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        Abbreviations 

% Percentage 

ANOVA Analysis of Variance 

AEP Automatische Entscheidungshilfe für den Pflanzenschutz unter Glas 

°C degree Celsius 

cm, cm² centimeter, square centimeter 

CW calendar week 

d day 

df, dfnum, dfden Degrees of Freedom, df (numerator), df (denominator) 

DSS, DSSs decision support system, decision support systems 

EF Encarsia formosa 

EIL economic injury level 

ET economic threshold 

et al. et alii (and others) 

Exp experimental 

g gram 

GH, GH-C  greenhouse, greenhouse chamber  

GHa, GHc greenhouse area, greenhouse complete 

GLM generalized linear model 

h hour 

ha hectare 

i.e. id est (that is) 

IPM Integrated Pest Management 

kg kilogram 

km kilometer 

l liter 

L1, L2, L3, L4 first, second, third, fourth instar larvae or nymph 

LM linear model 

ln natural logarithm 

m, m² meter, square meter 

mm millimeter 

MP Macrolophus pygmaeus 

N number 

n.a. not applicable 

ns non significant 

PR parasitism rate 

PSM Pflanzenschutzmittel 

P-T poly-tunnel 

R² Coefficient of Determination 

RH relative humidity 

SD, SE standard deviation, standard error 

sp. species (singular) 

TH threshold 

TV Trialeurodes vaporariorum 

χ² Chi-Square 
YT  yellow trap 



6 

 

  



7 

 

Summary 

Integrated Pest Management (IPM) becomes more and more standard in 

agricultural production. This concept relies primarily on naturally occurring, 

modified or introduced biological control agents, and tolerates pest densities 

below predefined thresholds. The application of these thresholds, the selection 

of suitable natural enemies, the monitoring of their performance, and the need 

for selective insecticides accounts for the complexity of decision making in IPM. 

The Achilles heel for optimal decision making is a reliable and cost efficient 

monitoring, providing growers with area-specific information of pest and 

beneficial densities. Sticky trap monitoring meets these requirements, as long 

as correlations of trap catch with on-crop densities can be established at 

practice relevant densities, and hold for accurate predictions in new growing 

seasons. With regard to these demands, a sticky trap monitoring strategy in 

greenhouse tomato for control of the Greenhouse Whitefly Trialeurodes 

vaporariorum Westwood (Hemiptera: Aleyrodidae) by the natural enemies 

Encarcia formosa Gaham (Hymenoptera: Aphelinidae) and Macrolophus 

pygmaeus Rambur (Hemiptera: Miridae) is evaluated in this study. 

In Chapter 1 it is shown that a single yellow sticky trap provides reliable 

information on T. vaporariorum nymphal density on an area of at least 170 m². 

Correlations differed for specific developmental stages, i.e. adults < nymphs 

< nymphs (previous week). Increasing trap catches of the parasitoid E. formosa 

indicated high parasitism, with ≥ 6 parasitoids / trap as suitable threshold for 

established biological control. Because no information about the attraction of 

the predatory bug M. pygmaeus was available from literature, its response to 

the most widely applied sticky trap types, i.e. blue and yellow traps, was tested 

in Chapter 2. The results indicate that M. pygmaeus is moderately and 

indifferently attracted to both colours. Adults caught on yellow and blue traps 

were correlated with the population densities on the crop in a greenhouse 

experiment, but more M. pygmaeus were trapped on blue compared to yellow 

sticky traps. However, due to the known preference of T. vaporariorum, yellow 

traps are recommended for a combined pest-predator monitoring. In 

Chapter 3, the yellow trap monitoring of all three insects was validated for 

greenhouses and greenhouse areas, by application of the established 

correlations during a full new growing season. Prediction accuracy for 

damaging levels was accurate for T. vaporariorum nymphs, but could not be 
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validated for adults, because the prediction never exceeded the tentative 

damaging level. Population peaks were strongly underestimated for both 

whitefly stages, indicating that a conservative threshold should be applied to 

secure timely detection of critical pest densities. Determination of established 

biological control was accurate for both natural enemies, but only high 

parasitism rates of E. formosa were accurately predicted, whereas population 

development of M. pygmaeus was accurately predicted at all times. The 

potential of economic savings for monitoring driven beneficial introductions is 

shown. Based on these results, the concept and realization of an area specific 

Decision Support System (DSS) for optimal use of beneficials is presented in 

Chapter 4. 

 

Key words: Sticky Trap, Monitoring, Decision Support System,  

Trialeurodes vaporariorum, Encarsia formosa, Macrolophus pygmaeus  
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Zusammenfassung 

Der integrierte Pflanzenschutz wird immer mehr zum Standard in der 

Pflanzenproduktion. Dieses Konzept basiert auf einer natürlichen Regulierung 

der Schädlingsdichte, wobei eine aktive Bekämpfung erst nach Überschreitung 

festgelegter Schadschwellen und in erster Linie durch den Einsatz natürlicher 

Gegenspieler erfolgt. Das Anwenden von Schadschwellen, die Auswahl 

geeigneter Nützlinge und die Überwachung ihrer Aktivität, sowie die 

Anwendung Nützlingsschonender Pflanzenschutzmittel macht die 

Entscheidungsfindung komplex. Der Schlüssel für optimale 

Schädlingsbekämpfung ist die Durchführung eines kosteneffizienten 

Monitorings, das verlässliche Aussagen über Teilbereiche der Anbaufläche 

zulässt. Dieses kann durch die Verwendung von Klebtafeln erreicht werden, 

sofern Korrelationen mit den Anzahlen der Zielorganismen im Bestand 

hergestellt werden können und sich auf zukünftige Saisonen übertragen lassen. 

In dieser Arbeit wird geprüft, ob die genannten Voraussetzungen für ein 

Monitoring der Gewächshaus Weißen Fliege Trialeurodes vaporariorum 

Westwood (Hemiptera: Aleyrodidae), sowie ihrer natürlichen Gegenspieler 

Encarcia formosa Gahan (Hymenoptera: Aphelinidae) und 

Macrolophus pygmaeus Rambur (Hemiptera: Miridae) erfüllt sind.  

In Kapitel 1 wird gezeigt, dass der Fang einer Gelbtafel Aussagen über die 

Anzahl von T. vaporariorum Nymphen im Bestand auf 170 m² zulässt.  Die 

Aussagekraft der Korrelationen unterschied sich in Bezug auf verschiedene 

Stadien im Bestand, mit Adulte < Nymphen < Nymphen (eine Woche zuvor). 

Der Fang von ≥ 6 E. formosa / Klebtafel zeigte eine erfolgreiche 

Schädlingskontrolle an. Da es für die Raubwanze M. pygmaeus keine 

Literaturangaben zur Farbattraktivität gab, wurden in Kapitel 2 die beiden 

kommerziell meist genutzten Klebtafeln, Gelb- und Blautafeln, im Wahlversuch 

getestet. Es wurde eine moderate und gleichwertige Anziehungskraft beider 

Farben festgestellt. Im Gewächshausversuch korrelierten die Fänge beider 

Tafeltypen mit der Populationsdichte im Bestand, wobei insgesamt mehr Tiere 

auf blauen Tafeln gefangen wurden. Da sich Gelbtafeln gleichzeitig für ein 

Monitoring des Schädlings eignen, empfiehlt sich die Verwendung dieses 

Tafeltyps. Die Validierung dieser Ergebnisse erfolgt in Kapitel 3, wo die 

ermittelten Korrelationen für die Vorhersage der Populationsdichten im 

Bestand in einer Folgesaison genutzt werden. Es zeigte sich, dass das 
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Überschreiten einer zu Testzwecken festgelegte Schadschwelle für 

T. vaporariorum Nymphen richtig vorhergesagt werden konnte. Für Adulte 

konnte letzteres nicht validiert werden, da die Vorhersage stets unter der 

Schadschwelle lag. In beiden Fällen wurden die Populationsspitzen stark 

unterschätzt. Eine erfolgreiche Schädlingskontrolle konnte sowohl für 

E. formosa als auch für M. pygmaeus sicher angezeigt werden. Die Genauigkeit 

der Vorhersage beschränkte sich für E. formosa auf hohe Parasitierungsraten, 

während die Populationsdichte von M. pygmaeus durchgehend verfolgt 

werden konnte. Das Sparpotential eines Monitoring basierten 

Nützlingseinsatzes konnte gezeigt werden. Auf Basis dieser Ergebnisse wird in 

Kapitel 4 das Konzept und die Realisierung einer Entscheidungshilfe-Software 

vorgestellt. 

 

Stichwörter: Klebetafel, Monitoring, Entscheidungshilfe,  

Trialeurodes vaporariorum, Encarsia formosa, Macrolophus pygmaeus 
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General Introduction 
Integrated pest management (IPM) has become standard in crop production in 

Europe, and is of increasing importance worldwide (De Maeyer et al. 2002; 

van Lenteren 2007). The basic idea of IPM is to rely on naturally occurring, 

modified or introduced biological control to decrease the equilibrium level of a 

pest below economic relevant densities. Chemical control is used as necessary 

and in a manner that is least disruptive to progressive biological control (Stern 

et al. 1959). Although predatory ants were used in China for biological control 

already in the year 300 (van Lenteren 2007), an important step to make IPM 

practicable for growers on a large scale, was the availability of     mass-reared 

beneficials starting in the late 20’s. At that time, based on the observation of 

black whitefly pupae in a tomato greenhouse, Speyer (1927) identified the 

parasitoid Encarsia formosa Gahan (Hymenoptera: Aphelinidae), and within a 

few years the first mass rearing of the beneficial for commercial use was 

established. Another cornerstone was the definition of thresholds for pest 

densities, at which corrective measures have to be taken. The most applied 

threshold of that kind is the economic injury level (EIL), defined as the pest 

density at which the expected damage equals the cost of control measures 

(Stern et al. 1959). This level depends amongst others on the crop, the season 

and the geographic area of crop production. Because control measures at best 

should avoid economic damage, Stern et al. (1959) additionally defined the 

economic threshold (ET) as the pest density at which control measures have to 

be taken to prevent the pest from reaching the EIL.  

Reading about the concept of IPM, one is amazed by the increase of complexity 

it must have implied to pest management practice of those days; the former 

use of broad spectrum insecticides in standard intervals shall now be replaced 

by a concept of self-regulated equilibria of pests and their natural enemies, 

accepting certain pest densities beneath economically relevant levels. From a 

grower’s perspective, application of this concept translates into increase of 

workload due to a more detailed monitoring of pests, the extension of 

monitoring to beneficials, and the need for education about biology of pest and 

beneficials as well as about selectivity of pesticides. At this point of time the 

reader most certainly asks oneself: “why should growers adopt this concept?” 

The main driver was not the belief in self-regulation of pests or to reduce the 

use of agrochemicals to increase environmental safety. Chemical control 
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measures simply failed at that time, due to increasing resistance of major pests 

and the upcoming of secondary pests in the absence of natural enemies, both 

due to the frequent use of broad spectrum insecticides. Two important 

examples from cotton production are the resistance of the American bollworm 

Helicoverpa armigera and the arising problems with formerly naturally 

controlled spidermites (Tetranychus spp.) (van Lenteren 2007). 

Since that time complexity in pest management kept increasing, because more 

beneficials and also an increasing portfolio of selective chemicals and 

biologicals became commercially available. Especially in protected crops, were 

pest management to date often relies mainly on the introduction of beneficials, 

the use of agrochemicals with minimal side effects on natural enemies became 

crucial. In principal, with view on the adoption of biological control, we can 

differentiate between three types of crop. Crops where the presence of natural 

enemies plays no or minor role for decision making, i.e. pest control depends 

mainly or entirely on chemical control. Such crops are to date many broad 

acres, such as rice, corn or rape, but also many ornamentals. Then there are 

crops were growers are aware of the ecosystem services provided by natural 

enemies, and try to conserve them in the crop. Prominent examples are grape 

and many citrus cultures, in which the presence of predatory mites is often 

monitored and growers use predominantly selective insecticides for pest 

control. Furthermore there are crops, in which the majority of pests is 

controlled by the introduction of natural enemies, and were chemical control is 

only used as a corrective measure if biological control failed. They are typically 

intense cultivated, high value vegetable crops in protected agriculture.  

In order to apply the IPM approach in agriculture, one needs to estimate the 

current pest pressure to predict the development of pests. However, for an 

accurate prediction it is not enough to know about the pest but also about its 

natural enemies (Binns and Nyrop 1992). For instance, the same pest density 

may never reach economically relevant densities if there are enough natural 

enemies in the crop but will get out of hand immediately, if natural enemies 

are absent. To estimate the control status of a pest, i.e. pest and natural enemy 

densities, a comprehensive monitoring has to be carried out. To develop an 

efficient monitoring, two main questions should be answered: first, which 

accuracy is needed for the estimation of the population densities? And second, 

which workload is acceptable? Clearly, answers on these two questions will 

differ, when given by a scientist and a grower. Whilst in scientific experiments 



 13

high workload is acceptable to reach maximal accuracy, for growers the time 

spent for monitoring has to pay off economically. One result of this discrepancy 

is that many meaningful monitoring schemes are described in scientific 

literature, whereas their adoption into commercial growing systems is rather 

low. The principal gap between science and practice is increasingly recognized 

by the scientific community and is progressively part of the discussion at 

international conferences, resulting in a number of recent key notes addressing 

this topic (Hall 2014; Murphy 2014; Smith 2014). For monitoring schemes it can 

be stated that, the more time-consuming and costly the proposed scheme, the 

less likely its adoption in practice. A recent survey with 220 IPM and non-IPM 

farmers in Thailand revealed that for 80 % of non-IPM farmers, the labor of 

monitoring and the lack of knowledge about pests and beneficials were main 

reasons against adoption of IPM practice (Timprasert et al. 2014). A good 

example for a time-saving monitoring approach is the use of sticky traps in 

agriculture (Pizzol et al. 2010). These traps are cheap, easy to handle and 

trapped insects can be detected and counted much faster, as compared to 

direct ratings on plants. As a consequence, such traps are widely applied for 

monitoring in crop production (Gillespie and Quiring 1987; Natwick et al. 2007; 

Pinto-Zevallos and Vänninen 2013), although they are still a hurdle for large 

farms (Timprasert et al. 2014). Currently, another advantage of these traps in 

terms of labor emerged: Due to their even surface and the fixed position of the 

trapped insects, they possess all requirements for automated identification and 

counting of insects, using image processing software. Automation of insect 

counts reduces the workload largely, and hence will support the adoption of 

more comprehensive monitoring schemes into practice in near future. To date 

the number of devices for such automation available on the market and the 

number of arthropods recognized by these products is very limited. However, 

there is a high interest of growers and companies and accordingly much 

ongoing research towards new products to fill these gaps (Cho et al. 2008; 

Guarnieri et al. 2012; Qing et al. 2012; Xia 2012).  

To increase attraction of target insects to sticky traps, visual or olfactory cues 

may be used. For many arthropods, visual cues are important for host plant 

finding, and therefore include colors of host fruits and plants. To date yellow 

and blue traps are widely applied for monitoring in practice. Yellow traps are 

considered to be perceived as a light green by most insects (Mellor et al. 1997) 

and can be assumed to imitate young shoots of host plants, explaining their 
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attractiveness to a wide range of insects. They are attractive to insects from 

several families, including Diptera, Coleoptera, Homoptera and Hymenoptera 

(Hoback et al. 1999). For blue traps however, the reason for attraction is 

unclear, but they are rather selective for thrips, mainly Frankliniella 

occidentalis, and are also attractive to sawflies in general (Hoback et al. 1999; 

Johansen et al. 2011). Olfactory cues include for instance components of sex 

pheromones and host fruit volatiles (Reynolds and Prokopy 1997; Guarnieri et 

al. 2012). Depending on the applied cues and the target insect, attraction 

distance and selectivity of traps vary largely, both being highest for the use of 

pheromones. Long distance attraction is clearly an advantage as it decreases 

the number of traps needed per area, and thereby also monitoring workload. 

High selectivity of a trap reduces by-catch, which makes counting of the target 

insect easier and helps preserving natural enemies and pollinators in the crop; 

on the other hand, if the by-catch includes natural enemies of the target pest, 

information content of the trap catch regarding pest control status is increased.  

In any case is trap catch used for estimation of pest or beneficial population 

densities on crops. 

Although everyone intuitively agrees on this statement, little attention to its 

implications is spent in practice. Growers are not interested in the numbers of 

insects they count on a trap, but use it as an indicator for the infestation level 

on their crop. They intuitively assume that there is a relation between the 

number of insects trapped and the number that is present on their crop. Also 

the use of thresholds in IPM relates to the damage a specific pest causes on the 

crop, not to its numbers on traps. In literature however, there are many 

examples showing that a trap catch does not necessarily translate into a certain 

pest or beneficial density on crop, at least not when applied at practice 

relevant densities (Gillespie and Quiring 1987; Hoffmann et al. 1997; Kim et al. 

1999; Hoelmer and Simmons 2008). It can be assumed, that due to the bias 

against publication of negative results, the real number will be even higher. But 

the validity of monitoring results is vital for the quality of decision making in 

crop protection. Therefore, accuracy of monitoring schemes need to be 

evaluated under practical conditions, for each target arthropod and in each 

crop. Furthermore, decision rules based on these monitorings need to be 

validated with independent data sets, generated under practice conditions. 

However, because work load is a limiting factor for commercial growers, a 
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certain degree of imprecision needs to be accepted. The latter may be 

compensated by conservative decision rules that limit underestimation of pest 

pressure and development. Ideally biological control, plant resistance, and 

cultural practices maintain fluctuating pest populations below economic injury 

levels (Binns and Nyrop 1992). To assure this, the introduction of natural 

enemies is often carried out at begin of the growing season, or when the pest is 

first detected. Once the pest density reaches the economic threshold, 

introductions of beneficials alone will normally not control the pest effectively, 

and a selective insecticide has to be applied as a corrective measure.  

Once a comprehensive and applicable monitoring is established and combined 

with appropriate decision rules, the information content provided needs to be 

processed and presented in an optimal manner. To date many guides for rules 

of good agronomic practice are given in form of brochures, handouts or online 

databases. However, the increasing complexity in crop production and the 

need for time efficiency in the whole production process, sets boundaries to 

the practicability of these measures. Decision support systems (DSSs) can 

overcome application hurdles by supplying automatically generated 

recommendations to growers for all kind of agricultural decisions. In broader 

content, this idea translates into the so called “precision agriculture” approach 

that includes decisions on optimal fertilization, water supply, disease control, 

pest management and even on the optimal crop to grow depending on climate 

and soil properties (McBratney et al. 2005). For pest management decisions the 

main parameters influencing the decision are the crop and cultivation type, the 

crop management, the climate conditions and the actual densities of pests and 

natural enemies on the crop. In this context, the crop type limits the number of 

potential pests and also the number of natural enemies that will be effective, 

as well as the number of chemicals that are registered for use. The climate 

conditions, together with the actual pest and beneficial densities, form the 

basis for prediction of the pest and beneficial population growth based on their 

specific life history parameters, and accordingly the realization of critical pest 

densities. The growing period limits the number of chemicals, due to 

applicability at flowering stage and pre-harvest intervals, but also the need for 

additional beneficial introductions towards the end of the cropping season. 

DSSs can help to optimize, standardize and accelerate pest management 

decisions in this complex environment (Knight 1997). To reach acceptance in 

practice, the underlying decision rules of a software need to be adjustable by 



 16

the grower. That is especially true for the accepted pest density, because on 

the one hand there is not a practice relevant economic injury level for every 

pest available. On the other hand, even if such level exists, the pest density 

accepted by each grower varies. Therefore, one rule applies to every 

recommendation in pest control: the last decision is in the responsibility of the 

grower. 

The aim of this work was to develop a comprehensive, low-cost monitoring 

approach, and to implement it in the concept of a DSS for arthropod pests in 

protected agriculture, ideally converted into a software tool. Against this 

background, it was of high importance to select a crop – pest – natural enemy 

system, which fulfills all requirements for a proof of concept study. A more 

intense monitoring is more likely to be applied in intense high value crops, such 

as greenhouse vegetables. In Germany, the production of greenhouse 

vegetables is still a niche sector. However, 4.45 % of the vegetable harvest was 

produced in greenhouse production, representing only 1.15 % of the total 

production area (BMEL 2014), showing the intensity of production. Globally 

speaking, tomato is the most important greenhouse vegetable, being an 

intensively produced high value crop with highly specialized production, 

generating average yields of about 0.5 million kg / ha in The Netherlands and 

Belgium (FAOSTAT 2015). Because of the regular use of beneficials in this crop, 

the information on natural enemy establishment is of high importance. If 

growers invest in the release of natural enemies and rely on their performance 

in pest control, it can be assumed that they are also willing to invest in tracking 

biological control efficiency. Therefore and because of the relatively low 

number of important pests, tomato was selected as a model system for this 

study. The major pest of this crop, the Greenhouse Whitefly Trialeurodes 

vaporariorum Westwood (Hemiptera: Aleyrodidae), is commonly controlled by 

E. formosa, Macrolophus pygmaeus Rambur (Hemiptera: Miridae), or a 

combined use of both species. Pest and natural enemies comprise an alate 

adult stage, making the approach of a sticky trap monitoring promising. In this 

study, I explored the potential of compiling and processing information on pest 

occurrence, damaging levels and biological control, with sticky traps as a single 

monitoring tool. 
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Chapter 1 

 

Yellow traps reloaded:  
What is the benefit for decision making in 
practice?  1 
 

Abstract  

Sticky traps are a standard tool for monitoring alate arthropod pests in 

greenhouses. However in practice evaluation of traps over the whole growing 

season is rarely done. For decision making by growers, sticky traps are often 

only used for detection of pest presence. The reason behind is that although 

many studies show that pest population densities can be estimated using sticky 

traps under experimental conditions, validation under growing conditions and 

monitoring of beneficials are often lacking. In the current study we evaluated 

whether trap densities recommended for practice are sufficient to estimate 

pest population densities of Trialeurodes vaporariorum (Hemiptera: 

Aleyrodidae) and its natural enemy Encarsia formosa (Hymenoptera: 

Aphelinidae) in protected tomato cultures throughout the growing season.  

Our results show that trap catches provide reliable information about pest 

densities, in which correlations differed for specific developmental stages, i.e. 

adults < nymphs < nymphs (previous week). A single yellow sticky trap provided 

reliable information on nymphal density in the tomato crop on an area of at 

least 170 m². A rapid increase of parasitoid trap catches indicated high 

parasitism. In our experiments, a total trap catch of ≥6 parasitoids / trap was a 

                                                           
1 E. Böckmann, M. Hommes and Meyhöfer, R. (2015) Yellow traps reloaded: What is the benefit for 

decision making in practice? Journal of Pest Science 88 (2) 439-449  

(with permission of Springer Science+Business Media) 
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suitable threshold for sufficient natural enemy activity in the tomato crop. The 

implementation of these results in practice and the transferability to other 

cropping systems are discussed. 

 

Key words:  Sticky trap, introduction regime, trap density, parasitoid, 

Trialeurodes vaporariorum, Encarsia formosa
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Introduction 
Monitoring is an essential part of integrated pest management (IPM) with the 

aim to assure that pest populations are below the economic injury level (EIL). 

At EIL the costs to control a pest equals the amount of economic damage it 

inflicts, while below the EIL it is not cost-efficient to control the pest species 

(Meyer 2003). Monitoring tools and schemes to determine whether the pest 

population reaches the EIL are therefore of primary importance for plant 

protection. Their reliability depends on the correlation of monitoring results 

with actual pest population densities in the crop (Gillespie and Quiring, 1987; 

Pinto-Zevallos and Vänninen, 2013). For most insects the precision of 

monitoring increases with higher monitoring efforts (i.e. number of plants 

inspected, number of yellow traps, etc.). Therefore, the optimal trap density for 

monitoring has to be determined for each pest species and crop separately. For 

commercial growers, the monitoring intensity is not only a matter of precision 

but also of cost and benefit. Thus, growers rarely apply monitoring in its full 

complexity (Steiner et al. 1999) and often focus on the detection of the first 

pest occurrence. In practice monitoring is frequently done with a lower trap 

number and/or larger sample intervals than recommended for best reliability 

(Cullen et al. 2000). Consequently, estimates of pest densities are often not 

evaluated as the best source for decision making in IPM (Duffield and 

Jordan 2000; Hamilton et al. 2006). 

Pest and natural enemy monitoring schemes are species specific and are based 

on direct or indirect observations. Apart from direct counting on the plant, 

there are several trapping systems available on the market, such as pheromone 

traps, suction traps and coloured sticky traps. The use of sticky traps is the 

most common technique to monitor alate pest species, i.e. thrips, white flies, 

and aphids in greenhouse vegetables and ornamentals (Ohnesorge and 

Rapp 1986; Gillespie and Quiring 1987; Cloyd 2009). Furthermore, several 

beneficials are attracted to sticky traps and can be monitored (Parrella et al. 

1991; Beers 2012). The attractiveness of sticky traps depends on shape, colour 

and position (i.e. height) in the crop (Ohnesorge and Rapp 1986; Vernon and 

Gillespie 1995; Kim and Lim 2011). 

But even if monitoring tools are established the estimation of pest population 

densities in the crop might be unclear. For example, two studies which 

investigated the use of yellow sticky trap catches for estimation of population 
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densities in Trialeurodes vaporariorum (Hemiptera: Aleyrodidae) came to 

conflicting results. Gillespie and Quiring (1987) found that yellow trap catches 

correlate with adult numbers on plants only up to 1 trap per 7m² while Kim et 

al. (1999) found correlations up to 1 trap per 50m2. In contrast, for monitoring 

carried out by commercial growers a density of 1 yellow sticky trap         

per 100-250m² is advised in Germany (survey of 13 plant protection advisors 

and beneficial producers, unpublished data) while 1 yellow sticky trap    

per 500-700 m² is preferred in The Netherlands (Joke de Jong, personal 

communication). Koppert B.V. as an internationally operating company advices 

the use of 1 trap per 200m² (Koppert 2013). Basically the examples underline 

the need for reliable trap density and robust correlations between trap catches 

and pest population in the crop to optimise decision making. 

In IPM the use of beneficials is the first choice when a pest species is detected. 

The whitefly T. vaporariorum is one of the major pests in protected tomato 

cultivation causing direct damage by sucking plant sap, but more importantly 

indirect damage by production of honeydew (facilitating sooty mould growth) 

and virus transmission (De Vis and van Lenteren 2008; Jelinek 2010). Reduced 

susceptibility and resistance to common insecticides makes chemical control 

difficult (Karatolos et al. 2010). Therefore, repeated introductions of Encarsia 

formosa (Hymenoptera: Aphelinidae) are standard in IPM of T. vaporariorum in 

tomato crop. Depending on the monitoring effort, introductions are carried out 

preventively, i.e. starting with fixed timing shortly after planting, or on demand 

(when first T. vaporariorum is detected). In year-round-cultures E. formosa is 

commonly used in combination with the predatory bug Macrolophus 

caliginosus (Hemiptera: Miridae). In that case, introduction of E. formosa ends 

with establishment of M. caliginosus in the crop. In tomato summer cultures 

where only E. formosa is released, introduction most often starts with first 

detection of the pest and is continued until the end of the growing season, or 

until a fixed number of introductions is realized. However, the official 

recommendation for growers in North Rhine-Westphalia (Germany) is to stop 

introduction of E. formosa if 80 % of whitefly nymphs are parasitized (Scholz-

Döblin 2013). In practice this threshold is rarely used due to the workload for 

assessment of parasitism rates on plants, although it would save for each 

release of E. formosa, i.e. 30.000 parasitoids, 180-270 € per hectare (calculation 

based on Scholz-Döblin (2013)). An efficient alternative strategy to monitor 

parasitism rates might be yellow traps, since E. formosa can be frequently 
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observed on these traps (Parrella et al. 1991). So far two studies indicate that 

parasitoid numbers on yellow sticky traps in tomato greenhouses increase with 

increasing parasitism rates (Webb and Smith 1980; Van de Veire and Vacante 

1984), but without specific consideration in decision support systems. 

