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Preface 

The results presented in this thesis were achieved while I was a member of the 

scientific research group of Prof. Dr. Jürgen Caro at the Gottfried Wilhelm Leib-

niz University of Hannover, Institute of physical chemistry and electrochemistry 

from Nov. 2011 until Apr. 2015. 

During this period, I took part in the German Research Foundation (Deutsche For-

schungsgemeinschaft - DFG) program SPP 1362 “Porous Metal-Organic Frame-

works”, organized by Prof. Dr. Stefan Kaskel.  

This thesis includes five publications that were written by me as first or coopera-

tive author. Furthermore, I am first or co-author, respectively, of four additional 

papers which are not included in this thesis, but listed in chapter 5. The following 

part will clarify the contributions of each author to the published articles. 

The first article (chapter 2.2) presented in this thesis was written by me with the 

kind support from my co-workers. My contribution was to prepare the ZIF-8 

membrane and the ZIF-8 powder. Additionally, I characterized the ZIF-8 powder 

and the membrane by powder XRD and performed the SEM pictures. Further-

more, I tested the membrane for the pervaporation of an equimolar n-

hexane/benzene and mesitylene/benzene mixture and proved the liquid adsorption 

by liquid adsorption studies. Frank Steinbach showed me how to produce clear 

SEM pictures. Dr. Helge Bux contributed to the publication by helpful 

suggestions. M. Sc. Dennis Wachsmuth built up the pervaporation apparatus dur-

ing his master thesis. And finally, Prof. Dr. Jürgen Caro supported the work by 

valuable discussions and corrections. 

The second publication (chapter 2.3) was written by Dr. Daniil Kolokolov. My 

contribution to this paper was to perform the macroscopic measurements of the 

diffusivity of benzene in ZIF-8 by membrane pervaporation studies and to calcu-

late the Maxwell-Stefan diffusivity using the measured parameters. 

The third article (chapter 3.2) was also written by me as the first author with kind 

support from my co-authors. My contribution was to synthesize the neat ZIF-8 

membrane, to perform the permeation measurements and to prepare the powder 

XRDs and SEM pictures of the membranes. Dr. Xinlei Liu prepared the PMPS 
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membrane and the mixed matrix membrane. Prof. Dr. Yanshuo Li, Prof. Dr. 

Weishen Yang and Prof. Dr. Jürgen Caro supported the paper by helpful criticism 

and corrections.  

The fourth article (chapter 3.3) was also written by me with kind support from my 

colleagues. My contribution was to synthesize the membranes, to perform the 

SEM pictures of the neat ZIF membranes and to characterize all membranes by 

XRD. Furthermore, I carried out the permeation experiments. M. Sc. Nanyi Wang 

showed me how to synthesize the neat ZIF-90 membranes and the ZIF-90 nano-

particles. M. Sc. Alexander Schulz and Frank Steinbach prepared the mixed ma-

trix membranes for the SEM and TEM characterization and Frank Steinbach pro-

duced the SEM and TEM pictures of the mixed matrix membranes. Prof. Dr. Jür-

gen Caro contributed to the paper by valuable comments and corrections. 

The fifth publication (chapter 3.4) is a paper written by me as the first author and 

supported by my colleagues and co-authors. My contribution was to synthesize 

the membranes, to characterize the neat ZIF membranes and mixed matrix mem-

branes by SEM and to carry out the permeation measurements. Bärbel Schwied-

land and Prof. Dr. Ulrich Giese helped me with the DSC measurements and by 

their discussions. I would like to thank Frank Steinbach for the clear TEM, and 

SAED characterizations of the mixed matrix membranes and Prof. Dr. Jürgen 

Caro for the discussions and the corrections. 
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Abstract 

The following thesis discusses the development of cost-intensive and rarely re-

producible Metal-Organic Framework membranes (MOF membranes) towards 

cheaper and more easily reproducible Mixed Matrix Membranes (MMMs). For 

the studies the prototypical MOFs ZIF-8 and ZIF-90 (Zeolitic Imidazolate 

Framework) were used. This thesis includes five articles published in internation-

ally renowned journals, which are rearranged in a logical order. 

First of all, the – for the gas separation already successful tested – ZIF-8 mem-

brane was used for the pervaporative separation of alkanes from aromatic com-

pounds. It was found that benzene was able to permeate through the dense ZIF-8 

membrane layer despite of its small pore size. The reason for this adsorption is the 

significant framework flexibility of ZIF-8. To prove this unexpected finding an 

additional 2H NMR (nuclear magnetic resonance) study was performed which 

established the movement patterns of a benzene molecule within the ZIF-8 cage 

and its self-diffusion coefficient. Since the manufacture of ZIF membranes is very 

time- and cost-intensive, as well as not scalable, a new type of membrane was ex-

amined – the MMM. This composite membrane is able to combine the excellent 

separation performance of MOF membranes with the flexibility and easy handling 

of polymer membranes. Within this thesis ZIF-8 and ZIF-90 nanoparticle MMMs 

with rubbery or glassy polymer matrices were produced und tested for gas per-

meation in comparison with the neat ZIF and polymer membrane. The MMM 

with polymethylphenylsiloxane (PMPS) as rubbery polymer matrix showed the 

same separation results as the neat PMPS membrane, but combined with a 

noticeably higher gas permeability. This behavior results from an increased free 

volume of the PMPS polymer after introduction of ZIF-8 nanoparticles. By 

contrast, the MMMs with glassy Matrimid as polymer matrix often showed 

improved separation results but lower gas permeabilities than expected. An 

additional study allowed to explain this phenomenon with a hindrance of the ZIF 

framework flexibility due to the surrounding polymer. This effect was 

reproducible by using other glassy polymers like 2,2´-bis(3,4-carboxyphenyl) 

hexafluoropropane dianhydride-diamino-mesitylene (6-FDA-DAM). 
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Zusammenfassung 

Die vorliegende Dissertation beinhaltet die Entwicklung von metallorganischen 

Membranen (MOF Membran) hin zu leichter herstellbaren Mixed Matrix Mem-

branen (MMM). Für die Untersuchungen wurden die prototypischen MOFs ZIF-8 

und ZIF-90 (ZIF = zeolith-artige Imidazolat-Gerüststrukturen) verwendet. Die 

Arbeit schließt insgesamt fünf in internationalen Fachzeitschriften veröffentlichte 

Publikationen ein, die in logischer Reihenfolge aufgeführt sind. 

