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Abstract

The wide field of quantum information processing and quantum networks has de-

veloped very fast in the last two decades. Besides the regime of discrete variables,

which was developed first, the regime of continuous variables represents an alterna-

tive approach to realize many quantum applications. Non-classical states of light,

like squeezed or entangled states, are a fundamental resource for quantum applicati-

ons like quantum repeaters, quantum memories, quantum key distribution, quantum

spectroscopy, and quantum metrology. These states can be generated successfully in

the infrared wavelength regime. However, for some tasks other wavelengths, especi-

ally in the visible wavelength regime, are desirable. To generate non-classical states

of light in this wavelength regime frequency up-conversion can be used, since all

quantum properties are maintained in this process. The first part of this thesis deals

with the experimental frequency up-conversion of quantum states. Squeezed vacu-

um states of light at 1550 nm were up-converted to 532 nm and a noise reduction of

−1.5 dB at 532 nm was achieved. These states can be used for increasing the sensi-

tivity of gravitational wave detectors or spectroscopic measurements. Furthermore,

one part of an entangled state at 1550 nm was up-converted to 532 nm and, thus,

entanglement between these two wavelengths was generated and characterized to

−1.4 dB following Duan et al.. With such a quantum link it is possible to establish

a quantum network, which takes advantage of the low optical loss at 1550 nm for

information transmission and of atomic transitions around 532 nm for a quantum

memory in a quantum repeater. For quantum networks the distribution of entangle-

ment and especially of a quantum key is essential. In the second part of this thesis

the experimental distribution of entanglement by separable states is demonstrated.

The underlying protocol requires a special three-mode state, which is separable in

two of the three splittings. With this state, entanglement between two distant par-

ties can be established by sending only separable modes. This seemingly paradoxical

protocol was experimentally realized for the first time within this thesis. Thereby,

new and non-intuitive insights in the quantum world and its special properties are

revealed.

Keywords: quantum networks, entanglement, squeezed states, frequency conversion

i





Kurzfassung

Das weite Feld der Quanteninformationsverarbeitung und Quantennetzwerke hat

sich in den letzten 20 Jahren rapide entwickelt. Neben dem Bereich der diskreten

Variablen, der zuerst entwickelt wurde, ist der Bereich der kontinuierlichen Varia-

blen ein alternativer Zugang, um viele Quantenanwendungen zu realisieren. Nicht-

klassische Zustände des Lichts, wie verschränkte oder gequetschte Zustände, sind

fundamentale Hilfsmittel für Quantenanwendungen wie Quantenrepeater, Quan-

tenspeicher, Quantenschlüsselverteilung, Quantenspetroskopie und Quantenmetro-

logie. Diese Zustände können im infraroten Wellenlängenbereich erfolgreich herge-

stellt werden. Allerdings sind für manche Anwendungen andere Wellenlängen, ins-

besondere im sichtbaren Bereich, wünschenswert. Um nicht-klassische Zustände in

diesem Wellenlängenbereich herzustellen, kann Frequezenkonversion verwendet wer-

den, da bei diesem Prozess die Quanteneigenschaften erhalten bleiben. Der erste

Teil dieser Arbeit behandelt die experimentelle Frequenzkonversion von Quanten-

zuständen. Gequetschte Vakuumzustände des Lichts wurden von 1550 nm zu 532 nm

hochkonvertiert, wobei eine Rauschunterdrückung von −1.5 dB erreicht wurde. Diese

Zustände können für die Erhöhung der Sensitivität von Gravitationswellendetekto-

ren oder spektroskopischen Messungen benutzt werden. Weiterhin wurde ein Teil

eines verschränkten Zustands bei 1550 nm zu 532 nm hochkonvertiert und somit

Verschränkung von −1.4 dB nach Duan et al. zwischen diesen beiden Wellenlängen

erzeugt. Mit solch einer Quantenverbindung ist es möglich, ein Quantennetzwerk auf-

zubauen, das die geringen Verluste bei 1550 nm für die Informationsübertragung und

atomare Übergänge um 532 nm für Quantenspeicher in Quantenrepeatern ausnutzt.

Für Quantennetzwerke ist die Verteilung von Verschränkung und insbesonderen ei-

nes Qantenschlüssels essentiell. Im zweiten Teil dieser Arbeit ist die experimentelle

Verteilung von Verschränkung mit separablen Zuständen gezeigt. Das zugrunde lie-

gende Protokoll erfordert einen speziellen Dreimodenzustand, der in zwei von drei

Teilungen separabel ist. Mit diesem Zustand kann durch das Versenden von aus-

schließlich separablen Moden Verschränkung zwischen zwei entfernten Parteien er-

zeugt werden. Dieses scheinbare paradoxe Protokoll wurde im Rahmen dieser Arbeit

erstmals realisiert. Dadurch werden neue und nicht-intuitive Einblicke in die Quan-

tenwelt und ihren besonderen Eigenschaften sichtbar.

Schlüsselworte: Quantennetzwerke, Verschränkung, gequetschte Zustände, Frequenz-

konversion
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CHAPTER1
Introduction

Since 1935, when the famous paper “Can quantum-mechanical description of phys-

ical reality be considered complete” from Albert Einstein, Boris Podolsky, and

Nathan Rosen was published [Ein35], quantum physics has been one of the most

fascinating topics in the world of physics. So far, there have been many astonishing

phenomena which can only be explained by quantum physics and often contradict

our natural intuition. One of the first experimental proofs for the completeness of the

quantum-mechanical description was given by Alain Aspect in 1982 [Asp82]. Since

then, lots of experiments have been conducted to verify the predicted phenomena,

and nowadays there is no doubt about the completeness of the quantum-mechanical

description. In fact, quantum physics has become a fundamental and crucial re-

source for quantum networks and communication. In addition, quantum states have

important application in other fields such as metrology, imaging or spectroscopy.

This thesis deals with the frequency up-conversion of squeezed and entangled

states of light and the experimental distribution of entanglement by separable states.

Both topics have in common that the special properties of the generated quantum

states are important tools for establishing quantum networks. It was shown that

squeezed states in particular, also have applications in quantum metrology and

quantum imaging. These applications will be discussed in the following sections.

1.1 Quantum Networks

Quantum networks distribute non-classical states of light, like squeezed or entangled

states, and thereby connect two distant parties. Quantum networks are required for

secure communication via quantum key distribution [Gob04, Fur12] and for the

realization of quantum teleportation schemes [Bou97, Bow03]. Quantum states

1
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entanglement 
source

entanglement 
source

quantum 
memory

Alice Bob

entanglement 
swapping

Figure 1.1: Principle of an optical quantum network. A quantum network, which
links the two distant parties Alice and Bob, consists of one (or more) quantum repeaters in
order to overcome loss that would otherwise destroy a quantum state. Within a quantum
repeater the quantum state is stored in a quantum memory. Two quantum memories
can be entangled via entanglement swapping, to create a connection in the network. The
distance can be enlarged by more stages.

have the property that they are sensitive to optical loss. Even though telecom-

munication fibers have low attenuation at 1550 nm of about 0.17 dB/km [Li08],

for long distances quantum repeaters are necessary to transfer the quantum states

[Bri98, Dua01, Chi06, Cho08, San11]. Quantum repeaters can establish entangle-

ment between two distant parties, usually called Alice and Bob, by connecting in-

termediate nodes of a quantum network via entanglement swapping [Żu93, Jia04].

Without quantum memories the success probability scales exponentially with n,

where n is the number of stages within the quantum network. When quantum mem-

ories are used the scaling is proportional to n. A quantum memory stores the quan-

tum states [Koz00, Jul04] until they get released on demand [Lou00]. Together with

subsequent purification [Ben96] and distillation protocols [Fiu07, Hag08, Don08] a

quantum network is established. This principle is also depicted in Fig. 1.1.

Quantum memories can be realized at different wavelengths corresponding to

atomic transitions, and work mostly in the regime of 500–900 nm [Tit09]. Since for

an efficient transmission of the quantum states the telecommunication wavelength of

1550 nm is preferred, quantum networks require a transfer between different wave-

length regimes. Such a transfer was recently realized with photonic crystal fibers

[McG10] and via four wave-mixing [Mej12]. Another possibility is to use quantum

frequency conversion, which is demonstrated in this thesis. Since quantum memo-

ries have to store highly non-classical states, such as squeezed or entangled states

[App08, Cho08, Hon08, Sag11], highly efficient frequency transitions which maintain

2



1.2 Quantum Spectroscopy and Imaging

the quantum properties are mandatory [Chr13].

Even without a quantum memory, frequency conversion from the telecommuni-

cation wavelength to the visible wavelength regime provides the possibility of a

highly efficient quantum state detection, since commercially available single photon

counters are most efficient in the visible wavelength regime [Kam08, Pel12]. Re-

cently, frequency conversion from the visible to the telecommunication wavelength

regime has been realized [Iku12, FG13]. Within this thesis the reverse process will

be demonstrated: on the one hand the experimental realization of frequency up-

conversion of a squeezed state from 1550 nm to 532 nm will be shown and on the

other hand the generation of entanglement between 1550 nm and 532 nm will be

presented. These experiments show that the quantum properties are maintained

in the process of frequency up-conversion via sum-frequency generation, as it was

proposed by Prem Kumar [Kum90].

For future quantum networks multimode entanglement also plays an important

role. It can exhibit more complex properties and features than two-mode entangle-

ment. Therefore, multimode entanglement represents a valuable resource for lots

of applications ranging form local realism tests [Zha03] to one-way quantum com-

puting [Rau01, Wal05, Uka11]. For the quantum engineering of future networks we

have to understand the special properties of multimode entanglement. Therefore,

we have to think about new possibilities to generate entanglement between two dis-

tant parties. Proposed by Cubitt et al. [Cub03] the distribution of entanglement by

separable states is experimentally realized within this thesis. This protocol, which

seems to be counterintuitive at the first glance, is made possible by a specific three-

mode state. Its special properties will be analyzed in detail to reveal the underlying

structure of the protocol.

1.2 Quantum Spectroscopy and Imaging

Recently, Taylor et al. performed microrheology experiments and tracked lipid gran-

ules utilizing squeezed vacuum states of light [Tay13]. These states do not have a

carrier field which would damage the sample. In addition, the special noise proper-

ties of squeezed vacuum states make measurements beyond the standard quantum

limit possible. Therefore, they are highly suitable for quantum spectroscopy and

quantum imaging [Tre03, Bra07, Bri10].

For applications like probing biological samples, the squeezed vacuum state would

ideally be in the visible wavelength regime, to take advantage of higher detection

efficiency, and its wavelength should match the probe’s spectral transitions. Using

convenient methods like parametric down-conversion, these states can be generated

3
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(a) (b) (c)

squeezed 
light

increase laser power insert squeezing

squeezed 
light

reduce laser wavelength

Figure 1.2: Methods to improve the sensitivity of a Michelson interferometer.

with high efficiency in the infrared wavelength regime [Ebe10, Meh11, Ste13]. For

shorter wavelengths this technique is not applicable as ultra-violet light, which is

required as a pump field, has a high absorption coefficient for nonlinear crystals

[Koe06]. Squeezing via second harmonic generation [Tsu95] and self-phase modu-

lation [Ber91] are further squeezing generation schemes. However, they can only

generate squeezed states with a carrier field, which would damage the probe in

quantum imaging.

In this thesis the technique of frequency conversion via sum-frequency generation

was used to generate squeezed vacuum states of light at 532 nm.

1.3 Quantum Metrology

The improvement of gravitational wave detectors was the original motivation for

generating strong squeezed vacuum states of light [Cav81]. Gravitational wave de-

tectors use a Michelson interferometer as a measurement device, whose shot noise

linear spectral density reads
√
S = e−r

√
~cλ/(2πP ), where P is the light power

inside the interferometer, r is the squeezing factor and λ is the wavelength of the

laser. That means that a Michelson interferometer can principally be improved by

three methods: a) increasing the laser power, b) injecting squeezed light into the

dark port of the interferometer, and c) decreasing the wavelength of the laser. These

methods are illustrated in Fig. 1.2. The laser power cannot be increased indefinitely,

as each component within the interferometer has to cope with the high laser power.

This is especially true in the case of the beam splitter and the cavity mirrors, which

encounter multiples of the initial laser power, since the cavity increases the optical

power even further by interference effects. If the sensitivity of the interferometer

should be improved by reducing the laser wavelength, squeezing should also be im-

plemented to gain the best spectral density. First attempts to increase the detector

4



1.4 Structure of the Thesis

sensitivity by using shorter wavelengths are made in the design study for the future

Japanese space antenna DECIGO [Kaw11], which shall operate in the visible region

at a laser wavelength of 532 nm. As gravitational wave detectors based on a laser

interferometer are shot noise limited in the kHz-regime [The11, Gro13], squeezed

vacuum states of light are required. In this thesis the technique of frequency up-

conversion is presented to also generate squeezed vacuum states of light at shorter

wavelengths. It is currently the only known technique to obtain these states without

any carrier field.

1.4 Structure of the Thesis

This thesis is structured as follows:

• Chapter 2 gives an introduction to the theory of non-classical states of light.

The quantization of the electro-magnetic field and its description is presented

and prominent examples of quantum states like squeezed and entangled states

are given.

• Chapter 3 describes the nonlinear processes which underlie the presented ex-

periments, such as sum-frequency generation, difference frequency generation

and optical parametric amplification.

• Chapter 4 explains some of the basic techniques used for conducting the exper-

iments, like squeezing generation, homodyne detection, single sideband locking

scheme, and thermal state generation.

• Chapter 5 presents the experimental realization of quantum up-conversion.

With this technique a squeezed state at 532 nm is generated and entanglement

between 1550 nm and 532 nm is established.

• Chapter 6 shows the experimental entanglement distribution by separable

states and the requirements for the underlying protocol.

• Chapter 7 summarizes this thesis.

5





CHAPTER2
Theory of Non-Classical States of Light

2.1 Quantization of the Electro-Magnetic Field

Quantum states of light show some nonintuitive behavior, which cannot be explained

by a classical description. Therefore, we need a quantum description of the electro-

magnetic field. The derivation of this quantization can be found e.g. in [Ger10].

The quantized electric field operator of an N -mode free space radiation field at the

position r and time t is thereby described by

Ê(r, t) = i

N∑
k=1

(
~

2ωkε0V

) 1
2

ek

[
âke

i(kr−ωkt) + â†ke
−i(kr−ωkt)

]
, (2.1)

where ~ is the reduced Planck constant h/2π, ωk the angular frequency of the kth

mode, ek the polarization vector, V an arbitrary volume, and k the wave vector of

the kth mode. The bosonic annihilation and creation operators of the kth mode âk
and â†k are defined as

âk =
1

(2~ωk)1/2
[ωkq̂k + ip̂k] ,

â†k =
1

(2~ωk)1/2
[ωkq̂k − ip̂k] ,

(2.2)

with p̂k, q̂k being the canonical position and momentum operator, respectively. They

satisfy the bosonic commutation rule
[
âk, â

†
k′

]
= δkk′ . The energy of the electro-

magnetic field can be expressed in terms of these creation and annihilation operators,

7



Chapter 2: Theory of Non-Classical States of Light

by the Hamiltonian:

Ĥ =
N∑
k=1

~ωk
(
â†kâk +

1

2

)

=
N∑
k=1

~ωk
(
n̂k +

1

2

)
,

(2.3)

where

n̂k = â†kâk (2.4)

represents the photon number operator of the kth mode. Thus, the energy of the

electro-magnetic field can be calculated by the number of photons in each mode

multiplied by the energy of a photon in that mode, plus 1
2
~ωk, which corresponds

to the energy of the vacuum fluctuations in each mode. These vacuum fluctuations

are one of the special properties of quantum mechanics and are, e.g., responsible for

the spontaneous emission that is the basic mechanism underlying lasing processes.

2.2 Quadrature Operators

To describe the quantized field and its states with Hermitian operators (i.e. observ-

ables) we introduce the quadrature operators

X̂k = â†k + âk ,

P̂k = i(â†k − âk) ,
(2.5)

satisfying the commutation relation [Wal10][
X̂k, P̂k

]
= 2i . (2.6)

Using this relation, it can be shown that the Heisenberg uncertainty relation [Ger10]

for quadrature operators reads

Var(X̂) Var(P̂ ) ≥ 1 , (2.7)

where Var(Â) = 〈Â2〉 − 〈Â〉2 is the variance of an operator Â. The mean 〈Â〉 of Â

can be defined with the help of the density operator, which will be introduced in

the following section.

The quadrature operators have eigenstates |Xk〉 and |Pk〉, which are called quadra-
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2.3 Density Operator

ture states [Leo08],

X̂k|Xk〉 = Xk|Xk〉 ,
P̂k|Pk〉 = Pk|Pk〉 ,

(2.8)

with continuous eigenvalues Xk, Pk ∈ R. These quadrature states are orthonormal

〈Xk|X ′k〉 = δ(Xk −X ′k) , 〈Pk|P ′k〉 = δ(Pk − P ′k) (2.9)

and complete ∫
|Xk〉〈Xk|dXk =

∫
|Pk〉〈Pk|dPk = 1 . (2.10)

2.3 Density Operator

A quantum system is fully described by its density operator [Ger10]

ρ̂ =
∑
i

pi|Ψi〉〈Ψi| (2.11)

on a Hilbert space H, where pi is the probability of finding the system in the state

|Ψi〉 with
∑

i pi = Tr ρ̂ = 1. For pure states Tr ρ̂ = Tr ρ̂2 = 1, while for mixed states

Tr ρ̂2 ≤ 1. Tr ρ2 is called the purity of a quantum system. Since all eigenvalues of

the density operator are real and positive (ρ̂ ≥ 0), the density operator is positive

semi-definite.

With the density operator we can calculate the mean of an operator Â, as this

value must be the average of all expectation values 〈Ψi|Â|Ψi〉 for each state |Ψi〉
weighted with the probability pi of the system being in the state |Ψi〉 [Leo08]

〈Â〉 =
∑
i

pi〈Ψi|Â|Ψi〉

= Tr ρ̂Â .