Additionally, the use of yellow traps to estimate pest densities and to decide on 

established control becomes more feasible with the ongoing development of 

(semi-) automatic devices for trap assessment (Cho et al. 2008; Guarnieri et al. 

2012; Xia 2012). A first example for such a device is the Scoutbox® 

(BLGG, Netherlands) which can markedly reduce workload of continuous 

monitoring on behalf of trap catches. It is therefore of major interest to define 

the relationship between pest densities – trap catches – trap densities and the 

benefit of intensive monitoring programmes for growers to increase the 

acceptance of real IPM in practice. Knowledge of the actual population 

densities is also of special interest for integration of dynamic modelling into 

decision making. Forecasting population development may enable the 

estimation of critical pest densities weeks before the respective economic 

injury level is reached and provides freedom of action. Furthermore, adequate 

automated monitoring may enable growers of large greenhouses to decide on 

pest management separately for parts of their greenhouse with the benefit of 

reduced applications of insecticides and accordingly introductions of 

beneficials. 

With these innovative developments in mind we designed greenhouse 

experiments to evaluate the reliability of sticky traps for estimation of 

T. vaporariorum and E. formosa densities in tomato crops. Furthermore, we 

evaluate which monitoring density is needed and if introduction regimes of 

E. formosa can be modified based on trap catches of the parasitoid. 

  

Methods 

Experimental setup 

Experiments were carried out at the Julius Kühn-Institute in Braunschweig 

(Germany) in a 170 m2 greenhouse and two neighbouring greenhouse 

chambers, each 40 m2. Tomatoes (cultivar: Campari; Enza Zaden Deutschland 

GmbH & Co. KG) were planted end of April 2012 at calendar week 16 / 17 with 

1.25 m distance between rows, resulting in 6 rows each with 36 plants in the 
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large and 4 rows each with 12 plants in the small greenhouses. Plants were 

allowed to grow up to 2.5 m. Thereafter they were turned over and forced to 

grow downwards. In the large greenhouse 10 yellow sticky traps 

(i.e. 1 trap / 17 m2) (dry-glue yellow sticky plates, Horticoop b.v., The 

Netherlands) and in the smaller chambers 2 yellow sticky traps 

(i.e. 1 trap / 20 m2) were hung up on top plant level between plants within rows 

(Figure 1). Position was adjusted until maximum plant height was reached. Trap 

size was 24.5 cm long by 10 cm wide. As initial population 96 adult 

T. vaporariorum of each sex were released in the large greenhouse (4 release 

points with 48 adults each) and 24 in the greenhouse chambers (1 release point 

with 48 adults each) at May 16th. All individuals originated from a permanent 

rearing on tobacco (Leibniz Universität Hannover, Institute of Horticultural 

Productionsystems, Germany) and were reared for at least two generations on 

tomato under greenhouse conditions (22.5 ± 5.5 °C [mean ± SD], 44-80 % RH).  

E. formosa were purchased from Katz Biotech AG (Baruth, Germany). The 

parasitoids were supplied as black (i.e. parasitized) nymphs on paper cards, 

each with approx. 50 individuals. Quality was confirmed by computing 

percentage of empty black nymphs on 4 cards in the standard- and 10 cards in 

the experimental treatment two weeks after introduction. Eclosion at any time 

was 93 ± 0.05 % in the standard and 90 ± 0.11 % in the adapted treatment 

(means ± SD).  
 

Figure 1  Position 
and numbering of yellow 
sticky traps (bold 
numbers), sample plants 
(grey boxes) and 
Entrance (E) in the 
control, standard and 
adapted treatment. The 
growing area was 40 m2 
for each greenhouse 
chamber (standard and 
control treatment) and 
170 m2 for the large 
greenhouse (adapted 
treatment). Note that 
different size of cells 
does not indicate 
different distance 
between rows or plants. 
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Three different treatments, a control, an adapted and a standard treatment, 

differing in the E. formosa release frequency, were realised. In the large 

greenhouse (adapted treatment) and one of the greenhouse chambers 

(standard treatment), 5 E. formosa per m2 were released on demand 

every 2nd week, i.e. when the first whitefly was monitored on a yellow sticky 

trap (May 23rd in both treatments). While release of E. formosa was terminated 

in the adapted treatment as soon as average trap catch of parasitoids increased 

3-fold (last introduction at July 27th), introductions in the standard treatment 

were continued until the end of the experiment (last introduction at 

September 5th). The second small greenhouse chamber served as control 

treatment without release of E. formosa. However due to exponential 

population growth of whitefly population, the control was terminated at 

August 1st. In all greenhouses fungicides were used to control powdery mildew 

(July 3: Topas®, Syngenta; July 13: Collis®, BASF; August 3: Ortiva®, Syngenta). 

Adult T. vaporariorum and E. formosa were counted weekly on yellow sticky 

traps in all treatments. Additionally, whiteflies (adults, 3rd and 4th instar 

nymphs) and parasitoids (adults, black nymphs) were counted directly on 

tomato leaves. Counts were taken on 30 plants in the large greenhouse and on 

8 plants in each small chamber (Figure 1) on the lower surface of 3 tomato 

leaves at lower, intermediate and upper plant level, i.e. 9 leaves per plant in 

total. All counts were taken at weekly intervals from May 23rd till September 

12th 2012. Since it was observed that the parasitoid E. formosa was able to 

disengage itself from the commercial yellow sticky traps, additional coating 

with insect glue (Temmen Insekten-Leim, Temmen GmbH) was necessary. 

Therefore reliable data on E. formosa trap catches are available only from July 

4th onwards. 

Temperature was rather constant throughout the experimental time in all 

greenhouses, with 21.24 ± 3.84°C in the adapted-, 21.03 ± 3.54°C in the 

standard- and 21.83 ± 4.16°C in the control treatment (mean ± SD).  

Statistical analysis 

Averages of insects counted per plant as well as of insects caught on several 

sticky traps were calculated per week. Data were ln (x + 0.01) transformed prior 

to analysis. The data point for whitefly nymphs collected on June 20th in the 

standard treatment was excluded from the analysis because the extremely low 

value was most likely caused by a sampling error. 
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Linear models were fitted for number of adults and nymphs on plants as 

explanatory variable, respectively, and with adult trap catches as dependent 

variable. Additionally models with whitefly nymphs on plants of the previous 

week as explanatory variable were calculated. ANOVA was used to test 

whether fitted linear models for whitefly differed between treatments. 

Trapped adult parasitoids were analysed in a similar way with parasitism rate 

as explanatory variable. 

Data collected in the large greenhouse (adapted treatment) were also used to 

test whether all single traps provide useful estimates of population densities on 

plants for the whole greenhouse (170 m²), again by fitting linear models. These 

calculations were done only with T. vaporariorum nymphal counts and 

E. formosa parasitism rates of the previous week because of highest R² values 

in the former analysis.  

Two approaches were used to estimate how many parasitoids need to be 

trapped to indicate that pest control is established and natural enemy 

introductions can be discontinued. First, the model fitted for the adapted 

treatment was used to calculate the threshold number of parasitoids on a 

sticky card needed for indication of an 80 % parasitism rate. Second, 

progression of parasitoid numbers on single sticky traps were analysed 

graphically to define a range of parasitoid thresholds indicating an 80 % 

parasitism rate. 

The prediction accuracy of the different thresholds was determined with all 

single trap data for parasitoid counts between July 4th and August 15th (N = 70). 

Later dates were excluded because they are not of interest for indication. 

Results were rated as true when counts were below the threshold and 

parasitism rate below 80 %, or counts were above the threshold and parasitism 

above 80 %. They were rated as false when counts were below the threshold 

and parasitism above 80 %, or counts were above the threshold and parasitism 

rate below 80 %. To identify the threshold with the highest reliability true-false 

ratios were analysed by chi-square tests (likelihood ratio), allowing an error 

rate of 0 % for false negative indications and 10 % for false positive indications. 

All statistical analyses were carried out in R (version 2.15.1). 
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Results 

Whitefly monitoring with yellow sticky traps 

Trialeurodes vaporariorum adults were trapped already one week after release 

on 50 % of traps in the standard treatment, and 80 % of traps in the adapted 

treatment. By the second week T. vaporariorum was present on all traps. 

Numbers of adult T. vaporariorum caught on traps followed nymphal and adult 

counts on the crop in all treatments (Figure 2). Maxima of trap catches and 

adult counts on plants were recorded in August in the standard- and the 

adapted treatment. In the control treatment both measures still increased until 

end of the experiment at August 1st.  

 
Table 1 Linear regression models to examine correlation between yellow sticky trap 
catches and T. vaporariorum density on the crop. Three different explanatory factors, 
i.e. adults, nymphs and nymphs counted in the previous week, were considered in each 
treatment (adapted, standard, control) to estimate adult trap catches. Models were fitted 
based on weekly mean values (all sample plants, all traps). Estimates are based on 
logarithmized values. 

Treatment Factor Estimate ± SE p 
dfnum  

 dfden 
F R2 

Adapted 
Intercept 3.974 ± 0.287 <0.0001 1 

15 
13.8 0.48 

Adults 1.276 ± 0.343 0.0021 

Standard Intercept 2.936 ± 0.406 <0.0001 1 
15 

13.9 0.48 
Adults 1.381 ± 0.370 0.002 

Control 
Intercept 1.718 ± 0.364 0.0011 1 

9 
116.6 0.92 

Adults 2.435 ± 0.226 <0.0001 

Adapted Intercept 3.151 ± 0.185 <0.0001 1 
15 

23.2 0.61 
Nymphs  0.384 ± 0.082 0.0002 

Standard Intercept 3.107 ± 0.434 <0.0001 1 
15 

9.5 0.39 
Nymphs 0.600 ± 0.194 0.0075 

Control 
Intercept 2.433 ± 0.620 0.0035 1 

9 
28.8 0.76 

Nymphs 1.035 ± 0.193 0.0005 

Adapted Intercept 3.233 ± 0.122 <0.0001 1 
14 

55.91 0.80 
Nymphs (prev. wk.) 0.400 ± 0.054 <0.0001 

Standard 
Intercept 3.355 ± 0.327 <0.0001 1 

14 
22.3 0.61 

Nymphs (prev. wk.) 0.673 ± 0.142 0.0003 

Control 
Intercept 3.752 ± 0.382 <0.0001 1 

8 
39.2 0.83 

Nymphs (prev. wk.)   0.742 ± 0.119 0.0002 
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Maxima of nymphal counts on plants were earlier in all treatments, i.e. mid of 

July. Linear regression models of T. vaporariorum counts on traps as a function 

of nymphal and adult counts on the crop for all treatments are shown in 

Table 1. Considering the average value of whiteflies from 10 traps, all linear 

models were highly significant with r2 ≥ 0.39. Nymphal counts on the crop of 

the previous week show markedly higher correlation than nymphal counts of 

the same week in all treatments. Nevertheless, highest correlation in all 

regression models was always found in the control treatment, i.e. without 

natural enemy release (Table 1).For nymphs of the current or previous week, 

the treatment (i.e. release of natural enemies and greenhouse size) did not 

influence the result of the linear regression models significantly 

(ANOVA; F = 0.1; df = 2, 41; p = 0.9 and F = 1.5; df = 2, 38; p = 0.24). In contrast 

there was a significant treatment influence when models were based on adult 

counts on the crop (ANOVA, F = 7.2; df = 2, 41; p = 0.0021). 

Whitefly density: Information content of single traps on 170m² 

Results so far were based on average numbers of whiteflies on 10 yellow sticky 

traps. Since growers use 1-2 traps on 100-250 m² we analysed if single traps 

were representative for 170 m², i.e. the whole large greenhouse. Because of 

the superior performance in the previous analysis, we only calculated 

regression models based on nymphal data on the crop of the previous week. 

Linear models were significant (p < 0.01) for all traps (N = 10). Results indicate 

that the explanatory power of these models was reasonable with r2 ranging 

from 0.50 to 0.71.  

Parasitoid monitoring with yellow sticky traps 

Parasitoids were detected on traps only when coated with additional glue. At 

July 4th parasitoids were caught on 50 % of traps in the adapted treatment. First 

record in the standard treatment was at August 1st on 50 % of traps. In the 

following weeks parasitoids were continuously recorded on traps in both 

treatments. Trends in trap catches followed parasitism rate on the crop in both 

treatments (Figure 3). A rapid increase in parasitoid trap catches was observed 

in both treatments between July 25th and Aug 8th. Whilst trap catches in the 

adapted treatment decreased thereafter in coincidence with discontinued 

parasitoid introductions, they still increased in the standard treatment 
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(Figure 3). Adult counts of E. formosa on plants were inconsistent and low 

throughout experiments. 

Linear regression models of E. formosa counts on traps as a function of black 

nymphs and adult counts, as well as for parasitism rates are shown in Table 2. 

For trap catches as a function of adult numbers on plants, none of the fitted 

linear models was significant (Table 2). In contrast significant linear models 

with R² ranging from 0.50 to 0.78 could be fitted for adult trap catches as a 

function of black nymphs in the crop and correlation increased for linear 

models considering black nymphs of the previous week (Table 2). Also for trap 

catches as a function of parasitism rate, significant linear models could be fitted 

for both treatments with R² of 0.56 in the adapted and 0.85 in the standard 

treatment (Table 2). Parasitism rates and black nymphs in the standard 

treatment explained parasitoid trap catches to larger extent than in the 

adapted treatment.  

 

 

 



 

 

Figure 2 Development of average nymph and adult counts (± SD) per plant and week (adapted treatment N = 30; control and standard 
treatment N = 8) and adult trap catches (adapted treatment N = 10; control and standard treatment N = 2) in the adapted-, standard- and control 
treatment. Data is plotted on logarithmic scale and zero values were excluded from all graphs. The control treatment was terminated Aug 1st due 
exponential growth of white flies and immigration of E. formosa starting at Jul 25th. Larval data of June 20th was excluded for the standard 
treatment, because low counts indicated sampling error. 
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Figure 13     Development of average parasitism rate (adapted treatment N = 30 plants, 
standard treatment N = 2 plants) and average number of E. formosa trapped on yellow sticky 
traps (adapted treatment N = 10 YT; standard treatment N = 2 YT) (± SD). The vertical lines 
indicate the time at which 80 % parasitism was reached (black dashed = adapted treatment, 
black dotted = standard treatment). In the adapted treatment weekly release of E. formosa 
was stopped at August 1st, while it was continued to the end in the standard treatment (bold 
written dates). The horizontal dotted line indicates the threshold of 4 E. formosa / trap, which 
was assessed as indicator for established control. 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 4 Development of average parasitism rate (N = 30 plants) and number of 
E. formosa trapped on single yellow sticky traps in the adapted treatment. The vertical 
dashed line indicates the date when 80 % parasitism rate was reached. The horizontal dotted 
lines indicate threshold levels assessed as indicators for established control, ranging from 
3 to 7 E. formosa / trap. 
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Parasitism: Information content of single traps on 170m² 

Since growers use 1-2 traps on 100-250 m² we analysed if single traps were 

representative for 170 m², i.e. the whole large greenhouse. For E. formosa we 

focused on trap catches as a function of parasitism rate, but significant linear 

models could only be established for 6 of the 10 traps (p < 0.05), with 

R² ranging from 0.37-0.88. However, rapid increase in the number of adult 

parasitoids caught on yellow traps to total numbers reaching from 5 to more 

than 15 (Figure 4) might serve as indicator for established biological control. 

Using the linear regression model ≥ 4 parasitoids have to be caught on a yellow 

trap to indicate a parasitism rate ≥ 80 % (calculated by the parasitism rate 

model; Table 2). 

Table 2 Linear regression models to examine correlation between yellow sticky trap 
catches and E. formosa density on the crop. Four different explanatory factors, i.e. adults, 
black nymphs and black nymphs counted in the previous week, as well as parasitism rate 
were considered in each treatment (adapted, standard, control) to estimate adult trap 
catches. Models were fitted based on weekly mean values (all sample plants; all traps). 
Estimates refer to logarithmized values. 

 

Additionally a range of suitable threshold values, i.e. 3-7 parasitoids per trap, 

were identified graphically (Figure 4). The accuracy of all threshold values as 

indicator for parasitism rates of ≥ 80 % was evaluated for each of the 10 single 

traps in the adapted treatment and rated as true or false. Results indicate that 

Treatment Factor Estimate ± SE p 
dfnum  

dfden 
F R2 

Adapted 
Intercept 1.052 ± 0.518 0.0726 1 

9 
0.1 0.01 

Adults -0.059 ± 0.243 0.8122 

Standard Intercept -0.068 ± 2.072 0.9740 1 
9 

0 0 
Adults 0.198 ± 1.008 0.8480 

Adapted Intercept -2.040 ± 1.094 0.0952 1 
9 

8.8 0.50 
Black nymphs  1.172 ± 0.394 0.0156 

Standard Intercept -8.094 ± 2.172 0.0047 1 
9 

13.9 0.61 
Black nymphs 2.954 ± 0.793 0.0047 

Adapted Intercept -0.850 ± 0.583 0.1786 1 
9 

13.1 0.55 
Black nymphs (prev. wk.) 0.782 ± 0.216 0.0056 

Standard 
Intercept -6.255 ± 1.142 0.0004 1 

9 
32.7 0.78 

Black nymphs (prev. wk.) 2.449 ± 0.428 0.0003 

Adapted Intercept -6.746 ± 2.354 0.0186 1 
9 

11.35 0.56 
Parasitism rate (%) 1.846 ± 0.548 0.0080 

Standard 
Intercept -20.905 ± 2.852 <0.0001 1 

9 
52.8 0.85 

Parasitism rate (%) 5.019 ± 0.691 <0.0001 
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at the calculated threshold of 4 parasitoids / trap the error rate was 6 %, with 

3 false positive indications, i.e. trap catch indicates that parasitism rate of 80 %  

is reached while in fact it was below that level. At a threshold of 

6 parasitoids / trap no false positive indication could be detected, but 

9 % showed false negative indications (Table 3).  

In practice it is also of high importance that established control is not indicated 

too early (risk of biological control failure) and not too late (unnecessary 

introductions). Therefore each of the 10 traps was analysed according to the 

threshold reached before (early indication), at the same time (in-time 

indication) or after the parasitism rate reached 80 % (late indication). Results 

indicate that early indications decreased from 6, 2, 1, to 0 at thresholds 

of 3, 4, 5, or 6 parasitoids / trap, respectively, while late indications increased 

from 0, 0, 0, to 3. 

Table 3 Accurateness of several threshold values for number of parasitoids caught on 
yellow sticky traps, as indicator for parasitism rate above or below 80 %. All weekly counts of 
parasitoids on yellow sticky traps (n = 70) were rated either as true or false. Results were 
tested by chi-square test (likelihood ratio) assuming a data distribution of 40:0:27:3, 
i.e. counts above threshold (TH) and parasitism rate (PR) below 80 % should never occur 
(grey box), while for counts below threshold and parasitism rate already above 80 % an error 
rate of 10 % is acceptable (for further explanation see results and discussion) 

Threshold 

(E. formosa 

/ trap) 

True  

(<TH &      

PR <80 %) 

False 

(≥TH &      

PR <80 %) 

True  

(≥TH &      

PR ≥80 %) 

False 

(<TH &      

PR ≥80 % ) 

df χ² p 

3 32 8 29 1 3 13.099 0.004 

4 37 3 29 1 3 5.394 0.145 

5 38 2 29 1 3 3.942 0.268 

6 40 0 24 6 3 1.196 0.550 

7 40 0 20 10 3 5.023 0.081 

 

Discussion 

Whitefly monitoring with yellow sticky traps 

Our study gives first answers on two key questions recently raised in the review 

by Pinto-Zevallos and Vänninen (2013) on the use of yellow sticky traps in 

whitefly management. They stressed that the main focus of future 

investigations should be on the correlation of sessile whitefly nymphs and adult 

yellow trap catches and on the question whether yellow trap densities used in 

practice reveal estimates suitable for decision making. Our results show that 
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the actual density of whitefly nymphs and adults on the crop can be accurately 

described using trap catches (Figure 2). In all experiments correlations were 

significant and positive (Table 1), and independent of greenhouse size and 

beneficial regime as long as whitefly nymphs were considered. Correlations of 

the linear regression models were even higher if the nymphal density of the 

previous instead of the current week was used, which is in line with results 

obtained by Kim et al. (1999).  

Since adults hatch at the end of the nymphal development in a greenhouse 

tomato crop within 1-2 weeks (van Roermund 1995) it is reasonable that the 

correlation with adult whiteflies on traps was best when nymphs on the crop of 

the previous week were considered. Even a shift of two instead of one week 

gave good results, but with the view on practical use a more recent estimation 

is preferred. Little is known about frequency and distance of whitefly migration 

(Byrne and Bellows 1991), but the highly aggregated distribution of whiteflies 

(Noldus et al. 1986) indicates a low dispersal rate of adults once a suitable crop 

is located. Furthermore, short range movements mainly occur near ground 

level (Gerling and Horowitz 1984; Byrne et al. 1986). However, young whitefly 

adults move to top plant level after emergence (Martin and Dale 1989) and 

therefore it is likely that a large proportion of trap catches were recently 

emerged adults. Therefore, dispersal behaviour of adult whiteflies underline 

the significant correlation of adult trap catches with nymphal developmental 

stages of the previous week. 

In practice and literature, yellow trap catches are often used to estimate adult 

population densities (Hall 2009; Pizzol et al. 2010). In our study this correlation 

was less reliable as compared to the correlation with nymphal counts of the 

previous week. Three different factors may contribute to this reduced 

reliability: (1) counting adults on plants is difficult, leading to underestimation 

of adult population in the crop (2) hatching of adults during the sampling 

period is not evenly distributed, leading to wrong estimates and 

(3) simultaneous counts on traps and plants do not take into account that adult 

trapping on sticky traps is cumulative while adult mortality within the sampling 

interval cannot be assessed on plants. Nevertheless, Kim et al. (1999) found 

that estimation of adult densities of T. vaporariorum on tomato plants was 

more accurate as compared to nymphs on the crop. To explain these 

contradicting results, methodological details have to be compared, which was 
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impossible because the original article is published in the Korean language and 

only partly in English.  

In order to transfer results to practice it is of high interest to optimize the 

number of yellow sticky traps in the greenhouse to keep workload and costs at 

reasonable levels. From a survey we concluded that ~1 trap / 100-250m2 is a 

density acceptable for growers at least in Germany (unpublished data). Our 

results show that each of the ten yellow sticky traps used in a greenhouse of 

170m2 described pest densities with high accuracy. This indicates no need for 

higher trap densities, but whether even larger areas can be adequately 

monitored using a single trap remains to be investigated. Nevertheless optimal 

monitoring areas should be also closely linked to site-specific pest management 

strategies.  

Correlation of adult trap catches with whitefly nymph population density on 

the crop is mainly limited by the decrease of larval numbers in the end of the 

season, when adult counts on traps remain at constant levels (Figure 2). 

Fortunately that part of the season is not very critical in terms of plant 

protection decisions and hence some overestimation might be acceptable. In 

the worst case it could lead to needless plant protection measures but critical 

pest densities will never be missed.  

 

Parasitoid monitoring with yellow sticky traps 

In the present study the number of trapped parasitoids correlated well with the 

one of parasitized nymphs in both treatments. The better model fit with 

nymphs of the previous week as explanatory variable is in line with the results 

presented for T. vaporariorum. Nymphs parasitized by E. formosa turn black 

after pupation of the parasitoid. After pupation they develop within 1-2 weeks 

(van Roermund 1995). In the present study only black nymphs were counted as 

parasitized. Therefore it is not surprising that the correlation of adult 

parasitoids on traps with black nymphs on the crop was best when black 

nymphs of the previous week were considered.  As long as yellow traps are 

sticky enough to trap parasitoids the relationship between trapped parasitoids 

and parasitism rate can be used to monitor biological control success in 

tomato. However, the correlation could be approved only for 60 % of the single 

traps used on 170 m², indicating the need for doubling the trap densities to 

monitor parasitism accurately. 
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Hoelmer and Simmons (2008) did not find correlations between trap catches of 

the released parasitoid Eretmocerus emiratus and parasitized nymphs of 

Bemisia tabaci on Cantaloupe and Watermelon. However, in contrast to our 

study traps were placed horizontally and in the open field. Furthermore the 

authors did not consider correlations of trap catches with parasitism rate. Karut 

and Kazak (2007) were able to correlate trap catches of Bemisia tabaci with 

trapped Eretmocerus lutea, but also did not evaluate correlation between 

parasitoid density or parasitism rate in the crop and trap catches of the 

parasitoid. Our experimental results show a marked increase of E. formosa trap 

catches which remained on a high level in the subsequent weeks. At the same 

time parasitism rates of approximately 80 % were reached. A similar increase is 

described in a study by van de Veire and Vacante (1984) which correlated well 

with a parasitism rate of approx. 70 %. A first empirical estimate for successful 

establishment of biological control by E. formosa is proposed by Scholz-Döblin 

(2013) with 80 % parasitized whitefly nymphs (i.e. black nymphs). Hence the 

present study shows that quantification of natural enemies on yellow sticky 

traps could be an easy method to monitor natural enemy efficiency. The 

advantage of the method is two-fold, at first it is a fast and easy method to 

estimate parasitoid population density compared to visual plant inspections 

and second natural enemy activity can be monitored in parallel with whiteflies 

on the same yellow sticky trap.  

In our experiments, termination of E. formosa introductions at a time when 

trap catches still increase did not lower parasitoid efficacy as compared to 

continuing E. formosa introductions (Figure 3). Without explicit use of 

parasitoid trap catches as an indicator also van de Veire and Vacante (1984) 

stopped E. formosa introduction in their experiments, and similar to our study 

control of T. vaporariorum remained stable. The rapid increase of E. formosa 

trap catches can be explained by a behavioural shift of adult parasitoids. At 

high parasitism rates and hence low densities of suitable hosts, the motivation 

for patch leaving and searching for a more profitable habitats should increase 

(Jervis 2005; Wajnberg et al. 2007). For E. formosa encountering of black 

nymphs on a leaflet reduced residence time by 50 % compared to unparasitized 

hosts (van Roermund and van Lenteren 1995). In consequence trapping of 

E. formosa on yellow sticky traps is more likely at high parasitism rates and a 

function of increased flight activity. At high parasitism rates, additional 

introductions of E. formosa will therefore not result in improved whitefly 
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control but in higher dispersal activity of the beneficial. The latter is also 

supported by the increasing numbers of trapped parasitoids towards the end of 

the season in the standard treatment, as compared to the adapted treatment 

without further introductions (Figure 3). Although the continued introductions 

in the standard treatment did not improve whitefly control, the resulting 

increase in trap catch towards end of the season increased explanatory power 

of fitted models (Table 2). 

Based on our results there are two possible approaches to assess a threshold 

level for established biological control. On the one hand the linear correlation 

model can be used to calculate a parasitoid threshold of ≥ 4 E. formosa / trap 

as indicator of 80 % parasitism rate with an error rate of 4.3 %. But in order to 

achieve acceptance of this new monitoring method in practice it is most 

important that no failure in biological control is caused by too early indications. 

Therefore we propose a reliable and robust threshold to guarantee detection 

of parasitism rates of ≥ 80 %, i.e. successful biological control of 

T. vaporariorum, at 6 or more adult E. formosa caught on a single sticky trap 

within one week. Using that threshold, too early indications could be omitted 

with the disadvantage of 30 % delayed indications. Combining the results of 

van de Veire and Vacante (1984), Scholz-Döblin (2013) and our own results, 

E. formosa trap catches should be used to optimize the introduction regime in 

tomato summer cultures. The proposed threshold was conclusive at practice 

relevant sticky trap densities (1/170 m², cf. above) and validation is in progress. 

