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Abstract

This thesis discusses the numerical solution of time-dependent scattering phenomena in

the half-space using retarded potential boundary integral equations. We consider the

case of a sound-hard, sound-soft or partially absorbing surface with a Robin boundary

condition. Time-domain boundary integral operators adapted to the surface are used

to solve this boundary problem. For the analysis of the boundary integral equations we

follow the approach of Bamberger and Ha-Duong and consider first the corresponding

boundary value problem for the Helmholtz equation in the frequency domain. We show

that in physically relevant situations the problems are well-posed and, in particular,

uniquely solvable.

For the bilinear form belonging to the Calderon projector we show coercivity and con-

tinuity.

We then discuss the efficient numerical solution of the boundary problem based on a

time-domain Galerkin boundary element method in R3
+. A priori and a posteriori error

estimates are presented in space-time Sobolev norms. In particular, we show the relia-

bility of a residual type a posteriori error estimate for both the integral equation of the

first kind with the single layer potential and for the complete system associated to the

Calderon projector for the Robin problem with absorbing boundary conditions in R3
+.

The a priori estimates guarantee the convergence of our methods for the Dirichlet and

Robin problems in the half-space.

Numerical experiments for a spherical obstacle in the half-space confirm our theoretical

predictions in a simple situation, where an exact solution is available. We use the a pos-

teriori error estimates to define an adaptive time-domain boundary element procedure

for singular boundary data and thereby make a first step towards space-time adaptive

methods.

Numerical experiments on the sound radiation of real-world tyre models show the ap-

plicability of the developed methods to engineering problems. We compare our time-

domain simulations with the results from stabilized frequency-domain boundary element

methods. The experiments concern the sound radiation for given tyre vibrations, the

amplification of sound in the horn-like geometry where the tyre meets the street as well

as the Doppler shift of sound frequencies for a moving tyre.

Keywords. boundary element method, retarded potentials, absorbing half-space, a

proiri, a posteriori error estimates, tyre.
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Zusammenfassung

Diese Dissertation betrachtet die numerische Lösung zeitabhängiger Streuprobleme im

Halbraum mit Hilfe zeitabhängiger Randintegralgleichungen. Wir betrachten schall-

harte, schallweiche oder teilweise absorbierende Oberflächen mit einer Robin-Randbedingung.

Zur Lösung des betrachteten Randwertproblems erweisen sich an die Oberfläche angepasste

Randintegraloperatoren als hilfreich.

Die Analyse der sich ergebenden Integralgleichungen folgt einem auf Bamberger und Ha-

Duong zurückgehenden Zugang. Dafür betrachten wir zuerst ein Fourier-transformiertes

Randwertproblem für die Helmholtzgleichung im Frequenzbereich. Wir zeigen, dass

dieses in den physikalisch relevanten Fällen wohlgestellt und insbesondere eindeutig

lösbar ist. Darüber hinaus weisen wir für eine mit Hilfe des Calderon-Projektors

definierte Bilinearform die Koerzivität und Stetigkeit nach. Für die effiziente nu-

merische Lösung des Randwertproblems präsentieren wir eine zeitabhängige Galerkin

Randelementmethode im R3
+. A priori and a posteriori Fehlerabschätzungen in Raum-

Zeit-Sobolevnormen werden hergeleitet. Insbesondere beweisen wir die Zuverlässigkeit

eines residualen a posteriori Fehlerschätzers sowohl für die Integralgleichung erster Art

mit dem Einfachschichtpotential als auch für das vollständige zum Calderon-Projektor

gehörende System von Gleichungen für das absorbierende Robin-Problem im R3
+.

Numerische Experimente für eine Kugel als Hindernis im Halbraum bestätigen unsere

theoretischen Untersuchungen in einem einfachen Fall, in dem wir eine exakte Lösung

angeben können. Basierend auf den a posteriori Abschätzungen definieren wir eine

adaptive, zeitabhängige Randelementmethode für singuläre Randdaten. Diese stellt

einen ersten Schritt hin zu allgemeineren Raum-Zeit-adaptiven Randelementmethoden

dar.

Numerische Experimente zur Schallabstrahlung realistischer Reifenmodelle zeigen die

Anwendbarkeit der entwickelten Methoden auf Ingenieurprobleme. Wir vergleichen un-

sere Simulationen im Zeitbereich mit Ergebnissen stabiliserter frequenzabhängiger Ran-

delementmethoden. Die Experimente betrachten die Schallabstrahlung bei vorgegebe-

nen Reifenschwingungen, die Verstärkung des Schalls in der Horngeometrie zwischen

Reifen und Straße sowie die Dopplerverschiebung der Schallfrequenz für einen bewegten

Reifen.

Schlagworte. Randelementemethode, retardierte Potentiale, absorbierender Halbraum,

a priori, a posteriori Fehlerabschätzungen, Reifen.
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0 Introduction

Many important physical applications such as electromagnetic wave propagation or the

computation of transient acoustic waves are governed by the wave equation. Such prob-

lems are posed in unbounded domains and the method of integral equations is used to

transform the wave equation in the integral equation on the boundary surface of the

scatterer. Numerical discretization methods are collocation methods with stabilization

techniques [16] [17] [18], Laplace-Fourier methods coupled with Galerkin boundary el-

ements in space [4] [13] [22] [23] [46] [47] and the convolution quadrature method for

the time discretization [7][31].

This thesis treats the time domain boundary element approach and is based on the

above mentioned Laplace-Fourier methods. This approach allows to describe the time-

wise behaviour of the sound radiation of car tyres, e.g. one can compute the Doppler

effect for a moving car, see Chapter 6.

It is split into theoretical parts (Chapters 1-4) and numerical parts (Chapters 5-6).

After the introductory Chapter 1 with the necessary definitions of the Fourier Laplace

transformation, anisotropic Sobolev spaces and boundary element spaces, we introduce

in Chapter 2 the retarded potentials of the single layer and of the double layer and

the corresponding boundary integral operators together with the jump relations. Then

we briefly describe the marching-on-in-time (MOT) scheme, which is used to solve the

space time discretized exterior Dirichlet, resp. Neumann problem in R3 based on a

Galerkin scheme for the boundary integral equations. A summary of known results for

the retarded single layer potential ansatz to treat the Dirichlet problem closes Chapter

2.

In the following Chapter 3 we consider the boundary value problem for the wave equa-

tion in the exterior domain in R3
+ of a bounded domain Ω with Lipschitz boundary

Γ. Especially the case of a partially absorbing surface Γ∞ = ∂R3
+ = R2 with a Robin

boundary condition is considered. This boundary value problem is solved with a suitable

transient Green’s function for the half-space. An important step here is the derivation

of a representation formula for the solution (Theorem 3.1). For the analysis of the

boundary integral equations we follow the approach of Bamberger and Ha-Duong and

consider first the corresponding boundary value problem for the Helmholtz equation in

the frequency domain. We show that in physically relevant situations the problems are

well-posed and uniquely solvable. For the bilinear form aω in (3.17) belonging to the

Calderon projector we show coercivity (Theorem 3.3) and continuity (Theorem 3.5).

Then we consider in the time domain the corresponding boundary integral equation

for the acoustic scattering problem with a Robin boundary condition on Γ and Γ∞.
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0 Introduction

Like Bamberger and Ha-Duong, we can go from the time harmonic case to the time-

dependent case with the help of the inverse Fourier Laplace transformation, and hence

we can show continuity and coercivity of the corresponding bilinear form in (3.33) in

anisotropic Sobolev spaces spaces (Theorem 3.7).

Chapter 4 decomposes into 2 parts: a) a priori error estimates in space-time Sobolev

spaces for the time-domain boundary element method in R3
+ (Section 4.1). b) reliabil-

ity of a residual type a posteriori error estimate for integral equations of the first kind

with the single layer potential (Section 4.2) and the complete system of the Calderon

projector for the Robin problem with absorbing boundary conditions (Section 4.3) in

R3. The a priori error estimate in Section 4.1.2 concerns the initial boundary value

problem with Robin boundary conditions on Γ ∪ Γ∞. We obtain this result (Theorem

4.2) by extending the techniques of Bamberger and Ha-Duong, there only Dirichlet or

Neumann problems are considered in R3. In our derivation of our a posteriori error

estimator we extend the approach of Carstensen and Stephan (for the elliptic case) to

our hyperbolic situation (Theorems 4.3 and 4.4). In Section 4.4 we present an adaptive

algorithm for space-time refinement and give numerical experiments for the first kind

integral equation with the single layer potential.

The second part of the dissertation starts in Section 5.1 with the description of the

boundary element method for the exterior boundary problem of the wave equation in

the half-space R3
+ with Robin boundary conditions on Γ∞. Here we extend the approach

by Ostermann (there for R3 and Dirichlet boundary conditions) to our situation. Then

the Neumann problem in the absorbing half-space is considered which leads to the in-

tegral equation (5.8) of the second kind with the normal derivative of the single layer

potential. In Section 5.2 we first present numerical experiments for the half-space case

outside a sphere. Here, an exact solution is known and can be used for validation. Then

in Section 5.2.2 we consider the benchmark of the sound radiation of a tyre with sound

hard road Γ∞. Again the core part is the implementation of the BEM for the second

kind integral equation with the normal derivative of the single layer potential (5.21),

now with a physical right hand side. The benchmark of a vibrating tyre is computed

in Section 5.2.3. The horn effect, another benchmark, is considered in Section 5.2.4.

Again numerical computations are compared with the engineering data.

Chapter 6 is dedicated to the analysis of a rolling tyre. First the corresponding Green’s

function is given and an exact solution is obtained via Lorentz transformation. Our

numerical experiments in Section 6.3 show the Doppler effect which appears when the

tyre moves towards the observer.

Our numerical experiments are carried out on an Intel Xeon computer server at the

Institute of Applied Mathematics at LUH with an extended version of the software

package maiprogs.
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1 Notation and Definitions

1.1 Notation and Definitions:

We start this chapter with a brief introduction into the main concepts and definitions

connected with the Sobolev spaces used and some standard notations for distributions

(see e.g. [2] ).

First we recall the definitions of the Fourier transform and the Laplace transform. For

u(t, .) ∈ S(R), the Schwartz space of tempered functions, and η ∈ R, the Fourier trans-

form with respect to the time variables is given by

Ft[u(t, .)](η, .) =

∫
R
eiηtu(t, .)dt,

and for u(., x) ∈ S(RN ) and ξ ∈ RN the Fourier transform with the respect to the space

variables is given by

Fx[u(., x)](., ξ) =

∫
RN

eiξ.xu(., x)dx,

Finally, for ω = η+ iσ ∈ C and for u(t, .) ∈ LT (the space LT is introduced below), the

Fourier-Laplace transform with respect to the time variables is given by

Lt[u(t, .)](ω, .) =

∫
R
eiωtu(t, .) dt.

We sometimes write û instead of Lt[u].

We introduce the standard definition of the L2(Ω)-space as the set of all functions

u : Ω −→ R which are square-integrable over Ω in the sense of Lebesgue. L2(Ω) is a

Hilbert space with the scalar product

(u, v)0 = (u, v)L2 =

∫
Ω
u(x)v(x) dx

and the corresponding norm

||u||0 =
√

(u, u)0 .

For u ∈ L2(Ω), ∂αu represents the weak derivative in L2(Ω) which is given by

∂αu =
∂|α|u

∂xα1
1 · · · ∂x

αd
d

3



1 Notation and Definitions

where α = (α1, ..., αd) with αi ∈ N0 is a multiindex , |α| := α1 + · · · + αd. Assuming

that ∂αu ∈ L2(Ω) we get

(ϕ, ∂αu)0 = (−1)|α|(∂αϕ, u)0 ∀ϕ ∈ C∞0 (Ω).

We denote by C∞(Ω) the space of infinitely times differentiable functions on Ω and by

C∞0 (Ω) the subspace of functions with compact support in Ω, i.e. functions which are

non zero only on a compact subset of Ω.

We define the Sobolev space Hm(Ω) for a given integer m ≥ 0 by

Hm(Ω) = {u ∈ L2(Ω)| ∂αu ∈ L2(Ω) ∀|α| ≤ m}.

The scalar product on Hm(Ω) is defined by

(u, v)m =
∑
|α|≤m

(∂αu, ∂αv)0,

with the associated norm

||u||m = (u, u)1/2
m = (

∑
|α|≤m

||∂αu||20)1/2 ,

and the corresponding semi-norm

|u|m = (
∑
|α|=m

||∂αu||20)1/2.

We now define the Sobolev space on the boundary Γ which is necessary to define the

integral operators (for details see e.g.Dautray and Lions [15] and Sauter and Schwab

[41]). The L2-norm on Γ is defined similarly to the space L2(Ω) and equipped with the

norm

||u||20 =

∫
Γ
|u(x)|2 dsx.

For simplicity, we assume that there exists a piecewise parameterization of the boundary

χ : ξ 7→ x, ξ = (ξ1, · · · , ξd−1) ∈ G ⊂ Rd−1, x ∈ Γ .

The definition of higher order Sobolev spaces on Γ requires the partial derivatives with

respect to the parameters ξ

∂αu(x) =

(
∂

∂ξ1

)α1

· · ·
(

∂

∂ξd−1

)αd−1

u(χ(ξ1, · · · , ξd−1)), x ∈ Γ .

The Sobolev spaces of order k ∈ N0, k ≤ l on the boundary is defined as the closure of

the space {u ∈ C∞(Γ) : ||u||k <∞} with respect to the norm

||u||k =

∑
|α|≤k

||∂αu||2L2(Γ)

1/2

.
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1.1 Notation and Definitions:

The generalization of the case of the Sobolev spaces of real positive order s = k + r,

where k ∈ N0, r ∈ (0, 1) is realized by the corresponding Sobolev-Slobodeckii norm

||u||s =
(
||u||2k + |u|2r

)1/2
with the half-norm

|u|r =

∑
|α|=r

∫
Γ

∫
Γ

|∂αu(x)− ∂αu(y)|2

|x− y|d−1+2r
dsx dsy

1/2

.

Employing the dual product

〈u, v〉 =

∫
Γ
u(x)v(x) dsx,

we introduce the Sobolev spaces H−s(Γ) of negative order for s ∈ (0, l] as the dual

spaces to Hs(Γ)

H−s(Γ) = (Hs(Γ))′ ,

with the norm

||u||−s = sup
0 6=v∈Hs(Γ)

〈u, v〉
||v||s

.

Definition 1.1. Let ||ϕ||k,l = supx∈RN (|x|k + 1)
∑
|α|≤l |Dαϕ(x)| for k, l ≥ 0 and any

multiindex α. Then

S(RN ) = {ϕ ∈ C∞(RN )| ||ϕ||k,l <∞ for all multi-indices k, l ∈ N0}

is called the Schwartz space of tempered functions. The dual space of S(RN ) denoted

by S ′(RN ) is called the space of tempered distributions.

Let E be a Hilbert space and define

LT (σ,E) = {f ∈ D′+(E); e−σtf ∈ S ′+(E)}

where D′+(E) and S ′+(E) denote, as usual, the sets of distributions and temperate

distributions on R, with values in E and support in [0,∞[. It is clear that LT (σ,E) ⊂
LT (σ′, E) if σ < σ′.

We denote by σ(f) the infimum of all σ such that f ∈ LT (σ,E). We thus have the set

of Laplace transformable distributions with values in E given by

LT (E) = ∪
σ∈R

LT (σ,E) (1.1)

For f ∈ LT (E), we define its Fourier-Laplace transform (as in the scalar case) by

f̂(ω) = F(e−σtf)(η)

5



1 Notation and Definitions

for σ > σ(f) .

For convenience we recall here the main results on the Fourier-Laplace transform. For

reference, we state the well-known Paley-Wiener and the Parseval-Plancherel identity.

Lemma 1.1 allows to map results of existence and uniqueness obtained in the frequency

domain to the time domain(reference), and Lemma 1.2 can be used to deduce mapping

properties of the time dependent operators from the mapping properties of the time

independent operators.

Lemma 1.1. (Paley-Wiener) An E-valued function f̂(ω) is the Fourier-Laplace trans-

form of f ∈ LT (E) if and only if it is holomorphic in some half planes Cσ0 = {ω ∈
C; Imω > σ0} and if it is of temperate growth in some closed half planes of Cσ0. This

last condition means that there exist σ1 > σ0 , C > 0 and k ∈ N∗ such that

||f̂(ω)||E ≤ C(1 + |ω|)k

for all ω with Imω ≥ σ1.

Lemma 1.2. (Parseval theorem) If f, g ∈ L1
loc(R, E) ∩ LT (E), one has the following

formula
1

2π

∫
R+iσ

(f̂(ω), ĝ(ω))Edω =

∫
R
e−2σt(f(t), g(t))Edt

where (., .)E is the hermitian product of E and σ > max(σ(f), σ(g)).

Spatio-temporal Sobolev spaces:

Recall the definition of the Hs(RN )-norm

||u||2Hs(RN ) =

∫
RN

(1 + |ξ|2)s|û(ξ)|2dξ .

For ω ∈ C 6= 0 with Im(ω) = σ > 0, the norm

||u||2s,ω,RN =

∫
RN

(|ω|2 + |ξ|2)s|û(ξ)|2dξ

is equivalent to the ||.||2
Hs(RN )

-norm.

For a domain Ω ⊂ R3, the ω-indexed norm in H1(Ω) is given by

||u||1,ω,Ω = (

∫
Ω
|Ou|2 + |ω|2|u|2)

1
2 . (1.2)

As for the traces of elements of H1(Ω), we introduce a partition of unity αi subordinate

to the covering of Γ by open sets Bi. We consider a smooth partition of unity, diffeomor-

phisms (ϕi) mapping eachBi into the unit cubeQ andBi∩Ω intoQ+ = {x ∈ Q, x3 > 0},
thus Br ∩ Γ into Σ = {x ∈ Q, x3 = 0}.
Now, for f defined on Γ, one sets

(θif)(x′) = (αif) ◦ ϕ−1
i (x′, 0) x′ ∈ Σ

6



1.1 Notation and Definitions:

and

||f ||s,ω,Γ =

(
p∑
i=1

∫
R2

(|ω|2 + |ξ|2)s|θ̂if(ξ)|2dξ

) 1
2

,

where θ̂if(ξ) denotes the Fourier transform of this function.

According to [5] and the references therein, we can now define the following spaces:

Definition 1.2. Let s, σ ∈ R and s > 0, σ > 0 then

Hsσ(R+, X) = {f ∈ L′(σ,X); e−σtΛsf ∈ L2(R, X)}

where Λ̂sf(ω) = (iω)sf̂(ω). It is equipped with the norm

||f ||σ,s,X =

(
1

2π

∫ +∞+iσ

−∞+iσ
|ω|2s||f̂(ω)||2Xdω

) 1
2

.

We also need the following spatio-temporal Sobolev spaces:

Definition 1.3. [8, p.41] Let s ∈ R and m ∈ R, then

Hs
σ(R+, Hm(Γ)) = {u ∈ LT (Hs(Γ)) | ||u||s,m,Γ <∞} .

It is equipped with the norm

‖f‖s,m,Γ =

(
1

2π

∫ +∞+iσ

−∞+iσ
|ω|2s‖f̂(ω)‖2m,ω,Γdω

) 1
2

.

For m ∈ N we have

Hs
σ(R+, L2(Γ)) = Hsσ(R+, L2(Γ)) ,

Hs
σ(R+, Hm(Γ)) =

{
f ∈ Hs

σ(R+, Hm−1(Γ));∇f ∈ Hs−1
σ (R+, Hm−1(Γ)3)

}
and ‖f̂(ω)‖m,ω,Γ is defined recursively by

‖f̂(ω)‖0,ω,Γ = ||f̂(ω)||L2(Γ)

‖f̂(ω)‖2m,ω,Γ = |ω|2‖f̂(ω)‖2m−1,ω,Γ + ‖∇̂f(ω)‖2m−1,ω,Γ .

Now we summarize some of the relevant results of the trace operator.

Lemma 1.3. (Lemma 1 in[22]) For σ > 0, there exists a constant Cσ(Γ) so that

∀ψ ∈ H
1
2 (Γ) and ω ∈ {Im(ω) ≥ σ} , ∃u ∈ H1(Ω) so that

||u||1,ω,Ω ≤ Cσ(Γ)||ψ|| 1
2
,ω,Γ . (1.3)

Lemma 1.4. (Lemma 2 in[22]) Let γ0 denote the trace operator on H1(Ω). Then for

all ω ∈ {Im(ω) ≥ σ}
||γ0u|| 1

2
,ω,Γ ≤ Cσ(Γ)||u||1,ω,Ω .
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1 Notation and Definitions

1.2 Discretisation of the Space and Time Domain

Let us assume that Γ is the boundary of a nonempty, open, connected and bounded

Lipschitz domain Ω ⊂ R3. The outer normal on Γ := ∂Ω is denoted by n.

If Γ is not polygonal we approximate it by a piecewise polynomial surface and write Γ

again for the approximation. For simplicity, we will use here a surface composed of N

triangular facets with the following properties

• Γ = ∪Ni=1Γi

• each element Γi is closed with int(Γi) 6= ∅

• for distinct Γi, Γj ⊂ Γ it holds int(Γi) ∩ int(Γj) = ∅.

For the time discretization we consider a uniform decomposition of the time inter-

val [0,∞) into subintervals In = [tn−1, tn) with time step |In| = ∆t, such that tn =

n∆t (n = 1, · · · ).
We choose a basis ϕp1, · · · , ϕ

p
Ns

of the space V p
h of piecewise polynomial functions of

degree p in space (continuous if p ≥ 1) and a basis β1,q, · · · , βNt,q of the space V q
∆t of

piecewise polynomial functions of degree of q in time (continuous if p ≥ 1).

Let TS = T1, · · · , TNs be the spatial mesh for Γ and TT = [0, t1), [t1, t2), · · · , [TNt−1, T )

the time mesh for a finite subinterval [0, T ).

If the simplest type of meshes TS,T = TS × TT is considered, we can approximate

Hs
σ(R+, X) by the space of piecewise polynomials in space and time. It is simply the

tensor product of the approximation spaces in space and time, V p
h and V q

∆t , and we

write [13, p. 535]

V p,q
h,∆t = V p

h ⊗ V
q

∆t .

The approximation space is then

V p,q
h,∆t = {span(ψ)}, ψ has compact support on TS,T and ψ|Γk×[tn−1,tn)

is a polynomial of degree ≤ p in x and ≤ q in t ∀k ≥ 0, ∀n ≥ 1} .

We write γm = βm,0, m = 1, · · · , Nt, for piecewise constant functions in time, and

βm = βm,1, m = 1, · · · , Nt for the basis of hat functions for the the space of piecewise

linear, continuous functions in time.

The hat functions βm have support on two time intervals, namely [tm−1, tm)∪[tm, tm+1),

and are given explicitly by

βm(t) =


1

∆tm
(t− tm−1) , t ∈ [tm−1, tm)

1
∆tm+1

(tm+1 − t) , t ∈ [tm, tm+1) .

0 , t /∈ [tm−1, tm) ∪ [tm, tm+1)

(1.4)
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1.2 Discretisation of the Space and Time Domain

The indicator functions γm = βm,0 have support only in one time interval, namely

[tm−1, tm) and are given explicitly by

γm(t) =

{
1 , t ∈ [tm−1, tm)

0 , t /∈ [tm−1, tm) .
(1.5)

We note that we can rewrite all the basis functions in terms of Heaviside functions

γm(t) = H(t− tm−1)−H(t− tm)

βm(t) =
1

∆tm
(t− tm−1)γm(t) +

1

∆tm+1
(tm+1 − t)γm+1(t)

= (H(t− tm−1)−H(t− tm))
t− tm−1

∆tm
+ (H(t− tm)−H(t− tm+1))

tm+1 − t
∆tm+1

.

