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Abstract

This thesis is concerned with the modeling and analysis of a two�phase thin �lm �ow with in-

soluble surfactant. We consider two immiscible, viscous, incompressible Newtonian �uids on

top of each other on a solid substrate with a layer of insoluble surfactant. By cross�sectional

averaging and applying lubrication approximation, as in [27, 29], we obtain simpli�ed evolu-

tion equations for the two �lm heights and the surfactant concentration. Depending on the

considered driving force, the system of evolution equations is strongly coupled, degenerate

and either of second (gravity driven) or of fourth order (capillary driven). Based on recent

achievements regarding the local well�posedness and asymptotic stability of steady states

for thin �lm equations with surfactant [19] as well as for two�phase thin �lm �ows [23, 24]

we prove analog results for the gravity and capillary driven two�phase thin �lm �ow with

insoluble surfactant, respectively. This is done by methods of semigroup theory and the

principal of linearized stability. Due to the degeneracy in the evolution equations for the

�lm heights, which may occur when one of the �lm heights decreases to zero, it is in general

not clear whether one can prove global well�posedness results. This leads to the study of the

existence of non�negative global weak solutions, which is investigated for the fourth�order

system describing the capillary driven two�phase thin �lm �ow with insoluble surfactant.

The idea is to construct via Galerkin approximation global weak solutions to a family of

regularized systems, which tend in the limit to a global non�negative weak solution of the

original system. The proof relays strongly on the existence of an energy functional and com-

bines results from [20, 22, 26]. In [22] the existence of non�negative global weak solutions

for a thin��lm approximation of a two�phase Stokes problem is studied, whereas [20, 26]

investigate the existence of non�negative global weak solutions for a thin �lm equation with

insoluble surfactant driven by capillary forces.

Keywords: Thin �lm equations, surfactant, degenerate parabolic equations
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Zusammenfassung

Die vorliegende Arbeit befasst sich mit der Modellierung und dem Studium von Zwei�Phasen

Dünn�lmgleichungen mit unlöslichen Tensiden. Wir betrachten zwei übereinander gelagerte

dünne Filme sich nicht mischender, viskoser, inkompressibler Newtonscher Flüssigkeiten auf

einem soliden, undurchlässigen Boden, wobei sich auf der Ober�äche der oberen Flüssigkeit

eine Schicht von Tensiden be�ndet. Unter der Annahme, dass der Zwei�Phasen Film in

eine horizontale Richtung uniform ist, wenden wir, wie in [27, 29], die Methode der Lu-

brikationsapproximation an, um vereinfachte Gleichungen zu erhalten, die die Evolution der

beiden Filmhöhen und der Tensidkonzentration beschreiben. Das System von Evolutions-

gleichungen ist stark gekoppelt, degeneriert und, je nachdem, welche physikalische Kraft als

führend betrachtet wird, von vierter oder von zweiter Ordnung. Betrachtet man Gravita-

tion als dominierend, so ist das System von zweiter Ordnung, wohingegen das System unter

Berücksichtigung von kapillaren Kräften Terme vierter Ordnung aufweist. Basierend auf

jüngsten Resultaten bezüglich der Wohlgestelltheit und asymptotischen Stabilität von Equi-

libria für Dünn�lmgleichungen mit Tensiden [19] und für Zwei�Phasen Dünn�lmgleichungen

[23, 24], zeigen wir ähnliche Ergebnisse für die Zwei�Phasen Dünn�lmgleichungen mit un-

löslichen Tensiden, wobei wir sowohl das System mit kapillaren Kräften als auch das mit

Gravitation als dominierende Kraft betrachten. Für das Studium der Wohlgestelltheit und

der asymptotischen Stabilität von Equilibria verwenden wir Methoden aus der Halbgrup-

pentheorie sowie das Prinzip der linearisierten Stabilität. Aufgrund der Degeneriertheit der

Evolutionsgleichungen für die Filmhöhen, ist im Allgemeinen die globale Wohlgestelltheit

nicht zu erwarten. Dies führt zum Studium von (nicht negativen) schwachen Lösungen,

welche wir für das System vierter untersuchen. Die Idee ist, Galerkin Approximationen

für eine Familie von regularisierten Systemen zu konstruieren, die global existieren und im

Grenzwert gegen eine nicht negative globale schwache Lösung des ursprünglichen Systems
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konvergieren. Der Beweis basiert essenziell auf der Existenz eines Energiefunktionals. Wir

kombinieren Resultate aus der Arbeit [22], in dem die Existenz von nicht negativen globalen

schwachen Lösungen für eine Dünn�lmapproximation des Zwei�Phasen Stokes Problems un-

tersucht wird, und [20, 26], in denen die Existenz von nicht negativen globalen Lösungen für

eine Dünn�lmgleichung mit unlöslichen Tensiden bewiesen wird.

Schlagworte: Dünn�lmgleichungen, Tenside, degenerierte parabolische Gleichungen
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Introduction

The study of thin �lm equations constitutes a rich and complex area of research with a long

list of contributions by physicists, engineers and mathematicians. Of particular fascination

for many scientists is the role of surface tension and the in�uence of surface active agents

(short surfactants) on the dynamics of thin liquid �lms since this �nds applications in various

industrial and biomedical �elds. As for instants in surfactant replacement therapy, which

is used to treat the immature lungs of premature infants, coating �ow technology or �lm

drainage in emulsions and foams. A report on the diverse areas of applications of surfactant

can be found in [34] and the references therein.

Surfactants act on the surface of a �uid �lm by lowering the surface tension and induce a

twofold dynamic. On the one hand, the resulting surface gradients in�uence the dynamics

of the �uid �lm. On the other hand, the surfactants spread along the interface (from low

surface tension to high surface tension). The latter e�ect is named after the Italian physicist

Carlo Giuseppe Matteo Marangoni and called Marangoni e�ect. This phenomenon has

already been observed, but not explained in the 17th century. Two centuries later, in 1871,

Marangoni was the �rst to publish explaining results for the spreading of a substrate due to

surface tension gradients, followed by other physicists like van der Mensbrugghe and Lüdtge.

For a survey on the historical investigations of the Marangoni e�ect we refer to [4, 36] and

references therein.

There is a large amount of literature regarding the dynamics of thin �lms with surfactant in

di�erent settings or con�gurations, such as soluble/insoluble surfactant, presences/negligence

of driving forces as intermolecular (van der Waals), gravitational and capillary forces, contact

angle of the thin liquid to the (impermeable) bottom, known under non�/partial or complete

wetting, to name a few. Pioneering results on the dynamics of a thin �uid with insoluble

surfactant are [27, 29, 30], where the approach via lubrication approximation for thin liquid
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Introduction

�lms is introduced and �rst numerical result are presented under consideration of di�erent

driving forces. Applying lubrication approximation, the parameters are scaled in accordance

to the undisturbed �lm height and the governing equations for the motion of the �uids and

the surfactant spreading are considered in the limit where the �lm height tends to zero. The

resulting equations do not represent the complex mechanisms of the problem completely,

but still they preserve many of the main features of its physics. A survey on the theory of

modeling thin �lm �ows can be found for instance in [39, 40].

Mathematically the analysis of a thin �lm �ow with insoluble surfactant corresponds to a

free boundary problem for the Navier�Stokes equation together with a transport equation on

the upper free surface. In virtue of lubrication approximation, the resulting equations for the

evolution of the �lm height is nonlinear, degenerate, of fourth order (in general) and strongly

coupled to a second�order, nonlinear transport equation for the surfactant concentration.

Depending on the considered driving forces, the evolution equation for the �lm height is of

fourth order (if capillary forces are taken into account) or of second order (if capillary forces

are neglected).

Although, during the last decades there has been various modeling and numerical treatment

of several aspects of the surfactant induced movement of thin �lms (see e.g. [6, 9, 10, 14, 27,

29, 30, 35]), only recently analytical investigations have started. An overview regarding the

analytical and numerical achievements for thin �lms with surface tension until the end of the

20th century can be found in [37]. The main feature all models share, derived under di�erent

assumptions on the driving forces, is the degeneracy, which occurs in the equations when

the variable representing the �lm thickness decreases to zero. The mathematical analysis is

especially concerned with questions regarding the well�posedness of a model, that is, whether

a solution exists (at least locally in time), if it is unique (depending on the initial data) and if

the solution is continuously dependent on the initial data. Due to the possible occurrence of

degeneracies, it is in general not clear whether one can prove the existence of global solutions

in a classical sense. This leads to the study of so�called weak solutions.

Results regarding non�negative global weak solutions of equations modeling the dynamics of

a thin liquid �lm have been studied among others by [5, 7, 8]. Regarding the one�phase prob-

lem with insoluble surfactant, several authors contributed to the analysis of well�posedness

and existence of global weak solutions for a coupled system of evolution equations describ-
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Introduction

ing the dynamics of the interface and the surfactant spreading under certain assumptions on

the driving forces. Local existence for a thin �lm with insoluble surfactant driven only by

Marangoni forces (surface tension gradients) has been studied in [42]. In absence of capillary

and intermolecular forces but including gravitational forces, the via lubrication approxima-

tion derived system in [19] is of second order and local well�posedness as well as asymptotic

stability of steady states are proven. In particular, the surfactants in [19] are considered to

be soluble, which leads to an additional evolution equation for the surfactant distribution in

the bulk. In [21] the existence of global weak solutions is investigated for the system derived

in [19] in the case of insoluble surfactant. Taking instead of gravitational forces capillary

e�ects into account, the equation describing the evolution of the thin �lm is of fourth order

and strongly coupled to a second�order transport equation for the surfactant concentration.

By using the method of Galerkin approximation and compact embeddings, the existence of

global non�negative weak solutions have been shown in [20, 26, 47]. In [15] additionally

gravitational forces are included and an upper bound for the non�negative weak solution for

the surfactant concentration is stated (Γ ≤ 1).

Being interested in the dynamics of a two�phase thin �lm �ow with insoluble surfactant, we

resort not only to results for thin �lm equations with surfactant, but also to the analytical

studies of two�phase thin �lms. As for instance in [24] local well�posedeness and asymptotic

stability of a thin��lm approximation of the two�phase Stokes problem are investigated by

methods of semigroup theory and the principal of linearized stability. A similar approach

has also been successfully applied in [23] to prove local existence and stability results for a

strongly coupled fourth�order parabolic degenerate system modeling the motion of two thin

�uid �lms in the presence of gravity and capillary forces. The existence of non�negative weak

solutions for a degenerate parabolic system approximating the two�phase stokes problem is

investigated in [22] by the method of Galerkin approximation and compact embeddings.

It turns out (see e.g. [15, 19, 20, 21, 22, 23, 24, 26]) that in the mathematical analysis

of thin �lms the existence of an energy functional becomes a crucial part studying the

stability of steady states and in particular in proving the existence of global weak solutions.

In the context of steady states the energy functional determines the set of steady states

in [19, 23, 24]. Studying weak solutions of degenerate systems describing the evolution

of thin �lms, commonly regularized systems are considered (cf. e.g. [15, 20, 21, 22, 26])
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Introduction

and the existence of global weak solutions of a family of regularized systems is shown.

The energy functional then provides necessary a priori estimates, which allow to extract

weakly convergent subsequences tending in the limit to a global weak solution of the original

problem.

In this thesis a mathematical model for the evolution of a two�phase �ow with insoluble

surfactant is presented. The two�phase �ow consists of two immiscible, incompressible New-

tonian and viscous thin liquid �lms on top of each other on a solid substrate. We assume

that there is no contact angle between the two�phase �ow and the bottom, which places

the setting in the context of complete wetting. The interface of the upper �uid is endowed

with a layer of insoluble surfactant. By cross�sectional averaging and applying lubrication

approximation, the resulting system of evolution equations consists of two equations describ-

ing the evolution of the two �lm heights and one equation for the surfactant concentration

on a one�dimensional domain. A numerical treatment of the approximation of a two�phase

thin �lm with insoluble surfactant can be found in [6], where the presence of surfactant is

assumed to be on both interfaces (liquid�liquid and liquid�gas).

In Chapter 1 the two�phase thin �lm �ow with insoluble surfactant is introduced and lubri-

cation approximation is applied to the governing equations for the motion of viscous �uid

�lms, which is the full Navier�Stokes equation, and an advection�transport equation for

the surfactant spreading together with suitable boundary conditions (no�slip and kinematic

boundary condition together with balance equations on the free surfaces). We consider both,

gravitational and capillary forces, but neglect intermolecular forces (van der Waaals forces)

since they are highly unlikely to be of the same order as gravitational forces (cf. [29]), so

that considering both simultaneously appears to be physically not relevant. Equipping the

system of evolution equations with Neumann�boundary conditions and initial data, we study

in Chapter 2 and 3 the existence and asymptotic stability of the system when either capillary

forces (Chapter 2) or gravitational forces (Chapter 3) are neglected. In addition to the local

well�posedness result in Chapter 3, we also investigate the existence of non�negative global

weak solutions.

Using the functional analytical tool of semigroups we prove in Chapter 2 the local well�

posedness for the gravity driven two�phase �ow with insoluble surfactant. Similar as in

4



Introduction

[19, 24] we show that there exists an energy functional for the system of evolution equations.

In particular, the energy functional determines (uniquely, in virtue of given initial data) the

set of steady states to be of the form when the two thin �lms are �at and the surfactant is

uniquely disturbed. By means of the principal of linearized stability we show according to

to [19, 24] the asymptotic stability of the steady states. The proof relays essential due to

the fact that the surfactant spreading is not only due to Marangoni forces but also due to

a strictly positive di�usion coe�cient in the transport equation for the surfactant spreading

(D > 0). This is in accordance to the phenomenon explained in [27], that due to di�usion

along the surface, the surfactant spreading not only accelerates but also decreases the �lm

disturbance.

Chapter 3 is devoted to the study of the system derived by lubrication approximation in

Chapter 1, when taking capillary forces instead of gravity into account. Since the evolution

equations are strongly coupled and of fourth order for the two �lm heights and additionally

strongly coupled to the second�order transport equation for the surfactant concentration,

the analysis of local well�posedness is more involved than in the case of the second�order

parabolic system considered in Chapter 2. Even though the existence of global weak solutions

for the one�phase thin �lm equation with insoluble surfactant driven by capillary forces is

shown in [20, 26], to our knowledge local well�posedness results of this system have not

yet been investigated. Orienting on [23], in Section 3.1 local well�posedness is shown for

the capillary driven two�phase thin �lm equation with insoluble surfactant by methods of

semigroup theory. Under an additional assumption on the surface tension another local

well�posedness result is shown in Appendix ??, generalizing the result in Section 3.1, if the

assumption on the surface tension is satis�ed. Proving the existence of an energy functional,

the result regarding asymptotic stability is based on [19, 23]. The system considered in

[20, 26] can be recovered in Section 3.1 by setting the initial data of the lower �uid to zero.

Hence, the well�posedness serves also for the one�phase thin �lm with insoluble surfactant

driven by capillary forces. Section 3.3 is concerned with the existence of non�negative global

weak solutions to the capillary driven two�phase �ow with insoluble surfactant. The strategy

here is to assemble the proof combining results from [20, 22, 26, 47]. We regularize the system

and show by Galerkin approximation and an energy functional that the family of regularized

systems possesses global weak solutions, which are so far not claimed to be non�negative.

5



Introduction

The energy functional provides a priori estimates which imply compact embeddings and

allow to extract weakly convergent subsequences, which tend in the limit to non�negative

functions being solutions of the original system.

General Notations and Conventions

In this section we introduce some notation, which will be frequently used in the sequel.

Linear Operators. Suppose that (E, ‖ · ‖) and (F, ‖ · ‖) are Banach spaces. The space

of all linear and bounded operators from E into F is denoted by L(E,F ) and the norm

‖ · ‖L(E,F ) is given by

‖A‖L(E,F ) := sup
‖x‖E≤1

‖Ax‖F .

For linear and bounded operators from E into itself we write L(E) instead of L(E,E).

A linear operator A ∈ L(E,F ) is called compact if the image of the unit ball is relatively

compact in F . We say that a (not necessary bounded) linear operator A from a vector

subspace dom(A) of E, called domain of A, into E is closed if for every sequence (xn)n∈N in

dom(A) that converges to x in E with (Axn)n∈N converges to y in E one has x ∈ dom(A)

and Ax = y. The resolvent set of an operator A ∈ L(E) is de�ned by

%(A) := {λ ∈ C | (A− λ)−1 belongs to L(E)}

and the spectrum of A by

spec(A) := C \ %(A).

Further, we say A is densely de�ned exactly when dom(A) = E.

Let E be a Banach space over a �eld F. The set E ′ := L(E,F) of all linear, continuous

functions from E into F is called the dual space of E. We denote by

〈·, ·〉E

the dual pairing between E ′ and E.

Embeddings. Let E and F be Banach spaces with F ⊂ E. If the inclusion map ι : F →

E, x 7→ x is continuous then F is called continuously embedded in E and we write

F ↪→ E.
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The subspace F is said to be compactly embedded in E if F ↪→ E and the inclusion map

ι : F → E is compact, we write

F ↪−↪→ E.

Function Spaces. Let Ω ⊂ Rn be an open subset and f : Ω→ Rm, m ∈ N, a measurable

function. Then, for 1 ≤ p ≤ ∞ we denote by Lp(Ω) := {f : Ω→ Rm measurable and ‖f‖p <

∞} the space of p�Lebesgue integrable functions, where the norm ‖ · ‖p is given by

‖f‖p :=


(∫

Ω

|f(x)|p dx
) 1

p

, 1 ≤ p <∞,

ess–supx∈Ω |f(x)|, p =∞.

Note that Lp(Ω) is an equivalence class with f ∼ g, if f = g almost everywhere. The space

L2(Ω) is a Hilbert space and we denote the scalar product in L2(Ω) by (· | ·)2. The Sobolev

space Hk(Ω) for k ∈ N is de�ned to consists of functions f ∈ L2(Ω), whose �rst k weak

derivatives again belong to L2(Ω) and the norm of a function f ∈ Hk(Ω) is given by

‖f‖Hk :=

(
k∑
l=0

‖∂lxf‖2
2

) 1
2

.

The Bessel potential spaces Hs(Ω), s ≥ 0, occur as complex interpolation spaces between

two Sobolev spaces

Hs(Ω) = [Hk(Ω), H l(Ω)]θ,

where θ ∈ [0, 1] and s := (1− θ)k + θl. Moreover, we denote by C1−(Ω) the space of locally

Lipschitz continuous functions on Ω.

General Conventions. If (xn)n∈N is a sequence, we understand by taking a subsequence

(not relabeled), that we consider without denotation in the sequel (xnk)k∈N. Similar, if we

consider two sequences (xn)n∈N and (yn)n∈N and extract a subsequence (not relabeled) of

(xn)n∈N, we consider in the sequel without denotation (xnk)k∈N and (ynk)k∈N. The variables

t, T ≥ 0 and x ∈ R will always denote the time and space, respectively. Further, if Ω :=

(0, L), we set ΩT := (0, L)× (0, T ). We denote by c > 0 various constants, which may di�er

from occurrence to occurrence. The dependence of c on the free variables is denoted by

c(·, ·, . . .). Sometimes we write c = c(·, ·, . . .) in order to emphasize the dependence. Else, c

denotes a positive constant, independent of the free variables. Unless otherwise stated, the

underlying vector �eld is R.

7





1. Physical Model for the Two�Phase Thin Film with Insoluble Surfactant

We consider two viscous, incompressible Newtonian and immiscible thin �lms on top of

each other on a horizontal impermeable bottom at z = 0 occupying the regions Ω1, Ω2,

respectively, with a layer of insoluble surfactant on the surface of the upper �uid. The contact

angle between the �uids and the solid ground is assumed to be zero, which corresponds to

the frame of complete wetting. The surfactant is acting on the interface of the upper �uid

by lowering the surface tension. We assume the surface tension on the interface separating

the �uids to be independent of external in�uences and the material outside of the two�phase

�ow to have no e�ect on the �uids. In particular, the material outside is assumed to be static

and with zero pressure. Let L be the length of the two�phase �lm and take the undisturbed

�lm height H to be given as small compared to the �lm length, that is H
L

= ε with ε � 1.

By cross�sectional averaging we assume the �lm to be uniform in one horizontal level and

let x and z denote the horizontal and vertical direction, respectively. Further, we denote the

two �lm heights by f and g, so that the free surfaces at time t ≥ 0 and position x ∈ (0, L)

are located at z = h1(t, x) := f(t, x) and z = h2(t, x) := (f + g)(t, x). The concentration of

surfactant at time t ≥ 0 and position x ∈ (0, L) is given by Γ(t, x).

z = h2(t, x)

z = h1(t, x)

x

z

g(t, x)

f(t, x)

Γ(t, x)

As common in the analysis of thin �lms (see e.g. [27, 29] for pioneering works), we apply

a lubrication approximation to the governing equations for the dynamics of the �uids and

9



the surfactant concentration together with suitable boundary conditions, in order obtain

simpli�ed evolution equations for the two �lm heights f, g and the concentration of surfactant

Γ on the �uid�gas interface. Set i = 1, 2, then the velocity �eld of the �uid contained in Ωi

will be denoted by vi = (ui, wi), where each particle of the �uid contained in Ωi is moving

with the velocity ui(t, x, z) in horizontal and wi(t, x, z) in vertical direction. The velocity

and the pressure, given by pi, are functions of position and time. The gravitational constant

is given by γ = (0, G). Moreover, assuming the �uid to be incompressible and Newtonian,

the density and viscosity of the �uids, denoted by ρi and µi are material constants.

Governing equations. In �uid dynamics, the governing equations for the motion of a

viscous, incompressible and Newtonian �uid occupying Ωi, i = 1, 2, is given by the Navier�

Stokes equation

ρi(∂tvi + (vi · ∇)vi) = µi∆vi −∇pi − ρiγ. (1.1)

Further, conservation of mass for incompressible �uids implies the continuity equation

∂xui + ∂zwi = 0 (1.2)

in Ωi, i = 1, 2. The dynamics of thin liquid �lms is strongly in�uenced by surface tension (cf.

e.g. [32]). Since surface tension a�ects only the free surface, it does not appear in the Navier�

Stokes equation, but contributes to the motion of a �uid through boundary conditions. The

surfactant spreading on the free surface z = h2 is governed by the advection�transport

equation

∂tΓ + ∂x(u2Γ−D∂xΓ) = 0, (1.3)

where D > 0 is the surface di�usion coe�cient. Note that additionally to the di�usion,

the spreading of surfactant is also induced by surface tension gradients, which occur due to

the present of surfactant itself (Marangoni e�ect). This e�ect will enter into the tangential

balance equation (1.13).

Boundary conditions. Besides initial data, we need to implement boundary conditions

at the impermeable bottom and on the free surfaces in order to well�pose the two�phase

thin �lm �ow with insoluble surfactant.

Since the bottom at z = 0 is impermeable, there is no mass transfer across this boundary and

the perpendicular velocity at the bottom is zero. There is a long historical and philosophical

10



1. Physical Model for the Two�Phase Thin Film with Insoluble Surfactant

discussion about whether to assume in �uid dynamics a no�slip or a slip condition on an

impermeable, solid bottom (see e.g [16, 38] and references therein). Still, in the case of a

viscous �uid, the no�slip boundary condition is commonly accepted and employed in the

theoretical study of �uid �ows. An example, where by lubrication approximation a thin

�lm model with insoluble surfactant has been derived using a slip condition on the solid

substrate, can be found in [47]. In accordance to e.g. [17, 19, 20, 26, 27], we impose the

no�slip boundary condition, so that

v1 = (u1, w1) = 0 on z = 0. (1.4)

We suppose the velocity �eld to be continuous across the immiscible �uid��uid interface

z = f , which means that the velocities at the interface coincide in tangential direction (in

analogy to the no�slip boundary condition at the bottom)

(v1 − v2) · t1 = 0 on z = h1 (1.5)

and since there is no di�usion at the interface, the velocities also coincide in normal direction

as a consequence of conservation of mass. Hence

(v1 − v2) · n1 = 0 on z = h1. (1.6)

Here, ni := 1√
1+|∂xhi|2

(−∂xhi, 1) and ti := 1√
1+|∂xhi|2

(1, ∂xhi) denote the unit normal and

tangential vector at hi, i = 1, 2 respectively. Note that (1.5), (1.6) already imply that

v1 = v2 on z = h1. (1.7)

Indeed, owing to (1.5), (1.6) we obtain that

u1 − u2 = −∂xh1(w1 − w2), (1.8)

w1 − w2 = ∂xh1(u1 − u2). (1.9)

At the points where h1 is �at (thus ∂xh1=0) the velocity �elds are equal at the interface,

that is v1 = v2. In the case that ∂xh1 6= 0, we multiply (1.9) by −∂xh1 and deduce that

u1 − u2 = −∂xh1(w1 − w2) = −(∂xh1)2(u1 − u2). This is only possible if u1 = u2, which in

turn implies that w1 = w2, in virtue of ∂xh1 6= 0. Hence, v1 = v2 on z = h1.
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Due to interfacial tension, the stress balance equation at an interface between two immiscible

materials occupying the regions Ω− and Ω+ has to be satis�ed (cf. e.g. [11])

[Σ− − Σ+]n = σκn+∇sσ, (1.10)

where Σ−, Σ+ denote the stress tensor of the �uid in Ω−, Ω+, respectively, σ the surface

tension coe�cient, κ the mean curvature, ∇sσ := ∇σ − n(n · ∇σ) the gradient of σ in

direction of the surface and n the outer normal pointing into Ω+. The �rst term on the right

hand side of (1.10) represents capillary forces and the second term Marangoni forces. Since

we assume the material outside of the two�phase �ow have zero pressure, the stress balance

equation takes the form [Σ(v1, p1)− Σ(v2, p2)]n1 = σ1κ1n1 +∇sσ1 on z = h1,

Σ(v2, p2)n2 = σ2κ2n2 +∇sσ2 on z = h2,
(1.11)

where Σ(vi, pi) = 1
2
µi(∇vi + ∇vTi ) − pi denotes the stress tensor, σi the surface tension

coe�cient and ∇sσi the gradient of σi in direction of the surface hi, i = 1, 2. Multiplying

(1.11) by ni, yields the normal stress balance equation
([Σ(v1, p1)− Σ(v2, p2)]n1) · n1 = σ1κ1, z = h1,

(Σ(v2, p2)n2) · n2 = σ2κ2, z = h2,
(1.12)

where the mean curvature κi of the interface hi is given by κi = ∂2xhi

(1+|∂xhi|2)
3
2
, i = 1, 2. The

surface tension coe�cient σ1 on z = h1 is constant, whereas the surface tension coe�cient of

the free surface of the upper �uid depends non�increasingly on the surfactant concentration

σ2 = σ2(Γ). Hence∇sσ1·t1 = 0 and∇sσ2·t2 = ∇σ2·t2−n2(n2·∇σ2)·t2 = ∇σ2·t2 = ∂xσ2(Γ)√
1+|∂2xh2|

.

Thus, multiplying (1.11) by the tangential vector ti, leads to the tangential stress balance

equation 
([Σ(v1, p1)− Σ(v2, p2)]n1) · t1 = 0, z = h1,

(Σ(v2, p2)n2) · t2 =
∂xσ2(Γ)√
1 + |∂xh2|2

, z = h2.
(1.13)

Observe that the normal stress balance is controlled by the capillary forces, whereas the

Marangoni forces, induced by the surfactant, enter the tangential stress balance equation.

We assume that the particles on the interfaces z = hi, i = 1, 2 stay there when time

evolves. Consider the particle trajectory (x(t), z(t)). Then x′(t) = u(t, x(t), z(t)) and

12



1. Physical Model for the Two�Phase Thin Film with Insoluble Surfactant

z′(t) = w(t, x(t), z(t)). Since the particle is supposed to stay on z = hi, we deduce that

z(t) = h(t, x(t)). (1.14)

By di�erentiating (1.14), we obtain the so�called kinematic boundary condition

∂thi + ui∂xhi = wi on z = hi. (1.15)

We summarize that the motion of the two�phase thin �lm �ow with insoluble surfactant is

described by the Navier�Stokes equation (1.1) together with the continuity equation (1.2),

the surfactant spreading equation (1.3) and the boundary conditions (1.4), (1.7), (1.12),

(1.13) and (1.15).

1.1. Lubrication Approximation

The method of lubrication approximation [27, 29, 30] enables us to simplify the system of

equations by rescaling the parameters and considering the system in the limit, where the

quotient H
L

= ε tends to zero. The equations we obtain do not represent the complex mech-

anisms of the original problem completely, but still preserve the main features. Introducing

the dimensionless variables

x̄ =
x

L
, z̄ =

z

H
, t̄ = εkτ0t

and

u(t, x, z) = αū(t̄, x̄, z̄), w(t, x, z) = βw̄(t̄, x̄, z̄), p(t, x, z) = γp̄(t̄, x̄, z̄)

with dimensions [α] = [β] = m
s
, [τ0] = 1

s
, [γ] = kg

ms2
, we rescale �rst the Navier�Stokes

equation (1.1). In order to simplify the notation, we suppress the subscript i for now:
ρ(∂tu+ u∂xu+ w∂zu) = µ(∂2

xu+ ∂2
zu)− ∂xp,

ρ(∂tw + u∂xw + w∂zw) = µ(∂2
xw + ∂2

zw)− ∂zp− ρG.

Substituting the variables from above leads to
ρ

(
αεkτ0∂t̄ū+

α2

L
ū∂x̄ū+

αβ

H
w̄∂z̄ū

)
= µ

( α
L2
∂2
x̄u+

α

H2
∂2
z̄ ū
)
− γ

L
∂x̄p̄,

ρ

(
βεkτ0∂t̄w̄ +

αβ

L
ū∂x̄w̄ +

β2

H
w̄∂z̄w̄

)
= µ

(
β

L2
∂2
x̄w̄ +

β

H2
∂2
z̄ w̄

)
− γ

H
∂z̄p̄− ρG.

(1.16)
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1.1. Lubrication Approximation

For equal order of dimensions we claim that εkτ0 = α
L

= β
H
, which means

α = εkτ0L and β = εk+1τ0L. (1.17)

Observe that (1.17) implies β
α

= ε. Hence, physically interpreted, the velocity in horizontal

direction is high compared to the velocity in vertical direction. Plugging (1.17) into (1.16),

we obtain that
ρε2kτ 2

0L (∂t̄ū+ ū∂x̄ū+ w̄∂z̄ū) = µ
εk−2τ0

L

(
ε2∂2

x̄u+ ∂2
z̄ ū
)
− γ

L
∂x̄p̄,

ρε2k+1τ 2
0L (∂t̄w̄ + ū∂x̄w̄ + w̄∂z̄w̄) = µ

εk−1τ0

L

(
ε2∂2

x̄w̄ + ∂2
z̄ w̄
)
− γ

H
∂z̄p̄− ρG,

which is equivalent to
ε2k ρτ0L

2

µ
(∂t̄ū+ ū∂x̄ū+ w̄∂z̄ū) = εk−2 (ε2∂2

x̄u+ ∂2
z̄ ū)− γ

µτ0

∂x̄p̄,

ε2k+2ρτ0L
2

µ
(∂t̄w̄ + ū∂x̄w̄ + w̄∂z̄w̄) = εk−1 (ε2∂2

x̄w̄ + ∂2
z̄ w̄)− γ

εµτ0

∂z̄p̄−
ρL

µτ0

G.

(1.18)

In order to keep the pressure and gravitation term in the second equation of (1.18) and again

the pressure term in the �rst equation of (1.18) set

γ = εµτ0 and k = 3.

Thus, dividing the �rst equation of (1.18) by ε yields
ε2 Re (∂t̄ū+ ū∂x̄ū+ w̄∂z̄ū) = (ε2∂2

x̄u+ ∂2
z̄ ū)− ∂x̄p̄,

ε5 Re (∂t̄w̄ + ū∂x̄w̄ + w̄∂z̄w̄) = ε2 (ε2∂2
x̄w̄ + ∂2

z̄ w̄)− ∂z̄p̄−
ρL

µτ0

G,
(1.19)

where Re := ρτ0αL
µ

is the so�called Reynold's number, which is the ratio of inertial forces

to viscous forces and characterizes whether the �ow is laminar (small Reynold's number)

or turbulent (high Reynold's number). Hence, the �lm being thin enough, we can assume

the �ow to be laminar. Letting ε tend to zero in (1.19) and using again the subscript i, we

obtain 
−∂x̄p̄i + ∂2

z̄ ūi = 0,

−∂z̄p̄i −
ρiL

µiτ0

G = 0,
in Ωi, i = 1, 2. (1.20)

The lubrication approximation does not a�ect neither the continuity equation (1.2) nor the

no�slip boundary conditions (1.4), (1.7) or the kinematic boundary condition (1.14). Indeed,

rescaling (1.2) we obtain that

α

L
∂x̄ūi +

β

H
∂z̄w̄i = 0 in Ωi, i = 1, 2.

14



1. Physical Model for the Two�Phase Thin Film with Insoluble Surfactant

Using (1.17) and dividing by ε3 leads to

∂x̄ūi + ∂z̄w̄i = 0, in Ωi, i = 1, 2. (1.21)

Note that in the rescaled framework the bottom and accordingly the free surfaces are located

at z̄ = 0 and h̄i = hi
H

for i = 1, 2, respectively. Rescaling the no�slip and the kinematic

boundary conditions yields  v̄1 = 0 on z̄ = 0,

v̄1 = v̄2 on z̄ = h̄1

(1.22)

and

∂t̄h̄i + ūi∂x̄h̄i = w̄i on z̄ = h̄i, i = 1, 2. (1.23)

Rescaling the normal and tangential boundary conditions, given in (1.12) and (1.13), we have

to determine how to scale the surface tension and the surfactant concentration. In order

to understand the choice of scaling for the surfactant concentration, we illustrate roughly

a characteristic of surfactant. Surfactant molecules are amphiphilic and can be imagined

to have the form of a head (hydrophilic) with a tale (hydrophobic). Getting into contact

with the free surface, the surfactant places its hydrophilic parts into the structure of the

molecules on the �uid surface and thus reduces the surface tension. Since the surfactant is

assumed to be insoluble it does not di�use into the bulk but stays on the surface pointing

its tale (hydrophobic part) outside of the two�phase �ow. If the surfactant concentration

reaches a certain critical value Γm, the so�called critical micelle concentration, the surfactant

molecules aggregate such that the heads of the molecules surround the tales (like a spherical,

called micelle). A further increase of surfactant contributes only to the micelles and does

not have any signi�cant additional decreasing e�ect on the surface tension. We refer to [43]

for a detailed chemical background on surfactant.

In accordance to [29], we set Γ̄ = Γ
Γm

and

σ2 = µ2τ0L
(
σc2 + ε2σ̄

)
where σc2 is the rescaled surface tension coe�cient of the interface when Γ̄ = Γm and σ̄ the

part of the surface tension coe�cient, which depends on the the surfactant concentration.

Recall that σ1 = µ1τLσ
c
1 is constant, since the surface tension coe�cient of the interface

between the �uids is independent of Γ, for the insoluble surfactant is acting on the surface
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1.1. Lubrication Approximation

of the upper �uid only. The equation for the normal stress boundary condition on z = h̄1 is

given by (1.12)µ1

 2∂xu1 −
p1

µ1

∂xw1 + ∂zu1

∂xw1 + ∂zu1 2∂xw1 −
p1

µ1

− µ2

 2∂xu2 −
p2

µ2

∂xw2 + ∂zu2

∂xw2 + ∂zu2 2∂xw2 −
p2

µ2



−∂xh1

1

 ·
−∂xh1

1


=

σ1∂
2
xh1√

1 + |∂xh1|2
.