(2.12)

2.4 Wigner Function

Any density operator as a description of a quantum system has a phase space repre-

sentation. One example of such a representation is the Wigner function, introduced

by Eugene Wigner in 1932 [Wig32], which is a quasi probability distribution.

For one mode, the Wigner function for a phase space distribution reads

W (X,P ) =
1

2π~

∫
exp(

iPx

~
)〈X − x

2
|ρ̂|X +

x

2
〉dx (2.13)

9



Chapter 2: Theory of Non-Classical States of Light

[Sch01]. The Wigner function is normalized∫ ∫
W (X,P )dXdP = 1

and for Hermitian operators ρ̂ it is real

W ∗(X,P ) = W (X,P ) . (2.14)

The marginal distributions ∫
W (X,P )dP = 〈X|ρ̂|X〉 ,∫
W (X,P )dX = 〈P |ρ̂|P 〉 ,

(2.15)

retrieved by a projection of the Wigner function onto one of the quadrature axes,

give us the amplitude and phase probabilities, respectively.

The Wigner function can also have negative values. It is from this reason that

it is called a quasiprobability distribution. For Gaussian states, which are used

throughout this thesis, the distribution will be positive everywhere.

With the help of the Wigner function we can illustrate states of light and easily

show their special properties in phase space. Some of these special properties will

be discussed in the following sections.

2.5 Fock States

One possible basis to describe quantum states of lights are the so called Fock states,

named after V. A. Fock. Since they are defined as the eigenstates |nk〉 of the photon-

number operator n̂k (Eq. 2.4)

n̂k|nk〉 = nk|nk〉 , (2.16)

Fock states have a perfectly defined photon number, but a completely undefined

phase. With the fundamental relations

âk|nk〉 =
√
nk|nk − 1〉 ,

â†k|nk〉 =
√
nk + 1|nk + 1〉 ,

(2.17)

it becomes clear why âk and â†k are called the annihilation and creation operator,

respectively – âk annihilates a photon from the kth mode of the field, while â†k

10



2.5 Fock States

creates a photon in this mode. A Fock state can be obtained by applying the

creation operator nk times to the vacuum state |0〉

|nk〉 =
â†nk

k√
nk!
|0〉 . (2.18)

The vacuum state |0〉 has a number of special properties: it contains zero photons

(i.e. the mean photon number is zero) but its variances Var(X̂)0 = Var(P̂ )0 = 1,

thus minimizing Heisenberg’s uncertainty relation. This is the reason why states

that minimize the Heisenberg uncertainty relation are called vacuum noise limited.

The Wigner function of a vacuum state can be found in Fig. 2.1 (a).

A notable consequence of vacuum fluctuations is that they couple into quantum

optic experiments, whenever there are open ports or optical loss, and therefore have

to be taken into account. One can see this e.g. in Subsection 2.9.2, where the

generation of entanglement by overlapping a vacuum state with a squeezed state

(cf. Sec. 2.7) at a beam splitter is derived.

(a) (b)

Figure 2.1: Wigner functions and their marginal distribution of (a) a vacuum state, and
(b) a coherent state. The figure illustrates the fact that a coherent states are displaced
vacuum states.
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Chapter 2: Theory of Non-Classical States of Light

2.6 Coherent States

Another concept for describing quantum states are the coherent states as eigenstates

of the annihilation operator âk

â|α〉 = α|α〉 . (2.19)

They were introduced by R. J. Glauber [Gla63] and are composed by a vacuum

state, which is displaced by a coherent amplitude α in phase space. Therefore, we

introduce the displacement operator [Leo08]

D̂(α) = eαâ
†
k−α

∗âk , (2.20)

which creates a coherent state, when it is applied to a vacuum state

|α〉 = D̂(α)|0〉 . (2.21)

Coherent states also minimize Heisenberg’s uncertainty relation, i.e. Var(X̂) =

Var(P̂ ) = 1. In the Fock basis coherent states are defined as

|α〉 = e−
1
2
|α|2

∞∑
n=0

αn√
n!
|n〉

= e−
1
2
|α|2

∞∑
n=0

αn

n!

(
â†
)n |0〉 , (2.22)

and have a Poissonian photon statistic

Pn = |〈n|α〉|2 = e−|α|
2 |α|2n

n!
. (2.23)

The Wigner function for a coherent state |α〉 = |1
2
(x+ ip)〉 is

W (X,P ) =
1

2π
exp

(
−(X − x)2

2
− (P − p)2

2

)
. (2.24)

Figure 2.1 shows the Wigner functions of a vacuum state and a coherent state,

which illustrates again that coherent states are displaced vacuum states. Besides

the Wigner function the probability distributions of the X and P quadratures are

depicted by projecting the Wigner function onto the respective quadrature.
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2.7 Squeezed States

2.7 Squeezed States

As we have already seen, vacuum states and coherent states are minimum uncer-

tainty states according to Heisenberg’s Uncertainty Principle. Moreover, their fluc-

tuations are equally distributed in all quadratures. In contrast to this, the noise of

squeezed states drops below the vacuum noise in one quadrature, while it is larger

in the orthogonal quadrature to fulfill Heisenberg’s Uncertainty Principle. We in-

troduce the squeezing operator [Ger10]

Ŝ = exp

[
ξ

2
(â2 − â†2)

]
, (2.25)

where ξ = reiφ with the squeezing parameter r ≥ 0 and the squeezed quadrature

angle 0 ≤ φ ≤ 2π. With an increasing squeezing parameter r, the variance in the

squeezed quadrature becomes less, while the corresponding variance in the orthog-

onal quadrature increases. The variances of an amplitude-squeezed state (φ = 0)

read
Var(X̂) = e−2r < 1 ,

Var(P̂ ) = e2r > 1 .
(2.26)

Thus, the corresponding noise distribution becomes an ellipse in phase space.

We obtain a squeezed vacuum state by applying the squeezing operator to a

vacuum state

|Ψ〉 = Ŝ(ξ)|0〉 (2.27)

and a displaced squeezed vacuum state by additionally applying the displacement

operator cf. 2.20

|Ψ〉 = D̂(α)Ŝ(ξ)|0〉 . (2.28)

Throughout this thesis we will deal with squeezed vacuum states of light.

A special property of squeezed states is that photons are only generated in pairs.

This behavior can be seen in the photon number statistic [Leo08]

Pn =

{(
n
n/2

)
1

cosh(r)

(
1
2

tanh(r)
)n
, for n even

0 , for n uneven.
(2.29)

It can also be shown that these photon pairs are entangled [Hag10b].

The Wigner function for a squeezed state is given by

W (X,P ) =
1

2π
exp

(
−(X − x)2

2
e2r − (P − p)2

2
e−2r

)
. (2.30)
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Chapter 2: Theory of Non-Classical States of Light

Fig. 2.2 depicts this Wigner function and its marginal distributions.

X quadrature

4
3

2
1

0
1

2
3

P quadrature

4
3

2
1

0
1

2
3

Figure 2.2: Wigner function and its marginal distributions of a squeezed vacuum state.
In the P quadrature the noise drops below the vacuum noise, while in the X quadrature
the noise increases.

2.7.1 Squeezed States and Optical Loss

The influence of loss on squeezed states of light is crucial in all experiments accom-

plished for this thesis, since optical loss introduces vacuum noise and thus decrease

the squeezing degree. On the one hand we want reduce optical loss as much as

possible to measure highly squeezed states of light and on the other hand a specific

amount of loss is required to implement the protocol for distributing entanglement

by separable states. Therefore, we will have a closer look on the influence of optical

loss on squeezing in this subsection.

The optical loss l which a squeezed light field asqz experiences in an optical setup

can be represented by an additional beam splitter with amplitude reflectivity
√
l

and transmissivity
√

1− l. The resulting field (here: the outgoing field) is given by

â1 =
√

1− lâsqz +
√
lâvac , (2.31)
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Figure 2.3: Influence of optical loss on the squeezing strength. For 3 dB (dashed
lines), 6 dB (dotted lines), and 10 dB (solid lines) initial squeezing the influence of optical
loss is depicted. Squeezing (red) and anti-squeezing (blue) strengths are affected differently
by optical loss. For more than 50% loss the squeezing strength cannot exceed −3 dB.

where âvac denotes the vacuum input. Thus, the variance of an arbitrary quadrature

reads

Var(X̂1(ϑ)) = (1− l) Var(X̂sqz(ϑ)) + lVar(X̂vac) . (2.32)

In Fig. 2.3 the influence of optical loss on the squeezing strength is illustrated, where

we used the convenient logarithmic scale for the variances via the relation

VardB = 10log10(Var) . (2.33)

The figure shows that the squeezed quadrature is much more influenced by optical

loss than the anti-squeezed quadrature. Furthermore, it depicts the fact that with

an optical loss of more than 50% the squeezing strength cannot exceed -3 dB.

2.8 The Class of Gaussian States

Throughout this thesis we will deal with Gaussian states of light, i.e. states of light

that we can describe by continuous variables (CV) with Gaussian statistics. The
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Chapter 2: Theory of Non-Classical States of Light

Wigner function of Gaussian states is completely determined by the second order co-

variance matrix V . To describe this matrix, we introduce the 2N−dimensional vec-

tor of quadratures γ̂ = (X̂1, P̂1 . . . , X̂N , P̂N)T and can therefore express the canonical

commutation rule cf. Eq. 2.6 in the compact form

[γj, γk] = 2iΩjk (j, k = 1, 2, . . . , N) (2.34)

with

Ω =
N⊕
i=1

J =

J . . .

J

 , J =

(
0 1

−1 0

)
(2.35)

as the symplectic matrix. With the quadrature vector γ the element Vjk of the

covariance matrix V is defined by

Vjk =
1

2
〈∆γ̂j∆γ̂k + ∆γ̂k∆γ̂j〉

=
1

2
〈γ̂j γ̂k + γ̂kγ̂j〉 − 〈γ̂j〉〈γ̂k〉 ,

(2.36)

with ∆γ̂j = γ̂j − 〈γ̂j〉. Note that the variances of the quadrature operators can be

found as the diagonal elements of the covariance matrix, i.e. Vii = Var(γi). The

covariance matrix is a 2N × 2N real and symmetric matrix, which satisfies the

uncertainty principle [Sim94]

V + iΩ ≥ 0 . (2.37)

This equation is equivalent to the property that all eigenvalues of the matrix are

non-negative and thus, that the covariance matrix is positive definite V > 0.

2.9 Gaussian Entangled States

Entanglement was first considered by Einstein, Podolsky, and Rosen (EPR) in their

famous paper about the completeness of quantum mechanics [Ein35]. They demon-

strated, with the example of an entangled system, that the description of quantum

mechanics cannot be complete if the concept of local realism holds. In Schrödinger’s

answer to this paper [Sch35] he introduced the term entangled state for a state that

cannot be separated into factorized terms. Although Schrödinger did not believe

in the local hidden variable theory suggested by EPR, he also could not believe in

nonlocality. However, in 1964 Bell demonstrated [Bel64] that there are correlations

of quantum states, which cannot be explained by any local hidden variable theory

and thus the concept of local realism had to be dismissed. Since 1935 the term en-
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2.9 Gaussian Entangled States

tanglement has not lost its magic and its potential for fundamental discussions, but

nowadays we understand entanglement more as a resource for quantum information

rather than as a mystery.

Mathematically a system consisting of N modes is entangled, if the total density

operator ρ̂ cannot be written as a mixture of its product states [Wee12]

ρ̂ =
∑
i

piρ̂
1
i ⊗ . . .⊗ ρ̂Ni , (2.38)

with
∑

i pi = 1. In the following we will introduce two more practical entanglement

criteria, which can be easily applied to our experiments. In a next step it is shown

how entanglement can be generated utilizing a squeezed vacuum state and a beam

splitter.

2.9.1 Entanglement Criteria

Inseparability Criterion

A particular useful inseparability criterion was introduced by Duan et al. in the

year 2000 [Dua00] and provides a sufficient criterion for entanglement of bipartite

states in the continuous variable regime. For Gaussian states it is also a necessary

condition for inseparability.

We follow the calculations in [Dua00] and consider a bipartite state consisting of

the two modes A and B. We introduce the operators

Û = |a|X̂A −
1

a
X̂B ,

V̂ = |a|P̂A +
1

a
P̂B ,

(2.39)

where a 6= 0 is a real arbitrary number. If the modes A and B experience the same

amount of loss, |a| is equal to 1, and it gets larger, if the amount of losses becomes

different. Due to the inseparability criterion the modes A and B are entangled, if

I = Var(Û) + Var(V̂ ) ≤ 2a2 +
2

a2
. (2.40)

For |a| = 1, which is usually the case in the experiments of this thesis, this inequality

reduces to
I = Var(Û) + Var(V̂ )

= Var(XA −XB) + Var(PA + PB)

≤ 4 .

(2.41)
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Chapter 2: Theory of Non-Classical States of Light

When we want to refer to the inseparability criterion in the following, we will use

the term Duan value for I. This criterion is somehow intuitive, since it is directly

obvious that when vacuum states are used for the two modes with completely un-

correlated noise, the Duan values equals the threshold 4.

PPT-criterion

If we want to investigate the entanglement properties of a state with more than two

modes, we need another criterion. A. Peres and P. Horodecki introduced a criterion

for separability [Per96, Hor97], which was proved by R. Simon to be necessary and

sufficient for all bipartite Gaussian states [Sim00] and to be necessary and sufficient

for states with 1×N modes by R. Werner and W. Wolf [Wer00]. Since we will check

if a covariance matrix is still positive under partial transposition, this criterion is

called PPT-criterion (sometimes it is also called Peres-Horodecki-criterion due to its

original inventors). In the following we will restrict ourselves to the tripartite case

with the quadrature vector ξ = (X̂A, P̂A, X̂B, P̂B, X̂C , P̂C)T , the covariance matrix

V , and the bipartite splittings A|BC, B|AC, and C|AB.

In the continuous variable regime the partial transpose corresponds to a mirror

reflection in the Wigner phase space [Sim00] or, equivalently, to the transformation

that changes the sign of the ith mode’s P coordinate [Gie01, Mǐs09]

V 7→ V (Ti) = RiV R
T
i i = A,B,C (2.42)

with the diagonal matrices RA = σz⊕1⊕1, RB = 1⊕σz⊕1, and RC = 1⊕1⊕σz,
where σz is the Pauli diagonal matrix σz = diag(1,−1). To check if a state is

separable, the new matrix V (Ti) has to fulfill Eq. 2.37

V (Ti) + iΩ ≥ 0 . (2.43)

However, if the lowest eigenvalue is negative, the state is inseparable or entangled

with respect to the i|jk splitting (i, j, k ∈ A,B,C).

Instead of the procedure described above, we can also investigate the symplectic

eigenvalues of the covariance matrix to check if the state is separable or inseparable.

We take advantage of the fact, that for any partial transposed matrix V (Ti) there is

a real, symplectic 6×6 matrix S, satisfying SΩST = Ω and introducing the diagonal

form

SV (Ti)ST = diag(sA, sA, sB, sB, sC , sC) (2.44)

with the symplectic eigenvalues si, i ∈ A,B,C. With this symplectic matrix we

can say, that a state is separable with respect to the i|jk splitting, if and only if

si ≥ 1 ∀i. Further information for this symplectic transposition can be found in
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vacuum 
state

squeezed 
vacuum 

50/50 BS

Figure 2.4: Entanglement generation with a squeezed vacuum state and a vac-
uum state at a balanced beam splitter (BS). The blue blurred shapes illustrate the
noise of the input states (squeezed vacuum and vacuum state). After the superposition at
the balanced beam splitter, the noise of resulting modes (light blue) is composed of the
noise of the two input states.

[Mǐs09, Vid01]. Within this thesis we will call the lowest symplectic eigenvalue the

PPT value, to have a measure for the inseparability of a certain state.

2.9.2 Generation of Gaussian Entanglement

Entanglement can be generated in several ways, e.g. in optical parametric oscilla-

tors operated below or above threshold. In such a device one photon decays into

two photons, which are called signal and idler due to historical reasons. These

two outgoing photons are entangled, since they are generated simultaneously and

have to conserve energy and momentum. Experiments demonstrating this kind of

entanglement generation can be found in [Kwi99, Vil05, Sam11] for entanglement

in optical parametric oscillators above threshold and in [Ou92, Bou97, How04] for

entanglement in optical parametric amplifiers below the threshold.

In contrast to these experiments, in this thesis we generated entanglement by

sending a squeezed state at a balanced beam splitter, whose two output modes are

then entangled. This kind of entanglement generation will be investigated in the

following subsection.

Figure 2.4 shows the principle of the entanglement generation with a squeezed
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Chapter 2: Theory of Non-Classical States of Light

state and a beam splitter. Since we use a vacuum state as a second input of the beam

splitter, this kind of entanglement is called v-class entanglement, in contrast to the

scheme utilizing two squeezed states overlapped at a beam splitter, which is called

s-class entanglement [DiG07] and is demonstrated e.g. in [Fur98, Bow03, Ste13].