We further note that we understand the derivatives of γm in the distributional sense as

the difference of two Dirac distributions

γ̇m(t) = δ(t− tm−1)− δ(t− tm) .

The above expressions will be used throughout this thesis.
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2 Retarded Potential Boundary Integral

Equation in R3

Before we consider the sound radiation in the half-space R3
+ in the next chapters we

collect here known results in R3. The propagation of acoustic waves in a homogeneous

medium in R3 is governed by the scalar wave equation

�u :=
1

c2

∂2u

∂t2
−∆u = 0 , (2.1)

where u is the acoustic pressure and c is the speed of sound in the considered medium.

In the following, we set c = 1.

In order to study acoustic scattering problems we consider the following setting:

Let Ω := Ωe ⊂ R3 be an unbounded connected domain with bounded complement

Ωi = R3\Ω̄ and Lipschitz boundary Γ = ∂Ωe = ∂Ωi. Suppose that an incident field ui,

propagating in Ω, hits the scatterer Ωi at a certain time. We assume that the incident

field has not reached Ωi at t = 0 and that all functions are causal.

Moreover, after subtracting ui the following initial conditions hold

u(0, x) =
∂

∂t
u(0, x) = 0 for x ∈ Ω . (2.2)

The boundary conditions on Γ are given by an operator B acting on u

Bu(t, x) = f(t, x) in R+ × Γ . (2.3)

If Bu = u we refer to Ωi as a soft scatterer and the above problem is called the Dirichlet

problem. For Bu = ∂u
∂n −

α
c
∂u
∂t the problem is called the acoustic Robin problem or

an absorbing scatterer. α is known as the impedance function of the surface Γ, with

α(x) ≥ 0 for all x ∈ Γ. For α(x) ≡ 0 we have a hard scatterer and Neumann boundary

condition. For the scaterring problem we have

f(t, x) = −Buinc(t, x) .

The energy of the total pressure field utot := u+ uinc is given by

E(t, utot) =
1

2

∫
Ω
|∇utot(t, x)|2 + |u̇tot(t, x)|2 dx .

Note that we do not have to require an explicit radiation condition. The fundamental

solution of the scalar wave equation (2.1) is

G(s, t, x, y) =
δ(t− s− |x− y|)

|x− y|
,
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2 Retarded Potential Boundary Integral Equation in R3

where δ is the Dirac delta distribution.

According to [45] u admits an integral representation

u(t, x) =
1

4π

∫
Γ

ny(x− y)

|x− y|

(
ϕ(τ, y)

|x− y|2
+
ϕ̇(τ, y)

|x− y|

)
dsy −

1

4π

∫
Γ

p(τ, y)

|x− y|
dsy (2.4)

for all (t, x) ∈ Ω×R+ with a retarded time argument τ := t−|x−y|, where ϕ = u+−u− =

[u] and p = ∂u+

∂n −
∂u−

∂n =
[
∂u
∂n

]
with v+ = limΩe3x→Γ v(x), v− = limΩi3x→Γ v(x).

Remark 2.1. If c 6= 1 the retarded time argument is τ = t− |x− y|/c.

Definition 2.1. Define for (t, x) ∈ R+ × (R3 \ Γ) the retarded single layer potential by

Sp(t, x) =
1

4π

∫
Γ

p(τ, y)

|x− y|
dsy

and the retarded double layer potential by

Dϕ(t, x) =
1

4π

∫
Γ

ny · (x− y)

|x− y|

(
ϕ(τ, y)

|x− y|2
+
ϕ̇(τ, y)

|x− y|

)
dsy .

Thus, (2.4) reads

u(t, x) = Dϕ(t, x)− Sp(t, x) ,

where ϕ = u+ − u− = [u] and p = ∂u+

∂n −
∂u−

∂n =
[
∂u
∂n

]
.

Definition 2.2. We define the time domain or retarded potential boundary integral

operators for x ∈ Γ and t ∈ R+. The single layer potential is given by

V p(t, x) =
1

2π

∫
Γ

p(τ, y)

|x− y|
dsy

and its normal derivative with respect to x, the adjoint double layer potential, is

K ′p(t, x) =
1

2π

∫
Γ
nx · ∇x

p(τ, y)

|x− y|
dσy

=
1

2π

∫
Γ

nx · (x− y)

|x− y|

(
p(τ, y)

|x− y|2
+
ṗ(τ, y)

|x− y|

)
dsy .

The double layer potential is given by

Kϕ(t, x) =
1

2π

∫
Γ
−ny · ∇x

ϕ(τ, y)

|x− y|
dσy

=
1

2π

∫
Γ

ny · (x− y)

|x− y|

(
ϕ(τ, y)

|x− y|2
+
ϕ̇(τ, y)

|x− y|

)
dsy

and its normal derivative, the so-called hypersingular operator, is

Wϕ(t, x) = − lim
x′∈Ωe→x

nx · ∇x′
(

1

2π

∫
Γ
ny · ∇x′

ϕ(t− |x′ − y|, y)

|x′ − y|
dsy

)
.
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2.1 Retarded Potential Boundary Integral Equations

The definitions above differ from the more common one by a factor of two.

Remark 2.2. Formally it holds e. g. for the single layer potential that

Sp(t, x) =
1

4π

∞∫
0

∫
Γ

δ(t− s− |x− y|)
|x− y|

p(s, y) dσy ds =
1

4π

∫
Γ

p(τ, y)

|x− y|
dσy .

Denote the limits from Ωe and Ωi by

(u)e = lim
x→Γ, x∈Ωe

u(x) ,

(u)i = lim
x→Γ, x∈Ωi

u(x) .

Theorem 2.1 (Jump relations). Let x ∈ Ωe or x ∈ Ωi, then for ϕ, p ∈ C2(R×Γ) there

holds

2(Sp)−(t, x) = 2(Sp)+(t, x) = V p(t, x)

2
∂(Sp)−

∂n
(t, x) = (I +K ′)p(t, x)

2
∂(Sp)+

∂n
(t, x) = (−I +K ′)p(t, x)

2(Dϕ)−(t, x) = (−I +K)ϕ(t, x)

2(Dϕ)+(t, x) = (I +K)ϕ(t, x)

2
∂(Dϕ)−

∂n
(t, x) = 2

∂(Dϕ)+

∂n
(t, x) = Wϕ(t, x) .

Proof. See [24] (Lemma 3 and Lemma 4a).

We introduce the jump across Γ, which is defined as [u] := u+ − u−, and define the

traces γ0u = u and γ1u = ∂u
∂n . We can write the above theorem in a more compact way

resulting in the well known jump relations

[γ0Sp] = 0 [γ1Sp] = −p
[γ0Dϕ] = ϕ [γ1Dϕ] = 0 .

2.1 Retarded Potential Boundary Integral Equations

In this section we focus on integral equations of the first and second kind. See [22] and

the references therein for the corresponding analysis for integral equations.

For the Dirichlet problem, or soft scatterer, due to the Corollary of Theorem 1 (p. 116)

in [24], we can represent the solution u of (2.1) using a single layer ansatz for x /∈ Γ

u(t, x) = Sp(t, x)

13



2 Retarded Potential Boundary Integral Equation in R3

with a density function p. The single layer ansatz is continuous across the boundary

(Theorem 2.1) so that the indirect approach yields the boundary integral equation

V p(t, x) = 2f(t, x) . (2.5)

The variational form reads as follows: Find p in a suitable space–time Sobolev space

such that for all test functions q

∞∫
0

∫
Γ

V p(t, x)∂tq(t, x)dsx dσt = 2

∞∫
0

∫
Γ

f(t, x)∂tq(t, x)dsx dσt , (2.6)

where dσt = e−2σtdt . We will introduce suitable Sobolev spaces in Chapter 3.

On the other hand, we can use the representation formula (2.4) for given boundary data

u = f on Γ and obtain with Theorem 2.1 and p := γ1u the direct formulation

V p = (K − I)f . (2.7)

The variational form is to find p such that for all test functions q the following holds:

∞∫
0

∫
Γ

V p(t, x)∂tq(t, x)dsx dσt =

∞∫
0

∫
Γ

(K − I)f(t, x)∂tq(t, x)dsx dσt (2.8)

For the Neumann problem or hard scatterer, we can represent u using the double layer

potential by some density function ϕ, i.e. u = Dϕ. The direct approach with a given

normal derivative ∂nu = f on the boundary Γ yields

Wϕ = (I +K ′)f , (2.9)

where ϕ = γ0u.

The single layer potential ansatz leads to the indirect formulation

(I −K ′)ϕ = −2f . (2.10)

The variational formulations of the Neumann problem are to find ϕ resp. p, such that

∞∫
0

∫
Γ

Wϕ(t, x)∂tψ(t, x)dsx dσt =

∞∫
0

∫
Γ

(I +K ′)f(t, x)∂tψ(t, x)dsx dσt , (2.11)

∞∫
0

∫
Γ

(I −K ′)p(t, x)∂tq(t, x)dsx dσt = −2

∞∫
0

∫
Γ

f(t, x)∂tq(t, x)dsx dσt (2.12)

for all test functions.
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2.2 The Marching On In Time Method

2.2 The Marching On In Time Method

Let us now summarize the fully discrete schemes as presented in the thesis of E. Os-

termann [40, Section 2.3.2] [35] [44]. The single layer potential ansatz using piecewise

constant test and trial functions results in the following algebraic system with n = 1, . . .

n∑
m=1

V n−mpm = 2(fn−1 − fn) ,

which yields

V 0pn = 2(fn−1 − fn)−
n−1∑
m=1

V n−mpm .

For (2.8) we obtain

V 0pn = I(fn − fn−1) +
n∑

m=1

Kn−mfm −
n−1∑
m=1

V n−mpm

where V l is given in [40, (2.25)], K l in [40, (2.28)] with l := n−m are given explicitly in

[40, Section 2.3.2] and I denotes the corresponding mass matrix. The direct approach

for the Neumann problem (2.9) for piecewise linear trial and piecewise constant test

functions in time yields

W 0φn =
∆t

2
I(fn−1 + fn) +

n∑
m=1

(Kn−m)T fm −
n−1∑
m=1

Wn−mφm

where W l is defined as in [40, (2.27)] and K l is given in [40, (2.27)] .

Similary, for (2.12) with piecewise constant trial and test functions in time we get

(−∆t I + (K ′)0)ϕn = 2Fn −
n−1∑
m=1

(K ′)n−mϕm .

The above fully discrete systems involve the computation of a series of matrices, that are

sparsely populated because the light cone integration domain El restricts the number

of interacting elements per time step.

Note that as observed in [40] the computation of each matrix only depends on the time

difference. Furthermore (see [40, Section 2.3.2]) for bounded surfaces Γ the matrices

V n−m resp. Wn−m, K ′n−m vanish whenever the time difference l := n−m satisfies

l >

[
diamΓ

∆t

]
.

Now, as shown in [40] for each of the above equations we obtain an MOT scheme of the

form

A0xn = fn −
n−1∑

m=max(1,n−n̂)

An−mxm =: bn . (2.13)
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2 Retarded Potential Boundary Integral Equation in R3

with

bn = fn −
n−1∑
m=1

An−mxm, n ≤ n̂ ,

and

bn = fn −
n−1∑

m=n−n̂
An−mxm = fn −

n̂∑
m=1

An̂−m+1xm+(n−n̂)−1 for n > n̂.

The abstract MOT scheme can be summarized as follows ([40, Algorithm 2.1]):

for n = 1, . . . do

if n >
[

diamΓ
∆t

]
then

Domain of influence has passed the body;

No more matrix computation needed;

else

Allocate storage for basic Galerkin matrix Gn−1 ;

Compute Gn−1;

Compose the new retarded matrices;

Delete basic Galerkin entries that are not needed in the next time step;

end

Compute right hand side by matrix vector multiplication;

Solve the system of linear equations ;

Store new solution vector
end

Algorithm 1: Time Stepping Algorithm

The most expensive part of the MOT scheme is the computation of the matrix entries,

although the resulting matrices are sparse.

The computation of an entry in the Galerkin matrix, which is an integral of the type

Gl,νij :=

∫∫
El

kν(x− y)ϕi(y)ϕj(x) dsy dsx , (2.14)

where kν(x − y) = |x − y|ν and ν ≥ −1, is in detail described in [40, Chapter 4]. The

discrete light cone integration domain is given by

El := {(x, y) ∈ Γ× Γ s.t. tl ≤ |x− y| ≤ tl+1} .

The basic idea is to rewrite (2.14) on triangles Ti, Tj of the triangulation Γh of Γ as

Gl,νij =

∫
Γh

∫
Γh∩E(x)

kν(x− y)ϕi(y)ϕj(x) dsy dsx

=
∑

Ti,Tj∈Γh

∫
Ti

∫
Tj∩E(x)

kν(x− y)ϕi(y)ϕj(x) dsy dsx ,
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2.2 The Marching On In Time Method

where E(x) := Btl+1
(x) \ Btl(x) is the so called domain of influence of the point x.

Br(x) denotes the ball of radius r and center x. In [40] the hp-quadrature to compute

Gl,νij is introduced and analysed.

In Chapter 5 below we present our benchmark computations for the half-space case,

discussing e.g. sound radiation above the sound hard road. the results are obtained by

applying MOT together with a space-time discretization of the second kind boundary

integral equation with the normal derivative of the double layer potential on the surface

of the scatterer (tyre). The computations with our extended code use Ostermann’s hp-

quadrature and are written based on the software package MaiProgs [33].
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3 Retarded Potential Boundary Integral

Equations in the Half-Space

3.1 The Transient Half-Space Green’s Function for an

Absorbing Plane

In this chapter we report from Ochmann [38] a model problem for the interaction of a

linear sound wave with a partially absorbing surface. Corresponding Green’s functions

in both frequency and time–domain have been derived in [38] [39].

For small amplitudes the relationship between sound pressure u and the normal velocity

vn of the surface is linear. Their ratio is the acoustic impedance and it is given by:

Z = (
u

vn
)|Γ .

For simplicity we consider Z ∈ R constant and define

α∞ =
ρ0c

Z
.

We take c = 1. Here ρ0 is the density of the absorbing medium. α∞ is the specific

acoustic admittance of the surface. A rigid plane has the admittance α∞ = 0.

We consider an acoustic boundary condition of Robin type:

∂u

∂n
− α∞

∂u

∂t
= 0 ,

where n is the unit normal vector to the boundary which points into Ωe.

We would like to determine a Green’s function for the wave equation with this boundary

condition. The Green’s function represents the acoustic response in half-space to a Dirac

mass. It corresponds to a function G, which depends on the admittance α∞, on a fixed

source point P ∈ R3
+ , and on an observation point Q ∈ R3

+, where R3
+ = {(x1, x2, x3) ∈

R3 : x3 > 0} is the half-space.

The Green’s function is defined in the sense of distributions in the half-space R3
+ by

placing a Dirac impulse δ(t, x1, x2, x3−h) at time t = 0 and at the location P = (0, 0, h)

on the right-hand side of the wave equation.

It is therefore a solution to the following problem:

∂2G

∂t2
−∆G = δ(t, x1, x2, x3 − h) in R+ × R3

+
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3 Retarded Potential Boundary Integral Equations in the Half-Space

with the boundary condition on an infinite plane Γ∞ = {(x1, x2, x3) ∈ R3/x3 = 0}:

∂G

∂x3
− α∞

∂G

∂t
= 0 . (3.1)

In the frequency domain this can be written as the Helmholtz equation

∆Ĝ+ ω2Ĝ = δ(x1, x2, x3 − h)

with the following condition on Γ∞

∂Ĝ

∂x3
+ β∞Ĝ = 0 . (3.2)

Here β∞ = iωα∞.

In addition a radiation condition is imposed at infinity.

Using an ansatz going back to Sommerfeld, Ochmann tries to find a solution in the

form

Ĝ = ĝ(h) + ĝ(−h) +

∫ −h
−∞

a(η)ĝ(η) dη (3.3)

with the unknown function a(η) and the free-space Green’s function

ĝ(h) =
1

4π

eiω
√
x2

1+x2
2+(x3−h)2√

x2
1 + x2

2 + (x3 − h)2
. (3.4)

The second and third terms on the right-hand side of Ĝ represent the field reflected by

the plane Γ∞.

To determine a(η) one inserts the ansatz for Ĝ in the equation (3.2). First we calculate

the normal derivative of Ĝ:

∂Ĝ

∂x3 |x3=0

= −
∫ −h
−∞

a(η)
∂

∂η
(ĝ(η)) dη
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3.1 The Transient Half-Space Green’s Function for an Absorbing Plane

using
∂ĝ

∂x3
= −∂ĝ

∂η
.

By performing an integration by parts, one obtains

I =

∫ −h
−∞

a(η)
∂

∂η
(
eiωrη

rη
) dη

=
a(−h)

rh
eiωrh −

∫ −h
−∞

∂a(η)

∂η
(
eiωrη

rη
) dη ,

assuming that a(η)
rη
eikrη −−−−→

η→−∞
0.

Here, setting rη =
√
x2

1 + x2
2 + η2 and rh =

√
x2

1 + x2
2 + h2 and substituting Ĝ and ∂Ĝ

∂x3

into the boundary condition (3.2), one obtains

a(−h)

rh
eiωrh −

∫ −h
−∞

∂a(η)

∂η
(
eiωrη

rη
) dη − 2β∞

rh
eiωrh − β∞

∫ −h
−∞

a(η)
eiωrη

rη
dη = 0 .

This equation holds provided that{
a(−h)− 2β∞ = 0
∂a(η)
∂η + β∞a(η) = 0 .

The solution of these equations is

a(η) = 2β∞e
−β∞(η+h) . (3.5)

By substituting equation (3.5) into (3.3) we obtain

Ĝ = ĝ(h) + ĝ(−h) + 2β∞e
−β∞h

∫ −h
−∞

e−β∞η ĝ(η) dη . (3.6)

Remark 3.1. We have assumed that: a(η)
rη
eiωrη −−−−→

η→−∞
0. From equation (3.5), we

see that this is satisfied only if Re(β∞) ≤ 0. It holds in particular if α∞ ∈ R and

Im(ω) ≥ 0.

Starting from the expression for the half-space Green’s function in the frequency domain

Ĝ =
eiωr(h)

4πr(h)
+

eiωr(−h)

4πr(−h)
+ 2β∞e

−β∞h
∫ −h
∞

e−ηβ∞
eiωr(η)

4πr(η)
dη

with r(h) =
√
x2

1 + x2
2 + (x3 − h)2, G is obtained from Ĝ by the inverse Fourier

transform :

G = F−1Ĝ =
1

2π

∫ ∞
−∞

Ĝ(ω)e−iωtdω.

In summary, the Green’s function over an infinite plane with the boundary condition

(3.1) can be represented as

G =
δ(t− r(h))

4πr(h)
+
δ(t− r(−h))

4πr(−h)
+ F−1Σ̂ ,
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3 Retarded Potential Boundary Integral Equations in the Half-Space

where

Σ̂ = 2β∞e
−β∞h

∫ −h
∞

e−ηβ∞
eiωr(η)

4πr(η)
dη .

Here one uses the known transform

F (
δ(t− r(h))

4πr(h)
) =

eiωr(h)

4πr(h)
.

It remains to calculate the inverse Fourier transform of the term Σ̂:

Σ = F−1(Σ̂) =
α∞
2π

∫ −h
−∞

1

r(η)

(
1

2π

∫ ∞
−∞

iωeiω(r(η)−α∞(η+h))e−iωt dω

)
dη .

Setting

I(η, t) =
1

2π

∫ ∞
−∞

iωeiω(r(η)−α∞(η+h))e−iωt dω

one considers the Fourier integral

J(η, t) = − 1

2π

∫ ∞
−∞

eiω(r(η)−α∞(η+h))e−iωt dω

with

I(η, t) =
∂J(η, t)

∂t
.

Because of

J(η, t) = −δ (t− r(η) + α∞(h+ η)) (3.7)

and by introducing the quantity
∂Σφ

∂t
= Σ

one gets after interchanging integration and differentiation

Σφ =
α∞
2π

∫ −h
−∞

1

r(η)
J(η, t)dη

=
−α∞

2π

∫ −h
−∞

1

r(η)
δ (t− r(η) + α∞(h+ η)) dη.

Hence substituting

τ = r(η)− α∞(h+ η)

with

dτ

dη
=

d

dη
(r(η)− α∞(h+ η))

=

(
d

dη
r(η)− α∞

)
= −(x3 − η)

r(η)
− α∞

and
dη

dτ
=

−r(η)

(x3 − η) + α∞r(η)
,
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3.2 Integral Representation and Time-Domain Boundary Integral Equations for an Absorbing Half-Space

one has

Σφ =
α∞
2π

∫ ∞
r(−h)

δ(t− τ)

r(η)

dη

dτ
dτ

=
−α∞

2π

∫ ∞
r(−h)

δ(t− τ)

(x3 − η) + α∞r(η)
dτ

=
−α∞

2π

∫ ∞
−∞

δ(t− τ)H(τ − r(−h))

(x3 − η) + α∞r(η)
dτ.

The next step is to write the denominator in terms of τ only.

((x3 − η) + α∞r(η))2 = α2
∞r(η)2 + 2α∞r(η)(x3 − h) + (x3 − η)2

= α2
∞r(η)2 + 2α∞r(η)(x3 − h) + α2

∞(x3 − η)2 − (α2
∞ − 1)(x3 − η)2

= α2
∞r(η)2 + 2α∞r(η)(x3 − h) + α2

∞(x3 − η)2 + (α2
∞ − 1)(R2 − r(η)2)

= r(η)2 + 2α∞r(η)(x3 − h) + α2
∞(x3 − η)2 + (α2

∞ − 1)R2

= (r(η) + α∞(x3 − η))2 + (α2
∞ − 1)R2

= (τ + α∞(x3 + h))2 + (α2
∞ − 1)R2 .

Hence,

(x3 − η) + α∞r(η) =
√

(τ + α∞(x3 + h))2 + (α2
∞ − 1)R2 .

Inserting this expression into the definition of Σφ one obtains

Σφ =
−α∞

2π

∫ ∞
−∞

δ(t− τ)H(τ − r(−h))√
(τ + α∞(z + h))2 + (α2

∞ − 1)R2
dτ

=
−α∞

2π

H(t− r(−h))√
(t+ α∞(x3 + h))2 + (α2

∞ − 1)R2
.

This gives a closed analytical representation of the Green’s function for an absorbing

half-space

G =
δ(t− r(h))

4πr(h)
+
δ(t− r(−h))

4πr(−h)
+ Σ (3.8)

with

Σ =
−α∞

2π

∂

∂t

H(t− r(−h))√
(t+ α∞(x3 + h))2 + (α2

∞ − 1)R2

and R2 =
√
x2

1 + x2
2 .

3.2 Integral Representation and Time-Domain Boundary

Integral Equations for an Absorbing Half-Space

We consider the direct scattering problem of linear acoustic waves in an exterior Lips-

chitz domain Ωe = R3
+\Ωi (see Figure 3.1), Ωi is bounded and the incident field uI is
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known. The goal is to find the scattered field u as a solution to the wave equation in the

exterior open and connected domain Ωe, such that the total field uT , decomposed as

uT = uI + u, satisfies a homogeneous impedance boundary condition on the boundary

Γ ∪ Γ∞.

