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Zusammenfassung

Die kontrollierte Erzeugung von Verschränkung ist eine zentrale Voraussetzung für die
Verwirklichung vieler Quantentechnologien. Neben weiteren Anwendungen kann Ver-
schränkung genutzt werden, um abhörsichere Quantenkommunikation zu ermöglichen,
um Quantencomputer zu realisieren, die bestimmte Aufgaben um ein Vielfaches schneller
lösen als derzeitige Rechner und um Präzisionsmessungen zu verbessern. Insbesondere
kann die Genauigkeit von Atominterferometern erhöht werden, die Rotation, Beschleuni-
gung, Zeit und viele weitere Größen mit höchster Präzision vermessen. Je mehr Teilchen
für die Interferometrie verwendet werden, desto genauer werden diese Sensoren. Da-
her ist die Verschränkung möglichst großer Ensembles wünschenswert. Die Herstellung
solcher hochgradig nicht-klassischen Zustände stellt eine große Herausforderung dar, da
diese für große Teilchenzahlen zunehmend fragil und sensitiv auf Störeinflüsse werden.

Im Rahmen dieser Arbeit wurden kohärente atomare Stöße in einem 87Rb Bose-
Einstein Kondensat untersucht, die Atome vom Zeeman-Zustand mF = 0 nach mF = +1
und mF = −1 transferieren. Durch diesen Prozess, der als Spindynamik bezeichnet wird,
entsteht ein hochgradig verschränkter Spin-Zustand mit bis zu 10 000 Teilchen, der einem
idealen Dicke-Zustand sehr nahe kommt. Wir messen einen verallgemeinerten spin-
squeezing Parameter von −11.4(5) dB, was den besten veröffentlichten Wert in atom-
aren Ensembles darstellt. Mit einem neuen Kriterium konnte Vielteilchen-Verschränkung
nachgewiesen werden. Das Ensemble enthält Gruppen von 68 verschränkten Teilchen,
die nicht separierbar sind und als ein einziges quantenmechanisches Objekt beschrieben
werden müssen.

Darüber hinaus wurde experimentell gezeigt, dass der verschränkte Zustand genutzt
werden kann, um in einem neuartigen Interferometer Genauigkeiten jenseits des klas-
sischen Limits zu erreichen. Das untersuchte Verfahren weißt somit neue Wege zur
Steigerung der Präzision von Sensoren durch Verschränkung auf.

Schlagwörter: Bose-Einstein-Kondensat, Spindynamik, Verschränkung,
gequetschter Spin-Zustand, Atominterferometrie



Abstract

The well-controlled creation of entanglement is a key requirement for many quantum
technologies. Besides other applications, entanglement is useful to establish tap-proof
quantum communication, to realize a quantum computer capable of solving specific tasks
in a fraction of the time needed by today’s fastest computers and for the improvement
of precision measurements. Of particular interest is the precision enhancement of atom
interferometers for exact measurements of time, rotation, acceleration and many other
quantities. Interferometry with a larger number of particles can reach higher precision.
Therefore, it is desirable to create large ensembles of entangled atoms. However, the
preparation of such highly non-classical states is challenging since they become increas-
ingly fragile and sensitive to noise for larger particle numbers.

In this work, we studied coherent collisions in a 87Rb Bose-Einstein condensate which
transfers atoms from the mF = 0 Zeeman state to mF = +1 and mF = −1. This
process is called spin dynamics and creates a highly entangled spin state of up to 10 000
atoms close to an ideal Dicke state. We measure a generalized spin-squeezing parameter
of −11.4(5) dB, the best value reported for any atomic system. With a new criterion
we were able to confirm many-particle entanglement. The ensemble contains groups of
68 entangled particles that are non-separable and have to be treated as one quantum
object.

Furthermore, we demonstrated experimentally that the entangled state can be used
in a new type of interferometer to obtain sensitivities beyond the classical limit. Hence,
our experiments demonstrate new methods to enhance the precision of sensors by en-
tanglement.

Keywords: Bose-Einstein condensate, spin dynamics, entanglement,
spin-squeezed state, atom interferometry



Contents

1. Introduction 1

2. Entanglement and interferometry 5
2.1. Entanglement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.1.1. Entanglement and the intriguing quantum world . . . . . . . . . . 5
2.1.2. Formal definition of entangled states . . . . . . . . . . . . . . . . 7

2.2. Limits of interferometric sensitivity . . . . . . . . . . . . . . . . . . . . . 9
2.2.1. The shot-noise limit of interferometric phase sensitivity . . . . . . 9
2.2.2. Quantum-enhanced interferometry and the Heisenberg limit . . . 10

2.3. The Bloch sphere representation . . . . . . . . . . . . . . . . . . . . . . . 12
2.3.1. The single-particle Bloch sphere . . . . . . . . . . . . . . . . . . . 12
2.3.2. The multi-particle Bloch sphere . . . . . . . . . . . . . . . . . . . 14
2.3.3. The Heisenberg uncertainty for phase and particle number difference 15
2.3.4. The interferometer sequence in the Bloch sphere representation . 16

2.4. Spin squeezing and entanglement . . . . . . . . . . . . . . . . . . . . . . 18
2.4.1. Interferometric gain and the spin-squeezing parameter . . . . . . . 18
2.4.2. The spin-squeezing parameter as an entanglement witness . . . . 19

2.5. The phase sum and the total number of particles . . . . . . . . . . . . . 20

3. Spin dynamics 23
3.1. Spin-changing collisions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.2. Analogy to parametric down conversion . . . . . . . . . . . . . . . . . . . 24
3.3. Theoretical description . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.4. Spin dynamics resonances . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.5. Properties of the two-mode squeezed vacuum . . . . . . . . . . . . . . . . 30
3.6. Beyond the parametric approximation . . . . . . . . . . . . . . . . . . . 33

4. Preparation, manipulation and detection of a 87Rb spinor condensate 35
4.1. Preparation of the initial 87Rb condensate . . . . . . . . . . . . . . . . . 35
4.2. Manipulation of the energy levels via microwave dressing . . . . . . . . . 36
4.3. Manipulation of the internal states via microwave pulses . . . . . . . . . 39
4.4. High precision absorption detection . . . . . . . . . . . . . . . . . . . . . 42

4.4.1. Techniques for atom detection . . . . . . . . . . . . . . . . . . . . 43
4.4.2. Calculating the number of atoms from an absorption signal . . . . 44
4.4.3. Calibration of the absolute number of atoms . . . . . . . . . . . . 46
4.4.4. Photo-electron shot noise - the fundamental limit . . . . . . . . . 50

v



4.4.5. The setup for the high-precision absorption detection . . . . . . . 52
4.4.6. Estimation of the detection noise . . . . . . . . . . . . . . . . . . 54

5. The twin-Fock interferometer 57
5.1. Beyond spin squeezing . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
5.2. The principle of the twin-Fock interferometer . . . . . . . . . . . . . . . . 58
5.3. Experimental creation of twin-Fock states . . . . . . . . . . . . . . . . . 59
5.4. Measurement of sub-shot-noise number fluctuations . . . . . . . . . . . . 61
5.5. Estimation of the sensitivity gain . . . . . . . . . . . . . . . . . . . . . . 62
5.6. Sensitivity limit set by the detection noise . . . . . . . . . . . . . . . . . 64

6. Multi-particle entanglement in a spinor Bose-Einstein condensate 67
6.1. Entanglement detection based on measurements of the collective spin . . 67
6.2. Spin dynamics in F=1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
6.3. Estimation of the generalized spin-squeezing parameter . . . . . . . . . . 71
6.4. Detection of multi-particle entanglement in spin-squeezed ensembles . . . 73
6.5. A new criterion for multi-particle entanglement . . . . . . . . . . . . . . 77
6.6. Characterization of the multi-particle entanglement . . . . . . . . . . . . 79

7. Outlook 81
7.1. Improving the detection system . . . . . . . . . . . . . . . . . . . . . . . 81

7.1.1. Precision limits of absorption detection . . . . . . . . . . . . . . . 81
7.1.2. Fluorescence detection . . . . . . . . . . . . . . . . . . . . . . . . 83

7.2. The Fock interferometer . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

A. Symmetric spin states 89
A.1. Spin length of symmetric states . . . . . . . . . . . . . . . . . . . . . . . 89
A.2. Number squeezing and entanglement of symmetric states . . . . . . . . . 90

B. The spin-squeezing parameter as an entanglement witness 93

C. Time evolution of the K-vector 95

D. CCD camera calibration 97
D.1. Calibration of the camera gain . . . . . . . . . . . . . . . . . . . . . . . . 97
D.2. Calibration of the quantum efficiency . . . . . . . . . . . . . . . . . . . . 98

E. Statistically correct error bars for estimated variances 101
E.1. Augmented and monomial symmetric functions . . . . . . . . . . . . . . 102
E.2. var(µ̂2) in terms of µ4 and µ2

2 . . . . . . . . . . . . . . . . . . . . . . . . 102
E.3. Finding estimators for µ4 and µ2

2 . . . . . . . . . . . . . . . . . . . . . . 103
E.4. The estimator for var(µ̂2) . . . . . . . . . . . . . . . . . . . . . . . . . . 104

vi



1. Introduction

”I would not call [entanglement] one but rather the characteristic trait of quantum
mechanics, the one that enforces its entire departure from classical lines of thought”
(Schrödinger) [1].

Quantum entanglement describes a type of intriguing correlations that are only ob-
served in the microscopic quantum world and do not appear in our macroscopic world.
For larger macroscopic systems, this fascinating quantum phenomenon disappears. The
transition from the intriguing microscopic world governed by quantum mechanics to the
macroscopic world described by classical physics, that we experience in everyday life, is
not yet completely understood [2]. The quantum features of large systems become frag-
ile due to an increasing sensitivity to environmental noise sources which leads to strong
decoherence of many-particle entangled states. A small coupling to the environment is
sufficient to destroy the quantum mechanical features of such a state and the system
will start to behave classically. Hence, the creation of large systems containing massive
entanglement is very challenging. On the other hand, such states are a key resource for
the implementation of many exciting quantum technologies. Therefore, researchers all
over the world try to entangle as many particles as possible pushing the system further
towards the macroscopic regime.

Experimental efforts to achieve entanglement between more than two particles started
in 1999, when the group of A. Zeilinger succeeded in creating a Green-Horn-Zeilinger
state of 3 entangled photons [5]. Only one year later, the group of D. Wineland demon-
strated the entanglement of 4 ions [6]. Since then, new multi-particle entanglement
records for ions have been reported by the group of R. Blatt achieving the entanglement
of up to 14 ions [3, 7], and new records for photons have been reported by the group
of J.W.Pan achieving the entanglement of up to 8 photons [4, 8, 9]. Other systems like
super-conducting qubits [10, 11] and nitrogen-vacancy defect centres in diamond [12]
have been used to create tripartite entanglement.

These implementations have the advantage of providing manipulation and read-out of
the individual constituents with high fidelity. The most prominent prospect application
for these systems is the so-called quantum computer, that can perform specific calcula-
tions in a fraction of the time needed by today’s best computers. The main challenge in
building such a quantum computer is to scale the system up to larger and larger numbers
of constituents. This up-scaling is hindered by the increased sensitivity to environmental
noise described above.

In contrast to the ”bottom-up” approach offered by these systems, squeezed ensembles
of ultra-cold atoms provide a ”top-down” approach. These ensembles contain a large
number of particles that can be entangled by various mechanisms. A breakthrough result
has been achieved in 2010 by the group of M. Oberthaler. They created a spin-squeezed
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Figure 1.1.: Multi-particle entanglement. Starting in the late nineties, experiments
using photons and ions were able to experimentally create and detect multi-
particle entanglement with an increasing number of entangled particles.
The largest numbers in these system have been reported by the group of
R. Blatt achieving the entanglement of 14 ions [3] and by the group of
J. W. Pan achieving the entanglement of 8 photons [4]. In 2010 the group of
M. Oberthaler demonstrated massive multi-particle entanglement in a spin-
squeezed ensemble of neutral atoms containing non-separable groups of 170
entangled atoms. In our work we demonstrate the preparation of substantial
multi-particle entanglement of neutral atoms in a new class of states: the
Dicke states.

state and showed that it contains more than 80-particle entanglement with a 3 standard
deviation uncertainty level [13]. Moreover, the mean values of their measurements indi-
cates a multi-particle entanglement of 170 atoms. However, the control and detection on
the single particle level is hard to obtain in these systems. The most prominent applica-
tion of highly entangled many-particle states of ultra-cold atoms is quantum enhanced
interferometry.

Many of today’s most precise sensors are interferometers. A common application is
the CD- or DVD-Player, which is based on a laser interferometer that precisely scans
the disk surface to read the stored data. High-precision laser interferometers are used
for gravitational wave detection [14, 15], the measurement of the earth’s rotation [16]
and for many other tasks, including rotation and acceleration sensors for navigation. A
comparably new emerging technique is interferometry with atoms. For many applica-
tions, they have the potential to outperform interferometers operated with coherent laser
light. Moreover, they can measure quantities that are not accessible to interferometers
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operated with light. Most prominently, the legal time is based on time measurements
performed by atomic clocks. The global positioning system (GPS) uses atomic clocks
on satellites to precisely synchronise the emitted signals and enable the high spatial
resolution of GPS. Other applications feature the measurement of inertial forces, mag-
netic [17] and microwave fields [18]. The precise measurement of earth’s rotation [19–21]
and gravity [22] is of importance for applications in geodesy [23,24].

The sensitivity of interferometers is fundamentally limited by the so-called shot noise.
It scales as 1√

N
with the number of particles N . Hence, the sensitivity can be improved

by using more particles. However, this may lead to technical problems like high col-
lision rates and losses due to increased densities in the case of atom interferometers.
Additionally, it is favorable to use a very pure ensemble of coherent atoms, the so-called
Bose-Einstein condensate (BEC), for atom interferometry, which provides a very high
degree of control and thus reduced noise. The very narrow velocity distribution of a
BEC leads to low expansion rates during free fall, which allows for long evolution times,
efficient detection and beam splitting processes for inertial measurements. For gravime-
ters, the start position, which defines the reference point of the gravitational potential,
can be precisely defined. As an example, this will be of particular importance for future
experiments like the very long baseline atom interferometer (VLBAI), that will be build
in Hanover. For this interferometer, atoms will be dropped in a 10 m vacuum tube,
which allows for very long free-fall times and a precise test of Einsteins equivalence prin-
ciple in a differential measurement. However, due to technical limitations, such a BEC
contains less atoms than a thermal ensemble. Hence, shot noise is a severe limitation
of the achievable performance of atom interferometers operated with BECs. In order to
overcome this limitation, entangled atoms can be used. Ideally, this allows to reach the
Heisenberg limit of sensitivity which scales with 1

N
. Hence, interferometry with 10 000

entangled particles can yield a 100-fold improved sensitivity compared to interferometry
with the same number of uncorrelated particles. This shows the potential of multi-
particle entangled ensembles for the improvement of interferometric sensors. However,
it is a challenge to prepare such a mesoscopic state of multi-particle entangled atoms.

The techniques for the creation of multi-particle entanglement in ensembles of neutral
atoms can be divided into two groups: (i) entanglement by atom-light interaction and
(ii) entanglement by interatomic collisional interaction. The most mature concepts us-
ing atom-light interactions rely on the well-developed methods for the preparation and
detection of light to generate and read out multi-particle entangled states of neutral
atoms. These concepts can be applied to room-temperature vapour cells [25], laser-
cooled atoms [26] and BECs [27]. Techniques based on interatomic collisions make use
of the well-controllable ultra-cold collisions in a BEC. These collisions can add up to a
mean nonlinear interaction, which is analogous to a χ3-nonlinearity in an optical crystal.
Such a source of entanglement has been first demonstrated using external states in a
double-well potential [28] and later in the spin degree of freedom [13, 29]. This method
allowed for sub-shot-noise interferometry with spin-squeezed states [13].

In this work, we have investigated coherent spin-changing collisions in a 87Rb Bose-
Einstein condensate (BEC) as a tool for the creation of multi-particle entanglement.
The underlying Hamiltonian of the process is formally equivalent to the Hamiltonian

3



1. Introduction

of parametric down-conversion in optics - a well established method for the creation of
entangled photons based on the χ2-nonlinearity in an optical crystal. In prior work,
our group has developed a detailed understanding of spin-dynamics resonances [30] and
demonstrated the amplification of pure vacuum fluctuations [31], which are important
prerequisites for the production of entanglement. Parallel to the work presented here,
the group of M. Oberthaler demonstrated a proof of entanglement based on a homodyne
measurement [32] and the group of M. Chapman observed spin-nematic squeezing [33]
in ensembles created by spin-dynamics.

Here, we characterize the state produced by spin dynamics and show that it is close
to a highly entangled Dicke state. We measure a generalized spin-squeezing parameter
of −11.4(5) dB, the largest reported value in any atomic system. By employing a newly
developed entanglement measure, we find that the state contains 68-particle entangle-
ment [34]. Furthermore, we prove that the created state is useful for quantum-enhanced
interferometry [35]. Compared to other proof-of-principle experiments, the large number
of 10 000 particles in the entangled ensemble provides a perspective for highly sensitive
measurements in a new generation of atom interferometers.

This thesis is organized as follows: In chapter 2, the basic theory of entanglement
is described and its connection to sensitivities below the shot-noise limit is discussed.
The generalized Bloch sphere is introduced, a useful tool to visualize the action of an
interferometer and entangled multi-particle states. In chapter 3, the theory of spin-
changing collisions is explained and the properties of the state created by spin dynamics
are discussed. In chapter 4, a new type of interferomter is introduced which can make
use of the entanglement of this state to reach a sensitivity beyond the shot-noise limit.
In chapter 5, the entanglement of the state created by spin dynamics is characterized
in detail using new methods. Finally, an outlook on future improvements for the detec-
tion and characterization of the multi-particle entangled state is given and a possible
application for a new type of interferometer is presented.
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2. Entanglement and interferometry

2.1. Entanglement

2.1.1. Entanglement and the intriguing quantum world

Quantum mechanics is one of the most successful physical theories, especially well
suited for describing the microscopic world. Although its mathematical treatment is
well known, some conceptional points of quantum mechanics are very puzzling as they
seem to be contradictory to the reality that we experience in the macroscopic world.

One of these puzzling features of quantum mechanics is the existence of superposition
states. For example, a particle can be at two places at the same time. When its position
is measured it will be found at either of the two places. Nonetheless, the particle was in a
superposition of being at place one and two, since there is no way to know the outcome of
this measurement in advance. Even though we may have all possible information about
the quantum mechanical state of the particle at hand the measurement result remains
unpredictable. Its position cannot be assigned to one place only.

”God doesn’t play dice.”, Einstein said. Every randomness, he believed, is only subjec-
tive randomness due to a lack of information. Thus, he concluded, quantum mechanics
does not give us all the necessary information and must be incomplete. Ironically, when
he tried to prove his statement with his colleagues Podolsky and Rosen he made the
first step to reveal another counter-intuitive constituent of quantum mechanics: entan-
glement.

The Einstein-Podolsky-Rosen thought experiment

The quantum mechanical state describing the motion of a particle allows the prediction
of the mean result of a position and a momentum measurement. It also predicts the
fluctuations for these measurements. However, it never predicts the exact result of both
measurements. The product of the fluctuations ∆x and ∆p of these measurements have
to be larger than Planck’s constant ~

∆x∆p ≥ ~. (2.1)

This famous Heisenberg uncertainty principle cannot be surpassed by any measurement
device. Hence, every measurement described in the framework of quantum mechanics is
subject to random fluctuations and position and momentum cannot be precisely defined
at the same time. Einstein, Podolsky and Rosen tried to show that this lack of a precise
prediction of measurement results is due to an incompleteness of quantum mechanics.

5
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Figure 2.1.: Correlated particles. In their famous thought experiment, Einstein,
Podolsky and Rosen considered two particles from a common source with
opposite position and momentum.

Einstein et al. presented the following famous thought experiment [36]: Two particles
emerge from a common source and fly in opposite direction. They are correlated such
that they have opposite momentum p1 = −p2 and position x1 = −x2. Hence, a position
measurement of particle one can be used to predict the result of a position measurement
of particle two. The uncertainty of this prediction ∆(x2 + x1) is always zero in the
ideal case. In the same way, the result of a momentum measurement of particle one
can be used to predict the result of a momentum measurement of particle two with an
uncertainty ∆(p2 + p1). Only one of these two possible measurements can be performed
with high precision due to Heisenbergs uncertainty principle. Nonetheless, particle one
seems to carry all the information about both, momentum and position of particle two.
Einstein et al. gave an explicit example of a quantum mechanical state with

∆(x2 + x1)∆(p2 + p1) < ~ (2.2)

They concluded that position and momentum of particle two are defined better than
allowed by quantum mechanics according to Eq. (2.1).

The only way around this conclusion is, that the measurement performed on particle
one changes the state of particle two, as Einstein et al. pointed out. In addition, this
change must depend on whether position or momentum was recorded. However, this
seems to lead to a contradiction to Einstein’s special relativity theory. The time a signal
needs to travel from particle one to particle two is at least t = c(x1 − x1) as it travels
at maximum with the speed of light c. Assume that position or momentum of both
particles are measured simultaneously faster than t. Then, no information if momentum
or position of particle one is measured can reach the position of particle two before the
measurement is complete.

There are two possible explanations for the paradox: First, quantum mechanics might
be incomplete and position and momentum of a particle can be defined with a higher
precision in the framework of some other more precise theory. In such theories, exact
values for the outcome of position-, momentum- and other measurements are encoded in
so-called hidden variables. If such hidden variables exist, quantities like momentum and
position are ”real” even before they are measured - an assumption called realism. This in
contrast to quantum mechanics, which predicts that in general position and momentum
do not have a definite value before they are measured. Additionally, Einstein et al.
envisioned that such a theory beyond quantum mechanics has to be local, meaning that
distant events have no faster-than-light effects on local measurements. The discovery
of Bell’s inequalities [37] made it possible to experimentally address the question if a
theory based on local realism can be a proper replacement of quantum mechanics. Most
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2.1. Entanglement

prominently, A. Aspect [38, 39] showed that local realism is not compatible with the
measurement results of his experiments. Consequently, locality, realism or even both
assumptions have to be wrong. Moreover, experiments by S. Görblacher suggest that
it is not enough to reject locality only [40]. In summary, there is some evidence that
quantum mechanics gives a correct and complete description of the microscopic world.

Hence, today most physicist agree that the second way to resolve the paradox has
to be the correct one: The measurement on particle one actually has an instantaneous
non-local effect on particle two. The two particles cannot be treated independently and
are said to be in an entangled state. Despite the described instantaneous non-local effect
of a measurement, this does not imply a contradiction to special relativity. There is no
way to exploit this Einstein-Podolsky-Rosen (EPR) entanglement for the transmission
of a signal [41].

2.1.2. Formal definition of entangled states

After this review of the history of entanglement let us now turn to the formal definition
of entanglement following Ref. [42]. For this purpose we consider a physical system that
can be divided into several subsystems such that the overall Hilbert space is a tensor
product of the subsystems’ Hilbert spaces:

H = ⊗Ni=1H(i) (2.3)

In this work, the subsystems will correspond to the individual particles, but in other
settings, they might for example correspond to different regions in space or to different
internal degrees of freedom. If the system is in a pure state and it is possible to find
normalized states

∣∣ψ(i)
〉
∈ H(i) such that the overall state can be written as

|Ψ〉 =
∣∣ψ(1)

〉
⊗
∣∣ψ(2)

〉
⊗ · · · ⊗

∣∣ψ(N)
〉

(2.4)

the state is called separable. Such a state can be written as a density matrix

ρ = ρ
(1)
k ⊗ ρ

(2)
k ⊗ · · · ⊗ ρ

(N)
k (2.5)

with the density matrix ρ(i) =
∣∣ψ(i)

〉 〈
ψ(i)
∣∣ describing the state of the ith subsystem.

Obviously, for such uncorrelated states the measurement of some observable Ai on sub-
system i does not influence the outcome of measurements performed on the other sub-
systems. For a compound observable A(1) ⊗ A(2) ⊗ · · · ⊗ A(N) the expectation value is
just the product of the individual expectation values

〈A〉ρ =
〈
A(1)

〉
ρ(1)

〈
A(2)

〉
ρ(2)
· · ·
〈
A(N)

〉
ρ(N) (2.6)

and we see that there are no correlations between the measurements performed on the
individual subsystems.

Otherwise, of course, there can be classical correlations present. For example, if two
particles can be in a spin up |↑〉 or a spin down |↓〉 state an apparatus might produce a
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2. Entanglement and interferometry

state |↑〉 ⊗ |↓〉 in 50% of the cases and a state |↓〉 ⊗ |↑〉 otherwise. While the orientation
of an individual spin is random, the two spins will always be anti-parallel and thus
correlated. A general state in the presence of classical correlations can be written in the
form

ρ =
∑
k

pk ρ
(1)
k ⊗ ρ

(2)
k ⊗ · · · ⊗ ρ

(N)
k (2.7)

which arises for example if the uncorrelated states ρ
(1)
k ⊗ ρ

(2)
k ⊗ · · · ⊗ ρ

(N)
k are produced

with probability pk. States that can be written in this form are called separable. If we
cannot write the state in this form, there must be more than classical correlations and
the state is called entangled.

Note, that the opposite is not true. There are separable non-entangled states exhibit-
ing quantum correlations [43].

Indistinguishable particles

A definition of entanglement as given above is problematic in the case of indistinguish-
able particles. For instance, if the Hilbert space of an individual Boson is H(i), the
Hilbert space of the compound system of indistinguishable Bosons is no longer the full
tensor product space H = ⊗Ni=1H(i) but only the symmetric subspace with respect to
particle exchange. In the case of Fermions, the compound system can only be in the
antisymmetric subspace. As the particles are indistinguishable it is fundamentally not
possible to perform a measurement on an specific particle since we have no means to
label them. One may argue that an EPR paradox as described in the previous section
cannot be achieved, since it is not possible to talk about a particle one and a particle
two. However, the notion of non-separable states is still correct and such states cannot
be found in any classical theory. We will see that non-separable states are a useful
resource to achieve interferometric sensitivity beyond the classical limit.

Furthermore, additional degrees of freedom can be used to distinguish particles in
non-separable states and thereby make an EPR paradox possible. As a simple example,
consider two Bosons with an external degree of freedom, their position in space which
can be either left |L〉 or right |R〉, and an internal degree of freedom, their spin that can
be either up |↑〉 or down |↓〉. Let us assume the system is prepared in the non-separable,
symmetric state

|Ψ〉 =
1

2
(|L,R〉+ |R,L〉)⊗ (|↑, ↓〉+ |↓, ↑〉) (2.8)

Upon measurement of the position only, one particle will be found on the left side while
the other will be found on the right side and they will thus become distinguishable by
their position. The spin state is not changed by this measurement. If it was initially non-
separable as in our example it will be non-separable after the measurement. An extension
of this idea leads to the so-called dilute cloud argument as described in Ref. [44].