This is equivalent to

σ1∂
2
xh1√

1 + |∂xh1|2
= 2|∂xh1|2(µ1∂xu1 − µ2∂xu2)− (1 + |∂xh1|2)(p1 − p2)− 2∂xh1[µ1(∂xw1 + ∂zu1)

− µ2(∂xw2 + ∂zu2)] + 2(µ1∂xw1 − µ2∂xw2).

By rescaling the variables, we obtain that

σc1τ0µ1∂
2
x̄h̄1ε√

1 + |∂x̄h̄1|2ε2
= 2|∂x̄h̄1|2ε5τ0(µ1∂x̄ū1 − µ2∂x̄ū2)− (1 + |∂x̄h̄1|2ε2)ετ0(p̄1µ1 − p̄2µ2)

− 2∂x̄h̄1ε
3τ0[µ1(∂x̄w̄1ε

2 + ∂z̄ū1)− µ2ε
2(∂x̄w̄2ε

2 + ∂z̄ū2)] + 2ε4τ0(µ1∂x̄w̄1 − µ2∂x̄w̄2).

Dividing the above equation by ε and then letting ε tend to zero, the normal boundary

condition at z = h̄1 reads

σc1∂
2
x̄h̄1 = p̄1 −

µ2

µ1

p̄2. (1.24)

At the interface z = h̄2, the normal boundary condition (1.12) yields

µ2

 2∂xu2 −
p2

µ2

∂xw2 + ∂zu2

∂xw2 + ∂zu2 2∂xw2 −
p2

µ2


−∂xh2

1

 ·
−∂xh2

1

 =
σ2∂

2
xh2√

1 + |∂xh2|2
,

thus

σ2∂
2
xh2√

1 + |∂xh2|2
= µ2

[
2∂xu2|∂xh2|2 −

(
1 + |∂xh2|2

) p2

µ2

− 2 (∂xw2 + ∂zu2) ∂xh2 + 2∂xw2

]
Substituting the rescaled variables implies

(σc2 + ε2σ̄(Γ)))τ0µ2∂
2
x̄h̄2ε√

1 + |∂x̄h̄2|2ε2
=µ2τ0

[
2ε5∂x̄ū2|∂x̄h̄2|2 −

(
1 + |∂x̄h̄2|2ε2

)
ε
p̄2

µ2

]
− 2ε3µ2τ0

(
ε2∂x̄w̄2 + ∂z̄ū2

)
∂x̄h̄2 + 2ε4∂x̄w̄2.
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1. Physical Model for the Two�Phase Thin Film with Insoluble Surfactant

Dividing the above equation by ε and then letting ε tend to zero, the normal boundary

condition on z = h̄2 is given by

σc2∂
2
x̄h̄2 = p̄2. (1.25)

Considering the tangential boundary condition (1.13), we need to proceed the approximation

again on both interfaces separately. Starting with the bottom layer on z = h̄1, we haveµ1

 2∂xu1 −
p1

µ1

∂xw1 + ∂zu1

∂xw1 + ∂zu1 2∂xw1 −
p1

µ1

− µ2

 2∂xu2 −
p2

µ2

∂xw2 + ∂zu2

∂xw2 + ∂zu2 2∂xw2 −
p2

µ2



−∂xh1

1

 ·
 1

∂xh1


= 0.

This is equivalent to

2µ1∂xh1(∂zw1 − ∂xu1)− 2µ2∂xh1(∂zw2 − ∂xu2) + µ1(1− |∂xh1|2)(∂xw1 + ∂zu1)

− µ2(1− |∂xh1|2)(∂xw2 + ∂zu2) = 0.

Using the rescaled parameters yields

2µ1∂x̄h̄1ε
4(ε∂z̄w̄1 − ∂x̄ū1)− 2µ2∂x̄h̄1ε

4(ε∂z̄w̄2 − ∂x̄ū2) + µ1(1− |∂x̄h̄1|2ε2)ε2(ε2∂x̄w̄1 + ∂z̄ū1)

− µ2(1− |∂x̄h̄1|2ε2)ε2(ε2∂x̄w̄2 + ∂z̄ū2) = 0.

Dividing the above equation by ε2 and then letting ε tend to zero we obtain the tangential

boundary condition at z = h̄1

µ1∂z̄ū1 − µ2∂z̄ū2 = 0. (1.26)

On z = h̄2, the tangential boundary condition (1.13) reads

µ2

 2∂xu2 −
p2

µ2

∂xw2 + ∂zu2

∂xw2 + ∂zu2 2∂xw2 −
p2

µ2


−∂xh2

1

 ·
 1

∂xh2

 =
∂xσ(Γ)√

1 + |∂xh2|2
,

thus

2µ2∂xh2(∂zw2 − ∂xu2) + µ2(1− |∂xh2|2)(∂xw2 + ∂zu2) = ∂xσ(Γ)
√

1 + |∂xh2|2.

Using the dimensionless variables, we get

2∂x̄h̄2ε
4(ε∂z̄w̄2 − ∂x̄ū2) + (1− |∂x̄h̄2|2ε2)ε2(ε2∂x̄w̄2 + ∂z̄ū2) = ε2∂x̄σ̄(Γ)

√
1 + |∂x̄h̄2|2ε2.
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1.1. Lubrication Approximation

Dividing by ε2 and letting then ε tend to zero implies

∂z̄ū2 = ∂x̄σ̄(Γ) on z̄ = h̄2. (1.27)

The remaining equation to consider is the equation for the surfactant spreading (1.3)

∂tΓ + ∂x(u2Γ−D∂xΓ) = 0.

We rescale the di�usion coe�cient D > 0 via D = dD̄, with d = α = Lε3τ0. Using the

scaled variables above, yields again

∂t̄Γ̄ + ∂x̄(ū2Γ̄− D̄∂x̄Γ̄) = 0 on z̄ = h̄2. (1.28)

Gathering (1.20)�(1.28), we obtain the following simpli�ed and dimensionless equations for

the motion of the two�phase thin �lm with insoluble surfactant

Navier�Stokes


∂xpi + ∂2

zui = 0

∂zpi −Gi = 0
in Ωi (1.29)

Incompressibility ∂xui + ∂zwi = 0 in Ωi (1.30)

Conservation of mass/no�slip


w1 = u1 = 0

w1 = w2, u1 = u2

z = 0

z = h1

(1.31)

Kinematic boundary condition ∂thi + ui∂xhi = wi z = hi (1.32)

Normal boundary condition


−p1 + µ2

µ1
p2 = σc1∂

2
xh1

−p2 = σc2∂
2
xh2

z = h1

z = h2

(1.33)

Tangential boundary condition


µ1∂zu1 = µ2∂zu2

∂zu2 = ∂xσ2

z = h1

z = h2

(1.34)

Surfactant spreading ∂tΓ + ∂x(u2Γ−D∂xΓ) = 0 z = h2 (1.35)

where

Gi :=
ρiL

µiτ0

G, σci :=
1

τ0L
σ∗i , i = 1, 2 (1.36)

are a modi�ed gravitational constant depending on the density and viscosity of the �uid and

a modi�ed constant surface tension coe�cient, respectively. In addition, we suppressed the

bars in order to simplify notation.
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1. Physical Model for the Two�Phase Thin Film with Insoluble Surfactant

1.2. Evolution Equations

Similar as in [19], we use (1.29)�(1.35) in order to derive evolution equations for the two �lm

heights f , g and the concentration of surfactant Γ. Set

µ :=
µ2

µ1

, (1.37)

the relative viscosity between the two �uids.

Evolution equation f = h1. Integrating (1.29) with respect to z and using (1.33) we

obtain equations for the pressure in the �uids contained in Ωi, i = 1, 2,

p1(t, x, z) = G1(f(t, x)− z) = µp2(t, x, f)− σc1∂2
xf(t, x), (1.38)

p2(t, x, z) = G2(f(t, x) + g(t, x)− z) = σc2∂
2
x(f + g)(t, x). (1.39)

Plugging equation (1.39) into (1.38), the pressure within the lower �uid is given by

p1(t, x, z) = G1(f(t, x)− z) = µG2g(t, x)− µσc2∂2
x(f + g)(t, x)− σc1∂2

xf(t, x).

Di�erentiating with respect to x and using (1.29) implies

−∂2
zu1(t, x, z) = G1∂xf(t, x) + µG2∂xg(t, x)− µσc2∂3

x(f + g)(t, x)− σc1∂3
xf(t, x),

hence, by (1.34),

∂zu1(t, x, z) =−
(
G1∂xf(t, x) + µG2∂xg(t, x)− µσc2∂3

x(f + g)(t, x)− σc1∂3
xf(t, x)

)
(f(t, x)− z)

+ µ∂zu2(t, x, f).

Integrating with respect to z yields, in view of the no�slip boundary condition (1.31),

u1(t, x, z) =−
(
G1∂xf(t, x) + µG2∂xg(t, x)− µσc2∂3

x(f + g)(t, x)− σc1∂3
xf(t, x)

)
×
(
f(t, x)z − 1

2
z2

)
+ µ∂zu2(t, x, f)z.

(1.40)

Note that ∫ f(t,x)

0

∂xu1(t, x, z) dz = −w1(t, x, z) = −∂tf(t, x)− u1(t, x, f)∂xf(t, x),
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by (1.30)�(1.32). Thus

∂tf(t, x) + ∂x

(∫ f(t,x)

0

u1(t, x, z) dz

)
= 0,

which is equivalent to

∂tf(t, x)− ∂x
∫ f(t,x)

0

{(
G1∂xf(t, x) + µG2∂xg(t, x)− µσc2∂3

x(f + g)(t, x)− σc1∂3
xf(t, x)

)
×
(
f(t, x)z − 1

2
z2

)
− µ∂zu2(t, x, f)z

}
dz = 0.

(1.41)

In order to obtain an evolution equation for f , which depends only on g,Γ and f itself we

need to determine an equation for u2. Recalling (1.39) and using (1.29), (1.34), we get

∂zu2(t, x, z) = −
(
G2∂x(f + g)(t, x)− σc2∂3

x(f + g)(t, x)
)

(f + g − z)(t, x) + ∂xσ2(Γ(t, x)).

(1.42)

Hence, (1.41) and (1.42) imply that

∂tf − ∂x
[(
G1
f 3

3
+G2µ

f 2g

2

)
∂xf +G2µ

(
f 3

3
+
f 2g

2

)
∂xg − µ

f 2

2
∂xσ(Γ)

−
(

(σc1 + σc2µ)
f 3

3
+ σc2µ

f 2g

2

)
∂3
xf − σc2µ

(
f 3

3
+
f 2g

2

)
∂3
xg

]
= 0,

(1.43)

where f , g and Γ depend on (t, x) ∈ (0,∞)× (0, L).

Evolution equation g = h2 − h1. Owing to (1.31), which states that u1 = u2 on z = h1,

and (1.40), (1.42), we obtain that

u2(t, x, z) =−
(
G2∂x(f + g)(t, x)− σc2∂3

x(f + g)(t, x)
)[

(f + g)(t, x)z − 1

2
z2 − 1

2
f 2(t, x)

− fg(t, x)
]

+ ∂xσ2(Γ(t, x))[z − f(t, x)]

−
(
G1∂xf(t, x) +G2µ∂xg(t, x)− µσc2∂3

x(f + g)(t, x)− σc1∂3
xf(t, x)

)f 2(t, x)

2

− µ
(
G2∂x(f + g)(t, x)− σc2∂3

x(f + g)(t, x)
)

(fg)(t, x) + µ∂xσ2(Γ(t, x))f(t, x).

(1.44)

Hence, in virtue of (1.31), (1.32), the evolution equation for g is determined by

∂tg(t, x) + ∂x

(∫ (f+g)(t,x)

f(t,x)

u2(t, x, z) dz

)
= 0
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1. Physical Model for the Two�Phase Thin Film with Insoluble Surfactant

and it follows from (1.44) that

∂tg − ∂x
[(
G2
g3

3
+G1

f 2g

2
+G2µfg

2

)
∂xf +

(
G2
g3

3
+G2µ

(
f 2g

2
+ fg2

))
∂xg

−
(
µfg +

g2

2

)
∂xσ(Γ)−

(
σc2
g3

3
+ (σc1 + σc2µ)

f 2g

2
+ σc2µfg

2

)
∂3
xf

−
(
σc2
g3

3
+ σc2µ

(
f 2g

2
+ fg2

))
∂3
xg

]
= 0,

(1.45)

where f , g and Γ depend on (t, x) ∈ (0,∞)× (0, L).

Evolution equation for Γ. The equation for surfactant spreading on the layer z = h2 is

given by the advection�transport equation (1.35)

∂tΓ + ∂x(u2Γ−D∂xΓ) = 0.

In view of (1.44) we obtain the following equation for the evolution of Γ:

∂tΓ− ∂x
[(
G2
g2

2
+G1

f 2

2
+G2µfg

)
Γ∂xf +

(
G2
g2

2
+G2µ

(
f 2

2
+ fg

))
Γ∂xg

− (µf + g) Γ∂xσ(Γ) +D∂xΓ−
(
σc2
g2

2
+ (σc1 + σc2µ)

f 2

2
+ σc2µfg

)
Γ∂3

xf

−
(
σc2
g2

2
+ σc2µ

(
f 2

2
+ fg

))
Γ∂3

xg

]
= 0,

(1.46)

where f , g and Γ depend on (t, x) ∈ (0,∞)× (0, L).

System of evolution equations. Recalling (1.43), (1.45), (1.46), the evolution of the �lm

heights of the two�phase �ow and the surfactant spreading is given by a strongly coupled,
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1.2. Evolution Equations

degenerate system of equations of fourth order:

∂tf − ∂x
[(

G1
f 3

3
+G2µ

f 2g

2

)
∂xf +G2µ

(
f 3

3
+
f 2g

2

)
∂xg − µ

f 2

2
∂xσ(Γ)

−
(

(σc1 + σc2µ)
f 3

3
+ σc2µ

f 2g

2

)
∂3
xf − σc2µ

(
f 3

3
+
f 2g

2

)
∂3
xg
]

= 0,

∂tg − ∂x
[(

G2
g3

3
+G1

f 2g

2
+G2µfg

2

)
∂xf +

(
G2
g3

3
+G2µ

(
f 2g

2
+ fg2

))
∂xg

−
(
µfg +

g2

2

)
∂xσ(Γ)−

(
σc2
g3

3
+ (σc1 + σc2µ)

f 2g

2
+ σc2µfg

2

)
∂3
xf

−
(
σc2
g3

3
+ σc2µ

(
f 2g

2
+ fg2

))
∂3
xg
]

= 0,

∂tΓ− ∂x
[(

G2
g2

2
+G1

f 2

2
+G2µfg

)
Γ∂xf +

(
G2
g2

2
+G2µ

(
f 2

2
+ fg

))
Γ∂xg

− (µf + g) Γ∂xσ(Γ) +D∂xΓ−
(
σc2
g2

2
+ (σc1 + σc2µ)

f 2

2
+ σc2µfg

)
Γ∂3

xf

−
(
σc2
g2

2
+ σc2µ

(
f 2

2
+ fg

))
Γ∂3

xg
]

= 0,

(1.47a)

for t > 0 and x ∈ (0, L) with initial data at t = 0

f(0, ·) = f0, g(0, ·) = g0, Γ(0, ·) = Γ0 (1.47b)

and boundary conditions

∂xf = ∂xg = ∂xΓ = 0,

σc1∂
3
xf = σc2∂

3
xg = 0

(1.47c)

at x = 0, L. The degeneracy occurs in the equations for f and g in the sense that if f

or g become zero in the �rst or second equation of (1.47a), respectively, the highest order

terms (to be precise both, the fourth and second order terms) vanish. Hence, the system

(1.47a) is not uniformly parabolic. It is said to be strongly coupled, since each equation

contains highest order derivatives of all three unknowns. Note here, that the highest order

of the surfactant concentration Γ is of second order in contrast to the highest orders of the

�lm heights f and g, which occur as fourth�order derivatives. Observe also that due to the

special structure of (1.47a), the boundary conditions (1.47c) guarantee that the mass of the

each �uid and the mass of surfactant concentration is preserved.
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1. Physical Model for the Two�Phase Thin Film with Insoluble Surfactant

Setting formally f = 0, the system (1.47) describes the evolution of a thin �lm endowed

with insoluble surfactant, which has been derived and studied numerically in [29].

Neglecting constant surface tension, but keeping gravitation, that is

σc1 = σc2 = 0, G > 0,

(1.47) reduces to a strongly coupled, degenerate system of second order

∂tf − ∂x
[(
G1
f 3

3
+G2µ

f 2g

2

)
∂xf +G2µ

(
f 3

3
+
f 2g

2

)
∂xg − µ

f 2

2
∂xσ(Γ)

]
= 0,

∂tg − ∂x
[(
G2
g3

3
+G1

f 2g

2
+G2µfg

2

)
∂xf +

(
G2
g3

3
+G2µ

(
f 2g

2
+ fg2

))
∂xg

−
(
µfg +

g2

2

)
∂xσ(Γ)

]
= 0,

∂tΓ− ∂x
[(
G2
g2

2
+G1

f 2

2
+G2µfg

)
Γ∂xf +

(
G2
g2

2
+G2µ

(
f 2

2
+ fg

))
Γ∂xg

− (µf + g) Γ∂xσ(Γ) +D∂xΓ

]
= 0,

(1.48a)

for t > 0 and x ∈ (0, L) with initial data at t = 0

f(0, ·) = f0, g(0, ·) = g0, Γ(0, ·) = Γ0 (1.48b)

and Neumann�boundary conditions

∂xf = ∂xg = ∂xΓ = 0 (1.48c)

at x = 0, L. Formally, setting f = 0, the system (1.48) describes the evolution of a thin �lm

endowed with insoluble surfactant, driven by gravity only, where capillary e�ects are ne-

glected. This system has been studied numerically in [27, 29] and analytically in [19, 21, 26],

where in [19] the surfactant are considered to be soluble. Local existence of strong solutions

and asymptotic stability of steady states, which are, in virtue of an energy functional, de-

termined by constants, are shown. In the case of a thin �lm with insoluble surfactant, the

authors in [21, 26] investigate the existence global weak solutions. In Chapter 2, the system

(1.48) is studied and following the ideas in [19, 24] local existence of strong solutions and

an asymptotic stability result are shown for the two�phase thin �lm equation with insoluble

surfactant driven by gravity.
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1.2. Evolution Equations

Neglecting the gravitational force and keeping instead the capillary e�ects, which means

that we set

σc1, σ
c
2 > 0, G = 0,

(1.47) reduces to a system consisting of two strongly coupled, degenerate equations of fourth

order, which are additionally strongly coupled to the di�usion equation for the surfactant

concentration, where the highest orders appear as second�order derivatives.

∂tf + ∂x

[(
(σc1 + σc2µ)

f 3

3
+ σc2µ

f 2g

2

)
∂3
xf + σc2µ

(
f 3

3
+
f 2g

2

)
∂3
xg + µ

f 2

2
∂xσ(Γ)

]
= 0

∂tg + ∂x

[(
σc2
g3

3
+ (σc1 + σc2µ)

f 2g

2
+ σc2µfg

2

)
∂3
xf +

(
σc2
g3

3
+ σc2µ

(
f 2g

2
+ fg2

))
∂3
xg

+

(
µfg +

g2

2

)
∂xσ(Γ)

]
= 0

∂tΓ + ∂x

[(
σc2
g2

2
+ (σc1 + σc2µ)

f 2

2
+ σc2µfg

)
Γ∂3

xf +

(
σc2
g2

2
+ σc2µ

(
f 2

2
+ fg

))
Γ∂3

xg

+ (µf + g) Γ∂xσ(Γ)−D∂xΓ

]
= 0,

(1.49a)

for t > 0 and x ∈ (0, L) with initial data at t = 0

f(0, ·) = f0, g(0, ·) = g0, Γ(0, ·) = Γ0 (1.49b)

and boundary conditions

∂xf = ∂xg = ∂xΓ = 0,

∂3
xf = ∂3

xg = 0

(1.49c)

at x = 0, L. A similar system without surfactant has been studied analytically in [22, 24]

as a thin��lm approximation of the two�phase Stokes problem. In the cases when formally

f = 0 in (1.49) (see [15, 21, 26]), the existence of global weak solutions to the one�phase thin

�lm model driven by capillary e�ects and insoluble surfactant is shown. The authors use the

method of Galerkin approximation in order to obtain global weak solutions to a family of

regularized systems, which tends in the limit to a global weak solution of the thin �lm �ow

with insoluble surfactant. By further regularization [21] receives more regularity of the weak

solution for the surfactant concentration, which allows to prove non�negativity of the weak

solutions not only for the �lm heights but also for the surfactant concentration. In Chapter
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1. Physical Model for the Two�Phase Thin Film with Insoluble Surfactant

3, we prove in the �rst two sections a local existence and asymptotic stability result for

(1.49). Even though the system is of mixed order, which requires a more involved analysis,

we follow the structure and use ideas from [19, 24]. Combining [21, 22, 26] we investigate

in the third section of Chapter 3 the existence of non�negative global weak solutions for the

fourth�order two�phase thin �lm model driven by capillary e�ects and insoluble surfactant

(1.49).
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2. Second Order Two�Phase Thin Film Model Driven by Gravity with Insoluble

Surfactant

In this section we prove a well�posedness and asymptotic stability result for the two�phase

thin �lm equation with insoluble surfactant, where the motion of the �uids is driven by

gravity only (constant surface tension as a governing force is neglected). We apply the tool

of analytic semigroups (cf. e.g. [2, 3, 33, 41]) in order to prove local well�posedness, and the

principle of linearized stability to deduce an asymptotic stability result for the steady state

solutions, which are, in view of an energy functional, determined to consist of constants.

The evolution of the thin��lm �ow is described by (1.48), which is a degenerate, strongly

coupled parabolic system of second order. Following the methods used in [19, 24], where local

existence and asymptotic stability of strong solutions for systems modeling the evolution of

a thin �lm with soluble surfactant and for systems describing a thin��lm approximation of

the two�phase Stokes problem, respectively, is shown, we prove analog results for (1.48). We

recall the gravity driven two�phase �ow with insoluble surfactant (1.48)

∂tf − ∂x
[(
G1
f 3

3
+G2µ

f 2g

2

)
∂xf +G2µ

(
f 3

3
+
f 2g

2

)
∂xg − µ

f 2

2
∂xσ(Γ)

]
= 0,

∂tg − ∂x
[(
G2
g3

3
+G1

f 2g

2
+G2µfg

2

)
∂xf +

(
G2
g3

3
+G2µ

(
f 2g

2
+ fg2

))
∂xg

−
(
µfg +

g2

2

)
∂xσ(Γ)

]
= 0,

∂tΓ− ∂x

[(
G2
g2

2
+G1

f 2

2
+G2µfg

)
Γ∂xf +

(
G2
g2

2
+G2µ

(
f 2

2
+ fg

))
Γ∂xg

− (µf + g) Γ∂xσ(Γ) +D∂xΓ

]
= 0

(2.1a)

for t > 0 and x ∈ (0, L) with initial data at t = 0

f(0, ·) = f 0, g(0, ·) = g0, Γ(0, ·) = Γ0 (2.1b)
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and Neumann�boundary conditions

∂xf = ∂xg = ∂xΓ = 0, (2.1c)

at x = 0, L. The parameters, which appear in (2.1a) are related to material properties of

the �uids, cf. (1.36) and (1.37). We impose the following assumptions:

G1) The density of the �uid on the bottom of the two�phase �ow is higher than the density

of the �uid on top, that is ρ1 > ρ2.

Assumption G1) in particular ensures, in view of (1.36) and (1.37), that

G1 > G2µ. (2.2)

The surface tension, which depends on the surfactant concentration is assumed to be twice

continuous di�erentiable and non�increasing

S1) σ ∈ C2(R) and −σ′(s) ≥ 0 for all s ≥ 0.

Moreover, let Φ be a function, such that

A1) Φ ∈ C2(R) with Φ(1) = Φ′(1) = 0 and

Φ′′(s) = −σ
′(s)

s
≥ 0 for all s > 0.

In order to study the well�posedness of the system of evolution equations (2.1), we need to

�nd suitable spaces for solutions to work with. For the remainder of this section, we de�ne

L2 := L2(0, L;R3),

H2
N := H2

N(0, L;R3) := {u ∈ H2(0, L;R3) | ∂xu(0) = ∂xu(L) = 0},

where H2(0, L;R3) is the Sobolev space consisting of functions u ∈ L2, whose �rst and

second distributional derivatives belong again to L2. The variable u is to be seen as the triple

u := (f, g,Γ). Observe that we already incorporated the Neumann�boundary condition in

the space H2
N . For α ∈ [0, 1] we de�ne

Uα := H2α
N (0, L;R3) ∩ C([0, L], (0,∞)3),
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2. Second Order Two�Phase Thin Film Model Driven by Gravity with Insoluble Surfactant

where

H2α
N := H2α

N (0, L;R3) :=


{u ∈ H2α(0, L;R3) | ∂xu = 0 at x = 0, L}, if α > 3

4
,

H2α(0, L;R3), if α ∈ [0, 3
4
],

with H2α(0, L;R3) := [L2, H
2]α being the complex interpolation space between H2 and L2,

called the Bessel potential space. Let α > 3
4
, then (cf. [46, Theorem 4.6.1 e)])

H2α
N ⊂ C1([0, L];R3)

and Uα ⊂ H2α
N is an open subset. For u = (f, g,Γ) ∈ Uα we de�ne the di�usion matrix

aG(u) :=


G1

f3

3
+G2µ

f2g
2

G2µ
(
f3

3
+ f2g

2

)
−µf2

2
σ′(Γ)

G2
g3

3
+G1

f2g
2

+G2µfg
2 G2

g3

3
+G2µ

(
f2g
2

+ fg2
)

−
(
µfg + g2

2

)
σ′(Γ)(

G2
g2

2
+G1

f2

2
+G2µfg

)
Γ
(
G2

g2

2
+G2µ

(
f2

2
+ fg

))
Γ − (µf + g) Γσ′(Γ) +D


(2.3)

and recast the problem (2.1) as an autonomous quasi�linear equation in the space L2

∂tu+ AG(u)u = 0, t > 0, u(0) = u0, (2.4)

where the operator AG : Uα → L(H2
N , L2) is given by

AG(u)w := −∂x(aG(u)∂xw), u ∈ Uα, w ∈ H2
N (2.5)

and u0 = (f 0, g0,Γ0).

2.1. Local Well�Posedness

Studying the operator AG de�ned in (2.5), we prove that, assuming G1), S1), A1) and

u0 ∈ Uα, there exists a unique, strictly positive solution on some time interval [0, T ), where

T ∈ (0,∞) depends on the initial datum u0 ∈ Uα. We claim that for �xed u ∈ Uα, the linear

operator AG(u) ∈ L(H2
N , L2) is the negative generator of an analytic semigroup. Observe

that the principal symbol of the linear operator AG(u), u ∈ Uα, de�ned in (2.5) is given

by the matrix aG(u), which has positive eigenvalues in virtue of G1) and S1). Indeed, the

eigenvalues of aG(u) are the roots of

det(aG(u)− λ Id) = λ3 − Aλ2 +Bλ− C (2.6)
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with

A = −(µf + g)Γσ′(Γ) +D +G1
f3

3
+G2

g3

3
+G2µ (f 2g + fg2)

B =
(
G2

f3g3

9
+ f4g2

12
G2µ

)
[G1 −G2µ] +D

(
G1

f3

3
+ (G1 +G2µ) f2g

2
+G2µ

fg2

2
+G2

g3

3

)
−σ′(Γ)Γ

(
G1µ

f4

12
+ [G1 −G2µ]µf

3g
2

+G1
f3g
3

+G1
f2g2

4
+ [G1 −G2µ]f

2g2

4
+ 2G2µ

fg3

2

)
C =

(
D
(
G2

f3g3

9
+G2µ

f4g2

12

)
− σ′(Γ)Γ

(
G2

f3g4

36
+G2µ

f4g3

36

))
[G1 −G2µ].

(2.7)

We refer to Lemma A.1 for a more detailed derivation of (2.7). We want to apply the Hurwitz

Lemma, which states that the roots of the cubic polynomial (2.6) are strictly positive if

A,B,C > 0 and AB − C > 0. Since u ∈ Uα and therefore point�wise positive, we deduce

due to Assumption G1) and S1) that A,B,C > 0. Observe that

AB > (−σ′(Γ)Γ(µf + g) +D)

(
G2
f 3g3

9
+
f 4g2

12
G2µ

)
[G1 −G2µ].

Hence

AB − C >

(
(−σ′(Γ)Γ(µf + g) +D)

(
G2
f 3g3

9
+G2µ

f 4g2

12

)
− D

(
f 3g3

9
G2 +G2µ

f 4g2

12

)
+ σ′(Γ)Γ

(
G2
f 3g4

36
+G2µ

f 4g3

36

))
[G1 −G2µ]

> −σ′(Γ)Γµf

(
G2
f 3g4

36
+G2µ

f 4g3

36

)
[G1 −G2µ] > 0

and the Hurwitz Lemma implies the strict positivity of all eigenvalues of aG(u). It follows

from [2, Ex. 4.3.e)] that (AG(u), B) is normally elliptic, where Bw = ∂xw at x = 0, L for

w ∈ Uα. Taking into account that the coe�cients of the matrix aG(u) are continuously

di�erentiable and AG depends smoothly on its coe�cients, [2, Theorem 4.1] implies that

−AG(u) ∈ H(H2
N , L2) and

−AG ∈ C1−(Uα,H(H2
N , L2)). (2.8)

With this, [2, Theorem 12.1] guarantees the following well�posedness result for (2.1):

Theorem 2.1 (Local Existence). Let α ∈ (3
4
, 1] and u0 = (f 0, g0,Γ0) ∈ Uα. Assuming G1)

and S1), the problem (2.4) admits a unique positive strong solution

u = (f, g,Γ) ∈ C([0, T ), Uα) ∩ Cα([0, T ), L2) ∩ C1((0, T ), L2) ∩ C((0, T ), H2
N)

with maximal time of existence T ∈ (0,∞]. Moreover, u depends in Uα continuously on its

initial datum u0.
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Remark that Assumption G1) is crucial in order to obtain the well�posedness result. Hence,

studying local strong solutions of (2.1), we need to exclude the case when ρ1 = ρ2, that is,

when both �uids have the same density but may di�er in their viscous behavior. If ρ1 = ρ2,

then G1 = G2µ (cf. (1.36) and (1.37)) and it is easy to see that the matrix aG(u) has an

eigenvalue λ = 0 (note that then C = 0 in (2.7)). In this case we can no longer apply the

theory in [2].

2.2. Asymptotic Stability

We show that the only steady states of (2.1) are of the form where the �lms are �at and

the surfactant concentration is uniquely disturbed. Under the assumption that the surface

tension is strictly decreasing, we obtain that that the steady states are asymptotically stable.

Similar as in [21, 24, 23], we prove the existence of an energy functional, which provides

together with Assumption G1) that the set of steady states is determined by constants if the

surface tension strictly decreasing. Moreover, we show that if u∗ > 0 is a steady state, then

it is asymptotically stable. Considering the system (2.1), it is clear that u∗ = (f∗, g∗,Γ∗),

where f∗, g∗ and Γ∗ are positive constants, is an equilibrium. In order to determine all steady

state solutions of (2.1), we show that E : Uα → [0,∞), de�ned by

E(u) :=

∫ L

0

{
1

2

(
G1 −G2µ

G2µ
f 2 + (f + g)2

)
+

1

G2

Φ(Γ)

}
dx,

where u = (f, g,Γ) ∈ Uα and the function Φ being such that (cf. Assumption A1))

Φ′′(s)s = −σ′(s) ≥ 0, for s > 0,

is an energy functional for (2.1), that is, E decreases along solutions u given by Theorem

2.1. Observe that, physically interpreted, the terms
∫ L

0
1
2

(
G1−G2µ
G2µ

f 2 + (f + g)2
)
dx and∫ L

0
1
G2

Φ(Γ) dx represent the kinetic and the free surface energy, respectively.

Proposition 2.2 (Energy Functional). Let be α ∈ (3
4
, 1] and u0 = (f 0, g0,Γ0) ∈ Uα . Then,

under the assumption of G1) and S1), the corresponding solution u = (f, g,Γ) to (2.1) given
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by Theorem 2.1 satis�es

d

dt

∫ L

0

{
1

2

(
G1 −G2µ

G2µ
f 2 + (f + g)2

)
+

1

G2

Φ(Γ)

}
dx

= −
∫ L

0


[
f

3
2∂x(G1f +G2µg)√

3G2µ
+

√
3

2

(√
G2µfg∂x(f + g)−

√
µf∂xσ(Γ)√

G2

)]2

+
1

4

[√
G2µfg∂x(f + g)−

√
µf∂xσ(Γ)√

G2

]2

+

[√
G2g

3
2

√
3

∂x(f + g)−
√

3g

2
√
G2

∂xσ(Γ)

]2

+
g

4G2

|∂xσ(Γ)|2 +
D

G2

Φ′′|∂xΓ|2
}
dx

(2.9)

for t ∈ (0, T ).

Proof. Since u = (f, g,Γ) satis�es (2.1), we use integration by parts, where the boundary

terms vanish due to the Neumann�boundary conditions and the special structure of (2.1),

and obtain that

d

dt

∫ L

0

{
1

2

(
G1 −G2µ

G2µ
f 2 + (f + g)2

)
+

Φ(Γ)

G2

}
dx

=

∫ L

0

{
G1 −G2µ

G2µ
f∂tf + (f + g)∂t(f + g) +

Φ′(Γ)

G2

∂tΓ

}
dx

= −
∫ L

0

{
G1 −G2µ

G2µ
∂xf

[(
G1
f 3

3
+G2µ

f 2g

2

)
∂xf +G2µ

(
f 3

3
+
f 2g

2

)
∂xg − µ

f 2

2
∂xσ(Γ)

]}
dx

−
∫ L

0

{
∂x(f + g)

[(
G1
f 3

3
+G2µ

f 2g

2

)
∂xf +G2µ

(
f 3

3
+
f 2g

2

)
∂xg − µ

f 2

2
∂xσ(Γ)

+

(
G2
g3

3
+G1

f 2g

2
+G2µfg

2

)
∂xf +

(
G2
g3

3
+G2µ

(
f 2g

2
+ fg2

))
∂xg

−
(
µfg +

g2

2

)
∂xσ(Γ)

]}
dx

−
∫ L

0

{
Φ′′(Γ)

G2

∂xΓ
[(

G2
g2

2
+G1

f 2

2
+G2µfg

)
Γ∂xf +

(
G2
g2

2
+G2µ

(
f 2

2
+ fg

))
Γ∂xg

− (µf + g) Γ∂xσ(Γ) +D∂xΓ
]}

dx

= −
∫ L

0

{
1

3

G1 −G2µ

G2µ
∂xf∂x(G1f +G2µg)f 3 +

1

2
(G1 −G2µ)∂xf∂x(f + g)f 2g

−1

2

G1 −G2µ

G2

∂xf∂xσ(Γ)f 2

}
dx
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−
∫ L

0

{
1

3
∂x(f + g)∂x(G1f +G2µg)f 3 +

1

2
G2µ|∂x(f + g)|2f 2g − 1

2
µ∂x(f + g)∂xσ(Γ)f 2

+
G2

3
|∂x(f + g)|2g3 +

1

2
∂x(f + g)∂x(G1f +G2µg)f 2g +G2µ|∂x(f + g)|2fg2

− 1

2
∂x(f + g)∂xσ(Γ)g2 − µ∂x(f + g)∂xσ(Γ)fg

}
dx

−
∫ L

0

{
−
(
g2

2
+
G1

G2

f 2

2
+ µfg

)
∂x(Γε)∂xf −

(
g2

2
+ µ

(
f 2

2
+ fg

))
∂x(Γε)∂xg

+
1

G2

(µf + g) |∂xσ(Γ)|2 +
D

G2

Φ′′(Γ)|∂xΓ|2
}
dx.