The covariance matrix of the total system before the beam splitter can be written

as

V =

(
V1 0

0 V2

)
=


e−2r 0 0 0

0 e2r 0 0

0 0 1 0

0 0 0 1

 , (2.45)

where r denotes the squeezing parameter of the squeezed mode. It is obvious from

the Duan criterion that this two mode state is separable, since

I = Var(X1 −X2) + Var(P1 + P2)

= e−2r + e2r︸ ︷︷ ︸
≥2

+2 ≥ 4 . (2.46)

The beam splitter transformation for a two mode system is given by [Wee12]

SBS(τ) =


√
τ 0

√
1− τ 0

0
√
τ 0

√
1− τ

−
√

1− τ 0
√
τ 0

0 −
√

1− τ 0
√
τ

 , (2.47)

where τ ∈ [0, 1] denotes the beam splitter’s power transmissivity. We restrict our-

selves to the case of a balanced beam splitter with τ = 1/2. If we apply this beam

splitter matrix to the covariance matrix, we get the new covariance matrix for the

two modes behind the balanced beam splitter

VBS = SBS(1/2)V SBS(1/2)T

=


1
2
(1 + e−2r) 0 1

2
(1− e−2r) 0

0 1
2
(1 + e2r) 0 1

2
(1− e2r)

1
2
(1− e−2r) 0 1

2
(1 + e−2r) 0

0 1
2
(1− e2r) 0 1

2
(1 + e+2r)

 .
(2.48)

For an overlap of a squeezed vacuum state and a vacuum at a balanced beam

splitter and without considering any loss, the Duan value for the two-mode state
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2.9 Gaussian Entangled States

behind the beam splitter reads

I = Var(X ′1 −X ′2) + Var(P ′1 + P ′2)

= VarX1 + VarX2 − 2Cov(X1X2) + VarP1 + VarP2 + 2Cov(P1P2)

= 2(e−2r + 1) < 4 for r > 0 ,

(2.49)

where Cov(xy) denotes the covariance of x and y, which is defined by the covariance

matrix Vik (Eq. 2.36). Equation 2.49 shows that the two-mode state behind the

beam splitter is always entangled, if a squeezed and a vacuum state are used as the

two input states.
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CHAPTER3
Nonlinear Processes

Nonlinear optical processes are the basis for all experiments demonstrated within

this thesis, since only these processes can transform classical states of light into non-

classical states of light. They occur when materials show special properties due to

the presence of intense light. Usually only laser light has sufficient power for starting

nonlinear processes. With an intense laser field the polarization of a medium can

develop new frequencies, which can act as sources for new frequency components of

the electro-magnetic field. Such nonlinear behavior is for example responsible for

second harmonic generation, which provides the pump field for the other nonlinear

processes within the experiments conducted for this thesis.

In this chapter these nonlinear processes are described in detail. Prior to the

description of specific nonlinear processes we will introduce some basic concepts of

nonlinear optics. In Section 3.2 we start with the sum-frequency generation process

for up-converting squeezed and entangled fields from 1550 nm to 532 nm utilizing a

pump field at 810 nm (cf. Chapter 5). Its quantum description follows in Section

3.3. Section 3.4 deals with difference frequency generation and optical parametric

oscillation for generating the twin beams at 1550 nm and 810 nm. The quantum

description of optical parametric amplification, which generates squeezed vacuum

states of light for use in the entanglement distribution experiment (cf. Chapter 6)

and the quantum up-conversion experiments (cf. Chapter 5), is given in Section 3.5.

At the end of this chapter in Section 3.6 the principle of phase-matching and ways

for achieving it are introduced.
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Chapter 3: Nonlinear Processes

3.1 Basic Concepts

In linear optics the dipole moment per unit volume, i.e. the polarization P (t), is

proportional to the strength E(t) of an applied optical field linearly, and can be

described by

P (1)(t) = ε0χ
(1)E(t) , (3.1)

where χ(1) denotes the linear susceptibility and ε0 is the dielectric permittivity. If,

however, the incident light power is sufficiently large, the polarization vector has to

be expressed by a power series of the field strength E(t) as

P (t) = ε0[χ(1)E(t) + χ(2)E2(t) + χ(3)E3(t) + . . . ]

= P (1)(t) + P (NL)(t) .
(3.2)

Here, χ(2) and χ(3) are the second- and third-order susceptibility and typically on the

order of 10−11 and 10−20, respectively. All higher-order susceptibilities χ(N) are even

orders of magnitude smaller and do thus not play a role within the laser intensities

we can achieve in our laboratories.

As soon as the response of the material due to an electric field is nonlinear, ad-

ditional field components are generated. For the second-order nonlinear interaction

this can be easily seen when a single-frequency field E(t) = E0e−iωt + c. c. is used.

The second-order polarization then reads

P (2) = 2ε0χ
(2)[E0E

∗
0 + E2

0e−2iωt] + c. c. , (3.3)

with c. c. denoting the complex conjugate, and is responsible for the generated field

at twice the frequency. This process is called Second Harmonic Generation (SHG)

and is used within for providing the pump field for two devices: the optical paramet-

ric oscillator, generating the 810 nm and 1550 nm field, and the optical parametric

amplifier, generating squeezed states of light.

When more than one frequency is injected, the second-order interaction also leads

to the generation of sum or difference frequencies. These processes will be derived

in the next sections.

3.2 Sum-Frequency Generation in Classical

Optics

Sum-frequency generation is at the heart of the quantum up-conversion experiment

described in Chapter 5. There, a strong pump field at 810 nm is overlapped with
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3.2 Sum-Frequency Generation in Classical Optics

a squeezed field at 1550 nm, to generate a squeezed field at the sum-frequency cor-

responding to 532 nm. In the following we will calculate the solution for the wave

equations of this process with exactly this boundary condition, that the pump field

is strong and thus undepleted compared to the signal field. The section follows the

calculation presented in [Boy08].

One can derive the optical wave equation by using Maxwell’s equation in matter

and assuming a medium without sources and free currents

∇2E − 1

c2

∂2E

∂t2
=

1

ε0c2

∂2P

∂t2
. (3.4)

The wave equation can be simplified by assuming a lossless, dispersionless, isotropic

medium

∇2E − ε(1)

c2

∂2E

∂t2
=

1

ε0c2

∂2P (NL)

∂t2
, (3.5)

where ε(1) = 1 + χ(1) denotes the relative permittivity and P (NL) is the nonlinear

polarization vector introduced in Eq. 3.2. However, most nonlinear media are dis-

persive. That is the reason why each frequency component ωN with N = 1, 2, . . .

has to be treated separately to obtain the wave equation

∇2EN −
ε(1)(ωN)

c2

∂2EN

∂t2
=

1

ε0c2

∂2P
(NL)
N

∂t2
, (3.6)

where the right-hand side of the equation shows the nonlinear response of the

medium, which acts as a source for new radiating frequencies. Equation 3.6 will

now be used for deriving the sum-frequency generation.

Figure 3.1 shows the principle of the sum-frequency generation. Due to the non-

linear interaction a pump field at frequency ω2 and a signal field at ω1 generate a

field at the sum frequency ω3. We assume monochromatic, continuous-wave input

beams with an angle of incidence of zero degree. The solution for the sum-frequency

component of Eq. 3.6 propagating in the z-direction is given by

E3(z, t) = A3(z)ei(k3z−ω3t) + c. c. , (3.7)

with

k3 =
n3ω3

c
, n2

3 = ε(1)(ωe) , (3.8)

and A3(z) is the amplitude of the field at ω3, where we assumed A3(z) to be a

slowly varying function of z. This assumption is called the slowly varying amplitude
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(a) (b)

ω3

ω1

ω2

nonlinear 
crystal

ω2 ω3

ω1

Figure 3.1: Principle of sum-frequency generation. (a) A strong pump field at
frequency ω2 interacts with a signal field at ω1 in a nonlinear medium. This leads to the
sum-frequency generation of ω3 = ω1 + ω2. (b) The corresponding energy level diagram.

approximation, and is valid whenever the inequality∣∣∣∣ d2A3

dz2

∣∣∣∣� ∣∣∣∣k3
dA3

dz

∣∣∣∣ (3.9)

holds. Since we will use a strong pump field at ω2 in comparison to the signal field

at ω1, the amplitude A2 is unaffected by the interaction and we can use A2 as a

constant. This leads us to the coupled-amplitude equations

dA1

dz
= K1A3e−i∆kz , (3.10a)

dA3

dz
= K3A1ei∆kz , (3.10b)

where we used

K1 =
2iω2

1deff

k1c2
A∗2 , K3 =

2iω2
3deff

k3c2
A2 , (3.11)

with the effective susceptibility deff = χ(2)/2 and the wave vector mismatch

∆k = k1 + k2 − k3 . (3.12)

Since the frequencies ω1 and ω3 are coupled to each other, we expect them to display

the same spatial variation, and assume the solution for the Eqs. 3.10a and 3.10b to
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3.2 Sum-Frequency Generation in Classical Optics

be of the form

A1(z) = (F eigz +Ge−igz)e−i∆kz/2 , (3.13a)

A3(z) = (Ceigz +De−igz)ei∆kz/2 , (3.13b)

where the rate of the fields’ spatial variation is denoted by g and the values of the

constants C,D, F, and G depend on the boundary conditions. In order to find an

appropriate expression for these constants, we substitute Eqs. 3.13a and 3.13b into

Eq. 3.10a and obtain

(igF eigz − igGe−igz)e−i∆kz/2 − 1

2
i∆k(F eigz +Ge−igz)e−i∆kz/2

= (K1Ceigz +K1Deigz)e−i∆kz/2 .
(3.14)

This equation has to hold for all values of z. Therefore, the terms of the equa-

tion depending on eigz and e−igz have to satisfy the equality separately, and their

coefficients have to be related by

F (ig − 1

2
i∆k) = K1C , (3.15)

−G(ig +
1

2
i∆k) = K1D . (3.16)

Like before we substitute Eqs. 3.13a and 3.13b into Eq. 3.10b and obtain

(igCeigz − igDe−igz)ei∆kz/2 +
1

2
i∆k(Ceigz +De−igz)ei∆kz/2

= (K3F eigz +K3Geigz)ei∆kz/2 .
(3.17)

The relation which the coefficients have to satisfy this time is given by

C

(
ig +

1

2
i∆k

)
= K3F , (3.18)

−D
(
ig − 1

2
i∆k

)
= K3G . (3.19)

With Eqs. 3.15 and 3.18 we obtain a condition for F and C in matrix form(
i(g − 1

2
∆k) −K1

−K3 i(g + 1
2
∆k)

)(
F

G

)
= 0 . (3.20)

In order to solve this set of equations, the determinant of the matrix has to vanish,
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Chapter 3: Nonlinear Processes

i.e.

g =

√
−K1K3 +

1

4
∆k2 . (3.21)

For a final solution of the wave equations 3.10a and 3.10b for the sum-frequency

generation we assume that the initial input fields A1(0) and A3(0) are known and

we find with Eqs. 3.13a and 3.13b the additional relations for the coefficients

A1(0) = F +G , (3.22)

A3(0) = C +D . (3.23)

Now we have four and thus sufficient relations for the four coefficients C,D, F, and

G, thus, we can give the solution for the wave equations by

A1(z) =

[
A1(0) cos gz +

(
K1

g
A3(0) +

i∆k

2g
A1(0)

)
sin gz

]
e−i∆kz/2 , (3.24a)

A3(z) =

[
A3(0) cos gz +

(
−i∆k

2g
A3(0) +

K3

g
A1(0)

)
sin gz

]
ei∆kz/2 . (3.24b)

Usually there is no sum-frequency field at the beginning of the process, i.e. A3(0) = 0

and Eq. 3.24b reduces to

A3(z) =
K3

g
A1(0) sin gzei∆kz/2 . (3.25)

The intensity of the generated wave at ω3 is then given by

|A3(z)|2 = |A1(0)|2 |K3|2

g2
sin2 gz . (3.26)

It is important to note that with increasing ∆k, i.e. with increasing wave vector

mismatch, the maximum intensity of the generated field is decreased and the oscil-

lation frequency of the generation process is increased. This behavior is shown in

Fig. 3.2, where the intensity of the generated sum-frequency field is depicted with

respect to the length of the nonlinear medium for different ∆k. For a perfect wave

vector matching (∆k = 0) the intensity reaches a maximum. After the maximum

is reached at a certain penetration depth, the converted field is back-converted to

the initial frequencies ω1 and ω2 until the whole field is back-converted and the

conversion process starts again.

28



3.3 Quantum Up-Conversion via Sum-Frequency Generation

In
te

ns
ity

 |A
3|

2  [a
.u

.]

z [a.u.]

∆k = 0  
∆k = 0.2
∆k = 0.5

Figure 3.2: Spatial variation of the sum-frequency field. The intensity of the
generated field is plotted versus the length of the nonlinear medium for different wave
vector mismatches ∆k. For increasing ∆k the maximum intensity decreases and is reached
earlier.

3.3 Quantum Up-Conversion via Sum-Frequency

Generation

In the last section we treated the sum-frequency generation process in a classical

manner. In the following section we will show that the sum-frequency generation

process utilizing an undepleted pump field is highly suited for the up-conversion

of quantum states, since the quantum properties of a weak signal field at ω1 are

maintained when the field is converted to a field at ω3. The presented calculations

follow [Kum90].

We start our consideration of quantum sum-frequency generation with the Hamil-

tonian describing this process

ĤSFG = i~χ′(â1â2â
†
3 − â

†
1â
†
2â3) , (3.27)

where ~ denotes the reduced Planck constant and χ′ is the coupling constant of

the interaction and is proportional to the second-order susceptibility χ(2) of the

nonlinear material. Since we assume a strong and undepleted pump field at ω2 the
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Hamiltonian reduces to

ĤSFG = i~χ(â1â
†
3 − â

†
1â3) , (3.28)

with χ = χ′〈â2〉. The time evolution of this process can be obtained by using

Heisenberg’s equation of motion

dâ

dt
=
i

~

[
Ĥ, â

]
+
∂â

∂t
. (3.29)

This yields the coupled wave equations for â1 and â3

dâ1

dt
= −χâ3 ,

dâ3

dt
= χâ1 , (3.30)

where we exploit the fact that â1 and â3 have no explicit time dependence in the

interaction picture, i.e. ∂â1/∂t = ∂â3/∂t = 0. The coupled wave equations are

solved by
â1(t) = â1(0) cosχt− â3(0) sinχt ,

â3(t) = â3(0) cosχt+ â1(0) sinχt .
(3.31)

Since

â3(t = π/2χ) = â1(0) and â1(t = π/2χ) = −â3(0) . (3.32)

this solution directly shows that at a certain time t = π/2χ, which depends on the

power of the pump field, the quantum state at ω1 is completely converted to a quan-

tum state at ω3, while its coherence properties are completely preserved. Thus, we

can use the process of sum-frequency generation to convert squeezed and entangled

states from the infrared wavelength regime to the visible wavelength regime, as will

be shown in Chapter 5.

3.4 Difference Frequency Generation and Optical

Parametric Oscillation in Classical Optics

For providing the pump field for the sum-frequency generation and for the generation

of squeezed and entangled states at 1550 nm, we need strong coherent fields at 810 nm

and 1550 nm. These fields were generated by an optical parametric oscillator (OPO).

The principle of an OPO is depicted in Fig. 3.3 (a). It is based on the process of

difference frequency generation (DFG), which corresponds to the inverse process of

SFG described in the sections before. A photon at frequency ω3 decays into two

photons at the frequencies ω1 and ω2. The nonlinear crystal, which is responsible

for the DFG, is thereby placed inside a cavity (cf. Fig. 3.3 (b)) to achieve parametric

amplification or oscillation for the generated fields. In principle, a strong pump field
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(a) (b)

nonlinear 
crystal

ω3

ω1

ω3
ω2 ω1

ω2

mirror mirror

Figure 3.3: Principle of optical parametric oscillation. a) Energy level diagram of
optical parametric oscillation. b) Setup of an OPO, where a nonlinear crystal is placed
inside a cavity.

and vacuum fluctuations at ω1 and ω2 are sufficient to initiate this process.

If we just want to consider this device in a classical way, i.e. when it is operated

far above the threshold and provides strong coherent states, it is sufficient and easier

to calculate the basic process of difference frequency generation, which is illustrated

in Fig. 3.4. Thereby, in addition to the initial pump field at ω3, the light field at ω1

is also injected and due to the nonlinear process, the light fields at ω1 and at the

difference frequency ω2 = ω3 − ω1 are enhanced and generated, respectively.

In the following we will treat the DFG classically like the SFG before (cf. Sec. 3.2)

and see that the threshold for starting the oscillation, when the nonlinear medium is

placed inside a cavity, depends on the pump power at ω3. Again we follow [Boy08].

After illustrating the classical DFG, we will see that if we consider the process in

the degenerate case (ω1 = ω2) and in a quantum manner, this device can generate

squeezed states of light.

As before, we assume that the pump field (in this case at ω3) is strong and

undepleted by the nonlinear interaction, i.e. the amplitude A3 remains constant.

Furthermore, we set the boundary conditions

A2(0) = 0 , A1(0) arbitrary , (3.33)

i.e. at the beginning there is no field at ω2. For this classical treatment we start

with a non-vanishing light field at ω1. Similar to Section 3.2 we obtain the coupled
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(a) (b)

nonlinear 
crystal

ω3

ω1

ω3

ω2 ω1

ω2

ω1

Figure 3.4: Principle of difference frequency generation. a) Energy level diagram
of DFG. b) For DFG the field at frequency ω1 is also sent to the nonlinear crystal. A
cavity is not necessarily required.

wave equations
dA1

dz
=

2iω2
1deff

k1c2
A3A

∗
2ei∆kz , (3.34a)

dA2

dz
=

2iω2
2deff

k2c2
A3A

∗
1ei∆kz , (3.34b)

with the wave vector mismatch

∆k = k3 − k1 − k2 . (3.35)

With the quantities

g =
√
κ1κ∗2 − (∆k/2)2 , κi =

2iω2
i deffA3

kic2
(3.36)

the solution of the coupled wave equations is given by

A1(z) =

[
A1(0)

(
cosh gz − i∆k

2g
sinh gz

)
+
κ1

g
A∗2(0) sinh gz

]
ei∆kz/2 , (3.37a)

A2(z) =

[
A2(0)

(
cosh gz − i∆k

2g
sinh gz

)
+
κ2

g
A∗1(0) sinh gz

]
ei∆kz/2 . (3.37b)

If we additionally use the boundary conditions in Eq. 3.33, these equations simplify

to

A1(z) =

(
cosh gz − i∆k

2g
sinh gz

)
A1(0)ei∆kz/2 , (3.38a)
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Figure 3.5: Spatial variation of the generated fields from difference frequency
generation. The intensity of the generated field grows exponentially with increasing
penetration depth z in the nonlinear medium.