Here the boundary of Ωi in R3
+ is denoted by Γ, while Γ∞ denotes {(x1, x2, x3) ∈ R3 :

x3 = 0}. Now, the unit normal n points out of Ωi and on Γ∞ into Ωe, (see figure).

Thus the initial and boundary problem for the wave equation is:

∂2u

∂t2
−∆u = 0 in R+ × Ωe

u(0, x) =
∂u

∂t
(0, x) = 0 (3.9)

∂u

∂n
− α∂u

∂t
= f in R+ × Γ

∂u

∂n
− α∞

∂u

∂t
= 0 on R+ × Γ∞ .

The geometry for the boundary value problem (3.9) is depicted in Figure 3.1.

Figure 3.1: Geometry of the boundary value problem (3.9)

3.2.1 Integral Representation

We are interested in expressing the solution u of the direct scattering problem (3.9) by

means of an integral representation formula over Γ (See Becache [8] for exterior domains
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in R3).

Theorem 3.1. Let u ∈ L2(R+, H1(Ω)) ∩H1
0 (R+, L2(Ω)) be the solution of (3.9) for a

Lipschitz boundary Γ. Then it holds in the sense of distributions:
u(t, x) =

∫
R+×Γ

∂G

∂ny
(t− τ, x, y)u(τ, y)dτdsy

−
∫
R+×Γ

G(t− τ, x, y)
∂u

∂n
(τ, y)dτdsy

x ∈ Ωe, t ∈ R+ ,

with G given in (3.8).

Remark 3.2. If x ∈ Ωi we set u(t, x) = 0 .

Proof. We define an extension of u to R+ × R3:

ũ =

{
u(t, x) in R+ × Ωe

0 otherwise.

The proof is divided into 3 steps.

1. Step: We show that ũ satisfies the following inhomogeneous wave equation:

−�ũ =
∂u

∂n
(t, x)δΓ + u(t, x)δ′Γ +

∂u

∂n
(t, x)δΓ∞ + u(t, x)δ′Γ∞ , (3.10)

where δΓ is the delta distribution on Γ, and the distribution δ′Γ is defined as follows:

〈uδ′Γ, θ〉 = −
∫
R+×Γ

u
∂θ

∂n
dt dsx,

and

〈uδ′Γ∞ , θ〉 = −
∫
R+×Γ∞

u
∂θ

∂n
dt dsx .

Let θ ∈ C∞0 (R+ × R3
+). Then we have:

〈�ũ, θ〉 = 〈ũ,�θ〉 =

∫
R+×Ωe

u(t, x)

(
∂2θ

∂t2
−4θ

)
(t, x)dt dx .

Since ũ = 0 in Ωi and ũ = 0 locally integrable it is enough to integrate over Ωe, where

ũ = u.

We now integrate by parts in time∫
R+×Ωe

u(t, x)
∂2θ

∂t2
dtdx =

∫
R+×Ωe

∂2u

∂t2
θ dtdx+

∫
Ωe

[
∂θ

∂t
u− θ∂u

∂t

]∞
0

dx .

In space we apply Green’s second theorem:∫
R+×Ωe

−u(t, x)4θ dtdx = −
∫
R+×Ωe

4uθ dtdx+

∫
R+×∂Ωe

(u∂nθ − θ∂nu) dtdsx

= −
∫
R+×Ωe

4uθ dtdx+

∫
R+×Γ

(u∂nθ − θ∂nu) dtdsx

+

∫
R+×Γ∞

(u∂nθ − θ∂nu) dtdsx .
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This implies

〈�ũ, θ〉 = 〈ũ,�θ〉 =

∫
R+×Ωe

u(t, x)

(
∂2θ

∂t2
−4θ

)
(t, x)dtdx

=

∫
R+×Ωe

u(t, x)
∂2θ

∂t2
dtdx−

∫
R+×Ωe

u(t, x)4θdtdx

=

∫
R+×Ωe

∂2u

∂t2
θ dtdx+

∫
Ωe

[
∂θ

∂t
u− θ∂u

∂t

]∞
0

dx

−
∫
R+×Ωe

4uθ dtdx+

∫
R+×Γ

(u∂nθ − θ∂nu) dtdsx

+

∫
R+×Γ∞

(u∂nθ − θ∂nu) dtdsx

=

∫
R+×Ωe

(
∂2u

∂t2
−4u

)
θdxdt+

∫
Ωe

[
∂θ

∂t
u− θ∂u

∂t

]∞
0

dx

+

∫
R+×Γ

(u∂nθ − θ∂nu) dsxdt+

∫
R+×Γ∞

(u∂nθ − θ∂nu) dsxdt .

By the assumptions on u and θ the second integral vanishes. It remains:

〈�ũ, θ〉 =

∫
R+×Ωe

(
∂2u

∂t2
−4u

)
θ dxdt+

∫
R+×Γ

(u∂nθ − θ∂nu) dsxdt

+

∫
R+×Γ∞

(u∂nθ − θ∂nu) dsxdt .

Therefore

−〈�ũ, θ〉 =

∫
R+×Ωe

(−�u) θ dxdt+

∫
R+×Γ

(
−u∂θ

∂n
+
∂u

∂n
θ

)
dsxdt

−
∫
R+×Γ∞

(u∂nθ − θ∂nu) dsxdt .

We conclude

−�ũ = −�u 1Ωe +
∂u

∂n
δΓ + uδ′Γ +

∂u

∂n
δΓ∞ + uδ′Γ∞ ,

where 1Ωe is the characteristic function of Ωe. By assumption, u is a solution of �w = 0.

So:

−�ũ = − �u︸︷︷︸
=0

1Ωe +
∂u

∂n
δΓ + uδ′Γ +

∂u

∂n
δΓ∞ + uδ′Γ∞

which is (3.10). This proves (3.10).

2. Step: By (3.10), we observe that for φ ∈ C∞0 (R+ × R3)

〈1R+×Ωeu,�φ〉 − 〈1R+×Ωe�u, φ〉 = 〈�(1R+×Ωeu), φ〉 − 〈1R+×Ωe�u, φ〉

= −〈∂ve
∂n

δΓ + veδ
′
Γ +

∂ve
∂n

δΓ∞ + veδ
′
Γ∞ , φ〉 . (3.11)

Since �u = 0, the left hand side is equal to 〈1R+×Ωeu,�φ〉. While this identity extends

to φ ∈ C∞(R+ × Ω̄e), provided φ is compactly supported in [0,∞), we would like to
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substitute φ = G, the Green’s function for the absorbing half-space (3.8). In this case

we have for all (t, x) ∈ R+ × Ωe:

〈1R+×Ωeu,�G〉 = 〈1R+×Ωeu, δtδx〉
= (1R+×Ωeu)(t, x) = u(t, x) ,

and (3.11) is the representation formula.

It remains to show that (3.11) holds for φ(y, τ) = G(x, y, t, τ), given (t, x) ∈ R+ × Ωe.

To do so, we fix χ̃ ∈ C∞ so that χ̃ = 1 near the singularities of G: I.e. for given δ > 0,

we set

I = {||x− y| − (t− τ)| < δ} ∪ {||x− y′| − (t− τ)| < δ} .

We set{
χ̃(x, y, t, τ) = 1 when (x, y, t, τ) ∈ I
χ̃(x, y, t, τ) = 0 when ||x− y| − (t− τ)| > 2δ and ||x− y′| − (t− τ)| > 2δ ,

and a suitable smooth function in between.

It is easy to check that (3.11) extends to φ = (1− χ̃)G ∈ C∞(R+ × Ωe), i.e∫
R+×Ωe

u�((1− χ̃)G) = −〈∂u
∂n
δΓ + uδ′Γ +

∂u

∂n
δΓ∞ + uδ′Γ∞ , (1− χ̃)G〉 .

It only remains to consider φ = χ̃G. Assume that δ is small enough so that dist(x,Γ ∪
Γ∞) > 2δ. We let χ2 ∈ C∞(R+ × Ωe) defined as{

χ2 = 1 when 0 < dist(y,Γ ∪ Γ∞) < δ

χ2 = 0 when dist(x,Γ ∪ Γ∞) > 2δ ,

and a suitable smooth function in between.

We write

φ = χ̃G = χ2χ̃G+ (1− χ2)χ̃G .

The second term vanishes near Γ ∪ Γ∞. We note

〈(1− χ2)χ̃G,�u〉 = 〈� ((1− χ2)χ̃G) , u〉

=

∫
I∩{dist(y,Γ∪Γ∞)>2δ}

u�Gdsydτ

+

∫
Ic∪{dist(y,Γ∪Γ∞)<2δ}

u�((1− χ2)χ̃G) dsydτ

= u(t, x) +

∫
Ic∪{dist(y,Γ∪Γ∞)<2δ}

u�((1− χ2)χ̃G) dsydτ

and hence

0 = u(t, x) +

∫
Ic∪{dist(y,Γ∪Γ∞)<2δ}

u�((1− χ2)χ̃G) dsydτ .
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Concerning φ = χ2χ̃G, note that

0 = 〈�(χ2χ̃G), u〉

=

∫
R+×Ωe

�(χ2χ̃G)u dsydτ =

∫
{dist(y,Γ∪Γ∞)<2δ}

u�(χ2χ̃G) dsydτ

+

∫
I∩{dist(y,Γ∪Γ∞)>2δ}

u�(χ2χ̃G) dsydτ .

Together we obtain

0 = u(t, x) +

∫
Ic∪{dist(y,Γ∪Γ∞)<2δ}

u�((1− χ2)χ̃G) dsydτ

+

∫
{dist(y,Γ∪Γ∞)<2δ}

u�(χ2χ̃G) dsydτ +

∫
I∩{dist(y,Γ∪Γ∞)>2δ}

u�(χ2χ̃G) dsydτ .

Adding the formula for (1− χ̃)G and letting δ go to 0 we obtain

u(t, x) = −〈∂u
∂n
δΓ + uδ′Γ +

∂u

∂n
δΓ∞ + uδ′Γ∞ , G〉 . (3.12)

3. Step: It remains to eliminate the contribution of Γ∞. Using the boundary condition

at Γ∞ in (3.9), we see that

u(t, x) =

∫
R+×Γ

−∂u
∂n

(τ, y)G(t− τ, x, y)dsydτ +

∫
R+×Γ

u(τ, y)
∂G

∂ny
(t− τ, x, y)dsydτ

+

∫
R+×Γ∞

−∂u
∂n

(τ, y)G(t− τ, x, y)dsydτ +

∫
R+×Γ∞

u(τ, y)
∂G

∂ny
(t− τ, x, y)dsydτ

=

∫
R+×Γ

−∂u
∂n

(τ, y)G(t− τ, x, y)dsydτ +

∫
R+×Γ

u(τ, y)
∂G

∂ny
(t− τ, x, y)dsydτ

+

∫
R+×Γ∞

α∞
∂u

∂t
(τ, y)G(t− τ, x, y)dsydτ +

∫
R+×Γ∞

u(τ, y)
∂G

∂ny
(t− τ, x, y)dsydτ .

Integration by parts in time yields

u(t, x) =

∫
R+×Γ

−∂u
∂n

(τ, y)G(t− τ, x, y)dsydτ +

∫
R+×Γ

u(τ, y)
∂G

∂ny
(t− τ, x, y)dsydτ

−
∫
R+×Γ∞

α∞
∂G

∂t
(t− τ, x, y)u(τ, y)dsydτ +

∫
R+×Γ∞

u(τ, y)
∂G

∂ny
(t− τ, x, y)dsydτ

+

∫
Γ∞

[α∞u(τ, y)G(t− τ, x, y)]∞0 dx

=

∫
R+×Γ

−∂u
∂n

(τ, y)G(t− τ, x, y)dsydτ +

∫
R+×Γ

u(τ, y)
∂G

∂ny
(t− τ, x, y)dsydτ .

3.2.2 A System of BIEs for the Robin Problem

Associated Helmholtz Problem

As realized by Bamberger and Ha-Duong [6] [5], it is useful to analyse an associated

Helmholtz problem in the frequency domain to obtain results for the wave equation.
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We will therefore look at a scattering problem for acoustic waves in the half-space. For

a fixed frequency ω with Im(ω) > σ > 0 the following exterior problem is considered:


ue ∈ H1(Ωe),

(∆ + ω2)ue(x) = 0 in Ωe

∂ue

∂n + αiωue = f on Γ
∂ue

∂n + α∞iωu
e = 0 on Γ∞

(3.13)

plus a decay condition(Sommerfeld’s radiation condition) for the outgoing wave at in-

finity

ue(x) = O(|x|−1),
∂ue(x)

∂|x|
− iωue(x) = o(|x|−1), |x| −→ ∞ ,

(see e.g. Lemma 3.3 in [14] for the full space case and [25] for the impedance radiation

condition in the half-space case). This condition holds automatically since for Im(ω) >

σ > 0 the solution decays like exp(−σ|x|) and hence the solution belongs to H1 and

not only H1
loc.

We also need an associated interior problem
ui ∈ H1(Ωi),

(∆ + ω2)ui(x) = 0 in Ωi

∂ui

∂n − αiωu
i = g on Γ .

(3.14)

Here, α is the admittance function of the surface Γ and α∞ is the admittance function

of the planar surface Γ∞. The right-hand sides f, g belong to H−
1
2 (Γ), and f is related

to the incident wave by

f(x) = −α(x)iωuinc(x)− ∂uinc
∂n

(x) .

The condition ue ∈ H1(Ωe) replaces the Sommerfeld’s radiation condition at infinity

for real frequencies.

Theorem 3.2. Let Im(ω) > 0. The problems (3.13)-(3.14) admit at most one solution

for Re(α) ≥ 0 and Re(α∞) ≥ 0.

Proof. We consider the homogeneous exterior problem
ue ∈ H1(Ωe),

(∆ + ω2)ue(x) = 0 in Ωe

∂ue

∂n + αiωue = 0 on Γ
∂ue

∂n + α∞iωu
e = 0 on Γ∞ ,

and the homogeneous interior problem
ui ∈ H1(Ωi),

(∆ + ω2)ui(x) = 0 in Ωi

∂ui

∂n − αiωu
i = 0 on Γ .
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We show that these problems admit at most one solution, namely zero. To do so we

multiply the Helmholtz equation with iω̄ū and integrate over Ωe ∪ Ωi. We obtain∫
Ωe∪Ωi

∆u.iω̄ū+ ω2u.iω̄ū dx = 0 .

Now, we apply Green’s first theorem to ue and ui to obtain∫
Ωe∪Ωi

−iω̄|Ou|2 + iω|ω|2|u|2 dx−
∫

Γ
iω̄(

∂ue

∂n
ūe − ∂ui

∂n
ūi) dsx −

∫
Γ∞

iω̄
∂ue

∂n
ūe dsx = 0 .

Here, we have neglected a contribution from a large semi-ball which tends to zero as

the radius of the semi-ball goes to infinity.

We take the real part of this equality and use the boundary conditions:

2Im(ω)

∫
Ωe∪Ωi

|Ou|2 + |ω|2|u|2 dx = Re(

∫
Γ
−iω̄(

∂ue

∂n
ūe − ∂ui

∂n
ūi) dsx −

∫
Γ∞

iω̄
∂ue

∂n
ūe dsx)

= Re(

∫
Γ
−iω̄(−αiωueūe − αiωuiūi) dsx − iω̄

∫
Γ∞

−α∞iωueūe dsx)

=

∫
Γ
−Re(α)(|ω|2|ue|2 + |ω|2|ui|2) dsx +

∫
Γ∞

−Re(α∞)|ω|2|ue|2 dsx .

Since Im(ω) > 0, the conditions Re(α) ≥ 0 and Re(α∞) ≥ 0 ensure that ue = ui = 0

on Γ∞ ∪ Γ and implies ue = ui = 0 everywhere on Ωe resp. Ωi. The uniqueness of the

solution follows.

The next step is to represent the solution of the wave equation in Ωe and Ωi by means

of layer potentials using the representation formula for the Helmholtz equation.

A solution u ∈ H1(Ωi) ∪H1(Ωe) of the Helmholtz equation can be expressed as:

u = Sωp−Dωϕ in Ωi ∪ Ωe ,

where

ϕ = ui − ue and p =
∂ui

∂n
− ∂ue

∂n
on Γ .

Sω is the single layer potential in the half-space associated to the absorbing boundary

condition on Γ∞ from (3.13):

Sωp(x) =
1

4π

∫
Γ

(
eiω|x−y|

4π|x− y|
+

eiω|x−y
′|

4π|x− y′|

+2β∞e
−β∞(x3+y3)

∫ −(x3+y3)

∞
e−β∞η

eikr(η)

4πr(η)
dη

)
p(y) dsy

where r(η) =
√
%2
s + η2 , %s = |xs − ys| =

√
(x1 − y1)2 + (x2 − y2)2 and β∞ =

iωα∞. Dω is the corresponding double layer potential

Dωϕ(x) =
1

4π

∫
Γ

∂

∂ny

(
eiω|x−y|

4π|x− y|
+

eiω|x−y
′|

4π|x− y′|

+2β∞e
−β∞(x3+y3)

∫ −(x3+y3)

∞
e−β∞η

eikr(η)

4πr(η)
dη

)
p(y) dsy .
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The relevant integral operators Vω, Kω, K
′
ω, Wω on Γ are:

Vωp(x) =
1

2π

∫
Γ

(
eiω|x−y|

4π|x− y|
+

eiω|x−y
′|

4π|x− y′|

+2β∞e
−β∞(x3+y3)

∫ −(x3+y3)

∞
e−β∞η

eikr(η)

4πr(η)
dη

)
p(y) dsy

K ′ωϕ(x) =
1

2π

∫
Γ

∂

∂nx

(
eiω|x−y|

4π|x− y|
+

eiω|x−y
′|

4π|x− y′|

+2β∞e
−β∞(x3+y3)

∫ −(x3+y3)

∞
e−β∞η

eikr(η)

4πr(η)
dη

)
p(y) dsy

Kωϕ(x) =
1

2π

∫
Γ

∂

∂ny

(
eiω|x−y|

4π|x− y|
+

eiω|x−y
′|

4π|x− y′|

+2β∞e
−β∞(x3+y3)

∫ −(x3+y3)

∞
e−β∞η

eikr(η)

4πr(η)
dη

)
p(y) dsy

Wωϕ(x) =
1

2π

∫
Γ

∂2

∂nxny

(
eiω|x−y|

4π|x− y|
+

eiω|x−y
′|

4π|x− y′|

+2β∞e
−β∞(x3+y3)

∫ −(x3+y3)

∞
e−β∞η

eikr(η)

4πr(η)
dη

)
p(y) dsy .

We use them to express the traces of u in term of ϕ and p:

2ue = Vωp− (I +Kω)ϕ

2ui = Vωp+ (I −Kω)ϕ (3.15)

2
∂ue

∂n
= (−I +K ′ω)p−Wωϕ

2
∂ui

∂n
= (I +K ′ω)p−Wωϕ .

Adding and substracting the boundary conditions (3.13)-(3.14) on Γ, we have{
∂ue

∂n + ∂ui

∂n − αiωϕ = f + g = F

p− αiω(ue + ui) = g − f = G .

Then using the equation (3.15) of the trace u we find the following system of integral

equations: {
(K ′ωp−Wωϕ)− iωαϕ = F

p− iωα(Vωp−Kωϕ) = G .
(3.16)
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If α 6= 0 multiplying the first equation by −iωψ and the second by 1
α q̄, after integration

we obtain the weak formulation:

aω(Ũ , Ṽ ) = lω(Ṽ ). (3.17)

Here,

aω(Ũ , Ṽ ) = |ω|2
∫

Γ
αϕψ̄dsx +

∫
Γ

1

α
pq̄dsx + iω̄

∫
Γ
K ′ωpψ̄dsx

−iω̄
∫

Γ
Wωϕψ̄dsx − iω

∫
Γ
Vωpq̄dsx + iω

∫
Γ
Kωϕq̄dsx

and

lω(Ṽ ) = iω̄

∫
Γ
Fψ̄dsx +

∫
Γ

1

α
Gq̄dsx ,

Ũ = (ϕ, p) , Ṽ = (ψ, q) .

For α = 0, (3.16) reduces to Wωϕ = KωG− F . The analysis of this case is analogous.

Theorem 3.3. (Coercivity)

Assume that Re(α) > 0,Re(α∞) ≥ 0. Then the following inequality holds for all Ũ =

(ϕ, p) ∈ H
1
2 (Γ)× L2(Γ):

Re(aω(Ũ , Ũ)) ≥ ||
√

Re(
1

α
)p||20,Γ + Cσ||ϕ||21

2
,ω,Γ

+ ||ω
√

Re(α)ϕ||20,Γ .

Proof. Taking the real part of the bilinear form aω and using (3.15), we calculate

Re(aω(Ũ , Ũ)) = Re

∫
Γ
(K ′ωp−Wωϕ− iωαϕ)(−iωϕ) + p̄

p− iωα(Vωp−Kωϕ)

α
dsx

= Re

∫
Γ
[
∂ui

∂n
+
∂ue

∂n
− iωα(ui − ue)]iω̄(ūi − ūe) dsx

+ Re

∫
Γ

1

α
(
∂ūi

∂n
− ∂ūe

∂n
)(
∂ui

∂n
− ∂ue

∂n
− iωα(ui + ue)) dsx

= Re

∫
Γ
iω̄(2

∂ui

∂n
ūi−2

∂ue

∂n
ūe) dsx

+

∫
Γ

1

α
|∂ū

i

∂n
− ∂ūe

∂n
|2︸ ︷︷ ︸

=|p|2

dsx + |ω|2
∫

Γ
α |ui − ue|2︸ ︷︷ ︸

=|ϕ|2

dsx .

By Green’s formula using the derivative in direction of the interior normal.

−
∫

Γ

∂ue

∂n
ūe dsx = −

∫
Γ
(interior normal derivative on Γ of ue)ūe

= −
∫

Γ

∂ue

∂n
ūe dsx −

∫
Γ∞

∂ue

∂n
ūe dsx +

∫
Γ∞

∂ue

∂n︸︷︷︸
∂ue

∂x3

ūe dsx .
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Integration by parts on Ωe leads to:

−
∫

Γ

∂ue

∂n
ūe dsx =

∫
Ωe

∆ue ūe + OueOue dx+

∫
Γ∞

∂ue

∂x3
ūe dsx

=

∫
Ωe
|Oue|2 − ω2|ue|2 dx+

∫
Γ∞

∂ue

∂x3
ūe dsx

=

∫
Ωe
|Oue|2 − ω2|ue|2 dx−

∫
Γ∞

iα∞ω|ue|2 dsx .

Therefore,

−Re 2iω̄

∫
Γ

∂ue

∂n
ūe dsx = Re(2

∫
Ωe
iω̄|Oue|2 − iω̄ω2|ue|2 dx− 2

∫
Γ∞

(iω̄)iα∞ω|ue|2 dsx)

= Re(2

∫
Ωe
iω̄|Oue|2 − iω|ω|2|ue|2 dx+ 2

∫
Γ∞

α∞|ω|2|ue|2 dsx)

= 2σ

∫
Ωe
|Oue|2 + |ω|2|ue|2 dx+ 2

∫
Γ∞

α∞|ω|2|ue|2 dsx .

Similarly

Re 2iω̄

∫
Γ

∂ui

∂n
ūi dsx = Re(2

∫
Ωi
iω̄|Oui|2 − iω̄ω2|ui|2 dx)

= 2σ

∫
Ωi
|Oui|2 + |ω|2|ui|2 dx .