Consider a cloud of ultracold, indistinguishable atoms with a non-separable spin. After
we turn off the confining trap the cloud of atoms will expand. If the cloud is sufficiently
dilute it becomes very unlikely to find more than one atom in a small region of space.
By performing a measurement with a high spatial resolution, we can thus distinguish
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2.2. Limits of interferometric sensitivity

the particles by their position. Ideally, neither the expansion nor the position detection
changes the spin state which can be checked by a subsequent measurement of the spin
state. This thought experiment shows that local operations and classical communication
(LOCC) are sufficient to distinguish initially indistinguishable particles while keeping
them in a non-separable state. Hence, we see again that the non-separability is the crucial
ingredient. For the rest of this work we thus equate non-separability with entanglement
as it is usually done in the field [45].

2.2. Limits of interferometric sensitivity

As we have seen in section 2.1.1, the existence of quantum entanglement was initially
revealed in the context of very fundamental and even philosophical questions about
physical reality. Since then, it has become apparent that it is also a valuable resource
for many applications. Entanglement is a key ingredient for quantum simulation [46]
and quantum information, including quantum computation and communication [47].

In this section, we will see that entanglement can enhance the sensitivity of interfer-
ometers. Since today’s most sensitive sensors for time [48], length [49], acceleration [50],
rotation [16] and other quantities are based on interferometry, this application for en-
tangled particles is of particular importance.

2.2.1. The shot-noise limit of interferometric phase sensitivity

N

N↑

N↓

Φ

Φ

N
↑

>
<

ΔΦ

Δ
N

↑

(a) (b)

N
↑

Φest

Figure 2.2.: Typical classical interferometer. (a) N particles enter the interfer-
ometer at one input port while the other one is left empty. After the first
beam splitter each particle is in a superposition of state one (depicted as
upper path) and state two (lower path). Some quantity of interest q that
we seek to measure causes a phase shift φ on the upper state. At the second
beam splitter this phase shift effects the mean particle number 〈N↑〉 and
〈N↓〉 measured at the output ports. (b) These mean particle numbers can
thus be used to estimate the phase φ and thereby q.

Without correlations, the sensitivity of interferometers is limited by the so-called shot-
noise limit. In order to understand the origin of shot noise, consider an interferometer

9



2. Entanglement and interferometry

operated with N uncorrelated particles as sketched in Fig. 2.2. In such an interferometer,
the first beam splitter transfers each particle in a superposition of two states, here
depicted as two distinct paths. One state experiences a phase shift φ. Subsequently, the
two states are combined at a second beam splitter and the number of particles at each
output port is measured.

The interferometer is designed such that the phase shift φ depends on the quan-
tity that we seek to measure. Hence, an improved estimation of the phase results in
an improved interferometric sensor. This phase estimation is based on the number of
particles that have been detected at the output ports. Due to the interference at the
second beam splitter the probability to find an individual particle at the first output
port p = cos2 (φ/2) depends on the phase φ. Hence, by measuring the mean number
of particles N̄↑ at this port we can estimate the probability pest = N̄↑/N and the phase
φest = 2 arccos

(√
pest

)
.

However, since every particle appears randomly at either of the two output ports,
the number of particles N↑ and the estimated phase φest fluctuate. The resulting phase
estimation error can be calculated by standard error propagation, knowing that the
binomial distribution of N↑ has a standard deviation of ∆N↑ =

√
Np(1− p).

∆φest =
∆N↑(
∂〈N↑〉
∂φ

) =
1√
N

(2.9)

This fundamental phase estimation error is known as the shot noise limit. Interestingly,
it is independent of the phase φ if no technical noise is present. It can be improved by
repeating the measurement m times to

∆φest =
1√
mN

(2.10)

for a simple reason: Since the particles are completely independent, averaging over
N particles is statistically the same as averaging over m = N realizations with only
one particle. Hence, the phase estimation error only depends on mN . Obviously, this
changes in the case of correlated particles, potentially leading to an increased sensitivity
as we will see now.

2.2.2. Quantum-enhanced interferometry and the Heisenberg limit

Interferometers with correlated particles can have more general probability distributions,
while uncorrelated particles lead unalterably to a binomial distribution of the atom
number N↑ measured at one output port. Correlated states leading to more complex
distributions with narrow features can improve the phase estimation error. The most
prominent example of such states, the so-called spin-squeezed states, will be presented
in section 2.4.

In section 2.3.3, we will prove the Heisenberg uncertainty between phase difference
and particle number difference of two states

∆(φ↑ − φ↓)∆(N↑ −N↓) ≥ 1. (2.11)

10



2.2. Limits of interferometric sensitivity

This uncertainty leads to a more fundamental precision limit for interferometric phase
estimation [51]. If φ↑ is the phase of one state in between the beam splitters of the
interferometer and φ↓ is the phase of the other state, the phase φ we seek to measure
is given by the difference φ = φ↑ − φ↓. The largest possible fluctuations of the particle
number difference in these states is ∆(N↑ − N↓) = N if the interferometer is operated
with N particles. Hence, due to the Heisenberg uncertainty, the phase φ is fundamentally
only defined to a precision

∆φ ≥ 1

N
. (2.12)

This fundamental limit is called Heisenberg limit and cannot be surpassed even with
entangled states. Note that the same argument for binomial number fluctuations ∆(N↑−
N↓) =

√
N leads again to the shot-noise limit of phase estimation ∆φest ≥ 1/

√
N .

N =0
+ 1 2 N-2 N-1 N

θ=0
2π

N+1

2π

N+1
2

2π

N+1
3

2π

N+1
( 1)N-

2π

N+1
N 2π

Figure 2.3.: Intuitive illustration of the Heisenberg limit. Each possible outcome
of a measurement of N↑ is associated with an interval in the continuous
spectrum of the phase difference φ. The width of the intervals is propor-
tional to 1/(N + 1) ≈ 1/N and sets a limit to the precision of the phase
measurement.

An intuitive but imprecise way to understand the Heisenberg limit is depicted in
Fig. 2.3. Having only a limited number of N particles there are only N + 1 possible
results for a measurement of N↑. In order to use these results to estimate the phase,
we have to artificially divide the continuous spectrum of φ in N + 1 intervals, each
corresponding to one possible result. The width of such an interval is proportional to
1/(N + 1) ≈ 1/N and gives the precision of the estimate φest.

Hence, the phase estimation error reaches at best Heisenberg scaling ∆φest ∝ 1/N .
However, the estimation of the quantity of interest qest causing the phase shift can have
a better scaling, if the phase shift depends on the number of particles q = f(N, φ). Error
propagation results in an estimation error of

∆qest =
∆φest(
∂f(N,φ)
∂φ

) ≥ 1

N
(
∂f(N,φ)
∂φ

) . (2.13)

Provided that f(N, φ) ∝ Nx, a scaling of ∆qest ∝ 1/Nx+1 is possible. This can be realized
with interactions that are nonlinear in the atom number and has been demonstrated in
Ref. [52]. Nonetheless, the estimation of the phase is still restricted by the Heisenberg
limit.

For a fluctuating number of atomsN , the Heisenberg limit would naively be formulated
as

(∆φest)
2 =

1

〈N〉2
. (2.14)
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2. Entanglement and interferometry

However, as pointed out in Ref. [53], the correct limit for the achievable phase sensitivity
is

(∆φest)
2 =

1

〈N2〉
, (2.15)

in the case of a fluctuating total number of atoms N . This limit is sometimes referred
to as the Hofmann limit [54]. Since the fluctuations of the total number of atoms are
typically on the shot-noise level (∆N)2 ∼ N for most experiments, the Hofmann limit
and the Heisenber limit coincide for large particle numbers 〈N2〉 = 〈N〉2+(∆N)2 ≈ 〈N〉2.

2.3. The Bloch sphere representation

In this section, we define the collective spin of an ensemble of two-level particles. This
can be represented on a generalized Bloch sphere, which gives a geometric visualiza-
tion of the ensembles state and of manipulations performed on the many-particle state.
As important examples, we describe the beam splitting process and an interferometric
sequence in the Bloch sphere picture.

2.3.1. The single-particle Bloch sphere

For a single particle in a two level system, it is always possible to define one of the
states of an orthonormal normalized basis as spin up |↑〉 and the other one as spin down
|↓〉. The (pseudo) spin operators sx, sy and sz measuring the spin along orthonormal
directions of such a spin-1/2 system with respect to this basis are defined as [55]

sx =
1

2
(|↓〉 〈↑|+ |↑〉 〈↓|) =

1

2

(
0 1
1 0

)
=

1

2
σx (2.16)

sy =
1

2i
(|↓〉 〈↑| − |↑〉 〈↓|) =

1

2

(
0 −i
i 0

)
=

1

2
σy (2.17)

sz =
1

2
(|↑〉 〈↑| − |↓〉 〈↓|) =

1

2

(
1 0
0 −1

)
=

1

2
σz (2.18)

with the well known Pauli matrices σk. These operators obey the commutation relations

[sk, s` ] = iεk`msm (2.19)

and have thus the algebraic structure of angular momentum operators.
A general normalized pure spin state |ψ〉 = a |↑〉 + b |↓〉 = |a|eiϕ↑ |↑〉 + |b|eiϕ↓ |↓〉 can

be written in the form

|ψ〉 = eiϕ/2 cos(θ/2) |↑〉+ e−iϕ/2 sin(θ/2) |↓〉 (2.20)

with ϕ = ϕ↑ − ϕ↓ using that |a|2 + |b|2 = 1 and the freedom to drop the global phase
(ϕ↑ + ϕ↓)/2. The expectation value of the spin s = (sx, sy, sz)

ᵀ is then given by

〈s〉 =

〈sx〉〈sy〉
〈sz〉

 =
1

2

sin θ cosϕ
sin θ sinϕ

cos θ

 , (2.21)
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θ

φ

sx

sz

sy

s><

sx

sz

sy

s><

(a) (b)

s
s+

1
(

)

Figure 2.4.: Pure state representation on the Bloch sphere. (a) The expectation
value of a single pseudo spin 〈s〉 can be represented on a sphere with radius
s = 1/2 according to Eq. (2.21). (b) Since the length of the spin |s| =√
s(s+ 1) is larger than s, it has to have additional fluctuating components

orthogonal to the mean vector. Thus, the spin is commonly depicted as a
cone around the mean direction 〈s〉.

i.e. (s = 1
2
, θ, ϕ) are spherical coordinates of 〈s〉. The expectation value of the spin can

thus be depicted on a sphere as shown in Fig. 2.4a. Quantum mechanically, the length
of the spin is given by |s| =

√
s2 = s(s + 1) = 3/4. The slightly larger length is due to

the unavoidable quantum fluctuations of the spin orthogonal to its mean direction 〈s〉.
As an example, let us choose the coordinate system (i.e. the basis {|↑〉 , |↓〉}) such

that the mean spin is pointing in x-direction 〈s〉 = (1/2, 0, 0)ᵀ. Since this corresponds
to an eigenstate of sx, a measurement of sx always yields 1/2. All classical vectors with
a length of |s| =

√
s(s+ 1) and a projection sx = 1/2 are located on a cone as depicted

in Fig. 2.4b. Quantum mechanically, it is not possible to represent the state by only one
of these vectors, since measurements of the orthogonal spin components sy and sz have
to show fluctuations

(∆sy)
2 + (∆sz)

2 = s2
y + s2

z = s2 − s2
x = 3/4− 1/4 = 1/2. (2.22)

In most textbooks, the quantum mechanical state is thus represented by the cone [56]
rather than by a single vector. In this representation the mean spin is given by the length
and the orientation of the cone, while the fluctuations are represented by the disc at the
end. These unavoidable fluctuations are also reflected in the Heisenberg uncertainty
relation

∆sy∆sz ≥
1

2
| 〈sx〉 | (2.23)

which is a direct consequence of the non-vanishing commutator given in Eq. (2.19). In
the next section we will see, that in the Bloch sphere representation, it becomes apparent
that these fluctuations cause the shot noise discussed in section 2.2.1.
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2. Entanglement and interferometry

+ + + =

+ + + =

(a)

(b)

Figure 2.5.: Formation of the collective spin. (a) All particles are in the same
pure state. Thus, the individual pseudo spins are polarized in the same
direction. Such a pure symmetric state has the maximum collective spin
length Jmax = N/2. (b) Distinguishable particles can have spin states that
are not symmetric under particle exchange, which results in a reduced length
of the collective spin as shown in this example.

2.3.2. The multi-particle Bloch sphere

For an ensemble of N particles a collective spin can be obtained by adding up the
individual spins.

J =
N∑
i=1

s(i), (2.24)

where s(i) denotes the spin operator of the ith particle. Obviously, the collective opera-
tors again obey the commutation relations for angular momentum operators

[Jk, J` ] = i εk`m Jm, (2.25)

resulting in the uncertainty relations

∆Jk ∆J` ≥
1

2
| 〈Jm〉 |. (2.26)

It is straightforward to show that pure spin states which are symmetric with respect
to particle exchange are spin Jmax = N/2 states (see Appendix A.1). A simple example
of a not fully symmetric state with reduced spin length J < N/2 is shown in Fig. 2.5b.
Here and in the following we approximate the spin length |J | =

√
J(J + 1) ≈ J which

causes only small deviations in the case of large particle numbers considered in this work.
In the symmetric case, the collective spin operators can be written in the form [57,58].

Jx =
1

2
(a†b+ b†a) (2.27)

Jy =
1

2i
(a†b− b†a) (2.28)

Jx =
1

2
(a†a− b†b), (2.29)
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2.3. The Bloch sphere representation

where a and b are the bosonic annihilation operators for a spin up and a spin down
particle respectively.

As a first important example for a symmetric state on this generalized Bloch sphere,

let us consider a collection of particles, each being in the s
(i)
x eigenstate with

〈
s

(i)
x

〉
= 1/2.

Hence, the expectation value of the collective spin of this so-called coherent spin state

is pointing in x-direction 〈Jx〉 =
∑

i

〈
s

(i)
x

〉
= N/2 = J . Again, the total spin has to be

depicted as a cone as shown in figure 2.5, since its length |J | =
√
J2 =

√
J(J + 1) is

larger than its x-component. The fluctuations in the components Jy and Jz represented
by the circle at the end of the cone originate from the fluctuations of the individual
spins. The radius of this circle

√
J2 − 〈J2

x〉 =
√
J =

√
N/2 is connected with shot-noise

fluctuations in the following way: For uncorrelated particles we have ∆Jy = ∆Jz and
thus

(∆Jy)
2 + (∆Jz)

2 = J2
y + J2

z = (J)2 − J2
x = J(J + 1)− J2 = J (2.30)

⇒ ∆(N↑ −N↓) = 2∆Jz =
√

2J =
√
N (2.31)

Not only shot noise but also the Heisenberg limit is captured in the Bloch sphere
representation as we will see now.

2.3.3. The Heisenberg uncertainty for phase and particle number
difference

θ

φ

Jx

Jz

Jy

J ><

(a)

Jx

Jz

Jy

(b)

Δφ

ΔJz

Figure 2.6.: A multi-particle state on the generalized Bloch sphere. (a) The
expectation value of the collective spin 〈J〉 can be depicted on a sphere with
radius J ≤ N/2. (b) The quantum fluctuations of collective spin states are
depicted as an ellipse around its mean value. These unavoidable fluctuations
are in close connection to fluctuations in the phase and number difference.

The Heisenberg uncertainty relation between phase and number difference that was
used to derive the Heisenberg limit of phase sensitivity can be derived from the uncer-
tainty relations of the collective spin operators (2.26). For this purpose, we define the
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2. Entanglement and interferometry

angle θ and the phase difference ϕ = ϕ↑ − ϕ↓ for an arbitrary spin state in analogy to
Eq. (2.21).

〈J〉 =

〈Jx〉〈Jy〉
〈Jz〉

 = r

sin θ cosϕ
sin θ sinϕ

cos θ

 (2.32)

with r =
√
〈J〉2 < |J | as shown in Fig. 2.6. Without loss of generality we can choose

the coordinates such that 〈Jy〉 = 0. Hence, we can write

〈Jx〉 = r sin θ (2.33)

∆Jy ≈ r sin θ∆(ϕ↑ − ϕ↓) (2.34)

Using this and that Jz = 1
2
(N↑−N↓) by definition, we can get the desired number-phase

uncertainty relation from the uncertainty relations (2.26).

∆Jy ∆Jz ≥
1

2
| 〈Jx〉 | (2.35)

⇒ r sin θ∆(ϕ↑ − ϕ↓)
1

2
∆(N↑ −N↓) ≥

1

2
r sin θ (2.36)

⇔ ∆(ϕ↑ − ϕ↓) ∆(N↑ −N↓) ≥ 1, (2.37)

For a high interferometric phase sensitivity it is beneficial to reduce the fluctuations
∆Jz at the expense of ∆Jy as we will see in section 2.4. In the picture used here, this
corresponds to reduced fluctuations of the number difference at the expense of larger
fluctuations of the phase difference. After the first beam splitter of the interferometer,
the low fluctuations of the number difference are converted into low fluctuations of the
phase difference. This enables a precise measurement of the phase shift φ between the
two beam splitters of the interferometer.

2.3.4. The interferometer sequence in the Bloch sphere
representation

Not only the spin states, but also typical state manipulation can be represented on the
Bloch sphere. To understand the action of an interferometer sequence on a given input
state, we need to know the effect of a beam splitter and a phase shift in the Bloch sphere
representation.

A beam splitter transfers a particle in one of the two spin states to a superposition

|↑〉 → cos(θ/2) |↑〉 − i sin(θ/2) |↓〉 (2.38)

|↓〉 → −i sin(θ/2) |↑〉+ cos(θ/2) |↓〉 (2.39)

and in this basis the corresponding operator R(θ) can be written as

Rθ =

(
cos(θ/2) −i sin(θ/2)
−i sin(θ/2) cos(θ/2)

)
. (2.40)
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Jx

Jz

Jy

(a)

Jx

Jz

Jy

(b)

Φ

Jx

Jz

Jy

(c)

Φ

Figure 2.7.: Interferometer sequence on the Bloch sphere. (a) The first beam
splitter rotates the collective spin by π/2 around the x-axis. (b) During an
evolution time the state picks up a phase difference φ which corresponds to
a rotation of the collective spin around the z-axis. (c) The second beam
splitter is again a π/2 rotation about the x-axis. In total the collective spin
experienced a rotation of φ around the y-axis.

The comlex i is necessary to obtain a unitary operator R†θRθ = 1 and a balanced 50:50
beam splitter is obtained for θ = π/2. It is easy to see that this corresponds to a rotation

of the single particle spin s(i) around the x-axis Rθ = exp(−iθ s(i)
x ) [57].

s(i) =

s
(i)
x

s
(i)
y

s
(i)
z

→
1 0 0

0 cos θ − sin θ
0 sin θ cos θ


s

(i)
x

s
(i)
y

s
(i)
z

 (2.41)

For multiple particles, each spin is rotated in the same way R⊗Nθ = Rθ ⊗Rθ ⊗ · · · ⊗Rθ.
Since the collective spin is just the sum of the individual spins R⊗Nθ = exp(−iθ Jx).

J =

JxJy
Jz

→
1 0 0

0 cos θ − sin θ
0 sin θ cos θ

JxJy
Jz

 (2.42)

A relative phase shift ϕ of the two states is described up to a global phase by

|↑〉 → eiϕ/2 |↑〉 (2.43)

|↓〉 → e−iϕ/2 |↓〉 (2.44)

with the corresponding operator

Rϕ =

(
eiϕ/2 0

0 e−iϕ/2

)
. (2.45)

It is easy to see that this corresponds to a rotation of the individual spins around the
z-direction and for the collective spin we thus get

J =

JxJy
Jz

→
cosϕ − sinϕ 0

sinϕ cosϕ 0
0 0 1

JxJy
Jz

 . (2.46)
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2. Entanglement and interferometry

We can hence represent the action of an interferometer sequence as depicted in Fig. 2.7.
The action of the full interferometer sequence on the collective spin is obtained from a
multiplication of the matrices exp(−i π

2
Jx) for the beam splitters and the matrix for the

phase shift exp(−i θ Jz).

U = e−i
π
2
Jxe−i θ Jze−i

π
2
Jx =

cosφ 0 sinφ
0 −1 0

sinφ 0 − cosφ

 (2.47)

This corresponds to a rotation around the y-axis by the phase shift φ and spatial in-
versions. The spatial inversions are of minor importance for the understanding the
interferometer sequence and are often neglected. After the interferometer sequence we
measure 〈Jz〉out = −N

2
cosφ for an input state with a collective spin pointing z-direction

〈Jz〉in = N
2

. Hence, for a coherent spin state with an initial expectation value 〈Jz〉 = N
2

the particle number difference given by 〈Jz〉 after the interferometer sequence can be
used to estimate the phase as explained in section 2.2.1. However, other input states
can be beneficial for the estimation precision as we will see now.

2.4. Spin squeezing and entanglement

+ + + = ΔJz ΔJy

Figure 2.8.: Collective spin of a spin-squeezed state. In a spin-squeezed state,
correlations between the individual spins lead to reduced fluctuations in the
number difference ∆Jz at the expense of increased fluctuations in ∆Jy as
schematically shown here [59]. The collective spin can hence be depicted as
an elliptical cone [57].

As explained in section 2.2.2, entangled states can be used to improve the sensitivity of
interferometers. Most commonly so-called spin-squeezed states are used for this purpose,
which will be introduced in this section. In the limit of large particle numbers, spin
squeezing turns out to imply quadrature squeezing, which is most commonly used in
optics [60].

2.4.1. Interferometric gain and the spin-squeezing parameter

In a standard interferometer, the measured mean number of particles at the output port
in terms of Jz is used to estimate the phase shift φ. From the Bloch sphere representation
of the interferometer sequence presented in the last section we see that the expectation
value of this output signal is

〈Jz〉out = sinφ 〈Jx〉 ≈ φ 〈Jx〉 (2.48)
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for an input state with 〈Jy〉 = 〈Jz〉 = 0. Error propagation thus leads to a phase
estimation sensitivity of

∆φest =
∆Jz

|∂ 〈Jz〉 /∂φ|
=

∆Jz
〈Jx〉

. (2.49)

For a coherent state this leads to the shot-noise limit of sensitivity ∆φest = 1/
√
N .

Hence, the so-called spin-squeezing parameter [61]

ξ =
√
N

∆Jz
〈Jx〉

(2.50)

identifies states with enhanced interferometric sensitivity ∆φest = ξ/
√
N < 1/

√
N , the

so-called spin-squeezed states, by ξ < 1. These are the only useful entangled states
for phase estimation by measuring the mean particle numbers at the output of an in-
terferometer. However, other quantities can be used for phase estimation beyond shot
noise using other classes of entangled states. A realization of such an unconventional
quantum-enhanced interferometer will be presented in chapter 5.

2.4.2. The spin-squeezing parameter as an entanglement witness

Figure 2.9.: Separable state with sub-shot-noise number fluctuations. An easy
example of a separable, not fully symmetric state with vanishing fluctuations
in ∆Jz is depicted here: Two particles are prepared in a spin up state |↑〉
and two in a spin down state |↓〉. The spin length is largely reduced to
|J | =

√
N/2. Such a state can only be prepared for distinguishable particles.

From the definition (2.50) it is easy to see that a necessary condition for spin-squeezing
is sub-shot-noise fluctuations in the particle number difference of the state ∆Jz <

√
N/2.

The reduced uncertainty may stem from correlations between the individual spins due
to entanglement as illustrated in Fig. 2.8. Indeed, for symmetric states, it is easy to
show that sub-shot-noise fluctuations are sufficient to prove entanglement [62] (see ap-
pendix A.2). On the other hand, it is easy to find examples for separable, not fully
symmetric states with sub-shot-noise fluctuations as shown in fig 2.9.

The other important quantity for spin squeezing is the length of its mean 〈Jx〉. For
a reduced mean value 〈Jx〉 < N

2
the amplitude of the signal at the output port of an

interferometer decreases.

〈Jz〉out = sinφ 〈Jx〉 ≈ φ 〈Jx〉 (2.51)

In other words, the mean spin in x-direction 〈Jx〉 gives the contrast of the interferometer.
The maximum value 〈Jx〉 = N/2 is only achievable for pure symmetric states. In this
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sense, the length of the mean spin 〈Jx〉 is also a measure of the symmetry of the state. It
can be shown that all spin-squeezed states are entangled [63] (see appendix A.2), since
they need to show both, sub-shot-noise fluctuations and a large mean spin.

Due to the Heisenberg uncertainty (2.26) this is only possible at the cost of increased
fluctuations in ∆Jy. Hence, the quantum fluctuations of a spin-squeezed state have to
be depicted by an ellipse rather than a circle as shown in figure 2.8.

2.5. The phase sum and the total number of particles

K
z

K
x

K
y

φ
+

Figure 2.10.: Representation of number and phase sum on a cone. A state in
the (Kx, Ky, Kz) space can be depicted on the surface of a cone [57]. The
angle with respect to the x-axis gives the phase sum and the projection on
the z-axis gives < Kz >= 1

2
(N + 1)

If we have a third state |0〉 besides the two states |↑〉 and |↓〉, a general pure one-
particle state can be written in the form

|ψ〉 = |a|eiϕ↑ |↑〉+ |b|eiϕ↓ |↓〉+ |c|eiϕ0 |0〉 . (2.52)

This can be brought into the form

|ψ〉 =
√

1− |c|2 eiϕ+/2
(
eiϕ/2 cos(θ/2) |↑〉+ e−iϕ/2 cos(θ/2) |↓〉

)
+ |c| |0〉 (2.53)

if we choose ϕ0 = 0. Compared to the case with only two states in Eq. (2.20), here the
phase sum ϕ+ = ϕ↑ + ϕ↓ is important since the third state provides a reference phase.
Additionally, the probability for the particle to be found in the {|↑〉 , |↓〉} subspace given
by 1− |c|2 can vary.

In the case of symmetric many-particle states, both the phase sum and the number
of particles in the {|↑〉 , |↓〉} subspace can be described by the Hermitian operators [57]

Kx =
1

2
(a†b† + ab) (2.54)

Ky =
1

2i
(a†b† − ab) (2.55)

Kz =
1

2
(a†a+ bb†). (2.56)
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2.5. The phase sum and the total number of particles

As before, the operators a and b are the annihilation operators for a particle in the state
|↑〉 or |↓〉, respectively. Obviously, the operator Kz = 1

2
(a†a+ b†b+1) measures the total

number of particles N = N↑+N↓. If we calculate the expectation value of the vector K
for a coherent state a |α〉 = α |α〉 in both spin states |ψ〉 = |α〉 ⊗ |β〉 with α = |α|eiϕ↑ ,
β = |β|eiϕ↓

〈K〉 =

〈Kx〉
〈Ky〉
〈Kz〉

 =

 |α||β| cos(ϕ+)
−|α||β| sin(ϕ+)

1
2
(|α|2 + |β|2 + 1)

 (2.57)

we see that the x- and y- components of this vector are useful to define the phase sum
ϕ+.