A2(z) =

(
κ2

g
A∗1(0) sinh gz

)
ei∆kz/2 . (3.38b)

For large z both fields grow exponentially, which can be seen in Fig. 3.5, where the

intensity of the fields are plotted versus the length of the nonlinear medium.

In the next step we consider the case when the nonlinear medium is placed inside a

cavity and can thus provide oscillating fields at ω1 and ω2. The process (and also the

device) is then called optical parametric oscillation (optical parametric oscillator,

respectively) or in short OPO. In the following we want to derive a formula for

the threshold power which is needed to generate oscillating fields at ω1 and ω2.

Therefore, we have to describe the nonlinear crystal with length L inside a cavity

(cf. Fig. 3.3) with mirror reflectivities R1 and R2. For simplicity, the length of the

cavity equals the length of the nonlinear crystal.

Generally, one can say that the fields within the cavity have to replicate themselves

after each round trip to achieve optical parametric oscillation. If we also assume

perfect phase matching (∆k = 0) this condition leads to the equations

A1(0) =

[
A1(0) cosh gL+

κ1

g
A∗2(0) sinh gL

]
(1− l1) , (3.39a)

A2(0) =

[
A∗2(0) cosh gL+

κ∗2
g
A1(0) sinh gL

]
(1− l2) , (3.39b)
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where li = 1 − Rie
−αiL corresponds to the fractional amplitude loss per pass with

αi being the absorption coefficient of the crystal at frequency ωi. These equations

have to be satisfied simultaneously. Thus, the threshold condition can be written as

cosh gL = 1 +
l1l2

2− l1 − l2
. (3.40)

Since we just want to consider the doubly resonant case, we can assume the losses

for the two generated fields to be very low (l1, l2 � 1) and can approximate cosh gL

by 1 + 1
2
g2L2. In this limit, the threshold condition for a doubly resonant oscillator

with perfect phase matching is

g2L2 = l1l2 . (3.41)

Without assuming perfect phase matching (∆k 6= 0) we obtain the threshold condi-

tion

g2L2sinc2(∆kL/2) = l1l2 . (3.42)

When we use the simplified threshold condition Eq. 3.41 and express the pump field

A3 in terms of the intensity [Yar89]

I3 =
1

2

√
ε0n2

3

µ0

A2
3 , (3.43)

we can even obtain an intensity threshold for the pump field at ω3. This threshold

can be written as

Ithr = 8

(
ε0
µ0

)3/2
n1n2n3(1− l1)(1− l2)

ω1ω3l2d2
, (3.44)

with d being the nonlinear coefficient of the nonlinear medium. When the threshold

condition for the OPO is satisfied, it can generally produce any wavelengths which

fit the condition ω1 + ω2 = ω3. For a doubly resonant non-degenerate OPO it is

worth having a closer look at its tuning characteristics. If such a device is used,

oscillation will occur when both modes are simultaneously resonant and can thus

oscillate. That is the reason why a doubly resonant OPO cannot be tuned in a

smooth way. Small fluctuations in the pump frequency, the cavity’s length or the

temperature cause disproportionately large variations in the signal and idler field.

As the cavity modes are not equally spaced (due to the different wavelength of the

signal and idler field and the wavelength depending refractive index) it can happen

that two modes oscillate which are not closest to perfect phase-matching. This

situation is illustrated in Fig. 3.6, where the mode structure and the gain profile

for a doubly resonant OPO are depicted. The oscillation occurs for non-perfect
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∆k = 0oscillation

mode structure of ω1
mode structure of ω2

gain profile

Figure 3.6: Gain profile and mode structure of a doubly resonant OPO. Os-
cillation occurs when both modes are simultaneously resonant. These modes are not
necessarily the closest to perfect phase-matching.

phase-matching. Thus, the OPO does not provide as much power in the signal and

idler mode as it could for a vanishing wave vector mismatch. If one of the cavity’s

parameters is tuned (e.g. the crystal’s temperature or the length), an axial mode

hop occurs and two adjacent modes can oscillate. In Fig. 3.7 (a)–(c) these mode

hops are illustrated. In Fig. 3.7 (d) the situation is slightly different since a variation

of a cavity parameter now leads to a cluster jump.

When a mode hop occurred, the signal resonance frequencies increased, while the

idler resonance frequencies decreased. For a cluster jump the resonance frequencies

move in the opposite direction. To illustrate this behavior Fig. 3.8 shows the mea-

sured wavelength of the outgoing signal field from the OPO used within this thesis

as the crystal temperature is varied. The mode hops lay on the black lines, while

two black lines correspond to two different clusters. One can see, that if the tem-

perature is increased continuously, the outgoing wavelength also increases as long

as it decreases to another cluster. In this manner the wavelength decreases with

increasing temperature if we average over a larger distance.

A detailed description of mode hops and cluster jumps of an OPO can be found

in the paper from Eckhard et al. [Eck91].

For the experiments executed within this thesis we used a doubly resonant OPO
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∆k = 0

oscillationω2 ω1

(a)

∆k = 0

oscillationω2 ω1

(b)

∆k = 0

oscillationω2 ω1

(c)

∆k = 0

oscillationω2 ω1
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Figure 3.7: Mode hops and cluster jumps of an OPO. If a parameter of the cavity
is tuned (e.g. the crystal’s temperature or the cavity’s length), the resonance condition
is changed and the resonance frequencies of ω1 move to the right, while the resonances
of ω2 move to the left. Therefore, modes hops occur from (a)→(b) and (b)→(c). From
(c)→(d) a change of the resonance condition leads to a cluster jump, which results in
larger oscillating frequencies.
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Figure 3.8: Mode hops and cluster jumps of an OPO. The red crosses show the
measured outgoing wavelength of the OPO’s signal field used in this thesis. The black
lines illustrate different clusters. The blue dashed line shows an overall average of the
decreasing wavelength for an increasing temperature. Details can be found in reference
[Sam12].

which is pumped at 532 nm to have a source of highly coherent outputs at 1550 nm

and 810 nm. The OPO can provide these output fields, as the statistical properties

of the pump field are reproduced with little additional noise (theoretically shown in

[Gra68]).
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3.5 Quantum Description of Parametric Down

Conversion

Like before when we considered the SFG process, we now have to look at the quan-

tum description of the DFG process to understand the generation of squeezed and

thus non-classical light fields. For the generation of squeezed vacuum states of

light the OPO is operated below threshold and therefore called optical parametric

amplifier (OPA). Apart from this, the DFG is degenerate, i.e. one pump photon at

frequency ω2 decays in pairs of two signal photons at frequency ω1 = 1
2
ω2. Therefore,

this process is also called degenerate parametric down-conversion. The Hamiltonian

for this process is given by [Ger10]

ĤOPA = ~ω1â
†
1â1 + ~ω1â

†
2â2 + i~χ(2)(â2

1â
†
2 − â

†
1â2) , (3.45)

where â1,2 and â†1,2 are the annihilation and creations operators of the signal and

pump field, respectively. With the assumption of a strong, coherent, undepleted

pump field, the operators â2 and â†2 can be approximated by αe−iω2t and α∗e−iω2t.

When we additionally drop irrelevant constant terms, the Hamiltonian reduces to

ĤOPA = ~ω1â1
†â1 + i~

(
η∗â2

1e
iω2t − ηâ†21 e

−iω2t
)
, (3.46)

with η = χ(2)α. In the interaction picture we obtain

ĤInt(t) = i~
(
η∗â2

1e
i(ω2−ω1)t − ηâ†21 e

−i(ω2−ω1)t
)
. (3.47)

Since we consider the degenerate case and thus ω2 = 2ω1, we obtain the time-

independent interaction Hamiltonian of the OPA process

ĤInt = i~
(
η∗â2

1 − ηâ
†2
1

)
, (3.48)

and its corresponding evolution operator

ÛInt(t, 0) = exp(−iĤIntt/~) = exp(η∗tâ2
1 − ηtâ†2) . (3.49)

This evolution operator equals the squeezing operator from Eq. 2.25 introduced in

Section 2.7 ÛInt(t, 0) = Ŝ(ξ) for ξ = 2ηt. Thus, an OPA consisting of a nonlinear

medium can be used for the generation of squeezed states.
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3.6 Phase-Matching

For the nonlinear processes, which have been described in this chapter, phase-

matching is a crucial requirement. A perfect phase-matching (for plan waves:

∆k = 0) means that a specific phase relation of the generated fields is maintained

with respect to the nonlinear polarization so that they are amplified by constructive

interference and not attenuated by destructive interference.

The condition of a non-vanishing wave vector mismatch for the processes where

three different light fields are involved (like SFG and DFG)

∆k = k1 + k2 − k3 = 0 (3.50)

can also be written within the plane wave approximation as [Boy08]

n1ω1

c0

+
n2ω2

c0

=
n3ω3

c0

, (3.51)

where c0 is the speed of light in vacuum. Usually, we can assume that ω1 ≤ ω2 ≤ ω3.

Therefore, the phase-matching condition cannot be achieved, since in most nonlinear

crystals the refractive index n is an increasing function of frequency. This effect is

known as normal dispersion.

To overcome this obstacle birefringence in crystals can be exploited. If a medium

is birefringent, its refractive index is dependent on the direction of polarization of

the optical radiation. This property reveals two different ways to achieve phase

matching known as type I and II. A third possibility is quasi phase-matching. All

three possibilities will be explained in the next two paragraphs.

Type I and II phase-matching

For the type I phase-matching the field at the highest frequency ω3 is polarized in

the direction with the lower refractive index and the other two fields are orthogo-

nally polarized to this axis, while for type II phase-matching the two other fields are

not identically polarized, but one of them is in the same polarization as the field at

ω3. Due to the temperature dependence of the refractive index the phase matching

condition can be satisfied by temperature tuning of the crystal. This technique is

applied to several crystals used for the generation of squeezed light within this the-

sis. Since their phase-matching temperature is around 70◦ we tended to use quasi

phase-matching, where we can also use crystals with a higher nonlinear susceptibil-

ity, which are not birefringent.
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Figure 3.9: Different methods of phase-matching. The red curve illustrates the
situation without phase-matching, the light blue one shows the intensity of the generate
field for perfect phase-matching and the dark blue curve the intensity for quasi phase-
matching. The gray arrows correspond to the orientation of one of the crystalline axes,
when quasi phase-matching is used. The graph is based on a figure in [Fej92].

Quasi phase-matching

Sometimes the phase-matching temperature for type I or II phase-matching is too

high or the birefringence of the crystal is insufficient to compensate the dispersion

(especially for shorter wavelengths). In such cases a periodically poled crystal can

be used to implement the technique of quasi phase-matching. In a periodically poled

material the orientation of one of the crystalline axes is inverted periodically, most

efficient after the coherence length lc. That means that each time the field amplitude

of the generated field begins to decrease due to the wave vector mismatch, the sign

of the effective susceptibility deff is changed. This results in a monotonically growing

field amplitude. The optimum poling period is two times the coherence length

Λ = 2× lc =
2π

k1 + k2 − k3

(3.52)

and is in the regime of a few micrometers for the crystals we use in our experiments.

In Fig. 3.9 a comparison between the intensities of the generated waves at no phase-

matching, phase-matching and quasi phase-matching is depicted.
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CHAPTER4
Basic Experimental Techniques

This chapter deals with some of the experimental techniques which were used for

the experiments performed for this thesis. The first section illustrates the experi-

mental generation of squeezed states with an optical parametric amplifier (OPA).

In Section 4.2 the principle of homodyne detection is explained, which is used for

all experiments to measure arbitrary quadratures of a certain quantum state. The

technique of locking a phase gate or a homodyne detector with a single sideband

in Section 4.3 and the thermal state generation in Section 4.4 was only used for

distributing entanglement by separable states (cf. Chapter 6) and will be explained

at the end of this chapter.

4.1 Squeezed-Light Generation

Sections 2.7 and 3.5 have already introduced theoretically the generation of squeezed

states. Here, we want to show how the generation is realized experimentally. The

generation scheme is depicted in Fig. 4.1. The OPA as the actual squeezing source

consists of a nonlinear crystal with a curved, high reflective coated end surface and a

front mirror mounted on a piezo-electric transducer (PZT). Details of the assembling

of the OPA cavity used within the experiments of this thesis are e.g. given in [Kha11].

In the experimental chapters 5 and 6 the corresponding reflectivities for the pump

and squeezed beams for each OPA cavity can be found.

The pump field at ω2 is transmitted by a dichroic beam splitter (DBS) and enters

the cavity of the OPA through the front mirror. Its phase, which determines the

squeezed quadrature, can be shifted by a phase shifter (PS). The generated squeezed

field at frequency ω1 = 1
2
ω2 leaves the cavity at the front mirror and is reflected by

the DBS. For stabilizing the length of the cavity or for alignment purposes a control
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control �eld @ ω1=1/2 ω2
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Figure 4.1: Experimental generation of squeezed states. The pump field enters
the cavity through the front mirror. The dichroic beam splitter (DBS) in front of the
cavity separates the pump field and the outgoing squeezed field. For length control of the
cavity or alignment purposes a control field enters the cavity from the back side and its
reflection is detected by the photo diode (PD), since it passes the polarizing beam splitter
(PBS), a wave plate (λ/2), and a Faraday rotator (FR).

field at the same frequency as the squeezed field enters the OPA from the back side.

As it passes a polarizing beam splitter (PBS), a half-wave plate (λ/2), and a Faraday

rotator (FR), its back reflection can be detected in transmission of the PBS by a

photo diode (PD), which can provide an error signal for locking the cavity length.

Generally, this photodiode can also provide the error signal for stabilizing the phase

of the pump field. Furthermore, the locking of the cavity length can also be done

with the pump field, if the cavity is doubly-resonant. This technique is realized in

the quantum up-conversion experiment (cf. Chapter 5).

4.2 Homodyne Detection

For detecting and measuring light fields usually a photo diode is used, which detects

the intensity of the light field and thus measures its amplitude quadrature. If we

want to characterize squeezed or entangled states of light, it is necessary to measure

the amplitude and the phase quadrature of the light fields. For this purpose we use

homodyne detectors. In Fig. 4.2 the setup of a homodyne detector is shown. The

signal field, which we want to measure, is superimposed at a beam splitter with

a strong light field, called local oscillator (LO), which matches the signal field in

frequency, beam parameters, and polarization. The two outputs of the beam splitter

are detected by photo diodes. Their photon current is directly subtracted on the

circuit board. Since we use a 50/50 beam splitter this detection scheme is also called

balanced homodyne detector. If we denote the signal field with mode â and the local
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PS
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signal �eld  
PD
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Figure 4.2: Principle of homodyne detection. For balanced homodyne detection a
local oscillator (LO) and the signal light field which shall be measured are superimposed
at a 50/50 beam splitter (BS). The phase between the two light fields can be changed by
the phase shifter PS. The outputs of the beam splitter are detected by photo diodes (PD),
whose photo currents are directly subtracted electronically.

oscillator field with mode b̂, we obtain the output modes of the beam splitter ĉ and

d̂

ĉ =
1√
2

(â+ ib̂) ,

d̂ =
1√
2

(b̂+ iâ) ,
(4.1)

[Ger10]. This output modes are detected by the two photo diodes and the mean of

their subtracted photo currents are given by

Ic − Id ∝ 〈ĉ†ĉ− d̂†d̂〉
= i〈â†b̂− âb̂†〉 .

(4.2)

If the local oscillator field is much larger than the signal field we can presume the

LO to be in the coherent state |βeiωt〉 with β = |β|eiΨ and Ψ being the LO’s phase.

Thus, we obtain

Ic − Id ∝ |β|〈âeiωte−iθ + â†e−iωteiθ〉 , (4.3)

where θ = Ψ + π
2
. As the modes â and b̂ have the same frequency ω (usually this

modes originate from the same laser source), we can set â = â0e−iωt and with the

quadrature operator

X̂(θ) =
1

2

[
â0e−iθ + â†0eiθ

]
(4.4)

at the angle θ we obtain

Ic − Id ∝ |β|〈X̂(θ)〉 . (4.5)
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This means, that we can measure every quadrature of the signal field by changing

the phase of the LO. Apart from that, the measurement signal scales with the

LO’s amplitude and can thus be amplified. This detection scheme enables a whole

tomography and the reconstruction of the covariance matrix of a quantum state.

4.3 Single Sideband Locking Scheme

For stabilizing various phases in our setup for entanglement distribution by separable

states a stable single sideband in addition to our states was required. The setup

we used for generating a stable single sideband utilized a frequency shifted auxiliary

laser, which was phase-locked at 15 MHz with respect to the master laser. A fraction

of the auxiliary laser was overlapped with the control field and provided thus the

single sideband. Since the single sideband is weak compared to the signal field, its

addition corresponds to a modulation of the amplitude and phase quadrature with

a low modulation depth. The resulting field can thus be written as

â1 = αsig(1 +meiωbeatt) , (4.6)

where αsig is the field amplitude of the signal field, m denotes the modulation

strength and ωbeat is the detuning of the auxiliary field with respect to the signal

field.

In the following the locking scheme of a phase gate utilizing the single side band

is introduced. In this thesis we call a phase gate a balanced beam splitter, where

two light fields are overlapped with a specific, tunable phase. In Fig. 4.3 such a

device is depicted including the locking devices needed for stabilizing the phase of

the two incoming fields â1 and â2. The error signal is obtained by detecting a fraction

(≈ 1%) of the two outgoing light fields and the direct substration of the two photo

currents. We presume that the field â1 contains the single sideband and is given by

Eq. 4.6. After the interference with the field â2 at the balanced beam splitter the

two outgoing fields result in

â3 =
1√
2

(αsig(1 +meiωbeatt) + α2e
iθ) ,

â4 =
1√
2

(αsig(1 +meiωbeatt)− α2e
iθ) .

(4.7)

Two photo diodes, one behind a high reflective mirror and the other one in reflection

of a 99/1 beam splitter (since the quantum states â3 and â4 should not be atten-

uated), detect this two fields and their alternating currents (AC) are subtracted.
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phase 
shifter

control 
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Figure 4.3: Stabilization scheme of a phase gate. Two light fields are superimposed
at a balanced beam splitter (BS). The phase between these fields is actively controlled by
the phase shifter at mode a1. We obtain an error signal by detecting a fraction of the
outgoing light fields and subtracting the photo currents electronically.