 

Conclusions 
Yellow sticky traps provide far more information than only detection of pest 

presence. They provide quantitative data on pest population development, 

which already indicates to a certain degree success and failure of plant 

protection measures. Therefore, yellow sticky traps comprise a valuable tool 

for reliable monitoring of the economic threshold throughout the season. 

Additionally, they offer quantitative data on the establishment and therefore 

successful use of natural enemies. This is at least true for E. formosa but most 

likely also for many other beneficials attracted to coloured sticky traps. Based 

on natural enemy population density growers might decide to terminate 

release of natural enemies and save money. Trap densities in the greenhouse 

needed for reliable estimation of pest density, i.e. 1-2 traps / 200 m², are in 
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accordance with actual practice. Results will be integrated in a decision support 

system and in particular the reliability of the correlation of adults on traps with 

nymphs on plants the previous week will be confirmed in commercial 

greenhouses. 

Since identification and counting of natural enemies on large numbers of 

yellow traps is labour intensive (at least for inexperienced growers) automated 

monitoring devices, like for instace the Scoutbox®, are needed. Equipped with 

object recognition algorithms they will also reduce the error due to 

misidentification when several people are responsible for plant protection 

decisions. Whether a (semi-) automatic or even visual inspection of yellow 

sticky cards for optimization of beneficial introduction regime is acceptable for 

growers and pays off economically remains to be investigated. 
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Chapter 2 

 
Sticky trap monitoring of a pest-predator 
system  in greenhouse tomato crop – 
are commercially available trap colours 
sufficient? 
 

Abstract 
Monitoring of pest presence and population development in the crop during 

the season is essential for integrated pest management. Although many tools, 

for instance coloured sticky traps, have been developed the full advantage of 

available information is rarely taken into account in decision making. The 

reasons behind include high workload in practice but also the poorly studied 

relationships between trap catches and populations in the crop. Here we 

investigate if commercially available coloured sticky traps can be used as tool 

to monitor population densities of a pest-predator system in greenhouse 

tomato. The response of Macrolophus pygmaeus Rambur (Hemiptera, Miridae) 

to blue and yellow sticky traps was tested in lab and greenhouse experiments. 

The results indicate that M. pygmaeus can be monitored equally well with both 

colours and that the number of trapped insects showed good correlation with 

the population densities on the crop. Under growing conditions, more 

M. pygmaeus were trapped on blue compared to yellow sticky traps. However, 

due to the known preference of Trialeurodes vaporariorum Westwood 

(Hemiptera, Aleyrodidae), yellow traps should be preferred for a combined 

pest-predator monitoring.  

Key words:  Population development, Macrolophus pygmaeus, Miridae, 

Trialeurodes vaporariorum, Aleyrodidae, tomato, sticky trap  
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Introduction  

The use of beneficial arthropods nowadays has become a standard tool in 

protected horticulture (van Lenteren, 2000; Pinto-Zevallos and 

Vänninen, 2013). Commercially used arthropods include pollinators and natural 

enemies, such as parasitoids and predators. With the exception of predatory 

mites, most natural enemies pass alate developmental stages which allows for 

fast dispersal and efficient location of the target pest. Moreover the specific 

response of many flying insects to trapping devices make them ideal candidates 

for continuous population monitoring (Webb et al., 1985). But although the use 

of natural enemies has become standard, their monitoring remains 

underrepresented in literature and practice, as compared to pest species. The 

reason for this is unclear, because in integrated pest management (IPM) the 

monitoring of pests and beneficials is the precondition for optimal decision 

making as basis for management actions in pest control (Binns and Nyrop, 

1992). Recently, two studies included parasitoids in existing monitoring 

schemes of Bemisia tabaci to enhance informative value (Qiu and Shunxiang, 

2006; Hoelmer and Simmons, 2008). 

In general monitoring is time consuming and therefore several facilitation tools, 

i.e. coloured sticky traps, pheromone traps and suction traps, were developed. 

Due to the attractiveness of specific wavelengths for many insects, coloured 

sticky traps became a key component in IPM programmes for flying pests in 

many crop, especially in protected agriculture (Steiner et al., 1999; Pinto-

Zevallos and Vänninen, 2013). The advantage of insect counts on sticky traps 

compared to counts on crop plants can be threefold as they are (1) cost 

efficient and easy to use, (2) effective in detection of first pest occurrence 

(Natwick et al., 2007) and (3) require lower handling time (Pizzol et al., 2010). 

However, depending on the trap density needed for accurate estimation and 

the number of trapped insects that need to be counted, traps are not always 

the most efficient monitoring technique (Naranjo et al., 1995). Manual 

handling of traps and proper identification are most likely the limiting factors 

for many growers, but currently, automatic counting and identification of 

trapped insects is fostered (Guarnieri et al., 2012; Xia, 2012) and first products, 

e.g. scoutbox ® (Cropwatch, Wageningen, The Netherlands) and trapview® 

(EFOS d.o.o., Hruševje, Slowenia), are available on the market. Such 

automation potentially leads to reduced workload for growers in the near 
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future, increase reliability and adds further to the application of sticky traps in 

practice. 

Whenever a pest and its natural enemy can be monitored with the same trap, a 

conclusive picture about the status of pest control in the crop can be drawn 

with reasonable workload. However, before the full information content of 

sticky traps can be used in decision making, the relationship between trap 

catches and population development has to be characterised for each 

tritrophic system of pest - beneficial - crop. The majority of users apply sticky 

traps without knowledge of monitoring validity for actual pest or beneficial 

densities on crops. Nevertheless, meaningful correlations of trapped insects 

with population densities in the crop were described already for thrips, 

whiteflies and parasitoids (Gerling and Horowitz, 1984; Macintyre-Allen et al., 

2005; Böckmann et al., 2014). But there are also examples with parasitoids and 

whiteflies, where no such correlation could be recognised so far (Karut and 

Kazak, 2007; Hoelmer and Simmons, 2008) or where correlation was only valid 

in the close proximity of traps (Gillespie and Quiring, 1987).  

High selectivity and strong attraction of coloured traps is a requirement for 

mass trapping and an advantage for monitoring of pests. Low selectivity of 

coloured traps on the other hand is often regarded as a drawback, due to by-

catch of non-target insects.  Therefore, for pest monitoring, the main criteria 

for selection and optimisation of sticky traps are the colour preferences of the 

target insect (Hoback et al., 1999; Döring et al., 2012; Sétamou et al., 2014) and 

attractivity can for instance be increased by adding additional olfactory cues. 

From an evolutionary point of view orientation to specific colours and volatiles 

is common for most pollinators due to their coevolution with flowering plants 

(Chittka and Menzel, 1992). Among them are important groups of 

Hymenopteran and Dipteran beneficials which cover their nutritional needs 

with pollen and nectar (Wäckers et al., 2005). Accordingly, many natural 

enemies are regularly found on coloured sticky traps (Hoelmer and Simmons, 

2008; Larsen et al., 2014). Especially yellow is attractive to a wide range of 

insects, whilst blue is mainly known to be attractive for Frankliniella 

occidentalis, other thrips species, and hoverflies (Hoback et al., 1999; Johansen 

et al., 2011). In contrast to monitoring of pests, too strong attraction of natural 

enemies to sticky traps is not desirable in order to conserve populations on the 

crop. However, some attraction is needed to monitor their successful 

establishment, i.e. their occurrence in sufficient high levels in relation to the 
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pest to provide effective control. Focussing on their establishment, the 

monitoring approach for beneficials is therefore different as compared to pest 

monitoring, were low population densities must be detected to introduce 

beneficials timely.  

A well-documented example in greenhouse tomato crops is the whitefly 

Trialeurodes vaporariorum Westwood (Hemiptera, Aleyrodidae), a major pest 

that is frequently monitored with yellow sticky traps. These traps show high 

attractivity for T. vaporariorum, enabling early pest detection in the crop 

(Gillespie and Quiring, 1987) and monitoring of population development 

throughout the season (Kim et al., 2001; Böckmann et al., 2014). In several 

studies it was shown that attraction to yellow sticky traps was highest as 

compared to any other trap colour or trap plant tested (Webb et al., 1985; 

Moreau and Isman, 2011). Also, the simplicity of the technique supported fast 

development and adoption in practice. Control of greenhouse whitefly mainly 

relies on the introduction of beneficials and the standard procedure in year-

round tomato cultures are preventive introductions of Macrolophus pygmaeus 

Rambur (Hemiptera, Miridae) shortly after planting of the crop. In practice, the 

detection of 5 M. pygmaeus of any developmental stage per plant is used as an 

indicator for establishment of the beneficial (Theo Reintges, LWK North Rhine-

Westphalia; Markus Knapp, Koppert B.V.; personal communication). Because 

establishment of M. pygmaeus takes typically about 8-10 weeks, control during 

that period is often assured by additional repeated introductions of E. formosa 

(Hymenoptera: Aphelinidae). Both most important natural enemies of 

T. vaporariorum, i.e. Encarsia formosa and M. pygmaeus, are alate and 

therefore can potentially also be trapped on sticky traps. For several 

parasitoids, the attraction to coloured sticky traps is documented in literature 

(Sheble and Kozar, 1995; Romeis et al., 1998; Scholler and Prozell, 2003). For 

E. formosa, parasitism rates were highly correlated with number of parasitoids 

caught on yellow traps (Böckmann et al., 2014). Although it is known from the 

literature that prey finding of M. pygmaeus most likely depends primarily on 

olfactory and not on visual cues (Freund and Olmstead, 2000), adult predatory 

bugs can be found frequently on both, i.e. blue and yellow traps (personal 

observation).  

In this study, we investigate the hypothesis that M. pygmaeus responds 

indifferently to blue and yellow sticky traps, the most commonly used trap 

colours in protected crop. Furthermore, we analyse if population densities of 
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M. pygmaeus on tomato crop in commercial greenhouses correlate with adult 

trap catch. 

 

Methods 

Experimental setup 

Colour attraction of M. pygmaeus 

To clarify the importance of colour for orientation in M. pygmaeus, choice 

experiments in gauze cages (25 cm length x 15 cm width x 15 cm height) were 

carried out in June / July 2014. Cages were covered on top with green 

cardboard to simulate the crop habitat. Adult M. pygmaeus were purchased 

from Katz Biotech AG, Baruth, Germany. Sex ratio of the insects was about 

2:1 in favour of females and experiments were carried out without further sex 

determination. The insects were stored individually in small glass tubes in dark 

conditions in a climate chamber (24°C, 60 % RH) for 24 hours without food 

supply prior to experimental use. A moist cotton pad was added to each tube. 

Afterwards a single insect was introduced in the centre of the gauze cage. In 

choice experiments, a coloured sticky trap (blue or yellow, Horiver®, Koppert 

B.V., Berkel en Rodenrijs, The Netherlands) was offered in combination with 

the second colour or with a transparent Plexiglas trap covered with insect glue 

(Temmen Insekten-Leim, Temmen GmbH, Hattersheim, Germany). Therefore, 

two traps at a time were presented simultaneously at the same side of the 

cage. Size of all traps was 7.5 x 7.5 cm. Position of traps was randomized for 

each run and insects were observed for a maximum of 90 min. Experiments 

were scored every 5 min and capture time of insects was noted. For each 

combination, 40 replicates were realised daily from 10 am to 16 pm.  

Additionally, the attraction to the trap as compared to the attraction to tomato 

leaves was investigated for yellow sticky traps only. For this experiment, the 

setup remained as described, but a Plexiglas disc of 7.5 x 7.5 cm was entirely 

covered with tomato leaves (cultivation Campari F1, Enza Zaden, Enkhuizen, 

The Netherlands), which were then covered with insect glue. For this 

experiment 30 replicates were carried out under greenhouse conditions with 

artificial lighting from top (sodium vapour lamps) and mean temperatures of 

26.5 ± 3.6°C (mean ± SD).  
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Additionally, colour preferences and correlation of trapped insects with counts 

on plants were investigated under standard growing conditions. Therefore a 

170 m² experimental glasshouse was prepared with 260 tomato plants (grape 

tomato, cultivar: Campari; Enza Zaden Deutschland GmbH & Co. KG) in 6 single 

rows. In this greenhouse, plants were allowed to grow up to 2.5 m and shoot 

tips were cut thereafter. Growing period was from calendar week 17 to 39 in 

2013. T. vaporariorum was introduced on 5th of June 2013 with 30 individuals 

at two distinct locations. Individuals originated from a permanent rearing on 

tobacco plants (Leibniz Universität Hannover, Institute of Horticultural 

Production Systems, Germany). All beneficials were purchased and distributed 

according to instructions for commercial greenhouses (see next paragraph). 

Introduction dates and densities of natural enemies, i.e. M. pygmaeus and 

E. formosa are shown in Figure 1. Sitrotoga sp. eggs were supplied 

(3*50 g / ha / 14 d) as additional food source on introduction sites of 

M. pygmaeus. Blue and yellow sticky traps were distributed equidistant at a 

regular grid with 1 trap / 43 m² (Horiver® / Horiver®-TR., Koppert B.V., Berkel 

en Rodenrijs, The Netherlands), resulting in a total of 4 traps of each colour. 

Trap size was 25 cm (length) by 10 cm (width). Position of traps was adjusted to 

height of the growing tips until maximum plant height was reached. 

Additionally 16 tomato plants on a regular grid were monitored. On the crop, 

whiteflies (adults and nymphs), M. pygmaeus (adults and nymphs) and 

E. formosa (black whitefly nymphs) were counted. Due to the high sampling 

effort for monitoring in this large scale experiment, only whitefly nymphal 

instars which were easily detectable by the naked eye were included, namely 

the 3rd and 4th instars. Counts were taken from 3 leaves at lower, intermediate 

and upper plant level, i.e. 9 leaves per plant in total. Monitoring on plants and 

traps was carried out weekly. In calendar week 30, application of Vertimec® 

(Syngenta, active ingredient: 18 g / l Abamectin, application rate: 1.2 l / ha) 

became necessary on one third of the crop, due to infestation with 

Aculops lycopersici. Temperature was measured in 10 min intervals 

throughout experiment and average temperature including all measures 

was 21.3 ± 3.6°C (mean ± SD). 
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Monitoring of M. pygmaeus and T. vaporariorum in commercial 

greenhouses 

Experiments were carried out in three commercial tomato greenhouses, 

i.e. one heated glasshouse and two unheated poly-tunnel. The commercial 

glasshouse of 780 m² contained 1400 tomato plants of different cultivars 

(cocktail tomato, grape tomato and beef tomato) in 5 double rows. Plants were 

vertically grown to maximum height of 3.2 m, were then laid down by 

approximately 30 cm while the position was gradually shifted sideways using 

tomato hooks. At another commercial grower, two poly-tunnels (commercial 

poly-tunnel-1 and commercial poly-tunnel-2) with several cultivars of grape 

tomato were monitored. Both poly-tunnel contained 520 plants in 4 double 

rows on 300 m². Plants were grown to maximum height of 1.9 m in an angle of 

60° and then the position was gradually shifted sideward using tomato hooks. 

Growing period in 2013 was from calendar week 10 to 43 in the commercial 

glasshouse and from 13 to 38 in both commercial poly-tunnel. In both tunnel, a 

treatment with Neudosan® Neu (Neudorff, active ingredient 

 515 g / l potassium salts from natural fatty acids; application rate: 18 l / ha) 

was carried out at calendar week 16 in order to reduce initial aphid infestation. 

Additionally to M. pygmaeus, also E. formosa was introduced at the beginning 

of the season to ensure control of T. vaporariorum. In case of the commercial 

glasshouse, the grower decided for additional parasitoid introductions in 

July / August due to (relatively) high whitefly densities. Dates of natural enemy 

introductions and densities are indicated in Figure 2. E. formosa was supplied 

as black (i.e. parasitized) nymphs on paper cards that were clipped to plants at 

regular distributed locations within the greenhouses. M. pygmaeus was 

supplied in plastic boxes on paper strips, containing a mixture of adults and late 

nymphs. Paper strips were divided into clusters containing approximately 

25 insects and placed on plants at regular distributed locations. As 

supplementary food source, Sitotroga spp. eggs were distributed with about 

170 g / ha on plants at introduction sites of M. pygmaeus, once after each 

introduction. In all commercial crops natural immigration of the pest was 

awaited. Beneficials for all cultures were purchased from Katz Biotech AG 

(Baruth, Germany). 

Yellow sticky traps (Horiver®, Koppert B.V., Berkel en Rodenrijs, The 

Netherlands) were used at density of 1 trap / 130 m² in the commercial 
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glasshouse (6 traps in total) and 1 trap / 100 m² in the commercial poly-tunnel 

1 and 2 (3 traps per tunnel). Trap size was 25 cm (length) by 10 cm (width). 

Position of traps was adjusted in height to top of the crop until maximum plant 

height was reached. Traps were either renewed, or all target insects were 

removed from traps, after counting.  

Adult T. vaporariorum, M. pygmaeus and E. formosa were counted fortnightly 

on all sticky traps. On the crop, whiteflies (adults and nymphs), M. pygmaeus 

(adults and nymphs) and E. formosa (black whitefly nymphs) were counted. 

Due to the high sampling effort for monitoring in these large scale experiments, 

only whitefly nymphal instars that were easily detectable by the naked eye 

were included, namely the 3rd and 4th instars. Counts were taken from 3 leaves 

at lower, intermediate and upper plant level, i.e. 9 leaves per plant in total. In 

the commercial glasshouse 12 and in each commercial poly-tunnel 6 plants, 

positioned on a regular grid, were sampled. Temperature was measured in 

10 min intervals throughout experiments and average temperatures including 

all measures were 19.5 ± 4.6°C (mean ± SD) in the commercial glasshouse, 

20.9 ± 5.9°C in the commercial poly-tunnel-1 and 20.2 ± 5.7°C in the 

commercial poly-tunnel-2. Temperature differences over the growing period 

were on average below 2°C for all cultures with higher variability in the 

commercial poly-tunnel than in the glasshouses. 

 

Statistical analysis 

Colour preference of M. pygmaeus 

Choice experiments carried out in gauze cages were analysed using the         

Chi-square test (goodness of fit). A distribution of 1:1 was expected for each 

experiment. Only individuals that were trapped after 90 min were included in 

the analyses.  

For the greenhouse experiment with blue and yellow sticky traps presented at 

equidistant positions, numbers of M. pygmaeus adults caught on yellow and 

blue traps, respectively, were summed up for each trap over all sample dates. 

Comparison of sums was done with Wilcoxon rank test. 
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Monitoring of M. pygmaeus and T. vaporariorum 

First, linear models were fitted for each trap colour in the experimental 

glasshouse, in order to select a suitable colour for beneficial monitoring at 

commercial greenhouse scales. Then, linear models for the use of yellow sticky 

traps were fitted using the count data of all commercial greenhouses, in order 

to establish universally valid models. For each sampling date, the average of 

counts on traps and plants was calculated per greenhouse. Averages were 

based on all sampled plants (i.e. sum of counts on 9 leaves per plant) or traps 

sampled in the respective greenhouse. Prior to analysis, data of all commercial 

greenhouses were combined and were ln (x + 1) transformed. Because the 

calculated linear models should later be used to predict insect densities on 

plants by trap catch, numbers of adults on traps were used as explanatory 

variable in all models. For M. pygmaeus and T. vaporariorum, adult or nymph 

counts on plants were used as dependent variable. Because in practice the 

total number of M. pygmaeus adults and nymphs is usually counted together to 

estimate establishment of the beneficial, additional models were fitted using 

the summed values of both stages of the predatory bug.  

Trap catches and parasitism rates of E. formosa were very low and 

consequently no models were fitted for the parasitoid. All analyses were 

carried out with the statistical software R (version 3.1.2). 

 

Results 

Colour preference of M. pygmaeus 

Soon after introduction into the cage, adults of M. pygmaeus moved actively 

and showed directed flight towards sticky traps. Between 67.5 % (blue vs. 

transparent trap) and 86.7 % (yellow trap vs. tomato leaves) of the insects were 

trapped on one of the sticky traps within a 90 min time interval; 94 % of them 

were caught within the first 45 min. When only one colour at a time was 

presented to single M. pygmaeus adults, yellow sticky traps were 2-times more 

attractive than transparent traps (χ² = 4.48, N = 27, df = 1, p = 0.03) whereas 

such difference was not found for blue traps (χ² = 1.20, N = 30, df = 1, p = 0.27) 

(Figure 3). When adults had the choice between blue and yellow traps, no 

colour was preferred (χ² = 0.27, N = 33, df = 1, p = 0.60). Additionally, yellow 
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sticky traps and tomato leaf coated traps were similar attractive for 

M. pygmaeus (χ² = 0.62, N = 26, df = 1, p = 0.60) (Figure 1). 
 

Figure 1  Preference of adult 
M. pygmaeus for either blue, yellow, 
transparent or a sticky trap covered with 
tomato leaves. Insects were released 
individually and results cover directed 
flight to one of the targets within a 90 min 
observational interval. Proportions of 
insects that did not react during that time 
are given on the left hand (no response) 
(n = 30-40). Statistical comparison was 
done with Chi-square-test. A significant 
difference was only found for the yellow 
compared to transparent trap. Detailed 
statistics are shown in the text. 

 

When blue and yellow sticky traps were simultaneously hung in the 

experimental glasshouse, M. pygmaeus was found regularly on both trap types. 

Throughout the season 27 ± 12.9 and 44 ± 14 (sum per trap ± SD) adults were 

caught per yellow and blue trap, respectively, but differences were not 

significant (Wilcoxon rank test, N = 4, p = 0.20). In contrast, throughout the 

season on average 379 ± 22 (sum per trap ± SD) adult whiteflies were caught on 

yellow and only 7 ± 5 (sum per trap ± SD) on blue traps (Wilcoxon rank test, 

N = 4, p = 0.03) (Figure 2). 
 

Figure 2  Average number of 
M. pygmaeus and T. vaporariorum 
caught on blue or yellow traps in the 
experimental glasshouse throughout 
the season. The values (mean ± SD, 
N = 4) are based on data of 4 traps for 
each colour, hanging equidistant on a 
regular grid in the experimental glass-
house. Introductions of M. pygmaeus 
(1.2 / m²) and E. formosa (3 / m²) are 
dated by their initial letters. 
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Using blue and yellow trap catches from the experimental glasshouse as 

explanatory variable, linear models were fitted using nymphal- and adult 

counts and using counts of both stages together on plants as dependent 

variable. Correlations were significant for both trap colours with R² ≥ 0.42 but 

explained variance was always higher for blue as compared to yellow trap 

catches (Figure 3).  

 

Figure 3 Linear regression models to investigate correlation between yellow- (solid line) 
and blue trap catches (dashed line), respectively of adult M. pygmaeus, and densities of its 
different developmental stages on the tomato crop. All models were fitted based on data 
collected at the experimental glasshouse. Data points refer to mean values of all plant-
 (i.e. sum of 9 leaves per plant) or trap counts calculated separately for every sampling date. 
Data was ln (x + 1) transformed prior to analyses. 
 

Monitoring of M. pygmaeus population development 

M. pygmaeus was released the first time in April but populations remained low 

until the beginning of June in all greenhouses. Effects of treatments with the 

insecticide Neudosan Neu® in calendar week 16 were not detectable due to the 

very low density of the beneficial at application time. Nymphal and adult 

numbers on crop increased until end of July and numbers remained at high 

level in all locations (Figure 4). Comparing the different locations, the overall 

highest nymphal density was reached in the commercial glasshouse with an 

average of 4.2 nymphs per leaf. Highest adult density on plants was reached in 

the poly-tunnel-1 with an average of 1.5 adults per leaf. The same is true for 

the maximum trap catch in two weeks, with an average of 27.7 adults per trap. 
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Figure 4  Population development of M. pygmaeus and T. vaporariorum on crop and 
yellow sticky trap catch. Adult and nymph numbers on crop refer to average count per plant 
(i.e. sum of counts from 9 leaves) from 12 plants (commercial glasshouse) or 6 plants 
(commercial poly-tunnel-1, commercial poly-tunnel-2). Adult trap catches refer to average 
count per trap from 6 traps (commercial glasshouse, experimental glasshouse) or 3 traps 
(commercial poly-tunnel-1, commercial poly-tunnel-2). Data are shown on logarithmic scale 
with 0-values clipped to the x-axis. Standard deviations reaching below zero were omitted. 
Introductions of M. pygmaeus (0.5 / m² in the commercial glasshouse; 1 / m² in both 
commercial poly-tunnel) and E. formosa (6.4 / m² in the commercial glasshouse; 5 / m² in 
both commercial poly-tunnel) are dated by their initial letters. Note that in the commercial 
tunnel one additional introduction of M. pygmaeus (0.5 / m²) and E. formosa (4.5 / m²) was 
carried out at March 14.  
Scatter plots showed similar data distributions in all commercial greenhouses 

with yellow trap catch of adults as explanatory variable and nymph, adult or 

nymph + adult numbers on crop as dependent variable (Figure 5A). 

Consequently, a single linear model for each dependent variable was fitted, 

combining the data of all commercial greenhouses. All models were highly 

significant for all dependent variables with R²-values ranging between       

0.70 – 0.75 (Figure 5A). 
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Figure 5 Linear regression models to investigate correlation between yellow trap 
catches of adult M. pygmaeus (A) or T. vaporariorum (B) and densities of different 
developmental stages of the respective insect on the crop. All models were fitted based on 
data collected in all commercial greenhouses (commercial glasshouse = GH, commercial 
poly-tunnel-1 = P-T-1, commercial poly-tunnel-2 = P-T-2). Data points refer to mean values 
of all plant- (i.e. sum of 9 leaves per plant) or trap counts calculated separately for every 
sampling date and location. Data was ln (x + 1) transformed prior to analyses. 

Monitoring of T. vaporariorum population development 

Whitefly population remained low until June in all greenhouses. Throughout 

the season adult counts remained low as compared to nymphs. Due to these 

low densities, effects of treatment with the insecticide Neudosan Neu® in 

calendar week 16 in both poly-tunnel were not detectable. In the commercial 

glasshouse a pronounced peak in the population development can be identified 

within the season from mid-July to mid-August. In both commercial poly-

tunnels nymphal and adult T. vaporariorum populations increased moderately 

throughout season without reaching a distinct population peak (Figure 4).  
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Highest nymphal numbers were reached in the commercial glasshouse with an 

average of 2.9 nymphs per leaf and highest adult numbers were reached in the 

commercial poly-tunnel-2 with an average of 0.7 adults per leaf. Maximum trap 

catch of adult whiteflies was recorded in the commercial glasshouse with an 

average of 930.7 adults per trap caught in two weeks.  

 

Scatter plots showed similar distributions for data of all commercial 

greenhouses with adult yellow trap catches as explanatory variable and 

nymphs or adult numbers on crop as dependent variable (Figure B). 

Consequently, single linear models were fitted for each dependent variable, 

combining the data of all commercial greenhouses. Significant models using 

adult trap catches as explanatory variable could be fitted for nymph and adult 

counts on plants as dependent variable (Figure 5B). Nevertheless proportion of 

variation explained by the models was almost 1.5 – fold increased for nymphal 

as compared to adult counts on plants.  

