) mineral assemblage and water. Experiments were run at a 

temperature of 300°C and a pressure of 35 MPa. Seewald’s data is corrected for background concentrations of 

hydrocarbons present at time of n-heptane injection. The initial n-heptane concentration was 12.7 mmol/�����
. 

Error bars plotted for the sample of this study represent uncertainties, which results from error propagation of the 

analytical error and the total weighing error of initial n-octane. Seewald (2001) does not address the uncertainty of 

the data, but the uncertainty is expected to be in the same range. 
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 The other difference observed for the two data sets, i.e. the intersection of the 

n-alkane curves of the two studies, is suggested to be due to the different chain length of the 

starting compounds. This has implications for cracking as well as for aqueous oxidation. 

During cracking cleavage at the terminal C-C bond is rather unlikely, which explains why 

significantly lower amounts of n-hexane compared to the other n-alkanes, as well as 

compared to the n-octane sample are observed in the n-heptane samples. With prolonged 

reaction times (2229 and 3022 h samples) the concentration of n-hexane increases 

significantly, which points to an increasing influence of other processes than primary 

cracking. The observation that methane is present as one of the most abundant compounds 

in all samples contradicts expectations for primary cracking. The reason for this cannot 

unequivocally be determined from the data. A possible reason might be that C2+ 

hydrocarbons generated during cracking are degraded by aqueous oxidation more heavily 

that methane. This is in line with Seewald (2001), who stated that the drive for reactions 

associated with aqueous oxidation increases with increasing chain length. This correlates 

well with the observed pattern in Fig. 26. The effect of aqueous oxidation on the n-alkane 

distribution is quite strong due to low overall conversion.  

 During aqueous oxidation, the chain length of the starting compound also plays a 

role. In the case of n-octane, degradation can proceed via formation of acetic acid and 

hexanoic acid that may decarboxylate to form CH4 and n-pentane. Formation of formic acid 

is not a preferred option because alkene oxidation at terminal carbons is rather unlikely (see 

chapter 2.2.1.1 for more details). Accordingly, the longest chain hydrocarbon generated 

through aqueous oxidation is n-pentane. During the n-heptane experiments presented in 

Seewald (2001), n-butane was the largest molecule produced through aqueous oxidation, 

consistent with the starting reactant containing one less carbon. These considerations for 

aqueous oxidation explain the “jump” from n-hexane to n-pentane in the n-octane 

experiment, and from n-pentane to n-butane in Seewald’s experiments. 

 The discussion shows that the degradation of n-heptane and n-octane seems to be 

influenced by the same processes, namely cracking and aqueous oxidation. The contribution 

of aqueous oxidation to the overall conversion is further strengthened by the close similarity 

of the suite of reaction products that were generated in both studies. Significant amounts of 

CO2 were produced during the experiments of both studies. The CO2 concentrations is 

usually comparable to the methane concentration, but may exceed it by a factor of 4 (PPM 



 
 78 

C8 300°C). Concentrations of quantified ketones (acetone and butanone) reach the same 

range as corresponding n-alkanes in the n-octane sample (PPM+H2O+C8H18). Seewald (2001) 

did not measure ketones in the n-heptane samples, but he provides data for aqueous 

acetate (C2H3O2
-
(aq)). In all experiments, the acetate concentration is in a similar range than 

that of propane. The formation of oxygen-containing compounds like CO2, ketones and 

organic acids provides clear evidence that aqueous oxidation contributed to the overall 

conversion of n-heptane and n-octane in both experimental studies. 

 

 

Discussion of the 350°C Data 

 The n-alkane distribution of all 350°C samples (Fig. 21 A & B) generally shows a good 

agreement with the typical cracking pattern (cf. chapter 4.3.3.1). This observation suggests 

that cracking may also be the dominating process for aqueous n-octane decomposition in 

the mineral-buffered samples.  

 If the minerals only catalyzed primary cracking of n-octane, an increase by the same 

factor for propane, butane and n-pentane, and slightly lower increases for ethane and 

methane would be expected in comparison to the reference sample (C8* 350°C). This 

assumption is based on the comparison of the generated n-alkane amounts (C1 to C5) from n-

octane cracking after 24 h (data from Zhang et al., 2007; Zhang et al., 2008a) and after 168 h 

at 350°C (cf. chapter 4.3.3.1). A closer look at the results shows that this is not completely 

the case (Fig. 27 A & B). Instead, methane and ethane show the same or higher enrichment 

factors than the other n-alkanes (C3 to C5), which is more obvious in presence of sulfate. 

This, and especially the selective enrichment of C1-C5 n-alkanes relative to C6 and C7 n-

alkanes observed for all, except the hydrous pyrolysis (-buf C8 350°C) samples, is exactly the 

result predicted for oxidative degradation via the reaction path described in Seewald (2001) 

(see chapter 2.2.1.1 for details). During this process, longer chain n-alkanes degrade 

oxidatively by forming two C2+ carboxylic acids as intermediate products, which 

subsequently degrade via decarboxylation and/or oxidation. In the case of n-octane, the 

largest carboxylic acid that is expected to be produced in significant quantity is hexanoic acid 

(C6H12O2) together with acetic acid (C2H4O2). The formation of formic (CH2O2) and heptanoic 

acid (C7H14O2) is rather unlikely because alkene oxidation (step 2 of the Seewald model) at 

terminal carbons may only proceed at a very subordinate rate (Seewald, 2001). Hexanoic 

acid could decarboxylate to form methane and n-pentane. Accordingly, the longest chain 
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alteration product from oxidative degradation of n-octane is n-pentane. As a result, the 

steep increase from C6 to C5 characteristic for the typical cracking pattern is amplified. 
 

 

 

 

 
 

 

  Based on the results, it is suggested that n-alkane data for the HM and PPM samples 

with and without sulfate, as well as for the sulfate-containing buffer-free sample, provide 

compelling evidence for decomposition of n-octane via oxidative degradation in addition to 

cracking. As noted earlier in this chapter, this is also supported by the observation that the 

samples are characterized by an alteration assemblage that consists of n-alkanes, alkenes, 

ketones and CO2. These are all reaction products, which are consistent with those generated 

by oxidative degradation (Seewald, 2001). The strongly elevated methane yield (Fig. 22), 

which is observed for the sulfate-containing PPM samples (labeled by PPM C8+Na 350°C) 

needs, however, further explanation. 

  
 

 

Fig. 27: Normalized product for n-alkanes generated from aqueous n-octane decomposition at 350°C and 35 MPa 

after 168 h in (A) sulfate-free and (B) sulfate-containing samples. The normalized product yield is calculated by 

dividing n-alkane concentrations of each sample by respective n-alkane concentrations for the pure n-octane 

sample (C8* 350°C). This sample serves as reference for pure thermal cracking under the experimental conditions. 

Values >1 represent enrichment and values <1 depletion of individual n-alkanes. Buffer conditions are indicated as: 

-buf = no mineral buffer, HM = hematite-magnetite, PPM = pyrite-pyrrhotite-magnetite. Uncertainties are calculated 

by error propagation of absolute errors listed in Table A1. 
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4.3.4 EFFECT OF THE PPM AND HM MINERAL BUFFERS, AS WELL AS THE 

EFFECT OF DISSOLVED SULFATE ON THE HYDROTHERMAL DEGRADATION 

OF N-OCTANE 

 

4.3.4.1 ELEVATED GAS DRYNESS FOR THE SULFATE-CONTAINING PPM SAMPLES  

 The elevated methane yield in the sulfate-containing PPM samples is reflected by the 

gas dryness (C1/∑C1-4). It increases from 6.3 ± 0.7 wt% to 18 ± 6 wt% in presence of sulfate in 

the PPM samples. In contrast, the gas dryness for the HM and buffer-free samples remains 

constant within the uncertainty, if sulfate-free and sulfate-containing samples are compared 

(Fig. 22). Interestingly, the gas dryness of the sulfate-free PPM sample is already 2 wt% 

higher than for the respective HM and buffer-free sample, which both show a gas dryness of 

4.2 ± 0.5 wt% (Fig. 22). The question arises why the gas dryness shows a different behavior in 

the three investigated systems, and especially in the two mineral-buffered systems. 

 One possible explanation could be the different redox conditions adjusted by the HM 

and PPM buffers. At more reducing conditions, as for example encountered with the PPM 

mineral buffer, decarboxylation may dominate at the terminal step of the reaction sequence 

proposed for aqueous oxidation of hydrocarbons (Seewald, 2001). According to Seewald 

(2001, 2003), this can be an effective mechanism to generate dry, i.e. methane dominated, 

gas from C2+ hydrocarbons. In addition to that, the different minerals in the two buffers may 

display different catalytic potential with respect to methane generation. These two 

explanations may be valid to some extent, but they cannot fully account for the significant 

increase in gas dryness following sulfate addition in the PPM system, mainly because of two 

reasons. First of all, the same PPM minerals are present in the sulfate-free as well as in the 

sulfate-containing systems. Based on the discussion in chapter 4.3.2, it was inferred that the 

minerals were not passivated and should therefore have the same catalytic potential in 

sulfate-free and sulfate-containing samples. Secondly, sulfate is expected to have an 

oxidizing effect and would therefore promote oxidation instead of decarboxylation in the 

terminal step of the reaction sequence for aqueous oxidation. This would not lead to a 

significantly increased methane yield.   

 I rather propose that the crucial difference is that the PPM buffer initially provides 

H2S, which can have a great impact in presence of sulfate (see paragraph below). The 

selective enrichment of methane observed for the PPM samples, and thus an increase of the 
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gas dryness, is very consistent with results expected for TSR, especially if catalyzed by H2S 

(Amrani et al., 2008; Zhang et al., 2008a; Zhang et al., 2008b). Results from Zhang et al. 

(2008a) for experiments investigating the effect of H2S on the reaction of n-octane and 

MgSO4 under hydrothermal conditions are presented in (Fig. 28). 

 

 

 

 

 

Theoretical Background on H2S-Catalyzed TSR  

 Experiments performed by Zhang et al. (2008b) had the objective to elucidate 

potential controls for H2S initiation of TSR. Experiments were run at 300-370°C and 24.1 MPa 

for 24 h, using CaSO4 and a C21-C35 paraffin mixture
10

 or hexadecane. The pH was adjusted to 

3 or 5, employing a talc-silica and dolomite pH mineral buffer respectively. Based on their 

results they proposed a three-step reaction scheme for TSR initiation by H2S (Fig. 29): 

 

 

 

1. In absence of H2S or other low valence sulfur species, sulfate reduction 

with hydrocarbons may proceed at a slow rate. The critical step is the 

activation of the free sulfate ion to form, for example, HSO4
-
. According 

to Zhang et al. (2008b), the reaction produces lower valence sulfur 

species including SO3, S2O3, S8 and H2S.   

 

 

                                                      
10

 Research grade paraffin way composed of C21 to C35 normal alkanes, with a melting point of 52-58°C. 

 

 

Fig. 28: Evolution of the gas dryness (C1/∑C1-4) 

in dependence on the amount of H2S 

generated from reaction of MgSO4 and n-

octane with varying water contents at 350°C 

and 24.1 MPa after 24 h experiment duration 

(data from Zhang et al., 2008a). 

During the experiments H2S was generated 

from reduction of sulfate. The thermochemical 

reduction of sulfate (TSR) is catalyzed by H2S, 

sustaining an auto-catalyzed process (Zhang et 

al., 2008b). With increasing H2S yield, and thus 

increasing TSR, the gas dryness sharply 

increases at low H2S concentrations and seems 

to approach a constant value at higher H2S 

levels. This finding indicates that TSR, 

especially if catalyzed by H2S, is a possible 

mechanism for selectively enriching methane 

relative to C2, C3 and C4. 
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2. H2S and other low valance sulfur species produced in the first step may 

rapidly react with hydrocarbons to generate labile organosulfur 

compounds including thiols, sulfides and disulfides. H2S originating from 

other sources, like from the PPM mineral buffer, may directly enter the 

sequence at this step. 

 

 

 

 

3. Generated LSCs are likely to react with sulfate and are significantly more 

effective in increasing the rate of sulfate reduction than inorganic sulfur 

species like H2S or elemental S (on a mole basis) (Amrani et al., 2008). 

According to Zhang et al. (2008b), the lower valence sulfur species 

generated in this step may react with hydrocarbons to form more H2S 

and LSC (second step), sustaining an auto-catalyzed reaction. 
 

 

 

 

 

     

 

 
 

Fig. 29: Proposed reaction scheme for H2S-catalyzed thermochemical sulfate reduction, with labile 

organosulfur compounds as key intermediates (modified after Zhang et al., 2008b). R represents an alkyl 

group, HC stands for hydrocarbons. Pyrobitumen refers to an organic network that forms by polymerization of 

hydrocarbons. Pyrobitumen is characterized by a low H/C ratio, indicating hydrogen depletion compared to 

the starting material.  
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 In addition to the experiments mentioned above, Zhang et al. (2008b) performed 

experiments with the same C21-C35 paraffin mixture and varying initial amounts of H2S (in 

absence of sulfate!) at 300°C and 24.1 MPa for 192 h. The results indicate that with 

increasing amounts of initially loaded H2S, the amount of analyzed thiols (methanethiol, 

ethanethiol, propanethiol and iso-propanethiol) continuously increases (Fig. 30). Zhang et al. 

(2008b) propose that alkenes are probably the reactive hydrocarbons toward H2S during 

formation of LSCs:    

 

   CnH2n + H2S = CnH2n+1SH   (35)  

   alkene     thiol 

 

 

 Results from Amrani et al. (2008)
11

, support the findings of Zhang et al. (2008b) that 

LSCs significantly promote the TSR reaction and thus the formation of methane. The exact 

mechanisms how TSR selectively enhances methane formation is hitherto not understood, 

but considering findings from Zhang et al. (2008b), a possible reaction could be (Amrani, 

personal communication): 

 

    CH3SCH3 + H2 → CH3-SH + CH4  (36) 

 

 

                                                      
11

 Amrani et al. (2008) performed experiments with n-octane and CaSO4 in the presence of reduced sulfur (H2S, 

S°, organic S, but no sulfur-containing minerals were tested) at 330 and 356°C at 24.1 MPa. In-situ pH was 

buffered to 3.5 with talc and silica. 

 
 

Fig. 30: Yield of five different labile sulfur compounds generated from reaction of a C21-35 paraffin with variable initial 

H2S amounts (data from Zhang et al., 2008b). Experiments were conducted at 300°C and 24.1 MPa for 192 h. Note 

that H2S concentrations on the x-axis refer to initially loaded H2S amounts, whereas H2S concentrations shown in 

Fig. 28 refer to generated amounts of H2S during the experiments. 
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Interpretation of the Results for the Sulfate-Containing PPM Samples 

 Hanin (2002) performed experiments with n-octadecane (C18H38) and pyrite at 300°C. 

Her results indicate that sulfur from pyrite gets incorporated into organic reaction products. 

Evidence for sulfur incorporation from minerals into organic reaction products is also 

provided by preliminary measurements
12

 for the sulfate-free PPM sample, which show that 

1-propanethiol (C3H8S) was generated. This is not surprising, because thiols are likely formed 

from the reaction of alkenes and H2S (Reaction 35). The PPM buffer can be the source of H2S. 

Such a reaction is analogue to the Markownikoff addition of water in the second step of the 

Seewald model (cf. chapter 2.2.1.1). Thus, I hypothesize that both reactions would be 

competing and that an alternative reaction pathway involving organosulfur compounds may 

open up at this step of the reaction sequence (Fig. 31). Observations for the sulfate-

containing PPM samples provide compelling evidence for the possible involvement of such a 

LSC pathway: 

 

 
 

 

 

   

 

                                                      
12

 The analytical protocol was not set for detection of organosulfur compounds at time of sample analysis. 

However, recent method developments allow qualitative detection of selected thiols, whereof only 

1-propanethiol shows no coelution problems in case of the PPM samples. 

Fig. 31: Visualization of the proposed hypothesis 

that an alternative pathway in addition to 

aqueous oxidation may be initiated during 

hydrothermal n-alkane decomposition if H2S is 

present in the reacting system. Analogue to the 

reaction alkene + H2O = alcohol, H2S(aq) may react 

with alkenes to from thiols. This could first 

initiate and than enhance the labile sulfur 

compound (LSC) pathway. Alkenes are probably 

not the only organic compounds that can react 

with H2S(aq). It is rather hypothesized that all 

reactions postulated by Seewald (2001) for 

aqueous oxidation involving water, may also be 

possible with H2S(aq). This needs, however, 

support of further experimental investigations. 

 

*A detailed reaction network for aqueous 

oxidation of hydrocarbons was presented by 

Seewald (2001). His work is summarized in 

chapter 2.2.1.1 of the present thesis.   
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 If sulfate is added, generated amount of CO2 (Fig. 23 E) and ketones (Fig. 23 C & D) 

decrease, although amounts of generated C3 to C7 n-alkanes (Fig. 21 A & B) and 

concentrations of propene and butene (Fig. 23 A & B) remain constant. The strongest 

decrease is observed for ketones. These observations point to a mechanism, which seems to 

hinder ketone formation from alkenes. This could for example be the case, if the reaction 

network is shifted toward the LSC pathway. As noted above, LSCs can be generated from 

reaction of alkenes and H2S. H2S generated from the mineral buffer may initiate this 

reaction. Sulfate, once activated, can be reduced by the LSCs, generating more H2S and other 

low valence sulfur species (Fig. 29). This would enhance the overall rate of LSC formation 

and sustain an auto-catalyzed reaction (Zhang et al., 2008b).  

 Results from Zhang et al. (2008a) show that an enhanced methane formation is 

expected with an increasing extent of H2S-, or more precisely, LSC-catalyzed TSR. This is in 

line with observations for the sulfate-containing PPM samples. Although LSC compounds 

could not be quantified with the analytical protocol, the possibility that LSC- catalyzed TSR in 

addition to cracking and oxidative degradation may successfully explain the results for the 

sulfate-containing PPM samples cannot be dismissed. Further support for the possible 

occurrence of sulfate reduction is given by XRD data, which show that the total amount of 

sulfur stored in the mineral buffer increases in presence of sulfate (cf. chapter 4.3.2). 

 

 

4.3.4.2 SULFATE ADDITION LOWERS TOTAL OXIDATION TO CO2 

 Generally, sulfate is expected to have an oxidizing effect on hydrocarbons and should 

promote their total oxidation to CO2 (Orr, 1977; Goldstein and Aizenshtat, 1994; Machel, 

2001). Thus, the decrease in CO2 concentration observed for all three investigated systems 

(-buf, PPM and HM) upon sulfate addition seems contradictory. However, results of the 

present PhD study do not stand alone. Pan et al. (2006) compared oxidation of gaseous 

hydrocarbons by pure hematite, and by hematite+MgSO4 at nearly identical experimental 

conditions (350°C, 50 MPa, 72-288 h), with the same result: sulfate addition lowers the total 

oxidation to CO2. In the previous paragraph it was proposed that a change in the reaction 

network toward a preferred generation of LSCs could offer a possible explanation. Another 

possibility could be that carbonates formed. Mineralogical and geochemical data for natural 
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samples from the Khuff Formation, Abu Dhabi, indicate that this may be a result of sulfate 

reduction with hydrocarbons (Worden and Smalley, 1996; Worden et al., 2000):  
 

 

 

  CH4 (g) + CaSO4 (s) → CaCO3 (s) + H2S (g) + H2O (l)  (37) 

  

 

 

 In the present study, Na2SO4 was used as sulfate source. Precipitations of Na2CO3 

(=soda) is, however, unlikely due to its high aqueous solubility. Significant concentrations of 

aqueous carbonate species (CO3
- -

 and HCO3
-
) are also not expected, because thermodynamic 

calculations with the Geochemist Workbench indicate that CO2 would be the dominating 

aqueous species at the experimental conditions (Hentscher, personal communication). 

 In the mineral-buffered systems siderite (FeCO3) represents another carbonate 

mineral that could precipitate. This could explain why the observed decrease in CO2 

concentration upon sulfate addition is higher in the mineral-buffered system if compared to 

the buffer-free samples. Especially in the HM system a strong decrease in the CO2 

concentration from 170 ± 19	mmol/mol���	�
 to 57 ± 6	mmol/mol���	�

 is observed. Under 

the assumption that the total decrease of CO2 in the HM samples was attributed to siderite 

precipitation, formation of 3.4 µmol of siderite (= 0.4 mg) would be expected. This amount 

would be detectable by XRD analysis, but it would be close to the lower limit of the method. 