This leads to the subtracted signal

îsub ∝ â∗1â1 − â∗2â2

= 2αsigα2m cos(ωbeatt− θ) .
(4.8)

The error signal for setting the phase gate to a certain phase relation is then obtained

by mixing the signal with the electronic local oscillator sin(ωbeatt− φ) and low-pass

filtering

îerror ∝ αsigα2m sin(θ − φ) , (4.9)

with φ being the phase of the electronic local oscillator. The expression shows that a

zero crossing of the error signal is achieved if φ = θ. Thus, we can stabilize the phase

gate to any phase relation between â1 and â2 by setting the phase of the electronic

local oscillator to the corresponding angle. In Fig. 4.4 different error signals for

different phases φ are depicted.

The same scheme also works for locking a homodyne detector to a certain quadra-

ture. Such a stabilization is required when we want to reconstruct the covariance

matrix of a quantum state (cf. Chapter 6) and therefore need a stable quadrature

readout for arbitrary quadratures.
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Figure 4.4: Error signals for stabilizing a phase gate. The zero crossing and thus
the stabilization point corresponds to the phase of the electronic oscillator φ. Thereby, we
can set a phase gate or a homodyne detector to an arbitrary angle θ.

4.4 Thermal State Generation

For the entanglement distribution by separable states thermal states are a crucial

requirement (cf. Chapter 6). These states, whose noise in each quadrature is above

the vacuum noise, can be generated in several ways. One possibility is the superpo-

sition of two squeezed states with a phase shift of 90◦ at a balanced beam splitter.

Their outputs are then entangled [Kim02], but each single output is a thermal state.

This technique, however, requires two squeezers and an additional phase lock of

the phase between the two squeezed fields. Another possibility is the usage of an

electro-optical modulator (EOM), which imprints a phase modulation on the light

field, and an acousto-optical oscillator, which imprints an amplitude modulation on

the light field. However, this technique is challenging if a broadband thermal state

is required. In our experimental setup we used a squeezed state and an electro-

optical modulator for generating thermal states. The generation scheme is depicted

in Fig. 4.5. In principle, it is the same setup as for generating squeezed states of

light. In addition, the coherent control field has to pass an EOM which phase mod-

ulates the light field. The phase modulation originates from vacuum noise which is

measured with the homodyne detector (HD) and is perfectly random. The vacuum

noise signal is electronically enhanced and generates a phase modulation of the con-

trol field at a certain side band frequency. Generally, just a small fraction of this
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Figure 4.5: Generation of a thermal state. The OPA generates a phase-squeezed light
field, whose phase quadrature has been modulated by an electro-optical modulator (EOM).
Vacuum noise which is detected by a homodyne detector (HD) and amplified electronically
causes a phase modulation of the control field since it is used as a modulation signal of
the EOM.

sideband will leave the OPA cavity. However, if the modulation is strong, this leads

to a sufficiently strong noise in the phase quadrature. Since the OPA is stabilized

to squeeze the phase quadrature and anti-squeeze the amplitude quadrature, this

setup leads to states, whose noise is above the vacuum noise in each quadrature.

The variance of this noise can be determined by the amplification of the vacuum

noise for the phase modulation and by the squeezing strength.
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CHAPTER5
Quantum Up-Conversion

The technique of quantum up-conversion gives access to quantum states in wave-

length regimes that cannot be reached by usual methods. For instance, highly non-

classical states like Schrödinger Kitten states [Our06, NN06] or squeezed states of

light can thus be generated at wavelengths not accessible by well developed methods

like parametric down-conversion. In particular, squeezed states of light at various

wavelengths have a variety of applications like quantum imaging [Tre03, Bri10],

quantum spectroscopy [Pol92, Tay13], teleportation [Fur98, Bow03], gravitational

wave astronomy [Cav81, Sch10] or quantum key distribution [Cer01, Fur12].

Squeezed states of light are usually generated by parametric down-conversion

(cf. Section 3.5) in the infrared wavelength regime. For shorter wavelengths this

method is no longer suitable, since the second harmonic of the squeezed field, which

is required as a pump field, would be in the ultra violet (UV) regime. Up to now, no

materials with good non-linear properties and low absorption are available for UV

light. A further alternative for generating squeezed states of light is second harmonic

generation [Kür93]. However, with this method only bright squeezed states of light

can be generated. For gravitational wave detectors, as well as for quantum imaging,

squeezed vacuum states of light are required. For generating these states at shorter

wavelengths quantum up-conversion is an excellent alternative method.

By up-converting one mode of an entangled state (generated by a squeezed vac-

uum state and a balanced beam splitter, cf. Section 2.9.2) entanglement between

different wavelengths can be established and thus, different tasks in quantum optics

can be connected. For instance, quantum states can be transmitted over reason-

able distances by standard telecommunications fibers at a wavelength of 1550 nm

[Sas11]. To store quantum states in quantum memories, wavelengths corresponding

to accessible atomic transitions are necessary [Hed10, Lvo09].
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Figure 5.1: Schematic of quantum up-conversion of a squeezed vacuum field
from 1550 nm to 532 nm. With the intense pump field at 810 nm the squeezed vacuum
state at 1550 nm is up-converted to a squeezed vacuum state at 532 nm via sum-frequency
generation.

In the following chapter I will present the experimental realization of quantum

up-conversion of a squeezed field from 1550 nm to 532 nm, utilizing a strong pump

field at 810 nm. A schematic of this experiment is depicted in Fig. 5.1. The quantum

up-conversion was based on sum-frequency generation of 810 nm and 1550 nm. This

process maintains the quantum properties, as explained in Section 3.3.

As a first step a squeezed vacuum field at 532 nm was detected. These results are

presented in Section 5.2. Next, by adding a balanced beam splitter to the squeezed

vacuum field at 1550 nm, an entangled state at 1550 nm was obtained. One part of

that state was up-converted to establish entanglement between 1550 nm and 532 nm,

which is shown in Section 5.3. At the beginning of this chapter the experimental

setup, which is almost identical for the two experiments, is illustrated in Section 5.1.

In Section 5.4 the results of the experimental quantum up-conversion of squeezed

and entangled states of light are concluded.

5.1 Experimental Setup

Figure 5.2 illustrates the entire experimental setup for the quantum up-conversion.

The individual steps of the setup will be described and explained in detail in the

following.

5.1.1 Laser Preparation

The light source of the experiment was a Neodymium-doped Yttrium Aluminum

Garnet (Nd:YAG) solid state laser from Inno-light (model Mephisto) as the main

laser source. It provided 2 W of optical power in a single spatial mode at 1064 nm,

which was sent to the second-harmonic generation (SHG) cavity after passing a
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Figure 5.2: Experimental setup of quantum up-conversion. The individual parts
of the setup are described in detail in the text. The setup consisted of 4 stages: the
laser preparation, where a strong coherent laser field at 532 nm was generated; the
non-degenerate optical parametric oscillator (NOPO), which provided two light fields at
1550 nm and 810 nm; the squeezing generation, where squeezed vacuum states at 1550 nm
were generated and the sum-frequency generation, where a squeezed vacuum field at
1550 nm and a pump field at 810 nm were converted to a squeezed vacuum field at 532 nm,
which could be measured with the homodyne detector HD532. FI: faraday isolator, EOM:
electro-optical modulator, SHG: second harmonic generation, MC: mode cleaner, HD: ho-
modyne detector, NOPO: non-degenerate optical parametric oscillator, PDC: parametric
down-conversion, PD: photo diode.
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Faraday Isolator (FI) to avoid back reflections, and an electro-optical modulator

(EOM). The SHG consisted of a 7% doped MgO:LiNbO3 crystal with a curved back

surface and a coupling mirror. The coupling mirror had a power reflectivity of R =

90% for 1064 nm and R < 4% for 532 nm. The flat surface of the nonlinear crystal

had an anti-reflection coating and the curved back surface had a high-reflection

coating for both wavelengths. The phase modulation at a sideband frequency of

15 MHz generated by the EOM was used to stabilize the length of the cavity with

the Pound-Drever-Hall (PDH) locking scheme [Bla01]. In addition to that, the

temperature of the crystal was also actively stabilized by Peltier elements. The

SHG produced the second harmonic field with an optical power of 1 W, which was

sent to a mode cleaner cavity (MC) to filter the TEM00 spatial mode profile and to

suppress technical noise. The MC had a linewidth of 1.3 MHz, and its length was

stabilized with sidebands at 29.5 MHz again using the PDH locking scheme. With

this setup, we had a stable laser beam at 532 nm, which could be used as a pump

beam for the following non-degenerate optical parametric oscillator.

5.1.2 Non-Degenerate Optical Parametric Oscillator

(NOPO)

810 nm

1550 nm

NOPO

The NOPO was pumped with the 532 nm beam from the SHG

and generated two output beams at 810 nm and 1550 nm. It

provided the pump field at 810 nm for the sum-frequency genera-

tion (SFG), while the 1550 nm output beam was used to generate

squeezed vacuum states at this wavelength. The NOPO consisted

of a periodically poled Potassium Titanyl Phosphate (PPKTP)

nonlinear crystal, whose two curved surfaces (radii of curvature

r = 8 mm) formed a monolithic standing-wave cavity for the two

output fields. Reflectivities for both outgoing wavelengths of 99.9 % at the front

surface and 94 % at the back surface created a cavity with a finesse of F = 100,

a linewidth of 91 MHz and a free spectral range of 9.15 GHz. The pump beam at

532 nm passed the crystal twice, as its back surface was high-reflective and its front

surface was anti-reflective coated for this wavelength. The threshold power for the

NOPO depended on the wave vector matching and the spatial mode filtering. Since

we used different phase matching temperatures, the threshold power was between 70

and 130 mW. The crystal’s temperature was controlled and stabilized with Peltier

elements to a temperature around 60◦C. The wave vector matching determined the

efficiency of the process and the outgoing wavelengths. The relationship between

wave vector matching and output wavelength was not linear, but evolves in steps,
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Figure 5.3: Wavelength tuning of the NOPO. Tuning of the NOPO’s crystal tem-
perature resulted in an incremental wavelength tuning of the NOPO, illustrated here for
810 nm. As described in Section 3.4 the wavelength tuning of the NOPO was not smooth
but mode hops and cluster jumps occurred, see also Reference [Sam12].

and is illustrated in Fig. 5.3 for 810 nm. Details about this incremental behaviour

are described in Section 3.4 and can be found in [Eck91].

The output power of the outgoing beams depended on the pump power at 532 nm

and on the crystal’s temperature (due to the wave vector matching). In Fig. 5.4 the

output power for 810 nm (red) and the corresponding conversion efficiency (blue)

is illustrated for two different temperatures of the crystal (dashed and solid lines).

This measurement was made in the absence of any mode hops or cluster jumps. The

conversion efficiency was calculated by

ηNOPO =
N810

N532

=
P810 × 810 nm

P532 × 532 nm
, (5.1)

where N is the number of photons and P is the incoming or outgoing optical power.

The 532 nm pump intensity used in the following experiments was typically around

700 mW. Therefore, the optical powers of the outgoing fields only differed due to

different crystal temperatures and were around 100 mW for 1550 nm and 230 mW

for 810 nm.
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Figure 5.4: Output power and conversion efficiency of the NOPO. The blue
curves show the conversion efficiency of the NOPO with respect to the incoming power at
532 nm, while the red curves depict the corresponding output power at 810 nm. The two
different line styles represent two different phase matching temperatures and, thus, also
two different outgoing wavelengths around 810 nm. Details can also be found in Reference
[Sam12].
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Table 5.1: Parameters of the two coupling mirrors for the SHG and OPA

Parameter Mirror Sqz. Conv. Mirror Ent. Conv.
Reflectivity at 1550 nm 90% 85%
Reflectivity at 775 nm 20% 97.5%

5.1.3 Squeezed-Light Generation

OPA

SHG

775 
nm

Squeezed-
Light
Generation

1550
nm

squeezed 
vacuum 
at1550nm

For the quantum up-conversion of squeezing and entangle-

ment, two similar setups for the squeezing generation were

used, which only differed in the reflectivities of the coupling

mirrors and, thus, in the stabilization scheme. The theo-

retical background of the underlying nonlinear processes in

this setup can be found in Chapter 3.

The generation of squeezed vacuum states at 1550 nm

required a pump field at 775 nm, which was provided by

second-harmonic generation (SHG) of the 1550 nm output

beam from the NOPO. The OPA and the SHG both used

the same type of nonlinear material, and the OPA generated a squeezed vacuum

at 1550 nm again, by taking as input field the coherent 775 nm output of the SHG.

Both devices consisted of a nonlinear PPKTP crystal and a coupling mirror, and

were temperature stabilized to achieve good wave vector matching. The nonlinear

crystal had a curved back surface with a high reflective coating and a flat front

surface with an anti-reflective coating for 775 nm and 1550 nm.

For the conversion of squeezed vacuum states we used an already existing setup,

where the coupling mirror had a reflectivity of 90 % for 1550 nm and of 20 % for

775 nm. Therefore, the SHG cavity was locked with the 1550 nm beam, while the

OPA cavity was not stabilized in length, but held on resonance manually. This setup

was optimized for input powers around 1 W and could generate squeezed vacuum

states with a quantum noise reduction of 12.3 dB [Meh11, Ebe13].

For the conversion of entanglement we used doubly-resonant devices, i.e. the cou-

pling mirror had a reflectivity of 85 % for 1550 nm and 97.5 % for 775 nm. Hence,

the SHG was also locked with 1550 nm,while the OPA was locked with 775 nm. Fur-

thermore, the double-resonance led to a lower threshold power for the OPA (around

15 mW) and a higher conversion efficiency for pump powers around 100 mW for the

SHG. The reflectivity values for both coupling mirrors can also be found in Table

5.1.
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Table 5.2: Parameters of the two incoupling mirrors for the SFG

Parameter Mirror Sqz. Conv. Mirror Ent. Conv.
Reflectivity at 1550 nm 96% 91%
Reflectivity at 810 nm 96% 97%
Max. Conversion Efficiency 84.4% 89.2%
Corresponding pump power 71.5 mW 165 mW

5.1.4 Sum-Frequency Generation (SFG)

Sum-Frequency Generation

810 nm

1550
nm

532 
nm

PD810

PDtrans

PDre�

PDin

The quantum up-conversion was realized

via sum-frequency generation utilizing a

pump field at 810 nm. Due to energy con-

servation an incoming field at 1550 nm is

up-converted to a field at 532 nm. This

process is theoretically described in Sec-

tions 3.2 (classical) and 3.3 (quantum-mechanical). For the sum-frequency gener-

ation we used a nonlinear PPKTP crystal and two external mirrors, which can be

seen in the picture above. The crystal was anti-reflective coated on both sides for

all three wavelengths. The back mirror was high-reflective coated for 810 nm and

1550 nm and anti-reflective coated for 532 nm. For the two conversion experiments

we used two different coupling mirrors.

For the up-conversion of squeezed vacuum states we used a mirror with a reflectiv-

ity of 96% for 810 nm and 1550 nm, which yielded a maximum conversion efficiency

of 84.4% with a pump power of 71.5 mW [Sam13].

For entanglement up-conversion we used a mirror with a reflectivity of 97% for

810 nm and 91% for 1550 nm, to obtain a maximum conversion efficiency of 89.2%

with a pump power of 165 mW. Both incoupling mirrors were high-reflective for

532 nm so that the converted field passed the crystal at most twice. The values for

the two incoupling mirrors can also be found in Table 5.2. The cavity was stabilized

in length with the PDH-technique using sidebands at 24.5 MHz on the 810 nm field,

which were imprinted by an EOM. The error signal was measured in reflection of

the cavity.

Before we performed the experiments we first measured the conversion efficiency

of the SFG with the new coupling mirror. For this purpose we converted a signal

field at 1550 nm, which was dim (2 mW) to ensure an undepleted pump field at

810 nm. The conversion efficiency was determined in two ways: a) by measuring

the ratio of the outgoing photons over the incoming photons, which corresponded

to a measurement of the incoming and outgoing light power scaled by the respective
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5.1 Experimental Setup

wavelengths

ηSFG, 532 =
N532

N1550

=
P532 × 532 nm

P1550 × 1550 nm
(5.2)

and b) by measuring the depletion of the 1550 nm field

ηSFG, depl =
P1550,refl + P1550,trans

P1550,in

. (5.3)

The reflected and transmitted parts of the field were measured by photo diodes in

reflection and transmission, respectively. To measure the incoming light power, we

used a 50/50 beam splitter in front of the SFG.

Since the first measurement method was susceptible to the measurement failures

of the power meters, and the depletion method was sensitive to absorption of the

crystal, we combined both measurements and fitted the data to theoretical values

with a nonlinear cavity simulator program called NLCS written by Nico Lastzka

[Las10]. The fitting procedure was executed by a Python script utilizing the Nelder-

Mead fitting algorithm [Nel65] written by Aiko Samblowski [Sam12]. With this

procedure we could determine the conversion efficiency of the SFG and its cavity

parameters. The maximum conversion efficiency with the second incoupling mirror

can be seen in Fig. 5.5. The red curve shows the theoretical values for ηSFG, 532 and

the blue curve for ηSFG, depl. The blue data points represent the measured data for

ηSFG, depl, while the red data points correspond to the measured data for ηSFG, 532,

scaled by a correction factor for the power meter, which was calculated by the sim-

ulation program. The calculated reflectivities were R = 94.5% for 1550 nm and

R = 97.4% for 810 nm, and varied slightly from the manufacturer’s data. However,

for different measurements with different wave vector matching the calculated val-

ues for the reflectivities stayed the same and showed thereby the reliability of the

calculation.