We conclude:

Re(aω(Ũ , Ũ)) = Re 2iω̄

∫
Γ
(
∂ui

∂n
ūi − ∂ue

∂n
ūe) dsx +

∫
Γ

1

α
|p|2 + |ω|2

∫
Γ
α|ϕ|2 dsx

= 2σ

∫
Ωi∪Ωe

|Ou|2 + |ω|2|u|2 dx+

∫
Γ

Re(
1

α
)|p|2 dsx + |ω|2

∫
Γ

Re(α)|ϕ|2 dsx

+ 2

∫
Γ∞

Re(α∞)|ω|2|ue|2 dsx

≥ 2σ

∫
Ωi∪Ωe

|Ou|2 + |ω|2|u|2 dx+

∫
Γ

Re(
1

α
)|p|2 dsx + |ω|2

∫
Γ

Re(α)|ϕ|2 dsx .

Using the trace theorem in Ωi and Ωe

||ϕ|| 1
2
,ω,Γ ≤ C||u||1,ω,Ω ,

it follows that

Re(aω(Ũ , Ũ)) ≥ ||
√

Re(
1

α
)p||20,Γ + Cσ||ϕ||21

2
,ω,Γ

+ ||ω
√

Re(α)ϕ||20,Γ .

Remark 3.3. Assume Re(α∞) ≥ 0. Then a similar coercivity estimate holds for the

single layer potential Vω:

Re〈iωVωϕ̇, ϕ〉 ≥ Cσ||ϕ||2− 1
2
,ω,Γ

. (3.18)
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Theorem 3.4. (Continuity)

Assume that Re(α∞) ≥ 0. The integral operators satisfy the following mapping proper-

ties for p ∈ H−
1
2 (Γ) and ϕ ∈ H

1
2 (Γ):

||Vωp|| 1
2
,ω,Γ ≤ Cσ|ω|||p||− 1

2
,ω,Γ , (3.19)

||Wωϕ||− 1
2
,ω,Γ ≤ Cσ|ω|||ϕ|| 1

2
,ω,Γ , (3.20)

||(I −Kω)ϕ|| 1
2
,ω,Γ ≤ Cσ|ω|||ϕ|| 1

2
,ω,Γ , (3.21)

||(I −K ′ω)p||− 1
2
,ω,Γ ≤ Cσ|ω|||p||− 1

2
,ω,Γ . (3.22)

Proof. First we prove (3.19).

Let be p in H−
1
2 (Γ) and let v = Sωϕ. Then we saw that v verifies:

(∆ + ω2)v(x) = 0 in Ωi ∪ Ωe

∂vi

∂n −
∂ve

∂n = p on Γ

vi − ve = 0 on Γ .

Applying Green’s Theorem in Ωi ∪ Ωe we obtain∫
Γ
iω̄
∂vi

∂n
v̄i dsx =

∫
Ωi
−iω|ω|2viv̄i dx+

∫
Ωi
iω̄OviOv̄i dx (3.23)

and

−
∫

Γ∞

iω̄
∂ve

∂x3
v̄e dsx−

∫
Γ
iω̄
∂ve

∂n
v̄e dsx =

∫
Ωe
−iω|ω|2vev̄e dx+

∫
Ωe
iω̄OveOv̄e dx . (3.24)

Adding the two equations (3.23) and (3.24) we get

−
∫

Γ∞

iω̄
∂ve

∂x3
v̄e dsx+

∫
Γ
iω̄

(
∂vi

∂n
− ∂ve

∂n

)
v̄e dsx =

∫
Ωe∪Ωi

−iω|ω|2|v|2 dx+

∫
Ωe∪Ωi

iω̄|Ov|2 dx.

Using the boundary conditions on Γ and Γ∞ we obtain

−
∫

Γ∞

α∞|ω|2|ve|2 dsx +

∫
Γ
iω̄pv̄e dsx =

∫
Ωe∪Ωi

−iω|ω|2|v|2 dx+

∫
Ωe∪Ωi

iω̄|Ov|2 dx .

We take the real part of this equation:

−
∫

Γ∞

Re(α∞)|ω|2|ve|2 dsx + Re

(∫
Γ
iω̄pv̄e dsx

)
= σ

(
||ve||21,ω,Ωe + ||vi||21,ω,Ωi

)
.

It follows from Re(α∞) ≥ 0 and from the trace theorem (Lemma 1.4) that

Re

(∫
Γ
iω̄pv̄e dsx

)
≥ σ

(
||ve||21

2
,ω,Γ

+ ||vi||21
2
,ω,Γ

)
.
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Therefore :

|ω|||p||− 1
2
,ω,Γ||v

e|| 1
2
,ω,Γ ≥ 2σ||ve||21

2
,ω,Γ

|ω|||p||− 1
2
,ω,Γ ≥ 2σ||ve|| 1

2
,ω,Γ

and v|Γ = Vωp imply that

||Vωp|| 1
2
,ω,Γ ≤

|ω|
2σ
||p||− 1

2
,ω,Γ .

Now we prove the estimate (3.20). Let ϕ in H
1
2 (Γ) and let v = −Dωϕ. Then we saw

that v verifies: 
(∆ + ω2)v(x) = 0 in Ωi ∪ Ωe

∂vi

∂n −
∂ve

∂n = 0 on Γ

vi − ve = ϕ on Γ .

Moreover we have ∂ve

∂n = −Wωϕ.

Adding the two equations (3.23) and (3.24) we obtain

−
∫

Γ∞

iω̄
∂ve

∂x3
v̄e +

∫
Γ
iω̄
∂ve

∂n

(
v̄i − v̄e

)
=

∫
Ωe∪Ωi

−iω|ω|2|v|2 +

∫
Ωe∪Ωi

iω̄|Ov|2 .

By using the boundary condition on Γ and Γ∞ we obtain the following equality:

−
∫

Γ∞

α∞|ω|2|ve|2 dsx +

∫
Γ
iω̄
∂ve

∂n
ϕ̄ dsx =

∫
Ωe∪Ωi

−iω|ω|2|v|2 dx+

∫
Ωe∪Ωi

iω̄|Ov|2 dx .

We take the real part of this equation:

−
∫

Γ∞

Re(α∞)|ω|2|ve|2 dsx + Re

(∫
Γ
iω̄
∂ve

∂n
ϕ̄ dsx

)
= σ

(
||ve||21,ω,Ωe + ||vi||21,ω,Ωi

)
.

Because Re(α∞) ≥ 0 and using Cauchy-Schwarz we obtain

||ve||21,ω,Ωe ≤
1

Im(ω)
|ω|||ϕ|| 1

2
,ω,Γ||

∂ve

∂n
||− 1

2
,ω,Γ . (3.25)

Using Green’s theorem in Ωe we obtain

−
∫

Γ∞

∂ve

∂x3
ϕ̄ dsx −

∫
Γ

∂ve

∂n
ϕ̄ dsx =

∫
Ωe
−ω2veψ̄ dx+

∫
Ωe
OveOψ̄ dx ,

where ψ ∈ H1(Ωe) as Lemma 1.3 and ϕ = ψ|Γ ∈ H
1
2 (Γ).

For ϕ ∈ H
1
2 (Γ) we have by the trace theorem

|
∫

Γ

∂ve

∂n
ϕ̄ dsx| ≤ ||ve||1,ω,Ωe ||ψ||1,ω,Ωe .

By Lemma 1.3

||ψ||1,ω,Ωe ≤ C||φ|| 1
2
,ω,Γ .
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It follows that

||∂v
e

∂n
||− 1

2
,ω,Γ = sup

{φ∈H
1
2 (Γ)/||φ|| 1

2 ,ω,Γ
=1}
|
∫

Γ

∂ve

∂n
φ̄ dsx| ≤ C||ve||1,ω,Ωe .

From (3.25) it follows that

||Wωϕ||− 1
2
,ω,Γ = ||∂v

e

∂n
||− 1

2
,ω,Γ ≤ C||v

e||1,ω,Ωe ≤ C|ω|||ϕ|| 1
2
,ω,Γ .

Using similar reasoning, we obtain the estimates (3.22) and (3.21).

Theorem 3.5. (Continuity)

Assume that Re(α∞) ≥ 0 and α, 1
α ∈ L

∞(Γ). The bilinear form aω is continuous on(
H

1
2 (Γ)× L2(Γ)

)
×
(
H

1
2 (Γ)× L2(Γ)

)
.

Proof. Recall that with Ũ = (ϕ, p) and Ṽ = (ψ, q)

aω(Ũ , Ṽ ) = |ω|2
∫

Γ
αϕψ̄dsx +

∫
Γ

1

α
pq̄dsx + iω̄

∫
Γ
K ′ωpψ̄dsx

−iω̄
∫

Γ
Wωϕψ̄dsx − iω

∫
Γ
Vωpq̄dsx + iω

∫
Γ
Kωϕq̄dsx .

Now we estimate the various terms of the bilinear form aω using Theorem 3.4

|ω|2
∣∣∣∣∫

Γ
αϕψ̄dsx

∣∣∣∣ ≤ C|ω|2||ϕ||0,ω,Γ||ψ||0,ω,Γ ≤ C|ω|2||ϕ|| 12 ,ω,Γ||ψ|| 12 ,ω,Γ ,∣∣∣∣∫
Γ

1

α
pq̄dsx

∣∣∣∣ ≤ C||p||0,ω,Γ||q||0,ω,Γ ≤ C

σ2
|ω|2||p||0,ω,Γ||q||0,ω,Γ ,

∣∣∣∣iω̄ ∫
Γ
K ′ωpψ̄dsx

∣∣∣∣ ≤ |ω|σ ||K ′ωp||− 1
2
,ω,Γ||ψ|| 1

2
,ω,Γ

≤ C |ω|
2

σ
||p||− 1

2
,ω,Γ||ψ|| 1

2
,ω,Γ

≤ C |ω|
2

σ
||p||0,ω,Γ||ψ|| 1

2
,ω,Γ ,∣∣∣∣iω̄ ∫

Γ
Wωϕψ̄dsx

∣∣∣∣ ≤ |ω|||Wωϕ||− 1
2
,ω,Γ||ψ|| 1

2
,ω,Γ ≤ C|ω|

2||ϕ|| 1
2
,ω,Γ||ψ|| 1

2
,ω,Γ ,

∣∣∣∣iω ∫
Γ
Vωpq̄dsx

∣∣∣∣ ≤ |ω|||Vωp|| 12 ,ω,Γ||q||− 1
2
,ω,Γ

≤ C|ω|2||p||− 1
2
,ω,Γ||q||− 1

2
,ω,Γ

≤ C|ω|2||p||0,ω,Γ||q||0,ω,Γ
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Γ
Kωϕq̄dsx

∣∣∣∣ ≤ |ω|||Kωϕ|| 1
2
,ω,Γ||q||− 1

2
,ω,Γ

≤ C|ω|2||ϕ|| 1
2
,ω,Γ||q||− 1

2
,ω,Γ

≤ C|ω|2||ϕ|| 1
2
,ω,Γ||q||0,ω,Γ

Adding the 6 inequalities we get

aω(Ũ , Ṽ ) ≤ Cσ
(
|ω||p|0,ω,Γ + |ω||ϕ| 1

2
,ω,Γ

)(
|ω||q|0,ω,Γ + |ω||ψ| 1

2
,ω,Γ

)
. (3.26)

Time-dependent Problem

We consider a time-dependent acoustic scattering problem with an absorbing object in

the half-space above the absorbing plane Γ∞.

The scattered wave then satisfies the following initial boundary value problem:
( ∂

2

∂t2
−∆)ue(t, x) = 0 in R+ × Ωe

∂ue

∂n − α
∂ue

∂t = f on R+ × Γ
∂ue

∂n − α∞
∂ue

∂t = 0 on R+ × Γ∞
∂ue

∂t (0, x) = ue(0, x) = 0 in Ωe .

(3.27)

The corresponding interior problem is:
( ∂

2

∂t2
−∆)ui(t, x) = 0 in R+ × Ωi

∂ui

∂n + α∂u
i

∂t = g on R+ × Γ
∂ui

∂t (0, x) = ui(0, x) = 0 in Ωi .

(3.28)

The solution of (3.27) and (3.28) satisfies the representation formula

u(t, x) = Sp(t, x)−Dϕ(t, x) ∀(t, x) ∈ R+ × Ωe ∪ Ωi ,

where

ϕ = ui − ue , p =
∂ui

∂n
− ∂ue

∂n
on R+ × Γ .

S is the single layer potential in the time domain for a half-space with an absorbing

boundary condition, defined by

Sp(t, x) =
1

4π

∫
Γ

p(t− |x− y|, y)

|x− y|
dsy +

1

4π

∫
Γ

p(t− |x− y′|, y)

|x− y′|
dsy

− α∞
2π

∞∫
0

∫
Γ

∂

∂s
[

H(t− s− |x− y′|)√
(t− s+ α∞ϑ3)2 + (α2

∞ − 1)R2
]p(s, y)dsyds .
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The corresponding double layer potential D is:

Dϕ(t, x) =
1

4π

∫
Γ

∂

∂ny

(
p(t− |x− y|, y)

|x− y|
dsy

)
+

1

4π

∫
Γ

∂

∂ny

(
p(t− |x− y′|, y)

|x− y′|

)
dsy

− α∞
2π

∞∫
0

∫
Γ

∂

∂ny

(
∂

∂s
[

H(t− s− |x− y′|)√
(t− s+ α∞ϑ3)2 + (α2

∞ − 1)R2
]p(s, y)

)
dsyds .

As for the Helmholtz equation we have the following trace identities:

2ue = V p− (I +K)ϕ

2ui = V p+ (I −K)ϕ (3.29)

2
∂ue

∂n
= (−I +K ′)p−Wϕ

2
∂ui

∂n
= (I +K ′)p−Wϕ .

The relevant boundary integral operators on Γ are:

V p(t, x) =
1

2π

∫
Γ

p(t− |x− y|, y)

|x− y|
dsy +

1

2π

∫
Γ

p(t− |x− y′|, y)

|x− y′|
dsy

− α∞
π

∞∫
0

∫
Γ

∂

∂s
[

H(t− s− |x− y′|)√
(t− s+ α∞ϑ3)2 + (α2

∞ − 1)R2
]p(s, y)dsyds ,

K ′ϕ(t, x) =
1

2π

∫
Γ

∂

∂nx

(
p(t− |x− y|, y)

|x− y|
dsy

)
+

1

2π

∫
Γ

∂

∂nx

(
p(t− |x− y′|, y)

|x− y′|

)
dsy

− α∞
π

∞∫
0

∫
Γ

∂

∂nx

(
∂

∂s
[

H(t− s− |x− y′|)√
(t− s+ α∞ϑ3)2 + (α2

∞ − 1)R2
]p(s, y)

)
dsyds ,

Kϕ(t, x) =
1

2π

∫
Γ

∂

∂ny

(
p(t− |x− y|, y)

|x− y|
dsy

)
+

1

2π

∫
Γ

∂

∂ny

(
p(t− |x− y′|, y)

|x− y′|

)
dsy

− α∞
π

∞∫
0

∫
Γ

∂

∂ny

(
∂

∂s
[

H(t− s− |x− y′|)√
(t− s+ α∞ϑ3)2 + (α2

∞ − 1)R2
]p(s, y)

)
dsyds ,

Wϕ(t, x) =
1

2π

∫
Γ

∂2

∂nxny

(
p(t− |x− y|, y)

|x− y|
dsy

)
+

1

2π

∫
Γ

∂2

∂nxny

(
p(t− |x− y′|, y)

|x− y′|

)
dsy

− α∞
π

∞∫
0

∫
Γ

∂2

∂nxny

(
∂

∂s
[

H(t− s− |x− y′|)√
(t− s+ α∞ϑ3)2 + (α2

∞ − 1)R2
]p(s, y)

)
dsyds .

Here ϑ3 = x3 + y3 and R2 = (x1 − y1)2 + (x2 − y2)2.

Substituting formula (3.29) into the boundary condition on Γ, we obtain the following
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system for the unknown functions ϕ and p{
(−I +K ′)p−Wϕ− α ∂

∂t(V p− (I +K)ϕ) = 2f

(I +K ′)p−Wϕ+ α ∂
∂t(V p+ (I −K)ϕ) = 2g .

(3.30)

Adding respectively substracting the two equations of (3.30), leads to{
(K ′p−Wϕ) + α∂ϕ∂t = F

p+ α(V ∂p
∂t −K

∂ϕ
∂t ) = G .

(3.31)

Pairing these equations with test functions ψ̇ respectively q
α , we obtain the following

space-time variational formulation:∫ ∞
0

e−2σt

∫
Γ

[
(K ′p−Wϕ) + αϕ̇

]
ψ̇ dsx dt =

∫ ∞
0

e−2σt

∫
Γ
Fψ̇ dsx dt∫ ∞

0
e−2σt

∫
Γ

[
p

α
+ (V

∂p

∂t
−K∂ϕ

∂t
)

]
q dsx dt =

∫ ∞
0

e−2σt

∫
Γ

Gq

α
dsx dt .

The system can be written as

a(U, V ) = l(V ) , (3.32)

where U = (ϕ, p), V = (ψ, q) and

a(U, V ) =

∫ ∞
0

e−2σt

∫
Γ

(
αϕ̇ψ̇ +

1

α
pq +K ′pψ̇ −Wϕψ̇ + V ṗq −Kϕ̇q

)
dsx dt , (3.33)

l(V ) =

∫ ∞
0

e−2σt

∫
Γ
Fψ̇ dsx dt+

∫ ∞
0

e−2σt

∫
Γ

Gq

α
dsx dt . (3.34)

Remark 3.4. The system of equations (3.31) and the variational formulation (3.32)

are the inverse Fourier-Laplace transforms of (3.16) and (3.17).

Later we will also require the time–domain mapping properties of the boundary integral

operators for general Sobolev exponents.

Theorem 3.6. The following operators are continuous for s ∈ [−1
2 ,

1
2 ], r ∈ R:

V : Hr+1
σ (R+, Hs− 1

2 (Γ))→ Hr
σ(R+, Hs+ 1

2 (Γ)) ,

K ′ : Hr+2
σ (R+, Hs− 1

2 (Γ))→ Hr
σ(R+, Hs− 1

2 (Γ)) ,

K : Hr+2
σ (R+, Hs+ 1

2 (Γ))→ Hr
σ(R+, Hs+ 1

2 (Γ)) ,

W : Hr+3
σ (R+, Hs+ 1

2 (Γ))→ Hr
σ(R+, Hs− 1

2 (Γ)) .

Remark 3.5. The +2 and +3 are still being improved.

Proof. For s = 0 the theorem follows from Theorem 3.5 by applying the Fourier–Laplace

transform. In fact, r + 2 and r + 3 may be replaced by r + 1 in this case. The general

case is discussed in a forthcoming preprint [20].
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3 Retarded Potential Boundary Integral Equations in the Half-Space

Together with Theorem 3.3, the mapping properties imply continuity and coercivity of

the bilinear form a(U, V ).

Theorem 3.7. Assume that Re(α∞) ≥ 0 and α, 1
α ∈ L

∞(Γ). Then the bilinear form of

the variational formulation (3.32) is continuous on
(
H1
σ(R+, H

1
2 (Γ))×H1

σ(R+, L2(Γ))
)
×(

H1
σ(R+, H

1
2 (Γ))×H1

σ(R+, L2(Γ))
)

, i.e., there exists Cσ > 0 such that:

|a(U, V )| ≤ Cσ(||p||1,0,Γ + ||ϕ||1, 1
2
,Γ)(||q||1,0,Γ + ||ψ||1, 1

2
,Γ) . (3.35)

If Re(α),Re( 1
α) > 0, it verifies a coercivity estimate: There exists Cσ > 0 such that:

a(U,U) ≥ Cσ(||p||20,0,Γ + ||ϕ||2
0, 1

2
,Γ

+ ||ϕ̇||20,0,Γ) . (3.36)

Proof. Equations (3.35) and (3.36) follow from Theorem 3.3 and Theorem 3.6.

Concerning (3.36) we note that

a(U,U) = |a(U,U)| = |
∫ ∞+iσ

−∞+iσ
aω(Ũ , Ũ)dω|

≥
∫ ∞+iσ

−∞+iσ
Re(aω(Ũ , Ũ))dω

≥ Cσ
∫ ∞+iσ

−∞+iσ

(
||p(ω)||20,Γ + ||ϕ(ω)||21

2
,ω,Γ

+ ||ωϕ(ω)||20,Γ
)
dω

≥ Cσ(||p||20,0,Γ + ||ϕ||2
0, 1

2
,Γ

+ ||ϕ̇||20,0,Γ) .

Similary (3.35) is a consequence of (3.26) and Cauchy-Schwarz.

Remark 3.6. Similarly for the Dirichlet problem (see [22, (54)] and Corollary 3.50 in

[21] for the full space)

b(ϕ,ϕ) =

∫ ∞
0

∫
Γ
V ϕ̇(t, x)ϕ(t, x)dσx dσt ≥ Cσ‖ϕ‖20,− 1

2
,Γ

(3.37)
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4 Error Estimates

This chapter is divided into two parts. In the first part we derive a priori error estimates

in space-time Sobolev spaces for the time domain boundary element method [23][21].

In the second part we consider the reliability of residual a posteriori error estimates.

We use these a posteriori error estimates to define adaptive mesh refinements based

on local error indicators. The residual error estimate is similar to the error estimate

for elliptic boundary element problems, considered by Carstensen and Stephan [11] [12].

4.1 A priori Error Estimates

In this section we introduce two projection operators and their approximation proper-

ties, which are needed for the error analysis. Then we prove the convergence of Galerkin

approximations for the Dirichlet and acoustic boundary problems in a half-space.

We begin by recalling the projection operators onto the space Hk
σ(∆t,R) of piecewise

polynomials of degree k in time [4].

Lemma 4.1. (Lemma 3 in [4]) For k < m let the operator Π∆t : Hmσ (R+,R) →
Hk
σ(∆t,R) be defined by

(Π∆tf)(t) = f(tn) + (t− tn)f ′(tn) + · · ·+ (t− tn)k

k!
f (k)(tn) ∀tn ≤ t ≤ tn+1 .

Then we have

||f −Π∆tf ||σ,0 ≤ Ck∆tk+1||f ||σ,k+1 .

Proof. We follow the proof in [4]. Taylor’s formula with integral remainder asserts that

(f −Π∆tf)(t) =
1

k!

∫ t

tn

(t− u)kf (k+1)(u)du , t ∈ In.

With the help of the Cauchy-Schwarz inequality we have

|f −Π∆tf |2 ≤
1

(k!)2(2k + 1)
(t− tn)2k+1

∫ t

tn

(f (k+1)(u))2du .

By multiplying the result by e−2σt and integrating over the time intervall [tn, tn+1) we
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4 Error Estimates

obtain∫ tn+1

tn

e−2σt|f(t)− (Π∆tf)(t)|2dt ≤
∫ tn+1

tn

1

(k!)2(2k + 1)
(t− tn)2k+1

∫ t

tn

(f (k+1)(u))2dudt

≤ 1

(k!)2(2k + 1)
(t− tn)2k+1

∫ tn+1

tn

e−2σu(f (k+1)(u))2du

.

∫ tn+1

u
e−2σ(t−u)(t− tn)2k+1dt .

Using ∫ tn+1

u
e−2σ(t−u)(t− tn)2k+1dt ≤

∫ tn+1

u
(t− tn)2k+1dt ≤ ∆t2k+2

2k + 2

we get∫ tn+1

tn

e−2σt|f(t)− (Π∆tf)(t)|2dt ≤ ∆t2k+2

(k!)2(2k + 1)(2k + 2)

∫ tn+1

tn

e−2σu(f (k+1)(u))2du .