Thus, if only half the amount had formed, it would not be resolvable. In order to verify that 

lacking detection of siderite was not an issue of resolution, thermodynamic calculations 

were performed to test the potential of siderite formation during the experiments.  

 

 

Thermodynamic Calculations – Evaluating the Potential of Siderite Formation 

 Regarding the HM and PPM buffer minerals, different reactions for siderite formation 

are possible. McCollom et al. (2010)
13

 showed, for example, that siderite formation from 

magnetite is possible during hydrothermal experiments under highly reducing conditions 

(Reaction 38). In addition to that, Seewald (2001) proposed that siderite formation from 

pyrite may be possible in nature (Reaction 39), but he does not explicitly investigate this 

                                                      
13

 McCollom et al. (2010) used native iron to adjust highly reducing conditions during experiments performed 

at 250°C and 17 MPa in the course of their study. The corresponding reaction is: 3 Fe (s) + 4 H2O (l) → Fe3O4 (s) + 

4 H2 (aq). At 350°C and 35MPa the calculated hydrogen activity at equilibrium (log aH2 (aq) = 1.1), would be four 

orders of magnitude more reducing than the hydrogen activity in equilibrium with the pyrite-pyrrhotite-

magnetite mineral buffer at identical conditions (log aH2 (aq) = -3.2). 
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point in his study. Furthermore, hematite (Reaction 40) and pyrrhotite (Reaction 41) also 

have the potential to be involved in siderite formation. 

 

 

 

 Fe3O4 (s) + H2 (aq) + 3 CO2 (aq) = 3 FeCO3 (s) + H2O (l)   (38) 

 magnetite         siderite 

 

 

  FeS2 (s) + H2 (aq) + CO2 (aq) + H2O (l) = FeCO3 (s) + 2H2S (aq)  (39) 

 pyrite                              siderite 

  

 

 Fe2O3 (s) + H2 (aq) + 2 CO2 (aq) = 2 FeCO3 (s) + H2O (l)   (40) 

 hematite         siderite  

 

 

 FeS (s) + CO2 (aq) + H2O (l) = FeCO3 (s) + H2S (aq)    (41) 

 pyrrhotite         siderite 

 

 

 

 In order to evaluate whether a thermodynamic drive exists for these reactions in the 

HM- and PPM-buffered samples, the chemical affinity (A) can be used: 

 

 

    A = -RT ln(Q/KT,P)    (42) 

 

         

with R being the ideal gas constant (1.9872 cal mol
-1 

K
-1

), T (K) the temperature, Q the 

reaction quotient and KT,P the equilibrium constant at temperature and pressure of interest. 

The equilibrium constant K describes a reaction at equilibrium, whereas the reaction 

quotient Q reflects the actual reaction status at a certain time (see below). A positive 

chemical affinity would mean that a thermodynamic drive exists, whereas a negative value 

would mean the opposite. 

 Values of KT,P for Reactions (38) to (41) were calculated using the computer program 

SUPCRT92 (Johnson et al., 1992) in combination with thermodynamic data consistent with 

the SPRONS92.DAT database (see Johnson et al., 1992 for original sources). Resulting log K 

values at 350°C and 35 MPa are -0.45, -2.03, 1.12 and -2.98 for Reactions (38), (39), (40) and 

(41) respectively. Values of Q for the reactions considered were calculated from 

corresponding laws of mass action. Logarithmic expressions of the law of mass action for 

Reactions (38), (39), (40) and (41) can be written as: 
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log	�(��) = 3	log	������( )
+ log	�"��(#)

− log	�����%( )
− log	�"�(&')

− 3	log	����(&')
      (43) 

 

 

log	�(�() = log	������( )
+ 2	log	�"�*(&')

− log	���*�( ) − log	�"�(&')
− log	����(&')

      (44) 

 

 

log	�(+,) = 2	log	������( )
+ log	�"��(#)

− log	������( )
− log	�"�(&')

− 2	log	����(&')
      (45) 

 

 

log	�(+-) = log	������( )
+ log	�"�*(&')

− log	���*( ) − log	�"��(#)
− log	����(&')

      (46) 

 

 

 

 In order to determine Q, measured amounts of products and reactants present 

during the reaction at a particular point in time are converted to corresponding activities 

(see below) and are included in the calculation. In line with the orther thermodynamic 

calculations in this study, the standard state adopted for liquid H2O and stoichiometric 

minerals is 1 of unit activity. As noted in chapter 3.6.1, pyrrhotite is a non-stoichiometric 

mineral, wherefore its activity is smaller than 1 and needs to be included in the calculation. 

In case of the PPM samples of this study the activity of pyrrhotite was determined to be 0.56 

± 0.03 at 350°C and 35 MPa (cf. chapter 3.6.1). Thus, Equations (38) - (42) reduce to: 

 

 

 

  log	.(��) = −log	�"�(&')
− 3	log	����(&')

      (47) 

 

 

  log	.(�() = 2	log	�"�*(&')
− log	�"�(&')

− log	����(&')
       (48) 

 

 

  log	.(+,) = −log	�"�(&')
− 2	log	����(&')

         (49) 

 

 

  log	.(+-) = log	�"�*(&')
− log	���*( ) − log	����(&')

     (50) 

  

  

 Even though aqueous concentrations of hydrogen and hydrogen sulfide were not 

measured for the HM and PPM samples, a first estimate of reaction quotients can be made 

based on the assumption that equilibrium values were attained. Calculations of hydrogen 

activities in equilibrium with the HM (log aH2(aq) = -4.2) and PPM (log aH2(aq)  = -3.2) mineral 

buffers, as well as of the hydrogen sulfide activity in equilibrium with the PPM (log aH2S(aq) 

 = -2.0) mineral buffer at 350°C and 35 MPa, are described in chapter 3.6.1. The activity of 

CO2 was calculated from measured molal CO2 concentrations under the assumption that the 
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activity coefficient is equal to unity (cf. chapter 3.6.3 → footnote 4), which is consistent with 

the approach of Seewald (2001). Reaction quotients calculated based on these assumptions, 

are listed in (Table 8). 

 

 

 
 

 

 For the HM and PPM samples processed at 350°C and 35 MPa, calculated affinities 

for Reactions 38 to 41 are all negative (Table 8), indicating that no thermodynamic drive for 

siderite formation exists during the experiments. Siderite formation could be promoted if 

hydrogen and/or CO2 concentrations rose, but even if hydrogen and CO2 activities were one 

order of magnitude higher, chemical affinities would still be negative. Additionally, the 

Table 8: Values for the logarithmic reaction quotient (log Q → first number) and the chemical affinity (A in 

Kcal/mol → second number) calculated for siderite formation from magnetite (Reaction 38), pyrite (Reaction 39), 

hematite (Reaction 40) and pyrrhotite (Reaction 41) during sulfate-free (labeled by C8) and sulfate-containing 

(C8+Na) experiments. Calculated values are specific for the experimental conditions, i.e. 350°C and 35 MPa, and 

run duration of 168 h. The uncertainty for the affinity values is ±1 kcal/mol.  
 

 

 

HM C8 350°C HM C8+Na 350°C PPM C8 350°C PPM C8+Na 350°C 

Molal CO2 concentrations* used to calculate Q 

0.058 0.020 0.032 0.022 

Reaction (38) – Fe3O4(s) + H2(aq) + 3 CO2(aq) =3 FeCO3(aq) + H2O(l) 

8  

-24 

9.4 

-28 

7.7  

-23 

8.2 

-25 

Reaction (39) – FeS2(s) + H2(aq) + CO2(aq) + H2O(l) = FeCO3(s) + 2H2S(aq) 

  
0.7 

-8 

0.8 

-8 

Reaction (40) – Fe2O3(s) + H2(aq) + 2 CO2(aq) = 2 FeCO3(s) + H2O(l) 

6.7 

 -16 

7.7 

-19 
  

Reaction (41) – FeS(s) + CO2(aq) + H2O(l) = FeCO3(s) + H2S(aq) 

  
-0.3 

-8 

-0.1 

 -8 

 

 

PPM = pyrite-pyrrhotite-magnetite; HM = hematite-magnetite 
 

*The molal (mol/kg H2O) concentrations for CO2 are obtained from concentrations listed in Table A1 in the 

appendix through division by 1000 subsequent multiplication by the molar amount of initial n-octane 

(3.064 x 10
-5

 mol), and final division by the amount of water (9 x 10
-5

 kg). 
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actual hydrogen activity is rather up to 0.5 log units lower than the predicted value (bachelor 

thesis Hinze, 2012). This will also counteract siderite precipitation. Another possibility, which 

could promote siderite formation from iron sulfides (Reactions 39 and 41) is to lower the 

amount of hydrogen sulfide in the system. This might be the case, if LSC compounds formed 

(e.g. Reaction 35). If hydrogen and CO2 activities remained unchanged, the activity of 

hydrogen sulfide would, however, have to be lowered by 1.5 or 3 log units to approach zero 

affinity for Reactions 39 and 41 respectively. Such a decrease is quite high and unrealistic to 

be reached during the experiments. Furthermore, siderite precipitation could only be 

initiated if chemical affinities actually switched to positive values. 

 

 The thermodynamic consideration in conjunction with the XRD data, indicate that 

siderite precipitation is not expected during experiments performed at 350°C and 35 MPa. 

Thus, the drop in CO2 concentration that was observed as consequence of sulfate addition 

cannot be accounted for by this mechanism.  

 

 

4.3.4.3 SIMILARITY OF THE SULFATE-CONTAINING BUFFER-FREE AND HM SAMPLES 

 Interestingly, despite differences in concentrations, relative abundances of reaction 

products generated in the sulfate-containing buffer-free samples (-buf C8+Na 350°C) and the 

sulfate-containing HM (HM C8+Na 350°C) samples are very similar. The trend for the n-alkane 

distribution is for example identical. It agrees with the typical cracking pattern, showing an 

increase from C5 to C6, rather equal amounts for C5 to C2 and a drop towards lower methane 

concentrations. A closer look reveals, however, that C1-5 n-alkanes are stronger enriched 

relative to C6 and C7 than in the cracking reference sample (Fig. 27 B). This points to an 

influence of oxidative degradation (Seewald, 2001). It is striking that the curve for the 

sulfate-containing buffer free samples (-buf C8+Na 350°C) depicted in Fig. 27 B plots directly 

on the curve for the sulfate-containing HM sample (HM C8+Na 350°C) if values were multiplied 

by a factor of 4. In addition to that, molar alkane/alkene, ketone/alkene and CO2/C1 ratios 

are identical or at least very similar in both samples (Table A1 in the appendix). Good 

correlation of results for the sulfate-containing buffer-free and sulfate-containing HM 

samples provide compelling evidence that aqueous n-octane decomposition is influenced by 
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the same processes in both samples. The main processes being cracking and oxidative 

degradation. 

  

  In addition to that, some results point to the possibility of small contributions from 

TSR at its initial stage. One indication for this is given by the gas dryness data. HM and 

buffer-free samples in absence of sulfate are characterized by a gas dryness of 4.2 ± 0.5 wt%, 

and corresponding samples with sulfate by a gas dryness of 5.2 ± 0.6 wt%. Data are the same 

within uncertainty, but absolute values seem to be a sign of an increase. In fact, the 

presented error is regarded to be an overestimation of the uncertainty. This assumption is 

based on the results for five identical sulfate-containing PPM samples that were processed 

at 350°C. Here the gas dryness ranges from 12.4 to 13.5 wt%, with an arithmetic mean of 

12.9 ± 0.4 wt% (Fig. B3 in the appendix). The double standard deviation of the arithmetic 

mean (= 0.8 wt%) covers the whole range of the data. It equals a relative uncertainty of 7%. 

If this was applied for the gas dryness values of the HM and buffer-free samples, the results 

would change to 4.2 ± 0.3 wt% and 5.2 ± 0.3 wt% for the sulfate-free and sulfate-containing 

samples respectively. Based on this discussion, the observed increase for the gas dryness is 

considered to be reliable. 

 

 This, together with the observation that sulfate addition seems to hamper ketone 

and CO2 formation in the buffer-free and HM experiments, is consistent with the 

observations for the PPM samples. Here, a change in the reaction network associated with 

H2S-catalyzed TSR was proposed as a possible hypothesis to explain the findings (cf. chapter 

4.3.4.1). A crucial difference between the buffer-free and HM systems on the one hand, and 

the PPM system on the other hand, is, however, that the first two initially do not contain any 

H2S or other low valence sulfur species. Thus, the first step of the reaction scheme proposed 

by Zhang et al. (2008b) for sulfate reduction initiated by H2S (cf. Fig. 29) could not be jumped 

over in these two systems, which would explain the lower TSR rate. Here, the activation of 

the free sulfate ion to a more reactive species (e.g. HSO4
-
) is the critical step for TSR 

initiation. Regarding the experiments performed in the course of the present study, 

thermodynamic modeling with the Geochemist Workbench shows that NaSO4
-
 is the 

dominant aqueous sulfate species (Hentscher, personal communication). It is, however, 

unknown if this species is reactive towards hydrocarbons.  
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 Alkane and alkene data do, however, provide further evidence for possible TSR 

involvement in the thermal decomposition of n-octane, at least for the buffer-free system. 

Here, the molar alkane/alkene ratio is lowered if sulfate is added (Table A1 in the appendix 

and Fig. 32 in the next chapter). This is consistent with expectations for TSR controlled 

reactions (Ma et al., 2008):  

 

 

 

    SO4
2-

 + n-alkane → H2O + alkene + SO3
2-

   (51) 

 

 

 

A lowering of the alkane/alkene ratio upon sulfate addition is not obvious for the mineral-

buffered systems. Here, the influence of TSR on the conversion of alkanes to alkenes seems 

to be masked by the buffering influence of the mineral assemblages on the reaction. In 

presence of the HM buffer, a decreasing trend of the molar alkane/alkene ratio may be 

spotted with some courtesy, if absolute values for the sulfate-free and sulfate-containing 

HM samples are compared (Fig. 32 in the next chapter). 

  

 

4.4 CONCLUSIONS 

 The thermal degradation of n-octane in presence or absence of the hematite-

magnetite (HM), the pyrite-pyrrhotite-magnetite (PPM) mineral assemblages and dissolved 

sulfate was studied at 300 and 350°C. Gas chromatographic analyses of organic reaction 

products generated during the experiments reveal insights into the effect of these inorganic 

components on the distribution of reaction products. Measured data were used to evaluate, 

which processes contributed to the degradation of n-octane and which implications 

presence of the inorganic components has on the reaction network. The results contribute 

to an improved understanding of the reaction of hydrocarbons with inorganic components. 

Principal findings for the experiments are:  

 

 

1. Cracking is the dominating primary reaction controlling n-alkane decomposition in all 

experiments. 
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2. In all water-containing samples aqueous oxidation contributes to n-octane 

degradation in addition to cracking. This is consistent with observations for similar 

experiments with n-heptane in a sulfate-free system (Seewald, 2001). However, this 

is the first time that the reaction network for aqueous oxidation has been verified in 

such detail for hydrocarbon degradation in sulfate-containing experiments. 

 

 

 

 

 

3. Data for sulfate-containing PPM samples (PPM C8+Na 350°C), especially the strongly 

elevated methane yield, cannot be explained by cracking and aqueous oxidation only, 

and require further explanation. Results suggest that additional contributions from 

H2S-catalyzed TSR, may successfully explain the findings with the source of H2S being 

the PPM mineral buffer. It is hypothesized that an alternative reaction pathway 

involving organosulfur compounds (LSC pathway) is initiated, which may proceed 

simultaneously to the aqueous oxidation pathway.   

 

 

 

 

 

4. The product distribution of the sulfate-containing buffer-free (-buf C8+Na 350°C) and 

sulfate-containing HM (HM C8+Na 350°C) samples show compelling similarity despite 

differences in the absolute abundance. As noted in point 2, aqueous oxidation and 

cracking are the main processes responsible for n-octane degradation. However, 

results for these sulfate-containing samples point to the possibility that TSR 

proceeded at a very subordinate rate as well. 

 

 

 

 

 

5. Interestingly, sulfate addition lowers the total oxidation of n-octane to CO2 in all 

three investigated systems (buffer-free, HM and PPM), which contradicts 

expectations for TSR. XRD analyses as well as a thermodynamic evaluation verify that 

siderite (FeCO3) precipitation is not an explanation for this observation. A change in 

the reaction network toward an LSC pathway could, however, offer a suitable 

explanation for the observed decrease in the oxidation of hydrocarbons to CO2 upon 

sulfate addition. 
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6. Presence of minerals (HM and PPM) influence the reaction network to various 

extents: 

 

 

a. Results confirm findings of other studies suggesting that individual minerals of 

the hematite-magnetite and pyrite-pyrrhotite-magnetite buffers can act as 

catalysts and reactants. However, this study expands the understanding by 

investigating mineral mixtures and not single minerals only. 

 

b. Apart from the ability to act as catalyst and reactant, investigated mineral 

assemblages effectively acted as redox buffers during the experiments. 

Distribution of reaction products reflects more oxidizing conditions in 

presence of the HM than in presence of the PPM mineral buffers. This is the 

first time that the regulating influence of redox mineral buffers has been 

demonstrated in experiments investigating the reaction of hydrocarbons with 

sulfate.  
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55..  PART I-B  

METASTABLE THERMODYNAMIC EQUILIBRIUM OF THE ALKANE-ALKENE  

AND ALKENE-KETONE REACTIONS  

 
 

  

 In chapter 4 it has been shown that aqueous oxidation in addition to cracking are the 

dominating processes for aqueous n-octane decomposition in the water-containing 

experiments. In this chapter the results are evaluated with respect to equilibration of the 

alkane-alkane and alkene-ketone reactions. Experimental studies in a sulfate-free system by 

Seewald (1994, 2001) demonstrated that mineral redox buffers may influence redox-

dependent organic-organic reactions in the way that they are pushed toward a metastable 

thermodynamic equilibrium state. A brief summary of his studies was presented in 

chapter 2.2.2, where a definition of the term “metastable thermodynamic equilibrium” can 

also be found. If alkenes were used as starting compounds, equilibration of alkanes and 

alkenes (Reaction 9), as well as equilibration of alkenes and ketones (Reaction 10) is possible 

in the experiments under hydrothermal conditions (300-350°C) in presence of the HMP and 

PPM buffers. In contrast, neither equilibration of alkanes and alkenes nor equilibration of 

ketones and alkenes is observed in presence of the HM mineral buffer under the same 

experimental conditions. If an n-alkane, e.g. n-heptane, was used as starting compound 

attainment of equilibrium for these compounds was also not observed in experiments, 

which were processed at 300°C in presence of the HMP and PPM buffers.  

 Reeves et al. (2012) showed, however, that at a slightly higher temperature of 323°C 

and in presence of the PPM mineral buffer, equilibration of ethane-ethene and propane-

propene is possible if a mixture of C1 to C5 n-alkanes is used as starting compound. However, 

equilibrium states were only reached after 100 days experiment duration. Unfortunately, 

Reeves et al. (2012) do not provide data for ketones. 

 

  Based on this literature review, open questions remain like for example: Which role 

does the starting compound play? Is it possible to reach alkane-alkene equilibria within 

shorter run duration, if the temperature is raised in experiments using an n-alkane as 

starting compound, and is it possible to reach alkene-ketone equilibria in such experiments? 

It also remains unanswered, which effect the HM buffer has on equilibration of n-alkanes, 
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alkenes and corresponding ketones, if an n-alkane is used as starting compound. Last but not 

least, the effect of sulfate on the metastable thermodynamic equilibrium of n-alkanes, 

alkenes and corresponding ketones has not yet been investigated. 

 

 Experiments with n-octane performed in the course of the present PhD thesis extend 

the work of Seewald (1994, 2001) and Reeves et al. (2012), and  offer a consistent data set to 

elucidate these points. In order to evaluate whether the alkane-alkene (Reaction 9, p. 17) 

and the alkene-ketone (Reaction 10, p. 17) reactions attained metastable equilibrium states 

during the experiments with the HM and PPM mineral buffers at 350°C, the molar 

propane/propene and butane/butene, as well as the molar acetone/propene and 

butanone/butene ratios were compared to corresponding equilibrium ratios predicted from 

thermodynamic calculations for the two buffer systems (Fig. 32). 