The commutation relations for the operators are

[Kx, Ky ] = −iKz

[Ky, Kz ] = iKx (2.58)

[Kz, Kx ] = iKy

and they thus have Heisenberg uncertainties

∆Kk ∆K` ≥
1

2
| 〈Km〉 | (2.59)

similar to the collective spin operators (see Eq. (2.1)). Hence, we can derive a Heisenberg
uncertainty between number and phase sum

∆(ϕ↑ + ϕ↓) ∆(N↑ +N↓) ≥ 1 (2.60)

in almost the same way as we derived the Heisenberg uncertainty relation between
number and phase difference in section 2.3.3.

It can be shown that all operators Kk commute with Jz. Furthermore, the operators
have to fulfil

K2
z −K2

x −K2
y = Jz(Jz + 1). (2.61)

For Jz = 0 the vector K has thus to be on the surface of a cone as depicted in Fig. 2.10.
In summary, this shows that the phase sum ϕ+ = ϕ↑ + ϕ↓ and the total number of

particles N = N↑ + N↓ are a pair of conjugate variables. An other pair of conjugate
variables is the phase difference ϕ = ϕ↑−ϕ↓ and the number difference 2Jz == N↑+N↓
as we have seen in section 2.3.3. We will see in section 3.5 that the process of spin
dynamics dynamically squeezes the number difference 2Jz and the phase sum, while the
total number of particles and the phase difference are anti-squeezed.
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3. Spin dynamics

In the last chapter we have seen that symmetric many-body states with sub-shot-noise
fluctuations are entangled and can be used to improve the interferometric phase sensi-
tivity beyond the shot-noise limit. In our experiments we use spin dynamics in a 87Rb
Bose-Einstein condensate (BEC) to create such ensembles. In this chapter the theory of
spin-changing collisions will be introduced and in the next chapter we will present the
experimental sequence for the creation of the 87Rb BEC.

3.1. Spin-changing collisions

F=2

F=1

m = -2F -1 0 +1 +2
G G‘

p
o

te
n

ti
al

 e
n

er
g

y,
E

interatomic distance, | - ‘|r r

(a)(b)

F F‘

Figure 3.1.: Origin of spin-changing collisions. (a) At large interatomic distances
|r−r′|, the internal state of 87Rb atoms is well described by there hyperfine
spins F and F ′. During a collision at small interatomic distances |r − r′|,
theses hyperfine spins couple to a total spin G = F +F ′. The molecular po-
tential depends on this total spin as well as the scattering lengths aG. After
a collision when the atoms are spatially well separated, there internal state

can be described by two hyperfine spins F̃ and F̃
′

again. These hyperfine
spins might have changed compared to the initial hyperfine spins before the
collision. If this is the case the collision is called a spin-changing collision.
(b) 87Rb atoms in the mF = 0 level can collide and thereby be transferred
to the mF = ±1 Zeeman levels without changing the projection of the total
spin mF + m′F . In F = 2, the spin-changing collisions from mF = 0 to
mF = ±2 are also possible but much slower and can be neglected at short
time scales.
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3. Spin dynamics

The internal state of a 87Rb atom at relatively low magnetic fields of several Gauss
is best described by the hyperfine spin F with length F 2 = F (F + 1) and a projection
on the magnetic field axis given by mF . The hyperfine state of a 87Rb atom |F,mF 〉
can be either in the F = 2 or the F = 1 manifold and the different projections mF =
F, F − 1, . . . ,−F split up in several Zeeman levels in a magnetic field as shown in
Fig. 3.1a. This description breaks down if two atoms approach each other during a
collision. Interactions between the atoms lead to a coupling of the two hyperfine spins
|F,mF 〉 and |F ′,m′F 〉. They form a total spin G = F + F ′ as depicted in Fig. 3.1b
and their combined internal state is given by |G,mG〉. After the collision the atoms fly
apart and, eventually, their interaction becomes negligible. Thus, their internal states
are again well described by the hyperfine spins F . However, these quantities may have
changed

|F,mF 〉 |F ′,m′F 〉 → |F̃ , m̃F 〉|F̃ ′, m̃′F 〉. (3.1)

Collisions involving a change of the hyperfine manifold F = 2 → F̃ = 1 release a large
amount of energy and lead to a loss of atoms in the experiments. Such collisions will
thus be treated together with other loss mechanisms. Here, we restrict our description
to collisions within the same manifold F = F ′ = F̃ = F̃ ′. At the ultra-low temperatures
in the 87Rb BEC only s-wave collisions are possible [64]. These collisions do not change
the orbital angular momentum of an atom. For the conservation of the total angular
momentum, the total spin projection mF + m′F = m̃F + m̃′F has to be conserved by a
spin-changing collision as well. Hence, if we start in the Zeeman levels mF = m′F = 0
only the collisions depicted in Fig. 3.1a are allowed.

In our experiments, we use these spin-changing collisions to transfer atoms from a 87Rb
condensate in mF = 0 to the Zeeman levels mF = ±1. As we will see in section 3.3,
the coupling from mF = m′F = 0 to m̃F = −m̃′F = ±2 in the F = 2 manifold is more
than two orders of magnitude smaller and can be neglected at the time scales of our
experiments. This process has a strong analogy to parametric amplification in optics
and produces entangled atoms in the output modes.

3.2. Analogy to parametric down conversion

The most commonly used tool in quantum optics for the creation of entangled photons is
spontaneous parametric down conversion [65]. In this process, a strong pump beam with
frequency νp enters a nonlinear crystal. The nonlinearity leads to the creation of the
so-called signal and idler beams at frequencies νs and νi such that energy conservation
νp = νs + νi is fulfilled. The signal and idler beams are highly entangled and can be
used for Bell tests, quantum teleportation and many other applications in quantum
information [65]. In the degenerate case νs = νi = νp/2, the process can be used to
create squeezed light [66], which has been successfully used to perform interferometry
beyond the shot-noise limit [67].

Spin dynamics in cold atoms is analogous to optical parametric down conversion and
thus offers exciting perspectives for the creation of non-classical entangled states of
atoms. A condensate of 87Rb atoms in the mF = 0 state can be seen as the analogue of
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3.3. Theoretical description
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νp
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Figure 3.2.: Analogy to parametric down conversion. (a) The process of paramet-
ric down conversion is started by shining a strong pump beam at a frequency
νp into a nonlinear crystal. The nonlinearity enables the conversion of pho-
tons from the pump beam into entangled photons in the so-called signal and
idler beams with frequencies νs and νi. (b) Spin-changing collisions can be
seen as an analogue in atom optics. The BEC in mF = 0 acts as a strong
pump. The nonlinear spin-changing collisions populate the modes mF = ±1
which are the analogue to the signal and idler beams.

the pump beam in optics. The nonlinearity is intrinsic to the spin-changing collisions.
The atoms that have been transferred to the mF = ±1 levels are highly entangled and
correspond to the photons in the signal and idler beam.

In the same way as in the optical case, the amplification of the output modes can be
triggered by a classical seed or vacuum fluctuations [31]. While the vacuum fluctuations
in optics correspond to fluctuations of the electromagnetic field, the vacuum fluctuations
in the case of spin dynamics are the unavoidable fluctuations in the spin orientation
discussed in section 2.3.3.

In the next section, we will see that spin-changing collisions can be described formally
by the same Hamiltonian as parametric down conversion on short time scales.

3.3. Theoretical description

At cold temperatures, a collision can be described by the 2-particle interaction operator

Ũ = δ(r − r′)gG with gG =
4πaG
m

(3.2)

for a given total spin G. Here, r and r′ are the positions of the atoms and aG is
the scattering length. Since the molecular potential depends on the total spin G a
different scattering length aG can be measured for every possible value of G. The group
of E.Tiemann at the Leibniz Universität Hannover yielding calculated these scattering
lengths from a complex molecular potential analysis.

F = 1 a0 = 101.6(2)aB, a2 = 100.3(2)aB
F = 2 a0 = 87.9(2)aB, a2 = 91.2(2)aB, a4 = 99.0(2)aB

(3.3)
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3. Spin dynamics

in units of the Bohr radius aB. To express the operator for all possible collisions [68]

Ũ = δ(r − r′)U with U =
∑
G

gG

G∑
mG=−G

|G,mG〉 〈G,mG| (3.4)

in terms of the atomic internal states |F,mF 〉 |F ′,m′F 〉 we need to expand U by using
the Clebsch-Gordan coefficients 〈G,mG| |F,mF 〉 |F ′,m′F 〉. This enables us to calculate
the matrix elements

Um̃F ,m̃′F ,mF ,m′F = 〈F̃ , m̃F |〈F̃ ′, m̃′F | U |F,mF 〉 |F ′,m′F 〉 (3.5)

describing the spin-changing collision of Eq. (3.1).
In the experiments, we start with all atoms in the mF = 0 level. Since only a small

fraction of atoms will be transferred to the mF = ±1 levels at short time scales, we can
neglect collisions that do not involve atoms in mF = 0. Due to symmetry arguments,
several of the remaining matrix elements have the same value and we end up with only
three different terms [69]

• U0 = U0,0,0,0 describes the collision of two atoms in mF = 0 without spin change.

• U1 = U±1,∓1,0,0 = U0,0,±1,∓1 describes the collision of two atoms in mF = 0 under-
going a spin change to mF = ±1 and the inverse process.

• U10 = U±1,0,±1,0 = U±1,0,0,±1 = . . . describes the collision of one atom in mF = 0
and the other one in mF = ±1. This parameter can be shown to be 2U1,0 = U0+U1.

An evaluation of Eq.(3.5) yields

F = 1 U0 =
g0 + 2g2

3
= 779.051

Hz

1014 cm−3

U1 =
g2 − g0

3
= −3.351

Hz

1014 cm−3

F = 2 U0 =
7g0 + 10g2 + 18g4

35
= 731.241

Hz

1014 cm−3

U1 =
−7g0 − 5g2 + 12g4

35
= 25.787

Hz

1014 cm−3

(3.6)

For typical densities in a BEC in the range of n = 1014 cm−3, this leads to time scales
t ∼ 1

nU1
of several tens of milliseconds for the spin-changing collisions. The matrix ele-

ment U2 = U±2,∓2,0,0 = U±2,∓2,0,0 describing collisions of two atoms in mF = 0 undergoing
a spin change to mF = ±2

U2 =
7g0 − 10g2 + 3g4

35
= 6.629 · 10−2 Hz

1014 cm−3
(3.7)

is found to be more than two orders of magnitude smaller than U1. A population of the
levels mF = ±2 can thus be neglected at the relevant experimental time scales.
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3.4. Spin dynamics resonances

Let us now focus on the description of the spin-changing collisions, which transfer
atoms from mF = 0 to mF = ±1. In second quantisation, the corresponding operator
can be written in the form

H1 = i2U1

(
C∗a†0 a

†
0 a+1a−1 − Ca†+1a

†
−1a0 a0

)
. (3.8)

Here, the bosonic annihilation operators amF remove one particle in the corresponding
Zeeman level with the spatial wave function φmF (r). C is the overlap integral of these
spatial wave functions

C = i

∫
φ∗+1(r)φ∗−1(r)φ0(r)φ0(r) dr. (3.9)

This operator has the same form as the nonlinear part of the Hamiltonian for parametric
down conversion [70], showing the strong analogy between these processes.

For a large initial condensate, we can make use of the parametric approximation
a0 ≈

√
N0 yielding

H1 ≈ i
(

Ω∗a+1a−1 − Ωa†+1a
†
−1

)
with Ω = 2CN0U1. (3.10)

If this was the only part in the Hamiltonian, the corresponding time evolution operator
would be the two-mode squeezing operator [70]

U(t) = e−itH1 = etΩ
∗ab−tΩa†b† = S(ξ) (3.11)

with ξ = tΩ, a = a+1 and b = a−1.
In the next section, we will add the missing part for the full Hamiltonian. We will

see that there is a resonance condition that has to be fulfilled for an efficient transfer of
atoms to the mF = ±1 levels.

3.4. Spin dynamics resonances

In the last section, we focused on the part H1 of the Hamilton operator describing
the spin-changing collisions. To obtain the full Hamiltonian for the mF = ±1 states,
we have to consider the single particle Hamiltonian for these states in the absence of
interactions. This can be split into one part for the external degrees of freedom and one
for the internal degrees of freedom in the absence of spin-orbit coupling.

First, we have the operator Heff for the external degrees of freedom, which can be
written as

Heff = − ~2

2m
∆ + Veff(r), (3.12)

in first quantization. It accounts for the kinetic and potential energy of an mF = ±1
atom in an effective potential. The effective potential

Veff(r) = Vext(r) + (U0 + U1)n0(r)− µ (3.13)
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Figure 3.3.: Effective potential and instability rates. (a) The effective potential
(blue line) for atoms in mF = ±1 is a sum of the external confining po-
tential (black parabola) and the repulsive mean-field interaction with the
condensate in mF = 0 (grey area). It supports several eigenenergies En
(dashed horizontal lines) and corresponding eigenstates (black lines). (b)
The instability rate Im(λ) reaches its maximal value |Ω| if the change in the
internal energy q cancels the change in external energy En. As a function
of q, the instability rate is a half circle with radius |Ω| centred at En. (c)
When all eigenstates of the effective potential are taken into account, the
instability rate as a function of q shows a multi-resonant structure.

is the sum of the external confining potential Vext(r) and the mean field interaction with
the condensate in mF = 0, which has a particle density n0(r). The chemical potential
µ is subtracted to set the zero energy point to the energy of an atom in the mF = 0
condensate. A typical effective potential is sketched in Fig. 3.3a.

We parametrize the internal energy by the parameter 2q, which denotes the excess
internal energy that two atoms in the states mF = +1 and mF = −1 have compared to
two atoms in the mF = 0 state. This energy difference can be manipulated as we shall
see in sections 4.2 and 5.3.

To express the Hamiltonian in second quantization, we choose the bosonic annihilation
operators a±1 such that they correspond to particles in an eigenstate of the effective
potential with energy En. We assume that atoms in mF = +1 and mF = −1 have the
same spatial wave function. This approximation is justified by the fact that the integral
(3.9) typically becomes very small if this is not the case. With this we arrive at

H = (En + q)(a†+1a+1 + a†−1a−1) + i
(

Ω∗a+1a−1 − Ωa†+1a
†
−1

)
, (3.14)

where we used Eq. (3.10) for the interaction part H1 of the Hamiltonian.

Now, we can use the Hamiltonian to calculate the transfer of atoms from the mF = 0
condensate to the mF = ±1 states. Therefore, we use the time evolution of the bosonic
operators in the Heisenberg picture.

i
d

dt
a+1 = [H, a+1 ] = −(En + q)a+1 + iΩa†−1 (3.15)

i
d

dt
a†−1 =

[
H, a†−1

]
= (En + q)a†−1 + iΩ∗a+1 (3.16)
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3.4. Spin dynamics resonances

with ~ = 1. This can be rewritten as

i
d

dt

(
x
y

)
=

(
−En − q iΩ
iΩ∗ En + q

)(
x
y

)
(3.17)

where a vector (x, y)ᵀ corresponds to an operator xa+1 + ya†−1 and for (x, y)ᵀ = (1, 0)ᵀ

and (x, y)ᵀ = (0, 1)ᵀ we regain the above equations. If we find an eigenvector (xλ, yλ)
ᵀ

with eigenvalue λ of the above matrix, we have a corresponding operator b with a simple
time evolution

b(t) = xλ a+1(t) + yλ a
†
−1(t) = e−itλb(0). (3.18)

which can be used to express the time evolution of the operators a+1 and a†−1. The de-
scribed technique is the so-called Bogolubov transformation [71]. To find the eigenvalues
λ we have to solve the equation

(−En − q − λ)(En + q − λ) + |Ω|2 = 0, (3.19)

yielding
λ = ±

√
(En + q)2 − |Ω|2. (3.20)

These eigenvalues can be purely imaginary for

(En + q)2 − |Ω|2 < 0 (3.21)

leading to an exponential time dependence for the operators b± corresponding to the
eigenvectors

b±(t) = e∓itλb±(0) = e±t Im(λ)b±(0). (3.22)

Then, for sufficiently long times t� Im(λ) and Im(λ) > 0 we can approximate b−(t) ≈ 0
and get

〈N+1(t)〉 =
〈
a†+1(t)a+1(t)

〉
∼
〈
b†+(t)b+(t)

〉
= et2 Imλ

〈
b†+(0)b+(0)

〉
(3.23)

In this resonant regime, we thus expect an exponential growth of the population of atoms
in the mF = ±1 states.

Note that the positive imaginary part of Eq. (3.20) describes a half circle as a function
of q centred at −En as shown in Fig. 3.3b. Both, the width of the resonant regime and
the maximum exponential growth rate Im(λ) is thus given by |Ω|. This can be seen as a
consequence of the time-energy uncertainty principle. For the resonant case En + q = 0,
the spin change conserves the energy, since the change in external energy En cancels
with the change in internal energy q. If the time scale of the collision, given by ∼ 1

|Ω| , is

sufficiently short, energy conservation can be violated by at most ±|Ω|.
By tuning q we can reach the resonant case q = −En. In this case H = H1 and the

time evolution will be the two-mode squeezing operator as shown in Eq. (3.11). If q is
not exactly tuned to resonance but has a detuning of δ = En + q, we can split off the
time evolution of the first part of the Hamiltonian (3.14) by changing to the interaction
picture.

H(t) = i
(

Ω∗a+1a−1e
−i2δt − Ωa†+1a

†
−1e

i2δt
)

(3.24)
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3. Spin dynamics

Hence, the complex squeezing parameter ξ ∝ Ω ei2δt changes its angle in the complex
plane with time. Since S(−ξ) = S−1(ξ) after a half-turn in the complex plane at t = π

2δ

the squeezing counteracts the squeezing that has been achieved at the beginning of the
time evolution. This leads to an oscillation of the population in the mF = ±1 states
as observed in Ref. [72]. For a large detuning δ � |Ω| the amplitude of this oscillation
becomes negligible and the system becomes stable in mF = 0.

So far, we neglected all but one eigenmode of the effective potential, but obviously all
of these eigenmodes can be populated by spin dynamics for the right tuning of q. The
full Hamiltonian is thus a sum

H =
∑
n

H(n) (3.25)

of Hamiltonians of the form (3.14) with the energies En of the corresponding eigenmodes

and bosonic operators a
† (n)
+1 and a

† (n)
−1 creating particles in these eigenmodes. This leads

to a rich resonance structure as depicted in Fig. 3.3c which depends on the form of
the effective potential [30, 73]. In the regions of q where different resonances overlap,
particles can be created in superpositions of eigenmodes of the effective potential. In
section 5.3 and 6.2 we will see how we can experimentally tune the energy of the internal
state to change q and thereby measure such a resonance structure.

3.5. Properties of the two-mode squeezed vacuum

Kz

Kx

Ky

Kz

Kx

Ky

½ Jx

Jz
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Figure 3.4.: Representations of the two-mode squeezed vacuum. (a) Represen-
tation of the vacuum state on the cone introduced in section 2.5 follow-
ing Ref. [57]. This state evolves to the two-mode squeezed vacuum state
shown in (b). The projection on the z-axis reflects its increased fluctua-
tions in the total number of atoms and its orientation along the x-axis its
well defined phase sum ϕ+ = ϕ↑ + ϕ↓. The two-mode squeezed vacuum
is a superposition of twin-Fock states |N↑, N↓〉 with different total number
of atoms N = N↑ + N↓. These twin-Fock states can be represented as a
ring around the equator of the generalized Bloch sphere (c). The vanish-
ing width in z-direction reflects the states well defined number difference
2Jz = N↑ − N↓ = 0. The collective spin can point in any direction in
x-y-plane due to the completely undefined phase difference of the state.
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3.5. Properties of the two-mode squeezed vacuum

In the last section, we saw that the operator for time evolution with spin dynamics
tuned to a resonance is just the two-mode squeezing operator S(ξ). Here, we choose
the levels mF = ±1 as spin up and down states of a pseudo spin-1

2
system and we can

rename a+1 = a and a−1 = b to be consistent with the equations derived in chapter 2.
Hence, if we start with no atoms in the mF = ±1 levels we have a vacuum state in both
levels |N↑, N↓〉 = |0, 0〉 and after time evolution we get

|ψ(t)〉 = S(ξ) |0, 0〉 with ξ = Ωt (3.26)

the so-called two-mode squeezed vacuum. Here, we will summarize some of the properties
of this highly entangled output state of resonant spin dynamics.

First, let us calculate the mean number 〈N+ +N−〉 =
〈
a†a+ b†b

〉
of atoms that are

transferred to the mF = ±1 levels. As detailed in the previous section we can find the
time evolution of the bosonic operator a(t) by diagonalizing Eq.(3.17) in the resonant
case En + q = 0 yielding

b+(t) =
1

2
(a(t) + b†(t)) = e|Ω|tb+(0) (3.27)

b−(t) =
1

2
(a(t)− b†(t)) = e−|Ω|tb−(0). (3.28)

This can be solved for a(t).

a(t) = b+(t) + b−(t) = cosh(|Ω|t)a+ sinh(|Ω|t)b† (3.29)

The time evolution of the number operator is thus

N↑(t) = a†(t)a(t)

= cosh2(|Ω|t)a†a+ cosh(|Ω|t) sinh(|Ω|t)
[
a†b† + ab

]
(3.30)

+ sinh2(|Ω|t)bb†

where we omitted to write the time dependence A(t = 0) = A for operators at t = 0. If
we start with the vacuum state, we have

〈
a†a
〉

=
〈
b†b
〉

=
〈
a†b†

〉
= 〈ab〉 = 0 and hence

〈N↑(t)〉 = sinh2(|Ω|t) (3.31)

Since the atoms are produced pairwise in the levels mF = ±1 we get 〈N↑(t)〉 = 〈N↓(t)〉.
It is instructive to use a second method to calculate this result for the mean number

of atoms 〈N↑(t) +N↓(t)〉 by using the vector operator K introduced in section 2.5. If
we assume for simplicity that Ω = Ω∗ is real, then H = 2ΩKy and the time evolution of
the K operator is

i
d

dt
K = 2Ω [Ky,K ] (3.32)

Using the commutation relations for the components of K from Eq. (2.58) one can find
(see Appendix C and [57])

K(t) =

Kx(t)
Ky(t)
Kz(t)

 =

cosh(2Ωt) 0 sinh(2Ωt)
0 1 0

sinh(2Ωt) 0 cosh(2Ωt)

Kx

Ky

Kz

 (3.33)
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If we start with the vacuum state, we have

〈K(t = 0)〉 =
1

2

0
0
1

 → 〈K(t)〉 =
1

2

sinh(2Ωt)
0

cosh(2Ωt)

 (3.34)

as depicted in Fig. 3.4a. By definition Kz = 1
2
(N↑ +N↓ + 1) and hence,

〈N(t)〉 = 〈N↑(t) +N↓(t)〉 = 2 〈Kz〉 − 1 = cosh(2Ωt)− 1 = 2 sinh2(Ωt), (3.35)

and we recover the exponential growth found in Eq. (3.31).

Not only the mean number of atoms but also its variance increases exponentially with
time [70]

(∆N)2 = sinh2(2|Ω|t). (3.36)

In the meanwhile, the fluctuations in Ky stay on the same level as depicted in figure 3.4b
since i d

dt
K2
y = 2Ω

[
Ky, K

2
y

]
= 0. This means that the fluctuations of the phase sum

ϕ+ = ϕ↑ + ϕ↓ are exponentially reduced.

(∆ϕ+)2 ≈ (∆Ky)
2

〈K2
z 〉

=
1

〈(N + 1)2〉
≈ 1

〈N2〉
=

1

4 sinh2(|Ω|t)
(3.37)

In total, we have low fluctuations of the phase sum, which come at the expense of
high fluctuations of the number of atoms, since these quantities are connected by the
Heisenberg uncertainty of Eq. (2.60).

The other two quantities that are connected by a Heisenberg uncertainty given by
Eq. (2.1) are the number difference N↑−N↓ = 2Jz and the phase difference ϕ = ϕ↑−ϕ↓.
Initially, we have 〈Jz〉 = ∆Jz = 0 for the vacuum state. Since the Hamiltonian commutes
with Jz, this does not change during the time evolution. Intuitively, as the atoms in
mF = ±1 have been transferred pairwise, the number of atoms in both states is always
equal without any fluctuations. Hence, we can write the two mode squeezed vacuum
state as a superposition of twin-Fock states |N↑, N↓〉 = |n, n〉 having the same number
of particles n in the up and down state yielding [70]

S(Ωt) |0, 0〉 =
1

cosh(|Ω|t)

∞∑
n=0

(−1)neinθ tanh(|Ω|t)n |n, n〉 with Ω = |Ω|eiθ (3.38)

The well defined atom number difference N↑−N↓ = 0 leads to a completely undefined
phase difference. Projecting on a given total number of atoms N reduces the two-mode
squeezed vacuum to a twin-Fock state that can be represented by a ring around the
equator of a generalized Bloch sphere of radius J2 = N

2
(N

2
+ 1) as shown in Fig. 3.4c.

The properties of such a twin-Fock state will be further investigated in chapter 5,
where we will demonstrate its usefulness for interferometry, and in chapter 6, where we
will focus on the characterization of its entanglement.
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Figure 3.5.: Exact time dependence of spin dynamics for a total of 1 000 atoms.
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calculated by the method from Ref. [68]. At short times it shows the expo-
nential growth predicted using the parametric approximation (dashed line).
For longer times however, it saturates on the level where N0 = N↑ +N↓.

3.6. Beyond the parametric approximation

In section 3.3, we made a couple of approximations that are only true for short time
scales. For instance, there might be a non-negligible transfer to the states mF = ±2 in
F = 2 at longer evolution times. In both cases F = 1 and F = 2, the interaction of
mF = ±1 atoms with each other can no longer be neglected after a significant number
of atoms has been transferred. Most importantly, we neglected the depletion of the
condensate in mF = 0 by approximating a ≈

√
N0 to obtain Eq. (3.10).

Law, Pu and Bigelow pointed out that an exact solution in F = 1 can be gained if we
assume that atoms in all the different Zeeman levels have the same spatial mode [68],
but their method can be easily extended to different spatial modes. The basic idea is to
expand the full interaction Hamiltonian including all possible spin-changing collisions in
terms of the states |N↑, N0, N↓〉 = |k,N − k, k〉. These states form a basis for a sub-space
of the full Hilbert space containing all states with a fixed total number of particles N
and a projection of the collective spin Jz = 1

2
(N↑ − N↓) = 0. Since the Hamiltonian

commutes with both, N and Jz, the time evolution is restricted to this sub-space if we
start in the state |N↑, N0, N↓〉 = |0, N, 0〉. It is hence sufficient to express and diagonalize
the Hamiltonian in this sub-space to calculate the full time evolution which considerably
speeds up the calculations and enables exact solutions for up to a few thousand atoms.