The summation over n gives us∫ ∞
0

e−2σt|f(t)− (Π∆tf)(t)|2dt ≤
∞∑
n=0

∫ tn+1

tn

e−2σt|f(t)− (Π∆tf)(t)|2dt

≤ ∆t2k+2

(k!)2(2k + 1)(2k + 2)

∞∑
n=0

∫ tn+1

tn

e−2σu(f (k+1)(u))2du

≤ Ck∆t2k+2

∫ ∞
0

e−2σu(f (k+1)(u))2du .

We note the following consequences:

Corollary 4.1. [4] Let f ∈ Hk+1
σ (R+,R). Then there holds for a constant Ck that

||f −Π∆tf ||σ, 1
2
≤ Ck∆tk+ 1

2 ||f ||σ,k+1 (4.1)

||f −Π∆tf ||σ,−1
2
≤ Ck∆tk+ 3

2 ||f ||σ,k+1 (4.2)

Proof. Because

(Π∆tf)′(t) = f ′(tn) + (t− tn)f ′′(tn) + · · ·+ (t− tn)k−1

(k − 1)!
f (k)(tn) = Π∆tf

′(t)

we obtain

||f −Π∆tf ||σ,1 = ||∂t(f −Π∆t)||σ,0 + ||f −Π∆tf ||σ,0
≤ Ck∆tk||f ′||σ,k + Ck∆t

k+1||f ||σ,k
≤ Ck∆tk||f ||σ,k+1 + Ck∆t

k+1||f ||σ,k+1

≤ Ck∆tk||f ||σ,k+1 .
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4.1 A priori Error Estimates

By interpolation

||f −Π∆tf ||σ, 1
2
≤ ||f −Π∆tf ||

1
2
σ,0||f −Π∆tf ||

1
2
σ,1

≤ Ck∆tk||f ||σ,k+1 .

The proof of equation (4.2) is similar.

While the above estimates have been discussed for the projection operator Π∆t onto

the space of piecewise polynomials Hk
σ(∆t,R), analogous estimates are easily derived

for the interpolation operator Π̃∆t onto the space of continuous, piecewise polynomials

V k
∆t.

For the discretization in space we recall:

Lemma 4.2. ( Lemma 4 in [4]) Let Πh the orthogonal projection from L2(Γ) to V p
h

and m ≤ p. Then

||f −Πhf ||L2(Γ) ≤ Chm+1||f ||Hm+1(Γ)

||f −Πhf ||
H−

1
2 (Γ)
≤ Chm+ 3

2 ||f ||Hm+1(Γ)

holds for all f ∈ Hm+1(Γ).

Combining Πh and Π∆t resp. Π̃∆t one obtains with Proposition 3.54 in [21]:

Lemma 4.3. Let f ∈ Hs
σ(R+, Hm(Γ)), 0 < m ≤ q + 1, 0 < s ≤ p + 1, r ≤ s, l ≤ m

such that lr ≥ 0. Then if l, r ≤ 0

‖f −Πh ◦Π∆tf‖r,l,Γ ≤ C(hα + (∆t)β)||f ||s,m,Γ , (4.3)

where α = min{m− l,m− m(l+r)
m+s }, β = min{m+ s− (l+ r),m+ s− m+s

m l}. If l, r > 0,

β = m+ s− (l + r).

Likewise (4.3) holds with Π̃∆t instead of Π∆t, and on finite time intervals [0, T ] without

the weight e−σt.

We are also going to require inverse estimates like (3.182) in [21] for s,m ≤ 0

‖ph,∆t‖0,0,Γ ≤ C(∆t)s max (hm,∆tm)‖ph,∆t‖s,m,Γ

for ph,∆t in the approximation spaces V p,q
h,∆t, namely

||ph,∆t||1,− 1
2
,Γ .

1

∆t
||ph,∆t||0,− 1

2
,Γ (in the proof of the Theorem 4.1)

||ph,∆t||1,0,Γ .
1

∆t
||ph,∆t||0,0,Γ (in the proof of the Theorem 4.2)

||ph,∆t||0, 1
2
,Γ .

1√
h
||ph,∆t||0,0,Γ (in the proof of the Theorem 4.2).

The above inverse inequalities hold due to the standard estimates for regular finite

element functions in the usual Sobolev-spaces Hs(Γ) [3] on one hand, and on the other

hand the weight function e−σt does not affect these inequalies (see [4, Lemma 2] ), c.f.

(3.177) in [21].
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4 Error Estimates

4.1.1 Dirichlet Boundary Value Problem in a Half-Space

We now use the above approximation results to discuss the convergence of Galerkin

approximations to the Dirichlet problem. Consider the variational form of the boundary

integral equation V φ = f :

Find φ ∈ H1
σ(R+, H−

1
2 (Γ)) such that

b(φ, ψ) = 〈ḟ , ψ〉 ∀ψ ∈ H1
σ(R+, H−

1
2 (Γ)) , (4.4)

where

b(φ, ψ) =

∫ ∞
0

∫
Γ
V φ̇(t, x)ψ(t, x)dsx dσt

〈ḟ , ψ〉 =

∫ ∞
0

∫
Γ
ḟ(t, x)ψ(t, x)dsx dσt .

The Galerkin equations read:

Find φh,∆t ∈ V p,q
h,∆t such that

b(φh,∆t, ψh,∆t) = l(ψh,∆t) =

∫ ∞
0

e−2σt

∫
Γ
ḟh,∆t(t, x)ψh,∆t(t, x)dsx dt ∀ψh,∆t ∈ V p,q

h,∆t

(4.5)

Theorem 4.1. For the solution φ ∈ H1
σ(R+, H−

1
2

(Γ)) of (4.4) and φh,∆t ∈ V p,q
h,∆t of

(4.5) there holds:

‖φ− φh,∆t‖0,− 1
2
,Γ ≤ C

(
||fh,∆t − f ||1, 1

2
,Γ

+ inf
ψh,∆t
{(1 +

1

∆t
)‖φ− ψh,∆t||0,− 1

2
,Γ +

1

∆t
‖φ̇− ψ̇h,∆t||0,− 1

2
,Γ}
)
.

If in addition Hs
σ(R+, Hm(Γ)), then

‖φ− φh,∆t‖0,− 1
2
,Γ ≤ C

(
||fh,∆t − f ||1, 1

2
,Γ

+

(
(hα1 + ∆tβ1)(1 +

1

∆t
) + (hα2 + ∆tβ2)

1

∆t

)
||φ||s,m,Γ

)
where

α1 = min{m+
1

2
,m− m

2(m+ s)
}, β1 = min{m+ s+

1

2
,m+ s+

m+ s

2m
} ,

α2 = min{m+
1

2
,m− m

2(m+ s− 1)
}, β2 = min{m+ s− 1

2
,m+ s− 1 +

m+ s− 1

2m
} ,

and m ≥ −1
2 , s ≥ 0.

Proof. We start with the coercivity applied to φh,∆t − ψh,∆t ∈ H1
σ(R+, H−

1
2 (Γ)) with

ψh,∆t ∈ Vh,∆t:

C‖φh,∆t − ψh,∆t‖20,− 1
2
,Γ
≤ b(φh,∆t − φ, φh,∆t − ψh,∆t) + b(φ− ψh,∆t, φh,∆t − ψh,∆t) .
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4.1 A priori Error Estimates

For the first term we obtain:

b(φh,∆t − φ, φh,∆t − ψh,∆t) =

∫ ∞
0

e−2σt

∫
Γ
(ḟh,∆t − ḟ)(φh,∆t − ψh,∆t) dsx dt

≤ ‖ḟh,∆t − ḟ‖0, 1
2
,Γ‖φh,∆t − ψh,∆t‖0,− 1

2
,Γ .

By continuity (Corollary 3.51 in [21]) we can estimate the second term as follows:

b(φ− ψh,∆t, φh,∆t − ψh,∆t) ≤ C‖φ− ψh,∆t‖1,− 1
2
,Γ‖φh,∆t − ψh,∆t‖1,− 1

2
,Γ .

The inverse inequality in the time variable leads to

b(φ− ψh,∆t, φh,∆t − ψh,∆t) ≤
C

∆t
‖φ− ψh,∆t‖1,− 1

2
,Γ‖φh,∆t − ψh,∆t‖0,− 1

2
,Γ ,

so that finally we get:

‖φh,∆t − ψh,∆t‖0,− 1
2
,Γ ≤ C{||fh,∆t − f ||1, 1

2
,Γ +

1

∆t
‖φ− ψh,∆t||1,− 1

2
,Γ} .

With the triangle inequality one shows that

‖φ− φh,∆t‖0,− 1
2
,Γ ≤ ‖φ− ψh,∆t‖0,− 1

2
,Γ + ‖φh,∆t − ψh,∆t‖0,− 1

2
,Γ

≤ C{||fh,∆t − f ||1, 1
2
,Γ + inf

ψh,∆t
{‖φ− ψh,∆t||0,− 1

2
,Γ +

1

∆t
‖φ− ψh,∆t||1,− 1

2
,Γ}}

≤ C
(
||fh,∆t − f ||1, 1

2
,Γ

+ inf
ψh,∆t
{(1 +

1

∆t
)‖φ− ψh,∆t||0,− 1

2
,Γ +

1

∆t
‖φ̇− ψ̇h,∆t||0,− 1

2
,Γ}
)

The second inequality follows from the approximation properties stated in Lemma 4.3.

4.1.2 Acoustic Boundary Value Problem

Next, we consider the Galerkin equations for (3.32), i.e. find Φh,∆t = (ph,∆t, ϕh,∆t) ∈
V p̃,q̃
h,∆t × V

p,q
h,∆t such that ∀Ψh,∆t = (qh,∆t, ψh,∆t) ∈ V p̃,q̃

h,∆t × V
p,q
h,∆t

a(Φh,∆t,Ψh,∆t) = l̃(Ψh,∆t) :=

∫ ∞
0

e−2σt

∫
Γ
Fh,∆tψ̇h,∆t dsx dt+

∫ ∞
0

e−2σt

∫
Γ

Gh,∆tqh,∆t
α

dsx dt .

(4.6)

We now derive an estimate for the error of the above Galerkin approximation to (3.32)

in the norm |||.||| defined by:

|||Φ||| =
(
||p||20,0,Γ + ||ϕ||2

0, 1
2
,Γ

+ ||ϕ̇||20,0,Γ
) 1

2 ∀Φ = (p, ϕ) .
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4 Error Estimates

Theorem 4.2. Assume that Reα∞, Reα ≥ 0 and α, 1
α ∈ L∞(Γ). For the solutions

Φ = (p, ϕ) ∈ H1
σ(R+, H

1
2 (Γ)) ×H1

σ(R+, L2(Γ)) of (3.32) and Φh,∆t = (ph,∆t, ϕh,∆t) of

(4.6) there holds:

|||(p− ph,∆t, ϕ− ϕh,∆t)|||
≤ Cσ (||Fh,∆t − F ||0,0,Γ + ||Gh,∆t −G||0,0,Γ)

+ Cσ max

(
1

∆t
,

1√
h

)
inf

(qh,∆t,ψh,∆t)∈V p̃,q̃h,∆t×V
p,q
h,∆t

(
||p− qh,∆t||1,0,Γ + ||ϕ− ψh,∆t||1, 1

2
,Γ

)
.

If in addition ϕ ∈ Hs1
σ (R+, Hm1(Γ)), p ∈ Hs2

σ (R+, Hm2(Γ)), then we have

|||(p− ph,∆t, ϕ−ϕh,∆t)||| ≤ Cσ (||Fh,∆t − F ||0,0,Γ + ||Gh,∆t −G||0,0,Γ)

+ Cσ max

(
1

∆t
,

1√
h

)(
(hα1 + ∆tβ1)||p||s1,m1,Γ + (hα2 + ∆tβ2)||ϕ||s2,m2,Γ

)
,

where

α1 = m1 , β1 = m1 + s1 − 1 ,

α2 = min{m2 −
1

2
,m2 −

3m2

2(m2 + s2)
}, β2 = m2 + s2 −

3

2
.

Proof. We write Φ = (p, ϕ) and Ψ = (q, ψ). We start with the coercivity (3.36) applied

to Φh,∆t −Ψh,∆t ∈ H1
σ(R+, H−

1
2 (Γ)) and ψh,∆t:

C(Γ)|||Φh,∆t −Ψh,∆t|||2 = C(Γ)
(
‖ph,∆t − qh,∆t‖20,0,Γ + ‖ϕh,∆t − ψh,∆t‖2σ,0, 1

2
,Γ

+‖ϕ̇h,∆t − ψ̇h,∆t‖20,0,Γ
)

≤ a(Φh,∆t −Ψh,∆t,Φh,∆t −Ψh,∆t)

= a(Φh,∆t − Φ,Φh,∆t −Ψh,∆t) + a(Φ−Ψh,∆t,Φh,∆t −Ψh,∆t)

Taking into account (3.32) and (3.33)-(3.34), we obtain for the first term :

a(Φh,∆t − Φ,Φh,∆t −Ψh,∆t) =

∫ ∞
0

e−2σt

∫
Γ
(Fh,∆t − F )(ϕ̇h,∆t − ψ̇h,∆t) dsx dt

+

∫ ∞
0

e−2σt

∫
Γ
(
Gh,∆t
α
− G

α
)(ph,∆t − qh,∆t) dsx dt

. ||Fh,∆t − F ||0,0,Γ||ϕ̇h,∆t − ψ̇h,∆t||0,0,Γ
+ ||Gh,∆t −G||0,0,Γ||ph,∆t − qh,∆t||0,0,Γ

≤ (||Fh,∆t − F ||0,0,Γ + ||Gh,∆t −G||0,0,Γ)(
||ϕ̇h,∆t − ψ̇h,∆t||0,0,Γ + ||ph,∆t − qh,∆t||0,0,Γ

)
≤ (||Fh,∆t − F ||0,0,Γ + ||Gh,∆t −G||0,0,Γ) |||Φh,∆t −Ψh,∆t||| .

Due to the continuity (3.35) we can estimate the second term by

|a(Φ−Ψh,∆t,Φh,∆t −Ψh,∆t)| ≤ Cσ
(
||p− qh,∆t||1,0,Γ + ||ϕ− ψh,∆t||1, 1

2
,Γ

)
.
(
||ϕh,∆t − ψh,∆t||1, 1

2
,Γ + ||ph,∆t − qh,∆t||1,0,Γ

)
.

(4.7)
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Taking into account the inverse estimate from the first section of this chapter, we have

||ϕh,∆t − ψh,∆t||1, 1
2
. ||ϕh,∆t − ψh,∆t||0, 1

2
,Γ + ||ϕ̇h,∆t − ψ̇h,∆t||0, 1

2
,Γ

. ||ϕh,∆t − ψh,∆t||0, 1
2
,Γ + (h−

1
2 + ∆t−

1
2 )||ϕ̇h,∆t − ψ̇h,∆t||0,0,Γ (4.8)

and in time

||ph,∆t − qh,∆t||1,0,Γ ≤
1

∆t
||ph,∆t − qh,∆t||0,0,Γ . (4.9)

Now putting (4.8) and (4.9) in (4.7) we get

|a(Φ−Ψh,∆t,Φh,∆t −Ψh,∆t)| ≤ Cσ
(
||p− qh,∆t||1,0,Γ + ||ϕ− ψh,∆t||1, 1

2
,Γ

)
.

(
||ϕh,∆t − ψh,∆t||0, 1

2
,Γ + (

1√
h

+
1√
∆t

)||ϕ̇h,∆t − ψ̇h,∆t||0,0,Γ

+
1

∆t
||ph,∆t − qh,∆t||0,0,Γ

)
≤ Cσ max

(
1

∆t
,

1√
h

)(
||p− qh,∆t||1,0,Γ + ||ϕ− ψh,∆t||1, 1

2
,Γ

)
.|||Φh,∆t −Ψh,∆t||| .

Altogether, we conclude

|||Φ− Φh,∆t||| ≤ Cσ (||Fh,∆t − F ||0,0,Γ + ||Gh,∆t −G||0,0,Γ) (4.10)

+ Cσ max

(
1

∆t
,

1√
h

)(
||p− qh,∆t||1,0,Γ + ||ϕ− ψh,∆t||1, 1

2
,Γ

)
+ |||Φ−Ψh,∆t||| .

Using the interpolation operator from Lemma 4.4, we obtain the powers of h and ∆t

stated in the theorem.

4.2 A Simple Residual A posteriori Estimate for TDBIE

In this section, we study a general framework for a posteriori error estimates in the

time domain boundary element method. An adaptive procedure is desired where the

algorithm itself decides when and where to refine the mesh in order to improve the

computed Galerkin solution.

One such strategy has been proposed by Carstensen and Stephan in the 1990s, whose

residual a posteriori error estimate we generalize to the hyperbolic case.

Consider the variational form of the wave equation in R3
+ \Ω on the finite time–interval

[0, T ]:

Find φ ∈ H1
0 ([0, T ], H−

1
2 (Γ) such that for all ψ ∈ H1

0 ([0, T ], H−
1
2 (Γ))

bT (φ, ψ) = 〈ḟ , ψ〉 , (4.11)
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4 Error Estimates

with

bT (φ, ψ) =

∫ T

0

∫
Γ
V φ̇(t, x) ψ(t, x) dsx dt ,

〈ḟ , ψ〉 =

∫ T

0

∫
Γ
ḟ(t, x) ψ(t, x) dsx dt .

As shown in [22], the bilinear form bT is continuous, and also weakly coercive after

averaging in T :

Proposition 4.1. For every φ, ψ ∈ H1
0 ([0, T ], H−

1
2 (Γ)) there holds:

|bT (φ, ψ)| ≤ C‖φ‖1,− 1
2
,Γ‖ψ‖1,− 1

2
,Γ

and

‖φ‖2
0,− 1

2
,Γ
≤ C

∫ T

0
bt(φ, φ) dt = C

∫ T

0

∫ t

0

∫
Γ
V φ̇(s, x) ψ(s, x) dsx ds dt .

Proof. Continuity of the bilinear form is a consequence of the mapping properties in

Theorem 3.6, adapted to the finite interval [0, T ].

The coercivity estimate can be found in Equation (59) of [22], using slightly different

notation.

Solving the continuous problem (4.11) and its Galerkin discretization

bT (φh,∆t, ψh,∆t) = 〈ḟ , ψh,∆t〉 , (4.12)

in V p,q
h,∆t, we will make use of Galerkin orthogonality:

bT (φ− φh,∆t, ψh,∆t) = 0 ∀ψh,∆t ∈ V p,q
h,∆t .

Using ideas for the elliptic problem we conclude the following a posteriori estimate:

Theorem 4.3. Let φ, φh,∆t ∈ H1
0 ([0, T ], H−

1
2 (Γ)) be the solutions to (4.11) and its

discretized variant, and assume that R = ḟ − V φ̇h,∆t ∈ H0([0, T ], H1(Γ)). Then

‖φ− φh,∆t‖20,− 1
2
,Γ
. ‖R‖0,1,Γ

(
∆t‖∂tR‖0,0,Γ + ‖h · ∇R‖0,0,Γ

)
. max{∆t, h}(‖∂tR‖L2([0,T ],L2(Γ)) + ‖∇R‖L2([0,T ],L2(Γ)))

2

Remark 4.1. a) As the single–layer potential maps H1([0, T ], L2(Γ)) continuously to

H0([0, T ], H1(Γ)), V φ̇h,∆t belongs to H0([0, T ], H1(Γ)) if, for example, φh,∆t ∈ H2([0, T ], L2(Γ)).

The a posteriori estimate is therefore only valid for sufficiently smooth discretizations,

e.g. constructed from C1–continuous splines.

b) In practice, we will use ∆t‖∂tR‖0,0,Γ + ‖h · ∇R‖0,0,Γ as an error indicator.
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Proof of Theorem 4.3. We first note that for all ψh,∆t ∈ V p,q
h,∆t

‖φ− φh,∆t‖20,− 1
2
,Γ
.
∫ T

0
bt(φ− φh,∆t, φ− φh,∆t) dt

=

∫ T

0

∫ t

0

∫
Γ
ḟ(φ− φh,∆t) dsx ds dt−

∫ T

0
bt(φh,∆t, φ− φh,∆t) dt

=

∫ T

0

∫ t

0

∫
Γ
ḟ(φ− ψh,∆t) dsx ds dt−

∫ T

0
bt(φh,∆t, φ− ψh,∆t) dt

=

∫ T

0

∫ t

0

∫
Γ
(ḟ − V φ̇h,∆t)(φ− ψh,∆t) dsx ds dt .

The last term may be estimated by:∫ T

0

∫ t

0

∫
Γ
(ḟ − V φ̇h,∆t)(φ− ψh,∆t) dsx ds dt

=

∫ T

0
(T − s)

∫
Γ
(ḟ − V φ̇h,∆t)(φ− ψh,∆t) dsx ds

≤ T ‖R‖0, 1
2
,Γ‖φ− ψh,∆t‖0,− 1

2
,Γ .

We use ψh,∆t = φh,∆t together with the interpolation inequality

‖R‖2
0, 1

2
,Γ
≤ ‖R‖0,0,Γ‖R‖0,1,Γ .

As the residual is perpendicular to V p,q
h,∆t,

‖R‖20,0,Γ = 〈R,R〉 = 〈R,R− ψ̃h,∆t〉

≤ ‖R‖0,0,Γ‖R− ψ̃h,∆t‖0,0,Γ

for all ψ̃h,∆t ∈ V p,q
h,∆t, we obtain

‖R‖0,0,Γ ≤ inf{‖R− ψ̃h,∆t‖0,0,Γ : ψ̃h,∆t ∈ V p,q
h,∆t} .

Choosing ψ̃h,∆t = Π̃h,∆tR, based on the interpolation operator defined at the beginning

of this chapter, we obtain

‖R‖0,0,Γ . ∆t‖∂tR‖0,0,Γ + ‖h · ∇R‖0,0,Γ .

The theorem follows.

4.3 An A Posteriori Error Estimate for the Acoustic Problem

The analysis of the acoustic boundary problem can be done in a similar way.

For a finite time interval [0, T ] we introduce the bilinear form

aT ((ϕ, p), (ψ, q)) =

∫ T

0

∫
Γ

(
αϕ̇ψ̇ +

1

α
pq +K ′pψ̇ −Wϕψ̇ + V ṗq −Kϕ̇q

)
dsx dt .

(4.13)
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4 Error Estimates

analogous to (3.33) for T =∞. With

l(ψ, q) =

∫ T

0

∫
Γ
Fψ̇ dsx dt+

∫ ∞
0

∫
Γ

Gq

α
dsx dt , (4.14)

we consider the variational formulation for the wave equation in R3 with acoustic bound-

ary conditions on Γ:

Find (ϕ, p) ∈ H1([0, T ], H
1
2 (Γ))×H1([0, T ], L2(Γ)) such that

aT ((ϕ, p), (ψ, q)) = l(ψ, q) (4.15)

for all (ψ, q) ∈ H1([0, T ], H
1
2 (Γ))×H1([0, T ], L2(Γ)).

Again we observe from (3.36) that the bilinear form aT satisfies a weak coercivity

estimate, even without averaging in T (cf. (66) of [22]):

‖p‖20,0,Γ + ‖ϕ̇‖20,0,Γ + ‖ϕ‖2
0, 1

2
,Γ
. aT ((ϕ, p), (ϕ, p)) .