Die in der Gastrennung bereits erfolgreich getestete ZIF-8 Membran wurde in die-

ser Arbeit zunächst zur pervaporativen Trennung von Alkanen und Aromaten ge-

nutzt, wobei zu beobachten war, dass Benzol durch die engporige ZIF Membran 

permeierte. Aufbauend auf diesem unterwarteten Ergebnis wurde eine 2H NMR 

(nuclear magnetic resonance)-Studie zur Charakterisierung und Quantifizierung 

der Benzoladsorption am ZIF-8 durchgeführt. Hierbei konnte das Bewegungs-

muster eines Benzolmoleküls in einer ZIF-8 Gerüststruktur und dessen Selbstdif-

fusionskoeffizient ermittelt werden. Da die Herstellung einer ZIF Membran sehr 

kosten- und zeitintensiv und zudem die Membran praktisch nicht hochskalierbar 

ist, wurden nachfolgend MMMs eingehender untersucht. Wie sich herausstellte, 

kann dieser Membrantyp unter bestimmten Umständen sowohl die guten Separa-

tionseigenschaften der ZIFs als auch die Flexibilität und gute Bearbeitbarkeit der 

Polymere aufweisen. Hierzu wurden ZIF-8 und ZIF-90 Nanopartikel-MMMs mit 

gummi- und glasartigen Polymeren hergestellt und in der Gastrennung mit den 

reinen ZIF und den reinen Polymermembranen verglichen. Es ergab sich, dass die 

MMM mit dem gummiartigen Polymethylphenylsiloxan (PMPS) ähnliche 

Trenneigenschaften aufwies wie die reine PMPS-Membran, wobei die Gasper-

meabilität deutlich erhöht war. Dieses Resultat ist darauf zurückzuführen, dass die 

ZIF-8 Nanopartikel die Struktur des PMPS stören und Hohlräume erzeugen. Bei 

den MMMs mit dem glasartigen Matrimid konnten dagegen häufig deutlich ver-

besserte Separationen mit leicht verringerten Permeabilitäten festgestellt werden. 

Eine aufbauende Studie konnte zeigen, dass diese Ergebnisse durch eine behin-

derte ZIF Gitterflexibilität entstehen und auch bei anderen glasartigen Polymeren 

wie 2,2´-bis(3,4-carboxyphenyl)hexafluoropropandianhydrid-diaminomesitylen 

(6-FDA-DAM) auftreten. 
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1 Introduction 

 

1.1 Motivation 

 

The separation of gases and liquids by membranes plays an increasingly important 

role in the reduction of industrial process costs.[1, 2] Accordingly, membranes are 

already applied in reverse osmosis (e.g., sea water desalination), nanofiltration 

(e.g., water removal to concentrate sugar), ultrafiltration (e.g., oil/water emulsions 

separation), and microfiltration (e.g., wastewater treatment). Further industrial  

applications with increasing demand are gas separations (e.g., natural gas 

refining) and pervaporations (e.g., alcohol extraction from organic solvents).[3, 4] 

The membrane technology offers a number of benefits over other separation 

technologies. In contrast to conventional gas separations that require much energy 

due to a gas-to-liquid phase change in the gas mixture (for example cryogenic 

distillation of air or condensation to remove condensable organic vapor from gas 

mixtures), this step is not necessary in membrane technology. Another advantage 

is that gas separation membrane units are smaller than other types of plants and 

that membrane systems are less complex mechanically.[5] Currently, gas selective 

membranes are most widely used in industry for [6]: 

• Hydrogen separation 

• Separation of nitrogen from air 

• Carbon dioxide and water removal from natural gas 

• Organic vapor removal from air and nitrogen streams 

For the liquid separation (pervaporation) the membrane technology offers an     

additional advantage. Many commonly used organic solvents form azeotropes that 

cannot be easily separated by conventional methods. Thus, pervaporation is a 

widely accepted technology for  

• The removal of water from organic mixtures 

• The separation of volatile organic components from gas streams. 
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Considerable efforts have also been devoted to develop membranes that separate 

aromatic hydrocarbons - like benzene - from aliphatic ones and olefin from pa-

raffin.[7]  

The most widely used membranes are non-porous polymeric membranes. They 

are very attractive as membranes because they can be processed into hollow fibers 

with large surface areas. The relatively low manufacturing costs make them 

interesting for large-scale industrial applications.[8] Unfortunately, the efficiency 

of a membrane separation process is determined by the membrane’s separation 

properties - its permeability and selectivity with respect to different gas or liquid 

mixtures. For most gas selective membranes the following rule applies: as 

selectivity increases, permeability decreases and vice versa. This upper-bound 

limit for the performance of polymeric membranes was predicted by Robeson.[9, 

10] Significantly higher diffusivity selectivities than for polymeric materials were 

expected for molecular sieves like zeolites and for metal organic frameworks 

(MOFs).[11] The accurate size and shape discrimination resulting from their 

narrow pore distributions ensures superior selectivities. Additionally, MOF 

membranes can also be modified to achieve enhanced solubility-based 

separations.[12-20]  

For the pervaporation thin and defect-free polymeric hollow fibers with sufficient 

chemical, mechanical, and thermal stability are in use. However, the chemical 

stability of the organic polymer limits the application.[1] Thus, zeolite membranes 

have been developed that are much more stable and show high fluxes and 

selectivities. But unfortunately, the quick launching of inorganic membranes is 

still seriously hindered by the extremely high costs for the membrane production, 

the brittleness and the lack of technology to produce defect-free membranes. A 

slight improvement has been achieved by using MOFs as sieving material. The 

critical and energy-intensive calcination step, necessary for most zeolite 

productions, can be avoided in the template-free MOF production.  

Nevertheless, a new approach was needed to get cost-efficient, selective and 

permeable membranes which are less fragile and easy to reproduce. Thus, the 

research has focused on composite membranes like mixed matrix membranes 

(MMMs). MMMs are defined as the incorporation of a solid dispersed phase (here 

MOFs) into a continuous polymer matrix. MMMs have the potential to achieve 
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higher gas selectivity, higher gas permeability or both in relation to the neat 

polymeric membrane which results from the embedded porous particles. At the 

same time, the fragility of the MOF membranes can be reduced by using a flexible 

polymer as continuous matrix.[21-23] Using polymer, however, makes the new 

membranes susceptible to inorganic liquids.  

Thus, the aim of this work was to examine at first existing MOF membranes for 

the pervaporative separation of aliphatic organic liquids from aromatic liquids. 

And, as MOF membranes are difficult to reproduce and to handle, MMMs with 

MOFs were developed and tested for applications in gas separation. Additionally, 

we developed a model to explain the enhanced selectivity results of MMMs in 

comparison to the neat MOF and the neat polymer membrane.  
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properties, (4) interdisciplinary research, and (5) research for applications.[25] 

The term “MOF” dates back to publications by Yaghi and his coworkers in 1995. 

In this work, the synthesis and characterization of the 

Co(II)(BTC’)(PYR)2(PYR)0.67 - with BTC’ = 1,3,5-benzenetricarboxylate and 

PYR = pyridine – were described. According to Yaghi and coworkers these 

frameworks show a selective and reversible uptake of aromatic molecules.[26] 

Already 30 years ago, in 1959, Kinoshita and coworkers found the first polymeric 

metal-organic structure (Cu(I)(AND)2(NO3) with AND = adiponitrile). 