5.1.5 Homodyne Detectors

PS

50/50 BS

local oscillator 

signal �eld  

PD

PD

The schematic of a homodyne detector is shown

on the left side and explained in detail in Section

4.2. For the up-conversion experiments we used a

custom-made homodyne detector for 532 nm, which

utilized two silicon photo diodes (PD) from Hama-

matsu (SI5971-3) with a quantum efficiency of 80 %

and a custom-made homodyne detector for 1550 nm

with two InGaAs photo diodes from OSI Optoelec-

tronics (FC InGaAs-300) with a quantum efficiency
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Figure 5.5: Conversion efficiency of the SFG. The red points represent the values
for the conversion efficiency measured by the ratio of the outgoing photons over the in-
coming photons, scaled by a correction factor from the imperfect power meter. The blue
points show the measurement of the relative depletion of the incoming 1550 nm field. We
measured a maximum conversion efficiency of 89.2 ± 2.5% at a pump power of 165 mW
at 810 nm. The theory curves were obtained by simulations with the nonlinear cavity
simulator written by Nico Lastzka [Las10].
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Figure 5.6: Characterization of the homodyne detectors. The linearity of the
homodyne detectors at 532 nm and 1550 nm was checked by increasing the LO’s power
and measuring the corresponding output noise power (blue). By comparison with the
theoretical values (red) the linearity is guaranteed over the optical power range of the LO
used in the experiments (2–8 mW).
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5.2 Squeezing Conversion

of also 80 %. In Fig. 5.6 the linear behavior of the two homodyne detectors is de-

picted. The blue crosses represent the noise power measured with a specific local

oscillator power by the homodyne detector. The red line shows the theoretical values,

which correspond to a linear increase of the noise power. The homodyne detectors

behaved linearly over the optical power range of the LO used in the experiments

(2–8 mW).

5.2 Squeezing Conversion

The up-conversion of squeezed vacuum states of light from 1550 nm to 532 nm was

accomplished with an external setup for the generation of squeezed vacuum states

at 1550 nm. This means that the 1550 nm output beam from the NOPO was sent

through a fiber to a SHG and an OPA to the other side of the optical table and the

resulting squeezed vacuum field was inserted to our experiment by a flip mirror. The

squeezed vacuum field at 1550 nm was overlapped with the pump field at 810 nm

and sent into the SFG. The up-converted squeezed vacuum field at 532 nm, which

left the SFG through the back side of the crystal, was measured with a homodyne

detector. The homodyne detector’s LO was provided by the same source as the

pump field for the NOPO (cf. Fig. 5.2), i.e. the LO and the squeezed vacuum field

matched in frequency automatically due to the energy conservation of all involved

nonlinear processes.

Results

The result of the up-conversion of squeezed vacuum states from 1550 nm to 532 nm

is illustrated in Fig. 5.7, showing the squeezing measurement with the 532 nm ho-

modyne detector. We measured at a sideband frequency of f = 8 MHz, with a

resolution bandwidth of ∆f = 300 kHz and a video bandwidth of v = 30 Hz. The

traces are normalized to the measured vacuum noise, which was obtained by block-

ing the input signal before the homodyne detector. We detected a nonclassical noise

reduction of 1.5 dB below the vacuum noise and a corresponding anti-squeezing of

2.4 dB, without any corrections for the homodyne detector’s dark noise. By sub-

tracting the homodyne detector’s dark noise, which was 10 dB below the shot noise,

we inferred 1.7 dB squeezing and 2.6 dB anti-squeezing. These values correspond to

a 4 dB pure squeezed state at 1550 nm with 47% optical loss. The individual loss

channels are listed in Table 5.3.
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Figure 5.7: Measurement of the up-converted squeezed vacuum states at
532 nm. The squeezed and anti-squeezed quadratures were measured with the 532 nm
homodyne detector by manually varying the phase between the signal and the LO (blue).
The vacuum noise (red) was measured by blocking the signal before the detector. From
the figure we read a nonclassical noise reduction of 1.5 dB below the vacuum noise and a
corresponding anti-squeezing of 2.4 dB at a sideband frequency of f = 8 MHz. All traces
are normalized to the vacuum noise power, but not corrected for the detector’s dark noise.

Table 5.3: Optical efficiency for the squeezing measurement

Loss channel Efficiency
Escape efficiency of OPA 96%
Mode matching of SFG 99.4%
Conversion 75%
Propagation to homodyne detector 97%
Visibility on homodyne detector 96%
Quantum efficiency of photodiodes 80%
Overall 53%
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5.2 Squeezing Conversion

Table 5.4: Improvements for squeezing up-conversion

Improvement New Value
Initial squeezing value 12 dB
Escape efficiency of OPA 97.7%
Conversion efficiency 90%
Quantum efficiency of photo diodes 90%

Discussion

With the presented scheme of quantum up-conversion via sum-frequency generation

it was possible to obtain a squeezed vacuum state at 532 nm with a noise reduction of

-1.5 dB, which is the highest measured squeezing value at this wavelength. Two main

factors limited the measured squeezing to -1.5 dB: the initial squeezing was only 4 dB

and the conversion efficiency was 75%. Since the external experimental setup for the

squeezing generation was not optimized for an input power of about 100 mW, we only

had a 4 dB pure squeezed state at 1550 nm for the quantum frequency conversion,

instead of more than 10 dB that the setup could in principle provide [Ebe13]. By

using a new setup, with a SHG and an OPA that were designed for input powers of

about 100 mW (i.e. their coupling mirrors had different reflectivities), we solved this

problem for the conversion of entangled states of light. Intertwined with this issue

is the wavelength dependence of the conversion efficiency of the SFG and SHG,

especially for low light powers. This means that both the conversion efficiency

of the SFG, and the conversion efficiency of the SHG providing the pump field

for squeezing generation, depended strongly on the wavelengths from the NOPO.

Therefore, we had to find a trade-off between a strong pump field for the OPA,

which would generate higher initial squeezing, and a high conversion efficiency of

the SFG. Finally, we ended up with a conversion efficiency of 75 % for the SFG

(instead of 84.4 %, which was the highest measured value) and 18 mW of optical

power for the OPA’s pump field, which generated a 4 dB squeezed vacuum state at

1550 nm, before losses.

In an improved setup we could also increase the SFG’s conversion efficiency by

changing the incoupling mirror. If the reflectivity for 810 nm is increased and the

reflectivity for 1550 nm is decreased, the conversion efficiency should be around 90%

for reasonable pump powers (below 200 mW). By utilizing photo diodes with higher

quantum efficiency (> 90%), the detection efficiency of the squeezed states will be

strongly enhanced and lead thus to a higher detectable squeezing value. With all

possible improvements (listed in Table 5.4) in the loss channels and to the initial

squeezing value, it should be possible to detect squeezed vacuum states at 532 nm

of about 6 dB.
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Figure 5.8: Experimental setup of entanglement conversion. In addition to the ex-
perimental setup for squeezing conversion, this setup included an additional balanced beam
splitter to generate an entangled state at 1550 nm and the homodyne detector HD1550,
which was used for measuring entanglement between 532 nm and 1550 nm.

5.3 Entanglement Conversion

For the up-conversion of entangled states of light, we added a 50/50 beam splitter to

the 1550 nm squeezed vacuum path (illustrated in Fig. 5.8), to obtain two entangled

light fields at 1550 nm in the two output ports (cf. Section 2.9.2). One output

was sent directly to a balanced homodyne detector HD1550, while the other was

up-converted via SFG to 532 nm. The up-converted field was detected with the

balanced homodyne detector HD532 (see faint part of Fig. 5.2). The signal of the

homodyne detector HD1550 was split, and one part was used to check the measured

quadrature of HD1550. The other part was sent to a subtraction/addition device,

which added or subtracted the signals of HD1550 and HD532.

In contrast to the squeezing up-conversion experiment, we used a different in-

coupling mirror for the SFG. Thereby, we could achieve a maximum conversion

efficiency of 89.2% (cf. Section 5.1.4). Furthermore, we used a SHG and OPA that
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5.3 Entanglement Conversion

were designed for generating 10 dB squeezed states at 1550 nm with low input powers

(∼100 mW).

Results

In Fig. 5.9 the subtraction and addition of the two homodyne detectors HD1550

and HD532 are shown. The homodyne detector at 532 nm is ramped periodically

to measure all quadratures, while the homodyne detector at 1550 nm is controlled

manually to measure the X quadrature (red trace) or the P quadrature (blue curve).

The black traces in the two figures shows the vacuum noise of the subtraction and

addition of the two homodyne detectors. All traces were measured at a sideband

frequency of f = 8 MHz with a resolution bandwidth of ∆f = 300 kHz and a video

bandwidth of v = 300 Hz. The two figures illustrate the success of the entanglement

conversion, which can be verified by the Duan criterion (cf. Section 2.9.1):

I = Var(X1550 −X532) + Var(P1550 + P532) ≤ 4 . (5.4)

The subtraction and addition measurements both fulfill this criteria for entangle-

ment, since both measurements show the same values (0 dB for the addition of the

P quadratures and -3.4 dB for the subtraction of the X quadratures) and the Duan

value I reads

I = 0.9 + 2 = 2.9 ≤ 4 , (5.5)

which corresponds to an entanglement of -1.4 dB. Thus, an entangled state at

1550 nm was successfully up-converted to an entangled state between 1550 nm and

532 nm.

With this setup we also measured squeezing conversion, though with the addi-

tional balanced beam splitter, which introduced 50% loss. For this purpose we took

data only from the homodyne detector at 532 nm, under the same conditions as for

the entanglement measurement. The data is depicted in Fig. 5.10. From the figure

we see a noise reduction of 1.3 dB and a corresponding anti-squeezing of 7.2 dB,

which correspond to an initial squeezing of 12.1 dB and 72.5% optical loss. If we

subtract the optical loss from the balanced beam splitter (50 %) and the optical

loss due to the imperfect escape efficieny of the OPO (97.7%), we are left with 44%

optical loss for the homodyne detector and the conversion efficiency.

Discussion

The squeezing measurement shows that the part of the entangled state at 1550 nm,

which was sent to the SFG suffered from 44 % optical loss. Since we could not put
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Figure 5.9: Results of entanglement measurement between 1550 nm and
532 nm. The traces were normalized to the vacuum noise (black) without any correc-
tion for dark noise. We see a quantum noise reduction of -3.4 dB in the X quadrature and,
as expected, of 0 dB in the P quadrature for the subtraction of the homodyne detectors
at 532 nm and 1550 nm (a) as well as for the addition of them (b). Data was taken at a
sideband frequency of f = 8 MHz with a resolution bandwidth of ∆f = 300 kHz and a
video bandwidth of v = 300 Hz.
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splitter. The traces were normalized to the vacuum noise (red). The blue trace shows the
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the homodyne detector at the Brewster angle due to space limitations, its quantum

efficiency was about 75 % for this measurement. Considering also the visiblity of the

homodyne detector HD532 (97%), we can calculate the SFG’s conversion efficiency

to be 80% for the entanglement conversion measurement.

As before, when we discussed the up-conversion of squeezed vacuum states, we

encounter the problem that the SFG’s conversion efficiency strongly depended on

the outgoing wavelengths of the NOPO. However, the SHG’s conversion efficiency

and the gain of the OPA also depended on the incoming wavelengths. Therefore,

we had to find wavelengths provided by the NOPO that correspond to a good

efficiency in all devices, and consequently could not use the highest measured value

of 89% for the SFG’s efficiency. Nevertheless, we could use a highly squeezed state

at 1550 nm and did demonstrate entanglement between 1550 nm and 532 nm via

quantum up-conversion. If we were able to use 90 % conversion efficiency for the

SFG, the same initial squeezed state at 1550 nm of 12 dB, homodyne detectors with

quantum efficiencies of 90% for 532 nm and 95% for 1550 nm and with 99 % visibility,

we could have measured entanglement between 1550 nm and 532 nm of 2.1 dB. In a

perfect setup without loss, a maximum 3 dB entanglement is achieveable, since the

initial entanglement was generated with one squeezed state and a balanced beam

splitter.

5.4 Conclusion

In this chapter I presented the successful demonstration of quantum up-conversion

via sum-frequency generation by means of the up-conversion of a squeezed vacuum

state from 1550 nm to 532 nm and the up-conversion of one part of an entangled

state to establish entanglement between 1550 nm and 532 nm. The highest known

squeezing value at 532 nm of −1.5 dB, with an corresponding anti-squeezing of 2.5 dB

and entanglement between 1550 nm and 532 nm with a Duan value of −1.4 dB were

measured. The technique of quantum up-conversion via sum-frequency generation

can potentially generate non-classical states of light in the visible wavelength regime

with high efficiency. However, in both experiments we found that the wavelength

dependence of the single devices made truly efficient quantum up-conversion diffi-

cult. In particular, the wavelength dependence of the conversion efficiency of the

SFG in combination with the stepwise wavelength tuning of the NOPO was crucial.

However, this obstacle can be overcome by a setup which can provide more pump

power, so that the wavelength dependence of the squeezing generation is no longer a

limiting factor. By using photo diodes with a higher quantum efficiency the detected

squeezing and entanglement factors should be easily increased.
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5.4 Conclusion

The successful demonstration of quantum up-conversion paves the way towards

quantum states at any desired wavelength, since by this technique non-classical

states of light can be generated highly efficient in the visible wavelength regime. Of

special interest are squeezed vacuum states of light, which can be used for quan-

tum imaging, quantum spectroscopy or gravitational wave detection. Now that the

generation of these states is extended to the visible wavelength regime, they could

potentially be used to improve the sensitivity of new detectors operating at shorter

wavelengths.

A source of entanglement between two different wavelengths in the infrared and

in the visible wavelength regime represents a key resource for future quantum mem-

ories as a basis for quantum repeaters. These devices need to bridge the two wave-

length regimes of quantum information transfer (1550 nm) and quantum storage

(500-800 nm).
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CHAPTER6
Entanglement Distribution by Separable

States

Distribution of entanglement between macroscopically separated parties is crucial for

future quantum information networks since entanglement is a fundamental resource

for quantum information processing [Kim08, Hor09]. Most quantum protocols are

intended to be executed between remote parties, which are commonly called ‘Alice’

and ‘Bob’. Usually the distribution of bipartite entanglement is performed by gen-

erating the entangled modes at Alice’s place and sending one of the modes to the

distant party Bob. Thereby the mode sent from Alice to Bob is obviously entangled

with the mode kept by Alice. However, Cubitt et al. [Cub03] showed in 2003, that

if more than two modes are involved, bipartite entanglement can also be distributed

by sending fully separable states. This remarkable and seemingly paradoxical pro-

tocol is made possible by a specific structure of quantum correlations within an

underlying state of three modes A, B, and C. The protocol demands the state to

be separable with respect to the B|AC and C|AB splittings and to be inseparable

with respect to the A|BC splitting. The original protocol by Cubitt et al. as well

as further analysis done in [Chu12, Kay12] considered discrete variables. Mǐsta and

Korolkova recently showed that entanglement distribution by separable states is also

possible for continuous variables [Mǐs08, Mǐs09].

In the following chapter I will present the experimental realization of distributing

continuous variable entanglement by separable states. In Section 6.1 the underlying

protocol is introduced. Section 6.2 describes the requirements for the three-mode

state, which makes the entanglement distribution by separable states possible. The

experimental setup is illustrated in Section 6.3, while Section 6.4 describes the mea-

surement procedure. Section 6.5 presents the experimental results. The following

discussion in Section 6.6 includes considerations about possible error sources, while
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Alice Bob

Step I

Step II
Mode A

Mode BMode C

Mode B‘ Mode C‘

Mode C

Mode BMode A

entanglement

separable

Figure 6.1: Principle of entanglement distribution by separable states. In the
beginning Alice possesses the two separable modes A and C. Both modes are also separable
with respect to Bob’s mode B. Alice sends mode C to Bob and he combines his mode B
with the received mode C. Finally, Alice and Bob share an entangled system A|B′, which
can be traced back to the initial entanglement for the A|BC splitting.

Section 6.7 summarizes the results.

The results of this chapter have recently been published in [Vol13].

6.1 Protocol of Entanglement Distribution by

Separable States

The principle of entanglement distribution by separable states is depicted in Fig. 6.1.

In the beginning Alice possesses the two separable modes A and C, while Bob

possesses the mode B, which is separable to Alice’s modes. In a first step Alice

sends the ancilla mode C, which is neither entangled with mode A nor with mode

B, to Bob. To obtain two-mode entanglement Bob mixes his modes B and C in the

second step of the protocol. One output mode is then discarded, while the other one

turns out to be entangled with mode A. The entanglement between modes A and

B can be traced back to the initial separability properties of the underlying three-

mode Gaussian state, which is prepared by an external source. For the protocol

to work the state must be separable with respect to the B|AC and C|AB splittings

and inseparable with respect to the A|BC splitting. According to the classification
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A
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Figure 6.2: State preparation scheme of the three-mode state. The required three-
mode state is prepared by overlapping a squeezed state, a vacuum state and a thermal
state at two balanced beam splitters BS1 and BS2 and measured with the homodyne
detectors HDA, HDB, and HDC, respectively.

introduced in [Gie01], we therefore need a three-mode Gaussian entangled state

belonging to Class III. The preparation of such a three-mode state is illustrated

in Fig. 6.2. The preparation starts with a squeezed state, which interferes with a

vacuum state at the balanced beam splitter BS1. The beam splitter output A is

sent to the homodyne detector HDA, while the other output is superimposed with a

thermal state at a second balanced beam splitter BS2. Its outputs B and C are sent

to the homodyne detectors HDB and HDC, respectively. The separability properties

of the three-mode state (ABC) are checked by a tomographic reconstruction of the

full three-mode covariance matrix with the homodyne detectors HDA, HDB, and

HDC. In the following section we will investigate the influence of the squeezing

strength and the variance of the thermal state on the properties and applicabilities

of the three-mode state.