Observe that

1

3

G1 −G2µ

G2µ
∂xf∂x(G1f +G2µg)f 3 +

1

3
∂x(f + g)∂x(G1f +G2µg)f 3

=
f 3

3G2µ
|∂x(G1f +G2µg)|2

and

1

2
(G1 −G2µ)∂xf∂x(f + g)f 2g +

1

2
G2µ|∂x(f + g)|2f 2g +

1

2
∂x(f + g)∂x(G1f +G2µg)f 2g

= f 2g∂x(f + g)∂x(G1f +G2µg).

Hence

d

dt

∫ L

0

{
1

2

(
G1 −G2µ

G2µ
f 2 + (f + g)2

)
+

1

G2

Φ(Γ)

}
dx

= −
∫ L

0

{
f 3

3G2µ
|∂x(G1f +G2µg)|2 + f 2g∂x(f + g)∂x(G1 +G2µ) +G2µfg

2|∂x(f + g)|2

+
G2

3
|∂x(f + g)|2g3 − f 2

G2

∂xσ(Γ)∂x(G1f +G2µg)− g2∂xσ(Γ)∂x(f + g)

−2µfg∂xσ(Γ)∂x(f + g) +

(
g

G2

+
µf

G2

)
|∂xσ(Γ)|2 +

D

G2

Φ′′|∂xΓ|2
}
dx

= −
∫ L

0

{
f 3

3G2µ
|∂x(G1f +G2µg)|2 +

[√
G2µfg∂x(f + g)−

√
µf√
G2

∂xσ(Γ)

]2

+
f

3
2

√
G2µ

∂x(G1f +G2µg)

(√
G2µfg∂x(f + g)−

√
µf√
G2

∂xσ(Γ)

)
+

g

4G2

|∂xσ(Γ)|2

+

[√
G2g

3
2

√
3

∂x(f + g)−
√

3g

2
√
G2

∂xσ(Γ)

]2

+
D

G2

Φ′′(Γ)|∂xΓ|2
 dx.
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2.2. Asymptotic Stability

Finally, we note that the �rst three terms in the integral above can be written as[
f

3
2∂x(G1f +G2µg)√

3G2µ
+

√
3

2

(√
G2µfg∂x(f + g)−

√
µf∂xσ(Γ)√

G2

)]2

+
1

4

[√
G2µfg∂x(f + g)−

√
µf∂xσ(Γ)√

G2

]2

,

which yields the assertion.

Note that all terms on the right�hand side of the energy equality (2.9) are non�positive.

Hence, if u = (f, g,Γ) is an equilibrium to (2.1), every single term on the right�hand side

has to vanish, which implies that ∂xσ(Γ) = ∂x(f + g) = ∂x(G1f +G2µg) = 0. If σ is strictly

decreasing, we deduce that f, g and Γ are constant, in view of Assumption G1).

Corollary 2.3. Suppose that σ ∈ C2(R) is strictly decreasing and Assumption G1) is sat-

is�ed. Then, the only positive steady states to (2.1) are of the form (f∗, g∗,Γ∗) ∈ Uα with

constants f∗, g∗,Γ∗ > 0.

In order to study the stability properties of these equilibria, we observe �rst, by a simple com-

putation, that the mass of each �uid and the mass of surfactant concentration is preserved

by the evolution of the system, which is due to the Neumann�boundary conditions.

Lemma 2.4 (Conservation of mass). Let u = (f, g,Γ) be a solution to (2.1) as found in

Theorem 2.1. Then, the mass of u is preserved with time, that is,

d

dt

∫ L

0

f(t, x) dx = 0 and
d

dt

∫ L

0

g(t, x) dx = 0 and
d

dt

∫ L

0

Γ(t, x) dx = 0

on (0, T ).

The remainder of this section is dedicated to prove that, assuming the averaged initial

surfactant concentration to be small, there exists for every initial data being close enough

to the steady state a global positive strong solution to (2.1) tending exponentially to the

constant steady state.

Set u∗ = (f∗, g∗,Γ∗) with f∗, g∗,Γ∗ being positive constants and denote by

〈h〉 :=
1

L

∫ L

0

h(x) dx
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the average (with respect to space) of a function h. Let u = (f, g,Γ) be the unique strong

solution to (2.1) corresponding to the initial data u0 = (f 0, g0,Γ0) ∈ Uα, satisfying 〈f 0〉 =

f∗, 〈g0〉 = g∗ and 〈Γ0〉 = Γ∗. By conservation of mass (cf. Lemma 2.4), it is clear that then

〈u(t)〉 = 〈u∗〉 for all t ∈ [0, T ).

In order to study the stability property of the equilibrium u∗, we follow the ideas used

in [19, 24] and eliminate the non�zero constant functions from the space we work in by

introducing the projection P ∈ L(L2) ∩ L(H2
N), de�ned by

Pu := u− 〈u〉 =

(
f − 1

L

∫ L

0

f(x) dx, g − 1

L

∫ L

0

g(x) dx,Γ− 1

L

∫ L

0

Γ(x) dx

)
.

Clearly, P de�nes a projection as

P 2u = PPu = P (u− 〈u〉) = Pu.

By means of the continuous projection we can decompose the spaces

L2 = PL2 ⊕ (1− P )L2,

H2
N = PH2

N ⊕ (1− P )H2
N

into direct sums (cf. [44, Theorem 5.16]), where PL2, PH
2
N contain the non�constant

functions and the zero function in L2, H
2
N and (1 − P )L2, (1 − P )H2

N contain the constant

functions in L2, H
2
N , respectively. Due to mass conservation and continuity in t = 0, a

solution u of (2.1), which satis�es initially (1 − P )u(0) = u∗ ful�lls (1 − P )u(t) = u∗ as

long as the solution exists. Hence, we can decompose the solution u with respect to the

orthogonal sums:

u(t) = z(t) + u∗ ∈ PL2 ⊕ (1− P )L2, t ≥ 0,

with z(t) = Pu(t). By u being the corresponding solution to the initial data u0 ∈ Uα, the

function z = u− u∗ is a solution of

∂tz + AG(z + u∗)z = 0, z(0) = u0 − u∗.

Hence, the stability property for u∗ is equivalent to the one for the stationary solution z = 0

of

∂tz + A∗Gz = (A∗G − AG(z + u∗)
∣∣
PH2

N
)z =: F (z), (2.10)
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2.2. Asymptotic Stability

with A∗Gw := AG(u∗)w for w ∈ PH2
N . Due to the Neumann�boundary conditions, both

operators, A∗G and [z → AG(z + u∗)z], map PH2
N into PL2. Indeed, if z ∈ PH2, then

(1− P )A∗Gz = 〈A∗Gz〉 = − 1

L

∫ L

0

∂x(aG(u∗)∂xz) dx = 0

and

(1− P )AG(z + u∗)z = 〈AG(z + u∗)〉 = − 1

L

∫ L

0

∂x(a(z + u∗)∂xz) dx = 0.

Note that, in view of PH2
N being continuously embedded into PL2, the set PH

2
N is an open

neighborhood of zero in PL2. Furthermore,

F ∈ C1(PH2
N , PL2) with F (0) = F ′(0) = 0, (2.11)

where F ′ denotes the Fréchet derivative of F .

Lemma 2.5. The operator A∗G : PH2
N ⊂ PL2 → PL2 belongs to H(PH2

N , PL2), that is,

−A∗G is the generator of an analytic semigroup on PL2.

Proof. We already know from (2.8) that −AG ∈ C1−(Uα,H(H2
N , L2)), hence −AG(u∗) ∈

H(H2
N , L2). By means of the orthogonal projection P we can represent −AG(u∗) as a matrix

operator

−AG(u∗) =

−AG(u∗)
∣∣
PH2

N
0

0 0

 ∈ H(PH2
N ⊕ (1− P )H2

N , PL2 ⊕ (1− P )L2).

Because AG(u∗)(1 − P )w = 0, the second column of the matrix has zero entries. Moreover

(1− P )AG(u∗)w = 〈AG(u∗)w〉 = − 1
L

∫ L
0
∂x(aG(u∗)∂xw) = 0 for w ∈ H2

N , which justi�es the

zero in the �rst entry of the second row. It follows from [3, Theorem I.1.6.3] that

−AG(u∗)
∣∣
PH2

N
∈ H(PH2

N , PL2).

In order to prove asymptotic stability for the equilibrium z = 0 of (2.10), we apply the

principle of linearized stability (cf. [33, 9.1.1]). For this purpose we state the following

lemma:

Lemma 2.6. Suppose σ ∈ C2(R) is strictly decreasing and Assumption G1) is satis�ed.

Then there are numbers ε, ω0 > 0 such that the spectrum spec(−A∗G) of −A∗G is contained in

the half plane [Re z ≤ −ω0] provided that 0 ≤ Γ∗ < ε.
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Proof. Take w0 = (f 0, g0,Γ0) ∈ PL2 arbitrary and let w(t) := e−tA
∗
Gw0, t ≥ 0, be the unique

strong solution in PL2 to the linearized problem

∂tw + A∗Gw = 0, t > 0, w(0) = w0. (2.12)

By de�nition of A∗G = AG(u∗), the function w = (f, g,Γ) ∈ PH2
N satis�es

∂t


G2µ

G1−G2µ
(f + g)

f

zΓ

− ∂x
ãzG(u∗)∂x


f + g

f

Γ


 = 0,

where z > 0 is a constant and the matrix ãzG(u∗) is given by
d1 G2µ

(
f3∗
3

+ f2∗ g∗
2

)
− G2µ
G1−G2µ

(
µf

2

2
+ µf∗g∗ + g2∗

2

)
σ′(Γ∗)

G2µ
(
f3∗
3

+ f2∗ g∗
2

)
(G1 −G2µ)f

3
∗
3

−µf
2
∗
2
σ′(Γ∗)

z
(
G2

g2∗
2

+G2µ
(
f2∗
2

+ f∗g∗

))
Γ∗ z(G1 −G2µ)f

2
∗
2

Γ∗ d3

 ,

where

d1 :=
G2µ

G1 −G2µ

(
G2
g3
∗
3

+G2µ

(
f 3
∗
3

+ f 2
∗ g∗ + f∗g

2
∗

))
,

d3 := −z(µf∗ + g∗)Γ∗σ
′(Γ∗) + zD.

Introducing the to ãzG(u∗) corresponding symmetric matrix

bzG(u∗) :=


d1 G2µ

(
f3∗
3

+ f2∗ g∗
2

)
j

G2µ
(
f3∗
3

+ f2∗ g∗
2

)
(G1 −G2µ)f

3
∗
3

k

j k d3

 . (2.13)

with

j := −1

2

(
G2µ

G1 −G2µ

(
µ
f 2
∗
2

+ µf∗g∗ +
g2
∗
2

)
σ′(Γ∗)− z

(
G2
g2
∗
2

+G2µ

(
f 2
∗
2

+ f∗g∗

))
Γ∗

)
,

k := −1

2

(
µ
f 2
∗
2
σ′(Γ∗)− z(G1 −G2µ)

f 2
∗
2

Γ∗

)
,

we obtain that

1

2

d

dt

(
G2µ

G1 −G2µ
‖f + g‖2

2 + ‖f‖2
2 + z‖Γ‖2

2

)
+

bzG(u∗)∂x


f + g

f

Γ


∣∣∣∣∣∣∣∣∣∂x

f + g

f

Γ




2

= 0.
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If Γ∗ = 0, the matrix bzG(f∗, g∗, 0) is positive de�nite for some su�ciently large constant

z > 0, since all principal minors are positive. For a detailed computation we refer to Lemma

A.2. Hence, there exists ε = ε(f∗, g∗) > 0 such that for 0 ≤ Γ∗ < ε the matrix bzG(f∗, g∗,Γ∗)

is positive de�nite and we deduce that

1

2

d

dt

(
G2µ

G1 −G2µ
‖f + g‖2

2 + ‖f‖2
2 + z‖Γ‖2

2

)
≤ −η

∥∥∥∥∥∥∥∥∥∂x

f + g

f

Γ


∥∥∥∥∥∥∥∥∥

2

2

for some positive constant η > 0. Recall that the average value of w̃ := (f + g, f,Γ) where

(f, g,Γ) ∈ PH2
N is given by 〈w̃〉 = 0. Hence, there exists, by Poincaré's inequality, a constant

c > 0 such that ‖w̃‖2
2 ≤ c−1‖∂xw̃‖2

2 and it follows that

1

2

d

dt

(
G2µ

G1 −G2µ
‖f + g‖2

2 + ‖f‖2
2 + z‖Γ‖2

2

)
≤ −ηc(‖f + g‖2

2 + ‖f‖2
2 + ‖Γ‖2

2).

Set m := max
{

G2µ
G1−G2µ

, z, 1
}
, then

1

2

d

dt

(
G2µ

G1 −G2µ
‖f + g‖2

2 + ‖f‖2
2 + z‖Γ‖2

2

)
≤ −ηc

m
(m‖f + g‖2

2 +m‖f‖2
2 +m‖Γ‖2

2)

≤ −ηc
m

(
G2µ

G1 −G2µ
‖f + g‖2

2 + ‖f‖2
2 + z‖Γ‖2

2

)
.

(2.14)

We will show that w̃ = (f + g, f,Γ), where (f, g,Γ) is a solution to (2.12), has exponential

decay, which implies that also w = (f, g,Γ) is exponentially decreasing. Observe that for

w̃ = (f + g, f,Γ) ∈ PL2

|||w̃|||2 :=

(
G2µ

G1 −G2µ
‖f + g‖2

2 + ‖f‖2
2 + z‖Γ‖2

2

) 1
2

de�nes an equivalent norm on PL2. In virtue of (2.14), we deduce that d
dt
|||w̃|||22 ≤ −C|||w̃|||22

with C := 2η c
m
> 0. Hence,

|||w̃|||2 ≤ e−t
C
2 |||w̃0|||2, t ≥ 0, w̃0 = (f 0 + g0, f 0,Γ0). (2.15)

By equivalence of the norms ||| · |||2 and ‖ · ‖2 and (2.15), we obtain that ‖w̃‖2 ≤ c̃e−t
C
2 ‖w̃0‖2

for some constant c̃ > 0,

which means that w̃ has exponential decay. Therefore, also w has exponential decay and

‖w(t)‖2 = ‖e−tA∗w0‖2 ≤Me−tω0‖w0‖2

for some M ≥ 1 and ω0 > 0. We deduce that spec(−A∗G) ⊂ [Re z ≤ −ω0].
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2. Second Order Two�Phase Thin Film Model Driven by Gravity with Insoluble Surfactant

Combining Lemma 2.5, Lemma 2.6 and (2.11), we can apply [33, Theorem 9.1.2] and arrive

at the following asymptotic stability result for steady states of (2.1):

Theorem 2.7 (Asymptotic Stability). Let σ ∈ C2(R) be strictly decreasing and Assumption

G1) be satis�ed. Further let f∗, g∗ > 0 be arbitrary. Then there exist numbers ε = ε(f∗, g∗) >

0, ω > 0 and M ≥ 1, such that for 0 ≤ Γ∗ < ε and any initial data u0 = (f 0, g0,Γ0) ∈ H2
N

with 〈f 0〉 = f∗, 〈g0〉 = g∗ and 〈Γ0〉 = Γ∗ satisfying the smallness condition ‖u0 − u∗‖H2 ≤ ε,

there exists a unique global positive solution

f, g,Γ ∈ C([0,∞), Uα) ∩ Cα([0,∞), L2) ∩ C1((0,∞), L2) ∩ C((0,∞), H2
N)

to (2.1). The solution satis�es

‖u(t)− u∗‖H2 + ‖∂tu(t)‖2 ≤Me−ωt‖u0 − u∗‖H2 for t ≥ 0,

where u∗ = (f∗, g∗,Γ∗).
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3. Fourth Order Two�Phase Thin Film Model Driven by Capillary E�ects with

Insoluble Surfactant

This chapter is devoted to study the two�phase thin �lm equation equipped with insoluble

surfactant, where capillary e�ects serve as the only driving force. Here we neglect the e�ect

of gravitation on the motion of the two�phase �ow. Analogously to the previous chapter,

we prove in the �rst and second section a well�posedness and asymptotic stability result.

It occurs in particular one major di�erence in treating the fourth�order system (1.49) with

regard to the second�order system studied in Chapter 2. Observe that (1.49) is of fourth

order in the evolution equations for the two �lm heights and only of second order in the

evolution equation for the surfactant concentration, which is strongly coupled to the fourth�

order equations. Translating (1.49) into an abstract setting, the appearing matrix operator

is of mixed order. The strong coupling of evolution equations of di�erent orders courses

di�culties in studying the matrix operator. Still, demanding a smallness condition on the

surfactant concentration, we are able to show, by a perturbation argument, that the matrix

operator is a generator of an analytic semigroup, such that as before [2, Theorem 12.1]

implies the well�posedness. We will see that, in contrary to Theorem 2.1, which states the

well�posedness for the gravity driven two�phase thin �lm �ow, considering the two�phase

thin �lm with insoluble surfactant, where capillary e�ects are the only driving force, we

do not need any assumption on the density of the two �uids (in Theorem 2.1, we forced

the �uid with higher density to be on the bottom in order to establish well�posedness).

As before, an energy functional provides that the set of steady states is determined by the

solutions of (1.49), which are constant. Studying stability properties of these steady states

then is similar to the analysis in the previous chapter. The third section of this chapter is

devoted to study the existence of non�negative global weak solutions to (1.49). Following

the approach used in [20, 22, 26], we regularize the system (1.49) and prove, by using a
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Galerkin approximation, the existence of global weak solutions to the regularized problem.

In doing so, we obtain a family of weak solutions to the regularized systems possessing a

converging subsequence, whose limit function is non�negative, under the assumption of non�

negative initial data, and provides a global weak solution to the original system. Since the

weak solutions to (1.49) appear as limit functions of converging subsequences, it is not clear

whether they can be proven to be unique. As the main ingredient in the analysis of weak

solutions to (1.49) serves an energy functional by providing a priori estimates, which allow

to extract converging subsequences of the Galerkin approximation.

Recall the system of evolution equations given in (1.49)

∂tf + ∂x

[(
(σc1 + σc2µ)

f 3

3
+ σc2µ

f 2g

2

)
∂3
xf + σc2µ

(
f 3

3
+
f 2g

2

)
∂3
xg + µ

f 2

2
∂xσ(Γ)

]
= 0

∂tg + ∂x

[(
σc2
g3

3
+ (σc1 + σc2µ)

f 2g

2
+ σc2µfg

2

)
∂3
xf +

(
σc2
g3

3
+ σc2µ

(
f 2g

2
+ fg2

))
∂3
xg

+

(
µfg +

g2

2

)
∂xσ(Γ)

]
= 0

∂tΓ + ∂x

[(
σc2
g2

2
+ (σc1 + σc2µ)

f 2

2
+ σc2µfg

)
Γ∂3

xf +

(
σc2
g2

2
+ σc2µ

(
f 2

2
+ fg

))
Γ∂3

xg

+ (µf + g) Γ∂xσ(Γ)−D∂xΓ

]
= 0,

(3.1a)

for t > 0 and x ∈ (0, L) with initial data at t = 0

f(0, ·) = f 0, g(0, ·) = g0, Γ(0, ·) = Γ0 (3.1b)

and boundary conditions

∂xf = ∂xg = ∂xΓ = 0,

∂3
xf = ∂3

xg = 0

(3.1c)

at x = 0, L. We impose the following assumptions: Given the surface tension coe�cients

σ1 = σc1 ≥ 0 and σ2 of the form

σ2(Γ) = σc2 + σ(Γ),

where Γ is the surfactant concentration, we assume that the part of the surface tension,

which is independent of the concentration of surfactant, is strictly positive and the part of

the surface tension, which depends on Γ, is non�increasing, that is,
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4th Order Two�Phase Thin Film Model Driven by Capillary E�ects with Insoluble Surfactant

S1) σ ∈ C2(R) and −σ′(s) ≥ 0 for all s ≥ 0,

S2) σc1, σ
c
2 > 0.

Moreover, let Φ be a function, such that

A1) Φ ∈ C2(R) with Φ(1) = Φ′(1) = 0 and

Φ′′(s) = −σ
′(s)

s
≥ 0 for all s > 0.

3.1. Local Well�Posedness

We need to de�ne suitable spaces for the well�posedness of the system of evolution equations

(3.1). Given k ∈ N and n ∈ N, we set in the sequel

Hk
B(0, L;Rn) := {u ∈ Hk(0, L;Rn) | ∂2l+1

x u(0) = ∂2l+1
x u(L) = 0 for all l ∈ N with 2l+2 ≤ k}.

These spaces are well de�ned by the Sobolev Embedding Theorem and endowed with the

usual Sobolev norms. Since the system we are analyzing features both, second� and fourth�

order derivatives, the space H4
B(0, L;R2) × H2

B(0, L;R) will play an important role. For

α ∈ [0, 1] and ε > 0 we de�ne

Oα :=
(
H4α
B (0, L;R2)×H2α

B (0, L;R)
)
∩ C([0, L], (0,∞)3),

Oα
ε := Oα ∩ {u = (f, g,Γ) ∈ H4α

B (0, L;R2)×H2α
B (0, L;R) | ‖Γ‖H2α < ε},

where

Hs
B(0, L;Rn) :=


{u ∈ Hs(0, L;Rn) | ∂xu = ∂3

xu = 0 at x = 0, L}, if s ∈ (7
2
, 4],

{u ∈ Hs(0, L;Rn) | ∂xu = 0 at x = 0, L}, if s ∈ (3
2
, 7

2
],

Hs(0, L;Rn), if s ∈ [0, 3
2
]

with Hs(0, L;Rn) being the Bessel potential space for s ∈ [0, 4]. The product space

H4α
B (0, L;R2)×H2α

B (0, L;R)

is the complex interpolation space [L2(0, L;R2) × L2(0, L;R), H4
B(0, L;R2) × H2

B(0, L;R)]α

for α ∈ [0, 1] between the product spaces H4
B(0, L;R2) × H2

B(0, L;R) and L2(0, L;R2) ×

L2(0, L;R). If α > 7
8
, then (cf. [46, Theorem 4.6.1 e)])

H4α
B (0, L;R2)×H2α

B (0, L;R) ⊂ C3([0, L];R2) ∩ C1([0, L];R).
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3.1. Local Well�Posedness

Furthermore, Oα and Oα
ε are open subsets in H4α

B (0, L;R2) × H2α
B (0, L;R). Note that the

boundary conditions as well as the positivity are already incorporated into the sets Oα and

Oα
ε . For each u = (f, g,Γ) ∈ Oα we de�ne the matrix

ac(u) :=


σc12

f3

3
+ σc2µ

f2g
2

σc2µ
(
f3

3
+ f2g

2

)
f2

2
µσ′(Γ)

σc2
g3

3
+ σc12

f2g
2

+ σc2µfg
2 σc2

g3

3
+ σc2µ

(
f2g
2

+ fg2
) (

g2

2
+ µfg

)
σ′(Γ)(

σc2
g2

2
+ σc12

f2

2
+ σc2µfg

)
Γ
(
σc2

g2

2
+ σc2µ

(
f2

2
+ fg

))
Γ (µf + g)Γσ′(Γ)−D

 ,

where σc12 := σc1 +σc2µ, and rewrite the problem (3.1) as a quasi�linear equation in the space

L2(0, L;R3)

∂tu+ Ac(u)u = 0, t > 0, u(0) = u0, (3.2)

where u0 = (f 0, g0,Γ0) and the operatorAc := Oα → L(H4
B(0, L;R2)×H2

B(0, L;R), L2(0, L;R3))

is given by

Ac(u)w := ∂x

ac(u)


∂3
xf̃

∂3
xg̃

∂xΓ̃


 , for u ∈ Oα, w := (f̃ , g̃, Γ̃) ∈ H4

B(0, L;R2)×H2
B(0, L;R).

Letting α ∈ (7
8
, 1), we prove that there exists ε > 0, such that starting with an initial data

u0 ∈ Oα
ε and under the Assumptions S1) and S2), there exists a unique, strong solution on

some time interval [0, T ), where T ∈ (0,∞] depends on the initial datum u0 ∈ Oα
ε .

Theorem 3.1 (Local Existence). Let α ∈ (7
8
, 1), S1) and S2) be satis�ed. Then, there exists

ε > 0, such that given u0 = (f 0, g0,Γ0) ∈ Oα
ε , the problem (3.2) possesses a unique maximal

strong solution

(f, g,Γ) ∈C([0, T );Oα
ε ) ∩ Cα([0, T );L2(0, L;R3)) ∩ C((0, T );H4

B(0, L;R2)×H2
B(0, L;R))

∩ C1((0, T );L2(0, L;R3)),

with maximal time of existence T ∈ (0,∞]. Moreover, u = (f, g,Γ) depends in Oα continu-

ously on its initial datum u0.

Set E0 := L2(0, L;R3) and E1 := H4
B(0, L;R2)×H2

B(0, L;R). Furthermore let Eθ := [E1, E0]θ

be the complex interpolation space between E1 and E0 for θ ∈ [0, 1]. With

O(ε) := C([0, L]; (0,∞)3) ∩ {u = (f, g,Γ) ∈ H4(0, L;R2)×H2(0, L;R) | ‖Γ‖H2α < ε},
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we identify Oα
ε = O(ε) ∩ Eα. By taking into account that Ac depends smoothly on its

coe�cients we obtain that

Ac ∈ C1−(Oα
ε ,L(E1, E0)). (3.3)

We show that for �xed u ∈ Oα
ε , the linear operator Ac(u) ∈ L(E1, E0) is the negative

generator of an analytic semigroup. Then, Theorem 3.1 is a consequence of [2, Theorem

12.1].

Theorem 3.2. Under Assumption S1) and S2), there exists ε > 0, such that given u =

(f, g,Γ) ∈ Oα
ε , the operator −Ac(u) generates an analytic semigroup in L2(0, L;R3), that is

−Ac(u) ∈ H(H4
B(0, L;R2)×H2

B(0, L;R);L2(0, L;R3)).

Observe, that the linear operator Ac(u), where u = (f, g,Γ) ∈ Oα
ε , can be considered a

matrix operator of the form

Ac(f, g,Γ) :=

 A11(f, g) A12(f, g,Γ)

A21(f, g,Γ) A22(f, g,Γ)

 ∈ L(H4
B(0, L,R2)×H2

B(0, L;R), L2(0, L;R)),

(3.4)

with

(A11(f, g))

f̃
g̃

 := ∂x

 σc12
f3

3
+ σc2µ

f2g
2

σc2µ
(
f3

3
+ f2g

2

)
σc2

g3

3
+ σc12

f2g
2

+ σc2µfg
2 σc2

g3

3
+ σc2µ

(
f2g
2

+ fg2
)
 ∂3

x

f̃
g̃

 ,

(3.5)

(A12(f, g,Γ)) Γ̃ := ∂x

 f2

2
µσ′(Γ)(

g2

2
+ µfg

)
σ′(Γ)

 ∂xΓ̃

 ,

(A21(f, g,Γ))

f̃
g̃

 := ∂x

((σc2 g22 + σc12
f2

2
+ σc2µfg

)
Γ
(
σc2

g2

2
+ σc2µ

(
f2

2
+ fg

))
Γ
)
∂3
x

f̃
g̃

 ,

(A22(f, g,Γ)) Γ̃ := ∂x

(
((µf + g)Γσ′(Γ)−D) ∂xΓ̃

)
for (f, g,Γ) ∈ Oα

ε and (f̃ , g̃, Γ̃) ∈ H4
B(0, L;R2) × H2

B(0, L;R). We want to make use of an

result from [3], which states a characterization of matrix generators.
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Theorem 3.3 ([3], Theorem I.1.6.1, Remark I.1.6.2 ). Let (E0, E1), (F0, F1) be densely in-

jected Banach couples. Then (E0×F0, E1×F1) is a densely injected Banach couple as well.

Suppose that

A =

A11 A12

A21 A22

 ∈ L(E1 × F1, E0 × F0)

and

A11 ∈ H(E1, E0, κ1, ω1) and A22 ∈ H(F1, F0, κ2, ω2).

If one of the following holds, then A ∈ H(E1 × F1, E0 × F0,
κ

1−κr ,max{ω, β
r
}).

i) Put

κ := max{κ1(1 + κ2‖A21‖L(E1,F0)), κ2} and ω := max{ω1, ω2}

and suppose that there are r ∈ (0, 1
κ
) and β ≥ 0 such that

‖A12y‖E0 ≤ r‖y‖F1 + β‖y‖F0 , y ∈ F1. (3.6)

ii) Put

κ := max{κ2(1 + κ1‖A12‖L(F1,E0)), κ1} and ω := max{ω1, ω2}

and suppose that there are r ∈ (0, 1
κ
) and β ≥ 0 such that

‖A21y‖F0 ≤ r‖y‖E1 + β‖y‖E0 , y ∈ E1. (3.7)

Motivated by the above theorem, we want to prove that for each u ∈ Oα
ε the operator −Ac(u)

generates an analytic semigroup, by showing �rst that −A11(u), −A22(u) generate analytic

semigroups. Observe that due to an interpolation estimate (cf. [3, Proposition I.2.2.1]) and

Young's inequality the norm ‖∂kxh‖2 of a function h ∈ H l, where k, l ∈ N and k ≤ l − 1 can

be estimated as follows

‖∂kxh‖2
2 ≤ ‖h‖Hk ≤ ‖h‖θHl‖h‖1−θ

2 ≤ ε‖h‖2
Hk + c(ε, θ)‖h‖2

2 (3.8)

for all ε > 0, where θ = k
l
and c(ε, θ) > 0 is a constant depending on ε and θ. In virtue

of such an estimate, we could apply Theorem 3.3 easily, if A12(u) or A21(u) would consist

of lower order terms, respectively. However, since A12(u) contains second�order derivatives

acting on H2(0, L) and A12(u) contains fourth�order derivatives acting on H4(0, L), it is not

obvious whether one can obtain an estimate like (3.6) or (3.7).
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Since A21(f, g, 0) = 0, it follows immediately from Theorem 3.3 that, if u = (f, g,Γ) ∈ Oα,

the matrix operator

−A0
c(f, g,Γ) := −Ac(f, g, 0) belongs to H(H4

B(0, L,R2)×H2
B(0, L;R), L2(0, L;R3))

if −A11(f, g), −A22(f, g,Γ) generate analytic semigroups. Then, by means of a perturbation

argument, we obtain the existence of ε > 0, such that Ac(u), u ∈ Oα
ε , is the negative generator

of an analytic semigroup.

Proposition 3.4. Let α ∈ (7
8
, 1), S1) and S2) be satis�ed. Then

i) −A11(f, g) ∈ H(H4
B(0, L,R2), L2(0, L,R2)) for all (f, g) ∈ {H4α

B (0, L;R2) | f, g > 0},

ii) −A22(u) ∈ H(H2
B(0, L;R), L2(0, L,R)) for all u ∈ Oα.

It is already well known, that the strongly elliptic second�order operator A22(u), u ∈ Oα, is

the negative generator of an analytic semigroup on L2(0, L;R) (cf. e.g. [41, Theorem 7.2.7]).

Remark that the strong ellipticity of A22(u), u ∈ Oα, is due to Assumption S1) and D > 0.

We are left to show part i) of Proposition 3.4.

Following the lines of the proof of [24, Lemma 4.1], where a similar proof is investigated for

the more general case n ≥ 1 (here Ω = (0, L) ⊂ R), we show Proposition 3.4 i) by verifying

the Lopatinskii�Shapiro condition for the pair (A,B), where A := A11(X)Y = ∂x(ã(X)∂3
xY )

for X = (f, g) ∈ {X ∈ H4α
B (0, L;R2) | X > 0} �xed and Y ∈ H4

B(0, L;R2) with

ã(X) =

 σc12
f3

3
+ σc2µ

f2g
2

σc2µ
(
f3

3
+ f2g

2

)
σc2

g3

3
+ σc12

f2g
2

+ σc2µfg
2 σc2

g3

3
+ σc2µ

(
f2g
2

+ fg2
)
 in Ω = (0, L)

and B being the boundary operator B := (B1,B2,B3,B4) with

B1Y = (1, 0)∂xY, B2Y = (0, 1)∂xY, B3Y = (1, 0)∂3
xY, B4Y = (0, 1)∂3

xY

on ∂Ω = {0, L} for Y ∈ H4
B(0, L;R2). The associate principal symbols of (A,B) are given

by

aπ(x, ξ) = ã(X(x))|ξ|4 for (x, ξ) ∈ [0, L]× R,

bπ(x, ξ) =
(
(1, 0)ξ, (0, 1)ξ, (1, 0)ξ3, (0, 1)ξ3

)
for (x, ξ) ∈ {0, L} × R.
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3.1. Local Well�Posedness

The operator A is normally elliptic, since

spec(aπ(x, ξ)) ⊂ [Re z > 0] for all (x, ξ) ∈ [0, L]× {ξ ∈ R | |ξ| = 1},

which can be easily veri�ed by observing that the principal minors of ã are positive, which

implies that ã is positive de�nite. The boundary operator B is said to satisfy the Lopatinskii�

Shapiro condition with respect to A if for each (x, ξ) belonging to the tangent bundle T (∂Ω)

and λ ∈ [Rez ≥ 0] with (ξ, λ) 6= 0 the only exponentially decaying solution of the boundary

value problem on the half�line

[λ+ aπ(x, ξ + i∂t)]u = 0, t > 0, bπ(x, ξ + i∂t)u(0) = 0 (3.9)

is the zero solution. Then, the boundary value problem (A,B) is normally elliptic if A is

normally elliptic and B satis�es (3.9).

Due to [2, Remark 4.2 b)] it is su�cient to verify the Lopatinskii�Shaprio condition (3.9)

for (A,B) in order to prove that A is the negative generator of an analytic semigroup.

Since Ω = (0, L) is a subset of an one�dimensional space, the boundary ∂Ω = {0, L} is of

dimension zero, which implies that the tangent space at the boundary is zero. This simpli�es

the Lopatinskii�Shapiro condition (3.9) in this respect that we are left to to show that for

all λ ∈ [Re z ≥ 0] the only exponentially decaying solution of the boundary value problem

on the half�line

[λ+ aπ(x, i∂t)]u = 0, t > 0, bπ(x, i∂t)u(0) = 0 (3.10)

is the zero solution. The argumentation in the sequel follows the lines in the proof of [24,

Lemma 4.1] setting ξ = 0. The boundary value problem (3.10) is equivalent to
λa11u1 + λa12u2 + u

(4)
1 = 0,

λa21u1 + λa22u2 + u
(4)
2 = 0,

t > 0 (3.11)

with initial conditions

u′1(0) = u′2(0) = u′′′1 (0) = u′′′2 (0) = 0, (3.12)

where u
(k)
i denotes the kth derivative of ui, i = 1, 2 and the matrix (aij)1≤i,j≤2 the inverse of

ã(X), which exists by ã(X) being positive de�nite. Since λ 6= 0, we can express u2 in virtue

of the �rst equation in (3.11) as

u2 = − 1

λa12

[
u

(4)
1 + λa11u1

]
, (3.13)
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so that

u
(4)
2 = − 1

λa12

[
u

(8)
1 + λa11u

(4)
1

]
.