Unfortunately, they never performed any adsorption studies on this new 

material.[27]  

 

1.2.2 MOF nomenclature and classification 

 

Similar to the zeolites, MOFs are often denoted by three letters plus a number. 

These letters are often abbreviations for the origin university or for certain 

structural properties – for example, MIL stands for “Material of Institute 

Lavoisier” and UiO for “University of Oslo” whereas ZIF stands for “zeolitic 

imidazolate framework”, BIF for “zeolitic boron imidazolate framework” and 

MOF for “metal organic framework”. Thus, it happens that one and the same 

structure has different names: ZIF-8, for example, is also called MAF-4 (metal 

azolate framework-4) and CPO-27 (coordination polymer of Oslo-27) is the same 

structure as MOF-74.[28, 29] 

Until now, there are different approaches to classify MOFs. Kitagawa and his 

coworkers, for example, subdivided the MOFs into different generations. The first 

MOF generation includes all types of frameworks that are instable after removing 

solvent molecules. The second generation includes MOFs with a rigid and stable 

network during sorption processes, and MOFs with a stable but flexible network 

during sorption processes form the third generation of MOFs.[30] Férey and his 

coworkers, in contrast, classified MOFs into groups with different connectivity 

dimensions of the inorganic building unit.[31] However, in most cases the 

structures are divided into sub-groups, depending on their structural similarity to 

other materials or special building units. ZMOFs (zeolite-like metal organic 

frameworks), for example, are MOFs that have a zeolite-like structure. In this 
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1.2.4 Chemical and physical stability properties of ZIFs 

 

Most ZIFs have an exceptional chemical stability in refluxing organic solvents, 

water, and aqueous alkaline solutions; an outstanding finding for MOFs. 

Additionally, ZIF-8 can be heated up to 550 °C in N2.[33, 35, 36] The thermo- 

gravimetric analysis of ZIF-90 shows very similar results. Up to a temperature of 

300 °C, the framework loses solvent molecules, whereas in the subsequent region 

(300 - 500 °C) no further mass loss is observed. At 500 °C, the framework starts 

to decompose. Consequently, many ZIFs are good candidates for separation and 

storage applications at medium temperature ranges of up to 500 °C. 

Unfortunately, ZIFs exhibit only low physical stability. Coudert and coworkers 

were able to show that the very high porosity of the empty ZIF-8 causes a low 

resistance to shear and pressure-induced shear softening. Thus, the ZIF-8 

framework could be damaged at 0.4 GPa.[37] Furthermore, ZIF frameworks show 

no rigid frameworks at room temperature. There are some recent reports for the 

neat ZIF-8 and the neat ZIF-90 frameworks that demonstrate an adsorption of 

bulky molecules such as benzene or xylenes [38-40], despite of their pore 

openings of 3.4 Å and 3.5 Å respectively, as found by Rietveld XRD analysis.[32, 

33] Hence, it seems to be possible that adsorbed molecules can open the pores 

(also called “gate”) under certain conditions. Furthermore, gas sorption studies on 

different ZIF powders show hysteresis that arises from threshold pressures 

inducing the “gate opening”.[41-48] 

 

1.2.5 Mass transfer in ZIFs  

 

Generally, a mass transfer through a membrane is possible if a driving force is 

applied. In our case, the mass transfer takes place due to a constant pressure 

difference ∆p between the feed side and the permeate side of the membrane.[49] 

The feed gas is the applied gas mixture that crosses the membrane. A part of the 

gas mixture cannot pass the membrane and hence form the retentate. The other 

gas molecules will permeate through the membrane and make up the permeate 

which is transported through the pipes by an inert sweep gas (see Fig. 4). 
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1.2.5.1 Sorption on ZIFs 

 

The sorption of a gas on or inside a ZIF is an equilibrium process during which 

the molecules interact with the surface by chemisorption or physisorption. 

Chemisorption means a covalent bonding between the adsorpt and the adsorbent 

with an adsorption enthalpy of about 200 to 400 kJ/mol. The chemisorption is 

usually exothermic and the adsorbed molecules often decompose during this 

process. Between the gaseous species and the ZIF surface, physisorption normally 

takes place. Compared to chemisorption physisorption is a much weaker sorption. 

The gaseous species are only bonded by Van der Waals interactions with an 

adsorption enthalpy of about 20 to 40 kJ/mol. This weak interaction often results 

in breaking the bonds between the adsorptive agent and the adsorpt which means 

that the gaseous species stay unchanged.[51] The energetic effect of the sorption 

process can be described by the following parameters, the adsorption enthalpy 

∆��	 and the adsorption entropy ∆��
 (see equation (1)). ∆��
 is normally 

negative since the adsorption process increases the order of the system. Thus, the 

adsorption enthalpy has to be more negative than �∆��
 (exothermic process) so 

that the reaction occurs spontaneously (∆��� < 0): 

∆��� = ∆��	 − �∆��
           (1) 

∆��	 can be measured calorimetrically and is determined by : 

��	�����[�]��� �
��
= − ∆� !"�#            (2) 

wherein 
$�[$] is the normalized partial pressure of the gas %, the temperature is 

denoted by �,	&' is the constant adsorpt concentration and ( represents the ideal 

gas constant.[2, 51] 

The sorption process is often illustrated by the coverage ratio ) as a function of 

the partial pressure *' at a constant temperature �. The coverage ratio is thereby 

defined as: 

θ = ,
,-./.             (3) 
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• The adsorbed molecules don’t have any interaction between each other 

Thus, the dynamic equilibrium of the gas molecules % and the binding sides 3 on 

the surface can be described by %456 + 	3489:;<=>6 ⇌ %3	489:;<=>6. In the 

reaction shown, the adsorption takes place with a velocity &�� and the desorption 

with a velocity	&�@. The variation of the coverage ratio with respect to time during 

the adsorption can now be described by 	&�� and the partial pressure	*', the 

number of all binding sites A and the ratio of the not covered binding sites 

41 − )6: 
�C
�D = &��*'A41 − )6           (4) 

The variation of the coverage ratio with respect to time by desorption accordingly 

is:  

�C
�D = 	&�@A)           (5) 

Using equation (4) and (5), the coverage ratio ) in the Langmuir model is given 

by: 

) = E� E F$�
GHE� E F$�

= I�$�GHI�$�           (6) 

This basic equation (6) can be modified to describe the coverage ratio of % in a 

multi-component isotherm of two gas species %	and J: 
)' = I�$�GHI�$�HIK$K           (7) 

Although the Langmuir isotherm fits very well to the experimental data, the 

surface area obtained does not describe the true inner surface areas of ZIFs, 

because the filling of the micropores does not necessarily lead to a large 

monolayer. [51] For a better fitting the multilayer model of Stephen Brunauer, 

Paul Emmett and Edward Teller (BET model) is often used. 