 

 The predicted ratios were calculated from expressions of the law of mass action for 

the propane-propene (Reaction 52), butane-butene (Reaction 53), propene-acetone 

(Reaction 54) and butene-butanone (Reaction 55) reactions: 

 

 

 

   C�H�	(��) =	C�H�	(��) + H	(��)    (52) 

 

 

   C�H��	(��) =	C�H�	(��) + H	(��)    (53) 

 

 

   C�H�	(��) +	HO(�) =	C�H�O(��) + H	(��)  (54) 

 

 

   C�H�	(��) +	HO(�) =	C�H�O(��) + H	(��)  (55) 

 

 

 

with the general equations for the alkane/akene (Equation 56) and ketone/alkene (Equation 

57) ratios being as follows: 

 

 

 

log[alkane(��)/alkene(��)]��� !"#� = log $%&	('() −	log*  (56) 

 

 

log[ketone(��)/alkene(��)]��� !"#� = log* − 	log $%&	('() 	   (57) 
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The equilibrium constants (K) for Reaction 52 to 55 are listed in Table 9. They were 

calculated using the SUPCRT92 computer program (Johnson et al., 1992) together with 

thermodynamic properties consistent with the SPRONS92.DAT database (see Johnson et al., 

1992 for original sources) or taken from Amend and Helgeson (1997) for aqueous propane 

and n-butane. The standard state adopted for aqueous organic species is a hypothetical 

1 molal solution referenced to infinite dilution at any temperature and pressure (Seewald, 

2001). The standard state adopted for water is unit activity of the pure liquid at any 

temperature and pressure (Seewald, 2001).  

 As a first estimate, the equilibrium hydrogen activities that would be adjusted by the 

mineral buffers at 350°C are used to calculate predicted alkane/alkene and ketone/alkene 

ratios. The corresponding log aH2 (aq) values are -4.3 and -3.2 for the HM and PPM buffer 

respectively (see chapter 3.6.1 for details on the calculation). An uncertainty of ±0.2 log units 

for predicted ratios is assumed to be realistic taking uncertainties in thermodynamic data in 

consideration (Hentscher, personal communication). Furthermore, the potential implication 

of lower hydrogen concentrations is evaluated in the discussion, because the aqueous 

hydrogen concentration might be up to 0.5 log units below expected equilibrium values (see 

discussion for details).  

 

 

 

 

 

Table 9: Equilibrium constants calculated with SUPCRT92 for individual alkane-alkene and alkene-ketone 

reactions at 350°C and 35 MPa.  
 

 Reactions of interest ,-.	/ 

a
lk

a
n

e
-a
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e

n
e

 

C�H�	(�0) =	C�H�	(��) + H	(��)  

 

-5.64 

C�H��	(��) =	C�H�	(��) + H	(��)  

 

-5.66 

a
lk

e
n

e
-k

e
to

n
e

 

C�H�	(��) +	HO(�) =	C�H�O(��) + H	(��)  

 

-0.67 

C�H�	(��) +	HO(�) =	C�H�O(��) + H	(��)  

 

-0.29 
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5.1 RESULTS 

5.1.1 MOLAR ALKANE/ALKENE RATIOS 

 Regarding the experimental data for the alkane/alkene ratios, the same relative 

variations between individual samples can be observed, if the propane/propene and the 

butane/butene ratios are compared (Fig. 32 A & B). In contrast to the buffer-free system, 

alkane/alkene rations remain constant in the HM and PPM mineral buffered system, if 

sulfate is added. In the HM system, experimental alkane/alkene ratios are in good 

agreement with predicted ones. In the PPM system, alkane/alkene ratios for experimental 

samples are one order of magnitude below predicted values. Time series data for the 

sulfate-containing PPM samples (PPM C8+Na 350°C) show that the molar propane/propene 

ratio increases with time, from a log ratio of 1.1 ± 0.1 mol/mol after 72 hours to a log ratio of 

1.7 ± 0.1 mol/mol after 336 hours (Table A1 in the appendix). 

 

 

5.1.2 MOLAR KETONE/ALKENE RATIOS 

  In contrast to the alkane/alkene ratios, molar ketone/alkene ratios for the 

experimental samples do not remain constant in the HM and PPM samples if sulfate is 

added. Instead they decrease in all three investigated systems if sulfate is present (Fig. 

32 C & D). The strongest decrease is observed for the PPM samples, with -0.45 log units for 

the acetone/propene and -0.58 log units for the butanone/butene ratio. Interestingly, the 

molar ketone/alkene ratios are the same within uncertainty for all sulfate-containing 

samples in the three investigated systems (-buf, HM and PPM). In absence of sulfate, these 

ratios do, however, show slight variations. Note that experimental ketone/alkene ratios are 

one to three orders of magnitude below predicted values with the deviation being the 

strongest in case of the HM buffer.   
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Fig. 32: Molar alkane/alkene (A and B) and ketone/alkene ratios (C and D) for sulfate-free and sulfate-containing 

samples in the three investigated systems (-buf = no mineral buffer, PPM = pyrite-pyrite-magnetite, HM = 

hematite-magnetite) after 168 h at 350°C and 35 MPa. For comparison predicted ratios calculated for mineral-

buffered conditions at equilibrium in a sulfate-free system are shown. The uncertainty for the predicted ratios is 

±0.2 log units, and 0.1 log units for ratios calculated from experimental data. 
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5.2 DISCUSSION 

5.2.1 EVALUATING THE ATTAINMENT OF EQUILIBRIUM FROM COMPARISON OF 

PREDICTED AND EXPERIMENTAL RATIOS 

 

Alkane-Alkene Reactions 

 Regarding the HM samples, molar alkane/alkene ratios for the sulfate-free and 

sulfate-containing samples are in good agreement with predicted ratios (Fig. 32 A & B). This 

suggests that the HM buffer effectively controlled the hydrogen concentration to, or if 

sulfate is present at least close to the expected equilibrium value. Results indicate that 

reaction rates for the propane-propene and butane-butene reaction seem to be sufficiently 

fast at 350°C for alkanes to attain a redox-dependent metastable thermodynamic 

equilibrium state with corresponding alkenes within 168 h. 

 

 In contrast to the HM system, results for the PPM samples show that predicted and 

experimental alkane/alkene ratios do not agree (Fig. 32 A & B). It is however conspicuous 

why n-alkanes and alkenes seem to equilibrate in the HM system and not in the PPM system. 

Especially, because results presented by Seewald (2001) for experiments with alkenes as 

starting compounds show that equilibration of alkenes with corresponding n-alkanes should 

be promoted in sulfur-containing systems rather than in the HM system without initial sulfur 

being present (Table 2, p. 19). Regarding results of the present study, we see that the 

difference between experimental alkane/alkene ratios for the HM and PPM samples are 

smaller than expected. This is in line with results presented by Hinze (bachelor thesis 2012), 

which show that the hydrogen activity adjusted by the PPM mineral buffer under the 

experimental conditions may be up to 0.3 and 0.5 log units below the expected equilibrium 

value for the sulfate-free and respectively sulfate-containing experiments. Consequently, 

predicted alkane/alkene ratios for the PPM system can drop to a value of 2. As a result, the 

difference between the values for predicted and experimental ratios would decrease. Based 

on these observations, it is hypothesized that n-alkanes may have reached, or almost 

approached equilibrium with corresponding alkenes in dependence on the actual hydrogen 

activity prevailing during the experiments, which is not necessarily the equilibrium one. 

 

 One possible explanation why the HM buffer might reach equilibrium during the 

experiments, but not the PPM buffer, is that both are characterized by different 
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equilibration kinetics. In case of the HM buffer only two minerals have to equilibrate, 

whereas there are three in the PPM system. Results from Hinze (bachelor thesis 2012) for 

sulfate-free and sulfate-containing experiments with the same PPM buffer and water (no 

hydrocarbons!) show that the PPM buffer does move toward equilibrium in the investigated 

time frame ranging from 24 to 168 h (Fig. C1). This is supported by the increase of the 

propane/propene ratio with time, which is observed for the sulfate-containing PPM samples 

processed at 350°C (Table A1 in the appendix). 

 

 In the buffer-free experiments (Fig. 32 A & B) the activity of aqueous hydrogen is not 

controlled. In contrast to the mineral-buffered systems, sulfate addition lowers the 

alkane/alkene ratios. A lowering of the alkane/alkene ratio is in line with expectations for 

TSR controlled reactions (cf. chapter 4.3.2.1). The observation that the alkane/alkene ratio 

remains very similar upon sulfate addition in the mineral-buffered systems, but is lowered 

significantly in absence of mineral buffers if sulfate is added, provides further evidence that 

presence of mineral buffers influences the reaction network. 

 

Alkene-Ketone Reactions 

 In contrast to the dataset obtained for alkane/alkene ratios, decreasing 

ketone/alkene ratios (Fig. 32 C & D) upon sulfate addition indicate that the alkene-ketone 

reactions do not seem to be controlled by the mineral buffers. This is also confirmed by the 

observation that experimental ketone/alkene ratios are one to three orders of magnitude 

below predicted ratios. The deviation would even be greater, if we consider that the actual 

hydrogen activity might be up to 0.5 log units lower than expected. Results from the present 

study provide evidence that the alkane-alkene reaction equilibrate faster than the alkene-

ketone reaction, if an n-alkane is used as starting compound. This is right the opposite for 

Seewald’s (2001) findings for experiments with an alkene as starting compound. Observed 

differences are further elucidated below. 

 

 

5.2.2 EVALUATING THE THERMODYNAMIC DRIVE FOR THE REACTIONS 

 Comparison of predicted and experimental ratios provides compelling evidence that 

redox-dependent metastable thermodynamic equilibrium seems possible for alkane-alkene 

reactions but not for the alkene-ketone reactions, if n-octane is used as starting compound 
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(cf. chapter 5.2.1). However, the comparison cannot reveal the sate of the reaction systems, 

i.e. the driving force of individual reactions as well as information on their preferred 

direction. This information is, however, crucial to understand the reaction network. In order 

to get more insight into the driving force and preferred direction of reactions, results were 

evaluated thermodynamically in greater detail. For this purpose, chemical affinities 

(Reaction 42) were calculated for the propane-propene (Reaction 52), butane-butene 

(Reaction 53), propene-acetone (Reaction 54) and butene-butanone (Reaction 55) reactions 

from results for the sulfate-free and sulfate-containing HM and PPM samples that were 

processed at 350°C for 168 h (Fig. 33). Positive affinities indicate that a thermodynamic drive 

for a reaction exists to proceed from left to right. Negative affinities indicate the opposite. A 

chemical affinity of 0 ± 1 kcal/mol reflects thermodynamic equilibrium. Equilibrium 

constants for the investigated reactions are listed in Table 9. Corresponding reaction 

quotients (Q) were calculated from measured aqueous concentrations
14

 of n-alkanes, 

alkenes and ketones, and the assumption that activity coefficients for these species are 

equal to unity. This is in accordance with Seewald (2001). The standard state adopted for 

liquid H2O is assumed to be one of unit activity of the pure liquid at any temperature and 

pressure (Seewald, 2001). For hydrogen, expected equilibrium activities adjusted by the 

mineral buffers were taken as a first estimate for the calculation of Q, i.e. log aH2 (aq) values 

of -4.25 and -3.21 for the HM and PPM buffer respectively. Owing to potential disequilibrium 

and resulting hydrogen activities that may be up to 0.5 log units lower (cf. chapter 4.3.2.1), 

reaction quotients and corresponding affinities are also calculated for this incidence. General 

formulas for the reaction quotient for the alkane-alkene and alkene-ketone reactions are as 

follows:  

 

 

 

 

log	1 = log	$234565	('() + log	$%&	('() − log	$234265	('()   (58) 

 

 

 

log	1 = log	$457865	('() + log	$%&	('() − log	$234565	('()   (59) 

 

 

 

 

 

                                                      
14

Molal (mol/kg H2O) concentrations for aqueous compounds are obtained from concentrations listed in Table 

A1 in the appendix through division by 1000 subsequent multiplication by the molar amount of initial n-octane 

(3.064 x 10
-5

 mol), and final division by the amount of water (9 x 10
-5

 kg). 
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Alkane-Alkene Reactions 

 Calculated chemical affinities of 0 ± 1 kcal/mol provide support for the attainment of 

a metastable thermodynamic equilibrium state for the propane-propene and butane-butene 

reactions in the sulfate-free and sulfate-containing HM experiments, which were processed 

for 168 h at 350°C (Fig. 33). Corresponding values for the sulfate-free PPM samples are 

slightly negative, but are very close to equilibrium if it is considered that the actual hydrogen 

activity during the experiments may be 0.3 to 0.5 log units lower. Based on these findings, it 

 
 

Fig. 33: Calculated chemical affinities for selected alkane-alkene (diamonds) and alkene-ketone (triangles) reactions. 

Calculated values are specific for the experimental conditions, i.e. 350°C and 35 MPa, and run duration of 168 h. 

Positive affinities indicate that a thermodynamic drive for a reaction exists to proceed from left to right. Negative 

affinities indicate the opposite. A chemical affinity of 0 ± 1 kcal/mol is obtained if the reaction under investigation 

reached the metastable thermodynamic equilibrium state. Chemical affinities were calculated for two different 

hydrogen activities, because the actual hydrogen concentration during the experiments may be up to 0.5 log units 

lower than expected equilibrium values for the mineral buffers (cf. chapter 4.3.2.1). According to Seewald (2001), an 

uncertainty of ±1 kcal/mol is realistic for calculated affinity values. 
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can be inferred that a thermodynamic drive exists for alkane-alkene equilibration and that 

reaction kinetics are sufficiently fast for the propane-propene and butane-butene reactions 

to attain or closely approach the metastable thermodynamic equilibrium state after 168 h at 

350°C. 

 

 

 

 

 

 

Alkene-Ketone Reactions 

 The more interesting picture is, however, provided by calculated affinities for the 

propene-acetone and butene-butanone reactions for the sulfate-free and sulfate-containing 

HM and PPM experiments, which were run at 350°C for 168 h. Here, all affinities are 

positive, ranging from 3 to 13 kcal/mol (Fig. 33). Thus, a strong thermodynamic drive should 

exist for the conversion of alkenes to ketones in presence and absence of sulfate, but no 

equilibration of theses compounds was observed. The simplest explanation could be that 

reaction kinetics represents the limiting factor. Results from Seewald (2001) and Reeves et 

al. (2012) indicate, however, that reaction kinetics for the alkane-alkene and alkene-ketone 

reactions should be sufficiently fast at 350°C. 

 

 

5.2.3 THE ROLE OF THE STARTING COMPOUND AND OF THE REACTION NETWORK 

 It has been shown that the reaction scheme proposed by Seewald (2001) for aqueous 

oxidation can be used as a first estimate to describe the reaction network responsible for n-

octane decomposition during the water-containing experiments (cf. chapter 4). In this 

sequence the formation and transformation of n-alkanes, alkenes and ketones are 

interdependent. This can have important implications for possible alkane-alkene and alkene-

ketone equilibration if an n-alkane or an alkene is used as starting compound, which will be 

discussed below. 

 Results from this study, in combination with the results from Seewald (2001) and 

Reeves et al. (2012), provide evidence that the alkene-ketone reaction equilibrate faster 

than the alkane-alkene reaction, if an alkene is used starting compound in contrast to 

experiments, which initially contained an n-alkane. In experiments with 1-butene, for 

example, which were processed in presence of the PPM buffer and in the temperature range 

of 300 to 350°C, at a pressure of 35 MPa and for a total run duration of 8000 h, Seewald 

(2001) observed that the propene-acetone as well as the butene-butanone reactions reach 
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thermodynamic equilibrium at all temperatures within 200 h (Fig. 34 A & B). In contrast, the 

butane-butene and the propane-propene reactions only reach thermodynamic equilibrium 

after 4 months at the highest temperature during the same experiments (Fig. 34 C).  

 

 

 

 

 

 

 

Fig. 34: Data from Seewald (2001), showing calculated chemical affinities for individual (A) alkane-alkene and 

alkene-ketone (B and C) reactions. Positive affinities indicates a thermodynamic drive for a reaction to proceed 

from left to right as written, whereas negative affinities indicate the opposite. A chemical affinity of 0 ± 1 kcal/mol 

indicates metastable thermodynamic equilibrium for the reaction of interest. Adapted from Seewald (2001) with 

kind permission of Pergamon. 
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 Based on these observations, it seems to be crucial at which step the reaction 

network is entered. If an n-alkane is used as starting compound, alkenes are the first 

products generated by aqueous oxidation. Only then, ketones may be produced involving 

alcohols as intermediates. Consequently, the formation of ketones will depend on the rate 

of the alkane-alkene, the rate of the alkene-alcohol and finally the rate of the alcohol-ketone 

reactions. This dependency on preceding reactions seems to hamper alkene-ketone 

equilibration if an n-alkane is used as starting compound. In contrast, if an alkene is used as 

starting compound, the initial step can be skipped, facilitating alkene-ketone equilibration. 

Furthermore, results for organic reaction products (cf. chapter 4), show that the relative 

abundance of alkenes and especially of ketones, and therefore the molar ketone/alkene 

ratios, may be significantly affected by a change in the reaction network if sulfate is added. 

Sulfate addition lowers, for example, the conversion of alkenes to ketones and CO2 in all 

three investigated systems (-buf, HM and PPM). This obviously affects the relative 

abundance of alkenes and ketones, and may therefore amplify disequilibrium of these 

compounds.  

 

 

5.3 CONCLUSIONS 

 Results for experiments with n-octane processed with and without sulfate in 

presence of the HM and PPM buffers indicate that metastable thermodynamic equilibrium 

of n-alkanes and corresponding alkenes is reached or closely approached within 168 h at 

350°C, whereas this is not the case for alkenes and corresponding ketones. This is the first 

time that the regulating influence of redox mineral buffers on equilibration of organic 

reactions has been demonstrated experimentally in a sulfate-containing system. 

 Observations from the experiments in this study are right opposite to those of 

Seewald (2001), who performed similar experiments in a sulfate-free system, in which 

alkenes were used as starting compounds. Here, alkene-ketone reactions equilibrate faster 

than corresponding alkane-alkene reactions. In order to interpret findings of this study, 

observations from Seewald (2001) and Reeves et al. (2012) were taken into consideration 

with the following results: 
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1. The starting compound plays a critical role because it determines at which step the 

reaction network for aqueous oxidation is entered. If it is entered at the second step, 

as in the case of alkenes, the alkane-alkene reaction, which seems to be rate-limiting 

for alkene-ketone equilibration, may be jumped over, facilitating equilibration of 

alkenes and ketones. 

 

2. It is crucial to consider the reaction of interest in the context of the whole reaction 

network because preceding, subsequent and parallel reactions can strongly influence 

the reaction of interest. This observation is in agreement with Seewald (2001). As 

highlighted in the first point, this may explain why metastable equilibrium can be 

reached in one case but not in the other.  

 

3. Findings indicate that alkenes, or possibly their precursors, seem to have a 

bottleneck character for the thermal decomposition of n-alkanes. This confirms the 

suggestion of Seewald (2001), who stated that “alkene formation may represent the 

rate limiting step during n-alkane oxidation”. 

 

4. Interestingly, in presence of sodium sulfate a very similar degree of equilibration was 

observed for alkanes and alkenes in the mineral buffered systems if compared to 

corresponding sulfate-free experiments. In contrast, the alkane/alkene ratio is 

significantly lowered if sulfate is added in absence of mineral buffers, which is in line 

with expectations for TSR controlled reactions. From these observations it is inferred 

that the influence of redox mineral buffers on equilibration of organic reactions has 

implications for the TSR process and the associated reaction network. 
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66..  PART II  

EFFECT OF DISSOLVED TRANSITION METAL SULFATES ON THE 

DEGRADATION OF N-OCTANE UNDER HYDROTHERMAL CONDITIONS 

 

 

 The reactivity of dissolved alkali (Na2SO4) and alkaline (MgSO4 and CaSO4) earth metal  

sulfates toward hydrocarbons has been investigated in numerous studies (e.g. Cross et al., 

2004; Zhang et al., 2007; Zhang et al., 2008a; Zhang et al., 2008b; Lu et al., 2010b; Lu et al., 

2011). However, such data have not yet been published for transition metal sulfates. 

  Solid and dissolved transition metals are ubiquitous in sedimentary basins, like for 

example in minerals (Mango, 1997a and references therein; Seewald, 2001), oil field brines 

(Kharaka et al., 1977; Saunders and Swann, 1990) or petroleum (Manning and Gize, 1993). 