By means of the above equations, we obtain from the second equation in (3.11) an 8th�order

ordinary di�erential equation for u1:

u
(8)
1 + λ[a11 + a22]u

(4)
1 + λ2

[
a11a22 − a12a21

]
u1 = 0, t > 0 (3.14)

with initial conditions

u′1(0) = u′′′1 (0) = u
(5)
1 (0) = u

(7)
1 (0) = 0. (3.15)

A general solution of (3.14) is given by the polynomial

u1(t) =
8∑

k=1

cke
Λkt, t ≥ 0, (3.16)

where {Λk ∈ C | k = 1, . . . , 8} are the roots of the characteristic polynomial

Λ8 + λ[a11 + a22]Λ4 + λ2
[
a11a22 − a12a21

]
= 0.

A solution to the above equation of 8th�order is given via

Λ4
± =

λ

2

(
−[a11 + a22]±

√
(a11 − a22)2 + 4a12a21

)
=: λE±,

with E± < 0 and E+ 6= E−. Hence, the roots Λk are given by

Λ1/2 = ± 1√
2

(1 + i) 4
√
−E+, Λ3/4 = ± 1√

2
(1− i) 4

√
−E+

Λ5/6 = ± 1√
2

(1 + i) 4
√
−E−, Λ7/8 = ± 1√

2
(1− i) 4

√
−E−.

Recall that u1 is claimed to have exponential decay, which implies in virtue of Re Λk > 0 for

k ∈ {1, 3, 5, 7}, that c1, c3, c5, c7 = 0. In view of (3.15) and (3.16) we deduce that
u

(1)
1 (0)

u
(3)
1 (0)

u
(5)
1 (0)

u
(7)
1 (0)

 =


Λ2 Λ4 Λ6 Λ8

Λ3
2 Λ3

4 Λ3
6 Λ3

8

Λ5
2 Λ5

4 Λ5
6 Λ5

8

Λ7
2 Λ7

4 Λ7
6 Λ7

8




c2

c4

c6

c8

 = 0
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3.2. Asymptotic Stability

Due to E+ 6= E− it is clear that Λ2 6= Λ4 6= Λ6 6= Λ8 and the determinant of the 4×4 matrix

above is di�erent from zero. Hence, c2, c4, c6, c8 = 0. This implies that u1 = u2 = 0 in virtue

of (3.13) and (3.16), which completes the proof. Eventually, we conclude that, in virtue of

Proposition 3.4, the operator −A0
c belongs to H(H4

B(0, L,R2)×H2
B(0, L;R), L2(0, L;R3)).

Introducing the operator B : Oα
ε → L(H4

B(0, L,R2)×H2
B(0, L;R), L2(0, L;R3)), de�ned by

B(u) :=

 0 0

A21(u) A22(u)

 , for u ∈ Oα
ε ,

where A22(f, g,Γ)Γ̃ := ∂x((µf + g)Γσ′(Γ)∂xΓ̃) for Γ̃ ∈ H2(0, L;R), we obtain that for all ε̃

there exists ε > 0, such that if u = (f, g,Γ) ∈ Oα
ε ,

‖B(u)‖L(H4
B(0,L,R2)×H2

B(0,L;R),L2(0,L;R3)) < ε̃.

Hence, by means of a perturbation argument (cf. [3, Theorem 1.3.1] ), the operator

−Ac(u) = −A0
c(u)−B(u) belongs to H(H4

B(0, L,R2)×H2
B(0, L;R), L2(0, L;R3))

for all u ∈ Oα
ε and Theorem 3.1 is a consequence of (3.3) and [2, Theorem 12.1].

Remark 3.5. An alternative proof of Proposition 3.4 i) by showing that the operator A11(X)

is sectorial, is included in Appendix A.2.

3.2. Asymptotic Stability

In this section we study the stability properties of equilibrium solutions to (3.1). Following

the approach as in [19, 24], the analysis is similar to the one applied in Section 2.2. Observe

that formally the functional

E(f, g,Γ)(t) :=

∫ L

0

{
1

2
|∂x(f + g)(t, x)|2 +

σc1
2σc2µ

|∂xf(t, x)|2 +
1

σc2
Φ(Γ(t, x))

}
dx (3.17)

dissipates along solutions of (1.49). Comparing the systems (2.1a) and (3.1a), the evolution

equations for the fourth�order system can be recovered from (2.1a) by replacing the appear-

ing third order derivatives ∂3
x by (negative) �rst order derivatives −∂x and G1 by σc1 + σc2µ,

G2 by σc2, respectively. Therefore (after integrating by parts the terms involving f and g
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twice), the same computation as in the previous section yields (formally)

d

dt
E(f, g,Γ)(t)

= −

∥∥∥∥∥√f

[
1√

3σc2µ
f∂3

x((σ
c
1 + σc2µ)f + σc2µg) +

√
3

2

(√
σc2µg∂

3
x(f + g) +

√
µ

√
σc2
∂xσ(Γ)

)]∥∥∥∥∥
2

2

− 1

4

∥∥∥∥∥√f

[√
σc2g∂

3
x(f + g) +

√
3

2
√
σc2
∂xσ(Γ)

]∥∥∥∥∥
2

2

+

∥∥∥∥∥√g
[√

σc2√
3
g∂3

x(f + g) +

√
3

2
√
σc2
∂xσ(Γ)

]∥∥∥∥∥
2

2

− 1

4σc2
‖√g∂xσ(Γ)‖2

2 −
D

σc2

∥∥∥√Φ′′(Γ)∂xΓ
∥∥∥2

2
.

(3.18)

But, the regularity of the local solutions found in Theorem 3.1 is not su�cient in order to

di�erentiate the functional with respect to time. However, like in [24], we may improve the

regularity of a solution u of (3.1).

Corollary 3.6. The local solution u found in Theorem 3.1 admits the regularity

u ∈ C
5
4 ((0, T );H1

B(0, L;R2)×H
1
2
B(0, L;R)).

Proof. We follow the lines in [24, Section 4.1]. Theorem 3.1 provides that

u ∈ C((0, T );H4
B(0, L;R2)×H2

B(0, L;R)) ∩ C1((0, T );L2(0, L;R3)).

By [3, Proposition II.1.1.2], this implies that

u ∈ C1−θ((0, T );H4θ
B (0, L;R2)×H2θ

B (0, L;R))

for θ ∈ [0, 1]. For ρ ∈
(

3
8
, 1
)
, the Sobolev Embedding Theorem yields

u ∈ C1−ρ((0, T );C1([0, L],R2)× C([0, L],R)).

Since Ac depends smoothly on its coe�cients, we deduce from Theorem 3.2 that

−Ac(u) ∈ C1−ρ((0, T );H(H4
B(0, L;R2)×H2

B(0, L;R))).

Note that w := u solves the linear parabolic problem

∂tw + Ac(u)w = 0, w(0) = u(0) = u0.
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3.2. Asymptotic Stability

By [2, Theorem 10.1], the unique solution w pro�ts from the 'regularizing' e�ect for parabolic

equations and we obtain, in view of w = u, that

u ∈ C1−ρ((0, T );H4
B(0, L;R2)×H2

B(0, L;R)) ∩ C2−ρ((0, T );L2(0, L;R3)). (3.19)

Since ρ ∈
(

3
8
, 1
)
, (3.19) yields in particular that u ∈ C 1

2 ((0, T );H4
B(0, L;R2)×H2

B(0, L;R))∩

C
3
2 ((0, T );L2(0, L;R3)) and, by [33, Proposition 1.1.5],

u ∈ C
1
2 ((0, T );H4

B(0, L;R2)×H2
B(0, L;R)) ∩ C

3
2 ((0, T );L2(0, L;R3))

⊂ C
3
2
−δ((0, T );H4δ

B (0, L;R2)×H2δ
B (0, L;R), L2(0, L;R2)× L2(0, L;R))

for δ ∈ (0, 1). Set δ = 1
4
, then u ∈ C 5

4 ((0, T );H1
B(0, L;R2)×H

1
2
B(0, L;R)).

The above Corollary allows us to di�erentiate (3.17) with respect to time and we �nd (3.18)

satis�ed for a solution u given by Theorem 3.1. Since all the terms on the right�hand side

of (3.18) are non�positive, if u∗ = (f∗, g∗,Γ∗) is a steady solution of (1.49), each term on

the right�hand side of (3.18) needs to vanish. We deduce that, due to Assumption S2),

∂xΓ∗ = ∂3
xf∗ = ∂3

xg∗ = 0. Hence, Γ∗, ∂
2
xf∗ and ∂2

xg∗ are a constant, which in particular

implies that ∂xf∗ and ∂xg∗ are linear functions. In virtue of the boundary conditions, we

deduce that ∂xf∗ = ∂xg∗ = 0. Thus also f∗ and g∗ are constant.

Corollary 3.7. The only positive steady state solutions to (3.1) are of the form (f∗, g∗,Γ∗),

where f∗, g∗ and Γ∗ are positive constants.

Observe, by a simple computation, that the mass of each �uid and the mass of the surfactant

concentration is preserved by the evolution of the system, which is due to the boundary

conditions.

Lemma 3.8 (Conservation of mass). Let u = (f, g,Γ) be a solution to (3.1) as found in

Theorem 3.1. Then the mass of u is preserved with time, that is

d

dt

∫ L

0

f(t, x) dx = 0 and
d

dt

∫ L

0

g(t, x) dx = 0 and
d

dt

∫ L

0

Γ(t, x) dx = 0

on (0, T ).

The last part of this section is devoted to prove that, assuming the averaged initial surfactant

concentration to be su�ciently small, there exists for every initial data close enough to the
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steady state a global positive strong solution to (3.1) tending exponentially to the constant

steady state, which is given by the average initial data. As in the previous section we denote

by

〈h〉 :=
1

L

∫ L

0

h(x) dx

the average of a function h with regard to space and introduce the projection

P ∈ L(L2(0, L;R3)) ∩ L(H4
B(0, L;R2)×H2

B(0, L;R)), Pu := u− 〈u〉.

Recall that due to mass conservation and continuity in t = 0, a solution u of (3.1), which

satis�es initially (1−P )u(0) = u∗ ful�lls (1−P )u(t) = u∗ as long as the solution exists. By the

projection, we can decompose the spaces L2(0, L;R3) = PL2(0, L;R3)⊕ (1− P )L2(0, L;R3)

and H4
B(0, L;R2)×H2

B(0, L;R) = P (H4
B(0, L;R2)×H2

B(0, L;R))⊕ (1− P )(H4
B(0, L;R2)×

H2
B(0, L;R) and express a solution u in the terms

u(t) = z(t) + u∗

with z(t) = Pu(t) = u(t)−〈u(t)〉 = u(t)−u∗ for all t ≥ 0. If u is the corresponding solution

of (1.49) to the the initial data u0 ∈ H4
B(0, L,R2)×H2

B(0, L;R), then z = u−u∗ is a solution

of

∂tz + Ac(z + u∗)z = 0.

Hence, the stability property of u∗ is equivalent to the one for the stationary solution z = 0

of

∂tz + A∗cz =

(
A∗c − Ac(z + u∗)

∣∣∣
P (H4

B×H
2
B)

)
z =: F (z), (3.20)

where A∗cw := Ac(u∗)w for w ∈ H4
B(0, L;R2)×H2

B(0, L;R). Observe that

(1− P )(A∗cz) = 0 and (1− P )Ac(z + u∗)z = 0 for z ∈ P (H4
B(0, L;R2)×H2

B(0, L;R2)),

due to u∗ being constant and z satisfying the boundary conditions. Hence,

F ∈ C1(P (H4
B(0, L;R2)×H2

B(0, L;R)), P (L2(0, L,R3))) with F (0) = F ′(0) = 0, (3.21)

where F ′ denotes the Frechét derivative of F . Problem (3.20) is in fact the restriction of

(3.2) to the subspace P (L2(0, L;R3)) of L2(0, L;R3), where the constant functions (except

the zero function) are eliminated. Next we prove a lemma providing the necessary conditions

in order to apply the principle of linearized stability (cf. [33, Theorem 9.1.2]), which implies

the asymptotic stability of the zero solution z = 0 of (3.20).
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3.2. Asymptotic Stability

Lemma 3.9. There exists a constant ε∗ > 0, such that if 0 ≤ Γ∗ < ε∗ the operator −A∗c
belongs to H(P (H4

B(0, L;R2)×H2
B(0, L;R2), P (L2(0, L;R3))), that is, −A∗c is the generator

of an analytic semigroup on PL2(0, L;R3). Further, there exists ω0 > 0, such that the

spectrum spec(−A∗c) of −A∗c is contained in the half plane [Re z ≤ −ω0].

Proof. We know already from Theorem 3.2, that there exists ε1 > 0 such that A∗c ∈

H(H4
B(0, L;R2) × H2

B(0, L;R2)) provided that 0 ≤ Γ∗ < ε1. By the same argument as

in Lemma 2.5, we can represent −A∗c as a matrix operator

−A∗c =

−A∗c∣∣P (H4
B×H

2
B)

0

0 0

 ∈ H(P (H4
B(0, L;R2)×H2

B(0, L;R)), P (L2(0, L;R3))).

Now, [3, Theorem I.1.6.3] implies that

−A∗c
∣∣∣
P (H4

B×H
2
B)
∈ H(P (H4

B(0, L;R2)×H2
B(0, L;R)), P (L2(0, L;R3))).

In order to study the spectrum of A∗c , let w
0 = (f 0, g0,Γ0) ∈ P (L2(0, L;R3)) be arbitrary and

w(t) := e−tA
∗
Cw0 be the unique strong solution in P (L2(0, L;R3)) of the linearized problem

∂tw + A∗cw = 0, w(0) = w0, (3.22)

which exists in virtue of A∗c being the negative generator of an analytic semigroup. Note

that if w = (f, g,Γ) is a solution to (3.22), then

1

2

d

dt

(
‖(f + g)‖2

2 +
σc1
σc2µ
‖f‖2

2 + z‖Γ‖2
2

)
+

b∗(f∗, g∗,Γ∗)

∂2
x(f + g)

∂2
xf

∂xΓ


∣∣∣∣∣∣∣∣∣


∂2
x(f + g)

∂2
xf

∂xΓ




2

= 0,

where z ∈ R and bzc being the symmetric matrix

bzc(f∗, g∗,Γ∗) :=


σc2

g3∗
3

+ σc2µ
(
f3∗
3

+ f 2
∗ g∗ + f∗g

2
∗

)
σc1

(
f3∗
3

+ f2∗ g∗
2

)
l

σc1

(
f3∗
3

+ f2∗ g∗
2

)
(σc1)2

σc2µ
f3∗
3

k

l k −z(µf∗ + g∗)Γ∗σ
′(Γ∗) + zD


with

k :=
1

2

(
−σ

c
1

σc2

f 2
∗
2
σ′(Γ∗) + z

(
σc2
g∗
2

+ σc2µ

(
f 2
∗
2

+ f∗g∗

))
Γ∗

)
,

l :=
1

2

(
−
(
µf∗g∗ +

g2
∗
2

)
σ′(Γ∗) + zσc1

f 2
∗
2

Γ∗

)
.
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Observe that similar to (2.13), for su�ciently large z ∈ R, the matrix bzc(f∗, g∗, 0) is positive

de�nite since, due to Assumption S2), its leading principal minors are positive, when choosing

z suitable. Hence, there exists ε2 = ε2(f∗, g∗) > 0 depending on f∗ and g∗, such that for

0 ≤ Γ∗ < ε2, the matrix bzc(f∗, g∗,Γ∗) is positive de�nite. Therefore, we �nd a positive

constant ν > 0, such that

1

2
‖∂t(f + g)‖2

2 +
σc1
σc2µ
‖∂tf‖2

2 + z‖∂tΓ‖2
2 ≤ −ν

∥∥∥∥∥∥∥∥∥


∂2
x(f + g)

∂2
xf

∂xΓ


∥∥∥∥∥∥∥∥∥

2

2

.

Recall that the average value of w̃ := (f + g, f,Γ) ∈ P (H4
B(0, L,R2)×H2

B(0, L,R)) is zero,

so that we �nd, by Poincaré's inequality a constant c > 0, such that

1

2
‖∂t(f + g)‖2

2 +
σc1
σc2µ
‖∂tf‖2

2 + z‖∂tΓ‖2
2 ≤ −c

(
‖f + g‖2

2 + ‖f‖2
2 + ‖Γ‖2

2

)
.

Following the argumentation in Section 2, we deduce that w has exponential decay, that is,

‖w‖2
2 ≤Me−tω0‖w0‖2

2

and spec(−A∗c) ⊂ [Re z ≤ −ω0] for some M ≥ 1 and ω0 > 0. Setting ε∗ := min{ε1, ε2} the

proof of Lemma 3.9 is complete.

Combining Lemma 3.9 and (3.21), the principle of linearized stability ([33, Theorem 9.1.2])

implies the following theorem:

Theorem 3.10 (Asymptotic Stability). Let u∗ = (f∗, g∗,Γ∗) be a positive steady state

solution of (1.49). Then f∗, g∗ and Γ∗ are positive constants and there exist numbers

ε∗ = ε∗(f∗, g∗) > 0, ω > 0 and M ≥ 1, such that for 0 ≤ Γ∗ < ε∗ and any initial data

u0 = (f 0, g0,Γ0) ∈ H4
B(0, L,R2) × H2

B(0, L,R) with 〈f 0〉 = f∗, 〈g0〉 = g∗ and 〈Γ0〉 = Γ∗

satisfying the smallness condition

‖u0 − u∗‖H4
B×H

2
B
< ε∗,

the solution u of (3.1) found in Theorem 3.1 exists globally and

‖u(t)− u∗‖H4
B×H

2
B

+ ‖∂tu(t)‖2 ≤Me−ωt‖u0 − u∗‖H4
B×H

2
B

for all t ≥ 0.
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3.3. Weak Solutions

3.3. Weak Solutions

Following [20, 22, 26], we prove in this section the existence of a global weak solution to

(1.49). The mathematical model describing the evolution of a two�phase �ow driven by

capillary e�ects only and endowed with a layer of insoluble surfactant is given by (cf. (1.49))



∂tf + ∂x

[
σc1
f 3

3
∂3
xf + σc2µ

(
f 3

3
+
f 2g

2

)
∂3
x(f + g) + µ

f 2

2
∂xσ(Γ)

]
= 0,

∂tg + ∂x

[
σc1
f 2g

2
∂3
xf +

(
σc2
g3

3
+ σc2µ

(
f 2g

2
+ fg2

))
∂3
x(f + g) +

(
µfg +

g2

2

)
∂xσ(Γ)

]
= 0,

∂tΓ + ∂x

[
σc1
f 2

2
Γ∂3

xf +

(
σc2
g2

2
+ σc2µ

(
f 2

2
+ fg

))
Γ∂3

x(f + g) + (µf + g) Γ∂xσ(Γ)

−D∂xΓ

]
= 0,

(3.23a)

for t > 0 and x ∈ (0, L) with initial conditions at t = 0

f(0, ·) = f 0, g(0, ·) = g0, Γ(0, ·) = Γ0 (3.23b)

and boundary conditions at x = 0, L

∂xf = ∂xg = ∂xΓ = 0,

∂3
xf = ∂3

xg = 0.
(3.23c)

We recall the assumptions from the beginning of this chapter and impose additionally As-

sumption A2) and A3) below: Given the surface tension coe�cients σ1 = σc1 ≥ 0 and σ2 of

the form

σ2(Γ) = σc2 + σ(Γ),

where Γ is the surfactant concentration, we assume that the part of the surface tension,

which is independent of the concentration of surfactant, is strictly positive and the part of

the surface tension, which depends on Γ, is non�increasing, that is,

S1) σ ∈ C2(R) and −σ′(s) > 0 for all s ≥ 0.

S2) σc1, σ
c
2 > 0.
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Moreover, let Φ be a function, such that

A1) Φ ∈ C2(R) with Φ(1) = Φ′(1) = 0 and

Φ′′(s) = −σ
′(s)

s
for all s ∈ R. (3.24)

A2) There exists cΦ > 0 such that Φ′′(s) ≥ cΦ for all s ∈ R.

A3) There exists CΦ > 0 and some r ∈ (0, 2) for which Φ′′(s) ≤ CΦ(|s|r + 1) for all s ∈ R.

In A1)�A3), we suppose the assumptions to hold on the whole real line instead of the

physically relevant range [0,∞). For our purpose, this is needed due to the fact that a�

priori it is not clear whether the solution we construct for the surfactant concentration is

non�negative. Unfortunately, theses assumptions do not allow to consider surface tension

pro�les as commonly used and suggested in [27]. In [20] the existence of non�negative weak

solutions for the one�phase thin �lm with insoluble surfactant is shown under less restrictive

assumptions on the surface pro�le, which allows for more general surface tension pro�les.

Following the same approach as in [20, 26], where global weak solutions to a one�phase thin

�lm model with insoluble surfactant are proven and [22], where the existence of global weak

solutions to a two�phase thin �lm model is shown, we combine these results and prove the

following theorem, which states the existence of global weak solutions for the fourth�order

two�phase thin �lm problem with insoluble surfactant (3.23). Moreover, we show that the

solutions corresponding to non�negative initial data stay non�negative almost everywhere,

which is again done by the same methods used in [20, 22].

Theorem 3.11 (Global Weak Solutions). Let f 0, g0 ∈ H1(0, L) and Γ0 ∈ L2(r+1)(0, L),

where r ∈ (0, 2) corresponds to Assumption A3), be non�negative functions. Then, there

exists at least one global weak solution (f, g,Γ) of problem (3.23) in the sense that:

a) the solution has the regularity

f, g ∈ L∞(0, T ;H1(0, L)) ∩ C([0, T ];Cα([0, L])) for all α ∈
[
0,

1

2

)
,

Γ ∈ L∞(0, T ;L2(0, L)) ∩ L2(0, T ;H1(0, L)) ∩ C([0, T ]; (H1(0, L))′)

for all T > 0,
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b) (f, g,Γ)(0) = (f 0, g0,Γ0) and f ≥ 0, g ≥ 0, Γ ≥ 0 in ΩT , where Γ(0) = Γ0 and Γ ≥ 0

is to be understood as almost everywhere,

c) the mass of the �uids is conserved, that is for almost every t ≥ 0 we have

‖f(t)‖1 = ‖f 0‖1, ‖g(t)‖1 = ‖g0‖1, ‖Γ(t)‖1 = ‖Γ0‖1,

d) de�ning for every T > 0 the sets

Pf := {(t, x) ∈ ΩT : f(t, x) > 0} and Pg := {(t, x) ∈ ΩT : g(t, x) > 0},

we have ∂3
xf, ∂

3
xg ∈ L2(Pf ∩Pg) and there exist functions Hf , Hg, HΓ ∈ L2(ΩT ), which

can be identi�ed on the set Pf ∩ Pg with

Hf =

√
σc2µ√
3
f 2

[
f√

3σc2µ
∂3
x((σ

c
1 + σc2µ)f + σc2µg) +

√
3

2

(√
σc2µg∂

3
x(f + g) +

√
µ

√
σc2
∂xσ(Γ)

)]
,

Hg =

√
3σc2µ

2
gf

[
f√

3σc2µ
∂3
x((σ

c
1 + σc2µ)f + σc2µg) +

2√
3

(√
σc2µg∂

3
x(f + g) +

√
µ

√
σc2
∂xσ(Γ)

)]

+

√
σc2√
3
g2

[√
σc2√
3
g∂3

x(f + g) +

√
3

2
√
σc2
∂xσ(Γ)

]
,

HΓ =

√
3σc2
2

Γf

[
f√

3σc2µ
∂3
x((σ

c
1 + σc2µ)f + σc2µg) +

2√
3

(√
σc2µg∂

3
x(f + g) +

√
µ

√
σc2
∂xσ(Γ)

)]

+

√
3σc2
2

Γg

[√
σc2√
3
g∂3

x(f + g) +

√
3

2
√
σc2
∂xσ(Γ)

]
+

1

4
Γg∂xσ(Γ)−D∂xΓ.

Further, ∫ T

0

〈∂tf(t), ξ(t)〉H1 dt =

∫
ΩT

Hf∂xξ d(x, t), (3.25)

∫ T

0

〈∂tg(t), ξ(t)〉H1 dt =

∫
ΩT

Hg∂xξ d(x, t), (3.26)

∫ T

0

〈∂tΓ(t), ξ(t)〉H1 dt =

∫
ΩT

HΓ∂xξ d(x, t) (3.27)

for all ξ ∈ L2(0, T ;H1(0, L)).

e) the energy inequality

E(f, g,Γ)(T ) +D(f, g,Γ)(T ) ≤ E(f 0, g0,Γ0)
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is satis�ed for almost all T ≥ 0, where

E(f, g,Γ)(T ) :=

∫ L

0

{
1

2
|∂x(f + g)(T, x)|2 +

σc1
2σc2µ

|∂xf(T, x)|2 +
1

σc2
Φ(Γ(T, x))

}
dx

and

D(f, g,Γ)(T ) :=

∫
Pf∩Pg

f

[
1√

3σc2µ
f∂3

x((σ
c
1 + σc2µ)f + σc2µg)

+

√
3

2

(√
σc2µg∂

3
x(f + g) +

√
µ

√
σc2
∂xσ(Γ)

)]2

d(x, t)

+

∫
Pf∩Pg

1

4
f

[√
σc2g∂

3
x(f + g) +

√
3

2
√
σc2
∂xσ(Γ)

]2

d(x, t)

+

∫
Pf∩Pg

g

[√
σc2√
3
g∂3

x(f + g) +

√
3

2
√
σc2
∂xσ(Γ)

]2

d(x, t)

+

∫
ΩT

1

4σc2
g|∂xσ(Γ)|2 d(x, t) +

∫
ΩT

D

σc2
Φ′′(Γ)|∂xΓ|2 d(x, t).

In order to prove the existence of global weak solutions to (3.23), we construct a family

of regularized systems, which tend in the limit to the original system, and prove by using

a Galerkin approximation and a�priori estimates that there exist global weak solutions to

the regularized problems (Section 3.3.1). In a second step we show that a certain sequence

of weak solutions of the regularized problems tends in the limit to a weak solution of the

original problem (Section 3.3.2).

3.3.1. The Regularized Systems

Proceeding analogously to what follows, it is also possible to construct Galerkin approxima-

tions (fn, gn,Γn)n∈N directly for the original system (3.23). However, there occur technical

problems as for example the lack of an energy functional, which would provide not only

the global existence of the Galerkin approximations but also needed a�priori bounds on the

Galerkin approximation, which allow to extract subsequences converging to a weak solution

of (3.23). This di�culty arises due to the degeneracy in (3.23a), which may appear in the

�rst and second equation if f and g decrease to zero, respectively. To avoid this, we de�ne
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3.3. Weak Solutions

for every ε ∈ (0, 1] the function aε : R −→ R+ by

aε(s) := ε+ max{0, s} for s ∈ R

and replace f and g in (3.23a) by aε(f) > 0 and aε(g) > 0, respectively. In doing so, we may

prove Theorem 3.11, by combining the ideas in [22] and [26], apart from the non�negativity

of Γ. In [20] a similar result as in [26] is shown, where additionally the non�negativity of Γ

is proven. This is done by substituting the terms involving Γ in the evolution equations by

a truncation operator, which ensures that the solutions of the regularized problems satisfy

the non�negativity of the surfactant concentration. In accordance to [20] we introduce the

truncation function

T (s) :=


s, if s ∈ (0, 1),

2− s, if s ∈ [1, 2],

0, if s ≥ 2,

T (s) = T (−s), if s < 0

and put Tε := ε−1T (· ε) for ε−1(0, 1]. Further, we set

σε(s) :=

∫ s

1

Tε(σ′(τ)) dτ, for s ∈ R.

Note, that by construction and Assumption S2), σε ∈ C1(R)

|σ′ε(s)| ≤ |σ′(s)| for all s ∈ R. (3.28)

Associated to σε, we introduce a truncation of the identity

τε(s) := s
σ′ε(s)

σ′(s)
for s ∈ R. (3.29)

This is well�de�ned in view of (3.28). We emphasize that τε has compact support supp(τε) ⊂

[−2ε−1, 2ε−1], is Liptschitz continuous and

|τε(s)| ≤ |s| for s ∈ R, (3.30)
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which implies that ‖τε‖∞ ≤ 2ε−1. Using now aε for f, g and the truncation τε of the identity

for the surfactant concentration Γ, we introduce the regularized problem

∂tfε + ∂x

[
σc1
aε(fε)

3

3
∂3
xfε + σc2µ

(
aε(fε)

3

3
+
aε(fε)

2aε(gε)

2

)
∂3
x(fε + gε) + µ

aε(fε)
2

2
∂xσε(Γε)

]
= 0,

∂tgε + ∂x

[
σc1
aε(fε)

2aε(gε)

2
∂3
xfε +

(
σc2
aε(gε)

3

3
+ σc2µ

(
aε(fε)

2aε(gε)

2
+ aε(fε)aε(gε)

2

))
×∂3

x(fε + gε) +

(
µaε(fε)aε(gε) +

aε(gε)
2

2

)
∂xσε(Γε)

]
= 0,

∂tΓε + ∂x

[
σc1
aε(fε)

2

2
τε(Γε)∂

3
xfε +

(
σc2
aε(gε)

2

2
+ σc2µ

(
aε(fε)

2

2
+ aε(fε)aε(gε)

))
×τε(Γε)∂3

x(fε + gε) + (µaε(fε) + aε(gε)) τε(Γε)∂xσε(Γε)−D∂xΓε
]

= 0

(3.31)

in ΩT supplemented with initial and boundary conditions (3.23b), (3.23c). Observe that

(formally), if ε tends to zero and the limit functions limε→0 fε = f , limε→0 gε = g and

limε→0 Γε = Γ are non�negative, aε, τε tend to the identity and the regularized system tends

to the original system. The system (3.31) is more regular than (3.23a) in the sense that

the coe�cients of the fourth�order terms in the equations for f and g are bounded from

below by ε > 0. Hence, (3.31) is uniformly parabolic. We show that for any �xed ε > 0 the

problem (3.31), supplemented with initial and boundary conditions (3.23b), (3.23c), admits

a global weak solution.

Theorem 3.12 (Global Weak Solutions for the Regularized Systems). Let ε ∈ (0, 1] be �xed

and (f 0, g0,Γ0) ∈ (H1(0, L))2 × L2(r+1)(0, L), where r ∈ (0, 2) corresponds to Assumption

A3). Then, for any T > 0 there exists at least one triple of functions (fε, gε,Γε) having the

regularity

fε, gε ∈ L∞(0, T ;H1(0, L)) ∩ L2(0, T ;H3(0, L)) ∩ C([0, T ];Cα([0, L])), α ∈
[
0,

1

2

)
,

Γε ∈ L∞(0, T ;L2(0, L)) ∩ L2(0, T ;H1(0, L)) ∩ C([0, L], (H1(0, L))′),

(3.32)

∂tfε, ∂tgε, ∂tΓ ∈ L2(0, T ; (H1(0, L))′),
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3.3. Weak Solutions

satisfying ∫ T

0

〈∂tfε(t), ξ(t)〉H1 dt =

∫
ΩT

F ε
f ∂xξ d(x, t), (3.33)

∫ T

0

〈∂tgε(t), ξ(t)〉H1 dt =

∫
ΩT

F ε
g ∂xξ d(x, t), (3.34)

∫ T

0

〈∂tΓε(t), ξ(t)〉H1 dt =

∫
ΩT

F ε
Γ∂xξ d(x, t), (3.35)

with

F ε
f :=

[
σc1
aε(fε)

3

3
∂3
xfε + σc2µ

(
aε(fε)

3

3
+
aε(fε)

2aε(gε)

2

)
∂3
x(fε + gε) + µ

aε(fε)
2

2
∂xσε(Γε)

]
,

F ε
g :=

[
σc1
aε(fε)

2aε(gε)

2
∂3
xfε +

(
σc2
aε(gε)

3

3
+ σc2µ

(
aε(fε)

2aε(gε)

2
+ aε(fε)aε(gε)

2

))
∂3
x(fε + gε)

+

(
µaε(fε)aε(gε) +

aε(gε)
2

2

)
∂xσε(Γε)

]
,

F ε
Γ :=

[
σc1
aε(fε)

2

2
τε(Γε)∂

3
xfε +

(
σc2
aε(gε)

2

2
+ σc2µ

(
aε(fε)

2

2
+ aε(fε)aε(gε)

))
τε(Γε)∂

3
x(fε + gε)

+ (µaε(fε) + aε(gε)) τε(Γε)∂xσε(Γε)−D∂xΓε]

for all ξ ∈ L2(0, T ;H1(0, L)). Further

(fε(0, ·), gε(0, ·),Γε(0, ·)) = (f 0, g0,Γ0) (3.36)

and the mass of the �uids and the surfactant concentration is preserved∫ L

0

fε(t) dx = ‖f 0‖1,

∫ L

0

gε(t) dx = ‖g0‖1,

∫ L

0

Γε(t) dx = ‖Γ0‖1 (3.37)

for almost all t ≥ 0. Moreover, there holds the energy inequality

E(fε, gε,Γε)(T ) +Dε(fε, gε,Γε)(T ) ≤ E(f 0, g0,Γ0) (3.38)

for almost all T ≥ 0, where

Dε(fε, gε,Γε)(T ) :=

∫
ΩT

{
aε(fε)

[
1√

3σc2µ
aε(fε)∂

3
x((σ

c
1 + σc2µ)fε + σc2µgε)

+

√
3

2

(√
σc2µaε(gε)∂

3
x(fε + gε) +

√
µ

√
σc2
∂xσε(Γε)

)]2
 d(x, t)
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+

∫
ΩT

1

4
aε(fε)

[√
σc2aε(gε)∂

3
x(fε + gε) +

√
3

2
√
σc2
∂xσε(Γε)

]2

d(x, t)

+

∫
ΩT

aε(gε)

[√
σc2√
3
aε(gε)∂

3
x(fε + gε) +

√
3

2
√
σc2
∂xσε(Γε)

]2

d(x, t)

+

∫
ΩT

1

4σc2
aε(gε)|∂xσε(Γε)|2 d(x, t) +

∫ T

0

∫ L

0

D

σc2
Φ′′(Γε)|∂xΓε|2 d(x, t).

Proving Theorem 3.12, we �rst construct a Galerkin approximation for a weak solution of

problem (3.31), (3.23b) and (3.23c).

Approximation of a Weak Solution of (3.31) by Fourier Series Expansions. Let

ε ∈ (0, 1] be �xed. Following [22, 26, 47], we construct a solution to (3.31), (3.23b) and

(3.23c) by the method of Galerkin approximation. That is, we are seeking for functions

fnε , g
n
ε ,Γ

n
ε , such that the problem is satis�ed in a weak sense, when testing against functions

from an n�dimensional subspace. These solutions are called Galerkin approximations.

Note that the normalized eigenvectors of −∆ : H2(0, L) −→ L2(0, L), which satisfy zero

Neumann�boundary conditions are given by

φ0 :=

√
1

L
and φk :=

√
2

L
cos

(
kπx

L

)
, k ≥ 1,

and form an orthonormal basis in L2(0, L). It is known that any function belonging to

H1(0, L) can be written as
∑∞

k=0 αkφk, where the series converges in H1(0, L) and αk :=

(f | φk)2 for k ≥ 0. We refer to e.g. [13] for more details. We take a Galerkin�ansatz

for fε, gε and Φ′(Γε). Since Φ′ ∈ C1(R) and Φ′′ > 0, by (3.24), there exists a continuous

di�erentiable inverse function W := (Φ′)−1. Set vε := Φ′(Γε), then Γε = W (vε) and

∂xσε(W (v)) = σ′ε(W (v))W ′(v)∂xv = −τε(W (v))
σ′(W (v))

W (v)

W (v)

σ′(W (v))
∂xv = −τε(W (v))∂xv,

so that the third equation of (3.31) becomes

∂tW (vε) + ∂x

[
σc1
aε(fε)

2

2
τε(W (vε))∂

3
xfε +

(
σc2
aε(gε)

2

2
+ σc2µ

(
aε(fε)

2

2
+ aε(fε)aε(gε)

))
× τε(W (vε))∂

3
x(fε + gε)− (µaε(fε) + aε(gε)) τε(W (vε))

2∂xvε −D∂xW (vε)
]

= 0.