The BET isotherm characterizes the coverage ratio of a gas species % ()') as a 

function of the equilibrium pressure	*, the saturation pressure	*∗ of the species % 
above the adsorbate-multilayer and a constant c: 
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)' = M ��∗
�GN ��∗�∙PGN4GNM6∙ ��∗Q           (8) 

The proportionality constant c depends on the desorption enthalpy ∆�@	 and the 

evaporation enthalpy ∆R	 as well as on the ideal gas constant ( and the 

temperature �: 

= = >�∆ FST∆USVW �           (9) 

The BET model requires:  

• An energetically homogenous surface  

• The possibility of forming undefined numbers of adsorbate layers  

• No lateral interactions between the adsorbed molecules.  

Accordingly, the BET model is only able to indicate the values of the inner 

surface for microporous materials, but it is not able to quantify the real values.[2, 

51]  

  

1.2.5.1 Diffusion in through ZIFs 

 

The gas permeation through ZIF membranes is caused by a pressure difference 

∆*' applied across the membrane. During the steady-state the upper/feed and the 

bottom/permeate membrane sites thus show a concentration gradient             

∇=' = =',Z − =',[ (concentration of the upper site =',[ and the bottom site =',Z).  

The mass transfer through a ZIF membrane can be quantitatively described by 

Fick’s empirically found first law, which defines the diffusivity (\'): 
]' = −\' �M��^ = −\'∇='           (10) 

where ]' is the flux of a component % and ∇=' means the concentration gradient in 

the _ direction. If the concentration varies in all three directions, then Fick’s 

second law applies: 

�M��D = ∇4\'∇='6           (11) 

which when expanded is 
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�M��D = \' ��#M��`# + �#M��a# + �#M��^#�           (12) 

It should be noted that the diffusivity \' is not a constant, but can show a strong 

concentration dependence. Generally, Fick’s first law can also be used for 

multicomponent diffusion systems.[54] In that case, the flux ]' of a component % 
in a system with b − 1 other components is described by  

]' = −∑ \'d∇=d�NGdeG            (13) 

with the mixture diffusivity \'d which may significantly differ from the diffusivity 

\' if the components influence each other in a multicomponent system. In  Eq. 

(13) one component (component n) has to be a solvent. 

Fick’s first law implies that the driving force for the diffusion is the concentration 

gradient. This is, however, only a macroscopic observation. The actual driving 

force is the difference in the chemical potential f'. If the diffusion is considered as 

a flow driven by a chemical potential gradient in the _ direction 
�g��^ , a 

counteracting force can be defined – the frictional force with a friction 

coefficient	;. Thus, in the steady-state following equation holds:      

; ∙ 9' = − �g��^            (14) 

where 9' is the flow velocity of the species %. The flux is given by: 

 ]' = 9' ∙ ='            (15) 

To relate the chemical potential f' to the concentration =', the partial pressure *' 
must be considered, resulting in: 

f' = f'h + (�ib4*' [*]⁄ 6           (16) 

Using eq. (14), eq. (16) and the relation =' = �M��	��4M� [M]⁄ 6 the flux in the steady-state 

can be written as: 

]' = 9' ∙ =' = − G
k
"��	��4$� [$]⁄ 6

�^ ∙ �M��	��4M� [M]⁄ 6 = − "�
k
�	��4$� [$]⁄ 6
�	��4M� [M]⁄ 6 ∙ �M��^      (17) 

By comparison with eq. (10) the transport diffusivity \' can be expressed as: 

\' = "�
k
�	��4$� [$]⁄ 6
�	��4M� [M]⁄ 6            (18)  
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where 
�	��4$� [$]⁄ 6
�	��4M� [M]⁄ 6  represents the gradient of the equilibrium isotherm in 

logarithmic coordinates.[55, 56]  

The difference in the chemical potential as the driving force is also presumed in 

the Stefan-Maxwell formulation. This model has the advantage that the 

diffusiveties Đ'dhave values found from binary experiments and that the model 

does not require designating one species as solvent. For isothermal conditions the 

Stefan-Maxwell formulation can be simplified to:  

]' = −Đ'd �	��4$� [$]⁄ 6
�	��4M� [M]⁄ 6 ∙ �M��^            (19) 

with ]' as the flux of the component %, Đ'd as the Stefan-Maxwell diffusivity for 

both components % and J, �	��4$� [$]⁄ 6
�	��4M� [M]⁄ 6  as the equilibrium isotherm of the component 

% and 
�M��^  as the concentration gradient in the _ direction. Eq. (19) can also be used 

to describe the diffusion of a single component % in a porous adsorbent &. In this 

case, the Stefan-Maxwell diffusivity Đ'� means the diffusivity of the component %. 
Furthermore, in a microporous adsorbent there is no clear distinction between 

molecules adsorbed on the surface and those free in the gas phase. Therefore, only 

a total “intracrystalline” concentration = is considered. Assuming an ideal vapor 

phase, the transport equation then takes the form: 

] = −\ �M
�^ = −�\h �	��4$ [$]⁄ 6

�	��4M [M]⁄ 6 	� �M�^            (20) 

\h is defined as the corrected diffusivity and 
�	��4$ [$]⁄ 6
�	��4M [M]⁄ 6 = Γ is the thermodynamic 

factor which arises from the nonlinearity of the relationship between the partial 

pressure and the concentration.[55]  

 

1.2.6 Gas separation performance of ZIF membranes  

 

ZIF membranes were tested for many important industrial separation applications 

such as natural gas sweetening, carbon dioxide capture, and hydrogen 

purification. Until now only a few ZIFs could be synthesized as dense 

membranes, namely ZIF-7, ZIF-8, ZIF-9, ZIF-22, ZIF-69, ZIF-71, ZIF-78,      

ZIF-90, ZIF-95 and ZIF-100.[18, 36, 57-74] The advantage of ZIF membranes in 
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comparison to commonly used polymer membranes is a size and shape 

discrimination resulting from their narrow pore distributions. Additionally, ZIF 

membranes can also be modified to achieve enhanced solubility-based 

separations. Hydrogen, for example, is purified under conditions that require 

membrane operation under high temperatures, pressures, and aggressive gases. 

The purification involves separating hydrogen from a variety of mixtures, 

including H2/CO2, H2/CH4, and H2/N2. In the H2/CO2 separation, ZIF-7, ZIF-8, 

ZIF-22, ZIF-78, ZIF-90, and ZIF-95 membranes exceed the present Robeson plot. 