Thus, it seems likely that hydrocarbons can be altered by transition metals during different 

stages of reservoir formation, i.e. during petroleum generation, expulsion, migration and 

storage. Furthermore, reaction of dissolved transition metals and dissolved sulfate with 

organic matter can be of fundamental importance during sulfide ore formation (Fig. 35). This 

has been demonstrated by studies investigating Mississippi-Valley type deposits (Leventhal, 

1990) and the Kupferschiefer (Sun and Püttmann, 2000).   
 

 

 

 

   

Fig. 35: Simplified geological block diagram illustrating a possible scenario for thermochemical 

sulfate reduction (TSR) in the environment of sulfide ore deposits that are associated with organic 

matter. A fluid, which contains transition metals migrates along a fault. If it passes sulfate-

containing strata on its way, the fluid may dissolve sulfate. If this fluid reaches strata, rich in 

organic matter, TSR may occur with the result of metal sulfide precipitation. In order to achieve 

massive sulfide precipitation it is likely that the fluid is captured near the organic facies. 
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 In order to investigate the reaction of dissolved transition metal cations with 

hydrocarbons in presence of sulfate, a consistent experimental series with n-octane and five 

transition metal sulfate (TMS) solutions (FeSO4, Fe2(SO4)3, NiSO4, CuSO4 and ZnSO4) was 

conducted. For each metal three different dilutions were studied. Furthermore, duplicate 

samples containing the pure Na2SO4 solution were processed as reference for 0 % TMS. 

These samples and the pure transition metal sulfate solution (100 % TMS) set the two end 

points in the dilution series. In the samples, which are labeled by TM_mix1 and TM_mix2, 

both solutions were mixed in a ratio of 1:4 and 1:1 (TMS:Na, volumetric basis) respectively 

(Table 10). Thus, the molar fraction of the transition metal sulfate in the experimental 

charge steadily increases from 0 to 1 according to the following sequence: 

 

 

  Dilution series:  TM > TM_mix2 > TM_mix 1 > Na 

 

  

 All samples were processed at 315°C and 13 MPa for 168 h. In this chapter, first 

results are presented. 

 

 

6.1 STARTING CONDITIONS 

 Starting conditions for the transition metal sulfate experiments need to be evaluated 

to address the reacting system and to facilitate data interpretation. The following points are 

considered: What is the amount of atmospheric oxygen added to the experimental charge 

during sample preparation? Furthermore it needs to be clarified whether the fluid is 

composed of a single phase, and whether the transition metal sulfates remain soluble under 

the experimental conditions. Last but not least, information on the starting pH is given to 

determine, if TSR may have been catalyzed during the experiments. 

 

 

Oxygen Contamination from Air 

 Based on the results for the pure n-octane sample, which was processed at 350°C for 

168 h it was calculated that up to 28 vol% of residual air remain in the samples once the 

sample container is sealed (cf. chapter 4.3.1). The amount of air in the sample container may 

not be constant. However, the calculated percentage is considered to be a realistic value for 
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air contamination during sample preparation with the argon flushing method and can 

therefore be taken as first estimate for the transition metal sulfate samples. In order to 

calculate the molar concentration of oxygen in the samples from this percentage, the free 

gas volume in the sample containers needs to be determined. Two different gold tube sizes 

were used for the transition metal sulfate experiments, with one having the dimension 

(inner diameter x length) 5 mm x 25 mm, and the other one having the dimension 4 mm x 

40 mm, resulting in a total volume of 491 and 503 µl respectively. All samples contained a 

total fluid volume of 205 µl (5 µl n-octane + 200 µl sulfate solution). Thus, the resulting free 

volume is 286 and 298 µl respectively. It may be further reduced during welding of the 

sample container, but this is neglected here because we want to quantify the maximal 

possible oxygen contamination. If the free volume contained 28 vol% of air, the absolute 

amount of oxygen (O2) introduced would equal 0.7 µmol. In addition to that, water, which is 

the solvent for the sulfate solutions, may dissolve up to 3 vol% O2 at room temperature 

(Holleman and Wiberg, 1995). This could introduce up to 0.2 additional µmol of oxygen (O2), 

if a fluid volume of 200 µl is considered. It is suggested that oxygen dissolved in n-octane can 

be neglected, because n-octane was always freshly taken from the container, i.e. it was 

never in contact with air for a long time. Furthermore, the fluid volume of the organic phase 

is very small compared to the free gas volume and that of the aqueous phase. Based on 

these considerations it is inferred that up to 0.9 µmol O2 may be introduced as 

contamination into the sample container during sample preparation. This might be critical 

for all samples with low conversion (≤2 %), because in this case the total amount of oxygen 

incorporated in the reaction products is either very similar to or even smaller than the 

possible oxygen input from air (Table A2 in the appendix; 0.9 µmol O2 would equal 

29 mmol��/mol��	
�). 

 

 

Aqueous Solubility of Transition Metal Sulfates and Na2SO4 at 315°C and 

13 MPa 

 It is necessary to estimate the aqueous sulfate and transition metal cation 

concentrations, because educt concentrations may influence the reaction rate. Furthermore, 

it is valuable to know if the transition metal sulfates are completely soluble under the 

experimental conditions or if a precipitate may form that could possibly act as surface 

catalyst. 
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 At room temperature, the concentration of Na2SO4 and of all transition metal sulfates 

in the stock solutions does not exceed the maximum solubility. With increasing temperature 

a decreasing solubility is, however, observed for all employed transition metal sulfates with 

the exception of NiSO4 (Table 10). Due to a lack of appropriate solubility data published in 

literature for high temperatures, solubilities of transition metal sulfates at experimental 

temperature (315°C) and pressure (13 MPa) were calculated by Michael Hentscher using the 

Geochemist’s Workbench (for details see chapter 3.6.3). The objective of the modeling was 

to determine initial conditions of the reacting system at experimental conditions. Modeled 

values are regarded to closely match the starting conditions, but should only be viewed as 

rough estimate for solubilities during the course of the experiments. One reason for this is 

that organometallic complexes with organic acid anions (Manning and Gize, 1993) might 

form, which would lower the activity of dissolved transition metals. Another factor that 

could lower the activity of dissolved transition metals is the precipitation of metal sulfides, 

which could be a consequence if TSR occurred (Machel et al., 1995). Both possibilities are 

not considered in the model. 

 

 

Pure Metal Sulfate Solutions 

 In samples that contain the pure metal sulfate solutions, the initial sulfate and metal 

cation concentrations in solution are controlled by the solubilities of the metal sulfates at 

experimental conditions. Only for Na2SO4 and NiSO4 saturation is not reached at 

experimental conditions, meaning that the modeled solubility at 315°C and 13 MPa is well 

above the metal sulfate concentration of the stock solution at room temperature and 

pressure (Table 10). In contrast, saturation for the other transition metal sulfates is reached 

under experimental conditions and only 0.14 % (FeSO4) to 31 % (ZnSO4) of the initial amount 

can be dissolved at 315°C and 13 MPa (Table 10).  

 In addition to that, modeling with the Geochemist’s Workbench indicate that 

hematite (Fe2O3) and goethite (α-FeO(OH)) can precipitate at experimental conditions in 

samples containing Fe(III) sulfate (Hentscher, personal communication). 

 

 

Mixed Solutions of Na2SO4 and Transition Metal Sulfates 

 Mixed sulfate solutions were not modeled by Michael Hentscher. The initial sulfate 

and metal cation concentrations in solution can, however, be estimated from the modeled 
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solubilities of the pure metals sulfate solutions under the requirement that chemical 

interactions between the metals are negligible. This is appropriate for a first estimation. The 

procedure is described below and results are summarized in Table 10. 

 

 If the transition metal sulfate is completely soluble at experimental conditions, the 

dilution by the sodium sulfate solution is considered to be the only factor that determines 

the metal cation concentration in solution. Out of all investigated metal sulfates, this is only 

the case for NiSO4. Here, the aqueous concentration of Ni
2+

 increases by a factor of 2 in each 

dilution step, except in the first one (Na → Ni_mix1). The aqueous sulfate concentration 

remains constant at (0.5 mmol����/kg	��) in all Ni-containing samples. 

 In contrast, solubilities for FeSO4, CuSO4 and Fe2(SO4)3 are extremely low under 

experimental conditions, wherefore their sulfate input to the solution is negligible compared 

to that of sodium sulfate. Thus, the initial sulfate concentration in the mixed solutions 

(cinitial SO4
2

(aq)) is controlled by Na2SO4 and varies from 0.25 to 0.40  mmol����/kg	�� 

(Table 10). 

 ZnSO4 has an intermediate solubility, which implies that the possible sulfate 

contribution stemming from ZnSO4 needs to be taken into account. Here, the initial sulfate 

concentration in the mixed solutions under experimental conditions is: 

 

 

 

 

 For ZnSO4 samples: ��������	��4		(��)2- = � !"��#	(��) +	�%&��#	(��) (60) 

 

 

 

 

with the aqueous concentration of Na2SO4 and ZnSO4 being those at experimental 

conditions. For Na2SO4 this corresponds to the modeled value at 315°C and 13 MPa. For 

ZnSO4 the actual solubility under experimental is, however, lower than the modeled value. 

This is because sulfate introduced from Na2SO4 can have a significant effect on the solubility 

of transition metal sulfates. This needs to be taken into account for all investigated transition 

metal sulfates, which reach saturation at experimental conditions (ZnSO4, Fe2(SO4)3, CuSO4 

and FeSO4). In order to evaluate this aspect, solubility products at experimental conditions 

were calculated using the transition metal sulfate solubilities modeled for 315°C and 

13 MPa. Solubility products for FeSO4, CuSO4 and ZnSO4 were calculated analogue to the 

following example for Fe2(SO4)3: 
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1. Establish Dissociation Reaction  

 

 

   Fe2(SO4)3 (s) = 2 Fe
3+

 (aq) + 3 SO4
2-

 (aq)   (61) 

 

Prerequisite is the assumption that metal sulfate is completely dissociated. 

 

 

 

 

2. Establish Law of Mass Action 

  

 

'()2(��4)3 =	 (+()						(,-)3+ )2×	(+��4		(,-)2- )3
�/0�(124)3	(4)    (62) 

 

Note: The activity of a pure solid is, by definition, equal to one. 

 

 

 

 

3. Calculate Solubility Product (Ksp)  

 

 

  '56_()2(��4)3 =	 (�89						(��)3+ )2 	× 	(���4		(��)2- ): (63) 

 

 

with cFe
3+

(aq) = 2 x cFe2(SO4)3 (aq) and cSO4
2-

(aq) = 3 x cFe2(SO4)3 (aq). The 

aqueous solubility of Fe(III) sulfate (cFe2(SO4)3 (aq)) under experimental 

conditions is given in Table 10. With that, the calculated solubility 

product of Fe2(SO4)3 at 350°C and 13 MPa is 1.78 x 10
-10

 mol
5
/kg H2O

5
. 

 

 

 

 

The concentration of the transition metal cation (TM) in solution under experimental 

conditions can then be calculated from the solubility product (Ksp): 

 

 

 

 For FeSO4, CuSO4 and ZnSO4 samples:  �;<2+(��) = =4>_?@1
+ABACA,D	��4		(,-)2-    (64) 

 

 

 

 

 

 For Fe2(SO4)3 samples:   �893+(��) =	E =4>_/02(124)3(+ABACA,D	��4		(,-)2- )3	 (65) 

 

with the aqueous sulfate concentration being the initial one at experimental conditions.  



 

 

Table 10: Expected solubilites of Na2SO4 and transition metal sulfates at 315°C and 13 MPa, and resulting estimates on initial concentrations of aqueous sulfate and aqueous transition metal  

cations at experimental conditions. Values marked in orange indicate that saturation for the transition metal sulfates is reached at experimental conditions (maximum solubility at 315°C and  

13 MPa < concentration in stock solution), whereas values in green indicate that transition metal sulfates remain completely soluble.  
 

 

 

TMS (µl) Na2SO4 (µl) SO4
2-

(aq ) TM cation (aq )

Na2SO4 0.50 1.3 8.8 mol²/kg² Na 0 200 0.50 0

Fe(II)_mix1 40 160 0.40 3.5 x 10
-7 6.5 ppm

Fe(II)_mix2 100 100 0.25 5.6 x 10
-7

4.2 ppm

Fe(II) 200 0 3.8 x 10
-4

3.8 x 10
-4

0.14 %

Fe(III)_mix1 42 158 0.40 5.4 x 10
-5 753 ppm

Fe(III)_mix2 84 116 0.29 8.5 x 10
-5

598 ppm

Fe(III) 200 0 0.013 8.8 x 10
-3

2.59 %

Ni_mix1 40 160 0.50 0.10 100 %

Ni_mix2 100 100 0.50 0.25 100 %

Ni 200 0 0.50 0.50 100 %

Cu_mix1 40 160 0.40 1.6 x 10
-5 163 ppm

Cu_mix2 100 100 0.25 2.5 x 10
-5

104 ppm

Zn_mix1 40 160 0.43 0.046 51 %

Zn_mix2 100 100 0.32 0.061 27 %

Zn 200 0 0.14 0.14 31 %

mol²/kg²

ZnSO4 0.45 0.14 0.020 mol²/kg²

NiSO4 0.50 40 1600 mol²/kg²

CuSO4 0.48 2.5 x 10
-3

6.3 x 10
-6

Fe2(SO4)3 0.17 4.4 x 10
-3

1.8 x 10
-10

mol
5
/kg

5

Calculated initial concentration

at 315°C and 13 MPa (mol/kg H2O)
Expected solubility of initial 

TMS at experimental 

conditions

FeSO4 0.27 3.8 x 10
-4

1.4 x 10
-7

mol²/kg²

-

Transition 

Metal Sulfate 

(TMS )

Concentration of 

stock solution 

(mol/kg H2O)

Maximum solubility 

at 315°C and 13 MPa 

(mol/kg H2O)

Solubility product at 

315°C and 13 MPa
Sample ID

Volume of stock soultion 

in the sample
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As noted above, these considerations only provide estimates because they do not account 

for possible organic or inorganic metal complexing, which would affect the metal solubility 

during the experiments. In order to address the complexing issue, extensive geochemical 

modeling would be needed. This is beyond the scope of the study at this stage, and 

considerations presented here are suggested to be an appropriate first estimation. 

 

 To sum up, the sulfate concentration remains in a comparable range at experimental 

conditions for all samples (0.14 - 0.50 mmol����/kg	��), except for those that contain the 

pure transition metal sulfates with very low solubilities (Table 10). In contrast, the aqueous 

concentration of transition metal cations shows large variations ranging from 

0.35 µmol/kg	�� (Fe(II)_mix1) to 0.50 mol/kg	�� (pure Ni). This is due to significant 

solubility variations of transition metal sulfates at experimental conditions, which complicate 

a one-to-one comparison of samples with different metals, but the same dilution. General 

trends can, however, be addressed.  

 

 

Aqueous Solubility of n-Octane at 315°C and 13 MPa 

 The aqueous solubility of n-octane at experimental conditions was calculated using 

SUPCRT 92 (cf. chapter 3.6.2). It is calculated that 0.15 mol of n-octane can be dissolved in 

1 kg of water at a temperature of 315°C and a pressure of 13 MPa. This is exactly the 

concentration, which was added during sample preparation. Thus, the solution is close to 

saturation with respect to n-octane at experimental conditions. 

 The aqueous solubility of n-octane may be reduced due to presence of sulfate (Price, 

1976). Owing to this so-called salting-out effect, addition of metal sulfates probably results 

in the separation of two fluid phases – an octane- and a water-dominated liquid phase. 

Phase separation could possibly affect kinetics of reactions controlling the decomposition of 

n-octane. The extent of this effect is unknown, but it is assumed that the system is 

dynamically mixed due to fluid convection in the sample container during the experiments. 
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Table 11: Modeled in situ pH values for pure 

transition metal sulfate solutions at 315°C and 

13 MPa. Values were calculated by Michael 

Hentscher using the Geochemist’s Workbench. 

Uncertainties are estimated to be ±0.2 units. 
 

Sample ID 315°C & 13 MPa 

Na 7.3 

Fe(II) 2.4 

Fe(III) 0.6 

Ni 3.8 

Cu 4.2 

Zn 3.8 

 

pH  

 The in situ pH values of the pure metal 

sulfate solutions at the start of the experiments 

were modeled by Michael Hentscher (2013) 

using the Geochemist’s Workbench software 

(see chapter 3.6.3 for details). In situ pH refers 

to the initial pH at experimental conditions 

(315°C, 13 MPa). Owing to an enhanced auto-

dissociation of water with increasing 

temperature, the neutral point of water shifts 

from 7 at room temperature and ambient 

pressure to a pH of 5.7 at experimental 

conditions (315°C and 13 MPa). Thus, the 

modeled in situ pH values for the transition 

metal samples (Table 11) reflect very acidic to 

alkaline conditions.  

 Modeled pH data for the mixed samples 

are not available at present, but work is 

underway to provide these data. It is, however, expected that in situ pH values for all mixed 

samples increase with increasing amounts of Na2SO4 added to the experimental charge 

(Hentscher, personal communication). This is confirmed by preliminary modeling results. 

Thus it is inferred that the following sequence for in situ pH values can be established in each 

transition metal (TM) series:  

  

 

 

    Na > TM_mix1 > TM_mix2 > TM 

 

 

 

 Zhang et al. (2008b; 2012), showed that low pH (≤ 3.5) can enhance TSR of MgSO4 

and CaSO4. Thus, the low in situ pH of the pure Fe(II) and Fe(III) solutions and of the iron-

containing mixed solutions with in situ pH values below 3.5, may have catalyzed TSR during 

the experiments.   
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6.2 RESULTS AND DISCUSSION 

6.2.1 PRODUCT DISTRIBUTION AND ESTIMATE OF CONVERSION 

 Fig. 36 A – E give an overview of all quantified products generated from n-octane 

after 168 h at 315°C in experiments with transition metal sulfates. The data is also listed in 

Table A2 in the appendix. Although, the transition metal concentration affects the 

abundance of reaction products to various degrees, the overall product distribution is 

comparable for all samples. The most abundant product group is that of the n-alkanes, and 

the single most abundant product component is CO2. Alkenes and ketones are also 

generated, with ketone concentrations reaching those of corresponding n-alkanes. This is 

perfectly in line with observations for the 350°C samples with Na2SO4 (cf. chapter 4, Fig. 20). 

Based on this, it is inferred that cracking, and aqueous oxidation are also the major 

controlling factors for n-octane degradation in presence of transition metal sulfates. 
 

 

 

 

 

 

 

Fig. 36 A-E (Continued on next page): Overview of organic reaction products that were quantified for transition metal 

(TM) sulfate samples (A-E: ZnSO4, NiSO4, CuSO4, FeSO4 and Fe3(SO4)3 respectively), which were processed at 315°C and 

13 MPa for 168 h. All samples initially contained the same amount of n-octane (30.64 µmol) and the same volume of 

an aqueous sulfate solution (200 µl).This was either a pure Na2SO4 solution (indicated by Na in the sample name), a 

pure transition metal sulfate solution (indicated by Zn, Ni, Fe(II) and Fe(III) in the sample name), or a mixture of both 

(labeled by mix_1 and mix_2, see Table A2 in the appendix for details). Data points for the Na samples are the same in 

all five graphs. They represent results for duplicate Na samples, which serve as reference for n-octane degradation in a 

sulfate-containing, but transition metal (TM) free system. If duplicate TM samples were processed, results for both 

samples plotted as well (see individual graphs). Duplicate samples generally indicate an excellent reproducibility. The 

detection limits were ≤ 0.01 mmol/mol C8H18 for all compounds, and the analytical uncertainty is 10 % for most 

compounds, but may increase to 20 % at low concentrations (see Table A2 for details).  

Butene+ = mixture of 1- and 2-butene; 2-MeTH = 2-methylthiophene; 3-MeTh = 3-methylthiophene 
 

 

A)  ZnSO4 series:  

Data for one sample of the type Zn and Zn_mix1, and data for two samples of the type Zn_mix2 are shown. 

 



 

      

 

     

 

 
Fig. 36 B-E (Continuation of previous page): 

B)  NiSO4 series:  

Data for one sample of the type Ni and Ni_mix1, and data for two samples of the type Ni_mix2 are shown. 

 

D)  FeSO4 series:  

Data for one sample of the type Fe(II) and Fe(II)_mix1, and data for two samples of the type Fe(II)_mix2 are shown. 

 

 

C)  CuSO4 series:  

Data for one sample of the type Cu_mix1 and for two samples of the type Cu_mix2 are shown.  