Observe that Assumption A2) implies that

|Φ′(s)| =
∣∣∣∣∫ s

1

Φ′′(t) dt

∣∣∣∣ ≤ CΦ

∣∣∣∣∫ s

1

(|t|r + 1) dt

∣∣∣∣ = CΦ

(
|s− 1|+

∣∣∣∣ sr+1

r + 1
− 1

r + 1

∣∣∣∣) . (3.39)
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Hence, Φ′(Γ0) ∈ L2(0, L), by Γ0 ∈ L2(r+1)(0, L). For f 0, g0 ∈ H1(0, L) and v0 := Φ′(Γ0) ∈

L2(0, L) there exist sequences (f0k)k∈N, (g0k)k∈N and (v0k)k∈N, such that

fn0 :=
n∑
k=0

f0kφk with fn0 −→ f 0 in H1(0, L),

gn0 :=
n∑
k=0

g0kφk with gn0 −→ g0 in H1(0, L),

vn0 :=
n∑
k=0

v0kφk with vn0 −→ v0 in L2(0, L).

We seek for continuous di�erentiable functions

fnε (t, x) :=
n∑
k=0

F k
ε (t)φk(x), gnε (t, x) :=

n∑
k=0

Gk
ε(t)φk(x), vnε (t, x) :=

n∑
k=0

V k
ε (t)φk(x) in ΩT ,

which solve (3.31) when testing with functions from the linear subspace spanned by {φ0, . . . , φn}

and which satisfy initially

fnε (0, ·) = fn0 , gnε (0, ·) = gn0 , vnε (0, ·) = vn0 .

Set Γnε := W (vnε ). By construction the functions fnε , g
n
ε , v

n
ε satisfy the boundary condition.

Due to ∂xv
n
ε = Φ′′(Γnε )∂xΓ

n
ε = 0 at x = 0, L and Φ′′ > 0 by (3.24), we obtain that also Γnε

satis�es ∂xΓ
n
ε = 0 at x = 0, L.

Lemma 3.13. For ε ∈ (0, 1] �xed and for any T > 0, the problem (3.31), (3.23b), (3.23c)

admits for every n ∈ N a unique global Galerkin approximation (fnε , g
n
ε ,Γ

n
ε ), where Γnε =

W (vnε ). The approximation has for each n ∈ N the regularity

fnε , g
n
ε ∈ C1([0, T ];C∞(0, L)),

Γnε ∈ C1([0, T ];C1(0, L))

and the boundary conditions

∂3
xf

n
ε = ∂3

xg
n
ε = ∂xf

n
ε = ∂xg

n
ε = ∂xΓ

n
ε = 0 at x = 0, L

are satis�ed. Furthermore, conservation of mass∫ L

0

fnε (t) dx = ‖f 0‖1,

∫ L

0

gnε (t) dx = ‖g0‖1,

∫ L

0

Γnε (t) dx = ‖Γ0‖1 (3.40)
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for all t ≥ 0 and the energy equality

E(fnε , g
n
ε ,Γ

n
ε )(T ) +Dε(fnε , gnε ,Γnε )(T ) = E(fn0 , g

n
0 ,Γ

n
0 ) (3.41)

hold true for all T ≥ 0.

Proof. We test the equations in (3.31) successively with φ0, . . . , φn and integrate by parts.

Due to the boundary conditions and the special structure of the equations in (3.31), the

boundary terms vanish and we obtain a system of ordinary di�erential equations, which due

to the Picard�Lindelöf Theorem admits a unique local solution. Testing (3.31) against φj

for some j ∈ {0, . . . , n} yields

(∂tf
n
ε | φj)2 −

(
σc1
aε(f

n
ε )3

3
∂3
xf

n
ε + σc2µ

(
aε(f

n
ε )3

3
+
aε(f

n
ε )2aε(g

n
ε )

2

)
∂3
x(f

n
ε + gnε )

−µaε(f
n
ε )2

2
τε(W (vnε ))∂xv

n
ε

∣∣∣ ∂xφj)
2

= 0,

(∂tg
n
ε | φj)2 −

(
σc1
aε(f

n
ε )2aε(g

n
ε )

2
∂3
xf

n
ε +

(
σc2
aε(g

n
ε )3

3
+ σc2µ

(
aε(f

n
ε )2aε(g

n
ε )

2
+ aε(f

n
ε )aε(g

n
ε )2

))
×∂3

x(f
n
ε + gnε ) +

(
µaε(f

n
ε )aε(g

n
ε )− aε(g

n
ε )2

2

)
τε(W (vnε ))∂xv

n
ε

∣∣∣ ∂xφj)
2

= 0,

(∂tW (vnε ) | φj)2 −
(
σc1
aε(f

n
ε )2

2
τε(W (vnε ))∂3

xf
n
ε +

(
σc2
aε(g

n
ε )2

2
+ σc2µ

(
aε(f

n
ε )2

2
+ aε(f

n
ε )aε(g

n
ε )

))
× τε(W (vnε ))∂3

x(f
n
ε + gnε )− (µaε(f

n
ε ) + aε(g

n
ε )) (τε(W (vε)))

2∂xv
n
ε −D∂xW (vnε )

∣∣∣ ∂xφj)
2

= 0.

De�ne Ψ := (Ψ1,Ψ2,Ψ3) : R3(n+1) −→ R3(n+1) by

Ψ1,j(p, q, r) :=
n∑
k=1

pk
(
σc1
aε(Θf (p))

3

3
∂3
xφk

∣∣∣∂xφj)
2

+
n∑
k=1

(pk + qk)

(
σc2µ

(
aε(Θf (p))

3

3
+
aε(Θf (p))

2aε(Θg(q))

2

)
∂3
xφk

∣∣∣ ∂xφj)
2

−
n∑
k=1

rk
(
µ
aε(Θf (p))

2

2
τε(W (Θv(r)))∂xφk

∣∣∣ ∂xφj)
2

,

Ψ2,j(p, q, r) :=
n∑
k=1

pk
(
σc1
aε(Θf (p))

2aε(Θg(q))

2
∂3
xφk

∣∣∣ ∂xφj)
2

+
n∑
k=1

(pk + qk)

((
σc2aε(Θg(q))

3

3

+σc2µ

(
aε(Θf (p))

2aε(Θg(q))

2
+ aε(Θf (p))aε(Θg(q))

2

))
∂3
xφk

∣∣∣ ∂xφj)
2
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−
n∑
k=1

rk
((

µaε(Θf (p))aε(Θg(q)) +
aε(Θg(q))

2

2

)
τε(W (Θv(r)))∂xφk

∣∣∣ ∂xφj)
2

and

Ψ3,j(p, q, r) :=
n∑
k=1

pk
(
σc1
aε(Θf (p))

2

2
W (Θv(r))∂

3
xφk

∣∣∣ ∂xφj)
2

+
n∑
k=1

(pk + qk)

((
σc2aε(Θf (p))

2

2

+σc2

(
aε(Θf (q))

2

2
+ aε(Θf (p))aε(Θg(q))

))
W (Θv(r))∂

3
xφk

∣∣∣ ∂xφj)
2

−
n∑
k=1

rk
(

(µaε(Θf (p)) + aε(Θg(q))) (τε(W (Θv(r))))
2∂xφk −DW ′(Θv(r))∂xφk

∣∣∣ ∂xφj)
2
,

for j = 0, . . . , n, (p, q, r) ∈ R3(n+1) and

Θf (p) :=
n∑
k=0

pkφk, Θg(q) :=
n∑
k=0

qkφk, Θv(r) :=
n∑
k=0

rkφk.

Note that for (F,G, V ) := (F 0
ε , . . . , F

n
ε , G

0
ε, . . . , G

n
ε , V

0
ε , . . . , V

n
ε ) we obtain the ordinary dif-

ferential equation

d

dt
(F,G, V ) = Ψ(F,G, V ), (F,G, V )(0) = (f00, . . . f0n, g00, . . . g0n, v00, . . . v0n). (3.42)

The function Ψ = (Ψ1,Ψ2,Ψ3) : R3(n+1) → R3(n+1) is locally Lipschitz continuous, since

aε as well as τε are locally Lipschitz continuous, so that the problem (3.42) admits due to

the Picard�Lindelöf Theorem a unique local solution (F,G, V ) ∈ (C1([0, T nε ),Rn))
3
, where

[0, T nε ) is the maximal time interval of existence. Hence,

fnε , g
n
ε ∈ C1([0, T nε );C∞([0, L])),

Γnε ∈ C1([0, T nε );C1([0, L]))

is a local weak solution of (3.31) in the sense that it solves the system by testing against the

�nite dimensional subspace spanned by {φ0, . . . , φn}. Note that the regularity of Γnε (t) for

each t ∈ [0, T nε ) can only be shown to be continuous di�erentiable, since Γnε = W (vnε ) and

W is assumed to be only once continuous di�erentiable. In order to prove that the solution

is global in time for every n ∈ N, we use that the functional

E(fnε , g
n
ε ,Γ

n
ε ) =

∫ L

0

{
1

2
|∂x(fnε + gnε )|2 +

σc1
2σc2µ

|∂xfnε |2 +
1

σc2
Φ(Γnε )

}
dx

66



4th Order Two�Phase Thin Film Model Driven by Capillary E�ects with Insoluble Surfactant

decreases along the solution (fnε , g
n
ε ,Γ

n
ε ) of (3.31).

d

dt
E(fnε , g

n
ε ,Γ

n
ε ) =

d

dt

∫ L

0

{
1

2
|∂x(fnε + gnε )|2 +

σc1
2σc2µ

|∂xfnε |2 +
1

σc2
Φ(Γnε )

}
dx

=

∫ L

0

{
∂x(f

n
ε + gnε )∂x∂t(f

n
ε + gnε ) +

σc1
σc2µ

∂xf
n
ε ∂x∂tf

n
ε +

1

σc2
Φ′(Γnε )∂tΓ

n
ε

}
dx

= −
∫ L

0

{
∂2
x(f

n
ε + gnε )∂t(f

n
ε + gnε ) +

σc1
σc2µ

∂2
xf

n
ε ∂tf

n
ε −

1

σc2
vnε ∂tΓ

n
ε

}
dx.

Since ∂x(f
n
ε (t)+gnε (t)) as well as

σc1
σc2µ

∂2
xf

n
ε (t) and 1

σc2
vnε (t) = 1

σc2
Φ′(Γnε (t))1 belong to span{φ0, . . . , φn}

for all t ∈ [0, T nε ), we may use them as test functions for the equations (3.31) and obtain

that

d

dt

∫ L

0

{
1

2
|∂x(fnε + gnε )|2 +

σc1
2σc2µ

|∂xfnε |2 +
1

σc2
Φ(Γnε )

}
dx

= −
∫ L

0

{
∂3
x(f

n
ε + gnε )

[
σc1
aε(f

n
ε )3

3
∂3
xf

n
ε + σc2µ

(
aε(f

n
ε )3

3
+
aε(f

n
ε )2aε(g

n
ε )

2

)
∂3
x(f

n
ε + gnε )

− µaε(f
n
ε )2

2
τε(W (vnε ))∂xv + σc1

aε(f
n
ε )2aε(g

n
ε )

2
∂3
xf

n
ε

+

(
σc2
aε(g

n
ε )3

3
+ σc2µ

(
aε(f

n
ε )2aε(g

n
ε )

2
+ aε(f

n
ε )aε(g

n
ε )2

))
∂3
x(f

n
ε + gnε )

−
(
µaε(f

n
ε )aε(g

n
ε ) +

aε(g
n
ε )2

2

)
τε(W (vnε ))∂xv

n
ε

]}
dx

−
∫ L

0

{
∂3
xf

n
ε

[
(σc1)2

σc2µ

aε(f
n
ε )3

3
∂3
xf

n
ε + σc1

(
aε(f

n
ε )3

3
+
aε(f

n
ε )2aε(g

n
ε )

2

)
∂3
x(f

n
ε + gnε )

−σ
c
1

σc2

aε(f
n
ε )2

2
τε(W (vnε ))∂xv

n
ε

]}
dx

−
∫ L

0

{
∂xv

n
ε

[
−
(
aε(g

n
ε )2

2
+ µ

(
aε(f

n
ε )2

2
+ aε(f

n
ε )aε(g

n
ε )

))
τε(W (vnε ))∂3

x(f
n
ε + gnε )

− σc1
σc2

aε(f
n
ε )2

2
τε(W (vnε ))∂3

xf
n
ε +

(
µ

σc2
aε(f

n
ε ) +

1

σc2
aε(g

n
ε )

)
(τε(W (vnε )))2∂xv

n
ε

+
D

σc2
∂xW (vnε )

]}
dx.

Note that, though we used integration by parts, the boundary terms vanish due to the

1Now, it becomes clear why we used a Galerkin�ansatz for v = Φ′(Γ) instead of Γ, which would have been

the more natural choice. Assume we took the Galerkin�ansatz for Γ. Since Φ′ is nonlinear, it would not

be possible to write Φ′(Γ) as a linear combination of φk, 0 ≤ k ≤ n.
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boundary conditions. Since ∂xσε(W (v)) = −τε(W (v))∂xv, we obtain that

d

dt

∫ L

0

{
1

2
|∂x(fnε + gnε )|2 +

σc1
2σc2µ

|∂xfnε |2 +
1

σc2
Φ(Γnε )

}
dx

= −
∫ L

0

{
∂3
x(f

n
ε + gnε )

[
σc1
aε(f

n
ε )3

3
∂3
xf

n
ε + σc2µ

(
aε(f

n
ε )3

3
+
aε(f

n
ε )2aε(g

n
ε )

2

)
∂3
x(f

n
ε + gnε )

+ µ
aε(f

n
ε )2

2
∂xσε(W (v)) + σc1

aε(f
n
ε )2aε(g

n
ε )

2
∂3
xf

n
ε

+

(
σc2
aε(g

n
ε )3

3
+ σc2µ

(
aε(f

n
ε )2aε(g

n
ε )

2
+ aε(f

n
ε )aε(g

n
ε )2

))
∂3
x(f

n
ε + gnε )

+

(
µaε(f

n
ε )aε(g

n
ε ) +

aε(g
n
ε )2

2

)
∂xσε(W (v))

]}
dx

−
∫ L

0

{
∂3
xf

n
ε

[
(σc1)2

σc2µ

aε(f
n
ε )3

3
∂3
xf

n
ε + σc1

(
aε(f

n
ε )3

3
+
aε(f

n
ε )2aε(g

n
ε )

2

)
∂3
x(f

n
ε + gnε )

−σ
c
1

σc2

aε(f
n
ε )2

2
τε(W (vnε ))∂xv

n
ε

]}
dx

−
∫ L

0

{(
aε(g

n
ε )2

2
+ µ

(
aε(f

n
ε )2

2
+ aε(f

n
ε )aε(g

n
ε )

))
∂xσε(W (v))∂3

x(f
n
ε + gnε )

+
σc1
σc2

aε(f
n
ε )2

2
∂xσε(W (v))∂3

xf
n
ε +

(
µ

σc2
aε(f

n
ε ) +

1

σc2
aε(g

n
ε )

)
|∂xσε(W (v))|2

+
D

σc2
∂xW (vnε )

}
dx

and an analog computation as in the proof of Proposition 2.2 leads to the claim (3.41)

E(fnε , g
n
ε ,Γ

n
ε )(T ) +Dε(fnε , gnε ,Γnε )(T ) = E(fn0 , g

n
0 ,Γ

n
0 )

for all T ∈ [0, T nε ). Due to the energy inequality (3.41), ‖∂xfnε (t)‖2
2 is bounded by a constant

depending on the initial data fn0 , g
n
0 ,Γ

n
0 for every t ∈ [0, T nε ), so that

‖∂xfnε (t)‖2
2 =

(
n∑
k=0

F k
ε (t)∂xφk |

n∑
k=0

F k
ε (t)∂xφk

)
2

=
n∑
k=0

(
F k
ε (t)∂xφk | F k

ε (t)∂xφk
)

2

=
n∑
k=0

|F k
ε (t)|2‖∂xφk‖2

2

is bounded, where we use the fact that (∂xφk | ∂xφl)2 = 0 for k 6= l. Therefore, F k
ε (t) is

uniformly bounded for all t ∈ [0, T nε ) and k ∈ 0, . . . , n. Likewise one shows that Gk
ε(t) is

uniformly bounded for all t ∈ [0, T nε ) and k ∈ 0, . . . , n. The energy inequality gives a bound
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on (Φ(Γnε ))n∈N in L∞(0, T nε ;L1(0, L)). Using Assumption A2) and Φ(1) = Φ′(1) = 0, we

obtain that

Φ(s) =

∫ s

1

∫ t

1

Φ′′(u) du dt ≥ cΦ

2
(s− 1)2 for all s ∈ R. (3.43)

Hence∫ L

0

|Γnε (t)|2 dx =

∫ L

0

|(Γnε (t)− 1 + 1)|2 dx ≤ 2

∫ L

0

|Γnε (t)− 1|2 + 1 dx ≤ 4

cΦ

∫ L

0

Φ(Γnε (t)) dx+ 2L

≤M2,

by (Φ(Γnε ))n∈N being bounded in L∞(0, T nε ;L1(0, L)) and (3.43), where M is a constant

independent of t ∈ [0, T nε ), n ∈ N and ε ∈ (0, 1]. Hence

‖Γnε‖L∞(0,Tnε ;L2(0,L)) ≤M, for n ∈ N, ε ∈ (0, 1]. (3.44)

We will show that vnε is uniformly bounded on [0, T nε ), which implies the uniform boundedness

of Γnε , by |vnε | ≥ |cφ(Γnε − 1)| (cf. Assumption A3) and vε = Φ′(Γnε )). Recall from (3.39) that

|Φ′(s)| ≤ CΦ

(
|s− 1|+

∣∣∣∣ sr+1

r + 1
− 1

r + 1

∣∣∣∣) .
Hence vnε (t) = Φ′(Γnε (t)) is bounded in Lp(0, L) with p = 2

r+1
. That is,

‖vnε (t)‖pp =

∫ L

0

∣∣∣∣∣
n∑
k=0

V k
ε (t)φk(x)

∣∣∣∣∣
p

dx ≤ C for all t ∈ [0, T nε )

for some constant C > 0, which is independent of n ∈ N and ε ∈ (0, 1]. Assume that vnε (t) is

not uniformly bounded for every t ∈ [0, T nε ), then there exists a sequence (tN)N∈N ⊂ [0, T nε )

with tN −→ T nε for N −→ ∞ and k′ ∈ {0, . . . , n} such that V k′
ε (tN) −→ ∞ if tN −→ T nε .

Set M(t) := max0≤k≤n |V k
ε (t)|, then

M(t)p
∫ L

0

∣∣∣∣∣
n∑
k=0

V k
ε (t)

M(t)
φk(x)

∣∣∣∣∣
p

dx ≤ C for all t ∈ [0, T nε ). (3.45)

Note that V kε (t)
M(t)

∈ [−1, 1] and there exists k ∈ {0, . . . , n} such that
∣∣∣V kε (t)
M(t)

∣∣∣ = 1 for each

t ∈ [0, T nε ). We suppose that for all δ > 0 there exists t ∈ [0, T nε ), such that∫ L

0

∣∣∣∣∣
n∑
k=0

V k
ε (t)

M(t)
φk(x)

∣∣∣∣∣
p

dx < δ
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and prove a contradiction. Observe that p
2

= 1
r+1
∈ (0, 1) and

∣∣∣ 1
n+1

∑n
k=0

V kε (t)
M(t)

φk(x)
∣∣∣ ≤ 1, so

that

1

(n+ 1)2

∥∥∥∥∥
n∑
k=0

V k
ε (t)

M(t)
φk

∥∥∥∥∥
2

2

=

∫ L

0

∣∣∣∣∣ 1

n+ 1

n∑
k=0

V k
ε (t)

M(t)
φk(x)

∣∣∣∣∣
2

dx ≤
∫ L

0

∣∣∣∣∣ 1

n+ 1

n∑
k=0

V k
ε (t)

M(t)
φk(x)

∣∣∣∣∣
2 p
2

dx

=
1

(n+ 1)p

∫ L

0

∣∣∣∣∣
n∑
k=0

V k
ε (t)

M(t)
φk(x)

∣∣∣∣∣
p

dx <
δ

(n+ 1)p
.

We deduce that∥∥∥∥∥
n∑
k=0

V k
ε (t)

M(t)
φk

∥∥∥∥∥
2

2

=

(
n∑
k=0

V k
ε (t)

M(t)
φk

∣∣∣ n∑
l=0

V l
ε (t)

M(t)
φl

)
2

=
n∑
k=0

∣∣∣∣V k
ε (t)

M(t)

∣∣∣∣2 < δ(n+ 1)2−p,

which in turn implies that
∣∣∣V kε (t)
M(t)

∣∣∣2 < δ(n + 1)2−p for each k ∈ {0, . . . , n}. This is a contra-

diction to the de�nition of M(t). Hence, there exists a constant m > 0, such that∫ L

0

∣∣∣∣∣
n∑
k=0

V k
ε (t)

M(t)
φk(x)

∣∣∣∣∣
p

dx > m for all t ∈ [0, T nε ).

SinceM(tN) −→∞ if tN tends to T nε , we �nd N0 ≥ 0 such thatM(tN)p > C
m
for all N ≥ N0.

Therefore

M(tN)p
∫ L

0

∣∣∣∣∣
n∑
k=0

V k
ε (tN)

M(tN)
φk(x)

∣∣∣∣∣
p

dx > C for all N ≥ N0,

which contradicts (3.45) and we have shown that vnε is uniformly bounded for all t ∈ [0, T nε ).

We conclude that the Galerkin approximation (fnε , g
n
ε ,Γ

n
ε ) exists globally.

Furthermore, the mass of each �uid and the surfactant concentration is preserved by the

Galerkin approximation, which is a consequence of testing the equations in (3.31) against

the constant function φ = 1, integrating by parts and using that ∂3
xf

n
ε = ∂3

xg
n
ε = ∂xΓ

n
ε = 0

at x = 0, L. Hence, also (3.40) is satis�ed, which completes the proof.

The next step is to prove that the Galerkin approximations converge towards weak solutions

of (3.31), (3.23b), (3.23c).

Convergence of the Galerkin Approximations. Let T > 0 be �xed. In Lemma 3.13 we

have seen that for every n ∈ N, ε ∈ (0, 1], there exists a unique global Galerkin approximation

fnε , g
n
ε ,Γ

n
ε of the regularized system (3.31), (3.23b), (3.23c) in the sense that (3.31) is satis�ed

when testing against functions belonging to the �nite dimensional subspace spanned by
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{φ0, . . . φn}. We show that there exists a weakly converging subsequence of (fnε , g
n
ε ,Γ

n
ε )n∈N,

such that the accumulation point is a weak solution of the regularized problem in sense

of Theorem 3.12. The proof will mainly base on a�priori estimates provided by the energy

inequality (3.41) and follows [22, 26, 47]. Next, we collect all bounds satis�ed by the Galerkin

approximation (fnε , g
n
ε ,Γ

n
ε )n∈N, which are uniform in n ∈ N, ε ∈ (0, 1], resulting directly from

(3.41):

{∂xfnε , ∂xgnε | n ∈ N, ε ∈ (0, 1]} in L∞(0, T ;L2(0, L)), (3.46)

{Φ(Γnε ) | n ∈ N, ε ∈ (0, 1]} in L∞(0, T ;L1(0, L)), (3.47)

{√
aε(fnε )

[
1√

3σc2µ
aε(f

n
ε )∂3

x((σ
c
1 + σc2µ)fnε + σc2µg

n
ε )

+
√

3
2

(
√
σc2µaε(g

n
ε )∂3

x(f
n
ε + gnε ) +

√
µ

√
σc2
∂xσε(Γ

n
ε )

)] ∣∣∣∣∣n ∈ N, ε ∈ (0, 1]

} in L2(ΩT ),

(3.48){√
aε(fnε )

[√
σc2µaε(g

n
ε )∂3

x(f
n
ε + gnε ) +

√
µ

√
σc2
∂xσε(Γ

n
ε )

] ∣∣∣∣∣n ∈ N, ε ∈ (0, 1]

}
in L2(ΩT ),

(3.49){√
aε(gnε )

[√
σc2√
3
aε(g

n
ε )∂3

x(f
n
ε + gnε ) +

√
3

2
√
σc2
∂xσε(Γ

n
ε )

] ∣∣∣∣∣n ∈ N, ε ∈ (0, 1]

}
in L2(ΩT ),

(3.50)

{√
aε(gnε )∂xσε(Γ

n
ε ) | n ∈ N, ε ∈ (0, 1]

}
in L2(ΩT ),

(3.51)

{√
Φ′′(Γnε )∂xΓ

n
ε | n ∈ N, ε ∈ (0, 1]

}
in L2(ΩT ).

(3.52)

Note, that (3.48)�(3.51) also imply bounds of
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{√
aε(fnε )

[
1√

3σc2µ
aε(f

n
ε )∂3

x((σ
c
1 + σc2µ)fnε + σc2µg

n
ε )

+ 2√
3

(
√
σc2µaε(g

n
ε )∂3

x(f
n
ε + gnε ) +

√
µ

√
σc2
∂xσε(Γ

n
ε )

)] ∣∣∣∣∣n ∈ N, ε ∈ (0, 1]

} in L2(ΩT ),

(3.53)

{
aε(f

n
ε )

3
2∂3

x((σ
c
1 + σc2µ)fnε + σc2µg

n
ε ) | n ∈ N, ε ∈ (0, 1]

}
in L2(ΩT ),

(3.54)

{
aε(g

n
ε )

3
2∂3

x(f
n
ε + gnε ) | n ∈ N, ε ∈ (0, 1]

}
in L2(ΩT ).

(3.55)

Lemma 3.14. The Galerkin approximation satis�es

i) {fnε , gnε | n ∈ N, ε ∈ (0, 1]} bounded in L∞(0, T ;H1(0, L)),

{fnε , gnε | n ∈ N} bounded in L∞(0, T ;H1(0, L)) ∩ L2(0, T ;H3(0, L)),

ii) {Γnε | n ∈ N, ε ∈ (0, 1]} bounded in L∞(0, T ;L2(0, L)) ∩ L2(0, T ;H1(0, L)).

We emphasize that Lemma 3.14 ii) implies the bound of

{Γnε | n ∈ N, ε ∈ (0, 1]} in L6(ΩT ),

due to [18, Proposition I.3.2].

Proof of Lemma 3.14. i) We know from (3.46) that {∂xfnε | n ∈ N, ε ∈ (0, 1]} is bounded

in L∞(0, T ;L2(0, L)). By the Poincaré�Wirtinger Theorem and conservation of mass, we

deduce that

‖fnε (t)‖2 ≤
∥∥∥∥fnε (t)− 1

L

∫ L

0

fnε (t) dx

∥∥∥∥
2

+

∣∣∣∣ 1√
L

∫ L

0

fnε (t) dx

∣∣∣∣ ≤ c‖∂xfnε (t)‖2 +
1√
L
‖f 0‖1

for some constant c > 0 independent of n ∈ N, ε ∈ (0, 1]. It follows that

{fnε , gnε | n ∈ N, ε ∈ (0, 1]} is bounded in L∞(0, T ;H1(0, L)). (3.56)

For ε ∈ (0, 1] �xed, it follows from (3.54), (3.55) and the de�nition of aε that

ε
3
2‖∂3

x((σ
c
1 + σc2µ)fnε + σc2µg

n
ε )‖2 ≤ ‖aε(fnε )

3
2∂3

x((σ
c
1 + σc2µ)fnε + σc2µg

n
ε )‖2 < c (3.57)
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and

ε
3
2‖∂3

x(f
n
ε + gnε )‖2 ≤ ‖aε(gnε )

3
2∂3

x(f
n
ε + gnε )‖2 < c (3.58)

for some constant c > 0. Since σc1, σ
c
2 > 0 (cf. Assumption S1)), we deduce from (3.57),

(3.58) that there exists a constant c = c(ε) > 0, such that

‖∂3
xf

n
ε ‖L2(ΩT ), ‖∂3

xg
n
ε ‖L2(ΩT ) < c(ε). (3.59)

Again by the Poincaré�Wirtinger Theorem∫ T

0

‖∂2
xf

n
ε (t)‖2

2 dt ≤
∫ T

0

(
c‖∂3

xf
n
ε (t)‖2 +

∣∣∣∣ 1√
L

∫ L

0

∂2
xf

n
ε (t) dx

∣∣∣∣)2

dt ≤ c2

∫ T

0

‖∂3
xf

n
ε (t)‖2

2 dt

for all t ≥ 0 and some constant c > 0 independent of t ≥ 0, since by construction∫ L
0
∂2
xf

n
ε (t) dx = ∂xf

n
ε (t, L) − ∂xf

n
ε (t, 0) = 0. Together with (3.46), (3.56) and (3.59) we

have shown that

{fnε , gnε | n ∈ N} bounded in L2(0, T ;H3(0, L)),

where the prove for (gnε )n∈N works likewise.

ii) We know already from (3.44), that

{Γnε | n ∈ N, ε ∈ (0, 1]} is bounded in L∞(0, T ;L2(0, L)).

It is left to show that {Γnε | n ∈ N, ε ∈ (0, 1]} is bounded in L2(0, T ;H1(0, L)).

‖Γnε‖2
L2(0,T ;H1(0,L)) =

∫ T

0

‖Γnε (t)‖2
H1(0,L) dt =

∫ T

0

‖Γnε (t)‖2
2 dt+

∫ T

0

‖∂xΓnε (t)‖2
2 dt

≤ T‖Γnε‖2
L∞(0,T ;L2(0,L)) +

1

cΦ

∫ T

0

cΦ‖∂xΓnε (t)‖2
2 dt.

We use Assumption A2) in order to estimate the second term on the right�hand side

1

cΦ

∫ T

0

cΦ‖∂xΓnε (t)‖2
2 dt ≤

1

cΦ

∫ T

0

‖
√

Φ′′(Γnε (t))∂xΓ
n
ε (t)‖2

2 dt,

which is bounded, due to (3.52). Hence, together with (3.44),

{Γnε | n ∈ N, ε ∈ (0, 1]} is bounded in L∞(0, T ;L1(0, L)) ∩ L2(0, T ;H1(0, L)).
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Let us notice that the bounds fnε , g
n
ε ∈ L2(0, T,H3(0, L)) are only provided, since we �xed

ε ∈ (0, 1] (cf. (3.57), (3.58)). We loose these bounds in the limit when ε tends to zero. All

other bounds we established so far are uniform not only in n ∈ N, but also in ε ∈ (0, 1].

We make use of the a�priori bounds provided by the energy inequality and the facts that

{fnε , gnε | n ∈ N, ε ∈ (0, 1]} is bounded in L∞(ΩT ) and {Γnε | n ∈ N, ε ∈ (0, 1]} is bounded in

L6(ΩT ) (cf. Lemma 3.14) in order to derive uniform bounds for the time derivatives of the

Galerkin approximation. Setting

Hε,n
f :=

√
σc2µ√
3
aε(f

n
ε )2

[
1√

3σc2µ
aε(f

n
ε )∂3

x((σ
c
1 + σc2µ)fnε + σc2µg

n
ε )

+

√
3

2

(√
σc2µaε(g

n
ε )∂3

x(f
n
ε + gnε ) +

√
µ

√
σc2
∂xσε(Γ

n
ε )

)]
,

Hε,n
g :=

√
3σc2µ

2
aε(g

n
ε )aε(f

n
ε )

[
1√

3σc2µ
aε(f

n
ε )∂3

x((σ
c
1 + σc2µ)fnε + σc2µg

n
ε )

+
2√
3

(√
σc2µaε(g

n
ε )∂3

x(f
n
ε + gnε ) +

√
µ

√
σc2
∂xσε(Γ

n
ε )

)]

+

√
σc2√
3
a2
ε(g

n
ε )

[√
σc2√
3
aε(g

n
ε )∂3

x(f
n
ε + gnε ) +

√
3

2
√
σc2
∂xσε(Γ

n
ε )

]
,

Hε,n
Γ :=

√
3σc2
2

τε(Γ
n
ε )aε(f

n
ε )

[
1√

3σc2µ
aε(f

n
ε )∂3

x((σ
c
1 + σc2µ)fnε + σc2µg

n
ε )

+
2√
3

(√
σc2µaε(g

n
ε )∂3

x(f
n
ε + gnε ) +

√
µ

√
σc2
∂xσε(Γ

n
ε )

)]

+

√
3σc2
2

τε(Γ
n
ε )aε(g

n
ε )

[√
σc2√
3
aε(g

n
ε )∂3

x(f
n
ε + gnε ) +

√
3

2
√
σc2
∂xσε(Γ

n
ε )

]

+
1

4
Γnεaε(g

n
ε )∂xσε(Γ

n
ε )−D∂xΓnε ,

it will be useful in the sequel to rewrite the system (3.31) as
∂tf

n
ε = −∂xHε,n

f ,

∂tg
n
ε = −∂xHε,n

g ,

∂tΓ
n
ε = −∂xHε,n

Γ .