An example for such an exact calculation is given in Fig. 3.5 assuming perfect overlap
of all involved spatial wave functions. Starting from the state |N↑, N0, N↓〉 = |0, N, 0〉 the
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3. Spin dynamics

system stabilizes at N↑+N↓ = N0. This shows, that we expect the initially exponential
growth to slow down and finally stop due to the depletion of the mF = 0 condensate.

One flaw of this method is that the wave functions of the atoms in the different
Zeeman levels are assumed to be constant in time. However, as the populations of
the internal levels change, the interactions between the atoms will also change. For
instance, the reduced density in the mF = 0 condensate will change the shape of the
effective potential seen by the atoms in mF = ±1. Nonetheless, the predicted transfer
rate agrees qualitatively with our measurements [30].
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4. Preparation, manipulation and
detection of a 87Rb spinor
condensate

In this chapter, the techniques for the observation of entangled states created by spin
dynamics are described. These techniques provide the basis for the demonstration of
interferometric sensitivity beyond the classical limit presented in chapter 5 and the proof
of multi-particle entanglement described in chapter 6.

4.1. Preparation of the initial 87Rb condensate

Figure 4.1.: Experiment setup [74]. In a glass cell at a pressure of 10−9 mbar, a
MOT is loaded from the background gas. In the magnetic trap created by
moveable transport coils, the atoms can be transferred into a QUIC trap in
a second glass cell at a lower pressure of 10−11 mbar. After radio-frequency
evaporation, the atoms are transferred into a crossed-beam dipole trap in
the center of the cell.

As explained in chapter 3, the starting point for our experiments on spin dynamics is a
BEC in the Zeeman level mF = 0. The preparation of the BEC will be briefly presented
here. For a more detailed description of the apparatus and the experimental sequence,
please refer to the publications [75, 76] and the phd and diploma theses [69,74,77–80].

We start with a magneto-optical trap (MOT) of 109 87Rb atoms in a glass cell directly
loaded from atoms in the background gas. As an atom source, we use dispensers which
are heated up by applying a current of 4.3 A for 45 minutes every other week. Most of
the atoms are deposited on the glass surface. To temporarily increase the number of
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4. Preparation, manipulation and detection of a 87Rb spinor condensate

87Rb background atoms for efficient loading of the MOT, we shine ultraviolet (UV) light
on the cell to desorb the atoms [75]. After 10 s of MOT loading, the UV light is switched
off again, allowing for a lower pressure which is beneficial for the following steps.

After a short time of molasses cooling, we optically pump the atoms into the |F,mF 〉 =
|2, 2〉 level and trap them in a magnetic quadrupole field provided by two coils in anti-
Helmholtz configuration. These coils are mounted on a translation stage allowing us to
move the atoms within 1.3 s from the MOT glass cell into the experiment glass cell. The
two glass cells are connected by a small tube, the so-called differential pumping stage,
keeping up a pressure difference of two orders of magnitude. The ultra-high vacuum
of 10−11 mbar in the experiment cell provides minimal losses and heating of the atomic
ensemble from collisions with the background gas.

By ramping down the current in the transport coils and ramping up the currents
of coils in the quadrupole-Ioffe configuration (QUIC) the atoms are transferred into
a harmonic magnetic trap [81]. In this trap, the atoms are cooled close to quantum
degeneracy by radio-frequency evaporation [82]. By adjusting the currents in the QUIC
trap coils and the transport coils the atoms can be moved to the center of the glass
cell [76]. Here, two horizontal laser beams at a wavelength of 1064 nm with waists of
50µm and 30µm and maximum powers of 700 mW and 200 mW, respectively, form a
crossed-beam dipole trap [83]. The atoms are transferred into this dipole trap by ramping
down the magnetic fields and ramping up the power in the beams of the dipole trap.
Subsequently, the laser power is reduced to 35 mW and 15 mW within 0.6 s leading
to further evaporative cooling [84] of the ensemble. Finally, the dipole trap power is
increased again to reach the final desired trap frequencies in the range of 50− 200 Hz.

In total, we can produce a BEC of 30 000 atoms with a negligible thermal fraction
with these techniques. The techniques for the preparation of the internal state will be
detailed in the following sections.

4.2. Manipulation of the energy levels via microwave
dressing

The internal energy levels of a 87Rb atom split up in a magnetic field as presented in
Fig. 3.1. These levels can be manipulated by tuning the magnetic field, which will be
discussed in detail in section 5.3, and by introducing a coupling between a Zeeman level
|e〉 in the F = 2 manifold and a Zeeman level |g〉 in the F = 1 manifold. This coupling
can be achieved by applying a microwave at a frequency ω close to the energy difference
of the two levels ω0 = Ee − Eg. This so-called microwave dressing is used in many
experiments with ultra-cold atoms [32,85–87].
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Figure 4.2.: Manipulation of the internal state by microwave dressing. (a)
The bare states |g, n+ 1〉 and |e, n〉 have an energy difference of δ in the
absence of coupling. (b) The dressed states |ψ±〉 are the eigenstates of the
Hamiltonian in the presence of microwave coupling and can be written as
a superposition of the bare states. At δ = 0 the dressed states |ψ±〉 are
in an even and odd superposition of the bare states, respectively. (c) The
energy of the bare states is degenerate for δ = 0 in the absence of coupling.
The dressed states have an energy difference of Ω at this point, since the
microwave coupling leads to an avoided crossing. (d) The difference of the
energy of the bare states and the dressed states gives the energy shift of the
internal levels of the atom. (e) As an experimental demonstration we dress
the levels F = 1,mF = 0 and F = 2,mF = 0 with a strong microwave at
a frequency ω and use a weak microwave at the frequency ω′ to measure
the shift of the energy difference Ee − Eg with respect to the unperturbed
energy difference given by ω0. (f) Such a measurement (black points) is in
good agreement with the predicted shift (blue line).
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4. Preparation, manipulation and detection of a 87Rb spinor condensate

If there is no coupling between the atom and the microwave, the so called bare states
|g, n〉 and |e, n〉 are the eigenstates of the system, where n is the number of microwave
photons. If this microwave frequency is exactly matched ω = ω0, the bare state |ψg〉 =
|g, n+ 1〉 has the same energy as the state |ψe〉 = |e, n〉. If the microwave is detuned by
δ = ω − ω0, they have an energy difference of δ. We choose the zero energy to be in
between these levels such that the states have an energy of ±δ/2 as shown in Fig. 4.2a.

In the basis of these bare states, we can write the Hamiltonian of the effective two-level
atom in the microwave field as [70]

H =
1

2

(
δ Ω
Ω −δ

)
(4.1)

where the resonant coupling Ω ∝
√
n ∝

√
P depends on the microwave power P . Due

to this coupling the bare states are no longer energy eigenstates. The new eigenstates
of the Hamiltonian are the so called dressed states

|ψ+〉 = sin(φ/2) |g, n+ 1〉+ cos(φ/2) |e, n〉 (4.2)

|ψ−〉 = cos(φ/2) |g, n+ 1〉 − sin(φ/2) |e, n〉 (4.3)

where φ = tan−1
(

Ω
δ

)
. The corresponding energies are

E± = ±1

2

√
δ2 + Ω2. (4.4)

The degeneracy of the bare states at δ = 0 for no coupling Ω = 0 is lifted and the energy
difference of the dressed states at this point is Ω as shown in Fig. 4.2c. We are interested
in the shift of the energy levels ∆Eg and ∆Ee of the atom shown in Fig. 4.2c. To obtain
this shift, we subtract the energy of the corresponding bare states ±δ/2 to obtain

∆Eg = +δ
1

2

(√
1 +

Ω2

δ2
− 1

)
(4.5)

∆Ee = −δ1

2

(√
1 +

Ω2

δ2
− 1

)
. (4.6)

Note, that these energy shifts change sign as the detuning δ changes sign. For microwave
frequencies ω smaller than the transition frequency ω0 the detuning is negative δ < 0
and the energy difference Ee − Eg is increased by the microwave dressing, whereas for
δ > 0 the energy difference is reduced by the microwave dressing.

In the experiment, the dressing microwave is generated by the setup shown in the
upper part of Fig. 4.3 starting with a signal generator (Marconi 2024), which is locked
to a 10 MHz frequency reference of an ultrastable maser. The output frequency of
about 2.275 GHz is then tripled by a frequency multiplier (mini circuits ZX90-3-812-
S+) to the desired frequency of ∼ 6.83 GHz in the range of the hyperfine splitting of
87Rb. The power can be adjusted by a DC current applied to a frequency mixer (mini
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Figure 4.3.: Microwave generation. As a microwave source for the dressing of the
internal states, we triple the frequency of a signal generator (Marconi 2024),
which is locked to a 10 MHz reference. For the generation of microwave
pulses, we start with the same procedure of tripling the frequency of a signal
generator and subsequently mix the signal with ∼ 135 MHz generated by a
DDS. We use filters to select the side-band with the sum-frequency only from
the mixed signal. Either of the two microwaves for dressing and pulses can
be sent to a sequence of amplifiers by setting a microwave switch. Finally,
a maximum power of 10 W is send to a loop antenna close to the atoms.

circuits ZMX-8GLH) which is necessary for adiabatically ramping up and down the
microwave power. These ramps make sure that the system stays in an eigenstate of
the Hamiltonian [88, 89]. Subsequently, the microwave is amplified to a power of up to
7 W, which can be monitored by a Schottky diode (Herotek DHM124AA) after a 20 dB
directional coupler (UMCC DC-E000-20s). Finally, this microwave is send to an antenna
placed at a distance of about 3 cm from the atomic cloud. We fabricate the antenna by
bending the core of a coaxial cable (aircell5) to a single loop with a circumference of one
wavelength.

With this microwave source at hand, we can manipulate the internal level structure
according to Eq. (4.5). One way to verify the shift of the hyperfine energy levels is to
probe the energy difference Ee − Eg by shining in a second microwave at a frequency
ω′. If this additional microwave is operated only at low power, the energy shift that it
induces can be neglected. Nonetheless, it will transfer atoms to the exited state when
it is tuned close to resonance ω′ ≈ Ee − Eg and can thereby be used to measure the
energy difference as shown in Fig. 4.2f. The measured energy shift is in agreement with
Eq. (4.5). A small systematic deviation can be explained by the influence of neighbouring
levels. To account for the corresponding additional transitions, the presented two-level
model can be extended to multiple levels.

4.3. Manipulation of the internal states via microwave
pulses

The microwave can also be used to transfer atoms from one internal state to another as
we will see now.
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Figure 4.4.: Rabi oscillation. (a) Probability Pe to find the atom in the excited state
|e〉 as a function of the pulse length t for δ = 0 (solid blue line) and δ = Ω
(dashed black line) according to Eq. (4.12). (b) Experimentally observed
Rabi oscillation between the hyperfine levels |F,mF 〉 = |2, 2〉 and |1, 1〉.

From Eq. (4.2), we can express the bare states |ψg〉 = |g, n+ 1〉 and |ψe〉 = |e, n〉 in
terms of the dressed states and thus easily calculate their time dependence.

|ψg(t)〉 = sin(φ/2) |ψ+(t)〉+ cos(φ/2) |ψ−(t)〉
= sin(φ/2)e−itΩ/2 |ψ+〉+ cos(φ/2)e+itΩ/2 |ψ−〉 (4.7)

|ψe(t)〉 = cos(φ/2) |ψ+(t)〉 − sin(φ/2) |ψ−(t)〉
= cos(φ/2)e−itΩ/2 |ψ+〉 − sin(φ/2)e+itΩ/2 |ψ−〉 (4.8)

For the resonant case δ = 0, we have cos(φ/2) = sin(φ/2) = 1√
2

and the above equation
reduces to

|ψg(t)〉 = cos(tΩ/2) |ψg〉 − i sin(tΩ/2) |ψe〉 (4.9)

|ψe(t)〉 = −i sin(tΩ/2) |ψg〉+ cos(tΩ/2) |ψe〉 . (4.10)

If we define |ψg〉 = |↓〉 and |ψe〉 = |↑〉 as our pseudo-spin basis, this equation has exactly
the form of the beam splitting process of Eq. (2.38) with θ = tΩ. Hence, a resonant
microwave pulse can be used as a beam splitter.

If we shine a resonant microwave pulse for a time t on an atom in the ground state
|ψg〉, the probability Pe to find it in the excited state |ψe〉 after the pulse is thus

Pe = | 〈ψe| ψg(t)〉 |2 = sin2(tΩ/2) =
1

2
(1− cos(tΩ)). (4.11)

These so-called Rabi oscillations can be observed in the experiment as presented in
Fig. 4.4. Hence, a pulse of length tπ = π

Ω
transfers the atom to the excited state |ψe〉.

Such π-pulses can be used for the preparation of the internal state.
For a non-zero detuning δ, this probability changes to

Pe =
Ω2

Ω2
R

sin2(tΩR/2) with ΩR =
√

Ω2 + δ2 (4.12)

and a perfect transfer cannot be achieved (see Fig. 4.4a).
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Figure 4.5.: Microwave pulse in the time and frequency domain. (a) Instead
of using a rectangular pulse (grey line) we use sinusoidal ramps sin2(t) for
the pulse edges. (b) In the frequency domain this results in a narrower
distribution. The spectral components for the rectangular pulse (grey line)
and the pulse with sinusoidal edges (blue line) have been measured with a
spectrum analyser (Advantest R3267) by continuously repeating the pulses.
Peaks at multiples of approximately ±1.3 MHz from the carrier are due to
residual frequencies of the DDS (Toptica VFG150).

The setup of our microwave source for pulse generation is shown in the lower part of
Fig. 4.3. Similarly to the source for microwave dressing described in the previous section,
the frequency of a signal generator (Marconi 2024) at 2.235 Ghz is tripled (mini circuits
ZW90-3-812-S+) in a first step to obtain 6.705 GHz. This microwave is mixed (mini
circuits ZMX-7GR) with a ∼ 135 MHz signal provided by a direct digital synthesiser
(DDS, Toptica VFG 150) and filtered to suppress the carrier by more than 30 dB and
the lower side band by more than 10 dB. Finally, this signal can be sent to the same
amplifiers and the same antenna as the dressing microwave by setting a switch (mini
circuits ZYSWA-2-50DR).

Compared to the dressing microwave, the spectral purity of the signal is worse due to
the DDS. For the long microwave irradiation times needed for the microwave dressing
residual unwanted frequency components may be close to an atomic transition frequency
and transfer a fraction of the atomic ensemble to the corresponding Zeeman level of the
hyperfine structure. However, the DDS allows for a fast switching of frequencies enabling
us to prepare an internal state by a series of pulses within a fraction of a millisecond.
Additionally, we can shape the form of the pulses by quickly adjusting the output power
of the DDS. This reduces the spectral width of the pulse [90] (see Fig. 4.5b), which can
become large for shorter pulses leading to unwanted transitions. Moreover, smooth pulse
shapes make the transition less vulnerable to frequency jitter due to an increased width
of the central peak in the frequency domain. We use pulses with 5µs long sinusoidal
shaped edges as shown in Fig. 4.5a.

With microwave pulses, we can drive transitions of the internal states as shown in
Fig. 4.4b. Fluctuations in the number of transferred atoms are caused by many technical
effects:

• Fluctuations of the microwave power P
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4. Preparation, manipulation and detection of a 87Rb spinor condensate

• Fluctuations of the microwave polarization

• Fluctuations of the magnetic field

• Fluctuations of the microwave frequency ω

• Fluctuations of collisional shifts due to density fluctuations

• Fluctuations due to light-induced energy shifts

Fundamentally, the number of transferred atoms has to be subject to shot noise for an
unentangled atomic ensemble. We estimate changes in the microwave frequency to be
on the order of a few Hertz, a negligible effect compared to other noise sources. The first
three effects are dominant and their effect can be calculated by a simple Monte-Carlo
simulation. The results can be compared to measurements [91] to estimate the strength
of the different contributions. It is difficult to distinguish changes in the polarization
from power fluctuations since both result in deviations of the resonant Rabi frequency Ω.
Such fluctuations can also be caused by mechanical vibrations of the antenna or objects
that reflect the microwave back on the atoms. Both of these effects are estimated to
lead to fluctuations below 0.2% in the number of transferred atoms for a π

2
microwave

pulse.
The magnetic field stability is of particular importance for the reduction of fluctuations

in the microwave transitions. We measure a standard deviation as low as 77(4)µG at a
magnetic field of a few Gauss using a Ramsey sequence [92, 93]. These low fluctuations
were achieved by actively stabilizing the magnetic field in a single direction. It is created
by a pair of Helmholtz coils and measured with a flux gate sensor (Bartington Mag03)
close to the atoms. For the stabilization, a feed-back loop adjusts the current through
the coils which is provided by a car battery to avoid fluctuations caused by a 50 Hz
power supply. A large fraction of the remaining changes in the magnetic field is actually
caused by the 50 Hz power supplies of the surrounding electronics in the room. This
can be further suppressed by operating the experiment synchronised to this frequency.
Therefore, a phase locked loop delivers a synchronized 100 kHz frequency providing the
time basis of the experimental control. This means that all experimental steps occur
at a fixed phase of the 50 Hz supply frequency. Experimental steps which are highly
sensitive to timing jitters like the length of the microwave pulses are controlled by the
time basis of the DDS, which is stabilized to the ultra-stable maser.

4.4. High precision absorption detection

One of the most critical requirements to observe sub-shot-noise fluctuations is the precise
counting of the atoms in the two pseudo spin states. For 104 atoms in the entangled
states the shot noise is 100 atoms or 1% of the total number of atoms. Hence, we need
an atom detection that enables us to count the number of atoms in individual states to
a precision much better than 100 atoms. With the high precision absorption detection
presented in this section we are able to estimate the number of atoms in a single state
with a precision of 14 atoms.
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4.4.1. Techniques for atom detection

Before we have a detailed look at high precision absorption detection, let us discuss the
requirements we have on the atom detection system and compare some of the available
techniques.

For optical detection schemes, the average number of detected photons nph per atom
is of central importance. If we detect on average nph = 100 photons scattered by a single
atom, this number will fluctuate with a standard deviation of at least ∆nph =

√
nph = 10

photons due to the photon shot noise. However, since the fluctuations are an order of
magnitude smaller than the mean number of photons, the detection of a single atom is
feasible and has been demonstrated in a couple of experiments [94–96]. For N = 104

atoms, however, the situation is different, since it is usually not possible to assign the
detected photons to the individual atoms. Hence, we detect a total number of photons
of Nph = N · nph = 106 with a standard deviation of ∆Nph =

√
Nnph = 103. To get the

corresponding uncertainty in the estimated number of atoms ∆Nest, we have to divide
by the number of photons per atom nph yielding

∆Nest =

√
Nnph

nph

=

√
N

nph

= 10. (4.13)

From this equation, it is clear, that it becomes increasingly difficult to realize a detection
system with single-atom precision ∆Nest ≤ 1 for large ensembles, since this requires at
least a detection of nph = N scattered photons per atom.

From the above discussion we see that for an optical detection technique we need to
collect as many scattered photons as possible. The most commonly used methods are
absorption and fluorescence detection. Absorption detection relies on the measurement
of the reduced intensity in a light beam due to photons that are scattered, whereas
fluorescence detection directly counts the scattered photons. Absorption detection has
the advantage that ideally all scattered photons are detectable as a loss in the intensity of
the imaging beam, while fluorescence detection only collects a fraction of these photons
due to a limited solid angle covered by the imaging optics. On the other hand, longer
illumination times are possible for fluorescence detection leading to an increased number
of photons. Both techniques have been used to image up to 103 atoms achieving a
standard deviation of 2.6 atoms [97] in the case of absorption imaging and 8(3) atoms [87]
for fluorescence imaging.

The illumination time in fluorescence imaging can be extended by trapping the atoms
in a MOT. In reference [98], single-atom resolution at a total number of N = 1080
atoms in a MOT was demonstrated with an illumination time of 100 ms. However, this
technique is not suitable for counting atoms in two different states produced in a single
experimental run. Since this is crucial for observing sub-shot-noise fluctuations, it would
be necessary to extend this very promising concept and trap atoms state selectively in
different MOTs.

A completely different concept of atom detection is to ionize the atoms with an elec-
tron beam and detect the atoms with a channeltron as demonstrated in Refs. [99, 100].
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Figure 4.6.: Absorption imaging. (a) The schematic illustration shows the basic
principle of absorption imaging. The intensity Ib(x, y) of an incoming res-

onant laser beam is recorded on a CCD camera yielding measurements I
(i)
b

on the individual pixels. In the presence of atoms, light is scattered and
the reduced intensity Ia(x, y) can be measured giving I

(i)
a . The different

Zeeman components were separated by an inhomogeneous magnetic field.
(b) Typical absorption images. The recorded intensities I

(i)
a and I

(i)
b can be

used to estimate a number of atoms N (i) corresponding to each pixel. The
white circles around the clouds indicate the areas containing the relevant
pixels for the summation Nest =

∑
iN

(i). For the estimation of the number
of atoms in the levels mf = ±1 these areas have a diameter of 33 pixels.

However, the single atom detection efficiency of about 15% leads to a large uncertainty
of ∆Nest =

√
0.15(1− 0.15)N/0.15 on the order of 75 atoms for a total number of 1 000

atoms due to shot-noise.
In summary, optical detection schemes are to date the most promising methods for a

precise measurement of the number of atoms and the best results for several 100 atoms
have been achieved by absorption imaging [97].

4.4.2. Calculating the number of atoms from an absorption signal

The principle of absorption detection is schematically shown in Fig. 4.6a. A resonant
light beam passes through an atomic ensemble and scattering leads to a reduction of
the light intensity. The intensity Ia(x, y) in the plane of the atoms is imaged on a CCD

camera. Each pixel on the camera measures the mean intensity I
(i)
a of the corresponding

square region in the object plane. As a reference for the unperturbed intensities of the
laser beam I

(i)
b , a second measurement in the absence of atoms is performed. Our goal

is to estimate the number of atoms N (i) in the region corresponding to pixel number (i)

from a comparison of the measured intensities I
(i)
a and I

(i)
b .

The scattering rate γ of a single atom leading to a reduced intensity Ia(x, y) compared

44



4.4. High precision absorption detection

to Ib(x, y) is given by [101]

γ =
Γ

2

I/Is
1 + I/Is + 4(δ/Γ)2

(4.14)

where Γ is the natural decay rate, δ is the detuning of the incoming laser of intensity
I and Is is the saturation intensity. Hence, the intensity reduces as the laser passes
through the atoms in z-direction as

dI

dz
= −n(r)σ0

I

1 + I/Is + 4(δ/Γ)2
(4.15)

where n(r) is the atomic density and σ0 = ~ωΓ
2Is

is the resonant scattering cross section.
This can be solved for the atomic density, yielding

σ0 n(r) = −1

I

dI

dz

[
1 + 4

(
δ

Γ

)2
]
− 1

I s

dI

dz

= −d ln(I)

dz

[
1 + 4

(
δ

Γ

)2
]
− 1

I s

dI

dz
. (4.16)

This can be easily integrated along the z-direction over the width of the cloud to ob-
tain [102]

σ0 nc = ln

(
Ib
Ia

)[
1 + 4

(
δ

Γ

)2
]

+
Ib − Ia
Is

, (4.17)

where nc(x, y) =
∫
n(x, y, z) dz is the column density. We assumed that the intensity of

the beam is Ib(x, y) before and Ia(x, y) after passing through the atomic cloud.

With the camera, we measure the mean intensities I
(i)
k =

∫
(x,y)∈A(i)

px
Ik(x, y) with k =

a, b in the areas A
(i)
px corresponding to the individual pixel. If the intensities Ia(x, y) and

Ib(x, y) are almost constant in these areas we can approximate∫
(x,y)∈A(i)

px

ln

(
Ib(x, y)

Ia(x, y)

)
dx dy ≈ A(i)

px ln

(
I

(i)
b

I
(i)
a

)
. (4.18)

Finally, we approximate that the atom column density nc(x, y) ≈ n
(i)
c is almost constant

in the areas A
(i)
px and can thus express the number of atoms N (i) in the corresponding

column as

N (i) =

∫
(x,y)∈A(i)

px

nc(x, y) dx dy ≈ Apxn
(i)
c . (4.19)

With these approximations, we can use the mean intensities recorded by the camera to
estimate the number of atoms

N (i) =
Apx

σ0

(
ln

(
I

(i)
b

I
(i)
a

)[
1 + 4

(
δ

Γ

)2
]

+
I

(i)
b − I

(i)
a

Is

)
(4.20)

in each column.
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Figure 4.7.: Calibration of the effective saturation intensity. (a) Measurement of
the number of atoms in the mF = ±1 Zeeman levels after spin dynamics in
the presence of a strong intensity gradient in the imaging beam. Between
the measurement corresponding to the blue points and the measurement
corresponding to the red squares the intensity gradient was reversed. The
estimated number difference N↑−N↓ depends on this intensity gradient if we
use an incorrect effective saturation intensity αIs. (b) Only for the correct
effective saturation intensity at α = 1.1 the estimated number of atoms is
independent of the intensity and the number difference is close to zero. (c)
The correction factor α can be found by minimizing the fluctuations in the
number difference.

4.4.3. Calibration of the absolute number of atoms

In the last section we derived a formula to calculate a number of atoms corresponding to
each pixel. If an atomic cloud is imaged on a region of the CCD camera we can sum up
the estimated number of atoms N (i) of the corresponding pixels to get a total number
of atoms Nest =

∑
iN

(i). After releasing the atoms from the trap we apply a strong
magnetic field gradient. This gradient splits the ensemble in different clouds depending
on their internal state, enabling us to count the atoms in the different levels separately.
However, we need to carefully calibrate our imaging system to correctly estimate the
number of atoms as will be described here.

First, in order to compute Eq. (4.20) we need to calibrate the intensity I recorded by
the CCD camera. If the intensity calibration is incorrect (and assuming a linear error)
we might estimate an intensity I rather than the true value βI. Such a calibration is
carried out by measuring the gain of the camera, i.e. the number of counts per detected
photon, and its quantum efficiency η, the fraction of detected photons. This procedure
is described in appendix D.