For now, we only observe a simple a posteriori estimate.

Theorem 4.4. Let (ϕ, p), (ϕh,∆t, ph,∆t) ∈ H1
0 ([0, T ], H

1
2 (Γ))×H1([0, T ], L2(Γ)) be the

solutions to (4.15) and its discretized variant, and assume that

R1 = F − αϕ̇h,∆t −K ′ph,∆t +Wϕh,∆t ∈ L2([0, T ], L2(Γ)) ,

R2 =
G

α
− α−1ph,∆t − V ṗh,∆t +Kϕ̇h,∆t ∈ L2([0, T ], L2(Γ)) .

Then

‖p− ph,∆t‖0,0,Γ + ‖ϕ̇− ϕ̇h,∆t‖0,0,Γ + ‖ϕ− ϕh,∆t‖0, 1
2
,Γ

. ‖R1‖0,0,Γ + ‖R2‖0,0,Γ .

Proof. For every (ψh,∆t, qh,∆t) ∈ V p
h ⊗ V

q
∆t as in Theorem 3.7 we have

‖p− ph,∆t‖20,0,Γ + ‖ϕ̇− ϕ̇h,∆t‖20,0,Γ + ‖ϕ− ϕh,∆t‖20, 1
2
,Γ

. aT ((ϕ− ϕh,∆t, p− ph,∆t), (ϕ− ϕh,∆t, p− ph,∆t))
= 〈R1, ϕ̇− ψ̇h,∆t〉+ 〈R2, p− qh,∆t〉
≤ ‖R1‖0,0,Γ‖ϕ̇− ψ̇h,∆t‖0,0,Γ

+ ‖R2‖0,0,Γ‖p− qh,∆t‖0,0,Γ
≤ (‖R1‖0,0,Γ + ‖R2‖0,0,Γ)×

(‖p− qh,∆t‖0,0,Γ + ‖ϕ̇− ψ̇h,∆t‖0,0,Γ) .

The assertion is obtained by choosing (ψh,∆t, qh,∆t) = (ϕh,∆t, ph,∆t).
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Remark 4.2. Naturally, under stronger assumptions on R1, R2 we may obtain powers

of h and ∆t on the right hand side by the following argument:

As in the proof of Theorem 4.3, 〈R1,
˙̃
ψh,∆t〉 = 〈R2, q̃h,∆t〉 = 0 for all (ψ̃h,∆t, q̃h,∆t) ∈

V p
h ⊗ V

q
∆t. Hence

‖R2‖20,0,Γ = 〈R2, R2〉 = 〈R2, R2 − q̃h,∆t〉
≤ ‖R2‖0,0,Γ‖R2 − q̃h,∆t‖0,0,Γ.

Choosing q̃h,∆t = Πh,∆tR2 yields e.g.

‖R2‖0,0,Γ . ∆t‖∂tR2‖0,0,Γ + ‖h · ∇ΓR2‖0,0,Γ + ∆t‖h · ∇Γ∂tR2‖0,0,Γ

provided R2 ∈ H1([0, T ], H1(Γ)).

Assuming R1 ∈ H1([0, T ], H1(Γ)), we similarly have

‖R1‖20,0,Γ = 〈R1, R1〉 = 〈R1, R1 −
˙̃
ψh,∆t〉

≤ ‖R1‖ 1
2
−s,0,Γ‖

∫ t

0
R1 − ψ̃h,∆t‖ 1

2
+s,0,Γ .

Choosing ψ̃h,∆t = Πh,∆t

∫ t
0 R1 and s = 1

2 results in

‖R1‖0,0,Γ . ∆t‖∂tR1‖0,0,Γ + ‖h · ∇ΓR1‖0,0,Γ
+ ∆t‖h · ∇Γ∂tR1‖0,0,Γ .

Altogether,

‖p− ph,∆t‖0,0,Γ + ‖ϕ̇− ϕ̇h,∆t‖0,0,Γ + ‖ϕ− ϕh,∆t‖0, 1
2
,Γ

. ‖R1‖0,0,Γ + ‖R2‖0,0,Γ

.
2∑
i=1

∆t‖∂tRi‖0,0,Γ + ‖h · ∇Ri‖0,0,Γ

+ ∆t‖h · ∇∂tRi‖0,0,Γ .

4.4 Numerical Example

We consider the Dirichlet problem for the wave equation in the exterior of the three-

dimensional unit ball with a singular right hand side. In the formulation

V ϕ̇(t, x) :=
1

4π

∫
Γ

ϕ̇(t− |x− y|, y)

|x− y|
dsy = ḟ(t, x)

as an integral equation of the first kind on the sphere Γ, we choose the right-hand side

ḟ(t, x) =

{
2, x1 > 0

0, x1 < 0
.
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The function ḟ is a toy example for a time–independent singularity, similar to the

singular horn-like geometry where a tyre meets a street. We expect adaptive mesh

refinements to concentrate around the line of discontinuity of ḟ , given by x1 = 0.

Starting with an initial coarse mesh T0, we use the MOT scheme from Section 2.2 to

obtain a Galerkin approximation to this equation. This approximate solution is given

by:

ϕ̇h,∆t(x, t) =

Nt∑
m=1

Ns∑
i=1

bmi β
m(t)ϕi(x)

where βm is the linear hat function

βm(t) = (∆t)−1((t− tm)χm − (t− tm+1)χm+1)

and ϕi is the piecewise linear hat function associated to node i.

From ϕ̇h,∆t and ḟ we determine in every triangle 4 and every time interval In =

[tn−1, tn] the local error indicator

η4(In)2 =

∫ tn

tn−1

∫
4

[hOΓ(ḟ − V ϕ̇h,∆t)]2 ,

where the time integral is approximated by a Riemann sum.

As a first step towards a space–time adaptive Galerkin method, we concentrate on

space-adaptive mesh refinements based on the time-integrated indicator

η4 =

√√√√ Nt∑
n=1

η4(In)2 .

The term in the above a posteriori estimates, which involves the time–derivative of the

residual ḟ−V ϕ̇h,∆t, is neglected in this example, because we expect η4(In) to dominate

for this time–independent singularity.

To compute η4 from ϕ̇h,∆t, we consider the gradient of V ϕ̇h,∆t as a singular integral:

OV ϕ̇(t, x) =
1

4π

∫
Γ
(x− y)

(
ϕ̇h,∆t(t− |x− y|, y)

|x− y|3
+
ϕ̈h,∆t(t− |x− y|, y)

|x− y|2

)
dsy .

Explicitly,

OV ϕ̇h,∆t(t, x) =
1

4π

Nt∑
m=1

Ns∑
i=1

bmi

[∫
Γ
ϕi(y)

(
βm(t− |x− y|) x− y

|x− y|3

+β̇m(t− |x− y|) x− y
|x− y|2

)
dsy

]

52



4.4 Numerical Example

with∫
Γ
ϕi(y)β̇m(t−|x− y|) x− y

|x− y|2
dsy

=
1

∆t

∫
Γ
ϕi(y) (H(t− tm−1 − |x− y|)−H(t− tm − |x− y|))

x− y
|x− y|2

dsy

− 1

∆t

∫
Γ
ϕi(y) (H(t− tm − |x− y|)−H(t− tm+1 − |x− y|))

x− y
|x− y|2

dsy

=
1

∆t

∫
t−tm≤|x−y|≤t−tm−1

ϕi(y)
x− y
|x− y|2

dsy

− 1

∆t

∫
t−tm+1≤|x−y|≤t−tm

ϕi(y)
x− y
|x− y|2

dsy

and∫
Γ
ϕi(y)βm(t− |x− y|) x− y

|x− y|3
dsy =

t− tm−1

∆t

∫
t−tm≤|x−y|≤t−tm−1

ϕi(y)
x− y
|x− y|3

dsy

− t− tm+1

∆t

∫
t−tm+1≤|x−y|≤t−tm

ϕi(y)
x− y
|x− y|3

dsy .

Here we calculate the integral over the complicated intersection of4 with the light–cone

based on the routines also used to set–up the Galerkin matrix for V . From OV ϕ̇h,∆t(t, x)

we obtain the surface gradient

OΓ(ḟ(t, x)− V ϕ̇h,∆t(t, x)) = O(ḟ(t, x)− V ϕ̇h,∆t(t, x))− ~n.(~n.O(ḟ(t, x)− V ϕ̇h,∆t(t, x))).

The error indicators η4 lead to an adaptive algorithm, based on the 4 steps

SOLVE −→ ESTIMATE −→MARK −→ REFINE.

Adaptive Algorithm:

Input: Spatial mesh T = T0, refinement parameter θ ∈ (0, 1), tolerance ε > 0, data f .

1. Solve V ϕ̇h,∆t = ḟ on T .

2. Compute the error indicators η(4) in each triangle 4 ∈ T .

3. Find ηmax = max4 η(4).

4. Stop if
∑

i η
2(Mi) < ε2.

5. Mark all 4 ∈ T with η(Mi) > θηmax.

6. Refine each marked triangle into 4 new triangles to obtain a new mesh T

(and project the new nodes onto the sphere). Choose ∆t such that ∆t
∆x ≤ 1 for all

traingles.

7. Go to 1.
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Output: Approximation of ϕ.

According to the a posteriori estimates derived in this Chapter, the error between the

approximate and the actual solution to the problem is bounded by a multiple of ε, up

to quantities involving time–derivatives of the residual ḟ − V ϕ̇h,∆t.
The numerical experiment depicted in Figure 4.1 shows the first three meshes generated

by the above adaptive algorithm, starting with an initial icosahedral triangulation of

the sphere with 80 nodes. Most refinements are near the discontinuity of f , as expected.
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Figure 4.1: The first three adaptively generated meshes for V ϕ̇ = ḟ starting

from an icosahedral triangulation with 80 nodes, θ = 0.9.

Unfortunately, the practical evaluation of ∇ΓV ϕ̇h,∆t(t, x)) as a singular integral is not

efficient. The computational time to calculate the error indicators in each triangle and

each time steps takes approximately 6 CPU seconds on standard desktop computer.

While this is easily parallelized, future work might instead investigate a finite difference

approximation of ∇ΓV ϕ̇h,∆t.

The above experiment presents only a first step towards space–time adaptive TDBEM,

for the case of the geometric singularities relevant to sound radiation of tyres. Fully

space–time adaptive methods have been explored by M. Gläfke [21]. The optimal use

of space–time adaptivity and its application to the acoustic boundary conditions in

Section 4.3 remain to be explored.
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5 Discretization and Numerical

Experiments

5.1 Numerical Discretization

5.1.1 The Dirichlet Problem in the Absorbing Half-Space

In this section we examine the exterior Dirichlet problem for the wave equation in the

half-space by using boundary integral methods. Consider the exterior Dirichlet problem

∂2u

∂t2
−∆u = 0 in R+ × Ωe

u(0, x) =
∂u

∂t
(0, x) = 0 (5.1)

u = f on R+ × Γ

∂u

∂n
− α∞

∂u

∂t
= 0 on R+ × Γ∞ = {z = 0} .

As noted before, the Dirichlet problem is equivalent to finding a solution to the boundary

integral equation

V ϕ(t, x) = f(t, x) for all (t, x) ∈ R+ × Γ . (5.2)

We have already seen in Chapter 3 that the single layer potential V in the half-space

is given by:

V ϕ(t, x) = V1ϕ(t, x) + V2ϕ(t, x) + V3ϕ(t, x)

=
1

2π

∫
Γ

p(t− |x− y|, y)

|x− y|
dsy +

1

2π

∫
Γ

p(t− |x− y′|, y)

|x− y′|
dsy

− α∞
π

∞∫
0

∫
Γ

∂

∂s
[

H(t− s− |x− y′|)√
(t− s+ α∞ϑ3)2 + (α2

∞ − 1)R2
]p(s, y)dsyds ,

where ϑ3 = x3 + y3 and R2 = (x1 − y1)2 + (x2 − y2)2.

V1 is the single layer potential in the whole space R3 and was previously considered

in thesis of Ostermann [40]. The term V2 is V1 composed with a reflection at Γ∞, so

that V1 + V2 corresponds to the wave equation with homogeneous Neumann conditions

on Γ∞. More general boundary conditions involve V3. We define the bilinear form
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associated with the single layer potential:

a(ϕ, q) =

∞∫
0

e−2σt

∫
Γ
V1ϕ(t, x)q̇(t, x)dsxdt+

∞∫
0

e−2σt

∫
Γ
V2ϕ(t, x)q̇(t, x)dsxdt

+

∞∫
0

e−2σt

∫
Γ
V3ϕ(t, x)q̇(t, x)dsxdt .

The weak formulation of the Dirichlet problem then is

a(ϕ, q) =

∞∫
0

e−2σt

∫
Γ
f(t, x)q̇(t, x)dsxdt for all test functions q .

For the numerical approximation we consider a Galerkin discretization in space and

time. As ansatz functions we use tensor products of piecewise constant functions in

time and piecewise constant functions in space.

For the second term we write ϕh,∆t(t, x) =
∑Nt

m=1

∑Ns
i=1 b

m
i ϕi(x)γm(t) where γm and ϕi

are the basis in time and in space. Then for q(t, x) = γn(t)ϕj(x) we obtain

∞∫
0

∫
Γ
V2ϕh,∆t(t, x)q̇(t, x)dsxdt =

Nt∑
m=1

Ns∑
i=1

bmi

∫
Γ

∫
Γ

Υn−m
0 (x, y)

ϕi(y)ϕj(x)

|x− y′|
dsydsx ,

where Υn−m
0 (x, y) is defined by

Υn−m
0 (x, y) =

∫ ∞
0

γm(t− |x− y′|)γ̇n(t) dt

= χE′n−m−1
(x, y)− χE′n−m(x, y) ,

and the indicator function χA(x) for a set A is given by

χA(x) =

{
1 x ∈ A
0 x /∈ A

.

The reflected acoustic cone E′l is given by

E′l :=
{

(x, y) ∈ Γ× Γ s.t. tl ≤ |x− y′| ≤ tl+1

}
.

Consequently, we have

∞∫
0

∫
Γ
V2ϕh,∆t(t, x)q̇(t, x)dsxdt =

Nt∑
m=1

Ns∑
i=1

bmi

(∫ ∫
E′n−m−1

ϕi(y)ϕj(x)

|x− y′|
dsydsx

−
∫ ∫

E′n−m

ϕi(y)ϕj(x)

|x− y′|
dsydsx

)
.

(5.3)
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5.1 Numerical Discretization

To calculate
∫ ∫

E′l

ϕi(y)ϕj(x)
|x−y′| dsydsx we basically follow the lines of [40]:

Let x in R3
+,

E′(x) := Brmax(x′) \Brmin(x′) =
{
y ∈ R3 s.t. rmin ≤ |x′ − y| ≤ rmax

}
,

the light cone or domain of influence corresponding to x′ = (x1, x2,−x3), rmin := tl and

rmax := tl+1. Then

E′l := ∪
x∈Γ

E′(x) .

We rewrite each of the integrals in (5.3) as

Gνij =
∑

Ti′ ⊂ supp ϕi

Tj′ ⊂ supp ϕj

∫
Tj′

ϕj(x)Pi,i′(x) dsx ,

with a retarded potential Pi,i′ given by

Pi,i′(x) :=

∫
E′(x)∩Ti′

1

|x− y|
ϕi(y) dsy . (5.4)

Decomposition of the domain of integration E′(x) ∩ T

We seek a parametric representation of the domain of integration E′(x)∩T . The domain

of influence E′(x) of the point x′ in T is an annular domain with center x′ and radii rmin

and rmax. Therefore, we have to integrate over those points in the triangle T which lie

between two concentric spheres. The three-dimensional intersection can be rewritten as

a two-dimensional intersection in the plane of the triangle within a three-dimensional

space. Let x′t denote the orthogonal projection of x′ onto the plane ET containing T

and define d := |x′ − x′t|, cf. Fig. 5.2. Then

x′t

Figure 5.1: Example for a decomposition of E′(x) ∩ T with respect to x′t into nd = 5

subelements
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x′

x′t

d

y

E′(x) ∩ T

Figure 5.2: Projection of x′ onto the plane ET

e

n

re(θ)

θ

Figure 5.3: Representation of an edge e in polar coordinates (r, θ).

E′(x) ∩ ET = (Br′min
(x′t) \Br′max

(x′t)) ∩ ET =
{
y ∈ ET : r′min ≤ |x′t − y| ≤ r′max

}
,

where r′min /max := (r2
min /max − d

2)1/2. Thus

E′(x) ∩ T = (Br′min
(x′t) \Br′max

(x′t)) ∩ T .

Now we introduce polar coordinates (r, θ) around x′t and decompose E′(x)∩T =
nd⋃
l=1

Dl.

The subdomains Dl have the form (see Figure 5.4):

Dl := {(r, θ) : θ ∈ (θl, θl+1) and r ∈ (r1,l(θ), r2,l(θ))} .

The radial limits r1,l and r2,l are given by

r1,l :=

{
r′min e ∈ Br′min(x)

re(θ) else
r2,l :=

{
r′max e /∈ Br′max(x)

re(θ) else
,
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5.1 Numerical Discretization

where re(θ) is

re(θ) =
v · n

n1 cos θ + n2 sin θ
, (5.5)

as in Figure 5.3. Here n = (n1, n2, n3)T denotes the normal to the edge and v is any

point on e.

The integral (5.4) then is the sum of integrals over the geometrically simpler pieces Dl.

D̂1 D̂2 D̂3 D̂4

Figure 5.4: Generic integration domains

We now consider the entries of the Galerkin matrix of the third term

∞∫
0

∫
Γ
V3ϕh,∆t(t, x)q̇(t, x)dsxdt =

∞∫
0

∫
Γ

∞∫
0

∫
Γ
−α∞

π

∂

∂s

[
H(t− s− |x− y′|)√

(t− s+ α∞ϑ3)2 + (α2
∞ − 1)R2

]
ϕh,∆t(s, y)q̇(t, x)dsy dsxds dt .

Using piecewise constant basis functions in time and space as above we obtain the

matrix elements:

V3,ijmn = −α∞
π

∞∫
0

∫
Γ

∞∫
0

∫
Γ

∂

∂s

[
H(t− s− |x− y′|)√

(t− s+ α∞ϑ3)2 + (α2
∞ − 1)R2

]
× γm(s)ϕi(y)γ̇n(t)ϕj(x)dsy dsxds dt .

As before we evaluate the time integration analytically. Let us first discuss the evalua-

tion of time integrals with one retarded time argument, i.e. given two functions f1 and

f2, we need to calculate integrals of the form

∞∫
0

∞∫
0

f1(t− s− |x− y|)f2(t) dt ds. (5.6)

They occur in the computation of the Galerkin entries of the discrete space-time vari-

ational formulations discussed earlier.

Before we examine the retarded time integral more generally, we discuss a simple model

integral to clarify the chosen approach. Choose a piecewise constant basis function in

time as a sum of Heavyside functions

γm(t) = χIm(t) = H(t− tm−1)−H(t− tm) .

59



5 Discretization and Numerical Experiments

Using integration by parts, we obtain with γm(0) = 0:

− α∞
π

∞∫
0

∞∫
0

∂

∂s

[
H(t− s− |x− y′|)√

(t− s+ α∞ϑ3)2 + (α2
∞ − 1)R2

]
γm(s)γ̇n(t) dt ds

=
α∞
π

∞∫
0

∞∫
0

[
H(t− s− |x− y′|)√

(t− s+ α∞ϑ3)2 + (α2
∞ − 1)R2

]
γ̇m(s)γ̇n(t) dt ds

=
α∞
π

∞∫
0

 ∞∫
0

H(t− s− |x− y′|))(δ(s− tm−1)− δ(s− tm))√
(t− s+ α∞ϑ3)2 + (α2

∞ − 1)R2
ds

×
(δ(t− tn−1)− δ(t− tn)) dt

=
α∞
π

∞∫
0

[
H(t− tm−1 − |x− y′|)√

(t− tm−1 + α∞ϑ3)2 + (α2
∞ − 1)R2

]
(δ(t− tn−1)− δ(t− tn)) dt

− α∞
π

∞∫
0

[
H(t− tm − |x− y′|)√

(t− tm + α∞ϑ3)2 + (α2
∞ − 1)R2

]
(δ(t− tn−1)− δ(t− tn)) dt

=
α∞
π

(
H(tn−1 − tm−1 − |x− y′|)√

(tn−1 − tm−1 + α∞ϑ3)2 + (α2
∞ − 1)R2

− H(tn − tm−1 − |x− y′|)√
(tn − tm−1 + α∞ϑ3)2 + (α2

∞ − 1)R2

− H(tn−1 − tm − |x− y′|)√
(tn−1 − tm + α∞ϑ3)2 + (α2

∞ − 1)R2
+

H(tn − tm − |x− y′|)√
(tn − tm + α∞ϑ3)2 + (α2

∞ − 1)R2

)

=
α∞
π

(
− H(tn−m−1 − |x− y′|)√

(tn−m−1 + α∞ϑ3)2 + (α2
∞ − 1)R2

+ 2
H(tn−m − |x− y′|)√

(tn−m + α∞ϑ3)2 + (α2
∞ − 1)R2

− H(tn−m+1 − |x− y′|)√
(tn−m+1 + α∞ϑ3)2 + (α2

∞ − 1)R2

)
.

We define the four-dimensional set

K ′l :=
{

(x, y) ∈ Γ× Γ : |x− y′| ≤ tl
}
,

and write

L(l, x, y) =
α∞
π

1√
(tl + α∞ϑ3)2 + (α2

∞ − 1)R2
.

Because K ′n−m−1 ⊂ K ′n−m ⊂ K ′n−m+1, the time-integral becomes

−L(n−m− 1, x, y)χK′n−m−1
(x, y) + 2L(n−m,x, y)χK′n−m(x, y)

− L(n−m+ 1, x, y)χK′n−m+1
(x, y) .
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5.1 Numerical Discretization

Therefore,

V3,ijmn = −
∫ ∫

K′n−m−1

L(n−m− 1, x, y)ϕi(y)ϕj(x)dsy dsx

+ 2

∫ ∫
K′n−m

L(n−m,x, y)ϕi(y)ϕj(x)dsy dsx

−
∫ ∫

K′n−m+1

L(n−m+ 1, x, y)ϕi(y)ϕj(x)dsy dsx .

The integrals over K ′l are computed like V1 and V2 with rmin = 0 and with kernels

L(l, x, y).

5.1.2 The Neumann Problem in the Absorbing Half-Space

Similarly to the Dirichlet, in this section we consider the Neumann problem for the

wave equation in the half-space:

∂2u

∂t2
−∆u = 0 in R+ × Ωe

u(0, x) =
∂u

∂t
(0, x) = 0 (5.7)

∂u

∂n
= f on R+ × Γ

∂u

∂n
− α∞

∂u

∂t
= 0 on R+ × Γ∞ .

The corresponding integral equation of the second kind is

(−I +K ′)ϕ(t, x) = 2f(t, x) , (5.8)

where

K ′ϕ(t, x) =
1

2π

∫
Γ

∂

∂nx

(
ϕ(t− |x− y|, y)

|x− y|
dsy

)
+

1

2π

∫
Γ

∂

∂nx

(
ϕ(t− |x− y′|, y)

|x− y′|

)
dsy

− α∞
π

∞∫
0

∫
Γ

∂

∂nx

(
∂

∂τ
[

H(t− τ − |x− y′|)√
(t− τ + α∞ϑ3)2 + (α2

∞ − 1)R2
]ϕ(τ, y)

)
dsydτ .