(3.60)

Lemma 3.15. The time derivatives of the Galerkin approximation satisfy

{∂tfnε , ∂tgnε , ∂tΓnε | n ∈ N, ε ∈ (0, 1]} bounded in L2(0, T ; (H1(0, L))′).
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Proof. Observe that Hε,n
f , Hε,n

g ∈ L2(ΩT ), since

‖Hε,n
f ‖L2(ΩT ) =

∥∥∥∥√σc2µ√3
aε(f

n
ε )2

[
1√

3σc2µ
aε(f

n
ε )∂3

x((σ
c
1 + σc2µ)fnε + σc2µg

n
ε )

+

√
3

2

(√
σc2µaε(g

n
ε )∂3

x(f
n
ε + gnε ) +

√
µ

√
σc2
∂xσε(Γ

n
ε )

)]∥∥∥∥∥
L2(ΩT )

≤
∥∥∥∥√σc2µ√3

aε(f
n
ε )

3
2

∥∥∥∥
L∞(ΩT )

∥∥∥∥aε(fnε )
1
2

[
1√

3σc2µ
aε(f

n
ε )∂3

x((σ
c
1 + σc2µ)fnε + σc2µg

n
ε )

+

√
3

2

(√
σc2µaε(g

n
ε )∂3

x(f
n
ε + gnε ) +

√
µ

√
σc2
∂xσε(Γ

n
ε )

)]∥∥∥∥∥
L2(ΩT )

< c,

by (3.48) and Lemma 3.14 i), and

‖Hε,n
g ‖L2(ΩT ) =

∥∥∥∥√3σc2µ

2
aε(g

n
ε )aε(f

n
ε )

[
1√

3σc2µ
aε(f

n
ε )∂3

x((σ
c
1 + σc2µ)fnε + σc2µg

n
ε )

+
2√
3

(√
σc2µaε(g

n
ε )∂3

x(f
n
ε + gnε ) +

√
µ

√
σc2
∂xσε(Γ

n
ε )

)]

+

√
σc2√
3
aε(g

n
ε )2

[√
σc2√
3
aε(g

n
ε )∂3

x(f
n
ε + gnε ) +

√
3

2
√
σc2
∂xσε(Γ

n
ε )

]∥∥∥∥∥
L2(ΩT )

≤
∥∥∥∥√3σc2µ

2
aε(g

n
ε )aε(f

n
ε )

1
2

∥∥∥∥
L∞(ΩT )

(∥∥∥∥a 1
2
ε (fnε )

[
1√

3σc2µ
aε(f

n
ε )∂3

x((σ
c
1 + σc2µ)fnε + σc2µg

n
ε )

+
2√
3

(√
σc2µaε(g

n
ε )∂3

x(f
n
ε + gnε ) +

√
µ

√
σc2
∂xσε(Γ

n
ε )

)]∥∥∥∥
L2(ΩT )

+

∥∥∥∥∥
√
σc2√
3
aε(g

n
ε )2

[√
σc2√
3
aε(g

n
ε )∂3

x(f
n
ε + gnε ) +

√
3

2
√
σc2
∂xσε(Γ

n
ε )

]∥∥∥∥∥
L2(ΩT )

 < c,

by (3.50), (3.53) and Lemma 3.14 i), where c > 0 is a constant independent of n ∈ N,

ε ∈ (0, 1]. Regularizing in (3.23) the terms involving Γ by introducing the bounded function

τε for ε ∈ (0, 1] allows us to estimate Hε,n
Γ likewise in L2(ΩT ), by

‖Hε,n
Γ ‖L2(ΩT ) =

∥∥∥∥√3σc2
2

τε(Γ
n
ε )aε(f

n
ε )

[
1√

3σc2µ
aε(f

n
ε )∂3

x((σ
c
1 + σc2µ)fnε + σc2µg

n
ε )

+
2√
3

(√
σc2µaε(g

n
ε )∂3

x(f
n
ε + gnε ) +

√
µ

√
σc2
∂xσε(Γ

n
ε )

)]

+

√
3σc2
2

Γnεaε(g
n
ε )

[√
σc2√
3
aε(g

n
ε )∂3

x(f
n
ε + gnε ) +

√
3

2
√
σc2
∂xσε(Γ

n
ε )

]
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+
1

4
τε(Γ

n
ε )aε(g

n
ε )∂xσε(Γ

n
ε )−D∂xΓnε

∥∥∥∥
L 3

2
(ΩT )

≤ ‖τε(Γnε )‖L∞(ΩT )

(∥∥∥∥√3σc2
2

aε(f
n
ε )

[
1√

3σc2µ
aε(f

n
ε )∂3

x((σ
c
1 + σc2µ)fnε + σc2µg

n
ε )

+
2√
3

(√
σc2µaε(g

n
ε )∂3

x(f
n
ε + gnε ) +

√
µ

√
σc2
∂xσε(Γ

n
ε )

)]∥∥∥∥
L2(ΩT )

+

∥∥∥∥∥
√

3σc2
2

aε(g
n
ε )

[√
σc2√
3
aε(g

n
ε )∂3

x(f
n
ε + gnε ) +

√
3

2
√
σc2
∂xσε(Γ

n
ε )

]∥∥∥∥∥
L2(ΩT )

+

∥∥∥∥1

4
aε(g

n
ε )∂xσε(Γ

n
ε )

∥∥∥∥
L2(ΩT )

)
+D ‖∂xΓnε‖L2(ΩT ) < c,

in virtue of (3.50), (3.51), (3.53) and Lemma 3.14, where c > 0 is a constant independent

of n ∈ N, ε ∈ (0, 1]. Indeed, due to (3.30) and Lemma 3.14, there exists a constant c > 0,

independent of n ∈ N, ε ∈ (0, 1], such that ‖τε(Γnε )‖L∞(ΩT ) ≤ ‖Γnε‖L∞(ΩT ) < c2.

Note that if f ∈ (H1(0, L)′)∩L2(0, L), the dual pairing between f and a function g ∈ H1(0, L)

reduces to the scalar product in L2(0, L), that is

〈f, g〉H1 = (f | g)2 , (3.62)

since a function in L2(0, L) is identi�ed with a functional in (L2(0, L))′ via f 7→ (f | ·)2.

Given ξ ∈ H1(0, L), we de�ne the truncation for each n ∈ N

ξn :=
n∑
k=0

(ξ | φk)2 φk ∈ span{φ0, . . . , φn}.

The Galerkin approximation (fnε , g
n
ε ,Γ

n
ε ) satis�es (3.60) when testing against functions be-

longing to span{φ0, . . . , φn}, so that

〈∂tfnε (t), ξ〉H1 = (∂tf
n
ε (t) | ξn)2 =

(
Hε,n
f (t) | ∂xξn

)
2
≤ ‖Hε,n

f (t)‖2‖∂xξn‖2 ≤ ‖Hε,n
f (t)‖2‖ξ‖H1(0,L)

for every t > 0, where the last inequality holds due to Parseval's identity, which implies that

‖∂xξn‖2
2 =

(
n∑
l=0

(∂xξ | φl)2 φl

∣∣∣ n∑
k=0

(∂xξ | φk)2 φk

)
2

=
n∑

l,k=0

((∂xξ | φl)2 φl | (∂xξ | φk)2 φk)2

2Without regularizing (3.23) by introducing τε, the uniform bound {Γnε | n ∈ N, ε ∈ (0, 1]} ⊂ L6(ΩT ) (cf.

Lemma 3.14) would lead to

(Hε,n
Γ )n∈N bounded in L 3

2
(ΩT ), (3.61)

which is due to the Hölder inequality.
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=
n∑
l=0

((∂xξ | φl)2 φl | (∂xξ | φl)2 φl)2 =
n∑
l=0

(∂xξ | φl)2
2 ≤

∞∑
l=0

(∂xξ | φl)2
2

= ‖∂xξ‖2
2 ≤ ‖ξ‖2

H1(0,L).

Hence, the function ∂tf
n
ε (t) belongs to the dual (H1(0, L))′ of H1(0, L) for all t > 0 and

integration with respect to time yields

‖∂tfnε ‖2
L2(0,T,(H1(0,L))′) =

∫ T

0

‖∂tfnε (t)‖2
(H1(0,L))′ dt =

∫ T

0

sup
‖ξ‖H1(0,L)≤1

| (∂tfnε (t) | ξ)2 |
2 dt

≤
∫ T

0

‖Hε,n
f (t)‖2

2 dt = ‖Hε,n
f ‖

2
L2(ΩT ).

Analogously one shows ‖∂tgnε ‖2
L2(0,T,(H1(0,L))′) ≤ ‖Hε,n

g ‖2
L2(ΩT ) and ‖∂tΓnε‖2

L2(0,T,(H1(0,L))′) ≤

‖Hε,n
Γ ‖2

L2(ΩT )
3, so that

{∂tfnε , ∂tgnε , ∂tΓnε | n ∈ N, ε ∈ (0, 1]} is bounded in L2(0, T, (H1(0, L))′).

Let ε ∈ (0, 1] be �xed. Lemma 3.14 and 3.15 provide necessary bounds for the Galerkin

approximation (fnε , g
n
ε ,Γ

n
ε ) to extract weakly convergent subsequences. Since

H1(0, L) ↪−↪→ Cα([0, L]) ↪→ (H1(0, L))′, H3(0, L) ↪−↪→ C2+α([0, L]) ↪→ (H1(0, L))′

for all α ∈ [0, 1
2
) by the Rellich�Kondrachov Theorem (cf. [1, Theorem 6.3]), the bounds of

{fnε , gnε | n ∈ N} in L∞(0, T ;H1(0, L)) ∩ L2(0, T ;H3(0, L)),

{∂tfnε , ∂tgnε | n ∈ N} in L2(0, T ; (H1(0, L))′),

imply in virtue of [45, Corollary 4] that

(fnε )n∈N, (g
n
ε )n∈N are relatively compact in C([0, T ];Cα([0, L])) ∩ L2(0, T ;C2+α([0, L]))

(3.63)

3The regularity for ∂tΓ
n
ε is a consequence of the improved regularity Hε,n

Γ ∈ L2(ΩT ) due to regularizing

the terms involving Γ by τε(Γ). Without regularizing, the time derivative of Γnε would satisfy

∂tΓ
n
ε ∈ L 3

2
(0, T ; (W 1

3 (0, L))′),

where (W 1
3 (0, L))′ denotes the dual space of W 1

3 (0, L).
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for α ∈ [0, 1
2
). Observe that since H1(0, L) ↪−↪→ L2(0, L) (cf. [1, Theorem 6.3] ), we deduce

that L2(0, T ) ∼= (L2(0, T ))′ ↪−↪→ (H1(0, L))′ (cf. e.g. [44, Theorem 4.19]). Hence, the bounds

of

{Γnε | n ∈ N} in L∞(0, T ;L2(0, L)) ∩ L2(0, T ;H1(0, L)),

{∂tΓnε | n ∈ N} in L2(0, T ; (H1(0, L))′)

imply that

(Γnε )n∈N is relatively compact in C([0, T ]; (H1(0, L))′) ∩ L2(0, T ;Cα([0, L])) (3.64)

for α ∈ [0, 1
2
). The relative compactnesses in (3.63) and (3.64) provide the existence of

converging subsequences (not relabeled)

fnε −→ fε in C([0, T ];Cα([0, L])) ∩ L2(0, T ;C2+α([0, L])), (3.65)

gnε −→ gε in C([0, T ];Cα([0, L])) ∩ L2(0, T ;C2+α([0, L])), (3.66)

Γnε −→ Γε in C([0, T ]; (H1(0, L))′) ∩ L2(0, T ;Cα([0, L])). (3.67)

Lemma 3.16. The limit functions fε, gε obtained in (3.65), (3.66) belong to

L∞(0, T ;H1(0, L)) ∩ L2(0, T ;H3(0, L))

and there exists a subsequence (not relabeled), such that

∂kxf
n
ε ⇀ ∂kxfε, ∂kxg

n
ε ⇀ ∂kxgε in L2(ΩT ) for k = 1, 2, 3. (3.68)

Moreover, the time derivatives ∂tfε, ∂tgε belong to L2(0, T ; (H1(0, L))′) with

∂tf
n
ε ⇀ ∂tfε, ∂tg

n
ε ⇀ ∂tgε in L2(0, T ; (H1(0, L))′).

Proof. We will prove the statements only for fnε , the proofs for gnε are similar. Owing to

Lemma 3.14 i), the sequence (fnε )n∈N is bounded in L2(0, T ;H3(0, L)). Thus, by Eberlein�

Smulyan's theorem, there exists a weakly convergent subsequence (not relabeled), such that

fnε ⇀ f ε in L2(0, T ;H3(0, L)) (3.69)

for some f ε ∈ L2(0, T ;H3(0, L)). The weak convergence of (fnε )n∈N in (3.69) implies the

strong convergence

fnε → f ε in D′(ΩT ).
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Together with (3.65), we deduce that fε = f ε ∈ L2(0, T ;H3(0, L)). Hence, in virtue of

(3.69), the claim (3.68) is satis�ed. Due to Lemma 3.14 i) there exists M > 0 independent

of n ∈ N, t ≥ 0, such that

(fnε (t))n∈N ⊂ BH1(0,L)(0,M).

Since the unit ball of a Hilbert space is weakly closed, we obtain the existence of a weakly

convergent subsequence (not relabeled), such that for almost all t ≥ 0

fnε (t) ⇀ fε(t) in H1(0, L),

where the identi�cation of the limit is again due to (3.65). We conclude that the limit

function of (fnε )n∈N belongs to L∞(0, T ;H1(0, L)) ∩ L2(0, T ;H3(0, L)).

In view of Lemma 3.15, the time derivative (∂tf
n
ε )n∈N is bounded in the Hilbert space

L2(0, T ; (H1(0, L))′). Thus, by Eberlein�Smulyan's theorem, there exists a weakly conver-

gent subsequence (not relabeled)

∂tf
n
ε ⇀ h in L2(0, T ; (H1(0, L))′),

for some limit function h ∈ L2(0, T ; (H1(0, L))′). That is, for all ξ ∈ C∞c (ΩT ), we obtain in

virtue of (3.65), that∫ T

0

〈∂tfnε (t), ξ(t)〉H1 dt = −
∫ T

0

〈fnε (t), ∂tξ(t)〉H1 dt

→ −
∫ T

0

〈fε(t), ∂tξ(t)〉H1 dt =

∫ T

0

〈∂tfε(t), ξ(t)〉H1 dt.

Hence h = ∂tfε.

Remark 3.17. Note that the bounds of (fnε )n∈N, (g
n
ε )n∈N in L∞(0, T ;H1(0, L)) and the

bounds of (∂tf
n
ε )n∈N, (∂tg

n
ε )n∈N in L2(0, T ; (H1(0, L))) (cf. Lemma 3.14 and Lemma 3.15)

are independent of ε ∈ (0, 1]. Therefore, in virtue of [45, Corollary 4] and Lemma 3.16, we

obtain that

{fε, gε | ε ∈ (0, 1]} is bounded in L∞(0, T ;H1(0, L)).

This uniform bound will be in particular necessary in the proof of Theorem 3.23, where we

show the non�negativity of the family of Galerkin approximations (Γε)ε∈(0,1].
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In the following lemma we collect some information regarding weak and strong convergences

concerning (Γnε )n∈N in certain Hilbert spaces. Note that all convergences are independent of

ε ∈ (0, 1].

Lemma 3.18. The family (Γnε )n∈N satis�es

i) Γnε −→ Γε in Lq(ΩT ) ∩ C([0, T ]; (H1(0, L))′) for all q ∈ [2, 6),

ii) ∂xΓ
n
ε ⇀ ∂xΓε in L2(ΩT ),

iii) ∂tΓ
n
ε ⇀ ∂tΓε in L2(0, T ; (H1(0, L))′),

iv) Φ(Γnε ) −→ Φ(Γε) in L∞(0, T ;L1(0, L)),

v) Φ′′(Γnε ) −→ Φ′′(Γε) in Lq(ΩT ) for all q ∈
[
3,

6

r

)
,

vi)
√

Φ′′(Γnε )∂xΓ
n
ε ⇀

√
Φ′′(Γε)∂xΓε in L2(ΩT ),

where the weak convergences are considered as convergent subsequences, which are not rela-

beled.

Proof. i) Due to (3.67), Γnε converges strongly to Γε in L2(ΩT ) and (Γnε )n∈N is bounded

in L6(ΩT ), by Lemma 3.14. Since L6(ΩT ) is a re�exive Banach space, we can extract, by

Eberlein�Smulyan's theorem, a weakly convergent subsequence (not relabeled) with

Γnε ⇀ Γε in L6(ΩT )

for some limit function Γε ∈ L6(ΩT ). Hence Γnε → Γε in the dual space of L6(ΩT ), which is

identi�ed with L 6
5
(ΩT ). In virtue of (3.67), we deduce that Γε = Γε. Using an interpolation

estimate (cf. [1, Theorem 2.11]), we obtain

‖Γnε − Γε‖q ≤ ‖Γnε − Γε‖1−θ
p ‖Γnε − Γε‖θl

for θ ∈ [0, 1] and 1
q

= 1−θ
p

+ θ
l
. Choosing l = 2 and p = 6 it follows from Lemma 3.14 and

(3.67) that

‖Γnε − Γε‖q ≤ (‖Γnε‖6 + ‖Γε‖6)1−θ‖Γnε − Γε‖θ2 −→ 0

for q = 6
1+2θ
∈ [2, 6) and n −→∞.

ii) and iii) are a consequence of Lemma 3.14 and 3.15 and Eberlein�Smulyan's theorem,

where the identi�cation of the limits is due to (3.67).
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iv) Since Γnε −→ Γε in Lq(ΩT ), there is a subsequence of (Γnε )n∈N (not relabeled) such that

Γnε −→ Γε point�wise almost everywhere. Hence Φ(Γnε ) −→ Φ(Γ) almost everywhere, by Φ

being continuous (cf. Assumption A1)) and (3.47) implies that

Φ(Γnε ) −→ Φ(Γε) in L∞(0, T ;L1(0, L)).

v) Since Φ′′ is continuous by Assumption A1) and Γnε −→ Γε in Lq(ΩT ) for q ∈ [2, 6), we

have Φ′′(Γnε ) −→ Φ′′(Γε) point�wise almost everywhere. By means of Assumption A3), which

states that Φ′′(s) ≤ CΦ(|s|r + 1) for all s ∈ R, we deduce that

‖Φ′′(Γnε )‖pp ≤ C‖|Γnε |r + 1‖pp,

which is bounded for p ∈ [2
r
, 6
r
). Since r ∈ (0, 2), it follows that (Φ′′(Γnε ))n∈N ⊂ Lp(ΩT ) for

p ∈ [3, 6
r
) and

Φ′′(Γnε ) −→ Φ′′(Γε) in Lp(ΩT ) for p ∈
[
3,

6

r

)
.

vi) Owing to (3.52) and Eberlein�Smulyan's theorem, we can extract a weakly convergent

subsequence (not relabeled), such that

√
Φ′′(Γnε )∂xΓ

n
ε ⇀ v in L2(ΩT ), (3.70)

where v ∈ L2(ΩT ) is the limit function, which we show to coincide with
√

Φ′′(Γε)∂xΓε. For

all ξ ∈ C∞c (ΩT ) we have∫
ΩT

(
√

Φ′′(Γε)∂xΓε − v)ξ d(x, t) =

∫
ΩT

(√
Φ′′(Γε)−

√
Φ′′(Γnε )

)
∂xΓεξ d(x, t)

+

∫
ΩT

√
Φ′′(Γnε )ξ(∂xΓε − ∂xΓnε ) d(x, t)

+

∫
ΩT

(
√

Φ′′(Γnε )∂xΓ
n
ε − v)ξ d(x, t),

(3.71)

where the last integral on the right�hand side tends to zero, due to (3.70). Notice that, in

view of part iv) and the square root being continuous,
√

Φ′′(Γnε ) −→
√

Φ′′(Γε) in Lp(ΩT )

for p ∈ [6, 12
r

). Hence, it follows from part ii), that also the �rst two integrals of the right�

hand side of (3.71) tend to zero as n −→ ∞. Therefore, the limit v is identi�ed with√
Φ′′(Γε)∂xΓε.
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Lemma 3.19. The Galerkin approximation (Γnε )n∈N has a further subsequence (not rela-

beled), such that

∂xσε(Γ
n
ε ) ⇀ ∂xσε(Γε) in Ls(ΩT )

for s ∈ [6
5
, 12

8+r
).

Proof. Note that in virtue of (3.24) and (3.29) we can write

∂xσε(Γ
n
ε ) = σ′ε(Γ

n
ε )∂xΓ

n
ε =

τε(Γ
n
ε )

Γnε
σ′(Γnε )∂xΓ

n
ε = −τε(Γnε )

√
Φ′′(Γnε )

√
Φ′′(Γnε )∂xΓ

n
ε .

Since Γnε → Γε in Lp(ΩT ) for p ∈ [2, 6) (cf. Lemma 3.18 i)), there exists a subsequence (not

relabeled), such that the convergence is point�wise almost everywhere. Taking into account

that τε is continuous and, by construction, |τε(s)| ≤ |s| for all s ∈ R (cf. (3.30)), we deduce

that

τε(Γ
n
ε )→ τε(Γε) in Lp(ΩT ), for p ∈ [2, 6). (3.72)

The Hölder inequality implies that

‖τε(Γnε )
√

Φ′′(Γnε )‖m ≤ ‖τε(Γnε )‖p‖
√

Φ′′(Γnε )‖q

for p ∈ [2, 6), q ∈ [6, 12
r

), by (3.72) and Lemma 3.18, with 1
m

= 1
p

+ 1
q
∈ (2+r

12
, 2

3
], so that

(τε(Γ
n
ε )
√

Φ′′(Γnε ))n∈N is bounded in Lm(ΩT ) for m ∈
[3

2
,

12

2 + r

)
.

Thus, owing to (3.72) and
√

Φ′′(Γnε ) −→
√

Φ′′(Γε) in Lp(ΩT ) for p ∈ [6, 12
r

) (cf. Lemma

3.18), we deuce that

τε(Γ
n
ε )
√

Φ′′(Γnε ) −→ τε(Γε)
√

Φ′′(Γε) in Lm(ΩT ) for m ∈
[3

2
,

12

2 + r

)
. (3.73)

Recalling that the energy inequality provides the bound of (
√

Φ′′(Γnε )∂xΓ
n
ε )n∈N in L2(ΩT )

(cf. Lemma 3.18), we apply again the Hölder inequality and obtain that

‖∂xσ(Γnε )‖s ≤ ‖τε(Γnε )
√

Φ′′(Γnε )‖m‖
√

Φ′′(Γnε )∂xΓ
n
ε‖2,

where 1
s

= 1
m

+ 1
2
∈ (8+r

12
, 7

6
]. Hence,

(∂xσ(Γnε ))n∈N is bounded in Ls(ΩT ), for s ∈
[6

5
,

12

8 + r

)
.
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By Eberlein�Smulyan's theorem and Ls(ΩT ) being re�exive for s ∈ [6
5
, 12

8+r
), there exists a

weakly convergent subsequence (not relabeled), such that

∂xσ(Γnε ) = −τε(Γnε )
√

Φ′′(Γnε )
√

Φ′′(Γnε )∂xΓ
n
ε ⇀ v in Ls(ΩT ), (3.74)

for some v ∈ Ls(ΩT ). In order to identify the limit v with ∂xσ(Γε) let ξ be an arbitrary

function belonging C∞c (ΩT ) and consider∫
ΩT

(∂xσ(Γε)− v)ξ d(x, t) =

∫
ΩT

(
−τε(Γε)

√
Φ′′(Γε)

√
Φ′′(Γε)∂xΓε − v

)
ξ d(x, t)

= −
∫

ΩT

τε(Γε)
√

Φ′′(Γε)ξ
(√

Φ′′(Γε)∂xΓε −
√

Φ′′(Γnε )∂xΓ
n
ε

)
d(x, t)

−
∫

ΩT

√
Φ′′(Γnε )∂xΓ

n
ε ξ
(
τε(Γε)

√
Φ′′(Γε)− τε(Γnε )

√
Φ′′(Γnε )

)
d(x, t)

−
∫

ΩT

(
τε(Γ

n
ε )
√

Φ′′(Γnε )
√

Φ′′(Γnε )∂xΓ
n
ε + v

)
ξ d(x, t).

(3.75)

The last integral on the right�hand side of (3.75) tends to zero by (3.74). Since we have√
Φ′′(Γnε )∂xΓ

n
ε ⇀

√
Φ′′(Γε)∂xΓε in L2(ΩT ), the �rst integral on the right�hand side of (3.75)

tends to zero because τε(Γε)
√

Φ′′(Γε)ξ ∈ Lq(ΩT ) with q > 2, by (3.73). The second in-

tegral on the right�hand side of (3.75) also tends to zero in view of τε(Γ
n
ε )
√

Φ′′(Γnε ) −→

τε(Γε)
√

Φ′′(Γε) in Lq(ΩT ) for q ∈ [3
2
, 12

2+r
) with r ∈ (0, 2). Thus, q can be chosen to be

greater then 3 and (
√

Φ′′(Γnε )∂xΓ
n
ε ξ)n∈N ⊂ L2(ΩT ) ⊂ L 3

2
(ΩT ) , where L 3

2
(ΩT ) is identi�ed

with the dual space (L3(ΩT ))′.

Since (fnε , g
n
ε )(t) tends towards (fε, gε)(t) in (Cα([0, L]))2, by (3.65), (3.66), for every t ≥ 0

and α ∈ [0, 1
2
), the initial data

fε(0) = f 0, gε(0) = g0

are satis�ed and

‖fε(t)‖1 = ‖f 0‖1, ‖gε(t)‖1 = ‖g0‖1

for all t ≥ 0. In virtue of Γnε −→ Γε in C([0, T ]; (H1(0, L))′) (cf. (3.67)), we obtain

Γnε (0) −→ Γε(0) in (H1(0, L))′. Recall that by de�nition and construction of the Galerkin

approximation

Γnε (0) = W (vnε (0)) = W (vn0 )→ W (v0) = Γ0
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in Lp(ΩT ) for p = 2(r + 1). Hence, we deduce that the initial datum Γε(0) = Γ0 is satis�ed.

By (3.67), (Γnε )n∈N converges towards Γε in L2(0, T ;Cα([0, L])), which implies the existence

of a further subsequence of (Γnε )n∈N (not relabeled) such that Γnε (t) −→ Γε(t) for almost

every t ≥ 0 in Cα([0, L]). Therefore,

‖Γε(t)‖1 = ‖Γ0‖1 for almost all t ≥ 0.

Now we want to prove that the energy inequality still holds for the limit (fε, gε,Γε) of the

Galerkin approximation. Since by construction aε and τε are locally Lipschitz (3.65)�(3.67)

imply that

aε(f
n
ε ) −→ aε(fε) in C(ΩT ), (3.76)

aε(g
n
ε ) −→ aε(gε) in C(ΩT ), (3.77)

τε(Γ
n
ε ) −→ τε(Γε) in L2(0, T ;Cα([0, L])) (3.78)

for α ∈ [0, 1
2
). The energy inequality implies that (

√
aε(gnε )∂xσε(Γ

n
ε ))n∈N is bounded in

L2(ΩT ) (cf.(3.51)). Since L2(ΩT ) is a re�exive Banach space, we use Eberlein�Smulyan's

theorem and extract a weakly convergent subsequence (not relabeled), so that

√
aε(gnε )∂xσε(Γ

n
ε ) ⇀ v in L2(ΩT ) (3.79)

for some limit function v in L2(ΩT ). In order to identify v with
√
aε(gε)∂xσε(Γε), consider

for arbitrary ξ ∈ C∞(ΩT )∫
ΩT

(
√
aε(gε)∂xσε(Γε)− v)ξ d(x, t) =

∫
ΩT

√
aε(gε)ξ (∂xσε(Γε)− ∂xσε(Γnε )) d(x, t)

+

∫
ΩT

∂xσε(Γ
n
ε )ξ
(√

aε(gε)−
√
aε(gnε )

)
d(x, t)

+

∫
ΩT

(
√
aε(gnε )∂xσε(Γ

n
ε )− v)ξ d(x, t),

(3.80)

where the last term converges to zero by (3.79) and the other terms on the right�hand side

tend to zero by Lemma 3.19 and (3.77). Hence,

√
aε(gnε )∂xσε(Γ

n
ε ) ⇀

√
aε(gε)∂xσε(Γε) in L2(ΩT ). (3.81)
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Observe that (3.51), (3.76), (3.77), and aε(s) ≥ ε > 0 for all s ∈ R imply that(√
aε(fnε )∂xσε(Γ

n
ε ))
)
n∈N

=

(√
aε(fnε )√
aε(gnε )

√
aε(gnε )∂xσε(Γ

n
ε )

)
n∈N

is bounded in L2(ΩT ).

Hence, by Eberlein�Smulyan's theorem, there exists a subsequence (not relabeled), such that√
aε(fnε )∂xσε(Γ

n
ε ) ⇀ w in L2(ΩT )

for some limit function w ∈ L2(ΩT ). The identi�cation of w as
√
aε(f)∂xσε(Γε) is then

analog to (3.80), so that√
aε(fnε )∂xσε(Γ

n
ε ) ⇀

√
aε(fε)∂xσε(Γε) in L2(ΩT ). (3.82)

Hence, there exist weakly convergent subsequences (not relabeled) with√
aε(fnε )

[
1√

3σc2µ
aε(f

n
ε )∂3

x((σ
c
1 + σc2µ)fnε + σc2µg

n
ε )

+

√
3

2

(√
σc2µaε(g

n
ε )∂3

x(f
n
ε + gnε ) +

√
µ

√
σc2
∂xσε(Γ

n
ε )

)]
⇀
√
aε(fε)

[
1√

3σc2µ
aε(fε)∂

3
x((σ

c
1 + σc2µ)fε + σc2µgε)

+

√
3

2

(√
σc2µaε(gε)∂

3
x(fε + gε) +

√
µ

√
σc2
∂xσε(Γε)

)]
in L2(ΩT ), (3.83)

√
aε(fnε )

[
√
σc2µaε(g

n
ε )∂3

x(f
n
ε + gnε ) +

√
µ

√
σc2
∂xσε(Γ

n
ε )

]
⇀
√
aε(fε)

[
√
σc2µaε(gε)∂

3
x(fε + gε) +

√
µ

√
σc2
∂xσε(Γε)

] in L2(ΩT ), (3.84)

√
aε(gnε )

[√
σc2√
3
aε(g

n
ε )∂3

x(f
n
ε + gnε ) +

√
3

2
√
σc2
∂xσε(Γ

n
ε )

]

⇀
√
aε(gε)

[√
σc2√
3
aε(gε)∂

3
x(fε + gε) +

√
3

2
√
σc2
∂xσε(Γε)

] in L2(ΩT ), (3.85)

by means of (3.76), (3.77), (3.81), (3.82) and Lemma 3.16. We deduce that, owing to Lemma

3.18 vi) and (3.81)�(3.85) there exists a subsequence (not relabeled), such that

Dε(fnε , gnε ,Γnε )(T )→ Dε(fε, gε,Γε)(T ) for all T > 0. (3.86)

Since the norm of the limit function of a weakly convergent sequence can be estimated from

above, we obtain in virtue of (3.86) that

Dε(fε, gε,Γε)(T ) ≤ lim inf
n→∞

Dε(fnε , gnε ,Γnε )(T ) for all T > 0. (3.87)
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Moreover, E(fnε , g
n
ε ,Γ

n
ε )(T ) −→ E(fε, gε,Γε)(T ) for almost all T > 0, by (3.65), (3.66) and

Lemma 3.18 iv). Hence, we have shown that, in view of (3.87), the energy inequality (3.38)

holds.

To �nish the proof of Theorem 3.12, we are only left to show that (3.33)�(3.35) are satis�ed.

Let ξ ∈ L2(0, T ;H1(0, L)) be given. For each n ∈ N consider the truncation

ξn(t, ·) :=
n∑
k=0

(ξ(t, ·) | φk)2 φk, t ∈ (0, T ).

Using integration by parts, we �nd that for every n ∈ N∫ T

0

〈∂tfnε (t), ξn(t)〉H1 dt =

∫
ΩT

Hε,n
f ∂xξ

n d(x, t). (3.88)

We show that we can pass to the limit n→∞ in (3.88), after possibly extracting a further

subsequence. Observe that (3.76) and (3.83) imply that

Hε,n
f ⇀ Hε

f in L2(ΩT ),

where Hε
f is given by

Hε
f :=

√
σc2µ√
3
aε(fε)

2

[
1√

3σc2µ
aε(fε)∂

3
x((σ

c
1 + σc2µ)fε + σc2µgε)

+

√
3

2

(√
σc2µaε(gε)∂

3
x(fε + gε) +

√
µ

√
σc2
∂xσε(Γε)

)]
.

Due to∫
ΩT

Hε,n
f ∂xξ

n d(x, t) =

∫
ΩT

(Hε,n
f −H

ε
f )∂xξ

n dx dt+

∫
ΩT

Hε
f∂x(ξ

n−ξ) d(x, t)+

∫
ΩT

Hε
f∂xξ d(x, t),

the weak convergence of (Hε,n
f )n∈N towards Hε

f and the strong convergence ∂xξ
n −→ ∂xξ in

L2(ΩT ), we obtain ∫
ΩT

Hε,n
f ∂xξ

n dx dt −→
∫

ΩT

Hε
f∂xξ d(x, t). (3.89)

Since, by Lebesgue dominated convergence, ξn → ξ in L2(0, T ;H1(0, L)), it follows from

Lemma 3.16 that

〈∂tfnε , ξn〉H1 → 〈∂tfε, ξ〉H1 in L2(ΩT ) (3.90)

and (3.33) is satis�ed in virtue of (3.88), (3.89) and (3.90). Using (3.76), (3.77), (3.84) and

(3.85) we obtain that

Hε,n
g ⇀ Hε

g in L2(ΩT ),
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where Hε
g is identi�ed as

Hε
g :=

√
3σc2µ

2
aε(gε)aε(fε)

[
1√

3σc2µ
aε(fε)∂

3
x((σ

c
1 + σc2µ)fε + σc2µgε)

+
2√
3

(√
σc2µaε(gε)∂

3
x(fε + gε) +

√
µ

√
σc2
∂xσε(Γε)

)]

+

√
σc2√
3
aε(gε)

2

[√
σc2√
3
aε(gε)∂

3
x(fε + gε) +

√
3

2
√
σc2
∂xσε(Γε)

]
.

Analogously, since (Hε,n
Γ )n∈N is bounded in L2(ΩT ), we obtain that

Hε,n
Γ ⇀ Hε

Γ in L2(ΩT ),

where the limit function

Hε
Γ :=

√
3σc2
2

τε(Γε)aε(fε)

[
1√

3σc2µ
aε(fε)∂

3
x((σ

c
1 + σc2µ)fε + σc2µgε)

+
2√
3

(√
σc2µaε(gε)∂

3
x(fε + gε) +

√
µ

√
σc2
∂xσε(Γε)

)]

+

√
3σc2
2

τε(Γε)aε(gε)

[√
σc2√
3
aε(gε)∂

3
x(fε + gε) +

√
3

2
√
σc2
∂xσε(Γε)

]

+
1

4
τε(Γε)aε(g

n
ε )∂xσε(Γε)−D∂xΓε,

can be identi�ed in view of (3.65)�(3.67), (3.82), (3.83), (3.85) and Lemma 3.18. Passing

to the limit as in (3.88), we deduce that (3.34) and (3.35) are satis�ed, so that the proof of

Theorem 3.12 is complete.

3.3.2. Existence and Non�Negativity of Weak Solutions for the Original System

In this section we prove the main result Theorem 3.11. We use the global weak solutions

(fε, gε,Γε)ε∈(0,1] of the regularized problem (3.31) to �nd, in the limit ε ↘ 0, global weak

solutions of the original problem (3.23). We emphasize that in the sequel, the initial data

f 0, g0,Γ0 are non�negative. Following [22] we show that if (εk)k∈N ⊂ (0, 1] is such that

εk ↘ 0 for k −→∞ and there exist functions f, g ∈ C(ΩT ) with

fεk → f, gεk → g in C(ΩT ) for k →∞, (3.91)
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then the accumulation points f, g are non�negative. Considering the sequence (Γε)ε∈(0,1], we

use the idea in [20] to prove that already (Γε)ε∈(0,1] ≥ 0, so that if there exists a function

Γ ∈ L2(0, T ;Cα([0, L])) with Γε → Γ in L2(0, T ;Cα([0, L])) for ε↘ 0, the almost everywhere

non�negativity of the accumulation point Γ will be inherited from (Γε)ε∈(0,1].

Non�Negativity of the Accumulation Points of the Galerkin Approximation.

Let (εk)k∈N ⊂ (0, 1] be such that εk ↘ 0 for k −→ ∞ and assume there exist functions

f, g ∈ C(ΩT ), such that (3.91) is satis�ed. In order to show that for non�negative initial

data f 0, g0 the accumulation points (f, g) as in (3.91) satisfy the non�negativity property,

we de�ne in analogy to [22] a function ψ ∈ C∞(R), which is non�negative, supported in

[−1, 0] and satis�es ∫
R
ψ(x) dx =

∫ 0

−1

ψ(x) dx = 1. (3.92)

Further, let χ1 : R −→ R be de�ned by

χ1(x) :=

∫ 0

x

∫ ∞
s

ψ(τ) dτ ds for x ∈ R

and (χδ)δ>0 be the associated molli�er

χδ(x) := δχ1(
x

δ
). (3.93)

Then, the following properties hold true

Lemma 3.20. The function χδ satis�es

i) ‖χδ −max {− Id, 0}‖∞ ≤ δ,

ii) ‖χ′δ‖∞ ≤ 1 and ‖χ′′δ‖∞ ≤ δ−1‖ψ‖∞,

iii) |sχ′′δ(s)| ≤ K for all s ∈ [−δ, δ], where K := ‖ψ‖∞,

iv) χ′′δ(s) = 0 on R \ [−δ, 0].