Second, we need to know the exact value of the saturation intensity. For ideal σ+-
polarized light, we expect Is = 16.69 W/m2. However, residual components of the other
polarizations and deviations from the ideal two-level system may lead to a true value
of α′Is. Note, that the resonant scattering cross section σ0 ∝ 1/Is is also effected by a
non-ideal saturation intensity σ0 → σ0/α

′.
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If we ignored both, the correction for the intensity βI and for the non-ideal saturation
intensity α′Is and assume δ = 0, we would estimate a number of atoms

N
(i)
ideal =

Apx

σ0

(
ln

(
I

(i)
b

I
(i)
a

)
+
I

(i)
b − I

(i)
a

Is

)
(4.21)

rather than the true value

N
(i)
true =

Apx

σ0

(
α ln

(
I

(i)
b

I
(i)
a

)
+ β

I
(i)
b − I

(i)
a

Is

)
. (4.22)

Here, the factor α ≈ α′(1+4(δ/Γ)2) also accounts for a possible detuning from resonance.
Such a detuning is unavoidable since the atoms are accelerated during the imaging
leading to a time dependent Doppler shift on the order of 1 MHz for an illumination
time of 90µs.

We are able to measure the saturation intensity α with a technique very similar to
the one described in Ref. [102]. The central idea is to exploit that for a fixed number
of atoms N (i) the linear second term of Eq.(4.22) increases and finally becomes equal to
N (i), while the logarithmic term decreases and finally vanishes. The sum of both terms,
however, is always equal to the number of atoms N (i) if α and β are correct. Hence,
assuming that the intensity calibration is correct (β = 1), the estimated number of
atoms is only independent of the illumination intensity if we compute it with the correct
effective saturation intensity αIs. To verify this, we measure the number of atoms N↑
and N↓ in the clouds corresponding to the mF = ±1 levels that were populated by spin-
dynamics and should ideally be equal. We use the strong intensity gradient off center
from the Gaussian imaging beam to illuminate the two clouds with different intensities.
After a series of measurements with fluctuating atom numbers in mF = ±1 we invert the
gradient. For the correct value of the effective saturation intensity αIs, the fluctuations
in the atom number difference ∆(N↑ − N↓) are minimized. We measure a correction
factor of α = 1.1 for the effective saturation intensity which compares well to results
achieved in other groups by similar techniques [29]. Spin-dynamics is not necessary for
our calibration method. Instead, a π/2-microwave pulse could be used and one might
look for minimized fluctuations in the fraction N↑/N↓ to account for small deviations
from the ideal 50/50 splitting ratio.

The nonlinear part of Eq.(4.22) causes further complications. If the intensities Ia(x, y)

and Ib(x, y) are strongly varying over the areas A
(i)
px corresponding to the individual

pixels we can no longer use the approximation Eq.(4.18) which was crucial for obtaining
the formula Eq. (4.20) for the estimation of the number of atoms. This can lead to
a nonlinear dependence of the estimated number of atoms Nest on the real number of
atoms N as shown in Fig. 4.8c. Potentially, this can lead to underestimated fluctuations
in the particle number ∆Nest < ∆N and the measurement of sub-shot-noise fluctuations
although the fluctuation are in fact above shot noise. The pixel area should thus be
small compared to the cloud.

A similar effect can be observed if the estimated atom column densities nc(x, y) are
no longer constant during the imaging time, which we assumed without mentioning in
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Figure 4.8.: Blurring effects lead to a nonlinear number estimation. (a) Two
effects lead to a blurring of the image of the atomic cloud [97]. First, the
scattered photons lead to recoil heating and a diffusion of the cloud by
wrms = 2

3
vrec
√
γ t

3
2 [97,103]. Second, the atomic cloud is pushed out of focus

by the imaging beam. This reduces the resolution of the imaging system

according to w0

√
1 + ( z

zR
)2, where z is the position relative to the focus,

zR ≈ 4µm is the Rayleigh range and w0 ≈ 0.7µm is the ideal resolution of
our detection system according to the Rayleigh criterion. (b) An estimation
of both blurring effects at a given illumination time t and an intensity Ib =
3Is is shown here assuming a diffraction limited imaging system. For the
actual blurring of the image in the experiment an integration of these effects
over time has to be done and astigmatisms of the imaging optics have to
be considered. We assume that the starting and end position of the atomic
cloud are at equal distance from the focal plane. (c) Example for a nonlinear
estimation of the number of particles (solid line) deviating from the true
value (dashed line). For our detection system, simulations show that this
effect is negligible. At 5 000 atoms in a single cloud (corresponding to a
total number of 10 000 atoms in our experiments) the estimated number of
atoms is 0.1% below the true value and fluctuations are underestimated by
less than 0.5%.

the discussion so far. This can be caused by two effects [97,104] as depicted in Fig. 4.8a.
First, the atom ensemble seems to expand since the imaging light beam pushes it out
of the focal plane. Second, the scattering of photons leads to recoil heating and an
expansion of the cloud. Neither of the two effects should increase the initial cloud radius
significantly to avoid a nonlinear estimation of the number of atoms.

We can experimentally check for a nonlinearity in the estimation of the number of
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Figure 4.9.: Experimental test of the linearity (a) We verify the linearity of our
absorption detection by the following procedure: First, spin dynamics is
used to produce an equal population in the states |F,mF 〉 = |1,−1〉 and
|1,+1〉. Then, about one half of the atoms in |1,+1〉 is transferred to |2,+2〉
by a microwave pulse. Finally, we measure the number of atoms in these 3
states with absorption imaging. (b) Ideally, the total number of atoms in
|1,+1〉 and |2,+2〉 is equal to the number of atoms in |1− 1〉 as indicated
by the dashed line. A nonlinearity in the detection would lead to a stronger
underestimation of the number of atoms in |1,−1〉 due to the higher density.
Hence, our measurements (blue points with error bars) exclude a relevant
nonlinearity of our detection system.

atoms by splitting up one of the output modes after spin dynamics into to clouds with
a π

2
-pulse as shown in Fig. 4.9a. The sum of the number of atoms in these two clouds

can be compared with the number of atoms in the other output mode. Ideally, these
should be the same. However, if the imperfections of the detection system lead to
a nonlinear error in the number estimation we expect a behaviour similar to the one
shown in fig 4.8c when plotting these numbers against each other. A nonlinearity can be
suppressed by decreasing the influence of the logarithmic term in Eq. (4.20). This term
tends to zero for high intensities and low column densities which can be achieved by long
expansion times. Experimentally we do not observe a significant nonlinear deviation for
our imaging parameters up to N = 7 000 atoms in a single cloud as shown in Fig. 4.9b.

As an independent check of the atom number calibration, we can measure the
√
N

scaling of shot-noise. This is carried out by measuring the population N↑ and N↓ of
two states after a π

2
-pulse for a varying total number of atoms N = N↑ + N↓. In the

following, each measurement of sub-shot-noise fluctuations is complemented by such a
shot-noise measurement to prove the correct calibration of the imaging system.
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Figure 4.10.: Intensity dependence of the photo-electron shot noise. (a) The in-

tensity dependent terms of Eq. (4.26) (blue line) are minimized for I
(i)
k = Is.

At high intensities the slope is given by the increasing shot noise ∝
√
I

(i)
k

(dashed black line). (b) Estimated atom number N (i) as a function of the

relative intensity I
(i)
a /I

(i)
b . At low relative intensities, small intensity fluc-

tuations translate to large fluctuations in the estimated number of atoms.
(c) At N = 0, the minimal detection noise caused by photo-electric shot

noise is achieved for I
(i)
b = I

(i)
a = αIs (blue line). For a larger number

of atoms N = 10 000, the minimum is shifted to higher intensities since
I

(i)
b > I

(i)
a (dashed black line).

4.4.4. Photo-electron shot noise - the fundamental limit

For a precise estimation of the number of atoms, we need to minimize the fluctuations
∆Nest. For absorption imaging these fluctuations can be traced back to fluctuations of
the intensities ∆I

(i)
a and ∆I

(i)
b . Error propagation applied to Eq. (4.22) leads to

∆N (i) = A(i)
px

√√√√(∆I
(i)
a
∂n

(i)
c

∂I
(i)
a

)2

+

(
∆I

(i)
b

∂n
(i)
c

∂I
(i)
b

)2

(4.23)

where n
(i)
c is the estimated column density corresponding to the ith pixel based on the

measurements I
(i)
a and I

(i)
b .

Besides technical noise sources, there is a fundamental unavoidable reason for the
fluctuations ∆I

(i)
a and ∆I

(i)
b : The N

(i)
ph photons incident on a camera pixel are converted

into N
(i)
el = ηN

(i)
ph electrons with a quantum efficiency η. The number of electrons can

be measured and used to estimate the corresponding intensity

I(i) =
N

(i)
el hν

η tA
(i)
px

(4.24)

with the illumination time t. These electrons are subject to shot-noise fluctuations
∆Nel =

√
Nel, leading to an uncertainty in the estimated intensity

∆I(i) =

√
N

(i)
el

hν

η tA
(i)
px

=

√
I(i) η tA

(i)
px

hν

hν

η tA
(i)
px

=
√
I(i)

√
hν

η tA
(i)
px

. (4.25)
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If we combine this with Eq. (4.23), we get

∆N (i) =

√
A

(i)
px hν

η t

√√√√(√I
(i)
a
∂n

(i)
c

∂I
(i)
a

)2

+

(√
I

(i)
b

∂n
(i)
c

∂I
(i)
b

)2

(4.26)

for a photo-electron shot-noise limited absorption detection. If we want to calculate
the number of atoms Nest =

∑
iN

(i) in an atomic cloud, we have to take the sum
over all relevant pixels. Since the photo-electron noise contributions of the pixels are
independent, this leads to fluctuations in the estimated number of atoms according to

∆Nest =

√∑
i

(∆N (i))
2
. (4.27)

From Eq.(4.26), we can see the importance of several parameters. Not surprisingly, a
large quantum efficiency η and a long illumination time t lead to a better estimation
of the number of atoms, since more scattered photons are detected. The constraint on
the illumination time is set by the blurring effects discussed in the last section. At a
first glance, a small area in the object plane A

(i)
px by increasing the magnification of the

imaging system seems to be beneficial. Notice, however, that although the noise on a
single pixel is reduced this is compensated by the increased number of pixels that we
need to consider to cover the relevant region which leads to increased fluctuations ∆Nest

according to Eq. (4.27). Confining the atoms to a smaller region A =
∑

iA
(i)
px , however,

turns out to be beneficial. Again, the amount by which we can compress the cloud to
a smaller region by a shorter expansion time or a delta kick [105, 106] is limited by the
blurring effects for a given illumination time.

It is instructive to expand the intensity dependent parts of Eq. (4.26) under the square
root using Eq. (4.17)

(√
I

(i)
k

∂n
(i)
c

∂I
(i)
k

)2

=
1

σ2
0

 α√
I

(i)
k

+

√
I

(i)
k

Is

2

, (4.28)

which have the same form for k = a and k = b. In the limit of low intensities I
(i)
k � Is

almost all the light is scattered out of the imaging beam. Small intensity fluctuations
thus translate to large fluctuations in the estimated number of atoms in this limit (see

Fig. 4.10b). On the other hand, for high intensities I
(i)
k � Is, the number of scattered

photons does not increase with the intensity due to a saturation of the atomic transition.

The photon shot noise, however, is still increasing with

√
I

(i)
k and the estimation of the

number of atoms becomes worse. In between these two limits, the above equation has a
minimum at I

(i)
k = αIs as shown in Fig. 4.10a. Hence, we want both, I

(i)
a and I

(i)
b , to be

close to the effective saturation intensity αIs.
This is confirmed by simulations shown in Fig. 4.10c. For these simulations we assume

a Gaussian shaped atomic cloud with a root mean square radius of 25µm, an illumination
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Figure 4.11.: Schematic of the absorption imaging setup. A resonant laser beam
(orange area) illuminates the atoms. It passes through the vacuum glass
cell at an angle of 7 degrees. Two lenses image the absorption signal of the
atoms (grey area with dashed lines) on a CCD camera.

time of 70µs and a quantum efficiency of 98%. We calculate the corresponding intensities
I

(i)
a and assume a constant intensity I

(i)
b . Optionally, the absorption image given by I

(i)
a

can be blurred with a Gaussian filter to account for the blurring effects described in the
last section giving results as shown in Fig. 4.8c. We can use Eq. (4.26) to calculate the
ideal photo-electron shot noise limited fluctuations on each pixel ∆N (i). Finally, we use
Eq. (4.27) to calculate a minimal detection noise of ∆Nest ≈ 10 atoms for our imaging

parameters and our imaging intensity of I
(i)
b ≈ 40 W

m2 . This intensity is slightly above the
intensity for minimal detection noise at N = 10 000. However, higher intensities reduce
the nonlinearity of the detection system. The detection noise is almost independent on
the number of atoms and ranges from ∆Nest = 10.6 to 9.3 atoms in the interval from 0
to 10 000 atoms in a single cloud.

For the measurement of sub-shot-noise fluctuations of the output state of the spin
dynamics described in chapter 3, we need to measure the number of atoms in the two
mF = ±1 levels. The photon shot noise limited fluctuations in the number difference
thus increases by a factor of

√
2 to 14 atoms. This corresponds to a noise of 7 atoms in

terms of ∆Jz.

4.4.5. The setup for the high-precision absorption detection

Besides the fundamental photo-electron shot noise, there are technical noise sources
leading to fluctuations in the intensities ∆I(i), causing an increased uncertainty in the
estimated number of atoms ∆Nest. The main problem arises from the diffraction of
the coherent imaging beam due to dust particles or small imperfections of the imaging
optics. This leads to small fringe structures that are sensitive to smallest mechanical
vibrations (see Fig. 4.6b). Our setup for high-precision absorption imaging is designed
to suppress these noise sources as will be described in this section.

The resonant imaging light is coupled out of a polarization maintaining single-mode fi-
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bre (fibre: Schäfter + Kirchhoff PMC-780-5,4-NA011-3APC-300-P; fibre coupler: Schäfter
+ Kirchhoff 60FC-4-A4,5-02) resulting in a collimated laser beam with a waist of 0.4 mm.
A small beam waist reduces etaloning effects due to a reduced overlap of the reflected
and the unreflected beams. It also minimizes the chance to illuminate dust particles or
defects in regions that are not essential for obtaining an absorption image. The polar-
ization of the imaging beam is purified by a polarizing beam splitter and it is directed
to the atoms by two mirrors. A 0th-order quarter wave plate is used to obtain σ+-
polarization. The imaging beam enters the glass cell at an angle of 7 degrees to the
surface normal to reduce etaloning effects and illuminates the atoms. At a distance of
36.5 mm from the atoms, an aspheric lens (Newport KPA16AR.16) with a focal length
f = 37.5 mm and a achromatic lens (Qioptiq G322353525) with f = 200 mm image the
intensity distribution on a CCD camera (princeton instruments pixis 1024 BR eXcelon)
with a quantum efficiency of η = 0.98. This leads to a magnification factor of 6.2 such
that the 13µm edge length of the CCD pixels correspond to 2.1µm in the object plane.
The whole setup is mounted as rigid as possible to avoid mechanical vibrations.

We illuminate the atoms for 70µs at an intensity of about 40 W
m2 . The camera is

operated in the so-called kinetic mode, which enables us to move the image pixels I
(i)
a

within less than 5 ms in a region covered by a razor blade to shield it from stray light.
A second resonant laser beam coming from above pushes the atoms out of the imaging
region. Then, the reference image I

(i)
b is recorded and again quickly moved behind the

stray light protection. Finally, an image with no light present is taken to estimate the
amount of stray light and dark counts. It is beneficial to take these images with a
minimal time delay such that the fringe patterns have not changed significantly.

By analyzing more than 800 images without atoms, we extract a detection noise of
22.3(5) atoms in the atom number difference. If we quadratically subtract the photo-
electron shot noise contribution of 14 atoms (see last section) we can estimate to have
technical noise on the order of 17 atoms left.

The photo-electron shot noise contribution of the beam image I
(i)
b can be reduced

by averaging several images of the imaging beam intensity. In the ideal case, we would
expect that the photo-electron shot noise of the beam image is suppressed by a factor 1√

m

in such an averaged image, where m is the number of individual images. However, since
the interference fringe structures change in time, the individual images can in general
have very different intensity distributions and a simple average reference image leads in
our case to increased detection noise. Reference [107] introduced a simple method to
calculate an optimal reference image

I
(i)
opt =

∑
j

cjI
(i)
b,j (4.29)

as a superposition of a set of reference images {I(i)
b,j} such that that the least squares

difference ∑
i/∈A

(
I(i)
a − I

(i)
opt

)2

(4.30)

is minimized outside of the region A occupied by the atomic clouds. In order to find
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4. Preparation, manipulation and detection of a 87Rb spinor condensate

the local minimum of the above equation, the partial derivatives with respect to the
coefficients cj is set to zero yielding∑

j

cjMk,j =
∑
i/∈A

I
(i)
b,jI

(i)
a . (4.31)

Here the matrix

Mk,j =
∑
i/∈A

I
(i)
b,kI

(i)
b,j (4.32)

contains the overlap of the different reference images and can be calculated once before
analyzing a set of absorption images. The linear equation system Eq. (4.31) can be
solved to find the coefficients cj and thereby the optimal reference image.

With this method, we can reduce the detection noise from 22.3(5) atoms to 19.7(5)
atoms using linear combinations of 500 reference images as optimal reference images.

4.4.6. Estimation of the detection noise

x =

transmittance intensity (W/m²) intensity (W/m²)
0.6 0.8 1 20 30 40 20 30 40

Figure 4.12.: Creation of an artificial absorption image. The optical transmittance
of an idealized atomic cloud 1− a(i) is calculated from an average of many
experimental absorption images. A typical detection image without atoms
is multiplied by the optical transmittance to gain a synthetic absorption
image with adjustable number of atoms.

It was shown in section 4.4.4 that the photo-electron shot noise contribution to the
detection noise is almost independent of the total number of atoms. Intensity fluctuations
caused by other noise sources should lead to a detection noise which increases with the
number of particles since the estimation of the number of atoms becomes more sensitive
to these fluctuations at higher densities (see Fig. 4.10b).

The estimation of these increased fluctuations for larger ensembles cannot be measured
directly since one needs to distinguish between real fluctuations in the number of atoms
and fluctuations in its estimation. We synthesize artificial absorption images that mimic
a constant number of atoms without shot to shot fluctuations to avoid this problem.
These artificial images are obtained by the following procedure: First, we calculate

the average absorption a(i) = 1 − I
(i)
a

I
(i)
b

on the pixels from over 100 absorption images
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4.4. High precision absorption detection

containing more than 1 000 atoms. We can mimic the absorption of a cloud by reducing
the intensity I

(i)
a of an image without atoms according to

Ĩ(i)
a = (1− x a(i))I(i)

a . (4.33)

With the parameter x we can adjust the strength of the artificial absorption. If we
apply Eq.(4.22) to the artificial absorption image Ĩ

(i)
a , there will be slight deviations

in the estimated density leading to fluctuations of the number of atoms from shot to
shot. These fluctuations for the synthetic absorption images are an estimation of the
fluctuations of the real absorption images of a perfect noiseless atomic state. The photo-
electron shot noise of the absorption image is underestimated by this method since we
reduce it by a factor of 1− x a(i) while the shot-noise fluctuations would be reduced by√

1− x a(i) for a real absorption of this fraction of photons. Nonetheless, this estimation
is in qualitative agreement with the slightly increased noise at larger numbers of atoms
observed in the experiment (see section 6.3).
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5. The twin-Fock interferometer

In chapter 3, we have seen that we can use spin dynamics to create a two-mode squeezed
vacuum state which is a superposition of twin-Fock states with an identical number of
atoms in the two spin states mF = ±1. In this chapter, we will present an experiment
proving the usefulness of these states for interferometry beyond the classical limit.

Since the measurements discussed in this chapter, the experimental setup has been
improved. In particular, the detection noise has been reduced by a factor of two. The ap-
paratus used for the experiments presented here is described in greater detail in Ref. [91].

5.1. Beyond spin squeezing

In section 2.4 we have seen that spin-squeezed states are useful for overcoming the shot-
noise limit in a standard interferometer. However, spin-squeezed states are only a small
class in the larger class of all possible entangled states. This raises the question if there
are other entangled or only classically correlated states that are useful for quantum-
enhanced interferometry. This would imply that we cannot use the mean number of
particles at the output port of the interferometer to estimate the phase since such a
phase estimation can only be improved by spin-squeezed states (see section 2.4).

A. Smerzi and L. Pezzé found the following way to decide whether a state is useful
for interferometry or not and proved that entanglement is a key ingredient [108]. The
phase sensitivity is fundamentally limited by the Cramer-Rao bound [109]

∆φest ≥
1√
FQ

(5.1)

where FQ is the so-called quantum Fisher information which depends on the input state
of the interferometer. Hence, the parameter

χ2 =
N

FQ
(5.2)

gives the achievable quantum-enhanced sensitivity compared to shot noise:

∆φest ≥
χ√
N
. (5.3)

Since the Fisher information is bound by FQ < N2, the Heisenberg limit cannot be
surpassed. Furthermore, they proved that states fulfilling χ2 < 1 are entangled.

In summary, states with a Fisher information FQ > N provide entanglement which
is useful for sub-shot-noise interferometry. For a comparison with the spin-squeezing
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5. The twin-Fock interferometer

parameter ξ, it can be shown that χ ≤ ξ [110]. There are entangled states χ < 1, that
do not belong to the class of spin-squeezed states ξ ≥ 1, but are useful for quantum-
enhanced interferometry. In the following, we will show that the twin-Fock state is an
example for such a state.

5.2. The principle of the twin-Fock interferometer

Figure 5.1.: A classical interferometer compared with the twin-Fock interfer-
ometer. On the generalized Bloch sphere an interferometer acts as a rota-
tion around the y-axis by an angle φ given by the phase shift. The recorded
difference of the number of particles at the two output ports 2Jz = N↑−N↓
corresponds to a projection of the turned state on the z-axis. (a) The classi-
cal interferometer is operated with uncorrelated particles in a spin coherent
state yielding a binomial distribution. The mean of this distribution 〈Jz〉
can be used to estimate the phase φ. (b) When operated with a twin-Fock
state, the mean population imbalance always vanishes independent on the
turning angle. However, the width of the distribution is highly sensitive to
the turning angle and can be used for phase estimation close to the Heisen-
berg limit.

In section 3.5, we have seen that a twin-Fock state
∣∣N

2
, N

2

〉
with the same number of

particles in the two modes of the pseudo spin basis can be represented as ring around
the equator of the generalized Bloch sphere as shown in Fig. 5.1b. The vanishing width
along Jz reflects its well defined difference in the number of particles in the two states
2Jz = N↑−N↓ = 0. The phase, on the other hand, is completely undefined as the mean
collective spin vanishes (〈Jx〉 , 〈Jy〉 , 〈Jz〉)ᵀ = (0, 0, 0)ᵀ and makes it impossible to define
an angle ϕ with respect to the x-axis. At a first glance, it seems unlikely that such
a state with a completely undefined phase can be used for a precise phase estimation.
However, as we have seen in section 2.3.4 the first beamsplitter of an interferometer acts
as a π

2
rotation around the x-axis, turning the ring upright and thereby converts the

well defined difference in the number of particles into a precisely defined phase. The
fluctuations in the population difference, on the other hand, are greatly increased.

As discussed in section 2.3.4, the interferometer sequence acts as a rotation of φ
around the y-axis on the collective spin. At the end of the interferometer sequence,
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5.3. Experimental creation of twin-Fock states

the population difference in the two modes can be measured which corresponds to a
projection on Jz. For a spin coherent state, such a measurement yields a Gaussian
distribution whose mean value can be used for the estimation of the phase (see Fig. 5.1a
and section 2.2.1). For a spin-squeezed input state, we expect a similar result with a
narrower distribution improving the estimation of the mean population imbalance.

For a twin-Fock state, however, the mean of the resulting distribution does not depend
on the phase shift φ experienced in the interferometer. The mean of the collective spin
〈Jx〉 = 〈Jy〉 = 〈Jz〉 = 0 always vanishes independent on the turning angle on the
generalized Bloch sphere. This shows that the twin-Fock state is not useful for standard
phase estimation. It does thus not belong to the class of spin-squeezed states and it
can be shown that ξ = 1 for the ideal twin-Fock state [111]. As mentioned in the
previous section, such a state can still be useful for quantum-enhanced interferometry
with a phase estimation which is not extracted from the mean of the distribution. In
the case of the twin-Fock interferometer, the shape of the distribution at the output
of the interferometer depends on the phase shift φ. Holland and Burnett showed that
the twin-Fock state can indeed be used for phase estimation close to the Heisenberg
limit [58, 112]. The width of the distribution is particularly well suited for estimating
the turning angle (see Fig. 5.1b).

So far, such a twin-Fock interferometer has only been realized with up to four pho-
tons [113,114] and two ions [115]. In the following, we will describe how we could create
a state close to a perfect twin-Fock state consisting of up to 10 000 87Rb atoms and prove
its usefulness for interferometry.

5.3. Experimental creation of twin-Fock states

With spin dynamics we can create a superposition of twin-Fock states with a varying
total number of particles as shown in section 3.5. To this end, we prepare a Bose-Einstein
condensate of about 28 000 87Rb atoms in the Zeeman level mF = 0 in the F = 2
manifold. In order to fulfil the resonance condition for spin dynamics (see section 3.3)
we have to tune the energy of the involved internal and external states to achieve energy
conservation.

For the special case of J = 1
2
, which is valid for 87Rb atoms in the 52S1/2 ground state,

the energy splitting ∆E(F,mF , B) of the different Zeeman hyperfine states |F,mF 〉 in a
magnetic field B can be analytically expressed by the Breit-Rabi formula [116].

∆E(F = I ± 1

2
,mF , B) =

−∆E0

4(I + 1
2
)

+mFgIµIB ±
∆E0

2

√
1 +

4mF

2I + 1
αB + (αB)2 (5.4)

Here, α = gJµB−gIµI
∆E0

and µB is the Bohr magneton. For 87Rb the nuclear spin is I = 3
2

and

the product of its Landé g-factor gI and its magnetic moment µI is gIµI = −9.951414 · 10−4µB.
Hence, for 87Rb the Breit-Rabi formula reads

∆E(F =
3

2
± 1

2
,mF , B) =

−∆E0

8
+mFgIµIB ±

∆E0

2

√
1 +mFαB + (αB)2. (5.5)
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Figure 5.2.: Spin dynamics resonances. (a) At low magnetic fields B, the splitting
of the Zeeman levels can be approximated by a linear and a quadratic term.
In the inset we reduced the linear contribution by a factor of 200 to make the
quadratic contribution in F = 2 visible. In the calculation of the internal
energy change, the linear parts of the Zeeman shifts cancel. The remaining
quadratic term bmFB

2 is larger for the mF = 0 level and the internal energy
is thus reduced. (b) If the released internal energy is close to the energy
needed to populate an eigenstate of the effective potential for the mF = ±1
atoms, a resonance occurs. (c) Hence, the fraction of atoms transferred to
mF = ±1 after an evolution time of 18 ms depends on the magnetic field.
(d) The position of the experimentally observed resonances are given by the
maxima of the numerically calculated amplification rate Im(E). The orange
line shows the highest amplification rate for a given magnetic field and the
grey line corresponds to the mode with the second largest amplification rate.