 

Discussion 

Colour preference of M. pygmaeus 

M. pygmaeus did not prefer one of the tested trap colours, but shows a distinct 

preference for coloured traps compared to transparent ones. Because flight 

activity was also directed to transparent traps it is likely that shape provides 

additional information for orientated flights. Contrasting contours and light 

blue shimmering of Plexiglas may have affected the orientation to transparent 

traps and potentially obscured a difference between the blue and the 

transparent trap. That shape might play a major role is also supported by the 

fact that diurnal, crepuscular and also nocturnal flight activity was frequently 

observed in different species of the family Miridae (Heteroptera) to which 

M. pygmaeus belongs (Blackmer et al., 2004). Although M. pygmaeus is actively 

walking on plants and flying in greenhouses at daytime (personal observation), 

Perdikis et al. (2004) observed that adults and late instars M. pygmaeus mainly 

hunt in the dark. Other authors also assume that mating takes place at night 

times (Gemeno et al., 2007). Therefore it is likely that to some extent, 

M. pygmaeus trap catches in the greenhouse take place during flights at 
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crepuscular light or night times, but further studies are needed to confirm this 

hypothesis. In general colour vision in nocturnal insects is much scarcer than in 

diurnal ones. However, some hawk moths and some large bees and 

grasshoppers may have adapted to nocturnal colour vision (Kelber and Roth, 

2006). Nevertheless it seems to be unlikely that M. pygmaeus uses colour 

vision during night times because this predator is quite small and not 

exclusively nocturnal. Furthermore, our experiments have shown that a yellow 

trap is not of higher attractiveness compared to a similar sized green leaf area 

at daytime (Figure 1). The lower or absent attraction of M. pygmaeus to yellow 

traps is clearly visible when comparing the numbers caught per trap of the 

predatory bug and T. vaporariorum (Figure 2). The high attraction of 

T. vaporariorum to yellow is known (Webb et al., 1985; Moreau and Isman, 

2011) and was also significant in the current study. Moreover, the maximum 

trap catch on a single yellow trap was with 91 whiteflies was about 9 times 

higher as compared to M. pygmaeus (10 individuals), whilst the maximum 

number of whiteflies on a blue trap was with 4 individuals half of the number 

of trapped predatory bugs (11 individuals) (Figure 2). Hence, we found a more 

balanced number comparing trap types, and much lower numbers in total. 

However, in our greenhouse experiments there seems to be a trend that more 

M. pygmaeus were found on blue traps as compared to yellow traps towards 

the end of the season (Figure 2). This result is in contrast to the results of our 

choice-experiment, where M. pygmaeus was equally attracted to both trap 

types (Figure 1). Most natural enemies show a preference to yellow coloured 

traps (Dowell and Cherry, 1981; Udayagiri et al., 1997; Beers, 2012). In fact, 

very few insect species prefer blue colour, for instance some thrips and 

hoverflies (Hoback et al., 1999; Johansen et al., 2011). Comparing traps of 

white, blue and yellow colour in field plots of different rice cultivars the 

predatory bug Orius similis was most attracted to yellow (Raen et al., 2013). 

Furthermore, the least O. similis adults were found all times on blue traps, but 

the authors did not check for significance in those differences. In both genera, 

Orius and Macrolophus, the visit of flowers and the use of pollen as food source 

are known (Ishida et al., 2009; Maselou et al., 2014), but both genera show 

omnivorous feeding habits (Hillert et al., 2002; Pumarino and Alomar, 2012) 

and are active at day and night times (Askari and Stern, 1972; Hamdan, 2006). 

However, our data supports the assumption that M. pygmaeus reacts rather 

unspecific to colour (Figure 1 and Figure 2). Because in tomato crops colour of 
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flowers or prey is not very prominent, it is likely that the predatory bug uses 

mainly the contours of plants or leaves for orientation during flight activity. 

Hence, for our glasshouse experiment, were traps are placed within crop, it is 

likely that the trap that is most similar to a tomato leave is preferred. The 

wavelength of yellow traps is with 550-700 nm quite similar to fresh leaves 

(light green), whereas blue traps with 400-500 nm are similar to older leaves 

(dark green) (Natwick et al., 2007). Because plant tips were cut in the 

experimental glasshouse in June, few fresh leaves where left in late summer. 

Hence the general appearance of plants was more similar to the blue traps 

(i.e. darker), which may have caused the increase of trap catches on blue as 

compared to yellow traps at that time. Such difference would not have been 

detected in the choice experiments, were traps were presented in front of a 

white background. Studies of colour preference of M. pygmaeus are at their 

beginning, and consequently the current study raises many new questions. To 

get a more complete picture of colour attraction of this predatory bug, further 

studies should also test difference in colour attraction due to habituation, at 

different time of the year, between sexes and also include seasonal shifts. 

However, our data show that there is no strong attraction to blue or yellow 

traps. Therefore and keeping in mind the low density of yellow traps used in 

practice and in the present study, an influence of this monitoring technique on 

the population development of the predator in commercial greenhouses, 

i.e. unwanted mass trapping, can be neglected. 

For monitoring of natural enemies in practice, it remains most important that 

correlations of trap catch with population densities on the crop are meaningful. 

Such correlations were more accurate for blue as compared to yellow traps 

(Figure 3). Still, correlations for both trap types explained always more than 

40 % of the variance of M. pygmaeus nymphs and adults monitored on plants. 

Correlation of trap catches with total number of adults and nymphs on plants 

explained 74 % of the variance for blue and 55 % for yellow traps. In tomato, 

M. pygmaeus is mainly used to control T. vaporariorum. Because this pest is 

commonly monitored with yellow traps, it is most cost and time saving to 

monitor both, T. vaporariorum and M. pygmaeus on the same trap type. 
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Monitoring of M. pygmaeus in the crop 

It was tested if yellow traps can be used for a comprehensive monitoring of 

M. pygmaeus population densities in commercial greenhouses using practice 

relevant trap densities. For practical considerations, we used 1 trap         

per 100-200 m², a density that we confirmed earlier already for whitefly 

monitoring in tomato (Böckmann et al., 2014). Under these conditions, no 

structural differences were detected in scatterplots for the relation between 

plant and trap counts between the 3 commercial greenhouses (Figure 5A). 

Therefore it was possible to combine data of all commercial greenhouses for 

model evaluation. On this basis, explanation of adult numbers on crop was 

more accurate than for nymph numbers (74 % vs 70 % of variance explained by 

the model). The latter was expected because only adult predatory bugs are 

alate and therefore directly correlated with trap catch. In contrast, nymph 

counts on plants correlate indirectly with adult trap catch due to their 

(supposed) direct correlation with adult counts on plants. Considering that the 

restriction to monitoring of mobile, alate developmental stages is considered 

as a major drawback of sticky traps (Musser et al., 2004), the accuracy of the 

indirect correlation with M. pygmaeus nymphs is surprising. However, similar 

good correlations between nymphs and adult trap catch were also found for 

whiteflies (Kim et al., 1999; Böckmann et al., 2014).  

Generally little attention is spend so far on sampling to predict biological 

control (Nyrop and Vanderwerf, 1994). Nevertheless, many natural enemies 

can be found on sticky traps (Dowell and Cherry, 1981; Udayagiri et al., 1997; 

Beers, 2012). To our knowledge, monitoring of predatory bugs to date is mainly 

based on direct counts on the crop (Isenhour and Yeargan, 1981; 

Elkassabany et al., 1996). Monitoring of predatory bugs with sticky traps has 

the potential to reduce workload and costs (Musser et al., 2004). Although the 

concept of economical thresholds was not designed for predators, this 

classification may be suitable for predator sampling to predict biological control 

(Musser et al., 2004). One possibility to classify biological control impact is the 

predator / prey ratio (Nyrop and Vanderwerf, 1994). This classification is of 

limited use when it comes to generalist predators, which exploit a range of 

food sources and do not depend on single pests. Therefore Musser et al. (2004) 

propose to classify populations of a generalist predator and its primary prey as 

being large or small, in order to reduce sample effort. This threshold based 

concept, which we also used as basis for our decision support software 
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(Böckmann and Meyhöfer, 2014), fits perfectly the needs for assessment of 

M. pygmaeus in greenhouse tomato. Growers consider already two population 

levels to be relevant: The first level is between 3 and 7 M. pygmaeus per 

tomato plant, indicating the establishment of the predatory bug in the crop 

(personal communication Markus Knapp, Koppert B.V., Joke de Jong, SoilCares 

Research). Estimation of that level can be used to optimise decision making in 

different ways. If, for instance, E. formosa is introduced to control 

T. vaporariorum in the early season, introductions can be stopped once 

M. pygmaeus became established. Also if E. formosa is not introduced, a good 

estimation of the population build-up of M. pygmaeus is needed to decide if 

additional control measures have to be taken, once T. vaporariorum is 

detected. The latter is to some degree also true for the detection of aphids or 

spider mites, which are also attacked by M. pygmaeus. The second level that 

some growers consider is the threshold of 10 M. pygmaeus per plant, at which 

the predatory bug is regarded to cause plant damage (personal communication 

Joke de Jong). This grower’s threshold is however not in line with results on 

tomato crop damage mentioned in literature. Here, damage is mainly 

considered to occur at very high predator densities and low prey availability 

under experimental conditions (Castañé et al., 2011). Only a single study by 

Sampson and Jacobson (1999) reported distorted tomato leaf growth, necrotic 

spots on leaves and scars on fruit in a UK field survey at predator densities of 

50–300 individuals per plant and low prey abundance. 

Because growers do not distinguish between M. pygmaeus nymph- and adult 

stages on the plant to estimate population densities, a model that predicts the 

density of mixed populations would be most relevant to assess the earlier 

mentioned thresholds in practice. In our experiments, trap catches explained 

75 % of the variance of M. pygmaeus mixed population on the crop (Figure 5A). 

This correlation model has therefore high potential for application to yellow 

trap monitoring in commercial tomato glasshouses and poly-tunnels in the 

temperate climate zone. As mentioned before such monitoring will not incur 

additional material costs, assuming that T. vaporariorum is already monitored 

with yellow traps. Also additional monitoring time would be moderate, because 

M. pygmaeus can be easily identified with the naked eye, and is usually 

trapped in moderate numbers. For instance, total numbers per trap never 

exceeded 40 insects in the current study.  
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Research on correlations of trap catch and population densities on plants is 

ongoing for M. pygmaeus, to validate the accuracy of predictions on predator 

densities based on the current results. Because M. pygmaeus also feeds on 

thrips, aphids and spider mites (Perdikis and Lykouressis, 2000; 

Blaeser et al., 2004), the use of blue traps could be advisable if M. pygmaeus is 

used to control other pest species. For instance, F. occidentalis is mainly 

attracted to blue colour (Gillespie and Vernon, 1990; Montserrat et al., 2000; 

Natwick et al., 2007) and consequently blue traps are already used for its 

monitoring in cucumber and other crop. Although it remains to be tested for 

each crop under practice conditions, our results indicate that blue traps may as 

well be suitable to monitor M. pygmaeus and F. occidentalis together. 

 

Monitoring of T. vaporariorum 

Monitoring of T. vaporariorum using yellow sticky traps is a standard technique 

in protected tomato and several other crops. In the current study, 

T. vaporariorum was found on yellow traps at all locations before its first 

detection in the crop. This finding supports the common use of yellow traps in 

commercial greenhouses for early detection and the known preference of 

T. vaporariorum for yellow as compared to green colour (Webb et al., 1985; 

Johansen et al., 2011).  

There were no structural differences in scatterplots for the relation of plant 

and trap counts between the 3 commercial greenhouses (Figure 5B), and 

consequently data of all commercial greenhouses was combined for modelling. 

Similar as in a previous study under standardised experimental conditions 

(Böckmann et al., 2014), correlations between adult trap catch and adult or 

nymph density on the crop were highly significant. The current results also 

confirm the prior finding that correlations of nymphal counts with trap catches 

are more accurate as compared to adult counts (Figure 5B). The reasons for 

increased accuracy of correlation between adult trap catch and nymphal as 

compared to adult counts in the crop are discussed in detail in 

Böckmann et al. (2015) (Chapter 1). 

Our current and the previous study encourage the use of adult trap catches at 

practice relevant densities to predict nymphal densities in the crop, a strategy 

also proposed in the review by Pinto-Zevallos and Vänninen (2013). Based on 
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the current study, this advice can be confirmed for poly-tunnel of up to 300 m² 

and glasshouses of up to about 800 m².  

In the commercial glasshouse, control was considered to be insufficient in mid 

of July and consequently, additional introductions of E. formosa were carried 

out (Figure 2). However, no extensive contamination with honeydew was 

observed and whitefly larvae per leaf at July 17nth were on average 

0.5 ± 0.4 (mean ± SD). The mentioned growers’ decision rules underline, that 

no practice relevant threshold for this pest in tomato crop exists. The only 

threshold for that crop we are aware of was described by Hussey et al. (1958), 

showing that at infestations as heavy as 70 nymphs per 5 cm² about 30 % of 

fruits show some sooty mould and at 130 nymphs yield is reduced. Our 

example shows that, in practice, growers apply their personal threshold and 

frequently accept only much lower pest densities on their crop.  

Although repeatedly introduced in all greenhouses, E. formosa was unable to 

establish a population when it was released in addition to M. pygmaeus. Rarely 

pupae of the parasitoid (i.e. black whitefly nymph) on the crop or adult 

parasitoids on a yellow trap were observed. However, because the parasitoid 

was introduced repeatedly and in much higher densities as compared to 

M. pygmaeus, it most likely had a considerable impact on pest population build 

up due to host feeding on whitefly larvae. The latter is also indicated when 

comparing the population build-up of T. vaporariorum in the commercial 

glasshouse and both commercial poly-tunnel during May and June (Figure 3). 

Population build up was steeper at that time span in the commercial 

glasshouse, the only site where no E. formosa was introduced at that time. 

However, this impact cannot be distinguished visually from predation by 

M. pygmaeus and abiotic factors causing death on whitefly larvae. 

 

Conclusion 
Our results show that accurate sticky trap monitoring does not necessarily rely 

on strong colour attraction of the target insect. That is at least true under 

conditions, where early detection is not crucial and relatively high numbers of 

the target insects are expected to occur and are of major interest, i.e. for 

released natural enemies in protected crops. In the concrete case, monitoring 

of M. pygmaeus can be done with yellow or blue traps, because the adult 
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predatory bug responds indifferently to both colours. For other crops than 

tomato these assumptions remain to be tested. It is however likely that 

monitoring of this important natural enemy can be integrated into existing 

monitoring-strategies by sticky traps, no matter if blue or yellow traps are in 

use. The fortune is that by using the traps already present for pest monitoring, 

there are no additional material costs and little increase of workload. 

Correlations established for M. pygmaeus (current study), E. formosa 

(Böckmann et al., 2015; Chapter 1) and T. vaporariorum (current study) were 

validated in commercial greenhouses in 2014 (Chapter 3). 
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Chapter 3 

 
Steps towards automated decision making 
in integrated pest m anagement using 
practice relevant monitoring schemes 
 

Abstract 

Integrated Pest Management (IPM) becomes more and more standard in 

agricultural production. With it, also complexity of decision making for optimal 

pest control keeps increasing, due to the application of thresholds for 

economic pest damage and establishment of biological control, and the need to 

choose for selective insecticides. The key for optimal decision making is a 

reliable (but also cost and labour efficient) monitoring, at its best enabling 

growers to area-specific adaption of control measures. When targeting alate 

insects, sticky traps have good potential to provide such monitoring, as long as 

correlations of trap catch with on-crop densities can be established and 

enables accurate predictions in new growing seasons. In the current study we 

validate yellow trap monitoring of the Greenhouse Whitefly, Trialeurodes 

vaporariorum, and its natural enemies Encarcia formosa and Macrolophus 

pygmaeus. Therefore we apply the correlations established in previous studies 

on data of a new tomato season, and evaluate the accuracy with regard to 

certain threshold levels. Accuracy of prediction based on trap catch for 

damaging levels in complete greenhouses (greenhouse areas) was 89 % (84 %) 

for T. vaporariorum nymphs. For adults, validation failed because the 

prediction did never exceed the tentative damaging level. Established biological 

control by the parasitoid, i.e. parasitism rates <80 %, was predicted by adult 

trap catch with 92 % (96 %) accuracy. A level of 5 M. pygmaeus nymphs and 

adults per plant was assumed as established control, and predicted           
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with 86 % (88 %) accuracy. Population peaks were strongly underestimated for 

both whitefly stages, and parasitism rates of E. formosa were only accurately 

predicted for rates above 50 %, whereas population development of 

M. pygmaeus was accurately predicted throughout season. Furthermore, we 

could show that a monitoring driven introduction of E. formosa can pay of 

economically in means of material costs, as compared to introduction of one or 

both beneficials in predefined intervals. Implications of these results for IPM 

programs on T. vaporariorum are discussed. 

 

Key words:  Decision Support System, Economic Injury Level, Plant Protection, 

Beneficials 
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Introduction  

Crop protection strategies have undergone remarkable changes within the last 

decades. Driven by the resistance of important pest species due to repeated 

application of broad range pesticides, to date plant protection often relies on a 

combination of beneficials and more specific plant protection products (van 

Lenteren 2000). This process is to date reinforced by increasingly restricted 

registration procedures for plant protection products by the countries, reseller 

demands and consumer preferences. As a result, the number of growers 

applying the rules of integrated pest management (IPM) in plant protection is 

constantly increasing. In IPM, pest control relies primarily on naturally 

occurring, modified or introduced biological control (Stern et al. 1959). 

Pesticides should only be applied if pest populations reach damage inflicting 

densities. Also negative impact of pesticides on beneficials should be 

minimized, especially in crops where beneficials are introduced and sustained 

on the crop. To date introduction of beneficials is standard in most protected 

vegetables in Europe, but also in different areas around the world and even in 

some broad acre crops (van Lenteren 2000; van Lenteren 2007; Gardner et al. 

2012). The combination of chemical and biological control together with a rapid 

change of registered products, has increased complexity in plant protection 

and resulted in a need of growers for decision support. For decision making in 

pest control, the information needed are 1) which beneficials should be 

introduced in which density and frequency (i.e. how can the pest be effectively 

and cost saving controlled), 2) was beneficial quality and were environmental 

conditions adequate for introduction (i.e. does beneficial population build up 

as expected), 3) when does the control become effective (i.e. when can 

introductions be finished) and 4) did the pest (or in some cases the beneficial) 

population reach a predefined damaging threshold (i.e. is there a need to adapt 

control measures). Most information on beneficial introductions is provided by 

the producing companies. These companies presumably follow several goals 

with the provided information. First of all they should assure that effective pest 

control is reached in the crop. However, they should also have an interest in 

selling their products, preferably at predefined timetables and amounts. Hence, 

if no independent evaluation takes place, the use of beneficials potentially 

becomes extended from early to late season, irrespective of pest occurrence 
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and established control. This extension is neither necessarily in line with 

growers’ costs of goods perspective nor with the IPM concept.  

To truly apply the IPM strategy, all decisions that are taken in plant protection 

have to rely on a comprehensive monitoring, including the target pests and its 

natural enemies and should be related to predefined thresholds. Mainly two 

thresholds, both described by Stern et al. (1959), are applied to define that pest 

density. One is the economic injury level (EIL) which gives the density at which 

a control measure that is taken equals in costs the damage a given pest density 

inflicts. The second one is the economic threshold (ET), which defines the pest 

density at which a control measurement should be initiated in order to prevent 

pest densities from reaching the EIL. Both thresholds vary from area to area, 

season to season or with man’s changing scale of economic values 

(Stern et al. 1959; Damos 2014). Thresholds from literature may therefore only 

be taken for orientation purposes, but have to be adapted individually to every 

location. For several important pest species, thresholds can be found in recent 

literature (Brewer et al. 2013; Andreev et al. 2013; Shirvani-Farsani et al. 2013; 

Mujica and Kroschel 2013; Paula-Moraes et al. 2013; Bueno et al. 2013). Also 

for some beneficials there exist practice recommendations for population 

densities or density relations (pest – beneficial) indicating that control of the 

pest is established (Fischer and Terrettaz 2003; Albert et al. 2007; 

Brun et al. 2012; Scholz-Döblin 2013; Böckmann et al. 2014). If beneficials also 

feed on plant material and therefore may damage the crop when occurring in 

high densities, growers need to decide on their control as well. The latter is for 

instance the case for many mirid predators, such as Macrolophus pygmaeus, 

Dicyphus tamaninii, Dicyphus Hesperus and Nesidiocoris tenuis 

(Castañé et al. 2011). 

In order to reduce monitoring workload for growers, indirect measures of pests 

using sticky traps became established in many cropping systems (Ohnesorge 

and Rapp 1986; Pinto-Zevallos and Vänninen 2013). It is however essential to 

relate trap catch to pest and beneficial densities on the crop. For trap 

monitoring, several publications show correlations between trap catch and 

actual pest densities, but many of these studies considered monitoring density 

and / or frequency too laborious for practice (Hoffmann et al. 1997; 

Shipp et al. 2000; Karut and Kazak 2007; Natwick et al. 2007; Pizzol et al. 2010). 

As a result, growers and pest control advisors broaden monitoring schemes 

without further validation in order to make them applicable 
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(Cullen et al. 2000). There are also examples of studies which consider practice 

relevant monitoring schemes (Higgins 1992; Kim et al. 2001; Macintyre-

Allen et al. 2005; Pascual-Ruiz et al. 2014). However, with view on application 

all the latter studies lack the validation of the described correlations (pest trap 

catch – pest densities on plants) with independent data sets, i.e. on data sets 

collected at another study site or year, which was not used to establish the 

correlation. Another lack in literature is the development of structured 

monitoring of beneficials (but: Karut and Kazak 2007). However, one recent 

study on the soybean aphid covered all mentioned fields (practice relevant 

monitoring, pest and beneficial monitoring, validation in practice), and 

described a complete, applicable decision support system (DSS) for growers of 

the broad acre crop soybean (Hallett et al. 2014).  

During the last 3 years we developed enhanced monitoring schemes for 

protected tomato crop that are conclusive and at the same time applicable for 

growers (Böckmann et al. 2014). Furthermore we implemented the established 

correlations and dependent decision rules in a DSS (Böckmann and 

Meyhöfer 2015). Thereby we considered the information content of trap catch 

on pest densities of Trialeurodes vaporariorum and its most important natural 

enemies, namely Encarsia formosa and Macrolophus pygmaeus, on the crop. 

For the pest there is no practice relevant threshold available from literature. 

Hussey et al. (1958) found that a reduction in tomato yield occurs at 70 nymphs 

/ 5 cm² leaf area. However, in practice the whitefly density accepted by 

growers is much lower due to nuisance by flying adults and distribution of 

honey dew on plants (personal communication). Tomato growers in the 

Netherlands and Germany assume 3-7 M. pygmaeus per plant as a level of 

established control (Joke de Jong, Markus Knapp, Theo Reintges personal 

communication), whilst a level of more than 10 individuals per plant is 

considered as potentially damaging (Joke de Jong, personal communication). 

However, in literature damage of tomato crop is considered to mainly occur at 

very high predator densities and low prey availability under experimental 

conditions (Castañé et al. 2011). For E. formosa a parasitism rate of at least 

80 % is considered as established control (Scholz-Döblin 2013). Because 

nowadays greenhouses of more than 1 ha in size are not out of the ordinary, 

and due to the aggregated occurrence of many pests (Taylor 1984; 

Noldus et al. 1986), area specific recommendations within one greenhouse are 

needed to optimize decision making in pest control. In this study we validate 
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the accuracy of yellow trap catches as an estimate of population density on 

individual crop areas within greenhouses (monitored by a single yellow trap) as 

compared to the complete greenhouse area, based on the monitoring schemes 

recommended in our previous studies for the pest and both beneficials 

(Böckmann et al. 2015, Chapter1, Chapter 2). Furthermore, we estimate if 

decisions based on trap catch related to the mentioned thresholds are as 

accurate when taken based on trap catches, as decisions based on direct 

counts on plants. The differences in costs of goods of applying those decision 

rules as compared to standard introduction intervals are discussed.  
 

Material and Methods 
In all tomato greenhouses, a regular grid of yellow sticky traps was installed, 

with traps hung on top plant level. Trap position was adjusted to plant level 

until crop reached maximum height. Pests and beneficials on the tomato crop 

were counted at 3 levels per plant (top, intermediate and bottom) at 3 full 

leaves per plant level (i.e. 9 leaves per plant). Numbers of target pests and 

beneficials were counted weekly (2012) or fortnightly (2013/14) on traps and 

plants. Details on numbers of yellow traps, rating plants, target pests and 

released beneficials are summarized for all sites in table 1. Introduction 

intervals and densities of beneficials, tomato growth and rating period as well 

as abbreviations used for the different sites are summarized in table 2.  

Table 1 Summary of greenhouse sizes, trap densities and rating schemes of pest 
(TV = T. vaporariorum) and beneficials (EF = E. formosa; MP = M. pygmaeus), of all 
monitored greenhouses and poly-tunnel (greenhouse = GH, greenhouse chamber = GH-C, 
experimental greenhouse = GH-Exp, poly-tunnel = P-T). 

Site Year 
Size 

(m²) 

Traps 

(ha) 

Rating plants 

per trap 

Rating 

interval (d) 

Insects 

monitored 

GH-C 2012 40 500 4 7 / 
GH-Exp 2012 170 588 3 7 TV, EF 
P-T-1 2013 300 100 2 14 TV, EF, MP 
P-T-2 2013 300 100 2 14 TV, EF, MP 
GH-1 2013 780 77 2 14 TV, EF, MP 
GH-2 2013 700 86 2 14 TV, EF 
GH-3 2013 350 86 2 14 TV, EF 
P-T-1 2014 300 67 4 14 TV, EF, MP 
P-T-2 2014 300 67 4 14 TV, MP 
GH-1 2014 780 51 4 14 TV, EF 
GH-2 2014 700 57 4 14 TV, EF 
GH-3 2014 350 57 4 14 TV, EF 
P-T-3 2014 270 74 4 14 TV, EF 
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Data collection 2012 

Experiments considered in the current study were carried out in one 

experimental greenhouse (GH-Exp) and one experimental greenhouse chamber 

(GH-C). In both locations, crop was infested artificially with T. vaporariorum 

adults and control was established by introductions of E. formosa (Table 2). For 

details on cropping systems and experimental setup, please consider the 

original study from Böckmann et al. (2014). 

Data collection 2013 

Experiments considered in the current study were carried out in five 

commercial greenhouses. In all locations, natural occurrence of 

T. vaporariorum was awaited and growers decided on introduction of 

beneficials (Table 2). For details on cropping systems and experimental setup of 

the commercial greenhouse (GH-1) and both commercial poly-tunnel (P-T-1,    

P-T-2), please consider the original study (Chapter 2). Two commercial 

greenhouses were not considered in the previous study, because neither 

T. vaporariorum nor E. formosa became established in these greenhouses   

(GH-2, GH-3). These houses will be considered in the current study for the 

economic evaluation of different introduction schemes of beneficials. In         

GH-2, 1170 beef tomato plants (different cultivars) were grown to a maximum 

plant height of 3.5 m. In GH-3, 590 cocktail tomato plants (different cultivars) 

were grown to a maximum plant height of 2.5 m. In both greenhouses, plants 

were arranged in 5 double rows and plants were gradually shifted sideways 

using tomato hooks (for details see Table 1 and 2). 
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Table 2  Growing period in calendar weeks (CW, grey shaded) of all greenhouses 
(greenhouse = GH, greenhouse chamber = GH-C, experimental = Exp, poly-tunnel = P-T) 
and years. Growing period is consistent with rating period for all but P-T-3, where rating 
started at calendar week 30.  First pest occurrence is indicated by TV (T. vaporariorum), 
introductions of beneficials by MP (M. pygmaeus) and EF (E. formosa). Numbers refer to 
individuals introduced per m². 