Proof. i) ‖χδ −max {− Id, 0}‖∞ = supx∈R |δχ1(x
δ
)− δmax {−x

δ
, 0}|. If x ≥ 0, then χ1(x) as

well as max{−x, 0} are zero. Let x ≤ −1, then

|χ1(x)−max{−x, 0}| =
∣∣∣∣∫ 0

x

∫ 0

s

ψ(τ) dτ − 1 ds

∣∣∣∣
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≤
∫ −1

x

∣∣∣∣∫ 0

s

ψ(τ) dτ − 1

∣∣∣∣ ds+

∫ 0

−1

∣∣∣∣∫ 0

s

ψ(τ) dτ − 1

∣∣∣∣ ds ≤ ∫ 0

−1

∣∣∣∣∫ 0

s

ψ(τ) dτ − 1

∣∣∣∣ ds,
in virtue of (3.92). Since

∫ 0

s
ψ(τ) dτ ∈ (0, 1) for all s ∈ (0, 1), we deduce that

|χ1(x)−max{−x, 0}| ≤ 1.

Similar, if x ∈ [−1, 0], we obtain that

|χ1(x)−max{−x, 0}| ≤
∫ 0

x

∣∣∣∣∫ 0

s

ψ(τ) dτ − 1

∣∣∣∣ ds ≤ ∫ 0

x

1 ds = −x ≤ 1.

Hence ‖χδ −max {− Id, 0}‖∞ ≤ δ.

ii) By (3.92), χ′δ(x) = χ′1(x
δ
) = −

∫∞
x
δ
ψ(τ) dτ implies ‖χ′δ‖∞ ≤ 1. Moreover, χ′′δ(x) =

δχ′′1(x
δ
) = δ−1ψ(x

δ
). Hence ‖χ′′δ‖∞ ≤ δ−1‖ψ‖∞.

iii) The statement follows directly from ii).

iv) Since χ′′δ(s) = 1
δ
ψ(x

δ
) and supp (ψ) ⊂ [−1, 0], we obtain that χ′′δ(s) = 0 on R \ [−δ, 0].

We emphasize that χδ is a smooth approximation of max{− ·, 0}. The following lemma will

play the key role in proving the non�negativity of f and g.

Lemma 3.21. There exists a constant c > 0, independent of ε ∈ (0, 1] and t ≥ 0, such that

the Galerkin approximations fε and gε satisfy∣∣∣∣∫ L

0

χ√ε(fε(t)) dx

∣∣∣∣ ≤ c
√
tε,

∣∣∣∣∫ L

0

χ√ε(gε(t)) dx

∣∣∣∣ ≤ c
√
tε (3.94)

for all ε ∈ (0, 1] and t ≥ 0.

Proof. Let δ > 0. The statement is true for t = 0, since χ√ε(f
0) = χ√ε(g

0) = 0 for f 0, g0 ≥ 0.

By [28, Lemma 7.5], the composition χ′δ(fε) belongs to L2(0, T ;H1). Notice that formally4

d

dt

∫ L

0

χδ(fε)(t) dx = 〈χ′δ(fε)(t), ∂tfε(t)〉H1 ,

d

dt

∫ L

0

χδ(gε)(t) dx = 〈χ′δ(gε)(t), ∂tgε(t)〉H1 .

(3.95)

4∂tfε(t), ∂tgε(t) ∈ (H1(0, L))′ for almost every t > 0, so that the dual pairings in (3.95) exist. However,

they only coincide with their left�hand side, respectively, if ∂tfε(t), ∂tgε(t) ∈ (H1(0, L))′∩L2(0, L). Then

(cf. (3.62))

d

dt

∫ L

0

χδ(fε)(t) dx =

∫ L

0

χ′
δ(fε)∂tfε(t) dx = 〈χ′

δ(fε)(t), ∂tfε(t)〉2 = 〈χ′
δ(fε)(t), ∂tfε(t)〉H1 .
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Recalling that f 0, g0 ≥ 0, which is why the terms
∫ L

0
χδ(f

0) dx =
∫ L

0
χδ(g

0) dx equal zero,

(3.95) yields after (formally) taking the integral with respect to time and integration by

parts ∫ L

0

χδ(fε(T )) dx =

∫
ΩT

Hε
fχ
′′
δ(fε)∂xfε d(x, t),

∫ L

0

χδ(gε(T )) dx =

∫
ΩT

Hε
gχ
′′
δ(gε)∂xgε d(x, t)

(3.96)

for all T > 0. Assume that (3.96) holds true. Since χ′′δ = 0 on R \ [−δ, 0], the Hölder

inequality implies that(∫ L

0

χδ(fε(T )) dx

)2

≤
(∫

[−δ≤fε≤0]

Hε
fχ
′′
δ(fε)∂xfε d(x, t)

)2

≤
(∫

[−δ≤fε≤0]

√
σc2µ√
3
aε(fε)

2

[
1√

3σc2µ
aε(fε)∂

3
x((σ

c
1 + σc2µ)fε + σc2µgε)

+

√
3

2

(√
σc2µaε(gε)∂

3
x(fε + gε) +

√
µ

√
σc2
∂xσε(Γε)

)]
χ′′δ(fε)∂xfε d(x, t)

)2

≤
∫

[−δ≤fε≤0]

∣∣∣∣√σc2µ√3

√
aε(fε)

[
1√

3σc2µ
aε(fε)∂

3
x((σ

c
1 + σc2µ)fε + σc2µgε)

+

√
3

2

(√
σc2µaε(gε)∂

3
x(fε + gε) +

√
µ

√
σc2
∂xσε(Γε)

)]∣∣∣∣∣
2

d(x, t)

×
∫

[−δ≤fε≤0]

aε(fε)
3|χ′′δ(fε)|2|∂xfε|2 d(x, t).

Choosing now δ :=
√
ε and recalling that aε = ε on (−∞, 0], the energy inequality (3.38)

together with Lemma 3.20 iii) imply the existence of a constant c > 0, independent of

ε ∈ (0, 1], such that∣∣∣∣∫ L

0

χ√ε(fε(T )) dx

∣∣∣∣ ≤ c

(∫
[−
√
ε≤fε≤0]

a3
ε(fε)|χ′′√ε(fε)|

2|∂xfε|2 d(x, t)

) 1
2

≤ cε‖ψ‖∞
(∫

ΩT

|∂xfε|2 d(x, t)

) 1
2

≤ C
√
Tε,

which is the desired estimate for fε in (3.94). Using a similar argument we prove the

statement for gε. We obtain again by Hölder's inequality that(∫ L

0

χδ(gε(T )) dx

)2

≤
(∫

[−δ≤gε≤0]

Hε
gχ
′′
δ(gε)∂xgε d(x, t)

)2
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≤
(∫

[−δ≤gε≤0]

(√
3σc2µ

2
aε(gε)aε(fε)

[
1√

3σc2µ
aε(fε)∂

3
x((σ

c
1 + σc2µ)fε + σc2µgε)

+
2√
3

(√
σc2µaε(gε)∂

3
x(fε + gε) +

√
µ

√
σc2
∂xσ(Γε)

)]

+

√
σc2√
3
aε(gε)

2

[√
σc2√
3
aε(gε)∂

3
x(fε + gε) +

√
3

2
√
σc2
∂xσε(Γε)

])
χ′′δ(gε)∂xgε d(x, t)

)2

≤
∫

[−δ≤gε≤0]

∣∣∣∣√3σc2µ

2

√
aε(fε)

[
1√

3σc2µ
aε(fε)∂

3
x((σ

c
1 + σc2µ)fε + σc2µgε)

+
2√
3

(√
σc2µaε(gε)∂

3
x(fε + gε) +

√
µ

√
σc2
∂xσε(Γε)

)]∣∣∣∣2 d(x, t)

×
∫

[−δ≤gε≤0]

aε(fε)aε(gε)
2|χ′′δ(gε)|2|∂xgε|2 d(x, t)

+

∫
[−δ≤gε≤0]

∣∣∣∣∣
√
σc2√
3

√
aε(gε)

[√
σc2√
3
aε(gε)∂

3
x(fε + gε) +

√
3

2
√
σc2
∂xσ(Γε)

]∣∣∣∣∣
2

d(x, t)

×
∫

[−δ≤gε≤0]

a3
ε(gε)|χ′′δ(gε)|2|∂xfε|2 d(x, t).

By taking δ :=
√
ε, using that aε = ε on (−∞, 0] and the energy inequality (3.38), we obtain

the existence of a constant c > 0, independent of ε ∈ (0, 1], such that∣∣∣∣∫ L

0

χ√ε(gε(T )) dx

∣∣∣∣ ≤ c

(∫
ΩT

ε2‖ψ‖2
∞|∂xgε|2 d(x, t)

) 1
2

+ c

(∫
ΩT

ε2‖ψ‖2
∞|∂xgε|2 d(x, t)

) 1
2

≤ c
√
Tε,

which proves the second statement in (3.94).

Now we are left to show that (3.96) holds true. Consider for t > 0

d

dt

∫ L

0

χδ(f
n
ε (t)) dx =

∫ L

0

χ′δ(f
n
ε (t))∂tf

n
ε (t) dx (3.97)

and remark that the integrals in (3.97) exist in virtue of to the regularity properties of the

Galerkin approximation fnε . Since χ
′
δ(f

n
ε (t)) belongs to H1(0, L) for all t > 0, we can use its

Fourier expansion as a test function for ∂tf
n
ε and �nd that

d

dt

∫ L

0

χδ(f
n
ε (t)) dx =

∫ L

0

χ′δ(f
n
ε (t))∂tf

n
ε (t) dx =

∫ L

0

∂tf
n
ε (t)

∞∑
k=0

(χ′δ(f
n
ε (t)) | φk)2 φk dx
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=

∫ L

0

∂tf
n
ε (t)

n∑
k=0

(χ′δ(f
n
ε (t)) | φk)2 φk dx

=

∫ L

0

Hε,n
f (t)∂x

(
n∑
k=0

(χ′δ(f
n
ε (t)) | φk)2 φk

)
dx.

Integrating with respect to time yields∫ L

0

χδ(f
n
ε (T )) dx =

∫ L

0

χδ(f
0) dx+

∫
ΩT

Hε,n
f

n∑
k=0

(χ′δ(f
n
ε (t)) | φk)2 ∂xφk d(x, t) (3.98)

for all T > 0. Since the function χδ is continuous and f
n
ε (t) → fε(t) point�wise for every

t > 0, the left�hand side of (3.98) tends to
∫ L

0
χδ(fε(T )) dx. Owing to f 0 being non�negative,

the �rst integral on the right�hand side of (3.98) vanishes and we are only left to prove that

we can pass to the limit in the second term of the right�hand side of (3.98). First observe

that

χ′′δ(fε)(t)∂xfε −
n∑
k=0

(χ′δ(f
n
ε (t)) | φk)2 ∂xφk =

(
χ′′δ(fε)(t)∂xfε −

n∑
k=0

(χ′δ(fε(t)) | φk)2 ∂xφk

)

+
n∑
k=0

((χ′δ(fε)(t)− χ′δ(fnε )(t)) | φk)2 ∂xφk.

(3.99)

Note that, since fε(t) ∈ H1(0, L), the composition χ′δ(fε(t)) belongs to H1(0, L), due to

χ′δ ∈ L∞(R) (cf. [28, Lemma 7.5] ). Thus, χ′δ(fε(t)) possesses a Fourier expansion and

n∑
k=0

(χ′δ(f
n
ε (t)) | φk)2 φk → χ′δ(fε(t)) in H1(0, L).

Hence, the �rst term of the right�hand side of (3.99) converges to zero in L2(ΩT ), since

χ′′δ(fε(t))∂xfε −
n∑
k=0

(χ′δ(fε(t)) | φk)2 ∂xφk = ∂x

(
χ′δ(fε(t))−

n∑
k=0

(χ′δ(fε(t)) | φk)2 φk

)
→ 0

in L2(0, L). Regarding the convergence in L2(ΩT ) of the second term in (3.99), note that

the sum is the truncation function of the Fourier expansion of χ′′δ(fε)∂xfε− χ′′δ(fnε )∂xf
n
ε and

may be estimated as follows∥∥∥∥∥
n∑
k=0

((χ′δ(fε)− χ′δ(fnε )) | φk)2 ∂xφk

∥∥∥∥∥
2

2

≤ ‖χ′′δ(fε)∂xfε − χ′′δ(fnε )∂xf
n
ε ‖2

2

= ‖χ′′δ(fε)∂xfε − χ′′δ(fnε )∂xfε + χ′′δ(f
n
ε )∂xfε − χ′′δ(fnε )∂xf

n
ε ‖2

2
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≤ 2
(
‖χ′′δ(fε)− χ′′δ(fnε )‖2

∞‖∂xfε‖2
2 + ‖χ′′δ(fnε )‖2

∞‖∂xfε − ∂xfnε ‖2
2

)
.

Since χ′′δ = δ−1ψ( ·
δ
) and ψ is globally Lipschitz continuous, we deduce, that

‖χ′′δ(fε)− χ′′δ(fnε )‖2
∞ ≤ c1(δ)‖fε − fnε ‖2

∞

and, in virtue of Lemma 3.20 ii),

‖χ′′δ(fnε )‖2
∞ ≤ c2(δ),

for some constants c1(δ), c2(δ) > 0, depending on δ > 0. Hence∥∥∥∥∥
n∑
k=0

((χ′δ(fε)− χ′δ(fnε )) | φk)2 ∂xφk

∥∥∥∥∥
2

2

≤ 2
(
c1(δ)‖fε − fnε ‖2

∞‖∂xfε‖2
2 + c2(δ)‖∂xfε − ∂xfnε ‖2

2

)
,

which tends to zero if n→∞, by (3.65) and Lemma 3.20 ii). Hence,

n∑
k=0

(χ′δ(f
n
ε ) | φk)2 ∂xφk −→ χ′′δ(fε)∂xfε in L2(ΩT ).

Since (Hε,n
f )n∈N converges weakly to Hε

f in L2(ΩT ), we deduce that∫
ΩT

Hε,n
f

n∑
k=0

(χ′δ(f
n
ε ) | φk)2 ∂xφk d(x, t)−

∫
ΩT

Hε
fχ
′′
δ(fε)∂xfε d(x, t)

=

∫
ΩT

(Hε,n
f −H

ε
f )χ

′′
δ(fε)∂xfε d(x, t) +

∫
ΩT

Hε,n
f

(
n∑
k=0

(χ′δ(f
n
ε ) | φk)2 ∂xφk − χ

′′
δ(fε)∂xfε

)
d(x, t)

tends to zero if n→∞. Therefore, we can pass to the limit also in the second term of (3.98),

which implies the �rst statement in (3.96). The assertion for gε in (3.96) works similarly,

such that the proof of the lemma is complete.

The next corollary shows that an accumulation point (f, g) of the Galerkin approximation

(fεk , gεk)εk as in (3.91) is non�negative.

Corollary 3.22. Assume that f 0, g0 ≥ 0, then an accumulation point (f, g) ∈ (C(ΩT ))2 of

the Galerkin approximation (fεk , gεk)εk as in (3.91) is non�negative.

Proof. Let (εk)k∈N ∈ (0, 1] be such that εk ↘ 0 for k −→∞. Consider

‖χ√εk(fεk)−max{−f, 0}‖∞ ≤ ‖χ√εk(fεk)− χ√εk(f)‖∞ + ‖χ√εk(f)−max{−f, 0}‖∞
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≤ ‖fεk − f‖∞ +
√
εk,

by Lemma 3.20 i) and ii). Hence, (3.91) and Lemma 3.20 ii) guarantee the convergence

χ√εk(fεk) −→ max{−f, 0} in C(ΩT ). Recall that in the previous lemma we have shown that∣∣∣∣∫ L

0

χ√εk(fεk(T )) dx

∣∣∣∣ ≤ c
√
Tεk,

where c > 0 is a constant independent of ε ∈ (0, 1] and T ≥ 0. Hence, letting k tend to zero,

implies that ∫ L

0

max{−f(t), 0} dx = 0

for all t ∈ [0, T ], which proves the statement for f . The non�negativity of g follows by the

same argumentation5.

Following the idea in [20], we prove in the next theorem that the sequence (Γε)ε∈(0,1] already

admits the almost everywhere non�negativity property.

Theorem 3.23. Assume that Γ0 ≥ 0, then the Galerkin approximation Γε, ε ∈ (0, 1], is

non�negative almost everywhere in ΩT .

Proof. Let δ > 0 and χδ the function de�ned in (3.93). Then, χδ(Γ
n
ε (t)) ∈ H1(0, L) for all

t > 0 and

d

dt

∫ L

0

χδ(Γ
n
ε (t)) dx =

∫ L

0

χ′δ(Γ
n
ε (t))∂tΓ

n
ε (t) dx =

∫ L

0

∂tΓ
n
ε (t)

n∑
k=0

(χ′δ(Γ
n
ε (t)) | φk)2 φk dx,

which yields after integration with respect to time∫ L

0

χδ(Γ
n
ε (T )) dx =

∫
ΩT

Hε,n
Γ

n∑
k=0

(χ′δ(Γ
n
ε (t)) | φk)2 ∂xφk d(x, t) (3.100)

for each T > 0. We can pass to the limit in (3.100), by the same argument as in the proof

of Lemma 3.21, and obtain∫ L

0

χδ(Γε(t)) dx =

∫
ΩT

Hε
Γ∂xχ

′
δ(Γε) d(x, t), (3.101)

5The proof of Corollary 3.22 is essentially due to Lemma 3.21, which provides an estimate depending on

ε of the negative part of a function. Remark that we did not claim the non�negativity of (fε, gε)ε∈(0,1]

itself , but only for an accumulation point of this family, when ε↘ 0.
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where Hε
Γ represents the limit of a weakly convergent subsequence of Hε,n

Γ in L2(ΩT )6. By

construction χ′′δ = 0 on R \ [−δ, 0], so that (3.101) yields∫ L

0

χδ(Γε(T )) dx =

∫
Ωδ

{√
3σc2
2

τε(Γε)aε(fε)

[
1√

3σc2µ
aε(fε)∂

3
x((σ

c
1 + σc2µ)fε + σc2µgε)

+
2√
3

(√
σc2µaε(gε)∂

3
x(fε + gε) +

√
µ

√
σc2
∂xσε(Γε)

)]

+

√
3σc2
2

τε(Γε)aε(gε)

[√
σc2√
3
aε(gε)∂

3
x(fε + gε) +

√
3

2
√
σc2
∂xσε(Γε)

]

+
1

4
τε(Γε)aε(gε)∂xσε(Γε)−D∂xΓε

}
χ′′δ(Γε)∂xΓε d(x, t)

≤
∫

Ωδ

{√
3σc2
2

τε(Γε)aε(fε)

[
1√

3σc2µ
aε(fε)∂

3
x((σ

c
1 + σc2µ)fε + σc2µgε)

+
2√
3

(√
σc2µaε(gε)∂

3
x(fε + gε) +

√
µ

√
σc2
∂xσε(Γε)

)]

+

√
3σc2
2

τε(Γε)aε(gε)

[√
σc2√
3
aε(gε)∂

3
x(fε + gε) +

√
3

2
√
σc2
∂xσε(Γε)

]

+
1

4
τε(Γε)aε(gε)∂xσε(Γε)

}
χ′′δ(Γε)∂xΓε d(x, t),

where Ωδ := [−δ ≤ Γε ≤ 0] and we used the fact that χ′′δ = δ−1ψ( ·
δ
) ≥ 0, which implies

−Dχ′′δ(Γε)|∂xΓε|2 ≤ 0. By means of |τε(s)χ′′δ(s)| ≤ |sχ′′δ(s)| ≤ K if |s| ≤ δ (cf. Lemma 3.20

iii)), we deduce that∫ L

0

χδ(Γε(T )) dx

≤
√

3σc2
2

∥∥∥√aε(fε)
∥∥∥
∞
K

∫
Ωδ

{∣∣∣∣√aε(fε)

[
1√

3σc2µ
aε(fε)∂

3
x((σ

c
1 + σc2µ)fε + σc2µgε)

6Recall that without regularizing the terms involving Γ in (3.23) by means of τε, we would obtain that (cf.

(3.61))

Hε,n
Γ ⇀ Hε

Γ in L 3
2
(ΩT ).

Note that then passing to the limit in (3.100) would not have been possible, since Hε,n
Γ ⇀ Hε

Γ in L 3
2
(ΩT )

would have demanded that

n∑
k=0

〈χ′
δ(Γ

n
ε ), φk〉2∂xφk −→ χ′′

δ (Γε)∂xΓε in L3(ΩT ),

which is out of reach if ∂xΓnε in L2(ΩT ) only (cf. Lemma 3.18 ii)).
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+
2√
3

(√
σc2µaε(gε)∂

3
x(fε + gε) +

√
µ

√
σc2
∂xσε(Γε)

)]
∂xΓε

∣∣∣∣} d(x, t)

+

√
3σc2
2

∥∥∥√aε(gε)
∥∥∥
∞
K

∫
Ωδ

∣∣∣∣∣√aε(gε)

[√
σc2√
3
aε(gε)∂

3
x(fε + gε) +

√
3

2
√
σc2
∂xσε(Γε)

]
∂xΓε

∣∣∣∣∣ d(x, t)

+
1

4

∥∥∥√aε(gε)
∥∥∥
∞
K

∫
[−δ≤Γε≤0]

∣∣∣√aε(gε)σ
′
ε(Γε)∂xΓε

∣∣∣ d(x, t).

By Hölder's inequality, the estimates implied by the energy inequality (3.38), the bound

of (∂xΓε)ε∈(0,1] in L2(Ω) and the de�nition of aε together with (fε)ε∈(0,1], (gε)ε∈(0,1] being

bounded in L∞(ΩT ) (cf. Remark 3.17), the above inequality implies that∫ L

0

χδ(Γε(t)) dx ≤ c

∫
[−δ≤Γε≤0]

|∂xΓε|2 d(x, t)

for some constant c > 0. It follows from [31, Lemma A.4] that for almost all t ≥ 0∫ L

0

max {−Γε(t), 0} dx = lim
δ→0

∫ L

0

χδ(Γε(t)) dx ≤ 0,

which completes the proof.

Existence of Weak Solutions to the Original Problem. Now, we prove that there

exists indeed an accumulation point of the Galerkin approximation (fε, gε,Γε)ε∈(0,1] being

a global weak solutions to the original problem (3.23). Note that the following bounds,

established before, are uniform in ε ∈ (0, 1]:

{fε, gε | ε ∈ (0, 1]} in L∞(0, T ;H1(0, L)), (3.102)

{∂tfε, ∂tgε | ε ∈ (0, 1]} in L2(0, T, (H1(0, L))′), (3.103)

{Γε | ε ∈ (0, 1]} in Lq(ΩT ), q ∈ [2, 6), (3.104)

{∂tΓε | ε ∈ (0, 1]} in L 3
2
(0, T ; (H1(0, L))′),

(3.105)

{∂xΓε | ε ∈ (0, 1]} in L2(ΩT ), (3.106)

{Φ(Γε) | ε ∈ (0, 1]} in L∞(0, T ;L1(0, L)), (3.107)

{
√

Φ′′(Γε)∂xΓε | ε ∈ (0, 1]} in L2(ΩT ), (3.108)
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{√
aε(fε)

[
1√

3σc2µ
aε(fε)∂

3
x((σ

c
1 + σc2µ)fε + σc2µgε)

+

√
3

2

(√
σc2µaε(gε)∂

3
x(f

n
ε + gε) +

√
µ

√
σc2
∂xσε(Γε)

)] ∣∣∣∣∣ ε ∈ (0, 1]

} in L2(ΩT ), (3.109)

{√
aε(fε)

[√
σc2µaε(gε)∂

3
x(fε + gε) +

√
µ

√
σc2
∂xσε(Γε)

] ∣∣∣∣∣ ε ∈ (0, 1]

}
in L2(ΩT ), (3.110)

{√
aε(gε)

[√
σc2√
3
aε(gε)∂

3
x(fε + gε) +

√
3

2
√
σc2
∂xσε(Γε)

] ∣∣∣∣∣ ε ∈ (0, 1]

}
in L2(ΩT ), (3.111)

{
√
aε(gε)∂xσε(Γε) | ε ∈ (0, 1]} in L2(ΩT ). (3.112)

We emphasize, that the bounds ∂3
xf

n
ε and ∂3

xg
n
ε in L2(ΩT ) have not been uniform in ε ∈ (0, 1]

and we loose these regularities, when passing to the limit ε ↘ 0. However, by the same

arguments used before, we �nd a sequence (εk)k∈N ∈ (0, 1] with εk ↘ 0, such that

fεk −→ f and gεk −→ g in C([0, T ], Cα([0, L])), (3.113)

fεk ⇀ f and gεk ⇀ g in L2(0, T ;H1([0, L])), (3.114)

∂tfεk ⇀ ∂tf, and ∂tgεk ⇀ ∂tg in L2(0, T ; (H1([0, L]))′), (3.115)

Γεk −→ Γ in L2(0, T ;Cα([0, L])) ∩ C([0, T ]; (H1(0, L))′),

(3.116)

Γεk ⇀ Γ in L2(0, T ;H1(0, L)), (3.117)

∂tΓεk ⇀ ∂tΓ in L2(0, T ; (H1(0, L))′), (3.118)

Φ(Γεk) −→ Φ(Γ) in L∞(0, T ;L1(0, L)), (3.119)

for α ∈ [0, 1
2
). Observe that, as before, (3.102), (3.113) and (3.114) imply

∂xfεk(t) ⇀ ∂xf(t) and ∂xgεk(t) ⇀ ∂xg(t) in L2(0, L).

for almost all t ∈ [0, T ] and

f, g ∈ L∞(0, T,H1(0, L)). (3.120)

Further, Φ(Γ) ∈ L∞(0, T ;L1(0, L)) implies that

Γ ∈ L∞(0, T ;L2(0, L)), (3.121)
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due to Assumption A2). Thus, by (3.113), (3.116), (3.120) and (3.121) we have shown

the regularity for f, g and Γ claimed by Theorem 3.11 a). In virtue of Corollary 3.22, the

functions f and g are non�negative, whereas Γ ≥ 0 almost everywhere in view of Theorem

3.23 and (3.116). Further, f(0) = f 0, g(0) = g0 point�wise and Γ(0) = Γ0 almost everywhere,

by (3.36), (3.113) and (3.116). Therefore claim b) of Theorem 3.11 is satis�ed. Due to (3.37),

(3.113) and (3.116), the mass conservation property is satis�ed for almost every t ≥ 0, which

proves part c) of Theorem 3.11.

Next we establish the identities in Theorem 3.11 d). In order to be able to pass to the limit

in (3.33)�(3.35), we investigate, like in [20, Proof of Theorem 3], the convergence of the

regularized terms τε and σε, which occur in Hε
f , H

ε
g and Hε

Γ. Note �rst that (as in Lemma

3.18), we can prove that (Γε)ε∈(0,1] is bounded in L6(ΩT ) and the convergence Γε → Γ takes

place in Lp(ΩT ) for p ∈ [2, 6). Moreover, by construction

τε(s) = s for 0 ≤ s ≤ sε :=

[(
1

εcΦ

) r
r+1

− 1

] 1
r

, (3.122)

which is due to Assumption A3). Indeed, by de�nition, τε(s) = s if σ′ε(s) = Tε(σ′(s)) = σ′(s),

which in turn is satis�ed if

|σ′(s)| ≤ ε−1. (3.123)

Using Assumption A3), it is su�cient to show that(
|s|r+1 + s

)
≤ 1

εcΦ

for s ≥ 0 (3.124)

in order to guarantee that (3.123) is satis�ed. Assume s ≤ sε, then

sr + 1 ≤
(

1

εcΦ

) r
r+1

and we deduce twofold

sr+1 + s ≤
(

1

εcΦ

) r
r+1

s and s ≤
(

1

εcΦ

) 1
r+1

. (3.125)

Inserting the second inequality in (3.125) into the �rst one, we obtain (3.124). Thus, τε(s) = s

for 0 ≤ s ≤ sε. In particular,

σ′ε(s) = σ′(s) for all s ∈ [0, sε]. (3.126)

Lemma 3.24. There exists a subsequence (not relabeled) of (Γε)ε∈(0,1] satisfying
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i) τε(Γε) −→ Γ in Lq(ΩT ) for q ∈ [3, 6),

ii) ∂xσε(Γε) ⇀ ∂xσ(Γ) in Ls(ΩT ) for s ∈ [1, 6
r+4

).

Proof. Recall that Γε ≥ 0 almost everywhere, due to Theorem 3.23.

i) We show �rst that

τε(Γε)

Γε
→ 1 in Lp(ΩT ) for any p ≥ 1. (3.127)

Then, the statement follows in virtue of

‖τε(Γε)− Γ‖p ≤ ‖τε(Γε)− Γε‖p + ‖Γε − Γ‖p ≤ ‖Γε‖6

∥∥∥∥τε(Γε)Γε
− 1

∥∥∥∥
p

6−p

+ ‖Γε − Γ‖p ,

Γε → Γ in Lm(ΩT ) for m ∈ [2, 6) and (3.127). In order to prove (3.127), recall that

τε(Γε) = Γε if Γε ≤ sε (cf. (3.122)). Thus, for any p ≥ 1∫
ΩT

∣∣∣∣τε(Γε)Γε
− 1

∣∣∣∣p d(x, t) =

∫
[Γε>sε]

∣∣∣∣τε(Γε)Γε
− 1

∣∣∣∣p d(x, t) ≤
∫

[Γε>sε]

2p
(∣∣∣∣τε(Γε)Γε

∣∣∣∣p − 1

)
d(x, t)

≤ 2p+1

∫
[Γε>sε]

1 d(x, t) ≤ 2p+1

∫
[Γε>sε]

Γ6
ε

s6
ε

d(x, t) ≤ C(p, T )

s6
ε

,

(3.128)

since |τε(s)| ≤ |s| and (Γε)ε∈(0,1] being uniformly bounded in L6(ΩT ). Letting ε tend to zero,

(3.128) implies the assertion in view of sε −→∞ if ε↘ 0.

ii) Given p ∈ [1, 6
r+1

), R ≥ 1 and ε ∈ (0, 1], such that 1 ≤ R ≤ sε, we have that∫
ΩT

|σ′ε(Γε)− σ′(Γ)|p d(x, t) =

∫
[max{Γε,Γ}≤R]

|σ′ε(Γε)− σ′(Γ)|p d(x, t)

+

∫
[Γε>R]∪[Γ>R]

|σ′ε(Γε)− σ′(Γ)|p d(x, t).

(3.129)

Estimating the integrals on the right�hand side of (3.129) separately, noting that σ′ε = σ′

everywhere in [Γε ≤ R] (cf. (3.126)) and since σ′ ∈ C1(R), the Mean Value Theorem implies

that the �rst integral reduces to∫
[max{Γε,Γ}≤R]

|σ′ε(Γε)− σ′(Γ)|p d(x, t) =

∫
[max{Γε,Γ}≤R]

|σ′(Γε)− σ′(Γ)|p d(x, t)

≤ ‖σ′′‖L∞(0,R)

∫
[max{Γε,Γ}≤R]

|Γε − Γ|p d(x, t),

(3.130)
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which tends to zero if ε ↘ 0 for any p ∈ [1, 6). The second integral yields in virtue of

|σ′ε| ≤ |σ′| and Assumption A3)∫
[Γε>R]∪[Γ>R]

|σ′ε(Γε)− σ′(Γ)|p d(x, t) ≤
∫

[Γε>R]∪[Γ>R]

2p (|σ′(Γε)|p + |σ′(Γ)|p) d(x, t)

≤ 2pCΦ

∫
[Γε>R]∪[Γ>R]

|Γε(Γrε + 1)|p + |Γ(Γr + 1)|p d(x, t)

≤ 2p+1CΦ

∫
[Γε>R]∪[Γ>R]

{
Γp(r+1)
ε + Γp(r+1)

}
d(x, t)

≤ 2p+1CΦ

∫
[Γε>R]∪[Γ>R]

2 max{Γε,Γ}p(r+1) d(x, t)

=
2p+3CΦ

R6−p(r+1)

∫
[Γε>R]∪[Γ>R]

max{Γε,Γ}p(r+1)R6−p(r+1) d(x, t)

≤ 2p+2CΦ

R6−p(r+1)

∫
[Γε>R]∪[Γ>R]

Γ6
ε + Γ6 d(x, t).

(3.131)

Again, since (Γε)ε∈(0,1] is bounded in L6(ΩT ) and thus, in virtue of (3.116), also Γ ∈ L6(ΩT ),

we may let �rst ε ↘ 0 and then R → ∞ in (3.131). Gathering (3.129)�(3.131), we have

shown that

σ′ε(Γε) −→ σ′(Γ) in Lp(ΩT ) for p ∈
[
1,

6

r + 1

)
. (3.132)

Since r ∈ (0, 2), we can choose p > 2 in (3.132). Note that (∂xσε(Γε))ε∈(0,1] = (σ′ε(Γε)∂xΓε)ε∈(0,1]

is bounded in Ls(ΩT ) for s ∈ [1, 6
r+4

), since (∂xΓε)ε∈(0,1] is bounded in L2(ΩT ), (σ′ε(Γε))ε∈(0,1]

is bounded in Lp(ΩT ) for p ∈ [1, 6
r+1

) and Hölder's inequality. Hence, by Eberlein�Smulyan's

theorem, there exists a subsequence (not relabeled), such that ∂xσε(Γε) converges weakly to

a function v in Ls(ΩT ). The identi�cation of the limit v with ∂xσ(Γ) follows in virtue of∫
ΩT

(∂xσ(Γ)− v)ξ d(x, t) =

∫
ΩT

(∂xσ(Γ)− ∂xσε(Γε))ξ d(x, t) +

∫
ΩT

(∂xσε(Γε)− v)ξ d(x, t)

=

∫
ΩT

σ′(Γ)(∂xΓ− ∂xΓε)ξ d(x, t) +

∫
ΩT

∂xΓε(σ
′(Γ)− σ′ε(Γε))ξ d(x, t)

+

∫
ΩT

(∂xσ
′
ε(Γε)− v)ξ d(x, t),

which tends to zero for arbitrary ξ ∈ C∞(ΩT ) by ∂xσε(Γε) ⇀ v in Ls(ΩT ), (3.117) and

(3.132). This proves the statement.
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Let ξ ∈ L2(0, T ;H1(0, L)) be given and (fε, gε,Γε)ε∈(0,1] be the Galerkin approximation of

the regularized system, which admits a subsequence converging towards (f, g,Γ). We know

from (3.33) that

√
aε(fε)

[
aε(fε)√

3σc2µ
∂3
x((σ

c
1 + σc2µ)fε + σc2µgε) +

√
3

2

(√
σc2µaε(gε)∂

3
x(fε + gε) +

√
µ

√
σc2
∂xσε(Γε)

)]

⇀
√
f

[
1√

3σc2µ
f∂3

x((σ
c
1 + σc2µ)f + σc2µg) +

√
3

2

(√
σc2µg∂

3
x(f + g) +

√
µ

√
σc2
∂xσ(Γ)

)]
,

1

4

√
aε(fε)

[√
σc2aε(gε)∂

3
x(fε + gε) +

√
3

2
√
σc2
∂xσε(Γε)

]
⇀

√
f

4

[√
σc2g∂

3
x(f + g) +

√
3

2
√
σc2
∂xσ(Γ)

]
,

√
aε(gε)

[√
σc2√
3
aε(gε)∂

3
x(fε + gε) +

√
3

2
√
σc2
∂xσε(Γε)

]
⇀
√
g

[√
σc2√
3
g∂3

x(f + g) +

√
3

2
√
σc2
∂xσ(Γ)

]
,

1

4σc2

√
aε(gε)∂xσε(Γε) ⇀

√
g

4σc2
∂xσ(Γ)

in L2(Pf ∩Pg). By using the same arguments as before, we are now able to identity the limit

function Hf on the set Pf ∩ Pg where f and g are strictly positive as

Hf =

√
σc2µ√
3
f 2

[
1√

3σc2µ
f∂3

x((σ
c
1 + σc2µ)f + σc2µg) +

√
3

2

(√
σc2µg∂

3
x(f + g) +

√
µ

√
σc2
∂xσ(Γ)

)]
.