The Landé factor of the fine structure spin is equal to the Landé g-factor of the electron
gJ = ge = 2.0023. The splitting ∆E0 of the two hyperfine manifolds F = 3

2
+ 1

2
= 2 and

F = 3
2
− 1

2
= 1 at B = 0 is ∆E = 9.83468 GHz.

At small magnetic fields, this energy shift ∆E(F = 2,mF , B) can be approximated
by a linear and a quadratic contribution.

∆E(F = 2,mF , B) ≈ c+ amFB − bmF
B2 (5.6)
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5.4. Measurement of sub-shot-noise number fluctuations

The linear contribution is

a = gIµI +
∆E0 α

4
= 700

kHz

G
(5.7)

and the quadratic contribution is

bmF =
∆E0 α

2

4
(1− m2

F

4
) = 288

Hz

G2
−m2

F 72
Hz

G2
(5.8)

for the different Zeeman levels in the F = 2 manifold. For F = 1 we find the same values
with a negative sign. If we calculate the difference 2 q of the internal energy of two atoms
before and after a spin-changing collision from mF = 0 to mF = ±1 or mF = ±2 in
F = 2

2 q = 2∆E(2, 0, B)− (∆E(2,mF , B) + ∆E(2,−mF , B)) = −2m2
F · 72

Hz

G2
B2, (5.9)

we see that we have lost some internal energy. This can be compensated by the increased
external energy En of the populated eigenmode of the effective potential such that En +
q = 0. By tuning the magnetic field, we can thus observe multiple spin dynamics
resonances as shown in Fig. 5.2c. These resonances correspond to eigenmodes of the
effective potential. This is confirmed by the characteristic density profiles observed on
the different resonances [30,73].

When we tune the magnetic field to the resonance at 1.23 G, we observe an initial
exponential increase of the number of particles in the mF = ±1 levels. After a spin
dynamics time of about 15 ms, the population of these states does not increase expo-
nentially any longer and starts to saturate as shown in Fig. 5.3a. This can be partially
explained by a depletion of the mF = 0 condensate as explained in section 3.6.

In summary, we create a twin-Fock state by tuning the magnetic field to the resonance
condition for spin-changing collisions. We populate themF = ±1 states with up to 10 000
atoms within a spin dynamics time of 15 ms.

5.4. Measurement of sub-shot-noise number
fluctuations

A first indication that the state produced by spin dynamics is entangled and useful for
enhanced interferometric sensitivity are fluctuations below shot noise in the population
difference ∆Jz <

1
2

√
N . The result of such a measurement is shown in Fig. 5.3b. The

recorded fluctuations are limited by the detection noise of ∆Nest ≈
√

2 20(1) atoms
which is almost independent of the total number of atoms. In the interval from N =
N↑ + N↓ = 7 700 to 9 000 atoms in the mF = ±1 levels we achieve a number squeezing

of
(∆(N↑−N↓))2

N↑+N↓
= −6.9(9) dB. Since this result is only limited by our detection noise, we

expect the true amount of number squeezing to be much better. To confirm that we
have a correct calibration of the number of atoms we record the fluctuations of a spin
coherent state prepared by microwave pulses. These fluctuations are well described by
the combination of the atomic shot noise and our detection noise.
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Figure 5.3.: Time evolution and fluctuations of the produced state. (a) Initially,
the total number of atoms in the levels mF = ±1 (blue points) as well as
its fluctuations (black triangles) grow exponentially with time. After 15 ms,
however, the population in mF = ±1 ceases to grow exponentially and
later, a saturation sets in. The inset shows a typical distribution of the
total number of atoms in the mf = ±1 levels after 15 ms evolution time. (b)
For this evolution time, we record fluctuations of the population difference
∆Jz (orange line) below shot noise (dashed black line). These fluctuations
are mainly limited by our detection noise (dotted black line). To confirm the
calibration of the absolute number of atoms, we measure the fluctuations of
a spin coherent state (blue line) which is in reasonable agreement with the
combination of shot noise and detection noise (dash-dotted black line). The
individual data points are obtained from calculating the mean total number
of atoms 〈N〉 and the standard deviation in the population imbalance ∆Jz
of post-selected ensembles with N ∈ [x− 1 000, x+ 1 000].

5.5. Estimation of the sensitivity gain

For an estimation of the usefulness of the state as a resource for quantum-enhanced
interferometry, we need to turn the state on the generalized Bloch sphere by an angle θ
and thereby mimic the effect of an interferometer with a phase shift of φ = θ. A proof
of enhanced sensitivity is carried out by estimating this defined turning angle with a
precision beyond shot noise.

We can realize this rotation by coupling the states with the help of microwave tran-
sitions. A two-photon transition is needed for a direct coupling of the mF = ±1 levels.
A two-photon transition with a reasonable detuning to the intermediate state is com-
parably slow and thus very sensitive to magnetic field fluctuations. Instead, we first
transfer the atoms from |F,mF 〉 = |2,−1〉 to |1, 0〉 with a microwave π-pulse. Thereby,
we switch to a new pseudo spin basis formed by the levels |↓〉 = |1, 0〉 and |↑〉 = |2,+1〉
which can be easily coupled with microwave pulses. This transfer pulse shifts the phase
of the atoms in the |↓〉 level. However, the phase difference is completely undefined and
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Figure 5.4.: Turning the state on the generalized Bloch sphere (a) The collective
spin can be rotated on the generalized Bloch sphere by a microwave coupling
pulse. For this purpose, we first transfer the atoms from |F,mF 〉 = |2,−1〉
to |1, 0〉 with a π-pulse (2) after spin dynamics (1). This enables us to
apply a coupling pulse (3) between the levels |1, 0〉 and |2,+1〉. Finally, we
transfer the atoms in |1, 0〉 to |2,−1〉 (4) for the spatial separation by a strong
magnetic field gradient. (b) The measured probability distributions of the
normalized population imbalance Jz

Jmax
have a characteristic shape (orange)

which is in reasonable agreement with the calculation (grey shaded area).
(c) The measured standard deviations of these distributions (blue points)
depend on the turning angle θ and are close to the ideal signal (orange line).

such phase shifts thus don’t corrupt the ideal twin-Fock state. If a fraction of the atoms
is not transferred, on the other hand, the number squeezing can be reduced. For an
investigation of this effect, we transfer the atoms back to the |2,−1〉 level. This enables
us to separate the atoms by applying a strong magnetic field gradient as explained in
section 4.4.3. After these two transfer pulses, we are still able to detect number squeezing
which is not significantly deteriorated.

If we introduce a pulse which couples the |1, 0〉 and the |2,+1〉 levels in between
these transfer pulses, we are able to turn the state on the generalized Bloch sphere.
By changing the duration of the coupling pulse, we can change the turning angle θ
and observe the resulting distribution of the population difference as shown in Fig. 5.4b.
Especially for a rotation angle of θ = π

2
this distribution has an intriguing shape. Ideally,

the probability to find all atoms in mF = +1 and the probability to find all atoms in
mF = −1 are highest while an equal partition is very unlikely.

We aim to use the width of these distributions (∆Jz)
2 = J2

z as a signal to estimate
the turning angle θ. In Fig. 5.4c, we plot this width measured in terms of the standard

deviation of the normalized population imbalance ∆
(

Jz
Jmax

)
for all realizations with a

total number of 3 000 to 8 000 atoms. Here, Jmax = N
2

is the maximal achievable collective
spin length. In agreement with calculations, the Bloch sphere picture suggests that this
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5. The twin-Fock interferometer

width is given by 〈
J2
z

〉
≈ 1

2

〈
J2

eff

〉
sin θ. (5.10)

as obtained from a projection of the rotated ring on the z-axis. Here, the so-called
effective spin length 〈Jeff〉 =

〈
J2
x + J2

y

〉
is the radius of the ring on the generalized Bloch

sphere and is connected to the contrast of the interferometer. For the normalized signal,
we obtain

∆

(
Jz
Jmax

)
= α| sin θ| with α =

√
Jeff

2Jmax

(5.11)

In the experiment, we achieve a value of α = 0.67(4) which is close to the optimum
α = 1√

2
≈ 0.71.

For a small deviation δJ2
z from the mean width 〈J2

z 〉, we can assume a linear depen-
dence of the estimated turning angle θest on this deviation

θest = θ0 + δJ2
z

∂θ

∂ 〈J2
z 〉
, (5.12)

where θ0 is the result of a phase estimation if 〈J2
z 〉 is measured. Hence, the sensitivity

for the estimation of θ can be written as

∆θest =
∆(J2

z )(
∂〈J2

z 〉
∂θ

) . (5.13)

In order to compute this value, we need to know the width 〈J2
z 〉 and its fluctuations

∆(J2
z ) = 〈J4

z 〉 − 〈J2
z 〉

2
as a function of the turning angle θ. At small rotation angles,

this can be estimated from a quadratic fit of the form a+ b θ2 to the experimental data
as shown in Fig. 5.5a and b. This accounts for the leading terms of the ideal signal in
the presence of detection noise. With a bootstrap method, we can estimate the error of
the fitted curve. Finally, we can combine the results to estimate the sensitivity. At an
angle of 0.018 rad, the sensitivity is −1.61+0.98

−1.1 dB below the shot-noise limit. Moreover,
it is well below the limit set by the combination of shot-noise and our detection noise,
which cannot be beaten by any classical state measured with our detection system. This
proves that the created state is useful for phase estimation beyond the shot-noise limit.
According to Eq. (5.3), we can deduce a Fisher information of F ≥ 1.45+0.42

−0.29 〈N〉, proving
that the state is entangled.

5.6. Sensitivity limit set by the detection noise

The main limitation of the presented phase sensitivity beyond the shot-noise level is our
detection noise. In the meanwhile, we improved our absorption detection and achieve
a detection noise as low as 11 atoms in terms of ∆Jz (see section 4.4.5). According to

Fig. 5.6a, this would enable us to achieve a sensitivity gain of almost (∆θest)2

(∆θsn)2
≈ −8 dB

which corresponds to a variance six times smaller than the shot-noise limit (∆θsn)2 = 1
N

.
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Figure 5.5.: Measurement of the phase sensitivity. (a) In order to measure the
phase estimation sensitivity ∆φest = ∆θest, we record the width 〈J2

z 〉 for a
total number of atoms between 6400 and 7600 (blue points) and apply a
quadratic fit (orange line). With a bootstrap method, we can estimate the
uncertainty of this fit (grey shaded area) which is in reasonable agreement
with the ideal signal including our detection noise (dashed orange line).
(b) Additionally, we have to do the same estimation for the error of the
measured width. (c) With error propagation, we can extract the phase es-
timation sensitivity (orange line) and its error (grey area) from the fitted
curves. The result is below the shot-noise limit (dashed black line) and
well below the limit set by the combination of shot noise and our detection
noise (dash-dotted black line). All phase estimations obtained from mea-
surements with uncorrelated particles and our detection capabilities (blue
line) are constrained to sensitivities above this limit. The measured phase
sensitivity of the twin-Fock state is in reasonable agreement with the pre-
diction including our detection noise (dashed orange line). In principle, it is
possible to improve the sensitivity for larger rotation angles with a Bayesian
analysis and to saturate the Cramer-Rao bound (dotted orange line).

Theoretically, a detection with single-atom resolution allows for a phase sensitivity
close to the Heisenberg limit. Moreover, it would be possible to resolve the peculiar
structure of the probability distribution of the number of atoms after a coupling pulse
shown in Fig. 5.6b. For a symmetric mixing of the two modes of a twin-Fock state with
a π

2
-pulse, only even or only odd numbers of atoms occur in the output modes depending

on the parity of N
2

. This can be seen as a generalized version of the Hong-Ou-Mandel
bunching effect [117].

This effect leads to a strong dependence of the parity on the turning angle close to
multiples of θ = π

2
. Indeed, it has been shown that a detection of the parity of the

number of atoms in one output port only is sufficient to achieve Heisenberg scaling [54].
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g
ain

 [d
B

]

0

10

20

30

40

10
0

10
-1

10
-2

rotation angle, [rad]θ

½ =2.5ΔN
est

½ =10ΔN
est

σ
dn

=0

½ =5ΔN
est

½ =20ΔN
est

0.00 0.01 0.02 0.03 0.04 0.05p
h
as

e 
se

n
si

ti
v
it

y,
/

Δ
Δ

θ
θ

es
t

sn
0.0
0.2
0.4
0.6
0.8
1.0

-10 -5 0 5 10

Jz

P
ro

b
ab

il
it

y θ = 0

0.0

0.1

0.2

0.3

θ = 0.2

0.0

0.1

θ /= 2π

0 π / 4

0.0

0.2

0.4

0.6

0.8
1.0

-10 -5 0 5 10 -10 -5 0 5 10

P
ro

b
ab

il
it

y

π / 2 3 /4π π

rotation angle, [rad]θ

(a) (b)

(c)
even

odd

Jz Jz

Figure 5.6.: Sensitivity limits set by the detection noise and the ideal atomic
distributions. (a) Phase sensitivities for different levels of Gaussian de-
tection noise and a total number of 7 000 atoms. The dashed lines are the
Cramer-Rao bounds and the solid lines are the achieved sensitivities using
J2
z for the estimation. (b) Ideal probability distributions of a twin-Fock state

with a total number of 20 atoms for different turning angles. (c) Probabil-
ity to find an even (solid blue line) or odd (dashed orange line) number of
atoms at an output port. The calculation assumes an twin-Fock input state
containing 20 atoms.

At small total numbers of atoms, it is even possible to achieve a sensitivity beyond the
Heisenberg limit ∆θest <

1
〈N〉 if the two-mode squeezed vacuum is used as input state.

This is possible due to the strongly fluctuating total number of atoms ∆N �
√
N [53].
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6. Multi-particle entanglement in a
spinor Bose-Einstein condensate

In the last section, a phase sensitivity beyond the shot-noise limit has been demon-
strated for the state produced by spin-dynamics. This proves that the state contains
entanglement, but in a rather indirect measurement.

In this chapter, we will establish a direct prove and a further quantification of the
entanglement. Since the state describes up to 10 000 atoms, it is particularly interesting
to ask if it contains more than pairwise entanglement. We show how we are able to
apply new theoretical tools developed developed in cooperation with the group of Géza
Tóth to characterize the experimentally created state. We measure a generalized spin-
squeezing parameter of −11.4(5) dB, the best result reported for any atomic system, and
prove genuine 28-particle entanglement.

6.1. Entanglement detection based on measurements of
the collective spin

(a)

Jeff

ΔJz

Jz

Jx

Jy

Jz

Jx

Jy

(b)

Figure 6.1.: Generalized spin squeezing. (a) The generalized spin-squeezing parame-
ter compares the fluctuations of the population imbalance ∆Jz with the spin
length Jeff in the x-y-plane. It is optimal to detect a twin-Fock state, which
has vanishing fluctuations ∆Jz = 0 and a maximal radius Jeff ≈ Jmax. (b)
Phase noise leads to a stretching of a spin-squeezed state along the equator
of the generalized Bloch sphere. It can be described as a incoherent mixture
of spin-squeezed states with different orientations in the x-y-plane. Since
this does not effect the spin length, the generalized spin-squeezing parameter
is robust against this type of noise.
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6. Multi-particle entanglement in a spinor Bose-Einstein condensate

In systems containing only a few, but individually addressable particles, entanglement
is commonly confirmed by the full reconstruction of the underlying density matrix. In
the case of ions [7], photons [118,119], super conducting qubits [10,11], nitrogen-vacancy
centers in diamond [12] and many other well controllable systems, this so-called full state
tomography [120] is a standard technique. However, the required number of measure-
ments as well as the dimension of the density matrix scale exponentially with the number
of particles. At about 40 particles, more than one terabyte is needed to store the density
matrix on a computer. For about 20 particles, about one million measurements need to
be performed and the calculation of the density matrix from the measurement results
cannot be performed in a reasonable time. Obviously, such a tomography for our state
describing up to 10 000 atoms is not feasible. Moreover, full state tomography requires
the ability to manipulate the individual spins to enable measurements in different bases.
This is not only a technical challenge, but fundamentally impossible for our system since
the atoms in the BEC are indistinguishable.

Hence, we are limited to detect entanglement by measuring the components of the
collective spin of the ensemble. Most prominently, this can be achieved by measuring a
spin-squeezing parameter smaller than one (see Ref.45, section 2.4 and appendix B).

ξ2 = N
(∆Jz)

2

〈Jx〉2 + 〈Jy〉2
< 1 (6.1)

For states with an undefined orientation of the collective spin in the x-y-plane 〈Jx〉 =
〈Jy〉 = 0, this parameter is useless due to the vanishing denominator. In this case, even
for ∆Jz = 0 and a perfect detection the spin-squeezing parameter is at best ξ = 1 and
no entanglement can be detected with the spin-squeezing criterion [111].

Simultaneous eigenstates of J2 and Jz are called Dicke states [121]. Even though they
are not detected by the spin-squeezing criterion they are known to be highly entangled
and useful for applications in quantum information such as open-destination teleporta-
tion and 1 → (N − 1) telecloning [122]. They are optimal for metrology [112, 123–125]
as has been demonstrated in the last chapter for the twin-Fock state which is a special
Dicke state with 〈Jz〉 = 0.

The concept of entanglement detection based on the measurement of the collective
spin has been extended from spin-squeezed states to more general entangled states. In
Ref. [126] a set of inequalities for separable states was introduced〈

J2
x

〉
+
〈
J2
y

〉
+
〈
J2
z

〉
≤ Jmax(Jmax + 1) (6.2)

(∆Jx)
2 + (∆Jy)

2 + (∆Jz)
2 ≥ Jmax (6.3)〈

J2
k

〉
+
〈
J2
`

〉
− Jmax ≤ (N − 1)(∆Jm)2 (6.4)

(N − 1)[(∆Jk)
2 + (∆J`)

2] ≥
〈
J2
m

〉
+ Jmax(Jmax − 1) (6.5)

with Jmax = N
2

. The indices k, ` and m take all possible permutations of x, y and z.
A violation of any of these inequalities provides a proof of entanglement. Moreover,
these equations are optimal in the sense that they detect all entangled states that can
be detected based on the measurement of the mean value 〈Jk〉 and the fluctuations ∆Jk
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6.2. Spin dynamics in F=1

at large numbers of particles. Only if higher moments (〈J3
k 〉 , 〈J4

k 〉 , . . . ) are considered
as well, more entangled states may be detected by a measurement of the collective spin.

The first inequality states that the collective spin length is bound by Jmax and can-
not be violated. The second inequality is maximally violated by the completely anti-
symmetric state with J2 = 0 and can be used to detect entanglement in the vicinity of
this highly entangled many-body singlet state. Combining Ineq. (6.3) and (6.4), we can
regain the spin-squeezing condition (6.1). Moreover, it is possible to gain a generalized
spin-squeezing parameter [127] from Ineq. (6.4)

ξ2
gen = (N − 1)

(∆Jz)
2

〈J2
eff〉 − Jmax

. (6.6)

The entanglement condition ξgen < 1 is ideally suited to detect the entanglement close
to Dicke states. It compares the sub-shot-noise fluctuations ∆Jz with the effective spin
length J2

eff = J2
x + J2

y in the x-y-plane. The effective spin length reaches its maximum
〈J2

eff〉 = Jmax(Jmax +1) ≈ Jmax for the ideal twin-Fock state. In the Bloch-sphere picture,
it corresponds to the radius of the ring around the equator representing the twin-Fock
state. We have seen in the last chapter that it is related to the contrast of the twin-
Fock interferometer. A maximal spin length J2 = Jmax(Jmax + 1) is achieved for pure
spin states that are fully symmetric under particle exchange (see appendix A.1). For
symmetric states, sub-shot-noise fluctuations directly imply full N -particle entanglement
(see appendix A.2). In this sense, a large effective spin length tests the symmetry of
the state and excludes the possibility that the sub-shot-noise fluctuations are caused by
classical correlations as in the example of Fig. 2.9.

The generalized spin-squeezing parameter is also valuable for the detection of entan-
glement in the case of a spin-squeezed state. If the state is strongly polarized along one
axis 〈Jx〉 ≈ Jmax, the effective spin length can be approximated〈

J2
eff

〉
=
〈
J2
x

〉
+
〈
J2
y

〉
≈ 〈Jx〉2 + 〈Jy〉2 (6.7)

and the two parameters become hence comparable ξ ≈ ξgen for a large number of par-
ticles. If the created state is a incoherent mixture of spin-squeezed states polarized
in different directions in the x-y-plane as shown in Fig. 6.1b, the mean collective spin
〈Jx〉2 + 〈Jy〉2 will be reduced, while the effective spin length is unchanged. The gen-
eralized spin-squeezing parameter is thus robust against uncontrolled phase shifts and
useful for the detection of entanglement of spin-squeezed states in the presence of phase
noise.

As a first step, we will characterize the state created by spin-dynamics in terms of the
generalized spin-squeezing parameter.

6.2. Spin dynamics in F=1

For the creation of twin-Fock states, we use spin dynamics in the F = 1 manifold of 87Rb
. Compared to spin dynamics in F = 2 described in section 5.3, this has the advantage of
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Figure 6.2.: Spin dynamics in F = 1. (a) Splitting of the Zeeman levels in F = 1
with a reduced linear contribution by a factor of 200 to make the quadratic
contribution apparent. Due to the quadratic part, the internal energy of
a pair of atoms increases during a spin-changing collision from mF = 0 to
mF = ±1. (b) The internal energy of the mF = +1 Zeeman level can be re-
duced by a dressing on the transition between |F,mF 〉 = |1,+1〉 and |2,+2〉
with a red-detuned microwave. The change in the internal energy q can be
tuned by adjusting the microwave detuning. (c) This enables us to observe
well resolved spin dynamics resonances in F = 1 for an evolution time of
280 ms. The averaged density profiles reflect the shape of the eigenmodes of
the effective potential seen by the atoms with mF = ±1.

avoiding collisions changing the hyperfine state from F = 2 to F = 1 (see section 3.3),
the strongest loss mechanism in F = 2. If a mean of 〈Nloss〉 particles is lost from a
Fock state with an initially well defined number of particles N , we expect to observe
fluctuations ∆N =

√
〈Nloss〉. Hence, any loss contributes to increased fluctuations in the

population imbalance ∆Jz. Besides the reduced losses during spin dynamics in F = 1,
there are other technical and conceptional differences that we discuss in the following.

As mentioned in section 5.3, the quadratic contribution of the Zeeman shift in F = 1
has the opposite sign compared to F = 2. Consequently, the internal energy increases
during a spin-changing collision from mF = 0 to mF = ±1. For typical densities in our
experiments, even the energy of the ground state of the effective potential seen by the
atoms in mF = ±1 is above the energy of a particle in the mF = 0 condensate. Hence,
internal and external energy increase in case of a spin-changing collision. The energy
conservation required for a spin dynamics resonance can thus not be fulfilled by tuning
the magnetic field and a Bose-Einstein condensate in mF = 0 is stable. To initiate spin
dynamics, we manipulate the internal level structure with the help of microwave dressing
as described in section 4.2. At a magnetic field of B = 2.6 G, we use a microwave which
is red detuned to the |F,mf〉 = |1, 1〉 → |2, 2〉 transition to reduce the energy of the
|1, 1〉 level. Thereby, the change of the internal energy q can be tuned by adjusting the
microwave detuning. In the range of δ ∈ [−750,−650] kHz, we observe spin dynamics
resonances as shown in Fig. 6.2c.

Compared to spin dynamics in F = 2 (see Fig. 5.2c), the resonances are well resolved
and do not overlap although all experimental parameters are comparable. The reason is
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6.3. Estimation of the generalized spin-squeezing parameter

the 7.7 times smaller matrix element U1 in the interaction Hamiltonian describing the
spin-changing collisions (see section 3.3). This leads to a reduced width Ω ∝ N0U1 of
the spin dynamics resonances.

On the other hand, this leads to a longer evolution time t ∼ 1
Ω

for the transfer of a
considerable fraction of atoms into the mF = ±1 levels. For the following experiments
we tune the microwave to the resonance of the first excited mode of the effective potential
at q ≈ −28 Hz and employ an evolution time of 240 ms.

6.3. Estimation of the generalized spin-squeezing
parameter
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Figure 6.3.: Measurement of the sub-shot-noise fluctuations and the effective
spin length. (a) After populating the |F,mF 〉 = |1,±1〉 levels with spin
dynamics (1), we transfer the atoms from |1,−1〉 to |2, 0〉 with a microwave
π pulse (2). This enables us to couple the level |2, 0〉 and |1,+1〉 with a
π
2
-pulse and thereby turn the state on the generalized Bloch sphere (3). Fi-

nally, we transfer the atoms from |1,+1〉 to |2,+2〉 (4). This last step is
necessary for the separation via a strong magnetic field gradient enabling
the state-selective detection. (b) Without a coupling pulse (3), we mea-
sure the fluctuations in Jz. The resulting distribution (blue) in an interval
N ∈ [3 000, 7 000] is much narrower than the fluctuations of a coherent state
(open bars) in the same interval which we prepare with a microwave π

2
-pulse.

Ideally, the coherent state fluctuations are given by shot noise (dashed line).
We corrected for a small offset between the center of the distributions. (c)
With the π

2
coupling pulse, the measured distribution of the population im-

balance (red bars) is much wider than the initial sub-shot-noise distribution
(blue bars) indicating a large effective spin length Jeff .

For the estimation of the generalized spin-squeezing parameter, we have to measure
the reduced fluctuations in the population imbalance ∆Jz and the effective spin length
in the x-y plane. The measurement of the population imbalance can be realized by
counting the atoms in the two levels |↑〉 and |↓〉 and calculating the fluctuations of the
difference N↑−N↓. For the measurement of 〈J2

eff〉 =
〈
J2
x + J2

y

〉
we need to turn the state

on the generalized Bloch sphere before the number measurement to resolve 〈J2
x〉 and
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6. Multi-particle entanglement in a spinor Bose-Einstein condensate

〈
J2
y

〉
This can be realized by first transferring the atoms from |F,mF 〉 = |1,−1〉 to |2, 0〉

with a microwave π-pulse and then coupling these atoms with the atoms in |1,+1〉 with a
π
2
-pulse (see Fig.6.3a). Subsequently, we transfer the atoms from |1,+1〉 to |2,+2〉. This

enables a state-selective estimation of the number of atoms by spatially separating the
atoms in the different Zeeman states with a strong magnetic field gradient (see section
4.4.3).