[58-78] The ZIF-8 performance in the H2/CH4 separation is median relative to 

other materials and does not reach the polymeric upper bound.[36, 38] 

In general, ZIF-8 appears uniquely suited for several potential gas separation 

applications that include CO2 removal from CH4 streams (acid gas removal) or N2 

(post-combustion CO2 capture) and separating N2 from O2. The expectations 

stems from the similarity between the crystallographic pore diameter of ZIF-8  

(3.4 Å) that falls between these pairs (critical diameter of O2: 3.5 Å, N2: 3.6 Å, 

CO2: 3.3 Å, and CH4: 3.8 Å). Unfortunately, ZIF-8 performance falls short of 

expectations since the material framework is quite flexible. Consequently, the 

trend of gas diffusivity in ZIFs is different from that observed for rigid zeolites 

that have a sharp decrease for gas molecules with critical diameters similar to the 

crystallographic pore size. ZIF apertures have been modeled as a temporal 

distribution of pore sizes, in which large pore openings are rare. Thus, it becomes 

increasingly difficult for large molecules to pass.[41-48, 75] 

 

1.3 Mixed Matrix Membranes (MMMs) 

 

1.3.1 The advantages of MMMs 

 

MMMs consist of an inorganic or MOF phase in the form of nano- or micro-

crystals (discrete phase) which are embedded in a polymeric matrix (continuous 

phase). The combination of two different materials with different fluxes and 

selectivities provides the possibility to fabricate more stable and highquality 

membranes.[76, 77] If, for example, porous additives like zeolites or MOFs are 

combined with low permeable, glassy polymers, a strong improvement of 
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permeability is expected, which is economically attractive for large scale 

separations. MMMs in general attracted attention as a promising means to 

improve the properties of polymer membranes. Polymeric membranes suffer from 

a trade-off relationship between the permeability and the selectivity, which is 

clearly illustrated in the so-called Robeson plots.[9] The separation abilities of the 

MMMs, however, can be far above these plots.[78] In addition, MMMs are often 

mechanically more stable than the pure inorganic or MOF membranes and easier 

to produce. Furthermore, it is possible to fabricate hollow fibre membranes out of 

MMMs, which is nearly impossible for the inorganic or MOF membranes.[79] In 

some cases the new materials offer enhanced physical, thermal and mechanical 

properties in the face of aggressive environments and could therefore be used to 

stabilize polymer membranes against variations in permeability and selectivity by 

temperature.[80,81] However, there are still some difficulties to overcome. One 

significant problem is the compatibility of the polymer and the additive to get a 

mechanically stable membrane with a homogenous particle dispersion. 

Agglomerates, however, represent unselective pathways for gas molecules.[22, 

23] Additionally, unlinked additives tend to get separated from the polymer 

solution during the drying process due to gravitation. This phenomenon allows 

only moderate particle volume fractions of around 30 vol-% and a highly viscid 

MMM solution for the membrane preparation. The drying process is also very 

crucial since fast drying leads to solvent entrapments in the polymer, whereas 

slow drying promotes the segregation of additives. 

 

1.3.2 MMM Classification 

 

1.3.2.1 MMMs with rubbery and glassy polymer 

 

MMMs can be synthesized using rubbery and glassy polymer matrices. But the 

choice of the polymer has far reaching implications for the separation 

performance of the resulting membranes. Different studies show a high 

correlation between the chemical structure of the polymer and the observed gas 

permeation parameters.[80-83] As to the rubbery polymers, most detailed studies 

were performed for siloxane with different side chains.[76, 84-86] It was shown 
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that when the size of the side groups increases, the chain becomes less flexible, 

the glass transition temperature, as a result, increases and the gas permeability 

decreases, while the selectivities sometimes increase. In this, rubbery polymers 

differ from glassy polymers, where the introduction of larger side groups often 

results in an strongly increased permeability.[82] An explanation for such a 

behavior can be given on the basis of the free volume theory.[87, 88] So far, only 

the effect of nonpolar side chains have been considered. The introduction of 

functional groups which are capable of dipole-dipole interactions or which can 

form hydrogen bonds can strongly influence the gas permeability due to 

increasing interchain interactions or interactions with some penetrants. Thus, an 

increase of the selectivity is possible.[89] Generally, rubbery polymers have a 

high gas  permeability and only a moderate gas separation selectivity, while 

glassy polymers often show great selectivities but a moderate or low gas 

permeability.[9] Beside the correlation between the structure of the polymer and 

the observed permeation, the polymer structure also influences the matrix-additive 

interaction.[23] For example, if the glass transition temperature of a solvent-

swollen polymer is higher than the MMM synthesis temperature, the evaporation 

of the solvent during the MMM synthesis process can lead to considerable tensile 

stresses in the glassy polymer matrix. These stresses can tend to void-forming 

between the polymer and the additive surface, but only if the interactions of the 

polymer and the additives are not too strong as, for example, between zeolites and 

glassy polymers.[90, 91] On the other hand, if the polymer is rubbery at the 

MMM synthesis temperature, it is still flexible and can adapt to the sieve surface 

even when all the solvent has left. The formation of defects is unlikely with this. 

Nevertheless, repulsive interactions between the polymer and the additive may 

also lead to poor MMMs.[92] 

 

1.3.2.2 MMMs with inorganic fillers 

 

The integration of zeolites into a polymeric membrane has attracted much 

attention since it is possible to combine the size and shape selectivity of zeolites 

with the mechanical stability of polymers. However, the interaction between 

polymer and zeolite is often poor, thus leading to void spaces between both 
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components. Another problem arises from the partial pore blockage of the zeolite 

pores. This phenomenon has, for example, been observed with 3A, 4A and 5A 

zeolites in polyethersulfone matrices, where the permeabilities of the gases 

decreased with an increase in additive amount. Only the 5A zeolite got constant 

permeability values.[76, 82] Because of these challenges, the zeolite MMMs have 

never attracted industrial usage. 

 

1.3.2.3 MMMs with inorganic-organic fillers 

 

Because of their hybrid nature with organic parts, MOFs are of increasing interest 

as porous fillers in MMMs. It is possible to functionalize the ligands of the MOFs 

accessing a better interaction between the polymeric phase and the disperse MOF 

phase. Thus, the formation of micro-gaps between an inorganic-organic MOF and 

an organic polymer phase can be avoided. The first incorporation of a MOF into a 

polymer for the fabrication of gas selective MMMs has been that of copper(II) 

biphenyl-dicarboxylate-triethylenediamine into poly-(3-acetoxyethylthiophene). 

[93] 

 

1.3.3 Limitations of the MMM synthesis 

 

1.3.3.1 Particle size, sedimentation, and agglomeration 

 

The effect of different particle sizes on the separation ability of MMMs has been 

investigated for silicalite in PDMS.[94] It was shown that the permeability of 

MMMs decreases with decreasing particle size of silicalite. This behavior may be 

due to the rigidified polymer layers around the zeolite. The importance of using 

small filler particles to achieve a good n-C4H10/CH4 separation in PMP has been 

demonstrated in [95]. Significant increase in permeability has been observed only 

for particles smaller than 50 nm. Obviously small particles show a tendency to 

agglomerate, which leads to defective MMMs.[96] 