 

E)  Fe2(SO4)3 series:  

Two samples per each dilution step were processed. Thus, data for two samples of the type Fe(III), Fe(III)_mix1 and Fe(III)_mix2 are shown.  
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 Despite this general agreement, significant differences exist between the Fe(II), Fe(III) 

and Cu containing samples, on the one hand, and the Ni and Zn containing samples, on the 

other hand. The most striking observation is that organosulfur compounds (thiophene, 2-and 

3-methylthiophene), aromatics (benzene and toluene) and iso-alkanes (iso-butane and iso-

pentane) were detected for the former, but not for the latter. In the sodium sulfate samples, 

which serve as reference to investigate transition metal free reactions, iso-alkanes and 

aromatic compounds were detected, but concentrations were too low to be quantified. 

Furthermore, 2- and 3-methylthiophene, as well as thiophene are lacking in the sodium 

sulfate samples.  

 The generated amounts of iso-alkanes are comparable in the Fe(II), Fe(III) and Cu 

containing samples, with concentrations of iso-butane and iso-pentane ranging from 0.44 to 

0.58 mmol/mol��	
�and 0.036 to 0.15 mmol/mol��	
�respectively. In contrast aromatics 

and organosulfur compounds show more variation. Benzene and toluene concentrations are 

usually below 0.60 mmol/mol��	
�and only reach above this value in the Cu-containing and 

pure Fe(III)-sulfate samples. Aromatization is strongest in the samples with the pure Fe(III)-

sulfate solution. Here benzene and toluene reach a concentration of 2.8 mmol/mol��	
� 

and 3.4 mmol/mol��	
�. The highest concentration of organosulfur compounds was 

observed in presence of the pure Fe(III)-sulfate solution. Here, the thiophene concentration 

(40 mmol/mol��	
�) reaches above that for most n-alkanes. The sample with the pure 

Fe(III)-sulfate solution is also characterized by an extraordinary high CO2 concentration 

(1.8 mol/mol��	
�). This is consistent with expectations, because hematite, which is 

predicted to form as precipitate in these samples, has been demonstrated to catalyze 

oxidation of hydrocarbons to CO2 (cf. chapter 4). Furthermore, it is hypothesized that the 

reduction of dissolved Fe(III) to Fe(II) by organic matter promotes the oxidation to CO2. An 

indication for this is that the CO2 concentration significantly increases in the sample with the 

pure Fe(III) sulfate solution compared to the Fe(III)_mix1 and Fe(III) mix samples. The 

concentration of dissolved Fe(III) in the pure Fe(III) sample is two orders of magnitude higher 

than in the mixed Fe(III) samples. 

 The second and third highest concentration of CO2 is observed for the Cu_mix2 

(530 mmol/mol��	
�) and Cu_mix1 (210 mmol/mol��	
�) samples. Analog to the Fe(III) 

samples, it is hypothesized that reduction of Cu(II) to Cu(I) has promoted the oxidation of n-

octane to CO2. In all the other samples, the CO2 concentration is below 100 mmol/mol��	
�, 
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Fig. 37: Formation of organosulfur compounds is a direct 

indicator for TSR, if sulfate is the only sulfur source in the 

reacting system. This is illustrated for thiophene. Detailed 

reaction mechanisms and possible reactants are, 

however, unclear. 

 

with the sodium sulfate samples showing a CO2 concentration of 12 to 16 mmol/mol��	
� 

(see Table A2 for details). 

 Based on these observations, it is not surprising that the estimated conversion
15

 of 

n-octane is the highest in the sample with the pure Fe2(SO4)3 solution (28 ± 2 mol%), 

followed by the Cu_mix2 (9.5 ± 0.1 mol%) and Cu_mix1 samples (4.2 ± 0.3 mol%). In all the 

other samples, the estimated conversion of n-octane is ≤4 mol%. In presence of transition 

metal sulfates the conversion is, however, at least 1.6 times higher compared to the sodium 

sulfate samples, which show a conversion of 0.58 to 0.65 mol%. 

 

 

 

6.2.2 EVIDENCE FOR TSR 

Formation of Organosulfur Compounds 

 A very interesting feature of the 

results, which were presented in the 

previous section, is the formation of 

organosulfur compounds. This is 

because it reflects incorporation of 

reduced sulfur in the reaction products. 

The oxidation state of sulfur in 

thiophene, 2- and 3-methylthiophene is 

-2 and that of sulfur in sulfate +6. Due to 

the fact that sulfate is the only sulfur 

source in the transition metal sulfate 

samples, the formation of these organosulfur compounds implies that reduction of sulfate 

must have occurred (Fig. 37). Formation of organosulfur compounds was observed for the 

Fe(III), Fe(II) and Cu containing samples (Fig. 36). The observation is most interesting, 

because these samples represent one of the few examples reported for TSR without the 

initial presence of low valence sulfur (Toland, 1960; Kiyosu, 1980; Kiyosu and Krouse, 1990; 

                                                      
15

 Mass balance considerations on analyzed products (Table A2 in the appendix) were conducted to estimate 

the minimum amount of n-octane, which was converted during the experiments. Calculations were performed 

in the same manner as described in chapter 4.2.1 (footnote 6), with the exception that amounts of three 

organosulfur compounds (i.e. thiophene, 2- and 3-methylthiophene) were also taken into account. This was 

possible because of an extended calibration of the gas chromatograph.  
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Yue et al., 2006; Chen et al., 2009; Truche et al., 2009; Lu et al., 2010a; Lu et al., 2010b; Lu et 

al., 2011; Truche et al., 2011; Zhang et al., 2012). Moreover, the results represent the first 

published example of TSR with transition metal sulfates, and the first published example of 

TSR without initial presence of low valence sulfur at a pH >4 (CuSO4 samples). Based on the 

generated amount of organosulfur compounds (thiophene, 2- and 3-methylthiophene), the 

following relative reactivity of the transition metal sulfates can be inferred:  

 

 

    Fe3(SO4)2  >>  FeSO4  >  CuSO4 

 

 

Under the assumption that reduced sulfur is dominantly stored in the organic phase and not 

in metal sulfides, the generated amount of organosulfur compounds would mirror the extent 

of TSR. However, results for the CuSO4 containing samples point to the possibility that metal 

sulfides precipitated (see below). Absence of organosulfur compounds in the Na2SO4, NiSO4 

and ZnSO4 containing samples (Fig. 36) does not necessarily mean that no TSR occurred, as 

was revealed by the results for the first and second experimental series (cf. chapter 4). 

 

 

Gas Dryness 

 A positive correlation is observed between the organosulfur compound 

concentration and the gas dryness (Fig. 38), which is consistent with expectations for TSR 

(cf. chapter 2.2.3 and chapter 4.3.4.1). Only the copper containing samples significantly 

deviate from the trend. A hypothesis, which is further evaluated at present, is that copper 

sulfide precipitated during the experiments, which lowered the amount of H2S in the system, 

wherefore the formation of organosulfur compounds was hampered. In this context, the 

possibility of metal sulfide precipitation in presence of the other transition metals will also 

be considered. Furthermore, it needs to be evaluated if metal sulfide precipitates may 

catalyze methane generation. At least for iron, results for the 350°C experiments with the 

PPM buffer indicate that the aqueous concentration of low valence sulfur species is more 

critical for enhancing methane formation than the solid sulfides (cf. chapter 4). 

 The gas dryness of all Ni and Zn containing samples is close to or below that of the 

samples with the pure Na2SO4 solution (Fig. 38). This is also the case for the Fe(II)_mix1 and 

Fe(II)_mix2 samples, although clear evidence for TSR (=detection of organosulfur 

compounds) was observed in these samples. Interestingly, a significant increase in gas 
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dryness is observed in presence of Ni, Zn and Fe(II) if the sample with the pure metal sulfate 

solution is compared to the respective mix_2 sample. This correlates with an increase in the 

amount of the transition metal sulfate in the experimental charge (see Table 10 for details). 

Based on these observations it is hypothesized that TSR proceeded at a subordinate rate, at 

least in the samples containing the pure metal sulfate solutions. This needs further 

investigation and a more in depth analysis of the product distribution, which is out of scope 

at this stage.  

 

  

 

 

6.2.3 EFFECT OF PH AND ADDITIONAL FACTORS ON TSR  

 Based on the discussion in the preceding chapter, the question arises why variations 

in the extent of TSR are observed if different metal sulfates are used. One controlling factor 

can be the pH. Previous TSR studies show that it can strongly influence the rate of TSR 

 
 

Fig. 38: Correlation of gas dryness and quantified organosulfur compounds for transition metal sulfate samples, 

which were processed at 315°C and 13 MPa for 168 h. All samples initially contained 30.64 µmol n-octane and 

200 µl sulfate solution.This was either a pure Na2SO4 solution, a pure transition metal sulfate solution or a 

mixture of both (see Table A2 in the appendix for details). It was decided to display all samples of one series 

with the same symbol, because the main objective is to illustrate the difference between individual metals. 

Fe(II), Fe(III), Ni, Cu and Zn reflect the type of metal sulfate present in the sample, i.e. ZnSO4, NiSO4, CuSO4, 

FeSO4 and Fe3(SO4)3 respectively. The relative error for the OSC sum is 11% and that for the gas dryness 7%. The 

gas dryness for the samples with the pure sodium sulfate solution is shown as dashed grey line for reference. 

Note, however, that no organosulfur compounds were detected in these samples. 
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(cf. chapter 2.2.3). This is due to an increase of the HSO4
-
 concentration with decreasing pH 

according to: 

 

 

    SO4
2-

(aq)
 
+ H

+
(aq) = HSO4

-
(aq)    (66) 

 

 

 

 Geochemical modeling show that the in situ pH of the samples with the pure Fe(II)-

sulfate solution is acidic (= 2.4) and that the value for the pure Fe(III)-sulfate solution is even 

more acidic (= 0.6). The in situ pH of the other pure transition metal sulfate solutions (CuSO4, 

NiSO4 and ZnSO4) is higher (4.2, 3.8 and 3.8 respectively). Thus, it is not surprising that the 

highest amount of organosulfur compounds was observed in the Fe(III) containing samples, 

and that TSR was also significantly promoted in the Fe(II) containing samples. The 

observation that the Cu containing samples showed a significantly lower concentration of 

organosulfur compounds is also consistent with the lower pH in these samples. It is expected 

to be above that of the pure CuSO4 solution (in situ pH = 4.2), because only samples of the 

type Cu_mix1 and Cu_mix2 were processed (cf. chapter 6.1). This raises, however, the 

question why evidence for TRS, i.e. detection of organosulfur compounds, was observed for 

the CuSO4 containing mix1 and mix2 samples, but not in presence of NiSO4 and ZnSO4, even 

though the in situ pH of the pure metal sulfate solutions are comparable. Thus the pH in the 

samples with the pure NiSO4 and ZnSO4 solutions should be below that of the Cu mix 

samples (cf. chapter 6.1), wherefore a higher TSR rate would be expected. These 

observations call for additional factors besides pH that control the initiation and extent of 

TSR, at least at pH ≥ 3.8. Metal sulfide precipitation has been proposed as one hypothesis 

that may explain why generated amounts of organosuflur compounds in the Cu containing 

samples are low although the gas dryness points to a strong TSR influence in these samples. 

It needs to be clarified if this could preferentially occur in presence of Cu, and possibly Ni 

and Zn. 

 

 Even though precipitation of metal sulfides may be possible during the experiments, 

a positive correlation between the concentration of generated organosulfur compounds and 

the modeled initial concentration of dissolved transition metal cations is observed in the 

Fe(II), Fe(III) and Cu series (Fig. 39). The trend is most pronounced in presence of Fe(III), 

which can probably be attributed to the extremely low in situ pH (= 0.6) in the samples with 

the pure Fe2(SO4)3 solution. From the results of this study it cannot unequivocally be 
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determined if the concentration of the dissolved metal cation in solution or the pH have a 

more dominant effect on TSR. This is also complicated by the fact that these two factors are 

interdependent. 

 

 

 

 The interdependence of pH and dissolved metal cation is also highlighted by Zhang et 

al. (2012) for a transition metal free system. They performed a series of experiments to 

investigate the reaction of aqueous CaSO4 and a research-grade paraffin wax mixture 

(composed of C21 to C35 normal n-alkanes) without initial presence of low valence sulfur 

species. Experiments were conducted at 329, 340, 360°C under a constant confined pressure 

of 24.1 MPa. Run duration of experiments ranged from 5 to 853 h. Gold capsules were used 

as sample containers, which was also the case in this study. Zhang et al. (2012) used a talc-

silica mineral to regulate the pH of the solution during the experiments. The buffer reaction 

 
 

Fig. 39: Correlation of the sum of quantified organosulfur compounds (thiophene, 2- and 3-methylthiophene) and the 

calculated initial concentration of transition metal cations in solution at 315°C and 13 MPa for: (A) the Fe(III), (B) the 

Fe(II) and (C) the Cu series. Details on the calculation of the intial concentration of the dissolved metal cations are 

provided in chapter 6.1. Error bars reflect the propagated error taking into account the analytical uncertainty and the 

uncertainty in the weighed in quantity n-octane. 
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is suggested to proceed rapidly at the experimental conditions, and regulates the pH via the 

precipitation of talc according to (Zhang et al., 2012 and references therein): 

 

 

 

  3 Mg
2+

 + 4 SiO2 (silica) + 4 H2O (l)  =  Mg3Si4O10(OH)2 (talc) + 6 H
+
  (67) 

 

 

 

The initial amount of talc and silica were constant (30 mg each). The initial Mg
2+

(aq) 

concentration was varied to adjust different pH, ranging from 3 to 4 at experimental 

conditions (Table 13). The initial sulfate concentration was constant (0.04 mol/l). Based on 

the amount of hydrogen sulfide, which was generated during the experiments the extent of 

TSR was estimated, with increasing amounts reflecting an increase in the TSR reaction. Based 

on their results, Zhang et al. (2012) conclude that the pH is the controlling factor for the 

extent of TSR reaction in the investigated pH range (3 to 4). 

 

 
 

 

 Measured concentrations of organosulfur compounds in the Fe(II) series indicate, 

however, that TSR still proceeds at a subordinate rate at pH 2.4 (=pure FeSO4 solution) and is 

only catalyzed significantly at a pH < 1 (= pure Fe2(SO4)3 solution). Apart from pH, the 

concentration of the dissolved metal cation is suggested to have an affect on the TSR rate. 

As noted above, results for each metals series indicate that the extent of TSR increases with 

increasing metal in solution (Fig. 39). This is further supported by the observation that the 

concentration of quantified organic sulfur compounds in the Fe(II), Fe(III) and Cu series stays 

in the range 0.04 - 1.5 mmol/mol C8H18 if metal concentrations are below 100 µmol/kg H2O 

(even at an in situ pH of 2.4!), and only increase significantly if the concentration of the 

Table 12: Magnesium concentration and in situ pH of the aqueous solutions used by Zhang et al. (2012) for 

experiments simulating TSR with CaSO4 and a paraffin mixture in the temperature range 320-360°C (see text for 

details). The amount of H2S generated during the experiments was used to estimate the extent of TSR. 
 

Solution no. Mg
2+

 (mmol/l) in situ pH 
Extent of TSR 

estimated from generated amount of H2S 

1 620 3 Strong TSR 

2 26 3.5 Medium TSR 

3 2.6 4 No TSR 
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dissolved metal reaches approximately 10 mmol/kg H2O (Fig. 39). These observations show 

striking similarities with the results of Zhang et al. (2012). Here, H2S (=indication for TSR) is 

only observed if the aqueous Mg
2+

 concentration exceeds 10 mmol/l (at pH 3.5), and an even 

greater extent of TSR is observed if the magnesium concentrations
16

 reaches 620 mmol/l (at 

pH 3). Furthermore, the increase in the magnesium concentration is eight times higher than 

the increase in H
+
 concentration if solution 1 is compare to solution 2 (calculated from in situ 

pH), which also points to the possibility that the magnesium concentration may be more 

critical than the in situ pH in the investigated pH range of 3 to 4.  

 In general, an increasing concentration of aqueous Mg
2+

 is expected to promote the 

formation of magnesium-sulfate contact ion-pairs, which are know to be highly reactive 

during TSR (Ma et al., 2008; Zhang et al., 2012). Zhang et al. (2012, and references therein), 

argues, however that aqueous Mg
2+

 and SO4
2-

 form a magnesium-hydroxide-sulfate-hydrate 

complex (MHSH) at temperatures above 200°C, according to: 

 

 

 

  2 Mg
2+

 + 3 H2O + SO4
2- 
→ Mg(OH)2 : MgSO4 : H2O + 2 H

+
   (68) 

 

 

 

I suggest that this might be buffered by the talc-silica assemblage. In any case, the posivite 

correlation of dissolved metal concentration and extent of TSR cannot be dismissed. Based 

on the discussion in this chapter, I hypothesize that the metal cation concentration may play 

a more important role for controlling the extent of TSR than the in situ pH, at least in a 

system without initial presence of low valence sulfur and with pH values above 2. This 

hypothesis stresses the importance of the metal itself, wherefore additional factors 

influencing the reactivity of dissolved metals are considered to be crucial. Especially the 

complexing behavior of the transition metals in presence of organic matter, which is for 

example observed during ore transport in nature (Manning and Gize, 1993), opens a whole 

new field to be explored in the context of TSR reaction mechanisms. A factor that controls 

the complexing behavior of the metals is their electronic structure (Weisshaar, 1993). This 

takes, for example, the electron configuration into account. Interestingly, the electron 

configuration of Cu
2+

 ([Ar]3d
9
) is significantly different from that of the other transition 

metals in the way that only one electron is needed to reach a completely filled d subshell. 

                                                      
16

 Note that the units mmol/kg H2O and mmol/l are comparable, because the density of the solution has a 

negligible effect at these salt concentrations. 
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This reflects a particularly stable arrangement of electrons and should therefore be favored. 

I hypothesize that differences in electronic structure of the dissolved transition metal cations 

are an additional factor that controls the reactivity of the transition metal sulfates during 

TSR. This provides promising opportunities for future research, but is beyond the scope of 

the present PhD thesis. 

 

 

6.3 CONCLUSIONS 

 The distribution of organic reaction products generated in experiments with 

n-octane, transition metal sulfates (FeSO4, Fe2(SO4)3, NiSO4, CuSO4 and ZnSO4) and Na2SO4 at 

315°C and 13 MPa is very similar in all samples, showing a strong dominance of n-alkanes. 

CO2 is the single most abundant component. Alkenes and ketones were also generated with 

ketone concentrations reaching those of corresponding n-alkanes. The product distribution 

shows that n-octane degradation is dominated by cracking and aqueous oxidation during the 

experiments.  

 Despite the good agreement, differences in the product distribution do, however, 

exist if transition metal samples are compared to samples, which were processed with the 

pure sodium sulfate solution and n-octane. Significant difference in the product distribution 

obtained with the different transition metal sulfates also exist. The most striking observation 

is the detection of organosulfur compounds in the Fe2(SO4)3, FeSO4 and CuSO4 containing 

samples, which provides clear evidence for TSR. The results represent one of the few 

examples for successful simulation of TSR without the initial presence of low valence sulfur, 

wherefore a special focus was to evaluate possible factors that control the different 

reactivity of the transition metal sulfates.  

 The highest extent of TSR was observed in the sample containing 

C8H18+H2O+Fe2(SO4)3, which can be attributed to the low pH (=0.6) in this sample at 

experimental conditions. The increase in TSR rate at low pH is consistent with observations 

of previous TSR studies. Results for the Cu containing experiments demonstrate, however 

that TSR without initial presence of low valence sulfur at pH ≥4 is also possible. Based on the 

results of the transition metal sulfate experiments, it is hypothesized that additional factors 

besides pH control the extent of TSR. These are, for example the concentration of the 

dissolved transition metal, the redox potential and the electron configuration. 
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 Based on the results and comparison with data from Zhang et al. (2012), it is 

hypothesized that the concentration of the dissolved transition metals is one of the main 

parameters controlling the extent of TSR at pH > 1. The redox potential, or more specifically 

the reduction potential of the metals, may have a positive effect on TSR. This is indicated by 

the observation that conversion is highest in presence of Fe(III) and Cu(II) the only two metal 

cations, which can easily be reduced under experimental conditions. Last but not least the 

electron configuration is suggested to play an important role, because it determines the 

complexing behavior of the transition metals and therefore its reactivity during TSR.  