6.2 Requirements for the three-mode state

As we have seen in the previous section the three-mode state required for the entan-

glement distribution by separable states has to be inseparable with respect to the

A|BC splitting and separable with respect to the B|AC and C|AB splittings. That

means that the PPT value (cf. Section. 2.9.1) for the A|BC splitting has to be below

1 (PPTA < 1), and for the other two splittings above or equal to 1 (PPTB ≥ 1 and
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PPTC ≥ 1). These specifications for the three-mode state give us the requirements

for the squeezed and the thermal state which we have to use for the state prepa-

ration. Generally, the variance of the thermal state has to be sufficiently large to

demolish the entanglement which is generated by the superposition of a squeezed

vacuum state and a vacuum state at beam splitter BS1 (cf. Fig. 6.2). To investigate

the effects of the squeezed state and the thermal state, a simulation with Python

(see Appendix A) was made, which reproduced the three-mode state preparation

and calculated the resulting separability properties. In principle the following pa-

rameters within our experimental setup can be varied: the variance of the thermal

state as well as the variances of the squeezed and anti-squeezed quadratures of the

squeezed state. The latter two can be changed independently of each other by vari-

ation of the pump power of the squeezed-light source and by variation of additional

optical losses.

For the simulations we make the approximation that the variance of thermal state

is equal in all quadratures. Note that without additional optical loss in the path

from the state preparation to the homodyne detectors (which we assume for the

simulations) the PPTB value always equals the PPTC value. Furthermore, with our

setup the PPTA value is always below 1 as long as we use a squeezed state as an

input state. Thus, we will not consider this value in the following.

In Fig. 6.3 the PPTB values with respect to the variance of the thermal state and

the variance of the squeezed state are shown. For the simulation in this figure we

assumed that there is no optical loss affecting the squeezed state. The figure shows

that in this case the PPTB value cannot be above 1 and thus the three-mode state

does not fulfill the requirements.

In Fig. 6.4 (a) the effect of the optical loss applied to the squeezed input state

is illustrated. We used a 20 dB thermal state with a symmetric variance as an

input state and varied the optical loss and the variance of the initial squeezed state.

Surprisingly, the figure shows that independent of the squeezed state’s variance

33.3% optical loss is always required to obtain PPTB values above 1. In Fig. 6.4

(b) we assumed a -10 dB squeezed state and varied the optical loss applied to the

squeezed state and the variance of the thermal state. Since the black threshold line

converges asymptotically to 33.3%, this figure also shows that the threshold of 1

cannot be achieved with less than 33.3% loss, even for an arbitrary large variance

of the thermal state. This is exactly the threshold for which the bipartite entangled

state, generated by the superposition of a squeezed and a vacuum state at the first

balanced beam splitter, is no longer Einstein-Podolsky-Rosen entangled [Ebe11].

Einstein-Podolsky-Rosen entangled states are a subclass of general entanglement,

exhibiting stronger quantum correlations. Indeed, the properties of our three-mode

state show that these correlations are so strong that the entanglement in the bipartite
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Figure 6.3: PPTB value with respect to the variance of the initial states. No
optical loss is assumed. Thus, the PPTB value cannot exceed 1 and the three-mode state
cannot be separable with respect to the B|AC splitting.

(a) (b)

Figure 6.4: PPTB value for different variances of the input states. (a) The
thermal state’s variance is set to 20 dB. The variance of the squeezed state and the optical
loss which is applied to the squeezed state are varied. The black line corresponds to a PPT
value of 1 and shows that regardless to the variance of the squeezed state, the optical loss
has to be greater than 33.3%. (b) Here, the pure squeezed state’s variance is set to 10 dB,
while the variance of the thermal state and the optical loss are varied. The threshold of
33.3% optical loss is also visible in this figure by the black line marking a PPT value of 1.
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Figure 6.5: PPTB value with respect to the thermal state’s variance. The solid
curves correspond to a 10 dB initial squeezed state. They show that for more optical loss
the required variance of the thermal state can be lower. The red curves show that for a
certain amount of optical loss the threshold of 1 (for a separable state) is not dependent
on the initial amount of squeezing.

splittings cannot be prevented by classical noise. Furthermore, Figure 6.4 (b) shows

that for more optical loss the variance of the thermal state can be smaller than

for less optical loss. However, with more optical loss the entanglement, which can

be distributed by separable states, becomes also less. Therefore, one has to find a

compromise between a reasonable amount of distributed entanglement and a thermal

state with an experimentally feasible variance.

Figure 6.5 shows a summary of the aspects considered before. Here, the PPTB

value is shown with respect to the variance of the thermal state for different initial

squeezed states and different optical loss. All solid lines correspond to a 10 dB initial

squeezed state. For 60% loss the curves for 20 dB and 6 dB are also shown in dotted

lines (red curves). They illustrate the fact that for a certain amount of optical loss

the initial squeezing value does not determine the required variance of the thermal

state; though, as mentioned before, it determines the amount of the distributed

entanglement.

Altogether, we now know that for the distribution of entanglement by separable

states we need more than 33.3% optical loss applied to the initial squeezed state, the
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variance of the squeezed state determines the amount of the distributed entangle-

ment and the variance of the thermal state has to be sufficiently large to demolish

the initial entanglement created at the first beam splitter.

6.3 Experimental Setup

The experimental setup for entanglement distribution by separable states is depicted

in Fig. 6.6. In this section we will describe the setup step by step and describe the

individual stages in detail.

6.3.1 Laser Source

The laser source was a Neodymium-doped Yttrium Aluminum Garnet (Nd:YAG)

continuous-wave solid-state laser from Inno-light (model Diabolo). This device gen-

erated a single-mode output field at 1064 nm of about 300 mW light power and

the frequency doubled field at 532 nm of about 500 mW light power using second

harmonic generation.

The green light field served as the pump field for the squeezed-light sources (see

next subsection). For this purpose the field was split in two parts by a half-wave

plate and a polarizing beam splitter (PBS). This combination was often used for

tunable power splitting throughout the experiment.

The infrared light field passed an electro-optical modulator (EOM), which phase

modulated the light field at a frequency of 30 MHz. The sidebands were used to

stabilize the length of all cavities in the experiment with the Pound-Drever-Hall

(PDH) locking technique [Bla01]. The infrared light field was used to stabilize

the cavities’ length of the squeezed-light sources, to align the beams at the balanced

beam splitters and homodyne detectors, and as the local oscillator for the homodyne

detectors. To utilize as a local oscillator the light field was filtered by a mode cleaning

ring cavity (MC) with a linewidth of 55 kHz. This device ensured that the light field

was shot-noise limited at frequencies above 5 MHz and that its mode was spatially

filtered.

The homodyne detector HDE also belonged to the laser preparation stage since it

provided the random noise for the thermal state generation by measuring vacuum

fluctuations.

6.3.2 Squeezed-Light Sources

The device for the generation of the squeezed and the thermal state was a type

I optical parametric amplifier (OPA). For details of the generation schemes see
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Figure 6.6: Experimental setup for the entanglement distribution by separable
states. Details are provided in the text.
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Sections 4.1 and 4.4. As the squeezed-light sources were already built up and used

for former experiments, details about their specifications can be found in [Che07,

Hag10a].

The standing-wave cavity of such a squeezed-light source was built up of a χ(2)

nonlinear crystal with one curved end surface and a mirror, which was mounted on

a piezo-electric transducer (PZT). The mirror had a reflectivity of 94% for 1064 nm

and of 25% for 532 nm. The crystal consisted of 7% Magnesium oxide doped Lithium

Niobate (MgO:LiNbO3) and had dimensions of 2.5×5×6.5 mm3. The flat incoupling

surface had an anti-reflective coating for 1064 and 532 nm, while the back surface

was curved and its reflectivity for both wavelengths was greater than 99.96%. This

resulted in a finesse of 100 for 1064 nm and of 4.3 for 532 nm. The free spectral

range of the cavity was determined by the length of the cavity and yielded 4 GHz.

The outgoing squeezed-light field was spatially separated from the reflected pump

field by a dichroic beam splitter (DBS). With a λ/2 wave plate and a PBS we could

add additional optical loss to adjust the squeezing variances.

The phase matching of the two light fields was achieved by type I phase-matching

(cf. Sec. 3.6). Therefore, the crystal’s temperature was actively stabilized by Peltier

elements to a temperature of about 60◦C.

For stabilizing the length of the cavity a control field at 1064 nm was coupled

from its back side. The back reflected light passed the Faraday rotator, the λ/2

wave plate, and the PBS and was detected by a photo diode. Since the control field

contained sidebands at 30 MHz, the alternating current (AC) of the photo detector

was demodulated at this frequency. After low pass filtering the PDH error signal

was used to control the cavity’s length. To generate a stable amplitude or phase

squeezed vacuum state the phase of the pump field was also actively controlled. For

this purpose the photo detector’s AC output was demodulated with a phase shift

of 90◦ with respect to the demodulation phase of the lengths control’s error signal.

The resulting error signal for stabilizing the phase drove a phase shifter (PS), i.e. a

mirror mounted on a piezo electric transducer (PZT).

For the generation of the squeezed state as the initial input state the OPA provided

amplitude squeezed vacuum states. To stabilize the phases of the phase gates and

homodyne detectors, a single sideband (cf. Sec. 4.3) was imprinted to the squeezed-

light field. The single sideband was generated by a second laser from Inno-light

(model: Mephisto) which was frequency stabilized to the main laser source with a

frequency shift of 15 MHz.

For the generation of the thermal state the second OPA provided phase squeezed

states, whose phase quadrature was enhanced by an additional noise modulation of

the control field. For this purpose the cavity had to be stabilized to amplification of

the amplitude. That stabilization was more difficult to achieve than the stabilization
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of the control beam’s phase to generate amplitude squeezed states since the stabi-

lization scheme used the detected amplitude of the control field. To have a better

control of the stabilization we added the monitor photo detector PDM in reflection

of a PBS. The imperfection of the PBS’s transmission was sufficient to monitor the

amplitude of the control field. The measurements were thus only performed when

the detected amplitude was stable. Details about the thermal state generation can

be found in Section 4.4.

6.3.3 Three-Mode State Preparation

BS1 BS2

squeezed 
state

vacuum
thermal 
state

A B C

For the three-mode state preparation the

squeezed state was superimposed with a

vacuum state at the balanced beam splitter

BS1. One output was sent to Alice’s homo-

dyne detector HDA, while the other output

was overlapped with the thermal state on the second balanced beam splitter BS2.

Its two outputs were detected with the homodyne detectors HDB and HDC. With

those three homodyne detectors the three-mode state was checked for its separabil-

ity properties. They had a quantum efficiency about 90%± 5% and their visibilities

were measured before each measurement. The local oscillators had a total light

power of 2 mW each. The homodyne detectors were locked to a certain quadrature

using the single sideband (cf. Sec. 4.3). With the data of the homodyne detectors

the covariance matrix of the three-mode state could be reconstructed (see Section

6.4.1) and by applying the PPT criterion the requirements for the three-mode state

were checked.

6.3.4 Entanglement Distribution

A B

HDA

LO

C

HDB

LO

HDC

LO

HDB’

LOBS3

Alice

Bob

If the three-mode state was as re-

quired, two flip mirrors were used

to superimpose modes B and C

at Bob’s balanced beam splitter

BS3. One output was discarded,

while the other one was detected

by Bob’s homodyne detector HDD.

The phase of the beam splitter

was set to the opposite phase of

phase gate BS2 to generate entan-

glement between Alice and Bob and was controlled manually. With Alice’s detec-
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Figure 6.7: Data Acquisition. For the data acquisition the AC-currents of the photo
diodes were subtracted, mixed with an electronic local oscillator at 6.4 MHz and low-pass
filtered. An analog-to-digital conversion card recorded the data and a LabView program
made the post-processing. The measured quadrature of the homodyne detector was also
set by a LabView program.

tor HDA and Bob’s detector HDD the entanglement between modes A and B′ was

checked by applying the Duan criterion (cf. Sec. 2.9) to the measured covariance

matrix of the bipartite state.

6.4 Measurement Procedure

After all stabilization schemes for generating the squeezed and the thermal states

and for setting the their phases at the balanced beam splitter had been set, the

following measurement procedure involved into two tasks: the reconstruction of the

covariance matrix of the three-mode state to check for its requirements and the

entanglement measurement. For these tasks the subtracted signal from both photo

diodes of a homodyne detector was mixed with an electronic local oscillator at a

frequency of 6.4 MHz. The resulting signal was low-pass filtered by a sixth order

anti-alias filter with a corner frequency of 400 kHz. The data was sampled with

the 14-bit analog-to-digital conversion card PCI-6133 from National Instruments.

For each measurement a total number of 106 data points was recorded and post-

processed with a LabView program. The data acquisition is illustrated in Fig. 6.7.

6.4.1 Reconstruction of the Covariance Matrix

For checking the separability properties of the three-mode state, we measured the X,

P, and the 45◦ quadratures of the modes A, B, and C in different combinations with
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the stabilized homodyne detectors HDA, HDB, and HDC, reconstructed the three-

mode-state’s covariance matrix and applied the PPT-criterion to the covariance

matrix (cf. Sec. 2.9).

Table 6.1: Homodyne detector settings for the reconstruction of the three-
mode covariance matrix.

setting # HDA HDB HDC

1 XA XB XC

2 PA PB PC
3 PA XB XC

4 XA PB XC

5 XA XB PC
6 XA + PA XB + PB XC + PC

We performed measurements for six different settings of the detected quadratures,

illustrated in Table 6.1. The measured quadratures of the different modes were sta-

bilized using the single sideband and were set by a LabView program. First, we

measured the variances of the amplitude quadratures Xj. In a second step we re-

peated the procedure for the phase quadratures Pj. In the third (fourth, fifth) step

we determine the covariances of the phase quadrature PA (PB, PC) with the am-

plitude quadratures of the other two modes. For determining the cross correlations

of the three modes, we measured in a last step the quadratures at an angle of 45◦,

since we cannot measure different quadratures of the same mode simultaneously.

The cross correlation of amplitude and phase quadrature of one stationary mode

can be calculated by

〈X̂jP̂j〉 =
1

2
(X̂jP̂j + P̂jX̂j) = 〈X̂j(45◦)2〉 − 1

2

〈
(X̂2

j ) + (P̂ 2
j )
〉
. (6.1)

Details about this calculation can be found e.g. in [Sam12].

For calibration purposes we also performed a vacuum noise measurement. The

entire reconstructed 6× 6 covariance matrix γ consisted of the following entries

γ =



〈X̂2
A〉 〈X̂AP̂A〉 〈X̂AX̂B〉 〈X̂AP̂B〉 〈X̂AX̂C〉 〈X̂AP̂C〉

〈P̂ 2
A〉 〈P̂AX̂B〉 〈P̂AP̂B〉 〈P̂AX̂C〉 〈P̂AP̂C〉

〈X̂2
B〉 〈X̂BP̂B〉 〈X̂BX̂C〉 〈X̂BP̂C〉

〈P̂ 2
B〉 〈P̂BX̂C〉 〈P̂BP̂C〉

〈X̂2
C〉 〈X̂CP̂C〉

〈P̂ 2
C〉


(6.2)

For sake of readability we omitted the lower part of the covariance matrix since the

matrix is symmetric.
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6.4.2 Verifying the Entanglement

After the three-mode state had been measured and checked for its separability prop-

erties, mode C was sent to Bob and superimposed with mode B at the balanced beam

splitter BS3. The homodyne detectors at Alice and Bob measured the complete co-

variance matrix of the two-mode state AB′, which corresponds in principle to the

upper left 4 × 4-matrix from Eq. 6.2 if mode B is replaced by B′. Afterwards the

Duan criterion was applied to the covariance matrix to check whether the two-mode

state had been entangled.

6.5 Results

To investigate the required three-mode state we measured its covariance matrix with

several different initial settings for the squeezed and thermal state. In the following

our measurement results will be presented for different input states, i.e. for squeezed

states with different squeezing and anti-squeezing values and for thermal states with

different variances. For remembering the modes’ and homodyne detector’s names,

a schematic of the setup is depicted in Fig. 6.8.

Measurement without the Thermal State

To show that the measurement procedure worked, we first generated the three-

mode state without implementing the thermal state at the beam splitter BS2. The

advantage of this procedure was that we did not need a phase lock at the beam

splitter BS2 and we knew that we should measure a squeezed state at all homodyne

detectors.

For this measurement we used a green pump field of about 90 mW for the squeezing

generation and obtained a squeezed vacuum state with a noise reduction of -6.5 dB.

With an entire optical loss of 38 % the resulting squeezed state had a noise reduction

and amplification of -2.9,dB and 5 dB, respectively. The other two input states were

vacuum states.

The reconstructed covariance matrix for that three-mode state reads

γ =



0.76 0.00 0.15 0.07 0.15 0.01

0.00 2.09 0.09 −0.66 0.01 −0.73

0.15 0.09 0.89 −0.03 −0.13 −0.05

0.07 −0.66 −0.03 1.53 −0.05 0.52

0.15 0.01 −0.13 −0.05 0.88 0.00

0.01 −0.73 −0.05 0.52 0.00 1.54


. (6.3)
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Figure 6.8: Schematic of the experimental setup. In the black box the three-mode
state generation is depicted. Modes A and C were sent to Alice, while mode B was sent
to Bob. If the homodyne detectors HDA, HDB, and HDC measured the required three-
mode state, mode C was sent to Bob, where it was superimposed at the balanced beam
splitter BS3 with mode B. The entanglement was checked with the Duan criterion with
the homodyne detectors HDA and HDB′ .
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Since all variances of the amplitude quadrature are below 1, every homodyne detec-

tor measured a squeezed vacuum state as we had expected. The PPT values for the

three-mode state were

PPTA = 0.76 , PPTB = 0.79 , PPTC = 0.77 . (6.4)

Thus, the state was inseparable in all splittings. The measured Duan value for the

distributed entanglement was I = 3.7 < 4, which shows, that entanglement was

distributed among Alice and Bob, though, with inseparable states.