The numerical implementation involves the term

Σ(t− τ, x, y) = −α∞
π

∂

∂t
[

H(t− τ − |x− y′|)√
(t− τ + α∞ϑ3)2 + (α2

∞ − 1)R2
] . (5.9)

We define

A(τ) :=
√

(t− τ + α∞ϑ3)2 + (α2
∞ − 1)R2

and obtain from (5.9)

∂Σ

∂x1
= −α∞

π

∂

∂t

 ∂
∂y1

(H(t− τ − |x− y′|))
A(τ)

−
∂A(τ)
∂y1

H(t− τ − |x− y′|)
A(τ)2


=
α∞
π

∂

∂t

[
(x1 − y1)

(
δ(t− τ − |x− y′|)
|x− y′|A(τ)

+
α2
∞ − 1

A(τ)3
H(t− τ − |x− y′|)

)]
,
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∂Σ

∂x2
=
α∞
π

∂

∂t

[
(x2 − y2)

(
δ(t− τ − |x− y′|)
|x− y′|A(τ)

+
α2
∞ − 1

A(τ)3
H(t− τ − |x− y′|)

)]
,

∂Σ

∂x3
=
α∞
π

∂

∂t

[
(x3 + y3)

(
δ(t− τ − |x− y′|)
|x− y′|A(τ)

+
t− τ + α∞ϑ3

A(τ)3
H(t− τ − |x− y′|)

)]
.

Therefore,

∂Σ

∂nx
=
α∞
π

∂

∂t
[
(x− y′) · nx
|x− y′|A(τ)

δ(t− τ − |x− y′|)

+
(α2
∞ − 1) ((x1 − y1)n1 + (x2 − y2)n2) + (t− τ + α∞ϑ3)n3

A(τ)3
H(t− τ − |x− y′|)] .

We define

B(τ) =
(α2
∞ − 1) ((x1 − y1)n1 + (x2 − y2)n2) + (t− τ + α∞ϑ3)n3

A(τ)3
.

As for V we write the adjoint double layer potential as a sum of three terms:

K ′ϕ(t, x) = K ′1ϕ(t, x) +K ′2ϕ(t, x) +K ′3ϕ(t, x)

where

K ′3ϕ(t, x) =

∞∫
0

∫
Γ

∂Σ

∂nx
ϕ(τ, y)dτdy

=
α∞
π

∞∫
0

∫
Γ

∂

∂τ
[

(x− y′).nx
|x− y′|A(τ)

δ(t− τ − |x− y′|)

+B(τ)H(t− τ − |x− y′|)]ϕ(τ, y)dτdy .

Convolution and integration by parts lead to

K ′3ϕ(t, x) = −α∞
π

∫
Γ

(x− y′).nx
|x− y′|A(τ)

∂ϕ

∂t
(t− |x− y′|, y)dy

− α∞
π

∞∫
0

∫
Γ
B(τ)H(t− τ − |x− y′|)]∂ϕ(τ, y)

∂τ
dτdy .

We note that the first term in K ′3 has the same form as V2 with a different kernel

function,

(x− y′).nx
|x− y′|A(τ)

,
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and its discretization is similar to the one of V2.

For piecewise constant ansatz and test functions in time we get

tn∫
tn−1

tm∫
tm−1

[B(τ)H(t− τ − |x− y′|)](δ(τ − tm−1)− δ(τ − tm))dτdt

=

tn∫
tn−1

[B(tm−1)H(t− tm−1 − |x− y′|)]dt

−
tn∫

tn−1

[B(tm)H(t− tm − |x− y′|)]dt .

We call the first integral Z1(m,n) and the second Z2(m,n) = Z1(m + 1, n). K ′3,ijmn
becomes:

K ′3,ijmn = −α∞
π

(∫ ∫
E′n−m−1

(x− y′).nx
|x− y′|A(τ)

ϕi(y)ϕj(x)dsydsx

−
∫ ∫

E′n−m

(x− y′).nx
|x− y′|A(τ)

ϕi(y)ϕj(x)dsydsx

)

− α∞
π

∫
Γ

[Z1(m,n)− Z2(m,n)]ϕi(y)ϕj(x)dsydsx .

Now, we want to analyze Z1(m,n) and Z2(m,n). With the substitution

uj = t− tj + α∞ϑ3 and a2 = (α2
∞ − 1)R2 we obtain

tn∫
tn−1

[
(α2
∞ − 1) ((x1 − y1)n1 + (x2 − y2)n2) + (t− tj + α∞ϑ3)n3

A(tj)3
H(t− tj − |x− y′|)]dt

= (α2
∞ − 1) ((x1 − y1)n1 + (x2 − y2)n2)

∫ τ2
j

τ1
j

1

(u2
j + a2)

3
2

duj +

∫ τ4
j

τ3
j

uj

(u2
j + a2)

3
2

duj

= (α2
∞ − 1) ((x1 − y1)n1 + (x2 − y2)n2)

 uj

a2
√
u2
j + a2

τ2
j

τ1
j

+ n3

 1

a2
√
u2
j + a2

τ4
j

τ3
j

For the evaluation of the Z1(m,n) and Z2(m,n) we distinguish 6 different cases, de-

pending on r = |x− y′|.
case 1 : tn < tm−1 + r

Z1(m,n) = 0 and Z2(m,n) = 0

case 2 : tn−1 < tm−1 + r < tn < tm + r

Z1(m,n) = (α2
∞−1) ((x1 − y1)n1 + (x2 − y2)n2)

[
u

a2
√
u2 + a2

]tn
tm−1+r

+n3

[
1

a2
√
u2 + a2

]tn
tm−1+r
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and Z2(m,n) = 0 , tn−1 − tm−1 < r < tn < tn − tm−1

case 3 : tm−1 + r < tn−1 < tn < tm + r

Z1(m,n) = (α2
∞−1) ((x1 − y1)n1 + (x2 − y2)n2)

[
u

a2
√
u2 + a2

]tn
tn−1

+n3

[
1

a2
√
u2 + a2

]tn
tn−1

and Z2(m,n) = 0 , tn − tm+1 < r < tn < tn−1 − tm−1

case 4 : tm−1 + r < tn−1 < tm + r < tn

Z1(m,n) = (α2
∞−1) ((x1 − y1)n1 + (x2 − y2)n2)

[
u

a2
√
u2 + a2

]tn
tn−1

+n3

[
1

a2
√
u2 + a2

]tn
tn−1

and

r < tn−1 − tm−1

Z2(m,n) = (α2
∞−1) ((x1 − y1)n1 + (x2 − y2)n2)

[
u

a2
√
u2 + a2

]tn
tm+r

+n3

[
1

a2
√
u2 + a2

]tn
tm+r

tn−1 − tm < r < tn−1 − tm−1

case 5 : tm−1 + r < tm + r < tn−1 < tn

Z1(m,n) = (α2
∞−1) ((x1 − y1)n1 + (x2 − y2)n2)

[
u

a2
√
u2 + a2

]tn
tn−1

+n3

[
1

a2
√
u2 + a2

]tn
tn−1

and

r < tn−1 − tm−1

Z2(m,n) = (α2
∞−1) ((x1 − y1)n1 + (x2 − y2)n2)

[
u

a2
√
u2 + a2

]tn
tn−1

+n3

[
1

a2
√
u2 + a2

]tn
tn−1

r < tn−1 − tm

case 6 : tn−1 < tm−1 + r < tm + r < tn

Z1(m,n) = 0 and Z2(m,n) = 0 .

5.2 Numerical Experiment

5.2.1 Exact Solution for the Wave Equation in a Half-Space for Γ = S2 and
Corresponding TDBEM solution – A Comparison

Numerical tests of the convergence behaviour for our method require the knowledge of

exact solutions. In order to have suitable reference solutions for these experiments we
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derive exact solutions of acoustic scattering problems in the case where the scatterer is

the unit ball in R3.

For radial functions u(r) the spherical Laplacian in R3 has the form:

∆u =
1

r
(ru)rr =

(
∂2

∂r2
+

1

r

∂

∂r

)
u .

In this case, the 3D wave equation reads as(
∂2

∂t2
− ∂2

∂r2
− 1

r

∂

∂r

)
u = 0 .

The general solution for this equation is

u(t, x) = |x|−1 (φ(|x|+ t) + ψ(|x| − t)) , with |x| = r , (5.10)

where ψ, φ are functions on R.

We consider the Cauchy problem with radial initial data,
∂2u
∂t2
−∆u = 0

u|t=0 = u0(|x|)
∂u
∂t |t=0 = u1(|x|) ,

and we extend u0, u1 to even functions on R: u0(−r) = u0(r), u1(−r) = u1(r).

Using (5.10), we identify

u(0, x) = |x|−1 (φ(|x|) + ψ(|x|)) = u0(|x|) ,
∂u

∂t
(0, t) = |x|−1

(
φ′(|x|)− ψ′(|x|)

)
= u1(|x|) . (5.11)

If we differentiate the first equation in (5.11) and add this to the second, we obtain{
φ′(r) = 1

2 ((ru0(r))′ + ru1(r))

ψ′(r) = 1
2 ((ru0(r))′ − ru1(r)) .

Now, we integrate (5.12) to get
φ(r) = 1

2ru0(r) + 1
2

r∫
0

su1(s) ds+ C1

ψ(r) = 1
2ru0(r)− 1

2

r∫
0

su1(s) ds+ C2 .

We use (5.10) and the initial condition to get

u(t, x) =
1

2r
((r + t)u0(r + t) + (r − t)u0(r − t))

+
1

2r

r+t∫
r−t

su1(s) ds .
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For a rigid half-space where ∂nũ = 0 in R2 × 0, we can take

ũ(t, x) = u(t, r(h)) + u(t, r(−h))

as a solution, where r(h) = |(x1, x2, x3 − h− 1)| =
√
x2

1 + x2
2 + (x3 − h− 1)2, r(−h) =

|(x1, x2, x3 +h+ 1)| =
√
x2

1 + x2
2 + (x3 + h+ 1)2 and h is the distance of the ball to the

x1x2-plane.

Furthermore, we assume that ∂u
∂t |t=0 = u1(|x|) = 0. Then

u(t, x) =
1

2r(h)
[(r(h) + t)u0(r(h) + t) + (r(h)− t)u0(r(h)− t)]

+
1

2r(−h)
[(r(−h) + t)u0(r(−h) + t) + (r(−h)− t)u0(r(−h)− t)] .

For some fixed R > 0, we choose{
u0(s) = 1 + cos(πsR ) |s| < R

u0(s) = 0 |s| ≥ R .

For r ≥ R, we have u0(t+ r(h)) = 0 and u0(t+ r(−h)) = 0. Hence, we get

u(t, x) =
r(h)− t

2r
u0(r(h)− t) +

r(−h)− t
2r(−h)

u0(r(−h)− t)

=
r(h)− t
2r(h)

[
1 + cos(

π(r(h)− t)
R

)

]
H(R− |r(h)− t|)

+
r(−h)− t
2r(−h)

[
1 + cos(

π(r(−h)− t)
R

)

]
H(R− |r(−h)− t|) ,

and its radial derivative is

∂ru = ∂r(
r(h)− t
2r(h)

u0(r(h)− t)) + ∂r(
r(−h)− t
2r(−h)

u0(r(−h)− t)) .

For the first term we obtain

∂r(
r(h)− t
2r(h)

u0(r(h)− t)) =
t

2r(h)2

(
1 + cos(

π(t− r(h))

R
)

)
H(R− |r(h)− t|)

− π

R

r(h)− t
2r(h)

sin(
π(r(h)− t)

R
)H(R− |r(h)− t|) .

For the second term we consider the transformation to a spherical coordinate system
x = r(h) sin(θ) cos(ϕ)

y = r(h) sin(θ) sin(ϕ)

z = r(h) cos(θ) + h+ 1

and the inverse transformation
r(h) =

√
x2 + y2 + (z − h− 1)2

θ = arccos( z−h−1
r(h) )

ϕ = arctan( yx) .
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We have 
∂x
∂r = sin(θ) cos(ϕ)
∂y
∂r = sin(θ) sin(ϕ)
∂z
∂r = cos(θ) .

The chain rule for differentiation shows

∂rF (r(−h)) =
∂x

∂r
Fx(x, y, z) +

∂y

∂r
Fy(x, y, z) +

∂z

∂r
Fz(x, y, z)

= sin(θ) cos(ϕ)Fx + sin(θ) sin(ϕ)Fy + cos(θ)Fz ,

where

F (r(−h)) =
r(−h)− t
2r(−h)

(1 + cos(
π(r(−h)− t)

R
))H(t− r(−h) +R) .

Then,

Fx(r(−h)) = (∂xr(−h))∂r(−h)F (r(−h)), (5.12)

Fy(r(−h)) = (∂yr(−h))∂r(−h)F (r(−h)), (5.13)

Fz(r(−h)) = (∂zr(−h))∂r(−h)F (r(−h)) , (5.14)

where 
∂xr(−h) = x√

x2+y2+(z+h+1)2

∂yr(−h) = y√
x2+y2+(z+h+1)2

∂zr(−h) = z+h+1√
x2+y2+(z+h+1)2

.

With (5.12) it follows that

∂rF (r(−h)) = (sin(θ) cos(ϕ)(∂xr(−h)) + sin(θ) sin(ϕ)(∂yr(−h))

+ cos(θ)(∂zr(−h))) ∂r(−h)F (r(−h)) .

Altogether we get

∂r(h)u =

[
t

2r(h)2

(
1 + cos

(
π(r(h)− t)

R

))
− π

R

r(h)− t
2r(h)

sin(
π(r(h)− t)

R
)

]
H(R− |r(h)− t|)

+

([
t

2r(−h)2

(
1 + cos

(
π(r(−h)− t)

R

))
− π

R

r(−h)− t
2r(−h)

sin(
π(r(−h)− t)

R
)

]
×H(R− |r(−h)− t|)) x

2 + y2 + z2 − (h+ 1)2

r(h)r(−h)
.

Using a formula of Veit [48] for the Neumann problem

(I −K ′)ϕ = 2f (5.15)

we obtain an exact solution for the density. To do so we write f = f1 + f2 with

f1 =

[
t

2r(h)2

(
1 + cos

(
π(r(h)− t)

R

))
− π

R

r(h)− t
2r(h)

sin(
π(r(h)− t)

R
)

]
H(R−|r(h)−t|)
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and

f2 =

([
t

2r(−h)2

(
1 + cos

(
π(r(−h)− t)

R

))
− π

R

r(−h)− t
2r(−h)

sin(
π(r(−h)− t)

R
)

]
×H(R− |r(−h)− t|)) x

2 + y2 + z2 − (h+ 1)2

r(h)r(−h)
.

The solution ϕ is then given by

ϕ(t) = −2

bt/2c∑
k=0

f1(t− 2k) + 2

bt/2c∑
k=0

∫ t

2k
e−(s−2k)f1(t− s) ds .

We have first tested the validity and accuracy of our scheme for the Galerkin approxi-

mation

〈(I −K ′)ϕh,∆t, ψh,∆t〉 = 2〈f, ψh,∆t〉

with piecewise constant ansatz and test functions in space and time for (5.15) on a

sphere.

In Figure 5.5 the L2-norm of the analytical and the numerical density are presented for

∆t = 0.025. Figure 5.6 shows the very good agreement of the analytic and approximate

solution in x0 = (0, 0, 2.8)> for R = 0.9, h = 0.63, ∆t = 0.1 and 1080 uniform triangles.
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Figure 5.5: L2-norm of the density for the exact and Galerkin solution to the integral

equation (I −K ′)ϕ = 2f .

Looking at the relative discretization errors

‖p∆t,h(t, x0)− p(t, x0)‖L2([0,10])

‖p(t, x0)‖L2([0,10])
and

‖ϕ∆t,h − ϕ‖L2([0,10];L2(Γ))

‖ϕ‖L2([0,10];L2(Γ))

for a family of discrete solutions where ϕ∆t,h is the TD-BE Galerkin approximation of

ϕ and p∆t,h = Sϕ∆t,h, we obtain a convergence rate of 0.4, 0.65 resp., with respect

to the degrees of freedom (dof), i.e. the product of number of time steps and number

of triangles, as plotted in Figure 5.7. Here, both the time step size ∆t as well as the
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Figure 5.6: Exact sound pressure and its Galerkin approximation in x0 = (0, 0, 2.8).
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Figure 5.7: Relative L2-errors of density ϕ∆t,h and pressure p∆t,h.

mesh size h have been halved four times starting from ∆t = 2−1. The CFL coefficient

is ∆t/h ≈ 0.38. See Figure 5.8 for two corresponding spacial meshes.

Note that the coerciveness of I −K ′ in the space-time Sobolev space setting is an open

question, so is the convergence of the BEM Galerkin scheme not theoretically proven

yet.
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Figure 5.8: Uniform meshes for the sphere with 320 and 5120 triangles.

5.2.2 Numerical Experiments for the Sound Radiation of Tyres

We consider the radiation of time-dependent acoustic waves outside a tyre in the half-

space above a rigid surface, described by the equations

1

c2

∂2p

∂τ2
−∆p = 0 in R+ × Ωe ,

p(τ, x) =
∂p

∂τ
(τ, x) = 0 in R− × Ωe ,

∂p

∂n
(τ, x) = −ρ∂

2un
∂τ2

− ∂pI

∂n
(τ, x) on R+ × Γ ,

∂p

∂x3
(τ, x) = 0 on R+ × Γ∞ .

Here, we use τ to denote the physical time variable in seconds, Ωe denotes the half-space

without the tyre, p(τ, x) the scattered sound pressure and pI(τ, x) an incident wave.

The coupling of the tyre vibrations and sound pressure is described by the boundary

condition ∂p
∂n(τ, x) = −ρ∂2un

∂τ2 − ∂pI

∂n (τ, x), where u describes the elastic displacement of

the tyre.

For the numerical simulations, we use a rescaled time variable, t = cτ , so that

∂2p

∂t2
−∆p = 0 in R+ × Ωe , (5.16)

p(t, x) =
∂p

∂t
(t, x) = 0 in R− × Ωe , (5.17)

∂p

∂n
(t, x) = −ρc2∂

2un
∂t2

(t, x)− ∂pI

∂n
(t, x) on R+ × Γ , (5.18)

∂p

∂x3
(t, x) = 0 on R+ × Γ∞ . (5.19)

Our solution procedure transforms the boundary value problem into an integral equation

on the boundary Γ of the tyre. It allows an efficient treatment of the half-space problem
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(5.16).

We describe the sound pressure with the help of the single layer potential of the half-

space,

p(t, x) = Sϕ(t, x) =
1

4π

∫
Γ

ϕ(t− |x− y|, y)

|x− y|
dsy +

1

4π

∫
Γ

ϕ(t− |x− y′|, y)

|x− y′|
dsy (5.20)

where y′ is the image of y mirrored at the plane Γ∞.

Using (5.20) in the wave equation leads to an equivalent integral equation of the second

kind:

(−I +K ′)ϕ(t, x) = 2
∂p

∂n
(t, x) = −2ρc2∂

2un
∂t2

− 2
∂pI

∂n
(t, x) (5.21)

for the density ϕ(t, x) on the surface Γ. The transient adjoint double layer potential

K ′ of the half-space as mentioned before has the form

K ′ϕ(t, x) =
1

2π

∫
Γ

nx · (y − x)

|x− y|

(
ϕ(t− |x− y|, y)

|x− y|2
+
ϕ̇(t− |x− y|, y)

|x− y|

)
dsy

+
1

2π

∫
Γ

nx · (y′ − x)

|x− y′|

(
ϕ(t− |x− y′|, y)

|x− y′|2
+
ϕ̇(t− |x− y′|, y)

|x− y′|

)
dsy .

We solve the integral equation (5.21) in the weak sense, i.e. using a variational formu-

lation:

Find ϕ(t, x) such that for any test function ψ(t, x) it holds:

∞∫
t=0

∫
x∈Γ

(−I +K ′)ϕ(t, x)ψ(t, x)dsx dt = 2

∞∫
t=0

∫
x∈Γ

∂p

∂n
(t, x)ψ(t, x)dsx dt. (5.22)

For the numerical solution of the equation (5.22) we discretize the surface Γ of the tyre

into triangles Γi, as well as the time interval into intervals Im = (tm−1, tm] of length

∆t.

As we did before, we approximate the solution ϕ of the equation (5.22) by

ϕh,∆t(t, x) =

Nt∑
m=1

Ns∑
i=1

bmi γ
m(t)ϕi(x) (5.23)

where ϕi and γm are piecewise constant. For the test functions we choose

ψh,∆t(t, x) = γn(t)ϕj(x) .

The discretized formulation for (5.22) then reads as follows: Find ϕh,∆t such that∫ T

0

∫
Γ
(−I +K ′)ϕh,∆t(t, x)γn(t)ϕj(x) dsx dt = 2

∫ T

0

∫
Γ

∂p

∂n
(t, x)γn(t)ϕj(x) dsx dt

(5.24)
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for j = 1, . . . , Ns and n = 1, . . . , Nt.

According to the choice of the trial functions the integral on the left side of (5.24) turns

into a sum

−
Nt∑
m=1

Ns∑
i=1

bmi

∫
Γ
ϕi(x)ϕj(x) dsx

∫ T

0
γm(t)γn(t) dt

+

Nt∑
m=1

Ns∑
i=1

bmi

[∫
Γ

∫
Γ

(∫ T

0
γ̇m(t− |x− y|)γn(t) dt

)
nx · (x− y)

2π|x− y|2
ϕi(y)ϕj(x) dsx dsy

+

∫
Γ

∫
Γ

(∫ T

0
γm(t− |x− y|)γn(t) dt

)
nx · (x− y)

2π|x− y|3
ϕi(y)ϕj(x) dsx dsy

+

∫
Γ

∫
Γ

(∫ T

0
γ̇m(t− |x− y′|)γn(t) dt

)
nx · (x− y′)
2π|x− y′|2

ϕi(y)ϕj(x) dsx dsy

+

∫
Γ

∫
Γ

(∫ T

0
γm(t− |x− y′|)γn(t) dt

)
nx · (x− y′)
2π|x− y′|3

ϕi(y)ϕj(x) dsx dsy

]
. (5.25)

Note that ∫ T

0
γm(t)γn(t) dt = ∆t δnm , (5.26)

∫ T

0
γ̇m(t− |x− y|)γn(t) dt = −χEn−m−1(x− y) + χEn−m(x− y) , (5.27)

∫ T

0
γm(t− |x− y|)γn(t) dt = (tn−m+1 − |x− y|)− χEn−m(x− y)

+ (|x− y| − tn−m−1)χEn−m−1(x− y) . (5.28)

Herewith we obtain for (5.25)

−∆t

Ns∑
i=1

bni

∫
Γ
ϕi(x)ϕj(x) dsx +

Nt∑
m=1

Ns∑
i=1

bmi
(
Aim +A′im

)
, (5.29)

where

Aim := −
∫
En−m−1

nx · (x− y)

2π|x− y|2
ϕi(y)ϕj(x) dsxdsy +

∫
En−m

nx · (x− y)

2π|x− y|2
ϕi(y)ϕj(x)dsxdsy

+ tn−m+1

∫
En−m

nx · (x− y)

2π|x− y|3
ϕi(y)ϕj(x)dsxdsy −

∫
En−m

nx · (x− y)

2π|x− y|2
ϕi(y)ϕj(x)dsxdsy

+

∫
En−m−1

nx · (x− y)

2π|x− y|2
ϕi(y)ϕj(x) dsxdsy − tn−m−1

∫
En−m−1

nx · (x− y)

2π|x− y|3
ϕi(y)ϕj(x)dsxdsy .