One of the most influential factors during the MMM preparation is the particle 

agglomeration due to small particle sizes, sedimentation or migration to the 

surface. Due to different physical properties or different densities between the 
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filler and the polymer, precipitation of the additive may occur, resulting in the 

formation of inhomogeneous membranes. Furthermore, agglomeration of the filler 

particles will result in empty, non-selective voids in the MMM. One solution to 

eliminate the problem of sedimentation was to increase the viscosity of the MMM 

solution in order to slow down the process.[97, 98] Another solution is to form 

and dry the membranes rapidly [99] or to match the polarity of the polymer matrix 

and the filler’s surface groups as well as a covalent binding between both 

phases.[100] As a rule agglomeration gets serious, when extending the filler 

loadings up to 30 vol-% of the MMM and when the fillers and polymers do not 

show any attractive interaction between each other. In contrast to sedimentation, 

particles agglomerates move to the membrane surface when the membranes were 

formed at high temperatures. This phenomenon is the result of convection cells 

which are formed during the film formation due to different surface tensions.[81, 

101, 102] 

 

1.3.3.2 Interface morphologies 

 

The permeabilities of MMMs strongly depend on the nanoscale morphology of 

the interface between the polymer and the filler. Fig. 6 shows a schematic diagram 

of various nanoscale interface structures.  
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In general, pore blockage of porous fillers always decreases the gas permeability 

of the MMMs, while its effect on the selectivity of MMMs is different.[104, 106] 

Pore blockage considerably decreases the selectivity if the original pore size of the 

filler is comparable to the molecular diameter of the gas molecule. On the other 

hand, pore blockage may increase the selectivity if the original pore size of the 

filler is larger than the molecular diameter of the studied gases. Since pore 

blockage disturbs sometimes the separation function of the inorganic filler, 

investigations are necessary to suppress this effect. Li et al., for example, 

modified the zeolite surface by using a silane coupling agent (APDEMS =         

(3-amino-propyl)-diethoxymethylsilane), which induced a distance of about 5-9 Å 

between the polymer chains and the zeolite, thus reducing the partial pore 

blockage.[106, 107, 108]  

  

1.3.4 Mass transport and permeability 

 

In the area of membrane-based gas separation, non-porous polymeric membranes 

separate according to the solution-diffusion model.[107-109] Herein, the gas 

permeation is controlled by the diffusivity coefficient (\) and the solubility 

coefficient (
). The diffusivity is the mobility of individual molecules passing the 

polymer chains. The solubility (
), in contrast, is the ratio of the dissolved 

penetrant concentration in the upstream face of the polymer =',^eh to the upstream 

penetrant partial pressure	*':  
=',^eh = 
' ∙ *'           (21) 

The permeability (n) represents the ability of molecules to pass through a 

membrane: 

n = \ ∙ 
            (22) 

The ability of a membrane to separate two molecules % and J can be described by 

the ratio of their permeabilities, called the membrane selectivity	o'd [49]: 

o'd = p�pK            (23) 

Accordingly, the difference in the permeabilities of the two gas species results not 

only from the diffusivity difference, but also from the differences in the 
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interactions with the polymer. An upper limit for the performance of polymeric 

membranes in gas separation was predicted by Robeson in the early 1990s.[10] 

Improvements have been achieved by using MMMs. To predict the MMM 

performance various models are available, including the Maxwell model, the 

Higuchi model, Landuer model, and the effective medium theory. Several studies 

have compared the predictions of MMMs with these studies and found that the 

predictions were very similar.[22, 98, 110, 111] Nevertheless, the Maxwell model 

is the most appropriate model to estimate the predicted MMM behavior, because 

of the simplicity of the expression and its well-fitting predictions. The Maxwell 

model first analyzed the steady-state dielectric properties in a conducting dilute 

suspension of identical spheres.[112] When this analysis is extended to find the 

composite permeability of a composite containing a dispersion of spheres, the 

following expression results: 

n@kk = nM qp HrpsNrt 4psNp 6p HrpsHt 4psNp 6 u           (24) 

where n@kk is the effective composite permeability, v� the volume fraction of the 

dispersed phase,	nM the permeability of the continuous polymer matrix and n� the 

permeability of the dispersed filler material. By defining a “reduced permeation 

polarizability” w as [86]: 

w = p Npsp Hrps            (25 ) 

the effective composite permeability can also be written as  

n@kk = nM qGHrxt GNxt u.           (26) 

For the “reduced permeation polarizability”, three different cases exist: For highly 

permeable fillers (n� ≫ nM) w becomes 1, for equal permeability in both phases	w 

becomes 0 and for non-permeable filler n� = 0 w becomes -0.5.[113] The 

Maxwell model is intended to be applicable for low filler loadings (v� ≤ 0.2) 

since it assumes that the diffusion mass transport around filler particles is not 

affected by the presence of nearby particles. The Bruggeman model is an 

improved version of the Maxwell model for higher loads and correlates the 

effective permeability (n@kk) with the volume fraction (v�) of the dispersed 

phase: 
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}~�F���s �N�� �s�
GN�� �s�

� ∙ �pF��ps �
N�� = 41 − v�6           (27) 

The above Maxwell and Bruggeman models give similar results up to v� ≈ 0.2. 

[114] For non-ideal MMMs with interface voids, polymer chain rigidification and 

pore blockage, the Maxwell model can be modified to a model for a three-phase 

system. The permeability n���� of this three-phase membrane was obtained by 

applying the Maxwell model twice. At first the permeability of the combined 

interface void/rigidified polymer phase and the molecular sieve can be described 

with a revised version of the Maxwell model, in which the molecular sieve is the 

dispersed phase and the interface void/rigidified polymer is the continuous phase: 

n@kk = n� qp Hrp�Nrt�4p�Np 6p Hrp�Ht�4p�Np 6 u           (28) 

Herein, n@kk is the permeability of the combined sieve and interface (void or 

rigidified polymer phase), n� is the permeability of the dispersed sieve phase, n� 
is the permeability of the interphase and v� is the volume fraction of the 

molecular sieve in the combined phase (molecular sieve plus interphase). Finally, 

the permeability of the three-phase membrane (polymer plus interphase plus 

molecular sieve) can be described by the permeability of the continuous polymer 

phase nM and the permeability of the dispersed and combined inter- and molecular 

sieve phase n@kk. Thus, n���� is given by: 

n���� = nM �pF��HrpsNr4t Ht�6�psNpF���pF��HrpsH4t Ht�6�psNpF��� �           (29) 

with v� as volume fraction of the sieve phase and v� as volume fraction of the 

interface in the three-phase membrane.[22, 23] 
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2 Pervaporative separation of benzene containing 

mixtures on ZIF-8 membranes 

2.1 Summary 

The separation of alkanes and aromatics is a popular topic, which gets 

increasingly important since a recent regulation of the US Environmental 

Protection Agency called most refiners on to reduce the benzene content in 

gasoline to less than 0.62 vol-% till 2013. Unfortunately, it is difficult to meet the 

demands only with pre-fraction of the naphtha stream. The pervaporation or vapor 

permeation of the n-alkane/aromatic mixture by nanoporous membranes would be 

a less-energy intensive solution for this problem. 