Year 2012 2012 2013 2013 2013 2013 2013 2014 2014 2014 2014 2014 2014 

      GH 

CW 

GH-

C 

GH-

Exp 

GH-

1 

GH-

2 

GH-

3 

P-T-

1 

P-T-

2 

GH-

1 

GH-

2 

GH-

3 

P-T-

1 

P-T-

2 

P-T-

3 

10              

11   
0.5 
MP  

          

12              
13              

14   
0.5 
MP 

  1 MP 1 MP       

15      TV        

16           
0.5 
MP 

0.5 
MP 

 

17   TV   1 MP 
TV 

1 MP 
   TV TV  

18              

19      5 EF 5 EF    
0.5 
MP 

1.5 EF 

0.5 
MP 

 

20              

21 TV TV         1.5 EF   

22 5 EF 5 EF    5 EF 5 EF       

23           1.5 EF   

24 5 EF 5 EF    5 EF 5 EF       

25              

26 5 EF 5 EF            

27              

28 5 EF 5 EF 6.4 EF         3 EF 
TV  

3 EF 
29        TV  TV    

30 5 EF 5 EF 6.4 EF     3 EF    3 EF 3 EF 

31         TV 3 EF    

32 5 EF       3 EF    3 EF 3 EF 

33   6.4 EF TV TV    3 EF 3 EF    

34 5 EF   5 EF    3 EF     3 EF 

35         3 EF     

36 5 EF       3 EF     3 EF 

37         3 EF     

38        3 EF      

39              

40              

41              

42              

43              

 

Data collection 2014 

Experiments were carried out in all commercial greenhouses monitored in 2013 

(Table 1). Cropping system in greenhouses already monitored in 2013 remained 

the same as described above and in Chapter 2. Data collection was carried out 
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likewise as described for the previous years. Numbers of yellow traps per 

greenhouse were slightly reduced to be able to increase number of monitored 

plants with manageable workload (Table 1). One additional unheated 

commercial poly-tunnel, with different cultivars of cocktail tomato was 

monitored in 2014 (P-T-3). In this tunnel, tomato plants were arranged in 

40 single rows of 10 plants each at right angle to tunnel length. Plants were 

grown to a maximum height of 2.0 m and growing tips where cut thereafter, at 

August 11. Monitoring started in calendar week 30, whereas planting was in 

calendar week 16. Because T. vaporariorum was immediately detected when 

installing the yellow sticky traps in calendar week 28, it is likely that the pest 

was present already earlier in the season. Additionally to the assessments 

already taken in previous years, number of leaves per plant was counted on 

5 randomly selected plants at every sample date and location. This count was 

used as a factor to convert from insect counts on 9 leaves to the practice 

relevant plant unit. Temperature was measured in 10 min intervals throughout 

experiments and average temperatures including all measures (°C, mean ± SD) 

were 20.18 ± 5.16 in GH-1, 20.65 ± 4.99 in GH-2, 21.51 ± 4.78 in GH-3, 

21.13 ± 6.12 in P-T-1, 20.36 ± 5.79 in P-T-2 and 19.96 ± 6.01 in P-T-3. 

 

Statistical analyses 

Training of models  

Based on the data collected in 2012 / 13, numbers of pests and beneficials 

trapped were correlated with their numbers on the crop, by fitting of linear 

models. Therefore averages were calculated for insects counted per plant 

(i.e. on 9 leaves) as well as for insects caught per sticky trap, for each 

monitoring date, including all rated plants or traps. Data were ln (x + 1) 

transformed prior to analysis. The use of untransformed data (i.e. sums instead 

of averages) was not possible in these cases, because the number of traps per 

greenhouse as well as the relation of rating plants as compared to yellow traps 

changed between locations and within years.  

For E. formosa, two datasets from 2012, both published in 

Böckmann et al. (2014), were used (GH-Exp, GH-C). Modelling procedure 

remained the same, but data from the greenhouse and the greenhouse 

chamber were combined to fit the current models. On the one hand, a linear 
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model was fitted, using the procedure described above. To account for the 

problem that parasitism rate increased unrealistically (above 100 %), 

additionally a binominal generalized linear model with    logit-link was fitted, 

using the average trap catch as an independent and the proportion of 

unparasitized to parasitized nymphs as dependent variable. 

For M. pygmaeus and T. vaporariorum, models were trained using the data 

from three commercial greenhouses monitored 2013, in which the respective 

pest and beneficial became established and reached meaningful densities    

(GH-1, P-T-1, P-T-2). The datasets and the linear models applied in the current 

study were described in Chapter 2. Datasets from the experimental sites 

monitored in 2012 were not included for T. vaporariorum, because cropping 

system and density of traps differed largely from the commercial sites 

monitored in 2013/14. 

 

Application of models 

In the current study, the established models are applied on the new datasets 

collected in 2014, giving 1) a prediction of population density on crop for every 

greenhouse area monitored by a single trap and 2) a prediction of population 

density on crop for each entire greenhouse. All predictions refer to the mean 

number of insects or developmental stages of insects counted on 9 leaves per 

plant and are based on the trap catch of the respective adult stage. In order to 

translate average counts of population densities on 9 leaves per plant to the 

practice relevant plant unit, the average leave count at the respective 

greenhouse and date was used as factor, to calculate the average number of 

insects per plant (i.e. average count per 9 leaves / 9 * average leaf number per 

plant). The predicted values of the models were transformed accordingly. For 

every model applied, a 95 % confidence interval is given and the accuracy of 

model predictions on important thresholds was evaluated. Although a 

prediction interval would have been favourable in case of linear model 

predictions, the latter cannot be calculated for generalized linear models. 

Hence, for reasons of uniformity, the confidence interval was used at all times. 

Thresholds tested included: 

Established control E. formosa:   

A parasitism rate of E. formosa ≥ 80 % 
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Established control M. pygmaeus:   

A density of M. pygmaeus (nymphs and adults) > 5 individuals per tomato plant 

Damaging level M. pygmaeus:   

A density of M. pygmaeus (nymphs + adults) > 10 individuals per tomato plant 

Damaging level T. vaporariorum nymphs (tentative damaging level):   

A density of T. vaporariorum nymphs above 10 nymphs per plant  

Damaging level T. vaporariorum adults (tentative damaging level):   

A density of T. vaporariorum adults above 5 adults per plant  

The analysis was carried out by calculation of the proportion of true and false 

predictions. Requirements for a true prediction were given, if a model showed 

correctly that control was established or that a damaging level was reached 

(true positive), or that the respective level was not reached (true negative). 

Requirements for a false prediction are given if a model predicts incorrectly 

one of the mentioned scenarios (actual population below threshold, prediction 

above threshold = false positive; actual population above threshold, prediction 

below threshold = false negative). For prediction of beneficial establishment, an 

error of 10 % was allowed for false negative predictions; for damaging 

thresholds, an error of 10 % was allowed for false positive predictions. An error 

of 5 %, was allowed for false positive prediction of beneficial establishment and 

for false negative prediction of reaching of damaging thresholds, by pest or 

beneficial. Thresholds are evaluated using a Likelihood-Ratio-Test, including 

data from all dates of all greenhouses monitored in 2014, in which the 

corresponding pest or beneficial was present. Predictions for greenhouse areas 

and complete greenhouses were calculated separately. 

 

Economical analyses 

In this article it will be analysed if the decision rules implemented in the 

decision support software AEP (Automatische Entscheidungshilfe für den 

Pflanzenschutz unter Glas) (Böckmann and Meyhöfer 2015, Chapter 4) pay off 

economically. The software recommends the use of E. formosa alone for 

greenhouse tomato with a growing period <9 month, and to start introductions 

when the first T. vaporariorum is detected. Only recently, distributers of 

beneficials tend to recommend M. pygmaeus also for tomato summer cultures 
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(personal communication with growers). Recommendations range between 

0.5 and 1 M. pygmaeus / m² with 2 introductions. Sometimes, additional 

introductions of E. formosa are recommended, with 1.5 E. formosa / m² and 

3 introductions, in order to guarantee pest control in the early season. 

Distributers advise to provide lepidopteran eggs as an additional food source 

for M. pygmaeus, if pest is absent or present in low densities (Ephestia 

kuehniella eggs: Koppert B.V. (ENTOFOOD) and Biobest Belgium NV 

(NutrimacTM); Sitrotoga sp. eggs: Katz Biotech GmbH, Germany). Previously to 

the commercialisation of M. pygmaeus, the introduction of E. formosa alone 

was recommended. Although the official recommendation of most suppliers is 

to use this beneficial curatively and until control is established, applications are 

commonly realised in standard intervals, using 3-5 E. formosa / m² every 

second week throughout growing season (personal communication with 

several suppliers and growers). 

Based on these recommendations, the following introduction schemes are 

evaluated economically for the greenhouses monitored in 2014 (P-T-3 was 

excluded from these analyses, because monitoring started too late to assure 

detection of first pest occurrence in the crop): 

MP standard: M. pygmaeus only, with 2 introductions of 0.5 individuals / m² 

plus Sitrotoga sp.  eggs. 

MP safe: M. pygmaeus, with 2 introductions of 0.5 individuals / m² plus 

Sitrotoga sp. eggs and 3 introductions of E. formosa with 1.5 individuals / m². 

EF standard: E. formosa only, with introdutions every second week throughout 

growing season, until 4 weeks before end of season) with 3 individuals / m². 

EF adapt: E. formosa only with 3 individuals / m², begin 1 week after first pest 

detection until 4 weeks before end of season or established control, 

i.e. 80 % parasitism rate. 

The evaluations include costs of beneficials, artificial food and yellow traps. 

Yellow trap (10*25 cm) costs were only included in the EF adapt scheme, in 

which introductions were triggered by monitoring results. Trap numbers used 

are indicated in Table 1, and monthly exchange of traps was assumed. Costs 

were calculated based on the single package price, indicated for commercial 

growers in 2014 by Katz Biotech GmbH (Baruth, Germany), and were 

extrapolated for each greenhouse area. Costs of work load for monitoring, 
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introduction of beneficials or yellow traps and delivery of products, were not 

considered. 

 

Results 

Prediction accuracy of Trialeurodes vaporariorum density 
on crop 

Linear models were trained for prediction of two development stages of the 

pest, namely the adult stage and the larval stage (Table 3). Densities of both 

stages differed largely between greenhouses in 2014. For both stages, highest 

densities were reached in P-T-1 and P-T-2 with maximum pest densities in the 

complete greenhouse of on average 30 or 120 nymphs/plant and 15 or 

9 adults / plant. These were also the greenhouses where the pest became 

established directly at begin of the season in 2014, and hence 12-13 weeks 

before establishment in the other houses took place (Table 2). Predictions of 

the nymph numbers followed the population trends in these greenhouses, but 

heavily underestimated the population peaks in P-T-2 (Figure 1). For P-T-3 and 

GH-1 the population densities where well predicted, but population densities 

remained constantly low in these greenhouses (Figure 1). The population peak 

in greenhouse area 4 of GH-1 was approximately 5-fold underestimated. This 

effect was partly compensated if the complete greenhouse was considered. 

Adult numbers per plant were 5-10 fold lower than nymph numbers (Figure 2). 

A good prediction of adult densities could be achieved for the greenhouses     

P-T-1, P-T-3 and GH-1. However, none of these populations showed 

pronounced peaks over the growing season. The population peak in the P-T-2 

could not be predicted and was underestimated by approximately 5-fold 

(Figure 2). 
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Figure 1  Average number of T. vaporarionrum nymphs per plant in the Commercial 
Poly-Tunnel-1 (P-T-1), 2 (P-T-2), 3 (P-T-3) and the Commercial Greenhouse-1 (GH-1), 
calculated based on counts (True number), and predicted by the linear model based on adult 
trap catch (Prediction LM). A 95 % confidence interval is given (grey shade). A tentative 
damaging level at > 10 nymphs / plant is included (black horizontal line). All estimates are 
given for each greenhouse area monitored by a single yellow trap, and for each complete 
greenhouse based on the averaged count of all traps (GH-1: N = 4; P-T-1, 2 and 3: N = 2). 
Nymph counts per plant (i.e. on 9 leaves) were averaged based on all plants in the 
respective greenhouse area (4 plants per area) or the complete greenhouse (GH-1: N = 16; 
P-T-1, 2 and 3: N = 8).  
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Figure 2  Average number of T. vaporariorum adults per plant in the Commercial 
Greenhouse-1 and the Commercial Poly-Tunnel-1, 2 and 3, calculated based on counts 
(True number), and predicted by the linear model based on adult trap catch (Prediction LM). 
A 95 % confidence interval is given (grey shade). A tentative damaging level at 
>5 adults / plant is included (black horizontal line). All estimates are given for each 
greenhouse area monitored by a single yellow trap, and for each complete greenhouse 
based on the averaged count of all traps (GH-1: N = 4; P-T-1, 2 and 3: N = 2). Adult counts 
per plant (i.e. on 9 leaves) were averaged based on all plants in the respective greenhouse 
area (4 plants per area) or the complete greenhouse (GH-1: N = 16; P-T-1, 2 and 3: N = 8). 
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Figure 3  Average parasitism rate of E. formosa in the Commercial Poly-Tunnel-3 and 
the Commercial Greenhouse-1 calculated based on counts, and predicted by either a linear 
model (Prediction LM) or a generalized linear model (Prediction GLM) based on parasitoid 
trap catch. A 95 % confidence interval is given for each model (grey shade). Control of 
T. vaporariorum is assumed to be established at 80 % parasitism (black horizontal line). All 
estimates are given for each greenhouse area monitored by a single yellow trap and for each 
complete greenhouse based on the averaged count of all traps (P-T-3: N = 2; GH-1: N = 4). 
Parasitism rate was first calculated per plant (i.e. based on the count of parasitized and intact 
nymphs of T. vaporariorum on 9 leaves) and then the average was calculated based on all 
plants in the respective greenhouse area (4 plants per area) or the complete greenhouse   
(P-T-3: N = 8; GH-1: N = 16). Plot area was chosen for optimal visualization of the data 
rather than to include the full confidence interval (grey shade) or negative error bars at all 
times. 
 

Taking the strong underestimation of the population peak into account, 

prediction of the tentative damaging threshold for nymphs 

(> 10 nymphs / plant) was rather accurately predicted for the greenhouse 

areas, and even better for the complete greenhouses (Table 4). In case of 
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adults, the tentative damaging level (> 5 adults / plant) was accurately 

predicted at no time. However, that level was reached only 7 times in a 

greenhouse area and 3 times in a complete greenhouse (Table 4, Figure 2).  

 

Prediction accuracy of Encarsia formosa parasitism rate 

Two models, one LM and one GLM, were fitted and applied for prediction of 

parasitism rate in both greenhouses (Table 3). Low parasitism rates were 

strongly overestimated by both models, because the LM predicts already a 

level of 38 % parasitism and the GLM even 54 % parasitism, without any trap 

catch of the parasitoid (Figure 3). Although the intercept in case of the GLM 

was not significant, omitting the intercept did not enhance model fit (data not 

shown). However, prediction of parasitism rates from 50 and 80 % were 

accurately predicted by the LM, whereas the GLM overestimated these rates.  

In P-T-3, monitoring started late and therefore the first occurrence of the pest 

remains unclear. In GH-1, parasitoid introduction started late in the season, in 

accordance with the detection of T. vaporariorum (Table 2). After introduction 

of E. formosa, a steep increase of parasitism rate was found in both 

greenhouses (Figure 3).  

Table 3  Models for prediction of on-crop population based on trap catch, trained on the 
datasets available from 2012 (Encarsia formosa = EF) and 2013 (Macrolophus 
pygmaeus = MP, Trialeurodes vaporariorum = TV). In case of linear models, average counts 
or rates were ln (x + 1) transformed prior to analyses. The generalized linear model was 
carried out with a binomial assumption (logit-transformation) of parasitism rates calculated 
using the sums of parasitized and intact nymphs of T. vaporariorum.  

Insect Model Response Factor Estimate ± SE p 
dfnum  

dfden 
F R² 

MP LM 
Aduls + 
nymphs 

Intercept -0.128 ± 0.114 0.271 1 

37 
33.3 0.47 

Slope 0.185 ± 0.321 <0.001 

TV LM Nymhs 
Intercept -0.355 ± 0.215 0.107 1 

37 
87.2 0.70 

Slope 0.562 ± 0.060 <0.001 

TV LM Adults 
Intercept 0.177 ± 0.135 0.199 1 

37 
113.0 0.75 

Slope 0.687 ± 0.065 <0.001 

EF LM 
Parasitism 

rate 

Intercept 3.676 ± 0.213 <0.001 1 

8 
10.9 0.58 

Slope 0.297 ± 0.090 0.011 

EF GLM 
Parasitism 

rate 

Intercept 0.176 ± 0.306 0.575 20 

21 
16.0 / 

Slope 0.227 ± 0.066 0.003 
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The threshold level of 80 % parasitism was reached only in the greenhouse area 

2 and the complete greenhouse in case of P-T-3 and in the greenhouse area 2 

in GH-1. In the latter greenhouse area, the establishment was predicted two 

weeks before the threshold level was reached, at an actual parasitism rate of 

77 %, which is tolerable. At the next monitoring date both, the prediction and 

the actual parasitism rate reached 80 %. In P-T-3, plant quality changed rapidly 

in greenhouse area 1 and therefore, monitoring on plants was not possible in 

this area after calendar week 35. However, it seems likely that parasitoids 

emigrated from that area and were trapped in greenhouse area 2, resulting in 

an overestimation of parasitism rate in that area and the complete greenhouse 

(Figure 3). Prediction of ≥ 80 % parasitism rate was two weeks early for the 

complete greenhouse, but was in time for greenhouse area 2.  

Table 4 Accuracy of threshold prediction by trained models (linear model = LM, 
generalized linear model = GLM), based on yellow trap catch, for population densities on 
crop indicating establishment of beneficials (EF = Encarsia formosa, MP = Macrolophus 
pygmaeus) and damaging by pests (TV = Trialeurodes vaporariorum). For the beneficial 
M. pygmaeus, also a damaging threshold of >10 insects/plant is evaluated. Criteria evaluated 
were true (predicted and observed above threshold = true positive; predicted and observed 
below threshold = true negative) and false predictions (predicted below and observed above 
threshold = false negative; predicted above and observed below threshold = false positive). 
For damage thresholds (first six lines in the table), error rates of 10 % for false positive 
predictions and 5 % for false negative predictions were allowed. For beneficial establishment 
thresholds (second six lines in the table), error rates of 5 % for false positive predictions and 
10 % for false negative predictions were allowed. Thresholds were evaluated using a 
Likelihood-Ratio-Test; the observed distribution is given in bold, the expected distribution in 
parenthesis. Analyses included data from all dates of all greenhouses monitored in 2014, in 
which the corresponding pest or beneficial was present, and were carried out for greenhouse 
areas (GHa) and complete greenhouses (GHc).  

Threshold Area True 

negative 

True 

positive 

False 

negative 

False 

positive 

df χ² p 

>10 TV  

nymphs / plant (LM) 
GHa 28 (33) 35 (36) 7 (2) 5 (4) 3 3.478 0.355 
GHc 11 (12) 20 (20) 2 (1) 2 (2) 3 0.383 1.000 

>5 TV 
Adults / plant (LM) 

GHa 75 (78) 0 (0) 7 (4) 0 (0) n.a. n.a. n.a. 
GHc 31 (32) 0 (0) 3 (2) 0 (0) n.a. n.a. n.a. 

>10 MP / plant (LM) 
GHa 18 (22) 17 (19) 5 (1) 4 (2) 3 4.102 0.294 
GHc 9 (9) 10 (11) 1 (1) 2 (1) 3 0.387 1.000 

>80 % EF 
parasitism rate (LM) 

GHa 20 (18) 4 (5) 0 (2) 1 (0) n.a. n.a. n.a. 
GHc 9 (8) 2 (3) 0 (1) 1 (0) n.a. n.a. n.a. 

>80 % EF  
parasitism rate (GLM) 

GHa 16 (14) 4 (9) 0 (2) 5 (0) n.a. n.a. n.a. 
GHc 6 (5) 2 (6) 0 (1) 4 (0) n.a. n.a. n.a. 

>5 MP / plant (LM) 
GHa 12 (13) 26 (28) 2 (1) 3 (1) 3 1.500 0.769 

GHc 5 (4) 13 (15) 0 (1) 3 (1) n.a. n.a. n.a. 

n.a. = due to empty cells test not calculated 
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The threshold of ≥80 % parasitism rate, indicating established biological 

control, was reached 4 and 2 times in a greenhouse area or a complete 

greenhouse, respectively (Table 4). Most of the time, parasitism rate was below 

threshold. Prediction of ≥ 80 % parasitism rate by the GLM was insufficient with 

5 and 4 false positive predictions for greenhouse areas and the complete 

greenhouses, respectively (Table 4). The LM showed only 1 false positive 

prediction for greenhouse areas and complete greenhouses (Table 4).  

Prediction accuracy of Macrolophus pygmaeus density on 
crop 

Due to the relevance for application in practice, a LM was trained for the 

prediction of the complete population of M. pygmaeus (i.e. adults and nymphs) 

on plants (Table 3). Prediction of the predatory bug population density was 

accurate most of the time. In P-T-1, population build up in the early season was 

slightly overestimated in both areas and the complete greenhouse (Figure 4). 

Population peaks as well as population density in the late season were 

accurately predicted. In P-T-2, prediction was accurate for the population build 

up in the early season, but densities at late season were underestimated 

(Figure 4). In detail, the population peak in greenhouse area 1 was 

underestimated by about 2 – fold, and late season population densities were 

underestimated by about 3-6 – fold in the complete greenhouse and both 

areas. Prediction for the complete greenhouses reduced over- and 

underestimations as compared to predictions for single areas (Figure 4).  

The date, at which control became established (i.e. ≥ 5 M. pygmaeus / plant), 

was accurately predicted in 50 % of the greenhouse areas and complete 

greenhouses, and predicted slightly delayed (2 weeks) in greenhouse area 1 of 

P-T-1 and for the complete P-T-2. In greenhouse area 2 of P-T-1 the 

establishment was predicted 6 weeks early, but also numbers on plant were 

already at 4 M. pygmaeus / plant at that time (Figure 4). Overall, prediction 

complied with the required accuracy (Table 4). Prediction of the damaging level 

(i.e. ≥ 10 M. pygmaeus / plant) was rather conservative, with predictions 

ranging from 6 weeks early to 2 weeks late in case of greenhouse areas in both 

greenhouses, and being 4 weeks early in the P-T-1 and 2 weeks late in the P-T-2 

(Figure 4). Also prediction of the damaging threshold complied with the 

required accuracy (Table 4). 
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Figure 4  Average number of M. pygmaeus adults and nymphs per plant in the 
Commercial Poly-Tunnel-1 and the Commercial Poly-Tunnel-2 calculated based on counts 
(True number), and predicted by a Linear Model based on adult trap catch (Prediction LM). 
A 95 % confidence interval is given (grey shade). A level for established control at 
>5 M. pygmaeus / plant as well as a tentative damaging level of >10 M. pygmaeus/plant are 
included (black horizontal lines). All estimates are given for each greenhouse area monitored 
by a single yellow trap and for each complete greenhouse based on the averaged count of all 
traps (P-T-3: N = 2; GH-1: N = 4). Predator counts per plant (i.e. on 9 leaves) were averaged 
based on all plants in the respective greenhouse area (4 plants per area) or the complete 
greenhouse (N = 8 for each poly-tunnel). 

 

Economic analyses of different beneficial regimes 

Differences in the cost efficiency depended on the first occurrence of the pest 

in the crop. If pest became established early, i.e. in the greenhouses P-T-1 and 

P-T-2 (Table 2), costs were similar for the use of M. pygmaeus plus E. formosa 

in the early season (MP-save) and the use of E. formosa alone (EF-standard,   

EF-adapt) (Table 5).  

Under these circumstances, the use of M. pygmaeus alone was about 1/3 more 

economic than any other introduction regime. If the pest enters late, i.e. in the 

greenhouses GH-1, GH-2 and GH-3 (Table 2), the use of E. formosa alone 

starting with detection of the pest (EF-adapt), was by far most economic, with 
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at most times about 1/3 of the costs other introduction schemes implied 

(Table 5). Under these circumstances, EF-standard and MP-standard were 

similar in costs, whereas the combined use of both beneficials was most 

expensive. However, costs for monitoring and delivery were not considered. 

 
Table 5  Evaluation of product costs for biological control for different 
introduction schemes in all greenhouses monitored in 2014. The evaluations include costs 
for beneficials, artificial food and yellow traps. Costs were calculated based on the single 
package price indicated for commercial growers in 2014 by Katz Biotech GmbH (Baruth, 
Germany) and were extrapolated for each greenhouse area. Costs of work load for 
monitoring, introduction of beneficials or yellow traps and delivery of products were not 
considered (MP standard : M. pygmaeus only with 2 introductions of 0.5 individuals / m² plus 
Sitrotoga sp. eggs; MP safe : M. pygmaeus only with 2 introductions of 0.5 individuals / m² 
plus Sitrotoga sp. eggs plus 3 introductions of E. formosa with 1.5 individuals/m²; EF 
standard : E. formosa only with introdutions every second week throughout growing season 
(until 4 weeks before end of season) with 3 individuals/m²; EF adapt : E. formosa only, with 
introdutions every second week, begin 1 week after first pest detection (until 4 weeks before 
end of season) with 3 individuals / m²) 

Greenhouse Product 
Costs MP 

standard (€) 

Costs MP 

safe (€) 

Costs EF 

standard (€) 

Costs EF 

adapt (€) 

P-T-1  

(300 m²) 

M. pygmaeus 19.65 19.65 0 0 
Sitrotoga sp. 1.87 1.87 0 0 
E. Formosa 0 14.58 32.40 29.16 
Yellow traps 0 0 0 3.98 
Total 21.52 36.1 32.40 33.14 

P-T-2 

(300 m²) 

M. pygmaeus 19.65 19.65 0 0 
Sitrotoga sp. 1.87 1.87 0 0 
E. Formosa 0 14.58 32.40 29.16 
Yellow traps 0 0 0 3.98 
Total 21.52 36.1 32.40 33.14 

GH-1 

(780 m²) 

M. pygmaeus 51.09 51.09 0 0 
Sitrotoga sp. 4.86 4.86 0 0 
E. Formosa 0 37.91 101.09 42.12 
Yellow traps 0 0 0 9.54 
Total 55.95 94.67 101.09 51.66 

GH-2 

(700 m²) 

M. pygmaeus 45.85 45.85 0 0 
Sitrotoga sp. 4.37 4.37 0 0 
E. Formosa 0 34.02 90.72 22.68 
Yellow traps 0 0 0 11.13 
Total 50.22 84.24 90.72 33.81 

GH-3 

(350 m²) 

M. pygmaeus 45.85 45.85 0 0 
Sitrotoga sp. 2.19 2.19 0 0 
E. Formosa 0 17.01 45.36 7.56 
Yellow traps 0 0 0 4.77 
Total 48.04 65.05 45.36 12.33 
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Discussion 

Prediction accuracy of Macrolophus pygmaeus density on 
crop 

Prediction accuracy for population densities of M. pygmaeus on plants based 

on yellow trap catches was high with regard to fluctuation and level of true 

population development, for both, complete greenhouses and greenhouse 

areas (Figure 1). Predictions based on all traps within one greenhouse for the 

complete greenhouse were slightly more precise as compared to predictions 

for the different areas within one greenhouse. The latter may be explained by 

the high mobility of the predatory bug (Castañé et al. 2004) and its omnivorous 

and polyphagous feeding habits (Hillert et al. 2002; Castañé et al. 2011; 

Put et al. 2012). Hosts or prey of natural enemies are assumed to be generally 

distributed in discrete patches, and natural enemies must actively forage for 

their host or prey (Wajnberg et al. 2007). Also T. vaporariorum is known to be 

distributed highly aggregated (Noldus et al. 1986). However, because 

M. pygmaeus preys on several arthropods and feeds on plant materials as well, 

its distribution must not necessarily mirror the one of a single prey species. 