Analogously we prove (3.26), (3.27), where the limit functions Hg, HΓ are identi�ed as

Hg =

√
3σc2µ

2
gf

[
1√

3σc2µ
f∂3

x((σ
c
1 + σc2µ)f + σc2µg) +

2√
3

(√
σc2µg∂

3
x(f + g) +

√
µ

√
σc2
∂xσ(Γ)

)]

+

√
σc2√
3
g

[√
σc2√
3
g∂3

x(f + g) +

√
3

2
√
σc2
∂xσ(Γ)

]
and

HΓ =

√
3σc2
2

Γf

[
1√

3σc2µ
f∂3

x((σ
c
1 + σc2µ)f + σc2µg) +

2√
3

(√
σc2µg∂

3
x(f + g) +

√
µ

√
σc2
∂xσ(Γ)

)]

+

√
3σc2
2

Γg

[√
σc2√
3
g∂3

x(f + g) +

√
3

2
√
σc2
∂xσ(Γ)

]
+

1

4
Γg∂xσ(Γ)−D∂xΓ

on Pf ∩ Pg. Finally, similar as before, we pass to the weak limit in the energy inequality

(3.38) and obtain claim Theorem 3.11 e), by (3.113), (3.119).

Remark 3.25. Recall that the surfactant concentration is rescaled by Γ̄ = Γ
Γm

, where Γm is

the critical micelle concentration (cf. Section 1.1). Hence, from a physical point of view it is
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expected that the weak solution Γ, constructed above, satis�es not only the non�negativity

property, but also 0 ≤ Γ ≤ 1. In [15] a thin �lm model with insoluble surfactant taking

into account gravitational, capillary and van der Waals forces is studied and the existence

of global non�negative weak solutions as well as the upper bound Γ ≤ 1 is investigated.
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A. Appendix

A.1. Calculations

Let for each u ∈ Uα the matrix aG(u) be given as in (2.3). We prove that all eigenvalues of

aG(u) are strictly positive.

Lemma A.1. If Assumption G1) and A1) are satis�ed, all eigenvalues of aG(u) are strictly

positive for each �xed u ∈ Uα.

Proof. Set for u = (f, g,Γ) ∈ Uα

ã := G1
f3

3
+G2µ

f2g
2
, ā := G2µ

(
f3

3
+ f2g

2

)
b := G2

g3

3
+G1

f2g
2

+G2µfg
2, b̄ := G2

g3

3
+G2µ

(
f2g
2

+ fg2
)

c :=
(
G2

g2

2
+G1

f2

2
+G2µfg

)
Γ, c̄ :=

(
G2

g2

2
+G2µ

(
f2

2
+ fg

))
Γ

d := −f2

2
µσ′(Γ), e := −

(
µfg + g2

2

)
σ′(Γ)

h := −(µf + g)Γσ′(Γ) +D.

Since we assume σ′ to be non�positive (cf. A1)), ã, ā, b, b̄, c, c̄, h > 0 and d, e ≥ 0. The

matrix aG(u) in (3.1) can be written as

aG(u) =


ã ā d

b b̄ e

c c̄ h

 .

and the eigenvalues of aG(u) are the roots of

det(a(u)− λ Id) = λ3 − λ2[h+ ã+ b̄] + λ[ãb̄− āb+ h(ã+ b̄)− cd− c̄e]

−[h(ãb̄− āb) + d(bc̄− b̄c) + e(āc− ãc̄)].
(A.1)

Rewriting (A.1) as

λ3 − Aλ2 +Bλ− C = 0,
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where A := h+ã+b̄, B := ãb̄−āb+h(ã+b̄)−cd−c̄e and C := h(ãb̄−āb)+d(bc̄−b̄c)+e(āc−ãc̄),

we can use the Hurwitz Lemma and prove the statement by showing that A,B,C > 0 and

AB − C > 0. We have

A = −(µf + g)Γσ′(Γ) +D +G1
f3

3
+G2

g3

3
+G2µ (f 2g + fg2)

B =
(
G2

f3g3

9
+ f4g2

12
G2µ

)
[G1 −G2µ] +D

(
G1

f3

3
+ (G1 +G2µ) f2g

2
+G2µ

fg2

2
+G2

g3

3

)
−σ′(Γ)Γ

(
G1µ

f4

12
+ [G1 −G2µ]µf

3g
2

+G1
f3g
3

+G1
f2g2

4
+ [G1 −G2µ]f

2g2

4
+ 2G2µ

fg3

2

)
C =

(
D
(
G2

f3g3

9
+G2µ

f4g2

12

)
− σ′(Γ)Γ

(
G2

f3g4

36
+G2µ

f4g3

36

))
[G1 −G2µ].

Assumption G1) implies that G1 −G2µ > 0, thus A,B,C > 0. Observe that

AB > (D − σ′(Γ)Γ(µf + g))

(
G2
f 3g3

9
+
f 4g2

12
G2µ

)
[G1 −G2µ].

Hence

AB − C >
(

(−σ′(Γ)Γ(µf + g) +D)
(
G2

f3g3

9
+G2µ

f4g2

12

)
− D

(
f3g3

9
G2 +G2µ

f4g2

12

)
+ σ′(Γ)Γ

(
G2

f3g4

36
+G2µ

f4g3

36

))
[G1 −G2µ]

= −σ′(Γ)Γ[G1 −G2µ]µf
(
G2

f3g4

36
+G2µ

f4g3

36

)
> 0

Applying the Hurwitz Lemma, we deduce that the spectrum of aG(u) is for each �xed u ∈ Uα

consists only of strictly positive numbers.

In the next lemma we show that there exists z ≥ 0, such that the matrix bzG(f∗, g∗, 0), de�ned

in (2.13), where f∗, g∗ > 0 are constants, is positive de�nite

Lemma A.2. Let Assumption G1) and S1) be satis�ed. Then, there exists z > 0, such that

the matrix bzG(f∗, g∗, 0) is positive de�nite.

Proof. The matrix bzG(f∗, g∗, 0) is given by

bzG(f∗, g∗, 0) :=


G2µ

G1−G2µ

(
G2

g3∗
3

+G2µ
(
f3∗
3

+ f 2
∗ g∗ + f∗g

2
∗

))
G2µ

(
f3∗
3

+ f2∗ g∗
2

)
j

G2µ
(
f3∗
3

+ f2∗ g∗
2

)
(G1 −G2µ)f

3
∗
3

k

j k +zD


(A.2)

with

j := −1

2

G2µ

G1 −G2µ

(
µ
f 2
∗
2

+ µf∗g∗ +
g2
∗
2

)
σ′(0),
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k := −1

2
µ
f 2
∗
2
σ′(0).

In order to prove that the matrix (A.2) is positive de�nite, we show that its leading principal

minors are positive. Denote its �rst, second and third principal minor by M1,M2 and

M3, respectively. Clearly M1 = G2µ
G1−G2µ

(
G2

g3∗
3

+G2µ
(
f3∗
3

+ f 2
∗ g∗ + f∗g

2
∗

))
is positive, by

assumption G1). The second principal minor M2 is given by

M2 = G2µ
G1−G2µ

(
G2

g3∗
3

+G2µ
(
f3∗
3

+ f 2
∗ g∗ + f∗g

2
∗

))
(G1 −G2µ)f

3
∗
3
− (G2µ)2

(
f3∗
3

+ f2∗ g∗
2

)2

= G2µ
(
G2

g3∗
9

+G2µ
f4∗ g

2
∗

12

)
,

hence M2 > 0. It remains to show that also M3 = det(b(f∗, g∗, 0)) is positive. We calculate

via Leibniz formula

M3 = zDM2 −
1

4
σ′(0)µ2

[
f 4
∗
4

G2µ

G1 −G2µ

(
G2
g3
∗
3

+G2µ

(
f 3
∗
3

+ f 2
∗ g∗ + f∗g

2
∗

))

+

(
G2

G1 −Gµ
2

)2(
µ
f 2

2
+ µf∗g∗ +

g2
∗
2

)2

(G1 −G2µ)
f 3
∗
3

− G2

G1 −G2µ
f 2

(
µ
f 2

2
+ µf∗g∗ +

g2
∗
2

)
G2µ

(
f 3
∗
3

+
f 2
∗ g∗
2

)]
.

Since D and M2 are strictly positive, there exists z > 0, such that M3 > 0 and we have

shown, that the matrix bzG(f∗, g∗, 0) is positive de�nite.

A.2. Alternative proof of Proposition 3.4 i)

We give an alternative proof of Proposition 3.4 i) by showing the sectorial property of A11(X),

which is based on a similar result in [23]. Fix X = (f, g) ∈ {H4α
B (0, L;R2) | f, g > 0}.

Introducing a weighted scalar product, we show that A := A11(X) satis�es the conditions

of being a densely de�ned, sectorial operator, which implies that −A is the generator of an

analytic semigroup. Set

a11 := (σc1 + σc2µ)
f

3

3
+ σc2µ

f
2
g

2
, a12 := σc2µ

(
f

3

3
+
f

2
g

2

)
,

a21 := σc2
g3

3
+ (σc1 + σc2µ)

f
2
g

2
+ σc2µfg

2, a22 := σc2
g3

3
+ σc2µ

(
f

2
g

2
+ fg2

)
.

105



A.2. Alternative proof of Proposition 3.4 i)

Then, since X ∈ {H4α
B (0, L;R2) | f, g > 0}, we can ensure that aij > 0, 1 ≤ i, j ≤ 2 and

belong to C2([0, L];R). Observe that

a11a22 > a12a21. (A.3)

Using the strict positivity of X, we de�ne, in accordance to [23], a weighted scalar product

on Hk
B(0, L;R2), where k ∈ N, by the relation

(
X | X̃

)
k

:=
k∑
i=0

∫ L

0

a21∂
i
xf∂

i
xf̃ + a12∂

i
xg∂

i
xg̃ dx (A.4)

for X = (f, g), X̃ = (f̃ , g̃) ∈ Hk
B(0, L;R2). Since a12 and a21 are both continuous and positive

functions, it is clear that

‖ · ‖k := (· | ·)
1
2
k

de�nes an equivalent norm to the usual Sobolev norm ‖·‖Hk . In order to avoid any confusion,

note that within this paragraph (Proof of Proposition 3.4 i)), ‖ · ‖2 and (· | ·)2 always denote

the above introduced norm and scalar product on the Sobolev space H2(0, L;R2). The

L2�norm and scalar product of a function X is then given by ‖X‖0 and (· | ·)0, respectively.

The following three lemmata provide estimates, which imply that the operator A is closed

and dissipative.

Lemma A.3. There exist constants c0, λ0 > 0 such that

‖AX‖2
0 ≥ c0‖X‖2

4 − λ0‖X‖2
0 for X ∈ H4

B(0, L;R2). (A.5)

Proof. By de�nition of the introduced norm, we have

‖AX‖2
0 =

∫ L

0

{
a21

∣∣∂x (a11∂
3
xf + a12∂

3
xg
)∣∣2 + a12

∣∣∂x (a21∂
3
xf + a22∂

3
xg
)∣∣2} dx

≥ m

∫ L

0

{∣∣∂xa11∂
3
xf + a11∂

4
xf + ∂xa12∂

3
xg + a12∂

4
xg
∣∣2

+
∣∣∂xa21∂

3
xf + a21∂

4
xf + ∂xa22∂

3
xg + a22∂

4
xg
∣∣2} dx,

where m := min{a12, a21}. Since (x+ y)2 ≥ 3
4
x2 − 3y2, we obtain that

‖AX‖2
0 ≥

3m

4

∫ L

0

{∣∣a11∂
4
xf + a12∂

4
xg
∣∣2 +

∣∣a21∂
4
xf + a22∂

4
xg
∣∣2} dx

− d
(
‖∂3

xf‖2
0 + ‖∂3

xg‖2
0

)
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=
3m

4

∫ L

0

{
(a2

11 + a2
21)|∂4

xf |2 + 2(a11a12 + a21a22)∂4
xf∂

4
xg + (a2

12 + a2
22)|∂4

xg|2
}
dx

− d
(
‖∂3

xf‖2
0 + ‖∂3

xg‖2
0

)
,

where d > 0 is a constant depending on aij, ‖∂xaij‖∞, 1 ≤ i, j ≤ 2. Note that, since

a11a22 6= a21a12 (cf. (A.3)),√
(a2

11 + a2
21)(a2

12 + a2
22) =

√
a2

11a
2
12 + a2

11a
2
22 + a2

21a
2
12 + a2

21a
2
22

=
√

(a11a12 + a21a22)2 + (a11a22 − a21a12)2

= (a11a12 + a21a22) + c

for some c > 0. Thus,

(a11a12 + a21a22) =
√

(a2
11 + a2

21)(a2
12 + a2

22)− c =
√

(a2
11 + a2

21)(a2
12 + a2

22) (1− k) ,

where 0 < k := c√
(a211+a221)(a212+a222)

< 1. We deduce that

‖AX‖2
0 ≥

3m

4

∫ L

0

{[√
(1− k)(a2

11 + a2
21)|∂4

xf |+
√

(1− k)(a2
12 + a2

22)|∂4
xg|
]2

+ k
(
(a2

11 + a2
21)|∂4

xf |2 + (a2
12 + a2

22)|∂4
xg|2

)}
dx− d

(
‖∂3

xf‖2
0 + ‖∂3

xg‖2
0

)
≥ e

(
‖∂4

xf‖2
0 + ‖∂4

xf‖2
0

)
− d

(
‖∂3

xf‖2
0 + ‖∂3

xg‖2
0

)
≥ e

(
‖f‖2

4 + ‖g‖2
4

)
− (e+ d)(‖f‖2

3 + ‖g‖2
3)

for e > 0 being a constant. By an interpolation estimate and Young's inequality (cf. (3.8)),

we deduce the existence of c0, λ0 > 0, such that (A.5) is satis�ed.

Lemma A.4. For all X ∈ H4
B(0, L;R2) there exist constants c1, λ1 > 0, such that

(AX | X)0 ≥ c1‖X‖2
2 − λ1‖X‖2

0. (A.6)

Proof. Given X ∈ H4
B(0, L;R2), we obtain in virtue of two times integration by parts, where

the boundary terms vanish due to the boundary conditions,

(AX | X)0 =

∫ L

0

{
a21∂x

(
a11∂

3
xf + a12∂

3
xg
)
f + a12∂x

(
a21∂

3
xf + a22∂

3
xg
)
g
}
dx
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= −
∫ L

0

{(
a11∂

3
xf + a12∂

3
xg
)
∂x(a21f) +

(
a21∂

3
xf + a22∂

3
xg
)
∂x(a12g)

}
dx,

=

∫ L

0

{
∂2
xf∂x(a11∂x(a21f)) + ∂2

xg∂x(a12∂x(a21f))

+∂2
xf∂x(a21∂x(a12g)) + ∂2

xg∂x(a22∂x(a12g))
}
dx,

=

∫ L

0

{
∂2
xf∂x (a11a21∂xf + a11∂xa21f + a21a12∂xg + a21∂xa12g)

+∂2
xg∂x (a12a21∂xf + a11∂xa21f + a22a12∂xg + a22∂xa12g)

}
dx

≥
∫ L

0

{
a11a21|∂2

xf |2 + 2a21a12∂
2
xf∂

2
xg + a12a22|∂2

xg|2
}
dx

− E
(
‖∂2

xf‖0 + ‖∂2
xg‖0

)
(‖f‖1 + ‖g‖1) ,

where E > 0 is a constant depending on ‖aij‖∞, ‖∂xaij‖∞ and ‖∂2
xaij‖∞, 1 ≤ i, j ≤ 2.

Note that we used the chain rule for Sobolev functions, which states that a ∈ W k
∞(0, L;R2)

and X ∈ Hk(0, L;R2) imply aX ∈ Hk(0, L;R2) and ∂x(aX) = ∂xaX + a∂xX (see e.g. [25,

Theorem 5.8.4]). The integrand of the �rst integral in the last estimate above can be written

as1

a11a21|∂2
xf |2 + 2a21a12∂

2
xf∂

2
xg + a12a22|∂2

xg|2

=

√
a12a21

a11a22

[√
a11a21∂

4
xf +

√
a12a22∂

4
xg
]2

+

(
1−

√
a12a21

a11a22

)[
|∂4
xf |2 + |∂4

xg|2
]
.

Hence, in virtue of a11a22 > a12a21 (cf. (A.3)), there exist constants c̃, Ẽ > 0 with

(AX | X)0 ≥ c̃
(
‖∂2

xf‖2
0 + ‖∂2

xg‖2
0

)
− E

(
‖∂2

xf‖0 + ‖∂2
xg‖0

)
(‖f‖1 + ‖g‖1)

≤ c̃
(
‖X‖2

2 − ‖X‖2
1

)
− Ẽ‖X‖2‖X1‖

≤ c1‖X‖2
2 − λ1‖X‖2

0,

by an interpolation estimate and Young's inequality, for some constants c1, λ1 > 0.

Lemma A.5 (Dissipativity). There exist constants c0, λ∗ > 0, such that

‖ (A + λ)X‖2
0 ≥ c0‖X‖4 for all λ ≥ λ∗ and X ∈ H4

B(0, L;R2).

1Here appears the only situation, where we make use of the, by (A.4), introduced norm.
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Proof. For X ∈ H4
B(0, L;R2), we obtain that

‖ (A + λ)X‖2
0 = ‖AX‖2

0 + 2λ (AX | X)0 + λ2‖X‖2
0.

Then, Lemma A.3 and A.4 imply that

‖ (A + λ)X‖2
0 ≥ c0‖X‖2

4 +
(
λ2 − 2λλ1 − λ0

)
λ2‖X‖2

0.

Hence, there exists λ∗, c0 > 0, such that the assertion is satis�ed for all λ ≥ λ∗.

Note that the estimate given in Lemma A.3 implies that the operator

A : H4
B(0, L;R2) ⊂ L2(0, L;R2)→ L2(0, L;R2)

is closed. To see this, take a sequence (Xn)n∈N ⊂ H4
B(0, L;R2), which converges in L2(0, L;R2)

towards a limit function X ∈ L2(0, L;R2) and AXn → Y in L2(0, L;R2). Then, (AXn)n∈N

is a Cauchy sequence in L2(0, L;R2). Now, Lemma A.3 warrant that (Xn)n∈N is a Cauchy

sequence in H4
B(0, L;R2). We deduce that X ∈ H4

B(0, L;R2) and

‖AX − Y ‖0 ≤ ‖AX − AXn‖0 + ‖AXn − Y ‖0 → 0,

by A being continuous on H4
B(0, L;R2) and the assumption AXn → Y in L2(0, L;R2). This

indicates that A is a closed operator.

We show that the operator A : H4
B(0, L;R2) ⊂ L2(0, L;R2) → L2(0, L;R2) is sectorial, that

is, the spectrum spec(A) of A is contained in a sector
∑

ν := {z ∈ C | −ν ≤ arg (z) ≤ ν},

where ν ∈ (0, π/2) and for all λ ∈
∑c

ν , where
∑c

ν denotes the complement of
∑

ν , there

exists M ≥ 1, such that

‖(A− λ)−1‖L(L2) ≤
M

|λ|
.

Since A is densely de�ned, the operator being sectorial implies that −A generates an analytic

semigroup. We want to make use of [41, Theorem 1.3.9], which implies the sectorial property

of A. To this end, we show that there exists λ∗ > 0 such that for all λ ≥ λ∗, the operator

A + λ ∈ L(H4
B(0, L;R2), L2(0, L;R2)) is bijective. If X ∈ H4

B(0, L;R2), Lemma A.5 implies

that the operator A + λ is bounded from below in L2(0, L;R2)

‖(A + λ)X‖2
0 ≥ c‖X‖2

4 for all λ ≥ λ∗. (A.7)
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Observe, that (A.7) ensures that the linear operator A+λ is injective and closed. It remains

to show that A + λ is surjective for all λ ≥ λ∗. We de�ne a continuous bilinear form closely

related to the operator A + λ

Bλ : H2
B(0, L;R2)×H2

B(0, L;R)→ R

by

Bλ[X, X̃] :=

∫ L

0

{
∂2
xf∂x

[
a11∂x(a21f̃) + a21∂x(a12g̃)

]
+ ∂2

xg∂x

[
a12∂x(a21f̃) + a22∂x(a12g̃)

]}
dx

+ λ

∫ L

0

a21ff̃ + a12gg̃ dx

(A.8)

for X = (f, g) and X̃ = (f̃ , g̃) ∈ H2
B(0, L;R2). Note that if in addition X ∈ H4

B(0, L;R2),

the relation

Bλ[X, X̃] =
(

(A + λ)X | X̃
)

0
(A.9)

is satis�ed. Moreover, if X ∈ H4
B(0, L;R2), Lemma A.4 ensures that

Bλ[X,X] = ((A + λ)X | X)0 λ = (AX | X)0 + λ‖X‖2
0 ≥ c‖X‖2

2 (A.10)

for all λ ≥ λ∗ if λ∗ su�ciently large. Taking into account that H4
B(0, L;R2) is a dense subset

ofH2
B(0, L;R2) and Bλ is continuous, we infer that (A.10) is satis�ed for allX ∈ H2

B(0, L;R2).

Thus the bilinear form (A.8) is coercive. Observe that for all F = (F1, F2) ∈ L2(0, L;R2)

F (X) := (F | X)0

de�nes a linear functional on L2(0, L;R2). Since the continuous bilinear form Bλ is coercive

on H2
B(0, L;R2), the Lax�Milgram Theorem implies that for every F ∈ L2(0, L;R2) there

exists a unique X ∈ H2
B(0, L;R2) such that

Bλ[X, X̃] =
(
F | X̃

)
0

for all X̃ ∈ H2
B(0, L;R2). (A.11)

We conclude that it remains to show, that indeed X belongs to H4
B(0, L;R2). Then, by

C∞c ((0, L);R2), the space of smooth functions with compact support, being a subset of

H2
B(0, L;R2), we infer from (A.9) and (A.11), that for every F ∈ L2(0, L;R2) there exists a

unique X ∈ H4
B(0, L;R2), such that (A + λ)X = F . This means that A + λ is surjective.
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In order to show that X belongs to H4
B(0, L;R2), observe that (A.11) holds true for all

X̃ ∈ C∞c ((0, L);R2). We deduce that in particular∫ L

0

{
∂2
xf∂x[a11∂x(a21f̃)] + ∂2

xg∂x[a12∂x(a21f̃)]
}
dx =

∫ L

0

(F1 − λf) f̃ dx, (A.12)∫ L

0

{
∂2
xf∂x [a21∂x(a12g̃)] + ∂2

xg∂x [a22∂x(a12g̃)]
}
dx =

∫ L

0

(F2 − λg) g̃ dx (A.13)

for all X̃ = (f̃ , g̃) ∈ C∞c ((0, L);R2). Now, (A.12) yields∫ L

0

(F1 − λf) f̃ dx =

∫ L

0

{
∂2
xf∂x

[
a11∂x(a21f̃)

]
+ ∂2

xg∂x

[
a12∂x(a21f̃)

]}
dx

=

∫ L

0

{
∂2
xf
[
∂xa11∂x(a21f̃) + a11∂

2
x(a21f̃)

]
+ ∂2

xg
[
∂xa12∂x(a21f̃) + a12∂

2
x(a21f̃)

]}
dx

=

∫ L

0

{(
∂2
xf∂xa11 + ∂2

xg∂xa12

)
∂x(a21f̃) +

(
∂2
xfa11 + ∂2

xga12

)
∂2
x(a21f̃)

}
dx

=

∫ L

0

{(
∂2
xf∂xa11 + ∂2

xg∂xa12

)
∂xa21f̃ +

(
∂2
xf∂xa11 + ∂2

xg∂xa12

)
a21∂xf̃

+
(
∂2
xfa11 + ∂2

xga12

)
∂2
xa21f̃ + 2

(
∂2
xfa11 + ∂2

xga12

)
∂xa21∂xf̃

+
(
∂2
xfa11 + ∂2

xga12

)
a12∂

2
xf̃
}
dx,

which is equivalent to∫ L

0

F̄1f̃ dx =

∫ L

0

{((
∂2
xf∂xa11 + ∂2

xg∂xa12

)
a21 + 2

(
∂2
xfa11 + ∂2

xga12

)
∂xa21

)
∂xf̃

+
(
∂2
xfa11 + ∂2

xga12

)
a12∂

2
xf̃
}
dx,

(A.14)

where

F̄1 := (F1 − λf)−
((
∂2
xf∂xa11 + ∂2

xg∂xa12

)
∂xa21 +

(
∂2
xfa11 + ∂2

xga12

)
∂2
xa21

)
∈ L2(0, L;R).

(A.15)

Following a similar computation for (A.13) yields analogously∫ L

0

F̄2g̃ dx =

∫ L

0

{((
∂2
xf∂xa21 + ∂2

xg∂xa22

)
a12 + 2

(
∂2
xfa21 + ∂2

xga22

)
∂xa12

)
∂xg̃

+
(
∂2
xfa21 + ∂2

xga22

)
a21∂

2
xg̃
}
dx,

(A.16)

where

F̄2 := (F2 − λg)−
((
∂2
xf∂xa21 + ∂2

xg∂xa22

)
∂xa12 +

(
∂2
xfa21 + ∂2

xga22

)
∂2
xa12

)
∈ L2(0, L;R).

(A.17)
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Since (A.14), (A.16) hold true for all (f̃ , g̃) ∈ C∞c ((0, L);R2), we deduce that

F̄1 = −∂x
[(
∂2
xf∂xa11 + ∂2

xg∂xa12

)
a21 + 2

(
∂2
xfa11 + ∂2

xga12

)
∂xa21

]
+ ∂2

x

[(
∂2
xfa11 + ∂2

xga12

)
a12

]
,

F̄2 = −∂x
[(
∂2
xf∂xa21 + ∂2

xg∂xa22

)
a12 + 2

(
∂2
xfa21 + ∂2

xga22

)
∂xa12

]
+ ∂2

x

[(
∂2
xfa21 + ∂2

xga22

)
a21

]
(A.18)

in the sense of distributions. In virtue of F̄1, F̄2 belonging to L2(0, L;R), the above equations

imply that

−∂x
[ (
∂2
xf∂xa11 + ∂2

xg∂xa12

)
a21 + 2

(
∂2
xfa11 + ∂2

xga12

)
∂xa21 − ∂x

[(
∂2
xfa11 + ∂2

xga12

)
a12

] ]
,

−∂x
[ (
∂2
xf∂xa21 + ∂2

xg∂xa22

)
a12 + 2

(
∂2
xfa21 + ∂2

xga22

)
∂xa12 − ∂x

[(
∂2
xfa21 + ∂2

xga22

)
a21

] ]
belong to L2(0, L;R), which in turn yields

(
∂2
xf∂xa11 + ∂2

xg∂xa12

)
a21 + 2

(
∂2
xfa11 + ∂2

xga12

)
∂xa21 − ∂x

[(
∂2
xfa11 + ∂2

xga12

)
a12

]
,

(A.19)(
∂2
xf∂xa21 + ∂2

xg∂xa22

)
a12 + 2

(
∂2
xfa21 + ∂2

xga22

)
∂xa12 − ∂x

[(
∂2
xfa21 + ∂2

xga22

)
a21

]
(A.20)

are elements in H1(0, L;R) Since H1(0, L;R) ⊂ L2(0, L;R) and the �rst two terms in

(A.19), (A.20), respectively, belong to L2(0, L;R), the last terms in (A.19), (A.20) belong to

L2(0, L;R) as well. In view of the fact that aij ∈ C2(0, L;R), 1 ≤ i, j ≤ 2 is strictly positive,

we deduce that

a11∂
2
xf + a12∂

2
xg and a21∂

2
xf + a22∂

2
xg belong to H1(0, L;R). (A.21)

The above implies that a12
a22

(a21∂
2
xf + a22∂

2
xg) ∈ H1(0, L;R). Hence

a11∂
2
xf + a12∂

2
xg −

a12

a22

(
a21∂

2
xf + a22∂

2
xg
)

=
a11a22 − a21a12

a22

∂2
xf ∈ H1(0, L;R).

Due to aij > 0, 1 ≤ i, j ≤ 2 and a11a22 > a21a12 (cf. (A.3)), this yields that f ∈ H3(0, L;R),

which in turn implies in view of (A.21), that also g ∈ H3(0, L;R). Hence, the �rst two terms

in (A.19), (A.20), respectively, belong to H1(0, L;R), so that the last terms in (A.19), (A.20)

belong to H1(0, L;R) as well. Repeating the same argumentation, we arrive at X = (f, g) ∈

H4(0, L;R2). Thus, for F ∈ L2(0, L;R), there exists X ∈ H4(0, L;R2) ∩H2
B(0, L;R2), such
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that (A.11) is satis�ed. We need to verify that X satis�es the boundary condition ∂3
xX = 0

at x = 0, L. In view of X ∈ H4(0, L;R2), (A.15), (A.17) and (A.18), a straight forward

computation yields

(F1 − λf) = F̄1 +
((
∂2
xfa11 + ∂2

xga12

)
∂2
xa21 +

(
∂2
xf∂xa11 + ∂2

xg∂xa12

)
∂xa21

)
= a21∂x

[
a11∂

3
xf + a12∂

3
xg
]
,

(A.22)

(F2 − λg) = F̄2 +
((
∂2
xfa21 + ∂2

xga22

)
∂2
xa12 +

(
∂2
xf∂xa21 + ∂2

xg∂xa22

)
∂xa12

)
= a12∂x

[
a21∂

3
xf + a22∂

3
xg
]
.

(A.23)

By means of (A.11) and the de�nition of Bλ (A.8), we obtain after integrating by parts twice(
F − λX | X̃

)
0

= Bλ[X, X̃]− λ
(
X | X̃

)
0

= −
(
∂3
xf
[
a11a21f̃ + a21a12g̃

]
+ ∂3

xg
[
a12a21f̃ + a22a21g̃

] ∣∣∣
x=0,L

)
+

∫ L

0

{
a21∂x

[
a11∂

3
xf + a12∂

3
xg
]
f̃ + a12∂x

[
a21∂

3
xf + a22∂

3
xg
]
g̃
}
dx

(A.24)

for all X̃ ∈ H2
B(0, L;R2). Now, (A.22), (A.23) imply that the boundary term in (A.24)

needs to vanish for all X̃ ∈ H2
B(0, L;R2). We deduce that ∂3

xX = 0 at x = 0, L and thus,

X ∈ H4
B(0, L;R2). Summarizing, we have shown that the operator A + λ : H4

B(0, L;R2) →

L2(0, L;R2) is an isomorphism.

Given k ∈ N, denote by Hk
B,c(0, L;R2) := {Xr + iXc | Xr, Xc ∈ Hk

B(0, L;R2)} the complexi-

�cation of Hk
B(0, L;R2), which is again a Hilbert space with scalar product(

Xr + iXc | X̃r + iX̃c

)
k,c

:=
(
Xr | X̃r

)
k

+
(
Xc | X̃c

)
k
− i
(
Xr | X̃c

)
k

+ i
(
Xc | X̃r

)
k
.

In the case k = 0, we write L2,c(0, L;R2) := H0
B,c(0, L;R2) and let

Ac : H4
B,c(0, L;R2)→ L2,c(0, L;R2)

be the complexi�cation of A de�ned by

Ac(Xr + iXc) := AXr + iAXc for X = Xr + iXc ∈ H4
B,c(0, L;R2).

Note that Ac is a well�de�ned operator and AcX = AX for X ∈ H4
B(0, L;R2). By the same

arguments as above, the operator Ac+λ ∈ L(H4
B,c(0, L;R2), L2,c(0, L;R2)) is an isomorphism
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for all Reλ ≥ λ∗, meaning that the non�positive half�axis is contained in the resolvent set

of Ac + λ∗. Analogously to the analysis in [23], we estimate the numerical range S of the

operator Ac + λ∗, which is de�ned by

S(Ac + λ∗) := {((Ac + λ∗)X | X)0,c | X ∈ H
4
B,c(0, L;R2)}.

Due to (A.6), the the real part of S(Ac + λ∗) can be estimated as

Re ((Ac + λ∗)X | X)0,c = ((A + λ∗)Xr | Xr)0 + ((A + λ∗)Xc | Xc)0

≥ c1(‖Xr‖2
2 + ‖Xc‖2

2) = c1‖X‖2
2,c ≥ 0.

Note that in virtue of applying integration by parts twice, there exists C > 0, such that∣∣∣((A + λ∗)X | X̃
)

2

∣∣∣ ≤ (C + λ∗)
(
‖X‖2

2 + ‖X̃‖2
2

)
for X, X̃ ∈ H4

B(0, L;R2) . Hence, an estimate for the imaginary part of the numerical range

is given by

| Im ((Ac + λ∗)X | X)0,c | ≤ | ((A + λ∗)Xr | Xc)0 |+ | ((A + λ∗)Xc | Xr)0 |

≤ 2(C + λ∗)
(
‖Xr‖2

2 + ‖Xc‖2
2

)
≤ c̃‖X‖2

2,c,

where c̃ > 0 is a constant. We conclude that the numerical range is contained in a sector∑
θ := {z ∈ C | −θ ≤ arg(z) ≤ θ} in the right�half plane, which has angle θ < π

2
.

C

⊂ ρ(Ac + λ∗) S(Ac + λ∗) ⊂
∑
θ

θ

Choosing ν ∈ (θ, π
2
), there exists a constant Cθ ∈ (0, 1)2, such that d(λ : S(Ac+λ∗)) ≥ Cθ|λ|

for λ in the complement of
∑

ν , denoted by
∑c

ν , where d(λ : S(Ac+λ∗)) indicates the distance

2The constant Cθ is given by Cθ = sin(|ν − θ|).
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of λ from S(Ac + λ∗). We infer from [41, Theorem 1.3.9], that the spectrum spec(Ac + λ∗)

of Ac + λ∗ is contained in
∑

ν and that for all λ ∈
∑c

ν the estimate

‖((Ac + λ∗)− λ)−1‖L(L2) ≤
1

d(λ : S(Ac + λ∗))
≤ 1

Cθ|λ|

holds true.

C

∑c
θ ⊂ ρ(Ac + λ∗)

spec(Ac + λ∗)

⊂
∑
ν

θ
ν

It follows from [33, Proposition 2.1.11] that Ac+λ∗ is sectorial and −(Ac+λ∗) is the generator

of an analytic semigroup. Hence, due to the perturbation by a linear, bounded operator and

in view of [33, Theorem 2.1.3], −A is the generator of an analytic semigroup.
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