In chapter 2.2 ZIF-8 was evaluated as a selective membrane for the pervaporative 

separation of n-hexane/benzene and n-hexane/mesitylene. Although the size of the 

pore window of ZIF-8 is 3.4 Å from crystallographic data, it was found no sharp 

separation between the n-alkane and the bulky benzene molecule, whereas 

mesitylene was not adsorbed. This experimental finding can be explained by a 

marked framework flexibility of ZIF-8.  

Additional 2H NMR experiments were carried out by our cooperation partners 

from the Boreskov Institute of Catalysis in Novosibirsk, who characterized and 

quantified the molecular dynamics of benzene adsorbed in ZIF-8 (chapter 2.3). It 

could be observed that the benzene molecule undergoes fast rotations within the  

ZIF-8 cage and relatively slow isotropic reorientations by collisions with the 

walls. Furthermore, benzene undergoes also translational jump diffusions between 

neighboring cages. The benzene mobility could be estimated by the self-diffusion 

coefficient of �����	
� ≈ 4 ∙ 10������ at � = 323	�	. The macroscopic 

pervaporation measurements of our group, however, showed a diffusivity of 

3.5	 ∙ 10������ at � = 298	� and a fractional occupancy of Θ = 0.99. This 

experimental finding could demonstrate the limits of macroscopic measurements. 
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2.2 Pervaporation studies of n-hexane, benzene, mesitylene and their 

mixtures on zeolitic imidazolate framework-8 membranes 

Lisa Diestel, Helge Bux, Dennis Wachsmuth and Jürgen Caro 

 

Microporous and Mesoporous Materials 2012, 192, 288-293. 
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2.3 Rotational and translational motion of benzene in ZIF-8 studied by     

2
H NMR: Estimation of microscopic self-diffusivity and its comparison 

with macroscopic measurements 

Daniil I. Kolokolov, Lisa Diestel, Jürgen Caro, Dieter Freude, and 

Alexander G. Stepanov 

 

The Journal of Physical Chemistry C 2014, 118, 12873-12879. 

 

Reprinted (adapted) with permission from the Journal of Physical 

Chemistry C, Copyright (2014) American Chemical Society. 
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3 Mixed matrix membranes as alternative for MOF and 

polymeric membranes 

3.1 Summary 

Despite the superior performance of the crystalline MOF membranes with their 

well-defined pore systems, low flux polymeric membranes rule the commercial 

scene because of their reproducibility, processing and mechanical strength. 

Furthermore, the scale-up of neat MOF membranes is still a major bottleneck. 

However, the existing polymeric membrane materials are not optimal since 

improvements of the permeability are always at the expense of selectivity, and 

vice versa. During the last few decades, various polymers have been modified 

with inorganic or MOF fillers forming MMMs to improve the performance of the 

polymeric membranes. MOFs are very promising nanoporous filler materials 

because these materials have high surface areas, high pore volumes and a 

chemical nature that can be fine-tuned by a special linker selection or post-

synthetic modification. Moreover, MOFs exhibit an intrinsic hybrid nature which 

leads to enhanced interactions between the polymer and the filler materials.  

In chapter 3.2 rubbery polymer MMMs made of polymethylphenylsiloxane 

(PMPS) and ZIF-8 nanoparticles are studied for the separation of different 

practice-relevant gas mixtures in comparison with the neat polymer membrane 

and the neat ZIF-8 membrane. The neat ZIF-8 membrane showed the best size 

selective separation, whereas the neat PMPS membrane had higher separation 

factors for the CO2 separations from other gases. It was anticipated that the 

selectivity of the 9 vol-% ZIF-8-PMPS MMM results from an interplay of PMPS 

and ZIF-8. But actually, the permeability of the MMM was higher than that of the 

PMPS membrane and sometimes also higher than the permeability of the neat 

ZIF-8 membrane while the selectivity was comparable to that of the neat PMPS. 

Thus, these results indicate an increase in free volume for the PMPS polymer after 

introducing ZIF-8 nanoparticles. 

In chapter 3.3 glassy polymer MMMs consisting of Matrimid®5218 and ZIF-8 or 

ZIF-90 nanoparticles, respectively, are studied for the H2/CO2 separation and 

compared with the neat polymer and the neat ZIF membranes. It was found that 
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the embedding of the nanoparticles modifies the separation performance of the 

neat Matrimid membrane due to well fittings between the glassy polymer and the 

nanoparticles. Thus, the separation behavior of these MMMs should be able to be 

described by the Maxwell-Stefan model. However, the MMMs showed slightly 

higher selectivities and lower permeabilities than expected. Even better separation 

results could be obtained by binding ZIF-90 particles covalently with 

ethyleneamine to the Matrimid matrix. 

To verify and explain these surprising results additional separation studies were 

carried out. In chapter 3.4 the separation of the binary mixture H2/CH4 on neat 

ZIF-8 and ZIF-90, neat glassy Matrimid and 10 to 30 vol-% ZIF-8 and ZIF-90 

nanoparticle/Matrimid MMMs are compared. Again surprisingly high separation 

performances could be found for the MMMs with particle loadings ≤ 20 vol-%. 

Higher loadings lead to agglomerations and segregations, which result in MMMs 

with a lower selectivity. After analyzing the polymer structure around the ZIF 

nanoparticles, which showed no structural changes, it was concluded that the 

polymer matrix seems to prevent the framework flexibility of ZIF-8 and ZIF-90. 

To verify this assumption, neat ZIF-8 and ZIF-90 membranes were coated with a 

Matrimid polymer layer (dual-layer membrane). Indeed, the polymer coating 

caused a suppression of the linker distortion of the ZIF layer in contact with the 

polymer which results in enhanced H2/CH4 selectivity. 
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3.2 Comparative permeation studies on three supported membranes: Pure 

ZIF-8, pure polymethylphenylsiloxane, and mixed matrix membranes 

Lisa Diestel, Xinlei Liu, Yanshuo Li, Weishen Yang and Jürgen Caro 

 

Microporous and Mesoporous Materials 2014, 189, 210-215. 

 

Reprinted (adapted) with permission from Microporous and 

Mesoporous Materials. Copyright (2014) Elsevier. 
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3.3 Matrimid-based mixed matrix membranes: Interpretation and 

Correlation of experimental findings for zeolitic imidazolate 

frameworks as fillers in H2/CO2 separation 

Lisa Diestel, Nanyi Wang, Alexander Schulz, Frank Steinbach and Jürgen 

Caro 

 

Industrial and Engineering Chemistry Research 2015, 54, 1103-1112. 

 

Reprinted (adapted) with permission from  Industrial and Engineering 

Chemistry Research. Copyright (2015) American Chemical Society. 
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3.4 MOF based MMMs with enhanced selectivity due to hindered linker 

distortion 

Lisa Diestel, Nanyi Wang, Bärbel Schwiedland, Frank Steinbach, Ulrich 

Giese, and Jürgen Caro 

 

Journal of Membrane Science 2015, 492, 181-186. 