Also two studies of Athanassiou et al. (2003; 2005) showed aggregated 

distribution for the aphid Myzus persicae, but not for the adults of its natural 

enemy Macrolophus costalis (nymphs of the predatory bug were distributed 

similar to their prey). Such lack of spatial coincidence was also found for 

coccinelids preying on aphids, and for Orius insidiosus preying on corn silk flies, 

both in corn fields (Wagner and Ruesink 1982; Kalsi et al. 2014). For monitoring 

purposes, it can be assumed that the less aggregated the distribution of the 

target species, the less intensive the monitoring has to be in order to be 

meaningful (Taylor 1984; Noldus et al. 1986). This may explain the good 

correlations and predictions on M. pygmaeus shown in the current and in 

Chapter 2, with practice relevant trap densities and monitoring intervals 

(i.e. 51-74 traps / ha, fortnightly monitored). The high mobility on the other 

hand may have contributed to the slightly higher accuracy of monitoring in 

complete greenhouses as compared to greenhouse parts. That is, because 

parts of the population reflected in the trap catch in one area, may have left to 

another area at time of monitoring on plants.  
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The general good reflection of on-crop densities by trap catch may further be 

supported by the indifferent response of the predator to different trap colours 

and tomato leaves (Chapter 2). This unspecific response indicates that traps 

within the crop are mainly encountered by chance, because the predator 

searches actively for prey throughout the season, resulting in a constant 

chance of trapping M. pygmaeus. Also, this predatory bug is active at night and 

daytimes (Perdikis et al. 2004), indicating that influence of light intensity and to 

some extend also temperature can be regarded to be quite low. However, we 

found some tendency of increased trap catch on blue as compared to yellow 

traps in the late season (Chapter 2). Hence, the chance to trap M. pygmaeus on 

a sticky trap seems to be mainly dependent on its population density, a perfect 

precondition for the prediction of on-crop population densities based on adult 

trap catch.  

 

Prediction accuracy of Trialeurodes vaporariorum density 
on crop 

The monitoring preconditions for T. vaporariorum with yellow traps, is quite 

different as described for M. pygmaeus. First of all, the pest is an obligatory 

herbivore and as a result there is no need to leave a plant as long as leaf quality 

remains good. Because sucking of plant sap at moderate densities is non-

destructive, leaf quality is rarely affected by the pest in commercial tomato 

cultures. As there is no need to search for new host plants, adult progeny of 

one egg clutch will remain in the near surrounding. Generally, distribution of 

T. vaporariorum can be assumed to be highly aggregated (Noldus et al. 1986). 

Furthermore, short distance dispersal is regarded to occur mainly near ground 

level (Gerling and Horowitz 1984; Byrne et al. 1986). Therefore the main flight 

activity on high plant level, at the position of the sticky traps, is triggered by 

disturbance of mature adults or by hatching in case of young adults, which start 

their adult life by searching for upper plant parts as a suitable food source 

(Martin and Dale 1989). Furthermore, light intensity and temperature are 

known to strongly influence flight of T. vaporariorum (Webb et al. 1985). The 

mentioned factors may differ during the season, and therefore their influence 

may have contributed to the low accuracy of trap catch as a predictor of pest 

density on the crop.  
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Additionally the sample interval of traps can play an important role for the 

correlation with on-crop population densities. For instance, in surveys of lady 

beetle, correlations could be established when counts were taken every second 

day, but not with weekly counts (Hoffmann et al. 1997; Musser et al. 2004). It 

seems likely, that a monitoring interval and area monitored by one trap should 

assure, 1) that the target species has enough time to be trapped in sufficiently 

high amounts and 2) that the adults trapped belong mainly to the same 

generation as the adults present on the crop. The fortnightly interval carried 

out in this study surely is sufficient to catch reasonable numbers of 

T. vaporariorum and M. pygmaeus. However, regarding adult lifetime, it is 

possible that only a small fraction of whitefly adults on crop correspond to the 

ones trapped, because adult lifetime is about 18 days at 22°C (Manzano and 

van Lenteren 2009). For the predator on the other hand, lifetime at 23°C is 

about 50 days, ensuring that most of the adults trapped correspond to the 

generation present on crop (Margaritopoulos et al. 2003). Hence the sampling 

interval may have attributed to the different prediction accuracies of adult pest 

and predator densities on crop. Another factor that may have lowered the 

accuracy of pest monitoring is that prediction was either done for the adult or 

the nymph stage. For the alate adults, we assume that monitoring quality was 

low, because adults of T. vaporariorum dispersed at the slightest disturbance if 

light intensity (and temperature) was high. On the other hand, a leaf full of 

adults can be easily turned and observed as long as light intensity (and 

temperature) was low. This difference, which was to lesser extend observed in 

case of M. pygmaeus adults, may account for a high error in adult sampling of 

T. vaporariorum on the crop. Nymphs on the other hand cannot be translated 

into trap catch directly, because the adult stage is caught on traps. It was 

shown in previous studies that a shift of nymph counts on plants by one week 

can enhance their correlation with adult trap catch (Kim et al. 1999; 

Böckmann et al. 2014). However, even though the population peaks were 

underestimated, reaching of damaging thresholds for nymphs was accurately 

predicted. Yellow traps can therefore in principal be used for decision making, 

as long as conservative thresholds are used. 

As a result of the mentioned factors, the correlation established for the 

prediction of whitefly densities on crop was not valid for prediction of 

population peaks in the current study. The information content may be 

increased if further factors are included into the model, such as light intensity 
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or plant maintenance and harvest schedule of workers. However, 

implementation of these factors would also limit the chance of application in 

practice due to the lack of availability or the effort of determining these 

factors. Also, more precise monitoring of nymphal stages, i.e. the inclusion of 

L1 and L2 nymphs or even egg numbers or egg clutch numbers may contribute 

to a more robust correlation between trap catch and pest densities on plants.  

Additionally, early pest detection by yellow sticky traps was approved in all the 

greenhouses monitored from 2012-2014 (Böckmann et al. 2014; Chapter 2; 

data in current study not shown). The latter is the main trigger for 

introductions of E. formosa on demand, rather than preventive, for whitefly 

control. Therefore, curative introductions in greenhouse tomato can be 

considered to be save, as long as a suitable yellow trap monitoring is applied.  

 

Prediction accuracy of Encarsia formosa parasitism rate   

For E. formosa, prediction of high parasitism rate was accurate in the current 

study as long as the linear model was applied (Figure 3, Table 4). Low rates 

were overestimated by that model, which did however not result in incorrect 

prediction of established control, i.e. parasitism rates above 80 % (Scholz-

Döblin 2013). A drawback of the model remains the illegitimate prediction of 

parasitism rates above 100%. This effect can be corrected if a Binominal GLM is 

applied. However, the latter model further overestimated parasitism rate, 

resulting in inadequate prediction of the establishment of E. formosa (Figure 3, 

Table 4). Because datasets are still very limited, both models should be further 

refined and tested. For the moment and in spite of the mentioned drawbacks, 

the linear model is useful for prediction of the parasitoid establishment in 

commercial tomato greenhouses. In this context I’d like to quote Box and 

Draper (1987) reminding us that “all models are wrong; the practical question 

is how wrong do they have to be to not be useful”. Apart of the practicality of 

the LM, the current study also validated the simple indicator of 6 parasitoids 

trapped per yellow trap and week for established control of the pest, 

introduced by Böckmann et al. (2014). For a fortnightly monitoring in the 

current study, levels of parasitism were always above 80 % when trap catch 

was ≥ 12 parasitoids, and were always below 80 % when less than 

12 parasitoids were found per trap (data not shown). The threshold of 

80 % parasitism rate, indicating established control, may therefore easily 
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determined by growers using yellow traps, even without any supporting 

modelling software. The accurate prediction of the LM, but also of the fixed 

number of parasioids to catch support our previous hypothesis, that the steep 

increase of parasitoids trap catch is triggered by increased patch leaving of the 

parasitoids at high parasitism rates, together with the increased emergence of 

parasitoids from those patches (Böckmann et al. 2014). Influence of increasing 

parasitism rates on patch leaving of parsitoids are extensively discussed by 

Wajnberg et al. (2007).  

 

Economic analyses of different beneficial regimes 

The economic evaluation of three well-established control regimes with 

standardized introductions and the control regime with monitoring-based 

introductions of beneficials to control T. vaporariorum in tomato greenhouses, 

showed the potential of cost reduction with adequate pest monitoring. In the 

greenhouses monitored 2014, T. vaporariorum was primarily detected in late 

summer in 3 of 5 greenhouses (GH-1, GH-2, GH-3; Table 2). For these houses, 

the use of only E. formosa triggered by first pest detection clearly pays off 

economically, regarding material costs (Table 5). If work load for monitoring 

would have been included in this evaluation, that picture might have changed. 

Although most authors consider sticky traps to be a very cost / time efficient 

monitoring technique (De Gooyer et al. 1998; Musser et al. 2004; 

Natwick et al. 2007; Pizzol et al. 2010), Naranjo et al. (1995) found that their 

use was up to 19.7 times more expensive as compared to leaf turn monitoring 

of Bemisia tabaci in cotton. However, unlike in cotton, additional expenditure 

of time in tomato greenhouses is considerably low, because workers have in 

any case to be regularly in the crop for maintenance and harvest. Also 

monitoring of E. formosa and/or M. pygmaeus, which can according to the 

present study be used to detect established control of the pest, includes 

relatively low workload. That is because in case of the parasitoid only 

6 parasitoids have to be counted to know that introduction can be stopped. 

M. pygmaeus on the other hand is easy to distinguish by the naked eye, and is 

generally caught in relatively low numbers, for instance with a maximum of 

53 and on average 11 ± 12 (mean ± SD) adults / trap in the current study. More 

importantly, due to the recent advances in automated counts of trap catches, 

the labour costs for regular monitorings can be considered to decrease 
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drastically in future (Cho et al. 2008; Guarnieri et al. 2012; Xia 2012). We 

therefore consider the advances of a monitoring-based decision making as 

presented here to grow from an economical perspective in combination with 

automated counts of trap catches.  

If the pest was established in the greenhouses early in the season, the use of 

only M. pygmaeus was clearly the most economic control measure. However, 

in one commercial poly-tunnel we tested if the use of the predatory bug alone 

was sufficient for pest control in the early season. After detection of the pest in 

both poly-tunnels, the grower agreed to use in one of the tunnel only the 

predatory bug (P-T-2) whilst in the other poly-tunnel (P-T-1) three introductions 

of E. formosa were carried out additionally (Table 2). As a result, markedly 

higher densities of the pest occurred in the P-T-2, and the grower decided later 

in that season to introduce E. formosa in order to control for the pest (Table 2). 

The pest pressure at that time (calendar week 27) was markedly different 

between greenhouses, with 50.88 ± 20.07 T. vaporariorum nymphs in P-T-2, 

and 4.63 ± 3.54 nymphs in P-T-1 (average count on 9 leaves / plant ± SD). Due 

to that striking difference, the use of M. pygmaeus alone cannot be 

recommended, without a monitoring that at least detects reliably the first pest 

occurrence, triggering additional introductions of E. formosa. However, further 

studies should confirm results of this case study.  

 

Conclusion 
The use of sticky traps is standard in many field and greenhouse crops. 

However, to date the information content of this tool is not used to its full 

extend in practice. In this study we could show that a comprehensive, regular 

monitoring with acceptable work load, can be used to prediction the 

establishment of biological control in greenhouse vegetables. Furthermore it 

shows the potential of saving costs, when control measures are adjusted to the 

actual densities of pests and beneficials in the crop, as compared to 

standardized introduction regimes. Nevertheless monitoring schemes have to 

be validated for each pest, beneficial and crop. Strong attraction to trap colour 

is no guarantee for explanatory power of trap catch on densities on crop. 

Together with suitable decision support tools and the ongoing automation of 

monitoring routines, a more cost and resource effective pest control becomes 

possible.



 

86 
 

  



 

87 
 

Chapter 4 

AEP: An automatic decision support 
software for integrated plant protection 2 

 

Abstract 
A decision support software for greenhouse plant protection has to meet 

several requirements in order to be accepted and applied by growers. It should 

comply with the different operational needs of growers and should be helpful 

for inexperienced growers but also optimize plant protection strategies for 

experienced ones. Additionally a large number of cultures and pests should be 

covered and implementation of new crops, beneficials, pests and insecticides 

must be easy. Also handling should be easy and time saving. All software 

parameters should be adaptable to grower specific needs. The program should 

not decide on the control regime but rather give recommendations and provide 

data storage to optimize plant protection strategies. Thereby learning effects 

are stimulated and motivation to adapt decision processes in plant protection 

practice is increased. 

In this article we show the structure of a decision support software             

(AEP – Automatische Entscheidungshilfe für den integrierten Pflanzenschutz 

unter Glas) and describe its functionality for the model system tomato 

(Solanum lycopersicum) – whitefly (Trialeurodes vaporariorum) – natural 

enemy (Encarsia formosa). 
 

Key words:  Decision Support System, Whitefly, Trialeurodes vaporariorum, 

Encarsia formosa, Plant Protection, Beneficials, Greenhouse 

                                                           
2 E. Böckmann and Meyhöfer, R. (2015) AEP – Eine automatische Entscheidungshilfe-Software für den 

integrierten Pflanzenschutz. Gesunde Pflanzen 67 (1) 1–10  

(with permission of Springer Science+Business Media) 
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Kapitel 4 

AEP: Eine automatische Entscheidungs-
hilfe Software für den integrierten 
Pflanzenschutz 23 

 

Zusammenfassung 
Eine Entscheidungshilfe-Software für den Pflanzenschutz im Gewächshaus 

muss viele Voraussetzungen erfüllen um Akzeptanz und Anwendung in der 

Praxis zu erreichen. Ihr Nutzerspektrum sollte unterschiedliche betriebliche 

Voraussetzungen einbeziehen und sowohl Anfängern beim Einstieg in die 

Pflanzenproduktion helfen als auch erfahrenen Betriebsleitern 

Verbesserungsmöglichkeiten in den gängigen Bekämpfungsstrategien 

aufzeigen. Weiterhin sollte eine möglichst große Anzahl an Kulturen und 

Schädlingen von der Software abgedeckt werden und die Implementierung 

neuer Kulturen, Nützlinge, Schädlinge und Pflanzenschutzmittel (PSM) 

unkompliziert möglich sein. Die Softwarestruktur sollte einfach und zeitsparend 

in der Bedienung sein und alle Vorgaben sollten sich an die nicht immer 

optimalen Gegebenheiten der Praxis anpassen lassen. Idealerweise sollte es 

keine Software sein die Nutzer bevormundet, sondern eine elektronische Hilfe 

und Gedächtnis für einen optimierten Pflanzenschutz. Nur so kann beim Nutzer 

ein Lerneffekt generiert und eine Optimierung der Entscheidungen in der 

Pflanzenschutzpraxis erreicht werden.  

In diesem Artikel diskutieren wir die Struktur einer Entscheidungshilfe-Software 

(AEP –Automatische Entscheidungshilfe für den integrierten Pflanzenschutz 
                                                           
2 E. Böckmann and Meyhöfer, R. (2015) AEP – Eine automatische Entscheidungshilfe-Software für den 
integrierten Pflanzenschutz. Gesunde Pflanzen 67 (1) 1–10  
(with permission of Springer Science+Business Media) 



 

90 
 

unter Glas) und erläutern seine Funktionsweise an dem Modellsystem 

Tomate (Solanum lycopersicum) – Weiße Fliege (Trialeurodes vaporariorum) – 

natürlicher Gegenspieler (Encarsia formosa). 

 

Stichwörter:  Entscheidungshilfe, Weiße Fliege, Trialeurodes 

vaporariorum, Pflanzenschutz, Encarsia formosa, Nützling, Gewächshaus 
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Einleitung 
Im Anbau von Gemüse unter Glas ist beim Pflanzenschutz der Nützlingseinsatz 

schon seit vielen Jahren ein erfolgreiches Standardverfahren (van Lenteren 

2012). Auch im geschützten Zierpflanzenanbau wird der Einsatz von Nützlingen 

zunehmend zum Standard. Vor allem im integrierten Anbau (IPM) ist in vielen 

Kulturen dennoch der Einsatz von Pflanzenschutzmitteln (PSM) notwendig; sei 

es um die Nützlingswirkung zu unterstützen oder aber um andere Schädlinge zu 

bekämpfen, deren biologische Bekämpfung derzeit noch unzureichend ist 

(Albert et al. 2007). Die Anwendung von biologischen und chemischen 

Methoden in derselben Kultur stellt viele Betriebe aber vor große 

Herausforderungen. Betriebsleiter und Pflanzenschutz-Berater müssen 

festlegen, wann ein Nützlingseinsatz begonnen und welcher Nützling in welcher 

Menge ausgebracht werden soll. Nützlinge müssen bestellt und ihre Qualität 

beurteilt werden. Im weiteren Verlauf muss erkannt werden, ob ein Einsatz 

erfolgreich verläuft, oder ob gegebenenfalls zusätzliche Nützlings- 

beziehungsweise PSM-Einsätze erforderlich sind. Für letztere sollte erneut eine 

Erfolgskontrolle stattfinden, wobei nun zusätzlich die Auswirkungen auf bereits 

ausgebrachte Nützlinge beachtet werden müssen. Unerfahrenen 

Betriebsleitern werden diese Einschätzungen nicht immer fehlerfrei gelingen. 

Bei solchen mit langjähriger Erfahrung wiederum ist es möglich, dass 

vermeintlich erfolgreiche Verfahren beibehalten werden, obwohl man 

eventuell ein vergleichbares oder besseres Ergebnis mit geringeren 

Aufwandmengen (= Kosten) oder alternativen Verfahren erreichen könnte. 

Um gartenbaulichen Produktionsbetrieben eine Entscheidungshilfe (Decision 

Support System = DSS) anzubieten wird im EU-Interreg Projekt „Gezonde Kas“ 

(Gesundes Gewächshaus) eine Software für den integrierten Pflanzenschutz 

entwickelt. Diese Entscheidungshilfe soll unter dem Namen „Automatische 

Entscheidungshilfe für den integrierten Pflanzenschutz (AEP)“ zunächst in der 

Praxis erprobt und später vermarktet werden. Das Konzept basiert auf 

Expertenbefragungen, Literaturdaten und eigenen Forschungsergebnissen. 

Bereits vor Saisonbeginn soll die Software Anwendern ein geeignetes Verfahren 

für das Monitoring, d.h. Überwachung des Befallsverlaufs, für die betreffende 

Kultur vorschlagen. Im Saisonverlauf wird dann anhand der im Monitoring 

erhobenen Daten die Populationsentwicklung von Schädlingen (und 

ggf. Nützlingen) überwacht und der sparsame und effiziente Einsatz von 



 

92 
 

Nützlingen bzw. PSM empfohlen. Die Sommerkultur von Tomate wurde als 

erstes Modellsystem in die Entscheidungshilfe implementiert. Diese Kultur 

wurde aufgrund ihrer geringen Anzahl an bedeutenden Schädlingen und den 

klaren Vorgaben zur Kontrolle von Schadarthropoden ausgewählt. 

Kontinuierliche Erweiterungen sind geplant. 

Methoden – Literaturrecherche – Datenbasis  
Als Grundlage für die AEP-Software wurde eine Literaturrecherche 

durchgeführt, um die wesentlichen Einflussparameter auf die Bekämpfungs-

strategien von Gewächshausschädlingen zu benennen. Die betrieblichen 

Bedürfnisse wurden darüber hinaus in Gesprächen mit der Praxis ermittelt und 

einbezogen. Eine Umfrage unter 17 Pflanzenschutzberatern und 

Nützlingsanbietern wurde durchgeführt, um weitere Grundlagen der 

Bekämpfung für die ersten Modellorganismen, Trialeurodes vaporariorum – 

Encarsia formosa, dem Hauptschädling und seinem wichtigsten natürlichen 

Gegenspieler in Tomate, zu ermitteln. Um Wissenslücken zu schließen wurden 

dann gezielte Experimente durchgeführt um 1) die nötige Anzahl von 

Gelbtafeln für ein aussagekräftiges Monitoring zu ermitteln 2) den 

Zusammenhang von Populationsdichten im Bestand und Tafelfängen zu 

untersuchen 3) Möglichkeiten zur Optimierung des Nützlingseinsatzes in 

Sommerkulturen aufzuzeigen (Böckmann et al. 2014).  

 

Geplante Software-Struktur  
Die Software-Struktur gliedert sich in ein Basismodul und ein Saisonmodul 

(Abbildung 1). Das AEP-Basismodul wird vor der Saison vom Betriebsleiter 

bearbeitet und verlangt Eingaben zu betrieblichen Gegebenheiten 

(z.B. Gewächshausanzahl, Gewächshausgröße(n), Pflanzenanzahl, Pflanztermin, 

Temperaturregime, Zielkultur(en), Zielschädling(e)). Auf dieser Grundlage wird 

eine Empfehlung zum Pflanzenschutz für hinterlegte Kultur-Schädling-

Kombinationen erstellt (Auswahl und Anwendungsintervall von Nützlingen, 

Stichprobengröße und Intervall des Monitorings von Schädlingen und 

Nützlingen). Der Betriebsleiter hat nun die Möglichkeit, diese Vorgaben zu 

übernehmen oder aber an seine Betriebsabläufe anzupassen. Zusätzlich wird, 

sofern aus der Literatur bekannt, eine Schadschwelle bezüglich der 

Schädlingsdichte vorgeschlagen. Im Normalfall ist das die wirtschaftliche 
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Schadschwelle (Economic Injury Level, EIL), also der Wert ab dem die Kosten 

einer Pflanzenschutzmaßnahme gegen den Zielschädling niedriger sind als der 

zu erwartenden Schaden (Meyer 2003). Ist keine Schadschwelle für den 

Zielschädling bekannt, oder bevorzugt der Betriebsleiter eine andere 

Schädlingsdichte, kann der Wert individuell angepasst werden. Dieser Wert 

dient als Referenz für die im AEP-Saisonmodul erstellten Empfehlungen. Eine 

(erwartete) Überschreitung führt zu Anpassungen der im AEP-Basismodul 

festgelegten Bekämpfungsstrategie (z.B. Nützlingseinsatz erhöhen). Nach 

Bearbeitung des AEP-Basismoduls erhält der Nutzer einen Übersichtsplan 

seiner Gewächshäuser aufgeteilt in Boniturfelder. Diese werden anhand der 

Gewächshausgröße und der optimalen Boniturdichte festgelegt. Nach 

erstmaliger Bearbeitung muss dieses Modul in zukünftigen Jahren nur noch 

angepasst werden, sofern Änderungen geplant sind (z.B. Kulturwechsel).  

Nachdem die genannten Angaben gespeichert wurden gelangt der Anwender in 

das AEP-Saisonmodul. Hier werden im festgelegten Intervall die Boniturdaten 

zu Schädlingen und Nützlingen eingetragen. Wird eine Eintragung ausgelassen, 

fragt die Software diese Daten nachträglich ab. Ein Fehlen der Daten kann 

ebenfalls vermerkt werden. Boniturergebnisse können manuell als Zähldaten 

von Stichproben im Bestand, oder im Fall von farbigen Klebtafeln auch 

automatisch z.B. durch den Einsatz einer Scoutbox® (Cropwatch BV, NL) 

eingepflegt werden. Gleiches gilt für Temperaturdaten, die möglichst 

automatisch eingepflegt werden sollten, sofern eine Übermittlung der Daten an 

einen Server möglich ist (etwa über den zentralen Computer der 

Klimasteuerung im Gewächshaus oder über autarke alternative Systeme wie 

etwa ein WiSensys®-System (Wireless Value, NL). Alternativ kann die 

Temperaturführung des zentralen Computers der Klimasteuerung im 

Gewächshaus genutzt werden (Verwendung von Soll-Werten). Diese Werte 

werden dann unter Berücksichtigung der Außentemperaturen, d.h. frei 

verfügbare Wetterdaten aus dem Internet, korrigiert. Diese Korrektur ist 

gerade bei hohen Außentemperaturen erforderlich, da ein Gewächshaus durch 

Lüftung i.d.R. nicht unter die Außentemperatur gekühlt werden kann. Sind alle 

Werte erfasst werden dem Anwender in der Ausgabemaske (aufgeteilt in 

Gewächshaus, Kultur und Schädling) Warnungen angezeigt, z.B. wann und wo 

ein Schädling aufgetreten ist oder eine Schadschwelle überschritten wurde. 
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Abbildung 1   Struktur und Nutzungsablauf von AEP. Grüne Schrift steht für 
Eingaben durch den Nutzer, blaue für die Ausgaben der Software und schwarze für 
systeminterne Abläufe. Pfeile mit durchgängiger Linie zeigen die Abläufe in der Software an, 
solche mit gestrichelter Linie geben zusätzlichen softwareinterne Informationsweitergaben 
wider. Die farbliche Darstellung der Befallssituation ergibt sich aus dem Abgleich der 
Schädlingsdichte zum Economic Injury Level (EIL). Grün bedeutet es sind bisher keine 
Schädlinge aufgetreten oder die Schädlingskontrolle durch Nützlinge ist optimal. Gelb zeigt 
eine Schädlingsdichte unter, rot eine Schädlingsdichte über dem EIL an. In beiden Fällen ist 
eine Anpassung der Bekämpfungsstrategie notwendig. 
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Diese Warnungen werden auf Basis von zwei Kontrollsystemen erstellt. Erstens 

werden die erhobenen Boniturdaten mit der im AEP-Basismodul festgelegten 

Schadschwelle abgeglichen. Dazu werden ggf. Monitoringdaten von Klebtafeln 

über Art- und Kulturspezifische Modelle auf die jeweilige Populationsdichte im 

Bestand umgerechnet. Zusätzlich wird die zukünftige Populationsentwicklung 

mit Hilfe eines Simulationsmodells auf Basis von aktuellen Populationsdichten 

und Wetterprognosen vorhergesagt. Befindet sich die aktuelle 

(bzw. vorhergesagte) Schädlingsdichte unterhalb der Schadschwelle, wird keine 

Warnung ausgegeben und der biologische Pflanzenschutz wird wie ursprünglich 

geplant fortgesetzt. Sind außerdem Nützlinge ausreichend etabliert, wird eine 

Beendigung des Nützlingseinsatzes empfohlen. Wurde eine Schadschwelle 

überschritten oder wird eine Überschreitung prognostiziert, generiert AEP eine 

Warnung und Empfehlung die Pflanzenschutzstrategie anzupassen. Der Nutzer 

kann diese Empfehlung umsetzen oder aufgrund der eigenen Einschätzung 

anpassen. Die Software empfiehlt bei (prognostizierter) Überschreitung der 

Schadschwelle in erster Linie einen erhöhten Nützlingseinsatz, wobei 

Einsatzdichte und -frequenz auf Basis der Anwendungsempfehlung von 

Nützlings-Produzenten ermittelt werden. Sind für die betreffende Kultur auch 

geeignete PSM zugelassen, so kann vom Betriebsleiter auch der Einsatz von 

Insektiziden ausgewählt werden. Bei der Empfehlung von PSM werden dabei 

zugelassene und nützlingsschonende Mittel bevorzugt. Wurden bereits PSM 

eingesetzt, so wird die Auswahl im Sinne der Resistenzvorsorge angepasst. Für 

die Anwendung werden geeignete Aufwandmengen sowie Wartezeiten für das 

erneute Betreten der Kultur und den nächsten Einsatz von Nützlingen 

angegeben. Waren Nützlings- oder PSM-Einsätze geplant, so bestätigt der 

Nutzer das alle geplanten Maßnahmen entsprechend umgesetzt wurden oder 

gibt entsprechende Abweichungen an. Diese Informationen werden wiederum 

abgespeichert und bei Prognosen durch das Simulationsmodell berücksichtigt. 

 

Nutzungsablauf am Fallbeispiel von 
T. vaporariorum im Tomatenanbau 
Im vorliegenden Beispiel soll die Software AEP für ein Tomaten-Gewächshaus 

(1.000 m2) eines biologisch arbeitenden Betriebes genutzt werden. Über die 

Willkommensmaske, die beim Öffnen des Programms erscheint, wählt der 
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Nutzer zunächst das Basis-Modul aus (Abbildung 2). Dort werden die 

Basisdaten zur Kultur erfasst (Abbildung 3a, b). Zuerst wird Tomate als 

Zielkultur festgelegt. Um einen Übersichtsplan der Kultur anzulegen werden 

Länge (50 m) und Breite (20 m) der Anbaufläche sowie die Anzahl an 

Pflanzreihen (10), deren Ausrichtung (Horizontal) und die Pflanzenanzahl pro 

Reihe (40) eingetragen. In dem Beispielbetrieb wird in Kalenderwoche 13 

gepflanzt und das geplante Kulturende liegt in Kalenderwoche 43. Es werden 

keine regelmäßigen Klimadaten an AEP gesendet. Somit werden die Soll-

Temperaturen für den Klimacomputer genutzt (Tagestemperatur: 24°C; 

Nachttemperatur: 22°C). Der Gewächshausstandort wird angegeben, damit 

AEP Daten der nächstgelegenen Wettervorhersage abfragen kann um die 

Sollwerte gegebenenfalls zu korrigieren.  