If we measure Jx or Jy after the coupling pulse depends on the phase difference between
the initial Bose-Einstein condensate and the microwave. For a given phase difference α,
the number measurement after the coupling pulse correspond to a projection on Jα =
cos(α)Jx + sin(α)Jy. Intrinsically, the two phases are completely uncorrelated. Hence,
we have to average over all possible phase differences α to calculate the expectation value
corresponding to our measurements. For the recorded second moment, this corresponds
to a measurement of the effective spin length Jeff .

1

2π

∫ 2π

0

〈J2
α〉 dα =

〈
1

2
(J2
x + J2

y )

〉
=

1

2

〈
J2

eff

〉
(6.8)

We also need to know the error of the second moment measurement without assumptions
on the form of the underlying distribution. The statistically correct estimation of this
error is presented in appendix E. We use the same transfer pulses for the measurement of
∆Jz, such that we can directly compare the sub-shot-noise fluctuations of the population
imbalance with the large fluctuations expected for the measurement of Jeff (see Fig.6.3c).

Since we are interested in the pure atomic noise ∆Jz, we subtract the independently
measured detection noise that is independent of the number of atoms (see section 4.4.5).
We measure a number squeezing of up to −12.4 ± 1.2 dB at a total number of 8 000
atoms. The fluctuations ∆Jz are almost independent on the total number of atoms. A
small trend of ∆Jz ∼ 0.15

√
N could be due to losses as explained in the last section.

However, we do not observe significantly increased fluctuations for an additional hold
time of up to 420 ms after spin dynamics, which excludes losses as a major noise source.
Other noise sources that should increase with an additional holding time like residual
radio frequencies can also be excluded. The trend has to be explained by noise in the
transfer pulses and additional number dependent detection noise. Hence, our results are
limited by our detection capabilities and not by the fluctuations of the prepared state.

The measured effective spin length 〈Jeff〉 is close to the optimal achievable value of
Jmax as shown in Fig.6.4b. It slowly decreases during an additional hold time. We thus
conclude that a magnetic field gradient and elastic collisions are limiting the achievable
spin length. elastic collisions can lead to a spontaneous change of the spatial wave
function of an atom. Thereby, it becomes distinguishable by its spatial degree of freedom.
This may lead to a spin state that is not completely symmetric with respect to particle
exchange.

Both measurements can be combined to estimate a generalized spin-squeezing param-
eter as presented in Fig.6.4c. At a total number of 8 000 atoms, we achieve a gener-
alized spin-squeezing parameter of −11.4(5) dB [34]. It is reasonable to compare the
new generalized parameter ξgen to the usual spin-squeezing parameter ξ as explained in
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Figure 6.4.: Generalized spin-squeezing parameter. (a) The fluctuations of the
population imbalance (red solid line) are well below shot noise (black dashed
line). The independently measured detection noise has been subtracted to
estimate the pure atomic noise. In the interval from N = 7500 to 8500
atoms, we reach a number squeezing of −12.4±1.2 dB. The slightly increased
fluctuations at larger numbers of atoms can be explained by a number de-
pendent detection noise which can be estimated as explainde in sec. 4.4.6
(black dash-dotted line). To confirm the calibration of the absolute num-
ber of atoms, we measure the shot-noise fluctuations of a coherent state
created by a microwave π

2
-pulse (blue solid line). (b) The measured effec-

tive spin length Jeff (red line) almost reaches its maximally achievable value
Jmax = N

2
(dashed black line). If we introduce an additional hold time

after spin dynamics, it slowly decreases as shown in the inset. (c) From
these measurements, we can extract a generalized spin-squeezing parame-
ter ξgen (red solid line). At a total number of 8 000 atoms, we achieve a
generalized spin squeezing of 11.4(5) dB. For all graphs, the individual data
points are obtained from a post selected ensemble with a total number of
atoms N ∈ [x− 500, x+ 500]. The shaded areas correspond to a statistical
uncertainty of one standard deviation.

section 6.1. Such a comparison shows that this measurement presents the highest spin
squeezing measured in any atomic system to date.

6.4. Detection of multi-particle entanglement in
spin-squeezed ensembles

In the last section, we have seen that we are able to detect the entanglement of the Dicke-
like state created by spin dynamics with a generalized spin-squeezing parameter. Since
the system contains up to 10 000 atoms, it might exhibit multi-particle entanglement and
not only pairwise entanglement. Such multi-particle entanglement is best characterized
by the entanglement depth [63] which is defined as the number of particles in the largest
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6. Multi-particle entanglement in a spinor Bose-Einstein condensate

unentangled pairwise entanglement 4-particle entanglement full entanglement depth

Figure 6.5.: Multi-particle entanglement in an ensemble. An ensemble of N > 2
particles may contain more than pairwise entanglement. The multi-particle
entanglement is best characterized by the entanglement depth k defined as
the number of particles in the largest non-separable subset. In the above
examples, the entanglement depth ranges from k = 1 for the separable state
over k = 2 for the pairwise entangled state to k = 4 for larger entangled
subsets and finally to k = N for full entanglement of the ensemble. En-
tanglement is indicated by the blue shaded areas connecting the individual
spin-1

2
particles.

non-separable subset of a state (see Fig. 6.5).

In their seminal work, Sørensen and Mølmer described a method to detect multi-
particle entanglement of spin-squeezed states by a measurement of the collective spin
J . In the following, we will briefly describe their method, which will be extended for
the application to more general states and for a improved noise tolerance in the next
section.

The starting point of the method by Sørensen and Mølmer is a numerical determi-
nation of pure states with minimal achievable fluctuations in the population imbalance
∆Jz for a given mean spin component 〈Jy〉. For a single spin-1

2
particle with 〈Jx〉 = 0,

the component 〈Jy〉 determines the turning angle θ on the Bloch sphere. For θ = 0,
the state is located on the top of the Bloch sphere and we get 〈Jy〉 = 0 and vanishing
fluctuations in ∆Jz. By increasing the turning angle θ, the projection 〈Jy〉 becomes
larger and finally 〈Jy〉 = J for θ = π

2
. At this point, the fluctuations ∆Jz are maximal

since the state corresponds to a 50/50 superposition of |↑〉 and |↓〉.
If we investigate a system with a larger collective spin J , we can do more than just

turning the state on the Bloch sphere to minimize the fluctuations ∆Jz: We can entangle
the individual spins s that add up to the collective spin J and thereby squeeze these fluc-
tuations. With an increasing number of particles, we can achieve larger multi-particle
entanglement and more efficient squeezing in the following sense: We compare the nor-

malized minimal achievable fluctuations (∆Jz)2

J
= FJ( 〈Jy〉

J
) for a given normalized mean

spin component 〈Jy〉
J

. From a constraint optimization, the minimal fluctuations FJ( 〈Jy〉
J

)

can be calculated numerically and are shown in fig 6.6a. We find that FJ( 〈Jy〉
J

) < FJ ′(
〈Jy〉
J ′

)
for J > J ′.

Since these functions FJ( 〈Jy〉
J

) are convex, a mixture of spin-J states can only have
increased fluctuations. As a simple example, consider a mixture, where the spin-J state
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Figure 6.6.: Relation between the length of the mean collective spin and sub-
shot-noise fluctuations. (a) Sørensen and Mølmer calculated minimal

achievable fluctuations in the normalized population imbalance (∆Jz)2

J
=

FJ( 〈Jy〉
J

) as a function of the mean spin 〈Jy〉 for different spin lengths
J2 = J(J + 1) assuming pure states. Due to the convexity of these curves

FJ( 〈Jy〉
J

), any mixture of states with the same spin length J must exhibit
increased fluctuations compared to these minimal achievable fluctuations as
shown for a simple example in the inset. (b) For a fully polarized spin coher-
ent state with 〈Jy〉 = J shown on the right, these fluctuations are given by

shot noise (∆Jz)2

J
= 1

2
. For a spin-squeezed state shown in the middle, these

fluctuations can be reduced at the expense of increased fluctuations in the
phase difference. These phase fluctuations limit the achievable mean collec-
tive spin 〈Jy〉

J
in y direction. Finally, on the left side, we show a Dicke state

with vanishing fluctuations in the population (∆Jz)2

J
= 0 and a vanishing

mean collective spin 〈Jy〉
J

= 0.

|ψ1〉 is produced with a probability p1 and the state |ψ2〉 otherwise.

ρ = p1 |ψ1〉 〈ψ1|+ (1− p1) |ψ2〉 〈ψ2| (6.9)
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6. Multi-particle entanglement in a spinor Bose-Einstein condensate

The corresponding mean spin component 〈Jy〉
J

〈Jy〉
J

= p1

〈
〈Jy〉
J

〉
1

+ (1− p1)

〈
〈Jy〉
J

〉
2

(6.10)

and the fluctuations

(∆Jz)
2

J
= p1

〈
(∆Jz)

2

J

〉
1

+ (1− p1)

〈
(∆Jz)

2

J

〉
2

(6.11)

describe points on a straight line above the curve FJ( 〈Jy〉
J

) as shown in the inset of
Fig. 6.6a. Here, 〈·〉i denotes the expectation value corresponding to state i. Hence, the
fluctuations are increased compared to the optimal spin-J state with the same mean
spin component.

An ensemble of N particles may have several entangled subsets. If such a subset
contains k spin-1

2
particles, its spin length is j ≤ k

2
. We assume for simplicity that N is

a multiple of k. We can see from the above discussion that the fluctuations (∆Jz)
2 with

a given 〈Jy〉
J

for an N particle state are minimized if the following conditions are met:
Every non-separable subset of the full N -particle state has the maximal size k. These
subsets are all in the same symmetric state |ψ〉 with j(i) = k

2
. This state minimizes the

fluctuations ∆j
(i)
z

j(i)
for a mean spin component

〈
j

(i)
y

〉
= 〈Jy〉

(N
k

)
. The full N -particle state

can be written as
|Ψ〉 = |ψ〉⊗

N
k (6.12)

and its fluctuations in the population imbalance are given by the sum of the fluctuations
of the non-separable subsets.

(∆Jz)
2 =

N
k∑
i=1

(∆j(i)
z )2 =

N
k∑
i=1

j(i)Fj(i)

(
〈Jy〉

(N
k

)j(i)

)
=
N

2
F k

2

(
2 〈Jy〉
N

)
(6.13)

Hence, any state with the same mean spin component 〈Jy〉, but smaller fluctuations
(∆Jz)

2, has to contain a non-separable subset of more than k particles. This means that
it has at least an entanglement depth of k + 1.

So far, we have assumed that the state is oriented along the y-axis. However, the
above discussion can be repeated for an arbitrary orientation of the mean collective spin
in the x-y-plane. Hence, a more general form of the criterion can be formulated by using

the length of the mean collective spin
√
〈Jx〉2 + 〈Jy〉2 in the x-y plane.

(∆Jz)
2 ≥ JmaxF k

2


√
〈Jx〉2 + 〈Jy〉2

Jmax

 . (6.14)

In summary, a measurement of sub-shot-noise fluctuations ∆Jz and a large mean spin
component 〈Jy〉 that violates the inequality (6.14) for a given k proves an entanglement
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6.5. A new criterion for multi-particle entanglement

depth larger than k+1. Obviously, the inequalities (6.14) are increasingly rigid for larger
k.

This criterion has been used in the group of M. Oberthaler in Heidelberg to proof an en-
tanglement depth larger than 80 with a 3 standard deviations uncertainty level [13].This,
is the largest multi-particle entanglement that has been reported (see Fig. 6.8b).

6.5. A new criterion for multi-particle entanglement
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Figure 6.7.: The new criterion for multi-particle entanglement. (a) The red
curve is the boundary of Eq. (6.20) for states with an entanglement depth
not larger than k = 28 and a total number of N = 8 000 atoms. Every state
below this boundary contains at least 28-particle entanglement. As a cross
check, the area above the boundary is filled up with points corresponding
to random states with an entanglement depth of k = 28. From a tangent to
the boundary we can gain a linear criterion (red dashed line) which detects
more k-particle entangled states than the analytically derived criterion by
Duan [128]. (b) The graphs show the entanglement depth detected by the
new criterion (blue line) and the Sørensen-Mølmer criterion (red dashed
line) for 4 000 spin-1

2
particles in a spin-squeezed state and a small noise

contribution to account for imperfections. In this case the new criterion is
superior even for a large mean spin component 〈Jx〉. The inset shows the
maximally detected entanglement depth for any 〈Jx〉 as a function of the
noise contribution. The blue dots correspond to the new criterion and the
red crosses to the Sørensen-Mølmer criterion.

Just like in the case of the spin-squeezing parameter, the Sørensen-Mølmer criterion
for multi-particle entanglement cannot be used for Dicke-like states since it relies on the
detection of a large mean spin component 〈Jy〉 which is zero in the case of a Dicke state
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6. Multi-particle entanglement in a spinor Bose-Einstein condensate

(see Fig. 6.6b). As we have seen in section 6.1, in the case of entanglement detection, this
problem can be solved by introducing the generalized spin-squeezing parameter, which
compares the sub-shot-noise fluctuations with the effective spin length in the x-y-plane
〈J2

eff〉 = 〈J2
x〉+

〈
J2
y

〉
instead. They were able to extend this concept to the detection of

multi-particle entanglement as we will briefly describe in the following.
Let us assume that we have a pure state with an entanglement depth of k. This can

be written as
|Ψ〉 =

∣∣ψ(1)
〉
⊗
∣∣ψ(2)

〉
⊗ · · · ⊗

∣∣ψ(M)
〉

(6.15)

where M is the number of non-separable subsets described by the states
∣∣ψ(i)

〉
. Each of

these subsets has a spin j(i) with a length of j ≤ k
2
. With these spin operators for the

individual subsets, we can write the effective spin length as〈
J2

eff

〉
=

〈
J2
x + J2

y

〉
=
∑
m,`

〈
j(m)
x j(`)

x + j(m)
y j(`)

y

〉
=

∑
m=`

〈
(j(m)
x )2 + (j(m)

y )2
〉

+
∑
m6=`

(〈
j(m)
x

〉 〈
j(`)
x

〉
+
〈
j(m)
y

〉 〈
j(`)
y

〉)
≤

∑
m

〈
(j(m)
x )2 + (j(m)

y )2
〉

+
∑
m,`

(〈
j(m)
x

〉 〈
j(`)
x

〉
+
〈
j(m)
y

〉 〈
j(`)
y

〉)
=

∑
m

〈
(j(m)
x )2 + (j(m)

y )2
〉

+
〈
J (m)
x

〉2
+
〈
J (m)
y

〉2
(6.16)

Since the spin length of the individual subsets is j ≤ k
2
, we have

(j(m)
x )2 + (j(m)

y )2 ≤ k

2
(
k

2
+ 1) (6.17)

and get 〈
J2

eff

〉
≤M

k

2
(
k

2
+ 1) + 〈Jx〉2 + 〈Jy〉2 . (6.18)

With M ≥ N
k

, we finally gain an expression

〈
J2

eff

〉
− Jmax(

k

2
+ 1) ≤ 〈Jx〉2 + 〈Jy〉2 (6.19)

that is useful to replace the length of the mean collective spin by the effective spin
length in the original Sørensen-Mølmer criterion (6.14). Using the monotony of Fj(x)
and Eq. (6.14) we arrive at

(∆Jz)
2 ≥ JmaxF k

2


√
〈J2

eff〉 − Jmax(k
2

+ 1)

Jmax

 . (6.20)

The right hand side of the inequality is a convex function of the effective spin length
and the inequality thus holds for mixed states with an entanglement depth of k.
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6.6. Characterization of the multi-particle entanglement

A measurement result violating this inequality proves that the underlying state has
an entanglement depth larger than k. With this method we can prove multi-particle
entanglement beyond spin squeezing in the state created by spin dynamics as we will
see in the next section.

A numerical test indicates that the new criterion is optimal in the sense that there is
no criterion detecting a larger entanglement depth based on a measurement of Jeff and
∆Jz (see Fig. 6.7a). Furthermore, the new criterion is not only useful for the detection
of Dicke states but also detects a larger entanglement depth for spin-squeezed states in
the presence of noise [34]. This is shown in Fig. 6.7b, where we plot a comparison of
the entanglement depths detected by the two criteria applied to squeezed states with a
small noise contribution. The noise was modelled as independently fluctuating particles
in a statistical mixture of the state |↑〉 and |↓〉. This is described by the density matrix

ρn = ρ⊗Nmix with ρmix = 0.5 |↑〉 〈↑|+ 0.5 |↓〉 〈↓| . (6.21)

The final result is fairly independent of the exact type of the noise. The full state ρ was
obtained from mixing this maximally noisy state ρn with the ideal spin-squeezed state
ρid.

ρ = (1− p)ρid + p ρn (6.22)

For the results shown in Fig. 6.7b, a noise contribution of p = 0.05 was used. The
robustness of the new criterion in the presence of phase noise can be understood in
the same way as the robustness of the generalized spin-squeezing parameter which is
illustrated in Fig. 6.1b. This noise tolerance makes the new criteria very valuable for
the experimental application.

6.6. Characterization of the multi-particle entanglement

In a ”bottom-up” approach, research groups worldwide try to entangle larger and larger
groups of individually addressable particles (see chapter 1). The best result has been
reported by the group of R. Blatt, achieving full multi-particle entanglement of 14 ions.
Ensembles of neutral atoms provide a ”top-down” approach for the creation of large
entangled ensembles. This was demonstrated in the group of M. Oberthaler by the
creation of spin-squeezed ensembles of about 400 neutral atoms with an entanglement
depth of 170 atoms.

With the new criterion at hand, we can use the measurement of the sub-shot-noise
fluctuations ∆Jz and of the effective spin length Jeff presented in section 6.3 to estimate
the entanglement depth of the created state. The result of such an estimation for all
realizations with a total number of atoms between 7500 and 8500 is shown in Fig. 6.8a.
With a two standard deviation uncertainty level the created state contains more than 28
particle entanglement. The mean values of the measurements indicate an entanglement
depth of 68.

This is the first demonstration of multi-particle entanglement of neutral atoms in a
state beyond spin-squeezed states - the Dicke states. The comparably large number
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Figure 6.8.: Experimentally generated multi-particle entanglement. (a) The red
curves correspond to the newly derived boundaries for k-particle entangle-
ment (6.20) for N = 8 000 atoms. Our measurements of the sub-shot-noise
fluctuations ∆Jz and the effective spin length Jeff are shown with one (dark
blue) and two standard deviation (light blue) uncertainty ellipses. They are
below the boundary for 28-particle entanglement (red dashed line) proving
an entanglement depth larger than 28 with a two standard deviation un-
certainty level. The mean values of our measurement indicate 68-particle
entanglement. (b) As detailed in the introduction of this thesis, multi-
particle entanglement of up to 14 particles [3] has been achieved in systems
which are well-controllable on the single-particle level. An entanglement
depth of 170 atoms has been achieved in an ensemble of about 400 spin-
squeezed neutral atoms in the group of M. Oberthaler [13]. In this work,
we achieved an entanglement depth of 68 atoms in a new class of states:
the Dicke states. This multi-particle entanglement has been created in an
ensemble of 8 000 neutral atoms. The large number of atoms is important
to achieve ultra-high precision in interferometry in realistic applications.

of 8 000 particles in the ensemble shows, that large entangled ensembles for realistic
applications in metrology can be created with our method. This may lead to an further
improvement of the ultra-high precision of sensors based on atom interferometry.
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7. Outlook

We have seen that spin dynamics can be used to create a multi-particle entangled state
which can be used for precision measurements beyond the shot-noise limit. In the first
section, we will show how these results can be improved in the future by reducing the
detection noise. In the second section, we present a new type of interferometer for
quantum-enhanced sensitivities at large numbers of atoms, which can be implemented
using spin dynamics.

7.1. Improving the detection system

The main limitation of the results presented in chapter 5 and 6 are due to detection
noise. There is strong evidence that the entanglement depth is limited by a number
dependent detection noise. With our new detection system, the results of chapter 5
could already be improved to a phase sensitivity −8 dB below the shot-noise limit. This
shows, that the precise counting of the number of atoms in the entangled states is a key
requirement for our measurements. Hence, we will discuss possible improvements of the
atom detection in this section.

7.1.1. Precision limits of absorption detection

As we have seen in section 4.4.4, the detection noise of absorption imaging can potentially
be improved by reducing the area occupied by the atoms. One way to achieve such a
compression of the atomic cloud is to use the so-called delta-kick cooling [105, 106].
We implement this technique by first releasing the atoms from the dipole trap. After
1 ms of free expansion, the dipole trap is abruptly switched on again. This stops a
further expansion of the cloud while the different Zeeman components split up due to
a strong magnetic field gradient. We were able to reduce the cloud radius from 25µm
to 10µm. As shown in Fig. 7.2a, this potentially reduces the photo-electron shot noise
from ∆Nest ≈ 10 to 4 atoms for our imaging parameters. This corresponds to a noise of
5.7 in terms of the population imbalance Jz.

However, the nonlinearity in the estimation of the number of atoms has to be treated
with care. As the diameter of the atomic cloud becomes smaller the impact of the
blurring effects described in section 4.4.3 increases and leads to a strong nonlinearity.
The number of atoms in a cloud with a radius of 10µm is underestimated by almost
20% for a resolution σB = 5µm of the imaging system and a total of 5 000 atoms. The
fluctuations of the number of atoms are even underestimated by 50% at this point. It is
difficult to reduce this nonlinearity without increasing the detection noise simultaneously.
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Figure 7.1.: Reduction of the cloud radius by a delta kick. The reduced kinetic
energy after a delta kick leads to a slow expansion (red squares) compared
to the usual expansion (blue dots) of the atomic cloud after releasing the
atoms from the dipole trap. This leads to a small root mean square (rms)
radius of the cloud after a free expansion time that is necessary to separate
the different spin components via a strong magnetic field gradient. Linear
fits are provided as guide to the eye (solid lines). We estimate that the cloud
radius can be reduced from a rms radius of about 25µm to 10µm for our
current trap frequencies, densities and expansion times that have changed
slightly compared to the measurement shown here.

We could try to improve the optical resolution. However, as we have seen in section 4.4.3,
the resolution is limited by the illumination time to σB = 5µm. A shorter illumination
time would allow for a further improvement of the imaging resolution, but leads to
an increased detection noise. The nonlinearity can also be reduced by increasing the
intensity of the imaging beam. Unfortunately, this leads again to an increased detection
noise.

Nonetheless, a moderate reduction of the root mean square (rms) cloud radius to
15µm leads only to a slightly increased nonlinearity. According to our simulation, the
number of atoms is underestimated by 2.5% and the fluctuations are underestimated
by less than 7% for this cloud size. If this effect is measured carefully, it is possible to
correct the recorded numbers accordingly. Thereby, the photo-electron shot noise can
be reduced to δNest ≈ 7 atoms.

For a smaller number of atoms, the constraints set by the nonlinearity are less rigid and
an improved detection noise can be obtained by using very small clouds as demonstrated
in the group of M. Oberthaler [97].

In summary, for a realistic imaging resolution the absorption detection of atomic
clouds containing 5 000 atoms is limited to a detection noise on the order of ∆Nest ≈ 7
corresponding to a noise of 5 atoms in terms of Jz. It is thus worthwhile to look for new
detection schemes for a further improvement.
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Figure 7.2.: Detection noise and nonlinearity for different cloud sizes. (a) The
detection noise due to photo-electron shot noise at N = 0 decreases linear
with the cloud radius if all other imaging parameters stay fixed. (b) How-
ever, the nonlinearity due to blurring effects has a larger effect for smaller
clouds. For an imaging resolution σB = 5µm, the cloud size could be reduced
to a rms radius of 15µm without suffering too strong from the nonlinear-
ity at 5 000 atoms in a single cloud. Provided that the illumination time
and other imaging parameters can be left unchanged, this would lead to
a photo-electron shot noise of ∆Nest ≈ 7 atoms. For ensembles containing
less atoms, the restrictions by the nonlinearity are relaxed and the detection
noise can be further reduced by compressing the atomic cloud.

7.1.2. Fluorescence detection

A new promising technique is to transfer the atoms in a MOT and use the fluorescence
signal for the estimation of the number of atoms as demonstrated in Ref. 98. For small
ensembles of about N = 100 atoms, steps in the fluorescence signal corresponding to
single atoms can be resolved. These discrete steps can only be observed for ∆Nest � 1.
For an ensemble of N = 100 atoms, ∆Nest = 0.14 was measured, and for N = 1 080,
the detection noise is on the order of a single atom ∆Nest = 1. If we extrapolate the
data of Ref. [98] to N = 5 000 atoms, we calculate a detection noise of ∆Nest = 3.9
which would be a significant improvement compared to our current absorption detection
setup. The optimal illumination time of 100 ms yields a detection of 9 031 photons per
atom. The photon shot noise becomes small compared to other effects at such a large
number of photons. Besides the atomic shot noise, which is mainly caused by one-body
losses, fluorescence noise is the dominant limitation to this detection scheme as shown
in Fig. 7.3. It is most probably caused by small deviations of the laser detuning due to
its finite line width on the order of 100 kHz.

The main drawback of this detection technique is that the population of different
internal states cannot be measured within a single realization. However, this is crucial
for our main objective: the measurement of sub-shot-noise fluctuations. In order to
overcome this limitation, atoms with internal states have to be trapped in different
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Figure 7.3.: Fluorescence detection in a MOT. (a) For a fluorescence detection
in a MOT with parameters found in Ref. [98], different noise contributions
add up to the detection noise as presented in this figure. (b) These noise
contributions can be extrapolated to larger numbers of atoms. This yields a
detection noise of ∆Nest = 3.9 at N = 5 000 atoms. (c) Schematic drawing
of a possible setup for the generation and detection of entangled ensembles
using the MOT fluorescence technique. With two coils and a U-shaped wire
on an atom chip a quadrupole magnetic field for a MOT can be created.
These atoms from the initial MOT are transferred into a magnetic trap and
cooled until a BEC is formed. This has to be transferred into a crossed-beam
dipole trap for spin dynamics (1). The inset shows the pulse sequence as
discussed in section 6.3 which transfers the entangled atoms into the states
|F,mF 〉 = |2, 0〉 and |2,+2〉 (pulses (2) and (4)) and couples them if needed
(pulse (3)). (d) With a strong magnetic field gradient, the atoms in |2,+2〉
can be pushed towards a second U-shaped wire on the atom chip providing
a quadrupole field for a second MOT while the atom in |2, 0〉 stay in place.
(e) The atoms are recaptured in the two MOTs and their fluorescence can
be used to estimate the number of atoms in both states.
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7.2. The Fock interferometer

MOTs. This could be achieved by splitting the MOT in two parts with a far blue
detuned light sheet. After separating the different Zeeman components with a strong
magnetic field gradient, the atoms can be recaptured in the MOT on either side of the
light sheet. However, at realistic optical powers in the light sheet, atoms will hop from
one side to the other and cause an increased noise.