 The findings, which were derived from these first results are promising and a more 

detailed analysis of the distribution of organic reaction products will help to evaluate the 

effect of the transition metals on the whole reaction network and not only TSR. The factors, 

which were proposed to determine the extent of TSR (pH, dissolved transition metal 

concentration, the redox potential of the metal cations and their electron configuration), are 

also considered to be crucial for reactions associated with aqueous oxidation and possibly 

cracking. 
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77..  IMPLICATIONS FOR NATURAL SYSTEMS 

  

 In the introduction it was noted that inorganic-organic interactions can be relevant in 

a variety of geologic environments, like in association with petroleum systems, sulfide ore 

deposits and submarine hydrothermal systems. Results from the present study demonstrate 

that laboratory experiments can be a powerful tool to investigate such reactions under well 

constrained conditions. Obviously, natural environments are more complex. Thus, some 

limitations but also the potential for extrapolating experimental results to natural systems 

are addressed in this chapter.  

 

 

7.1 PETROLEUM SYSTEMS 

7.1.1 TRANSFERABILITY OF EXPERIMENTAL RESULTS 

 Economic deposits of oil and natural gas are generally believed to form at 

temperatures ranging from 50-150°C and from 150-220°C, respectively (Seewald, 1994 and 

references therein). This is significantly below the experimental temperatures employed in 

the present study, which ranged from 300-350°C. A common approach in experimental 

studies is to use higher temperature in order to simulate processes that would take place 

over much longer time periods at lower temperature in nature (e.g. McCollom and Seewald, 

2003; Zhang et al., 2012). This assumption bears the risk of false conclusions because 

reactions, which proceed at higher temperature, might not proceed at lower temperatures 

and/or other reaction mechanisms might dominate. Thus, results extrapolated to lower 

temperatures must be examined critically.  

 Petroleum-geochemical analyses of samples from ultra-deep wellbores (7-10 km) 

provide, however, evidence for the existence of hydrocarbon deposits at temperatures 

approaching 300°C (Price, 1993 and references therein). In this case, experimental results 

might be directly applicable. 

 Regarding the reactants, water is the dominant compound in the experiments. The 

molar ratio of n-octane and water is 6.1 mmol C8H18/mol H2O. In contrast, the dominant 

components in oil and gas reservoirs are hydrocarbons. At the oil-water contact and the gas-

water contact the ratio of hydrocarbons and water increases and aqueous alteration of 
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petroleum may be possible. In addition to that, chemical reactions between hydrocarbons 

and water can become very critical during enhanced oil recovery operations if water steam is 

used (Hoffmann et al., 1995; Kapadia et al., 2011). Steam temperatures of up to 320°C have 

been reported (Hoffmann et al., 1995). The steam may not only chemically react with 

petroleum, but also with the rock matrix. In doing so, it can introduce contaminants to the 

target formation, like for example sulfate. In this case, TSR may be initiated and promoted, 

thus increasing the hydrogen sulfide concentration in the reservoir, which is undesirable 

(Hoffmann et al., 1995; Kapadia et al., 2011). 

 In order to get an estimate of possible sulfate concentrations in petroleum systems, 

the study by Kharaka et al. (1977) was taken into consideration. They report data from 

detailed chemical analyses of 48 formation-water samples from 10 oil and gas fields in the 

Houston-Galveston and Corpus Christi areas, Texas. Here, the SO4
2-

 concentrations reach up 

to 1.2 mmol/kg���, which is several orders of magnitude below the sulfate concentration 

for most experiments performed in the course of the present study (290 - 

1700 mmol	�
��/kg���). Only, in experiments with pure FeSO4, CuSO4 and Fe2(SO4)3 

solutions, sulfate concentrations are in a range (0.38 - 13 mmol	�
��/kg���) that is directly 

comparable to natural formation waters. According to Zhang et al. (2012) sulfate 

concentration or more precisely the concentration of reactive sulfate species play, however, 

a significant role in controlling the rate of TSR for example. Thus, differences in sulfate 

concentration might limit the extrapolation of experimental results to natural petroleum 

systems. Published kinetic rate data for TSR suffer, however, from large uncertainties and 

further investigations are urgently needed to improve geochemical models (Ostertag-

Henning et al., 2010; Zhang et al., 2012; Peters et al., 2013). 

 

 The study by Saunders and Swann (1990) was used to estimate possible 

concentrations of dissolved transition metals in oil field brines. They report data for 34 

formation water samples from central Mississippi. Overall, the study by Saunders and Swann 

(1990) represents a snap shot of possible trace metal concentrations in oil filed brines and 

many other scenarios might be possible. The concentration of trace metals can be highly 

variable, especially, because “the composite effects of the reduced sulfur content and 

physiochemical characteristics of the brine (i.e., salinity, temperature, redox state and pH), 

along with formation metal sources and brine migration history” affect the concentrations of 
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the trace metals. Trace metals may for example precipitate with sulfide generated by TSR 

(Cross, 1999; Worden et al., 2003). Despite possible variations, it is interesting that Fe and Zn 

concentrations reported by Saunders and Swann (1990) are comparable to those in the 

Fe2(SO4)3 and ZnSO4 containing samples of the present study (Table 13). 

 Presence of transition metals can have implications for hydrocarbon transformation, 

as indicated by results from the present study (cf. chapter 6). Results also show that the type 

of the transition metal as well as the concentration of dissolved transition metal cation may 

significantly affect the rates of reactions associated with the transformation of organic 

matter.  

  
 

 

 
 

 

 

 

 

 In addition to formation waters, transition metals can be present in organic 

sediments, like in oxide (e.g. Fe3O4) or sulfide (e.g. FeS2) minerals. In a side note, Orr (1974) 

already states that “the effect of catalytic activity of reservoir rock on the maturation 

Table 13: Transition metal concentrations in formation water samples from central Mississippi 

(Saunders and Swann, 1990) compared to the respective concentrations in experimental samples 

(this study). 
 

Metal in solution
1
 

Saunders and Swann (1990) 

(mmol/kg H2O) 

This study
2
 

(mmol/kg H2O) 

Fe 1.13 - 7.71 

Fe(II): 3.5 x10
-4

 - 0.38 

Fe(III): 0.054 - 8.8 

Ni na Ni(II): 0.10 - 0.50 

Cu 3.5x10
-6

 -  6.3x10
-5

 Cu(II): 0.016 - 2.5 

Zn 0.033 - 4.77 Zn(II): 0.046 - 0.14 

 

1 
Element

 
symbols are used here, because Saunders and Swann (1990) do not differentiate between   

different valences of metal cations in solution. 
2 

Concentrations of transition metal cations in solution were calculated from maximum solubilities  

of the transition metal sulfates under experimental conditions (cf. chapter 6.1). Note that the 

range of concentrations represents aqueous transition metal concentrations in mix1, mix2 and the 

pure transition metal sulfate samples. 
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Fig. 40: Partial bleaching of sandstone due to 

hydrocarbon invasion. Zion National Park, Utah. 

(photo taken by R. Gaupp, University of Jena) 

 

processes is possibly an important variable 

about which we have little information”. Little 

has changed during the last four decades, 

stressing the urgent need for studies 

investigating inorganic-organic interactions in 

petroleum reservoirs. Regarding, the minerals 

examined in the present study, the question is, 

if these are representative for petroleum 

systems. Surely, some of the buffer minerals 

might be absent in source and reservoir rocks. 

However, if petroleum reservoirs are spatially 

separated from their source rocks, ample 

opportunity exists for hydrocarbons to interact 

with various minerals along the migration 

conduit (Seewald, 2001). Seewald (2001) noted 

that the buffer minerals investigated in the present study (i.e. hematite, magnetite, pyrite 

and pyrrhotite), are all present to varying degrees in sedimentary basins. One example, 

where interaction of minerals and organic matter has been confirmed in nature is the 

bleaching of hematite-bearing sandstones by hydrocarbons (Surdam et al., 1993; Schöner 

and Gaupp, 2005; Meier, 2012) (Fig. 40). According to Schöner and Gaupp (2005), 

hydrocarbon oxidation by water and minerals within reservoir sandstones can create 

considerable amounts of organic acids and CO2. This may significantly enhance reservoir 

porosity due to dissolution of carbonate cements and detrital feldspars (Schöner and Gaupp, 

2005 and references therein). 

 

 Based on this discussion, it is inferred that experimental results are directly 

transferable to natural petroleum systems only, if boundary conditions are comparable. If 

this is not the case, extrapolation of experimental results to nature should be examined 

critically. In any case, the main finding is that inorganic components can significantly affect 

hydrocarbon decomposition, which is often neglected. This is considered to be a relevant 

factor that influences hydrocarbon stability in nature. The next two subchapters provide 
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exemplarily two possible implications on natural petroleum systems, derived from the 

experimental results. 

 

 

7.1.2 IMPLICATION I: THERMOCHEMICAL SULFATE REDUCTION 

 Geological observations as well as geochemical investigations of natural samples 

present evidence that TSR can occur in petroleum systems. Two well studied TSR 

laboratories are for example the Smackover Formation in the United States of America 

(Sassen, 1988; Rooney, 1995) and the Khuff Formation in Abu Dhabi (Worden and Smalley, 

1996; Worden et al., 2000). As a consequence of TSR, both locations are characterized by 

high amounts of sour gas. This is problematic during recovery, because H2S is very corrosive, 

toxic and increases production costs. Thus, accurate TSR modeling becomes more and more 

important, but the understanding of the reaction and influencing factors is still limited 

(Zhang et al., 2012; Peters et al., 2013). 

 It is generally assumed, that the critical step during TSR is the activation of sulfate 

(Amrani et al., 2008; Ma et al., 2008). Results from the present study show that minerals and 

dissolved transition metals may have a positive effect on this. The PPM buffer may for 

example supply reduced sulfur species, which may initiate and promote LSC-catalyzed TSR 

(cf. chapter 4.3.4.1). Moreover, results of the present study provide evidence that the type 

and concentration of dissolved transition metal cations may significantly affect the rate of 

TSR (cf. chapter 6.2.2). In presence of dissolved Fe2(SO4)3, FeSO4 and CuSO4 TSR was initiated 

without initial presence of low valence sulfur. Geochemical modeling indicate that the pH of 

the Fe(III) and Fe(II) containing samples might be too acidic for typical petroleum formation 

waters (pH 5.5. - 7, cf. Helgeson et al., 1993, Fig. 10), but the pH of the Cu containing 

samples is comparable to that in petroleum systems. 

 Based on the results of the present study, it is suggested that incorporation of 

inorganic-organic reactions in modeling studies that consider reaction of petroleum with 

minerals, transition metals and sulfate will strongly improve prediction of the occurrence, 

stability and alteration of hydrocarbons in nature. 
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7.1.3 IMPLICATION II: CONVERSION OF HYDROCARBONS TO DRY GAS 

 The formation of dry (methane dominated) thermogenic gas is one of the most 

controversial issues discussed in petroleum geochemistry (Mango, 1997a; Price, 2001; 

Seewald, 2003). The methane content in such gases can vary from 50 to 100 wt% in the C1-C4 

fraction (Mango et al., 1994) and the CO2 content of these gases is usually less than 10% 

(Seewald, 2003 and references therein). Phase partitioning in reservoirs and fractionation 

during migration (Price and Schoell, 1995), have been presented as possible explanations for 

the origin of dry gas. However, Mango and Hightower (1997b) argue that it is unlikely that 

dry gas with methane concentrations ≥60 wt% can be produced from oil and kerogen 

pyrolysis without catalytic assistance by transition metals. This is in good agreement with 

results of the present study. Only in presence of dissolved Fe(III) and Cu the measured gas 

dryness (C1/∑C1-4) after the experiment increases from ≤ 20 wt% to > 59 wt% (Table A2 in the 

appendix). However, a significant amount of CO2 was always co-produced, with molar 

amounts usually being one order of magnitude above the methane values. This is untypical 

for natural dry gas, but Seewald (2001, 2003) stated that CO2 may be removed from natural 

gas by mineral precipitation. 

 

 

 

7.2 SUBMARINE HYDROTHERMAL SYSTEMS 

 Submarine hydrothermal systems represent another potential environment for 

inorganic-organic interactions. A simplified cross-section of a submarine hydrothermal is 

illustrated in Fig. 41. Submarine hydrothermal systems are manifold and very difficult to 

understand. This is mainly due to the variety and complexity of mineral compositions as well 

as the various alteration processes occurring in these systems. These may either be purely 

inorganic or may also  involve organic matter (Konn et al., 2009). Under certain 

circumstances, conditions in submarine hydrothermal systems can show compelling 

similarities with the experiments performed in the course of the present study, as 

demonstrated in the next paragraph. Excellent overviews on submarine hydrothermal 

systems are presented by Von Damm (1990) and Hannington et al. (2005).  
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7.2.1 TRANSFERABILITY OF EXPERIMENTAL RESULTS 

 Known submarine hydrothermal systems are usually situated at water depths of 

2,000 - 3,600 m (Hannington et al., 2005), which corresponds to a hydrostatic pressure of 20 

- 36 MPa. Temperature of venting fluids can vary between 10 to >350°C depending on 

venting type, but temperatures of 300 to 350°C are not uncommon (Hannington et al., 

1995). In fact, 100 out of the 300 submarine hydrothermal systems that have been 

discovered until 2005 are associated with high-temperature (≥350°C) venting. Such systems 

are usually referred to as black smokers (Hannington et al., 2005). The discussion shows that 

pressure and temperature conditions in high-temperature submarine hydrothermal systems 

can directly mirror the experimental conditions. 

 

 Interestingly, most vent solutions show constant fluid composition throughout the 

lifetime of a vent field (Von Damm, 1990). This hints at some controlling mechanism at 

depth, which influences the composition of the fluids. Most fluids associated with black 

 

Fig. 41: Simplified cross-section of a submarine hydrothermal system at a Mid Ocean Ridge. The main 

petrographical features are shown on the left side of the graph. The Moho, which is located approximately 8-11 km 

below the sea surface, represents the transition of the oceanic crust to the upper mantle. Seawater can circulate to 

various depths through the “porous” and cracked oceanic crust. At depths approaching 1.3 km, i.e. deep down into 

the sheeted dikes, redox conditions correspond to those adjusted by the PPM mineral (Alt et al., 1989). Deeper in 

the circulating systems, closer to the ultramafic zone, it is likely that redox conditions are fixed by the quartz-

fayalite-magnetite mineral assemblage (Shock, 1990), which adjusts more reducing than PPM. If the oceanic crust is 

covered by organic-rich sediments, sea water percolating through the sediments into the crust may leach organic 

matter from the sediment layer and carry it along down into the crust. Physicochemical changes and complex 

reactions may occur in the subsurface, including but not limited to: redox and pH changes, mineral precipitation, 

metal leaching and ion extractions. Zones where this may occur are roughly sketched. Figure adapted from Degens 

(1989) with kind permission of Springer. 

 



 
 136 

smokers are strongly buffered close to equilibrium with pyrite, pyrrhotite and magnetite 

with respect to oxygen and sulfur fugacity (Bowers et al., 1988; Von Damm, 1990). The PPM 

minerals are present in the upper part of the oceanic crust and buffer the redox conditions 

at depths approaching 1.3 km (Alt et al., 1989) (Fig. 41). At the deeper parts of the 

circulation system fluids are rather buffered close to the quartz-fayalite-magnetite (QFM) 

buffer. The QFM mineral assemblage adjusts conditions, which are approximately one order 

of magnitude more reducing than with PPM. Based on this discussion, it is inferred that at 

least the results from experiments with the PPM mineral buffer are directly applicable to 

high-temperature submarine hydrothermal systems. 

 The sulfate concentration of bottom seawater (28 mmol/kg��� Hannington et al., 

2005) is one order of magnitude below the dissolved sulfate concentration in the 350°C 

experiments (290 mmol/kg���), which were performed in the course of the present study. 

Furthermore, the sulfate concentration in venting fluids can be significantly lower than in the 

seawater due to anhydrite precipitation along the circulation conduit (Fig. 41). Differences in 

initial sulfate concentration might negatively affect the transferability of the results for the 

sulfate-containing experiments performed at this temperature, because it is generally 

assumed that the rate of sulfate reduction is dependent on the concentration of reactive 

sulfate species (Cross et al., 2004; Truche et al., 2009; Zhang et al., 2012). As already stated 

for petroleum systems (cf. chapter 7.1.1), published kinetic rate data are, however, related 

with large uncertainties. Thus, it is not clear at present, which difference in initial sulfate 

concentration may actually be critical to evoke a significant change in product distribution if 

a sample with lower and one with higher sulfate concentration are compared. In contrast to 

the 350°C, the dissolved sulfate concentration in the 315°C experiments with FeSO4, CuSO4 

and Fe2(SO4)3 solutions (≤ 13 mmol/kg���) is in the same range as reported by Hannington 

et al. (2005) for the venting fluids, which facilitates the comparability of the experimental 

and natural system. Regarding the concentration of dissolved transition metals, data 

reported by Hannington et al. (2005) show that concentrations in venting fluids are highly 

variable. In some cases, the concentrations of dissolved transition metals fall, however, in 

the same range as in the experimental samples of the present study. Thus, results of the 

transition metal sulfate samples may directly be transferable. Another distinct characteristic 

of submarine hydrothermal systems is that the dominating phase is water. This facilitates 

the direct application of the experimental results, because water was also the dominating 
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phase during the experiments. Furthermore, significant amounts of hydrocarbons can be 

present in these systems, as will be addressed in the next section. 

 

 The above discussion stresses the close similarity that high-temperature submarine 

hydrothermal systems can have with the experimental system. This emphasizes the 

potential that submarine hydrothermal systems have to serve as a natural analogue for the 

experiments performed in the course of this study. One specific example is discussed in the 

next section. 

 

 

7.2.2 IMPLICATIONS III: PETROLEUM ALTERATION IN SUBMARINE 

HYDROTHERMAL SYSTEMS 

 High-temperature (300-350°C) petroleum formation is a “widespread process in 

hydrothermal systems” (Simoneit, 1990, 2013). A well studied site where this occurs is the 

Guayamas Basin located in the central part of the Gulf of California (Simoneit, 1985; Kawka 

and Simoneit, 1987; Didyk and Simoneit, 1989). Seawater circulates through the sediment 

layer, leaches the organic matter and carries it further down into the crust (Fig. 41). In the 

Guayamas Basin, “the oil expulsion and migration mechanisms are provided by the 

hydrothermal fluids under pressures of 200 bars and temperature conditions up to and 

exceeding 315°C at some vent outlets” (Didyk and Simoneit, 1989).  If the circulation reaches 

down into the QFM-buffered ultramafic zone of the crust (Fig. 41), abiotic synthesis of 

hydrocarbons may also contribute to expelled petroleum (Konn et al., 2009). The biomarker 

signature of the generated petroleum in the Guayamas Basin provides, however, evidence 

that the sediments are the main source of the organic matter at this location (Simoneit, 

1990).  

 Hydrothermal oils show striking similarity to conventionally exploited crude oils 

(Simoneit, 1985; Didyk and Simoneit, 1989; Simoneit, 2013). Hydrothermal oil in the 

Guyamas Basin has a young geological age (< 5,000 yr). This is significantly below that of 

conventional oils, which are usually several million years old (Simoneit, 2013). According to 

Simoneit (1990, 2013), the “instantaneous” (on a geological timescale) oil generation in 

hydrothermal systems is an efficient process for petroleum generation, expulsion and 

migration. This could have a considerable impact on our understanding of petroleum 
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formation mechanisms and eventually assist us in tapping resources in new high-

temperature environments (Didyk and Simoneit, 1989; Simoneit, 2013). 

 

 Conditions in the Guayamas Basin show striking similarities to the experimental 

systems used in the present study. All inorganic and organic components under investigation 

are present to various degrees. Thus, ample opportunity for inorganic-organic interactions 

should exist. The inorganic reduction of sulfate by minerals, like for example during 

serpentinization of olivine, is a well-documented process in submarine hydrothermal 

systems (Seyfried and Dibble, 1980; Shanks et al., 1981; Alt et al., 1989). In contrast, true 

TSR, i.e. sulfate reduction with the involvement of organic matter, has not been studied in 

this context. It may, however, have implications for the composition of expelled petroleum. 