Abbildung 2      Willkommens-
Maske von AEP. Über anklicken 
der einzelnen Felder kann der 
Nutzer das AEP-Basismodul 
bearbeiten, aktuelle oder zurück-
liegende Boniturdaten im AEP-
Saisonmodul eintragen, sich den 
Übersichtsplan mit den fest-
gelegten Boniturfeldern anzeigen 
lassen oder das Ende der Saison 
eingeben. Die letzten drei Optionen 
stehen erst zur Verfügung, wenn 
das AEP-Basismodul bearbeitet 
wurde. 

 

 

 

Der einzige regelmäßig auftretende Problemschädling in der Beispielkultur 

Tomate ist die Gewächshaus-Weiße Fliege, T. vaporariorum. Für Kultur und 

Schädling stehen in AEP die Nützlinge Macrolophus pygmaeus, 

Encarsia formosa, Eretmocerus eremicus und Delphastus catalinae zur 

Verfügung. Über Ausschlusskriterien wird von der Software der optimale 

Nützling wie folgt ausgewählt: D. catalinae wird erst bei hohen 

Schädlingsdichten empfohlen. AEP empfiehlt M. pygmaeus wegen der langen 

Zeit bis zur Etablierung (Katz Biotech AG 2014) nur bei Kulturzeiten > 9 Monate. 

Für die betreffende Kultur könnten also E. formosa oder E. eremicus genutzt 

werden, die Temperaturbedingungen passen für beide Nützlinge 



 

97 
 

(Qiu et al. 2004). Aufgrund der hohen Variabilität von E. eremicus bei der 

Bekämpfung in der Praxis empfiehlt AEP diesen Nützling nur, wenn die 

Temperaturbedingungen für E. formosa nicht passend sind 

(Temperaturen > 30°C). Entsprechend wird die Ausbringung von E. formosa 

empfohlen (Abbildung 4). 
 

Abbildung 3a  
Eingabemaske im AEP-
Basismodul (Teil 1). Es 
kann ein individueller 
Name für das Ge-
wächshaus (hier: Test-
gewächshaus) vergeben 
werden und die dazu-
gehörige Kultur wird 
ausgewählt. Die Anbauart 
entscheidet später über 
zugelassene PSM. An-
gaben zur Kulturfläche 
werden genutzt um einen 
Grundriss mit dazu-
gehörigen Boniturfeldern 
zu erstellen (Abbildung 
6b). Die Kulturzeit wird zur 
Auswahl geeigneter 
Nützlingsarten genutzt. 

 
Abbildung 3b   
Eingabemaske im AEP-
Basismodul (Teil 2). Ist 
eine automatische Klima-
steuerung vorhanden 
(Abbildung  3a), können 
Temperatur Soll-Werte für 
die Nützlingsauswahl 
genutzt werden. Über den 
Standort werden zusätzlich 
Daten der nächst-
gelegenen Wetterstation 
gesammelt, um in einer 
späteren Software Version 
ggf. die Temperatur-
Sollwerte zu korrigieren. 
Für die angegebene Kultur 
(Abbildung 3a) werden nun 
die Schädlings-arten aus-
gewählt, die regelmäßig 
Probleme verursachen. 
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Abbildung 4   Ausgabemaske des AEP-Basismoduls mit Empfehlungen für geeignete 
Bekämpfungs- und Monitoringstrategien im Test-Gewächshaus. Die Angaben zur geeigneten 
Boniturmethode, -dichte und –frequenz für E. formosa und T. vaporariorum werden in 
Böckmann et al. (2014) beschrieben. Geeignete Angaben zur Schadschwelle von 
T. vaporariorum waren in der Literatur nicht vorhanden. Die angegebene Schwelle wurde 
daher vorläufig festgelegt. Der kurative Einsatz von Nützlingen wird aufgrund des 
ausreichend genauen Monitorings des Schädlings empfohlen. Angaben zur Bonitur, zur 
Schadschwelle und zum Einsatztyp können vom Nutzer individuell angepasst werden. 

Da für T. vaporariorum keine praxistaugliche EIL bekannt ist (lediglich eine 

Ertragsminderung ab 70 Larven / 5cm² Blattfläche konnte von 

Hussey et al. (1958) ermittelt werden), wird von AEP als realistische, maximal 

tolerierbare Schädlingsdichte 20 Larven / Pflanze vorgeschlagen, d.h. diese 

Populationsdichte sollte während der gesamten Anbausaison nicht 

überschritten werden. Für ein geeignetes Monitoring empfiehlt die Software 

entsprechend der Ergebnisse von Böckmann et al. (2014 (in Druck)) den Einsatz 

von 10 Gelbtafeln für das 1.000 m2 Gewächshaus (d.h. 1 Tafel pro 100 m²). Die 

Tafeln sollten wöchentlich auf T. vaporariorum kontrolliert werden. Wird das 

empfohlene oder ein engeres Raster gewählt, so wird der Einsatz von 

3 Encarsia formosa / m2 ab Erstauftreten der Weißen Fliege auf der Gelbtafel 

empfohlen (Scholz-Döblin 2013). Die Ausbringungen werden im 14-tägigen 

Intervall wiederholt. Entsprechend der Empfehlung von  Scholz-Döblin (2013) 

kann ab einer Parasitierung von 80 % der T. vaporariorum Larven der 

Nützlingseinsatz beendet werden. Bei Verwendung von Gelbtafeln ist diese 
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Parasitierungsrate bei einer mittleren wöchentlichen Fangzahl von 

6 Parasitoiden / Gelbtafel erreicht (Böckmann et al. 2014). AEP empfiehlt 

aufgrund der Zeitersparnis das Auszählen von Parasitoiden auf den Gelbtafeln 

anstatt der aufwendigeren Erfassung von Parasitierungsraten im Bestand. 

Der Anwender hat nun die Möglichkeit diese Vorgaben zu akzeptieren, kann 

aber auch alle Vorgaben zum Monitoring, zur Nüzlingsauswahl und zur 

Schadschwelle an seinen Betriebsablauf anpassen. Wird aber vom Anwender 

z.B. eine geringere Tafelanzahl festgelegt wird die Aussagekraft des 

Monitorings verringert. In diesem Fall ist ein Nützlingseinsatz ab Erstauftreten 

des Schädlings zu unsicher und AEP empfiehlt zusätzlich einen präventiven 

Einsatz von 1,5 E. formosa / m2 im Abstand von 14-Tagen, der ab dem ersten 

Erfassen des Schädlings auf 3 E. formosa / m2 erhöht wird (Scholz-Döblin 2013). 

Im Folgenden gehen wir in diesem Beispiel aber davon aus, dass die 

ursprüngliche  AEP-Empfehlung zum Monitoring (1 Gelbtafel pro 100 m², 

wöchentliche Bonitur) umgesetzt wird. Entsprechend wird das Gewächshaus 

automatisch in 10 Teilbereiche geteilt, die jeweils mit einer Gelbtafel 

überwacht werden. Das AEP-Basismodul ist damit abgeschlossen. 

Mit Saisonbeginn startet der Nutzer das s.g. Saison-Modul, in dem die 

erhobenen Boniturdaten erfasst werden. Der Anwender bearbeitet dazu 

wöchentlich die Eingabemaske, indem er die Anzahl T. vaporariorum pro 

Gelbtafel eingibt (Abbildung 5). Im Anschluss an die Eingabe erscheint die 

Ausgabemaske 1 (Abbildung 6a). In dieser Befallsübersicht steht grün für 

Kulturbereiche in denen der Zielschädling (T. vaporariorum) noch nicht 

aufgetreten ist, d.h. kein Befall vorliegt. Ist der Schädling bereits aufgetreten 

und die Schädlingsdichte liegt unter der Schadschwelle ist die Farbdarstellung 

gelb. In diesen Kulturbereichen empfiehlt AEP dann einen Nützlingseinsatz. Ist 

dagegen die Schadschwelle überschritten ist die Farbdarstellung rot. In der 

Befallsübersicht entspricht der jeweilige Farbanteil dem Anteil an 

Kulturbereichen ohne (grün), mit moderatem (gelb) und mit hohem 

Schädlingsbefall (rot). Kulturbereiche mit moderaten Schädlingsdichten (gelb) 

werden wieder grün angezeigt, sobald eine ausreichende Nützlingsaktivität 

vorliegt. In grünen Bereichen werden keine weiteren Nützlingseinsätze geplant. 

In der Befallsübersicht werden der aktuelle Befall und Maßnahmen zur 

Bekämpfung in allen Gewächshäusern bzw. Teilbereichen zusammenfassend 

dargestellt. Das dazugehörige Symbol zeigt an, ob ein gleich bleibender (N) 

oder erhöhter (N++) Nützlingseinsatz erforderlich ist. 
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Abbildung 5    
Eingabemaske des AEP-Saison-
moduls. Links oben der Name des 
Gewächshauses (Testgewächs-
haus). Darunter das Datum der 
Bonitur. Oben rechts ein Button 
zum automatischen Hochladen von 
Boniturdaten via Scoutbox®. Die 
Boniturdaten werden automatisch 
oder von Hand für jedes Boniturfeld 
in die Tabelle eingetragen, 
aufgeteilt nach dem Zielschädling 
und dem zur Kontrolle eingesetzten 
Nützling. Die angegebenen Werte 
sind nicht praxistypisch, sondern 
wurden gezielt ausgewählt um die 
Entscheidungskriterien von AEP zu 
zeigen (siehe Abbildung  6a). 

Der Anwender kann sich in einem zweiten Schritt den Plan des Gewächshauses 

anzeigen lassen um sich einen Überblick über die räumliche Verteilung des 

Befalls zu verschaffen (Abbildung  6b). Hier ist nun jedes Boniturfeld in der 

entsprechenden Farbe dargestellt.  

Im nächsten und letzten Schritt zeigt AEP dem Nutzer die geplanten 

Einsatztermine, Einsatzbereiche und Einsatzdichten an (Abbildung  7). Der 

Anwender kann nun die Nützlinge bestellen und anschließend entsprechend 

der Vorgaben gezielt ausbringen. Wird das Saison-Modul einmal nicht in der 

geplanten Woche bearbeitet zeigt AEP alle zurückliegenden unbearbeiteten 

Termine an, so dass der Anwender ggf. Boniturdaten oder durchgeführte 

Pflanzenschutz-Maßnahmen nachtragen kann.  

Aktueller Entwicklungsstand der Software 
Das Basis-Modul ist bereits fertig gestellt. Alle Grunddaten zu den 

Kulturbedingungen können aufgenommen und gespeichert werden. 

Boniturfelder werden automatisch errechnet und im Gewächshausgrundriss 

angezeigt. Für ein sicheres Erkennen der Zielschädlinge sowie der eingesetzten 

Nützlinge ist die zusätzliche Implementierung von Bildern und ausführlicheren 

Bestimmungshilfen vorgesehen. In der aktuellen Softwareversion sollte daher 

von unerfahrenen Nutzern die einschlägige Bestimmungsliteratur 

herangezogen werden. 
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Abb.6a  Zusammenfassender Überblick zur aktuellen Befallssituation im Test-
Gewächshaus auf Grundlage der eingegebenen Boniturdaten. Die Farbdarstellung 
repräsentiert die anteilige Befallssituation in den 10 Boniturfeldern (=Kulturbereichen) im 
Tomaten-Test-Gewächshaus (Abb.5). Rot bedeutet, dass die festgelegte Schadschwelle 
überschritten wurde unabhängig davon ob ein Nützling etabliert ist (Felder 4,5,9,10). Gelb 
zeigt die Detektion des Schädlings an, wobei die Schädlingsdichte unter der festgelegten 
Schadschwelle liegt (Felder 2,3). Grün steht für zwei unterschiedliche Befallssituationen: 
Erstens, dass kein Schädling gefunden wurde (Felder 1,6) oder zweitens, dass die 
Schädlingsdichte unter der Schadschwelle liegt und gleichzeitig der Nützling ausreichend 
etabliert ist (Felder 7,8). Das zusätzliche Symbol (N++) gibt an, dass aufgrund der 
Bekämpfungssituation teilweise ein erhöhter Nützlingseinsatz vorgesehen ist. Zur 
Veranschaulichung der Darstellungsweise wurde zusätzlich ein zweites Gewächshaus 
erstellt (Test-Gewächshaus 2). Die Einstellungen und Boniturdaten dieses Hauses werden 
hier nicht weiter behandelt. Über anklicken des Detail-Button gelangt der Nutzer zur nächst 
detaillierteren Darstellung (Abb.6b). 

Abb.6b   Überblick über die aktuelle Bekämpfungssituation im Test-Gewächshaus 
anhand der einzelnen Boniturfelder (=Kulturbereiche) im Gewächshausgrundriss. Zur 
Beschreibung der Lage der Boniturfelder dient die Angabe der ersten und letzten Reihe über 
die sich das Feld erstreckt (linker Rand) sowie der Anzahl an Pflanzen in der Pflanzreihe, die 
das Feld umfasst (oberer Rand). Das Boniturfeld Nummer 8 (Mitte unten) umfasst 
entsprechend die Pflanzen 17 bis 24 der Reihen 6 bis 10. Jedes Feld ist ca. 100m² groß und 
wird von einer Gelbtafel überwacht. Die Boniturfelder sind nummeriert um eine einfache 
Zuordnung bei der Eingabe der Boniturdaten (Abb.5) zu gewährleisten. Die Farbliche 
Darstellung wird entsprechend der in Abb.6a beschriebenen Regeln festgelegt. 
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Im Saison-Modul können Schädlings- und Nützlingsanzahlen manuell oder 

automatisch via Scoutbox® erfasst werden. Zurzeit ist die Nutzung aber nur für 

den integrierten Pflanzenschutz in Tomaten unter Glas und dem 

bedeutendsten Schädling, der Weißen Fliege, und ihren wichtigsten 

Gegenspielern realisiert. Allerdings greift das Programm auf eine 

Datenbankstruktur zurück, die leicht um weitere Kulturen, Schädlinge und 

Nützlinge erweitert werden kann. Für relevante Nützlinge wurde ein Ranking zu 

ihrer Eignung in Abhängigkeit von verschiedenen Faktoren (Temperatur, 

Tageslänge, Luftfeuchte und Kulturzeit), Einsatzdichten der Nützlinge in 

Abhängigkeit von der Schädlingsdichte (1. Präventiv, 2. Kurativ, 3. Hot Spot) 

sowie obligatorischen Kombinationen von Nützlingen hinterlegt. Für Bonituren 

von T. vaporariorum über Gelbtafeln ist ein Log-lineares Model hinterlegt, um 

von Fangzahlen auf Gelbtafeln auf die Schädlingsdichten im Bestand zu 

schließen (Böckmann et al. 2014). 

Bei der Betrachtung der Bekämpfungssituation bietet AEP verschiedene 

Darstellungsformen an, wobei zuerst eine zusammenfassende Darstellung 

angezeigt wird (Befallsübersicht, Abbildung  6a). Alle detaillierten 

Darstellungsformen werden optional angeboten. Der Vorteil dieser Struktur 

liegt in der Übersichtlichkeit und Zeitersparnis für den Nutzer: sind keine 

Maßnahmen erforderlich oder wird keine detailliertere Betrachtung 

gewünscht, so kann das Saison-Modul in wenigen Schritten bearbeitet werden. 

Treten aber Probleme bei der Bekämpfung auf, so kann schon in der jetzigen 

Software-Version die Situation detailliert betrachtet werden um  die 

Maßnahmen die AEP vorschlägt besser nachvollziehen zu können (Übersichts-

Grundriss, Abbildung  6b). Weitere Darstellungen in Form von 

Liniendiagrammen zur bisherigen Populationsentwicklung sind denkbar aber 

zurzeit noch nicht verfügbar. Insbesondere für eine vergleichende Betrachtung 

des Bekämpfungserfolgs über verschiedene Jahre könnte diese 

Darstellungsform sinnvoll sein. 

In Zukunft sollte es für den Nutzer auch möglich sein die Empfehlungen von 

AEP individuell anzupassen. Kommt der Nutzer z.B. aufgrund geringen Befalls 

zu der Überzeugung, dass die Situation noch keinen erhöhten Nützlingseinsatz 

erfordert, so sollte es möglich sein das bisherige Bekämpfungsregime bei zu 

behalten. Solche Anpassungsmöglichkeiten sind derzeit noch nicht 

implementiert, sind aber für die Praxistauglichkeit der Software unabdingbar. 

Weiterhin kann es passieren, dass es nachträglich z.B. durch Fehler oder 
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Verzögerungen bei der Bestellung und Lieferung von Nützlingen zu 

Verschiebungen bei der Ausbringung kommt. Auch in diesen Situationen muss 

dem Anwender die Möglichkeit gegeben werden die Abweichungen in AEP zu 

erfassen. 
Abbildung 7   Empfehlung für 
den nächsten Nützlingseinsatz 
entsprechend der festgestellten 
Bekämpfungssituation in den 
festgelegten Boniturfeldern 
(= Kulturbereichen) des Test-
Gewächshauses. Am unteren 
Rand wird der nächste 
Boniturtermin angezeigt. Einsätze 
werden geplant für alle Felder 
in denen T. vaporariorum auf-
getreten ist und E. formosa noch 
nicht ausreichend etabliert wurde 
(Felder 2, 3). Erhöhte Einsatz-
dichten des Nützlings werden für 
alle Boniturfelder festgelegt in 
denen die Schädlingspopulation 
die festgelegte Schadschwelle 
überschritten hat (Felder 4, 5, 
9, 10). Für Boniturfelder in denen 

kein Schädling gefunden wurde ist kein weiterer Nützlingseinsatz vorgesehen. Das gilt auch 
für Felder in denen der Nützling etabliert wurde während gleichzeitig die Schädlingsdichte 
unter der Schadschwelle liegt. 
 

Ein weiterer wichtiger Anwendungsbereich für den biologischen und 

integrierten Pflanzenschutz ist die Nutzung von Pflanzenschutzmitteln. Die 

Einbindung einer Datenbank ist geplant um aktuelle Zulassungsinformationen 

abzufragen. Anhand von weiteren Abfragen zur Persistenz und Nebenwirkung 

auf Nützlinge soll die Integrierbarkeit eingeschätzt werden und ferner ein 

Wechsel von Wirkstoffgruppen im Sinne einer Resistenzvorsorge berücksichtigt 

werden. Anhand dieser Kriterien wird eine Rangliste erstellt (geringe 

Nebenwirkung auf Nützlinge + ungenutzte Wirkstoffgruppe = hoher Listenplatz) 

und werden dem Anwender bevorzugte Pflanzenschutzmittel vorgeschlagen. 

Für ein gewähltes Pflanzenschutzmittel legt der Anwender dann den 

nächstmöglichen Anwendungstermin fest. Ist ein PSM-Einsatz erfolgt / geplant, 

wird die Persistenz des PSM von der Software bei der Planung eines erneuten 

Nützlingseinsatzes berücksichtigt.  
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Ein temperaturgesteuertes Simulationsmodell zur Populationsentwicklung von 

T. vaporariorum und E. formosa ist verfügbar, aber noch nicht in AEP 

implementiert. Klimaparameter und Wettervorhersagen, die eine 

Voraussetzung zur Einbindung und Steuerung für das Simulationsmodell sind, 

werden aber jetzt schon von AEP bereitgestellt.  

 

Diskussion 
Die vorgestellte Software-Struktur soll den Nutzer nicht bevormunden, sondern 

ihn in seiner Entscheidungsfindung unterstützen. Der Anwender soll also alle 

Parameter flexibel an seine Bedürfnisse anpassen können, wird aber 

gleichzeitig auch auf die Folgen seiner Entscheidung hingewiesen. AEP warnt 

z.B. das ein weniger intensives Monitoring eine höhere Variabilität im 

Bekämpfungserfolg zur Folge hat. Dadurch wird ein Lerneffekt in Form einer 

Sensibilisierung für ein geeignetes Monitoringverfahren generiert. Wird ein 

Monitoring nicht entsprechend der Empfehlungen von AEP durchgeführt, etwa 

weil der Betriebsleiter das empfohlene Boniturschema in seinem Betrieb nicht 

leisten kann, so wird diese Unsicherheit bei der Empfehlung einer 

Bekämpfungsstrategie berücksichtigt. Nur durch die spezifische Erfassung 

dieser vom Nutzer festgelegten Anpassungen in AEP können diese 

Berücksichtigt werden. Auch kann es immer zu Verzögerungen in der Lieferung 

von Nützlingen kommen, was etwa im Populationsmodell berücksichtigt 

werden muss, um zu validen Aussagen zu kommen. Wir gehen davon aus, dass 

eine Entscheidungshilfe-Software, die ein optimales Vorgehen vorschlägt, sich 

aber dennoch an die gartenbauliche Praxis anpassen lässt, eine höhere 

Akzeptanz und somit auch eine stärkere Verbreitung erfährt. Ein hohes Maß an 

Flexibilität war daher erste Grundvoraussetzung und wurde bei der 

vorliegenden Struktur umfassend berücksichtigt. 

Die Relevanz einer Entscheidungshilfe steigt aber auch mit ihrem 

Einsatzbereich. Daher war die zweite Grundvoraussetzung für unsere 

Entscheidungshilfe die einfache Implementierbarkeit neuer Kulturen, 

Schädlinge, Nützlinge und Pflanzenschutzmittel. Entsprechend wurden die zu 

erfassenden Basisinformationen auf ein Minimum reduziert. Sie umfassen aber 

dennoch alles, was als Grundlage für die Empfehlung einer 

Bekämpfungsstrategie nötig ist. So ist etwa die geplante Klimaführung 
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entscheidend für die Auswahl eines geeigneten Nützlings und die Größe der 

Kultur bestimmt die benötigte Anzahl an Stichproben für eine aussagekräftige 

Bestandsüberwachung. Ursprünglich war geplant, auch das betriebliche Risiko 

eines Schädlingsbefalls im Bereich der Grundinformationen einzubeziehen. 

Zwei Gründe gaben letztlich den Ausschlag, dies nicht zu tun. Zum einen hätte 

es die Anzahl an Eingabeparametern im Basis-Modul und damit auch die 

Hemmschwelle zur Nutzung von AEP wesentlich erhöht. Zum anderen sind die 

Risikofaktoren Schädlingsspezifisch, was eine Implementierung neuer 

Schädlinge aufwendig gemacht hätte. Daher haben wir in der aktuellen AEP 

Version den Schwerpunkt auf ein aussagekräftiges und dennoch 

praxistaugliches Monitoring als Grundlage für eine effektive und 

kosteneffiziente Bekämpfungsstrategie gelegt. Dennoch ist geplant den 

bisherigen Softwaremodulen eine allgemeine Information zur Bedeutung 

ausreichender Gewächshaushygiene und zu typischen Risikofaktoren für 

Schädlingsbefall hinzuzufügen. 

Nach einer Markteinführung von AEP könnte als ein weiteres Kontrollsystem 

der Abgleich von aktuellen und gespeicherten Populationsdaten von Schad- 

und Nutzarthropoden die Empfehlungen verbessern. Es wäre etwa denkbar, 

dass die Populationsverläufe, PSM-Einsätze und Schadschwellen-

überschreitungen vergangener Jahre parallel zur aktuellen Entwicklung 

angezeigt werden. So könnten Betriebsleiter den aktuellen Bekämpfungserfolg 

besser einschätzen. Da diese Datenbank pro Saison und Betrieb z.B. bei Tomate 

nur um einen Datensatz wachsen würde ist der Nutzen in der Anfangsphase der 

AEP Nutzung stark beschränkt. Ein anonymisierter Austausch von Datensätzen 

einzelner Nutzer z.B. über einen Webserver wäre daher wünschenswert. 

Ohnehin setzt AEP einen Internetzugang des Rechners auf dem die Software 

läuft voraus, um den vollen Funktionsumfang zu nutzen. Solche Funktionen 

sind etwa aktuelle Listenabfragen (zugelassene Pflanzenschutzmittel) aber auch 

die Nutzung von Geräten zum automatisierten Einspeisen von Bonitur- und 

Klimadaten in AEP (z.B. automatische Erfassung und Zählung von Schädlingen 

(Scoutbox®, Cropwatch BV, NL), autonome Temperaturfühler (WiSensys® 

System, Wireless Value, NL) oder Temperaturdaten der Klimasteuerung im 

Gewächshaus) bis hin zur Bestellung von Nützlingen beim bevorzugten 

Produzenten. Eine Automatisierung dieser Abläufe wird sicher auch zur 

Benutzerfreundlichkeit und Praxistauglichkeit von AEP beitragen. Letzteres gilt 

besonders für große Betriebe. Während es bei der Temperaturerfassung noch 
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denkbar ist mit der Solltemperatur für den Gewächshauscomputer zu arbeiten, 

ist das manuelle Auszählen und Einpflegen der Zähldaten von 100 und mehr 

Gelbtafeln in einem 1ha-Gewächshaus in der Praxis kaum zu realisieren. In 

unseren Pilotstudien haben wir daher autonome Funksensoren zur 

kontinuierlichen Temperaturerfassung im Bestand eingesetzt, die ihre 

Messdaten über eine Basis-Stationen mit GSM-Modem an eine Datenbank auf 

einem Webserver übermitteln können (WiSensys® System, Wireless Value, NL). 

Für das halbautomatische Monitoring von T. vaporariorum auf den Gelbtafeln 

wurde außerdem die Scoutbox® (Cropwatch BV, NL) genutzt. Codierte 

Gelbtafeln werden dabei mit Hilfe eines Rahmens in die Scoutbox® geschoben, 

in der ein hochauflösendes Gelbtafel-Foto aufgenommen wird. Nach Erfassung 

aller Gelbtafeln im Gewächshaus werden die Bilddaten über USB-Schnittstelle 

und einem internetfähigen Computer auf einen Webserver hochgeladen. Mit 

Hilfe einer Objekterkennungs-Software werden Schädlinge (zuverlässig derzeit 

für T. vaporariorum) auf dem Foto der Gelbtafel identifiziert, gezählt und 

gespeichert. Der ID-Code auf der Tafel ordnet die Zähldaten bestimmten 

Gewächshausbereichen zu und die Daten werden automatisch von AEP 

verarbeitet. Diese automatische Verarbeitung regelmäßig erhobener Daten mit 

zugeordneten Lageparametern verringert den Aufwand für den Nutzer in 

erheblichem Maße. Die Automatisierung gartenbaulicher Prozesse ist gerade in 

großen Betrieben zukunftsweisend und kann durch verringerten 

Arbeitsaufwand die Kosten in der Pflanzenproduktion senken. Ab einer 

bestimmten Betriebsgröße sollte die Verwendung von AEP daher mit weiteren 

Automatisierungen in der Datenerhebung einhergehen. In kleinen Betrieben ist 

die Nutzung der Software aber auch ohne weitere Automatisierung mit 

überschaubarem Arbeitsaufwand möglich. Eine Testversion der AEP soll in 

Kürze unter www.info-aep.de online verfügbar sein. 
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General Discussion  
Regarding arthropod monitoring in modern agriculture, there are at least two 

statements that most experts would intuitively agree on: First, that it is the 

Achilles heel of integrated pest management (IPM); Second, that it is rarely 

applied and interpreted to its full extent for decision making.  