Entanglement Distribution by Separable States

In a next step we also injected a thermal state with a variance of 9.6 dB in the ampli-

tude quadrature and 10.2 dB in the phase quadrature. The squeezed vacuum state

had -1.8 dB and 5.1 dB noise reduction/amplification in the amplitude and phase

quadrature, respectively. The corresponding covariance matrix for the resulting

three-mode state was given by

γ =



0.76 0.04 0.12 −0.03 0.19 −0.07

0.04 2.20 0.05 −0.78 −0.10 −0.74

0.12 0.05 5.70 −0.29 −3.92 1.14

−0.03 −0.78 −0.29 6.84 −0.96 −3.94

0.19 −0.10 −3.92 −0.96 4.73 0.09

−0.07 −0.74 1.14 −3.94 0.09 5.92


, (6.5)

and led to the PPT values

PPTA = 0.89 , PPTB = 1.1 , PPTC = 1.07 . (6.6)

Thus, the three-mode state seems to be as required and can distribute entanglement

by separable states. After we had turned the flip mirrors to distribute the entan-

glement, we measured a Duan value of I = 3.7, which is below the threshold of

4. Thereby, the successful demonstration of entanglement distribution by separable

states is shown. Considerations concerning the reliability of the measured values,

especially due to homodyne losses, can be found in Sec. 6.6, where it is verified that

we indeed distributed entanglement by separable states.
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Table 6.2: Experimental Results for different squeezed input states. The text
colors correspond to the crosses in Fig. 6.9.

# Squeezing Loss PPTB

1 7.2 38% 1.02
2 7.2 58% 1.06
3 6.6 60% 1.07

Variation of the Squeezed State

To show the influence of the squeezed state we varied the initial squeezing value

and the losses applied to the state and kept the thermal state constant. The initial

squeezing value was varied by using more or less pump power for the OPA to achieve

a higher or lower gain and the losses were varied by a half-wave plate and a PBS,

which the squeezed vacuum field had to pass. In Fig. 6.9 the theoretical values for

such a variation are plotted. The colored crosses mark our measurements, whose

details can be found in Table 6.2 with the corresponding text color. To obtain com-

parable results we subtracted the individual homodyne losses from the covariance

matrix and used the PPT values obtained from this matrix. The variances of the

thermal state we used for the theoretical simulation and within the experiments were

14 dB and 11 dB in the amplitude and phase quadrature, respectively. It is visible

that our experimental results are in perfect agreement with the theoretical simula-

tions. For this measurements we did not measure the resulting two-mode state to

check the entanglement. However, due to the PPT values of the three-mode state

and the already demonstrated success of distributing the entanglement, we knew

that those states were suitable to distribute entanglement by separable states.

6.6 Discussion

On a first glance the measurement results show the successful demonstration of

entanglement distribution by separable states. Also the results for different input

states are in good agreement with theoretical simulations (cf. Fig. 6.9). However,

we have to consider that three main effects can in principle cause masking the

actual presence of entanglement in the B|CA and C|AB splitting or could make

the three-mode state non-Gaussian. As illustrated in Fig. 6.10 these effects consists

of the inefficient homodyne detection, phase fluctuations due to imperfect phase

locking between signal beams and local oscillator beams, and the generation of

the thermal state by random displacements of the originally squeezed quadrature

where the distribution of random displacements may slightly deviate from a Gaussian

distribution. In this section these effects will be considered in detail.
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Figure 6.9: Variation of the squeezed input state. The blue and white surface
shows the theoretical values for the PPTB value with respect to the squeezed input state.
We varied the squeezing parameter as well as the optical loss. The colored crosses mark
our experimental results, whose details can be found in Table 6.2.
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Figure 6.10: Experimental setup including effects that can potentially mask
entanglement of the resulting three-mode state. After the preparation of the three-
mode state each mode could be subject to phase fluctuations and losses. Phase fluctuations
could occur due to imperfect phase stability between signal and local oscillator beams of the
homodyne detection and to instabilities in locking schemes. A non-Gaussian modulation
within the thermal state generation can also cause phase noise. Inefficient homodyne
detection could mask the real properties in such a way that the initially inseparable state
seems separable.
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6.6.1 Inefficient Homodyne Detection

Since the three-mode state is probed with three balanced homodyne detectors and

the covariance matrix of the state is determined from the homodyne data, we have

to consider the effect of the homodyne detectors which are characterized by their

efficiency ηi, i ∈ {A, B, C}. The efficiency is limited by the quantum efficiency of

the photo diodes and the mode-matching of the signal field to the local oscillator

(also called visibility). The detection loss can be simulated by the transmission

through a lossy channel with transmission η. The reconstructed covariance matrix

γm obtained from the measured data is then given by

γm = SηγrS
T
η +Gη , (6.7)

where γr denotes the covariance matrix without detection loss,

Sη =



√
ηA 0 0 0 0 0

0
√
ηA 0 0 0 0

0 0
√
ηB 0 0 0

0 0 0
√
ηB 0 0

0 0 0 0
√
ηC 0

0 0 0 0 0
√
ηC


, (6.8)

and Gη = I − SηSTη with the identity matrix I. By inverting Eq. 6.7 we obtain the

real covariance matrix γr

γr = S−1
η (γm −Gη)S

T
η

−1
. (6.9)

The homodyne detector’s inefficiency can cause that the three-mode state looks like

the required one, however, the actual three-mode state without optical loss is insep-

arable in all splittings. This behavior is illustrated in Fig. 6.11, where the influence

of detections loss on the PPT values for an arbitrary inseparable three-mode state is

depicted. The three-mode state is actually inseparable in all splittings. However,

if the detection loss exceeds 20%, the three-mode state seems to fulfill the require-

ments since it seems to be separable in the B|AC and C|AB splittings. Thus, we

have to correct our measured covariance matrix for detection loss. For our measure-

ment result in Eq. 6.4 we therefore have a look at the PPTB and PPTC value with

respect to the homodyne detection loss as illustrated in Fig. 6.12. The magenta

curves represent the PPTB and PPTC values of the covariance matrix γ, if optical

loss within the homodyne detection is subtracted. The black vertical lines mark the

regime of our estimated detection efficiency (quantum efficiency + visibility). We
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Figure 6.11: PPT values versus detection loss. Initially the three-mode state is
inseparable in all splittings. If the homodyne detections suffer from loss which is greater
than 20% each (for this example), the state seems to be separable in the B|AC and C|AB
splittings.
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Figure 6.12: Measured PPT values with subtraction of detection loss. The ma-
genta curves show the inferred PPTB and PPTC values of the measured covariance matrix
for a spectrum of computationally eliminated detection losses. Based on independent mea-
surements we estimate the actual detection loss to be greater 6% and smaller 22%. These
losses do not push the PPT values below unity and, thus, into the inseparable regime.
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estimated the quantum efficiency of the homodyne detector’s photo diodes to be

about 90%. The visibilities of the homodyne detectors were measured before each

measurement and laid in a regime of 93–98%. Thus, for the covariance matrix γ the

detection losses were 11% ± 5% for the homodyne detector BHDA, 17% ± 5% for

BHDB and 16.6%±5% for BHDC, which leads to a lower bound of 6% and an upper

bound of 22% loss. If we use the upper bounds for the detection loss we obtain the

real covariance matrix for the measured data

γr =



0.71 0.05 0.15 −0.04 0.23 −0.09

0.05 2.43 0.06 −0.96 −0.12 −0.91

0.15 0.06 7.03 −0.37 −5.01 1.46

−0.04 −0.96 −0.37 8.49 −1.23 −5.04

0.23 −0.12 −5.01 −1.23 5.76 0.11

−0.09 −0.91 1.46 −5.04 0.11 7.28


, (6.10)

which lead to the PPT-values

PPTA = 0.85 , PPTB = 1.07 , PPTC = 1.04 . (6.11)

This shows the correctness of the separability properties regardless whether the

detection loss is considered to be part of the detected state or not. The same is also

valid for all measured values presented in Table 6.2, where homodyne losses were

already considered.

6.6.2 Phase Noise

Since all considerations and criteria we used are only valid for Gaussian states,

we had to check the gaussianity of our measured data. In our setup we just have

Gaussian operations. However, fluctuations of electronics (used for the stabilization

loops or the thermal state generation) or of the beams itself can cause phase noise,

which would led to a non-Gaussian statistic. For verifying the gaussianity of the

data we used a QQ-plot, which compares a measured distribution to a Gaussian

one. Therefore, the sample quantiles of the data were plotted versus the theoretical

quantiles of a perfect Gaussian distribution. Data with a Gaussian statistic are

thus distributed along a straight line (representing a perfect Gaussian distribution),

while data with phase noise deviates from such a distribution. In Fig. 6.13 three

QQ-plots of the three homodyne detector’s data are exemplarily shown for one data

set of the measurements. Since the measured data (blue dots) does not significantly

deviate from a perfect Gaussian distribution (red straight line) we can state that

our measured data is indeed Gaussian.
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Figure 6.13: QQ-plots of the homodyne data. The three plots show the QQ-plot of
one data set sampled with the three homodyne detectors. The blue dots mark the data
points, while the red line represents a perfect Gaussian distribution. The figures show
that there is no significant deviation from a Gaussian distribution, which demonstrates
that there was no phase noise.
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6.6.3 Statistical Errors

To determine the statistical errors of the symplectic eigenvalues PPTj calculated

from the estimated covariance matrices, a Monte Carlo simulation of the whole ex-

periment was performed assuming Gaussian statistics of the measured quadratures.

For each run of the Monte Carlo simulation we have reconstructed the covariance

matrix and calculated the symplectic eigenvalues. This procedure was repeated 1000

times which provided a statistical ensemble for each estimate PPTj. The mean val-

ues and statistical errors determined with the use of these ensembles read

PPTA = 0.849± 0.001 ,

PPTB = 1.069± 0.001 ,

PPTC = 1.036± 0.001 .

(6.12)

This confirms that the statistical errors are very small compared to the deviations of

PPTj from 1. Hence, the observed separability properties are statistically significant.

6.7 Conclusion

In this chapter the experimental realization of entanglement distribution by sep-

arable states was demonstrated. It was shown that for this protocol a specific

three-mode state is suitable, whose thermal noise prevented entanglement in two of

the three bipartite splittings. After transmission of a separable state, entanglement

was revealed via quantum interference. Simulations showed that the protocol does

not work with Einstein–Podolsky–Rosen–entangled states, since with states of this

class of entanglement, separability cannot be enforced by introducing thermal noise.

By subtracting the detection loss of the covariance matrix it was verified that no

disturbing effect masked the presence of entanglement and that actually separable

states were used to distribute the entanglement. Furthermore, it was demonstrated

that the data was Gaussian and, thus, the used criteria were valid to show the

separability.

This experimental realization of a counterintuitive phenomena provides an insight

into the underlying physical mechanism behind the protocol, such that this work can

help to understand the possibilities and restrictions offered by multi-mode entangled

quantum states and future multipartite quantum communication networks.

Its importance is also visible by the fact that two other demonstrations of entan-

glement distribution by separable states, with continuous as well as with discrete

variables, respectively [Peu13, Fed13], were shown recently.
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CHAPTER7
Conclusion

Future quantum networks require non-classical states of light and their successful

distribution and detection. Therefore, a thorough knowledge about entanglement,

multimode entanglement and its distribution is important as well as the efficient

generation of non-classical states of light in the entire wavelength regime. This the-

sis presents what is currently the highest measured squeezed vacuum state of light

at 532 nm corresponding to a −1.5 dB noise reduction. In addition, entanglement of

−1.4 dB between squeezed vacuum states at 1550 nm and 532 nm, is demonstrated.

In the second part of the thesis the successful distribution of entanglement by sep-

arable states of light is realized for the first time. The quantum up-conversion as

well as the entanglement distribution by separable states are useful tools for future

quantum engineering tasks.

Quantum Up-Conversion

With the technique of quantum up-conversion non-classical states of light can also

be generated in the visible wavelength regime, in contrast to the convenient gen-

eration methods. In this thesis it was shown that squeezed and entangled states

of light can be up-converted via sum-frequency generation. This process used a

strong coherent pump field at 810 nm. Due to energy conservation the photons at

1550 nm got up-converted to 532 nm. A squeezed vacuum state with a noise reduc-

tion of −1.5 dB at 532 nm was thereby obtained and entanglement between 1550 nm

and 532 nm with a Duan value of −1.4 dB was generated. The quantum proper-

ties were maintained during this process as already proposed in 1990 [Kum90] and

experimentally shown via second harmonic generation in 1992 [Hua92]. However,

with the technique of second harmonic generation no squeezed vacuum states could

be generated. These states are mandatory for the improvement of the sensitivity

of gravitational wave detectors [Sch10] and for quantum imaging beyond the stan-
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dard quantum limit [Tre03, Bri10] since an additional carrier field would disturb the

measurement sensitivity.

By means of quantum up-conversion it is also possible to generate other non-

classical states of light, e.g. Schrödinger Kitten states. At the moment they can be

generated in the infrared wavelength regime [Our06] by subtracting one single photon

of a squeezed vacuum state, but with the presented technique of sum-frequency

conversion they can be up-converted to the visible regime.

With the technique of frequency up-conversion, especially from the infrared to

the visible wavelength regime, it is also possible to detect the transferred quantum

states with a high efficiency, as commercially available single photon detectors are

most efficient in the visible wavelength regime [Van04].

The generation of entanglement via sum-frequency generation provides a new

scheme for establishing quantum links between different wavelengths. With such a

technique the two important tasks in a quantum network, the transmission and the

storage of information, can be simultaneously fulfilled.

Entanglement Distribution via Separable States

Cubitt et al. showed in 2003 that it is in principle possible to distribute entanglement

with separable states [Cub03]. Mǐsta and Korolkova theoretically constructed the

seemingly paradoxical protocol for the continuous variable regime [Mǐs08, Mǐs09].

The experimental realization was demonstrated for the first time within this thesis

by the preparation of a specific three-mode state, which was separable in two of the

three splittings [Vol13]. The three-mode state was composed of a squeezed state, a

thermal state, a vacuum state, and two balanced beam splitter. The requirements

for the initial states were investigated and it was found that the protocol cannot

work if Einstein-Podolsky-Rosen entangled states as initial squeezed states are used,

since their entanglement is too strong to be masked with thermal noise.

The three-mode state was checked for its separability properties by reconstructing

the covariance matrix and applying the PPT criterion. It was verified that neither

homodyne detection loss, nor phase noise masked any entanglement so that truly

separable states were used to distribute entanglement between Alice and Bob.

With the experimental realization of the original protocol from Cubitt et al. the

feasibility of such multipartite protocols was shown and our understanding grew

deeper. Multimode or multitpartite quantum states will play an important role

for future protocols dealing with quantum teleportation [Bow03] and communica-

tion [Bra04] since they are a valuable resource for applications concerning quantum

computing [Rau01, Wal05, Uka11].
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CHAPTERA
Python Simulation

The following python simulation is the basis for all simulations, illustrations, and

data analyses concerning the entanglement distribution by separable states.

import lab.analysis.tripartite as tripartite

import lab.analysis.covariance as bipartite

import lab.analysis.squeezing

from lab.analysis.covariance import dB2r

from numpy import *

# squeezing parameter

dB1=21 # amplitude quadrature thermal state

dB3=21 # phase quadrature thermal state

dB2=13 # amplitude quadrature squeezed state

# optical loss of the initial states

L_OPA1=0

L_OPA2=0.6

L_OPA3=0

# optical loss at phase gates

L_PG1=0.

L_PG2=0.1

L_PG3=0.00

# optical loss at homodyne detectors

L_HOMOA=0.2 #0.13

L_HOMOB=0.20
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Appendix A: Python Simulation

L_HOMOC=0.2 #0.33

L_HOMOD=0.2

# generation of the thermal state

# by superimposing the two squeezing ellipses 1 & 3

cm_thermal=bipartite.vacuum()

cm_thermal.squeeze(dB2r(dB1),0,dB2r(dB3),pi/2)

cm_thermal.opticalloss(L_OPA1,L_OPA3)

cm_thermal.entangle()

cm_thermal.opticalloss(L_PG1,L_PG1)

# generation of covariance matrix for the input states

cm_all=tripartite.vacuum()

# generation of squeezed vacuum state

cm_all.squeeze(((dB2r(dB2),pi/2),(0,0),(0,0)))

cm_all.opticalloss((L_OPA2,0,0))

cm_all[4:,4:]=cm_thermal[0:2,0:2]

# beam splitter BS1

cm_all.entangle(1,2)

#cm_all.rotate((pi/3,pi/4,0))

# check for entanglement after beam splitter BS1

cm_EPR1=bipartite.covariancematrix(cm_all[:4,:4])

cm_EPR1.opticalloss(L_HOMOA,L_HOMOB)

print cm_EPR1.duan()

# beam splitter BS2

cm_all.entangle(2,3)

cm_all.opticalloss((0,L_PG2,L_PG2))

# cm_all.rotate((pi/10,pi/10,pi/11))

# PPT criterion

print cm_all

print cm_all.PPT()

# optical loss at homodyne detectors

cm_detection=tripartite.covariancematrix(cm_all)

# cm_detection.rotate((pi/30,pi/20,pi/21))

cm_detection.opticalloss((L_HOMOA,L_HOMOC,L_HOMOD))

print cm_detection

savetxt("CM_EDS_TestSim.txt", cm_detection)
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print cm_detection.PPT()

# send separable states to Bob, superimpose both modes

# at beam splitter BS3

cm_test=tripartite.covariancematrix(cm_all)

cm_test.rotate((0,0,pi))

cm_test.entangle(2,3)

cm_test.opticalloss((0,L_PG3,L_PG3))

cm_EPR=bipartite.covariancematrix(cm_test[:4,:4])

cm_EPR.opticalloss(L_HOMOA,L_HOMOB)

#measure distributed entanglement

print cm_EPR.duan()
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Meinen Freunden, die mir immer zuhörten, meine Begeisterung teilten und, falls

nötig, die richtigen Worte fanden, um mich wieder aufzubauen.

Meiner Familie, die mich immer und überall unterstützt und ermutigt hat. Euer

großes Vertrauen in mich hat mir immer den Rücken gestärkt. Ganz besonders
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