 

 

7.3 SULFIDE ORE DEPOSITS 

 Last but not least, inorganic-organic interactions can play an important role for the 

formation of sulfide ore deposits. Here, organic matter, and more specifically organic acid 

anions, play an important role for the transportation of metals in ore-forming solutions 

(Manning and Gize, 1993; McCollom and Seewald, 2003a). Furthermore, organic matter can 

be an important controlling factor for the precipitation of ore minerals. A relevant inorganic-

organic reaction, which has been studied in this context, is TSR. It is well documented for 

Mississippi Valley type deposits (Powell and Macqueen, 1984; Leventhal, 1990) and the 

Kupferschiefer (Sun, 1998; Sun and Püttmann, 2000; Bechtel et al., 2001; Sun and Püttmann, 

2003). A case study of the latter is briefly discussed below. 

 

 

7.3.1 IMPLICATION IV: THERMOCHEMICAL SULFATE REDUCTION IN THE 

KUPFERSCHIEFER 

 Sun and Püttmann (2000) investigated possible contributions of TSR during 

Kupferschiefer mineralization in the Sangerhausen basin, Germany. Petrological and 

geochemical analyses of the Kupferschiefer show that Cu was precipitated by replacement of 

biogenic pyrite and by TSR. Their results indicate that TSR contributed up to 60 % of the total 

Cu mineralization. With increasing copper content in the ore, they observe a stronger TSR 
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signature in the organic matter, which is characterized by an increase in the amounts of 

aromatic hydrocarbons and organosulfur compounds (Fig. 42 A & B). This correlates well 

with results of the present study. For the Cu-containing samples the concentration of 

aromatic hydrocarbons increases with increasing generation of organosulfur compounds, i.e. 

increasing TSR (Fig. 42 C & D). 

 

 

 

 

 

 
 

 

Fig. 42: Sulfur-free aromatic hydrocarbon and organosulfur compound concentrations in natural Kupferschiefer 

samples from the Sangerhausen basin, Germany (A & B, data from Sun and Püttmann (2000)), and those produced in 

CuSO4-containing samples, which were processed at 315°C and 13 MPa for 168 h in presence of n-octane and water 

(D & E, data from this study). Results from both studies show the same trend, i.e. increasing concentrations of sulfur-

free aromatic hydrocarbons with increasing Cu content (A & C), as well as increasing concentrations of organosulfur 

compounds with increasing Cu content (B & D). In detail, the graphs show: (A) correlation of the sum of quantified 

naphthalenes and alkylated naphthalenes (Na-PAH = 16 compounds), and phenanthrenes and alkylated 

phenanthrenes (Ph-PAH = 18 compounds) vs. Cu contents, and (B) correlation of the sum of quantified S-containing 

aromatic hydrocarbons (S-PAH = 10 compounds) vs. Cu contents. A detailed list of all quantified Na-PAH, Ph-PAH and 

S-PAH compounds is presented by Sun and Püttmann (2000). For the CuSO4-containing samples, benzene and toluene 

were quantified as sulfur-free aromatic hydrocarbons (C) and 2-methylthiophene as organosulfur compound (D). 
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 The typical temperatures involved in the formation of the Kupferschiefer and other 

sediment-hosted sulfide deposits associated with organic matter, are below 200°C (Manning 

and Gize, 1993; Sun and Püttmann, 2000). This might limit direct extrapolation of the 

experimental results, as discussed in chapter 7.1.1. Good correlation of experimental results 

with natural observations from Sun and Püttmann (2000) is, however, compelling. This 

highlights the potential, which experimental studies can have to simulate ore-forming 

processes in sulfide deposits like those of the Kupferschiefer type. 
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88..  CONCLUSIONS 

 

 In this study, the reaction of n-octane with a variety of inorganic compounds under 

hydrothermal conditions was investigated in well constrained laboratory experiments. This 

included the use of purely synthetic compounds. Investigated inorganic additives comprise 

iron-containing minerals (hematite-magnetite and pyrite-pyrhotite-magnetite), dissolved 

sodium sulfate (Na2SO4) and dissolved transition metal sulfates (FeSO4, Fe2(SO4)3, NiSO4, 

CuSO4 and ZnSO4). Gold capsules were used as inert sample containers. Experiments were 

conducted at temperatures ranging from 300 to 350°C, at pressures of 13 and 35 MPa for 

72-366 h. The run duration for most experiments was 168 h (= 1 week). After the 

experiments, solids were analyzed using X-ray diffraction and organic reaction products were 

analyzed via headspace gas chromatography. Results of the experiments provide insight into 

the effect of inorganic components on hydrocarbon transformation and associated 

processes at hydrothermal conditions. Main findings comprise the following: 

 

 

1. Overall, the distribution pattern of organic products is very similar for all samples. 

The most abundant product group are n-alkanes, and the single most abundant 

product component is CO2. Generated amounts of ketones reach those of 

corresponding n-alkanes. The results show that cracking, and aqueous oxidation are 

the major controlling factors for n-octane decomposition in all samples. 

 The results show that oxygen-containing products play a significant role for 

hydrocarbon degradation under hydrothermal conditions, as has already been 

pointed out by Seewald (2001). Hence, it is surprising that CO2 and organic acids are 

usually quantified in experimental and natural fluids, but not ketones although they 

may reveal interesting insight into degradation processes.     

 

 

2. Despite a general agreement of the distribution pattern for the organic products, 

results clearly show that the examined inorganic compounds can affect the 

distribution and abundance of generated products to various, non-negligible degrees. 

This is illustrated by, but not limited to the following observations: 
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a. Different additives cause a varying n-octane conversion, which ranges from 

0.24 mol% (PPM+C8H18+H2O 300°C) to 28 mol% (C8H18+H2O+CuSO4 315°C). 

 

 

b. Despite a complex reaction network, generated products reflect more 

oxidizing conditions in presence of HM than in presence of the PPM 

minerals, which is in agreement with the redox buffering ability of these 

mineral assemblages. Thermodynamic evaluations of the results provide 

evidence that the buffers can also control the equilibrium of redox 

dependent organic-organic reactions. Evidence is provided that alkanes and 

alkenes, but not alkenes and ketones, attained thermodynamic equilibrium 

with respect to the aqueous hydrogen concentration, which was regulated 

by the mineral buffers during the experiments. 

 

 

c. Addition of sodium sulfate reduces the oxidation of n-octane to CO2 in the 

buffer-free, HM and PPM systems, although TSR may have proceeded (see 

below). Thermodynamic evaluations show that this cannot be attributed to 

carbonate precipitation. An alternative explanation might be a change in the 

reaction network (see next point). 

 

3. Results for the sulfate-containing PPM experiments (PPM+C8H18+H2O+Na2SO4 350°C), 

show an elevated methane yield if compared to corresponding buffer-free and HM 

samples, which were processed at the same temperature. This cannot be explained 

by cracking and aqueous oxidation alone and calls for further explanation. The results 

show striking similarity with observations for H2S-catalyzed TSR of Zhang et al. 

(2008a; 2008b). This process involves labile sulfur compounds (LSC) as intermediate 

species and may produce methane as one end product. Based on the results it is 

hypothesized that H2S derived from the PPM mineral buffer may initiate this process 

at a subordinate rate and, at this initial stage, evoke a shift in the reaction network 

toward an LSC pathway.  This may also explain the observed decrease in oxidation of 

n-octane to CO2. Similar observations for the buffer-free and HM samples may 

indicate that TSR might also have occurred upon sulfate addition, but with a rate 

substantially below that in the sulfate-containing PPM samples. 

 The involvement of TSR in the Na2SO4 containing experiments is speculative at 

this stage, and calls for further investigation. However, the fact that H2S-catalyzed 
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TSR may successfully explain the observations cannot be dismissed. To test the 

hypothesis it is suggested to repeat the PPM experiments and analyze the samples in 

the same way as in the present study, with additional quantification of organosulfur 

compounds. 

 

4. Due to an extended calibration of the gas chromatograph, this was enabled for 

transition metal sulfate samples. Here, three organosulfur compounds (thiophene, 2- 

and 3-methylthiophene) could be quantified with the following results: 

 

a. Organosulfur compounds (OSCs) were identified for Fe2(SO4)3, FeSO4 and 

CuSO4 containing samples, which were processed at 315°C. Due to the fact 

that sulfate is the only sulfur source in these experiments, formation of OSCs 

is a direct indicator for TSR. No OSCs were detected in presence of ZnSO4 

and NiSO4, although this does not necessarily exclude the occurrence of TSR 

(see point 3). The observation that an increase in gas dryness with increasing 

concentration of the metal sulfate was observed for all transition metal 

sulfate samples may be an indication for TSR, even if no organosulfur 

compounds were detected. 

 

b. Results represent one of the few examples for TSR without the initial 

presence of low valence sulfur. Moreover, results for CuSO4 samples 

represent the first published example of TSR at pH ≥4. 

 

c. Under the assumption that no metal sulfides precipitated, the following 

extent of TSR can be estimated from the generated amount of OSCs: 

Fe3(SO4)2  >>  FeSO4  >  CuSO4. 

 

d. The observation that the extent of TSR is highest in presence of Fe3(SO4)2 is 

consistent with the low pH of these samples at experimental conditions. 

 

e. Based on the results and comparison with data from Zhang et al. (2012), it is 

hypothesized that the concentration of the dissolved transition metals is one 

of the main parameters controlling the extent of TSR at pH > 1.  

Furthermore, the results provide evidence that the redox potential, or more 

specifically the reduction potential of the metals, may have a positive effect 
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on TSR. This is indicated by the observation that conversion is highest in 

presence of Fe(III) and Cu(II) the only two metal cations, which can easily be 

reduced under experimental conditions. Last but not least the electron 

configuration is suggested to play an important role, because it determines 

the complexing behavior of the transition metals and therefore its reactivity 

during TSR.  

 

Results of the present study demonstrate the potential, which laboratory experiments have 

to study inorganic-organic interactions under well-constrained conditions. Results clearly 

show that the reaction network and associated processes responsible for hydrocarbon 

conversion at hydrothermal conditions can be significantly influenced by the inorganic 

components that were investigated. This demonstrates that hydrocarbon stability at 

elevated temperature and pressure is not limited to the two controlling factors time and 

temperature, which is often assumed in conventional petroleum and basin models. Recent 

advances in petroleum system modeling (Peters et al., 2013) try to overcome this problem, 

but knowledge of the effect of inorganic components on organic matter transformation is 

still inadequate, stressing the need for further research.  

 I propose that experimental studies similar to the present one will contribute to an 

improved understanding in this context. An in depth analysis of experimental results, in 

conjunction with thermodynamic evaluations has the potential to reveal most interesting 

insights into the effect of inorganic component on hydrocarbon conversion. This could have 

a considerable impact on our understanding of organic-inorganic interactions and may 

eventually help to tune conventional basin and petroleum models.  
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Table A1: Concentrations of generated products from n-octane at 300 and 350°C in presence of the pyrite-pyrrhotite-magnetite (PPM), the hematite-magnetite (HM), and without any mineral buffer (-buf). Samples were processed for 72 to 336 h. 

 

  

Sample name n t 

(h)

T 

(°C)

P 

(MPa)

PPM 

(mg)

HM 

(mg)

H2O 

(µmol)

C8H18

(µmol)

Na2SO4 

(µmol)

Detection l imits

PPM blank 300°C 1 168 300 35 29 4992 148 - -

PPM blank 350°C 1 168 350 35 30 5154 150 - -

-buf C8 300°C 1 168 300 35 4951 29 25 (±3) 6.6 (±0.7) 3.1 (±0.3) 3.2 (±0.4) 2.9 (±0.3) 1.8 (±0.2) 1.5 (±0.16) +

PPM C8 300°C 1 168 300 35 30 4972 30 5.6 (±1.2) 1.5 (±0.2) 1.5 (±0.2) 1.7 (±0.2) 1.3 (±0.1) 0.74 (±0.08) 0.15 (±0.02) +

C8* 350°C 1 168 350 35 31 26 (±3) 10 (±1) 23 (±3) 27 (±3) 25 (±3) 27 (±3) 8.5 (±0.9) 2.0 (±0.2)

-buf C8 350°C 2 168 350 35 5010 30 23 (±3) 9.3 (±1.0) 21 (±2) 30 (±3) 25 (±3) 24 (±3) 9.6 (±1.1) 1.7 (±0.2)

PPM C8 350°C 1 168 350 35 29 5004 29 95 (±11) 28 (±3) 52 (±6) 53 (±6) 48 (±5) 54 (±6) 10.5 (±1.2) 2.7 (±0.3)

HM C8 350°C 1 168 350 35 30 4968 31 170 (±19) 14 (±2) 43 (±5) 39 (±4) 39 (±4) 46 (±5) 5.8 (±0.7) 0.81 (±0.09)

-buf C8+Na 300°C 1 168 300 35 5031 30 156 14 (±2) 3.4 (±0.4) 2.4 (±0.3) 2.3 (±0.3) 1.6 (±0.2) 1.6 (±0.2) 0.59 (±0.07) 0.15 (±0.02)

PPM C8+Na 300°C 4 168 300 35 31 5023 29 159 6.8 (±2.6)
b

1.3 (±0.1) 0.78 (±0.09) 0.89 (±0.10) 0.61 (±0.07) 0.74 (±0.08) 0.14 (±0.02)
b

+

PPM C8+Na 300°C, 336 h 1 336 300 35 30 5070 29 159 0.51 (±0.06) 0.54 (±0.06) 0.62 (±0.07) 0.63 (±0.07) 0.17 (±0.02) +

-buf C8+Na 350°C 2 168 350 35 4988 30 157 17 (±2) 6.6 (±0.8)
b

16 (±2)
b

15 (±2) 14 (±2) 14 (±2) 3.1 (±0.3) 0.53 (±0.06)

PPM C8+Na 350°C, 72 h 1 72 350 35 30 4990 30 167 23 (±3) 31 (±3) 29 (±3) 25 (±3) 30 (±3) 5.5 (±0.6) +

PPM C8+Na 350°C 5 168 350 35 30 4981 29 155 65 (±10)
b

77 (±9) 77 (±9) 64 (±7) 57 (±6) 57 (±6) 9.0 (±1.0) 2.0 (±0.22)

PPM C8+Na 350°C, 336 h 1 336 350 35 31 5061 30 158 241 (±17) 165 (±18) 128 (±14) 107 (±12) 91 (±10) 89 (±10) 16 (±2) +

HM C8+Na 350°C 1 168 350 35 30 4979 31 157 57 (±6) 28 (±3) 73 (±8) 61 (±7) 58 (±6) 63 (±7) 10.5 (±1) 2.6 (±0.29)

1.8 0.0062 0.0034 0.0044 0.0020 0.0021 0.0044 0.0014

methane

-

-

-

-

-

-

-

-

na na

-

-

-

-

-

Experimental 

conditions
Sample composition Reaction products (mmol/mol C8H18)

pentane hexane heptane     CO2 ethane propane butane

Detection limits and

blanks

S
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su
lf
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e

300°C

350°C

S
E

R
IE

S
 2

w
it

h
 s

u
lf

a
te

300°C

350°C

Sample name n 1-PTH

Detection l imi ts

PPM blank 300°C 1 na

PPM blank 350°C 1 na

-buf C8 300°C 1 0.21 (±0.02) 1.14 (±0.13) 0.33 (±0.04) 0.036 (±0.008) 0.090 (±0.010) na

PPM C8 300°C 1 0.87 (±0.18) 0.27 (±0.05) 0.86 (±0.09) 0.83 (±0.09) 0.78 (±0.09) - - na

C8* 350°C 1 0.043 (±0.005) 1.6 (±0.2) 0.88 (±0.10) 0.45 (±0.05) 0.31 (±0.04) 1.9 (±0.2) 1.7 (±0.2) 0.038 (±0.008) 0.057 (±0.006) na

-buf C8 350°C 2 0.91 (±0.19) 0.28 (±0.06) 0.83 (±0.09) 0.30 (±0.03) 8.4a (±0.9) 5.6
a

(±0.8)
b

0.036 (±0.007) 0.057 (±0.006) na

PPM C8 350°C 1 0.27 (±0.03) 2.4 (±0.3) 1.1 (±0.1) 1.9 (±0.2) 2.3 (±0.3) 55 (±6) 38 (±4) 0.19 (±0.02) 0.58 (±0.06) +

HM C8 350°C 1 0.64 (±0.07) 2.6 (±0.3) 1.8 (±0.2) 0.62 (±0.07) 0.41 (±0.05) 37 (±4) 20 (±2) 0.25 (±0.03) 0.41 (±0.05) -

-buf C8+Na 300°C 1 0.83 (±0.17) 0.83 (±0.09) 0.60 (±0.07) na

PPM C8+Na 300°C 4 0.81 (±0.17) 0.25 (±0.05) 0.12 (±0.04)
b

0.13 (±0.04)
b

na

PPM C8+Na 300°C, 336 h 1 na

-buf C8+Na 350°C 2 0.10 (±0.03)
b

2.3 (±0.3) 0.93 (±0.10) 0.81 (±0.09) 0.17 (±0.02) 11
a

(±1) 8
a

(±1) 0.020 (±0.004) na

PPM C8+Na 350°C, 72 h 1 0.058 (±0.004) 2.0 (±0.2) 0.16 (±0.03) na

PPM C8+Na 350°C 5 0.077 (±0.010) 2.6 (±0.3) 1.3 (±0.1) 0.77 (±0.09) 0.86 (±0.10) 21
a

(±2) 12
a

(±1) 0.18 (±0.02) 0.41 (±0.05) +

PPM C8+Na 350°C, 336 h 1 0.095 (±0.020) 2.2 (±0.2) 2.4 (±0.3) na

HM C8+Na 350°C 1 0.68 (±0.08) 6.0 (±0.7) 3.1 (±0.3) 0.64 (±0.07) 0.95 (±0.11) 40 (±5) 21 (±2) 0.13 (±0.01) 0.52 (±0.06) -

-

-

Table A1

Continued

ethene propene

-

-

-

+

iso -butanebutene+

+

-

-

-

-

-

-

+

-

-

-

-

350°C

Detection limits and

blanks
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-
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+ +
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na

na

na

-

-

+

-

-

na

na

na na

na

+

na

acetone

0.0063 0.0089 0.00018 0.00016

butanone benzene toluene

na

na

na

na

na

na

na

na

iso -pentane

n = number of samples processed with the same 

composition 

butene+ = mixture of 1-butene and 2-butene 

1- PTH   = 1-propanethiol 

- quantification/detection not possible; due to low 

concentration and/or strong coelution 
 

+ detected, but concentration too low for quantification 

na  not analyzed 

a
    ketone values are corrected for dilution (see chapter 3.5 

for details) 
 
b   

Error represents the single standard deviation of the 

arithmetic mean. Errors for the other values reflect the 

error that is calculated from error propagation of the 

analytical error and the total weighing error of initial 

n-octane. 

 

       Continuation of Table A1 on next page!    →  



Table A1 continued: Calculated values from quantified organic reaction products. 

 
 

 * In order to estimate the amount of initial n-octane, which was converted during the experiments, the mass balance for carbon was calculated. The molar amount of carbon in the reaction products was summed and normalized to the initial amount of carbon provided by n-octane (245 ± 12 µmol C). The 

resulting value is an estimate for the minimum conversion of n-octane. Error propagation taking into account the analytical uncertainty and the weighing uncertainty, leads to a relative error for this calculation of 17% for the 300°C samples and 7% for the 350°C samples. This “detour” was necessary 

owing to the fact that n-octane concentrations remaining after the experiments were too high to be accurately measured with the headspace gas chromatograph. 