The main reasons behind this contradiction can be found in workload, 

knowledge gaps and conversion hurdles between research and practice. These 

factors do not stand alone, but are linked to each other. Monitoring has to pay 

off economically for growers in order to become accepted, and workload is 

often the main cost factor. Because workload is not much of an issue when 

monitoring is applied in research to answer scientific questions, the generated 

knowledge cannot be easily transferred into growers practice 

(Cullen et al. 2000). And if a monitoring fits the needs of practice, growers still 

need to know, how the information content achieved may be efficiently 

exploited to decide on pest control measures. In my thesis, I treated this 

complex of questions as whole, to gain the maximum profit for science and 

practice. Consequently, the aim of my work was to develop a comprehensive, 

low-cost monitoring approach, and to integrate it into a (software) tool, which 

enables growers to exploit and apply the information in a user friendly way for 

decision making. 

The first step was to select a cheap and well accepted monitoring technique, 

which has the potential to be applied more efficiently. Manual counting of 

arthropods on the crop is a direct measure of their densities on the crop. It is 

therefore comprehensive, because all visible arthropods can be sampled, but it 

often also includes the highest workload (De Gooyer et al. 1998; 

Pizzol et al. 2010). Anyway, also plant assessments face limitation when it 

comes to pests that are hidden in plant tissue, stem or shoot, such as many 

Lepidopteran larvae. Also, many trap types are used for monitoring purposes, 

such as Berlese funnels, light traps, vacuum samplers and water traps 

(Jervis 2005). However, colored sticky traps, with or without additional 

attractants such as food or host odor and pheromones, are most commonly 

used in agriculture (Reynolds and Prokopy 1997; Nofemela 2010; Pinto-Zevallos 

and Vänninen 2013). The use of sticky traps is restricted to alate arthropods, 
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but with the major exception of mites, many pests and natural enemies of 

importance comprise an alate adult stage (Albert et al. 2007).  

For these reasons, sticky traps seemed to be a promising monitoring technique 

for my work; it remained the need to identify, if this technique comprises an 

additional informative value as compared to its typical application procedure. 

Traps baited with pheromone can generally be regarded to be selective, and 

often deliver only information about the target species. However, reviewing 

the literature one notices, that scientists commonly tend to optimize all kind of 

sticky traps for selectivity to the target pest (Gu et al. 2008; Döring et al. 2012; 

Sétamou et al. 2014), rather than recognizing and analyzing the by-catch as an 

information increment (Karut and Kazak 2007; Hoelmer and Simmons 2008). 

The reason behind is, that monitoring should not interfere with conservation of 

natural enemies in the crop. However, the latter risk will be restricted to mass-

trapping approaches, where large numbers of natural enemies may be trapped 

(Van de Veire and Vacante 1984). However, even in the latter study, which 

combined mass-trapping of Trialeurodes vaporariorum with introductions of its 

parasitoid E. formosa, parasitism rates above 80 % were reached and therefore 

the applied trap densities of 1 trap / 6.2 m² did not interfere with 

establishment of biological control. Furthermore, for monitoring purposes, the 

implementation of natural enemies into monitoring routines is of high 

importance for decision making, and the lack of research on this topic is 

excessively discussed in literature (Binns and Nyrop 1992; Nyrop and 

Vanderwerf 1994; Musser et al. 2004; Hallett et al. 2014). This is the additional 

information content sticky traps can deliver for decision making, and it became 

the main focus of my work.  

Because many natural enemies are attracted to colored sticky traps 

(Hoffmann et al. 1997; Hoback et al. 1999), their densities on crop can be 

estimated in the same way as done for the target pests. Also, many research 

article show that correlations can be established between arthropod densities 

on sticky traps and in the crop, but most of these articles lack a validation of 

these results by prediction of independent monitoring results, i.e. on data 

collected in a new season or at a different site (Gillespie and Quiring 1987; 

Higgins 1992; Naranjo et al. 1995; Kim et al. 2001; Macintyre-Allen et al. 2005). 

Taking into account that the establishment of a correlation of trap catch with 

populations on crop often takes a whole year, it may seem more attractive to 

gather results on related topics, even more when taking into account that 
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validation of previous results may fail. But, if monitoring schemes should be of 

use, if they should be applied in decision making, validation of results becomes 

the most important corner stone of a study. Hence, in spite that I also felt the 

need to publish findings in advance, a validation was included as the final part 

of my work.  

The reason that greenhouse tomato was chosen for my studies were that the 

pest spectrum in that crop is quite low, with T. vaporariorum being the most 

important pest in Germany (personal communication with growers and 

beneficial suppliers). Furthermore, control is mainly based on the introduction 

of the natural enemies, i.e. Encarsia formosa and Macrolophus pygmaeus. Pest 

and both natural enemies comprise an alate adult stage, and for 

T. vaporariorum and E. formosa, the attraction to yellow traps was known. The 

critic that I heard at one conference, that I actually focus on an easy problem is 

only true from a pest control perspective: the argument was, that 

T. vaporariorum is at most times well controlled by those natural enemies, 

whereas there are other pests, such as thrips or aphids in cucumber or 

eggplant, that are much more difficult to control. Therefore, I would like to 

clarify again that the purpose of this work was not to develop a new control 

approach for T. vaporariorum, but to optimize the existing approach in terms of 

IPM procedures and decision making for this pest. 

In my thesis, I showed that for protected tomato culture, the information 

content of yellow traps can be exploited in much greater extent than currently 

done in practice. Regarding natural enemies of the greenhouse whitefly, 

T. vaporariorum, it was shown in the first chapter that parasitism rates above 

50 % on the crop can be accurately indicated by trap catch of adult E. formosa. 

Most importantly, the indication of established control by the parasitoid, i.e. 80 

% parasitism rate    (Scholz-Döblin 2013), was accurately indicated by adult trap 

catch. In a similar approach, Hoelmer and Simmons (2008) did not find 

correlations between trap catches of the parasitoid Eretmocerus emiratus and 

parasitism of Bemisia tabaci nymphs on Cantaloupe and Watermelon. 

However, studies were carried out in open field and with horizontally placed 

traps, and did not consider correlations of trap catches with parasitism rate. 

Also Karut and Kazak (Karut and Kazak 2007) did not consider parasitism rates 

when they correlated trap catches of Bemisia tabaci with trap catch of 

Eretmocerus lutea in cotton. For decision making as defined in the IPM-

concept, parasitism rate is what counts for growers. Information on the 
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number of parasitized nymphs is no appropriate measure to indicate 

established control, because it does not include the pest density on the crop. 

On the other hand, the relation of parasitoid trap catch with the trap catch of a 

pest does not necessarily display the relations found on the crop. Therefore, I 

consider the focus on the correlation of parasitism rates with parastioids trap 

catch, as a strength of my study. Indications that both measures might 

correlate with E. formosa in protected tomato crop were found in literature 

(Van de Veire and Vacante 1984). The observation of the authors, that 

parasitoid trap catch increases markedly when parasitism rates are high was 

taken up in my work, was exploited in the context of monitoring, and was 

combined with the existing threshold level for established control (Scholz-

Döblin 2013). The combination of the existing information with practice 

relevant monitoring schemes now enables growers, to optimize the 

introduction regime of E. formosa with minimal workload, by counting a 

maximum of 6 or 12 parasitoids caught per trap in 1 or 2 weeks, respectively. 

The accuracy of prediction of established control by the parasitoi, was 

confirmed in Chapter 3 of my work. To be discussed later, the implementation 

of the full established model into a decision support software combines this 

tool with others, and thus increases the practical relevance of this new 

monitoring approach.  

For control of T. vaporariorum, two natural enemies are of major importance, 

including besides E. formosa the predatory bug M. pygmaeus. Therefore, in the 

second chapter of my work, a sticky trap monitoring of the predatory bug was 

tested. In contrast to E. formosa, information on colour attraction or on a 

density level indicating establishment of biological control by M. pygmaeus was 

lacking in literature. Therefore it was tested if M. pygmaeus adults were 

attracted to one of the commercial available and most commonly used trap 

colours, yellow and blue. Both colours showed only moderate attraction. 

A colour preference was neither found in a choice experiment with single 

adults, nor in a greenhouse study. With regard to colour preference, this study 

needs to be considered as a first screening, because additional factors such as 

sex of the adults and seasonal differences were not tested. It is somewhat 

surprising that M. pygmaeus does not prefer yellow before blue traps. That is, 

because the overall number of insects that prefer yellow is markedly larger 

than of those that prefer blue (Hoback et al. 1999; Johansen et al. 2011), and 

also the predatory bug Orius similis showd that preference (Raen et al. 2013). 
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Yellow traps reflect colour in the range of yellow-green (Natwick et al. 2007), 

and it can therefore be assumed that these traps are perceived as green leaves 

by insects. Hence, this colour could have been expected to play a role in 

orientation of M. pygmaeus to plants. A major difference between 

M. pygmaeus and most of the other species trapped on coloured traps is that 

its activity is not exclusively diurnal (Perdikis et al. 1999; Blackmer et al. 2004; 

Perdikis et al. 2004; Hamdan 2006; Gemeno et al. 2007). An adaption on light 

and dark conditions may have favoured the use of shape, rather than colour, 

for orientation. Nevertheless, colour vision at dark conditions was developed 

by primarily nocturnal animals, and is superior for object detection as 

compared to achromatic contrasts, because it defines properties of objects 

more reliable and constant (Kelber and Roth 2006). However, as opposed to 

M. pygmaeus, the Hawk Moths discussed in the latter study are highly adapted 

to nocturnal living.  

With regard to monitoring of M. pygmaeus, in principal both trap colours 

seemed promising; I have selected yellow for further studies only because it 

enables furthermore monitoring of E. formosa and T. vaporariorum. Due to the 

moderate numbers caught on both trap colours in the greenhouse experiment, 

and taking into account the monitoring scheme applied,               

i.e. 1 trap / 100-200 m², monitoring does not interfere with biological control 

provided by the predatory bug or the parasitoid. In chapter 2 and 3 of my 

study, this assumption was confirmed by the successful establishment of the 

M. pygmaeus in all greenhouses where it was introduced, although a yellow 

trap monitoring was carried out. Also E. formosa reached sufficient parasitism 

rates as long as introduced alone; when both natural enemies where combined 

in one greenhouse, E. formosa was unable to establish, most likely due to 

intraguild predation by M. pygmaeus. Still, comparing the combined use with 

the introduction of the predatory bug alone in chapter 3, indicated a huge 

impact of the parasitoid on early season pest control. Similar results were 

found by Castañe et al. (2004), who also found that E. formosa population was 

eliminated by the predatory bug, but beforehand added to its biological 

control. The predatory bug showed also some preference for unparasitized 

T. vaporariorum and Bemisia tabaci nymphs as compared to those parasitized 

by E. formosa and Eretmocerus mundus, respectively (Castañé et al. 2004; 

Malo et al. 2012). Preference of predatory bugs for unparasitized hosts are 

likely caused by the increase in the lipid content of the host exuviae after 
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parasitism, conferring greater resistance to mechanical penetration 

(Buckner et al. 2000). Therefore, the combined use of both parasitoids with 

Mirid bugs can be recommended for whitefly control, as done in Chapter 4 in 

the developed DSS AEP (Automatische Entscheidungshilfe für den 

Pflanzenschutz unter Glas). Currently, monitoring of predatory bugs is mainly 

based on direct counts on the crop (Isenhour and Yeargan 1981; 

Elkassabany et al. 1996). Growers consider a level of 3-7 M. pygmaeus nymphs 

and adults / plant as established biological control (personal communication 

with growers and beneficial suppliers). Because this predatory bug can 

potentially also cause damage on tomato crop, sometimes an additional 

damaging level of >10 M. pygmaeus is considered by growers (Joke de Jong, 

personal communication). That level is however not in line with results in 

literature, were damage is considered to rarely occur at densities, for instance 

at 50-300 M. pygmaeus / plant in one field study (Sampson and Jacobson 1999; 

Castañé et al. 2011). However, in my work I could show that both levels can be 

accurately predicted by the corresponding yellow trap catch 

(with 5 M. pygmaeus / plant as level for established control). Furthermore, not 

only densities of the adult, but also of nymphs and of the full population 

(i.e. nymphs and adults together) are accurately reflected throughout season 

by adult yellow trap catch. To my knowledge, this is the first time that such trap 

monitoring was established and validated for population development tracking 

of M. pygmaeus and for Mirid bugs in general. Regarding the moderate 

attraction to the traps, the good correlations are on first view surprising. The 

reasons behind may be found in the high mobility and the rather uniform 

distribution of predatory bugs in the crop (Castañé et al. 2004; Kalsi et al. 

2014). It is an underlying principle, that the patchier a target species is 

distributed, the more intense a monitoring must be in order to estimate its 

population density (Taylor 1984). Because M. pygmaeus is not only 

polyphagous with regard to prey (Hillert et al. 2002), but furthermore feeds on 

plant sap and pollen (Castañé et al. 2011; Lykouressis et al. 2013), its 

distribution can be regarded to be quite independent from specific prey. 

Furthermore, Mirid bugs are known to be very active and strong flyers 

(Blackmer et al. 2004), with maximum flight durations of > 7 h and distances of 

> 90 km (Lu et al. 2009). Although Byrne (1999) challenged the concept to 

define whiteflies and small parasitoids as weak flyers that generally do not 

migrate actively, the distances these species typically fly, and hence their action 
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radius, is much lower. For instance, E. opulenta was found to disperse 1 km 

within three generations and E. inaron dispersed 45 m in one generations, and 

only 6 % of whitefly B. tabaci adults flew more than 15 minutes in flight tunnel 

experiments (Byrne 1999; Liu et al. 2015). In the tomato monocultures studied, 

with rather constant climatic conditions, a relatively uniform distribution and 

the large action radius of M. pygmaeus likely added to a meaningful correlation 

of on-plant population with adult trap catch. The reliability of this correlation 

was confirmed in chapter 3 of my work, where the prediction based on the 

established correlation, was accurate for the full population of the predatory 

bug on crop. 

In chapters 1, 2 and 3 of my work, also the pest species T. vaporariorum was 

monitored. For this species, the strong and specific attracted to yellow traps it 

is known from literature (Webb et al. 1985). In Chapter 1, numbers of 

T. vaporariorum adults found on traps were markedly higher than for its 

parasitoid E. formosa, even at high parasitism rates and hence tentatively high 

numbers of adult parasitoids on crop. The latter indicates a lower attraction of 

E. formosa to yellow traps as compared to the whitefly, which can be explained 

by the combined use of olfactory and visual cues for orientation by the 

parasitoid, as compared to a purely visual orientation of the whitefly 

(Byrne and Bellows 1991; Guerrieri 1997). Regarding attraction, the same is 

true for the predatory bug M. pygmaeus, and the reasons behind were already 

discussed above. Results on the possibility to correlate T. vaporariorum 

densities on crop with trap catch are conflicting, reaching from a density of 

1 trap / 7 m² to 1 trap / 50 m² needed for accurate monitoring (Gillespie and 

Quiring 1987; Kim et al. 1999). In Chapter 1, it was shown that correlations can 

be established even with 1 trap / 170 m², with weekly monitoring interval. In 

Chapter 2, also monitoring with 1 trap / 100-130 m² and a fortnightly rating 

interval revealed meaningful correlations. In both studies, the estimation of 

nymphs on the crop by adult trap catch was more accurate as compared to 

adults on crop. One reason behind may be the more accurate sampling of 

nymphs on plants, because adults sometimes dispersed rapidly, depending on 

the light conditions, making continuous rating on plants difficult. 

T. vaporariorum was furthermore the only species, for which population peaks 

on crop were strongly underestimated by the prediction. The main reasons 

behind remain unclear, but it may be worthwhile to do more detailed 

assessments of nymph and adult populations on smaller scale, including all 
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nymphal stages (i.e. not only the 3rd and 4th instar as done in the current study). 

Also the monitoring of plants may be adapted, for instance by assessing less 

leaves per plant, but including more plants into the assessment. That way the 

clumped occurrence of the pest could be covered more efficiently. However, 

also with the monitoring carried out in the current study, tentative thresholds 

could be adequately predicted for nymphal densities on crop in chapter 3. Also 

the first pest occurrence was reliably detected at all sites and in all three years 

of my study. Therefore, also the conclusion of Gillespie and Quiring (1987) was 

confirmed, pointing out that yellow traps used in practice relevant densities are 

reliable for detection of first occurrence of the pest. Because the first pest 

occurrence triggers the introduction of E. formosa, this information adds to the 

usefulness of the evaluated monitoring as basis for the Decision Support 

System (DSS). 

One seemingly weakness of my studies is the low number of replicates that 

could be realized for each monitoring approach within the three years. One can 

however not compare the workload of the greenhouse experiments, which 

were carried out in this study, with experiments on laboratory scale. 

Furthermore, it has to be taken into consideration that the error, when 

translating from laboratory results under fully controlled conditions into more 

natural conditions, may be much bigger than the error resulting from lower 

replicate numbers under realistic conditions. I personally think therefore, that 

both approaches have their strength and weaknesses, depending on the 

research question. With regard to monitoring, I believe that research needs to 

take place in realistic areas and with natural populations; it is surely not 

enough to know that a species is attracted to a certain color and that it can fly 

over a certain distance, to estimate if a trap monitoring of insects located in 

commercial crops will be sufficiently exact, and which density and frequency of 

the monitoring is needed. For T. vaporariorum and E. formosa, most certainly 

enough basic information was available to investigate monitoring approaches 

directly under greenhouse conditions. In case of M. pygmaeus, where 

information from literature did not cover attraction to specific color, 

experiments under more controlled conditions were carried out to fill 

knowledge gaps.  

Reviewing the current work, it attracts attention that I used relatively simple 

models, which include only the population density on the crop and the trap 

catch. However, during this study I also tested the inclusion of additional 
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factors, such as time of assessment, i.e. calendar week, or weekly mean 

temperature (data not shown). The inclusion of the calendar week into the 

model resulted statistically speaking in higher explanatory power of the models 

for all species tested. The reason behind is that population density of all species 

increased with time after introduction or invasion, and hence also with 

increasing calendar week. The consequence was however, that the resulting 

model predictions did not anymore follow the population fluctuations of the 

respective arthropod, but increased rather linear with time. Hence, the 

objective of the monitoring, i.e. accurate predictions of the population 

dynamics, was hampered by the latter factor. Especially because of the need to 

see the failure of establishment of a beneficial or the decrease of a pest in 

decision making, it remains clear that a function which only increases is not 

useful for the purpose of population density prediction in IPM. The weekly 

mean temperature on the other hand, had no significant effect on the 

correlation, most likely because temperature in greenhouse tomato are 

relatively constant throughout the growing season, especially in heated 

glasshouses. Humidity on the other hand was not included due to the restricted 

reliability of the data loggers that were used in the current study. However, just 

as temperature, also humidity is typically controlled in a greenhouse 

environment, and tends to fluctuate mainly in a day-night, rather than a 

seasonal pattern. Still, inclusion of other factors such as light conditions or 

management of the crop could have resulted in more precise correlations for 

the one or other species, but these factors are complicated to assess (crop 

management) or no sufficient equipment was available for continuous 

assessment at all locations (light conditions). Furthermore, with focus on 

practical application of the results it remains clear that the more factors that 

need to be assessed for prediction of the target population densities, the less 

useful becomes a model for commercial growers. That is because more factors 

to assess mean more workload (if factors are assessed manually), and / or a 

need for more costs (if additional sensors are needed for assessments). Both 

increases the inhibition threshold of growers to apply a resulting DSS. 

 

The main result of my study is, that the yellow trap, a well-known and often 

used tool in agriculture, can be used to monitor the whole complexity of a one 

pest, two natural enemies system (with the discussed limitations regarding the 

pest) in tomato crop. This finding has the potential to extensively optimize and 
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fine-tune IPM in greenhouse tomato. As described in chapter 3 of my work, 

growers may now decide only by evaluating the trap catch, when to start and 

finish introductions of E. formosa, when to stop introductions of M. pygmaeus, 

and when M. pygmaeus itself might need to be controlled in the crop. These 

decisions do also apply for the combined use of the beneficials, optimizing early 

season control of T. vaporariorum with monitoring-driven introductions of 

E. formosa instead of standard use patterns. In case of T. vaporariorum, 

I believe that yellow trap monitoring is still useful as indicator for high pest 

pressure, but should go hand in hand with conservative thresholds, and it does 

not yet fully substitute additional samplings on plants.  

The potential of economical savings of monitoring based decision making was 

shown in chapter 3, were the monitoring based decision of E. formosa 

introduction was most cost effective in all greenhouses, were the pest was 

detected late in the season. This was the case in 50 % of the commercial 

greenhouses monitored. Furthermore, also if the pest was present early, 

I found in chapter 1 that control in an experimental greenhouse became 

established after 5 introductions of 5 E. formosa / m². The costs for these 

introductions are about one third higher as compared to a combination of 

2*0.5 M. pygmaeus / m² with 3*1.5 E. formosa / m² and Sitrotoga sp. eggs as 

additional food source (45.90 € and 29.89 €, respectively); they would however 

be comparable, when 3 E. formosa / m² would be applied, which is the final 

recommendation in our DSS (27.00 €; all calculations as described in chapter 3). 

However, if control is established with the same number of introductions when 

introducing 3 versus 5 E. formosa / m² was not tested. Until the latter is 

clarified, the decision if M. pygmaeus should be introduced in tomato 

greenhouses needs to be taken by growers, due to their experience when and 

if T. vaporariorum usually infests their crop. The growers I worked with had a 

quite exact estimation of this timing, and occurrence of T. vaporariorum was 

also found to be consistent in 4 of 5 greenhouses monitored in 2013 and 2014 

(Chapter 3, Table 2). Because M. pygmaeus also provides some control on 

several other pest species (Hillert et al. 2002; Albert et al. 2007), growers may 

also consider the regular occurrence of aphids or leaf miners as a reason for its 

introductions. That the use of a DSS has high potential for reducing costs and 

material costs, mainly with regard to pesticide applications, was also shown in 

different other fields of crop management. For the use of fungicides, it was 

shown that the use of the DSS vite.net® in organic grape farming saved the 
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growers an average of 195 € / ha / year due to reduced application of copper, 

relative to the usual farm practice (Rossi et al. 2014). Another DSS targeting 

fungal diseases of winter wheat reduced use and thereby also costs of 

fungicide in dry seasons (Jarroudi et al. 2015). Regarding fertilization of tomato 

crop, recommendations of the DSS VegSyst resulted in reductions of 34-65 % in 

fertilizer N (Gallardo et al. 2014). However, it remains clear that the use of a 

DSS, which is for pest, weed and fungal control typically linked to IPM, also 

induces costs. As compared to conventional pest control, under IPM, the cost 

savings from eliminating repetitive spraying frequently offset the cost of 

obtaining the information needed to guide the pest management program 

(Jones et al. 2010). These costs can potentially be reduced by DSSs, but their 

operation and manual assessment of parameters processed by the DSS also 

require labor time. For instance, 79.5 % of DAS users, a DSS for control of pests 

and diseases in tree fruit, perceived that its use resulted in improved timing of 

pest management, whereas only 13.4 % judged it to be cost saving 

(Jones et al. 2010). Nevertheless, the major advantages of DSSs are considered 

to be their potential to reduce material costs, workload and environmental 

risks due to reduction of pesticide use (Tardio et al. 2012) as well as use of 

beneficials. This potential was also shown for AEP (Automatische 

Entscheidungshilfe für den Pflanzenschutz unter Glas) in Chapter 4, but 

evaluation in more detail remains a major future topic and should include labor 

costs in small versus large greenhouses, as well as costs for manual versus 

automated monitoring of sticky traps. 

In general, a DSS is a system which, through some combination of expert 

knowledge, databases and simulation models, support the user by providing 

recommendations on certain management options and / or allowing 

exploration of the consequences of making different decisions (Knight 1997). 

Hence, AEP is still somewhere between being an expert system and a true DSS, 

because no forecast of pest and beneficial development is included to date. 

However, simulation models are already available for all arthropods covered in 

this study, due to the extensive work of our colleagues Lia Hemerik and Maaike 

Wubs (University Wageningen). The future challenge will be to implement 

these models in AEP and further validate and refine them, especially when 

more data sets become available. Another important aspect for DSSs intended 

for use in agriculture is a grid based position awareness of predictions and 

simulations (Pontikakos et al. 2010; Stöckle et al. 2014). The latter is not only 



 

118 
 

true for broad-acre crops, because also commercial greenhouses may to date 

easily reach 10 ha in size. Especially in such large greenhouses, mapping of 

distribution patterns of biological control is crucial for area-specific adaption of 

beneficial introductions. In Chapter 3 I could show, that the monitoring-based 

decisions must not be related to the whole greenhouse area, but can be related 

to greenhouse parts in the range of 100-200 m². Also, easy handling and good 

visualization of information is of high importance for adoption of DSSs in 

practice (Knight 1997). This topic is addressed in AEP by working with 

summarizing bar graphs and detailed mapping of the protection status in the 

crop. However, the visualization of every single area in AEP is sufficient for 

small, but not adequate for large greenhouses. In the latter, a future approach 

could be to apply models that automatically merge neighboured areas with 

similar control situation, resulting in recommendations for larger greenhouse 

areas. Similar approaches are used to identify homogenous land units in DSSs 

for precision farming (Stöckle et al. 2014). Besides of the mentioned desirable 

improvements, to date AEP cannot show the whole complexity of pest-

beneficial and beneficial-beneficial interactions. For instance, to date only the 

growing period of tomatoes is decisive whether to use M. pygmaeus or not, 

and AEP recommends release in year-round cultures with growing season 

>9 month, in accordance with Scholz-Döblin (2013). But there are other 

aspects, which may favour the use of M. pygmaeus, such as the expected 

presence of other pests that are attacked by the omnivore predator. Hence, 

AEP does not yet reproduce the full complexity of decision making in tomato 

pest management, and needs to be further developed in this regard.  However, 

most DSSs simplify the real conditions to some extent. Therefore DSSs can only 

provide recommendations, whereas the final decision has to be taken by the 

user (Longstaff 1994; Knight 1997). Although I am convinced of the usefulness 

of AEP, and I am very satisfied with the visualization of pest control status by 

the program, there remains the risk that it will not be widely applied by 

growers. The overall adoption of DSSs by growers is low as compared to the 

number of developed programs (Jones et al. 2010). Knight (1997) finds the 

reasons for this besides others in the academic environment where they were 

build, and the targeting of minor problems from a grower’s perspective. Both 

statements are true for AEP: The program is the result of my PhD-Thesis, and 

T. vaporariorum can be controlled quite well without application of a DSS. To 

address this problem, we cooperated with two medium-sized companies, but 
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to my opinion the chances of commercialization of AEP by these companies are 

low. To overcome these problems, the additional benefit of AEP, regarding 

optimization of IPM and the potential of cost savings, need to be 

communicated well to growers. Furthermore, its applicability needs to be 

broadened to other crop-pest-beneficial systems, and should at best also be 

combined with further DSS modules targeting other crop management 

decisions. In tomato for instance, there exist already several DSSs: VegSyst for 

fertilization and irrigation (Gallardo et al. 2014), TOMGRO for plant 

development and fruit production (Dimokas et al. 2008), FAST for diseases 

(Batista et al. 2006) and DIARES-IPM for identification of pests, beneficials, 

diseases, and nutrition deficiencies (Mahaman et al. 2003). Combining AEP with 

existing systems can increase the benefit for growers and thus their adoption 

of the resulting DSS. The latter would be in line with a general trend in todays’ 

DSS conceptions, away from targeting a single part of the crop management, 

towards covering of all major decisions in cropping systems (Rossi et al. 2012; 

Rossi et al. 2014; Stöckle et al. 2014). Successful and broadly applied DSSs to 

date consider key aspects of crop production in a holistic manner, are web 

based and use wireless sensor techniques (Jones et al. 2010; 

Martin Tardio et al. 2012; Rossi et al. 2014; Stöckle et al. 2014). Hence, with its 

extendible modular structure and its interfaces to wireless sensors and 

automated monitoring tools, AEP comes with good prerequisites to become 

successfully marketed in future, but needs to be consequently developed 

further. 
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