 

Reprinted (adapted) with permission from Journal of Membrane 

Science. Copyright (2015) Elsevier. 
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4 Conclusions 

This thesis gives insight into the development of relatively cost-intensive and 

rarely reproducible supported Metal-Organic Framework (MOF) membranes 

towards cheaper and more easily reproducible Mixed Matrix Membranes 

(MMMs). 

First, the stable and for the gas permeation already successfully applied (chapter 

1.2.6) ZIF-8 membrane was tested in the pervaporation of alkanes and aromatics 

(chapter 2.2). The gas adsorption studies showed that bulky molecules like n-

hexane (critical diameter 4.3 Å) can be adsorbed by ZIF-8 powder (pore size     

3.4 Å). In complete accordance with this finding, n-hexane permeated through the 

ZIF-8 membrane during the pervaporation experiment of the practice-relevant n-

hexane/benzene mixture. N-hexane and benzene were separated with a binary 

mixture separation factor of 4.8,6 =bnznCα at room temperature. This finding 

means that also benzene (critical diameter 5.8 Å) can be adsorbed by ZIF-8 and 

passes the ZIF-8 membrane with a low but non-zero permeation rate (chapter 2.2).  

To study the molecular motion of benzene in ZIF-8, additional 2H-NMR studies 

were carried out. It was concluded that benzene enters the ZIF-8 pore system and 

does not form any surface layer on the outer surface of the ZIF-8 crystals (chapter 

2.3). Further information on benzene dynamics in ZIF-8 was obtained from the 

analysis of the spin-lattice and the spin-spin relaxation times as a function of the 

temperature. It was shown that within the ZIF-8 cage, the benzene molecule 

quickly rotates and performs relatively slow isotropic reorientations when 

colliding with the ZIF-8 wall. Benzene undergoes a translational jump diffusion 

between the neighboring cages and has a self-diffusion coefficient of 4·10-16 m2 s-1 

at 50 °C. This self-diffusivity of benzene in ZIF-8 from NMR was found to be in 

agreement with diffusion coefficients derived from pervaporation studies. 

Since the handling and scale-up of synthesized ZIF membranes in the geometry of 

thin films on porous ceramic supports caused problems, mechanically more stable, 

easier and cheaper to produce membranes with excellent separation characteristics 

were looked for. MMMs attracted attention as a possibility to combine the 

excellent separation performance of MOFs - or in this case ZIFs - with the 

flexibility and good handling of polymers. Thus, established polymer processing 
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technologies can be used to produce MMMs in the form of hollow fibers or spiral 

wound modules.   

MMMs can be made of rubbery and glassy polymers which have different 

influences on the separation ability of the resulting membrane. For zeolite MMMs 

it is known that rubbery polymers often form the better matrix as they are still 

flexible at room temperature and can fit the zeolite crystals (chapter 1.3.2.1). 

Thus, a 9 vol-% MMM out of ZIF-8 nanoparticles and rubbery polymethyl-

phenylsiloxane (PMPS) was examined. The resulting MMM displayed gas 

selectivities identical with those of the PMPS membrane but with higher gas 

fluxes which can be explained by a higher free volume of the PMPS due to the 

incorporation of ZIF nanoparticles (chapter 3.2).  

Completely different results were obtained by mixing ZIF nanoparticles with the 

glassy Matrimid®5218 (Matrimid) polymer (chapter 3.3 and 3.4). The evaporation 

of the solvent in ambient air during the MMM synthesis can lead to huge tensile 

stresses in the glassy polymer matrix which can cause void-forming in the 

interface between the polymer and the additive. Hence, we dried our MMMs 

under solvent atmosphere. In chapter 3.3, 25 vol-% ZIF-90/Matrimid and 25 vol-

% ZIF-8/Matrimid MMMs have been prepared and tested for the H2/CO2 mixed 

gas separation in comparison with the neat ZIF and the neat Matrimid membranes. 

It was found that the ZIF-8/Matrimid MMM had only a slightly improved 

hydrogen permeability in comparison to the neat Matrimid membrane while the 

mixed gas separation factor remains constant at 5.3
22 / =COHα . The ZIF-

90/Matrimid MMM had a slightly improved mixed gas separation of 

0.5
22 / =COHα  and the hydrogen permeability increased slightly from 28 Barrer to 

30 Barrer. Plotting the H2/CO2 selectivity as a function of the H2 permeability in 

the so-called Robeson plot, an improvement compared with the neat Matrimid 

polymer membrane towards the Robson line was stated. A decisive improvement 

of the H2/CO2 separation factor was achieved with the covalently bonded ZIF-90-

based MMM. In this membrane, ethylenediamine linkers have been used to 

improve the interaction between the matrimid polymer and the ZIF-90 particles. 

Thus, the separation factor was further improved to 5.9
22 / =COHα , while the 

hydrogen permeability decreased. The selectivity improvement was also caused 
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by the attractive interaction between CO2 and the amine groups. To describe the 

gas permeability in MMMs with homogenously distributed, spherical and porous 

additives, the Maxwell model can be applied. It is noticeable that the predictions 

of permeabilities based on the Maxwell model always showed higher results for 

the 25 vol-% ZIF-8 and ZIF-90/Matrimid MMMs than the measured 

permeabilities.  

This phenomenon could also be observed for the H2/CH4 separation by ZIF-90 

and ZIF-8/Matrimid MMMs (chapter 3.4). In this case we also obtained lower 

permeabilities than expected. Additionally, higher separation factors for the        

10 and 20 vol-% MMMs were found compared to the neat Matrimid and ZIF 

membranes. The findings can be explained by either a rigidified polymer layer 

around the ZIF nanoparticles or by a changed filler separation due to a hindered 

ZIF framework flexibility. Thus, additional STEM, SAED and DSC 

measurements have been done. All these measurements showed no changes of the 

polymer structure around the ZIF particles. Thus, we concluded, that the enhanced 

selectivity results from a hindered linker distortion on the ZIF surface. This effect 

was reproducible by using another glassy polymer: 2,2´-bis(3,4-carboxyphenyl) 

hexafluoropropane dianhydride-diamino-mesitylene (6-FDA-DAM). 

This thesis could show that ZIF membranes have excellent separation 

performances in comparison to the Robeson plot in spite of the markedly 

framework flexibility which even allows benzene to become adsorbed. However, 

the handling and scale-up of ZIF membranes caused problems. Thus, MMMs 

attracted attention as a possibility to combine the excellent separation 

performance of ZIFs with the flexibility and good handling of polymers. Indeed, 

enhanced gas separation results or gas permeabilities, respectively, could be found 

for the MMMs in comparison to those of the neat polymer membranes. For the 

rubbery PMPS membrane enhanced gas permeabilities were observed after 

introducing ZIF-8 nanoparticles, while the separation results remained constant. 

For the glassy Matrimid membranes, instead, unexpected high separations were 

found after introducing ZIF-8 and ZIF-90 nanoparticles, while the gas 

permeabilities often decreased. The finding was explained by a hindered 

framework flexibility caused by the surrounding polymer layer.        
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