(5.30)

A′im is obtained by taking y′ instead of y and E′n−m, E′n−m−1 instead of En−m, En−m−1.
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Therefore (5.25) becomes

−∆t

Ns∑
i=1

bmi

∫
Γ
ϕi(x)ϕj(x) dsx +

Nt∑
m=1

Ns∑
i=1

bmi

[
tn−m+1

(∫
En−m

nx · (x− y)

2π|x− y|3
ϕi(y)ϕj(x)dsxdsy

+

∫
E′n−m

nx · (x− y′)
2π|x− y′|3

ϕi(y)ϕj(x)dsxdsy

)
− tn−m−1

(∫
En−m−1

nx · (x− y)

2π|x− y|3
ϕi(y)ϕj(x)dsxdsy

+

∫
E′n−m−1

nx · (x− y′)
2π|x− y′|3

ϕi(y)ϕj(x)dsxdsy

)]
. (5.31)

Hence we can write (5.25) in matrix form as

−∆t I ϕn +

n∑
m=1

(K ′)n−m ϕm (5.32)

with the vector ϕn = (bn1 , . . . , b
n
Ns

)T and

(K ′)l := tl+1

(∫
El

nx · (x− y)

2π|x− y|3
ϕi(y)ϕj(x)dsxdsy +

∫
E′l

nx · (x− y′)
2π|x− y′|3

ϕi(y)ϕj(x)dsxdsy

)

− tl−1

(∫
El−1

nx · (x− y)

2π|x− y|3
ϕi(y)ϕj(x)dsxdsy +

∫
E′l−1

nx · (x− y′)
2π|x− y′|3

ϕi(y)ϕj(x)dsxdsy

)
.

(5.33)

For the right hand side Fn in (5.24) we have

∫ T

0

∫
Γ
−ρcv̇n(t, x)ψh,∆t dsx dt = −ρc

∫
Γ

∫ tn

tn−1

v̇n(t, x) dtϕi(x) dsx

−
∫

Γ

∫ tn

tn−1

∂pI

∂n
(t, x) dtϕi(x) dsx (5.34)

with vn = u̇n.

Hence Fn = fni with

fni = −ρc
[∫

Γ
vn(tn, x)ϕi(x) dsx −

∫
Γ
vn(tn−1, x)ϕi(x) dsx

]
(5.35)

−
∫

Γ

∫ tn

tn−1

∂pI

∂n
(t, x) dtϕi(x) dsx (5.36)

The Galerkin discretization in space and time leads to a marching in on-time (MOT)

algorithm, as seen in Chapter 2,

(−∆t I + (K ′)0)ϕn = 2Fn −
n−1∑
m=1

(K ′)n−mϕm .
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5.2.3 Numerical Experiment for a Vibrating Tyre

Figure 5.9: Discretization of tyre used for computation of tyre vibration and Horn effect

We validate our code by comparing its results with results in frequency domain obtained

by W. Kropp and O. von Estorff and their groups at Chalmers University, Gothenburg

resp. TU Hamburg-Harburg. We solve (5.19) with pI = 0 using the MOT scheme

(5.23), for the normal velocities u̇N obtained for a model tyre.

In practice, we use data for u̇N = vN in frequency domain provided by the colleagues

above and Fourier transform it into the time-domain. Kropp and von Estorff solve the

Helmholtz equation

∆p̂+ ω2p̂ = 0 in R+ × Ω (5.37a)

∂p̂

∂n
(ω, x) = −ρiωvn(ω, x) on R+ × Γ (5.37b)

∂p̂

∂x3
(ω, x) = 0 on R+ × Γ∞ (5.37c)

They use piecewise constant ansatz functions and collocation together with a Fast

Multipole Method [27] to solve

1

2
p̂i +

N∑
j=1

(∫
4j

∂G(x, y)

∂ny
dsy

)
p̂j =

N∑
j=1

∫
4j
G(x, y) dsyρiωvN (ω, yj) (5.38)

with

G(x, y) =
eik|x−y|

4π|x− y|
+

eik|x−y
′|

4π|x− y′|
. (5.39)
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Here yj is the midpoint of 4j and p̂i is the numerical approximation to p̂ in 4j . While

this formulation in practice yields reliable results up to 1000Hz, for larger frequencies

they use a Burton-Miller stabilized method.

In the model, we consider an idealized tyre without profile (205/55R16). The corre-

sponding mesh consists of 12044 elements with 6027 nodes, see Figure 5.9.

The velocities u̇N are given at each node as a function of f = ω
2π , at 513 equidistant

frequencies from f = 0 to f = 1809.4 Hz. They are then Fourier transformed into a

function of time, wich is used to calculate the right hand side.

After solving (5.24) for the density ϕ with ∆t = 3.125.10−4 s, we evaluate the sound

pressure p(t, x) in 320 points in the hemisphere {x ∈ R3
+ : ‖x‖2 = 1} outside the tyre.

The resulting p(t, x) for 320 resp. 200 time steps is Fourier transformed into the fre-

quency domain for each of the 320 points.

The A-weighted sound pressure level is a recognized approximates the human’s per-

ception of noise [26]. Figure 5.10 shows the A-weighted sound pressure level of the

acoustic wave radiated from the tyre averaged over 321 points in the hemisphere

{x ∈ R3
+ : ‖x‖2 = 1}. As a reference, we use the results of [27], blue curve in Fig-

ure 5.10, which was calculated by a BEM collocation method with piecewise constant

trail functions [27] for the Helmholtz equation.

It is worth pointing out that for the blue curve a Burton-Miller stabilization is used

for frequencies above 1000Hz. The remaining curves all result form the same TDBEM

simulation where the difference is only the starting time from which onwards the point

evaluation of the sound pressure is considered. Except for the black curve, the other

once have the same qualitative behavior and only differ significantly to the blue curve

for the third-octave bands with center frequency 1600Hz and 2000Hz. Due to the use

of the particle velocities from the frequency domain and the discretization of the ramp

up function, a shock wave is emitted at the beginning of the simulation. Consider-

ing this artificial wave also in the Fourier transformation leads to distorted amplitudes

in the frequency spectrum, hence the black curve. This can be avoided by using the

point evaluation of the sound pressure from time tj onwards for the discrete Fourier

transformation.
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Figure 5.10: Comparison of the A-weighted sound pressure level averaged over 320

points and frequency bands for TDBEM and frequency–domain BEM, see

text for details.

Remark 5.1. The calculated pressure by the BEM-model in the time domain is trans-

formed by the FFT into the frequency domain. The frequency range is determined by

the step size of the time discretization and ranges from 0 to 1
∆t . With Nt time steps we

obtain a frequency resolution of 1
(Nt+1)∆t .

5.2.4 Numerical Experiment for the Horn Effect

The horn effect is the amplification of the sound field radiated by sound sources close

to the contact area between the tyre and the flat ground. It is due to the horn-like

geometry between tyre and street.

Experimentally, the horn effect is observed by measuring the pressure field radiated by

the tyre due to a given excitation on the one hand and the pressure radiated by the

same tyre and the same excitation but in the presence of a road on the other hand.

By taking the ratio of both pressure fields, amplification factors are calculated which

quantify the horn effect for the given tyre and the given excitation.

Because of the principle of acoustic reciprocity the measured pressure field is the same

if the source and the microphone switch positions. This means that the noise source
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can be placed in front of the tyre and that the microphone can be placed inside the

contact region. This usually results in simpler experimental set-ups due to the fact that

the noise source, which usually requires a bit of space, is placed away from the contact

zone. This type of arrangement is used in this work.

Our calculations allow us to quantify the horn effect for a given tyre.

We consider the idealized last tyre from Section 5.2.3. It is located at a distance ht
above the origin (0, 0, 0).

Engineers have studied the horn effect for a monopole point source located in ysrc ∈ Γ∞
of strength 1N/m for various single frequencies. They consider Neumann data given

for ysrc = (0, 0, ds) by ∂pI

∂n = ∂G(ω,x,ysrc)
∂n with

G(ω, x, ysrc) =
eiω|x−ysrc|

4π|x− ysrc|
+

eiω|x−y
′
src|

4π|x− y′src|
.

Figure 5.11: Horn geometry

In the time domain, after Fourier transformation, we obtain a time-dependent point

source

G(t, x, ysrc) =
δ(t− |x− ysrc|)

4π|x− ysrc|
+
δ(t− |x− y′src|)

4π|xs − y′src|
. (5.40)

Note that ∂G(t,x,ysrc)
∂x3

= 0 on Γ∞.

Neglecting tyre vibrations ρc2 ∂2un
∂t2

we have to solve the integral equation

(−I +K ′)ϕ(t, x) = −2
∂G

∂n
(t, x) = f(t, x) , (t, x) ∈ R+ × Γ . (5.41)

We use the additional parameters ds = 80mm, ht = 10mm, dr = 1m, hr = 0m

(see Figure 5.11).

The components of the vector on the right hand side can be calculated analytically.
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5 Discretization and Numerical Experiments

Since we consider the case ysrc = y′src we have

〈f, ϕjχIn〉 = −4

∫
In

dt

∫
Γ
dsx

{
nx · (ysrc − x)

4π|x− ysrc|2
δ̇(t− |x− ysrc|) (5.42)

+
nx · (ysrc − x)

4π|x− ysrc|3
δ(t− |x− ysrc|)

}
ϕj(x)

= (I) + (II) . (5.43)

Here

(II) = −
∫

Γ∩{x∈Γ| tn−1≤|x−ysrc|≤tn}
dsx

nx · (ysrc − x)

π|x− ysrc|3
ϕj(x)

= −
∫
Tj∩E(ysrc)

dsx
nx · (ysrc − x)

π|x− ysrc|3
ϕj(x)

is an integral over the domain of influence of ysrc. We compute it as in [40, (4.7)],[33].

The first term (I) can be evaluated more explicitly.

(I) = 4

∫
R
dt

∫
Γ
dsx

nx · (ysrc − x)

4π|x− ysrc|2
δ(t− |x− ysrc|){−δtn + δtn−1}ϕj(x)

=

∫
Tj

dsx
nx · (ysrc − x)

π|x− ysrc|2
{−δ(tn − |x− ysrc|) + δ(tn−1 − |x− ysrc|)}

=
1

π

∫
Tj∩{|x−ysrc|=tn−1}

nx · (ysrc − x)

|x− ysrc|2
dsx −

1

π

∫
Tj∩{|x−ysrc|=tn}

nx · (ysrc − x)

|x− ysrc|2
dsx

=
1

πt2n−1

∫
Tj∩{|x−ysrc|=tn−1}

nx · (ysrc − x) dsx −
1

πt2n

∫
Tj∩{|x−ysrc|=tn}

nx · (ysrc − x) dsx

= nx · (ysrc − x)

{
ζ(tn−1)

πt2n−1

− ζ(tn)

πt2n

}
(5.44)

where ζ(t) denotes the length of the curve Tj ∩ {|x− ysrc| = t}.
Here we note that the integrand nx · (ysrc − x) is constant on each triangle Tj . Indeed,

if a, b ∈ Tj , then a− b ⊥ nx and therefore

nx · (ysrc − x) = nx · (ysrc − y − (x− y)) = nx · (ysrc − y) .

The amplification due to the horn effect in xfp is given by

∆LH(ω) = 20 log10

(
|p̂1(ω, xfp)|
|p̂2(ω, xfp)|)

)
,

where p̂2 is the Fourier transformed of the emitted Dirac impulse and p̂1 the Fourier

transformed of the Dirac impulse overlayed with the sound ration of the tyre. The

Fourier transformations are realized by the discrete FFT applied to a sample of each

wave where the time step size is the same has for the computation of the density. For

the sampling of the Dirac impulse the function δ(t− |xfp − ysrc|) is first approximated

by a rectangular function where the rectangular has a width of ∆t, center |xfp − yscr|
and height (∆t)−1.
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Calculation in the time domain

We use the discretization of Section 5.2.3. As time steps we take ∆t = 0.01, ∆t =

0.04, ∆t = 0.16 which corresponding to 2.9155e − 05 s, 1.1662e − 04 s, 4.6647e − 04 s,

and we compute until T = 24. We solve the second kind integral equation (5.41) with

right hand side (5.42). The MOT method provides the coefficients ϕm = (bmi )i at the

times m∆t and thus the discretized density (5.23).

Substituting (5.23) into (5.20) makes the calculation of the sound pressure p(t, xfp) at

the point xfp possible, which gives p1 = p+G, see (5.40).

Comparison between measurements and calculations of the Horn Effect

The following figure shows experimentally measured amplification curves for 4 different

microphone positions in the frequency range from 300 Hz to 6 kHz. These measurements

serve as validation data for the BEM solutions.

When the distance from the horn is reduced the maximum of the amplification is reached

and is shifted to lower frequencies, [10].

Figure 5.12: Experimentally measured amplification due to the Horn effect for different

values of d
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Figure 5.13: Calculated amplification due to the Horn effect for d = 80mm, tyre 1mm

above ground.

Figure 5.13 displays the computed amplifications for the frequencies from 200 to 2000

Hz. Calculations with the model and parameters described above are in qualitative

agreement with the experimental values. Especially they allow to predict the maximal

amplification and the frequencies at which it occurs.
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6 Rolling Tyre

External noise radiating from a tyre is one of the dominant noise sources of a vehicle as

shown in Figure 6.1. For moderate speeds it is the main noise heard by an an observer

at a distance from the street.

This chapter concerns the noise generated by a tyre rolling on the road. For this purpose

we develop a 3D time domain boundary element method based on the fundamental

solution for a moving wave equation with rotating data on the tyre.

Figure 6.1: Noise sources of a driving vehicle, Source: R. Bernard, R. Wayson. An Intro-

duction to Tire–Pavement Noise of Asphalt Pavement, Purdue University,

2005

6.1 Green’s Function for the Moving Wave Equation

We consider an acoustic point source q(t, x) moving with constant speed v along the

x1-axis at height h above the x1x2-plane. The acoustic sound pressure p is measured
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6 Rolling Tyre

at y = (y1, y2, y3) .

The Lorentz transformation with respect to x and t is

t̃ = γ(t−Mx)

x̃1 = γ(x1 −Mt)

x̃2 = x2

x̃3 = x3 ,

where M is the Mach number, M = v if c = 1, and γ = 1√
1−M2

.

This transformation will be applied to the wave equation (2.1) leading to a new equation

�uL :=
1

c2

∂2uL

∂t̃2
−∆LuL = 0 . (6.1)

uL is the solution of (6.1) and ∆L is the Laplace operator written in the new coordinates

(x̃1, x̃2, x̃3).

The Green’s function, which describes a moving point source in the new coordinates,

is given by

G(x̃, t̃; ỹ, τ̃) =
δ(t̃− τ̃ − R̃)

4πR̃[1−MR̃]
,

where MR̃ = MR̃
R̃

, R̃ = x̃− ỹ and R̃ = |x̃− ỹ| .

The Lorentz transformation allows the moving source to be treated as a stationary

source in the Lorentz frame, and provides a model for the motion of the source.

The Dirichlet or Neumann boundary conditions are preserved under Lorentz transfor-

mation and we obtain the corresponding half-space Green’s function, for example

G(x̃, t̃; ỹ, τ̃) =
δ(t̃− τ̃ − R̃)

4πR̃[1−MR̃]
+

δ(t̃− τ̃ − R̃′)
4πR̃′[1−MR̃′ ]

for Neumann boundary conditions on Γ∞.

Using some unknown density ϕ, we can represent the pressure as follows:

p(t̃, x̃) = Sϕ(t̃, x̃) =

∫
Γ

ϕ(t̃− R̃, y)

4πR̃[1−MR̃]
dsy +

∫
Γ

ϕ(t̃− R̃′, y)

4πR̃′[1−MR̃′ ]
dsy . (6.2)

We obtain the time-domain boundary integral equation

(−I +K ′)ϕ = 2
∂f

∂n
(6.3)

and its discretized variant

〈(−I +K ′)ϕh,∆t, ψh,∆t〉 = 2〈∂f
∂n
, ψh,∆t〉 . (6.4)

Here the time-domain adjoint double layer operator in the moving frame is given by

K ′ϕ(t̃, x̃) =
1

2π

∫
Γ
− nx · R̃
R̃[1−MR̃]

ϕ̇(t̃− R̃, y) dsy −
nx · R̃ + R̃nx ·M
R̃[1−MR̃]2

ϕ(t̃− R̃, y) dsy

+
1

2π

∫
Γ
− nx · R̃

′

R̃′[1−MR̃]
ϕ̇(t̃− R̃′, y) dsy −

nx · R̃
′
+ R̃′nx ·M

R̃′[1−MR̃]2
ϕ(t̃− R̃, y) dsy .
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6.2 Exact Solution for the Moving Wave Equation

We consider the exact solution of the wave equation in Section 5.2.1. After a Lorentz

transformation the solution of the wave equation in the new coordinate system is

Url(t, x1, x2, x3) =
r(h)− γ(t− vx1)

2r(h)
U0(r(h)− γ(t− vx1))

+
r(−h)− γ(t− vx1)

2r(−h)
U0(r(−h)− γ(t− vx1))

where

r(h) =
√
x̃2

1 + x̃2
2 + (x̃3 − h)2 =

√
γ2(x1 − vt)2 + x2

2 + (x3 − h)2

r(−h) =
√
x̃2

1 + x̃2
2 + (x̃3 + h)2 =

√
γ2(x1 − vt)2 + x2

2 + (x3 + h)2 .

The solution Url(t, x1, x2, x3) describes a noise source that moves with velocity v in the

x1-direction with ∂Url
∂x3

= 0 on the road.

The solution for an observer sitting under the tyre on the road is

U(t̃, x̃1, x̃2, x̃3) =
r̃ − γ(t̃− v

c2
(x̃1 + vt̃))

2r̃
U0(r̃ − γ(t− v

c2
x1))

+
r̃′ − γ(t̃− v

c2
(x̃1 + vt̃))

2r̃′
U0(r′ − γ(t̃− v

c2
(x̃1 + vt̃)))

where

r̃(h) =
√
γ2x̃2

1 + x̃2
2 + (x̃3 − h)2, r̃(−h) =

√
γ2x̃2

1 + x̃2
2 + (x̃3 + h)2 .

Therefore

U(t̃, x̃1, x̃2, x̃3) =
r̃ − t̃

γ + (γ − 1
γ )x̃1

2r̃
U0(r̃ − t̃

γ
+ (γ − 1

γ
)x̃1)

+
r̃′ − t̃

γ + (γ − 1
γ )x̃1

2r̃′
U0(r̃′ − t̃

γ
+ (γ − 1

γ
)x̃1)

This is the solution of the wave equation moving on the road.

We will also be interested in rolling tyres, which rotate in addition to moving. They

are simply described by rotating data f on the moving tyre.

Given data f = f(t, x1, x2, x3) in the stationary frame we get data for the rotating

frame at angular velocity ω around the x2-axis through x3 = h:x̃1 + ωRt

x̃2

x̃3

 =

0

0

h

+

cos(ωt) 0 − sin(ωt)

0 1 0

sin(ωt) 0 cos(ωt)


 x1

x2

x3 − h

 .

Solving for (x1, x2, x3) gives x1

x2

x3 − h

 =

 cos(ωt) 0 sin(ωt)

0 1 0

− sin(ωt) 0 cos(ωt)


x̃1 + ωRt

x̃2

x̃3 − h

 ,
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so that we get the data on the rolling tyre:

Froll(t, x̃1, x̃2, x̃3) = F (t, cos(ωt)x̃1+sin(ωt)(x̃3−h)+ωRt, x2, h−sin(ωt)x̃1+cos(ωt)(x̃3−h)) .

The angular velocity ω and the velocity v in the x1 direction are related by the condition

v = ωR.

6.3 Numerical Experiment

In this section we present the numerical results for some test cases for the outgoing sound

wave in a moving frame. Here, the performance of the algorithm is demonstrated by

several examples for moving or rolling spheres and tyres.

In all examples we solve the Galerkin discretization (6.4) of the integral equation (6.3),

using piecewise constant ansatz and test functions in space and time.

Figure 6.2: Geometry of the moving tyre

For the first example we choose a sound source at the front of the sphere, which moves

with constant velocity v = 24, 69km/h = 6.8583m/s above the plane (h = 0.001m) and

radiates with a frequency frq = 54.59 Hz.

The Cauchy data on the surface of the sphere are

f(t, x) =
cos(frq(t− |x−ysrc|c ))

4π(|x− ysrc| − (x− ysrc).M)
+

cos(frq(t− |x−y
′
src|
c ))

4π(|x− y′src| − (x− y′src).M)
. (6.5)

We approximate the sphere by an icosahedron of 320 elements. In order to satisfy an

appropriate relation β = c̃∆t
∆x = 0.5 between time and spatial discretizations, a time step

∆t = 0.4908 which corresponds to 0.001431s should be chosen. The sound pressure is

evaluated at position (2, 0, 0) .
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Figure 6.3: Sound pressure in point (2, 0, 0) as a function of time (in seconds).

Figure 6.3 shows how the noise level increases as the source approaches the microphone

and decreases when the source has passed.

In this example our resolution is too small to observe the Doppler shift ∆frq = v
c−vfrq

of the frequency for a moving source source.

To see this effect in the numerical solution, we choose ∆t = 0.15 which corresponds to

0.000437s and perform 2194 time steps, the other parameters being as in the previous

experiment. We evaluate the sound pressure as a function of time in the point x0 =

(13, 0, 0). Figure 6.4 shows the Fourier transformed sound pressure p(f, x0) (normalized

to amplitude 1) in x0 for frequencies up to 100Hz and compares the signal with the

Fourier transform of a sinusoidal wave sin(tj) in the same nodes tj = (j − 1)∆t. We

note the shift to the right of the dominant frequency, and with the current parameters

our frequency resolution suffices to clearly distinguish the two peaks. Figure 6.5 zooms

into the frequency band from 50 to 60Hz, where the location of the peaks is at the

expected frequencies 54.59Hz and 6.8583
343−6.8583 × 54.59 + 54.59 = 55.7Hz.
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Figure 6.4: Doppler effect: Fourier transformed sound pressure vs. sinusoidal signal as

a function of frequency in the point x0 = (13, 0, 0).
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Figure 6.5: Doppler effect: Detailed view of the frequency band from 50 to 60Hz.
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Figure 6.6: Geometry of the rolling tyre

The next numerical example considers the sound radiation of a rolling sphere. The

motion of the source is a combination of rotation and translation:

While the center of the sphere moves with constant velocity along the x1-axis, the

source is rotating around an axis parallel to the x2-axis through the center. This is

shown in the picture above (see Figure 6.6).

Figure 6.7 shows the sound emitted by a source, which started at the front of the sphere

and rolls over a microphone on the surface of the street at time 0.25s after 5
4 rotations.
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Figure 6.7: Sound pressure (in Pa) at an evaluation point 1.5 m away on the road for

freq = 343 Hz.
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6.4 Adaptive Methods for the Moving and Rolling Tyre

The a posteriori estimate in Theorem 4.3 continues to hold for the Dirichlet problem

VRφ̇ = ḟ for a moving or rolling tyre. The proof is identical, and only the constants

of coercivity and continuity of the single layer potential depend on the velocity of the

tyre.

While we could neglect the time derivative in the resulting indicator for the standing

or moving tyre, this term becomes important once we rotate the data for a rolling tyre.

Also, as the singularities might no longer stay in the same part of the tyre in this case,

both space- and time-adaptive refinements are necessary as in Gläfke thesis [21].
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