A different approach is to create two MOTs by generating to quadrupole fields close
to each other. If they are separated by a few millimetres only, the atoms could be moved
to the center of the traps with a strong magnetic field gradient and then recaptured.
Additionally, a delta-kick could reduce the width of the atomic clouds for an efficient
retrapping in the MOTs. The generation of the two quadrupole fields at small distances
can be achieved by using an atom chip [129] as schematically shown in Fig.7.3c.

Such a dual-MOT detection scheme involves several technical challenges. First, the
atoms need to be transferred in either of the MOTs depending on their internal state
with very low losses. Due to the large magnetic field gradients generated by an atom
chip, the densities within the MOTs might be larger compared to the proof of principle
experiment of Ref. 98. This leads to higher densities and larger collision rates. Thereby,
the atomic shot-noise can be increased. Scattering of light at the chip surface can
increase the background noise level. On the other hand, the major noise source, the
fluorescence noise, is common to both MOTs and is thus suppressed in the estimation
of the population imbalance Jz.

With this fluorescence detection setup, the detection noise would be reduced to 1.8
in terms of the population imbalance Jz. As shown in Fig. 5.6a, this allows for a phase
sensitivity more than −20 dB below shot noise. Moreover, at small numbers of atoms,
effects on the single particle level like the odd-even oscillation shown in Fig. 5.6b may
become visible.

7.2. The Fock interferometer

In a recent publication L. Pezzé and A. Smerzi introduced a new technique to achieve
sub-shot-noise phase sensitivity [130]. They considered an arbitrary state ρ↑ at one input
port of the interferometer with a mean number of atoms 〈n↑〉 and a Fock-state |n↓〉 at
the other input port.

ρ = ρ↑ ⊗ |n↓〉 〈n↓| (7.1)

The quantum Fisher information of this state is found to be FQ = 2n↓ 〈n↑〉+ n↓ + 〈n↑〉
and the quantum Cramer-Rao bound for the phase sensitivity (see section 5.1) is thus

∆φQCR =
1

√
m
√

2n↓ 〈n↑〉+ n↓ + 〈n↑〉
(7.2)

where m is the number of independent measurements that are performed for the phase
estimation. In the limit 〈n↑〉 � n↓ of a large mean number of particles 〈n↑〉 in the state
ρ↑ compared to the n↓ particles in the Fock-state, a gain of

∆φQCR

∆φSN

=

√
〈n↑〉+ n↓√

2n↓ 〈n↑〉+ n↓ + 〈n↑〉
≈ 1√

2n↓ + 1
(7.3)
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Figure 7.4.: Quantum-enhanced interferometry due to a single Fock state. (a)
L. Pezzé and A. Smerzi showed that a Fock state |n↓〉 in one input port
and an arbitrary state with a mean number of atoms 〈n↑〉 can be used to
obtain sub-shot-noise phase sensitivity [130]. (b) The interferometric gain
depends on the number of atoms in the Fock state n↓ and reaches a constant
level for 〈n↑〉 � n↓. (c) Such an interferometer could be implemented with
the pulse sequence shown here. After spin dynamics (1), the atoms from
|F,mF 〉 = |1, 0〉 are transferred to |2, 0〉. Coupling pulses between |1,−1〉
and |2, 0〉 are used to realize an interferometer sequence (3). Finally, the
population of all 3 states is detected. The detected number of atoms in
mF = +1 can be used to infer the number of atoms that have been in
mF = −1 before the interferometer sequence.

compared to shot noise ∆φSN = 1
√
m
√
〈N〉

can be achieved as shown in Fig. 7.4b. The

quantum Cramer-Rao bound can be saturated for small phase shifts φ ≈ 0 by measuring
the number of atoms N↓ at a single output port. For φ = 0 we find the same number
of atoms at the input port as at the output port and thus have N↓ = n↓ without any
fluctuations. For an increasing phase shift φ > 0 these fluctuations will grow rapidly and
could be used for the phase estimation similar to the case of the twin-Fock interferometer
presented in chapter 5.

For a proof of principle, this proposal can be realized in our experiment as illustrated in
Fig. 7.4c. After spin dynamics we apply microwave pulses for an interferometer sequence
between the atoms in mF = −1 and mF = 0. Subsequently, the number of atoms in
all 3 internal states is measured. The atoms in the mF = +1 level are not affected
by the interferometer sequence. However, the number of atoms detected in this state
can be used to estimate the number of atoms n↓ in mF = −1 before the interferometer
sequence. In this sense, we can use the third mode to create an heralded Fock state at
the input of the interferometer.

Additionally, the measurement of the number of atoms in both output modes N↑ and
N↓ instead of only N↓ as proposed by L.Pezzé and A. Smerzi can be used to measure the
total number of atoms N = N↑+N↓. From this, we gain information about the number
of atoms that have been at the second input port of the interferometer n↑ = N − n↓.

86



7.2. The Fock interferometer

Effectively, the input state is thus a heralded Dicke state |n↑〉 ⊗ |n↓〉. This reveals the
entanglement of the input state. Furthermore, it shows the connection to the twin-Fock
interferometer presented in chapter 5, which can also be operated with Dicke states close
to a twin-Fock state.

This interferometer scheme has the advantage that it does not make any assumptions
on the state ρ↑ in one of the input ports. This facilitates the preparation even for a
large number of particles. In particular, existing interferometers that are operated with
uncorrelated atoms can be improved by simply replacing the vacuum state at one of the
two input ports by a Fock state. A demonstration of sub-shot-noise sensitivity at a large
number of atoms would pave the way from proof of principle experiments to applications
in metrology.
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A. Symmetric spin states

Here we will derive some of the spatial properties of spin states that are symmetric with
respect to particle exchange. Naturally, such states can be found for indistinguishable
Bosons with a symmetric spatial wave function. For particles that can be distinguished
by there position, for example in a optical lattice, such states are also common, if the
measurements and spin manipulations are homogeneous and do not resolve the spatial
position of the individual particles.

A.1. Spin length of symmetric states

The length squared of the collective spin is defined as

〈
J2
〉

=

〈(
N∑
i=1

s(i)

)2〉
=

〈(
N∑
i=1

s(i)

)(
N∑
j=1

s(j)

)〉

=

〈
N∑
i=1

(s(i))2

〉
+

〈∑
i 6=j

s(i) ⊗ s(j)

〉
. (A.1)

For symmetric states the expectation values of the operators for the individual spins s(i)

and higher moments of these operators do not depend on the particle labels (i) and (j)
and in this case we can thus write〈

J2
〉

= N
〈
(s(1))2

〉
+N(N − 1)

∑
k=x,y,z

〈
s

(1)
k ⊗ s

(2)
k

〉
= N

1

2
(
1

2
+ 1) +

1

4
N(N − 1)

∑
k=x,y,z

〈
σ

(1)
k ⊗ σ

(2)
k

〉
(A.2)

with the Pauli matrices σk. For a general symmetric pure state for two spin-1
2

particles

|ψ〉 = a |↑↑〉+
b√
2

(|↑↓〉+ |↓↑〉) + c |↓↓〉 (A.3)

it is easy to calculate 〈
σ(1)
x ⊗ σ(2)

x

〉
= |b|2 (A.4)〈

σ(1)
y ⊗ σ(2)

y

〉
= |b|2 (A.5)〈

σ(1)
z ⊗ σ(2)

z

〉
= |a|2 − |b|2 + |c|2. (A.6)

89



A. Symmetric spin states

With the normalization condition |a|2 + |b|2 + |c|2 = 1 we hence get∑
k=x,y,z

〈
σ

(1)
k ⊗ σ

(2)
k

〉
= |a|2 + |b|2 + |c|2 = 1 (A.7)

which is not surprising since it is well known that symmetric coupling of two spin-1
2

particles leads to a collective spin-1 system. For the length of the collective spin for a
symmetric state we thus get〈

J2
〉

=
3

4
N +

1

4
N(N − 1) =

N

2
(
N

2
+ 1) (A.8)

which equals J(J + 1) for J = N
2

.

A.2. Number squeezing and entanglement of symmetric
states

The connection between number squeezing ∆Jz <
N
2

and entanglement for symmetric
states is shown in [62] as follows. The projection on the z-axis of the total spin is

Jz =
1

2

∑
i

σ(i)
z . (A.9)

If its expectation value vanishes the variance is

(∆Jz)
2 = 〈J2

z 〉 =
1

4

∑
i,j

〈σ(i)
z ⊗ σ(j)

z 〉 =
1

4

∑
i

〈(σ(i)
z )2〉+

1

4

∑
i 6=j

〈σ(i)
z ⊗ σ(j)

z 〉 (A.10)

Since σ2
z = 1 the first term simply equates to N

4
with N being the total number of

particles. If we assume to have a symmetric state1 the expectation value 〈σ(i)
z ⊗ σ(j)

z 〉
has to give the same result for each of the N(N − 1) pairs of particles i 6= j. We get

4(∆Jz)
2 = N +N(N − 1)〈σ(1)

z ⊗ σ(2)
z 〉 (A.11)

This shows that for sub-shot-noise fluctuations

4(∆Jz)
2 < N ⇒ 〈σ(1)

z ⊗ σ(2)
z 〉 < 0 (A.12)

This means if spin 1 is measured to point up we have a higher probability to measure
that spin 2 points down. However, 〈σ(1)

z 〉 = 0 shows that the measurement of the spin
of a single particle gives up or down with equal probability.

To prove that this correlation can only be due to entanglement we need to show that
〈σ(1)

z ⊗ σ(2)
z 〉 ≥ 0 for any unentangled symmetric state

ρsep =
∑
k

pk ρk ⊗ ρk ⊗ · · · ⊗ ρk (A.13)

1This is a rather strong assumption and a key ingredient here.
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A.2. Number squeezing and entanglement of symmetric states

This is easy to check:

〈σ(1)
z ⊗ σ(2)

z 〉 =
∑
k

pkTr
[
(ρk ⊗ ρk)(σ(1)

z ⊗ σ(2)
z )
]

=
∑
k

pk〈σ(2)
z 〉k〈σ(2)

z 〉k =
∑
k

pk〈σ(1)
z 〉2k ≥ 0 (A.14)

Here 〈·〉k denotes the expectation value with respect to the single particle pure state
described by ρk.
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B. The spin-squeezing parameter as an
entanglement witness

In the last section we saw that sub-shot-noise fluctuations imply entanglement for sym-
metric states. It is not easy to verify experimentally whether a state is symmetric. But
as symmetric states live on the surface of the many particle Bloch sphere it might be
a good idea to include the length of the total spin 〈J〉 into an entanglement criterion,
since J ≈ N/2 for an almost symmetric state. Thus the spin-squeezing parameter by

Wineland et al. ξ2 = N(∆Jz)2

〈Jx〉2 [61] can be used for an entanglement criterion as has been

shown by Sørensen et al. [45]. The proof is as follows: By definition a general separable
state can be written as

ρsep =
∑
k

pk ρ
(1)
k ⊗ ρ

(2)
k ⊗ · · · ⊗ ρ

(N)
k with

∑
k

pk = 1 and pk ≥ 0 (B.1)

where ρ
(i)
k = ρ

(j)
k ∀ i, j, k is only true for symmetric separable states. Using this similar

to the last section we can calculate

(∆Jz)
2 =

〈
J2
z

〉
− 〈Jz〉2 =

1

4

∑
k

pk

〈(∑
i

σ(i)
z

)(∑
j

σ(j)
z

)〉
k

− 〈Jz〉2

=
1

4

∑
k

pk

[∑
i

〈
(σ(i)

z )2
〉
k

+
∑
i 6=j

〈
σ(i)
z

〉
k

〈
σ(j)
z

〉
k

]
− 〈Jz〉2

=
N

4
+

1

4

∑
k

pk

[∑
i,j

〈
σ(i)
z

〉
k

〈
σ(j)
z

〉
k
−
∑
i

〈
σ(i)
z

〉2

k

]
− 〈Jz〉2

=
N

4
− 1

4

∑
k

pk
∑
i

〈
σ(i)
z

〉2

k
+
∑
k

pk 〈Jz〉2k − 〈Jz〉
2 (B.2)

To estimate a lower bound for (∆Jz)
2 we can drop the last two terms since

∑
k pk 〈Jz〉

2
k ≥

〈Jz〉2 = (
∑

k pk 〈Jz〉k)
2 and get

(∆Jz)
2 ≥ N

4
− 1

4

∑
k

pk
∑
i

〈
σ(i)
z

〉2

k
(B.3)

Now we can use 〈σx〉2 + 〈σy〉2 + 〈σz〉2 ≤ 1 to get

(∆Jz)
2 ≥ 1

4

∑
k

pk
∑
i

[〈
σ(i)
x

〉2

k
+
〈
σ(i)
y

〉2

k

]
(B.4)
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B. The spin-squeezing parameter as an entanglement witness

Finally we use (
∑

i ai)
2 =

∑
i,j aiaj ≤ N

∑
i a

2
i and have

(∆Jz)
2 ≥ 〈Jx〉

2 + 〈Jy〉2

N
(B.5)

and hence

⇔ ξ2 =
N(∆Jz)

2

〈Jx〉2 + 〈Jy〉2
≥ 1. (B.6)

Note that in section 2.4 we assumed that the state is oriented along Jx and thus 〈Jy〉 = 0.
In this case the spin-squeezing parameters ξ2 in eq. (B.6) and (2.50) are identical.
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C. Time evolution of the K-vector

For the spin dynamics Hamiltonian H = 2ΩKy the time evolution of the K operator is

i
d

dt
K = 2Ω [Ky,K ] . (C.1)

Using the commutation relations

[Kx, Ky ] = −iKz

[Ky, Kz ] = iKx (C.2)

[Kz, Kx ] = iKy

we get

i
d

dt
K = i2Ω

Kz

0
Kx

 = i2Ω

0 0 1
0 0 0
1 0 0

Kx

Ky

Kz.

 (C.3)

Obviously, the Ky component will stay constant. For the remaining two components we
have

d

dt

(
Kx

Ky

)
= 2Ω M

(
Kx

Ky

)
with M =

(
0 1
1 0

)
(C.4)

with the formal solution (
Kx(t)
Ky(t)

)
= et 2Ω M

(
Kx

Ky

)
. (C.5)

Since

M2 =

(
1 0
0 1

)
(C.6)

it is beneficial to split the power series of the exponential function in its even and odd
parts yielding

et 2Ω M =

(
0 1
1 0

) ∞∑
n=0

(t 2Ω)2n+1

(2n+ 1)!
+

(
1 0
0 1

) ∞∑
n=0

(t 2Ω)2n

(2n)!
(C.7)

=

(
cosh(t 2Ω) sinh(t 2Ω)
sinh(t 2Ω) cosh(t 2Ω)

)
(C.8)

Hence, in total the time evolution vector operator K isKx(t)
Ky(t)
Kz(t)

 =

cosh(t 2Ω) 0 sinh(t 2Ω)
0 1 0

sinh(t 2Ω) 0 cosh(t 2Ω)

Kx

Ky

Kz

 (C.9)
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D. CCD camera calibration

For a correct atom number estimation we need a precise calibration of our CCD camera
(Princeton instruments, pixis 1024 BR eXcelon) as pointed out in section 4.4.3.

D.1. Calibration of the camera gain
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Figure D.1.: Calibration of the camera gain. From the slope of the variance
1
2

(
∆(N

(i)
c,1 −N

(i)
c,2)
)2

as a function of the mean number of digital counts

N̄c,1 we can estimate the gain of the camera to be g = 1.09.

The first quantity of the camera is the so-called gain g giving the number of digital
counts per primary electron which has been created by an detected photon on a CCD
pixel. The number of primary electrons Nel is subject to shot-noise fluctuations ∆Nel =√
Nel. The number of digital counts Nc thus fluctuates with

∆Nc = g∆Nel = g
√
Nel =

√
Nc

g
(D.1)

If we vary the number of primary electrons and plot the variance (∆Nel)
2 against the

number of primary electrons Nel we can extract the camera gain g from the slope of the
expected linear dependence.

We have to take care that the shot noise is the dominant noise source such that all
technical noise sources can be neglected. Such noise sources would lead to a variance
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D. CCD camera calibration

∆Nc ∝ N2
c and spoil the calibration. We thus have to achieve a very homogeneous illumi-

nation to suppress the influence of mechanical vibrations. Additionally, the illumination
intensity has to be constant in time.

To achieve a homogeneous illumination of the CCD camera we choose an ordinary
torch as an incoherent light source to avoid diffraction fringes as described in sec-
tion 4.4.5. Note, that the wavelength of the light used for the calibration of the gain
factor is not important since it only depends on the electronics which amplify the pri-
mary electrons and the analogue-digital converters which convert the resulting signal
into digital counts. The light has to pass through three sheets of white paper before
it reaches the camera which diffuses the light to avoid a bright spot in the middle and
achieve homogeneous illumination. The influence of spatial inhomogeneity can be fur-
ther suppressed by considering the fluctuations of the difference in the number of counts
N

(i)
c,1 − N

(i)
c,2 on one pixel in two successive images. If an other camera pixel is illumi-

nated with another mean intensity leading to another mean number of digital counts〈
N

(i)
c

〉
6=
〈
N

(j)
c

〉
this does not effect the variance

1

2

(
∆(N

(i)
c,1 −N

(i)
c,2)
)2

=
Nc

g
. (D.2)

Furthermore, shot to shot power fluctuations can be suppressed by comparing the av-
erage counts of two successive images N̄c,1 =

∑
iN

(i)
c,1 and N̄c,2 =

∑
iN

(i)
c,2 and adjusting

the counts of the second image N
(i)
c,2 →

N̄c,1

N̄c,2
N

(i)
c,2 such that both images have the same

average number of counts.

With this method we record the data presented in Fig. D.1. We estimate a gain of
g = 1.09 digital counts per detected photon in reasonable agreement with he specified
gain of g = 1.0.

D.2. Calibration of the quantum efficiency

Here we present the estimation of the quantum efficiency η = Nel

Nph
, which is the number

of detected photons Nel which have been converted to primary electrons divided by the
number of incident photons. The number of primary electrons can be readily calculated
Nel = Nc

g
from the number of digital counts Nc with the camera gain g which has been

measured as described in the last section.

We illuminate the camera with a coherent laser beam resonant to the cycling transition
in 87Rb used for the absorption detection. We make sure that the beam is much smaller
than the CCD chip such that it completely fits on the camera. With a calibrated diode
detector we can measure the power of the laser beam. The number of photons incident
on the camera is

Nph =
t P

hν
(D.3)

with the illumination time t.
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D.2. Calibration of the quantum efficiency

We measure a quantum efficiency of η = 0.97(1) in reasonable agreement with the
specified quantum efficiency of η = 0.98 at this wavelength. We checked that the result
does not depend on the illumination intensity and time.
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E. Statistically correct error bars for
estimated variances

For our experiments, we determine the second central moment µ2 of an unknown proba-
bility distribution p(x). A quantity x is measured with the probability p(x) of the under-
lying probability distribution. To estimate the second central moment µ2 of this distri-
bution we repeat the experiment and record a sample of these quantities {x1, x2, . . . xn}.
In the limit of an infinitely large sample, the second central moment of the sample

m2 =
1

n

∑
i

(
xi −

1

n

∑
j

xj

)2

(E.1)

is equal to the second central moment of the underlying distribution

lim
n→∞

m2 = µ2. (E.2)

For a finite sample size n, there will be deviations. Moreover, the expectation value
Em2 of the second central moment of the sample, i.e. the average result of such an
experiment, is not equal to the second central moment of the underlying distribution

Em2 6= µ2 (E.3)

Thus, m2 is called a biased estimator for the second central moment of the distribution.
Explicit calculations yield

Em2 =
n− 1

n
µ2 (E.4)

This shows that

µ̂2 =
n

n− 1
m2 (E.5)

is an unbiased estimator for µ2 since according to Eq. (E.4) the expectation value of µ̂2

is precisely µ2.

A more subtle question is to ask how much the expectation value of the estimator
µ̂2 will fluctuate from sample to sample and thus to determine its error bars. In other
words we need to find an estimator for var(µ̂2) = var( n

n−1
m2).

In the following we will derive such an estimator that can be applied without further
assumptions about the (unknown) probability distribution of {xi}.
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E. Statistically correct error bars for estimated variances

E.1. Augmented and monomial symmetric functions

As we will see, for this task it is very useful to use augmented and monomial symmetric
functions (see [131] p. 416) . The augmented symmetric function is defined as

[pπ11 p
π2
2 . . . pπ2s ] =

∑
xp1i x

p1
j . . . xp2q x

p2
r . . . xpsu x

ps
v (E.6)

where there are π1 powers of p1, π2 powers of p2 and so on. All suffixes in the sum are
supposed to be different i 6= j 6= · · · 6= v and, subject to this, the summation takes place
over all values of x. Thus there are n(n − 1) . . . (n − p) terms in the summation with
p =

∑s
i=1 πi. Hence by taking the expectation value we get

E([pπ11 p
π2
2 . . . pπ2s ]) = n(n− 1) . . . (n− p)(µ′p1)

π1(µ′p2)
π2 . . . (µ′ps)

πs (E.7)

where µ′r denotes the rth (non-central) moment of the distribution.
The monomial functions are defined as

(pπ11 p
π2
2 . . . pπ2s ) = [pπ11 p

π2
2 . . . pπ2s ]/(π1!π2! . . . πs!) (E.8)

In Appendix 10 of reference [131] there are tables giving these functions in terms of
each other which will be used in the following.

E.2. var(µ̂2) in terms of µ4 and µ2
2

As a first step to find an estimator for var(µ̂2), let us express it in terms of µ4 and µ2
2.

var(µ̂2) =
n2

(n− 1)2
var(m2) =

n2

(n− 1)2

(
Em2

2 − (Em2)2
)

=
n2

(n− 1)2
Em2

2 − µ2
2 (E.9)

where Eq. (E.4) has been used for the last step.
The expectation value Em2

2 can be found using the augmented and monomial sym-
metric functions as follows.

m2
2 =

(
1

n

∑
x2
i −

( 1

n

∑
xi

)2
)2

=

(
(2)

n
− (1)2

n2

)2

=
(2)2

n2
− 2

(2)(1)2

n3
+

(1)4

n4
(E.10)

Now the table in Appendix 10 of reference [131] can be used to transform the monomial
symmetric functions into augmented symmetric functions giving the following result

m2
2 =

[4] + [22]

n2
− 2

[4] + 2[31] + [22] + [212]

n3
+

[4] + 4[31] + 3[22] + 6[212] + [14]

n4
(E.11)
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E.3. Finding estimators for µ4 and µ2
2

To shorten the calculation all terms containing [. . . 1πi . . . ] can been dropped directly for
the following reason: all of these terms would result in a term . . . µπi1 . . . containing the
first moment when taking the average. However, m2 should not depend on the position
of the center of the distribution and thus it does not depend on µ1. Hence, we know
that these terms will cancel in the following calculation. We thus get

m2
2 =

[4] + [22]

n2
− 2

[4] + [22]

n3
+

[4] + 3[22]

n4

=
(n− 1)2

n4
[4] +

n2 − 2n+ 3

n4
[22] (E.12)

Using Eq. (E.7) we get for the expectation value

Em2
2 =

(n− 1)2

n3
µ4 +

(n− 1)(n2 − 2n+ 3)

n3
µ2

2 (E.13)

Finally we have

var(µ̂2) =
µ4

n
− n− 3

n(n− 1)
µ2

2 (E.14)

This equation reduces the problem of finding an estimator for var(µ̂2) to finding esti-
mators for µ4 and µ2

2. This will be done in the following two sections using the same
technique.

E.3. Finding estimators for µ4 and µ2
2

Using the same technique as in the previous section, we calculate for Em4

m4 =
1

n

∑
i

(
xi −

1

n

∑
j

xj

)4

=
1

n

∑
i

(
x4
i −

4

n
x3
i

∑
j

xj +
6

n2
x2
i

(∑
j

xj

)2

− 4

n3
xi

(∑
j

xj

)3

+
1

n4

(∑
j

xj

)4
)

=
(4)

n
− 4

(1)(3)

n2
+ 6

(2)(1)2

n3
− 4

(1)4

n4
+

(1)4

n4

=
[4]

n
− 4

[4]

n2
+ 6

[4] + [22]

n3
− 3

[4] + 3[22]

n4

=
1

n4

(
(n3 − 4n2 + 6n− 3)[4] + (6n− 9)[22]

)
⇒ Em4 =

n3 − 4n2 + 6n− 3

n3
µ4 +

3(n− 1)(2n− 3)

n3
µ2

2. (E.15)

Solving the Eqs. (E.15)) and (E.13) for µ4 and µ2
2 finally yields

µ4 =
n

(n− 1)(n− 1)(n− 3)

(
(n2 − 2n+ 3)Em4 − 3(2n− 3)Em2

2

)
(E.16)

µ2
2 =

n

(n− 1)(n− 2)(n− 3)

(
(n2 − 3n+ 3)Em2

2 − (n− 1)Em4

)
(E.17)
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E. Statistically correct error bars for estimated variances

We thus found the following estimators for µ4 and µ2
2

µ̂4 =
n

(n− 1)(n− 1)(n− 3)

(
(n2 − 2n+ 3)m4 − 3(2n− 3)m2

2

)
(E.18)

µ̂2
2 =

n

(n− 1)(n− 2)(n− 3)

(
(n2 − 3n+ 3)m2

2 − (n− 1)m4

)
(E.19)

E.4. The estimator for var(µ̂2)
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Figure E.1.: Application of the new estimator to a set of generated random numbers.
We have generate random numbers according to a probability distribution
p(x). For each sample size n, we have applied the new estimator to 104

samples. The open circles present the mean of the calculated estimator
with their statistical uncertainties. These results compare well to the di-
rectly calculated variance of the 104 sample variances (red crosses). It is
statistically equal to the exact prediction of Eq. (E.14) (black solid line) and
completely incompatible with the naive guess var(µ̂2) ≈ 1

n
(µ4−µ2

2) (dashed
line).

By plugging Eq. (E.18) and (E.19) in Eq. (E.14)) and further simplifying the equation,
we find the desired estimator for var(µ̂2)

var(µ̂2) ≈ n
m4(n− 1)2 −m2

2(n2 − 3)

(n− 3)(n− 2)(n− 1)2
(E.20)

For a verification of the correctness of this estimator, we numerically generate random
samples {x1, x2, . . . , xn} with different sample lengths n. For each sample length, we
generate 104 samples and apply the estimator and the results are shown in Fig. E.1
as black circles with error bars. The estimator agrees with the fluctuations of the 104

104



E.4. The estimator for var(µ̂2)

estimations of the central second moment µ̂2 shown as red crosses and the exact value of
Eq. (E.14). We performed this test for a variety of probability distributions p(x) yielding
similar results and thus confirmed that the estimator gives correct results independent
of the shape of the probability distribution.
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Arlt, C. Klempt, and L. Santos
Phys. Rev. A, 82:053608 (2010)

• Aufbau und Planung einer Hybridfalle zur Erzeugung ultrakalter Quantengase
B. Lücke
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