Sample name n
t 

(h)

T 

(°C)

P 

(MPa)

PPM 

(mg)

HM 

(mg)

H2O 

(µmol)

C8H18

(µmol)

Na2SO4 

(µmol)
log[propane/propene] log[butane/butene+] log[acetone/propene] log[butanone/butene+]

Detection l imits

PPM blank 300°C 1 168 300 35 29 4992 148

PPM blank 350°C 1 168 350 35 30 5154 150

-buf C8 300°C 1 168 300 35 4951 29 1.2 (±0.1) 21 (±2) 25 (±4)

PPM C8 300°C 1 168 300 35 30 4972 30 0.47 (±0.03) 11 (±1) 6.0 (±1.0) 0.3

C8* 350°C 1 168 350 35 31 6.1 (±0.4) 4.4 (±0.5) 28 (±4) 1.2 1.5 0.1 0.3

-buf C8 350°C 2 168 350 35 5010 30 6.4 (±0.4) 4.2 (±0.5) 30 (±5) 1.5 2.0 1.0 1.3

PPM C8 350°C 1 168 350 35 29 5004 29 16 (±1) 6.3 (±0.7) 142 (±22) 1.3 1.7 1.4 1.6

HM C8 350°C 1 168 350 35 30 4968 31 13 (±1) 4.2 (±0.5) 198 (±31) 1.2 1.3 1.2 1.1

-buf C8+Na 300°C 1 168 300 35 5031 30 156 0.69 (±0.05) 17 (±2) 15 (±2) 0.4

PPM C8+Na 300°C 4 168 300 35 31 5023 29 159 0.24 (±0.02) 18 (±2) 6.9 (±2.5)
b

0.04 0.4

PPM C8+Na 300°C, 336 h 1 336 300 35 30 5070 29 159

-buf C8+Na 350°C 2 168 350 35 4988 30 157 4.1 (±0.3) 5.2 (±0.6) 27 (±4) 0.8 1.2 0.7 1.0

PPM C8+Na 350°C, 72 h 1 72 350 35 30 4990 30 167 5.8 (±0.4) 9.3 (±1.0) 1.1

PPM C8+Na 350°C 5 168 350 35 30 4981 29 155 15 (±1) 13 (±1) 82 (±13) 1.4 1.7 0.9 1.0

PPM C8+Na 350°C, 336 h 1 336 350 35 31 5061 30 158 24 (±2) 16 (±2) 1.7

HM C8+Na 350°C 1 168 350 35 30 4979 31 157 16 (±1) 5.2 (±0.6) 88 (±14) 1.0 1.3 0.8 0.8

O2 in organic 

products 

(mmol/mol C8H18)

log ratios (mol/mol), uncertainty is ±0.1 log units for all valuesConversion, gas dryness, oxgen content
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350°C

Detection limits and

blanks

C1/ΣC1-4 

(wt%)

Experimental 

conditions
Sample composition

Conversion of 

n -octane (mol%)*



Table A2: Reaction products generated from reaction of n-octane with transition metal sulfate and sodium sulfate after 168 h at 315°C and 13 MPa. All samples initially contained 5 µl n-octane (= 30.6 µmol). Errors reflect the error that is calculated from error propagation of the 

analytical error and the total weighing error of initial n-octane.

 

 

Transition metal 

sulfate (TMS )

Concentration of 

stock solution 

(mol/kg H2O)

Ratio TMS/Na2SO4 

(µl/µl) Sample ID Sample #

Detection l imits

S06-023 12 (±1) 2.4 (±0.3) 1.7 (±0.2) 1.6 (±0.2) 1.3 (±0.1) 0.69 (±0.08) 0.24 (±0.03) 0.23 (±0.025) 0.55 (±0.06) 0.19 (±0.02)

S06-033 16 (±2) 2.7 (±0.3) 1.8 (±0.2) 1.8 (±0.2) 1.4 (±0.2) 0.71 (±0.08) 0.25 (±0.03) 0.24 (±0.027) 0.51 (±0.06) 0.18 (±0.02)

40/160 Fe(II)_mix1 S06-042 11 (±1) 5.1 (±0.6) 4.4 (±0.5) 3.7 (±0.4) 3.5 (±0.4) 3.5 (±0.4) 0.35 (±0.04) 0.062 (±0.013) 0.064 (±0.007) 0.86 (±0.10) 0.32 (±0.04)

S06-043 19 (±2) 7.8 (±0.9) 6.5 (±0.7) 5.5 (±0.6) 5.1 (±0.6) 5.3 (±0.6) 0.46 (±0.05) 0.070 (±0.014) 0.076 (±0.009) 0.73 (±0.08) 0.32 (±0.04)

S06-044 23 (±3) 6.4 (±0.7) 5.9 (±0.7) 5.0 (±0.6) 4.5 (±0.5) 4.4 (±0.5) 0.38 (±0.04) 0.043 (±0.009) 0.071 (±0.008) 0.79 (±0.09) 0.35 (±0.04)

200/0 Fe(II) S06-045 81 (±9) 24 (±3) 12 (±1) 10 (±1) 6.4 (±0.7) 6.6 (±0.7) 0.46 (±0.05) 0.20 (±0.02) 0.051 (±0.006) 0.65 (±0.07) 0.23 (±0.03)

S06-046 46 (±5) 13 (±1) 7.3 (±0.8) 5.9 (±0.7) 5.2 (±0.6) 5.1 (±0.6) 0.55 (±0.06) 0.11 (±0.01) 0.089 (±0.010) 0.90 (±0.10) 0.36 (±0.04)

S06-100 47 (±5) 12 (±1) 6.7 (±0.8) 5.4 (±0.6) 4.7 (±0.5) 4.6 (±0.5) 0.42 (±0.05) 0.10 (±0.01) 0.072 (±0.008) 0.80 (±0.09) 0.30 (±0.03)

S06-047 94 (±11) 22 (±2) 9.6 (±1.1) 7.6 (±0.8) 6.5 (±0.7) 6.6 (±0.7) 0.68 (±0.08) 0.18 (±0.02) 0.081 (±0.009) 0.70 (±0.08) 0.28 (±0.03)

S06-048 78 (±9) 19 (±2) 8.9 (±1.0) 7.1 (±0.8) 6.1 (±0.7) 6.3 (±0.7) 0.49 (±0.05) 0.22 (±0.02) 0.068 (±0.008) 0.66 (±0.07) 0.26 (±0.03)

S06-101 1829 (±205) 95 (±11) 14 (±2) 7.3 (±0.8) 4.7 (±0.5) 3.8 (±0.4) 0.67 (±0.08) 0.78 (±0.09) 0.0083 (±0.0017) 0.42 (±0.05) 0.15 (±0.02)

S06-102 1804 (±202) 92 (±10) 14 (±2) 7.5 (±0.8) 4.9 (±0.5) 4.1 (±0.5) 0.80 (±0.09) 0.90 (±0.19) 0.0080 (±0.0017) 0.43 (±0.05) 0.15 (±0.02)

40/160 Ni_mix1 S06-029 7.4 (±1.5) 1.1 (±0.1) 1.9 (±0.2) 1.6 (±0.2) 1.6 (±0.2) 1.3 (±0.2) 0.23 (±0.03) 0.16 (±0.02) 1.1 (±0.1) 0.32 (±0.04)

S06-030 7.4 (±1.5) 1.5 (±0.2) 3.6 (±0.4) 3.3 (±0.4) 3.4 (±0.4) 3.9 (±0.4) 0.47 (±0.05) 0.13 (±0.01) 0.92 (±0.10) 0.44 (±0.05)

S06-031 12 (±1) 1.4 (±0.2) 2.9 (±0.3) 2.7 (±0.3) 2.8 (±0.3) 3.0 (±0.3) 0.39 (±0.04) 0.12 (±0.01) 0.94 (±0.10) 0.51 (±0.06)

200/0 Ni S06-032 6.4 (±1.3) 0.80 (±0.09) 0.74 (±0.08) 0.60 (±0.07) 0.30 (±0.03) 0.060 (±0.007) 0.58 (±0.06) 0.17 (±0.02)

40/160 Cu_mix1 S06-024 210 (±23) 15 (±2) 3.4 (±0.4) 3.0 (±0.3) 2.9 (±0.3) 3.8 (±0.4) 0.65 (±0.07) 0.13 (±0.01) 0.12 (±0.01) 0.83 (±0.09) 0.52 (±0.06)

S06-025 532 (±59) 47 (±5) 4.2 (±0.5) 3.8 (±0.4) 3.4 (±0.4) 3.6 (±0.4) 0.18 (±0.02) 0.028 (±0.006) 0.14 (±0.02) 0.55 (±0.06) 0.28 (±0.03)

S06-026 531 (±59) 46 (±5) 4.3 (±0.5) 3.9 (±0.4) 3.3 (±0.4) 3.4 (±0.4) 0.17 (±0.02) 0.019 (±0.004) 0.17 (±0.02) 0.54 (±0.06) 0.23 (±0.03)

40/160 Zn_mix1 S06-034 11 (±1) 2.2 (±0.2) 1.9 (±0.2) 1.7 (±0.2) 1.6 (±0.2) 1.2 (±0.1) 0.14 (±0.02) 0.12 (±0.01) 0.85 (±0.10) 0.28 (±0.03)

S06-035 12 (±1) 3.1 (±0.3) 3.3 (±0.4) 2.8 (±0.3) 2.9 (±0.3) 3.2 (±0.4) 0.48 (±0.05) 0.15 (±0.02) 0.87 (±0.10) 0.37 (±0.04)

S06-036 14 (±2) 3.3 (±0.4) 3.3 (±0.4) 2.7 (±0.3) 2.7 (±0.3) 2.8 (±0.3) 0.38 (±0.04) 0.15 (±0.02) 0.90 (±0.10) 0.38 (±0.04)

200/0 Zn S06-037 20 (±2) 0.87 (±0.10) 0.68 (±0.08) 0.61 (±0.07) 0.30 (±0.03) 0.019 (±0.004) 0.44 (±0.05)

0.004 0.0048 0.0019

Reaction products (mmol/mol C8H18)

     CO2

2 0.0062 0.0034 0.0044 0.0020 0.0021 0.0044 0.0014

Cu_mix2

Zn_mix2

Ni_mix2

Fe(III)

NiSO4

CuSO4

ZnSO4

0.50

0.48

0.45

100/100

100/100

100/100

Fe2(SO4)3 0.17

42/158 Fe(III)_mix1

84/116 Fe(III)_mix2

200/0

+

+

0.27 100/100 Fe(II)_mix2

+

+

+

+

+

+

+

+

+

S
E

R
IE

S
 3

methane

+

+

+

+

propene butene+heptane etheneethane propane butane pentane hexane

Na2SO4 0.50 0/200 Na

FeSO4

butene+ = mixture of 1-butene and 2-butene 

1- PTH   = 1-propanethiol 

2-MeTH = 2-methylthiophene 

3-MeTH = 3-methylthiophene 

- quantification/detection not possible; due to low concentration and/or strong coelution 
 

+ detected, but concentration too low for quantification 

 

        Continuation of Table A2 on next page!    →  



Table A2 continued: Reaction products continued. 

 
 

* In order to estimate the amount of initial n-octane, which was converted during the experiments, the mass balance for carbon was calculated. The molar amount of carbon in the reaction products was summed and normalized to the initial amount of carbon provided by n-octane 

(245 ± 12 µmol C). The resulting value is an estimate for the minimum conversion of n-octane. Error propagation taking into account the analytical uncertainty and the weighing uncertainty, leads to a relative error for this calculation of 17% for the 300°C samples and 7% for the 

350°C samples. This “detour” was necessary owing to the fact that n-octane concentrations remaining after the experiments were too high to be accurately measured with the headspace gas chromatograph. 

Sample ID Sample # pentanone

S06-023 1.8 (±0.2) 0.95 (±0.11) + 0.58 (±0.04) 17 (±2) 14 (±2)

S06-033 2.1 (±0.2) 0.92 (±0.10) + 0.65 (±0.05) 17 (±2) 17 (±3)

Fe(II)_mix1 S06-042 0.44 (±0.05) 0.036 (±0.004) 2.3 (±0.3) 0.77 (±0.09) + 0.019 (±0.002) 0.045 (±0.005) 0.075 (±0.008) 0.10 (±0.01) 1.1 (±0.1) 14 (±2) 13 (±2)

S06-043 0.46 (±0.05) 0.059 (±0.007) 3.3 (±0.4) 1.0 (±0.1) + 0.081 (±0.009) 0.084 (±0.009) 0.23 (±0.03) 0.12 (±0.01) 0.021 (±0.004) 1.6 (±0.1) 15 (±2) 21 (±3)

S06-044 0.46 (±0.05) 0.051 (±0.006) + + + 0.086 (±0.010) 0.26 (±0.03) 0.12 (±0.01) 0.031 (±0.006) 1.3 (±0.1) 14 (±2)

Fe(II) S06-045 0.58 (±0.06) 0.15 (±0.02) 5.0 (±0.6) 2.5 (±0.3) + 0.089 (±0.010) 0.16 (±0.02) 0.48 (±0.05) 0.21 (±0.02) 0.10 (±0.01) 3.2 (±0.2) 25 (±3) 84 (±13)

S06-046 0.47 (±0.05) 0.061 (±0.007) 7.8 (±0.9) 2.1 (±0.2) + 0.092 (±0.010) 0.12 (±0.01) 0.22 (±0.02) 0.22 (±0.02) 0.009 (±0.002) 2.3 (±0.2) 20 (±3) 51 (±8)

S06-100 0.46 (±0.05) 0.053 (±0.006) 7.3 (±0.8) 1.8 (±0.2) + 0.081 (±0.009) 0.11 (±0.01) 0.26 (±0.03) 0.17 (±0.02) 0.016 (±0.003) 2.1 (±0.1) 21 (±3) 51 (±8)

S06-047 0.49 (±0.05) 0.089 (±0.010) 8.0 (±0.9) 1.2 (±0.1) + 0.28 (±0.03) 0.33 (±0.04) 1.1 (±0.1) 0.28 (±0.03) 0.13 (±0.01) 3.3 (±0.2) 26 (±3) 99 (±16)

S06-048 0.47 (±0.05) 0.081 (±0.009) 6.9 (±0.8) 1.2 (±0.1) + 0.27 (±0.03) 0.35 (±0.04) 0.90 (±0.10) 0.23 (±0.03) 0.15 (±0.02) 3.0 (±0.2) 25 (±3) 82 (±13)

S06-101 0.51 (±0.06) 0.080 (±0.009) 8.0 (±0.9) 1.7 (±0.2) + 2.8 (±0.3) 3.1 (±0.3) 38 (±4) 0.74 (±0.08) 0.51 (±0.06) 28 (±2) 60 (±8) 1834 (±290)

S06-102 0.52 (±0.06) 0.085 (±0.010) 8.3 (±0.9) 1.8 (±0.2) + 2.6 (±0.3) 3.4 (±0.4) 40 (±5) 0.85 (±0.10) 0.56 (±0.06) 28 (±2) 59 (±8) 1809 (±286)

Ni_mix1 S06-029 1.5 (±0.2) 1.0 (±0.1) + 0.57 (±0.04) 7.5 (±1.0) 9 (±2)

S06-030 2.6 (±0.3) 1.5 (±0.2) + 1.0 (±0.1) 5.2 (±0.7) 9 (±2)

S06-031 2.4 (±0.3) 1.4 (±0.2) + 0.92 (±0.06) 5.7 (±0.7) 14 (±2)

Ni S06-032 1.5 (±0.2) 1.2 (±0.1) + 0.29 (±0.02) 16 (±2) 8 (±2)

Cu_mix1 S06-024 0.45 (±0.05) 0.051 (±0.006) 9.8 (±1.1) 3.0 (±0.3) + 1.2 (±0.1) 0.56 (±0.06) 0.039 (±0.004) 4.2 (±0.3) 38 (±5) 216 (±34)

S06-025 0.49 (±0.05) 0.055 (±0.006) 25 (±3) 9.0 (±1.0) + 1.4 (±0.2) 1.2 (±0.1) 0.24 (±0.03) 9.6 (±0.7) 61 (±8) 549 (±87)

S06-026 0.49 (±0.05) 0.050 (±0.006) 22 (±2) 8.5 (±1.0) + 1.3 (±0.1) 1.0 (±0.1) 0.13 (±0.01) 9.4 (±0.7) 60 (±8) 547 (±86)

Zn_mix1 S06-034 2.2 (±0.2) 1.4 (±0.2) + 0.64 (±0.04) 14 (±2) 12 (±2)

S06-035 2.9 (±0.3) 1.6 (±0.2) + 1.0 (±0.1) 11 (±1) 14 (±2)

S06-036 3.1 (±0.3) 1.9 (±0.2) + 1.0 (±0.1) 12 (±2) 16 (±3)

Zn S06-037 6.2 (±0.7) 3.9 (±0.4) + 0.76 (±0.05) 18 (±2) 25 (±4)

0.00032 0.00014 0.00021

Fe(III)_mix1

Fe(III)_mix2

Fe(III)

Ni_mix2

Cu_mix2

Zn_mix2

0.0044 0.0045 0.0063 0.0089 0.00018 0.00016
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-
Na

Fe(II)_mix2

+

+
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B. FIGURES B1 – B4 
 

 

 

 

 

 

 

 

 

Fig. B2: Reproducibility of the sulfate-containing PPM samples at 350°C. The graphic compares the amount 
of n-alkanes produced from decomposition of n-octane at 350°C and 35 MPa after 168 h in the PPM-H2O-
C8H18-Na2SO4 system. Samples with the prefix S05 were processed in the same experiment, whereas sample 
S03-015 was processed 1.5 years prior to this. Depicted error bars represent a relative error of 11%, which 
results from error propagation taking into account the analytical error (10 %) and the total weighing error 
of initial n-octane (5 %). Note that the concentration of n-alkanes generated at 350°C is two orders of 
magnitude higher than at 300°C (Fig. B1). 

 

Fig. B1: Reproducibility of the sulfate-containing PPM samples at 300°C. The graphic compares the amount 
of n-alkanes produced from decomposition of n-octane at 300°C and 35 MPa after 168 h in the PPM-H2O-
C8H18-Na2SO4 system. Samples S05-040, -041 and -042 were processed in the same experiment, whereas 
sample S03-014 was processed 2 years prior to this. Methane data for sample S03-014, and n-pentane and 
n-hexane for samples S05-041 and -042 were not acquired. Detection limits were << 0.01 mmol/mol C8H18. 
Error bars represent the error (11 %), which was calculated via error propagation from the analytical 
uncertainty (10 %) and the total weighing error of initial n-octane (5 %).   
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Fig. B3: Gas dryness values for five identical sulfate-containing PPM samples processed at 350°C and 
35 MPa for 168 h in two different experiments (see caption of Fig. B2 for details). The uncertainty of 
the gas dryness values is calculated from error propagation of the analytical uncertainty, which is 
10 % for each n-alkane. The single (black) and double (green) standard deviation of the arithmetic 
mean for the five samples indicate, however, that the precision for ratio considerations is 
significantly better (± 7%). 
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C. SUMMARY OF THE BACHELOR THESIS FROM 

HINZE (2012) 
 

 In the course of my PhD work, I supervised the Bachelor thesis of Michael Hinze. The 

objective was to investigate the buffering capability of the PPM mineral buffer in presence 

and absence of sulfate at 350°C and 35 MPa. The experiments were planned by me. 

Furthermore, I provided support during laboratory work, and especially during data 

interpretation was. Michael Hinze performed the experiments of the type PPM+H2O and 

PPM+H2O+Na2SO4, using the same PPM mineral buffer that was employed in the present 

study. Sample preparation and the experimental procedure are analogue to this study. This 

means that initial quantities of all components are the same (30 mg PPM and 90 µl H2O or 

Na2SO4 solution with a concentration of 1.7 molal) and that the CSPV was used for the 

experiments. Run duration was either 24 or 168 h. 

 Within 2 hours after the experiment, samples were analyzed by gas chromatography. 

In this case, a Varian CP 4900 micro gas chromatograph was used. It contains four separate 

analytical modules. Each module consists of an injector, a heated column compartment and 

a thermal conductivity detector (TCD). The first module was used for the hydrogen 

measurements. It consists of a molar sieve column with a length of 10 m. Column 

temperature and pressure were 45°C and 125 kPa respectively. The software “Galaxie 

Chromatography Workstation Version 1.9.3.2” was used to control the chromatograph as 

well as for data logging and processing. Compound identification was based on retention 

time as compared to analyses of certified standards. For the calibration two hydrogen 

standards (1.01 and 0.01 vol%) were used. Hydrogen amounts in the samples range from 

0.004 to 0.009 vol% and are significantly below the calibrated range. However, it is assumed 

that the response of the TCD detector is linear and that the calibration can be extended to 

these lower concentrations. Multiple measurements of the lowest standard give an 

uncertainty of 20%. The reproducibility of individual sample measurements is even better, 

showing a relative error of 10 %. 

 Measured hydrogen amounts were converted to aqueous hydrogen concentrations, 

assuming that the analyzed hydrogen was completely dissolved in the fluid under 

experimental conditions. Results are illustrated in Fig. C1. 
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Fig. C1: Concentrations of aqueous hydrogen measured for PPM samples with (PPM+H2O+Na2SO4) 
and without (PPM+H2O) sulfate, which were processed at 350°C and 35 MPa for 24 and 168 h. 
Measured hydrogen concentrations can be converted to activity (α) values using the following 
equation: 
 

    ���	(��) = 		��	(��) 	 · 	 ���	(��)/(
��

��	���
)  

 
with c being the molal (mol/kg H2O) concentration of aqueous hydrogen. Following the procedure 
of Seewald (2001), an activity coefficient of 1 is adapted. 
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